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Summary 

In mammals, DNA methylation is crucial to regulate gene expression. After establishment during 

embryogenesis, DNA methylation patterns are faithfully propagated by the maintenance DNA 

methyltransferase 1 (DNMT1) during replication. Maintenance DNA methylation is subjected to complex 

regulation including protein interactions, cell cycle-dependent abundance and enzyme activation. 

Strikingly, DNMT1 enzymatic function requires both activation and regulation by its N-terminal domain 

(NTD). A key regulator and essential interaction partner of DNMT1 is the multi-domain protein UHRF1 

(ubiquitin-like, containing PHD and RING finger domains 1). Regulatory mechanisms as well as the interplay 

between different UHRF1 domains in recruiting DNMT1 to its DNA target sites remain, however, elusive. 

To functionally investigate the UHRF1 domain characteristics, we developed a versatile toolbox for 

semiquantitative and medium throughput analysis of protein-DNA, protein-histone tail peptide and 

protein-protein binding in vitro. Using this method we showed the specificity of UHRF1 for repressive 

histone marks and mapped a TS domain region in the NTD of DNMT1, which mediates the interaction with 

UHRF1. With complementation assays, we further demonstrated that interaction of DNMT1 with UHRF1 is 

necessary, but not sufficient for recruitment of DNMT1 to its substrate sites. In turn, none of the UHRF1 

domains is dispensable for DNMT1 regulation suggesting a complex interplay of different UHRF1 functions. 

With defined mutations abolishing the E3 ubiquitin ligase activity of UHRF1, we demonstrated that the 

RING domain is crucial for the regulation of DNMT1. By mass spectrometry analysis we identified histone 

H3K18 as a novel ubiquitination target of UHRF1. We further showed that H3K18 ubiquitination by the 

RING domain is required for DNA methylation by DNMT1 in vivo. Moreover, PHD-mediated binding of 

UHRF1 to H3R2 is a prerequisite for subsequent histone ubiquitination. With bioinformatics and 

mutational analyses we identified and functionally characterized a ubiquitin interacting motif (UIM) in the 

TS domain of DNMT1. We used functional assays to illustrate that the UIM-mediated binding to 

ubiquitinated H3K18 and H2AK119 is essential for DNMT1 targeting and activity in vivo. These findings 

reveal an interdependent regulatory network controlling DNA methylation based on specific reading and 

writing of epigenetic marks by UHRF1. Our work uncovers UIM-dependent targeting of DNMT1 as a novel 

regulatory principle for DNA methylation beyond classic maintenance.  

The identification of the UHRF1 interacting region and the UIM in the DNMT1 TS domain propose 

distinct non-redundant regulatory roles. Recently, medical studies reported several DNMT1 mutations 

associated with the human diseases hereditary sensory and autonomic neuropathy with dementia and 

hearing loss (HSAN-IE) and autosomal dominant cerebellar ataxia, deafness and narcolepsy (ADAC-DN). 

Interestingly, all mutations are located in the TS domain, but not within the UIM. As the underlying disease 

mechanisms are poorly understood, we set out to investigate functional defects of two HSAN-IE associated 

DNMT1 mutations (P496Y and Y500C). We found that mutant DNMT1 was not only deficient in UHRF1 and 

heterochromatin binding, but also led to DNMT1 destabilization. Our results provide an explanation for 

diminished activity of mutant DNMT1 accounting for the observed global DNA hypomethylation in HSAN-IE 

patients.  

In conclusion, this work advances our understanding of how UHRF1 and two defined regions in the 

DNMT1 TS domain regulate DNA methylation and also suggests a new mechanism of DNMT1 dysfunction 

in the pathogenesis of human neurodegenerative diseases.  
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Zusammenfassung 

DNA-Methylierung spielt eine fundamentale Rolle für die Regulierung der Genexpression in Säugern. 

Nach der Etablierung von DNA-Methylierungsmustern in der Embryonalentwicklung, überträgt die DNA-

Methyltransferase 1 (DNMT1) diese epigenetischen Muster getreu an nachkommende Zellgenerationen. 

Erhaltungs-DNA-Methylierung ist einer Vielzahl von regulatorischen Mechanismen unterworfen, wie etwa 

Protein-Interaktionen, zellzyklusabhängigen Abundanzen und Enzymaktivierung. Die katalytische Aktivität 

von DNMT1 beruht auf ihrer C-terminale Domäne, die von der N-terminalen Domäne (NTD) reguliert und 

aktiviert wird. Eine wichtige regulatorische Rolle wird dem Protein "ubiquitin-like, containing PHD and 

RING finger domains 1" (UHRF1) zugeschrieben, das mit DNMT1 interagiert und essentiell für die DNA-

Methylierung ist. Es ist jedoch unbekannt, welche regulatorischen Mechanismen DNMT1 zu ihrem 

Substrat rekrutieren und wie verschiedene UHRF1 Proteindomänen zusammenwirken. 

Um die Eigenschaften der UHRF1 Domänen funktionell zu analysieren, haben wir einen molekularen 

Werkzeugkasten entwickelt, der es ermöglicht die Bindung von Proteinen an DNA, Histone und andere 

Proteine in vitro zu untersuchen. Mit dieser Methode konnten wir die Bindespezifität von UHRF1 für 

repressive Histon-Modifikationen zeigen und eine TS Domäne Region in der NTD von DNMT1 kartieren, die 

mit UHRF1 interagiert. Durch Komplementationsexperimente konnten wir nachweisen, dass die 

Interaktion von DNMT1 mit UHRF1 essentiell, jedoch nicht ausreichend für die Rekrutierung von DNMT1 

zu ihren Substratstellen ist. Keine der UHRF1 Domänen ist wiederum für die Regulierung von DNMT1 

verzichtbar, was auf eine Beteiligung verschiedener UHRF1 Funktionen in der Regulierung von DNA-

Methylierung hindeutet. Durch gezielte Mutationen, die die E3 Ubiquitin Ligase Aktivität von UHRF1 

beeinträchtigen, konnten wir klar zeigen, dass die RING Domäne von UHRF1 sehr wichtig für die DNA-

Methylierung durch DNMT1 ist. Durch Massenspektrometrie haben wir H3K18 als neue Ubiquitinierungs-

Zielstelle von UHRF1 identifiziert. H3K18 Ubiquitinierung und darauffolgende DNA-Methylierung 

erforderte auch die Bindung der PHD an H3R2. Mit bioinformatischen- und Mutations-Analysen haben wir 

ein Ubiquitin interagierendes Motif (UIM) in der TS Domäne von DNMT1 identifiziert, das an H3K18 und 

H2AK119 ubiquitinierte Histone bindet und sehr wichtig für die Funktionalität von DNMT1 in vivo ist. Diese 

Ergebnisse lassen ein regulatorisches Netzwerk zur Kontrolle der DNA-Methylierung erkennen, das 

spezifisches Lesen und Schreiben von epigenetischen Modifikationen durch UHRF1 erfordert. Unsere 

Forschungsarbeit hat den UIM abhängigen Rekrutierungsmechanismus als neues Regulierungsprinzip 

aufgedeckt, der DNMT1 über klassische Erhaltungsmethylierung hinaus an ihre Zielstellen bringt. 

Die Identifizierung der UHRF1 interagierenden Region und des UIM deutet auf verschiedene, nicht 

redundante Rollen der TS Domäne von DNMT1 hin. Kürzlich haben einige medizinische Studien 

Mutationen in der TS Domäne von DNMT1 beschrieben, die mit der humanen Krankheit "hereditary 

sensory and autonomic neuropathy with dementia and hearing loss" (HSAN-IE) und "autosomal dominant 

cerebellar ataxia, deafness and narcolepsy" (ADAC-DN) in Verbindung gebracht werden. Alle Mutationen 

wurden in der TS Domäne gefunden, jedoch außerhalb des UIM. Da die zugrundeliegenden 

Krankheitsmechanismen kaum verstanden sind, haben wir funktionelle Defekte von zwei HSAN-IE 

assoziierten Mutationen (P496Y und Y500C) untersucht. HSAN-IE Mutationen führten dazu, dass DNMT1 

nicht mehr mit UHRF1 interagierte. Weiterhin waren die DNMT1-Mutanten destabilisiert und zeigten 

schnellere Proteinkinetiken sowie eine schwächere Assoziation mit Heterochromatin. Unsere Ergebnisse 

liefern eine Erklärung für die herabgesetzte Aktivität der DNMT1 Mutanten, die zu globaler DNA-

Hypomethylierung in HSAN-IE Patienten führt.  

Zusammenfassend beleuchtet diese Forschungsarbeit nicht nur die Regulierung von DNA-

Methylierung durch UHRF1 und zwei definierte Regionen in der TS Domäne, sondern beschreibt auch 

Mechanismen von DNMT1 Dysfunktionen, die an der Pathogenese neurodegenerativer Krankheiten 

beteiligt sein könnten. 
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1. Introduction 

1.1 Epigenetic information 

Epigenetic mechanisms are of central importance for the regulation of gene expression in mammalian 

genomes. Although each cell of the adult body carries the same primary genetic information identical to 

that of the zygote, it contains multiple cell types with diverse tissue functions (Bird 2002). To allow a 

complex and multifunctional organism to arise from a single cell, epigenetic patterns have to be 

dynamically changed during early embryonic development (Wu and Zhang 2010). Epigenetic patterns rely 

on heritable information found in the higher order chromatin structure governed by DNA and histone 

modifications, histone variants and histone remodeling as well as RNA-mediated gene silencing. 

Imprinting, X chromosome inactivation and cell differentiation are the most famous examples for 

processes that are substantially regulated by epigenetic mechanisms. Misregulation of these mechanisms 

leads to genomic instability and promotes tumorigenesis (Choi and Lee 2013). DNA and histone 

modifications are the most prominent epigenetic marks and will be introduced in the next two chapters. 

1.1.1 Histone post translational modifications 

Nucleosomes are composed of 147 base pairs superhelical DNA wrapped 1.65 times around a histone 

octamer formed by dimers of the four different core histones, H2A, H2B, H3 and H4 (Woodcock and Ghosh 

2010). H1 is called linker histone and is localized near the DNA entry-exit sites of the core particle thereby 

stabilizing the nucleosome (Thoma et al. 1979). Histones possess a globular structure, but their N-terminal 

part protrudes from the core as a so called histone tail. Whereas post translational modifications (PTMs) 

on the histone core domains usually have a direct effect on the histone structure or on the interaction 

with surrounding DNA and neighboring nucleosomes, PTMs on the flexible histone tails have an indirect 

effect on chromatin compaction. Histone tail PTMs recruit specific reader modules that initiate further 

downstream pathways (Mersfelder and Parthun 2006; Kouzarides 2007). Euchromatic histone PTMs are 

usually found in less compacted active chromatin, while heterochromatic or also called repressive marks 

are enriched in densely compacted silent chromatin (Figure 1.1). Depending on the context and 

combination of histone PTMs, the functional output leading to activation or repression of the underlying 

gene can differ. Thus, histone PTMs are more complex than previously thought arguing against the original 

idea of a ´histone code`. Similar to the genetic code, the ´histone code` was proposed to have a definite 

and invariable outcome that only relies on the mark itself and on specific readers (Strahl and Allis 2000; 

Jenuwein and Allis 2001). Currently, histone PTMs tend to be summarized under the term ´chromatin 

signaling`, which includes both, the DNA and histone context into the interpretation and underlines the 

dynamic interplay of different PTMs leading to the functional outcome (Sims and Reinberg 2008; Lee et al. 

2010; Henikoff and Shilatifard 2011). 

In general, histones are modified by so called writers that establish acetylation (ac), phosphorylation 

(ph), ubiquitination (ub), sumoylation (su), ADP ribosylation (ar), deimination, proline isomerization as well 
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as different degrees of methylation (me) (Kouzarides 2007). The most prevalent PTMs are set by three 

different groups of writers including histone acetyltransferases (HATs), kinases and histone 

methyltransferases (HMTs). Histones carrying certain PTMs are recognized by reader modules comprising 

specialized pockets to screen and bind their target (Kouzarides 2007; Taverna et al. 2007). In general, 

chromo-like domains of the Royal family and nonrelated PHD domains bind methylated histones, 

bromodomains recognize acetylated histones and a domain within 14-3-3 proteins recognizes 

phosphorylated histones. By reading the histone PTM, either the binding effector itself or associated 

complexes induce downstream functional pathways. Histone PTMs are not absolutely stable, but they can 

be removed by the action of erasers like histone deacetylases (HDACs), deubiquitinases and demethylases 

(Kouzarides 2007). In the following section, important histone PTMs together with their respective writers 

and biological functions are exemplified. 

 

Figure 1.1: Histone post translational modifications in hetero- and euchromatic regions. In the upper panel DNA 

counterstaining of a mouse somatic nucleus is shown with intense DAPI signals in AT-rich heterochromatin. The illustrations 

in the lower panel exemplify characteristic eu- and heterochromatic histone post translational modifications (PTMs). 

Euchromatic histone PTMs 

Generally, euchromatin covers gene-rich chromatin regions that are located in the R-bands of mitotic 

Giemsa-stained chromosomes (Gilbert et al. 2004). Methylated histone N-terminal tails like H3R2me2s, 

H3K4me1, H3K4me3 and H3K36me3 as well as acetylated tails like H3K9ac, H3K14ac and H4K16ac are 

examples of activating histone PTMs that are prevalent in chromatin regions permissive to transcription. 

One of the best characterized euchromatic histone PTMs is the methylation of lysine 4 on histone H3. 

Whereas H3K4me1 is enriched in active and poised enhancers, H3K4me3 is found in active and poised 
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promoters (Bernstein et al. 2005; Kouzarides 2007; Li et al. 2007a; Hon et al. 2009). H3K4me3 enables 

active transcription firstly by facilitating transcription initiation and secondly by inhibiting the writing of 

heterochromatic marks like H3K9me3. H3K4me3 is selectively bound by the PHD finger of the TATA box 

binding protein-associated factor TAF3, a subunit of the transcription factor TFIID that contributes to the 

initiation of transcription (Vermeulen et al. 2007). 

To date, several writers for methylated H3K4 have been described: the lysine HMTs mixed lineage 

leukemia MLL1, MLL3 and MLL4 (Dou et al. 2005; Cho et al. 2007), SET domain containing 1A and 1B 

complex (SETD1A and SETD1B) (Lee and Skalnik 2005; Lee et al. 2007), histone lysine N-methyltransferase 

SET7 (Wang et al. 2001; Xiao et al. 2003) as well as SET and MYND domain-containing protein 2 (SMYD2) 

(Abu-Farha et al. 2008). The presence of H3K4 methylation closely correlates with H4K16 acetylation on 

active genes as MLL1, one of the writers of H3K4me, forms a stable complex with the H4K16-specific HAT 

MOF (Dou et al. 2005). Similarly, H3K4 methylation has a stimulating effect on subsequent histone H3 and 

H4 acetylation by p300 that is generally found in euchromatic regions (Wang et al. 2001). Furthermore, 

symmetrically dimethylated arginine 2 on H3 (H3R2me2s) is prevalent in active chromatin regions in 

combination with H3K4me3 (Guccione et al. 2007; Yuan et al. 2012). 

Methylation of H3K9, a typical heterochromatic mark, prevents methylation of K4 by SET7 and vice 

versa (Wang et al. 2001; Binda et al. 2010). This indicates that these two histone PTMs linked to opposite 

states of chromatin compaction are mutually exclusive. Likewise, the H3K4 methylation activity of absent, 

small and homeotic discs 1-like protein (ASH1L), a subunit of the MLL complex, is also inhibited by 

preexisting K9 methylation (Gregory et al. 2007). Moreover, asymmetric dimethylation of arginine 2 on H3 

(H3R2me2a), a mark enriched in silenced chromatin, hinders methylation of H3K4 (Guccione et al. 2007). 

Another crosstalk is observed between H3T3ph and H3K4me3. Phosphorylation of the neighboring 

position on the histone tail negatively regulates methylation of H3K4 (Southall et al. 2009). 

Hyperacetylation of the N-terminal tails of all four core histones is a common feature of 

transcriptionally active regions in eukaryotic genomes (Vaquero et al. 2003). Genome-wide, the patterns 

of H3K4me3 overlap to a large extent with those of H3K9ac and H3K14ac (Gregory et al. 2007; Heintzman 

et al. 2007). Acetylation on H3K9 is established by the HAT elongator complex protein 3 (ELP3) and general 

control nonderepressible 5 (GCN5) as well as by the p300/CBP-associated factor (PCAF) (Kim et al. 2002; 

Jin et al. 2011). H3K9ac is prevalent at transcriptional start sites (TSSs) of active genes (Wang et al. 2008). 

H3K14 is preferentially acetylated by GCN5 in context of an H3 tail carrying the S10ph mark (Lo et al. 

2000). 

Interestingly, a direct impact of H4K16ac on chromatin compaction has been reported. The addition of 

an acetyl-group by CREB binding protein (CBP)/p300, GCN5 (Sterner and Berger 2000) or MOF neutralizes 

the basic charge of the lysine and prevents formation of compact 30-nm-like fibers in vitro (Shogren-Knaak 

et al. 2006). Consistently, H4K16ac is enriched in actively transcribed euchromatin and the HATs 

responsible for setting this mark also function as transcriptional coactivators (Carrozza et al. 2003; 

Vaquero et al. 2007). 

Trimethylation of lysine 36 on H3 is enriched in transcribed regions of active genes (Hon et al. 2009). 

Mono- and dimethylation is established by different HMTs like nuclear receptor SET domain-containing 

protein 1, 2 and 3 (NSD1, NSD2 and NSD3), ASH1L, SET domain and mariner transposase fusion gene-

containing protein (SETMAR), SMYD2 as well as SET domain-containing protein 3 (SETD3). Thereafter, 

http://www.ncbi.nlm.nih.gov/nuccore/NM_027748.3
http://www.ncbi.nlm.nih.gov/nuccore/NM_027748.3
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SETD2 introduces the trimethylated state of H3K36 (Wagner and Carpenter 2012). In a process conserved 

from yeast to human, SETD2 associates with the hyperphosphorylated form of RNA-Polymerase II thereby 

coupling H3K36 trimethylation to transcriptional elongation (Kizer et al. 2005). 

Different degrees of H3K9 methylation can be associated with opposed chromatin states. Whereas 

mono- and dimethylated H3K9 is often found in silent euchromatic regions, the trimethylated counterpart 

is clearly enriched in silent heterochromatic regions. 

Heterochromatic histone PTMs  

In general, gene-poor heterochromatic regions found in the G- and C-bands of mitotic chromosomes 

defined by Giemsa staining are marked by low levels of histone acetylation, but high levels of histone 

methylation, especially on H3K9, H3K27 and H4K20 (Vaquero et al. 2003; Kouzarides 2007). 

H3K9me3 is probably the best studied histone modification that contributes to heterochromatin 

formation. However, H3K9me3 might also have a function in euchromatic regions as it was recently 

unexpectedly found in actively transcribed genes like STAT1 and STAT3. (Squazzo et al. 2006; Barski et al. 

2007). Depending on the chromatin context, the methylation can be established by different writers that 

all share a conserved catalytically active SET domain. 

The HMT SET domain, bifurcated 1 (SETDB1) targets unmodified H3K9 in euchromatic regions whereas 

the dimethylated or acetylated form and phosphorylation of the neighboring serine abolish the 

methylation activity in vitro (Schultz et al. 2002). SETDB1 alone is sufficient to achieve dimethylated H3K9, 

but the cofactor mAM, a murine ATFa-associated factor, is needed for the formation of the trimethylated 

form (Wang et al. 2003). In vitro, methylation of H3 tails by SETDB1 recruits the heterochromatin binding 

protein 1 (HP1) that contributes to the formation of densely packed chromatin (Schultz et al. 2002). The 

HMT G9a can also initiate the mono- and dimethylated form of H3K9 (Peters et al. 2003) and in addition 

methylates H3K27. Interestingly, G9a does not localize to heterochromatin supporting its role in silencing 

of euchromatic genes during early development (Tachibana et al. 2001; Tachibana et al. 2002). 

Other H3K9-specific HMTs, suppressor of variegation 3-9 homolog 1 and 2 (SUV39H1 and SUV39H2) 

prefer the un- and monomethylated form of H3K9 as an initial substrate establish mainly the trimethylated 

state (Rea et al. 2000; Peters et al. 2003). One of the known SUV39H1/2 targets are the major satellite 

repeats located in the pericentromeric heterochromatin (PH) (Lehnertz et al. 2003; Peters et al. 2003). 

Notably, a feedback loop ensures establishment of stably compacted chromatin regions. HP1 specifically 

reads trimethylated H3K9 by binding of its chromodomain. Hereafter, HP1 recruits SUV39H1/2, which 

propagate the heterochromatic mark to neighboring nucleosomes thereby providing new binding sites for 

HP1 (Bannister et al. 2001; Lachner et al. 2001; Jacobs and Khorasanizadeh 2002; Nielsen et al. 2002). In 

contrast to the methylation activity of SETDB1 and G9a, which are not influenced by methylation of H3K4, 

the activity of SUV39H1 on histone tails carrying this euchromatic mark is severely inhibited in vitro 

(Nishioka et al. 2002a; Schultz et al. 2002).  

Generally, di- and trimethylated H3K9 negatively correlates with methylated H3K4 (Wang et al. 2001). 

Moreover, trimethylation of H3K9 and the adjacent phosphorylation of S10 are interdependent. Pre-

existing H3S10ph prevents methylation of K9 by SUV39H1 and dimethylation of H3K9 in turn reduces the 

activity of the Ipl1/aurora kinase (Yeast homolog to human Aurora B kinase) to phosphorylate H3S10 in 

vitro (Hsu et al. 2000; Rea et al. 2000). Consistently, double knockout Suv39H1/2 mouse embryonic 
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fibroblasts display an elevated H3S10ph level (Rea et al. 2000). While the different writers of methylated 

H3K9 were long thought to act independently, a recent study describes the existence of a macromolecular 

complex including SETDB1, G9a and SUV39H1/2 (Fritsch et al. 2010). 

Besides trimethylated H3K9, also trimethylated H3K27 is abundant in PH. Monomethylation of H3K27 

is mainly set by the action of the histone-lysine N-methyltransferase enhancer of zeste homolog 2 (EZH2), 

a component of the Polycomb group repressor complex 2 (PRC2) that is involved in maintaining the 

silenced state of homeotic genes and the inactive X chromosome (Cao et al. 2002; Wutz 2011). In 

mammals, H3K27me3 is enriched in facultative heterochromatin of the female inactive X chromosome 

where it contributes to maintenance of the silent state essential for dosage compensation (Plath et al. 

2003; Silva et al. 2003). Usually, di- and trimethylated forms of H3K27 catalyzed by EZH1 and EZH2 are 

prevalent at silent promoters. However, elevated levels of H3K27me1 were also found at active promoters 

of human genes (Barski et al. 2007). 

A further lysine methylation site that is connected to transcriptional repression is trimethylation of 

lysine 20 on H4 (Kouzarides 2007). Monomethylation is preferentially written by the histone-lysine N-

methyltransferase PR-SET7 (Xiao et al. 2005), whereas suppressor of variegation 4-20 homolog 1 and 2 

(SUV4-20H1 and SUV4-20H2) enzymes prefer H4K20me1 as a substrate and establish the di- and 

potentially trimethylated state (Schotta et al. 2004; Yang et al. 2008). It has been proposed, that a 

sequential induction of trimethylated H3K9 and H4K20 takes place in PH. According to the model, HP1 

binding to H3K9me3 leads to subsequent recruitment of SUV4-20H1/H2 (Schotta et al. 2004). However, 

there is growing evidence for SUV4-20H1/2 being solely dimethylases for H4K20 and that yet unknown 

proteins might be responsible for trimethylation (Wu et al. 2013; Southall et al. 2014). Interestingly, 

euchromatic acetylation of H4K16 and methylation of H4K20me have been described as antagonistic 

marks. By inhibiting the acetylation on K16, methylated H4K20 might ensure the silent state of underlying 

chromatin region (Nishioka et al. 2002b). Besides its implication in transcriptional regulation, methylation 

of H4K20 has been linked to DNA repair. Upon induction of double strand breaks, the DNA damage 

checkpoint component, p53 binding protein 1 (53BP1), is specifically recruited to H4K20me2 (Botuyan et 

al. 2006; Greeson et al. 2008). Moreover, H4K20 methylation is involved in DNA replication as H4K20me2 

and me3 help to recruit the Orc complex to origins of replication (Jorgensen et al. 2013). 

Cell cycle-dependent histone PTMs 

A well studied example for a cell cycle-dependent and dynamic histone PTMs is the above mentioned 

phosphorylation of H3 on serine 10. Arising during late G2 phase in PH, H3S10ph is subsequently enriched 

along the chromosome during mitosis (Hendzel et al. 1997). It coordinates chromosome condensation and 

segregation (Wei et al. 1999). Notably, H3S10ph in G2 phase results in dissociation of HP1 proteins from 

heterochromatin (Fischle et al. 2005). It has been shown, that phosphorylation on S10 precludes the 

methylation of K9 by G9a, SETDB1 and SUV39H1/2 (Rea et al. 2000; Schultz et al. 2002; Duan et al. 2008). 

Also H4K20me1 is accumulated on chromatin in dependence on the cell cycle stage (Rice et al. 2002). 

Whereas the level of this modification is very low in early S phase, it increases during S and G2 phase and 

reaches a peak in mitosis. The H4K20me1 levels directly correlate with the abundance of its writer, PR-

SET7, showing the highest expression in G2 and M phase of the cell cycle (Jorgensen et al. 2013). 
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1.1.2 DNA modifications 

DNA modifications have been first described in 1904 by Wheeler and Johnson who chemically 

synthesized 5-methylcytosine (5mC). A quantitative method to separate purines, pyrimidines and 

nucleosides from hydrolyzed DNA samples by paper chromatographie was established in 1948 (Hotchkiss 

1948). By applying the method to a thymus DNA hydrolysate, Hotchkiss could separate the four bases 

adenine, guanine, thymidine and cytosine but also a ´fifth base` which migrated nearby cytosine and which 

he called ´Epi-cytosine`, later named 5mC. Upon the discovery of ten-eleven translocation proteins (TETs) 

in 2009, the ´sixth base` and two additional DNA modifications were subsequently characterized, namely 

5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxycytosine (5caC) (Figure 1.2) (He et 

al. 2011; Ito et al. 2011; Pfaffeneder et al. 2011). Whereas 5mC is the most abundant modification in 

somatic cells covering 60-80% of all CpG dinucleotides in the adult human genome (Ehrlich et al. 1982; 

Smith and Meissner 2013), 5hmC is sparsely distributed (1-5% of 5mC) and is predominantly found in adult 

neurons (Kriaucionis and Heintz 2009; Globisch et al. 2010). The other two oxidized forms of cytosine are 

even less abundant covering 0.06 to 0.6% (5fC) or 0.01% (5caC) of all 5mC sites in mouse embryonic stem 

cells (ESCs) (Ito et al. 2011; Pfaffeneder et al. 2011). 

 

Figure 1.2: DNA modifications on cytosine in mammalian cells. Unmodified cytosine in a CpG context is methylated (5-

methylcytosine (5mC)) by DNA methyltransferases (DNMTs) and can be further oxidized to 5-hydroxymethylcytosine 

(5hmC), 5-formylcytosine (5fC) and 5-carboxycytosine (5caC) by the ten-eleven translocation proteins (TETs). 

In mammals, DNA methylation in promoter regions leads to transcriptional repression either directly 

by preventing transcription factor binding or indirectly by compacting of the chromatin structure. Whereas 

DNA methylation is mainly present in a CpG context in mammalian genomes, the modification is found in a 

CpT context in the insect Drosophila melanogaster (Bird 2002) and in a CpA, CpT and CpC context in plants 

(Law and Jacobsen 2010). Notably, in ESCs very low levels of CpA methylation were found, probably 

established by the DNA methyltransferase 3A (DNMT3A) being, however, no longer detectable in adult 

cells (Ramsahoye et al. 2000). Non CpG methylation is also prevalent in oocytes and mature neurons 

(Lister et al. 2009; Xie et al. 2012b; Lister et al. 2013; Shirane et al. 2013). 

In vertebrates, CpG islands, which are regions with a high occurrence of CpG dinucleotides, are highly 

correlated with promoter regions as well as TSSs and are usually devoid of methylation (Bird et al. 1987). 

The transcriptionally permissive chromatin state of CpG islands makes them a common feature of 

housekeeping and many developmentally regulated genes (Deaton and Bird 2011). Several studies show 

that the methylation free state of CpG islands is dependent on transcription factor binding motifs and 

transcription factor recruitment (Brandeis et al. 1994; Macleod et al. 1994), but also on the euchromatic 
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histone mark H3K4me set by SETD1A (see 1.1.1) (Smith and Meissner 2013). Hypermethylation of CpG 

islands is linked to tumorigenesis and aberrant gene expression (Sproul and Meehan 2013). 

Given that DNA methylation occurs as the second step in gene repression after histone PTMs on 

already silenced loci, it finalizes the epigenetic status of silent chromatin (Bird 2002). DNA methylation 

plays an important role, for instance in stabilizing the repressive status of transposable elements like the 

intracisternal A particle (IAP) elements (Walsh et al. 1998; Gaudet et al. 2004). Although DNA methylation 

is thought to be a relatively stable epigenetic mark in adult tissues, where the patterns only change as a 

consequence of specific cellular processes and needs, it is dynamically changed during early embryonic 

development (see 1.2.4) (Deaton and Bird 2011). 
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1.2. Establishment and maintenance of DNA methylation 

Establishment, regulation and maintenance of DNA methylation is crucial for normal mammalian 

development. DNA methylation is catalyzed by the family of DNA methyltransferases (DNMTs) sharing 

several common features but diverging in their role and regulation. 

Function of mammalian DNA methyltransferases 

During early embryonic development the methyltransferases DNMT3A and DNMT3B set DNA 

methylation marks de novo on unmodified DNA. The maintenance methyltransferase DNMT1, by contrast, 

faithfully propagates the established DNA methylation patterns to successional cell generations after 

replication. According to their function, DNMT3A and DNMT3B are highly expressed during early 

development (Bird 2002). 

The DNA methyltransferase 3 like protein (DNMT3L) does not comprise an intrinsic methyltransferase 

activity. Yet, it interacts with the de novo methyltransferases DNMT3A and DNMT3B and stimulates their 

activity during early development (Hata et al. 2002; Margot et al. 2003; Suetake et al. 2004). Upon 

differentiation, DNMT3L expression is downregulated (Hu et al. 2008). In the precursors of spermatogonial 

stem cells, DNMT3L is essential for the methylation of retrotransposons (Bourc'his and Bestor 2004). 

During gametogenesis, DNMT3L is crucial for the establishment of maternal imprints and Dnmt3L 

knockout results in midgestation lethality (Bourc'his et al. 2001). 

DNMT2 is not required for DNA methylation in a CpG context in mammalian cells (Okano et al. 1998b). 

Instead it methylates the tRNAAsp in a methyltransferase-like catalytic mechanism (Goll et al. 2006; 

Jurkowski et al. 2008). Moreover, DNMT2 was described to be responsible for DNA methylation in a CpA 

and CpT context in Drosophila embryos (Kunert et al. 2003). After dnmt2 knockdown, differentiation 

defects were observed in zebrafish (Rai et al. 2007), whereas mouse ESCs lacking DNMT2 did not display 

any changes in global DNA methylation levels (Okano et al. 1998b). 

Structure of mammalian DNA methyltransferases 

All members of the DNMT family share a common C-terminal catalytic domain (CTD) harboring highly 

conserved sequence motifs (I-X) also found in the prokaryotic DNMTs (Figure 1.3) (Goll and Bestor 2005). 

Only in DNMT3L crucial catalytic motifs in the CTD are lacking, providing an explanation for its enzymatic 

inactivity (Hata et al. 2002). Except for DNMT2 that only comprises a CTD, all other DNMTs carry an 

additional N-terminal domain (NTD). In the de novo methyltransferases, this region is composed of a 

PWWP domain containing a highly conserved proline-tryptophan-tryptophan-proline motif. The PWWP 

domain is required for methylation of PH and mediates the targeting of the enzymes to chromatin in 

mitotic cells (Chen et al. 2004; Ge et al. 2004). Consistently, the PWWP domain of DNMT3A has been 

shown to bind H3K36me3, a histone mark prevalent in heterochromatic regions correlating with DNA 

methylation (Dhayalan et al. 2010). The plant homeodomain (PHD, also known as ATRX–DNMT3–DNMT3L 

(ADD) domain) in the NTD of DNMT3A and DNMT3L has been described as a reader module for 

unmodified H3K4. However, the binding to H3 tails is blocked by H3K4me3, a known euchromatic mark 
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(Ooi et al. 2007; Otani et al. 2009). The NTD of DNMT1 is composed of distinct domains important for 

protein-protein interactions and regulation of enzymatic activity (see 1.2.2). 

 

Figure 1.3: Domain structure and function of mammalian DNA methyltransferases. All members of the DNA 

methyltransferase (DNMT) family share a conserved C-terminal catalytic domain (CTD), whereas the N-terminal domain 

(NTD) differs in length and domain composition. The NTD of the maintenance methyltransferase DNMT1 harbors a DNA 

methyltransferase associated protein 1 (DMAP1) binding domain, a proliferating cell nuclear antigen (PCNA) binding domain 

(PBD), a targeting sequence (TS) domain, a zinc finger (CXXC) domain and two bromo-adjacent homology (BAH1 and BAH2) 

domains. The NTD of DNMT3A and DNMT3B comprises a proline-tryptophan-tryptophan-proline motif containing PWWP 

domain and a plant homeodomain (PHD) that is also found in DNMT3L. Modified from (Rottach et al. 2009). 

1.2.1 Establishment of DNA methylation 

DNA methylation patterns are established de novo during the blastocyst state by DNMT3A and 

DNMT3B (Okano et al. 1998a; Okano et al. 1999). As DNMT3B-deficient mice are embryonic lethal and 

DNMT3A-deficient mice die four weeks after birth, a pivotal role in development is attributed to the 

establishment of DNA methylation-mediated gene silencing (Okano et al., 1999; Li et al., 1992).  

De novo DNA methylation might be the second step in the process of gene silencing. Retroviral 

transcription in ESCs is repressed before de novo methylation occurs (Gautsch and Wilson 1983; Niwa et 

al. 1983) arguing for a histone PTM-mediated gene silencing in this state. This idea is further supported by 

the methylation free character of CpG islands regardless of the gene expression status. Even if the 

corresponding gene of a CpG islands containing promoter is silent, for instance due to a tissue-restricted 

expression pattern of the human α-globin, the CpG island can remain unmethylated (Bird et al. 1987). 

Accordingly, short-term epigenetic memory is distinguishable from long-term memory depending on the 

stability of the epigenetic status. Short term epigenetic repression is often achieved by repressive histone 

PTMs like H3K27me3, which can be easily removed during subsequent cell generations (Wu and Zhang 

2010). In contrast, the silent state of the inactive X chromosome in mammalian cells or of imprinted genes 

has to be stably propagated to the progeny (Wu and Zhang 2010). This so called constitutive 

heterochromatic state is further stabilized by DNA methylation in addition to repressive histone marks. 

When compared to histone PTMs, DNA methylation might be more stable, but it is not static as active DNA 

demethylation can reverse the repressive state (see 1.2.4). 
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One potential trigger ensuring de novo methylation at specific regions are repetitive sequences (Yates 

et al. 1999). In addition, in vitro studies showed that the PHD of DNMT3A recognizes unmodified H3K4 and 

that the enzymatic activity is blocked by heterochromatin, indicating that the chromatin structure has to 

be loosened up before the methylation reaction occurs (Hata et al. 2002; Takeshima et al. 2008; Otani et 

al. 2009). 

Stable oct4 promoter silencing 

Stable silencing of promoters is controlled by coordinated establishment of repressive epigenetic 

marks on histone tails and DNA (Tsumura et al. 2006; Smith and Meissner 2013). This process takes place 

during differentiation, when pluripotency associated promoters, for instance promoters of octamer 

binding transcription factor 4 (oct4), nanog and sox2 as well as of germline-specific genes need to be 

stably silenced (Smith and Meissner 2013). OCT4 is an important regulator of stem cell renewal as well as 

pluripotency. The inactivation mechanism of its promoter during differentiation has been intensely studied 

(Figure 1.4). Initially, the repressor germ cell nuclear receptor (GCNF) binds to the RA receptor element 

(RARE) on the oct4 promoter thereby transiently preventing transcription (Feldman et al. 2006). Next, the 

HMT G9a binds to the promoter region and recruits HDACs that remove the acetylation from H3K9 and 

K14 and pave the way for subsequent histone methylation (Hattori et al. 2004; Kimura et al. 2004; 

Feldman et al. 2006). After H3K9me3 is established by G9a and other HMTs like SUV39H1/2, HP1 binds to 

the histone tails and propagates the methylation to neighboring nucleosomes (Feldman et al. 2006). 

Moreover, G9a, SUV39H1/2 and HP1 recruit DNMT3A and DNMT3B leading to stable and irreversible local 

heterochromatinization by DNA methylation (Fuks et al. 2003). Notably, DNMT3A and DNMT3B have been 

shown to interact directly with each other leading to a mutual catalytic stimulation (Li et al. 2007b). This 

example clearly indicates that the interplay between the two major epigenetic modifications ensures 

stable gene silencing. 

 

Figure 1.4: Stepwise silencing of the oct4 promoter. Upon initiation of differentiation, the octamer binding transcription 

factor 4 (oct4) promoter is transiently silenced by binding of the repressor germ cell nuclear receptor (GCNF) to the RA 

receptor element (RARE). Furthermore, G9a binds to the promoter and recruits histone deacetylases (HDACs) specific for 

deacetylation of H3K9 and H3K14. Together with suppressor of variegation 3-9 homolog 1 and 2 (SUV39H1/2), G9a 

methylates H3K9 that is subsequently bound by the heterochromatin binding protein (HP1). Stable and irreversible silencing 

is achieved by DNA methylation in the oct4 promoter region mediated by the de novo methyltransferases 3A and B 

(DNMT3A/B) that are recruited by G9a, SUV39H1/2 and HP1. Inspired by (Feldman et al. 2006). 
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Further roles of DNMT3A and DNMT3B in DNA methylation-mediated gene silencing 

In the postimplantation embryo, further epigenetic changes occur in primordial germ cells (PGCs). 

After erasure of parental DNA methylation imprints by DNA demethylation (see 1.2.4) (Yamaguchi et al. 

2013), individual imprinted patterns and methylation at retrotransposons are re-established during 

gametogenesis by DNMT3A and DNMT3L (Bestor 2000; Hata et al. 2002; Bourc'his and Bestor 2004; 

Kaneda et al. 2004). Imprinting guarantees the expression of genes from only one chromosome, the 

maternal or the paternal, and is crucial for normal development and the prevention of parthenogenesis 

and tumor formation (Reik and Walter 2001). Furthermore, DNMT3B is required for silencing regions of 

the (peri)centromeric chromatin like minor satellite repeats and the inactive X chromosome (Miniou et al. 

1994; Okano et al. 1999; Xu et al. 1999; Hansen et al. 2000; Kondo et al. 2000). Besides acting as de novo 

methyltransferases, DNMT3A and DNMT3B contribute to the maintenance of the silent states of repetitive 

elements like long interspersed nuclear elements (LINEs) and minor satellites in pluripotent stem cells 

(Smith and Meissner 2013). 

Additionally to direct blocking of transcription factor binding, DNA methylation-mediated 

transcriptional repression mainly relies on specific recruitment of 5mC binding proteins (MBPs) to 

methylated DNA. Three families of MBPs have been described: the methyl-CpG binding domain (MBD) 

family, the SRA family (also known as UHRF family, see 1.2.3) and the Kaiso protein family (Rottach et al. 

2009; Buck-Koehntop and Defossez 2013). MBD1, MBD2, MBD3, MBD4, MBD5 and MBD6 as well as 

MeCP2 are members of the MBD family and except for MBD3, MBD5 and MBD6 have a preference for 

binding 5mC (Klose and Bird 2006; Buck-Koehntop and Defossez 2013). Interestingly, Kaiso, a well studied 

member of the Kaiso family, binds not only to two consecutive methylated CpG sites (Prokhorchuk et al. 

2001; Prokhortchouk et al. 2001), but also to unmethylated DNA carrying TCCTGCNA as a recognition 

motif (Daniel et al. 2002; Buck-Koehntop et al. 2012). In general, MBPs translate DNA methylation into 

functional chromatin states by recruitment of HDACs, HMTs and histone remodeling complexes leading to 

chromatin compaction and transcriptional inactivation (Clouaire and Stancheva 2008). 

1.2.2 Maintenance of DNA methylation patterns by DNMT1 

Once the cell type-specific methylation pattern is established during differentiation mediated by the 

de novo methylatransferases DNMT3A and DNMT3B, it needs to be faithfully transmitted throughout all 

cell divisions by the maintenance methyltransferase DNMT1. Consistent with its important role during 

somatic DNA replication, DNMT1 is constitutively expressed in dividing cells with a peak in S phase of the 

cell cycle (Kishikawa et al. 2003). The fundamental importance of maintenance DNA methylation is 

underlined by the fact that disruption of the Dnmt1 gene leads to embryonic lethality. Mouse embryos 

deficient for DNMT1 are characterized by severe developmental defects and pronounced cell death in 

brain and heart tissues, resulting in mortality prior to embryonic day 11. Albeit DNMT1-deficient ESCs 

show global DNA hypomethylation, cell morphology, viability and proliferation remain unaffected (Li et al. 

1992). 
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Mechanism of methyl group transfer by DNMT1 

The multi-step mechanism of methyl group transfer has been intensely studied and was proposed to 

be conserved from human to prokaryotic type II DNA cytosine methyltransferases (M.HhaI) (Figure 1.5) 

(Wu and Santi 1987; Bestor and Verdine 1994). In the first step, after binding and base flipping, DNMT1 

forms a covalent complex with the C6 position of the target cytosine. In the second step, the methyl group 

is transferred from S-Adenosyl-L-Methionine (SAM) to the C5 position of the cytosine. Finally, the enzyme 

is released by β-elimination in the third step (Flynn et al. 1998; Pradhan et al. 1999). 

 

Figure 1.5: Mechanism of methyl group transfer by DNMT1. After the formation of a covalent complex of DNMT1 with the 

C6 position of the target cytosine, the methyl group is transferred from the donor S-Adenosyl-L-Methionine (SAM) to the C5 

position of the cytosine. In the last step, DNMT1 is released by β-elimination. 

Structure and regulation of DNMT1 

A prerequisite for understanding the functionality and complex regulation of DNMT1 is the knowledge 

of its domains and its structure. Key features of different DNMT1 domains are summarized in Figure 1.6. 

DNMT1 is comprised of a CTD and a large regulatory NTD. The CTD is responsible for substrate binding and 

methyl group transfer, but it needs to be regulated by the NTD to allow for enzymatic activity of DNMT1 

(Fatemi et al. 2001; Easwaran et al. 2004). The NTD of DNMT1 harbors distinct domains which mediate 

different regulatory processes such as protein-protein interaction, substrate specificity and cell cycle-

dependent localization. 
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Figure 1.6: Domain structure and key features of DNMT1. DNMT1 (amino acid 1-1620) contains a catalytically active C-

terminal domain (CTD) that is regulated by the large N-terminal domain (NTD) further subdivided into a DNA 

methyltransferase associated protein 1 (DMAP1) binding domain, a PCNA (proliferating cell nuclear antigen) binding domain 

(PBD), a targeting sequence (TS) domain, a zinc finger (CXXC) domain and two bromo-adjacent homology (BAH1 and BAH2) 

domains. Key features of the different domains are summarized. HSAN-IE: hereditary sensory and autonomic neuropathy 

with dementia and hearing loss; ADCA-DN: autosomal dominant cerebellar ataxia, deafness and narcolepsy. 

The very N-terminal DNA methyltransferase associated protein 1 (DMAP1) domain mediates the 

interaction of DNMT1 with the transcriptional repressor DMAP1 (Rountree et al. 2000). DNMT1 has 

further been linked to the establishment of repressive histone marks. In late S phase, DNMT1 co-localizes 

and interacts with HDAC1 and HDAC2 thereby coupling histone deacetylation activity to DNA methylation 

at replicating heterochromatin (Fuks et al. 2000; Rountree et al. 2000). 

The proliferating cell nuclear antigen (PCNA) binding domain (PBD) plays a fundamental role in cell 

cycle-dependent localization of the methyltransferase especially in early and mid S phase (Schermelleh et 

al. 2007; Schneider et al. 2013). By interaction with PCNA that forms a homotrimeric ring around the DNA 

at replication forks (Maga and Hubscher 2003), DNMT1 is targeted to sites of active DNA synthesis 

(Leonhardt et al. 1992; Chuang et al. 1997). Moreover, DNMT1 is also recruited to DNA damage sites 

through its interaction with PCNA (Mortusewicz et al. 2005). 

In late S phase, the association with densely methylated heterochromatin might be regulated by 

combined action of the PBD and the large targeting sequence (TS) domain (Schneider et al. 2013). 

Remarkably, in G2 phase when DNA synthesis is already completed, DNMT1 still associates with 

chromocenters, which are intensely stained by DAPI and comprise chromatin of pericentromeric regions 

(Figure 1.7). This prolonged binding of DNMT1 to chromatin independently of replication may ensure 

complete methylation of remaining hemimethylated sites prior to M phase (Easwaran et al. 2004). 

Interestingly, in a crystallographic study of a large fragment of mouse DNMT1 (amino acid 291-1620) in 

complex with the cofactor SAM, but without DNA, the TS domain was found to be inserted into the DNA 

binding pocket of the CTD (Takeshita et al. 2011). In addition, another study indicates that the TS domain 

inhibits binding of DNMT1 to DNA in trans (Syeda et al. 2011). Consequently, the TS domain has an 

autoinhibitory role in the regulation of DNMT1 enzymatic activity that presupposes the occurrence of 

structural changes to allow for enzymatic activity. Besides its implication in mediating heterochromatin 
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binding and DNMT1 autoinhibition, the TS domain was found to be mutated in patients suffering from 

neurodegenerative diseases (see 1.4.1). Moreover, the TS domain has been described as a mediator of 

potential DNMT1 dimerization that has been proposed to facilitate the recognition of target sites on DNA 

(Fellinger et al. 2009). Importantly, the TS domain was found to be the interaction surface for ubiquitin-

like, containing PHD and RING finger domains 1 (UHRF1), a cofactor and binding partner of DNMT1 (see 

1.2.3) (Bostick et al. 2007; Achour et al. 2008; Felle et al. 2011). 

In addition, DNMT1 features a CXXC type zinc finger domain (CXXC), which binds to unmethylated DNA 

(Frauer et al. 2011) and changes the structure of DNMT1 in a way that avoids de novo methylation activity 

(Song et al. 2011b). In complex with unmodified DNA the linker between the CXXC domain and the bromo 

adjacent homology domain 1 (BAH1) blocks the access of the catalytic center in the CTD to the target CpG 

site (Song et al. 2011b). The BAH domains are involved in several DNMT1-protein interactions including 

ubiquitin-specific processing protease 7 (USP7) that regulates DNMT1 stability (Du et al. 2010; Qin et al. 

2011) and HP1β (Fuks et al. 2003) as a binding partner. The linker between the NTD and the CTD contains 

seven lysine-glycine repeats ((KG)7) thereby providing a flexible connection between the two domains of 

DNMT1.  

Subcellular distribution of DNMT1 during the cell cycle 

In mammalian cells, distinct patterns illustrate DNMT1 spatial distribution in different stages of the cell 

cycle (Figure 1.7) (Leonhardt et al. 2000). 

In G1 phase, DNMT1 is distributed over the whole nucleus in a diffuse pattern similar to PCNA. 

Monomethylation of H3K56 by G9a provides a docking site for PCNA in this stage and facilitates DNA 

replication (Yu et al. 2012). When DNA synthesis is initiated in early S phase, PCNA serves as a stationary 

loading platform at the replication fork (Sporbert et al. 2005). In this cell cycle phase, PCNA co-localizes 

with DNMT1 at replication sites appearing as small spots correlated with gene dense active euchromatic 

regions (Gilbert et al. 2004; Woodfine et al. 2004). In mid S phase, when facultative heterochromatin like 

the inactive X chromosome in female cells and tissue-specific genes are replicated (Casas-Delucchi et al. 

2011), PCNA and DNMT1 are found at replication sites in the periphery of the nucleus and nucleoli. In 

early and mid S phase the interaction with PCNA predominates the localization of DNMT1 as a mutant 

deficient in PCNA binding is diffusely distributed in the nucleus (Schermelleh et al. 2007). Upon replication 

of constitutive (peri)centromeric heterochromatin in late S phase, PCNA and DNMT1 are enriched at DNA 

replication sites clustering in typical horseshoe-like structures. These replication structures around 

chromocenters are characteristic for mouse cells harboring clusters of acrocentric chromosomes 

(Berezney et al. 2000; Leonhardt et al. 2000). The association of DNMT1 with these late S phase chromatin 

structures is dependent on the TS domain (Easwaran et al. 2004; Schneider et al. 2013). Remarkably, in G2 

phase, DNMT1 shows a prolonged TS domain-mediated association with chromocenters independent of 

PCNA and replication (Easwaran et al. 2004). 
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Figure 1.7: Spatial distribution of DNMT1 during the cell cycle. In mouse somatic cells (C2C12) GFP-DNMT1 co-localizes 

with RFP-PCNA in G1 and S phase, whereas in G2 phase only GFP-DNMT1 shows a prolonged association with 

heterochromatin. Scale bar 5 µm. Enlargement display a three-times magnification of chromocenters intensely stained with 

DAPI. Scale bar 1 µm. 

1.2.3 Cooperative readout of DNA and histone modifications by UHRF1 and UHRF2 

In 2007, UHRF1, also known as inverted CCAAT binding protein of 90 kDa in humans (ICBP90) or 

nuclear protein of 95 kDa in mice (NP95), was identified as an important cofactor of DNMT1-mediated 

maintenance DNA methylation. By recognition of hemimethylated DNA and by direct interaction with 

DNMT1, UHRF1 is thought to target DNMT1 to its substrate (Bostick et al. 2007; Sharif et al. 2007; Achour 

et al. 2008). Consistently, UHRF1-deficient ESCs have been shown to phenocopy the defects of DNMT1-

deficient ESCs displaying a pronounced decrease in DNA methylation levels. Knockout of Uhrf1 leads to 

embryonic lethality at mid-gestation (Muto et al. 2002). 

UHRF1 was found to co-localize with PCNA during S phase (Uemura et al. 2000) and to play a role in 

cell cycle progression as well as DNA replication (Fujimori et al. 1998). In NIH3T3 cells, UHRF1 expression 

was described to be essential for S phase entry (Bonapace et al. 2002) and UHRF1-deficient ESCs were 
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found to be more sensitive towards treatment with the replication-inhibiting reagent hydroxyurea (Muto 

et al. 2002). Moreover, UHRF1 is involved in DNA repair and contributes to genome stability (Muto et al. 

2002). Besides recruiting DNMT1 to newly replicated DNA, UHRF1 may also target DNMT1 to repair sites 

(Sharif et al. 2007; Achour et al. 2008; Hashimoto et al. 2009). UHRF1 has also been shown to interact with 

the de novo methyltransferases DNMT3A and DNMT3B and with histone modifying enzymes like HDAC1, 

G9a and Tat interacting protein of 60 kDa (TIP60) (Unoki et al. 2004; Achour et al. 2008; Kim et al. 2009; 

Meilinger et al. 2009). In agreement with its role in cell cycle progression, UHRF1 is prevalent in 

proliferating tissues like fetal and adult thymus, fetal liver as well as bone marrow. Furthermore, elevated 

expression of UHRF1 is found in primary tumors (Hopfner et al. 2000; Jenkins et al. 2005). 

 

Figure 1.8: Domain structure and key features of UHRF1. UHRF1 is a multi-domain protein comprised of a ubiquitin-like 

(Ubl) domain followed by a tandem Tudor domain (TTD), a plant homeodomain (PHD), a SET and RING-associated (SRA) 

domain and a really interesting new gene (RING) domain. Binding preferences and properties are indicated. 

The UHRF1 domain structure with indication of key features is summarized in Figure 1.8. Several 

studies illustrate the unique preference of the multi-domain protein UHRF1 for binding hemimethylated 

CpG sites via its SET and RING-associated (SRA) domain (Bostick et al. 2007; Sharif et al. 2007; Arita et al. 

2008; Avvakumov et al. 2008; Hashimoto et al. 2008; Qian et al. 2008; Rottach et al. 2010) and for histone 

H3 tails, di- or trimethylated at K9, by the tandem Tudor domain (TTD) (Citterio et al. 2004; Karagianni et 

al. 2008; Rottach et al. 2010; Cheng et al. 2013). In addition to these two domains, also the plant 

homeodomain (PHD) contributes to the chromatin association of UHRF1 by binding to unmodified arginine 

2 on histone H3 (Rajakumara et al. 2011; Wang et al. 2011) and acts together with the TTD for binding 

H3K9me2/3 (Arita et al. 2008; Arita et al. 2012; Cheng et al. 2013). Furthermore, the PHD was implicated 

in large-scale reorganization of PH (Papait et al. 2008). The really interesting new gene (RING) domain 

functions as a E3 ubiquitin ligase on histone H3 in vitro (Citterio et al. 2004; Karagianni et al. 2008), but 

also on non histone substrates like UHRF1 itself or DNMT1 (Jenkins et al. 2005; Du et al. 2010; Qin et al. 

2011). In dependence on its E3 ubiquitin ligase activity, UHRF1 has been shown to increase the resistance 

of human tumor cells towards cytotoxic as well as genotoxic agents and thus is important for the 

regulation of human tumor cell proliferation (Jenkins et al. 2005). The function of the ubiquitin-like (Ubl) 

domain of UHRF1 remains largely unknown. 

Studies on the crystal structure of the SRA domain in complex with hemimethylated DNA provide an 

explanation for the unique specificity of the domain for hemimethylated CpG sites. The methylated 

cytosine is flipped out of the DNA double helix stabilized by Watson-Crick polar hydrogen bonds and van 

der Waals interactions (Arita et al. 2008; Avvakumov et al. 2008; Hashimoto et al. 2008). By formation of a 

crescent moon-like structure with two loops, the SRA domain faces the minor and opposed major groove 
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of the DNA, the latter being positioned in close proximity to the backbone carbonyl oxygen of N494. 

Therefore, the addition of a methyl group to the unmodified cytosine would result in a steric clash 

(Hashimoto et al. 2008). Evidence for a coordinated readout of histone H3 tails carrying an unmodified R2 

and a trimethylated K9 by UHRF1 is provided by the crystallographic study of the human TTD and PHD in 

complex with an H3K9me3 peptide (amino acid 1-17) (Cheng et al. 2013). The N-terminal part of the 

H3K9me3 peptide (amino acid 1-4) interacts with the PHD and the C-terminal part (amino acid 8-10) with 

the TTD thereby building a connection between the two domains. The PHD recognizes the unmodified H3 

peptide independently of the TTD and the H3K9 trimethylation by formation of contacts to A1, R2 and K4. 

In contrast, binding of H3K9me3 by a hydrophobic pocket in the TTD and hydrogen bonds to R8 of the 

histone peptide is enhanced by the PHD (Cheng et al. 2013). Thus, UHRF1 specifically recognizes the K9 

methylated H3 tail by coordinated binding of two reader modules (Arita et al. 2012). In summary, UHRF1 

connects two major epigenetic modifications by recognition of methylated histones and methylated DNA, 

the latter being faithfully propagated after replication by recruitment of the maintenance DNA 

methyltransferase DNMT1. 

The second member of the UHRF family, UHRF2 (also known as Np95/ICBP90-like RING finger protein 

(NIRF) or nuclear protein of 97 kDa (NP97)), harbors the same domains described for UHRF1 and shares a 

high primary sequence similarity with UHRF1. UHRF2 has been linked to intranuclear degradation of 

polyglutamine aggregates (Iwata et al. 2009) and to the regulation of the cell cycle (Mori et al. 2002; Li et 

al. 2004). It binds to the inactive cyclin-dependent kinase 2 (CDK2) and is also a phosphorylation target for 

CDK2. Given that CDK2 needs to be activated to allow for S phase entry, UHRF2 might participate in 

controlling G1/S phase transition (Li et al. 2004). Similar to UHRF1, UHRF2 has been shown to posses 

autoubiquitination activity and to ubiquitinate a PEST-containing nuclear protein (PCNP) (Mori et al. 2004). 

UHRF2 is also related to tumorigenesis. In colorectal cancer cell, UHRF2 is frequently upregulated and it 

was proposed to be involved in the development of breast cancer cells as well as gliomas (Wang et al. 

2012; Wu et al. 2012a; Wu et al. 2012b). Hence, UHRF2 as well as UHRF1 both act as oncogenes and are 

promising targets for cancer therapy (Bronner et al. 2007). However, the detailed role and regulation of 

UHRF2 function remains elusive. 

1.2.4 Erasure of DNA methylation 

Although DNA methylation is thought to be relatively stable in somatic cells, dynamic changes of this 

important epigenetic mark can be observed during early development. A famous example for the erasure 

of DNA methylation is the active DNA demethylation which occurs in the sperm-derived paternal 

pronucleus four to eight hours after fertilization (Figure 1.9) (Mayer et al. 2000). Opposite to the maternal 

genome that is protected from epigenetic changes in this state, the paternal genome is subjected to 

genome-wide demethylation. Solely at specific sites including imprinting control regions like the H19 

promoter (Olek and Walter 1997), IAP retrotransposons (Lane et al. 2003) and centomeric as well as 

pericentromeric regions (Rougier et al. 1998), active DNA demethylation is absent. During the following 

first cell divisions, the maternal genome starts to undergo passive demethylation. In this process, the 5mC 

mark is not propagated to the daughter strand after replication leading to progressive loss of DNA 

methylation (passive dilution). However, imprinted genes are excluded from passive dilution and are only 
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demethylated in primordial germ cells (Monk et al. 1987; Howlett and Reik 1991). Consistent with the 

absence of maintenance DNA methylation, the oocyte-specific isoform of DNMT1 (DNMT1o) is localized in 

the cytoplasm thereby retracting the enzyme from its substrate in the nucleus (Carlson et al. 1992; 

Cardoso and Leonhardt 1999). 

 

Figure 1.9: Dynamics of paternal and maternal DNA methylation in mouse pre- and postimplantation embryos. Shortly 

after fertilization, the paternal genome undergoes rapid genome-wide active demethylation, whereas the maternal genome 

stays at its methylated state. During the following first cell divisions, DNA methylation in the maternal genome is erased by 

passive demethylation in the absence of DNMT1 (passive dilution). Modified from (Wu and Zhang 2014). 

Although active DNA demethylation was described for the first time in 1982 (Gjerset and Martin 1982), 

the underlying mechanism and the contributing proteins have not been identified until 2009 (Tahiliani et 

al. 2009). DNA demethylation is carried out by the family of TET proteins consisting of TET1, TET2 and TET3 

that convert 5mC to 5hmC, 5fC and 5caC (see Figure 1.2) (Kriaucionis and Heintz 2009; Tahiliani et al. 

2009). Expression levels of TET proteins differ among developmental stages and cell types pointing 

towards distinct functions of the different members (Szwagierczak et al. 2010; Wu and Zhang 2014). 

The discovery of TET proteins and oxidized 5mC forms opens the possibility of a passive demethylation 

mechanism in the presence of an active maintenance methylation machinery that is distinct from the 

passive dilution. Interestingly, it has been shown that binding of MeCP2 and DNMT1 to chromatin is 

sensitive towards 5-hydroxymethylation and that the methylation efficiency of the latter on 

hemihydroxymethylated CpG sites is decreased in vitro by approximately 10-60 fold (Valinluck et al. 2004; 

Hashimoto et al. 2012). Moreover, it is known that other 5mC binding proteins like MBD1, MBD2 and 

MBD4 do not bind to 5hmC (Valinluck et al. 2004; Jin et al. 2010). Thus the 5hmC mark could represent an 

activating signal leading to passive demethylation by ineffective or missing propagation of DNA 

methylation. Indeed, this process was found to take place in erythropoiesis in vivo in dependence on rapid 

DNA replication (Shearstone et al. 2011). Given that DNMT1 is ineffective in methylating DNA in a 

hemihydroxymethylated context, the methylation pattern in tissues with high 5hmC levels might be 
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maintained by the action of DNMT3A and DNMT3B, which have a higher catalytic activity on the oxidized 

cytosine form (Hashimoto et al. 2012; Otani et al. 2013). The 5hmC-mediated passive demethylation 

process provides features for a higher flexibility enabling a dynamic cellular plasticity in dependence on 

external signals. 

Apart from passive demethylation, TET proteins are mainly involved in the process of active 

demethylation, which occurs independently of replication. After the initial conversion of 5mC, several 

possible pathways can lead to demethylation of the 5hmC site. 5hmC might be directly removed by DNMT-

dependent dehydroxymethylation (Liutkeviciute et al. 2009; Chen et al. 2012) or by decarboxylation of 

5caC (Wu and Zhang 2010; Schiesser et al. 2012). Another possibility for active restoration of the 

unmodified C base is the excision of oxidized cytosine analogs by glycosylases leading to abasic sites that 

are recognized by the base excision repair (BER) machinery (Guo et al. 2011; He et al. 2011; Maiti and 

Drohat 2011). An emerging role in this pathway is assigned to the thymine DNA glycosylase (TDG), which 

has a preference for the excision of 5fC and 5caC in double stranded DNA (He et al. 2011; Kohli and Zhang 

2013; Müller et al. 2014). 

Active demethylation in the paternal pronucleus has been correlated with high TET3 expression levels 

and an increase in DNA hydroxymethylation (Inoue and Zhang 2011; Iqbal et al. 2011; Wossidlo et al. 

2011), formylation as well as carboxylation (Inoue et al. 2011). Consistently, TET3 knockdown disturbs the 

decrease in 5mC and the simultaneous increase in 5hmC levels (Gu et al. 2011; Wossidlo et al. 2011). In 

line with the important role of TET3 in early embryonic development, TET3 knockout mice die perinatally 

(Gu et al. 2011). In addition to TET proteins, a protein of the elongator complex, ELP3 has been described 

as an indispensable factor in active DNA demethylation of the paternal pronucleus (Okada et al. 2010). 

Similar to the decrease of 5mC in the maternal genome, the oxidized cytosines in the paternal pronucleus 

are erased by replication-dependent passive dilution after fusion with the maternal pronucleus (Inoue et 

al. 2011; Inoue and Zhang 2011). Furthermore, active restoration of unmodified C from a small proportion 

of 5fC and 5caC is achieved by TDG and the BER pathway (Hajkova et al. 2010; Inoue and Zhang 2011; 

Müller et al. 2014). 

Another wave of global DNA demethylation takes place during the migration and specification of PGCs. 

Initially, DNA methylation is erased by a replication-dependent passive dilution of 5mC in absence of de 

novo and maintenance DNA methylation (Kagiwada et al. 2013; Seisenberger et al. 2013). Upon settling in 

the gonad, PGCs undergo a second complete demethylation process that is thought to be induced by TET-

mediated oxidation of 5mC (Yamaguchi et al. 2012; Hackett et al. 2013). In the late stage of PGC 

reprogramming, erasure of paternal imprints in the female germline has been shown to rely on TET1 

(Yamaguchi et al. 2013). In this second active demethylation step, promoters of germline-specific genes 

are transcriptionally activated in developing female PGCs (Yamaguchi et al. 2012). Therefore, TET proteins 

seem to be necessary for demethylation of imprinting control regions in late PGCs (Hackett et al. 2013).  

In contrast to TET2 and TET3, knockdown of TET1 leads to defects in ESC self renewal, maintenance 

and inner cell mass specification prominently in the trophoectoderm (Ito et al. 2010) and Tet1 knockout 

may result in embryonic lethality (Yamaguchi et al. 2013). TET1 is an important regulator of the 

pluripotency factor nanog by directly binding to its promoter and thereby protecting it from DNA 

methylation and silencing (Ito et al. 2010). Knockdown of TET2 has no obvious effect on early 

development, but a multitude of mutations in TET2 were characterized in several human myeloid 
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malignancies including myelodysplastic syndromes (MDSs), myeloproliferative disorders (MPDs) and acute 

myeloid leukemias (AML) (Abdel-Wahab et al. 2009; Delhommeau et al. 2009; Jankowska et al. 2009; 

Kosmider et al. 2009; Langemeijer et al. 2009; Mohamedali et al. 2009; Saint-Martin et al. 2009; Tefferi et 

al. 2009; Konstandin et al. 2011). In MDS patients, methylation levels were found to be changed probably 

due to dysfunctions of the mutated protein in active DNA demethylation (Nolte and Hofmann 2008). 

Unlike TET2 and TET3, which are expressed in several mouse adult tissues like kidney, liver and brain 

(Szwagierczak et al. 2010), TET1 is most abundant in the inner cell mass of blastocysts and in PGCs (Ito et 

al. 2010; Yamaguchi et al. 2012). Given that TET enzymes are expressed in somatic cells like brain tissues, 

DNA methylation might not be as stable as previously thought (Wu and Zhang 2014). Remarkably, 5hmC is 

not only an intermediate in the process of active demethylation, but there is also growing evidence for its 

function as an independent epigenetic mark. Interestingly, some 5hmC selective readers are expressed in 

specific cell types that might therefore initiate distinct regulatory processes (Spruijt et al. 2013). 

Furthermore, demethylation mediated by TET proteins might also be important to keep CpG islands in 

their unmethylated state permissive to transcriptional activation. In line with this, TET1 was found to be 

preferentially bound to CpG islands and abnormal CpG methylation occurred as a consequence of TET1 

depletion (Ficz et al. 2011; Wu et al. 2011a; Wu et al. 2011b). 
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1.3 Role of DNA modifications in neurogenesis and neurodegenerative diseases 

1.3.1 DNA methylation in the developing and adult nervous system 

During neurogenesis, which starts at embryonic day 8 in mice and is most prominent at day 14, 

neuronal stem cells (NSCs) and progenitor cells (NPCs) give rise to functional neurons (Figure 1.10). 

Initially, neuroepithelial cells located in the ventricular and subventricular zone (VZ and SVZ) are 

transformed into radial glial cells (RGCs). RGCs directly generate nascent neurons or indirectly give rise to 

neurons via the stage of neuronal intermediate progenitor cells (nIPCs) and their symmetric division. 

Asymmetric division helps to retain the self renewing characteristics of RGCs and also creates 

oligodendrocyte and astrocyte intermediate progenitor cells (oIPCs and aIPCs). By migration of newborn 

neurons and RGCs, the neocortex is thickened and an interneuron network is formed. Finally, most RGCs 

detach from the VZ and migrate towards the cortical plate, where they are transformed to astrocytes. A 

few RGCs, also known as B cells, remain quiescent in the SVZ and serve as origin for adult neurogenesis 

(Yao and Jin 2014). 

A characteristic of the mammalian brain is the generation of new neurons also in adulthood. Adult 

neurogenesis takes place in special zones of the mammalian brain, the SVZ and the subgranular zone (SGZ) 

of the hippocampal dentate gyrus (DG) and is important for certain forms of learning and memory (Braun 

and Jessberger 2014). In adulthood, quiescent B cells in the SVZ first generate transiently amplifying C 

cells. These nIPCs further differentiate into neuroblasts (also known as A cells) that migrate to the 

olfactory bulb and differentiate into various subtypes of local interneurons. In the DG, radial astrocytes 

generate B cells serving as nIPCs. After differentiation to neuroblasts in the inner granule cell layer, 

immature neurons arise and are further integrated into the existing circuitry (Yao and Jin 2014). As adult 

neurogenesis is restricted to two neurogenic niches, experience-driven regulation by proneurogenic 

signals and factors selectively guides neural differentiation and subsequent integration of functional 

neurons in the preexisting circuitry (Marr et al. 2010) 

Thus integration of new experiences is not only based on the modulation of preexisting neuronal 

structures, but also on the generation and incorporation of new neurons in the network as a life-long 

phenomenon. Misregulation of adult neurogenesis was found to be involved in neurodegenerative 

disorders such as Alzheimer’s disease and epilepsy as well as psychiatric disease like major depression 

(Braun and Jessberger 2014). As adult neurogenesis represents an endogenous regenerative system, it is a 

promising therapeutic target for neurodegenerative diseases (Marr et al. 2010). 
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Figure 1.10: Embryonic and adult neurogenesis. Embryonic neurogenesis establishes cortical layers by generation and 

differentiation of neurons starting from radial glial cells (RGCs) and neuronal intermediate progenitor cells (nIPCs). 

Astrocytes and oligodendrocytes also arise from RGCs. Astrocytes have important functions in the CNS like supporting the 

blood-brain barrier, providing nutrients and maintaining the extracellular ion balance. Oligodentrocytes provide insulation of 

axons by creating a myelin sheath. Adult neurogenesis is restricted to two neurogenic niches in the mature brain, the 

subventricular zone (SVZ, exemplified in the right scheme) and the subgranular zone (SGZ) of the dentate gyrus (DG), both 

harboring quiescent NPCs that can give rise to functional neurons in an experience-driven process during adulthood. After 

the initial activating signal newborn neurons pass through three different stages: migration, maturation and integration into 

the preexisting network. Expression levels of DNMTs, TETs and epigenetic modifications during embryonic and adult 

neurogenesis are indicated below. Inspired by (Abcam 2014; Yao and Jin 2014). 

In general, neurogenesis gives rise to various cell types all sharing the same primary genetic 

information, but performing different tasks, indicating a key role of epigenetic mechanisms in the 



Introduction 

23 

regulation of neural differentiation. The regulation of the CNS is fairly complex with a multitude of gene 

products interplaying in a spatially and temporally defined manner. In the nervous system more genes are 

expressed compared to any other tissue making its sensitivity towards minor alterations understandable 

(Mattson 2003; Santos-Reboucas and Pimentel 2007).  

Surprisingly, in mammals, DNMT1 expression levels are high in the embryonic and adult brain 

especially in postmitotic neurons, but not in mitotic oligodendrocytes and astrocytes (Goto et al. 1994; 

Brooks et al. 1996; Trasler et al. 1996; Inano et al. 2000; Veldic et al. 2004). In contrast to nuclear 

localization in other cell types, DNMT1 is also located in the cytoplasm of neurons (Inano et al. 2000) 

opening the possibility that the protein might have functions other than DNA methylation in this cellular 

compartment. Consistent with its high expression level in the brain, DNA methylation by DNMT1 is 

essential for brain development and neuronal maturation (Fan et al. 2001). When compared to other 

tissues, like heart, liver and lung, brain tissue has a higher level of DNA methylation (Ehrlich et al. 1982). 

Treatment of undifferentiated NPCs with demethylating agents like 5-aza-dC leads to inductions of 

cholinergic, dopaminergic and noradrenergic neuronal differentiation characteristics (Okuse et al. 1993). 

Although replication-coupled maintenance DNA methylation is not required in postmitotic neurons, 

DNMT1 might restore DNA methylation patterns after base-excision repair of the G:T mismatches resulting 

from deamination of 5mC (Brooks et al. 1996). 

DNMT3A expression levels are highest in the early postnatal period and decline with the progression 

to adulthood. DNMT3B is most abundant during early embryogenesis in NPCs (Feng et al. 2005; Watanabe 

et al. 2006). Thus, the de novo methyltransferases show a sequential expression profile with a transition 

from DNMT3B to DNMT3A expression during neuronal development. Whereas DNMT3B is thought to 

regulate early NPC differentiation and gene expression, DNMT3A might establish tissue-specific 

methylation patterns in postmitotic young neurons (Watanabe et al. 2002; Watanabe et al. 2004; 

Watanabe et al. 2006). 

Conditional knockout of Dnmt3a in the nervous system leads to failures in motor coordination and 

premature death of mutant mice indicating an important role of DNMT3A in adult neuromuscular 

regulation (Nguyen et al. 2007). Furthermore, in vitro differentiation of Dnmt3a-/- ESCs revealed a 

precipitate differentiation into the astrocyte and oligodentrocyte lineage accompanied by enhanced 

proliferation rate and mild global DNA hypomethylation. Thus, DNMT3A is involved in the timely and 

quantitatively regulation of embryonic NSC differentiation (Wu et al. 2012c). DNMT3A-dependent 

methylation of intergenic regions and gene bodies was found to promote adult neurogenesis by activating 

gene expression and concomitantly counteracting Polycomb-mediated repression of neurogenic regulators 

such as Distal-less homeobox 2 (Dlx2). In conclusion, DNMT3A plays an important role in neurogenesis by 

limiting astroglial and oligodendroglial differentiation and enhancing neurogenic gene transcription (Wu et 

al. 2010). RNAi knockdown of DNMT3B in human ESCs resulted in accelerated maturation and expression 

of mature neural markers and neural crest specifiers suggesting a role of the de novo methyltransferase in 

regulating the timing of embryonic neural differentiation and maturation (Martins-Taylor et al. 2012). 

Induction of neuronal differentiation in pluripotent P19 stem cells caused upregulation of DNMT3B, but 

not DNMT3A or DNMT1. Likewise, neural differentiation was inhibited by knockdown of DNMT3B (Sheikh 

et al. 2013). 
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Already in 1969, the DNA modification hypothesis raised by Griffith and Mahler suggested that DNA 

modifications are stable enough to guarantee the persistence of memory (Griffith and Mahler 1969). In 

1999, Francis Crick claimed that mechanisms of memory storage are regulated by gene loci-specific DNA 

methylation states (Crick 1984). Even though cell division is absent in terminally differentiated neurons, 

DNA methyltransferases have been found to be enzymatically active in these cells (Brooks et al. 1996). This 

finding has been linked to dynamic changes in CpG methylation patterns taking place after neuronal 

activity and behavioral changes due to external signals (Martinowich et al. 2003; Weaver 2007; Lubin et al. 

2008; Nelson et al. 2008). Feelings of fear, for instance, are known to be shaped by early life experience in 

rodents. Behavioral differences were found to be based on DNA methylation changes of defined gene loci 

(Weaver et al. 2004; Miller and Sweatt 2007). Another study demonstrated that DNA methylation is an 

important regulator of memory formation and maintenance (Miller et al. 2010). Application of the DNA 

demethylating drug 5-aza-dC impaired contextual fear memory in rats proposing that DNA methylation 

contributes to memory maintenance. An influence of external conditions on neural plasticity related gene 

expression have been shown for the brain derived neurotrophic factor (BDNF), reelin, PP1 and calcineurin 

(Yu et al. 2011). These examples illustrate fundamental roles of the DNA methyltransferases in learning 

and memory formation that are different from de novo and maintenance functions during development 

and differentiation. 

Synaptic plasticity is an important prerequisite for memory formation and learning. It refers to changes 

in the strength of a synapse caused by its own activity or other pathways. Synaptic plasticity has been 

found to rely on the enzymatic activity of DNA methyltransferases indicating that neuronal activity might 

induce DNA methylation-mediated changes in gene expression (Levenson et al. 2006; Miller and Sweatt 

2007). As a neuron carryies many synapses but only one nucleus, it is thought to be embedded in a 

complex network of numerous memories. Thus, the neuron-specific DNA methylation patterns might not 

simply influence the formation of individual memories, but they might rather integrate and maintain the 

entity of synaptic properties of the neuron (Yu et al. 2011). 

In summary, DNA methylation patterns in the brain are not unchangable during livetime, but they can 

be modulated by external stimuli thereby allowing for behavioral plasticity, memory formation and 

maintenance (Yu et al. 2011). 

1.3.2 DNA demethylation in the developing and adult nervous system 

Reversion of DNA methylation has also been implicated in neurogenesis. The expression of growth 

arrest and DNA damage-inducible protein 45B (GADD45B), which is induced by neural activity, was 

reported to be required for adult neurogenesis. GADD45B is involved in demethylation of specific gene 

promoters in the DG leading to the expression of neurogenic factors like BDNF. Gadd45b-/- mice exhibit 

not only deficits in activity-induced proliferation of adult neural progenitors in the DG, but also in the 

dendritic growth of newborn neurons in the adult brain (Ma et al. 2009). 

Beside DNA methyltransferases, also TET enzymes are important for brain development. The content 

of the TET catalyzed product (5hmC) in ESCs and in the adult brain ranging from 0.3% to 0.7% (Kriaucionis 

and Heintz 2009; Yao and Jin 2014). Quantitative analyses in several regions of the mouse brain including 

the olfactory bulb, the cerebral cortex, the retina, the hippocampus, the cerebellum and the brainstem 
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revealed that the hypothalamus contains the highest 5hmC and the lowest 5mC levels (Munzel et al. 

2010). In Purkinje neurons, 5hmC levels as high as 40% of the 5mC levels are reached (Kriaucionis and 

Heintz 2009). In general, 5hmC levels increase with the neuronal maturation providing an explanation for 

the rapid increase of 5hmC levels after birth (Figure 1.10) (Song et al. 2011a; Szulwach et al. 2011). Studies 

on the local distribution of 5hmC in the adult hippocampus and cerebellum of mice in three different 

stages of life revealed both an age-dependent dynamic regulation and a stable presence of 5hmC during 

neurodevelopment. On the one hand, dynamic acquisition of the 5hmC mark during neurodevelopment 

was observed at repetitive elements such as short interspersed nuclear elements (SINEs) and long terminal 

repeats (LTRs). In addition, 5hmC was enriched at gene bodies of developmentally activated genes with a 

concomitant loss of 5mC. On the other hand, 5hmC profiles of many tissue-specific differentially 

hydroxymethylated regions were stable in mice from six weeks after birth until one year of age 

emphasizing that 5hmC also serves as a stable and functional mark rather than only an intermediate 

product of demethylation in the brain. Surprisingly, 5hmC was depleted on female and male X 

chromosomes. Comparison of mouse 5hmC profiles with those of the human cerebellum, proposes 

conserved characteristics of 5hmC distribution in mammals (Szulwach et al. 2011). The important role of 

5hmC in regulating cell type-specific gene expression in the brain was also underlined by a study showing 

that actively transcribed genes in the cerebellum harbor 5hmC-rich and 5mC-depleted gene bodies 

(Mellen et al. 2012). 

All three members of the TET enzyme family are expressed in the brain with TET2 and TET3 showing 

the highest levels (Ito et al. 2010; Szwagierczak et al. 2010; Wen et al. 2014). TET1-mediated hydroxylation 

of 5mC and subsequent deamination by activation-induced deaminase (AID)/ apolipoprotein B mRNA-

editing enzyme complex (APOBEC) is required for active demethylation in the DG. This base excision 

repair-mediated and replication-independent pathway promotes neural activity induced gene expression. 

Overexpression of both, TET1 or AID in the DG resulted in region-specific DNA demethylation at the Bdnf 

and brain-specific fibroblast growth factor 1 (Fgf1B) promoter accompanied by elevated expression levels 

of these two genes known to be induced by neural activity. However, increased DNA demethylation was 

not observed at the non-neuronal Fgf1G promoter under the same experimental conditions. Therefore, 

dynamic changes of C modifications are thought to play an important role in differential gene expression 

during neurogenesis (Guo et al. 2011). 

A recent study emphasizes the interdependence of DNA and histone modifications in regulating 

embryonic neurogenesis. Overexpression of TET2 and TET3 promoted neural differentiation, whereas 

overexpression of EZH2, a prominent writer of the repressive histone mark H3K27me3, prevented 

differentiation. Interestingly, increasing levels of 5hmC at gene bodies of neuronal function related genes 

were not concomitant with decreasing 5mC levels supporting the idea that 5hmC is a stable and 

independent DNA modification in the brain (Hahn et al. 2013). 

Even though Tet1 knockout mice are viable, they show deficits in spatial learning and memory. NSC in 

the SGZ of Tet1 knockout mice are decreased by 45% when compared to the wildtype controls and many 

genes of NSCs isolated from the DG are hypermethylated and thus downregulated. Consequently, TET1 is 

an important regulator of NPC proliferation involved in adult neurogenesis (Zhang et al. 2013). Likewise, 

TET3 has been implicated in fear extinction learning as it triggers an increase in 5hmC levels required for 

rapid behavioral adaptation (Li et al. 2014).  
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In conclusion, embryonic and adult neurogenesis is tightly controlled by a variety of factors including 

epigenetic modifications on DNA and histones to guarantee the plasticity of the nervous system 

responding to external stimuli and signals. 

1.3.3 DNA methylation and neurodegenerative disease 

In the past decades, a great number of human diseases including cancer, syndromes associated with 

chromosomal instability, imprinting, arteriosclerosis and neurodegenerative disorders as well as mental 

retardation have been linked to alterations in epigenetic mechanisms. The reversibility of epigenetic marks 

in contrast to the primary genetic information makes them an attractive target for disease treatment 

(Santos-Reboucas and Pimentel 2007; Pogribny and Beland 2009). 

Links between DNA methylation and neurodegeneration have been made in several studies. In 

general, alterations in DNA methylation have been reported in different neurological and 

neurodegenerative diseases.  

Promoter hypermethylation has been implicated in Fragile X syndrome inherited in a X-linked 

dominant manner, Friedreich’s ataxia and in spinal muscular atrophy (Urdinguio et al. 2009). Expanded 

CGG repeats in the fragile X mental retardation-1 (FMR1) promoter lead to a increased susceptibility for 

DNA methylation and subsequent gene silencing (Robertson and Wolffe 2000). The fact that treatment of 

Fragile X cells with 5-aza-dC could induce re-expression of the FMR1 gene, whereas the HDAC inhibitor 

Trichostatin A (TSA) failed to do so, supports the idea that DNA methylation is the dominant gene silencing 

mechanism in neuronal cells compared to histone modifications (Coffee et al. 1999). In autosomal 

recessive Friedreich’s ataxia, frataxin (FXN) gene transcription is impeded by DNA hypermethylation of 

specific CpG sites upstream of GAA repeat expansions in brain, cerebellum and heart tissues (Al-Mahdawi 

et al. 2008). In the autosomal recessively inherited spinal muscular atrophy disease, mutations in the 

survival of motor neuron 1 (SMN1) gene lead to decreased protein expression (Lunn and Wang 2008). 

Severity of this disease was found to depend on the degree of SMN2 promoter methylation with gene 

silencing having a deteriorating effect (Hauke et al. 2009). 

On the contrary, promoter hypomethylation has been found for instance at the PADI2 gene in multiple 

sclerosis patients and at the tumor necrosis factor alpha (TNFα) gene leading to apoptosis of neuronal cells 

in the substantia nigra of Parkinson´s disease patients (Pieper et al. 2008; Urdinguio et al. 2009). In 

Alzheimer’s disease, amyloid precursor protein (App) and presenilin 1 (Ps1) gene promoter 

hypomethylation results in elevated levels of these proteins in the brain which contribute to the formation 

of amyloid plaques with intracellular tangles (Pogribny and Beland 2009). 

Moreover, alterations in DNA methylation play a crucial role in X-linked dominant Rett syndrome 

caused by mutations in MeCP2 and in autosomal recessive Immunodeficiency, Centromeric region 

instability, Facial anomalies (ICF) syndrome caused by mutations in DNMT3B (Robertson and Wolffe 2000). 

Like DNMT1, MeCP2 is most abundant in the brain when compared to any other tissue where it 

contributes to postnatal neuronal morphogenesis and function (Nan et al. 1997; Bienvenu and Chelly 

2006). Rett mutations impair MeCP2 function as a transcriptional regulator (Bienvenu and Chelly 2006). 

Given the neuron restricted disease characteristics of Rett patients, the role of MeCP2 in reducing 

`transcriptional noise` (Bird and Tweedie 1995) and controlling gene silencing by binding to promoter 
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regions might be especially important in brain cells (Robertson and Wolffe 2000). DNMT3B mutations 

identified in ICF patients are to a great extent located in the catalytic CTD. They lead to elongation of 

centromeric and juxtacentromeric heterochromatin and chromosomal abnormalities in 

phytohaemagglutinine stimulated lymphocytes (Franceschini et al. 1995). Affected chromosome regions 

contain satellite long-tandem-repeat arrays which are heavily methylated in healthy cells. In ICF patients, 

however, these regions become hypomethylated leading to chromosomal instability (Jeanpierre et al. 

1993; Tagarro et al. 1994). Commonly, all disease phenotypes are characterized by a varying degree of 

mental impairment suggesting that DNA methylation makes an important contribution to shaping the 

epigenetic landscape during brain development (Robertson and Wolffe 2000). 

Interestingly, DNMT3A has been described as an important regulator for motor neuron cell death. By 

overexpression of DNMT3A, but not DNMT1, spinal cord neurons enter the apoptotic pathway (Chestnut 

et al. 2011). The pro-apoptotic function of DNMT3A in motor neurons was dependent on its catalytic 

activity. Furthermore, DNMT3A and 5mC levels were found to be upregulated in human amyotrophic 

lateral sclerosis suggesting that DNA methylation plays a major role in the pathobiology. In contrast to 

that, reduced DNMT3A levels and genome hypomethylation in the whole spinal cord have been reported 

to accompany axonal degeneration (Iskandar et al. 2010). 

In summary, besides its important role in cell differentiation and genomic stability, DNA methylation is 

also involved in neurogenesis, learning and memory formation. Neurodegenerative disorders have been 

associated with important epigenetic factors like MeCP2 and DNMT3B. The recent identification of several 

mutations in DNMT1 suggests a previously underestimated importance of DNA methylation for the 

functionality and integrity of the nervous system. 
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1.4 Hereditary sensory and autonomic neuropathies (HSANs) 

Among thirteen proteins affected in different forms of hereditary sensory and autonomic 

neuropathies (HSANs), DNMT1 was found to be mutated in hereditary sensory and autonomic neuropathy 

with dementia and hearing loss (HSAN-IE) and autosomal dominant cerebellar ataxia, deafness and 

narcolepsy (ADCA-DN) patients.  

1.4.1 HSAN-IE and ADCA-DN caused by mutations in DNMT1 

HSAN-IE and ADCA-DN are classified as subtypes of autosomal dominant HSANs. To date, 14 different 

missense mutations and one deletion mutation in DNMT1 have been associated with HSAN-IE or ADCA-DN 

(Table 1.1). Notably, all reported mutations are located within the TS domain in the NTD of DNMT1 (see 

3.3.1).  
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Table 1.1: Disease associated mutations in DNMT1 with different phenotypes. 14 different point mutations and one 

deletion mutation found in the DNMT1 TS domain of HSAN-IE and ADCA-DN patients with the corresponding phenotypes 

and clinical features are summarized. REM: rapid eye movement; CF: cerebrospinal fluid; HLA-DQB1*06:02: major 

histocompatibility complex, class II, DQ beta 1 version with increased risk for developing narcolepsy; SOREMP: sleep-onset 

REM sleep periods; RSWA: REM sleep without atonia; MSLT: multiple sleep latency test. 

HSAN 
type 

Mutation Locus Phenotype Clinical features Case studies Molecular studies Reference 

H
SA

N
-I

E 

   D490E 
+ P491Y 

 

Y495C 
 

Y495H 

Exon 
20 

Sensory neuropathy; 
sensorineural 

deafness; dementia; 
loss of sweating; gait 

unsteadiness; 
mutilating ulcer with 
amputations of distal 

extremities 

Global atrophy in the 
brain; cerebellar 
atrophy; length-

dependent 
progressive sensory 

axonal loss 

4 unrelated 
families 

(USA, Japan) 

Misfolding; premature 
degradation; reduced 
methyltransferase ac-

tivity; impaired hetero-
chromatin binding 
during G2; global 

hypomethylation; site-
specific 

hypermethylation 

(Klein et al. 
2011; Klein 
et al. 2013) 

H569R 
Exon 

21 

Loss of pain and 
vibration sense; 

chronic 
osteomyelitis, 

autonomic system 
dysfunctions; hearing 
loss, mild dementia 

Absence of sensory 
nerve action 

potential; normal 
motor nerve 

conduction; mild 
diffuse cerebral and 
cerebellar atrophy 

1 proband 
(Japan) 

Not available 
(Gosal 2013; 
Yuan et al. 

2013) 

P507N 
 

K521Δ 

Exon 
20 

Bilateral 
sensorineural 

deafness; severe 
axonal sensory poly-
neuropathy; severe 

somatic and 
autonomic small 
fibres and optic 

neuropathy 

REM sleep behaviour 
disorder; mild 
cerebellar and 

cortical atrophy; HLA-
DQB1*06:02 negative 

3 probands 
from 2 

unrelated 
families 
(Italy) 

Not available 
(Moghadam 
et al. 2014a) 

T481P 
 

P491L 
 

Y524D 
 

I531N 
 

C353F 
 

Y495C 
 

Y495H 

Exon 
20, 
21 

Hearing and sensory 
loss, behavior 
change, gait 

instability, cognitive 
decline, trophic ulcer, 

impaired balance, 
foot arthropathy, 

neuropathy, 
dementia, infections 

Global, frontal or 
cerebellar atrophy, 

hypersomnia, 
SOREMP, narcolepsy, 

restless legs 
syndrome, REM-
sleep behavior 

disorder, obstructive 
sleep apnoea 

syndrome, periodic 
limb movement 
disorder, RSWA, 

MSLT 

45 
probands 

(USA, 
Belgium, 
England, 

New 
Zealand, 

Germany) 

Translocation of 
mutant protein to the 
cytoplasm, aggresome 

formation and 
autophagy, loss of 
heterochromatin 

binding ability during 
G2 phase, imbalanced 
protein homeostasis, 

(Baets et al. 
2015) 

A
D

C
A

-D
N

 

A570V 
 

G605A 
 

V606F 

Exon 
21 

Late onset cerebellar 
ataxia; sensorineural 

deafness; 
narcolepsy–

cataplexy; dementia; 
late occurring 

hereditary sensory 
loss; moderate 

axonal sensory poly-
neuropathy; optic 
neuropathy; lower 

limbs oedema 

Excessive daytime 
sleepiness; REM 
sleep behavior 

disorder; psychosis; 
HLA-DQB1*06:02 
negative; low CSF 
hypocretin-1 level; 

global cerebral 
cortical atrophy 

10 pro-
bands from 
5 unrelated 

families, 
one spo-

radic case 
with de 

novo mu-
tation 

(Italian, 
USA, UK, 
Swedish) 

Mutations predicted 
(PolyPhen2, SIFT) to be 

damaging  

(Winkelmann 
et al. 2012; 
Moghadam 
et al. 2014a) 

C596R 
Exon 

21 

Late onset 
narcolepsy; 

cerebellar ataxia; 
deafness; gait 

instability; low CSF 
hypocretin-1 level 

HLA-DQB1*06:02 
positive; mild brain 

atrophy 

1 pro-band 
with de 

novo 
mutation 

(Brazil) 

Not available 
(Pedroso et 

al. 2013) 
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Disease characteristics and management 

HSAN-IE is a late onset neurodegenerative disorder affecting the central nervous system (CNS) and 

peripheral nervous system (PNS). It is characterized by progressive loss of peripheral sensation and hearing 

as well as cognitive decline and dementia (Klein et al. 2011; Baets et al. 2015). ADCA-DN patients present 

with cerebellar ataxia, deafness and late onset dementia as well as narcolepsy (Winkelmann et al. 2012). 

These two subtypes of HSAN-I disease associated with mutations in DNMT1 were previously thought to 

represent two distinct clinical entities. However, a recent study characterizing the phenotype of both, 

HSAN-IE and ADAC-DN patients, using the same set of neurophysiological and ophthalmological tests 

indicates the presence of some common features. Narcolepsy, absence of HLA-DQB1*06:02, deafness, 

optic neuropathy, small fibres polyneuropathy and lower limbs edema are clinical features of both 

subtypes (Moghadam et al. 2014a). Another recent study claims that mutations associated with HSAN-IE 

cluster within the N-terminal or central part of the DNMT1 TS domain, whereas ADCA-DN associated 

mutations are found in the C-terminal part of the domain (Baets et al. 2015). These differences in the 

location of causative mutations might explain phenotypic variations. 

Lately, potential markers of preclinical ADCA-DN patients have been reported (Moghadam et al. 

2014e). The clinical picture of two asymptomatic daughters from an ADCA-DN patient was assessed by use 

of neurologic examination, sleep recordings, neurophysiologic neuroimaging and genetic tests. Both 

probands were carriers of a heterozygous mutation from the father. They presented with sleep-onset 

rapid eye movement periods (SOREMPs) and elevated cerebellar myoinositol (mI), a marker of glial cell 

activity and density characteristic for the early stage of neurodegenerative diseases. But abnormalities 

were neither found in the functionality of vision and hearing nor in structural brain magnetic resonance 

imaging (MRI) scans. Consequently, SOREMPs and increased levels of mI in the brain are two potential 

markers for preclinical ADCA-DN patients that might help to diagnose the disease at an early stage. 

In symptomatic patients, if sensory impairment is a significant characteristic of the disease, prevention 

of injury is needed to avoid self-mutilating behavior. The skin of affected patients should be protected for 

instance by gloves, socks and shoes composed of a tissue that is suitable to resist against heat, cold and 

sharp objects. Hearing aids and assistive devices can be applied to enable communication in everyday life. 

Moreover, to counteract mental restlessness and delusions resulting from dementia, sedative or 

antipsychotic drugs may be administered (Klein 2012). 

1.4.2 Classification and genetic heterogeneity of HSANs 

The term HSANs has been introduced in 1975 for the first time and is classified in the group of 

inherited peripheral neuropathies (Dyck 1993). The other two groups of inherited peripheral neuropathies 

comprise hereditary motor neuropathies (HMN) and hereditary motor and sensory neuropathies (HMSN) 

(Figure 1.11). The categorization into these three groups is based on the involvement of motor, sensory or 

autonomic nerve fibers in the disease mechanism (Dyck 1993). Motor or also called efferent nerve fibers 

direct motor impulses from the CNS to the periphery. Sensory or also called afferent nerve fibers function 

in the opposite direction by conveying sensory impulses from the periphery of the body to the CNS. 

Autonomic nerve fibers stimulate and activate smooth muscle or glandular tissues (autonomic efferent 

nerve fibers) or receive sensory impulses from them (autonomic afferent nerve fibers). 
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Figure 1.11: Categorization of inherited peripheral neuropathies. Depending on the involvement of motor, sensory or 

autonomic nerve fibers in the disease mechanism, three groups of inherited peripheral neuropathies are defined. 

HSANs are a rare and diverse group of disorders of the PNS that manifest in progressive degeneration 

predominantly of sensory and autonomic neurons. Axonal damage is accompanied by demyelination in 

some cases. The disease pattern includes prominent distal sensory loss as well as different autonomic and 

motor disturbances. Patients with HSAN often loose sensation to pain, touch and temperature resulting in 

soft tissue infections, osteomyelitis or ulcerative mutilations of the limbs (Rotthier et al. 2012). 

HSANs are clinically and genetically heterogeneous. Over the last 15 years, causative mutations in 

thirteen genes associated with different forms of HSANs have been identified (Figure 1.12). However, for 

at least two-thirds of the patients suffering from HSANs, the genetic cause has not yet been found, 

opening the possibility of a even broader spectrum of genes involved in this disease (Rotthier et al. 2009).  

Inherited peripheral 
neuropathies 

Hereditary sonsory and 
autonomic neuropathies 

(HSAN) 

Hereditary motor 
neuropathies (HMN)  

Hereditary motor and sensory 
neuropathies (HMSN) 
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Figure 1.12: Protein functions of thirteen genes associated with HSANs. A mature peripheral sensory neuron in contact 

with the skin is represented schematically and protein functions that might be affected by HSAN mutations are indicated. 

Inspired by (Rotthier et al. 2012). 

Depending on the age at onset, the mode of inheritance and on prevalent clinical features, HSANs are 

further subgrouped into type I to V (Dyck 1993). The autosomal dominant inherited type HSAN-I is 

characterized by a late onset between the second and fifth decade of life and a prominent sensory and 

usually minor motor involvement. HSAN-I can be further subdivided into HSAN-IE and ADCA-DN. Different 

from HSAN-I, HSAN-II to V and HSAN with spastic paraplegia are defined by profound autonomic 

disturbances, an autosomal recessive mode of inheritance and an early onset (congenital or in early 

childhood) (Rotthier et al. 2012). The proteins (WNK1, CCT5, FAM134B, KIF1A, NGF, NTRK1 and IKBKAP) 

corresponding to the genes mutated in HSAN-II to V are highly expressed in the PNS (Rotthier et al. 2012). 

The nervous system restricted expression pattern of the proteins causative for HSAN-II to V make the 

degenerations of the PNS as main disease characteristic and the linked disease mechanism fairly 

understandable (Rotthier et al. 2012). Interestingly, the protein encoded by the kinesin family member 1A 

gene (KIF-1A), one causative gene for HSAN-II, interacts with a domain of with-no-lysine(K)-1 (WNK1) that 

is encoded by the nervous-specific exon HSN2 (Riviere et al. 2011). HSN2, in turn, is the only exon within 

WNK1 that is affected by HSAN-II mutations (Lafreniere et al. 2004; Riviere et al. 2004; Roddier et al. 2005; 

Cho et al. 2006; Coen et al. 2006; Takagi et al. 2006). Furthermore, ß-NGF, a protein mutated in HSAN-V 

patients is an important binding partner for Trk-A associated with HSAN-IV (Indo 2002). These two 
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examples illustrate the interconnection of genes affected by HSAN-II to V and allow for an estimation of 

the disease underlying mechanisms involving membrane excitability in the nociceptive system and axonal 

transport (Rotthier et al. 2012). In contrast, the HSAN-I etiology is far from being elucidated as the affected 

proteins (SPT1, SPT2, RAB7A, ATLA1, ATLA3 and DNMT1) are expressed in different tissues and participate 

in various biological pathways (Figure 1.12, see 4.3) (Rotthier et al. 2012). The heterogeneity and 

complexity of HSANs is also underlined by the fact, that affected proteins share only few common protein 

interaction partners (Figure 1.13). However, some factors bind to several HSAN associated proteins, like 

the transcription factor SP1, which interacts with DNMT1, Trk-A and KIF1A. Also direct interactions 

between two HSAN associated proteins can be found, like the interaction between DNMT1 and WNK1. 

Among the divergent biological pathways covered by HSAN associated proteins, endoplasmic reticulum 

stress and axonal transport are discussed as possible candidates for the disease mechanisms, but the 

specific role of affected protein and dysfunctions of the mutants have to be further clarified (Rotthier et al. 

2012). 

 

Figure 1.13: Protein-protein interaction network of HSAN associated proteins. Proteins associated with different types of 

HSAN share only few common interaction partners. The network was generated using the I2D database (Niu et al. 2010) and 

cytoscape. 
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1.4.3 Disease modeling and treatment 

To date, possibilities for medical treatment of HSANs are fairly insufficient to abate the morbidity rate. 

Affected persons sustain ulcerative mutilations and osteomyelitis that often necessitate surgery or 

spontaneous amputations. Patients with severe early-onset HSAN (HSAN-III and HSAN-IV) even have 

reduced life expectancy due to chronic inflammations and pronounced autonomic disorders. However, in 

HSAN-II patients carrying a splice-site mutation of ELP1 (Slaugenhaupt et al. 2001), tocotrienols, 

epigallocatechin gallate, kinetin and phosphatidylserine have been presented as promising therapeutic 

drugs (Anderson et al. 2003; Anderson and Rubin 2005; Gold-von Simson et al. 2009; Keren et al. 2010). 

These compounds increase the splicing efficiency at exon 20 of IKBKAP and antagonize aberrant splicing 

resulting in normal levels of full length ELP1. However, treatment of HSANs is fairly inadequate due to the 

lack of knowledge about the underlying molecular mechanisms and the lucrativeness of developing drugs 

for this rarely occurring disease. 
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1.4 Aims of this work 

DNA methylation of mammalian genomes represents a key epigenetic modification that is established 

during embryonic development and has to be faithfully transmitted to subsequent cell generations. During 

replication, the classic maintenance DNA methyltransferase DNMT1 is responsible for copying DNA 

methylation patterns from the mother cell to its progeny. Although the multi-domain protein UHRF1 has 

been described as an important DNMT1 binding partner that is essential for maintenance DNA 

methylation, defined regulatory roles of individual domains remained elusive. Therefore, the main 

objective of this work was to investigate UHRF1-dependent mechanisms regulating DNA methylation and 

study the function of the DNMT1 TS domain. 

To get deeper insights into DNMT1 subnuclear distribution, protein abundance and interacting 

partners we generated rat monoclonal antibodies specific for DNMT1. In addition, our goal was to 

investigate UHRF1 binding specificities to DNA and histone modifications as well as to DNMT1. To this end, 

we developed a toolbox for semiquantitative and medium throughput analysis of protein-DNA, protein-

histone tail peptide and protein-protein binding in vitro. 

Besides chromatin binding domains, UHRF1 also harbors a RING domain that exerts E3 ubiquitin ligase 

activity on different substrates such as histones. To elucidate the interplay of UHRF1 epigenetic reader and 

writer functions, we aimed at determining novel H3 ubiquitination targets of the UHRF1 RING domain by 

mass spectrometry. A further aim was to systematically analyze the underlying regulatory processes by 

introduction of defined mutations in different UHRF1 domains. As UHRF1-dependent H3 ubiquitination 

was essential for DNMT1 targeting and function, our goal was to decipher regions in DNMT1 responsible 

for ubiquitinated histone binding. Furthermore, we wanted to investigate a potential link between DNMT1 

recruitment and PRC-dependent H2A ubiquitination thereby challenging the historical view of DNMT1 as a 

simple copy machine. 

Finally, we aimed at elucidating DNMT1 TS domain mutations associated with two neurodegenerative 

disease phenotypes named HSAN-IE and ADCA-DN. To get insights in the underlying disease mechanisms 

we wanted to characterize two disease associated DNMT1 mutants (P496Y and Y500C) with respect to 

their enzymatic activity, UHRF1 binding, subnuclear localization, protein dynamics and cell cycle-

dependent abundances. 
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2. Results 
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2.1 Generation and characterization of rat and mouse monoclonal antibodies 

specific for MeCP2 and their use in X-inactivation studies 
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Introduction

Methyl CpG binding protein 2 (MeCP2) was the second methyl

CpG binding protein to be discovered [1] and the first to be cloned

[2]. In interphase mouse nuclei, MeCP2 is prominently localized

at heterochromatic foci [2]. In metaphase chromosomes, the

association of MeCP2 with euchromatic arms is rather weak

compared to a strong localization at pericentric heterochromatin

[2], highly enriched in heavily methylated major satellite DNA

repeats [3]. MeCP2 consists of a conserved methyl CpG binding

domain (MBD) that binds to 5-methyl cytosine with high affinity

and is shared with the other MBD protein family members. The

transcriptional repression domain (TRD), which carries a nuclear

localization sequence interacts with histone deacetylases and the

transcriptional corepressor Sin3A [4,5,6]. Finally, the C-terminal

domain binds nucleosomes (Figure 1).

Even though MeCP2 is ubiquitously expressed, it is genetically

linked to a neurological disease called Rett syndrome (RTT, OMIM

312750). RTT was first described in 1966 by Andreas Rett [7] and

affects one in every 10,000–15,000 female births [8,9,10]. Affected

girls seem to develop normally until six to 18 months, subsequently

they enter a developmental arrest, which is followed by strongly

impaired motor skills, stereotypic hand movements, loss of speech,

seizures, abnormal breathing, microcephaly, ataxia and other

symptoms. Mutations within the MECP2 gene located on

chromosome Xq28 are found in approximately 80% of all classic

RTT cases [8,11]. SinceMECP2 is located on the X chromosome it

is subjected to random X chromosome inactivation. Thus,

depending on which chromosome was inactivated, a mosaic pattern

of healthy (wild type allele expressing) and affected (mutant allele

expressing) cells is created [12]. A further important aspect is the

stark discrepancy between MeCP2 mRNA expression levels

compared to protein levels (e.g. [13]), which highlights the need

for highly specific antibodies detecting MeCP2 on a protein level.

Up to now rabbit polyclonal and mouse monoclonal antibodies

have been raised against MeCP2 but the available antibodies are
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limited in their application range. Here, we describe the

generation of the first rat monoclonal antibodies against MeCP2

being capable of reacting specifically in most common immuno-

logical applications. To complete the collection, we generated two

mouse monoclonal antibodies and a rabbit polyclonal antibody.

We could demonstrate the suitability of these high affinity and

specific antibodies for immunoblotting, (chromatin) immunopre-

cipitation, and immunofluorescence stainings of cells and tissues.

Additionally, we used one of our anti-MeCP2 rat monoclonal

antibodies on MeCP2 heterozygous null mouse brain to analyze

and quantify X chromosome inactivation skewing.

Materials and Methods

Plasmids
Mammalian expression constructs (Figure 3 and S1A) coding

for GFP or YFP-tagged rat MeCP2 full length (MeCP2G) and

domain constructs (MeCP2Y.3 and MeCP2Y.5) were previously

described [14,15]. The mammalian expression constructs

MeCP2G.9 and MeCP2G.8 were generated from the above

plasmids by PCR amplification using the following primers:

pMeCP2G.9 ss ccgctcgaggccatggggagcccttccaggagagaaca

as cgcggatccttccgggtcttgcgcttcttgatggggagcac

pMeCP2G.8 ss ggaagatctgccatggaaaccgtcagcattgaggtcaag

as ataagaatgcggccgcttacttgtacagctcgtccatgcc

The mammalian expression construct (Figure 6 and S1B)

expressing GFP-tagged human MECP2 was described before [16]

and was provided by S. Kudo (Hokkaido Institute of Public

Health, Sapporo, Japan). For expression in Sf9 (Invitrogen Paisley

PA4 9RF, UK) insect cells the Bac-to-Bac baculovirus expression

system (Invitrogen Paisley PA4 9RF, UK) was used. To express

MeCP2 with a N-terminal double strep-tag (Figure 1), a sequence

encoding the strep-tactin target peptide strep tag III

(MWSHPQFEKGGGSTGGGSGGGSWSHPQFEK) was syn-

thesized (Entelechon, Bad Abbach, Germany) flanked by BamHI

and NotI sites and subcloned into pFastBac1 (Invitrogen, Paisley

PA4 9RF, UK) using the same sites. Rat MeCP2 full length was

generated by PCR amplification from MeCP2G (described above)

using the following primers:

MeCP2 ss: ggaagatctgccatggaaaccgtcagcattgaggtcaag

as: ataagaatgcggccgcttacttgtacagctcgtccatgcc

with NotI and XhoI sites and subcloned in frame with the strep-

tag in the pFastBac1 vector. For expression of rat MeCP2-GFP in

Sf9 insect cells (Figure 2) the mammalian expression construct

Figure 2. Antibody sensitivity. The detection limit of the MeCP2 antibodies was tested on native rat MeCP2-GFP by slot blotting analysis and lies
between 1.58 and 0.78 ng of recombinant purified rat MeCP2.
doi:10.1371/journal.pone.0026499.g002

Figure 1. Antigen preparation. Purified strep-tagged MeCP2 (rat)
and purified intein tagged MECP2 (human) were subjected to a SDS-
PAGE and stained with Coomassie. The molecular weight markers are
labeled in the middle. A schematic representation of the rat MeCP2
protein and its functional domains is shown below. MBD: methyl CpG
binding domain; TRD: transcriptional repression domain; NLS: nuclear
localization signal.
doi:10.1371/journal.pone.0026499.g001

Novel MeCP2 Specific Monoclonal Antibodies

PLoS ONE | www.plosone.org 2 November 2011 | Volume 6 | Issue 11 | e26499



coding for MeCP2G full length (described above) was cut using

NotI and XhoI and cloned in frame in the pFastBac1 vector.

A prokaryotic expression construct coding for intein tagged

human MECP2 (Figure 1) [17] was obtained from C.L. Woodcock

(University of Massachusetts, Amherst, USA).

Tissues
Male mouse MeCP2 hemizygous brains (Figures 5 and 6) [18]

were kindly provided by the group of P. Huppke (Georg August

University, Göttingen, Germany). Female mouse MeCP2 null

heterozygous brains (Figure 7) [18] were kindly provided by the

group of L. Villard (Faculte de Medecine La Timone, Marseille,

France). Wild type mouse brains (C57BL/6N; Charles River

Laboratories International, Inc., Wilmington, MA 01887, USA)

were used as control. Mice were over 10 months old.

Cell culture and transfection
For immunofluorescence (IF) experiments mouse C2C12

myoblasts [19] were cultured using standard conditions described

previously [20]. For subsequent IF experiments (Figure 6 and

S1B), C2C12 cells were transiently transfected with human GFP-

MECP2 expression construct [16] using Transfectin (Bio Rad,

München, Germany) according to manufacturer’s advice.

For the epitope mapping (Figure 3 and S1A), human embryonic

kidney (HEK) 293T [21] cells were cultured in DMEM

supplemented with 10% fetal calf serum and 50 mg/ml gentamicin

and transfected with full length rat MeCP2 and domain constructs

(described above) using polyethylenimine (Sigma, St. Louis, MO,

USA).

MeCP2 antigens for immunization (Figure 1) and slot blot

applications (Figure 2) were produced using the baculovirus system

in Sf9 insect cells. Sf9 cells were maintained in EX-CELL 420

Insect Serum Free (SAFC) medium supplemented with 10% fetal

bovine serum shaking at 100 rpm and 28uC. Transfection of Sf9

cells to produce recombinant baculovirus, was performed using

Cellfectin (Invitrogen, Paisley PA4 9RF, UK) according to the

manufacturer’s instructions.

Antigen purification
Sf9 insect cells were infected with the recombinant baculovirus

(coding for MeCP2 with N-terminal double strep-tag; [22]) and

incubated at 28uC with shaking for 5 days. The cells were pelleted

by centrifugation (2006 g, 5 min, 4uC) and resuspended in a

buffer containing 25 mM Tris-HCl, pH 8.0; 1 M NaCl; 50 mM

glucose; 10 mM EDTA; 0.2% Tween-20; 0.2% NP40. The buffer

was supplemented with protease inhibitors (Complete mini;

Roche, Mannheim, Germany). After incubation on ice for

10 min, cells were disrupted with a high-pressure homogenizer

(EmulsiFlex-C5, Avestin) followed by centrifugation at 14,0006 g

for 30 min.

Strep-tagged recombinant rat MeCP2 protein was purified by

incubating the supernatant with 500 ml of strep-tactin sepharose

beads (IBA, Göttingen, Germany) for 4 h at 4uC on a rotary

shaker. To elute strep-tagged proteins, the beads were incubated

with D-Desthiobiotin (0.5 mg/ml; IBA, Göttingen, Germany),

dissolved in 16 PBS, for 30 min at 4uC. After centrifugation

(2006g, 2 min), beads were separated from the eluate containing

the purified proteins. The elution step was performed three

successive times.

Intein tagged human MECP2 protein was purified as previously

described resulting in untagged MECP2 through protein splicing

[23].

Immunizations, generation of hybridomas and ELISA
screening
Monoclonal antibodies specific for MeCP2 were generated via

the hybridoma technology as described by Rottach et al. [24].

80 mg of a N-terminal, strep-tagged full length rat MeCP2 were

Figure 3. Epitope mapping. To determine the binding site of the new monoclonal antibodies within the MeCP2 protein, we probed extracts of
mammalian cells expressing different MeCP2 constructs fused to GFP/YFP as indicated. To control for the level of the fusion proteins, the membranes
were reprobed with anti GFP mouse monoclonal antibody. A summary of the epitope mapping results for the different antibodies is shown below.
MeCP2 functional domains are as in Figure 1.
doi:10.1371/journal.pone.0026499.g003
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Figure 4. Antibody specificity. A) Sequence alignment of MeCP2 from different species. Identical residues are shaded in gray. The identities range
from 93% (human-mouse) to 97% (rat-mouse). B) For a multi-species immunoblot nuclear extracts from pig, mouse and rat brain (106 nuclei) were
loaded and probed with the antibodies as indicated. C) For immunoprecipitation analysis, mouse brain whole cell (for rat antibodies) and nuclei (for
mouse antibodies) extracts were incubated with the monoclonal antibodies as indicated followed by western blot analysis.
doi:10.1371/journal.pone.0026499.g004

Figure 5. Chromatin immunoprecipitation. Chromatin immunoprecipitation assays were performed using mouse brain nuclear extracts
obtained from wild type mice and MeCP2 knock out (KO) mice as negative control. The anti histone H3 antibody was used as a positive control of
chromatin immunoprecipitation assay efficiency. IgG was used as a negative control of chromatin immunoprecipitation.
doi:10.1371/journal.pone.0026499.g005
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injected both intraperitoneally and subcutaneously into Lou/C

rats and CBL mice using CpG2006 (TIB MOLBIOL, Berlin,

Germany) as adjuvant. 8 weeks later and 3 days before fusion a

boost was given intraperitoneally and subcutaneously. Spleen cells

were isolated and fused to the myeloma cell line P3X63-Ag8.653

(ATCC, Rockville, MD, USA) using polyethylene glycol 1500

(PEG 1500, Roche, Mannheim, Germany). After fusion, cells were

cultured in 96-well plates using RPMI 1640 with 20% fetal calf

serum, penicillin/streptomycin, glutamine, pyruvate, and non-

essential amino acids (PAA, Cölbe, Germany) supplemented by

aminopterin (Sigma, St. Louis, MO, USA). The hybridoma

supernatants were tested in a solid-phase enzyme linked

immunosorbent assay (ELISA). Microtiter plates were coated over

night with strep-tagged rat MeCP2 at a concentration of 3–5 g/ml

in 0.1 M sodium carbonate buffer (pH 9.6) and blocked with non-

fat milk (Frema, Neuform, Zarrentin, Germany). The hybridoma

supernatants were added and the bound monoclonal antibodies

were detected using a cocktail of biotinylated mouse monoclonal

antibodies against the rat IgG heavy chains, thus avoiding the

detection of IgM mouse monoclonal antibodies (anti IgG1, anti

IgG2a, anti IgG2b [ATCC, Manassas, VA], anti IgG2c

[Ascenion, Munich, Germany]). For visualization, peroxidase-

labeled avidin (Alexis, San Diego, CA) antibodies were applied

and o-phenylenediamine was used as chromogen in the peroxidase

reaction. The clones 4H7, 4G10 and 4E1 (rat monoclonal) as well

as 4B4 and 8D11 (mouse monoclonal) were stably subcloned and

used for further characterization.

The rabbit polyclonal antibody was generated using the

untagged human MECP2 according to the Express rabbit protocol

from PickCell (PickCell, Amsterdam, Netherlands) and used in

form of antiserum.

All monoclonal antibodies are available upon request.

Ethics statement
Immunizations of mice and rats for the purpose of generating

monoclonal antibodies were approved by the Government of

Upper Bavaria, according to the animal experimentation law 1 8a,

permit number 209.1/211-2531.6-4/99.

Sensitivity assay via slot blot analysis
Purification of MeCP2-GFP. Sf9 insect cells were infected

with the recombinant baculovirus (coding for rat MeCP2-GFP)

and incubated at 28uC with shaking for 5 days. The cells were

pelleted and resuspended as explained above for strep-tag MeCP2

and disrupted by sonication (three times each for 25 seconds, 70%

power; Bandelin Sonopuls GM70, Sonontrode HD70, Berlin,

Germany) on ice. Lysates were cleared by centrifugation at

15,0006 g for 30 min at 4uC.

Recombinant rat MeCP2-GFP protein was purified by

incubating 200 ml whole cell lysate with 1 ml (1.5 mg/ml) GBP

nanotrap according to the manufacturer’s advice (Chromotek,

Planegg-Martinsried, Germany). After transfer of the GBP nano-

trap beads containing lysate to a Bio-Rad Poly-Prep chromatog-

raphy column (Cat: 731-1550, Bio-Rad Laboratories, Hercules

CA 94547, USA) the column was washed three times with 10 ml

PBS. To elute the MeCP2-GFP protein, the beads were incubated

with 5 ml of a high salt buffer. Buffer exchange was done with PBS

using Amicon ultra centrifugal filters (Ultracel 10 kDa molecular

weight cutoff; Millipore, Ireland). Eluted protein was quantified

with Pierce the 660 nm protein assay (Thermo Scientific; Pro:

#1861426, Schwerte, Germany) and checked by SDS-PAGE

analysis (data not shown).

Slot blotting analysis. Native MeCP2-GFP was spotted

directly onto a nitrocellulose membrane (GE Healthcare,

München, Germany). Membranes were incubated in blocking

buffer, 5% (w/v) non-fat dry milk in PBS (PBSM), for 20 min at

room temperature. Primary antibodies were used undiluted and

incubated for 2 h at room temperature, followed by three washes

in PBS/0.1% Tween-20. Subsequently, membranes were

incubated for 1 h at room temperature with horseradish

peroxidase conjugated anti-rabbit IgG (Sigma, St. Louis, MO,

USA) diluted 1:10,000 or anti-mouse (GE Healthcare, München,

Germany) and rat IgG (Sigma, St. Louis, MO, USA) 1:5,000 in

5% (w/v) PBSM. After three washing steps in PBS/0.1% Tween-

20, signals were detected with ECL (GE Healthcare, München,

Germany).

Epitope mapping
For epitope mapping, different constructs of rat MeCP2 with C-

terminal GFP or YFP tag were used for transient transfection of

HEK 293T cells. After cell lysis (20 mM Tris-HCl pH 7.5,

150 mM NaCl, 0.5%NP40, 2 mM PMSF, 0.5 mM EDTA, 16

mammalian protease inhibitor mix, 1 mg/ml DNase, 2 mM

MgCl2) the concentration of the GFP fusion proteins was

calculated using a fluorescent read out of GFP and YFP (InfiniteH

M1000, TECAN), respectively (GFP: excitation wavelength:

490 nm, emission wavelength: 511 nm, YFP: excitation wave-

length: 525 nm, emission wavelength: 538 nm). The protein

concentration was normalized to the construct with the lowest

expression rate and lysates were diluted accordingly (228 nM GFP

or YFP). The samples were boiled in Laemmli sample buffer at

95uC for 10 min and loaded on a 10% SDS-PAGE. Western blot

analysis was performed as described above. In addition to the

polyclonal and monoclonal anti MeCP2 antibodies, anti GFP

mouse monoclonal antibody (Cat: 11814460001, Roche Diagnos-

tics GmbH, Mannheim, Germany) was used to control for

expression level of the different deletion proteins.

Cross-species reactivity assay via western blot analysis
For western blot analysis brain cell nuclei were extracted from

pig (obtained fresh from the local slaughterhouse), mouse and rat

(Charles River Laboratories International, Inc., Wilmington, MA

01887, USA) as described [25] and lysed in RIPA buffer (50 mM

Tris/HCl pH 8, 150 mM NaCl, 1% Tween, 0.5% Doc, 0.1%

SDS). For each gel lane, lysates from 106 nuclei were loaded.

Figure 6. In situ analysis of MeCP2 in cells and tissue. A) Mouse myoblasts (C2C12 cells) were transiently transfected with GFP-MECP2 (human)
and fixed using formaldehyde. MeCP2 was then detected with our monoclonal antibodies (undiluted) and our rabbit polyclonal antibody (1:500). The
first row shows the DNA counterstain (DAPI) of transfected and untransfected cells (green). The row underneath shows the signal obtained by our
antibody staining (red). The third row shows the localization of the transfected GFP-MECP2 (blue). The merge contains an overlay of the antibody
staining, the fluorescent signal of GFP-MECP2 and the DNA counterstain. Scale bar 20 mm. B) Mouse wild type brain sections (25 mm) were stained
using our antibodies. The first row shows the DNA counterstain with DAPI highlighting heterochromatic regions. The central row shows the signal
obtained by immunofluorescence with our antibodies. The last row shows an overlay of DAPI and MeCP2. Scale bar 20 mm. C) Mouse MeCP2
hemizygous null brain sections (25 mm) were stained as described above as a negative control. Mouse anti B23 antibody was used as a positive
control (consecutive section when testing mouse monoclonal anti MeCP2). Scale bar 40 mm.
doi:10.1371/journal.pone.0026499.g006
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Samples were separated on a 10% SDS-PAGE and transferred

to a nitrocellulose membrane (GE Healthcare, München,

Germany). The following primary antibodies were used for

western blot analysis: rabbit polyclonal anti MeCP2 (1:500),

mouse monoclonal and rat monoclonal anti MeCP2 (undiluted).

Secondary antibodies were as above for slot blot analysis.

Immunoprecipitation
Mechanically disrupted mouse brain tissue (3–4 brains) was

dissolved in buffer A (20 mM Tris pH 7.9, 0.6 M NaCl, 1.5 mM

MgCl2, 0.2 mM EDTA, 0.4% NP-40), and then diluted with

buffer B (20 mM Tris pH 7.9, 1.5 mM MgCl2, 0.2 mM EDTA,

0.4% NP-40) to obtain an NaCl concentration of 200 mM. Mouse

brain extracts were incubated with 400 ml of the rat monoclonal

MeCP2 antibody indicated, at 4uC for 2 h with shaking. As

negative control, anti RFP mix rat monoclonal antibody [26] of

equal amount was used. 100 ml protein G agarose beads, that were

equilibrated with buffer B, were added and incubated with the

extract for 1 h at 4uC with shaking. After three washes with buffer

B immuno complexes were dissolved in 60 ml 16Laemmli sample

buffer.

For successful immunoprecipitation using the mouse monoclo-

nal antibodies nuclei had to be isolated first, followed by a

modified protocol. Mechanically disrupted mouse brain tissue was

resuspended and washed with ice-cold PBS supplemented with

protease inhibitor cocktail (Roche, Mannheim, Germany). Cell

pellets were resuspended in cell lysis buffer (HEPES 5 mM, KCl

85 mM, NP40 0.5% pH 8.0) supplemented with protease

inhibitor cocktail and subsequently homogenized with a douncer.

The nuclear pellet obtained was resuspended in nuclei lysis buffer

(Tris-HCl 50 mM, EDTA 10 mM, SDS 1% pH 8.1) and

sonicated with a Bioruptor (Diagenode) for 5 minutes (30 sec

ON, 30 sec OFF cycles) to get a homogeneous extract.

The extract was diluted with immunoprecipitation buffer (SDS

0.1%, Triton X-100 1.1%, EDTA 1.2 mM, NaCl 165 mM, Tris-

HCl 16.7 mM pH 8.1) and followed by a pre-clearing overnight

at 4uC with magnetic beads (Invitrogen, Paisley PA4 9RF, UK).

Non-related mouse IgG antibody was used as a negative control.

The amount of extract that was used for each immunoprecip-

itation varied from 10–500 mg. Antibody-Dynabeads M-280

sheep anti-mouse IgG (Invitrogen, Paisley PA4 9RF, UK) were

added to pre-cleared chromatin and incubated with shaking for

2 h at 4uC. 10 mg of nuclear extract were loaded as input. After

three washes with immunoprecipitation buffer immuno complex-

es were eluted from the beads with 25 ml 26 Laemmli sample

buffer.

Samples were analyzed by western blot as described above.

Chromatin immunoprecipitation
Nuclei were obtained from wild type and MeCP2 knock out

male brain as described above with an additional cross-linking

step, after mechanical disruption, with 1% formaldehyde for

10 min. Adding glycine to a final concentration of 0.125 M

stopped the cross-linking reaction. The lysed nuclear pellet was

sonicated with a Bioruptor (Diagenode) for 15 minutes (30 sec

ON, 30 sec OFF cycles). The average chromatin size of the

fragments obtained was ,300 bp. Magnetic beads were used for

pre-clearing of diluted chromatin (over night at 4uC) and for

incubation (2 h at 4uC with shaking) with H3 (ab1791, Abcam),

our rat monoclonal antibodies: 4E1, 4H7, and 4G10 or our

mouse monoclonal antibodies: 4B4 and 8D11. Non-related

mouse IgG antibody was used as a negative control. The input

was obtained from the nuclear extract and represents 5% of the

chromatin that is used for the chromatin immunoprecipitation

with each antibody. The immuno-complexes were washed: twice

with low salt buffer (Tris-HCl 50 mM pH 8.0, NaCl 150 mM,

SDS 0.1%, NP-40 1%, EDTA 1 mM, deoxicolate Na 0.5%),

twice with high salt buffer (Tris-HCl 50 mM pH 8.0, NaCl

500 mM, SDS 0.1%, NP-40 1%, EDTA 1 mM, Na deoxicolate

0.5%), twice with LiCl buffer (Tris-HCl 50 mM pH 8.0, LiCl

250 mM, SDS 0.1%, NP-40 1%, EDTA 1 mM, Na deoxicolate

0.5%) and twice with TE buffer (Tris-HCl 10 mM pH 8.0,

EDTA 0.25 mM). Cross-linked chromatin was then eluted from

the magnetic beads (Dynabeads M-280 sheep anti-mouse IgG for

mouse monoclonal antibodies and protein G for rat monoclonal

antibodies) by adding elution buffer (NaHCO3 100 mM, SDS

1%). Samples were reverse cross-linked over night at 65uC and

incubated with proteinase K at 50 mg/ml final concentration for

1 h. DNA was purified with the PCR purification kit (Qiagen)

and used for PCR analysis, which was carried out with the

following primers:

Xist (promoter) 59-CCTGTACGACCTAAATGTCC-39

59-GTATTAGTGTGCGGTGTTGC-39.

In the case of our rat monoclonal antibodies 38 PCR cycles

were used and in the case of our mouse monoclonal antibodies 35

cycles.

Immunofluorescence analysis
Cells. For immunofluorescence staining, C2C12 cells were

seeded on glass coverslips and transiently transfected with GFP

tagged MECP2 (human). Cells were fixed with 3.7%

formaldehyde in PBS and incubated with the undiluted rat/

mouse anti MeCP2 antibodies for 1 h at room temperature. After

incubation with the secondary Alexa 647 conjugated goat anti rat/

mouse IgG antibody (Invitrogen Paisley PA4 9RF, UK) diluted

1:400 in PBS containing 2% BSA, the cells were counterstained

with DAPI (2 mg/ml) and mounted in Vectashield medium

(Vector Labs, Burlingame, CA, USA).

Tissues. Mouse brains were fixed by overnight immersion in

PBS-buffered 4% paraformaldehyde. The brains were embedded

in Tissue Tek (Sakura, Zoeterwoude, Netherlands) and

cryosectioned (25 mm) using a cryostat HM 560 (Microm,

Walldorf, Germany).

Sections were air dried at room temperature for 30 min, re-

hydrated in 10 mM sodium citrate buffer (pH 6.0) for 5 min,

pulse-heated (80uC) for 30 min in the microwave. The slides were

equilibrated in PBS after heating and incubated with the following

antibodies: anti MeCP2 mouse monoclonal (undiluted), rat

monoclonal (undiluted), rabbit polyclonal (1:500), anti B23 mouse

monoclonal (Sigma, St. Louis, MO, USA, 1:1,000) and anti

tyrosine hydroxylase rabbit antibody (AB152, Millipore, Billerica,

MA, USA) Both, primary and secondary antibodies were

complemented with 0.1% Triton X-100 and 1% BSA. No

additional blocking step was performed. Incubation was done

under a glass chamber (made of coverslips) in a humid box for 12–

24 h at room temperature [27]. Washings between antibody

incubations and after incubation with secondary antibodies were

performed with PBS with 0.05% Triton X-100 at 37uC,

3620 min. In order to stabilize preparations, immunostained

sections were post-fixed with 2% paraformaldehyde for 10 min

before counterstaining with DAPI (2 mg/ml) for 1 h and mounted

in Vectashield medium (Vector Labs, Burlingame, CA, USA).

Microscopy
Epifluorescence images were obtained on a Zeiss Axiovert 200

microscope equipped with Plan-Apochromat 663/1.4 numerical

aperture (NA) oil immersion objective lenses and a Sensicam

(PCO) CCD camera. Confocal images were collected using an
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UltraVIEW VoX spinning disc system (Perkin Elmer) on a Nikon

Ti microscope equipped with an oil immersion Plan-Apochromat

640/1.3 NA objective lens (pixel size in XY=186 nm, Z-

step = 0.3 mm).

Scoring of tyrosine hydroxylase and MeCP2 positive cells was

done by eye in z-stacks.

Results and Discussion

Generation of rat/mouse monoclonal antibodies against
MeCP2
To generate new rat and mouse antibodies potentially detecting

different domains of MeCP2, we generated a baculovirus

expression plasmid coding for the full length rat MeCP2 with a

double strep-tag and transfected/infected Sf9 insect cells with this

construct. The recombinant protein was purified using strep-tactin

sepharose leading to a single band in SDS-PAGE analysis

(Figure 1). The protein was used to immunize Lou/C rats and

CBL mice, leading to the generation of a panel of clonal

hybridomas by fusion of lymphocytes from immunized animals

with the myeloma cell line P3X63-Ag8.653. All antibodies

generated by the hybridomas were initially screened in a solid-

phase enzyme linked immunosorbent assay (ELISA, data not

shown). Positive hybridoma supernatants from clones 4H7, 4G10

and 4E1 (rat monoclonal) as well as 4B4 and 8D11 (mouse

monoclonal) were stably subcloned and used for further charac-

terization. In parallel, we immunized rabbits with untagged

human MECP2 protein to generate polyclonal antibodies and

used the resulting antiserum directly.

Sensitivity of the rat and mouse antibodies
To test the sensitivity of the antibodies we performed slot blot

analysis with native rat MeCP2-GFP protein. The protein was

applied in decreasing amounts ranging from 25 ng down to

0.78 ng. All monoclonal antibodies showed clear signals down to

1.56 ng of native protein and the rat monoclonal antibody 4E1

was still able to detect 0.78 ng of MeCP2 protein (Figure 2). The

rabbit anti MeCP2 polyclonal antiserum was also able to detect

down to 0.78 ng of native protein (Figure 2). The last column

contained 500 ng BSA as negative control and none of the

antibodies reacted with it.

Epitope mapping
To determine the binding domain of the new monoclonal

antibodies within the MeCP2 protein, we used different constructs

of GFP/YFP tagged MeCP2 expressed in mammalian cells. The

cell lysates were analyzed by SDS-PAGE, blotted on a

nitrocellulose membrane and incubated with the different

antibodies. All fusions were expressed as controlled by incubation

of the membranes with anti GFP mouse monoclonal antibody.

The results (Figure 3 and S1A) show that the rat monoclonal

antibodies 4G10 and 4H7 reacted against the C-terminus of

MeCP2 and 4E1 against the N-terminus. Both mouse monoclonal

antibodies 4B4 and 8D11 showed specific binding to the C-

terminus. Since none of the antibodies detected the MBD domain,

which is highly conserved in all MBD proteins no cross-reaction

with these proteins is expected. Additionally, the polyclonal rabbit

antibody detected all fragments except the TRD.

Specificity and cross species reactivity
MeCP2 is highly conserved throughout different species

(Figure 4A). To test for cross species reactivity, nuclei from pig,

mouse and rat brain tissue were isolated and extracts analyzed by

western blot. As shown in Figure 4B all antibodies detected

endogenous MeCP2 in mouse and rat. Remarkably, the rat

monoclonal antibody 4E1 was the only one that did not detect

MeCP2 in nuclear extracts from pig brain. This coincides with the

fact that it is the only antibody in our tests to react with the N-

terminal part (amino acids 1–78) of MeCP2 (see below). Only five

amino acids are not identical in this domain of MeCP2 in the pig

compared to mouse and rat. We, thus, conclude that the epitope

recognized by rat monoclonal antibody 4E1 must include one or

more of these residues (Figure 4A, highlighted in red).

An important and commonly used method for studying protein

interaction partners is immunoprecipitation. Thus, we tested next

the ability of the monoclonal antibodies to specifically immuno-

precipitate MeCP2 from mouse brains. We could show that our

three rat antibodies were able to specifically pull down MeCP2

from whole brain extract (Figure 4C). Additional unspecific bands

at 35 kDa were also detected in the negative control (rat anti RFP

antibody mix) [26] and are most probably due to unspecific

binding to the beads (data not shown). To successfully use our two

mouse monoclonal antibodies for immunoprecipitation we needed

to isolate nuclei from mouse brain first. We could then show that

our mouse antibodies were also capable of specifically pulling

down MeCP2 from mouse brain nuclei extracts (Figure 4C).

To next determine if our monoclonal MeCP2 antibodies are

competent for chromatin immunoprecipitation analysis using

purified nuclei from mouse brain. We analyzed the occupancy of

MeCP2 in the promoter of Xist in the X chromosome, which is

known to bind MeCP2 in mouse and is used as a standard

positive control for MeCP2 binding. Two of our rat monoclonal

antibodies were able to immunoprecipitate chromatin (4E1 and

4H7, Figure 5) with 4H7 producing a stronger signal than 4E1

and 4G10 not yielding a detectable signal. The latter might be

due to technical limitations, or to the epitope recognized by the

4G10 mAb being masked when the MeCP2 protein is bound to

chromatin. From our mouse antibodies only 4B4 was able to

clearly chromatin immunoprecipitation (Figure 5). The three

antibodies (rat 4E1 and 4H7 and mouse 4B4) suitable for

chromatin immunoprecipitation show no band in the knockout

brain whereas H3, which is used as positive control for

chromatin immunoprecipitation, shows a band in wild type

and knock out brain. Our polyclonal rabbit anti MeCP2

antibody was previously shown to be suitable for chromatin

immunoprecipitation analysis [28]. Our antibodies therefore

cover the whole range of important biochemical assays

commonly performed.

In situ analysis of MeCP2 in cells and in tissue
Western blot techniques usually deal with denatured protein

and do not give information about the localization of the protein in

the cell. It is therefore important to test whether the new

antibodies correctly detect MeCP2 localization in situ. MeCP2 is

predominantly localized at pericentric heterochromatic regions in

mouse cells, which are highly enriched in strongly methylated

major satellite DNA repeats and tend to form clusters known as

chromocenters [14]. Immunostainings were thus performed on

mouse myoblasts expressing GFP tagged human MECP2 using

formaldehyde and methanol as fixation reagents (Figure 6A and

S1B). Our three rat monoclonal antibodies revealed strong signals

co-localizing with the ectopically expressed GFP-MECP2 and

worked in both fixation conditions. Untransfected cells did not

give a signal, consistent with undetectable endogenous levels of

MeCP2 in those cells [14]. Using the mouse monoclonals, only

4B4 gave a signal for ectopically expressed protein. 8D11

exhibited high background noise and no specific binding in both

fixation conditions. Our polyclonal rabbit antiserum showed
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strong and specific binding even when used at a dilution of 1:500.

DAPI was used as a counterstain and additional control in all cells

since DAPI’s preference for AT rich regions strongly highlights

chromocenters.

Since MeCP2 plays a crucial role in RTT syndrome one of the

most important goals for us was to test whether the antibodies

work on brain tissue detecting MeCP2 in its native conformation.

We, therefore, prepared cryosections of wild type mouse brain

and also MeCP2 hemizygous null male mouse brain as negative

control. The 25 mm-thick wild type brain sections were stained

with the anti MeCP2 antibodies and counterstained with DAPI as

marker for chromocenters. As demonstrated in Figure 6B our rat

monoclonal antibodies show a strong and specific staining of

chromocenters colocalizing with DAPI. Our mouse monoclonal

antibody 4B4 shows a less intense but still specific staining of

MeCP2. Unfortunately, the antibody 8D11 was not able to detect

endogenous MeCP2 in brain, as it had failed to do with ectopic

MeCP2 expression in cells, and is therefore not suitable for

immunofluorescence. The strongest signals were achieved with

our polyclonal rabbit antiserum, which was used as a positive

control (Figure 6B). To verify the specificity to MeCP2 we

performed the same stainings in MeCP2 null mouse brain

sections. We added anti B23 nucleoli marker antibody as a

positive staining control. As shown in Figure 6C none of the anti

MeCP2 antibodies showed any significant signal in the knock out

brain sections whereas B23 showed a clear and specific signal.

The double staining with anti-B23 mouse monoclonal antibody

was facilitated by the combination with our rat monoclonals,

whereas, in the case of the mouse monoclonals, we had to

perform the anti B23 staining using an adjacent tissue section.

Additionally, using rat monoclonal antibodies obviated the cross

reaction with endogenous mouse immunoglobulins present in the

tissue, whereas these were readily detected when using the mouse

monoclonal antibodies.

X chromosome inactivation skewing in MeCP2
heterozygous mouse brain
Since MeCP2 lies on the X chromosome it is subjected to

random X chromosome inactivation in early development. In

RTT, X chromosome inactivation leads to a mosaic pattern of all

the cells, theoretically in a 50:50 ratio of healthy (active X

containing wild type MeCP2 allele) and affected (active X

containing mutant Mecp2 allele) cells. Deviations from this ratio

indicate skewed inactivation of the X chromosome and affect the

severity of RTT symptoms. Our antibodies should be highly

suitable for studies concerning X chromosome inactivation as well

as other studies on RTT affected brain and other tissues.

To test this, we evaluated X chromosome inactivation skewing

in female MeCP2 heterozygous brain. We performed a double

Figure 7. X chromosome inactivation skewing in brain from heterozygous MeCP2 null mouse. A) Schematic overview of a cryosection of
a (female) heterozygous MeCP2 null brain with regions analyzed for X chromosome inactivation skewing marked with white squares. The results of
the quantification of tyrosine hydroxylase positive, MeCP2 positive or negative cells are shown. N indicates the number of tyrosine hydroxylase
positive neurons scored. B) Representative images of a section co stained with DAPI (DNA), anti MeCP2 (4H7) and anti tyrosine hydroxylase
antibodies. The motor cortex region is depicted in an overview (upper panels; scale bar 80 mm). A magnification corresponding to the red square is
shown in the lower panels (scale bar 20 mm). To illustrate the scoring strategy, an example of tyrosine hydroxylase and MeCP2 positive neuron is
marked by+and of tyrosine hydroxylase positive and MeCP2 negative neuron is marked by -.
doi:10.1371/journal.pone.0026499.g007
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staining with rabbit anti tyrosine hydroxylase (TH) and our rat

MeCP2 antibody (4H7). TH is the first enzyme in the

biosynthesis of dopamine and norepinephrine from tyrosine

and is, therefore, a marker for dopaminergic and noradrenergic

neurons. Roux et al. [29] showed that TH positive cells always

co-expressed MeCP2 and, hence, X chromosome inactivation

skewing can be obtained by counting TH positive cells with and

without MeCP2 signal. We focused on two areas of the cortex,

the motor cortex and the somatosensory cortex (Figure 7). In

both cases we could observe a pronounced X chromosome

inactivation skewing favoring wild type MeCP2 expression

(73%). Previously published mouse data suggest that X

chromosome inactivation skewing in brain is the reason for very

different phenotypes in RTT [30]. The degree of skewing is

controversial and might dependent on the tissue analyzed or the

method applied [30,31]. Our antibodies could help to elucidate

the state of X chromosome inactivation in RTT tissue in

particular also with respect to truncated versus full length

MeCP2 by a combination of the N and C-terminal specific

antibodies.

Figure 8 summarizes the characterization of the novel anti

MeCP2 antibodies. The antibodies recognize MeCP2 from

different species, including human, mouse, rat and pig. Whereas

the two new mouse antibodies are suitable for western blot,

immunoprecipitation and to a lesser extend for immunofluores-

cence, the rabbit polyclonal as well as the rat monoclonal

antibodies performed very well in immunoblotting, immunopre-

cipitation, and immunofluorescence analysis of ectopic and

endogenous MeCP2. In addition, one mouse and two rat

monoclonal antibodies as well as the rabbit polyclonal antiserum

perform well in chromatin immunoprecipitation making them a

very valuable set of tools for studies of MeCP2 pathophysiology in

situ and in vitro.

Supporting Information

Figure S1 A) Epitope mapping. Complete blots of the

epitope mapping presented in Figure 3 together with a schematic

representation of the constructs. B) In situ analysis of MeCP2

in cells. Mouse myoblasts (C2C12 cells) were transiently

transfected with GFP-MECP2 (human) and fixed with methanol.

MECP2 was then detected with our monoclonal antibodies

(undiluted) and our rabbit polyclonal antibody (1:500). The first

row shows the DNA counterstain (DAPI) of transfected and

untransfected cells (green). The row underneath shows the signal

obtained by our antibody staining (red). The third row shows the

localization of the transfected GFP-MECP2 (blue). The merge

contains an overlay of the antibody staining, the fluorescent signal

of GFP-MECP2 and the DNA counterstain. Scale bar 20 mm.

(PDF)
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Figure S1. A) Epitope mapping. Complete blots of the epitope mapping presented in Figure 3 together with a schematic 
representation of the constructs. B) In situ analysis of MeCP2 in cells. Mouse myoblasts (C2C12 cells) were transiently 

transfected with GFP-MECP2 (human) and fixed with methanol. MECP2 was then detected with our monoclonal 
antibodies (undiluted) and our rabbit polyclonal antibody (1:500). The first row shows the DNA counterstain (DAPI) of 
transfected and untransfected cells (green). The row underneath shows the signal obtained by our antibody staining (red). 

The third row shows the localization of the transfected GFP-MECP2 (blue). The merge contains an overlay of the antibody 
staining, the fluorescent signal of GFP-MECP2 and the DNA counterstain. Scale bar 20 µm. 
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Abstract

Fluorescent fusion proteins are widely used to study protein localization and interaction dynamics in living cells. However,
to fully characterize proteins and to understand their function it is crucial to determine biochemical characteristics such as
enzymatic activity and binding specificity. Here we demonstrate an easy, reliable and versatile medium/high-throughput
method to study biochemical and functional characteristics of fluorescent fusion proteins. Using a new system based on 96-
well micro plates comprising an immobilized GFP-binding protein (GFP-mulitTrap), we performed fast and efficient one-step
purification of different GFP- and YFP-fusion proteins from crude cell lysate. After immobilization we determined highly
reproducible binding ratios of cellular expressed GFP-fusion proteins to histone-tail peptides, DNA or selected RFP-fusion
proteins. In particular, we found Cbx1 preferentially binding to di-and trimethylated H3K9 that is abolished by
phosphorylation of the adjacent serine. DNA binding assays showed, that the MBD domain of MeCP2 discriminates between
fully methylated over unmethylated DNA and protein-protein interactions studies demonstrate, that the PBD domain of
Dnmt1 is essential for binding to PCNA. Moreover, using an ELISA-based approach, we detected endogenous PCNA and
histone H3 bound at GFP-fusions. In addition, we quantified the level of H3K4me2 on nucleosomes containing different
histone variants. In summary, we present an innovative medium/high-throughput approach to analyse binding specificities
of fluroescently labeled fusion proteins and to detect endogenous interacting factors in a fast and reliable manner in vitro.
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Introduction

Over the past decade a variety of proteomic approaches have

been used to identify cellular components in order to understand

the mechanism and inner workings of cells [1]. For example, mass

spectrometry-based proteomics uncovered the proteome of many

different organisms as well as cell-type specific differences in

protein expression. However, to understand and characterize the

function of single proteins, as well as the interplay between

different factors, it is essential to gain further insights into their

abundance, localization, dynamic interactions and substrate

specificities.

Fluorescent proteins like the green fluorescent proteins (GFP)

[2] and spectral variants have become popular tools to study the

localization and dynamic interactions of proteins in vivo. Despite,

the availability of a variety of commercial mono- and polyclonal

antibodies against GFP and other fluorescent proteins [3,4] (e.g.

Abcam, UK; Sigma, USA; Roche, Germany, ChromoTek,

Germany), proteins are mostly fused to a small epitope tag such

as FLAG or c-Myc to analyze biochemical characteristics like

enzymatic activities and/or binding specificities. Thus, integration

of such in vitro data with in vivo data obtained with fluorescently

labeled proteins has, in part, been impeded by the simple fact that

different protein tags are used for different applications. The gold

standard to examine binding affinities is surface plasmon

resonance (SPR) [5]. One drawback of this method is the need

of large amount of proteins. Such proteins have to be expressed

and purified from bacterial systems (e.g. E.coli) or lower eukaryotes

such as yeast (e.g. S. cerevisiae). Thus, the recombinant proteins lack

essential post-translational modifications or are not folded properly

possibly leading to different binding properties and inaccurate

results. In addition with SPR measurements one can only

determine the binding affinity to one substrate. This does not

reflect the in vivo situation where most proteins have the choice

between many different binding substrates in parallel.

Protein microarrays are an alternative to study protein-protein

interactions in high-throughput manner [6]. Once more the

drawback of this in vitro method is the laborative and time-

consuming preparation of recombinant proteins or protein

domains. Therefore protein microarrays are limited to domains

that can be produced as soluble, well-folded proteins [6].

Recently, specific GFP binding proteins based on single domain

antibodies derived from Lama alpaca have been described [7]

(GFP-Trap ChromoTek, Germany). The GFP-Trap exclusively

binds to wtGFP, eGFP and GFPS65T as well as to YFP and eYFP.

Coupling to matrices including agarose beads or magnetic
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particles the GFP-Trap allows for one-step purification of GFP-

fusion proteins. Previous studies made use of the GFP-Trap to

perform a broad range of different methods including mass

spectrometry analysis [8], DNA binding, DNA methyltransferase

activity assays [9], as-well-as histone-tail peptide binding assays

[10]. One mayor disadvantage of the GFP-Trap is, that batch

purification of GFP-fusions is very laborious and time-consuming

and one cannot test different GFP-fusion and/or assay conditions

in parallel. Here, we present an innovative and versatile high-

throughput method to quantitatively measure binding specificities

and to detect endogenous interacting factors in a fast and reliable

manner in vitro: 96-well micro plates coated with immobilized

GFP-Trap (GFP-multiTrap). To demonstrate the general suitabil-

ity of our assays, we choose already known binding partners and

compared our results with previous publications. Using this

method, we could confirm that Cbx1 preferentially binds to di-

and trimethylated histone H3 lysine 9 and that this binding is

abolished by phosphorylation of the adjacent serine 10 [11–13]. In

addition, we determined a 4-fold preference of the MBD domain

of MeCP2 for fully over unmethylated DNA in accordance to [14–

16]. Furthermore, we performed protein-protein interaction assays

and found that the Dnmt1 binds to PCNA in a PBD domain-

dependent manner consistent to [17,18]. In contrast, LigaseIII

binds Xrcc1 but does not interact with PCNA [19,20]. Using an

ELISA-based assay, we were able to detect endogenous PCNA

bound to immunoprecipiated Dnmt1, Fen1 and PCNA itself. In

accordance with our protein-protein interaction data, Dnmt1

lacking the PBD domain (Dnmt1DPBD) could not co-immuno-

precipate with PCNA. Consistent with our histone-tail peptide

binding data, we could detect endogenous histone H3 bound to

Cbx1. Finally, we quantified specific histone modifcations on

nucleosomes comprising different histone variants. All of these

data clearly demonstrate the versatility and easy handling of this

high-troughput approach and its immense benefit to many

researchers.

Results

One-step Purification of GFP-fusion Proteins
In a first step, we tested the efficiency of the GFP-multiTrap to

purify GFP-fusion proteins from cellular extracts. First, we

examined the pull-down efficiency of a GFP-tagged protein and

chose GFP-Cbx1 as a model protein. Cbx1 is a chromodomain-

containing protein related to the Drosophila HP1b, a well-studied

heterochromatin-associated protein [11]. We used cell extracts

from HEK293T cells transiently expressing GFP-Cbx1 or GFP,

purified the GFP-fusions using the GFP-multiTrap, eluted the

bound fractions, separated them by SDS-PAGE and visualized the

bound proteins by coomassie staining. The bound fractions

displayed mainly GFP as well as GFP-Cbx1 with only minor

impurities (Figure 1A), providing therefore a reliable tool for

downstream biochemical analyses. Notably, the washing condi-

tions can be varied according to the downstream applications. In

addition to these qualitative results, we performed experiments to

quantify the pull-down efficiency. For this purpose we quantified

the amount of bound GFP with varying concentrations of input

GFP from cellular extracts. After binding, the single wells were

subjected to several washing steps and bound GFP was analyzed

by fluorescent read-out using a micro plate reader. Notably, the

input amount of protein/substrate was measured in solution,

whereas the bound fraction represents one value on the 96-well

surface. We measured the fluorescence intensities of bound GFP

and plotted the amount of bound GFP as a function of total GFP

(Figure 1B). The amount of bound GFP increased linearly from 10

to 130 nM of total input and saturated between 130 and 400 nM.

Next, we quantified the amount of bound GFP by immunoblot-

ting. Therefore, we eluted the bound GFP fractions, separated

them by SDS-PAGE, visualized the bound proteins by immuno-

blot analysis (Figure 1C) and quantified the GFP signal by

measuring the mean intensity via Image J (Figure 1D). Similar to

the quantifcation by fluorescent read out using a micro plate

reader, the amount of bound GFP increases linearly from 10 to

130 nM of total input and saturates between 130 and 400 nM.

In summary, we demonstrated that the GFP-multiTrap allows

for fast and efficient one-step purification of GFP-fusion proteins

directly from crude cell lysates in a high-throughput manner. The

method works well for both qualitative and quantitative measure-

ments and the immunoprecipitated GFP-fusions can then be

further tested in biochemical assays.

In vitro Histone-tail Peptide and DNA Binding Assay
In the next assay we determined whether this approach is also

feasible to quantify binding affinities between GFP-proteins and

peptides or DNA. First, we analyzed histone-tail peptide binding

specificities of the chromobox homolog 1, Cbx1, fused with a N-

terminal GFP-tag using the GFP-multiTrap. GFP-Cbx1 was

purified from mammalian cell lysate, as described above, and the

bound protein was incubated with TAMRA-labeled histone-tail

peptides. A set of 20 different histone-tail peptides (Table 1) was

used in technical triplicates in parallel and GFP served as negative

control (GFP data is not shown). After removal of unbound

substrate the amounts of protein and histone-tail peptide were

determined by fluorescence intensity measurements using a micro

plate reader. Binding ratios were calculated by dividing the

concentration of bound histone-tail peptide by the concentration

of GFP fusion (Figure 2A). GFP-Cbx1 preferentially binds

H3K9me3 and H3K9me2 histone-tail peptides consistent with

previous studies [11,12]. As expected, the phosphorylation of

serine 10 (S10p) next to the trimethylated lysine 9 leads prevents

binding of Cbx1, which is in accordance with previous reports

[13]. In addition to fluorescent quantification via a micro plate

reader, we scanned the TAMRA signals using a Typhoon scanner

(Figure 2B). Here, we detected TAMRA signals in the wells

corresponding to di- and trimethylated H3K9. Notably, we did

not detect differences in binding towards di-and trimethylated

H3K9 using a micro plate reader. However, we could detect

a preference for tri- over dimethylated H3K9 using a fluorescence

scanner. These differences could result from different sensitivities

of both methods. Furthermore, we performed a competition assay

to demonstrate the specificity of the histone-tail peptide-binding

assay. We incubated GFP-Cbx1 with TAMRA-labeled H3K9me3

in parallel with either biotinylated H3K9me3 or H3K9ac histone-

tail peptides. As expected, the addition of biotinylated H3K9me3

histone-tail peptide significantly decreased the binding of Cbx1 to

TAMRA-labeled H3K9me3, whereas the addition of biotinylated

H3K9ac did not alter the binding ratios (Figure 2C). In previous

studies [11,12], the binding affinities of the HP1b chromo domain,

the Drosophila homolog of mammalian Cbx1, for both di- and

trimethylated H3K9 peptides have been found to be 7 and

2.5 mM, respectively. In contrast, we could not detect a significant

difference in binding ratios between di- and trimethylated H3K9

histone tail peptides using a micro plate reader (Figure 2A). One

explanation could be the use of different expression systems. While

the binding ratios for the HP1b chromo domain were determined

using bacterially expressed protein we used a fluorescent fusion

protein derived from mammalian cells. In this context a recent

study revealed that recombinant HP1a prepared from mammalian

cultured cells exhibited a stronger binding affinity for K9-

Versatile Toolbox for In vitro Studies
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methylated histone H3 (H3K9me) in comparison to protein

produced in Escherichia coli [21]. Biochemical analyses revealed that

HP1a was multiply phosphorylated at N-terminal serine residues

(S11–14) in human and mouse cells and that this phosphorylation

enhanced the affinity of HP1a for H3K9me, displaying the

importance of post-translational modifications for binding affinities

[21]. To determine the binding affinity of GFP-Cbx1 to

H3K9me3, we varied the input amount of histone-tail peptide.

We plotted the amount of bound histone-tail peptide as a function

of total peptide and fitted the values using GraphPad Prism and

nonlinear regression (Figure 2D). The amount of bound

H3K9me3 histone-tail peptide increases linearly and saturates at

approximately 500 nM of input peptide. In contrast to H3K9me3,

we could not detect any binding of Cbx1 to H3 histone-tail

peptides. Notably, the exact determination of binding affinities was

not possible due to differences in the technical measurement of

input versus bound fractions. Here, the input amount of protein/

substrate was measured in solution, whereas the bound fraction

represents one value on the 96-well surface.

In addition to histone-tail peptide binding assays, we performed

DNA-binding assays. We purified the methyl-binding domain

(MBD) of MeCP2, fused with a C-terminal YFP tag, from cell

extracts as described and performed competition binding analysis

by incubating immobilized MBD-YFP with fluorescently labeled

un- and fully methylated DNA (Table 1). As a result we observed

a five-fold preference of MBD for fully methylated DNA over

unmethylated DNA (Figure 2E). In addition, we measured the

amount of bound DNA to MBD-YFP by varying the input amount

of DNA. We plotted the amount of bound un- and fully

methylated DNA as a function of total un-and fully methylated

DNA and fitted the values using GraphPad Prism and nonlinear

regression (Figure 2F). Similar to the relative binding ratios, MBD

binds preferentially to fully methylated DNA. These results are in

accordance with previous studies describing that MeCP2 interacts

specifically with methylated DNA mediated by the MBD domain.

In these studies, electrophoretic mobility shift assays (EMSA) using

the isolated MBD domain expressed in E. coli were performed and

dissociation constants of 14,7 and 1000 nM were calculated for

symmetrically methylated and unmethylated DNA, respectively

[14–16].

To assess the suitability of the in vitro histone-tail peptide and

DNA binding assay for high-throughput applications, the Z-factor

was calculated. For histone-tail peptide binding assays, we

calculated the Z-factor using the relative binding ratios of

H3K9me3 to GFP-Cbx1 as positive state and of H3K9me0 to

GFP-Cbx1 as negative state. For the DNA binding assay, we

calculated the Z-factor using the relative binding ratios of fully

methylated DNA to MBD-YFP as positive state and of

I FT BM I FT BM[kDa]

70

55

35

27

GFP GFP-Cbx1
A B

C D

GFP

0 100 200 300 400
0

10000

20000

30000

40000

50000

GFP input [nM]

G
F

P
 b

o
u

n
d

 [
p

ix
e

l 
in

te
n

si
ty

]

Exp. 1

Exp. 2

GFP input [nM]

G
F

P
 b

o
u

n
d

 [
n

M
]

0 100 200 300 400
0

5

10

15

18 37 32611 77 127

24411 23 39 84 130

Input GFP [nM]

Input GFP [nM]

Bound GFP 
α-GFP

E
x
p

.1
 

Bound GFP 
α-GFP

E
x
p

.2
 

Figure 1. One-step purification of GFP and GFP-fusion proteins. Purification of GFP and GFP-Cbx1 expressed in HEK293T cells. All GFP
concentrations were quantified via plate reader. (A) Purification of GFP and GFP-Cbx1 from HEK293T cell extracts, transciently transfected with the
GFP-fusions. Input (I), flow-through (FT) and bound (B) fractions were separated by SDS-PAGE and visualized by coomassie staining. (B) Different
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unmethylated DNA to MBD-YFP as negative state (Table 2). The

Z-factors of 0.766 for the histone-tail peptide binding assay and

0.756 for the DNA binding assay strongly indicate that both assays

are robust, reproducible and suitable for high-throughput applica-

tions.

In vitro Protein-protein Binding Assay
In addition to the detection of substrate specificity (e.g. histone-

tail peptide) and DNA binding, analysis of the interaction with

other cellular components and factors is essential to understand

the function of proteins.

The use of fluorescence intensity read-out systems for the

quantification of protein-protein interactions in vitro provides a new

Table 1. Sequences of DNA oligonucleotides and histone-tail peptides.

DNA oligos

DNA substrate DNA sequence DNA labeling

CG-up 59- CTCAACAACTAACTACCATCCGGACCAGAAGAGTCATCATGG -39 No

MG-up 59- CTCAACAACTAACTACCATCMGGACCAGAAGAGTCATCATGG -39 No

um550 59- CCATGATGACTCTTCTGGTCCGGATGGTAGTTAGTTGTTGAG -39 ATTO550 at 59end

um700 59- CCATGATGACTCTTCTGGTCCGGATGGTAGTTAGTTGTTGAG -39 ATTO700 at 59end

mC700 59- CCATGATGACTCTTCTGGTCMGGATGGTAGTTAGTTGTTGAG -39 ATTO700 at 59end

DNA substrates

DNA substrate CpG site Label Oligo I Oligo II

UMB-550 unmethylated 550 CG-up um550

UMB-700 unmethylated 700 CG-up um700

FMB-700 Fully methylated 700 MG-up mC700

DNA sets

Binding set Control set

UMB-550 UMB-550

FMB-700 UMB-700

Histone-tail peptides

H3 (1–20) ART K QTARKSTGGKAPRKQLK TAMRA at C-terminus

H3K4me1 ART X1 QTARKSTGGKAPRKQLK

H3K4me2 ART X2 QTARKSTGGKAPRKQLK

H3K4me3 ART X3 QTARKSTGGKAPRKQLK

H3K4ac ART Z QTARKSTGGKAPRKQLK

H3K9me1 ARTKQTAR X1 S TGGKAPRKQLK

H3K9me2 ARTKQTAR X2 S TGGKAPRKQLK

H3K9me3 ARTKQTAR X3 S TGGKAPRKQLK

H3K9me3S10p ARTKQTAR X3 Z2 TGGKAPRKQLK

H3K9ac ARTKQTAR Z S TGGKAPRKQLK

H3 (17–36) RKQLATKAAR K SAPATGGVK TAMRA at N-terminus

H3K27me1 RKQLATKAAR X1 SAPATGGVK

H3K27me2 RKQLATKAAR X2 SAPATGGVK

H3K27me3 RKQLATKAAR X3 SAPATGGVK

H3K27ac RKQLATKAAR Z SAPATGGVK

H4 (10–29) LGKGGAKRHR K VLRDNIQGI

H4K20me1 LGKGGAKRHR X1 VLRDNIQGI

H4K20me2 LGKGGAKRHR X2 VLRDNIQGI

H4K20me3 LGKGGAKRHR X3 VLRDNIQGI

H4K20ac LGKGGAKRHR Z VLRDNIQGI

X1: monomethylated Lysine; X2: dimethylated Lysine; X3: trimethylated Lysine; Z: acetylated Lysine; Z2: phosphorylated Serine.
doi:10.1371/journal.pone.0036967.t001
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Figure 2. In vitro histone-tail peptide and DNA binding assay. In vitro binding ratios of fluorescently labeled substrates over bound GFP
fusion proteins were determined. (A)–(D) In vitro histone-tail peptide binding assay with GFP-Cbx1. (A) Histone H3- and H4-tail binding specificities of
Cbx1. A final concentration of 0.15 mM TAMRA-labeled histone-tail peptide was added per well. Fluorescent signals of bound TAMRA-labeled histone-
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and simple method avoiding laborious and inaccurate protein

detection using conventional immunoblotting systems.

To address the question if such interaction analysis can be

performed in a multi-well format we analyzed the interaction of

single GFP-fusions with RFP-fusion proteins expressed in mam-

malian cells. More precisely, we determined quantitative binding

ratios between nuclear located proteins involved in DNA-

replication (PCNA) [17,18], DNA-methylation (Dnmt1) [22] as

well as in DNA-repair (Xrcc1) [23]. As described, we immobilized

GFP-fusions on the GFP-multiTrap and incubated them with cell

lysate containing RFP-fusion proteins. After binding, we removed

unbound material, measured the concentrations of RFP and GFP

and calculated the molar binding ratios. Firstly, we determined the

binding ratios of the green fluorescent PCNA-binding domain of

Dnmt1 (GFP-PBD) to RFP-PCNA and used Dnmt1DPBD as

a negative control. By measuring the fluorescent signal intensities

we detected that RFP-PCNA binds to GFP-PBD in a molar ratio

of 1.4260.31 but not to Dnmt1DPBD (Figure 3A).

For a direct comparison we eluted the bound fractions,

separated them by SDS-PAGE and visualized the proteins by

immunoblotting (Figure 3B). Both, GFP-PBD and RFP-PCNA are

detected in the input and bound fractions whereas RFP is not

visible in the bound fraction of GFP-PBD (Figure 3B).

In addition, we measured the amount of bound RFP-fusion to

GFP-PBD with varying the input amount of RFP-fusion. We

plotted the amount of bound RFP-fusion as a function of total

RFP-fusion and fitted the values using GraphPad Prism and

nonlinear regression (Figure 3C). Similar to the relative binding

ratios, GFP-PBD binds to RFP-PCNA but not to RFP.

These results are in accordance with previous findings that

Dnmt1 associates with the replication machinery by directly

binding to PCNA, a homotrimeric ring which serves as loading

platform for replication factors, and that this binding depends on

the PCNA-binding domain in the very N-terminus of Dnmt1

[17,18]. In addition by determining the quantitative binding ratio

between both partner proteins our approach provides a more

detailed insight in the binding events occurring at the central

loading platform of the DNA replication.

Secondly, we determined the molar binding ratio of GFP-Ligase

III to RFP-Xrcc1. Xrcc1 binds in a molar ratio of 0.6160.14 to

Ligase III but did not bind to other proteins such as GFP-PBD,

GFP-Dnmt1DPBD or GFP. Previous studies demonstrated that

DNA Ligase III was recruited to DNA repair sites via its BRCT

domain mediated interaction with Xrcc1 [19,20].

For the protein-protein binding assays, we calculated the Z-

factor using the molar binding ratios of RFP-PCNA to GFP-PBD

as positive state and RFP to GFP-PBD as negative state (Table 2).

The Z-factor of 0.56 indicated that the protein-protein binding

assay is robust and reproducible.

In summary, we demonstrate a new quantitative and reliable

high-throughput method to analyze protein-protein interactions

using GFP- and RFP-fusion proteins.

Enzyme-linked Immunosorbent Assay (ELISA)
Next we examined endogenous protein-protein interactions

using an ELISA assay. For this purpose, we precipitated GFP-

fusion proteins in the 96 well format on the GFP-multiTrap and

cross-linked bound fractions with formaldehyde (CH2O) and/or

treated the bound fractions with methanol (MeOH). Using specific

antibodies against PCNA, we determined the binding of endog-

enous PCNA to GFP fusions of Dnmt1, Dnmt1DPBD, PCNA,

Fen1, which is a flap endonuclease and an essential DNA

replication protein [24]. We could detect endogenous PCNA

binding to Dnmt1 but not to Dnmt1DPBD similar to the results

obtained with the protein-protein interaction assay using RFP-

PCNA (Figure 4A). In addition, we detected binding of

endogenous PCNA to Fen1 but also to PCNA itself. These results

fit well to former studies showing that Fen1 or maturation factor 1

associates with PCNA in a stoichiometric complex of three Fen1

molecules per PCNA trimer [25,26]. In addition to 100 described

interacting partners, it is known that PCNA also interacts with

itself and forms a trimeric ring, which is confirmed by our ELISA

assay by giving a signal for endogenous PCNA binding to GFP-

PCNA (Figure 4A).

Next, we determined the binding of Cbx1 to endogenous

histone H3. Similar to PCNA, we precipitated GFP-Cbx1 and

GFP and detected endogenous H3 via an H3-antibody coupled to

HRP. In accordance with the experiments using TAMRA labeled

histone 3 peptides, we observed an H3 ELISA signal for binding to

Cbx1 but not to GFP. Using an H3K9me3-specific antibody, we

could not detect an ELISA signal (data not shown), due to the fact

that the tight binding of Cbx1 (Figure 2) to H3K9me3 most likely

nonlinear regression. All input and bound fractions were quantified via a plate reader. (E) DNA binding specificities of the MBD domain of MeCP2 to
un- and fully methylated DNA in direct competition. Shown are means 6 SD from three independent experiments. (F) Different amounts of Atto550-
labeled unmethylated and Atto700-labeled fully methylated DNA in direct competition were added to purified MBD-YFP. Shown are means 6 SD
from three independent experiments. The amount of bound DNA peptide was plotted as a function of total DNA. The curve was fitted using
GraphPad Prism and nonlinear regression. All input and bound fractions were quantified via a plate reader.
doi:10.1371/journal.pone.0036967.g002

Table 2. Overview of relative binding ratios and Z-factor values.

Relative binding ratios of Substrate/GFP- or YFP-fusion

Histone-tail peptide binding DNA binding Protein-protein binding

Fusion protein GFP-Cbx1 MBD-YFP GFP-PBD

Substrate H3K9me3 H3K9un Fully methylated DNA Unmethylated DNA RFP-PCNA RFP

Average ratio 0,5715 0,0772 0,0912 0,0223 1,487 0,005

Standard deviation 0,0150 0,0236 0.0037 0.0019 0,2111 0,006

Z-factor 0,766 0.756 0.560

Based on the average relative binding ratios and the standard deviations we calculated the Z-factor.
doi:10.1371/journal.pone.0036967.t002

Versatile Toolbox for In vitro Studies

PLoS ONE | www.plosone.org 6 May 2012 | Volume 7 | Issue 5 | e36967



occludes the antibody epitope, as has been proposed for HP1

binding to H3K9me3. In this study, the histone H3 trimethyl-

lysine epitope is embedded in an aromatic cage blocking thereby

most likely the binding of any antibodies [27]. To further analyze

the bound fractions, we eluted GFP-Cbx1 and GFP, separated

them on an SDS-PAGE gel and visualized GFP and H3 by
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immunoblotting. Histone H3 was detectable in the input fractions

of both GFP and GFP-Cbx1 but as expected, only in the bound

fraction of GFP-Cbx1.

Comparative Analysis of Posttranslational Histone
Modifications
Histone posttranslational modifications play an important role

in the structural organization of chromatin and often correlate to

transcriptional activation or repression depending on their type

and location. Recently, it has been shown that nucleosomal

incorporation of histone variants can lead to alterations in

modification patterning and that such changes may complement

the properties brought by the variant itself [28].

In order to investigate the suitability of the GFP-multiTrap in

comparing such histone posttranslational modifications, we

isolated nucleosomes from HeLa cells expressing either GFP-

H2A or GFP-H2A.Z and precipitated them with the 96 well micro

plate. GFP levels were then recorded (data not shown) to ensure

equal loading of substrate per well. In addition, as a negative

control, the cytoplasmic supernatant fraction was also incubated

with the GFP-multiTrap. An ELISA approach was then used to

quantify differences in histone H3K4me2 levels between the two

different nucleosome compositions. Following cross-linking and

permeablization, bound nucleosomes were incubated with either

anti-H3, directly conjugated to HRP or anti-H3K4me2 (both

antibodies Abcam, UK). Histone H3K4me2 levels were then

normalized to the histone H3 signal. In accordance with published

data, H2A containing nucleosomes were depleted in H3K4me2

where as those containing H2A.Z showed a large enrichment for

this modification (Figure 5) [28].

Discussion

One challenge of the proteomic era is the effective integration of

proteomic, cell biological and biochemical data. Ideally, proteomic

data on tissue and cell cycle-specific expression of specific proteins

should be combined with subcellular localization and binding

dynamics of fluorescent proteins. Additionally, it is crucial to

determine cell biological and biochemical characteristics such as

interacting factors, enzymatic activity and substrate binding

specificities. The integration of all these different data has, in

part, been impeded by the simple fact that different protein tags
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are used for different applications. Here, we present a new

versatile, high-throughput method to determine in vitro binding

specificities and to detect endogenous interacting factors of GFP-

fusion proteins. We use 96-well micro plates with immobilized

GFP-Trap (GFP-multiTrap) for fast and efficient purification of

GFP-fusion proteins. We demonstrate the efficiency and purity of

the GFP immunoprecipitation (Figure 1), a prerequisite to obtain

reliable biochemical data on e.g. binding specificities. Moreover,

we measured histone-tail binding, DNA and protein-protein

binding ratios underlying the versatility of our approach (Figure 2

and 3 and Table 2). The suitability of the demonstrated assays for

high-throughput biochemical and functional studies was assessed

by calculating the Z-factors (Table 2). Therefore, our assay is

suitable to examine an initial high-throughput screening for

potential binding partners. Moreover, the assay can be used for

compound screening. Additionally, our method allows for de-

tection of endogenous interaction factors based on an ELISA assay

(Figure 4 and 5).

In contrast to other high-throughput techniques like conven-

tional microarrays, it does not require time-consuming recombi-

nant protein expression and purification but allows for the direct

biochemical analyses of GFP-fusion proteins expressed in mam-

malian cells. The versatile GFP-multiTrap combined with the

widespread use of fluorescent fusion proteins now enables a fast

and direct quantitative correlation of microscopic data concerning

the subcellular localization and mobility of fluorescent fusion

proteins with their enzymatic activity, interacting factors, and

DNA binding properties combining cell biology and biochemistry

with mutual benefits.

Materials and Methods

Expression Constructs, Cell Culture and Transfection
Mammalian expression constructs encoding GFP-Dnmt1, GFP-

Dnmt1DPBD, GFP-PBD, GFP-PCNA, RFP-PCNA, GFP-Ligase

III, mRFP, GFP, MBD-YFP, GFP-Fen1 and RFP-Xrcc1 were

described previously [7,20,29–37]. Note that all constructs encode

fusion proteins of GFP, RFP or yellow fluorescent protein (YFP).

The Cbx1 expression construct was derived by PCR from mouse

cDNA, cloned into pEGFP-C1 (Clontech, USA) and verified by

DNA sequencing. Throughout this study enhanced GFP (eGFP)

constructs were used and for simplicity referred to as GFP-fusions.

HEK293T cells [30] and HeLa Kyoto [29] were cultured in

DMEM supplemented with either 50 mg/ml gentamicin

(HEK293T) or 1% penicillin/streptomycin (HeLa Kyoto) and

10% fetal calf serum. For expression of GFP/RFP/YFP fusion

proteins, HEK293T cells were transfected with the corresponding

expression constructs using polyethylenimine (Sigma, USA). 2.

HeLa Kyoto cells were transfected using FuGene HD (Roche,

Germany) according to the manufacturer’s instructions. The

plasmid coding for GFP-H2A (H2A type 1, NP_003501.1) was

kindly provided by Emily Bernstein (Mount Sinai Hospital) and

the plasmid coding for GFP-Z-1 was a gift from Sachihiro

Matsunaga (University of Tokyo). Stable cell lines were selected

with 600 mg/ml G418 (PAA, Austria) and individual cell clones

sorted by using a FACSAria machine (Becton Dickinson,

Germany).

Histone-tail Peptides and DNA Substrate Preparation
Fluorescently labeled DNA substrates were prepared by mixing

two HPLC-purified DNA oligonucleotides (IBA GmbH, Germany

Table 1) in equimolar amounts, denaturation for 30 sec at 92uC

and slow cool-down to 25uC allowing hybridization. Histone-tail

peptides were purchased as TAMRA conjugates and/or biotiny-

lated (PSL, Germany) and are listed in Table 1.

Preparation of Protein Extracts
HEK293T cells were cultured and transfected as described [38].

For extract preparation 1 mg/ml DNaseI, 1 mM PMSF and

Protease Inhibitor cocktail (Roche, Germany) were included in the

lysis buffer (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 2 mM

MgCl2, 0.5% NP40) or nuclear extract buffer (10 mM HEPES

pH 7.9, 10 mM KCl, 1.5 mMMgCl2, 0.34 M Sucrose, 10%Glyc-

erol, 1 mM b-mercapto-ethanol). Cells were lysed for 30 minutes

on ice followed by a centrifugation step (15̀/12000 rpm/4uC).

Extracts from transfected 10 cm plates were diluted to 500 mL

with immunoprecipitation buffer (IP buffer; 20 mM Tris-HCl

pH 7.5, 150 mM NaCl, 0.5 mM EDTA) or dilution buffer

(20 mM HEPES pH 7.9, 150 mM KCl). An aliquot of 10 mL

(2%) were added to SDS-containing sample buffer (referred to as

Input (I)).

Purification and Elution of GFP/YFP/RFP- Fusions
For purification, 100 mL or 50 mL precleared cellular lysate

for full-area plates or half-area plates, respectively, was added

per well and incubated for 2 hours at 4uC on a GFP-multiTrap

plate by continuous shaking. After removing the supernatant,

wells were washed twice with 100 mL of washing buffer (WB;

20 mM Tris-HCl pH 7.5, 100–300 mM NaCl, 0.5 mM EDTA)

and 100 mL of IP or dilution buffer was added for measure-

ment. The amounts of bound protein were determined by

fluorescence intensity measurements with a Tecan Infinite

M1000 plate reader (Tecan, Austria). Wavelengths for excitation

and emission of GFP are 490610 nm and 511610 nm, for

RFP are 58665 nm and 608610 nm and for YFP 52565 nm

and 53865 nm, respectively. The concentration of proteins was

calculated using calibration curves that were determined by

measuring the fluorescence signal of known concentrations of

purified GFP, RFP and YFP. Notably, factors interfering with
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Figure 5. Comparative analysis of posttranslational histone
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fluorescence intensity measurements such as absorption of

excitation light by cell lysates, auto fluorescence of the samples

and/or scattering of the excitation/emission light by cell debris

are negligible (Figure S1). Bound proteins were eluted with

300 mM Glycin pH 2.5 and subsequently buffered with 1 M

Tris pH 7.5. Elution fractions were added to SDS-containing

sample buffer (referred to as Bound (B)). Bound proteins were

visualized by immunoblotting using the anti-GFP mouse mono-

clonal antibody (Roche, Germany).

In vitro Histone-tail Peptide Binding Assay
The in vitro histone-tail binding assay was performed as

described previously [10]. After one-step purification of GFP

fusion proteins the wells were blocked with 100 mL 3% milk

solved in TBS-T (0.075% Tween) for 30 minutes at 4uC on

a plate vortex, shaking gently. After blocking, the wells were

equilibrated in 50 mL IP buffer supplemented with 0.05%

Tween. TAMRA-labeled histone-tail peptides were added either

to a final concentration of 0.15 mM or of the indicated

concentrations and the binding reaction was performed at RT

for 20 min on a plate vortex, shaking gently. After removal of

unbound substrate the amounts of protein and histone-tail

peptide were determined by fluorescence intensity measurements.

The concentrations of bound TAMRA-labeled histone-tail

peptides were calculated using calibration curves that were

determined by measuring a serial dilution of TAMRA-labeled

peptides with known concentrations.

Binding ratios were calculated dividing the concentration of

bound histone-tail peptide by the concentration of GFP fusion.

Wavelengths for excitation and emission of TAMRA were

56065 nm and 58665 nm, respectively.

In vitro DNA Binding Assay
In vitro DNA binding assay was performed as described

previously [9,10] with the following modifications. GFP/YFP

fusions were purified from HEK293T extracts using the 96-well

GFP-binder plates and incubated with two differentially labeled

DNA substrates at a final concentration of either 100 nM or of the

indicated concentration for 60 min at RT in IP buffer supple-

mented with 2 mM DTT and 100 ng/mL BSA. After removal of

unbound substrate the amounts of protein and DNA were

determined by fluorescence intensity measurements. The concen-

tration of bound ATTO-labeled DNA substrates was calculated

using calibration curves that were determined by measuring a serial

dilution of DNA-coupled fluorophores with known concentrations.

Binding ratios were calculated dividing the concentration of bound

DNA substrate by the concentration of GFP/YFP fusion,

corrected by values from a control experiment using DNA

substrates of the same sequence but with different fluorescent

label, and normalized by the total amount of bound DNA.

Wavelengths for excitation and emission of ATTO550 were

54565 nm and 57565 nm and for ATTO700 700610 nm and

720610, respectively.

Protein-Protein Interaction
GFP fusions were purified from HEK293T extracts using the

96-well GFP multiTrap plates, blocked with 3% milk and

incubated with cellular extracts comprising the RFP fusions with

the indicated concentrations for 30 min at RT. After removal of

unbound RFP fusion (washing buffer) the amounts of proteins

were determined by fluorescence intensity measurements. Binding

ratios were calculated dividing the concentration of bound RFP

fusion by the concentration of GFP fusion. Wavelengths for

excitation and emission of RFP were 58665 nm and 608610 nm,

respectively. Bound proteins were eluted and separated by SDS-

PAGE and visualized by immunoblotting using the anti-GFP rat

monoclonal antibody; 3H9, and the anti-red rat monoclonal

antibody, 5F8 (both ChromoTek, Germany).

Enzyme-linked Immunosorbent Assay (ELISA)
GFP fusions were purified (from HEK293T extracts) using the

96-well GFP-multiTrap plates and were washed twice with

dilution buffer (for nucleosome experiments salt concentration

was adjusted to 300 mM). After washing bound fractions were

either cross-linked with 2% formaldehyde and/or additionally

permeabilized with 100% MeOH. After blocking with 3% milk

solved in TBS-T (0.075% Tween) the wells were incubated with

primary antibody (monoclonal rat anti-H3-HRP (Abcam, UK),

polyclonal rabbit anti-H3K4me2 (Abcam, UK) or monoclonal rat

anti-PCNA, 16D10 (ChromoTek, Germany) overnight at 4uC on

a plate vortex, shaking gently. The wells were washed three times

with 200 mL TBS-T and horseradish peroxidase-conjugated

secondary antibody (Sigma, USA) was incubated for 1 h at RT

for the detection of PCNA or H3K4me2. The wells were washed

again as described above. For PCNA experiments detection was

carried out by incubating each well with 100 mL TMB (3,39,5,59-

tetramethylbenzidine) for 10 minutes at RT. The reactions were

stopped with the addition of 100 mL 1 M H2SO4. For nucleosome

experiments, detection was carried out using OPD (Sigma, USA)

according to the manufacturers instructions. Bound histone H3,

PCNA or H3K4me2 levels were quantified by determination of

the absorbance at 450 nm using a Tecan Infinite M1000 plate

reader (Tecan, Austria).

Preparation of Mononucleosomes
261072106107HeLa cells, expressing eitherGFP-H2A orGFP-

H2A.Z, were incubated in PBS, 0.3% Triton X-100 and Protease

InhibitorCocktail (Roche,Germany) for 10 min at 4uC.Nuclei were

pelleted and supernatant (SN) transferred and retained. The pellet

was washed once in PBS, resuspended in EX100 buffer (10 mM

Hepes pH 7.6, 100 mM NaCl, 1.5 mM MgCl2, 0.5 mM EGTA,

10% (v/v) glycerol, 10 mM b-glycerol phosphate 1 mM DTT,

Protease Inhibitor Cocktail (Roche, Germany)) and CaCl2 concen-

tration adjusted to 2 mM. Resuspended nuclei were digested with

1.5 U MNase (Sigma, USA) for 20 min at 26uC. The reaction was

stopped by addition of EGTA to a final concentration of 10 mM

followed by centrifugation for 10 min at 1000 rcf, 4uC. Mono-

nucleosome containing supernatant (MN) was retained.

Calculation of the Z-factors
To assess the suitability of the assay for high-throughput

biochemical and functional studies, the Z-factor was calculated

using the equation Z~1{
3| sp zsnð Þ

Dmp {mn D
[39]. In this equation, s is

the standard deviation of the positive (p) and the negative (n)

control; m is the mean value for the molar binding ratio (for

positive (mp) and negative (mn) controls). The values of three

independent experiments were used to calculate the Z-factor and

all values are listed in Table 2.

Supporting Information

Figure S1 Factors interfering the measured fluores-

cence intensities. (A) The concentrations of GFP and RFP

expressed in HEK293T cells were measured in serial dilutions of

crude cell extracts. Shown are means 6 SD from two independent

experiments. Fluorescence intensities were measured via a plate

reader and the GFP and RFP concentrations were determined as

described in the Material and Methods part. (B) Background GFP
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and RFP signals in cell lysates of untransfected HEK293T cells.

The fluorescence intensities (FI) were measured via a plate reader

and the concentrations were determined as described in the

Material and Methods part.
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Figure S1: Factors interfering the measured fluorescence intensities. (A) 
The concentrations of GFP and RFP expressed in HEK293T cells were 
measured in serial dilutions of crude cell extracts. Shown are means ± SD 
from two independent experiments. Fluorescence intensities were measured 
via a plate reader and the GFP and RFP concentrations were determined as 
described in the Material and Methods part. (B) Background GFP and RFP 
signals in cell lysates of untransfected HEK293T cells. The fluorescence 
intensities (FI) were measured via a plate reader and the concentrations were 
determined as described in the Material and Methods part.  
 
 



Results 

69 

  



Results 

70 

 



Results 

71 

 

2.3 Cooperative DNA and histone binding by Uhrf2 links the two major 

repressive epigenetic pathways 

 



Results 

72 



Cooperative DNA and Histone Binding by Uhrf2 Links the
Two Major Repressive Epigenetic Pathways

Garwin Pichler, Patricia Wolf, Christine S. Schmidt, Daniela Meilinger, Katrin Schneider,
Carina Frauer, Karin Fellinger, Andrea Rottach, and Heinrich Leonhardt*

Ludwig Maximilians University Munich, Department of Biology II and Center for Integrated Protein Science Munich

(CIPSM), Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany

ABSTRACT
Gene expression is regulated by DNA as well as histone modifications but the crosstalk and mechanistic link between these epigenetic signals

are still poorly understood. Here we investigate the multi-domain protein Uhrf2 that is similar to Uhrf1, an essential cofactor of maintenance

DNA methylation. Binding assays demonstrate a cooperative interplay of Uhrf2 domains that induces preference for hemimethylated DNA,

the substrate of maintenance methylation, and enhances binding to H3K9me3 heterochromatin marks. FRAP analyses revealed that

localization and binding dynamics of Uhrf2 in vivo require an intact tandem Tudor domain and depend on H3K9 trimethylation but not on

DNA methylation. Besides the cooperative DNA and histone binding that is characteristic for Uhrf2, we also found an opposite expression

pattern of uhrf1 and uhrf2 during differentiation. While uhrf1 is mainly expressed in pluripotent stem cells, uhrf2 is upregulated during

differentiation and highly expressed in differentiated mouse tissues. Ectopic expression of Uhrf2 in uhrf1!/! embryonic stem cells did

not restore DNA methylation at major satellites indicating functional differences. We propose that the cooperative interplay of Uhrf2

domains may contribute to a tighter epigenetic control of gene expression in differentiated cells. J. Cell. Biochem. 112: 2585–2593,

2011. ! 2011 Wiley-Liss, Inc.

KEY WORDS: UHRF1; UHRF2; DNA METHYLATION; HISTONE MODIFICATIONS; EPIGENETICS

D NA methylation and histone modifications are major

epigenetic marks involved in the regulation of gene

expression, inheritance of chromatin states, genome stability, and

cellular differentiation [Bird, 2002; Kouzarides, 2007; Reik, 2007].

Misregulation of epigenetic pathways, like erroneous DNA

methylation, may lead to cancer and other diseases [Jones and

Baylin, 2007]. Open questions concern the crosstalk andmechanistic

link between different epigenetic signals.

Genome-scale DNA methylation studies revealed a connection

between DNA methylation and histone modifications. Specifically,

DNA methylation correlates with the absence of H3K4 methylation

and presence of H3K9 methylation [Meissner et al., 2008]. This

correlation may in part be caused by DNA methyltransferases

specifically recognizing histone modifications. For instance, the de

novo DNA methyltransferase Dnmt3a and its cofactor Dnmt3L

specifically recognize unmethylated H3K4 mediated by the ATRX-

Dnmt3-Dnmt3L (ADD) domain [Ooi et al., 2007; Otani et al., 2009].

Dnmt1, which is involved in maintenance methylation during DNA

replication and DNA repair [Leonhardt et al., 1992; Mortusewicz

et al., 2005], specifically methylates hemimethylated DNA [Bestor

and Ingram, 1983; Pradhan et al., 1997] and associates with

constitutive heterochromatin via its targeting sequence (TS) domain

[Easwaran et al., 2004].

Recently, Uhrf1 (also known as Np95 or ICBP90) has been shown

to link DNA and histone modifications and has emerged as an

essential cofactor for the maintenance of genomic DNA methyla-

tion. Genetic ablation of uhrf1 leads to remarkable genomic

hypomethylation, a phenotype similar to dnmt1!/! embryonic stem

cells (ESCs) [Bostick et al., 2007; Sharif et al., 2007]. Uhrf1 binds

hemimethylated DNA via a SET and RING associated domain (SRA)

domain and targets Dnmt1 to its substrate of maintenance DNA

methylation [Bostick et al., 2007; Sharif et al., 2007; Arita et al.,

2008; Avvakumov et al., 2008; Hashimoto et al., 2008; Qian et al.,

2008; Rottach et al., 2010]. This targeting activity of Uhrf1 is based

on specific binding to the heterochromatin mark H3K9me3 via a

tandem Tudor domain (TTD) [Karagianni et al., 2008; Rottach et al.,
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2010]. In addition, Uhrf1 interacts with Dnmt3a and Dnmt3b and

with histone modifying enzymes like HDAC1, G9a, and Tip60 [Unoki

et al., 2004; Achour et al., 2009; Kim et al., 2009; Meilinger et al.,

2009]. Finally, Uhrf1 displays E3 ubiquitin ligase activity for histone

H3 [Citterio et al., 2004] and is involved in large scale reorganization

of chromocenters [Papait et al., 2008].

Interestingly, a second member of the Uhrf family, Uhrf2, harbors

similar domains [Bronner et al., 2007]. Until now, the only

known function of Uhrf2 is a role in intranuclear degradation of

polyglutamine aggregates [Iwata et al., 2009]. In this study, we

systematically investigated the function and interplay of distinct

Uhrf2 domains in DNA and histone tail substrate recognition and

report first hints on cell-type specific functions of Uhrf1 and Uhrf2.

MATERIALS AND METHODS

EXPRESSION CONSTRUCTS

Expression constructs for GFP, RFP-PCNA, Uhrf1-GFP, and GFP

constructs of Dnmt1 were described previously [Sporbert et al.,

2005; Fellinger et al., 2009; Meilinger et al., 2009]. All Uhrf2

expression constructs were derived by PCR from mouse uhrf2-myc

cDNA (MR210744, ORIGENE). To obtain GFP fusion constructs, the

uhrf1 cDNA [Rottach et al., 2010] was replaced by uhrf2 encoding

PCR fragments in the pCAG-uhrf1-GFP vector. The deletion and

point mutant expression constructs were derived from the

corresponding wild-type constructs by overlap extension PCR

[Ho et al., 1989] and PCR-based mutagenesis. The following start

and end amino acids were chosen: Uhrf2 tandem Tudor domain,

amino acids 118–312; Uhrf2 PHD domain, amino acids 325–395;

Uhrf2 tandem Tudor–PHD domain, amino acids 118–395; Uhrf1

tandem Tudor–PHD domain, amino acids 121–370. The linker

exchange constructs were derived by PCR using overlapping primers

that contained the partial linker sequence. Amino acid sequences of

the linkers: Uhrf1: KERRPLIASPSQPPA; Uhrf2: GAHPISFADGKF.

All constructs were verified by DNA sequencing. Throughout this

study enhanced GFP constructs were used and for simplicity referred

to as GFP fusions.

CELL CULTURE, TRANSFECTION, CELL SORTING, AND

DIFFERENTIATION

HEK293T cells, MEFs, and ESCs were cultured and transfected as

described [Schermelleh et al., 2007; Rottach et al., 2010] with the

exception that Lipofectamin (Invitrogen) was used for transfection

of MEFs. E14 uhrf1!/! ESCs were transfected with Uhrf1-GFP and

Uhrf2-GFP expression constructs using FuGENE HD (Roche)

according to the manufacturer’s instructions. ESCs were sorted

for GFP positive cells 48 h after transfection with a FACS Aria II

instrument (Becton Dikinson). ESC strains wt E14, wt J1, and E14

uhrf1!/! were cultured and differentiated to embryoid bodies as

described [Szwagierczak et al., 2010]. The ESC strain wt JM8A3.N1

(EUCOMM, Germany) was cultured in Knockout D-MEM (Gibco-

BRL, Grand-Island, NY) medium containing 10% fetal bovine serum

(PAA Laboratories GmbH, Austria), 0.1mM b-mercaptoethanol

(Gibco-BRL), 2mM L-glutamine, 100U/ml penicillin, 100mg/ml

streptomycin (PAA Laboratories GmbH). The medium was supple-

mented with 1,000U/ml recombinant mouse LIF (Millipore,

Temecula, CA).

RNA ISOLATION, CDNA SYNTHESIS, AND QUANTITATIVE

REAL-TIME PCR

RNA isolation and cDNA synthesis were performed as described

[Szwagierczak et al., 2010]. Equal amounts of cDNA were used for

Real-time PCR with TaqMan Gene Expression Master Mix (Applied

Biosystems) on the 7500 Fast Real-time PCR System (Applied

Biosystems) according to the manufacturer’s instructions. The

following TaqMan Gene expression assays were used: Gapdh (Assay

ID: Mm99999915_g1), uhrf1 (Assay ID: Mm00477865_m1) and

uhrf2 (Assay ID: Mm00520043_m1). Gene expression levels were

normalized to Gapdh and calculated using the comparative CT
Method (DDCT Method).

IN VITRO DNA BINDING AND HISTONE-TAIL PEPTIDE

BINDING ASSAY

The in vitro binding assays were performed as described previously

[Frauer and Leonhardt, 2009; Rottach et al., 2010]. NoCpG DNA

substrates were produced in a primer extension reaction [Frauer and

Leonhardt, 2009] others by hybridization of two DNA oligos

(Supplementary Fig. S7B–D). Histone-tail peptides were purchased

as TAMRA conjugates (PSL, Germany; Supplementary Fig. S7A).

Peptides were added in a molar ratio 1.5:1 (peptide/GFP fusion) and

the binding reaction was performed at RT for 15min with constant

mixing. For combined assays, samples were additionally incubated

with either H3K9me3 or H3K9ac histone-tail peptides in a molar

ratio 1.5:1 (peptide/GFP fusion) or increasing amount of DNA

substrate as indicated. The binding reaction was performed at RT for

60min with constant mixing.

IMMUNOFLOURESCENCE STAINING AND ANTIBODIES

For immunostaining, MEF cells and ESCs were grown on cover slips

and transiently transfected with Uhrf2-GFP (MEF cells), or co-

transfected with Uhrf2-GFP and RFP-PCNA (ESCs). Cells were fixed

with 2.0% or 3.7% formaldehyde in PBS and permeabilized in PBS

containing 0.2% Triton X-100. The post-translational histone

modification H3K9me3 was detected via a rabbit primary antibody

(Active Motif) and a secondary anti-rabbit antibody conjugated to

Alexa Fluor 594 (Molecular Probes, Eugene, OR). The antibodies

were diluted 1:1,000 or 1:500, respectively, in PBS containing

0.02% Tween-20 and 2% BSA. GFP-Binder (ChromoTek, Germany)

was used to boost GFP signals and was labeled with Alexa Fluor 488.

Cells were counterstained with DAPI and mounted in Vectashield

(Vector Laboratories, Burlingame, CA). Images of the cells were

obtained using a TCS SP5 AOBS confocal laser scanning microscope

(Leica, Wetzlar, Germany) with a 63x/1.4 NA Plan-Apochromat oil

immersion objective. GFP, Alexa Fluor 488, RFP, and Alexa Fluor

594 were excited with a 488-nm argon laser and a 561-nm diode

laser, respectively. Image series were recorded with a frame size of

512# 512 pixels, a pixel size of 100 nm and with a detection pinhole

size of 1 Airy Unit.
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LIVE CELL MICROSCOPY AND FLUORESCENCE RECOVERY AFTER

PHOTOBLEACHING (FRAP) ANALYSIS

Live cell imaging and FRAP analyses were performed as described

[Schermelleh et al., 2007] with the exception that imported images

were intensity normalized, converted to 8-bit and Gauss-filtered

(2 pixel radius). Data sets showing lateral movement were corrected

by image registration using the StackReg plug-in of ImageJ

[Abramoff et al., 2004] starting with a frame when approximately

half recovery was reached. Within the first 30 s after bleaching,

images were taken every 150ms and then in intervals of 1 s.

DNA METHYLATION ANALYSIS

Genomic DNA was isolated with the QIAmp DNA Mini Kit (Qiagen)

and 1.5mg were bisulfite converted using the EZ DNA Methylation-

Gold Kit (Zymo research) according to the manufacturer’s

instructions. Primer sequences for major satellites were AAAAT-

GAGAAACATCCACTTG (forward primer) and CCATGATTTT-

CAGTTTTCTT (reverse primer). For amplification we used Qiagen

Hot Start Polymerase in 1# Qiagen Hot Start Polymerase buffer

supplemented with 0.2mM dNTPs, 0.2mM forward primer, 0.2mM

reverse primer, 1.3mM betaine (Sigma) and 60mM tetramethy-

lammonium-chloride (TMAC, Sigma). Major satellites were ampli-

fied in a single amplification and pyrosequencing reactions were

carried out by Varionostic GmbH (Ulm, Germany).

STATISTICAL ANALYSIS

Results were expressed as means$ SD or means$ SEM. The

difference between two mean values was analyzed by Student’s

t-test and was considered as statistically significant in case of

P< 0.05 (%) and highly significant for P< 0.001 (%%).

RESULTS

OPPOSITE EXPRESSION PATTERN OF UHRF1 AND UHRF2 DURING

DIFFERENTIATION

Recently, Uhrf1 has emerged as an essential factor for the

maintenance of DNA methylation. Sequence analyses revealed

that Uhrf2 harbors five recognizable domains similar to Uhrf1

(Fig. 1A), but its role in the regulation of DNA methylation is still

unclear. We compared the expression pattern of uhrf1 and uhrf2 in

ESCs and somatic cells, during differentiation and in differentiated

mouse tissues (Fig. 1B–D and Supplementary Fig. S1). Interestingly,

both genes show opposite expression patterns; while uhrf1 is

expressed in ESCs and down regulated during differentiation, which

is consistent with previous reports [Muto et al., 1995; Fujimori et al.,

1998; Hopfner et al., 2000], uhrf2 is upregulated and highly

expressed in differentiated mouse tissues. The switch in the

expression pattern argues against a functional redundancy of

both genes and is consistent with the drastic loss of DNA

methylation in uhrf1!/! ESCs despite the presence of intact

uhrf2 alleles. Therefore, the opposite expression pattern of both

genes suggests different functional roles of uhrf1 and uhrf2 in

development.

Fig. 1. Opposite expression pattern of uhrf1 and uhrf2 during differentia-

tion. A: Schematic outline of the multi-domain architecture of Uhrf1 in

comparison to Uhrf2. An N-terminal ubiquitin-like domain (Ubl) is followed

by a tandem Tudor domain (TTD), a plant homeodomain (PHD), a SET and RING

associated (SRA) domain and a C-terminal really interesting new gene (RING)

domain. Numbers indicate primary sequence similarities of single domains

determined by BlastP search [Altschul, 1991]. Expression analysis of uhrf1 and

uhrf2 by Real-time PCR in ESCs and somatic cells (B), during differentiation of

wt J1 ESCs (C) and in various adult mouse tissues in comparison to the

expression data in ESCs (D). Expression levels are relative to uhrf1 in wtJM8A

(B), day 0 of differentiation (C) and to kidney (D) (uhrf1 set to 1). Shown are

means$ SD of at least two independent experiments.
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COOPERATIVE BINDING OF REPRESSIVE EPIGENETIC MARKS

BY UHRF2

To investigate DNA and histone-tail binding preferences of Uhrf2 in

vitro, we used a versatile binding assay developed for GFP fusion

proteins [Rothbauer et al., 2008; Frauer and Leonhardt, 2009;

Rottach et al., 2010]. Similar to Uhrf1, histone-tail peptide binding

assays revealed that Uhrf2 preferentially binds to H3(1–20) and

H3K9me3 peptides (Fig. 2A). This binding activity of Uhrf2 is

mediated by the TTD but not the PHD domain (Fig. 2B). Consistently,

acetylation of H3K9, underrepresented in heterochromatin,

Fig. 2. Cooperative binding of repressive epigenetic marks by Uhrf2. In vitro binding ratios of fluorescently labeled substrate over bound GFP fusion proteins were determined.

A: Histone H3- and H4-tail binding specificities of Uhrf2. Shown are means$ SD of biological duplicates. B: Histone H3 tail binding specificity of Uhrf2, its tandem Tudor

domain (TTD), its PHD domain and its TTD mutant (Y214A Y217A). Shown are means$ SEM of at least three independent experiments. C: DNA binding properties of Uhrf1,

Uhrf2 and of single (SRA, TTD) and combined Uhrf2 domains (TTD–PHD–SRA). Shown are means$ SEM of three independent experiments. D: DNA binding properties of Uhrf1,

Uhrf2 and Uhrf2 Y214A Y217A in combination with histone-tail peptide binding. Shown are means$ SD of three independent experiments (Uhrf1, Uhrf2) and of two

independent experiments (Uhrf2 Y214A Y217A). Values were normalized to the binding ratio of each GFP fusion for unmethylated DNA without histone-tail peptide. Statistical

significance of differences between the binding ratios with un- and hemimethylated DNA is indicated; %P< 0.05. Eþ F: H3K9me3 peptide binding by Uhrf1, Uhrf2, and

Uhrf1DSRA with increasing concentrations of DNA substrate containing either one central hemimethylated (E) or noCpG site (F). Shown are means$ SD of biological

duplicates. Values were normalized to the binding ratio of Uhrf1DSRA without DNA.
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prevented the binding of Uhrf2 and its TTD. The binding of Uhrf1 to

H3K9me3 is mediated by an aromatic cage in the TTD [Rottach et al.,

2010]. Site-directed mutagenesis of Uhrf2 changing the two

conserved tyrosine residues to alanine (Y214A Y217A) (Supple-

mentary Fig. S2) abolished specific peptide binding (Fig. 2B) and

supports a function of the aromatic cage in H3K9me3 recognition.

Whereas Uhrf1 preferentially binds to hemimethylated DNA,

Uhrf2 failed to show a preference for hemi-over unmethylated DNA

(Fig. 2C). These differences in DNA binding preferences between

Uhrf1 and Uhrf2 were confirmed by electrophoretic mobility shifts

(Supplementary Fig. S3). To further investigate the functional

interplay between DNA and histone binding we performed

combined binding assays (Fig. 2D). Interestingly, binding to

heterochromatin-specific H3K9me3 peptides induced a significant

preference of Uhrf2 for hemi-over unmethylated DNA. Uhrf1

already on its own showed preference for hemimethylated DNA that

was further enhanced by binding to H3K9me3 peptides. To test the

specificity of this cooperativity we mutated the aromatic cage in

Uhrf2 that is necessary for H3K9me3 histone-tail peptide binding.

The mutated Uhrf2 (Y214A Y217A) showed comparable DNA

binding activity as the wild-type Uhrf2 but addition of heterochro-

matin-specific H3K9me3 peptides did not induce preference for

hemi-over unmethylated DNA (Fig. 2D).

In the reverse experiment, addition of DNA enhanced binding of

Uhrf1 and Uhrf2 to the H3K9me3 peptide (Fig. 2E,F). This was not

observed for the DNA binding mutant of Uhrf1 (Uhrf1DSRA) which

showed constant peptide binding with increasing DNA concentra-

tions. These findings suggest that single binding events of distinct

Uhrf2 domains lead to multivalent engagement of different

repressive epigenetic marks. In fact, multivalent engagement of

DNA and histone tail peptides via the SRA domain and the TTD,

respectively, results in affinity enhancement and additional

specificity for hemimethylated DNA, the substrate of maintenance

methylation.

CELLULAR LOCALIZATION AND DYNAMICS OF UHRF2 DEPEND ON

HISTONE H3K9 METHYLATION

To monitor the subcellular localization of Uhrf2, we expressed

Uhrf2-GFP constructs in cells with different genetic backgrounds. In

wild type (wt) ESCs, Uhrf2 is localized in the nucleus and is enriched

at pericentric heterochromatin (PH) (Fig. 3A,B and Supplementary

Fig. S4A–C). To investigate which epigenetic marks at PH are

recognized by Uhrf2 we determined the localization of Uhrf2 in

genetically modified ESCs either lacking all three major DNA

methyltransferases Dnmt1, Dnmt3a, and Dnmt3b (TKO) [Tsumura

et al., 2006] or ESCs lacking the two major H3K9 methyltransferases

Suv39H1/H2 (Suv39h dn) [Lehnertz et al., 2003]. TKO cells are

practically devoid of genomic DNA methylation and Suv39h dn

ESCs show substantially reduced H3K9me3 levels. We found Uhrf2

localized at PH in TKO but not in Suv39h dn ESCs, indicating that

localization of Uhrf2 is dependent on H3K9 but not on DNA

methylation (Fig. 3A). Consistently, immunostaining of wt mouse

embryonic fibroblasts (MEFs) showed co-localization of Uhrf2 and

H3K9me3 marks at PH, which was not observed in Suv39h dnMEFs

[Peters et al., 2001] (Fig. 3B). Also, mutations in the TTD (Uhrf2

Y214A Y217A) that abolished binding to H3K9me3 peptides in vitro

disrupted enrichment at PH in wt MEFs (Fig. 3B). The dependence of

Uhrf2 localization on H3K9me3 was also confirmed by quantitative

correlation analysis (Supplementary Fig. S4D,E).

To investigate the effect of H3K9me3 on the dynamics of Uhrf2 in

living cells we performed quantitative fluorescence recovery after

photobleaching (FRAP) analyses in wt and Suv39h dn MEFs. We

chose to bleach half nuclei to include a representative number of

Fig. 3. Cellular localization and dynamics of Uhrf2 depend on histone H3K9

methylation. A: Confocal mid sections of fixed wt J1, TKO and Suv39h dn ESCs

transiently expressing Uhrf2-GFP and RFP-PCNA and counterstained with

DAPI, which preferentially highlights PH. Merged images are displayed on the

right side (GFP: green; DAPI: red). Scale bar 5mm. B: Confocal mid sections of

fixed wt MEFs and Suv39h dnMEFs transiently expressing Uhrf2-GFP or Uhrf2

Y214A Y217A-GFP were immunostained for H3K9me3 and counterstained

with DAPI. Merged images are displayed on the right side (GFP: green; DAPI:

red). Scale bar 5mm. C: Dynamics of Uhrf2-GFP and Uhrf2 Y214A Y217A-GFP

in living MEFs determined by half nucleus FRAP analysis. GFP is shown as

reference. Curves represent means$ SEM from at least 8 nuclei.
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interactions from different nuclear domains and structures in

the bleached area [Rottach et al., 2010]. Recovery of Uhrf2-

GFP fluorescence in Suv39h dn MEFs (half-time t1/2¼ 5.9$ 0.6 s)

and of the TTD mutant in wt MEFs (t1/2¼ 3.2$ 0.4 s) was

considerably faster than the recovery of Uhrf2-GFP in wt MEFs

(t1/2¼ 11.8$ 0.6 s) pointing to a crucial role of H3K9me3 in Uhrf2

dynamics in living cells (Fig. 3C). Taken together, these results

clearly demonstrate that the interaction of Uhrf2 with the

heterochromatin mark H3K9me3 is required for the localization

at PH and affects binding dynamics in living cells.

COOPERATIVE BINDING OF THE COMBINED UHRF2 TTD–PHD

DOMAIN

Recently, several studies showed multivalent binding to histone-tail

peptides [Ruthenburg et al., 2007]. In case of Uhrf1 and Uhrf2, the

TTD is followed by a second histone-tail binding domain, a PHD

domain (Fig. 1A). As the isolated PHD domains of Uhrf1 and Uhrf2

did not show binding to H3 histone-tail peptides (Fig. 2B) [Rottach

et al., 2010], we tested whether the combination of the PHD and the

TTD results in cooperative histone-tail binding. Surprisingly, the

combined TTD–PHD domain of Uhrf2 displayed a fourfold increased

binding to H3K9me2/me3 in comparison to the single TTD, which

was not observed for the corresponding construct of Uhrf1

(Figs. 2B and 4A).

Sequence alignments of the combined domains revealed two

striking differences between Uhrf1 and Uhrf2. Firstly, Uhrf2 harbors

an additional stretch of 33 highly conserved amino acids present in

the TTD (Supplementary Fig. S5A). Secondly, the linker region

between the TTD and PHD domain of Uhrf2 is highly conserved,

whereas this region is highly diverse in Uhrf1 (Supplementary

Fig. S5A). To test which sequence is responsible for the observed

cooperative interplay between PHD and TTD, we generated

and tested different hybrid and deletion constructs (Supplementary

Fig. S5B). Notably, replacement of the native linker in the Uhrf2

TTD–PHD construct by the Uhrf1 linker caused decreased relative

binding ratios to H3K9me2/3 comparable to the single Uhrf2 TTD

(Fig. 4B). Transferring the Uhrf2 linker to the Uhrf1 TTD–PHD

construct as well as deletion of the Uhrf2 stretch region did not affect

the binding to H3K9me3 peptides (Fig. 4B).

These results suggest that the cooperative interplay of different

Uhrf2 domains, which is responsible for the increased binding to

heterochromatin marks, is dependent on the highly conserved linker

region connecting the TTD and PHD domains. A similar functional

importance of linker sequences has been described for BPTF and

histone lysine demethylases [Li et al., 2006; Horton et al., 2010].

UHRF1 AND UHRF2 ARE NOT FUNCTIONALLY REDUNDANT IN ESCS

To investigate whether Uhrf1 and Uhrf2 are functionally redundant

we performed interaction and rescue assays. Like Uhrf1, also Uhrf2

interacts with Dnmts (Supplementary Fig. S6) suggesting a similar

function in DNA methylation. To test for such a functional role, we

ectopically expressed Uhrf2-GFP or Uhrf1-GFP in uhrf1!/! ESCs

and determined DNA methylation levels at major satellites by

pyrosequencing. While ectopic expression of Uhrf1-GFP led to

significant increase of DNA methylation levels at CpG sites of major

satellite DNA in uhrf1!/! ESCs, Uhrf2-GFP did not restore DNA

methylation at these sites (Fig. 5). These results point to functional

differences between Uhrf1 and Uhrf2 in vivo.

DISCUSSION

Over the past decades many different histone modifications were

discovered that are involved in epigenetic gene regulation. A key

question is how these histone marks are linked to DNA methylation

pattern and how this complex epigenetic information is integrated

and translated into defined chromatin structures and gene

expression levels. Epigenetic regulators that bind DNA and histone

marks are ideally suited to link these pathways and intramolecular

interactions between different binding domains may contribute to

Fig. 4. Cooperative binding of the combined tandem Tudor–PHD domain of

Uhrf2. A: Histone H3 N-terminal tail binding specificity of the TTD of Uhrf2

and of the combined TTD and PHD domain (TTD–PHD) of Uhrf1 and Uhrf2.

Shown are means$ SEM from at least six independent experiments. B: Histone

H3K9me3 binding of the combined TTD–PHD domains of Uhrf1 and Uhrf2,

hybrid proteins (L1 and L2 specify inserted linker sequences derived from Uhrf1

and Uhrf2, respectively) and a stretch deletion Uhrf2 construct. Shown are

means$ SEM from at least three independent experiments.
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substrate specificity and epigenetic regulation [Hashimoto et al.,

2009].

Recently, Uhrf1, an essential factor for the maintenance of DNA

methylation, has been shown to bind to repressive DNA and histone

modifications via an SRA and a tandem Tudor domain, respectively.

Here we provide the first systematic characterization of the second

member of the Uhrf family, Uhrf2, and demonstrate that Uhrf2 binds

to the H3K9me3 heterochromatin mark via an aromatic cage of a

tandem Tudor domain (TTD). Mutations in the aromatic cage

abolished binding to H3K9me3 histone-tail peptides in vitro and

prevented enrichment of Uhrf2 at pericentric heterochromatin in

vivo. Interestingly, similar mutations in the aromatic cage of Uhrf1

prevented repression of p16INK4A [Nady et al., 2011] suggesting a

link between H3K9me3 binding and a function of Uhrf proteins in

gene repression.

Our results point to a complex regulation of substrate recognition

by Uhrf2 involving cooperative binding domains and critical linker

sequences. In contrast to Uhrf1, preferential binding of Uhrf2 to

hemimethylated DNA, the substrate of DNA maintenance methyla-

tion, was only induced upon simultaneous binding to H3K9me3

histone-tail peptides. Binding of Uhrf1 and Uhrf2 to DNA in turn

enhanced binding to H3K9me3 histone-tail peptides. Consistently,

SILAC-based proteomic analysis identified enrichment of UHRF1 at

nucleosomes containing repressive DNA and H3K9 methylation

marks [Bartke et al., 2010]. Together, these data demonstrate a

cooperative interplay between DNA and histone tail binding

domains of Uhrf1 and Uhrf2. A similar effect was reported for

MSL3 that specifically binds to H4K20me1 via a chromodomain

only in the presence of DNA [Kim et al., 2010].

An additional level of complexity was added by recent studies

showing multivalent binding of histone-tail peptides by mixed two-

effector modules [Ruthenburg et al., 2007]. Notably, the combined

TTD–PHD domain of Uhrf2, but not of Uhrf1, showed enhanced

binding to H3K9me3 histone-tail peptides. This cooperativity was

dependent on the highly conserved linker region connecting the TTD

and PHD domains. Similarly, an important role was attributed to

the linker sequence between the histone binding domain (PHD) and

the histone modifying domain of jumanji histone lysine demethy-

lases [Horton et al., 2010].

The dramatic loss of DNA methylation in uhrf1!/! ESCs [Bostick

et al., 2007; Sharif et al., 2007] is remarkable, especially considering

the presence of the uhrf2 gene, which encodes a highly similar

protein as demonstrated in this study. As one possible explanation

for this lack of functional redundancy we found, in contrast to

uhrf1, relatively low uhrf2 mRNA levels in ESCs, which were not

affected by genetic uhrf1 ablation. Moreover, both genes also show

opposite expression patterns during differentiation. The failure of

ectopically expressed Uhrf2 to restore DNA methylation in uhrf1

deficient cells clearly points to functional differences between both

proteins in vivo. However, more definitive insights into the specific

function(s) of Uhrf2 will require targeted mutations and subsequent

analyses of pluripotent as well as differentiated cells. Based on the

cooperative binding of Uhrf2 domains to repressive DNA and

histone marks we propose that Uhrf2 might contribute to a tighter

control of gene repression in differentiated cells as compared to a

less stringent control by Uhrf1 in pluripotent ESCs.
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Supplementary Information 

 

 

 

Supplementary Figure S1. Opposite expression pattern of uhrf1 and uhrf2. Expression 
analyses of uhrf1 and uhrf2 by Real-time PCR during differentiation of ESCs with two 
different genetic backgrounds (wt E14 (A) and wt JM8A (B)). Transcript levels of uhrf1 at day 
0 of EB formation are used as reference point (set to 1). Shown are means ± SD from three 
technical replicates of one biological experiment. 



 

 

Supplementary Figure S2. Model of the tandem Tudor domain (TTD) of Uhrf2. (A) A model of 
the TTD of Uhrf2 was generated using SWISS Model [Arnold et al., 2006; Guex and Peitsch, 
1997] with the solved structure of the TTD of Uhrf1 (PDB: 3DB3) as template. Both 
structures, the Uhrf2 model in red and the Uhrf1 template in cyan, are superimposed in 
PyMOL [Schrodinger, 2010]. (B) H3K9me3 is embedded in an aromatic cage formed by 
three aromatic residues of Uhrf2. 

  



 

 

Supplementary Figure S3. Electrophoretic mobility shift of Uhrf1 and Uhrf2. (A) Un- and 
hemimethylated DNA substrates (1 pmol each in direct competition) were incubated with 
0.63 pmol purified Uhrf1-GFP or Uhrf2-GFP. Samples were subjected to 3.5% non-
denaturing PAGE and analyzed with a fluorescence scanner (Typhoon TRIO scanner, GE 
Healthcare) to detect ATTO550 (unmethylated substrate), ATTO647N (hemimethylated 
substrate) and GFP. (B) Band intensities were quantified with ImageJ [Abramoff, 2004]. To 
quantify bound DNA/protein ratios, grey values of unbound DNA bands were subtracted from 
the corresponding DNA input bands and subsequently normalized by the grey values of the 
GFP bands. All values were normalized to the relative binding ratio of Uhrf1 to unmethylated 
substrate. Shown are means ± SD from three independent experiments. Statistical 
significance between the binding ratios of un- and hemimethylated DNA is indicated; 
*P < 0.05. 

  



 

 

Supplementary Figure S4. Cell-cycle dependent localization of Uhrf2 in cells with different 
genetic backgrounds. Confocal mid sections of fixed wt J1 (A), TKO (B) and Suv39h dn 
ESCs (C), transiently expressing Uhrf2-GFP. Cells were co-transfected with a RFP-PCNA 
expression vector to distinguish S phase stages [Sporbert et al., 2005] and counterstained 
with DAPI. Merged images are displayed on the right. Scale bar 5 µm. In wt J1 and TKO 
ESCs the Uhrf2 fusion protein accumulates at pericentric heterochromatin independent of the 
cell-cycle stage and methylation levels (A) (B). In contrast, Uhrf2-GFP shows a fully 
dispersed nuclear distribution in Suv39h dn cells indicating the dependency on H3K9me3 
methylation for localization at PH in vivo (C). (D) and (E) Scatter blot of GFP-Uhrf2 and DAPI 
signals in wt MEFs and Suv39h dn MEFs. The corresponding Pearson correlation 
coefficients R ± SEM are calculated from ten analysed cells. The software Volocity (Perkin 
Elmer) was used for analysis, selecting the cell nucleus as region of interest. Note that 
Pearson correlation coefficients range from +1 to -1 for perfect to no co-localization. 

  



 

 

Supplementary Figure S5. Alignment and recombination of Uhrf1 and Uhrf2 domains. (A) 
Alignment of the tandem Tudor domain (TTD) and PHD domains from vertebrate Uhrf2 and 
Uhrf1 orthologs. Accession numbers for Uhrf2: Homo sapiens CAH74119.1; Bos taurus 
AAI48950.1; Mus musculus Q7TMI3; Rattus norvegicus NP_001101055.1; Pan troglodytes 
XP_528534.2; Xenopus laevis AAI28674.1. Accession numbers for Uhrf1: Homo sapiens 
Q96T88.1; Bos taurus AAI51672.1; Mus musculus Q8VDF2.2; Rattus norvegicus Q7TPK1.2; 
Dario rerio NP_998242.1; Xenopus laevis AAI28674.1, Gallus gallus XP_418269.2. Arrows 
show the start and end positions of the TTD and PHD domains. Absolutely conserved 
residues are black shaded, while positions showing conservative substitutions are boxed with 
residues in bold face. The additional stretch region found in the TTD of Uhrf2 and the linker 
region between TTD and PHD finger are boxed with dotted black lines. (B) Schematic outline 
of engineered constructs including the deletion of the stretch region and the swapping of 
linker sequences. 

  



 

 

Supplementary Figure S6. Uhrf2 interacts with Uhrf1, Dnmt1 and Dnmt3a/b. (A) Co- 
immunoprecipation of Uhrf2-myc and GFP-Uhrf1, GFP-Dnmt3a, GFP-Dnmt3b, GFP-HP1α, 
GFP-HP1β, GFP-HP1γ or GFP transiently co-expressed in HEK293T cells. Note that Uhrf2 
interacts with Uhrf1, Dnmt3a and Dnmt3b. (B) Co-immunoprecipation of Uhrf2-myc and 
GFP-Dnmt1 constructs transiently co-expressed in HEK293T cells: GFP-Dnmt1 (G-Dnmt1), 
GFP-fusions of the N-terminal and C-terminal part of Dnmt1 (G-D1-Nterm, G-D1-Cterm) and 
truncated Dnmt1 constructs (G-Dnmt1 1-309, G-TS 310-629, G-Dnmt1 630-1111). Note that 
Uhrf2 interacts with full-length Dnmt1, the N-terminal part and the targeting sequence (G-TS 
310-629). One percent of input (I) relative to bound fractions (B) was loaded. Co-
immunoprecipitation was performed using the GFP trap [Rothbauer et al., 2008]. Co-
precipitated myc-tagged proteins were detected using a mouse monoclonal primary anti-myc 
antibody (Invitrogen, Germany) and an HRP- or Cy5-conjugated secondary anti-mouse 
antibody (Sigma, Germany, or Jackson ImmunoResearch Laboratories, USA, respectively). 

 

  



 

 

Supplementary Figure S7. Histone-tail peptide and DNA sequences and quality control of 
DNA substrates. (A) Amino acid sequence of TAMRA-labelled peptides for in vitro histone-
tail peptide binding assays. Histone-tail peptides were purchased as TAMRA conjugates 
(PSL, Germany). (B) DNA oligos used for preparation of double-stranded probes for in vitro 



DNA binding assays. M: 5-methyl-cytosine. For hybridization, DNA oligos were mixed in 
equimolar amounts, heated to 92°C and cooled down to room temperature. DNA substrates 
for Figure 2F were completed in a primer extension reaction. By using a control set of DNA 
probes with identical sequence but different fluorescent labels we observed effects due to 
probe preparation and/or unspecific binding of ATTO dyes (data not shown). The values 
obtained from the control set were used to normalize every probe/protein pair. (C) Quality 
control of DNA substrates. Un- and hemimethylated DNA substrates (2 pmol; Atto647N 
labelled) were digested with 1 unit MspI or HpaII and analyzed by 15% non-denaturing 
PAGE for CpG methylation. Note that unmethylated DNA substrate is digested by both 
enzymes, whereas hemimethylated substrate is only cut by MspI. Enzyme recognition motifs 
are boxed and asterisks represent ATTO labels.  
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ABSTRACT

DNA methyltransferase 1 (Dnmt1) reestablishes

methylation of hemimethylated CpG sites generated

during DNA replication in mammalian cells. Two

subdomains, the proliferating cell nuclear antigen

(PCNA)-binding domain (PBD) and the targeting

sequence (TS) domain, target Dnmt1 to the replica-

tion sites in S phase. We aimed to dissect the details

of the cell cycle–dependent coordinated activity of

both domains. To that end, we combined super-

resolution 3D-structured illumination microscopy

and fluorescence recovery after photobleaching

(FRAP) experiments of GFP-Dnmt1 wild type and

mutant constructs in somatic mouse cells. To inter-

pret the differences in FRAP kinetics, we refined

existing data analysis and modeling approaches to

(i) account for the heterogeneous and variable distri-

bution of Dnmt1-binding sites in different cell cycle

stages; (ii) allow diffusion-coupled dynamics; (iii) ac-

commodate multiple binding classes. We find that

transient PBD-dependent interaction directly at rep-

lication sites is the predominant specific interaction

in early S phase (residence time Tres �10s). In late S

phase, this binding class is taken over by a substan-

tially stronger (Tres �22s) TS domain-dependent

interaction at PCNA-enriched replication sites and

at nearby pericentromeric heterochromatin sub-

regions. We propose a two-loading-platform-model

of additional PCNA-independent loading at post-

replicative, heterochromatic Dnmt1 target sites to

ensure faithful maintenance of densely methylated

genomic regions.

INTRODUCTION

DNA methylation is an essential epigenetic mechanism in
mammals involved in gene regulation, genomic imprint-
ing, X inactivation and carcinogenesis (1–3). Once estab-
lished de novo during cell differentiation, the genomic
methylation pattern is maintained by the DNA
methyltransferase 1 (Dnmt1), a 183 kDa–sized enzyme
that transfers methyl groups to hemimethylated substrate
CpG sites generated during DNA synthesis in S phase
(2,4,5). Hence, it seems obvious that the regulation of
Dnmt1 is tightly coupled to DNA replication. In fact,
using fluorescence recovery after photobleaching
(FRAP), we have previously reported that Dnmt1 associ-
ates with replication foci (RF) by a highly transient inter-
action with the replication clamp proliferating cell nuclear
antigen (PCNA) in early S phase via the PCNA-binding
domain (PBD) of Dnmt1, enhancing the efficiency of
covalent complex formation at its substrate sites (6,7).
PCNA forms a homotrimeric ring around the DNA at
replication forks and operates as a quasi-immobile
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loading platform for various replication-associated factors
(8,9). Furthermore, the targeting sequence (TS) domain
has been found to mediate association of Dnmt1 to con-
stitutive heterochromatin from late S phase into G2
(10,11), the latter finding challenging the strict coupling
to the replication process. In addition, the TS domain was
implicated in the interaction with Uhrf1 (12). Uhrf1 is an
essential cofactor in the DNA methylation process and it
has been proposed that Uhrf1 targets Dnmt1 to
hemimethylated sites (13–17). Although the role and regu-
lation of Dnmt1 has been a popular field of research for
many years, the details and functional implications of the
cell cycle–dependent coordinated binding activity of
the PBD and the TS domain still remain elusive.

FRAP techniques offer an effective tool to study in vivo
the mobility of cellular proteins and to gain a better
understanding of molecular interactions that drive or
limit the mobility of fluorescent fusions expressed in cells
(18–21). By bleaching a subpopulation of fluorescent
proteins and by analyzing the redistribution of fluores-
cence over time, one can obtain measures of the half-
time of recovery and the size of mobile fractions. To fur-
thermore extract kinetic parameters from fluorescence
recovery curves, one can describe the underlying
dynamics of the proteins by a set of differential equations
and apply a fitting procedure. Such kinetic modeling
approaches can be useful to detect and quantify distinct
dynamic populations [mobility classes (MCs)] and have
been successfully used to quantitatively characterize diffu-
sion and to some extent interactions inside living cells
(22–24). Within the nucleus, the mobility of protein
factors can be limited by binding to rather immobile struc-
tures, most prominently to chromatin, or to stationary
enzyme complexes, such as the replication machinery,
transcription domains or splicing speckles (25–27). The
majority of these interactions are surprisingly transient
to accommodate dynamic exchange, which is pivotal to
provide cellular plasticity and efficient responses to
external signals (28–30).

We aimed to extract quantitative measures of the
binding properties of Dnmt1 in vivo. Unlike for many
other nuclear factors, Dnmt1-binding sites are
non-homogeneously distributed with association sites con-
stantly changing their location throughout the cell cycle.
To characterize the contribution of the PBD and TS
domain on these changing interactions, we analyzed the
mobility of wild type and mutants of GFP-tagged Dnmt1.
In particular, we interpreted the differences between the
mutants by modeling FRAP experiments where half of
the nucleus is bleached. As the spatial distribution of the
different binding sites is unknown a priori, we modified
classical reaction-diffusion models in a way that diffusion
is simplified into a two-compartment exchange model and
binding events are averaged over the entire half-nucleus.
This model also takes into account potential multiple
binding partners of proteins with different binding
affinities.

Our results provide evidence that the collective integrity
of the PBD and TS domain is necessary and sufficient for
the entire S phase–dependent targeting of Dnmt1 to its
localization sites. Transient PBD-mediated interaction at

RF is the predominant specific interaction in early S
phase, while in late S phase, this binding class is relegated
by an �2-fold stronger TS domain-dependent binding.
Supported by super-resolution imaging with
3D-structured illumination microscopy (3D-SIM) (31,32)
we show that TS binding is not restricted to replication
sites but also occurs PCNA/PBD-independently at
postreplicative constitutive heterochromatin. We propose
a two-loading-platform-model in which the increasing
density of hemimethylated CpG sites in conjunction with
increased level of heterochromatin marks at
postreplicative heterochromatin in late S phase provides
high-affinity binding sites for TS-mediated binding of
Dnmt1. PCNA-independent loading downstream of repli-
cation thus provides a mechanism to ensure maintenance
of densely methylated heterochromatic DNA sequences.

MATERIALS AND METHODS

Expression constructs and cell culture

The expression constructs, 1xGFP, 2xGFP, 4xGFP,
GFP-Dnmt1wt, GFP-Dnmt1Q162E and GFP-Dnmt1�TS

have been described previously (6,33,34). GFP-
Dnmt1Q162E/�TS was derived from GFP-Dnmt1�TS by
overlap extension PCR. Mouse C2C12 myoblast cells
were cultured in DMEM supplemented with 20% fetal
bovine serum and 50 mg/ml gentamycine. For live cell ex-
periments, cells were seeded in Lab-Tek chamber slides
(Nunc) or m-slides (Ibidi), using either pools of stably
expressing cells or transiently transfected cells.
Creation of stably expressing cells has been described

before (6). For transient transfections, cells were grown up
to 30-40% confluence and transfected with TransFectin
transfection reagent (Bio-Rad) or FuGENE HD (Roche)
according to the manufacturer’s instructions. Cells were
then incubated overnight (TransFectin) or �40 h
(FuGENE HD) before performing FRAP experiments (6).
Only moderately expressing cells with unsuspicious

morphology were chosen for further analysis. The
overall Dnmt1 level of endogenous and ectopically ex-
pressed protein was determined for all analyzed constructs
and cell lines by immunofluorescence labeling using a
novel Dnmt1-specific rat monoclonal antibody 5A10.
Quantitative analysis of labeling intensities revealed on
average 2-fold increased protein levels compared with
non-transfected control cells confirming no major
overexpression of the GFP-Dnmt1 fusion constructs (see
Supplementary Methods and Supplementary Figure S1
for details on the antibody characterization and the
immunofluorescence assay).

EdU pulse labeling, immunofluorescence staining and
structured illumination microscopy

Cells, stably expressing GFP-Dnmt1 fusions were seeded
on No. 1.5H precision coverslips (Marienfeld Superior),
formaldehyde fixed and permeabilized with ice-cold
methanol. For labeling of postreplicative DNA, 5 mM
5-ethnyl-2’-deoxyuridine (EdU) was added to the growth
medium 60min before fixation. Endogenous PCNA
was fluorescently labeled either with a rat monoclonal
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antibody 16D10 (35) or a mouse monoclonal antibody
PC10 (Abcam) and secondary antibodies conjugated to
Alexa Fluor 594 (Invitrogen) or CF405S (Biotium). GFP
was postlabeled with ATTO488 conjugated GFP-Booster
(ChromoTek). EdU was detected by Cu (I) catalyzed
cycloaddition (‘click-chemistry’) of 20 mM Alexa Fluor
594 Azide (Invitrogen) diluted in 0.1 M Tris/HCl (pH
8.6) containing 4mM CuSO4 and 50mM Na-ascorbate.
Cells were counterstained with 1 mg/ml 4’,6-diamidino-2-
phenylindole and embedded in Vectashield (Vector
Laboratories).
3D-SIM was performed on a DeltaVision OMX V3

(Applied Precision) system equipped with a 100�/1.40
NA PlanApo oil immersion objective (Olympus),
Cascade II:512 EMCCD cameras (Photometrics) and
405, 488 and 593 nm diode lasers. Structured illumination
(SI) image stacks were acquired with a z-distance of
125 nm and with 15 raw SI images per plane (5 phases,
3 angles). The SI raw data were then computationally
reconstructed with channel specifically measured optical
transfer functions using the softWoRX 4.0 software
package (Applied Precision) to obtain a super-resolution
image stack with a lateral (x,y) resolution of �120 nm
and an axial (z) resolution of �300 nm (31). Images
from the different color channels were registered with
alignment parameter obtained from calibration measure-
ments with 0.2 mm diameter TetraSpeck beads
(Invitrogen).

Live cell microscopy and quantitative FRAP analysis

Live cell imaging and FRAP experiments were typically
performed on an UltraVIEW VoX spinning disc micro-
scope with integrated FRAP PhotoKinesis accessory
(PerkinElmer) assembled to an Axio Observer D1
inverted stand (Zeiss) and using a 63�/1.4 NA
Plan-Apochromat oil immersion objective. The micro-
scope was equipped with a heated environmental
chamber set to 37�C. Fluorophores were excited with
488 nm or 561 nm solid-state diode laser lines. Confocal
image series were typically recorded with 14-bit image
depth, a frame size of 256� 256 pixels, a pixel size of
110 nm and with time intervals of 154ms. For photo-
bleaching experiments, the bleach regions, typically with
a length of 8–10 mm, were chosen to cover the anterior
half of the oval-shaped nucleus. Photobleaching was
performed using two iterations with the acousto-optical
tunable filter (AOTF) of the 488 nm and the 514 nm
laser line set to 100% transmission. Typically, 20
prebleach and 780 postbleach frames were recorded for
each series. In some cases, FRAP experiments were per-
formed on a TCS SP5 AOBS confocal laser scanning
microscope (Leica) using comparable settings as previ-
ously described (6).
Data correction, normalization and quantitative evalu-

ations were performed by automated processing with
ImageJ (http://rsb.info.nih.gov/ij/) using a set of
self-developed macros followed by calculations in Excel.
Details are provided in the Supplementary Methods and
in Supplementary Figure S4.

Mathematical model

The mathematical models used to statistically infer the
kinetic parameters from corrected and normalized
FRAP datasets are based on a compartmental approach
and biochemical kinetic principles. The model for
diffusion-uncoupled FRAP, i.e. for molecules that
diffuse much more rapidly than they bind or unbind,
has previously been described (22,36). A model for
diffusion-coupled FRAP is developed in this work and
illustrated in Figure 4A; a similar approach has been
taken in (37). The model considers transitions between
the bound and the free state of a protein with association
rate constant kon and dissociation rate constant koff . As
substantiated in the Supplementary Methods, the associ-
ation and dissociation dynamics can be expressed in terms
of linear ordinary differential equations (ODEs) when
replacing kon by an effective association rate constant k�on.
The ODEs are given below. While bound proteins remain
fixed at the respective binding sites, free proteins diffuse
through the nucleus, thus changing their locations.
Movements between the bleached and the unbleached
section are modeled with a diffusion rate constant kdiff.
Its value depends on the geometry of the cell and is not
immediately eligible for interpretation purposes. See the
Supplementary Methods for details on the modeling of the
movement of proteins.

Bleached and unbleached molecules are assumed to
behave identically, and therefore it suffices to focus on
one type only. Hence, let P

free
bl , P

free
unbl, Pbound

bl and Pbound
unbl

denote the fractions of unbleached free and bound
proteins in the bleached and unbleached sections,
measured with respect to all unbleached proteins in the
nucleus. These four parameters sum up to one such that
one of them can be left out. Define Pfree ¼ P

free
bl +P

free
unbl and

Pbound ¼ Pbound
bl +Pbound

unbl . The overall dynamics of un-
bleached proteins is described by

dP
free
bl

dt
¼ ÿk�onP

free
bl +koffP

bound
bl

+kdiff fblP
free
unbl ÿ 1ÿ fblð ÞP

free
bl

� �

,

ð1Þ

dP
free
unbl

dt
¼ ÿk�onP

free
unbl+koff 1ÿ P

free
bl ÿ P

free
unbl ÿ Pbound

bl

� �

ÿ kdiff fblP
free
unbl ÿ 1ÿ fblð ÞP

free
bl

� �

,

ð2Þ

dPbound
bl

dt
¼ k�onP

free
bl ÿ koffP

bound
bl : ð3Þ

The recovery curve equals F ¼ P
free
bl +Pbound

bl

� �

=fbl. This

term was adjusted to the data normalization procedure

described in the Supplementary Methods and approaches

the value one as time progresses.
There is possibly more than one type of binding partner

for Dnmt1, i.e. the protein may sometimes associate to a
partner of one type and sometimes to a partner of another
type. These partners may differ with respect to the affinity
of Dnmt1 to enter the bound state and the mean residence
times in this state. All binding partners with identical
or similar kinetic properties are gathered in one MC.
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This term seems more appropriate than classes of binding
sites (22) because different sites with identical kinetic
properties cannot be distinguished using FRAP data. The
number of MCs could hence be smaller than the number of
different binding partners. Furthermore binding-unrelated
processes like anomalous diffusion can fall into an MC.

Suppose there are M classes of kinetically different
binding partners for the protein of interest, labeled with

numbers i 2 1,:::,Mf g. For all i, define P
bound,i
bl and P

bound,i
unbl

as the fractions of type-i bound proteins in the bleached
and unbleached sections, respectively, with

Pbound,i ¼ P
bound,i
bl +P

bound,i
unbl . Let fi ¼ Pbound,i=Pbound be the

fraction of type-i bound proteins with respect to all
bound proteins. Furthermore, denote by k�on,i and koff,i
the association and dissociation rate constants corres-
ponding to the ith MC. Then, the recovery is described by

dP
free
bl

dt
¼ÿ P

free
bl

XM

i¼1
k�on,i+

XM

i¼1
koff,iP

bound,i
bl

+kdiff fblP
free
unbl ÿ 1ÿ fblð ÞP

free
bl

� �

,

ð4Þ

dP
free
unbl

dt
¼ÿ P

free
unbl

XM

i¼1
k�on,i+

XM

i¼1
koff,iP

bound,i
unbl

ÿ kdiff fblP
free
unbl ÿ 1ÿ fblð ÞP

free
bl

� �

,

ð5Þ

dP
bound,i
bl

dt
¼ k�on,iP

free
bl ÿ koff,iP

bound,i
bl , ð6Þ

dP
bound,i
unbl

dt
¼ k�on,iP

free
unbl ÿ koff,iP

bound,i
unbl , ð7Þ

where i ¼ 1,:::,M. The fluorescence intensity is

F ¼ P
free
bl +

PM
i¼1 P

bound,i
bl

� �

=fbl.

Parameter estimation

The mathematical model contains several unknowns: The
model parameters k�on,i, koff,i and kdiff, the initial values F0,

P
free
bl,0 , P

bound
bl,0 for the components F, P

free
bl , Pbound

bl , etc. and the

fractions fbl, fi of bleached proteins, bound proteins of
type i, etc. Due to computational effort, parameter
redundancies and strong correlation between some para-
meters, it is not meaningful to statistically infer all these
unknowns simultaneously. Instead, some values were fixed
as follows: kdiff and fbl were experimentally determined
(see Supplementary Table S3, Figure 4B and the data nor-
malization description above). The smallest koff value was
set to 0.005 (see the Results section). F0 was chosen equal

to the first value of the FRAP curve. P
free
bl,0 was set equal to

fblF0. The association rates result from the other estimates

as k�on,i ¼ koff,ifi 1ÿ Pfree
ÿ �

=Pfree. Statistical inference of all

remaining variables was carried out by least squares esti-
mation. The ODEs (1)–(3) and (4)–(7) were numerically
solved with the Euler scheme with step length 0.03, which
corresponded to one-fifth of the observation interval. All
software was written in R (R Development Core Team,
2011, R Foundation for Statistical Computing, Vienna,
Austria).

We estimated the model parameters for each FRAP
curve separately and compared the estimates for curves
from the same cell cycle phase and Dnmt1 construct after-
wards. For more details about the numerics, see the
Supplementary Methods.

Model choice

In our analysis, we estimate models with different
numbers of MCs. Because the models are nested, the in-
clusion of more MCs always leads to a better or at least
equally good fit. However, one may ask whether the add-
itional computational effort for multiple MCs is worth the
improved matching of the data. At first glance, model
choice criteria like the Akaike information criterion
(AIC) (38) seem appropriate. In our application,
however, the difference in the mean squared residuals
for different models is typically small owing to parameter
redundancies. Because of the large number of model par-
ameters, the AIC will often favor less MCs although the
curvature of the recovery curves is better described by
more complex models. For that reason, we developed a
model selection criterion that penalizes complexity less
rigorously and is specific to our application. Due to the
relatively small noise in the FRAP curves (Figure 3B and
Supplementary Figure S6), we do not expect to overfit the
data. The criterion reads as follows.
As explained in the Results section, the up to three

MCs are further distinguished into one or two distinctive
mobility classes (DMCs) and up to one catalytic mobility
class (CMC). These have to fulfill three rules:

(1) If a DMC or CMC is present, the fraction Pbound of
bound proteins should be above a certain threshold:

Pbound � ebound:

Otherwise the DMCs and CMC are discarded, and
we assume no MCs for this FRAP curve.

(2) Two distinct MCs should differ substantially in their
dissociation rates. In the model with two DMCs that
means that one should have

koff,DMC1 ÿ koff,DMC2

koff,DMC2

� �DMC

or
koff,DMC2 ÿ koff,CMC

koff,CMC

� �CMC:

Otherwise we assume the effective number of DMCs
to be one.

(3) An MC only truly contributes to the model if it
reaches a certain size:

fDMC1P
bound � eDMC and fDMC2P

bound � eDMC

and fCMCP
bound � eCMC:

Otherwise we assume the effective number of DMCs
to be one.

We derive appropriate values for the above thresholds
by cluster analysis; see the Supplementary Methods for
details and results. For each measured curve, we now
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select the model that yields the best fit. This is typically the
model with two DMCs and one CMC, but in many cases,
the fit of the model with one DMC and one CMC is
equally good and hence preferred. For the chosen
model, the original number of DMCs is replaced by the
effective number of DMCs as determined by the above
rules (Supplementary Figure S9). Then, for each cell
cycle phase and protein construct, the primarily chosen
effective number of DMCs is determined. The model
with the according number of DMCs is chosen for this
phase and construct. Supplementary Table S3 displays
the mean estimates for the selected model for all FRAP
curves. These results always assume the original number
of DMCs and do not further reduce it to an effective
number.

RESULTS

Necessity and sufficiency of the PBD and TS domain for
S phase–specific targeting of Dnmt1

Our aim was to analyze the S phase–dependent regulation
of the Dnmt1-binding behavior. To that end, we
investigated four GFP fusions: wild type Dnmt1
(GFP-Dnmt1wt), the full-length Dnmt1 carrying a point
mutation (GFP-Dnmt1Q162E) within the PBD (6), a
Dnmt1 mutant carrying a deletion of a highly conserved
part of the TS domain comprising the amino acids 459–
501 (GFP-Dnmt1�TS) and a Dnmt1 double mutant
containing both mutations (GFP-Dnmt1Q162E/�TS)
(Figure 1A). To identify different cell cycle stages, we
first co-expressed GFP-Dnmt1 constructs with PCNA
fused to monomeric red fluorescent protein
(RFP-PCNA) in mouse C2C12 myoblast cells and
acquired confocal mid sections of the living cells
(Figure 1B). As previously described (6), GFP-Dnmt1wt

co-localized with RFP-PCNA at RF in early S phase.
Co-localization with RF was also apparent in late S
phase, when DNA of pericentromeric heterochromatin
(pHC) is replicated. In contrast, the double mutant
GFP-Dnmt1Q162E/�TS was diffusely distributed within
nuclei throughout interphase, suggesting a deficiency to
target RF during S phase. GFP-Dnmt1�TS still
accumulated at RF in early and late S phase, but
showed a slightly weaker association compared with
GFP-Dnmt1wt, indicating the activity of PBD-mediated
targeting in all S phase stages, independent of the
presence of the TS domain (Figure 1B and Supplementary
Figure S2). As previously reported, GFP-Dnmt1Q162E

showed a diffuse nuclear distribution in early S phase
but notable association to pHC replicating in late S
phase (6). Together, this suggests that the PBD-mediated
interaction with PCNA is necessary for the Dnmt1 local-
ization in early S phase, but evidently not for the associ-
ation at pHC in late S phase.
For a more detailed view on the spatial relationships of

wild-type and mutant Dnmt1 and PCNA at RF, we used
super-resolution 3D-SIM (31,32). Owing to the �8-fold
improved volumetric resolution of 3D-SIM (39), we
could clearly notice subtle variations in the Dnmt1 local-
ization that escaped detection with conventional imaging

(Figure 2 and Supplementary Figure S3). In late S phase,
GFP-Dnmt1wt coincides to a large extent with
immunofluorescently labeled endogenous PCNA foci in
locally decondensed parts of otherwise homogenously
compacted chromocenters with some Dnmt1 signal ex-
tending slightly (by a few 100 nm) beyond the PCNA
signal. Interestingly, RF outside of chromocenters
showed almost no enrichment of Dnmt1 (Figure 2A). In
contrast, early S phase cells showed a more balanced
co-localization at RF (Supplementary Figure S3A).
Co-immunostaining of non-transfected cells with the
Dnmt1-specific monoclonal antibody 5A10 confirmed
the same localization characteristics for the endogenous
Dnmt1, hence excluding potential artifacts by the
GFP-tagging or overexpression (Supplementary Figure
S3B). As opposed to this, GFP-Dnmt1�TS precisely
co-localized with all PCNA marked RF inside and
outside of chromocenters (Figure 2B). GFP-Dnmt1Q162E,
similar to the wild type, displayed an enrichment at
chromocenter-associated RF but also in the nearby
regions of the chromocenters that were more compacted.
We further noted these regions to become larger toward
the end of late S phase, indicating that TS-mediated
binding primarily occurs at postreplicative pHC
(Supplementary Figure S3C). Pulse replication labeling
with 5-ethenyl-2’-deoxyuridine and co-staining with
PCNA confirmed the association of both, wild type and
the PBD mutant Dnmt1 to postreplicative pHC
(Figure 2D). Hence, we conclude a strict co-localization
of the �TS mutant with PCNA at replication sites in late
S phase, whereas both TS domain-containing constructs
(GFP-Dnmt1Q162E stronger than GFP-Dnmt1wt) show a
non-strict co-localization and a tendency to bind adjacent
postreplicative pHC.

To gain further knowledge about the cell cycle–depend-
ent dynamics of Dnmt1, we compared FRAP kinetics of
mutant proteins with those of GFP-Dnmt1wt in early S
phase, late S phase and non-S phase cells with diffuse lo-
calization. The latter comprises mostly G1 cells but may
also contain a smaller subset of late G2 phase cells, ac-
cording to the different lengths of both stages. The com-
parison was done by half-nucleus FRAP analyses to
quantify the strength and contribution of the PBD- and
TS domain–mediated interactions in the distinct stages
(Figure 3A). For a thorough quantitative evaluation of
half-nucleus FRAP data, which preceded the application
of the mathematical model, we developed an improved
protocol for image registration, nuclear segmentation
and data normalization (details described in Supple-
mentary Methods and Supplementary Figure S4).

Initial controls revealed that the additional expression
of RFP-PCNA influenced the kinetics of GFP-Dnmt1wt

(Supplementary Figure S5). Hence, to avoid any biasing
effects, we decided not to co-express RFP-PCNA, but
instead to collectively analyze all nuclei with diffuse
nuclear distribution of the respective GFP fusion
protein. Control measurements of diffusely localized
GFP-Dnmt1Q162E in RFP-PCNA co-expressing cells
revealed no difference between the ‘early S phase’ and
‘G1/late G2’ group (data not shown). We quantitatively
analyzed half-nucleus FRAP experiments of 10–20

4864 Nucleic Acids Research, 2013, Vol. 41, No. 9



datasets for each construct and categorized cell cycle
stage(s) (Figure 3B and Supplementary Figure S6) and
determined half-times of the recovery (t1/2) and mobile
fractions (MF) (Supplementary Table S1)

In accordance with our previous observations (6), GFP-
Dnmt1wt showed a moderately reduced mobility in early S
phase (t1/2 6.3±0.3 s) comparedwithG1/lateG2phase (t1/2
3.3±0.1 s) (Figure 3B and C). In late S phase, the recovery
was even more reduced (t1/2 8.3±0.6 s). Recovery kinetics
of the GFP-Dnmt1Q162E/�TS double mutant comprising all
interphase stages revealed the same fast recovery kinetics
(t1/2 3.6±0.3 s) as observed for GFP-Dnmt1wt in G1/late
G2 phase, suggesting the complete loss of any S phase–
specific interaction. The result implies that the collective
integrity of PBD and the TS domain is necessary and suffi-
cient for the entire S phase–dependent targeting of Dnmt1
to its localization sites.

Next, we analyzed both single mutants, GFP-
Dnmt1Q162E and GFP-Dnmt1�TS, to dissect the specific
role of both domains in early S phase and late S phase.
In agreement with our previous analyses of GFP-
Dnmt1Q162E, the kinetics measured for the pooled G1/
late G2 and early S phase cells showing a diffuse distribu-
tion, was almost identical to that of GFP-Dnmt1wt dif-
fusely distributed only in G1/late G2 phase (t1/2
3.1±0.2 s versus 3.3±0.1 s) consistent with the loss of
PCNA interaction in early S phase. In late S phase,
despite localizing similar to GFP-Dnmt1wt, the kinetics
was slightly faster (t1/2 5.4±0.4 s), indicating a contribu-
tion of the PBD to the binding behavior of Dnmt1wt also
in late S phase. However, the recovery was still slower as
compared with the cells with diffuse localization, pointing
toward an additional TS domain interaction. Comparing
the wild-type construct with GFP-Dnmt1�TS, the mutant

Figure 1. Domain structure and subnuclear localization of GFP-Dnmt1 constructs. (A) Dnmt1 consists of a large N-terminal regulatory domain
containing PBD, TS domain and a CXXC zinc finger (ZnF) domain, and a conserved C-terminal catalytic domain. The point mutation of a highly
conserved glutamine to glutamic acid introduced within the PBD eliminates interaction with the replication machinery (GFP-Dnmt1Q162E). A
deletion in the central part of the TS domain (GFP-Dnmt1�TS) was introduced to abolish interaction with constitutive heterochromatin.
Furthermore a construct containing both mutations was generated (GFP-Dnmt1Q162E/�TS). GFP alone is used as a control for a non-binding
protein. (B) Spinning disk confocal mid sections of GFP-Dnmt1 wild type (wt) and mutant constructs in live mouse C2C12 cells co-expressing
RFP-PCNA to mark RF. In early S phase, GFP-Dnmt1wt accumulates at RF, whereas PCNA-binding deficient GFP-Dnmt1Q162E is diffusely
distributed throughout the nucleus. GFP-Dnmt1�TS is still associated with RF, but not as prominently as GFP-Dnmt1wt. In late S phase
GFP-Dnmt1wt, GFP-Dnmt1Q162E and GFP-Dnmt1�TS accumulate at larger RF of late replicating pHC, although with slightly less strong enrichment
observed for both mutants. GFP-Dnmt1Q162E/�TS is distributed diffusely in the nucleus throughout interphase. Scale bar: 5 mm.
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Figure 2. Super-resolution imaging of heterochromatin association of GFP-Dnmt1 constructs in late S phase. (A–C) 3D-SIM optical mid sections
and z-projections from of C2C12 cells expressing GFP-Dnmt1 wild type and mutant constructs immunostained with antibodies against endogenous
PCNA. Profile plots were scaled between minimum and maximum intensity values for each nucleus. (A) GFP-Dnmt1wt co-localizes largely but not
strictly with PCNA inside �200 nm wide lacunas within otherwise densely packed DAPI-intense chromocenters of clustered pHC (inset a1,
arrowheads in profile plot 1 and inset a3). Anti-PCNA-labeled RF outside of chromocenters show only minor or no association of Dnmt1 (inset
a2, arrows in profile plot 2 and inset a3). (B) GFP-Dnmt1�TS strictly co-localizes with PCNA at RF inside and outside chromocenters (insets b1+b2
and profile plots 3+4). An increased diffuse fraction is visible as small grainy evenly distributed nucleoplasmic background. (C) GFP-Dnmt1Q162E

does not strictly co-localize with PCNA, but also associates with adjacent regions of pHC (arrowheads, inset c3 and profile plot 5). No association is
detected in RF outside chromocenters (arrows, inset c3 and profile plot 6). (D) Additional replication labeling with a 60-min EdU pulse prior
fixation. Association of GFP-Dnmt1wt and GFP-Dnmt1Q162E to chromocenter regions outside of PCNA foci is restricted to the bulk of EdU-labeled
postreplicative chromatin (insets, arrows), while unlabeled, presumably not yet replicated chromocenter regions are still void of GFP-Dnmt1 (insets,
arrowheads). Scale bars: 5 mm and 1 mm (insets).
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Figure 3. Quantitative FRAP evaluation of GFP and GFP-Dnmt1 constructs. (A) Representative time frames of exemplary half-nucleus FRAP
series recorded with spinning disk confocal microscopy. Scale bar: 5 mm. (B) Mean recovery curves displayed for all measured constructs and cell
cycle stages. The inset illustrates cycle-dependent kinetics of GFP and GFP-Dnmt1wt alone (a), and in comparison with GFP-Dnmt1Q162E (b),
GFP-Dnmt1�TS (c) and GFP-Dnmt1Q162E/�TS (d). GFP-Dnmt1wt in cells with diffuse localization shows a decreased mobility compared with GFP.
The GFP-Dnmt1wt mobility decreases stepwise in early S phase and in late S phase. The mobility of GFP-Dnmt1Q162E in G1 (late G2) and early S
cells (diffuse nuclear localization, pooled) is almost identical to GFP-Dnmt1wt G1 (late G2) cells. In late S phase, a moderately increased mobility is
observed for both, GFP-Dnmt1Q162E and GFP-Dnmt1�TS mutants compared with GFP-Dnmt1wt. Of note, despite comparable overall kinetics, both
curves (dark green, dark orange) are clearly different in their shape. In early S phase, the t1/2 of GFP-Dnmt1�TS is reduced compared to
GFP-Dnmt1wt. GFP-Dnmt1Q162E/�TS (all interphase stages, pooled) displays kinetics almost identical to GFP-Dnmt1wt in cells with diffuse
localization. For clarity, error bars are omitted here, but shown in Supplementary Figure S6. (C) Half-times of recovery (t1/2) determined for
each construct and distribution pattern. Error bars represent SEM.
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showed also faster kinetics in late S phase (t1/2 6.0±0.4 s),
suggesting that the TS domain together with the PBD are
necessary for the wild-type kinetics in late S phase. Besides
the role of the TS domain in late S phase, this mutation
also enhanced the mobility in early S phase
(t1/2 4.2±0.3 s) in accordance with the fact that the
early S phase pattern of RF association was less promin-
ent (Figure 1B). This result indicates that the binding by
the PBD domain to RF is necessary, but not sufficient for
the early S phase–specific localization of Dnmt1.
We also noted that the mobile fractions (MF) of the

wild-type construct within the observation time of 2min
dropped from around 100% in non-S phase to �98% in
early and late S phase. This directs to a small immobile
fraction of covalently bound Dnmt1 involved in the
covalent complex formation during the enzymatic
reaction (Supplementary Table S1). This observation is
consistent with a rather slow speed of the enzyme
reaction measured in vitro with hemimethylated substrate
(40–43). A small immobile fraction (�1%) was also noted
for the Dnmt1 mutant construct.
To test the general ability as well as differences in the

efficiency of the investigated regulatory Dnmt1 mutants to
undergo covalent complex formation in vivo, we measured
the time-dependent immobilization by FRAP on incuba-
tion with the mechanism-based inhibitor 5-aza-2’-
deoxycytidine (44) (see Supplementary Methods for
details on the trapping assay). In agreement with the
observed small immobile fractions, all mutants became
immobilized albeit with variable efficiencies, with
GFP-Dnmt1wt being already fully immobilized within
30–45min (corresponding to a trapping rate of �3%
minÿ1), followed by GFP-Dnmt1Q162E, GFP-Dnmt1�TS

and GFP-Dnmt1Q162E/�TS (only �10% hÿ1)
(Supplementary Figure S7).
We conclude that the PBD and the TS domain are the

only domains directly involved in S phase–specific target-
ing of Dnmt1 with respect to localization and kinetics and
that both domains contribute to enhance the efficiency to
initiate the catalytic reaction in vivo. To decipher the exact
relationship of PBD- and TS domain–mediated binding in
early and late S phase, however, a more sophisticated
analysis is needed.

Kinetic modeling of half-nucleus FRAP with multiple
binding classes and diffusion-coupled dynamics

We next sought to characterize the contribution of the
PBD- and TS domain–mediated interactions in different
stages of the cell cycle in a more precise quantitative
manner. Hence, we utilized mathematical modeling to
estimate the fraction of protein bound by these domains
and the binding strength in the different cell cycle stages.
The choice of the model was based on several consider-

ations. First, to take account for the heterogeneous spatial
distribution of binding sites that strongly varies in differ-
ent cell cycle stages. Second, to correct for diffusion-
related effects. Third, to deal with multiple potentially
superimposing interactions, or binding classes, respect-
ively, including a small fraction of protein covalently
bound during the catalytic reaction (Figure 4A). Such a

level of complexity goes beyond the assumptions of FRAP
analysis based on present reaction-diffusion models (45–
48). Therefore, we decided to use a compartmental
approach with size-calibrated diffusion correction,
suitable for experiments with half-nucleus bleaching,
which ensure representative distribution of binding sites
in all cell cycle stages. Each of the two halves was then
considered as a well-mixed homogeneous interaction
system where proteins can bind to different binding
partners (22,36).

Taking diffusion into account is especially important
for assessing nuclear proteins as most of them undergo
transient interactions in a diffusion-coupled behavior
(18,46). This is also true for Dnmt1 (Supplementary
Figure S8). To approximate the diffusion of the protein,
we introduced a size-dependent correction factor (kdiff) as
a measure for the exchange of free molecules between the
bleached and unbleached half to approximate the diffu-
sion of the protein as similarly performed in (37) (Figure
4A; see Materials and Methods). To estimate this
exchange parameter, we performed FRAP calibration
measurements of GFP monomers, dimers and tetramers,
as they have known sizes and are presumably inert in cells
(Figure 4B). The kdiff value corresponding to the size of
GFP-Dnmt1 was extrapolated from the kdiff values experi-
mentally determined for the other three constructs in the
same cell line using an exponential regression curve
(Figure 4B and Supplementary Table S2).

We noted that the normalized FRAP curves of
GFP-Dnmt1 constructs, in particular those from S phase
cells, typically did not reach a straight plateau after 2-min
observation time. Instead, they still followed a slight
incline. As outlined above, this might be attributed to a
small fraction of molecules actively involved in covalent
complex formation during methyl group transfer. In vitro
measurements have previously demonstrated a rather slow
catalytic reaction of human DNMT1 on hemimethylated
DNA in the range of 1–22min per CpG (40–43). To
account for this possibility, we added a class with
variable fraction size but a small fixed dissociation rate
(koff). This class is referred to as CMC. As opposed to
that, classes with free koff values will be referred to as
DMC. The koff value for the CMC was chosen to be
0.005 sÿ1, which is equivalent to a mean residence time
of 200 s (40). By fixing it, we avoided an additional free
parameter in our fitting procedure. To further decrease the
number of free parameters in our model, we also fixed the
bleached fraction fbl to an experimentally determined
value for each FRAP experiment (see Materials and
Methods). Altogether we estimated the koff values of up
to two DMCs, the fraction sizes of bound proteins (one
CMC and two DMCs), and the remaining pool of free
molecules (ffree).

Although this modeling approach does not cover
the whole details of our experimental system, it concen-
trates on the characterization of the interactions while still
integrating some essential information on the diffusion
process and therefore provides a way to interpret the
differences between the different forms of Dnmt1 during
the different phases of the cell cycle. In conclusion,
our compartmental model uses an experimentally
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determined cell type–specific correction for size-dependent

diffusion effects and can extract up to three dissociation

rates and the sizes of all bound pools and the remaining

free pool. This way we took into account several

interaction partners, diffusion-coupled dynamics and the

irregular distribution of binding sites of the protein.

Quantifying the properties of the PBD- and TS
domain–mediated binding by FRAP modeling

We applied the enhanced kinetic model to our FRAP data
of GFP-Dnmt1wt and mutants. For each FRAP curve, the
parameters of three differential equation models were
determined using least squares estimation. These models

Figure 4. Refined diffusion-coupled compartmental model for three MCs and determination of kdiff from GFP multimer measurements. (A) The
nuclear compartment is divided into four main compartments: bleached and unbleached molecules in the bound or free state, respectively. The bound
state can be subdivided into three compartments with specific properties. For Dnmt1, we choose two DMCs (DMC1 and DMC2, blue and green
frame, respectively) and one CMC (red frame) with a fixed koff. Molecules bind and unbind with association and dissociation rates given by kon,i and
koff,i, respectively. In our refined modeling approach, the parameter fbl is experimentally determined for each individual FRAP series. Migration of
molecules is implemented in the model by introducing a new diffusion rate constant kdiff. This parameter corrects for the size-dependent exchange of
the free molecules between the bleached and unbleached compartment. Parameter and variables entering the sets of differential equations are written
in bold; predetermined/fixed values are indicated. (B) Quantitative FRAP evaluation of GFP multimers. The GFP mobility of the dimer and the
tetramer decreases stepwise as compared with the monomer. The kdiff factor for the GFP constructs is estimated from the model with no DMC/
CMC. From these values, the corresponding kdiff factor for the size of GFP-Dnmt1 is estimated using an exponential regression curve (inset
diagram).
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accounted for (i) no DMC/CMC, i.e. free proteins only,
(ii) one DMC plus CMC or (iii) two DMCs plus CMC.
The kdiff values were chosen according to the respective
protein sizes (Supplementary Table S2). For each individ-
ual FRAP curve, the most appropriate model was
determined based on the mean squared residuals and
certain restrictions on the fraction sizes and magnitudes
of the dissociation rates (see Materials and Methods).
Then, for each construct and cell cycle phase, we identified
the model that was preferentially chosen for the majority
of datasets (Supplementary Figure S9). This model was
then used to determine the final mean koff values, the re-
ciprocal mean residence times Tres=1/ koff as well as the
corresponding fraction sizes for all measured constructs
and cell cycle stages (Figure 5 and Supplementary Table
S3).
Model estimation for our reference FRAP measure-

ments with GFP monomers and dimers provided a clear
tendency of having no DMC (100% free fraction),
whereas most FRAP curves of GFP-tetramers were best
explained by a large free fraction (>91%) plus a smaller
fraction of reduced mobility (<8%). Notably, the Tres

determined for this fraction was rather high and showed
a large variation indicating a GFP-multimer–specific
effect. Analyzing the GFP-Dnmt1 constructs, we
observed that a small fraction (fCMC 1–4%) was always
assigned to the class of molecules potentially involved in
the catalytic process (CMC). Estimation of the size of the
CMC is numerically difficult owing to the small fraction
size. We hence do not interpret those estimates here.
For GFP-Dnmt1wt expressing cells in G1/late G2, our

model likewise estimated a large free fraction of �80%
and a population of �19% with a relatively low mean
residence time (Tres �8 s). In early S phase, the bound
fraction doubled to �40% owing to binding to
immobilized PCNA trimeric rings at replication forks (6,
49). The mean residence time measured for this class was
with Tres �10 s slightly higher. The largest fraction of 56%
was still assigned to the free pool. In late S phase cells, the
bound fraction remained in a similar range with 48%.
Importantly, concomitant with binding to pHC at
chromocenters, the model identified two distinct DMCs:
18% of the proteins were still bound with an intermediate
strength (DMC1: Tres �10 s), and an additional 28% with
a substantially higher strength (DMC2: Tres �22 s).
An 18–22% fraction with consistent kinetics was con-

stitutively present in all cell cycle stages of the investigated
GFP-Dnmt1 constructs. The nature of this constitutive
MC remains unclear. In addition to the mutants described
here, we performed FRAP analyses of a series of mutant
constructs with deletions of potential interacting regions
within the regulatory domain of Dnmt1, which included
N-terminal truncations of various length (data not shown)
and deletion within the ZnF domain (50). None of these
mutants showed faster kinetics than GFP-Dnmt1wt in
diffuse cells. We therefore attribute this constitutive class
to an anomalous diffusive behavior (see discussion) and
not to particular DNA/chromatin binding mediated by a
specific domain.
The modeling of FRAP data of the GFP-Dnmt1Q162E

mutant revealed a modest reduction of the DMC1 fraction

size as compared with the level of GFP-Dnmt1wt in all
measured phases (diffuse, late S) (DMC1: 10–14%; Tres

�9 s). In late S phase cells, a second slower DMC with
similar strength was still retained (DMC2: 23%; Tres

�19 s). From these results, we conclude that Dnmt1
binds PCNA at replication sites of early S phase cells
with a mean residence time of �10 s and with no more
than 20–25% of the nuclear Dnmt1 pool being involved
in this reaction. The binding of the Dnmt1 constructs with
intact PBD to PCNA, as well as complete loss of the inter-
action by introduction of the Q162E point mutation was
confirmed biochemically by co-immunoprecipitation
(Supplementary Figure S10). In late S phase, only a
minor decrease in the mean residence times of the first
and second DMC was observable for GFP-Dnmt1Q162E

as compared with the wild type, indicating that the PBD
does contribute, if only to a small extent, to the binding
strength in late S phase. However, the overall bound
fraction of molecules decreased compared with
GFP-Dnmt1wt in late S phase (66% versus 52%) causing
an overall faster FRAP kinetics. The double mutant
GFP-Dnmt1Q162E/�TS did not establish any association
pattern throughout interphase. In accordance, the ex-
tracted kinetic properties were almost identical to those
of GFP-Dnmt1wt in G1/late G2 (19%; Tres �8 s).

Modeling of GFP-Dnmt1�TS in early S phase revealed a
modest reduction of the fraction size and binding strength
(DMC1: 30%; Tres �8.5 s compared with 39%; Tres �10 s
in the wild type). This could argue for either a stabilization
of the PCNA complex at the replication sites by the TS
domain or may hint to the presence of a minor fraction of
strong binding sites, which is too small to be identified as a
distinct class. In late S phase, still only one DMC was
identified for GFP-Dnmt1�TS (DMC1: 40%, Tres �9 s),
similar to GFP-Dnmt1wt in early S phase. This suggests
a prevalence of TS domain–mediated binding over PBD
mediated, provided that the conditions for TS binding are
complied (i.e. high density of hemimethylated CpG sites in
conjunction with heterochromatic marks; see discussion
below). In this case, binding to PCNA does only seem
to play a supportive role. This view is also in accordance
with the finding that in late S phase, the Q162E mutation
alone does not change the DMC1 or DMC2 substantially,
but only leads to a moderate increase in free protein.

DISCUSSION

We addressed the complex problem of dissecting the cell
cycle–dependent regulation of Dnmt1 by super-resolution
3D imaging, FRAP and kinetic modeling. Two main
factors add to the complexity of the analysis. First,
Dnmt1 is a large enzyme with multiple regulatory
subdomains, interaction partners and cell cycle–dependent
regulation. Second, the distribution pattern of Dnmt1 is
highly variable throughout the cell cycle. Hence, we chose
a global approach using half-nucleus FRAP to capture in
all cases representative fractions of bound molecules and
binding sites. Previous studies often used spot bleaching
with a defined geometry that allowed the extraction of
diffusion coefficients (24,51,52). However, such models
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typically only included no more than one additional
binding class, while we expected multiple interactions.
Therefore, none of the previous models was immediately
applicable to our case, which prompted us to devise a
customized model.

To eliminate a weak point of diffusion-uncoupled
approaches, we further corrected for size-dependent diffu-
sion using a calibration factor that was experimentally
determined from measurements of GFP multimer
proteins. Anomalous diffusion behavior has previously

Figure 5. Parameters extracted from the kinetic modeling of GFP-Dnmt1 constructs. (A) Mean residence times (Tres, upper panel) and fractions of
bound molecules (fbound, lower panel) in three different classes (DMC1, DMC2, CMC) are displayed (not displayed free fractions add to 100% total
amount). In all analyzed GFP-Dnmt1 constructs, a fast population of molecules was identified with mean residence times between 6 s and 10 s
(DMC1). The fraction of this fast population (DMC1) typically varies between 10% and 22%, but rises for GFP-Dnmt1wt in early S phase (40%)
and for GFP-Dnmt1�TS in early and late S phase (30 and 40%, respectively) due to the interaction with PCNA. A second, slower class (DMC2) was
determined for both constructs with intact TS domain in late S phase with residence times varying from 19 to 22 s (DMC2) and an average size
between 23 and 28%, respectively. The size of the CMC with a fixed Tres of 200 s varies between 0 and 4.1%. Bars indicate SEM. (B) Parameters are
sorted according to their targets PCNA and pHC and the constitutively present unspecified MC (constitutive class, CC).
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been shown for GFP and dextran in the nucleus (53–55).
This indicates that calculation of size-dependent diffusion
differences according to the Stokes-Einstein relation might
lead to wrong parameter estimates for proteins in the
nucleus (56), especially when large size differences like
between GFP and Dnmt1 are taken into account.
FRAP measurements are sensitive to experimental con-

ditions and set-ups (57). We tried to correct for most con-
ceivable external influences during image evaluation by
using a tailored workflow of postprocessing steps (see
Supplementary Materials and Methods). This involved
image registration, constrained automated nuclear seg-
mentation and three-step normalization/correction.
Altogether, this allows us to compensate for lateral cell
movement, nuclear import and export, bleaching due to
image acquisition and variations in bleaching depth,
which otherwise potentially affect the raw data and sub-
sequent modeling results. Moreover, we modeled a slow
CMC using a low fixed koff value, taking into account that
a small fraction of molecules is likely to be involved in
catalysis and thereby transiently immobilized by a
covalent complex formation (40,43). Finally, we also
reduced the number of free parameters by fixing the size
of the bleached fraction to a value experimentally
determined for each FRAP series. The number of DMCs
was determined by model choice rules, which are oriented
toward the numerical properties of the model.
Although our model allows for three distinct MC, we

possibly cannot estimate their number and properties
beyond all doubt, mostly because two or more distinct
interactions may fall into one MC (see Materials and
Methods). If interaction strengths of multiple interactions
are relatively close to each other, they may not be detected
as separate classes but be captured as one with an inter-
mediate mixed koff. The appearance of such parameter
redundancies depends on the model and the values of
the underlying parameters (e.g. 58). However, different
dynamics can still be distinguished indirectly by a
changed fraction size. An example for mixed interactions
in one class is the similar kinetics of the non-specified con-
stitutive class and of GFP-Dnmt1wt binding to PCNA.
This rather small constitutive fraction may be attributed
to one or more residual transient interactions. So far, we
could not detect any specific subdomain of Dnmt1 that
would be responsible for a transient interaction through-
out the cell cycle (data not shown). Thus, we tend to at-
tribute this to an anomalous diffusive behavior within the
nucleus that is identified as a pseudo-binding class. This
may be caused by restrained accessibility of dense
chromatin domains and transient trapping inside of
small chromatin lacunas (‘corralling’) generating a
‘pseudo’ binding effect and/or by unspecific transient
binding with a broad distribution of binding affinities
(53,54,59). Dnmt1 could also be constitutively present in
a free diffusing complex including interacting proteins like
PCNA or Uhrf1. In fact, Dnmt1 interactions have been
described for a variety of proteins including other DNA
methyltransferases, chromatin modifiers and transcrip-
tional regulators (60). Interactions with high molecular
weight complexes could potentially slow down diffusion

of GFP-Dnmt1 and thus contribute to the observed
dynamics.

Another limitation of our method is the precision limit
imposed by a still large cell-to-cell variability due to (i)
technical reasons like residual uncorrected cell motion or
z-drift, irradiation/transfection-induced DNA damage or
cell cycle arrest or (ii) biological reasons such as variations
in endogenous expression and methylation levels or local
environment. Therefore, for example, the quantification of
the apparently small CMC gives no robust results.
However, by estimating the kinetic parameters for each
FRAP curve separately, we take into account this extrinsic
noise and quantify it through standard errors. Finally,
using experimental FRAP data, it can never be ruled out
that the kinetics are influenced by variations in kon rates.
However, the method does not allow assessing changes in
the accessibility of the binding sites. These technical limi-
tations could only be solved using large-scale simulations
and even more complex models.

Despite these potential shortcomings, by application of
our method, one can still obtain a detailed picture of the
distinct cell cycle–dependent dynamics of proteins. We
have shown that the PBD and the TS domain are the
only domains involved in direct S phase-dependent target-
ing of Dnmt1 and responsible for delaying its mobility.
Furthermore, we discriminated two different MCs that
could be matched to these two different domains of
Dnmt1. In this study, we quantified the time they bind
on average and found the binding via the TS domain to
be >2-fold stronger than via the PBD, whereas the cor-
responding fractions of bound protein were in a similar
size range between 20 and 30%.

In accordance with previous studies, we show that the
more transient interaction with PCNA increases the con-
centration of Dnmt1 at replication sites to enhance the
efficiency of maintenance DNA methylation (7). In
addition, we have characterized the stronger binding
properties of the TS domain. The related MC was only
present in late S phase, when pericentric heterochromatin
(pHC) clustered in DAPI dense chromocenters is
replicated, suggesting a switch between PBD-mediated
binding in early S phase to the TS domain–mediated
binding in late S phase. The analysis of the single
mutants, however, hinted at a somewhat more complex
situation, as the deletion within the TS domain also
influenced GFP-Dnmt1 kinetics in early S phase and the
mutation in the PBD influenced the GFP-Dnmt1 localiza-
tion in late S phase. This rather argues for a more subtle
continuous change in binding balance instead of a simple
on/off switching. Hence, association via the TS domain
might occur also in early S phase, but at much lower abun-
dance. Indeed a substantial minority (8/21) of early S
phase cells could be better fitted with two respective
distinct MCs, indicating some cell-to-cell variability,
possibly in transition to mid S phase. On the other
hand, PBD-mediated co-localization with PCNA is also
observed in late S phase. However, as the fraction size
with the respective faster off-rate is reduced to non-S
phase level, this Dnmt1 fraction may be handed over to
form a late S phase–specific, more stable complex, such
that the TS domain–specific off-rate becomes
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predominant. In this stage, PCNA binding would thus be
an auxiliary factor for TS-mediated binding of a Dnmt1
subfraction. Besides, supported by super-resolution mi-
croscopy, we provide evidence for additional PCNA/
PBD-independent binding to pHC. The latter seems to
be dependent not only on the heterochromatic context
alone, but also on the presence of hemimethylated
postreplicative DNA as precondition. Accordingly we
did not observe any pHC association in early S phase. It
is tempting to speculate that the observed kinetics reflect
the binding of the TS domain to Uhrf1, an essential epi-
genetic factor that has previously been shown to target
Dnmt1 to hemimethylated CpG sites and to bind
trimethylated H3K9 (13–17). However, we cannot rule
out other/additional modes of binding of the TS domain

to pHC. In support of a role of Uhrf1 as a docking
platform for Dnmt1, a previous FRAP study
demonstrated a much slower recovery of GFP-Uhrf1
compared to GFP-Dnmt1wt in mouse embryonic stem
cells (61).
In light of our data we propose a conceptual

two-loading-platform model (outlined in Figure 6).
According to this, the kinetic balance would shift from
predominant PCNA/PBD binding in early S phase,
toward TS-mediated binding in later S phase stages
when replicating densely methylated heterochromatic se-
quences. This shift would be triggered by the strongly
increased appearance of hemimethylated CpG sites in con-
junction with heterochromatic marks (e.g., H3K9me3).
These would then offer the target for the formation of a

Figure 6. Two-loading-platform-model for the cell cycle–dependent targeting of Dnmt1 to RF and pHC. Schematic representation not drawn to
scale. Closed and open lollipops indicate methylated and non-methylated CpG sites, respectively; flags indicate heterochromatin specific marker (e.g.
H3K9me3). Dnmt1 is depicted in green. The model postulates two auxiliary factors that act as immobilizing platforms under certain conditions:
PCNA (red) that assembles as trimeric ring at the replication fork throughout S phase, and a second unspecified factor (e.g. Uhrf1, blue) that binds
strongly to hemimethylated postreplicative heterochromatin. Independent of replication, most Dnmt1 molecules (�80% in G1, >50% in S phase) are
freely roaming the nucleoplasm (left column). In addition, a non-specified MC with a pseudo koff,1 is constitutively present throughout interphase,
which may be attributed to either non-specific binding to chromatin or transient trapping (‘corralling’) of the large enzyme in the nucleoplasmic
environment. When replicating euchromatic sequences in early S phase (upper row) an additional �20% fraction of the Dnmt1 pool transiently binds
via the PBD to immobilized PCNA rings (red donut) with a mean residence time (1/koff,1) of �10 s (1). Targeting to PCNA at RF enhances the
efficiency of a small fraction of Dnmt1 to form metastable covalent complexes (koff,1) with hemimethylated CpG substrate sites in close vicinity. This
may occur on already assembled nucleosomes, likely involving complex formation with one or several auxiliary factors (2 a), or directly on the naked
DNA substrate adjacent to PCNA (2 b) or to nucleosomes (2 c). In late S phase, replication through chromatin with now abundant heterochromatic
marks in conjunction with dense CpG methylation triggers the generation of high-affinity binding sites for an auxiliary protein. These may then act
as second loading platform (dark blue pentagons) for TS-mediated binding with mean residence time (1 / koff,2) of �22 s involving �25% of the
Dnmt1 pool. Formation of this transient complex with subsequent substrate binding of a small subset of molecules occurs either directly at the
replication fork promoted by PBD-mediated targeting, or PCNA independently at already displaced postreplicative heterochromatin chromatin that
may have escaped loading in the first instance (3). This second PCNA-independent loading complex may be assembled well into G2 phase, until all
hemimethylated Dnmt1 target sites are fully methylated, which finally triggers disassembly of the loading complex and dissociation of Dnmt1 (4). Of
note, this conceptual model is based on the differential availability of binding sites and the free interplay of forces. While higher affinity binding sites
are occasionally generated also in early S phase, they may be too sparse to constitute a separate MC.
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stable complex (involving e.g. Uhrf1) that acts as a second
Dnmt1 loading platform on postreplicative chromatin
sites. PCNA-independent loading complexes may persist
also beyond S phase, until all hemimethylated Dnmt1
target sites are fully methylated, which in turn triggers
complex disassembly and gradual loss of TS-mediated
binding in G2 phase. Such a mechanism would thus safe-
guard faithful maintenance of dense methylation at con-
stitutive heterochromatin important for genome stability
(3), against the backdrop of a rather slow and inefficient
catalytic reaction (40).
While we favor a model of free interplay of forces in

conjunction with a cell cycle dependent varying abundance
of high affinity binding sites, we cannot rule out an effect
by an induced conformational change of the Dnmt1
protein to expose the TS domain at the onset of late S
phase. In this context, several modifications have been
reported like acetylation, ubiquitination, phosphorylation,
methylation and sumoylation, resulting in a change
in activity and/or abundance of Dnmt1 (60,62–64).
For example, it has been shown that Uhrf1 ubiquitinates
Dnmt1 at the C-terminal part of the TS domain (33).
Further studies will have to address the exact interplay of
Uhrf1 and Dnmt1 as a function of variable (hemi)methy-
lation density and the role of posttranslational modifica-
tions of Dnmt1.
In the present study, we have reached substantial im-

provements on the experimental conditions and workflow
for the quantitative and qualitative evaluation of half-
nucleus FRAP experiments. Still, extracting definite
answers from modeling of such FRAP data remains diffi-
cult and to some extent limited. Of note, our analysis
involved multiple decisions on the data normalization,
fixation of parameters, model choice, etc. Although all
steps have been carried out with greatest care, this deter-
ministic approach will still fall to some extent short. New
stochastic modeling approaches may be able to realistic-
ally take into account random events and may hence
better explain intrinsic variability of the FRAP curves.
Nonetheless, this article provides a framework for the
global assessment and quantitative measurement of
diffusion-coupled nuclear protein dynamics with heteroge-
neous and variable distribution of binding sites, e.g.
during cell cycle and development.
Our approach provided new insights into the complex

cell cycle dependent regulation of the multi-domain
protein Dnmt1 in the epigenetic network. We arrived at
a probabilistic two-loading-platform model that provides
a possible explanation how PBD and TS domain act co-
operatively to faithfully maintain genomic methylation
patterns through cell cycle and cell divisions. Further
studies will address the mechanistic nature of the
complex formation involving the TS domain and the tar-
geting of Dnmt1 to hemimethylated sites.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–3, Supplementary Figures 1–10,

Supplementary Methods and Supplementary References
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SUPPLEMENTARY METHODS 

Expression constructs and cell culture 

The expression construct GFP-Dnmt1
C1229W

 has been previously described (1). Dnmt1
-/-

 and wild type 

J1 mouse embryonic stem cells (C/C) (2), either non-transfected or stably transfected with GFP-

Dnmt1
wt

, GFP-Dnmt1
Q162E

 and GFP-Dnmt1
!TS

 were cultured without feeder cells in gelatinized flasks. 

Culture conditions and creation of stably expressing cells has been described before (3).  

 

In vivo Dnmt1 trapping assay  

The trapping assay to measure postreplicative methylation efficiency in living cells was previously 

described (1). 5-Aza-2Õ-deoxycytidine (Sigma) was added at a Þnal concentration of 30 "M and cells 

were incubated for the indicated periods before performing FRAP experiments. Microscope settings 

and quantitative FRAP analysis are described in Material and Methods (live cell microscopy and 

quantitative FRAP analysis). 

 

Dnmt1 immunostaining and evaluation of relative expression levels 

Non-transfected and transiently or stably transfected cells expressing GFP-Dnmt1 fusions were 

seeded on No. 1.5H precision coverslips (Marienfeld Superior), formaldehyde fixed and permeabilized 

with 0.5% Triton-X-100 or ice-cold methanol, if PCNA was detected. Endogenous PCNA was 

fluorescently labeled with the mouse monoclonal antibody PC10 (Abcam) and a secondary anti-mouse 

antibody conjugated to Alexa Fluor 594 (Invitrogen). The rat IgG1 monoclonal antibody 5A10 was 

raised against murine Dnmt1 with an N-terminal His6-tag. The protein was purified from Sf9 insect 

cells via recombinant baculoviruses. Immunization, generation of hybridomas and ELISA screening 

was performed as previously described (4). Secondary antibodies were conjugated to Alexa Fluor 488 

or Alexa Fluor 594 (Invitrogen). Cells were counterstained with 1 "g/ml 4',6-diamidino-2-phenylindole 

and embedded in Vectashield (Vector Laboratories).  

Mean intensity levels of Dnmt1 (endogenous and exogenous) in the nucleus were measured on 2 "m 

image stacks (0.5 "m z-distance) in Volocity 6.1 (PerkinElmer) using the SD based automatic 

threshold function on the DAPI staining. Objects below 200 "m# were excluded and objects separated 

with an object size guide of 1200 "m#. For evaluation of the transfected cells, only low to moderate 

expressing cells with a mean nuclear GFP intensity between 500 and 2000 grey values were 

considered (analogous to FRAP experiments). For the calculation of the anti-Dnmt1 fluorescence 

intensities, background subtracted mean intensities of at least 20 cells (transiently transfected) or 70 

cells (non-transfected and stably transfected cells), respectively, were averaged. Finally relative ratios 

of transfected over non-transfected cells were calculated and the standard deviations were 

determined.   

 

Co-immunoprecipitation and western blot analysis 

Co-immunoprecipitation and western blot analysis was performed as previously described (5) with the 

following changes. For extract preparation 150 mM NaCl, 1 mg/ml DNaseI (AppliChem), 2 mM MgCl2 
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and 1x protease inhibitor mix (Serva) were included in the lysis buffer. For dilution of lysates and for 

washing steps an immunoprecipitation buffer was used (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 

0.5 mM EDTA).  

The following primary monoclonal antibodies were used for immunoblotting: rat anti-Dnmt1 5A10 (see 

Dnmt1 immunostaining and evaluation of relative expression levels), rat anti-PCNA 16D10 (4), mouse 

anti-GFP (Roche) and mouse anti-$-Actin (Sigma-Aldrich). Secondary anti-rat and anti-mouse 

antibodies were either conjugated to HRP (Dianova) or Alexa Fluor 594/647 (Invitrogen).  

 

Data correction and normalization 

Imported image series were intensity normalized, converted to 8-bit and Gauss-filtered (2 pixel radius). 

Datasets showing lateral movement of cells were corrected by image registration using the StackReg 

plug-in of ImageJ starting with a frame where approximately half recovery was reached. Mean 

intensities over time were extracted from four regions of interest (ROIs): The total nuclear area (!) was 

defined manually or by applying the Autothreshold function of ImageJ on the prebleach frame and on 

the last frame. The overlapping region of both threshold-defined areas was used to create the minimal 

ROI. This ROI was then divided into a bleached (!) and an unbleached area, where the coordinates of 

the bleached ROI were used to determine the bleaching border (the last line perpendicular to the 

major axis of the nucleus, Supplementary Figure 4 A). Finally, a background ROI (!") outside of the 

cell was defined manually or with the Autothreshold function. The mean gray values over time were 

measured and pasted to an MS Excel worksheet.  

Raw data (Supplementary Figure 4 B) from ! and ! regions were background subtracted resulting 

in ! ! and !! with !!
! representing the data according to the respective time point t. A reference value 

!postbleach
!  was defined as the average of the resulting postbleach values from time points 10-20 after 

bleaching, and !prebleach
!  as the average of the last five prebleach values. Additional gain or loss of total 

fluorescence during postbleach acquisition may potentially be caused by nuclear import, bleaching-by-

acquisition and flux of unbleached molecules from above and below the recorded optical plane. In 

order to correct for such effects, the postbleach values were corrected by multiplication with !postbleach
! !

!!
!. Accordingly, prebleach values were multiplied with !prebleach

! !!!
! leading to !!

!! and !!
!!. To correct for 

cell-to-cell differences in bleaching depth, we subtracted a value  from all mean fluorescence values 

!!
!! and !!

!!. The value  was determined from the mean fluorescence in the distal part (50%) of the 

bleached region at the first postbleach time point as follows: To measure the bleaching depth, we 

determined fluorescence intensity profiles of the total nuclear region along the major axis of the 

nucleus and determined the number of pixels in the nucleus (! region) for each line along the axis at 

the first postbleach time point (Supplementary Figure 4 C). The bleaching depth  was then 

determined with the following Equation ( S 1 ), where P stands for the number of pixels of each line in 

the T region ! ! !! ! !!"#  along the axis as !postbleach!! and the mean fluorescence intensity of the 

lines as !postbleach!!, respectively, until 50% of the bleached lines indicated by !:  

"

"

"
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! !

!postbleach!!!!!postbleach!! ! !"postbleach!
!

!!!

!postbleach!!
!

!!!

! ( S 1 ) 

The corrected values for !!
!!! and !!

!!! were divided by the respective means of the last five prebleach 

values !prebleach
!!!

 
to account for intensity differences in the bleached and unbleached regions before 

bleaching. The corrected relative intensity values in the bleached region were finally corrected for the 

loss of fluorescence due to half nucleus bleaching. This was achieved by dividing each value !!
!!!! 

through the corresponding total nuclear value !!
!!!! resulting in . After complete recovery, the 

resulting fluorescence intensities will level off around the value 1, subject to stochastic fluctuations 

(Supplementary Figure 4 D). The bleached fraction was given by !bl ! ! ! !postbleach
!!! !!prebleach

!!!  using the 

 corrected values. Calculation of the mobile fraction (MF) was performed by 

.  was defined as the average intensity of the last 20 

frames. For the half time recovery (t1/2) the according time to F1/2 was chosen from the results with 

. 

Mathematical model 

The mathematical models used for the statistical analysis of the recovery curves are based on a 

compartmental approach and biochemical kinetic principles. The model for diffusion-uncoupled FRAP, 

i.e. for molecules that diffuse much more rapidly than they bind or unbind, has previously been 

described (6-7). A model for diffusion-coupled FRAP is developed in this work; a similar approach has 

been taken in (8). The compartmental description of the diffusion-coupled model is illustrated in Figure 

4 A; the diffusion-uncoupled model is a simplification thereof. Both models consider transitions 

between the bound and the free state of a protein with association rate constant !on and dissociation 

rate constant !off. Dissociation follows a linear process, while association is originally of second order. 

However, the product of !on and the concentration BS  of available binding sites can be assumed 

constant (9), resulting in an effective association rate constant !on
!
! !on BS . This simplification allows 

the conversion of the second order association process to a pseudo-first order process. Hence, the 

association and dissociation dynamics can be expressed in terms of linear ordinary differential 

equations (ODEs), which are given below. While bound proteins remain fixed at the respective binding 

sites, free proteins diffuse through the nucleus, thus changing their locations among the bleached and 

the unbleached sections. In diffusion-uncoupled FRAP, diffusion of free molecules happens so rapidly 

that their concentration is identical in the bleached and in the unbleached section. Hence, it is not 

necessary to model the location of a free molecule. In a diffusion-coupled situation, on the other hand, 

movements between the bleached and the unbleached section are modeled with a diffusion rate 

constant !diff. Every two molecules that are located at the same distance from the bleaching border 

are supposed to cross this border within a certain time interval with the same probability, no matter 

whether the direction of diffusion is from the bleached to the unbleached area or the other way round. 

If, however, the bleached fraction !bl is not equal to one half, the sizes of the bleached and unbleached 

sections differ. Then, due to the geometry of the bleached area, several of the proteins in the larger 

'''''

t
B

"

( ) ( )''''''''''''
1/ postbleachpostbleachplateau BBBMF !!= plateauB

( ) '''''''''''''''

2/1
2/ postbleachpostbleachplateau BBBF +!=
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section are located further away from the bleaching border than the proteins in the smaller area. In 

order to account for this imbalance, the probabilities for diffusion events in the two possible directions 

are weighted with factors !bl and ! ! !bl, respectively. The value of !diff depends on the geometry of 

the cell and is not immediately eligible for interpretation purposes. 

Bleached and unbleached molecules are assumed to behave identically, and therefore it suffices to 

focus on one type only. The following considerations model the dynamics of the unbleached 

molecules as these are visible through their fluorescence. Let !bl
free, !unbl

free , !bl
bound and !unbl

bound denote the 

fractions of unbleached free and bound proteins in the bleached and unbleached sections, measured 

with respect to all unbleached proteins in the nucleus. These four parameters sum up to one such that 

one of them can be left out. Define !free ! !bl
free

! !unbl
free  and !bound ! !bl

bound
! !unbl

bound. In diffusion-

uncoupled FRAP, one has !bl
free

! !bl!
free and !unbl

free
! !! ! !bl!!

free. The overall dynamics of 

unbleached proteins in diffusion-uncoupled FRAP is described by 

!!!!!!
!!

free

!"
! ! !on

!
! !off !

free
! !off, ( S 2 ) 

       
!!
bl

bound

!"
! !on

!
!bl!

free
! !off!bl

bound. ( S 3 ) 

In case of diffusion-coupled FRAP, one has 

!!!!!!
!!
bl

free

!"
! !!on

!
!bl
free

! !off!bl
bound

! !diff!!bl!unbl
free

! !! ! !bl!!bl
free!, ( S 4 ) 

!!!!!!
!!
unbl

free

!"
! !!on

!
!unbl
free

! !off ! ! !bl
free

! !unbl
free

! !bl
bound

! !diff !bl!unbl
free

! ! ! !bl !bl
free , ( S 5 ) 

      
!!
bl

bound

!"
! !on

!
!bl
free

! !off!bl
bound. ( S 6 ) 

In case of !diff ! !on
! ! !off, i.e. for diffusion-uncoupled FRAP, Equations ( S 4 )-( S 6 ) are dominated by 

the diffusion rather than binding dynamics until !bl
free

! !bl!
free, which is the basic assumption of 

diffusion-uncoupled recovery. Hence, the two models are consistent. In both setups, the recovery 

curve equals 

! !
!
bl

free
!!

bl

bound

!bl
.  

This term was adjusted to the data normalization procedure described above and approaches the 

value one as time progresses. From ( S 2 )-( S 3 ) and ( S 4 )-( S 6 )above, one arrives at differential 

equations for the fluorescence !. Interestingly, in case of diffusion-uncoupled recovery, the ODE for ! 

is independent of !free
 
and !bl

bound. Its explicit solution reads 

! ! ! ! ! !! ! ! exp!!!off ! ! !! !,  

where F0 is the initial value at time !!. This equation does not contain !on
! , and hence this parameter 

cannot be estimated directly from the recovery curve. However, we assume the nucleus to be in 

chemical equilibrium. Therefore the fraction !free!is presumed to be constant, i.e. !!free !" ! !. From 

this, one obtains 

!
free

!
!off

!on
!
!!off

.  

Hence, approximation of !on
!  is possible if estimates are available for !off and !free. 

There is possibly more than one type of binding partner for Dnmt1, i.e. the protein may sometimes 

associate to a partner of one type and sometimes to a partner of another type. These partners may 
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differ with respect to the affinity of Dnmt1 to enter the bound state and the mean residence times in 

this state. All binding partners with identical or similar kinetic properties are gathered in one mobility 

class (MC). This term seems more appropriate than classes of binding sites (6), because different 

sites with identical kinetic properties cannot be distinguished using FRAP data. The number of MCs 

could hence be smaller than the number of different binding partners. Furthermore binding-unrelated 

processes like anomalous diffusion can fall into an MC. 

Suppose there are ! classes of kinetically different binding partners for the protein of interest, 

labeled with numbers ! ! !! ! !! !!For all !, define !
bl

bound,!
 and !

unbl

bound,!
 as the fractions of type-! bound 

proteins in the bleached and unbleached sections, respectively, with !bound,! ! !
bl

bound,!
! !

unbl

bound,!
. Let 

!! ! !
bound,!

!
bound be the fraction of type-! bound proteins with respect to all bound proteins. 

Furthermore, denote by !on,!
!  and !off,! the association and dissociation rate constants corresponding to 

the !th MC. Then, the diffusion-uncoupled recovery is described by 

      
!!

free

!"
! ! !off,! ! !on,!

!!

!!! !
free

! !off,! ! !!off,! ! !off,!!!
bound,!!!!

!!! ,  

      
!!

bl

bound,!

!"
! !on,!

! !bl!
free

! !off,!!bl
bound,!

,  

!!!!!!
!!

unbl

bound,!

!"
! !on,!

!
! ! !bl !

free
! !off,!!unbl

bound,!
,  

where ! ! !! ! !!. For diffusion-coupled FRAP, one has 

      
!!
bl

free

!"
! !!bl

free
!on,!
!!

!!!
! !off,!!bl

bound,!!

!!!
! !diff!!bl!unbl

free
! ! ! !bl !bl

free!, ( S 7 ) 

      
!!
unbl

free

!"
! !!unbl

free
!on,!
!!

!!!
! !off,!!unbl

bound,!!

!!!
! !diff!!bl!unbl

free
! ! ! !bl !bl

free!, ( S 8 ) 

      
!!
bl

bound,!

!"
! !on,!

!
!bl
free

! !off,!!bl
bound,!

, ( S 9 ) 

      
!!
unbl

bound,!

!"
! !on,!

!
!unbl
free

! !off,!!unbl
bound,!

. ( S 10 ) 

In both cases, the observed fluorescence intensity is 

! !
!bl
free

! !
bl

bound,!!

!!!

!bl
.  

 

Parameter estimation 

The mathematical model contains several unknowns: The model parameters !on,!
! , !off,! !and !diff!! the 

initial values !!! !bl,!
free
! !bl,!
bound for the components !! !bl

free
! !bl
bound etc., and the fractions !bl, !! of bleached 

proteins, bound proteins of type ! etc. Due to computational effort, parameter redundancies and strong 

correlation between some parameters, it is not meaningful to statistically infer all these unknowns 

simultaneously. Instead, some values were fixed as follows: !diff and !bl were experimentally 

determined (see Supplementary Table 1, Figure 4 B and the data normalization description above). 

The smallest !off value was set to 0.005 (see the Results section). !!!was chosen equal to the first 

value of the FRAP curve. !bl!!
free was set equal to !bl!!! The association rates result from the other 

estimates as !on,i
!

! !off!!!! !! ! !
free! !free as explained below. Statistical inference of all remaining 

variables was carried out by least squares estimation. To that end, the Nelder-Mead algorithm (10) 
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was applied to find combinations of parameter values which minimize the sum of squared residuals 

between the observed FRAP curve and its simulated counterpart. In most cases, the output of the 

optimization procedure depended on the initial guesses of all unknown variables. Hence, several initial 

guesses were randomly drawn and passed to the Nelder-Mead algorithm. The overall best fit was then 

chosen from the set of return values. This procedure was continued until the global optimum did not 

change anymore. In case of diffusion-uncoupled FRAP, the modeled recovery curves can be 

calculated by means of explicit functions as described in detail below. For diffusion-coupled FRAP, the 

ODEs ( S 4 )-( S 6 ) and ( S 7 )-( S 10 ) were numerically solved with the Euler scheme with step 

length 0.03, which corresponded to one fifth of the observation interval. All software was written in R 

(R Development Core Team, 2011, R Foundation for Statistical Computing, Vienna, Austria). 

We estimated the model parameters for each FRAP curve separately and compared the estimates 

for curves from the same cell cycle phase and Dnmt1 construct afterwards. An alternative would have 

been to simply consider the average curve for each phase and construct and to derive parameters for 

this mean course. In our opinion, however, the second procedure would cause a loss of information. 

Averaging did not seem appropriate to us as there is undoubtedly extrinsic noise. Our analysis 

additionally yields insight about uncertainties caused by cell-to-cell variability. 

Numerics 

In our analyses, we always assume the system to be in chemical equilibrium. For both diffusion-

coupled and diffusion-uncoupled FRAP, the system of ODEs is linear, and hence there is an explicit 

solution of the above ODEs available. For diffusion-coupled FRAP, however, this involves the 

(typically approximate) computation of a matrix exponential. For that reason, we prefer to numerically 

solve the ODEs of the diffusion-coupled model. For diffusion-uncoupled FRAP, an exact computation 

of the solution of the ODEs is easily possible, see (11).  

For diffusion-coupled FRAP, we proceed as follows: Assume 

!!! !!"!!
!"##

! !free! !!! ! ! !!!!! !off!!!!!!off!! ! !diff 

to be given. In practice, we determine !!! !bl!!
free and !diff experimentally as described above. The 

remaining !! variables are estimated statistically, i.e. they are optimized using the Nelder-Mead 

algorithm. In order to avoid non-identifiabilities, we require !off!! ! !off!! ! ! ! !off!!. From the above 

parameters, we compute 

¥ !! ! ! ! !! !!! !!!! 

¥ !unbl!!
free

! !
free

! !bl!!
free 

¥  !bl!!
bound

! !!"!! ! !bl!!
free 

¥ !
bound

! ! ! !
free 

¥ !unbl!!
bound

! !
bound

! !bl!!
bound 

¥ !
bl!!

bound,!
! !!!bl!!

bound for ! ! !! ! !! 

¥ !
unbl!!

bound,!
! !!!unbl!!

bound for ! ! !! ! !! 

¥ !
on!!
!

! !off!!!!
!!!

free

!free
 for ! ! !! ! !! 
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These values are now used to numerically solve the diffusion-coupled ODE model. 

Model choice 

In our analysis, we estimate models with different numbers of MCs. Since the models are nested, the 

inclusion of more MCs always leads to a better or at least equally good fit. However, one may ask 

whether the additional computational effort for multiple MCs is worth the improved matching of the 

data. At first glance, model choice criteria like the Akaike information criterion (AIC) (12) seem 

appropriate. In our application, however, the difference in the mean squared residuals for different 

models is typically small due to the already mentioned parameter redundancies. Because of the large 

number of model parameters, the AIC will often favor less MCs although the curvature of the recovery 

curves is better described by more complex models. For that reason, we developed a model selection 

criterion which penalizes complexity less rigorously and is specific to our application. Due to the 

relatively small noise in the FRAP curves (Figure 3 B and Supplementary Figure 6), we do not expect 

to overfit the data. The criterion reads as follows: As explained in the Results section, the up to three 

MCs are further distinguished into one or two distinctive mobility classes (DMCs) and up to one 

catalytic mobility class (CMC). These have to fulfill three rules: 

(1) If a DMC or CMC is present, the fraction !bound of bound proteins should be above a certain 

threshold: 

!
bound

! !bound. 

Otherwise the DMCs and CMC are discarded, and we assume no MCs for this FRAP curve. 

(2) Two distinct MCs should differ substantially in their dissociation rates. In the model with two 

DMCs that means that one should have 

!off,DMC1!!off,DMC2

!off,DMC2

! !DMC   or   
!off,DMC2!!off,CMC

!off,CMC

! !CMC. 

Otherwise we assume the effective number of DMCs to be one. 

(3) An MC only truly contributes to the model if it reaches a certain size: 

!DMC1!
bound

! !DMC   and   !DMC2!
bound

! !DMC!!!and   !CMC!
bound

! !CMC. 

Otherwise we assume the effective number of DMCs to be one. 

We derive appropriate values for the above thresholds by cluster analysis. To that end, we consider 

the best fits for all FRAP curves and all models. From these, we select the corresponding marginal 

estimates which are in a critical region. For example, we consider the set of all !bound estimates that 

are between 0% and 10%. These sets are separately divided into two clusters such that the sum of 

variances within the clusters is minimized. The resulting thresholds are !bound ! !!!", !DMC ! !", 

!!CMC ! ! ! !"
!!
!, !!DMC ! !"

!! and !CMC ! !!!!! 

For each measured curve, we now select the model which yielded the best fit. This is typically the 

model with two DMCs and one CMC, but in many cases the fit of the model with one DMC and one 

CMC is equally good and hence preferred. For the chosen model, the original number of DMCs is 

replaced by the effective number of DMCs as determined by the above rules. This effective number 

enters Supplementary Figure 9. Then, for each cell cycle phase and protein construct, the primarily 

chosen effective number of DMCs is determined. The model with the according number of DMCs is 
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chosen for this phase and construct. Supplementary Table 2 displays the mean estimates for the so 

chosen model for all FRAP curves. These results always assume the original number of DMCs and do 

not further reduce it to an effective number. 
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SUPPLEMENTARY FIGURES 

S1 

 

 

Supplementary Figure 1. Specificity test of the anti-Dnmt1 antibody 5A10 and levels of ectopic 

and endogenous Dnmt1 expression. (A) Immunostaining of J1 wt and Dnmt1
-/-

 embryonic stem cells 

(C/C) shows a typical Dnmt1 staining pattern in the wt cells, but no nuclear enrichment in the Dnmt1
-/- 

cells. Scale bar: 10 "m. (B) Western blot analysis gives no signal of the anti-Dnmt1 5A10 antibody in 

J1 Dnmt1
-/-

 cells (C/C), but a clear band of 183 kDa in the J1 wt cells. $-Actin (42 kDa) was used as a 

loading control. (C) Automated quantification of Dnmt1 expression levels using Volocity software 

(PerkinElmer). The screenshot shows a representative extended focus image used for the evaluation. 

Nuclei were segmented according to their DAPI signal and the mean nuclear intensities of the Dnmt1 

antibody signal and of the GFP signal determined. Highly overexpressing cells (example marked by 

asterisk) were excluded form the analysis (analogue to the FRAP experiments below). (D) Quantitative 

evaluation of anti-Dnmt1 5A10 antibody signal intensity in GFP-Dnmt1 expressing cells (representing 

the endogenous and ectopically expressed Dnmt1) relative to non-transfected C2C12 cells 

(endogenous only). For the negative control no primary antibody was used. Error bars indicate 

standard deviations.   
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S2 

 

 

Supplementary Figure 2. Localization of GFP-Dnmt1
wt

 and GFP-Dnmt1
!TS

 in relation to 

endogenous PCNA. GFP-Dnmt1
wt

 and GFP-Dnmt1
!TS

 are depicted in green and PCNA is depicted in 

magenta. From early S phase until the beginning of late S phase GFP-Dnmt1
wt

 is associated with 

replication foci, highlighted by spots of immobilized PCNA. GFP-Dnmt1
wt

 remains to some extent 

enriched at heterochromatic regions in very late S phase and in transition to G2. GFP-Dnmt1
!TS

 shows 

less prominent association with replication foci throughout all S phase stages. In contrast to the wild 

type, no enrichment at heterochromatic regions is apparent in very late S phase. Scale bars: 5 "m. 
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S3 

 

 

Supplementary Figure 3. Super-resolution imaging of GFP-Dnmt1 constructs and endogenous 

Dnmt1. (A) C2C12 cell in early S-phase expressing GFP-Dnmt1
wt

 and immunostained with antibodies 

against endogenous PCNA (complementary to Fig 2 A) demonstrates a high degree of co-localization 

but variable amount of GFP-Dnmt1 associated with early S-phase replication foci (RF). Lateral and 

orthogonal cross section and z-projection of a 3D-SIM image stack is shown. (B) Co-staining of 

endogenous Dnmt1 using the 5A10 antibody together with PCNA reveal the same characteristic 

distribution pattern in early and late S phase as observed for GFP-Dnmt1
wt

 in C2C12 cells (compare 

panel A and Fig 2 A). (C) C2C12 cell expressing GFP-Dnmt1
Q162E

 in a very late S-phase stage as 

identified by only a few remaining PCNA labeled replication sites (complementary to Fig 2 C). In this 
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stage the region of pHC association extends over almost the entire chromocenter volume indicating 

binding to postreplicative pHC only. Scale bars: 5 "m and 1 "m (insets). 

 

 

S4 

 

Supplementary Figure 4. Quantitative evaluation of FRAP experiments. (A) The three evaluation 

ROIs (bleached, total, background) are represented schematically. (B) Mean intensity over time in the 

ROIs depicted in A for an example FRAP experiment (GFP-Dnmt1
wt

 with diffuse localization). (C) 

Determination of the bleaching depth in the distal part of the schematic nucleus. The mean 

fluorescence intensity of each line along the nucleus from the bleached to unbleached region is 

illustrated for the prebleach, the postbleach and the last frame. The bleaching depth is determined by 

the average intensity in the region containing 50% of the bleached lines distal to the bleach boarder. 

(D) Comparison of the corrected and normalized data depicted in B without and with bleaching depth 

correction. 
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S5 

 

 

Supplementary Figure 5. Quantitative FRAP evaluation of GFP-Dnmt1
wt

 with and without RFP-

PCNA coexpression. (A) Mean recovery curves and (B) half times of recovery (!!!!) are displayed. 

Coexpression of RFP-PCNA causes an enhanced mobility of GFP-Dnmt1
wt

 in early S. 
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S6 

 

Supplementary Figure 6. Quantitative FRAP evaluation of GFP and GFP-Dnmt1 constructs. 

Averaged recovery curves displayed for all measured constructs and cell cycle stage including error 

bars representing the standard error of the mean for every time point (complementary to Fig 3 B).  
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S7 

 

 

Supplementary Figure 7. Covalent complex formation of GFP constructs analyzed by in vivo 

trapping assay (A) Confocal mid sections of representative cells are displayed before (time point 

0:00) and after treatment with the mechanism-based inhibitor 5-aza-dC for 60 min (1:00) or 90 min 

(1:30), respectively. Upon treatment GFP-Dnmt1
wt

 shows a much stronger focal aggregation at RF 
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and complete depletion of the diffuse fraction. This indicates the immobilization of the mobile enzyme 

pool due to irreversible covalent complex formation at 5-aza-dC substituted hemi-methylated substrate 

sites continuously generated during replication progression. GFP-Dnmt1
Q162E

 shows a similar strong 

enrichment at RF and depletion of the diffuse fraction after 60 min of treatment. The degree of 5-aza-

dC-induced RF-association is less prominent for GFP- Dnmt1
!TS

 and the least prominent for the GFP- 

Dnmt1
Q162E/!TS

. In contrast, a catalytic mutant construct GFP-Dnmt1
C1229W

, that is unable to form the 

transient covalent enzyme-substrate complex required for the methyl group transfer, shows no 

apparent enriched aggregation at RF upon 5-aza-dC treatment. (B) Quantitative measurement of the 

5-aza-dC-induced immobilization by time-dependent FRAP analysis.  Example FRAP measurements 

of late S phase cells at different 5-aza-dC incubation times (left panel) and the corresponding confocal 

mid sections of the prebleach time point and 120 s after bleaching (right panel) are shown. The mobile 

fraction as determined from the recovery plateau reached after 120 s decreases with incubation time. 

(C) Time-dependent decrease of the mobile fractions of GFP-Dnmt1
wt

, the regulatory mutants GFP- 

Dnmt1
Q162E

, GFP- Dnmt1
!TS

, GFP- Dnmt1
Q162E/!TS

 and catalytically inactive mutant GFP-Dnmt1
C1229W

 

in early and late S phase upon 5-aza-dC treatment. The results highlight the general ability of all 

analyzed regulatory mutants, but not the catalytic mutant, to undergo covalent complex formation that 

initiates the enzymatic reaction. Moreover, clear differences in the efficiency of immobilization become 

apparent between the analyzed constructs, with the fastest trapping rate observed for GFP-Dnmt1
wt

 

followed by GFP-Dnmt1
Q162E

, GFP- Dnmt1
!TS

 and GFP- Dnmt1
Q162E/!TS

. Linear trend lines are 

depicted for every construct and cell cycle stage. 

 

S8 

 

 

Supplementary Figure 8. Kinetic dependence of GFP-Dnmt1
wt 

on the distance to the bleach 

border Ð diffusion-coupled kinetics. Representative images from a FRAP time series and the 

corresponding recovery curves after half nucleus FRAP (red line) from different evaluation regions of 

interest (ROIs) as indicated. A stepwise decreased initial mobility is detectable for ROIs that are 

distant to the bleach border indicating diffusion-coupled kinetics. 
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S9 

 

 

Supplementary Figure 9. Relative number of FRAP experiments with zero, one or two 

distinctive mobility classes. The dominating number of FRAP experiments with the GFP multimers 

are fitted with 100% free fraction (0 DMC), except for the GFP tetramer (1 DMC). Using our model a 

preference for one DMC is found for all GFP-Dnmt1 constructs with diffuse localization and in early S 

phase cells. A preference for two DMCs is found in late S phase independently of the construct. The 

dominant DMC classification was chosen for further quantifications.

 

 

S10 

 

 

 

Supplementary Figure 10. Interaction between Dnmt1 and PCNA is abolished by Q162E 

mutation, but not TS deletion. (A) PCNA is co-precipitated with GFP-Dnmt1 from Dnmt1
-/-

 mouse 

embryonic stem (C/C) cells. Protein extracts of C/C cells without or with stably expressing GFP-

Dnmt1
wt

, GFP-Dnmt1
Q162E

 or GFP-Dnmt1
!TS

 were immunoprecipitated with the GFP-Trap 

(ChromoTek). The immunoprecipitated proteins were separated by SDS-PAGE and detected by GFP 

or PCNA specific antibodies. (B) Quantification of co-precipitated PCNA relative to the amount co-

precipitated with GFP-Dnmt1
wt

. 
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SUPPLEMENTARY TABLES 

S1 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Supplementary Table 1. Cell cycle dependent kinetic properties of GFP and GFP-Dnmt1 

constructs analyzed by FRAP. ! indicates the number of analyzed cells, !" the mobile fraction and 

!!!! the half time of recovery. Values larger than 100% are due to technical deviations. Mean values ± 

SEM are listed. 

 

 

S2  

 
 

 
 
 

 
 

Supplementary Table 1. Size-dependent !diff values of GFP-Dnmt1
wt

 and GFP multimers. !diff 

values are extracted by kinetic modeling of the GFP multimer FRAP data except for GFP-Dnmt1
wt

, 

which was extrapolated from the other !diff values. 

  

Constructs stage N MF [%] t1/2 [s] 

GFP-Dnmt1
wt

 

diffuse 10 99.7±0.3 3.3±0.1 

early S 21 97.5±0.5 6.3±0.3 

late S 11 98.3±0.5 8.3±0.6 

GFP-Dnmt1
Q162E

 
diffuse 20 99.4±0.4 3.1±0.2 

late S 15 99.1±0.5 5.4±0.4 

GFP-Dmnt1
!TS

 

diffuse 14 99.2±0.5 3.8±0.2 

early S 16 98.9±0.5 4.2±0.3 

late S 14 99.4±0.3 6.0±0.4 

GFP-Dmnt1
Q162E/!TS

 diffuse 17 98.9±0.6 3.6±0.3 

 1x 14 100.2±0.4 0.7±0.03 

GFP multimers 2x 13 99.2±0.4 1.0±0.1 

 4x 12 100.2±1.4 1.5±0.2 

Constructs size [kDa] kdiff 

1x GFP 27 1.04 

2x GFP  54 0.67 

4x GFP 108 0.44 

GFP-Dnmt1
wt

 210 0.28 
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S3 

Constructs stage N 
ffree  

[%] 
DMC 

fDMC1 

 [%] 
Tres, DMC1 

 [s] 
koff, DMC1 

 [1/s] 
fDMC2  
[%] 

Tres, DMC2 

 [s] 
koff, DMC2 

 [1/s] 
fCMC 

 [%] 

GFP-Dnmt1
wt

 

diffuse  10 80.2±1.4 1 19.2±1.4 7.7±0.5 0.14+0.01 - - - 0.6±0.3 

early S 21 56.5±2.1 1 39.3±1.8 10.2±0.7 0.11±0.01 - - - 4.1±0.6 

late S 11 51.9±2.6 2 17.6±3.2 9.8±1.4 0.25±0.11 28.2±3.8 22.1±2.1 0.05±0.00 2.3±0.6 

GFP-Dnmt1
Q162E

 
diffuse  20 84.8±1.9 1 13.9±1.9 8.8±1.0 0.18±0.06 - - - 1.2±0.3 

late S 15 65.9±2.5 2 9.8±2.5 8.5±1.3 0.59±0.27 22.6±2.3 18.9±2.9 0.07±0.01 1.6±0.6 

GFP-Dmnt1
!TS

 

diffuse  14 76.5±2.8 1 22.0±2.6 6.8±0.5 0.16±0.01 - - - 1.5±0.4 

early S 16 67.9±4.2 1 30.1±4.1 8.5±0.8 0.13±0.01 - - - 2.0±0.5 

late S 14 58.3±2.5 1 40.3±2.6 8.8±0.2 0.12±0.00 - - - 1.4±0.3 

GFP-Dmnt1
Q162E/!TS

 diffuse  17 79.2±2.6 1 19.1±2.6 8.2±0.6 0.13±0.01 - - - 1.7±0.4 

 1x 14 100.0 0 - - - - - - - 

GFP multimers 2x 13 100.0 0 - - - - - - - 

 4x 12 91.1±2.8 1 8.0±2.7 14.9±5.6 0.39±0.014 - - - 0.9±0.5 

 

Supplementary Table 3. Cell cycle dependent properties of GFP and GFP-Dnmt1 constructs 

extracted by kinetic modeling. N indicates the number of analyzed cells and DMC the number of 

distinctive mobility classes determined by the kinetic modeling. The fraction of bound proteins is 

subdivided into !DMC1, !DMC2 and !CMC representing the fractions of proteins bound with the kinetics of 

DMC1, DMC2 or CMC, respectively. The fraction of unbound proteins is denoted as !free. !off indicates 

the dissociation rate, !res the mean residence time given by !!!off for DMC1 and DMC2, if present. All 

listed values are mean values ± SEM. Note that mean(!res! is computed as mean(!!!off) and deviates 

from 1/mean(!off). 
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2.5 Poly(ADP-ribose) polymerase 1 (PARP1) associates with E3 ubiquitin-

protein ligase UHRF1 and modulates UHRF1 biological functions 
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Ubiquitin-Protein Ligase UHRF1 andModulates UHRF1
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Background: PARP1 and UHRF1 participate in heterochromatin dynamics and the maintenance of DNA methylation,

raising the question of whether both proteins cooperate in these events.

Results:We reveal a physical and functional poly(ADP-ribose)-mediated interaction of PARP1withUHRF1 that helps to adjust

UHRF1-regulated biological activities.

Conclusion: PARP1 is a regulator of UHRF1-controlled H4K20me3 accumulation and DNMT1 expression.

Significance: PARP1 associates and cooperates with UHRF1 to regulate heterochromatin-associated events.

Poly(ADP-ribose) polymerase 1 (PARP1, also known as

ARTD1) is an abundant nuclear enzyme that plays important

roles in DNA repair, gene transcription, and differentiation

through themodulation of chromatin structure and function. In

this work we identify a physical and functional poly(ADP-ri-

bose)-mediated interaction of PARP1 with the E3 ubiquitin

ligaseUHRF1 (also knownasNP95, ICBP90) that influences two

UHRF1-regulated cellular processes. On the one hand, we

uncovered a cooperative interplay between PARP1 and

UHRF1 in the accumulation of the heterochromatin repres-

sive mark H4K20me3. The absence of PARP1 led to reduced

accumulation of H4K20me3 onto pericentric heterochroma-

tin that coincided with abnormally enhanced transcription.

The loss of H4K20me3 was rescued by the additional depletion

ofUHRF1. In contrast, althoughPARP1also seemed to facilitate

the association of UHRF1 with DNMT1, its absence did not

impair the loading of DNMT1 onto heterochromatin or the

methylation of pericentric regions, possibly owing to a compen-

sating interactionofDNMT1withPCNA.On theotherhand,we

showed that PARP1 controls the UHRF1-mediated ubiquitina-

tion ofDNMT1 to timely regulate its abundance during S andG2

phase. Together, this report identifies PARP1 as a novel mod-

ulator of two UHRF1-regulated heterochromatin-associated

events: the accumulation of H4K20me3 and the clearance of

DNMT1.

Post-translational modifications of histones and CpG meth-
ylation into DNA are defined as fundamental epigenetic mech-
anisms that elicit specific effects on various chromatin-associ-
ated biological events including gene expression, chromatin
structure, and integrity or differentiation. Among the chroma-
tin-associated proteins that catalyze or modulate these pro-
cesses, an explosion of recent findings has introduced poly-
(ADP-ribose) polymerase 1 (PARP1,6 also known as ARTD1)
and its activity as a major actor with both structural and regu-
latory roles (1–3). After binding to specific DNA structures or
nucleosomes, PARP1 catalyzes an NAD1-dependent polymer-
ization of negatively charged ADP-ribose units to form a ram-
ified polymer called poly(ADP-ribose) (PAR) onto a variety of
relevant chromatin-associated targets such as histones, his-
tone-binding proteins, chromatin modulators, and PARP1
itself. The process by which PARP1 introduces covalently
bound PAR onto target proteins is known as PARylation. Like
other post-translational modifications, PARylation regulates
the biochemical and functional properties of the modified tar-
get. Furthermore, PAR, either protein-free or covalently linked
on proteins, is capable of noncovalent binding with specific
proteins owing to the presence of a PAR-binding motif (4).

Interestingly, PARP1 has been particularly studied for its
implication in the structure and function of heterochromatin
sometimes in redundancy with PARP2. PARP1 binds to and
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interacts with specific components of constitutive heterochro-
matin such as telomeres (5, 6), centromeres (7, 8), and pericen-
tromeres (9–11) or silent ribosomal RNA repeats (12, 13). The
PARP11/2;PARP22/2 background displays specific female
embryonic lethality associated with X chromosome instability,
suggesting a role in the maintenance of facultative heterochro-
matin as well (14). Recent reports imply a particular contribu-
tion of PARP1 to the propagation of the repressive heterochro-
matin marks after the passage of the replication fork. This has
been suggested first by its interaction with the SWI/SNF-like
chromatin remodeler SMARCAD1 (SWI/SNF-related matrix-
associated actin-dependent regulator of chromatin subfamilyA
containing DEAD/H box 1) involved in the inheritance of the
silenced pericentric heterochromatin (11) and has been next
exemplified by its association with the nucleolar remodeling
complex NoRC, where it serves to perpetuate silent ribosomal
DNA heterochromatin (12).

It is also becoming increasingly clear that PARP1-catalyzed
PARylation participates in the DNA methyltransferase-1
(DNMT1)-mediated establishment and maintenance of DNA
methylation patterns (15). A series of cellular studies shows that
the blockage of PARylation causes anomalous DNA hyper-
methylation on genomicDNA and in particular onCpG islands
(16–19), whereas increased PARylation is associated with
widespread DNA hypomethylation (20). Furthermore, PARP1
and DNMT1 were found in a complex also containing PAR
(21). The current working model proposes that PARylated-
PARP1 binds to the DNMT1 promoter, attracts DNMT1
through its PAR-binding motif, and inhibits its catalytic activ-
ity, thereby protecting the DNMT1 promoter from methyla-
tion (15, 22). In this model, PARP1 automodification is pro-
moted by the chromatin insulator CTCF (CCCTC-binding
factor) (20).

Recently, UHRF1 (ubiquitin-like, with PHD and RING finger
domains 1, also known asNP95 or ICBP90) has also emerged as
a central mediator in the faithful inheritance of DNAmethyla-
tion in mammals. Deletion of UHRF1 in mice is embryonic
lethal, and the derived embryonic stem cells display loss of
DNA methylation, altered chromatin structure, and enhanced
transcription of repetitive elements (23). The initial model was
that UHRF1 binds to hemi-methylated DNA via its SET and
RING-associated (SRA) domain and acts as a recruitment fac-
tor for DNMT1 to copy themethylation pattern onto the newly
synthesized daughter strand during DNA replication (24, 25).
Subsequent reports have identified an additional binding of
UHRF1 to di/trimethylated histone H3 on lysine 9 (H3K9me2
and H3K9me3) involving its tandemTudor domain (TTD) and
its plant homeodomain (PHD), which may contribute to its
localization to pericentric heterochromatin (26–29). A recent
study highlights the significant contribution of TTD-mediated
binding to H3K9me3 in DNA methylation maintenance, likely
by regulating DNMT1 stability during mitosis (30). Together,
these studies suggest that UHRF1 mediates cross-talk between
histone modifications and DNA methylation maintenance.

Interestingly, UHRF1 also contains a Ring domain endowed
with E3 ubiquitin ligase activity and has been shown to ubiq-
uitinate itself, histone H3, and DNMT1 but with different out-
comes (31, 32). Although theUHRF1-dependent ubiquitylation

of H3 has been reported to act as a platform for the recruitment
of DNMT1 to DNA replication sites, the ubiquitination of
DNMT1 along with its deubiquitination by Usp7 (also known
as HAUSP) represents a major process for the tight regulation
of DNMT1 levels (33–36).

In addition to its association with DNMT1, UHRF1 interacts
with many other chromatin modulators such as the de novo

methyltransferases DNMT3a and DNMT3b, the histone
deacetylase HDAC1, the histone methyltransferase G9a, or the
histone acetyltransferase Tip60 (37–40). Most of these associ-
ations involve the SRA domain. Therefore, beyond its critical
role in DNA methylation maintenance, UHRF1 functions in
several other chromatin-related pathways including DNA
repair, silencing of viral promoters, and replication and silenc-
ing of pericentric heterochromatin (37, 41, 42).

As both PARP1 and UHRF1 were found to act in common
chromatin-related pathways and share DNMT1 as a protein
partner, we anticipated a possible physical and functional coop-
eration between the two proteins. We identified PARP1 as a
novel interacting partner of UHRF1 that modulates two of its
biological properties. First, we identify a related contribution of
PARP1 and UHRF1 in the maintenance of the repressive mark
H4K20me3 at pericentric heterochromatin, which possibly
helps to control overall transcriptional silencing.We also show
that PARP1 helps to maintain the association of UHRF1 with
DNMT1 although with no consequence on the loading of
DNMT1 to heterochromatic sites or the DNMT1-mediated
methylation of major satellite repeats. Second, we describe
PARP1 as a negative regulator of the ubiquitin ligase activity of
UHRF1 onto DNMT1, thereby introducing PARP1 as an addi-
tional modulator of DNMT1 abundance during S and G2

phases. This can represent an additional way to maintain DNA
methylation and transcriptional silencing, more specifically
during the replication of pericentric heterochromatin and
onward.

EXPERIMENTAL PROCEDURES

Plasmids and Antibodies—Plasmids encoding GST-fused
full-length or truncated versions of human PARP1 were
described elsewhere (13). Plasmids encoding Myc-tagged full-
length and deleted versions of UHRF1 or GFP-DNMT1 also
were described elsewhere (27, 31). The GFP-UHRF1 single
domain constructs for Ubl and Ring domain expression con-
structs were generated by PCR using the corresponding wild-
type full-length GFP-UHRF1 construct (27). The GFP-PHD,
TTD, and SRA expression constructs have been described pre-
viously (27, 43). Details on individual plasmid constructs, which
were verified by sequencing, are available upon request. Mouse
monoclonal anti-Myc antibody (9E10: WB, 1/250; IP, 3
mg/sample) and rabbit anti-DNMT1 antibody (H-300: WB,
1/200; IF, 1/100) were from Santa Cruz Biotechnology. Rabbit
polyclonal anti-GST (G7781: WB, 1/10000), the mouse mono-
clonal anti-actin antibody (A2066:WB, 1/500) and rabbit poly-
clonal anti-GAPDH antibody (G9545:WB, 1/10000) were from
Sigma. The rabbit polyclonal anti-poly(ADP-ribose) antibody
(4335-MC-100: WB, 1/1000) was from Trevigen. The mouse
monoclonal anti-PCNA antibody (PC-10: WB, 1/2000; IP, 4
mg/sample) was fromDako-Cytomation. The mouse monoclo-
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nal anti-GFP antibody (11814460001: WB, 1/10000) was from
Roche. The mouse monoclonal anti-HA.11 antibody (16B12:
WB, 1/10000) was from Covance. The rabbit anti-H3K4me3
(pAB-003–050: IF, 1/200) was from Diagenode. The rabbit
anti-H3K9me3 (ab8898: IF, 1/2000), mouse anti-H4K16ac
(ab23352: IF, 1/100), and rabbit polyclonal anti-H4K20me3
(ab9053: IF, 1/500; WB, 1/1000) were from Abcam. The mouse
monoclonal anti-H4was fromMillipore (07-108:WB, 1/10000)
was from Millipore. The mouse monoclonal anti-UHRF1 (IF,
1/1000) has been described elsewhere (44). The mouse mono-
clonal anti-PARP1 antibody (EGT-69:WB, 1/10000) and rabbit
polyclonal anti-UHRF1 antibody (WB, 1/2000; IP, 5 ml/sample;
IF, 1/1000) are described in Refs. 45 and 31, respectively. The
rabbit polyclonal anti-PARP1 (2869-70: IP, 15 ml/sample) was
produced in-house. The Alexa-conjugated antibodies for IF
(Alexa Fluor 568 goat anti-rabbit IgG, Alexa Fluor 568 goat
anti-mouse IgG, and Alexa Fluor 488 goat anti-mouse IgG: IF,
1/1500) were fromMolecular Probes.
Cell Culture, Synchronization, and siRNA Knockdown—

COS-1 and PARP11/1 and PARP12/2 3T3 cells were grown in
DMEM (1 g/liter D-glucose, Invitrogen) supplemented with
10% FBS (PanBiotech) and 0.1% gentamicin (Invitrogen) at
37 °C in 5% CO2.
Synchronization of 3T3 cells was performed by serum star-

vation (DMEM (1 g/liter), 0.1% FBS, and 0.1% gentamicin) for
48 h. After release in fresh medium, cells were collected at dif-
ferent time points as determined by preliminary flow cytometry
experiments (T14 h for G1, T22 h for S, and T24 h for G2) for
protein detection by Western blotting. To inhibit protein syn-
thesis, cells were treated with cycloheximide (Sigma) at 20
mg/ml for 24 h (including release time) before collecting the
cells.

For UHRF1 knockdown in 3T3 cells, gene-specific ON-
TARGETplus SMARTpool siRNAs (pool of four sequences) for
UHRF1 (L-055507-01-0010) and the control ON-TARGET
nontargeting pool siRNA (D-001810-10-20) were from Dhar-
macon. Cells in suspension were electroporated with 50 nM
siRNA pools using the Neon transfection system (Invitrogen)
according to themanufacturer’s instructions. A second electro-
porationwith 50 nM siRNApools was performed 48 h later. The
transfected cells were collected 96 h after the first electropora-
tion and processed for RNA extraction, protein extraction, or
immunofluorescence staining.
Western Blot Analysis, GST Pulldown, GFP-Trap Capture,

and Immunoprecipitation—For Western blotting and immu-
noprecipitation of endogenous proteins, cells were lysed in
RIPA-like buffer (50 mM Tris, pH 8, 0.5% Triton, 0.25% sodium
deoxycholate, 150 mM NaCl, 1 mM EDTA, 50 mM sodium fluo-
ride, 20 mM sodium pyrophosphate, pH 7.2, 1 mM sodium
orthovanodate, 1mMPefabloc, and one tablet of protease inhib-
itor complex/10 ml (Complete Mini, Roche Diagnostics)) and
incubated on ice for 20 min. After centrifugation at 10,000 rpm
at 4 °C for 20min, cleared suspensionswere quantified by Brad-
ford protein assay, and 50 mg of protein was analyzed by SDS-
PAGEelectrophoresis and immunoblotting using the appropri-
ate antibodies.

Histones were acid extracted from a total of 1 3 106

PARP11/1 and PARP12/2 3T3 cells following the Abcam his-

tone extraction protocol. The protein content was determined
using the Bradford assay, and 30 mg of protein was analyzed by
SDS-PAGE electrophoresis and immunoblotting using the
appropriate anti-histone antibodies.

For pulldown experiments, 1 3 106 COS-1 cells were trans-
fected by jetPEI (Polyplus transfection) with 8 mg of total
recombinant DNA. Forty-eight hours later, cells were lysed by
three cycles of freeze/thaw in 50 mM Tris-HCl, pH 8, 150 mM

NaCl, 0.1% Nonidet P-40, 0.5 mM Pefabloc, and one tablet of
protease inhibitor complex/10 ml. Cleared lysates were incu-
bated with glutathione-Sepharose beads (GE Healthcare) for
purification of GST-tagged proteins for 2 h at 4 °C. Beads were
subsequently washed twice with washing buffer (10 mM Tris-
HCl, pH 8, 0.1% Nonidet P-40, 0.5 mM Pefabloc, and protease
inhibitor complex) containing 500 mM NaCl and twice with
washing buffer containing 150 mM NaCl. For the experiment
shown in Fig. 2C, beads were washed twice with washing buffer
containing 750 mM NaCl, once with washing buffer containing
500 mM NaCl, and twice with washing buffer containing 150
mMNaCl. The final pellets were resuspended in Laemmli buffer
and subjected to 10% SDS-PAGE.

For GFP-Trap capture, 13 106COS-1 cells were transfected
by JetPEI with 8 mg of total recombinant DNA. Forty-eight
hours later, cells were lysed in RIPA-like buffer as described
above and incubated with the GFP-Trapt_A (Chromotek,
Planegg-Martinsried, Germany) overnight at 4 °C for affinity
purification of the GFP-tagged protein. Beads were subse-
quentlywashed twicewithwashing buffer (10mMTris-HCl, pH
8, 0.1% Nonidet P-40, 0.5 mM Pefabloc, and protease inhibitor
complex) containing 500 mM NaCl and twice with washing
buffer containing 150 mM NaCl. The final pellets were resus-
pended in Laemmli buffer and subjected to 4–20% SDS-PAGE
for protein analysis or processed for in vitro PARylation as
detailed below.

For the in vitro binding assays, 4 3 106 COS-1 cells were
transfected by JetPEI with 8 mg of Myc-SRA. Forty-eight hours
later, cells were lysed in RIPA-like buffer as describe above,
incubated with the anti-Myc antibody overnight at 4 °C fol-
lowed by a 2-h incubation at 4 °C with protein A/G-Sepharose
(GE Healthcare). Next, beads were resuspended in 100 ml of
dilution buffer (20mMTris-HCl pH 7,5, 0.1%Nonidet P-40, 0.5
mM Pefabloc) and incubated together with 300 ng of purified
recombinant PARP1 for 20 min at 30 °C. Beads were then
washed twice with dilution buffer containing 750 mM NaCl,
twice with dilution buffer containing 400 mM NaCl, and twice
with dilution buffer containing 150 mM NaCl. The final pellets
were resuspended in Laemmli buffer and subjected to 10%
SDS-PAGE.

For immunoprecipitation experiments of endogenous pro-
teins, RIPA-like cell extracts were precleared by incubation on
protein A/G-Sepharose beads for 1 h at 4 °C before incubation
with the indicated antibodies overnight at 4 °C followed by a
2-h incubation at 4 °Cwith proteinA/G-Sepharose (GEHealth-
care). Beads were washed four times with 20 mM Tris-HCl, pH
7.5, 150–750 mM NaCl, 0.1% Nonidet P-40, and 0.5 mM Pefa-
bloc, resuspended in Laemmli buffer, and analyzed by SDS-
PAGE and immunoblotting. Blots were incubated with the
appropriate antibodies as indicated. When indicated, 100 nM
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PARP inhibitor Ku-0058948 was added to the culture medium
2 h before lysis and maintained throughout the experiment.
In Vitro PARylation—For poly(ADP-ribosyl)ation of immu-

nopurified proteins, purified PARP1 (1 mg) was incubated with
immunopurified Myc-tagged UHRF1, Myc-TRF2 as a positive
control, GFP, or GFP-tagged single domains of UHRF1 for 10
min at 25 °C in 480 ml of activity buffer (50 mM Tris-HCl, pH 8,
0.2 mM dithiothreitol, 4 mMMgCl2, 0.1 mg/ml BSA, and 100 nM
NAD1 (for PARP1) or 1 mM NAD1 (for PARP2)) containing 2
mCi of [a-32P]NAD1 (800 Ci/mmol, PerkinElmer Life Sci-
ences) and 900 ng of DNase I-activated calf thymus DNA. The
reaction was stopped by the addition of 500 ml of cold washing
buffer (50 mM Tris-HCl, pH 8, 400 mM NaCl, 0.1% Nonidet
P-40, and 0.5mMPMSF) on ice, andbeadswerewashed five times
with washing buffer and resuspended in 20 ml of Laemmli
buffer. Reaction products were analyzed by gel electropho-
resis on 10% SDS-PAGE and autoradiography. For PARyla-
tion of purified recombinant UHRF1 tested in ubiquitination
assays, purified PARP1 (100 ng) was incubated alone or
together with purified UHRF1 (100 ng) for 20 min at 25 °C in
15 ml of activity buffer (25 mM Tris-HCl, pH 7.6, 5 mM

MgCl2, 1 mM dithiothreitol, 0.1 mg/ml BSA, 5 ng/ml DNA,
and 10 mM NAD1).
Immunofluorescence Studies—Immunofluorescence was

performed essentially as described previously (13). Briefly, cells
grownon glass coverslipswerewashed twicewith PBS and fixed
for 15 min with PBS, 3.7% formaldehyde, followed by three
washes in blocking buffer (PBS, 0.1% Triton X-100, and 0.1%
milk). Cells were then incubated overnight at 4 °C with the pri-
mary antibodies diluted in blocking buffer. After three washes
with PBS, 0.1% Triton X-100, and 0.1% milk, cells were incu-
bated for 3 h at room temperature with the appropriate conju-
gated secondary antibodies diluted in blocking buffer.DNAwas
counterstainedwith 49,69-diamidino-2-phenylindole (DAPI, 25
ng/ml in PBS). Slides were mounted using Mowiol 4-88
(Hoechst), and immunofluorescence microscopy was per-
formed using a Leica microscope (LeicaMicrosystems, Heidel-
berg, Germany) and the capture software (Improvision,
PerkinElmer Life Sciences).
DNA Methylation Analysis—Methylation of mouse major

and minor satellite repeats was determined by pyrosequencing
of bisulfite-treated, PCR-amplified, genomic DNA as described
(46).
RT-PCR Analysis—Total RNA was extracted from ;3 3 106

PARP11/1 and PARP12/2 cells with TRIzol (Invitrogen)
according to the manufacturer’s instructions. The remaining
DNA was digested by incubation with RNase-free DNase I
(Promega) (1 unit/mg RNA), and isolated RNA was purified
using the RNAClean-upXS kit (Machery-Nagel). Reverse tran-
scription (RT) was done on 800 ng of purified RNA using oli-
go(dT) primers (Sigma) and the AMV reverse transcriptase
(Finnzyme). PCR reactions were performed on 5% of the RT
volume using the Phusion polymerase (Finnzyme) and the fol-
lowing primer pairs: major satellite repeat forward, 59- GAC-
GACTTGAAAAATGACGAAATC-39; major satellite repeat
reverse, 59-CATATTCCAGGTCCTTCAGTGTGC-39; GAPDH
forward, 59- TTCTGAGTGGCAGTGATGGC-39; andGAPDH
reverse, 59- AACAACCCCTTCATTGACCTC-39. Transcripts

were analyzed on ethidium bromide-stained agarose gels using
the Typhoon instrument and quantified by ImageJ.
In Vivo Ubiquitination Assay—PARP11/1 and PARP12/2

cells were co-transfected with 5 mg of GFP, GFP-DNMT1, or
Myc-UHRF1 and 5 mg of HA-Ub using the jetPEI method.
Thirty-six hours later, the cells were treated with 5mMMG-132
(Enzo) for another 12 h and lysed with RIPA-like buffer as
described above. After GFP quantification byWestern blotting,
equivalent amounts of GFP-DNMT1 were immunopurified
using GFP-Trap®_A (Chromotek) as described above. Myc-
UHRF1 was immunoprecipitated using an anti- Myc antibody
as described above. Beads were washed twice with washing
buffer A (20 mM Tris-HCl, pH 7.5, 0.1% Nonidet P-40, 400 mM

NaCl, and 0.5 mM Pefabloc), twice with washing buffer B (20
mMTris-HCl, pH7.5, 0.1%Nonidet P-40, 150mMNaCl, and 0.5
mM Pefabloc), resuspended in Laemmli buffer, and processed
for Western blotting. Twenty-five % of the sample was loaded
for detecting GFP-DNMT1 or Myc-UHRF1, and 75% of the
sample was loaded for detecting GFP-Dnmt-1Ub or Myc-
UHRF1Ub using the anti-HA antibody.
In Vitro Ubiquitination Assay—Purified recombinant

UHRF1 (100 ng (31)) was first incubated alone or together with
purified recombinant PARP1 (100 ng) in a PARP activity buffer
with or without NAD1 as described above. After 20 min at
25 °C, PARylated or non-PARylated (PARP assay performed
without NAD1) UHRF1 was subsequently incubated alone or
togetherwith purified recombinantGST-DNMT1 (300 ng, BPS
Bioscience) as indicated in a standard ubiquitination reaction
mixture (15 ml) containing 100 ng of human recombinant
ubiquitin-activating enzyme (Boston Biochem), 300 ng of
human recombinant UbcH5b (Boston Biochem), and 10 mg of
Ha-tagged human recombinant ubiquitin (Boston Biochem) in
25 mM Tris-HCl, pH 7.6, 5 mM MgCl2, 1 mM DTT, 2 mM ATP,
and 100 mM NaCl. During ubiquitination, PARP activity was
inhibited by adding 330 nM Ku-0059848. The reaction was
incubated at 37 °C for 1 h and stopped by adding 1,253 final
Laemmli buffer. Ubiquitinated proteins were analyzed by
Western blot analysis; one-half of the final volume was used for
HA-ubiquitin detection and one-eighth of the volumewas used
for poly(ADP-ribose) polymer detection.

RESULTS

PARP1 Interacts with the E3 Ubiquitin Ligase UHRF1 in a

PAR-dependent Manner—Previous studies have identified
PARP1 together with DNMT1 in a proteomic analysis of anti-
UHRF1 immunoprecipitates, thus making PARP1 a possible
candidate for modulating UHRF1-DNMT1 functional inter-
play (24).

To expand on these findings, we decided to investigate the
comparative association of PARP1 and PARP2 with UHRF1
(Fig. 1A). COS-1 cells were transfected with Myc-tagged
UHRF1 together with GST, GST-fused PARP1, or GST-fused
PARP2. After glutathione-Sepharose beads were trapped,
copurified Myc-UHRF1 was assessed by Western blot analysis
using an anti-Myc antibody. To test the role of PARylation in
the interaction, pulldown assays were performed in the pres-
ence of the potent PARP inhibitor Ku-0058948. As shown in
Fig. 1A, UHRF1 was clearly coprecipitated with GST-PARP1
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(lane 2) but not efficiently with GST-PARP2 (lanes 4–5) and
not with GST alone (lane 1), defining a preferential association
of UHRF1 with PARP1 compared with PARP2. Furthermore, a
significantly weaker copurification of UHRF1 with GST-
PARP1 was observed in the presence of Ku-0058948 (Fig. 1A,
lane 3), revealing a critical role of PARylation in their associa-
tion. The UHRF1-PARP1 interaction and the association with
DNMT1 was next verified by coimmunoprecipitation experi-
ments with the endogenous proteins (Fig. 1, B and C). Using an
anti-UHRF1 antibody, we efficiently coimmunoprecipitated
both PARP1 and DNMT1 from 3T3 mouse extracts (Fig. 1B,
lane 4), whereas no coprecipitation was detected using a con-
trol antibody (Fig. 1B, lane 3). In a reciprocal experiment (Fig.
1C), when 3T3 cell extracts were immunoprecipitated with an
anti-PARP1 antibody, significant fractions of UHRF1 and
DNMT1 were detected in the PARP1 immunoprecipitate (lane
2) but not in the control immunoprecipitate (lane 1). To further
prevent any coprecipitation of either of the proteins through
DNA, we performed the coprecipitation experiments in the

presence of ethidium bromide, which intercalates into DNA
and thereby competes for interacting proteins (Fig. 1C, lanes 3
and 4). The addition of ethidium bromide did not abolish the
DNMT1-UHRF1-PARP1 interaction, suggesting that DNA
was not involved (Fig. 1C, compare lanes 4 and 2). Together
these results describe the existence of a protein complex con-
taining PARP1, UHRF1, and DNMT1 in mammalian cells.

To further characterize the UHRF1-PARP1 association, we
aimed to identify the region of PARP1 to which UHRF1 binds
(Fig. 2A). GST fusion proteins expressing truncated versions of
PARP1 (amino acids 1–385 (DNA-binding domain), amino
acids 384–524 (automodification domain), and amino acids
572–1014 (catalytic domain)) were tested for their interaction
with Myc-UHRF1. Myc-UHRF1 coprecipitated efficiently with
full-length PARP1 and its DNA-binding domain (Fig. 2A, lanes
2 and 3) and less efficiently with the automodification domain,
defined as the site of autoPARylation (lane 4). No coprecipita-
tionwas detectedwithGST alone or the PARP catalytic domain
(Fig. 2A, lanes 1 and 5). As noted above, the association ofMyc-

FIGURE 1. Selective PAR-dependent association of UHRF1 with PARP1 in mammalian cells. A, selective coprecipitation of Myc-UHRF1 with GST-PARP1.
GST (lane 1), GST-PARP1 (lanes 2 and 3), and GST-PARP2 (lanes 4 and 5) were expressed in COS-1 cells together withMyc-tagged UHRF1 (lanes 1–5). Interacting
proteinswere analyzed byGST pulldown andWestern blottingwith subsequent anti-Myc and anti-GST antibodies. Input corresponds to 1/60th the amount of
cell extract used for GSTpulldown. In lanes 3 and 5, the PARP inhibitor Ku-0058948was added throughout the experiment. B, coimmunoprecipitation of PARP1
andDNMT1withUHRF1 inmouse3T3 cells.Wild-typemouse cell extractswere immunoprecipitatedwith ananti-UHRF1antibody (lane 4) or a control antibody
(Ctl, lane 3) and analyzed by Western blotting. Input (lanes 1 and 2) corresponds to 1/30th the amount of cell extract used for immunoprecipitation. C,
coimmunoprecipitation of UHRF1 and DNMT1 with PARP1 in mouse 3T3 cells. Wild-type mouse cell extracts were immunoprecipitated with an anti-PARP1
antibody (lanes 2 and 4) or a control antibody (lanes 1 and 3) and analyzed byWestern blotting. To prevent any coprecipitation of either partner throughDNA,
EtBr (10 mg/ml) was added throughout the immunoprecipitation when indicated (lanes 3 and 4). Input corresponds to 1/30th the amount of cell extract used
for immunoprecipitation. The association of PARP1 with UHRF1 is not mediated by DNA.
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FIGURE 2. The UHRF1-PARP1 interaction preferentially involves the DNA-binding domain of PARP1 and the SRA domain of UHRF1. A, UHRF1 interacts
preferentially with the DNA-binding domain and weakly with the automodification domain of PARP1. Top, schematic representation of PARP1 indicating the
interacting domains identified. Bottom, GST (lane 1), GST-PARP1 (lane 2), GST-PARP1-(1–385) expressing the DNA-binding domain (lane 3), GST-PARP1-(384–
524) expressing the automodification domain (BRCT) (lane 4), and GST-PARP1-(572–1014) expressing the catalytic domain (lane 5) were expressed in COS-1
cells together withMyc-UHRF1 (lanes 1–5). Interacting proteins were analyzed by GST pulldown andWestern blottingwith subsequent anti-Myc and anti-GST
antibodies. Input corresponds to one-tenth the amount of cell extract used for GST pulldown. B, the absence of the SRA domain impairs the interaction of
UHRF1 with PARP1. Top, schematic representation of UHRF1 indicating the interacting domains identified. Bottom left, Myc-UHRF1 (lanes 1, 2, 7, and 8) or
Myc-tagged deletion mutants of UHRF1 (lanes 3–6 and 9–12) were expressed in COS-1 cells together with either GST (lanes 1 and 7) or GST-PARP1 (lanes 2–6
and 8–12). Interacting proteins were analyzed as described in A (lanes 7–12). Input corresponds to 1/60th the amount of cell extract used for GST pulldown
(lanes 1–6).Bottom right, the signal intensities of the coprecipitatingMyc-taggedproteins relative to their expressionandGST-PARP1pulldownweremeasured
in three independent experiments using ImageJ. The coprecipitation of Myc-UHRF1 was set to 1. Mean values 6 S.D. are indicated. C, at higher stringency
conditions of the washing buffer, the association of Myc-DSRA with GST-PARP1 is lost (lane 2), whereas the association of Myc-UHRF1 (lane 1) or Myc-DPHD
(lane 3) withGST-PARP1 ismaintained. The experimentwas done as described in B except that the stringency conditions of thewashingbufferswere increased
(beads were washed twice with washing buffer containing 750 mM NaCl, once with washing buffer containing 500 mM NaCl, and twice with washing buffer
containing 150mMNaCl).D, PARP1 interacts preferentially with the SRA domain of UHRF1 and to a lesser extent with the TTD. GFP fusion proteins expressing
different domains of UHRF1 (GFP-Ubl, ubiquitin-like domain (lane 1);GFP-TTD, Tudor domain (lane 2);GFP-PHD, plant homeodomain (lane 3);GFP-SRA, SET- and
Ring-associated domain (lane 4); GFP-Ring, Ring domain (lane 5)) were expressed in COS-1 cells. GFP immunoprecipitates were blotted successively with an
anti-PARP1 antibody to detect coprecipitating PARP1 and an anti-GFP antibody to detect the GFP immunoprecipitates. E, in vitro interaction of PARP1 with
immunopurified Myc-SRA. Purified recombinant PARP1 was incubated in a batch assay together with immunopurified Myc-SRA (lane 2) or a control anti-Myc
immunoprecipitate (lane 1). Bound PARP1 was analyzed by Western blotting using, successively, anti-PARP1 and anti-Myc antibodies.
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UHRF1 with the DNA-binding domain of PARP1 was not
impaired by the presence of ethidium bromide (not shown).

In reciprocal experiments intended to identify the PARP1
interaction domain within UHRF1, Myc fusion proteins
expressing various UHRF1 deletion domains were tested for
their interaction with GST-PARP1 (Fig. 2B). When compared
with the expression profile of each fusion protein (Fig. 2B, lanes
1–6) and the efficient binding of the full-length Myc-UHRF1
(lane 8), only the internal deletion of the SRA domain signifi-
cantly reduced UHRF1 binding to GST-PARP1 (lane 9). No
unspecific binding to GST was detected (Fig. 2B, lane 1). As an
additional experiment, we then compared the binding of Myc-
UHRF1,Myc-DSRA (UHRF1 deleted for the SRA domain), and
Myc-DPHD (UHRF1 deleted for the PHD domain) to GST-
PARP1 as above but under higher stringency conditions of the
washing buffer (Fig. 2C). Although the association of Myc-
DSRA with GST-PARP1 was lost (Fig. 2C, lane 2), the associa-
tion of Myc-UHRF1 and Myc-DPHD with GST-PARP1 was
maintained (lanes 1 and 3). To further ascertain the selective
interaction with the SRA domain and exclude a possible mis-
folding of the deleted constructs, GFP fusion proteins express-
ing the different domains (Ubl, TTD, PHD, and SRA) were
tested for their interaction with endogenous PARP1 (Fig. 2D).
When comparedwith the expression profile of each fusion pro-
tein, we confirmed that PARP1 coprecipitated efficiently with
GFP-SRA despite its weakest expression (Fig. 2D, lane 4), and
we identified a coprecipitation of PARP1with the TTD domain
(lane 2). No coprecipitation of PARP1 was detected with the
Ubl, PHD, or Ring domain (Fig. 2D, lanes 1, 3, and 5). To verify
the preferential interactionwith the SRA in vitro,Myc-SRAwas
expressed in COS-1 cells, immunopurified using an anti-Myc
antibody, and incubated together with purified recombinant
PARP1. After Myc immunoprecipitation followed by stringent
washes, copurification of purified PARP1 was analyzed by
Western blotting. As shown in Fig. 2E, PARP1 efficiently copu-
rified with Myc-SRA (lane 2), whereas no PARP1 was detected
in the control anti-Myc immunoprecipitate (lane 1). Taken
together, these data identified a selective and PAR-dependent
physical interaction between PARP1 and UHRF1 that requires
the DNA-binding domain and, to a lesser extent, the BRCT
domain of PARP1 and preferentially the SRA domain, but also
the TTD, of UHRF1.
UHRF1 Is PARylated by PARP1 Preferentially onto Its SRA

Domain and to a Lesser Extent onto Its TTD—To investigate the
functional relevance of the PARP1-UHRF1 interaction, we next
evaluated the ability of PARP1 to PARylate UHRF1 in vitro. To
this end,Myc-tagged full-lengthUHRF1 andMyc-tagged TRF2
used as a positive PARylated control were expressed in COS-1
cells, purified by anti-Myc immunoprecipitation followed by
stringent washes, and incubated with PARP1 or no protein in
the presence of [a-32P]NAD1 and DNase-I treated calf thymus
DNA (Fig. 3A). When compared with the expression profile of
each fusion protein (Fig 3A, lanes 5–8), autoradiography
revealed PARylation of the positive control TRF2 as described
previously (lane 3 (5)) and a significant PARylation of full-
length UHRF1 (lane 1). No PARylation was observed in the
absence of PARP1 (Fig 3A, lanes 2 and 4). We next aimed to
map the PARylated domain within UHRF1 (Fig. 3B). To this

end, a PARylation assay was performed as described above
using immunopurified GFP (Fig. 3B, lanes 1 and 7) or GFP
fusion proteins expressing the different Ring (lanes 2 and 8),
SRA (lanes 3 and 9), PHD (lanes 4 and 10) Ubl (lanes 5 and 11),
and TTD (lanes 6 and 12) single domains of UHRF1. Autora-
diography revealed a significant PARylation of the SRA domain
(Fig. 3B, lane 3) despite its weakest expression (lane 9) and to a
lesser extent the TTD (lanes 6 and 12), whereas no PARylation
was detected for the other domains or GFP alone (lanes 1, 2, 4,
and 5). An efficient PARylation was also detected on the immu-
nopurified Myc-tagged SRA, whereas a reduced PARylation

FIGURE3.UHRF1 is PARylated preferentially onto its SRA domain but also
onto its TTD.A, PARylation of full-lengthUHRF1by PARP1.Myc-UHRF1 (lanes
1, 2, 5, and 6) or Myc-TRF2 (lanes 3, 4, 7, and 8) was expressed in COS-1 cells,
immunopurified with an anti-Myc antibody, and incubated together with
either PARP1 or without PARPs in activity buffer containing [a-32P]NAD1 and
fragmented DNA. Right panel, autoradiography. Left panel, analysis of the
fusionproteinswith ananti-Myc antibodybyWesternblotting.B,upper panel,
schematic representation of UHRF1 indicating the PARylated TTD and SRA
domain. Lower panel, GFP fusionproteins expressingGFPalone (lanes 1 and7)
or different domains of UHRF1 (GFP-Ring (lanes 2 and 8), GFP-SRA (lanes 3
and 9), GFP-PHD (lanes 4 and 10), GFP-Ubl (lanes 5 and 11), and GFP-TTD
(lanes 6 and 12)) were expressed in COS-1 cells, immunopurified by GFP
trapping, and incubated together with PARP1 in the activity buffer con-
taining [a-32]PNAD1 and fragmented DNA as in A. Left, analysis of the
PARylated domains by autoradiography. The upper band represents
PARylated PARP1. Right, analysis of the fusion proteins with an anti-GFP
antibody by Western blotting.
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was detected for the Myc-tagged SRA-deleted mutant of
UHRF1 (not shown). Together, these results identified the SRA
domain as a preferential site of PARylation, in agreement with
the recent report by Zhang et al. (47), who identified two site-
specific ADP-ribosylated residues within the SRA domain of
UHRF1 by boronate affinity chromatography used to isolate
ADP-ribosylated peptides. To a lesser extent, the TTD is also
PARylated.
PARP1 and UHRF1 Favor the Silencing of Major Satellite

Repeats—UHRF1 was described previously as contributing to
the silencing of major satellites sequences, partly by targeting
DNMT1 for DNAmaintenancemethylation during pericentric
heterochromatin replication (23, 24, 42). In addition, PARP1
was found associated with the major satellite elements of peri-
centric heterochromatin (12). To get insights into the biological
meaning of the UHRF1-PARP1 association, we first sought to
determine whether PARP1 was also involved in the transcrip-
tional silencing of major satellite repeats. To this aim, we ana-
lyzed the transcriptional activity across these elements by semi-
quantitative RT-PCR using RNA extracts from the PARP11/1

and PARP12/2 cells (Fig. 4A). Our data revealed a significant

increase of the satellite transcripts from pericentric regions in
PARP12/2 cells compared with the PARP11/1 cells (Fig. 4A,
lane 3 versus 1). In contrast the inhibition of PARP activity in
PARP11/1 cells did not alter the overall transcription of these
regions (Fig. 4A, lane 2 versus 1). To explore the contribution of
UHRF1 in the transcriptional reactivation of major satellites
observed in PARP12/2 cells, we examined the effect of an addi-
tional siRNA-mediated knockdown of UHRF1 (Fig. 4B). In
agreement with previous data (42), the depletion of UHRF1 by
siRNA in PARP11/1 cells induced pericentric transcription,
although to a significant lower extent than the absence of
PARP1 (Fig. 4B, lanes 2 and 3 versus 1). In contrast, the deple-
tion of UHRF1 in PARP12/2 cells did not significantly impair
the enhanced transcriptional activity induced by the absence of
PARP1, thus suggesting that both enzymes likely act in the
same pathway (Fig. 4B, lane 4 versus 3). In a comparative
experiment, we also analyzed the transcriptional activity of
minor satellites. In agreement with the previously described
association of PARP1 with centromeric regions (12), we also
detected an important increase in the transcripts of centric
regions, indicating a role of PARP1 in the silencing of these

FIGURE4.The absence of PARP1 causes derepression of major satellite transcripts.Enhanced transcriptionsofmajor satellite repeats inPARP12/2 cells are
shown.A, top, schematic representationofmajor satellite repeats (pericentric heterochromatin) showing the repeat distribution (I–IV) and theprimers (arrows)
used for PCR analysis. Lower left, representative RT-PCR analysis using total RNA extracted fromPARP11/1 (lanes 1, 2, 4, and 5) or PARP12/2 cells (lanes 3 and 6),
mock-treated cells (lanes 1, 3, 4, and 6), or cells treatedwith Ku-0058948 (lanes 2 and 5) for 48 h. As a control, reactions were performedwithmock-transcribed
cDNAs (2RT, lanes 4–6). The relative amounts of input and PCR amplification cycles are indicated. Lower right, the -fold expression (histogram) represents the
major satellite transcript levels (normalized against GAPDH) relative to control PARP11/1 set to 1 for three independent experiments. Mean data 6 S.D. are
indicated. B, left, representative RT-PCR analysis using total RNAextracted fromPARP11/1 (lanes 1, 2, 5, and 6) or PARP12/2 cells (lanes 3, 4, 7, and 8) transfected
with a scrambled siRNA (scr, lanes 1, 3, 5, and 7) or with siUHRF1 (lanes 2, 4, 6, and 8) for 96 h. As a control, reactions were performed with mock-transcribed
cDNAs (2RT, lanes 5–8). Right, the -fold expression (histogram) represents the major satellite transcript levels (normalized against GAPDH) relative to control
PARP11/1 set to 1 for three independent experiments. Mean data 6 S.D. are indicated.
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regions (not shown). However, the mechanism involved is
likely unrelated to UHRF1, as suggested by the previously
reported normal transcription of these regions in the
absence of UHRF1 (42).
The Absence of PARP1 Alters the Interaction of UHRF1 with

DNMT1 but with No Consequences for the Methylation of Peri-

centric Regions—Enhanced transcriptional activity at pericen-
tric regions could be caused by defective DNMT1-catalyzed
CpGmethylation. Among the UHRF1 functional domains that
facilitate the loading ofDNMT1 to replicating heterochromatic
regions, the SRA domain mediates the recognition and prefer-
ential binding to hemi-methylated CpG sites and facilitates the

interaction of UHRF1 with DNMT1 (24, 29, 30). Because we
identified SRA as the preferential interaction domain (Fig. 2C)
and PARylation site for PARP1 (Fig. 3B), we went on to test
whether PARP1 is involved in the association of UHRF1 with
DNMT1 (Fig. 5A). To address this question, whole extracts
from PARP11/1 or PARP12/2 3T3 cells were immunoprecipi-
tated with an anti-UHRF1 antibody and probed for the coim-
munoprecipitation of DNMT1 by Western blotting. We
observed a significantly reduced coimmunoprecipitation of
DNMT1 with UHRF1 in PARP12/2 cells (Fig. 5A, lane 3) com-
pared with PARP11/1 (lane 2) cells, indicating that PARP1 is
required for the efficient association of DNMT1 with UHRF1.

FIGURE 5. The absence of PARP1 affects the association of UHRF1 with DNMT1 but not their targeting to replicating heterochromatin or the meth-
ylation of CpG repeats. A, the interaction of DNMT1 with UHRF1 is reduced in PARP12/2 cells. Left, equivalent amounts of total protein cell lysates from
PARP11/1 (lane 2) and PARP12/2 cells (lane 3) were immunoprecipitated using an anti-UHRF1 antibody (lanes 2 and 3) or a control antibody (ctl, lane 1) and
analyzed for the coimmunoprecipitation of DNMT1 byWestern blotting. Inputs correspond to 1/30th of the amount of total cell extract used for immunopre-
cipitation. Right, the signal intensities of the coprecipitating DNMT1 relative to DNMT1 expression and UHRF1 immunoprecipitation were measured in three
independent experiments using ImageJ. The coIP in PARP11/1 cells (lane 2) was set to 1. Mean values 6 S.D. are indicated. B, the absence of PARP1 does not
perturb the accumulation of DNMT1 onto pericentric heterochromatin. Shown are representative images of DNMT1 (a, c, e, and g (green)) immunostaining of
the typical ring-shaped pericentric duplication bodies from PARP11/1 (a, b, e, and f) or PARP12/2 (c, d, g, and h) cells eithermock-treated (a–d) or treatedwith
the PARP inhibitor Ku-0058948 (e–h). DNA was counterstained with DAPI (b, d, f, and h (blue)). Scale bars: 7 mm. C, the absence of PARP1 does not perturb the
accumulation of UHRF1 onto pericentric heterochromatin. Shown are representative images of UHRF1 (a, c, e, and g (green)) immunostaining of the typical
ring-shaped pericentric duplication bodies from PARP11/1 (a, b, e, and f) or PARP12/2 (c, d, g, and h) cells either mock-treated (a–d) or treated with the PARP
inhibitor Ku-0058948 (e–h). DNAwas counterstained with DAPI (b, d, f, and h (blue)). Scale bars: 7 mm.D, the interaction of DNMT1with PCNA is maintained in
PARP12/2 cells. Equivalent amounts of total protein cell lysates fromPARP11/1 (lanes 1 and 2) andPARP12/2 cells (lane 3) were immunoprecipitatedusing and
anti-PCNAantibody (lanes 2and3) or a control antibody (lane1) andanalyzed for the coimmunoprecipitationofDNMT1byWesternblotting. Input corresponds
to 1/25th of the amount of total cell extract used for immunoprecipitation. E, the methylation profile of pericentric repeats is normal in PARP12/2 cells. Total
DNAwas isolated from PARP11/1 or PARP12/2 cells either mock-treated or treated with Ku-0058948 for 24 h and then bisulfite-treated. Histograms show the
methylation percentage at individual CpG sites as measured by pyrosequencing.
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No unspecific coprecipitation was observed with the control
antibody (Fig. 5A, lane 1).
Consequently, we went on to examine by immunofluores-

cence analysis whether the reduced DNMT1-UHRF1 associa-
tion affects the focal localization of DNMT1 to replicating het-
erochromatin (Fig. 5B). Because both the TTD and SRA
domain of UHRF1 mediate its targeting to pericentric hetero-
chromatin, we also verified the accumulation of UHRF1 onto
these regions (Fig. 5C). Notwithstanding, we found a normal
accumulation of both proteins onto the characteristic horse-
shoe-like replication factories in the PARP12/2 cells (Fig. 5C,
compare panels c and d, with a and b) as well as after PARP
inhibition (compare panels e–h with a and b) suggesting that
PARP1 and PARP activity is not absolutely required for the
mid-S phase-specific targeting of UHRF1 and DNMT1 to peri-
centric heterochromatin.

Because loading of DNMT1 onto replication foci was also
shown to be promoted by PCNA (48), we explored the role of
PARP1 in the association of DNMT1 with PCNA. We com-
pared the coimmunoprecipitation of DNMT1 using an anti-
PCNA antibody in PARP11/1 versus PARP12/2 cells (Fig. 5D).
We observed a similarly efficient interaction of DNMT1 with
PCNA (Fig. 5D, lane 2 versus 3) in both cell lines, indicating that
the association between these proteins is maintained in the
absence of PARP1. No precipitation of DNMT1 was detected
using the control antibody (Fig. 5D, lane 1).

Finally we verified whether the reduced DNMT1-UHRF1
association perturbs DNMT1 catalytic activity. We analyzed
the methylation status of pericentric repeats by genomic
bisulfite sequencing of DNA extracted from PARP11/1 and
PARP12/2 cells treated or not with the PARP inhibitor
Ku-0058948 (Fig. 5E). Consistent with the normal recruit-
ment of DNMT1 and UHRF1 onto heterochromatic foci, no
apparent difference in the methylation profile of these repet-
itive regions was detected between both cell lines and after
PARP inhibition. Similarly, the absence of PARP1 did not
affect the methylation profile of minor satellites at centrom-
eres (not shown).

Taken together, these results identified a role of PARP1 in
stabilizing the interaction of UHRF1with DNMT1. Despite the
reduced interaction between DNMT1 and UHRF1 in the
absence of PARP1, the recruitment of DNMT1 to heterochro-
matic regions and its activity are maintained owing to its effi-
cient interaction with PCNA. Moreover, these data indicate
that the derepression of the major satellites detected in the
absence of PARP1 might not simply be caused by impaired
DNA methylation but likely involves another defect that we
aimed to identify next.
PARP1 and UHRF1 Cooperate to Regulate the Repressive

Mark H4K20me3—To further decipher how PARP1 regulates
the silencing of pericentric regions, given the link of UHRF1
with repressive chromatin marks (24, 27, 30) we then asked
whether the transcriptional activation was accompanied by
modifications of the chromatin signatures of pericentric het-
erochromatin.We looked forH3K9 andH4K20 trimethylation,
which is linked with silencing, and H4K16 acetylation or H3K4
trimethylation, which is required for gene activation (Fig. 6).
The staining of H3K9m3 remained unchanged, and no detect-

able acetylation of H4K16 or trimethylation of H3K4 could be
detected at DAPI-dense heterochromatic regions of PARP12/2

cells (Fig. 6A, compare panels d, h, and lwith b, f, and j, respec-
tively). In contrast, the absence of PARP1 led to a specific loss of
the local repressiveH4K20me3mark at heterochromatic foci in
most of the cells (.80%) ,thus indicating a less compact hetero-
chromatin structure that could contribute to up-regulation of
the heterochromatin transcripts described above (Fig. 6B, com-
pare panel g with a and vertical bar 3 with 1). Remarkably, the
additional depletion of UHRF1 rescued the localization of
H4K20me3 to heterochromatin regions in the PARP12/2 cells
(Fig. 6B, compare panel j with g and vertical bar 4 with 3),
whereas it did not perturb H4K20me3 staining in the
PARP11/1 cells (compare panel dwith a and vertical bar 2with
1). To ascertain that the absence of H4K20me3 heterochro-
matic staining was not due simply to an overall reduction in
H4K20me3, we evaluated the global expression of H4K20me3
by Western blot analysis of acid-extracted histones from
PARP11/1 and PARP12/2 cells (Fig. 6C). We found rather an
increase in the overall expression of H4K20me3 in the
PARP12/2 cells. Taken together, these findings highlight a
related contribution of PARP1 and UHRF1 in the transcrip-
tional repression of pericentric heterochromatin through a
mechanism that at least partly involves a specific regulation of
the repressive mark H4K20me3 at heterochromatin.
PARP1 Restrains UHRF1-mediated Ubiquitination of DNMT1

andModulates Its Stabilityduring theCellCycle—Among thevar-
ious UHRF1-regulated processes, recent reports have identified
an UHRF1-mediated ubiquitination of DNMT1 that coordi-
nately regulates its stability with the completion of DNA repli-
cation (34, 35). Because PARylation has also recently been con-
nectedwith ubiquitination and proteasomal degradation (4, 49,
50), we decided also to explore a possible involvement of
PARP1 in this pathway. We compared the level of Myc-
UHRF1-mediated ubiquitination of immunopurified GFP-
DNMT1 in PARP11/1 versus PARP12/2 3T3 cells (Fig. 7A).
Strikingly, the absence of PARP1 led to an apparent increase in
the ubiquitination levels of GFP-DNMT1 (Fig. 7A, left panel,
lane 8 versus 7), whereas the autoubiquitination levels of Myc-
UHRF1were weaker and remained rather unchanged in similar
experimental conditions (right panel, lane 2 versus 1). No
unspecific ubiquitination of GFP was detected (Fig. 7A, left
panel, lanes 3 and 4). Thus, these results introduced PARP1 as a
negative regulator of UHRF1-ubiquitin ligase activity onto
DNMT1. To confirm and examine this hypothesis further, we
performed in vitro ubiquitination assays using purified recom-
binant PARP1, UHRF1, and GST-DNMT1 in the presence of
the ubiquitin-activating enzyme E1, the ubiquitin-conjugating
enzyme E2, and ubiquitin (Fig. 7B). To discriminate between a
structural and enzymatic role for PARP1, UHRF1 was first pre-
incubated together with PARP1 in the absence (inactive
PARP1) or presence ofNAD1 (active PARP1) and subsequently
tested in the ubiquitination assays (Fig. 7B, diagram). The addi-
tion of inactive PARP1 did not significantly impact the autou-
biquitination of UHRF1 (Fig. 7B, lane 3 versus 2) or the ubiq-
uitination of GST-DNMT1 (lane 6 versus 5). However, when
UHRF1 was first PARylated with active PARP1 in the presence
of NAD1, its ubiquitination activity onto DNMT1 was signifi-
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cantly reduced (Fig. 7B, lane 7 versus 5), whereas the autoubiq-
uitination of UHRF1 was only weakly if significantly modified
(lane 4 versus 2). Under similar experimental conditions, the
ubiquitination of GST used as control was never observed (Fig.
7B, lanes 8 and 9). Interestingly, the addition of PARP1, when
automodified previously, had no significant impact on UHRF1
activity (not shown). Altogether, these data reveal that the
PARP1-catalyzed PARylation of UHRF1 inhibits its ubiquitin
ligase activity essentially toward DNMT1.

The UHRF1 triggered ubiquitination of DNMT1 was
described previously as targetingDNMT1 for proteasomal deg-
radation, thereby regulating its protein stability (35). Therefore,

we followed the protein expression profile of DNMT1 in
PARP11/1 and PARP12/2 3T3 cells throughout the cell cycle
after release from serum starvation (Fig. 8). To carefully address
DNMT1 protein stability as opposed to its steady state levels,
cells were treatedwith the protein synthesis inhibitor cyclohex-
imide. We observed a similar abundance of DNMT1 in whole
cell extracts from nonsynchronized and G1-synchronized
PARP11/1 and PARP12/2 cells (Fig. 8, lanes 1–4). In contrast,
we detected a reduced level of DNMT1 in the S and G2

PARP12/2 cells compared with the PARP11/1 cells (Fig. 8,
compare lane 6with 5 and 8with 7). Therefore, consistent with
the ubiquitination data, these results suggest that PARP1 likely

FIGURE 6. The absence of PARP1 causes reduced staining of the repressive mark H4K20me3 at pericentric regions, which is rescued by the additional
depletion of UHRF1. A, PARP12/2 cells display normal H3K9me3, H4K16ac, and H3K4me3 staining onto DAPI-dense heterochromatic regions. Shown are
representative immunofluorescence images for the comparative distribution of H3K9me3 (b and d (green)), H4K16ac (f and h (green)), and H3K4me3 (j and l) in
PARP11/1 andPARP12/2 interphase cells. DNAandheterochromatic foci are counterstainedwithDAPI (a, c, e,g, i, and k). Scale bars: 7mm.B, left, representative
images for the loss of H4K20me3 staining at HC regions in PARP12/2 cells rescued by the additional depletion of UHRF1. Shown is immunofluorescence
analysis of H4K20me3 (a, d, g, and j (green)) and UHRF1 (b, e, h, and k (red)) in PARP11/1 and PARP12/2 cells transfected with either control siRNA (si-CTL) or
si-UHRF1. DNA and heterochromatic foci are counterstained with DAPI (c, f, i, and l). Right, the histogram depicts the percentage of cells with or without
H4K20me3 staining. An average of 500 cells/cell line were scored in.20 randomly selected fields. Results are averages from three independent experiments.
Mean values6 S.D. are indicated. C, the overall expression of H4K20me3 is weakly increased in the PARP12/2 cells. Left, equivalent amounts of acid-extracted
histones fromPARP11/1 andPARP12/2 cellswere analyzedbyWesternblottingusing an anti-H4K20me3antibody andan anti-H4 antibody as loading control.
Right, the signal intensities of H4K20me3 relative to H4 were measured in three independent experiments using ImageJ. Mean values 6 S.D. are indicated.
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helps to maintain DNMT1 protein stability throughout the
progression of the cell cycle.

DISCUSSION

In this study we identified a PAR-dependent physical and
functional interaction of PARP1 with UHRF1 involving
DNMT1 in which PARP1 helps to modulate two different
UHRF1-regulated processes: the accumulation of the repres-
sive mark H4K20me3 on one hand and the abundance of
DNMT1 on the other hand. Both events possibly contribute to
the silencing of pericentric heterochromatin.

We revealed enhanced transcriptional activity in PARP12/2

cells in both the centric and pericentric regions, thus implying a

key role of PARP1 in their silencing. Accordingly, recent chro-

matin immunoprecipitation experiments have identified an

association of PARP1 with minor and major satellites in

NIH3T3 cells (12). Furthermore, PARP1 has been described as

a key element in the repression of rRNA transcription and

inheritance of silent rDNA chromatin (12). UHRF1 was shown

previously to exert a selective transcriptional control on the

DNA satellites of pericentric heterochromatin but not centro-

meric heterochromatin (42). That the additional depletion of

FIGURE7.PARP1 selectively inhibits the UHRF1-driven ubiquitination of DNMT1 in vivo and in vitro.A, in vivoubiquitinationassays. TheabsenceofPARP1
enhances theUHRF1-mediated ubiquitination of DNMT1but not the autoubiquitination of UHRF1 in vivo. Left, PARP11/1 and PARP12/2 cells were transfected
with either GFP-DNMT1 (lanes 5–8) or GFP (lanes 1–4) together with HA-ubiquitin and treated with 5 mMMG-132 for 12 h to inhibit proteasomal degradation.
GFP immunoprecipitates were blotted successively with an anti-HA antibody to detect ubiquitinated proteins (lanes 3, 4, 7, and 8) and an anti-GFP antibody
(lanes 1, 2, 5, and 6) to detect immunopurified proteins. Right, PARP11/1 (lanes 1 and 3) and PARP12/2 cells (lanes 2 and 4) were transfected with Myc-UHRF1
together with HA-ubiquitin and treated as described above. Myc immunoprecipitates were blotted successively with an anti-HA antibody to detect ubiquiti-
nated UHRF1 (lanes 3 and 4) and an anti-Myc antibody to detect immunopurified UHRF1 (lanes 1 and 2). B, in vitro ubiquitination assays. Left, PARP1-catalyzed
poly(ADP-ribosyl)ation of UHRF1 selectively inhibits its ubiquitination activity onto DNMT1. Purified UHRF1 was first preincubated alone (lanes 1, 2, and 5) or
together with purified PARP1 (lanes 3, 4, 6, and 7) as indicated in the PARP activity buffer. PARP activity is induced by the addition of NAD1. The proteins were
subsequently assayed for UHRF1 ubiquitination activity onto itself (lanes 1–4) or onto GST-DNMT1 (lanes 5–7). a, ubiquitinated proteins (UHRF1Ub and
GST-DNMT1Ub) were detected by immunoblotting using an anti-HA antibody, and the PARP activity was verified by immunoblotting using an anti-PAR
antibody. b, the purified recombinant proteins mixed in the experiment were detected by Western blotting using anti-GST, anti-PARP1, and anti-UHRF1
antibodies. The lower amount of PARP1 detected in lanes 4 and 7 is explained by its automodification, which limits its detection by themonoclonal anti-PARP1
antibodyused. As a control, reactionswereperformedwithGST (lanes 8 and9). A representative experimentof three is shown.Upper right, a schematic diagram
of the experiment is shown. Lower right, the relative -fold expression (histogram) represents the ImageJ-quantified ubiquitinated protein levels of the samples
containing PARP1 relative to the samples without PARP1 (lanes 1, 3, and 4 versus 2; lanes 6 and 7 versus 5). The values represent the mean 6 S.D. of three
independent experiments.
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UHRF1 in PARP12/2 cells has no additive impact on the tran-
scription of pericentric repeats implies that both proteins likely
act in the same molecular process. In addition, based on the
physical and functional interaction of UHRF1 and PARP1, it is
tempting to speculate on a selective coordinated interplay
between both enzymes for the silencing of major satellite
sequences.What would be themolecularmechanism involved?

UHRF1 has been shown to bind hemi-methylated CpG
dinucleotides specifically and to associate with DNMT1
through the same SRA domain. In addition, UHRF1 is
described as binding methylated H3K9 through its TTD (26,
29). Together these activities cooperate for the loading of
DNMT1 to pericentric heterochromatic sites to guarantee the
maintenance of DNA methylation (24, 29). The PARylation of
both the SRA domain and the TTD of UHRF1 reported here
and the previously described functional interaction between
PARP1 and DNMT1 (15) prompted us to investigate a possible
role of PARP1 in one or the other of these properties. The con-
served accumulation of UHRF1 onto the DAPI-dense replicat-
ing heterochromatic regions of PARP12/2 cells or after PARP
inhibition suggests that PARP1 might not be absolutely
required for the binding of UHRF1 to hemi-methylated CpG
sites. In contrast, we found a reduced interaction of UHRF1
with DNMT1 in the PARP12/2 cells, thus rather indicating a
contribution of PARP1 to the formation or the stability of the
UHRF1-DNMT1 complex. In line with this hypothesis,
DNMT1 contains a PAR-binding domain and was shown to
interact noncovalently with PAR (21). These observations led
to the hypothesis that the PARylation of UHRF1 can serve to
construct a robust interaction network among PARP1, UHRF1,
and DNMT1 and to favor the association among the members
of this complex by noncovalent interactions. In addition, we
also found a PARP1-catalyzed poly(ADP-ribosyl)ation of
DNMT1 that can contribute to its interactionwithUHRF1 (not
shown). Notwithstanding, the reduced UHRF1-DNMT1 asso-
ciation observed in the absence of PARP1 did not significantly
perturb the loading or the catalytic activity of DNMT1 as
revealed by its normal enrichment at heterochromatic regions

of PARP12/2- or PARP-inhibited cells and by thewild type-like
methylation status detected at themajor satellite repeats. Based
on our findings, we propose that this is at least partly explained
by a compensating activity of PCNA in promoting the localiza-
tion of DNMT1 onto replication foci as supported by the
PCNA-DNMT1 interaction that ismaintained in the absence of
PARP1. Alternatively, a compensating DNAmethylation activ-
ity by DNMT3 proteins, recruited via the Suv39h-mediated
H3K9me3 (51), amodification not impaired in PARP12/2 cells,
is an appealing hypothesis. In any case, the overall derepression
of the major satellites detected in the absence of PARP1 in the
asynchronous cells cannot simply be caused by impaired DNA
methylation, suggesting the involvement of another mecha-
nism that we aimed to identify.

UHRF1 has also been reported to have key functions in sens-
ing and controlling chromatin features other than just the CpG
methylation status of pericentric heterochromatin. Therefore,
a conceivable hypothesis is that PARP1 participates in the
UHRF1-mediated chromatin modifications required for its
silencing. UHRF1, through its SRA domain, recruits HDAC1,
which deacetylates histone H4, thereby controlling the tran-
scription of major satellites (38). However, in contrast to find-
ings in UHRF1-depleted cells, we did not detect hyperacetyla-
tion of H4K16 at heterochromatic sites in the PARP12/2 cells,
indicating that PARP1 might not be required for this mecha-
nism. The TTD and SRA domain of UHRF1 have also been
suggested to mediate the binding activity and specificity of
UHRF1 onto H3K9me3 sites and regulate the organization of
this epigenetic mark onto pericentric heterochromatin (26, 29,
30, 32). Furthermore, a perturbedH3K9me3 profile as reported
in Suv39h2/2 cells, is associatedwith enhanced transcription of
major satellite repeats owing to defective recruitment of
DNMT3b (51, 52). Again, the normal staining of H3K9me3
observed in the PARP12/2 cells suggests that PARP1might not
be involved in its accumulation onto heterochromatic regions.
In contrast, our findings reveal a selective cross-talk between
PARP1 and UHRF1 in the regulation of the repressive mark
H4K20me3 that characterizes the correct condensation and
thereby the silencing of pericentric heterochromatin. The
results suggest that UHRF1 negatively regulates the accumula-
tion of H4K20me3 onto HC foci and that PARP1 serves to con-
trol this activity. Future work will be required to further dissect
the molecular link between both proteins and their activities
and to identify the targets among the proteins that orchestrate
the sequential methylation of H4K20 at pericentric regions,
including SET8/PR-Set7, SUV4-H20.1, and SUV4-H20.2, or
those that catalyze demethylation, such as PHF2 andPHF8 (53).
That the depletion of UHRF1 alone is not sufficient to decrease
the enhanced transcription of the major satellites observed in
the PARP12/2 cells and restore their repression might simply
be explained by a broader role of PARP1 at pericentric hetero-
chromatin. In support of this view, PARP1was found to interact
with the SWI/SNF-like factor SMARCAD1, involved in the
maintenance of epigenetic marks throughout pericentric het-
erochromatin replication (11), to cooperate with the histone
deacetylase SirT1 for the maintenance of pericentric hetero-
chromatin integrity (9) and to mediate the inheritance of silent
rDNA chromatin (12). In addition, the repressive mark

FIGURE 8. DNMT1 abundance is reduced in PARP12/2 cells. Protein
expression from nonsynchronized (lanes 1 and 2) and synchronized (lanes
3–8) PARP11/1 and PARP12/2 cells was analyzed by SDS-PAGE andWestern
blotting with the appropriate antibodies. To evaluate protein stability, cells
were treated with cycloheximide before lysis. Progression of serum-starved
cells released into freshmediumthrough the cell cyclewasmonitoredby flow
cytometry analysis (not shown). The time points of release as determined by
FACS are indicated in parentheses.
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H4K20me3 is probably not the only requirement for the tran-
scriptional silencing of pericentric heterochromatin. Alterna-
tively, given the emerging function of H4K20 methylation in
genomemaintenance, whether derepression of satellite repeats
might be partially elicited by perturbed pericentric and centro-
meric heterochromatin integrity as reported for BRCA-defi-
cient cells (54) cannot be excluded. In support of this idea, both
UHRF1-deficient and PARP12/2 cell lines were found to dis-
play higher genome instability and defects in chromosome seg-
regation (14, 55).

Given the recently uncovered role of UHRF1 in the clearance
of DNMT1 through its ubiquitination and proteasomal degra-
dation (33–35), our results imply an additional possible contri-
bution of PARP1 and its activity to this process. Much recent
evidence exists to support a broad role of PARPs in ubiquitin-
mediated protein degradation. A first example is the associa-
tion of PARP1 with the E3 ubiquitin ligase CHFR (checkpoint
with Forkhead and Ring finger domains), which was shown to
induce the polyubiquitination of PARP1 and its degradation in
response to mitotic stress (56). PARP1 and PARylation have
also been implicated in the ubiquitination of repair proteins
catalyzed by the E3 ligase RNF146/Iduna in response to geno-
toxic stress, and Tankyrase (PARP5a)-catalyzed PARylation
has been associatedwith the RNF146/Iduna-triggered ubiquiti-
nation of targets from the Wnt/b-catenin signaling pathway
(49, 50). In our studywe define PARP1 as a negative regulator of
the E3 ubiquitin ligase activity of UHRF1 onto DNMT1. In vivo
this is exemplified by an enhanced ubiquitination of DNMT1 in
PARP12/2 cells, whereas the autoubiquitination of UHRF1
remains rather unaffected. This regulation may preserve
DNMT1 fromearly proteasomal degradation and consequently
facilitate its accumulation throughout the cell cycle. In support
of this assumption, we detected decreased DNMT1 stability in
the S and G2 phases of the cell cycle in PARP12/2 cells. Recent
reports have identified an additional role of Usp7 (HAUSP) in
promotingDNMT1 stability both by deubiquitinatingDNMT1
and by inhibitingUHRF1 activity (34, 35).Whether PARP1 also
controls the deubiquitinating activity of Usp7 onto DNMT1
represents a possibility, although we have observed that the
interaction of Usp7 with UHRF1 and DNMT1 is not perturbed
by the absence of PARP1 (not shown).

Based on our results, we propose PARP1 as a novel player in
the UHRF1-mediated fine-tuned regulation of DNMT1 abun-
dance throughout the cell cycle. Does this cellular process also
contribute to the repression ofmajor satellites in addition to the
accumulation ofH4K20me3?The possibility exists. The repres-
sion ofmouse pericentric HC is tightly coupled to the cell cycle.
Although two burst of transcription have been detected in late
G1 to early S phase just before the replication of chromocenters
and during mitosis to generate transcripts that drive the reas-
sembly of heterochromatin, major satellites are silenced in a
large part of G1 and when cells are engaged in replicating chro-
mocenters from mid-late S phase to G2 (57). It is conceivable
that the enhanced UHRF1-catalyzed degradation of DNMT1
that we detected in the PARP12/2 cells from S to G2 perturbs
DNA methylation at pericentric regions and participates
together with the loss of H4K20me3 in the abnormal derepres-
sion of satellite repeats, specifically during the replication of

these regions and onward. As a consequence, reduced pericen-
tric heterochromatin silencing can be associated with the delay
of mid-to-late S phase replication that we detected in the
PARP12/2 cells (not shown). Similarly, UHRF1 and BRCA1
have been proposed to control the silencing of major satellites
repeats and the replication of pericentric heterochromatin
(42, 54, 58).

In summary, our findings define PARP1 as part of a protein
complex containing UHRF1 andDNMT1 in which PARP1 reg-
ulates two UHRF1-associated biological activities. Accumulat-
ing reports in the literature show that the functional role of the
UHRF1-DNMT1 association is dual. (i) On one hand, it helps to
recruit DNMT1 to replicating heterochromatic regions for
DNA methylation maintenance; (ii) on the other, it mediates
the ubiquitination of DNMT1 to regulate DNMT1 stability.
Similarly, our data suggest that the biological outcome of the
PARP1-UHRF1 association is also dual. (i) Both proteins coop-
erate in the maintenance of the repressive mark H4K20me3 at
pericentric heterochromatin to favor transcriptional silencing,
and (ii) PARP1 seems to negatively regulate the UHRF1-cata-
lyzed ubiquitination of DNMT1 to maintain the abundance of
DNMT1 from S to G2 phase. This can be an additional way to
control transcriptional repression, specifically during the repli-
cation of pericentric heterochromatin and onward.
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Introduction

Epigenetic mechanisms including DNA and histone 
-

pression during development. DNA methylation occurs 

at the C5 position of cytosine residues, mostly within 
cytosine-guanine dinucleotides (CpG), and is involved in 
imprinting, X-chromosome inactivation, stable transcrip-
tional repression, genome stability and tumorigenesis 
[1]. DNA methylation patterns are established by the de 

novo methyltransferases DNMT3A and DNMT3B during 
gametogenesis and early development, and are propagat-
ed by the maintenance methyltransferase DNMT1 after 
DNA replication in somatic cells.

DNMT1 comprises a regulatory N-terminal domain 
(NTD), which covers two-thirds of the molecule, and a 
C-terminal catalytic domain (CD), which contains all es-
sential motifs of active C5 DNA methyltransferases. The 
NTD controls the subcellular distribution of DNMT1 
during the cell cycle and its enzymatic activity. A sub-
domain in the NTD was initially described as a targeting 
sequence (TS) as it was found to mediate the associa-

Cell Research (2015) :1-19.
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tion of DNMT1 with late replicating pericentromeric 
heterochromatin [2]. Subsequent studies defined a dis-
tinct proliferating cell nuclear antigen (PCNA) binding 
domain (PBD) responsible for the interaction with the 
replication machinery [3]. The subnuclear localization 
of DNMT1 undergoes characteristic changes throughout 
the cell cycle reflecting PBD-mediated PCNA binding 
during S phase and TS domain-mediated heterochroma-
tin association during late S and G2 phase [4, 5]. The as-
sociation of DNMT1 with the replication machinery en-

for postreplicative maintenance DNA methylation [6, 7]. 
In contrast, the TS domain was found to be required for 
DNMT1 enzymatic activity [8, 9]. However, the molec-
ular mechanism of TS domain function in the regulation 
of maintenance DNA methylation remains elusive.

Besides its role in replication-independent heteroch-
romatin binding, the TS domain mediates DNMT1 ho-
modimerization [9] and autoinhibition [10, 11]. A recent 
crystal structure shows that the TS domain inserts into 
the DNA binding pocket of the CD, indicating a role of 
intramolecular interactions in the regulation of DNMT1 
activity [10, 11]. Moreover, the TS domain interacts with 
the SET- and RING-associated (SRA) domain of ubiq-

(UHRF1) [12-14]. In contrast to UHRF2, the interaction 
of UHRF1 with DNMT1 was found to be S phase-depen-
dent [15].

UHRF1, also known as NP95 (mouse) or ICBP90 (hu-
man), has been reported as a crucial cofactor for main-
tenance DNA methylation. Mice lacking UHRF1 show 
a similar phenotype as Dnmt1 null (Dnmt1 ) mice that 
manifests in genomic DNA hypomethylation and devel-
opmental arrest at embryonic day 9.5 [16-18]. The SRA 
domain of UHRF1 preferentially binds to hemimethylat-
ed DNA resulting from semiconservative DNA replica-
tion and is, therefore, thought to play an important role 
in loading DNMT1 onto newly synthesized DNA sub-
strates [16, 17, 19-22]. The heterochromatin association 
of UHRF1 is also mediated by the tandem Tudor domain 

-
ing of histone H3 tails containing a trimethylated lysine 
9 (H3K9me3) residue [22-25]. The plant homeodomain 
(PHD) was reported to act in combination with the TTD 
to read the H3K9me3 mark [26] and to contribute to 
large-scale reorganization of pericentromeric heterochro-
matin [27]. In addition, UHRF1 harbors a really interest-
ing new gene (RING) domain endowed with ubiquitin E3 
ligase activity in vitro, which is required for growth reg-
ulation of tumor cells [24, 28]. The ubiquitination state 
and stability of DNMT1 is controlled by UHRF1 and the 

-

expression leads to DNA hypomethylation by the desta-
bilization and delocalization of DNMT1 [31]. Besides 
its role in marking DNMT1 for proteasomal degradation, 
UHRF1 also exerts its ubiquitin E3 ligase activity on his-
tone substrates [24, 25].

A recent study describes replication-dependent H3K23 
ubiquitination by UHRF1 in Xenopus extracts [32]. 
Knockdown and rescue experiments in HeLa cells 
showed that SRA domain-mediated DNA binding as well 
as RING domain-dependent E3 ubiquitin ligase activity 
of UHRF1 are required for H3 ubiquitination. Expression 
of the SRA and RING domain mutants in Uhrf1  mouse 
cells could neither restore DNMT1 replication targeting 
nor DNA methylation levels. A deletion of large parts of 
the DNMT1 TS domain abolished binding to ubiquitinat-
ed H3K23 in vitro, but effects on enzymatic activity were 
not investigated. In particular, the structure and function 
of the rather large TS domain with its multiple roles and 

In this study, we elucidate the complex interplay be-
tween UHRF1 and DNMT1. While we could confirm 
the general role of UHRF1 in recruiting DNMT1 to sub-
strate sites by direct interaction, we found that DNMT1 
targeting and activities are essentially controlled by spe-
cific binding to histone tails ubiquitinated by UHRF1. 
We generated defined mutations in different UHRF1 
domains that retained SRA domain-mediated binding 
to hemimethylated DNA substrate sites, TTD-mediated 
recognition of H3K9me3 and binding of DNMT1, but 
did not allow maintenance DNA methylation. We could 

ubiquitination of H3K18 via the RING domain are re-
quired for UHRF1 to mediate maintenance DNA methyl-

(UIM) in the TS domain of DNMT1 that reads this ubiq-
uitin mark and is strictly required for maintenance DNA 
methylation in vivo. These results show the manifold 
regulatory mechanisms controlling DNMT1 activity and 
illustrate the multifaceted interplay between DNA and 

Results

The interaction of DNMT1 with UHRF1 is required for 

maintenance DNA methylation

To test whether the interaction of DNMT1 with 
UHRF1 is indeed required for maintenance DNA meth-
ylation, we generated stable cell lines based on Dnmt1  

of either DNMT1 wild-type (GFP-DNMT1 wt) or a 
truncated TS domain deletion mutant (GFP-DNMT1 
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Figure 1 The DNMT1 TS domain is required for UHRF1 interaction, heterochromatin targeting and maintenance DNA methyl-
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1A and 1B). The deleted region was determined by a se-
quence alignment of TS domains from higher eukaryotes 
and a conserved core region of the domain was chosen 
for mutational analysis (Supplementary information, Fig-
ure S1A). In contrast to GFP-DNMT1 wt, GFP-DNMT1 

 did not co-localize with cherry (Ch)-UHRF1 
and showed a dispersed distribution in the nucleus (Figure 
1C), suggesting that the interaction with UHRF1 is es-
sential for subnuclear localization of DNMT1.

Next, we investigated the role of UHRF1 interaction 
for the catalytic function of DNMT1. Notably, GFP-DN-

able to fully methylate hemimethylated DNA substrates 
in vitro (Supplementary information, Figure S1C). To 
test the DNA methylation activity of this deletion mutant 
in vivo, we made use of a trapping assay. In this assay, 

forms an irreversible covalent complex with the meth-
yltransferase at the C6 position of the cytosine residue 
when incorporated into DNA during replication thereby 
trapping the enzyme at DNA replication foci. Trapped 
DNMT1 fractions increase over time and allow monitor-
ing the activity-dependent accumulation of DNMT1 at its 
target sites [33]. In ESCs stably expressing GFP-DNMT1 
wt, foci of immobilized protein emerged already within 
20 min (Figure 1D, left panel). In contrast, GFP-DNMT1 

 was not enriched at replication foci even after 
110 min, indicating that the deletion mutant is unable to 
methylate newly replicated DNA in living cells (Figure 
1D, right panel). To pursue this idea, we further analyzed 

-
-

formation, Figure S1B). GFP-DNMT1 could restore 
local DNA methylation at the major satellite repeats in 
Dnmt1 ESCs leading to an average methylation level 
of 62% that is comparable to the level of the wt cell line 
expressing the endogenous protein (74%, Figure 1E, 

UHRF1 binding was unable to reestablish local DNA 
methylation patterns resulting in decreased levels at 
the major satellite repeats (average 19%) similar to the 
Dnmt1  control cell line (average 18%). Consistently, a 

-
ylation activity was observed at the single-copy sequence 
of the  promoter (Figure 1E, right panel). 
Furthermore, similar results were obtained from DNA 
methylation analyses at the minor satellite repeats and 
the Dnmt1o

-
ylation in a Dnmt1  cell line (Supplementary informa-
tion, Figure S1D).

In summary, we provide strong evidence that the 

binding, even though able to methylate DNA substrates 
in vitro, cannot restore DNA methylation patterns in 
Dnmt1  ESCs. These findings suggest that the inter-
action of DNMT1 with UHRF1 is required to maintain 
DNA methylation in vivo.

The PHD and RING domain of UHRF1 are essential for 

maintenance DNA methylation

Cooperative binding of the UHRF1 TTD to di- and 
trimethylated histone H3K9 and of the SRA domain to 
hemimethylated DNA was described as a prerequisite 
for targeting DNMT1 to its substrate and for subsequent 
DNA methylation [34]. Given the regulatory impact of 
these two domains, we were interested in how the PHD 
and RING domain of UHRF1 may functionally contrib-
ute to maintenance DNA methylation by DNMT1. To 
this end, we introduced point mutations in the PHD and 
RING domain (UHRF1-GFP H346G and UHRF1-GFP 
H730A, respectively) that are expected to prevent coordi-

Supplementary information, Figure S2A). Consequently, 

the E3 ubiquitin ligase activity of UHRF1 in vivo (Sup-
plementary information, Figure S2C and S2D). Notably, 
the preference of UHRF1-GFP for hemimethylated DNA 
was not impaired by the PHD and RING domain muta-
tions (Supplementary information, Figure S2B).

First, we tested whether the point mutations in the 
PHD and RING domain influence the interaction of 
UHRF1 with DNMT1. UHRF1-GFP wt as well as 
UHRF1-GFP H346G and UHRF1-GFP H730A still 

-
MT1, indicating that the mutations do not affect the in-
teraction with DNMT1 directly (Figure 2B). In addition, 

-
cent three-hybrid assay [35, 36]. In this assay, UHRF1-
GFP fusion constructs were used as baits by tethering 
them to a lac operator (lacO) array present in baby 
hamster kidney (BHK) cells that simultaneously express 
RFP-DNMT1 as a prey. Accumulation of RFP-DNMT1 
at the lacO spot enriched for UHRF1-GFP wt, UHRF1-
GFP H346G or UHRF1-GFP H730A clearly demon-
strates that the mutant proteins were still able to interact 
with DNMT1 in vivo (Figure 2C).

In order to perform functional studies on the PHD 
and RING domain mutants, we stably expressed GFP-
tagged UHRF1 wt, UHRF1 H346G or UHRF1 H730A in 
Uhrf1 /  ESCs. Similar to wt, also UHRF1-GFP H346G 
and UHRF1-GFP H730A showed focal enrichment at 
heterochromatin (Figure 2D, first panel and Supple-
mentary information, Figure S2E). Thus, the mutations 
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do not affect localization of UHRF1. In contrast to its 
chromatin association in the UHRF1-GFP wt cell line, 
transiently co-expressed RFP-DNMT1 did not co-local-
ize with UHRF1-GFP H346G and UHRF1-GFP H730A, 
but showed a dispersed distribution in the nucleus (Figure 
2D, second panel). This observation is consistent with 
the result of a staining for endogenous DNMT1 (Supple-
mentary information, Figure S2F). Only in the UHRF1-
GFP wt cell line, endogenous DNMT1 was enriched at S 

distributed in the nucleus of the mutant cell lines point-
ing towards a defective DNMT1 targeting mechanism. 
To examine if DNMT1 methylation activity depends on 
the PHD and RING domain of UHRF1, we performed 
site-specific methylation analyses at heterochromatic 
regions. Consistent with defects in targeting DNMT1 to 
replication sites, DNA methylation levels at the major 
satellite repeats and the  promoter re-
vealed that both UHRF1-GFP H346G and UHRF1-GFP 
H730A were not able to mediate DNA remethylation by 
DNMT1 in Uhrf1  ESCs in contrast to UHRF1-GFP wt 
(Figure 2E). Especially at the major satellite repeats, the 
average DNA methylation in the PHD mutant cell lines 
remained nearly unchanged (16%) from the Uhrf1  
control cell line (11%). Also, the average methylation 
levels in the RING domain mutant cell lines (29%) did 
not reach the wt DNA methylation level (62%) at the 
major satellite repeats. Similar results were obtained 
for the minor satellite repeats and the Dnmt1o promoter 
(Supplementary information, Figure S3A). Consistent 

UHRF1 mutant cell lines also showed decreased global 
DNA methylation levels as compared with the wt (Sup-
plementary information, Figure S3B and S3C). Partial 
rescue of global DNA methylation in the RING domain 
mutant cell lines could be due to residual E3 ubiquitin 
ligase activity of UHRF1-GFP H730A (Figure 3B, Sup-
plementary information, Figure S2C and S2D).

To exclude the possibility that DNA hypomethyla-
tion might result from lower expression of the PHD and 
RING domain mutant (Figure 3A), we performed a tran-
sient rescue assay in Uhrf1  ESCs. Even though expres-
sion levels of the mutant constructs exceeded those of the 
UHRF1-GFP wt, the PHD and RING domain mutants 
could not mediate remethylation at the major satellite re-
peats (Supplementary information, Figure S3D and S3E) 
arguing for functional rather than expression defects.

In summary, the PHD and RING domain mutants, 
although not affecting UHRF1 heterochromatin localiza-
tion or the direct interaction with DNMT1, cannot me-
diate either targeting of DNMT1 to replication foci nor 

that these UHRF1 domains contribute to the recruitment 
of DNMT1 by indirect mechanisms.

The PHD and RING domain of UHRF1 are required for 

ubiquitination of histone H3

Histone H3 has been reported as a UHRF1-depen-
dent ubiquitination target in Xenopus egg extracts [32], 
providing a potential mechanism for the recruitment of 
DNMT1 to chromatin. Thus, we set out to investigate 
whether H3 ubiquitination required PHD-mediated his-
tone binding and RING domain-mediated ubiquitin E3 
ligase activity of UHRF1 in mammalian cells. To this 
end, we extracted histones from wt or Uhrf1

/  ESCs 

less ubiquitinated in the absence of UHRF1 (Figure 3A 
and 3B), indicating that UHRF1 serves as a ubiquitin E3 
ligase for H3 in mammalian cells. We also found that 
ubiquitination levels of histone H3 in Uhrf1

/  ESCs sta-
bly expressing the RING domain mutant UHRF1-GFP 
H730A were not rescued to the level of wt cells. Surpris-
ingly, the PHD mutant UHRF1-GFP H346G also could 
not restore ubiquitination of histone H3 (Figure 3A and 
3B).

Since the PHD has been reported to bind to unmod-
ified H3R2 [26, 37-39], we investigated the role of 
this histone residue in H3 ubiquitination by mutational 
analyses. Compared with GFP-H3 wt, ubiquitination of 
a GFP-H3 R2A mutant expressed in human embryonic 
kidney (HEK) 293T cells was clearly reduced (Figure 
3C) pointing towards an important role of the R2 residue 
for UHRF1-dependent H3 ubiquitination.

To further test the histone binding properties of the 
PHD mutant in vitro, we performed a peptide pull-
down assay with wt or PHD and RING domain mutant 
UHRF1-GFP using H3 peptides with an unmodified, 
trimethylated or acetylated K9 residue. The mutation in 
the RING domain did not alter the histone binding of 

K9 trimethylated H3 peptides similar to the wt protein 
(Figure 3D). The mutation in the PHD, however, de-

trimethylated peptide. We further examined the histone 
binding preferences of UHRF1-GFP with an in vitro his-
tone tail binding assay. The results revealed the binding 

H3 histone tails (Supplementary information, Figure 
S4), consistent with prior Kd measurements [39]. As the 
PHD of UHRF1 has been shown to bind unmethylated 
H3R2 residues and to contribute to the K9 methylated 
H3 histone binding of the TTD [26, 37-39], we propose 
that PHD-dependent histone binding is required for 
UHRF1-mediated ubiquitination of histone H3.
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Figure 3  (A) 

Uhrf1 -

(B)

 (C)

(D) In vitro

UHRF1 ubiquitinates histone H3 on K18 in mammalian 

cells

Using Xenopus extracts immunodepleted for DNMT1, 
H3 was shown to be ubiquitinated at the K23 residue [32]. 
To map ubiquitination sites on histone H3 tails in mam-
malian cells, we performed mass spectrometry using hu-
man and mouse cells. In contrast to the results from Xen-

opus extracts, the K18 residue of histone H3 was iden-

-

K23 residue showed a reduction of K18 ubiquitination 
in ESCs lacking UHRF1 (Figure 4C and 4D). Similarly, 
immunoprecipitation of GFP-UHRF1 from HEK 293T 
cells and subsequent mass spectrometry also revealed 
ubiquitination at K18 but not at K23 (Supplementary 
information, Figure S5A). Comparison of ubiquitination 
levels of overexpressed GFP-H3 carrying R2A, K18A or 

K23A mutations suggests that in this constellation K23 
could also be modified (Supplementary information, 
Figure S5B). Interestingly, the GFP-H3 R2A construct 
showed reduced ubiquitination levels indicating that the 
R2 residue plays a role in regulating H3 ubiquitination.

DNMT1 harbors a UIM that mediates binding to ubiq-

uitinated H3 and is essential for DNA methylation activi-

ty in vivo

To unravel how H3 ubiquitination may contribute to 
maintenance DNA methylation, we screened DNMT1 for 
potential binding motifs. With bioinformatics analyses, 

N-terminal regulatory domain of DNMT1. This motif 
is located in a region spanning from amino acid 380 to 
399 of mouse DNMT1 and shows striking similarity to 
UIMs of known ubiquitin interacting proteins (Figure 
5A). Comparison of the ubiquitin binding properties 
between GFP-DNMT1 wt and mutants either lacking 
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Figure 4 

cells. (A)

-

the mass to charge ratio (m/z -

m m

R

measurement. (B)

(C, D)

Uhrf1
/

-

relevant and conserved amino acids in the motif to ala-
nine (D381A-E382A-S392A, D381A-E382A-M385A-
S392A-D395A, Figure 5A and Supplementary informa-
tion, Figure S6A) showed a defect in the association with 
ubiquitinated histone H3 and ubiquitinated H2AK119 
(Figure 5B, 5C and Supplementary information, Figure 
S6B-S6D). To further elucidate UIM-dependent ubiquiti-

peptides bound by GFP-DNMT1 wt or the UIM mutants 
by mass spectrometry. Whereas H3 histone peptides 

co-immunoprecipitated with GFP-DNMT1 wt, only little 
to no ubiquitinated peptide signals were detected for the 

defective in UHRF1 interaction (Figure 1B) showed re-
duced (Figure 6B) or undetectable (Figure 5B, 5C) bind-
ing to ubiquitinated H3 and H2A. This deletion located 
in a TS domain region C-terminal of the UIM might 
affect the integrity and functionality of the motif respon-
sible for ubiquitin binding. Therefore, we cannot rule out 
that apart from disrupted UHRF1 binding also defects in 
the association with ubiquitinated histones contributed to 
the observed changes in subnuclear distribution and pro-

Besides a decreased binding to ubiquitinated H3, the 
TS domain point and deletion mutants exhibited an in-
creased binding to H3 or core histones compared with 

-
ing of DNMT1 to ubiquitinated H3 via its UIM might 
prevent the enzyme from stable chromatin association 
and thereby facilitate DNA methylation.

To clarify the functional role of the UIM in mainte-
nance DNA methylation in vivo, we performed a func-
tional complementation assay in Dnmt1  ESC lines 
transiently expressing GFP-DNMT1 wt, GFP-DNMT1 

GFP-DNMT1 D381A-E382A-M385A-S392A-D395A. 
Local DNA methylation analyses at the major satellite 
repeats and the  promoter showed that the 
UIM mutants were not able to reestablish DNA meth-
ylation patterns (Figure 6C). GFP-DNMT1 wt restored 
DNA methylation at the major satellite repeats to 48%. 
By comparison, the UIM deletion and point mutants 
were not able to rescue resulting in low average meth-
ylation levels of 20% to 23% comparable to untrans-
fected Dnmt1  ESCs (15%). Similar results were also 
observed at the minor satellite repeats and the Dnmt1o 
promoter (Supplementary information, Figure S7A).

Given that the GFP-DNMT1 TS UIM deletion and 
point mutants were able to interact with Ch-UHRF1 
(Supplementary information, Figure S7B), we were in-
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the TTD, PHD and SRA domain and defects in any of 
these three domains lead to decreased DNA methylation 
by DNMT1 [34, 45, 46]. Accordingly, it was postulated 
that UHRF1 reads and binds repressive histone marks 
and hemimethylated DNA and via direct protein-protein 
interaction recruits DNMT1 for maintenance DNA meth-
ylation.

Defects of a RING domain mutant (C713A, C515A 
and C716A) in restoring ubiquitinated H3 in HeLa cells 
after knockdown of human DNMT1 and UHRF1 have 
previously been reported [32]. We found that the RING 
domain, though not directly involved in UHRF1 chroma-
tin binding or interaction with DNMT1, is indispensable 
for DNA methylation by DNMT1. Remarkably, a UHRF1 
RING domain mutant (H730A) with diminished ubiquitin 
E3 ligase activity (Supplementary information, Figure 
S2C and S2D) that could still bind DNMT1 (Figure 2B), 
hemimethylated DNA and K9 trimethylated H3 peptides 
in vitro (Figure 3D and Supplementary information, 
Figure S2B) and chromocenters in vivo (Supplementary 
information, Figure S2E), nonetheless failed in recruiting 
DNMT1 to replication sites (Figure 2D and Supplemen-

DNMT1 recruitment to replication forks is not based on 
direct interaction with UHRF1, but on the catalytic activ-
ity of the RING domain. Previously, the RING domain of 
UHRF1 has been reported to have an autoubiquitination 
activity [28] and, in addition, to ubiquitinate DNMT1 
[29, 30] and histone substrates [24, 25]. A recent study 
describes that ubiquitination of H3 by UHRF1 provides 
docking sites for DNMT1 on chromatin and thus cou-
ples maintenance DNA methylation and replication [32]. 

obtained new insights into the complex functional inter-
play of UHRF1 and DNMT1 domains.

First, in contrast to ubiquitination at K23 in Xenopus 

H3K18 as ubiquitination target of UHRF1 in mammalian 
cells (Figure 4A, 4B and Supplementary information, 
Figure S5A). By mutational analysis in HEK 293T cells, 
we found that in absence of K18, the mutated GFP-
tagged H3 might be ubiquitinated at K23 (Supplementary 
information, Figure S5B). However, by semiquantitative 
analysis of endogenous ubiquitinated H3 peptides in wt 
versus Uhrf1  mouse ESCs using mass spectrometry, 

UHRF1 and its reduction by UHRF1 depletion (Figure 
4C, 4D). Second, in the previous study, a deletion of 

425) caused a loss of histone binding in vitro [32]. The 
TS domain is, however, involved in multiple interactions 
and required for proper folding, stability and activity of 
DNMT1. The incomplete structural information indicates 

the subnuclear localization of the protein. Immunostain-
-

body indicated that GFP-DNMT1 wt was enriched at S 

404, GFP-DNMT1 D381A-E382A-S392A and GFP-DN-
MT1 D381A-E382A-M385A-S392A-D395A showed 
only weak association with the PCNA-stained replication 
sites especially in late S phase (Supplementary informa-
tion, Figure S8). To analyze the UIM-dependent enrich-
ment of DNMT1 at late-replicating heterochromatin, we 

compared with the nucleoplasmic region (Figure 7A). In 

cells, GFP-DNMT1 wt localized at chromocenters, 
whereas the UIM mutations abolished heterochromatin 
enrichment (Figure 7B and 7C). These results clearly 
demonstrate the key role of the UIM in DNMT1 targeting 
via ubiquitinated histone H3 binding and for maintenance 
DNA methylation in mammalian cells.

Discussion

DNA methylation is an important epigenetic modifi-
cation regulating gene expression in development and 
disease. A key question is how methylation marks are 
set, maintained and removed. According to previous 
models, DNA methylation marks are set by the de novo 
methyltransferases DNMT3A and DNMT3B during 
development and maintained by the maintenance DNA 
methyltransferase DNMT1 that specifically recognizes 

the preference of DNMT1 for hemimethylated DNA mea-
sured in vitro 

maintenance of DNA methylation patterns over many 
cell division cycles in vivo. The interaction of DNMT1 
with the replication protein PCNA was shown to enhance 
maintenance DNA methylation by a factor of two, but not 
to be essential [6, 7]. In contrast, the interacting factor 
UHRF1 recruiting and allosterically activating DNMT1 
is essential for DNA methylation [14, 16, 17, 44]. In this 
study, we have now dissected the distinct role of different 
UHRF1 and DNMT1 domains in directing DNA methyla-
tion.

In line with previous studies, we show that, albeit be-
ing weak, the TS domain-mediated interaction of DNMT1 
with the SRA domain of UHRF1 is required for targeting 
and function of DNMT1 in vivo. Accordingly, truncated 

weaker association with chromocenters in late S phase 
-

ation in ESC (Figure 1).
Heterochromatin binding of UHRF1 is mediated by 
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different TS domain conformations and a role in auto-
inhibition of the CD, but does not provide any further 
mechanistic insights [10, 11, 47]. With bioinformatics 

located in the TS domain of DNMT1 (amino acids 381-
395) that mediates the recognition of ubiquitinated H3 in 

vitro (Figure 5, 6A, 6B and Supplementary information, 
Figure S6B). Localization and activity analyses with 

in vivo clearly indicated that the UIM is 
required for DNMT1 subnuclear distribution and mainte-
nance DNA methylation (Figures 6C, 7 and Supplemen-
tary information, Figure S7A and S8).

Last, we could show that besides hemimethylated DNA 
binding by the SRA domain [32], UHRF1 PHD binding 
to H3R2 is also required for H3 ubiquitination and subse-
quent DNA methylation (Figure 2E and 3B). Therefore, 
we propose that cooperative chromatin binding of the 
TTD, the PHD and the SRA domain constitutes a pre-
requisite for H3K18 ubiquitination. These ubiquitinated 
histone tails are recognized by the UIM and thus mediate 
DNMT1 chromatin binding. Thereby, UHRF1 acts as a 
reader and writer of histone marks and via recruitment 
of DNMT1 dynamically links DNA and histone modi-

ubiquitination-dependent chromatin targeting mechanism 
for DNMT1 that is essential for maintenance DNA meth-
ylation after replication (Figure 8A). The identification 
and functional characterization of a UIM in DNMT1 not 
only changes our view of maintenance DNA methylation, 
but also opens new perspectives for the involvement of 
DNMT1 in other repressive epigenetic pathways (Figure 
8B).

Besides association with ubiquitinated H3, we found 
that DNMT1 also binds ubiquitinated H2AK119 (Figure 
5C and Supplementary information, Figure S6C, S6D). 
Consistently, DNMT1 was recently detected among pro-
teins binding to H2A ubiquitinated at K118 in Drosoph-

ila, corresponding to K119 in mammals [48]. H2AK119 
ubiquitination is catalyzed by RING1A/1B, two compo-
nents of the Polycomb repressive complex 1 (PRC1), and 
plays an important role in regulating gene expression [49]. 
Similar to UHRF1-dependent H3 ubiquitination, H2A 
ubiquitination by RING1A/1B might also contribute to 
DNA methylation. We speculate that UIM-mediated bind-
ing of DNMT1 to ubiquitinated H2AK119 might direct 
DNMT1 to un- or hemimethylated sites dependent on 
PRC1 ubiquitination activity (Figure 8B, left half).

PRC1-dependent H2A ubiquitination further leads to 
PRC2 recruitment and subsequent H3K27 methylation 
[50]. Enhancer of Zeste homolog 2 (EZH2), a compo-
nent of PRC2, writes methylated H3K27 and interacts 
with DNMTs. This interaction was shown to be required 
for DNA methylation of EZH2 target promoters [51]. 

DNMT1 depletion in differentiated cells affects H2A 
ubiquitination-dependent PRC2 recruitment at pericen-
tromeric heterochromatin [52]. Thus, UIM binding to 
ubiquitinated H2A is likely DNA replication independent 
and DNMT1 might function as adaptor protein mediating 
PRC2 recruitment and repressive Polycomb domain for-
mation.

Besides recruiting DNMT1 to specific sites on chro-
matin, the UIM could also play a role in the allosteric 
activation of the enzyme. The UIM is located within the 
TS domain of DNMT1 that had been shown to bind the 
CD and thereby inhibit catalytic activity [10, 11]. It is 
tempting to speculate that competitive UIM binding to 
ubiquitinated histone tails displaces the TS domain from 
the DNA binding pocket and abolishes autoinhibition of 
DNMT1.

Given the emerging role of ubiquitination in DNA 
methylation, it is interesting to notice that ubiquitination 

can be reversed by ubiquitin-specific proteases (USPs). 
The UHRF1-DNMT1 complex has been reported to con-
tain USP7 that deubiquitinates and stabilizes DNMT1 [29, 
30]. Thus, USP7 might in addition modulate the ubiquiti-
nation status of histone H3 and thereby regulate DNMT1 
association with chromatin. An alternative pathway con-
trolling DNMT1 chromatin association could involve 
the recently described chromatin acetylation of H3K18 
and K23 [53, 54]. Acetylated H3K18 is enriched at the 
transcriptional start sites of active and poised genes [55]. 
Thus, H3K18 acetylation might counteract ubiquitination 
and thereby prevent binding and silencing of active genes 
by DNMT1. The dynamic interplay of ubiquitination and 
acetylation of H3K18 likely controls DNMT1 chromatin 
binding and thereby directs methylation activity. Studies 
of UHRF1 and DNMT1 complex composition in differ-
ent cell cycle phases and cell types should provide further 

in vivo.
Given the complex role of the large TS domain on the 

one hand and the scarce structural and mechanistic data 
on the other hand, our identification of a well defined 
UIM provides a concrete basis for functional insights. 

described in various cellular processes like, e.g., sorting 
of ubiquitinated membrane proteins for lysosomal deg-
radation. The crystal structure of the signal transducing 
adaptor molecule 1 (STAM1) [56] suggests that three 
central amino acids in the UIM, L176, A179 and S183 
form a hydrophobic interface for ubiquitin binding [57]. 
Similar to the UIM in STAM1, the UIM in DNMT1 also 
harbors a conserved hydrophobic amino acid M385 and 

E382 and D395), which we found to be essential in our 
analyses (Figures 5, 6 and 7). Different from other UIMs, 
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the central conserved A residue is not present in DNMT1 
(Supplementary information, Figure S6A). Based on se-
quence alignments and structural information, UIMs can 
be subdivided in single-sided single UIMs, as in STAM1, 
and in single-sided tandem UIMs, as in the proteasome 
subunit S5a [58] (Figure 5A). The tandem UIMs in S5a 
provide a model for the recognition of polyubiquitin 
chains [59]. In contrast, a double-sided single UIM in 
the hepatocyte growth factor-regulated tyrosine kinase 

monoubiquitinated receptors in the process of endosomal 
protein sorting [58]. Comparison with these known UIMs 
suggests that the motif in DNMT1 belongs to the group 
of single-sided single UIMs, which would be compatible 
with the recognition of single ubiquitinated histone tails.

In summary, the functional analysis of UHRF1 do-
-

lenge traditional views of maintenance DNA methylation 
as a simple copying mechanism. Instead, DNA methyl-
ation by DNMT1 requires reading of H3R2, H3K9me3 
and hemimethylated DNA by UHRF1 and subsequent 
ubiquitination of H3K18 by its RING domain thereby 
integrating signals from different epigenetic pathways. 
These multiple layers controlling DNMT1 activity 
suggest that overall methylation densities in chromatin 

patterns precisely copied. The functional characteriza-
tion of the UIM further raises the possibility that other 
ubiquitin E3 ligases like RING1A/1B of PRC1 might 
direct DNMT1 activity to repressive chromatin domains 
beyond simple maintenance.

Materials and Methods

Expression constructs and antibodies
Fusion constructs were generated using enhanced GFP, mo-

nomeric RFP or monomeric Ch. The expression constructs for 

GFP-DNMT1 309-628 (GFP-TS) and UHRF1-His have been 

E382A-S392A and D381A-E382A-M385A-S392A-D395A) ex-
pression constructs as well as UHRF1-GFP H346G and H730A 
were derived from the corresponding wt constructs by overlap 
extension PCR [62]. The GFP-UHRF1 single-domain construct 
for the ubiquitin-like domain (Ubl) was generated by PCR using 
the corresponding wt full-length construct. Ch-UHRF1 and GFP-
UHRF1 expression constructs have been described previously [22, 
63]. Expression constructs for GFP-H3 R2A, K18A, K23A as well 
as K18A-K23A were obtained by overlap extension PCR on the 
corresponding wt construct. The construct for LacI-GBP has been 

sequencing (MWG Biotech).

anti-H3K9me3 and an anti-H4K20me3 antibody were used (Active 

Motif). Endogenous DNMT1 was stained with the rat monoclonal 
antibody 5A10 [4] and PCNA with the rat monoclonal antibody 
16D10 [66]. As secondary antibodies an anti-mouse Alexa Fluor 
594 and anti-rat Alexa Fluor 647 antibody were applied, respec-
tively (Invitrogen). 

For detection of GFP fusion proteins by western blot, a mouse 
anti-GFP (Roche) or a rat anti-GFP (Chromotek) antibody was 
used. RFP or Ch fusion proteins were detected by the rat anti-red 
antibody 5F8 [67]. UHRF1 was visualized by a rabbit anti-UHRF1 
antibody [24] and HA-ubiquitin by the mouse monoclonal anti-HA 
antibody 12CA5. Equal loading of cell lysates was assessed by a 

antibody was purchased from Abcam and the anti-H2AK119ub 
from New England Biolabs. Depending on the expected intensity 
of the signals, secondary antibodies either conjugated to horserad-
ish peroxidase (anti-rabbit (Biorad), anti-rat and anti-mouse (Di-

Alexa Fluor 647 as well as anti-rat Alexa Fluor 488 (Invitrogen)) 
were applied. For detection of HRP-conjugated antibodies, an ECL 

HEK 293T and BHK cells were cultured in DMEM supple-
mented with 10% fetal calf serum and 50 µg/ml gentamycine 
(PAA). MEF cells were cultured in DMEM supplemented with 

mM l-glutamine, 1× MEM non-essential amino acids, 100 U/ml 
penicillin and 100 g/ml streptomycin (PAA). ESCs including J1 
wt, Dnmt1 , E14 wt and Uhrf1  were cultured without feeder 

supplemented with 1 000 U/ml recombinant leukemia inhibitory 
factor (Millipore). The Dnmt1  ESCs used in this study are ho-
mozygous  for the c allele [68]. Mouse E14 wt and Uhrf1

 cells 
have been reported before [61]. Mouse ESCs and MEF cells were 
transfected with FuGENE HD (Roche), Lipofectamine® 2 000 
or 3 000 reagent (Invitrogen) according to the manufacturer�s in-
structions. HEK 293T cells and BHK cells were transfected using 
polyethylenimine as transfection reagent (Sigma) according to the 
manufacturer�s instructions. Cell fixation and microscopy were 
carried out as described [35].

Generation of stable ESC lines and DNA methylation anal-
yses

Forty-eight hours after expression of GFP-tagged constructs in 
Dnmt1  or Uhrf1  ESCs, GFP-positive mouse ESCs were sepa-

-
strument (Becton Dikinson). Stably expressing cells were expand-
ed in selection medium containing 10 µg/ml blasticidin (GFP-DN-

(UHRF1-GFP wt, H346G and H730A) and GFP-positive cells 
were FACS sorted a second time. Furthermore, the UHRF1-GFP 
wt, H346G and H730A cell lines were single-cell sorted. Single 

picked manually. For all cell lines, clones with low expression 
levels were chosen for further analyses. The level and the accuracy 
of the expressed GFP fusion constructs were checked by western 
blot analyses (Figure 3A and Supplementary information, Figures 
S1B and S3D). For functional analyses of GFP-DNMT1 wt and 

and D381A-E382A-M385A-S392A-D395A) as well as UHRF1-
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GFP wt or UHRF1-GFP point mutants (H346G and H730A) by 
transient rescue assays, 48 h after expression of these proteins in 
Dnmt1

 or Uhrf1 ESCs, respectively, GFP-positive cells were 
-

sion and PCR conditions were described before [6, 60, 69]. Primer 
sets used for amplification of minor satellites, major satellites, 

 and the Dnmt1o promoter are listed in Supplemen-
tary information, Table S1. All PCR products were analyzed by 
pyrosequencing (Varionostic), which results in a quantitative data 
set for individual CpG sites [70].

Co-immunoprecipitation and western blotting
For co-immunoprecipitation assays, the GFP and RFP, Ch or 

His fusion constructs were co-expressed in HEK 293T cells and 
protein extracts were normalized to the same GFP or RFP con-
centration prior to co-immunoprecipitation with the GFP-Trap or 
RFP-Trap (Chromotek). Bound fractions were first detected by 

analyses.

Acid extraction and TCA precipitation of histones
Histones were isolated by acid extraction as reported previous-

ly [71]. In brief, 107 mouse ESCs or HEK 293T cells were treated 
in hypotonic buffer (10 mM Tris-HCl pH 8, 10 mM KCl, 1.5 mM 
MgCl2, 1 mM DTT and 1× Protease Inhibitor, 2 mM PMSF) for 
30 min and centrifuged at 1 000× g at 4 °C to get the intact nuclei. 
After washing steps, nuclei were resuspended in 0.4 N H2SO4 
and incubated on a rotator at 4 °C overnight. After centrifugation, 
histones in the supernatant were transferred into a fresh reaction 
tube and precipitated using 33% trichloroacetic acid (TCA). After 
washing twice with cold acetone, histones were dissolved in H2O. 
Histone concentrations were measured using the PierceTM 660 nm 

Ubiquitinated histone binding experiment
For ubiquitinated histone binding experiment, acid extracted 

histones from HEK 293T cells were used. GFP-DNMT1 and its 
mutants were immobilized on the GFP-Trap (Chromotek) and in-
cubated with equal amounts of acid extracted histones for 30 min 
at 4 °C. After washing steps, the bound fractions were analyzed by 
western blot.

we used eppendorf tubes with low binding affinity during mass 
spectrometry sample preparation.

Immunoprecipitation of ubiquitinated GFP-H3
GFP-H3 wt and R2A mutant constructs were co-expressed in 

HEK 293T cells with UHRF1-His and harvested after treatment 
with 2 mM N-ethylmaleimide (NEM, AppliChem) for 5 min. Ly-

(10 mM HEPES pH 7.9, 10 mM KCl, 0.1 mM MgCl2, 10% glyc-
erol, 0.1 mM EDTA, 0.1 mM DTT, 1× protease inhibitor, 2 mM 
PMSF, 0.1% NP-40, 0.625 mg/ml NEM) and secondly by lysis of 
the nuclei in hypertonic buffer (20 mM HEPES pH 7.9, 150 mM 
KCl, 1.5 mM MgCl2, 10% glycerol, 0.1 mM EDTA, 1 mM DTT, 
1× protease inhibitor, 2 mM PMSF, 1 mg/ml DnaseI (AppliChem), 
0.625 mg/ml NEM). Prior to immunoprecipitation, the GFP con-
centration was equalized using lysates from UHRF1-His trans-
fected HEK 293T cells for dilution. After immunoprecipitation of 
GFP-H3 with the GFP-Trap (Chromotek) and washing (20 mM 

HEPES pH 7.9, 300 mM KCl, 10% glycerol, 0.1% Triton X-100), 
the bound fraction was analyzed by western blot.

For semiquantitative analysis of the GFP-H3 wt or K18A, 
K23A, K18A-K23A and R2A ubiquitination, the GFP fusion con-
structs were co-expressed with HA-ubiquitin in HEK 293T cells 
and 2 days after transfection, the cells were harvested as described 
above and further processed as reported previously [29].

F3H assay and trapping assay
The F3H assay was performed as described previously [65]. In 

the trapping assay, mouse ESCs stably expressing GFP-DNMT1 

-
ma). Images were acquired with a UltraVIEW VoX spinning disc 
microscope (PerkinElmer) assembled to an Axio Observer D1 in-
verted stand (Zeiss) and using a 63×/1.4 NA Plan-Apochromat oil 
immersion objective.

In vitro peptide pull-down assay
The peptide pull-down assay from nuclear cell extracts of HEK 

293T cells expressing UHRF1-GFP fusion constructs was per-
-

minally biotinylated histone peptides were purchased from PSL 
and are listed in Supplementary information, Table S2. Streptactin 
beads (Iba) were used for the immobilization of biotinylated pep-
tides in binding buffer (10 mM Tris-HCl, pH 7.5, 300 mM NaCl, 
0.5 mM EDTA, 1 mM DTT). After the binding reaction, beads 
were washed four times with wash buffer (20 mM HEPES pH 7.9, 
20% glycerol, 0.2 mM EDTA, 300 mM KCl, 0.1% Triton X-100). 
Bound fractions were eluted by boiling in 2× Laemmli sample 
buffer and analyzed by western blot.

Mass spectrometry
The gel was stained with Coomassie and H3 bands were manu-

ally excised, propionylated and digested with trypsin as described 

slices were incubated twice with 50 µl of 50% acetonitrile 0.25% 
TFA and twice more with 50 µl of acetonitrile. The resulting liquid 
containing the digested peptides was totally evaporated, redis-

further processing.
Tryptic peptides were injected (5 µl) in an Ultimate 3 000 

HPLC system (LC Packings Dionex). Samples were desalted on-
line in a C18 microcolumn (300 m i.d. × 5 mm, packed with C18 
PepMap�, 5 µm, 100 Å by LC Packings), and peptides were sep-
arated with a gradient from 5% to 60% acetonitrile in 0.1% formic 
acid over 40 min at 300 nl/min on a C18 analytical column (75 
µm i.d. × 15 cm, packed with C18 PepMap�, 3 µm, 100 Å by LC 
Packings).

a linear trap quadrupole-Orbitrap XL mass spectrometer (Thermo 
Fisher Scientific). The MS instrument was operated in data-de-
pendent mode. Survey full-scan MS spectra (from m/z 300�2 000) 
were acquired in the Orbitrap with resolution R = 60 000 at m/z 400 
(after accumulation to a �target value� of 500 000 in the linear ion 
trap). The six most intense peptide ions with charge states between 
two and four were sequentially isolated to a target value of 10 000 
and fragmented by collision-induced dissociation and recorded in 
the linear ion trap. For all measurements with the Orbitrap detec-
tor, three lock-mass ions were used for internal calibration [74]. 
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Typical MS conditions were spray voltage, 1.5 kV; no sheath and 
-

ized collision-induced dissociation energy 35%; activation q = 0.25; 
and activation time = 30 ms.

-
lowing settings: Database: Swissprot 57.7; Taxonomy: Homo sa-

piens (human); MS tolerance: 10 ppm; MS/MS tolerance: 0.5 Da; 
peptide FDR: 0.1; protein FDR: 0.01; minimum peptide length: 5; 

intensities of the MS1 peaks. The spectra depicted in Figure 4A 
and 4B were used to determine the exact masses (m/z ± 10 ppm) 

Quantitative analysis of DNMT1 subnuclear localization
During late S phase, DNMT1 is enriched in replication foci at 

chromocenters. In order to quantify the subnuclear distribution of 
-

dure was used: confocal z-stacks (0.21 µm interval) were acquired 
with identical scan settings in three color channels to visualize 
replication foci (anti-PCNA staining, 594 nm excitation), DNMT1 
localization (GFP-DNMT1 fusions enhanced with GFP-booster 
(Chromotek), 488 nm excitation) and DNA counterstaining (DAPI, 
405 nm excitation). For each color channel, maximum intensity 
projections were calculated and only GFP-expressing cells were 
analyzed. Segmentation of replication foci or whole nuclei was 
performed with the Weka segmentation plugin [75] in Fiji [76]. 

visual impression (Figure 7A). Due to variations in ESC samples, 

or the different UIM mutants. In contrast, for all somatic cells, 
one classifier was sufficient to segment replication foci. Whole 

where further analyzed in the ESC samples. In MEF cell samples, 
only late S phase cells were imaged and analyzed without applying 
size exclusion for replication foci. Nuclear masks -
el) were used to quantify the total amount of GFP fusion protein in 
a single nucleus. Nuclei were further subsegmented by replication 
foci masks. For each nucleus, the ratio between the mean GFP 
signals in replication foci relative to the mean GFP signal outside 
the foci was calculated. Raw data were corrected for background 
signals by subtracting the modal grey value. Ratios from all nuclei 
expressing GFP-DNMT1 wt or UIM mutants were visualized as 
box plots. Numerical calculations and statistical analysis were per-
formed with R [77].

Statistical analysis
Results were expressed as mean values ± SD or as mean values 

± SEM from the number of biological replicates indicated in the 
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Supplementary information, Figure S3 The UHRF1-GFP PHD and RING domain mutants cannot mediate DNA remethylation in 

mouse E14 Uhrf1
-/-

ESCs. (A) Local DNA methylation analyses at minor satellite repeats and the Dnmt1o promoter. CpG methylation 

levels of mouse E14 Uhrf1
-/-

ESCs stably expressing UHRF1-GFP wt or PHD (H346G) and RING domain (H730A) mutant constructs 

were analyzed by bisulfite treatment of genomic DNA, PCR amplification and direct pyrosequencing. The methylation level of E14 wt 

ESCs (endogenous UHRF1) and untransfected E14 Uhrf1
-/-

cells are shown for comparison. Mean values ± SD from two different clones 

were calculated. (B) and (C) Global DNA methylation analysis of stable UHRF1-GFP wt or PHD and RING domain mutant cell lines 

compared to E14 wt ESCs expressing endogenous UHRF1 and E14 Uhrf1
-/-

ESCs. (B) Slot blot analysis using a dilution series of genomic 

DNA and immunodetection with specific anti-single stranded (ss) DNA and anti-5-methylcytosine (5mC) antibodies. A representative slot 

blot of technical duplicates is shown. (C) The 5mC signals relative to the signals of ssDNA were quantified using the ImageJ gel analysis 

tool. Relative global DNA methylation levels are indicated as mean values ± SD of technical duplicates. (D) Expression analysis of 

UHRF1-GFP wt or PHD and RING domain mutants after transient transfection in E14 Uhrf1
-/-

ESCs and FACS sorting. Fusion proteins 

were detected with a specific anti- -Actin serves as a loading control. (E) Local DNA methylation analyses of E14 

Uhrf1
-/-

ESCs transiently expressing GFP-UHRF1 wt or PHD (H346G) and RING domain (H730A) mutant constructs. CpG methylation 

levels at the major satellite repeats were analyzed by bisulfite treatment of genomic DNA, PCR amplification and direct pyrosequencing.

Shown are mean values ± SD from three independent experiments normalized to the value of UHRF1-GFP wt at the first CpG site.
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ABSTRACT  

Among the writers of epigenetic marks, DNMT1 is the key enzyme responsible for maintaining DNA 

methylation after replication. PCNA and UHRF1 are important binding partners of DNMT1 recruiting the 

enzyme to its substrate. Remarkably, the TS domain known to target DNMT1 to pericentromeric 

heterochromatin is affected by various mutations in HSAN-IE and ADCA-DN patients. The disease 

mechanisms and its molecular basis, however, remain elusive. We performed functional assays using two 

HSAN-IE associated DNMT1 TS mutants and found a reduced methylation activity in mouse ESCs. 

Importantly, the TS domain-mediated interaction with UHRF1 was diminished and mutant DNMT1 was not 

properly recruited to late replicating chromatin. Similarly, DNA methylation defects were observed, when 

the DNMT1 interacting domains in UHRF1, the Ubl and the SRA domain, were deleted. In addition, we 

found that HSAN-IE associated DNMT1 mutants showed faster protein kinetics and decreased protein 

stability, especially in late S and G2 phase. This study provides strong evidence for a central importance of 

the TS domain in regulating DNA methylation by DNMT1 and contributes to understanding the molecular 

basis for methylation defects observed in HSAN-IE patients. 
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INTRODUCTION 

Epigenetic mechanisms are crucial for the regulation of gene expression during development and 

differentiation. Tissue-specific DNA methylation patterns established during development are faithfully 

propagated to future somatic cell generations by the action of the DNA methyltransferase 1 (DNMT1) (Bird 

2002). After replication, DNMT1 copies DNA methylation marks in a CpG context from the mother strand 

to the daughter strand by catalytic activity of its C-terminal domain (CTD). The complex regulation of 

enzyme targeting and activation is, however, mediated by the N-terminal domain (NTD) harboring distinct 

subdomains. The association of DNMT1 with replication sites relies on binding of the proliferating cell 

nuclear antigen (PCNA) binding domain (PBD) to PCNA (Leonhardt et al. 1992; Chuang et al. 1997; 

Rountree et al. 2000). Accordingly, DNMT1 shows a cell cycle-dependent localization in mouse nuclei 

(Leonhardt et al. 1992). In late S phase, when constitutive heterochromatin like the major satellite repeats 

is replicated, DNMT1 is clearly enriched at chromocenters. Heterochromatin binding during G2 is 

mediated by the targeting sequence (TS) domain independently from DNA replication probably ensuring a 

thorough propagation of DNA methylation patterns to the progeny (Easwaran et al. 2004). DNMT1 

interacts with ubiquitin-like, containing PHD and RING finger domains 1 (UHRF1, also known as 95-kDa 

mouse nuclear protein (Np95)), an important cofactor of maintenance DNA methylation that targets 

DNMT1 to its substrate consisting of hemimethylated CpG sites (Bostick et al. 2007). Interaction with 

DNMT1 has been reported to be mediated by the SET and RING-associated (SRA) domain of UHRF1 

(Achour et al. 2008; Felle et al. 2011). UHRF1 also binds to hemimethylated DNA via its SRA domain 

(Bostick et al. 2007; Sharif et al. 2007; Arita et al. 2008; Avvakumov et al. 2008; Qian et al. 2008) and to 

methylated histone H3K9 via its tandem Tudor domain (TTD) and plant homeodomain (PHD) (Citterio et al. 

2004; Karagianni et al. 2008; Rottach et al. 2010; Cheng et al. 2013). By collaborative readout of 

methylated histones and hemimethylated DNA, UHRF1 serves as a bridge between chromatin and DNMT1 

in order to regulate methylation of the newly synthesized strand after replication (Liu et al. 2013). Besides 

recruitment of DNMT1 to its target sites by intermolecular protein-protein binding, also changes in 

intramolecular interactions serve as a prerequisite for DNMT1 enzymatic activity. Firstly, in complex with 

unmethylated DNA, the linker between the zinc finger (CXXC) domain and the bromo-adjacent homology 

domain 1 (BAH1) blocks the access of DNA to the catalytic center (Song et al. 2011b). Secondly, the crystal 

structure of a longer fragment of DNMT1 reveals that in absence of DNA the TS domain is anchored in the 

DNA binding pocket of the C-terminal domain (Takeshita et al. 2011). Thus, these two autoinhibitory 

mechanisms have to be overcome by structural changes resulting in the activation of the enzyme.  

Besides enzyme targeting and activation, DNMT1 stability also contributes to the regulation of 

maintenance DNA methylation. Abundance of DNMT1 during the cell cycle is governed by coordinated 

action of its stabilizer ubiquitin-specific peptidase 7 (USP7, also known as herpes virus associated 

ubiquitin-specific protease (HAUSP)) and the destabilizer UHRF1. USP7 has been shown to deubiquitinate 

DNMT1 leading to protection from proteasomal degradation (Du et al. 2010; Qin et al. 2011). DNMT1 is 

further stabilized by deacetylation mediated by the histone deacetylase 1 (HDAC1) (Du et al. 2010). On the 

contrary, UHRF1 ubiquitinates DNMT1 thereby marking it for proteasomal degradation, a process that is 

driven by Tip60-mediated acetylation of DNMT1 (Du et al. 2010). 

Although the role of maintenance DNA methylation is coupled to replication in mitotic cells, DNMT1 is 

highly expressed in embryonic and adult neurons, especially in the central nervous system (CNS) (Goto et 
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al. 1994). DNA methylation has been implicated in neurogenesis contributing to learning and memory 

formation (Yu et al. 2011). Recently, several studies have described the identification of DNMT1 mutations 

in patients suffering from hereditary sensory and autonomic neuropathies with dementia and hearing loss 

(HSAN-IE) and autosomal dominant cerebellar ataxia deafness and narcolepsy (ADCA-DN) (Klein et al. 

2011; Winkelmann et al. 2012; Gosal et al. 2013; Pedroso et al. 2013; Yuan et al. 2013; Moghadam et al. 

2014a). The disease phenotypes are characterized by late-onset progressive neurologic disorders including 

the CNS and the peripheral nervous system (PNS) (Klein et al. 2013). Strikingly, solely the TS domain is 

affected by (neurodegenerative diseases associated) mutations indicating its important role in enzyme 

regulation. However, the molecular basis underlying the disease mechanism is far from being understood. 

In this study, we elucidate the functional relevance of the TS domain for regulation of DNMT1. By use 

of functional complementation assays, we mapped distinct regions within the TS domain indispensable for 

DNMT1 activity in vivo. In turn, we show that each single domain of the interaction partner UHRF1 is 

necessary for the regulation of maintenance DNA methylation by DNMT1. Importantly, we found that 

DNMT1 TS point mutations previously identified in HSAN-IE patients (Klein et al. 2011) lead to defects in 

binding UHRF1 and restoring DNA methylation at heterochromatic sites. DNMT1 TS point mutants failed to 

correctly associate with late replicating chromatin, displayed increased protein mobility and decreased 

protein stability in a cell cycle-dependent manner. In summary, our study reveals a fundamental role of 

the TS domain in DNMT1 heterochromatin targeting by interaction with UHRF1, in maintenance DNA 

methylation and in cell cycle-dependent protein abundance. Our findings provide new insights in the 

molecular evidence accounting for changes in the methylome of HSAN-IE patients. 
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MATERIAL AND METHODS 

Mammalian expression constructs and antibodies 

Fusion constructs were generated using enhanced green fluorescent protein (GFP), monomeric red 

fluorescent protein (RFP) or monomeric cherry (Ch). The expression constructs for RFP-DNMT1, GFP-

DNMT1 wt, GFP-DNMT1∆458-500, GFP-NTD, Ch-TS, GFP-DNMT1 (1-308), GFP-TS, GFP-DNMT1 (629-1110), 

GFP-CTD and Ch-USP7 have been described previously (Easwaran et al. 2004; Schermelleh et al. 2005; 

Fellinger et al. 2009; Frauer et al. 2011; Qin et al. 2011). GFP-DNMT1 deletion and point mutant as well as 

UHRF1-GFP deletion expression constructs were derived from the corresponding wt constructs by overlap 

extension PCR (Ho et al. 1989). The GFP-UHRF1 single domain constructs for the Ubl and Ring have been 

reported before (De Vos et al. 2014b). UHRF1-His, UHRF1-GFP, Ch-UHRF1, GFP-UHRF1 TTD, PHD and SRA 

single domain expression constructs have been described previously (Meilinger et al. 2009; Rottach et al. 

2010; Pichler et al. 2011). GFP, RFP and RFP-PCNA have been reported before (Easwaran et al. 2004; 

Sporbert et al. 2005; Qin et al. 2011; Becker et al. 2013). All constructs were verified by DNA sequencing. 

The following monoclonal antibodies were used for immunoblotting: mouse anti-His (C-terminal, 

Invitrogen), rat anti-RFP (5F8, Chromotek) (Rottach et al. 2008), rat anti-GFP (3H9, Chromotek), and mouse 

anti β-actin (Sigma) and the newly generated anti-DNMT1 (14F6, Supplementary Figure S5C). For 

immunofluorescence staining of heterochromatin, a mouse anti-H3K9me3 antibody was used (Active 

Motif). For immunofluorescence staining of endogenous proteins we used the previously described 

specific monoclonal rat anti-DNMT1 antibody 5A10 (Schneider et al. 2013) and a specific polyclonal rabbit 

anti-UHRF1 antibody (Citterio et al. 2004). As secondary antibodies an anti-mouse or anti-rat Alexa Fluor 

594 and an anti-rabbit Alexa Fluor 488 antibody were applied, respectively (Invitrogen). In dependence on 

the expected intensity of the signals, secondary antibodies either conjugated to horseradish peroxidase 

(anti-rabbit (Biorad), anti-rat and anti-mouse (Dianova)) or conjugated to fluorescent dyes (anti-mouse and 

anti-rat Alexa Fluor 488 (Invitrogen)) were applied. For detection of HRP-conjugated antibodies an ECL Plus 

reagent (GE Healthcare, Thermo Scientific) was used. 

Cell culture, transfection and immunofluorescence staining 

HEK293T cells were cultured in Dulbecco's modified Eagle medium supplemented with 10% fetal 

bovine serum and 50 µg/ml gentamycine. HEK293T cells were transfected with polyethylenimine (Sigma). 

MEF cells were cultured in Dulbecco's modified Eagle medium supplemented with 15% fetal bovine serum, 

non essential amino acids, 2 mM L-glutamine, 0.1 mM β-mercaptoethanol (Gibco-BRL), 100 U/ml penicillin 

and 100 µg/ml streptomycin (PAA Laboratories GmbH). Mouse ESCs were cultured as published 

(Schermelleh et al. 2007) with the exception that the medium was supplemented with 2i inhibitors (1 µM 

MEK inhibitor PD and 3 µM GSK-3 inhibitor CHIR) (2i, Axon Medchem) (Ying et al. 2008). To analyse the 

methylation level in stably expressing UHRF1-GFP ESC lines, we cultured the cell lines in the same medium 

supplemented with 1,000 U/ml recombinant mouse leukemia inhibitory factor LIF (Millipore). Mouse J1 

Dnmt1-/- ESCs are homozygous for the c null allele and have been described before (Lei et al. 1996). Mouse 

E14 wt and Uhrf1-/- cells (M. Muto and H. Koseki) as well as J1 triple knockout cells (Masaki Okano) have 

been reported previously (Meilinger et al. 2009). Mouse ESCs and MEF cells were transfected with 
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Lipofectamin (Invitrogen). Fixation, DAPI counterstaining and image acquisition cells was performed as 

described before (Rottach et al. 2010). 

Live cell microscopy and fluorescence after photobleaching analysis 

Live cell imaging and FRAP analysis were performed as described previously (Schneider et al. 2013) 

with the following exceptions. Photobleaching was performed with the acousto-optical tunable filter 

(AOTF) of the 488 nm laser line set to 100% transmission. Typically, for each series 20 prebleach and 200 

postbleach frames were recorded with time intervals of 150 ms, followed by 180 frames with a time 

interval of 0.5 s. Data correction, normalization and quantitative evaluations were performed by 

automated processing with Fiji/ImageJ (Schindelin et al. 2012; Schneider et al. 2012) using a set of self-

developed macros followed by calculations in Excel and R (R-Core-Team 2013). 

In long-term imaging experiments, a z-stack of 6 µm with a step size of 1.5 µm was recorded every 20 

min for ~30 h. To avoid photodamage of the cells, the AOTF of the laser was set to a low transmission 

value of 6%. 

Generation of stable ESC lines and DNA methylation analysis 

48 h after transfection with GFP tagged constructs, GFP positive ESC cells were separated using a 

fluorescence activated cell sorting (FACS) Aria II instrument (Becton Dikinson) and  the cells were 

subsequently grown in selective medium containing 10 µg/ml blasticidine (GFP-DNMT1 cell lines) or 

normal medium (UHRF1-GFP cell lines). After expansion cells were again FACS sorted one or two more 

times until at least 90% of the population was GFP positive. Furthermore, the GFP-DNMT1 cell lines were 

single cell sorted and clones with low expression levels were chosen for further analysis. The GFP-DNMT1 

ESC line has been reported before (Qin et al. 2011). Genomic DNA isolation, bisulfite conversion, Primer 

sets and PCR conditions were described before (Tucker et al. 1996; Frauer et al. 2011). All PCR products 

were analysed by pyrosequencing (Varionostic). 

Preparation of protein extracts, protein-protein interaction assay and co-immunoprecipitation 

GFP and RFP or Ch fusion constructs were expressed in HEK293T cells and two days after transfection 

cells were harvested in ice cold PBS. Cell pellets from one to two 100 cm dishes were lysed in 200 µl lysis 

buffer and a protein-protein interaction assay in GFP-multiTrap plates (Chromotek) was performed as 

described (Pichler et al. 2012) with the following adaptations: GFP extracts were equalized to a 

concentration of 60 nM in immunoprecipitation buffer (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.5 mM 

EDTA) prior to one step purification in blocked (3% milk) GFP-multiTrap plates. After stringent washing 

(wash buffer; 20 mM Tris-HCl pH 7.5, 300 mM NaCl, 0.5 mM EDTA) purified GFP fusion proteins were 

incubated with crude protein extracts of RFP or Ch fusion proteins at a concentration of 1.1 to 2.1 µM 

diluted in IP buffer (excess of amount RFP or Ch fusion proteins in relation to GFP fusions: 18-35 times). 

Bound fractions were quantified by fluorescence intensity measurements with a Tecan Infinite M1000 

plate reader (Tecan). For co-immunoprecipitation assays, the GFP and RFP or Ch fusion constructs were 

co-expressed in HEK293T cells, protein extracts were equalized and depending on the expression amounts 

of 5- 30 pmol GFP-fusion protein were applied for the co-immunoprecipitation with the GFP-Trap 
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(Chromotek). Note that the plasmid amount of GFP fusion construct and RFP fusion constructs used for 

transfection was adapted in a way to have at least a three-fold excess of the molar RFP or Ch fusion 

protein amount in relation to GFP fusions. Bound fractions were firstly detected by fluorescence intensity 

measurements and secondly by immunoblotting using specific antibodies. 

Cycloheximide assay 

Mouse ESCs were plated to equal densities one day before cycloheximide (Sigma-Aldrich) treatment at 

0.03 mg/ml. Cells were collected and counted 0 and 5 h after drug addition. Cell pellets were lysed in 

appropriate volumes of lysis buffer (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 2 mM MgCl2, 0.5% NP40, 

1mg/ml DNaseI (AppliChem), 2 mM PMSF, protease inhibitor cocktail (Roche) and protease inhibitor mix M 

(SERVA)). Protein levels were detected by immunoblotting with specific antibodies. 

Statistical analysis 

Results were depicted as mean values ± the standard deviation or as mean values ± the standard error 

of the mean from the number of biological replicates indicated in the corresponding figure legend. The 

difference between two mean values was analyzed by Student’s t-test and was considered as statistically 

significant in case of P<0.02 (*) and highly significant for P<0.001 (protein-protein interaction assay) or 

P<0.0002 (methylation analysis) (**), respectively. 

Sequence alignments 

Alignments were prepared using ClustalW2 and ESPript. 

  



Results 

195 

RESULTS 

Deletions and mutations of conserved amino acids within the TS domain found in HSAN-IE patients 

affect DNMT1 activity in vivo 

Although the catalytic activity of DNMT1 is referred to its CTD, the NTD of the enzyme is indispensable 

for maintenance methylation (Fatemi et al. 2001). We were interested in how the TS domain influences 

the methylation activity of DNMT1 in vivo. Representing the largest domain of the NTD spanning from 

amino acid 309 to 628 in mouse isoform 2, the TS domain shows highly conserved regions among different 

species including mammals, birds, fish, amphibians and insects (Figure 1). To map the functional relevance 

of individual regions within the TS domain, we created a systematic set of deletion mutants. Notably, the 

regions intended for deletion were determined under consideration of secondary structure information to 

abate the risk of destroying the higher order protein structure. For functional tests, Dnmt1-/- embryonic 

stem cells (ESCs) were transiently transfected with the set of GFP-DNMT1 TS domain deletion constructs 

and 48 h after expression, cells were sorted using a fluorescence activated cell sorting (FACS) instrument 

and genomic DNA was isolated. Pyrosequencing at major satellite repeats revealed that two regions 

between amino acid 356 to 404 as well as from 458 to 573 are functionally relevant for maintenance 

methylation at pericentromeric heterochromatin (Figure 2A, shown in dark blue). Whereas cells expressing 

the wild type (wt) GFP-DNMT1 construct showed average methylation levels of 39%, the methylation was 

reduced to levels as low as 16% (GFP-DNMT1 delta 528-541) when parts of the relevant regions were 

deleted. On the contrary, a truncated version of GFP-DNMT1 lacking the flexible N-terminal region of the 

TS domain (amino acid 309 to 355) that is less conserved, was able to fully restore methylation at major 

satellite repeats (Figure 2A, shown in light blue). The methylation activity of a construct carrying a deletion 

in the C-terminal region of the TS domain (amino acid 579 to 595) was also comparable to that of the wt 

fusion protein. 

Interestingly, mutations of two highly conserved amino acids in the TS domain lead to a 

neurodegenerative disease described as HSAN-IE (Klein et al. 2011; Klein et al. 2013). Using the alignment 

shown in Figure 1B, we identified the corresponding amino acids in the mouse protein and cloned the 

single HSAN-IE associated mutations P496Y (human: D490E.P491Y) and Y500C (human: Y495C) in 

mammalian expression constructs. It has to be noted that the aspartate at position 490 in human DNMT1 

was found to be mutated to glutamate in HSAN-IE patients, but in the mouse protein the corresponding 

position is taken by glutamate, anyway. As the HSAN-IE associated mutations are included in a functionally 

relevant region of the TS domain (Figure 2A, GFP-DNMT1 delta 458-500), we further investigated the 

ability of the single point mutants GFP-DNMT1 P496Y and GFP-DNMT1 Y500C as well as of the double 

point mutant GFP-DNMT1 P496Y.Y500C to restore methylation at major satellite repeats in Dnmt1-/- ESCs 

(Figure 2B). Indeed, the HSAN-IE single point mutations significantly affected DNMT1 activity in vivo when 

compared to the GFP-DNMT1 wt protein. The combination of both mutations even showed a highly 

significant reduction in DNA methylation activity pointing towards an additive effect of the two HSAN-IE 

mutations. The same remethylation defect was observed at the skeletal α-actin promoter (Supplementary 

Figure S1A). Herein, the decrease in the DNA methylation level was even highly significant for the GFP-

DNMT1 P496Y mutant. As a control, we determined the DNA methylation level of the imprinted and 

unmethylated H19a promoter (Tucker et al. 1996) and as expected, we did not observe any significant 
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changes between the wt and the HSAN-IE mutant constructs (Supplementary Figure S1B). Moreover, we 

generated ESC lines stably expressing the GFP-DNMT1 wt and the single as well as the double mutant 

proteins. Analyses of the methylation level at the major satellite repeats and the skeletal α-actin promoter 

by pyrosequencing revealed that none of the HSAN-IE mutants was able to restore DNA methylation at 

these loci when stably expressed (Figure 2C). In summary, we could show that the TS domain of DNMT1 is 

indispensable for maintenance DNA methylation. Deletions of the TS domain in the region between amino 

acid 356 to 404 and amino acid 458 to 573 as well as point mutations characterized in HSAN-IE patients 

lead to decreased methylation levels at pericentromeric heterochromatin. 

The TS domain of DNMT1 mediates the interaction with UHRF1 

UHRF1 was found to be required for maintaining DNA methylation patterns after replication by direct 

interaction with DNMT1 (Bostick et al. 2007). To get deeper insights into the mechanism of DNMT1 

recruitment to replication sites, we mapped the domains contributing to the interaction with UHRF1 by 

co-immunoprecipitation assays. For this purpose, we used a systematic set of GFP tagged truncated 

constructs for the NTD as well as the CTD of DNMT1, and constructs for different single and combined 

domains of UHRF1, respectively (Figure 3A). UHRF1-His co-immunoprecipitated with the NTD, but not the 

CTD of DNMT1 (Figure 3B, bottom). Within the NTD, solely the TS domain of DNMT1 showed interaction 

with UHRF1. As a second line of evidence, the mapping results were also confirmed by a semi-quantitative 

fluorescence protein-protein interaction assay in vitro that revealed the same preference of the TS domain 

for UHRF1 binding (Figure 3B, top). Mapping studies on UHRF1 illustrate that among all domains only the 

SRA domain of UHRF1 could co-immunoprecipitate RFP-DNMT1 (Figure 3C). In line with previous findings 

(Achour et al. 2008; Felle et al. 2011; Berkyurek et al. 2013), our systematic mapping studies demonstrate 

that by means of the TS domain DNMT1 interacts mainly with the SRA domain of UHRF1. 

HSAN-IE associated mutations in the DNMT1 TS domain affect the interaction with UHRF1 

Since the TS domain contains the binding site for UHRF1 and HSAN-IE associated point mutants could 

not restore DNA methylation in Dnmt1-/- ESCs, we hypothesized that the interaction with UHRF1 might be 

lost. To investigate the effects on UHRF1 binding, we performed a co-immunoprecipitation assay using 

GFP-TS domain wt or P496Y, Y500C single and P496Y.Y500C double point mutants co-expressed with Ch-

UHRF1 in HEK293T cells and detected the bound fractions by immunoblotting (Figure 4A). Ch-UHRF1 co-

immunoprecipitated with GFP-TS wt, whereas it was only weakly detected in the bound fraction of the 

P496Y and Y500C single and double point GFP-TS mutants. Semiquantitative protein-protein interaction 

assays in a GFP-multiTrap plate (Pichler et al. 2012) confirmed these results (Figure 4B). The interaction of 

Ch-UHRF1 with the GFP-DNMT1 NTD was significantly reduced by both single and double point mutations 

and also by deletion of a region containing the mutated amino acids (GFP-DNMT1 NTD Δ458-500). In 

conclusion, our findings suggest that a central part within the TS domain is crucial for mediating the 

interaction of DNMT1 with UHRF1 and that this interaction is affected by the HSAN-IE associated 

mutations located in this region. 
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Strong heterochromatin association and slow protein kinetics of the TS domain are dependent on 

interaction with UHRF1 but not on DNA methylation 

It was shown that UHRF1 targets DNMT1 to heterochromatin by cooperative binding to 

hemimethylated DNA and histone H3 tails (Rothbart et al. 2012; Liu et al. 2013). Accordingly, DNMT1 

displays a diffuse nuclear pattern in Uhrf1-/- ESCs (Supplementary Figure S2) (Bostick et al. 2007). We 

mapped the interacting region for UHRF1 with DNMT1 to the TS domain which strongly associated with 

heterochromatin in mouse embryonic fibroblast (MEF) cells throughout interphase and co-localized with 

Ch-UHRF1 at DAPI- dense regions (Supplementary Figure S3A and S3B). To figure out which mark or 

binding partner the heterochromatin association of the TS domain is dependent on, we further 

investigated the localization in ESCs with different genetic backgrounds. We found that the 

heterochromatic localization remains unchanged in cells with decreased (J1 Dnmt1-/-) or almost no DNA 

methylation (triple knockout (TKO) cells devoid of DNMT1, 3A and 3B, Figure 5A, left panel). In ESCs devoid 

of UHRF1 (E14 Uhrf1-/-), however, the foci of the TS domain at DAPI-dense regions were entirely abrogated 

and the signal was spread diffusely in the nucleus (Figure 5A, right panel). Consequently, strong 

heterochromatin association of the TS domain is dependent on UHRF1 but not on DNA methylation. 

In addition, we expressed the GFP-TS wt and the GFP-TS mutant constructs Y500C and P496Y.Y500C 

deficient in UHRF1 binding in MEF cells and studied their protein kinetics as well as their subnuclear 

distribution after fixation and counterstaining with DAPI (Figure 5B and 5C). We could emphatically show 

that the GFP-TS wt domain displayed slow protein kinetics with a large immobile fraction (Figure 5C). 

Concordantly, GFP-TS localized at chromocenters intensely stained by DAPI (Figure 5B). In contrast to that, 

the HSAN-IE associated GFP-TS Y500C and P496Y.Y500C mutants were diffusely localized in the nucleus 

and even excluded from chromocenters supporting the fact that binding to UHRF1 was impaired. The GFP-

TS P496Y.Y500C double point mutant was also found in the nucleoli and weakly in the cytoplasm. In line 

with the diffuse nuclear localization and the exclusion from DAPI-dense heterochromatic sites, the GFP-TS 

mutants revealed fast protein kinetics without an immobile fraction (Figure 5C). Accordingly to the results 

obtained in Uhrf1-/- ESCs, the abolishment of local enrichment at chromocenters by the GFP-TS Y500C and 

P496Y.Y500C mutants underlines the significance of the interaction with UHRF1 for proper targeting of 

DNMT1 to densely compacted chromatin. 

Each domain of UHRF1 is relevant for the regulation of DNMT1 methylation activity in vivo  

In the previous experiments, we have shown that the interaction with UHRF1 is necessary for targeting 

and maintenance DNA methylation by DNMT1. Next, we set out to examine which domains of UHRF1 are 

functionally relevant for the regulation of DNMT1 maintenance methylation. To this end, we constructed 

single domain deletions of UHRF1 (Figure 6A) and investigated their role in mediating DNA methylation in 

vivo. We made use of E14 Uhrf1-/- ESCs which have considerably decreased methylation levels when 

compared to the E14 wt strain (Figure 6B). As reported before, the UHRF1-GFP wt fusion protein is able to 

partially complement methylation at the major satellite repeats (Meilinger et al. 2009). However, all Uhrf1-

/- ESC lines stably expressing UHRF1-GFP single domain deletion mutants displayed low methylation levels 

comparable to the untransfected control (Figure 6B). Hence, UHRF1∆Ubl-GFP, UHRF1∆TTD-GFP, 
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UHRF1∆PHD-GFP as well as UHRF1∆SRA-GFP and UHRF1∆Ring-GFP are not sufficient as cofactors for DNA 

methylation by DNMT1.  

Furthermore, we tested the interaction of Ch-TS with the UHRF1-GFP single domain deletion mutants 

by co-immunoprecipitation (Figure 6C). Whereas deletions of the TTD, the PHD and the Ring domain had 

no or only a weak effect on the interaction, deletions of the Ubl and the SRA domain reduced the binding 

of Ch-TS to UHRF1-GFP. Consequently, the TS domain of DNMT1 can interact with two domains of UHRF1, 

the Ubl and the SRA domain. To get further insights in DNMT1 targeting in dependence on single domains 

of UHRF1, we studied the subnuclear localization of the stably expressed UHRF1-GFP wt or single domain 

deletion mutants and endogenous DNMT1 by immunofluorescence staining (Supplementary Material, 

Figure S4). In the wt UHRF1-GFP cell line, DNMT1 showed late S phase-specific horse-shoe like pattern that 

were, however, completely abrogated in all single domain UHRF1-GFP deletion cell lines displaying diffuse 

nuclear localization of DNMT1. In conclusion, none of the UHRF1 domains is dispensable for targeting 

DNMT1 for maintenance methylation. 

The stability of DNMT1 is dependent on interaction with UHRF1 and on proper chromatin targeting 

During co-immunoprecipitation assays and localization studies it became evident that the HSAN-IE 

associated GFP-DNMT1 mutants were expressed much weaker than the wt protein and displayed more 

degradation bands when immunoblotting with a specific anti-GFP antibody was performed (Figure 4A). 

Therefore, we investigated the protein stability of stably expressed wt and mutant GFP-DNMT1 in Dnmt1-/- 

ESC lines by a cycloheximide assay (Figure 7A and 7B). Protein expression after 5 h of cycloheximide 

treatment was compared to the expression without treatment (0 h), detected by immunoblotting using 

the specific anti-DNMT1 antibody 14F6 (Supplementary Figure S5C) and followed by quantification of the 

resulting signals. Whereas the effect of translational inhibition on endogenous UHRF1 protein expression 

was equal in each cell line, the expression of GFP-DNMT1 was stronger affected in the mutant cell lines 

upon cycloheximide treatment when compared to the wt. Notably, immunofluorescence localization 

studies in these stable ESC lines indicated that the HSAN-IE associated mutants, especially GFP-DNMT1 

P496Y and the GFP-DNMT1 P496Y.Y500C double point mutants, were only partially recruited to 

heterochromatic sites in comparison to the wt protein (Supplementary Figure S5A and S5B). Our previous 

findings on the UHRF1 binding deficiency of the TS mutants in combination with their mislocalization and 

faster protein kinetics provide evidence for the necessity of proper and tight DNMT1 chromatin binding 

mediated by UHRF1 to guarantee stability of the methyltransferase. Notably, the interaction of the GFP-

DNMT1 mutants with the stabilizer USP7 was not affected (Supplementary Figure S5D), arguing for a 

normal DNMT1 deubiquitination process. 

The destabilization of HSAN-IE associated GFP-DNMT1 TS mutants is cell cycle-dependent 

Since the TS domain-mediated interaction of DNMT1 with UHRF1 might be essential for late S phase-

specific localization and kinetics of DNMT1 (Schneider et al. 2013), our aim was to decipher the expression 

and stability of the GFP-DNMT1 TS mutants on the single cell level following the cell cycle. Therefore, we 

imaged living MEF cells transiently co-transfected with GFP-DNMT1 wt or the GFP-DNMT1 P496Y.Y500C 

double point mutant and RFP-PCNA as a cell cycle marker (Figure 7C and 7D). Comparison of relative 
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expression levels of GFP-DNMT1 wt versus the double point mutant points towards a cell cycle-dependent 

destabilization. Although the expression in early to mid S phase was comparable to the wt, the GFP signal 

of mutant DNMT1 gradually dropped when the cell entered late S phase. Interestingly, the signal of GFP-

DNMT1 P496Y.Y500C recovered when the cell had passed mitosis and entered into G1 phase (Figure 7C). 

Furthermore, the double point mutant displayed only weak late S phase-specific association with 

chromocenters and was devoid of the prolonged heterochromatin binding in G2 that was observed for the 

wt protein (Figure 7D). Taken together, our results provide evidence for a cell cycle-dependent 

destabilization of GFP-DNMT1 P496Y.Y500C beginning in late S phase that is mirrored by insufficient 

targeting of the protein to late replicating heterochromatin. 
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DISCUSSION 

Besides PCNA, UHRF1 is an important recruitment factor for DNMT1 that guides the enzyme to 

hemimethylated DNA, the substrate for maintenance methylation (Bostick et al. 2007; Sharif et al. 2007). 

Whereas the interaction with PCNA is dispensable for maintenance DNA methylation (Schermelleh et al. 

2007; Spada et al. 2007), the interaction with UHRF1 seems to play a critical role in this process (Bostick et 

al. 2007). As the TS domain of DNMT1 mediates the interaction with UHRF1 (Figure 3), we performed a 

functional mapping using a systematic set of deletion mutants. Functional complementation assays 

showed that two regions in the TS domain (amino acid 356-404 and 458-573) are indispensable for 

regulating DNA methylation by DNMT1 in vivo (Figure 2A). In contrast, the very N-terminal region of the TS 

domain (amino acid 309-355) which is poorly conserved and consists of varying length among different 

species (Figure 1B), is dispensable for DNMT1 activity. Interestingly, this region has not been dissolved in 

the crystal structure of mouse DNMT1 comprising a fragment spanning from amino acid 291 to 1620 

(Takeshita et al. 2011) pointing towards a disordered flexible region that may not contribute to the 

regulation of enzyme activity. However, this region was characterized as an intrinsically disordered domain 

contributing to DNA methylation during mouse embryonic development (Borowczyk et al. 2009).   

Importantly, we found that GFP-DNMT1 P496Y, Y500C and P496Y.Y500C are defective in binding to 

UHRF1 (Figure 4). These HSAN-IE associated DNMT1 TS domain mutants were inactive in vivo (Figure 2, 

Supplementary Figure S1) suggesting that the interaction of DNMT1 with UHRF1 is indeed required for 

epigenetic inheritance of DNA methylation. Our findings on functional defects are consistent with the 

global methylation analysis of genomic DNA from HSAN-IE patients with the corresponding mutations 

(human DNMT1: D490E.P491Y and Y495C) revealing DNA hypomethylation when compared to an 

unaffected group (Klein et al. 2011).  

Decreased methylation levels caused by HSAN-IE associated mutations might also be explained by the 

findings that UHRF1 functions as an allosteric activator of DNMT1 (Syeda et al. 2011; Takeshita et al. 2011; 

Berkyurek et al. 2013; Bashtrykov et al. 2014a; Bashtrykov et al. 2014f). Upon binding to the SRA domain 

of UHRF1, the TS domain is released from the CTD of DNMT1 enabling access of substrate DNA to the 

catalytic center DNMT1 (Berkyurek et al. 2013; Bashtrykov et al. 2014a). HSAN-IE mutations defective in 

binding to UHRF1, however, might impede the conformational change in DNMT1 and the UHRF1-mediated 

release mechanism, thereby preserving the autoinhibitory state of the TS domain blocking catalytic activity 

of the CTD. 

In addition to its important role in mediating the interaction with UHRF1, the TS domain of DNMT1 

contributes to heterochromatin association of DNMT1 (Leonhardt et al. 1992; Schneider et al. 2013) that 

persists in G2 phase (Easwaran et al. 2004; Schermelleh et al. 2007). In our study, chromocenter 

localization and high immobile protein fractions were characteristic for the wt GFP-TS domain. Given that 

these characteristics were completely abolished by the HSAN-IE associated mutations and absent in  

Uhrf1-/- ESCs (Figure 5), we propose that the interaction of the TS domain with UHRF1 plays a central role 

for tight binding of DNMT1 to heterochromatin marked by densely methylated DNA and histone tails.  

Binding of UHRF1 to methylated H3K9 via its TTD and PHD as well as to hemimethylated DNA via its 

SRA domain has been reported to serve as a prerequisite for directing DNMT1 for maintenance DNA 

methylation (Rothbart et al. 2012; Liu et al. 2013; Rothbart et al. 2013). Using functional complementation 

assays, we found that each domain of the multifunctional UHRF1 protein is required for the regulation of 
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DNA methylation by DNMT1 (Figure 6). We propose that besides the three chromatin binding domains in 

UHRF1 (TTD, PHD and SRA domain) and the DNMT1 interaction surface on the SRA domain, also the Ubl 

domain as well as the Ring domain of UHRF1 are essential for regulating maintenance DNA methylation. In 

agreement with the finding that the UHRF1∆Ubl-GFP and the UHRF1∆SRA-GFP mutants were not sufficient 

as cofactors for maintenance methylation, we mapped the DNMT1 interaction site to the Ubl and SRA 

domain (Figure 3C and 6C). Binding of DNMT1 to the UHRF1 SRA domain is consistent with previous 

findings (Achour et al. 2008; Felle et al. 2011). But in addition, we provide evidence, to our knowledge for 

the first time, for a second interaction site in the Ubl domain of UHRF1. Whether these two DNMT1 

interaction sites on UHRF1 act independently or in a timely and spatially coordinated manner, remains to 

be elucidated. The regulatory function of the Ring domain might be explained by a recent study on 

Xenopus egg extracts illustrating that the E3 ubiquitin ligase properties of UHRF1 are required for 

ubiquitination of histone H3 on K23 that serves as a binding site for DNMT1 (Nishiyama et al. 2013). 

In accordance with recent findings on human DNMT1 (Klein et al. 2011), we observed a destabilizing 

effect of the HSAN-IE associated mutations.  In particular, our results suggest that although mutant 

DNMT1 still interacts with USP7, it shows decreased expression especially in late S and G2 phase that 

recovered during G1 phase (Figure 7, Supplementary Figure S5D). Analyses of the cell cycle-dependent 

subnuclear localization revealed a reduced heterochromatin enrichment of mutant DNMT1 in the 

destabilized state during late S and G2 phase (Figure 7D). Thus, we propose that destabilization of mutant 

DNMT1 might rely on the disrupted UHRF1 binding and the resulting weakened chromatin association. 

Similar to DNMT3A and DNMT3B that are stabilized on nucleosomes containing methylated DNA (Jeong et 

al. 2009; Stachulski et al. 2011), the stability of DNMT1 has recently been proposed to depend on indirect 

chromatin association via UHRF1 binding to methylated H3K9 that persists during mitosis (Rothbart et al. 

2012). Taken together, free DNMT1 enzymes, which are not associated with chromatin either due to 

UHRF1 histone binding defects by TTD mutations or UHRF1 interaction deficiencies by DNMT1 HSAN-IE 

mutations, might be more likely to be degraded compared to correctly targeted chromatin bound 

enzymes. Whether degradation of non chromatin bound DNMT1 relies on UHRF1-dependent 

ubiquitination or on activity of another yet unknown E3 ubiquitin ligase specific for DNMT1 and whether 

this proteasomal pathway is initiated by DNMT1 acetylation or methylation, remains to be determined. 

We hypothesize that the observed stability regulating mechanism might prevent aberrant DNA 

methylation by inadequately targeted DNMT1.  

In postmitotic neurons, DNMT1 has been reported to undergo rapid protein turnover (Fan et al. 2001). 

Therefore, the destabilizing effect of the TS domain mutations might be more pronounced in the nervous 

system in comparison to other tissues and might contribute to the nervous system restricted phenotype 

observed in HSAN-IE patients. 

Given the important role of DNMT1 in maintenance DNA methyllation after replication, one might 

assume that DNMT1 may play a subordinate role in postmitotic cells like neurons. However, DNMT1 is 

known to be involved in adult neurogenesis (Yu et al. 2011). Furthermore, DNMT1 deficiency in mitotic 

CNS precursor cells accompanied by DNA hypomethylation has been reported to affect cell survival in 

mice. Mutant CNS cells of mosaic animals are selectively eliminated during adulthood (Fan et al. 2001) 

arguing for an important role of DNMT1 for postnatal survival of CNS cells. Whether UHRF1 also regulates 

DNA methylation by DNMT1 in neuronal cells yet remains elusive. 
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In summary, our study provides new insights in the molecular basis of global DNA hypomethylation 

found in HSAN-IE patients. We show that DNMT1 HSAN-IE associated mutations result in UHRF1 binding 

defects, changes of subnuclear localization and in protein destabilization. 

  



Results 

203 

FUNDING 

This work was supported by grants from the Deutsche Forschungsgemeinschaft [DFG SFB 646/B10, 

DFG SFB1064/A17 and Z05 to H.L, DFG SFB1064/Z02 to E.K.]. P.W. and M.S. are fellows of the Graduate 

School Life Science Munich (LSM). K.S. and K.F. were supported by the International Max Planck Research 

School for Molecular and Cellular Life Sciences (IMPRS-LS). S.L. was funded by an award of Lehre@LMU of 

the Ludwig-Maximilians University Munich. W.Q. was supported by the China Scholarship Council (CSC). 

ACKNOWLEDGMENT 

We are grateful to the following colleagues for providing ESCs and somatic cells: Masahiro Muto and 

Haruhiko Koseki for mouse wt E14 and Uhrf1-/- ESCs; En Li and T. Chen for mouse J1 wt and Dnmt1-/- ESCs; 

Masaki Okano for J1 TKO ESCs; Thomas Jenuwein for wt MEF cells. 

  

https://www.jstage.jst.go.jp/AF06S010ShsiKskGmnHyj?chshnmHkwtsh=Masahiro+Muto


Results 

204 

REFERENCES 

1. Bird, A. (2002) DNA methylation patterns and epigenetic memory. Genes Dev, 16, 6-21. 
2. Leonhardt, H., Page, A.W., Weier, H.U. and Bestor, T.H. (1992) A targeting sequence directs 

DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell, 71, 865-873. 
3. Chuang, L.S., Ian, H.I., Koh, T.W., Ng, H.H., Xu, G. and Li, B.F. (1997) Human DNA-(cytosine-5) 

methyltransferase-PCNA complex as a target for p21WAF1. Science, 277, 1996-2000. 
4. Rountree, M.R., Bachman, K.E. and Baylin, S.B. (2000) DNMT1 binds HDAC2 and a new co-

repressor, DMAP1, to form a complex at replication foci. Nat Genet, 25, 269-277. 
5. Easwaran, H.P., Schermelleh, L., Leonhardt, H. and Cardoso, M.C. (2004) Replication-

independent chromatin loading of Dnmt1 during G2 and M phases. EMBO Rep, 5, 1181-1186. 
6. Bostick, M., Kim, J.K., Esteve, P.O., Clark, A., Pradhan, S. and Jacobsen, S.E. (2007) UHRF1 

plays a role in maintaining DNA methylation in mammalian cells. Science, 317, 1760-1764. 
7. Achour, M., Jacq, X., Ronde, P., Alhosin, M., Charlot, C., Chataigneau, T., Jeanblanc, M., 

Macaluso, M., Giordano, A., Hughes, A.D. et al. (2008) The interaction of the SRA domain of 
ICBP90 with a novel domain of DNMT1 is involved in the regulation of VEGF gene expression. 
Oncogene, 27, 2187-2197. 

8. Felle, M., Joppien, S., Nemeth, A., Diermeier, S., Thalhammer, V., Dobner, T., Kremmer, E., 
Kappler, R. and Langst, G. (2011) The USP7/Dnmt1 complex stimulates the DNA methylation 
activity of Dnmt1 and regulates the stability of UHRF1. Nucleic Acids Res, 39, 8355-8365. 

9. Sharif, J., Muto, M., Takebayashi, S., Suetake, I., Iwamatsu, A., Endo, T.A., Shinga, J., Mizutani-
Koseki, Y., Toyoda, T., Okamura, K. et al. (2007) The SRA protein Np95 mediates epigenetic 
inheritance by recruiting Dnmt1 to methylated DNA. Nature, 450, 908-912. 

10. Arita, K., Ariyoshi, M., Tochio, H., Nakamura, Y. and Shirakawa, M. (2008) Recognition of 
hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism. Nature, 455, 
818-821. 

11. Avvakumov, G.V., Walker, J.R., Xue, S., Li, Y., Duan, S., Bronner, C., Arrowsmith, C.H. and Dhe-
Paganon, S. (2008) Structural basis for recognition of hemi-methylated DNA by the SRA 
domain of human UHRF1. Nature, 455, 822-825. 

12. Qian, C., Li, S., Jakoncic, J., Zeng, L., Walsh, M.J. and Zhou, M.M. (2008) Structure and 
hemimethylated CpG binding of the SRA domain from human UHRF1. J Biol Chem, 283, 
34490-34494. 

13. Citterio, E., Papait, R., Nicassio, F., Vecchi, M., Gomiero, P., Mantovani, R., Di Fiore, P.P. and 
Bonapace, I.M. (2004) Np95 is a histone-binding protein endowed with ubiquitin ligase 
activity. Mol Cell Biol, 24, 2526-2535. 

14. Karagianni, P., Amazit, L., Qin, J. and Wong, J. (2008) ICBP90, a novel methyl K9 H3 binding 
protein linking protein ubiquitination with heterochromatin formation. Mol Cell Biol, 28, 705-
717. 

15. Rottach, A., Frauer, C., Pichler, G., Bonapace, I.M., Spada, F. and Leonhardt, H. (2010) The 
multi-domain protein Np95 connects DNA methylation and histone modification. Nucleic 
Acids Res, 38, 1796-1804. 

16. Cheng, J., Yang, Y., Fang, J., Xiao, J., Zhu, T., Chen, F., Wang, P., Li, Z., Yang, H. and Xu, Y. 
(2013) Structural insight into coordinated recognition of trimethylated histone H3 lysine 9 
(H3K9me3) by the plant homeodomain (PHD) and tandem tudor domain (TTD) of UHRF1 
(ubiquitin-like, containing PHD and RING finger domains, 1) protein. J Biol Chem, 288, 1329-
1339. 

17. Liu, X., Gao, Q., Li, P., Zhao, Q., Zhang, J., Li, J., Koseki, H. and Wong, J. (2013) UHRF1 targets 
DNMT1 for DNA methylation through cooperative binding of hemi-methylated DNA and 
methylated H3K9. Nat Commun, 4, 1563. 

18. Song, J., Rechkoblit, O., Bestor, T.H. and Patel, D.J. (2011) Structure of DNMT1-DNA complex 
reveals a role for autoinhibition in maintenance DNA methylation. Science, 331, 1036-1040. 



Results 

205 

19. Takeshita, K., Suetake, I., Yamashita, E., Suga, M., Narita, H., Nakagawa, A. and Tajima, S. 
(2011) Structural insight into maintenance methylation by mouse DNA methyltransferase 1 
(Dnmt1). Proc Natl Acad Sci U S A, 108, 9055-9059. 

20. Qin, W., Leonhardt, H. and Spada, F. (2011) Usp7 and Uhrf1 control ubiquitination and 
stability of the maintenance DNA methyltransferase Dnmt1. J Cell Biochem, 112, 439-444. 

21. Du, Z., Song, J., Wang, Y., Zhao, Y., Guda, K., Yang, S., Kao, H.Y., Xu, Y., Willis, J., Markowitz, 
S.D. et al. (2010) DNMT1 stability is regulated by proteins coordinating deubiquitination and 
acetylation-driven ubiquitination. Sci Signal, 3, ra80. 

22. Goto, K., Numata, M., Komura, J.I., Ono, T., Bestor, T.H. and Kondo, H. (1994) Expression of 
DNA methyltransferase gene in mature and immature neurons as well as proliferating cells in 
mice. Differentiation, 56, 39-44. 

23. Yu, N.K., Baek, S.H. and Kaang, B.K. (2011) DNA methylation-mediated control of learning and 
memory. Mol Brain, 4, 5. 

24. Klein, C.J., Botuyan, M.V., Wu, Y., Ward, C.J., Nicholson, G.A., Hammans, S., Hojo, K., 
Yamanishi, H., Karpf, A.R., Wallace, D.C. et al. (2011) Mutations in DNMT1 cause hereditary 
sensory neuropathy with dementia and hearing loss. Nat Genet, 43, 595-600. 

25. Yuan, J., Higuchi, Y., Nagado, T., Nozuma, S., Nakamura, T., Matsuura, E., Hashiguchi, A., 
Sakiyama, Y., Yoshimura, A. and Takashima, H. (2013) Novel mutation in the replication focus 
targeting sequence domain of DNMT1 causes hereditary sensory and autonomic neuropathy 
IE. J Peripher Nerv Syst, 18, 89-93. 

26. Winkelmann, J., Lin, L., Schormair, B., Kornum, B.R., Faraco, J., Plazzi, G., Melberg, A., 
Cornelio, F., Urban, A.E., Pizza, F. et al. (2012) Mutations in DNMT1 cause autosomal 
dominant cerebellar ataxia, deafness and narcolepsy. Hum Mol Genet, 21, 2205-2210. 

27. Pedroso, J.L., Povoas Barsottini, O.G., Lin, L., Melberg, A., Oliveira, A.S. and Mignot, E. (2013) 
A novel de novo exon 21 DNMT1 mutation causes cerebellar ataxia, deafness, and narcolepsy 
in a Brazilian patient. Sleep, 36, 1257-1259, 1259A. 

28. Moghadam, K.K., Pizza, F., La Morgia, C., Franceschini, C., Tonon, C., Lodi, R., Barboni, P., Seri, 
M., Ferrari, S., Liguori, R. et al. (2014) Narcolepsy is a common phenotype in HSAN IE and 
ADCA-DN. Brain. 

29. Gosal, D., J., E. and E., M. (2013) A mutation in the DNMT1 gene causing autosomal dominant 
ataxia with deafness and cataplexy. J Neurol Neurosurg Psychiatry. 

30. Klein, C.J., Bird, T., Ertekin-Taner, N., Lincoln, S., Hjorth, R., Wu, Y., Kwok, J., Mer, G., Dyck, P.J. 
and Nicholson, G.A. (2013) DNMT1 mutation hot spot causes varied phenotypes of HSAN1 
with dementia and hearing loss. Neurology, 80, 824-828. 

31. Schermelleh, L., Spada, F., Easwaran, H.P., Zolghadr, K., Margot, J.B., Cardoso, M.C. and 
Leonhardt, H. (2005) Trapped in action: direct visualization of DNA methyltransferase activity 
in living cells. Nat Methods, 2, 751-756. 

32. Fellinger, K., Rothbauer, U., Felle, M., Langst, G. and Leonhardt, H. (2009) Dimerization of 
DNA methyltransferase 1 is mediated by its regulatory domain. J Cell Biochem, 106, 521-528. 

33. Frauer, C., Rottach, A., Meilinger, D., Bultmann, S., Fellinger, K., Hasenoder, S., Wang, M., Qin, 
W., Soding, J., Spada, F. et al. (2011) Different binding properties and function of CXXC zinc 
finger domains in Dnmt1 and Tet1. PLoS One, 6, e16627. 

34. Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K. and Pease, L.R. (1989) Site-directed 
mutagenesis by overlap extension using the polymerase chain reaction. Gene, 77, 51-59. 

35. De Vos, M., El Ramy, R., Quenet, D., Wolf, P., Spada, F., Magroun, N., Babbio, F., Schreiber, V., 
Leonhardt, H., Bonapace, I.M. et al. (2014) Poly(ADP-ribose) polymerase 1 (PARP1) associates 
with E3 ubiquitine-protein ligase UHRF1 and modulates UHRF1 biological functions. J Biol 
Chem. 

36. Pichler, G., Wolf, P., Schmidt, C.S., Meilinger, D., Schneider, K., Frauer, C., Fellinger, K., 
Rottach, A. and Leonhardt, H. (2011) Cooperative DNA and histone binding by Uhrf2 links the 
two major repressive epigenetic pathways. J Cell Biochem, 112, 2585-2593. 



Results 

206 

37. Meilinger, D., Fellinger, K., Bultmann, S., Rothbauer, U., Bonapace, I.M., Klinkert, W.E., Spada, 
F. and Leonhardt, H. (2009) Np95 interacts with de novo DNA methyltransferases, Dnmt3a 
and Dnmt3b, and mediates epigenetic silencing of the viral CMV promoter in embryonic stem 
cells. EMBO Rep, 10, 1259-1264. 

38. Becker, A., Allmann, L., Hofstatter, M., Casa, V., Weber, P., Lehmkuhl, A., Herce, H.D. and 
Cardoso, M.C. (2013) Direct homo- and hetero-interactions of MeCP2 and MBD2. PLoS One, 
8, e53730. 

39. Sporbert, A., Domaing, P., Leonhardt, H. and Cardoso, M.C. (2005) PCNA acts as a stationary 
loading platform for transiently interacting Okazaki fragment maturation proteins. Nucleic 
Acids Res, 33, 3521-3528. 

40. Rottach, A., Kremmer, E., Nowak, D., Leonhardt, H. and Cardoso, M.C. (2008) Generation and 
characterization of a rat monoclonal antibody specific for multiple red fluorescent proteins. 
Hybridoma (Larchmt), 27, 337-343. 

41. Schneider, K., Fuchs, C., Dobay, A., Rottach, A., Qin, W., Wolf, P., Alvarez-Castro, J.M., 
Nalaskowski, M.M., Kremmer, E., Schmid, V. et al. (2013) Dissection of cell cycle-dependent 
dynamics of Dnmt1 by FRAP and diffusion-coupled modeling. Nucleic Acids Res, 41, 4860-
4876. 

42. Schermelleh, L., Haemmer, A., Spada, F., Rosing, N., Meilinger, D., Rothbauer, U., Cardoso, 
M.C. and Leonhardt, H. (2007) Dynamics of Dnmt1 interaction with the replication machinery 
and its role in postreplicative maintenance of DNA methylation. Nucleic Acids Res, 35, 4301-
4312. 

43. Ying, Q.L., Wray, J., Nichols, J., Batlle-Morera, L., Doble, B., Woodgett, J., Cohen, P. and Smith, 
A. (2008) The ground state of embryonic stem cell self-renewal. Nature, 453, 519-523. 

44. Lei, H., Oh, S.P., Okano, M., Juttermann, R., Goss, K.A., Jaenisch, R. and Li, E. (1996) De novo 
DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development, 122, 
3195-3205. 

45. Schneider, C.A., Rasband, W.S. and Eliceiri, K.W. (2012) NIH Image to ImageJ: 25 years of 
image analysis. Nat Methods, 9, 671-675. 

46. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., 
Rueden, C., Saalfeld, S., Schmid, B. et al. (2012) Fiji: an open-source platform for biological-
image analysis. Nat Methods, 9, 676-682. 

47. R-Core-Team. (2013). R Foundation for Statistical Computing, Vienna, Austria. 
48. Tucker, K.L., Beard, C., Dausmann, J., Jackson-Grusby, L., Laird, P.W., Lei, H., Li, E. and 

Jaenisch, R. (1996) Germ-line passage is required for establishment of methylation and 
expression patterns of imprinted but not of nonimprinted genes. Genes Dev, 10, 1008-1020. 

49. Pichler, G., Jack, A., Wolf, P. and Hake, S.B. (2012) Versatile toolbox for high throughput 
biochemical and functional studies with fluorescent fusion proteins. PLoS One, 7, e36967. 

50. Fatemi, M., Hermann, A., Pradhan, S. and Jeltsch, A. (2001) The activity of the murine DNA 
methyltransferase Dnmt1 is controlled by interaction of the catalytic domain with the N-
terminal part of the enzyme leading to an allosteric activation of the enzyme after binding to 
methylated DNA. J Mol Biol, 309, 1189-1199. 

51. Berkyurek, A.C., Suetake, I., Arita, K., Takeshita, K., Nakagawa, A., Shirakawa, M. and Tajima, S. 
(2013) The DNA Methyltransferase Dnmt1 Directly Interacts with the SET and RING Finger 
Associated (SRA) Domain of the Multifunctional Protein Uhrf1 to Facilitate Accession of the 
Catalytic Center to Hemi-methylated DNA. J Biol Chem. 

52. Rothbart, S.B., Krajewski, K., Nady, N., Tempel, W., Xue, S., Badeaux, A.I., Barsyte-Lovejoy, D., 
Martinez, J.Y., Bedford, M.T., Fuchs, S.M. et al. (2012) Association of UHRF1 with methylated 
H3K9 directs the maintenance of DNA methylation. Nat Struct Mol Biol, 19, 1155-1160. 

53. Spada, F., Haemmer, A., Kuch, D., Rothbauer, U., Schermelleh, L., Kremmer, E., Carell, T., 
Langst, G. and Leonhardt, H. (2007) DNMT1 but not its interaction with the replication 



Results 

207 

machinery is required for maintenance of DNA methylation in human cells. J Cell Biol, 176, 
565-571. 

54. Borowczyk, E., Mohan, K.N., D'Aiuto, L., Cirio, M.C. and Chaillet, J.R. (2009) Identification of a 
region of the DNMT1 methyltransferase that regulates the maintenance of genomic imprints. 
Proc Natl Acad Sci U S A, 106, 20806-20811. 

55. Bashtrykov, P., Jankevicius, G., Jurkowska, R.Z., Ragozin, S. and Jeltsch, A. (2014) The UHRF1 
Protein Stimulates the Activity and Specificity of the Maintenance DNA Methyltransferase 
DNMT1 by an Allosteric Mechanism. J Biol Chem, 289, 4106-4115. 

56. Syeda, F., Fagan, R.L., Wean, M., Avvakumov, G.V., Walker, J.R., Xue, S., Dhe-Paganon, S. and 
Brenner, C. (2011) The replication focus targeting sequence (RFTS) domain is a DNA-
competitive inhibitor of Dnmt1. J Biol Chem, 286, 15344-15351. 

57. Bashtrykov, P., Rajavelu, A., Hackner, B., Ragozin, S., Carell, T. and Jeltsch, A. (2014) Targeted 
Mutagenesis Results in an Activation of DNA Methyltransferase 1 and Confirms an 
Autoinhibitory Role of its RFTS Domain. Chembiochem. 

58. Rothbart, S.B., Dickson, B.M., Ong, M.S., Krajewski, K., Houliston, S., Kireev, D.B., Arrowsmith, 
C.H. and Strahl, B.D. (2013) Multivalent histone engagement by the linked tandem Tudor and 
PHD domains of UHRF1 is required for the epigenetic inheritance of DNA methylation. Genes 
Dev, 27, 1288-1298. 

59. Nishiyama, A., Yamaguchi, L., Sharif, J., Johmura, Y., Kawamura, T., Nakanishi, K., Shimamura, 
S., Arita, K., Kodama, T., Ishikawa, F. et al. (2013) Uhrf1-dependent H3K23 ubiquitylation 
couples maintenance DNA methylation and replication. Nature. 

60. Jeong, S., Liang, G., Sharma, S., Lin, J.C., Choi, S.H., Han, H., Yoo, C.B., Egger, G., Yang, A.S. and 
Jones, P.A. (2009) Selective anchoring of DNA methyltransferases 3A and 3B to nucleosomes 
containing methylated DNA. Mol Cell Biol, 29, 5366-5376. 

61. Sharma, S., De Carvalho, D.D., Jeong, S., Jones, P.A. and Liang, G. (2011) Nucleosomes 
containing methylated DNA stabilize DNA methyltransferases 3A/3B and ensure faithful 
epigenetic inheritance. PLoS Genet, 7, e1001286. 

62. Fan, G., Beard, C., Chen, R.Z., Csankovszki, G., Sun, Y., Siniaia, M., Biniszkiewicz, D., Bates, B., 
Lee, P.P., Kuhn, R. et al. (2001) DNA hypomethylation perturbs the function and survival of 
CNS neurons in postnatal animals. J Neurosci, 21, 788-797. 

 

  



Results 

208 

FIGURES AND LEGENDS 

 

Figure 1. The DNMT1 TS domain is conserved among different species. (A) Domain structure of GFP-DNA 

methyltransferase 1 (DNMT1) with illustration of deletions and HSAN-IE associated point mutations used for functional 

characterization of the TS domain. The large regulatory N-terminal domain (NTD) of DNMT1 is comprised of a DNA 

methyltransferase associated protein 1 (DMAP1) –binding domain, a PCNA (proliferating cell nuclear antigen) -binding 

domain (PBD), a targeting sequence (TS) domain, a zinc finger (CXXC) domain, two bromo-adjacent homology (BAH1 and 

BAH2) domains and a C-terminal catalytic domain (CTD). (B) Primary sequence alignment of TS domains from different 

species. The secondary structure of the mouse TS domain is indicated (pdb: 3AV4). Highly conserved residues are black 

shaded. Deleted regions are indicated by blue rectangles and HSAN-IE associated point mutations by red arrows. 

Functionally relevant regions within the TS domain are depicted in dark blue. HSAN-IE: hereditary sensory and autonomic 

neuropathy type IE. 
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Figure 2. Deletions and HSAN-IE associated mutations in the TS domain of DNMT1 affect the methylation activity in vivo. 

(A) and (B) Local methylation analysis at major satellite repeats. Mouse Dnmt1
-/-

 ESCs were FACS-sorted 48 h after transient 

expression of GFP-DNMT1 wild type (wt) and deletion or HSAN-IE associated point mutant constructs and CpG methylation 

levels were analyzed by bisulfite treatment of genomic DNA, PCR amplification and direct pyrosequencing. Methylation 

levels of untransfected cells are displayed for comparison. Shown are mean values ± s.d. from (A) two to six or (B) three 

independent biological replicates (average from eight CpG sites, respectively). (B) Two-sample t-tests were performed that 

assume equal variances. Asterisks represent statistically significant difference in regard to the wt: *P<0.02, **P<0.0002. (C) 

CpG methylation levels at the major satellite repeats and the skeletal α-actin promoter of mouse Dnmt1
-/- 

ESCs stably 

expressing GFP-DNMT1 wt or HSAN-IE associated point mutants were analyzed by bisulfite treatment, PCR amplification and 

direct pyrosequencing. Methylation levels of untransfected cells are displayed for comparison. Shown are mean values from 

two different single cell clones, respectively.  
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Figure 3. The interaction with UHRF1 is mediated by the TS domain of DNMT1. (A) Schematic outline of DNMT1 and the 

ubiquitin-like, containing PHD and RING finger domains 1 (UHRF1) expression constructs used for protein-protein interaction 

mapping studies. UHRF1 harbors an ubiquitin-like domain (Ubl) followed by a tandem Tudor domain (TTD), a plant 

homeodomain (PHD), a SET and RING associated (SRA) domain and a really interesting new gene (Ring) domain. (B) Top: 

Mapping and relative quantification of the interaction GFP-DNMT1 with Ch-UHRF1 by fluorescence protein-protein 

interaction assay in vitro. After immunoprecipitation, different GFP-DNMT1 expression constructs were incubated with 

protein extracts of Ch-UHRF1 and the bound fractions were detected by fluorescence read-out. Ratios of Ch-UHRF1 over 

GFP fusion proteins are shown as mean values ± s.e.m. of three to six biological replicates. Bottom: Different DNMT1 

expression constructs were co-expressed with UHRF1-His in HEK 293T cells and after immunoprecipitation using the GFP-

Trap, UHRF1-His was detected by western blot with an anti-His antibody. GFP was used as negative control. (C) Top: 

Mapping and relative quantification of the interaction GFP-UHRF1 with RFP-DNMT1 by fluorescence protein-protein 

interaction assay in vitro. Ratios of RFP-DNMT1 over GFP fusion proteins are shown as mean values ± s.e.m. of three 

biological replicates normalized to the binding ratio of the GFP-UHRF1 full length protein. Bottom: Bound fractions of one 

representative experiment were detected by western blot with specific antibodies against RFP and GFP. GFP was used as 

negative control. I = Input, B = Bound. 
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Figure 4. HSAN-IE associated point mutations and a central deletion in the TS domain of DNMT1 affect the interaction 

with UHRF1. (A) Co-immunoprecipitation of GFP-TS P496Y, Y500C single and the P496Y.Y500C double point mutants as well 

as the corresponding wt co-expressed with Ch-UHRF1 in HEK293T cells. Bound fractions were analyzed by immunoblotting 

with an anti-GFP and anti-Ch antibody, respectively. GFP was used as negative control. I = Input, B = Bound. (B) Fluorescence 

protein-protein interaction assay. After one-step purification of the GFP-DNMT1 NTD wt and mutant constructs in a GFP-

multiTrap plate, the binding of Ch-UHRF1 expressed in HEK293T cells was determined by fluorescence readout. GFP and RFP 

were used as negative control, respectively. Shown are mean relative binding ratios ± s.e.m of Ch-UHRF1 or RFP over GFP 

fusion proteins from four to six biological replicates. Two-sample t-tests were performed that assume equal variances. 

Statistical significance compared to the relative binding ratio of GFP-DNMT1 NTD wt is indicated: *P<0.02, **P<0.001. 
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Figure 5. Mutations in the TS domain impede the strong heterochromatin association and the slow protein kinetics of 

the wt domain. (A) Confocal mid sections of fixed mouse ESCs (J1, E14) transiently expressing GFP-TS and counterstained 

with DAPI as a marker for heterochromatin. ESCs with different genetic backgrounds were used that are devoid of DNMT1 

(J1 Dnmt1
-/-

), all three DNA methyltransferases DNMT1, DNMT3A and DNMT3B (J1 triple knouckout (TKO)) as well as cells 

devoid of UHRF1 (E14 Uhrf1
-/-

). In the merged image, DAPI is depicted in magenta. Scale bar 10 µm; enlargements: 3-times 

magnification, scale bar 2 µm. (B) Confocal mid sections of fixed MEF cells transfected with GFP-TS wt or GFP-TS Y500C 

single and P496Y, Y500C double mutant constructs. In the merged image, GFP-TS is depicted in red and DAPI in magenta. 

Scale bar 5 µm; enlargements: 3-times magnification, scale bar 1 µm. (C) Protein kinetics of GFP-TS wt and HSAN-IE 

associated GFP-TS Y500C and P497Y.Y500C point mutants in living MEF cells determined by half nucleus fluorescent 

recovery after photobleaching (FRAP) analysis. Curves represent mean ± s.e.m. of at least 13 nuclei. The mobile fraction (Mf) 

is indicated. 
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Figure 6. Each domain of UHRF1 is necessary for regulation of DNA methylation by DNMT1. (A) Schematic outline of 

different UHRF1-GFP single domain deletion (∆) constructs used for rescue experiments. (B) Local methylation analysis at 

the of major satellite repeats. CpG methylation levels in E14 Uhrf1
-/-

 ESCs stably expressing UHRF1-GFP wt or single domain 

deletions were analyzed by bisulfite treatment of genomic DNA, PCR amplification and direct pyrosequencing. Methylation 

levels of untransfected cells are shown for comparison. Values represent means from eight CpG sites, respectively. (C) Co-

immunoprecipitation of UHRF1-GFP wt and single domain deletion mutants with Ch-TS after co-expression in HEK293T cells. 

Bound fractions were detected by immunoblotting with anti-GFP and anti-Ch antibodies, respectively. GFP was used as 

negative control. I = Input, B = Bound. 
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Figure 7. HSAN-IE associated mutations in the TS domain of DNMT1 decrease protein stability in a cell cycle-dependent 

manner. (A) and (B) Cycloheximide (CHX) assay in Dnmt1
-/-

 ESCs stably expressing GFP-DNMT1 wt or P496Y and Y500C single 

as well as P496Y.Y500C double point mutants. Cells were seeded to equal densities and treated with 0.03 mg/ml CHX for 0 

and 5 h, respectively. After harvesting, expression levels of GFP-DNMT1 and endogenous UHRF1 were analyzed by 

immunoblotting with specific antibodies and by quantification of the resulting signals using Image J. Equal loading was 

confirmed by β-actin staining. (A) Shown is one representative blot of two independent experiments with lysates of 

approximately 360,000 cells loaded per lane. (B) Quantification of the protein expression 5 h after CHX treatment compared 

to the expression without treatment (0 h). Shown are mean values ± s.d. of two biological replicates relative to the loading 

control and normalized to the expression of GFP-DNMT1 or UHRF1 in the wt cell line, respectively. (C) Live cell series of MEF 

cells transiently co-expressing GFP-DNMT1 wt or the P496Y.Y500C double point mutant and RFP-PCNA as a cell cycle 

marker. Starting from very late S phase (wt) or mid S phase (P496Y.Y500C) images were taken every 200 min. For better 

comparison, signals were adjusted according to expression levels of the different constructs. White represents the highest 

and black the lowest intensity. Scale bar 5 µm. (D) Defined cell cycle stages of the live cell series depicted in (C). In the 

merged image, RFP-PCNA is depicted in magenta. Scale bar 5 µm. 
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SUPPLEMENTARY FIGURES AND LEGENDS 

 

Figure S1. HSAN-IE associated DNMT1 TS mutants cannot restore the local methylation level at the skeletal α-actin 

promoter. (A) and (B) Mouse Dnmt1
-/- 

ESCs were FACS-sorted 48 h after transient transfection with GFP-DNMT1 wt or 

P496Y and Y500C single as well as P496Y.Y500C double mutant constructs and CpG methylation levels at (A) the skeletal α-

actin and (B) the H19a promoter were analyzed by bisulfite treatment, PCR amplification and direct pyrosequencing. 

Methylation levels of untransfected cells are displayed for comparison. Bar graphs represent mean values ± s.d. from three 

biological replicates (average from 13 or 6 CpG sites, respectively) and two-sample t-tests were performed that assume 

equal variances. Statistical significance compared to the methylation level of GFP-DNMT1 wt is indicated: *P<0.02, 

**P<0.0002.  

 

Figure S2. DNMT1 shows a diffuse nuclear pattern in Uhrf1
-/-

 ESCs. Confocal mid sections of fixed mouse E14 wt and  

Uhrf1
-/-

 ESCs. Endogenous DNMT1 and UHRF1 were immunostained with specific antibodies and chromatin was 

counterstained with DAPI. In the merged image, DAPI is depicted in magenta and DNMT1 in green. Scale bar 10 µm. 
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Figure S3. The TS domain of DNMT1 shows strong heterochromatin association that is independent of the cell cycle and 

co-localizes with UHRF1. (A) Confocal mid sections of fixed mouse embryonic fibroblast (MEF) cells co-expressing GFP-TS 

and the cell cycle marker RFP-PCNA. DAPI is used for chromatin counterstaining. Scale bar 5 µm. (B) Confocal mid sections of 

fixed MEF cells co-expressing GFP-TS and Ch-UHRF1. DAPI is used for chromatin counterstaining. In the merged image, Ch-

UHRF1 is depicted in magenta. Scale bar 5 µm; enlargements: 3-times magnification, scale bar 1 µm. 
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Figure S4. DNMT1 is mislocalized in Uhrf1
-/-

 ESCs stably expressing GFP-UHRF1 single domain deletion mutants. Confocal 

mid sections of fixed mouse E14 Uhrf1
-/-

 ESCs stably expressing UHRF1-GFP wt or single domain deletion mutant constructs. 

Endogenous DNMT1 was immunostained with a specific antibody and chromatin was counterstained with DAPI. In the 

merged image, DAPI is depicted in magenta. Scale bar 10 µm. 
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Figure S5. GFP-DNMT1 TS mutations lead to decreased association with heterochromatin. (A) and (B) Localization of GFP-

DNMT1 wt and HSAN-IE associated mutants P496Y, Y500C and P496Y.Y500C stably expressed in J1 Dnmt1
-/-

. DAPI was used 

for chromatin counterstaining. In the merged image, DAPI is depicted in magenta. Scale bar 5 µm. (B) In stable cell lines from 

(A) heterochromatin was immunostained with a specific anti-H3K9me3 antibody. In the merged image, H3K9me3 is depicted 

in magenta. Scale bar 5 µm; enlargements: 3-times magnification, scale bar 1 µm. (C) Specificity of the monoclonal anti-

DNMT1 antibody 14F6. Approximately 450,000 J1 wt and J1 Dnmt1
-/-

 mouse ESCs were loaded per lane and endogenous 

DNMT1 was detected using the anti-DNMT1 antibody 14F6; β-actin shows equal loading. 
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3. Discussion 

The key regulator of maintenance DNA methylation, UHRF1, is known to directly interact with DNMT1. 

However, the protein domains mediating this interaction remain elusive. Therefore, we developed a 

semiquantitative assay in a 96-well format that allows for systematic mapping analyses of protein-protein 

interactions. 

3.1 Potential and limitations of the developed protein-protein interaction assay 

In the field of proteomics, the analysis of protein-protein interactions plays a fundamental role. 

Identification and characterization of new protein binding partners opens the possibility for a better 

understanding of the interconnection between different biological pathways, protein complex formation 

and protein regulation, for instance by allosteric activation or PTMs. Various methods for the study of 

protein-protein interactions have been developed. These include genetic assays like Yeast two-Hybrid, in 

vitro techniques like co-immunoprecipitation or in vivo molecule proximity based techniques like 

fluorescence resonance energy transfer (FRET) or bimolecular fluorescence complementation (BiFC) assays 

as well as protein co-localization. 

Here we describe a versatile method based on the affinity purification of GFP fusion proteins in a 96-

well micro plate coated with immobilized GFP-Trap (GFP-multiTrap) (Rothbauer et al. 2008; Pichler et al. 

2012). Using GFP and RFP tagged fusion proteins and fluorescently labeled binding substrates carrying 

defined modifications, it is possible to quantify protein-protein and protein-substrate interactions in a 

semiquantitative manner (Figure 3.1). After one-step purification of GFP fusion proteins, the potential 

binding to RFP fusion proteins was analyzed. Relative protein-protein binding ratios were measured with a 

fluorescence intensity read-out system and relative molar binding ratios of RFP over GFP fusion proteins 

were calculated.  

 

Figure 3.1: Scheme of the protein-protein interaction assay based on the GFP-multiTrap. Illustration of GFP-DNMT1 

interacting with RFP-PCNA.  
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To test the suitability of the GFP-multiTrap format, we choose to investigate the interaction of the PBD 

in DNMT1 with the replication platform PCNA (Leonhardt et al. 1992; Chuang et al. 1997). In our 

experiments, the incubation of a constant amount of the GFP-PBD domain of DNMT1 with increasing 

concentrations of RFP-PCNA resulted in an increase of the binding ratio. For RFP input concentrations 

higher than 30 times the concentration of bound GFP-PBD, however, the binding ratio reached a plateau 

meaning that all binding sites on GFP-PBD were saturated. This experiment also demonstrated that no 

unspecific binding of RFP to GFP-PBD was detected independently of the input concentration. In general, 

this finding implicates that for each interacting protein partner, tests should be performed to determine 

the excess of RFP fusion protein needed in order to achieve saturation. 

Fusion of the proteins of interest to fluorescent tags not only allows for the quantification of 

interactions in vitro, but also for their visualization in living cells. The developed protein-protein interaction 

assay offers several advantages when compared to conventional co-immunoprecipitation methods (Table 

3.1). Firstly, performance of the interaction assay in GFP-multiTrap plates is less labor-intense and less 

time consuming. Compared to batch purification of GFP fusion proteins with GFP-Trap beads, the one-step 

purification with the GFP-multiTrap allows for fast and parallel immunoprecipitation of different proteins 

of interest. Essentially, centrifugation steps for the sedimentation of beads are substituted by fast and 

efficient washing steps. Secondly, the medium throughput manner enables testing of different interacting 

partners in parallel. By applying triplicates per interacting protein partners, obtained results become more 

reliable. Moreover, test experiments for optimization of the assay settings, like varying protein input 

concentrations and different binding and washing conditions can easily be performed in parallel. Thirdly, 

this fluorescence intensity based protein-protein interaction assay offers the possibility to calculate 

relative binding ratios between the interacting partners. Quantifying interactions can help to understand 

the impact of different domains in mediating this interaction (mapping experiments) or to estimate the 

nature of the interaction (transient or stable). Furthermore, the robustness of different interactions can be 

investigated by applying different subsequent washing conditions with intermediary fluorescence intensity 

measurements. Finally, as the assay is based on fluorescent fusion proteins, it is compatible with other 

methods for analysis of interactions like Western blotting, co-localization studies, our recently developed 

fluorescence three hybrid assay (F3H) (Zolghadr et al. 2008; Herce et al. 2013) or fluorescence recovery 

after photobleaching (FRAP). 

During the development of the presented assay, we found that to achieve a semiquantitative readout, 

the amounts of GFP fusion proteins in the bound fraction have to be balanced prior to the incubation with 

the potential RFP fusion binding partners. Thus the potential interactors were expressed separately from 

the GFP fusions bearing the risk that interactions, which are for instance dependent on other cellular 

components, are not detectable.  

In order to express the suitability of this protein-protein interaction assay for medium throughput 

approaches, we calculated the Z-factor (     
         

       
   ;   is the standard deviation of the positive 

(  ) and the negative (  ) control; µ is the mean value for the molar binding ratio of the positive (µp) and 

negative (µn) controls) (Zhang et al. 1999). The binding ratio of RFP-PCNA to GFP-PBD was used as positive 

state (p) and the ratio of RFP to GFP-PBD as negative state (n). The Z-factor of 0.56 indicates that this 

approach allows for quantification of protein-protein interactions in a robust and reproducible manner. 



Discussion 

223 

In general, our assay is well suited for the semiquantitative analysis of robust protein-protein 

interactions in a multi-well format. An increase in the sensitivity was achieved by applying an enzyme-

linked immunosorbent assay (ELISA) with specific antibodies for endogenous interaction partners of the 

bound GFP fusion proteins. 

Table 3.1: Overview of advantages and disadvantages of the fluorescent protein-protein interaction assay in the GFP-

multiTrap. 

Properties Advantage or disadvantage 

Handling in general Fast, less labor intense (compared to conventional co-immunoprecipitation 
methods) 

Protein amounts Low 

Background Low 

Reproducibility High 

Manifoldness High (protein-DNA, protein-histone tail peptide, protein-protein binding) 

Sensitivity Low (increased by ELISA) 

Compatibility with other methods High (e.g. ELISA, Western blot, co-localization, F3H, FRAP) 
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3.2 Regulation and abundance of DNMT1 during the cell cycle 

3.2.1 UHRF1-mediated mechanisms regulating DNMT1 chromatin targeting 

Precisely coordinated mechanisms regulating DNMT1 targeting to chromatin are essential for faithful 

propagation of DNA methylation during replication. Although DNMT1 was reported to have an intrinsic 30 

to 40-fold preference for hemimethylated DNA and to bind the replication protein PCNA, the cofactor 

UHRF1 was found to be indispensable for recruitment of DNMT1 to its substrate (Ooi and Bestor 2008; 

Hashimoto et al. 2009). 

Chromatin targeting of DNMT1 by direct interaction with UHRF1 

First evidence of UHRF1 as an important recruitment factor for DNMT1 emerged from studies 

describing its preference for hemimethyated DNA resulting from the semiconservative replication 

mechanism and its direct interaction with DNMT1 (Bostick et al. 2007; Sharif et al. 2007; Arita et al. 2008; 

Avvakumov et al. 2008; Hashimoto et al. 2008) (Figure 3.3). Uhrf1 knockout cells mimic the phenotype of 

Dnmt1 knockout cells characterized by global DNA hypomethylation (Li et al. 1992; Bostick et al. 2007). 

Recently, the UHRF1 interacting domain has been mapped to the TS domain of DNMT1 (Achour et al. 

2008; Felle et al. 2011; Berkyurek et al. 2013; Bashtrykov et al. 2014a), but also to its catalytic CTD (Bostick 

et al. 2007). We further characterized the interaction by precise mapping studies on UHRF1 and DNMT1. 

Consistent with previous studies, we found that the TS domain is the interacting site in DNMT1 as shown 

by semiquantitative co-immunoprecipitation assays and in vivo localization studies. On the side of UHRF1, 

the DNMT1 interacting domain has been mostly assigned to the SRA domain (Felle et al. 2011; Berkyurek 

et al. 2013; Bashtrykov et al. 2014a). Surprisingly, in our experiments, two domains in UHRF1 contributed 

to the interaction. Besides the SRA domain, we could show that the Ubl domain of UHRF1 is involved in the 

interaction with DNMT1. Whether the Ubl and the SRA domain act together or independently in specific 

cell cycle stages or different steps of the methylation mechanism, possibly depend on the structural 

conformation of DNMT1, requires further investigation. One might also speculate that one domain of 

UHRF1 is responsible for the recruitment of DNMT1 to its substrate, whereas the other interacting domain 

is necessary for DNMT1 binding prior to its ubiquitination by the UHRF1 RING domain (3.2.2). In any case, 

our findings suggest that the Ubl as well as the SRA domain are crucial for the regulation of maintenance 

DNA methylation. 

UHRF1 as a reader and writer of histone PTMs 

The role of UHRF1 in maintenance methylation exceeds its ability to interact with DNMT1 and to 

recognize the DNA methylation substrate. Growing evidence suggests that UHRF1 binds and sets distinct 

epigenetic marks on chromatin. Reading and writing of these marks by different UHRF1 domains and their 

implications in DNMT1 interaction, recruitment and regulation are summarized in Table 3.2. 
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Table 3.2: Role of different UHRF1 domains in H3 or DNA binding, heterochromatin localization, interactions with 

DNMT1 and maintenance DNA methylation. Each domain of UHRF1 has distinct roles in regulating maintenance 

methylation by DNMT1. - indicates no role, +/- a partial influence and + an important role. Properties of UHRF1 domains that 

remain unclear or need further investigations are marked by (?). 

Role of 

UHRF1 

domains 

H3 N-terminal tail 

or DNA binding 

H3 PTMs 

setting 
PH localization 

Interaction 

with DNMT1 

Regulation of 

DNMT1 PH 

localization  

Regulation of DNA 

methylation by 

DNMT1 

Ubl - - - + + (?) + (?) 

TTD + (H3K9me3) - +/- - + + 

PHD + (H3R2) - +/- - + + 

SRA + (hemi 5mC) - +/- + + + 

RING -  + (H3K18ub) - - + + 

 

Besides the DNA binding SRA domain, UHRF1 contains two histone reader modules. Firstly, the TTD 

forms an aromatic cage to bind H3 tails di- and trimethylated at K9 (Citterio et al. 2004; Karagianni et al. 

2008; Rottach et al. 2010). Secondly, the PHD has been proposed to contribute to binding of this 

repressive mark and to recognize unmodified H3R2 of the same histone tail (Wang et al. 2011; Arita et al. 

2012; Xie et al. 2012a; Cheng et al. 2013). In this study, we could confirm that the UHRF1 PHD binds to 

H3R2 and that this binding is sensitive towards R2 dimethylation (Qin et al. 2015), consistent with previous 

studies (Rajakumara et al. 2011). Moreover, H3R2 recognition by the PHD was necessary for localization of 

DNMT1 at chromocenters and for maintenance DNA methylation. Consistently, H3K9me3 binding by the 

combined TTD and PHD was recently proposed to be essential for regulating maintenance methylation by 

DNMT1 (Rothbart et al. 2013). 

It has been proposed that histone binding of the PHD plays an important role in targeting UHRF1 to 

euchromatic regions linked to active gene expression (Rajakumara et al. 2011). Whether the PHD is only 

required for association of UHRF1 with euchromatin or also contributes to TTD-mediated recognition of 

repressive H3K9me3, remains unclear. Notably, asymmetric dimethylation of H3R2 by the protein arginine 

methyltransferase 6 (PRMT6) has recently been found to antagonize the euchromatic mark H3K4me3 

resulting in transcriptional repression (Hyllus et al. 2007). Given that PHD-mediated recognition of H3 is 

sensitive towards asymmetric dimethylation of R2 and is involved in DNMT1 targeting, this histone reader 

specificity of UHRF1 might indeed be important for DNA methylation in euchromatic regions. 

Intriguingly, the nuclear lipid signaling molecule phosphatidylinositol 5-phosphate (PI5P) has been 

shown to coordinate histone binding specificity of UHRF1 (Gelato et al. 2014; Reynoird and Gozani 2014). 

In absence of PI5P the association of UHRF1 with chromatin is dominated by the PHD-mediated binding to 

the unmodified H3 N-terminal tail. In the presence of PI5P, however, the TTD is the driving force for 

UHRF1 binding to H3K9me3. This switch in histone binding preferences is based on a conformational 

change of the protein triggered by PI5P binding to a polybasic region (PBR) in the C-terminus of UHRF1. An 

intramolecular interaction between the TTD and the PBR blocks the histone binding ability of the TTD, 

which is released by allosteric activation of PI5P binding to the PBR. Interestingly, PI5P levels increase 

during S phase (Shah et al. 2013). This dynamic regulation might influence cell cycle-dependent differences 

of UHRF1 association with chromatin. Therefore, DNMT1 targeting to H3K9me3-rich heterochromatin by 

UHRF1 interaction might be favored in late S phase. The inhibitory function of the PBR within UHRF1 opens 

an additional level of regulation depending on the nuclear levels of PI5P. 
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Besides its important function in reading distinct epigenetic marks on DNA and histones, UHRF1 was 

recently reported to set histone PTMs that might help to recruit DNMT1 to its substrate (Nishiyama et al. 

2013). The authors of this study illustrate that UHRF1 ubiquitinates histone H3 by means of its RING 

domain. Notably, whereas Nishiyama and colleagues found the residue K23 to be ubiquitinated by UHRF1 

in Xenopus egg extracts and human cells (Nishiyama et al. 2013), our mass spectrometry data support 

ubiquitination at K18, but not K23 in mouse ESCs (Qin et al. 2015). Therefore, the ubiquitinated residue on 

H3 might vary among different species. S phase-dependent ubiquitination of H3 by UHRF1 was found to be 

dependent on binding of the SRA domain to hemimethylated DNA. Thus UHRF1 DNA binding might 

precede the process of setting the new histone mark (Nishiyama et al. 2013). We investigated the 

contribution of the PHD in UHRF1-dependent H3 ubiquitination. Interestingly, a PHD mutant defective in 

binding H3 peptides carrying an unmodified R2 residue also showed decreased ubiquitination activity 

towards H3. Therefore, we suggest that PHD-mediated H3R2 recognition might be one of the first steps in 

UHRF1 heterochromatin binding and might serve as a prerequisite for subsequent RING domain-mediated 

H3K18 ubiquitination.  

Ubiquitin-dependent chromatin targeting of DNMT1 

Recently, it was proposed that UHRF1-dependent ubiquitination of H3K23 is recognized by DNMT1 

(Nishiyama et al. 2013). However, the mode of recognition remained elusive. We identified a ubiquitin 

interacting motif (UIM) within the TS domain of DNMT1 that mediates the recognition of ubiquitinated 

histone tails (Qin et al. 2015).  

UIMs represent specific ubiquitin binding modules and were first described in the 26 S protease 

subunit 5a (S5a, Figure 3.2) (Young et al. 1998; Wang et al. 2005). According to several crystal structures, 

protein regions harboring a UIM form a short α-helix as part of a protein fold (Fisher et al. 2003; Lim et al. 

2011), like the UIM in DNMT1. UIMs might potentially arrange into oligomers that could explain the 

presence of several successive UIMs in some ubiquitin binding proteins like in S5a (tandem UIMs) (Fisher 

et al. 2003; Hirano et al. 2006). Various biological functions are ascribed to proteins containing UIMs that 

are based on the recognition of mono- and polyubiquitin, or the interaction with ubiquitin-like modifiers 

(Schultz and Letunic 1998, 2012). The individual role of ubiquitin binding proteins in ubiquitin metabolism 

often depends on the UIM type and the mode of ubiquitin recognition. The structure of the double-sided 

single UIM in the hepatocyte growth factor regulated tyrosine kinase substrate (HRS), for instance, 

suggests that this protein can efficiently recognize multiply monoubiquitinated proteins prone for 

lysosomal degradation. The mode of ubiquitin recognition on double-sided single UIMs is based on the 

presence of two closely-spaced UIMs shifted by two amino acids only (Hirano et al. 2006). In contrast, the 

single-sided tandem UIMs in S5a enables recognition of polyubiquitinated proteins and their subsequent 

degradation by the proteasome (Wang et al. 2005). 
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Figure 3.2: Primary sequence and secondary structure of the ubiquitin interacting motif (UIM) in DNMT1. Top: Domain 

structure of DNMT1 with illustration of the UIM in the TS domain. Center: Alignment of protein regions containing UIMs that 

were identified by use of the Expasy ScanProsite tool, except for DNMT1. The consensus sequence for single-sided UIMs is 

shown below (Hirano et al. 2006). The shift of the motif in double-sided UIMs by two amino acids (A x A x S x S/A) is 

indicated by arrowheads. The putative subtype of the UIM with its mode of ubiquitin recognition is exemplified on the right. 

The UIM in the TS domain of DNMT1 does not entirely match the published consensus sequence (Hirano et al. 2006), but it 

comprises important features like the negatively charged amino acids D381, E382 and D395, the hydrophobic M385 and the 

highly conserved S at position 395. Buttom left: Secondary structure of mouse DNMT1 (pdb: 3AV4, (Takeshita et al. 2011)) 

with representation of the UIM (salmon) in the TS domain (cyan). Buttom right: We used superimposition of the secondary 

structure of the mouse (cyan, pdb: 3AV4) and human (lightcyan, pdb: 3EPZ, (Syeda et al. 2011)) TS domain in Pymol to show 

that the UIM in DNMT1 forms an α-helix (depicted in salmon and purple, respectively). 
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A UIM module is composed of 20 residues carrying e-e-x-x-φ-x-x-A-φ-x-φ-S-z-x-e (Hirano et al. 2006), 

φ-x-x-A-x-x-x-S-x-x-e (Hofmann and Falquet 2001), x-e-e-e-x-φ-x-x-A-x-x-x-S-x-x-e-x-x-x-x (Miller et al. 2004) 

or x-e-e-e-e-φ-x-x-A-x-x-x-S-x-x-e-x-x-x-x (Fisher et al. 2003) as consensus sequence, where x is any amino 

acid, e is a negatively charged residue, φ is a hydrophobic residue and z is a bulky hydrophobic or polar 

residue. The UIM in the TS domain of DNMT1 does not completely match with these consensus 

sequences, but it contains important features of single-sided single UIMs (Figure 3.2). Crystallographic 

studies of the UIM in STAM1 indicate that the three central amino acids L176, A179 and S183, form a 

hydrophobic interface for ubiquitin binding (Lim et al. 2011). Like in STAM1, the UIM in DNMT1 also 

contains the central hydrophobic amino acid M385 and S392 flanked by negatively charged amino acids 

(D381, E382, D395). However, the UIM in DNMT1 does not harbor the central A, which is highly conserved 

in other ubiquitin binding proteins. 

In vitro, we analyzed binding of specific DNMT1 UIM mutants to ubiquitinated H3 indicating that it is 

dependent on conserved amino acids in the motif. The negatively charged residues D381 and E382 in the 

N-terminal part of the motif and the highly conserved S395 were necessary for binding to ubiquitinated 

H3. By use of DNMT1 UIM mutants defective in binding ubiquitinated H3, we showed that the motif is 

essential for maintenance DNA methylation in vivo. Moreover, mutations in the UIM led to weaker 

association of DNMT1 with chromocenters in late S phase. In line with this, a deletion and a mutation in 

the RING domain of UHRF1 disrupting its E3 ubiquitin ligase activity resulted in diffuse nuclear localization 

of DNMT1. These findings suggest a recruitment of DNMT1 that is dependent on the RING domain-

mediated writing of ubiquitinated histone H3K18. Therefore, the function of UHRF1 as a writer of a histone 

PTM initiates a ubiquitin-dependent targeting mechanism of DNMT1. This mechanism relies on binding of 

the UIM to ubiquitinated H3, but not on direct interaction with UHRF1 (Figure 3.3). 

In general, ubiquitination of histones is most prevalent on H2A and H2B and has been linked to 

transcriptional repression and activation, respectively (Zhang 2003). Really interesting new gene 1A and B 

(RING1A/B), which are part of the Polycomb repressive complex 1 (PRC1), are examples for proteins 

containing a similar RING domain as UHRF1. In ESCs, RING1A/B are involved in repression of 

developmental regulatory genes by mono-ubiquitination of H2A at K119 (Wang et al. 2004; Stock et al. 

2007; Endoh et al. 2008). Similar to ubiquitinated H2AK119, we show that the modification on H3 set by 

UHRF1 is linked to repressive DNA methylation. UHRF1 ubiquitinates H3 on K18 and thereby recruits 

DNMT1 for DNA methylation. Interestingly, we also found that DNMT1 binds to ubiquitinated H2AK119. In 

agreement with our finding, a recent study reported DNMT1 among ubiquitinated H2A binding proteins 

(Kalb et al. 2014). Given that DNMTs interact with EZH2 (Vire et al. 2006), a component of the PRC2 

complex that sets the heterochromatic H3K27me3 mark, UIM-mediated binding of DNMT1 to 

ubiquitinated H2A might link DNA methylation to other polycomb-mediated repressive epigenetic 

pathways. These findings open new perspectives for a function of DNMT1 distinct from classic 

maintenance DNA methylation. 

  



Discussion 

229 

 

Figure 3.3: Schematic representation of DNMT1 chromatin targeting mechanisms. In both mechanisms, chromatin 

association of UHRF1 is achieved by TTD-mediated binding to H3K9me3 and SRA-mediated binding to hemimethylated DNA. 

left: Chromatin targeting of DNMT1 by direct interaction of its TS domain with the Ubl and the SRA domains of UHRF1. 

Interaction with the SRA domain leads to release of the autoinhibitory function of the TS domain and allows for catalytic 

activity of the CTD. Interaction of the PBD in DNMT1 with PCNA couples maintenance methylation with DNA replication. The 

impact of UHRF1 PHD-mediated binding to H3R2 remains elusive. right: Ubiquitin-dependent chromatin targeting of DNMT1 

relies on UHRF1 RING domain-mediated ubiquitination of H3 at K18. Binding of the PHD to unmodified H3R2 might serve as 

a prerequisite for subsequent E3 ubiquitin ligase activity on H3. DNMT1 recognizes ubiquitinated H3K18 by its UIM and 

methylates target sites in the DNA. Whether this mechanism is coupled to replication and PBD-mediated PCNA binding 

remains unclear. 

In summary, the TS domain has two important functions in UHRF1-mediated mechanisms regulating 

DNMT1 chromatin recruitment: Firstly, DNMT1 targeting by direct interaction with UHRF1 and secondly, 

DNMT1 targeting by UIM-mediated binding to ubiqitinated H3K18. To date, it remains elusive whether the 

two functions of the TS domain are connected or take place in different cell cycle phases. Given that in our 

studies defects in UHRF1 interaction as well as ubiquitinated H3 binding led to decreased DNMT1 activity 

in heterochromatic regions, we speculate that both targeting mechanisms are essential for the regulation 

of maintenance methylation. Future studies analyzing the necessity of different UHRF1 chromatin binding 

abilities for H3 ubiquitination and its dependencies on the cell cycle will expand our understanding about 

timing and precise regulation of DNMT1 targeting. 

Mounting evidence indicates that the TS domain has to be released from the catalytic center of 

DNMT1 before the methylation reaction can take place (Syeda et al. 2011; Takeshita et al. 2011). In 

absence of DNA, the TS domain blocks the catalytic center in the CTD of DNMT1 and prohibits binding of 

the substrate. In this molecular conformation, the TS domain folds back on the CTD and forms an 

intramolecular interaction stabilized by several hydrogen bonds (Takeshita et al. 2011). However, this 

autoinhibitory mechanism is resolved when the TS domain interacts with the SRA domain in UHRF1 

resulting in allosteric activation of DNMT1. Additionally, the interaction was reported to increase the 

specificity of DNMT1 towards hemimethylated target sites (Berkyurek et al. 2013; Bashtrykov et al. 2014a). 

Consistent with the autoinhibitory role of intramolecular interactions, a DNMT1 TS domain mutant 

abolishing the hydrogen bonds with the CTD was shown to increase DNMT1 methylation activity without 

affecting its specificity for hemimethylated sites (Bashtrykov et al. 2014f). Consequently, release of the TS 

domain from the catalytic center of DNMT1 accompanied by a conformational change is a prerequisite for 



Discussion 

230 

enzyme activation. One might also speculate that TS domain-dependent binding of DNMT1 to 

ubiquitinated H3K18 might play a role in releasing autoinhibition. 

Furthermore, the H3K23 ubiquitination mark was proposed to serve as a proofreader for the 

propagation of DNA methylation after replication (Nishiyama et al. 2013). DNMT1 binding to ubiquitinated 

H3 might be replication-independent and might facilitate faithful inheritance of DNA methylation patterns 

over many cell generations. Especially in densely methylated regions the speed of maintenance DNA 

methylation might not be able to cope with the progression of the replication fork making a replication-

independent recruitment of DNMT1 to hemimethylated sites essential. In line with this, the TS domain of 

DNMT1 was previously proposed to mediate replication-independent chromatin loading of DNMT1 in G2 

phase (Easwaran et al. 2004). 

Interestingly, after depletion of DNMT1, H3K23 ubiquitination levels were highly increased in Xenopus 

egg extracts. Reintroduction of an inactive DNMT1 mutant in DNMT1-depleted cells did not alter H3 

ubiquitination levels arguing for a catalytic activity-dependent effect (Nishiyama et al. 2013). Notably, 

release of DNMT1 from chromatin has been found to coincide with deubiquitination of H3K23. This 

observation might be explained by the presence of ubiquitin-specific peptidase 7 (USP7), a known 

interactor of DNMT1 (Du et al. 2010; Qin et al. 2011). USP7 functions as a deubiquitinase and might 

remove ubiquitination marks from H3 after catalytic activity of DNMT1 on the surrounding DNA 

(Nishiyama et al. 2013). One might speculate that deubiquitination of H3 removes DNMT1 from chromatin 

after completion of DNA methylation at the end of S phase or in early G2 phase. Studies on cell cycle-

dependent DNMT1 conformation and complex composition especially with respect to modified DNA, 

histones, UHRF1 and USP7 will give us a much better understanding about the regulation of maintenance 

DNA methylation than we currently possess. 

It should be noted that acetylation of H3 at K23 is abundant in mammalian cells (Marvin et al. 1990; 

Thomas et al. 2006). Remarkably, in Arabidopsis two H3K18 and K23 acetyltransferases, repressor of 

silencing 1 (ROS1) and increased DNA methylation 1 (IDM1), have been shown to suppress DNA 

methylation at promoter sequences (Li et al. 2012; Qian et al. 2012). Consequently, H3K18/K23 

ubiquitination and acetylation might have competitive roles in the regulation of maintenance DNA 

methylation. Binding studies of DNMT1 at H3K18/K23 ubiquitinated versus acetylated promoter regions 

would be of great interest to enlarge our understanding about DNMT1 targeting. Moreover, analyses of 

the precise H3K18/K23 ubiquitination and acetylation timing will shed light on the cell cycle-dependent 

regulatory functions of these histone modifications. 

Collectively, UHRF1 has a multifaceted role in directing DNA methylation by DNMT1 that involve its 

histone and DNA modification reader functions as well as its histone PTM writer domain. Intramolecular 

autoinhibitory mechanisms and the nuclear lipid signaling molecule PI5P add an additional level of 

complexity to UHRF1-mediated DNMT1 chromatin targeting. By elucidating the precise and coordinated 

role of different UHRF1 domains and by identification and functional characterization of the UIM in 

DNMT1, we have started to unveil a novel ubiquitin-dependent mechanism controlling DNA methylation. 
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3.2.2 Cell cycle-dependent modifications and interactions controlling DNMT1 abundance 

DNMT1 protein levels are dynamically regulated during the cell cycle. Whereas lowest levels are found 

in G1 phase, they are increased during S phase and drop again in G2 phase (Du et al. 2010). DNMT1 

abundance is regulated at the transcriptional and the protein level. Different PTMs on DNMT1 enhance 

stabilization of the protein or initiate its proteasomal degradation (Figure 3.4).  

Acetylation driven ubiquitination of DNMT1 by UHRF1 leads to destabilization of the protein (Du et al. 

2010). Interestingly, the trigger of this pathway, the acetyltransferase Tip60, has an increased expression 

in late S phase resulting in elevated levels of acetylated DNMT1 at the end of replication. The amino acids 

in DNMT1 targeted by Tip60 still remain unknown. UHRF1, in turn, ubiquitinates acetylated DNMT1 by 

means of its RING domain, thereby marking the protein for proteasomal degradation. Deubiquitination by 

USP7 (also known as herpesvirus-associated ubiquitin-specific protease (HAUSP)) leads to stabilization of 

DNMT1 (Du et al. 2010; Felle et al. 2011; Qin et al. 2011). Moreover, DNMT1 is stabilized by HDAC1-

mediated deacetylation counteracting the activity of Tip60. 

DNMT1 monomethylation by SET7 at K142 and K1096 in human and mouse cells, respectively, leads to 

destabilization of the protein (Esteve et al. 2009). Monomethylated DNMT1 is prone to subsequent 

ubiquitination and results in proteasomal degradation of the protein. Yet, it is not clear whether UHRF1 or 

another E3 ubiquitin ligase is involved in the methylation driven ubiquitination of DNMT1. Remarkably, a 

PTM on the adjacent S143 promotes stabilization of DNMT1 (Esteve et al. 2011). S143 phosphorylated 

DNMT1 is protected from K142 methylation and consequently cannot be marked for proteasomal 

degradation. During S phase, the phosphorylated form of DNMT1 is more prevalent, whereas the 

methylated form is mainly found in late S and G2 phase. This switch between two mutually exclusive PTMs 

controls the cell cycle-dependent regulation of DNMT1 protein abundance. In addition, lysine-specific 

demethylase 1A (LSD1) functions as a stabilizer by demethylating DNMT1 and thus counteracting the 

methyltransferase SET7 (Wang et al. 2009). However, regulatory effects of methylation of other lysine 

residues within DNMT1 than K142 or K1096 cannot be ruled out. 

DNMT1 stability was found to be altered in human cancer cells, but evidence about the mode of 

deregulation remains contradictory. In healthy tissues, activated ataxia telangiectasia mutated (ATM) 

interacts with DNMT1 and coordinates its acetylation by Tip60. This leads to UHRF1-mediated 

ubiquitination and destabilization of DNMT1. In contrast, retinoblastoma protein (pRB) stabilizes DNMT1 

by antagonizing ATM and enabling HDAC1-mediated deacetylation of DNMT1. On the one hand, in tumor 

cells lacking functional pRB, the ATM-Tip60 driven destabilization pathway is favored. Consequently, low 

DNMT1 protein levels might lead to decreased promoter methylation and aberrant gene expression 

related to malignant progression (Shamma et al. 2013). On the other hand, upregulation of the stabilizer 

LSD1 might lead to increased DNMT1 protein levels in many types of cancer (Agoston et al. 2005; Metzger 

et al. 2005; Sun et al. 2007). 

The regulation of DNMT1 protein stability has been suggested to rely on its very N-terminal region. 

This hypothesis was addressed by a study using engineered mice heterozygous for the somatic and the 

oocyte-specific isoform of DNMT1 (Howell et al. 2001), both driven by the somatic endogenous promoter 

to ensure equal transcription (Ding and Chaillet 2002). In late embryonic stages, protein levels of the 

somatic longer isoform were five times reduced compared to the shorter oocyte-specific isoform 

indicating that the first 118 amino acids contribute to the control of DNMT1 stability. 
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Figure 3.4: Overview of DNMT1 stabilizing and destabilizing effects with indication of proteins writing and erasing PTMs. 

DNMT1 is stabilized by interaction with PARylated UHRF1, which possesses a reduced E3 ubiquitin ligase activity. 

Ubiquitination on DNMT1 is removed by USP7 and ubiquitination driving PTMs like methylation and acetylation are erased 

by the action of LSD1 and HDAC1, respectively. Moreover, S143 phosphorylation prevents K142 methylation on DNMT1 and 

subsequent ubiquitination. Chromatin targeting of DNMT1 is ensured by binding of the UHRF1 TTD to H3K9me3. In contrast, 

DNMT1 is destabilized by disruption of the interaction with UHRF1 due to HSAN-IE associated mutations. The release of the 

TS domain from the CTD of DNMT1 might be blocked if it is not allosterically activated by interaction with the SRA domain of 

UHRF1. DNMT1 methylation by SET7 and its acetylation by Tip60 trigger DNMT1 ubiquitination thereby marking it for 

proteasomal degradation. Furthermore, disruption of UHRF1 TTD histone binding leads to destabilization of DNMT1. 

Poly(ADP-)ribosylation (PARylation) has also been shown to serve as a trigger for E3 ubiquitin ligase 

activity (Zhang et al. 2011; Kalisch et al. 2012). To address the question whether poly-(ADP-ribose) 

polymerase 1 (PARP1)-mediated PARylation of UHRF1 has an influence on its E3 ubiquitin ligase activity, 

we analyzed DNMT1 ubiquitination and abundance in the presence or absence of PARP1 (De Vos et al. 

2014a). Notably, we found an enhanced interaction of PARylated UHRF1 with DNMT1. In the presence of 

PARP1, the E3 ubiquitin ligase activity of UHRF1 towards DNMT1, however, was decreased suggesting an 

inhibitory effect of UHRF1 PARylation on DNMT1 destabilizing mechanisms. Remarkably, the stabilizing 

effect of PARP1 was most evident in late S and G2 phase. One model could envision that tighter binding of 

DNMT1 to PARylated UHRF1 does not increase DNMT1 ubiquitination but rather its robust binding to 

heterochromatin associated with increased protein stability. 

Interestingly, we and others found DNMT1 to be prone for proteasomal degradation in Uhrf1 knockout 

and knockdown cells (Rothbart et al. 2012), indicating that the integrity of the complex DNA-UHRF1-

DNMT1 is important for protein stabilization. Consistently, we observed the same protein destabilization 
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for DNMT1 mutants defective in binding to UHRF1 (see 3.3.1). HSAN-IE associated mutations disrupted the 

interaction with UHRF1 and resulted in cell cycle-dependent protein degradation. Live cell analyses 

revealed that GFP-DNMT1 P496Y.Y500C was expressed at similar levels as the wt protein in early S phase, 

whereas expression levels dropped when the cell entered mid and late S phase. The lowest expression was 

found in G2, but was recovered in G1 phase. The cell cycle-dependent degradation of mutated proteins 

might argue for an important role of UHRF1 binding in DNMT1 stabilization at chromatin especially at the 

end of DNA replication. As stated above, former studies have demonstrated that the TS domain may be 

responsible for prolonged association of DNMT1 with chromatin during late S and G2 phase in part by 

interaction with heterochromatin bound UHRF1 (Easwaran et al. 2004; Schneider et al. 2013). Given that 

DNMT1 is more prone for proteasomal degradation in late S and G2 phase due to SET7-mediated 

methylation, non-chromatin associated DNMT1 molecules might preferentially be ubiquitinated. 

Moreover, TTD-mediated chromatin targeting of UHRF1 has been shown to be required for DNMT1 

stability in mitosis (Rothbart et al. 2012). 

Based on these results we hypothesize that DNMT1 molecules, which are not targeted to chromatin, 

are more likely to be degraded. It is tempting to speculate that this degradation pathway might ensure 

that only correctly targeted DNMT1 has a lifetime allowing for catalytic activity on DNA. Another possibility 

is that DNMT1 enzymes, which are not actively engaged in maintenance DNA methylation and are thus 

excessive, could preferentially be marked for proteasomal degradation. Compatible with this hypothesis, 

the de novo methyltransferases DNMT3A and DNMT3B have recently been demonstrated to be stabilized 

by binding to nucleosomes containing methylated DNA (Jeong et al. 2009; Stachulski et al. 2011). Another 

study supporting this hypothesis reports induction of free non-chromatin bound DNMT1 degradation after 

treatment of the cells with 5-aza-deoxycidine (5-aza-dC) (Patel et al. 2010). An earlier study claims that this 

destabilizing effect is independent of the catalytic activity of DNMT1, but dependent on the nuclear 

localization signal (NLS) and the BAH domains (Ghoshal et al. 2005). By deletion of the NLS or the BAH 

domains, degradation of DNMT1 was prevented. As both deletion mutants localized mostly in the 

cytoplasm, spatial separation from degradation inducing factors can, however, not be ruled out. 

Physiological turnover of DNMT1 as well as the 5-aza-dC induced degradation was mediated by a 

component of the anaphase promoting complex (APC), CDH1, exerting E3 ubiquitin ligase activity on 

DNMT1. CDH1 is known to be activated after dephosphorylation in anaphase and telophase of mitosis 

(Peters 2002) for subsequent ubiquitination of substrates harboring a KEN motif (Pfleger and Kirschner 

2000). Such a KEN box was found in the very N-terminal part of the DNMT1 CXXC domain and its mutation 

to AAA led to stabilization of the enzyme (Ghoshal et al. 2005). Given that the destabilization of DNMT1 

observed in Uhrf1-/- cells is decoupled from ubiquitination by UHRF1, a yet unknown E3 ubiquitin ligase 

might mark non-chromatin bound free DNMT1 molecules for proteasomal degradation, possibly CDH1. 

Elucidating whether this destabilizing mechanism is promoted by DNMT1 methylation or acetylation and 

which proteins are involved with respect to the cell cycle would shed light on the underlying degradation 

pathway. 

Taken together, DNA methylation is not only controlled by mechanisms coordinating DNMT1 

chromatin targeting, but also by cell cycle-dependent regulation of DNMT1 protein abundance. Future 

research should focus on further elucidating the interplay between differential DNMT1-protein complex 

composition and associated PTMs, conformational changes, intra- and intermolecular interactions as well 
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as histone and DNA modifications to clarify the regulatory role of different DNMT1 targeting mechanisms 

in time and space. 
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3.3 Hereditary sensory and autonomic neuropathy type I with mutations in DNMT1 

3.3.1 The TS domain as hotspot for HSAN-IE and ADAC-DN associated mutations in 

DNMT1 

Among thirteen other proteins, DNMT1 is associated with the neurodegenerative disease HSAN. 

Within the subgroup HSAN-I and CMT2B, mutations in six genes have been described so far. However, the 

ever growing number of affected genes, for instance, by the recent identification of Atlastin 3 (ATL3) 

(Fischer et al. 2014; Kornak et al. 2014), suggests that even more genes might be involved in this disease. 

To date, 14 different DNMT1 point mutations and one deletion mutation have been characterized, which 

are causative for HSAN-IE and ADCA-DN. Strikingly, all point and deletion mutations are located within the 

TS domain in the NTD of DNMT1 (Figure 3.5, see Table 1.1). No mutations were found in the weakly 

conserved very N-terminal part of the TS domain (amino acid 313-340) and only one mutation is located in 

the subsequent region (C353F). HSAN-IE associated mutations cluster in the central part, whereas ADCA-

DN associated mutations are located in the C-terminal part of the TS domain. All identified mutations 

affect highly conserved amino acids. 
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Figure 3.5: Overview of DNMT1 TS domain mutations found in patients suffering from HSAN-IE or ADCA-DN. Top: 

Schematic outline of DNMT1 domains with indication of the 15 disease related mutations in the TS domain. bottom: Primary 

sequence alignment of the TS domain from different species with representation of disease associated mutations and the 

human TS domain secondary structure (pdb: 3EPZ). Note that the amino acid positions in the protein were adapted to the 

human DNMT1 isoform shown in the alignment (NP_001370.1).  

In order to clarify regulatory defects of HSAN-IE associated TS domain mutations (Klein et al. 2011), we 

cloned mutant mouse DNMT1 constructs (DNMT1 P496Y and DNMT1 Y500C, corresponding to human 

DNMT1 D490E.P491Y and DNMT1 Y495Y) and performed biochemical and functioanal cell biological 

assays.  

Since the TS domain has been described as mediator for the interaction with UHRF1 (Achour et al. 

2008; Felle et al. 2011), we investigated the ability of the HSAN-IE associated TS domain mutants to 
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interact with UHRF1 and to restore DNA methylation in mouse Dnmt1-/- ESCs. As described above (see 

3.2.2), interaction of the mutants GFP-DNMT1 P496Y or GFP-DNMT1 Y500C as well as of the combination 

of both mutations with Cherry-UHRF1 was impaired. In support of the assumption that chromatin 

targeting of DNMT1 by direct interaction with UHRF1 is essential for the regulation of maintenance DNA 

methylation (see 3.2.1), we found that the HSAN-IE associated DNMT1 mutants were indeed inactive in 

vivo. In agreement with this observation, we could show that a TS domain deletion mutant (GFP-DNMT1 

Δ458-500) covering the region of the point mutations was unable to restore DNA methylation levels in 

Dnmt1-/- ESCs. Consistently, DNA samples of HSAN-IE patients were characterized by global DNA 

hypomethylation (Klein et al. 2011). 

To elucidate the interplay between UHRF1 interaction and chromatin association in vivo, we analyzed 

DNMT1 subnuclear distribution and protein dynamics by FRAP. In line with defects in chromatin targeting 

via interaction with UHRF1, GFP-DNMT1 P496Y, GFP-DNMT1 Y500C and the combination of both 

mutations showed only weak association with late replicating heterochromatin. In contrast to cell cycle-

specific localization patterns of full length DNMT1, the wildtype TS domain was constantly associated with 

heterochromatin in dependence on UHRF1, but not on methylated DNA. Consistent with strong 

chromocenter association, FRAP analyses revealed slow kinetics of GFP-TS wt with a high immobile 

fraction of   75%. In contrast, the diffuse nuclear localization of the HSAN-IE associated TS domain mutants 

was reflected by considerably faster protein kinetics without an immobile fraction. These results suggest 

UHRF1-dependent localization patterns of DNMT1 and reinforce the link between TS domain-mediated 

UHRF1 binding und DNMT1 chromatin targeting.  

Furthermore, we found a cell cycle-dependent destabilization of the mutant proteins (see 3.2.2). In 

agreement with these observations, HSAN-IE associated mutations in human DNMT1 have been shown to 

be less stable when compared to the wild type (Klein et al. 2011). Consistently, a recent study illustrates 

that HSAN-IE associated DNMT1 mutants are prone for aggresome induced autophagy resulting in altered 

protein homeostasis (Baets et al. 2015). 

In summary, our study revealed that DNMT1 mutants defective in UHRF1 and late replicating 

chromatin binding lead to cell cycle-dependent destabilization and DNA hypomethylation. Understanding 

the detailed biological defects of the remaining DNMT1 disease associated mutants may shed light on the 

common disease mechanism in HSAN-IE and ADCA-DN.  

3.3.2 Functionally relevant regions within the TS domain 

The finding that the TS domain was responsible for UHRF1 interaction and strong heterochromatin 

association prompted us to seek for regions within the TS domain that are functionally relevant for 

enzymatic activity of DNMT1 in vivo. To this end we created a systematic set of GFP-DNMT1 TS domain 

deletion constructs (Figure 3.6) and analyzed their activity by a functional complementation assay. 
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Figure 3.6: Outline of functionally relevant regions in the DNMT1 TS domain. Functionally important regions within the TS 

domain were mapped with deletion mutants and a complementation assay. For comparison the ubiquitin interacting motif 

(UIM), the UHRF1 interacting region and the neurodegenerative disease associated mutations are indicated. 

Interestingly, the very N-terminal region of the TS domain, which shows only low conservation among 

different species (see Figure 3.5) and is only affected by one disease associated mutations, was 

dispensable for DNMT1 activity. In contrast, regions comprising amino acid 356 to 404 as well as 458 to 

573 were important for the regulation of mouse DNMT1 enzymatic activity in vivo and their deletion 

resulted in inactivation of maintenance DNA methylation. According to the idea of different regulatory 

functions attributed to the TS domain, the inactivation of enzyme activity by deletion of amino acid 356 to 

404 can be explained by the UIM located in this region (see 3.2.1). Using this deletion as well as defined 

point mutants, we could show that the UIM-mediated DNMT1 chromatin targeting via binding to 

ubiquitinated H3K18 is indispensable for maintenance DNA methylation. In agreement with our results, a 

deletion of the region encompassing amino acid 325 to 425 in mouse DNMT1 has been shown to be 

defective in binding to ubiquitinated H3 (Nishiyama et al. 2013). Moreover, we assume that GFP-DNMT1 

Δ458-500 is inactive as a consequence of deleting the region responsible for interaction with UHRF1. In 

the C-terminal part of the TS domain, the amino acids E530, D531, D553 and L592 are known to contribute 

to DNMT1 autoinhibition by interaction with the CTD via four hydrogen bonds (Song et al. 2011b; 

Berkyurek et al. 2013). However, whether this part of the TS domain has further distinct regulatory 

functions remains elusive. 

Given the multifunctional regulatory role of the TS domain in mediating DNMT1 chromatin targeting 

and enzymatic activity, we propose that disease associated TS domain mutants might have defects in 

different regulatory steps. These defects might, however, all lead to decreased DNA methylation activity of 

DNMT1. 

3.3.3 Unraveling HSAN disease mechanisms 

Although several studies on disease-associated mutations in important epigenetic factors like MeCP2, 

DNMT3A and DNMT1 exemplify the involvement of decreased or increased DNA methylation in 

neurodegeneration, the biological processes linking these epigenetic changes to neuronal cell death 
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remain to be determined. Nonetheless, studying the function of wildtype proteins and comparing them to 

disease associated mutated proteins is a prerequisite for the identification of suitable drug targets. 

Apparently, the treatment of HSANs, for instance, is limited due to the lack of basic knowledge about 

common disease mechanisms, of relevant drug targets and certainly due to the unprofitable market of 

these rarely occurring dieases for pharmaceutical companies. 

To gain insight into the biological pathways underlying the PNS degeneration, future studies should 

focus on finding common pathways involved in the regulation of axonal survival and on modeling of 

neuronal pathogenesis. Firstly, mouse models can help to understand the biological background of the 

disease phenotype and offer the possibility of testing potential drugs. Secondly, the use of human induced 

pluripotent stem cells (iPSCs) from patients, though it still remains challenging, is an elegant tool to model 

disease mechanisms under physiological conditions without overexpression and off target effects due to 

different genetic backgrounds of mouse strains (Lee et al. 2009). In a recent study, Lee and colleagues 

have derived human iPSCs from HSAN-III (also known as familial dyautonomia) patients carrying point 

mutations in the IKBKAP gene. After differentiation into peripheral neurons, defects in protein-specific 

functions like mis-splicing were found. Reversion of these defects has been tested by potential candidate 

drugs offering new insights into the disease mechanism and treatment of familial dyautonomia. Patient 

derived human iPSCs have also helped to validate the phenotypes of other neurodegenerative disease 

such as Alzheimer’s disease, Parkinson’s disease, Huntingtons’s disease, amyotrophic lateral sclerosis and 

spinal muscular atrophy (Jung et al. 2012). 

Given the genetic and clinical heterogeneity of HSANs, a common molecular pathway leading to 

pathogenesis has not yet been completely elucidated. Whereas proteins like the nerve growth factor 

receptor Trk-A mutated in HSAN-IV have directly been implicated in neuronal development, growth and 

survival (Rotthier et al. 2012), the role of DNA methylation by DNMT1 for neurogenesis is only partially 

understood. 

The role of DNMT1 in neurogenesis has been studied with conditional gene deletions in mouse models 

(Fan et al. 2001). By use of conditional knockout mice that allowed for specific Dnmt1 deletion in different 

developmental stages, effects of DNMT1 deficiency in embryonic CNS precursor cells and adult postmitotic 

CNS neurons have been investigated. In vitro, postmitotic cerebellar neurons survived and developed 

healthy and did not show global changes in DNA methylation levels after DNMT1 depletion. In vivo, 

conditional Dnmt1 gene deletion in postmitotic CNS neurons did derogate neither animal viability nor 

long-term neuronal survival and did not change DNA methylation levels. In contrast, Dnmt1 gene deletions 

in CNS precursor cells at embryonic day E9 to E10 resulted in DNA hypomethylation in the brain and in 

perinatal lethality (one hour after birth) of mutant mice due to defects in neuronal respiratory control and 

ensuing respiratory failure. DNMT1 was undetectable at embryonic day E15.5 arguing for a rapid protein 

turnover, however, with no influence on the differentiation process into neurons. Interestingly, studies on 

a mosaic mutant containing only 30% Dnmt1 deleted neurons suggest that DNMT1-deficient 

hypomethylated neurons were selectively eliminated from the postnatal brain. Thus, DNMT1 seems to be 

crucial for maintenance DNA methylation in CNS precursor cells and for cell viability and function of 

postmitotic CNS neurons . In summary, this study provides strong evidence for an essential role of DNMT1 

and DNA methylation in neuronal precursors and for deleterious effect of DNMT1 depletion on neuronal 

survival (Fan et al. 2001).  
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Dnmt1 gene deletion in mouse NPCs results in elevated Signal Transducers and Activators of 

Transcription (STAT) activity as well as enhanced and precipitate differentiation into astrocytes. These 

findings indicate that DNA methylation has an inhibitory effect on Januskinase (JAK) -STAT signaling and 

regulates the timing of astrogliogenesis (Fan et al. 2005). In mouse retinal NPCs, Dnmt1 gene deletion 

does not alter cell proliferation, but hinders maturation and survival of postmitotic neurons. Mutant mice 

showed fast postnatal retinal degeneration suggesting that maintenance DNA methylation is required for 

mammalian retinal development (Rhee et al. 2012). 

DNA methylation patterns in the brain are not immutable after birth, but they underlie dynamic 

changes triggered by external stimuli allowing for behavioral plasticity, memory formation and 

maintenance. One might speculate about the existence of specific regulatory mechanisms selectively 

changing DNA modification states in neuronal cells, whereas the modification patterns in other cell types 

are faithfully maintained (Yu et al. 2011). It is puzzling, that patients carrying mutation in DNMT1 show a 

PNS-restricted phenotype. However, given that DNA methylation patterns might be selectively modulated 

in neurons, DNMT1 might have additional replication-uncoupled roles in the nervous system distinct from 

its classical role as a maintenance enzyme in dividing somatic cells. Considering the important role and 

high expression of DNMT1 in the nervous system, and potential replication-independent DNA methylation 

by DNMT1, it is better understandable that the heterozygous mutations of HSAN-IE and ADCA-DN patients 

have a more pronounced effect on the CNS and PNS compared to other tissues. DNMT1 protein 

abundance is diminished by the destabilizing effects of the HSAN-IE mutations (see 3.3.1) and might be 

further compromised by fast protein turnover (Fan et al. 2001). 

Taken togehter, DNMT1 is known to play a crucial role in the function of CNS neurons in postnatal 

animals, but the defined molecular disease mechanisms of DNMT1 mutations leading to the nervous 

system-restricted and late-onset phenotype observed in HSAN-IE and ADCA-DN patients remain to be 

elucidated. 
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4.2 Abbreviations 

Abbreviation Meaning 

∆ deletion 

53BP1 p53 binding protein 1 

5-aza-dC 5-aza-deoxycidine 

5caC 5-carboxycytosine 

5fC 5-formylcytosine 

5hmC 5-hydroxymethylcytosine 

5mC 5-methylcytosine 

ac acetylated 

ADCA-DN autosomal dominant cerebellar ataxia, deafness and narcolepsy 

ADD ATRX–DNMT3–DNMT3L 

ADP adenosine diphosphate 

AID activation-induced deaminase 

aIPC astrocyte intermediate progenitor cell 

AML aute myeloid leukemia 

AOTF acousto-optical tunable filter 

APC anaphase promoting complex 

APOBEC apolipoprotein B mRNA-editing enzyme complex 

App amyloid precursor protein 

ar ADP ribosylated 

ASH1L Absent, small and homeotic discs 1-like 

ATL3 Atlastin 3 

ATM ataxia telangiectasia mutated 

BAH1/2 bromo-adjacent homology 1/2 

BDNF brain derived neurotrophic factor 

BER base excision repair 

BiFC bimolecular fluorescence complementation 

CBP CREB binding protein 

CDK2 cyclin-dependent kinase 2 

CF cerebrospinal fluid 

Ch cherry 

CIPA congenital insensitivity to pain with anhidrosis 

CNS central nervous system 

CTD carboxy-terminal domain 

CXXC zinc finger 

DG dentate gyrus 

Dlx2 Distal-less homeobox 2 

DMAP1 DNA methyltransferase associated protein 1 

DNMT1/2/3A/3B/3L DNA methyltransferase 1/2/3A/3B/3L 

DNMT1o oocyte-specific isoform of DNMT1 

ELP3 Elongator complex 3 

ELSA enzyme-linked immunosorbent assay 
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Abbreviation Meaning 

ESC embryonic stem cell 

EZH2 enhancer of zeste homolog 2 

F3H fluorescence three hybrid assay 

FACS fluorescence activated cell sorting 

Fgf1B fibroblast growth factor 1 

FMR1 fragile X mental retardation-1 

FRET fluorescence resonance energy transfer 

FXN frataxin 

GADD45B growth arrest and DNA damage-inducible protein 45B 

GCN5 general control nonderepressible 5 

GCNF germ cell nuclear receptor 

GFP green fluorescent protein 

HAT histone acetyltransferase 

HAUSP herpes virus associated ubiquitin-specific protease 

HDAC histone deacetylase 

hiPSC induced pluripotent stem cell 

HMN hereditary motor neuropathy 

HMSN hereditary motor and sensory neuropathy 

HMT histone methyltransferase 

HP1 heterochromatin binding protein 1 

HRS hepatocyte growth factor regulated tyrosine kinase substrate 

HSAN hereditary sensory and autonomic neuropathy 

HSP hereditary spastic paraplegia 

IAP intracisternal A particle 

ICBP90 inverted CCAAT binding protein of 90 kDa 

ICF Immunodeficiency, Centromeric region instability, Facial anomalies 

IDM1 increased DNA methylation 1 

JAK januskinase 

KG lysine-glycine 

KIF-1A kinesin family member 1A 

LINE long interspersed nuclear elements 

LSD1 lysine-specific demethylase 1A 

LTRs long terminal repeats 

M phase mitosis phase 

MBD methyl-CpG binding domain 

MBP 5mC binding protein 

MDS myelodysplastic syndrome 

me1 monomethylated 

me2 dimethylated 

me2a assymmetrically dimethylated 

me2s symmetrically dimethylated 

me3 trimethylated 

MEF mouse embryonic fibroblast 
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Abbreviation Meaning 

Mf mobile fraction 

mI myoinositol 

MPD myeloproliferative disorder 

MRI magnetic resonance imaging 

MSLT multiple sleep latency test 

nIPCs neuronal intermediate progenitor cells 

nIPCs neuronal intermediate progenitor cell 

NIRF Np95/ICBP90-like RING finger 

NLS nuclear localization signal 

NP95/97 Nuclear protein of 95/97 kDa 

NPC neuronal progenitor cell 

NSC neuronal stem cell 

NSD1/2/3 nuclear receptor SET domain-containing 1/2/3 

NTD N-terminal domain 

N-terminal Amino-terminal 

oct4 octamer binding transcription factor 4 

oIPC oligodendrocyte intermediate progenitor cell 

PARP1 poly(ADP-ribose) polymerase 1 

PARylation poly(ADP-)ribosylation 

PBD PCNA binding domain 

PBR polybasic region 

PCAF p300/CBP-associated factor 

PCNA proliferating cell nuclear antigen 

PCNP PEST-containing nuclear protein 

pdb protein database 

PGC primordial germ cell 

ph phosphorylated 

PH pericentromeric heterochromatin 

PHD plant homeodomain 

PI5P phosphatidylinositol 5-phosphate 

PNS peripheral nervous system 

pRB retinoblastoma protein 

PRC2 polycomb group repressor complex 2 

PRMT6 protein arginine methyltransferase 6 

Ps1 presenilin 1 

PTM Post translational modification 

PWWP proline-tryptophan-tryptophan-proline 

RARE RA receptor element 

REM rapid eye movement 

RFP red fluorescent protein 

RGC radial glial cell 

RING really interesting new gene 

ROS1 repressor of silencing 1 
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Abbreviation Meaning 

RSWA REM sleep without atonia 

S phase synthesis phase 

SAM S-Adenosyl-L-Methionine 

SETD1A/1B/3 SET domain containing 1A/1B/3 

SETDB1 SET domain, bifurcated 1 

SETMAR SET domain and mariner transposase fusion gene-containing 

SGZ subgranular zone 

SINE short interspersed nuclear element 

SMN1 survival of motor neuron 1 

SMYD2 SET and MYND domain-containing 2 

SOMREMP sleep-onset rapid eye movement period 

SRA SET and RING-associated 

STAT Signal Transducers and Activators of Transcription 

su sumoylated 

SUV39H1/H2 suppressor of variegation 3-9 homolog 1 and 2 

SUV4-20H1/2 suppressor of variegation 4-20 homolog 1/2 

SVZ subventricular zone 

TDG thymine DNA glycosylase 

TET ten eleven translocation 

TIP60 Tat interacting protein of 60 kDa 

TKO triple knockout 

TNFα tumor necrosis factor alpha 

TS targeting sequence 

TSA Trichostatin A 

TSS transcriptional start site 

TTD tandem Tudor domain 

ub ubiquitinated 

Ubl ubiquitin-like 

UHRF1 ubiquitin-like, containing PHD and RING finger domains 1 

UIM ubiquitin interacting motif 

USP7 ubiquitin-specific processing protease 7 

VZ ventricular zone 

WNK1 with-no-lysine(K)-1 
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4.3 List of genes and corresponding proteins associated with HSAN-I to V. 

Genes and corresponding proteins are listed according to the HSAN type and the mode of inheritance with information 

about the expression pattern and biological functions. HSAN: hereditary sensory and autonomic neuropathy; ADCA-DN: 

autosomal dominant cerebellar ataxia, deafness and narcolepsy. 

Gene 

name 
Mutation Type of HSAN 

Inheri-

tance 
Protein name Expression Biological function 

SPTLC1 
Missense 

mutations 

HSAN-I 

A
u

to
so

m
al

 d
o

m
in

an
t 

SPT1: Serine 

palmitoyltransferase 

subunit 1 

Cells of immune 

system, brain  Catalysis of first step in de novo 

biosynthesis of sphingolipids 

(Hanada 2003) 
SPTLC2 

Missense 

mutations 

SPT2: Serine 

palmitoyltransferase 

subunit 2 

Cells of immune 

system 

RAB7A 
Missense 

mutations 

CMT2B: Charcot–

Marie–Tooth 

disease type 2B 

RAB7A: Ras-related 

protein RAB7A 
Ubiquitously 

Small RAB GTPase, formation and 

transport of intracellular vesicle; 

tethering and fusion of 

endosomal membranes 

(Hutagalung and Novick 2011) 

ATL1 
Missense 

mutations 

HSAN-I, hereditary 

spastic paraplegia 

(HSP) 

ATLA1: Atlastin-1 

Brain, hippocampus, 

pyramidal 

neurons (Zhu et al. 

2003) 

GTPase activity; role in 

intracellular membrane 

trafficking at the endoplasmic 

reticulum-to-Golgi interface (Zhu 

et al. 2003; Namekawa et al. 

2007) 

ATL3 
Missense 

mutations 
HSAN-I ATLA3: Atlastin-3 

CNS (Fischer et al. 

2014) 

endoplasmic reticulum-shaping 

GTPase, facilitates connection of 

ER tubules to networks by 

homotypic membrane fusion 

(Kornak et al. 2014) 

DNMT1 
Missense 

mutations 

HSAN-I with 

subtype HSAN-IE 

and ADCA-DN 

DNMT1: DNA 

methyltransferase 1 

Ubiquitously, 

postmitotic neurons 

of adult CNS (Tawa 

et al. 1990), immune 

cells 

Maintenance DNA 

methyltransferase; propagation 

of DNA methylation during after 

replication and repair (Bird 2002) 

WNK1 

Missense, 

nonsense 

mutations; 

insertions, 

deletions HSAN-II 

A
u

to
so

m
al

 r
ec

es
si

ve
 

WNK1: with-no-

lysine(K)-1; only HSN2-

containing nervous 

tissue-specific isoform 

of WNK1 affected 

(Shekarabi et al. 2008) 

HSN2-containing 

isoform: CNS, PNS, 

dorsal root 

ganglia and sciatic 

nerves (Shekarabi et 

al. 2008) 

Serine-threonine protein kinase; 

sodium, chloride and potassium 

homeostasis (Anselmo et al. 

2006) 

FAM 

134B 

Missense 

mutations 

FAM134B: family with 

sequence similarity 

134, member B 

PNS (sensory and 

autonomic ganglia) 

(Kurth et al. 2009) 

Component of the cis-Golgi 

matrix, shaping and tethering the 

membrane stacks (Kurth et al. 

2009) 
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Gene 

name 
Mutation Type of HSAN 

Inheri-

tance 
Protein name Expression Biological function 

KIF1A 

Frame-shift 

mutations 

mostly in 

nerve-

specific exon 

(Riviere et al. 

2011) 

HSAN-II 

A
u

to
so

m
al

 r
ec

es
si

ve
 

KIF1A: Kinesin family 

member 1A 

Nerve-specific splice 

variant: dorsal root 

ganglia (Riviere et al. 

2011) 

Molecular motor protein; 

anterograde axonal transport of 

synaptic vesicle precursors 

(Okada et al. 1995); interacts with 

the domain of WNK1 encoded by 

the HSN2 exon (Riviere et al. 

2011) 

IKBKAP 

Splice-site 

and missense 

mutations 

HSAN-III (also 

known as familial 

dysautonomia or 

Riley– 

Day syndrome) 

ELP1: Elongator 

complex protein 1 (also 

known as IκB kinase 

complex-associated 

protein) 

Differentiating 

neurons of CNS and 

PNS (Hunnicutt et al. 

2012) 

Scaffold protein, assembly of RNA 

polymearse II elongator complex 

(Otero et al. 1999); acetylation of 

α-tubulin (Creppe et al. 2009) 

NTRK1 

> 40 

misssense, 

nonsense, 

frameshift 

and splice-

site 

mutations 

(Greco et al., 

1999) 

HSAN-IV (also 

known as 

congenital 

insensitivity to 

pain with 

anhidrosis (CIPA)) 

Trk-A: tyrosin kinase A 

Long isoform (Trk-

AII) in neuronal 

tissues (Barker et al. 

1993), CNS 

(Holtzman et al. 

1995) 

High-affinity nerve growth factor 

receptor; tyrosin kinase; 

neurotrophin signaling; β-NGF as 

binding ligand; development and 

survival of sympathetic ganglia 

and nociceptive sensory neurons 

in dorsal root ganglia, of 

cholinergic neurons of the basal 

forebrain (Indo 2002); activity of 

β-NGF-Trk-A pathway in immune 

and endocrine system (Levi-

Montalcini et al. 1996) 

NGF 

Missense or 

frameshift 

mutations 

HSAN-V 
β-NGF: β-nerve growth 

factor 

PNS, immune cells 

(Rotthier et al. 2012) 

Neutrophin family of proteins, 

regulation of neuronal surviva;, 

development and function; 

contribution to inflammatory and 

immune response (Nicol and 

Vasko 2007; Ernsberger 2009); 

binds to Trk-A (Kaplan et al. 1991; 

Indo 2002) 

CCT5 
Missense 

mutation 

HSAN with spastic 

paraplegia 

TCP-1ε: T-complex 

protein 1 subunit ε 

Ubiquitously 

(Kubota et al. 1999) 

Cytosolic molecular chaperone, 

promotes ATP-dependent folding 

of actin and tubulin (Yokota et al. 

2001) 
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4.4 Contributions 

Declaration of contributions to “Generation and characterization of rat and mouse monoclonal 

antibodies specific for MeCP2 and their use in X-inactivation studies” 

For this project, I preselected and characterized rat monoclonal anti-MeCP2 antibodies by epitope 

mapping experiments shown in Figure 3 and immunofluorescence stainings depicted in Figure 6a. 

Moreover, I proofread the manuscript. 

Declaration of contributions to “Versatile toolbox for high throughput biochemical and functional 

studies with fluorescent fusion proteins” 

For this project, I established and optimized the protein-protein interaction assay in the GFP-multiTrap 

plates and evaluated the data for the corresponding Figure 3. In addition, I provided the data for 

Supplementary Figure S1B and I proofread the manuscript. 

Declaration of contributions to “Cooperative DNA and histone binding by Uhrf2 links the two major 

repressive epigenetic pathways” 

To characterize the chromatin binding properties of UHRF2, I performed a histone tail peptide binding 

assay with the full length protein and its individual domains as well as a defined mutant. I evaluated the 

results and prepared the draft for the Figures 2A, 2B and 4A. With the help of Katrin Schneider I examined 

subnuclear localization and protein kinetics of UHRF2 and a histone binding mutant in MEF wildtype and 

Suv39dn cell lines. Katrin and me evaluated the FRAP data and prepared the Figures 3B and 3C as well as 

Supplementary Figure 4D and 4E. 

Declaration of contributions to “Dissection of cell cycle-dependent dynamics of Dnmt1 by FRAP and 

diffusion-coupled modeling” 

To raise an antibody specific for DNMT1, I analyzed binding specificities of the antibody 5A10 in 

western blot and immunofluorescence staining and prepared the corresponding Supplementary Figures 

S1A and S1B. I also helped with proofreading the manuscript. 

Declaration of contributions to “Poly(ADP-ribose) polymerase 1 (PARP1) associates with E3 ubiquitine-

protein ligase UHRF1 and modulates UHRF1 biological functions” 

For this project, I performed the DNA methylation analysis in wt and PARP-/- cells at the major satellite 

repeats shown in Figure 5E. Furthermore, I provided the information for the UHRF1 single domain and 

deletion constructs cloned in our lab and proofread the manuscript.  



Annex 

272 

 

Declaration of contributions to “DNA methylation requires a DNMT1 ubiquitin interacting motif (UIM) 

and histone ubiquitination” 

This project was conceived by Heinrich Leonhard, Weihua Qin and me. I performed biochemical and 

cell biological experiments for the following Figures: Figures 3c ,d; 6c (in collaboration with Stephanie 

Link), 7 (in collaboration with David Hörl and Hartmann Harz); Supplementary Figures S3b-e (in 

collaboration with Stephanie Link and Martha Smets), S4, S7 (in collaboration with Stephanie Link), S8. For 

the first draft of the manuscript, I wrote the sections corresponding to the experiments performed. I 

combined all results to design the final Figures, included all changes during the revisions and corrected the 

manuscript together with Heinrich Leonhardt. Moreover, I was responsible for the correspondence with 

collaboration partners and for project planning including the development of a timeline and the 

coordination of different subprojects.  

Declaration of contributions to “Mutations of the DNMT1 TS domain found in HSAN-IE patients disrupt 

interaction with UHRF1, affect subnuclear targeting and lead to cell cycle-dependent destabilization” 

This project was conceived by Heinrich Leonhard and me. I performed the experiments shown in the 

Figures 2 (in collaboration with Stephanie Link), 3 (in collaboration with Karin Fellinger), 4, 5 (in 

collaboration with Veronika Solis), 6 (in collaboration with Martha Smets), 7 (in collaboration with Katrin 

Schneider) and the experiments for all Supplementary Figures. I designed all figures and wrote the 

manuscript.  
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