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Chapter 1 

Introduction 

 

1. Human skin 

1.1 Anatomy and physiology  

The skin is one of the human body´s most mesmerizing components, as it combines several 

essential and vital functions. It is a sensitive sensory organ, regulates the body´s 

temperature, controls the loss of water from the body and provides protection against 

external and environmental impacts like microorganisms, UV radiation or simple mechanical 

harm [1–3].  

Mammalian skin is composed of three distinct layers, the epidermis, the dermis and the 

subcutis (Fig. 1-1) [1,4,5].  Starting on the outside, the epidermis with a thickness of up to 

180 µm plays an important part in the skin´s regeneration process and barrier properties. 

With a thickness of 15 to 20 µm, the outermost layer of the epidermis, the stratum corneum 

(SC), presents the main barrier towards exogenous impacts. The SC has a unique structure 

consisting of 10 to 15 layers of non-viable, flattened and tightly packed corneocytes which 

are embedded into a lipophilic lipid matrix. During the skin´s life-cycle and regeneration, 

keratinocytes are developed by cell division in the stratum basale, the innermost layer of the 

viable epidermis. During their transition to the skin surface, the terminally differentiated 

keratinocytes undergo apoptosis, a process where they are transformed to corneocytes. 

These dead, anucleated and cornified cells are mainly built up from keratin filaments as well 

as lipids, fatty acids and ceramides. Cross-connected by corneodesmosomes, the 

overlapping corneocytes form a tightly arranged layer that further contributes to the extensive 

SC barrier characteristics [6]. In-between the corneocytes, a multilamellar matrix mainly 

composed of cholesterol (25%), cholesterol sulfate (less than 5%), free fatty acids (10 to 

15%) and ceramides (45 to 50%) further defines the barrier properties [7]. Compared to other 

biological membranes, the lipid matrix does not contain phospholipids. The ceramides, which 

can be categorized into 9 sub-lasses, are of special interest, as previous studies have 

demonstrated a relationship between ceramide composition and impaired skin barrier [8]. 

Because the ceramides and also the fatty acids are non-branched and without double bonds, 

the components are able to be laterally packed tightly, which leads to the formation of highly 

ordered bi-layered gel-phase membrane domains, as described by Madison et al. (2003). 

These membrane domains are less fluid and permeable than the typical phospholipid-based 
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biological membranes [7,9]. This intercellular lipid matrix is crucial for the formation of the 

skin barrier and also influences the percutaneous absorption of exogenous substances [7].  

Next to the epidermis lies the dermis (up to 2000 µm). The dermis is a connective tissue that 

consists of elastic and collagen fiber networks. These networks provide and support the 

skin´s elasticity, the epidermal structure and embed nerves as well as blood and lymphatic 

vessels, which are necessary for the skin´s immune system and nutrition. In addition, the 

nerves and blood vessels are needed for the regulation of sensory sensations like pain, 

pressure or temperature [5,10,11]. Besides these components, the skin includes also 

appendages like hair follicles and sebaceous glands as well as apocrine and endocrine 

sweat glands [12]. Further specialized cells are located in the stratum basale of the 

epidermis, including melanocytes and Merkel cells. The melanocytes provide the skin with 

pigments, which play a role in UV radiation protection, and the Merkel cells are necessary for 

the skin´s mechano-sensoric system. Additionally, the macrophage-like antigen-presenting 

Langerhans cells and the dendritic epidermal T cells are essential to protect the body from 

allergens in terms of the skin´s immune system [13].    

 

 

  

Figure 1-1 Schematic depiction of the different skin layers, appendages and vessels (printed with 

permission from Van der Maaden et al., 2012 [11]). 

 

1.2 Genetic skin disorders 

Healthy skin is commonly characterized by a well-functioning skin barrier, regular skin 

shedding and moderate hydration, where the skin barrier prevents the intrusion of exogens 

and allergens as well as regulates the skin´s water balance [1–3]. In case of an impaired skin 

barrier, severe consequences can occur that not only restrict an individual’s well-being but 
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often also involve serious health implications. Classified as skin diseases, the different 

manifestations of impaired skin often have multifactorial causes and are frequently tied to 

genetic factors as well [14]. Two common and one rare but well discussed genetically derived 

skin diseases as well as their current treatment strategies are introduced below. 

1.2.1 Atopic dermatitis 

Atopic dermatitis (AD) is one of the most common atopic and inflammatory skin diseases and 

even one of the most common chronic disorders in children besides allergic rhinitis and 

asthma [15]. Up to 20% of children and up to 3% of adults suffer from AD, commonly starting 

at an early age. Typical AD symptoms include for instance reddish or brownish scaly, dry, 

itchy and cracked skin patches, lesions and eczema [14]. The cause of AD is not fully 

understood yet. However, 50% of affected individuals show a genetic predisposition. It has 

been discovered that loss-of-function mutations in the FLG gene result in a reduced 

production of the epidermal barrier protein filaggrin and thus impair the skin barrier integrity. 

Furthermore, the lack of filaggrin negatively impacts the corneocyte and skin lipid formation 

as well as skin pH and hydration adjustment, as the filaggrin derived metabolites urocanic 

acid and pyrrolidoncarboxylic acid are likewise reduced [14,16]. However, environmental 

factors like nutrition and allergens seem to be of pivotal relevance for AD manifestation, too. 

[14]  

1.2.2 Psoriasis 

Similarly to AD, the chronic inflammatory skin disorder psoriasis also derives from a mixture 

of genetic predisposition and exogenous triggers, but stays unraveled concerning its exact 

etiology. It affects about 2-3% of the European population and is characterized by a 

sporadical outbreak that typically is initialized in individuals in their twenties [17]. The most 

common form of psoriasis with approximately 90% sufferers is psoriasis vulgaris (PV) or 

plaque psoriasis. The PV symptoms include inflammations, extensive skin cell proliferation 

(leading to a desquamation every 6-8 days compared to the normal regeneration cycle of 40 

days) and abnormal differentiation resulting in silvery skin plaques that are often found in the 

elbow and knee regions. In rare cases, the disease can spread systemically and causes 

synovitis or arthritis-like symptoms. 10-30% of the affected patients develop an inflammatory 

arthritis, psoriatic arthritis, which progressively destroys the joints if it is not treated correctly 

[17]. As the likeliness to develop the disease is 4 to 6 fold increased in individuals with a 

family history, a genetic or hereditary component is discussed [17]. Genes that are normally 

only expressed in the basal layer where found to be expressed also in the thickened spinous 

layer, e.g. the genes encoding for filaggrin, corneodesmosin, epidermal transglutaminase, 

involucrin or loricrin. Furthermore, an increased release of pro-inflammatory factors like 

interleukins, tumor necrosis factor α and interferons is often observed [17,18]. 
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1.2.3 Ichthyosis vulgaris 

Ichthyosis vulgaris (IV) is a severe skin disease that is characterized by hyperkeratosis, 

excessive scaling, xerosis (abnormally dry skin), keratosis pilaris, and palmar/plantar 

hyperlinearity. In addition, patients suffering from IV also express a strong association with 

further atopic disorders [19]. IV is genetically linked to a loss-of-function mutation in the 

filaggrin gene and that condition can be inherited in a semi dominant manner with 83 to 96% 

penetrance [19]. Here, the produced profilaggrin is truncated, which inhibits the further 

processing to functional filaggrin subunits. The reduced filaggrin level affects the formation of 

the cornified envelope of the corneocytes, the correct loading of lamellar bodies and the 

organization of the lipid bilayers. This ultimately leads to a destabilized and deranged stratum 

corneum skin barrier [19,20]. Furthermore, the amount of proteolysed filaggrin products like 

diverse amino acids, polycarboxylic acid and precursors to urocanic acid, which contribute to 

the natural moisturizing factor (NMF) of the skin, are reduced, which results in dry skin with 

increased UV sensitivity [19].  

1.2.4 Current pharmacotherapy for PV, AD and IV 

The treatment of skin diseases is a complex and sometimes challenging task that often 

needs close collaboration between patients and physicians. Most often a chosen treatment 

might merely address the symptoms, as the route cause is either barely known or the cause 

itself can´t be treated due to the skin disease complexity or its origin.  

Hence, physicians and patients aim for a holistic treatment approach, where on one side 

external trigger factors need to be avoided and on the other side an optimal skin care needs 

to be combined with a suited pharmacotherapy [21]. Patients with a less severe course of the 

skin disease might only need topical treatment, whereas more severe cases may require a 

potent oral or intravenous therapy [22]. 

Atopic Dermatitis 

A basic skin care routine is advised for AD patients with an extra dry skin. Here, hydrating 

and moisturizing emollients with a high lipid content and ointments with urea (2 to 10%) and 

propylene glycol (10 to 25%) are recommended to restore and maintain a throughout 

moisturized skin [19,23]. Sometimes, combinations with UV phototherapy can additionally 

improve and ameliorate lighter AD courses [23]. 

Topical corticosteroids are the number one choice in medical treatment due to their 

efficiency. Used in acute and chronic inflammations, their immunosuppressive and anti-

inflammatory properties are used to down-regulate the production of proinflammatory factors 

like the nuclear factor kappa-light-chain-enhancer of activated B cells and TNFα or to inhibit 

genes that code for the cytokines IL-1 to 6, IL-8 and IFN-γ. The topical application of GCs is, 
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as said, very effective but also implies severe side effects upon long-term use like skin 

atrophy [24–27]. 

To further suppress the immune system and to circumvent skin atrophy, macrolide 

immunosuppressants like pimecrolimus or tacrolimus, also known as calcineurin-inhibitors, 

are used. They intervene by suppressing the transcription of cytokine (IL-2 to 5, TNFα) 

producing genes and thus help normalizing the patient´s immune system response [23,28]. 

For severe cases a systemic therapy might be necessary. Here, cyclosporin A is one of the 

best known calcineurin-inhibitor medications. For both short and long term therapy, 

Cyclosporin A shows a quick response, but needs to be closely monitored due to its nephron- 

and hepatotoxicity [23]. 

As a third choice medication, Mycophenolatmofetil is sometimes used in cases where 

patients didn´t respond to any other medication. Despite its efficacy for severe AD, 

drawbacks are its teratogenicity, the often associated gastrointestinal implications as well as 

cytopenias [23].  

Ichthyosis vulgaris  

For patients with Ichthyosis vulgaris, therapy options are very limited and primarily focus on 

skin care and reduction of the skin areas with hyperkeratosis. Besides creams with 

keratolytic (salicylic acid) and hydrating (urea) agents, baths in sodium bicarbonate solution 

can help soften and remove the scales combined with mechanical exfoliation. For severe 

cases, the retinoid acitretin can be used for severe cases of skin hornification as well as the 

vitamin-A acid tretinoin [29].  

Psoriasis  

An adapted skin care regiment can help soothing the skin related symptoms like dryness, 

itchiness and hyperkeratosis. Using keratolytica such as salicylic, lactic or glycolic acid (5 up 

to 20%) can help shedding the excess skin. Anthralin (Anthra-Derm) creams can help 

reducing the cell growth of keratinocytes in addition [22]. 

For light to moderate severe cases, topical corticosteroids remain one of the most widely 

used treatment options for psoriasis [22]. Despite their usefulness due to a rapid onset, their 

application is strictly limited to certain doses throughout the week, as side effects like acne, 

tachyphylaxis and skin atrophy are very likely to occur [22]. 

Topical (tazaroten) and systemically applied (acitretin, isotretinoin) retinoids may further 

contribute, as they intervene with the epidermal proliferation and thus down regulate the 

hyperkeratinization. Another option is the use of vitamin D3 analogues like calcipotriene, 

calcitriol and  tacalcitol, as vitamin D3 acts as both vitamin and hormone and thus is able to 
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regulate cell growth, differentiation, and immune function as well as calcium and phosphorus 

metabolism [30].  

Functioning as a systemic administered immunosuppressant, Methotrexat is administered 

once-weekly and showed to be a save, well-conversant and effective medication. Due to its 

teratogenicity, strict contraception is inevitable [23,31].  

Since patients with mild to severe PV are often struggling a lifetime, new targeted and 

sophisticated treatment options needed to be introduced that enabled a continuous and 

potentially more effective therapy with less side effects [18]. Biologic agents have been 

developed that target crucial biophysiological pathways and immune cells in the genesis of 

PV. Adalimumab (Humira®), a human monoclonal immunoglobulin G1 antibody against 

TNFα, is an approved biologic in the treatment of rheumatoid arthritis, psoriatic arthritis and 

chronic plaque psoriasis. It is administered every 2 weeks subcutaneously and, after 

systemic uptake, binds to TNFα and thus blocks the interaction with cell surface TNFα 

receptors with significant patient responses. Although adalimumab was able to relief both 

skin and arthritis conditions, the general immunosuppressant properties and reactivated 

tuberculosis cases accompanied by the systemic administration  need to be considered [18]. 

Similar to adalimumab further biologics targeting TNFα antibodies, e.g. etanercept (Enbrel®), 

infliximab (Remicade®), also achieve good results in PV treatment [32,33]. Etanercept, a 

fusion protein composed of human IgG1 Fc region and human TNF type II receptor (TNF-

Rp75), binds to soluble TNFα, whereas the i.v. administered infliximab, a chimeric 

monoclonal antibody, also binds to membrane-bound TNFα. But as seen for adalimumab, 

etanercept and infliximap unfortunately also bear a high risk of opportunistic infections 

associated with the suppressed immune system [18,32,33]. Ustekinumab (Stelara®) is a 

relatively new developed monoclonal IgG1k antibody that binds to the p40 subunit of IL-12 

and IL-23, thus blocking their interactions with their receptors[31].Here, Ustekinumab is 

administered every 12 Weeks (after an initial application and a consecutive second dose 

after 4 weeks) and adverse effects were limited to minor infections [31]. 

Hence, biologically derived therapeutics and antibodies represent an important and 

constructive pillar in severe genetic skin disease treatment and need to be the focus of 

attention in future therapeutic development. To eradicate side effects associated with s.c. 

and i.v. administration, the application of these biologics could be shifted to topical and 

dermal administration options. 
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2. Dermal drug delivery and skin penetration 

2.1 Characteristics of skin penetration 

The increasing interest of the pharmaceutical industry in dermally applied products is 

reflected in the number of drugs that are investigated for topical application in clinical trials, 

which currently represent one third of all investigated drugs [34]. Although dermally applied 

drugs may offer many advantages, like by-passing the enterohepatic cycle, painless 

application, controlled drug release, dermal drug delivery and less systemic side effects, they 

also oppose some challenges [35,36]. 

The dermal penetration of a drug after topical application is highly dependent on the skin´s 

main barrier, the SC and occurs mainly via passive diffusion [12]. As previously described, 

the dense packing of the corneocytes, their tight interconnection by desmosomes and the 

corneocyte surrounding lipid matrix are in charge for the restricted and limited uptake of 

applied substances [7,35,37]. In general, there are three pathways known through which a 

drug can penetrate into the skin: the shunt or transappendageal route (including the 

penetration through the sweat glands, the hair follicles, and the sebaceous glands, which is 

most suitable for hydrophilic compounds), the intercellular (for the mainly lipophilic 

compounds), and the transcellular route, which most of the hydrophilic compounds have to 

follow [5,38]. Furthermore, the penetration of a drug is highly dependent on the drug´s 

physico-chemical properties. Concerning the size, small substances with a molecular weight 

of less than 500 Da are preferred due to the skin´s distinct total cut-off of 800 Da [38]. For an 

easy passive diffusion, a moderate lipophilicity (logP = 1 to 3) is supportive. As the drugs 

mostly have to travel through the intercellular lipid matrix, water-soluble or hydrophilic 

compounds will be highly restricted in their penetration via certain routes [38]. On the other 

hand, high lipophilicity displayed by an octanol-water partitioning coefficient larger than logP 

3 may eventually result in trapping of the drug in the intercellular matrix, as these high 

lipophilic compounds may be impeded by by the hydrophilic regions in the lipid bilayer [5,38–

41]. After the dermal application, the drugs penetrate depending on Fick´s first law, which 

describes the passive diffusion of the drug across the skin with the following equation [5]: 

 

c
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J = diffusion velocity/ steady-state flux (μg / cm²*h) 
K = distribution coefficient (cm/h) 
D = diffusion coefficient of the membrane (cm² /h) 
h = thickness of membrane (cm) 
∆c = concentration differences (μg/cm³ 
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Hence, the permeation is determined by factors like the area of treated skin, the body region 

reflected in the skin thickness, the drug concentration and solubility in its vehicle and the 

release from it. Additionally, skin hydration, temperature, pH are also relevant influencing 

parameters that need to be considered [42].  

Although the majority of drugs and substances penetrate the skin via the intercellular and 

transcellular route, the transappendageal route offers a potential alternative. Despite only 0.1 

to 1% of the total skin surface is covered with hair follicles and sweat glands, especially the 

hair follicles are considered as potential “shunts”, areas that offer less resistance to the 

penetration of mainly hydrophilic compounds [12,37,38]. With a thinner SC layer at the base 

and a surrounding network of blood capillaries, a more rapid passage through the hair 

follicles and uptake into the blood stream is discussed for nanoparticles and liposomes [12]. 

The likeliness of a nanoparticle-based system to penetrate skin is not clearly revealed yet. 

But it is assumed that particles > 10 nm are unlikely to penetrate the SC directly. Instead they 

tend to accumulate in hair follicles and may enter or deliver the drug into the viable epidermis 

via the transappendageal route [12]. But as the number of those porous orifices is rather low, 

the quantitative benefit of the transappendageal route has to be questioned [43]. 

2.2 Systems for dermal drug delivery testing 

To evaluate skin permeation and penetration of drugs in order to study new dermal drug 

delivery systems, in-vitro experiments are an attractive alternative to in-vivo studies. The 

latter are often ethically questionable or need a safe and sound rationale to be fully 

acknowledged by the regulatory authorities. The validated approach for in-vitro set-ups is the 

use of diffusion cells (Franz diffusion cells) that can be either used in a static or flow-through 

mode. To mimic bio-physiological conditions, different types of membranes or barriers are 

used to study drug permeation / penetration [44]. Excised animal skin, most commonly from 

pigs or rats, can serve as cost effective and simple experimental model. Pig skin is favored 

as it has a similar structural composition as human skin and depicts the same epidermal 

properties as well as amount of hair coat in its morphology. Although pig skin is established 

for in-vitro testing [44–46], it still holds some disadvantages. Compared to human skin, pig 

skin has a higher degree of vascularization and sebaceous glad distribution. Furthermore, 

the SC is thicker, which may lead to altered diffusion characteristics compared to human 

conditions. The skin of furry animals, such as rats and mice, is also an alternative for testing, 

but is disadvised due to a different skin morphology including many skin appendages, hair 

follicles and different SC lipid composition, which makes the skin more permeable compared 

to pig or human skin [44]. Although working with human skin is preferred, the access to 

human skin is restricted since the main sources are limited and originate from skin removal 

surgery (breast or abdomen) or post-mortem skin donations. Therefore, reconstructed human 

skin is commonly used as a substitute and was developed to achieve skin models with 
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humanized features [44,45]. Reconstructed human skin can be divided into epidermal (SC 

and viable epidermis) and full thickness skin models (SC, viable epidermis and dermal 

equivalent) [44]. Some of the commercially available models were subjected to validation 

processes concerning phototoxicity, irritation and corrosion testing and are now implemented 

in the OECD (Organization for Economic Co-operation and Development) guidelines for 

these tests [44,47,48], e.g. EpiSkin™ SM (SkinEthic, Lyon, France) and EpiDerm™ SCT 

(MatTek, Ashland, MA). Unfortunately, these models are not yet fully acknowledged by the 

OECD for skin absorption testing [44]. One of the main reasons is the higher permeability of 

reconstructed human skin, as it still shows differences in the skin lipid composition and the 

skin barrier properties [44]. Compared to native human SC some of the models show 

significantly different lamellar ordering of SC lipids, the lack of polar ceramides or less 

triglycerides, which all contributes to an altered skin barrier. In addition, reduced expression 

of differentiation-related keratins was observed, leading to disturbed keratinocyte 

differentiation [44]. However, reconstructed human skin allows for specific alterations, e.g. 

gene modifications to mimic selected skin diseases like AD  [16,49,50] or psoriasis [51]. This 

enables customized and patient oriented research towards the development of new 

therapeutics or therapeutic drug delivery systems. 

 

2.3 Expectations and challenges of dermal biomacromolecule delivery 

Biomacromolecules as therapeutic compounds are very important and highly researched in 

pharmaceutical industry, as they often offer a higher efficiency, potency and specifity in the 

treatment of severe diseases with complex and heterogenic  characteristics, e.g. infections, 

cancer or autoimmune diseases [36,52,53]. Marketed products like Herceptin®  

(trastuzumab), an antibody used in the successful treatment of HER2-positive breast cancer 

patients where it selectively blocks the overexpressed human epidermal growth factor 

receptor 2 (HER2) [54], Humira® (adalimumab), an inhibitor for the TNFα used in the 

treatment of chronic inflammatory diseases [55], and others [56] show the importance of this 

class of therapeutics for developing a patient oriented and personalized treatment [57,58]. 

But as promising biomacromolecules and specifically proteins are for fighting severe 

diseases, they are challenging due to their physicochemical characteristics. They are 

typically hydrophilic and complex structures with high molecular weights, starting for peptides 

at 300 Da and going up to 1000 kDa for proteins [36,59]. Because of their fragile nature, 

proteins often suffer from instability and are prone to chemical change, denaturation, and 

aggregation. Common risks are presented through factors like shear or agitation stress, pH 

or ionic strength changes, light and higher temperatures. Chemical modifications include 

processes like oxidation, disulfide bond breakage, hydrolysis, deamidation and N-terminal 

and C-terminal changes [60,61]. Upon unfolding, the higher order structure is changed and 
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proteins also become prone to form aggregates, which can lead to a loss in biological activity 

or may enhance the patients´ immune response to the protein drug molecules [61–65].  

Because of their size and hydrophilicity, biomacromolecules are classically administered 

parenterally. But for treatments of topical diseases, local dermal delivery of proteins proposes 

an appealing alternative. The dermal route shows an increased patient compliance due to the 

painless and easy application. The administered therapeutics can be actively controlled for 

sustained delivery or for a discontinuation of treatment. Additionally, the targeted 

administration of the drug into the skin tissue without systemic uptake reduces the associated 

side effects. But the mentioned physicochemical properties of proteins pose a significant 

problem for the penetration through biological barriers, especially the SC. With their high 

molecular weight they are clearly above the SCs cut-off (800 Da) and their hydrophilic 

properties almost completely restrict skin penetration or permeation [5,36,66,67]. 

In summary, as biomacromolecules are an essential source for the treatment of severe 

diseases, further research is necessary to develop smart drug delivery systems, which may 

enable to treat skin diseases locally instead of parenterally [55]. They could hypothetically 

benefit from locally applied protein drugs in terms of a low dose substitution therapy, by 

which disease specific deficient proteins could be replaced by administration without or with 

less systemic side effects compared to the i.v. route. Aufenvenne et al. (2013) investigated 

the efficacy of liposomes loaded with transglutaminase-1 (TGase-1) for local topical enzyme 

replacement in TGase-1 deficient skin grafts. The authors could show that the protein activity 

as well as the correct skin architecture and skin barrier could be restored upon enzyme 

replacement [68]. Similarly, Stout et al. (2013) developed a filaggrin-cell penetrating peptide 

conjugate, which was able to restore a normal phenotype in filaggrin-deficient flaky tail mice 

after application and uptake of the conjugate [69].  

3. Systems for dermal drug delivery 

The main obstacle for an efficient protein delivery into human skin is to overcome of the skin 

barrier represented by the SC without damaging the biomacromolecules or compromising 

their biological activity. The most noteworthy formulation attempts and drug delivery systems 

or vehicles for this are summarized in figure 1-2 and representative systems are introduced 

below.   

Delivery enhancers, which include chemical penetration enhancers and substances that 

increase the SC hydration, are a useful tool to increase a drugs´ skin permeability, solubility 

and partitioning into the skin in general [66,67]. Alcohols (ethanol), surfactants 

(sodiumlaurylsulfate, N-decylmethyl sulfoxide), phospholipids, esters, amines, amides and 

fatty acids act by altering the SC lipid bilayer by either fluidizing or extracting the lipids. Co-
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solvents like polypropylene glycol enhance these effects as they help dissolving the 

penetration enhancers in the SC [42,70,71]. Substances like paraffin, oils from emulsions, as 

well as gelling agents like  hyaluronic acid act as a water reservoir and partially as occlusive 

agents on the SC surface and thus increase the SC hydration and consequently the 

permeability of mostly hydrophilic but also lipophilic drugs [5,72]. However, as proteins are 

rather large, a high quantity of chemical enhancers would be necessary to achieve 

penetration effects, which is a concern in terms of toxicity, skin irritation induction, and 

protein stability in the vehicle [71].  

 

Figure 1-2 Dermal drug delivery strategies for proteins. 

 

Delivery enhancers, which include chemical penetration enhancers and substances that 

increase the SC hydration, are a useful tool to increase a drugs´ skin permeability, solubility 

and partitioning into the skin in general [66,67]. Alcohols (ethanol), surfactants 

(sodiumlaurylsulfate, N-decylmethyl sulfoxide), phospholipids, esters, amines, amides and 

fatty acids act by altering the SC lipid bilayer by either fluidizing or extracting the lipids. Co-

solvents like polypropylene glycol enhance these effects as they help dissolving the 

penetration enhancers in the SC [42,70,71]. Substances like paraffin, oils from emulsions, as 

well as gelling agents like  hyaluronic acid act as a water reservoir and partially as occlusive 

agents on the SC surface and thus increase the SC hydration and consequently the 

permeability of mostly hydrophilic but also lipophilic drugs [5,72]. However, as proteins are 

rather large, a high quantity of chemical enhancers would be necessary to achieve 

penetration effects, which is a concern in terms of toxicity, skin irritation induction, and 

protein stability in the vehicle [71].  
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Colloidal carrier systems such as liposomes, solid lipid nanoparticles (SLN), dendrimer 

nanoparticles and microemulsions are considered to assist and enhance the localized 

delivery of biomacromolecules and have been in focus of research for many years [66,71]. 

For instance, liposomes and lipid-based carriers are known to interact with the SC lipids and 

have been shown to deposit their payload in the SC and the upper skin layers [12,66,70,71].  

Within the group of the physical and mechanical systems, iontophoresis is one of the most 

extensively researched and more successful techniques for biomacromolecule delivery [67]. 

Iontophoresis has been investigated and established for small molecule drugs like lidocaine 

or fentanyl with good results in anesthesia and analgesia, where drug delivery is mediated by 

SC disruption caused by applying continuous low-voltage currents [66]. As iontophoresis 

offers a non-invasive and continuous skin delivery, its potential for protein and peptide skin 

delivery has also been investigated [67,73,74], but was restricted to molecules with sizes 

between 10 to 15 kDa and a high isoelectric point, as a positively charged protein is more 

effectively delivered into the negatively charged surface of the skin using anodal 

iontophoresis [67].  

Dermal drug delivery systems and devices for proteins need to combine an easy preparation, 

easy application, good patient compliance, efficient and steady drug administration during the 

treatment, as well as protein stability. In the following sections, three different drug delivery 

vehicles and systems are introduced that include these attributes. To our knowledge, these 

systems have not been investigated in terms of localized and targeted dermal delivery of 

proteins with regard to replacement therapy in skin diseases yet and were selected as 

candidates for this thesis. 

 

3.1 Nanoparticle-based release systems 

Nanoparticles and nanoparticle-based release systems have been increasingly used over the 

last thirty to fifty years due to their versatility and flexibility in preparation and use. Basically, 

nanoparticles vary broadly with respect to the used material, their morphology and in size. 

Popular nanoparticles include e.g.  solid lipid nanoparticles, virus-like nanoparticles, quantum 

dots, liposomes and dendrimers [12,75]. Further diverse nanoparticulate carriers may also be 

prepared from natural polymers (ovalbumin, chitosan, hyaluronic acid, modified chondroitin 

sulfate) or synthetic polymers (poly (ethylene glycol)-b-poly (methacrylic acid), poly 

(Nisopropylacrylamide- co-acrylic acid), poly (N-isopropylacrylamide)) [76]. Recently, 

nanoparticles and nanogels based of dendritic or hyperbranched polyglycerol chains gained 

interest in the development of protein-compatible drug delivery systems [77]. 
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3.1.1 Polyglycerol-based nanogels 

Polyglycerol is a very versatile and flexible compound that can easily be modified to yield 

hyperbranched dendrimer-like structures. Its advantages for drug delivery include a very 

good biocompatibility, non-cytotoxicity, haemocompatibility, adjustability in size with narrow 

polydispersities, good solubility in polar and aqueous solutions and good compatibility with 

proteins [78–82]. Hyperbranched or dendritic polyglycerols (dPG) can be defined as globular 

PG structures that display a single core from which multiple branches radiate in a dandelion-

like setting (Fig. 1-3).  

 

 

Figure 1-3 Synthesis and schematic structure of dendritic polyglycerol (modified and reprinted with 

permission from [77]. 

 

They are traditionally prepared by ring opening polymerization of glycidol by either anionic or 

cationic means. Polymers of 10 to 100 nm (diameter ~ 10nm) can be obtained [81,83]. In 

aqueous solution, dPGs take up water, swell and thus show the characteristics of both a 

hyperbranched polymer and a cross-linked macroscopic gel. Hence, dPG solutions can be 

classified as nanogels: nano scaled polymer networks that are able to absorb water into the 

network when surrounded by an aqueous environment. Additionally, the generally mild 

reaction conditions allow the incorporation of proteins without damage [79]. Hence, these 

dPG-based are suitable candidates for local topical delivery and other drug delivery 

applications of proteins [75,79,82].   

3.1.2 Functionalization and targeted drug delivery 

One of the most interesting characteristic of the dPG nanogels is the opportunity to introduce 

dPG-chain functionalization or macro-crosslinkers. Tackling the crosslinkers, a  stimuli-

responsive payload release can be achieved, e.g. upon change in pH, temperature, or by an 
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electrical or magnetic field [81,84–88]. Depending on the introduced functional group, the 

release kinetics of the dPG can be tuned. Whereas functional groups like acetals or ketals 

are cleaved by pH stimuli, reductive environments act on groups such as disulfide bridges 

[82]. Upon the stimuli, the dPGs respond with degradation into lower molecular weight 

fragments and release of the incorporated drug [89]. The pH triggered drug release is 

especially interesting for targeted drug delivery to inflamed or cancerous tissue, where the 

pH is slightly acidic (solid tumors ~ pH 6.0; inflamed tissues ~ pH 6.5-6.0; endosome/ 

lysozyme cellular compartments ~ pH 5.0 -5.5) [82,90]. The nanogel degradation appears 

upon contact of the acetal or ketal macro-crosslinkers  with peripheral protons present at the 

site of action by means of acid-catalyzed hydrolysis [82,91]. Introducing thermoresponsive 

polymers like poly(N-isopropylacrylamide) (PNIPAM), the dPG can be combined with a 

temperature trigger, where the dPG responds with a rapid change in conformation due to 

drastic swelling or de-swelling. In this case, the drug release kinetics depend highly on the 

rate at which the nanogel shrinks, as the drug is literally squeezed out from the network 

[83,84,92].  

3.1.3 The potential of dPG-based nanogels in drug delivery 

The main therapeutic focus is application of dPG-based nanogels in cancer therapy. The 

nanogels loaded with cytotoxic drugs are administered i.v. and the release is triggered at the 

tumor tissue site [84,88,90,93]. Nagasaki et al. (2007) worked with core-shell type PEGylated 

nanogels made from core-cross-linked poly[2-(N,N-diethylamino)ethyl methacrylate] and 

tethered PEG chains for half-life extension. Equipped with a swelling mechanism upon pH 

trigger, they were able to demonstrate successful and controlled release of doxorubicin into 

endosomal compartments of a drug-resistant HuH-7 tumor cell line (hepatic cellular 

carcinoma) [94]. Combining PNIPAM with dPG-based polyglycerol, Cuggino et al. (2011) 

introduced a precipitation polymerization method for the preparation of thermoresponsive 

nanogel systems of 50 to 200 nm that showed structural phase transitions at a temperature 

of 32.5 to 34.6 °C. Although cell compatibility and viability tests revealed a non-cytotoxic and 

even cell-penetrating behavior, unfortunately no drug delivery experiments were carried out 

[84].  Steinhilber et al. (2011) demonstrated the biological compatibility for encapsulated 

biomaterials. The authors encapsulated yeast cells during the free-radical polymerization of 

dPG-decaacrylate and polyethylene glycol-diacrylate with cell viabilities up to 80% [79]. 

Furthermore, different research groups used diverse nanogels to incorporate proteins like 

insulin/ BSA/ ß-galactosidase [95], horseradish peroxidase [96], and lysozyme [97]. 
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3.2 Hyaluronic acid for dermal drug delivery 

3.2.1 Structure and physico-chemical characteristics of HA 

Hyaluronic acid (HA), or hyaluronan when present as polyanion in-vivo, is a polysaccharide 

found in the intercellular matrix in  vertebrates and bacteria [98,99]. Extracted from rooster 

combs, umbilical cords, or bacteria, HA is generated at various molecular weights (~ 5 kDa 

up to ~ 5 MDa) [99]. HA has many advantageous properties like good biocompatibility, non-

immunogenicity, biodegradability and viscoelasticity. These properties render a perfect 

biomaterial for the pharmaceutical and cosmetic sector [99] 

Built from repeating units of D-glucuronic acid and N-acetyl-D-glucosamine, HA´s primary 

structure arranges into an unbranched linear chain with the monosaccharides linked together 

through alternating β1,3 andβ1,4 glycosidic bonds (Fig. 1-4) [72,99].  

 

 

Figure 1-4 Chemical structure of the disaccharide unit of hyaluronic acid (printed with permission from 

[100]). 

In aqueous solution, HA molecules are suggested to assume an expanded random coil 

structure with a highly entangled network, which is strongly hydrated with up to 15 water 

molecules bound per disaccharide unit [99,101]. The swelling behavior depends on factors 

such as pH, ionic strength and degree of cross-linking [101]. With an isoelectric point of 8.6 

and an intrinsic pK value of the carboxyl group of 3.21, HA gels reach their swelling 

equilibrium at pH 6, while they collapse at lower pH. With the addition of salt, the equilibrium 

swelling at pH 7 is decreased due to charge shielding. Looking at the temperature, the 

swelling behavior was only affected to minor degrees [101].  

The viscosity of HA gels increases substantially with HA molecular weight and concentration 

and strongly depends on the pH. The addition of phospholipids, which compete with HA 

molecules for the hydrophobic binding sites, and sodium chloride, which shields electrostatic 

repulsion between HA molecules, decrease both the viscous and the elastic modulus. In 

contrast, sugars appear to promote the HA gel structure, enhancing the interaction between 

HA molecules and decreasing their hydrodynamic radius [99].  
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3.2.2 HA in drug delivery 

3.2.2.1 General drug delivery aspects of HA  

HA has found its way into many drug delivery areas including ophthalmic, nasal, pulmonary 

and parenteral drug delivery due to its either hydration-rendering, wound healing or lubricant 

properties, where HA was able to increase the bioavailability, e.g. for ophthalmically 

administered drugs like pilocarpine, and the local tissue adhesion of the incorporated drug 

[99]. In addition, HA also provides a stabilizing network surrounding [102,103]. 

Very unique is the use of HA conjugates in cancer treatment for specific site targeting into the 

lymphatic tissues [99,100]. Luo et al. (2005) report the use of a HA – taxol conjugate, which 

selectively targeted the cancer tissue in the breast, colon and ovarian cancer cells [104]. 

Other interesting approaches address the HA cell receptor CD44 that is often overexpressed 

in drug-resistant cancer cells and cancer stem cells [105]. Wei et al. (2012) investigated the 

efficiency of a cholesterol modified HA-drug conjugated nanogels using etoposite and 

salinomycin and curcumin. The small nanogel (20 to 40 nm) and a drug load of approx. 20% 

showed 2 to 7 times higher cytotoxicity in CD44-expressing drug-resistant breast and 

pancreatic cancer cell compared to the free drugs. Due to the binding of HA to the CD44 

receptor and the sustained drug release following ester linkage hydrolysis, the drug 

accumulated to much higher extent in the cancer cells [105].  

3.2.2.2 Transdermal and dermal drug delivery of HA  

HA is widely used as topical and dermal drug delivery vehicle and formulation excipient in the 

treatment of various skin conditions and diseases, providing improved skin hydration, 

regenerating skin elasticity and enhancing wound healing [72,98,106,107]. HA is also known 

to act as a topical drug delivery enhancer for NSAIDs like diclofenac. Solaraze® (3% 

diclofenac in 2.5 % HA), is an alternative to surgery in the treatment of actinic keratosis [72]. 

Concerning the mode of action, different hypotheses are discussed. Firstly, the skin 

absorption of diclofenac may be facilitated due to increased skin hydration through the 

swollen SC, providing an increased hydrophilic environment for the drug permeation [72]. 

Secondly, co-transport of the active and HA is discussed [108]. Additionally, HA and the drug 

may be actively transported via HA receptors (hyaladherins, CD44) expressed on the cell 

surface  of keratinocytes [103]. The theory also provides the basis for the testing of a HA – 

human growth hormone conjugate (HA-hGH), which was investigated by Yang et al. (2012) 

[103]. Proliferative effects in keratinocytes and fibroblasts could be demonstrated and 

elevated levels of phosphorylated Janus kinase 2 (p-JAK2) also confirmed the biological 

activity of the HA-hGH conjugate in fibroblasts [103]. As these experiments were carried out 

in cultured cells, the efficacy of the HA conjugate still needs to be evaluated in dermal 

application. Concerning the HA mediated dermal delivery of high molecular weight 
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biomolecules into the skin, scarcely any research is published that does not include the use 

of microneedles (MN) or other penetration-facilitating devices. This highlights the need for 

further research on both the HA drug delivery vehicle and the mode of action of HA-mediated 

biomacromolecule delivery, which will be covered in this thesis.      

 

3.3 Solid microneedles for dermal drug delivery  

3.3.1 MN fabrication and characterization 

As mentioned earlier, dermal drug delivery is limited to a small group of drugs due to the 

extensive barrier properties of the SC. The easiest way to overcome the SC barrier is 

mechanical perforation. Besides techniques like electroporation, microdermabrasion or 

needle-free jet injectors, microneedles (MN) are a straightforward approach to selectively 

pierce the SC  [66,109,110]. Shorter needles improve the patient´s safety but still enable 

drug delivery to the target site. They are designed to avoid the stimulation of nociceptors, 

which are located  in the upper dermis, making MN application practically pain free [110]. To 

increase the effectiveness of drug application, MNs are usually designed as arrays. As 

single-use units, the use of MN can help to prevent infections or the transfer of contagious 

diseases [111]. Many types of MN made of diverse materials emerged (Fig. 1-6), e.g. solid 

MN made of silicon, metal, glass, ceramics and polymers. They are classically produced by 

either lithographic, and wet or dry etching techniques [111].  

3.3.2 Drug application techniques and formulation aspects 

When the SC is pierced with a MN arrays, a micro channel is generated whose depth 

depends on the MN needle length and manner of application [112,113]. To deliver a drug, the 

drugs are either applied onto the skin before or after MN application as solutions, gels, 

creams, ointments or drug infused patches [111,113]. The drug reaches the epidermis and 

deeper dermal layers by diffusion into and through the microchannels [110]. Alternatively, the 

drug is directly coated onto the MNs. Upon application, the solid coatings dissolve in the 

interstitial fluid [110,111]. Typically, the coating is produced by dipping processes, generating 

a thin film on the needle tips. To achieve a uniform and reproducible coating, the appropriate 

excipients need to be selected [114]. Mixtures of different viscosity enhancers or gelling 

agents (e.g. carboxymethyl cellulose, hyaluronic acid, sodium alginate, xanthan gum), sugars 

(e.g. sucrose, saccharose, trehalose) and surfactants (e.g. diverse polysorbates and 

poloxamers) were successfully developed to form a reproducible coating providing adequate 

stability for incorporated proteins [114–117]. 
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Figure 1-5 Schematic display of four MN types after skin application (A) and their mode of action in 

drug delivery (B) (printed with permission from [110]). 

 

Another different approach is the embedding of the drugs into dissolvable MN made of 

preferentially polymers (e.g. carboxymethyl cellulose, hyaluronic acid, poly(lactic-co-glycolic) 

acid) and sugars, such as dextrans, dextrins and sucrose. These MN are prepared 

commonly by micro-molding of polymer/sugar solutions or tip drawing of polymer/sugar melts 

[111,118,119]. As the amounts of drugs that can be delivered by these three described 

approaches are limited, hollow microneedles have been developed, which offer the 

opportunity to apply larger quantities. The  application of 0.2 up to 15 mL drug solution may 

be possible as presented by Becton Dickinson Technologies (Microinfusor™) [111].  

3.3.3 Dermal drug delivery mediated by MN 

MNs offer a low-cost, easy-to-manufacture and flexible delivery device. Therefore, these 

devices are a promising option for the topical delivery of complex and sensitive 

biomacromolecules [110]. As protein mostly require low doses in the microgram range, MN 

are a suitable platform for their administration [110]. Consequently, MNs were recently 

studied to deliver diverse peptide hormones e.g. insulin [120,121], desmopressin [122], 

erythropoietin [123], or the human growth hormone [124]. Furthermore, the use of MN for 

intradermal vaccination against measles [125] or influenza [126,127] is very appealing. MN 

mediated vaccination is a particularly attractive approach since the vaccines can be directly 

administered into the viable epidermis resulting in a strong and more potent immune 

response due to the rapid targeting of Langerhans  and dermal dendritic cells [114,128,129].  

 

4. Objectives of the thesis 

The goal of the thesis was the development and characterization of three different systems 

for local and targeted intraepidermal delivery of biomacromolecules. As incidences of skin 

diseases like atopic dermatitis are on the rise in the industrialized countries affecting 

especially children, adequate and effective therapies become more and more important. 
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Although the causes for the diseases are often multifactorial, a certain patient population 

suffers from genetic conditions that result in highly down regulated epidermal levels of 

functional proteins. Since these proteins are essential in the viable epidermis for the 

development of a healthy skin barrier, the substitution of the lacking proteins, such as 

transglutaminase or filaggrin, is an interesting starting-point for a new therapeutic concept.  

Therefore, the presented thesis aims to introduce three delivery systems based on innovative 

concepts, which were either adapted or modified for topical and especially dermal protein 

delivery and intensively investigated for their intraepidermal delivery yields and mechanisms.          

The three objectives of the thesis can be summarized as followed: 

1.) In cooperation with the FU Berlin (AG Haag, AG Caldéron), dPG-based nanogels 

were developed and modified to suit the properties of protein encapsulated topical 

and dermal delivery systems. The process and release-trigger adapted dPG nanogels 

were characterized and investigated for controlled protein release and stability. The 

release yield was assessed as a function of skin barrier integrity. dPG nanogel-based 

transglutaminase-1 substitution in a deficient skin model was evaluated as proof-of-

concept. 

2.) HA, a versatile polysaccharide that already demonstrated to promote the dermal drug 

delivery of small-molecule drugs like diclofenac, was explored as topical protein 

delivery system with focus on the influence of HA molecular weight and 

concentration. The delivery yield was investigated as a function of skin barrier 

integrity. To unravel the mode of action, interactions of HA with protein and SC was 

studied.  

3.) As solid stainless-steel MN established a reputation to be valuable tools in vaccine 

delivery, their potential for skin disease treatment was evaluated. Here, the feasibility 

and the adequate MN properties for localized intraepidermal protein application were 

investigated and the MN´s potential for skin irritation was assessed. Furthermore, 

special attention was set on the in-process and storage stability of coated MN, an 

important factor that was thitherto sparsely regarded in literature.  
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Abstract 

In this paper we report a novel approach to generate biodegradable polyglycerol nanogels on 

different length scales. We developed a mild, surfactant free inverse nanoprecipitation 

process to template hydrophilic polyglycerol nanoparticles. In situ crosslinking of the 

precipitated nanoparticles by bio-orthogonal copper catalyzed click chemistry allows us to 

obtain size defined polyglycerol nanogels (100 - 1000 nm). Biodegradability was achieved by 

the introduction of benzacetal bonds into the net points of the nanogel. Interestingly, the 

polyglycerol nanogels quickly degraded into low molecular weight fragments at acidic pH 

values, which are present in inflamed and tumor tissues as well as intracellular organelles, 

and they remained stable at physiological pH values for a long time. This mild approach to 

biodegradable polyglycerol nanogels allows us to encapsulate model proteins, including the 

therapeutic relevant enzyme asparaginase, into the protein resistant polyglycerol network. 

Enzymes were encapsulated with an efficacy of almost 100 % and after drug release, full 

enzyme activity and structural integrity were observed. This new inverse nanoprecipitation 

procedure allows the efficient encapsulation and release of various biomolecules including 

proteins and could find broad applications in polymer therapeutics and nanomedicine.   
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1. Introduction 

Therapeutically relevant proteins such as antibodies, cytokines, growth factors, and enzymes 

are playing an increasing role in the treatment of viral, malignant, and autoimmune diseases 

[1,2] Therapeutic proteins, however, often suffer from insufficient stability and shelf-life, costly 

production, immunogenic and allergic potential, as well as poor bioavailability and sensitivity 

towards proteases [3]. An elegant method to overcome most of these problems is the 

attachment of polyethylene glycol (PEG) chains onto the surface of the protein [4–7]. 

Covalent PEGylation of the native protein increases its molecular weight and as a result 

prolongs the half-life in vivo [3]. By the molecular weight elevation passive targeting to solid 

tumors can be achieved by the enhanced permeation and retention effect [8,9]. Additionally, 

the resistance to proteases and immunogenic responses is increased by the PEG coating. 

PEGylation of proteins, however, still suffer from the loss of biological activity [5].  

These problems can be circumvented, when proteins are encapsulated non-covalently into 

nanogels [10,11].  Nanogels, which are hydrogel particles on the nanometer scale, are highly 

water swollen scaffolds that exhibit similar properties as many biological objects, thus making 

them excellent candidates for biomedical applications [12–16]. Within the past few years, two 

strategies have evolved for the encapsulation of biomolecules into nanogels. They can be 

encapsulated after nanogel formation by the diffusion of the guest into the nanogel due to 

specific interactions of the guest with the nanogels [17]. Strong interactions with the gel 

matrix, however, might cause denaturation of the encapsulated payloads and diffusion 

limitations lead to low encapsulation efficiencies. Another strategy entraps the encapsulated 

payloads in-situ to the nanogel formation process, which ensures high encapsulation 

efficiencies and a homogenous distribution of the guest within the entire gel particle [11]. 

Additionally, the encapsulated payloads can be embedded very tightly in the gel matrix by 

tuning the degree of crosslinking. Thus, the guest can be transported to the target site 

without any loss of payload by leaching.   

For drug release, nanogels require external stimuli to achieve a controlled release of the 

guests at the target site. Guest liberation by nanogel degradation and resulting network 

dissolution is the most promising strategy. Release kinetics can be tuned by the degradation 

kinetics and the generated low molecular weight degradation fragments can be cleared by 

the kidneys, which reduces the possibility of long term toxicity by organ accumulation [5]. 

Various chemical bonds such as disulfides [18,19], acetals [20,21], ketals [22,23], phosphate 

esters [24], silyl ethers [25], and esters [26] have been introduced into nanogel networks 

which are cleaved in response to specific biological stimuli including pH or reductive 

environments [27].  

In-situ encapsulation, however, requires mild nanogel preparation conditions to retain high 

biomolecule activity especially when dealing with sensitive substances such as proteins. 
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Nanogels are usually prepared by the templation of reactive monomers on the nanometer 

scale and subsequent crosslinking of the templates to obtain hydrogel nanoparticles. The 

most frequently used methods are templations in mini- [26,28–32] and microemulsion 

droplets [33–35]. High energy input by ultrasonication, which is required for the formation of 

miniemulsions, prevents the encapsulation of labile compounds by this technique. The 

formation of microemulsions requires high surfactant loadings, which lead to purification 

problems and thereby also limit applications of this technique.  

Another approach which has been developed by Whitesides et al. [36] and further improved 

by the De Simone group [37] is the templation of polymer macromonomers in soft lithography 

templates. Clean room conditions, however, are required for this approach possibly limiting 

the broad application of this technique. Another widely used approach is based on the 

crosslinking of polymeric micelles [15]. Even though this approach is often called “surfactant 

free” in literature, amphiphilic polymers are required which might interact and denature the 

encapsulated payloads. Additionally, material parameters like size, elasticity and shape are 

difficult to influence. The nanoprecipitation technique has evolved as a powerful tool for the 

preparation of hard polymer nanoparticles built from polystyrene (PS) [38], polymethyl 

methacrylate (PMMA) [39,40], and polylactic acid /polylactic-co-glycolic acid (PLA/PLGA) 

[41–43]. Particles prepared by nanoprecipiation avoids the above mentioned downsides and 

allows hydrophobic drugs to be encapsulated [43]. To our knowledge, however, the 

nanoprecipitation technique has not been applied for the preparation of nanogels, made from 

hydrophilic polymers.  

In this paper we describe for the first time the templation of hydrophilic polyglycerol-

macromonomers by nanoprecipitation and subsequent chemical crosslinking of the 

precipitated particles. We use dendritic polyglycerol (dPG) as nanogel scaffold material, due 

to its outstanding multifunctionality [44,45] and protein resistance [46–48]. Minimal interaction 

with the polymer matrix provides maximal protein stabilization. Additionally, the rigidity of 

dendritic macromolecules generates high diffusion barriers for the encapsulated proteins, 

thereby facilitating stable transport behavior. We call this novel approach inverse 

nanoprecipitation due to the inversion of polarity in the nanoprecipitation process. The 

combination of the mild nanogel preparation method with the biocompatible nature of 

polglycerol material allows us to encapsulate therapeutic enzymes with encapsulation 

efficacies higher than 99% under full retention of activity and structural integrity. Finally we 

show that the incorporation of pH labile, cyclic benzacetal bonds into the nanogel network 

leads to degradation triggered controlled enzyme release at acidic pH values. This novel 

approach to enzyme loaded and protein resistant nanogel particles is an important alternative 

for traditional PEGylation strategies and may find broad application in nanomedicine and 

polymer therapeutics. 

 



29 
 

2. Methods 

2.1 Preparation of dPG7.7 functionalized with 10 p-PBDMA units (dPG7.7-10-p-
PBDMA) 

dPG7.7 (1g, 0.13 mmol) and p-PBDMA (250 mg, 1.3 mmol) were dissolved in NMP (4 mL) 

and anhydrous PTSA (22 mg, 0.13 mmol) was added. The reaction was heated to 120 °C for 

3h and the condensed methanol was removed from the reaction equilibrium by 

cryodestillation. After cooling down to room temperature (RT) the reaction was quenched by 

the addition of aqueous ammonia (1 mL). NMP was evaporated by cryodestillation and the 

residue was re-dissolved in basified water (0.05 wt% aqueous ammonia). The solution was 

dialyzed in basified water (0.05 wt% aqueous ammonia) for 2 d, changing the dialysate every 

3 h. After freeze-drying, dPG7.7-10- p-PBDMA was obtained as a viscous wax (conversion 99 

%, yield 80 %). GPC/SEC: Mn=6.5 kDa, Mw=8.9 kDa, PDI=1.4. Hydrodynamic diameter by 

DLS: 3.8 nm. IR [cm −1]: 3385, 2871, 1613, 1513, 1456, 1304, 1221, 1067, 830. 1H NMR (400 

MHz, CD3OD, 25 °C): δ (ppm) = 7.51–7.32 (broad, aromatic), 7.09–6.95 (broad, aromatic), 

156 5.91–5.72 (d, broad, acetal-H), 4.74 (s, aromatic-O-CH2), 4.46–3.39 (PG backbone), 

2.99 (s, CCH). 

2.2 Preparation of polyglycerol nanogels by nanoprecipitation 

dPG7.7-10-p-PBDMA (5 mg, 0.6 µmol) and dPG7.7[N3]7 (7 mg, 0.9 µmol) were dissolved 

separately in Mili-Q-water (0.5 mL). THPTA (500 µg, 1.15 µmol), CuSO4 (72 µg, 0.3 µmol) 

and NaAsc (228 µg, 1.15 µmol) were added exactly in this sequence to the dPG7.7-7- p-

PBDMA solution. The solutions were cooled down to 4°C, mixed and added quickly to 

magnetically stirred acetone (20 mL). Precipitated polyglycerol nanoparticles were obtained 

as blue shining dispersions and the particle size was determined by DLS (Table 2-1). After 3 

h the reaction was quenched by the addition of excess azidoglycerol (50 mg, 893 µmol). After 

12 h Mili-Q-water (20 mL) was added and acetone was evaporated to obtain blue shining 

nanogel dispersions in water. The nanogels were collected by centrifugation (4000 rpm) and 

washed 5 times with Mili-Q-water. The nanogels were characterized by DLS (Table 2-1) 

optical- and fluorescence microscopy and transmission electron microscopy. 

 

Table 2-1 Size and PDI by dynamic light scattering (DLS). Measurements were performed in triplicate; 

intensity average mean value and standard deviation from the mean value are presented. 
 

CMacromonomer [mg/mL] d [nm] acetone PDI d [nm] water PDI 

12 580 0.03 820 0.07 

6 440 0.02 610 0.03 

3 310 0.06 430 0.08 

1.5 102 0.04 145 0.07 
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2.3 Encapsulation of asparaginase into the nanogels 

dPG7.7-10-p-propargyloxy-benzacetale (2 mg, 0.2 µmol) and dPG7.7[N3]7 (3 mg, 0.3 µmol) 

were dissolved separately in Mili-Q-water (0.5 mL). THPTA (500 µg, 1.15 µmol), CuOAc (37 

µg, 0.3 µmol) were added to the dPG7.7-10-p-propargyloxy-benzacetale solution and 

asparaginase was added to the dPG7.7[N3]7 solution. The solutions were cooled down to 4 °C, 

mixed and added quickly to magnetically stirred acetone (20 mL). After 3 h the gelation 

reaction was quenched by the addition of excess azidoglycerol (50 mg, 893 µmol). After 12 h 

the nanogels were collected by centrifugation (4000 rpm) and washed 5 times with Mili-Q-

water. 

2.4 Determination of nanogel degradation kinetics 

Nanogel dispersions were incubated at 37 °C and at different pH values (pH 4, 5 and 7.4). 

Between 30 min and 48 h, the nanogels were separated from degraded fragments by 

centrifugation (4000 rpm, 30 min) and the UV-absorbance was measured at 350 nm (Fig. 2-

3A). Complete nanogel degradation was confirmed by DLS size measurements. 

2.5 Determination of proteins’ secondary structure - Fourier-transformed-
infrared spectroscopy (FT-IR) 

Experiments were recorded using a Bruker Tensor 27 FTIR spectrometer (Ettlingen, 

Germany) equipped with a Bio ATR measuring cell and a MCT detector. The cell was 

connected to a water bath (Haake, Pfinztal, Germany) for a constant cell temperature of 25 

°C. 25 µL of the sample was spread under dry nitrogen to ensure an equal distribution on the 

crystal surface and analyzed against PBS buffer (pH 5) or water as blank. For each 

experiment, 120 scans were set for the blank and sample with a resolution of 4 cm-1 and 

water vapor correction. The data were analyzed with the OPUS 6.5 software for second 

derivative spectra and vector normalization. 

2.6 Determination of asparaginase activity 

The activity of asparaginase was determined as the specific activity [U/mg] of the enzyme 

according to published procedures [49]. The units of enzyme activity were defined as 

micromoles of ammonia released per minute. 

 

reactioninenzymemgutesmin 10

releasedammoniamicromoles
mgUnits


/  

 

A mixture of 50 µl asparaginase, 100 µl Tris-HCl buffer pH 8.6 and 850 µl L-asparagine 

monohydrate buffer solution was incubated at 37 °C for 10 min. After adding 50 µl 1.5 M 
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trichloracetic acid solution and centrifugation, 100 µl of the supernatant was added to 

Nessler´s solution. After 10 min, the optical density was assessed at 436 nm, compared with 

the standard curve and corrected for total enzyme amount.  

2.7 Drug release study 

The polyglycerol nanogels (10 mg/mL polymer and 0.5 mg/mL asparaginase) were acidified 

with HCl to pH 5 and 4, respectively. The samples were incubated at room temperature (25 ± 

2 °C) under mild agitation (300 rpm). Samples were collected for up to 3 days and 

subsequently analyzed with size exclusion HPLC. To stop the particle degradation, the 

samples were neutralized with 0.1M KOH prior to HPLC analysis. 

2.8 Size exclusion HPLC (SE-HPLC) analysis  

To analyze the drug release of degraded polyglycerol nanogels, 50 µl of the neutralized 

samples were injected into the HPLC system equipped with a TSKgel® G4000 PWXL column 

(dimensions: 300 x 7.8 mm, 10 µm particle size; TOSOH Bioscience, Stuttgart, Germany). 

Isocratic elution with 20 mM Na2HPO4, 150mM NaCl, pH 7.4, 0.003 mM NaN3 was performed 

with a flow-rate of 0.4 ml/min. The concentration of asparaginase was determined using UV 

(280 nm) and fluorescence (ex. 295 nm, em. 348 nm) detection. 

 

3. Results and discussion 

3.1 Nanogel preparation by inverse nanoprecipitation and in situ gelation 

When biomolecules are encapsulated into nanogels insitu to network formation, mildest 

reaction conditions are required. The nanoprecipitation technology, which has been 

successfully applied for several years, is based on the injection of highly diluted polymer 

solutions into polymer non solvents. This technique is surfactant free and works without high 

energy input such as ultrasonication and is therefore an excellent candidate for the 

encapsulation of labile enzymes.  

To our knowledge, however, this technique has not been applied for the preparation of 

hydrophilic nanogel particles. These water swollen polymer networks are highly interesting 

for the stabilization of labile enzymes. We chose dPGs as nanogel building blocks, because 

of its excellent protein resistant properties [46–48]. In such water swollen networks, enzymes 

are entrapped without any interaction with the polymer matrix. Additionally, enzyme diffusion 

is strongly reduced due to the rigid conformation of dPGs, which ensures stable guest 

encapsulation. Another outstanding property of dPG is its multivalent polyhydroxylated 
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surface, which allows the modification with cross-linkable groups under full retention of water 

solubility.  

Copper catalyzed Huisgen 2+3 cycloaddition as model crosslinking reaction due to its bio-

orthogonality, high conversions and fast reaction kinetics. We selected pHBA as a core 

building block for the acid labile crosslinker because it is known that degradation kinetics of 

the corresponding benzacetals is interesting for many biomedical applications. Additionally, 

phenol groups can easily be modified by ether bond formation. After the propargylation of 

pHBA we activated the aldehyde by the formation of the dimethylacetal. Final acid catalyzed 

dPG-acetal formation was achieved under methanol evaporation by cryo-destillation to obtain 

acid labile dPG-crosslinker (Fig. 2-1). DPG, functionalized with 7 azide functionalities was 

prepared according to a modified procedure established in our group.  

 

 

Figure 2-1 Schematic representation of the nanoprecipitation process. A: Injection of aqueous solution 

of alkyne functionalized polyglycerol macromonomers, (blue spheres), azide functionalized 

polyglycerol macromonomers (red spheres) and proteins asparaginase, IgG, Lysozyme and BSA (3D 

structure of α-helixes and β-turns). B: Particle templation by diffusion of aqueous phase (blue arrow) 

into acetone phase (brown). C: Particle gelation by azide alkyne 2+3 cycloaddition. 

 

With this novel pH sensitive dPG-alkyne and the azide functionalized counterpart we 

prepared highly diluted aqueous solutions. After cooling to 4°C and adding a catalytic amount 

of CuAsc/THPA, dPG nanotemplates were formed by precipitation into acetone nonsolvent. 

The fast diffusion of the aqueous phase into the acetone phase causes the collapse of dPGs 
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into nanoaggregates. During this process the polymer concentration increases drastically, 

which induces gelation reactions and dPG network formation. Gelation prior to 

nanoprecipitation can be excluded as no size change was observed by dynamic light 

scattering (DLS). Interestingly, the polydispersity index (PDI) of the formed nanoaggregates 

is low narrow and diameters directly correlate with the macromonomer concentration in 

aqueous phase. Hence, we are able to modulate the particle size, which has proven to be 

one of the most important parameter for many biomedical applications [50,51], in a broad 

range between 100 – 1000 nm (Table 2-1). 

Interestingly, the polydispersity index (PDI) of the formed nanoaggregates is low narrow and 

diameters directly correlate with the macromonomer concentration in aqueous phase. Hence, 

we are able to modulate the particle size, which has proven to be one of the most important 

parameter for many biomedical applications [50,51], in a broad range between 100 – 1000 

nm (Table 2-1). 

After gelation, remaining surface reactive alkyne groups were quenched by adding 

azidoglycerol. Finally, we harvest polyglycerol nanogels are harvested by the evaporation of 

acetone. When nanoparticles are transferred to the aqueous phase the diameter increases 

significantly, which is attributed to nanogel swelling. Interestingly, polydispersities remain low 

in the aqueous phase, which is a strong indication that nanogels are freely dispersible 

without aggregation (Table 2-1, Fig. 2-2). The simple reaction setup allows us to upscale the 

reaction to obtain polyglycerol nanogels in gram quantities. 

 

 

Figure 2-2 Visualization of polyglycerol nanogels by electron microscopy (A), optical microscopy (B) 

and fluorescence microscopy (C). 

3.2 Enzyme encapsulation by co-precipitation  

The traditional nanoprecipitation technique is based on organic polymer solutions, from which 

the polymers are precipitated mostly into water. Because the used polymers like PS, PLA 

and PLGA are only soluble in organic solvents like acetone, dichloromethane and 

dimethylformamide, mostly hydrophobic small molecule drugs were encapsulated by this 
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approach. There are many water soluble biomacromolecular drugs like proteins, DNA and 

RNA. These labile biomacromolecules need to be protected from the harsh environment 

present at many administration sites. Pharmaceutical enzymes in particular show important 

characteristics, which make them superior from small molecule drugs. Their high affinity and 

specificity on their targets as well as their catalytic activity, which enables the conversion of 

multiple target molecules, makes them excellent drug molecules [1].  

To encapsulate, stabilize and transport this important class of therapeutics, we applied our 

inverse nanoprecipitation polymerization technique which allows the co-precipitation and 

encapsulation of biomolecules from aqueous solutions, thus preserving their three-

dimensional structure. As a model enzyme we selected asparaginase, which is an important 

therapeutic enzyme for the treatment of acute lymphocytic leukemia [52–54]. Co-precipitation 

of the enzyme in presence of the PG macromonomers yielded enzyme loaded nanogels. We 

determined the encapsulation efficacy to be almost 100 % as no free enzyme could be 

detected by HPLC analysis. 

3.3 Degradation triggered release under acidic conditions 

Cargo liberation triggered by degradation in acidic environments is one of the most promising 

release strategies. Many interesting biomedical targets like inflamed- and tumor tissue (pH 

6.5 – 6), intracellular endosomes (pH 5) and lysosomes (pH 4) can be used for pH 

dependent release. Protons, which can catalyze hydrolysis reaction, have high diffusion rates 

because of their small size and show high accessibility at the cleavage site. Hence, 

degradability limitations due to diffusion barriers are not an issue in this degradation process. 

In this study we prepared cyclic PG-benzacetals as degradable macro-crosslinkers. While 

other pH labile groups like imines, hydrazones often generate toxic polyamine degradation 

products, polyhydroxylated dPG is reformed after acetal cleavage. In contrast to traditional 

approaches to pH cleavable materials, in which low molecular weight degradable monomers 

are used [20], we use biocompatible macromonomers to build gel networks. By this strategy 

we can minimize the total amount of crosslinking units in the gel, which ensures maximal 

biocompatibility. Our polyglycerol nanogels degrade quickly at pH 4 and pH 5, with 

degradation half-lives of 2 h and 11 h respectively (Fig. 2-3A, Fig. 2-4). Interestingly, nanogel 

degradation kinetics and enzyme release kinetics are almost identical (Fig. 2-3B), which 

proves that release is only triggered by degradation. Additionally, the asparaginase is 

released without interactions between degraded dPG, which proves that these protein 

resistant materials are excellent scaffolds for the encapsulation, transport and release of 

proteins.     
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Figure 2-3 A: Degradation kinetics of polyglycerol nanogels determined by UV/Vis absorbtion in the 

supernatant at pH 4 (black squares), pH 5 (red circles) and pH 7.4 (blue triangles) at 37 °C. B: Protein 

release kinetics determined by HPLC at pH 4 (black squares), pH 5 (red circles), and pH 7.4 (blue 

triangles) at 25°C.   

 

 

Figure 2-4 Schematic representation of degradation triggered release of a therapeutic relevant 

enzyme and its catalytic conversion of asparagine to aspartic acid under ammonia generation. 

 

3.4 Structure-activity assay of encapsulated and released asparaginase 

3.4.1 Determination of proteins’ secondary structure by Fourier-transformed-

infrared spectroscopy (FT-IR) 

To determine the structural composition and especially the secondary structure of the model 

protein asparaginase before and after encapsulation in the polyglycerol nanogels, FT-IR 

spectra were recorded.  

Several bands can be used for structural analysis of asparaginase [55]. The most sensitive 

spectral region for protein secondary structure analysis is the amide I band (1700-1600 cm-1), 

which results mainly from C=O stretch vibrations of the peptide linkages [56]. The major 

component of the native protein belongs to a band at approximately 1657 cm-1, 
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corresponding to a helical conformation. The band at ~1653 cm-1 corresponds to a 

disordered/irregular part of the molecule. Extended ß strands can be found at ~1637 cm-1 

[57]. Comparable spectra for amide I (~1662-1648cm-1) and II (~1580-1510cm-1) band were 

obtained with the encapsulated and the native protein when evaluating the second derivative 

spectra of the FT-IR measurements (Fig. 2-5A/B, Table 2-2) 

In general, no significant changes of the secondary structure of asparaginase were detected 

after encapsulation and release from the PG nanogels. For the amide I band, the peak 

intensities around 1660 cm-1 and 1635 cm-1 are the same, no significant changes were 

detected (Table 2-2). The same holds true for the negative ß-sheet peak of the formerly 

encapsulated protein at 1637.3-1 which is slightly shifted 2 cm-1 to the left (compared to the 

native proteins at 1635.4 cm-1).  

The amide II spectral region from 1575 -1480 cm-1gives information about the out-of-phase 

combinations of N-H, the in-plane N-H bending, and also about the C-N stretching vibrations. 

In general, this region exhibits much less protein conformational sensitivity compared to the 

amide I region [55,56]. The second derivative of the amide II spectra (Fig. 2-5B) shows no 

significant differences in secondary structures of the native protein and the released 

asparaginase (Table 2-2).  
 

 

Figure 2-5 The second derivative spectra of the amide I (left) and II (right) region of the ATR-FT-IR 

spectra of asparaginase in water (freshly prepared; dashed line), in PBS buffer pH 5 (stored for 1 

week; dotted line) and after release from polyglycerol nanogels (stored for 1 week; connected line) 

162516351645165516651675

Absorbance / Wavenumber [cm-1]

1660cm-1 1665cm-1 1635cm-1

15301540155015601570

Absorbance / Wavenumber [cm-1]

1550cm-1



37 
 

Table 2-2 Comparison of peak positions (second derivative FT-IR spectra, wavenumbers [cm
-1

]) 

 

 Amide I band Amide II band 

Asparaginase in water (freshly prepared) 1660.5 1649.9 1634.4 1549.6 

Asparaginase in PBS pH 5.0 (7d storage) 1659.5 1646.9 1635.4 1550.5 

Asparaginase after release (7d storage) 1659.0 1648.9 1637.3 1547.6 

 

3.4.2 Determination of asparaginase activity 

The asparaginase activity assay assessed the protein activity of the freshly prepared solution 

in water with 98.6 U/mg, the same as declared by the supplier (98.2 U/mg). Looking at the 

asparaginase in PBS pH 5.0 a slightly decreased activity (-12.5%) was found (86.1 U/mg, 

Fig. 2-6, Table 2-2).  

For the asparaginase released from the polyglycerol nanogels, the activity (86.2 U/mg) is the 

same as for the non-treated and, thus, native protein in PBS pH 5.0 (Table 2-2). The activity 

assay for the intact PG nanogel with encapsulated asparaginase revealed an enzyme activity 

of 38.9 ± 4.1 U/mg. Based on the former data (asparaginase activity after PG-encapsulation 

and release at pH 5, 87.5 U/mg) this value refers to 44.5 %. As no free asparaginase was 

detectable, it can be concluded that the substrate is able to interact with the asparaginase 

molecules located at the surface of the PG nanogel particles.  

 

 

Figure 2-6 Specific enzyme activity ± SD [U/mg] determined with an asparaginase activity assay.  
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FT-IR measurements of the asparaginase showed no significant changes in secondary 

structure after protein encapsulation in the PG nanogels and subsequent release in a slightly 

acidified buffer (pH 5). As shown in Table 2-1, the peak shifts of our samples (amide I and II 

bands) range between 2 and 3 cm-1. In general, shifts up to 3 cm-1 are inevitable and normal 

due to handling and measurement inaccuracies. Thus, for FT-IR spectra literature often 

refers to peak ranges, due to variations between different proteins, batch variability and 

measurement inaccuracies [56]. 

The asparaginase activity assay showed excellent results concerning the maintenance of the 

protein activity after encapsulation and protein release. Comparing the stored samples to 

freshly prepared asparaginase solution, a lower enzyme activity (- 12.5%) was found. Most 

likely, this decrease is related to a loss of active enzyme due to the storage in PBS pH 5. 

Nevertheless, as the encapsulated and released asparaginase had the same activity as the 

non-processed sample in PBS pH 5.0, it can be concluded that the encapsulation and 

release does not impair enzyme activity. 

 

4. Conclusion 

We have developed a new approach to dendritic polyglycerol nanogels by surfactant free, 

inverse nanoprecipitation. Size defined nanogels were observed, while diameters were freely 

adjustable between 100 and 1000 nm. Applying mild encapsulation conditions we were able 

encapsulate the enzyme asparaginase with an efficacy of almost 100 %. After degradation 

triggered release in acidic environments no structural changes in the released cargo were 

observed and full enzyme activity was retained. Future work will be directed to the 

encapsulation of various biomacromolecules such as DNA, RNA, and proteins.  
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Abstract 

Genetic skin diseases caused by mutations resulting in diminished protein synthesis could 

benefit from local substitution of the missing protein. Proteins, however, are excluded from 

topical applications due to their physicochemical properties.  

We prepared protein-loaded thermoresponsive poly(N-isopropylacrylamide)-polyglycerol-

based nanogels exhibiting a thermal trigger point at 35°C, which is favorable for cutaneous 

applications due to the native thermal gradient of human skin. At ≥ 35°C, the particle size (~ 

200 nm) was instantly reduced by 20% and 93% of the protein were released; no alterations 

of protein structure or activity were detected. Skin penetration experiments demonstrated 

efficient intraepidermal protein delivery particularly in barrier deficient skin, penetration of the 

nanogels themselves was not detected. The proof of concept was provided by 

transglutaminase1-loaded nanogels which efficiently delivered the protein into 

transglutaminase1-deficient skin models resulting in a restoration of skin barrier function.    

In conclusion, thermoresponsive nanogels are promising topical delivery systems for 

biomacromolecules. 
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1. Introduction 

At present, nanotechnology is one of the incessantly and fastest growing areas of current 

pharmaceutical research with an enormous potential to generate diverse and efficient drug 

delivery systems [1, 2]. Skin health maintenance benefits from nanotechnology, because 

materials on the nanometer scale are potent tools for dermal and transdermal drug delivery 

enabling specific, effective, and customized treatment options and the diagnosis of 

cutaneous diseases [3, 4].  

A well-defined, monodisperse and stable nanostructure is crucial for biomedical applications. 

This has been achieved by dendritic polymers such as hyperbranched or dendritic 

polyglycerol (dPG) [5]. dPG allows easy preparation combined with good aqueous solubility, 

high biocompatibility, multifunctionality, and protein stabilization against degradation and 

denaturation [6-9]. Fabricated as nanogels, which can be described as a cross-linked 

hydrophilic three-dimensional polymer network, dPG nanomaterials yield useful size ranges 

between 20 to 350 nm [7, 10].  

Stimuli-responsive dPG-based nanogels became of special interest as they respond rapidly 

when being exposed to certain environmental conditions such as changes in temperature, 

pH, electrical or magnetic fields [10-14]. Thermoresponsive nanogels can be obtained by 

combining dPG with thermoresponsive linkers such as poly(N-isopropylacrylamide) 

(PNIPAM). PNIPAM-dPG nanogels undergo a reversible phase-transition at 32-33 °C, the 

lower critical solution temperature (LCST) of PNIPAM. When LCST is exceeded, the 

nanogels decrease in size due to changes in the local environment around the hydrophobic 

isopropyl domains, resulting in the expelling of water and loaded drugs [15]. Since the LCST 

is close to the physiological skin surface temperature (32 °C) which steadily increases with 

skin depth, these thermoresponsive PNIPAM-dPG nanogels may have a potential for topical 

applications [16-18].  

Particularly for severe genetic skin diseases, with the underlying cause often located in the 

viable epidermis, the use of nanocarriers allow new therapeutic options [19]. Examples for 

these genodermatoses are the more common ichthyosis vulgaris caused by loss-of-function 

mutations in the gene encoding for filaggrin (FLG) [20], and the rare autosomal recessive 

congenital ichthyosis which can be caused by mutations in the transglutaminase gene 

(TGM1) [21]. Filaggrin is a highly repetitive structural protein expressed in the stratified layers 

of the skin and a lack in filaggrin impairs the barrier function and results in dryness and 

scaling and often atopic manifestations. TGM1 codes for the enzyme transglutaminase 1 

(TGase-1); a key player in the formation of the skin barrier. So far, therapeutic options only 

allow an alleviation of the symptoms using topically applied creams and ointments. 

Therefore, local substitution of the missing proteins presents an interesting treatment option 

which eliminates the need of parenteral application and high systemic drug levels. For this 
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approach, however, specific drug delivery systems are required as the excellent barrier 

properties of the human skin almost completely restrict the absorption of biomacromolecules 

due to their high molecular weight and hydrophilicity [22, 23].  

To our best knowledge, PNIPAM-dPG nanogels for the delivery of biomacromolecules into 

the skin have not yet been explored. In the present study, we describe the synthesis of 

PNIPAM-dPG nanogels that encapsulate the model proteins bovine serum albumin (BSA) 

and L-asparaginase II (Asp) as well as the therapeutic protein candidate TGase-1. The 

PNIPAM-dPG nanogels were characterized for loading efficiency, protein release, and 

protein stability. UV-Vis spectroscopy, high performance size exclusion chromatography (HP-

SEC), Fourier transformed infrared spectroscopy (FT-IR) measurements and specific activity 

assays were used to determine the protein concentration, protein stability, and to assess the 

bioactivity. To evaluate the cutaneous protein delivery efficiency, penetration studies in 

excised pig skin and reconstructed human skin were performed. Reconstructed human skin 

is increasingly important for skin absorption studies as it resembles native human skin well 

and offers several advantages over in vivo studies which are mostly performed in rodents. 

Rodent skin differs considerably from human skin since, e.g., the respective skin layers are 

significantly thinner and the abundance of hair follicles in rodents result in a distinct 

overestimation of skin absorption [24, 25]. Here, to mimic diseased and impaired skin 

barriers, the pig skin was tape-stripped 30 times [26] and the genes encoding for filaggrin 

and TGase-1, respectively, were knocked down in reconstructed human skin models [27-29].   

 

2. Methods 

2.1 Synthesis, characterization, and protein encapsulation of PNIPAM-dPG 

nanogels  

PNIPAM-dPG nanogels were synthesized according to previously reported methods [10]. 

Briefly, 100 mg of NIPAM, 33 wt% of acrylated dPG (please see Supplementary Materials for 

the synthesis and fluorescent labeling), SDS (1.8 mg), and APS (2.8 mg) were dissolved in 5 

mL of distilled water. Argon was bubbled into the reaction mixture for 15 min. The mixture 

was stirred under argon atmosphere for another 15 min. The reaction mixture was 

transferred into a hot bath at 68 ºC and polymerization was activated after 5 min with the 

addition of catalytic amount of TEMED (120 μL). The mixture was stirred at 500 rpm for at 

least 4 h. The products were purified by dialysis membrane (MWCO 50000) in water for 48 h 

then lyophilized to yield the nanogels as a white solid (total yield 90 %). Alternatively, 

nanogels with MIA/MANT label were synthesized in the similar manner as described above 

using MIA labeled dPG-Ac as cross-linker.  
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1H-NMR of PNIPAM-dPG nanogels: (500 MHz, D2O), δ: 1.13 (s, 6H, isopropyl groups of 

NIPAM), 1.57 (2 H, polymer backbone), 2.00 (1 H, polymer backbone), 3.35 – 4.10 (6 H, 

polyglycerol scaffold protons + 1H NIPAM).    

For protein encapsulation, PNIPAM-dPG nanogels (10 mg mL-1) were swollen in a protein 

solution (10 mg mL-1) for 24 h at 4 ºC. The solutions were purified using Vivaspins 300000, 

(10 min at 6000 rpm; Sartorius AG, Göttingen, Germany). The concentration of the BSA, 

Asp, and TGase-1 was determined by UV measurements at 280 nm and 350 nm (which 

served for background correction). Additionally, the amount of loaded protein was determined 

by a Micro BCA™ Protein Assay Kit following an incubation of the loaded nanogels at 37 °C 

for 1 h.     

For nanogel characterization, 1H NMR spectra was measured by a Bruker DRX 400 (400 

MHz spectra) spectrometer. Typically 10-30 mg of compound was used and deuterated 

solvents were used as standardized procedure. All spectra were recorded at room 

temperature and were analyzed with MestReNova software. 

2.2 Fluorescence labeling of bovine serum albumin (BSA)  

For skin penetration experiments, BSA was labeled with RhB ITC. A 1 mg mL-1 RhB ITC 

solution in DMSO was added to a 6 mg mL-1 BSA solution in 0.1 M sodium bicarbonate buffer 

(pH 9.0) at a ratio of 1:170 w/w (dye : protein). After 2 hours stirring under light protection, the 

labeled BSA was purified and concentrated to 20-25 mg mL-1 using Vivaspins 30000. The 

absence of free dye was confirmed by HP-SEC (TSKgel® SWXL guard column (dimensions: 

6.0 mm x 4.0 cm), TSKgel® G4000 PWXL column (dimensions: 300 x 7.8 mm, 10 µm particle 

size; TOSOH Bioscience, Stuttgart), isocratic elution at 0.4 mL min-1,100 mM Na2HPO4, 150 

mM NaCl, pH 7.4) with UV and fluorescence detection (protein UV = 280 nm, dye UV = 555 

nm; protein fluorescence = exc. 280/ em. 350 nm, dye fluorescence = exc. 540 nm/em. 580 

nm). The degree of labeling (0.95 - 1.3) was assessed according to manufacturer protocols. 

The lysine-dye bond between BSA and RhB ITC is stable up to 10 days [30]. 

2.3 PNIPAM-dPG nanogel size, thermosensitive kinetics, and protein release 

The PNIPAM-dPG nanogel size and dispersity were determined by dynamic light scattering 

(DLS, scattering angle 173°) upon heating from 25 °C to 42 °C at 1 °Cmin-1 using a Zetasizer 

Nano-ZS90 equipped with a He–Ne laser (λ = 633 nm) (Malvern Instruments, Herrenberg, 

Germany). The nanogel stock solutions (protein concentration: 3 - 5 mg mL-1) were diluted to 

a concentration of 1 mg mL-1. To evaluate the release of BSA-RhB ITC, the loaded nanogels 

(1 mg mL-1) were incubated under mild stirring (100 rpm) at 25 °C, 32 °C, and 37 °C for up to 

4 h, respectively. The released amount of protein was measured at UVprotein = 280 nm and  

UVdye = 558 nm using a UV spectrometer equipped with a heatable cuvette chamber (Agilent 
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8453 UV-Vis Spectrophotometer, Frankfurt, Germany). The UV absorption was background 

(UV = 350 nm) and nanogel blank corrected. Additionally, the samples were analyzed via 

HP-SEC (see 2.2)  

2.4 Protein stability testing  

Protein stability over time was investigated by storing Asp loaded nanogels at 2-8 °C and 25 

°C for 2 and 4 weeks. To study the effects of freeze-thaw stress, Asp-loaded nanogels (1 mg 

mL-1), blank nanogel, and Asp solution (1 mg mL-1) were subjected to 4 freeze-thaw cycles (-

20 °C; 1 hour of freezing and 1 h of thawing). Subsequently, the samples were analyzed for 

Asp activity (see 2.6), Asp degradation and aggregate formation via HP-SEC (see 2.2). 

2.5 Determination of protein secondary structure - Fourier transformed infrared 
spectroscopy (FT-IR) 

To investigate the structural integrity of the proteins after nanogel loading and release, FT-IR 

measurements using a Bruker Tensor 27 FTIR spectrometer (Ettlingen, Germany) equipped 

with a Bio-ATR measuring cell were performed. The samples were measured at 25 °C (120 

scans, resolution of 4 cm-1, water vapor correction) using water for reference. The data were 

analyzed with the OPUS 6.5 software for second derivative spectra after vector 

normalization. 

2.6 Asparaginase (Asp) activity 

Asp activity was determined as specific enzyme activity [U mg-1] [7, 31]. Briefly, 50 µl of 

sample were mixed with 100 µl Tris-HCl buffer (pH 8.6) and 850 µl 0.01 M L-asparagine 

monohydrate in 50 mM Tris-HCL buffer (pH 8.6) and incubated at 37 °C for 10 min. After 

adding 50 µl 1.5 M trichloracetic acid solution, 100 µl of the supernatant was added to 200 µL 

Nessler´s solution. After 10 min at 22 °C, the optical density was measured at 436 nm, 

compared with the standard curve and corrected for total enzyme amount determined by 

Micro BCA™ Protein Assay Kit. The units of activity were defined as micromoles of ammonia 

released per minute. Freshly prepared Asp solution served for reference.  

2.7 Skin penetration experiments 

2.7.1 Cutaneous protein delivery efficiency - pig skin 

To investigate the influence of the thermoresponsive PNIPAM-dPG nanogels on the skin 

penetration of BSA-RhB ITC, initial absorption studies using pig skin were performed 

according to validated test procedures (for detailed description see Supplementary 

Information) [16]. Pig skin of the axillary region from donor animals (breed: ‘‘Deutsche 
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Landrasse”, 12-20 weeks old) was provided by the Clinic for Swine, Center for Clinical 

Veterinary Medicine, LMU Munich, Germany (DE091620017X-1).  

To induce an impaired skin barrier, tape-stripping was performed (10 cm length; tesapack® 

4120 PVC, Tesa SE, Hamburg). The stripping was repeated 30 times [26] and SC thickness 

was subsequently measured using an image analysis software showing a SC thickness 

reduction from 13 ± 0.6 µm to 6 ± 0.4 µm.  

2.7.2 Cutaneous protein delivery efficiency - normal and filaggrin-deficient 

reconstructed skin  

Normal and filaggrin-deficient reconstructed human skin models were generated according to 

previously published procedures [27]. To determine the protein delivery efficiency of the 

thermoresponsive nanogels, first we assessed the activity and delivery of the model protein 

Asp in the skin models. Secondly, the effects of the therapeutic protein candidate TGase-1 in 

TGase-1-deficient skin models were evaluated. 

For Asp activity assay, the skin models were mounted onto static-type Franz cells equipped 

with Teflon inserts (diameter: 15 mm, volume 12 mL, 0.385 cm² application area, Gauer 

Glas, Püttlingen, Germany). PBS (pH 7.4) served as acceptor medium. After 30 min, 44 µL of 

the Asp-loaded PNIPAM-dPG nanogels (23 µg cm-²) were applied onto the skin models for 3 

h applying a temperature ramp from 32 °C to 37 °C. Subsequently, the epidermis of the skin 

models was gently peeled off from the collagen matrix, transferred to Eppendorf tubes 

(Eppendorf, Hamburg, Germany) and 200 µL Tris-HCl buffer pH 8.6 were added. The protein 

was extracted from the epidermis using a TissueLyser (Qiagen, Venlo, Netherlands). The 

specific Asp activity was determined as described in 2.6. 

To semi-quantitatively analyze the skin absorption of Asp in normal and barrier-deficient skin 

models, the Franz cells could not be applied. Instead, the skin models were incubated in a 

transwell setup for 3 h in an incubator applying a temperature gradient from 32 °C to 37 °C. 

Afterwards, the skin models were snap frozen using liquid nitrogen and 10 µm cryosections 

were prepared. Subsequently, immuno-staining against Asp (sc-130472, Santa Cruz 

Biotechnology, Heidelberg, Germany) was performed according to standard protocols. After 

staining, the sections were embedded in antifading mounting medium (Dianova, Hamburg, 

Germany) and analyzed under normal and fluorescence light (BZ-8000; Keyence, Neu-

Isenburg, Germany).   

2.7.3 Cutaneous delivery of therapeutic protein TGase-1 in TGase-1-deficient 
reconstructed skin  

Control and TGase-1-deficient reconstructed human skin were generated as described 

previously [32]. To investigate the effects of the therapeutic protein TGase-1, 50 µL of 

protein-loaded nanogels were applied (5 µg cm-² TGase-1) at day 5, 7, 9, and 11 of tissue 
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cultivation, respectively. At day 13, the skin sections were stained against TGase1 as 

described above (TGase-1 antibody sc-166467, Santa Cruz Biotechnology, Heidelberg, 

Germany) and skin permeability was assessed. 

2.8 Skin permeability testing 

To assess the barrier function, skin absorption tests with radiolabeled testosterone were 

performed according to validated procedures [16, 25]. Briefly, a stock solution of testosterone 

(40 μg ml-1, 2 % [v/v] Igepal® CA-630) was spiked with an appropriate amount of the 

radiolabelled compound to a total radioactivity of 2 μCi ml-1. By using the static setup and the 

infinite dose approach, skin permeability tests (Franz diffusion cells, diameter 15 mm, volume 

12 ml; Permegear, Bethlehem, PA, USA) were performed in triplicate. 

2.9 Statistical analysis  

Statistical analysis is based on the Wilcoxon-Mann-Whitney test and the unpaired t-test; *p ≤ 

0.05 indicates a statistically significant difference. 

 

3. Results  

3.1 Particle synthesis and characterization  

The nanogels were prepared by precipitation polymerization with PNIPAM as 

thermoresponsive polymer, 33 % acrylated dPG as macro-crosslinker, SDS as colloidal 

stabilizer, and PS/TEMED as redox radical initiator (Figure 3-1) [10].  

 

Figure 3-1 Synthesis and chemical structure of the PNIPAM-dPG nanogels. 

 

PNIPAM-dPG nanogels were subsequently characterized by DLS, NMR, and UV-Vis 

spectroscopy. To monitor temperature-related size changes, a temperature ramp was 
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applied during DLS heating the samples from 25 °C to 42 °C. The proteins BSA, Asp, and 

TGase-1 were encapsulated into the nanogels by swelling/diffusion at 4 °C. Table 3-1 lists 

the properties of the protein-loaded nanogels; zeta potential measurements revealed a 

neutral surface charge.  

 

Table 3-1 Characteristics of protein loaded nanogels. 

Nanogel / protein Loading  

capacity [%] 

Diameter (nm) at 

         25 °C (PDI)  / 37 °C (PDI) 
(a)

 

Thermal Trigger Point 

 Tp (ºC) 
(b)

 

PNIPAM-dPG - 192 (0.26) / 118 (0.09) 33.0 

PNIPAM-dPG/BSA 70 207 (0.36) / 170 (0.19) 35.0 

PNIPAM-dPG/Asp 30 205 (0.14) / 170 (0.14) 34.5 

a
 determined by DLS, average of 3 measurements from the intensity distribution curves 

b 
determined by UV-Vis transmittance  (λ= 500 nm)     

 

3.2 Protein Release, structural integrity, and maintenance of bioactivity 

The temperature-triggered decrease in nanogel size induced the release of the cargo. At 25 

°C and 32 °C, only minimal amounts of BSA-RhB-ITC were released after 1 h (1.5 ± 0.3 % 

and 4.8 ± 0.8 %, respectively) (Figure 3-2). In contrast, 90.6 ± 0.5 % of the protein was 

released within 1 h at 37 °C; incubation for 4 h did not result in higher release rates (Figure 

S1). No protein aggregation was observed as determined by SEC measurements, no visible 

particles were detected.  

 

Figure 3-2: Release of bovine serum albumin from PNIPAM-dPG nanogels over 1 h at 25 °C (●), 32 

°C (▲), and 37 °C (■) measured with UV-Vis spectroscopy. n=3, mean ± SD 

We also performed structural analysis of released BSA to exclude potential detrimental 

effects of the encapsulation and release process. Figure 3-3 displays the perfect overlay of 
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the spectra of fresh BSA solution and BSA released from the nanogels, including two 

additional controls. With peak positions at ~1657 cm-1 and ~1549 cm-1 and some smaller 

bands between 1613 and 1637 cm-1, BSA shows ~66 % alpha helix and ~20 % beta sheet 

structure, which is in accordance with the literature [33].  

  

Figure 3-3: Second derivative ATR-FT-IR spectra of the (A) amide I (~1650 cm
-1

) and (B) amide II 

(~1550 cm
-1

) region of BSA in water, freshly prepared (solid line), BSA in water, 22 h at 37 °C (grey 

line), BSA loaded PNIPAM-dPG nanogel in water, freshly prepared (dotted line) and BSA  after the 

release treatment for 22 h at 37 °C (dashed line).  

 

Furthermore, released Asp did not show significant loss in bioactivity (98.5 ± 4.1 %) 

compared to freshly prepared Asp solution (100.0 ± 4.4 %) and Asp solution after 4 h 

incubation at 37 °C (100.6 ± 5.0 %). As an additional control, unloaded PNIPAM-dPG-

nanogel was spiked with free Asp and incubated at 37 °C. Again, the bioactivity was not 

reduced.  

To investigate potential protein stabilizing effects of the nanogels, freeze-thaw studies were 

performed. Freeze-thawing is an important stress factor for proteins since cold temperatures, 

ice formation, changes in solute concentrations, and pH can induce protein degradation or 

aggregation [34]. Asp in solution substantially lost bioactivity already after one freeze-thaw 

cycle (95.3 ± 2.8 %) which was further reduced to 92.1 ± 2.2 % after 4 cycles. In contrast, for 

loaded Asp only a slight decrease to 96.3 ± 0.5 % was observed following 4 freeze-thaw 

cycles (Figure 3-4A). Loading of Asp onto the nanogels also preserved its active tetramer 

form upon freeze-thaw stress, whereas Asp in solution experienced a distinct loss of the 

tetramers and a corresponding increase in aggregates and fragments (Figure S2). Similarly, 

storage of free Asp for 2 and 4 weeks at 25 °C resulted in significantly reduced bioactivity 
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(Figure 3-4B), less tetramers, and increased aggregation compared to nanogel-loaded Asp 

(Figure S3). No differences were observed at 4 °C.  

 

Figure 3-4 A) Bioactivity of loaded asparaginase (Asp) (black bars) and free Asp in an aqueous 

solution (white bars) following 4 freeze-thaw cycles. n = 3, mean ± SD. * p< 0.05 B) Bioactivity of 

loaded Asp and free Asp in an aqueous solution of freshly prepared samples (black bars), after 2 

weeks (white bars), and 4 weeks (grey bars) storage at 25 °C.  n = 3, mean ± SD. * p< 0.05 

3.3 Cutaneous protein delivery efficiency of PNIPAM-dPG nanogels 

First, we investigated the protein delivery efficiency of BSA-RhB ITC loaded nanogels, 

nanogels spiked with free BSA-RhB ITC, and BSA-RhB ITC control solution in normal and 

tape-stripped pig skin. To elucidate whether the nanogels themselves are able to overcome 

the SC, the nanogels were fluorescently labeled with N-methylisatoic anhydride dye, resulting 

in a blue fluorescent N-methylanthraniloyl group (MANT) [35].  

In normal pig skin, no epidermal protein delivery was observed for all samples; the protein 

exclusively accumulated in the SC (Figure S4, A-C). In tape-stripped skin, however, the 

PNIPAM-dPG nanogels significantly enhanced intraepidermal protein delivery indicated by a 

distinct red staining of the viable epidermis (Figure S4, E). Again, no penetration was 

detected with the BSA-RhB ITC control solution and the spiked nanogel. The visual 

differences were substantiated by semi-quantitative image analysis (Table S1). Here, the 

fluorescence brightness evaluated as arbitrary brightness units (ABU) revealed a fourfold 

ABU increase in the epidermis of tape-stripped skin for BSA-loaded nanogels. The nanogels 

themselves were not able to overcome the SC even in damaged skin (data not shown).  

 

In the next step, we studied the absorption of Asp in normal and filaggrin deficient skin 

models. Therefore, we applied Asp loaded PNIPAM-dPG nanogels and Asp control solution 
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onto normal and filaggrin deficient skin models for 3 h. To obtain comparable results to the 

pig skin experiment, the incubation time was reduced since skin models have a higher 

permeability due to a weaker skin barrier function [25, 36]. Subsequently, to get a rough 

estimation about the delivery efficiency of the nanogels, we determined the amount of Asp in 

the SC and viable epidermis by assessing the specific Asp activity present in the skin models 

[7]. Following the application of Asp loaded nanogels, 9.5 ± 0.1 µg Asp were detected in the 

SC and viable epidermis. In skin models incubated with the Asp solution, 30 % less protein 

was recovered (6.3 ± 0.1 µg).  

Since this experimental setup did not allow the discrimination of the protein content in the SC 

and the viable epidermis, we subsequently performed immunohistology. The application of 

Asp solution did not result in intraepidermal penetration in normal (Figure 3-5 A) or barrier-

deficient (Figure 3-5 C) skin models. In contrast, significant amounts of Asp were detected in 

the viable epidermis of barrier-deficient skin models following the application of the loaded 

nanogels (Figure 3-5 D) indicated by a marked red staining of the viable epidermis and the 

SC. No penetration was seen in normal skin models (Figure 3-5 B).  

Consistently, the application of TGase-1-loaded nanogels also resulted in efficient protein 

delivery into the viable epidermis of TGase-1-deficient skin models as indicated by a distinct 

red staining (Figure 3-6 C). Immunostaining visualized the physiological distribution of 

TGase-1 in normal skin models (Figure 3-6 A) and its severely reduced expression in 

untreated TGase-1-deficient skin models (Figure 3-6 B). 

 

 

Figure 3-5: Skin penetration of asparaginase (Asp) in normal and barrier-deficient skin models 

following the application of Asp loaded PNIPAM-dPG nanogels and the Asp control solution. SC = 

stratum corneum, Epi = viable epidermis, D = dermis. Scale bar = 100 µm.  
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Figure 3-6: Immunostaining of transglutaminase 1 (TGase-1) in normal skin models (A), TGase-1-

deficient skin models (B), and TGase-1-deficient skin models following the application of TGase-1-

loaded nanogels (C). SC = stratum corneum, Epi = viable epidermis, D = dermis. Scale bar = 100 µm. 

 

Finally, to provide the proof of concept of the local protein substitution approach, the skin 

barrier function of normal, untreated skin models, TGase-1-deficient skin models, and 

TGase-1-deficient skin models after treatment with TGase-1-loaded nanogels was 

determined. In normal skin models with a functional skin barrier, about ~ 1.5 µg·cm-² 

testosterone permeated through the skin. In TGase-1-deficient skin models, about 5-fold 

higher concentrations were measured (~ 7.5 µg·cm-²) reflecting the disturbed skin barrier 

function due to the lack of TGase-1 (Figure 3-7). Following the treatment with TGase-1-

loaded nanogels, however, significantly reduced testosterone permeation (~ 2 µg·cm-²) was 

observed.  

 

 

Figure 3-7: Permeation   and TGase-1-deficient skin models treated with TGase-1-loaded nanogels 

(□).  

 

4. Discussion 

We successfully loaded different proteins onto thermoresponsive, dendritic nanogels and 

systematically investigated them for their suitability and efficiency as topical delivery system 

for labile biomacromolecules. The nanogels were thoroughly characterized for protein loading 

and release. Unloaded PNIPAM-dPG nanogels showed an average diameter of 192 ± 2 nm 
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(PDI 0.26) and underwent size reduction to 118 ± 1 nm (PDI 0.09) at the thermal trigger point 

(TP) of 33 °C. After loading the nanogels with BSA or Asp, the nanogel size increased to 207 

± 3 nm (PDI 0.36) and 205 ± 2 nm (PDI 0.14), respectively (Table 3-1). Although the size 

increase was similar for Asp and BSA, the loading capacity was different with 70 % for BSA 

and only 30 % for Asp due to the different molecular weights (BSA 66 kDa vs. Asp ~140 

kDa). Above TP, the particle size of loaded nanogels was reduced to ~170 nm compared to 

~118 nm of the unloaded nanogels. This can be explained by a higher rigidity of the loaded 

nanogels, as they have to work against a higher inner density resulting from the protein load. 

The thermally triggered size reductions result from the physicochemical characteristics of 

PNIPAM, which exhibits a LCST at 31 - 32 °C [10, 12, 37]. When exceeding the LCST, 

PNIPAM undergoes a reversible phase transition and water is simultaneously expelled. 

Unloaded PNIPAM-dPG nanogels exhibited a slightly higher phase transition at ~33 °C 

compared to pure PNIPAM caused by the dPG fraction which increases the nanogels’ 

hydrophilicity [10]. Loading of the protein resulted in a slight shift of TP to temperatures about 

~35 °C most likely due to hydrophilic interactions between the nanogels and the proteins [7, 

12]. This increased TP can be beneficial for dermal applications. The skin temperature is 32 

°C at the surface and raises constantly with increasing depth [17, 18]. By applying the 

nanogels onto the skin, the surface temperature prevents the immediate drug release and 

the nanogels may interact intensively with the skin surface as previously described for other 

dPG-based nanocarriers [36]. We hypothesize that the nanogels finally reach deeper layers 

of the stratum corneum where the trigger point temperature of ~35 °C is exceeded and 

ultimately the protein is released.  

Since proteins are sensitive molecules, the investigation of potential detrimental effects on 

the structural integrity or bioactivity was crucial in which no negative effects of the nanogels 

were observed (Figure 3-4). In contrast, encapsulating the proteins in the nanogels even 

protected them from freeze-thaw stress and extended their storage stability (Figure 3-4, S3).  

To assess the efficiency of the thermoresponsive nanogels in dermal protein delivery, skin 

penetration experiments using pig skin and reconstructed human skin were performed. Pig 

skin is an accepted alternative for human skin [38]. Although the anatomical and 

physiological properties of pig and human skin are similar, the skin barrier of pigs is stronger, 

which typically leads to underestimation of skin absorption. To overcome this drawback, and 

to study the nanogels in viable skin, selected experiments were carried out in reconstructed 

human skin. These skin models resemble anatomical and physiological properties of native 

human skin [24, 39] and are advantageous over in vivo studies often performed in rodents 

due to the avoidance of interspecies-related variability. Moreover, a knock down of 

ichthyosis-associated genes in keratinocytes used for the reconstructed human skin enables 

the generation of diseased skin [27, 29, 40]. Consequentially, we opted for filaggrin- and 

TGase-1-deficient skin models. Filaggrin deficiency is the underlying cause for ichthyosis 
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vulgaris [20] and a major predisposing factor for the manifestation of atopic dermatitis [41]. 

Filaggrin deficiency causes disturbed epidermal maturation and differentiation, altered skin 

lipid composition and organization, and an impaired skin barrier [27, 28]. TGase-1 is a key 

enzyme in the formation of the cornified envelope of the human epidermis and mutations in 

the gene encoding for TGase-1 are the underlying cause for autosomal-recessive congenital 

ichthyosis which is also characterized by an impaired skin barrier function and generalized 

hyperkeratosis [42, 43]. Hence, these skin disease models mimic barrier-impaired skin which 

is important to consider since the barrier function of diseased skin differs significantly from 

normal skin [44, 45]. 

Our data clearly showed efficient cutaneous delivery of BSA, Asp, and the therapeutic protein 

candidate TGase-1 particularly in barrier deficient skin. Immunostaining of the skin models 

impressively visualized the extent of skin penetration of the different proteins (Figure 3-5, 3-6, 

S4).  

In contrast, cutaneous absorption of the nanogels themselves was not observed. Whether 

nanocarriers are able to penetrate into normal or damaged skin is still up to debate as many 

studies with differing outcome are published [46-48]. For example, Zvyagin et al. [49] showed 

that zinc oxide particles (20-30 nm) stayed in the SC of normal skin and only accumulated in 

skin folds and hair follicles [49] which is also consistent with Luengo et al. [50]. Moreover, 

Ostrowski et al. demonstrated that skin barrier disruptions by either tape-stripping or skin 

diseases had no effect on the penetration of silica nanoparticles [51]. In contrast, Alnasif et 

al. showed pronounced penetration of dendritic core-multishell nanotransporters in damaged 

skin [36].  

Since our results showed no penetration of the nanogels themselves, the mode of enhanced 

protein delivery is still ambiguous. Some studies highlighted the influence of surface charges 

on skin penetration and demonstrated that charged nanoparticles were more efficient due to 

better skin adhesion [52]. Since our nanogels exhibited no surface charge, electrostatic 

interactions can be excluded. As discussed earlier, we hypothesize that the nanogels interact 

intensively with the skin surface most likely due to the amphiphilic polyglycerol-based 

structure which also proved to be beneficial in previous studies [3, 53]. The nanogels finally 

reached deeper layers of the SC that exhibited temperatures ≥ 33 °C and the protein release 

was induced. Another possibility is that the nanogels act as drug release modifiers. Chauhan 

et al. described that poly(amido amines) were able to form stable drug-polymer complexes 

and the resulting solubility enhancement effectively increased the drug flux across the skin 

[54]. Furthermore, nanogels might be penetration enhancers by interacting with the skin 

surface lipids and proteins and, thus, loosening the tightly packed SC structure [55]. Clearly, 

further studies are required to unravel the mode of delivery. 

To provide the proof of concept for the protein substitution approach, nanogel mediated 

delivery of the therapeutic protein candidate TGase-1 into TGase-1-deficient skin models 
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was tested. Following the application of TGase-1-loaded nanogels, the protein was efficiently 

delivered into the viable epidermis of TGase-1-deficient skin models (Figure 3-6) and the skin 

barrier function was restored indicated by a significant reduction of skin permeability (Figure 

3-7).  

Aufenvenne et al., also aimed for a topical enzyme-replacement therapy to restore TGase-1 

activity and correct the architecture of TGase-1-deficiency in skin grafts [42]. Treatment with 

40 ng cm-2 TGase-1 encapsulated in sterically stabilized liposomes resulted in considerable 

improvement of the ichthyosis phenotype and restored TGase-1 activity and epidermal 

barrier function. A further study which underlines the huge potential of a topical protein 

substitution therapy for severe skin diseases was published by Stout et al. [56]. Here, in vivo 

application of a “filaggrin - cell penetrating peptide conjugate” in filaggrin deficient flaky tail 

mice resulted in internalization and processing of the conjugate and a restoration of the 

normal phenotype. However, the carrier systems of both studies clearly have limitations such 

as physical instability and low loading capacities for the liposomes [57, 58] or potential irritant 

or toxic effects of cell penetrating peptides [59, 60]. In contrast, thermoresponsive nanogels 

offer several advantages such as good biocompatibility, high loading capacities, and 

triggered payload release.  

In conclusion, we describe a thermoresponsive PNIPAM-dPG nanogel for cutaneous protein 

delivery, which is particularly applicable for human skin due to its native thermal gradient. We 

demonstrated that the delivery of TGase-1 loaded onto PNIPAM-dPG nanogels into TGase-

1-deficient skin restored the skin barrier function. Although the protein delivery into the viable 

epidermis of normal skin appeared to be insufficient, the nanogels were superior in barrier-

deficient skin (tape-stripped, filaggrin and TGase-1 deficient). Therefore, these nanogels 

have great potential for the approach of local protein substitution. Stress testing also 

revealed the ability of the nanogels to stabilize and maintain the biological function of labile 

proteins. Hence, PNIPAM-dPG nanogels are capable to load sensitive biomacromolecules 

and deliver them in therapeutically relevant concentrations into the viable epidermis of 

barrier-deficient skin without loss of protein integrity and bioactivity. 
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 Abstract  

Hyaluronic acid (HA) hydrogels are interesting delivery systems for topical applications. 

Besides moisturizing the skin and improving wound healing, HA facilitates topical drug 

absorption and is highly compatible with labile biomacromolecules. Hence, in this study we 

investigated the influence of HA hydrogels with different molecular weights (5 kDa, 100 kDa, 

1 MDa) on the skin absorption of the model protein bovine serum albumin (BSA) using 

fluorescence lifetime imaging microscopy (FLIM). To elucidate the interactions of HA with the 

stratum corneum and the skin absorption of HA itself, we combined FLIM and Fourier-

transform infrared (FTIR) spectroscopy. Our results revealed distinct formulation and skin-

dependent effects. In barrier deficient (tape-stripped) skin, BSA alone penetrated into dermal 

layers. When BSA and HA were applied together, however, penetration was restricted to the 

epidermis. In normal skin, penetration enhancement of BSA into the epidermis was observed 

when applying low molecular weight HA (5 kDa). Fluorescence resonance energy transfer 

analysis indicated close interactions between HA and BSA under these conditions. FTIR 

spectroscopic analysis of HA interactions with stratum corneum constituents showed an α-

helix to β-sheet interconversion of keratin in the stratum corneum, increased skin hydration, 

and intense interactions between 100 kDa HA and the skin lipids resulting in a more 

disordered arrangement of the latter. In conclusion, HA hydrogels restricted the delivery of 

biomacromolecules to the stratum corneum and viable epidermis in barrier deficient skin, and 

therefore seem to be potential topical drug vehicles. In contrast, HA acted as an enhancer for 

delivery in normal skin, probably mediated by a combination of cotransport, increased skin 

hydration, and modifications of the stratum corneum properties 
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1. Introduction 

Over the last decades, biopharmaceuticals such as proteins, peptides, and nucleic acids 

have become increasingly important as therapeutic options for the treatment of diverse 

diseases such as cancer, infections, and autoimmune diseases. The conventional 

administration form of biopharmaceuticals is a directed injection or infusion. Due to limited 

patient compliance and associated side effects, alternative application methods are under 

investigation including pulmonary, nasal, topical, and buccal delivery [1, 2].  

For the treatment of severe skin diseases including psoriasis and atopic dermatitis, efficient 

protein formulations such as Enbrel® (etanercept) or Remicade® (infliximab) are on the 

market, but they can solely be administered by injection [3]. To reduce systemic side effects 

and to increase both patient compliance and local bioavailability, a topical application seems 

beneficial [4]. However, the excellent barrier properties of the skin almost completely restrict 

the absorption of biomacromolecules due to their high molecular weight and hydrophilicity [4, 

5]. To overcome this obstacle, and to allow for efficient protein delivery into the skin, tailored 

drug delivery systems are necessary. This is of particular interest for a topical substitution 

therapy of proteins that are deficient in the skin due to genetic mutations and, hence, are the 

underlying cause of severe skin diseases such as ichthyosis vulgaris [6] or atopic dermatitis 

[7]. This approach, requiring only rather low doses, was pursued for filaggrin delivery in 

atopic skin [8] and for the enzyme transglutaminase I for the restoration of autosomal-

recessive congenital ichthyosis [9] with very promising results. In this context, the different 

properties of normal and diseased skin are of importance since diseased skin is 

characterized by increased transepidermal water loss [10], impaired skin barrier function, and 

altered dermal drug absorption compared to intact skin [11]. To study barrier disrupted skin in 

vitro, tape-stripping is a common and well-established method [10, 12, 13]. 

Hyaluronic acid (HA) based hydrogels have been in the focus for the treatment of skin 

diseases for several years [14, 15] and are an attractive candidate for dermal drug delivery 

[14, 16, 17]. HA is a linear polysaccharide of N-acetyl glucosamine and glucuronic acid in 

alternating sequence with an average molecular weight of approximately 2x105 to 107 Da. It 

forms highly viscoelastic gels in aqueous solution [18], and when applied to the skin it 

provides beneficial effects such as skin hydration, elasticity regeneration, and improved 

wound healing [19]. Moreover, HA may also facilitate dermal drug delivery as shown for anti-

cancer drugs [20, 21] and for diclofenac. In the latter case, HA significantly enhanced the 

partitioning, retention, and localization of diclofenac in human epidermis compared with an 

aqueous solution [4, 22, 23]. 

The mechanisms of HA mediated skin penetration, however, are still poorly understood. 

Various factors are discussed involving an active transport via HA receptors [17, 24] and the 

specific structure of hydrated HA [25]. Alternatively, the general effect of skin hydration may 
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facilitate dermal drug absorption and can aid the retention of drugs within the more hydrated 

epidermal layers [14]. Others hypothesize that the skin penetration of HA itself can facilitate 

drug delivery via a co-transport [14, 26]. Moreover, HA is well suited for biomacromolecules 

as it provides good protein stabilizing properties [16, 17, 21]. Nevertheless, the exact 

mechanism for transdermal transport remains to be elucidated. 

In this study, we set out to identify formulations of HA and the model protein bovine serum 

albumin (BSA) that exhibit improved skin penetration, either transdermal or topical, compared 

to the application of the protein alone. Furthermore, we aimed to understand the mechanism 

by which HA acts on protein penetration. Therefore, BSA skin penetration was investigated in 

normal and tape-stripped skin. Using fluorescence lifetime imaging microscopy (FLIM), we 

localized HA and BSA in the skin and analyzed the effect of different molecular weight HA (5 

kDa, 100 kDa and 1 MDa) on BSA penetration. Interactions between HA, skin lipids, and 

proteins in terms of organization and conformation, and the impact of hydration effects were 

studied by Fourier-transform infrared (FTIR) spectroscopy. Co-localization of HA and the 

protein BSA in the skin were investigated using fluorescence resonance energy transfer 

(FRET)-FLIM. 

 

2. Materials and Methods 

2.1 Materials 

Sodium hyaluronate 5 kDa was obtained from Wellcos Cosmetics (Gladbeck, Germany). 100 

kDa and 1 MDa sodium hyaluronate were a gift from Shiseido Co., Ltd (Shizuoka, Japan). 

Hydroxyethyl cellulose (HEC) Natrosol® 250 HHX PH was purchased from Ashland Aqualon 

(Covington, KY, USA). BSA, dimethyl sulfoxide (DMSO), rhodamine B isothiocyanate (mixed 

isomers), and the buffer reagents were purchased from Sigma-Aldrich (Steinheim, Germany). 

N-methylisatoic anhydride for HA labeling was purchased from Invitrogen Molecular Probes® 

(Darmstadt, Germany). 

For skin penetration experiments, pig skin of the flank region from “Deutsche Landrasse” (30-

50 kg, 10-20 weeks old) was used (Clinic of Swine, Ludwig-Maximilians University, Munich, 

permission no. DE 09 162 0017 X-1).  

2.2 HEC and HA solution Preparation  

2.2.1 Fluorescence Labeling of BSA and HA 

Fluorescence labeling of BSA was performed using rhodamine B isothiocyanate (RhB ITC). 

The dye was dissolved in DMSO to 1 mg/mL and added to a 6 mg/mL BSA solution in a 0.1 

M sodium bicarbonate buffer (pH 9.0). While stirring slowly, protein and dye solution were 
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mixed at a ratio of 1:170 w/w (dye : protein) under light protection. After 120 minutes, the 

solution was transferred to a Vivaspin 20 tube (PES membrane MWCO 30000, Sartorius AG, 

Göttingen, Germany) and centrifuged for 45 min at 4.000 rpm at 5 °C. Subsequently, several 

washing steps were performed to remove unbound dye. The absence of free dye was 

confirmed by high pressure size exclusion chromatography (HP-SEC) (UV (protein) = 280 

nm, UV (dye) = 555 nm; fluorescence (protein) = exc. 280/em. 350 nm, fluorescence (dye) = 

exc. 540 nm/em. 580 nm) and UV spectroscopy of the washing phases at 555 nm. Protein 

concentration (between 20-25 mg/ml) and degree of labeling (between 0.95 - 1.3) were 

determined according to the manufacturer’s protocol. Regarding the stability of the conjugate, 

the lysine-dye bond is stable for up to 10 days [27]. The absorption and emission spectra of 

BSA-RhB were recorded showing an absorption maximum at 558 nm and an emission 

maximum at 585 nm, respectively (Figure SI 1A). 

Fluorescence labeling of HA was performed using N-methylisatoic anhydride (MIA) [28]. The 

dye was dissolved in DMSO to 200 mg/mL and added to a 4 mg/mL HA solution in 0.1 M 

sodium borate buffer (pH 8.0). While stirring slowly, HA and dye solution were mixed at a 

ratio of 1:10 w/w (dye : HA) under light protection. After 15 minutes, the labeled HA was 

precipitated with ethanol 70 %. The precipitate was washed twice, centrifuged at 4.000 rpm, 

4°C and the HA pellet was vacuum dried. The absence of free dye was confirmed by HP-

SEC (UV (HA) = 215 nm, UV (dye) = 351 nm; fluorescence (free dye) = exc. 316 nm/em. 386 

nm, fluorescence (HA-dye conjugate) = exc. 366 nm/em. 440 nm) and fluorescence 

spectroscopy at exc. 366 nm/em. 440 nm. Additionally, the degree of HA modification was 

determined to be 1 molecule N-MANT per 40-50 disaccharide HA units. The labeled N-

methylanthraniloyl (MANT)-HA was reconstituted with PBS (pH 7.4) to stock concentrations 

of 40 mg/mL. Successful labeling was confirmed by UV-Vis absorption (Shimadzu UVPC 

2450) and fluorescence spectroscopy (Cary Eclipse, Varian GmbH, Darmstadt, Germany). 

The absorption maximum was at 350 nm and the emission maximum at 440 nm. The 

absorption and emission properties of HA-MANT samples were independent of the molecular 

weight (Figure SI 1 B). Furthermore, the HA-MANT sample was subjected to fluorescence 

microscopy (instrument-specific DAPI filter setting exc. 360/40 nm, em. 460/50 nm; BZ-8000, 

Keyence, Neu-Isenburg). According to DeAngelis, 2000 [28], the labeling procedure yields a 

stable conjugate. The labeled proteins and HA were stored at -20°C until further use.  

2.2.2 Preparation of Protein-Containing HEC and HA Hydrogels 

2% and 5% w/v HEC solutions were prepared by mixing 4% and 10% w/v stock gels 1:1 with 

PBS or BSA-RhB ITC (20 mg/mL) to reach a final BSA concentration of 10 mg/mL. The 5 

kDa and 100 kDa HA hydrogels were prepared correspondingly. For the 10% w/v HEC and 

HA solutions, 100 mg/mL of the dry HEC or HA material was rehydrated and mixed with 

either PBS or a 10 mg/mL BSA-RhB ITC solution. The gels were kept at 2-8°C for at least 12 
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h before use to guarantee complete rehydration. A solution of 10 mg/mL BSA in PBS pH 7.4 

served for reference. 

2.3 Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) 
Spectroscopy Measurements 

In order to evaluate the effects of HA formulations on skin hydration, keratin secondary 

structure, and the organization of skin lipids, FTIR measurements on isolated stratum 

corneum (SC) sheets were performed. For SC isolation, pig skin was covered with 0.1 % 

trypsin in 150 mM PBS pH 7.4. The samples were kept at 4°C for 20 h and were 

subsequently incubated at 37 °C until the SC could be removed. The isolated SC sheets 

were washed with water and dried for 3 days in a desiccator filled with silica gel (24 °C, 27 % 

relative humidity). Subsequently, the SC sheets were quartered, placed in petri dishes and 

covered with 50 µL/cm² HA formulations (without BSA), respectively. All samples were 

incubated for 6 h at room temperature (23 - 24 °C, 37 % relative humidity). The water content 

in the SC was determined using a TENSOR 27 FT-IR Spectrometer with HYPERION 3000 

FT-IR Microscope connected to an ATR objective (Bruker Optik GmbH, Ettlingen, Germany). 

The spectra were generated from 240 scans collected at 4 cm-1 resolution at 20°C and 

analyzed with the Bruker OPUS software. The exact peak positions were determined after 

vector normalization. The degree of water uptake was defined as the area under the 

secondary O-H stretching (water) absorbance at around 2100 cm-1 in relation to the dry SC 

[29]. Changes in the lipid chain order were defined as redshifts to higher wavenumbers for 

the methylene symmetric and asymmetric stretching vibrations [30, 31]. For keratin 

secondary structure analysis, the second derivative was determined from the normalized 

spectra and evaluated regarding the amide I band [32]. ATR-FTIR control spectra were 

recorded for plain 1 % HEC, 5 % 5 kDa HA, 5 % 100 kDa HA, and 1 % 1 MDa HA hydrogels 

(Figure SI 4, SI 5).  

2.4 Skin Penetration Experiments 

Validated test procedures using the Franz cell set up and the infinite-dose approach were 

performed according to previously published procedures (300 µl test sample onto 1.72 cm2 

skin for 6 h, removal of excess formulation after incubation) [33]. Pig skin was used as it has 

comparable properties like human skin and is a well-established model for skin absorption 

testing in vitro [11, 34]. To create barrier deficient skin, tape-stripping was performed 30 

times by pressing adhesive tape strips (10 cm length; tesapack® 4120 PVC, Tesa SE, 

Hamburg) [35] and SC thickness was measured in skin sections using a Keyence BZ-8100E 

microscope and BZ-Analyzer software (Keyence, Neu-Isenburg, Germany). The SC 

thickness was reduced from 13 to 6 µm. For data analysis, skin sections (5 µm) were 
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prepared by cutting from the dermis to the SC to prevent dragging of HA and BSA from the 

skin surface into deeper dermal layers.  

For initial screening, the skin sections were subjected to normal and fluorescence 

microscopy (100 and 200 x magnification, BZ-8100, Keyence, Neu-Isenburg) and 

representative images were recorded. The fluorescence was recovered in the red band 

exciting the samples at 560 nm for BSA-RhB (instrument-specific TexasRed filter setting exc. 

560/40 nm, em. 630/60 nm). To detect MANT-HA, the fluorescence was recorded in the blue 

band exciting the samples at 360 nm (instrument-specific DAPI filter setting exc. 360/40 nm, 

em. 460/50 nm).  

2. 5 Fluorescence Lifetime Imaging Microscopy (FLIM) 

To investigate the dermal absorption of protein (10 mg/ml BSA-RhB in aqueous solution) and 

HA (5 % 5 kDa, 100 kDa and 1 MDa HA-MANT), sections of normal and barrier disrupted 

skin were subjected to FLIM.  

The time-resolved fluorescence decay curves in each image pixel were obtained by time-

correlated single photon counting (TCSPC) with a confocal laser scanning FLIM setup. The 

setup consists of an Olympus IX71 inverted microscope equipped with a 40x objective lens, a 

confocal scanning unit (DCS-120, Becker & Hickl, Berlin, Germany), and a Ti:Sapphire laser 

system (Spectra Physics, Santa Clara, USA) in the mode-locked picosecond-pulsed regime 

[36–43]. The Ti:Sapphire Tsunami laser was pumped by a 5 W solid state Millenia V laser 

and the laser output was frequency doubled to obtain the excitation wavelength of 488 nm for 

the RhB dye. A pulse picker reduced the repetition rate to 4 MHz. A color glass filter OG515 

and a high quality long pass filter HQ545LP were used as emission filters. To excite MANT 

fluorescence, a pulsed diode laser (BDL-405-SMT; Becker&Hickl) with a wavelength of 405 

nm and a repetition rate of 20 MHz was used. A high quality long pass filter HQ435LP and a 

band-pass filter HQ480/40 were used as emission filters. The time range was set to 20 ns for 

256 channels resulting in a resolution of 78 ps/ch. Single photon counting was performed 

using a TCSPC module (SPC-150, Becker & Hickl, Berlin, Germany). 

For FRET experiments [44], samples containing both HA-MANT and BSA-RhB were excited 

with 405 nm and a high quality long pass filter HQ545LP and a band-pass filter HQ480/40 

were used as emission filters. For reference, BSA-RhB was excited with 488 nm and 

emission was detected using the same emission filter set.  

FLIM images were analyzed using self-written routines in C++. Fluorescence decay curves 

were partitioned into classes (i.e. clusters) using a multivariate pattern recognition method 

[44, 45]. The fluorescence decays of the individual clusters were fitted with a sum of 

exponentials using 2 minimization. False-color images were generated by assigning a 

distinct color to all pixels containing a fluorescence decay curve that belongs to one cluster.  
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Steady-state fluorescence spectra were recorded using an SPEX Fluoromax-3 from Horiba 

Jobin Yvon and the DataMax Software Version 2.20 [38, 42]. 

2.6 Statistical Analysis  

To semi-quantify the penetration enhancing (PEE) or penetration confinement effect (PCE), 

we compared the background-corrected average pixel intensities of the different samples in 

the skin layers of interest (SC, viable epidermis, superficial dermis). The background-

corrected average pixel intensities of a sample treated with BSA-RhB solution served as 

reference and was set to 1. All PEE/PCE values are expressed relative to this value. The 

PEE/PCE results are presented as average results ± SEM obtained from 3 independent 

experiments. Statistical analysis is based on the Wilcoxon-Mann-Whitney test; p  0.05 

indicates a statistically significant difference. 

 

3. Results 

3.1 Penetration of HA into normal and tape-stripped skin 

We investigated the skin absorption of HA in normal and tape-stripped skin to substantiate 

the findings in the literature that HA itself is able to penetrate into the skin [14, 26]. FLIM 

measurements were performed on cryosections of pig skin treated with HA-MANT and the 

penetration of different molecular weights of HA (5 kDa, 100 kDa, and 1 MDa) was assessed. 

With cluster-based FLIM image analysis, one lifetime cluster belonging to HA-MANT was 

identified in both normal (Figure 4-1 A-C) and tape-stripped skin (Figure 4-1 D-F). In normal 

skin, 5 kDa HA was localized in the stratum corneum and epidermis, albeit rather patchy 

(Figure 4-1 A). The higher molecular weight HAs were basically confined to the SC (Figure 4-

1 B, C). In contrast, in tape-stripped skin the lifetime cluster belonging to HA-MANT was 

localized in both SC and epidermis, with slightly higher concentrations for 100 kDa and 

1 MDa HA compared to 5 kDa HA (Figure 4-1 D-F).  

3.2 Penetration of BSA into normal and tape-stripped skin 

Next, the skin penetration of the model protein BSA with a molecular weight of ~ 66 kDa was 

investigated. Again, FLIM measurements were performed on cryosections of pig skin treated 

with BSA-RhB and subjected to cluster-based FLIM analysis. Since dermal absorption of 

proteins is highly limited owing to the proteins’ hydrophilic nature and large size, we did not 

expect high amounts of BSA in normal skin. As expected, BSA skin absorption is much less 

in normal skin compared to barrier deficient skin (Figure 4-1 G and H). Nevertheless, residual 
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fluorescence intensity belonging to BSA-RhB could be identified by cluster-based FLIM 

analysis in normal skin (colored red in Figure 4-1 G). 

 

 

Figure 4-1 Penetration patterns of HA-MANT and BSA-RhB in normal and tape-stripped skin. (A-F) 

HA-MANT penetration in normal (A,B,C) and tape-stripped skin (D,E,F) as determined by MANT 

fluorescence. (G-J) BSA-RhB-ITC penetration into normal (G,I) and tape-stripped (H,J) skin without 

HA (G,H) and with 5 % 5 kDa HA (I,J). Images are false color coded according to the measured BSA-

RhB fluorescence lifetime. Scale bars represent 100 µm. Effect of HA on BSA penetration. (K,L) 

Average of three intensity line scans for BSA-RhB alone (dashed line) and with 5 kDa HA (solid line) in 

(K) normal skin and (L) tape-stripped skin. Arrow indicates increased or decreased BSA penetration in 

the presence of HA. 

 

This cluster is localized in the SC and the epidermis. In tape-stripped skin, two distinct 

lifetime clusters belonging to BSA-RhB were identified (Figure 4-1 H). One is localized in the 

remainder of the SC and part of the viable epidermis (colored cyan in Figure 4-1 H). The 

corresponding lifetime deviates strongly from the auto fluorescent background as well as 

from the lifetime of the single cluster observed for normal skin (Figure SI 2). The second 

cluster is primarily located in the dermis, colored red in Figure 4-1H, and its fluorescence 
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decay is similar to the one determined for BSA-RhB in normal skin (Figure SI 2). Since the 

cyan colored areas correspond to areas with the highest fluorescence intensity (Figure SI 3), 

the different fluorescence lifetimes may reflect this concentration difference, in particular as 

high fluorophore concentrations may lead to quenching effects. 

3.3. Effects of HA on BSA penetration  

To investigate the effect of HA on BSA penetration, cryosections of intact and tape-stripped 

pig skin treated with different molecular weight HA-MANT together with BSA-RhB were 

analyzed.  

In normal skin, a single lifetime cluster belonging to BSA-RhB was identified for all three HA 

molecular weights (colored in red in Figures 4-1 I and SI 3). For 5 kDa HA, localization of 

BSA-RhB in the SC and the viable epidermis was observed (Figure 4-1I). In the presence of 

100 kDa and 1 MDa HA the localization of BSA was limited to the SC (Figure SI 3). 

In tape-stripped skin, again two clusters with different lifetimes belonging to BSA were 

identified for all HA molecular weights (Figure 4-1I and SI 3). One cluster, colored in cyan, 

was localized in the SC and the other, colored in red, in the epidermis, and to a much lesser 

extent in the dermis. The localization of BSA was independent of the molecular weight of HA.  

To compare the amounts of penetrated BSA with and without HA, we used the fluorescence 

intensity of the identified FLIM clusters belonging to BSA. Averaged intensity line scans for 

BSA alone and BSA with 5 kDa HA were compared (Figure 4-1 K,L). In normal skin, the 

intensity for BSA-RhB with 5 kDa HA (Figure 1 K, solid line) was increased in the SC (first 15 

µm) and epidermis (up to 50 µm) compared to BSA-RhB alone (Figure 4-1 K, dashed line), 

where the observed intensities were close to the auto fluorescent background. In tape-

stripped skin, the intensities observed for BSA-RhB alone were well above the auto 

fluorescent background (Figure 4-1 L, dashed line), in particular close to the surface of tape-

stripped skin, and up to 100 µm into the skin. In the presence of 5 kDa HA-MANT (Figure 4-1 

L, solid line), high peak values close to the skin surface were also found, but the intensity 

dropped to background levels at 50 µm skin depth.  

To quantify the effects of HA on BSA penetration, we evaluated the background-corrected 

average pixel intensities of the different samples in a semi quantitative way. Intensity 

changes in the different skin layers of interest were calculated with respect to the sample 

treated with BSA only, as outlined in Material and Methods. For normal skin, a 2.5 fold 

intensity increase of BSA-RhB fluorescence was observed in the stratum corneum for 5 % 5 

kDa HA (Figure 4-2 A). In the viable epidermis, the penetration enhancement effect of 5 % 5 

kDa HA was even higher with a 7.5-fold increase in BSA-RhB fluorescence intensity (Figure 

4-2 A). Samples with 5 % 100 kDa or 1 MDa HA did not show any penetration enhancement 

effects for BSA (Figure SI 3). For tape-stripped skin, however, a different picture evolved. 
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Comparison with the BSA control (without HA) showed that protein penetration in the 

presence of HA is confined to the SC and the viable epidermis. The BSA-RhB fluorescence 

in the dermis was reduced to 20 % of the intensity found in the control BSA sample (Figure 4-

2 B).  

 

 

Figure 4-2 Penetration enhancing effect (PEE) and penetration confinement effect (PCE) of HA on 

BSA penetration. The penetration of BSA-RhB without HA served for reference, and the respective 

intensity above background was set to 1. (A) PEE of 5 % 5 kDa HA on BSA-RhB penetration into 

normal skin measured by fluorescence microscopy. Mean values are presented for the SC (white bars) 

and the viable epidermis (black bars) (n=3, mean values ± SEM *p ≤0.05). (B) Penetration 

confinement effect (PCE) of HA samples on BSA-RhB penetration in tape-stripped skin. Protein 

penetration into the dermis was significantly reduced with HA (n=3, mean values ± SEM *p ≤0.05). 

Mean values are presented for SC (white bars), viable epidermis (black bars), and dermis (grey bars). 

 

This effect was observed for all three HA molecular weights. Despite a HA independent 

overall localization of BSA, we detected concentration differences in the remaining SC of 

damaged skin. We found a molecular weight dependent effect on the accumulation of BSA 

with decreasing intensity for 5 kDa > 100 kDa > 1 MDa HA. This behavior, however, did not 

affect the penetration yield into the viable epidermis. For all HA molecular weights, we found 

a similar accumulation of BSA in the viable epidermis with about 65 % of the BSA control 

sample intensity.  

3.4 Molecular interactions between HA and BSA in skin 

Since several publications discuss that HA itself penetrates [17, 46-48] and co-transports 

drugs into the skin and into deeper dermal layers [26], we aimed to test this hypothesis. To 

determine whether co-localization of HA and BSA in terms of molecular contact between 

these two molecules in the skin exist, we used FRET [49]. FRET is highly sensitive for 

measuring distances between two fluorophores since the rate constant of energy transfer is 
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proportional to the inverse 6th power of the distance. Typical FRET distances are between 1 - 

10 nm.  

Fluorescence energy transfer from HA-MANT to BSA-RhB can occur, according to the 

spectral overlap between HA-MANT emission and BSA-RhB absorption (Figure 4-3 A).  

Hence, the occurrence of FRET emission was investigated on skin samples containing both 

HA-MANT and BSA-RhB by exciting the samples with 405 nm and detecting the emission 

between 590 nm and 650 nm, termed FRET channel in the following, specific for BSA-RhB 

emission. However, the spectroscopic analysis also showed that BSA-RhB exhibits 

absorption at 405 nm (Figure SI 1 A). Therefore, fluorescence emission detected in the FRET 

channel cannot be solely attributed to FRET between HA-MANT and BSA-RhB.  

In order to determine if the fluorescence signal in the FRET channel contains FRET 

emission, non-FRET and FRET contribution to the total fluorescence signal have to be 

separated. The non-FRET contribution can be determined by excitation of BSA-RhB alone. 

To account for the different laser output powers in the FLIM setup, the RhB fluorescence 

intensity after excitation at 405 nm and 488 nm was measured in a pig skin sample only 

treated with BSA-RhB (Figure 4-3 B). Intensity line scans at identical sample positions 

showed a fluorescence intensity difference between excitation at 405 nm and 488 nm. The 

intensity ratio I405/I488 was 2.5.  

Using this ratio the non-FRET contribution (dashed line in Figure 4-3 D) can now be 

determined from a measurement with 488 nm excitation in BSA-RhB and HA-MANT 

samples. If FRET occurs, the emission detected for 405 nm excitation should be more than 

2.5 times higher than the emission detected for 488 nm excitation, due to the additional RhB 

emission excited by FRET (Figure 4-3 D, additional intensity above the dashed curve (non-

FRET intensity) indicating the FRET contribution). If the ratio of the intensities I405/I488 is 2.5 

(Figure 4-3 C), no FRET occurs as the observed RhB intensity at 405 nm excitation is due to 

non-FRET.  

This approach was employed to analyze skin treated with BSA-RhB together with different 

HA-MANT molecular weights. The false color coded images from cluster-based FLIM 

analysis are presented alongside a comparison of line scans measured at 405 and 488 nm, 

allowing for the detection of FRET emission (Figure 4-3 E-J). An intensity ratio I405/I488 larger 

than 2.5, indicative of FRET, was only observed in normal skin for BSA-RhB in the presence 

of 5 and 100 kDa HA (Figure 4-3 E,F). For all other samples no contribution from FRET 

emission to the total fluorescence intensity was detected (Figure 4-3 G-J). Since we have 

observed a clear penetration enhancement effect for BSA when normal skin was treated with 

5 kDa HA, the FRET measurements indicated that this effect was accompanied by a co-

localization of BSA and HA.  
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Figure 4-3 Measurement of FRET between HA and BSA. (A) Emission spectrum of HA-MANT and 

BSA-RhB in solution. The shaded region indicates the overlap area. (B) Characteristic intensity line 

scan of a sample only treated with BSA-RhB and excited either at 405 nm (upper curve, pulsed diode 

laser) or 488 nm (lower curve, Ti:Sa laser). The correction factor of 2.5 was determined from the 

intensity ratio of the respective peak intensities. Emission filter: HQ620/60. (C) Theoretical emission 

spectra for the situation without FRET from HA-MANT to BSA-RhB under the given excitation 

conditions. (D) Theoretical emission spectra for the situation with FRET, indicated by the increase in 

emission by the 405 nm excitation compared to the situation without FRET as assessed from the 

corrected (correction factor 2.5) emission curve by the 488 nm excitation (dashed curved). (E-J) 

Cluster FLIM images for analysis of FRET induced BSA-RhB emission and characteristic emission 

intensity line scans for excitation at 405 nm (red curve) and 488 nm (blue curve) together with the 

theoretical curve without FRET (dashed black curve) for normal (E-G) and tape-stripped skin (H-J). 

Vertical white lines in the images indicate the position at which the line scan was taken. Scale bars: 50 

μm. 
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3.5 Stratum corneum hydration, keratin conformation, and interactions with the 
skin lipids  

To further elucidate the interactions between HA and the SC, we investigated the effects of 

HA molecular weight and concentration on SC hydration, keratin secondary structure, and 

the lipid chain order using FTIR spectroscopy.      

SC hydration was assessed from the area under the O-H stretching absorbance (~ 2100 cm-

1) which increased significantly by water uptake [50]. Furthermore, the frequency shift of the 

amide I (~1640 cm-1) and amide II (~1565 cm-1) band absorbance maxima in the normalized 

FTIR spectrum indicated the level of hydrogen bonding of the protein amide linkages within 

the SC. The amide I band corresponded to the carbonyl-stretch of the keratin -CO-NH group. 

The stretching was more pronounced when the C=O band was involved in increased 

hydrogen bonding resulting in an absorbance at lower wavenumbers [29]. The amide II band 

reflected the amide N-H in-plane bending mode. Bending of the N-H bond becomes more 

difficult when the amide hydrogen is influenced by increased H-bonding to oxygen from 

water. This could be detected as a shift of the amide II band to higher wavenumbers [29]. 

Figure 4-4 summarizes the changes of SC hydration (calculated from increased areas under 

the O-H stretching absorbance), given as relative water content (%) of the SC, after 

incubation with different formulations (Figure SI 6). After 6 h, the SC hydration increased 

drastically for 2 %, 5 %, 10 % 5 kDa, and 5 % 100 kDa HA formulations to relative water 

contents over 200 % compared to dry skin (Figure 4-4). The evaluation of the amide I and II 

band peak shifts confirmed these findings (data not shown). HEC hydrogels were included 

for comparison but did not show significant effects.  

 

 

Figure 4-4 SC hydration expressed as relative water content within the SC (% uptake compared to dry 

SC) after 6 h incubation with water, HEC, 5 kDa, 100 kDa, and 1 MDa HA (2 %, 5 %, and 10 %, 

respectively). n = 3; mean values ± SEM, *p ≤ 0.05 compared to water treated samples. 
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Next, changes of the keratin secondary structure as a function of different HA and HEC 

formulations were assessed by FTIR. The shape of the amide I band of proteins is 

characteristic for their secondary structure. Changes in the protein conformation are reflected 

by a splitting of the amide I band at ~1650 cm-1 when random coil and α-helical structures 

convert to β-sheet structures. Changes in keratin structure, for example induced by the 

formation of β-sheet structures, can contribute to a decreased skin barrier function [32]. The 

5 kDa HA exhibited the most prominent effects (Figure 4-5 A). With increasing 

concentrations, the conversion from α-helical to β-sheet structures increased drastically from 

25 % to 60 % and even to ~ 90 %. Compared to 5 kDa HA, the other formulations (100 kDa 

HA, 1 MDa HA, and the HEC gels) showed only minor effects on the keratin structure (Figure 

4-5 B-D). Almost no changes were seen for 100 kDa HA (Figure 4-5 B). Compared to the dry 

and water treated SCs, only the 2 % sample showed significant shifts to 50 % β-sheet 

structures, whereas the 5 % and 10 % 100 kDa HA samples formed more random-coiled 

protein structures indicated by a shift of the peak from ~1648 cm-1 to 1640 cm-1.  

 

Figure 4-5 Normalized second derivative FTIR spectra of the SC keratin (amide I region at ~1650cm
-1

) 

after 6 h incubation with 5 kDa HA (A), 100 kDa HA (B), 1 MDa HA (C), and HEC (D). The formulations 

with concentrations of 2 % (dashed line), 5 % (medium dotted line) and 10 % (highly dotted line) were 

compared to dry SC (black line) and water (dotted line). 
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To gain more insight into the effects of HA on the skin lipids, we had a closer look at the 

spectral region between 3100-2700 cm-1. Changes in the intercellular lipid chain order are 

indicated by a shift of the methylene symmetric and asymmetric stretching vibrations 

(~2850.5 cm-1 and ~2920 cm-1 in dry and hydrated SC control) toward higher wavenumbers 

[30]. Besides the shift of the wavenumbers, a flattening of the IR spectra indicates an 

increase in SC hydration [32, 51]. After 6 h, the most prominent shifts of 9.7 ± 2.8 cm-1 and 

8.7 ± 1.3 cm-1 to higher wavenumbers for the symmetric CH2 stretching band were observed 

for SC samples treated with 5 % and 10 % 100 kDa HA formulations (Figure 4-6 A), 

indicating significantly higher shares of disordered lipids compared to all other SC samples.  

  

Figure 4-6 SC lipid chain orders after incubation with water, HEC, 5 kDa, 100 kDa, and 1 MDa HA (2 

%, 5 %, and 10 %, respectively). The SC lipid order is displayed as the change of the wavenumbers 

for the IR methylene symmetric (A) and asymmetric (B) stretching vibration compared to a dry SC 

control after 6 h incubation. n = 3; mean values ± SEM; * p ≤ 0.05. 

 

B

A
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The same holds true for the asymmetric CH2 stretching band (Figure 4-6 B). Here, even more 

pronounced wavenumber shifts for 100  kDa HA occurred (2.2 ± 1.3 cm-1, 16.7 ± 5.4 cm-1 and 

15.3 ± 0.7 cm-1 for 2 %, 5 %, and 10 % HA, respectively) further underlining a significant 

change in the lipid chain order. Minor effects were observed for 2 % HEC, 2 % 5 kDa HA, 

and 2 % 1 MDa HA (Figure 4-6 B). Measurements on tape-stripped SC gave the same 

results. Additionally, reference measurements showed no interactions between BSA and skin 

lipids or proteins.  

 

4. Discussion 

In this study, we compared the effect of HA on the skin penetration properties of the model 

biomacromolecule BSA in both intact and barrier deficient skin. In intact skin, absorption of 

biomacromolecules such as proteins is generally low due to their high molecular weight, 

distinct hydrophilicity and charged state [4, 5]. Up to now, only few studies describe effective 

protein delivery into the skin using nanoparticles, sonophoresis or iontophoresis [52-54].  

HA has been used for topical drug delivery repeatedly, with Solaraze® (3 % diclofenac in 2.5 

% HA) as a prominent example, which is an alternative to the common destructive surgery 

used for the treatment of actinic keratosis. Solaraze® is well-tolerated, shows good efficacy 

and exhibits less side effects compared to photodynamic or cryotherapy [22]. Brown et al. 

[14, 55] have shown that HA enhanced significantly the partitioning of diclofenac into human 

skin as well as its retention and localization in the epidermis. Twice as much diclofenac was 

delivered into the epidermis compared to an aqueous control [56]. Diclofenac, however, with 

a molecular weight of ~300 Da is a small drug compared to a biomacromolecule such as 

BSA with 66 kDa. Hence, the mechanisms by which a protein is delivered into or through the 

skin most likely differs considerably from the delivery of smaller molecules.  

Two decades ago HA was recognized as a protective vehicle for the delivery of proteins such 

as growth factors and interferon [16]. Recently, human growth hormon-HA conjugates were 

delivered through the skin into the blood stream [17]. However, the exact mechanism for 

dermal transport and an explanation for the topical delivery properties of HA still need to be 

elucidated. 
 

Intact skin. HA itself was found to penetrate into the skin in several studies [14, 17, 46]. Our 

imaging results showed a deeper skin penetration of the low molecular weight HA (5 kDa) 

compared to higher molecular weight HA (100 kDa and 1 MDa). This is in agreement with 

recent Franz diffusion cell data also showing a molecular weight dependency on HA 

penetration [46]. 

Regarding the skin absorption of BSA, it is known from the literature that this high molecular 

weight protein cannot penetrate into deeper layers of intact skin [57].  However, an enhanced 
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transport of BSA into the dermis was found when intact skin was hydrated for 4 - 10 h [57]. In 

our experiments, BSA was applied onto intact skin for 6 hours in a Franz diffusion cell. Under 

these conditions skin hydration to a certain extent is expected, which explains the small 

amounts of BSA penetration we observed in normal skin (Figure 4-1 G).  

Binding of HA to BSA is known both from biochemical [58] and physicochemical studies [59, 

60], with binding modes depending on a variety of conditions. Although BSA is overall 

negatively charged at neutral pH, it is known to bind to negative surfaces, probably due to 60 

surface lysine groups [60].  Thus, it is very likely that BSA can interact with the negatively 

charged HA under physiological conditions. The effect of HA on BSA penetration in intact 

skin can be summarized as follows: while 5 kDa HA led to a penetration enhancement of 

BSA into the viable epidermis (Figure 4-1 I) with an enhancement factor of 7.5 (Figure 4-2 A), 

no effect was observed for higher molecular weight HA. There are several hypotheses how 

HA acts as a skin penetration enhancer. Some publications discuss that HA itself penetrates 

[17, 46-48] and co-transports the drug into the skin [26]. Our FRET-FLIM experiments indeed 

revealed a close proximity between HA and BSA (Figure 4-3) under the conditions of 

penetration enhancement. Since it is known that BSA can bind to HA [58, 59], the FRET-

FLIM results and the observation that HA alone penetrated into the epidermis (Figure 4-1) 

indicated that BSA was co-transported into the epidermis by HA.  

Although our results support the theory that HA penetration and co-transport are the driving 

force of enhanced drug delivery, this does not exclude the existence of other mechanisms 

such as skin hydration or the occlusive properties of HA at higher concentrations [14]. To 

further understand the modes of HA action when applied onto skin we performed FTIR 

measurements on isolated SC sheets. Besides evaluating the effect of the different molecular 

weights of HA, we also analyzed the dependence of skin hydration, keratin structure and lipid 

organization on HA concentration.  

At higher HA concentrations and increasing molecular weight, the overall skin hydration 

capacity of the hydrogels decreased as more water was needed to equilibrate the HA gel, 

leaving less free water in the water phase [61, 62]. Our findings support these results. With 

exception of 5 kDa HA, the use of a 10 % HA gel led to lower skin hydration compared to the 

5 % hydrogels (Figure 4-4). The best hydration effects, however, were observed for 5 kDa 

formulations. Under these conditions we found enhanced BSA skin penetration in normal 

skin (Figure 4-1). Thus, skin hydration seems to be another important factor for enhanced 

protein delivery into intact skin. Since a direct interdependence between keratin structure and 

hydration exist, we also had a look at the changes of keratin structure. According to [32] the 

formulation driven keratin conversions from α-helical structure to β-sheet lead to impaired 

barrier properties and thus enhanced skin absorption of substances. Indeed, the most 

prominent structural changes were again observed following the application of 5 kDa HA 

formulations (Figure 4-5 A), in particular at the concentrations of 5 % and 10 % HA. HEC gels 
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that were used as control showed no or only minor effects compared to 5 kDa HA (Figure 4-4 

and 4-5). 

Consequentially, for enhanced protein delivery into intact skin the following picture emerged: 

Formulations containing low molecular weight HA (here 5 kDa HA) altered the SC barrier 

properties through keratin structural changes and increased skin hydration, in particular at 

higher concentrations (5 % and 10 % HA). Under these conditions (5 % 5 kDa HA) transport 

of the model protein BSA into the epidermis was observed that was absent using an aqueous 

control. Since close contact between HA and BSA molecules both in the SC and in the 

epidermis was detected, co-transport is the most plausible explanation. For the case at hand, 

a combination of HA-based skin hydration and co-transport of biomacromolecules was 

observed in conjunction with enhanced protein delivery in intact skin. 
 

Barrier deficient skin. In tape-stripped skin, however, a different picture evolved. We 

showed that proteins can penetrate into the barrier-disrupted skin (Figure 4-1 H). Similar 

effects were shown for highly hydrated skin [57]. HA alone did also penetrate deep into tape-

stripped skin. The highest concentration of HA in the skin was found for 100 kDa HA. This is 

in contrast to the HA penetration properties in intact skin (Figure 4-1 A-F). If the lipid chain 

order in the SC or interactions between HA and the skin lipids played a role was assessed by 

FTIR [29, 30, 51]. These measurements indicated a more disordered lipid organization after 

treatment with 5 % and 10 % 100 kDa HA preparations. We assume that the reduction in SC 

thickness together with a loosened and more disordered state of the SC lipids was 

responsible for better HA penetration in tape-stripped skin compared to intact skin.  

Since both HA and BSA were shown to penetrate well into the tape-stripped skin, the 

observed effect when a mixture of both molecules was applied to barrier disrupted skin was 

surprising. Here, we observed that formulations containing both HA and the protein exhibited 

penetration retardation in terms of a localized epidermal absorption of BSA in barrier 

disrupted skin. This effect was observed for all molecular weights of HA used in this study. 

So called epidermal retention effects were also described by Brown et al. [14, 55] and 

attributed to skin hydration. HA penetration into the skin and the absence of close contact 

between HA and BSA in our investigations of tape-stripped skin support an effect of skin 

hydration. However, the exact underlying mechanism leading to intraepidermal confinement 

and preventing protein penetration into deeper dermal layers remains to be elucidated.  

 

5. Conclusion 

A combination of biophysical spectroscopic and imaging methods enabled us to shed light on 

the penetration behavior of HA, topical delivery of a model protein BSA and underlying 

mechanisms. Our data substantiate the findings in the literature that low molecular weight HA 
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is able to overcome the disrupted SC. We demonstrated the penetration enhancing effects of 

5 kDa HA for the model protein BSA in intact skin. The enhancement effect was most likely 

based on an interplay of skin hydration, interaction with keratin structure and protein-HA co-

transport, aiding the transport across the SC as well as the skin absorption of HA itself. 

Moreover, we showed HA-facilitated penetration confinement resulting in a localized 

epidermal absorption (stratum corneum and viable epidermis) of proteins in barrier disrupted 

skin. Thus, HA hydrogels seem to be potential delivery systems for barrier-deficient skin.  
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Abstract  

Solid microneedles (MN) are a promising tool for dermal drug delivery. Particular focus lies 

on the field of vaccination due to pain-free, safe, hygienic and patient compliant antigen 

deposition. Diverse coating techniques and formulations have been developed to preserve 

vaccine activity and to enable targeted drug deposition in the skin. Process and long-term 

storage stability of coated MN, however, have not yet been studied in detail. Hence, a 

feasibility study was conducted determining the appropriate needle length (300 µm) for local 

intraepidermal protein delivery. Moreover, a protein-stabilizing coating formulation was 

developed. Coating of the MN resulted in protein concentrations between 10 to 23 µg, 90% 

of the bioactivity of the model protein asparaginase was maintained for 3 months. Skin 

experiments verified the intraepidermal deposition of 68.0 ± 11.7% of the coated model 

protein after single application. Slightly increased interleukin 8 levels right after MN insertion 

indicated minor skin irritation due to the mechanical piercing stress. Thus, specifically 

highlighting protein stabilization during storage, we demonstrated that selective 

intraepidermal deposition of proteins or peptides’ using solid MN is a feasible approach.   
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1. Introduction 

The application of microneedles (MN) into human skin emerged as a popular tool in both the 

cosmetic and pharmaceutical area. Used in the cosmetic sector, microneedling is effective in 

ameliorating conditions such as scars, striae, wrinkles, or dyspigmentation [1–3] since MN 

stimulate the differentiation of fibroblasts resulting in enhanced production of collagen and 

elastin fibers [2]. Besides cosmetic treatments, MN are considered useful  for dermal drug 

delivery, which is particularly appealing for drugs suffering from low skin absorption due to 

hampering physicochemical properties, such as proteins, or for compounds intended for local 

intradermal action [4,5]. Due to needle lengths in the lower micrometer range, topical 

insertion of MN do not activate the nociceptors in the skin allowing a pain free drug 

application or vaccination [5]. Consequentially, MN are widely tested for transdermal delivery 

of proteins like insulin [6,7], desmopressin [8], or the human growth hormone [9] and for 

intradermal vaccination against e.g. measles [10] or influenza [11,12]. The latter is a 

particularly attractive approach since the vaccines can be directly administered into the viable 

epidermis or dermis resulting in a strong immune response [13,14]. 

The major barrier for topically applied compounds is the stratum corneum (SC), the skin´s 

outermost layer. The application of MN enables to overcome the SC easily since the needles 

pierce the SC and generate microchannels [6,15] through which topically applied substances 

can then readily diffuse. Alternatively, the compounds can be coated onto the MN tips and 

directly introduced into the skin [5,16]. As for today, different coating techniques, formulations 

and applications are described in the literature [13,16–18]. Limited data, however, are 

available on the protein stability of coated MN and on potential skin irritation following MN 

application. The stability of coated proteins was either investigated over relatively short 

periods like days up to one month, or the potential induction of immune responses or skin 

irritation was not evaluated [8,19–22].  

Hence, the aim of this work was a comprehensive feasibility study on intradermal protein 

delivery investigating systematically the coating efficiency of stainless-steel MN, MN insertion 

and required forces, a suitable coating formulation for the model proteins bovine serum 

albumin (BSA) and the more labile L-asparaginase II (AsnB) and the establishment of an 

adequate coating method. Subsequently, the protein integrity and bioactivity directly after 

coating and after storage at 2 - 8°C, 25°C and 40°C for up to 3 month was monitored using 

specific activity assays and size exclusion chromatography (SEC). Intradermal protein 

delivery was initially investigated in excised pig skin. Moreover, total protein amounts 

delivered into the skin were determined in reconstructed human skin. Skin models are 

suitable in vitro test systems to study skin absorption of substances and skin irritation 

potential following MN insertion [23]. Hence, to assess the skin irritation potential of MN 
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insertion, the amounts of the pro-inflammatory cytokines interleukin (IL) 6 and IL-8 were 

quantified.  

 

2. Materials and Methods 

2.1 Materials 

Hyaluronic acid (HA; molecular weight: 1 MDa) was kindly provided by Shiseido Co., Ltd 

(Shizuoka, Japan). AsnB from E. coli was produced by Prof. Dr. Markus Pietzsch. The 

enzyme was isolated from frozen recombinant E. coli cells. 100 g bio wet mass were 

suspended in 1 L of buffer A (50 mM Tris-acetate buffer, pH 5.1) using an ultraturrax 

homogenizer. The cells were disintegrated by high pressure homogenization (APV 2000, 

APV Systems, Albertslund, Denmark) using four passages at a pressure of 1000 bar. The 

suspension was cooled to 4°C before and between the passages and subsequently 

centrifuged (30 min, 5000 g, Avanti J-30i, Beckman Coulter, USA) at 4°C. The pellet was 

discarded. To the supernatant (850 mL), 850 mL ethanol was added and incubated at room 

temperature for 30 min. The precipitate containing AsnB was centrifuged off and dissolved 

again in 550 mL buffer A. Afterwards, the same volume of ethanol was added to the 

supernatant to obtain a 50% (v/v) mixture. After 30 min, the precipitated AsnB was again 

collected by centrifugation and lyophilized. From 100 g bio wet mass, 2.7 g AsnB was 

obtained. The lyophilized enzyme was stored at minus 25°C. 

BSA, dimethyl sulfoxide (DMSO), rhodamine B isothiocyanate (RhB ITC), methylene blue, 

polysorbate 80, L-asparagine monohydrate, trichloracetic acid, and the buffer reagents were 

purchased from Sigma-Aldrich (Steinheim, Germany). Nessler´s reagent was obtained from 

Merck (Darmstadt, Germany).The MN arrays (56 needles, 300 µm needle length) were 

purchased from Microneedle Systems (Georgia, USA).  

For skin penetration experiments, pig skin of the flank region from “Deutsche Landrasse”, 30-

50 kg, 10-20 weeks old was used (Clinic of Swine, Ludwig-Maximilians University, Munich, 

permission no. DE 09 162 0017 X-1). Immediately after surgical removal, the excised skin 

was transferred to the laboratory. Any contact between the skin surface and the lipids of the 

subcutis was avoided. The skin was stored at -20°C for up to 6 month. Prior to use, the skin 

was thawed, gently cleaned with PBS buffer (pH 7.4) and excessive hair was removed with 

clippers. 

2.2 Assessment of Optimal Insertion Depth, Fracture and Insertion Force 

The optimal insertion force for microchannel formation and the maximum force before 

fracture of the MN array were assessed using a texture analyzer TA.XTplus (Winopal, Elze, 
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Germany). The MN arrays were mounted onto the processing arm of the TA.XTplus using 

double-sided tape and subsequently inserted into excised pig skin. To determine the 

minimum insertion force that is required to pierce the SC, the MN arrays were injected with a 

constant speed of 0.05 mm/sec. In case of skin contact, the pressure from the MN array onto 

the skin surface increases. When the MN needles finally pierce the SC, a sharp drop in the 

otherwise gradually increasing force graph can be observed [24]. To visualize the formation 

of microchannels and the insertion depth after MN insertion with varying forces (1, 3, 4, 5 N, 

and manually (~ 3 N)), skin slices (10 µm) were stained with methylene-blue (2% w/v, 15 min 

incubation time) and investigated under the light microscope (VHX-2000, Keyence, Neu-

Isenburg, Germany). To assess the MN fracture force, the MN arrays were moved against a 

flat aluminum block at a rate of 0.05 mm/sec. The data of the insertion and fracture force 

were collected and processed using TestXpert II software.  

2.3 Fluorescence Labeling of Bovine Serum Albumin (BSA) 

Fluorescence labeling of BSA was performed using RhB ITC. 1 mg/mL RhB ITC in DMSO 

was added to 6 mg/mL BSA in 0.1 M sodium bicarbonate buffer (pH 9.0) resulting in a ratio of 

1:170 (dye:protein). After 2 h stirring under light protection, the labeled protein was purified 

and concentrated using Vivaspin 20 tubes (PES membrane MWCO 30,000, Sartorius AG, 

Göttingen, Germany) and subsequently centrifuged for 45 min at 4,000 rpm at 5°C. 

Subsequently, several washing steps were performed by adding fresh PBS buffer pH 7.4 to 

remove unbound dye. The absence of free dye was confirmed by UV measurements at 541 

nm. Protein concentration (between 20-25 mg/ml) and the degree of labeling (between 0.95-

1.3) were determined according to the manufacturer protocols. The labeled proteins (BSA-

RhB ITC) were stored at -20°C until further use. 

2.4 Formulation of the Coating Solution  

An aqueous coating solution consisting of 5% (w/v) sucrose, 2% (w/v) L-phenylalanine, 1% 

(w/v) hyaluronic acid (molecular weight: 1 MDa) and 1% (w/v) model protein was prepared. 

BSA-RhB ITC and AsnB served as model proteins. The formulations were prepared 1 day 

before use and stored at 4 - 8°C. 

2.5 Dip-Coating of the MN 

First, the MN arrays were cleaned with acetone, then rinsed with water, subsequently 

immersed in 0.1% w/v polysorbate 80 in PBS pH 7.4, and air-dried at room temperature. 

Subsequently, the MN tips were coated by dipping a 26Gx ½” syringe needle (Terumo 

Europe N.V., Leuven, Belgium) connected to a 1 ml syringe filled with the coating formulation 

onto the MN, respectively (Fig. 5-1). After coating, the MN were air-dried at room 
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temperature for at least 15 minutes. For multiple coatings, the procedure was repeated twice 

or three times. 

 

 

Figure 5-1 Scheme of the syringe and needle based dip-coating method. The coating solution was 

directly applied onto the MN tips using a 26Gx ½” needle. 

 

To assess the coated protein amount, the MN were immersed in 210 µl water. Subsequently, 

the concentrations of BSA and AsnB were determined by a bicinchoninic acid (BCA) assay 

(Micro BCA™ Protein Assay Kit, Pierce Biotechnology, Illinois, USA). Therefore, 150 µl of the 

coating solution were added to 150 µl of the reaction mixture. After 2 h incubation at 37°C, 

the optical density was measured at 562 nm, blank corrected and compared with the BSA or 

AsnB standard curve.  

2.6 Determination of Protein Activity 

The bioactivity of AsnB following MN coating and drying after one, two, or three coatings was 

assessed as the specific enzyme activity [U/mg] according to published procedures [25]. 

Briefly, a mixture of 50 µl coating solution, 100 µl 50 mM Tris-HCl buffer pH 8.6 and 850 µl 10 

mM L-asparagine monohydrate in 50 mM Tris-HCl buffer pH 8.6 was incubated at 37°C for 

10 min. After adding 50 µl 1.5 M trichloracetic acid solution, 100 µl of the supernatant was 

added to 200 µl Nessler´s solution. After 10 min at 22°C, the optical density was measured at 

UV = 436 nm, compared with the standard curve and corrected for the total enzyme amount 

as determined by Micro BCA™ Protein Assay Kit. The units of activity were defined as 

micromoles of ammonia released per minute. Freshly prepared AsnB solution served for 

reference. 
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2.7 Storage Stability of the MN Coatings and Proteins 

AsnB coated MN were stored at 2-8°C, 25°C, and 40°C for 1 week, 1 month, and 3 months, 

respectively. Subsequently, AsnB activity was determined as described above (see 2.6). The 

amount of AsnB tetramer, the biologically active form, and the formation of protein 

aggregates and fragments was assessed with SEC (TSKgel® SWXL guard column 

(dimensions: 6.0 mm x 4.0 cm), TSKgel® G4000 PWXL column (dimensions: 300 x 7.8 mm, 

10 µm particle size; TOSOH Bioscience, Stuttgart), isocratic elution at 0.4 ml/min,100 mM 

Na2HPO4, 150mM NaCl, pH 7.4) with UV and fluorescence detection (UV = 280 nm, 

fluorescence = exc. 280/ em. 350 nm)). 

2.9 MN Insertion in Pig Skin and Reconstructed Human Skin 

Pig Skin: To investigate protein delivery into excised pig skin, the coated MNs were 

manually inserted and remained in the skin for 5 minutes. After withdrawal, the skin was 

punched into discs of 25 mm diameter (centering the insertion site) and frozen at - 80°C 

using Jung® tissue freezing medium (Leica Microsystems GmbH, Nussloch, Germany). 

Subsequently, cryosections (5 - 10 µm) were prepared using a Leica Cryotome CM 3050S 

(Leica Microsystems, Nussloch, Germany). For data analysis, the slices were subjected to 

normal and fluorescence microscopy (20 x magnification, BZ-8000, Keyence, Neu-Isenburg). 

The fluorescence was recovered in the red band exciting the samples at 560 nm for RhB 

ITC.  

Reconstructed Human Skin: Reconstructed human skin was generated according to 

previously published procedures [26]. On day 13 of tissue cultivation, BSA-RhB ITC coated 

MN were inserted into the skin models. After 5 minutes, the MN arrays were carefully 

removed. Afterwards, the skin models were snap-frozen in liquid nitrogen and cryosections 

(thickness: 10 µm) were prepared (see 2.9.1). 

To quantify the delivered protein amount, AsnB coated MN were inserted into the skin 

models on day 13 (single application), or on day 12 and day 13 (double application) of tissue 

cultivation. At day 14, the epidermis of the skin models was gently peeled off and AsnB was 

extracted using a TissueLyser II (Quiagen, Venlo, Netherlands). The AsnB amount was 

subsequently determined as described above (see. 2.7). 

2.10 Cytokine Release Following MN Insertion 

The secretion of the pro-inflammatory cytokines IL-6 and IL-8 was determined by an enzyme-

linked immunosorbent assay (ELISA). Therefore, 100 µl cell culture medium was sampled 

and analyzed according to standard protocols (Human IL-6 DuoSet, DY206, R&D Systems, 

Minneapolis, MN, USA; Human IL-8 ELISA Ready-Set-Go, eBioscience, Frankfurt am Main, 

Germany).  
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2.11 Statistical Analysis 

The results are presented as average values ± SD obtained from at least 3 independent 

experiments. Statistical analysis is based on a Wilcoxon-Mann-Whitney-Test; *p ≤ 0.05 

indicates a statistically significant difference. 

 

3. Results and Discussion 

3.1 Optimal Insertion Depth, Fracture and Insertion Force 

The needle geometry and material of MN arrays are important factors influencing the 

characteristics of MN insertion. To overcome the SC and penetrate the skin layers, MN need 

to be sharp, robust and need to withstand the penetration pressure subjected by the skin 

tissue. Nevertheless, the needles also should be flexible enough to compensate the skin 

elasticity and have an appropriate length to avoid pain sensation. Additionally, MN arrays 

should be applicable manually with reasonable forces without fracturing [27]. The MN arrays 

used in this feasibility study were made of stainless steel consisting of 56 needles/cm². The 

needle heads were triangularly shaped and arranged in a tip angle of 70° (Fig. 5-1). Since we 

aimed for a delivery into the epidermal skin layer, we determined the appropriate needle 

length by comparing 300 µm and 800 µm MN arrays. Controlled insertion with a speed of 

0.05 mm/sec showed that the MN are able to penetrate the SC at insertion forces of 0.88 ± 

0.01 N and 0.21 ± 0.01 N for 300 µm and 800 µm long needles, respectively (Table 5-1), 

which is in agreement with published data. Here, a general insertion force range of 0.1 to 3 N 

was found, which is low enough to enable manual application [24]. 

 

Table 5-1 Insertion force required for SC penetration at an insertion speed of 0.05 mm/sec evaluated 

for MN arrays with 300 or 800 µm needle length compared to a 26Gx ½” needle. mean values ± SD 

Needle type Insertion force  (N) ± SD* Fracture force (N)** 

MN array (300 µm) 0.88 ± 0.01 3.8 ± 0.01 

MN array (800 µm) 0.21 ± 0.01 - 

26Gx ½” needle 0.69 ± 0.04 - 

* in pig skin 

** against aluminum block 
 

Table 5-2: Insertion depth and channel count dependent on insertion force and needle length.  

MN length (µm) Force (N) Channel count Insertion depth (µm) 

300 

1 20 ± 1 88 ± 5 

3 16 ± 3 77 ± 4 

4 10 ± 1 86 ± 1 

5 20 ± 2 80 ± 3 

manual (~ 3) 20 ± 3 86 ± 2 

800 
5 30 ± 2 200 ± 4 

manual (~ 3) 30 ± 1 280 ± 5 
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Figure 5-2 Microscopic evaluation of the MN channel depth after manual insertion (insertion force ~ 3 

N) for MN arrays with a needle length of 800 µm (A) and 300 µm (B). SC= stratum corneum, E = 

Viable Epidermis, D = Dermis. bar = 50 µm 

 

Manual and automated insertion of the MN arrays resulted in insertion depths ranging from 

80 to 90 µm for the 300 µm MN array and 200 to 280 µm for the 800 µm MN arrays (Fig. 5-2, 

Table 5-2). Consequentially, the 300 µm long MN were most suitable for intraepidermal drug 

delivery given that the human epidermis has a thickness of 130 - 180 µm [28, 29]. 

Since the stability of the MN arrays is important for an injury free application, the fracture 

force was determined. In an experimental setting, where the MN arrays were subjected to 

collision with an aluminum block, the MN tips experienced deformation at a force of 3.8 ± 

0.01 N. Nevertheless, in ex-vivo experiments with pig skin, where insertion forces up to 5 N 

were applied, and no damage of the skin tissue and no differences in microchannel count or 

depth (Table 5-2) were observed. Hence, the MN arrays used in this study proved to be safe, 

which was likewise found for a similar stainless steel MN patch [30]. In addition, successful 

MN insertion also depends on individual skin thickness and elasticity [31]. Regarding the 

applied insertion force, no correlation between force and channel count was observed (Table 

5-2) and the insertion depth was hardly influenced.  

3.2 Dip-Coating, Coating Efficiency and Protein Stability 

In addition to mechanical piercing of the SC, solid MN also enable the deposition of coated 

drugs in the skin [5,16]. Here, specific formulations can be necessary to stabilize labile 

molecules such as proteins or peptides during coating procedure and storage [16,18,29]. 

Furthermore, the protein structure integrity can be challenged during storage since proteins 

are very sensitive and susceptible to degradation, unfolding, or aggregation.  

Successful MN coating also depends on drug concentration, viscosity and surface activity of 

the solution [18]. Since the MN surface often is hydrophobic and, hence, difficult to wet, it 

requires a pre-treatment with surface-active detergents [18]. Here, we immersed the MN 

arrays in a polysorbate 80 solution. To further enhance the coating yield, hyaluronic acid (1 
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MDa) was added as a viscosity enhancer. The arrangement of the needles on the MN array 

inhibited simple dip-coating since the narrow space between the needles caused capillary 

effects or micro-flows resulting in a non-localized coating of the needles. Therefore, we 

employed a modified coating technique using a 26Gx ½” syringe (Figure 5-1). By dipping the 

solution filled syringe onto each single MN tip, a uniform and localized coating was achieved 

(Figure 5-3), that could be repeated until the desired amount of protein loading was achieved.  

 

 

Figure 5-3 Coated MN tips after 1 dip coating cycle; bar = 0.25 mm 

 

As expected, the amount of protein coated on the MN steadily increased with the number of 

coatings. One dip-coating procedure resulted in 11.7 ± 1.1 µg AsnB per MN array, two 

coatings resulted in 18 ± 6.4 µg per MN array and three coatings procedure yielded 22.7 ± 

1.0 µg per MN array, respectively (Fig. 5-4).  

Protein integrity was maintained during coating: AsnB activity was 94.6 ± 2.2% after one 

coating cycle (Fig. 5-4). After the second and third coating cycle, however, the AsnB activity 

diminished to 78.7 ± 2.0 and 80.5 ± 11.0%, respectively. The maintenance of the AsnB 

activity after the coating procedure can be explained by the addition of the excipients. To 

successfully stabilize a protein that is embedded in a dry product, the product matrix needs to 

be amorphous or semi-amorphous, since a crystalline matrix state is known to de-stabilize 

proteins [21]. In this context, sucrose is a commonly used excipient [9,18]. Since the residual 

moisture also affects the product stability during storage, phenylalanine was added. 

Phenylalanine is a poorly water soluble amino acid that proofed to be effective in reducing 
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the residual moisture content of air-dried protein-containing matrices by crystallizing and 

allowing the water  to be removed from the amorphous mass [32]. 

 

 

Figure 5-4  Amount of AsnB on the MN array determined by BCA assay (white bars) and AsnB activity 

after 1 - 3 coating procedures determined by AsnB activity assay (black bars); mean ± SD. * p ≤ 0.05    

 

3.3 Storage Stability of Protein-Coated MN Arrays  

Coated MN arrays intended for pharmaceutical applications require sufficient storage 

stability. To assess the storage stability of the coating formulation, AsnB was chosen as 

model protein. In the case of physical stress, the tertiary structure of the AsnB can be 

compromised by either clustering of several AsnB tetramers (the biologically active form) to 

bigger aggregates or by separation of the tetramer into its homo-dimers, monomers or even 

smaller fragments. In both cases, the secondary products are biologically inactive [33]. 

Hence, we monitored AsnB activity and integrity over 3 month at 2-8°C, 25°C and 40°C, 

respectively. 

The AsnB tetramer amount of a freshly prepared solution was 88.6 ± 6.4% and did not 

change during 1 day storage at 25°C (Fig. 5-5A). After one week, the tetramer amount was 

reduced to 80.3 ± 6.2% (4°C), 73.2 ± 6.2% (25°C) and 76.1 ± 4.5% (40°C), respectively. 

Interestingly, no further reduction of the tetramer content was observed after 1 and 3 months 

storage (Fig. 5-5A). Independent of the storage conditions, the tetramer amount remained 

stable at approximately 75% (1 month: 74.8 ± 2.8% (4°C), 74.9 ± 7.4% (25°C) and 76.3 ± 

5.7% (40°C); 3 month: 78.0 ± 7.6% (4°C), 69.6 ± 5.3% (25°C) and 71.5 ± 1.0% (40°C)).  
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Figure 5-5: Storage stability of AsnB coated MN arrays determined as AsnB tetramer amount (A) and 

AsnB activity (B). The MN arrays were stored for 1 day, 1 week, 1 month or 3 months at 4°C (white 

bars), 25°C (black bars) and 40°C (grey bars), respectively. Mean values ± SD. * p ≤ 0.05    

 

A similar trend was observed for AsnB activity which was well in line with the loss of AsnB 

tetramers. For all three storage conditions, no significant differences in AsnB activity were 

observed. After one day, the AsnB bioactivity dropped from 99.8 ± 0.5 % (fresh formulation) 

to 94.6 ± 2.2% (MN coating). After 1 week, the activity reduced to 91.6 ± 0.3% (4 °C), 91.2 ± 

0.1% (25°C) and 91.9 ± 1.0% (40°C), respectively. Likewise the tetramer amount, the activity 

did not further decrease over storage time: 1 month: 93.6 ± 1.2% (4°C), 91.6 ± 0.1% (25°C) 

and 91.6 ± 0.0% (40°C) and 3 months: 90.5 ± 0.4% (4°C), 89.6 ± 0.3% (25°C) and 89.5 ± 

0.3% (40°C) (Fig. 5-5B). 

Our data demonstrate that the development of coating formulations, which are able to 

stabilize labile compounds, is generally feasible. We stabilized the model protein AsnB and 

maintained its structural integrity and biological activity for up to 3 months. Similar findings 
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were described by Ameri et al. who described the successful stabilization of human growth 

hormone (22 kDa) coated onto solid MN using 20% w/w sucrose and 0.2% polysorbate 20. 

After 6 months, SEC analysis revealed the maintenance of the monomer (approximately 

96%) during storage at 40°C / 75% humidity [9]. We were able to achieve similar results even 

with the larger biomacromolecule AsnB (138 kDa). Another example is the study of Choi et 

al. observing a significantly higher residual hemagglutinin activity of 40 – 50% in trehalose-

containing formulations compared to simple phosphate buffer (residual activity: 12.5%). Here, 

the addition of the viscosity enhancer carboxymethyl cellulose exhibited further stabilizing 

effects [21]. Hence, an increased viscosity seems to be beneficial for stabilization.  

3.4 Application of Protein Coated MN into Pig Skin and Reconstructed Skin 
Models 

To proof the applicability of the coated MN in terms of coating dissolution and protein 

disposition in epidermal skin layers, insertion experiments in pig skin were performed. 

Following the manual insertion of the coated MN, the MN coating dissolved within few 

minutes in the epidermal skin layers and the protein diffused homogeneously in the tissue 

around the insertion channel (Fig. 5-6). Only minor amounts of the fluorescently-labeled 

protein remained on the SC surface indicating that the coating was stable enough to 

withstand the insertion process. After MN withdrawal, only minor amounts if the coating 

remained on the MN base, whereas all the coating dissolved from the needle tip since no 

residual fluorescence was detectable. 

 

 

Figure 5-6: Fluorescence and light microscopy overlays of the BSA-RhB ITC deposition in pig skin 

after MN insertion. BSA-RhB ITC (white color) was coated onto the MN with an effective concentration 

of ~ 10 µg/ MN array. Scale bar = 50 µm 

 

To quantify protein deposition in the skin, MN were also applied into reconstructed human 

skin. Following one application of a single coated MN array (AsnB concentration ~11.7 µg), 

we recovered 8.0 ± 1.4 µg (68.0 ± 11.7%) AsnB intraepidermally (Table 5-3). Repeated 

application of coated MN did not result in significantly higher AsnB amounts in the skin:  
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following two insertions of AsnB coated MN, only 10.3 ± 3.8 µg (44.0 ± 16.1%) were 

recovered.  

Although MN are designed for a pain-free drug delivery, the mechanical disruption of the skin 

barrier can cause skin irritation [34]. Here, reconstructed human skin could be a useful tool 

since skin models are viable and respond to irritating stimuli [26,35]. Thus, to investigate 

whether MN insertion triggers inflammatory responses after intradermal application, the 

secreted of the pro-inflammatory cytokines IL-6 and IL-8 were quantified. After one MN 

insertion, IL-6 levels only marginally increased from 102.1 ± 11.8 ng/ml to 114.4 ± 20.7 ng/ml. 

A second MN insertion did not result in further IL-6 secretion (94.1 ± 18.2 ng/mL) (Fig. 5-7A). 

For IL-8, significantly higher values were measured (Fig. 5-7B). Again, the second MN 

insertion did not further stimulate IL-8 release. These data indicate that MN insertion causes 

a slight skin irritation.  

 

Figure 5-7: IL-6 and IL-8 release following the application of AsnB coated MN. Mean values ± SEM; * 

p ≤ 0.05    

 

Currently, little is known about potential side effects of repeated MN insertion especially 

when aiming for long-term use, which might be necessary for specific applications. Although 

MN application is considered a non-invasive method, repeated MN microporation may have 

an influence on the patient’s skin barrier. In few studies, the short-term effects of 

microneedling have been assessed describing local irritation and erythema minutes after the 

treatment. Nevertheless, a complete recovery of the skin barrier function and vanishing of the 

erythema after MN removal was observed, too [27,30,34].  

 

4. Conclusion  

In this feasibility study, we demonstrated that solid MN arrays are an efficient tool for 

intraepidermal delivery of proteins. By choosing the coating formulation carefully and by 
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application of a localized and product sparing coating method, reproducible MN tip coatings 

with protein concentrations between 10 to 23 µg were generated. Moreover, the protein 

activity was maintained for up to 3 months. Aiming for an intraepidermal delivery of the 

protein, MN with a needle length of 300 µm proved suitable and yielded an effective delivery 

of 68.0 ± 11.7% of the coated model protein. Following intradermal application, the coating 

formulation dissolved rapidly resulting in homogeneously distributed protein in the epidermal 

layers. Only minor skin irritation occurred.  
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Chapter 6 

Final Conclusion 

1. Dendritic PG-based nanogels with trigger-mediated protein 

release 

Concerning the dPG-based nanogels, the objective of the thesis was the implementation and 

modification of the nanogels to suit the requirements for topical and dermal drug delivery of 

sensitive biomacromolecules such as proteins, peptides and enzymes. Therefore, two 

different kinds of drug release modified dPG-based nanogels were characterized and 

investigated. In the end, their suitability as possible drug delivery vehicle for localized intra-

epidermal protein substitution of a therapeutic relevant protein (TGase 1) was to be 

evaluated.  

1.1 Acid-cleavable dPG-based nanogels for targeted protein delivery 

The focus was firstly set on the development of a protein-gentle technique for the 

manufacturing of acid-cleavable PG-based nanogels, which was done by the project partners 

from the FU Berlin (Dirk Steinhilber, Prof.Dr. Rainer Haag), and secondly the characterization 

of encapsulated and released asparaginase in terms of stability and bioactivity, which was 

part of the PhD thesis. As a surfactant free method, nanoprecipitation was for the first time 

applied to form hydrophilic dPG-based nanogel particles. The hydrated polyglycerol network 

creates a hydrophilic environment which is thought to stabilize labile enzymes and proteins 

[1–3]. With the developed preparation method, size-tunable (100 – 1000 nm) nanogels with 

high yields were obtained. The nanogels were freely dispersible in aqueous solution without 

signs of clustering or aggregation. In the past, a major concern for protein integrity during 

encapsulation was the harsh organic environment as organic solvents like acetone are 

inevitable to dissolve the polymers. In this study, inverse nanoprecipitation polymerization 

was applied to avoid damage of the labile asparaginase during encapsulation. Thus, we were 

able to obtain enzyme loaded dPG nanogels with an encapsulation yield of almost 100 %. By 

introducing a pH sensitive benzacetal group into the dPG nanogel network, the nanogels 

responded with rapid degradation to a low pH environment. This feature makes these 

nanogels highly interesting as delivery vehicles for the application in tissues, where a medical 

condition induces an acidic environment, such as inflammation and tumor tissues (pH ~ 6.0 - 

6.5), or physiological compartments where a low pH is present, like intracellular endosomes 

(pH ~5), lysosomes (pH ~4) and the SC/ skin barrier (pH ~5 - 5.5). 
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Upon the pH trigger, we confirmed immediate release of the protein payload. At pH 4 and 5, 

drug release coincided with nanogel degradation. No significant changes in protein 

secondary structure and activity were observed upon encapsulation and release at pH 5. 

1.2 Thermoresponsive dPG-based nanogels for targeted protein delivery 

In a second approach, dPG based nanogels with a different trigger mechanism were 

investigated. Working with thermoresponsive PNIPAM-dPG nanogels, we succeeded in 

incorporating bovine serum albumin and asparaginase. Loading efficiencies between 30 % 

and 70 % were achieved, depending on the molecular weight size of the used proteins. 

Unloaded nanogels underwent a decrease in size at the thermal trigger point of 33 °C, which 

is at a slightly higher temperature than for pure PNIPAM due to the hydrophilic input by the 

dPG moieties [4–6]. The shrinkage of protein loaded nanogels was less pronounced with 

protein load which presumably counteracts the shrinkage. In addition, the transition 

temperature was increased to ~35 °C as the protein further increased the hydrophilicity. As a 

temperature of ~ 33 to 35 °C in expected in the upper skin layers, the nanogels should thus 

selectively release their payload after skin application in the lower SC / upper epidermis, but 

stay stable at room temperature.  

The proteins maintained their biological activity and structure during nanogel manufacturing 

as well during freeze-thaw and storage stress of the loaded nanogels, which highlights the 

excellent stabilizing properties of the nanogel for sensitive proteins. The dermal protein 

delivery efficiency was analyzed in ex-vivo pig skin and in viable reconstructed human skin. 

The latter offered the opportunity to analyze the drug release and delivery in TGase-1-

deficient skin models that were obtained by gene knock-down in keratinocytes [7–9]. Our 

study showed that the two selected model proteins as well as the therapeutically interesting 

candidate TGase-1 were significantly enhanced in their skin deposition using the nanogels. 

Reviewing our data and considering that the nanogels themselves did not travel beyond the 

SC, we were not able to elucidate the mode of action of protein skin penetration. As our 

nanogels had a neutral surface charge, improved skin adhesion as a result of surface 

charges is unlikely [10]. In all probability, the investigated nanogels improve the skin 

penetration by interacting through their amphiphilic polymer groups with lipophilic SC parts 

[11,12]. Furthermore, the nanogels may act as penetration enhancers in terms of modulating 

and untightening the stiff SC protein and lipid organization [13]. 

Replacement therapy of underdeveloped or missing proteins and enzymes in the skin has 

emerged as a promising tool for treatment of some skin diseases like congenital ichthyoses, 

where the overall therapy options are rather poor [14]. Aiming for a restored TGase1 activity 

and a remodeling in the skin structure, especially focusing on the SC, we applied TGase1-

loaded PNIPAM-dPG nanogels on TGase-1-deficient skin models. The protein was efficiently 
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delivered locally into the epidermis. Additionally, the skin barrier function was restored as 

assessed by a skin permeability test. To conclude, we could demonstrate that the 

preparation of thermoresponsive PNIPAM-dPG nanogels is a suitable tool to incorporate and 

to deliver labile biomacromolecules locally into the viable epidermis. As the protein’s 

biological activity was maintained and the delivery of the therapeutic relevant TGase1 verified 

the feasibility of a protein substitution approach in TGase1-deficient skin conditions, these 

nanogels have great potential as dermal drug delivery vehicles. 

 

2. HA hydrogels as dermal drug delivery vehicles for proteins 

Ever since the versatile polysaccharide HA has been used in the cosmetics sector for skin 

hydration and rejuvenation, it also become important in the treatment of skin diseases like 

actinic keratosis and related secondary symptoms such as skin dryness or irritation and 

inflammation [15–18]. As HA can enhance the dermal uptake of diclofenac in actinic 

keratosis treatment, a potential beneficial effect of HA for dermal delivery of 

biomacromolecules was a further objective [15–18]. We explored the delivery capacity to 

intact and barrier-deficient skin for BSA using HA of different size and at different 

concentration. Besides the delivery yield of both HA and BSA, the focus was set on 

unraveling the mode of action of HA-facilitated delivery, as up to now no clear and 

satisfactory explanation can be found in literature. 

Low molecular weight HA (5kDa) penetrated into deeper dermal layers of intact skin as 

compared to high molecular HA species, a finding that is supported by lately published data 

[15,19,20]. In contrast, barrier impairment by tape-stripping facilitated the absorption of the 

100 kDa HA to a greater extend. Without HA, BSA only accumulated in minor fractions in 

intact skin when it was applied and incubated over a longer time range on well-hydrated skin 

samples, whereas tape-stripping enabled an easy protein penetration regardless of the 

hydration state. Combining HA and BSA, the penetration of the protein into the viable 

epidermis of intact skin could only be provided by the 5kDa HA. FRET-FLIM analysis 

revealed that the HA and BSA molecules had a close proximity, which hints to interactions 

between both molecules at physiological conditions despite their mostly negative surface 

charges [21–23]. As a result, a HA-mediated co-transport of the scarcely penetrating BSA is 

highly likely in intact skin. To our surprise, HA-BSA hydrogels tended more to a penetration 

confinement effect in barrier impaired skin localizing the BSA mainly into the viable 

epidermis. Here, no interaction between HA and BSA was observed by FRET-FLIM. Given 

that HA shows good penetration yields and other publications observed similar retention 

effects and hypothesized underlying hydration-related contributions [15,17], it is possible that 

skin hydration may be the driving factor.  
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Concluding, FRET-FLIM results suggest an HA accompanied co-transport of the model 

protein into intact skin and revealed the easy accessibility of barrier disrupted skin for both 

HA and protein. Nevertheless, we saw that further driving forces contribute to skin 

penetration. Diverse previous studies demonstrated enhanced delivery of actives in the 

presence of HA, the delivery of HA-active conjugates or even the penetration of HA itself 

based on concepts like penetration enhancer properties or co-transportation, yet a distinct 

mode-of-action therefor could not be identified [19,20,24,25]. Hence, we included a closer 

look on the HA-skin interactions using isolated SC sheets and FTIR analysis. 

As most proteins are hydrophilic and encounter penetration problems in intact skin due to the 

high extend of lipophilic moieties, increasing the water content in the SC might serve as an 

option for improved penetration results. After application, HA hydrogels create an occlusive 

film on the skin surface, which contributes to an increase in skin hydration. Depending on the 

HA molecular size and concentration, the hydration capacity of the SC sheet competed with 

the HA gel equilibration, as was seen by a decrease in skin hydration with HA concentrations 

exceeding 5%. Hydration of the SC was pronounced for gels with low molecular weight HA (5 

kDa). With these formulations we observed the anticipated enhanced BSA penetration into 

intact skin. Skin hydration is accompanied by structural changes in the skin´s keratins [26]. 

This could be demonstrated for SC sheets, especially when incubated with low molecular 

weight HA and at higher HA concentrations (5-10 %). Those also showed the best skin 

penetration properties. This change in keratin structure may contribute to a weakened skin 

barrier and as a result may facilitate a better skin penetration. Another way to impair the 

barrier and enhance penetration is the alteration of the skin lipid organization. Regardless of 

being intact or tape-stripped, we observed significantly less lipid rigidity after application of 

100 kDa HA at higher concentrations. 

Thus, HA, especially the low to medium molecular weight forms formulated at more than 5 % 

has a beneficial effect on the skin partitioning of topically applied proteins in both intact and 

barrier deficient skin. Although the exact mechanism could not be clarified, the data obtained 

with FRET-FLIM and FT-IR strongly suggest the theory of a HA-mediated co-transport of the 

protein. In addition, the protein penetration is further facilitated by more hydrophilic 

environment due to SC hydration and by an interference with the skin lipid organization and 

keratin structure. The observed penetration confinement in barrier impaired skin, however, 

could not be explained.  

 

3. Solid MN arrays for the intra-epidermal delivery of proteins 

Over the last decades, solid stainless steel MN arrays became interesting devices for topical 

delivery systems for vaccines, pain medication and hormones. We aimed for a feasibility test 
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of the use of solid MN arrays for dermal protein delivery. As literature scarcely describes 

coating formulation development with regard to process and storage stability we had a closer 

look at this aspect. Not only should MNs be of a robust, inert and sharp construction to 

smoothly insert into skin, but they also need to come with an easy handling and minimal pain. 

Comparing needles of 300 µm and 800 µm length, MN arrays with 300 µm needles were 

most suitable to locally target the epidermis resulting in punctures of 80 to 90 µm depth 

(epidermis thickness130 - 180 µm) [27,28]. The manual insertion with reasonable force 

resulted in reproducible channel depth and count which is prerequisite for a reproducible 

drug delivery.  

A biocompatible coating which stabilizes the protein drug is inevitable for a successful drug 

delivery as proteins are generally very sensitive towards external stress factors like heat, 

moisture or oxygen leading to unfolding, aggregation and degradations. Hence, the stabilizer 

sucrose was added that provides an amorphous matrix for the proteins [29–31]. By adding 

phenylalanine, the residual moisture content in the final dry coatings can kept low which is 

beneficial for protein stability [30]. Polysorbate 80 was added to prevent the protein drug from 

surface induced aggregation and to reduce the surface tension for improved wetting of the 

MN during the coating process [32]. In addition, 1 MDa HA served as viscosity enhancer to 

increase the coating efficiency on the MN tips. With an in-house developed manual coating 

technique, we were able to yield ~ 12 µg for single coated arrays, ~18 µg for twice and ~ 

23µg for tree-times coated MN arrays without loss of protein bioactivity. Despite the protein 

stabilizing excipients in the coating formulation, the coated MNs are presumably still 

susceptible to environmental stress factors like humidity and oxygen. As the coating needs to 

ensure the maintenance of the protein activity over a longer storage time, a 3 month stability 

study at 2-8°C, 25°C and 40°C was executed and the biological activity of asparaginase as 

well as the tetramer amount, the biologically active species, was monitored. The tetramer 

contend stayed stable at ~ 75 % for all storage conditions (naive state: 89 % tetramer 

content). Likewise, the biological activity remained high during the 3 month of storage 

independent of the storage temperature with an overall activity of ~92 % (naive state: 99.8 % 

activity). Hence, it is possible to prepare a MN array with coating which provides adequate 

protein dosing and stability for medical treatment.  

The coated MN arrays were furthermore manually assessed for application to pig and 

reconstructed skin. Shortly after the insertion, the coatings evenly dissolved and distributed 

the model proteins in the tissue around the insertion sides in both skin models. Only minor 

residues were left on the MN arrays, mainly on areas where the coating was not precisely 

placed on the needles themselves but spread to the MN base as well. This phenomenon 

might be prevented by coating the MN with an automated process which was beyond in the 

scope of the thesis. Protein quantification in reconstructed skin yielded delivery 68.0 ± 11.7% 
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(8.0 ± 1.4 µg / 4.7 µg per cm²) of the loaded model protein asparaginase for single coated 

MN arrays which is similar to other published data [33–35]. 

In contrast to vaccination, where immunization can be obtained after one MN application, the 

use of MN in skin disease treatment will most likely comprise repeated applications to the 

same skin area. Consequently, irritation effects, as described in literature [36–38], due to 

application of our MN arrays were examined in this study via the secretion of the pro-

inflammatory cytokines IL-6 and IL-8 from the viable epidermis into the culture medium. The 

data indicated that a first MN application led to slight skin irritation, but a second insertion did 

not result in a further increase of the IL levels. Thus, close follow-ups by trained physicians 

and disinfection may be crucial to avoid infections and the development of scarified skin 

tissue in a possible treatment of skin diseases with MN arrays [39].  

 

4. Prospects 

Although the dPG-based nanogels turned out to be promising vehicles for dermal drug 

delivery of labile biomacromolecules, especially in barrier impaired skin, further studies are 

necessary. Starting with the acid-cleavable nanogels, we succeeded in generating nanogels 

that offer a quick protein release at a physiologically useful pH. Bioactivity and structural 

integrity of the protein payload were maintained. Skin penetration experiments need to follow, 

as these nanogels are not yet characterized for in-vitro or ex-vivo skin delivery. Adequate 

skin models need to be chosen, as for example ex vivo pig skin may no longer exhibit the 

physiologically occurring skin pH of 5.5 due to cleaning or freezing steps. The use of 

reconstructed skin may be preferred. Overall, future work needs to focus on the long-term 

stability of the nanogels. It is necessary to evaluate the benefits of adding stabilizers to 

facilitate longer shelf-lives. In aqueous solution, the probability of deterioration and nanogel 

clustering is high. Therefore, freeze-drying could be a valuable option. To unravel the mode 

of action of the dPG nanogels, FRET-FLIM as well as FT-IR measurements could be 

valuable tools.  

Although HA hydrogels successfully delivered loaded model proteins into barrier-disrupted 

skin, further studies need to be performed to close the gap in understanding the mode of 

action of HA in the SC and the upper skin, focusing especially on the penetration retardation 

in barrier–impaired skin. As an addition, mixtures of 5kDa and 100 kDa could be investigated 

to combine all skin barrier altering effects for a potential increase in delivery efficiency. 

Finally, the effectiveness of HA hydrogels as dermal protein delivery vehicles in skin disease 

adapted skin models with therapeutically relevant proteins should be tested. 

MN arrays are very versatile devices for localized and systemically delivery of low and high 

molecular weight drugs. The coating formulations developed in this thesis provided promising 
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storage stability and quick release of the loaded proteins after insertion in the skin. However, 

the coating technique and the resulting applied protein concentration should be further 

improved to yield even and more reproducible delivery of higher protein payloads. 

Subsequently, as proof of concept these proteins coated MN arrays need to be applied to 

diseased skin models to study whether the skin barrier at the insertion site or in the whole 

model is restored. When the distribution of the dissolved coating and thus the proteins is 

insufficient, a switch to dermal rollers for narrow and repeated skin piercing might be an 

option. 
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Chapter 7 

Summary 

Local and targeted delivery of labile biomacromolecules, such as proteins, peptides, and 

enzymes, is of high interest and needs to take the well-known instability and delivery 

problems of these APIs into account. To offer new options for local and targeted 

intraepidermal and dermal drug delivery, the goal of the thesis was the development, 

investigation and characterization of promising delivery devices and vehicles. Efficient protein 

delivery into the skin may enable a substitution therapy approach of skin diseases like atopic 

dermatitis which come along with a lack of certain structural proteins. 

For the first time, dPG-based nanogels were investigated for their suitability to encapsulate 

and release proteins. Using two different types of release trigger mechanisms, we succeeded 

in developing biocompatible dPG nanogels with high protein load. Acidic-cleavable and 

thermoresponsive nanogels offered mild encapsulation conditions, where proteins were kept 

intact without activity loss during manufacturing and after the triggered release. Furthermore, 

the thermoresponsive PNIPAM-dPG nanogels were able to deliver TGase1 locally to the 

epidermis of TGase-1-deficient skin models. Here, the restoration of a normal skin barrier 

function was observed, which verifies their feasibility in delivering therapeutically relevant 

concentrations into diseased skin. 

The very versatile polysaccharide HA was investigated for its beneficial effects on the 

enhanced dermal delivery of low molecular weight drugs in the past. Successful topical 

delivery of biomacromolecules using HA gels was demonstrated using FRET-FLIM and FT-

IR analysis. Substantiating literature findings on HA skin penetration, we observed enhanced 

BSA delivery to intact skin with 5 kDa HA, presumably as a result of protein-HA co-transport 

supported by SC hydration as well as keratin and lipid structure interactions. In barrier-

disrupted skin, we observed a localized penetration confinement of the protein to the 

epidermis, which could not be unraveled so far, but demonstrates the supposedly great 

potential of HA in dermal drug delivery. 

Finally, solid stainless steel MN arrays were characterized and analyzed for their feasibility to 

locally deliver proteins. 300 µm long MN arrays were coated with an optimized aqueous 

protein formulation and technique to yield up to 68 % of the protein payload (8.0 ± 1.4 mg per 

skin model / 4.7 ± 0.8 mg/cm²) in the skin tissue after dissolution. The coated protein was 

stable up to 3 month storage without loss of activity and integrity. Following MN repeated 

insertions, reconstructed skin showed minor increases in interleukin levels, which indicates a 

slight but not critical skin irritation.  
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Annex 

 

1. Biodegradable dendritic polyglycerol nanogels for encapsulation 

and release of pharmaceutical biomacromolecules 

1.1 Experimental section – general considerations 

All moisture sensitive reactions were carried out in flame-dried glass-ware under a positive 

argon pressure. Organic solvents were removed using a rotary evaporator and is referred as 

concentrated in vacuo. 1H NMR and 13C NMR spectra were recorded on a Bruker ECX 400 

spectrometer (400 and 100 MHz for 1H and 13C respectively), at 25 °C using deuterated 

water, acetone, and chloroform as solvent. UV/Vis spectra were recorded on a Scinco S-

3100 UV/Vis spectrometer. Fluorescence spectra were recorded on a Jasco FP-6500 

fluorometer. Optical microscopy measurements were performed and micrographs were 

recorded on a Zeiss Axioskop microscope. Melting points were determined using a Büchi 510 

melting point apparatus. Transmission electron microscopy samples were prepared on 

carbon coated copper grids by blotting samples in 1% aqueous phosphotungstic acid and 

visualizing them with a Philips CM12 electron microscope.  

1.2 Materials 

Anhydrous solvents were purchased as “extra dry” from either Acros or Aldrich and used as 

received, or taken from MBraun MB SPS-800 solvent purification system. Trizma 

hydrochloride (Tris-HCl pH 8.6), trichloracetic acid and L-asparagine monohydrate CuOAc, 

trimethylorthoformate, NaHCO3, anhydrous N-Methyl-Pyrolidone (NMP), sodium ascorbate 

(NaAsc), CuSO4, dialysis tubes (2 kDa cut-off), and p-toluenesulfonic acid (PTSA) were 

purchased from Sigma-Aldrich (Steinheim, Germany). Dry PTSA was obtained by Dean 

Stark distillation from toluene. The anhydrous PTSA was stored in a NMP stock solution. 

Aqueous ammonia (25 wt%) was obtained from ROTH. Ammonium sulfate and Nesslers 

Reagent were purchased from Merck (Darmstadt, Germany). Recombinant L-asparaginase II 

derived from E.choli (95% pure) was a gift from Prof. Dr. Markus Pietzsch, Martin-Luther 

University Halle-Wittenberg. dPG with a number average molecular weight (Mn) of 5 kDa and 

a weight average molecular weight (Mw) of 7.7 kDa (dPG7.7) was prepared as reported 

previously [1]. THPTA [2], and dPG7.7 Heptaazide (dPG7.7[N3]7) [3] and alkyne modified 

rhodamin B [4] have been prepared according to literature procedures.  
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1.3 Synthetic procedures 

1.3.1 Preparation of p-propargyloxy-benzaldehyde (pPBA) 

In a 100 ml two-necked flask with drop funnel and magnetic stirrer 4-hydroxybenzaldehyde 

(pHBA) (2.00 g, 16.38 mmol) was dissolved in acetone (50 ml). K2CO3 (15.15 g, 109.62 

mmol) was added and the suspension was stirred for 30 min under reflux. After the solution 

cooled down to RT propargylbromide (2.12 ml, 19.10 mmol) was added over 2.5 h.  Then the 

suspension was heated to reflux for 1.5 h. The suspension was filtrated and the solvent of 

the filtrate was evaporated in vacuo. DCM (50 ml) was added and the organic phase was 

washed twice with 1 M NaOH (20 ml) and once with water (20 ml). The organic phase was 

dried over MgSO4. The crude product was recrystallized from toluene three times to obtain a 

white crystalline solid. (Full conversion, yield: 91 %). 

1H NMR (400 MHz, CDCl3, 25 °C): 1H NMR (CDCl3, 400 MHz): d (ppm) = 9.90 (s, 1H, 

aldehyde-H), 7.93-7.68 (m, 2H, aromatic), 7.14-6.91 (m, 2H, aromatic), 4.77 (d, 2H, 

benzaldehyd-O-

162.2, 131.8, 130.4, 115.0, 77.4, 76.3, 55.8. ppm; IR: 3206, 2749, 2360, 2121, 1677, 1600, 

1573, 1505, 1454, 1426, 1395, 1378, 1314, 1300, 1247, 1237, 1213, 1166, 1107, 1006, 968, 

860, 808, 792, 762, 658, 651  = cm-1; EIMS (40 °C) found for C16H28O6 (calcd. 160.05): 

m/z experimentally found: 160.7. Melting point: 81 °C.  

1.3.2 Preparation of p-propargyloxy-benzdimethylacetale (pPBDMA) 

pPBA (1g, 6.29 mmol) was dissolved in trimethyl orthoformate (10 mL) and dry  LiBF4 (108 

mg, 1.16 mmol) was added. The reaction was heated at 65 °C for 1h and quenched by 

addition of saturated NaHCO3 solution (25 mL). The mixture was extracted 3 times by 

ethylacetate (25 mL) and the fractions were combined and dried over Na2SO4. Ethylacetate 

was evaporated and pPBDMA was obtained as yellow oil (full conversion, yield 90 %). 1H 

35-7.33 (m, 2H, aromatic), 6.98-6.95 (m, 2H, 

aromatic), 5.33 (s, 1H, benzacetal) 4.72-4.71 (d, 2H, benz-O-CH2), 3.29 (s, 6H, O-CH3), 

80.7, 78.0, 58.2, 53.6 ppm; IR: 3288, 2936, 2829, 1611, 1588, 1509, 1446, 1351, 1302, 

1216, 1171, 1098, 1048, 980, 823  =  cm-1; EIMS (40 °C) found for C16H28O6 (calc 206.1): 

Experimental value m/z: 206.35. 

1.3.3 Preparation of fluorescent nanogels  

dPG7.7[N3]7 (7mg, 0.79 µmol) and alkyne modified rhodamine B (0.03 mg, 0.06 µmol) was 

dissolved separately in Milli-Q-water (0.05 mL). THPTA (500 µg, 1.15 µmol), CuSO4 (72 µg 

,0.3 µmol), and NaAsc (228 µg, 1.15 µmol) were added exactly in this sequence to the 

solution. After 12 h (complete conversion was confirmed by IR) additional Milli-Q-Water was 
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added (0.45 mL). dPG7.7-10-p-PBDMA (5 mg, 0.6 µmol) was also dissolved in Milli-Q-Water. 

The solutions were cooled down to 4 °C, mixed, and added quickly to magnetically stirred 

acetone (20 mL). Precipitated polyglycerol nanoparticles were obtained as blue shining 

dispersions and the particle size was determined by DLS (table 1). After 3 h the reaction was 

quenched by the addition of excess propargylalcohol (50 mg, 893 µmol). After 12 h Milli-Q-

water (20 mL) was added and acetone was evaporated to obtain blue shining nanogel 

dispersions in water. The nanogels were collected by centrifugation (4000 rpm) and washed 

5 times with Milli-Q-water. The nanogels were characterized by DLS (table 1) optical and 

fluorescence microscopy. 

1.3.4 GPC characterization of dPG7.7-10- p-PBDMA 

Molecular weight distributions were determined by size exclusion chromatography coupled to 

a refraction index detector to obtain the complete distribution (Mn, Mp, Mw, DI). 

Measurements were performed under highly diluted conditions (10 mg / mL, injected volume 

20 μL) from a SEC consisting of an Agilent 1100 solvent delivery system with dosing pump, 

manual injector, and an Agilent 1100 differential refractometer. Three 30 cm columns (PSS 

SUPREMA, 5 μm particle size) were used to separate polymer samples using water at a flow 

rate of 1.0 mL/min. The columns were operated at room temperature and the differential 

refractometer at 50 °C. WinGPC Unity from PSS was used for data acquirement and 

interpretation. 

1.3.5 Dynamic light scattering measurements 

Dynamic light scattering measurements were performed on a Malvern Zeta-sizer Nano-ZS 

ZEN 3600 instrument equipped with a He-Ne laser (633 nm) and a fixed detector oriented at 

173°. Nanogel dispersions (0.5 mL, 0.5 mg/mL) were analyzed in quartz fluorescence 

cuvettes with a round aperture. The autocorrelation functions of backscattered light were 

analyzed using the Zetasizer DTS software from Malvern to determine the size distribution by 

intensity and the polydispersity index. The measurements were performed at 25 °C in 

acetone or water, equilibrating the system at this temperature for 120 s. Measurements were 

performed in triplicate with the error given as standard deviation from the mean value. 

1.3.6 Circular dichroism (CD) measurements 

All CD measurements were performed on a Jasco-J810 spectropolarimeter by the use of 1 

mm path-length cuvette at 20 °C (Jasco PTC-348 WI peltier thermostat). CD spectra were 

the average of 4 scans obtained by the collection of data from 190 to 240 nm with a 1 nm 

interval on 50 nm per minute. 
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1.4 Figures 

1.4.1 NMR spectra 

 
Figure S1 1H NMR (CDCl3, 400 MHz) p-propargyloxy-benzaldehyde (pPBA). 

 
Figure S2 13C NMR (CDCl3, 400 MHz) p-propargyloxy-benzaldehyde (pPBA). 

 
Figure S3 1H NMR (CD3OD, 400 MHz) p-propargyloxy-benzdimethylacetale (pPBDMA). 
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Figure S4 13C NMR (CD3OD, 400 MHz) p-propargyloxy-benzdimethylacetale (pPBDMA). 

 

Figure S5 1H NMR (CD3OD, 400 MHz) dPG7.7-10-p-propargyloxy-benzacetale. 

 

1.4.2 Asparaginase release measured by HPLC 

L-asparaginase can be determined quantitatively and qualitatively via HPLC analysis 

without interference with polyglycerol fragments. Chromatograms of the intact, 

asparaginase-loaded nanogel showed that the encapsulation efficiency is 100%, as 

no free L-asparaginase II was detected. The asparaginase activity assay of the intact 

and loaded PG nanogel gave an enzyme activity of 44.5%. The activity is related to 

asparaginase molecules located at the surface of PG nanogel particles, as no free L-

asparaginase II was detectable. The release study verified the pH dependent 

degradation / release of the PG nanogels. 100% drug release was obtained at pH 4 

after 3 days. At pH 5, particle degradation and drug release was slower. 
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Figure S6 HPLC chromatogram – UV detection at 280 nm; blue line: PG Nanogel; red line: 

PGNanogel intact spiked with L-asparaginase 1 mg/mL 

 

 

Figure S7 HPLC chromatogram – fluorescence detection at 348 nm; blue line: asparaginase-loaded 

nanogel intact; red line: nanogel intact spiked with L-asparaginase 1 mg/mL. 

1.4.3 Circular dichroism spectra of proteins  

 

Figure S8 CD spectra of fresh BSA in water (lower line) and released BSA (upper line) 
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Figure S9 CD spectra of fresh lysozyme in water (lower line) and released lysozyme. 

 

Figure S10 CD spectra of fresh IgG (c), released IgG (b), and antibody precipitated without stabilizing 

dPG (a). 

 

2. Thermosensitive dendritic polyglycerol-based nanogels for 

cutaneous delivery of biomacromolecules 

2.1 Materials 

The chemicals were used as purchased: N-isopropylacrylamide (NIPAM), acryloyl chloride 

(Ac, 96 %), ammonium persulphate (APS, 98 %), N,N,N',N'-tetramethylenethylendiamine 

(TEMED, 99 %), bovine serum albumin (BSA), sodium chloride (NaCl), L-asparagin 

monohydrate, trichloracetic acid, Nessler´s solution, Igepal® CA-630, the buffer substances, 

and rhodamine B isothiocyanate (RhB-ITC) were purchased from Sigma-Aldrich Corporation, 

Taufkirchen, Germany. Extra dry dimethylformamide (DMF, 99.8 %), dimethyl sulfoxide 

(DMSO), triethylamine (TEA), and sodium dodecyl sulphate (SDS, 98 %) and the Micro 

BCA™ Protein Assay Kit were obtained from Fisher Scientific GmbH, Schwerte, Germany. 

N-methylisatoic anhydride was purchased from Molecular Probes®, Invitrogen, Darmstadt, 
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Germany. Human TGase-1 was purchased from Zedira, Darmstadt, Germany, 1,2,6,7- ³H-

testosterone was obtained from Amersham, Glattbrugg, Switzerland. 

2.2 Synthesis and fluorescence labeling of acrylated dPG (dPG-Ac 5 %) 

dPG with an average Mw of 10 kDa (PDI 1.3) was synthesized according to previously 

reported methodologies 32. The dPG was dried overnight under vacuum prior to the 

acrylation reaction. A solution of acryloyl chloride (0.65 mmol, 52 μL) in dry DMF (1 mL) was 

added drop wise to a stirred solution of dPG (1 g, 10 kDa, 13.51 mmol OH equivalent) and 

TEA (1.08 mmol, 150 μL) in DMF (7 mL) at 0 ºC. The reaction mixture was stirred at room 

temperature for at least 4 h and subsequently purified by dialysis (MWCO 2000) in water for 

at least 48 h. The dPG-Ac with a yield of 90 % was preferably used directly after purification. 

Otherwise the product was stored in dark at room temperature in the presence of p-

methoxyphenol, which was dialyzed out before usage. 1H-NMR spectra were recorded with a 

Bruker DRX 500 MHz instrument. D2O was used as the deuterated solvent. Chemical shifts 

δ are given in ppm relative to TMS as an internal standard or relative to the resonance of the 

solvent (1H-NMR: D2O:  = 4.79 ppm). 1H-NMR (500 MHz, D2O), δ: 3.20 – 4.30 (m, 5 H, 

dPG scaffold protons), 5.88 – 6.00 (m, 1H, vinyl), 6.08 – 6.28 (m, 1H, vinyl), 6.32 – 6.44 (m, 

1H, vinyl).  

Alternatively, dPG was labeled with N-methylanthraniloyl group (MANT) before the acrylation 

reaction. This method is a modification of a previously described synthesis of fluorescent 

polysaccharide 33. 50 mg of dPG (20 mg mL-1) in milliQ water was adjusted to 50 % 

dimethyl sulfoxide (DMSO) (v/v). A stock solution of 10–20 mg ml-1 high-purity N-

methylisatoic anhydride (MIA) (w/v) in neat DMSO was prepared by vortexing. This stock 

solution was used immediately. The MIA stock solution is added to the polymer solution, 

mixed thoroughly, and incubated at room temperature overnight. The successful labeling 

reaction was probed by thin layer chromatography, 2-propanol/ammonium hydroxide/water, 

(6:3:1) was used to separate free hydrolyzed reagent from the MANT-labeled polymer. The 

fluorescent compounds were detected on the plate by excitation with long-wave ultraviolet 

(366 nm) light. The label dPG was further purified by dialysis against water for 48 h. 

2.3 Skin penetration tests 

The pig skin was punched to 1.5 cm discs, and mounted onto static-type Franz cells 

(diameter 15 mm, volume 12 ml, 1.72 cm² application area, PermeGear Inc., Bethlehem, PA, 

USA) filled with phosphate buffered saline pH 7.4 (PBS). After 30 min equilibration, 200 µL of 

the test formulations (350 µg cm-²) were applied onto the skin surface. A temperature ramp 

of 32 °C - 37 °C was applied during incubation to mimic the temperature gradient in native 

skin. After 6 h, the skin was dismounted and excessive formulation was gently removed. For 
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data analysis, 5 µm skin sections were prepared by cutting from the dermis to the stratum 

corneum (SC). The cross-sections were subjected to normal light and fluorescence 

microscopy (100 and 200x magnification, BZ-8100, Keyence, Neu-Isenburg) and the 

fluorescence of RhB ITC (filter setting: exc. 560/40 nm, em. 630/60 nm) and MANT-labeled 

nanogels (filter setting: exc. 360/40 nm, em. 460/50 nm) were detected. The exposure time 

was set to values, where no auto-fluorescence of the skin was detectable. The pixel 

brightness was assessed as arbitrary brightness units (ABU) using the image analysis 

software BZ Analyzer 3 .  

2.4 Figures 

 

Figure S1 The amount of free BSA-RhB ITC was determined after 0 min (white bars), 5 min (light grey 

bars), 15 min (grey bars), 30 min (dark grey bars), 1 h (black bars), and 4 h (shaded bars) following 

incubations at 25 °C, 32 °C, and 37 °C, respectively. n=3, mean ± SD. 

 

Figure S2 Protein species distribution of Asp loaded onto nanogels and free Asp in an aqueous 

following 4 freeze-thaw cycles: tetramer (black bars), aggregates (white bars), and fragments (grey 

bars). n = 3, mean ± SD. *p < 0.05. 
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Figure S3 Protein species distribution of asparaginase (Asp) loaded onto nanogels and free Asp in an 

aqueous solution after 2 weeks and 4 weeks of storage at 25 °C: tetramers (black bars), aggregates 

(white bars), and fragments (grey bars).  n = 3, mean ± SD, * p < 0.05. 

 

 

Figure S4 Skin absorption of BSA-RhB ITC in normal (A-C) and tape-stripped (D-F) pig skin following 

the application of BSA-RhB ITC solution (A, D), BSA-RhB ITC loaded PNIPAM-dPG nanogels (B, E), 

and PNIPAM-dPG nanogel spiked with free BSA-RhB ITC (C, F). Scale bar = 50 µm. 

 

Table S1: BSA-RhB-ITC content in the SC and viable epidermis following the application of BSA-RhB 

ITC solution, PNIPAM-dPG nanogels spiked with free BSA-RhB ITC, and BSA-RhB ITC loaded 

PNIPAM-dPG nanogels depicted as arbitrary pixel brightness units (ABU). n=3 donor 

  SC ± SD [ABU] Viable Epidermis ± SD [ABU] 

N
o

rm
a
l 

s
k
in

 

BSA-RhB ITC solution 154.1 ± 6.8 0 

BSA-RhB ITC loaded nanogel 125.0 ± 13.5 0 

nanogel spiked with 3 mg mL
-1
 free BSA-RhB ITC 118.8 ± 9.5 0 

T
a

p
e
-

s
tr

ip
p

e
d

 

s
k
in

 

BSA-RhB ITC solution 151.5 ± 11.9 5.8 ± 0.7 

BSA-RhB ITC loaded nanogel 202.1 ± 7.6 23.6 ± 2.3 

nanogel spiked with 3 mg mL
-1
 free BSA-RhB ITC 140.5 ± 11.9 4.6 ± 2.3 
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3. Interactions of Hyaluronic Acid with the Skin and Implications for 

the Dermal Delivery of Biomacromolecules 

3.1 Figures 

 

Figure SI 1 Spectral characteristic of HA-MANT and BSA-RhB samples. (A) Absorption spectra, 

shown as solid line, and emission spectra, depicted as dashed lines, of HA-MANT samples (5 kDa, 

100 kDa, 1 MDa). For comparison the absorption spectrum of MIA is also shown. (B) Absorption 

spectra, shown as solid line, and emission spectra, depicted as dashed lines, for BSA-RhB and RhB. 

 

Figure SI 2 Fluorescence lifetime decay curves of BSA-RhB in the respective skin regions as shown in 

Figure 1. The BSA-RhB fluorescence lifetime decay curve (upper line) was observed in both normal 

and tape-stripped skin, while the decay curve (lower line) was only observed in tape-stripped skin 

      

Figure SI 3 Overlays of false color coded FLIM images and bright field images for BSA-RhB 

penetration into normal skin (A,C,E,G) and tape-stripped skin (B,D,F,H). Scale bars represent 100 µm. 
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Figure SI 4 Normalized FT-IR spectra of incubated SC samples (6h incubation; 5% 5 kDa HA, 2% 1 

MDa HA, 2% HEC, 5% 100 kDa HA) versus the corresponding plain hydrogel controls (5% 5 kDa HA, 

5% 100 kDa HA, 1% 1 MDa HA and 1% HEC,) recorded in the amide I and II region between 1700-

1500 cm
-1

. mean values of n=3 

 

Figure SI 5 Normalized FT-IR spectra of incubated SC samples (6h incubation; 5% 5 kDa HA, 2% 1 

MDa HA, 2% HEC, 5% 100 kDa HA) versus the corresponding plain hydrogel controls (5% 5 kDa HA, 

5% 100 kDa HA, 1% 1 MDa HA and 1% HEC) recorded in the CH stretching region between 3000-

2800 cm
-1

. mean values of n=3 

 

Figure SI 6 Normalized FT-IR spectra of incubated SC samples (6h incubation) recorded in the OH 

stretching region between 2500-1800 cm
-1

. mean values of n=3 
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