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Summary

Summary

In mammals, DNA methylation is crucial to regulate gene expression. After establishment during
embryogenesis, DNA methylation patterns are faithfully propagated by the maintenance DNA
methyltransferase 1 (DNMT1) during replication. Maintenance DNA methylation is subjected to complex
regulation including protein interactions, cell cycle-dependent abundance and enzyme activation.
Strikingly, DNMT1 enzymatic function requires both activation and regulation by its N-terminal domain
(NTD). A key regulator and essential interaction partner of DNMT1 is the multi-domain protein UHRF1
(ubiquitin-like, containing PHD and RING finger domains 1). Regulatory mechanisms as well as the interplay
between different UHRF1 domains in recruiting DNMT1 to its DNA target sites remain, however, elusive.

To functionally investigate the UHRF1 domain characteristics, we developed a versatile toolbox for
semiquantitative and medium throughput analysis of protein-DNA, protein-histone tail peptide and
protein-protein binding in vitro. Using this method we showed the specificity of UHRF1 for repressive
histone marks and mapped a TS domain region in the NTD of DNMT1, which mediates the interaction with
UHRF1. With complementation assays, we further demonstrated that interaction of DNMT1 with UHRF1 is
necessary, but not sufficient for recruitment of DNMT1 to its substrate sites. In turn, none of the UHRF1
domains is dispensable for DNMT1 regulation suggesting a complex interplay of different UHRF1 functions.
With defined mutations abolishing the E3 ubiquitin ligase activity of UHRF1, we demonstrated that the
RING domain is crucial for the regulation of DNMT1. By mass spectrometry analysis we identified histone
H3K18 as a novel ubiquitination target of UHRF1. We further showed that H3K18 ubiquitination by the
RING domain is required for DNA methylation by DNMT1 in vivo. Moreover, PHD-mediated binding of
UHRF1 to H3R2 is a prerequisite for subsequent histone ubiquitination. With bioinformatics and
mutational analyses we identified and functionally characterized a ubiquitin interacting motif (UIM) in the
TS domain of DNMT1. We used functional assays to illustrate that the UIM-mediated binding to
ubiquitinated H3K18 and H2AK119 is essential for DNMT1 targeting and activity in vivo. These findings
reveal an interdependent regulatory network controlling DNA methylation based on specific reading and
writing of epigenetic marks by UHRF1. Our work uncovers UIM-dependent targeting of DNMT1 as a novel
regulatory principle for DNA methylation beyond classic maintenance.

The identification of the UHRF1 interacting region and the UIM in the DNMT1 TS domain propose
distinct non-redundant regulatory roles. Recently, medical studies reported several DNMT1 mutations
associated with the human diseases hereditary sensory and autonomic neuropathy with dementia and
hearing loss (HSAN-IE) and autosomal dominant cerebellar ataxia, deafness and narcolepsy (ADAC-DN).
Interestingly, all mutations are located in the TS domain, but not within the UIM. As the underlying disease
mechanisms are poorly understood, we set out to investigate functional defects of two HSAN-IE associated
DNMT1 mutations (P496Y and Y500C). We found that mutant DNMT1 was not only deficient in UHRF1 and
heterochromatin binding, but also led to DNMT1 destabilization. Our results provide an explanation for
diminished activity of mutant DNMT1 accounting for the observed global DNA hypomethylation in HSAN-IE
patients.

In conclusion, this work advances our understanding of how UHRF1 and two defined regions in the
DNMT1 TS domain regulate DNA methylation and also suggests a new mechanism of DNMT1 dysfunction

in the pathogenesis of human neurodegenerative diseases.
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Zusammenfassung

Zusammenfassung

DNA-Methylierung spielt eine fundamentale Rolle fir die Regulierung der Genexpression in Saugern.
Nach der Etablierung von DNA-Methylierungsmustern in der Embryonalentwicklung, Ubertragt die DNA-
Methyltransferase 1 (DNMT1) diese epigenetischen Muster getreu an nachkommende Zellgenerationen.
Erhaltungs-DNA-Methylierung ist einer Vielzahl von regulatorischen Mechanismen unterworfen, wie etwa
Protein-Interaktionen, zellzyklusabhangigen Abundanzen und Enzymaktivierung. Die katalytische Aktivitat
von DNMT1 beruht auf ihrer C-terminale Domane, die von der N-terminalen Domane (NTD) reguliert und
aktiviert wird. Eine wichtige regulatorische Rolle wird dem Protein "ubiquitin-like, containing PHD and
RING finger domains 1" (UHRF1) zugeschrieben, das mit DNMT1 interagiert und essentiell fiir die DNA-
Methylierung ist. Es ist jedoch unbekannt, welche regulatorischen Mechanismen DNMT1 zu ihrem
Substrat rekrutieren und wie verschiedene UHRF1 Proteindomanen zusammenwirken.

Um die Eigenschaften der UHRF1 Domanen funktionell zu analysieren, haben wir einen molekularen
Werkzeugkasten entwickelt, der es ermdglicht die Bindung von Proteinen an DNA, Histone und andere
Proteine in vitro zu untersuchen. Mit dieser Methode konnten wir die Bindespezifitdt von UHRF1 fur
repressive Histon-Modifikationen zeigen und eine TS Doméane Region in der NTD von DNMT1 kartieren, die
mit UHRF1 interagiert. Durch Komplementationsexperimente konnten wir nachweisen, dass die
Interaktion von DNMT1 mit UHRF1 essentiell, jedoch nicht ausreichend fir die Rekrutierung von DNMT1
zu ihren Substratstellen ist. Keine der UHRF1 Domanen ist wiederum fir die Regulierung von DNMT1
verzichtbar, was auf eine Beteiligung verschiedener UHRF1 Funktionen in der Regulierung von DNA-
Methylierung hindeutet. Durch gezielte Mutationen, die die E3 Ubiquitin Ligase Aktivitat von UHRF1
beeintrachtigen, konnten wir klar zeigen, dass die RING Domane von UHRF1 sehr wichtig fir die DNA-
Methylierung durch DNMT1 ist. Durch Massenspektrometrie haben wir H3K18 als neue Ubiquitinierungs-
Zielstelle von UHRF1 identifiziert. H3K18 Ubiquitinierung und darauffolgende DNA-Methylierung
erforderte auch die Bindung der PHD an H3R2. Mit bioinformatischen- und Mutations-Analysen haben wir
ein Ubiquitin interagierendes Motif (UIM) in der TS Doméane von DNMT1 identifiziert, das an H3K18 und
H2AK119 ubiquitinierte Histone bindet und sehr wichtig fir die Funktionalitdt von DNMT1 in vivo ist. Diese
Ergebnisse lassen ein regulatorisches Netzwerk zur Kontrolle der DNA-Methylierung erkennen, das
spezifisches Lesen und Schreiben von epigenetischen Modifikationen durch UHRF1 erfordert. Unsere
Forschungsarbeit hat den UIM abhdngigen Rekrutierungsmechanismus als neues Regulierungsprinzip
aufgedeckt, der DNMT1 Uber klassische Erhaltungsmethylierung hinaus an ihre Zielstellen bringt.

Die Identifizierung der UHRF1 interagierenden Region und des UIM deutet auf verschiedene, nicht
redundante Rollen der TS Domane von DNMT1 hin. Kirzlich haben einige medizinische Studien
Mutationen in der TS Doméne von DNMT1 beschrieben, die mit der humanen Krankheit "hereditary
sensory and autonomic neuropathy with dementia and hearing loss" (HSAN-IE) und "autosomal dominant
cerebellar ataxia, deafness and narcolepsy" (ADAC-DN) in Verbindung gebracht werden. Alle Mutationen
wurden in der TS Doméne gefunden, jedoch auBerhalb des UIM. Da die zugrundeliegenden
Krankheitsmechanismen kaum verstanden sind, haben wir funktionelle Defekte von zwei HSAN-IE
assoziierten Mutationen (P496Y und Y500C) untersucht. HSAN-IE Mutationen fuhrten dazu, dass DNMT1
nicht mehr mit UHRF1 interagierte. Weiterhin waren die DNMT1-Mutanten destabilisiert und zeigten
schnellere Proteinkinetiken sowie eine schwéachere Assoziation mit Heterochromatin. Unsere Ergebnisse
liefern eine Erklarung fir die herabgesetzte Aktivitdit der DNMT1 Mutanten, die zu globaler DNA-
Hypomethylierung in HSAN-IE Patienten fihrt.

Zusammenfassend beleuchtet diese Forschungsarbeit nicht nur die Regulierung von DNA-
Methylierung durch UHRF1 und zwei definierte Regionen in der TS Domaéne, sondern beschreibt auch
Mechanismen von DNMT1 Dysfunktionen, die an der Pathogenese neurodegenerativer Krankheiten
beteiligt sein konnten.
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Introduction

1. Introduction

1.1 Epigenetic information

Epigenetic mechanisms are of central importance for the regulation of gene expression in mammalian
genomes. Although each cell of the adult body carries the same primary genetic information identical to
that of the zygote, it contains multiple cell types with diverse tissue functions (Bird 2002). To allow a
complex and multifunctional organism to arise from a single cell, epigenetic patterns have to be
dynamically changed during early embryonic development (Wu and Zhang 2010). Epigenetic patterns rely
on heritable information found in the higher order chromatin structure governed by DNA and histone
modifications, histone variants and histone remodeling as well as RNA-mediated gene silencing.
Imprinting, X chromosome inactivation and cell differentiation are the most famous examples for
processes that are substantially regulated by epigenetic mechanisms. Misregulation of these mechanisms
leads to genomic instability and promotes tumorigenesis (Choi and Lee 2013). DNA and histone

modifications are the most prominent epigenetic marks and will be introduced in the next two chapters.

1.1.1 Histone post translational modifications

Nucleosomes are composed of 147 base pairs superhelical DNA wrapped 1.65 times around a histone
octamer formed by dimers of the four different core histones, H2A, H2B, H3 and H4 (Woodcock and Ghosh
2010). H1 is called linker histone and is localized near the DNA entry-exit sites of the core particle thereby
stabilizing the nucleosome (Thoma et al. 1979). Histones possess a globular structure, but their N-terminal
part protrudes from the core as a so called histone tail. Whereas post translational modifications (PTMs)
on the histone core domains usually have a direct effect on the histone structure or on the interaction
with surrounding DNA and neighboring nucleosomes, PTMs on the flexible histone tails have an indirect
effect on chromatin compaction. Histone tail PTMs recruit specific reader modules that initiate further
downstream pathways (Mersfelder and Parthun 2006; Kouzarides 2007). Euchromatic histone PTMs are
usually found in less compacted active chromatin, while heterochromatic or also called repressive marks
are enriched in densely compacted silent chromatin (Figure 1.1). Depending on the context and
combination of histone PTMs, the functional output leading to activation or repression of the underlying
gene can differ. Thus, histone PTMs are more complex than previously thought arguing against the original
idea of a "histone code’. Similar to the genetic code, the “histone code” was proposed to have a definite
and invariable outcome that only relies on the mark itself and on specific readers (Strahl and Allis 2000;
Jenuwein and Allis 2001). Currently, histone PTMs tend to be summarized under the term "chromatin
signaling’, which includes both, the DNA and histone context into the interpretation and underlines the
dynamic interplay of different PTMs leading to the functional outcome (Sims and Reinberg 2008; Lee et al.
2010; Henikoff and Shilatifard 2011).

In general, histones are modified by so called writers that establish acetylation (ac), phosphorylation

(ph), ubiquitination (ub), sumoylation (su), ADP ribosylation (ar), deimination, proline isomerization as well
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as different degrees of methylation (me) (Kouzarides 2007). The most prevalent PTMs are set by three
different groups of writers including histone acetyltransferases (HATs), kinases and histone
methyltransferases (HMTs). Histones carrying certain PTMs are recognized by reader modules comprising
specialized pockets to screen and bind their target (Kouzarides 2007; Taverna et al. 2007). In general,
chromo-like domains of the Royal family and nonrelated PHD domains bind methylated histones,
bromodomains recognize acetylated histones and a domain within 14-3-3 proteins recognizes
phosphorylated histones. By reading the histone PTM, either the binding effector itself or associated
complexes induce downstream functional pathways. Histone PTMs are not absolutely stable, but they can
be removed by the action of erasers like histone deacetylases (HDACs), deubiquitinases and demethylases
(Kouzarides 2007). In the following section, important histone PTMs together with their respective writers

and biological functions are exemplified.

euchromatin

. — o ) D heterochromatin

Sk

v"—-\ -

me3 @ me3
ac ®oh
B me2s W me2a

H4 K14
K9
K4 W
R2

H4

Figure 1.1: Histone post translational modifications in hetero- and euchromatic regions. In the upper panel DNA
counterstaining of a mouse somatic nucleus is shown with intense DAPI signals in AT-rich heterochromatin. The illustrations
in the lower panel exemplify characteristic eu- and heterochromatic histone post translational modifications (PTMs).

Euchromatic histone PTMs

Generally, euchromatin covers gene-rich chromatin regions that are located in the R-bands of mitotic
Giemsa-stained chromosomes (Gilbert et al. 2004). Methylated histone N-terminal tails like H3R2me2s,
H3K4mel, H3K4me3 and H3K36me3 as well as acetylated tails like H3K9ac, H3K14ac and H4K16ac are
examples of activating histone PTMs that are prevalent in chromatin regions permissive to transcription.

One of the best characterized euchromatic histone PTMs is the methylation of lysine 4 on histone H3.

Whereas H3K4mel is enriched in active and poised enhancers, H3K4me3 is found in active and poised



Introduction

promoters (Bernstein et al. 2005; Kouzarides 2007; Li et al. 2007a; Hon et al. 2009). H3K4me3 enables
active transcription firstly by facilitating transcription initiation and secondly by inhibiting the writing of
heterochromatic marks like H3K9me3. H3K4me3 is selectively bound by the PHD finger of the TATA box
binding protein-associated factor TAF3, a subunit of the transcription factor TFIID that contributes to the
initiation of transcription (Vermeulen et al. 2007).

To date, several writers for methylated H3K4 have been described: the lysine HMTs mixed lineage
leukemia MLL1, MLL3 and MLL4 (Dou et al. 2005; Cho et al. 2007), SET domain containing 1A and 1B
complex (SETD1A and SETD1B) (Lee and Skalnik 2005; Lee et al. 2007), histone lysine N-methyltransferase
SET7 (Wang et al. 2001; Xiao et al. 2003) as well as SET and MYND domain-containing protein 2 (SMYD2)
(Abu-Farha et al. 2008). The presence of H3K4 methylation closely correlates with H4K16 acetylation on
active genes as MLL1, one of the writers of H3K4me, forms a stable complex with the H4K16-specific HAT
MOF (Dou et al. 2005). Similarly, H3K4 methylation has a stimulating effect on subsequent histone H3 and
H4 acetylation by p300 that is generally found in euchromatic regions (Wang et al. 2001). Furthermore,
symmetrically dimethylated arginine 2 on H3 (H3R2me2s) is prevalent in active chromatin regions in
combination with H3K4me3 (Guccione et al. 2007; Yuan et al. 2012).

Methylation of H3K9, a typical heterochromatic mark, prevents methylation of K4 by SET7 and vice
versa (Wang et al. 2001; Binda et al. 2010). This indicates that these two histone PTMs linked to opposite
states of chromatin compaction are mutually exclusive. Likewise, the H3K4 methylation activity of absent,
small and homeotic discs 1-like protein (ASH1L), a subunit of the MLL complex, is also inhibited by
preexisting K9 methylation (Gregory et al. 2007). Moreover, asymmetric dimethylation of arginine 2 on H3
(H3R2me2a), a mark enriched in silenced chromatin, hinders methylation of H3K4 (Guccione et al. 2007).
Another crosstalk is observed between H3T3ph and H3K4me3. Phosphorylation of the neighboring
position on the histone tail negatively regulates methylation of H3K4 (Southall et al. 2009).

Hyperacetylation of the N-terminal tails of all four core histones is a common feature of
transcriptionally active regions in eukaryotic genomes (Vaquero et al. 2003). Genome-wide, the patterns
of H3K4me3 overlap to a large extent with those of H3K9ac and H3K14ac (Gregory et al. 2007; Heintzman
et al. 2007). Acetylation on H3K9 is established by the HAT elongator complex protein 3 (ELP3) and general
control nonderepressible 5 (GCN5) as well as by the p300/CBP-associated factor (PCAF) (Kim et al. 2002;
Jin et al. 2011). H3K9ac is prevalent at transcriptional start sites (TSSs) of active genes (Wang et al. 2008).
H3K14 is preferentially acetylated by GCN5 in context of an H3 tail carrying the S10ph mark (Lo et al.
2000).

Interestingly, a direct impact of H4K16ac on chromatin compaction has been reported. The addition of
an acetyl-group by CREB binding protein (CBP)/p300, GCN5 (Sterner and Berger 2000) or MOF neutralizes
the basic charge of the lysine and prevents formation of compact 30-nm-like fibers in vitro (Shogren-Knaak
et al. 2006). Consistently, H4K16ac is enriched in actively transcribed euchromatin and the HATs
responsible for setting this mark also function as transcriptional coactivators (Carrozza et al. 2003;
Vaquero et al. 2007).

Trimethylation of lysine 36 on H3 is enriched in transcribed regions of active genes (Hon et al. 2009).
Mono- and dimethylation is established by different HMTs like nuclear receptor SET domain-containing
protein 1, 2 and 3 (NSD1, NSD2 and NSD3), ASH1L, SET domain and mariner transposase fusion gene-
containing protein (SETMAR), SMYD2 as well as SET domain-containing protein 3 (SETD3). Thereafter,


http://www.ncbi.nlm.nih.gov/nuccore/NM_027748.3
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SETD2 introduces the trimethylated state of H3K36 (Wagner and Carpenter 2012). In a process conserved
from yeast to human, SETD2 associates with the hyperphosphorylated form of RNA-Polymerase Il thereby
coupling H3K36 trimethylation to transcriptional elongation (Kizer et al. 2005).

Different degrees of H3K9 methylation can be associated with opposed chromatin states. Whereas
mono- and dimethylated H3K9 is often found in silent euchromatic regions, the trimethylated counterpart

is clearly enriched in silent heterochromatic regions.

Heterochromatic histone PTMs

In general, gene-poor heterochromatic regions found in the G- and C-bands of mitotic chromosomes
defined by Giemsa staining are marked by low levels of histone acetylation, but high levels of histone
methylation, especially on H3K9, H3K27 and H4K20 (Vaquero et al. 2003; Kouzarides 2007).

H3K9me3 is probably the best studied histone modification that contributes to heterochromatin
formation. However, H3K9me3 might also have a function in euchromatic regions as it was recently
unexpectedly found in actively transcribed genes like STATI and STAT3. (Squazzo et al. 2006; Barski et al.
2007). Depending on the chromatin context, the methylation can be established by different writers that
all share a conserved catalytically active SET domain.

The HMT SET domain, bifurcated 1 (SETDB1) targets unmodified H3K9 in euchromatic regions whereas
the dimethylated or acetylated form and phosphorylation of the neighboring serine abolish the
methylation activity in vitro (Schultz et al. 2002). SETDB1 alone is sufficient to achieve dimethylated H3K9,
but the cofactor mAM, a murine ATFa-associated factor, is needed for the formation of the trimethylated
form (Wang et al. 2003). In vitro, methylation of H3 tails by SETDB1 recruits the heterochromatin binding
protein 1 (HP1) that contributes to the formation of densely packed chromatin (Schultz et al. 2002). The
HMT G9a can also initiate the mono- and dimethylated form of H3K9 (Peters et al. 2003) and in addition
methylates H3K27. Interestingly, G9a does not localize to heterochromatin supporting its role in silencing
of euchromatic genes during early development (Tachibana et al. 2001; Tachibana et al. 2002).

Other H3K9-specific HMTs, suppressor of variegation 3-9 homolog 1 and 2 (SUV39H1 and SUV39H2)
prefer the un- and monomethylated form of H3K9 as an initial substrate establish mainly the trimethylated
state (Rea et al. 2000; Peters et al. 2003). One of the known SUV39H1/2 targets are the major satellite
repeats located in the pericentromeric heterochromatin (PH) (Lehnertz et al. 2003; Peters et al. 2003).
Notably, a feedback loop ensures establishment of stably compacted chromatin regions. HP1 specifically
reads trimethylated H3K9 by binding of its chromodomain. Hereafter, HP1 recruits SUV39H1/2, which
propagate the heterochromatic mark to neighboring nucleosomes thereby providing new binding sites for
HP1 (Bannister et al. 2001; Lachner et al. 2001; Jacobs and Khorasanizadeh 2002; Nielsen et al. 2002). In
contrast to the methylation activity of SETDB1 and G9a, which are not influenced by methylation of H3K4,
the activity of SUV39H1 on histone tails carrying this euchromatic mark is severely inhibited in vitro
(Nishioka et al. 2002a; Schultz et al. 2002).

Generally, di- and trimethylated H3K9 negatively correlates with methylated H3K4 (Wang et al. 2001).
Moreover, trimethylation of H3K9 and the adjacent phosphorylation of S10 are interdependent. Pre-
existing H3510ph prevents methylation of K9 by SUV39H1 and dimethylation of H3K9 in turn reduces the
activity of the Ipll/aurora kinase (Yeast homolog to human Aurora B kinase) to phosphorylate H3S10 in

vitro (Hsu et al. 2000; Rea et al. 2000). Consistently, double knockout Suv39H1/2 mouse embryonic
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fibroblasts display an elevated H3S10ph level (Rea et al. 2000). While the different writers of methylated
H3K9 were long thought to act independently, a recent study describes the existence of a macromolecular
complex including SETDB1, G9a and SUV39H1/2 (Fritsch et al. 2010).

Besides trimethylated H3K9, also trimethylated H3K27 is abundant in PH. Monomethylation of H3K27
is mainly set by the action of the histone-lysine N-methyltransferase enhancer of zeste homolog 2 (EZH2),
a component of the Polycomb group repressor complex 2 (PRC2) that is involved in maintaining the
silenced state of homeotic genes and the inactive X chromosome (Cao et al. 2002; Wutz 2011). In
mammals, H3K27me3 is enriched in facultative heterochromatin of the female inactive X chromosome
where it contributes to maintenance of the silent state essential for dosage compensation (Plath et al.
2003; Silva et al. 2003). Usually, di- and trimethylated forms of H3K27 catalyzed by EZH1 and EZH2 are
prevalent at silent promoters. However, elevated levels of H3K27mel were also found at active promoters
of human genes (Barski et al. 2007).

A further lysine methylation site that is connected to transcriptional repression is trimethylation of
lysine 20 on H4 (Kouzarides 2007). Monomethylation is preferentially written by the histone-lysine N-
methyltransferase PR-SET7 (Xiao et al. 2005), whereas suppressor of variegation 4-20 homolog 1 and 2
(SUV4-20H1 and SUV4-20H2) enzymes prefer H4K20mel as a substrate and establish the di- and
potentially trimethylated state (Schotta et al. 2004; Yang et al. 2008). It has been proposed, that a
sequential induction of trimethylated H3K9 and H4K20 takes place in PH. According to the model, HP1
binding to H3K9me3 leads to subsequent recruitment of SUV4-20H1/H2 (Schotta et al. 2004). However,
there is growing evidence for SUV4-20H1/2 being solely dimethylases for H4K20 and that yet unknown
proteins might be responsible for trimethylation (Wu et al. 2013; Southall et al. 2014). Interestingly,
euchromatic acetylation of H4K16 and methylation of H4K20me have been described as antagonistic
marks. By inhibiting the acetylation on K16, methylated H4K20 might ensure the silent state of underlying
chromatin region (Nishioka et al. 2002b). Besides its implication in transcriptional regulation, methylation
of H4K20 has been linked to DNA repair. Upon induction of double strand breaks, the DNA damage
checkpoint component, p53 binding protein 1 (53BP1), is specifically recruited to H4K20me2 (Botuyan et
al. 2006; Greeson et al. 2008). Moreover, H4K20 methylation is involved in DNA replication as H4K20me2

and me3 help to recruit the Orc complex to origins of replication (Jorgensen et al. 2013).

Cell cycle-dependent histone PTMs

A well studied example for a cell cycle-dependent and dynamic histone PTMs is the above mentioned
phosphorylation of H3 on serine 10. Arising during late G2 phase in PH, H3S10ph is subsequently enriched
along the chromosome during mitosis (Hendzel et al. 1997). It coordinates chromosome condensation and
segregation (Wei et al. 1999). Notably, H3S510ph in G2 phase results in dissociation of HP1 proteins from
heterochromatin (Fischle et al. 2005). It has been shown, that phosphorylation on S10 precludes the
methylation of K9 by G9a, SETDB1 and SUV39H1/2 (Rea et al. 2000; Schultz et al. 2002; Duan et al. 2008).

Also H4K20me1l is accumulated on chromatin in dependence on the cell cycle stage (Rice et al. 2002).
Whereas the level of this modification is very low in early S phase, it increases during S and G2 phase and
reaches a peak in mitosis. The H4K20me1l levels directly correlate with the abundance of its writer, PR-

SET7, showing the highest expression in G2 and M phase of the cell cycle (Jorgensen et al. 2013).
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1.1.2 DNA modifications

DNA modifications have been first described in 1904 by Wheeler and Johnson who chemically
synthesized 5-methylcytosine (5mC). A quantitative method to separate purines, pyrimidines and
nucleosides from hydrolyzed DNA samples by paper chromatographie was established in 1948 (Hotchkiss
1948). By applying the method to a thymus DNA hydrolysate, Hotchkiss could separate the four bases
adenine, guanine, thymidine and cytosine but also a “fifth base™ which migrated nearby cytosine and which
he called "Epi-cytosine’, later named 5mC. Upon the discovery of ten-eleven translocation proteins (TETSs)
in 2009, the “sixth base™ and two additional DNA modifications were subsequently characterized, namely
5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxycytosine (5caC) (Figure 1.2) (He et
al. 2011; Ito et al. 2011; Pfaffeneder et al. 2011). Whereas 5mC is the most abundant modification in
somatic cells covering 60-80% of all CpG dinucleotides in the adult human genome (Ehrlich et al. 1982;
Smith and Meissner 2013), 5hmC is sparsely distributed (1-5% of 5mC) and is predominantly found in adult
neurons (Kriaucionis and Heintz 2009; Globisch et al. 2010). The other two oxidized forms of cytosine are
even less abundant covering 0.06 to 0.6% (5fC) or 0.01% (5caC) of all 5mC sites in mouse embryonic stem
cells (ESCs) (Ito et al. 2011; Pfaffeneder et al. 2011).
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Figure 1.2: DNA modifications on cytosine in mammalian cells. Unmodified cytosine in a CpG context is methylated (5-
methylcytosine (5mC)) by DNA methyltransferases (DNMTs) and can be further oxidized to 5-hydroxymethylcytosine
(5hmC), 5-formylcytosine (5fC) and 5-carboxycytosine (5caC) by the ten-eleven translocation proteins (TETs).

In mammals, DNA methylation in promoter regions leads to transcriptional repression either directly
by preventing transcription factor binding or indirectly by compacting of the chromatin structure. Whereas
DNA methylation is mainly present in a CpG context in mammalian genomes, the modification is found in a
CpT context in the insect Drosophila melanogaster (Bird 2002) and in a CpA, CpT and CpC context in plants
(Law and Jacobsen 2010). Notably, in ESCs very low levels of CpA methylation were found, probably
established by the DNA methyltransferase 3A (DNMT3A) being, however, no longer detectable in adult
cells (Ramsahoye et al. 2000). Non CpG methylation is also prevalent in oocytes and mature neurons
(Lister et al. 2009; Xie et al. 2012b; Lister et al. 2013; Shirane et al. 2013).

In vertebrates, CpG islands, which are regions with a high occurrence of CpG dinucleotides, are highly
correlated with promoter regions as well as TSSs and are usually devoid of methylation (Bird et al. 1987).
The transcriptionally permissive chromatin state of CpG islands makes them a common feature of
housekeeping and many developmentally regulated genes (Deaton and Bird 2011). Several studies show
that the methylation free state of CpG islands is dependent on transcription factor binding motifs and

transcription factor recruitment (Brandeis et al. 1994; Macleod et al. 1994), but also on the euchromatic
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histone mark H3K4me set by SETD1A (see 1.1.1) (Smith and Meissner 2013). Hypermethylation of CpG
islands is linked to tumorigenesis and aberrant gene expression (Sproul and Meehan 2013).

Given that DNA methylation occurs as the second step in gene repression after histone PTMs on
already silenced loci, it finalizes the epigenetic status of silent chromatin (Bird 2002). DNA methylation
plays an important role, for instance in stabilizing the repressive status of transposable elements like the
intracisternal A particle (IAP) elements (Walsh et al. 1998; Gaudet et al. 2004). Although DNA methylation
is thought to be a relatively stable epigenetic mark in adult tissues, where the patterns only change as a
consequence of specific cellular processes and needs, it is dynamically changed during early embryonic
development (see 1.2.4) (Deaton and Bird 2011).
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1.2. Establishment and maintenance of DNA methylation

Establishment, regulation and maintenance of DNA methylation is crucial for normal mammalian
development. DNA methylation is catalyzed by the family of DNA methyltransferases (DNMTs) sharing

several common features but diverging in their role and regulation.

Function of mammalian DNA methyltransferases

During early embryonic development the methyltransferases DNMT3A and DNMT3B set DNA
methylation marks de novo on unmodified DNA. The maintenance methyltransferase DNMT1, by contrast,
faithfully propagates the established DNA methylation patterns to successional cell generations after
replication. According to their function, DNMT3A and DNMT3B are highly expressed during early
development (Bird 2002).

The DNA methyltransferase 3 like protein (DNMT3L) does not comprise an intrinsic methyltransferase
activity. Yet, it interacts with the de novo methyltransferases DNMT3A and DNMT3B and stimulates their
activity during early development (Hata et al. 2002; Margot et al. 2003; Suetake et al. 2004). Upon
differentiation, DNMT3L expression is downregulated (Hu et al. 2008). In the precursors of spermatogonial
stem cells, DNMT3L is essential for the methylation of retrotransposons (Bourc'his and Bestor 2004).
During gametogenesis, DNMT3L is crucial for the establishment of maternal imprints and Dnmt3L
knockout results in midgestation lethality (Bourc'his et al. 2001).

DNMT?2 is not required for DNA methylation in a CpG context in mammalian cells (Okano et al. 1998b).
Instead it methylates the tRNA™ in a methyltransferase-like catalytic mechanism (Goll et al. 2006;
Jurkowski et al. 2008). Moreover, DNMT2 was described to be responsible for DNA methylation in a CpA
and CpT context in Drosophila embryos (Kunert et al. 2003). After dnmt2 knockdown, differentiation
defects were observed in zebrafish (Rai et al. 2007), whereas mouse ESCs lacking DNMT2 did not display
any changes in global DNA methylation levels (Okano et al. 1998b).

Structure of mammalian DNA methyltransferases

All members of the DNMT family share a common C-terminal catalytic domain (CTD) harboring highly
conserved sequence motifs (I-X) also found in the prokaryotic DNMTs (Figure 1.3) (Goll and Bestor 2005).
Only in DNMT3L crucial catalytic motifs in the CTD are lacking, providing an explanation for its enzymatic
inactivity (Hata et al. 2002). Except for DNMT2 that only comprises a CTD, all other DNMTs carry an
additional N-terminal domain (NTD). In the de novo methyltransferases, this region is composed of a
PWWP domain containing a highly conserved proline-tryptophan-tryptophan-proline motif. The PWWP
domain is required for methylation of PH and mediates the targeting of the enzymes to chromatin in
mitotic cells (Chen et al. 2004; Ge et al. 2004). Consistently, the PWWP domain of DNMT3A has been
shown to bind H3K36me3, a histone mark prevalent in heterochromatic regions correlating with DNA
methylation (Dhayalan et al. 2010). The plant homeodomain (PHD, also known as ATRX—=DNMT3-DNMT3L
(ADD) domain) in the NTD of DNMT3A and DNMT3L has been described as a reader module for

unmodified H3K4. However, the binding to H3 tails is blocked by H3K4me3, a known euchromatic mark
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(Ooi et al. 2007; Otani et al. 2009). The NTD of DNMT1 is composed of distinct domains important for

protein-protein interactions and regulation of enzymatic activity (see 1.2.2).

DNMT NTD CTD methylation

activity
DMAP1 PBD CXXC (KG)7 | IV VI VI IX X

oNMTL ([ =)t e e = ] 0 maintenance
DNMT2 D R R === {]E  tRNAASP

DNMT3A = PWWR =] PHD ] =] ) ] |

de novo
DNMT3B = PR =] PHD ] o] ] o e )
N ; cofactor for
ONMT3L SRS )
] PHD =] = H)) | s

Figure 1.3: Domain structure and function of mammalian DNA methyltransferases. All members of the DNA
methyltransferase (DNMT) family share a conserved C-terminal catalytic domain (CTD), whereas the N-terminal domain
(NTD) differs in length and domain composition. The NTD of the maintenance methyltransferase DNMT1 harbors a DNA
methyltransferase associated protein 1 (DMAP1) binding domain, a proliferating cell nuclear antigen (PCNA) binding domain
(PBD), a targeting sequence (TS) domain, a zinc finger (CXXC) domain and two bromo-adjacent homology (BAH1 and BAH2)
domains. The NTD of DNMT3A and DNMT3B comprises a proline-tryptophan-tryptophan-proline motif containing PWWP
domain and a plant homeodomain (PHD) that is also found in DNMT3L. Modified from (Rottach et al. 2009).

1.2.1 Establishment of DNA methylation

DNA methylation patterns are established de novo during the blastocyst state by DNMT3A and
DNMT3B (Okano et al. 1998a; Okano et al. 1999). As DNMT3B-deficient mice are embryonic lethal and
DNMT3A-deficient mice die four weeks after birth, a pivotal role in development is attributed to the
establishment of DNA methylation-mediated gene silencing (Okano et al., 1999; Li et al., 1992).

De novo DNA methylation might be the second step in the process of gene silencing. Retroviral
transcription in ESCs is repressed before de novo methylation occurs (Gautsch and Wilson 1983; Niwa et
al. 1983) arguing for a histone PTM-mediated gene silencing in this state. This idea is further supported by
the methylation free character of CpG islands regardless of the gene expression status. Even if the
corresponding gene of a CpG islands containing promoter is silent, for instance due to a tissue-restricted
expression pattern of the human a-globin, the CpG island can remain unmethylated (Bird et al. 1987).
Accordingly, short-term epigenetic memory is distinguishable from long-term memory depending on the
stability of the epigenetic status. Short term epigenetic repression is often achieved by repressive histone
PTMs like H3K27me3, which can be easily removed during subsequent cell generations (Wu and Zhang
2010). In contrast, the silent state of the inactive X chromosome in mammalian cells or of imprinted genes
has to be stably propagated to the progeny (Wu and Zhang 2010). This so called constitutive
heterochromatic state is further stabilized by DNA methylation in addition to repressive histone marks.
When compared to histone PTMs, DNA methylation might be more stable, but it is not static as active DNA

demethylation can reverse the repressive state (see 1.2.4).
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One potential trigger ensuring de novo methylation at specific regions are repetitive sequences (Yates
et al. 1999). In addition, in vitro studies showed that the PHD of DNMT3A recognizes unmodified H3K4 and
that the enzymatic activity is blocked by heterochromatin, indicating that the chromatin structure has to
be loosened up before the methylation reaction occurs (Hata et al. 2002; Takeshima et al. 2008; Otani et
al. 2009).

Stable oct4 promoter silencing

Stable silencing of promoters is controlled by coordinated establishment of repressive epigenetic
marks on histone tails and DNA (Tsumura et al. 2006; Smith and Meissner 2013). This process takes place
during differentiation, when pluripotency associated promoters, for instance promoters of octamer
binding transcription factor 4 (oct4), nanog and sox2 as well as of germline-specific genes need to be
stably silenced (Smith and Meissner 2013). OCT4 is an important regulator of stem cell renewal as well as
pluripotency. The inactivation mechanism of its promoter during differentiation has been intensely studied
(Figure 1.4). Initially, the repressor germ cell nuclear receptor (GCNF) binds to the RA receptor element
(RARE) on the oct4 promoter thereby transiently preventing transcription (Feldman et al. 2006). Next, the
HMT G9a binds to the promoter region and recruits HDACs that remove the acetylation from H3K9 and
K14 and pave the way for subsequent histone methylation (Hattori et al. 2004; Kimura et al. 2004,
Feldman et al. 2006). After H3K9me3 is established by G9a and other HMTs like SUV39H1/2, HP1 binds to
the histone tails and propagates the methylation to neighboring nucleosomes (Feldman et al. 2006).
Moreover, G9a, SUV39H1/2 and HP1 recruit DNMT3A and DNMT3B leading to stable and irreversible local
heterochromatinization by DNA methylation (Fuks et al. 2003). Notably, DNMT3A and DNMT3B have been
shown to interact directly with each other leading to a mutual catalytic stimulation (Li et al. 2007b). This
example clearly indicates that the interplay between the two major epigenetic modifications ensures

stable gene silencing.
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Figure 1.4: Stepwise silencing of the oct4 promoter. Upon initiation of differentiation, the octamer binding transcription
factor 4 (oct4) promoter is transiently silenced by binding of the repressor germ cell nuclear receptor (GCNF) to the RA
receptor element (RARE). Furthermore, G9a binds to the promoter and recruits histone deacetylases (HDACs) specific for
deacetylation of H3K9 and H3K14. Together with suppressor of variegation 3-9 homolog 1 and 2 (SUV39H1/2), G9a
methylates H3K9 that is subsequently bound by the heterochromatin binding protein (HP1). Stable and irreversible silencing
is achieved by DNA methylation in the oct4 promoter region mediated by the de novo methyltransferases 3A and B
(DNMT3A/B) that are recruited by G9a, SUV39H1/2 and HP1. Inspired by (Feldman et al. 2006).
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Further roles of DNMT3A and DNMT3B in DNA methylation-mediated gene silencing

In the postimplantation embryo, further epigenetic changes occur in primordial germ cells (PGCs).
After erasure of parental DNA methylation imprints by DNA demethylation (see 1.2.4) (Yamaguchi et al.
2013), individual imprinted patterns and methylation at retrotransposons are re-established during
gametogenesis by DNMT3A and DNMT3L (Bestor 2000; Hata et al. 2002; Bourc'his and Bestor 2004;
Kaneda et al. 2004). Imprinting guarantees the expression of genes from only one chromosome, the
maternal or the paternal, and is crucial for normal development and the prevention of parthenogenesis
and tumor formation (Reik and Walter 2001). Furthermore, DNMT3B is required for silencing regions of
the (peri)centromeric chromatin like minor satellite repeats and the inactive X chromosome (Miniou et al.
1994; Okano et al. 1999; Xu et al. 1999; Hansen et al. 2000; Kondo et al. 2000). Besides acting as de novo
methyltransferases, DNMT3A and DNMT3B contribute to the maintenance of the silent states of repetitive
elements like long interspersed nuclear elements (LINEs) and minor satellites in pluripotent stem cells
(Smith and Meissner 2013).

Additionally to direct blocking of transcription factor binding, DNA methylation-mediated
transcriptional repression mainly relies on specific recruitment of 5mC binding proteins (MBPs) to
methylated DNA. Three families of MBPs have been described: the methyl-CpG binding domain (MBD)
family, the SRA family (also known as UHRF family, see 1.2.3) and the Kaiso protein family (Rottach et al.
2009; Buck-Koehntop and Defossez 2013). MBD1, MBD2, MBD3, MBD4, MBD5 and MBD6 as well as
MeCP2 are members of the MBD family and except for MBD3, MBD5 and MBD6 have a preference for
binding 5mC (Klose and Bird 2006; Buck-Koehntop and Defossez 2013). Interestingly, Kaiso, a well studied
member of the Kaiso family, binds not only to two consecutive methylated CpG sites (Prokhorchuk et al.
2001; Prokhortchouk et al. 2001), but also to unmethylated DNA carrying TCCTGCNA as a recognition
motif (Daniel et al. 2002; Buck-Koehntop et al. 2012). In general, MBPs translate DNA methylation into
functional chromatin states by recruitment of HDACs, HMTs and histone remodeling complexes leading to

chromatin compaction and transcriptional inactivation (Clouaire and Stancheva 2008).

1.2.2 Maintenance of DNA methylation patterns by DNMT1

Once the cell type-specific methylation pattern is established during differentiation mediated by the
de novo methylatransferases DNMT3A and DNMT3B, it needs to be faithfully transmitted throughout all
cell divisions by the maintenance methyltransferase DNMT1. Consistent with its important role during
somatic DNA replication, DNMT1 is constitutively expressed in dividing cells with a peak in S phase of the
cell cycle (Kishikawa et al. 2003). The fundamental importance of maintenance DNA methylation is
underlined by the fact that disruption of the Dnmt1 gene leads to embryonic lethality. Mouse embryos
deficient for DNMT1 are characterized by severe developmental defects and pronounced cell death in
brain and heart tissues, resulting in mortality prior to embryonic day 11. Albeit DNMT1-deficient ESCs
show global DNA hypomethylation, cell morphology, viability and proliferation remain unaffected (Li et al.
1992).

11
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Mechanism of methyl group transfer by DNMT1

The multi-step mechanism of methyl group transfer has been intensely studied and was proposed to
be conserved from human to prokaryotic type Il DNA cytosine methyltransferases (M.Hhal) (Figure 1.5)
(Wu and Santi 1987; Bestor and Verdine 1994). In the first step, after binding and base flipping, DNMT1
forms a covalent complex with the C6 position of the target cytosine. In the second step, the methyl group
is transferred from S-Adenosyl-L-Methionine (SAM) to the C5 position of the cytosine. Finally, the enzyme
is released by B-elimination in the third step (Flynn et al. 1998; Pradhan et al. 1999).
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Figure 1.5: Mechanism of methyl group transfer by DNMT1. After the formation of a covalent complex of DNMT1 with the
C6 position of the target cytosine, the methyl group is transferred from the donor S-Adenosyl-L-Methionine (SAM) to the C5
position of the cytosine. In the last step, DNMT1 is released by B-elimination.

Structure and regulation of DNMT1

A prerequisite for understanding the functionality and complex regulation of DNMT1 is the knowledge
of its domains and its structure. Key features of different DNMT1 domains are summarized in Figure 1.6.
DNMT1 is comprised of a CTD and a large regulatory NTD. The CTD is responsible for substrate binding and
methyl group transfer, but it needs to be regulated by the NTD to allow for enzymatic activity of DNMT1
(Fatemi et al. 2001; Easwaran et al. 2004). The NTD of DNMT1 harbors distinct domains which mediate
different regulatory processes such as protein-protein interaction, substrate specificity and cell cycle-

dependent localization.
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Figure 1.6: Domain structure and key features of DNMT1. DNMT1 (amino acid 1-1620) contains a catalytically active C-
terminal domain (CTD) that is regulated by the large N-terminal domain (NTD) further subdivided into a DNA
methyltransferase associated protein 1 (DMAP1) binding domain, a PCNA (proliferating cell nuclear antigen) binding domain
(PBD), a targeting sequence (TS) domain, a zinc finger (CXXC) domain and two bromo-adjacent homology (BAH1 and BAH2)
domains. Key features of the different domains are summarized. HSAN-IE: hereditary sensory and autonomic neuropathy
with dementia and hearing loss; ADCA-DN: autosomal dominant cerebellar ataxia, deafness and narcolepsy.

The very N-terminal DNA methyltransferase associated protein 1 (DMAP1) domain mediates the
interaction of DNMT1 with the transcriptional repressor DMAP1 (Rountree et al. 2000). DNMT1 has
further been linked to the establishment of repressive histone marks. In late S phase, DNMT1 co-localizes
and interacts with HDAC1 and HDAC2 thereby coupling histone deacetylation activity to DNA methylation
at replicating heterochromatin (Fuks et al. 2000; Rountree et al. 2000).

The proliferating cell nuclear antigen (PCNA) binding domain (PBD) plays a fundamental role in cell
cycle-dependent localization of the methyltransferase especially in early and mid S phase (Schermelleh et
al. 2007; Schneider et al. 2013). By interaction with PCNA that forms a homotrimeric ring around the DNA
at replication forks (Maga and Hubscher 2003), DNMT1 is targeted to sites of active DNA synthesis
(Leonhardt et al. 1992; Chuang et al. 1997). Moreover, DNMT1 is also recruited to DNA damage sites
through its interaction with PCNA (Mortusewicz et al. 2005).

In late S phase, the association with densely methylated heterochromatin might be regulated by
combined action of the PBD and the large targeting sequence (TS) domain (Schneider et al. 2013).
Remarkably, in G2 phase when DNA synthesis is already completed, DNMT1 still associates with
chromocenters, which are intensely stained by DAPI and comprise chromatin of pericentromeric regions
(Figure 1.7). This prolonged binding of DNMT1 to chromatin independently of replication may ensure
complete methylation of remaining hemimethylated sites prior to M phase (Easwaran et al. 2004).
Interestingly, in a crystallographic study of a large fragment of mouse DNMT1 (amino acid 291-1620) in
complex with the cofactor SAM, but without DNA, the TS domain was found to be inserted into the DNA
binding pocket of the CTD (Takeshita et al. 2011). In addition, another study indicates that the TS domain
inhibits binding of DNMT1 to DNA in trans (Syeda et al. 2011). Consequently, the TS domain has an
autoinhibitory role in the regulation of DNMT1 enzymatic activity that presupposes the occurrence of

structural changes to allow for enzymatic activity. Besides its implication in mediating heterochromatin
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binding and DNMT1 autoinhibition, the TS domain was found to be mutated in patients suffering from
neurodegenerative diseases (see 1.4.1). Moreover, the TS domain has been described as a mediator of
potential DNMT1 dimerization that has been proposed to facilitate the recognition of target sites on DNA
(Fellinger et al. 2009). Importantly, the TS domain was found to be the interaction surface for ubiquitin-
like, containing PHD and RING finger domains 1 (UHRF1), a cofactor and binding partner of DNMT1 (see
1.2.3) (Bostick et al. 2007; Achour et al. 2008; Felle et al. 2011).

In addition, DNMT1 features a CXXC type zinc finger domain (CXXC), which binds to unmethylated DNA
(Frauer et al. 2011) and changes the structure of DNMT1 in a way that avoids de novo methylation activity
(Song et al. 2011b). In complex with unmodified DNA the linker between the CXXC domain and the bromo
adjacent homology domain 1 (BAH1) blocks the access of the catalytic center in the CTD to the target CpG
site (Song et al. 2011b). The BAH domains are involved in several DNMT1-protein interactions including
ubiquitin-specific processing protease 7 (USP7) that regulates DNMT1 stability (Du et al. 2010; Qin et al.
2011) and HP1B (Fuks et al. 2003) as a binding partner. The linker between the NTD and the CTD contains
seven lysine-glycine repeats ((KG),) thereby providing a flexible connection between the two domains of
DNMT1.

Subcellular distribution of DNMT1 during the cell cycle

In mammalian cells, distinct patterns illustrate DNMT1 spatial distribution in different stages of the cell
cycle (Figure 1.7) (Leonhardt et al. 2000).

In G1 phase, DNMT1 is distributed over the whole nucleus in a diffuse pattern similar to PCNA.
Monomethylation of H3K56 by G9a provides a docking site for PCNA in this stage and facilitates DNA
replication (Yu et al. 2012). When DNA synthesis is initiated in early S phase, PCNA serves as a stationary
loading platform at the replication fork (Sporbert et al. 2005). In this cell cycle phase, PCNA co-localizes
with DNMT1 at replication sites appearing as small spots correlated with gene dense active euchromatic
regions (Gilbert et al. 2004; Woodfine et al. 2004). In mid S phase, when facultative heterochromatin like
the inactive X chromosome in female cells and tissue-specific genes are replicated (Casas-Delucchi et al.
2011), PCNA and DNMT1 are found at replication sites in the periphery of the nucleus and nucleoli. In
early and mid S phase the interaction with PCNA predominates the localization of DNMT1 as a mutant
deficient in PCNA binding is diffusely distributed in the nucleus (Schermelleh et al. 2007). Upon replication
of constitutive (peri)centromeric heterochromatin in late S phase, PCNA and DNMT1 are enriched at DNA
replication sites clustering in typical horseshoe-like structures. These replication structures around
chromocenters are characteristic for mouse cells harboring clusters of acrocentric chromosomes
(Berezney et al. 2000; Leonhardt et al. 2000). The association of DNMT1 with these late S phase chromatin
structures is dependent on the TS domain (Easwaran et al. 2004; Schneider et al. 2013). Remarkably, in G2
phase, DNMT1 shows a prolonged TS domain-mediated association with chromocenters independent of

PCNA and replication (Easwaran et al. 2004).
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Figure 1.7: Spatial distribution of DNMT1 during the cell cycle. In mouse somatic cells (C2C12) GFP-DNMT1 co-localizes
with RFP-PCNA in G1 and S phase, whereas in G2 phase only GFP-DNMT1 shows a prolonged association with
heterochromatin. Scale bar 5 um. Enlargement display a three-times magnification of chromocenters intensely stained with
DAPI. Scale bar 1 um.

1.2.3 Cooperative readout of DNA and histone modifications by UHRF1 and UHRF2

In 2007, UHRF1, also known as inverted CCAAT binding protein of 90 kDa in humans (ICBPS0) or
nuclear protein of 95 kDa in mice (NP95), was identified as an important cofactor of DNMT1-mediated
maintenance DNA methylation. By recognition of hemimethylated DNA and by direct interaction with
DNMT1, UHRF1 is thought to target DNMT1 to its substrate (Bostick et al. 2007; Sharif et al. 2007; Achour
et al. 2008). Consistently, UHRF1-deficient ESCs have been shown to phenocopy the defects of DNMT1-
deficient ESCs displaying a pronounced decrease in DNA methylation levels. Knockout of Uhrf1 leads to
embryonic lethality at mid-gestation (Muto et al. 2002).

UHRF1 was found to co-localize with PCNA during S phase (Uemura et al. 2000) and to play a role in
cell cycle progression as well as DNA replication (Fujimori et al. 1998). In NIH3T3 cells, UHRF1 expression

was described to be essential for S phase entry (Bonapace et al. 2002) and UHRF1-deficient ESCs were
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found to be more sensitive towards treatment with the replication-inhibiting reagent hydroxyurea (Muto
et al. 2002). Moreover, UHRF1 is involved in DNA repair and contributes to genome stability (Muto et al.
2002). Besides recruiting DNMT1 to newly replicated DNA, UHRF1 may also target DNMT1 to repair sites
(Sharif et al. 2007; Achour et al. 2008; Hashimoto et al. 2009). UHRF1 has also been shown to interact with
the de novo methyltransferases DNMT3A and DNMT3B and with histone modifying enzymes like HDACI,
G9a and Tat interacting protein of 60 kDa (TIP60) (Unoki et al. 2004; Achour et al. 2008; Kim et al. 2009;
Meilinger et al. 2009). In agreement with its role in cell cycle progression, UHRF1 is prevalent in
proliferating tissues like fetal and adult thymus, fetal liver as well as bone marrow. Furthermore, elevated

expression of UHRF1 is found in primary tumors (Hopfner et al. 2000; Jenkins et al. 2005).
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Figure 1.8: Domain structure and key features of UHRF1. UHRF1 is a multi-domain protein comprised of a ubiquitin-like
(Ubl) domain followed by a tandem Tudor domain (TTD), a plant homeodomain (PHD), a SET and RING-associated (SRA)
domain and a really interesting new gene (RING) domain. Binding preferences and properties are indicated.

The UHRF1 domain structure with indication of key features is summarized in Figure 1.8. Several
studies illustrate the unique preference of the multi-domain protein UHRF1 for binding hemimethylated
CpG sites via its SET and RING-associated (SRA) domain (Bostick et al. 2007; Sharif et al. 2007; Arita et al.
2008; Avvakumov et al. 2008; Hashimoto et al. 2008; Qian et al. 2008; Rottach et al. 2010) and for histone
H3 tails, di- or trimethylated at K9, by the tandem Tudor domain (TTD) (Citterio et al. 2004; Karagianni et
al. 2008; Rottach et al. 2010; Cheng et al. 2013). In addition to these two domains, also the plant
homeodomain (PHD) contributes to the chromatin association of UHRF1 by binding to unmodified arginine
2 on histone H3 (Rajakumara et al. 2011; Wang et al. 2011) and acts together with the TTD for binding
H3K9me2/3 (Arita et al. 2008; Arita et al. 2012; Cheng et al. 2013). Furthermore, the PHD was implicated
in large-scale reorganization of PH (Papait et al. 2008). The really interesting new gene (RING) domain
functions as a E3 ubiquitin ligase on histone H3 in vitro (Citterio et al. 2004; Karagianni et al. 2008), but
also on non histone substrates like UHRF1 itself or DNMT1 (Jenkins et al. 2005; Du et al. 2010; Qin et al.
2011). In dependence on its E3 ubiquitin ligase activity, UHRF1 has been shown to increase the resistance
of human tumor cells towards cytotoxic as well as genotoxic agents and thus is important for the
regulation of human tumor cell proliferation (Jenkins et al. 2005). The function of the ubiquitin-like (Ubl)
domain of UHRF1 remains largely unknown.

Studies on the crystal structure of the SRA domain in complex with hemimethylated DNA provide an
explanation for the unique specificity of the domain for hemimethylated CpG sites. The methylated
cytosine is flipped out of the DNA double helix stabilized by Watson-Crick polar hydrogen bonds and van
der Waals interactions (Arita et al. 2008; Avvakumov et al. 2008; Hashimoto et al. 2008). By formation of a

crescent moon-like structure with two loops, the SRA domain faces the minor and opposed major groove
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of the DNA, the latter being positioned in close proximity to the backbone carbonyl oxygen of N494.
Therefore, the addition of a methyl group to the unmodified cytosine would result in a steric clash
(Hashimoto et al. 2008). Evidence for a coordinated readout of histone H3 tails carrying an unmodified R2
and a trimethylated K9 by UHRF1 is provided by the crystallographic study of the human TTD and PHD in
complex with an H3K9me3 peptide (amino acid 1-17) (Cheng et al. 2013). The N-terminal part of the
H3K9me3 peptide (amino acid 1-4) interacts with the PHD and the C-terminal part (amino acid 8-10) with
the TTD thereby building a connection between the two domains. The PHD recognizes the unmodified H3
peptide independently of the TTD and the H3K9 trimethylation by formation of contacts to A1, R2 and K4.
In contrast, binding of H3K9me3 by a hydrophobic pocket in the TTD and hydrogen bonds to R8 of the
histone peptide is enhanced by the PHD (Cheng et al. 2013). Thus, UHRF1 specifically recognizes the K9
methylated H3 tail by coordinated binding of two reader modules (Arita et al. 2012). In summary, UHRF1
connects two major epigenetic modifications by recognition of methylated histones and methylated DNA,
the latter being faithfully propagated after replication by recruitment of the maintenance DNA
methyltransferase DNMT1.

The second member of the UHRF family, UHRF2 (also known as Np95/ICBP90-like RING finger protein
(NIRF) or nuclear protein of 97 kDa (NP97)), harbors the same domains described for UHRF1 and shares a
high primary sequence similarity with UHRF1. UHRF2 has been linked to intranuclear degradation of
polyglutamine aggregates (lwata et al. 2009) and to the regulation of the cell cycle (Mori et al. 2002; Li et
al. 2004). It binds to the inactive cyclin-dependent kinase 2 (CDK2) and is also a phosphorylation target for
CDK2. Given that CDK2 needs to be activated to allow for S phase entry, UHRF2 might participate in
controlling G1/S phase transition (Li et al. 2004). Similar to UHRF1, UHRF2 has been shown to posses
autoubiquitination activity and to ubiquitinate a PEST-containing nuclear protein (PCNP) (Mori et al. 2004).
UHRF2 is also related to tumorigenesis. In colorectal cancer cell, UHRF2 is frequently upregulated and it
was proposed to be involved in the development of breast cancer cells as well as gliomas (Wang et al.
2012; Wu et al. 2012a; Wu et al. 2012b). Hence, UHRF2 as well as UHRF1 both act as oncogenes and are
promising targets for cancer therapy (Bronner et al. 2007). However, the detailed role and regulation of

UHRF2 function remains elusive.

1.2.4 Erasure of DNA methylation

Although DNA methylation is thought to be relatively stable in somatic cells, dynamic changes of this
important epigenetic mark can be observed during early development. A famous example for the erasure
of DNA methylation is the active DNA demethylation which occurs in the sperm-derived paternal
pronucleus four to eight hours after fertilization (Figure 1.9) (Mayer et al. 2000). Opposite to the maternal
genome that is protected from epigenetic changes in this state, the paternal genome is subjected to
genome-wide demethylation. Solely at specific sites including imprinting control regions like the H19
promoter (Olek and Walter 1997), IAP retrotransposons (Lane et al. 2003) and centomeric as well as
pericentromeric regions (Rougier et al. 1998), active DNA demethylation is absent. During the following
first cell divisions, the maternal genome starts to undergo passive demethylation. In this process, the 5mC
mark is not propagated to the daughter strand after replication leading to progressive loss of DNA

methylation (passive dilution). However, imprinted genes are excluded from passive dilution and are only
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demethylated in primordial germ cells (Monk et al. 1987; Howlett and Reik 1991). Consistent with the
absence of maintenance DNA methylation, the oocyte-specific isoform of DNMT1 (DNMT10) is localized in
the cytoplasm thereby retracting the enzyme from its substrate in the nucleus (Carlson et al. 1992;
Cardoso and Leonhardt 1999).
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Figure 1.9: Dynamics of paternal and maternal DNA methylation in mouse pre- and postimplantation embryos. Shortly
after fertilization, the paternal genome undergoes rapid genome-wide active demethylation, whereas the maternal genome
stays at its methylated state. During the following first cell divisions, DNA methylation in the maternal genome is erased by
passive demethylation in the absence of DNMT1 (passive dilution). Modified from (Wu and Zhang 2014).

Although active DNA demethylation was described for the first time in 1982 (Gjerset and Martin 1982),
the underlying mechanism and the contributing proteins have not been identified until 2009 (Tahiliani et
al. 2009). DNA demethylation is carried out by the family of TET proteins consisting of TET1, TET2 and TET3
that convert 5mC to 5hmC, 5fC and 5caC (see Figure 1.2) (Kriaucionis and Heintz 2009; Tahiliani et al.
2009). Expression levels of TET proteins differ among developmental stages and cell types pointing
towards distinct functions of the different members (Szwagierczak et al. 2010; Wu and Zhang 2014).

The discovery of TET proteins and oxidized 5mC forms opens the possibility of a passive demethylation
mechanism in the presence of an active maintenance methylation machinery that is distinct from the
passive dilution. Interestingly, it has been shown that binding of MeCP2 and DNMT1 to chromatin is
sensitive towards 5-hydroxymethylation and that the methylation efficiency of the latter on
hemihydroxymethylated CpG sites is decreased in vitro by approximately 10-60 fold (Valinluck et al. 2004;
Hashimoto et al. 2012). Moreover, it is known that other 5mC binding proteins like MBD1, MBD2 and
MBD4 do not bind to 5hmC (Valinluck et al. 2004; Jin et al. 2010). Thus the 5hmC mark could represent an
activating signal leading to passive demethylation by ineffective or missing propagation of DNA
methylation. Indeed, this process was found to take place in erythropoiesis in vivo in dependence on rapid
DNA replication (Shearstone et al. 2011). Given that DNMT1 is ineffective in methylating DNA in a
hemihydroxymethylated context, the methylation pattern in tissues with high 5hmC levels might be
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maintained by the action of DNMT3A and DNMT3B, which have a higher catalytic activity on the oxidized
cytosine form (Hashimoto et al. 2012; Otani et al. 2013). The 5hmC-mediated passive demethylation
process provides features for a higher flexibility enabling a dynamic cellular plasticity in dependence on
external signals.

Apart from passive demethylation, TET proteins are mainly involved in the process of active
demethylation, which occurs independently of replication. After the initial conversion of 5mC, several
possible pathways can lead to demethylation of the 5hmC site. 5hmC might be directly removed by DNMT-
dependent dehydroxymethylation (Liutkeviciute et al. 2009; Chen et al. 2012) or by decarboxylation of
5caC (Wu and Zhang 2010; Schiesser et al. 2012). Another possibility for active restoration of the
unmodified C base is the excision of oxidized cytosine analogs by glycosylases leading to abasic sites that
are recognized by the base excision repair (BER) machinery (Guo et al. 2011; He et al. 2011; Maiti and
Drohat 2011). An emerging role in this pathway is assigned to the thymine DNA glycosylase (TDG), which
has a preference for the excision of 5fC and 5caC in double stranded DNA (He et al. 2011; Kohli and Zhang
2013; Muller et al. 2014).

Active demethylation in the paternal pronucleus has been correlated with high TET3 expression levels
and an increase in DNA hydroxymethylation (Inoue and Zhang 2011; Igbal et al. 2011; Wossidlo et al.
2011), formylation as well as carboxylation (Inoue et al. 2011). Consistently, TET3 knockdown disturbs the
decrease in 5mC and the simultaneous increase in 5hmC levels (Gu et al. 2011; Wossidlo et al. 2011). In
line with the important role of TET3 in early embryonic development, TET3 knockout mice die perinatally
(Gu et al. 2011). In addition to TET proteins, a protein of the elongator complex, ELP3 has been described
as an indispensable factor in active DNA demethylation of the paternal pronucleus (Okada et al. 2010).
Similar to the decrease of 5mC in the maternal genome, the oxidized cytosines in the paternal pronucleus
are erased by replication-dependent passive dilution after fusion with the maternal pronucleus (Inoue et
al. 2011; Inoue and Zhang 2011). Furthermore, active restoration of unmodified C from a small proportion
of 5fC and 5caC is achieved by TDG and the BER pathway (Hajkova et al. 2010; Inoue and Zhang 2011;
Mduller et al. 2014).

Another wave of global DNA demethylation takes place during the migration and specification of PGCs.
Initially, DNA methylation is erased by a replication-dependent passive dilution of 5mC in absence of de
novo and maintenance DNA methylation (Kagiwada et al. 2013; Seisenberger et al. 2013). Upon settling in
the gonad, PGCs undergo a second complete demethylation process that is thought to be induced by TET-
mediated oxidation of 5mC (Yamaguchi et al. 2012; Hackett et al. 2013). In the late stage of PGC
reprogramming, erasure of paternal imprints in the female germline has been shown to rely on TET1
(Yamaguchi et al. 2013). In this second active demethylation step, promoters of germline-specific genes
are transcriptionally activated in developing female PGCs (Yamaguchi et al. 2012). Therefore, TET proteins
seem to be necessary for demethylation of imprinting control regions in late PGCs (Hackett et al. 2013).

In contrast to TET2 and TET3, knockdown of TET1 leads to defects in ESC self renewal, maintenance
and inner cell mass specification prominently in the trophoectoderm (Ito et al. 2010) and Tet1 knockout
may result in embryonic lethality (Yamaguchi et al. 2013). TET1 is an important regulator of the
pluripotency factor nanog by directly binding to its promoter and thereby protecting it from DNA
methylation and silencing (lto et al. 2010). Knockdown of TET2 has no obvious effect on early

development, but a multitude of mutations in TET2 were characterized in several human myeloid
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malignancies including myelodysplastic syndromes (MDSs), myeloproliferative disorders (MPDs) and acute
myeloid leukemias (AML) (Abdel-Wahab et al. 2009; Delhommeau et al. 2009; Jankowska et al. 2009;
Kosmider et al. 2009; Langemeijer et al. 2009; Mohamedali et al. 2009; Saint-Martin et al. 2009; Tefferi et
al. 2009; Konstandin et al. 2011). In MDS patients, methylation levels were found to be changed probably
due to dysfunctions of the mutated protein in active DNA demethylation (Nolte and Hofmann 2008).

Unlike TET2 and TET3, which are expressed in several mouse adult tissues like kidney, liver and brain
(Szwagierczak et al. 2010), TET1 is most abundant in the inner cell mass of blastocysts and in PGCs (Ito et
al. 2010; Yamaguchi et al. 2012). Given that TET enzymes are expressed in somatic cells like brain tissues,
DNA methylation might not be as stable as previously thought (Wu and Zhang 2014). Remarkably, 5hmC is
not only an intermediate in the process of active demethylation, but there is also growing evidence for its
function as an independent epigenetic mark. Interestingly, some 5hmC selective readers are expressed in
specific cell types that might therefore initiate distinct regulatory processes (Spruijt et al. 2013).
Furthermore, demethylation mediated by TET proteins might also be important to keep CpG islands in
their unmethylated state permissive to transcriptional activation. In line with this, TET1 was found to be
preferentially bound to CpG islands and abnormal CpG methylation occurred as a consequence of TET1
depletion (Ficz et al. 2011; Wu et al. 2011a; Wu et al. 2011b).
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1.3 Role of DNA modifications in neurogenesis and neurodegenerative diseases

1.3.1 DNA methylation in the developing and adult nervous system

During neurogenesis, which starts at embryonic day 8 in mice and is most prominent at day 14,
neuronal stem cells (NSCs) and progenitor cells (NPCs) give rise to functional neurons (Figure 1.10).
Initially, neuroepithelial cells located in the ventricular and subventricular zone (VZ and SVZ) are
transformed into radial glial cells (RGCs). RGCs directly generate nascent neurons or indirectly give rise to
neurons via the stage of neuronal intermediate progenitor cells (nIPCs) and their symmetric division.
Asymmetric division helps to retain the self renewing characteristics of RGCs and also creates
oligodendrocyte and astrocyte intermediate progenitor cells (olPCs and alPCs). By migration of newborn
neurons and RGCs, the neocortex is thickened and an interneuron network is formed. Finally, most RGCs
detach from the VZ and migrate towards the cortical plate, where they are transformed to astrocytes. A
few RGCs, also known as B cells, remain quiescent in the SVZ and serve as origin for adult neurogenesis
(Yao and Jin 2014).

A characteristic of the mammalian brain is the generation of new neurons also in adulthood. Adult
neurogenesis takes place in special zones of the mammalian brain, the SVZ and the subgranular zone (SGZ)
of the hippocampal dentate gyrus (DG) and is important for certain forms of learning and memory (Braun
and Jessberger 2014). In adulthood, quiescent B cells in the SVZ first generate transiently amplifying C
cells. These nIPCs further differentiate into neuroblasts (also known as A cells) that migrate to the
olfactory bulb and differentiate into various subtypes of local interneurons. In the DG, radial astrocytes
generate B cells serving as nIPCs. After differentiation to neuroblasts in the inner granule cell layer,
immature neurons arise and are further integrated into the existing circuitry (Yao and Jin 2014). As adult
neurogenesis is restricted to two neurogenic niches, experience-driven regulation by proneurogenic
signals and factors selectively guides neural differentiation and subsequent integration of functional
neurons in the preexisting circuitry (Marr et al. 2010)

Thus integration of new experiences is not only based on the modulation of preexisting neuronal
structures, but also on the generation and incorporation of new neurons in the network as a life-long
phenomenon. Misregulation of adult neurogenesis was found to be involved in neurodegenerative
disorders such as Alzheimer’s disease and epilepsy as well as psychiatric disease like major depression
(Braun and Jessberger 2014). As adult neurogenesis represents an endogenous regenerative system, it is a

promising therapeutic target for neurodegenerative diseases (Marr et al. 2010).
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Figure 1.10: Embryonic and adult neurogenesis. Embryonic neurogenesis establishes cortical layers by generation and
differentiation of neurons starting from radial glial cells (RGCs) and neuronal intermediate progenitor cells (nIPCs).
Astrocytes and oligodendrocytes also arise from RGCs. Astrocytes have important functions in the CNS like supporting the
blood-brain barrier, providing nutrients and maintaining the extracellular ion balance. Oligodentrocytes provide insulation of
axons by creating a myelin sheath. Adult neurogenesis is restricted to two neurogenic niches in the mature brain, the
subventricular zone (SVZ, exemplified in the right scheme) and the subgranular zone (SGZ) of the dentate gyrus (DG), both
harboring quiescent NPCs that can give rise to functional neurons in an experience-driven process during adulthood. After
the initial activating signal newborn neurons pass through three different stages: migration, maturation and integration into
the preexisting network. Expression levels of DNMTs, TETs and epigenetic modifications during embryonic and adult
neurogenesis are indicated below. Inspired by (Abcam 2014; Yao and Jin 2014).

In general, neurogenesis gives rise to various cell types all sharing the same primary genetic

information, but performing different tasks, indicating a key role of epigenetic mechanisms in the

22



Introduction

regulation of neural differentiation. The regulation of the CNS is fairly complex with a multitude of gene
products interplaying in a spatially and temporally defined manner. In the nervous system more genes are
expressed compared to any other tissue making its sensitivity towards minor alterations understandable
(Mattson 2003; Santos-Reboucas and Pimentel 2007).

Surprisingly, in mammals, DNMT1 expression levels are high in the embryonic and adult brain
especially in postmitotic neurons, but not in mitotic oligodendrocytes and astrocytes (Goto et al. 1994;
Brooks et al. 1996; Trasler et al. 1996; Inano et al. 2000; Veldic et al. 2004). In contrast to nuclear
localization in other cell types, DNMT1 is also located in the cytoplasm of neurons (Inano et al. 2000)
opening the possibility that the protein might have functions other than DNA methylation in this cellular
compartment. Consistent with its high expression level in the brain, DNA methylation by DNMT1 is
essential for brain development and neuronal maturation (Fan et al. 2001). When compared to other
tissues, like heart, liver and lung, brain tissue has a higher level of DNA methylation (Ehrlich et al. 1982).
Treatment of undifferentiated NPCs with demethylating agents like 5-aza-dC leads to inductions of
cholinergic, dopaminergic and noradrenergic neuronal differentiation characteristics (Okuse et al. 1993).
Although replication-coupled maintenance DNA methylation is not required in postmitotic neurons,
DNMT1 might restore DNA methylation patterns after base-excision repair of the G:T mismatches resulting
from deamination of 5mC (Brooks et al. 1996).

DNMT3A expression levels are highest in the early postnatal period and decline with the progression
to adulthood. DNMT3B is most abundant during early embryogenesis in NPCs (Feng et al. 2005; Watanabe
et al. 2006). Thus, the de novo methyltransferases show a sequential expression profile with a transition
from DNMT3B to DNMT3A expression during neuronal development. Whereas DNMT3B is thought to
regulate early NPC differentiation and gene expression, DNMT3A might establish tissue-specific
methylation patterns in postmitotic young neurons (Watanabe et al. 2002; Watanabe et al. 2004,
Watanabe et al. 2006).

Conditional knockout of Dnmt3a in the nervous system leads to failures in motor coordination and
premature death of mutant mice indicating an important role of DNMT3A in adult neuromuscular
regulation (Nguyen et al. 2007). Furthermore, in vitro differentiation of Dnmt3a”" ESCs revealed a
precipitate differentiation into the astrocyte and oligodentrocyte lineage accompanied by enhanced
proliferation rate and mild global DNA hypomethylation. Thus, DNMT3A is involved in the timely and
guantitatively regulation of embryonic NSC differentiation (Wu et al. 2012c). DNMT3A-dependent
methylation of intergenic regions and gene bodies was found to promote adult neurogenesis by activating
gene expression and concomitantly counteracting Polycomb-mediated repression of neurogenic regulators
such as Distal-less homeobox 2 (DIx2). In conclusion, DNMT3A plays an important role in neurogenesis by
limiting astroglial and oligodendroglial differentiation and enhancing neurogenic gene transcription (Wu et
al. 2010). RNAi knockdown of DNMT3B in human ESCs resulted in accelerated maturation and expression
of mature neural markers and neural crest specifiers suggesting a role of the de novo methyltransferase in
regulating the timing of embryonic neural differentiation and maturation (Martins-Taylor et al. 2012).
Induction of neuronal differentiation in pluripotent P19 stem cells caused upregulation of DNMT3B, but
not DNMT3A or DNMTL1. Likewise, neural differentiation was inhibited by knockdown of DNMT3B (Sheikh
et al. 2013).
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Already in 1969, the DNA modification hypothesis raised by Griffith and Mahler suggested that DNA
modifications are stable enough to guarantee the persistence of memory (Griffith and Mahler 1969). In
1999, Francis Crick claimed that mechanisms of memory storage are regulated by gene loci-specific DNA
methylation states (Crick 1984). Even though cell division is absent in terminally differentiated neurons,
DNA methyltransferases have been found to be enzymatically active in these cells (Brooks et al. 1996). This
finding has been linked to dynamic changes in CpG methylation patterns taking place after neuronal
activity and behavioral changes due to external signals (Martinowich et al. 2003; Weaver 2007; Lubin et al.
2008; Nelson et al. 2008). Feelings of fear, for instance, are known to be shaped by early life experience in
rodents. Behavioral differences were found to be based on DNA methylation changes of defined gene loci
(Weaver et al. 2004; Miller and Sweatt 2007). Another study demonstrated that DNA methylation is an
important regulator of memory formation and maintenance (Miller et al. 2010). Application of the DNA
demethylating drug 5-aza-dC impaired contextual fear memory in rats proposing that DNA methylation
contributes to memory maintenance. An influence of external conditions on neural plasticity related gene
expression have been shown for the brain derived neurotrophic factor (BDNF), reelin, PP1 and calcineurin
(Yu et al. 2011). These examples illustrate fundamental roles of the DNA methyltransferases in learning
and memory formation that are different from de novo and maintenance functions during development
and differentiation.

Synaptic plasticity is an important prerequisite for memory formation and learning. It refers to changes
in the strength of a synapse caused by its own activity or other pathways. Synaptic plasticity has been
found to rely on the enzymatic activity of DNA methyltransferases indicating that neuronal activity might
induce DNA methylation-mediated changes in gene expression (Levenson et al. 2006; Miller and Sweatt
2007). As a neuron carryies many synapses but only one nucleus, it is thought to be embedded in a
complex network of numerous memories. Thus, the neuron-specific DNA methylation patterns might not
simply influence the formation of individual memories, but they might rather integrate and maintain the
entity of synaptic properties of the neuron (Yu et al. 2011).

In summary, DNA methylation patterns in the brain are not unchangable during livetime, but they can
be modulated by external stimuli thereby allowing for behavioral plasticity, memory formation and

maintenance (Yu et al. 2011).

1.3.2 DNA demethylation in the developing and adult nervous system

Reversion of DNA methylation has also been implicated in neurogenesis. The expression of growth
arrest and DNA damage-inducible protein 45B (GADD45B), which is induced by neural activity, was
reported to be required for adult neurogenesis. GADD45B is involved in demethylation of specific gene
promoters in the DG leading to the expression of neurogenic factors like BDNF. Gadd45b” mice exhibit
not only deficits in activity-induced proliferation of adult neural progenitors in the DG, but also in the
dendritic growth of newborn neurons in the adult brain (Ma et al. 2009).

Beside DNA methyltransferases, also TET enzymes are important for brain development. The content
of the TET catalyzed product (5hmC) in ESCs and in the adult brain ranging from 0.3% to 0.7% (Kriaucionis
and Heintz 2009; Yao and Jin 2014). Quantitative analyses in several regions of the mouse brain including

the olfactory bulb, the cerebral cortex, the retina, the hippocampus, the cerebellum and the brainstem
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revealed that the hypothalamus contains the highest 5hmC and the lowest 5mC levels (Munzel et al.
2010). In Purkinje neurons, 5hmC levels as high as 40% of the 5mC levels are reached (Kriaucionis and
Heintz 2009). In general, 5hmC levels increase with the neuronal maturation providing an explanation for
the rapid increase of 5hmC levels after birth (Figure 1.10) (Song et al. 2011a; Szulwach et al. 2011). Studies
on the local distribution of 5hmC in the adult hippocampus and cerebellum of mice in three different
stages of life revealed both an age-dependent dynamic regulation and a stable presence of 5hmC during
neurodevelopment. On the one hand, dynamic acquisition of the 5hmC mark during neurodevelopment
was observed at repetitive elements such as short interspersed nuclear elements (SINEs) and long terminal
repeats (LTRs). In addition, 5hmC was enriched at gene bodies of developmentally activated genes with a
concomitant loss of 5mC. On the other hand, 5hmC profiles of many tissue-specific differentially
hydroxymethylated regions were stable in mice from six weeks after birth until one year of age
emphasizing that 5hmC also serves as a stable and functional mark rather than only an intermediate
product of demethylation in the brain. Surprisingly, 5hmC was depleted on female and male X
chromosomes. Comparison of mouse 5hmC profiles with those of the human cerebellum, proposes
conserved characteristics of 5hmC distribution in mammals (Szulwach et al. 2011). The important role of
5hmC in regulating cell type-specific gene expression in the brain was also underlined by a study showing
that actively transcribed genes in the cerebellum harbor 5hmC-rich and 5mC-depleted gene bodies
(Mellen et al. 2012).

All three members of the TET enzyme family are expressed in the brain with TET2 and TET3 showing
the highest levels (Ito et al. 2010; Szwagierczak et al. 2010; Wen et al. 2014). TET1-mediated hydroxylation
of 5mC and subsequent deamination by activation-induced deaminase (AID)/ apolipoprotein B mRNA-
editing enzyme complex (APOBEC) is required for active demethylation in the DG. This base excision
repair-mediated and replication-independent pathway promotes neural activity induced gene expression.
Overexpression of both, TET1 or AID in the DG resulted in region-specific DNA demethylation at the Bdnf
and brain-specific fibroblast growth factor 1 (Fgf1B) promoter accompanied by elevated expression levels
of these two genes known to be induced by neural activity. However, increased DNA demethylation was
not observed at the non-neuronal Fgf1G promoter under the same experimental conditions. Therefore,
dynamic changes of C modifications are thought to play an important role in differential gene expression
during neurogenesis (Guo et al. 2011).

A recent study emphasizes the interdependence of DNA and histone modifications in regulating
embryonic neurogenesis. Overexpression of TET2 and TET3 promoted neural differentiation, whereas
overexpression of EZH2, a prominent writer of the repressive histone mark H3K27me3, prevented
differentiation. Interestingly, increasing levels of 5hmC at gene bodies of neuronal function related genes
were not concomitant with decreasing 5mC levels supporting the idea that 5hmC is a stable and
independent DNA modification in the brain (Hahn et al. 2013).

Even though Tetl knockout mice are viable, they show deficits in spatial learning and memory. NSC in
the SGZ of Tetl1 knockout mice are decreased by 45% when compared to the wildtype controls and many
genes of NSCs isolated from the DG are hypermethylated and thus downregulated. Consequently, TET1 is
an important regulator of NPC proliferation involved in adult neurogenesis (Zhang et al. 2013). Likewise,
TET3 has been implicated in fear extinction learning as it triggers an increase in 5hmC levels required for

rapid behavioral adaptation (Li et al. 2014).

25



Introduction

In conclusion, embryonic and adult neurogenesis is tightly controlled by a variety of factors including
epigenetic modifications on DNA and histones to guarantee the plasticity of the nervous system

responding to external stimuli and signals.

1.3.3 DNA methylation and neurodegenerative disease

In the past decades, a great number of human diseases including cancer, syndromes associated with
chromosomal instability, imprinting, arteriosclerosis and neurodegenerative disorders as well as mental
retardation have been linked to alterations in epigenetic mechanisms. The reversibility of epigenetic marks
in contrast to the primary genetic information makes them an attractive target for disease treatment
(Santos-Reboucas and Pimentel 2007; Pogribny and Beland 2009).

Links between DNA methylation and neurodegeneration have been made in several studies. In
general, alterations in DNA methylation have been reported in different neurological and
neurodegenerative diseases.

Promoter hypermethylation has been implicated in Fragile X syndrome inherited in a X-linked
dominant manner, Friedreich’s ataxia and in spinal muscular atrophy (Urdinguio et al. 2009). Expanded
CGG repeats in the fragile X mental retardation-1 (FMR1) promoter lead to a increased susceptibility for
DNA methylation and subsequent gene silencing (Robertson and Wolffe 2000). The fact that treatment of
Fragile X cells with 5-aza-dC could induce re-expression of the FMR1 gene, whereas the HDAC inhibitor
Trichostatin A (TSA) failed to do so, supports the idea that DNA methylation is the dominant gene silencing
mechanism in neuronal cells compared to histone modifications (Coffee et al. 1999). In autosomal
recessive Friedreich’s ataxia, frataxin (FXN) gene transcription is impeded by DNA hypermethylation of
specific CpG sites upstream of GAA repeat expansions in brain, cerebellum and heart tissues (Al-Mahdawi
et al. 2008). In the autosomal recessively inherited spinal muscular atrophy disease, mutations in the
survival of motor neuron 1 (SMN1) gene lead to decreased protein expression (Lunn and Wang 2008).
Severity of this disease was found to depend on the degree of SMN2 promoter methylation with gene
silencing having a deteriorating effect (Hauke et al. 2009).

On the contrary, promoter hypomethylation has been found for instance at the PADI2 gene in multiple
sclerosis patients and at the tumor necrosis factor alpha (TNFa) gene leading to apoptosis of neuronal cells
in the substantia nigra of Parkinson’s disease patients (Pieper et al. 2008; Urdinguio et al. 2009). In
Alzheimer’s disease, amyloid precursor protein (App) and presenilin 1 (Psl) gene promoter
hypomethylation results in elevated levels of these proteins in the brain which contribute to the formation
of amyloid plaques with intracellular tangles (Pogribny and Beland 2009).

Moreover, alterations in DNA methylation play a crucial role in X-linked dominant Rett syndrome
caused by mutations in MeCP2 and in autosomal recessive Immunodeficiency, Centromeric region
instability, Facial anomalies (ICF) syndrome caused by mutations in DNMT3B (Robertson and Wolffe 2000).
Like DNMT1, MeCP2 is most abundant in the brain when compared to any other tissue where it
contributes to postnatal neuronal morphogenesis and function (Nan et al. 1997; Bienvenu and Chelly
2006). Rett mutations impair MeCP2 function as a transcriptional regulator (Bienvenu and Chelly 2006).
Given the neuron restricted disease characteristics of Rett patients, the role of MeCP2 in reducing

“transcriptional noise’ (Bird and Tweedie 1995) and controlling gene silencing by binding to promoter
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regions might be especially important in brain cells (Robertson and Wolffe 2000). DNMT3B mutations
identified in ICF patients are to a great extent located in the catalytic CTD. They lead to elongation of
centromeric and  juxtacentromeric  heterochromatin and chromosomal abnormalities in
phytohaemagglutinine stimulated lymphocytes (Franceschini et al. 1995). Affected chromosome regions
contain satellite long-tandem-repeat arrays which are heavily methylated in healthy cells. In ICF patients,
however, these regions become hypomethylated leading to chromosomal instability (Jeanpierre et al.
1993; Tagarro et al. 1994). Commonly, all disease phenotypes are characterized by a varying degree of
mental impairment suggesting that DNA methylation makes an important contribution to shaping the
epigenetic landscape during brain development (Robertson and Wolffe 2000).

Interestingly, DNMT3A has been described as an important regulator for motor neuron cell death. By
overexpression of DNMT3A, but not DNMT1, spinal cord neurons enter the apoptotic pathway (Chestnut
et al. 2011). The pro-apoptotic function of DNMT3A in motor neurons was dependent on its catalytic
activity. Furthermore, DNMT3A and 5mC levels were found to be upregulated in human amyotrophic
lateral sclerosis suggesting that DNA methylation plays a major role in the pathobiology. In contrast to
that, reduced DNMT3A levels and genome hypomethylation in the whole spinal cord have been reported
to accompany axonal degeneration (Iskandar et al. 2010).

In summary, besides its important role in cell differentiation and genomic stability, DNA methylation is
also involved in neurogenesis, learning and memory formation. Neurodegenerative disorders have been
associated with important epigenetic factors like MeCP2 and DNMT3B. The recent identification of several
mutations in DNMT1 suggests a previously underestimated importance of DNA methylation for the

functionality and integrity of the nervous system.
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1.4 Hereditary sensory and autonomic neuropathies (HSANs)

Among thirteen proteins affected in different forms of hereditary sensory and autonomic
neuropathies (HSANs), DNMT1 was found to be mutated in hereditary sensory and autonomic neuropathy
with dementia and hearing loss (HSAN-IE) and autosomal dominant cerebellar ataxia, deafness and

narcolepsy (ADCA-DN) patients.

1.4.1 HSAN-IE and ADCA-DN caused by mutations in DNMT1

HSAN-IE and ADCA-DN are classified as subtypes of autosomal dominant HSANs. To date, 14 different
missense mutations and one deletion mutation in DNMT1 have been associated with HSAN-IE or ADCA-DN
(Table 1.1). Notably, all reported mutations are located within the TS domain in the NTD of DNMT1 (see
3.3.1).
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Table 1.1: Disease associated mutations in DNMT1 with different phenotypes. 14 different point mutations and one
deletion mutation found in the DNMT1 TS domain of HSAN-IE and ADCA-DN patients with the corresponding phenotypes
and clinical features are summarized. REM: rapid eye movement; CF: cerebrospinal fluid; HLA-DQB1*06:02: major
histocompatibility complex, class Il, DQ beta 1 version with increased risk for developing narcolepsy; SOREMP: sleep-onset
REM sleep periods; RSWA: REM sleep without atonia; MSLT: multiple sleep latency test.

HSAN
tipe Mutation | Locus Phenotype Clinical features Case studies Molecular studies Reference
Misfolding; t
Sensory neuropathy; 1o mg, premature
. ) degradation; reduced
sensorineural Global atrophy in the
D490E . ) methyltransferase ac-
deafness; dementia; brain; cerebellar o ) )
+ P491Y . . 4 unrelated | tivity; impaired hetero- (Klein et al.
Exon loss of sweating; gait atrophy; length- " o A
v495¢C 20 unsteadinese: dependent families chromatin binding 2011; Klein
- - pe (USA, Japan) during G2; global et al. 2013)
mutilating ulcer with progressive sensory - .
Y495H ) A hypomethylation; site-
amputations of distal axonal loss specific
extremities hypermethylation
Loss of pain and Absence of sensory
vibration sense; nerve action
Exon chronic potential; normal 1 oroband (Gosal 2013;
H569R 21 osteomyelitis, motor nerve (FJ)a an) Not available Yuan et al.
autonomic system conduction; mild P 2013)
dysfunctions; hearing diffuse cerebral and
loss, mild dementia cerebellar atrophy
Bilateral
L sensorineural
= deafness; severe REM sleep behaviour 3 probands
%) . ; i
z PSO7N Exon axonal sensory poly disorder; mild from 2 , (Moghadam
20 neuropathy; severe cerebellar and unrelated Not available et al. 2014a)
k5214 somatic and cortical atrophy; HLA- families ’
autonomic small DQB1*06:02 negative (Italy)
fibres and optic
neuropathy
Global, frontal or
cerebellar atrophy,
T481P Hearing and sensory hypersomnia, 45 Translocation of
P491L loss, behavior SOREMP, narcolepsy, robands mutant protein to the
change, gait restless legs P (USA cytoplasm, aggresome
¥524D Exon instability, cognitive syndrome, REM- Y formation and
. h ) Belgium, (Baets et al.
I531N 20, decline, trophic ulcer, sleep behavior autophagy, loss of
- ! ) ) England, ) 2015)
C353F 21 impaired balance, disorder, obstructive New heterochromatin
foot arthropathy, sleep apnoea binding ability during
Y495C L Zealand, ]
neuropathy, syndrome, periodic G2 phase, imbalanced
L . . Germany) ) )
Y495H dementia, infections limb movement protein homeostasis,
disorder, RSWA,
MSLT
Late onset cerebellar 10 pro-
ataxia; sensorineural ) ) bands from
Excessive daytime
deafness; ) 5 unrelated
sleepiness; REM "
narcolepsy— ) families,
cataplexy; dementia; sleep behavior one spo- (Winkelmann
AoTOV Exon Igte g/écurrin , disorder; psychosis; radic cr;se Mutations predicted etal. 2012;
G605A , & HLA-DQB1*06:02 ; (PolyPhen2, SIFT) to be - 014
21 hereditary sensory negative: low CSF with de damagin Moghadam
V606F loss; moderate gatve; novo mu- &ing et al. 2014a)
= hypocretin-1 level; .
[a axonal sensory poly- tation
< ; global cerebral )
) neuropathy; optic cortical atrooh (Italian,
<D( neuropathy; lower phy USA, UK,
limbs oedema Swedish)
et
psY; HLA-DQB1*06:02 with de
Exon cerebellar ataxia; . . . ) (Pedroso et
C596R . positive; mild brain novo Not available
21 deafness; gait ) al. 2013)
. " atrophy mutation
instability; low CSF .
(Brazil)

hypocretin-1 level
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Disease characteristics and management

HSAN-IE is a late onset neurodegenerative disorder affecting the central nervous system (CNS) and
peripheral nervous system (PNS). It is characterized by progressive loss of peripheral sensation and hearing
as well as cognitive decline and dementia (Klein et al. 2011; Baets et al. 2015). ADCA-DN patients present
with cerebellar ataxia, deafness and late onset dementia as well as narcolepsy (Winkelmann et al. 2012).
These two subtypes of HSAN-I disease associated with mutations in DNMT1 were previously thought to
represent two distinct clinical entities. However, a recent study characterizing the phenotype of both,
HSAN-IE and ADAC-DN patients, using the same set of neurophysiological and ophthalmological tests
indicates the presence of some common features. Narcolepsy, absence of HLA-DQB1*06:02, deafness,
optic neuropathy, small fibres polyneuropathy and lower limbs edema are clinical features of both
subtypes (Moghadam et al. 2014a). Another recent study claims that mutations associated with HSAN-IE
cluster within the N-terminal or central part of the DNMT1 TS domain, whereas ADCA-DN associated
mutations are found in the C-terminal part of the domain (Baets et al. 2015). These differences in the
location of causative mutations might explain phenotypic variations.

Lately, potential markers of preclinical ADCA-DN patients have been reported (Moghadam et al.
2014e). The clinical picture of two asymptomatic daughters from an ADCA-DN patient was assessed by use
of neurologic examination, sleep recordings, neurophysiologic neuroimaging and genetic tests. Both
probands were carriers of a heterozygous mutation from the father. They presented with sleep-onset
rapid eye movement periods (SOREMPs) and elevated cerebellar myoinositol (ml), a marker of glial cell
activity and density characteristic for the early stage of neurodegenerative diseases. But abnormalities
were neither found in the functionality of vision and hearing nor in structural brain magnetic resonance
imaging (MRI) scans. Consequently, SOREMPs and increased levels of ml in the brain are two potential
markers for preclinical ADCA-DN patients that might help to diagnose the disease at an early stage.

In symptomatic patients, if sensory impairment is a significant characteristic of the disease, prevention
of injury is needed to avoid self-mutilating behavior. The skin of affected patients should be protected for
instance by gloves, socks and shoes composed of a tissue that is suitable to resist against heat, cold and
sharp objects. Hearing aids and assistive devices can be applied to enable communication in everyday life.
Moreover, to counteract mental restlessness and delusions resulting from dementia, sedative or

antipsychotic drugs may be administered (Klein 2012).

1.4.2 Classification and genetic heterogeneity of HSANs

The term HSANs has been introduced in 1975 for the first time and is classified in the group of
inherited peripheral neuropathies (Dyck 1993). The other two groups of inherited peripheral neuropathies
comprise hereditary motor neuropathies (HMN) and hereditary motor and sensory neuropathies (HMSN)
(Figure 1.11). The categorization into these three groups is based on the involvement of motor, sensory or
autonomic nerve fibers in the disease mechanism (Dyck 1993). Motor or also called efferent nerve fibers
direct motor impulses from the CNS to the periphery. Sensory or also called afferent nerve fibers function
in the opposite direction by conveying sensory impulses from the periphery of the body to the CNS.
Autonomic nerve fibers stimulate and activate smooth muscle or glandular tissues (autonomic efferent

nerve fibers) or receive sensory impulses from them (autonomic afferent nerve fibers).
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neuropathies

Hereditary sonsory and
autonomic neuropathies
(HSAN)

Hereditary motor
neuropathies (HMN)

Hereditary motor and sensory
neuropathies (HMSN)

Figure 1.11: Categorization of inherited peripheral neuropathies. Depending on the involvement of motor, sensory or
autonomic nerve fibers in the disease mechanism, three groups of inherited peripheral neuropathies are defined.

HSANs are a rare and diverse group of disorders of the PNS that manifest in progressive degeneration

predominantly of sensory and autonomic neurons. Axonal damage is accompanied by demyelination in

some cases. The disease pattern includes prominent distal sensory loss as well as different autonomic and

motor disturbances. Patients with HSAN often loose sensation to pain, touch and temperature resulting in

soft tissue infections, osteomyelitis or ulcerative mutilations of the limbs (Rotthier et al. 2012).

HSANs are clinically and genetically heterogeneous. Over the last 15 years, causative mutations in

thirteen genes associated with different forms of HSANs have been identified (Figure 1.12). However, for

at least two-thirds of the patients suffering from HSANs, the genetic cause has not yet been found,

opening the possibility of a even broader spectrum of genes involved in this disease (Rotthier et al. 2009).
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Figure 1.12: Protein functions of thirteen genes associated with HSANs. A mature peripheral sensory neuron in contact
with the skin is represented schematically and protein functions that might be affected by HSAN mutations are indicated.
Inspired by (Rotthier et al. 2012).

Depending on the age at onset, the mode of inheritance and on prevalent clinical features, HSANs are
further subgrouped into type | to V (Dyck 1993). The autosomal dominant inherited type HSAN-I is
characterized by a late onset between the second and fifth decade of life and a prominent sensory and
usually minor motor involvement. HSAN-I can be further subdivided into HSAN-IE and ADCA-DN. Different
from HSAN-I, HSAN-Il to V and HSAN with spastic paraplegia are defined by profound autonomic
disturbances, an autosomal recessive mode of inheritance and an early onset (congenital or in early
childhood) (Rotthier et al. 2012). The proteins (WNK1, CCT5, FAM134B, KIF1A, NGF, NTRK1 and IKBKAP)
corresponding to the genes mutated in HSAN-II to V are highly expressed in the PNS (Rotthier et al. 2012).
The nervous system restricted expression pattern of the proteins causative for HSAN-II to V make the
degenerations of the PNS as main disease characteristic and the linked disease mechanism fairly
understandable (Rotthier et al. 2012). Interestingly, the protein encoded by the kinesin family member 1A
gene (KIF-1A), one causative gene for HSAN-II, interacts with a domain of with-no-lysine(K)-1 (WNK1) that
is encoded by the nervous-specific exon HSN2 (Riviere et al. 2011). HSN2, in turn, is the only exon within
WNK1 that is affected by HSAN-II mutations (Lafreniere et al. 2004; Riviere et al. 2004; Roddier et al. 2005;
Cho et al. 2006; Coen et al. 2006; Takagi et al. 2006). Furthermore, B8-NGF, a protein mutated in HSAN-V
patients is an important binding partner for Trk-A associated with HSAN-IV (Indo 2002). These two
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examples illustrate the interconnection of genes affected by HSAN-II to V and allow for an estimation of
the disease underlying mechanisms involving membrane excitability in the nociceptive system and axonal
transport (Rotthier et al. 2012). In contrast, the HSAN-| etiology is far from being elucidated as the affected
proteins (SPT1, SPT2, RAB7A, ATLA1, ATLA3 and DNMT1) are expressed in different tissues and participate
in various biological pathways (Figure 1.12, see 4.3) (Rotthier et al. 2012). The heterogeneity and
complexity of HSANs is also underlined by the fact, that affected proteins share only few common protein
interaction partners (Figure 1.13). However, some factors bind to several HSAN associated proteins, like
the transcription factor SP1, which interacts with DNMT1, Trk-A and KIF1A. Also direct interactions
between two HSAN associated proteins can be found, like the interaction between DNMT1 and WNKI1.
Among the divergent biological pathways covered by HSAN associated proteins, endoplasmic reticulum
stress and axonal transport are discussed as possible candidates for the disease mechanisms, but the
specific role of affected protein and dysfunctions of the mutants have to be further clarified (Rotthier et al.
2012).
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Figure 1.13: Protein-protein interaction network of HSAN associated proteins. Proteins associated with different types of
HSAN share only few common interaction partners. The network was generated using the 12D database (Niu et al. 2010) and
cytoscape.
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1.4.3 Disease modeling and treatment

To date, possibilities for medical treatment of HSANs are fairly insufficient to abate the morbidity rate.
Affected persons sustain ulcerative mutilations and osteomyelitis that often necessitate surgery or
spontaneous amputations. Patients with severe early-onset HSAN (HSAN-IIl and HSAN-IV) even have
reduced life expectancy due to chronic inflammations and pronounced autonomic disorders. However, in
HSAN-II patients carrying a splice-site mutation of ELP1 (Slaugenhaupt et al. 2001), tocotrienols,
epigallocatechin gallate, kinetin and phosphatidylserine have been presented as promising therapeutic
drugs (Anderson et al. 2003; Anderson and Rubin 2005; Gold-von Simson et al. 2009; Keren et al. 2010).
These compounds increase the splicing efficiency at exon 20 of IKBKAP and antagonize aberrant splicing
resulting in normal levels of full length ELP1. However, treatment of HSANs is fairly inadequate due to the
lack of knowledge about the underlying molecular mechanisms and the lucrativeness of developing drugs

for this rarely occurring disease.
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1.4 Aims of this work

DNA methylation of mammalian genomes represents a key epigenetic modification that is established
during embryonic development and has to be faithfully transmitted to subsequent cell generations. During
replication, the classic maintenance DNA methyltransferase DNMT1 is responsible for copying DNA
methylation patterns from the mother cell to its progeny. Although the multi-domain protein UHRF1 has
been described as an important DNMT1 binding partner that is essential for maintenance DNA
methylation, defined regulatory roles of individual domains remained elusive. Therefore, the main
objective of this work was to investigate UHRF1-dependent mechanisms regulating DNA methylation and
study the function of the DNMT1 TS domain.

To get deeper insights into DNMT1 subnuclear distribution, protein abundance and interacting
partners we generated rat monoclonal antibodies specific for DNMT1. In addition, our goal was to
investigate UHRF1 binding specificities to DNA and histone modifications as well as to DNMT1. To this end,
we developed a toolbox for semiquantitative and medium throughput analysis of protein-DNA, protein-
histone tail peptide and protein-protein binding in vitro.

Besides chromatin binding domains, UHRF1 also harbors a RING domain that exerts E3 ubiquitin ligase
activity on different substrates such as histones. To elucidate the interplay of UHRF1 epigenetic reader and
writer functions, we aimed at determining novel H3 ubiquitination targets of the UHRF1 RING domain by
mass spectrometry. A further aim was to systematically analyze the underlying regulatory processes by
introduction of defined mutations in different UHRF1 domains. As UHRF1-dependent H3 ubiquitination
was essential for DNMT1 targeting and function, our goal was to decipher regions in DNMT1 responsible
for ubiquitinated histone binding. Furthermore, we wanted to investigate a potential link between DNMT1
recruitment and PRC-dependent H2A ubiquitination thereby challenging the historical view of DNMT1 as a
simple copy machine.

Finally, we aimed at elucidating DNMT1 TS domain mutations associated with two neurodegenerative
disease phenotypes named HSAN-IE and ADCA-DN. To get insights in the underlying disease mechanisms
we wanted to characterize two disease associated DNMT1 mutants (P496Y and Y500C) with respect to
their enzymatic activity, UHRF1 binding, subnuclear localization, protein dynamics and cell cycle-

dependent abundances.
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2.1 Generation and characterization of rat and mouse monoclonal antibodies

specific for MeCP2 and their use in X-inactivation studies
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Abstract

Methyl CpG binding protein 2 (MeCP2) binds DNA, and has a preference for methylated CpGs and, hence, in cells, it
accumulates in heterochromatin. Even though it is expressed ubiquitously MeCP2 is particularly important during neuronal
maturation. This is underscored by the fact that in Rett syndrome, a neurological disease, 80% of patients carry a mutation in
the MECP2 gene. Since the MECP2 gene lies on the X chromosome and is subjected to X chromosome inactivation, affected
patients are usually chimeric for wild type and mutant MeCP2. Here, we present the generation and characterization of the first
rat monoclonal MeCP2 specific antibodies as well as mouse monoclonal antibodies and a rabbit polyclonal antibody. We
demonstrate that our antibodies are suitable for immunoblotting, (chromatin) immunoprecipitation and immunofluorescence
of endogenous and ectopically expressed MeCP2. Epitope mapping revealed that most of the MeCP2 monoclonal antibodies
recognize the C-terminal domain and one the N-terminal domain of MeCP2. Using slot blot analysis, we determined a high
sensitivity of all antibodies, detecting amounts as low as 1 ng of MeCP2 protein. Moreover, the antibodies recognize MeCP2
from different species, including human, mouse, rat and pig. Lastly, we have validated their use by analyzing and quantifying X
chromosome inactivation skewing using brain tissue of MeCP2 heterozygous null female mice. The new MeCP2 specific
monoclonal antibodies described here perform well in a large variety of immunological applications making them a very
valuable set of tools for studies of MeCP2 pathophysiology in situ and in vitro.
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Introduction

Methyl CpG binding protein 2 (MeCP2) was the second methyl
CpG binding protein to be discovered [1] and the first to be cloned
[2]. In interphase mouse nuclei, MeCP2 is prominently localized
at heterochromatic foci [2]. In metaphase chromosomes, the
association of MeCP2 with euchromatic arms is rather weak
compared to a strong localization at pericentric heterochromatin
[2], highly enriched in heavily methylated major satellite DNA
repeats [3]. MeCP2 consists of a conserved methyl CpG binding
domain (MBD) that binds to 5-methyl cytosine with high affinity
and is shared with the other MBD protein family members. The
transcriptional repression domain (TRD), which carries a nuclear
localization sequence interacts with histone deacetylases and the
transcriptional corepressor Sin3A [4,5,6]. Finally, the C-terminal
domain binds nucleosomes (Figure 1).

Even though MeCP2 is ubiquitously expressed, it is genetically
linked to a neurological disease called Rett syndrome (RT'T, OMIM

@ PLoS ONE | www.plosone.org

312750). RTT was first described in 1966 by Andreas Rett [7] and
affects one in every 10,000-15,000 female births [8,9,10]. Affected
girls seem to develop normally until six to 18 months, subsequently
they enter a developmental arrest, which is followed by strongly
impaired motor skills, stereotypic hand movements, loss of speech,
seizures, abnormal breathing, microcephaly, ataxia and other
symptoms. Mutations within the AMECP? gene located on
chromosome Xq28 are found in approximately 80% of all classic
RTT cases [8,11]. Since MECP? is located on the X chromosome it
is subjected to random X chromosome inactivation. Thus,
depending on which chromosome was inactivated, a mosaic pattern
of healthy (wild type allele expressing) and affected (mutant allele
expressing) cells is created [12]. A further important aspect is the
stark discrepancy between MeCP2 mRNA expression levels
compared to protein levels (e.g. [13]), which highlights the need
for highly specific antibodies detecting MeCP2 on a protein level.
Up to now rabbit polyclonal and mouse monoclonal antibodies
have been raised against MeCP2 but the available antibodies are
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Figure 1. Antigen preparation. Purified strep-tagged MeCP2 (rat)
and purified intein tagged MECP2 (human) were subjected to a SDS-
PAGE and stained with Coomassie. The molecular weight markers are
labeled in the middle. A schematic representation of the rat MeCP2
protein and its functional domains is shown below. MBD: methyl CpG
binding domain; TRD: transcriptional repression domain; NLS: nuclear
localization signal.

doi:10.1371/journal.pone.0026499.9g001

limited in their application range. Here, we describe the
generation of the first rat monoclonal antibodies against MeCP2
being capable of reacting specifically in most common immuno-
logical applications. To complete the collection, we generated two
mouse monoclonal antibodies and a rabbit polyclonal antibody.
We could demonstrate the suitability of these high affinity and
specific antibodies for immunoblotting, (chromatin) immunopre-
cipitation, and immunofluorescence stainings of cells and tissues.
Additionally, we used one of our anti-MeCP2 rat monoclonal

MeCP2-GFP

Novel MeCP2 Specific Monoclonal Antibodies

antibodies on MeCP2 heterozygous null mouse brain to analyze
and quantify X chromosome inactivation skewing.

Materials and Methods

Plasmids

Mammalian expression constructs (Figure 3 and S1A) coding
for GIP or YFP-tagged rat MeCP2 full length (MeCP2G) and
domain constructs (MeCP2Y.3 and MeCP2Y.5) were previously
described  [14,15]. The mammalian expression constructs
MeCP2G.9 and MeCP2G.8 were generated from the above
plasmids by PCR amplification using the following primers:

5558

as cgcggatcctteegggtetigegettctigatggggageac
pMeCP2G.8 ss ggaagatctgecatggaaaccgtcageattgaggtcaag

as ataagaatgcggecegcttacttgtacagetegtecatgece

The mammalian expression construct (Figure 6 and S1B)
expressing GIP-tagged human MECP2 was described before [16]
and was provided by S. Kudo (Hokkaido Institute of Public
Health, Sapporo, Japan). For expression in Sf9 (Invitrogen Paisley
PA4 9RF, UK) insect cells the Bac-to-Bac baculovirus expression
system (Invitrogen Paisley PA4 9RF, UK) was used. To express
MeCP2 with a N-terminal double strep-tag (Figure 1), a sequence
encoding the strep-tactin target peptide strep tag III
MWSHPQFEKGGGSTGGGSGGGSWSHPQFEK)  was  syn-
thesized (Entelechon, Bad Abbach, Germany) flanked by BamHI
and Notl sites and subcloned into pFastBacl (Invitrogen, Paisley
PA4 9RF, UK) using the same sites. Rat MeCP2 full length was
generated by PCR amplification from MeCP2G (described above)
using the following primers:

MeCP2 ss: ggaagatctgecatggaaaccgtcageattgaggtcaag

as: ataagaatgcggecgettacttgtacagetegtecatgee

with Notl and Xhol sites and subcloned in frame with the strep-
tag in the pFastBacl vector. For expression of rat MeCP2-GFP in
SIY insect cells (Figure 2) the mammalian expression construct

BSA

25ng 125ng 6.25ng 3.12ng

1.56 ng

rat
monoclonal
4E1 4H7
[
i

4G10
o g

W =
& &
Qg |
m_
5 Q
o ©
€65
[ =
£l o
© !
=
o 9o
Q2 o
T =
o

[oX

0.78 ng 500ng

Figure 2. Antibody sensitivity. The detection limit of the MeCP2 antibodies was tested on native rat MeCP2-GFP by slot blotting analysis and lies

between 1.58 and 0.78 ng of recombinant purified rat MeCP2.
doi:10.1371/journal.pone.0026499.g002
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coding for MeCP2G full length (described above) was cut using
Notl and Xhol and cloned in frame in the pFastBacl vector.

A prokaryotic expression construct coding for intein tagged
human MECP?2 (Figure 1) [17] was obtained from C.L. Woodcock
(University of Massachusetts, Amherst, USA).

Tissues

Male mouse MeCP2 hemizygous brains (Figures 5 and 6) [18]
were kindly provided by the group of P. Huppke (Georg August
University, Goéttingen, Germany). Female mouse MeCP2 null
heterozygous brains (Figure 7) [18] were kindly provided by the
group of L. Villard (Faculte de Medecine La Timone, Marseille,
France). Wild type mouse brains (C57BL/6N; Charles River
Laboratories International, Inc., Wilmington, MA 01887, USA)
were used as control. Mice were over 10 months old.

Cell culture and transfection

For immunofluorescence (IF) experiments mouse C2C12
myoblasts [19] were cultured using standard conditions described
previously [20]. For subsequent IF experiments (Figure 6 and
S1B), C2C12 cells were transiently transfected with human GFP-
MECP?2 expression construct [16] using Transfectin (Bio Rad,
Miinchen, Germany) according to manufacturer’s advice.

For the epitope mapping (Figure 3 and S1A), human embryonic
kidney (HEK) 293T [21] cells were cultured in DMEM
supplemented with 10% fetal calf serum and 50 pg/ml gentamicin
and transfected with full length rat MeCP2 and domain constructs
(described above) using polyethylenimine (Sigma, St. Louis, MO,
USA).

MeCP2 antigens for immunization (Figure 1) and slot blot
applications (Figure 2) were produced using the baculovirus system
in SY insect cells. S{9 cells were maintained in EX-CELL 420
Insect Serum Free (SAFC) medium supplemented with 10% fetal
bovine serum shaking at 100 rpm and 28°C. Transfection of Sf9
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cells to produce recombinant baculovirus, was performed using
Cellfectin (Invitrogen, Paisley PA4 9RF, UK) according to the
manufacturer’s instructions.

Antigen purification

S19 insect cells were infected with the recombinant baculovirus
(coding for MeCP2 with N-terminal double strep-tag; [22]) and
incubated at 28°C with shaking for 5 days. The cells were pelleted
by centrifugation (200x g, 5 min, 4°C) and resuspended in a
buffer containing 25 mM Tris-HCI, pH 8.0; 1 M NaCl; 50 mM
glucose; 10 mM EDTA; 0.2% Tween-20; 0.2% NP40. The buffer
was supplemented with protease inhibitors (Complete mini;
Roche, Mannheim, Germany). After incubation on ice for
10 min, cells were disrupted with a high-pressure homogenizer
(Emulsiklex-C5, Avestin) followed by centrifugation at 14,000 x g
for 30 min.

Strep-tagged recombinant rat MeCP2 protein was purified by
incubating the supernatant with 500 pl of strep-tactin sepharose
beads (IBA, Géttingen, Germany) for 4 h at 4°C on a rotary
shaker. To elute strep-tagged proteins, the beads were incubated
with D-Desthiobiotin (0.5 mg/ml; IBA, Géttingen, Germany),
dissolved in 1x PBS, for 30 min at 4°C. After centrifugation
(200 x g, 2 min), beads were separated from the eluate containing
the purified proteins. The elution step was performed three
successive times.

Intein tagged human MECP2 protein was purified as previously
described resulting in untagged MECP2 through protein splicing
[23].

Immunizations, generation of hybridomas and ELISA
screening

Monoclonal antibodies specific for MeCP2 were generated via
the hybridoma technology as described by Rottach et al. [24].
80 ug of a N-terminal, strep-tagged full length rat MeCP2 were

rat mouse rabbit
Structure of rat MeCP2 constructs 4H7 4G10 4E1 4B4  8D11 GFP poly
MeCP2G  (fWEE 1 i) | ] [e] [m] | =] [=] | [*=] | F==]
1 162 492
MeCP2Y.3 = Wes =7 [ |[==]| | [ ]| L] | [
1
vecP2vs (DM CI1 00 10 10 1 E | -]
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Figure 3. Epitope mapping. To determine the binding site of the new monoclonal antibodies within the MeCP2 protein, we probed extracts of
mammalian cells expressing different MeCP2 constructs fused to GFP/YFP as indicated. To control for the level of the fusion proteins, the membranes
were reprobed with anti GFP mouse monoclonal antibody. A summary of the epitope mapping results for the different antibodies is shown below.

MeCP2 functional domains are as in Figure 1.
doi:10.1371/journal.pone.0026499.g003
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. musculus MVAGML GLREEKSEDQDLQGLRDKPLKFKKAKKDKKEDKE GKHEPLQPSAHHSAEPAEAGKAETSESSGSAPAVPEASASPKQRRSTIRDRGPMYDDPTL 100
. NOrvegicus  MVAGMLGLRKEKSEDQDLQGLKEKPLKFKKVKKDKKEDKEGKHEPLQPSAHHSAEPAEAGKAETSESSGSAPAVPEASASPKQRRSIIRDRGPMYDDPTL 100
. sapiens MVAGML GLREEKSEDQDLQGLKDKPLKFKKVKKDKKEEKEGKHEPVQPSAHHSAEPAEAGKAETSEGSGSAPAVPEASASPKQRRSIIRDRGPMYDDPTL 100
scrofa MVAGML GLREEKSEEQDLQGLKDKPLKFKKVKKDKKBDRE GKHEPLQPBAHHSAEPAEAGKAETSEGSGSAPAVPEASASPKQRRSIIRDRGPMYDDPTL 100

. musculus PEGWTRKLKQRKSGRSAGKYDVYLINPQGKAFRSKVELIAYFEKVGDTSLDPNDFDFTVTGRGSPSRREQKPPKKPKSPKAPGTGRGRGRPKGSGTGRPK 200
norvegicus PEGWTRKLKQRKSGRSAGKYDVYLINPQGKAFRSKVELIAYFEKVGDTSLDPNDFDFTVTGRGSPSRREQKPPKKPKSPKAPGTGRGRGRPKGSGTGRPK 200
sapiens PEGWTRKLKQRKSGRSAGKYDVYLINPQGKAFRSKVELIAYFEKVGDTSLDPNDFDFTVTGRGSPSRREQKPPKKPKSPKAPGTGRGRGRPKGSGTTRPK 200
scrofa PEGWTRKLKQRKSGRSAGKYDVYLINPQGKAFRSKVELIAYFEKVGDTSLDPNDFDFTVTGRGSPSRREQKPPKKPKSPKAPGTGRGRGRPKGSGTTRPK 200

. musculus AAASEGVQVKRVLEKSPGKLVVKMPFQASPGGKGEGGGATTSAQVMVIKRPGRKRKAEADPQAIPKKRGRKPGSVVAAAAAEAKKKAVKESSIRSVHETV 300
norvegicus AAASEGVQVKRVLEKSPGKLLVKMPFQASPGGKGEGGGATTSAQVMVIKRPGRKRKAEADPQAIPKKRGRKPGSVVAAAAAEAKKKAVKESSIRSVQETV 300
sapiens AATSEGVQVKRVLEKSPGKLLVKMPFQTSPGGKAEGGGATTSTQVMVIKRPGRKRKAEADPQAIPKKRGRKPGSVVAAAAAEAKKKAVKESSIRSVQETV 300
scrofa AAASEGVQVKRVLEKSPGKLLVKMPFQASPGSKAEGGGATTSAQVMVIKRPGRKRKAEADPQAIPKKRGRKPGSVVAAAAAEAKKKAVKESSIRSVQETV 300

. musculus LPIKKRKTRETVSIEVKEVVKPLLVSTLGEKSGKGLKTCKSPGRKSKESSPKGRSSSASSPPKKEHHHHHHHSESTKAPMPLLP--SPPPPEPESSEDPI 398
nor\_/egicus LPIKKRKTRETVSIEVKEVVKPLLVSTLGEKSGKGLKTCKSPGRKSKESSPKGRSSSASSPPKKEHHHHHHHAESPKAPMPLLP--PPPPPEPQSSEDP 198
sapiens LPIKKRKTRETVSIEVKEVVKPLLVSTLGEKSGKGLKTCKSPGRKSKESSPKGRSSSASSPPKKEHHHHHHHSESPKAPVPLLPPLPPPPPEPESSEDPT 400
scrofa LPIKKRKTRETVSIEVKEVVKPLLVSTLGEKSGKGLKTCKSPGRKSKEGS ------- ASSPPKKEHHHHHHHAEPPKAPAPLLPPPPPPPPEPQSSEDPA 393

. musculus SPPEPQDLSSSICKEEKMPRGGSLESDGCPKEPAKTQPMVA----~--~ TTTTVAEKYKHRGEGERKDIVSSSMPRPNREEPVDSRTPVTERVS 484
norvegicus SPPEPQDLSSSICKEEKMPRAGSLESDGCPKEPAKTQPMVAAAATTTTTTTTTVAEKYKHRGEGERKDIVSSSMPRPNREEPVDSRTPVTERVS 492
. sapiens SPPEPQDLSSSVCKEEKMPRGGSLESDGCPKEPAKTQPAVA TAATAAEKYKHRGEGERKDIVSSSMPRPNREEPVDSRTPVTERVS 486
. scrofa SPPEPQDLSSNVCREEKMPRAGSLESDGCPKEPAKTQPAVA TAATAAEKYKHRGEGERKDIVSSSMPRPNREEPVDSRTPVTERVS 479
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Figure 4. Antibody specificity. A) Sequence alignment of MeCP2 from different species. Identical residues are shaded in gray. The identities range
from 93% (human-mouse) to 97% (rat-mouse). B) For a multi-species immunoblot nuclear extracts from pig, mouse and rat brain (10° nuclei) were
loaded and probed with the antibodies as indicated. C) For immunoprecipitation analysis, mouse brain whole cell (for rat antibodies) and nuclei (for
mouse antibodies) extracts were incubated with the monoclonal antibodies as indicated followed by western blot analysis.
doi:10.1371/journal.pone.0026499.g004
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input H3 4E1 4H7 4G10 IgG input H3 4E1 4G10 4H7 IgG input H3  4B4 8D11 IgG input H3 4B4 8D11 IgG

Figure 5. Chromatin immunoprecipitation. Chromatin immunoprecipitation assays were performed using mouse brain nuclear extracts
obtained from wild type mice and MeCP2 knock out (KO) mice as negative control. The anti histone H3 antibody was used as a positive control of
chromatin immunoprecipitation assay efficiency. IgG was used as a negative control of chromatin immunoprecipitation.
doi:10.1371/journal.pone.0026499.g005
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Figure 6. /n situ analysis of MeCP2 in cells and tissue. A) Mouse myoblasts (C2C12 cells) were transiently transfected with GFP-MECP2 (human)
and fixed using formaldehyde. MeCP2 was then detected with our monoclonal antibodies (undiluted) and our rabbit polyclonal antibody (1:500). The
first row shows the DNA counterstain (DAPI) of transfected and untransfected cells (green). The row underneath shows the signal obtained by our
antibody staining (red). The third row shows the localization of the transfected GFP-MECP2 (blue). The merge contains an overlay of the antibody
staining, the fluorescent signal of GFP-MECP2 and the DNA counterstain. Scale bar 20 um. B) Mouse wild type brain sections (25 um) were stained
using our antibodies. The first row shows the DNA counterstain with DAPI highlighting heterochromatic regions. The central row shows the signal
obtained by immunofluorescence with our antibodies. The last row shows an overlay of DAPI and MeCP2. Scale bar 20 um. C) Mouse MeCP2
hemizygous null brain sections (25 um) were stained as described above as a negative control. Mouse anti B23 antibody was used as a positive
control (consecutive section when testing mouse monoclonal anti MeCP2). Scale bar 40 um.

doi:10.1371/journal.pone.0026499.g006

injected both intraperitoneally and subcutaneously into Lou/C
rats and CBL mice using CpG2006 (TIB MOLBIOL, Berlin,
Germany) as adjuvant. 8 weeks later and 3 days before fusion a
boost was given intraperitoneally and subcutaneously. Spleen cells
were isolated and fused to the myeloma cell line P3X63-Ag8.653
(ATCC, Rockville, MD, USA) using polyethylene glycol 1500
(PEG 1500, Roche, Mannheim, Germany). After fusion, cells were
cultured in 96-well plates using RPMI 1640 with 20% fetal calf
serum, penicillin/streptomycin, glutamine, pyruvate, and non-
essential amino acids (PAA, Célbe, Germany) supplemented by
aminopterin (Sigma, St. Louis, MO, USA). The hybridoma
supernatants were tested in a solid-phase enzyme linked
immunosorbent assay (ELISA). Microtiter plates were coated over
night with strep-tagged rat MeCP2 at a concentration of 3-5 g/ml
in 0.1 M sodium carbonate buffer (pH 9.6) and blocked with non-
fat milk (Frema, Neuform, Zarrentin, Germany). The hybridoma
supernatants were added and the bound monoclonal antibodies
were detected using a cocktail of biotinylated mouse monoclonal
antibodies against the rat IgG heavy chains, thus avoiding the
detection of IgM mouse monoclonal antibodies (anti IgG1, anti
IgG2a, anti IgG2b [ATCC, Manassas, VA], anti IgG2c
[Ascenion, Munich, Germany]). For visualization, peroxidase-
labeled avidin (Alexis, San Diego, CA) antibodies were applied
and o-phenylenediamine was used as chromogen in the peroxidase
reaction. The clones 4H7, 4G10 and 4E1 (rat monoclonal) as well
as 4B4 and 8D11 (mouse monoclonal) were stably subcloned and
used for further characterization.

The rabbit polyclonal antibody was generated using the
untagged human MECP?2 according to the Express rabbit protocol
from PickCell (PickCell, Amsterdam, Netherlands) and used in
form of antiserum.

All monoclonal antibodies are available upon request.

Ethics statement

Immunizations of mice and rats for the purpose of generating
monoclonal antibodies were approved by the Government of
Upper Bavaria, according to the animal experimentation law § 8a,
permit number 209.1/211-2531.6-4/99.

Sensitivity assay via slot blot analysis

Purification of MeCP2-GFP. SfY insect cells were infected
with the recombinant baculovirus (coding for rat MeCP2-GFP)
and incubated at 28°C with shaking for 5 days. The cells were
pelleted and resuspended as explained above for strep-tag MeCP2
and disrupted by sonication (three times each for 25 seconds, 70%
power; Bandelin Sonopuls GM70, Sonontrode HD70, Berlin,
Germany) on ice. Lysates were cleared by centrifugation at
15,000 x g for 30 min at 4°C.

Recombinant rat MeCP2-GFP  protein was purified by
incubating 200 ml whole cell lysate with 1 ml (1.5 mg/ml) GBP
nanotrap according to the manufacturer’s advice (Chromotek,
Planegg-Martinsried, Germany). After transfer of the GBP nano-
trap beads containing lysate to a Bio-Rad Poly-Prep chromatog-
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raphy column (Cat: 731-1550, Bio-Rad Laboratories, Hercules
CA 94547, USA) the column was washed three times with 10 ml
PBS. To elute the MeCP2-GFP protein, the beads were incubated
with 5 ml of a high salt buffer. Buffer exchange was done with PBS
using Amicon ultra centrifugal filters (Ultracel 10 kDa molecular
weight cutoff; Millipore, Ireland). Eluted protein was quantified
with Pierce the 660 nm protein assay (Thermo Scientific; Pro:
#1861426, Schwerte, Germany) and checked by SDS-PAGE
analysis (data not shown).

Slot blotting analysis. Native MeCP2-GFP was spotted
directly onto a nitrocellulose membrane (GE Healthcare,
Miinchen, Germany). Membranes were incubated in blocking
buffer, 5% (w/v) non-fat dry milk in PBS (PBSM), for 20 min at
room temperature. Primary antibodies were used undiluted and
incubated for 2 h at room temperature, followed by three washes
in PBS/0.1% Tween-20. Subsequently, membranes were
incubated for 1h at room temperature with horseradish
peroxidase conjugated anti-rabbit IgG (Sigma, St. Louis, MO,
USA) diluted 1:10,000 or anti-mouse (GE Healthcare, Miinchen,
Germany) and rat IgG (Sigma, St. Louis, MO, USA) 1:5,000 in
5% (w/v) PBSM. After three washing steps in PBS/0.1% Tween-
20, signals were detected with ECL (GE Healthcare, Miinchen,
Germany).

Epitope mapping

For epitope mapping, different constructs of rat MeCP2 with C-
terminal GFP or YFP tag were used for transient transfection of
HEK 293T cells. After cell lysis (20 mM Tris-HCI pH 7.5,
150 mM NaCl, 0.5%NP40, 2 mM PMSF, 0.5 mM EDTA, 1x
mammalian protease inhibitor mix, 1 mg/ml DNase, 2 mM
MgCly) the concentration of the GFP fusion proteins was
calculated using a fluorescent read out of GFP and YFP (Infinite®
M1000, TECAN), respectively (GFP: excitation wavelength:
490 nm, emission wavelength: 511 nm, YFP: excitation wave-
length: 525 nm, emission wavelength: 538 nm). The protein
concentration was normalized to the construct with the lowest
expression rate and lysates were diluted accordingly (228 nM GFP
or YFP). The samples were boiled in Laemmli sample buffer at
95°C for 10 min and loaded on a 10% SDS-PAGE. Western blot
analysis was performed as described above. In addition to the
polyclonal and monoclonal anti MeCP2 antibodies, anti GI'P
mouse monoclonal antibody (Cat: 11814460001, Roche Diagnos-
tics GmbH, Mannheim, Germany) was used to control for
expression level of the different deletion proteins.

Cross-species reactivity assay via western blot analysis
For western blot analysis brain cell nuclei were extracted from
pig (obtained fresh from the local slaughterhouse), mouse and rat
(Charles River Laboratories International, Inc., Wilmington, MA
01887, USA) as described [25] and lysed in RIPA buffer (50 mM
Tris/HCI pH 8, 150 mM NaCl, 1% Tween, 0.5% Doc, 0.1%
SDS). For each gel lane, lysates from 10° nuclei were loaded.
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Samples were separated on a 10% SDS-PAGE and transferred
to a nitrocellulose membrane (GE Healthcare, Miinchen,
Germany). The following primary antibodies were used for
western blot analysis: rabbit polyclonal anti MeCP2 (1:500),
mouse monoclonal and rat monoclonal anti MeCP2 (undiluted).
Secondary antibodies were as above for slot blot analysis.

Immunoprecipitation

Mechanically disrupted mouse brain tissue (3-4 brains) was
dissolved in buffer A (20 mM Tris pH 7.9, 0.6 M NaCl, 1.5 mM
MgCly, 0.2 mM EDTA, 0.4% NP-40), and then diluted with
buffer B (20 mM Tris pH 7.9, 1.5 mM MgCly, 0.2 mM EDTA,
0.4% NP-40) to obtain an NaCl concentration of 200 mM. Mouse
brain extracts were incubated with 400 pl of the rat monoclonal
MeCP2 antibody indicated, at 4°C for 2 h with shaking. As
negative control, anti RFP mix rat monoclonal antibody [26] of
equal amount was used. 100 pl protein G agarose beads, that were
equilibrated with buffer B, were added and incubated with the
extract for 1 h at 4°C with shaking. After three washes with buffer
B immuno complexes were dissolved in 60 ul 1 X Laemmli sample
buffer.

For successful immunoprecipitation using the mouse monoclo-
nal antibodies nuclei had to be isolated first, followed by a
modified protocol. Mechanically disrupted mouse brain tissue was
resuspended and washed with ice-cold PBS supplemented with
protease inhibitor cocktail (Roche, Mannheim, Germany). Cell
pellets were resuspended in cell lysis buffer (HEPES 5 mM, KCl
85 mM, NP40 0.5% pH 8.0) supplemented with protease
inhibitor cocktail and subsequently homogenized with a douncer.
The nuclear pellet obtained was resuspended in nuclei lysis buffer
(Tris-HCI 50 mM, EDTA 10 mM, SDS 1% pH 8.1) and
sonicated with a Bioruptor (Diagenode) for 5 minutes (30 sec
ON, 30 sec OFF cycles) to get a homogeneous extract.

The extract was diluted with immunoprecipitation buffer (SDS
0.1%, Triton X-100 1.1%, EDTA 1.2 mM, NaCl 165 mM, Tris-
HCI 16.7 mM pH 8.1) and followed by a pre-clearing overnight
at 4°C with magnetic beads (Invitrogen, Paisley PA4 9RF, UK).
Non-related mouse IgG antibody was used as a negative control.
The amount of extract that was used for each immunoprecip-
itation varied from 10-500 pg. Antibody-Dynabeads M-280
sheep anti-mouse IgG (Invitrogen, Paisley PA4 9RF, UK) were
added to pre-cleared chromatin and incubated with shaking for
2 h at 4°C. 10 ug of nuclear extract were loaded as input. After
three washes with immunoprecipitation buffer immuno complex-
es were cluted from the beads with 25 ul 2x Laemmli sample
buffer.

Samples were analyzed by western blot as described above.

Chromatin immunoprecipitation

Nuclei were obtained from wild type and MeCP2 knock out
male brain as described above with an additional cross-linking
step, after mechanical disruption, with 1% formaldehyde for
10 min. Adding glycine to a final concentration of 0.125 M
stopped the cross-linking reaction. The lysed nuclear pellet was
sonicated with a Bioruptor (Diagenode) for 15 minutes (30 sec
ON, 30 sec OFF cycles). The average chromatin size of the
fragments obtained was ~300 bp. Magnetic beads were used for
pre-clearing of diluted chromatin (over night at 4°C) and for
incubation (2 h at 4°C with shaking) with H3 (ab1791, Abcam),
our rat monoclonal antibodies: 4E1, 4H7, and 4G10 or our
mouse monoclonal antibodies: 4B4 and 8D11. Non-related
mouse IgG antibody was used as a negative control. The input
was obtained from the nuclear extract and represents 5% of the
chromatin that is used for the chromatin immunoprecipitation
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with each antibody. The immuno-complexes were washed: twice
with low salt buffer (Tris-HCI 50 mM pH 8.0, NaCl 150 mM,
SDS 0.1%, NP-40 1%, EDTA 1 mM, deoxicolate Na 0.5%),
twice with high salt buffer (Tris-HCl 50 mM pH 8.0, NaCl
500 mM, SDS 0.1%, NP-40 1%, EDTA 1 mM, Na deoxicolate
0.5%), twice with LiCl buffer (Tris-HCI 50 mM pH 8.0, LiCl
250 mM, SDS 0.1%, NP-40 1%, EDTA 1 mM, Na deoxicolate
0.5%) and twice with TE buffer (Tris-HCl 10 mM pH 8.0,
EDTA 0.25 mM). Cross-linked chromatin was then eluted from
the magnetic beads (Dynabeads M-280 sheep anti-mouse IgG for
mouse monoclonal antibodies and protein G for rat monoclonal
antibodies) by adding elution buffer (NaHCO5; 100 mM, SDS
1%). Samples were reverse cross-linked over night at 65°C and
incubated with proteinase K at 50 pug/ml final concentration for
1 h. DNA was purified with the PCR purification kit (Qiagen)
and used for PCR analysis, which was carried out with the
following primers:

Xist (promoter) 5'-CCTGTACGACCTAAATGTCC-3'

5'-GTATTAGTGTGCGGTGTTGC-3'.

In the case of our rat monoclonal antibodies 38 PCR cycles
were used and in the case of our mouse monoclonal antibodies 35
cycles.

Immunofluorescence analysis

Cells. For immunofluorescence staining, C2C12 cells were
seeded on glass coverslips and transiently transfected with GFP
tagged MECP2 (human). Cells were fixed with 3.7%
formaldehyde in PBS and incubated with the undiluted rat/
mouse anti MeCP2 antibodies for 1 h at room temperature. After
incubation with the secondary Alexa 647 conjugated goat anti rat/
mouse IgG antibody (Invitrogen Paisley PA4 9RF, UK) diluted
1:400 in PBS containing 2% BSA, the cells were counterstained
with  DAPI (2 ug/ml) and mounted in Vectashield medium
(Vector Labs, Burlingame, CA, USA).

Tissues. Mouse brains were fixed by overnight immersion in
PBS-buffered 4% paraformaldehyde. The brains were embedded
in Tissue Tek (Sakura, Zoecterwoude, Netherlands) and
cryosectioned (25 um) using a cryostat HM 560 (Microm,
Walldorf, Germany).

Sections were air dried at room temperature for 30 min, re-
hydrated in 10 mM sodium citrate buffer (pH 6.0) for 5 min,
pulse-heated (80°C) for 30 min in the microwave. The slides were
equilibrated in PBS after heating and incubated with the following
antibodies: anti MeCP2 mouse monoclonal (undiluted), rat
monoclonal (undiluted), rabbit polyclonal (1:500), anti B23 mouse
monoclonal (Sigma, St. Louis, MO, USA, 1:1,000) and ant
tyrosine hydroxylase rabbit antibody (AB152, Millipore, Billerica,
MA, USA) Both, primary and secondary antibodies were
complemented with 0.1% Triton X-100 and 1% BSA. No
additional blocking step was performed. Incubation was done
under a glass chamber (made of coverslips) in a humid box for 12—
24 h at room temperature [27]. Washings between antibody
incubations and after incubation with secondary antibodies were
performed with PBS with 0.05% Triton X-100 at 37°C,
3x20 min. In order to stabilize preparations, immunostained
sections were post-fixed with 2% paraformaldehyde for 10 min
before counterstaining with DAPI (2 ug/ml) for 1 h and mounted
in Vectashield medium (Vector Labs, Burlingame, CA, USA).

Microscopy

Epifluorescence images were obtained on a Zeiss Axiovert 200
microscope equipped with Plan-Apochromat x63/1.4 numerical
aperture (NA) oil immersion objective lenses and a Sensicam
(PCO) CCD camera. Confocal images were collected using an
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UltraVIEW VoX spinning disc system (Perkin Elmer) on a Nikon
Ti microscope equipped with an oil immersion Plan-Apochromat
x40/1.3 NA objective lens (pixel size in XY =186 nm, Z-
step = 0.3 pm).

Scoring of tyrosine hydroxylase and MeCP2 positive cells was
done by eye in z-stacks.

Results and Discussion

Generation of rat/mouse monoclonal antibodies against
MeCP2

To generate new rat and mouse antibodies potentially detecting
different domains of MeCP2, we generated a baculovirus
expression plasmid coding for the full length rat MeCP2 with a
double strep-tag and transfected/infected S9 insect cells with this
construct. The recombinant protein was purified using strep-tactin
sepharose leading to a single band in SDS-PAGE analysis
(Figure 1). The protein was used to immunize Lou/C rats and
CBL mice, leading to the generation of a panel of clonal
hybridomas by fusion of lymphocytes from immunized animals
with the myeloma cell line P3X63-Ag8.653. All antibodies
generated by the hybridomas were initially screened in a solid-
phase enzyme linked immunosorbent assay (ELISA, data not
shown). Positive hybridoma supernatants from clones 4H7, 4G10
and 4E1 (rat monoclonal) as well as 4B4 and 8DI11 (mouse
monoclonal) were stably subcloned and used for further charac-
terization. In parallel, we immunized rabbits with untagged
human MECP2 protein to generate polyclonal antibodies and
used the resulting antiserum directly.

Sensitivity of the rat and mouse antibodies

To test the sensitivity of the antibodies we performed slot blot
analysis with native rat MeCP2-GIP protein. The protein was
applied in decreasing amounts ranging from 25 ng down to
0.78 ng. All monoclonal antibodies showed clear signals down to
1.56 ng of native protein and the rat monoclonal antibody 4E1
was still able to detect 0.78 ng of MeCP2 protein (Figure 2). The
rabbit anti MeCP2 polyclonal antiserum was also able to detect
down to 0.78 ng of native protein (Figure 2). The last column
contained 500 ng BSA as negative control and none of the
antibodies reacted with it.

Epitope mapping

To determine the binding domain of the new monoclonal
antibodies within the MeCP2 protein, we used different constructs
of GFP/YFP tagged MeCP2 expressed in mammalian cells. The
cell lysates were analyzed by SDS-PAGE, blotted on a
nitrocellulose  membrane and incubated with the different
antibodies. All fusions were expressed as controlled by incubation
of the membranes with anti GFP mouse monoclonal antibody.
The results (Figure 3 and SIA) show that the rat monoclonal
antibodies 4G10 and 4H7 reacted against the C-terminus of
MeCP2 and 4E1 against the N-terminus. Both mouse monoclonal
antibodies 4B4 and 8DI11 showed specific binding to the C-
terminus. Since none of the antibodies detected the MBD domain,
which is highly conserved in all MBD proteins no cross-reaction
with these proteins is expected. Additionally, the polyclonal rabbit
antibody detected all fragments except the TRD.

Specificity and cross species reactivity

MeCP2 is highly conserved throughout different species
(Figure 4A). To test for cross species reactivity, nuclei from pig,
mouse and rat brain tissue were isolated and extracts analyzed by
western blot. As shown in Figure 4B all antibodies detected
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endogenous MeCP2 in mouse and rat. Remarkably, the rat
monoclonal antibody 4E1 was the only one that did not detect
MeCP2 in nuclear extracts from pig brain. This coincides with the
fact that it is the only antibody in our tests to react with the N-
terminal part (amino acids 1-78) of MeCP2 (see below). Only five
amino acids are not identical in this domain of MeCP2 in the pig
compared to mouse and rat. We, thus, conclude that the epitope
recognized by rat monoclonal antibody 4E1 must include one or
more of these residues (Figure 4A, highlighted in red).

An important and commonly used method for studying protein
interaction partners is immunoprecipitation. Thus, we tested next
the ability of the monoclonal antibodies to specifically immuno-
precipitate MeCP2 from mouse brains. We could show that our
three rat antibodies were able to specifically pull down MeCP2
from whole brain extract (Figure 4C). Additional unspecific bands
at 35 kDa were also detected in the negative control (rat anti RFP
antibody mix) [26] and are most probably due to unspecific
binding to the beads (data not shown). To successfully use our two
mouse monoclonal antibodies for immunoprecipitation we needed
to isolate nuclei from mouse brain first. We could then show that
our mouse antibodies were also capable of specifically pulling
down MeCP2 from mouse brain nuclei extracts (Figure 4C).

To next determine if our monoclonal MeCP2 antibodies are
competent for chromatin immunoprecipitation analysis using
purified nuclei from mouse brain. We analyzed the occupancy of
MeCP2 in the promoter of Xist in the X chromosome, which is
known to bind MeCP2 in mouse and is used as a standard
positive control for MeCP2 binding. Two of our rat monoclonal
antibodies were able to immunoprecipitate chromatin (4E1 and
4H7, Figure 5) with 4H7 producing a stronger signal than 4E1
and 4G10 not yielding a detectable signal. The latter might be
due to technical limitations, or to the epitope recognized by the
4G10 mAb being masked when the MeCP2 protein is bound to
chromatin. From our mouse antibodies only 4B4 was able to
clearly chromatin immunoprecipitation (Figure 5). The three
antibodies (rat 4E1 and 4H7 and mouse 4B4) suitable for
chromatin immunoprecipitation show no band in the knockout
brain whereas H3, which is used as positive control for
chromatin immunoprecipitation, shows a band in wild type
and knock out brain. Our polyclonal rabbit anti MeCP2
antibody was previously shown to be suitable for chromatin
immunoprecipitation analysis [28]. Our antibodies therefore
cover the whole range of important biochemical assays
commonly performed.

In situ analysis of MeCP2 in cells and in tissue

Western blot techniques usually deal with denatured protein
and do not give information about the localization of the protein in
the cell. It is therefore important to test whether the new
antibodies correctly detect MeCP2 localization i situ. MeCP2 is
predominantly localized at pericentric heterochromatic regions in
mouse cells, which are highly enriched in strongly methylated
major satellite DNA repeats and tend to form clusters known as
chromocenters [14]. Immunostainings were thus performed on
mouse myoblasts expressing GIFP tagged human MECP2 using
formaldehyde and methanol as fixation reagents (Figure 6A and
S1B). Our three rat monoclonal antibodies revealed strong signals
co-localizing with the ectopically expressed GFP-MECP2 and
worked in both fixation conditions. Untransfected cells did not
give a signal, consistent with undetectable endogenous levels of
MeCP2 in those cells [14]. Using the mouse monoclonals, only
4B4 gave a signal for ectopically expressed protein. 8DI11
exhibited high background noise and no specific binding in both
fixation conditions. Our polyclonal rabbit antiserum showed
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strong and specific binding even when used at a dilution of 1:500.
DAPI was used as a counterstain and additional control in all cells
since DAPI’s preference for AT rich regions strongly highlights
chromocenters.

Since MeCP2 plays a crucial role in RTT syndrome one of the
most important goals for us was to test whether the antibodies
work on brain tissue detecting MeCP2 in its native conformation.
We, therefore, prepared cryosections of wild type mouse brain
and also MeCP2 hemizygous null male mouse brain as negative
control. The 25 pm-thick wild type brain sections were stained
with the anti MeCP2 antibodies and counterstained with DAPI as
marker for chromocenters. As demonstrated in Figure 6B our rat
monoclonal antibodies show a strong and specific staining of
chromocenters colocalizing with DAPI. Our mouse monoclonal
antibody 4B4 shows a less intense but still specific staining of
MeCP2. Unfortunately, the antibody 8D11 was not able to detect
endogenous MeCP2 in brain, as it had failed to do with ectopic
MeCP2 expression in cells, and is therefore not suitable for
immunofluorescence. The strongest signals were achieved with
our polyclonal rabbit antiserum, which was used as a positive
control (Figure 6B). To verify the specificity to MeCP2 we
performed the same stainings in MeCP2 null mouse brain
sections. We added anti B23 nucleoli marker antibody as a
positive staining control. As shown in Figure 6C none of the anti
MeCP2 antibodies showed any significant signal in the knock out

Novel MeCP2 Specific Monoclonal Antibodies

brain sections whereas B23 showed a clear and specific signal.
The double staining with anti-B23 mouse monoclonal antibody
was facilitated by the combination with our rat monoclonals,
whereas, in the case of the mouse monoclonals, we had to
perform the anti B23 staining using an adjacent tissue section.
Additionally, using rat monoclonal antibodies obviated the cross
reaction with endogenous mouse immunoglobulins present in the
tissue, whereas these were readily detected when using the mouse
monoclonal antibodies.

X chromosome inactivation skewing in MeCP2
heterozygous mouse brain

Since MeCP2 lies on the X chromosome it is subjected to
random X chromosome inactivation in early development. In
RTT, X chromosome inactivation leads to a mosaic pattern of all
the cells, theoretically in a 50:50 ratio of healthy (active X
containing wild type MeCP2 allele) and affected (active X
containing mutant Mecp2 allele) cells. Deviations from this ratio
indicate skewed inactivation of the X chromosome and affect the
severity of RTT symptoms. Our antibodies should be highly
suitable for studies concerning X chromosome inactivation as well
as other studies on RTT affected brain and other tissues.

To test this, we evaluated X chromosome inactivation skewing
in female MeCP2 heterozygous brain. We performed a double
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Figure 7. X chromosome inactivation skewing in brain from heterozygous MeCP2 null mouse. A) Schematic overview of a cryosection of
a (female) heterozygous MeCP2 null brain with regions analyzed for X chromosome inactivation skewing marked with white squares. The results of
the quantification of tyrosine hydroxylase positive, MeCP2 positive or negative cells are shown. N indicates the number of tyrosine hydroxylase
positive neurons scored. B) Representative images of a section co stained with DAPI (DNA), anti MeCP2 (4H7) and anti tyrosine hydroxylase
antibodies. The motor cortex region is depicted in an overview (upper panels; scale bar 80 um). A magnification corresponding to the red square is
shown in the lower panels (scale bar 20 um). To illustrate the scoring strategy, an example of tyrosine hydroxylase and MeCP2 positive neuron is
marked by+and of tyrosine hydroxylase positive and MeCP2 negative neuron is marked by -.

doi:10.1371/journal.pone.0026499.g007
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Figure 8. Summary of the characterization of the rabbit, rat and mouse anti MeCP2 antibodies.
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staining with rabbit anti tyrosine hydroxylase (TH) and our rat
MeCP2 antibody (4H7). TH is the first enzyme in the
biosynthesis of dopamine and norepinephrine from tyrosine
and is, therefore, a marker for dopaminergic and noradrenergic
neurons. Roux et al. [29] showed that TH positive cells always
co-expressed MeCP2 and, hence, X chromosome inactivation
skewing can be obtained by counting TH positive cells with and
without MeCP2 signal. We focused on two areas of the cortex,
the motor cortex and the somatosensory cortex (Figure 7). In
both cases we could observe a pronounced X chromosome
inactivation skewing favoring wild type MeCP2 expression
(73%). Previously published mouse data suggest that X
chromosome inactivation skewing in brain is the reason for very
different phenotypes in RTT [30]. The degree of skewing is
controversial and might dependent on the tissue analyzed or the
method applied [30,31]. Our antibodies could help to elucidate
the state of X chromosome inactivation in RTT tissue in
particular also with respect to truncated versus full length
MeCP2 by a combination of the N and C-terminal specific
antibodies.

Figure 8 summarizes the characterization of the novel anti
MeCP2 antibodies. The antibodies recognize MeCP2 from
different species, including human, mouse, rat and pig. Whereas
the two new mouse antibodies are suitable for western blot,
immunoprecipitation and to a lesser extend for immunofluores-
cence, the rabbit polyclonal as well as the rat monoclonal
antibodies performed very well in immunoblotting, immunopre-
cipitation, and immunofluorescence analysis of ectopic and
endogenous MeCP2. In addition, one mouse and two rat
monoclonal antibodies as well as the rabbit polyclonal antiserum
perform well in chromatin immunoprecipitation making them a
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very valuable set of tools for studies of MeCP2 pathophysiology i
situ and in vitro.

Supporting Information

Figure S1 A) Epitope mapping. Complete blots of the
epitope mapping presented in Figure 3 together with a schematic
representation of the constructs. B) In situ analysis of MeCP2
in cells. Mouse myoblasts (C2C12 cells) were transiently
transfected with GFP-MECP2 (human) and fixed with methanol.
MECP2 was then detected with our monoclonal antibodies
(undiluted) and our rabbit polyclonal antibody (1:500). The first
row shows the DNA counterstain (DAPI) of transfected and
untransfected cells (green). The row underneath shows the signal
obtained by our antibody staining (red). The third row shows the
localization of the transfected GFP-MECP2 (blue). The merge
contains an overlay of the antibody staining, the fluorescent signal
of GFP-MECP2 and the DNA counterstain. Scale bar 20 pm.
(PDF)
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Figure S1. A) Epitope mapping. Complete blots of the epitope mapping presented in Figure 3 together with a schematic
representation of the constructs. B) In situ analysis of MeCP2 in cells. Mouse myoblasts (C2C12 cells) were transiently
transfected with GFP-MECP2 (human) and fixed with methanol. MECP2 was then detected with our monoclonal
antibodies (undiluted) and our rabbit polyclonal antibody (1:500). The first row shows the DNA counterstain (DAPI) of
transfected and untransfected cells (green). The row underneath shows the signal obtained by our antibody staining (red).
The third row shows the localization of the transfected GFP-MECP2 (blue). The merge contains an overlay of the antibody
staining, the fluorescent signal of GFP-MECP2 and the DNA counterstain. Scale bar 20 ym.



Results

53



Results

54



Results

2.2 Versatile toolbox for high throughput biochemical and functional studies

with fluorescent fusion proteins

55



Results

56



OPEN a ACCESS Freely available online

"PLoS one

Versatile Toolbox for High Throughput Biochemical and
Functional Studies with Fluorescent Fusion Proteins

Garwin Pichler'*, Antonia Jack?, Patricia Wolf', Sandra B. Hake?

1 Department of Biology Il and Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Planegg-Martinsried, Munich, Germany,
2 Center for Integrated Protein Science Munich at the Adolf-Butenandt Institute, Department of Molecular Biology, Ludwig Maximilians University of Munich, Munich,

Germany

Abstract

Fluorescent fusion proteins are widely used to study protein localization and interaction dynamics in living cells. However,
to fully characterize proteins and to understand their function it is crucial to determine biochemical characteristics such as
enzymatic activity and binding specificity. Here we demonstrate an easy, reliable and versatile medium/high-throughput
method to study biochemical and functional characteristics of fluorescent fusion proteins. Using a new system based on 96-
well micro plates comprising an immobilized GFP-binding protein (GFP-mulitTrap), we performed fast and efficient one-step
purification of different GFP- and YFP-fusion proteins from crude cell lysate. After immobilization we determined highly
reproducible binding ratios of cellular expressed GFP-fusion proteins to histone-tail peptides, DNA or selected RFP-fusion
proteins. In particular, we found Cbx1 preferentially binding to di-and trimethylated H3K9 that is abolished by
phosphorylation of the adjacent serine. DNA binding assays showed, that the MBD domain of MeCP2 discriminates between
fully methylated over unmethylated DNA and protein-protein interactions studies demonstrate, that the PBD domain of
Dnmt1 is essential for binding to PCNA. Moreover, using an ELISA-based approach, we detected endogenous PCNA and
histone H3 bound at GFP-fusions. In addition, we quantified the level of H3K4me2 on nucleosomes containing different
histone variants. In summary, we present an innovative medium/high-throughput approach to analyse binding specificities
of fluroescently labeled fusion proteins and to detect endogenous interacting factors in a fast and reliable manner in vitro.
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Introduction

Over the past decade a variety of proteomic approaches have
been used to identify cellular components in order to understand
the mechanism and inner workings of cells [1]. For example, mass
spectrometry-based proteomics uncovered the proteome of many
different organisms as well as cell-type specific differences in
protein expression. However, to understand and characterize the
function of single proteins, as well as the interplay between
different factors, it is essential to gain further insights into their
abundance, localization, dynamic interactions and substrate
specificities.

Fluorescent proteins like the green fluorescent proteins (GFP)
[2] and spectral variants have become popular tools to study the
localization and dynamic interactions of proteins i vivo. Despite,
the availability of a variety of commercial mono- and polyclonal
antibodies against GFP and other fluorescent proteins [3,4] (e.g.
Abcam, UK; Sigma, USA; Roche, Germany, ChromoTek,
Germany), proteins are mostly fused to a small epitope tag such
as FLAG or c-Myc to analyze biochemical characteristics like
enzymatic activities and/or binding specificities. Thus, integration
of such i witro data with i vivo data obtained with fluorescently
labeled proteins has, in part, been impeded by the simple fact that

@ PLoS ONE | www.plosone.org

different protein tags are used for different applications. The gold
standard to examine binding affinities is surface plasmon
resonance (SPR) [5]. One drawback of this method is the need
of large amount of proteins. Such proteins have to be expressed
and purified from bacterial systems (e.g. E.coli) or lower eukaryotes
such as yeast (e.g. S. cerevisiae). Thus, the recombinant proteins lack
essential post-translational modifications or are not folded properly
possibly leading to different binding properties and inaccurate
results. In addition with SPR measurements one can only
determine the binding affinity to one substrate. This does not
reflect the i vivo situation where most proteins have the choice
between many different binding substrates in parallel.

Protein microarrays are an alternative to study protein-protein
interactions in high-throughput manner [6]. Once more the
drawback of this # wvitro method is the laborative and time-
consuming preparation of recombinant proteins or protein
domains. Therefore protein microarrays are limited to domains
that can be produced as soluble, well-folded proteins [6].

Recently, specific GFP binding proteins based on single domain
antibodies derived from Lama alpaca have been described [7]
(GFP-Trap ChromoTek, Germany). The GFP-Trap exclusively
binds to wtGFP, ¢GFP and GFP5®T as well as to YFP and ¢ YFP.
Coupling to matrices including agarose beads or magnetic

May 2012 | Volume 7 | Issue 5 | 36967



particles the GFP-Trap allows for one-step purification of GIP-
fusion proteins. Previous studies made use of the GFP-Trap to
perform a broad range of different methods including mass
spectrometry analysis [8], DNA binding, DNA methyltransferase
activity assays [9], as-well-as histone-tail peptide binding assays
[10]. One mayor disadvantage of the GFP-Trap is, that batch
purification of GFP-fusions is very laborious and time-consuming
and one cannot test different GFP-fusion and/or assay conditions
in parallel. Here, we present an innovative and versatile high-
throughput method to quantitatively measure binding specificities
and to detect endogenous interacting factors in a fast and reliable
manner m vitro: 96-well micro plates coated with immobilized
GFP-Trap (GFP-multiTrap). To demonstrate the general suitabil-
ity of our assays, we choose already known binding partners and
compared our results with previous publications. Using this
method, we could confirm that Chxl preferentially binds to di-
and trimethylated histone H3 lysine 9 and that this binding is
abolished by phosphorylation of the adjacent serine 10 [11-13]. In
addition, we determined a 4-fold preference of the MBD domain
of MeCP2 for fully over unmethylated DNA in accordance to [14—
16]. Furthermore, we performed protein-protein interaction assays
and found that the Dnmtl binds to PCNA in a PBD domain-
dependent manner consistent to [17,18]. In contrast, Ligaselll
binds Xrccl but does not interact with PCNA [19,20]. Using an
ELISA-based assay, we were able to detect endogenous PCNA
bound to immunoprecipiated Dnmtl, Fenl and PCNA itself. In
accordance with our protein-protein interaction data, Dnmtl
lacking the PBD domain (DnmtIAPBD) could not co-immuno-
precipate with PCNA. Consistent with our histone-tail peptide
binding data, we could detect endogenous histone H3 bound to
Cbx1. Finally, we quantified specific histone modifcations on
nucleosomes comprising different histone variants. All of these
data clearly demonstrate the versatility and easy handling of this
high-troughput approach and its immense benefit to many
researchers.

Results

One-step Purification of GFP-fusion Proteins

In a first step, we tested the efficiency of the GFP-multiTrap to
purify GFP-fusion proteins from cellular extracts. First, we
examined the pull-down efficiency of a GFP-tagged protein and
chose GIFP-Cbx1 as a model protein. Cbx1 is a chromodomain-
containing protein related to the Drosophila HP1p, a well-studied
heterochromatin-associated protein [11]. We used cell extracts
from HEK293T cells transiently expressing GFP-Cbx1 or GFP,
purified the GFP-fusions using the GFP-multiTrap, cluted the
bound fractions, separated them by SDS-PAGE and visualized the
bound proteins by coomassic staining. The bound fractions
displayed mainly GFP as well as GFP-Cbx1l with only minor
impurities (Figure 1A), providing therefore a reliable tool for
downstream biochemical analyses. Notably, the washing condi-
tions can be varied according to the downstream applications. In
addition to these qualitative results, we performed experiments to
quantify the pull-down efficiency. For this purpose we quantified
the amount of bound GFP with varying concentrations of input
GFP from cellular extracts. After binding, the single wells were
subjected to several washing steps and bound GIFP was analyzed
by fluorescent read-out using a micro plate reader. Notably, the
input amount of protein/substrate was measured in solution,
whereas the bound fraction represents one value on the 96-well
surface. We measured the fluorescence intensities of bound GFP
and plotted the amount of bound GFP as a function of total GFP
(Figure 1B). The amount of bound GFP increased linearly from 10
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to 130 nM of total input and saturated between 130 and 400 nM.
Next, we quantified the amount of bound GFP by immunoblot-
ting. Therefore, we eluted the bound GIP fractions, separated
them by SDS-PAGE, visualized the bound proteins by immuno-
blot analysis (Figure 1C) and quantified the GFP signal by
measuring the mean intensity via Image J (Figure 1D). Similar to
the quantifcation by fluorescent read out using a micro plate
reader, the amount of bound GFP increases linearly from 10 to
130 nM of total input and saturates between 130 and 400 nM.

In summary, we demonstrated that the GFP-multiTrap allows
for fast and efficient one-step purification of GFP-fusion proteins
directly from crude cell lysates in a high-throughput manner. The
method works well for both qualitative and quantitative measure-
ments and the immunoprecipitated GFP-fusions can then be
further tested in biochemical assays.

In vitro Histone-tail Peptide and DNA Binding Assay

In the next assay we determined whether this approach is also
feasible to quantify binding affinities between GFP-proteins and
peptides or DNA. First, we analyzed histone-tail peptide binding
specificities of the chromobox homolog 1, Cbxl, fused with a N-
terminal GFP-tag using the GFP-multiTrap. GFP-Cbxl was
purified from mammalian cell lysate, as described above, and the
bound protein was incubated with TAMRA-labeled histone-tail
peptides. A set of 20 different histone-tail peptides (Table 1) was
used in technical triplicates in parallel and GFP served as negative
control (GFP data is not shown). After removal of unbound
substrate the amounts of protein and histone-tail peptide were
determined by fluorescence intensity measurements using a micro
plate reader. Binding ratios were calculated by dividing the
concentration of bound histone-tail peptide by the concentration
of GFP fusion (Figure 2A). GFP-Cbxl preferentially binds
H3K9me3 and H3K9me2 histone-tail peptides consistent with
previous studies [11,12]. As expected, the phosphorylation of
serine 10 (S10p) next to the trimethylated lysine 9 leads prevents
binding of Cbxl, which is in accordance with previous reports
[13]. In addition to fluorescent quantification via a micro plate
reader, we scanned the TAMRA signals using a Typhoon scanner
(Figure 2B). Here, we detected TAMRA signals in the wells
corresponding to di- and trimethylated H3K9. Notably, we did
not detect differences in binding towards di-and trimethylated
H3K9 using a micro plate reader. However, we could detect
a preference for tri- over dimethylated H3K9 using a fluorescence
scanner. These differences could result from different sensitivities
of both methods. Furthermore, we performed a competition assay
to demonstrate the specificity of the histone-tail peptide-binding
assay. We incubated GFP-Cbx1 with TAMRA-labeled H3K9me3
in parallel with either biotinylated H3K9me3 or H3K9ac histone-
tail peptides. As expected, the addition of biotinylated H3K9me3
histone-tail peptide significantly decreased the binding of Cbx1 to
TAMRA-labeled H3K9me3, whereas the addition of biotinylated
H3K9ac did not alter the binding ratios (Figure 2C). In previous
studies [11,12], the binding affinities of the HP1f chromo domain,
the Drosophila homolog of mammalian Cbxl, for both di- and
trimethylated H3K9 peptides have been found to be 7 and
2.5 uM, respectively. In contrast, we could not detect a significant
difference in binding ratios between di- and trimethylated H3K9
histone tail peptides using a micro plate reader (Figure 2A). One
explanation could be the use of different expression systems. While
the binding ratios for the HP1B chromo domain were determined
using bacterially expressed protein we used a fluorescent fusion
protein derived from mammalian cells. In this context a recent
study revealed that recombinant HPla prepared from mammalian
cultured cells exhibited a stronger binding affinity for KO9-
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Figure 1. One-step purification of GFP and GFP-fusion proteins. Purification of GFP and GFP-Cbx1 expressed in HEK293T cells. All GFP
concentrations were quantified via plate reader. (A) Purification of GFP and GFP-Cbx1 from HEK293T cell extracts, transciently transfected with the
GFP-fusions. Input (I), flow-through (FT) and bound (B) fractions were separated by SDS-PAGE and visualized by coomassie staining. (B) Different
amounts of GFP cell lysate were added into wells of a 96-well plate immobilized with the GFP-Trap (GFP-multiTrap).Shown are means * SD from two
independent experiments. (C) Bound GFP fractions from both independent experiments (B) were eluted, seperated by SDS-PAGE and visualized by
immunoblot analysis using an anti-GFP mouse antibody (Roche, Germany). (D) Quantification of bound GFP fractions by immunoblotting. The mean

intensities of the GFP signals were measured using Image J.
doi:10.1371/journal.pone.0036967.g001

methylated histone H3 (H3K9me) in comparison to protein
produced in FEscherichia coli [21]. Biochemical analyses revealed that
HP1la was multiply phosphorylated at N-terminal serine residues
(S11-14) in human and mouse cells and that this phosphorylation
enhanced the affinity of HPla for H3K9me, displaying the
importance of post-translational modifications for binding affinities
[21]. To determine the binding affinity of GIFP-Cbxl to
H3K9me3, we varied the input amount of histone-tail peptide.
We plotted the amount of bound histone-tail peptide as a function
of total peptide and fitted the values using GraphPad Prism and
nonlinear regression (Figure 2D). The amount of bound
H3K9me3 histone-tail peptide increases linearly and saturates at
approximately 500 nM of input peptide. In contrast to H3K9me3,
we could not detect any binding of Chxl to H3 histone-tail
peptides. Notably, the exact determination of binding affinities was
not possible due to differences in the technical measurement of
input versus bound fractions. Here, the input amount of protein/
substrate was measured in solution, whereas the bound fraction
represents one value on the 96-well surface.

In addition to histone-tail peptide binding assays, we performed
DNA-binding assays. We purified the methyl-binding domain
(MBD) of MeCP2, fused with a C-terminal YFP tag, from cell
extracts as described and performed competition binding analysis
by incubating immobilized MBD-YFP with fluorescently labeled

@ PLoS ONE | www.plosone.org

un- and fully methylated DNA (Table 1). As a result we observed
a five-fold preference of MBD for fully methylated DNA over
unmethylated DNA (Figure 2E). In addition, we measured the
amount of bound DNA to MBD-YFP by varying the input amount
of DNA. We plotted the amount of bound un- and fully
methylated DNA as a function of total un-and fully methylated
DNA and fitted the values using GraphPad Prism and nonlinear
regression (Figure 2F). Similar to the relative binding ratios, MBD
binds preferentially to fully methylated DNA. These results are in
accordance with previous studies describing that MeCP2 interacts
specifically with methylated DNA mediated by the MBD domain.
In these studies, electrophoretic mobility shift assays (EMSA) using
the isolated MBD domain expressed in . coli were performed and
dissociation constants of 14,7 and 1000 nM were calculated for
symmetrically methylated and unmethylated DNA, respectively
[14-16].

To assess the suitability of the i vitro histone-tail peptide and
DNA binding assay for high-throughput applications, the Z-factor
was calculated. For histone-tail peptide binding assays, we
calculated the Z-factor using the relative binding ratios of
H3K9me3 to GFP-Cbxl as positive state and of H3K9me0 to
GFP-Cbx1 as negative state. For the DNA binding assay, we
calculated the Z-factor using the relative binding ratios of fully
methylated DNA to MBD-YFP as positive state and of
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DNA oligos

DNA substrate DNA sequence DNA labeling
CG-up 5’- CTCAACAACTAACTACCATCCGGACCAGAAGAGTCATCATGG -3’ No

MG-up 5'- CTCAACAACTAACTACCATCMGGACCAGAAGAGTCATCATGG -3’ No

um550 5'- CCATGATGACTCTTCTGGTCCGGATGGTAGTTAGTTGTTGAG -3’ ATTO550 at 5'end
um700 5'- CCATGATGACTCTTCTGGTCCGGATGGTAGTTAGTTGTTGAG -3’ ATTO700 at 5'end
mC700 5'- CCATGATGACTCTTCTGGTCMGGATGGTAGTTAGTTGTTGAG -3’ ATTO700 at 5'end

DNA substrates

DNA substrate CpG site Label Oligo | Oligo 1l
UMB-550 unmethylated 550 CG-up um550
UMB-700 unmethylated 700 CG-up um700
FMB-700 Fully methylated 700 MG-up mC700
DNA sets

Binding set Control set

UMB-550 UMB-550

FMB-700 UMB-700

Histone-tail peptides

H3 (1-20) ART K QTARKSTGGKAPRKQLK
H3K4me1 ART X1 QTARKSTGGKAPRKQLK
H3K4me2 ART X2 QTARKSTGGKAPRKQLK
H3K4me3 ART X3 QTARKSTGGKAPRKQLK
H3K4ac ART Z QTARKSTGGKAPRKQLK
H3K9me1 ARTKQTAR X1 S TGGKAPRKQLK
H3K9me2 ARTKQTAR X2 S TGGKAPRKQLK
H3K9me3 ARTKQTAR X3 S TGGKAPRKQLK
H3K9me3S10p ARTKQTAR X3 Z2 TGGKAPRKQLK
H3K9ac ARTKQTAR Z S TGGKAPRKQLK
H3 (17-36) RKQLATKAAR K SAPATGGVK
H3K27me1 RKQLATKAAR X1 SAPATGGVK
H3K27me2 RKQLATKAAR X2 SAPATGGVK
H3K27me3 RKQLATKAAR X3 SAPATGGVK
H3K27ac RKQLATKAAR Z SAPATGGVK
H4 (10-29) LGKGGAKRHR K VLRDNIQGI
H4K20me1 LGKGGAKRHR X1 VLRDNIQGI
H4K20me2 LGKGGAKRHR X2 VLRDNIQGI
H4K20me3 LGKGGAKRHR X3 VLRDNIQGI
H4K20ac LGKGGAKRHR Z VLRDNIQGI

TAMRA at C-terminus

TAMRA at N-terminus

doi:10.1371/journal.pone.0036967.t001

unmethylated DNA to MBD-YFP as negative state (Table 2). The

Z-factors of 0.766 for the histone-tail peptide binding assay and

0.756 for the DNA binding assay strongly indicate that both assays
are robust, reproducible and suitable for high-throughput applica-

tions.

@ PLoS ONE | www.plosone.org

X1: monomethylated Lysine; X2: dimethylated Lysine; X3: trimethylated Lysine; Z: acetylated Lysine; Z2: phosphorylated Serine.

In vitro Protein-protein Binding Assay

In addition to the detection of substrate specificity (e.g. histone-
tail peptide) and DNA binding, analysis of the interaction with
other cellular components and factors is essential to understand
the function of proteins.

The use of fluorescence intensity read-out systems for the

quantification of protein-protein interactions i vitro provides a new
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Figure 2. In vitro histone-tail peptide and DNA binding assay. /n vitro binding ratios of fluorescently labeled substrates over bound GFP
fusion proteins were determined. (A)-(D) In vitro histone-tail peptide binding assay with GFP-Cbx1. (A) Histone H3- and H4-tail binding specificities of
Cbx1. A final concentration of 0.15 uM TAMRA-labeled histone-tail peptide was added per well. Fluorescent signals of bound TAMRA-labeled histone-
tail peptides and GFP-fusion protein were quantified via plate reader. Shown are means * SD from three independent experiments (B) Fluorescent
signals of bound TAMRA-labeled histone-tail peptides visualized by fluorescent scanner. (C) Competition assay between TAMRA-labeled H3K9me3
and biotinylated histone-tail peptides with GFP-Cbx1. Shown are means * SD from three independent experiments. Statistical significance between
the binding ratios is indicated; **P<0.003. (D) Different amounts of TAMRA-labeled H3K9me3 and H3 histone-tail peptides were added to GFP-Cbx1.
Three or two independent experiments for H3K9me3 or H3 histone-tail peptides were performed, respectively. Shown are means * SD and the
amount of bound histone-tail peptide was plotted as a function of total histone-tail peptide. The curve was fitted using GraphPad Prism and
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nonlinear regression. All input and bound fractions were quantified via a plate reader. (E) DNA binding specificities of the MBD domain of MeCP2 to
un- and fully methylated DNA in direct competition. Shown are means *+ SD from three independent experiments. (F) Different amounts of Atto550-
labeled unmethylated and Atto700-labeled fully methylated DNA in direct competition were added to purified MBD-YFP. Shown are means * SD
from three independent experiments. The amount of bound DNA peptide was plotted as a function of total DNA. The curve was fitted using
GraphPad Prism and nonlinear regression. All input and bound fractions were quantified via a plate reader.

doi:10.1371/journal.pone.0036967.9002

and simple method avoiding laborious and inaccurate protein
detection using conventional immunoblotting systems.

To address the question if such interaction analysis can be
performed in a multi-well format we analyzed the interaction of
single GFP-fusions with RFP-fusion proteins expressed in mam-
malian cells. More precisely, we determined quantitative binding
ratios between nuclear located proteins involved in DNA-
replication (PCNA) [17,18], DNA-methylation (Dnmtl) [22] as
well as in DNA-repair (Xrccl) [23]. As described, we immobilized
GFP-fusions on the GFP-multiTrap and incubated them with cell
lysate containing RFP-fusion proteins. After binding, we removed
unbound material, measured the concentrations of RFP and GFP
and calculated the molar binding ratios. Firstly, we determined the
binding ratios of the green fluorescent PCNA-binding domain of
Dnmtl (GFP-PBD) to RFP-PCNA and used DnmtIAPBD as
a negative control. By measuring the fluorescent signal intensities
we detected that RFP-PCNA binds to GFP-PBD in a molar ratio
of 1.42%+0.31 but not to DnmtIAPBD (Figure 3A).

For a direct comparison we eluted the bound fractions,
separated them by SDS-PAGE and visualized the proteins by
immunoblotting (Figure 3B). Both, GFP-PBD and RFP-PCNA are
detected in the input and bound fractions whereas RFP is not
visible in the bound fraction of GFP-PBD (Figure 3B).

In addition, we measured the amount of bound RFP-fusion to
GFP-PBD with varying the input amount of RFP-fusion. We
plotted the amount of bound RFP-fusion as a function of total
RFP-fusion and fitted the values using GraphPad Prism and
nonlinear regression (Figure 3C). Similar to the relative binding
ratios, GFP-PBD binds to RFP-PCNA but not to RFP.

These results are in accordance with previous findings that
Dnmtl associates with the replication machinery by directly
binding to PCNA, a homotrimeric ring which serves as loading
platform for replication factors, and that this binding depends on
the PCNA-binding domain in the very N-terminus of Dnmtl
[17,18]. In addition by determining the quantitative binding ratio
between both partner proteins our approach provides a more
detailed insight in the binding events occurring at the central
loading platform of the DNA replication.

Secondly, we determined the molar binding ratio of GI'P-Ligase
III to RFP-Xrccl. Xreel binds in a molar ratio of 0.61£0.14 to
Ligase III but did not bind to other proteins such as GFP-PBD,

Table 2. Overview of relative binding ratios and Z-factor values.

GFP-Dnmt1APBD or GFP. Previous studies demonstrated that
DNA Ligase III was recruited to DNA repair sites via its BRC'T
domain mediated interaction with Xrccl [19,20].

For the protein-protein binding assays, we calculated the Z-
factor using the molar binding ratios of RFP-PCNA to GFP-PBD
as positive state and RFP to GFP-PBD as negative state (Table 2).
The Z-factor of 0.56 indicated that the protein-protein binding
assay 1s robust and reproducible.

In summary, we demonstrate a new quantitative and reliable
high-throughput method to analyze protein-protein interactions
using GI'P- and RFP-fusion proteins.

Enzyme-linked Immunosorbent Assay (ELISA)

Next we examined endogenous protein-protein interactions
using an ELISA assay. For this purpose, we precipitated GFP-
fusion proteins in the 96 well format on the GFP-multiTrap and
cross-linked bound fractions with formaldehyde (CH,0O) and/or
treated the bound fractions with methanol (MeOH). Using specific
antibodies against PCNA, we determined the binding of endog-
enous PCNA to GFP fusions of Dnmtl, DnmtlAPBD, PCNA,
Fenl, which is a flap endonuclease and an essential DNA
replication protein [24]. We could detect endogenous PCNA
binding to Dnmtl but not to DnmtIAPBD similar to the results
obtained with the protein-protein interaction assay using REP-
PCNA (Figure 4A). In addition, we detected binding of
endogenous PCNA to Fenl but also to PCNA itself. These results
fit well to former studies showing that Fenl or maturation factor 1
associates with PCNA in a stoichiometric complex of three Fenl
molecules per PCNA trimer [25,26]. In addition to 100 described
interacting partners, it is known that PCNA also interacts with
itself and forms a trimeric ring, which is confirmed by our ELISA
assay by giving a signal for endogenous PCNA binding to GFP-
PCNA (Figure 4A).

Next, we determined the binding of Chxl to endogenous
histone H3. Similar to PCNA, we precipitated GFP-Cbx1 and
GFP and detected endogenous H3 via an H3-antibody coupled to
HRP. In accordance with the experiments using TAMRA labeled
histone 3 peptides, we observed an H3 ELISA signal for binding to
Cbx1 but not to GFP. Using an H3K9me3-specific antibody, we
could not detect an ELISA signal (data not shown), due to the fact
that the tight binding of Cbx1 (Figure 2) to H3K9me3 most likely

Relative binding ratios of Substrate/GFP- or YFP-fusion

Histone-tail peptide binding DNA binding Protein-protein binding
Fusion protein GFP-Cbx1 MBD-YFP GFP-PBD
Substrate H3K9me3 H3K9un Fully methylated DNA Unmethylated DNA RFP-PCNA RFP
Average ratio 0,5715 0,0772 0,0912 0,0223 1,487 0,005
Standard deviation 0,0150 0,0236 0.0037 0.0019 0,211 0,006
Z-factor 0,766 0.756 0.560

doi:10.1371/journal.pone.0036967.t002

@ PLoS ONE | www.plosone.org

Based on the average relative binding ratios and the standard deviations we calculated the Z-factor.
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Figure 3. In vitro Protein-Protein binding assay. (A) In vitro binding ratios of RFP-fusion proteins over GFP-fusion proteins. Shown are means *
SD from six independent experiments. (B) After immunoprecipitation input () and bound (B) fractions were separated by SDS-PAGE and visualized by
immunoblot analysis using the anti-GFP rat monoclonal antibody; 3H9, and the anti-RFP rat monoclonal antibody, 5F8 (both ChromoTek, Germany).
GFP-PBD: 30 kDa; RFP-PCNA: 56 kDa; GFP: 28 kDa, RFP: 26 kDa. (C) Different amounts of RFP-fusion protein were added to purified GFP-PBD. Shown
are means = SD from two independent experiments. The amount of bound RFP was plotted as a function of total RFP. The curve was fitted using
GraphPad Prism and nonlinear regression. All input and bound fractions were quantified via a plate reader.
doi:10.1371/journal.pone.0036967.9003

occludes the antibody epitope, as has been proposed for HP1 most likely the binding of any antibodies [27]. To further analyze
binding to H3K9me3. In this study, the histone H3 trimethyl- the bound fractions, we eluted GFP-Cbx1 and GFP, separated
lysine epitope is embedded in an aromatic cage blocking thereby them on an SDS-PAGE gel and visualized GFP and H3 by
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Figure 4. Pulldown of endogenous interaction partners. GFP-fusions were immunoprecipitated and endogenous interacting proteins were
detected either by ELISA or immunoblot analysis. (A) ELISA signal (Absorbance at 450 nm) of bound endogenous PCNA detected by a PCNA antibody
to purified GFP-fusion proteins. Shown are means + SD from three independent experiments. (B) ELISA signal (Absorbance at 450 nm) of bound
endogenous Histone H3 detected by an H3 antibody to purified GFP-fusion proteins. Bound fractions were either cross-linked with 2% formaldehyde
(CH,0) and/or additionally permeabilized with MeOH. Shown are means = SD from two independent experiments. (C) and (D) After
immunoprecipitation input (I) and bound (B) fractions were separated by SDS-PAGE and visualized by immunoblot analysis. (C) The total protein
concentration of the input fractions were adjusted. (D) The GFP concentrations of the input fractions were adjusted.

doi:10.1371/journal.pone.0036967.9004

immunoblotting. Histone H3 was detectable in the input fractions
of both GFP and GFP-Cbx1 but as expected, only in the bound
fraction of GFP-CbxI.

Comparative Analysis of Posttranslational Histone
Modifications

Histone posttranslational modifications play an important role
in the structural organization of chromatin and often correlate to
transcriptional activation or repression depending on their type
and location. Recently, it has been shown that nucleosomal
incorporation of histone variants can lead to alterations in
modification patterning and that such changes may complement
the properties brought by the variant itself [28].

In order to investigate the suitability of the GFP-multiTrap in
comparing such histone posttranslational modifications, we
isolated nucleosomes from Hela cells expressing either GIP-
H2A or GIFP-H2A.Z and precipitated them with the 96 well micro
plate. GFP levels were then recorded (data not shown) to ensure
equal loading of substrate per well. In addition, as a negative
control, the cytoplasmic supernatant fraction was also incubated
with the GFP-multiTrap. An ELISA approach was then used to

@ PLoS ONE | www.plosone.org

quantify differences in histone H3K4me2 levels between the two
different nucleosome compositions. Following cross-linking and
permeablization, bound nucleosomes were incubated with either
anti-H3, directly conjugated to HRP or anti-H3K4me2 (both
antibodies Abcam, UK). Histone H3K4me2 levels were then
normalized to the histone H3 signal. In accordance with published
data, H2A containing nucleosomes were depleted in H3K4me2
where as those containing H2A.Z showed a large enrichment for
this modification (Figure 5) [28].

Discussion

One challenge of the proteomic era is the effective integration of
proteomic, cell biological and biochemical data. Ideally, proteomic
data on tissue and cell cycle-specific expression of specific proteins
should be combined with subcellular localization and binding
dynamics of fluorescent proteins. Additionally, it is crucial to
determine cell biological and biochemical characteristics such as
interacting factors, enzymatic activity and substrate binding
specificities. The integration of all these different data has, in
part, been impeded by the simple fact that different protein tags

May 2012 | Volume 7 | Issue 5 | 36967



1.24
1.0-
0.8
0.6+
0.4
0.2

ol == mEEn I_I_I

H2A H2A.Z H2A H2A.Z

Detection of endogenous H3K4me2

Supernatant Nucleosomes

GFP-fusion proteins

Figure 5. Comparative analysis of posttranslational histone
modifications. Cytoplasmic supernatant (SN) or mononucleosome
(MN) fractions prepared from Hela cells expressing GFP-H2A or GFP-
H2A.Z were precipitated and the levels of H3 and H3K4me2 were
detected by ELISA (Absorbance at 450 nm). Shown are the H3K4me2
levels normalized to H3 and means = SD from two independent
experiments.

doi:10.1371/journal.pone.0036967.9005

are used for different applications. Here, we present a new
versatile, high-throughput method to determine in vitro binding
specificities and to detect endogenous interacting factors of GFP-
fusion proteins. We use 96-well micro plates with immobilized
GFP-Trap (GFP-multiTrap) for fast and efficient purification of
GIP-fusion proteins. We demonstrate the efficiency and purity of
the GFP immunoprecipitation (Figure 1), a prerequisite to obtain
reliable biochemical data on e.g. binding specificities. Moreover,
we measured histone-tail binding, DNA and protein-protein
binding ratios underlying the versatility of our approach (Figure 2
and 3 and Table 2). The suitability of the demonstrated assays for
high-throughput biochemical and functional studies was assessed
by calculating the Z-factors (Table 2). Therefore, our assay is
suitable to examine an initial high-throughput screening for
potential binding partners. Moreover, the assay can be used for
compound screening. Additionally, our method allows for de-
tection of endogenous interaction factors based on an ELISA assay
(Figure 4 and 5).

In contrast to other high-throughput techniques like conven-
tional microarrays, it does not require time-consuming recombi-
nant protein expression and purification but allows for the direct
biochemical analyses of GFP-fusion proteins expressed in mam-
malian cells. The versatile GFP-multiTrap combined with the
widespread use of fluorescent fusion proteins now enables a fast
and direct quantitative correlation of microscopic data concerning
the subcellular localization and mobility of fluorescent fusion
proteins with their enzymatic activity, interacting factors, and
DNA binding properties combining cell biology and biochemistry
with mutual benefits.

Materials and Methods

Expression Constructs, Cell Culture and Transfection
Mammalian expression constructs encoding GFP-Dnmtl, GFP-
DnmtlAPBD, GFP-PBD, GFP-PCNA, RFP-PCNA, GFP-Ligase

@ PLoS ONE | www.plosone.org
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III, mRFP, GFP, MBD-YFP, GFP-Fenl and RFP-Xrccl were
described previously [7,20,29-37]. Note that all constructs encode
fusion proteins of GFP, RFP or yellow fluorescent protein (YFP).
The Cbxl expression construct was derived by PCR from mouse
cDNA, cloned into pEGFP-C1 (Clontech, USA) and verified by
DNA sequencing. Throughout this study enhanced GFP (eGFP)
constructs were used and for simplicity referred to as GFP-fusions.
HEK293T cells [30] and HeLa Kyoto [29] were cultured in
DMEM  supplemented with either 50 ug/ml gentamicin
(HEK293T) or 1% penicillin/streptomycin (Hel.a Kyoto) and
10% fetal calf serum. For expression of GFP/RFP/YFP fusion
proteins, HEK293T cells were transfected with the corresponding
expression constructs using polyethylenimine (Sigma, USA). 2.
HeLa Kyoto cells were transfected using FuGene HD (Roche,
Germany) according to the manufacturer’s instructions. The
plasmid coding for GFP-H2A (H2A type 1, NP_003501.1) was
kindly provided by Emily Bernstein (Mount Sinai Hospital) and
the plasmid coding for GFP-Z-1 was a gift from Sachihiro
Matsunaga (University of Tokyo). Stable cell lines were selected
with 600 pg/ml G418 (PAA, Austria) and individual cell clones
sorted by wusing a FACSAria machine (Becton Dickinson,
Germany).

Histone-tail Peptides and DNA Substrate Preparation

Fluorescently labeled DNA substrates were prepared by mixing
two HPLC-purified DNA oligonucleotides (IBA GmbH, Germany
Table 1) in equimolar amounts, denaturation for 30 sec at 92°C
and slow cool-down to 25°C: allowing hybridization. Histone-tail
peptides were purchased as TAMRA conjugates and/or biotiny-
lated (PSL, Germany) and are listed in Table 1.

Preparation of Protein Extracts

HEK?293T cells were cultured and transfected as described [38].
For extract preparation 1 mg/ml DNasel, 1 mM PMSF and
Protease Inhibitor cocktail (Roche, Germany) were included in the
lysis buffer (20 mM Tris-HCI pH 7.5, 150 mM NaCl, 2 mM
MgCly, 0.5% NP40) or nuclear extract buffer (10 mM HEPES
pH 7.9, 10 mM KCI, 1.5 mM MgCl,, 0.34 M Sucrose, 10%Glyc-
erol, 1 mM B-mercapto-ethanol). Cells were lysed for 30 minutes
on ice followed by a centrifugation step (15/12000 rpm/4°C).
Extracts from transfected 10 cm plates were diluted to 500 pL.
with immunoprecipitation buffer (IP buffer; 20 mM Tris-HCI
pH 7.5, 150 mM NaCl, 0.5 mM EDTA) or dilution buffer
(20 mM HEPES pH 7.9, 150 mM KCI). An aliquot of 10 uL
(2%) were added to SDS-containing sample buffer (referred to as
Input (I)).

Purification and Elution of GFP/YFP/RFP- Fusions

For purification, 100 pL. or 50 pL precleared cellular lysate
for full-area plates or half-area plates, respectively, was added
per well and incubated for 2 hours at 4°C on a GFP-multiTrap
plate by continuous shaking. After removing the supernatant,
wells were washed twice with 100 ul. of washing buffer (WB;
20 mM Tris-HCI pH 7.5, 100-300 mM NaCl, 0.5 mM EDTA)
and 100 pL. of IP or dilution buffer was added for measure-
ment. The amounts of bound protein were determined by
fluorescence intensity measurements with a Tecan Infinite
M1000 plate reader (Tecan, Austria). Wavelengths for excitation
and emission of GFP are 490£10 nm and 51110 nm, for
RFP are 586%5 nm and 608*=10 nm and for YFP 525+5 nm
and 538%5 nm, respectively. The concentration of proteins was
calculated using calibration curves that were determined by
measuring the fluorescence signal of known concentrations of
purified GFP, RFP and YFP. Notably, factors interfering with
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fluorescence intensity measurements such as absorption of
excitation light by cell lysates, auto fluorescence of the samples
and/or scattering of the excitation/emission light by cell debris
are negligible (Figure S1). Bound proteins were ecluted with
300 mM Glycin pH 2.5 and subsequently buffered with 1 M
Tris pH 7.5. Elution fractions were added to SDS-containing
sample buffer (referred to as Bound (B)). Bound proteins were
visualized by immunoblotting using the anti-GFP mouse mono-
clonal antibody (Roche, Germany).

In vitro Histone-tail Peptide Binding Assay

The in wtro histone-tail binding assay was performed as
described previously [10]. After one-step purification of GFP
fusion proteins the wells were blocked with 100 pL. 3% milk
solved in TBS-T (0.075% Tween) for 30 minutes at 4°C on
a plate vortex, shaking gently. After blocking, the wells were
equilibrated in 50 uL. IP buffer supplemented with 0.05%
Tween. TAMRA-labeled histone-tail peptides were added either
to a final concentration of 0.15 UM or of the indicated
concentrations and the binding reaction was performed at RT
for 20 min on a plate vortex, shaking gently. After removal of
unbound substrate the amounts of protein and histone-tail
peptide were determined by fluorescence intensity measurements.
The concentrations of bound TAMRA-labeled histone-tail
peptides were calculated using calibration curves that were
determined by measuring a serial dilution of TAMRA-labeled
peptides with known concentrations.

Binding ratios were calculated dividing the concentration of
bound histone-tail peptide by the concentration of GFP fusion.
Wavelengths for excitation and emission of TAMRA were
560%5 nm and 5865 nm, respectively.

In vitro DNA Binding Assay

In wvitro DNA binding assay was performed as described
previously [9,10] with the following modifications. GFP/YFP
fusions were purified from HEK293T extracts using the 96-well
GFP-binder plates and incubated with two differentially labeled
DNA substrates at a final concentration of either 100 nM or of the
indicated concentration for 60 min at RT in IP buffer supple-
mented with 2 mM DTT and 100 ng/uL BSA. After removal of
unbound substrate the amounts of protein and DNA were
determined by fluorescence intensity measurements. The concen-
tration of bound ATTO-labeled DNA substrates was calculated
using calibration curves that were determined by measuring a serial
dilution of DNA-coupled fluorophores with known concentrations.
Binding ratios were calculated dividing the concentration of bound
DNA  substrate by the concentration of GFP/YFP fusion,
corrected by values from a control experiment using DNA
substrates of the same sequence but with different fluorescent
label, and normalized by the total amount of bound DNA.
Wavelengths for excitation and emission of ATTO550 were
545%5 nm and 575*5 nm and for ATTO700 700=10 nm and
720%10, respectively.

Protein-Protein Interaction

GFP fusions were purified from HEK293T extracts using the
96-well GFP multiTrap plates, blocked with 3% milk and
incubated with cellular extracts comprising the RFP fusions with
the indicated concentrations for 30 min at RT. After removal of
unbound RFP fusion (washing buffer) the amounts of proteins
were determined by fluorescence intensity measurements. Binding
ratios were calculated dividing the concentration of bound RFP
fusion by the concentration of GFP fusion. Wavelengths for
excitation and emission of RFP were 586+5 nm and 608+ 10 nm,
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respectively. Bound proteins were cluted and separated by SDS-
PAGE and visualized by immunoblotting using the anti-GFP rat
monoclonal antibody; 3H9, and the anti-red rat monoclonal
antibody, 5I'8 (both ChromoTek, Germany).

Enzyme-linked Immunosorbent Assay (ELISA)

GFP fusions were purified (from HEK293T extracts) using the
96-well GFP-multiTrap plates and were washed twice with
dilution buffer (for nucleosome experiments salt concentration
was adjusted to 300 mM). After washing bound fractions were
cither cross-linked with 2% formaldehyde and/or additionally
permeabilized with 100% MeOH. After blocking with 3% milk
solved in TBS-T (0.075% Tween) the wells were incubated with
primary antibody (monoclonal rat anti-H3-HRP (Abcam, UK),
polyclonal rabbit anti-H3K4me2 (Abcam, UK) or monoclonal rat
anti-PCNA, 16D10 (ChromoTek, Germany) overnight at 4°C on
a plate vortex, shaking gently. The wells were washed three times
with 200 ul. TBS-T and horseradish peroxidase-conjugated
secondary antibody (Sigma, USA) was incubated for 1 h at RT
for the detection of PCNA or H3K4me2. The wells were washed
again as described above. For PCNA experiments detection was
carried out by incubating each well with 100 uL. TMB (3,3",5,5'-
tetramethylbenzidine) for 10 minutes at RT. The reactions were
stopped with the addition of 100 uL. 1 M HySOy. For nucleosome
experiments, detection was carried out using OPD (Sigma, USA)
according to the manufacturers instructions. Bound histone H3,
PCNA or H3K4me2 levels were quantified by determination of
the absorbance at 450 nm using a Tecan Infinite M1000 plate
reader (Tecan, Austria).

Preparation of Mononucleosomes

2x107—10x10” HeLa cells, expressing cither GFP-H2A or GFP-
H2A.Z, were incubated in PBS, 0.3% Triton X-100 and Protease
Inhibitor Cocktail (Roche, Germany) for 10 min at4°C. Nuclei were
pelleted and supernatant (SN) transferred and retained. The pellet
was washed once in PBS, resuspended in EX100 buffer (10 mM
Hepes pH 7.6, 100 mM NaCl, 1.5 mM MgCl,, 0.5 mM EGTA,
10% (v/v) glycerol, 10 mM B-glycerol phosphate 1 mM DTT,
Protease Inhibitor Cocktail (Roche, Germany)) and CaCl, concen-
tration adjusted to 2 mM. Resuspended nuclei were digested with
1.5 U MNase (Sigma, USA) for 20 min at 26°C. The reaction was
stopped by addition of EGTA to a final concentration of 10 mM
followed by centrifugation for 10 min at 1000 rcf, 4°C. Mono-
nucleosome containing supernatant (MN) was retained.

Calculation of the Z-factors

To assess the suitability of the assay for high-throughput
biochemical and functional3 st gdifs& )the Z-factor was calculated
using the equation Z=1— ﬁ [39]. In this equation, G is
the standard deviation of the positive (p) and the negative (n)
control; p is the mean value for the molar binding ratio (for
positive (i) and negative (WL,) controls). The values of three
independent experiments were used to calculate the Z-factor and

all values are listed in Table 2.

Supporting Information

Figure S1 Factors interfering the measured fluores-
cence intensities. (A) The concentrations of GFP and RFP
expressed in HEK293T cells were measured in serial dilutions of
crude cell extracts. Shown are means = SD from two independent
experiments. Fluorescence intensities were measured via a plate
reader and the GFP and RFP concentrations were determined as
described in the Material and Methods part. (B) Background GFP
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and RFP signals in cell lysates of untransfected HEK293T cells.
The fluorescence intensities (I'I) were measured via a plate reader
and the concentrations were determined as described in the
Material and Methods part.
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Figure S1: Factors interfering the measured fluorescence intensities. (A)
The concentrations of GFP and RFP expressed in HEK293T cells were
measured in serial dilutions of crude cell extracts. Shown are means + SD
from two independent experiments. Fluorescence intensities were measured
via a plate reader and the GFP and RFP concentrations were determined as
described in the Material and Methods part. (B) Background GFP and RFP
signals in cell lysates of untransfected HEK293T cells. The fluorescence
intensities (FI) were measured via a plate reader and the concentrations were
determined as described in the Material and Methods part.
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Cooperative DNA and Histone Binding by Uhrf2 Links the
Two Major Repressive Epigenetic Pathways

Garwin Pichler, Patricia Wolf, Christine S. Schmidt, Daniela Meilinger, Katrin Schneider,
Carina Frauer, Karin Fellinger, Andrea Rottach, and Heinrich Leonhardt*

Ludwig Maximilians University Munich, Department of Biology II and Center for Integrated Protein Science Munich
(CIPS™), GroBhaderner Str. 2, 82152 Planegg-Martinsried, Germany

ABSTRACT

Gene expression is regulated by DNA as well as histone modifications but the crosstalk and mechanistic link between these epigenetic signals
are still poorly understood. Here we investigate the multi-domain protein Uhrf2 that is similar to Uhrf1, an essential cofactor of maintenance
DNA methylation. Binding assays demonstrate a cooperative interplay of Uhrf2 domains that induces preference for hemimethylated DNA,
the substrate of maintenance methylation, and enhances binding to H3K9me3 heterochromatin marks. FRAP analyses revealed that
localization and binding dynamics of Uhrf2 in vivo require an intact tandem Tudor domain and depend on H3K9 trimethylation but not on
DNA methylation. Besides the cooperative DNA and histone binding that is characteristic for Uhrf2, we also found an opposite expression
pattern of uhrfI and uhrf2 during differentiation. While uhrf1 is mainly expressed in pluripotent stem cells, uhrf2 is upregulated during
differentiation and highly expressed in differentiated mouse tissues. Ectopic expression of Uhrf2 in uhrf]’/ ~ embryonic stem cells did
not restore DNA methylation at major satellites indicating functional differences. We propose that the cooperative interplay of Uhrf2
domains may contribute to a tighter epigenetic control of gene expression in differentiated cells. J. Cell. Biochem. 112: 2585-2593,
2011. © 2011 Wiley-Liss, Inc.

KEY WORDS: UHRF1; UHRF2; DNA METHYLATION; HISTONE MODIFICATIONS; EPIGENETICS

D NA methylation and histone modifications are major
epigenetic marks involved in the regulation of gene
expression, inheritance of chromatin states, genome stability, and
cellular differentiation [Bird, 2002; Kouzarides, 2007; Reik, 2007].
Misregulation of epigenetic pathways, like erroneous DNA
methylation, may lead to cancer and other diseases [Jones and
Baylin, 2007]. Open questions concern the crosstalk and mechanistic
link between different epigenetic signals.

Genome-scale DNA methylation studies revealed a connection
between DNA methylation and histone modifications. Specifically,
DNA methylation correlates with the absence of H3K4 methylation
and presence of H3K9 methylation [Meissner et al., 2008]. This
correlation may in part be caused by DNA methyltransferases
specifically recognizing histone modifications. For instance, the de
novo DNA methyltransferase Dnmt3a and its cofactor Dnmt3L
specifically recognize unmethylated H3K4 mediated by the ATRX-
Dnmt3-Dnmt3L (ADD) domain [Ooi et al., 2007; Otani et al., 2009].
Dnmt1, which is involved in maintenance methylation during DNA

replication and DNA repair [Leonhardt et al., 1992; Mortusewicz
et al., 2005], specifically methylates hemimethylated DNA [Bestor
and Ingram, 1983; Pradhan et al., 1997] and associates with
constitutive heterochromatin via its targeting sequence (TS) domain
[Easwaran et al., 2004].

Recently, Uhrf1 (also known as Np95 or ICBP90) has been shown
to link DNA and histone modifications and has emerged as an
essential cofactor for the maintenance of genomic DNA methyla-
tion. Genetic ablation of uhrfl leads to remarkable genomic
hypomethylation, a phenotype similar to dnmt1~/~ embryonic stem
cells (ESCs) [Bostick et al., 2007; Sharif et al., 2007]. Uhrf1 binds
hemimethylated DNA via a SET and RING associated domain (SRA)
domain and targets Dnmt1 to its substrate of maintenance DNA
methylation [Bostick et al., 2007; Sharif et al., 2007; Arita et al.,
2008; Avvakumov et al., 2008; Hashimoto et al., 2008; Qian et al.,
2008; Rottach et al., 2010]. This targeting activity of Uhrf1 is based
on specific binding to the heterochromatin mark H3K9me3 via a
tandem Tudor domain (TTD) [Karagianni et al., 2008; Rottach et al.,
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2010]. In addition, Uhrf1 interacts with Dnmt3a and Dnmt3b and
with histone modifying enzymes like HDAC1, G9a, and Tip60 [Unoki
et al., 2004; Achour et al., 2009; Kim et al., 2009; Meilinger et al.,
2009]. Finally, Uhrf1 displays E3 ubiquitin ligase activity for histone
H3 [Citterio et al., 2004] and is involved in large scale reorganization
of chromocenters [Papait et al., 2008].

Interestingly, a second member of the Uhrf family, Uhrf2, harbors
similar domains [Bronner et al.,, 2007]. Until now, the only
known function of Uhrf2 is a role in intranuclear degradation of
polyglutamine aggregates [Iwata et al., 2009]. In this study, we
systematically investigated the function and interplay of distinct
Uhrf2 domains in DNA and histone tail substrate recognition and
report first hints on cell-type specific functions of Uhrf1 and Uhrf2.

EXPRESSION CONSTRUCTS

Expression constructs for GFP, RFP-PCNA, Uhrf1-GFP, and GFP
constructs of Dnmt1 were described previously [Sporbert et al.,
2005; Fellinger et al., 2009; Meilinger et al., 2009]. All Uhrf2
expression constructs were derived by PCR from mouse uhrf2-myc
cDNA (MR210744, ORIGENE). To obtain GFP fusion constructs, the
uhrfl cDNA [Rottach et al., 2010] was replaced by uhrf2 encoding
PCR fragments in the pCAG-uhrf1-GFP vector. The deletion and
point mutant expression constructs were derived from the
corresponding wild-type constructs by overlap extension PCR
[Ho et al., 1989] and PCR-based mutagenesis. The following start
and end amino acids were chosen: Uhrf2 tandem Tudor domain,
amino acids 118-312; Uhrf2 PHD domain, amino acids 325-395;
Uhrf2 tandem Tudor-PHD domain, amino acids 118-395; Uhrf1
tandem Tudor-PHD domain, amino acids 121-370. The linker
exchange constructs were derived by PCR using overlapping primers
that contained the partial linker sequence. Amino acid sequences of
the linkers: Uhrf1: KERRPLIASPSQPPA; Uhrf2: GAHPISFADGKF.
All constructs were verified by DNA sequencing. Throughout this
study enhanced GFP constructs were used and for simplicity referred
to as GFP fusions.

CELL CULTURE, TRANSFECTION, CELL SORTING, AND
DIFFERENTIATION

HEK293T cells, MEFs, and ESCs were cultured and transfected as
described [Schermelleh et al., 2007; Rottach et al., 2010] with the
exception that Lipofectamin (Invitrogen) was used for transfection
of MEFs. E14 uhrf1 ~/~ ESCs were transfected with Uhrf1-GFP and
Uhrf2-GFP expression constructs using FuGENE HD (Roche)
according to the manufacturer’s instructions. ESCs were sorted
for GFP positive cells 48 h after transfection with a FACS Aria II
instrument (Becton Dikinson). ESC strains wt E14, wt J1, and E14
uhrf1~/~ were cultured and differentiated to embryoid bodies as
described [Szwagierczak et al., 2010]. The ESC strain wt JM8A3.N1
(EUCOMM, Germany) was cultured in Knockout D-MEM (Gibco-
BRL, Grand-Island, NY) medium containing 10% fetal bovine serum
(PAA Laboratories GmbH, Austria), 0.1 mM B-mercaptoethanol
(Gibco-BRL), 2mM tr-glutamine, 100U/ml penicillin, 100 p.g/ml
streptomycin (PAA Laboratories GmbH). The medium was supple-

mented with
Temecula, CA).

1,000U/ml recombinant mouse LIF (Millipore,

RNA ISOLATION, CDNA SYNTHESIS, AND QUANTITATIVE
REAL-TIME PCR

RNA isolation and ¢cDNA synthesis were performed as described
[Szwagierczak et al., 2010]. Equal amounts of cDNA were used for
Real-time PCR with TagMan Gene Expression Master Mix (Applied
Biosystems) on the 7500 Fast Real-time PCR System (Applied
Biosystems) according to the manufacturer’s instructions. The
following TagMan Gene expression assays were used: Gapdh (Assay
ID: Mm99999915_g1), uhrfl (Assay ID: MmO00477865_m1) and
uhrf2 (Assay ID: Mm00520043_m1). Gene expression levels were
normalized to Gapdh and calculated using the comparative Cr
Method (AAC; Method).

IN VITRO DNA BINDING AND HISTONE-TAIL PEPTIDE

BINDING ASSAY

The in vitro binding assays were performed as described previously
[Frauer and Leonhardt, 2009; Rottach et al., 2010]. NoCpG DNA
substrates were produced in a primer extension reaction [Frauer and
Leonhardt, 2009] others by hybridization of two DNA oligos
(Supplementary Fig. S7B-D). Histone-tail peptides were purchased
as TAMRA conjugates (PSL, Germany; Supplementary Fig. S7A).
Peptides were added in a molar ratio 1.5:1 (peptide/GFP fusion) and
the binding reaction was performed at RT for 15 min with constant
mixing. For combined assays, samples were additionally incubated
with either H3K9me3 or H3K9ac histone-tail peptides in a molar
ratio 1.5:1 (peptide/GFP fusion) or increasing amount of DNA
substrate as indicated. The binding reaction was performed at RT for
60 min with constant mixing.

IMMUNOFLOURESCENCE STAINING AND ANTIBODIES

For immunostaining, MEF cells and ESCs were grown on cover slips
and transiently transfected with Uhrf2-GFP (MEF cells), or co-
transfected with Uhrf2-GFP and RFP-PCNA (ESCs). Cells were fixed
with 2.0% or 3.7% formaldehyde in PBS and permeabilized in PBS
containing 0.2% Triton X-100. The post-translational histone
modification H3K9me3 was detected via a rabbit primary antibody
(Active Motif) and a secondary anti-rabbit antibody conjugated to
Alexa Fluor 594 (Molecular Probes, Eugene, OR). The antibodies
were diluted 1:1,000 or 1:500, respectively, in PBS containing
0.02% Tween-20 and 2% BSA. GFP-Binder (ChromoTek, Germany)
was used to boost GFP signals and was labeled with Alexa Fluor 488.
Cells were counterstained with DAPI and mounted in Vectashield
(Vector Laboratories, Burlingame, CA). Images of the cells were
obtained using a TCS SP5 AOBS confocal laser scanning microscope
(Leica, Wetzlar, Germany) with a 63x/1.4 NA Plan-Apochromat oil
immersion objective. GFP, Alexa Fluor 488, RFP, and Alexa Fluor
594 were excited with a 488-nm argon laser and a 561-nm diode
laser, respectively. Image series were recorded with a frame size of
512 x 512 pixels, a pixel size of 100 nm and with a detection pinhole
size of 1 Airy Unit.
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LIVE CELL MICROSCOPY AND FLUORESCENCE RECOVERY AFTER
PHOTOBLEACHING (FRAP) ANALYSIS

Live cell imaging and FRAP analyses were performed as described
[Schermelleh et al., 2007] with the exception that imported images
were intensity normalized, converted to 8-bit and Gauss-filtered
(2 pixel radius). Data sets showing lateral movement were corrected
by image registration using the StackReg plug-in of Imagel
[Abramoff et al., 2004] starting with a frame when approximately
half recovery was reached. Within the first 30s after bleaching,
images were taken every 150 ms and then in intervals of 1s.

DNA METHYLATION ANALYSIS

Genomic DNA was isolated with the QTAmp DNA Mini Kit (Qiagen)
and 1.5 g were bisulfite converted using the EZ DNA Methylation-
Gold Kit (Zymo research) according to the manufacturer’s
instructions. Primer sequences for major satellites were AAAAT-
GAGAAACATCCACTTG (forward primer) and CCATGATTTT-
CAGTTTTCTT (reverse primer). For amplification we used Qiagen
Hot Start Polymerase in 1x Qiagen Hot Start Polymerase buffer
supplemented with 0.2 mM dNTPs, 0.2 uM forward primer, 0.2 uM
reverse primer, 1.3 mM betaine (Sigma) and 60 mM tetramethy-
lammonium-chloride (TMAC, Sigma). Major satellites were ampli-
fied in a single amplification and pyrosequencing reactions were
carried out by Varionostic GmbH (Ulm, Germany).

STATISTICAL ANALYSIS

Results were expressed as means+SD or means+ SEM. The
difference between two mean values was analyzed by Student’s
t-test and was considered as statistically significant in case of
P <0.05 (") and highly significant for P<0.001 (**).

OPPOSITE EXPRESSION PATTERN OF UHRF1 AND UHRF2 DURING
DIFFERENTIATION

Recently, Uhrfl has emerged as an essential factor for the
maintenance of DNA methylation. Sequence analyses revealed
that Uhrf2 harbors five recognizable domains similar to Uhrf1
(Fig. 1A), but its role in the regulation of DNA methylation is still
unclear. We compared the expression pattern of uhrfl and uhrf2 in
ESCs and somatic cells, during differentiation and in differentiated
mouse tissues (Fig. 1B-D and Supplementary Fig. S1). Interestingly,
both genes show opposite expression patterns; while uhrfl is
expressed in ESCs and down regulated during differentiation, which
is consistent with previous reports [Muto et al., 1995; Fujimori et al.,
1998; Hopfner et al., 2000], uhrf2 is upregulated and highly
expressed in differentiated mouse tissues. The switch in the
expression pattern argues against a functional redundancy of
both genes and is consistent with the drastic loss of DNA
methylation in uhn”l_/_ ESCs despite the presence of intact
uhrf2 alleles. Therefore, the opposite expression pattern of both
genes suggests different functional roles of uhrfl and uhrf2 in
development.
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Fig. 1. Opposite expression pattern of uhrf1 and uhrf2 during differentia-
tion. A: Schematic outline of the multi-domain architecture of Uhrf1 in
comparison to Uhrf2. An N-terminal ubiquitin-like domain (Ubl) is followed
by a tandem Tudor domain (TTD), a plant homeodomain (PHD), a SET and RING
associated (SRA) domain and a C-terminal really interesting new gene (RING)
domain. Numbers indicate primary sequence similarities of single domains
determined by BlastP search [Altschul, 1991]. Expression analysis of uhrf1 and
uhrf2 by Real-time PCR in ESCs and somatic cells (B), during differentiation of
wt J1 ESCs (C) and in various adult mouse tissues in comparison to the
expression data in ESCs (D). Expression levels are relative to uhrf1 in wtJM8A
(B). day O of differentiation (C) and to kidney (D) (uhrf1 set to 1). Shown are
means + SD of at least two independent experiments.
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COOPERATIVE BINDING OF REPRESSIVE EPIGENETIC MARKS Rottach et al.,, 2010]. Similar to Uhrf1, histone-tail peptide binding
BY UHRF2 assays revealed that Uhrf2 preferentially binds to H3(1-20) and
To investigate DNA and histone-tail binding preferences of Uhrf2 in H3K9me3 peptides (Fig. 2A). This binding activity of Uhrf2 is
vitro, we used a versatile binding assay developed for GFP fusion mediated by the TTD but not the PHD domain (Fig. 2B). Consistently,
proteins [Rothbauer et al., 2008; Frauer and Leonhardt, 2009; acetylation of H3K9, underrepresented in heterochromatin,
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A: Histone H3- and H4-tail binding specificities of Uhrf2. Shown are means + SD of biological duplicates. B: Histone H3 tail binding specificity of Uhrf2, its tandem Tudor
domain (TTD), its PHD domain and its TTD mutant (Y214A Y217A). Shown are means + SEM of at least three independent experiments. C: DNA binding properties of Uhrf1,
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prevented the binding of Uhrf2 and its TTD. The binding of Uhrf1 to
H3K9me3 is mediated by an aromatic cage in the TTD [Rottach et al.,
2010]. Site-directed mutagenesis of Uhrf2 changing the two
conserved tyrosine residues to alanine (Y214A Y217A) (Supple-
mentary Fig. S2) abolished specific peptide binding (Fig. 2B) and
supports a function of the aromatic cage in H3K9me3 recognition.

Whereas Uhrf1 preferentially binds to hemimethylated DNA,
Uhrf2 failed to show a preference for hemi-over unmethylated DNA
(Fig. 2C). These differences in DNA binding preferences between
Uhrf1 and Uhrf2 were confirmed by electrophoretic mobility shifts
(Supplementary Fig. S3). To further investigate the functional
interplay between DNA and histone binding we performed
combined binding assays (Fig. 2D). Interestingly, binding to
heterochromatin-specific H3K9me3 peptides induced a significant
preference of Uhrf2 for hemi-over unmethylated DNA. Uhrfl
already on its own showed preference for hemimethylated DNA that
was further enhanced by binding to H3K9me3 peptides. To test the
specificity of this cooperativity we mutated the aromatic cage in
Uhrf2 that is necessary for H3K9me3 histone-tail peptide binding.
The mutated Uhrf2 (Y214A Y217A) showed comparable DNA
binding activity as the wild-type Uhrf2 but addition of heterochro-
matin-specific H3K9me3 peptides did not induce preference for
hemi-over unmethylated DNA (Fig. 2D).

In the reverse experiment, addition of DNA enhanced binding of
Uhrf1 and Uhrf2 to the H3K9me3 peptide (Fig. 2E,F). This was not
observed for the DNA binding mutant of Uhrf1 (Uhrf1ASRA) which
showed constant peptide binding with increasing DNA concentra-
tions. These findings suggest that single binding events of distinct
Uhrf2 domains lead to multivalent engagement of different
repressive epigenetic marks. In fact, multivalent engagement of
DNA and histone tail peptides via the SRA domain and the TTD,
respectively, results in affinity enhancement and additional
specificity for hemimethylated DNA, the substrate of maintenance
methylation.

CELLULAR LOCALIZATION AND DYNAMICS OF UHRF2 DEPEND ON
HISTONE H3K9 METHYLATION

To monitor the subcellular localization of Uhrf2, we expressed
Uhrf2-GFP constructs in cells with different genetic backgrounds. In
wild type (wt) ESCs, Uhrf2 is localized in the nucleus and is enriched
at pericentric heterochromatin (PH) (Fig. 3A,B and Supplementary
Fig. S4A-C). To investigate which epigenetic marks at PH are
recognized by Uhrf2 we determined the localization of Uhrf2 in
genetically modified ESCs either lacking all three major DNA
methyltransferases Dnmt1, Dnmt3a, and Dnmt3b (TKO) [Tsumura
et al., 2006] or ESCs lacking the two major H3K9 methyltransferases
Suv39H1/H2 (Suv39h dn) [Lehnertz et al., 2003]. TKO cells are
practically devoid of genomic DNA methylation and Suv39h dn
ESCs show substantially reduced H3K9me3 levels. We found Uhrf2
localized at PH in TKO but not in Suv39h dn ESCs, indicating that
localization of Uhrf2 is dependent on H3K9 but not on DNA
methylation (Fig. 3A). Consistently, immunostaining of wt mouse
embryonic fibroblasts (MEFs) showed co-localization of Uhrf2 and
H3K9me3 marks at PH, which was not observed in Suv39h dn MEFs
[Peters et al., 2001] (Fig. 3B). Also, mutations in the TTD (Uhrf2
Y214A Y217A) that abolished binding to H3K9me3 peptides in vitro
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Fig. 3. Cellular localization and dynamics of Uhrf2 depend on histone H3K9
methylation. A: Confocal mid sections of fixed wt J1, TKO and Suv39h dn ESCs
transiently expressing Uhrf2-GFP and RFP-PCNA and counterstained with
DAPI, which preferentially highlights PH. Merged images are displayed on the
right side (GFP: green; DAPI: red). Scale bar 5 um. B: Confocal mid sections of
fixed wt MEFs and Suv39h dn MEFs transiently expressing Uhrf2-GFP or Uhrf2
Y214A Y217A-GFP were immunostained for H3K9me3 and counterstained
with DAPI. Merged images are displayed on the right side (GFP: green; DAPI:
red). Scale bar 5 wm. C: Dynamics of Uhrf2-GFP and Uhrf2 Y214A Y217A-GFP
in living MEFs determined by half nucleus FRAP analysis. GFP is shown as
reference. Curves represent means = SEM from at least 8 nuclei.

disrupted enrichment at PH in wt MEFs (Fig. 3B). The dependence of
Uhrf2 localization on H3K9me3 was also confirmed by quantitative
correlation analysis (Supplementary Fig. S4D,E).

To investigate the effect of H3K9me3 on the dynamics of Uhrf2 in
living cells we performed quantitative fluorescence recovery after
photobleaching (FRAP) analyses in wt and Suv39h dn MEFs. We
chose to bleach half nuclei to include a representative number of
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interactions from different nuclear domains and structures in
the bleached area [Rottach et al., 2010]. Recovery of Uhrf2-
GFP fluorescence in Suv39h dn MEFs (half-time t,,=5.9+0.65)
and of the TTD mutant in wt MEFs (t;;,=3.2+0.4s) was
considerably faster than the recovery of Uhrf2-GFP in wt MEFs
(t;»=11.8£0.65) pointing to a crucial role of H3K9me3 in Uhrf2
dynamics in living cells (Fig. 3C). Taken together, these results
clearly demonstrate that the interaction of Uhrf2 with the
heterochromatin mark H3K9me3 is required for the localization
at PH and affects binding dynamics in living cells.

COOPERATIVE BINDING OF THE COMBINED UHRF2 TTD-PHD
DOMAIN

Recently, several studies showed multivalent binding to histone-tail
peptides [Ruthenburg et al., 2007]. In case of Uhrf1 and Uhrf2, the
TTD is followed by a second histone-tail binding domain, a PHD
domain (Fig. 1A). As the isolated PHD domains of Uhrf1 and Uhrf2
did not show binding to H3 histone-tail peptides (Fig. 2B) [Rottach
et al., 2010], we tested whether the combination of the PHD and the
TTD results in cooperative histone-tail binding. Surprisingly, the
combined TTD-PHD domain of Uhrf2 displayed a fourfold increased
binding to H3K9me2/me3 in comparison to the single TTD, which
was not observed for the corresponding construct of Uhrf1
(Figs. 2B and 4A).

Sequence alignments of the combined domains revealed two
striking differences between Uhrf1 and Uhrf2. Firstly, Uhrf2 harbors
an additional stretch of 33 highly conserved amino acids present in
the TTD (Supplementary Fig. S5A). Secondly, the linker region
between the TTD and PHD domain of Uhrf2 is highly conserved,
whereas this region is highly diverse in Uhrf1l (Supplementary
Fig. S5A). To test which sequence is responsible for the observed
cooperative interplay between PHD and TTD, we generated
and tested different hybrid and deletion constructs (Supplementary
Fig. S5B). Notably, replacement of the native linker in the Uhrf2
TTD-PHD construct by the Uhrf1 linker caused decreased relative
binding ratios to H3K9me2/3 comparable to the single Uhrf2 TTD
(Fig. 4B). Transferring the Uhrf2 linker to the Uhrfl TTD-PHD
construct as well as deletion of the Uhrf2 stretch region did not affect
the binding to H3K9me3 peptides (Fig. 4B).

These results suggest that the cooperative interplay of different
Uhrf2 domains, which is responsible for the increased binding to
heterochromatin marks, is dependent on the highly conserved linker
region connecting the TTD and PHD domains. A similar functional
importance of linker sequences has been described for BPTF and
histone lysine demethylases [Li et al., 2006; Horton et al., 2010].

UHRF1 AND UHRF2 ARE NOT FUNCTIONALLY REDUNDANT IN ESCS
To investigate whether Uhrf1 and Uhrf2 are functionally redundant
we performed interaction and rescue assays. Like Uhrf1, also Uhrf2
interacts with Dnmts (Supplementary Fig. S6) suggesting a similar
function in DNA methylation. To test for such a functional role, we
ectopically expressed Uhrf2-GFP or Uhrf1-GFP in uhrf1 ~/~ ESCs
and determined DNA methylation levels at major satellites by
pyrosequencing. While ectopic expression of Uhrf1-GFP led to
significant increase of DNA methylation levels at CpG sites of major
satellite DNA in uhrfl’/’ ESCs, Uhrf2-GFP did not restore DNA
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methylation at these sites (Fig. 5). These results point to functional
differences between Uhrf1l and Uhrf2 in vivo.

Over the past decades many different histone modifications were
discovered that are involved in epigenetic gene regulation. A key
question is how these histone marks are linked to DNA methylation
pattern and how this complex epigenetic information is integrated
and translated into defined chromatin structures and gene
expression levels. Epigenetic regulators that bind DNA and histone
marks are ideally suited to link these pathways and intramolecular
interactions between different binding domains may contribute to
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bisulfite treatment, PCR amplification and direct pyrosequencing. Statistical
significance of differences in DNA methylation levels between uhrf1~/~
ESCs and uhrf1~/~ ESCs with ectopically expressed Uhrf1-GFP or Uhrf2-
GFP are indicated; “P < 0.05. Shown are means + SD from three independent
experiments.

substrate specificity and epigenetic regulation [Hashimoto et al.,
2009].

Recently, Uhrf1, an essential factor for the maintenance of DNA
methylation, has been shown to bind to repressive DNA and histone
modifications via an SRA and a tandem Tudor domain, respectively.
Here we provide the first systematic characterization of the second
member of the Uhrf family, Uhrf2, and demonstrate that Uhrf2 binds
to the H3K9me3 heterochromatin mark via an aromatic cage of a
tandem Tudor domain (TTD). Mutations in the aromatic cage
abolished binding to H3K9me3 histone-tail peptides in vitro and
prevented enrichment of Uhrf2 at pericentric heterochromatin in
vivo. Interestingly, similar mutations in the aromatic cage of Uhrf1
prevented repression of p16™5** [Nady et al., 2011] suggesting a
link between H3K9me3 binding and a function of Uhrf proteins in
gene repression.

Our results point to a complex regulation of substrate recognition
by Uhrf2 involving cooperative binding domains and critical linker
sequences. In contrast to Uhrf1, preferential binding of Uhrf2 to
hemimethylated DNA, the substrate of DNA maintenance methyla-
tion, was only induced upon simultaneous binding to H3K9me3
histone-tail peptides. Binding of Uhrf1l and Uhrf2 to DNA in turn
enhanced binding to H3K9me3 histone-tail peptides. Consistently,
SILAC-based proteomic analysis identified enrichment of UHRF1 at
nucleosomes containing repressive DNA and H3K9 methylation
marks [Bartke et al., 2010]. Together, these data demonstrate a
cooperative interplay between DNA and histone tail binding
domains of Uhrfl and Uhrf2. A similar effect was reported for
MSL3 that specifically binds to H4K20mel via a chromodomain
only in the presence of DNA [Kim et al., 2010].

An additional level of complexity was added by recent studies
showing multivalent binding of histone-tail peptides by mixed two-
effector modules [Ruthenburg et al., 2007]. Notably, the combined
TTD-PHD domain of Uhrf2, but not of Uhrf1, showed enhanced

binding to H3K9me3 histone-tail peptides. This cooperativity was
dependent on the highly conserved linker region connecting the TTD
and PHD domains. Similarly, an important role was attributed to
the linker sequence between the histone binding domain (PHD) and
the histone modifying domain of jumanji histone lysine demethy-
lases [Horton et al., 2010].

The dramatic loss of DNA methylation in uhrfI '~ ESCs [Bostick
et al., 2007; Sharif et al., 2007] is remarkable, especially considering
the presence of the uhrf2 gene, which encodes a highly similar
protein as demonstrated in this study. As one possible explanation
for this lack of functional redundancy we found, in contrast to
uhrfl, relatively low uhrf2 mRNA levels in ESCs, which were not
affected by genetic uhrf1 ablation. Moreover, both genes also show
opposite expression patterns during differentiation. The failure of
ectopically expressed Uhrf2 to restore DNA methylation in uhrfl
deficient cells clearly points to functional differences between both
proteins in vivo. However, more definitive insights into the specific
function(s) of Uhrf2 will require targeted mutations and subsequent
analyses of pluripotent as well as differentiated cells. Based on the
cooperative binding of Uhrf2 domains to repressive DNA and
histone marks we propose that Uhrf2 might contribute to a tighter
control of gene repression in differentiated cells as compared to a
less stringent control by Uhrf1 in pluripotent ESCs.
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Supplementary Figure S1. Opposite expression pattern of uhrf1 and uhrf2. Expression
analyses of uhrf1 and uhrf2 by Real-time PCR during differentiation of ESCs with two
different genetic backgrounds (wt E14 (A) and wt JM8A (B)). Transcript levels of uhrf1 at day
0 of EB formation are used as reference point (set to 1). Shown are means + SD from three
technical replicates of one biological experiment.



Supplementary Figure S2. Model of the tandem Tudor domain (TTD) of Uhrf2. (A) A model of
the TTD of Uhrf2 was generated using SWISS Model [Arnold et al., 2006; Guex and Peitsch,
1997] with the solved structure of the TTD of Uhrf1 (PDB: 3DB3) as template. Both
structures, the Uhrf2 model in red and the Uhrf1 template in cyan, are superimposed in
PyMOL [Schrodinger, 2010]. (B) H3K9me3 is embedded in an aromatic cage formed by
three aromatic residues of Uhrf2.
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Supplementary Figure S3. Electrophoretic mobility shift of Uhrf1 and Uhrf2. (A) Un- and
hemimethylated DNA substrates (1 pmol each in direct competition) were incubated with
0.63 pmol purified Uhrf1-GFP or Uhrf2-GFP. Samples were subjected to 3.5% non-
denaturing PAGE and analyzed with a fluorescence scanner (Typhoon TRIO scanner, GE
Healthcare) to detect ATTO550 (unmethylated substrate), ATTO647N (hemimethylated
substrate) and GFP. (B) Band intensities were quantified with ImagedJ [Abramoff, 2004]. To
quantify bound DNA/protein ratios, grey values of unbound DNA bands were subtracted from
the corresponding DNA input bands and subsequently normalized by the grey values of the
GFP bands. All values were normalized to the relative binding ratio of Uhrf1 to unmethylated
substrate. Shown are means +SD from three independent experiments. Statistical
significance between the binding ratios of un- and hemimethylated DNA is indicated;
*P < 0.05.
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Supplementary Figure S4. Cell-cycle dependent localization of Uhrf2 in cells with different
genetic backgrounds. Confocal mid sections of fixed wt J1 (A), TKO (B) and Suv39h dn
ESCs (C), transiently expressing Uhrf2-GFP. Cells were co-transfected with a RFP-PCNA
expression vector to distinguish S phase stages [Sporbert et al., 2005] and counterstained
with DAPI. Merged images are displayed on the right. Scale bar 5 um. In wt J1 and TKO
ESCs the Uhrf2 fusion protein accumulates at pericentric heterochromatin independent of the
cell-cycle stage and methylation levels (A) (B). In contrast, Uhrf2-GFP shows a fully
dispersed nuclear distribution in Suv39h dn cells indicating the dependency on H3K9me3
methylation for localization at PH in vivo (C). (D) and (E) Scatter blot of GFP-Uhrf2 and DAPI
signals in wt MEFs and Suv39h dn MEFs. The corresponding Pearson correlation
coefficients R £+ SEM are calculated from ten analysed cells. The software Volocity (Perkin
Elmer) was used for analysis, selecting the cell nucleus as region of interest. Note that
Pearson correlation coefficients range from +1 to -1 for perfect to no co-localization.
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Supplementary Figure S5. Alignment and recombination of Uhrf1 and Uhrf2 domains. (A)
Alignment of the tandem Tudor domain (TTD) and PHD domains from vertebrate Uhrf2 and
Uhrf1 orthologs. Accession numbers for Uhrf2: Homo sapiens CAH74119.1; Bos taurus
AAI48950.1; Mus musculus Q7TMI3; Rattus norvegicus NP_001101055.1; Pan troglodytes
XP_528534.2; Xenopus laevis AAI28674.1. Accession numbers for Uhrf1: Homo sapiens
Q96T88.1; Bos taurus AAI51672.1; Mus musculus Q8VDF2.2; Rattus norvegicus Q7TPK1.2;
Dario rerio NP_998242.1; Xenopus laevis AAI28674.1, Gallus gallus XP_418269.2. Arrows
show the start and end positions of the TTD and PHD domains. Absolutely conserved
residues are black shaded, while positions showing conservative substitutions are boxed with
residues in bold face. The additional stretch region found in the TTD of Uhrf2 and the linker
region between TTD and PHD finger are boxed with dotted black lines. (B) Schematic outline
of engineered constructs including the deletion of the stretch region and the swapping of
linker sequences.
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Supplementary Figure S6. Uhrf2 interacts with Uhrf1, Dnmt1 and Dnmt3a/b. (A) Co-
immunoprecipation of Uhrf2-myc and GFP-Uhrf1, GFP-Dnmt3a, GFP-Dnmt3b, GFP-HP1aq,
GFP-HP1B, GFP-HP1y or GFP transiently co-expressed in HEK293T cells. Note that Uhrf2
interacts with Uhrf1, Dnmt3a and Dnmt3b. (B) Co-immunoprecipation of Uhrf2-myc and
GFP-Dnmt1 constructs transiently co-expressed in HEK293T cells: GFP-Dnmt1 (G-Dnmt1),
GFP-fusions of the N-terminal and C-terminal part of Dnmt1 (G-D1-Nterm, G-D1-Cterm) and
truncated Dnmt1 constructs (G-Dnmt1 1-309, G-TS 310-629, G-Dnmt1 630-1111). Note that
Uhrf2 interacts with full-length Dnmt1, the N-terminal part and the targeting sequence (G-TS
310-629). One percent of input (l) relative to bound fractions (B) was loaded. Co-
immunoprecipitation was performed using the GFP trap [Rothbauer et al., 2008]. Co-
precipitated myc-tagged proteins were detected using a mouse monoclonal primary anti-myc
antibody (Invitrogen, Germany) and an HRP- or Cy5-conjugated secondary anti-mouse
antibody (Sigma, Germany, or Jackson ImmunoResearch Laboratories, USA, respectively).



Peptide name Peptide sequence Peptide labelling
H3K4me1 ART X1 QTARKSTGGKAPRKQLK

H3K4me2 ART X2 QTARKSTGGKAPRKQLK

H3K4me3 ART X3 QTARKSTGGKAPRKOLK

H3K4ac ART 7 QTARKSTGGKAPRKQLK

H3K4/9un ARTKQTARKSTGGKAPRKQLK TAMRA at C-terminus
H3K9me1 ARTKQTAR X1 STGGKAPRKOLK

H3K9me2 ARTKQTAR X2 STGGKAPRKOQLK

H3K9me3 ARTKQTAR X3 STGGKAPRKOQOLK

H3K9ac ARTKQTAR Z  STGGKAPRKQLK

H3R2me2a A X4 TKQTARSTGGKAPRKQLK
H3K4me3K9me3 ART X3 QTAR X3 STGGKAPRKQLK

H3K27un RKQLATKAARKSAPATGGVK

H3K27me1 RKQLATKAAR X1 SAPATGGVK

H3K27me2 RKQLATKAAR X2 SAPATGGVK

H3K27me3 RKQLATKAAR X3 SAPATGGVK

H3K27ac RKQLATKAAR 7 SAPATGGVK )

H4K20un LGKGGAKRHRKVLRDNIQGI TAMRA at N-terminus

H4K20me1 LGKGGAKRHR X1 VLRDNIQGI

H4K20me2 LGKGGAKRHR X2 VLRDNIQGI

H4K20me3 LGKGGAKRHR X3 VILRDNIQGI

H4K20ac LGKGGAKRHR Z VLRDNIQGI
X1: Lysine(me1); X2: Lysine(me2); X3: Lysine(me3); X4: Arginine(me2 asymmetric) Z: Lysine(ac)

B
CGup CTCAACAACTAACTACCATCCGGACCAGAAGAGTCATCATGG no
MGup CTCAACAACTAACTACCATCMGGACCAGAAGAGTCATCATGG no
noCpG CTCAACAACTAACTACCATCCTGACCAGAAGAGTCATCATGG no
um647N CCATGATGACTCTTCTGGTCCGGATGGTAGTTAGTTGTTGAG ATTO647N at 5’end
um700 CCATGATGACTCTTCTGGTCCGGATGGTAGTTAGTTGTTGAG ATTO700 at 5’end
Fill-In-550 CCATGATGACTCTTCTGGTC ATTO550 at 5'end
Fill-In-590 CCATGATGACTCTTCTGGTC ATTO590 at 5’end
Fill-in-647N CCATGATGACTCTTCTGGTC ATTO647N at 5’end
Fill-In-700 CCATGATGACTCTTCTGGTC ATTO700 at 5’end
C
Mspl
Hpall

CTCAACAACTAACTACCATICCGGACCAGAAGAGTCATCATGG 42mer
GAGTTGTTGATTGATGGTAGGCCTGGTCTTCTCAGTAGTACCYW
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CTGGTCTTCTCAGTAGTACCYW
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> >
¥ 5
$ s S s
S S I3 S
§ 9 § I

uu ek 21mer

Supplementary Figure S7. Histone-tail peptide and DNA sequences and quality control of
DNA substrates. (A) Amino acid sequence of TAMRA-labelled peptides for in vitro histone-
tail peptide binding assays. Histone-tail peptides were purchased as TAMRA conjugates
(PSL, Germany). (B) DNA oligos used for preparation of double-stranded probes for in vitro



DNA binding assays. M: 5-methyl-cytosine. For hybridization, DNA oligos were mixed in
equimolar amounts, heated to 92°C and cooled down to room temperature. DNA substrates
for Figure 2F were completed in a primer extension reaction. By using a control set of DNA
probes with identical sequence but different fluorescent labels we observed effects due to
probe preparation and/or unspecific binding of ATTO dyes (data not shown). The values
obtained from the control set were used to normalize every probe/protein pair. (C) Quality
control of DNA substrates. Un- and hemimethylated DNA substrates (2 pmol; Atto647N
labelled) were digested with 1 unit Mspl or Hpall and analyzed by 15% non-denaturing
PAGE for CpG methylation. Note that unmethylated DNA substrate is digested by both
enzymes, whereas hemimethylated substrate is only cut by Mspl. Enzyme recognition motifs
are boxed and asterisks represent ATTO labels.
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ABSTRACT

DNA methyltransferase 1 (Dnmt1) reestablishes
methylation of hemimethylated CpG sites generated
during DNA replication in mammalian cells. Two
subdomains, the proliferating cell nuclear antigen
(PCNA)-binding domain (PBD) and the targeting
sequence (TS) domain, target Dnmt1 to the replica-
tion sites in S phase. We aimed to dissect the details
of the cell cycle-dependent coordinated activity of
both domains. To that end, we combined super-
resolution 3D-structured illumination microscopy
and fluorescence recovery after photobleaching
(FRAP) experiments of GFP-Dnmii wild type and
mutant constructs in somatic mouse cells. To inter-
pret the differences in FRAP kinetics, we refined
existing data analysis and modeling approaches to
(i) account for the heterogeneous and variable distri-
bution of Dnmt1-binding sites in different cell cycle
stages; (ii) allow diffusion-coupled dynamics; (iii) ac-
commodate multiple binding classes. We find that
transient PBD-dependent interaction directly at rep-
lication sites is the predominant specific interaction
in early S phase (residence time T,.s <10s). In late S
phase, this binding class is taken over by a substan-
tially stronger (T,es ~22s) TS domain-dependent
interaction at PCNA-enriched replication sites and

at nearby pericentromeric heterochromatin sub-
regions. We propose a two-loading-platform-model
of additional PCNA-independent loading at post-
replicative, heterochromatic Dnmt1 target sites to
ensure faithful maintenance of densely methylated
genomic regions.

INTRODUCTION

DNA methylation is an essential epigenetic mechanism in
mammals involved in gene regulation, genomic imprint-
ing, X inactivation and carcinogenesis (1-3). Once estab-
lished de novo during cell differentiation, the genomic
methylation pattern is maintained by the DNA
methyltransferase 1 (Dnmtl), a 183 kDa-sized enzyme
that transfers methyl groups to hemimethylated substrate
CpG sites generated during DNA synthesis in S phase
(2,4,5). Hence, it seems obvious that the regulation of
Dnmtl is tightly coupled to DNA replication. In fact,
using fluorescence recovery after photobleaching
(FRAP), we have previously reported that Dnmt1 associ-
ates with replication foci (RF) by a highly transient inter-
action with the replication clamp proliferating cell nuclear
antigen (PCNA) in early S phase via the PCNA-binding
domain (PBD) of Dnmtl, enhancing the efficiency of
covalent complex formation at its substrate sites (6,7).
PCNA forms a homotrimeric ring around the DNA at
replication forks and operates as a quasi-immobile
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loading platform for various replication-associated factors
(8,9). Furthermore, the targeting sequence (TS) domain
has been found to mediate association of Dnmtl to con-
stitutive heterochromatin from late S phase into G2
(10,11), the latter finding challenging the strict coupling
to the replication process. In addition, the TS domain was
implicated in the interaction with Uhrfl (12). Uhrfl is an
essential cofactor in the DNA methylation process and it
has been proposed that Uhrfl targets Dnmtl to
hemimethylated sites (13—17). Although the role and regu-
lation of Dnmtl has been a popular field of research for
many years, the details and functional implications of the
cell cycle-dependent coordinated binding activity of
the PBD and the TS domain still remain elusive.

FRAP techniques offer an effective tool to study in vivo
the mobility of cellular proteins and to gain a better
understanding of molecular interactions that drive or
limit the mobility of fluorescent fusions expressed in cells
(18-21). By bleaching a subpopulation of fluorescent
proteins and by analyzing the redistribution of fluores-
cence over time, one can obtain measures of the half-
time of recovery and the size of mobile fractions. To fur-
thermore extract kinetic parameters from fluorescence
recovery curves, one can describe the underlying
dynamics of the proteins by a set of differential equations
and apply a fitting procedure. Such kinetic modeling
approaches can be useful to detect and quantify distinct
dynamic populations [mobility classes (MCs)] and have
been successfully used to quantitatively characterize diffu-
sion and to some extent interactions inside living cells
(22-24). Within the nucleus, the mobility of protein
factors can be limited by binding to rather immobile struc-
tures, most prominently to chromatin, or to stationary
enzyme complexes, such as the replication machinery,
transcription domains or splicing speckles (25-27). The
majority of these interactions are surprisingly transient
to accommodate dynamic exchange, which is pivotal to
provide cellular plasticity and efficient responses to
external signals (28-30).

We aimed to extract quantitative measures of the
binding properties of Dnmtl in vivo. Unlike for many
other nuclear factors, Dnmtl-binding sites are
non-homogeneously distributed with association sites con-
stantly changing their location throughout the cell cycle.
To characterize the contribution of the PBD and TS
domain on these changing interactions, we analyzed the
mobility of wild type and mutants of GFP-tagged Dnmtl.
In particular, we interpreted the differences between the
mutants by modeling FRAP experiments where half of
the nucleus is bleached. As the spatial distribution of the
different binding sites is unknown a priori, we modified
classical reaction-diffusion models in a way that diffusion
is simplified into a two-compartment exchange model and
binding events are averaged over the entire half-nucleus.
This model also takes into account potential multiple
binding partners of proteins with different binding
affinities.

Our results provide evidence that the collective integrity
of the PBD and TS domain is necessary and sufficient for
the entire S phase—dependent targeting of Dnmtl to its
localization sites. Transient PBD-mediated interaction at
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RF is the predominant specific interaction in early S
phase, while in late S phase, this binding class is relegated
by an ~2-fold stronger TS domain-dependent binding.
Supported by  super-resolution  imaging  with
3D-structured illumination microscopy (3D-SIM) (31,32)
we show that TS binding is not restricted to replication
sites but also occurs PCNA/PBD-independently at
postreplicative constitutive heterochromatin. We propose
a two-loading-platform-model in which the increasing
density of hemimethylated CpG sites in conjunction with
increased level of  heterochromatin  marks at
postreplicative heterochromatin in late S phase provides
high-affinity binding sites for TS-mediated binding of
Dnmtl. PCNA-independent loading downstream of repli-
cation thus provides a mechanism to ensure maintenance
of densely methylated heterochromatic DNA sequences.

MATERIALS AND METHODS
Expression constructs and cell culture

The expression constructs, I1xGFP, 2xGFP, 4xGFP,
GFP-Dnmt1™, GFP-Dnmt1?'*** and GFP-Dnmt1*"™®
have been described previously (6,33,34). GFP-
Dnmt]1Q?F/ATS was derived from GFP-Dnmt1®™ by
overlap extension PCR. Mouse C2C12 myoblast cells
were cultured in DMEM supplemented with 20% fetal
bovine serum and 50 pg/ml gentamycine. For live cell ex-
periments, cells were seeded in Lab-Tek chamber slides
(Nunc) or p-slides (Ibidi), using either pools of stably
expressing cells or transiently transfected cells.

Creation of stably expressing cells has been described
before (6). For transient transfections, cells were grown up
to 30-40% confluence and transfected with TransFectin
transfection reagent (Bio-Rad) or FuGENE HD (Roche)
according to the manufacturer’s instructions. Cells were
then incubated overnight (TransFectin) or ~40h
(FuGENE HD) before performing FRAP experiments (6).

Only moderately expressing cells with unsuspicious
morphology were chosen for further analysis. The
overall Dnmtl level of endogenous and ectopically ex-
pressed protein was determined for all analyzed constructs
and cell lines by immunofluorescence labeling using a
novel Dnmtl-specific rat monoclonal antibody S5A10.
Quantitative analysis of labeling intensities revealed on
average 2-fold increased protein levels compared with
non-transfected control cells confirming no major
overexpression of the GFP-Dnmtl fusion constructs (see
Supplementary Methods and Supplementary Figure Sl
for details on the antibody characterization and the
immunofluorescence assay).

EdU pulse labeling, immunofluorescence staining and
structured illumination microscopy

Cells, stably expressing GFP-Dnmtl fusions were seeded
on No. 1.5H precision coverslips (Marienfeld Superior),
formaldehyde fixed and permeabilized with ice-cold
methanol. For labeling of postreplicative DNA, 5uM
5-ethnyl-2’-deoxyuridine (EdU) was added to the growth
medium 60min before fixation. Endogenous PCNA
was fluorescently labeled either with a rat monoclonal
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antibody 16D10 (35) or a mouse monoclonal antibody
PC10 (Abcam) and secondary antibodies conjugated to
Alexa Fluor 594 (Invitrogen) or CF405S (Biotium). GFP
was postlabeled with ATTO488 conjugated GFP-Booster
(ChromoTek). EAU was detected by Cu (I) catalyzed
cycloaddition (‘click-chemistry’) of 20uM Alexa Fluor
594 Azide (Invitrogen) diluted in 0.1 M Tris/HCl (pH
8.6) containing 4mM CuSO4 and 50 mM Na-ascorbate.
Cells were counterstained with 1 pg/ml 4’,6-diamidino-2-
phenylindole and embedded in Vectashield (Vector
Laboratories).

3D-SIM was performed on a DeltaVision OMX V3
(Applied Precision) system equipped with a 100x/1.40
NA PlanApo oil immersion objective (Olympus),
Cascade II:512 EMCCD cameras (Photometrics) and
405, 488 and 593 nm diode lasers. Structured illumination
(SI) image stacks were acquired with a z-distance of
125nm and with 15 raw SI images per plane (5 phases,
3 angles). The SI raw data were then computationally
reconstructed with channel specifically measured optical
transfer functions using the softWoRX 4.0 software
package (Applied Precision) to obtain a super-resolution
image stack with a lateral (x,y) resolution of ~120nm
and an axial (z) resolution of ~300nm (31). Images
from the different color channels were registered with
alignment parameter obtained from calibration measure-
ments with  0.2um diameter TetraSpeck beads
(Invitrogen).

Live cell microscopy and quantitative FRAP analysis

Live cell imaging and FRAP experiments were typically
performed on an UltraVIEW VoX spinning disc micro-
scope with integrated FRAP PhotoKinesis accessory
(PerkinElmer) assembled to an Axio Observer DI
inverted stand (Zeiss) and using a 63x/1.4 NA
Plan-Apochromat oil immersion objective. The micro-
scope was equipped with a heated environmental
chamber set to 37°C. Fluorophores were excited with
488 nm or 561 nm solid-state diode laser lines. Confocal
image series were typically recorded with 14-bit image
depth, a frame size of 256 x 256 pixels, a pixel size of
110nm and with time intervals of 154ms. For photo-
bleaching experiments, the bleach regions, typically with
a length of 810 um, were chosen to cover the anterior
half of the oval-shaped nucleus. Photobleaching was
performed using two iterations with the acousto-optical
tunable filter (AOTF) of the 488nm and the 514nm
laser line set to 100% transmission. Typically, 20
prebleach and 780 postbleach frames were recorded for
each series. In some cases, FRAP experiments were per-
formed on a TCS SP5 AOBS confocal laser scanning
microscope (Leica) using comparable settings as previ-
ously described (6).

Data correction, normalization and quantitative evalu-
ations were performed by automated processing with
Image] (http://rsb.info.nih.gov/ij/) using a set of
self-developed macros followed by calculations in Excel.
Details are provided in the Supplementary Methods and
in Supplementary Figure S4.

Mathematical model

The mathematical models used to statistically infer the
kinetic parameters from corrected and normalized
FRAP datasets are based on a compartmental approach
and biochemical kinetic principles. The model for
diffusion-uncoupled FRAP, ie. for molecules that
diffuse much more rapidly than they bind or unbind,
has previously been described (22,36). A model for
diffusion-coupled FRAP is developed in this work and
illustrated in Figure 4A; a similar approach has been
taken in (37). The model considers transitions between
the bound and the free state of a protein with association
rate constant k,, and dissociation rate constant kg . As
substantiated in the Supplementary Methods, the associ-
ation and dissociation dynamics can be expressed in terms
of linear ordinary differential equations (ODEs) when
replacing k,,, by an effective association rate constant k7.
The ODEs are given below. While bound proteins remain
fixed at the respective binding sites, free proteins diffuse
through the nucleus, thus changing their locations.
Movements between the bleached and the unbleached
section are modeled with a diffusion rate constant k.
Its value depends on the geometry of the cell and is not
immediately eligible for interpretation purposes. See the
Supplementary Methods for details on the modeling of the
movement of proteins.

Bleached and unbleached molecules are assumed to
behave identically, and therefore it suffices to focus on
one type only. Hence, let P}, Pl phowd and phownd
denote the fractions of unbleached free and bound
proteins in the bleached and unbleached sections,
measured with respect to all unbleached proteins in the
nucleus. These four parameters sum up to one such that
one of them can be left out. Define P/ = P’Zf" + P and
phound — phound 4 pbound — The  overall dynamics of un-
bleached proteins is described by
d Pfree e
U I P g P "

+hag (Pl = (L= i Py),

Pl /i /i /i bound
¥ * ree ree ree OUN.
5;11 = _konpunb/Jrkqt'f'(l - éhl — P — Pr ) 2)
- kd@[/(fb/P{,',f;f, - —fb/)P;,rfe>,
d Phound y
cbilz = K}, P — kP, 3)

The recovery curve equals F = (Pf)'f" + Pﬁ;’””d) /f. This
term was adjusted to the data normalization procedure
described in the Supplementary Methods and approaches
the value one as time progresses.

There is possibly more than one type of binding partner
for Dnmtl, i.e. the protein may sometimes associate to a
partner of one type and sometimes to a partner of another
type. These partners may differ with respect to the affinity
of Dnmtl to enter the bound state and the mean residence
times in this state. All binding partners with identical
or similar kinetic properties are gathered in one MC.



This term seems more appropriate than classes of binding
sites (22) because different sites with identical kinetic
properties cannot be distinguished using FRAP data. The
number of MCs could hence be smaller than the number of
different binding partners. Furthermore binding-unrelated
processes like anomalous diffusion can fall into an MC.
Suppose there are M classes of kinetically different
binding partners for the protein of interest, labeled with
numbers i € {1,...,M}. For all i, define Pi;’"“d” and PfZZ’;‘i"
as the fractions of type-i bound proteins in the bleached
and unbleached sections, respectively, with

Pbound,i — Pz;)umf,l +PZ;Z?d’I' Let fl — Pbound,i/Pbound be the

fraction of type-i bound proteins with respect to all
bound proteins. Furthermore, denote by &, and Koy,
the association and dissociation rate constants corres-

ponding to the ith MC. Then, the recovery is described by

dP ;}}gg /i M M f)] d.i
h _ ree * o bound,l
dt - Pb/ i.=l kon,i+ Zi:l ko/f,l bl (4)
ag (Pl = (L= i P),
dP’ ; M M ;
bl free bound,
dlft" == PL;;}LJI Zi:l k:n,i + Zi:l kﬂ.t'f;ipuzz;l [
‘ 5)
- ktﬁ[f(fblpi,’,;;[ - _fbl)Pg[M),
deound,i - ound.i
l;lt = kt}:n,iPZ[“ - k"f/;"Pb?w ’l’ (6)
deound,i - pound.i
o = K Pl = Kot Puyi (7)
where i=1,.,M. The fluorescence intensity is

F— (P/;)i‘[ee + Zgl Pg;)und,i)/ﬁ)l.

Parameter estimation

The mathematical model contains several unknowns: The
model parameters &, ;, k. and kg, the initial values Fj,

on,i>
Pé'fg , Pg%”d for the components F, P;’fe, Phound etc. and the
fractions fp, f; of bleached proteins, bound proteins of
type i, etc. Due to computational effort, parameter
redundancies and strong correlation between some para-
meters, it is not meaningful to statistically infer all these
unknowns simultaneously. Instead, some values were fixed
as follows: kg and fp were experimentally determined
(see Supplementary Table S3, Figure 4B and the data nor-
malization description above). The smallest &, value was
set to 0.005 (see the Results section). Fjy was chosen equal
to the first value of the FRAP curve. P/ng was set equal to
fwiFo. The association rates result from the other estimates
as k3, = kogfi(1 — P") /P Statistical inference of all
remaining variables was carried out by least squares esti-
mation. The ODEs (1)—(3) and (4)—(7) were numerically
solved with the Euler scheme with step length 0.03, which
corresponded to one-fifth of the observation interval. All
software was written in R (R Development Core Team,
2011, R Foundation for Statistical Computing, Vienna,
Austria).
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We estimated the model parameters for each FRAP
curve separately and compared the estimates for curves
from the same cell cycle phase and Dnmt1 construct after-
wards. For more details about the numerics, see the
Supplementary Methods.

Model choice

In our analysis, we estimate models with different
numbers of MCs. Because the models are nested, the in-
clusion of more MCs always leads to a better or at least
equally good fit. However, one may ask whether the add-
itional computational effort for multiple MCs is worth the
improved matching of the data. At first glance, model
choice criteria like the Akaike information criterion
(AIC) (38) seem appropriate. In our application,
however, the difference in the mean squared residuals
for different models is typically small owing to parameter
redundancies. Because of the large number of model par-
ameters, the AIC will often favor less MCs although the
curvature of the recovery curves is better described by
more complex models. For that reason, we developed a
model selection criterion that penalizes complexity less
rigorously and is specific to our application. Due to the
relatively small noise in the FRAP curves (Figure 3B and
Supplementary Figure S6), we do not expect to overfit the
data. The criterion reads as follows.

As explained in the Results section, the up to three
MC:s are further distinguished into one or two distinctive
mobility classes (DMCs) and up to one catalytic mobility
class (CMC). These have to fulfill three rules:

(1) If a DMC or CMC is present, the fraction PP of
bound proteins should be above a certain threshold:

Pbound = Ebound-

Otherwise the DMCs and CMC are discarded, and
we assume no MCs for this FRAP curve.

(2) Two distinct MCs should differ substantially in their
dissociation rates. In the model with two DMCs that
means that one should have

kor.prmct — Kogrpmcn -5
— OpMC
Kofr.omc2

kofr,pmc2 — Kofrcmc > s

or
kogr,cme

CMC-

Otherwise we assume the effective number of DMCs
to be one.

(3) An MC only truly contributes to the model if it
reaches a certain size:

bound . g ound
Jomc1 P > epmcand fpyuca PP > epuyc
bound
and feycP > ecmc-

Otherwise we assume the effective number of DMCs
to be one.

We derive appropriate values for the above thresholds
by cluster analysis; see the Supplementary Methods for
details and results. For each measured curve, we now
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select the model that yields the best fit. This is typically the
model with two DMCs and one CMC, but in many cases,
the fit of the model with one DMC and one CMC is
equally good and hence preferred. For the chosen
model, the original number of DMCs is replaced by the
effective number of DMCs as determined by the above
rules (Supplementary Figure S9). Then, for each cell
cycle phase and protein construct, the primarily chosen
effective number of DMCs is determined. The model
with the according number of DMCs is chosen for this
phase and construct. Supplementary Table S3 displays
the mean estimates for the selected model for all FRAP
curves. These results always assume the original number
of DMCs and do not further reduce it to an effective
number.

RESULTS

Necessity and sufficiency of the PBD and TS domain for
S phase-specific targeting of Dnmt1

Our aim was to analyze the S phase—dependent regulation
of the Dnmtl-binding behavior. To that end, we
investigated four GFP fusions: wild type Dnmtl
(GFP-Dnmt1™), the full-length Dnmtl carrying a point
mutation (GFP-Dnmt1?'®") within the PBD (6), a
Dnmtl mutant carrying a deletion of a highly conserved
part of the TS domain comprising the amino acids 459—
501 (GFP-Dnmt1*™) and a Dnmtl double mutant
containing both mutations (GFP-Dnmt]Q!02E/ATS)
(Figure 1A). To identify different cell cycle stages, we
first co-expressed GFP-Dnmtl constructs with PCNA
fused to monomeric red fluorescent protein
(RFP-PCNA) in mouse C2CI2 myoblast cells and
acquired confocal mid sections of the living cells
(Figure 1B). As previously described (6), GFP-Dnmt1™"
co-localized with RFP-PCNA at RF in early S phase.
Co-localization with RF was also apparent in late S
phase, when DNA of pericentromeric heterochromatin
(pHC) is replicated. In contrast, the double mutant
GFP-Dnmt1?'*/ATS was diffusely distributed within
nuclei throughout interphase, suggesting a deficiency to
target RF during S phase. GFP-Dnmtl*™ still
accumulated at RF in early and late S phase, but
showed a slightly weaker association compared with
GFP-DnmtI™', indicating the activity of PBD-mediated
targeting in all S phase stages, independent of the
presence of the TS domain (Figure 1B and Supplementarﬁ
Figure S2). As previously reported, GFP-Dnmt1?'¢?
showed a diffuse nuclear distribution in early S phase
but notable association to pHC replicating in late S
phase (6). Together, this suggests that the PBD-mediated
interaction with PCNA is necessary for the Dnmt1 local-
ization in early S phase, but evidently not for the associ-
ation at pHC in late S phase.

For a more detailed view on the spatial relationships of
wild-type and mutant Dnmtl and PCNA at RF, we used
super-resolution 3D-SIM (31,32). Owing to the ~8-fold
improved volumetric resolution of 3D-SIM (39), we
could clearly notice subtle variations in the Dnmt1 local-
ization that escaped detection with conventional imaging

(Figure 2 and Supplementary Figure S3). In late S phase,
GFP-Dnmt1™ coincides to a large extent with
immunofluorescently labeled endogenous PCNA foci in
locally decondensed parts of otherwise homogenously
compacted chromocenters with some Dnmtl signal ex-
tending slightly (by a few 100nm) beyond the PCNA
signal. Interestingly, RF outside of chromocenters
showed almost no enrichment of Dnmtl (Figure 2A). In
contrast, early S phase cells showed a more balanced
co-localization at RF (Supplementary Figure S3A).
Co-immunostaining of non-transfected cells with the
Dnmtl-specific monoclonal antibody 5A10 confirmed
the same localization characteristics for the endogenous
Dnmtl, hence excluding potential artifacts by the
GFP-tagging or overexpression (Supplementary Figure
S3B). As opposed to this, GFP-Dnmtl*™ precisely
co-localized with all PCNA marked RF inside and
outside of chromocenters (Figure 2B). GFP-Dnmt]2'?E,
similar to the wild type, displayed an enrichment at
chromocenter-associated RF but also in the nearby
regions of the chromocenters that were more compacted.
We further noted these regions to become larger toward
the end of late S phase, indicating that TS-mediated
binding primarily occurs at postreplicative pHC
(Supplementary Figure S3C). Pulse replication labeling
with 5-ethenyl-2’-deoxyuridine and co-staining with
PCNA confirmed the association of both, wild type and
the PBD mutant Dnmtl to postreplicative pHC
(Figure 2D). Hence, we conclude a strict co-localization
of the ATS mutant with PCNA at replication sites in late
S phase, whereas both TS domain-containing constructs
(GFP-Dnmt1?"*F stronger than GFP-DnmtI™) show a
non-strict co-localization and a tendency to bind adjacent
postreplicative pHC.

To gain further knowledge about the cell cycle-depend-
ent dynamics of Dnmtl, we compared FRAP kinetics of
mutant proteins with those of GFP-Dnmt1™ in early S
phase, late S phase and non-S phase cells with diffuse lo-
calization. The latter comprises mostly G1 cells but may
also contain a smaller subset of late G2 phase cells, ac-
cording to the different lengths of both stages. The com-
parison was done by half-nucleus FRAP analyses to
quantify the strength and contribution of the PBD- and
TS domain—-mediated interactions in the distinct stages
(Figure 3A). For a thorough quantitative evaluation of
half-nucleus FRAP data, which preceded the application
of the mathematical model, we developed an improved
protocol for image registration, nuclear segmentation
and data normalization (details described in Supple-
mentary Methods and Supplementary Figure S4).

Initial controls revealed that the additional expression
of RFP-PCNA influenced the kinetics of GFP-Dnmt1™
(Supplementary Figure S5). Hence, to avoid any biasing
effects, we decided not to co-express RFP-PCNA, but
instead to collectively analyze all nuclei with diffuse
nuclear distribution of the respective GFP fusion
protein. Control measurements of diffusely localized
GFP-Dnmt1?'%* in RFP-PCNA co-expressing cells
revealed no difference between the ‘early S phase’ and
‘Gl/late G2’ group (data not shown). We quantitatively
analyzed half-nucleus FRAP experiments of 10-20
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Figure 1. Domain structure and subnuclear localization of GFP-Dnmtl constructs. (A) Dnmtl consists of a large N-terminal regulatory domain
containing PBD, TS domain and a CXXC zinc finger (ZnF) domain, and a conserved C-terminal catalytic domain. The point mutation of a highly
conserved glutamine to glutamic acid introduced within the PBD eliminates interaction with the replication machinery (GFP-Dnmt1?'®?F). A
deletion in the central part of the TS domain (GFP-Dnmtl1“") was introduced to abolish interaction with constitutive heterochromatin.
Furthermore a construct containing both mutations was generated (GFP-Dnmtl?'®*®/ATS)  GFP alone is used as a control for a non-binding
protein. (B) Spinning disk confocal mid sections of GFP-Dnmtl wild type (wt) and mutant constructs in live mouse C2C12 cells co-expressing
RFP-PCNA to mark RF. In early S phase, GFP-Dnmt1™" accumulates at RF, whereas PCNA-binding deficient GFP-Dnmt1?!'*?E is diffusely
distributed throughout the nucleus. GFP-Dnmt1%" is still associated with RF, but not as prominently as GFP-DnmtI™. In late S phase
GFP-Dnmt1™, GFP-Dnmt1?'°’F and GFP-Dnmt1™S accumulate at larger RF of late replicating pHC, although with slightly less strong enrichment

observed for both mutants. GFP-Dnmt1?!¢?®/2TS j5 distributed diffusely in the nucleus throughout interphase. Scale bar: 5 pm.

datasets for each construct and categorized cell cycle
stage(s) (Figure 3B and Supplementary Figure S6) and
determined half-times of the recovery (#;,) and mobile
fractions (MF) (Supplementary Table S1)

In accordance with our previous observations (6), GFP-
Dnmt1™ showed a moderately reduced mobility in early S
phase (1, 6.3 £+ 0.3 s) compared with G1/late G2 phase (¢,
3.3 £ 0.15s) (Figure 3B and C). In late S phase, the recovery
was even more reduced (¢, 8.3 + 0.6s). Recovery kinetics
of the GFP-Dnmt12"**¥/2T5 double mutant comprising all
interphase stages revealed the same fast recovery kinetics
(112 3.6 £ 0.3s) as observed for GFP-Dnmt1™ in G1/late
G2 phase, suggesting the complete loss of any S phase—
specific interaction. The result implies that the collective
integrity of PBD and the TS domain is necessary and suffi-
cient for the entire S phase—dependent targeting of Dnmtl
to its localization sites.

Next, we analyzed both single mutants, GFP-
Dnmt12'%%F and GFP-Dnmt12TS, to dissect the specific
role of both domains in early S phase and late S phase.
In agreement with our previous analyses of GFP-
Dnmt19'%?E the kinetics measured for the pooled Gl1/
late G2 and early S phase cells showing a diffuse distribu-
tion, was almost identical to that of GFP-Dnmt1™ dif-
fusely distributed only in Gl/late G2 phase (¢,
3.1 £0.2s versus 3.3 £ 0.1s) consistent with the loss of
PCNA interaction in early S phase. In late S phase,
despite localizing similar to GFP-Dnmt1™, the kinetics
was slightly faster (¢, 5.4 = 0.4s), indicating a contribu-
tion of the PBD to the binding behavior of Dnmt1"" also
in late S phase. However, the recovery was still slower as
compared with the cells with diffuse localization, pointing
toward an additional TS domain interaction. Comparing
the wild-type construct with GFP-Dnmt127"S, the mutant
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Figure 2. Super-resolution imaging of heterochromatin association of GFP-Dnmtl constructs in late S phase. (A—C) 3D-SIM optical mid sections
and z-projections from of C2C12 cells expressing GFP-Dnmtl wild type and mutant constructs immunostained with antibodies against endogenous
PCNA. Profile plots were scaled between minimum and maximum intensity values for each nucleus. (A) GFP-Dnmt1"' co-localizes largely but not
strictly with PCNA inside ~200nm wide lacunas within otherwise densely packed DAPI-intense chromocenters of clustered pHC (inset al,
arrowheads in profile plot 1 and inset a3). Anti-PCNA-labeled RF outside of chromocenters show only minor or no association of Dnmtl (inset
a2, arrows in profile plot 2 and inset a3). (B) GFP-Dnmt14"S strictly co-localizes with PCNA at RF inside and outside chromocenters (insets bl + b2
and profile plots 3+4). An increased diffuse fraction is visible as small grainy evenly distributed nucleoplasmic background. (C) GFP-Dnmt]?!¢2E
does not strictly co-localize with PCNA, but also associates with adjacent regions of pHC (arrowheads, inset c3 and profile plot 5). No association is
detected in RF outside chromocenters (arrows, inset ¢3 and profile plot 6). (D) Additional replication labeling with a 60-min EdU pulse prior
fixation. Association of GFP-Dnmt1™ and GFP-Dnmt1?'®" to chromocenter regions outside of PCNA foci is restricted to the bulk of EdU-labeled
postreplicative chromatin (insets, arrows), while unlabeled, presumably not yet replicated chromocenter regions are still void of GFP-Dnmtl (insets,
arrowheads). Scale bars: 5pm and 1pm (insets).
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Figure 3. Quantitative FRAP evaluation of GFP and GFP-Dnmtl constructs. (A) Representative time frames of exemplary half-nucleus FRAP
series recorded with spinning disk confocal microscopy. Scale bar: 5um. (B) Mean recovery curves displayed for all measured constructs and cell
cycle stages. The inset illustrates cycle-dependent kinetics of GFP and GFP-Dnmt1™' alone (a), and in comparison with GFP-Dnmt1?'%*F (b),
GFP-Dnmt12™8 (¢) and GFP-Dnmt1?'"?5/2TS (d). GFP-Dnmt1"" in cells with diffuse localization shows a decreased mobility compared with GFP.
The GFP-Dnmt1™" mobility decreases stepwise in early S phase and in late S phase. The mobility of GFP-Dnmt1?'*E in G1 (late G2) and early S
cells (diffuse nuclear localization, pooled) is almost identical to GFP-DnmtI™ G1 (late G2) cells. In late S phase, a moderately increased mobility is
observed for both, GFP-Dnmt12'°*t and GFP-Dnmt12" mutants compared with GFP-DnmtI™'. Of note, despite comparable overall kinetics, both
curves (dark green, dark oran%e) are clearly different in their shape. In early S phase, the 7;, of GFP-Dnmtl1®™ is reduced compared to
GFP-Dnmt1"'. GFP-Dnmt1'*F/24TS (al] interphase stages, pooled) displays kinetics almost identical to GFP-Dnmt1“' in cells with diffuse
localization. For clarity, error bars are omitted here, but shown in Supplementary Figure S6. (C) Half-times of recovery (;,,) determined for
each construct and distribution pattern. Error bars represent SEM.
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showed also faster kinetics in late S phase (¢, 6.0 + 0.45),
suggesting that the TS domain together with the PBD are
necessary for the wild-type kinetics in late S phase. Besides
the role of the TS domain in late S phase, this mutation
also enhanced the mobility in early S phase
(tip 4.2+ 0.3s) in accordance with the fact that the
early S phase pattern of RF association was less promin-
ent (Figure 1B). This result indicates that the binding by
the PBD domain to RF is necessary, but not sufficient for
the early S phase—specific localization of DnmtlI.

We also noted that the mobile fractions (MF) of the
wild-type construct within the observation time of 2 min
dropped from around 100% in non-S phase to ~98% in
early and late S phase. This directs to a small immobile
fraction of covalently bound Dnmtl involved in the
covalent complex formation during the enzymatic
reaction (Supplementary Table S1). This observation is
consistent with a rather slow speed of the enzyme
reaction measured in vitro with hemimethylated substrate
(40-43). A small immobile fraction (~1%) was also noted
for the Dnmt]l mutant construct.

To test the general ability as well as differences in the
efficiency of the investigated regulatory Dnmtl mutants to
undergo covalent complex formation in vivo, we measured
the time-dependent immobilization by FRAP on incuba-
tion with the mechanism-based inhibitor 5-aza-2’-
deoxycytidine (44) (see Supplementary Methods for
details on the trapping assay). In agreement with the
observed small immobile fractions, all mutants became
immobilized albeit with variable efficiencies, with
GFP-DnmtI™" being already fully immobilized within
30-45min (corresponding to a trap%)ing rate of ~3%
min’l), followed by GFP-Dnmt19'°F, GFP-Dnmt12™S
and  GFP-DnmtI®'®F/ATS  (only  ~10% h™)
(Supplementary Figure S7).

We conclude that the PBD and the TS domain are the
only domains directly involved in S phase—specific target-
ing of Dnmt1 with respect to localization and kinetics and
that both domains contribute to enhance the efficiency to
initiate the catalytic reaction in vivo. To decipher the exact
relationship of PBD- and TS domain-mediated binding in
early and late S phase, however, a more sophisticated
analysis is needed.

Kinetic modeling of half-nucleus FRAP with multiple
binding classes and diffusion-coupled dynamics

We next sought to characterize the contribution of the
PBD- and TS domain—-mediated interactions in different
stages of the cell cycle in a more precise quantitative
manner. Hence, we utilized mathematical modeling to
estimate the fraction of protein bound by these domains
and the binding strength in the different cell cycle stages.

The choice of the model was based on several consider-
ations. First, to take account for the heterogeneous spatial
distribution of binding sites that strongly varies in differ-
ent cell cycle stages. Second, to correct for diffusion-
related effects. Third, to deal with multiple potentially
superimposing interactions, or binding classes, respect-
ively, including a small fraction of protein covalently
bound during the catalytic reaction (Figure 4A). Such a

level of complexity goes beyond the assumptions of FRAP
analysis based on present reaction-diffusion models (45—
48). Therefore, we decided to use a compartmental
approach with size-calibrated diffusion correction,
suitable for experiments with half-nucleus bleaching,
which ensure representative distribution of binding sites
in all cell cycle stages. Each of the two halves was then
considered as a well-mixed homogeneous interaction
system where proteins can bind to different binding
partners (22,36).

Taking diffusion into account is especially important
for assessing nuclear proteins as most of them undergo
transient interactions in a diffusion-coupled behavior
(18,46). This is also true for Dnmtl (Supplementary
Figure S8). To approximate the diffusion of the protein,
we introduced a size-dependent correction factor (k) as
a measure for the exchange of free molecules between the
bleached and unbleached half to approximate the diffu-
sion of the protein as similarly performed in (37) (Figure
4A; see Materials and Methods). To estimate this
exchange parameter, we performed FRAP calibration
measurements of GFP monomers, dimers and tetramers,
as they have known sizes and are presumably inert in cells
(Figure 4B). The kg value corresponding to the size of
GFP-Dnmtl was extrapolated from the k;; values experi-
mentally determined for the other three constructs in the
same cell line using an exponential regression curve
(Figure 4B and Supplementary Table S2).

We noted that the normalized FRAP curves of
GFP-Dnmtl constructs, in particular those from S phase
cells, typically did not reach a straight plateau after 2-min
observation time. Instead, they still followed a slight
incline. As outlined above, this might be attributed to a
small fraction of molecules actively involved in covalent
complex formation during methyl group transfer. In vitro
measurements have previously demonstrated a rather slow
catalytic reaction of human DNMT]1 on hemimethylated
DNA in the range of 1-22min per CpG (40-43). To
account for this possibility, we added a class with
variable fraction size but a small fixed dissociation rate
(kop). This class is referred to as CMC. As opposed to
that, classes with free k,; values will be referred to as
DMC. The k,; value for the CMC was chosen to be
0.005s~", which is equivalent to a mean residence time
of 200s (40). By fixing it, we avoided an additional free
parameter in our fitting procedure. To further decrease the
number of free parameters in our model, we also fixed the
bleached fraction f,, to an experimentally determined
value for each FRAP experiment (see Materials and
Methods). Altogether we estimated the k,; values of up
to two DMCs, the fraction sizes of bound proteins (one
CMC and two DMCs), and the remaining pool of free
molecules (fee)-

Although this modeling approach does not cover
the whole details of our experimental system, it concen-
trates on the characterization of the interactions while still
integrating some essential information on the diffusion
process and therefore provides a way to interpret the
differences between the different forms of Dnmtl during
the different phases of the cell cycle. In conclusion,
our compartmental model uses an experimentally
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Figure 4. Refined diffusion-coupled compartmental model for three MCs and determination of kg from GFP multimer measurements. (A) The
nuclear compartment is divided into four main compartments: bleached and unbleached molecules in the bound or free state, respectively. The bound
state can be subdivided into three compartments with specific properties. For Dnmtl, we choose two DMCs (DMCI1 and DMC2, blue and green
frame, respectively) and one CMC (red frame) with a fixed k,;: Molecules bind and unbind with association and dissociation rates given by k,,; and
kosri» Tespectively. In our refined modeling approach, the parameter f;, is experimentally determined for each individual FRAP series. Migration of
molecules is implemented in the model by introducing a new diffusion rate constant k. This parameter corrects for the size-dependent exchange of
the free molecules between the bleached and unbleached compartment. Parameter and variables entering the sets of differential equations are written
in bold; predetermined/fixed values are indicated. (B) Quantitative FRAP evaluation of GFP multimers. The GFP mobility of the dimer and the
tetramer decreases stepwise as compared with the monomer. The kg factor for the GFP constructs is estimated from the model with no DMC/
CMC. From these values, the corresponding kgyy factor for the size of GFP-Dnmtl is estimated using an exponential regression curve (inset
diagram).

determined cell type—specific correction for size-dependent
diffusion effects and can extract up to three dissociation
rates and the sizes of all bound pools and the remaining
free pool. This way we took into account several
interaction partners, diffusion-coupled dynamics and the
irregular distribution of binding sites of the protein.

Quantifying the properties of the PBD- and TS
domain-mediated binding by FRAP modeling

We applied the enhanced kinetic model to our FRAP data
of GFP-Dnmt1%" and mutants. For each FRAP curve, the
parameters of three differential equation models were
determined using least squares estimation. These models
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accounted for (i) no DMC/CMC, i.c. free proteins only,
(i1) one DMC plus CMC or (iii) two DMCs plus CMC.
The kgyy values were chosen according to the respective
protein sizes (Supplementary Table S2). For each individ-
ual FRAP curve, the most appropriate model was
determined based on the mean squared residuals and
certain restrictions on the fraction sizes and magnitudes
of the dissociation rates (see Materials and Methods).
Then, for each construct and cell cycle phase, we identified
the model that was preferentially chosen for the majority
of datasets (Supplementary Figure S9). This model was
then used to determine the final mean ks values, the re-
ciprocal mean residence times 7,.,= 1/ k. as well as the
corresponding fraction sizes for all measured constructs
and cell cycle stages (Figure 5 and Supplementary Table
S3).

Model estimation for our reference FRAP measure-
ments with GFP monomers and dimers provided a clear
tendency of having no DMC (100% free fraction),
whereas most FRAP curves of GFP-tetramers were best
explained by a large free fraction (>91%) plus a smaller
fraction of reduced mobility (<8%). Notably, the 7,
determined for this fraction was rather high and showed
a large variation indicating a GFP-multimer—specific
effect. Analyzing the GFP-Dnmtl constructs, we
observed that a small fraction (fcmce 1-4%) was always
assigned to the class of molecules potentially involved in
the catalytic process (CMC). Estimation of the size of the
CMC is numerically difficult owing to the small fraction
size. We hence do not interpret those estimates here.

For GFP-DnmtI™" expressing cells in G1/late G2, our
model likewise estimated a large free fraction of ~80%
and a population of ~19% with a relatively low mean
residence time (7., ~8s). In early S phase, the bound
fraction doubled to ~40% owing to binding to
immobilized PCNA trimeric rings at replication forks (6,
49). The mean residence time measured for this class was
with 7., ~10s slightly higher. The largest fraction of 56%
was still assigned to the free pool. In late S phase cells, the
bound fraction remained in a similar range with 48%.
Importantly, concomitant with binding to pHC at
chromocenters, the model identified two distinct DMCs:
18% of the proteins were still bound with an intermediate
strength (DMC1: T, ~10s), and an additional 28% with
a substantially higher strength (DMC2: T, ~225).

An 18-22% fraction with consistent kinetics was con-
stitutively present in all cell cycle stages of the investigated
GFP-Dnmtl constructs. The nature of this constitutive
MC remains unclear. In addition to the mutants described
here, we performed FRAP analyses of a series of mutant
constructs with deletions of potential interacting regions
within the regulatory domain of Dnmtl, which included
N-terminal truncations of various length (data not shown)
and deletion within the ZnF domain (50). None of these
mutants showed faster kinetics than GFP-Dnmtl™ in
diffuse cells. We therefore attribute this constitutive class
to an anomalous diffusive behavior (see discussion) and
not to particular DNA/chromatin binding mediated by a
specific domain.

The modeling of FRAP data of the GFP-Dnmt]?'%*F
mutant revealed a modest reduction of the DMCI fraction

size as compared with the level of GFP-Dnmt1™ in all

measured phases (diffuse, late S) (DMCI1: 10-14%; T,
~95s). In late S phase cells, a second slower DMC with
similar strength was still retained (DMC2: 23%; T,
~19s). From these results, we conclude that Dnmtl
binds PCNA at replication sites of early S phase cells
with a mean residence time of ~10s and with no more
than 20-25% of the nuclear Dnmtl pool being involved
in this reaction. The binding of the Dnmt1 constructs with
intact PBD to PCNA, as well as complete loss of the inter-
action by introduction of the Q162E point mutation was
confirmed biochemically by co-immunoprecipitation
(Supplementary Figure S10). In late S phase, only a
minor decrease in the mean residence times of the first
and second DMC was observable for GFP-Dnmt]?'¢*F
as compared with the wild type, indicating that the PBD
does contribute, if only to a small extent, to the binding
strength in late S phase. However, the overall bound
fraction of molecules decreased compared with
GFP-Dnmt1™ in late S phase (66% versus 52%) causing
an overall faster FRAP kinetics. The double mutant
GFP-Dnmt1'*¥/2TS did not establish any association
pattern throughout interphase. In accordance, the ex-
tracted kinetic properties were almost identical to those
of GFP-Dnmt1™" in Gl/late G2 (19%; Tyes ~85).

Modeling of GFP-Dnmt12™ in early S phase revealed a
modest reduction of the fraction size and binding strength
(DMCI1: 30%; T, ~8.5s compared with 39%; T,., ~10s
in the wild type). This could argue for either a stabilization
of the PCNA complex at the replication sites by the TS
domain or may hint to the presence of a minor fraction of
strong binding sites, which is too small to be identified as a
distinct class. In late S phase, still only one DMC was
identified for GFP-Dnmt12™ (DMC1: 40%, T,., ~95s),
similar to GFP-Dnmt1™ in early S phase. This suggests
a prevalence of TS domain—-mediated binding over PBD
mediated, provided that the conditions for TS binding are
complied (i.e. high density of hemimethylated CpG sites in
conjunction with heterochromatic marks; see discussion
below). In this case, binding to PCNA does only seem
to play a supportive role. This view is also in accordance
with the finding that in late S phase, the Q162E mutation
alone does not change the DMC1 or DMC?2 substantially,
but only leads to a moderate increase in free protein.

DISCUSSION

We addressed the complex problem of dissecting the cell
cycle—dependent regulation of Dnmtl by super-resolution
3D imaging, FRAP and kinetic modeling. Two main
factors add to the complexity of the analysis. First,
Dnmtl is a large enzyme with multiple regulatory
subdomains, interaction partners and cell cycle-dependent
regulation. Second, the distribution pattern of Dnmtl is
highly variable throughout the cell cycle. Hence, we chose
a global approach using half-nucleus FRAP to capture in
all cases representative fractions of bound molecules and
binding sites. Previous studies often used spot bleaching
with a defined geometry that allowed the extraction of
diffusion coefficients (24,51,52). However, such models
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amount). In all analyzed GFP-Dnmtl constructs, a fast population of molecules was identified with mean residence times between 6s and 10s
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sorted according to their targets PCNA and pHC and the constitutively present unspecified MC (constitutive class, CC).

typically only included no more than one additional
binding class, while we expected multiple interactions.
Therefore, none of the previous models was immediately
applicable to our case, which prompted us to devise a

customized model.

To eliminate a weak point of diffusion-uncoupled
approaches, we further corrected for size-dependent diffu-
sion using a calibration factor that was experimentally
determined from measurements of GFP multimer
proteins. Anomalous diffusion behavior has previously
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been shown for GFP and dextran in the nucleus (53-55).
This indicates that calculation of size-dependent diffusion
differences according to the Stokes-Einstein relation might
lead to wrong parameter estimates for proteins in the
nucleus (56), especially when large size differences like
between GFP and Dnmtl are taken into account.

FRAP measurements are sensitive to experimental con-
ditions and set-ups (57). We tried to correct for most con-
ceivable external influences during image evaluation by
using a tailored workflow of postprocessing steps (see
Supplementary Materials and Methods). This involved
image registration, constrained automated nuclear seg-
mentation and three-step normalization/correction.
Altogether, this allows us to compensate for lateral cell
movement, nuclear import and export, bleaching due to
image acquisition and variations in bleaching depth,
which otherwise potentially affect the raw data and sub-
sequent modeling results. Moreover, we modeled a slow
CMC using a low fixed &, value, taking into account that
a small fraction of molecules is likely to be involved in
catalysis and thereby transiently immobilized by a
covalent complex formation (40,43). Finally, we also
reduced the number of free parameters by fixing the size
of the bleached fraction to a value experimentally
determined for each FRAP series. The number of DMCs
was determined by model choice rules, which are oriented
toward the numerical properties of the model.

Although our model allows for three distinct MC, we
possibly cannot estimate their number and properties
beyond all doubt, mostly because two or more distinct
interactions may fall into one MC (see Materials and
Methods). If interaction strengths of multiple interactions
are relatively close to each other, they may not be detected
as separate classes but be captured as one with an inter-
mediate mixed k,;. The appearance of such parameter
redundancies depends on the model and the values of
the underlying parameters (e.g. 58). However, different
dynamics can still be distinguished indirectly by a
changed fraction size. An example for mixed interactions
in one class is the similar kinetics of the non-specified con-
stitutive class and of GFP-DnmtI™ binding to PCNA.
This rather small constitutive fraction may be attributed
to one or more residual transient interactions. So far, we
could not detect any specific subdomain of Dnmtl that
would be responsible for a transient interaction through-
out the cell cycle (data not shown). Thus, we tend to at-
tribute this to an anomalous diffusive behavior within the
nucleus that is identified as a pseudo-binding class. This
may be caused by restrained accessibility of dense
chromatin domains and transient trapping inside of
small chromatin lacunas (‘corralling’) generating a
‘pseudo’ binding effect and/or by unspecific transient
binding with a broad distribution of binding affinities
(53,54,59). Dnmtl could also be constitutively present in
a free diffusing complex including interacting proteins like
PCNA or Uhrfl. In fact, Dnmtl interactions have been
described for a variety of proteins including other DNA
methyltransferases, chromatin modifiers and transcrip-
tional regulators (60). Interactions with high molecular
weight complexes could potentially slow down diffusion

of GFP-Dnmtl and thus contribute to the observed
dynamics.

Another limitation of our method is the precision limit
imposed by a still large cell-to-cell variability due to (i)
technical reasons like residual uncorrected cell motion or
z-drift, irradiation/transfection-induced DNA damage or
cell cycle arrest or (ii) biological reasons such as variations
in endogenous expression and methylation levels or local
environment. Therefore, for example, the quantification of
the apparently small CMC gives no robust results.
However, by estimating the kinetic parameters for each
FRAP curve separately, we take into account this extrinsic
noise and quantify it through standard errors. Finally,
using experimental FRAP data, it can never be ruled out
that the kinetics are influenced by variations in k,, rates.
However, the method does not allow assessing changes in
the accessibility of the binding sites. These technical limi-
tations could only be solved using large-scale simulations
and even more complex models.

Despite these potential shortcomings, by application of
our method, one can still obtain a detailed picture of the
distinct cell cycle—dependent dynamics of proteins. We
have shown that the PBD and the TS domain are the
only domains involved in direct S phase-dependent target-
ing of Dnmtl and responsible for delaying its mobility.
Furthermore, we discriminated two different MCs that
could be matched to these two different domains of
Dnmtl. In this study, we quantified the time they bind
on average and found the binding via the TS domain to
be >2-fold stronger than via the PBD, whereas the cor-
responding fractions of bound protein were in a similar
size range between 20 and 30%.

In accordance with previous studies, we show that the
more transient interaction with PCNA increases the con-
centration of Dnmtl at replication sites to enhance the
efficiency of maintenance DNA methylation (7). In
addition, we have characterized the stronger binding
properties of the TS domain. The related MC was only
present in late S phase, when pericentric heterochromatin
(pHC) clustered in DAPI dense chromocenters is
replicated, suggesting a switch between PBD-mediated
binding in early S phase to the TS domain-mediated
binding in late S phase. The analysis of the single
mutants, however, hinted at a somewhat more complex
situation, as the deletion within the TS domain also
influenced GFP-Dnmtl kinetics in early S phase and the
mutation in the PBD influenced the GFP-Dnmt1 localiza-
tion in late S phase. This rather argues for a more subtle
continuous change in binding balance instead of a simple
on/off switching. Hence, association via the TS domain
might occur also in early S phase, but at much lower abun-
dance. Indeed a substantial minority (8/21) of early S
phase cells could be better fitted with two respective
distinct MCs, indicating some cell-to-cell variability,
possibly in transition to mid S phase. On the other
hand, PBD-mediated co-localization with PCNA is also
observed in late S phase. However, as the fraction size
with the respective faster off-rate is reduced to non-S
phase level, this Dnmtl fraction may be handed over to
form a late S phase—specific, more stable complex, such
that the TS domain-specific off-rate  becomes
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via the PBD to immobilized PCNA rings (red donut) with a mean residence time (1/k,s;) of ~10s (1). Targeting to PCNA at RF enhances the
efficiency of a small fraction of Dnmtl to form metastable covalent complexes (k,;) with hemimethylated CpG substrate sites in close vicinity. This
may occur on already assembled nucleosomes, likely involving complex formation with one or several auxiliary factors (2a), or directly on the naked
DNA substrate adjacent to PCNA (2b) or to nucleosomes (2¢). In late S phase, replication through chromatin with now abundant heterochromatic
marks in conjunction with dense CpG methylation triggers the generation of high-affinity binding sites for an auxiliary protein. These may then act
as second loading platform (dark blue pentagons) for TS-mediated binding with mean residence time (1 / k) of ~22s involving ~25% of the
Dnmtl pool. Formation of this transient complex with subsequent substrate binding of a small subset of molecules occurs either directly at the
replication fork promoted by PBD-mediated targeting, or PCNA independently at already displaced postreplicative heterochromatin chromatin that
may have escaped loading in the first instance (3). This second PCNA-independent loading complex may be assembled well into G2 phase, until all
hemimethylated Dnmt1 target sites are fully methylated, which finally triggers disassembly of the loading complex and dissociation of Dnmtl (4). Of
note, this conceptual model is based on the differential availability of binding sites and the free interplay of forces. While higher affinity binding sites
are occasionally generated also in early S phase, they may be too sparse to constitute a separate MC.

predominant. In this stage, PCNA binding would thus be
an auxiliary factor for TS-mediated binding of a Dnmtl
subfraction. Besides, supported by super-resolution mi-
croscopy, we provide evidence for additional PCNA/
PBD-independent binding to pHC. The latter seems to
be dependent not only on the heterochromatic context
alone, but also on the presence of hemimethylated
postreplicative DNA as precondition. Accordingly we
did not observe any pHC association in early S phase. It
is tempting to speculate that the observed kinetics reflect
the binding of the TS domain to Uhrfl, an essential epi-
genetic factor that has previously been shown to target
Dnmtl to hemimethylated CpG sites and to bind
trimethylated H3K9 (13-17). However, we cannot rule
out other/additional modes of binding of the TS domain

to pHC. In support of a role of Uhrfl as a docking
platform for Dnmtl, a previous FRAP study
demonstrated a much slower recovery of GFP-Uhrfl
compared to GFP-DnmtI™ in mouse embryonic stem
cells (61).

In light of our data we propose a conceptual
two-loading-platform model (outlined in Figure 6).
According to this, the kinetic balance would shift from
predominant PCNA/PBD binding in early S phase,
toward TS-mediated binding in later S phase stages
when replicating densely methylated heterochromatic se-
quences. This shift would be triggered by the strongly
increased appearance of hemimethylated CpG sites in con-
junction with heterochromatic marks (e.g., H3K9me3).
These would then offer the target for the formation of a
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stable complex (involving e.g. Uhrf1) that acts as a second
Dnmtl loading platform on postreplicative chromatin
sites. PCNA-independent loading complexes may persist
also beyond S phase, until all hemimethylated Dnmtl
target sites are fully methylated, which in turn triggers
complex disassembly and gradual loss of TS-mediated
binding in G2 phase. Such a mechanism would thus safe-
guard faithful maintenance of dense methylation at con-
stitutive heterochromatin important for genome stability
(3), against the backdrop of a rather slow and inefficient
catalytic reaction (40).

While we favor a model of free interplay of forces in
conjunction with a cell cycle dependent varying abundance
of high affinity binding sites, we cannot rule out an effect
by an induced conformational change of the Dnmtl
protein to expose the TS domain at the onset of late S
phase. In this context, several modifications have been
reported like acetylation, ubiquitination, phosphorylation,
methylation and sumoylation, resulting in a change
in activity and/or abundance of Dnmtl (60,62-64).
For example, it has been shown that Uhrfl ubiquitinates
Dnmtl at the C-terminal part of the TS domain (33).
Further studies will have to address the exact interplay of
Uhrfl and Dnmtl as a function of variable (hemi)methy-
lation density and the role of posttranslational modifica-
tions of Dnmtl.

In the present study, we have reached substantial im-
provements on the experimental conditions and workflow
for the quantitative and qualitative evaluation of half-
nucleus FRAP experiments. Still, extracting definite
answers from modeling of such FRAP data remains diffi-
cult and to some extent limited. Of note, our analysis
involved multiple decisions on the data normalization,
fixation of parameters, model choice, etc. Although all
steps have been carried out with greatest care, this deter-
ministic approach will still fall to some extent short. New
stochastic modeling approaches may be able to realistic-
ally take into account random events and may hence
better explain intrinsic variability of the FRAP curves.
Nonetheless, this article provides a framework for the
global assessment and quantitative measurement of
diffusion-coupled nuclear protein dynamics with heteroge-
neous and variable distribution of binding sites, e.g.
during cell cycle and development.

Our approach provided new insights into the complex
cell cycle dependent regulation of the multi-domain
protein Dnmtl in the epigenetic network. We arrived at
a probabilistic two-loading-platform model that provides
a possible explanation how PBD and TS domain act co-
operatively to faithfully maintain genomic methylation
patterns through cell cycle and cell divisions. Further
studies will address the mechanistic nature of the
complex formation involving the TS domain and the tar-
geting of Dnmtl to hemimethylated sites.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1-3, Supplementary Figures 1-10,

Supplementary Methods and Supplementary References
[65-68].
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SUPPLEMENTARY METHODS

Expression constructs and cell culture

The expression construct GFP-Dnmt1 ¢1229% has been previously described (1). Dnmt1” and wild type
J1 mouse embryonic stem cells (C/C) (2), either non-transfected or stably transfected with GFP-
Dnmt1Wt, GFP-Dnmt19'%%F and GFP-Dnmt12™ were cultured without feeder cells in gelatinized flasks.

Culture conditions and creation of stably expressing cells has been described before (3).

In vivo Dnmt1 trapping assay

The trapping assay to measure postreplicative methylation efficiency in living cells was previously
described (1). 5-Aza-2’-deoxycytidine (Sigma) was added at a final concentration of 30 uM and cells
were incubated for the indicated periods before performing FRAP experiments. Microscope settings
and quantitative FRAP analysis are described in Material and Methods (live cell microscopy and

quantitative FRAP analysis).

Dnmt1 immunostaining and evaluation of relative expression levels

Non-transfected and transiently or stably transfected cells expressing GFP-Dnmt1 fusions were
seeded on No. 1.5H precision coverslips (Marienfeld Superior), formaldehyde fixed and permeabilized
with 0.5% Triton-X-100 or ice-cold methanol, if PCNA was detected. Endogenous PCNA was
fluorescently labeled with the mouse monoclonal antibody PC10 (Abcam) and a secondary anti-mouse
antibody conjugated to Alexa Fluor 594 (Invitrogen). The rat IgG1 monoclonal antibody 5A10 was

raised against murine Dnmt1 with an N-terminal His,-tag. The protein was purified from Sf9 insect

cells via recombinant baculoviruses. Immunization, generation of hybridomas and ELISA screening
was performed as previously described (4). Secondary antibodies were conjugated to Alexa Fluor 488
or Alexa Fluor 594 (Invitrogen). Cells were counterstained with 1 ug/ml 4',6-diamidino-2-phenylindole
and embedded in Vectashield (Vector Laboratories).

Mean intensity levels of Dnmt1 (endogenous and exogenous) in the nucleus were measured on 2 ym
image stacks (0.5 ym z-distance) in Volocity 6.1 (PerkinElmer) using the SD based automatic
threshold function on the DAPI staining. Objects below 200 um?® were excluded and objects separated
with an object size guide of 1200 pm?. For evaluation of the transfected cells, only low to moderate
expressing cells with a mean nuclear GFP intensity between 500 and 2000 grey values were
considered (analogous to FRAP experiments). For the calculation of the anti-Dnmt1 fluorescence
intensities, background subtracted mean intensities of at least 20 cells (transiently transfected) or 70
cells (non-transfected and stably transfected cells), respectively, were averaged. Finally relative ratios
of transfected over non-transfected cells were calculated and the standard deviations were

determined.

Co-immunoprecipitation and western blot analysis
Co-immunoprecipitation and western blot analysis was performed as previously described (5) with the

following changes. For extract preparation 150 mM NaCl, 1 mg/ml DNasel (AppliChem), 2 mM MgCl,
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and 1x protease inhibitor mix (Serva) were included in the lysis buffer. For dilution of lysates and for
washing steps an immunoprecipitation buffer was used (20 mM Tris-HCI pH 7.5, 150 mM NaCl,

0.5 mM EDTA).

The following primary monoclonal antibodies were used for immunoblotting: rat anti-Dnmt1 5A10 (see
Dnmt1 immunostaining and evaluation of relative expression levels), rat anti-PCNA 16D10 (4), mouse
anti-GFP (Roche) and mouse anti-B-Actin (Sigma-Aldrich). Secondary anti-rat and anti-mouse

antibodies were either conjugated to HRP (Dianova) or Alexa Fluor 594/647 (Invitrogen).

Data correction and normalization
Imported image series were intensity normalized, converted to 8-bit and Gauss-filtered (2 pixel radius).
Datasets showing lateral movement of cells were corrected by image registration using the StackReg
plug-in of Imaged starting with a frame where approximately half recovery was reached. Mean
intensities over time were extracted from four regions of interest (ROIs): The total nuclear area (T) was
defined manually or by applying the Autothreshold function of ImagedJ on the prebleach frame and on
the last frame. The overlapping region of both threshold-defined areas was used to create the minimal
ROI. This ROI was then divided into a bleached (B) and an unbleached area, where the coordinates of
the bleached ROI were used to determine the bleaching border (the last line perpendicular to the
major axis of the nucleus, Supplementary Figure 4 A). Finally, a background ROI (BG) outside of the
cell was defined manually or with the Autothreshold function. The mean gray values over time were
measured and pasted to an MS Excel worksheet.

Raw data (Supplementary Figure 4 B) from T and B regions were background subtracted resulting
in T"and B" with T, representing the data according to the respective time point t. A reference value

i

T

nostbleach Was defined as the average of the resulting postbleach values from time points 10-20 after

bleaching, and T‘;remeach as the average of the last five prebleach values. Additional gain or loss of total
fluorescence during postbleach acquisition may potentially be caused by nuclear import, bleaching-by-
acquisition and flux of unbleached molecules from above and below the recorded optical plane. In

order to correct for such effects, the postbleach values were corrected by multiplication with Tp'ostbleach /

T;. Accordingly, prebleach values were multiplied with Ty epieacn/T: leading to T, and B;. To correct for
cell-to-cell differences in bleaching depth, we subtracted a value ® from all mean fluorescence values
T, and B,. The value ® was determined from the mean fluorescence in the distal part (50%) of the
bleached region at the first postbleach time point as follows: To measure the bleaching depth, we
determined fluorescence intensity profiles of the total nuclear region along the major axis of the
nucleus and determined the number of pixels in the nucleus (T region) for each line along the axis at
the first postbleach time point (Supplementary Figure 4 C). The bleaching depth ® was then
determined with the following Equation ( S 1), where P stands for the number of pixels of each line in
the T region i € {1, ...,256} along the axis as Ppgstpieach; @Nd the mean fluorescence intensity of the

lines as Ipostpieach,i» respectively, until 50% of the bleached lines indicated by h:
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h
Zi=1(Ppostheach,iX(Ipostbleach,i - BGpostheach))
D = m : ( S1 )
Zi:l Ppostbleach,i

The corrected values for T, and B, were divided by the respective means of the last five prebleach
values Tp;;ebleach to account for intensity differences in the bleached and unbleached regions before
bleaching. The corrected relative intensity values in the bleached region were finally corrected for the

loss of fluorescence due to half nucleus bleaching. This was achieved by dividing each value B,"

resulting fluorescence intensities will level off around the value 1, subject to stochastic fluctuations
(Supplementary Figure 4 D). The bleached fraction was given by fy = 1 — Toostieach/ Tprebleach USING the

D corrected values. Calculation of the mobile fraction (MF) was performed by

MF =(B. o= B =B s )- B

plateau postbleach posibleach was defined as the average intensity of the last 20

plateau

frames. For the half time recovery () the according time to Fy,, was chosen from the results with

F,=(B)..-B" )i2+B

plateau postbleach postbleach”

Mathematical model

The mathematical models used for the statistical analysis of the recovery curves are based on a
compartmental approach and biochemical kinetic principles. The model for diffusion-uncoupled FRAP,
i.e. for molecules that diffuse much more rapidly than they bind or unbind, has previously been
described (6-7). A model for diffusion-coupled FRAP is developed in this work; a similar approach has
been taken in (8). The compartmental description of the diffusion-coupled model is illustrated in Figure
4 A; the diffusion-uncoupled model is a simplification thereof. Both models consider transitions
between the bound and the free state of a protein with association rate constant k,, and dissociation
rate constant k.. Dissociation follows a linear process, while association is originally of second order.
However, the product of k,, and the concentration [BS] of available binding sites can be assumed
constant (9), resulting in an effective association rate constant kg, = k,,[BS]. This simplification allows
the conversion of the second order association process to a pseudo-first order process. Hence, the
association and dissociation dynamics can be expressed in terms of linear ordinary differential
equations (ODEs), which are given below. While bound proteins remain fixed at the respective binding
sites, free proteins diffuse through the nucleus, thus changing their locations among the bleached and
the unbleached sections. In diffusion-uncoupled FRAP, diffusion of free molecules happens so rapidly
that their concentration is identical in the bleached and in the unbleached section. Hence, it is not
necessary to model the location of a free molecule. In a diffusion-coupled situation, on the other hand,
movements between the bleached and the unbleached section are modeled with a diffusion rate
constant kgg. Every two molecules that are located at the same distance from the bleaching border
are supposed to cross this border within a certain time interval with the same probability, no matter
whether the direction of diffusion is from the bleached to the unbleached area or the other way round.
If, however, the bleached fraction f,, is not equal to one half, the sizes of the bleached and unbleached

sections differ. Then, due to the geometry of the bleached area, several of the proteins in the larger
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section are located further away from the bleaching border than the proteins in the smaller area. In
order to account for this imbalance, the probabilities for diffusion events in the two possible directions
are weighted with factors f,; and 1 — f;,, respectively. The value of kg depends on the geometry of
the cell and is not immediately eligible for interpretation purposes.

Bleached and unbleached molecules are assumed to behave identically, and therefore it suffices to
focus on one type only. The following considerations model the dynamics of the unbleached
molecules as these are visible through their fluorescence. Let PfIee, pfieg pbound gng pbound denote the
fractions of unbleached free and bound proteins in the bleached and unbleached sections, measured
with respect to all unbleached proteins in the nucleus. These four parameters sum up to one such that

one of them can be left out. Define Pee = pfiee 4 pfies gng pbound — pbound 4 pbound | giffysion-

uncoupled FRAP, one has P[i®® = f, pfee and P®¢ = (1 — f;,)P"™®®. The overall dynamics of

unbleached proteins in diffusion-uncoupled FRAP is described by

P o (kg + ko) P + k s2
dt on off offs ( )
dpglound =Kk* f Pfree —k Pbound

dt _ on'bl offt bl . (83)
In case of diffusion-coupled FRAP, one has

dpglee = —k* Pfree +k Pbound + Ko (F, Pfree —(1-f Pfree
1 = “KonPhi offPbl diff (forPunbt — ( b Por ), (S4)

dpﬁﬁﬁu = —k* Pfree +k (1 _ Pfree _ Pfree _ Pbound) — Kk (f Pfree _ (1 —f )Pfree
& = KonPunbl + Koff bl unbl —~ P diff bt P unbl b Pui ), (S53)
dpbound )

A — = kGnPEF® — korPp" . (S6)

In case of kit > kgn, Ko, i-€. for diffusion-uncoupled FRAP, Equations ( S 4 )-( S 6 ) are dominated by

the diffusion rather than binding dynamics until Pf*¢ ~ f;,Pr®e which is the basic assumption of

diffusion-uncoupled recovery. Hence, the two models are consistent. In both setups, the recovery
curve equals
_ pfree, pbound
fol
This term was adjusted to the data normalization procedure described above and approaches the

F

value one as time progresses. From (S 2 )-(S 3 )and (S 4 )-( S 6 )above, one arrives at differential
equations for the fluorescence F. Interestingly, in case of diffusion-uncoupled recovery, the ODE for F
is independent of P and PP, Its explicit solution reads

F(t) =1+ (Fy — Dexp(—ke(t — to)),
where Fy is the initial value at time t,. This equation does not contain k;,,, and hence this parameter
cannot be estimated directly from the recovery curve. However, we assume the nucleus to be in
chemical equilibrium. Therefore the fraction P™™® is presumed to be constant, i.e. dP™®/dt = 0. From

this, one obtains

pfree — _ Koft
T kintkoft
on T Xoff

Hence, approximation of k, is possible if estimates are available for k. and P™e.
There is possibly more than one type of binding partner for Dnmt1, i.e. the protein may sometimes

associate to a partner of one type and sometimes to a partner of another type. These partners may

4



Schneider & Fuchs et al., Supplementary Information for
“Dissection of cell cycle dependent dynamics of Dnmt1 by FRAP and diffusion-coupled modelling”

differ with respect to the affinity of Dnmt1 to enter the bound state and the mean residence times in
this state. All binding partners with identical or similar kinetic properties are gathered in one mobility
class (MC). This term seems more appropriate than classes of binding sites (6), because different
sites with identical kinetic properties cannot be distinguished using FRAP data. The number of MCs
could hence be smaller than the number of different binding partners. Furthermore binding-unrelated
processes like anomalous diffusion can fall into an MC.

Suppose there are M classes of kinetically different binding partners for the protein of interest,

labeled with numbers i € {1, ..., M}. For all i, define PI*""*' and P2%"* as the fractions of type-i bound

bound,i
anbl - Let

proteins in the bleached and unbleached sections, respectively, with pbound:i = pPoundi 4 p
f; = pboundii /pbound he the fraction of type-i bound proteins with respect to all bound proteins.
Furthermore, denote by kg, ; and k. ; the association and dissociation rate constants corresponding to

on,i

the ith MC. Then, the diffusion-uncoupled recovery is described by

apfree M . free M-1 bound,i
dt = _(kOff,M + Zizl kon,i)P + kOff,M + Zi:l (koff,i - koff,M)P i
bound,i
appn® i
= ke P8 — ko, P,
dt ’ ’
bound,i
dpuggln ' = k* free k bound,i
dt - on,i(1 _be)P - Off,iPuan ’

where i = 1, ..., M. For diffusion-coupled FRAP, one has

free
dPp _ free $'M 1, M bound,i free free
o = Pt iz Koni + Xiza KorriPor  + Kair(forPunbl — (1 = fo) P, (S7)
i .
dPurrelgl _ _Pfree ZM k* .+ ZM k _Pbound,l — Kk (f Pfree _ (1 —f )Pfree) S8
at —  Punbl Zi=1 Kon,i T Zi=1 Koff,i unpi diff kbl ' unb b)Ebl™ ) (S8)
dpglound'i =Kk* pfree k Pbound,i
dt — Bon,itbl T Boff,ilt pl ’ ( S9 )
bound,i
dP, ’ i
unbl 1% free bound,i
dt - kon,iPuan - koff,ipunbl . ( S 10 )

In both cases, the observed fluorescence intensity is
_ Pglee+2?i1 Pglound,i
ol '

F

Parameter estimation

*

The mathematical model contains several unknowns: The model parameters kg, ;, kor; and kg, the
initial values F,, Pies, PEa™ for the components F, Pfiee, PEPU™ etc., and the fractions f,, f; of bleached
proteins, bound proteins of type i etc. Due to computational effort, parameter redundancies and strong
correlation between some parameters, it is not meaningful to statistically infer all these unknowns
simultaneously. Instead, some values were fixed as follows: kyy and f,; were experimentally
determined (see Supplementary Table 1, Figure 4 B and the data normalization description above).
The smallest k. value was set to 0.005 (see the Results section). F, was chosen equal to the first
value of the FRAP curve. P[,rf‘}? was set equal to fi,F,. The association rates result from the other
estimates as kg, ; = kogr;f; (1 — pfree) /pfree as explained below. Statistical inference of all remaining

variables was carried out by least squares estimation. To that end, the Nelder-Mead algorithm (10)
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was applied to find combinations of parameter values which minimize the sum of squared residuals
between the observed FRAP curve and its simulated counterpart. In most cases, the output of the
optimization procedure depended on the initial guesses of all unknown variables. Hence, several initial
guesses were randomly drawn and passed to the Nelder-Mead algorithm. The overall best fit was then
chosen from the set of return values. This procedure was continued until the global optimum did not
change anymore. In case of diffusion-uncoupled FRAP, the modeled recovery curves can be
calculated by means of explicit functions as described in detail below. For diffusion-coupled FRAP, the
ODEs (S 4)-(S6)and (S7)-(S 10 ) were numerically solved with the Euler scheme with step
length 0.03, which corresponded to one fifth of the observation interval. All software was written in R
(R Development Core Team, 2011, R Foundation for Statistical Computing, Vienna, Austria).

We estimated the model parameters for each FRAP curve separately and compared the estimates
for curves from the same cell cycle phase and Dnmt1 construct afterwards. An alternative would have
been to simply consider the average curve for each phase and construct and to derive parameters for
this mean course. In our opinion, however, the second procedure would cause a loss of information.
Averaging did not seem appropriate to us as there is undoubtedly extrinsic noise. Our analysis

additionally yields insight about uncertainties caused by cell-to-cell variability.

Numerics

In our analyses, we always assume the system to be in chemical equilibrium. For both diffusion-
coupled and diffusion-uncoupled FRAP, the system of ODEs is linear, and hence there is an explicit
solution of the above ODEs available. For diffusion-coupled FRAP, however, this involves the
(typically approximate) computation of a matrix exponential. For that reason, we prefer to numerically
solve the ODEs of the diffusion-coupled model. For diffusion-uncoupled FRAP, an exact computation
of the solution of the ODEs is easily possible, see (11).

For diffusion-coupled FRAP, we proceed as follows: Assume

Fo, P P8, fi ooy frr—1, Kot ..., Kot Kait
to be given. In practice, we determine F,, qu_%e and kg experimentally as described above. The
remaining 2M variables are estimated statistically, i.e. they are optimized using the Nelder-Mead
algorithm. In order to avoid non-identifiabilities, we require kqg1 = ko, = =+ = kogr . From the above

parameters, we compute

° fu=1—fi——fua

Bl = P Bl

¢ Pé’fé“”d = foiFo — J,%e

. pbound _ 1 _ pfree

¢ POSSIY = PPound — g™

. POt = f,PEomd fori=1,..,M
. PO = f,Poound fori=1,..,.M
y oni = koff,ifil;%::e fori=1,..,M
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These values are now used to numerically solve the diffusion-coupled ODE model.

Model choice
In our analysis, we estimate models with different numbers of MCs. Since the models are nested, the
inclusion of more MCs always leads to a better or at least equally good fit. However, one may ask
whether the additional computational effort for multiple MCs is worth the improved matching of the
data. At first glance, model choice criteria like the Akaike information criterion (AIC) (12) seem
appropriate. In our application, however, the difference in the mean squared residuals for different
models is typically small due to the already mentioned parameter redundancies. Because of the large
number of model parameters, the AIC will often favor less MCs although the curvature of the recovery
curves is better described by more complex models. For that reason, we developed a model selection
criterion which penalizes complexity less rigorously and is specific to our application. Due to the
relatively small noise in the FRAP curves (Figure 3 B and Supplementary Figure 6), we do not expect
to overfit the data. The criterion reads as follows: As explained in the Results section, the up to three
MCs are further distinguished into one or two distinctive mobility classes (DMCs) and up to one
catalytic mobility class (CMC). These have to fulfill three rules:
(1) If a DMC or CMC is present, the fraction P°°“" of bound proteins should be above a certain
threshold:

pbound > o
Otherwise the DMCs and CMC are discarded, and we assume no MCs for this FRAP curve.
(2) Two distinct MCs should differ substantially in their dissociation rates. In the model with two
DMCs that means that one should have

koff, DMC1—Koff, DMC2 Koff, DMC2—Koff, CMC

> dpuc  Or > dcmc-

Koff DMC2 koff,cMC

Otherwise we assume the effective number of DMCs to be one.
(3) An MC only truly contributes to the model if it reaches a certain size:

fomc1P*" = epyc and  foucoP™ = epyc and  fomc PP = ecyc-
Otherwise we assume the effective number of DMCs to be one.

We derive appropriate values for the above thresholds by cluster analysis. To that end, we consider
the best fits for all FRAP curves and all models. From these, we select the corresponding marginal
estimates which are in a critical region. For example, we consider the set of all PP°U"d estimates that
are between 0% and 10%. These sets are separately divided into two clusters such that the sum of
variances within the clusters is minimized. The resulting thresholds are &,5ng = 3.5%, eppyc = 5%,
gome = 2+ 1077%, Spuc = 107* and Sy = 3.77.

For each measured curve, we now select the model which yielded the best fit. This is typically the
model with two DMCs and one CMC, but in many cases the fit of the model with one DMC and one
CMC is equally good and hence preferred. For the chosen model, the original number of DMCs is
replaced by the effective number of DMCs as determined by the above rules. This effective number
enters Supplementary Figure 9. Then, for each cell cycle phase and protein construct, the primarily

chosen effective number of DMCs is determined. The model with the according number of DMCs is
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chosen for this phase and construct. Supplementary Table 2 displays the mean estimates for the so

chosen model for all FRAP curves. These results always assume the original number of DMCs and do

not further reduce it to an effective number.

SUPPLEMENTARY REFERENCES

1.

10.

11.
12.

Schermelleh, L., Spada, F., Easwaran, H.P., Zolghadr, K., Margot, J.B., Cardoso, M.C. and
Leonhardt, H. (2005) Trapped in action: direct visualization of DNA methyltransferase activity
in living cells. Nat Methods, 2, 751-756.

Lei, H., Oh, S.P., Okano, M., Juttermann, R., Goss, K.A., Jaenisch, R. and Li, E. (1996) De
novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development,
122, 3195-3205.

Schermelleh, L., Haemmer, A., Spada, F., Rosing, N., Meilinger, D., Rothbauer, U., Cardoso,
M.C. and Leonhardt, H. (2007) Dynamics of Dnmt1 interaction with the replication machinery
and its role in postreplicative maintenance of DNA methylation. Nucleic Acids Res, 35, 4301-
4312.

Rottach, A., Kremmer, E., Nowak, D., Boisguerin, P., Volkmer, R., Cardoso, M.C., Leonhardt,
H. and Rothbauer, U. (2008) Generation and characterization of a rat monoclonal antibody
specific for PCNA. Hybridoma (Larchmt), 27, 91-98.

Meilinger, D., Fellinger, K., Bultmann, S., Rothbauer, U., Bonapace, |.M., Klinkert, W.E.,
Spada, F. and Leonhardt, H. (2009) Np95 interacts with de novo DNA methyltransferases,
Dnmt3a and Dnmt3b, and mediates epigenetic silencing of the viral CMV promoter in
embryonic stem cells. EMBO Rep, 10, 1259-1264.

Phair, R.D., Scaffidi, P., Elbi, C., Vecerova, J., Dey, A., Ozato, K., Brown, D.T., Hager, G.,
Bustin, M. and Misteli, T. (2004) Global nature of dynamic protein-chromatin interactions in
vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin
proteins. Mol Cell Biol, 24, 6393-6402.

Phair, R.D., Gorski, S.A. and Misteli, T. (2004) Measurement of dynamic protein binding to
chromatin in vivo, using photobleaching microscopy. Methods Enzymol, 375, 393-414.
Carrero, G., Crawford, E., Hendzel, M.J. and de Vries, G. (2004) Characterizing fluorescence
recovery curves for nuclear proteins undergoing binding events. Bull Math Biol, 66, 1515-
1545.

Sprague, B.L. and McNally, J.G. (2005) FRAP analysis of binding: proper and fitting. Trends
Cell Biol, 15, 84-91.

Nelder, J.A. and Mead, R. (1965) A Simplex Method for Function Minimization. Comput J, 7,
308-313.

Fuchs, C. (2013) Inference for Diffusion Processes. Springer, Heidelberg.

Akaike, H. (1973) In Petrov, B. N. and Csaki, F. (eds.), 2nd International Symposium on
Information Theory, Budapest: Akademiai Kiado, pp. 267-281.



Schneider & Fuchs et al., Supplementary Information for

“Dissection of cell cycle dependent dynamics of Dnmt1 by FRAP and diffusion-coupled modelling”

SUPPLEMENTARY FIGURES
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Supplementary Figure 1. Specificity test of the anti-Dnmt1 antibody 5A10 and levels of ectopic
and endogenous Dnmt1 expression. (A) Immunostaining of J1 wt and Dnmt1” embryonic stem cells
(C/C) shows a typical Dnmt1 staining pattern in the wt cells, but no nuclear enrichment in the Dnmt1”
cells. Scale bar: 10 ym. (B) Western blot analysis gives no signal of the anti-Dnmt1 5A10 antibody in
J1 Dnmt1” cells (C/C), but a clear band of 183 kDa in the J1 wt cells. B-Actin (42 kDa) was used as a
loading control. (C) Automated quantification of Dnmt1 expression levels using Volocity software
(PerkinElmer). The screenshot shows a representative extended focus image used for the evaluation.
Nuclei were segmented according to their DAPI signal and the mean nuclear intensities of the Dnmt1
antibody signal and of the GFP signal determined. Highly overexpressing cells (example marked by
asterisk) were excluded form the analysis (analogue to the FRAP experiments below). (D) Quantitative
evaluation of anti-Dnmt1 5A10 antibody signal intensity in GFP-Dnmt1 expressing cells (representing
the endogenous and ectopically expressed Dnmt1) relative to non-transfected C2C12 cells
(endogenous only). For the negative control no primary antibody was used. Error bars indicate

standard deviations.
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Supplementary Figure 2. Localization of GFP-Dnmt1" and GFP-Dnmt1*™ in relation to
endogenous PCNA. GFP-Dnmt1" and GFP-Dnmt1°™® are depicted in green and PCNA is depicted in
magenta. From early S phase until the beginning of late S phase GFP-Dnmt1 "is associated with
replication foci, highlighted by spots of immobilized PCNA. GFP-Dnmt1" remains to some extent

enriched at heterochromatic regions in very late S phase and in transition to G2. GFP-Dnmt1~™®

shows
less prominent association with replication foci throughout all S phase stages. In contrast to the wild

type, no enrichment at heterochromatic regions is apparent in very late S phase. Scale bars: 5 um.
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Supplementary Figure 3. Super-resolution imaging of GFP-Dnmt1 constructs and endogenous
Dnmt1. (A) C2C12 cell in early S-phase expressing GFP-Dnmt1" and immunostained with antibodies
against endogenous PCNA (complementary to Fig 2 A) demonstrates a high degree of co-localization
but variable amount of GFP-Dnmt1 associated with early S-phase replication foci (RF). Lateral and
orthogonal cross section and z-projection of a 3D-SIM image stack is shown. (B) Co-staining of
endogenous Dnmt1 using the 5A10 antibody together with PCNA reveal the same characteristic
distribution pattern in early and late S phase as observed for GFP-Dnmt1"' in C2C12 cells (compare
panel A and Fig 2 A). (C) C2C12 cell expressing GFP-Dnmt1%"%% in a very late S-phase stage as

identified by only a few remaining PCNA labeled replication sites (complementary to Fig 2 C). In this
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stage the region of pHC association extends over almost the entire chromocenter volume indicating

binding to postreplicative pHC only. Scale bars: 5 ym and 1 um (insets).
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Supplementary Figure 4. Quantitative evaluation of FRAP experiments. (A) The three evaluation

ROls (bleached, total, background) are represented schematically. (B) Mean intensity over time in the

ROls depicted in A for an example FRAP experiment (GFP-Dnmt

1" with diffuse localization). (C)

Determination of the bleaching depth in the distal part of the schematic nucleus. The mean

fluorescence intensity of each line along the nucleus from the bleached to unbleached region is

illustrated for the prebleach, the postbleach and the last frame. The bleaching depth is determined by

the average intensity in the region containing 50% of the bleached lines distal to the bleach boarder.

(D) Comparison of the corrected and normalized data depicted in B without and with bleaching depth

correction.
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Supplementary Figure 5. Quantitative FRAP evaluation of GFP-Dnmt1" with and without RFP-
PCNA coexpression. (A) Mean recovery curves and (B) half times of recovery (¢, ;) are displayed.

Coexpression of RFP-PCNA causes an enhanced mobility of GFP-Dnmt1"in early S.
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Supplementary Figure 6. Quantitative FRAP evaluation of GFP and GFP-Dnmt1 constructs.

Averaged recovery curves displayed for all measured constructs and cell cycle stage including error

bars representing the standard error of the mean for every time point (complementary to Fig 3 B).
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Supplementary Figure 7. Covalent complex formation of GFP constructs analyzed by in vivo

trapping assay (A) Confocal mid sections of representative cells are displayed before (time point

0:00) and after treatment with the mechanism-based inhibitor 5-aza-dC for 60 min (1:00) or 90 min

(1:30), respectively. Upon treatment GFP-Dnmt1"* shows a much stronger focal aggregation at RF
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and complete depletion of the diffuse fraction. This indicates the immobilization of the mobile enzyme

pool due to irreversible covalent complex formation at 5-aza-dC substituted hemi-methylated substrate

Q162E
1

sites continuously generated during replication progression. GFP-Dnmt shows a similar strong

enrichment at RF and depletion of the diffuse fraction after 60 min of treatment. The degree of 5-aza-

dC-induced RF-association is less prominent for GFP- Dnmt14™

1 Q162E/ATS

and the least prominent for the GFP-

Dnmt 1 C1229W

. In contrast, a catalytic mutant construct GFP-Dnmt , that is unable to form the
transient covalent enzyme-substrate complex required for the methyl group transfer, shows no
apparent enriched aggregation at RF upon 5-aza-dC treatment. (B) Quantitative measurement of the
5-aza-dC-induced immobilization by time-dependent FRAP analysis. Example FRAP measurements
of late S phase cells at different 5-aza-dC incubation times (left panel) and the corresponding confocal
mid sections of the prebleach time point and 120 s after bleaching (right panel) are shown. The mobile
fraction as determined from the recovery plateau reached after 120 s decreases with incubation time.
(C) Time-dependent decrease of the mobile fractions of GFP-Dnmt1*"
Dnmt1Q162E, GFP- Dnmt1ATS, GFP- Dnmt19"%%8ATS 5nd catalytically inactive mutant GFP-Dnmt1¢'22W

in early and late S phase upon 5-aza-dC treatment. The results highlight the general ability of all

, the regulatory mutants GFP-

analyzed regulatory mutants, but not the catalytic mutant, to undergo covalent complex formation that
initiates the enzymatic reaction. Moreover, clear differences in the efficiency of immobilization become
apparent between the analyzed constructs, with the fastest trapping rate observed for GFP-Dnmt1"!
followed by GFP—Dnmt1Q162E, GFP- Dnmt12™ and GFP- Dnmt12'%252TS | inear trend lines are

depicted for every construct and cell cycle stage.
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Supplementary Figure 8. Kinetic dependence of GFP-Dnmt1" on the distance to the bleach
border — diffusion-coupled kinetics. Representative images from a FRAP time series and the
corresponding recovery curves after half nucleus FRAP (red line) from different evaluation regions of
interest (ROIs) as indicated. A stepwise decreased initial mobility is detectable for ROIs that are

distant to the bleach border indicating diffusion-coupled kinetics.
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Supplementary Figure 9. Relative number of FRAP experiments with zero, one or two
distinctive mobility classes. The dominating number of FRAP experiments with the GFP multimers
are fitted with 100% free fraction (0 DMC), except for the GFP tetramer (1 DMC). Using our model a
preference for one DMC is found for all GFP-Dnmt1 constructs with diffuse localization and in early S
phase cells. A preference for two DMCs is found in late S phase independently of the construct. The

dominant DMC classification was chosen for further quantifications.
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Supplementary Figure 10. Interaction between Dnmt1 and PCNA is abolished by Q162E
mutation, but not TS deletion. (A) PCNA is co-precipitated with GFP-Dnmt1 from Dnmt1” mouse
embryonic stem (C/C) cells. Protein extracts of C/C cells without or with stably expressing GFP-
Dnmt1", GFP-Dnmt1%'%% or GFP-Dnmt1*™ were immunoprecipitated with the GFP-Trap
(ChromoTek). The immunoprecipitated proteins were separated by SDS-PAGE and detected by GFP
or PCNA specific antibodies. (B) Quantification of co-precipitated PCNA relative to the amount co-
precipitated with GFP-Dnmt1"".

17



Schneider & Fuchs et al., Supplementary Information for

“Dissection of cell cycle dependent dynamics of Dnmt1 by FRAP and diffusion-coupled modelling”

SUPPLEMENTARY TABLES
S1
Constructs stage N MF [%] ti2[s]
diffuse 10 99.7+0.3 3.30.1
GFP-Dnmt1™ early S 21 97.50.5 6.3x0.3
late S 11 98.30.5 8.320.6
CFP-Dm diffuse 20 99.4+0.4 3.120.2
late S 15 99.1£0.5 5.40.4
diffuse 14 99.2+0.5 3.8+0.2
GFP-Dmnt1“™ early S 16 98.9+0.5 4.2+0.3
late S 14 99.4£0.3 6.0£0.4
GFP-Dmnt19"%?%4T | diffuse 17 98.9+0.6 3.6+0.3
1x 14 100.2+0.4 0.70.03
GFP multimers 2x 13 99.2+0.4 1.0£0.1
4x 12 100.2+1.4 1.540.2

Supplementary Table 1. Cell cycle dependent kinetic properties of GFP and GFP-Dnmt1

constructs analyzed by FRAP. N indicates the number of analyzed cells, MF the mobile fraction and

t,, the half time of recovery. Values larger than 100% are due to technical deviations. Mean values +

SEM are listed.

S2
Constructs size [kDa] Kaise
1x GFP 27 1.04
2x GFP 54 0.67
4x GFP 108 0.44
GFP-Dnmt1" 210 0.28

Supplementary Table 1. Size-dependent kg values of GFP-Dnmt1" and GFP multimers. ki

values are extracted by kinetic modeling of the GFP multimer FRAP data except for GFP-Dnmt1",

which was extrapolated from the other kg values.
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S3

Constructs stage N {f,’/i.‘i DMC ’E‘f,}:')? .’[.’s‘*i pmet ’E‘jlf;'s"]”'“ {2/':']"2 1[-:]s pmez ,E;"/’SD]MCZ 'Ef,’/':’)‘]’
diffuse 10| 80.2+1.4 | 1 19.241.4 7.7+05 0.14+0.01 |- - - 0.640.3

GFP-Dnmt1*"* early S 21|56.5+2.1 |1 39.3+1.8 10.2#0.7 0.11x0.01 |- - - 4.10.6
late S 11]51.9+2.6 |2 17.6£3.2 9.8+1.4 0.25+0.11 [28.243.8 22.1+2.1 0.05+0.00 | 2.3+0.6

- diffuse 20 | 84.8+1.9 | 1 13.9#1.9 88+1.0 0.18+0.06 |- - - 1.2+0.3
late S 15| 65.9+2.5 |2 9.8+25 8.5+1.3 0.59+0.27 |22.6+2.3 18.9+2.9 0.07+0.01|1.640.6
diffuse 14 | 76.5+2.8 | 1 22.0+2.6 6.8+0.5 0.16x0.01 |- - - 1.5+0.4

GFP-Dmnt1*"® early S 16| 67.9+4.2 | 1 30.1+4.1 8.5+0.8 0.13+0.01 |- - - 2.0£0.5
late S 14 | 58.3+2.5 | 1 40.3+2.6 8.8+0.2 0.12+0.00 |- - - 1.4+0.3

GFP-Dmnt19"%¥2™ | diffuse 17 | 79.242.6 | 1 19.1#2.6 82+0.6 0.13x0.01 |- - - 1.7+0.4
1x 141000 |0 - - - - - - -

GFP multimers 2x 13| 100.0 0 - - - - - - -
4x 1291.122.8 | 1 8.0+2.7 14.9456 0.39+0.014 |- - - 0.9%0.5

Supplementary Table 3. Cell cycle dependent properties of GFP and GFP-Dnmt1 constructs
extracted by kinetic modeling. N indicates the number of analyzed cells and DMC the number of
distinctive mobility classes determined by the kinetic modeling. The fraction of bound proteins is
subdivided into fpmc1, fomce and fouc representing the fractions of proteins bound with the kinetics of
DMC1, DMC2 or CMC, respectively. The fraction of unbound proteins is denoted as f;qe. koss indicates
the dissociation rate, T,.s the mean residence time given by 1/k for DMC1 and DMC2, if present. All
listed values are mean values + SEM. Note that mean(T,.) is computed as mean(1/k.¢) and deviates

from 1/mean(ky).
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2.5 Poly(ADP-ribose) polymerase 1 (PARP1) associates with E3 ubiquitin-
protein ligase UHRF1 and modulates UHRF1 biological functions
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Poly(ADP-ribose) Polymerase 1 (PARP1) Associates with E3
Ubiquitin-Protein Ligase UHRF1 and Modulates UHRF1

Biological Functions™
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Background: PARP1 and UHRF1 participate in heterochromatin dynamics and the maintenance of DNA methylation,
raising the question of whether both proteins cooperate in these events.
Results: We reveal a physical and functional poly(ADP-ribose)-mediated interaction of PARP1 with UHRF1 that helps to adjust

UHRF1-regulated biological activities.

Conclusion: PARP1 is a regulator of UHRF1-controlled H4K20me3 accumulation and DNMT1 expression.
Significance: PARP1 associates and cooperates with UHRF1 to regulate heterochromatin-associated events.

Poly(ADP-ribose) polymerase 1 (PARPI1, also known as
ARTD]1) is an abundant nuclear enzyme that plays important
roles in DNA repair, gene transcription, and differentiation
through the modulation of chromatin structure and function. In
this work we identify a physical and functional poly(ADP-ri-
bose)-mediated interaction of PARP1 with the E3 ubiquitin
ligase UHRF1 (also known as NP95, ICBP90) that influences two
UHRF1-regulated cellular processes. On the one hand, we
uncovered a cooperative interplay between PARP1 and
UHRF1 in the accumulation of the heterochromatin repres-
sive mark H4K20me3. The absence of PARP1 led to reduced
accumulation of H4K20me3 onto pericentric heterochroma-
tin that coincided with abnormally enhanced transcription.
The loss of H4K20me3 was rescued by the additional depletion
of UHRF1. In contrast, although PARP1 also seemed to facilitate
the association of UHRF1 with DNMT]1, its absence did not
impair the loading of DNMT1 onto heterochromatin or the
methylation of pericentric regions, possibly owing to a compen-
sating interaction of DNMT1 with PCNA. On the other hand, we
showed that PARP1 controls the UHRF1-mediated ubiquitina-
tion of DNMT1 to timely regulate its abundance during S and G,
phase. Together, this report identifies PARP1 as a novel mod-
ulator of two UHRF1-regulated heterochromatin-associated
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events: the accumulation of H4K20me3 and the clearance of
DNMTI.

Post-translational modifications of histones and CpG meth-
ylation into DNA are defined as fundamental epigenetic mech-
anisms that elicit specific effects on various chromatin-associ-
ated biological events including gene expression, chromatin
structure, and integrity or differentiation. Among the chroma-
tin-associated proteins that catalyze or modulate these pro-
cesses, an explosion of recent findings has introduced poly-
(ADP-ribose) polymerase 1 (PARP1,° also known as ARTD1)
and its activity as a major actor with both structural and regu-
latory roles (1-3). After binding to specific DNA structures or
nucleosomes, PARP1 catalyzes an NAD " -dependent polymer-
ization of negatively charged ADP-ribose units to form a ram-
ified polymer called poly(ADP-ribose) (PAR) onto a variety of
relevant chromatin-associated targets such as histones, his-
tone-binding proteins, chromatin modulators, and PARP1
itself. The process by which PARP1 introduces covalently
bound PAR onto target proteins is known as PARylation. Like
other post-translational modifications, PARylation regulates
the biochemical and functional properties of the modified tar-
get. Furthermore, PAR, either protein-free or covalently linked
on proteins, is capable of noncovalent binding with specific
proteins owing to the presence of a PAR-binding motif (4).

Interestingly, PARP1 has been particularly studied for its
implication in the structure and function of heterochromatin
sometimes in redundancy with PARP2. PARP1 binds to and

© The abbreviations used are: PARP, poly(ADP-ribose) polymerase; PAR, poly-
(ADP-ribose); DNMT, DNA methyltransferase; SRA, SET and RING-associ-
ated; TTD, tandem Tudor domain; PHD, plant homeodomain; WB, Western
blot; IP, immunoprecipitation; IF, immunofluorescence; RIPA, radioim-
mune precipitation assay; Ubl, ubiquitin-like; PCNA, proliferating cell
nuclear antigen.
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interacts with specific components of constitutive heterochro-
matin such as telomeres (5, 6), centromeres (7, 8), and pericen-
tromeres (9-11) or silent ribosomal RNA repeats (12, 13). The
PARP1*/7;PARP2 ™/~ background displays specific female
embryonic lethality associated with X chromosome instability,
suggesting a role in the maintenance of facultative heterochro-
matin as well (14). Recent reports imply a particular contribu-
tion of PARP1 to the propagation of the repressive heterochro-
matin marks after the passage of the replication fork. This has
been suggested first by its interaction with the SWI/SNEF-like
chromatin remodeler SMARCAD1 (SWI/SNF-related matrix-
associated actin-dependent regulator of chromatin subfamily A
containing DEAD/H box 1) involved in the inheritance of the
silenced pericentric heterochromatin (11) and has been next
exemplified by its association with the nucleolar remodeling
complex NoRC, where it serves to perpetuate silent ribosomal
DNA heterochromatin (12).

It is also becoming increasingly clear that PARP1-catalyzed
PARylation participates in the DNA methyltransferase-1
(DNMT1)-mediated establishment and maintenance of DNA
methylation patterns (15). A series of cellular studies shows that
the blockage of PARylation causes anomalous DNA hyper-
methylation on genomic DNA and in particular on CpG islands
(16-19), whereas increased PARylation is associated with
widespread DNA hypomethylation (20). Furthermore, PARP1
and DNMT1 were found in a complex also containing PAR
(21). The current working model proposes that PARylated-
PARP1 binds to the DNMT1 promoter, attracts DNMT1
through its PAR-binding motif, and inhibits its catalytic activ-
ity, thereby protecting the DNMT1 promoter from methyla-
tion (15, 22). In this model, PARP1 automodification is pro-
moted by the chromatin insulator CTCF (CCCTC-binding
factor) (20).

Recently, UHRF1 (ubiquitin-like, with PHD and RING finger
domains 1, also known as NP95 or ICBP90) has also emerged as
a central mediator in the faithful inheritance of DNA methyla-
tion in mammals. Deletion of UHRF1 in mice is embryonic
lethal, and the derived embryonic stem cells display loss of
DNA methylation, altered chromatin structure, and enhanced
transcription of repetitive elements (23). The initial model was
that UHRF1 binds to hemi-methylated DNA via its SET and
RING-associated (SRA) domain and acts as a recruitment fac-
tor for DNMT1 to copy the methylation pattern onto the newly
synthesized daughter strand during DNA replication (24, 25).
Subsequent reports have identified an additional binding of
UHREF1 to di/trimethylated histone H3 on lysine 9 (H3K9me2
and H3K9me3) involving its tandem Tudor domain (TTD) and
its plant homeodomain (PHD), which may contribute to its
localization to pericentric heterochromatin (26 -29). A recent
study highlights the significant contribution of TTD-mediated
binding to H3K9me3 in DNA methylation maintenance, likely
by regulating DNMT1 stability during mitosis (30). Together,
these studies suggest that UHRF1 mediates cross-talk between
histone modifications and DNA methylation maintenance.

Interestingly, UHRF1 also contains a Ring domain endowed
with E3 ubiquitin ligase activity and has been shown to ubiq-
uitinate itself, histone H3, and DNMT1 but with different out-
comes (31, 32). Although the UHRF1-dependent ubiquitylation
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of H3 has been reported to act as a platform for the recruitment
of DNMT1 to DNA replication sites, the ubiquitination of
DNMTT1 along with its deubiquitination by Usp7 (also known
as HAUSP) represents a major process for the tight regulation
of DNMTT1 levels (33-36).

In addition to its association with DNMT1, UHRF1 interacts
with many other chromatin modulators such as the de novo
methyltransferases DNMT3a and DNMT3b, the histone
deacetylase HDACI, the histone methyltransferase G9a, or the
histone acetyltransferase Tip60 (37—40). Most of these associ-
ations involve the SRA domain. Therefore, beyond its critical
role in DNA methylation maintenance, UHRF1 functions in
several other chromatin-related pathways including DNA
repair, silencing of viral promoters, and replication and silenc-
ing of pericentric heterochromatin (37, 41, 42).

As both PARP1 and UHRF1 were found to act in common
chromatin-related pathways and share DNMT1 as a protein
partner, we anticipated a possible physical and functional coop-
eration between the two proteins. We identified PARP1 as a
novel interacting partner of UHRF1 that modulates two of its
biological properties. First, we identify a related contribution of
PARP1 and UHRF1 in the maintenance of the repressive mark
H4K20me3 at pericentric heterochromatin, which possibly
helps to control overall transcriptional silencing. We also show
that PARP1 helps to maintain the association of UHRF1 with
DNMTT1 although with no consequence on the loading of
DNMT1 to heterochromatic sites or the DNMT1-mediated
methylation of major satellite repeats. Second, we describe
PARP1 as a negative regulator of the ubiquitin ligase activity of
UHRF1 onto DNMT1, thereby introducing PARP1 as an addi-
tional modulator of DNMT1 abundance during S and G,
phases. This can represent an additional way to maintain DNA
methylation and transcriptional silencing, more specifically
during the replication of pericentric heterochromatin and
onward.

EXPERIMENTAL PROCEDURES

Plasmids and Antibodies—Plasmids encoding GST-fused
full-length or truncated versions of human PARP1 were
described elsewhere (13). Plasmids encoding Myc-tagged full-
length and deleted versions of UHRF1 or GFP-DNMTT1 also
were described elsewhere (27, 31). The GFP-UHRF1 single
domain constructs for Ubl and Ring domain expression con-
structs were generated by PCR using the corresponding wild-
type full-length GFP-UHRF1 construct (27). The GFP-PHD,
TTD, and SRA expression constructs have been described pre-
viously (27, 43). Details on individual plasmid constructs, which
were verified by sequencing, are available upon request. Mouse
monoclonal anti-Myc antibody (9E10: WB, 1/250; IP, 3
pg/sample) and rabbit anti-DNMT1 antibody (H-300: WB,
1/200; IF, 1/100) were from Santa Cruz Biotechnology. Rabbit
polyclonal anti-GST (G7781: WB, 1/10000), the mouse mono-
clonal anti-actin antibody (A2066: WB, 1/500) and rabbit poly-
clonal anti-GAPDH antibody (G9545: WB, 1/10000) were from
Sigma. The rabbit polyclonal anti-poly(ADP-ribose) antibody
(4335-MC-100: WB, 1/1000) was from Trevigen. The mouse
monoclonal anti-PCNA antibody (PC-10: WB, 1/2000; IP, 4
pg/sample) was from Dako-Cytomation. The mouse monoclo-
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nal anti-GFP antibody (11814460001: WB, 1/10000) was from
Roche. The mouse monoclonal anti-HA.11 antibody (16B12:
WB, 1/10000) was from Covance. The rabbit anti-H3K4me3
(pAB-003-050: IF, 1/200) was from Diagenode. The rabbit
anti-H3K9me3 (ab8898: IF, 1/2000), mouse anti-H4K16ac
(ab23352: IF, 1/100), and rabbit polyclonal anti-H4K20me3
(ab9053: IF, 1/500; WB, 1/1000) were from Abcam. The mouse
monoclonal anti-H4 was from Millipore (07-108: WB, 1/10000)
was from Millipore. The mouse monoclonal anti-UHRF1 (IF,
1/1000) has been described elsewhere (44). The mouse mono-
clonal anti-PARP1 antibody (EGT-69: WB, 1/10000) and rabbit
polyclonal anti-UHRF1 antibody (WB, 1/2000; IP, 5 ul/sample;
IF, 1/1000) are described in Refs. 45 and 31, respectively. The
rabbit polyclonal anti-PARP1 (2869-70: IP, 15 ul/sample) was
produced in-house. The Alexa-conjugated antibodies for IF
(Alexa Fluor 568 goat anti-rabbit IgG, Alexa Fluor 568 goat
anti-mouse IgG, and Alexa Fluor 488 goat anti-mouse IgG: IF,
1/1500) were from Molecular Probes.

Cell Culture, Synchronization, and siRNA Knockdown—
COS-1and PARP1"/" and PARP1 ™/~ 3T3 cells were grown in
DMEM (1 g/liter p-glucose, Invitrogen) supplemented with
10% FBS (PanBiotech) and 0.1% gentamicin (Invitrogen) at
37°Cin 5% CO.,.

Synchronization of 3T3 cells was performed by serum star-
vation (DMEM (1 g/liter), 0.1% FBS, and 0.1% gentamicin) for
48 h. After release in fresh medium, cells were collected at dif-
ferent time points as determined by preliminary flow cytometry
experiments (T14 h for G;, T22 h for S, and T24 h for G,) for
protein detection by Western blotting. To inhibit protein syn-
thesis, cells were treated with cycloheximide (Sigma) at 20
pg/ml for 24 h (including release time) before collecting the
cells.

For UHRF1 knockdown in 3T3 cells, gene-specific ON-
TARGETplus SMART pool siRNAs (pool of four sequences) for
UHRF1 (L-055507-01-0010) and the control ON-TARGET
nontargeting pool siRNA (D-001810-10-20) were from Dhar-
macon. Cells in suspension were electroporated with 50 nm
siRNA pools using the Neon transfection system (Invitrogen)
according to the manufacturer’s instructions. A second electro-
poration with 50 nMm siRNA pools was performed 48 h later. The
transfected cells were collected 96 h after the first electropora-
tion and processed for RNA extraction, protein extraction, or
immunofluorescence staining.

Western Blot Analysis, GST Pulldown, GFP-Trap Capture,
and Immunoprecipitation—For Western blotting and immu-
noprecipitation of endogenous proteins, cells were lysed in
RIPA-like buffer (50 mm Tris, pH 8, 0.5% Triton, 0.25% sodium
deoxycholate, 150 mm NaCl, 1 mm EDTA, 50 mm sodium fluo-
ride, 20 mm sodium pyrophosphate, pH 7.2, 1 mM sodium
orthovanodate, 1 mMm Pefabloc, and one tablet of protease inhib-
itor complex/10 ml (Complete Mini, Roche Diagnostics)) and
incubated on ice for 20 min. After centrifugation at 10,000 rpm
at4 °C for 20 min, cleared suspensions were quantified by Brad-
ford protein assay, and 50 ug of protein was analyzed by SDS-
PAGE electrophoresis and immunoblotting using the appropri-
ate antibodies.

Histones were acid extracted from a total of 1 X 10°
PARP1"'" and PARP1 ™/~ 3T3 cells following the Abcam his-
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tone extraction protocol. The protein content was determined
using the Bradford assay, and 30 ug of protein was analyzed by
SDS-PAGE electrophoresis and immunoblotting using the
appropriate anti-histone antibodies.

For pulldown experiments, 1 X 10° COS-1 cells were trans-
fected by jetPEI (Polyplus transfection) with 8 ug of total
recombinant DNA. Forty-eight hours later, cells were lysed by
three cycles of freeze/thaw in 50 mm Tris-HCI, pH 8, 150 mm
NaCl, 0.1% Nonidet P-40, 0.5 mm Pefabloc, and one tablet of
protease inhibitor complex/10 ml. Cleared lysates were incu-
bated with glutathione-Sepharose beads (GE Healthcare) for
purification of GST-tagged proteins for 2 h at 4 °C. Beads were
subsequently washed twice with washing buffer (10 mm Tris-
HCI, pH 8, 0.1% Nonidet P-40, 0.5 mMm Pefabloc, and protease
inhibitor complex) containing 500 mm NaCl and twice with
washing buffer containing 150 mm NaCl. For the experiment
shown in Fig. 2C, beads were washed twice with washing buffer
containing 750 mm NaCl, once with washing buffer containing
500 mm NaCl, and twice with washing buffer containing 150
mM NaCl. The final pellets were resuspended in Laemmli buffer
and subjected to 10% SDS-PAGE.

For GFP-Trap capture, 1 X 10° COS-1 cells were transfected
by JetPEI with 8 ug of total recombinant DNA. Forty-eight
hours later, cells were lysed in RIPA-like buffer as described
above and incubated with the GFP-Trap®_A (Chromotek,
Planegg-Martinsried, Germany) overnight at 4 °C for affinity
purification of the GFP-tagged protein. Beads were subse-
quently washed twice with washing buffer (10 mm Tris-HCI, pH
8, 0.1% Nonidet P-40, 0.5 mm Pefabloc, and protease inhibitor
complex) containing 500 mm NaCl and twice with washing
buffer containing 150 mm NaCl. The final pellets were resus-
pended in Laemmli buffer and subjected to 4—-20% SDS-PAGE
for protein analysis or processed for in vitro PARylation as
detailed below.

For the in vitro binding assays, 4 X 10° COS-1 cells were
transfected by JetPEI with 8 ug of Myc-SRA. Forty-eight hours
later, cells were lysed in RIPA-like buffer as describe above,
incubated with the anti-Myc antibody overnight at 4 °C fol-
lowed by a 2-h incubation at 4 °C with protein A/G-Sepharose
(GE Healthcare). Next, beads were resuspended in 100 ul of
dilution buffer (20 mm Tris-HCl pH 7,5, 0.1% Nonidet P-40, 0.5
mM Pefabloc) and incubated together with 300 ng of purified
recombinant PARP1 for 20 min at 30 °C. Beads were then
washed twice with dilution buffer containing 750 mm NaCl,
twice with dilution buffer containing 400 mm NaCl, and twice
with dilution buffer containing 150 mm NaCl. The final pellets
were resuspended in Laemmli buffer and subjected to 10%
SDS-PAGE.

For immunoprecipitation experiments of endogenous pro-
teins, RIPA-like cell extracts were precleared by incubation on
protein A/G-Sepharose beads for 1 h at 4 °C before incubation
with the indicated antibodies overnight at 4 °C followed by a
2-h incubation at 4 °C with protein A/G-Sepharose (GE Health-
care). Beads were washed four times with 20 mm Tris-HCI, pH
7.5, 150 =750 mm NaCl, 0.1% Nonidet P-40, and 0.5 mm Pefa-
bloc, resuspended in Laemmli buffer, and analyzed by SDS-
PAGE and immunoblotting. Blots were incubated with the
appropriate antibodies as indicated. When indicated, 100 nm
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PARP inhibitor Ku-0058948 was added to the culture medium
2 h before lysis and maintained throughout the experiment.

In Vitro PARylation—For poly(ADP-ribosyl)ation of immu-
nopurified proteins, purified PARP1 (1 ug) was incubated with
immunopurified Myc-tagged UHRF1, Myc-TRF2 as a positive
control, GFP, or GFP-tagged single domains of UHRF1 for 10
min at 25 °C in 480 ul of activity buffer (50 mm Tris-HCI, pH 8,
0.2 mm dithiothreitol, 4 mm MgCl,, 0.1 pug/ul BSA, and 100 nm
NAD™ (for PARP1) or 1 um NAD™ (for PARP2)) containing 2
wCi of [a-*?P]NAD™ (800 Ci/mmol, PerkinElmer Life Sci-
ences) and 900 ng of DNase I-activated calf thymus DNA. The
reaction was stopped by the addition of 500 ul of cold washing
buffer (50 mm Tris-HCI, pH 8, 400 mm NaCl, 0.1% Nonidet
P-40, and 0.5 mMm PMSF) on ice, and beads were washed five times
with washing buffer and resuspended in 20 pl of Laemmli
buffer. Reaction products were analyzed by gel electropho-
resis on 10% SDS-PAGE and autoradiography. For PARyla-
tion of purified recombinant UHRF1 tested in ubiquitination
assays, purified PARP1 (100 ng) was incubated alone or
together with purified UHRF1 (100 ng) for 20 min at 25 °C in
15 wl of activity buffer (25 mm Tris-HCl, pH 7.6, 5 mm
MgCl,, 1 mm dithiothreitol, 0.1 ug/ul BSA, 5 ng/ul DNA,
and 10 um NAD™).

Immunofluorescence Studies—Immunofluorescence was
performed essentially as described previously (13). Briefly, cells
grown on glass coverslips were washed twice with PBS and fixed
for 15 min with PBS, 3.7% formaldehyde, followed by three
washes in blocking buffer (PBS, 0.1% Triton X-100, and 0.1%
milk). Cells were then incubated overnight at 4 °C with the pri-
mary antibodies diluted in blocking buffer. After three washes
with PBS, 0.1% Triton X-100, and 0.1% milk, cells were incu-
bated for 3 h at room temperature with the appropriate conju-
gated secondary antibodies diluted in blocking buffer. DNA was
counterstained with 4',6"-diamidino-2-phenylindole (DAPI, 25
ng/ml in PBS). Slides were mounted using Mowiol 4-88
(Hoechst), and immunofluorescence microscopy was per-
formed using a Leica microscope (Leica Microsystems, Heidel-
berg, Germany) and the capture software (Improvision,
PerkinElmer Life Sciences).

DNA Methylation Analysis—Methylation of mouse major
and minor satellite repeats was determined by pyrosequencing
of bisulfite-treated, PCR-amplified, genomic DNA as described
(46).

RT-PCR Analysis—Total RNA was extracted from ~3 X 10°
PARP1"/" and PARP1 "/~ cells with TRIzol (Invitrogen)
according to the manufacturer’s instructions. The remaining
DNA was digested by incubation with RNase-free DNase I
(Promega) (1 unit/ug RNA), and isolated RNA was purified
using the RNA Clean-up XS kit (Machery-Nagel). Reverse tran-
scription (RT) was done on 800 ng of purified RNA using oli-
go(dT) primers (Sigma) and the AMYV reverse transcriptase
(Finnzyme). PCR reactions were performed on 5% of the RT
volume using the Phusion polymerase (Finnzyme) and the fol-
lowing primer pairs: major satellite repeat forward, 5'- GAC-
GACTTGAAAAATGACGAAATC-3'; major satellite repeat
reverse, 5'-CATATTCCAGGTCCTTCAGTGTGC-3'; GAPDH
forward, 5'- TTCTGAGTGGCAGTGATGGC-3';and GAPDH
reverse, 5'- AACAACCCCTTCATTGACCTC-3'. Transcripts
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were analyzed on ethidium bromide-stained agarose gels using
the Typhoon instrument and quantified by Image].

In Vivo Ubiquitination Assay—PARP1"’" and PARP1 '~
cells were co-transfected with 5 ug of GFP, GFP-DNMT]1, or
Myc-UHRF1 and 5 ug of HA-Ub using the jetPEI method.
Thirty-six hours later, the cells were treated with 5 um MG-132
(Enzo) for another 12 h and lysed with RIPA-like buffer as
described above. After GFP quantification by Western blotting,
equivalent amounts of GFP-DNMT1 were immunopurified
using GFP-Trap®_A (Chromotek) as described above. Myc-
UHRF1 was immunoprecipitated using an anti- Myc antibody
as described above. Beads were washed twice with washing
buffer A (20 mm Tris-HCl, pH 7.5, 0.1% Nonidet P-40, 400 mm
NaCl, and 0.5 mm Pefabloc), twice with washing buffer B (20
mwm Tris-HCl, pH 7.5, 0.1% Nonidet P-40, 150 mm NaCl, and 0.5
mM Pefabloc), resuspended in Laemmli buffer, and processed
for Western blotting. Twenty-five % of the sample was loaded
for detecting GFP-DNMT1 or Myc-UHRF1, and 75% of the
sample was loaded for detecting GFP-Dnmt-1"® or Myc-
UHRF1"" using the anti-HA antibody.

In Vitro Ubiquitination Assay—Purified recombinant
UHRF]1 (100 ng (31)) was first incubated alone or together with
purified recombinant PARP1 (100 ng) in a PARP activity buffer
with or without NAD™ as described above. After 20 min at
25 °C, PARylated or non-PARylated (PARP assay performed
without NAD ") UHRF1 was subsequently incubated alone or
together with purified recombinant GST-DNMT1 (300 ng, BPS
Bioscience) as indicated in a standard ubiquitination reaction
mixture (15 pl) containing 100 ng of human recombinant
ubiquitin-activating enzyme (Boston Biochem), 300 ng of
human recombinant UbcH5b (Boston Biochem), and 10 ug of
Ha-tagged human recombinant ubiquitin (Boston Biochem) in
25 mm Tris-HCI, pH 7.6, 5 mm MgCl,, 1 mm DTT, 2 mMm ATP,
and 100 mMm NaCl. During ubiquitination, PARP activity was
inhibited by adding 330 nm Ku-0059848. The reaction was
incubated at 37 °C for 1 h and stopped by adding 1,25X final
Laemmli buffer. Ubiquitinated proteins were analyzed by
Western blot analysis; one-half of the final volume was used for
HA-ubiquitin detection and one-eighth of the volume was used
for poly(ADP-ribose) polymer detection.

RESULTS

PARPI Interacts with the E3 Ubiquitin Ligase UHRFI in a
PAR-dependent Manner—Previous studies have identified
PARP1 together with DNMT1 in a proteomic analysis of anti-
UHRF1 immunoprecipitates, thus making PARP1 a possible
candidate for modulating UHRF1-DNMT1 functional inter-
play (24).

To expand on these findings, we decided to investigate the
comparative association of PARP1 and PARP2 with UHRF1
(Fig. 1A). COS-1 cells were transfected with Myc-tagged
UHRF]1 together with GST, GST-fused PARP1, or GST-fused
PARP2. After glutathione-Sepharose beads were trapped,
copurified Myc-UHRF1 was assessed by Western blot analysis
using an anti-Myc antibody. To test the role of PARylation in
the interaction, pulldown assays were performed in the pres-
ence of the potent PARP inhibitor Ku-0058948. As shown in
Fig. 1A, UHRF1 was clearly coprecipitated with GST-PARP1
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FIGURE 1. Selective PAR-dependent association of UHRF1 with PARP1 in mammalian cells. A, selective coprecipitation of Myc-UHRF1 with GST-PARP1.
GST (lane 1), GST-PARP1 (lanes 2 and 3), and GST-PARP2 (lanes 4 and 5) were expressed in COS-1 cells together with Myc-tagged UHRF1 (lanes 1-5). Interacting
proteins were analyzed by GST pulldown and Western blotting with subsequent anti-Myc and anti-GST antibodies. Input corresponds to 1/60th the amount of
cell extract used for GST pulldown. In lanes 3 and 5, the PARP inhibitor Ku-0058948 was added throughout the experiment. B, coimmunoprecipitation of PARP1
and DNMT1 with UHRF1 in mouse 3T3 cells. Wild-type mouse cell extracts were immunoprecipitated with an anti-UHRF1 antibody (lane 4) or a control antibody
(Ctl, lane 3) and analyzed by Western blotting. Input (lanes 1 and 2) corresponds to 1/30th the amount of cell extract used for immunoprecipitation. C,
coimmunoprecipitation of UHRF1 and DNMT1 with PARP1 in mouse 3T3 cells. Wild-type mouse cell extracts were immunoprecipitated with an anti-PARP1
antibody (lanes 2 and 4) or a control antibody (lanes 7 and 3) and analyzed by Western blotting. To prevent any coprecipitation of either partner through DNA,
EtBr (10 wg/ml) was added throughout the immunoprecipitation when indicated (lanes 3 and 4). Input corresponds to 1/30th the amount of cell extract used
for immunoprecipitation. The association of PARP1 with UHRF1 is not mediated by DNA.

1 2 3 4

(lane 2) but not efficiently with GST-PARP2 (lanes 4-5) and
not with GST alone (lane 1), defining a preferential association
of UHRF1 with PARP1 compared with PARP2. Furthermore, a
significantly weaker copurification of UHRF1 with GST-
PARP1 was observed in the presence of Ku-0058948 (Fig. 14,
lane 3), revealing a critical role of PARylation in their associa-
tion. The UHRF1-PARPI interaction and the association with
DNMT1 was next verified by coimmunoprecipitation experi-
ments with the endogenous proteins (Fig. 1, Band C). Using an
anti-UHRF1 antibody, we efficiently coimmunoprecipitated
both PARP1 and DNMT1 from 3T3 mouse extracts (Fig. 1B,
lane 4), whereas no coprecipitation was detected using a con-
trol antibody (Fig. 1B, lane 3). In a reciprocal experiment (Fig.
1C), when 3T3 cell extracts were immunoprecipitated with an
anti-PARP1 antibody, significant fractions of UHRF1 and
DNMT1 were detected in the PARP1 immunoprecipitate (lane
2) but not in the control immunoprecipitate (lane 1). To further
prevent any coprecipitation of either of the proteins through
DNA, we performed the coprecipitation experiments in the
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presence of ethidium bromide, which intercalates into DNA
and thereby competes for interacting proteins (Fig. 1C, lanes 3
and 4). The addition of ethidium bromide did not abolish the
DNMT1-UHRF1-PARP1 interaction, suggesting that DNA
was not involved (Fig. 1C, compare lanes 4 and 2). Together
these results describe the existence of a protein complex con-
taining PARP1, UHRF1, and DNMT1 in mammalian cells.

To further characterize the UHRF1-PARP1 association, we
aimed to identify the region of PARP1 to which UHRF1 binds
(Fig. 2A). GST fusion proteins expressing truncated versions of
PARP1 (amino acids 1-385 (DNA-binding domain), amino
acids 384 —524 (automodification domain), and amino acids
572-1014 (catalytic domain)) were tested for their interaction
with Myc-UHRF1. Myc-UHRF1 coprecipitated efficiently with
full-length PARP1 and its DNA-binding domain (Fig. 24, lanes
2 and 3) and less efficiently with the automodification domain,
defined as the site of autoPARylation (lane 4). No coprecipita-
tion was detected with GST alone or the PARP catalytic domain
(Fig. 24, lanes I and 5). As noted above, the association of Myc-
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FIGURE 2. The UHRF1-PARP1 interaction preferentially involves the DNA-binding domain of PARP1 and the SRA domain of UHRF1. A, UHRF1 interacts
preferentially with the DNA-binding domain and weakly with the automodification domain of PARP1. Top, schematic representation of PARP1 indicating the
interacting domains identified. Bottom, GST (lane 1), GST-PARP1 (lane 2), GST-PARP1-(1-385) expressing the DNA-binding domain (lane 3), GST-PARP1-(384 -
524) expressing the automodification domain (BRCT) (lane 4), and GST-PARP1-(572-1014) expressing the catalytic domain (lane 5) were expressed in COS-1
cells together with Myc-UHRF1 (lanes 1-5). Interacting proteins were analyzed by GST pulldown and Western blotting with subsequent anti-Myc and anti-GST
antibodies. Input corresponds to one-tenth the amount of cell extract used for GST pulldown. B, the absence of the SRA domain impairs the interaction of
UHRF1 with PARP1. Top, schematic representation of UHRF1 indicating the interacting domains identified. Bottom left, Myc-UHRF1 (lanes 1, 2, 7, and 8) or
Myc-tagged deletion mutants of UHRF1 (lanes 3—-6 and 9-12) were expressed in COS-1 cells together with either GST (lanes 7 and 7) or GST-PARP1 (lanes 2-6
and 8-12). Interacting proteins were analyzed as described in A (lanes 7-12). Input corresponds to 1/60th the amount of cell extract used for GST pulldown
(lanes 1-6). Bottom right, the signal intensities of the coprecipitating Myc-tagged proteins relative to their expression and GST-PARP1 pulldown were measured
in three independent experiments using Imagel. The coprecipitation of Myc-UHRF1 was set to 1. Mean values = S.D. are indicated. C, at higher stringency
conditions of the washing buffer, the association of Myc-ASRA with GST-PARP1 is lost (lane 2), whereas the association of Myc-UHRF1 (lane 1) or Myc-APHD
(lane 3) with GST-PARP1 is maintained. The experiment was done as described in B except that the stringency conditions of the washing buffers were increased
(beads were washed twice with washing buffer containing 750 mm NaCl, once with washing buffer containing 500 mm NaCl, and twice with washing buffer
containing 150 mm NaCl). D, PARP1 interacts preferentially with the SRA domain of UHRF1 and to a lesser extent with the TTD. GFP fusion proteins expressing
different domains of UHRF1 (GFP-Ubl, ubiquitin-like domain (lane 1); GFP-TTD, Tudor domain (lane 2); GFP-PHD, plant homeodomain (lane 3); GFP-SRA, SET-and
Ring-associated domain (lane 4); GFP-Ring, Ring domain (lane 5)) were expressed in COS-1 cells. GFP immunoprecipitates were blotted successively with an
anti-PARP1 antibody to detect coprecipitating PARP1 and an anti-GFP antibody to detect the GFP immunoprecipitates. E, in vitro interaction of PARP1 with
immunopurified Myc-SRA. Purified recombinant PARP1 was incubated in a batch assay together with immunopurified Myc-SRA (lane 2) or a control anti-Myc
immunoprecipitate (lane 7). Bound PARP1 was analyzed by Western blotting using, successively, anti-PARP1 and anti-Myc antibodies.
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UHRF1 with the DNA-binding domain of PARP1 was not
impaired by the presence of ethidium bromide (not shown).

In reciprocal experiments intended to identify the PARP1
interaction domain within UHRF1, Myc fusion proteins
expressing various UHRF1 deletion domains were tested for
their interaction with GST-PARP1 (Fig. 2B). When compared
with the expression profile of each fusion protein (Fig. 2B, lanes
1-6) and the efficient binding of the full-length Myc-UHRF1
(lane 8), only the internal deletion of the SRA domain signifi-
cantly reduced UHRF1 binding to GST-PARP1 (lane 9). No
unspecific binding to GST was detected (Fig. 2B, lane 1). As an
additional experiment, we then compared the binding of Myc-
UHRF1, Myc-ASRA (UHRF1 deleted for the SRA domain), and
Myc-APHD (UHRF1 deleted for the PHD domain) to GST-
PARP1I as above but under higher stringency conditions of the
washing buffer (Fig. 2C). Although the association of Myc-
ASRA with GST-PARP1 was lost (Fig. 2C, lane 2), the associa-
tion of Myc-UHRF1 and Myc-APHD with GST-PARP1 was
maintained (lanes I and 3). To further ascertain the selective
interaction with the SRA domain and exclude a possible mis-
folding of the deleted constructs, GFP fusion proteins express-
ing the different domains (Ubl, TTD, PHD, and SRA) were
tested for their interaction with endogenous PARP1 (Fig. 2D).
When compared with the expression profile of each fusion pro-
tein, we confirmed that PARP1 coprecipitated efficiently with
GFP-SRA despite its weakest expression (Fig. 2D, lane 4), and
we identified a coprecipitation of PARP1 with the TTD domain
(lane 2). No coprecipitation of PARP1 was detected with the
Ubl, PHD, or Ring domain (Fig. 2D, lanes 1, 3, and 5). To verify
the preferential interaction with the SRA in vitro, Myc-SRA was
expressed in COS-1 cells, immunopurified using an anti-Myc
antibody, and incubated together with purified recombinant
PARPI. After Myc immunoprecipitation followed by stringent
washes, copurification of purified PARP1 was analyzed by
Western blotting. As shown in Fig. 2E, PARP1 efficiently copu-
rified with Myc-SRA (lane 2), whereas no PARP1 was detected
in the control anti-Myc immunoprecipitate (lane I). Taken
together, these data identified a selective and PAR-dependent
physical interaction between PARP1 and UHRF1 that requires
the DNA-binding domain and, to a lesser extent, the BRCT
domain of PARP1 and preferentially the SRA domain, but also
the TTD, of UHRF1.

UHRFI Is PARylated by PARPI Preferentially onto Its SRA
Domain and to a Lesser Extent onto Its TTD—To investigate the
functional relevance of the PARP1-UHRF1 interaction, we next
evaluated the ability of PARP1 to PARylate UHRF1 in vitro. To
this end, Myc-tagged full-length UHRF1 and Myc-tagged TRF2
used as a positive PARylated control were expressed in COS-1
cells, purified by anti-Myc immunoprecipitation followed by
stringent washes, and incubated with PARP1 or no protein in
the presence of [@->*P]NAD ™ and DNase-I treated calf thymus
DNA (Fig. 3A). When compared with the expression profile of
each fusion protein (Fig 3A, lanes 5-8), autoradiography
revealed PARylation of the positive control TRF2 as described
previously (lane 3 (5)) and a significant PARylation of full-
length UHRF1 (lane 1). No PARylation was observed in the
absence of PARP1 (Fig 34, lanes 2 and 4). We next aimed to
map the PARylated domain within UHRF1 (Fig. 3B). To this
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FIGURE 3. UHRF1 is PARylated preferentially onto its SRA domain butalso
onto its TTD. A, PARylation of full-length UHRF1 by PARP1. Myc-UHRF1 (lanes
1,2, 5, and 6) or Myc-TRF2 (lanes 3, 4, 7, and 8) was expressed in COS-1 cells,
immunopurified with an anti-Myc antibody, and incubated together with
either PARP1 or without PARPs in activity buffer containing [a->?PINAD " and
fragmented DNA. Right panel, autoradiography. Left panel, analysis of the
fusion proteins with an anti-Myc antibody by Western blotting. B, upper panel,
schematic representation of UHRF1 indicating the PARylated TTD and SRA
domain. Lower panel, GFP fusion proteins expressing GFP alone (lanes T and 7)
or different domains of UHRF1 (GFP-Ring (lanes 2 and 8), GFP-SRA (lanes 3
and 9), GFP-PHD (lanes 4 and 10), GFP-Ubl (lanes 5 and 11), and GFP-TTD
(lanes 6 and 12)) were expressed in COS-1 cells, immunopurified by GFP
trapping, and incubated together with PARP1 in the activity buffer con-
taining [@-32]PNAD™ and fragmented DNA as in A. Left, analysis of the
PARylated domains by autoradiography. The upper band represents
PARylated PARP1. Right, analysis of the fusion proteins with an anti-GFP
antibody by Western blotting.

end, a PARylation assay was performed as described above
using immunopurified GFP (Fig. 3B, lanes 1 and 7) or GFP
fusion proteins expressing the different Ring (lanes 2 and 8),
SRA (lanes 3 and 9), PHD (lanes 4 and 10) Ubl (lanes 5 and 11),
and TTD (lanes 6 and 12) single domains of UHRF1. Autora-
diography revealed a significant PARylation of the SRA domain
(Fig. 3B, lane 3) despite its weakest expression (lane 9) and to a
lesser extent the TTD (lanes 6 and 12), whereas no PARylation
was detected for the other domains or GFP alone (lanes 1, 2, 4,
and 5). An efficient PARylation was also detected on the immu-
nopurified Myc-tagged SRA, whereas a reduced PARylation
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FIGURE 4. The absence of PARP1 causes derepression of major satellite transcripts. Enhanced transcriptions of major satellite repeatsin PARP1/~ cells are
shown. A, top, schematic representation of major satellite repeats (pericentric heterochromatin) showing the repeat distribution (/-/V) and the primers (arrows)
used for PCR analysis. Lower left, representative RT-PCR analysis using total RNA extracted from PARP1"/" (lanes 1,2,4,and 5) or PARP1 ™/~ cells (lanes 3 and 6),
mock-treated cells (lanes 1, 3,4, and 6), or cells treated with Ku-0058948 (lanes 2 and 5) for 48 h. As a control, reactions were performed with mock-transcribed
cDNAs (—RT, lanes 4-6). The relative amounts of input and PCR amplification cycles are indicated. Lower right, the -fold expression (histogram) represents the
major satellite transcript levels (normalized against GAPDH) relative to control PARP1*/* set to 1 for three independent experiments. Mean data + S.D. are
indicated. B, left, representative RT-PCR analysis using total RNA extracted from PARP1 /% (lanes 1,2,5,and 6) or PARP1 /™ cells (lanes 3,4, 7, and 8) transfected
with a scrambled siRNA (scr, lanes 1, 3, 5, and 7) or with siUHRF1 (lanes 2, 4, 6, and 8) for 96 h. As a control, reactions were performed with mock-transcribed
cDNAs (—RT, lanes 5-8). Right, the -fold expression (histogram) represents the major satellite transcript levels (normalized against GAPDH) relative to control

PARP1*/* set to 1 for three independent experiments. Mean data = S.D. are indicated.

was detected for the Myc-tagged SRA-deleted mutant of
UHRF]1 (not shown). Together, these results identified the SRA
domain as a preferential site of PARylation, in agreement with
the recent report by Zhang et al. (47), who identified two site-
specific ADP-ribosylated residues within the SRA domain of
UHRF1 by boronate affinity chromatography used to isolate
ADP-ribosylated peptides. To a lesser extent, the TTD is also
PARylated.

PARP1 and UHRFI Favor the Silencing of Major Satellite
Repeats—UHRF1 was described previously as contributing to
the silencing of major satellites sequences, partly by targeting
DNMT1 for DNA maintenance methylation during pericentric
heterochromatin replication (23, 24, 42). In addition, PARP1
was found associated with the major satellite elements of peri-
centric heterochromatin (12). To get insights into the biological
meaning of the UHRF1-PARP1 association, we first sought to
determine whether PARP1 was also involved in the transcrip-
tional silencing of major satellite repeats. To this aim, we ana-
lyzed the transcriptional activity across these elements by semi-
quantitative RT-PCR using RNA extracts from the PARP1"/*
and PARP1 /" cells (Fig. 4A4). Our data revealed a significant
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increase of the satellite transcripts from pericentric regions in
PARP1 /"~ cells compared with the PARP1*/™* cells (Fig. 44,
lane 3 versus 1). In contrast the inhibition of PARP activity in
PARP1"™ cells did not alter the overall transcription of these
regions (Fig. 44, lane 2 versus I). To explore the contribution of
UHRF1 in the transcriptional reactivation of major satellites
observed in PARP1 ™/~ cells, we examined the effect of an addi-
tional siRNA-mediated knockdown of UHRF1 (Fig. 4B). In
agreement with previous data (42), the depletion of UHRF1 by
siRNA in PARP1"/* cells induced pericentric transcription,
although to a significant lower extent than the absence of
PARP1 (Fig. 4B, lanes 2 and 3 versus I). In contrast, the deple-
tion of UHRF1 in PARP1 ™/~ cells did not significantly impair
the enhanced transcriptional activity induced by the absence of
PARPI, thus suggesting that both enzymes likely act in the
same pathway (Fig. 4B, lane 4 versus 3). In a comparative
experiment, we also analyzed the transcriptional activity of
minor satellites. In agreement with the previously described
association of PARP1 with centromeric regions (12), we also
detected an important increase in the transcripts of centric
regions, indicating a role of PARP1 in the silencing of these
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FIGURE 5. The absence of PARP1 affects the association of UHRF1 with DNMT1 but not their targeting to replicating heterochromatin or the meth-
ylation of CpG repeats. A, the interaction of DNMT1 with UHRF1 is reduced in PARP1~/~ cells. Left, equivalent amounts of total protein cell lysates from
PARP1*/" (lane 2) and PARP1~/ cells (lane 3) were immunoprecipitated using an anti-UHRF1 antibody (/anes 2 and 3) or a control antibody (ct/, lane 1) and
analyzed for the coimmunoprecipitation of DNMT1 by Western blotting. Inputs correspond to 1/30th of the amount of total cell extract used forimmunopre-
cipitation. Right, the signal intensities of the coprecipitating DNMT1 relative to DNMT1 expression and UHRF1 immunoprecipitation were measured in three
independent experiments using ImageJ. The colP in PARP1 /% cells (lane 2) was set to 1. Mean values = S.D. are indicated. B, the absence of PARP1 does not
perturb the accumulation of DNMT1 onto pericentric heterochromatin. Shown are representative images of DNMT1 (g, ¢, e, and g (green)) immunostaining of
the typical ring-shaped pericentric duplication bodies from PARP1 */* (a,b,e,and ) or PARP1~/~ (c, d, g, and h) cells either mock-treated (a-d) or treated with
the PARP inhibitor Ku-0058948 (e- h). DNA was counterstained with DAPI (b, d, f, and h (blue)). Scale bars: 7 um. C, the absence of PARP1 does not perturb the
accumulation of UHRF1 onto pericentric heterochromatin. Shown are representative images of UHRF1 (g, ¢, e, and g (green)) immunostaining of the typical
ring-shaped pericentric duplication bodies from PARP1"/" (a, b, e, and f) or PARP1™/~ (c, d, g, and h) cells either mock-treated (a-d) or treated with the PARP
inhibitor Ku-0058948 (e—h). DNA was counterstained with DAPI (b, d, f, and h (blue)). Scale bars: 7 um. D, the interaction of DNMT1 with PCNA is maintained in
PARP1~/~ cells. Equivalent amounts of total protein cell lysates from PARP1"/™" (lanes 1 and 2) and PARP1~/~ cells (lane 3) were immunoprecipitated using and
anti-PCNA antibody (/anes 2 and 3) or a control antibody (/ane 7) and analyzed for the coimmunoprecipitation of DNMT1 by Western blotting. Input corresponds
to 1/25th of the amount of total cell extract used for immunoprecipitation. £, the methylation profile of pericentric repeats is normal in PARP1 ™/~ cells. Total
DNA was isolated from PARP1*/* or PARP1~/~ cells either mock-treated or treated with Ku-0058948 for 24 h and then bisulfite-treated. Histograms show the
methylation percentage at individual CpG sites as measured by pyrosequencing.

regions (not shown). However, the mechanism involved is
likely unrelated to UHRFI, as suggested by the previously
reported normal transcription of these regions in the
absence of UHRF1 (42).

The Absence of PARPI Alters the Interaction of UHRF1 with
DNMT1I but with No Consequences for the Methylation of Peri-
centric Regions—Enhanced transcriptional activity at pericen-
tric regions could be caused by defective DNMT1-catalyzed
CpG methylation. Among the UHRF1 functional domains that
facilitate the loading of DNMT1 to replicating heterochromatic
regions, the SRA domain mediates the recognition and prefer-
ential binding to hemi-methylated CpG sites and facilitates the
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interaction of UHRF1 with DNMT1 (24, 29, 30). Because we
identified SRA as the preferential interaction domain (Fig. 2C)
and PARylation site for PARP1 (Fig. 3B), we went on to test
whether PARP1 is involved in the association of UHRF1 with
DNMT1 (Fig. 5A). To address this question, whole extracts
from PARP1*/* or PARP1 ™/~ 3T3 cells were immunoprecipi-
tated with an anti-UHRF1 antibody and probed for the coim-
munoprecipitation of DNMT1 by Western blotting. We
observed a significantly reduced coimmunoprecipitation of
DNMT1 with UHRF1 in PARP1 ™/~ cells (Fig. 54, lane 3) com-
pared with PARP1"/" (lane 2) cells, indicating that PARP1 is
required for the efficient association of DNMT1 with UHRF1.
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No unspecific coprecipitation was observed with the control
antibody (Fig. 54, lane 1).

Consequently, we went on to examine by immunofluores-
cence analysis whether the reduced DNMT1-UHRF1 associa-
tion affects the focal localization of DNMTT1 to replicating het-
erochromatin (Fig. 5B). Because both the TTD and SRA
domain of UHRF1 mediate its targeting to pericentric hetero-
chromatin, we also verified the accumulation of UHRF1 onto
these regions (Fig. 5C). Notwithstanding, we found a normal
accumulation of both proteins onto the characteristic horse-
shoe-like replication factories in the PARP1 /" cells (Fig. 5C,
compare panels ¢ and d, with a and b) as well as after PARP
inhibition (compare panels e- h with a and b) suggesting that
PARPI1 and PARP activity is not absolutely required for the
mid-S phase-specific targeting of UHRF1 and DNMT1 to peri-
centric heterochromatin.

Because loading of DNMT1 onto replication foci was also
shown to be promoted by PCNA (48), we explored the role of
PARP1 in the association of DNMT1 with PCNA. We com-
pared the coimmunoprecipitation of DNMT1 using an anti-
PCNA antibody in PARP1"/* versus PARP1~/" cells (Fig. 5D).
We observed a similarly efficient interaction of DNMT1 with
PCNA (Fig. 5D, lane 2 versus 3) in both cell lines, indicating that
the association between these proteins is maintained in the
absence of PARP1. No precipitation of DNMT1 was detected
using the control antibody (Fig. 5D, lane 1).

Finally we verified whether the reduced DNMT1-UHRF1
association perturbs DNMT1 catalytic activity. We analyzed
the methylation status of pericentric repeats by genomic
bisulfite sequencing of DNA extracted from PARP1"/* and
PARP1 ™/~ cells treated or not with the PARP inhibitor
Ku-0058948 (Fig. 5E). Consistent with the normal recruit-
ment of DNMT1 and UHRF1 onto heterochromatic foci, no
apparent difference in the methylation profile of these repet-
itive regions was detected between both cell lines and after
PARP inhibition. Similarly, the absence of PARP1 did not
affect the methylation profile of minor satellites at centrom-
eres (not shown).

Taken together, these results identified a role of PARP1 in
stabilizing the interaction of UHRF1 with DNMT 1. Despite the
reduced interaction between DNMT1 and UHRF1 in the
absence of PARP1, the recruitment of DNMT1 to heterochro-
matic regions and its activity are maintained owing to its effi-
cient interaction with PCNA. Moreover, these data indicate
that the derepression of the major satellites detected in the
absence of PARP1 might not simply be caused by impaired
DNA methylation but likely involves another defect that we
aimed to identify next.

PARPI and UHRFI1 Cooperate to Regulate the Repressive
Mark H4K20me3—To further decipher how PARP1 regulates
the silencing of pericentric regions, given the link of UHRF1
with repressive chromatin marks (24, 27, 30) we then asked
whether the transcriptional activation was accompanied by
modifications of the chromatin signatures of pericentric het-
erochromatin. We looked for H3K9 and H4K20 trimethylation,
which is linked with silencing, and H4K16 acetylation or H3K4
trimethylation, which is required for gene activation (Fig. 6).
The staining of H3K9m3 remained unchanged, and no detect-
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able acetylation of H4K16 or trimethylation of H3K4 could be
detected at DAPI-dense heterochromatic regions of PARP1 ™/~
cells (Fig. 6A, compare panels d, h, and [ with b, f, and j, respec-
tively). In contrast, the absence of PARP1 led to a specific loss of
the local repressive H4K20me3 mark at heterochromatic foci in
most of the cells (>80%) ,thus indicating a less compact hetero-
chromatin structure that could contribute to up-regulation of
the heterochromatin transcripts described above (Fig. 6B, com-
pare panel g with a and vertical bar 3 with 1). Remarkably, the
additional depletion of UHRF1 rescued the localization of
H4K20me3 to heterochromatin regions in the PARP1 ™/~ cells
(Fig. 6B, compare panel j with g and vertical bar 4 with 3),
whereas it did not perturb H4K20me3 staining in the
PARP1*/™ cells (compare panel d with a and vertical bar 2 with
1). To ascertain that the absence of H4K20me3 heterochro-
matic staining was not due simply to an overall reduction in
H4K20me3, we evaluated the global expression of H4K20me3
by Western blot analysis of acid-extracted histones from
PARP1"/* and PARP1 ™/~ cells (Fig. 6C). We found rather an
increase in the overall expression of H4K20me3 in the
PARP1 /" cells. Taken together, these findings highlight a
related contribution of PARP1 and UHRF1 in the transcrip-
tional repression of pericentric heterochromatin through a
mechanism that at least partly involves a specific regulation of
the repressive mark H4K20me3 at heterochromatin.

PARPI Restrains UHRFI-mediated Ubiquitination of DNMTI
and Modulates Its Stability during the Cell Cycle—Among the var-
ious UHRF1-regulated processes, recent reports have identified
an UHRF1-mediated ubiquitination of DNMT1 that coordi-
nately regulates its stability with the completion of DNA repli-
cation (34, 35). Because PARylation has also recently been con-
nected with ubiquitination and proteasomal degradation (4, 49,
50), we decided also to explore a possible involvement of
PARP1 in this pathway. We compared the level of Myc-
UHRF1-mediated ubiquitination of immunopurified GFP-
DNMT1 in PARP1/* versus PARP1 '~ 3T3 cells (Fig. 7A).
Strikingly, the absence of PARP1 led to an apparent increase in
the ubiquitination levels of GFP-DNMT1 (Fig. 7A, left panel,
lane 8 versus 7), whereas the autoubiquitination levels of Myc-
UHRF1 were weaker and remained rather unchanged in similar
experimental conditions (right panel, lane 2 versus I). No
unspecific ubiquitination of GFP was detected (Fig. 7A, left
panel, lanes 3 and 4). Thus, these results introduced PARP1 as a
negative regulator of UHRF1-ubiquitin ligase activity onto
DNMTT1. To confirm and examine this hypothesis further, we
performed in vitro ubiquitination assays using purified recom-
binant PARP1, UHRF1, and GST-DNMT1 in the presence of
the ubiquitin-activating enzyme E1, the ubiquitin-conjugating
enzyme E2, and ubiquitin (Fig. 7B). To discriminate between a
structural and enzymatic role for PARP1, UHRF1 was first pre-
incubated together with PARP1 in the absence (inactive
PARP1) or presence of NAD ¥ (active PARP1) and subsequently
tested in the ubiquitination assays (Fig. 7B, diagram). The addi-
tion of inactive PARP1 did not significantly impact the autou-
biquitination of UHRF1 (Fig. 7B, lane 3 versus 2) or the ubiq-
uitination of GST-DNMT1 (lane 6 versus 5). However, when
UHRF1 was first PARylated with active PARP1 in the presence
of NADT, its ubiquitination activity onto DNMT1 was signifi-
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FIGURE 6. The absence of PARP1 causes reduced staining of the repressive mark H4K20me3 at pericentric regions, which is rescued by the additional
depletion of UHRF1. A, PARP1 ™/~ cells display normal H3K9me3, H4K16ac, and H3K4me3 staining onto DAPI-dense heterochromatic regions. Shown are
representative immunofluorescence images for the comparative distribution of H3K9me3 (b and d (green)), H4K16ac (fand h (green)), and H3K4me3 (jand /) in
PARP1"/*" and PARP1 ™/~ interphase cells. DNA and heterochromatic foci are counterstained with DAPI (a, ¢, e, g, i,and k). Scale bars: 7 jum. B, left, representative
images for the loss of H4K20me3 staining at HC regions in PARP1~/" cells rescued by the additional depletion of UHRF1. Shown is immunofluorescence
analysis of H4K20me3 (g, d, g, and j (green)) and UHRF1 (b, e, h, and k (red)) in PARP1 /" and PARP1 ™/~ cells transfected with either control siRNA (si-CTL) or
si-UHRF1. DNA and heterochromatic foci are counterstained with DAPI (c, f, i, and /). Right, the histogram depicts the percentage of cells with or without
H4K20me3 staining. An average of 500 cells/cell line were scored in >20 randomly selected fields. Results are averages from three independent experiments.
Mean values + S.D. are indicated. C, the overall expression of H4K20me3 is weakly increased in the PARP1 /" cells. Left, equivalent amounts of acid-extracted
histones from PARP1"/" and PARP1 /" cells were analyzed by Western blotting using an anti-H4K20me3 antibody and an anti-H4 antibody as loading control.
Right, the signal intensities of H4K20me3 relative to H4 were measured in three independent experiments using ImageJ. Mean values = S.D. are indicated.

cantly reduced (Fig. 7B, lane 7 versus 5), whereas the autoubiq-
uitination of UHRF1 was only weakly if significantly modified
(lane 4 versus 2). Under similar experimental conditions, the
ubiquitination of GST used as control was never observed (Fig.
7B, lanes 8 and 9). Interestingly, the addition of PARP1, when
automodified previously, had no significant impact on UHRF1
activity (not shown). Altogether, these data reveal that the
PARPI1-catalyzed PARylation of UHRF1 inhibits its ubiquitin
ligase activity essentially toward DNMT1.

The UHRF1 triggered ubiquitination of DNMT1 was
described previously as targeting DNMT1 for proteasomal deg-
radation, thereby regulating its protein stability (35). Therefore,
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we followed the protein expression profile of DNMT1 in
PARP1"'" and PARP1 /" 3T3 cells throughout the cell cycle
after release from serum starvation (Fig. 8). To carefully address
DNMT1 protein stability as opposed to its steady state levels,
cells were treated with the protein synthesis inhibitor cyclohex-
imide. We observed a similar abundance of DNMT1 in whole
cell extracts from nonsynchronized and G;-synchronized
PARP1"/* and PARP1 /" cells (Fig. 8, lanes 1—4). In contrast,
we detected a reduced level of DNMT1 in the S and G,
PARP1 /" cells compared with the PARP1"/* cells (Fig. 8,
compare lane 6 with 5 and 8 with 7). Therefore, consistent with
the ubiquitination data, these results suggest that PARP1 likely
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FIGURE 7. PARP1 selectively inhibits the UHRF 1-driven ubiquitination of DNMT1 in vivo and in vitro. A, in vivo ubiquitination assays. The absence of PARP1
enhances the UHRF1-mediated ubiquitination of DNMT1 but not the autoubiquitination of UHRF1 in vivo. Left, PARP1*/* and PARP1 /"~ cells were transfected
with either GFP-DNMT1 (lanes 5-8) or GFP (lanes 1-4) together with HA-ubiquitin and treated with 5 um MG-132 for 12 h to inhibit proteasomal degradation.
GFP immunoprecipitates were blotted successively with an anti-HA antibody to detect ubiquitinated proteins (lanes 3, 4, 7, and 8) and an anti-GFP antibody
(lanes 1,2, 5, and 6) to detect immunopurified proteins. Right, PARP1 /% (lanes 1 and 3) and PARP1 /" cells (lanes 2 and 4) were transfected with Myc-UHRF1
together with HA-ubiquitin and treated as described above. Myc immunoprecipitates were blotted successively with an anti-HA antibody to detect ubiquiti-
nated UHRF1 (lanes 3 and 4) and an anti-Myc antibody to detectimmunopurified UHRF1 (lanes 7 and 2). B, in vitro ubiquitination assays. Left, PARP1-catalyzed
poly(ADP-ribosyl)ation of UHRF1 selectively inhibits its ubiquitination activity onto DNMT1. Purified UHRF1 was first preincubated alone (lanes 1, 2, and 5) or
together with purified PARP1 (lanes 3, 4, 6, and 7) as indicated in the PARP activity buffer. PARP activity is induced by the addition of NAD™. The proteins were
subsequentlz assayed for UHRF1 ubiquitination activity onto itself (lanes 1-4) or onto GST-DNMT1 (lanes 5-7). a, ubiquitinated proteins (UHRF1Y? and
GST-DNMT1"?) were detected by immunoblotting using an anti-HA antibody, and the PARP activity was verified by immunoblotting using an anti-PAR
antibody. b, the purified recombinant proteins mixed in the experiment were detected by Western blotting using anti-GST, anti-PARP1, and anti-UHRF1
antibodies. The lower amount of PARP1 detected in lanes 4 and 7 is explained by its automodification, which limits its detection by the monoclonal anti-PARP1
antibody used. As a control, reactions were performed with GST (lanes 8 and 9). A representative experiment of three is shown. Upper right, a schematic diagram
of the experiment is shown. Lower right, the relative -fold expression (histogram) represents the ImageJ-quantified ubiquitinated protein levels of the samples
containing PARP1 relative to the samples without PARP1 (lanes 1, 3, and 4 versus 2; lanes 6 and 7 versus 5). The values represent the mean =+ S.D. of three
independent experiments.

helps to maintain DNMT1 protein stability throughout the
progression of the cell cycle.

We revealed enhanced transcriptional activity in PARP1 ™/~
cells in both the centric and pericentric regions, thus implying a
key role of PARP1 in their silencing. Accordingly, recent chro-
matin immunoprecipitation experiments have identified an
association of PARP1 with minor and major satellites in

DISCUSSION
In this study we identified a PAR-dependent physical and

functional interaction of PARP1 with UHRF1 involving
DNMT1 in which PARPI helps to modulate two different
UHRF1-regulated processes: the accumulation of the repres-
sive mark H4K20me3 on one hand and the abundance of
DNMTT1 on the other hand. Both events possibly contribute to
the silencing of pericentric heterochromatin.
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NIH3T3 cells (12). Furthermore, PARP1 has been described as
a key element in the repression of rRNA transcription and
inheritance of silent rDNA chromatin (12). UHRF1 was shown
previously to exert a selective transcriptional control on the
DNA satellites of pericentric heterochromatin but not centro-
meric heterochromatin (42). That the additional depletion of
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FIGURE 8. DNMT1 abundance is reduced in PARP1—/— cells. Protein
expression from nonsynchronized (lanes 1 and 2) and synchronized (lanes
3-8) PARP1*/* and PARP1 /" cells was analyzed by SDS-PAGE and Western
blotting with the appropriate antibodies. To evaluate protein stability, cells
were treated with cycloheximide before lysis. Progression of serum-starved
cellsreleased into fresh medium through the cell cycle was monitored by flow
cytometry analysis (not shown). The time points of release as determined by
FACS are indicated in parentheses.

UHRF1 in PARP1 '~ cells has no additive impact on the tran-
scription of pericentric repeats implies that both proteins likely
act in the same molecular process. In addition, based on the
physical and functional interaction of UHRF1 and PARP], it is
tempting to speculate on a selective coordinated interplay
between both enzymes for the silencing of major satellite
sequences. What would be the molecular mechanism involved?

UHRF1 has been shown to bind hemi-methylated CpG
dinucleotides specifically and to associate with DNMT1
through the same SRA domain. In addition, UHRF1 is
described as binding methylated H3K9 through its TTD (26,
29). Together these activities cooperate for the loading of
DNMTT1 to pericentric heterochromatic sites to guarantee the
maintenance of DNA methylation (24, 29). The PARylation of
both the SRA domain and the TTD of UHRF1 reported here
and the previously described functional interaction between
PARP1 and DNMT1 (15) prompted us to investigate a possible
role of PARPI in one or the other of these properties. The con-
served accumulation of UHRF1 onto the DAPI-dense replicat-
ing heterochromatic regions of PARP1 /" cells or after PARP
inhibition suggests that PARP1 might not be absolutely
required for the binding of UHRF1 to hemi-methylated CpG
sites. In contrast, we found a reduced interaction of UHRF1
with DNMT1 in the PARP1 /" cells, thus rather indicating a
contribution of PARP1 to the formation or the stability of the
UHRF1-DNMT1 complex. In line with this hypothesis,
DNMT1 contains a PAR-binding domain and was shown to
interact noncovalently with PAR (21). These observations led
to the hypothesis that the PARylation of UHRF1 can serve to
construct a robust interaction network among PARP1, UHRFI,
and DNMT1 and to favor the association among the members
of this complex by noncovalent interactions. In addition, we
also found a PARP1-catalyzed poly(ADP-ribosyl)ation of
DNMT1 that can contribute to its interaction with UHRF1 (not
shown). Notwithstanding, the reduced UHRF1-DNMT1 asso-
ciation observed in the absence of PARP1 did not significantly
perturb the loading or the catalytic activity of DNMT1 as
revealed by its normal enrichment at heterochromatic regions
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of PARP1 /" - or PARP-inhibited cells and by the wild type-like
methylation status detected at the major satellite repeats. Based
on our findings, we propose that this is at least partly explained
by a compensating activity of PCNA in promoting the localiza-
tion of DNMT1 onto replication foci as supported by the
PCNA-DNMT1 interaction that is maintained in the absence of
PARPI. Alternatively, a compensating DNA methylation activ-
ity by DNMTS3 proteins, recruited via the Suv39h-mediated
H3K9me3 (51), a modification not impaired in PARP1 ™/ cells,
is an appealing hypothesis. In any case, the overall derepression
of the major satellites detected in the absence of PARP1 in the
asynchronous cells cannot simply be caused by impaired DNA
methylation, suggesting the involvement of another mecha-
nism that we aimed to identify.

UHRF1 has also been reported to have key functions in sens-
ing and controlling chromatin features other than just the CpG
methylation status of pericentric heterochromatin. Therefore,
a conceivable hypothesis is that PARP1 participates in the
UHRF1-mediated chromatin modifications required for its
silencing. UHRF], through its SRA domain, recruits HDACI,
which deacetylates histone H4, thereby controlling the tran-
scription of major satellites (38). However, in contrast to find-
ings in UHRF1-depleted cells, we did not detect hyperacetyla-
tion of H4K16 at heterochromatic sites in the PARP1 /"~ cells,
indicating that PARP1 might not be required for this mecha-
nism. The TTD and SRA domain of UHRF1 have also been
suggested to mediate the binding activity and specificity of
UHRF1 onto H3K9me3 sites and regulate the organization of
this epigenetic mark onto pericentric heterochromatin (26, 29,
30, 32). Furthermore, a perturbed H3K9me3 profile as reported
in Suv39h~’/~ cells, is associated with enhanced transcription of
major satellite repeats owing to defective recruitment of
DNMT3b (51, 52). Again, the normal staining of H3K9me3
observed in the PARP1 /™ cells suggests that PARP1 might not
be involved in its accumulation onto heterochromatic regions.
In contrast, our findings reveal a selective cross-talk between
PARP1 and UHRFI in the regulation of the repressive mark
H4K20me3 that characterizes the correct condensation and
thereby the silencing of pericentric heterochromatin. The
results suggest that UHRF1 negatively regulates the accumula-
tion of H4K20me3 onto HC foci and that PARP1 serves to con-
trol this activity. Future work will be required to further dissect
the molecular link between both proteins and their activities
and to identify the targets among the proteins that orchestrate
the sequential methylation of H4K20 at pericentric regions,
including SET8/PR-Set7, SUV4-H20.1, and SUV4-H20.2, or
those that catalyze demethylation, such as PHF2 and PHF8 (53).
That the depletion of UHRF1 alone is not sufficient to decrease
the enhanced transcription of the major satellites observed in
the PARP1 /" cells and restore their repression might simply
be explained by a broader role of PARP1 at pericentric hetero-
chromatin. In support of this view, PARP1 was found to interact
with the SWI/SNEF-like factor SMARCADI, involved in the
maintenance of epigenetic marks throughout pericentric het-
erochromatin replication (11), to cooperate with the histone
deacetylase SirT1 for the maintenance of pericentric hetero-
chromatin integrity (9) and to mediate the inheritance of silent
rDNA chromatin (12). In addition, the repressive mark
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H4K20me3 is probably not the only requirement for the tran-
scriptional silencing of pericentric heterochromatin. Alterna-
tively, given the emerging function of H4K20 methylation in
genome maintenance, whether derepression of satellite repeats
might be partially elicited by perturbed pericentric and centro-
meric heterochromatin integrity as reported for BRCA-defi-
cient cells (54) cannot be excluded. In support of this idea, both
UHRF1-deficient and PARP1 /"~ cell lines were found to dis-
play higher genome instability and defects in chromosome seg-
regation (14, 55).

Given the recently uncovered role of UHRF1 in the clearance
of DNMT1 through its ubiquitination and proteasomal degra-
dation (33-35), our results imply an additional possible contri-
bution of PARP1 and its activity to this process. Much recent
evidence exists to support a broad role of PARPs in ubiquitin-
mediated protein degradation. A first example is the associa-
tion of PARP1 with the E3 ubiquitin ligase CHFR (checkpoint
with Forkhead and Ring finger domains), which was shown to
induce the polyubiquitination of PARP1 and its degradation in
response to mitotic stress (56). PARP1 and PARylation have
also been implicated in the ubiquitination of repair proteins
catalyzed by the E3 ligase RNF146/Iduna in response to geno-
toxic stress, and Tankyrase (PARP5a)-catalyzed PARylation
has been associated with the RNF146/Iduna-triggered ubiquiti-
nation of targets from the Wnt/B-catenin signaling pathway
(49, 50). In our study we define PARP1 as a negative regulator of
the E3 ubiquitin ligase activity of UHRF1 onto DNMT1. In vivo
this is exemplified by an enhanced ubiquitination of DNMT1 in
PARP1 ™/~ cells, whereas the autoubiquitination of UHRF1
remains rather unaffected. This regulation may preserve
DNMT1 from early proteasomal degradation and consequently
facilitate its accumulation throughout the cell cycle. In support
of this assumption, we detected decreased DNMTT1 stability in
the S and G, phases of the cell cycle in PARP1~/~ cells. Recent
reports have identified an additional role of Usp7 (HAUSP) in
promoting DNMT1 stability both by deubiquitinating DNMT1
and by inhibiting UHRF1 activity (34, 35). Whether PARP1 also
controls the deubiquitinating activity of Usp7 onto DNMT1
represents a possibility, although we have observed that the
interaction of Usp7 with UHRF1 and DNMT1 is not perturbed
by the absence of PARP1 (not shown).

Based on our results, we propose PARP1 as a novel player in
the UHRF1-mediated fine-tuned regulation of DNMT1 abun-
dance throughout the cell cycle. Does this cellular process also
contribute to the repression of major satellites in addition to the
accumulation of H4K20me3? The possibility exists. The repres-
sion of mouse pericentric HC is tightly coupled to the cell cycle.
Although two burst of transcription have been detected in late
G, to early S phase just before the replication of chromocenters
and during mitosis to generate transcripts that drive the reas-
sembly of heterochromatin, major satellites are silenced in a
large part of G; and when cells are engaged in replicating chro-
mocenters from mid-late S phase to G, (57). It is conceivable
that the enhanced UHRF1-catalyzed degradation of DNMT1
that we detected in the PARP1 ™/~ cells from S to G,, perturbs
DNA methylation at pericentric regions and participates
together with the loss of H4K20me3 in the abnormal derepres-
sion of satellite repeats, specifically during the replication of
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these regions and onward. As a consequence, reduced pericen-
tric heterochromatin silencing can be associated with the delay
of mid-to-late S phase replication that we detected in the
PARP1 /" cells (not shown). Similarly, UHRF1 and BRCA1
have been proposed to control the silencing of major satellites
repeats and the replication of pericentric heterochromatin
(42, 54, 58).

In summary, our findings define PARP1 as part of a protein
complex containing UHRF1 and DNMT1 in which PARP1 reg-
ulates two UHRF1-associated biological activities. Accumulat-
ing reports in the literature show that the functional role of the
UHRF1-DNMT1 association is dual. (i) On one hand, it helps to
recruit DNMT1 to replicating heterochromatic regions for
DNA methylation maintenance; (ii) on the other, it mediates
the ubiquitination of DNMT1 to regulate DNMT1 stability.
Similarly, our data suggest that the biological outcome of the
PARP1-UHRF1 association is also dual. (i) Both proteins coop-
erate in the maintenance of the repressive mark H4K20me3 at
pericentric heterochromatin to favor transcriptional silencing,
and (ii) PARP1 seems to negatively regulate the UHRF1-cata-
lyzed ubiquitination of DNMT1 to maintain the abundance of
DNMTT1 from S to G, phase. This can be an additional way to
control transcriptional repression, specifically during the repli-
cation of pericentric heterochromatin and onward.
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DNMT1 is recruited by PCNA and UHRF1 to maintain DNA methylation after replication. UHRF1 recognizes
hemimethylated DNA substrates via the SRA domain, but also repressive H3K9me3 histone marks with its TTD.
With systematic mutagenesis and functional assays, we could show that chromatin binding further involved UHRF1
PHD binding to unmodified H3R2. These complementation assays clearly demonstrated that the ubiquitin ligase ac-
tivity of the UHRF1 RING domain is required for maintenance DNA methylation. Mass spectrometry of UHRF1-de-
ficient cells revealed H3K18 as a novel ubiquitination target of UHRF1 in mammalian cells. With bioinformatics
and mutational analyses, we identified a ubiquitin interacting motif (UIM) in the N-terminal regulatory domain of
DNMT1 that binds to ubiquitinated H3 tails and is essential for DNA methylation in vivo. H3 ubiquitination and
subsequent DNA methylation required UHRF1 PHD binding to H3R2. These results show the manifold regulatory
mechanisms controlling DNMT1 activity that require the reading and writing of epigenetic marks by UHRF1 and il-
lustrate the multifaceted interplay between DNA and histone modifications. The identification and functional charac-
terization of the DNMT1 UIM suggests a novel regulatory principle and we speculate that histone H2AK119 ubiquiti-
nation might also lead to UIM-dependent recruitment of DNMT1 and DNA methylation beyond classic maintenance.
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Introduction

Epigenetic mechanisms including DNA and histone
modifications are crucial for the regulation of gene ex-
pression during development. DNA methylation occurs
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at the C5 position of cytosine residues, mostly within
cytosine-guanine dinucleotides (CpG), and is involved in
imprinting, X-chromosome inactivation, stable transcrip-
tional repression, genome stability and tumorigenesis
[1]. DNA methylation patterns are established by the de
novo methyltransferases DNMT3A and DNMT3B during
gametogenesis and early development, and are propagat-
ed by the maintenance methyltransferase DNMT]1 after
DNA replication in somatic cells.

DNMTI1 comprises a regulatory N-terminal domain
(NTD), which covers two-thirds of the molecule, and a
C-terminal catalytic domain (CD), which contains all es-
sential motifs of active C5 DNA methyltransferases. The
NTD controls the subcellular distribution of DNMT1
during the cell cycle and its enzymatic activity. A sub-
domain in the NTD was initially described as a targeting
sequence (TS) as it was found to mediate the associa-
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tion of DNMT1 with late replicating pericentromeric
heterochromatin [2]. Subsequent studies defined a dis-
tinct proliferating cell nuclear antigen (PCNA) binding
domain (PBD) responsible for the interaction with the
replication machinery [3]. The subnuclear localization
of DNMT1 undergoes characteristic changes throughout
the cell cycle reflecting PBD-mediated PCNA binding
during S phase and TS domain-mediated heterochroma-
tin association during late S and G2 phase [4, 5]. The as-
sociation of DNMT1 with the replication machinery en-
hances methylation efficiency, but is not strictly required
for postreplicative maintenance DNA methylation [6, 7].
In contrast, the TS domain was found to be required for
DNMTI1 enzymatic activity [8, 9]. However, the molec-
ular mechanism of TS domain function in the regulation
of maintenance DNA methylation remains elusive.

Besides its role in replication-independent heteroch-
romatin binding, the TS domain mediates DNMT1 ho-
modimerization [9] and autoinhibition [10, 11]. A recent
crystal structure shows that the TS domain inserts into
the DNA binding pocket of the CD, indicating a role of
intramolecular interactions in the regulation of DNMT]1
activity [10, 11]. Moreover, the TS domain interacts with
the SET- and RING-associated (SRA) domain of ubig-
uitin like, containing PHD and RING finger domains 1
(UHRF1) [12-14]. In contrast to UHRF2, the interaction
of UHRF1 with DNMT1 was found to be S phase-depen-
dent [15].

UHRF1, also known as NP95 (mouse) or ICBP90 (hu-
man), has been reported as a crucial cofactor for main-
tenance DNA methylation. Mice lacking UHRF1 show
a similar phenotype as DnmtI null (DnmtI”") mice that
manifests in genomic DNA hypomethylation and devel-
opmental arrest at embryonic day 9.5 [16-18]. The SRA
domain of UHRF1 preferentially binds to hemimethylat-
ed DNA resulting from semiconservative DNA replica-
tion and is, therefore, thought to play an important role
in loading DNMT1 onto newly synthesized DNA sub-
strates [16, 17, 19-22]. The heterochromatin association
of UHRF1 is also mediated by the tandem Tudor domain
(TTD), which forms an aromatic cage for specific bind-
ing of histone H3 tails containing a trimethylated lysine
9 (H3K9me3) residue [22-25]. The plant homeodomain
(PHD) was reported to act in combination with the TTD
to read the H3K9me3 mark [26] and to contribute to
large-scale reorganization of pericentromeric heterochro-
matin [27]. In addition, UHRF1 harbors a really interest-
ing new gene (RING) domain endowed with ubiquitin E3
ligase activity in vitro, which is required for growth reg-
ulation of tumor cells [24, 28]. The ubiquitination state
and stability of DNMT1 is controlled by UHRF1 and the
ubiquitin-specific protease USP7 [29, 30]. UHRF1 over-

expression leads to DNA hypomethylation by the desta-
bilization and delocalization of DNMT1 [31]. Besides
its role in marking DNMT1 for proteasomal degradation,
UHREFT1 also exerts its ubiquitin E3 ligase activity on his-
tone substrates [24, 25].

A recent study describes replication-dependent H3K23
ubiquitination by UHRF1 in Xenopus extracts [32].
Knockdown and rescue experiments in HeLa cells
showed that SRA domain-mediated DNA binding as well
as RING domain-dependent E3 ubiquitin ligase activity
of UHRF1 are required for H3 ubiquitination. Expression
of the SRA and RING domain mutants in UhrfI~~ mouse
cells could neither restore DNMTT replication targeting
nor DNA methylation levels. A deletion of large parts of
the DNMT1 TS domain abolished binding to ubiquitinat-
ed H3K23 in vitro, but effects on enzymatic activity were
not investigated. In particular, the structure and function
of the rather large TS domain with its multiple roles and
interactions remain to be clarified.

In this study, we elucidate the complex interplay be-
tween UHRF1 and DNMT1. While we could confirm
the general role of UHRF1 in recruiting DNMTT to sub-
strate sites by direct interaction, we found that DNMT1
targeting and activities are essentially controlled by spe-
cific binding to histone tails ubiquitinated by UHRF1.
We generated defined mutations in different UHRF1
domains that retained SRA domain-mediated binding
to hemimethylated DNA substrate sites, TTD-mediated
recognition of H3K9me3 and binding of DNMTI1, but
did not allow maintenance DNA methylation. We could
show that binding to unmodified H3R2 via the PHD and
ubiquitination of H3K18 via the RING domain are re-
quired for UHRF1 to mediate maintenance DNA methyl-
ation. In turn, we identified a ubiquitin interacting motif
(UIM) in the TS domain of DNMT1 that reads this ubiq-
uitin mark and is strictly required for maintenance DNA
methylation in vivo. These results show the manifold
regulatory mechanisms controlling DNMT]1 activity and
illustrate the multifaceted interplay between DNA and
histone modifications.

Results

The interaction of DNMTI with UHRFI is required for
maintenance DNA methylation

To test whether the interaction of DNMT1 with
UHRF1 is indeed required for maintenance DNA meth-
ylation, we generated stable cell lines based on Dnmtl ™
ESCs expressing green fluorescent protein (GFP) fusions
of either DNMT1 wild-type (GFP-DNMT1 wt) or a
truncated TS domain deletion mutant (GFP-DNMT1
A458-500) that is defective in binding to UHRF1 (Figure
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Figure 1 The DNMT1 TS domain is required for UHRF 1 interaction, heterochromatin targeting and maintenance DNA methyl-
ation. (A) Schematic outline of DNMT1 domains and the TS domain deletion (A458-500). DNMT1 comprises a large N-termi-
nal domain (NTD) harboring the PCNA binding domain (PBD), the targeting sequence (TS) domain and two bromo adjacent
homology (BAH) domains. The active catalytic center of DNMT1 resides within its C-terminal domain (CD). (B) Co-immu-
noprecipitation of UHRF1-His and the GFP-DNMT1 TS domain (309-628) wild-type (wt) or A458-500 constructs. Both con-
structs were co-expressed in HEK 293T cells and after immunoprecipitation of GFP fusions, bound proteins were detected
by western blot with an anti-UHRF1 and an anti-GFP antibody. GFP was used as negative control. |, input; B, bound. (C)
Confocal mid sections of fixed ESCs stably expressing GFP-DNMT1 wt or A458-500 mutant constructs. Ch-UHRF1 was
transiently co-expressed to illustrate heterochromatic regions, DAPI was used for counterstaining. Scale bar, 5 um. (D) Co-
valent complex formation of GFP-DNMT1 wt and GFP-DNMT1 A458-500 mutant were analyzed by an in vivo trapping assay.
Confocal mid-sections of ESCs stably expressing GFP-DNMT1 wt and deletion mutant constructs before and after treatment
with the mechanism-based inhibitor 5-aza-dC are displayed. Scale bar, 10 um. (E) Local DNA methylation analyses at the
maijor satellite repeats and the skeletal a-actin promoter. CpG methylation levels of mouse Dnmt1™~ ESCs stably expressing
GFP-DNMT1 wt or GFP-DNMT1 A458-500 mutant constructs were analyzed by bisulfite treatment of genomic DNA, PCR
amplification and direct pyrosequencing. The methylation level of the J1 wt cell line (endogenous DNMT1) and untransfected
Dnmt1™" cells are shown for comparison. Mean values + SD from two different clones were calculated, respectively.
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1A and 1B). The deleted region was determined by a se-
quence alignment of TS domains from higher eukaryotes
and a conserved core region of the domain was chosen
for mutational analysis (Supplementary information, Fig-
ure S1A). In contrast to GFP-DNMT1 wt, GFP-DNMT1
A458-500 did not co-localize with cherry (Ch)-UHRF1
and showed a dispersed distribution in the nucleus (Figure
1C), suggesting that the interaction with UHRFT1 is es-
sential for subnuclear localization of DNMTT.

Next, we investigated the role of UHRF1 interaction
for the catalytic function of DNMT1. Notably, GFP-DN-
MT1 A458-500 that did not interact with UHRF1 was
able to fully methylate hemimethylated DNA substrates
in vitro (Supplementary information, Figure S1C). To
test the DNA methylation activity of this deletion mutant
in vivo, we made use of a trapping assay. In this assay,
the cytosine analogue 5-aza-2'-deoxycytidine (5-aza-dC)
forms an irreversible covalent complex with the meth-
yltransferase at the C6 position of the cytosine residue
when incorporated into DNA during replication thereby
trapping the enzyme at DNA replication foci. Trapped
DNMT1 fractions increase over time and allow monitor-
ing the activity-dependent accumulation of DNMTT at its
target sites [33]. In ESCs stably expressing GFP-DNMT|1
wt, foci of immobilized protein emerged already within
20 min (Figure 1D, left panel). In contrast, GFP-DNMT1
A458-500 was not enriched at replication foci even after
110 min, indicating that the deletion mutant is unable to
methylate newly replicated DNA in living cells (Figure
1D, right panel). To pursue this idea, we further analyzed
site-specific DNA methylation levels of stable GFP-DN-
MT1 wt and A458-500 ESC lines (Supplementary in-
formation, Figure S1B). GFP-DNMT]1 could restore
local DNA methylation at the major satellite repeats in
Dnmt]”” ESCs leading to an average methylation level
of 62% that is comparable to the level of the wt cell line
expressing the endogenous protein (74%, Figure 1E,
left panel). In contrast, the DNMT1 mutant deficient in
UHRF1 binding was unable to reestablish local DNA
methylation patterns resulting in decreased levels at
the major satellite repeats (average 19%) similar to the
Dnmtl™" control cell line (average 18%). Consistently, a
similar defect of GFP-DNMT1 A458-500 in DNA meth-
ylation activity was observed at the single-copy sequence
of the skeletal a-actin promoter (Figure 1E, right panel).
Furthermore, similar results were obtained from DNA
methylation analyses at the minor satellite repeats and
the Dnmtlo promoter confirming that stable expression
of GFP-DNMT1 A458-500 could not restore DNA meth-
ylation in a Dnmt1”" cell line (Supplementary informa-
tion, Figure S1D).

In summary, we provide strong evidence that the

GFP-DNMT1 A458-500 mutant deficient in UHRF1
binding, even though able to methylate DNA substrates
in vitro, cannot restore DNA methylation patterns in
Dnmt1”~ ESCs. These findings suggest that the inter-
action of DNMT1 with UHRF1 is required to maintain
DNA methylation in vivo.

The PHD and RING domain of UHRF1 are essential for
maintenance DNA methylation

Cooperative binding of the UHRF1 TTD to di- and
trimethylated histone H3K9 and of the SRA domain to
hemimethylated DNA was described as a prerequisite
for targeting DNMT]1 to its substrate and for subsequent
DNA methylation [34]. Given the regulatory impact of
these two domains, we were interested in how the PHD
and RING domain of UHRF1 may functionally contrib-
ute to maintenance DNA methylation by DNMT1. To
this end, we introduced point mutations in the PHD and
RING domain (UHRF1-GFP H346G and UHRF1-GFP
H730A, respectively) that are expected to prevent coordi-
nation of zinc ions by zinc-finger motifs (Figure 2A and
Supplementary information, Figure S2A). Consequently,
the mutation in the RING domain significantly reduced
the E3 ubiquitin ligase activity of UHRF1 in vivo (Sup-
plementary information, Figure S2C and S2D). Notably,
the preference of UHRF1-GFP for hemimethylated DNA
was not impaired by the PHD and RING domain muta-
tions (Supplementary information, Figure S2B).

First, we tested whether the point mutations in the
PHD and RING domain influence the interaction of
UHRF1 with DNMTI1. UHRF1-GFP wt as well as
UHRF1-GFP H346G and UHRF1-GFP H730A still
co-precipitated with red fluorescent protein (RFP)-DN-
MT]1, indicating that the mutations do not affect the in-
teraction with DNMTT directly (Figure 2B). In addition,
the unaltered interactions were confirmed by a fluores-
cent three-hybrid assay [35, 36]. In this assay, UHRF1-
GFP fusion constructs were used as baits by tethering
them to a lac operator (lacO) array present in baby
hamster kidney (BHK) cells that simultaneously express
RFP-DNMTT1 as a prey. Accumulation of RFP-DNMT]
at the /acO spot enriched for UHRF1-GFP wt, UHRF1-
GFP H346G or UHRF1-GFP H730A clearly demon-
strates that the mutant proteins were still able to interact
with DNMT1 in vivo (Figure 2C).

In order to perform functional studies on the PHD
and RING domain mutants, we stably expressed GFP-
tagged UHRF1 wt, UHRF1 H346G or UHRF1 H730A in
UhrfI”~ ESCs. Similar to wt, also UHRF1-GFP H346G
and UHRF1-GFP H730A showed focal enrichment at
heterochromatin (Figure 2D, first panel and Supple-
mentary information, Figure S2E). Thus, the mutations
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Figure 2 Mutations in the PHD and RING domain of UHRF1 affect DNMT1 targeting and maintenance DNA methylation, but
not the interaction with DNMT1. (A) Schematic outline of the multidomain protein UHRF1. UHRF1 harbors a ubiquitin-like
(Ubl) domain, a plant homeodomain (PHD) and a tandem Tudor domain (TTD) followed by a SET and RING-associated (SRA)
domain and a really interesting new gene (RING) domain. UHRF1-GFP expression constructs carrying point mutations in the
PHD (H346G) and RING domain (H730A) are illustrated. (B) Co-immunoprecipitation of UHRF1-GFP wt or PHD and RING
domain mutants co-expressed with RFP-DNMT1 in HEK 293T cells. RFP-DNMT1 was immunoprecipitated using the RFP-
Trap and bound UHRF1-GFP was detected by western blot with an anti-GFP antibody. GFP was used as negative control.
Immunoprecipitated RFP-DNMT1 is shown by Ponceau staining. |, input; B. bound. (C) Fluorescence three-hybrid assay for
visualization of the interaction RFP-DNMT1 with UHRF1-GFP wt or PHD and RING domain mutants. Displayed are confocal
mid sections of BHK cells carrying a stably integrated Lac-operator array that were triple transfected with Lacl fused to the
GFP-binder, UHRF1-GFP constructs and RFP-DNMT1. DAPI was used for chromatin counterstaining. Closed arrows indi-
cate the co-localization of both proteins at the /acO spot, open arrows indicate no co-localization. GFP was used as negative
control. Scale bar, 5 um. (D) Confocal mid sections of fixed Uhrf1”~ ESCs stably expressing UHRF1-GFP wt or PHD and
RING domain mutant constructs. RFP-DNMT1 was transiently co-expressed and DNA was counterstained by DAPI. Scale
bar, 5 um. (E) Local DNA methylation analyses at major satellite repeats and the skeletal a-actin promoter. CpG site methyla-
tion levels of mouse E14 Uhrf1”~ ESCs stably expressing UHRF1-GFP wt or PHD and RING domain mutant constructs were
analyzed by bisulfite treatment of genomic DNA, PCR amplification and direct pyrosequencing. The methylation level of E14
wt ESCs (endogenous UHRF1) and untransfected E14 Uhrf1”" cells are shown for comparison. Mean values + SD from two
different clones were calculated, respectively.
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do not affect localization of UHRF1. In contrast to its
chromatin association in the UHRF1-GFP wt cell line,
transiently co-expressed RFP-DNMT]1 did not co-local-
ize with UHRF1-GFP H346G and UHRF1-GFP H730A,
but showed a dispersed distribution in the nucleus (Figure
2D, second panel). This observation is consistent with
the result of a staining for endogenous DNMT]1 (Supple-
mentary information, Figure S2F). Only in the UHRF1-
GFP wt cell line, endogenous DNMT 1 was enriched at S
phase-specific replication sites, whereas it was diffusely
distributed in the nucleus of the mutant cell lines point-
ing towards a defective DNMT1 targeting mechanism.
To examine if DNMT1 methylation activity depends on
the PHD and RING domain of UHRF1, we performed
site-specific methylation analyses at heterochromatic
regions. Consistent with defects in targeting DNMT1 to
replication sites, DNA methylation levels at the major
satellite repeats and the skeletal a-actin promoter re-
vealed that both UHRF1-GFP H346G and UHRF1-GFP
H730A were not able to mediate DNA remethylation by
DNMT!1 in UhrfI”"~ ESCs in contrast to UHRF1-GFP wt
(Figure 2E). Especially at the major satellite repeats, the
average DNA methylation in the PHD mutant cell lines
remained nearly unchanged (16%) from the Uhrfl '~
control cell line (11%). Also, the average methylation
levels in the RING domain mutant cell lines (29%) did
not reach the wt DNA methylation level (62%) at the
major satellite repeats. Similar results were obtained
for the minor satellite repeats and the Dnmt/o promoter
(Supplementary information, Figure S3A). Consistent
with this site-specific DNA hypomethylation, the stable
UHRF1 mutant cell lines also showed decreased global
DNA methylation levels as compared with the wt (Sup-
plementary information, Figure S3B and S3C). Partial
rescue of global DNA methylation in the RING domain
mutant cell lines could be due to residual E3 ubiquitin
ligase activity of UHRF1-GFP H730A (Figure 3B, Sup-
plementary information, Figure S2C and S2D).

To exclude the possibility that DNA hypomethyla-
tion might result from lower expression of the PHD and
RING domain mutant (Figure 3A), we performed a tran-
sient rescue assay in UhrfI~~ ESCs. Even though expres-
sion levels of the mutant constructs exceeded those of the
UHRF1-GFP wt, the PHD and RING domain mutants
could not mediate remethylation at the major satellite re-
peats (Supplementary information, Figure S3D and S3E)
arguing for functional rather than expression defects.

In summary, the PHD and RING domain mutants,
although not affecting UHRF1 heterochromatin localiza-
tion or the direct interaction with DNMT1, cannot me-
diate either targeting of DNMTT to replication foci nor
maintenance DNA methylation. These findings suggest

that these UHRF1 domains contribute to the recruitment
of DNMT1 by indirect mechanisms.

The PHD and RING domain of UHRF1 are required for
ubiquitination of histone H3

Histone H3 has been reported as a UHRF1-depen-
dent ubiquitination target in Xenopus egg extracts [32],
providing a potential mechanism for the recruitment of
DNMT]1 to chromatin. Thus, we set out to investigate
whether H3 ubiquitination required PHD-mediated his-
tone binding and RING domain-mediated ubiquitin E3
ligase activity of UHRF1 in mammalian cells. To this
end, we extracted histones from wt or UhrfI~~ ESCs
and detected modified H3. As expected, histone H3 was
less ubiquitinated in the absence of UHRF1 (Figure 3A
and 3B), indicating that UHRF1 serves as a ubiquitin E3
ligase for H3 in mammalian cells. We also found that
ubiquitination levels of histone H3 in UhrfI”"~ ESCs sta-
bly expressing the RING domain mutant UHRF1-GFP
H730A were not rescued to the level of wt cells. Surpris-
ingly, the PHD mutant UHRF1-GFP H346G also could
not restore ubiquitination of histone H3 (Figure 3A and
3B).

Since the PHD has been reported to bind to unmod-
ified H3R2 [26, 37-39], we investigated the role of
this histone residue in H3 ubiquitination by mutational
analyses. Compared with GFP-H3 wt, ubiquitination of
a GFP-H3 R2A mutant expressed in human embryonic
kidney (HEK) 293T cells was clearly reduced (Figure
3C) pointing towards an important role of the R2 residue
for UHRF1-dependent H3 ubiquitination.

To further test the histone binding properties of the
PHD mutant in vitro, we performed a peptide pull-
down assay with wt or PHD and RING domain mutant
UHRF1-GFP using H3 peptides with an unmodified,
trimethylated or acetylated K9 residue. The mutation in
the RING domain did not alter the histone binding of
UHRF1-GFP showing a preference for unmodified and
K9 trimethylated H3 peptides similar to the wt protein
(Figure 3D). The mutation in the PHD, however, de-
creased the binding to both, the unmodified and the K9
trimethylated peptide. We further examined the histone
binding preferences of UHRF1-GFP with an in vitro his-
tone tail binding assay. The results revealed the binding
of UHRF1-GFP to unmodified but not R2 dimethylated
H3 histone tails (Supplementary information, Figure
S4), consistent with prior K; measurements [39]. As the
PHD of UHRF1 has been shown to bind unmethylated
H3R2 residues and to contribute to the K9 methylated
H3 histone binding of the TTD [26, 37-39], we propose
that PHD-dependent histone binding is required for
UHRF1-mediated ubiquitination of histone H3.
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Figure 3 Histone H3 ubiquitination requires the UHRF1 PHD and RING domain. (A) Western blot analyses of endogenous
UHRF1 or stably expressed UHRF1-GFP wt or H346G and H730A mutants in E14 Uhrf1”" ESCs with an anti-UHRF1 an-
tibody. Equal loading is shown by an anti-p-Actin antibody. (B) Analyses of H3 ubiquitination from acid extracted histones
derived from the different cell lines in (A). A specific anti-H3 antibody was used for detection. (C) Ubiquitination of GFP-H3 in
dependence on R2. GFP-H3 wt and the arginine to alanine mutant (R2A) were co-expressed with UHRF1-His in HEK 293T
cells, respectively, and after immunoprecipitation with the GFP-Trap, the bound fraction was detected by western blotting with
a specific anti-H3 antibody. |, input; B, bound. (D) In vitro peptide pull-down assay of UHRF1-GFP wt or the PHD and RING
domain mutants from crude cells extracts of HEK 293T cells using H3 peptides (amino acid 1-20) that were either unmodified
(me0), K9 trimethylated (me3) or K9 acetylated (ac) and functionalized on streptactin beads. The GFP-Ubl domain of UHRF1

was used as negative control, Coomassie-stained streptactin is shown as loading control. I, input.

UHRF'I ubiquitinates histone H3 on K18 in mammalian
cells

Using Xenopus extracts immunodepleted for DNMT],
H3 was shown to be ubiquitinated at the K23 residue [32].
To map ubiquitination sites on histone H3 tails in mam-
malian cells, we performed mass spectrometry using hu-
man and mouse cells. In contrast to the results from Xen-
opus extracts, the K18 residue of histone H3 was iden-
tified as novel ubiquitination site in mouse ESCs, while
the K23 residue was unmodified or acetylated (Figure 4A
and 4B). Relative quantification of H3 peptides contain-
ing ubiquitinated K18 and an unmodified or acetylated
K23 residue showed a reduction of K18 ubiquitination
in ESCs lacking UHRF1 (Figure 4C and 4D). Similarly,
immunoprecipitation of GFP-UHRF1 from HEK 293T
cells and subsequent mass spectrometry also revealed
ubiquitination at K18 but not at K23 (Supplementary
information, Figure S5A). Comparison of ubiquitination
levels of overexpressed GFP-H3 carrying R2A, K18A or

www.cell-research.com | Cell Research

K23A mutations suggests that in this constellation K23
could also be modified (Supplementary information,
Figure S5B). Interestingly, the GFP-H3 R2A construct
showed reduced ubiquitination levels indicating that the
R2 residue plays a role in regulating H3 ubiquitination.

DNMTI harbors a UIM that mediates binding to ubiq-
uitinated H3 and is essential for DNA methylation activi-
ty in vivo

To unravel how H3 ubiquitination may contribute to
maintenance DNA methylation, we screened DNMT]1 for
potential binding motifs. With bioinformatics analyses,
we identified a ubiquitin interacting motif (UIM) in the
N-terminal regulatory domain of DNMT1. This motif
is located in a region spanning from amino acid 380 to
399 of mouse DNMT1 and shows striking similarity to
UIMs of known ubiquitin interacting proteins (Figure
5A). Comparison of the ubiquitin binding properties
between GFP-DNMT1 wt and mutants either lacking
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the UIM (A356-404) or containing substitutions of the
relevant and conserved amino acids in the motif to ala-
nine (D381A-E382A-S392A, D381A-E382A-M385A-
S392A-D395A, Figure SA and Supplementary informa-
tion, Figure S6A) showed a defect in the association with
ubiquitinated histone H3 and ubiquitinated H2AK119
(Figure 5B, 5C and Supplementary information, Figure
S6B-S6D). To further elucidate UIM-dependent ubiquiti-
nated histone binding, we quantified modified H318-26
peptides bound by GFP-DNMT1 wt or the UIM mutants
by mass spectrometry. Whereas H3 histone peptides
ubiquitinated at K18 and acetylated or unmodified at K23
co-immunoprecipitated with GFP-DNMT1 wt, only little
to no ubiquitinated peptide signals were detected for the
UIM mutants (Figure 6A, 6B). GFP-DNMT1 A458-500
defective in UHRF1 interaction (Figure 1B) showed re-
duced (Figure 6B) or undetectable (Figure 5B, 5C) bind-
ing to ubiquitinated H3 and H2A. This deletion located
in a TS domain region C-terminal of the UIM might
affect the integrity and functionality of the motif respon-
sible for ubiquitin binding. Therefore, we cannot rule out
that apart from disrupted UHRF1 binding also defects in
the association with ubiquitinated histones contributed to
the observed changes in subnuclear distribution and pro-
tein function of GFP-DNMT1 A458-500 (Figure 1C-1E).

Besides a decreased binding to ubiquitinated H3, the
TS domain point and deletion mutants exhibited an in-
creased binding to H3 or core histones compared with
GFP-DNMT1 wt (Figure 5B). Therefore, specific bind-
ing of DNMTT1 to ubiquitinated H3 via its UIM might
prevent the enzyme from stable chromatin association
and thereby facilitate DNA methylation.

To clarify the functional role of the UIM in mainte-
nance DNA methylation in vivo, we performed a func-
tional complementation assay in Dnmtl~~ ESC lines
transiently expressing GFP-DNMT1 wt, GFP-DNMT 1
A356-404, GFP-DNMT1 D381A-E382A-S392A or
GFP-DNMT1 D381A-E382A-M385A-S392A-D395A.
Local DNA methylation analyses at the major satellite
repeats and the skeletal a-actin promoter showed that the
UIM mutants were not able to reestablish DNA meth-
ylation patterns (Figure 6C). GFP-DNMT1 wt restored
DNA methylation at the major satellite repeats to 48%.
By comparison, the UIM deletion and point mutants
were not able to rescue resulting in low average meth-
ylation levels of 20% to 23% comparable to untrans-
fected DnmtI”~ ESCs (15%). Similar results were also
observed at the minor satellite repeats and the Dnmtlo
promoter (Supplementary information, Figure S7A).

Given that the GFP-DNMT1 TS UIM deletion and
point mutants were able to interact with Ch-UHRF1
(Supplementary information, Figure S7B), we were in-
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Figure 4 UHRF1 ubiquitinates histone H3 at K18 in mammalian
cells. (A) Identification of H3 18-26 peptides carrying ubiquitination
(GG) at K18 and no modification (Pr) at K23 by LC-MS/MS. MS2
fragmentation spectrum of the precursor ion is shown in the inset.
An almost complete series of b and full y product ions generated
by CID fragmentation were detectable providing a high confidence
in its correct identification and localization of the ubiquitin modifi-
cation. Inset: mass, charge and measurement error determination
of the H3 18-26 peptides K18GGK23Pr in the E14 wt sample.
Displayed is the isotopic distribution of the H3 peptide from which
the mass to charge ratio (m/z), the charge (2+) and the monoi-
sotopic mass value (m) were derived. Am: difference between
the expected and the measured masses; R: resolution of the MS
measurement. (B) Identification of H3 18-26 peptides carrying
ubiquitination (GG) at K18 and acetylation (Ac) at K23 by LC-MS/
MS as in (A). (C, D) Quantification of H3 18-26 peptides carrying
ubiquitination (ub) at K18 and an unmodified (un) or acetylated (ac)
K23 residue from E14 wt and E14 Uhrf1”" samples. Extracted ion
chromatograms of the ions corresponding to the peptides of inter-
est were used for the quantification. The signals were normalized
against the total amount of analyzed H3 proteins.
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Figure 5 The TS domain of DNMT1 harbors a ubiquitin interacting motif (UIM) that is essential for binding to ubiquitinated H3
and H2A. (A) Schematic outline of the UIM in the TS domain of DNMT1 and indication of the UIM deletion (A356-404) and
the point mutations (D381A-E382A-S392A and D381A-E382A-M385A-S392A-D395A). A peptide sequence of DNMT1 en-
compassing amino acid 380-399 was aligned with peptide sequences of proteins previously known to contain UIMs. Identical
amino acids are highlighted in black, highly similar amino acids are framed in black. The secondary structure of the DNMT1
region (pdb: 3EPZ [10]) harboring the UIM is displayed on top of the sequence alignment generated using ESPript [78]. The
consensus sequence for single-sided UIMs [58] is shown below. The UIMs were found by scanning the protein primary se-
quences against a collection of motifs in ExPASy Prosite. Putative subgroups of UIMs are indicated on the left. (B) Ubiquiti-
nated histone H3 binding assay. After extraction of histones from HEK 293T cells, the extracts were incubated with GFP-DN-
MT1 wt or mutants immobilized on the GFP-Trap and the bound fractions were analyzed by western blotting with specific
anti-H3 and anti-GFP antibodies. GFP was used as negative control. |, input; B, bound. (C) Ubiquitinated histone H2A binding
assay as in (B). Bound fractions were analyzed by western blotting with specific anti-H2AK119ub and anti-GFP antibodies.
Analyses of the anti-H2AK119ub antibody specificity and of peptides isolated from the corresponding band are shown in Sup-
plementary information, Figure S6C and S6D. H2Aub1, monoubiquitinated H2A; H2Aub2, diubiquitinated H2A.
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terested in how the UIM in DNMT]1 has an influence on
the subnuclear localization of the protein. Immunostain-
ing of replicating DNA with a specific anti-PCNA anti-
body indicated that GFP-DNMT1 wt was enriched at S
phase-specific replication foci, while GFP-DNMT1 A356-
404, GFP-DNMT1 D381A-E382A-S392A and GFP-DN-
MT1 D381A-E382A-M385A-S392A-D395A showed
only weak association with the PCNA-stained replication
sites especially in late S phase (Supplementary informa-
tion, Figure S8). To analyze the UIM-dependent enrich-
ment of DNMT]1 at late-replicating heterochromatin, we
quantified mean fluorescence intensities at chromocenters
compared with the nucleoplasmic region (Figure 7A). In
late S phase ES and mouse embryonic fibroblasts (MEF)
cells, GFP-DNMT1 wt localized at chromocenters,
whereas the UIM mutations abolished heterochromatin
enrichment (Figure 7B and 7C). These results clearly
demonstrate the key role of the UIM in DNMT]1 targeting
via ubiquitinated histone H3 binding and for maintenance
DNA methylation in mammalian cells.

Discussion

DNA methylation is an important epigenetic modifi-
cation regulating gene expression in development and
disease. A key question is how methylation marks are
set, maintained and removed. According to previous
models, DNA methylation marks are set by the de novo
methyltransferases DNMT3A and DNMT3B during
development and maintained by the maintenance DNA
methyltransferase DNMT1 that specifically recognizes
and modifies hemimethylated DNA substrates. However,
the preference of DNMT]1 for hemimethylated DNA mea-
sured in vitro [40-43] is not sufficient to explain efficient
maintenance of DNA methylation patterns over many
cell division cycles in vivo. The interaction of DNMT]1
with the replication protein PCNA was shown to enhance
maintenance DNA methylation by a factor of two, but not
to be essential [6, 7]. In contrast, the interacting factor
UHREFTI recruiting and allosterically activating DNMT1
is essential for DNA methylation [14, 16, 17, 44]. In this
study, we have now dissected the distinct role of different
UHRF1 and DNMT1 domains in directing DNA methyla-
tion.

In line with previous studies, we show that, albeit be-
ing weak, the TS domain-mediated interaction of DNMT]1
with the SRA domain of UHRF1 is required for targeting
and function of DNMT1 in vivo. Accordingly, truncated
DNMT1 (A458-500) deficient in UHRF1 binding showed
weaker association with chromocenters in late S phase
mouse fibroblasts [4] and failed to maintain DNA methyl-
ation in ESC (Figure 1).

Heterochromatin binding of UHRF1 is mediated by

the TTD, PHD and SRA domain and defects in any of
these three domains lead to decreased DNA methylation
by DNMTI [34, 45, 46]. Accordingly, it was postulated
that UHRF1 reads and binds repressive histone marks
and hemimethylated DNA and via direct protein-protein
interaction recruits DNMT1 for maintenance DNA meth-
ylation.

Defects of a RING domain mutant (C713A, C515A
and C716A) in restoring ubiquitinated H3 in HeLa cells
after knockdown of human DNMT1 and UHRF1 have
previously been reported [32]. We found that the RING
domain, though not directly involved in UHRF1 chroma-
tin binding or interaction with DNMTI, is indispensable
for DNA methylation by DNMT1. Remarkably, a UHRF1
RING domain mutant (H730A) with diminished ubiquitin
E3 ligase activity (Supplementary information, Figure
S2C and S2D) that could still bind DNMT!1 (Figure 2B),
hemimethylated DNA and K9 trimethylated H3 peptides
in vitro (Figure 3D and Supplementary information,
Figure S2B) and chromocenters in vivo (Supplementary
information, Figure S2E), nonetheless failed in recruiting
DNMTT1 to replication sites (Figure 2D and Supplemen-
tary information, Figure S2F). These findings suggest that
DNMTT recruitment to replication forks is not based on
direct interaction with UHRF1, but on the catalytic activ-
ity of the RING domain. Previously, the RING domain of
UHRF1 has been reported to have an autoubiquitination
activity [28] and, in addition, to ubiquitinate DNMT1
[29, 30] and histone substrates [24, 25]. A recent study
describes that ubiquitination of H3 by UHRF1 provides
docking sites for DNMT1 on chromatin and thus cou-
ples maintenance DNA methylation and replication [32].
While we could confirm the essential role of UHRF1, we
obtained new insights into the complex functional inter-
play of UHRF1 and DNMT1 domains.

First, in contrast to ubiquitination at K23 in Xenopus
egg extracts [32], our mass spectrometry results identified
H3K18 as ubiquitination target of UHRF1 in mammalian
cells (Figure 4A, 4B and Supplementary information,
Figure S5A). By mutational analysis in HEK 293T cells,
we found that in absence of K18, the mutated GFP-
tagged H3 might be ubiquitinated at K23 (Supplementary
information, Figure S5B). However, by semiquantitative
analysis of endogenous ubiquitinated H3 peptides in wt
versus Uhrfl”~ mouse ESCs using mass spectrometry,
we clearly show the specificity of K18 ubiquitination by
UHRFI and its reduction by UHRF1 depletion (Figure
4C, 4D). Second, in the previous study, a deletion of
100 amino acids within the DNMT1 TS domain (A325-
425) caused a loss of histone binding in vitro [32]. The
TS domain is, however, involved in multiple interactions
and required for proper folding, stability and activity of
DNMTTI. The incomplete structural information indicates
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Figure 6 The DNMT1 UIM is required for ubiquitinated H3K18 binding and for DNA methylation. (A) Ubiquitinated histone
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Equal amounts of GFP fusions were immobilized on the GFP-Trap and incubated with acid extracted histones. Bound pro-
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trometry. GFP was used as negative control. (B) Quantification of H3 18-26 peptides carrying ubiquitination (ub) at K18 and
an acetylated (ac) or unmodified (un) K23 residue from histone binding experiment shown in (A). Extracted ion chromato-
grams of the ions corresponding to the peptides of interest were used for quantification (H3K18ubK23ac: m/z = 571.8353 +
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ylation levels of untransfected J1 Dnmt1”" cells are shown for comparison. Mean values + SD from three to four biological
replicates were calculated, respectively.
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different TS domain conformations and a role in auto-
inhibition of the CD, but does not provide any further
mechanistic insights [10, 11, 47]. With bioinformatics
and mutational analyses, we identified a conserved UIM
located in the TS domain of DNMT1 (amino acids 381-
395) that mediates the recognition of ubiquitinated H3 in
vitro (Figure 5, 6A, 6B and Supplementary information,
Figure S6B). Localization and activity analyses with
specific mutants in vivo clearly indicated that the UIM is
required for DNMT1 subnuclear distribution and mainte-
nance DNA methylation (Figures 6C, 7 and Supplemen-
tary information, Figure S7A and S8).

Last, we could show that besides hemimethylated DNA
binding by the SRA domain [32], UHRF1 PHD binding
to H3R2 is also required for H3 ubiquitination and subse-
quent DNA methylation (Figure 2E and 3B). Therefore,
we propose that cooperative chromatin binding of the
TTD, the PHD and the SRA domain constitutes a pre-
requisite for H3K18 ubiquitination. These ubiquitinated
histone tails are recognized by the UIM and thus mediate
DNMTI chromatin binding. Thereby, UHRF1 acts as a
reader and writer of histone marks and via recruitment
of DNMT1 dynamically links DNA and histone modi-
fication pathways. Based on these results, we propose a
ubiquitination-dependent chromatin targeting mechanism
for DNMTT that is essential for maintenance DNA meth-
ylation after replication (Figure 8A). The identification
and functional characterization of a UIM in DNMT1 not
only changes our view of maintenance DNA methylation,
but also opens new perspectives for the involvement of
DNMT]1 in other repressive epigenetic pathways (Figure
&B).

Besides association with ubiquitinated H3, we found
that DNMTT1 also binds ubiquitinated H2AK119 (Figure
5C and Supplementary information, Figure S6C, S6D).
Consistently, DNMT1 was recently detected among pro-
teins binding to H2A ubiquitinated at K118 in Drosoph-
ila, corresponding to K119 in mammals [48]. H2AK119
ubiquitination is catalyzed by RINGI1A/1B, two compo-
nents of the Polycomb repressive complex 1 (PRC1), and
plays an important role in regulating gene expression [49].
Similar to UHRF1-dependent H3 ubiquitination, H2A
ubiquitination by RING1A/1B might also contribute to
DNA methylation. We speculate that UIM-mediated bind-
ing of DNMTT1 to ubiquitinated H2AK119 might direct
DNMTTI to un- or hemimethylated sites dependent on
PRCI1 ubiquitination activity (Figure 8B, left half).

PRC1-dependent H2A ubiquitination further leads to
PRC2 recruitment and subsequent H3K27 methylation
[50]. Enhancer of Zeste homolog 2 (EZH2), a compo-
nent of PRC2, writes methylated H3K27 and interacts
with DNMTs. This interaction was shown to be required
for DNA methylation of EZH2 target promoters [51].

DNMTI depletion in differentiated cells affects H2A
ubiquitination-dependent PRC2 recruitment at pericen-
tromeric heterochromatin [52]. Thus, UIM binding to
ubiquitinated H2A is likely DNA replication independent
and DNMT1 might function as adaptor protein mediating
PRC?2 recruitment and repressive Polycomb domain for-
mation.

Besides recruiting DNMT]1 to specific sites on chro-
matin, the UIM could also play a role in the allosteric
activation of the enzyme. The UIM is located within the
TS domain of DNMT]1 that had been shown to bind the
CD and thereby inhibit catalytic activity [10, 11]. It is
tempting to speculate that competitive UIM binding to
ubiquitinated histone tails displaces the TS domain from
the DNA binding pocket and abolishes autoinhibition of
DNMTT.

Given the emerging role of ubiquitination in DNA
methylation, it is interesting to notice that ubiquitination
is a highly dynamic post-translational modification that
can be reversed by ubiquitin-specific proteases (USPs).
The UHRF1-DNMT1 complex has been reported to con-
tain USP7 that deubiquitinates and stabilizes DNMT1 [29,
30]. Thus, USP7 might in addition modulate the ubiquiti-
nation status of histone H3 and thereby regulate DNMT1
association with chromatin. An alternative pathway con-
trolling DNMT1 chromatin association could involve
the recently described chromatin acetylation of H3K18
and K23 [53, 54]. Acetylated H3K18 is enriched at the
transcriptional start sites of active and poised genes [55].
Thus, H3K 18 acetylation might counteract ubiquitination
and thereby prevent binding and silencing of active genes
by DNMTI1. The dynamic interplay of ubiquitination and
acetylation of H3K18 likely controls DNMT1 chromatin
binding and thereby directs methylation activity. Studies
of UHRF1 and DNMT1 complex composition in differ-
ent cell cycle phases and cell types should provide further
insights into the fine-tuning of DNMT1 activity in vivo.

Given the complex role of the large TS domain on the
one hand and the scarce structural and mechanistic data
on the other hand, our identification of a well defined
UIM provides a concrete basis for functional insights.
Ubiquitin binding proteins with defined UIMs have been
described in various cellular processes like, e.g., sorting
of ubiquitinated membrane proteins for lysosomal deg-
radation. The crystal structure of the signal transducing
adaptor molecule 1 (STAM1) [56] suggests that three
central amino acids in the UIM, L176, A179 and S183
form a hydrophobic interface for ubiquitin binding [57].
Similar to the UIM in STAMI, the UIM in DNMT]1 also
harbors a conserved hydrophobic amino acid M385 and
S392 flanked by negatively charged amino acids (D381,
E382 and D395), which we found to be essential in our
analyses (Figures 5, 6 and 7). Different from other UIMs,
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Figure 7 GFP-DNMT1 UIM mutants show a decreased association with PCNA-stained replication sites in late S phase com-
pared with the wt. (A) Maximum intensity projections of MEF cells transiently expressing GFP-DNMT1 wt or UIM mutants.
Replicating DNA was stained with a specific anti-PCNA antibody and chromatin was counterstained with DAPI. Replication
foci masks (red) match the enrichment of GFP-DNMT1 wt in late S phase, whereas the UIM mutants do not show a focal
enrichment. Segmentations were generated in an automated fashion using a machine learning algorithm (WEKA). The nu-
clear mask outlined in blue was based on the DAPI staining, whereas the replication foci masks outlined in red were based
on the PCNA staining. Both masks were superimposed on the GFP channels. The GFP-DNMT1 signal inside the red masks
(chromocenters) relative to the remainder of the nucleus (nucleoplasm) was quantified. Scale bar, 5 um. (B) Quantification of
chromocenter association of GFP-DNMT1 wt or UIM mutants in late S phase J1 Dnmt1” ESCs. The ratio of the mean GFP
fluorescence intensity at chromocenters over the mean intensity in the nucleoplasm is shown in the box plot from 15 (wt), 16
(A356-404), 12 (D381A-E382A-S392A) or 18 (D381A-E382A-M385A-S392A-D395A) cells. The results were further analyzed
in R using a Wilcoxon test and considered as statistical significant for P < 0.05 (*) and P < 0.01 (**) or highly significant for P
< 0.001 (***). The following P values were calculated: A356-404: P = 0.049, D381A-E382A-S392A: P = 0.0016 and D381A-
E382A-M385A-S392A-D395A: P= 0.0056. (C) Quantification of chromocenter association of GFP-DNMT1 wt or UIM mutants
in late S phase MEF cells as in (B). Eleven (wt), 12 (A356-404, D381A-E382A-S392A) or 10 (D381A-E382A-M385A-S392A-
D395A) cells were analyzed. The following P values were calculated in R using a Wilcoxon test: A356-404: P = 0.00000148,
D381A-E382A-S392A: P = 0.00000148 and D381A-E382A-M385A-S392A-D395A: P = 0.0012.
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Figure 8 Overview of interactions and modifications controlling DNMT1 activity. (A) UHRF1 is enriched at H3 tails as a result
of the PHD-mediated binding to H3R2, the TTD-mediated binding to methylated H3K9 and recognition of hemimethylated
CpG sites via the SRA domain. By interaction of the SRA domain with the TS domain, DNMT1 is directly recruited to its target
sites. UHRF1 chromatin binding via its TTD, PHD and SRA domain is a prerequisite for subsequent H3 ubiquitination by the
RING domain. The UIM of DNMT1 binds to H3 tails ubiquitinated at K18 by UHRF1 and is essential for DNMT1 targeting and
DNA methylation in vivo. (B) The previously described direct interaction of DNMT1 with UHRF1 and PCNA is not sufficient for
maintenance DNA methylation. Besides the UHRF1-dependent H3K18 ubiquitination recruiting DNMT1 via its UIM for main-
tenance DNA methylation (right half), we propose an alternative pathway that involves H2AK119 ubiquitination by RING1A/1B
of PRC1 (left part). The identification of the DNMT1 UIM now opens the possibility that ubiquitination of histone tail residues
by ubiquitin E3 ligases might constitute alternative pathways for DNA methylation by DNMT1 CD beyond classic mainte-
nance. Blue hexagons represent a ubiquitin moiety.
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the central conserved A residue is not present in DNMT1
(Supplementary information, Figure S6A). Based on se-
quence alignments and structural information, UIMs can
be subdivided in single-sided single UIMs, as in STAMI,
and in single-sided tandem UIMs, as in the proteasome
subunit S5a [58] (Figure 5A). The tandem UIMs in S5a
provide a model for the recognition of polyubiquitin
chains [59]. In contrast, a double-sided single UIM in
the hepatocyte growth factor-regulated tyrosine kinase
substrate (HRS) allows for efficient binding of multiple
monoubiquitinated receptors in the process of endosomal
protein sorting [58]. Comparison with these known UIMs
suggests that the motif in DNMT]1 belongs to the group
of single-sided single UIMs, which would be compatible
with the recognition of single ubiquitinated histone tails.

In summary, the functional analysis of UHRF1 do-
mains and the identification of a UIM in DNMT]1 chal-
lenge traditional views of maintenance DNA methylation
as a simple copying mechanism. Instead, DNA methyl-
ation by DNMT1 requires reading of H3R2, H3K9me3
and hemimethylated DNA by UHRF1 and subsequent
ubiquitination of H3K18 by its RING domain thereby
integrating signals from different epigenetic pathways.
These multiple layers controlling DNMT1 activity
suggest that overall methylation densities in chromatin
domains are maintained rather than specific methylation
patterns precisely copied. The functional characteriza-
tion of the UIM further raises the possibility that other
ubiquitin E3 ligases like RING1A/1B of PRCI might
direct DNMTT activity to repressive chromatin domains
beyond simple maintenance.

Materials and Methods

Expression constructs and antibodies

Fusion constructs were generated using enhanced GFP, mo-
nomeric RFP or monomeric Ch. The expression constructs for
GFP, RFP-DNMT1, GFP-DNMT1 wt, GFP-DNMT1 A458-500,
GFP-DNMT1 309-628 (GFP-TS) and UHRF1-His have been
described previously [9, 29, 33, 60, 61]. GFP-TS A458-500,
GFP-DNMT1 A356-404 and GFP-DNMT1 point mutant (D381A-
E382A-S392A and D381A-E382A-M385A-S392A-D395A) ex-
pression constructs as well as UHRF1-GFP H346G and H730A
were derived from the corresponding wt constructs by overlap
extension PCR [62]. The GFP-UHRF1 single-domain construct
for the ubiquitin-like domain (Ubl) was generated by PCR using
the corresponding wt full-length construct. Ch-UHRF1 and GFP-
UHRF1 expression constructs have been described previously [22,
63]. Expression constructs for GFP-H3 R2A, K18A, K23A as well
as K18A-K23A were obtained by overlap extension PCR on the
corresponding wt construct. The construct for Lacl-GBP has been
reported before [36, 64, 65]. All constructs were verified by DNA
sequencing (MWG Biotech).

For immunofluorescence staining of heterochromatin, a mouse
anti-H3K9me3 and an anti-H4K20me3 antibody were used (Active
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Motif). Endogenous DNMT]1 was stained with the rat monoclonal
antibody 5A10 [4] and PCNA with the rat monoclonal antibody
16D10 [66]. As secondary antibodies an anti-mouse Alexa Fluor
594 and anti-rat Alexa Fluor 647 antibody were applied, respec-
tively (Invitrogen).

For detection of GFP fusion proteins by western blot, a mouse
anti-GFP (Roche) or a rat anti-GFP (Chromotek) antibody was
used. RFP or Ch fusion proteins were detected by the rat anti-red
antibody 5F8 [67]. UHRF1 was visualized by a rabbit anti-UHRF1
antibody [24] and HA-ubiquitin by the mouse monoclonal anti-HA
antibody 12CAS5. Equal loading of cell lysates was assessed by a
mouse anti-B-Actin antibody (Sigma-Aldrich). The rabbit anti-H3
antibody was purchased from Abcam and the anti-H2AK119ub
from New England Biolabs. Depending on the expected intensity
of the signals, secondary antibodies either conjugated to horserad-
ish peroxidase (anti-rabbit (Biorad), anti-rat and anti-mouse (Di-
anova)) or conjugated to fluorescent dyes (anti-mouse and anti-rat
Alexa Fluor 647 as well as anti-rat Alexa Fluor 488 (Invitrogen))
were applied. For detection of HRP-conjugated antibodies, an ECL
Plus reagent (GE Healthcare, Thermo Scientific) was used.

Cell culture, transfection and immunofluorescence staining

HEK 293T and BHK cells were cultured in DMEM supple-
mented with 10% fetal calf serum and 50 ng/ml gentamycine
(PAA). MEF cells were cultured in DMEM supplemented with
15% fetal calf serum, 0.1 mM B-mercaptoethanol (Invitrogen), 2
mM l-glutamine, 1x MEM non-essential amino acids, 100 U/ml
penicillin and 100 g/ml streptomycin (PAA). ESCs including J1
wt, Dnmtl”", E14 wt and Uhrﬂ*/* were cultured without feeder
cells in gelatinized flasks as described [33]. Culture medium was
supplemented with 1 000 U/ml recombinant leukemia inhibitory
factor (Millipore). The DnmtI”~ ESCs used in this study are ho-
mozygous for the c allele [68]. Mouse E14 wt and UhrfI " cells
have been reported before [61]. Mouse ESCs and MEF cells were
transfected with FuGENE HD (Roche), Lipofectamine® 2 000
or 3 000 reagent (Invitrogen) according to the manufacturer’s in-
structions. HEK 293T cells and BHK cells were transfected using
polyethylenimine as transfection reagent (Sigma) according to the
manufacturer’s instructions. Cell fixation and microscopy were
carried out as described [35].

Generation of stable ESC lines and DNA methylation anal-
yses

Forty-eight hours after expression of GFP-tagged constructs in
Dnmtl™" or Uhrfl”"~ ESCs, GFP-positive mouse ESCs were sepa-
rated using a fluorescence-activated cell sorting (FACS) Aria Il in-
strument (Becton Dikinson). Stably expressing cells were expand-
ed in selection medium containing 10 pg/ml blasticidin (GFP-DN-
MT1 wt and GFP-DNMT1 A458-500) or 500 ng/ml puromycin
(UHRF1-GFP wt, H346G and H730A) and GFP-positive cells
were FACS sorted a second time. Furthermore, the UHRF1-GFP
wt, H346G and H730A cell lines were single-cell sorted. Single
clones of GFP-DNMT1 A458-500 and corresponding wt [29] were
picked manually. For all cell lines, clones with low expression
levels were chosen for further analyses. The level and the accuracy
of the expressed GFP fusion constructs were checked by western
blot analyses (Figure 3A and Supplementary information, Figures
S1B and S3D). For functional analyses of GFP-DNMT1 wt and
GFP-DNMT1 UIM mutants (A356-404, D381A-E382A-S392A
and D381A-E382A-M385A-S392A-D395A) as well as UHRF1-
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GFP wt or UHRF1-GFP point mutants (H346G and H730A) by
transient rescue assays, 48 h after expression of these proteins in
Dnmtl™” or Uhrfl”~ ESCs, respectively, GFP-positive cells were
collected with FACS. Genomic DNA isolation, bisulfite conver-
sion and PCR conditions were described before [6, 60, 69]. Primer
sets used for amplification of minor satellites, major satellites,
skeletal a-actin and the Dnmtlo promoter are listed in Supplemen-
tary information, Table S1. All PCR products were analyzed by
pyrosequencing (Varionostic), which results in a quantitative data
set for individual CpG sites [70].

Co-immunoprecipitation and western blotting

For co-immunoprecipitation assays, the GFP and RFP, Ch or
His fusion constructs were co-expressed in HEK 293T cells and
protein extracts were normalized to the same GFP or RFP con-
centration prior to co-immunoprecipitation with the GFP-Trap or
RFP-Trap (Chromotek). Bound fractions were first detected by
fluorescence intensity measurements and second by western blot
analyses.

Acid extraction and TCA precipitation of histones

Histones were isolated by acid extraction as reported previous-
ly [71]. In brief, 10" mouse ESCs or HEK 293T cells were treated
in hypotonic buffer (10 mM Tris-HCI pH 8, 10 mM KCI, 1.5 mM
MgCl,, 1 mM DTT and 1x Protease Inhibitor, 2 mM PMSF) for
30 min and centrifuged at 1 000x g at 4 °C to get the intact nuclei.
After washing steps, nuclei were resuspended in 0.4 N H,SO,
and incubated on a rotator at 4 °C overnight. After centrifugation,
histones in the supernatant were transferred into a fresh reaction
tube and precipitated using 33% trichloroacetic acid (TCA). After
washing twice with cold acetone, histones were dissolved in H,O.
Histone concentrations were measured using the Pierce™ 660 nm
protein assay kit (Thermo Scientific).

Ubiquitinated histone binding experiment

For ubiquitinated histone binding experiment, acid extracted
histones from HEK 293T cells were used. GFP-DNMT]1 and its
mutants were immobilized on the GFP-Trap (Chromotek) and in-
cubated with equal amounts of acid extracted histones for 30 min
at 4 °C. After washing steps, the bound fractions were analyzed by
western blot.

Due to unspecific binding of histones to the eppendorf tubes,
we used eppendorf tubes with low binding affinity during mass
spectrometry sample preparation.

Immunoprecipitation of ubiquitinated GFP-H3

GFP-H3 wt and R2A mutant constructs were co-expressed in
HEK 293T cells with UHRF1-His and harvested after treatment
with 2 mM N-ethylmaleimide (NEM, AppliChem) for 5 min. Ly-
sates were prepared by firstly isolating nuclei in hypotonic buffer
(10 mM HEPES pH 7.9, 10 mM KCl, 0.1 mM MgCl,, 10% glyc-
erol, 0.1 mM EDTA, 0.1 mM DTT, 1x protease inhibitor, 2 mM
PMSF, 0.1% NP-40, 0.625 mg/ml NEM) and secondly by lysis of
the nuclei in hypertonic buffer (20 mM HEPES pH 7.9, 150 mM
KCI, 1.5 mM MgCl,, 10% glycerol, 0.1 mM EDTA, 1 mM DTT,
1% protease inhibitor, 2 mM PMSF, 1 mg/ml Dnasel (AppliChem),
0.625 mg/ml NEM). Prior to immunoprecipitation, the GFP con-
centration was equalized using lysates from UHRF1-His trans-
fected HEK 293T cells for dilution. After immunoprecipitation of
GFP-H3 with the GFP-Trap (Chromotek) and washing (20 mM

HEPES pH 7.9, 300 mM KCl, 10% glycerol, 0.1% Triton X-100),
the bound fraction was analyzed by western blot.

For semiquantitative analysis of the GFP-H3 wt or K18A,
K23A, KI18A-K23A and R2A ubiquitination, the GFP fusion con-
structs were co-expressed with HA-ubiquitin in HEK 293T cells
and 2 days after transfection, the cells were harvested as described
above and further processed as reported previously [29].

F3H assay and trapping assay

The F3H assay was performed as described previously [65]. In
the trapping assay, mouse ESCs stably expressing GFP-DNMT1
wt or A458-500 were cultured in Ibidi chambers and incubated
with 10 uM of the cytosine analogue 5-aza-2'-deoxycytidine (Sig-
ma). Images were acquired with a UltraVIEW VoX spinning disc
microscope (PerkinElmer) assembled to an Axio Observer D1 in-
verted stand (Zeiss) and using a 63%/1.4 NA Plan-Apochromat oil
immersion objective.

In vitro peptide pull-down assay

The peptide pull-down assay from nuclear cell extracts of HEK
293T cells expressing UHRF1-GFP fusion constructs was per-
formed as described [72] with the following modifications. C-ter-
minally biotinylated histone peptides were purchased from PSL
and are listed in Supplementary information, Table S2. Streptactin
beads (Iba) were used for the immobilization of biotinylated pep-
tides in binding buffer (10 mM Tris-HCI, pH 7.5, 300 mM NacCl,
0.5 mM EDTA, 1 mM DTT). After the binding reaction, beads
were washed four times with wash buffer (20 mM HEPES pH 7.9,
20% glycerol, 0.2 mM EDTA, 300 mM KCl, 0.1% Triton X-100).
Bound fractions were eluted by boiling in 2x Laemmli sample
buffer and analyzed by western blot.

Mass spectrometry

The gel was stained with Coomassie and H3 bands were manu-
ally excised, propionylated and digested with trypsin as described
before [73] with minor modifications. For peptide extraction, gel
slices were incubated twice with 50 ul of 50% acetonitrile 0.25%
TFA and twice more with 50 pl of acetonitrile. The resulting liquid
containing the digested peptides was totally evaporated, redis-
solved with 15 pl of 0.1% formic acid and stored at =20 °C until
further processing.

Tryptic peptides were injected (5 pl) in an Ultimate 3 000
HPLC system (LC Packings Dionex). Samples were desalted on-
line in a C18 microcolumn (300 m i.d. x 5 mm, packed with C18
PepMap™, 5 um, 100 A by LC Packings), and peptides were sep-
arated with a gradient from 5% to 60% acetonitrile in 0.1% formic
acid over 40 min at 300 nl/min on a C18 analytical column (75
pm i.d. x 15 cm, packed with C18 PepMap™, 3 um, 100 A by LC
Packings).

The effluent from the HPLC was directly electrosprayed into
a linear trap quadrupole-Orbitrap XL mass spectrometer (Thermo
Fisher Scientific). The MS instrument was operated in data-de-
pendent mode. Survey full-scan MS spectra (from m/z 300-2 000)
were acquired in the Orbitrap with resolution R = 60 000 at m/z 400
(after accumulation to a “target value” of 500 000 in the linear ion
trap). The six most intense peptide ions with charge states between
two and four were sequentially isolated to a target value of 10 000
and fragmented by collision-induced dissociation and recorded in
the linear ion trap. For all measurements with the Orbitrap detec-
tor, three lock-mass ions were used for internal calibration [74].
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Typical MS conditions were spray voltage, 1.5 kV; no sheath and
auxiliary gas flow; heated capillary temperature, 200 °C; normal-
ized collision-induced dissociation energy 35%; activation ¢ = 0.25;
and activation time = 30 ms.

Mascot 2.3.02 was used for protein identification with the fol-
lowing settings: Database: Swissprot 57.7; Taxonomy: Homo sa-
piens (human); MS tolerance: 10 ppm; MS/MS tolerance: 0.5 Da;
peptide FDR: 0.1; protein FDR: 0.01; minimum peptide length: 5;
and variable modifications: propionyl (K, N-term), GlyGly (K).

Quantification of modified H3 18-26 peptides was based on the
intensities of the MS1 peaks. The spectra depicted in Figure 4A
and 4B were used to determine the exact masses (m/z = 10 ppm)
and used as a reference for further quantification.

Quantitative analysis of DNMT1 subnuclear localization

During late S phase, DNMTT1 is enriched in replication foci at
chromocenters. In order to quantify the subnuclear distribution of
GFP-DNMT1 wt and defined UIM mutants the following proce-
dure was used: confocal z-stacks (0.21 um interval) were acquired
with identical scan settings in three color channels to visualize
replication foci (anti-PCNA staining, 594 nm excitation), DNMT1
localization (GFP-DNMT1 fusions enhanced with GFP-booster
(Chromotek), 488 nm excitation) and DNA counterstaining (DAPI,
405 nm excitation). For each color channel, maximum intensity
projections were calculated and only GFP-expressing cells were
analyzed. Segmentation of replication foci or whole nuclei was
performed with the Weka segmentation plugin [75] in Fiji [76].
Training of the classifier was finalized until the result matched the
visual impression (Figure 7A). Due to variations in ESC samples,
replication foci were segmented using different classifiers for wt
or the different UIM mutants. In contrast, for all somatic cells,
one classifier was sufficient to segment replication foci. Whole
nuclei were segmented by a classifier based on the DAPI signal.
After Weka segmentation, the resulting binary masks were filtered
using the particle analyzer of Fiji with a circularity value > 0.25.
To select for cells in late S phase, only replication foci > 150 pixel
where further analyzed in the ESC samples. In MEF cell samples,
only late S phase cells were imaged and analyzed without applying
size exclusion for replication foci. Nuclear masks (size > 3 000 pix-
el) were used to quantify the total amount of GFP fusion protein in
a single nucleus. Nuclei were further subsegmented by replication
foci masks. For each nucleus, the ratio between the mean GFP
signals in replication foci relative to the mean GFP signal outside
the foci was calculated. Raw data were corrected for background
signals by subtracting the modal grey value. Ratios from all nuclei
expressing GFP-DNMT1 wt or UIM mutants were visualized as
box plots. Numerical calculations and statistical analysis were per-
formed with R [77].

Statistical analysis

Results were expressed as mean values = SD or as mean values
+ SEM from the number of biological replicates indicated in the
corresponding figure legend.
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Supplementary information, Data S1
Materials and methods

Antibodies
For detection of (GFP-)DNMT1 by western blot, a mouse anti-DNMT1 antibody (pATHS2 [1, 2]) was used.
Equal loading was confirmed by immunoblotting with a specific anti-Lamin B1 (Abcam) or anti-B-Actin (Sigma)

antibody. The rabbit anti-H2 A antibody was purchased from Millipore.

In vitro DNA methylation assay

For analyses of in vitro DNA methylation activity, GFP-DNMT1 was purified by immunoprecipitation from
HEK 293T extracts. The concentration of GFP-DNMT1 in the bound fractions was measured by fluorescent read
out. In order to get enough unmodified DNA templates, the 601 DNA sequences were amplified with the primers:
TGCATGTATTGAACAG (forward) and TGCACAGGATGTATATATC (reverse). 3 pg of GFP-DNMT1 were
incubated with 88 ng of DNA template in methylation buffer containing 160 uM SAM and 100 ng/ul BSA at
37°C for 3 hours. After inactivation of the reaction at 65°C for 30 min, the DNA was isolated with a Nucleospin
PCR cleaning kit (Macherey-Nagel) and bisulfite treated with EZ DNA Methylation-Gold Kit (Zymo research).
Primer sequences for the 601 DNA were TGTATGTATTGAATAG (forward primer) and
TACACAAAATATATATATC (reverse primer). For amplification we used Qiagen Hot Start Polymerase in 1x
Qiagen Hot Start Polymerase buffer supplemented with 0.2 mM dNTPs, 0.2 uM forward primer, 0.2 uM reverse
primer, 1.3 mM Betaine (Sigma) and 60 mM Tetramethylammonium-chloride (TMAC, Sigma). Pyrosequencing

reactions were carried out by Varionostic GmbH (Ulm).

Preparation of hemimethylated DNA substrates

To prepare the hemimethylated DNA, an efficient method for long heteroduplex DNA was used as described
[3]. One pair of modified PCR primers were synthesized, which are labeled with phosphate at 5’-end, 5°-
phosphorylated-TGCATGTATTGAACAG-3’ and 5’-phosphorylated-TGCACAGGATGTATATATC-3’. To get
single and upper strand DNA, the DNA was amplified with the reverse primer labeled with phosphate at the 5°-
end, following a lambda-nuclease digestion (NEB). The same procedure is required for making lower strand
DNA. To prepare the methylated lower strand DNA, one more step, in vitro methylation by bacterial
methyltransferase M.SsslI (NEB), is required before treatment with the lambda-nuclease. In the end, equal
amounts of upper and lower strand DNA were mixed and incubated at 95°C for 5 min, followed by annealing.
To get rid of contamination from double strand DNA after lambda-nuclease treatment, the hydroxyapatite
chromatography was carried out. Hydroxyapatite column (Sigma) was packed according to the manufacturer’s

instructions and the single stranded DNA was eluted by elution buffer containing 150 mM sodium phosphate.

In vitro DNA binding assays

In vitro DNA binding assays were performed as described previously [4]. Briefly, two double stranded DNA
oligonucleotides labeled with different ATTO fluorophores were used as substrates in direct competition. DNA
oligonucleotide substrates with identical sequence contained an unmodified or hemimethylated cytosine at a
single, central CpG site (UMB: unmethylated binding substrate, ATTO550; HMB: hemimethylated binding
substrates, ATTO647N; Supplementary Table S3). GFP fusion proteins were expressed in HEK 293T cells and
immunoprecipitated using the GFP-Trap (Chromotek). Immobilized UHRF1-GFP wt and mutants were washed
three times before incubation with DNA substrates at a final concentration of 160 nM each. After removal of
unbound substrates, protein amounts (GFP fluorescence) and bound DNA were measured with an Infinite

M1000 plate reader (Tecan).



In vivo autoubiquitination assay

The in vivo autoubiquitination assay of UHRF1-GFP was performed as described before [5]. The resulting
ubiquitination levels were detected with a specific mouse monoclonal anti-HA antibody (12CAS) and quantified
using Image J and a statistical Student’s t-test analysis. Equal amounts of (UHRF1-)GFP in the bound fraction

were verified by immunoblotting with a specific anti-GFP antibody (Chromotek).

Slot blot analysis

To quantify global DNA methylation levels, the Bio-Rad slot blot system was used according to the
manufacturer’s instruction. Prior to loading on a Nitrocellulose membrane (Amersham), genomic DNA was
denatured in 6x SSC buffer for 10 min at 95°C and incubated for 10 min on ice. The membrane was crosslinked,
blocked with 5% milk and immunostained with specific rabbit anti-ssDNA (Eurogentec) and mouse anti-SmC

(IBL) antibodies. Quantification was performed using the Imagel gel analysis tool.

In vitro histone tail peptide binding assay

The in vitro histone tail peptide binding assay was performed as described before [6] with the following
modification. GFP fusion proteins were equalized to a GFP concentration of 130 nM prior to
immunoprecipitation with the GFP-Trap. The TAMRA-labeled H3 peptides used in this assay are listed in
Supplementary Table S2.

Ubiquitinated histone H3 binding experiment

For ubiquitinated H3 binding experiment, HEK 293T cells were incubated with 2 mM N-Ethylmaleimide
(NEM, AppliChem) for 10 min before harvesting and were treated in hypotonic buffer (10 mM Tris-HCI pH 8,
10 mM KCIl, 1.5 mM MgCl,, 1 mM DTT and 1x Protease Inhibitor, 2 mM PMSF) for 10 min on ice to isolate
the intact nuclei. Nuclei resuspended in MNase digestion buffer (10 mM Tris-HCIL, pH 7.4, 10 mM NaCl, 3 mM
CaCl,, 0.1% NP-40, 1x Protease Inhibitor (Serva), 2 mM PMSF) were digested with 40 U/ml MNase at 37°C for
5 min to get mononucleosomes.
GFP-DNMTI1 and its mutants were immobilized on the GFP-Trap and incubated with equal amount of

mononucleosomes for 2 hours. After washing steps, the bound fractions were analyzed by western blot.
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Supplementary information, Figure S1 GFP-DNMT1 carrying a deletion of amino acids 458-500 in the TS domain is still
active in vitro, but inactive in vivo. (A) Schematic outline of DNMT1 domains and the TS domain deletion (A458-500). The deleted
region comprises a conserved core of the TS domain showing high sequence similarities among higher eukaryotes. The alignment
was generated using ESPript [7]. (B) Expression levels of GFP-DNMT1 wt (clones #5 and #15) and the TS domain deletion mutant
(A458-500, clones #1 and #9) in stable ESC lines were compared to the endogenous DNMT]1 level in J1 wt cells. Lamin B1 is shown
as loading control. DNMT1 was detected with a specific anti-DNMT1 antibody. (C) In vitro methylation assay of GFP-DNMT1 wt
and A458-500 mutant using unmodified or hemimethylated DNA as a substrate. (D) Local DNA methylation analyses at minor
satellite repeats and the Dnmtlo promoter. CpG methylation levels of mouse J1 Dnm¢1”" ESCs stably expressing GFP-DNMT1 wt or
A458-500 mutant constructs were analyzed by bisulfite treatment of genomic DNA, PCR amplification and direct pyrosequencing.

The methylation level of the J1 wt cell line (endogenous DNMT1) and untransfected J1 Dnmtl
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Displayed are mean values + SD from two different clones.
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cells are shown for comparison.
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Supplementary information, Figure S2 The UHRFI-GFP PHD and RING domain mutants preserve their preference for
hemimethylated DNA and their heterochromatin association, but cannot recruit endogenous DNMT1 to heterochromatin. (A)
Primary sequence alignment of mouse and human UHRF1 and UHRF?2 at regions of the PHD and RING domain, respectively. Note
that the mutations affect conserved amino acids contributing to the coordination of zinc (Zn) ions. (B) /n vitro DNA binding assay.
The binding of immunoprecipitated UHRF1-GFP wt or PHD (H346G) and RING domain (H730A) mutants to either un- (UMB) or
hemimethylated (HMB) fluorescently labeled double stranded oligonucleotide probes was tested in direct competition. Shown are
mean fluorescence intensity ratios of bound probe over bound GFP fusion of three independent experiments + SD. GFP was used as
negative control. (C) In vivo autoubiquitination assay of UHRF1-GFP. Wt or PHD and RING domain mutant constructs were
transiently co-expressed with HA-ubiquitin in HEK 293T cells and UHRF1-GFP was immunoprecipitated using the GFP-Trap.
Ubiquitination levels were detected by immunoblotting with an anti-HA antibody and bound fractions were verified with a specific
anti-GFP antibody. GFP was used as negative control. I, input; B, bound. One representative blot of three independent replicates is

depicted. (D) Quantification of the in vivo autoubiquitination activity of UHRFI-GFP wt or PHD and RING domain mutant



constructs depicted in (C). Shown are mean values + SD of three independent biological replicates analyzed using Imagel and
normalized to the ubiquitination level of the UHRF1-GFP wt construct. Differences between the UHRF1-GFP wt or PHD mutant
and the RING domain mutant were analyzed using a Student’s t-test and considered statistically significant for P < 0.01 (**) and
highly significant for P <0.001 (***). (E) and (F) Confocal mid sections of fixed E14 Uhrfl “ ESCs stably expressing UHRF1-GFP
wt or PHD (H346G) and RING domain (H730A) mutant constructs. (E) H3K9me3 and H4K20me3 were stained with specific
antibodies as markers for heterochromatin and DNA was counterstained with DAPI. Scale bar, 5 um. (F) Endogenous DNMTT1 in
ESCs stably expressing UHRF1-GFP wt or its PHD and RING domain mutants was stained by a specific antibody and DNA was
counterstained with DAPI. Scale bar, 10 pm.
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Supplementary information, Figure S3 The UHRFI1-GFP PHD and RING domain mutants cannot mediate DNA remethylation in
mouse E14 Uhrﬂ’/ " ESCs. (A) Local DNA methylation analyses at minor satellite repeats and the Dnmtlo promoter. CpG methylation
levels of mouse E14 Uhrfl  ESCs stably expressing UHRF1-GFP wt or PHD (H346G) and RING domain (H730A) mutant constructs
were analyzed by bisulfite treatment of genomic DNA, PCR amplification and direct pyrosequencing. The methylation level of E14 wt
ESCs (endogenous UHRF1) and untransfected E14 Uhrfl “ cells are shown for comparison. Mean values + SD from two different clones
were calculated. (B) and (C) Global DNA methylation analysis of stable UHRF1-GFP wt or PHD and RING domain mutant cell lines
compared to E14 wt ESCs expressing endogenous UHRF1 and E14 UhrfI”" ESCs. (B) Slot blot analysis using a dilution series of genomic
DNA and immunodetection with specific anti-single stranded (ss) DNA and anti-5-methylcytosine (SmC) antibodies. A representative slot
blot of technical duplicates is shown. (C) The 5SmC signals relative to the signals of ssDNA were quantified using the Imagel gel analysis
tool. Relative global DNA methylation levels are indicated as mean values + SD of technical duplicates. (D) Expression analysis of
UHRF1-GFP wt or PHD and RING domain mutants after transient transfection in E14 UhrfI”" ESCs and FACS sorting. Fusion proteins
were detected with a specific anti-GFP antibody and B-Actin serves as a loading control. (E) Local DNA methylation analyses of E14
UhrfI" ESCs transiently expressing GFP-UHRF1 wt or PHD (H346G) and RING domain (H730A) mutant constructs. CpG methylation
levels at the major satellite repeats were analyzed by bisulfite treatment of genomic DNA, PCR amplification and direct pyrosequencing.

Shown are mean values + SD from three independent experiments normalized to the value of UHRF1-GFP wt at the first CpG site.
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Supplementary information, Figure S4 Histone H3 binding by UHRF1-GFP is sensitive to R2 methylation. Fluorescent in
vitro histone tail peptide binding assay of UHRFI-GFP using TAMRA labeled H3 tails carrying no modification (H3), an
asymmetrically dimethylated arginine 2 (H3R2me2) or a trimethylated lysine 9 (H3K9me3). Shown are mean values of the relative
binding ratio of histone tail peptides over GFP fusion proteins from five independent experiments = SEM. GFP was used as negative

control.
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Supplementary information, Figure S5 H3 histone tail ubiquitination and dependence on R2. (A) After expression of UHRF1-
GFP and HA-Ubiquitin in HEK 293T cells, acid extracted ubiquitinated histones were immunoprecipitated with an anti-HA antibody
and analyzed by mass spectrometry. The Collision-induced dissociation (CID) MS/MS spectrum of the histone H3 18-26 peptide
shows ubiquitination (GG) at the K18 residue and no modification (Pr) at the K23 residue. Detailed information is provided in the
method section. (B) Mapping and quantification of UHRF1 ubiquitination target sites in H3 N-terminal tails and dependence of the
ubiquitination on R2. GFP-H3 constructs carrying R2A, K18A, K23A or K18A-K23A mutations were transiently co-expressed in
HEK 293T cells with HA-ubiquitin and after immunoprecipitation with the GFP-Trap, ubiquitinated GFP-H3 was detected by
western blot with an anti-HA antibody. Equal loading of GFP-H3 is shown by the anti-GFP blot below. I, input; B, bound.

Quantifications were performed with ImageJ. Shown are mean values + SEM of four to five independent experiments.
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Supplementary information, Figure S6 DNMT1 UIM deletion and point mutants are defective in ubiquitinated H3 binding. (A)
Primary sequence alignment of the ubiquitin interacting motif (UIM) in the TS domain of DNMT1 from different species. The
consensus sequence for single-sided UIMs [8] and the UIM mutations used in this study (D381A-E382A-S392A, D381A-E382A-
M385A-S392A-D395A) are indicated. (B) Ubiquitinated histone H3 binding assay. After extraction of mononucleosomes from HEK
293T cells, the extracts were incubated with GFP-DNMT1 wt or mutants immobilized on the GFP-Trap and the bound fractions
were analyzed with specific anti-H3, anti-ubiquitin and anti-GFP antibodies. (C) Characterization of the anti-H2AK119ub antibody
(New England Biolabs) in comparison to the antibody against non ubiquitinated H2A (Millipore) by immunoblotting. 2.5 or 5 pg of
acid extracted histones were loaded to analyze the specificity of the antibodies. H2Aubl, monoubiquitinated H2A; H2Aub2,
diubiquitinated H2A. (D) Identification of the H2A 101-120 peptide carrying ubiquitination (GG) on K119 by LC-MS/MS. The
sample was prepared by excision of a band from acid extracted histones corresponding to H2Aub1 in the immunoblot from (C). MS2
fragmentation spectrum of the precursor ion is shown in the inset. The displayed b and y ion series generated by CID fragmentation
of the H2A 101-120 peptide modified with GG on K119 provided highly confident identification and post translational modification
localization. Inset: mass, charge and measurement error determination of the H2A peptide of interest. Displayed is the isotopic
distribution of the H2A peptide from which the mass-to-charge ratio (m/z) and the charge (2+) were obtained. Am: difference

between the expected and the measured masses, R: resolution of the MS measurement.
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Supplementary information, Figure S7 DNMTI1 UIM deletion and point mutants still interacting with UHRFI, affect
maintenance DNA methylation. (A) Local DNA methylation analyses of Dnmtl”” ESCs transiently expressing GFP-DNMT1 wt or
A356-404 and UIM point mutants (D381A-E382A-S392A, D381A-E382A-M385A-S392A-D395A). CpG methylation levels at the
minor satellite repeats and the Dnmtlo promoter were analyzed by bisulfite treatment of genomic DNA, PCR amplification and
direct pyrosequencing. Methylation levels of untransfected J1 Dnmtl “ cells are shown for comparison. Mean values + SD of two to
four independent experiments were calculated. (B) Co-immunoprecipitation assay of GFP-TS and Ch-UHRF!1 in vitro. GFP-
DNMTI TS domain wt or UIM mutants were co-expressed with Ch-UHRF1 and after co-immunoprecipitation using the GFP-Trap,
the bound fractions were detected by western blot with specific antibodies against GFP and Ch. GFP was used as negative control. I,

input; B, bound.
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Supplementary information, Figure S8 DNMT! UIM mutants show only weak association with PCNA-stained replication
sites especially in late S phase. Confocal mid sections of GFP-DNMT1 wt or A356-404 and UIM point mutants (D381A-E382A-
S392A, D381A-E382A-M385A-S392A-D395A) transiently expressed in J1 Dnmtl” ESCs with respect to replicating DNA stained
with a specific anti-PCNA antibody. Chromatin was counterstained with DAPI. Scale bar, 5 pm.



Supplementary information, Table S1 PCR primers for bisulfite PCR and pyrosequencing.

Name

Sequence

F-major satellites

5" AAAATGAGAAATATTTATTTG 3’

R-major satellites biotinylated

5’ GAGAAATATATACTTTAGGA 3’

F-outer skeletal a-actin

5" AGTTGGGGATATTTTTTATA 3°

R-outer skeletal a-actin

5" TGGGAAGGGTAGTAATATTT 3’

F-inner skeletal a-actin

5’ TTTTGGTTAGTGTAGGAGAT 3’

R-inner skeletal a-actin biotinylated

5" TGGGAAGGGTAGTAATATTT 3’

F-Dnmtlo-2-1

5" GTTGTTTTTTGGTTTTTGTGGGTAT 3’

R-outer Dnmtlo-2-2

5" CAACCTTAACAACACAACTAAAATA 3°

R-inner Dnmtlo0-2-3 biotinylated

5" CAACTATACACTATCAAATAACCTA 3

F-minor satellites

5’ TAATGAGTTATAATGAGAAA 3°

R-minor satellites biotinylated

5" ATATACACTATTCTACAAAT 3’




Supplementary information, Table S2 Sequence of histone H3 1-20 peptides used for the histone peptide pull-down and
histone peptide binding assays. X3, trimethylated lysine; Z, acetylated lysine; X2a, asymmetrically dimethylated arginine.

Name Sequence Label

H3 ARTKQTARKSTGGKAPRKQLK

H3K9me3 ARTKQTARX3STGGKAPRKQLK Biotin at C-terminus
H3K9ac ARTKQTARZSTGGKAPRKQLK

H3 ARTKQTARKSTGGKAPRKQLK

H3K9me3 ARTKQTARX3STGGKAPRKQLK TAMRA at C-terminus
H3R2me2 AX2aTKQTARKSTGGKAPRKQLK




Supplementary information, Table S3 DNA oligonucleotides used for the preparation of double stranded probes for in vitro

DNA binding assays with the primer extension reaction. M, 5-methylcytosine.

Oligo name DNA sequence

CG-up 5’ CTCAACAACTAACTACCATCCGGACCAGAAGAGTCATCATGG 3’
MG-up 5 CTCAACAACTAACTACCATCMGGACCAGAAGAGTCATCATGG 3’
Fill-In-550 5" ATTOS550-CCATGATGACTCTTCTGGTC 3’

Fill-In-647N 5" ATTO647N-CCATGATGACTCTTCTGGTC 3’

Substrate Combination of oligos in the primer extension reaction

UMB-550 CG-up + Fill-In-550

HMB-647N MG-up + Fill-In-647N
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2.7 Mutations of the DNMT1 TS domain found in HSAN-IE patients disrupt
interaction with UHRF1, affect subnuclear targeting and lead to cell cycle-

dependent destabilization
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ABSTRACT

Among the writers of epigenetic marks, DNMT1 is the key enzyme responsible for maintaining DNA
methylation after replication. PCNA and UHRF1 are important binding partners of DNMT1 recruiting the
enzyme to its substrate. Remarkably, the TS domain known to target DNMT1 to pericentromeric
heterochromatin is affected by various mutations in HSAN-IE and ADCA-DN patients. The disease
mechanisms and its molecular basis, however, remain elusive. We performed functional assays using two
HSAN-IE associated DNMT1 TS mutants and found a reduced methylation activity in mouse ESCs.
Importantly, the TS domain-mediated interaction with UHRF1 was diminished and mutant DNMT1 was not
properly recruited to late replicating chromatin. Similarly, DNA methylation defects were observed, when
the DNMT1 interacting domains in UHRF1, the Ubl and the SRA domain, were deleted. In addition, we
found that HSAN-IE associated DNMT1 mutants showed faster protein kinetics and decreased protein
stability, especially in late S and G2 phase. This study provides strong evidence for a central importance of
the TS domain in regulating DNA methylation by DNMT1 and contributes to understanding the molecular
basis for methylation defects observed in HSAN-IE patients.
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INTRODUCTION

Epigenetic mechanisms are crucial for the regulation of gene expression during development and
differentiation. Tissue-specific DNA methylation patterns established during development are faithfully
propagated to future somatic cell generations by the action of the DNA methyltransferase 1 (DNMT1) (Bird
2002). After replication, DNMT1 copies DNA methylation marks in a CpG context from the mother strand
to the daughter strand by catalytic activity of its C-terminal domain (CTD). The complex regulation of
enzyme targeting and activation is, however, mediated by the N-terminal domain (NTD) harboring distinct
subdomains. The association of DNMT1 with replication sites relies on binding of the proliferating cell
nuclear antigen (PCNA) binding domain (PBD) to PCNA (Leonhardt et al. 1992; Chuang et al. 1997;
Rountree et al. 2000). Accordingly, DNMT1 shows a cell cycle-dependent localization in mouse nuclei
(Leonhardt et al. 1992). In late S phase, when constitutive heterochromatin like the major satellite repeats
is replicated, DNMT1 is clearly enriched at chromocenters. Heterochromatin binding during G2 is
mediated by the targeting sequence (TS) domain independently from DNA replication probably ensuring a
thorough propagation of DNA methylation patterns to the progeny (Easwaran et al. 2004). DNMT1
interacts with ubiquitin-like, containing PHD and RING finger domains 1 (UHRF1, also known as 95-kDa
mouse nuclear protein (Np95)), an important cofactor of maintenance DNA methylation that targets
DNMT1 to its substrate consisting of hemimethylated CpG sites (Bostick et al. 2007). Interaction with
DNMT1 has been reported to be mediated by the SET and RING-associated (SRA) domain of UHRF1
(Achour et al. 2008; Felle et al. 2011). UHRF1 also binds to hemimethylated DNA via its SRA domain
(Bostick et al. 2007; Sharif et al. 2007; Arita et al. 2008; Avvakumov et al. 2008; Qian et al. 2008) and to
methylated histone H3K9 via its tandem Tudor domain (TTD) and plant homeodomain (PHD) (Citterio et al.
2004; Karagianni et al. 2008; Rottach et al. 2010; Cheng et al. 2013). By collaborative readout of
methylated histones and hemimethylated DNA, UHRF1 serves as a bridge between chromatin and DNMT1
in order to regulate methylation of the newly synthesized strand after replication (Liu et al. 2013). Besides
recruitment of DNMT1 to its target sites by intermolecular protein-protein binding, also changes in
intramolecular interactions serve as a prerequisite for DNMT1 enzymatic activity. Firstly, in complex with
unmethylated DNA, the linker between the zinc finger (CXXC) domain and the bromo-adjacent homology
domain 1 (BAH1) blocks the access of DNA to the catalytic center (Song et al. 2011b). Secondly, the crystal
structure of a longer fragment of DNMT1 reveals that in absence of DNA the TS domain is anchored in the
DNA binding pocket of the C-terminal domain (Takeshita et al. 2011). Thus, these two autoinhibitory
mechanisms have to be overcome by structural changes resulting in the activation of the enzyme.

Besides enzyme targeting and activation, DNMT1 stability also contributes to the regulation of
maintenance DNA methylation. Abundance of DNMT1 during the cell cycle is governed by coordinated
action of its stabilizer ubiquitin-specific peptidase 7 (USP7, also known as herpes virus associated
ubiquitin-specific protease (HAUSP)) and the destabilizer UHRF1. USP7 has been shown to deubiquitinate
DNMT1 leading to protection from proteasomal degradation (Du et al. 2010; Qin et al. 2011). DNMT1 is
further stabilized by deacetylation mediated by the histone deacetylase 1 (HDAC1) (Du et al. 2010). On the
contrary, UHRF1 ubiquitinates DNMT1 thereby marking it for proteasomal degradation, a process that is
driven by Tip60-mediated acetylation of DNMT1 (Du et al. 2010).

Although the role of maintenance DNA methylation is coupled to replication in mitotic cells, DNMT1 is

highly expressed in embryonic and adult neurons, especially in the central nervous system (CNS) (Goto et
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al. 1994). DNA methylation has been implicated in neurogenesis contributing to learning and memory
formation (Yu et al. 2011). Recently, several studies have described the identification of DNMT1 mutations
in patients suffering from hereditary sensory and autonomic neuropathies with dementia and hearing loss
(HSAN-IE) and autosomal dominant cerebellar ataxia deafness and narcolepsy (ADCA-DN) (Klein et al.
2011; Winkelmann et al. 2012; Gosal et al. 2013; Pedroso et al. 2013; Yuan et al. 2013; Moghadam et al.
2014a). The disease phenotypes are characterized by late-onset progressive neurologic disorders including
the CNS and the peripheral nervous system (PNS) (Klein et al. 2013). Strikingly, solely the TS domain is
affected by (neurodegenerative diseases associated) mutations indicating its important role in enzyme
regulation. However, the molecular basis underlying the disease mechanism is far from being understood.
In this study, we elucidate the functional relevance of the TS domain for regulation of DNMT1. By use
of functional complementation assays, we mapped distinct regions within the TS domain indispensable for
DNMT1 activity in vivo. In turn, we show that each single domain of the interaction partner UHRF1 is
necessary for the regulation of maintenance DNA methylation by DNMT1. Importantly, we found that
DNMT1 TS point mutations previously identified in HSAN-IE patients (Klein et al. 2011) lead to defects in
binding UHRF1 and restoring DNA methylation at heterochromatic sites. DNMT1 TS point mutants failed to
correctly associate with late replicating chromatin, displayed increased protein mobility and decreased
protein stability in a cell cycle-dependent manner. In summary, our study reveals a fundamental role of
the TS domain in DNMT1 heterochromatin targeting by interaction with UHRF1, in maintenance DNA
methylation and in cell cycle-dependent protein abundance. Our findings provide new insights in the

molecular evidence accounting for changes in the methylome of HSAN-IE patients.
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MATERIAL AND METHODS

Mammalian expression constructs and antibodies

Fusion constructs were generated using enhanced green fluorescent protein (GFP), monomeric red
fluorescent protein (RFP) or monomeric cherry (Ch). The expression constructs for RFP-DNMT1, GFP-
DNMT1 wt, GFP-DNMT1A458-500, GFP-NTD, Ch-TS, GFP-DNMT1 (1-308), GFP-TS, GFP-DNMT1 (629-1110),
GFP-CTD and Ch-USP7 have been described previously (Easwaran et al. 2004; Schermelleh et al. 2005;
Fellinger et al. 2009; Frauer et al. 2011; Qin et al. 2011). GFP-DNMT1 deletion and point mutant as well as
UHRF1-GFP deletion expression constructs were derived from the corresponding wt constructs by overlap
extension PCR (Ho et al. 1989). The GFP-UHRF1 single domain constructs for the Ubl and Ring have been
reported before (De Vos et al. 2014b). UHRF1-His, UHRF1-GFP, Ch-UHRF1, GFP-UHRF1 TTD, PHD and SRA
single domain expression constructs have been described previously (Meilinger et al. 2009; Rottach et al.
2010; Pichler et al. 2011). GFP, RFP and RFP-PCNA have been reported before (Easwaran et al. 2004;
Sporbert et al. 2005; Qin et al. 2011; Becker et al. 2013). All constructs were verified by DNA sequencing.

The following monoclonal antibodies were used for immunoblotting: mouse anti-His (C-terminal,
Invitrogen), rat anti-RFP (5F8, Chromotek) (Rottach et al. 2008), rat anti-GFP (3H9, Chromotek), and mouse
anti B-actin (Sigma) and the newly generated anti-DNMT1 (14F6, Supplementary Figure S5C). For
immunofluorescence staining of heterochromatin, a mouse anti-H3K9me3 antibody was used (Active
Motif). For immunofluorescence staining of endogenous proteins we used the previously described
specific monoclonal rat anti-DNMT1 antibody 5A10 (Schneider et al. 2013) and a specific polyclonal rabbit
anti-UHRF1 antibody (Citterio et al. 2004). As secondary antibodies an anti-mouse or anti-rat Alexa Fluor
594 and an anti-rabbit Alexa Fluor 488 antibody were applied, respectively (Invitrogen). In dependence on
the expected intensity of the signals, secondary antibodies either conjugated to horseradish peroxidase
(anti-rabbit (Biorad), anti-rat and anti-mouse (Dianova)) or conjugated to fluorescent dyes (anti-mouse and
anti-rat Alexa Fluor 488 (Invitrogen)) were applied. For detection of HRP-conjugated antibodies an ECL Plus

reagent (GE Healthcare, Thermo Scientific) was used.

Cell culture, transfection and immunofluorescence staining

HEK293T cells were cultured in Dulbecco's modified Eagle medium supplemented with 10% fetal
bovine serum and 50 ug/ml gentamycine. HEK293T cells were transfected with polyethylenimine (Sigma).
MEF cells were cultured in Dulbecco's modified Eagle medium supplemented with 15% fetal bovine serum,
non essential amino acids, 2 mM L-glutamine, 0.1 mM B-mercaptoethanol (Gibco-BRL), 100 U/ml penicillin
and 100 pg/ml streptomycin (PAA Laboratories GmbH). Mouse ESCs were cultured as published
(Schermelleh et al. 2007) with the exception that the medium was supplemented with 2i inhibitors (1 uM
MEK inhibitor PD and 3 uM GSK-3 inhibitor CHIR) (2i, Axon Medchem) (Ying et al. 2008). To analyse the
methylation level in stably expressing UHRF1-GFP ESC lines, we cultured the cell lines in the same medium
supplemented with 1,000 U/ml recombinant mouse leukemia inhibitory factor LIF (Millipore). Mouse J1
Dnmt1” ESCs are homozygous for the c null allele and have been described before (Lei et al. 1996). Mouse
E14 wt and Uhrfl’/’ cells (M. Muto and H. Koseki) as well as J1 triple knockout cells (Masaki Okano) have

been reported previously (Meilinger et al. 2009). Mouse ESCs and MEF cells were transfected with
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Lipofectamin (Invitrogen). Fixation, DAPI counterstaining and image acquisition cells was performed as
described before (Rottach et al. 2010).

Live cell microscopy and fluorescence after photobleaching analysis

Live cell imaging and FRAP analysis were performed as described previously (Schneider et al. 2013)
with the following exceptions. Photobleaching was performed with the acousto-optical tunable filter
(AQTF) of the 488 nm laser line set to 100% transmission. Typically, for each series 20 prebleach and 200
postbleach frames were recorded with time intervals of 150 ms, followed by 180 frames with a time
interval of 0.5 s. Data correction, normalization and quantitative evaluations were performed by
automated processing with Fiji/Image) (Schindelin et al. 2012; Schneider et al. 2012) using a set of self-
developed macros followed by calculations in Excel and R (R-Core-Team 2013).

In long-term imaging experiments, a z-stack of 6 um with a step size of 1.5 um was recorded every 20
min for ~30 h. To avoid photodamage of the cells, the AOTF of the laser was set to a low transmission

value of 6%.

Generation of stable ESC lines and DNA methylation analysis

48 h after transfection with GFP tagged constructs, GFP positive ESC cells were separated using a
fluorescence activated cell sorting (FACS) Aria Il instrument (Becton Dikinson) and the cells were
subsequently grown in selective medium containing 10 pg/ml blasticidine (GFP-DNMT1 cell lines) or
normal medium (UHRF1-GFP cell lines). After expansion cells were again FACS sorted one or two more
times until at least 90% of the population was GFP positive. Furthermore, the GFP-DNMT1 cell lines were
single cell sorted and clones with low expression levels were chosen for further analysis. The GFP-DNMT1
ESC line has been reported before (Qin et al. 2011). Genomic DNA isolation, bisulfite conversion, Primer
sets and PCR conditions were described before (Tucker et al. 1996; Frauer et al. 2011). All PCR products

were analysed by pyrosequencing (Varionostic).

Preparation of protein extracts, protein-protein interaction assay and co-immunoprecipitation

GFP and RFP or Ch fusion constructs were expressed in HEK293T cells and two days after transfection
cells were harvested in ice cold PBS. Cell pellets from one to two 100 cm dishes were lysed in 200 ul lysis
buffer and a protein-protein interaction assay in GFP-multiTrap plates (Chromotek) was performed as
described (Pichler et al. 2012) with the following adaptations: GFP extracts were equalized to a
concentration of 60 nM in immunoprecipitation buffer (20 mM Tris-HC| pH 7.5, 150 mM NaCl, 0.5 mM
EDTA) prior to one step purification in blocked (3% milk) GFP-multiTrap plates. After stringent washing
(wash buffer; 20 mM Tris-HCl pH 7.5, 300 mM NaCl, 0.5 mM EDTA) purified GFP fusion proteins were
incubated with crude protein extracts of RFP or Ch fusion proteins at a concentration of 1.1 to 2.1 uM
diluted in IP buffer (excess of amount RFP or Ch fusion proteins in relation to GFP fusions: 18-35 times).
Bound fractions were quantified by fluorescence intensity measurements with a Tecan Infinite M1000
plate reader (Tecan). For co-immunoprecipitation assays, the GFP and RFP or Ch fusion constructs were
co-expressed in HEK293T cells, protein extracts were equalized and depending on the expression amounts

of 5- 30 pmol GFP-fusion protein were applied for the co-immunoprecipitation with the GFP-Trap
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(Chromotek). Note that the plasmid amount of GFP fusion construct and RFP fusion constructs used for
transfection was adapted in a way to have at least a three-fold excess of the molar RFP or Ch fusion
protein amount in relation to GFP fusions. Bound fractions were firstly detected by fluorescence intensity

measurements and secondly by immunoblotting using specific antibodies.

Cycloheximide assay

Mouse ESCs were plated to equal densities one day before cycloheximide (Sigma-Aldrich) treatment at
0.03 mg/ml. Cells were collected and counted 0 and 5 h after drug addition. Cell pellets were lysed in
appropriate volumes of lysis buffer (20 mM Tris-HCI pH 7.5, 150 mM NaCl, 2 mM MgCl2, 0.5% NP40,
1mg/ml DNasel (AppliChem), 2 mM PMSF, protease inhibitor cocktail (Roche) and protease inhibitor mix M

(SERVA)). Protein levels were detected by immunoblotting with specific antibodies.

Statistical analysis

Results were depicted as mean values + the standard deviation or as mean values * the standard error
of the mean from the number of biological replicates indicated in the corresponding figure legend. The
difference between two mean values was analyzed by Student’s t-test and was considered as statistically
significant in case of P<0.02 (*) and highly significant for P<0.001 (protein-protein interaction assay) or

P<0.0002 (methylation analysis) (**), respectively.

Sequence alignments

Alignments were prepared using ClustalW2 and ESPript.
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RESULTS

Deletions and mutations of conserved amino acids within the TS domain found in HSAN-IE patients
affect DNMT1 activity in vivo

Although the catalytic activity of DNMT1 is referred to its CTD, the NTD of the enzyme is indispensable
for maintenance methylation (Fatemi et al. 2001). We were interested in how the TS domain influences
the methylation activity of DNMT1 in vivo. Representing the largest domain of the NTD spanning from
amino acid 309 to 628 in mouse isoform 2, the TS domain shows highly conserved regions among different
species including mammals, birds, fish, amphibians and insects (Figure 1). To map the functional relevance
of individual regions within the TS domain, we created a systematic set of deletion mutants. Notably, the
regions intended for deletion were determined under consideration of secondary structure information to
abate the risk of destroying the higher order protein structure. For functional tests, Dnmt1” embryonic
stem cells (ESCs) were transiently transfected with the set of GFP-DNMT1 TS domain deletion constructs
and 48 h after expression, cells were sorted using a fluorescence activated cell sorting (FACS) instrument
and genomic DNA was isolated. Pyrosequencing at major satellite repeats revealed that two regions
between amino acid 356 to 404 as well as from 458 to 573 are functionally relevant for maintenance
methylation at pericentromeric heterochromatin (Figure 2A, shown in dark blue). Whereas cells expressing
the wild type (wt) GFP-DNMT1 construct showed average methylation levels of 39%, the methylation was
reduced to levels as low as 16% (GFP-DNMT1 delta 528-541) when parts of the relevant regions were
deleted. On the contrary, a truncated version of GFP-DNMT1 lacking the flexible N-terminal region of the
TS domain (amino acid 309 to 355) that is less conserved, was able to fully restore methylation at major
satellite repeats (Figure 2A, shown in light blue). The methylation activity of a construct carrying a deletion
in the C-terminal region of the TS domain (amino acid 579 to 595) was also comparable to that of the wt
fusion protein.

Interestingly, mutations of two highly conserved amino acids in the TS domain lead to a
neurodegenerative disease described as HSAN-IE (Klein et al. 2011; Klein et al. 2013). Using the alignment
shown in Figure 1B, we identified the corresponding amino acids in the mouse protein and cloned the
single HSAN-IE associated mutations P496Y (human: D490E.P491Y) and Y500C (human: Y495C) in
mammalian expression constructs. It has to be noted that the aspartate at position 490 in human DNMT1
was found to be mutated to glutamate in HSAN-IE patients, but in the mouse protein the corresponding
position is taken by glutamate, anyway. As the HSAN-IE associated mutations are included in a functionally
relevant region of the TS domain (Figure 2A, GFP-DNMT1 delta 458-500), we further investigated the
ability of the single point mutants GFP-DNMT1 P496Y and GFP-DNMT1 Y500C as well as of the double
point mutant GFP-DNMT1 P496Y.Y500C to restore methylation at major satellite repeats in Dnmt1”" ESCs
(Figure 2B). Indeed, the HSAN-IE single point mutations significantly affected DNMT1 activity in vivo when
compared to the GFP-DNMT1 wt protein. The combination of both mutations even showed a highly
significant reduction in DNA methylation activity pointing towards an additive effect of the two HSAN-IE
mutations. The same remethylation defect was observed at the skeletal a-actin promoter (Supplementary
Figure S1A). Herein, the decrease in the DNA methylation level was even highly significant for the GFP-
DNMT1 P496Y mutant. As a control, we determined the DNA methylation level of the imprinted and

unmethylated H19a promoter (Tucker et al. 1996) and as expected, we did not observe any significant
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changes between the wt and the HSAN-IE mutant constructs (Supplementary Figure S1B). Moreover, we
generated ESC lines stably expressing the GFP-DNMT1 wt and the single as well as the double mutant
proteins. Analyses of the methylation level at the major satellite repeats and the skeletal a-actin promoter
by pyrosequencing revealed that none of the HSAN-IE mutants was able to restore DNA methylation at
these loci when stably expressed (Figure 2C). In summary, we could show that the TS domain of DNMT1 is
indispensable for maintenance DNA methylation. Deletions of the TS domain in the region between amino
acid 356 to 404 and amino acid 458 to 573 as well as point mutations characterized in HSAN-IE patients

lead to decreased methylation levels at pericentromeric heterochromatin.

The TS domain of DNMT1 mediates the interaction with UHRF1

UHRF1 was found to be required for maintaining DNA methylation patterns after replication by direct
interaction with DNMT1 (Bostick et al. 2007). To get deeper insights into the mechanism of DNMT1
recruitment to replication sites, we mapped the domains contributing to the interaction with UHRF1 by
co-immunoprecipitation assays. For this purpose, we used a systematic set of GFP tagged truncated
constructs for the NTD as well as the CTD of DNMT1, and constructs for different single and combined
domains of UHRF1, respectively (Figure 3A). UHRF1-His co-immunoprecipitated with the NTD, but not the
CTD of DNMT1 (Figure 3B, bottom). Within the NTD, solely the TS domain of DNMT1 showed interaction
with UHRF1. As a second line of evidence, the mapping results were also confirmed by a semi-quantitative
fluorescence protein-protein interaction assay in vitro that revealed the same preference of the TS domain
for UHRF1 binding (Figure 3B, top). Mapping studies on UHRF1 illustrate that among all domains only the
SRA domain of UHRF1 could co-immunoprecipitate RFP-DNMT1 (Figure 3C). In line with previous findings
(Achour et al. 2008; Felle et al. 2011; Berkyurek et al. 2013), our systematic mapping studies demonstrate
that by means of the TS domain DNMT1 interacts mainly with the SRA domain of UHRF1.

HSAN-IE associated mutations in the DNMT1 TS domain affect the interaction with UHRF1

Since the TS domain contains the binding site for UHRF1 and HSAN-IE associated point mutants could
not restore DNA methylation in Dnmt1” ESCs, we hypothesized that the interaction with UHRF1 might be
lost. To investigate the effects on UHRF1 binding, we performed a co-immunoprecipitation assay using
GFP-TS domain wt or P496Y, Y500C single and P496Y.Y500C double point mutants co-expressed with Ch-
UHRF1 in HEK293T cells and detected the bound fractions by immunoblotting (Figure 4A). Ch-UHRF1 co-
immunoprecipitated with GFP-TS wt, whereas it was only weakly detected in the bound fraction of the
P496Y and Y500C single and double point GFP-TS mutants. Semiquantitative protein-protein interaction
assays in a GFP-multiTrap plate (Pichler et al. 2012) confirmed these results (Figure 4B). The interaction of
Ch-UHRF1 with the GFP-DNMT1 NTD was significantly reduced by both single and double point mutations
and also by deletion of a region containing the mutated amino acids (GFP-DNMT1 NTD A458-500). In
conclusion, our findings suggest that a central part within the TS domain is crucial for mediating the
interaction of DNMT1 with UHRF1 and that this interaction is affected by the HSAN-IE associated

mutations located in this region.
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Strong heterochromatin association and slow protein kinetics of the TS domain are dependent on

interaction with UHRF1 but not on DNA methylation

It was shown that UHRF1 targets DNMT1 to heterochromatin by cooperative binding to
hemimethylated DNA and histone H3 tails (Rothbart et al. 2012; Liu et al. 2013). Accordingly, DNMT1
displays a diffuse nuclear pattern in Uhrfl'/' ESCs (Supplementary Figure S2) (Bostick et al. 2007). We
mapped the interacting region for UHRF1 with DNMT1 to the TS domain which strongly associated with
heterochromatin in mouse embryonic fibroblast (MEF) cells throughout interphase and co-localized with
Ch-UHRF1 at DAPI- dense regions (Supplementary Figure S3A and S3B). To figure out which mark or
binding partner the heterochromatin association of the TS domain is dependent on, we further
investigated the localization in ESCs with different genetic backgrounds. We found that the
heterochromatic localization remains unchanged in cells with decreased (J1 Dnmtl’/’) or almost no DNA
methylation (triple knockout (TKO) cells devoid of DNMT1, 3A and 3B, Figure 5A, left panel). In ESCs devoid
of UHRF1 (E14 Uhrfl’/’), however, the foci of the TS domain at DAPI-dense regions were entirely abrogated
and the signal was spread diffusely in the nucleus (Figure 5A, right panel). Consequently, strong
heterochromatin association of the TS domain is dependent on UHRF1 but not on DNA methylation.

In addition, we expressed the GFP-TS wt and the GFP-TS mutant constructs Y500C and P496Y.Y500C
deficient in UHRF1 binding in MEF cells and studied their protein kinetics as well as their subnuclear
distribution after fixation and counterstaining with DAPI (Figure 5B and 5C). We could emphatically show
that the GFP-TS wt domain displayed slow protein kinetics with a large immobile fraction (Figure 5C).
Concordantly, GFP-TS localized at chromocenters intensely stained by DAPI (Figure 5B). In contrast to that,
the HSAN-IE associated GFP-TS Y500C and P496Y.Y500C mutants were diffusely localized in the nucleus
and even excluded from chromocenters supporting the fact that binding to UHRF1 was impaired. The GFP-
TS P496Y.Y500C double point mutant was also found in the nucleoli and weakly in the cytoplasm. In line
with the diffuse nuclear localization and the exclusion from DAPI-dense heterochromatic sites, the GFP-TS
mutants revealed fast protein kinetics without an immobile fraction (Figure 5C). Accordingly to the results
obtained in Uhrfl'/' ESCs, the abolishment of local enrichment at chromocenters by the GFP-TS Y500C and
P496Y.Y500C mutants underlines the significance of the interaction with UHRF1 for proper targeting of
DNMT1 to densely compacted chromatin.

Each domain of UHRF1 is relevant for the regulation of DNMT1 methylation activity in vivo

In the previous experiments, we have shown that the interaction with UHRF1 is necessary for targeting
and maintenance DNA methylation by DNMT1. Next, we set out to examine which domains of UHRF1 are
functionally relevant for the regulation of DNMT1 maintenance methylation. To this end, we constructed
single domain deletions of UHRF1 (Figure 6A) and investigated their role in mediating DNA methylation in
vivo. We made use of E14 Uhrfl'/' ESCs which have considerably decreased methylation levels when
compared to the E14 wt strain (Figure 6B). As reported before, the UHRF1-GFP wt fusion protein is able to
partially complement methylation at the major satellite repeats (Meilinger et al. 2009). However, all Uhrf1
" ESC lines stably expressing UHRF1-GFP single domain deletion mutants displayed low methylation levels
comparable to the untransfected control (Figure 6B). Hence, UHRF1AUbI-GFP, UHRF1ATTD-GFP,
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UHRF1APHD-GFP as well as UHRF1ASRA-GFP and UHRF1ARing-GFP are not sufficient as cofactors for DNA
methylation by DNMT1.

Furthermore, we tested the interaction of Ch-TS with the UHRF1-GFP single domain deletion mutants
by co-immunoprecipitation (Figure 6C). Whereas deletions of the TTD, the PHD and the Ring domain had
no or only a weak effect on the interaction, deletions of the Ubl and the SRA domain reduced the binding
of Ch-TS to UHRF1-GFP. Consequently, the TS domain of DNMT1 can interact with two domains of UHRF1,
the Ubl and the SRA domain. To get further insights in DNMT1 targeting in dependence on single domains
of UHRF1, we studied the subnuclear localization of the stably expressed UHRF1-GFP wt or single domain
deletion mutants and endogenous DNMT1 by immunofluorescence staining (Supplementary Material,
Figure S4). In the wt UHRF1-GFP cell line, DNMT1 showed late S phase-specific horse-shoe like pattern that
were, however, completely abrogated in all single domain UHRF1-GFP deletion cell lines displaying diffuse
nuclear localization of DNMTL. In conclusion, none of the UHRF1 domains is dispensable for targeting

DNMT1 for maintenance methylation.

The stability of DNMT1 is dependent on interaction with UHRF1 and on proper chromatin targeting

During co-immunoprecipitation assays and localization studies it became evident that the HSAN-IE
associated GFP-DNMT1 mutants were expressed much weaker than the wt protein and displayed more
degradation bands when immunoblotting with a specific anti-GFP antibody was performed (Figure 4A).
Therefore, we investigated the protein stability of stably expressed wt and mutant GFP-DNMT1 in Dnmt1”
ESC lines by a cycloheximide assay (Figure 7A and 7B). Protein expression after 5 h of cycloheximide
treatment was compared to the expression without treatment (0 h), detected by immunoblotting using
the specific anti-DNMT1 antibody 14F6 (Supplementary Figure S5C) and followed by quantification of the
resulting signals. Whereas the effect of translational inhibition on endogenous UHRF1 protein expression
was equal in each cell line, the expression of GFP-DNMT1 was stronger affected in the mutant cell lines
upon cycloheximide treatment when compared to the wt. Notably, immunofluorescence localization
studies in these stable ESC lines indicated that the HSAN-IE associated mutants, especially GFP-DNMT1
P496Y and the GFP-DNMT1 P496Y.Y500C double point mutants, were only partially recruited to
heterochromatic sites in comparison to the wt protein (Supplementary Figure SSA and S5B). Our previous
findings on the UHRF1 binding deficiency of the TS mutants in combination with their mislocalization and
faster protein kinetics provide evidence for the necessity of proper and tight DNMT1 chromatin binding
mediated by UHRF1 to guarantee stability of the methyltransferase. Notably, the interaction of the GFP-
DNMT1 mutants with the stabilizer USP7 was not affected (Supplementary Figure S5D), arguing for a

normal DNMT1 deubiquitination process.

The destabilization of HSAN-IE associated GFP-DNMT1 TS mutants is cell cycle-dependent

Since the TS domain-mediated interaction of DNMT1 with UHRF1 might be essential for late S phase-
specific localization and kinetics of DNMT1 (Schneider et al. 2013), our aim was to decipher the expression
and stability of the GFP-DNMT1 TS mutants on the single cell level following the cell cycle. Therefore, we
imaged living MEF cells transiently co-transfected with GFP-DNMT1 wt or the GFP-DNMT1 P496Y.Y500C

double point mutant and RFP-PCNA as a cell cycle marker (Figure 7C and 7D). Comparison of relative
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expression levels of GFP-DNMT1 wt versus the double point mutant points towards a cell cycle-dependent
destabilization. Although the expression in early to mid S phase was comparable to the wt, the GFP signal
of mutant DNMT1 gradually dropped when the cell entered late S phase. Interestingly, the signal of GFP-
DNMT1 P496Y.Y500C recovered when the cell had passed mitosis and entered into G1 phase (Figure 7C).
Furthermore, the double point mutant displayed only weak late S phase-specific association with
chromocenters and was devoid of the prolonged heterochromatin binding in G2 that was observed for the
wt protein (Figure 7D). Taken together, our results provide evidence for a cell cycle-dependent
destabilization of GFP-DNMT1 P496Y.Y500C beginning in late S phase that is mirrored by insufficient

targeting of the protein to late replicating heterochromatin.
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DISCUSSION

Besides PCNA, UHRF1 is an important recruitment factor for DNMT1 that guides the enzyme to
hemimethylated DNA, the substrate for maintenance methylation (Bostick et al. 2007; Sharif et al. 2007).
Whereas the interaction with PCNA is dispensable for maintenance DNA methylation (Schermelleh et al.
2007; Spada et al. 2007), the interaction with UHRF1 seems to play a critical role in this process (Bostick et
al. 2007). As the TS domain of DNMT1 mediates the interaction with UHRF1 (Figure 3), we performed a
functional mapping using a systematic set of deletion mutants. Functional complementation assays
showed that two regions in the TS domain (amino acid 356-404 and 458-573) are indispensable for
regulating DNA methylation by DNMT1 in vivo (Figure 2A). In contrast, the very N-terminal region of the TS
domain (amino acid 309-355) which is poorly conserved and consists of varying length among different
species (Figure 1B), is dispensable for DNMT1 activity. Interestingly, this region has not been dissolved in
the crystal structure of mouse DNMT1 comprising a fragment spanning from amino acid 291 to 1620
(Takeshita et al. 2011) pointing towards a disordered flexible region that may not contribute to the
regulation of enzyme activity. However, this region was characterized as an intrinsically disordered domain
contributing to DNA methylation during mouse embryonic development (Borowczyk et al. 2009).

Importantly, we found that GFP-DNMT1 P496Y, Y500C and P496Y.Y500C are defective in binding to
UHRF1 (Figure 4). These HSAN-IE associated DNMT1 TS domain mutants were inactive in vivo (Figure 2,
Supplementary Figure S1) suggesting that the interaction of DNMT1 with UHRF1 is indeed required for
epigenetic inheritance of DNA methylation. Our findings on functional defects are consistent with the
global methylation analysis of genomic DNA from HSAN-IE patients with the corresponding mutations
(human DNMT1: D490E.P491Y and Y495C) revealing DNA hypomethylation when compared to an
unaffected group (Klein et al. 2011).

Decreased methylation levels caused by HSAN-IE associated mutations might also be explained by the
findings that UHRF1 functions as an allosteric activator of DNMT1 (Syeda et al. 2011; Takeshita et al. 2011;
Berkyurek et al. 2013; Bashtrykov et al. 2014a; Bashtrykov et al. 2014f). Upon binding to the SRA domain
of UHRF1, the TS domain is released from the CTD of DNMT1 enabling access of substrate DNA to the
catalytic center DNMT1 (Berkyurek et al. 2013; Bashtrykov et al. 2014a). HSAN-IE mutations defective in
binding to UHRF1, however, might impede the conformational change in DNMT1 and the UHRF1-mediated
release mechanism, thereby preserving the autoinhibitory state of the TS domain blocking catalytic activity
of the CTD.

In addition to its important role in mediating the interaction with UHRF1, the TS domain of DNMT1
contributes to heterochromatin association of DNMT1 (Leonhardt et al. 1992; Schneider et al. 2013) that
persists in G2 phase (Easwaran et al. 2004; Schermelleh et al. 2007). In our study, chromocenter
localization and high immobile protein fractions were characteristic for the wt GFP-TS domain. Given that
these characteristics were completely abolished by the HSAN-IE associated mutations and absent in
Uhrfl'/' ESCs (Figure 5), we propose that the interaction of the TS domain with UHRF1 plays a central role
for tight binding of DNMT1 to heterochromatin marked by densely methylated DNA and histone tails.

Binding of UHRF1 to methylated H3K9 via its TTD and PHD as well as to hemimethylated DNA via its
SRA domain has been reported to serve as a prerequisite for directing DNMT1 for maintenance DNA
methylation (Rothbart et al. 2012; Liu et al. 2013; Rothbart et al. 2013). Using functional complementation

assays, we found that each domain of the multifunctional UHRF1 protein is required for the regulation of
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DNA methylation by DNMT1 (Figure 6). We propose that besides the three chromatin binding domains in
UHRF1 (TTD, PHD and SRA domain) and the DNMT1 interaction surface on the SRA domain, also the Ubl
domain as well as the Ring domain of UHRF1 are essential for regulating maintenance DNA methylation. In
agreement with the finding that the UHRF1AUbI-GFP and the UHRF1ASRA-GFP mutants were not sufficient
as cofactors for maintenance methylation, we mapped the DNMT1 interaction site to the Ubl and SRA
domain (Figure 3C and 6C). Binding of DNMT1 to the UHRF1 SRA domain is consistent with previous
findings (Achour et al. 2008; Felle et al. 2011). But in addition, we provide evidence, to our knowledge for
the first time, for a second interaction site in the Ubl domain of UHRF1. Whether these two DNMT1
interaction sites on UHRF1 act independently or in a timely and spatially coordinated manner, remains to
be elucidated. The regulatory function of the Ring domain might be explained by a recent study on
Xenopus egg extracts illustrating that the E3 ubiquitin ligase properties of UHRF1 are required for
ubiquitination of histone H3 on K23 that serves as a binding site for DNMT1 (Nishiyama et al. 2013).

In accordance with recent findings on human DNMT1 (Klein et al. 2011), we observed a destabilizing
effect of the HSAN-IE associated mutations. In particular, our results suggest that although mutant
DNMT1 still interacts with USP7, it shows decreased expression especially in late S and G2 phase that
recovered during G1 phase (Figure 7, Supplementary Figure S5D). Analyses of the cell cycle-dependent
subnuclear localization revealed a reduced heterochromatin enrichment of mutant DNMT1 in the
destabilized state during late S and G2 phase (Figure 7D). Thus, we propose that destabilization of mutant
DNMT1 might rely on the disrupted UHRF1 binding and the resulting weakened chromatin association.
Similar to DNMT3A and DNMT3B that are stabilized on nucleosomes containing methylated DNA (Jeong et
al. 2009; Stachulski et al. 2011), the stability of DNMT1 has recently been proposed to depend on indirect
chromatin association via UHRF1 binding to methylated H3K9 that persists during mitosis (Rothbart et al.
2012). Taken together, free DNMT1 enzymes, which are not associated with chromatin either due to
UHRF1 histone binding defects by TTD mutations or UHRF1 interaction deficiencies by DNMT1 HSAN-IE
mutations, might be more likely to be degraded compared to correctly targeted chromatin bound
enzymes. Whether degradation of non chromatin bound DNMT1 relies on UHRF1-dependent
ubiquitination or on activity of another yet unknown E3 ubiquitin ligase specific for DNMT1 and whether
this proteasomal pathway is initiated by DNMT1 acetylation or methylation, remains to be determined.
We hypothesize that the observed stability regulating mechanism might prevent aberrant DNA
methylation by inadequately targeted DNMT1.

In postmitotic neurons, DNMT1 has been reported to undergo rapid protein turnover (Fan et al. 2001).
Therefore, the destabilizing effect of the TS domain mutations might be more pronounced in the nervous
system in comparison to other tissues and might contribute to the nervous system restricted phenotype
observed in HSAN-IE patients.

Given the important role of DNMT1 in maintenance DNA methyllation after replication, one might
assume that DNMT1 may play a subordinate role in postmitotic cells like neurons. However, DNMT1 is
known to be involved in adult neurogenesis (Yu et al. 2011). Furthermore, DNMT1 deficiency in mitotic
CNS precursor cells accompanied by DNA hypomethylation has been reported to affect cell survival in
mice. Mutant CNS cells of mosaic animals are selectively eliminated during adulthood (Fan et al. 2001)
arguing for an important role of DNMT1 for postnatal survival of CNS cells. Whether UHRF1 also regulates

DNA methylation by DNMT1 in neuronal cells yet remains elusive.
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In summary, our study provides new insights in the molecular basis of global DNA hypomethylation
found in HSAN-IE patients. We show that DNMT1 HSAN-IE associated mutations result in UHRF1 binding

defects, changes of subnuclear localization and in protein destabilization.
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Figure 1. The DNMT1 TS domain is conserved among different species. (A) Domain structure of GFP-DNA
methyltransferase 1 (DNMT1) with illustration of deletions and HSAN-IE associated point mutations used for functional
characterization of the TS domain. The large regulatory N-terminal domain (NTD) of DNMT1 is comprised of a DNA
methyltransferase associated protein 1 (DMAP1) —binding domain, a PCNA (proliferating cell nuclear antigen) -binding
domain (PBD), a targeting sequence (TS) domain, a zinc finger (CXXC) domain, two bromo-adjacent homology (BAH1 and
BAH2) domains and a C-terminal catalytic domain (CTD). (B) Primary sequence alignment of TS domains from different
species. The secondary structure of the mouse TS domain is indicated (pdb: 3AV4). Highly conserved residues are black
shaded. Deleted regions are indicated by blue rectangles and HSAN-IE associated point mutations by red arrows.
Functionally relevant regions within the TS domain are depicted in dark blue. HSAN-IE: hereditary sensory and autonomic
neuropathy type IE.
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Figure 2. Deletions and HSAN-IE associated mutations in the TS domain of DNMT1 affect the methylation activity in vivo.
(A) and (B) Local methylation analysis at major satellite repeats. Mouse Dnmt1”" ESCs were FACS-sorted 48 h after transient
expression of GFP-DNMT1 wild type (wt) and deletion or HSAN-IE associated point mutant constructs and CpG methylation
levels were analyzed by bisulfite treatment of genomic DNA, PCR amplification and direct pyrosequencing. Methylation
levels of untransfected cells are displayed for comparison. Shown are mean values * s.d. from (A) two to six or (B) three
independent biological replicates (average from eight CpG sites, respectively). (B) Two-sample t-tests were performed that
assume equal variances. Asterisks represent statistically significant difference in regard to the wt: *P<0.02, **P<0.0002. (C)
CpG methylation levels at the major satellite repeats and the skeletal a-actin promoter of mouse Dnmt1” ESCs stably
expressing GFP-DNMT1 wt or HSAN-IE associated point mutants were analyzed by bisulfite treatment, PCR amplification and
direct pyrosequencing. Methylation levels of untransfected cells are displayed for comparison. Shown are mean values from
two different single cell clones, respectively.
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Figure 3. The interaction with UHRF1 is mediated by the TS domain of DNMT1. (A) Schematic outline of DNMT1 and the
ubiquitin-like, containing PHD and RING finger domains 1 (UHRF1) expression constructs used for protein-protein interaction
mapping studies. UHRF1 harbors an ubiquitin-like domain (Ubl) followed by a tandem Tudor domain (TTD), a plant
homeodomain (PHD), a SET and RING associated (SRA) domain and a really interesting new gene (Ring) domain. (B) Top:
Mapping and relative quantification of the interaction GFP-DNMT1 with Ch-UHRF1 by fluorescence protein-protein
interaction assay in vitro. After immunoprecipitation, different GFP-DNMT1 expression constructs were incubated with
protein extracts of Ch-UHRF1 and the bound fractions were detected by fluorescence read-out. Ratios of Ch-UHRF1 over
GFP fusion proteins are shown as mean values + s.e.m. of three to six biological replicates. Bottom: Different DNMT1
expression constructs were co-expressed with UHRF1-His in HEK 293T cells and after immunoprecipitation using the GFP-
Trap, UHRF1-His was detected by western blot with an anti-His antibody. GFP was used as negative control. (C) Top:
Mapping and relative quantification of the interaction GFP-UHRF1 with RFP-DNMT1 by fluorescence protein-protein
interaction assay in vitro. Ratios of RFP-DNMT1 over GFP fusion proteins are shown as mean values * s.e.m. of three
biological replicates normalized to the binding ratio of the GFP-UHRF1 full length protein. Bottom: Bound fractions of one
representative experiment were detected by western blot with specific antibodies against RFP and GFP. GFP was used as
negative control. | = Input, B = Bound.
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Figure 4. HSAN-IE associated point mutations and a central deletion in the TS domain of DNMT1 affect the interaction
with UHRF1. (A) Co-immunoprecipitation of GFP-TS P496Y, Y500C single and the P496Y.Y500C double point mutants as well
as the corresponding wt co-expressed with Ch-UHRF1 in HEK293T cells. Bound fractions were analyzed by immunoblotting
with an anti-GFP and anti-Ch antibody, respectively. GFP was used as negative control. | = Input, B = Bound. (B) Fluorescence
protein-protein interaction assay. After one-step purification of the GFP-DNMT1 NTD wt and mutant constructs in a GFP-
multiTrap plate, the binding of Ch-UHRF1 expressed in HEK293T cells was determined by fluorescence readout. GFP and RFP
were used as negative control, respectively. Shown are mean relative binding ratios + s.e.m of Ch-UHRF1 or RFP over GFP
fusion proteins from four to six biological replicates. Two-sample t-tests were performed that assume equal variances.
Statistical significance compared to the relative binding ratio of GFP-DNMT1 NTD wt is indicated: *P<0.02, **P<0.001.
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Figure 5. Mutations in the TS domain impede the strong heterochromatin association and the slow protein kinetics of
the wt domain. (A) Confocal mid sections of fixed mouse ESCs (J1, E14) transiently expressing GFP-TS and counterstained
with DAPI as a marker for heterochromatin. ESCs with different genetic backgrounds were used that are devoid of DNMT1
(J1 Dnmtl'/’), all three DNA methyltransferases DNMT1, DNMT3A and DNMT3B (J1 triple knouckout (TKO)) as well as cells
devoid of UHRF1 (E14 Uhrfl’/’). In the merged image, DAPI is depicted in magenta. Scale bar 10 pm; enlargements: 3-times
magnification, scale bar 2 um. (B) Confocal mid sections of fixed MEF cells transfected with GFP-TS wt or GFP-TS Y500C
single and P496Y, Y500C double mutant constructs. In the merged image, GFP-TS is depicted in red and DAPI in magenta.
Scale bar 5 um; enlargements: 3-times magnification, scale bar 1 um. (C) Protein kinetics of GFP-TS wt and HSAN-IE
associated GFP-TS Y500C and P497Y.Y500C point mutants in living MEF cells determined by half nucleus fluorescent
recovery after photobleaching (FRAP) analysis. Curves represent mean + s.e.m. of at least 13 nuclei. The mobile fraction (M)
is indicated.
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Figure 6. Each domain of UHRF1 is necessary for regulation of DNA methylation by DNMT1. (A) Schematic outline of
different UHRF1-GFP single domain deletion (A) constructs used for rescue experiments. (B) Local methylation analysis at
the of major satellite repeats. CpG methylation levels in E14 Uhrfl'/' ESCs stably expressing UHRF1-GFP wt or single domain
deletions were analyzed by bisulfite treatment of genomic DNA, PCR amplification and direct pyrosequencing. Methylation
levels of untransfected cells are shown for comparison. Values represent means from eight CpG sites, respectively. (C) Co-
immunoprecipitation of UHRF1-GFP wt and single domain deletion mutants with Ch-TS after co-expression in HEK293T cells.
Bound fractions were detected by immunoblotting with anti-GFP and anti-Ch antibodies, respectively. GFP was used as
negative control. | = Input, B = Bound.
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Figure 7. HSAN-IE associated mutations in the TS domain of DNMT1 decrease protein stability in a cell cycle-dependent
manner. (A) and (B) Cycloheximide (CHX) assay in Dnmt1”" ESCs stably expressing GFP-DNMT1 wt or P496Y and Y500C single
as well as P496Y.Y500C double point mutants. Cells were seeded to equal densities and treated with 0.03 mg/ml CHX for O
and 5 h, respectively. After harvesting, expression levels of GFP-DNMT1 and endogenous UHRF1 were analyzed by
immunoblotting with specific antibodies and by quantification of the resulting signals using Image J. Equal loading was
confirmed by B-actin staining. (A) Shown is one representative blot of two independent experiments with lysates of
approximately 360,000 cells loaded per lane. (B) Quantification of the protein expression 5 h after CHX treatment compared
to the expression without treatment (0 h). Shown are mean values + s.d. of two biological replicates relative to the loading
control and normalized to the expression of GFP-DNMT1 or UHRF1 in the wt cell line, respectively. (C) Live cell series of MEF
cells transiently co-expressing GFP-DNMT1 wt or the P496Y.Y500C double point mutant and RFP-PCNA as a cell cycle
marker. Starting from very late S phase (wt) or mid S phase (P496Y.Y500C) images were taken every 200 min. For better
comparison, signals were adjusted according to expression levels of the different constructs. White represents the highest
and black the lowest intensity. Scale bar 5 um. (D) Defined cell cycle stages of the live cell series depicted in (C). In the
merged image, RFP-PCNA is depicted in magenta. Scale bar 5 pm.
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Figure S1. HSAN-IE associated DNMT1 TS mutants cannot restore the local methylation level at the skeletal a-actin
promoter. (A) and (B) Mouse Dnmt1” ESCs were FACS-sorted 48 h after transient transfection with GFP-DNMT1 wt or
P496Y and Y500C single as well as P496Y.Y500C double mutant constructs and CpG methylation levels at (A) the skeletal a-
actin and (B) the H19a promoter were analyzed by bisulfite treatment, PCR amplification and direct pyrosequencing.
Methylation levels of untransfected cells are displayed for comparison. Bar graphs represent mean values + s.d. from three
biological replicates (average from 13 or 6 CpG sites, respectively) and two-sample t-tests were performed that assume
equal variances. Statistical significance compared to the methylation level of GFP-DNMT1 wt is indicated: *P<0.02,
**p<0.0002.
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E14 wt
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Figure S2. DNMT1 shows a diffuse nuclear pattern in Uhrfl'/' ESCs. Confocal mid sections of fixed mouse E14 wt and
Uhrfl'/’ ESCs. Endogenous DNMT1 and UHRF1 were immunostained with specific antibodies and chromatin was
counterstained with DAPI. In the merged image, DAPI is depicted in magenta and DNMT1 in green. Scale bar 10 um.
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Figure S3. The TS domain of DNMT1 shows strong heterochromatin association that is independent of the cell cycle and
co-localizes with UHRF1. (A) Confocal mid sections of fixed mouse embryonic fibroblast (MEF) cells co-expressing GFP-TS
and the cell cycle marker RFP-PCNA. DAPI is used for chromatin counterstaining. Scale bar 5 um. (B) Confocal mid sections of
fixed MEF cells co-expressing GFP-TS and Ch-UHRF1. DAPI is used for chromatin counterstaining. In the merged image, Ch-
UHRF1 is depicted in magenta. Scale bar 5 um; enlargements: 3-times magnification, scale bar 1 um.
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Figure S4. DNMT1 is mislocalized in Uhrfl'/' ESCs stably expressing GFP-UHRF1 single domain deletion mutants. Confocal
mid sections of fixed mouse E14 Uhrfl'/_ ESCs stably expressing UHRF1-GFP wt or single domain deletion mutant constructs.
Endogenous DNMT1 was immunostained with a specific antibody and chromatin was counterstained with DAPI. In the
merged image, DAPI is depicted in magenta. Scale bar 10 um.
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Figure S5. GFP-DNMT1 TS mutations lead to decreased association with heterochromatin. (A) and (B) Localization of GFP-
DNMT1 wt and HSAN-IE associated mutants P496Y, Y500C and P496Y.Y500C stably expressed in J1 Dnmt1”". DAPI was used
for chromatin counterstaining. In the merged image, DAPI is depicted in magenta. Scale bar 5 um. (B) In stable cell lines from
(A) heterochromatin was immunostained with a specific anti-H3K9me3 antibody. In the merged image, H3K9me3 is depicted
in magenta. Scale bar 5 um; enlargements: 3-times magnification, scale bar 1 um. (C) Specificity of the monoclonal anti-
DNMT1 antibody 14F6. Approximately 450,000 J1 wt and J1 Dnmt1” mouse ESCs were loaded per lane and endogenous
DNMT1 was detected using the anti-DNMT1 antibody 14F6; B-actin shows equal loading.
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3. Discussion

The key regulator of maintenance DNA methylation, UHRF1, is known to directly interact with DNMT1.
However, the protein domains mediating this interaction remain elusive. Therefore, we developed a
semiquantitative assay in a 96-well format that allows for systematic mapping analyses of protein-protein

interactions.

3.1 Potential and limitations of the developed protein-protein interaction assay

In the field of proteomics, the analysis of protein-protein interactions plays a fundamental role.
Identification and characterization of new protein binding partners opens the possibility for a better
understanding of the interconnection between different biological pathways, protein complex formation
and protein regulation, for instance by allosteric activation or PTMs. Various methods for the study of
protein-protein interactions have been developed. These include genetic assays like Yeast two-Hybrid, in
vitro techniques like co-immunoprecipitation or in vivo molecule proximity based techniques like
fluorescence resonance energy transfer (FRET) or bimolecular fluorescence complementation (BiFC) assays
as well as protein co-localization.

Here we describe a versatile method based on the affinity purification of GFP fusion proteins in a 96-
well micro plate coated with immobilized GFP-Trap (GFP-multiTrap) (Rothbauer et al. 2008; Pichler et al.
2012). Using GFP and RFP tagged fusion proteins and fluorescently labeled binding substrates carrying
defined modifications, it is possible to quantify protein-protein and protein-substrate interactions in a
semiquantitative manner (Figure 3.1). After one-step purification of GFP fusion proteins, the potential
binding to RFP fusion proteins was analyzed. Relative protein-protein binding ratios were measured with a
fluorescence intensity read-out system and relative molar binding ratios of RFP over GFP fusion proteins

were calculated.

DONMTL v
{ : DNMTL

U GFP binding protein

Figure 3.1: Scheme of the protein-protein interaction assay based on the GFP-multiTrap. lllustration of GFP-DNMT1
interacting with RFP-PCNA.
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To test the suitability of the GFP-multiTrap format, we choose to investigate the interaction of the PBD
in DNMT1 with the replication platform PCNA (Leonhardt et al. 1992; Chuang et al. 1997). In our
experiments, the incubation of a constant amount of the GFP-PBD domain of DNMT1 with increasing
concentrations of RFP-PCNA resulted in an increase of the binding ratio. For RFP input concentrations
higher than 30 times the concentration of bound GFP-PBD, however, the binding ratio reached a plateau
meaning that all binding sites on GFP-PBD were saturated. This experiment also demonstrated that no
unspecific binding of RFP to GFP-PBD was detected independently of the input concentration. In general,
this finding implicates that for each interacting protein partner, tests should be performed to determine
the excess of RFP fusion protein needed in order to achieve saturation.

Fusion of the proteins of interest to fluorescent tags not only allows for the quantification of
interactions in vitro, but also for their visualization in living cells. The developed protein-protein interaction
assay offers several advantages when compared to conventional co-immunoprecipitation methods (Table
3.1). Firstly, performance of the interaction assay in GFP-multiTrap plates is less labor-intense and less
time consuming. Compared to batch purification of GFP fusion proteins with GFP-Trap beads, the one-step
purification with the GFP-multiTrap allows for fast and parallel immunoprecipitation of different proteins
of interest. Essentially, centrifugation steps for the sedimentation of beads are substituted by fast and
efficient washing steps. Secondly, the medium throughput manner enables testing of different interacting
partners in parallel. By applying triplicates per interacting protein partners, obtained results become more
reliable. Moreover, test experiments for optimization of the assay settings, like varying protein input
concentrations and different binding and washing conditions can easily be performed in parallel. Thirdly,
this fluorescence intensity based protein-protein interaction assay offers the possibility to calculate
relative binding ratios between the interacting partners. Quantifying interactions can help to understand
the impact of different domains in mediating this interaction (mapping experiments) or to estimate the
nature of the interaction (transient or stable). Furthermore, the robustness of different interactions can be
investigated by applying different subsequent washing conditions with intermediary fluorescence intensity
measurements. Finally, as the assay is based on fluorescent fusion proteins, it is compatible with other
methods for analysis of interactions like Western blotting, co-localization studies, our recently developed
fluorescence three hybrid assay (F3H) (Zolghadr et al. 2008; Herce et al. 2013) or fluorescence recovery
after photobleaching (FRAP).

During the development of the presented assay, we found that to achieve a semiquantitative readout,
the amounts of GFP fusion proteins in the bound fraction have to be balanced prior to the incubation with
the potential RFP fusion binding partners. Thus the potential interactors were expressed separately from
the GFP fusions bearing the risk that interactions, which are for instance dependent on other cellular
components, are not detectable.

In order to express the suitability of this protein-protein interaction assay for medium throughput
3x(0p+0n)

; 0 is the standard deviation of the positive
||J—p_lj—n|

approaches, we calculated the Z-factor (Z =1 —

(0p) and the negative (o) control; p is the mean value for the molar binding ratio of the positive (i) and
negative (W,) controls) (Zhang et al. 1999). The binding ratio of RFP-PCNA to GFP-PBD was used as positive
state (p) and the ratio of RFP to GFP-PBD as negative state (n). The Z-factor of 0.56 indicates that this

approach allows for quantification of protein-protein interactions in a robust and reproducible manner.
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In general, our assay is well suited for the semiquantitative analysis of robust protein-protein
interactions in a multi-well format. An increase in the sensitivity was achieved by applying an enzyme-
linked immunosorbent assay (ELISA) with specific antibodies for endogenous interaction partners of the

bound GFP fusion proteins.

Table 3.1: Overview of advantages and disadvantages of the fluorescent protein-protein interaction assay in the GFP-
multiTrap.

Properties Advantage or disadvantage

Handling in general Fast, less labor intense (compared to conventional co-immunoprecipitation
methods)

Protein amounts Low

Background Low

Reproducibility High

Manifoldness High (protein-DNA, protein-histone tail peptide, protein-protein binding)

Sensitivity Low (increased by ELISA)

Compatibility with other methods High (e.g. ELISA, Western blot, co-localization, F3H, FRAP)
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3.2 Regulation and abundance of DNMT1 during the cell cycle

3.2.1 UHRF1-mediated mechanisms regulating DNMT1 chromatin targeting

Precisely coordinated mechanisms regulating DNMT1 targeting to chromatin are essential for faithful
propagation of DNA methylation during replication. Although DNMT1 was reported to have an intrinsic 30
to 40-fold preference for hemimethylated DNA and to bind the replication protein PCNA, the cofactor
UHRF1 was found to be indispensable for recruitment of DNMT1 to its substrate (Ooi and Bestor 2008;
Hashimoto et al. 2009).

Chromatin targeting of DNMT1 by direct interaction with UHRF1

First evidence of UHRF1 as an important recruitment factor for DNMT1 emerged from studies
describing its preference for hemimethyated DNA resulting from the semiconservative replication
mechanism and its direct interaction with DNMT1 (Bostick et al. 2007; Sharif et al. 2007; Arita et al. 2008;
Avvakumov et al. 2008; Hashimoto et al. 2008) (Figure 3.3). Uhrf1 knockout cells mimic the phenotype of
Dnmt1 knockout cells characterized by global DNA hypomethylation (Li et al. 1992; Bostick et al. 2007).
Recently, the UHRF1 interacting domain has been mapped to the TS domain of DNMT1 (Achour et al.
2008; Felle et al. 2011; Berkyurek et al. 2013; Bashtrykov et al. 2014a), but also to its catalytic CTD (Bostick
et al. 2007). We further characterized the interaction by precise mapping studies on UHRF1 and DNMT1.
Consistent with previous studies, we found that the TS domain is the interacting site in DNMT1 as shown
by semiquantitative co-immunoprecipitation assays and in vivo localization studies. On the side of UHRF1,
the DNMT1 interacting domain has been mostly assigned to the SRA domain (Felle et al. 2011; Berkyurek
et al. 2013; Bashtrykov et al. 2014a). Surprisingly, in our experiments, two domains in UHRF1 contributed
to the interaction. Besides the SRA domain, we could show that the Ubl domain of UHRF1 is involved in the
interaction with DNMT1. Whether the Ubl and the SRA domain act together or independently in specific
cell cycle stages or different steps of the methylation mechanism, possibly depend on the structural
conformation of DNMT1, requires further investigation. One might also speculate that one domain of
UHRF1 is responsible for the recruitment of DNMT1 to its substrate, whereas the other interacting domain
is necessary for DNMT1 binding prior to its ubiquitination by the UHRF1 RING domain (3.2.2). In any case,
our findings suggest that the Ubl as well as the SRA domain are crucial for the regulation of maintenance

DNA methylation.

UHRF1 as a reader and writer of histone PTMs

The role of UHRF1 in maintenance methylation exceeds its ability to interact with DNMT1 and to
recognize the DNA methylation substrate. Growing evidence suggests that UHRF1 binds and sets distinct
epigenetic marks on chromatin. Reading and writing of these marks by different UHRF1 domains and their

implications in DNMT1 interaction, recruitment and regulation are summarized in Table 3.2.
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Table 3.2: Role of different UHRF1 domains in H3 or DNA binding, heterochromatin localization, interactions with
DNMT1 and maintenance DNA methylation. Each domain of UHRF1 has distinct roles in regulating maintenance
methylation by DNMT1. - indicates no role, +/- a partial influence and + an important role. Properties of UHRF1 domains that
remain unclear or need further investigations are marked by (?).

Role of Regulation of Regulation of DNA
H3 N-terminal tail | H3 PTMs Interaction

UHRF1 PH localization DNMT1 PH methylation by
or DNA binding setting with DNMT1

domains localization DNMT1

Ubl - - - + +(?) +(?)

TTD + (H3K9me3) - +/- - + +

PHD + (H3R2) - +/- - + +

SRA + (hemi 5mC) - +/- + + +

RING - + (H3K18ub) - - + +

Besides the DNA binding SRA domain, UHRF1 contains two histone reader modules. Firstly, the TTD
forms an aromatic cage to bind H3 tails di- and trimethylated at K9 (Citterio et al. 2004; Karagianni et al.
2008; Rottach et al. 2010). Secondly, the PHD has been proposed to contribute to binding of this
repressive mark and to recognize unmodified H3R2 of the same histone tail (Wang et al. 2011; Arita et al.
2012; Xie et al. 2012a; Cheng et al. 2013). In this study, we could confirm that the UHRF1 PHD binds to
H3R2 and that this binding is sensitive towards R2 dimethylation (Qin et al. 2015), consistent with previous
studies (Rajakumara et al. 2011). Moreover, H3R2 recognition by the PHD was necessary for localization of
DNMT1 at chromocenters and for maintenance DNA methylation. Consistently, H3K9me3 binding by the
combined TTD and PHD was recently proposed to be essential for regulating maintenance methylation by
DNMT1 (Rothbart et al. 2013).

It has been proposed that histone binding of the PHD plays an important role in targeting UHRF1 to
euchromatic regions linked to active gene expression (Rajakumara et al. 2011). Whether the PHD is only
required for association of UHRF1 with euchromatin or also contributes to TTD-mediated recognition of
repressive H3K9me3, remains unclear. Notably, asymmetric dimethylation of H3R2 by the protein arginine
methyltransferase 6 (PRMT6) has recently been found to antagonize the euchromatic mark H3K4me3
resulting in transcriptional repression (Hyllus et al. 2007). Given that PHD-mediated recognition of H3 is
sensitive towards asymmetric dimethylation of R2 and is involved in DNMT1 targeting, this histone reader
specificity of UHRF1 might indeed be important for DNA methylation in euchromatic regions.

Intriguingly, the nuclear lipid signaling molecule phosphatidylinositol 5-phosphate (PISP) has been
shown to coordinate histone binding specificity of UHRF1 (Gelato et al. 2014; Reynoird and Gozani 2014).
In absence of PI5P the association of UHRF1 with chromatin is dominated by the PHD-mediated binding to
the unmodified H3 N-terminal tail. In the presence of PI5P, however, the TTD is the driving force for
UHRF1 binding to H3K9me3. This switch in histone binding preferences is based on a conformational
change of the protein triggered by PI5P binding to a polybasic region (PBR) in the C-terminus of UHRF1. An
intramolecular interaction between the TTD and the PBR blocks the histone binding ability of the TTD,
which is released by allosteric activation of PI5P binding to the PBR. Interestingly, PISP levels increase
during S phase (Shah et al. 2013). This dynamic regulation might influence cell cycle-dependent differences
of UHRF1 association with chromatin. Therefore, DNMT1 targeting to H3K9me3-rich heterochromatin by
UHRF1 interaction might be favored in late S phase. The inhibitory function of the PBR within UHRF1 opens

an additional level of regulation depending on the nuclear levels of PI5P.
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Besides its important function in reading distinct epigenetic marks on DNA and histones, UHRF1 was
recently reported to set histone PTMs that might help to recruit DNMT1 to its substrate (Nishiyama et al.
2013). The authors of this study illustrate that UHRF1 ubiquitinates histone H3 by means of its RING
domain. Notably, whereas Nishiyama and colleagues found the residue K23 to be ubiquitinated by UHRF1
in Xenopus egg extracts and human cells (Nishiyama et al. 2013), our mass spectrometry data support
ubiquitination at K18, but not K23 in mouse ESCs (Qin et al. 2015). Therefore, the ubiquitinated residue on
H3 might vary among different species. S phase-dependent ubiquitination of H3 by UHRF1 was found to be
dependent on binding of the SRA domain to hemimethylated DNA. Thus UHRF1 DNA binding might
precede the process of setting the new histone mark (Nishiyama et al. 2013). We investigated the
contribution of the PHD in UHRF1-dependent H3 ubiquitination. Interestingly, a PHD mutant defective in
binding H3 peptides carrying an unmodified R2 residue also showed decreased ubiquitination activity
towards H3. Therefore, we suggest that PHD-mediated H3R2 recognition might be one of the first steps in
UHRF1 heterochromatin binding and might serve as a prerequisite for subsequent RING domain-mediated
H3K18 ubiquitination.

Ubiquitin-dependent chromatin targeting of DNMT1

Recently, it was proposed that UHRF1-dependent ubiquitination of H3K23 is recognized by DNMT1
(Nishiyama et al. 2013). However, the mode of recognition remained elusive. We identified a ubiquitin
interacting motif (UIM) within the TS domain of DNMT1 that mediates the recognition of ubiquitinated
histone tails (Qin et al. 2015).

UIMs represent specific ubiquitin binding modules and were first described in the 26 S protease
subunit 5a (S5a, Figure 3.2) (Young et al. 1998; Wang et al. 2005). According to several crystal structures,
protein regions harboring a UIM form a short a-helix as part of a protein fold (Fisher et al. 2003; Lim et al.
2011), like the UIM in DNMT1. UIMs might potentially arrange into oligomers that could explain the
presence of several successive UIMs in some ubiquitin binding proteins like in S5a (tandem UIMs) (Fisher
et al. 2003; Hirano et al. 2006). Various biological functions are ascribed to proteins containing UIMs that
are based on the recognition of mono- and polyubiquitin, or the interaction with ubiquitin-like modifiers
(Schultz and Letunic 1998, 2012). The individual role of ubiquitin binding proteins in ubiquitin metabolism
often depends on the UIM type and the mode of ubiquitin recognition. The structure of the double-sided
single UIM in the hepatocyte growth factor regulated tyrosine kinase substrate (HRS), for instance,
suggests that this protein can efficiently recognize multiply monoubiquitinated proteins prone for
lysosomal degradation. The mode of ubiquitin recognition on double-sided single UIMs is based on the
presence of two closely-spaced UIMs shifted by two amino acids only (Hirano et al. 2006). In contrast, the
single-sided tandem UIMs in S5a enables recognition of polyubiquitinated proteins and their subsequent

degradation by the proteasome (Wang et al. 2005).
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Figure 3.2: Primary sequence and secondary structure of the ubiquitin interacting motif (UIM) in DNMT1. Top: Domain
structure of DNMT1 with illustration of the UIM in the TS domain. Center: Alignment of protein regions containing UIMs that
were identified by use of the Expasy ScanProsite tool, except for DNMT1. The consensus sequence for single-sided UIMs is
shown below (Hirano et al. 2006). The shift of the motif in double-sided UIMs by two amino acids (A x A x S x S/A) is
indicated by arrowheads. The putative subtype of the UIM with its mode of ubiquitin recognition is exemplified on the right.
The UIM in the TS domain of DNMT1 does not entirely match the published consensus sequence (Hirano et al. 2006), but it
comprises important features like the negatively charged amino acids D381, E382 and D395, the hydrophobic M385 and the
highly conserved S at position 395. Buttom left: Secondary structure of mouse DNMT1 (pdb: 3AV4, (Takeshita et al. 2011))
with representation of the UIM (salmon) in the TS domain (cyan). Buttom right: We used superimposition of the secondary
structure of the mouse (cyan, pdb: 3AV4) and human (lightcyan, pdb: 3EPZ, (Syeda et al. 2011)) TS domain in Pymol to show
that the UIM in DNMT1 forms an a-helix (depicted in salmon and purple, respectively).
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A UIM module is composed of 20 residues carrying e-e-x-x-¢-x-x-A-¢d-x-p-S-z-x-e (Hirano et al. 2006),
b-X-X-A-x-x-x-S-x-x-e (Hofmann and Falquet 2001), x-e-e-e-x-¢p-X-X-A-X-Xx-X-S-x-x-e-x-x-x-x (Miller et al. 2004)
or x-e-e-e-e-p-X-X-A-X-x-x-S-x-x-e-x-x-x-x (Fisher et al. 2003) as consensus sequence, where x is any amino
acid, e is a negatively charged residue, ¢ is a hydrophobic residue and z is a bulky hydrophobic or polar
residue. The UIM in the TS domain of DNMT1 does not completely match with these consensus
sequences, but it contains important features of single-sided single UIMs (Figure 3.2). Crystallographic
studies of the UIM in STAM1 indicate that the three central amino acids L176, A179 and S183, form a
hydrophobic interface for ubiquitin binding (Lim et al. 2011). Like in STAM1, the UIM in DNMT1 also
contains the central hydrophobic amino acid M385 and S392 flanked by negatively charged amino acids
(D381, E382, D395). However, the UIM in DNMT1 does not harbor the central A, which is highly conserved
in other ubiquitin binding proteins.

In vitro, we analyzed binding of specific DNMT1 UIM mutants to ubiquitinated H3 indicating that it is
dependent on conserved amino acids in the motif. The negatively charged residues D381 and E382 in the
N-terminal part of the motif and the highly conserved S395 were necessary for binding to ubiquitinated
H3. By use of DNMT1 UIM mutants defective in binding ubiquitinated H3, we showed that the motif is
essential for maintenance DNA methylation in vivo. Moreover, mutations in the UIM led to weaker
association of DNMT1 with chromocenters in late S phase. In line with this, a deletion and a mutation in
the RING domain of UHRF1 disrupting its E3 ubiquitin ligase activity resulted in diffuse nuclear localization
of DNMT1. These findings suggest a recruitment of DNMT1 that is dependent on the RING domain-
mediated writing of ubiquitinated histone H3K18. Therefore, the function of UHRF1 as a writer of a histone
PTM initiates a ubiquitin-dependent targeting mechanism of DNMT1. This mechanism relies on binding of
the UIM to ubiquitinated H3, but not on direct interaction with UHRF1 (Figure 3.3).

In general, ubiquitination of histones is most prevalent on H2A and H2B and has been linked to
transcriptional repression and activation, respectively (Zhang 2003). Really interesting new gene 1A and B
(RING1A/B), which are part of the Polycomb repressive complex 1 (PRC1), are examples for proteins
containing a similar RING domain as UHRF1. In ESCs, RING1A/B are involved in repression of
developmental regulatory genes by mono-ubiquitination of H2A at K119 (Wang et al. 2004; Stock et al.
2007; Endoh et al. 2008). Similar to ubiquitinated H2AK119, we show that the modification on H3 set by
UHRF1 is linked to repressive DNA methylation. UHRF1 ubiquitinates H3 on K18 and thereby recruits
DNMT1 for DNA methylation. Interestingly, we also found that DNMT1 binds to ubiquitinated H2AK119. In
agreement with our finding, a recent study reported DNMT1 among ubiquitinated H2A binding proteins
(Kalb et al. 2014). Given that DNMTs interact with EZH2 (Vire et al. 2006), a component of the PRC2
complex that sets the heterochromatic H3K27me3 mark, UIM-mediated binding of DNMT1 to
ubiquitinated H2A might link DNA methylation to other polycomb-mediated repressive epigenetic
pathways. These findings open new perspectives for a function of DNMT1 distinct from classic

maintenance DNA methylation.
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Targeting of DNMT1 by direct interaction with UHRF1 Ubiquitin-dependent targeting of DNMT1

DNA

Figure 3.3: Schematic representation of DNMT1 chromatin targeting mechanisms. In both mechanisms, chromatin
association of UHRF1 is achieved by TTD-mediated binding to H3K9me3 and SRA-mediated binding to hemimethylated DNA.
left: Chromatin targeting of DNMT1 by direct interaction of its TS domain with the Ubl and the SRA domains of UHRF1.
Interaction with the SRA domain leads to release of the autoinhibitory function of the TS domain and allows for catalytic
activity of the CTD. Interaction of the PBD in DNMT1 with PCNA couples maintenance methylation with DNA replication. The
impact of UHRF1 PHD-mediated binding to H3R2 remains elusive. right: Ubiquitin-dependent chromatin targeting of DNMT1
relies on UHRF1 RING domain-mediated ubiquitination of H3 at K18. Binding of the PHD to unmodified H3R2 might serve as
a prerequisite for subsequent E3 ubiquitin ligase activity on H3. DNMT1 recognizes ubiquitinated H3K18 by its UIM and
methylates target sites in the DNA. Whether this mechanism is coupled to replication and PBD-mediated PCNA binding
remains unclear.

In summary, the TS domain has two important functions in UHRF1-mediated mechanisms regulating
DNMT1 chromatin recruitment: Firstly, DNMT1 targeting by direct interaction with UHRF1 and secondly,
DNMT1 targeting by UIM-mediated binding to ubigitinated H3K18. To date, it remains elusive whether the
two functions of the TS domain are connected or take place in different cell cycle phases. Given that in our
studies defects in UHRF1 interaction as well as ubiquitinated H3 binding led to decreased DNMT1 activity
in heterochromatic regions, we speculate that both targeting mechanisms are essential for the regulation
of maintenance methylation. Future studies analyzing the necessity of different UHRF1 chromatin binding
abilities for H3 ubiquitination and its dependencies on the cell cycle will expand our understanding about
timing and precise regulation of DNMT1 targeting.

Mounting evidence indicates that the TS domain has to be released from the catalytic center of
DNMT1 before the methylation reaction can take place (Syeda et al. 2011; Takeshita et al. 2011). In
absence of DNA, the TS domain blocks the catalytic center in the CTD of DNMT1 and prohibits binding of
the substrate. In this molecular conformation, the TS domain folds back on the CTD and forms an
intramolecular interaction stabilized by several hydrogen bonds (Takeshita et al. 2011). However, this
autoinhibitory mechanism is resolved when the TS domain interacts with the SRA domain in UHRF1
resulting in allosteric activation of DNMT1. Additionally, the interaction was reported to increase the
specificity of DNMT1 towards hemimethylated target sites (Berkyurek et al. 2013; Bashtrykov et al. 2014a).
Consistent with the autoinhibitory role of intramolecular interactions, a DNMT1 TS domain mutant
abolishing the hydrogen bonds with the CTD was shown to increase DNMT1 methylation activity without
affecting its specificity for hemimethylated sites (Bashtrykov et al. 2014f). Consequently, release of the TS

domain from the catalytic center of DNMT1 accompanied by a conformational change is a prerequisite for
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enzyme activation. One might also speculate that TS domain-dependent binding of DNMT1 to
ubiquitinated H3K18 might play a role in releasing autoinhibition.

Furthermore, the H3K23 ubiquitination mark was proposed to serve as a proofreader for the
propagation of DNA methylation after replication (Nishiyama et al. 2013). DNMT1 binding to ubiquitinated
H3 might be replication-independent and might facilitate faithful inheritance of DNA methylation patterns
over many cell generations. Especially in densely methylated regions the speed of maintenance DNA
methylation might not be able to cope with the progression of the replication fork making a replication-
independent recruitment of DNMT1 to hemimethylated sites essential. In line with this, the TS domain of
DNMT1 was previously proposed to mediate replication-independent chromatin loading of DNMT1 in G2
phase (Easwaran et al. 2004).

Interestingly, after depletion of DNMT1, H3K23 ubiquitination levels were highly increased in Xenopus
egg extracts. Reintroduction of an inactive DNMT1 mutant in DNMT1-depleted cells did not alter H3
ubiquitination levels arguing for a catalytic activity-dependent effect (Nishiyama et al. 2013). Notably,
release of DNMT1 from chromatin has been found to coincide with deubiquitination of H3K23. This
observation might be explained by the presence of ubiquitin-specific peptidase 7 (USP7), a known
interactor of DNMT1 (Du et al. 2010; Qin et al. 2011). USP7 functions as a deubiquitinase and might
remove ubiquitination marks from H3 after catalytic activity of DNMT1 on the surrounding DNA
(Nishiyama et al. 2013). One might speculate that deubiquitination of H3 removes DNMT1 from chromatin
after completion of DNA methylation at the end of S phase or in early G2 phase. Studies on cell cycle-
dependent DNMT1 conformation and complex composition especially with respect to modified DNA,
histones, UHRF1 and USP7 will give us a much better understanding about the regulation of maintenance
DNA methylation than we currently possess.

It should be noted that acetylation of H3 at K23 is abundant in mammalian cells (Marvin et al. 1990;
Thomas et al. 2006). Remarkably, in Arabidopsis two H3K18 and K23 acetyltransferases, repressor of
silencing 1 (ROS1) and increased DNA methylation 1 (IDM1), have been shown to suppress DNA
methylation at promoter sequences (Li et al. 2012; Qian et al. 2012). Consequently, H3K18/K23
ubiquitination and acetylation might have competitive roles in the regulation of maintenance DNA
methylation. Binding studies of DNMT1 at H3K18/K23 ubiquitinated versus acetylated promoter regions
would be of great interest to enlarge our understanding about DNMT1 targeting. Moreover, analyses of
the precise H3K18/K23 ubiquitination and acetylation timing will shed light on the cell cycle-dependent
regulatory functions of these histone modifications.

Collectively, UHRF1 has a multifaceted role in directing DNA methylation by DNMT1 that involve its
histone and DNA modification reader functions as well as its histone PTM writer domain. Intramolecular
autoinhibitory mechanisms and the nuclear lipid signaling molecule PISP add an additional level of
complexity to UHRF1-mediated DNMT1 chromatin targeting. By elucidating the precise and coordinated
role of different UHRF1 domains and by identification and functional characterization of the UIM in

DNMT1, we have started to unveil a novel ubiquitin-dependent mechanism controlling DNA methylation.
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3.2.2 Cell cycle-dependent modifications and interactions controlling DNMT1 abundance

DNMT1 protein levels are dynamically regulated during the cell cycle. Whereas lowest levels are found
in G1 phase, they are increased during S phase and drop again in G2 phase (Du et al. 2010). DNMT1
abundance is regulated at the transcriptional and the protein level. Different PTMs on DNMT1 enhance
stabilization of the protein or initiate its proteasomal degradation (Figure 3.4).

Acetylation driven ubiquitination of DNMT1 by UHRF1 leads to destabilization of the protein (Du et al.
2010). Interestingly, the trigger of this pathway, the acetyltransferase Tip60, has an increased expression
in late S phase resulting in elevated levels of acetylated DNMT1 at the end of replication. The amino acids
in DNMT1 targeted by Tip60 still remain unknown. UHRF1, in turn, ubiquitinates acetylated DNMT1 by
means of its RING domain, thereby marking the protein for proteasomal degradation. Deubiquitination by
USP7 (also known as herpesvirus-associated ubiquitin-specific protease (HAUSP)) leads to stabilization of
DNMT1 (Du et al. 2010; Felle et al. 2011; Qin et al. 2011). Moreover, DNMT1 is stabilized by HDAC1-
mediated deacetylation counteracting the activity of Tip60.

DNMT1 monomethylation by SET7 at K142 and K1096 in human and mouse cells, respectively, leads to
destabilization of the protein (Esteve et al. 2009). Monomethylated DNMT1 is prone to subsequent
ubiquitination and results in proteasomal degradation of the protein. Yet, it is not clear whether UHRF1 or
another E3 ubiquitin ligase is involved in the methylation driven ubiquitination of DNMT1. Remarkably, a
PTM on the adjacent S143 promotes stabilization of DNMT1 (Esteve et al. 2011). S143 phosphorylated
DNMT1 is protected from K142 methylation and consequently cannot be marked for proteasomal
degradation. During S phase, the phosphorylated form of DNMT1 is more prevalent, whereas the
methylated form is mainly found in late S and G2 phase. This switch between two mutually exclusive PTMs
controls the cell cycle-dependent regulation of DNMT1 protein abundance. In addition, lysine-specific
demethylase 1A (LSD1) functions as a stabilizer by demethylating DNMT1 and thus counteracting the
methyltransferase SET7 (Wang et al. 2009). However, regulatory effects of methylation of other lysine
residues within DNMT1 than K142 or K1096 cannot be ruled out.

DNMT1 stability was found to be altered in human cancer cells, but evidence about the mode of
deregulation remains contradictory. In healthy tissues, activated ataxia telangiectasia mutated (ATM)
interacts with DNMT1 and coordinates its acetylation by Tip60. This leads to UHRF1-mediated
ubiquitination and destabilization of DNMT1. In contrast, retinoblastoma protein (pRB) stabilizes DNMT1
by antagonizing ATM and enabling HDAC1-mediated deacetylation of DNMT1. On the one hand, in tumor
cells lacking functional pRB, the ATM-Tip60 driven destabilization pathway is favored. Consequently, low
DNMT1 protein levels might lead to decreased promoter methylation and aberrant gene expression
related to malignant progression (Shamma et al. 2013). On the other hand, upregulation of the stabilizer
LSD1 might lead to increased DNMT1 protein levels in many types of cancer (Agoston et al. 2005; Metzger
et al. 2005; Sun et al. 2007).

The regulation of DNMT1 protein stability has been suggested to rely on its very N-terminal region.
This hypothesis was addressed by a study using engineered mice heterozygous for the somatic and the
oocyte-specific isoform of DNMT1 (Howell et al. 2001), both driven by the somatic endogenous promoter
to ensure equal transcription (Ding and Chaillet 2002). In late embryonic stages, protein levels of the
somatic longer isoform were five times reduced compared to the shorter oocyte-specific isoform
indicating that the first 118 amino acids contribute to the control of DNMT1 stability.
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DNMT1 destabilizing effects

2C

* Disrupted interaction of DNMT1 with
UHRF1 by HSAN-IE associated mutations¥

* Ubiquitination of DNMT1 by UHRF1 RING domain
* DNMT1 methylation at K142 and K1096 by SET7

* DNMT1 acetylation by TIP60
* Disruption of UHRF1 binding to H3K9me3 by TTD mutations

Figure 3.4: Overview of DNMT1 stabilizing and destabilizing effects with indication of proteins writing and erasing PTMs.
DNMT1 is stabilized by interaction with PARylated UHRF1, which possesses a reduced E3 ubiquitin ligase activity.
Ubiquitination on DNMT1 is removed by USP7 and ubiquitination driving PTMs like methylation and acetylation are erased
by the action of LSD1 and HDAC1, respectively. Moreover, S143 phosphorylation prevents K142 methylation on DNMT1 and
subsequent ubiquitination. Chromatin targeting of DNMT1 is ensured by binding of the UHRF1 TTD to H3K9me3. In contrast,
DNMT1 is destabilized by disruption of the interaction with UHRF1 due to HSAN-IE associated mutations. The release of the
TS domain from the CTD of DNMT1 might be blocked if it is not allosterically activated by interaction with the SRA domain of
UHRF1. DNMT1 methylation by SET7 and its acetylation by Tip60 trigger DNMT1 ubiquitination thereby marking it for
proteasomal degradation. Furthermore, disruption of UHRF1 TTD histone binding leads to destabilization of DNMT1.

Poly(ADP-)ribosylation (PARylation) has also been shown to serve as a trigger for E3 ubiquitin ligase
activity (Zhang et al. 2011; Kalisch et al. 2012). To address the question whether poly-(ADP-ribose)
polymerase 1 (PARP1)-mediated PARylation of UHRF1 has an influence on its E3 ubiquitin ligase activity,
we analyzed DNMT1 ubiquitination and abundance in the presence or absence of PARP1 (De Vos et al.
2014a). Notably, we found an enhanced interaction of PARylated UHRF1 with DNMT1. In the presence of
PARP1, the E3 ubiquitin ligase activity of UHRF1 towards DNMT1, however, was decreased suggesting an
inhibitory effect of UHRF1 PARylation on DNMT1 destabilizing mechanisms. Remarkably, the stabilizing
effect of PARP1 was most evident in late S and G2 phase. One model could envision that tighter binding of
DNMT1 to PARylated UHRF1 does not increase DNMT1 ubiquitination but rather its robust binding to
heterochromatin associated with increased protein stability.

Interestingly, we and others found DNMT1 to be prone for proteasomal degradation in Uhrf1 knockout
and knockdown cells (Rothbart et al. 2012), indicating that the integrity of the complex DNA-UHRF1-

DNMT1 is important for protein stabilization. Consistently, we observed the same protein destabilization
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for DNMT1 mutants defective in binding to UHRF1 (see 3.3.1). HSAN-IE associated mutations disrupted the
interaction with UHRF1 and resulted in cell cycle-dependent protein degradation. Live cell analyses
revealed that GFP-DNMT1 P496Y.Y500C was expressed at similar levels as the wt protein in early S phase,
whereas expression levels dropped when the cell entered mid and late S phase. The lowest expression was
found in G2, but was recovered in G1 phase. The cell cycle-dependent degradation of mutated proteins
might argue for an important role of UHRF1 binding in DNMT1 stabilization at chromatin especially at the
end of DNA replication. As stated above, former studies have demonstrated that the TS domain may be
responsible for prolonged association of DNMT1 with chromatin during late S and G2 phase in part by
interaction with heterochromatin bound UHRF1 (Easwaran et al. 2004; Schneider et al. 2013). Given that
DNMT1 is more prone for proteasomal degradation in late S and G2 phase due to SET7-mediated
methylation, non-chromatin associated DNMT1 molecules might preferentially be ubiquitinated.
Moreover, TTD-mediated chromatin targeting of UHRF1 has been shown to be required for DNMT1
stability in mitosis (Rothbart et al. 2012).

Based on these results we hypothesize that DNMT1 molecules, which are not targeted to chromatin,
are more likely to be degraded. It is tempting to speculate that this degradation pathway might ensure
that only correctly targeted DNMT1 has a lifetime allowing for catalytic activity on DNA. Another possibility
is that DNMT1 enzymes, which are not actively engaged in maintenance DNA methylation and are thus
excessive, could preferentially be marked for proteasomal degradation. Compatible with this hypothesis,
the de novo methyltransferases DNMT3A and DNMT3B have recently been demonstrated to be stabilized
by binding to nucleosomes containing methylated DNA (Jeong et al. 2009; Stachulski et al. 2011). Another
study supporting this hypothesis reports induction of free non-chromatin bound DNMT1 degradation after
treatment of the cells with 5-aza-deoxycidine (5-aza-dC) (Patel et al. 2010). An earlier study claims that this
destabilizing effect is independent of the catalytic activity of DNMT1, but dependent on the nuclear
localization signal (NLS) and the BAH domains (Ghoshal et al. 2005). By deletion of the NLS or the BAH
domains, degradation of DNMT1 was prevented. As both deletion mutants localized mostly in the
cytoplasm, spatial separation from degradation inducing factors can, however, not be ruled out.
Physiological turnover of DNMT1 as well as the 5-aza-dC induced degradation was mediated by a
component of the anaphase promoting complex (APC), CDH1, exerting E3 ubiquitin ligase activity on
DNMT1. CDH1 is known to be activated after dephosphorylation in anaphase and telophase of mitosis
(Peters 2002) for subsequent ubiquitination of substrates harboring a KEN motif (Pfleger and Kirschner
2000). Such a KEN box was found in the very N-terminal part of the DNMT1 CXXC domain and its mutation
to AAA led to stabilization of the enzyme (Ghoshal et al. 2005). Given that the destabilization of DNMT1
observed in Uhrfl'/' cells is decoupled from ubiquitination by UHRF1, a yet unknown E3 ubiquitin ligase
might mark non-chromatin bound free DNMT1 molecules for proteasomal degradation, possibly CDH1.
Elucidating whether this destabilizing mechanism is promoted by DNMT1 methylation or acetylation and
which proteins are involved with respect to the cell cycle would shed light on the underlying degradation
pathway.

Taken together, DNA methylation is not only controlled by mechanisms coordinating DNMT1
chromatin targeting, but also by cell cycle-dependent regulation of DNMT1 protein abundance. Future
research should focus on further elucidating the interplay between differential DNMT1-protein complex

composition and associated PTMs, conformational changes, intra- and intermolecular interactions as well

233



Discussion

as histone and DNA modifications to clarify the regulatory role of different DNMT1 targeting mechanisms

in time and space.
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3.3 Hereditary sensory and autonomic neuropathy type | with mutations in DNMT1

3.3.1 The TS domain as hotspot for HSAN-IE and ADAC-DN associated mutations in
DNMT1

Among thirteen other proteins, DNMT1 is associated with the neurodegenerative disease HSAN.
Within the subgroup HSAN-I and CMT2B, mutations in six genes have been described so far. However, the
ever growing number of affected genes, for instance, by the recent identification of Atlastin 3 (ATL3)
(Fischer et al. 2014; Kornak et al. 2014), suggests that even more genes might be involved in this disease.
To date, 14 different DNMT1 point mutations and one deletion mutation have been characterized, which
are causative for HSAN-IE and ADCA-DN. Strikingly, all point and deletion mutations are located within the
TS domain in the NTD of DNMT1 (Figure 3.5, see Table 1.1). No mutations were found in the weakly
conserved very N-terminal part of the TS domain (amino acid 313-340) and only one mutation is located in
the subsequent region (C353F). HSAN-IE associated mutations cluster in the central part, whereas ADCA-
DN associated mutations are located in the C-terminal part of the TS domain. All identified mutations

affect highly conserved amino acids.
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Figure 3.5: Overview of DNMT1 TS domain mutations found in patients suffering from HSAN-IE or ADCA-DN. Top:
Schematic outline of DNMT1 domains with indication of the 15 disease related mutations in the TS domain. bottom: Primary
sequence alignment of the TS domain from different species with representation of disease associated mutations and the
human TS domain secondary structure (pdb: 3EPZ). Note that the amino acid positions in the protein were adapted to the
human DNMT1 isoform shown in the alignment (NP_001370.1).

In order to clarify regulatory defects of HSAN-IE associated TS domain mutations (Klein et al. 2011), we
cloned mutant mouse DNMT1 constructs (DNMT1 P496Y and DNMT1 Y500C, corresponding to human
DNMT1 D490E.P491Y and DNMT1 Y495Y) and performed biochemical and functioanal cell biological
assays.

Since the TS domain has been described as mediator for the interaction with UHRF1 (Achour et al.

2008; Felle et al. 2011), we investigated the ability of the HSAN-IE associated TS domain mutants to
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interact with UHRF1 and to restore DNA methylation in mouse Dnmt1”" ESCs. As described above (see
3.2.2), interaction of the mutants GFP-DNMT1 P496Y or GFP-DNMT1 Y500C as well as of the combination
of both mutations with Cherry-UHRF1 was impaired. In support of the assumption that chromatin
targeting of DNMT1 by direct interaction with UHRF1 is essential for the regulation of maintenance DNA
methylation (see 3.2.1), we found that the HSAN-IE associated DNMT1 mutants were indeed inactive in
vivo. In agreement with this observation, we could show that a TS domain deletion mutant (GFP-DNMT1
A458-500) covering the region of the point mutations was unable to restore DNA methylation levels in
Dnmt1”" ESCs. Consistently, DNA samples of HSAN-IE patients were characterized by global DNA
hypomethylation (Klein et al. 2011).

To elucidate the interplay between UHRF1 interaction and chromatin association in vivo, we analyzed
DNMT1 subnuclear distribution and protein dynamics by FRAP. In line with defects in chromatin targeting
via interaction with UHRF1, GFP-DNMT1 P496Y, GFP-DNMT1 Y500C and the combination of both
mutations showed only weak association with late replicating heterochromatin. In contrast to cell cycle-
specific localization patterns of full length DNMT1, the wildtype TS domain was constantly associated with
heterochromatin in dependence on UHRF1, but not on methylated DNA. Consistent with strong
chromocenter association, FRAP analyses revealed slow kinetics of GFP-TS wt with a high immobile
fraction of~75%. In contrast, the diffuse nuclear localization of the HSAN-IE associated TS domain mutants
was reflected by considerably faster protein kinetics without an immobile fraction. These results suggest
UHRF1-dependent localization patterns of DNMT1 and reinforce the link between TS domain-mediated
UHRF1 binding und DNMT1 chromatin targeting.

Furthermore, we found a cell cycle-dependent destabilization of the mutant proteins (see 3.2.2). In
agreement with these observations, HSAN-IE associated mutations in human DNMT1 have been shown to
be less stable when compared to the wild type (Klein et al. 2011). Consistently, a recent study illustrates
that HSAN-IE associated DNMT1 mutants are prone for aggresome induced autophagy resulting in altered
protein homeostasis (Baets et al. 2015).

In summary, our study revealed that DNMT1 mutants defective in UHRF1 and late replicating
chromatin binding lead to cell cycle-dependent destabilization and DNA hypomethylation. Understanding
the detailed biological defects of the remaining DNMT1 disease associated mutants may shed light on the

common disease mechanism in HSAN-IE and ADCA-DN.

3.3.2 Functionally relevant regions within the TS domain

The finding that the TS domain was responsible for UHRF1 interaction and strong heterochromatin
association prompted us to seek for regions within the TS domain that are functionally relevant for
enzymatic activity of DNMT1 in vivo. To this end we created a systematic set of GFP-DNMT1 TS domain

deletion constructs (Figure 3.6) and analyzed their activity by a functional complementation assay.
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Figure 3.6: Outline of functionally relevant regions in the DNMT1 TS domain. Functionally important regions within the TS
domain were mapped with deletion mutants and a complementation assay. For comparison the ubiquitin interacting motif
(UIM), the UHRF1 interacting region and the neurodegenerative disease associated mutations are indicated.

Interestingly, the very N-terminal region of the TS domain, which shows only low conservation among
different species (see Figure 3.5) and is only affected by one disease associated mutations, was
dispensable for DNMT1 activity. In contrast, regions comprising amino acid 356 to 404 as well as 458 to
573 were important for the regulation of mouse DNMT1 enzymatic activity in vivo and their deletion
resulted in inactivation of maintenance DNA methylation. According to the idea of different regulatory
functions attributed to the TS domain, the inactivation of enzyme activity by deletion of amino acid 356 to
404 can be explained by the UIM located in this region (see 3.2.1). Using this deletion as well as defined
point mutants, we could show that the UIM-mediated DNMT1 chromatin targeting via binding to
ubiquitinated H3K18 is indispensable for maintenance DNA methylation. In agreement with our results, a
deletion of the region encompassing amino acid 325 to 425 in mouse DNMT1 has been shown to be
defective in binding to ubiquitinated H3 (Nishiyama et al. 2013). Moreover, we assume that GFP-DNMT1
A458-500 is inactive as a consequence of deleting the region responsible for interaction with UHRF1. In
the C-terminal part of the TS domain, the amino acids E530, D531, D553 and L592 are known to contribute
to DNMT1 autoinhibition by interaction with the CTD via four hydrogen bonds (Song et al. 2011b;
Berkyurek et al. 2013). However, whether this part of the TS domain has further distinct regulatory
functions remains elusive.

Given the multifunctional regulatory role of the TS domain in mediating DNMT1 chromatin targeting
and enzymatic activity, we propose that disease associated TS domain mutants might have defects in
different regulatory steps. These defects might, however, all lead to decreased DNA methylation activity of
DNMTL.

3.3.3 Unraveling HSAN disease mechanisms

Although several studies on disease-associated mutations in important epigenetic factors like MeCP2,
DNMT3A and DNMTI1 exemplify the involvement of decreased or increased DNA methylation in

neurodegeneration, the biological processes linking these epigenetic changes to neuronal cell death
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remain to be determined. Nonetheless, studying the function of wildtype proteins and comparing them to
disease associated mutated proteins is a prerequisite for the identification of suitable drug targets.
Apparently, the treatment of HSANs, for instance, is limited due to the lack of basic knowledge about
common disease mechanisms, of relevant drug targets and certainly due to the unprofitable market of
these rarely occurring dieases for pharmaceutical companies.

To gain insight into the biological pathways underlying the PNS degeneration, future studies should
focus on finding common pathways involved in the regulation of axonal survival and on modeling of
neuronal pathogenesis. Firstly, mouse models can help to understand the biological background of the
disease phenotype and offer the possibility of testing potential drugs. Secondly, the use of human induced
pluripotent stem cells (iPSCs) from patients, though it still remains challenging, is an elegant tool to model
disease mechanisms under physiological conditions without overexpression and off target effects due to
different genetic backgrounds of mouse strains (Lee et al. 2009). In a recent study, Lee and colleagues
have derived human iPSCs from HSAN-III (also known as familial dyautonomia) patients carrying point
mutations in the /IKBKAP gene. After differentiation into peripheral neurons, defects in protein-specific
functions like mis-splicing were found. Reversion of these defects has been tested by potential candidate
drugs offering new insights into the disease mechanism and treatment of familial dyautonomia. Patient
derived human iPSCs have also helped to validate the phenotypes of other neurodegenerative disease
such as Alzheimer’s disease, Parkinson’s disease, Huntingtons’s disease, amyotrophic lateral sclerosis and
spinal muscular atrophy (Jung et al. 2012).

Given the genetic and clinical heterogeneity of HSANs, a common molecular pathway leading to
pathogenesis has not yet been completely elucidated. Whereas proteins like the nerve growth factor
receptor Trk-A mutated in HSAN-IV have directly been implicated in neuronal development, growth and
survival (Rotthier et al. 2012), the role of DNA methylation by DNMT1 for neurogenesis is only partially
understood.

The role of DNMT1 in neurogenesis has been studied with conditional gene deletions in mouse models
(Fan et al. 2001). By use of conditional knockout mice that allowed for specific Dnmt1 deletion in different
developmental stages, effects of DNMT1 deficiency in embryonic CNS precursor cells and adult postmitotic
CNS neurons have been investigated. In vitro, postmitotic cerebellar neurons survived and developed
healthy and did not show global changes in DNA methylation levels after DNMT1 depletion. In vivo,
conditional Dnmt1 gene deletion in postmitotic CNS neurons did derogate neither animal viability nor
long-term neuronal survival and did not change DNA methylation levels. In contrast, Dnmt1 gene deletions
in CNS precursor cells at embryonic day E9S to E10 resulted in DNA hypomethylation in the brain and in
perinatal lethality (one hour after birth) of mutant mice due to defects in neuronal respiratory control and
ensuing respiratory failure. DNMT1 was undetectable at embryonic day E15.5 arguing for a rapid protein
turnover, however, with no influence on the differentiation process into neurons. Interestingly, studies on
a mosaic mutant containing only 30% Dnmtl deleted neurons suggest that DNMT1-deficient
hypomethylated neurons were selectively eliminated from the postnatal brain. Thus, DNMT1 seems to be
crucial for maintenance DNA methylation in CNS precursor cells and for cell viability and function of
postmitotic CNS neurons . In summary, this study provides strong evidence for an essential role of DNMT1
and DNA methylation in neuronal precursors and for deleterious effect of DNMT1 depletion on neuronal

survival (Fan et al. 2001).
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Dnmtl gene deletion in mouse NPCs results in elevated Signal Transducers and Activators of
Transcription (STAT) activity as well as enhanced and precipitate differentiation into astrocytes. These
findings indicate that DNA methylation has an inhibitory effect on Januskinase (JAK) -STAT signaling and
regulates the timing of astrogliogenesis (Fan et al. 2005). In mouse retinal NPCs, Dnmt1 gene deletion
does not alter cell proliferation, but hinders maturation and survival of postmitotic neurons. Mutant mice
showed fast postnatal retinal degeneration suggesting that maintenance DNA methylation is required for
mammalian retinal development (Rhee et al. 2012).

DNA methylation patterns in the brain are not immutable after birth, but they underlie dynamic
changes triggered by external stimuli allowing for behavioral plasticity, memory formation and
maintenance. One might speculate about the existence of specific regulatory mechanisms selectively
changing DNA modification states in neuronal cells, whereas the modification patterns in other cell types
are faithfully maintained (Yu et al. 2011). It is puzzling, that patients carrying mutation in DNMT1 show a
PNS-restricted phenotype. However, given that DNA methylation patterns might be selectively modulated
in neurons, DNMT1 might have additional replication-uncoupled roles in the nervous system distinct from
its classical role as a maintenance enzyme in dividing somatic cells. Considering the important role and
high expression of DNMT1 in the nervous system, and potential replication-independent DNA methylation
by DNMT1, it is better understandable that the heterozygous mutations of HSAN-IE and ADCA-DN patients
have a more pronounced effect on the CNS and PNS compared to other tissues. DNMT1 protein
abundance is diminished by the destabilizing effects of the HSAN-IE mutations (see 3.3.1) and might be
further compromised by fast protein turnover (Fan et al. 2001).

Taken togehter, DNMT1 is known to play a crucial role in the function of CNS neurons in postnatal
animals, but the defined molecular disease mechanisms of DNMTI mutations leading to the nervous
system-restricted and late-onset phenotype observed in HSAN-IE and ADCA-DN patients remain to be

elucidated.
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4.2 Abbreviations

Abbreviation Meaning

A deletion

53BP1 p53 binding protein 1

5-aza-dC 5-aza-deoxycidine

5caC 5-carboxycytosine

5fC 5-formylcytosine

5hmC 5-hydroxymethylcytosine

5mC 5-methylcytosine

ac acetylated

ADCA-DN autosomal dominant cerebellar ataxia, deafness and narcolepsy
ADD ATRX-DNMT3-DNMT3L

ADP adenosine diphosphate

AID activation-induced deaminase

alPC astrocyte intermediate progenitor cell

AML aute myeloid leukemia

AOTF acousto-optical tunable filter

APC anaphase promoting complex

APOBEC apolipoprotein B mRNA-editing enzyme complex
App amyloid precursor protein

ar ADP ribosylated

ASH1L Absent, small and homeotic discs 1-like
ATL3 Atlastin 3

ATM ataxia telangiectasia mutated

BAH1/2 bromo-adjacent homology 1/2

BDNF brain derived neurotrophic factor

BER base excision repair

BiFC bimolecular fluorescence complementation
CBP CREB binding protein

CDK2 cyclin-dependent kinase 2

CF cerebrospinal fluid

Ch cherry

CIPA congenital insensitivity to pain with anhidrosis
CNS central nervous system

CTD carboxy-terminal domain

CXXC zinc finger

DG dentate gyrus

DIx2 Distal-less homeobox 2

DMAP1 DNA methyltransferase associated protein 1
DNMT1/2/3A/3B/3L DNA methyltransferase 1/2/3A/3B/3L
DNMT1o oocyte-specific isoform of DNMT1

ELP3 Elongator complex 3

ELSA enzyme-linked immunosorbent assay
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Abbreviation

Meaning

ESC embryonic stem cell

EZH2 enhancer of zeste homolog 2

F3H fluorescence three hybrid assay

FACS fluorescence activated cell sorting

Fgf1B fibroblast growth factor 1

FMR1 fragile X mental retardation-1

FRET fluorescence resonance energy transfer

FXN frataxin

GADD458B growth arrest and DNA damage-inducible protein 458
GCN5 general control nonderepressible 5

GCNF germ cell nuclear receptor

GFP green fluorescent protein

HAT histone acetyltransferase

HAUSP herpes virus associated ubiquitin-specific protease
HDAC histone deacetylase

hiPSC induced pluripotent stem cell

HMN hereditary motor neuropathy

HMSN hereditary motor and sensory neuropathy
HMT histone methyltransferase

HP1 heterochromatin binding protein 1

HRS hepatocyte growth factor regulated tyrosine kinase substrate
HSAN hereditary sensory and autonomic neuropathy
HSP hereditary spastic paraplegia

IAP intracisternal A particle

ICBPSO inverted CCAAT binding protein of 90 kDa

ICF Immunodeficiency, Centromeric region instability, Facial anomalies
IDM1 increased DNA methylation 1

JAK januskinase

KG lysine-glycine

KIF-1A kinesin family member 1A

LINE long interspersed nuclear elements

LSD1 lysine-specific demethylase 1A

LTRs long terminal repeats

M phase mitosis phase

MBD methyl-CpG binding domain

MBP 5mC binding protein

MDS myelodysplastic syndrome

mel monomethylated

me2 dimethylated

me2a assymmetrically dimethylated

me2s symmetrically dimethylated

me3 trimethylated

MEF mouse embryonic fibroblast
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Abbreviation

Meaning

Mg mobile fraction

ml myoinositol

MPD myeloproliferative disorder

MRI magnetic resonance imaging

MSLT multiple sleep latency test

nIPCs neuronal intermediate progenitor cells
nIPCs neuronal intermediate progenitor cell
NIRF Np95/ICBP90-like RING finger

NLS nuclear localization signal

NP95/97 Nuclear protein of 95/97 kDa

NPC neuronal progenitor cell

NSC neuronal stem cell

NSD1/2/3 nuclear receptor SET domain-containing 1/2/3
NTD N-terminal domain

N-terminal Amino-terminal

oct4 octamer binding transcription factor 4
olPC oligodendrocyte intermediate progenitor cell
PARP1 poly(ADP-ribose) polymerase 1
PARylation poly(ADP-)ribosylation

PBD PCNA binding domain

PBR polybasic region

PCAF p300/CBP-associated factor

PCNA proliferating cell nuclear antigen
PCNP PEST-containing nuclear protein

pdb protein database

PGC primordial germ cell

ph phosphorylated

PH pericentromeric heterochromatin
PHD plant homeodomain

PISP phosphatidylinositol 5-phosphate
PNS peripheral nervous system

pRB retinoblastoma protein

PRC2 polycomb group repressor complex 2
PRMT6 protein arginine methyltransferase 6
Ps1 presenilin 1

PTM Post translational modification
PWWP proline-tryptophan-tryptophan-proline
RARE RA receptor element

REM rapid eye movement

RFP red fluorescent protein

RGC radial glial cell

RING really interesting new gene

ROS1 repressor of silencing 1
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Abbreviation Meaning

RSWA REM sleep without atonia

S phase synthesis phase

SAM S-Adenosyl-L-Methionine

SETD1A/1B/3 SET domain containing 1A/1B/3

SETDB1 SET domain, bifurcated 1

SETMAR SET domain and mariner transposase fusion gene-containing
SGZ subgranular zone

SINE short interspersed nuclear element

SMN1 survival of motor neuron 1

SMYD2 SET and MYND domain-containing 2
SOMREMP sleep-onset rapid eye movement period

SRA SET and RING-associated

STAT Signal Transducers and Activators of Transcription
su sumoylated

SUV39H1/H2 suppressor of variegation 3-9 homolog 1 and 2
SUV4-20H1/2 suppressor of variegation 4-20 homolog 1/2
SvVz subventricular zone

TDG thymine DNA glycosylase

TET ten eleven translocation

TIP60 Tat interacting protein of 60 kDa

TKO triple knockout

TNFa tumor necrosis factor alpha

TS targeting sequence

TSA Trichostatin A

TSS transcriptional start site

TTD tandem Tudor domain

ub ubiquitinated

Ubl ubiquitin-like

UHRF1 ubiquitin-like, containing PHD and RING finger domains 1
UM ubiquitin interacting motif

USP7 ubiquitin-specific processing protease 7

vz ventricular zone

WNK1 with-no-lysine(K)-1

268



Annex

4.3 List of genes and corresponding proteins associated with HSAN-I to V.

Genes and corresponding proteins are listed according to the HSAN type and the mode of inheritance with information
about the expression pattern and biological functions. HSAN: hereditary sensory and autonomic neuropathy; ADCA-DN:
autosomal dominant cerebellar ataxia, deafness and narcolepsy.

Gene . Inheri- ) i . ) .
Mutation Type of HSAN Protein name Expression Biological function
name tance
SPT1: Serine
Missense Cells of immune
SPTLC1 . palmitoyltransferase )
mutations . system, brain Catalysis of first step in de novo
subunit 1 ) ) o
HSAN-I biosynthesis of sphingolipids
SPT2: Serine
Missense ) Cells of immune (Hanada 2003)
SPTLC2 ) palmitoyltransferase
mutations ) system
subunit 2
Small RAB GTPase, formation and
) CMT2B: Charcot— transport of intracellular vesicle;
Missense , RAB7A: Ras-related o . )
RAB7A . Marie-Tooth ) Ubiquitously tethering and fusion of
mutations . protein RAB7A
disease type 2B endosomal membranes
(Hutagalung and Novick 2011)
GTPase activity; role in
) S Brain, hippocampus, intracellular membrane
) HSAN-I, hereditary < ) o )
Missense . . IS ) pyramidal trafficking at the endoplasmic
ATL1 . spastic paraplegia S ATLAL: Atlastin-1 ) B
mutations (HSP) = neurons (Zhu et al. reticulum-to-Golgi interface (Zhu
% 2003) et al. 2003; Namekawa et al.
v
O
=] 2007)
<
endoplasmic reticulum-shaping
) ) GTPase, facilitates connection of
Missense CNS (Fischer et al.
ATL3 . HSAN-I ATLA3: Atlastin-3 ER tubules to networks by
mutations 2014) ) )
homotypic membrane fusion
(Kornak et al. 2014)
Ubiquitously,
Maintenance DNA
) HSAN-I with postmitotic neurons )
Missense DNMT1: DNA methyltransferase; propagation
DNMT1 ) subtype HSAN-IE of adult CNS (Tawa ) .
mutations methyltransferase 1 ) of DNA methylation during after
and ADCA-DN et al. 1990), immune o o
replication and repair (Bird 2002)
cells
) WNK1: with-no- HSN2-containing
Missense, . ) ) . o
lysine(K)-1; only HSN2- isoform: CNS, PNS, Serine-threonine protein kinase;
nonsense o } ) ]
) containing nervous dorsal root sodium, chloride and potassium
WNK1 mutations; g ) e ) o )
) ) @ tissue-specific isoform ganglia and sciatic homeostasis (Anselmo et al.
insertions, 4 )
) @ of WNK1 affected nerves (Shekarabi et 2006)
deletions HSAN-II = )
g (Shekarabi et al. 2008) al. 2008)
(o)
3 o Component of the cis-Golgi
) 5 FAM1348B: family with PNS (sensory and ) ) i
FAM Missense < o ) ) matrix, shaping and tethering the
, sequence similarity autonomic ganglia)
134B mutations membrane stacks (Kurth et al.

134, member B

(Kurth et al. 2009)

2009)
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Gene Inheri- ) )
Mutation Type of HSAN Protein name Expression Biological function
name tance
Frame-shift Molecular motor protein;
mutations o ) anterograde axonal transport of
) Nerve-specific splice ) }
mostly in synaptic vesicle precursors
KIF1A: Kinesin family variant: dorsal root
KIF1A nerve- HSAN-II o (Okada et al. 1995); interacts with
= member 1A ganglia (Riviere et al. )
specific exon 2011) the domain of WNK1 encoded by
(Riviere et al. the HSN2 exon (Riviere et al.
2011) 2011)
HSAN-III (also ELP1: Elongator ) o )
o . ) Differentiating Scaffold protein, assembly of RNA
Splice-site known as familial complex protein 1 (also
) ) ) neurons of CNS and polymearse Il elongator complex
IKBKAP and missense | dysautonomia or known as IkB kinase ) )
) ) ) PNS (Hunnicutt et al. | (Otero et al. 1999); acetylation of
mutations Riley— complex-associated )
) 2012) a-tubulin (Creppe et al. 2009)
Day syndrome) protein)
High-affinity nerve growth factor
receptor; tyrosin kinase;
> 40
) neurotrophin signaling; B-NGF as
misssense, 9]
HSAN-IV (also z Long isoform (Trk- binding ligand; development and
nonsense, ] ) ) ) )
) known as o All) in neuronal survival of sympathetic ganglia
frameshift ) 2 ) o
' congenital © o tissues (Barker et al. and nociceptive sensory neurons
NTRK1 and splice- ) o £ Trk-A: tyrosin kinase A ) )
" insensitivity to 2 1993), CNS in dorsal root ganglia, of
site o
pain with 5 (Holtzman et al. cholinergic neurons of the basal
mutations o < A o
anhidrosis (CIPA)) 1995) forebrain (Indo 2002); activity of
(Greco et al., o
B-NGF-Trk-A pathway in immune
1999) ) )
and endocrine system (Levi-
Montalcini et al. 1996)
Neutrophin family of proteins,
regulation of neuronal surviva;,
. development and function;
Missense or ) o .
i B-NGF: B-nerve growth PNS, immune cells contribution to inflammatory and
NGF frameshift HSAN-V ) ) )
) factor (Rotthier et al. 2012) immune response (Nicol and
mutations
Vasko 2007; Ernsberger 2009);
binds to Trk-A (Kaplan et al. 1991;
Indo 2002)
Cytosolic molecular chaperone,
B Missense HSAN with spastic TCP-1e: T-complex Ubiquitously promotes ATP-dependent folding
mutation paraplegia protein 1 subunit € (Kubota et al. 1999) of actin and tubulin (Yokota et al.

2001)
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4.4 Contributions

Declaration of contributions to “Generation and characterization of rat and mouse monoclonal

antibodies specific for MeCP2 and their use in X-inactivation studies”

For this project, | preselected and characterized rat monoclonal anti-MeCP2 antibodies by epitope
mapping experiments shown in Figure 3 and immunofluorescence stainings depicted in Figure 6a.

Moreover, | proofread the manuscript.

Declaration of contributions to “Versatile toolbox for high throughput biochemical and functional

studies with fluorescent fusion proteins”

For this project, | established and optimized the protein-protein interaction assay in the GFP-multiTrap
plates and evaluated the data for the corresponding Figure 3. In addition, | provided the data for

Supplementary Figure S1B and | proofread the manuscript.

Declaration of contributions to “Cooperative DNA and histone binding by Uhrf2 links the two major

repressive epigenetic pathways”

To characterize the chromatin binding properties of UHRF2, | performed a histone tail peptide binding
assay with the full length protein and its individual domains as well as a defined mutant. | evaluated the
results and prepared the draft for the Figures 2A, 2B and 4A. With the help of Katrin Schneider | examined
subnuclear localization and protein kinetics of UHRF2 and a histone binding mutant in MEF wildtype and
Suv39dn cell lines. Katrin and me evaluated the FRAP data and prepared the Figures 3B and 3C as well as

Supplementary Figure 4D and 4E.

Declaration of contributions to “Dissection of cell cycle-dependent dynamics of Dnmtl by FRAP and

diffusion-coupled modeling”

To raise an antibody specific for DNMT1, | analyzed binding specificities of the antibody 5A10 in
western blot and immunofluorescence staining and prepared the corresponding Supplementary Figures

S1A and S1B. | also helped with proofreading the manuscript.

Declaration of contributions to “Poly(ADP-ribose) polymerase 1 (PARP1) associates with E3 ubiquitine-

protein ligase UHRF1 and modulates UHRF1 biological functions”

For this project, | performed the DNA methylation analysis in wt and PARP” cells at the major satellite
repeats shown in Figure 5E. Furthermore, | provided the information for the UHRF1 single domain and

deletion constructs cloned in our lab and proofread the manuscript.

271



Annex

Declaration of contributions to “DNA methylation requires a DNMT1 ubiquitin interacting motif (UIM)

and histone ubiquitination”

This project was conceived by Heinrich Leonhard, Weihua Qin and me. | performed biochemical and
cell biological experiments for the following Figures: Figures 3c ,d; 6¢ (in collaboration with Stephanie
Link), 7 (in collaboration with David Ho6rl and Hartmann Harz); Supplementary Figures S3b-e (in
collaboration with Stephanie Link and Martha Smets), S4, S7 (in collaboration with Stephanie Link), S8. For
the first draft of the manuscript, | wrote the sections corresponding to the experiments performed. |
combined all results to design the final Figures, included all changes during the revisions and corrected the
manuscript together with Heinrich Leonhardt. Moreover, | was responsible for the correspondence with
collaboration partners and for project planning including the development of a timeline and the

coordination of different subprojects.

Declaration of contributions to “Mutations of the DNMT1 TS domain found in HSAN-IE patients disrupt

interaction with UHRF1, affect subnuclear targeting and lead to cell cycle-dependent destabilization”

This project was conceived by Heinrich Leonhard and me. | performed the experiments shown in the
Figures 2 (in collaboration with Stephanie Link), 3 (in collaboration with Karin Fellinger), 4, 5 (in
collaboration with Veronika Solis), 6 (in collaboration with Martha Smets), 7 (in collaboration with Katrin
Schneider) and the experiments for all Supplementary Figures. | designed all figures and wrote the

manuscript.
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4.5 Declaration

Declaration according to the "Promotionsordnung der LMU Munchen fur die Fakultat Biologie'.

Betreuung

Hiermit erklare ich, dass die vorgelegte Arbeit an der LMU von Herrn Prof. Dr. Heinrich Leonhardt

betreut wurde.

Anfertigung

Hiermit versichere ich an Eides statt, dass die Dissertation selbststandig und ohne unerlaubte
Hilfsmittel angefertigt wurde. Uber Beitrage, die im Rahmen der kumulativen Dissertation in Form von
Manuskripten in der Dissertation enthalten sind, wurde im Kapitel 4.4 Rechenschaft abgelegt und die

eigenen Leistungen wurden aufgelistet.

Prifung

Hiermit erklare ich, dass die Dissertation weder als ganzes noch in Teilen an einem anderen Ort einer
Prifungskommission vorgelegt wurde. Weiterhin habe ich weder an einem anderen Ort eine Promotion

angestrebt noch angemeldet noch versucht eine Doktorprifung abzulegen.

Minchen, den 17.06.2015

Patricia Wolf
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