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Abstract

Optical microscopy has developed from a mere tool of imaging to a multi-functional system
able to image and manipulate the properties of matter. Usually, there is more information
available than just scattering, absorption and transmission of a specimen. In particular,
the dynamics of excited systems can reveal much about the underlying physical processes.
The key technique used throughout this work is optical pulse shaping of femtosecond laser
pulses combined with confocal microscopy. First, this thesis reviews several methods of
pulse phase measurements and presents recent improvements in the field from our group.
On the basis of the achieved accuracy and controllability, studies on single layer graphene,
plasmonic particles and single-walled carbon nanotubes are presented.

During the course of this work, a setup was developed and built that is able to provide
and control bandwidth limited, 15 fs laser pulses in the focus of a microscope objective. A
challenge in combining pulse shaping with microscopy is to compensate for the large amount
of phase distortions caused by the optics. For this purpose, the method of “multiphoton
intrapulse interference phase scans” (MIIPS) was implemented and improved.

The linear band structure of graphene is the reason for a very strong third order optical
nonlinearity, causing a broad and strong spectrum of four-wave mixing. It is shown ex-
perimentally that the third-order non-linear susceptibility is spectrally homogeneous and
does not come with an intrinsic phase. Its value is determined to be χ(3) = 4.3× 10−6 esu
at a central photon energy of 1.55 eV. Due to the spectral homogeneity, graphene is shown
to be an excellent reference material for phase measurements. Femtosecond excitation of
graphene additionally creates a non-equilibrium distribution of electrons and holes in the
conduction and valence band respectively. As a consequence, various scattering processes
lead to a broadband light emission, the non-linear photoluminescence. An experimental
proof of the theoretically predicted regimes of coherent and incoherent non-linear photolu-
minescence is given. It is further shown that by tailoring the excitation pulses, the charge
carrier dynamics and the photoluminescence can be controlled to a certain extent.

The inherent phase response of resonant plasmonic nanostructures influences the tempo-
ral shape of ultrashort laser pulses in the nearfield of the nanostructures. The commonly
employed method of phase retrieval by the second harmonic generation of the particles
themselves is critically reviewed. The model system of gold nanorods is used to identify
a possible phase contribution of the second harmonic generation. This is achieved by a
systematic comparison of the second harmonic signal with the near-degenerate four-wave
mixing signal of the same particles.

It is shown that two-pulse correlation measurements of (5,4) single-walled carbon nan-
otubes under resonant conditions probe coherent oscillations of phonon wave-packets. Sta-
tistical evaluation proves that the nanotubes show an initial expansion of their diameter
under impulsive excitation.



Kurzzusammenfassung

Optische Mikroskopie hat sich von einer bloßen Abbildungsmethode hin zu einem mul-
tifunktionalen System entwickelt, das in der Lage ist, Materialeigenschaften darzustellen
und zu beeinflussen. Im Allgemeinen sind mehr Informationen verfügbar, als Streuung,
Absorption und Transmission. Insbesondere kann die Dynamik angeregter Systeme viel
über die zugrunde liegenden physikalischen Prozesse verraten. Die Schlüsseltechnologie
dieser Arbeit ist optische Pulsformung, kombiniert mit konfokaler Mikroskopie. Zunächst
werden verschiedene Methoden zur Phasenbestimmung kurzer Laserpulse beschrieben,
sowie neuere Weiterentwicklungen aus unserer Arbeitsgruppe vorgestellt. Basierend auf
der so erreichten Genauigkeit und Kontrollierbarkeit werden Untersuchungen an einzelnen
Schichten von Graphen, an plasmonischen Nanoteilchen, sowie an einwandigen Kohlen-
stoffnanoröhren vorgestellt.

Während dieser Arbeit wurde ein Versuchsaufbau entwickelt und aufgebaut, der die
Erzeugung und Kontrolle von bandbreitenbegrenzten, 15 fs langen Laserpulsen im Fokus
eines Mikroskopobjektivs ermöglicht. Die zentrale Herausforderung bei der Kombina-
tion von Pulsformung mit konfokaler Mikroskopie liegt in der Kompensation der großen
Phasenstörungen, die durch die optischen Elemente hervorgerufen werden. Zu diesem
Zweck wurde ein Verfahren namens MIIPS verwendet und erweitert.

Die lineare Bandstruktur von Graphen erzeugt unter anderem eine sehr starke optische
Nichtlinearität dritter Ordnung, die die Ursache für ein breitbandiges und intensives Vier-
wellenmischspektrum ist. Im Experiment wird gezeigt, dass die nichtlineare Suszeptibilität
dritter Ordnung spektral homogen und dispersionslos ist. Bei einer Energie von 1.55 eV
wird ihr Wert zu χ(3) = 4.3× 10−6 esu bestimmt. Wegen der spektralen Homogenität kann
gezeigt werden, dass Graphen eine exzellente Referenzprobe für die Phasenbestimmung
ist. Die optische Anregung mit Femtosekundenpulsen erzeugt zusätzlich eine Nichtgle-
ichgewichtsverteilung von Elektronen und Löchern im Leitungs- und Valenzband. In Folge
dessen führen zahlreiche Streuprozesse zur breitbandigen, nichtlinearen Photolumineszenz.
Es wird ein experimenteller Beweis der Existenz der theoretisch vorhergesagten Regime
kohärenter und inkohärenter Photolumineszenz erbracht. Weiterhin wird gezeigt, dass die
Ladungsträgerdynamik und die Photolumineszenz in gewissen Grenzen durch eine gezielte
Anpassung der anregenden Lichtpulse gesteuert werden können.

Die resonanten, plasmonischen Nanostrukturen immanente Phasenantwort beeinflusst
die zeitliche Form ultrakurzer Laserpulse im Nahfeld solcher Nanostrukturen. Die üblicher-
weise verwendete, auf der Erzeugung der optischen zweiten Harmonischen gründende Meth-
ode zur Phasenbestimmung wird kritisch hinterfragt. Anhand des Modellsystems von Gold-
nanostäbchen werden mögliche Phasenantworten der zweiten Harmonischen untersucht.
Dies wird durch den systematischen Vergleich des Signals der zweiten Harmonischen mit
dem aus der Vierwellenmischung stammenden Signal erreicht.

Es wird demonstriert, dass kohärente Schwingungen von Phononenwellenpacketen mit-
tels Doppelpulsanregungen an einwandigen (5,4) Kohlenstoffnanoröhren gemessen wer-
den können. In der statistischen Auswertung zeigt sich, dass sich der Durchmesser der
Nanoröhren bei impulsiver Anregung zunächst ausdehnt.
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Chapter 1

Introduction

Since the early days of microscopy in the 16th and 17th century, when scientists like Galileo
Galilei were working on devices capable of magnifying biological species and crystals, much
progress has been made. The first challenges were to get glass types with reproducible
quality, to manufacture magnifying glasses and to achieve a steady illumination. Once
these issues became more tractable, the design and production of better lenses came into
focus, because it was realized that spheric and chromatic aberrations severely restrict the
scope of microscope applications if not counteracted. In the late 19th century, the first oil
immersion objectives were built to extend the numerical aperture beyond 1. At that step,
technical progress had brought microscopy to the fundamental physical diffraction limit,
which was circumvented in the 1980s by means of optical nearfield microscopy [1, 2].

Optical investigation of nanostructures requires a high spatial resolution on the one
hand. On the other hand, a high temporal resolution is often also wanted. This is due to
the fact that most physical processes become faster if the size of the device or object is
reduced and because quantum effects start to become important with decreasing dimen-
sions. Examples are: coherent dynamics of molecules, plasmonics, charge carrier dynamics
in semiconductors or quantum dots which all occur on timescales down to few femtosec-
onds. The advent of broadband laser systems has hereby provided a valuable tool to enter
the femtosecond time regime, which principally cannot be covered by conventional elec-
tronic measurement techniques. Optical methods are thus the only way we can presently
obtain information on these timescales, however their temporal resolution is restricted to
the excitation of a specimen, the signal detection is orders of magnitude slower. The task
to provide laser pulses shorter than 150 fs on a nanometer spatial area can nowadays be
compared to the situation of microscopy in the early 20th century. Getting to the optical
resolution limit is today mainly a question of buying the correct equipment, but was highly
nontrivial back then. While femtosecond laser systems, pulse shapers and compressors can
be bought from stock, installing and using them is still challenging. There are two main
reasons for this; one lying in the difficulty of setup alignment, and the other in the dis-
persion control. Controlling length and temporal shape of a laser pulse by manipulating
the spectral phase can only be accurate, if the phase distortions, present in the system,
are known in the first place. There are companies, developing fully integrated systems
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for this purpose, but these still cannot provide a usability as good as e.g. commercial
fluorescence microscopes have become with respect to spatial resolution. Once these tech-
nical difficulties are mastered, the ability to control phase and amplitude of the pulses in
a small excitation volume opens up a variety of possible measurements. A method that
circumvents the bandwidth limit in a fashion similar to the nearfield techniques breaking
the diffraction limit is still completely unknown.

The first programmable spatial light modulators that enabled control over the pulse
shape by applying an arbitrary phase profile were realized in the 1990s by Weiner et al. [3],
followed by other groups that extended the method to phase and amplitude shaping [4] or
made use of these capabilities in pulse compression techniques [5, 6]. In 1999 the Nobel
prize in chemistry was awarded to Ahmed H. Zewail for his work in femtochemistry, a field
that was expected to largely benefit from femtosecond pulse control. Without any doubt,
there have been important experimental improvements in this direction [7, 8, 9], but af-
ter more than 15 years of progress the hope of a major breakthrough in femtochemistry
based on femtosecond pulse control is somewhat muted. It was realized that one important
missing link was spatial control of the samples in order to address single molecules and
nanostructures, which first of all can be achieved by microscopy techniques. The challenge
of delivering bandwidth limited femtosecond laser pulses in the focus of a microscope objec-
tive is mainly a technical issue [10]; however it has also benefited from recent developments
in phase characterization techniques [11, 12]. Beyond conventional confocal microscopy, it
is possible to combine femtosecond pulse control with super-resolution microscopy, aided
by strong nearfield enhancement factors of metal scanning probes [13, 14, 15] or localized
antennae [16, 17, 18, 19]. These configurations have been shown to work and to be valuable
tools, but they come with the challenge of having to describe the sample-probe interaction
in addition to the light-matter interaction of the specimen. Other recent developments
go in the direction of femtosecond control of nanoobjects in the context of conventional
confocal microscopy, where the samples are typically diluted such that they are individu-
alized inside the focus volume of smaller than 1µm3. Measurements have been performed
on individual plasmonic particles [20] or single molecules [21] with a focus on the optical
detection of electronic properties and dynamics on femtosecond timescales.

Graphene is a single sheet of the graphite structure, only one layer of carbon atoms
thick that has attracted much attention of the community. In 2010, Andre Geim and
Konstantin Novoselov were awarded with the Nobel price in physics for their pioneering
work on the new material. The structure of graphene consists of sp2 hybridized carbon
hexagons that are arranged in a honeycomb lattice [22, 23]. Therefore, two types of carbon
atom configurations exist inside the layer, whose only difference is their spatial orientation.
This also reflects in reciprocal space, where two sub-lattices exist. The band structure
resulting from the crystal structure shows an interesting feature at the K and K’ point; here
the energy momentum-relation becomes linear, meeting the Fermi level at the K points.
What seems to be a relatively simple system with respect to light-matter interactions
at first glance, shows rich photophysics upon closer examination [23, 24, 25, 26, 27, 28,
29], enabling a large number of applications [30, 31, 32, 33]. It has already been shown
that the dynamics of excited charge carriers happen on ultrafast timescales, with electron
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mobilities far superior to conventional semiconductors [23, 26]. Due to these and other
properties, graphene is believed to be a very promising candidate for applications in opto-
electronics. Origin and properties of the femtosecond dynamics of the charge carriers are
thus of particular interest to the community.

Single-walled carbon nanotubes are thin structures of sp2 hybridized carbon atoms
that can be imagined as rolled up sheets of graphene [34]. Their electronic properties
depend on the number of carbon atoms per circumference and the precise orientation of
the carbon grid, dividing them into groups of metallic and semiconducting nanotubes [35,
34]. The electronic density of states shows pronounced peaks that are due to van Hove
singularities and form the set of main energy levels. The lowest resulting level transition in
semiconducting nanotubes, the E11 transition, causes the creation of tightly bound exitons
upon optical excitation [36]. Singe walled carbon nanotubes are more than an order of
magnitude thinner than the state of the art in transistor size of modern, silicon based chip
technology. Therefore they are a potential link to the miniaturization of electronics and
moreover, could be used for quantum information technology in the future. Very recently,
it has been shown that the photoluminescence of semiconducting carbon nanotubes can
be used as single photon source even at room temperature [37], which is an essential
property for quantum electronics. Our research interest was devoted to the dynamics and
controllability of the E11 optical resonance of such nanotubes, focussing on the coherent
excitation of phonon wave-packets.

Metallic nanoparticles show resonances, tunable by their geometry, in the visible to
near-infrared spectral range [38, 39]. Even though their physics can often very accurately be
described by multipole expansions, the field of research is ever active and vivid, due to their
intriguing properties for nanooptics [40, 41]. Enhancement of optical fields, localization and
near-to-farfield conversion of fluorescence signals define a range of properties that makes
them interesting for a large amount of optics applications ranging from basic research,
over quantum information, scanning probe techniques, and sensing to optical lithography
and solar cells. With femtosecond pulse shaping microscopy, it is possible to address the
question of the temporal field profile in the nearfields of such structures and investigate
the basic physical mechanisms of non-linear processes inside them.

1.1 Outline of the thesis

This thesis is structured in four main chapters, covering the technique of pulse shaping
microscopy, the non-linear optical response of graphene, the influence of the spectral phase
on non-linear light emission in plasmonic particles, and the RBM phonon dynamics of (5,4)
single-walled carbon nanotubes.

Chapter 2 introduces the concept of optical pulse shaping microscopy. The aim is to
achieve a high degree of control of the optical fields at the spatial resolution of the sys-
tem with simultaneous femtosecond temporal resolution, corresponding to the bandwidth
limit of the laser. The basics of femtosecond laser pulses are therefore explained with a
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special focus on the spectral phase and the possibility to manipulate it by a spatial light
modulator (SLM). The second part of the chapter is devoted to the challenge of retrieving
the spectral phase of the laser by the help of non-linear optical signals. Since the topic
is evolving quickly and is still relatively new, an overview of phase retrieval methods is
given, as far as they are used in the remainder of this work. The main method used here is
called “Multiphoton intrapulse interference phase scans” (MIIPS), which is based on the
detection of the second harmonic spectrum of a reference material while applying a known
test phase to the laser. Three variations and improvements of the original protocol are
presented which were developed and used in our group in the last years.

Chapter 3 is centered around non-linear optical experiments, performed on exfoliated
single layer graphene, which aim at a better understanding of the non-linear optical prop-
erties of graphene and possible applications. The third order nonlinearity of graphene,
which leads to a broad and strong four-wave mixing signal, is found to be spectrally homo-
geneous in amplitude and phase, implying that the process is happening instantaneously on
the available timescale of 15 fs. This result is then successfully applied to measure the spec-
tral phase of a laser pulse, using four-wave mixing of graphene as a reference process. Apart
from the third order nonlinearity, a large number of excited charge carriers is produced
upon pulsed excitation of graphene, resulting in the emission of a broadband non-linear
photoluminescence spectrum. The dynamics of these charge carriers can be probed and
manipulated by using tailored pulse pairs, created by the pulse shaper. A coherent and an
incoherent contribution to the non-linear photoluminescence are experimentally identified
and a successive change in electronic and phononic temperature are used to model the
incoherent part by means of a two-temperature model.

Chapter 4 presents a discussion on spectral phase retrieval of single plasmonic nanopar-
ticles by second harmonic based methods. The resulting phase profiles are compared to
similar data, retrieved by near-degenerate four-wave mixing. The observed differences are
finally applied to non-linear imaging where they are used as a contrast mechanism.

In chapter 5, a study on the coherent dynamics of phonon wave-packets in (5,4) single-
walled carbon nanotubes at room temperature is presented. With an oscillation period of
90 fs, this is happens in a regime where the laser pulses can be seen as impulsive excitation.



Chapter 2

Pulse shaping microscopy: Principles
and implementation

The following chapter describes the principles of femtosecond pulse shaping in combination
with confocal microscopy. In sect. 2.1, the focus lies on the introduction of basic concepts as
far as they are needed for the present work. Emphasis is placed on the manipulation of the
spectral phase and amplitude of a laser pulse by a spatial light modulator. Based on this,
sect. 2.2 is detailing the setup implementation in use. Sect. 2.3 covers the subject of phase
retrieval, using the spatial light modulator and the detection of non-linear light emission
by reference samples. Concepts of existing methods are reviewed and the improvements
done here are presented. All techniques were implemented and tested at the pulse shaping
setup in order to compare them and to derive statements about their accuracy.

2.1 Principles of femtosecond pulse shaping

microscopy

2.1.1 Femtosecond laser pulses

Mode-locked lasers have enabled measurements in the femtosecond regime for about 30
years [42]. The first Titanium Sapphire laser, which is nowadays the most commonly
used ultrafast laser system, was presented in 1986 [43]. A femtosecond laser pulse is
characterized by a broad spectrum I(ω) ∝ |E(ω)|2 with a stable phase function ϕ(ω) of
the electric field E(ω). This is achieved by so-called “mode locking”, which ensures that
the different spectral modes have a constant relative phase for the whole spectrum [38].
That way, the broad spectrum is concentrated in the time domain to short pulses, whose
temporal profile in return strongly depends on the phase profile. The shortest, bandwidth
limited (bwl), laser pulse is achieved by a completely flat phase profile, which means that
the first derivative with respect to the angular frequency ω is spectrally constant:

dϕ(ω)

dω
= const. (2.1)
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This condition leaves two parameters of the phase undetermined. The first is a linear
phase function, which is equivalent to a temporal shift by τ : E(ω) · eiωτ , and the second is
a constant phase φ, which changes the carrier envelope phase (CEP): E(ω) · eiφ. Already
a second-order polynomial phase function (often called “chirp”) will stretch a laser pulse
in the time domain. The local second-order phase, which is called group delay dispersion
(GDD), is defined as:

GDD(ω) =
d2ϕ(ω)

dω2
. (2.2)

In most cases, the GDD contains all information about the pulse shape. The only excep-
tions are pulse shapes, where the phase curvature is locally not defined, for example at
sudden phase steps [44], or phase kinks (e.g. for a V-shaped phase profile, see sect. 2.1.3).
Even though both cases would rarely occur, they demonstrate that the GDD in the most
general case does not contain the full information on the laser pulse. If these special
problems can be excluded, knowing the local GDD over the full spectrum is equivalent to
knowing the laser pulse in the time domain.

Optical detectors are sensitive to light intensity, but not to electric fields, which means
that they never measure the phase of a pulse. The problem of phase measurement is often
solved by the usage of non-linear light emission processes, whose efficiency depends on the
light intensity in a power law fashion (see sects. 2.3, 3.2). Since the temporal profile of the
light intensity depends on the phase, the output of these processes reflects the pulse shape.
As the temporal pulse shape is not influenced by the zero and first polynomial order of
the spectral phase, it is also impossible to measure them this way, so the carrier envelope
phase and the precise arrival time at the sample remain unknown. This fact is the second
reason why the GDD is often used to characterize ultrashort pulses instead of the spectral
phase.

Time and frequency domain are connected by the Fourier transform, as demonstrated
by the example of the electric field amplitude E:

E(ω) = FT [E(t)] =
1√
2π

∞∫
−∞

E(t) · eiωt dt,

E(t) = FT −1 [E(ω)] =
1√
2π

∞∫
−∞

E(ω) · e−iωt dω.

(2.3)

This relation allows for a switch between a description in the time domain (TD) and one in
the frequency domain (FD) and to calculate quantities as the pulse length ∆t, or the pulse
width ∆ω. The spectral shape thereby determines the so called time-bandwidth product
(TBP), which is given by:

∆t ·∆ω ≥ TBP. (2.4)

The equality holds for the bandwidth limited case in which the minimum pulse length ∆t
is reached by a flat phase profile. The number of the time-bandwidth product depends in
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part on the way, the pulse width and pulse length are defined, which is typically done by the
full-width-at-half-maximum of the intensity trace. Simple pulses without a complex shape,
where temporal and spectral amplitudes are varying smoothly, have the smallest TBP.
Fig. 2.1 presents the case of a laser pulse as used in the present experiments (c.f. sect. 2.2)
with its calculated time domain signal. A constant GDD of 250 fs2, such as introduced
by a 5 mm thick lens, obviously broadens the pulse in the time domain. The FWHM of
the bandwidth limited pulse is 21.8 fs, whereas the chirped pulse has a FWHM of 25.2 fs
and the spectral width amounts to 0.21 rad/fs, resulting in a time bandwidth product of:
TBP = 4.58 rad. Apparently the spectral width in this is case not what one would naively
guess (0.26 rad/fs or 100 nm from the steep edges) and also the difference in temporal
width of the bandwidth limited and the distorted pulse is smaller than estimated optically
from the graph. This discrepancy highlights a difficulty in the usage of these numbers,
namely that their relative magnitude depends on the actual pulse shape and is not a
universal quantity. For example in case of a Gaussian laser pulse, whose temporal shape
looks almost exactly like the present laser pulse (only missing smaller side bands), the time
bandwidth product is TBP = 0.44 rad, though it is an order of magnitude smaller than
the value of the laser pulses used here, which are in fact not much shorter.
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Figure 2.1: (a) Spectrum of the laser and a phase profile of a constant GDD of 250 fs2. (b)
Calculated intensity of the bandwidth limited, flat phase (bold) and chirped laser pulse
(dashed) in the time domain.

2.1.2 Optical pulse shapers

The main idea of an optical pulse shaper is to manipulate the spectrum of a coherent,
broadband laser pulse in amplitude and phase in order to gain control over the temporal
shape [45, 46, 47]. The working principle of a device, based on a liquid crystal light
modulator [48]1, is shown in fig. 2.2a. Due to its structure, it is also called a “spatial light
modulator”. Inside the shaper, the pulse is first split into its spectral components by a

1Instead of liquid crystal light modulators, a variety of other devices such as acoustooptic modulators
or micro-mirror arrays exist, serving the same purpose [46].
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Figure 2.2: (a) Schematic of a pulse shaper based on the 4f layout. The frequency compo-
nents of the incoming laser pulses are separated in the Fourier plane, where a dual mask
liquid crystal modulator is placed, allowing for phase and amplitude manipulation. After
this, the beam is reconstructed in an identical beam path. (b) Demonstration of operation
by amplitude shaping the letters “LMU” to the laser spectrum.

grating and then focussed by a cylindrical mirror. The liquid crystal light modulator is
placed in the Fourier plane, where all spectral components are neatly separated. It consists
of an array of liquid crystal cells, which allow for a modification of the refractive index
of every spectral component, changing the spectral phase accordingly [48]. The device
used throughout this work is a double cell array which also enables an attenuation of the
spectral amplitude [3, 49, 48]. Behind the Fourier plane, the pulse is reconstructed by
another cylindrical mirror and a grating, making the device a 4f design. Instead of the
depicted, stretched design with two focusing mirrors and two gratings, a mirror can be
placed behind the liquid crystal device such that the beam is reconstructed in the same
beam path as where it was split up (back-folded). Installing a slight vertical angle through
the beam path allows for picking up the laser beam later on by a mirror, which is the scheme
that was realized in the present setup. With such a spatial light modulator, arbitrary phase
and amplitude shapes can be imposed on the laser spectrum. The capability of amplitude
shaping is demonstrated in fig. 2.2b, where a special amplitude mask forms the initials of the
Ludwig-Maximilians-University “LMU” within the spectrum, visualized by a spectrometer
behind the pulse shaper. Phase shaping cannot be demonstrated as easily but it evinces
the same flexibility and accuracy as in amplitude shaping.

All pixels of a pulse shaper cover a discrete spectral region, in the present case approx-
imately 1 nm per pixel. The result is that only step-wise phase or amplitude masks can
be applied to the shaper. In case of amplitude pulse shaping, this is not a big restriction
but for phase shaping it matters, because the pulse shape is mainly determined by the
second derivative of the phase, the group delay dispersion. Strictly speaking, the GDD
is undefined in such a pixel array because of the stepwise constant phase profile. Unlike
the infinite time and frequency domain of the Fourier transform of eq. 2.3, the Fourier
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transform now has to be written as a discrete and finite sum:

E(t) =
1√
2π

N∑
k=1

E(ωk) · eϕk · e−iωkt ∆ω, (2.5)

where ωk are the (mean) frequencies of the N pixels. Assuming an equal spectral spread
with ∆ω being the width of the pixels, the frequencies are given by:

ωk = ωmin + (k − 1) ·∆ω (k ∈ 1, 2, . . . , N). (2.6)

An implicit assumption that has been made here is that the spectral resolution of the pulse
shaper is only determined by the pixel size. A more detailed model would include the finite
size of the laser beam on the LCM array which leads to cross-talk between the pixels [50].
The result of the finite sized integrals is that there is no longer a single laser pulse but a
train of sub-pulses, repeating with the period of 2π/∆ω, which amounts to about 2 ps for
a laser spectrum at 800 nm central wavelength. These sampling replicas of the pulse are
usually at least an order of magnitude weaker than the “original” pulse, but in some cases
one has to be aware that they exist [50]. The phase ϕk of eq. 2.5 is the phase, applied by
the pulse shaper at the frequency of ωk. In the situation of an applied, stepwise constant
phase profile as presented here, the most notable consequence is that the temporal pulse
profile is determined by the discrete phases ϕk and not by the GDD.

It is, on the other hand, perfectly possible to calculate the correct (stepwise constant)
phase profile for the pulse shaper by double integration if the GDD is given:

ϕk =
〈 ω∫

0

ω′∫
0

GDD(ω′′) dω′′dω′
〉
ωk,∆ω

. (2.7)

The brackets < · · · >ωk,∆ω stand for the average value around ωk in an interval of ∆ω, thus
covering the spectral range of pixel k. Since this is possible, it makes sense to treat the
spectral phase and its derivatives in the following as if they resulted from the spectrally
and temporally infinite integral of eq. 2.3.

At a frequency spacing of ∆ω between the single pixels, there is an ultimate limit of the
first-order phase that can effectively be applied to the shaper. The phase profile applied to
the liquid crystal modulator is always modulus 2π because there is no difference between
a spectral phase of ϕ and of (ϕ+ 2π). This also means, that for two neighboring pixels k
and k+ 1 a phase difference of π is indistinguishable from −π or more generally any phase
difference ∆ϕ = ϕk+1−ϕk ≥ π from its counterpart ∆ϕ̃ = 2π−∆ϕ. Therefore, a maximum
pixel-to-pixel phase change of ∆ϕ < π has to be guaranteed under all circumstances, setting
a limit to the maximum permissible local first derivative of the phase:

ϕ′max = max

(
ϕk+1 − ϕk

∆ω

)
<

π

∆ω
. (2.8)

This criterion is to be understood as a hard one; it sets the outer limits of validity for eq. 2.7.
For example in case of a second-order polynomial phase (chirp) φ(ω) = c/2 · (ω−ω0)2, and
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in case of 100 illuminated pixels and a laser bandwidth of 100 nm centered at 800 nm, the
limit is given by cmax = 6800 fs2. Larger values of a constant chirp cannot be realized with
a pulse shaper of the given specifications.

For practical reasons it is not advisable to make full use of this range at all times
because other effects, such as a reduced spectral resolution at the pulse shaper or the
spectral dispersion of the device itself will further decrease the usable sector. As another
technical note, there is a small inter-pixel region not covered by the liquid crystal cells.
Its size amounts to about 2 % of the total pixel size, causing periodic artifacts as known
from the discrete pixelation of the phase in the shaper. These artifacts would typically not
be visible, because their bandwidth is much smaller than the spectral bandwidth (=pixel
size) of the shaper itself.

2.1.3 Phase and amplitude masks for pulse shaping

In the following, phase and amplitude masks are presented that were used in order to
achieve special pulse shapes in the time domain throughout this work. A phase mask
φ(ω) and an amplitude mask M(ω) are applied to the original spectrum according to the
following relation:

E(ω)
pulse shaper7−→ M(ω) · E(ω) · eiφ(ω), (2.9)

so the above mentioned effects of replica pulses and pulse shaper artifacts are completely
ignored here. Mathematical proof for the different cases is straightforward and can be
found in the literature [38, 44, 46]. It is important to note that in the experiment, an
amplitude mask can only be applied to the intensity. Therefore, all parts of an amplitude
mask with negative sign need a corresponding phase change of π in the phase mask, for
instance in case of the sinusoidal amplitude masks.

Linear phase: A linear phase of:

φ(ω) = τ · (ω − ω0) (2.10)

translates the laser pulse by the time τ without changing its temporal shape.

Polynomial phase: A polynomial phase of:

φ(ω) =
m∑
n=2

an · (ω − ω0)n/n! (2.11)

stretches a bandwidth limited laser pulse in time. Here the carrier frequency of the pulse
in the time domain is no longer constant but changes with time, which is called “chirp”.
In case of a completely unknown phase profile, a scan over the orders n = 2 and n = 3 can
give a rough pulse correction phase (c.f. sect. 2.3.2). A phase with n = 2 is called linear
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chirp, while a phase with n = 3 is called quadratic chirp, because in the time domain, the
carrier frequency changes with time either as a linear or as a quadratic function.

Sinusoidal phase: A sinusoidal phase of:

φ(ω) = a · cos(b · (ω − ω0)− c) (2.12)

creates pulse trains [44], spaced by the time b. The phase amplitude a determines the
size of the subsequent pulses, which are weighted by the Bessel function of first kind:
En ∝ Jn(a) · einπ/2. This phase mask is most often used for MIIPS (see sect. 2.3.3).

V-shape phase: The spectrum is divided into two parts with different linear phase pro-
files:

φ(ω) =

{
−τ1 · (ω − ω0) ω < ωc,

τ2 · (ω − ω0) ω ≥ ωc.
(2.13)

The result is, that the spectral parts ω < ωc get delayed by −τ1 and the spectral parts
ω ≥ ωc get delayed by τ2, resulting in two different laser pulses with different central fre-
quencies, that have a relative delay of τ2 + τ1 to each other.

Sinusoidal amplitude: A sinusoidal amplitude mask of:

M(ω) = cos(τ/2 · ω) (2.14)

subdivides the laser pulse into two identical copies, delayed by the time τ . There is no
additional phase shift between the two copies of the pulse, which means that scanning τ
will result in an interferometric autocorrelation scan with the characteristic interference
fringe pattern.

Two-pulse correlation: A sinusoidal amplitude mask of:

M(ω) = cos(τ/2 · (ω − ω0)−∆ϕCEP/2) (2.15)

subdivides the pulse into two identical copies, delayed by the time τ but with a shared
carrier envelope phase (CEP). This is achieved by centering the amplitude mask around
the central laser frequency ω0, see also sect. B.3 in the appendix. Additionally, a CEP
difference ∆ϕCEP can be set. Scanning the delay τ results in an intensity autocorrelation
scan, where the two pulses have a CEP difference of ∆ϕCEP . This is the amplitude mask,
used in chpt. 5 and sect. 3.3.3.
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2.1.4 Focussed broadband laser pulses

All pulse compression methods presented in the following sections would typically disregard
the actual spatial shape of a laser pulse. The electro-magnetic light fields are studied in a
point-like fashion as it might be valid for the wave front of a plane wave, interacting with
a small, sub-wavelength sized sample. The validity of this commonly shared prerequisite is
discussed in the following example of a focussed laser beam, whose field distribution differs
widely from a plane wave.

First of all, focusing a broadband laser pulse in a microscope requires a chromatically
corrected objective lens. The lens used here is a “Nikon CFI S-Fluor 100x” oil immersion
objective with a numerical aperture of NA = 1.3. The focussing quality of the system
in the near-infrared spectral range was tested by comparing the reflected images of the
laser at the glass-air interface of a coverslide in slight defocus for different wavelengths,
which were selected by setting bandpass filters with the amplitude shaping functionality
of the pulse shaper (see fig. 2.3). Comparison to a theoretical image (see appendix B.2

780nm 800nm 820nm

2 µm

800nm

theoryexperiment

Figure 2.3: Images of the laser beam, reflected at a glass coverslide in slight defocus for
three different excitation wavelengths in the near-infrared, compared to a theory image at
800 nm.

and 51) shows only minor deviations in the intensity distribution that can be explained by
different transmittivities for parallel and perpendicular polarized light at the beam splitter
inside the microscope, which have not been included in the calculation. Importantly, only
the size of the reflection pattern slightly changes with wavelength, as was expected from
theory [51]. Apart from that, all images are strictly symmetrical in x and y direction for
all wavelengths. It is therefore concluded that the focussing properties of the system meet
the requirements of a homogeneous pulse without spatial chirp or other distortions.

For a theoretical description of focussed laser fields, the analytical expressions given
in chpt. 3.6 of 52 are used, which are based on spherical waves and not on the paraxial
approximation of Gaussian beams (see sect. B.1 in the appendix for the formulas). Fig. 2.4a
shows the x-component of the electric field at 800 nm wavelength in the focus of a NA 1.3
objective with a refractive index of n = 1.518 and a filling factor of 1, where for the sake of
simplicity, only the situation without interfaces is considered. Fig. 2.4b gives the intensity
in the same spatial region in a logarithmic plot and spectrally integrated over the actual
laser spectrum (c.f. fig. 2.6b). The calculated focus region has a lateral size of about 320 nm
(FWHM) and extends about 1570 nm on the optical axis. The fields in this region are very
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Figure 2.4: (a) Real part of the electric field’s x component of a strongly focussed laser
beam. Overlaid is its phase through the center of the image (solid line), which is compared
to the Gouy phase, based on a Gaussian beam (dashed line). (b) Spectrally integrated
intensity profile for the same focus, based on the laser spectrum (log-10 scale).

homogeneous and directly in the center, all components except the x-component vanish
(not shown). In the center of the focus, a beam undergoes a phase shift, caused by the
reversal of the image at the center of inversion, referred to as the Gouy phase shift [53].
As can be seen in fig 2.4a, the electric field does experience such a phase shift of π in
the center. Further away from the center, the phase oscillates as a consequence of the
description by spherical waves, first shown by Linfoot in 1956 [54]. The known Gouy phase
anomaly, based on Gaussian beams, on the other hand does not show these oscillations
and can be calculated as follows [52]:

φGouy = arctan

(
z

zr

)
, (2.16)

where z is the coordinate along the optical axis and zr is the Rayleigh length of the focus.
This formula is only valid in the paraxial approximation of Gaussian laser beams, but the
comparison with the strict calculation shows, that it can still serve as an average phase in
case of a strongly focussed beam and even coincides with it in the center of the focus (see
solid and dashed lines in fig. 2.4a). The Rayleigh length itself is a function of wavelength
and therefore the Gouy phase in the focus is a function of wavelength, too. For a Gaussian
beam it reads:

zr =
πw2

0

λ
, (2.17)

with w0 representing the beam diameter in the focus, whose size is limited by the wave-
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length used2: w0 = λ · ξ. In the focus, the Gouy phase becomes:

φGouy(ω) ≈ z

zr
=

z · n · ω
2π2c · ξ2

∝ ω. (2.18)

Since it is a linear function of the angular frequency inside the focus, it does not influence
the pulse shape, a result that has also been verified experimentally [55].

Another aspect of strongly focussed femtosecond laser pulses was highlighted by Paw-
 lowska et al. [10], namely that the amount of glass passed by a laser beam depends on the
optical path inside the objective. Therefore, the spectral phase distortions collected can
vary, depending on the focus position. The differences in an area of the size of the focus
are comparably small, about 1 fs change of the arrival time of the pulse in their case.

To summarize these points, first a very high quality of the focus is achieved for the
pulsed laser, as demonstrated by the focus reflection and the comparison with the theo-
retical expectation. Second, the resulting fields are concentrated in a small volume where
the laser is mainly x-polarized and the electric field and phase are spatially and spectrally
homogeneous. In this situation, it is justified to talk about a well defined spatial and tem-
poral pulse profile. When referred to the temporal profile of a laser pulse in the following
chapters, what is meant is the temporal shape inside the “pointlike” excitation volume of
the focus. Whenever objects or changes smaller than around 400 nm are investigated, this
has to be considered because the theoretical description possibly has to move to a nonlocal
scheme.

2.2 Implementation of the experimental setup

The setup used for most measurements throughout this work consists of an excitation
unit, preparing the femtosecond laser pulses, a microscopy unit, and a detection unit. A
schematic is presented in fig. 2.5 and will in the following be explained in detail by following
the beam path from the laser output to the detector unit.

The laser source is a commercial Titanium Sapphire (Ti:Sa) pulsed laser named “Ven-
teon pulse:one” by the company “Venteon femtosecond laser technologies” (now “Laser
Quantum”). It has an output power of about 420 mW, a repetition rate of 80 MHz, and
its spectrum, shown in fig. 2.6, covers the range of 650 nm to 950 nm. Shortly behind the
laser output, a spatial filter is installed to produce a clean, Gaussian beam shape. The
spatial filter consists of an achromatic lens pair and a pinhole, mounted on an x-y posi-
tioning post. The collimation of the laser beam is controlled via the position of the second
lens along the optical axis. Behind the spatial filter, the spectrum is cut by a longpass
750 nm and a shortpass 850 nm which restricts the spectrum to a bandwidth of 100 nm in
total, also increasing the bandwidth limit of the pulse from 5.7 fs to about 15 fs. In the
remainder of this work, sometimes a pulse length of 20 fs is given. This is due to the fact
that for some experimental configurations, the laser spectrum was further cut or changed
in the optical beam path. The full laser bandwidth cannot be compressed in the focus of

2If the beam is perfectly focussed, the Abbe limit determines the beam size: w0 = 0.61 · λ/NA.
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the microscope due to technical restrictions3. A prism compressor adds a large amount of
negative GDD to the pulse in the following, providing a rough compensation of the large
amount of GDD introduced by the optical elements in the beam path. The device is based
on a special design, using a single prism only, which experiences four beam passes [56],
while the operating principle is the same as for conventional prism compressors. Inside the
prism compressor, smaller beam distortions are unavoidable, so a second spatial filter is
installed behind it to recreate the Gaussian beam profile. The beam then enters the central
unit of the setup: the pulse shaper, whose working principle is described in sect. 2.1.2. The
liquid crystal modulator in use is a product of “Cambridge Research & Instrumentation,
Inc. (CRi)” (now produced by “Meadowlark Optics, Inc.”). It features a double mask
scheme, enabling phase and amplitude pulse shaping at the same time. There are 128
pixels with a pitch of 100µm, spaced by 2µm. The phase resolution of the device is given
by ∆φ ≈ 0.01 rad, depending slightly on the used wavelength. The laser polarization is
fixed by a broadband polarizer in front of the device. After a third spatial filter, the laser
is lead into a confocal microscope, which is equipped with an x-y piezo-scanning stage and
an NA 1.3 oil immersion objective. In the focus of the objective the beam has a power of
about 0.75 mW which leads to an approximated pulse energy of about 10 pJ. The samples
are placed on 150µm thick coverslides of BK7 glass. A broadband beam splitter leads the
signal to the detection unit, consisting of optical filters, an avalanche photodiode (APD)
and a spectrometer. For the detection of second harmonic light, there is a second beam
path installed, whose lenses are made of fused silica exclusively, which in contrast to BK7
or SF10 is transparent even below 400 nm. The pulse shaper, the scanning stage and the
detectors are all controlled by the same computer. Since the software for pulse shaper
and signal detection was self-written during this work, it allows for flexible measurement
schemes, as will be shown in the next sections.

In all optical units that are passed before entering the microscope, it is essential to
control the spatial mode of the laser pulse. The mode can be seen as a superposition
of Gaussian laser modes of different wavelengths and they all have to overlap as good as
possible. A spatial misalignment of the spectral components is called “spatial chirp” and
can originate from the prism compressor or the pulse shaper. By help of the three spatial
filters, the laser mode is preserved through the entire beam line.

3The resulting phase of the laser in the focus is mainly a third-order polynomial function (see sect. 2.3).
The phase, applied to the pulse shaper, gets “wrapped” at multiples of 2π, which, as a consequence of
the third-order polynomial, happens more often at the sides of the spectrum than in the middle. A larger
bandwidth therefore requires either a larger number of shaper pixels for higher resolution or an additional
pre-compression unit, reducing the third order phase distortions.
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Figure 2.5: Schematic of the femtosecond pulse shaping setup. For details, see main text.
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Figure 2.6: Spectrum of the “Venteon pulse:one” Ti:Sa laser at the output (a) and in front
of the microscope (b).
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2.3 Measurement of phase profiles with high accuracy

using an optical pulse shaper

On their way through optical elements and even air, femtosecond laser pulses experience
substantial phase distortions. The velocity of light is different for every wavelength with
a general trend towards lower velocity for longer wavelengths, called normal dispersion.
Therefore after passing a dispersive element, the high energy parts of the pulse will arrive
prior to the low energy parts, resulting in a stretched temporal profile. In the optical regime
and for typical types of glass, the most important phase distortions can be classified in
terms of their second and third polynomial orders, summarized in tab. 2.1 for a number of
common materials. A high numerical aperture objective consists of several centimeters of

Material n GVD (fs2/mm) TOD (fs3/mm)
Air 1.0003 0.0212 0.0087

BK7 1.511 44.65 32.10
SF10 1.711 156.52 102.52

Fused Silica 1.453 36.16 27.47
LakL21 1.633 61.40 41.42

Table 2.1: Refractive index n, group velocity dispersion (GVD), and third order dispersion
(TOD) for optical glasses at a wavelength of 800 nm. [57]

glass. The actual types, lengths and shapes of the lenses inside are not known, so let us
assume an objective lens, consisting of 3 cm of BK7 glass as well as of 3 cm of SF10 glass.
At a wavelength of 800 nm, the GDD according to tab. 2.1 would then amount to about
6000 fs2, implying that the temporal width of a Gaussian pulse with a FWHM of 20 fs gets
stretched to about 830 fs. As the pulse length increases, the peak intensity decreases to
2.4 % of its original value.

There are three main problems, related to unintentionally stretched pulses. First, the
temporal resolution is obviously lost, and furthermore the exact temporal shape remains
unknown. Second, non-linear processes will be orders of magnitude weaker than for the
shortest pulse. And third, for the case of pulse shapers, if the temporal shape in the focus
is unknown, it does not make sense to put a phase to the laser pulse, because it would add
up with the unknown, setup related phase. In this case, no experiment can be carried out,
because the actual effect of the imposed phase is unclear.

Coarse pulse compression can be achieved using prism compressors, grating compres-
sors, combined prism-grating compressors [56, 58], or negatively chirped dielectric mir-
rors [59]. These devices add a defined amount of negative GDD and TO to the spectrum,
which will eventually compensate with the phase distortions introduced by the setup and
create a recompressed laser pulse. Prism and grating compressors can in principle be scaled
up in order to account for larger quantities of glass, such as lenses, filters or even optical
fibers. They are also flexible with respect to the amount of negative GDD added since
one can tune it with the position and angle of the prisms or gratings. Negatively chirped



18 2. Pulse shaping microscopy: Principles and implementation

mirrors can compensate 175 fs2 per reflection at 800 nm [60] which requires dozens of reflec-
tions in case of heavy phase distortions. Bandwidth limited laser pulses can often not be
reached with these methods because of higher order phase distortions. For fine-tuning of
the spectral phase, optical pulse shapers are used which provide freedom to add arbitrary
phase profiles in order to reach the bandwidth limit. A key element is the precise measure-
ment of the phase distortions present in the setup. The remainder of this chapter reviews
methods to retrieve the spectral phase of a laser pulse in the presence of phase distortions
as they occur inside the focus of high NA microscope objectives by the use of second har-
monic (SH) light emission from nanocrystals. The final goal is to have bandwidth limited
laser pulses in the focus which can be further modulated by the pulse shaper.

The methods in use can be separated into two types; those which try to maximize the
total SH signal recorded by a photodetector (sect. 2.3.2) and those which make use of the
spectral shape of the SH to find the phase in a deterministic way (sect. 2.3.3 and 2.3.4).
These techniques have the potential to measure the spectral phase of nanoparticles too as
long as they provide a non-linear feedback signal. Data interpretation will be more difficult
in this case (c.f. chpt. 4).

All methods reviewed in the following sections were implemented to the setup in the
course of this work and all the data presented was recorded at the setup in order to com-
pare the different methods of phase retrieval. The benchmark used here is a comparison to
the GDD or phase profile, measured by “Multiphoton intrapulse interference phase scans”
(MIIPS), described in sect. 2.3.3. Apart from the reviewed methods of phase retrieval, a
number of other popular algorithms exists. For completeness, two important methods are
listed: “Frequency Resolved Optical Gating” (FROG) [61] and “Spectral Phase Interfer-
ometry for Direct Electric-Field Reconstruction” (SPIDER) [62].

2.3.1 Instantaneous non-linear processes

Measurements of the light intensity are generally insensitive to the spectral phase since
the intensity is the absolute square of the field. Non-linear light emission processes on the
other hand, depend on the temporal shape of the excitation light field, and can therefore
be used to gain information about the spectral phase [38]. The shortest possible laser pulse
will create the highest signal, because the probability of multiple photons, arriving at the
sample at the same time, is maximized. In the case of microscopy, the signal is created
only in the small volume of the focus of the microscope objective, so phase matching
conditions as in the bulk do not play a role. The notion that the shortest pulse implies the
highest non-linear signal has an important underlying assumption: the non-linear process
is required to be instantaneous, because any temporal delay of the response would lead to
an additional spectral phase [63]. If there is a spectral phase associated to the non-linear
process, the maximum signal is not given by the flat-phase pulse anymore. This holds for
the linear susceptibility which mediates the local field at the sample, as well as for the non-
linear susceptibility which is responsible for the non-linear light emission. Furthermore we
require a homogeneous spectral response that shall not highlight or suppress any part of
the spectrum.
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Second harmonic generation (SHG) is the most commonly used non-linear process for
phase measurements in optics. In a crystal, the microscopic condition for generating second
harmonic light is that the optically active parts are not centrosymmetric [63]. That way,
an anharmonic oscillator is formed which has contributions of odd orders, such as the
second harmonic which connects two input fields to a single output field. The potential
of centrosymmetric materials on the other hand possesses contributions of even orders,
allowing for instance for third-order processes with a total of four fields involved. Beta-
barium borate (BBO), mono-potassium phosphate (KDP), or iron(III)-iodate (Fe2(IO3)3)
are typical non-centrosymmetric materials, used in the laboratory for SHG. For practical
reasons, Fe2(IO3)3 nanocrystals were used in all cases presented here. They showed a
higher SH yield than KDP samples and were much less hydrophobic than BBO samples.

Third order processes are rarely used for pulse characterization in ultrafast optics, yet
there are a few examples where third harmonic generation of glass surfaces [64], or gold and
LiNbO3 bulk samples was used [65]. In chapter 3.2 graphene’s near-degenerate four-wave
mixing signal is presented as a promising candidate for pulse characterization, based on a
third order optical process.

2.3.2 Algorithms based on the total emitted non-linear intensity

The task of compressing a laser pulse can be approached by solving the problem of maxi-
mizing the total and instantaneous non-linear signal of a reference sample. In such a case,
the incoming laser intensity is Iin(t), and the integrated non-linear signal is given by [63]:

I totalNL ∝
∫
Iin(t)n dt, (2.19)

with n > 1 being the nonlinearity coefficient. The signal itself can be detected by an
appropriate photodetector without substantial dispersion over the used spectral range.
Using an optical pulse shaper, the mathematical maximization problem is to find the
phase profile φ(ω), that produces the highest possible signal I totalNL at the detector when
applied to the incoming spectrum4:

max
φ(ω)

(∫
Iin(t)n dt

)
. (2.20)

Possible pulse shaper artifacts and the spectral resolution set a technical limit to the
accuracy that can here be achieved (c.f. sect. 2.1.2). As a side note, it is often the case that
the central spectral regions of the laser pulse cause the major part of the total non-linear
signal compared to the weaker parts at the sides of the laser pulse. This means that the
retrieved phase of these spectral parts is less accurate than the phase around the central
frequency due to a smaller signal-to-noise ratio.

4The time dependent incoming intensity Iin(t) calculates from the Fourier transform of the incoming
spectrum according to: Ein(t) = FT [Ein(w)] with Ein(ω) = E0(ω) · exp(iφ(ω)) and Iin(t) ∝ |Ein(t)|2.
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Polynomial phase scans

The spectral phase is usually a smooth function, which implies that it can be expanded
into a polynomial series with a certain degree of accuracy. The first polynomial order
and the offset (zeroth-order) do not play a role for the pulse shape and therefore do not
influence the non-linear feedback signal. Using a pulse shaper, it is feasible to scan the
linear and quadratic chirp, resulting in a 2D map which typically has one pronounced
maximum. Fig. 2.7 shows a map of the second harmonic intensity versus second and third
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Figure 2.7: (a) 2D chirp scan of the total emitted SH intensity. The red “x” marks the
maximum, indicating the polynomial phase of the laser pulse (93.5 fs2, 1717 fs3). (b) GDD,
retrieved by the 2D chirp scan.

order polynomial phase of a slightly distorted laser pulse. The phase correction can be
directly taken from the maximum of the graph, corresponding to the negative of the pulses
phase distortion. If the laser spectrum is not too broad (e.g. . 50 nm in the case of
a Ti:Sa laser), the method is able to recover most of the phase distortions from optical
glasses, because they are mainly of second and third order.

Genetic algorithms (GA)

Genetic algorithms are a subset of evolutionary algorithms, first proposed by Alan Turing in
1950 [66], that can be used to solve non-linear optimization problems. A main characteristic
is that they work without derivatives, and can therefore also be applied to noisy data.
In ultrafast optics, evolutionary algorithms for phase retrieval using programmable pulse
shapers have been used for almost twenty years [5, 67]. They use the second harmonic
generation of a test sample as feedback signal which has to be maximized, but in general
the method is not limited to it5.

For pulse shaping purposes, the algorithm is implemented as follows: the pulse shaper
has a finite resolution (N = 128 pixels for the used device), which means that the phase op-
timization problem has N free parameters. These phases φn can possess values in between
φn ≥ 0 and φn ≤ 2π. The algorithm starts by creating a random set of “genomes” φn. For

5See sect. 3.2 for an example of application of a third order process based genetic algorithm.
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Figure 2.8: (a) Result of a phase retrieval, using the second harmonic based genetic algo-
rithm in comparison to the result from converged MIIPS iterations (see sect. 2.3.3). (b)
The convergence plot of the method over 20 generations á 25 genomes and a total of 500
single measurements.

every genome, a fitness f(φn) is determined, which is the non-linear signal intensity from
the measurement. Next, the part of the set of genomes with the lowest fitness is sorted
out and the remaining free spots are filled with individuals of a new generation (children)
which are created out of crossings of old genomes (parents) and random parts (mutations).
This is the part which mimics the genome evolution and is responsible for the name of the
algorithm. The children get a fitness value by measuring their non-linear signal intensity
and the process starts again by disposing the individuals with the lowest fitness.

Genetic algorithms are generally easy to use but difficult to understand in detail, as
their behavior is probabilistic. Depending on the starting population and the settings for
mutations and crossing of genomes, the number of iterations to reach a maximum can be
subject of strong variations. For more complex problems, there is no benchmark of the
algorithm telling, if the final solution is the best solution. The main parameters of the
current implementation are: the available phase space φn, the crossover ratio of parents,
and the number of generations. In the present case, the phase space is reduced to a
finite number of nodal points over the spectrum, typically 9, where the missing in-between
values for the shaper are generated by cubic interpolation. The idea behind this is that
very sharp phase features are not very likely to occur, but the limitation to fewer free
parameters greatly reduces the measurement time. Moreover, not the phase but the GDD
on the nodal points is modified, since the first and zeroth-order phase do not contribute
to the temporal shape of the laser pulse. There are two advantages in this approach with
respect to a version where the phase is directly varied. First, the resulting phase profile is
relatively smooth and second, the GDD, which is the real measurement quantity, is directly
accessible.

Fig. 2.8 presents an example of a successfully converged genetic algorithm based phase
characterization. The deviations from the reference method, multiphoton intrapulse inter-
ference phase scan (MIIPS, see sect. 2.3.3), are small.
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Phase Resolved Interferometric Spectral Modulation (PRISM)

“Phase resolved interferometric spectral modulation” (PRISM) [68] is a deterministic
method to measure the phase profile by a non-linear feedback signal. The main idea
is that the phase φtn of each shaper pixel n is varied over many single measurements t with
a characteristic speed vn. The trace that is recorded this way looks erratic at first glance,
but the signal of an individual pixel can be demodulated by Fourier transform. From the
phase of the demodulated signal, the phase of the corresponding pixel for an optimized
non-linear signal can be deduced. Since Wu et al. [68] did not present a very detailed de-
scription of the method in their original publication, the results of the implementation and
application of PRISM, obtained in the course of this work, are presented in the following.
Investigations about the accuracy of PRISM with respect to noise represent new findings.
Chpt. 4 presents a study on the application of PRISM on plasmonic nanoparticles, using
different non-linear feedback signals.

The method, as it was implemented here, works as follows: the pulse shaper’s N pixels
are divided into g groups of equal size, where the composition of the groups does not play
a role. The number of contained pixels is N/g, which has to be a natural number. Now one
starts with the first subset of pixels, whose N/g pixels are assigned to a phase progression
rate vn such that the phase at every pixel n and point in time t is given by:

vn =
π

2
+
ng

N
· π

2
n = 0, 1, . . . (N/g − 1), (2.21)

φtn = vn · t t = 0, 1, ...(N − 1), (2.22)

at a total of N time steps. This choice ensures that the phase of every pixel returns to
its original value at the end of the cycle: φNn = φ0

n. The non-linear signal intensities It of
every time step t are recorded with the corresponding pixel phase profiles φtn applied to
the shaper, while the phase of those pixels which are not part of the first subset, remains
unchanged. After this, a discrete Fourier transform (DFT) of It is performed:

Ĩn =
N−1∑
t=0

eivnt · It. (2.23)

It is possible to show that the demanded correction phase of pixel n is given by the argument
of the complex, Fourier transformed signal:

ϕn = arg(Ĩn). (2.24)

The special choice of vn requires g mod 4 = 0, because the arguments of the exponential
function in eq. 2.23 would otherwise be repetitive within one measurement cycle. Once
the correction phase for the first group of pixels is done, the procedure is repeated with
the other subsets of pixels, yielding a phase profile for the full spectral range of the pulse
shaper. Knowledge of which wavelength passes through which pixel is not required here
but completes the overall picture as it makes available the full phase information.
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Due to various reasons, PRISM should be iterated up to 3 times in order to achieve
sufficiently accurate phase reconstruction [68]. Fig. 2.9 demonstrates the application of
the algorithm at the example of a 32 pixel pulse shaper6. The result compares very well to
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Figure 2.9: Working principle of PRISM at the example of a 32 pixel pulse shaper, divided
into 4 groups. (a) Rate of phase progression vn for the pixels of group no. 1. (b) Measured
data of the pulse in the focus of an NA 1.3 objective. (c) Discrete Fourier transform
(DFT) of a) gives the phase for each modulated pixel (solid line). (d) PRISM phase after
3 iterations in comparison to a fully converged MIIPS measurement (8 iterations).

the reference measurement, done by MIIPS. Different than other methods presented here,
PRISM aims to find the phase of a pulse and not the GDD. Of course, the zeroth and
first polynomial order of the phase are inaccessible to PRISM as well. But cases exist, in
which the phase profile is well defined, but the GDD is not. Examples are sudden phase

6The available 128 pixel pulse shaper was used here but 4 pixels were pooled to a virtual single one.
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steps or kinks7 in the phase, which have undefined second-order phase profiles. As these
situations are borderline cases that do not appear in typical scenarios, they are not a real
problem for established methods such as MIIPS. With the pulse shaper it is nevertheless
possible to introduce such a phase distortion intentionally to verify whether it is possible
to retrieve the correct phase profile or not. Indeed, PRISM is able to resolve the phase
step (see fig. 2.10) and therefore to recover the original pulse shape.
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Figure 2.10: Demonstration of the phase retrieval of a π-step in the phase profile, inten-
tionally introduced by the pulse shaper. Measurement was performed on SH of Fe2(IO3)3

nanocrystals with N = 32, g = 4, using 5 iterations.
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Figure 2.11: Accuracy and convergence behavior of PRISM (simulations). (a) Error of
the retrieved phase in dependence of the overall noise level of the measurement (N = 32,
g = 4). (b) Error in dependence of iteration number and pixels per group (w.o. noise).
Lines indicate the total number of measurement points.

Since PRISM takes only a few measurements per pixel to measure the phase, it is fast
on one hand, but sensitive to experimental noise on the other hand: the total accuracy of
the measurements is directly limited by the error bar of the measured intensity. Increasing

7A kink in the phase profile appears for example in the V-shaped phase, see sect. 2.1.3.
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the number of iterations only makes sense if the signal-to-noise ratio is excellent, i.e. better
than 1 % for more than two iterations. Fig. 2.11 puts together results of simulations of
the PRISM method, where the available parameters have been scanned. The error, given
as an average deviation of the retrieved phase from the distortion phase, is compared to
the noise level of the simulated measurements (fig. 2.11a), and to the number of pixels
per group, as well as to the number of iterations (fig. 2.11b). The test phase used for
these examples was the phase of a harmonic oscillator model in order to compare to the
measurements of sect. 4.1. As can be seen from fig. 2.11a, choosing 3 iterations leads to
highest possible accuracy in the presence of noise for most measurements. The conclusion
and recommendation is that a workable compromise of accuracy and the total number of
measurement points is given by 3 iterations and 8 pixels per 4 groups, as can be seen from
fig. 2.11b.

2.3.3 Multiphoton Intrapulse Interference Phase Scans (MIIPS)

“Multiphoton intrapulse interference phase scans” (MIIPS) is a method for phase retrieval
using an optical pulse shaper and the second harmonic spectrum of a (flat-phase) reference
material that has been introduced by Lozovoy et al. in 2004 [6]. It uses a series of sinusoidal
test phase profiles, applied to the laser, and records the corresponding SH spectra of
the sample. The resulting 2D map shows characteristic features that can be evaluated
to approximately retrieve the phase distortions, present in the pulse. By applying the
algorithm in an iterative fashion, the phase profile can be evaluated to a high level of
accuracy.

In the following section, the original algorithm is reviewed, along with example phase
scans recorded during this work. Afterwards, recent improvements of the phase scan (gated
MIIPS) and the phase retrieval algorithm itself (improved MIIPS) from our group are
presented. The main ideas of these improvements stem from the work of Comin et al. [11,
12].

Standard MIIPS

The second harmonic spectrum of a flat-phase material with instantaneous SHG can be
calculated as follows [63]:

ISH(2ω) = cε0

∣∣∣∣∣∣χ(2)

∞∫
0

dΩ E(ω − Ω) · E(ω + Ω)

∣∣∣∣∣∣
2

, (2.25)

where E(ω) is the complex electric field and χ(2) the second order susceptibility of the
material. During a MIIP scan, a test phase φ(ω) will be added to the original but unknown
phase ϕ(ω) of the laser pulse:

EMIIPS(ω) = |E(ω)| · ei[φ(ω)+ϕ(ω)]. (2.26)
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Expanding the phase of the field to orders of Ω, eq. 2.25 can be written as:

ISHMIIPS(2ω) = cε0

∣∣∣χ(2)

∞∫
0

dΩ |E(ω − Ω)| · |E(ω + Ω)|×

× exp
[
i
(
1/2(φ′′(ω) + ϕ′′(ω))Ω2 + 1/12(φ(iv)(ω) + ϕ(iv)(ω))Ω4 + . . .

)]∣∣∣2.
(2.27)
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Figure 2.12: (a) Example of a MIIP scan in the focus of a NA 1.3 microscope objective.
The black dashed lines indicate the maximum position of the traces, the white solid lines
indicate the position of zero phase distortion. Scanning parameters were: a = 10 rad, b =
20 fs, ∆c = π/100. (b) GDD retrieved from the maximum positions in (a), demonstrating
a large amount of phase distortion.

Since the zeroth and first order of the phase do not contribute to the SH intensity, they
do not occur in the formula. To second-order accuracy the condition for a maximum in
the second harmonic spectrum reads:

φ′′(ω) + ϕ′′(ω) = 0. (2.28)

This condition is fulfilled, if the local second derivative (GDD) of the phase ϕ(ω) at the
frequency ω is eliminated by the test phase φ(ω) which then leads to efficient SHG. Lozovoy
et al. propose a sinusoidal test phase of [6]:

φ(ω) = a · sin(b · (ω − ω0)− c) (2.29)

with ω0 being the central frequency of the laser pulse. a and b are parameters of the test
phase that determine the range and accuracy of the phase scan, while c is scanned in steps
of ∆c over a range of at least 2π. A MIIPS measurement results in a spectrogram of the SH
versus the scanning phase c and is shown in fig. 2.12a. There are curved lines of maximum
intensity visible in the map, which are the MIIPS “traces”. These traces determine the
positions where the local GDD is equal to the second derivative of the test phase and hence
the above mentioned condition is fulfilled. As the test phase φ(ω) is 2π-periodic within c,
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Figure 2.13: (a) Correction phases, retrieved in five successive MIIPS iterations. The
phase profiles converge towards zero. The overall correction phase is the sum over all
iterations (not shown). (b) Spectra of the second harmonic with and without the final
phase correction, compared to the theoretical flat-phase SH spectrum.

the traces repeat themselves without adding more information. Evaluating the maximum
position cmax(ωSH) for all SH frequencies ωSH = 2ω is the main step of the MIIPS method
and has to be done by a peakfinding algorithm of choice. Depending on the signal-to-noise
ratio, the resulting function can be ambiguous, particularly at the wings of the spectrum.
The local GDD of the pulse is calculated from the function cmax(ωSH) (see fig. 2.12b):

ϕ′′MIIPS(ω) = a · b2 · sin(b · (ω − ω0)− cmax(2ω)). (2.30)

The last step is the calculation of the phase ϕMIIPS(ω) by double integration of ϕ′′MIIPS(ω)
with arbitrary integration constants. In most cases, at least two traces, carrying the
same information, are completely visible in a MIIPS spectrogram, so the retrieved GDD
is the mean value of the individual traces. A single iteration of MIIPS cannot retrieve the
spectral phase very accurately, so a number of iterations has to be performed in order to
achieve a reasonable precise result. As for microscopy, the number of iterations used varies
between 4 and 20, strongly depending on the total GDD, the necessary exactness, the used
parameters a, b, and ∆c, and the setup-specific signal-to-noise ratio. The example shown
in fig. 2.12 was measured using the setup described in sect. 2.2. The GDD retrieved during
this scan spans more than 4000 fs2, which is a typical value for microscope objectives.
Since the function is nearly linear, it can be concluded that a strong third order phase
distortion was present at the laser pulse in the focus of the microscope objective. Around
the central wavelength of the laser of 800 nm the GDD crosses zero which is not expected
if centimeters of glass were introduced to the beam path. The reason for this is that the
laser pulses get pre-compressed by the prism compressor before entering the microscope
(c.f. sect. 2.2), which is able to remove the mean GDD of the entire pulse. The very
strong remaining phase distortion that was measured here demonstrates the importance of
additional and sophisticated phase retrieval and compression of broadband laser pulses if
the bandwidth limit needs to be reached. In fig. 2.13, a convergence plot of five successive
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MIIPS iterations is shown alongside different second harmonic spectra recorded with and
without the retrieved phase correction. The magnitude of the phase correction that is
determined in every iteration step constantly decreases. After the process has converged
to an acceptably flat resulting phase, the theoretical second harmonic spectrum for a
bandwidth limited laser pulse, calculated using the laser fundamental spectrum, is nicely
matching the measured one. We usually interpret the converged MIIPS method and the
SH spectrum matching the expectation for a bandwidth limited laser pulse such, that the
bandwidth limit has been reached, i.e. the pulses are as short as they can get. On the
basis of such a pulse correction, measurements on other materials can be carried out where
the pulse profile is intentionally manipulated.

According to eq. 2.30, the maximum GDD that can be tested by MIIPS, is GDDmax =
±a · b2. At a maximum relative error of the GDD of ε = ∆GDD/GDD, it can be shown
that the total accuracy cannot be better than GDDmin = a · b2

√
1 + (ε/∆c). These two

numbers should be considered when choosing the MIIPS parameters a, b, and ∆c for
measurements. Sect. 2.3.5 presents a detailed discussion on the level of precision to be
reached by MIIPS and other phase measurements.

Gated MIIPS

The following section is based on the publication: “Compression of ultrashort laser pulses
via gated multiphoton intrapulse interference phase scans” in Journal of the Optical Society
of America B (2014), by Comin et al. [11], reproducing theory and figures.

Gated MIIPS (G-MIIPS) is a variation of MIIPS that uses an improved scanning al-
gorithm which is able to compress a laser pulse with fewer iterations than the original
MIIPS [11]. The initial idea is that the central condition of MIIPS eq. 2.28 in combination
with the sinusoidal test phase has only a small validity range of the phase expansion that
was carried out in the first place (eq. 2.27). The reason is that the test phase φ(ω) has of
course, higher orders that will influence the MIIPS measurement and the pulse phase ϕ(ω)
may have them too. Consequently, the condition in eq. 2.28 should be rewritten:(

φ′′(ω) +
1

6
φ(iv)(ω) + . . .

)
+

(
ϕ′′(ω) +

1

6
ϕ(iv)(ω) + . . .

)
= 0.

Gated MIIPS aims at reducing the effect of the higher orders by restricting the available
laser spectrum. For that purpose, an amplitude gate is used in addition to the sinusoidal
test phase. The phase and amplitude masks for G-MIIPS with a Gaussian gate read:

φ(ω, c) = a · sin(b · (ω − ω0)− c),

M(ω, c) = exp

[
−
(b · (ω − ω0)− c

σ

)2
]
.

(2.31)

As the test phase progresses with c, the amplitude gate, centered at the frequency c/b,
selects a small part of the spectrum with a width of σ. Since at every phase point c only
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a small part of the spectrum contributes to the G-MIIPS map, the higher order terms are
much less significant than for standard MIIPS. Therefore the advantage of G-MIIPS comes
from the reduced error made by the second-order approximation of the local phase. After
a scan, the phase is evaluated in the standard way with the exception that there is only a
single trace in the map.

Fig. 2.14 shows an example G-MIIPS spectrogram, where the beam of a bandwidth
limited laser pulse has traveled through 23 mm of SF10 glass as a reference phase distortion,
resulting in an average GDD of as much as 3600 fs2. The GDD of the laser pulse gets
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Figure 2.14: Demonstration of G-MIIPS for an introduced 23 mm of SF10 glass into the
beam path of a compressed laser pulse. (a) Amplitude gate, using the parameters a = 10,
b = 25 fs, and σ = 0.18. Inset shows the gate for c = 0 in front of the laser spectrum.
(b) G-MIIPS spectrogram with the previous parameters. The dashed white line indicates
the position of zero phase distortion. (c) Retrieved GDD in comparison to MIIPS and
the theoretical value for the SF10 glass. (d) SH spectra after a single iteration of MIIPS,
G-MIIPS and from a fully compressed pulse. Adapted from Comin et al. [11]
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approximated much better by G-MIIPS than by MIIPS, however at the cost of a much
lower total signal. In the present case, the total detected intensity of G-MIIPS was a factor
5 lower than for standard MIIPS, which can also be seen in the reduced signal-to-noise
ratio of the GDD in fig. 2.14c. There is a general mismatch between signal-to-noise and
accuracy: the latter is primarily determined by the MIIPS parameters and the gate width
σ. One would like to decrease the gate size as much as possible in order to enhance the
validity of the underlying series expansion of the phase, but this decreases the excitation
intensity at the sample significantly. Therefore, the measurement has to be carried out
for a longer time to not be limited by noise. Although gated MIIPS already presents an
improvement to standard MIIPS, a way to overcome the problem of a reduced signal is
shown in the next section.

Improved MIIPS

The following section is based on the publication: “Phase retrieval of ultrashort laser pulses
using a MIIPS algorithm” in Optics Express (2016), by Comin et al. [12], reproducing the
main points of the theory.

The MIIPS algorithm can be improved, even without changing the scanning technique.
Standard MIIPS uses a local polynomial expansion of the phase of the electric field in
eq.2.25. The series expansion that affects the phase term but not the amplitude term
contains an approximation, limiting the validity of the procedure as such. This is the main
reason why the MIIPS algorithm, also in case of an idealized, noise free measurement, is
not able to retrieve the correct phase of a laser pulse in a single iteration.

The idea of improved MIIPS is to take the laser spectrum as extra information into
account. With the laser spectrum known and the usual assumption of a homogeneous and
instantaneous SHG, the theoretical SH spectrum for arbitrary phases can be calculated
using eq. 2.25. The goal is to find a phase profile that reproduces a SH spectrogram of a
MIIP scan, resembling a measured one as closely as possible. If such a phase profile is found,
it is assumed to be the phase profile of the laser pulse. The improved MIIPS algorithm
suggests a feedback mechanism to determine this phase, based on repeated calculation of
the theoretical MIIPS map without the need to iterate the physical measurement as in
standard and gated MIIPS. The method is limited by the resolution of the scan only, given
by GDDmin and GDDmax. In the following, a detailed recipe for the procedure of phase
retrieval with the help of the laser spectrum Ilaser(ω) ∝ |E0(ω)|2 is given:

1. Record a MIIPS spectrogram ISH,expMIIPS(c, 2ω) in the range c ∈ [−π, π]. Use the standard
peakfinding algorithm in order to get the first guess of the second-order phase ϕ′′exp,
which will serve as reference to the experiment throughout the process. From this,
calculate the first iteration of the phase by double integration: ϕ1 =

∫ ∫
ϕ′′expdωdω.

This is iteration n = 1.

2. Calculate a MIIPS spectrogram ISH,theoMIIPS (c, 2ω) using the known laser spectrum and
the phase approximation ϕn. Use the standard peakfinding algorithm in order to get
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a second-order phase ϕ′′fb from the theoretical map, which will serve as a feedback to
the current iteration.

3. The difference between the feedback term and the experimental second order phase
δ = ϕ′′fb−ϕ′′exp reflects the error of the current iteration. A new iteration is now given
by: ϕ′′n+1 = ϕ′′n − k · δ. The numerical constant k can be tuned in order to improve
the overall convergence. A good value to start with is k = 0.5.

4. Calculate the phase for iteration n+ 1 by double integration: ϕn+1 =
∫ ∫

ϕ′′n+1dωdω.

5. Repeat the algorithm, starting at number 2.

6. Stop iterating when the estimated error δ is smaller than the experimental accuracy
GDDmin.

Since the sinusoidal test phase is monotonic in the range c ∈ [−π, π], the sign of the error
δ is always correct in a sense that the error can be used to improve the current “guess” of
the GDD ϕ′′n. With the use of the improved MIIPS retrieval algorithm, there is no need
to iterate the physical experiment any longer to extract all phase information, present in
a MIIPS trace. An example MIIP scan is shown in fig. 2.15 together with the fitted GDD
and, as a comparison, the experimental GDD, obtained by 8 MIIPS iterations. Both GDD
curves show that the result is identical. The MIIPS spectrogram, calculated on the basis
of the retrieved phase and the laser spectrum, resembles the experimental one very nicely,
which demonstrates the applicability of the method.
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Figure 2.15: Demonstration of the improved MIIPS algorithm. (a) First iteration of a
measured MIIPS spectrogram (a = 10 rad, b = 20 fs). (b) Calculated spectrogram from
the MIIPS phase, retrieved with the improved algorithm, and the input laser spectrum. (c)
Comparison of the MIIPS GDD from the improved algorithm with a converged MIIPS series
of 8 iterations. Both methods yield the same result which demonstrates that improved
MIIPS is more practical than standard MIIPS.
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The fact that only a single measurement has to be taken can be a decisive improvement
in the case of nanostructures with limited photostability. In terms of speed, it is clear that
an improvement of a factor 5 to 10 is reached, depending on the commonly used number
of iterations. Only if the experimental accuracy has to be enhanced, a new MIIPS trace
with different parameters a, b, and ∆c has to be recorded.

2.3.4 Spectrally resolved chirp scans

MIIPS is a method, based on the second harmonic spectrum of a sample material, using
a sinusoidal test phase. In order to obtain phase information from the peak position of
a second harmonic spectrogram, other suitable test phase profiles can be used too. One
particularly simple method is to do spectrally resolved chirp scans [69, 70]. During the
course of this work, this variation of MIIPS was often used in a semi-automatic fashion
for everyday pulse compression. A chirp scan adds a second-order polynomial phase to the
laser pulse and scans its magnitude c while recording the SH spectrum:

φtest =
c

2
(ω − ω0)2, (2.32)

with ω0 being the central frequency. At the maximum of the second harmonic in c, the
applied chirp compensates the local GDD to the same order of accuracy as standard MIIPS.
Therefore, the maximum position of c can be directly identified with the local GDD, which
is shown in fig. 2.16.
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Figure 2.16: (a) Second harmonic spectrograms of a chirp scan. (b) The GDD of the laser
pulse GDD = φ′′(ω) can directly be retrieved from the maximum position of the applied
chirp c: φ′′(λ) = −cmax(λ/2).

In more detail, a laser pulse with applied chirp c has the following complex valued
electric field:

E(ω, c) = |E(ω)| · exp
[
i(ϕ(ω) + c/2 · (ω − ω0)2)

]
, (2.33)

with ϕ(ω) being the laser pulse phase profile which shall be determined. The second
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harmonic spectrum from eq. 2.25 then reads:

ISHCS (2ω, c) ∝
∣∣∣ ∞∫

0

dΩ |E(ω − Ω)| · |E(ω + Ω)|×

× exp
[
i
(
ϕ(ω − Ω)+ϕ(ω + Ω) + c/2 ·

(
(ω − Ω− ω0)2 + (ω + Ω− ω0)2

) )]∣∣∣2.
Again, the phase is expanded to powers of Ω around ω and the first two terms are dropped,
such that the approximation to the quadratic term reads:

ϕ(ω − Ω) + ϕ(ω + Ω) + c/2 ·
(
(ω − Ω− ω0)2 + (ω + Ω− ω0)2

)
≈ (ϕ′′(ω) + c) · Ω2.

The approximated second harmonic spectrum is now given by:

ISHCS (2ω, c) ∝
∣∣∣ ∫ ∞

0

dΩ |E(ω − Ω)| · |E(ω + Ω)| · exp
[
i
(
(ϕ′′(ω) + c) · Ω2

)]∣∣∣2. (2.34)

The SH is maximized for:

ϕ′′(ω) = −cmax(2ω), (2.35)

so (unlike MIIPS) a peakfinding algorithm will directly give an approximation of the local
GDD by the position of the maximum. It is easy to show, that eq. 2.34 is symmetric in c:
ISHCS (2ω, c) = ISHCS (2ω,−c); so the maximum position with respect to c coincides with the
“center of mass”:

cmax(2ω) ≡ ccom(2ω) =

∞∫
−∞

dc c · ISHCS (2ω, c)

∞∫
−∞

dc ISHCS (2ω, c)

. (2.36)

Finding the center of mass of a 2D spectrogram is simple and robust in comparison with
finding the maximum, and in case of a low signal-to-noise ratio, this can be a decisive
advantage. The validity of the approach is, as for standard MIIPS, restricted by the
validity of the power series expansion of the phase term in eq. 2.25, but this time there
are no higher orders of the test phase that introduce further errors. If substantial higher
order terms occur for the approximation of the local phase, the identification of applied
chirp with GDD is not correct anymore. In this case, an iterative procedure can be used,
since the chirp c will always underestimate the real GDD. Fig. 2.17 shows the working
principle of this approach in five iterations, using a decreasing scanning range in order to
successively enhance the resolution.

A similar method has also been used without liquid crystal pulse shapers by inserting
wedges of glass into a negatively chirped laser beam [71]. That way, it is also possible to
accurately determine the phase of the laser pulse, but it cannot be compensated to the
same order of accuracy.
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Figure 2.17: Second harmonic spectrograms of successive chirp scans. Each chirp scan
gives an approximate GDD correction, which is applied to the pulse. Then the chirp scan
is repeated with higher accuracy.
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Compared to standard MIIPS, chirp scans have three advantages. First, the phase
approximation works better because no error is made in the second-order approximation of
the (second-order) test phase. Second, the peakfinding is simpler, because the maximum
in c coincides with the center of mass, which can be determined in a very robust way
even for low signal quality. And third, the overall detected second harmonic intensity
is usually larger than for MIIPS, because the phase distortion introduced by the test
phase is less severe than in case of the sinusoidal phase profile, which makes SHG more
efficient. Compared to G-MIIPS, the last two points still hold, but depending on the phase
distortions present in the system, the advantage of G-MIIPS can overrule them. The
improved MIIPS algorithm outperforms the iterative chirp scan technique by far for the
same reasons as it outperforms the other MIIPS variants. The algorithm of the improved
MIIPS data evaluation can be applied to spectrally resolved chirp scans with only minor
adjustments concerning the analysis of the GDD.
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2.3.5 Remarks on the accuracy of MIIPS-based schemes

In this section, the experimental and theoretical limits of the used, pulse shaper based,
approaches are discussed in an application oriented fashion. Additional experiments which
can verify the retrieved pulse characteristics are presented as well as an estimation of
the fourth-order error made in the central assumption of MIIPS. This is of particular
importance, since it is generally anticipated that a converged MIIPS measurement yields
a bandwidth limited laser pulse in the microscope’s objective focus.

Benchmark tests

In a measurement, many features of the apparatus and the surrounding will influence
the results in an unwanted fashion. Therefore only relying on a single method for pulse
compression or characterization is not advisable since it can happen that phase distortions
are overlooked in one particular method that would be easily visible in a second one.
Unfortunately, the detection sensitivity itself is also able to alter the results in a way, as it
is usually caused by phase distortions. If, for example, the spectral detection sensitivity is
not accurately corrected, the theoretical and experimental SH spectra cannot overlap which
would be a problem for improved MIIPS. Establishing reference experiments is therefore
an important prerequisite for reliable experiments with bandwidth limited femtosecond
laser pulses. During the course of this work, the following benchmark tests have been
implemented and are now routinely used in our laboratory:

� Autocorrelation scans,

� Phase measurements of reference distortions,

� Comparison of the SH spectrum with the theoretical SH spectrum,

� The symmetry of spectrally resolved chirp scans.

Fig. 2.18 presents examples of all four mentioned methods, which are explained in detail
below. All measurements were done on Fe2(IO3)3 nanocrystals.

Autocorrelation (AC) scans can be carried out with the pulse shaper by introducing a
cosine amplitude mask (see sect. 2.1.3). The theoretical AC scan for a bandwidth limited
pulse can be calculated from the laser spectrum and serves as a reference for the quality of
the pulse compression. The goal is to have fully overlapping curves whereas deviations from
the optimal shape can be a sign of incorrect phase correction. Fig. 2.18a shows an example
AC scan for an almost compressed laser pulse. The theoretical and the experimental curves
which are scaled to the same height do not overlap perfectly, so it is desirable to deter-
mines the magnitude of the distortion. One way is to use the full-width-at-half-maximum
(FWHM) of the curve and compare this to the theoretical case of a bandwidth limited
pulse. In the present case this yields a value of 28.5 fs for the experimental curve (black
line) and 30.2 fs for the theoretical (red line). Therefore the mistake does not originate from
the phase but from the incorrectly recorded laser spectrum. As a comparison, simulated
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residues between the bandwidth limited (0 fs2) and distorted curves are plotted below the
autocorrelation trace: Res(t) = I0 fs2(t) − Idist(t). They show that a phase distortion of
50 fs2 would barely be visible as a divergence from the best case AC trace.
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Figure 2.18: Quality checks for pulse compression, based on measurements of the second
harmonic (SH): (a) Autocorrelation scan, (b) chirp scans, (c) SH spectrum, (d) spectrally
resolved chirp scan. See main text for details.

Chirp scans have already been presented as a method to retrieve phase information (see
sect. 2.3.2). Their accuracy is relatively high, as can be seen from fig. 2.18b. A chirp scan
of a compressed laser pulse (red circles) is shown and compared to a second scan (blue
circles), where a plate of 1 mm BK7 glass has been inserted as a known phase distortion.
A chirp offset of 44.6 fs2 is expected at a central wavelength of 800 nm (c.f. tab. 2.1),
visualized by the dashed lines. They coincide accurately with the maxima of the measured
curves, which implies that a residual GDD of lower than 50 fs2 can be easily measured.

Fig. 2.18c presents the measured SH spectrum (black line) together with the theoretical
bandwidth limited curve (red line) and a curve with 100 fs2 GDD (blue line). All are
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scaled to 1 since the total intensity, which is determined by the efficiency of the measured
nanocrystal, is generally unknown. The only criterion is then the shape of the spectrum,
whose sensitivity can be estimated to 50 . . . 100 fs2, depending on the signal-to-noise ratio.
An advantage is that the measurement of a single SH spectrum is a very quick check,
compared to the recording of AC traces or chirp scans.

The fourth method is shown in fig. 2.18d for a slightly distorted (i.e. not fully com-
pressed) laser pulse. The spectrally resolved chirp scan takes more measurement time
than the previous checks, but is most sensitive to residual phase distortions. It is plotted
together with its center-of-mass (c.o.m.) which reveals s local GDD of up to 200 fs2. Im-
portantly, the mean GDD of the pulse amounts to 0 fs2, so a measurement in the fashion of
fig. 2.18b would have given the wrong result. The inset shows the symmetric residue (with
a different color scale), calculated as: Ires(λ, c) = I(λ, c)− I(λ,−c). Apart from the center
of mass it directly gives a visual feedback on the quality of the previous pulse compression
steps.

To summarize, there are many ways to check the quality of a pulse compression. Auto-
correlation scans are historically very popular, but they only provide very limited accuracy.
If one is using a pulse shaper, there are better and faster ways to verify the pulse shape.
Comparing the second harmonic spectrum to the theoretical shape of a bandwidth limited
laser pulse is a quick check, but its accuracy is limited. Both methods rely on the very
accurate measurement of the fundamental laser spectrum and a spectrally flat detection
sensitivity of the second harmonic signal. Chirp scans give a feedback on the pulse by
the shift of their maxima, which can be spectrally integrated or resolved. The accuracy
of those scans is superior to the other two mentioned methods and it does not rely on the
knowledge of the laser spectrum.

Limitations of MIIPS from theory

The central simplification made by MIIPS and related methods is that the phase can be
locally approximated by its second order. This simplification is only allowed if the higher
local orders are small compared to the local second order. The effects of higher order
phase distortions in the pulse have already been discussed in the sections about G-MIIPS
and improved MIIPS (sect. 2.3.3), here the introduced error by the sinusoidal test phase
will be discussed, which sets a theoretical limit to the usability of this kind of test phase.
Remembering the phase term of eq. 2.25 while dropping the zeroth and first order:

φ(ω + Ω) + φ(ω − Ω) ≈ φ′′(ω) · Ω2 +
1

12
φ(iv)(ω) · Ω4︸ ︷︷ ︸
phase error

+ . . . , (2.37)

a formula for the total error of the phase is derived. The residuals to the local second-order
approximation of the phase by its second derivative φ′′(ω) represent the error estimate. To
leading order, this is equal to the fourth order term. In order to quantify it for a given
laser pulse, the integrand Ω is replaced by the pulse width ∆ω, which is a conservative
guess, and the frequency dependent fourth order φ(iv)(ω) is replaced by a typical value for
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Figure 2.19: Logarithmic contour plot of the error of the second-order phase approximation
vs. spectral pulse width and the fourth order phase. The labels at the solid lines are given
in fs2, representing the error in GDD. The dashed line indicates the used laser bandwidth.
If an error of 10 fs2 over the spectrum is permissible, the fourth order phase distortion has
to be smaller than 6, 500 fs4 for the present system.

the respective spectrum Φ(iv). The value of Φ(iv) can in this context be interpreted as the
maximum permissible fourth order phase error throughout the full spectrum. The error
estimate ε for the GDD then reads:

ε =
1

12
Φ(iv) ·∆ω2. (2.38)

Fig. 2.19 gives an overview about the consequences of this error. In cases where a high
fourth order is present in the laser pulse, iterating MIIPS often improves the result. As
can be seen from eq. 2.38, the error always has a sign which leads to an underestimation
of the retrieved GDD, so it can be successively eliminated by iterating the procedure. If
the fourth order is above the permissible error threshold, given in fig. 2.19, then iterations
will not improve the situation.

During a MIIP scan, the maximum fourth order of the sinusoidal test phase amounts
to:

φ
(iv)
MIIPS(a, b) = a · b4. (2.39)

This fourth order is unwanted and, depending on the used MIIPS parameters, features
a severe additional phase which leads to an incorrect phase retrieval [11, 12]. In case of
gated MIIPS, this is not a big problem, since the spectrum is reduced such that much
higher local errors can be tolerated. The error in local GDD that can result from this term
is given in fig. 2.20. This figure, together with fig. 2.19, highlights the subsistent reason
for the need to iterate the MIIPS process. The fourth order of the scanning test phase
profile creates a local phase distortion which becomes even more pronounced if the values
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Figure 2.20: Logarithmic contour plot of the maximum error of MIIPS vs. the scanning
parameters a and b for the case of a 20 fs Gaussian laser pulse, centered at 800 nm. The
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spectrum is permissible in one iteration and the amplitude is a = 10 rad, the modulation
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for a and b are higher than usual. If this fourth order error does not exist, for example
in spectrally resolved chirp scans, the problem of the second-order phase approximation
persists, though it is less severe.

The case of improved MIIPS circumvents both these problems and retrieves the correct
phase profile.



Chapter 3

Non-linear optics of Graphene

3.1 Introduction

The linear dispersion of the massless Dirac Fermions in graphene is enabling an ever in-
creasing number of optical and optoelectronic applications [22, 23, 32, 33]. The resulting
spectrally flat absorption in combination with ultrahigh electric switching rates makes
graphene particularly interesting for high-speed applications in photodetectors [30, 31, 32]
and as broadband saturable absorbers in ultrafast lasers [23, 72]. However, the linear dis-
persion is also connected to efficient higher-order optical responses, including non-linear
broadband photoluminescence and four-wave mixing (FWM) [73, 74, 75, 76].
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Figure 3.1: (a) Atomic structure of graphene, (b) simplified band structure near the K-
point. Pulsed optical excitation of graphene causes two different non-linear optical effects:
the parametric process of four-wave mixing (FWM) and non-linear photoluminescence
(NLPL) which is driven by nonequilibrium charge-carrier dynamics.

Two very different non-linear processes are stimulated under femtosecond laser ex-
citation. The first is instantaneous four-wave mixing which is a parametric third-order
non-linear effect [75]. The second originates from the large density of charge carriers that
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can be created during pulsed excitation. There are electrons lifted from the valence to the
conduction band, leaving holes back in the valence band. The dynamics of these charge
carriers lead to a non-linear, broadened light emission; the non-linear photoluminescence
(NLPL) [73]. Fig. 3.1 presents a simplified schematic of the linear band structure near
the K-point summarizing the two effects of four-wave mixing and non-linear photolumi-
nescence.

In the first part of this chapter, sect. 3.2, the efforts of this work to better understand
the properties of the third-order susceptibility of graphene are presented. The detected
near-degenerate four-wave mixing is used as a reference signal for phase characterization.
In the second part of this chapter, sect. 3.3, the non-linear photoluminescence is studied.
Joint theoretical-experimental work is presented that helps to understand the origin and
magnitude of the charge-carrier driven NLPL. Two-pulse correlation experiments then
complete the picture by investigating phonon driven cooling processes, whose velocity is
found to depend on the chemical potential µ.
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3.2 Graphene’s near-degenerate four-wave mixing for

femtosecond pulse characterization

The following section is based on the publication: “Graphene Near-Degenerate Four-Wave
Mixing for Phase Characterization of Broadband Pulses in Ultrafast Microscopy” in Nano
Letters (2015), by Ciesielski et al. [77], reproducing parts of the text and figures.

3.2.1 Theoretical background: Third-order non-linear suscepti-
bility of graphene

In 2010, Hendry et al. experimentally demonstrated non-degenerate four-wave mixing in
graphene at the frequency ωFWM = 2ω1 − ω2 [75], an effect that in theory had already
been predicted and described by Mikhailov [74]. The third-order nonlinearity of graphene
is large; the non-linear susceptibility χ(3) was observed to be 2 orders of magnitude higher
than for thin gold films of comparable absorptivity [78], which is explained by the fact that
all vertical transitions are resonant at all frequencies ωFWM , ω1 and ω2 [75].

A simplified description of the non-linear response (Mikhailov [74]) is given in the
following. Free charge carriers near the K-point in graphene possess the well known linear
energy spectrum given by:

ε = (−1)l · V · |p| = (−1)l · V ·
√
p2
x + p2

y. (3.1)

Here the graphene sheet is oriented in the x-y plane, V is the Fermi velocity of about
106 m/s, p is the quasi-momentum, and l is determined by the particle type, namely l = 1
in case of a hole and l = 2 in case of an electron. If a sinusoidal (in plane polarized)
electric field E = E0 · cos(ωt) is applied to graphene, then according to Newton’s equation
of motion, the force F on the charge carriers with charge q is given by:

F =
dp

dt
= q · E. (3.2)

Magnetic interactions are neglected here due to the large resulting mismatch in the mag-
nitude of the resulting forces. Assuming an x-polarized electric field, the integration over
time yields an expression for the momentum: px = q · E0/ω · sin(ωt). From this, the time
dependent charge carrier velocity under continuous wave illumination can be calculated
from Hamiltonian mechanics:

vx =
∂ε

∂px
= V

px√
p2
x + p2

y

py→0
= V · sgn

(
px
)

= V · sgn
(

sin(ωt)
)
. (3.3)

The resulting ac electric current jx(t) ∝ vx(t) is strongly anharmonic and in the limit of
|p| ≈ px, it is proportional to the signum function of the excitation field, so it flips between
positive and negative current at optical frequencies and resembles a square wave. The
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Fourier series of the resulting square wave current, with n being the charge carrier density
per unit area, reads:

jx(t) = qnV · sgn
(

sin(ωt)
)

= qnV
4

π
·
(

sin(ωt) +
1

3
sin(3ωt) +

1

5
sin(5ωt) + . . .

)
.

(3.4)

Apparently, the current has strong contributions of the electric field’s odd orders (ω, 3ω,
5ω, ...), which lead to strong non-linear susceptibilities of odd orders. The third-order
susceptibility χ(3) therefore plays an important role in the optical non-linear spectrum of
graphene, which can be seen as a direct consequence of the linear band structure near the
K-point.

The presented approach illustrates the basic physical origin of the nonlinearity in
graphene, but it represents a highly simplified description. Taking into account the Fermi
distribution of electrons and holes as well as the tight binding model, one arrives at a
more precise description of the coherent non-linear phenomena in graphene [74, 79, 80, 81],
which also provide quantitative predictions.

3.2.2 Near-degenerate four-wave mixing spectra of
graphene

As a parametric process, four-wave mixing has several realizations fulfilling energy con-
servation [82]:

ωFWM = | ± ω1 ± ω2 ± ω3|, (3.5)

where ωi are the input optical frequencies. Typically, one can distinguish a degenerate
and a non-degenerate case, where ωdegenerateFWM equals one of the three input frequencies and
ωnon−degenerateFWM is different from all of them [82, 75]. In the case of a broadband laser, fre-
quency mixing terms across the spectrum become important and lead to significant contri-
butions directly next to the laser spectrum, defining the near degenerate (ND) case [82, 83].

Fig. 3.2a plots the single layer graphene emission spectrum (black symbols), excited
by a 15 fs laser pulse centered at 1.55 eV (grey line) in the focus of a high NA=1.3 ob-
jective. On both sides of the excitation pulse an intense signal is seen, decaying rapidly
with increasing energy shift. In the following, measurements are presented which verify
that the signal indeed results from near-degenerate four-wave mixing, maximized for the
shortest (bandwidth limited) laser pulse. Using either the low or the high energy side of
the emission as a signal for an intensity map, high contrast confocal images of graphene are
recorded as shown in fig. 3.2c. The signal on the detector reaches several million counts per
second at a laser pulse energy of 5.4 pJ. Therefore, it is easily detected, and in combina-
tion with the weak background, stemming probably from the immersion oil and the glass
substrate, near-degenerate four-wave mixing provides a very clear signal-to-background
contrast, accompanied by a high signal-to-noise ratio.
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Figure 3.2: (a) Near-degenerate four-wave mixing (ND-FWM) spectrum of single layer
graphene (SLG) on glass (semi-log plot). The laser pulse is transform limited in the focus
of the objective. The dashed line corresponds to the calculated FWM-spectrum on the
basis of a flat spectral amplitude and phase response and the spectrum of the incident
laser. (b) The ND-FWM signal originating from a tailored excitation spectrum follows
the theoretical prediction. (c) Confocal scan (Stokes side) of SLG on glass. ND-FWM
provides a nearly background free signal contrast that highlights features such as wrinkles.
The dashed line indicates the position of the cross section. Adapted from Ciesielski et
al. [77]

Four-wave mixing spectra can be calculated according to the following integral [82]:

IFWM(ω) = cε0

∣∣∣χ(3)

ωmax∫
ωmin

dΩ1

ωmax∫
ωmin

dΩ2 E(Ω1) · E(Ω2)×

×E(Ω1 + Ω2 − ω) · ei·(ϕ(Ω1)+ϕ(Ω2)−ϕ(Ω1+Ω2−ω))
∣∣∣2 (3.6)

where χ(3) is the constant third-order susceptibility, E is the amplitude of the excitation
laser field, c the speed of light, ε0 the vacuum permittivity, ωmin and ωmax are the lower and
upper frequency limits of the laser spectrum, and ϕ(ω) is the spectral phase of the pulse.
This model description is in very good agreement with the experimental response, as seen
in fig. 3.2a and b. At energies further away from the excitation, the experimental signal
exceeds the theoretical curve, which is attributed to non-linear photoluminescence [73, 84,
85], c.f. sect. 3.3. This contribution is at least two orders of magnitude lower than the
four-wave mixing signal.

The total emitted four-wave mixing energy per incoming pulse for the present mea-
surement is determined in two steps. First, the calculated FWM spectrum (dashed line in
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fig.3.2a) is scaled to the measured intensity, taking into account the overall detection sen-
sitivity of the setup. This allows access to the FWM intensity also in the non-measurable
regime covered by the laser pulse. Integrating the scaled spectrum, the full FWM energy
per pulse of 10−17 J is obtained, corresponding to the spectral integral over eq. 3.6. From
this, a value of:

χ
(3)
Graphene = 4.3× 10−6 esu (3.7)

is determined for the non-linear susceptibility at a central energy of 1.55 eV. This result
is in general agreement with the value of χ(3) = 1.5 × 10−7 esu reported by Hendry et
al. [75], while the deviation could result from the tight focusing of the excitation pulse in
the present measurement, in combination with the nonlinearity of the signal1.

The case of two spectrally separated excitation pulses E1(ω) and E2(ω) is implemented
in fig. 3.2b. Here intrapulse frequency mixing within E1 and E2 does not contribute
to the detected four-wave mixing signal. Only signal from interpulse mixing following
ωnon−degenerateFWM = 2ω1 − ω2 are observed with ω2 > ω1, where ω1 and ω2 are the central
frequencies of the two pulses. In this case eq. 3.6 simplifies to:

IFWM
non−deg.(ωS) = cε0

∣∣∣χ(3)

ωmax∫
ωmin

dΩ E2
1(Ω) · E2(2 · Ω− ωS) · ei(2·ϕ(Ω)−ϕ(2·Ω−ωS))

∣∣∣2 (3.8)

for the Stokes side (Anti-Stokes correspondingly). Again, a very good agreement between
the parameter-free calculation, assuming a spectrally constant χ(3) response, and the ex-
perimental spectrum is found, as shown in fig. 3.2b.

The power dependence of the ND-FWM signal can be readily verified using amplitude
pulse shaping. For the Stokes side, the dependence on the input power is quadratic for
I1 ∝ |E1|2 and linear for I2 ∝ |E2|2 and vice versa for the Anti-Stokes side. The four
resulting power laws are confirmed on single layer graphene as shown in fig. 3.3a.

Additionally, it is possible to verify the FWM origin of the signal within the probed
range directly by scanning the frequency spacing between the central frequencies of the
individual pulses using amplitude shaping, shown in fig. 3.3b. The dependence of the input
frequencies and of the input power as well as the good agreement with the theoretical
curves for different spectral pulse shapes confirms that the detected signal stems mainly
from FWM with a spectrally flat amplitude response of χ(3).

1Because of the tight focusing of fields and the resulting spatially nonuniform intensity, non-linear
material constants are difficult to quantify in microscopic measurements. The reported value for χ(3)

represents the equivalent obtained for plane wave excitation with a circular diameter of 375 nm. While
the individual characteristics of the components in the detection beam path are well-known, such as filter
transmission and camera sensitivity, they add up to a total uncertainty of about an order of magnitude.
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Figure 3.3: (a) Stokes and Anti-Stokes power dependence of the FWM signal. Two narrow-
band pulses are cut out of the full spectrum by the pulse shaper and individually varied in
power. The measured power dependencies (symbols) match the theoretical curves (solid
lines) in all four possible cases. (b) Control of FWM by scanning the energy difference
between two pulses shifts the Anti-Stokes band (Stokes not shown). FWM are normalized
to one, ω1 and ω2 are the center-of-mass frequencies of the individual pulses, the Anti-
Stokes frequency follows: ωAS = 2ω2 − ω1. Adapted from Ciesielski et al. [77]
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3.2.3 Experimental proof of a flat-phase response in the spectral
region of 1.45...1.65 eV

A key requirement for broadband pulse characterization is a well-defined spectral phase
response of the sample. To check for a phase dependence of the FWM signal in single
layer graphene, chirp scans were performed. A well-defined chirp was applied to the pulse
using the pulse shaper while monitoring the corresponding ND-FWM signal on the Stokes
and anti-Stokes side. The resulting data shows a strong dependence of the FWM signal on
the applied chirp, as can be seen in fig. 3.4. This is expected since adding chirp to a fem-
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Figure 3.4: (a) Normalized SLG-FWM signal as a function of the chirp of the excitation
laser pulse (logarithmic scale). The signal maximum is at 0 fs2, indicating that the material
itself produces the highest signal for a pulse with flat phase. (b) Simulation on the basis
of a flat phase χ(3) following eq. 3.6. Adapted from Ciesielski et al. [77]

tosecond laser pulse leads to temporal broadening, decreasing the maximum field intensity.
Importantly, the maximum FWM signal occurs for zero chirp for all photon energies. A
shift of the whole pattern along the chirp axis would indicate a second-order phase depen-
dence in χ(3), as follows from eq. 3.6. The same applies to higher even polynomial orders,
while higher odd orders would result in a non-symmetric shape of the pattern (a situation
which is fully analogous to the second harmonic spectra in sect. 2.3.4). Thus it is concluded
that the chirp dependence is only due to the associated time domain intensity variation
and that the graphene phase response causes no additional chirp, i.e. is dispersionless in
the probed spectral range. Fig. 3.4b plots the theoretical ND-FWM signal according to
eq. 3.6. This agrees well with the experimental data in fig. 3.4a, further corroborating the
claim of a flat phase χ(3).
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3.2.4 Discussion of the dispersionless third-order susceptibility

For the calculation of the theoretical FWM spectra upon broadband excitation (c.f. eq. 3.6)
it was assumed that χ(3) is constant within the laser bandwidth. In the following this
assumption is discussed in more detail and from a theoretical point of view. For the
special case of two discrete input frequencies ωFWM = 2ω1 − ω2 it was predicted that the
amplitude of the third-order nonlinearity scales with ω−4 at optical frequencies [75, 74].
This dependency appears to be large at a first glance. Fig. 3.5 gives a comparison of the
theoretical curves of fig. 3.2 with and without this spectral dependence. The difference
between the predicted spectra is only minor and can experimentally not be distinguished.
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Figure 3.5: Comparison of theoretical FWM emission signals for two different models of
χ(3), analogous to fig. 3.2. (a) Calculation with the full laser spectrum, (b) calculation with
two separate pulses. The differences are very small in both cases. Adapted from Ciesielski
et al. [77]

While an analytical description has not yet been developed for FWM in the general case
of three independent input frequencies as noted above, a corresponding model has been pre-
sented for the related phenomenon of third harmonic generation (THG) by Mikhailov [80].
Fig. 3.6 shows the spectral dependence of the third order nonlinearity in the relevant spec-
tral range according to the full theory for THG. Within the considered spectral range, THG
nearly scales with ω−4 comparable to FWM in the case of two discrete frequencies. It is
thus anticipated that FWM will follow a similar scaling behavior also in the general case
of three independent input frequencies. The expected error made by assuming a spectrally
constant χ(3) within the laser bandwidth will thus be on the order of the differences seen
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between the solid and the dashed lines in fig. 3.5.
It has to be noted here that the optical nonlinearity of the THG theory [80] is a complex

valued function that carries a phase dependence. Its magnitude depends crucially on the
chemical potential and the observed spectral range. Therefore the second derivative of the
predicted phase is compared to the sensitivity of the used setup.

The expected influence on the second-order phase is below 1 fs2 as seen from the inset
in fig. 3.6. This is well below our detection threshold of approximately 10 fs2. In terms of
pulse length, a 15.00 fs laser pulse at 1.55 eV would experience a temporal broadening to
15.07 fs by an additional (constant) second order phase of 1 fs2. The used approximation
of zero spectral phase of the third-order nonlinearity is therefore also theoretically well
justified.
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Figure 3.6: Diagonal tensor element of the non-linear optical conductivity σ
(3)
xxxx for the case

of third harmonic generation (c.f. Eqs. 10–12 in Ref. [80]). A typical chemical potential of
0.1 eV was chosen, the scattering parameter γ is set to zero because it does not exert any
influence at the current energy range. The data was normalized to the amplitude at an
energy of ~ω0 = 1.55 eV. (Inset) The second derivative of the phase of σ(3) is very small
compared to the sensitivity of the measurements. Adapted from Ciesielski et al. [77]

3.2.5 Application to pulse compression

Having established that the third-order susceptibility of graphene is spectrally homoge-
neous and dispersionless, it is possible to utilize the signal for temporal pulse charac-
terization as presented in sect. 2.3.2 for the case of second harmonic light. Again, the
shortest (bandwidth limited, flat-phase) pulse produces the highest non-linear signal. In
this scheme, the ND-FWM signal for a laser pulse of unknown phase is maximized by
varying the spectral phase profile of the pulse using the pulse shaper. In a first step, the
ND-FWM signal is detected while scanning the linear and quadratic chirp in a polynomial
phase scan, analogous to the SH on page 20. The peak phase is then used as the starting
point for the following procedure.
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Figure 3.7: Demonstration of pulse compression using a genetic algorithm (GA) to max-
imize the ND-FWM signal on the Anti-Stokes side of the laser. (a) Reconstructed group
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points (black symbols), used as free parameters for the optimization. (b) Residual phase
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auto-correlation with the phase correction of fig. a shows very good agreement with the
theoretical curve obtained from the input spectrum. Adapted from Ciesielski et al. [77]
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Final reconstruction of the phase, or more precisely its second derivative, is achieved by
maximizing the ND-FWM signal using a genetic algorithm [86] as introduced on page 20.
The second-order phase is varied at 9 nodal points over the spectrum, while the parts
in between are approximated by cubic interpolation. The number of parameters for the
genetic algorithm is therefore 9, allowing for a rapid convergence, typically within 10 to
20 generations. The actual phase applied to the pulse shaper is calculated by double
integration with arbitrary integration constants as usual. At the end of this procedure, the
laser has reached its bandwidth limit.

After compressing the pulse by maximizing the ND-FWM signal, the result is verified
by measuring the residual phase with MIIPS [6], using the second harmonic of a reference
sample of Fe2(IO3)3 nanocrystals, detected in the same microscope. Fig. 3.7b demon-
strates that there is only a very small residual phase at the detection limit of the system.
An interferometric second harmonic autocorrelation scan further verifies that the pulse
is bandwidth limited after compression (fig. 3.7c). This demonstrates the feasibility of
phase characterization using the near-degenerate four-wave mixing signal from single layer
graphene.

From a materials perspective, graphene has several advantages. Its sub-nm thickness
provides the optimum focus definition, which is particularly relevant for microscopy appli-
cations. In contrast, for other materials such as beta barium borate (BBO) or iron(III)
iodate (Fe2(IO3)3) nanocrystals, the size is typically on the order of several tens of nanome-
ters, adding uncertainty to the focal position and depth (c.f. the electron micrograph in
fig. A.1 in the appendix). In the worst case, this can include propagation effects in the
non-linear response, causing erroneous phase corrections. The lateral position and beam
quality on the other hand cannot be juged from the presented approach with the spatially
extended graphene sheets. At the same time, the graphene four-wave mixing is an ex-
tremely efficient process leading to easily detectable signals that reach photon count rates
of several millions per second. Most importantly, its spectrally uniform response should
allow for phase characterization of laser pulses reaching from the THz to the visible regime.

Near-degenerate FWM avoids drawbacks of schemes relying on higher harmonic detec-
tion and the associated requirements regarding the achromaticity and the large spectral
detection range as discussed in the following. This could be particularly useful for pulses
in the visible spectral range and for ultra-broadband pulses, where optics come to a limit
if second harmonic generation is used as a feedback. Moreover, near-degenerate FWM at
a given detection frequency contains the contribution of a broad range of input frequencies
following eqn. 3.6. The ND-FWM signal is maximized under the condition that:

ϕ(Ω1) + ϕ(Ω2)− ϕ(Ω1 + Ω2 − ω) = 0 (3.9)

for all combinations of Ω1 and Ω2 covered by the input laser spectrum. This condition is
notably different from the one for maximum SHG in eg. 2.28, which was defined locally and
could be satisfied for a local frequency ω. Eq. 3.9 is true for a flat spectral phase profile only,
and in the limits of ω ≈ ωmin or ω ≈ ωmax all spectral components contribute at once. As a
consequence, no spectrometer is required for phase characterization when using a spectrally
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integrated signal that ranges sufficiently close to the excitation spectrum2. A drawback of
intensity based pulse measurements is that there is no subsistent feedback on the quality
of the retrieved phase. If such feedback is needed, the peak position and symmetry of
a spectrally resolved chirp scan as in fig. 3.4 can be used as well as a comparison of the
ND-FWM spectrum with the theoretical spectrum.

It is noted that for ultra-broadband pulses exceeding 1600 cm−1 of bandwidth, non-
linear Raman scattering from the G mode in graphene could contribute to the detected
signal. In this case the procedure could be modified, e.g. the spectrum could be compressed
step-wise by limiting the bandwidth.

It is also noted that other pulse characterization procedures based on FWM have been
presented, e.g. in combination with an additional gate pulse [65] or spectral detection
analogous to FROG [87]. Compared to these procedures the presented approach based
on graphene’s near-degenerate four-wave mixing appears to be simpler and more easily
implemented.

2On the other hand, no spectrum-based algorithm as MIIPS is possible.
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3.3 Non-linear charge carrier dynamics in graphene,

excited in the sub 20 fs regime

Optical excitation of graphene efficiently creates electrons and holes in the conduction and
valence band, respectively. Due to their high peak intensity, pulsed lasers can generate a
non-equilibrium charge carrier distribution which is followed by subsequent scattering of the
charge carriers along the Dirac cone and by carrier multiplication [29, 88]. The resulting
broadening of the bath of excited electrons and holes leads to a spectrally broad light
emission which is super-linear with the excitation intensity. Microscopically, this non-linear
photoluminescence (NLPL) has two different origins, one connected to the rapid dynamics
of charge carrier thermalization and one connected to the slower, phonon mediated carrier
cooling. For very broad laser spectra, the high third-order optical susceptibility of graphene
creates additional four-wave mixing contributions to the total emitted signal [75, 77] (see
sect.3.2). Different from NLPL, the third-order process is parametric [74].

So far the ultrafast dynamics in graphene have been studied both experimentally and
theoretically using different techniques such as optical pump-probe spectroscopy [28, 29],
time-resolved photoelectron spectroscopy [89] or photoluminescence studies [26, 27, 90].
There are only a few optical studies on the timescale below 20 fs [28, 29, 85]. Apart
from the microscopic description of charge carrier dynamics and light-matter interaction
based on the density matrix formalism [91], a phenomenological description of the hot
electron dynamics by a two temperature model has successfully been used [26]. From
pump-probe studies it is known that this model holds for laser pulses in the visible as
short as 10 fs [28, 29]. As will be shown, this is not true for the full spectrum of the
emission.

Here, an experimental discrimination between the coherent and the incoherent non-
linear photoluminescence is presented (sect.3.3.1), followed by a broadband overview over
the non-linear spectrum of graphene (sect. 3.3.2) and finalized by detailed, time-resolved
studies of the dynamics of the incoherent part (sect. 3.3.3).

3.3.1 Coherent and incoherent non-linear photoluminescence

The following section is based on the publication “Microscopic view on the ultrafast photo-
luminescence from photoexcited graphene” in Nano Letters (2015), by Winzer et al. [85],
reproducing theory and figures.

Within the theoretical framework of the semiconductor optical Bloch equations, the
photophysics of graphene from the visible to the infrared are understood as follows [91].
In case of excitation with femtosecond laser pulses, the absorption of 2.3 % of the light
intensity in the near infrared leads to a high number of charge carriers created in a fem-
tosecond time span. The absorption is driven by the microscopic polarization pk which
has a distribution of the wave vectors k, initially reflecting the polarization of the optical
excitation. The microscopic polarization itself gives rise to the substantial charge carrier
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Figure 3.8: Schematic of the initial dynamics in optically excited graphene. (a) Optical
excitation (shaded area) creates a microscopic polarization pk and a carrier distribution

ρ
e/h
k . (b) Carrier scattering towards the K-point and dephasing of pk within the first

tens of femtoseconds. (c) Carrier cooling on a picosecond timescale leads to a narrower
distribution near the K-point. During the process, spontaneous carrier recombination
leads to broadband and incoherent photoluminescence IicPL while pk induces a coherent
photoluminescence IcPL, centered at the laser energy. Adapted from Winzer et al. [85]

population ρ
e/h
k of electrons e and holes h. The laser created population is not in ther-

mal equilibrium and its initial dynamics are dominated by Coulomb-induced carrier-carrier
scattering events, which drives the carrier distribution towards the Dirac point and breaks
up the inital structure in momentum space, as shown schematically in fig. 3.8. On a fem-
tosecond timescale, this leads to a thermalized, hot carrier distribution without a preferred
directionality in k-space. The total absorbed energy plays a crucial role for the distribu-
tion of hot carriers, which can exceed the laser central energy substantially. Once the hot
state is reached and the microscopic polarization has undergone complete dephasing, the
dynamics slow down. On a picosecond timescale, the carrier distribution cools down and
finally disappears.

During the process, two different effects cause light emission: first, the oscillating mi-
croscopic polarization pk, which is the solid state analog to the oscillating dipole moment of
a two-level system, induces radiation. This is called the coherent photoluminescence IcPL,
and its coherence stems from the fact that it is driven by the oscillations of the microscopic
polarization which carry “memory” of the exciting laser field. For the same reason, it is
spectrally centered around the laser excitation, although it exceeds it for both higher and
lower energies. The second effect is spontaneous carrier recombination, whose magnitude
is only driven by the (time dependent) carrier distribution. This is the incoherent pho-
toluminescence contribution IicPL, which is independent of the initial phase and temporal
shape of the laser but mainly depends on the deposited energy. Both sources of radiation
have a distinct temporal behavior which is bound to the dynamics of charge carriers and
the microscopic polarization. In a measurement, it is at the moment impossible to observe
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Figure 3.9: (a) Confocal PL scan of a graphene flake on glass detecting the emission between
1.2 eV and 1.3 eV under excitation with the full laser spectrum, centered at 1.55 eV. (b)
Measurements of the NLPL on single layer graphene at different laser central energies. The
four-wave mixing (FWM) regime is cut out by spectral filters. A feature towards the laser
central energy is visible that follows the excitation. Adapted from Winzer et al. [85]

these dynamics because the signal detection is time integrated, such that it is proportional
to the total emitted light intensity.

Experimentally, there are two hallmarks of the coherent and incoherent PL, which can
be used to discriminate between them. The spectrum of the coherent PL has to follow
the laser central energy. The spectrum of the incoherent PL on the other hand, is only
influenced by the irradiated laser fluence. The spectrum of the incoherent contribution is
known to be broadband and independent of the laser central energy since 2010 [26, 90],
but the existence of the coherent part, predicted by theory [88, 91], was first demonstrated
during this work on the basis of the following measurements [85].

Here, the non-linear photoluminescence of single layer graphene for three different laser
central energies was measured by restricting the laser spectrum with long and shortpass
filters. All measurements were carried out at the maximum permissible fluence that did
not visibly damage the flakes (≤ 320µJ/cm2). The pulses, used for these experiments, had
a bandwidth of about 0.08 eV (50 nm) which corresponds to a pulse length of about 40 fs.
All spectra were background corrected on glass near the graphene flake and restricted to
a spectral range excluding four-wave mixing3. The results in fig. 3.9 show the shoulders
of a PL feature following the laser central energy. In fig. 3.9b, this feature is fitted with
a Voigt profile as a visual guide for one spectrum. Below the coherent PL, there is a

3If the laser spectrum reaches from ω1 to ω2, FWM is excluded in regions of ω < 2ω1 − ω2 and
ω > 2ω2 − ω1, see sect. 3.2.
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broad part that extends up to 2.2 eV and further, which is attributed to the incoherent
PL in the current situation. The coherent PL is unfortunately strongest, where it cannot
be measured. This occurs at the laser central energy and closest to it, where it interferes
with four-wave mixing. The only parts left within the detectable range are therefore the
smaller shoulders, seen in fig. 3.9b and highlighted by the Voigt profile. Fig. 3.10 presents
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Figure 3.10: Comparison of the high power and low power regime for the influence of the
incoherent PL (no FWM included). (a) Theory, gray area shows the detection window of
the experiment: (b) incoherent PL on a glass substrate. Adapted from Winzer et al. [85]

a joint theoretical and experimental comparison of incoherent and coherent PL under
different excitation fluences. In the low fluence regime, amounting to 8.7µJ/cm2 for the
theory, and 58µJ/cm2 for the measurement, the total emitted incoherent PL is reduced
to a minimum in the visible and near infrared region (blue dashed lines in fig. 3.10a).
The charge carriers scatter towards the Dirac point and loose the majority of their energy
before they recombine and emit light, whose photon energy then lies below 1 eV. In the
high power regime of 320µJ/cm2, the total emitted light intensity is higher and extends
much more into the visible spectral range, almost until 2 eV. As a consequence, the region
of 1.15 . . . 1.25 eV was chosen here for detection while exciting with the full laser spectrum
of 1.46 eV to 1.65 eV. Within this region, coherent PL is basically absent and the effect
on the incoherent PL can be studied. Fig. 3.10b gives the comparison of low and high
power regime in this spectral window. It clearly shows a strong increase of the detected
incoherent PL with increasing laser power, as expected from the theory in fig. 3.10a. From
comparison with the measurements in fig. 3.9, a substantial background of coherent PL
can be excluded, leaving only the incoherent PL.

In summary, a joint theory-experiment study on the ultrafast photoluminescence in
photoexcited graphene was able to identify a coherent contribution to the photolumines-
cence. As opposed to the known, incoherent part, it is characterized by a clear shift with
the excitation energy. Variation of the excitation power shows a strong effect of the inco-
herent PL, whose spectrum is predicted to move substantially towards the visible. These
experimental findings corroborate the calculations by Winzer et al. [85], based on the
semiconductor Bloch equations for graphene.
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3.3.2 The non-linear spectrum of graphene under 15 fs pulsed
laser excitation

Sections 3.3.2 and 3.3.3 are based on the publication (in prep.): “Ultrafast response and
carrier dynamics in graphene probed by femtosecond pulse shaping microscopy” by Ciesiel-
ski et al. [92], reproducing text and figures.

In the previous section it was shown that the charge carrier driven non-linear photo-
luminescence of graphene consists of a coherent and an incoherent part. As the relative
weight of both contributions depends on the pulse length and the excitation fluence, it is
not always possible to clearly observe the coherent PL signal, which is often overlaid by
four-wave mixing and the strong incoherent PL. Now, the optical response of graphene to
a 15 fs excitation pulse, centered at 1.55 eV at a pump fluence of 100µJ/cm2 is shown in
the semi-log plot of fig. 3.11.
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Figure 3.11: Ultrafast emission spectrum of single layer graphene upon excitation using a
15 fs bandwidth limited laser pulse showing two distinct types of emission on the Stokes
and Anti-Stokes side: Near-degenerate four-wave mixing (ND-FWM) and non-linear pho-
toluminescence (NLPL). Adapted from Ciesielski et al. [92]

We first note, that upon broadband excitation, graphene exhibits an extremely strong
near-degenerate four-wave mixing signal (c.f. chapt. 3.2), occurring at frequencies ranging
from ωS = 2ωL,min − ωL,max (Stokes) to ωAS = 2ωL,max − ωL,min (Anti-Stokes) [74, 75, 77]
which is marked by the grey area in the plot. Here ωL,min = 1.46 eV/~ and ωL,max =
1.65 eV/~ denote the lower and upper frequency limits of the incident laser pulse spectrum,
shown by the white solid line in a linear scale. The four-wave mixing signal rapidly decays
for larger energy differences to the laser. In the measurable range, its emission intensity is
three orders of magnitude larger than that of the other spectral contributions.

The second type of emission has its origin in the ultrafast photoluminescence of graphene
[26, 27, 85, 90], which is, as discussed, mostly the incoherent PL in this case. The broad
contribution extending into the blue and near-infrared spectral range originates from car-
rier recombination reflecting the carrier population density at the emission energy. Lui et
al. [26] quantitatively described this contribution on the Anti-Stokes side upon excitation
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with 30 fs pulses using a two-temperature model, which is simpler than the theoretical
description based on the semiconductor Bloch equations. In this model the electronic sys-
tem thermalizes quasi instantaneously upon pulsed excitation due to very efficient carrier-
carrier scattering and can be described by a Fermi-Dirac distribution at all times. On a
slightly longer time-scale of few tens of femtoseconds the electronic system equilibrates
with strongly coupled optical phonons (SCOP). The non-linear PL then results from the
hot electron distribution that emits as a black-body radiator with a temperature corre-
sponding to the instantaneous temperature of the excited carriers4. For the pump fluence
of 100µJ/cm2 and a spectral width of 0.2 eV used in the experiments of this and the fol-
lowing section, coherent PL is the weakest contribution to the spectrum. Therefore it is
neglected in the following, sticking to the simpler description of the incoherent PL, based
on the two temperature model. An important parameter of this model is the total chemical
potential of graphene, which reflects doping [89]. In the present case, graphene is slightly
p-doped from the substrate (see appendix A.2 for Raman spectroscopy), which is typical
for such samples [93].
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Figure 3.12: Confocal scan images of flakes with single layer graphene, multilayer graphene
and graphite regions. The scale bar corresponds to 4 µm, colorbars indicate count rates
in kHz. (a) NLPL detected between 1.31 and 1.24 eV. (b) ND-FWM signal detected at
the Stokes side between 1.44 and 1.31 eV. (c) Elastic scattering image using a HeNe laser
operating at 1.96 eV. Adapted from Ciesielski et al. [92]

Graphene can be readily observed in a confocal microscope by detecting the NLPL [26,
27, 90]. Since near-degenerate FWM is orders of magnitude stronger for the present pulse
duration (see fig. 3.11), imaging of graphene and few layer graphene becomes even easier. A
comparison between the image contrast obtained using NLPL and near-degenerate FWM
and that of elastic scattering is shown in fig. 3.12. FWM and NLPL images are quite
similar, since the intensity of both signals depends on the layer number. Different from
the scattering image, we note that the highest signal stems from few layer graphene as
opposed to multilayer graphene or graphite. If the layer number is too high (> 20),
reabsorption limits the total emitted signal for NLPL, FWM, and Raman, while reflection
still increases [84].

4 Compared to the non-radiative decay channels via phonons, the radiative recombination rate of the
charge carriers is small, so energy dissipation by radiation can be neglected.
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3.3.3 Femtosecond correlation spectroscopy of graphene

Confocal detection allows us to probe the temporal response of the material in a spatially
resolved fashion and to study its layer dependence. Autocorrelation measurements (or two-
pulse correlation measurements) are a powerful tool to investigate the temporal behavior
of non-linear signals. They can be performed in a collinear way using the pulse shaper and
are implemented here in a degenerate pump-probe scheme by applying a cosine amplitude
modulation at constant carrier envelope phase as presented in sect. 2.1.3. An energy
resolved autocorrelation scan of the single layer graphene emission is presented in fig. 3.13a.
In this image all spectra were normalized to their maximum value at zero delay. For all
emission energies a rapid decay from overlapping to separated pulses is observed. The
“temporal width” ∆t is determined as a central outcome of the experiments, defined by
the double standard deviation of the intensity of an autocorrelation scan. If I(ω, τk) is the
intensity measured for the pulse delay τk at the frequency ω, the temporal width is given
by:

∆t(ω) = 2 ·

√∑
k τ

2
k · I(ω, τk)∑
k I(ω, τk)

. (3.10)

The average value of τk is zero by measurement definition. Since the signal does not vanish
at the borders of the accessible measurement range, this range was kept constant from
−30 fs . . . +30 fs in order to quantitatively compare the numbers. An alternative definition
of the temporal width by the full-width-at-half-maximum gives a lower signal-to-noise ratio
and depends on both the width and shape of the curve, which is why the double standard
deviation was chosen here as a measure.

While the temporal width of the autocorrelation trace at higher photon energies around
2 eV is on the order of the actual pulse width, the traces become broader for lower emission
energies of ≈ 1.2 eV. From 2.3 eV over 1.3 eV to 1.2 eV the temporal width monotonically
increases from 22 fs to 32 fs for the parts that are not dominated by FWM. This observation
reflects the charge carrier dynamics determining the incoherent non-linear PL as discussed
below [26]. Apart from this general trend, there is a pronounced modulation in the temporal
width near the laser excitation energy in the range that is dominated by near-degenerate
FWM. This variation can be quantitatively described by an instantaneous third-order
process and the spectrally flat third-order non-linear polarizability χ(3) of graphene, as
stated in sect. 3.

Measured spectrally resolved autocorrelation data is now modeled using FWM theory
and the two-temperature model (TTM) formulated for graphene by Heinz et al. [26]. The
model assumes that the electrons are in thermodynamical equilibrium at all times and that
their distribution can as such be described by Fermi-Dirac statistics and an electron tem-
perature. There is a single relaxation channel via strongly coupled optical phonons. The
phonon distribution is described by Bose-Einstein statistics and a corresponding phonon
temperature. The PL emission is finally modeled as black body radiation from the hot
electrons. Figs. 3.13d–f illustrate the predictions of the TTM for two-pulse excitation for
the present pulse duration and the physical parameters of graphene. The FWM signal is
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Figure 3.13: Spectrally resolved auto-correlation scan of single layer graphene. The spacing
between two 15 fs laser pulses is varied while detecting the emitted light. (a) Experimental
results and (b) theoretical results based on a two-temperature model and constant χ(3). All
spectra are normalized to their respective maximum at zero pulse delay. (c) Temporal width
of the autocorrelation, as a function of emission energy, measured as the double standard
deviation of the upper traces. (d) Instantaneous electron (colored) and phonon (grey)
temperature as a function of pulse delay calculated using the two-temperature model. (e)
Derived PL intensity detected between 1 eV and 3 eV. (f) Corresponding time-dependent
non-linear PL emission spectra. Adapted from Ciesielski et al. [92]
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calculated directly from the incident laser spectrum using the spectrally flat and disper-
sionless χ(3) of graphene. The intensity ratio between FWM and PL is a fitting parameter.
The full set of formulas used can be found in the appendix B.4.

Within the TTM, a high electronic temperature causes strong luminescence emission.
Fig. 3.13d shows the electronic and phononic temperature for the autocorrelation experi-
ment, calculated from the TTM on the basis of the laser spectrum. Clearly, the electrons
reach a much higher temperature when the two pulses temporally overlap. These hot
electrons cause luminescence according to the black body formula at every point in time,
visualized in fig. 3.13e, whereas the PL spectrum for these times is given in 3.13f. It is here
observed that the largest fraction of emission stems from the times with highest electron
temperature. There are two parameters that determine this maximum electronic tempera-
ture, the total absorbed energy and the pulse length. At a given pulse energy, the PL can
still show a substantially different total intensity and spectral position if the pulse length
is varied, because the peak temperature differs.

The final fitting results are shown in fig. 3.13b. All features including the modulation of
the signal in the near-degenerate FWM range are well reproduced. The derived temporal
width follows the same trend as has been observed experimentally. The decrease of the
temporal width with increasing detection energy can be understood based on fig. 3.13d,
showing the electron and phonon temperatures throughout the autocorrelation measure-
ment as well as the PL emission based on the TTM in 3.13e and f. While the electron
distribution cools down, the emission peak shifts to lower energies. Hence, in the two-pulse
correlation experiment at larger pulse delays, the excitation by the second pulse does not
lead to an equally high temperature compared to the first one. The main PL contribution
occurs within 50 fs and already a pulse separation of 30 fs reduces the total emitted signal
by a factor of 5. For multi-layer graphene, spectrally resolved autocorrelation traces were
recorded too (not shown). The autocorrelation traces show the same trend although at
substantially decreased temporal width. This can be explained by changes in the chemical
potential due to substrate induced doping (see below). Probably due to the stronger signal
from multi layer graphene, the decrease of the temporal width towards higher emission
energies is more clearly visible.

All ultrafast measurements presented up to now were performed at fixed sample po-
sitions in the focus of the confocal microscope. It is on the other hand also possible to
perform the same sample characterization in an imaging mode, as will be shown. Succes-
sive confocal scans with different pulse separations were recorded while detecting only the
non-linear PL on the Stokes side using a 980/20 nm bandpass filter. From 10 data points
between 0 fs to 30 fs the temporal width of the PL autocorrelation can be extrapolated for
every pixel, establishing an image which shows the response time of the non-linear PL at
different positions. As presented in fig. 3.14a and b, the response time depends on the layer
number in a negative correlation: the thicker the graphene, the narrower the autocorrela-
tion’s temporal width. For single layer graphene, a temporal width of 23 fs, for bilayer 19 fs,
and for multi-layer graphene 16 fs can here be reported. The broad distribution observed for
single layer graphene most likely reflects spatially heterogeneous substrate-induced doping
which will have a smaller influence for thicker flakes due to dilution of defects.
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Figure 3.14: (a) Confocal scan of the temporal width of the NLPL at a photon energy of
1.27 eV. The gray area contains no graphene, scale bar is 4µm. (b) The 2D correlation
function of NLPL intensity (Fig. 3.12a)) vs. the temporal width of the auto-correlation
shows a clear anti-correlation between the two quantities. Different parts of the plot can
be identified with different positions at the sample, indicated by the numbers. The higher
the sample, the shorter the temporal width. Adapted from Ciesielski et al. [92]

Using the two-temperature model, the different dynamics of single layer and few layer
or multi layer graphene can to a certain extent be explained in terms of substrate-induced
doping which enters the equations through the chemical potential. As can be seen from
Raman spectra, substrate-induced doping of single layer graphene is larger than the average
doping level of multi layer graphene (c.f. appendix A.2). Considering the corresponding
shift in chemical potential µ in the two-temperature model leads to a change in the temporal
width congruent to the experimentally observed trend. However, the large change observed
in the experiment can not be reproduced within the TTM at reasonable values of µ. This
result can be attributed to different electron dynamics for multi layer graphene and graphite
as compared to single layer graphene which is not covered by the model. In particular, the
density of states is changed and additional inter-layer relaxation channels for electrons and
phonons exist as compared to single layer graphene.

For very high pulse energies it should be possible to saturate the electronic temperature
as it is possible to saturate the absorption [72]. Due to the damage threshold of the
graphene samples is use, this regime was not reached. In contrast to the presented results,
Stöhr et al. [27] reported a very high luminescence yield at a pulse length of 7 ps and
pulse energies of tens of picojoules. The pulse energy used in this study amounts to about
10−2 pJ, explaining a PL yield, which is comparably lower. The peak intensity of the
femtosecond laser pulses is so high already that an increase would damage the structure of
graphene.
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3.4 Conclusion

In summary, this chapter presented measurements of the ultrafast luminescence from
graphene, excited by femtosecond laser pulses on specified sample positions. The total
emission spectrum contains three different contributions: four-wave mixing close to the
laser excitation energy, coherent photoluminescence which is also spectrally bound to the
the excitation energy, and incoherent photoluminescence which is broadband. Four-wave
mixing contributions become more dominant for shorter laser pulses while the incoher-
ent PL intensity depends on the total deposited energy and the temporal shape of the
excitation. The measured magnitude of the third-order susceptibility of graphene, which
originates from the linear band structure near the K-point, amounts to χ(3) = 4.3×10−6 esu.
This is a much larger number than what was obtained for comparable material systems such
as thin gold films with χ(3) = 10−9 esu [78]. The most interesting feature of the non-linear
susceptibility is that it is basically dispersionless over a large spectral region, as shown
here, which makes the material an ideal candidate for phase retrieval. Compared to the
standard techniques based on second harmonic light detection of nanoparticles, graphene’s
near-degenerate four-wave mixing has advantages such as a higher signal yield and a bet-
ter detectability. Furthermore, two-pulse correlation traces of the non-linear emission were
presented, showing a clear maximum of the emission intensity at zero delay. The tempo-
ral width of the PL emission is influenced by the local layer number which is visible in
the image contrast for the spatially resolved temporal width of the NLPL. As long as the
coherent PL can be neglected, the two-temperature model as proposed by Lui et al. [26]
in combination with a constant χ(3) model are able to explain the emission spectra in a
very broad frequency range for the two-pulse correlation measurements that were carried
out. The overall response time of the PL in the autocorrelation scans show that the elec-
tron thermalization is completed approximately within the temporal duration of the laser
pulse. A pronounced dependence of the relaxation time with the layer number is observed
for multilayer graphene. Here, the relaxation time decreases with increasing layer number,
which can be explained by a larger number of available relaxation channels and a decreased
total substrate induced doping level, due to the larger number of carbon atoms.



Chapter 4

Phase determination and non-linear
imaging of plasmonic nanoparticles

The ability to simultaneously control the spatial extent of light pulses on a nanometer
scale and their temporal duration on a femtosecond scale is a key requirement to study
the dynamics of individual nanostructures. The general farfield limit of about half the
wavelength for the optical resolution can partly be circumvented by near-field optics [1, 2],
which in the case of apertureless scattering near field probes comes with the additional
advantage of field enhancement [94]. The gap between farfield radiation and nanometer
resolution is closed by the antenna effect that small metallic structures can provide [52].
Using spatial light modulators, the temporal pulse shape of a laser in an arbitrary position
of the nearfield can in principle be controlled with a very high degree of accuracy [38,
95]. The task is to bring together the two techniques, to benefit from the high spatial
confinement and control of the fields in nearfield optics and from the temporal control of
pulse shaping microscopy at the same time. Similar attempts have been made since at a
number of years, including adiabatic plasmon compression at a sharp metal tip [13, 14, 15],
scattering configurations [10, 16] and localized antennas [17, 18, 19].

Common to all methods, the laser pulses get a phase profile imprinted at the pulse
shaper which is inverse to all occurring phase distortions of the setup, such that it leads
to bandwidth limited laser pulses in the focal region only. To achieve this, an algorithm
will aim at maximizing a non-linear feedback signal of a well known reference material
by varying the spectral phase of the laser pulse. The idea behind this resembles the one
for pulse compression in the focus of a microscope objective (see sect. 2.3), just on the
smaller scales, realized by the localized fields of the plasmonic antenna structures. In most
cases, the second harmonic (SH) light emission from the metallic nanostructure itself is
used [13, 14, 15, 17, 18, 19], which has the advantage that it directly reflects the position
of the highest nearfields which presumably creates the majority of the SH signal. Recently,
near-degenerate four-wave mixing (ND-FWM) from a sharp metallic tip was used for this
purpose [15], extending the approach to other non-linear processes. The aim of all these
studies is to temporally control the localized nearfields of a plasmonic nanostructure, thus
it is important to emphasize an implicit assumption made in this context: The spectral
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Figure 4.1: (a) Schematic of non-linear light emission from a plasmonic nanorod. The
incoming, short laser pulse gets stretched according to the linear susceptibility. The result-
ing plasmon enhanced fields at the particle are the origin of second harmonic generation
(SHG) and four-wave mixing (FWM). (b) Confocal scan of a sample of gold nanorods on
glass, detecting SHG and near-degenerate FWM of the particles, excited with a 15 fs laser
at 1.55 eV. The SHG signal is 35 times lower than the ND-FWM signal at comparable
detection efficiency. (c) Representative TEM image of a gold nanorod.

phase of the surface charges, which is responsible for the second harmonic generation and
four-wave mixing, is believed to reflect the spectral phase of the laser pulse in the nearfield
outside of the structure.

In the remainder of this chapter, it is first discussed that this assumption is not always
justified, especially not at particle resonances or if the non-linear susceptibility carries a
phase dependence itself. Second, single particle phase measurements on basis of second
harmonic MIIPS and PRISM are presented and third, the study is extended to the third-
order nonlinearity of near-degenerate four-wave mixing by plasmonic nanoparticles. The
two different non-linear signals are compared and finally used for selective signal enhance-
ment in clusters of nanoparticles. The model system used here are monocrystalline gold
nanorods with an average length of 40 nm, deposited on a glass coverslide (see appendix
A.3). The dilution of the sample material was chosen such that the majority of particles
was well separated on the substrate. The optical resonance of these particles was grouped
around a design resonance energy of 1.59 eV (see appendix A.3), which lies inside the
available laser spectrum, ranging from 1.45 eV to 1.65 eV. Fig. 4.1 presents a schematic of
the non-linear light generation process in such small, metallic nanorods. A confocal scan,
detecting SH and ND-FWM demonstrates the general usability of the two processes as
imaging contrasts with a very high signal-to-noise ratio.
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4.1 The nearfield spectral phase of plasmonic nanopar-

ticles

The spectral phase near a plasmonic nanostructure is generally dependent on the distance
to the structure’s surface [39], which is much pronounced near the resonance energy. The
physical reason is that the scattered nearfields, described by electromagnetic multipole
moments, show very strong spatial variations, which explains the general position-phase
relation. The origin of the frequency dependence, on the other hand, lies solely in the
material’s response function (c.f. chpt. 4.3 in 39). As further known from electromagnetics,
electric fields have a wave node at perfectly conductive surfaces, implying a phase change
of π at that position. Realistic metals possess a finite conductance which results in a
nonzero reaction time to impinging electromagnetic waves, therefore the phase change is
not exactly π and again determined by the material’s response function. The consequence
is that the spectral phase of the surface charges of a plasmonic nanostructure is different
from the spectral phase in its nearfield.
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Figure 4.2: False color plot of the electric field distribution |E|/|E0| of a gold nanosphere
with a radius of 20 nm inside a medium with a refractive index of n = 1.518 under plane
wave excitation at the resonance energy of 2.38 eV. Overlaid is the spectral phase parallel
to the excitation field for different distances from the surface (black dashed line). The
phase at the surface is offset by π.

To demonstrate this situation, fig. 4.2 plots the electric field distribution of a gold1

nanosphere together with the spectral phase at different positions, calculated by Mie the-
ory [39]. Around the resonance energy of 2.38 eV there is a pronounced maximum in the
phase profile which decreases in magnitude for increasing distance to the sphere’s surface
and also shows a slight red shift if further away from the particle. For a given laser pulse,

1The dielectric function of gold was modeled according to the data of Johnson and Christy [96].
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the temporal profile of the electric field is therefore dependent on the actual spatial position
one is looking at. Furthermore, the phase profile at the surface of the sphere is different
from the phase profile on the outside. Assuming that the phase profile at the surface is
relevant to non-linear light generation, because it describes the temporal evolution of the
electric charge distribution, the phase that is retrieved by methods based on the non-linear
response of the particle itself is not the same as the phase in the nearfield of the very same
structure. There is an important restriction to this statement, concerning the resonance
position: as can also be seen, the phase becomes flat for spectral positions away from the
resonance, which means that the group delay dispersion tends to zero at that point. The
temporal profile of the pulse at the surface and in the nearfields coincides in such cases,
justifying the use of SHG or ND-FWM based methods, because it mainly reflects the laser
pulse phase.

4.2 Discussion on phase retrieval by second harmonic

generation from plasmonic nanostructures

Gold has a centro-symmetric unit cell which does not permit standard second harmonic
generation from the bulk. At the surfaces, this symmetry is broken, leading to an anhar-
monic electric potential of the electron gas. Driven by the incident laser field, the oscillating
particle plasmon then gives rise to SH light emission mainly from the surfaces but also from
a nonlocal bulk contribution and electric field gradients inside the structure [97, 98]. This

non-linear response χ
(2)
ikl(ω;ω1, ω2) depends on the material used, the shape of the particle

and it also carries a phase response, potentially influencing the SH yield. It is a tensor,
so the results for different laser polarizations will not be identical, which also reflects the
particle’s shape. To further complicate the story, the detectable SH light also depends
on the linear susceptibility at the second harmonic frequency χ

(1)
ij (2ω), yet only on its

amplitude. The situation is schematically presented in fig. 4.3 at the example of a double
resonance, accounting for a long and short-axis surface plasmon resonance, contrasted with
the situation of a constant χ(1) and χ(2).

As interim result it is noted that maximizing the second harmonic response of a plas-
monic nanoparticle provides a spectral phase profile, containing components of the linear
susceptibility χ

(1)
ij (ω) of the particle at the fundamental frequency ω as well as a com-

ponent of the non-linear susceptibility χ
(2)
ijk(ω;ω1, ω2). The interpretation of this phase is

trivial only if the susceptibilities are constant, in which case the phase resembles the laser’s
spectral phase. If this is not the case, a suitable model has to be used to disentangle the
various components [18].

Nevertheless, phase retrieval by second harmonic detection is considered a key tech-
nique at the moment [15, 19], partially because it is the best at hand. The challenge is
that individual plasmonic particles may give a very weak signal, which limits the phase
resolution one can achieve by noise. Fig. 4.4a presents the application of gated MIIPS
(G-MIIPS, see sect. 2.3) to an individual gold nanoparticle, showing an acceptable data
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Figure 4.3: Schematic of the second harmonic generation (SHG) process from a plasmonic
nanoparticle. (a) Processes involved, (b) linear susceptibility model with two harmonic
oscillators, (c) excitation spectrum at the particle, compared to a constant linear suscepti-
bility, showing field enhancement, (d) far-field SH spectrum, compared to a constant linear
and non-linear susceptibility (scaled).

quality. A difficulty of MIIPS measurements is that many spectra have to be recorded
for a high phase resolution, which is because of the scanning precision on one hand and
phase errors inherent to MIIPS on the other hand, demanding several iterations. The use
of gated MIIPS is in this case a good compromise between data quality and accuracy, since
the overall signal strength is reduced but the method is less prone to errors. Improved
MIIPS cannot be used here because an amplitude dependence of the linear susceptibility
is expected, which is not covered by the method. As a side note, SH spectra of seven
different gold nanorods are presented in fig. 4.5. They vary widely in amplitude and spec-
tral position, reflecting different individual resonances and orientations on the substrate.
The spectral window shown in the graph reflects approximately the (frequency doubled)
spectral window accessible by the laser, therefore it also demonstrates that the plasmonic
resonances do not fully overlap with the given excitation. This amplitude dependence is
expected to be a result of the linear susceptibility in the present case (see also theory
below).

For the measured nanorod from fig. 4.4a, the phase can be extracted, showing a charac-
teristic profile, plotted in 4.4b along with its scattering spectrum and its second harmonic
spectrum under illumination with a pulse, corrected in the focus of the objective. Scat-
tering and SH both have a resonance at similar (fundamental) photon energies of 1.59 eV
and 2×1.61 eV and the extracted phase features strong variations over the detected range.
From nanorod to nanorod, the measured shape of the phase varies strongly, underlining
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Figure 4.4: (a) G-MIIPS of a single gold nanorod on glass. The line of zero GDD (dashed) is
compared to evaluated peak positions (dotted), showing the phase response of the plasmon.
(b) Scattering spectrum, SH spectrum and retrieved phase profile of the same nanorod.

the need of individual phase characterization in the context of plasmonic nanoparticles.

For the gold nanorods in use the (linear) phase dependence is illustrated by electro-
magnetic simulations, based on the boundary element method (BEM) [99], presented in
fig. 4.6. The electric field amplitude distribution |E(r)| around a gold nanorod situated
above a glass substrate is plotted at its resonance energy of 1.57 eV. The major part of the
second harmonic light as well as the four-wave mixing contribution is expected to originate
from the tips of the nanorod, where the highest fields are found at the surface, creating
so called “hot spots”. Particle plasmons can be well described as Lorentzian (harmonic)
oscillators in many cases2 [39, 52], which results in an arc tangent shaped phase profile
over the resonance. Fig. 4.6 shows the spectral phase of the electric field parallel to the
plane wave excitation at the tip, which is indeed very similar to an arc tangent, reflecting
the spectral position and width of the optical long axis resonance. It is not the same as the
experiment’s measured phase of fig. 4.4b, because the non-linear susceptibilities are not
taken into account here and because the exact geometry and orientation of the observed
nanorod are unknown.

Retrieving the spectral phase by second harmonic generation of plasmonic nanostruc-
tures is challenging on a technical level but feasible, as has been shown by several groups
before [13, 14, 17, 100] and demonstrated in this work too. Applying the inverse phase
is then believed to compress the laser pulse in the particle’s hot spot, which introduces
the problem that possible non-linear phase contributions are not taken into account. The
different signatures of the nanoparticles in the second harmonic spectrum and the retrieved
phase profiles do show that it is necessary to get an individual pulse compression phase for
each particle.

We note that gold also shows two-photon photoluminescence (TPPL) [101, 102, 103]

2This does not include the nearfield distribution.
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when excited with laser light. The strength and spectral shape of this kind of emission
is influenced by the particle shape, the crystallinity of the sample and the laser pulse
duration. For femtosecond pulses in particular, the yield was found to not depend on the
pulse duration anymore [103]. It was shown that polycrystalline samples, as for example
produced by gold evaporation and electron beam lithography, have a much higher TPPL
yield than monocrystalline samples, which is caused by the nanoscopic structure [104]. In
the present case, the TPPL signal was much weaker than the SH signal, which is the reason
that it was not included in the description of the non-linear light emission. When working
with polycrystalline samples, the background from TPPL was much higher than from the
monocrystalline gold nanorods used in this study.

4.3 Non-linear imaging of plasmonic nanostructures

Depending on the temporal shape of an exciting laser pulse, the efficiency of non-linear light
generation can vary strongly. This does not only depend on the duration of the pulse in free
space but to a large amount on the nanostructure itself. A phase profile that, for instance,
efficiently creates second harmonic light at position A, does not necessarily create second
harmonic light in another position B, with the same efficiency. Other non-linear processes
may have a different dependence on the pulse profile on the very same nanostructure. For
imaging, this can either be a difficulty or it can be used as a means to optically distinguish
different particles. Near-degenerate four-wave mixing (ND-FWM) of nanostructures has
successfully been used as a signal for microscopy, and it is a particularly strong effect in
plasmonic nanoparticles, which provide a very high local field strength [105]. Four-wave
mixing as a third-order non-linear process is even more sensitive to the field strength and
therefore to the pulse phase than second harmonic generation. Up to now, there was
no study directly comparing the imaging properties of second harmonic generation and
near-degenerate four-wave mixing in plasmonic nanostructures, which both show a very
strong signal contrast. Here, exemplary measurements of gold nanorods are presented,
demonstrating strong spatial variations of light emission for different phase profiles. It is
possible to selectively highlight parts of a sample depending on the particle for which the
phase was optimized and on the non-linear process which was used for imaging.

The non-linear polarizability for the cases of second harmonic and near-degenerate
four-wave mixing is given by [63]:

P (SHG)(ω = ω1 + ω2) ∝ χ
(2)
ijk(−ω;ω1, ω2)E(ω1)E(ω2), (4.1)

P (FWM)(ω = ω1 + ω2 − ω3) ∝ χ
(3)
ijkl(−ω;ω1, ω2,−ω3)E(ω1)E(ω2)E∗(ω3). (4.2)

No difference is made between second harmonic generation and sum frequency generation
here because the spectrum of a pulsed laser creates both of them at the same time. Both
non-linear susceptibilities have tensorial character but this will be dropped for the reason
that the laser polarization is fixed and only nanoobjects are investigated. Therefore, all
polarization components are fixed and no propagation effects have to be considered. The
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electric field E(ω) is the electric field at the sample, so it carries the phase of the excitation
ϕlaser(ω) plus the phase, imposed by the first-order susceptibility φlin(ω). We assume that
the phase ϕlaser(ω) of the laser pulse is known and tunable. The phase from the non-linear
susceptibility shall be called ψSH(ω) for SHG and ψFWM(ω) for FWM. A flat total phase
is the condition for maximum signal emission. According to eqns. 4.1 and 4.2, for a single
frequency ω, the following phase relations fulfill the flat phase condition:

0 = ψSH(−2ω;ω, ω) + 2 ·
(
φlin(ω) + ϕlaser(ω)

)
, (4.3)

0 = ψFWM(−ω;ω, ω,−ω) + φlin(ω) + ϕlaser(ω). (4.4)

Clearly, if a pulse profile ϕlaser(ω) fulfills condition 4.3, it will not fulfill condition 4.4 at
the same time, if the non-linear susceptibilities carry some phase dependencies themselves.
More specifically, the difference lies in the phase dependence of the nonlinearity, because
the linear optics phase φlin(ω) influences both cases in the same way.

It is now the question if the statements made here can be experimentally verified.
Assuming there are two different laser phase profiles ϕSHGlaser (ω) and ϕFMW

laser (ω) known, which
maximize the SH and the ND-FWM signal respectively, the phase profiles of the non-linear
responses cannot be determined directly, unless the linear phase profile φlin(ω) is known
too. The reason is, that the two eqns. 4.3 and 4.4 contain three unknowns each, so the
situation is under-determined. This is an unfortunate situation, because up to an undefined
linear phase, ϕSHGlaser (ω) and ϕFMW

laser (ω) can be determined by measurements.
Such measurements are demonstrated at the model system of monocrystalline gold

nanorods on glass. Due to the high fields created by surface plasmons, both SHG and
FWM are very efficient processes in plasmonic gold nanostructures [15, 19, 106]. In order
to retrieve the phase profiles based on SHG or FWM, the “phase resolved interference
spectral modulation” (PRISM) technique [10, 68] was used (see sect. 2.3.2). This method
records a non-linear feedback signal while systematically varying the phase of the laser
pulse by means of an optical pulse shaper. From the resulting trace of intensities, the
spectral phase can be reconstructed by a Fourier transform. PRISM is not specific to the
type of non-linear feedback signal used, thereby excluding method-specific artifacts when
comparing data of different origin. This makes the method very well suited for the purpose
of comparing the spectral phase at second harmonic and four-wave mixing conditions.
Results for individual gold nanoparticles are presented in fig. 4.7. Since the total phase
offset and linear phase cannot be measured by standard non-linear optical techniques [38]
and do not influence the temporal pulse shape, they were adjusted to zero. Note that in all
three cases the two phases are different from zero, that they do not coincide, and that the
SH phase shows generally larger fluctuations over the spectral range than the FWM phase.
In contrast, when the measurements were repeated on pristine graphene for FWM [77] and
on Fe2(IO3)3 nanoparticles [107] for SH as a reference, a flat phase profile for both cases
was found, as was expected for bandwidth limited laser pulses (not shown). This result is
interpreted such that first, the expected influence of the particle plasmon on the spectral
phase of the laser pulse is seen in both situations, and second, that the temporal shape of
the laser pulse for optimum second harmonic generation has to be different from the shape
for optimum four-wave mixing.
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Figure 4.7: Phase retrieved by PRISM on the basis of the particles second harmonic (trian-
gles) and four-wave mixing (circles) for three different gold nanorods on a glass substrate.
The scattering spectrum (gray) of the individual particles is given as a comparison.

From a theoretical point of view, it is likely that the observed difference in phase has
its origin in the second-order susceptibility χ(2) and not in the third-order susceptibility
χ(3). Second harmonic generation is caused by a variety of effects which directly depend on
the motion of charges, defining the particle plasmon [97, 98]. In other words, the strength
of the SHG is influenced by the particle shape not only via the field strength but also
via the spatio-temporal evolution of the charge oscillation, which causes nonlocal effects.
Four-wave mixing on the other hand is no such collective phenomenon, because it only
depends on the bulk third-order non-linear constant χ(3) plus the local field strength [78].
Since it is a parametric process relying on virtual levels, it is less likely that there is a phase
dependence for four-wave mixing at all [63]. To further judge this point, the linear phase
of the particles φlin(ω) would have to be measured by an additional method, for instance
spectral interference [100, 108], in order to disentangle the three effects.

The knowledge that different non-linear processes in plasmonic nanoparticles show dis-
tinguishable phase profiles, makes it is possible to utilize this material specific property
for imaging. Fig. 4.8 presents confocal scanning images of a small cluster of stochastically
placed gold nanorods. The scan was repeated several times, varying the detection method
and the applied phase profile. SH detection was achieved by blocking the laser fundamen-
tal and ND-FWM detection was achieved on the Stokes side by using cut-edge longpass
filters (c.f. sect. 3.2). First of all, images with a flat phase pulse were recorded. The signal
contrast clearly shows that different parts of the structure are highlighted, there is for
instance a bright spot in the center of the figure for the second harmonic representation,
which is much dimmer in four-wave mixing. Then, a specific spot of the sample, indicated
by a white circle, was chosen and the PRISM algorithm was applied at that position for the
two detection schemes. With the two resulting FWM and SH phase profiles, the sample
was scanned in either way again (data for SH detection and FWM phase is missing).

Using the FWM phase in FWM detection clearly highlights the position which was used
for phase determination. The same is true for SH imaging while using the SH correction
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Figure 4.8: Demonstration of selective signal enhancement by near-degenerate four-wave
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measure the phase profile for both methods. (Data for SHG detection and ND-FWM phase
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phase, but with a different spatial distribution. The overall intensity rises in both versions,
but it is more pronounced for second harmonic generation. Scanning the structure in
FWM detection by using the SH correction phase leads to a strong decrease in signal. The
image appears washed out and does not reach the count rate of the first measurements.
The position and method-dependent count rates are able to tell two things. First of all,
the notion that the non-linear light emission efficiency depends on the individual spectral
features of the nanoobjects is confirmed. The point on the sample, used for phase char-
acterization is later on highlighted because the temporal profile was optimized for exactly
this spot. Second, it is possible to enhance or decrease the signal inside the sample in
very different positions using the different non-linear processes. As for particle selective
imaging or nanoscopic hot spot tailoring experiments, this gives a new degree of freedom
for coherent control.

4.4 Conclusion

The temporal and spatial compression of laser pulses is an ongoing and active field of
research, which gained momentum by the idea of using the strongly confined plasmonic
nearfield of hot spots. Apparent ambiguities in phase retrieval based on the non-linear
answer of a plasmonic particle were discussed. These are possible differences of the temporal
field profile at the surface and near the surface on one hand and the partly unknown
influence of the non-linear process on the phase the other hand. Ideally, one would use
a probe particle, brought to the nearfield in order to measure the phase. Instead, the
second harmonic generation was compared to the process of near-degenerate four-wave
mixing in plasmonic particles, which, due to the high fields and the third-order intensity
dependence, is very strong. It was found that a phase profile, that maximizes the SH yield
of a structure typically shows stronger features than a phase profile that maximizes its
ND-FWM emission. Hints exist that the influence of SHG on the phase is possibly larger
than the influence of ND-FWM. In terms of imaging, both methods can be used in order to
enhance different sample areas of a heterogeneous structure, which could have applications
in coherent control experiments.



Chapter 5

Coherent dynamics of the radial
breathing mode of (5,4) single-walled
carbon nanotubes, excited by 20 fs
laser pulses

The following chapter is based on the publication (in prep.) “Electronic and vibrational
coherences in single semiconducting carbon nanotubes probed by femtosecond pulse shap-
ing microscopy at room temperature” by Ciesielski et al. [109], reproducing text and figures.

Semiconducting single-walled carbon nanotubes (SWCNTs) are quasi-1D model sys-
tems that have become increasingly interesting for quantum optical studies and applica-
tions. Their electronic properties depend on the number of carbon atoms per circumference
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Figure 5.1: (a) Schematic of a honeycomb lattice of carbon atoms, showing the roll-up
vector for semiconducting chiralities (n,m) and the structure of a (5,4) carbon nanotube.
(b) Density of states for semiconducting SWCNT, indicating the E11 and E22 transition.
(c) E11 exciton wave-function of the (11,0) nanotube, in the lowest excited state, c) adapted
from Capaz et al. [110].
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and the precise orientation of the carbon grid, dividing them into groups of metallic and
semiconducting nanotubes [34, 35]. Singe walled carbon nanotubes are more than an order
of magnitude thinner than the state of the art in transistor size of modern, silicon based
chip technology. Therefore they are a potential link to the miniaturization of electronics
and moreover, could be used for quantum information technology in the future. After
the first observation of the emission of non-classical light in terms of single photons from
individual carbon nanotubes at low temperatures [111, 112, 113], recent improvements in
nanotube growth and well-controlled doping extended single photon emission to room tem-
perature [37]. A single-walled carbon nanotube is often visualized as a sheet of graphene
that is rolled up along a specific vector of the honeycomb lattice of carbon atoms [34],
shown in fig. 5.1a. This “roll-up” vector can be expressed as a linear combination of the
two unit vectors of the crystal structure and in this way, all different nanotube chiralities
can be classified by the two integer coefficients of the roll-up vector, which is therefore
called chiral vector. The first unit vector is parallel to the “zigzag” axis while the second
one is parallel to the “armchair” axis. The chiral vector’s angle with the zigzag axis is
called the chiral angle, while its length equals the circumference of the tube. Carbon nan-
otubes as quasi-1D systems show an electronic density of states with distinct peaks, which
are van Hove singularities [34, 35] (fig. 5.1b). The first two optically allowed transitions
between corresponding valence and conduction bands, called E11 and E22, mainly deter-
mine the photoluminescence properties of the different chiralities, thereby providing also
a powerful tool for their discrimination [114]. Semiconducting SWCNTs have a bandgap
on the order of 1 eV between the highest occupied state of the valence band and the low-
est available state of the conduction band, which lies between two of the mentioned van
Hove singularities (c.f. fig. 5.1b). To first-order approximation, the size of the bandgap is
inversely proportional to the tube’s diameter [114], such that the wavelength of the first
optical resonance scales directly with the nanotube’s diameter:

λ11 =
hcdt

2accγ0

, (5.1)

where h is Planck’s constant, c the speed of light, dt the diameter of the nanotube, acc
the carbon-carbon bond length, and γ0 the interaction energy between neighboring carbon
atoms. Better estimates are available, also taking into account the chiral angle [110], but
the general trend is confirmed. Single walled carbon nanotubes show a rich spectrum of
Raman lines that contain much information about size, structure, defects, and doping [34].
The radial breathing mode (RBM) in particular is a Γ-point phonon mode that periodically
increases and decreases the diameter of the nanotube, therefore having an impact on the
bandgap energy [115, 116, 117]. The comparably strong Coulomb interaction, which is a
consequence of the low dimensionality of the system, leads to a favored creation of excitons
at the interaction with light [36]. The average distance of an electron and the corresponding
hole, calculated on the basis of ab initio or heuristic calculations [110], gives typical values
around 1.5 nm for the E11 excitons (see fig. 5.1c for an example of a (11,0) nanotube). This
number, which can be interpreted as the “size” of the exciton, is 1.1 nm in case of a (5,4)
SWCNT, exceeding the nanotube’s diameter by a factor of 2.
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Figure 5.2: Interaction between a pair of phase-locked 20 fs laser pulses and a single carbon
nanotube’s optical E11 resonance. (a) Laser spectrum (solid line), modulation amplitude
for a pulse separation of 50 fs (dashed line) and resulting excitation spectrum (grey). (b)
Schematic of the pulses in the time domain. (c) Optical absorption is monitored by pho-
toluminescence (PL) emission from a localized sub-band gap dopant state |E∗11〉 populated
by diffusive transport on a picosecond timescale. Adapted from Ciesielski et al. [109]

In this chapter measurements are presented, showing coherent wavepacket oscillations
of the RBM phonon mode, excited by 20 fs laser pulses, resonant to the E11 excitonic tran-
sition. The initial few hundred femtoseconds of light absorption by the exciton in single,
doped, semiconducting (5,4) SWCNTs of 0.61 nm diameter are investigated by ultrafast
pulse shaping microscopy. Photoluminescence (PL) detection of intentionally introduced
doping states upon dual-pulse illumination for varying pulse separation provides access
to the absorption of the nanotubes, which is periodically modulated by the phonon wave
packets. For smaller pulse separations, the experimental signal is mainly determined by
the width of the exciton peak of the nanotube, resulting in a measurement scheme similar
to a Fourier spectrometer [118]. After this signal contribution has decayed, the coher-
ent wavepackets of the radial breathing mode (RBM) phonon can be identified through
oscillations of the PL signal.

5.1 Experimental approach

The approach employed here has previously been used for similar experiments on single
fluorescent molecules and organic quantum wires [118, 119, 120, 121, 122], and is schemati-
cally shown in fig. 5.2. In the key experiment a single nanotube is resonantly excited at E11

by a pair of broadband laser pulses with defined relative carrier envelope phase difference
∆ϕCEP and temporal separation ∆t. The pulse pair is created by a cosine spectral ampli-
tude mask at the pulse shaper (fig. 5.2a), which allows to control the temporal separation
and the carrier envelope phase difference in a spectral fashion. A prerequisite to achieve
the time domain pulse profile, depicted in fig. 5.2b, from the amplitude mask, is a band-
width limited (flat phase) laser pulse, which was achieved by compressing the pulses on a
reference sample of Fe2(IO3)3 nanocrystals (see sect. 2.3). The resulting, tailored excitation
pulses interact with the SWCNT by its E11 optical resonance, creating an exciton. The
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Figure 5.3: (a) Confocal PL image showing individual bright spots resulting from single
SWCNTs, typically shorter than the image resolution. (b) The PL spectrum of a single
SWCNT obtained upon E22 excitation shows spectrally distinct E11 and E∗11 emission.
The photoluminescence excitation (PLE) spectrum of the same SWCNT detected at the
E∗11 emission demonstrates the population of this state upon E11 excitation. The laser
spectrum (green) used for the ultrafast experiments covers the complete range of the E11

absorption. Adapted from Ciesielski et al. [109]

absorbed light intensity is monitored by a defect state, luminescent at lower energy (see
fig. 5.2c). A confocal PL image of a typical sample area is shown in fig. 5.3a. Well-isolated
PL signals of similar brightness are seen that arise from the emission of (5,4) SWCNTs
as verified by confocal PL and photoluminescence excitation (PLE) spectra recorded at a
number of these bright spots, exemplary shown in fig. 5.3b.

The Stokes-shift between exciton absorption and emission in SWCNT is very small, on
the order of 5 meV for the studied nanotubes (fig. 5.3b), so resonant broadband excita-
tion of the |E11〉 state and detection of its emission is practically impossible. Therefore
doped SWCNTs were studied, which provide emission from localized dopant states |E∗11〉
approximately 130 meV below |E11〉 as reporter for the |E11〉 population. Photolumines-
cence excitation (PLE) spectra of the studied SWCNTs, shown in fig. 5.3b and in fig. A.6
in the appendix, confirm that E11 excitation leads to the population of the |E∗11〉 state
presumably by efficient diffusive transport along the nanotube [37, 123, 124, 125].
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5.2 Broadband excitation spectroscopy

The described experimental approach of measurements at optical excitation with two iden-
tical laser pulses is similar to the method of Fourier transform spectroscopy. In Fourier
transform spectroscopy, a spatial delay between two optical paths is scanned and the re-
sulting interferogram can be used to retrieve spectral information about the absorption by
means of a Fourier transformation [126]. In the present case, no physical delay has been
introduced, but the spectrum was modified in a way, which is equal to the coherent su-
perposition of two temporally separated laser pulses. The only difference of the excitation
spectrum to the case of a Michelson interferometer, as it would usually be used for Fourier
transform spectroscopy, is the fixed carrier envelope phase difference of the two pulses. In
fig. 5.4a a PL intensity measurement of a single (5,4) carbon nanotube is presented for
increasing pulse separation ∆t and constant carrier envelope phase difference ∆ϕCEP = 0
within the first 300 fs.
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Figure 5.4: (a) Two-pulse correlation experiment on an individual (5,4) SWCNT, varying
the temporal delay between two identical 20 fs laser pulses with a fixed carrier envelope
phase difference of zero. Monitored is the defect PL. (b) The Fourier transform, normalized
to the laser spectrum, gives the absorption spectrum of the nanotube, which is compared
to (c) the photoluminescence excitation (PLE) spectrum of the same nanotube. Adapted
from Ciesielski et al. [109]

The measured PL trace shows rapidly decaying oscillations with a period of about
50 fs, mainly reflecting the spectral detuning ωSWCNT − ω0 of the transition energy of the
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SWCNT ~ωSWCNT vs. the laser energy ~ω0. As a consequence of the fixed carrier envelope
phase difference between the two pulses, there are no interference fringes with the period
of the exciting laser field visible, as they would occur in a Michelson interferometer.

The spectral information about the absorption, encoded in a two-pulse correlation
trace like in fig. 5.4a, lies in the convolution of the nanotube’s interferogram with the
interferogram of the laser spectrum [118, 126]. It can be shown, that a Fourier transform
of the recorded signal S(∆t) yields the absorption spectrum A(ω), multiplied with the
excitation spectrum, such that the wanted information is given by:

A(ω) =
FT [S(∆t)] (ω)

Ilaser(ω)
. (5.2)

Fig. 5.4b presents the signal that was retrieved from the recorded data by eq. 5.2 and
compares it with the corresponding PLE data in fig 5.4c. The wavelength axis in fig. 5.4b
had to be adjusted according to the detuning and the central laser wavelength of 790 nm,
because this information is not contained in the two-pulse correlation trace at fixed CEP
difference1. Both spectra contain information on the absorption and, as expected, look
similar. The spectral position of the peak reflects the absorption band of the excitonic
resonance and the width of the peak results mostly from dephasing. At sufficient signal
contrast and resolution, a linewidth analysis could be used in order to split the peak
shape in contributions of pure dephasing and other effects, as for example heterogeneous
broadening [127]. Using the full-width-at-half-maximum of the absorption peak of the
observed individual (5,4) carbon nanotubes, dephasing times of around 100 fs to 200 fs are
extracted. This is in general agreement with dephasing times around 200 fs which have
been determined for micelle suspended SWCNTs using four-wave mixing and transient
absorption spectroscopy at the ensemble level [128, 129]. For single polymer-suspended or
freely suspended SWCNTs at 9 K where the RBM-induced dephasing is absent, dephasing
times reaching up to 830 fs and 2.1 ps, respectively have been reported [130].

Due to a detection regime which is spectrally separated from the excitation, broadband
excitation spectroscopy has an excellent signal-to-background contrast, for which reason it
is very sensitive and can also be applied to single molecules [118] or SWCNTs, as has been
shown here. Compared to a conventional absorption spectrum, no total absorptivity can be
extracted from the data, because the measurement does not directly record the absorbed
energy. This represents also the main difference to Fourier transform infrared (FTIR)
spectroscopy, where typically the transmission or scattering of a sample are the measured
quantities [126]. Different from the approach with a beam splitter and a delay stage, the
current version does, in theory, not require any coherence of the incoming light field. This is
due to the fact that the spectrum of the excitation is modulated by the pulse shaper [131]
and only in case of a bandwidth limited, broadband laser pulse, the cosine modulation
results in the anticipated two-pulse correlation experiment (c.f. fig. 5.2a and b). For the
present measurement, the incoming laser pulses were always bandwidth limited, which was
ensured by the mentioned non-linear reference measurements on Fe2(IO3)3 nanocrystals.

1In contrast, an interferometric two-pulse correlation scan also contains information about the absolute
position of the spectrum on the frequency axis.
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In principle, this enables measurements reaching much further than the so far intro-
duced, linear technique of broadband excitation spectroscopy. The excited optical reso-
nance in the carbon nanotube is a quantum system that carries a specific time dependence,
leading to the observed absorption band, which is broadened by dephasing. The mechanics
of this dephasing could be described by a suitable model, in the simplest case a two-level
system, leading to a deeper insight in the underlying dynamics [132]. Studies based on this
would require a non-linear power regime to operate in, where the temporal resolution of the
given laser source can be exploited [131]. It is very likely that the experiments, presented
here, already fulfill the requirements for coherent control and excite and modulate the E11

optical resonance on a femtosecond time-scale. Nevertheless, it is not possible to prove this
notion at the moment, because the detected signal is linear with the input intensity.

5.3 Temporal trace of the radial breathing mode

Upon closer examination of the time traces of single carbon nanotubes as in fig. 5.4, an
additional oscillating feature at pulse separations larger than 150 fs can be seen, which
substantially exceeds the dephasing times and therefore has a different origin. Fig. 5.5a
shows the two-pulse correlation trace of a SWCNT up to 500 fs pulse separation. After the
complete decay of the initial oscillations at around 150 fs, three distinct maxima with a
separation of about 90 fs are seen. These can be assigned to the coherent excitation of the
radial breathing mode (RBM) of the carbon nanotube, which for (5,4)-SWCNTs occurs at
373 cm−1 [114, 133], corresponding to an oscillation period of TRBM = 90 fs.
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Figure 5.5: Vibrational coherence in a single carbon nanotube. (a) For larger pulse sep-
arations, coherent phonon oscillations with a period of about 90 fs, caused by the radial
breathing mode (RBM) become visible. The absorption-dominated and coherent vibra-
tional contributions to the full model function are shown as offset, dashed lines. (b) The
RBM periodically modulates the diameter d of the nanotube, leading to a proportional
shift of the E11 absorption wavelength. Adapted from Ciesielski et al. [109]
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Coherent vibrational wavepackets in single molecules are well known, and have been
visualized via fluorescence detection by Brinks et al. [120]. In carbon nanotubes, coherent
phonon excitation has been studied theoretically and experimentally on the ensemble level
using ultrafast pump-probe spectroscopy [115, 116, 117]. The influence of the RBM on
the detected photoluminescence time traces is understood as follows: the first laser pulse
creates coherent phonon wave packets by impulsive excitation. The 20 fs duration of the
bandwidth limited laser pulse is substantially shorter than the 90 fs oscillation period of the
phonon, so its excitation can be considered quasi-instantaneous. Since the radial breath-
ing mode is characterized by a periodical modulation of the nanotube’s diameter d, the
second laser pulse experiences a modulated absorption, caused by the diameter-dependent
excitonic absorption energy ~ωSWCNT ∝ 1/d [116, 117]. Because in the present experi-
mental configuration the E11 absorption is at the low energy edge of the laser spectrum
(c.f. fig. 5.3b), phonon induced shifts of the excitonic energy towards lower energies are
expected to lead to smaller total absorption, while the opposite is the case for high energy
shifts [117, 134, 135].

Following this discussion, the coherent phonon-induced intensity modulation of the PL
signal IRBM can be described using a sine function:

IRBM = αRBM · sin(ωRBM∆t+ φ), (5.3)

with phase φ and amplitude factor αRBM scaling the signal contribution relative to the
stronger signal contributions of the first 150 fs. The total signal is modeled as:

IPL = ITPC + IRBM , (5.4)

where ITPC is the intensity signal of the two-pulse correlation. In order to separate the
signal contributions, a model fit was used to describe the initial oscillations of the recorded
PL trace. In the last section, this part was explained to result from the modulated laser
spectrum, convoluted with the absorption spectrum of the sample. A re-calculation of
the PL trace by an inverse Fourier transform of the measured absorption spectrum would
include the contribution of the RBM phonon oscillation and is therefore not suited to
extract this part of the signal. By using a Lorentzian fit to the absorption spectrum, it
is possible to simulate the measurement without the influcence of the RBM and get to a
model description that resembles the experimental data closely (dashed line in fig. 5.5).
The central wavelength, determined from the recorded trace of fig. 5.5, is λSWCNT =
830 nm, and the full-width-at-half-maximum amounts to ∆λ = 26.6 nm, corresponding to
a dephasing time of Tdep = 86 fs. The resulting part IRBM can, for pulse separations larger
than 150 fs, be fitted to the experimental curve, which yields the parameters αRBM , and
φ. The chirality-dependent frequency ωRBM = 0.07 rad/fs is known [114, 133]. In fig. 5.5,
the time trace of a single nanotube together with the model fit and the two contributions
ITPC and IRBM are shown.

Theory predicts that upon impulsive excitation at the E11 transition the nanotube
diameter of SWCNTs for which [(n−m) mod 3 = 1] first expands [117]. Due to the inverse
scaling of the band gap energy with the diameter [114], this is connected to an initial red-
shift of the absorption for (5,4) SWCNTs. As said before, this results in a decreased overlap
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Figure 5.6: The histogram of the initial phonon phase proves that under impulsive excita-
tion, the (5,4) carbon nanotubes initially increase their diameter. Adapted from Ciesielski
et al. [109]

of laser spectrum and absorption band in the present case. If the detected PL signal at
sufficiently large pulse separations is interpreted as a measure of absorption, then an initial
decrease of the PL intensity is predicted. According to the simple model of eq. 5.3, such a
decrease corresponds to an absolute phase φ of the RBM oscillations of 180◦. Out of the
experimental data sets, 35 SWCNTs showed a sufficient signal contrast to fit the sinusoidal
RBM signature to the autocorrelation trace. Fig. 5.6 shows a histogram over the retrieved
set of nanotubes which is heterogeneous but has a clear maximum at a phase of 180◦,
supporting the notion of the nanotube initially expanding upon impulsive excitation.

5.4 Conclusion

In this chapter, the photoluminescence response of single semiconducting carbon nanotubes
to a pair of 20 fs laser pulses was investigated, where the temporal separation of the pulses
was varied and the carrier envelope phase difference between the two pulses was kept
constant. On a sub-150 fs timescale, the resulting PL traces contain spectral information
about the absorption bands of the nanotube, which can be retrieved by a simple Fourier
transform, similar to FTIR spectroscopy. On longer timescales, coherent phonon wave
packets of the radial breathing mode modulate the optical response with a period of about
90 fs. Statistical evaluation of 35 individual nanotubes showed that the probability of
absorption of the second laser pulse is initially decreased. In accordance with theoretical
predictions, this result is interpreted such, that on the onset of the coherent wave packet
oscillations under impulsive excitation the nanotube’s diameter would first expand.

In the future, studies in the non-linear regime of absorption on SWCNTs are desirable,
because they enable true coherent control experiments on the single nanotube level. A
potential extension of the detection scheme to electrical readout is promising as well, since
they open the door to exciton dynamics and transport properties [34, 136].
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Chapter 6

Summary and outlook

In the course of this work, a measurement scheme was implemented that allows to tem-
porally control femtosecond laser pulses in the diffraction limited spot of a confocal mi-
croscope. Up to now, it was a highly difficult task to measure and compensate the phase
distortions that are introduced by the optics, first of all by the objective lens. The work
presented here aims at simplifying phase retrieval by demonstrating improved versions of
second harmonic based pulse phase measurements and suggesting the use of graphene’s
near-degenerate four-wave mixing as reference signal. This lead to a better understanding
of the accuracy and precision which can be reached within the scope of confocal pulse shap-
ing microscopy. Benefiting from the achieved temporal and spatial resolution, the ultrafast
and non-linear photophysics of graphene were investigated, leading to new insights about
the corresponding fundamental mechanisms. The question of the temporal pulse profile in
the vicinity of hot spots, created by plasmonic nanostructures, was reviewed, focussing on
the two non-linear processes of second harmonic generation and four-wave mixing. Finally,
coherent control of the radial breathing mode in individual, semiconducting, single-walled
(5,4) carbon nanotubes at room temperature was demonstrated. In more detail, the key
findings are presented in the following.

As an important prerequisite for time-resolved measurements of nanostructures, a setup
was built that combines a spatial light modulator for pulse shaping with a confocal micro-
scope operating at the diffraction limit of light. The spatial resolution lies at about 400 nm
at laser pulses of 1.55 eV central energy and 15 fs temporal resolution. The resulting con-
figuration is very flexible with respect to the spectral phase and amplitude profiles that
can be applied to the laser pulse. This flexibility was achieved by a specialized software for
the setup, which was developed during this work, that implements all the various scanning
procedures presented and reviewed here. Examples are MIIPS, chirp scans, PRISM, a ge-
netic algorithm, and phase-locked two-pulse correlation schemes. To determine the pulse
phase distortions that were accumulated throughout the optical path, mainly the popular
technique of MIIPS was used. In our group, the scanning algorithm was improved by in-
troducing an amplitude gate that minimizes inherent phase artifacts and thus requires less
iterations than the original version. The phase retrieval algorithm was further improved
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by including information on the laser spectrum. This thesis demonstrated experimentally
that these approaches give better results than the standard MIIPS. Most importantly, the
necessity of iterating the procedure is dispensed, which speeds up the process and is an
advantage at low signal intensities orif the samples are not photostable. The total accuracy
which can be achieved was reviewed, demonstrating a precision of better than 50 fs2 for
quick routine measurements and better than 10 fs2 at the detection limit of the system.
This corresponds to an uncertainty of about 1 fs at bandwidth limited laser pulses of 15 fs
duration, centered at 1.55 eV in the focus of an NA 1.3 microscope objective.

Exfoliated graphene was the very first mono-atomic material that was available and has
therefore attracted much attention. Along the line, immense research activities were trig-
gered by the new properties of the quasi-2D material. In this thesis, two detailed studies
of the non-linear photophysics of single layer graphene on a glass substrate contributed to
this field of research. First, the third-order nonlinearity, which leads to easily detectable
near-degenerate four-wave mixing signals, was investigated. This kind of emission is spec-
trally centered around the laser excitation and shows a three times as broad spectrum as
the laser. It was shown experimentally during this work that the third-order non-linear
susceptibility of graphene is dispersionless in the probed spectral range which makes it an
ideal candidate for phase characterization. Compared to the standard approach using sec-
ond harmonic generation, the third order signal has the advantage of being spectrally close
to the laser. This fact often makes it easier to detect than second harmonic light, because
the optics do not have to transmit ultraviolet light. Next, the first experimental evidence
for the existence of two kinds of non-linear photoluminescence from graphene was provided:
there is a coherent and an incoherent contribution. The coherent one is spectrally bound
to the laser and overlaps with the near-degenerate four-wave mixing in some cases. The
incoherent one is broadband and in its magnitude and peak energy mainly determined by
the total amount of light absorbed during the interaction with the laser pulse. The incoher-
ent part was further investigated and a characteristic dependence on the substrate induced
doping was found, demonstrating a generally increased speed of the charge carrier cooling
at higher doping levels. Combined, these three contributions describe the full non-linear
optical signal of graphene from the visible to the near-infrared spectral region.

Optical microscopy has the potential to be used at a spatial resolution below the diffrac-
tion limit by exploiting the localized nearfields of plasmonic nanostructures. The concen-
trated light fields, created inside so called hot spots, can in principle also be used for pulse
shaping microscopy, but for this purpose their spectral phase has to be measured. Recent
approaches to phase measurement, using the second harmonic generation of the nanos-
tructures themselves, were reviewed and demonstrated by applying MIIPS to single gold
nanorods. It was confirmed that the phase profile depends strongly on the microscopic de-
tails of the nanoparticles, which underlines the need for individual correction phases. Since
the phase profile, measured by non-linear processes of the particle itself, will in general be
different from the phase profile in its nearfield, these measurements were contrasted with
similar data, obtained by near-degenerate four-wave mixing from the same particles. The
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phase profiles are different, but the origin could not be explained with certainty. It was
demonstrated that the different non-linear processes can nevertheless be useful for selective
imaging of plasmonic nanostructures.

The last material system investigated in the course of this thesis were semiconducting,
(5,4) single-walled carbon nanotubes. The first optical resonance, caused by the forma-
tion of the E11 exciton, causes an absorption band which can be measured by broadband
excitation spectroscopy with single nanotube detection sensitivity. Two-pulse correlation
experiments were presented that showed evidence of coherently excited wave-packets of the
radial breathing mode for pulse separations larger than 150 fs. The expected oscillation
period of about 90 fs could directly be observed in the recorded trace, caused by a periodic
modulation of the bandgap. Statistical data evaluation furthermore proved the theoretical
prediction, that under impulsive excitation the diameter of a (5,4) nanotube would first
expand.

The results presented in this work demonstrate the feasibility and robustness of the
combined approach of optical pulse shaping and confocal microscopy and give new in-
sight into the photophysics of selected nanostructures. Both techniques on their own are
powerful already, but the opportunity of a simultaneous temporal control of light fields
at the diffraction limit and at the bandwidth limit is intriguing. The investigation of
nanostructures in general benefits from the access to small scales and a high temporal
resolution. Therefore, for future measurements the spectral width of the pulses should be
increased and the excited spectral volume should be decreased, for instance by using plas-
monic nearfields. Experiments would further benefit from a larger flexibility with respect
to the spectral range, which was fixed for most experiments presented here. The connected
challenges are of technical nature, since laser sources are available for a large variety of
spectral ranges and pulse compression can meanwhile well be handled. Electrical readout
of photoexcited carriers is an important next step for experiments on materials such as
graphene or carbon nanotubes since it opens the door to transport measurements. These
carry potentially much information about the physical processes involved and are also of
interest for opto-electronic applications. Finally, optical pulse shaping is a technique that
acts on the excitation of a sample only. General improvements can be expected in time-
resolved detection schemes, such as time-correlated single photon counting. An approach
that combines time-resolved excitation and time-resolved detection in microscopy could
open the door to interesting new discoveries.
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Appendix A

Sample materials: Fabrication and
characterization

A.1 Iron(III)-idodate nanocrystals

Iron(III)-iodate (Fe2(IO3)3) nanocrystals provide a high, stable, photo-resistant, and phase-
free second harmonic signal, ideally suited as a local probe for phase retrieval, based on
second harmonic light detection [107]. The nanocrystals used throughout this work were
home made, based on the procedure described by Bonacina et al. [107]. The sample material
is emulsed in purified water, treated with ultrasound for about one minute and then spin-
coated on a glass coverslide. A scanning electron microscopy image of such crystals on a
fluorine tin oxide substrate is presented in fig. A.1, showing that the material consists of
sub-micron, needle like structures.

1 µm

FTO

Fe2(IO3)3

Figure A.1: Scanning electron micrograph of Fe2(IO3)3 nanocrystals on a substrate of
fluorine tin oxide (FTO).
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A.2 Exfoliated graphene on glass substrates

Samples of graphene on glass were used in chapt. 3. They were fabricated in the group
of Andrea C. Ferrari at the Cambridge Graphene Centre, United Kingdom. Graphene
layers are deposited by micromechanical cleavage [137] on Si wafers covered with 300nm
of SiO2. Monolayers are identified by a combination of optical microscopy [25] and Raman
spectroscopy [24, 138]. Graphene layers are transferred onto glass by a polymer-based wet
transfer process [23]. PMMA (molecular weight 950K) is spin coated onto the substrate
where graphite flakes are exfoliated, then the sample is immersed in de-ionized water,
resulting in the detachment of the polymer film due to water intercalation at the PMMA-
SiO2 interface [23]. The flakes attach to the polymer and can be removed from the Si/SiO2

substrate. The polymer and graphene film is then placed onto the glass substrate and,
after complete drying of the water, PMMA is removed by acetone. Success of the transfer
is confirmed both optically and by Raman spectroscopy. No significant D peak is detected
after transfer, showing that the process does not result in structural defects.

In fig.A.2 we present Raman spectra of the areas indicated in figs. 3.12c and 3.14a. It
is possible to identify single layer, double layer, few layer graphene and graphite.
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Figure A.2: Raman spectra of graphene at 633 nm excitation wavelength of different po-
sitions as indicated in figs. 3.12c and 3.14a. Comparison with references [24, 138] enables
identification of single, double and few layer graphene as well as graphite.
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Graphene on glass is typically p-dopend and in the literature, values of µ = −0.12 eV
are reported for graphene on a glass substrate [93]. Fig. A.3 gives an approximate doping
level of p = 2 × 1012 cm−2, coming from the substrate or the PMMA transfer. Using the
electronic density of states D(E) = 2E/(π~2v2

F ), a value for the chemical potential of:
µ = −~vF

√
πp = −0.18 eV is calculated.
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Figure A.3: Raman spectrum at 633 nm excitation wavelength of single layer graphene
(position 1 in Fig. 5b of the main manuscript.) According to Ferrari [139], the position of
the G-band indicates a doping level of ≈ 2× 1012 cm−2.
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A.3 Gold nanorods

Gold nanorords, as used in chpt. 4, were grown in solution by the group of Sebastian
Mackowski at the Nicolaus Copernicus University in Toruń, Poland [140]. The particles
were covered by a layer of cytric acid to prevent them from clustering through van der Waals
forces. Fig. A.4 shown transmission electron micrographs (TEM) of typical nanorods and
a size distribution histogram. The average length is 41 ± 11 nm, the average thickness is
19 ± 5 nm. Their plasmon resonance on glass lies at about 1.6 eV. Fig. A.5 presents an
ensemble measurement of the nanorods in water.
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Figure A.4: (a) TEM images of typical Au nanorods. (b) Size distribution histograms.
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Figure A.5: Absorbance spectrum of the gold nanorods in water. By courtesy of D. Pi-
atkoswki, Nicolaus Copernicus University of Toruń, Poland
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A.4 High purity (5,4) single-walled carbon nanotubes

with engineered defects

Chpt. 5 used samples of (5,4) SWCNTs with engineered defects, that were synthesized
according to the following description in the group of Stephen K. Doorn at Los Alamos
National Laboratory, Los Alamos, United States of America. CoMoCAT SG76 grade
SWCNTs were dispersed through ultrasonication and subsequently cleaned from bun-
dles and prefractionated by ultracentrifugation. Enrichment in single-species (5,4) was
accomplished via the iterative aqueous two-phase extraction (ATPE) technique, based
on results described previously by Fagan et al. [141, 142]. The resulting (5,4) material
was exchanged into a sodium dodecylsulfate (SDS) environment to enable doping with 4-
methoxybenzenediazonium tetrafluoroborate following an adapted protocol established by
Piao et. al. [143]. After the doping process the reaction was quenched and the sample sta-
bilized by changing the surfactant environment back to sodium deoxycholate (DOC) [123].
A PLE spectrum of the sample material used is presented in fig. A.6. To reduce blinking,
the SWCNTs stock solution was embedded in Tetramethylorthosilicate [144, 145] (TMOS).
The resulting gel was deposited between two borosilicate coverslides (BK7) for the optical
measurements.
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Figure A.6: Photoluminescence excitation (PLE) scan of the (5,4) SWCNT sample, dis-
solved in water. The spectra, taken with a Xenon lamp, reveal the transitions E11 and E22

as well as the defect band E11
*. By courtesy of N. F. Hartmann, Los Alamos National

Laboratory, US.
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Appendix B

Collected formulas

B.1 Focal fields

The following equations are the solution to Maxwell’s equations in case of a strongly
focussed laser beam outside the paraxial approximation as they were used in sect. 2.1.4.
They are copied from chpt. 3.6 of ref. 52 and they describe spherical waves with an angular
spectrum representation originating from a Gaussian beam that was refracted at a lens
and cut by a pupil filter (the back aperture). The electric and magnetic fields are given
by:

E(ρ, ϕ, z) =
ikf

2

√
n1

n2

E0e
−ikf

I00 + I02 cos 2ϕ
I02 sin 2ϕ
−2iI01 cosϕ

 , (B.1)

H(ρ, ϕ, z) =
ikf

2Zµε

√
n1

n2

E0e
−ikf

 I02 sin 2ϕ
I00 − I02 cos 2ϕ
−2iI01 sinϕ

 , (B.2)

where k is the wave vector inside the lens, f is the focal length of the lens, n1 is the refractive
index inside the lens, n2 is the refractive index above the sample, E0 is the electric field
amplitude of the incoming Gaussian laser beam, and (ρ, ϕ, z) are the spherical coordinates.
The integrals I0k are given by:

I00 =

θmax∫
0

fw(θ)
√

cos θ sin θ(1 + cos θ)J0(kρ sin θ)eikz cos θdθ,

I01 =

θmax∫
0

fw(θ)
√

cos θ sin2 θJ1(kρ sin θ)eikz cos θdθ,

I02 =

θmax∫
0

fw(θ)
√

cos θ sin θ(1− cos θ)J2(kρ sin θ)eikz cos θdθ,
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where θ is the angle of the k vector with the optical axis, and θmax is the maximum angle,
defined by the numerical aperture: NA = n1 · sin θmax. Jν(z) are Bessel functions of the
first kind. fw(θ) is the apodization function, defined by:

fw(θ) = exp

(
− 1

f 2
0

sin2 θ

sin2 θmax

)
, f0 =

w0

f sin θmax
.

f0 is the filling factor, defined by the amount of laser light filling the back aperture (pupil)
of the objective lens, typically f0 ≥ 1.

B.2 Reflection of a focussed spot

If a strongly focussed laser beam is reflected at an interface, the effect of depolarization
together with the different Fresnel reflection coefficients for parallel and perpendicular
polarization leads to strongly position dependent reflection patterns if the numerical aper-
ture is larger than 1. The electric field for that situation as used in sect. 2.1.4 is given in
chpt. 3.10 of ref. 52:

E(ρ, ϕ, z) = E0
k0f

2

2if ′
e−ik0(z+f ′) [(I0r + I2r cos 2ϕ) nx − I2r sin 2ϕ ny] . (B.3)

nx and ny are the carthesian unit vectors, k0 is the wave vector in air, f ′ is the focal length
of the refocussing lens and z is the defocus of the refocussing lens (z = 0 is focussed). All
other quantities are identical to the previous section. The integrals I0r and I2r are given
by:

I0r(ρ, z) =

θmax∫
0

fw(θ) cos θ sin θ [rp(θ)− rs(θ)] J0

(
k0ρ sin θ

f

f ′

)

× exp

[
i

2
k0z

(
f

f ′

)2

sin2 θ + 2ikz0 cos θ

]
dθ, (B.4)

I2r(ρ, z) =

θmax∫
0

fw(θ) cos θ sin θ [rp(θ) + rs(θ)] J2

(
k0ρ sin θ

f

f ′

)

× exp

[
i

2
k0z

(
f

f ′

)2

sin2 θ + 2ikz0 cos θ

]
dθ, (B.5)

where rs and rp are the Fresnel reflection coefficients and z0 is the defocus of the objective
lens (z0 = 0 is focussed).
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B.3 On the amplitude mask for two-pulse correlation

experiments

A sinusoidal amplitude mask divides a laser pulse into two identical copies. Thereby, the
temporal delay τ as well as the carrier envelope phase difference between the two pulses
∆ϕCEP can be chosen. Two-pulse correlation experiments are a key measurement method
in this thesis and have been used in chpts. 2, 3, and 4. The situation is visualized in
fig. B.1. The electric field of a laser pulse in the time domain can be calculated as the
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Figure B.1: Visualization of the carrier envelope phase (CEP). There is a CEP difference
of ∆ϕCEP = π between the two pulses. If a pulse correlation scan keeps the CEP fixed,
the envelope of the field is shifted in time (dashed line), while if the CEP is not fixed, the
entire pulse is shifted.

Fourier transform of the frequency domain:

E(t) =
1√
2π

∞∫
−∞

E(ω) ·M(ω) · e−iωt dω,

where M(ω) is an amplitude mask, imposed by a pulse shaper. By using the mask:

M(ω, τ) = cos

(
τ

2
(ω − ω0)− ∆ϕCEP

2

)
,

and with the relation

cos(x) =
1

2

(
eix + e−ix

)
, (B.6)

the time domain electric field for a two-pulse correlation (TPC) is expressed as:

ETPC(t, τ) =
1

2
√

2π

∞∫
−∞

(
E(ω) · e−iτω0/2 · e−i∆ϕCEP /2 · ei(τ/2−t)ω

+E(ω) · eiτω0/2 · ei∆ϕCEP /2 · e−i(τ/2+t)ω
)
dω.

(B.7)
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Therefore, the pulse is split into two copies that only differ by their temporal position and
their carrier envelope phase:

ETPC(t, τ) = E
(
t− τ

2

)
· e−iτω0/2 · e−i∆ϕCEP /2 + E

(
t+

τ

2

)
· eiτω0/2 · ei∆ϕCEP /2. (B.8)

Here, the term e±iτω0/2 guarantees that the two-pulse correlation experiment is carried out
with a shared carrier envelope phase (as in an intensity autocorrelation scan) and the term
e±i∆ϕCEP /2 determines the carrier phase difference of ∆ϕCEP . A simpler amplitude mask
can be used in order to perform interferometric pulse correlation scans:

M(ω, τ) = cos
(τω

2

)
. (B.9)

In this case, the entire pulse is translated and no shared CEP exists.

B.4 The two-temperature model for graphene

The following equations represent the two-temperature model(TTM) for graphene in com-
bination with the four-wave mixing parts as it was used in sect. 3.3.3. Since the sum of
the TTM and FWM depends on physical constants, all units used are stated here, too.
As described in the main text, the emission spectrum of graphene is modelled using a
constant third-order non-linear constant χ(3) (in units of m2/V2) for the four-wave mixing
(FWM) contribution [74, 75, 77] and the two temperature model for the non-linear photo-
luminescence (NLPL) [26]. As for the four-wave mixing, it has to be noted that the electric
field amplitude E(ω) is measured in frequency domain units of V/m/Hz. The TTM which
is used is almost identical to the model presented by Lui et al. [26]. It is based on the
following two coupled ordinary differential equations:

dTel(t)

dt
=
Ilaser(t)− Γ(Tel, Top)

cel(Tel)
,

dTop(t)

dt
=

Γ(Tel, Top)

cop(Top)
− Top(t)− T0

τop
.

(B.10)

They describe the temporal evolution of the electronic temperature Tel and the temperature
of strongly coupled optical phonons (SCOP) Top. The absorbed, time dependent laser
irradiance is Ilaser(t) and given by the incoming laser pulse profile and the fluence F . cel
and cop are the specific heat capacities of the electrons and optical phonons, which both
depend on the respective temperatures. τop is the decay time of the SCOPs which couple
to a bath of other phonons. We used τop = 1.5 ps which is the same value used by Lui et
al. [26]. Γ is the electron-SCOP energy exchange rate and depends on both temperatures
(see below). The specific heat of the electrons per unit area comes from the linear band
structure of graphene:

cel(Tel) =
18 · ζ(3)

π · (~vF )2
· k3

B · T 2
el,
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where ζ(3) = 1.202 is the zeta function, vF = 1.1 nm/fs is the Fermi velocity of electrons
in graphene, and kB is Boltzman’s constant. The phonon heat capacity of SCOPs in
graphene at 200 meV in the range of 500 K < Top < 2500 K can be estimated by the
following heurisitic relation [26]:

cop = −4.79× 109 + 1.82× 107 × Top + 1.34× 104 × T 2
op + 5.16× T 3

op

as given in eV/cm2/K. The exchange rate of electrons and SCOPs near the K-point is
given by the following expression [26]:

Γ(Tel, Top) =

β ·
((

1 + n(Top)
) ∫

D(ε) ·D(ε− ~Ω) · f(ε, Tel) ·
(
1− f(ε− ~Ω, Tel)

)
dε

−n(Top)

∫
D(ε) ·D(ε+ ~Ω) · f(ε, Tel) ·

(
1− f(ε+ ~Ω, Tel)

)
dε
)
.

The value β (given in eV2cm2/s) is an initially unknown scaling parameter that quantifies
the overall SCOP-electron coupling strength and is one of the fitting parameters. ~Ω =
200 meV is the energy of the SCOPs which is the amount of energy lost in every scattering
event. The first term of the equation describes the emission and the second the absorption
of a phonon. The density of states of electrons in graphene is given by:

D(ε) =

{
2|ε|
π~2v2F

for ε > 0,

0 otherwise.

The population of SCOPs at a temperature Top is defined by the Bose-Einstein distribution
n(Top), and the population of electrons is given by the Fermi-Dirac distribution f(ε, Tel),
including the chemical potential of the electrons µ:

n(Top) =
[

exp
(
~Ω/kTop

)
− 1
]−1

,

f(ε, Tel) =
[

exp
(
(ε− µ)/kTel

)
+ 1
]−1

.

The solution of eq. B.10 yields the time dependent electronic and phononic temperatures.
The assumption is that the observed photoluminescence can be described by black body
radiation of the hot electrons. The associated radiative losses, on the other hand, are so
small that they do not need to be considered as decay channel in the TTM. The NLPL is
then given by [26]:

INLPL(ω) = ~ · ω3

2π2c2

∫ [
exp

( ~ω
kTel(t)

)
− 1
]−1

dt,

and the total emitted spectrum is the sum of FWM and NLPL:

Iem(ω) = ηFWM · IFWM(ω) + INLPL(ω), (B.11)
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parameter value
µ −0.18 eV
β 0.5449 eV2nm2/fs

ηFWM 4.02× 104

F 1.07 eV/nm2

Table B.1: Fit paramters for the two temperature model of graphene.

with the dimensionless FWM emission efficiency ηFWM . Although the magnitude of χ(3)

has been measured (sect. 3.2) it is set to unity here. The theoretical autocorrelation scans
from fig. 3.13 were calculated on basis of eqns. B.10,B.11 and with the corresponding
temporal shape of Ilaser(t). The parameters µ, β, ηFWM , and F had to be fitted to the
data, resulting in the numbers given in tab. B.1.
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F. Krausz, “Gouy phase shift for few-cycle laser pulses,” Physical Review Letters,
vol. 92, no. 11, p. 113001, 2004.

[56] S. Akturk, X. Gu, M. Kimmel, and R. Trebino, “Extremely simple single-prism
ultrashort-pulse compressor,” Optics Express, vol. 14, no. 21, pp. 10101–10108, 2006.

[57] Newport Corporation, “The effect of dispersion on ultrashort pulses.” [Online]
http://www.newport.com/The-Effect-of-Dispersion-on-Ultrashort-Pulses/

602091/1033/content.aspx (accessed on 2016-02-01).

[58] V. Chauhan, J. Cohen, P. Vaughan, P. Bowlan, and R. Trebino, “Distortion-free
single-prism/grating ultrashort laser pulse compressor,” IEEE Journal of Quantum
Electronics, vol. 46, no. 12, pp. 1726–1731, 2010.

http://www.newport.com/The-Effect-of-Dispersion-on-Ultrashort-Pulses/602091/1033/content.aspx 
http://www.newport.com/The-Effect-of-Dispersion-on-Ultrashort-Pulses/602091/1033/content.aspx 


108 6. Bibliography
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M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-
optical fields,” Nature, vol. 446, no. 7133, pp. 301–304, 2007.

[68] T.-w. Wu, J. Tang, B. Hajj, and M. Cui, “Phase resolved interferometric spectral
modulation (PRISM) for ultrafast pulse measurement and compression,” Optics Ex-
press, vol. 19, no. 14, pp. 12961–12968, 2011.

[69] V. V. Lozovoy, B. Xu, Y. Coello, and M. Dantus, “Direct measurement of spectral
phase for ultrashort laser pulses,” Optics Express, vol. 16, no. 2, p. 592, 2008.

[70] V. Loriot, G. Gitzinger, and N. Forget, “Self-referenced characterization of femtosec-
ond laser pulses by chirp scan,” Optics Express, vol. 21, no. 21, pp. 24879–24893,
2013.

[71] M. Miranda, C. L. Arnold, T. Fordell, F. Silva, B. Alonso, R. Weigand, A. L’Huillier,
and H. Crespo, “Characterization of broadband few-cycle laser pulses with the d-scan
technique,” Optics Express, vol. 20, no. 17, pp. 18732–18743, 2012.

 http://www.thorlabs.de/newgrouppage9.cfm?objectgroup_ID=3746 
 http://www.thorlabs.de/newgrouppage9.cfm?objectgroup_ID=3746 


109

[72] Z. Sun, T. Hasan, F. Torrisi, G. Popa, D.and Privitera, F. Wang, F. Bonaccorso,
D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano,
vol. 4, pp. 803–810, 2010.

[73] C. H. Lui, K. F. Mak, J. Shan, and T. F. Heinz, “Ultrafast photoluminescence from
graphene,” Physical Review Letters, vol. 105, no. 12, p. 127404, 2010.

[74] S. A. Mikhailov, “Non-linear electromagnetic response of graphene,” EPL (Euro-
physics Letters), vol. 79, no. 2, p. 27002, 2007.

[75] E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent
nonlinear optical response of graphene,” Physical Review Letters, vol. 105, no. 9,
p. 097401, 2010.

[76] R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang,
“Purely coherent nonlinear optical response in solution dispersions of graphene
sheets,” Nano Letters, vol. 11, no. 12, pp. 5159–5164, 2011.

[77] R. Ciesielski, A. Comin, M. Handloser, K. Donkers, G. Piredda, A. Lombardo, A. C.
Ferrari, and A. Hartschuh, “Graphene near-degenerate four-wave mixing for phase
characterization of broadband pulses in ultrafast microscopy,” Nano Letters, vol. 15,
pp. 4968–4972, 2015.

[78] E. Xenogiannopoulou, P. Aloukos, S. Couris, E. Kaminska, A. Piotrowska, and
E. Dynowska, “Third-order nonlinear optical properties of thin sputtered gold films,”
Optics Communications, vol. 275, no. 1, pp. 217–222, 2007.

[79] S. A. Mikhailov, “Theory of the nonlinear optical frequency mixing effect in
graphene,” Physica E: Low-dimensional Systems and Nanostructures, vol. 44, no. 6,
pp. 924–927, 2012.

[80] S. A. Mikhailov, “Quantum theory of third-harmonic generation in graphene,” Phys-
ical Review B, vol. 90, no. 24, p. 241301, 2014.

[81] S. A. Mikhailov, “Quantum theory of the third-order nonlinear electrodynamic effects
in graphene,” Physical Review B, vol. 93, no. 8, 2016.

[82] R. W. Boyd, Nonlinear Optics. Academic Press, 2003.

[83] W. Min, S. Lu, M. Rueckel, G. R. Holtom, and X. S. Xie, “Near-degenerate four-
wave-mixing microscopy.,” Nano Letters, vol. 9, p. 2423, 2009.
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I wish to thank Andrea Ferrari, David Piatkowski, Steven Doorn and their teams
for all the excellent samples they provided and for the collaboration on projects about
exciting new materials.

I am grateful for the time working with Alberto Comin and Giovanni Piredda. To-
gether we learned so much about femtosecond laser pulses.

Vielen Dank an Ermin Malic und Torben Winzer für die Einblicke in die Photophysik
von Graphen und die interessanten Diskussionen.

Weiterhin gilt mein herzlicher Dank meinen Kollegen und Freunden Harry, Tobia, Xian,
Nico, Julia, Veit, Irene und Kathi, ich habe die Zeit mit euch sehr genossen! Außer-
dem allen ehemaligen Kollegen, von denen ich sehr viel lernen durfte und die mich in die
Arbeitsgruppe eingeführt haben, darunter Matze, Nina, Nic und Miriam. Vielen Dank
an alle Studenten, mit denen ich zusammenarbeiten durfte, insbesondere Kevin, Alex,
Markus, Christina und Andrew.

Weiterhin haben die Veranstaltungen von CeNS und NIM eine große Bereicherung dargestellt,
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