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Abstract

The human organism is permanently exposed to various environmental factors, which
influence its performance, e.g. climatic conditions, nutrition intake behavior or air quality.
This thesis focuses on the human exposure to particulate matter.
The “Augsburger Umweltstudie” (2007–2008) was conducted at the KORA study center

in Augsburg and aimed at the investigation of the association between particulate matter
and human health. An accompanying validation study was conducted in 2011 in order to
collect information about the errors in the measurement of particulate matter.
The complexity of these errors arises from different data sources: 1.) The usage of

population-specific exposure measurements, e.g. from one or several fixed site measure-
ment stations, instead of personal measurements involves a Berkson type error. The
deviations between personal and populations–specific measurements are driven by the
microenvironment of the person and the climatic conditions. In the first part of the work,
a two–level exposure model is developed for the association between the fixed–site and the
personal exposure measurements of the validation study including the selection of rele-
vant covariates and the appropriate consideration of categorical covariates in the analysis
of longitudinal data. 2.) The mobile devices used for personal exposure measurements
exhibit classical measurement error, which is partially device–specific and autocorrelated.
3.) In order to use as much information as possible missing personal exposure measure-
ments are filled in with population–specific exposure measurements resulting in a mixture
of Berkson and classical measurement error.
The second part of the work aims at the development and application of methods to

include knowledge about Berkson, classical and mixture error into regression models of
the health outcome. Therefore, the method–of–moments is extended to longitudinal data
and to the different types of errors with individual–specific and autocorrelated structures.
Validation studies and expert knowledge provide information about the size of the mea-

surement error, but prior knowledge is often afflicted with uncertainty. Approaches for
the adequate inclusion of prior knowledge about the measurement errors in the Bayesian
health outcome model are evaluated in the third part of the thesis. The role of prior
knowledge in regression models with an error–prone covariate differs from conventional
Bayesian regression models and is strongly affected by the interaction between the pa-
rameters in the model.
The thesis is closed with the application of the developed method–of–moments and

Bayesian approach to the Augsburger Umweltstudie by integrating information from the
validation studies.
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Zusammenfassung

Der menschliche Organismus wird ständig durch verschiedene Umwelteinflüsse, wie kli-
matische Bedingungen, Gewohnheiten bei der Nahrungsaufnahme oder Luftqualität, be-
lastet, die seine Leistungsfähigkeit beeinflussen. Die vorliegende Arbeit beschäftigt sich
mit der Belastung des Menschen durch Feinstaub.
Die “Augsburger Umweltstudie” (2007–2008) wurde vom KORA Studienzentrum in

Augsburg mit dem Ziel durchgeführt, den Zusammenhang zwischen Feinstaub und mensch-
licher Gesundheit zu untersuchen. Darauf aufbauend wurde 2011 eine Validierungsstudie
durchgeführt, um Informationen über Fehler bei der Messung von Feinstaub zu erhalten.
Die Komplexität dieser Fehler ist in unterschiedlichen Arten der Datenerhebung be-

gründet: 1.) Die Verwendung populations–spezifischer Expositionsmessungen, z.B. von
einer oder mehreren Messstationen, anstatt persönlicher Messungen bringt einen Berkson–
Fehler mit sich. Die Stärke der Abweichungen zwischen persönlichen und populations–
spezifischen Messungen hängt von der Mikro–Umgebung der Person und den klimatischen
Bedingungen ab. Im ersten Teil der Arbeit wird ein zweistufiges Expositionsmodell für den
Zusammenhang zwischen stationären und persönlichen Feinstaubexpositionsmessungen
der Validierungsstudie entwickelt, wobei relevante Variablen selektiert werden und ka-
tegoriale Variablen geeignet in der Analyse longitudinaler Daten berücksichtigt werden.
2.) Die mobilen Geräte zur Messung der persönlichen Feinstaubexposition weisen einen
klassischen Messfehler auf, der teilweise vom Gerät abhängt und autokorreliert ist. 3.)
Fehlende persönliche Feinstaub–Messungen werden durch populations–spezifische Expo-
sitionsmessungen ersetzt, um möglichst viele Informationen in die Analyse einzuschließen,
was eine Mischung aus Berkson und klassischem Messfehler zur Folge hat.
Das Ziel im zweiten Teil der Arbeit ist die Entwicklung und Anwendung von Metho-

den zur Berücksichtigung von Wissen über Berkson, klassischen und gemischten Fehler in
Regressionsmodellen mit Gesundheitsparametern als Zielgröße. Dazu wird die Momenten-
methode für longitudinale Daten und für verschiedenen Messfehlerarten mit individuen–
spezifischen und autokorrelierten Strukturen erweitert.
Zwar liefern Validierungsstudien und Expertenwissen Informationen über die Größe des

Messfehlers, aber das Vorwissen ist oft mit Unsicherheit behaftet. Ansätze zur adäquaten
Einbindung von Vorwissen über Messfehler in Bayesianische Gesundheitsmodelle werden
im dritten Teil der Arbeit bewertet. Die Rolle des Vorwissens in Regressionsmodellen
mit einer fehlerhaften Kovariable unterscheidet sich von konventionellen Bayesianischen
Regressionsmodellen und wird stark von der Interaktion zwischen den Modellparametern
beeinflusst.
Die Arbeit schließt mit der Anwendung der entwickelten Momentenmethode und dem

Bayesiansichen Ansatz auf die Augsburger Umweltstudie unter Berücksichtigung der In-
formationen aus den Validierungsstudien.
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1. Introduction

1.1. Errors in the measurements of personal
exposure to air pollutants

Accurate and precise measurements of personal exposure, a surrogate for the biologically
effective dose (Hatch and Thomas, 1993) of a pollutant, are a prerequisite for the evalua-
tion of short–term associations between air quality and health. However, meteorological
variability (Hudda et al., 2010), individual differences and laboratory errors inevitably in-
volve exposure measurement error in epidemiological questions. In the direct measurement
approach, personal samplers are used to determine the exposure levels on an individual
basis (i.e. for each study participant). A number of studies has been undertaken to mea-
sure personal exposure directly using personal monitors often with the aim to determine
the correlations of personal exposure with outdoor concentrations (e.g. Gu et al., 2015;
Meng et al., 2005; Oglesby et al., 2000). Since personal exposure measurements are time–
consuming, cumbersome and cost–intensive, indirect exposure measurements from one or
several outdoor monitoring sites located in the study area or estimated exposure concen-
trations of the study participants are often used in health outcome models as a proxy for
average personal exposure (Monn, 2001), as e.g. in McCracken et al. (2009). Indeed, per-
sonal exposure measurements reflect the personal exposure more precisely than fixed–site
outdoor measurements, but the majority of epidemiological studies aims to investigate
the effect of personal exposure to outdoor air pollutants (Mage et al., 1999). The usage
of personal exposure measurements for this purpose may even confound the exposure–
outcome association, because the personal measurements are influenced by sources other
than outdoor sources (Monn, 2001), e.g. indoor penetration of outdoor-generated air
pollutants, indoor sources of air pollutants under consideration, time activity patterns of
the observed population (e.g. time spent indoors, close to traffic, at the work place) and
the spatial variation in ambient air concentrations. Therefore, the correlations between
personal exposure and ambient levels of air pollutants are in general low.
Exposure models are an alternative to the direct usage of fixed–site measurements.

Long–term outdoor concentration is often estimated through a spatio–temporal model,
e.g. a dispersion model, (e.g. Szpiro et al., 2010) whereas short–term outdoor concen-
tration is estimated using measurements of fixed–site monitors, which may be combined
with a spatio–temporal model (e.g. Gulliver and Briggs, 2011). Using predicted values of
exposure from an exposure model based on temporally or spatially smoothing of observed
exposure values results in Berkson error (Gryparis et al., 2009). Since people spend the
majority of their time indoors, the validity of using ambient concentrations for approxi-
mating personal exposure has raised concerns, because exposure misclassification could
bias epidemiological results. Indoor concentrations are usually estimated through mass
balance models based on outdoor concentration data.
The approximation of personal exposure through monitoring data represents the po-

pulation–averaged exposure and does not adequately reflect the small–scale temporal
variation in personal exposure through frequent alternation between different microenvi-
ronments (e.g. high–exposure microenvironments like during commuting or low–exposure
microenvironments like during being at home) and individual time–activity patterns. The
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combination of estimated ambient concentrations with time–activity data (Beckx et al.,
2009; Calder et al., 2008; Ebelt et al., 2005; Gerharz et al., 2009; Lanki et al., 2007) and
optionally with spatial information (Calder et al., 2008; Gerharz et al., 2009) permits to
estimate personal exposure with a so–called microenvironmental model (Berhane et al.,
2004) providing adequate estimates for personal exposure (Gerharz et al., 2013). However,
Spatial and temporal (Gryparis et al.,2007b, 2009) as well as microenvironment–specific
variability of the true personal exposure cannot completely considered by these approxi-
mations and bias health effect estimates (Chang et al., 2011; Peng and Bell, 2010).
Exposure measurement error occurs by using population–averaged exposure as well

as by using personally measured exposure (e.g. Berhane et al., 2004; Thomas, 2000)).
Population–averaged exposure measurements is assumed to exhibit Berkson error, if the
average difference between personal and ambient exposure is constant, which is usually
violated when the data comprises also personal indoor exposure measurements (Zeger
et al., 2000). Low precision of mobile exposure measurement devices induce classical
measurement error to personal exposure measurements. Besides the measurement un-
certainty caused by the measurement devices, the temporal and spatial variation of the
exposure affects the precision of the estimation of the average population exposure (White
et al., 2008). Regionally averaged measurements, like measurements of a central monitor
or an estimated exposure surface, deliver unbiased personal health effect estimations, if
the averaged exposure measurements correctly reflect the actual average exposure of the
considered population (Monn, 2001).
Another issue is the fact, that the degree of air pollution cannot be gathered by a single

measure, but by a multitude of measures each describing only a few or some aspects of air
pollution (Wilson and Suh, 1997). This involves additional errors, which do not relate to
the measurement itself. We do not go into detail regarding the adequacy of the measures
for air pollution.

1.2. Covariate measurement error in regression
models

A short introduction to the terminology in the context of measurement errors is given
in this section on the basis of Thomas et al. (1993). The term measurement error is
commonly used for continuous variables, whereas misclassification is used when referring
to discrete variables. Measurement errors are described in different ways: In contrast to
random errors, which randomly fluctuate around the true value, systematic error exhibits
some non–random, systematic regularity or structure. The measurement error is called
non–differential, if the error does not contain any information about the outcome variable
beyond the information of the precise, latent value of the variable. The latent variable
can be considered as random variable (structural approach) or as fixed parameter (func-
tional approach). The discrimination between Berkson and classical measurement error
is essential for data analyses and was already introduced for air pollution measurements
in the previous section. Classical measurement error, UC, and Berkson error, UB, are de-
fined as a normally distributed random variables (UC ∼ N(0, σ2

UC) and UB ∼ N(0, σ2
UB)),

which are independent from the true measurement X and from the Berkson error–prone
measurement X∗B, respectively.
Statistical analyses rely on the accuracy of the collected data. Measurement error possi-

bly yields distorted results Greenland (e.g. 1980). Thomas et al. (1993) and Zeger et al.
(2000) give an overview of the impact of exposure measurement error on the relationship
between exposure and health outcome.
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In a linear regression model with normally distributed X, classical measurement error
only affects the estimates of the effect coefficients and the residual variance but neither
the linearity of the model nor the form of the conditional distribution of the response
(Chesher, 1991). Classical measurement error mostly causes an attenuation of the effect
estimate in linear regression analyses, i.e. a bias towards zero, and only a slight increase
in the uncertainty of the effect estimate (Fuller, 1987; Carroll et al., 2006).
Effect estimates in a regression analysis with Berkson error–prone measurements are

unbiased, but more variable than the estimates based on the true measurements (e.g.
Zeger et al., 2000). However, the usage of ambient exposure measurements as a surrogate
for personal exposure measurements involves bias in the exposure effect estimate of the
regression model due to the neglected indoor particle sources (Calder et al., 2008; Zeger
et al., 2000). Goldman et al. (2011) observed attenuated estimates for measurements with
multiplicative Berkson and classical measurement error in time series data; the degree of
attenuation depends on the type and size of the error.
Mixtures of Berkson and classical measurement error are considered by Li et al. (2007)

and Mallick et al. (2002): measurements with Berkson error, e.g. from a central measure-
ment unit, are overlayed with an instrumental error of the classical error type.
In order to account for covariate measurement error in regression analyses additional

information for the identification of the model parameters are required, which can be pro-
vided by data from a validation study, repeated measurements or instrumental variables
(Carroll et al., 2006). In the context of air pollution exposure measurements data may be
collected from varying sources, including questionnaires, direct and indirect measurements
(Monn, 2001; Needham et al., 2005), as well as subsample data from individual exposure
measurements and microenvironment measurements (Gilliland et al., 2005; Monn, 2001).
More details on methods for the assessment of the size of measurement error can be found
in Hatch and Thomas (1993). This information can be used to account for a possible bias
and the inflation of the standard errors due to measurement error. Although quantify-
ing and allowing for exposure measurement error amplifies the benefit of epidemiological
data (Burns et al., 2014), its impact on the study results is often ignored (Jurek et al.,
2006) and methods for the correction of the measurement error are rarely applied (Willett,
1989).
The easiest method for the measurement error correction is the method of moments

(MOM) (Fuller, 1987; Carroll et al., 2006). If the bias of the effect estimate can be
expressed through the moments of the response and the predictor variables, this bias is
corrected using an estimate for the bias based upon empirical moments.
The replacement of the actual, but unknown exposure, in the health effects model

with predictions from a model for the true exposure is one possibility for error correction
towards correcting exposure measurement error and is known as “regression calibration”;
this approach yields too narrow confidence intervals (Rosner et al., 1989). For example,
Strand et al. (2006) modeled the personal ambient exposure to PM2.5 (particulate matter
with an aerodynamic diameter less than 2.5 µm) with measurements from fixed–site mo-
nitors.
Another regression calibration approach is the usage of validation data to examine the

relationship between a surrogate and the actual, directly measured exposure. Based on
that, the effect estimate of the surrogate on the health outcome can be corrected, as it is
applied in Bateson andWright (2010); Horick et al. (2006); Li et al. (2006); Freedman et al.
(2008) or Smith et al. (2010) with internal and in Dominici et al. (2000) or Van Roosbroeck
et al. (2008) with external validation data.
Refer to Zeger et al. (2000) or Spiegelman (2010) for an introduction and Sarnat et al.

(2007) for an overview regarding regression calibration.



4 1. Introduction

The idea of the SIMEX method (Cook and Stefanski, 1994), a functional approach for
measurement error correction, is to describe the impact of artificially added measurement
error to the data on the effect estimate and to extrapolate the calculated trend to the
situation without measurement error. In the past, the approach was extended e.g. to
nonparametric regression models (Carroll et al., 1999), to misclassification (Küchenhoff
et al., 2006), to clustered survival data (Li and Lin, 2003), to longitudinal data (Wang
et al., 1998; Yi, 2008) to spatial data (Alexeeff et al., 2016). The SIMEX approach is
developed for a single measurement error parameter; therefore, SIMEX cannot simulta-
neously deal with several kinds of measurement error, e.g. an individual–specific and a
random classical measurement error.
Likelihood methods (e.g. ML in Stefanski and Carroll (1985); Spiegelman et al. (2000),

Quasi–likelihood in Whittemore and Keller (1988) and Wang et al. (1996) and appro-
ximate Quasi–likelihood in Carroll and Stefanski (1990)) are an alternative approach
allowing for measurement error in regression models. The specification of an error model
is required in addition to the specification of the likelihood involving additional distri-
butional assumptions, which result in a more or less pronounced increase in efficiency
compared to e.g. the method of moments or regression calibration (Carroll et al., 2006),
especially for large measurement error (Messer and Natarajan, 2008).
In 1983, Suggs and Curran proposed a Bayesian approach to account for measurement

error in air pollution models and Richardson and Gilks introduced the method for epi-
demiological studies. Beside the likelihood and the error model, as for the ML methods,
the priors for the model parameters are the third component of a Bayesian regression
model for a measurement error–prone covariate. In comparison to the method of moments
and regression calibration, the strengths of likelihood methods and Bayesian modeling are,
that the exposure model and the health outcome model are simultaneously calculated
and, that the health outcome model accounts for uncertainty of the exposure model
(Dominici et al., 2000). At the same time, missing exposure data is estimated (Molitor
et al., 2006). Another appealing advantage of Bayesian measurement error models is
that the components for accounting for measurement error can be easily integrated in
the majority of more complex models, e.g. in hierarchical models (Gryparis et al., 2007a;
Schwartz and Coull, 2003) and that the extension of these components e.g. regarding
spatial autocorrelated error terms (Molitor et al., 2007) or regarding spatial misalignment
(Peng and Bell, 2010) is often feasible.
Many other methods for measurement error correction in regression models are men-

tioned in the literature including robust techniques (Guolo, 2008), multiple imputation
(Blackwell et al., 2015) and the EM algorithm (Schafer, 1987), but we will concentrate
in the following on the previous developments concerning measurement error methods for
longitudinal data.
Recent work has extended the existing knowledge about covariate measurement errors

and the corresponding methods to models with random effects (e.g. Tosteson et al., 1998;
Wang et al., 1998), correlated measurement error terms (Wang et al., 1996, 2000), auto-
correlated model error (Moberg and Brattström, 2011) and correlated predictors with
correlated measurement error (Schwartz and Coull, 2003). So far, the impact of measure-
ment error in linear mixed models with autocorrelated error terms has not been studied.
Apart from the previously mentioned Bayesian methods, many approaches for measure-

ment error correction in regression models for longitudinal data base upon unbiased score
functions (as e.g. Pan et al., 2009), which have been introduced by Stefanski and Carroll
(1987). The quasilikelihood approach of Wang et al. (1996) for dealing with correlated
measurement error was extended by Wang and Sullivan Pepe (2000) to unbalanced and
unequally spaced longitudinal data using an expected estimation equations estimator.
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1.3. Background of the Augsburger Umweltstudie
Data from the Augsburger Umweltstudie (main data)

The Augsburger Umweltstudie, an observational study, which was part of the Rochester
Particle Center investigations, (Hampel et al., 2012a; Hampel et al., 2012b; Kraus et al.,
2015; Peters et al., 2015; Rückerl et al., 2014) was conducted between March 2007 and
December 2008 in the city of Augsburg and two adjacent counties at the KORA (Co-
operative Health Research in the Augsburg Region) study center in Augsburg. The aim
of the study was to examine the association between fine and ultrafine particles and hu-
man health. Since short–term effects of particle concentrations were the focal point, their
association with blood parameters was investigated. One hundred and twelve individuals
were enrolled and measured up to four times for a 5–6 hour period their individual ex-
posure to particle number concentration (PNC) in their daily life by carrying a portable
particle counter. During the same time the individuals wore ECG devices recording their
cardiac rhythm activity and documented their activities in a diary. Personally measured
particle number concentration (PNC) as well as ambient PM2.5 concentrations measured
at a fixed–site measurement station are associated with changes in cardiac function in
individuals with metabolic disorders (Peters et al., 2015).
The mobile exposure measurements revealed two major problems: Firstly, the precision

of the devices is ± 20 % as quoted by the manufacture. Secondly, about 23 % of the
outdoor measurements are missing due to breakdown or incorrect appliance of the device
by the study participants, i.e. the handling of mobile devices is sometimes too difficult for
elderly people without technical skills. The problem of missing values becomes even more
severe, if lagged exposure effects are considered. Substituting missing personal data with
data from the measurement station, which are available for the complete study period,
induces a mixture of classical and Berkson error, i.e. about 77 % of the observations
exhibit classical measurement error and the remaining part of the observations exhibits
Berkson error. For the analyses, one minute resolved data are aggregated to five minutes.
Hatch and Thomas (1993) suggest four ways for handling exposure measurement error:

a) validation studies, b) replicate measurements, c) multiple types of measurements and d)
sensitivity analysis. The Augsburger Umweltstudie is accompanied by a validation study
and replicate measurements in order to quantify the within–subject and between–subjects
variability.
Measurement error in the Augsburger Umweltstudie consists of several parts and types.

Deriving information about the measurement error from repeated measurements in a li-
near mixed model setting is elaborate and hardly realizable, because many repetitions
and time points are necessary. Information from validation studies or comparison mea-
surements seem to be more promising. The parameters for the correction of the measure-
ment errors are estimated with validation data as well as with data from the Augsburger
Umweltstudie.

The validation study accompanying the Augsburger Umweltstudie

A follow–up study of the Augsburger Umweltstudie was conducted at the KORA study
center in Augsburg to quantify the size of the measurement errors. The description of per-
sonal microenvironments and the identification of factors determining personal exposure
to PNC in everyday situations was a further aim of the validation study. These analy-
ses provide information, which can be integrated in correction methods for the exposure
measurement error in the analysis of the Augsburger Umweltstudie.
The study design is visualized in Figure 1.1. Ten non–smoking volunteers (not among
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Personal measurements

PNC, meteorology, activity diary

Fixed-site measurements

Particle concentrations (PNC, PM), 
meteorology

10 Individuals

in Augsburg

3 Seasons

7th to 25th of February 2011

2nd to 20th of May 2011

11th to 29th of July 2011

3 Scenarios

1. Commute to their home by 
car, spend the morning there 
and commute back by car

2. Commute to their home by 
public transport, spend the 
morning there and commute 
back by public transport

3. Spend two hours in the city 
center outside in the morning 
and in the midday hours

Figure 1.1.: Study design of the validation study accompanying the Augsburger Umweltstudie.

research staff or university employees) from Augsburg were recruited to accomplish per-
sonal exposure measurement campaigns in different seasons each lasting 3 weeks: from
7th to 25th of February 2011, from 2nd to 20th of May 2011 and from 11th to 29th of July
2011. On each day of the week (Monday to Friday), two volunteers conducted personal
PNC measurements starting between 7 and 8 a.m. and ending between 1 and 3 p.m. at
the KORA study center located in the city center of Augsburg. In each seasonal campaign,
the volunteers had to follow three different scenarios for 5–6 h in optional order:

1. commute to their home by car, spend the morning there and commute back by car
(“car”)

2. commute to their home by public transport, spend the morning there and commute
back by public transport (“public transport”)

3. spend 2 h in the city center outside in the morning and in the midday hours (“city
center”)

Each volunteer conducted the measurements once per week and on the same weekday.
The scenarios on the same day were different.
The volunteers kept activity diaries, in which they filled in their activities during the

measurement phases. Every 5 min. they recorded, whether they stayed indoors or out-
doors, at home or elsewhere. When being outdoors, the study participants documented,
whether they were in traffic and which means of transportation they used. When staying
indoors, the ventilation conditions of the room and domestic activities related to stirring
up or producing particles including heating, cleaning, cooking, ironing, lighting of can-
dles, using sprays and other “dust”–producing activities were noted. The term “dust” is
casually used in the questionnaire and refers to activities, which may lift dust from ground
or table to the air. Particular activities well–known to be associated with increased par-
ticulate matter (PM) exposure like passive smoking or staying in an environment with a
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construction area, wood smoke, smell of food, steam, smoke or vehicle exhaust, and laser
printer were also collected.
The personal PNC of each individual was measured every minute with a portable de-

vice; in addition, personal environmental conditions (temperature and relative humidity)
were recorded. During the complete study phase, data on ambient air quality and en-
vironmental conditions were gathered at a site located near the University of Applied
Sciences (UAS). The particles size distribution of ambient particles, total PNC, certain
fractions of total PNC and concentrations of other air pollutants were measured at the
UAS site as well as ambient environmental conditions (temperature, relative humidity,
wind direction, wind speed, pressure radiation and rainfall).
Additional exposure measurements following a different study design were conducted

within the scope of the validation study. We refer to the work of Gu et al. (2015) for
further details and for results.

Comparison measurements

The three portable CPC devices were compared with each other as well as with the de-
vices a the UAS site before and after each measurement campaign of the validation study.
The comparison measurements lasted between one and nine days and reveal information
about the measurement accuracy of the devices. During each period of comparison mea-
surements, several battery changes were necessary. To conform to the temporal resolution
of the main study one minute resolved data were aggregated to five minutes.

Exposure measurements

Since 2004 a monitoring station has recorded the urban background air pollution at the
carefully chosen location (Cyrys et al., 2008) of the campus of the University of Applied
Sciences in Augsburg. Various air pollution parameters are measured. The total particle
number concentration (PNC) comprising particles with a diameter between 3 nm and 3
µm was measured with a condensation particle counter (CPC) with a resolution of 1 min.
The manufacturer of the device adverts to imprecise measurements above a concentration
of 10,000 particles/cm3 and discourages from the usage of the device for higher concentra-
tions. Moreover, certain fractions of total PNC were recorded (20–min. resolution). The
particle size distribution of ambient particles (3 nm to 10 µm) was measured as well as
particle mass concentrations of PM10 (particulate matter with an aerodynamic diameter
less than 10 µm) and PM2.5 (1–h. running means, which were updated every 5 min.)
and black carbon (5–min. resolution). Quality control, quality assurance and analyses of
seasonal and diurnal variations were accomplished by Pitz et al., 2008a and Pitz et al.,
2008b.
Personal exposure to particulate matter is measured with portable CPCs (TSI Inc.

USA, Model 3007), which cover particles ranging from 10 nm to 1 µm in their diameter.
Three portable devices were used in the Augsburger Umweltudie, in the successive valida-
tion studies and for comparison measurements. The concentration accuracy is specified
with ±20% by the manufacturer.

Characterization of the breakdowns
In 23 % of the observations the portable devices did not record any measurement as

a consequence of the breakdown of the device. Most frequently, the device broke down
during staying indoors or in a car. In only 3 % of the observations the device broke down
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and the person did not stay in a closed room at the same time. The breakdown of a
device took 82 minutes on average.

1.4. Outline of the thesis
The key target of the thesis is the development and application of methods for taking
into account exposure measurement errors inherent to ambient and personal exposure
measurements in the analysis of health effects in the Augsburger Umweltstudie.
In Chapter 2, the notation is established and the models for the Augsburger Umwelt-

studie, the validation study and the comparison measurements are introduced. Thereby,
the properties and size of Berkson error and classical measurement error in the Augs-
burger Umweltstudie are elucidated. A particular focus is on the development of a model
for personal exposure to ultrafine particles during activities in everyday situations. The
effects of individual–specific and autocorrelated classical, Berkson and mixture error of
a covariate in a general simple linear mixed model are derived and illustrated by simu-
lations in Chapter 3. The considerations are extended to regression models with several
covariates and to unbalanced and non–equidistant observations. These insights enable the
application of the method of moments in Chapter 4 as a simple, frequentist method for
correcting classical and mixture measurement error. Especially the distributional proper-
ties of the corrected estimator are investigated. Bayesian methods for the consideration
of covariate measurement error are focused in Chapter 5. Pitfalls regarding the specifica-
tion of prior knowledge and of the model structure are demonstrated and guidelines for a
successful composition of the model are given. The frequentist and the Bayesian approach
for correcting covariate measurement error are applied to the Augsburger Umweltstudie
in Chapter 6. The thesis closes with a summary of the principal findings and an outline
of unsettled research questions in Chapter 7.
Parts of the Chapters 1, 2 and 7 have been published in advance in the article “Personal

exposure to ultrafine particles: Two-level statistical modeling of background exposure and
time-activity patterns during three seasons” (Deffner et al., 2016) in Journal of Exposure
Science and Environmental Epidemiology. The ideas, the implementation and the inter-
pretation of the analysis as well as the writing of the article is my own work. Helmut
Küchenhoff was involved in the methodological considerations. The coauthors from the
Helmholtz Zentrum München and the University Augsburg provided the preprocessed
data, contributed to the discussion of the results and commented the manuscript.
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2. Health, exposure and measurement
models

Health (HM), exposure (EM) and measurement (MM) models are the essential parts
of a measurement error problem (Thomas et al., 1993). In this chapter these models are
defined for the data of the Augsburger Umweltstudie and the attendant validation studies.
Person and time index are marked with M in the main study to distinguish the indices of
the main study from the comparison measurements (C) and the validation study (V ). The
model definitions are related to several assumptions regarding the personal and fixed–site
exposure measurements, which will be explained in the following.

2.1. Model definition
The health model is defined in Subsection 2.1.1 and describes the association between
a latent covariate X (exposure to PM) and the response Y (health outcome). It is
assumed that only deficient realizations of the random variable X can be measured. The
assumptions regarding the associations between the unknown X and the different error–
prone, but observable surrogates for X are presented in Subsection 2.1.2 including the
exposure model and measurement model for the Augsburger Umweltstudie.

2.1.1. Health model
A linear mixed model with random person intercept τiM is considered as the main outcome
model for the association between the health outcome YiM tM and the true exposure to
particulate matter XiM tM , confounded by the additional covariates ZiM tM of iM , iM =
1, . . . , n, independent individuals at time point tM , tM = 1, . . . , TiM :

HMM: Health model for true measurements of main data

YiM tM =β0 + βXXiM tM +ZiM tMβZ + τiM + εiM tM (2.1)
εiM ∼N(0,Σε,iM ),Σε,iM = σ2

εWρ,iM

τiM ∼N(0, σ2
τ ),

θH =(β0, βX ,βZ , σ
2
τ , σ

2
ε , ρ)>

β0 is the intercept of the model and βX the effect coefficient for the impact of exposure
on health. βZ denotes the effect coefficients of the confounder variables. In this chapter
we focus only on the Augsburger Umweltstudie and therefore, subscript M is neglected
for simplicity and is only used for definitions which are relevant for subsequent chapters.
As a start, it is assumed that the number of observations of each individual is equal for
the simplification of the considerations, i.e. Ti = T . Extensions to unbalanced designs
are discussed in Subsection 3.5.5. A simple linear model without additional covariates Z
is considered at the first glance:

Yit = β0 + βXXit + τi + εit
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Due to longitudinal data, the model errors εi are assumed to be independent and to
follow an AR(1) process with autocorrelation coefficient ρ: εi ∼ N(0,Σε). In the following
the correlation matrix of some first–order autocorrelated variable with autocorrelation
coefficient ρ is denoted by Wρ:

Wρ =


1 ρ ρ2 . . .
ρ 1 ρ
ρ2 ρ 1
... . . .

 .

Thus, Σε = σ2
εWρ. For further calculations it is important, that the correlation matrix

Wρ can easily be inverted:

W−1
ρ = 1

1− ρ2



1 −ρ 0 · · · 0 0
−ρ 1 + ρ2 −ρ · · · 0 0
0 −ρ 1 + ρ2 · · · 0 0
... ... ... . . . · · · · · ·
0 0 0 · · · 1 + ρ2 −ρ
0 0 0 · · · −ρ 1


; (2.2)

further, the following holds:

T∑
i=1

T∑
j=1

[W−1
ρ ]ij = 1>TW−1

ρ 1T = 1
1− ρ2

[
(T − 2)(1− ρ)2 + 2(1− ρ)

]
. (2.3)

1T denotes a vector of ones of length T .

2.1.2. Measurement error structures
Motivated by the measurement of the exposure to particulate matter, three types of
measurement errors are evaluated:
(1) Berkson error–prone measurements X∗B are unbiased aggregated measurements

of the truth; e.g., fixed–site exposure measurements do not account for the individual
structure of personal exposure but the exposure of the population close to the site and
represents a spatially averaged value.
(2) Classical error–prone measurements X∗C result from a noise process overlapping the

true values of X; e.g., measurements of individual exposure to particulate matter recorded
by portable devices exhibit a certain amount of classical measurement error according to
the manufacturer of the device.
(3) Mixture error–prone measurements X∗M occur, when one part of the observations

exhibits Berkson error, whereas the other part exhibits classical measurement error; e.g.,
missing values of individual exposure measurements with classical measurement error are
substituted with the corresponding measurements from a monitoring station at a fixed
site.
For our considerations, classical and Berkson errors are both allowed to comprise

individual–specific effects (as it is e.g. also found in McShane et al., 2001). Autocorrelated
and individual–specific Berkson error (“between person error”, cf. Willett, 1989) may
arise, because the exposure levels in the microenvironments of the individuals differ from
the levels in the microenvironment of the monitoring site. Individual–specific handling of
the portable measurement devices, as well as differing accuracy depending on the device
and the environmental conditions and varying over time may yield individual–specific and
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possibly autocorrelated classical measurement error. The classical measurement error of
the fixed–site measurements is neglected.
The formal definition of the error structures is given by eq. 2.4–2.6.

BMM1: One–stage EM for personal measurements of main data

XiM tM =X∗BiM tM + νBiM + UB
iM tM

(2.4)
νBiM ∼N(0, σ2

νB)
UB
iM
∼N(0,ΣB

iM
),ΣB

iM
= σ2

UBWρB,iM

θEB1 =(σ2
UB , σ2

νB , ρ
B)>

CMM: Classical measurement error model for main data

X∗CiM tM =XiM tM + νCiM + UC
iM tM

(2.5)
νCiM ∼N(0, σ2

νC)
UC
iM
∼N(0,ΣC

iM
),ΣC

iM
= σ2

UCWρC,iM

θM =(σ2
UC , σ2

νC , ρ
C)>

MMM: Mixture measurement error model for main data

X∗MiM tM = X∗BiM tMGiM tM +X∗CiM tM (1−GiM tM ) (2.6)

=

X
∗B
iM tM

for p · 100% of the measurements
X∗CiM tM for (1− p) · 100% of the measurements

The random variableGit indicates, whether the measurement at time point t of individu-
al i exhibits Berkson error. Git follows a Bernoulli distribution with success probability p
and with values 0 (individual measurement available) and 1 (only fixed–site measurement
available).
The Berkson error–prone measurementsX∗Bi = (X∗Bi1 , . . . , X∗BiT )> are assumed to follow

a normal distribution with expectation µX∗B1T and variance–covariance matrix ΣX∗B =
σ2
X∗BWρX∗B (see Section 2.2 for the definition of WρX∗B ). The measurement errors UB

i =
(UB

i1, . . . , U
B
iT )>, UB

i ∼ N(0,ΣUB), and UC
i = (UC

i1, . . . , U
C
iT )>,UC

i ∼ N(0,ΣUC), denote
the classical and Berkson measurement errors, which are assumed to follow autoregressive
processes of order one for each independent individual, i.e. ΣUB = σ2

UBWρB and ΣUC =
σ2
UCWρC . The individual–specific measurement errors νBi and νCi are assumed to be i.i.d.

normally distributed with expectation zero and constant variances σ2
νB and σ2

νC . UB
it and

νBi are independent from X∗Bit ; UC
it and νCi are independent from Xit and the measurement

errors are independent of each other and of the model errors τi and εit.
Further, it is assumed, that the measurement errors, i.e. νB = (νB1 , . . . , νBn )>,νC =

(νC1 , . . . , νCn )>,UB = (UB
1 , . . . ,U

B
n )> and UC = (UB

1 , . . . ,U
B
n )>, are non–differential.

These assumptions involve
Xi ∼ N

(
(µX∗B + νBi )1T ,ΣX∗B + ΣUB

)
, (2.7)

X∗Ci ∼ N
(
(µX∗B + νBi + νCi )1T ,ΣX∗B + ΣUB + ΣUC

)
(2.8)
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and

X∗Ci ∼ N
(
X∗Bi + (νBi + νCi )1T ,ΣUB + ΣUC

)
. (2.9)

ΣX∗B + ΣUB and ΣX∗B + ΣUB + ΣUC are variance–covariance matrices of sums of AR(1)
processes. The underlying processes are not AR(1) processes but ARMA processes (Lütke-
pohl, 1984).

2.2. PNC measurements of the fixed–site monitor
We characterize the distribution of the Berkson error–prone measurements X∗B, i.e. the
measurements of the fixed–site monitor, with the empirical distribution of the fixed–site
measurements during the measurements within the Augsburger Umweltstudie usually
between 7 a.m. and 3 p.m.:
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Figure 2.1.: Fixed–site PNC levels during the Augsburger Umweltstudie. Upper row: exemplary
raw and log–transformed time series of fixed–site PNC measurements and the density of the log–
transformed fixed–site PNC levels; lower row: minute–wise median (black), 2.5 %– and 97.5
%-quantiles (gray) of fixed–site PNC measurements and density of all log–transformed fixed–site
levels.

Measurement error analysis requires assumptions concerning the distribution of the
true and error–prone measurements as well as of the error itself. Since concentrations of
air pollutants approximate a lognormal distribution, additive error models for the log–
transformed exposure seem to be appropriate (Goldman et al., 2011), as also indicated
by Figure 2.1.
Mean, variance and autocorrelation coefficient ofX∗B are empirically estimated from the

log–transformed fixed–site PNC measurements of the Augsburger Umweltstudie:
µ̂X

∗B = 9.53, variance σ̂X∗B = 0.34 and autocorrelation coefficient ρ̂X∗B = 0.93.
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BMM∗B: EM for fixed–site measurements of main data

X∗BiM tM =µX∗B + U∗BiM tM (2.10)
U∗BiM ∼N(0,Σ∗BiM ),Σ∗BiM = σ2

X∗BWρX∗B ,iM

θE∗B =(µX∗B , σ2
X∗B , ρ

X∗B)>

Indeed the normality assumption for the fixed–site measurements is a strong simplifi-
cation, because various factors like weather conditions, holidays or rush hours influence
the PNC concentrations at the fixed–site monitor.

2.3. Classical measurement error of mobile PNC
measurements

Comparison measurements of the mobile devices and the devices at the fixed–site charac-
terize the classical measurement error of the mobile devices.
Classical measurement error of PNC measurements is heteroscedastic (Figure 2.2) and

therefore multiplicative. The logarithmically transformed PNC measurements entail an
additive measurement error. Since the measurement range of the fixed–site device for
measuring PNC differs from the mobile devices (see Section 1.3), fixed–site PNC mea-
surements are mostly constantly higher than PNC measured with the mobile devices;
therefore, observations with high peaks in the ratio (above a ratio of 4) between fixed–site
and portable devices are not involved in the measurement error calculation.
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Figure 2.2.: Comparison between (raw and log–transformed) PNC measurements with the
portable and the fixed–site devices.

The comparison measurements are used to estimate σ2
UC , σ2

νC and ρC with a regression
model for the differences between (log–transformed) values of the mobile (denoted by
X̆∗CjktC ) and fixed–site measurement devices (denoted by X̆jktC ):
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CMC: Classical measurement error model for comparison measurements

(X̆∗CjktC − X̆ktC ) =αC0 + τ devj + τ devbatjk + ŬC
jktC

(2.11)
ŬC
jktC
∼N(0, σ2

UC)
σ2
νC =Var(X̆∗CjktC − X̆ktC )− σ2

UĈ̆
U
C

jktC
= αC1 + V̆ C

jktC

V̆ C
jk ∼ N(0,ΣC

jk),ΣC
jk = σ2

V CWρC,jk

ωC =(αC0 , αC1 , σ2
V C , σ2

νC , σ
2
UC , ρC)>

j is the index for three portable devices, which measure personal PNC levels, k the index
for the periods between battery changes and tC the index for the time. αC0 and αC1 are
intercepts. The classical measurement error in this experimental setup consists of three
components: 1) a random error ŬC

jktC
, 2) an error defined by periods between the battery

changes τ devbatjk and 3) a device error τ devj . This error structure is modeled with a simple
linear model including categorical effects for device and battery change period. ρC is
estimated by the empirical autocorrelation of the residuals ̂̆UC.
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Figure 2.3.: Density of ̂̆UC in comparison to the corresponding normal distribution.

Estimations for parameters describing the Berkson error according to eq. 2.11 are:
σ̂2
UC = 0.03, σ̂2

νC = 0.03 and ρ̂C = 0.696. 82.53 % of the residuals lie with in the boundaries
announced by the manufacturer of the portable devices (±20 % for 1–min. measurements,
TSI Incorporated (2016a)). We neglect the measurement error of the fixed–site PNC
device (±10 % for 1–min. concentrations below 10,000 particles/cm3, TSI Incorporated
(2016b)). ̂̆UC is depicted in Figure 2.3.
Especially the change of batteries has a large effect on the discrepancy between the

mobile and the fixed–site measurements. Considerable reasons are, that the calibration
of the sensitive devices slightly changes through the change of batteries or that the exact
position of the mobile devices plays a role. The variability of the measurements through
the battery change and through the different measurement devices are used as a lower
boundary for individual–specific classical measurement error, since this is the only way
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to extract information about the individual–specific classical measurement error from our
data.

2.4. Berkson error of fixed–site PNC measurements
The main objective of the analysis presented in this section is to understand the factors
determining the personal exposure to PNC in everyday situations. This corresponds
to a very detailed description of the Berkson error arising by using fixed–site exposure
measurements instead of personal measurements. Parts of this section have been published
in advance in the article “Personal exposure to ultrafine particles: Two-level statistical mo-
deling of background exposure and time-activity patterns during three seasons” (Deffner
et al., 2016) in Journal of Exposure Science and Environmental Epidemiology.

2.4.1. Current knowledge about the association between
personal PNC and activities

Personal exposure to PM consists of two components according to Wilson and Brauer
(2006): particles of ambient and particles of non–ambient origin. Ambient PNC levels
are closely associated with meteorology (temporally) (Wehner and Wiedensohler, 2003)
and locations/microenvironments (spatially). Concentrations and composition of outdoor
air pollutants vary seasonally (Gómez-Moreno et al., 2011; Hussein et al., 2004; Krudysz
et al., 2009; Lonati and Giugliano, 2006; Pitz et al., 2003) and diurnally (Krudysz et al.,
2009; Pitz et al., 2003; Ruuskanen et al., 2001).
Hussein et al. (2004) described an inverse relationship between temperature and PNC

levels. As increasing wind speed conduces to dilution, PNC decreases (Berghmans et al.,
2009; Gómez-Moreno et al., 2011). In an urban area traffic intensity and traffic infra-
structure strongly influence PNC levels (Berghmans et al., 2009; Cattaneo et al., 2009).
According to the observations of Sturm et al. (2003) and Zhu et al. (2002), the PNC

levels at traffic or traffic–influenced sites are higher than at urban background sites,
because of different physical and chemical transformations. However, PNC levels were
found well correlated among urban background sites (Cyrys et al., 2008).
Indoor air quality substantially differs from outdoor air quality regarding particle com-

position and concentration. Indoor air quality may be particularly relevant because people
spend the majority of time indoors (Brasche and Bischof, 2005; Cohen Hubal et al., 2000;
Moschandreas, 1981). As the indoor PNC level is a mixture of particles from indoor as
well as from outdoor sources, which may penetrate into indoors (Franck et al., 2003).
Meteorological conditions, the building ventilation behavior and the air exchange rate
are important factors determining indoor exposure to ambient particles. The majority of
non–ambient ultrafine particles originate from indoor sources, for example from human
activities (Morawska et al., 2003). In particular, food preparation, heating (particularly
with wood), active/passive smoking or other domestic combustion processes like can-
dle burning are known particle–producing activities (He et al., 2004) and are the major
sources for residential exposure to PM (Bekö et al., 2013).

2.4.2. Two–stage statistical modeling
The shape as well as the size of the impact of ambient exposure to PNC on personal expo-
sure varies temporarily as well as with the location/microenvironment of the individual.
Also the predictor set may change, i.e. the relevance of the single size fractions of PM or
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of the meteorological parameters for the personal PNC level may underlie temporal and
spatial variations.
Therefore, the modeling procedure for the explorative analysis of the association of

personal exposure to PNC with activites, fixed–site PM levels and meteorological con-
ditions is divided into two steps. Firstly, season–specific personal background exposure
to PNC is modeled with simultaneous variable selection separately for indoor and out-
door observations (as e.g. in Gerharz et al. (2013)) using all available quantities of the
fixed–site monitor without any preselection (“background model”); in the second step, the
association between personal exposure to PNC and the activities is evaluated adjusted
for background exposure (“activity model”). This two–stage approach provides the ad-
vantage that the effects of the background pollution and the effects of the activities are
clearly separated.
Fixed–site measurement with a resolution below 1 min., are carried forward to fit the

1–min. resolution of the personal measurement devices.

2.4.3. Background exposure model
Semi–parametric regression models with a random person intercept are applied for the
background model using observations without any of the activities examined in the second
stage; for the outdoor background models only observations during being in transit as
pedestrian are used:

PNCit = Xitβ + f1(zit1) + · · ·+ fq(zitq) + τi + εit ,

with t = 1, . . . , T, i = 1, . . . , n. The random person intercept is denoted by τi. f1, . . . , fq
represent smooth functions.
Air quality parameters from the fixed–site monitor, personally measured meteorology

data and time of the day are smoothly modeled with P–splines; the models are further
adjusted for deterministic time covariates including week, day of the week and time of
the day, and categorical covariates describing the environment of the individuals (indoor
models: being at home/not at home, window open/tilted/closed; outdoor models: none).
The detailed model equations can be found in Appendix A.1.
Variable selection is conducted by means of model–based boosting (Bühlmann and

Hothorn, 2007) using the total set of the collected covariates. Boosting algorithms esti-
mate coefficients by iteratively approximating the solution with small steps and by using
weak learners. Adding up the coefficients of a specific covariate of all iteration steps re-
sults in the common regression coefficients (if the number of coefficients is smaller than
the number of observations). As usual, these coefficients can be interpreted as conditional
effects adjusted for the other covariates included in the model. This approach offers three
advantages: (I) only the relevant covariates are included in the model (variable selec-
tion), (II) the multicollinearity problem due to the highly correlated exposure quantities
at the fixed–site monitor is avoided in contrast to the usual regression analysis and (III)
the combination of weak learners, so–called base–learners, for linear, smooth and random
effects allows the flexible modeling of the underlying structure in the data.
For each season observations with extreme personal PNC levels (above their 90 %

quantile) or extreme particle concentration levels measured at the fixed monitoring site
(above their 95 % quantile) are omitted from the calculation of the background models.
The reason is that these extreme values may have been possibly evolved from particular
situations, which had no bearing on the modeled association, for example, not recorded
particle–producing activities or heavy traffic near the measurement station. Focusing on
the scope of data with sufficient information ensures the reliability of the model within
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this scope. Deficiently recorded particle concentrations (e.g., negative levels) are excluded
from the analysis. Separate models for each season are calculated accounting for seasonal
variation of the included predictors.

2.4.4. Relevance of variable groups in a linear regression model
Variable importance in linear regression was broadly discussed in the literature and many
approaches were proposed (see e.g. Bi (2012) for an overview). The relevance of the
following predictor groups in the background model is evaluated:

• Individual

• Time: season, week, day of the week, time of the day

• Meteorology (personally measured): temperature, relative humidity, dew point tem-
perature

• Categorical surrounding variables (only for indoor models): being at home/not at
home, status of the windows

• PM/NC/BC (UAS): particle mass and number concentrations of various size ranges
and black carbon concentration measured at the fixed monitoring site

The relevance of a predictor group is assessed by the fraction of variance explained by the
predictor group, which will be explained in the following.
Let

X = (X1, X2, . . . , Xp)

denote the predictors in a linear regression model for the outcome variable Y :

Y = β0 + β1X1 + β2X2 + . . .+ βpXp + ε.

Further, it is assumed that the set of the predictors X can be divided into n uncorrelated
subgroups

XG1 = (XG1
1 , . . . , XG1

g1 ),XG2 = (XG2
1 , . . . , XG2

g2 ), . . . ,XGn = (XGn
1 , . . . , XGn

gn )

with group indices G1, G2, . . . , Gn.
The marginal variance model, as in Grömping (2007), is given by

Var(Y ) = Var(Xβ) + Var(ε)
= Var((XG1

1 , . . . , XG1
g1 , X

G2
1 , . . . , XG2

g2 , . . . , X
Gn
1 , . . . , XGn

gn )>β) + Var(ε)

=
n∑
i=1

β2
iVar(XGi) + 2

n−1∑
i=1

n∑
j=i+1

βiβjCov(XGi ,XGj) + Var(ε)

The fraction of variance explained by a specific predictor group XGk is determined
through

RGk
frac

2 = 1
V̂ar(Y )

 gk∑
i=1

β̂2
i V̂ar(X

Gk
i ) + 2

gk−1∑
i=1

gk∑
j=i+1

β̂iβ̂jĈov(XGk
i , XGk

j )
 .
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Thus, theRGk
frac

2 is given by the sum of the corresponding block of the variance–covariance
matrix of the Xβ, divided by Var(Y ) and

R2 =
n∑
i=1

RGi
frac

2

Usually, the variable groups are correlated. Thus, Var(Xβ) is not block–diagonal and
the entries of Var(Xβ) not belonging to the blocks defined by the variable groups are
not equal to zero. The sum of all these entries, divided by Var(Y ) is denoted by Rcov

frac
2

and contains that part of the explained variance, which is explained through predictors
from different variable groups. For correlated predictor groups, R2 can be fractionized as
follows:

R2 =
n∑
i=1

RGi
frac

2 +Rcov
frac

2

Many approaches to split Rcov
frac

2 and to assign the fractions to the single covariates (Bi,
2012; Grömping, 2007) or in this case, to single groups, are proposed in the literature.
However, the properties, benefits and drawbacks of the methods are not completely under-
stood and there exists no clear recommendation towards one of the methods. Therefore,
Rcov

frac
2 is not further split in the presented analysis. Especially, in the case of uncorrelated

or slightly correlated groups, Rcov
frac

2 should be small.
This relation is used to evaluate the relevance of the predictor groups in the back-

ground model. The application of the fractional importance values for smoothly modeled
covariates using P–splines is straight forward.

2.4.5. Modeling categorical effects in time series
Particle producing activities yield a gradual instead of an abrupt change of PNC. The
identification of categorical activity effects in time series data with two commonly used
approaches and the attending drawbacks are examined in this subsection. The inclusion
of a highly flexible smooth trend for the small–scaled temporal structure is considered as
the first approach to allow for the autocorrelation in the data. A general linear model
with explicit modeling of the correlation structure through an iterative estimation process
is the second approach.
The following simple data example will be used for the theoretical considerations: Let

X be the design matrix of a time series regression problem for response Y = (Y1, . . . , YT )>
with only an intercept and one categorical, binary predictor, e.g. an activity of duration
na:

X =
(

1 · · · 1 1 · · · 1 1 · · · 1
0 · · · 0 1 · · · 1 0 · · · 0

)>
Suppose further for simplicity, that for the first and the last two observations of the time
series, the reference category of the activity covariate is observed, that the activity is
conducted without breaks (starting at time point ta1 and ending at time point taS) and
that na > 2.

Smooth time trend

For this approach, temporal autocorrelation of Y |X is modeled through a smooth function
f , represented through P–Splines, depending on time t assuming εt ∼ N(0, 1):

Yt = β0 + β1Xt + f(t) + εt.
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To prevent the modeling of the activity effect through f(t), the knots are placed only at
time points without any activity and first order differences of the coefficients for the B–
Splines representing f are penalized. Dense knots at e.g. every third observation allow for
small–scale autocorrelation. The weaknesses of this approach are, that the autocorrelation
within the activities will be insufficiently removed and the gradual change of the PNC
levels between different activities is not adequately considered.

General linear model

The general simple linear model assuming ε ∼ N(0,Σ) is defined as

Yt = β0 + β1Xt + εt, (2.12)

with t = 1 . . . , T and Σ = σ2
εWρ. Effect estimates for β = (β0, β1)> can be received by

the weighted least squares method:

β̂ =(X>W−1
ρ X)−1X>W−1

ρ y.

With

X>W−1
ρ X

eq. 2.3= 1
1− ρ2

(
(T − 2)(1− ρ)2 + 2(1− ρ) na(1− ρ)2

na(1− ρ)2 (na − 2)(1− ρ)2 + 2(1 + ρ2 − ρ)

)
and

|X>W−1
ρ X| = 1

1− ρ2

{[
2(1− ρ) + (T − 2)(1− ρ)2

]
·[

(na − 2)(1− ρ)2 + 2(1 + ρ2 − ρ)
]
− n2

a(1− ρ)4
}

=: 1
1− ρ2D

−1

the effect estimate is given by

β̂ =D·(
(na − 2)(1− ρ2) + 2(1 + ρ2 − ρ) −na(1− ρ)2

−na(1− ρ)2 (T − 2)(1− ρ)2 + 2(1− ρ)

)
·(

(1− ρ)(Y1 + YT ) + (1− ρ)2∑T−1
t=2 Yt

−ρ(Yta1−1 + YtaS+1) + (1 + ρ2 − ρ)(Yta1
+ YtaS ) + (1− ρ)2∑taS−1

t=ta1 +1 Yt

)
.

Thus, β̂0 and β̂1 are calculated as follows:

β̂0 =D · (1− ρ)·[(
(na − 2)(1− ρ)2 + 2(1 + ρ2 − ρ)

)(
(Y1 + YT ) + (1− ρ)

T−1∑
t=2

Yt

)
−

na(1− ρ)
−ρ(Yta1−1 + YtaS+1) + (1 + ρ2 − ρ)(Yta1

+ YtaS ) + (1− ρ)2
taS−1∑
t=ta1 +1

Yt


and

β̂1 =D · (1− ρ)·[
−na(1− ρ)

(
(1− ρ)(Y1 + YT ) + (1− ρ)2

T−1∑
t=2

Yt

)
+

(2 + (T − 2)(1− ρ))−ρ(Yta1−1 + YtaS+1) + (1 + ρ2 − ρ)(Yta1
+ YtaS ) + (1− ρ)2

taS−1∑
t=ta1 +1

Yt


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β̂0 and β̂1 are weighted sums of Y . The weights for each observation are listed in Table
2.1:

Weights for Yt
Weights for β̂0
t ∈ {1, T} D(1− ρ) ((na − 2)(1− ρ)2+

2(1 + ρ2 − ρ))
t ∈ {2, . . . , ta1 − 2, taS + 2, . . . , T − 1} D(1− ρ)2 ((na − 2)(1− ρ)2+

2(1 + ρ2 − ρ))
t ∈ {ta1 − 1, taS + 1} D(1− ρ)2 ((na − 2)(1− ρ)2+

2(1 + ρ2 − ρ) + ρna)
t ∈ {ta1 , taS} D(1− ρ)2 ((na − 2)(1− ρ)2+

2(1 + ρ2 − ρ)− (1 + ρ2 − ρ)na)
t ∈ {ta1 + 1, . . . , taS − 1} D(1− ρ)2 ((na − 2)(1− ρ)2+

2(1 + ρ2 − ρ)− (1− ρ)2na)
Weights for β̂1
t ∈ {1, T} D (−na(1− ρ)3)
t ∈ {2, . . . , ta1 − 2, taS + 2, . . . , T − 1} D (−na(1− ρ)4)
t ∈ {ta1 − 1, taS + 1} D (−na(1− ρ)4−

ρ(2(1− ρ) + (T − 2)(1− ρ)2))
t ∈ {ta1 , taS} D (−na(1− ρ)4+

(1 + ρ2 − ρ)(2(1− ρ) + (T − 2)(1− ρ)2))
t ∈ {ta1 + 1, . . . , taS − 1} D (−na(1− ρ)4+

(1− ρ)2(2(1− ρ) + (T − 2)(1− ρ)2))

Table 2.1.: Weights for Yt, t = 1, . . . , T for the calculation of β̂0 and β̂1.

For uncorrelated data (ρ = 0), each observation of the response variable has the same
influence on the estimation, i.e. they are equally weighted. With increasing autocorrela-
tion the observations before and after an activity change become more influential, whereas
all other observations become less relevant (see first row of Figure 2.4). For ρ → 1, the
following holds:

lim
ρ→1

β̂0 = 1
2(Y1 + YT )

lim
ρ→1

β̂1 = 1
2(Yta1

+ YtaS )− 1
2(Yta1−1 + YtaS+1).

The disadvantage thereof is, that conducting a certain activity does not yield to an
abrupt change of PNC levels to another level, but the change is gradually. In addition,
the start of an activity is often not precisely enough documented through the activity
dictionary. High autocorrelation in a model with a single overall autocorrelation coefficient
will result in an activity effect, which is mainly based on the observations before and after
the activity and on the first and last observations of the activity. Thus, the effect estimate
represents only the PNC change at the beginning and at the end of the activity, which
does not represent the actual effect of the activity in the case of a gradual change.
Each temporal coherent period with the same activity (or non–activity) of an individual

is called the realization of an activity. Assuming a block–diagonal structure for Σ, i.e. Yti
and Ytj (ti 6= tj) are assumed to be uncorrelated, if they belong to different activities or
different realizations of an activity, remedies from biased effect coefficients for moderate
autocorrelation as shown in the second row of Figure 2.4:



21

The attendant calculations of the effect coefficients can be found in Appendix B.1.
The influence of the observations directly before and after the activity changes (t ∈
{ta1 − 1, ta1 , taS , taS + 1}) on β̂1 strongly increases only with high autocorrelation, when a
block–diagonal structure is assumed for Σ. Independently of the size of the autocorrelation
coefficient, the observations during the activity do not have any impact on the estimation
of the intercept. Note, that the line for t ∈ {ta1 − 1, taS + 1} is overplotted by the line
for t ∈ {1, T} in both subfigures and the line for t ∈ {ta1 + 1, . . . , taS − 1} is overplotted
by the line for t ∈ {ta1 , taS} in the subfigure for β̂0. Nevertheless, β̂ is mainly determined
through the observations at the activity margins if autocorrelation is very high:

lim
ρ→1

β̂0 = 1
4(Y1 + Yta1−1 + YtaS+1 + YT )

lim
ρ→1

β̂1 = 1
2(Yta1

+ YtaS )− 1
4(Y1 + Yta1−1 + YtaS+1 + YT )

In addition to the observations directly before and after the activity, also the first and
the last observation of the time series are relevant.
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Figure 2.4.: Relationship between the autocorrelation coefficient and the effect estimates in a
linear model with a categorical covariate assuming an AR(1) process for the model errors. upper
row: Σ = σ2Wρ; lower row: a block–diagonal structure of the correlation matrix of the error
term defined by the activity is additionally assumed: Σ = σ2diag(Wρ,1,Wρ,2,Wρ,3).
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Further concepts for modeling the correlation structure

Other correlation structures are considered to overcome the shortcomings of the AR(1)
process, discussed in the previous paragraphs. Despite the modeling of the underlying
autocorrelation structure, the requirements for the correlation structure are: flexibility,
few parameters and inclusion of all observations in the estimation of the effect. The
latter requirement is essential for the modeling of the gradual change of the exposure
levels in succession of an activity change. Several correlation functions are proposed in
the literature including the spherical, exponential, Gaussian, linear, rational quadratic
or Matérn function (see e.g. Pinheiro and Bates, 2000), pages 226-239 or Fahrmeir
et al. (2007), pages 328-330, for a description). In contrast to higher order autoregressive
processes, these stationary correlation functions get along with only a few parameters.
The following correlation functions are taken into account Pinheiro et al. (2013):

Rational quadratic: ρ(d, r, n) = 1− n
1 + (d

r
)2

Exponential: ρ(d, r, n) = (1− n) exp
(
−d
r

)

Gaussian: ρ(d, r, n) = (1− n) exp
−(d

r

)2


Linear: ρ(d, r, n) = (1− n)
(

1− d

r

)
for d < r, 0 otherwise

Spherical: ρ(d, r, n) = (1− n)
1− 1.5d

r
+ 0.5

(
d

r

)3
 for d < r, 0 otherwise

The nugget is denoted by n, the distance between the time points by d and the range by
r(r > 0). For an arbitrary variance–covariance matrix of the error term, the weights for
β0, wβ0

t , and for β1, wβ1
t , t = 1, . . . , T , are defined by

wβ0
t = [(X>Σ−1X)−1(X>Σ−1)]1,t

and

wβ1
t = [(X>Σ−1X)−1(X>Σ−1)]2,t.

Obviously, the nugget n does not affect the weights. We examine wβ0
t and wβ1

t for the
correlation functions mentioned above using the model defined in eq. 2.12 with a block–
diagonal variance–covariance matrix for the error term, , t = 1, . . . , T , T = 40, ta1 = 11,
taS = 20, n = 0.1 and r=10; ρ = 0.9 is chosen for the AR(1) structure. The results are
depicted in the Figures 2.5 and 2.6.
The correlation functions behave rather differently regarding the weighting of single

observations in the weighted least squares estimation. In contrast to the usage of an
autoregressive process of order one or one of the remaining correlation structures, all
observations will be relevant for the estimation of the activity effect coefficient, when the
rational quadratic correlation structure is used. Thus, gradual changes of the PNC levels
after an activity change are modeled more adequately.
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(A) AR(1)
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(B) Rational quadratic
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(C) Exponential

●

●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

0 10 20 30 40

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4

t

wt
β0

activity

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●

●

0 10 20 30 40

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4

t

wt
β1

activity

Figure 2.5.: Weights for the observations in the estimation of the intercept and the effect
coefficient in a simple general linear model with a binary covariate and different correlation
structures for the error term: (A) AR(1), (B) Rational quadratic, (C) Exponential.



25

(D) Gaussian
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(F) Spherical
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Figure 2.6.: Weights for the observations in the estimation of the intercept and the effect
coefficient in a simple general linear model with a binary covariate and different correlation
structures for the error term: (D) Gaussian, (E) Linear, (F) Spherical.
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2.4.6. Modeling categorical effects in highly autocorrelated
longitudinal data: a comparison with real data

Different modeling strategies for categorical effects in longitudinal data, which were the-
oretically outlined in the previous subsection, are evaluated in this subsection with an
example data set for exposure and activity data. Since the data generating process is
very complex, the modeling approaches are compared using real data instead of simu-
lated data. A small data set is used in order to explain the characteristics of models in
combination with a visual imagination of the data. Three exemplary time series from the
validation study, depicted in Figure 2.7, are chosen, one without any activity and two
further time series with cooking and candle lighting.
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Figure 2.7.: Three exemplary time series of personal exposure to 1–min. PNC (in 1/cm3),
adjusted for background exposure. The vertical lines mark activity changes.

Since the model contains only categorical covariates, Figure 2.7 leads to suspect hete-
roscedastic residuals, i.e. the variance of the residuals within a realization of an activity
varies between the different realizations. Also realization–specific correlation structures
are considerable. Furthermore, categorical effects in highly autocorrelated continuous time
series may be biased, if the exposure levels gradually change after a change of the activ-
ity and if an AR(1) process is assumed for the error term, because mainly the marginal
observations of the activities are used to calculate the effect (see Subsection 2.4.6). The
following models are evaluated concerning their coefficient estimates, model fit and com-
pliance of the assumptions using the example data:

• M1: Linear mixed model (M1a) and additional realization–specific variance (M1b)

• M2: General linear mixed model with AR(1) structure for the error term (M2a) and
additional realization–specific variance (M2b)

• M3: General linear mixed model with AR(1) structure for the error term with
realization–specific correlation coefficients (M3a) and additional realization–specific
variance (M3b)

• M4: General linear mixed model with rational quadratic correlation structure for
the error term (M4a) and additional realization–specific variance (M4b)

• M5: Additive mixed models with few (every 10–th observation), (M6a) and many
(every third observation) (M6b) knots at time points without any activity
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The exposure to PNC during single realizations of activities is assumed to be indepen-
dent resulting in a block–diagonal correlation structure; the blocks are determined through
the realizations of the activities. The autocorrelation coefficient as well as the nugget
and the range of the correlation functions are simultaneously estimated with the effect
coefficients. Also realization–specific correlation structures are considered, because the
level of autocorrelation may vary depending on the way of conducting a certain activity.
A realization–specific random intercept is included in all models.
If the model is correctly specified, the linear mixed model M1 provides consistent esti-

mates of the effect coefficients. Therefore, models accounting for heteroscedastic and
autocorrelated residuals should provide similar estimates for the coefficients. Further re-
ference criteria for the evaluation of the different approaches refer to the homoscedasticity
(Breusch–Pagan test, Breusch and Pagan (1979)) and independence of the residuals . In
addition, the models are compared concerning their fit via the AIC. The results of the
model comparison are depicted in Figure 2.8.
The linear mixed model (M1a) with random person intercept shows a bad model fit

and strong violations of the model assumptions regarding highly autocorrelated and he-
teroscedastic residuals, which is only partially eliminated through the realization–specific
residual variances (M1b). Including an overall as well as a realization–specific correlation
structure (M2 and M3) fractionally alleviates the problem of autocorrelation and improves
the model fit, but does not identify the visually apparent effects of the activities due to
the properties of the model discussed in chapter 2.4.5. The models with an autoregressive
process of order one for the error term exhibit a strong bias in one or even both activity
effect estimates of about 40,000 particles. Instead, using the rational quadratic correlation
structure (M4) provides adequate estimates for the coefficients, a comparably good model
fit and meets the model assumptions. Smoothing splines (M5) for modeling the temporal
dependencies are not able to remove the autocorrelation of the residuals; furthermore, the
AIC of these models is high. Model M4b shows the best properties and is used for the
further analyses.
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Figure 2.8.: Model comparison regarding effect coefficients, residual autocorrelation (AC–coef.),
heteroscedasticity (BP test, asterisk mark significance) and model fit (AIC).
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2.4.7. Activity model
In order to quantify the effect size of the collected activities (smell of smoke/food/vehicle
exhaust, construction area, laser printer, steam, spray, ironing, cleaning, cooking, smoke
of candles/wood, passive smoking, other recorded “dust”–producing activities) and the
means of transport on personal PNC in the second modeling stage, regression models
with random effects are calculated. The residuals from the first–stage models are used as
outcome variable and the activities and seasons as predictors:

residualkjt = activitieskjtβ1 + periodkjtβ2 + bkj + εkjt

with bkj ∼ N(0, σ2
bk

) and bk independent for all different activities; further, εkj ∼ N(0,Σε),
i.e. Σε is block–diagonal with the blocks defined by the realizations of the activities. The
detailed model equations can be found in Appendix A.2.
As the mean level of each realization of a certain activity varies around the correspon-

ding population effect, a random slope is considered for each realization of an activity.
Autocorrelation is accounted for with a rational quadratic correlation structure for the
error term (Pinheiro and Bates, 2000), because the usual AR(1) process lack the inclu-
sion of the complete information of a highly correlated time series for the estimation of
categorical effects (Subsections 2.4.5 and 2.4.6). Activity–specific residual variances are
assessed to cope with heteroscedasticity between observations of different activity realiza-
tions. The model formulation is based on the assumption that activities yield an additive
change to the background exposure and that several simultaneous activities additively
change the PNC levels.
Data with fixed–site PNC levels above the respective 95 % quantile are also omitted in

the second–stage models. Furthermore, observations of activities, which were conducted
less or equal than 3 times, are excluded; since these activities describe specific and un-
common microenvironments, their effect cannot be generalized as it is also indicated in
Gerharz et al. (2013).

2.4.8. Results
Descriptive results

On average, the 1–min, resolved PNC records covered 358 min. (SD: 21) per individual
during one measurement series. During one measurement series in spring, the device
recorded only the concentration of the first 45 min and in another case, also in spring, no
values at all.
Mean personal temperature was on average higher, when the individuals stayed indoors

(winter: 17.8 ◦C, spring: 21.0 ◦C, summer: 22.1 ◦C), than outdoors (winter: 11.6 ◦C,
spring: 19.5 ◦C, summer: 21.4 ◦C). Relative humidity was similar in winter and spring
indoors as well as outdoors between 41 and 45 %; in summer, relative humidity was 57
% indoors and 56% outdoors. Dew point temperature increased from winter (indoors:
4.7 ◦C, outdoors: −1.1◦C) to summer (indoors: 13.2 ◦C, outdoors: 12.0 ◦C). Personal
temperature and humidity data loggers showed a delayed response to large variation
in temperature and humidity levels. This mostly affected the short outdoor periods in
the Scenarios “car” and “public transport” and yielded higher mean personal outdoor
temperature levels and lower mean personal outdoor humidity levels in comparison to the
measurements at the fixed–site monitor.
Table 2.2 lists descriptive statistics of the PNC levels measured by the individuals

and at the fixed monitoring site. Median personal PNC levels were highest during all
seasons while conducting the Scenario “city center”. Extreme personal measurements
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Personal PNC levels Fixed–site PNC levels Ratio

Median Mean Q95 SD Median Mean Q95 SD Median Mean
Scenario 1: Car

Winter 8.6 21.7 112.7 38.1 10.4 11.6 20.8 6.9 0.7 2.2
Spring 8.5 20.4 89.0 34.3 6.6 8.2 19.1 5.2 1.2 3.6
Summer 8.9 18.7 77.0 29.5 4.6 7.0 20.4 5.6 1.3 3.4
Scenario 2: Public transport

Winter 11.0 38.8 226.6 66.8 9.9 13.0 34.8 10.3 1.0 4.1
Spring 9.8 23.5 101.2 35.4 6.5 9.1 20.8 7.7 1.3 3.9
Summer 7.8 11.2 35.2 11.8 6.2 8.6 21.9 7.0 1.1 1.7
Scenario 3: City center

Winter 14.4 22.9 64.9 27.9 10.0 11.9 27.1 8.0 1.4 2.1
Spring 12.0 14.5 33.5 10.9 7.1 9.7 22.0 7.8 1.4 1.9
Summer 10.4 12.8 30.6 10.0 5.5 7.5 21.2 6.7 1.7 2.3
Exposure to PNC while indoors

Winter 7.7 30.1 170.8 55.9 10.3 12.5 30.9 8.6 0.7 3.1
Spring 8.5 21.7 98.5 35.7 6.3 7.9 17.2 5.6 1.2 3.8
Summer 7.6 14.4 48.6 22.9 5.2 7.5 21.2 5.9 1.1 2.5
Exposure to PNC while outdoors

Winter 15.3 20.5 51.8 18.9 10.0 12.6 34.8 9.2 1.5 2.0
Spring 12.9 15.8 36.5 11.8 7.4 10.2 26.8 8.6 1.5 2.0
Summer 11.6 14.2 32.9 11.3 6.1 8.2 22.3 7.7 1.8 2.3

Table 2.2.: Descriptive statistics of personal and fixed–site 1–min. PNC (in 1000/cm3) and of
the ratio between personal and fixed–site measurements (personal measurement/fixed–site mea-
surement). Q95: 95 % quantile; SD: standard deviation.

during the Scenarios “car” and “public transport” induced high mean personal PNC
levels. Median personal indoor PNC did not any show strong seasonal variation. Mean
personal indoor exposure to PNC was high in winter in comparison to spring and summer.
Outdoors, median personal exposure to PNC was higher than indoors and higher in winter
than in spring and summer. The mean personal indoor PNC level exceeded the mean
personal outdoor level especially in winter, because more extreme personal PNC levels
were recorded indoors. The fixed–site measurements showed indoors as well as outdoors
lower mean and median PNC levels than the personal levels with the only exception that
the fixed–site median concentration in winter was higher than the respective personal
indoor concentration. The personally measured values showed larger variability than
the fixed–site measurements; this was especially apparent while staying indoors. The
discrepancy between the median and the mean fixed–site PNC levels was weaker than
between the median and the mean personal PNC levels indicated by a positive skewness
of the corresponding ratio. Personal exposure levels exceeded the values at the fixed–site
monitor by a mean factor of 2.0 – 2.3 outdoors and of 2.5 – 3.8 indoors. The high outdoor
personal PNC levels occurred because the volunteers mainly stayed in traffic environments
while outdoors. Those environments have higher PNC levels than measured at the fixed–
site monitor.
In Figure 2.9, the ratio between the median exposure to PNC of each volunteer during

a particular activity and the median exposure to PNC of all individuals, stratified on
the season, is shown separately for exposure to PNC occurring indoors and outdoors.
This ratio quantifies the person–specific deviance from the average exposure during the
respective activity. Increased exposure to indoor PNC was observed during cooking, which
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was particularly pronounced in winter and spring; also, concentrations were increased
during the smell of food. Most of the individuals either cooked or smelled food at about
noon. Window opening may act as a source of outdoor particles as well as a sink for
indoor particles. In the winter season, higher–than–average PNC levels were observed
when the windows were tilted. As one can suppose, windows were tilted or opened
during particle–producing activities. For example, during cooking, above one–half of the
observation time, the windows were tilted or opened. Since in winter the windows were
tilted in 25.4 % during cooking, the association between exposure and the opening of the
windows was heavily confounded by cooking. Smoke originating from wood combustion
and especially from candles resulted in higher exposure to PNC. Slightly higher PNC levels
were observed in winter season during domestic activities including cleaning, ironing or
other activities related to the production of “dust”. The volunteers were mainly exposed to
passive smoking while staying outdoors, but no clear effect was visible. Regarding outdoor
exposure, PNC was higher in traffic than in situations when the individuals did not stay in
traffic, particularly in summer. Median outdoor exposure mainly represented the exposure
when participating as a pedestrian in traffic, because this was the most frequent outdoor
activity. While using other means of transportation, the PNC levels changed only slightly.
Atypical outdoor activities including staying in vehicles with opened windows or staying
near an outdoor cash machine are not depicted in Figure 2.9. The association between
a certain activity and personal exposure was affected by other co–occurring activities,
background concentrations and meteorological conditions. Therefore, models comprising
all potential influencing factors simultaneously yielded further insights.
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Figure 2.9.: Ratio between the median 1–min. exposure to PNC of each volunteer during a
particular activity and the median 1–min. exposure of PNC of all individuals, stratified on
the season, separately for indoor and outdoor activities (dots; blue: winter, green: spring, red:
summer). Exposure ratios of more than four persons are summarized by a boxplot.
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Two-Stage Exposure Models

Model fit and relevance of different variable groups in the background exposure models
are summarized in Table 2.3.

N R2 Individual Time
Meteo-
rology

Cat. Sur-
rounding

PM/NC/BC
(UAS)

Indoors
Winter 3433 0.055 0.342 0.197 a 0.020 0.106
Spring 2682 0.135 0.004 a 0.117 a 0.717
Summer 3342 0.111 a 0.522 a 0.174 0.082

Outdoors
Winter 1257 0.135 a a 0.075 a 0.737
Spring 1472 0.137 0.006 0.076 0.022 a 0.686
Summer 1344 0.191 0.045 0.068 0.000 a 0.572

a None of the variables in the respective variable group was selected.

Table 2.3.: First two columns: number of observations N and R2 of the corresponding model;
subsequent columns: contribution of specific variable groups (see Subsection 2.4.4 for the defi-
nitions of the groups) to the explained variance of 1–min. personal exposure in the background
models.

The smooth covariate effects of the indoor background models for the three different
seasons are shown in Figure 2.10.
For the winter model, most of the explained variance is due to the variance between

the volunteers. Thus, individual behavior and housing conditions other than the collected
covariates provide the majority of variance explanation. PNC measured at the fixed
monitoring site of particles between an aerodynamic diameter of 2.5 µm and 10 µm show
a positive, linear association with personal PNC. Fixed–site PNC levels are the most
important predictors for the indoor background model for spring. Fixed–site PNC levels
of particles with size fractions between 50 nm and 100 nm and between 100 nm and
500 nm have a nearly linear positive effect on personally measured PNC and elevated
temperatures above 20 ◦C are negatively associated with personal PNC. For the summer
model, daily variation explains a major part of the variance in the background PNC levels.
The number concentration of particles between an aerodynamic diameter of 1 µm and 2.5
µm at the fixed–site monitor is inversely associated with personal PNC levels. The time
of day is chosen by the variable selection procedure, but shows only a marginal effect.
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Figure 2.10.: Smooth covariate effects (in 1/cm3) in the background model on personal indoor
exposure to 1–min. PNC for each season.
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Estimated regression coefficients in the second–stage indoor model can be found in
Table 2.4.

CI

Effect SE Lower Upper P-value
Intercept 12.9 2.0 9.0 16.9 0.000
Smoke of candles 52.5 7.0 38.8 66.2 0.000
Smoke of wood 3.0 11.8 -20.1 26.2 0.796
Cooking 37.6 6.7 24.5 50.8 0.000
Smell of food 50.4 21.1 8.9 91.9 0.017
Cleaning -0.9 3.8 -8.3 6.5 0.806
Steam 10.3 11.9 -13.1 33.7 0.387
“Dust” -2.5 2.0 -6.4 1.4 0.210
Ironing 16.1 11.7 -7.0 39.1 0.172
Spray 4.8 4.7 -4.4 14.0 0.306
Period: spring -6.9 2.4 -11.6 -2.2 0.004
Period: summer -8.6 2.3 -13.1 -4.0 0.000

Table 2.4.: Effects (in 1000/cm3) of activities on personal indoor exposure to 1–min. PNC
adjusted for the measurements period and background exposure.

The intercept in the activity models quantifies the average exposure to PNC, when none
of the activities were conducted in winter. The estimation for the intercept and the period
effects differ from zero, although they are already included in the background model. The
reason is that extreme personal measurements, which are excluded for the background
model, are included in the activity model. The personal PNC levels are significantly
increased during exposure to smoke of candles. Furthermore, cooking and smell of food
are significantly associated with higher PNC levels by about 38,000 particles/cm3 and
50,000 particles/cm3, respectively. The occurrence of steam originating from, for example,
boiling water or showering non–significantly increases the PNC levels by about 10,000
particles/ cm3 on average. Non–significantly increased concentrations are also observed
during ironing.
The smooth covariate effects of the outdoor background models for the three different

seasons are depicted in Figure 2.11.
Outdoor exposure to PNC as a pedestrian is mainly driven by ambient PNC levels

measured with the fixed–site monitor. In winter, PNC levels of particles with aerody-
namic diameters between 3 nm and 10 nm, 50 nm and 100 nm, and 2.5 µm and 10 µm
at the fixed–site monitor show a linear, positive effect. The personally measured dew
point temperature have a strong negative impact on PNC. The number concentrations
of particles with an aerodynamic diameter smaller than 1 µm and of particles in the size
range of the CPC device at the fixed–site monitor are positively associated with personal
outdoor exposure to PNC in spring. Elevated PNC levels are found in the morning hours.
Dew point temperatures above 7 ◦C result in slightly decreasing background exposure to
PNC. The summer model also showed a morning increase in personal PNC. The number
concentration of PM exhibit a positive, nearly linear effect. The following variables are
chosen by the variable selection procedure, but show only a slight effect: relative humidity
in the winter model; PNC 50–100 nm and PNC 100–500 nm in the spring model; PNC
CPC, PNC 500–1000 nm, PM and relative humidity in the summer model.
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Figure 2.11.: Smooth covariate effects (in 1/cm3) in the background model on personal outdoor
exposure to 1–min. PNC for each season.
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Table 2.5 illustrates the estimated regression coefficients in the second–stage outdoor
model.

CI

Effect SE Lower Upper P-value
Intercept 2.6 0.7 1.3 3.9 0.000
Car driving 2.0 2.1 -2.2 6.1 0.352
Using public transport
(bus/tram/train)

-2.5 0.8 -4.0 -0.9 0.002

Not in traffic -2.3 1.9 -5.9 1.4 0.224
Passive smoking 1.6 2.1 -2.4 5.6 0.434
Smell of food -1.9 2.0 -5.8 2.0 0.340
Smell of smoke 0.5 2.9 -5.2 6.1 0.876
Smell of vehicle exhaust 4.8 4.2 -3.4 12.9 0.253
Construction area 31.7 28.6 -24.5 87.9 0.268
Period: spring -0.2 0.8 -1.8 1.5 0.833
Period: summer 0.1 0.8 -1.5 1.7 0.914

Table 2.5.: Effects (in 1,000/cm3 of activities on personal outdoor exposure to 1–min. PNC
adjusted for the measurements period and background exposure.

The means of transport significantly (P=0.005) affected the exposure to PNC; lowest
exposure was observed during staying in public transport or not in traffic, followed by
commuting as a pedestrian, the reference category; car drivers were most severely exposed
to PNC. PNC levels were (not significantly) increased while staying near a construction
area.
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2.4.9. Discussion and conclusion: exposure model for everyday
situations

Whereas our study examines a wide range of everyday situations, recent studies on per-
sonal exposure to PNC considered specific aspects, activities or environments. Our fin-
dings are consistent with those of others. Mean fixed–site PNC is lower than in the
outskirts of Leipzig (Germany) between February 1997 and February 2001 (Wehner and
Wiedensohler, 2003) and in Erfurt between January 1999 and November 2000 (Pitz et al.,
2003). The PNC concentrations in schools were found to be lower than or similar to that
found in our study (Fromme et al., 2007) because extreme particle–generating activities
as they occur at home are missing. (Morawska et al., 2003) observed similar PNC le-
vels in residential houses in Australia during daytime activities in comparison with the
mean indoor PNC levels deriving from our analyses in spring. The authors detected a
high variability between the houses resulting presumably from differing activities. This
suggestion is affirmed through our analyses, which show, that the random person effect
adjusted for the activities is low. Temperature is also found in previous works to be
negatively associated with outdoor PNC (Pekkanen et al., 1997; Penttinen et al., 2001;
Pitz et al., 2003). (Wehner and Wiedensohler, 2003) suggested that lower temperatures
reduce the vertical mixing in the lower atmosphere resulting in higher PNC. Our results
back up these findings and further indicate that ambient humidity is impacting PNC con-
centrations as well. In the literature, ambiguous results are reported regarding the effect
of relative humidity (Penttinen et al., 2001; Pitz et al., 2003; Wehner and Wiedensohler,
2003). In contrast to other findings (Morawska et al., 2003), particle concentration is not
clearly increased, when the volunteers are exposed to passive smoking. A strong influence
of the presence of lighted candles on the number concentration of PM is also reported by
Bekö et al. (2013) and Wallace and Ott (2011). Cooking or food preparation in general
is consistent with the results of other authors, detected as the main particle-generating
activity (Bekö et al., 2013; Buonanno et al., 2012; Kearney et al., 2011; Wheeler et al.,
2011). He et al. (2004) found varying effects depending on the type of food preparation,
for example, PNC exposure was higher during cooking or frying than during using mi-
crowave or oven. We observe substantial variation in PNC levels during cooking, but
data enabling a further differentiation of this activity regarding duration or the mode
of cooking were not collected. This study also shows that outdoor exposure to PNC is
higher in traffic, especially while driving with a car. Brauer et al. (1999) as well found a
higher geometric mean of particle concentrations for being in a car than for walking, going
by bus or bicycle (for particles in the range between 0.3 µm and 5.0 µm) whereas Kaur
and Nieuwenhuijsen (2009) observed higher PNC in buses and cars than during cycling
or walking in London.
The results confirm the findings of Gerharz et al. (2013) regarding the reduced perfor-

mance of a microenvironment model for the indoor microenvironment due to its strong
heterogeneity and regarding the need of data on more specific microenvironments for
exposure models.

2.4.10. Internal characterization of Berkson error
Personal exposure to particulate matter depends on many parameters, which include am-
bient and non–ambient conditions and which vary between indoor and outdoor locations
(Subsection 2.4.8; Gu et al. (2015)): Meteorological conditions and ambient PM concen-
trations have an impact on the background PM level of a person, whereas certain activities
like cooking, lighting candles and car driving affect the personal exposure in a very indi-
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vidual and situation–specific way. The transferability of the results from the validation
study, particularly the transferability of properties of the residuals as properties of the
Berkson error, is questionable. As mentioned in eq. 2.9, the model definition implicitly
involves the assumption that

X∗Ci ∼ N
(
X∗Ci + (νBi + νCi )1T ,ΣUB + ΣUC

)
.

For frequentist approaches for measurement error correction, this assumption is restric-
tive, because the uncertainty about the knowledge from external studies is not directly in-
cluded in the estimation procedure of the regression analysis and knowledge from external
validation studies is often not adequate, because this assumption is not met. Therefore,
we consider additionally an internal characterization of the Berkson error. A regression
model with the differences between (centered) mobile and (centered) fixed–site PNC mea-
surement of the Augsburger Umweltstudie, while the individual was staying outdoors as
response and the individual as covariate:

BMMint: Model for the internal estimation of the Berkson error

(X∗CiM tM −X
∗B
iM tM

) =αM0 + νBCiM + UBC
iM tM

(2.13)
UBC
iM tM

∼N(0, σ2
UBC)

σ2
UB =σ2

UBC − σ2
UC

ÛBC
iM tM

=αM1 + V BC
iM tM

V BC
iM
∼ N(0,ΣBC

iM
),ΣBC

iM
= σ2

V BCWρB,iM

σ2
νB =Var(X∗CiM tM −X

∗B
iM tM

)− σ2
UBC − σ2

νC

The Berkson error is characterized using the relationship between mobile and fixed–
site measurements of the Augsburger Umweltstudie and the information regarding the
classical measurement error, derived in Section 2.4, in three steps: First, the residual
variance of a regression model with the differences between mobile and fixed–site PNC
measurements of the Augsburger Umweltstudie as response and the individual as covariate
provided information about σ2

UBC = σ2
UC + σ2

UB . Second, ρB is estimated by the empirical
autocorrelation of the residuals ÛBC

iM
and is only an approximation, because actually, the

sum of classical and Berkson error is considered. Third, σ2
UB and σ2

νB are determined
through the differences between the total measurement error variance and the size of the
classical measurement error.
Estimations for parameters describing the Berkson error according to eq. 2.13 are:

σ̂2
UB = 0.3, σ̂2

νB = 0.21 and ρ̂B = 0.582. In comparison to the classical measurement error
of the devices for measuring PNC, the size of Berkson error is considerably higher.
Indeed, the normality assumption for the measurement errors is violated regarding the

kurtosis of the empirical distribution of ÛBC (see Figure 2.12), but the assumption is
sustained to facilitate the examination of the complex error structure in the following
chapters. The Bayesian approach presented in Chapter 5 and Section 6.2 enables the easy
consideration of non–normal distributional assumptions.
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Figure 2.12.: Density of ÛBC in comparison to the corresponding normal distribution.
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3. Bias through measurement errors in
linear mixed models

The calculation of the effect of measurement error enables the easy evaluation of its
relevance, transparently elucidates its impact and involves the calculation of correction
formulas. The role of covariate measurement error in linear mixed models is theoretically
examined in this chapter. After introducing three considered types of measurement error
(classical, Berkson and mixture error) in Section 2.1, a general introduction to the naive
estimation with error–prone measurements is given in Section 3.1. The resulting biases on
the effect estimates and the error variances are derived in the Sections 3.2–3.4. Extensions
of the considered models regarding alternative calculations of the attenuation factor, the
utilization of the information of the breakdown times of the devices, the inclusion of further
covariates, the consideration of classical measurement error of the fixed–site measurements
and the handling of unbalanced observations are discussed in Section 3.5. A simulation
study in the style of the Augsburger Umweltstudie and the attendant validation studies
illustrates the theoretical findings (Section 3.6).

3.1. Naive estimation
The naive models are defined as:

HMM∗B: HM for fixed–site measurements of main data

YiM tM =β0 + β∗BX X∗BiM tM +ZiM tMβZ + τ ∗BiM + ε∗BiM tM (3.1)
ε∗BiM ∼N(0,Σε∗B,iM ),Σε∗B,iM = σ2

ε∗BWρ∗B,iM

τ ∗BiM ∼N(0, σ2
τ∗B)

HMM∗C: HM for personal measurements of main data

YiM tM =β0 + β∗CX X∗CiM tM +ZiM tMβZ + τ ∗CiM + ε∗CiM tM (3.2)
ε∗CiM ∼N(0,Σε∗C,iM ),Σε∗C,iM = σ2

ε∗CWρ∗C,iM

τ ∗CiM ∼N(0, σ2
τ∗C)
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HMM∗M: HM for mixed fixed and personal measurements of main data

YiM tM =β0 + β∗MX X∗MiM tM +ZiM tMβZ + τ ∗MiM + ε∗MiM tM (3.3)
ε∗MiM ∼N(0,Σε∗M,iM ),Σε∗M,iM = σ2

ε∗MWρ∗M,iM

τ ∗MiM ∼N(0, σ2
τ∗M)

The impact of an error–prone covariate X∗ ∈ {X∗B,X∗C,X∗M} on a simple linear
mixed model without the covariates Z is examined in the current and in the following
three subsections.

3.1.1. Score equations
β∗ = (β∗0 , β∗X)> and φ∗ = (σ2

ε∗ , ρ
∗, σ2

τ∗)> = (φ∗1, φ∗2, φ∗3)> denoting the probability limits of
the naive estimators for n → ∞ are obtained as solutions from the linear mixed model
score equations, if n→∞:

E
[
χ∗>V ∗−1(Y − χ∗β∗)

]
= 0 (3.4)

and

1
2

{
E

[
(Y − χ∗β∗)>V ∗−1∂V

∗

∂φ∗j
V ∗−1(Y − χ∗β∗)

]
− tr

(
V ∗−1∂V

∗

∂φ∗j

)}
= 0 (3.5)

with χ∗ = (1T ,X∗) and j = 1, 2, 3 (see Wang et al., 1998)). V ∗, V ∗ = σ2
τ∗JT + Σε∗ ,

denotes the probability limit for n → ∞ of the variance–covariance matrix of the error
term in the naive model and JT denotes the T × T matrix of ones. τ ∗i ∼ N(0, σ2

τ∗) is
assumed and ε∗it is assumed to follow an autoregressive process of order 1 with autocor-
relation parameter ρ∗ and variance matrix Σε∗ = σ2

ε∗Wρ∗ . Due to clarity, the index i for
the i.i.d. samples is neglected in eq. 3.4 and eq. 3.5 and in the following considerations.

3.1.2. Naive regression coefficients
The first score equation (eq. 3.4) for the effect coefficients can be transformed equivalently
to Wang et al. (1998) using calculation rules for the expected value:

E
[
χ∗>V ∗−1(Y − χ∗β∗)

]
= 0

⇔ E
[
χ∗>V ∗−1Y

]
= E

[
χ∗>V ∗−1χ∗

]
β∗

⇔ E
[
χ∗>V ∗−1χ

]
β = E

[
χ∗>V ∗−1χ∗

]
β∗, (3.6)

with β = (β0, βX)> and χ = (1T ,X). Similarly to the calculation of the expected value
of a quadratic form with an arbitrary vector X,X = (X1, . . . , XT )>, of random variables
and a positive definite T × T matrix A through

E(X>AX) = tr(AVar(X)) + E(X)>AE(X), (3.7)
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E(X>1 AX2) with the arbitrary vectors X1,X1 = (X11, . . . , X1T )>, and X2,
X2 = (X21, . . . , X2T )>, of random variables is given by

E(X>1 AX2) = E[tr(X>1 AX2])
= E[tr(AX2X

>
1 )]

= tr[E(AX2X
>
1 )]

= tr[ACov(X1,X2) +AE(X2)E(X1)>]
= tr[ACov(X1,X2)] + E(X1)>AE(X2) (3.8)

Thus, eq. 3.6 can be written as0 0
0 tr(V ∗−1Cov(X,X∗))

+ E(χ∗)>V ∗−1
E(χ)

β
=
0 0

0 tr(V ∗−1Var(X∗))

+ E(χ∗)>V ∗−1
E(χ∗)

β∗ .
The probability limits for the naive coefficients result as

β∗0 = β0 + E(X)(βX − β∗X)

β∗X = βX
tr(V ∗−1Cov(X,X∗))
tr(V ∗−1Var(X∗))

=: βXλ. (3.9)

Detailed expressions of λ depend on the type of measurement error and are given in the
sections 3.2–3.4.

3.1.3. Naive covariance structure
Using a general linear mixed model with an AR(1) process for the error term as a naive
model with the error–prone covariate X∗, X∗ ∈ {X∗B,X∗C,X∗M} results in a misspe-
cified model because actually, the model error, as a sum of AR(1) processes, follows an
ARMA(p, q) process with q > 0 (Lütkepohl (1984); see also Appendix B.2). Thus, the
actual data generating process does not belong to the model class of the naive model.
Maximum Likelihood estimations of the coefficients in a linear regression model under

misspecification of the covariance structure of the error term are unbiased. In contrast,
the estimation of the covariance matrix of the error term itself is biased.
Since the aim is the quantification of the bias due to measurement error and not due

to misspecification, the AR(1) error structure is further investigated in the naive model.
Using eq. 3.8, the three score equations for φ∗ (eq. 3.5) can be written as

tr
(
V ∗−1Wρ∗V

∗−1VT
)

= tr
(
V ∗−1Wρ∗

)
tr
(
V ∗−1∂Wρ∗

∂ρ∗
V ∗−1VT

)
= tr

(
V ∗−1∂Wρ∗

∂ρ∗

)
tr
(
V ∗−1JTV ∗−1VT

)
= tr

(
V ∗−1JT

)
with VT = Var(Y − χ∗β∗).
The score equations (eq. 3.4 and 3.5) do not allow to write φ∗j , j = 1, 2, 3, in terms of

other parameters. Two special cases where solutions are available are presented in the
next paragraphs.
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If VT exhibits the same matrix structure as V ∗, i.e. VT = σ2
aWρa +σ2

cJT with arbitrary
variances σ2

a and σ2
c and arbitrary autocorrelation parameter ρa, VT = V ∗. Thus, the

probability limits of the variance parameters of the error term in the naive model are:

σ2
ε∗Wρ∗ = σ2

aWρa (3.10)
σ2
τ∗ = σ2

c (3.11)

For the second special case no random effects, neither in the main model nor in the
measurement errors, are considered (σ2

τ = σ2
νB = σ2

νC = 0), but VT consists of a sum of,
w.l.o.g two, AR(1) variance–covariance matrices: VT = Σa + Σb = σ2

aWρa + σ2
bWρb with

arbitrary variances σ2
a and σ2

b and arbitrary autocorrelation parameters ρa and ρb, and
V ∗ = Σε∗ = σ2

ε∗Wρ∗ .
The resulting score equations for σ2

ε∗ and ρ∗ are

tr(W−1
ρ∗ VT ) = Tσ2

ε∗ (3.12)

tr
(
W−1

ρ∗
∂Wρ∗

∂ρ∗
W−1

ρ∗ VT

)
= σ2

ε∗tr
(
W−1

ρ∗
∂Wρ∗

∂ρ∗

)
(3.13)

σ2
ε∗ is directly derived from eq. 3.12:

σ2
ε∗ = 1

T
tr(W−1

ρ∗ VT ) (3.14)

This relation is introduced in eq. 3.13:

tr
(
W−1
ρ∗

∂Wρ∗

∂ρ∗
W−1

ρ∗ VT

)
= 1
T
tr
(
W−1
ρ∗

∂Wρ∗

∂ρ∗

)
tr
(
W−1

ρ∗ VT
)

(3.15)

Dissolving eq. 3.14 and eq. 3.15 is described in Appendix B.3 and B.4 and results in

ρ∗ = ρaσ
2
a + ρbσ

2
b

σ2
a + σ2

b

,

σ2
ε∗ = σ2

a + σ2
b .

3.2. Berkson error
The independence between model error and measurement error yields under the simple
random intercept regression model

E(Y |X∗) = E(E(Y |X)|X∗) = β0 + βXE(X|X∗). (3.16)

Based on the main outcome model eq. 3.1 (without confounder variables Z) and the
Berkson error model eq. 2.4, the effect estimate for a covariate with Berkson error is just
as unbiased as with a conventional Berkson error. The reason therefore is, that modeling
the conditional expectation of the outcome Y given the error–free predictor X results in
the same slope βX as with the Berkson error–prone covariate X∗B, since the theorem of
the iterated expectation yields:

E(Y |X∗B) eq. 3.16= β0 + βXE(X|X∗B)
= β0 + βXX

∗B.

In comparison to the error–free measurementsX, the observationsX∗B lack to explain
personal variability described by the random person effect νBi and the random error UB

i .
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Thus, the fraction of the variability of X exceeding the variability of the Berkson error–
prone measurement X∗B this variance is conferred on the variance of the error term in
the main outcome model:

Var(Y − χ∗Bβ) = Σε + σ2
τJT + β2

X(ΣUB + σ2
νBJT )

= (σ2
τ + β2

Xσ
2
νB)JT + Σε + β2

XΣUB

Data with Berkson error entail an overestimation of the variability of the error term
and consequently also of the effect estimate β̂∗1 , since Var(X∗Bit ) ≤ Var(Xit), analogically
to a simple linear model as main outcome model. Estimating the residual variance by
assuming a random intercept and an AR(1) process for the error term cannot identify the
true underlying structure of the error term as it is discussed in Subsection 3.1.2.

3.3. Classical measurement error
To understand the complex impact of classical covariate measurement error in mixed
models, the relations are stepwisely illuminated.

3.3.1. Homogeneous covariate and error structure
Usual classical measurement error (without random effects and autocorrelation: σ2

τ =
σ2
νB = σ2

νC = 0, ρX∗B = ρ = ρB = ρC = 0) causes an attenuation, i.e. a bias towards 0, of
the effect estimate βX of the corresponding covariate in a simple linear regression model
by the so–called attenuation factor or reliability ratio λC with λC ∈ [0, 1] (Carroll et al.,
2006; Fuller, 1987):

β∗CX = λCβX .

If measurement error and model error are independent, this attenuation factor λC can
be calculated based on E(X|X∗C) (eq. 3.16) as the ratio between the variance of the actual
values X and the deficient values X∗C in linear regression models due to the normality of
X and UC (Carroll et al., 2006):

λC = E(X|X∗C) = Cov(X,X∗C)
Var(X∗C) = Var(X)

Var(X∗C) = σ2
X

σ2
X + σ2

UC
. (3.17)

This property holds also if a simple linear mixed model with random intercept, as
defined in eq. 3.1, is considered. With increasing measurement error variance, the effect
coefficient is stronger attenuated as depicted in Fig. 3.1.
The variance of the error term increases with the size of the classical measurement

error:

Var(Y − (β∗C0 + β∗CX X∗C))
= Var(Y − β∗C0 − β∗CX (X + UC))
= σ2

ε + β2
X(1− λC)2σ2

X + β2
Xλ

C2
σ2
UC

eq. 3.17= σ2
ε + λCβ2

Xσ
2
UC

= σ2
ε∗C .

Although Var(Y |X) ≤ Var(Y |X∗C), the uncertainty of the naive estimate β̂∗CX may either
increase or decrease, because Var(X) ≤ Var(X∗C). The linearity of E(Yit|X∗C) and the
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Figure 3.1.: Attenuation of the effect coefficient of a classical error–prone covariate in a simple
linear model with homogeneous covariate structure. σ2

X = 1.

joint normality of the model errors, the true covariate and the classical measurement
error implicate that the naive model of the response Y and the covariate X∗C is a linear
regression model (Carroll et al., 2006).

3.3.2. Heterogeneous covariate and error structure
Wang et al. (1998) have studied the consequences of a heterogeneous covariate structure
in the linear mixed model, i.e. X is not presumed to be i.i.d. itself but to originate
from independent clusters with i.i.d. observations. In order to remain in the introduced
model and parameter definitions, such a heterogeneous covariate Xit can be regarded as
the sum of a global, Berkson error–prone mean X∗Bt , an individual–specific component of
the Berkson error, νBi , and a random Berkson error UB

it , as defined in Subsection 2.1.2.
For this type of model σ2

νC = 0, ρX∗B = ρ = ρB = ρC = 0 is assumed.
According to Wang et al. (1998), the effects of a heterogeneous covariate with classical

measurement error is underestimated by the factor

λC =
σ2
νB + σ2

X

[
1 + (T − 1)σ

2
τ∗C
σ2
ε∗C

]
σ2
νB + (σ2

X + σ2
UC)

[
1 + (T − 1)σ

2
τ∗C
σ2
ε∗C

] . (3.18)

The variance of the random effect νBi , σ2
νB , contributes to the attenuation factor with

additional terms in the numerator and the denominator of the attenuation factor, but
in comparison to σ2

UB , with an additional weight
[
1 + (T − 1)σ

2
τ∗C
σ2
ε∗C

]−1
approximating zero

for T → ∞ (Figure 3.2). Thus, the attenuation factor is higher in a model with a
heterogeneous covariate than in a model with a homogeneous covariate. Further, the
weight depends on the ratio between the variance of the random effects and the random
model error in the naive model.
The variance–covariance matrix of the error term is block–diagonal and (neglecting

index i) each block is given by

Var(Y − (β∗C0 + β∗CX X
∗C))

= Var(Y − β∗C0 − β∗CX (X∗B + νB1T +UB +UC))
= [σ2

ε + β2
X(1− λC)2

(
σ2
X∗B + σ2

UB

)
+ β2

Xλ
C2
σ2
UC ]IT+

[σ2
τ + β2

X(1− λC)2σ2
νB ]JT . (3.19)
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Figure 3.2.: Attenuation of the effect coefficient of a classical error–prone covariate in a simple
linear mixed model with heterogeneous covariate structure. T : 5 (dotted), 10 (dashed), 100
(solid); σ2

X = 0.5;σ2
νB = 0.5;σ2

τ∗ = 1;σ2
ε = 1.

The probability limit of the variance of the random intercept in the naive model is accor-
ding to eq. 3.11 and eq. 3.19

σ2
τ∗ = σ2

τ + (1− λC)2σ2
νBβ

2
X

and the probability limit of the variance of the error term in the naive model is according
to eq. 3.10 and eq. 3.19

σ2
ε∗ = σ2

ε +
[
(1− λC)2(σ2

X∗B + σ2
UB) + λC

2
σ2
UC

]
β2
X .

The heterogeneity of the deficient covariate affects also the variance of the random inter-
cept in the main outcome model, σ2

τ∗ , in a similar way as the variance of X affects the
error variance.
The attenuation factor for a heterogeneous, classical error–prone covariate depends on

the main outcome model. Let σ2
τ = σ2

νC = 0, ρX∗B = ρ = ρB = ρC = 0, i.e. the main
outcome model is a simple linear model and the covariate is heterogeneous and exhibits
classical measurement error. If a simple linear mixed model is used for the analysis, eq.
3.9 results in

λC
eq. 3.9=

[
tr(V ∗C−1Cov(X,X∗C))

]
[
tr(V ∗C−1Var(X∗C))

]

=
tr
[

1
σ2
ε∗C

(σ2
X∗BIT + σ2

UBIT + σ2
νBJT )

]
tr
[

1
σ2
ε∗C

(σ2
X∗BIT + σ2

UBIT + σ2
νBJT + σ2

UCIT )
]

= σ2
X∗B + σ2

UB + σ2
νB

σ2
X∗B + σ2

UB + σ2
νB + σ2

UC
, (3.20)

with V ∗C = σ2
ε∗CIT ; a similar result is found by Rosner et al. (1989).

If
[
1 + (T − 1)σ

2
τ∗C
σ2
ε∗C

]
> 1 as in the most cases, the attenuation factor in eq. 3.20 re-

sulting from a simple linear model as main outcome model, is higher than in eq. 3.18
resulting from a simple linear mixed model as main outcome model. Thus, a heteroge-
neous, error–prone covariate, attenuates the effect coefficients less if a simple linear mixed
main outcome model is used in comparison to a simple linear model.
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Let additionally admit subgroup–specific classical measurement error (without auto-
correlation in the errors of the main model and the measurement error, i.e. ρX∗B = ρ =
ρB = ρC = 0). The variance–covariance matrix of the heterogeneous covariate X∗C with
heterogeneous error structure, i.e. X∗Cit = X∗Bt + νBi + UB

it + νCi + UC
it ,

Var(X∗C) = (σ2
X∗B + σ2

UB + σ2
UC)IT + (σ2

νB + σ2
νC)JT

has the same structure as the variance–covariance matrix of the heterogeneous covariate,
i.e. X∗Cit = X∗Bt + νBi + UB

it + UC
it , considered in the previous paragraphs:

Var(X∗C) = (σ2
X∗B + σ2

UB + σ2
UC)IT + σ2

νBJT .

Therefore, the derivation of the attenuation factor in the case of a heterogeneous, error–
prone covariate can easily be adapted to a heterogeneous form of the classical measurement
error. The attenuation factor λC is calculated with

λC =
σ2
νB + (σ2

X∗B + σ2
UB)

[
1 + (T − 1)σ

2
τ∗C
σ2
ε∗C

]
σ2
νB + σ2

νC + (σ2
X∗B + σ2

UB + σ2
UC)

[
1 + (T − 1)σ

2
τ∗C
σ2
ε∗C

] . (3.21)

Increasing σ2
νC while fixing the other parameters enlarges the attenuation of the effect.

However, this impact approximates zero if T → ∞. The effect of individual–specific
classical measurement error on the regression coefficient in a simple linear regression
model with random intercept is in most cases (if 1 + (T − 1)σ

2
τ∗
σ2
ε∗
> 1) less severe than

the usual classical measurement error. If the main model does not contain a random
intercept, additional individual–specific classical measurement error will strengthen the
attenuation of the effect.
The variance of the individual–specific classical measurement error is transferred to the

variance of the error term:

Var(Y − (β∗C0 + β∗CX X
∗C))

= Var(Y − β∗C0 − β∗CX (X∗B + νB1T +UB + νC1T +UC))
= [σ2

ε + β2
X(1− λC)2σ2

X + β2
Xλ

C2
σ2
UC ]IT+

[σ2
τ + β2

X(1− λC)2σ2
νB + β2

Xλ
C2
σ2
νC ]JT . (3.22)

The probability limits for the variance parameters in the naive model are, according to
eq. 3.10, eq. 3.11 and eq. 3.22,

σ2
τ* = σ2

τ + λC
2
β2
Xσ

2
νC + (1− λC)2β2

Xσ
2
νB ,

σ2
ε∗ = σ2

ε +
[
(1− λC)2

(
σ2
X∗B + σ2

UB

)
+ λC

2
σ2
UC

]
β2
X .

3.3.3. Heterogeneous and autocorrelated error structure
In this subsection, the models of the previous sections are generalized to the framework
described in the Section 2.1: The covariate as well as the measurement error structure are
considered heterogeneous. In addition, the error terms of the main model, of the mea-
surement error model and of the covariate itself are assumed to follow an autoregressive
process of order one.
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The attenuation factor λC can be written as

λC
eq. 3.9=

tr
[
V ∗C

−1Cov(X,X∗C)
]

tr
[
V ∗C−1Var(X∗C)

]
= tr [(σ2

τ∗CJT + Σε∗C)−1(ΣX∗B + ΣUB + σ2
νBJT )]

tr
[
(σ2

τ∗CJT + Σε∗C)−1(ΣX∗B + ΣUB + ΣUC + (σ2
νB + σ2

νC)JT )
] . (3.23)

The Sherman–Morrison formula (Sherman and Morrison, 1950) is used to invert σ2
τ∗CJ+

Σε∗C . In the notation of Bartlett (1951), the Sherman–Morrison formula is given as

(A+ uv>)−1 = A−1 − A
−1uv>A−1

1 + v>A−1u
(3.24)

for an invertible square matrix A of dimension n× n, vectors u and v, both of length
n and 1 + v>A−1u 6= 0. Because

d := 1 + σ2
τ∗C1>TΣε∗C

−11T = 1 + σ2
τ∗C

σ2
ε∗C(1− ρ∗C2)

[
(T − 2)(1− ρ∗C)2 + 2(1− ρ∗C)

]
6= 0,

(3.25)

the Sherman–Morrison formula yields:

(σ2
τ∗CJT + Σε∗C)−1 = (Σε∗C + σ2

τ∗C1T1>T )−1

eq. 3.24= Σε∗C
−1 − σ2

τ∗C(1 + σ2
τ∗C1>TΣε∗C

−11T )−1Σε∗C
−1JTΣε∗C

−1

eq. 3.25= Σε∗C
−1 − σ2

τ∗Cd
−1Σε∗C

−1JTΣε∗C
−1.

The numerator of the attenuation factor eq. 3.23 is therefore given by

tr[ (σ2
τ∗CJT + Σε∗C)−1(ΣX∗B + ΣUB + σ2

νBJT )]
= tr[ Σε∗C

−1ΣX∗B︸ ︷︷ ︸
A©

−σ2
τ∗Cd

−1 Σε∗C
−1JTΣε∗C

−1ΣX∗B︸ ︷︷ ︸
B©

+

Σε∗C
−1ΣUB︸ ︷︷ ︸
C©

−σ2
τ∗Cd

−1 Σε∗C
−1JTΣε∗C

−1ΣUB︸ ︷︷ ︸
D©

+

σ2
νB Σε∗C

−1JT︸ ︷︷ ︸
E©

−σ2
τ∗Cσ

2
νBd
−1 Σε∗C

−1JTΣε∗C
−1JT︸ ︷︷ ︸

F©
] (3.26)

The single components of eq. 3.26 are calculated in the following:

A©
tr
(
Σε∗C
−1ΣX∗B

)
= tr

(
σ2
X∗B

σ2
ε∗C
W−1
ρ∗CWρX∗B

)
Sec. B.3= σ2

X∗B

σ2
ε∗C

(
1− ρ∗C2

) (T − 2(T − 1)ρ∗CρX∗B + (T − 2)ρ∗C2)

= σ2
X∗B

σ2
ε∗C

(
1− ρ∗C2

)g∗C1,T (ρX∗B)

with g∗C1,T (ρ) := T − 2(T − 1)ρρ∗C + (T − 2)ρ∗C2.
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B©
Σε∗C
−1JTΣε∗C

−1ΣX∗B

= σ2
X∗B

(σ2
ε∗C)2W

−1
ρ∗C JTW

−1
ρ∗CWρX∗B

eq. 3.3= σ2
X∗B(

σ2
ε∗C

(
1− ρ∗C2

))2 ·



(1− ρ∗C)2 (1− ρ∗C)3 (1− ρ∗C)3 · · · (1− ρ∗C)2

(1− ρ∗C)3 (1− ρ∗C)4 (1− ρ∗C)4 · · · (1− ρ∗C)3

(1− ρ∗C)3 (1− ρ∗C)4 (1− ρ∗C)4 · · · (1− ρ∗C)3

... ... ... . . . ...
(1− ρ∗C)3 (1− ρ∗C)4 (1− ρ∗C)4 · · · (1− ρ∗C)3

(1− ρ∗C)2 (1− ρ∗C)3 (1− ρ∗C)3 · · · (1− ρ∗C)2


︸ ︷︷ ︸

D

WρX∗B

⇒ tr(Σε∗C
−1JTΣε∗C

−1ΣX∗B)

= σ2
X∗B(

σ2
ε∗C

(
1− ρ∗C2

))2

 T∑
i=1

T∑
j=1

[D]ij[WρX∗B ]ji


= σ2

X∗B(
σ2
ε∗C

(
1− ρ∗C2

))2

2
(
1− ρ∗C

)2
(

1 +
(
ρX
∗B)T−1

)
+ 4

(
1− ρ∗C

)3 T−2∑
t=1

(
ρX
∗B)t +

(
1− ρ∗C

)4
(
T − 2 + 2

T−3∑
k=1

k∑
t=1

(
ρX
∗B)t)

= σ2
X∗B(

σ2
ε∗C

(
1− ρ∗C2

))2 g
∗C
2,T (ρX∗B)

with

g∗C2,T (ρ) :=2(1− ρ∗C)2(1 + ρT−1) + 4
(
1− ρ∗C

)3 T−2∑
t=1

ρt+

(
1− ρ∗C

)4
(
T − 2 + 2

T−3∑
k=1

k∑
t=1

ρt
)
.

C© results from A© :

tr(Σε∗C
−1ΣUB) = σ2

UB

σ2
ε∗C

(
1− ρ∗C2

)g∗C1,T

(
ρB
)

D© results from B© :

tr(Σε∗C
−1JTΣε∗C

−1ΣUB) = σ2
UB(

σ2
ε∗C

(
1− ρ∗C2

))2 g
∗C
2,T

(
ρB
)
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E© results from A© with 1 instead of ρX∗B and σ2
X∗B :

tr(Σε∗C
−1JT ) = 1

σ2
ε∗C

(
1− ρ∗C2

)g∗C1,T (1)

F© results from B© with 1 instead of ρX∗B and σ2
X∗B :

tr(Σε∗C
−1JTΣε∗C

−1JT ) = 1(
σ2
ε∗C

(
1− ρ∗C2

))2 g
∗C
2,T (1)

Using the auxiliary calculations A©− F©, eq. 3.26 can be transformed to

 σ2
X∗Bg

∗C
1,T

(
ρX
∗B)− σ2

τ∗Cσ
2
X∗B

σ2
ε∗C

(
1− ρ∗C2

)
d
g∗C2,T

(
ρX
∗B)+

σ2
UBg∗C1,T

(
ρB
)
− σ2

τ∗Cσ
2
UB

σ2
ε∗C

(
1− ρ∗C2

)
d
g∗C2,T

(
ρB
)

+

σ2
νBg
∗C
1,T (1)− σ2

τ∗Cσ
2
νB

σ2
ε∗C

(
1− ρ∗C2

)
d
g∗C2,T (1)

 1
σ2
ε∗C

(
1− ρ∗C2

)
=

 σ2
X∗Bg

∗C
T

(
ρX
∗B)+ σ2

UBg∗CT
(
ρB
)

+ σ2
νBg
∗C
T (1)

 T

σ2
ε∗C

(
1− ρ∗C2

)
with

g∗CT (ρ) :=
g∗C1,T (ρ)− σ2

τ∗C

σ2
ε∗C

(
1− ρ∗C2

)
d
g∗C2,T (ρ)

 /T
=1− 2T − 1

T
ρρ∗C + T − 2

T
ρ∗C

2−{
(T − 2)

(
1− ρ∗C

)4
+ 2

(
1− ρ∗C

)2
(1 + ρT−1) + 4

(
1− ρ∗C

)3 T−2∑
t=1

ρt+

2
(
1− ρ∗C

)4 T−3∑
k=1

k∑
t=1

ρt
}

T
T − 2(T − 1)ρ∗C + (T − 2)ρ∗C2 +

σ2
ε∗C

(
1− ρ∗C2)
σ2
τ∗C


−1

.

Since the denominator of eq. 3.23 is calculated analogically to its numerator, the
attenuation factor for the heterogeneous and autocorrelated error structure results as

λC =β
∗C
X

βX

=
σ2
X∗Bg

∗C
T

(
ρX
∗B
)

+ σ2
νBg
∗C
T (1) + σ2

UBg∗CT
(
ρB
)

σ2
X∗Bg

∗C
T

(
ρX∗B

)
+ σ2

νBg
∗C
T (1) + σ2

UBg∗CT (ρB) + σ2
νCg
∗C
T (1) + σ2

UCg∗CT (ρC)
. (3.27)
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Eq. 3.27 reduces to eq. 3.21 if ρX∗B = ρB = ρC = 0, as shown in Appendix B.5. The limit
of g∗CT (ρ) for T →∞ is g∗C∞ (ρ) = 1− 2ρρ∗C + ρ∗C

2 for |ρ| < 1 and ρ∗C > 0 and g∗C∞ (1) = 0
for ρ∗C ∈ (0, 1) as shown in Appendix B.6. Thus, the attenuation factor λC approximates

λC =
σ2
X∗B

(
1− 2ρ∗CρX∗B + ρ∗C

2)+ σ2
UB

(
1− 2ρ∗CρB + ρ∗C

2)
σ2
X∗B

(
1− 2ρ∗CρX∗B + ρ∗C2

)
+ σ2

UB

(
1− 2ρ∗CρB + ρ∗C2

)
+ σ2

UC

(
1− 2ρ∗CρC + ρ∗C2

)
(3.28)

for T →∞. Especially high values of ρ in comparison to ρ∗ reduce the size of the weight
gT (ρ) and vice–versa.
The variance of the error term is:

Var(Y − χ∗Cβ∗C) = Var(Y − β0 − βXX) + Var(β0 + βXX − β∗CX X∗C)
= Var(Y − β0 − βXX) + Var(βXX) + Var(β∗CX X∗C)−

2Cov(βXX, β∗CX X
∗C)

= Σε + σ2
τJT +

β2
X(ΣX∗B + ΣUB + σ2

νBJT ) +
β∗CX

2(ΣX∗B + ΣUB + σ2
νBJT + ΣUC + σ2

νCJT )−
2βXβ∗CX (ΣX∗B + ΣUB + σ2

νBJT )
= Σε + σ2

τJT +
β2
X

[
(1− λC)2

(
ΣX∗B + ΣUB + σ2

νBJT
)
+λC2(ΣUC + σ2

νCJT )]

As mentioned in Subsection 3.1.3, a simple expression for the variance parameters
σ2
ε∗C , σ

2
τ∗C and ρ∗C in the naive model is not available, because the correlation structure

of the model error is misspecified.

3.4. Mixture measurement error
A random variable with mixture measurement error is composed by a certain percentage p
of observations with Berkson error and the percentage 1− p of observations with classical
measurement error (see eq. 2.6).

3.4.1. Homogeneous covariate and error structure
At first, the simple linear regression case with usual classical and Berkson errors (σ2

τ =
σ2
νB = σ2

νC = 0, ρX∗B = ρ = ρB = ρC = 0) is considered. Var(X∗M) and Cov(X,X∗M) are
calculated by:

Var(X∗M) =Var(X∗B + (1−G)UB + (1−G)UC)
=Var(X∗B) + Var((1−G)UB) + Var((1−G)UC)
=σ2

X∗B + E(Var((1−G)UB|G)) + Var(E((1−G)UB|G))+
E(Var((1−G)UC|G)) + Var(E((1−G)UC|G))

=σ2
X∗B + (1− p)(σ2

UB + σ2
UC)

Cov(X,X∗M) =Cov(X∗B + UB, X∗B + (1−G)UB + (1−G)UC)
=Var(X∗B) + Var((1−G)UB)
=σ2

X∗B + (1− p)σ2
UB .



53

Thus, the reliability ratio for mixture measurement error with a homogeneous covariate
and error structure is calculated through

λM = E(X|X∗M) = Cov(X,X∗M)
Var(X∗M) = σ2

X∗B + (1− p)σ2
UB

σ2
X∗B + (1− p)(σ2

UB + σ2
UC) .

Since λM ≤ 1, mixed measurement error entails an attenuation of the true effect estimate,
similar to classical measurement error, but the attenuation of the effect estimate due to
mixture measurement error is less severe if σ2

X∗B > 0, σ2
UC > 0 and p < 1.

Equivalent calculations for the variance of the error term as in Subsection 3.3.1 result
in the following variance of the error term:

Var(Y − (β∗M0 + β∗MX X∗M))
= Var(Y − β0 − βXX) + Var(βXX) + Var(β∗MX X∗M)−

2Cov(βXX, β∗MX X∗M)
= σ2

ε + β2
X(σ2

X∗B + σ2
UB) + β∗MX

2(σ2
X∗B + (1− p)(σ2

UB + σ2
UC))−

2βXβ∗MX (σ2
X∗B + (1− p)σ2

UB)
= σ2

ε + β2
X(1− λM)2σ2

X∗B+
β2
X(1 + (1− p)λM(λM − 2))σ2

UB+
β2
Xλ

M2(1− p)σ2
UC

= σ2
ε∗ .

3.4.2. Heterogeneous covariate and error structure
For a heterogeneous error–prone covariate and error term ρX

∗B = ρ = ρB = ρC = 0 is
assumed. Cov(X,X∗M) denotes the cross–covariance between the measurements with
mixture error X∗M and the precise measurements X and is derived by

Cov(X,X∗M) =Cov(X∗B + (1T −G) ◦ (νB1T ) + (1T −G) ◦UB,X∗B + νB1T +UB).

Var(X∗M) results from

Var(X∗M) =Var(X∗B + (1T −G) ◦ (νB1T ) + (1T −G) ◦UB+
(1T −G) ◦ (νC1T ) + (1T −G) ◦UC).

For an arbitrary T–dimensional random variable U with expected value 0 Cov(G◦U ,U)
and Var(G ◦U) are calculated as follows:

Cov(G ◦U ,U) = E
[
(G ◦U)U>

]
= E

[
E
[
(G ◦U)U>|G

]]
= E

[
(G1>T ) ◦ Var(U)

]
= (1− p)Var(U)

Var(G ◦U) = E [Var [G ◦U |G]] + Var [E [G ◦U |G]]
= E

[
(GG>) ◦ Var(U)

]
= ((1− p)2JT + p(1− p)IT )Var(U).
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These relationships are used for the derivation of Cov(X,X∗M) and Var(X∗M):

Cov(X,X∗M) =σ2
X∗BIT + E

[
((1T −G)1>T ) ◦ (σ2

νBJT + σ2
UBIT )

]
=σ2

X∗BIT + (1− p)σ2
νBJT + (1− p)σ2

UBIT (3.29)
Var(X∗M) =σ2

X∗BIT + E
[
((1T −G)(1T −G)>) ◦

(
σ2
UBIT + σ2

UCIT + (σ2
νB + σ2

νC)JT
)]

=σ2
X∗BIT + (σ2

νB + σ2
νC)

(
(1− p)2JT + p(1− p)IT

)
+

(1− p)(σ2
UB + σ2

UC)IT . (3.30)

Calculations along the lines of Wang et al. (1998) result in the following attenuation
factor:

λM =
σ2
νB + (σ2

X∗B + (1− p)σ2
UB)

[
1 + (T − 1)σ

2
τ∗C
σ2
ε∗C

]
σ2
νB + σ2

νC +
(
σ2
X∗B + (1− p)(σ2

UB + σ2
UC) + p(1− p)(σ2

νB + σ2
νC)
) [

1 + (T − 1)σ
2
τ∗C
σ2
ε∗C

] .
The individual–specific measurement errors and the random effects of the main model,

i.e. νB, νC and τ , cannot be identified with the main model. The mixture of the two
error types implicates, that also the two individual–specific measurement errors are mixed,
i.e. they cannot be separately calculated. As a result, the variance of the individual–
specific measurement errors is not entirely transferred to the variance of the error term
and the variance between the individual mean of the Berkson error–prone measurements
and the individual mean of the measurements with classical measurement error affects
the denominator of the attenuation factor.
In contrast to the classical measurement error with heterogeneous covariate and error

structure, the attenuation factor for mixture measurement error is also for T →∞ affected
by the individual–specific measurement errors νB and νC. The additional term p(1 −
p)(σ2

νB + σ2
νC) intensifies the attenuation of the effect coefficient.

The variance of the error term is

Var(Y − (β∗M0 + β∗MX X∗M))
= Var(Y − β0 − βXX) + Var(βXX) + Var(β∗MX X∗M)−

2Cov(βXX, β∗MX X∗M)
= σ2

εIT + σ2
τJT + β2

X(σ2
X∗BIT + σ2

νBJT + σ2
UBIT )+

β∗MX
2
[
σ2
X∗BIT + (σ2

νB + σ2
νC)

(
(1− p)2JT + p(1− p)IT

)
+

(1− p)
(
σ2
UB + σ2

UC

)
IT
]
−

2β2
Xλ

M
[
σ2
X∗BIT + (1− p)σ2

νBJT + (1− p)σ2
UBIT

]
= σ2

εIT + σ2
τJT+

β2
X

[
(1− λM)2σ2

X∗BIT+

(1− 2λM(1− p) + λM
2(1− p))σ2

UBIT+

(1− p)λM2
σ2
UCIT+

(1− (1− p)λM)2σ2
νBJT + p(1− p)λM2

σ2
νBIT+

(1− p)2λM
2
σ2
νCJT + p(1− p)λM2

σ2
νCIT

]
(3.31)
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The probability limits for the variance parameters in the naive model are, according to
eq. 3.10, eq. 3.11 and eq. 3.31,

σ2
τ* = σ2

τ + λM
2(1− p)2β2

Xσ
2
νC + (1− (1− p)λM)2β2

Xσ
2
νB ,

σ2
ε∗ = σ2

ε + β2
X

[
(1− λM)2σ2

X∗B + (1− 2λM(1− p) + λM
2(1− p))σ2

UB + (1− p)λM2
σ2
UC +

p(1− p)λM2
σ2
νB + p(1− p)λM2

σ2
νC

]
.

3.4.3. Heterogeneous and autocorrelated error structure
The derivation of the attenuation factor λM in a simple linear mixed model with autocorre-
lated errors and individual–specific and autocorrelated mixture covariate measurement
error is similar to the classical measurement error (Subsection 3.3.3). Therefore, only the
changing steps are mentioned in this subsection. The attenuation factor λM for the effect
coefficient of a covariate with mixture measurement error is

λM
eq. 3.9=

tr
[
V ∗M

−1Cov(X,X∗M)
]

tr
[
V ∗M−1Var(X∗M)

] . (3.32)

Cov(X,X∗M) is, analogically to eq. 3.29, given through

Cov(X,X∗M) =ΣX∗B + (1− p)σ2
νBJT + (1− p)ΣUB , (3.33)

The variance of X∗M is, analogously to eq. 3.30, determined by

Var(X∗M) =ΣX∗B + (σ2
νB + σ2

νC)
(
(1− p)2JT + p(1− p)IT

)
+

(1− p)2 (ΣUB + ΣUC) + p(1− p)(σ2
UB + σ2

UC)IT .

Eq. 3.32 is continued with

λM =
{
tr
[
(σ2

τ∗MJT + Σε∗M)−1(ΣX∗B + (1− p)σ2
νBJT + (1− p)ΣUB)

]}
{
tr
[
(σ2

τ∗MJT + Σε∗M)−1(ΣX∗B + (σ2
νB + σ2

νC)((1− p)2JT + p(1− p)IT )+

(1− p)2 (ΣUB + ΣUC) + p(1− p)(σ2
UB + σ2

UC)IT )
]}
. (3.34)

Calculations similar to the classical measurement error in Subsection 3.3.3 yield the
attenuation factor

λM =
{
σ2
X∗Bg

*M
T

(
ρX
∗B)+ (1− p)σ2

νBg
*M
T (1) + (1− p)σ2

UBg*MT
(
ρB
)}

{
σ2
X∗Bg

*M
T

(
ρX
∗B)+ (σ2

νB + σ2
νC)[(1− p)2g*MT (1) + p(1− p)g*MT (0)]+

σ2
UB [(1− p)2g*MT

(
ρB
)

+ p(1− p)g*MT (0)]+

σ2
UC [(1− p)2g*MT

(
ρC
)

+ p(1− p)g*MT (0)]
}−1

(3.35)

with the same weighting function g∗MT as used for the bias calculation of classical mea-
surement error, but using ρ∗M instead of ρ∗C.
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The error variance of the naive model results as

Var(Y − χ∗Mβ∗M) =Var(Y − β0 − βXX) + Var(βXX) + Var(β∗MX X∗M)−
2Cov(βXX, β∗MX X∗M)

=Σε + σ2
τJT + β2

X(ΣX∗B + ΣUB + σ2
νBJT )+

β∗MX
2
[
ΣX∗B + (σ2

νB + σ2
νC)

(
(1− p)2JT + p(1− p)IT

)
+

(1− p)2 (ΣUB + ΣUC) + p(1− p)(σ2
UB + σ2

UC)IT
]
−

2βXβ∗MX
[
ΣX∗B + (1− p)ΣUB + (1− p)σ2

νBJT
]

=Σε + σ2
τJT+

β2
X

[
(1− λM)2ΣX∗B+

(1− (1− p)λM)2(ΣUB + σ2
νBJT ) + p(1− p)λM2(σ2

UB + σ2
νB)IT+

λM
2(1− p)2(ΣUC + σ2

νCJT ) + p(1− p)λM2(σ2
UC + σ2

νC)IT
]

Again, as mentioned in Subsection 3.1.3, simple expressions for the variance parameters
σ2
ε∗M , σ

2
τ∗M and ρ∗M in the naive model are not available.

3.5. Extensions of the models

3.5.1. Alternatives for the calculation of the attenuation factor
Since the true values ofX are unknown, Cov(X,X∗) has to be calculated with additional
information, e.g. through a validation study. This can be accomplished either based on
X∗ ∈ {X∗C,X∗M} or based on X∗B:

• Classical measurement error:

1. Cov
(
X,X∗C

)
= Var

(
X∗C

)
− σ2

νCJT −ΣUC (3.36)

2. Cov
(
X,X∗C

)
= ΣX∗B + σ2

νBJT + ΣUB (3.37)

• Mixture measurement error:

1. Cov
(
X,X∗M

)
=Var

(
X∗M

)
+ p(1− p)σ2

νB(JT − IT ) + p(1− p)ΣUB−
p(1− p)σ2

UBIT − (1− p)2σ2
νCJT − p(1− p)σ2

νCIT−
(1− p)2ΣUC − p(1− p)σ2

UCIT (3.38)
2. Cov

(
X,X∗M

)
=ΣX∗B + (1− p)ΣUB + (1− p)σ2

νBJT (3.39)
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The relations in eq. 3.36 and eq. 3.37 are evident. Eq. 3.39 results from eq. 3.33. The
derivation of eq. 3.38 is given in the following.

Cov
(
X∗M,X

)
=Cov

(
X∗M,X∗M + νBG+G ◦UB − νC(1T −G)− (1T −G) ◦UC

)
=Cov

(
X∗M,X∗M

)
+ Cov

(
νB (1T −G) , νBG

)
+

Cov
(
(1T −G) ◦UB,G ◦UB

)
− Cov

(
νC (1T −G) , νC (1T −G)

)
−

Cov
(
(1T −G) ◦UC, (1T −G) ◦UC

)
=Var

(
X∗M

)
+ p(1− p)σ2

νBJT − p(1− p)σ2
νBIT + p(1− p)ΣUB−

p(1− p)σ2
UBIT − (1− p)2σ2

νCJT − p(1− p)σ2
νCIT − (1− p)2ΣUC−

p(1− p)σ2
UCIT

The first mentioned alternatives use the available personal measurements and therefore,
more detailed information.

3.5.2. Including knowledge about the exact breakdown times
Previous considerations (eq. 3.34) are based on the stochasticity and on the “missing
completely at random” assumption of the failure process of the portable measurement
device. However, known failure times occur in the Augsburger Umweltstudie, i.e. the
entries of G are known. The introduction of this knowledge into the bias calculations for
the mixture error is discussed in this subsection.
Known breakdown times of the personal measurement device result in non–identically

distributed data for the individuals. If equal lengths of the measurement series T are
presumed, eq. 3.23 changes to

λM =
∑n
i=1 tr

[
V ∗−1Cov(Xi,X

∗
i )
]

∑n
i=1 tr

[
V ∗−1Var(X∗i )

] . (3.40)

because V ∗ is identical for all individuals. The attenuation factor λM results as

λM =
∑n
i=1 tr

[
V ∗M

−1(ΣX∗B + ((1T −Gi)1>T ) ◦ (σ2
νBJT + ΣUB))

]
∑n
i=1 tr

[
V ∗M−1(ΣX∗B + ((1T −Gi)(1T −Gi)>) ◦ (σ2

νBJT + σ2
νCJT + ΣUB + ΣUC))

]
(3.41)

Alternatively,

Cov
(
X∗Mi ,Xi

)
=Var

(
X∗M

)
+ σ2

νB(1T −Gi)G>i ◦ JT + (1T −Gi)G>i ◦ΣUB−

σ2
νC(1T −Gi)(1T −Gi)> ◦ JT − (1T −Gi)(1T −Gi)> ◦ΣUC

can be used in the numerator of eq. 3.40.
In other applications distributional assumptions of the failure process may be known.

For example, the breakdown of the device of a certain time point depends on the situation
in the past or on the measured quantity.

3.5.3. Further covariates
The previous considerations were restricted to a single covariate X. The inclusion of q
additional precisely measured covariates Z does not affect the bias of the effect coefficient
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induced by the deficient covariate X∗, if Z and X∗ are independent. However, the attenu-
ation of the effect may change and biased effect estimates may possibly occur if X∗ and
Z are dependent. Attenuation could even be inverted if the measurement errors of two
covariates are correlated (Carroll et al., 2006) or if several covariates are measured with
error (Buzas et al., 2005).
The following considerations are restricted to a single error–prone covariate. The first

score equation of the linear mixed model with additional covariates Z correlating with
the classical error–prone covariate is (see Carroll et al., 2006), when neglecting index i,

E

(1T X∗ Z
)>
V ∗−1

Y − (1T X∗ Z
)

β∗0

β∗X

β∗Z



 = 0

⇔ E

[(
1T X∗ Z

)>
V ∗−1Y

]
= E

(1T X∗ Z
)>
V ∗−1

(
1T X∗ Z

)
β∗0

β∗X

β∗Z




⇔E





1>TV ∗−11T 1>TV ∗−1X 1>TV ∗−1Z1 . . . 1>TV ∗−1Zq

X∗>V ∗−11T X∗>V ∗−1X X∗>V ∗−1Z1 . . . X∗>V ∗−1Zq

Z>1 V
∗−11T Z>1 V

∗−1X Z>1 V
∗−1Z1 . . . Z>1 V

∗−1Zq
... ... ... . . . ...

Z>q V
∗−11T Z>q V

∗−1X Z>q V
∗−1Z1 . . . Z>q V

∗−1Zq






β0

βX

βZ

 =

E





1>TV ∗−11T 1>TV ∗−1X∗ 1>TV ∗−1Z1 . . . 1>TV ∗−1Zq

X∗>V ∗−11T X∗>V ∗−1X∗ X∗>V ∗−1Z1 . . . X∗>V ∗−1Zq

Z>1 V
∗−11T Z>1 V

∗−1X∗ Z>1 V
∗−1Z1 . . . Z>1 V

∗−1Zq

... ... ... . . . ...
Z>q V

∗−11T Z>q V
∗−1X∗ Z>q V

∗−1Z1 . . . Z>q V
∗−1Zq






β∗0

β∗X

β∗Z

 ,

which can be further simplified with eq. 3.7 to
β0

βX

βZ

 =

E





tr(V ∗−1JT ) tr(V ∗−1X1>T ) tr(V ∗−1Z11>T ) . . . tr(V ∗−1Zq1>T )
tr(V ∗−11TX

∗>) tr(V ∗−1XX∗>) tr(V ∗−1Z1X
∗>) . . . tr(V ∗−1ZqX

∗>)
tr(V ∗−11TZ

>
1 ) tr(V ∗−1XZ>1 ) tr(V ∗−1Z1Z

>
1 ) . . . tr(V ∗−1ZqZ

>
1 )

...
...

...
. . .

...
tr(V ∗−11TZ

>
q ) tr(V ∗−1XZ>q ) tr(V ∗−1Z1Z

>
q ) . . . tr(V ∗−1ZqZ

>
q )





−1

·

E





tr(V ∗−1JT ) tr(V ∗−1X∗1>T ) tr(V ∗−1Z11>T ) . . . tr(V ∗−1Zq1>T )
tr(V ∗−11TX

∗>) tr(V ∗−1X∗X∗>) tr(V ∗−1Z1X
∗>) . . . tr(V ∗−1ZqX

∗>)
tr(V ∗−11TZ

>
1 ) tr(V ∗−1X∗Z>1 ) tr(V ∗−1Z1Z

>
1 ) . . . tr(V ∗−1ZqZ

>
1 )

...
...

...
. . .

...
tr(V ∗−11TZ

>
q ) tr(V ∗−1X∗Z>q ) tr(V ∗−1Z1Z

>
q ) . . . tr(V ∗−1ZqZ

>
q )





β∗0

β∗X

β∗Z

 .
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Since the measurement errors are assumed to be independent from the confounder vari-
ables Z,

E
[
tr(V ∗−1XZ>)

]
= E

[
tr(V ∗−1X∗Z>)

]
and thus,
β0

βX

βZ

 =



tr(V ∗−1JT ) tr(V ∗−1E(X)JT ) tr(V ∗−1E(Z1)JT ) · · · tr(V ∗−1E(Zq)JT )
tr(V ∗−1E(X∗)JT ) tr(V ∗−1Cov(X∗,X)) tr(V ∗−1Cov(X∗,Z1)) · · · tr(V ∗−1Cov(X∗,Zq))
tr(V ∗−1E(Z1)JT ) tr(V ∗−1Cov(X∗,Z1)) tr(V ∗−1Var(Z1))

...
. . . · · ·

...
tr(V ∗−1E(Zq)JT ) tr(V ∗−1Cov(X∗,Zq)) · · · tr(V ∗−1Var(Zq))



−1

·



tr(V ∗−1JT ) tr(V ∗−1E(X∗)JT ) tr(V ∗−1E(Z1)JT ) · · · tr(V ∗−1E(Zq)JT )
tr(V ∗−1E(X∗)JT ) tr(V ∗−1Var(X∗)) tr(V ∗−1Cov(X∗,Z1)) · · · tr(V ∗−1Cov(X∗,Zq))
tr(V ∗−1E(Z1)JT ) tr(V ∗−1Cov(X∗,Z1)) tr(V ∗−1Var(Z1))

...
. . . · · ·

...
tr(V ∗−1E(Zq)JT ) tr(V ∗−1Cov(X∗,Zq)) · · · tr(V ∗−1Var(Zq))


·


β∗0

β∗X

β∗Z

 (3.42)

is obtained for centered covariates X∗ and Z. Two terms cause the differences to the
simple case: (I) The probability limit of the variance–covariance matrix of the naive model
errors V ∗ changes due to additional explanatory power of the additional covariates and (II)
Z directly influences the estimation of β∗X through Cov(X∗,Z),Var(Z) and βZ . Indeed,
the explicit calculation of the bias is possible, but would be complex and would require
knowledge about the cross–covariances between the covariates, which may be difficult to
estimate in real situations: in the Augsburger Umweltstudie, these parameters strongly
vary between the individuals. Therefore, empirical, individual–specific equivalents of the
expectations, variances and cross–covariances are used to estimate the coefficients β0, βX
and βZ by numerically solving the following equation system:
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
β̂0

β̂X

β̂Z

 =

∑




tr(V̂ ∗
−1

JT ) tr(V̂ ∗
−1
X1>T ) tr(V̂ ∗

−1
Z11>T ) · · · tr(V̂ ∗

−1
Zq1>T )

tr(V̂ ∗
−1

1TX
∗>) tr(V̂ ∗

−1
XX∗>) tr(V̂ ∗

−1
Z1X

∗>) · · · tr(V̂ ∗
−1
ZqX

∗>)
tr(V̂ ∗

−1
1TZ

>
1 ) tr(V̂ ∗

−1
X∗Z>1 ) tr(V̂ ∗

−1
Z1Z

>
1 )

...
. . . · · ·

...
tr(V̂ ∗

−1
1TZ

>
q ) tr(V̂ ∗

−1
X∗Z>q ) · · · tr(V̂ ∗

−1
ZqZ

>
q )





−1

∑


tr(V̂ ∗
−1

JT ) tr(V̂ ∗
−1
X∗1>T ) tr(V̂ ∗

−1
Z11>T ) · · · tr(V̂ ∗

−1
Zq1>T )

tr(V̂ ∗
−1

1TX
∗>) tr(V̂ ∗

−1
X∗X∗>) tr(V̂ ∗

−1
Z1X

∗>) · · · tr(V̂ ∗
−1
ZqX

∗>)
tr(V̂ ∗

−1
1TZ

>
1 ) tr(V̂ ∗

−1
X∗Z>1 ) tr(V̂ ∗

−1
Z1Z

>
1 )

...
. . . · · ·

...
tr(V̂ ∗

−1
1TZ

>
q ) tr(V̂ ∗

−1
X∗Z>q ) · · · tr(V̂ ∗

−1
ZqZ

>
q )




β̂∗0

β̂∗X

β̂∗Z .


(3.43)

Please remember, index i for the person is neglected; therefore, no summation limits
are specified. The only unknown component in eq. 3.43 is tr(V̂ ∗−1

XX∗>). Since the
true values of X are unknown, tr(V̂ ∗−1

XX∗>) has to be calculated with additional
information, e.g. through a validation study (see Subsection 3.4.2).

3.5.4. Berkson error–prone measurements with classical
measurement error

Classical measurement error of the fixed–site measurements was neglected in the previous
considerations, but does actually occur. This data situation results in a mixture of Berkson
and classical measurement error, which is different from the mixture measurement error
defined in eq. 2.6 and is defined by Mallick et al. (2002) as follows:

X = X∗B + UB

X∗BC = X∗B + UBC

The true values of the Berkson error–prone measurements X∗B are not observable. Only
X∗BC can be observed, which represents the latent fixed–site exposure with an additive
measurement error.

Mixture error

The mixture error structure with classical error–prone fixed–site and individual mea-

surements is defined as:

X∗M2
it = X∗BCit Git +X∗Cit (1−Git)

=


X∗BCit for p · 100% of the measurements

X∗Cit for (1− p) · 100% of the measurements
.
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The classical measurement error overlaying X∗B, UBC, is presumed to be independent
from the other errors, i.e. τ ,νB,νC, ε,UB and UC and to be normally distributed with
an autoregressive error structure of order 1: UBC ∼ N(0,ΣUBC),ΣUBC = σ2

UBCWρBC . In
order to derive the attenuation factor λM2 , Cov(X,X∗M2) and Var(X∗M2) are calculated:

Cov(X,X∗M2) =Cov(G ◦X∗BC + (1T −G) ◦X∗B + (1−G) ◦ νB1T + (1−G) ◦UB,

X∗B + νB +UB)
=ΣX∗B + (1− p)σ2

νBJT + (1− p)ΣUB

Var(X∗M2) =Var(G ◦X∗B +G ◦UBC + (1T −G) ◦X∗B + (1T −G) ◦ νB1T+
(1T −G) ◦UB + (1T −G) ◦ νC1T + (1T −G) ◦UC)

=ΣX∗B + (σ2
νB + σ2

νC)
(
(1− p)2J + p(1− p)IT

)
+

p2ΣUBC + (1− p)2 (ΣUB + ΣUC) + p(1− p)(σ2
UB + σ2

UC + σ2
UBC)IT .

Cov(X,X∗M2) does not change in comparison to the case when σ2
UBC = 0, whereas

Var(X∗M2) increases by p2ΣUBC + p(1 − p)σ2
UBCIT . The attenuation factor is deduced

similar to Section 3.6 and results in:

λM2 =[σ2
X∗Bg

∗M2
T (ρX∗B) + (1− p)σ2

νBg
∗M2
T (1) + (1− p)σ2

UBg
∗M2
T (ρB)]

[σ2
X∗Bg

∗M2
T (ρX∗B) + (σ2

νB + σ2
νC)[(1− p)2g∗M2

T (1) + p(1− p)g∗M2
T (0)]+

σ2
UB [(1− p)2g∗M2

T (ρB) + p(1− p)g∗M2
T (0)]+

σ2
UC [(1− p)2g∗M2

T (ρC) + p(1− p)g∗M2
T (0)]+

σ2
UBC [p2g∗M2

T (ρBC) + p(1− p)g∗M2
T (0)]]−1. (3.44)

λM2 exhibits the additional term σ2
UBC [p2g∗M2

T (ρBC) + p(1− p)g∗M2
T (0)] in the denominator

in comparison to λM. This additional term may alleviate or strengthen the attenuation
depending on the weighting functions g∗M2

T (ρBC) and g∗M2
T (0). If ρX∗B = ρB = ρBC = ρC =

0, g∗M2
T (0) = 1 + (T − 1)σ2

τ∗M2/σ2
ε∗M2 yields a stronger attenuation of the effect coefficient.

Mixture error as defined in Mallick et al. (2002)
For p = 1, the mixture error equals the mixture error defined by Mallick et al. (2002).

The attenuation factor in eq. 3.44 changes to:

λM2 = σ2
X∗Bg

∗M2
T (ρX∗B)

σ2
X∗Bg

∗M2
T (ρX∗B) + σ2

UBCg
∗M2
T (ρBC)

.

The Berkson error does not affect the attenuation of the regression coefficient. Only the
classical measurement error of the fixed–site measurements, UBC, attenuates the effect
coefficient.

3.5.5. Unbalanced and non–equidistant observations
So far, the developed bias correction assumes a balanced sample, i.e. the observations
for each individual are equidistant and have the same number T . An extension of the
correction approach to a sample with missing values or with non–equidistant observation
times is considered in this subsection. In these situations Xi and Yi, i = 1, . . . , n are not
identically distributed and the attenuation factor is given by:

λ =
∑n
i=1 tr

[
V ∗i
−1Cov(Xi,X

∗
i )
]

∑n
i=1 tr

[
V ∗i
−1Var(X∗i )

] .
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Individual lengths of measurement intervals

The derivation of the attenuation factor in the case of individually varying measurement
durations but without missing values during a measurement series differs in comparison
to the balanced case (Sections 3.5 and 3.6) only in the calculation of the weights g∗Ti(ρ),
which are now individual–specific:

λC =
{

n∑
i=1

[
σ2
X∗Bg

∗C
Ti

(ρX∗B) + σ2
νBg
∗C
Ti

(1) + σ2
UBg∗CTi (ρB)

]}
{

n∑
i=1

[
σ2
X∗Bg

∗C
Ti

(ρX∗B) + σ2
νBg
∗C
Ti

(1) + σ2
UBg∗CTi (ρB)+

σ2
νCg
∗C
Ti

(1) + σ2
UCg∗CTi (ρC)

]}−1
,

λM =
{

n∑
i=1

[
σ2
X∗Bg

∗M
Ti

(ρX∗B) + (1− p)σ2
νBg
∗M
Ti

(1) + (1− p)σ2
UBg∗MTi (ρB)

]}
{

n∑
i=1

[
σ2
X∗Bg

∗M
Ti

(ρX∗B) + (σ2
νB + σ2

νC)[(1− p)2g∗MTi (1) + p(1− p)g∗MTi (0)]+

σ2
UB [(1− p)2g∗MTi (ρB) + p(1− p)g∗MTi (0)]+

σ2
UC [(1− p)2g∗MTi (ρC) + p(1− p)g∗MTi (0)]

]}−1

Missing values

If missing values occur in X∗M, which cannot be imputed through fixed–site measure-
ments, or in X∗C, the calculation of the attenuation factor changes. According to Wans-
beek and Kapteyn (1985), the main outcome model can be rewritten as

DiYi = β0 + βXDiXi + τiDi1T +Diεi

with the mi × T deletion matrix Di; mi denotes the number of missing values during
the measurements of individual i, which corresponds to ∑T

t=1 Git in the case of classical
measurement error. Di is defined as IT where the rows of observations with missing
values are deleted. Since εi ∼ N(0,Σε), Diεi ∼ N(0, σ2

εDiΣεD
>
i ). DiWρD

>
i represents

the correlation matrix of a continuous AR(1) process:

DiWρD
>
i =



1 ρt2i−t1i ρt3i−t1i . . . ρtT i−t1i

ρt2i−t1i 1 ρt3i−t2i . . . ρtT i−t2i

ρt3i−t1i ρt3i−t2i 1 . . . ρtT i−t3i

... ... ... . . . ...
ρtT i−t1i ρtT i−t2i ρtT i−t3i . . . 1


,

with t1i, t2i, . . . , tT i denoting the observation times of the non–missing measurements of
individual i. The attenuation factor changes to

λ
eq. 3.9=

∑n
i=1 tr

[
(DiV

∗
i D

>
i )−1Cov(DiXi,DiX

∗
i )
]

∑n
i=1 tr

[
(DiV ∗i D

>
i )−1Var(DiX∗i )

]
=
∑n
i=1 tr

[
(DiV

∗
i D

>
i )−1DiCov(Xi,X

∗
i )D>i

]
∑n
i=1 tr

[
(DiV ∗i D

>
i )−1DiVar(X∗i )D>i

] . (3.45)
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Index i is neglected in the following for better readability. Wansbeek and Kapteyn (1985)
showed that

(DWρ∗D
>)−1 =



1
1−ρ∗2(t2−t1) − ρ∗t2−t1

1−ρ∗2(t2−t1) 0
− ρ∗t2−t1

1−ρ∗2(t2−t1)
1

1−ρ∗2(t2−t1) + ρ∗2(t3−t2)

1−ρ∗2(t3−t2) − ρ∗t3−t2

1−ρ∗2(t3−t2)

0 − ρ∗t3−t2

1−ρ∗2(t3−t2)
1

1−ρ∗2(t3−t2) + ρ∗2(t4−t3)

1−ρ∗2(t4−t3)

... ... ...
0 0 . . .

0 . . . 0
0 . . . 0

− ρ∗t4−t3

1−ρ∗2(t4−t3) . . . 0
... . . . ...
0 − ρ∗tT−tT−1

1−ρ∗2(tT−tT−1)
1

1−ρ∗2(tT−tT−1)


.

(3.46)

The Sherman–Morrison formula (eq. 3.24) is used to invert DV ∗D>:

(DV ∗D>)−1 =(σ2
τ∗DJTD> +DΣε∗D

>)−1

=(DΣε∗D
>)−1−

σ2
τ∗

1 + σ2
τ∗1>TD>(DΣε∗D

>)−1D1T︸ ︷︷ ︸
:=d


−1

(DΣε∗D
>)−1(DJTD>)(DΣε∗D

>)−1.

d is simplified to

d
eq. 3.46= 1 + σ2

τ∗

σ2
ε∗

2 1
1 + ρ∗t2−t1

+
T−1∑
j=2

1− ρ∗tj+1−tj

1 + ρ∗tj+1−tj

 .
The weights are then

g∗1,T (ρ) :=(1− ρ∗2)tr
[
(DWρ∗D

>)−1DWρ∗D
>
]

g∗2,T (ρ) :=(1− ρ∗2)2tr
[
(DWρ∗D

>)−1(DTJD>)(DWρ∗D
>)−1DWρD

>
]

g∗T (ρ) :=g∗1,T (ρ)− σ2
τ∗

σ2
ε∗(1− ρ∗2)dg

∗
2,T (ρ).

3.6. Interpretation and discussion of the theoretical
results via simulations

A simulation study is performed to visualize the theoretical results and to describe the
properties of the estimators. The impact of measurement error on the effect estimates with
and without confounding variables is examined as well as the properties of the estimated
attenuation factor regarding T and missing values and the influence of autocorrelation of
the measurement error and the model error.
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3.6.1. Simulation setup
The data was generated according to the main model (eq. 3.1 without confounding vari-
ables Z) and the measurement error models (eq. 2.4–2.6) defined in Section 2.1. The
parameters are specified as described in Table 3.1, inspired by the Augsburger Umwelt-
studie:

Mean Variance Autocorrelation
X∗Bit 9.5 0.3 0.99
νBi 0 0.04
UB
it 0 0.2 0.7

νCi 0 0.03
UC
it 0 0.06 0.2

τi 0 140
εit 0 70 0.7

Table 3.1.: Parameter choices for simulation.

Artificial measurement series of length T = 75 are generated for n = 100 individuals
by conducting the following steps:

1. Draw fixed–site measurements X∗Bit from N(9.5, 0.3 ·W0.99).

2. Draw the true exposure measurementsXit according to eq. 2.4 with σ2
νB = 0.03, σ2

UB =
0.06 and ρB = 0.7.

3. Draw the observed exposure measurements X∗Cit according to eq. 2.5 with σ2
νC =

0.04, σ2
UC = 0.2 and ρC = 0.2.

4. Draw the health outcome Yit according to eq. 3.1 (without confounding variables
Z) with β0 =73 , βX=1 , σ2

τ = 140, σ2
ε = 70 and ρ = 0.7.

One out of the N = 100 artificial data sets is visualized in Figure 3.3.
Three scenarios are considered for the structure of the measurement errors: (I) uncorre-

lated errors without an individual–specific structure (νB = 0,νC = 0, ρB = 0, ρC = 0, ρ =
0), (II) uncorrelated random errors and individual–specific measurement error components
(ρB = 0, ρC = 0, ρ = 0), (III) autocorrelated errors and individual–specific measurement
error components.
These scenarios are evaluated for data with the three examined types of measurement

error (Berkson, classical, mixture) as well as for the proper data without measurement
error using linear models with a random intercept and an error term, which is assumed
to be autocorrelated of order 1.
The size of measurement error is varied by scaling the variances of the random errors

(σ2
UB , σ2

UC) with the scaling factors (SF) 0, 0.5, 1, 2 and 5; the other parameters remain
equal within each scenario. The percentage of missing values in X∗C and the percentage
of Berkson error–prone measurements in X∗M is, accordingly to the percentage of missing
values in the Augsburger Umweltstudie, chosen to be 23 %.

3.6.2. Main results
The simulation results for the empirical attenuation factors depending on varying mea-
surement error sizes are presented in Figure 3.4. The empirical attenuation factors, which
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Figure 3.3.: Individual time series for X∗B, X,X∗C and Y of an exemplary artificial data set
of Scenario (III). First row: all individuals; second row: three randomly chosen individuals.

are depicted with boxplots, are calculated as the ratio between the estimated effect using
the error–prone data X∗, β̂∗X , and the estimated effects using the proper data X, β̂X .
The theoretical estimations of λ according to eq. 3.45 and eq. 3.41 are marked with

circles and triangles. Note, that the theoretical estimations of the attenuation factor allow
for the presence of missing values in the measurements with classical measurement error.
The estimation of the attenuation factors for classical and mixture measurement error
with the known values of G and D vary depending on the missing structure of the data
set. Therefore, averaged estimations of the estimated attenuation factors according to eq.
3.45 and eq. 3.41 are depicted in Figure 3.4, since the variation of the estimations is only
marginal.
The true parameter settings for the parameters describing the measurement error de-

fined in the simulation setup are used for the estimation of λ̂; the parameters of the naive
models, σ2

ε∗ , σ
2
τ∗ and ρ∗, which are also required for the calculation of λ̂, are estimated

from the corresponding naive models.
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(I) Measurement error
 in a mixed model

(II) Measurement error
 with individual−specific effects

 in a mixed model

(III) Autocorrelated measurement error
 with individual−specific effects

 in a mixed model

Berkson
 error

Classical
 error

Mixture
 error

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

●

●

●

●
●
●0 1 2 5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

λB

● ● ● ● ●

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

●

●

●

●

●

●●

●

●●

0 1 2 5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

λC

●
●

●
●

●

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

●
●

●

●

●

●●

0 1 2 5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Scaling factor of  σUB
2 , σUC

2

λM

●
●

●
●

●

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

●●

●

●
●

●

●

●

●

0 1 2 5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

● ● ● ● ●

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

●

●

●

●

●

●
●

●

●

●

●

●

0 1 2 5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

●
●

●
●

●

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

●

●

●

●

●

●

●

●

● ●

●

●

●

0 1 2 5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Scaling factor of  σUB
2 , σUC

2

●
● ●

●
●

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

●

●

●

●

●

●

●

●
●

●

●

0 1 2 5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

● ● ● ● ●

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

0 1 2 5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

●

●
● ● ●

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

1.2

1.4
●

●

●

●

●

●

●

●

●

●

●

0 1 2 5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Scaling factor of  σUB
2 , σUC

2

●

● ● ● ●

Figure 3.4.: Simulation results for the empirical attenuation factor depicted in boxplots for
increasing size of measurement errors; the theoretical estimations of λ according to eq. 3.45 and
eq. 3.41 are marked with triangles for the exact values of T and with circles for calculations
according to eq. 3.28 and eq. 3.35 assuming T →∞.
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On average, measurements with Berkson error provide unbiased effect estimates, also in
the presence of individual specific or autocorrelated measurement error. The accuracy of
the estimator diminishes with increasing measurement error variance. Individual–specific
Berkson errors have not any visible impact on the accuracy of the estimator, whereas
AR(1) Berkson errors (Scenario (III)) intensify the known accuracy reduction of the effect
estimates.
The simulation results show, that heterogeneous classical measurement errors without

autocorrelation have also an attenuating influence on the effect estimate as it is known
for homogeneous errors. The theoretical examinations in Subsection 3.4.2 revealed, that
individual–specific classical measurement error does not affect the attenuation for T →∞,
which is also visible in the simulation results. In contrast, autocorrelated errors change
the degree of attenuation; in our simulation, the degree of attenuation in Scenario (III)
is stronger compared to Scenario (I) and Scenario (II), in particular regarding small
measurement error variances.
If σ2

ε∗ is substantially larger than the measurement error variances σ2
UB and σ2

UC , as in
our case, ρ∗C only marginally depends on ρB and ρC. In general, attenuation may increase
or decrease with changing autocorrelation in the measurement error (see Subsection 3.6.4);
however attenuation is intensified with increasing autocorrelation in the Berkson error and
with decreasing autocorrelation in the classical measurement error for T → ∞ (Figure
3.5).
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Figure 3.5.: Attenuation factor for varying correlation of the measurement errors and T →
∞. Classical measurement error (left) and mixture measurement error (right); red crosses:
parameter settings for the simulations; red lines: λ with ρB = ρC = 0; ρ∗ = 0.7.

Mixture error attenuates the effect estimates as it is known for classical error–prone
data, but to a different extent. Individual–specific components in the classical and Berkson
error parts of the mixture error induce bias in the effect estimates even in situations
without random measurement errors (UB, UC). The bias resulting from mixtures of auto-
correlated measurement errors is high and strongly depends on both, the size of the
measurement errors and the size of the autocorrelation coefficients. Increasing mixture
measurement error, i.e. increasing Berkson and increasing classical measurement error,
reduce the attenuation of the effect in Scenario (III); this is possible, because the nu-
merator of the attenuation factor is not completely contained in its denominator. As
with classical measurement error, correlation in the classical measurement error lowers
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SF of Truth Berkson Classical Mixture

Scen. σ2
UB , σ

2
UC Bias RMSE Bias RMSE Bias RMSE Bias RMSE

(I) 0 0.015 0.360 0.015 0.360 0.020 0.421 0.015 0.360
0.5 0.024 0.242 -0.014 0.407 0.016 0.295 0.019 0.275
1 0.002 0.187 -0.008 0.378 0.022 0.246 0.014 0.234
2 0.003 0.137 0.003 0.370 -0.002 0.182 -0.003 0.177
5 -0.012 0.095 0.013 0.390 -0.009 0.118 -0.011 0.119

(II) 0 0.062 0.387 0.062 0.389 0.074 0.409 0.033 0.413
0.5 -0.039 0.237 -0.067 0.364 -0.035 0.282 -0.050 0.280
1 0.015 0.179 0.015 0.397 -0.010 0.243 0.000 0.238
2 0.031 0.151 0.000 0.370 0.027 0.185 0.029 0.180
5 -0.006 0.092 -0.034 0.387 -0.011 0.117 -0.008 0.117

(III) 0 -0.015 0.658 -0.018 0.670 -0.048 0.759 0.005 0.953
0.5 0.036 0.272 -0.007 0.606 0.053 0.402 0.088 0.533
1 -0.012 0.198 -0.002 0.672 0.017 0.299 -0.001 0.348
2 -0.009 0.165 0.013 0.677 -0.002 0.204 0.013 0.255
5 0.009 0.097 0.095 0.644 0.031 0.150 0.038 0.188

Table 3.2.: Bias and RMSE of MOM–corrected effect estimations for Scenarios (I)-(III); bold:
lowest absolute bias and lowest RMSE of each row (disregarding the results based on the true
data).

attenuation and correlation in the Berkson error intensifies attenuation for T → ∞ (see
Figure 3.5).
Comparing the correction methods in terms of bias and RMSE (Table 3.2) shows that

the corrected estimations for classical or mixture error–prone data exceeded the accuracy
of the estimations for Berkson error–prone data. In Scenarios (I) and (II) the correction
based on mixture data is superior or comparable to the correction based on incomplete
data with classical error, whereas in Scenario (III) the correction of classical error–prone
data is more precise.
The RMSE values in Scenario (III) of corrected effect estimations for data with mix-

ture error are not generally higher than for incomplete data with classical measurement
error. For example, for lower ρX∗B , the RMSE is better or comparably as good as for the
estimated coefficient based on data with mixture error (see Appendix C.1). Hence, using
incomplete data with classical error out–performed the usage of data with mixture error
in Scenario (III) only under certain parameter specifications.

3.6.3. Convergence
As shown in Subsections 3.3.3 and 3.4.3, each component of the attenuation factor con-
sists of a variance and a weight. The attenuation factor λ depends on the number of
observations per individual through these weights g∗T (·). The impact of T on λC and λM
is depicted in Figure 3.6.
The dependence on T occurs in all scenarios: apart from small values of T , attenuation

decreases with increasing T approximating a certain level for T → ∞. As already seen
in previous simulations, the attenuation of the effect coefficient is most pronounced in
Scenario (III) for the used parameter specifications.
SinceX∗B is assumed to be autocorrelated for all three scenarios, the attenuation factor

varies with T , even in Scenario (I). In Scenario (II) for the classical measurement error,
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known.

the run of the curve converges for increasing T more and more towards the curve from
scenario (I). This effect is hardly visible in Figure 3.6, because σ2

νC is chosen to be rather
small. The curves of Scenario (I) and (II) for mixture measurement error are nearly
parallelly shifted due to the additional component in the denominator of λ in Scenario
(II).
Figures 3.4 and 3.6 indicate, that the finite sample correction is indeed relevant, because

the weights g∗T (·), and thus also the attenuation factor, strongly depend on the number
of observations per individual T , especially in Scenario (III).

3.6.4. Weight g∗T (ρ)
Autocorrelated errors change the attenuation factor by weighting the single components.
Weights g∗T (·) depending on T , as described in the previous sections are used for the esti-
mation of the attenuation factors to account for the finite number of observations for each
individual and unbalanced or non–equidistant data. Beside the number of observations per
individual T , the weight g∗T (ρ) depends on the autocorrelation coefficient of the component
itself, ρ, and of the naive model error, ρ∗. The weights are positive for the majority of
possible parameter specifications. For T → ∞, g∗T (ρ) equals one, i.e. autocorrelated
structures do not affect the size of attenuation, if ρ∗ = 2ρ; the weight is low for high
values of ρ and high for low ρ and high ρ∗. Exemplary, g∗∞(ρ) is visualized in Figure 3.7
as well as g∗T (ρ) for varying ρ, ρ∗ and T .
The weights depend for small ρ∗ only on T (except for very high values of ρ). For

moderate and high values of ρ∗, the weights increase with decreasing values of ρ and
increasing values of T . The product of variance and weight g∗T (·) can be interpreted as a
modified version of the sample variance, as it is shown in the following.
Let Z, Z = (Z1, Z2, . . . , ZT )>, denote a T–dimensional, first–order autocorrelated ran-

dom variable with variance σ2
Z and autocorrelation coefficient ρZ . Zięba (2010) shows,

that the following holds for the biased sample variance s2
Z of the realizations of Z:

E(s2
Z) =

(
1− 1

Teff

)
σ2
Z
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with

Teff = T 2

T + 2∑T−1
k=1

∑k
t=1 ρ

k
Z

.

If ρ∗ = 0 and σ2
ε∗
σ2
τ∗

+ T ≈ T , g∗T (ρZ) ≈ (1− 1
Teff

):

g∗T (ρZ) = 1− T + 2ρT−1
Z + 4∑T−2

t=1 ρ
t
Z + 2∑T−3

k=1
∑k
t=1 ρ

k
Z

T
(
T + σ2

ε∗
σ2
τ∗

)
= 1− T + 2∑T−1

k=1
∑k
t=1 ρ

k
Z

T
(
T + σ2

ε∗
σ2
τ∗

)

≈ 1− 1
T 2

{
T + 2

T−1∑
k=1

k∑
t=1

ρtZ

}

= 1− 1
Teff

.

Thus, σ2
Zg
∗
T (ρZ) ≈ E(s2

Z) for ρ∗ = 0 and σ2
ε∗
σ2
τ∗

+T ≈ T , i.e. for any first–order autocorrelated
random variable Z, with variance σ2

Z and correlation coefficient ρZ , σ2
Zg
∗
T (ρZ) is approxi-

mately equal to the expected biased sample variance of Z, if ρ∗ = 0 and σ2
ε∗
σ2
τ∗

+ T ≈ T .

3.6.5. Impact of missing value adjustment
The influence of the structure of missing values on the bias calculation of the effect
coefficient was theoretically considered in Subsection 3.5.5. In the following, the impact
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of neglecting the presence of missing values for bias calculation is explored. Therefore, the
calculation of the attenuation factor for classical measurement error allowing for missing
values according to eq. 3.45 is compared to the calculation according to eq. 3.27, which
neglects the missing value structure.
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Figure 3.8.: Simulation results for the empirical attenuation factor depicted in boxplots for
increasing size of measurement errors; the theoretical estimations of λ according to 3.45 and
3.41 are marked with triangles for the exact values of G and with squares for G = 075.

The estimations for λC neglecting the missing values (filled squares in Figure 3.8) are
similar to the exactly estimated values for λC in Scenario (I) and (II). In contrast, biased
estimations are obtained in Scenario (III): the degree of attenuation is overestimated.
Especially in Scenario (III), the attenuation factor depends on the percentage of missing
values as displayed in Figure 3.9.
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Figure 3.9.: Theoretical attenuation factors for classical measurement error in Scenario (III)
for varying percentages of missing values; vertical line: percentage of missing values used for
simulations; T = 75, SF=1, ρ∗ = 0.7, σ2

τ∗ = 140, σ2
ε∗ = 70, 100 missing structures for each

percentage of missing values.

The attenuation of the effect and the variability of λC are increasing with the percentage
of missing values.

3.6.6. Further covariates
For the Augsburger Umweltstudie we assume that the individual PNC level is the only
parameter measured with error. Besides exposure to PNC, variable selection within the
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main study identified some further covariates with a significant concurrent or lagged im-
pact on the heart rate of the individuals (Hampel et al., 2012b). The following additional
covariates affect the effect estimate of PNC, because they are correlated (according to the
correlation coefficient of Spearman) with the fixed–site and thus also with the individual
PNC measurements: temperature at lag 2 (r = -0.399 ), quadratic temperature at lag 2
(r = -0.376) and relative humidity at lag 1 (r = 0.17 ).
We examine the influence of correlated covariates on the attenuation of the effect co-

efficient in the framework of classical and mixture measurement error using N = 100
bootstrap samples (of the individuals) from the original data set. Realizations of X,X∗C

and X∗M are generated according to the settings described in Subsection 3.6.1 based on
the log–transformed samples of the fixed–site measurements as realizations of X∗B. The
main health outcome is generated with the simulated individual PNC measurements and
the corresponding measurements of temperature, relative humidity, time of a day and
the trend variable of the bootstrap sample using the naive parameter estimates of the
precisely measured parameters in the main model of the Augsburger Umweltstudie. The
attenuation effect is estimated with β̂∗X/β̂X after the calculation of β̂X using eq. 3.42.
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Figure 3.10.: Simulation results of Scenario (III) for the empirical attenuation factor for in-
creasing size of classical and Berkson measurement error in the presence of further covariates.
Gray boxplots: empirical attenuation factor; red boxplots: estimated attenuation factors accor-
ding to eq. 3.42 and eq. 3.36–3.39; triangles: estimated attenuation factors according to eq. 3.45
and eq. 3.35 assuming independence between the deficient and precisely measured covariates.

The results in Figure 3.10 show that the degree of attenuation due to classical and
mixture measurement error is reduced when further confounder variables (which correlate
with the error–prone measurements) are included into the model. The attenuation factor
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SF of Truth Classical error Mixture error

σ2
UB , σ

2
UC Bias RMSE Bias RMSE Bias RMSE

0 0.014 0.219 0.015 0.248 0.038 0.275
0.5 0.010 0.132 -0.010 0.169 -0.010 0.176
1 0.002 0.123 0.022 0.170 0.025 0.188
2 0.007 0.090 -0.005 0.126 -0.008 0.144
5 0.008 0.063 0.011 0.089 0.022 0.104

Table 3.3.: Bias and RMSE of MOM–corrected effect estimations for Scenarios (I)-(III) in
multiple regression; bold: lowest absolute bias and lowest RMSE of each row (disregarding the
results based on the true data).

of the effect in the multiple regression model would be underestimated, if the correlation
between the covariates is neglected and the correction formulas for the simple regression
model are applied. Correcting the naive estimations according to eq. 3.42 yields preciser
estimations. Bias and RMSE of the estimations are listed in Table 3.3. Measurement error
correction based on classical measurement error–prone covariates provides better estima-
tions regarding RMSE than measurement error correction based on mixture measurement
error with the used parameter choice.
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4. Bias correction with the method of
moments

As seen in Chapter 3, measurements with classical or mixture error deliver biased esti-
mates of the regression coefficient β∗X = λβX in a simple linear mixed model. Knowing
the formula for λ enables us to correct bias due to classical or mixture measurement error;
bias correction is not necessary in the case of Berkson error. For bias correction with the
method of moments the components of the attenuation factor λ ∈ {λC, λM} are directly
estimated through their empirical equivalents resulting e.g. from validation data or re-
peated measurements. Subsequently, the estimated naive effect coefficient is corrected
with the estimated attenuation factor λ̂:

β̂X = 1
λ̂
β̂∗X

This approach is known as the method of moments (e.g. Carroll et al., 2006).

4.1. Distributional properties of the attenuation
factor

The variability of the estimated attenuation factor λ̂ influences the variability of the bias
corrected effect coefficient β̂X . Therefore, distributional properties of λ̂ are examined in
the following.

4.1.1. Distribution of λ̂ (simple form)
For first considerations, we assume, that Xi ∼ N(0, σ2

X), Ui ∼ N(0, σ2
U), X∗i = Xi +Ui, i =

1, . . . , n and Xi and Ui are independent. The attenuation factor according to the method
of moments is:

λ̂ = S2
X

S2
X∗

= S2
X

S2
X + S2

U

,

with S2
X , S2

U and S2
X∗ denoting the respective unbiased sample variances. Thus, λ̂ is

the ratio of two dependent χ2–distributed, and for n large enough normally distributed,
random variables S2

X and S2
X∗ .

Pham-Gia et al. (2006) found an analytical expression for the distribution of the ratio of
two dependent bivariate normally distributed random variables using Kummer’s classical
confluent hypergeometric function of the first kind. Also recent works of Kim (2015) and
Wang et al. (2015) examine this class of distributions.
A visual comparison of the empirical density of λ̂ based on simulated data (σ2

X = 1;σ2
U =

0.25), the density according to Pham-Gia et al. (2006), the density of the F distribution
– the distribution of the ratio between two independent χ2–distributed random variables
– and the Beta distribution is presented in Figure 4.1.
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Figure 4.1.: Comparison of the empirical density of λ̂ (dashed lines) based on simulated data,
the closed form expression of the density according to Pham-Gia et al. (2006) (solid lines), the
appropriate density assuming a F distribution (dotted lines) and the appropriate density of a
Beta distribution (gray) for varying sample size n.

Especially for a large number of observations, the complex density of Pham-Gia et al.
(2006) seems to be well approximated through the Beta distribution with expectation
E(λ̂) and variance Var(λ̂): the gray line indicating the Beta distributions in Figure 4.1 is
nearly not visible due to overlaps of the density according to Pham-Gia et al. (2006) and
the empirical density. In contrast, the F distribution does not provide appropriate results
as expected.

4.1.2. Approximation of the first three central moments of λ̂
(simple form)

Instead of using the lengthy formula of the density, the expectation value, the variance and
the skewness of λ̂ are examined in detail using the second–order Taylor series expansion
assuming independence between S2

X and S2
U .

Since Xi ∼ N(0, σ2
X) and Ui ∼ N(0, σ2

U), i = 1, . . . , n,, (n−1)S
2
X

σ2
X
∼ χ2

n−1 and (n−1)S
2
U

σ2
U
∼

χ2
n−1. The k–th raw moment of a χ2–distributed random variable Y with m degrees of

freedom can be derived by

E
(
Y k
)

= 2kΓ(k + 0.5m)
Γ(0.5m)

= m(m+ 2) · · · (m+ 2k − 2)

=
k∏
i=1

(m+ 2i− 2)

according to Walck (2007), which is used to calculate E
[
(S2

X)k
]
:

E

[(
S2
X

)k]
=

k∏
i=1

[
σ2
X

n− 1(n+ 2i− 2)
]
.

By means of

E
[
(Y − E(Y ))k

]
=

k∑
i=0

k
i

 (−1)k−iE
(
Y i
)

[E(Y )]k−i
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with E (Y 0) = 1, central moments of an arbitrary random variable Z can be deviated
from raw moments (Papoulis, 1991). Hence, the first raw and the second to the sixth
central moments of S2

X are

E
(
S2
X

)
= σ2

X

E
[
(S2

X − E(S2
X))2

]
= 2
n− 1σ

4
X

E
[
(S2

X − E(S2
X))3

]
= 8

(n− 1)2σ
6
X

E
[
(S2

X − E(S2
X))4

]
= 12(n+ 3)

(n− 1)3 σ
8
X

E
[
(S2

X − E(S2
X))5

]
= 32(12 + 5(n− 1))

(n− 1)4 σ10
X

E
[
(S2

X − E(S2
X))6

]
= 40(3(n− 1)2 + 52(n− 1) + 96)

(n− 1)5 σ12
X

The moments of S2
U are obtained analogously.

Let the function h : R2 → R be defined by h(γ1, γ2) = γ1
γ1+γ2

with the Jacobian matrix

Jh(γ1, γ2) =
(

γ2
(γ1+γ2)2 − γ1

(γ1+γ2)2

)
and the Hessian matrix

Hh(γ1, γ2) =
−2 γ2

(γ1+γ2)3
γ1−γ2

(γ1+γ2)3

γ1−γ2
(γ1+γ2)3 2 γ1

(γ1+γ2)3

 .
The second–order Taylor series expansion of h(S2

X , S
2
U) around

(
E(S2

X) E(S2
U)
)>

=(
σ2
X σ2

U

)>
is given by

λ̂ = h
(
S2
X , S

2
U

)
≈ σ2

X

σ2
X + σ2

U

+ σ2
U

(σ2
X + σ2

U)2

(
S2
X − σ2

X

)
− σ2

X

(σ2
X + σ2

U)2

(
S2
U − σ2

U

)
−

σ2
U

(σ2
X + σ2

U)3

(
S2
X − σ2

X

)2
+ σ2

X

(σ2
X + σ2

U)3

(
S2
U − σ2

U

)2
+

σ2
X − σ2

U

(σ2
X + σ2

U)3

(
S2
X − σ2

X

) (
S2
U − σ2

U

)
.

Thus, the first moment and the second and third central moments of λ̂ are approximated
by

E
(
λ̂
)
≈ σ2

X

σ2
X + σ2

U

− σ2
U

(σ2
X + σ2

U)3Var
(
S2
X

)
+ σ2

X

(σ2
X + σ2

U)3Var
(
S2
U

)
+

σ2
X − σ2

U

(σ2
X + σ2

U)3Cov
(
S2
X , S

2
U

)
= σ2

X

σ2
X + σ2

U

= λ
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Var
(
λ̂
)
≈ σ4

U

(σ2
X + σ2

U)4Var
(
S2
X

)
+ σ4

X

(σ2
X + σ2

U)4Var
(
S2
U

)
−

2 σ4
U

(σ2
X + σ2

U)5E

[(
S2
X − E

(
S2
X

))3
]
− 2 σ4

X

(σ2
X + σ2

U)5E

[(
S2
U − E

(
S2
U

))3
]

+

σ4
U

(σ2
X + σ2

U)6E

[(
S2
X − E

(
S2
X

))4
]

+ σ4
X

(σ2
X + σ2

U)6E

[(
S2
U − E

(
S2
U

))4
]

+

(σ2
X − σ2

U)2

(σ2
X + σ2

U)6Var
(
S2
X

)
Var

(
S2
U

)
− 2 σ2

Xσ
2
U

(σ2
X + σ2

U)6Var
(
S2
X

)
Var

(
S2
U

)
= σ4

Xσ
4
U

(σ2
X + σ2

U)4
4

n− 1 −
σ4
Xσ

4
U

(σ2
X + σ2

U)4
16

(n− 1)2 +

σ4
Xσ

4
U

(σ2
X + σ2

U)6
12(n+ 3)
(n− 1)3 (σ4

X + σ4
U) + σ4

Xσ
4
U

(σ2
X + σ2

U)6
4

(n− 1)2 (σ4
X − 4σ2

Xσ
2
U + σ4

U)

=λ2(1− λ)2
[

4
n− 1 −

16
(n− 1)2

]
+

λ2(1− λ)2(λ2 + (1− λ)2)
(

4
(n− 1)2 + 12(n+ 3)

(n− 1)3

)
−

λ3(1− λ)3 16
(n− 1)2

E[(λ̂− E(λ̂))3] ≈E
[

σ2
U

(σ2
X + σ2

U)2 (S2
X − σ2

X)− σ2
X

(σ2
X + σ2

U)2 (S2
U − σ2

U)−

σ2
U

(σ2
X + σ2

U)3 (S2
X − σ2

X)2 + σ2
X

(σ2
X + σ2

U)3 (S2
U − σ2

U)2+

σ2
X − σ2

U

(σ2
X + σ2

U)3 (S2
X − σ2

X)(S2
U − σ2

U)
]3

= σ6
Xσ

6
U

8(σ2
X + σ2

U)6

36σ
2
X − σ2

U

σ2
X + σ2

U

[
− 1

(n− 1)2 −
n+ 3

(n− 1)3

]
+

576 σ4
X − σ4

U

(σ2
X + σ2

U)2

[
1

(n− 1)3 + 2
(n− 1)4

]
+

8 σ6
X − σ6

U

(σ2
X + σ2

U)3

[
− 15

(n− 1)3 −
9(n+ 3)
(n− 1)4 −

252
(n− 1)4 −

480
(n− 1)5

]
+

288σ
2
Xσ

2
U(σ2

X − σ2
U)

(σ2
X + σ2

U)3

[
n+ 3

(n− 1)4 −
2

(n− 1)4

] (4.1)

The estimator λ̂ is unbiased for λ and weakly consistent. The second and the third
central moments of λ̂ are visualized in Figure 4.2 depending on the sample size n and the
attenuation factor λ.
The variance of λ̂ is maximal for λ=0.5, i.e. for σ2

X = σ2
U . The third central moment

indicates the symmetry of λ̂ as it is simply deduced from eq. 4.1. λ̂ is negatively skewed
for σ2

X > σ2
U , positively skewed for σ2

X < σ2
U and symmetric for n → ∞ as well as for

λ = 0.5.
All the results of this subsection can easily be extended to the following structures of

the estimated attenuation factor λ̂:

λ̂ =
∑m
j=1 fj(S2

j )∑l
k=1 gk(S2

k)
.
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Figure 4.2.: Approximate second (left) and third (right) central moment of λ̂ for varying values
of the attenuation factor λ and the sample size n. The dashed lines mark the extreme values of
the moments for different sample sizes.

S2
j and S2

k denote sample variances of arbitrary random variables and fj and gj arbitrary
deterministic linear transformations; m, l ∈ N.

4.1.3. Approximation of the first three central moments of λ̂
(complex form)

The attenuation factor for autocorrelated data or autocorrelated measurement error has
a more complex structure as considered in Subsection 4.1.2. The estimation of the auto-
correlation coefficients involves an additional uncertainty for the estimation of the attenu-
ation factor.
For the considerations in this subsection, we assume for the order–one autocorre-

lated random variables Xi and Ui with autocorrelation coefficients ρX and ρU , that
Xi ∼ N(0, σ2

X) and Ui ∼ N(0, σ2
U), i = 1, . . . , n,. Further, let X∗i = Xi + Ui, and Xi

and Ui are independent for i = 1, . . . , n. The empirical attenuation factor for the error–
prone covariate X∗ in a linear mixed model with order–one autocorrelated error term has
the following general structure:

λ̂ = h(γ) = g∗∞(rX)S2
X

g∗∞(rX)S2
X + g∗∞(rU)S2

U

,

with γ = (S2
X , S

2
U , rX , rU , r

∗)>, g∗∞(r) := 1−2rr∗+r∗2 and r∗, rX and rU denoting sample
autocorrelations of lag 1 for the autocorrelation coefficient of X (ρX), U (ρU) and ε∗ (ρ∗).
In addition to the assumption that S2

X and S2
U are independent, the independence with

and between rX , rU and r is supposed for simplicity. The variance of λ̂ is approximated
with the multivariate delta rule:

Var
(
λ̂
)
≈ [Jh(Eγ)]1,1 Var

(
S2
X

)
+ [Jh(Eγ)]1,2 Var

(
S2
U

)
+ [Jh(Eγ)]1,3 Var (rX) +

[Jh(Eγ)]1,4 Var (rU) + [Jh(Eγ)]1,5 Var (r∗) .

Jh(·) denotes the Jacobian matrix for function h.
If ε∗, X, and U are approximately normally distributed, the variance of the correspon-

ding empirical correlation coefficients rU , rX and r∗ can be approximately estimated with
1−r2

m
; r ∈ {rU , rX , r∗} andm denoting the sample size (Bartlett, 1946). The approximation

is imprecise for low sample size and high autocorrelation. Since the explicit formula for
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Var
(
λ̂
)
is elongate, approximations are computationally calculated. Figure 4.3 depicts the

approximate variance of λ̂ depending on λ for different empirical correlation coefficients.
The parameters are defined as: m = 1000, S2

X = 3, r∗ = 0.7. Varying values of λ̂ are
generated by varying values of S2

U .

Figure 4.3.: Approximate Var(λ̂) depending on λ and the empirical correlation coefficients
rX = 0, rU = 0 (solid line), rX = 0.5, rU = 0.2 (dotted line) and rX = 0.9, rU = 0.2 (dashed
line).

Calculations for the more general form of the attenuation factor reveal the same shape
of Var

(
λ̂
)
regarding to varying λ as in the simple case, but the amplitude of Var

(
λ̂
)

strongly depends on the size of the correlation coefficients.
The approximation of Var

(
λ̂
)
can easily be adapted to a differing number of repetitions

for each component of λ̂ (e.g. n1 replications for the estimation of the size of the Berkson
error and n2 replications for the estimation of the size of the classical measurement error).
In the case of a validation study without repeated measurements but with panel data,
as in the Augsburger Umweltstudie, the specification of n is not trivial, but the above
formulas give rough evidence about the variation of the estimated attenuation factor.

4.2. Confidence intervals for the bias corrected effect
coefficient

The variability of the bias corrected effect coefficient β̂X depends on the variability of the
estimated attenuation factor λ̂, which was discussed in the previous section. Numerous
methods for estimating the variability of the measurement error corrected effect estimate
are proposed and applied in the literature, e.g. jackknife (McShane et al., 2001). Two
approaches for obtaining confidence intervals for β̂X are examined in the following: the
delta method and bootstrapping.

4.2.1. Confidence intervals using the delta method

Let θ̂ =
(
β̂∗X λ̂

)>
with mean µ

θ̂
and variance–covariance matrix Σ

θ̂
. β̂∗X and λ̂ are

assumed to be independent. According to the multivariate delta method the variance of
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the corrected effect β̂X = h
(
θ̂
)

:= β̂∗X/λ̂ with Jacobian matrix Jh
(
θ̂
)

=
(

1
λ̂
− β̂∗X

λ̂2

)
is

approximated through

Var
(
β̂X
)
≈ Jh(µθ̂)Σθ̂
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>

=
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E(λ̂) −

E

(
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)
E(λ̂)2
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(
λ̂
)
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

1
E(λ̂)

−
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= 1
E
(
λ̂
)2Var

(
β̂∗X
)

+
E
(
β̂∗X
)2

E
(
λ̂
)4 Var

(
λ̂
)
, (4.2)

as e.g. in Rosner et al. (1989). Using the second–order Taylor series expansion of h
(
θ̂
)

with the Hessian matrix

Hh

(
θ̂
)

=

 0 − 1
λ̂2

− 1
λ̂2 2 β̂

∗
X

λ̂3


of h for the approximation of Var

(
β̂X
)
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θ̂

) (
θ̂ − µ

θ̂

)>
Hh(µθ̂)

(
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(III)

.

The summands (I)-(III) are calculated in the following:

(I)

Jh
(
µ
θ̂

)
Σ
θ̂
Jh
(
µ
θ̂

)> eq. 4.2= 1
E
(
λ̂
)2Var

(
β̂∗X
)

+
E
(
β̂∗X
)2

E
(
λ̂
)4 Var

(
λ̂
)
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(II)
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(4.4)

Eq. 4.4 is always positive or equals zero. Eq. 4.3 will equal zero if λ̂ exhibits a symmetric
distribution. The distribution of λ̂ is symmetric for n → ∞ as it is demonstrated in
Subsection 4.1.2 and Subsection 4.1.3. For a finite sample size, a negatively skewed
distribution of λ̂ assures the positiveness of eq. 4.3; λ̂ is negatively skewed if σ2

X > σ2
U ,

which holds for the most practical applications
Assuming asymptotic normality for β̂X , β̂X ± z0.025 ·

√
Var(β̂X) is an approximate 95%

confidence interval; z0.025 denotes the 2.5 % quantile of the Standard Normal distribution.
However, CIs based on the Taylor series expansion of the variance may exhibit unbalanced
coverage properties for small and moderate sample sizes (Lyles and Kupper, 1999).

4.2.2. Bootstrap percentile intervals
Bootstrap techniques provide confidence intervals with the advantage of relaxing the
assumption of approximate normality of the estimator. For a longitudinal setting this
can be realized by drawing b, b = 1, . . . , B, samples with replacement from the indepen-
dent individuals of the main study and of the independent units of the validation study
resulting in B bootstrap replications of λ̂. Bootstrap percentile intervals can be derived
through the appropriate percentiles of the B bootstrap replications.
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4.3. Simulation study: Distributional properties of λ̂
The distributional properties of the attenuation factor λ̂ and the bias corrected estimate
β̂X are further investigated with simulations.

4.3.1. Simulation setup
Exemplary, λM is examined for varying λ using N replication measurements for each
time point and 100 simulation iterations. The simulation setup is chosen analogously to
Subsection 3.6.1 with the following changes:

• N repeated classical error–prone measurements X∗C with varying missing value
pattern G for each time point are generated in order to involve the variability of λ̂.

• ρX∗B = 0, because the sample (least–squares) autocorrelation coefficient is biased
in the case of high coefficients and a moderate sample size of 100 observations
(Mudelsee, 2001) and hence, also λ̂M would be biased.

• The size of the random classical measurement error σ2
UC is varied to obtain attenu-

ation factors ranging over the complete domain of λM:

λM ∈ {0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90}.

The upper limit of λM cannot be chosen to be 1, because only σ2
UC is varying, whereas

σ2
UB , σ2

νB and σ2
νC are > 0 and remain fixed.

The components for the estimation of the attenuation factor are estimated as follows:
σ2
X∗B and ρX∗B are directly calculated as sample variance and sample autocorrelation co-

efficient of the realizations of X∗B. Estimations for the true values of X are approximated
through averaging over the repeated realizations of X∗C. Information about the error
models are gained regressing X̂ on X∗B and X∗C on X̂.
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4.3.2. Results
The simulations with λM = 0.6 in Figure 4.4 show, that the bias of the estimated attenu-
ation factor decreases with increasing number of repetitions:
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Figure 4.4.: Dependency of λ̂M on the number of repeated measurements N ; λM = 0.6 (dotted
line).

Figure 4.5 depicts the results of the simulation for N = 100 repeated measurements.
The variability of λ̂M is higher when the classical measurement error is small. The distri-
bution of λ̂M is symmetrical, also at the boundaries of its domain, as it is theoretically
derived in Subsection 4.1.3.
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Figure 4.5.: Empirical density estimation of λ̂M based on 100 simulation iterations and N =
100 repeated measurements; dashed lines: mean λ̂M; solid lines: predefined values of λM.
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4.4. Simulation study: Comparison of confidence
intervals

4.4.1. Simulation setup
Three types of confidence intervals (CIs) for the corrected effects β̂∗X are compared re-
garding their empirical coverage probabilities and their interval lengths:

1. “Naive”: CIs assuming normality of β̂X are calculated with the variance of the naive
estimate, β̂∗X :

β̂X ± 1.96
√
Var(β̂∗X).

2. “Delta method”: CIs assuming normality of β̂X are calculated with an approxima-
tion of the variance using the delta method (eq. 4.2):

β̂X ± 1.96
√
Var(β̂X).

3. “Bootstrap”: Bootstrap percentile intervals using 100 bootstrap iterations are cal-
culated as described in Subsection 4.2.2.

The comparison is based on 1000 CIs. Simulation data was generated as described
in Subsection 3.6.1 for given values of λ: λC ∈ {0.05, 0.2, 0.4, 0.6, 0.8, 0.95} and λM ∈
{0.05, 0.2, 0.4, 0.6}. λC and λM are generated through varying sizes of classical measure-
ment error σ2

UC ; the other components of λC and λM are fixed according to Table 3.1 and
are assumed to be known.
Variability of λ̂ was generated through the usage of samples from a Beta distribution,

as described in Subsection 4.1.1, around the true, but in reality unknown, λ, instead of
λ̂. The variance of λ is chosen in the order of the variance of 100 Bootstrap replications
of λ̂ in the application to the Augsburger Umweltstudie as 0.001.

4.4.2. Results
Table 4.1 presents the simulation results. Indeed, the naive estimations of the confidence
intervals exhibit the most narrow intervals, but their coverage probability is in nearly
all scenarios beyond 95 %. Only for strong attenuation, bootstrap percentile intervals
provide inadequate coverage probabilities. In comparison to confidence intervals based on
the normality assumption of the estimator and on variance calculations using the delta
method, bootstrap confidence intervals are slightly narrower. The coverage probabilities
of the delta method CIs are also for large measurement errors high. Uncertainty in the
estimation of λ is adequately incorporated in both CIs, the CIs based on the delta method
and the bootstrap percentile intervals.
Theoretical considerations for the case without autocorrelation in Subsection 4.2.1 lead

to the conclusion that the variances of the corrected estimators are underestimated by
the delta method since approximating Var(β̂X) with the second order Taylor series yields
larger values for σ2

X > σ2
U compared to the delta method. The simulations for the more

complex situation with autocorrelation in this Subsection show the opposite: confidence
intervals based on the delta method and also on the bootstrap method tend to be too
conservative, especially for small measurement error.
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Empirical CP Mean interval width

Delta Delta
Error type Var(λ̂) λ Naive Bootstrap method Naive Bootstrap method
Classical 0 0.050 0.085 0.920 0.941 0.205 3.899 4.099
error 0.200 0.329 0.954 0.970 0.410 1.949 2.049

0.400 0.634 0.955 0.979 0.579 1.377 1.448
0.600 0.895 0.987 0.992 0.709 1.126 1.182
0.800 0.988 0.995 0.999 0.818 0.975 1.023
0.950 1.000 0.998 1.000 0.892 0.895 0.938

0.0004 0.200 0.344 0.933 0.968 0.410 1.998 2.119
0.400 0.642 0.950 0.980 0.579 1.382 1.464
0.600 0.882 0.986 0.994 0.709 1.129 1.192
0.800 0.986 0.992 0.998 0.818 0.977 1.030

Mixture 0 0.050 0.098 0.928 0.953 0.203 3.872 4.062
error 0.200 0.343 0.958 0.974 0.406 1.929 2.031

0.400 0.683 0.968 0.988 0.574 1.361 1.436
0.600 0.891 0.988 0.994 0.703 1.118 1.172

0.0004 0.200 0.343 0.950 0.974 0.406 1.968 2.091
0.400 0.656 0.969 0.987 0.574 1.368 1.456
0.600 0.890 0.986 0.994 0.703 1.120 1.181

Table 4.1.: Comparison of naive CIs, bootstrap percentile intervals and CIs based on the delta
method regarding their empirical coverage probability (CP) and interval width; bold: empirical
coverage probabilities greater than or equal to 0.95.
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5. The contribution of prior knowledge to
Bayesian measurement error correction

5.1. Bayesian measurement error models

5.1.1. Background
Bayesian methods for measurement error adjustment allow the direct inclusion of know-
ledge and the underlying uncertainty regarding the size of the measurement error in the
analysis through prior distributions in contrast to frequentist methods. Consequently,
the estimated parameters and their variability are affected by the choice of the prior
distributions.
Bayesian models have been successfully applied in the analysis of the effects of air

pollution for a long time, see e.g. Best et al. (2000) as an example for Bayesian models in
general and e.g. Chang et al. (2011), Gryparis et al. (2009) and Lee and Shaddick (2010)
for models with measurement error. Moreover, Bayesian methods are used to correct
measurement errors or misclassification in case–control studies (e.g. Espino-Hernandez
et al., 2011; Liu et al., 2009; Prescott and Garthwaite, 2005; Rice, 2003). A further
useful feature of Bayesian measurement error modeling is the possibility of simultaneously
impute missing values as it is conducted e.g. by Chang et al. (2011).
Markov chain Monte Carlo (MCMC) sampling is widely used for the implementation

of Bayesian measurement error models. We use JAGS (Plummer, 2003), a software for
MCMC sampling using Gibbs sampling (Geman and Geman, 1984), for our analyses.
Muff et al. (2015) proposed to use INLA (integrated nested Laplace approximation) as
an alternative to MCMC sampling for Bayesian measurement error models.
Since linear regression models with a deficient covariate are known to lack identifiability,

prior knowledge is necessary to overcome this problem within the Bayesian analysis of the
data. The choice of the prior distribution for the unknown parameters describing the
knowledge about the measurement errors is essential to get valid results. Additionally,
the informativeness of prior knowledge influences the resulting effect estimations, as it is
described by Gustafson (2005): even apparently non–informative prior distributions may
affect the posterior distributions of the parameters describing the measurement errors and
thus also the posterior distributions of the parameters of interest by indirect learning.
These findings indicate that the direct usage of an exposure model as prior distribution
in the health outcome model, as conducted in Chang et al. (2011), Gryparis et al. (2009)
and Prescott and Garthwaite (2005), should be scrutinized.
We concentrate our considerations about Bayesian measurement error models on si-

tuations where prior knowledge about the measurement error is only available through
expert knowledge or external validation data and not through repeated or simultaneous
measurements within the main study. In these cases, the choice of proper prior distribu-
tions guarantees identifiability (Dellaportas and Stephens, 1995).
This chapter intends to examine the relation between the specification of prior know-

ledge and the Bayesian measurement error model with regard to varying uncertainty about
the prior knowledge. More precisely, it will be evaluated 1) how much prior information
is necessary to achieve adequate estimations, 2) if it is reasonable to prefer the simple
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frequentist method of moments correction in situations with only vague prior informa-
tion, 3a) whether the simultaneous inclusion of fixed–site and mobile measurements in a
single model provides benefits and 3b) to what extent the specification of the relation-
ship between fixed–site and personal measurements influences the results. Besides these
questions we want to investigate the role of missing values and the presence of further
covariates, which are correlated with the deficient covariate as it is conducted for frequen-
tist models in Chapter 3. The findings will be applied to the Augsburger Umweltstudie
in Section 6.2.

5.1.2. Model formulation and properties
In comparison to the frequentist procedure considered in Chapter 4, the Bayesian mea-
surement error model formulation allows to incorporate personal measurements, exposure
maps or ambient measurements as well as prior information about the measurement error
into a single model. The knowledge about covariate measurement error is directly inte-
grated into the Bayesian regression analysis.
According to Carroll et al. (2006) and Richardson and Gilks (1993), who give an intro-

duction in Bayesian measurement error models, the usual Bayesian model formulation for
a regression problem has to be extended through the specification of an exposure model
and, in the case of classical measurement error, additionally through the specification of
a measurement model (assuming non–differential measurement error):

Health model: f(Y |X,Z,θH)
Measurement model: f(X∗C|X,Z,θM)
Exposure model: f(X|Z,θEC ) or f(X|X∗B,Z,θEB)

with additional covariates Z. ΘB = {θH ,θEB ,ΩB},ΘC = {θH ,θM ,θEC ,ΩC} and
ΘM = {θH ,θM ,θEB ,ΩM} denote the vectors of the unknown parameters in the models
with only fixed–site exposure measurements, X∗B, with only personal exposure measure-
ments,X∗C, and with both types of exposure measurements (X∗B andX∗C), respectively
with additional hyper–parameters ΩB,ΩC and ΩM. The deficient measurements X∗ are
related to the true values X. The inclusion of a prior distribution on X or an expo-
sure model avoids the calculation of the expectation regarding X (two–stage Bayesian
approach) (Richardson, 1996). We concentrate the Bayesian analysis on two–stage mode-
ling approaches, where the health model and the exposure model are separately defined
and connected through the latent exposure; this strategy is preferred to a fully Bayesian
model, because the design of a well–mixing MCMC algorithm is easier in the case of
complex exposure models (Gryparis et al., 2009) and the full conditional distributions of
the parameters have a known form when conditionally conjugate priors are chosen.
SinceX is unknown, as other model parameters like the effect coefficients, a conditional

posterior distribution for X is estimated within the MCMC algorithm. The posterior of
X depends among other parameters also on the outcome Y , as it is shown in detail in
Section 5.1.3 and also in Carroll et al. (2006) for the linear regression model.
The posterior distribution is given by

f(ΘC,X|Y ,X∗C,Z) ∝ f(Y |X,Z,θH)f(X∗C|X,θM)f(X|Z,θEC )f(ΘC) (5.1)

in the case of classical measurement error and by

f(ΘB,X|Y ,X∗B,Z) ∝ f(Y |X,Z,θH)f(X|X∗B,Z,θEB)f(ΘB) (5.2)



89

in the case of Berkson error. If both data sources are combined in one model, the posterior
distribution becomes:

f(ΘM,X|Y ,X∗C,X∗B,Z) ∝ f(Y |X,Z,θH)f(X∗C|X,θM)f(X|X∗B,Z,θEB)f(ΘM) .
(5.3)

f(Θ) denotes the prior distribution of Θ, Θ ∈ {ΘB,ΘC,ΘM}.
The Bayesian model for measurement error lacks identifiability. Gustafson (2005) pro-

poses three strategies to handle non–identifiability: 1) Fix unknown parameters at the
“best guess”, 2) expand the model adequately and 3) specify prior distributions for the
unknown parameters and ignore the non–identifiability. Although model expansion yields
identifiability, the examples in Gustafson (2005) did not show any superiority of model
expansion in comparison to the specification of prior distributions. For this reason and
due to lacking justifications for expanding the model, we concentrate on strategies 1 and
3.

5.1.3. Conditionally conjugate priors: role of measurement
error characteristics

The theoretical considerations in this subsection are focused on the usage of both data
sources, X∗B and X∗C, the attendant posterior distribution eq. 5.3 and on the role of
classical measurement error in the conditionally conjugate case.
Assuming model 2.1 without confounding variables Z and with classical and Berkson

errors as defined in eq. 2.4 and eq. 2.5, the full conditional distributions of the model for
both data sources and conditionally conjugate prior distributions are given in Appendix D.
Since prior parameters of a single parameter only appear in the full conditional distribution
of this parameter and not in the full conditional distribution of other parameters, prior
knowledge does not have any direct influence on the estimation of other parameters.
The full conditional distribution of the classical measurement error variance is

σ2
UC |· ∼ IG (δUC,1 + nT

2 ,

δUC,2 + 1
2

n∑
i=1

(X∗Ci −Xi − νCi 1T )>W−1
ρC (X∗Ci −Xi − νCi 1T )

)
. (5.4)

The posterior mean of σ2
UC results as a mean between the prior expectation and the

estimate from the data. The latter strongly depends on X. If the estimation of X solely
depends on σ2

UC , the prior expectation of σ2
UC will equal the estimate based on the data.

The full conditional of Xi is a normal distribution:

Xi|· ∼N
[β2

XΣ−1
ε + Σ−1

UC + Σ−1
UB

]−1

[
βXΣ−1

ε (Yi − β01− τi1T ) + Σ−1
UC(X∗Ci − νCi 1T ) + Σ−1

UB(X∗Bi + νBi 1T )
]
,

[
β2
XΣ−1

ε + Σ−1
UC + Σ−1

UB

]−1
 (5.5)

The expectation of this distribution is a weighted mean of (Yi−β01T−τi1T )/βX ,X∗Ci −
νCi 1T and X∗Bi +νBi 1 with the weights β2

XΣ−1
ε ,Σ−1

UC and Σ−1
UB and the random effects play
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a major role in the estimation of Xi. The variance of the distribution is given by the
inverse of the sum of the weights.
Since

Var(Xi|Yi,X∗Ci ,X∗Bi ) =Var(E(Xi|Yi,X∗Ci ,X∗Bi ,ΘM))+
E(Var(Xi|Yi,X∗Ci ,X∗Bi ,ΘM)), (5.6)

the marginal posterior variance of Xi, Var(Xi|Yi,X∗Ci ,X∗Bi ), exceeds or equals the
expected variance of the full conditional distribution of Xi|·.
The full conditional distribution for β is directly related to the latent data X:

β|· ∼N
 n∑

i=1
χ>i W

−1
ρ χi +

σ2
ε/σ

2
β0 0

0 σ2
ε/σ

2
βX

−1

·

 n∑
i=1

(Yi − τi1T )>W−1
ρ χi + β(0)>

σ2
ε/σ

2
β0 0

0 σ2
ε/σ

2
βX

 ,
σ2
ε

 n∑
i=1
χ>i W

−1
ρ χi +

σ2
ε/σ

2
β0 0

0 σ2
ε/σ

2
βX

−1 (5.7)

The prior mean and variances of β are denoted with β(0), σ2
β0 and σ2

βX
; χ∗i = (1T ,X∗i )

as defined in Subsection 3.1.1.
Prior knowledge about the size of the measurement error only indirectly affects the full

conditional distribution of β through the dependency of other unknown parameters with
direct influence on the full conditional distribution of β. The influence of prior knowledge
about β is regulated by the ratio between σ2

ε and the prior variances of β, σ2
β0 and σ2

βX
.

If the prior distribution for βX is chosen to be non–informative, i.e. σ2
βX

is high,
the full conditional distribution of βX will approximately equal the well–known normal
distribution of the usual regression analysis with the same parameters as if X is known.
In this case, the only impact of the prior knowledge about the measurement error on the
estimation of the effect coefficient is through the estimation of X.
If σ2

UC is substantially smaller than σ2
ε and σ2

UB , σ2
UC will be the only unknown compo-

nent, which bears information forXi and the full conditional ofXi approximates a normal
distribution with meanX∗C and variance σ2

UC . In this case, the data (Y ,X∗C,X∗B) only
marginally introduces new knowledge to the full conditional distributions of σ2

UC and Xi

involving the following consequences for expectations:

1. The expectation of the full conditional and of the marginal posterior distribution of
σ2
UC equal the prior expectation denoted by σ2

UC
(0).

2. The expectation of the full conditional and of the marginal posterior distribution of
Xi equals X∗Ci .

3. The expectation of the full conditional and of the marginal posterior distribution of
βX depends only on the prior expectation of the size of the classical measurement
error σ2

UC
(0), and not on its variability.

Even precise prior knowledge about the measurement error results in a higher variance
of the effect coefficient than in a model with the true data. The reason is that the
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following holds for the marginal posterior distribution of βX provided that the prior on
βX is non–informative (ρ = 0 and τ = 0 for simplicity):

Var(βX |Y ,X∗C,X∗B) =E(Var(βX |Y ,X∗C,X∗B,Θ−βX ))+
Var(E(βX |Y ,X∗C,X∗B,Θ−βX ))

≈E

σ2
ε

(
n∑
i=1
X>i Xi

)−1
+ Var

(
n∑
i=1

(X>i Xi)−1(X>i Yi)
)

(5.8)

Only the second term of eq. 5.8 depends on the variability of X and thus on the
uncertainty regarding the prior knowledge about the measurement error. The higher the
variability of X, the higher is the variability of the effect estimate.
The usage of an informative prior for β results in a conditional posterior expectation,

which is the weighted mean between the conditional posterior expectation for the non–
informative prior and the prior expectation.
The impact of prior knowledge on full conditional distributions of the variance parame-

ters is only local in the first instance. But samples from these distributions are directly
incorporated in the full conditional distribution of the latent variable X, which affects
the calculation of the effect βX . The shape of the prior distribution for the size of the
measurement error affects the conditional posterior distribution of βX , but the expectation
and the variance of the conditional posterior distribution only depend on prior expectation
and variance regarding the size of the measurement error. Therefore, the adequate choice
of prior distributions for the model parameters is essential to prevent undesired influences
on the estimation of the relevant parameters.

5.2. Informativeness of prior distributions

5.2.1. Impact of the prior distribution in Bayesian models
This subsection aims to illustrate the impact of different amounts and shapes of prior
knowledge on posterior distributions including general considerations, priors for variance
and correlation parameters and the transferability of the concepts to Bayesian regression
models for measurement error–prone covariates. Therefore, two meanings of the term
“informativeness” regarding the prior knowledge of a parameter have to be differentiated.
High information is generally understood as precise and correct knowledge with low bias
and variance. This perception differs from the Bayesian idea of informativeness where
a prior distribution, which affects the estimation of the parameters of interest to a rele-
vant extent, is called informative. Informative priors in the Bayesian sense exhibit not
necessarily low bias and variance.
Non–informative prior distributions are chosen if prior knowledge about a parameter

is not available and only the information from the data should be involved for parameter
estimation. We use in the following the term “non–informative” prior distribution for
a prior distribution, which only has a negligible impact on the posterior distributions
of the relevant parameters. Other commonly used terms in this context are “weakly
informative”, “vague”, “flat” or “diffuse“ prior distribution.
The choice of adequate prior distributions is crucial in Bayesian analyses. Gelman

(2006) and Kass and Wasserman (1996) summarize criteria for an appropriate choice of
non–informative prior distributions. A selection of the commonly used criteria is:
• Principle of insufficient reason (Laplace (1820), as cited in Kass and Wasserman

(1996)): Applying this principle for a finite parameter space results in Uniform
priors.
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• Conditionally conjugate priors with appropriate parameters: These priors allow to
interpret the posterior distribution as an updated version of the prior distribution
within the same class of distributions.

• Invariance concerning bijective transformations: e.g. Jeffreys’ prior p(θ) ∝ det(I(θ)) 1
2

• Maximum entropy: The uncertainty of a prior distribution is measured with its
entropy. This approach was mainly developed by Jaynes (e.g. Jaynes (1982)).

• Agreement with classical estimators (Box and Tiao, 1973; Meng and Zaslavsky,
2002)

• Reference priors: The reference prior is that prior in a class of admissible, proper
priors, which maximizes the expected information regarding the data and the refer-
ence posterior (Bernardo, 1979).

Potential difficulties arise in the search of a non–informative prior distribution (Gelman,
2006): improper posterior distributions may occur, parameter transformation may change
the degree of non–informativeness and non–informativeness depends on the data. More-
over, apparently non–informative prior distribution may have a relevant impact on the
posterior inference (Spiegelhalter, 2001) and non–informativeness may involve unrealistic
parameter values (Greenland, 1998).
The posterior distribution results from the product of the distribution of the data, the

likelihood, and the prior distribution. The impact of likelihood and prior distribution on
the posterior distribution depends on the number of observations, the shape of the prior
distribution and the relative position of the probability masses of the two distributions.
For instance, if the observed data is a priori known to be implausible, i.e. the data has
a low probability to be observed under the prior distribution, an apparently flat prior
distribution will be informative in the Bayesian sense.
Considering the two situations depicted in Figure 5.1a) and b): the likelihood is equal

for both situations and the prior distribution has the same shape. However, the prior
distribution will be informative for the situation depicted in the Figure 5.1a) and non–
informative for the situation in Figure 5.1b) as it is seen with the corresponding posterior
distributions (Figure 5.1c) and Figure 5.1d)).
If the probability masses of prior distribution and likelihood are in the same scope, the

prior distribution has to exhibit a higher density in order to add information than in a
situation with different scopes.
In general, the posterior distribution of a parameter can be considered as likelihood

which is weighted by the prior distribution; e.g., using a Uniform prior distribution on
the parameter results in a posterior distribution, which is proportional to the likelihood
restricted to the domain where the prior distribution is positive. The posterior distribution
resulting from a Uniform, improper prior with infinite limits is equal to the likelihood.
Other prior densities change the shape of the likelihood through weighting due to non–
Uniform weights and yield a mixture between data and prior knowledge. Informative
prior distributions weight certain parameter areas of the observed likelihood stronger than
others. Therefore, a non–informative prior distribution is defined as a prior distribution,
which has no bearing on the posterior distribution of the parameters of interest. The
distance between the likelihood and the posterior distribution may be an indicator for the
informativeness of the prior distribution, e.g. the Kullback–Leibler distance can be used.
Thus, a rule of thumb for the choice of informative or non–informative prior distri-

butions cannot be given; instead, the prior distribution has to be chosen with regard
to the likelihood, especially when a non–informative prior is required. Indeed, the prior
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Figure 5.1.: a) and b): Exemplary likelihood (solid) and prior distributions (dashed); c) and
d): corresponding posterior distributions.

distribution is characterized by concrete quantities, like expectation or variance, even if
the prior distribution is flat, but these measures do not have any direct impact on the
informativeness of the prior distribution.
Bayesian measurement error models rely on the informativeness of the prior distribu-

tions for the measurement error. Simple univariate examples are used in the following to
illustrate the role and the impact of commonly used possibilities to specify prior know-
ledge. Prior distributions for the parameters describing the measurement errors, i.e. prior
distributions on error variances and correlation coefficients, are most important in the
context of the modeling strategy and the measurement error structure of the Augsburger
Umweltstudie; therefore, the further discussions will be focused on these parameters.

5.2.2. Prior distributions for the variance
Common variance priors

Many distributions are suggested in the literature for non–informative prior distributions
of variances (Table 5.1). The restricted parameter space and commonly used transforma-
tions of the variance provide a variety of possibilities to specify prior knowledge.
The Inverse Gamma distribution is the conjugate prior for modeling normally dis-

tributed data with known mean and unknown variance. Within this context, the Right–
invariant Haar density (p(σ) ∝ 1/σ) and the Location–scale prior (p(σ2) ∝ 1/σ2) are
Jeffreys’ priors and represent the limiting distribution of the Inverse Gamma distribution
with parameters δ1 and δ2 approximating 0. Further variance priors are the Beta, the
(skewed) Truncated Normal and the Rayleigh distribution.

Informativeness of variance priors in a single–parameter model for normally
distributed data

In the following, these suggestions will be investigated exemplary for normally distributed
data with known mean and unknown variance regarding their properties with varying prior
parameters: x1, . . . , xn|µ, σ2 i.i.d.∼ N(µ, σ2).
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Distribution Parameter References

Inverse Gamma σ2 Gelman (2006); Lambert et al. (2005);
Spiegelhalter (2001)

Uniform log σ Gelman (2006)
Uniform log σ2 Lambert et al. (2005); Spiegelhalter (2001)
Uniform σ Gelman (2006); Lambert et al. (2005)
Uniform σ2 Lambert et al. (2005); Spiegelhalter (2001)
Folded–noncentral–t σ Gelman (2006)
Location–scale 1

σ2 Daniels (1999)
Right–invariant Haar density 1

σ
Daniels (1999)

Pareto 1
σ2 Lambert et al. (2005)

Table 5.1.: Commonly used distributions for the construction of a non–informative distribution
for a variance parameter.

The type of the prior distribution is only of secondary relevance for the search of
a non–informative prior distribution as long as the parameters of the distribution are
appropriately chosen. The situation is different when informative prior distributions are
considered as we demonstrate in the next paragraphs.
The informativeness of the prior distribution depends amongst others on the likelihood.

For the choice of an adequate prior, profound knowledge about the impact of the data and
the prior distribution on the posterior distribution is necessary. To this end, a “confidence
ratio” is defined for s̃2 6= σ2

0 to quantify the confidence regarding the prior knowledge
independently from the prior distribution, which relates the absolute difference between
the posterior expectation E(σ2|x) and the prior expectation σ2

0 for σ2 to the absolute
difference between the frequentist estimation s̃2, i.e. the posterior expectation without
prior knowledge, and the prior expectation σ2

0:

CR = 1− |E(σ2|x)− σ2
0|

|s̃2 − σ2
0|

(5.9)

Note, CR is only used for illustrating theoretical relationships and is not intended as
a general measure for the quantification of the informativeness of prior knowledge since
s̃2 6= σ2

0 has to be assumed and prior distributions may be supposable, which result in
CR < 0.
Using the Inverse Gamma distribution as conjugate prior distribution,

σ2 ∼ IG
(
ν0

2 ,
ν0 − 2

2 σ2
0

)
,

which is equivalent to the Scaled–Inverse–χ2 distribution, σ2 ∼ Inv-χ2(ν0,
ν0−2
ν0
σ2

0), yields
the following Inverse Gamma posterior distribution:

σ2|x ∼ IG
(
δ1 + n

2 , δ2 + n

2 s̃
2
)

with s̃2 = 1
n

∑n
i=1(xi−µ)2, δ1 = ν0

2 and δ2 = ν0−2
2 σ2

0. The posterior distribution depends
on the parameters of the prior distribution, the sample size and the sample variance s̃2.
The informativeness of a prior distribution is not a quality of the prior itself but can only
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be evaluated with regard to the likelihood. Posterior expectation and variance are given
by

E(σ2|x) = δ1 − 1
δ1 + n

2 − 1σ
2
0 +

n
2

δ1 + n
2 − 1 s̃

2,

Var(σ2|x) =

(
δ1σ

2
0 + n

2 s̃
2
)2

(
δ1 + n

2 − 1
)2 (

δ1 + n
2 − 2

) .
The posterior expectation results from a weighted sum of the prior parameter σ2

0 and
the sample variance. Therefore, the confidence towards the prior knowledge, i.e. σ2

0, is
determined through the ratio between δ1 − 1 and δ1 − 1 + n/2, which is also the result of
calculating the confidence ratio (eq. 5.9):

CR = δ1 − 1
δ1 − 1 + n

2

Var(σ2|x) depends, aside from σ2
0 and s̃2, on the confidence ratio:
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Figure 5.2.: Dependencies between the parameters of the prior distribution, the confidence ratio
and the posterior variance using an Inverse Gamma prior for σ2. σ2

0 = 1; s̃2 = 3;n = 100; δ1
varying.

If the confidence in σ2
0 is small, i.e. δ1 is small, the posterior variance will be high and

will be about the variance of the frequentist estimation:

Var(s̃2) = Var
(

1
n

n∑
i=1

(xi − µ)2
)

= 1
n2σ

4Var
(

n∑
i=1

(xi − µ)2

σ2

)
= 2
n
σ4

Assuming a Uniform prior distribution for σ2 on the interval [γ1, γ2], every value of the
interval exhibits the same probability. The posterior distribution is given by

f(σ2|x) = f(x|σ2)I[γ1,γ2](σ2)∫∞
−∞ f(x|σ2)I[γ1,γ2](σ2)dσ2 .

If a value σ2
0 ∈ [γ1, γ2] is chosen as the a priori best guess for σ2, the posterior expectation

should approximate σ2
0 with increasing knowledge about σ2, i.e. with γ1 → σ2

0 and
γ2 → σ2

0. The posterior expectation of σ2 is:

E(σ2|x) =
∫ ∞
−∞

σ2 f(x|σ2)I[γ1,γ2](σ2)∫∞
−∞ f(x|σ2)I[γ1,γ2](σ2)dσ2dσ

2 =
∫ γ2

γ1
σ2 f(x|σ2)∫ γ2

γ1
f(x|σ2)dσ2dσ

2.
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Thus, the confidence ratio results as

CR = 1−

∣∣∣∣∣
∫ γ2
γ1

σ2f(x|σ2)dσ2∫ γ2
γ1

f(x|σ2)dσ2 − σ2
0

∣∣∣∣∣
|s̃2 − σ2

0|
≈ 1−

∣∣∣∣∣
∫ γ2
γ1

σ2f(x|σ2)dσ2∫ γ2
γ1

f(x|σ2)dσ2 − σ2
0

∣∣∣∣∣∣∣∣∣
∫∞
−∞ σ2f(σ2|x)dσ2∫∞
−∞ f(σ2|x)dσ2 − σ2

0

∣∣∣∣ .
with γ1, γ2 ≥0. The relation between the interval limits, the confidence ratio and the

posterior variance is visualized in Figure 5.3 with γ1 = γ2:

1 2 3 4 5

0.2

0.4

0.6

0.8

γ1

co
nf

id
en

ce
 r

at
io

0.2 0.4 0.6 0.8

0.00

0.05

0.10

0.15

0.20

confidence ratio

V
ar

(σ
2 |x

)

Var(s~2)

Figure 5.3.: Dependencies between the parameters of the prior distribution, the confidence
ratio and the posterior variance using a Uniform prior distribution for σ2. σ2

0 = 1; s̃2 = 3;n =
100; γ1 = γ2 varying.

Again, the posterior variance is about the variance of the frequentist estimate for high
prior uncertainty. The formulation of informative prior knowledge using the Uniform prior
distribution is often inappropriate, since the firm borders of prior distribution density
strictly limits the domain with positive posterior density.
Choosing a Uniform prior distribution for log(σ2) (Figure 5.4) yields a more rapid

decrease of the confidence ratio with increasing interval width. The influence of the confi-
dence ratio on the posterior variance is equal to the case with a Uniform prior distribution
for σ2.
By means of these examples we illuminate the association between the parameter choice

for the prior distribution, the confidence ratio and the posterior variance. The confidence
ratio allows to quantify the amount of prior knowledge about a parameter and to specify
the prior knowledge about σ0 independently from the prior distribution. Thus, the confi-
dence ratio alleviates the determination of the parameters of the chosen prior distribution
in practice, but quantifies the deviation between the prior distribution and the posterior
distribution only regarding their expectations and not regarding the whole distributions.

Lower boundary of variance prior distributions

Situations are supposable where the occurrence of measurement error is not sure, i.e. the
prior distribution has positive probability mass at σ2

U = 0. Lambert et al. (2005) observed
biased variance estimates and high sensitivity towards the choice of the prior distribution
in a Bayesian random effects model when the actual variance is very small.
If measurement error is probably absent, the usage of the commonly chosen conjugate

Inverse Gamma prior distribution will be not reasonable because this prior distribution
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Figure 5.4.: Dependencies between the parameters of the prior distribution, the confidence ratio
and the posterior variance using a Uniform prior for log σ2. σ2

0 = 1; s̃2 = 3;n = 100; γ1 = γ2
varying.

does not exhibit a positive probability mass at zero. We do not dwell on the problems
arising with a measurement error size of zero, because measurement error exists in the
data of the Augsburger Umweltstudie.

5.2.3. Prior distributions for the correlation coefficient
The Inverse Wishart distribution is the conjugate prior distribution for the variance–cova-
riance matrix in a Bayesian model for multivariate normally distributed data with known
mean and unknown variance–covariance matrix. However, distributional assumptions
regarding the variance and the correlation matrix are not separately considered when the
Inverse Wishart distribution is used as prior distribution. Furthermore, the uncertainty
of the single entries of the variance–covariance matrix are assumed to be equal and the
approach is limited to a balanced sample. Separation strategies (Barnard et al., 2000)
for the variance–covariance matrix overcome the former drawback. Therefore, a prior
distribution on the autocorrelation parameter ρ is preferred, even though there is not
any conjugate prior distribution available and the effects off different priors are hard to
conceive from a theoretical point of view.
We assume that the prior knowledge about the correlation matrix is independent from

the prior knowledge about the variance, as it is proposed by Barnard et al. (2000). Possi-
ble prior distributions for the correlation coefficient are listed in Table 5.2. The last
five prior distributions in Table 5.2 are suitable for the specification of informative prior
distributions for correlation coefficients.
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Prior distribution References

p(ρ) ∝ 1 Schisterman et al. (2003); Spiegelhalter (2001)
p(ρ) ∝ (1− ρ2)− 3

2 Schisterman et al. (2003)

p(ρ) ∝
√

1+ρ2

1−ρ2 Jeffreys (1961) as cited in Fosdick and Raftery (2012)
p(ρ) = 1

π
1√

1−ρ2
Jeffreys (1961) as cited in Fosdick and Raftery (2012)

triangular shaped densities Gokhale and Press (1982)
(Transformed) Beta Gokhale and Press (1982); Spiegelhalter (2001)
Restricted Normal Liechty (2004)
ρ ∼ N(atanh(ρ),∞) Schisterman et al. (2003)
0.5 log 1+ρ

1−ρ ∼ N(0, σ2
ρ) Daniels and Kass (1999); Gryparis et al. (2007b)

ρ ∼ Unif(−1, 1) Fosdick and Raftery (2012)

Table 5.2.: Commonly used distributions for the construction of non–informative prior distri-
butions for a correlation coefficient.

5.2.4. Prior informativeness in Bayesian regression models for
measurement errors

The considerations in Subsection 5.1.3 with regard to conditionally conjugate prior distri-
butions for the sizes of the measurement errors in a Bayesian regression model for measure-
ment error–prone data revealed that the expected value for the effect estimate depends
solely on the prior expectation for the size of the measurement error but does not depend
on its prior uncertainty. Thus, a property of Bayesian measurement error models is that
the uncertainty about prior knowledge for a parameter describing the measurement error
does not regulate the influence of the prior expectation and the estimate from the data
on the posterior expectation. This property finally results from the fact that the effect
estimate cannot be identified without any prior knowledge.
This property is illustrated by a small simulation. Data for a simple linear regression

model with a classical error–prone covariate X∗C are generated assuming X and UC

normally distributed with E(X) = 9.5, Var(X) = 0.3, E(UC) = 0 and Var(UC) = σ2
UC =

0.06 and the model errors normally distributed with E(ε) = 0 and Var(ε) = σ2
ε = 0.7;

further, β0 = 73, βX = 1, n = 100 and T = 20. Two models are considered: 1) A single–
parameter model for estimating σ2

UC from X∗C with known E(X),Var(X) and E(UC) and
2) a Bayesian simple linear model accounting for a covariate with classical measurement
error. The prior mean for σ2

UC , σ2
UC

(0), as well as prior uncertainty about the size of the
classical measurement error are varied; the latter is varied according to the confidence
ratio defined in Subsection 5.2.2. The Inverse Gamma distribution is used as a prior
distribution for σ2

UC . Non–informative prior distributions are chosen for the remaining
parameters: Uniform prior distributions for σ2

X and σ2
ε and Normal prior distributions

for β0 and βX . 2000 MCMC iterations are conducted and the first 1000 iterations are
discarded as burnin–iterations. The results are visualized in Figure 5.5.
The estimations of σ2

UC with the single–parameter model behave as expected: the abso-
lute bias of the posterior mean increases and the variance of the posterior mean decreases
with increasing confidence in the prior knowledge.
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Figure 5.5.: Posterior means (σ̂2
UC) estimating σ2

UC in a single–parameter model (left column).
Posterior means (β̂X) and variances (V̂ar(βX |·)) for the effect coefficient βX and posterior means
(σ̂2
UC) for the size of the measurement error σ2

UC in a Bayesian model for a classical error–prone
covariate (columns 2–4) for varying location of σ2

UC
(0) ∈ {0.006, 0.06, 0.6} and confidence in the

prior knowledge (confidence ratio).

The Bayesian model for a classical error–prone covariate properly corrects the attenua-
tion of effect estimate, if the prior expectation regarding the measurement error variance
equals the actual parameter (σ2

UC
(0) = 0.06). However, the confidence regarding the prior

knowledge has not any visible impact on the posterior mean of the effect coefficient and
the variability thereof. For σ2

UC
(0) = 0.6, the Markov chains of the Bayesian measurement

error models do not converge and the parameter estimations are highly biased since the
prior distribution disagrees with the data (Var(X∗C) < σ2

UC
(0)). In contrast, the Markov

chains converged for σ2
UC

(0) = 0.006, but the attenuation of the effect estimate is only
insufficiently corrected, also in models with low confidence ratio.
Overestimation of σ2

UC in the Bayesian model yields an overcorrection of the effect
estimate attended by an increase of the variance of the effect estimate. Underestimation
of σ2

UC results in a too small correction of the attenuation attended by a reduction of the
variance of the effect estimate. Prior expectations of σ2

UC seem to equal posterior means
for σ2

UC
(0) = 0.006 and for σ2

UC
(0) = 0.06, the cases, for which the MCMC chains converged.

Even the use of strongly non–informative priors in the sense of a low confidence ratio does
not yield adequate estimations for the slope parameter in the case of a misspecified prior
expectation. The impact of the variability of the prior distribution for the measurement
error parameters on the posterior distribution of the slope parameter in a simple linear
regression model is theoretically considered in Section 5.3.
The choice of the prior expectation for σ2

UC is essential for the adequate consideration
of the measurement error. The parameter δ1 has not any impact on the estimation of the
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posterior expectation for σ2
UC (see Subsection 5.1.3). In fact, the conditional posterior

distribution of βX depends on the variation parameter δ1, but δ1 has only a marginal
impact on V̂ar(βX) in the simulation.
The traditional way to specify the uncertainty of prior knowledge as a trade–off between

data and prior knowledge is not adequate in Bayesian measurement error models with
the prior distribution for the measurement error parameters as the single information
source for the measurement error. This becomes obvious through the considerations in
Subsection 5.1.3 and through the simulation presented in this subsection.
In addition, the simulations show, that the conditional posterior means for X are

highly correlated with X∗C (correlation coefficient about 1) and only slightly correlated
with Y for σ2

UC
(0) = 0.06 and σ2

UC
(0) = 0.006 indicating that the response variable has not

any impact on the estimations of X and βX (eq. 5.5 and eq. 5.7). For σ2
UC

(0) = 0.6, the
prior information is not plausible for the data; in this case the correlation between the
estimations of X and X∗C is lower and the correlation between the estimations of X and
Y is higher.

5.3. Properties of posterior distributions
The notation and the basic ideas in Section 5.3 originate from the work of Gustafson
(2005) and Gustafson (2015).

5.3.1. Theory
According to Gustafson (2005), some approximate properties of posterior distributions can
be achieved by integrating over the model parameters under the assumption of proper joint
prior distributions. This approach bases on the so–called transparent reparametrization of
the model parameters Θ to φ = (φI ,φN) with the aim, that the model for the data does
not depend on the latent (non–identifiable) model parameters φN , i.e. f(φN |φI , data) =
f(φN |φI), but only on the so–called identifiable parameters φI : f(data|φ) = f(data|φI).
These identifiable parameters are determined so that they can be directly estimated from
the data. For example, the transparent parametrization in a simple linear model with
classical measurement error–prone covariate is given by φI = (β∗0 , β∗X , µX∗ , σ2

ε∗ , σ
2
X∗) and

φN = r; this example is used in the subsequent subsections to which we refer for further
details. The posterior expectation of the parameter of interest ψ = g1(φ) results through

Eφ(ψ|data) =
∫ ∫

g1(φI ,φN)f(φN |φI)dφNf(φI |data)dφI
= EφI (g̃1(φI)|data)
= EφI (EφN |φI (g1(φ))|data) (5.10)

with g̃1(φI) =
∫
g1(φI ,φN)f(φN |φI)dφN = EφN |φI (g1(φ)). The expectation of ψ2 =

g2(φ) is derived as

Eφ(ψ2|data) = EφI (VarφN |φI (ψ)|data) + EφI (EφN |φI (ψ)2|data)
= EφI (g̃2(φI)|data)
= EφI (EφN |φI (g2(φ))|data),
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with g̃2(φI) =
∫
g2(φI ,φN)f(φN |φI)dφN = EφN |φI (g2(φ)) resulting in the posterior vari-

ance of ψ:

Varφ(ψ|data) =Eφ(ψ2|data)− Eφ(ψ|data)2

=EφI (VarφN |φI (ψ)|data) + EφI (EφN |φI (ψ)2|data)− EφI (EφN |φI (ψ)|data)2

=EφI (VarφN |φI (ψ)|data) + VarφI (EφN |φI (ψ)|data)
=EφI (g̃2(φI)|data)− EφI (g̃1(φI)2|data) + VarφI (g̃1(φI)|data). (5.11)

The asymptotic distribution of ψ̂(n) = E(ψ|data) as an estimate of ψ using n i.i.d.
observations is derived by standard asymptotic theory if the model is correct (Gustafson,
2005):

n
1
2
[
ψ̂(n) − g̃1(φI)

]
d→ N

(
0, [g̃′1(φI)]>I(φI)−1[g̃′1(φI)]

)
for n → ∞; I denotes the expected Fisher information. Thus, the following approxima-
tions hold:

E
(
ψ̂(n)

)
≈ g̃1(φI) (5.12)

Var
(
ψ̂(n)

)
≈ VarφI (g̃1(φI)|data) = n−1[g̃′1(φI)]>I(φI)−1[g̃′1(φI)] (5.13)

Var(ψ|data) ≈ g̃2(φI)− g̃1(φI)2 + n−1[g̃′1(φI)]>I(φI)−1[g̃′1(φI)] (5.14)

Var
(
ψ̂(n)

)
asymptotically does not depend on the variability of φN , if g̃′1(φI) does not

depend on φN , e.g. if g1(φ) is a linear function of φN .
This approach allows to examine quantities characterizing the posterior distribution of

ψ without conducting the Bayesian analysis. The key issue for the asymptotic properties is
the conditional prior distribution of φN |φI . The phenomenon of a priori dependencies be-
tween φN and φI calls Gustafson (2005) “indirect learning” (IL) about φN . If there is not
any indirect learning (NIL) about the non–identifiable parameter φN , f(φN |φI) = f(φN).
When a proper joint prior distribution is chosen, preventing IL is mostly only approxi-
mately achieved. Then,

g̃(φI) = EφN |φI (g(φ)) NIL≈ EφN (g(φ)),

with g ∈ {g1, g2} and g̃ ∈ {g̃1, g̃2}. If prior knowledge about Θ−φN is not available, indirect
learning from these parameters should be prevented by an adequate parameter choice.
Since IL is visible through the discrepancy between the prior distribution of φN and its

conditional posterior distribution, the KL–distanceDKL between these densities quantifies
the amount of IL:

DKL(f(φN |φI), f(φN)).

DKL depends only on the identifiable parameters and therefore,

E(DKL(f(φN |φI), f(φN))|data) = E
(
D̂

(n)
KL(f(φN |φI), f(φN))

)
≈ DKL(f(φN |φI), f(φN))

(5.15)

for n→∞.
Indirect learning has several aspects and implications. These will be discussed within

the next paragraphs by means of a simple linear regression model with classical mea-
surement error introduced in Subsection 5.3.2, after a short overview of properties in the
absence of IL (Subsection 5.3.3). We will focus on IL from I) prior distributions on the



102 5. The contribution of prior knowledge to Bayesian measurement error correction

parameters of the main outcome model (Subsection 5.3.4), II) constraints on parameters
in the main outcome model (Subsection 5.3.5) and III) constraints on parameters in the
exposure model (Subsection 5.3.6). Since the transparent parametrization of the model
is difficult to accomplish for more complex models, e.g. hierarchical models, we focus the
considerations regarding the properties of posterior distributions on rather simple linear
regression models and analyze more complex models in Section 5.4 via simulations.

5.3.2. Example setup: simple regression with classical covariate
measurement error

Gustafson (2005) exemplifies his approach using a data situation with classical measure-
ment error:

X∗|X, Y ∼ N(X, rσ2
X)

Y |X ∼ N(β0 + βXX, σ
2
ε)

X ∼ N(µX , σ2
X) (5.16)

X∗ denotes the classical error–prone covariate throughout the Subsections 5.3.2 to 5.3.5.
This parametrization will be used in the following to relate to the work of Gustafson
(2005) and differs from our parametrization used in the former chapters:

X∗|X, Y ∼ N(X, σ2
U) (5.17)

In general, parametrization 5.16 describes a multiplicative association between σ2
X and

σ2
X∗ , whereas parametrization 5.17 bases on an additive association. For parametriza-

tion 5.16, the transparent parametrization with φN = r and φI = (β∗0 , β∗X , µX∗ , σ2
ε∗ , σ

2
X∗)

of the original parameter vector Θ = (β0, βX , µX , r, σ
2
ε , σ

2
X) is obtained by the following

transformations:

β∗0 = β0 + µXβX/(1 + r)
β∗X = βX/(1 + r)
µX∗ = µX

σ2
ε∗ = σ2

ε + β2
Xσ

2
Xr/(1 + r)

σ2
X∗ = σ2

X(1 + r).

Thus, ψ = g(φ) = β∗X(1 + r).
Constraining the domain of r to an interval between zero and one is realistic. Addi-

tionally, all variances have to be positive or zero; this will be the case, if

r ∈ (0,min{σ2
ε∗/(β∗X

2σ2
X∗), 1}).

Some properties of the limiting posterior distribution of ψ are illustrated in the next
paragraphs using the parameter settings

β0 = 0, βX = 1, σ2
ε = 0.25, µX = 0, σ2

X = 1, r = 0.25

and the priors

β0 ∼ N(β(0)
0 , σ2

β0), βX ∼ N(β(0)
X , σ2

βX
), µX ∼ N(µ(0)

X , σ2
µX

),
σ2
ε ∼ IG(δε,1, δε,2), σ2

X ∼ IG(δX,1, δX,2),
r : varying priors with expectation r(0)



103

as in Gustafson (2005); β(0)
0 , β

(0)
X and µ(0)

X denote the prior expectations of the correspon-
ding parameters.
The conditional prior distribution of φN |φI is according to Gustafson (2005)

f(r|β∗0 , β∗X , µX∗ , σ2
ε∗ , σ

2
X∗) ∝fN(β∗X(1 + r))fIG(σ2

ε∗ − r(β∗X)2σ2
X∗)

fIG(σ2
X∗/(1 + r))fr(r)I(0,min{σ2

ε∗/(β∗X
2σ2
X∗ ),1})(r) (5.18)

with fN(·) denoting the density function of N(0, 1), fIG(·) the density function of IG(0.5, 0.5)
and with an arbitrary proper prior density fr(·) for the non–identifiable parameter r.
The conditional prior distribution of r (eq. 5.18) does not only depend on the prior

distribution of r but also on the prior distributions of Θ−r and the restriction regarding
the domain of the latent parameter, 1(0,min{σ2

ε∗/(β∗X
2σ2
X∗ ),1})(r) resulting in IL. Hence, the

asymptotic posterior expectation of r does not necessarily equal the prior expectation of
r, even if the data does not contain any information about r. This is illustrated in Figure
5.6 using a Uniform prior distribution for r around 0.25 and gradually increasing γ:

r ∼ Unif(γ1, γ2) = Unif(0.25− γ, 0.25 + γ)

Figure 5.6 a)–c) present the asymptotic properties (Bias, standard deviation, RMSE)
of β̂X for increasing prior uncertainty regarding r. Exemplary, three prior distributions
for r with varying prior uncertainty are depicted in Figure 5.6 d).
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Figure 5.6.: Asymptotic bias, standard deviation (SD) and RMSE of β̂X = E(βX |data) using
Unif(0.25−γ, 0.25+γ) for the marginal prior distribution of r with gradually decreasing values of
γ; dashed vertical line: r = 0.25; dotted line: Var(β̂∗X

(n)
); solid, horizontal line: Var(β̂X

(n)
), if X

is observed. β(0)
0 = 0, σ2

β0
= 1, β(0)

X = 0, σ2
βX

= 1, µ(0)
X = 0, σ2

µX
= 1, δε,1 = 0.5, δε,2 = 0.5, δX,1 =

0.5, δX,2 = 0.5, n = 250.

Figure 5.6 shows a stronger bias for higher prior uncertainty and increased variability
of β̂X for decreasing prior uncertainty; similar observations are made in Gustafson (2005).
Thus, the shape of the prior distribution of r does not seem to be directly related to its
informativeness. These are undesirable properties because actually, the prior uncertainty
should not affect the expectation of the posterior distribution of βX and increasing prior
uncertainty should involve a higher variability of the parameter estimate.
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5.3.3. Properties in the absence of indirect learning
In the absence of IL through using non–informative prior distributions for Θ−r and not
imposing any constraints on the domain of r, eq. 5.18 simplifies to

f(r|β∗0 , β∗X , µX∗ , σ2
ε∗ , σ

2
X∗) ∝fr(r) . (5.19)

Choosing proper joint prior distributions for φI implicates the informativeness of the
joint prior distribution of φI . Therefore, the simplification in eq. 5.19 is a limiting case,
which is only asymptotically reached in realistic examples.
The properties of the posterior distribution of ψ are

E(ψ|data) eq. 5.10= EφI (EφN |φI (g1(φ))|data)
NIL≈ EφI (EφN (g1(φ))|data) = Eβ∗X (β∗X |data)(1 + Er(r))

Var(E(ψ|data)) eq. 5.10= VarφI (EφN |φI (g1(φ))|data)
NIL≈ VarφI (EφN (g1(φ))|data) = (1 + Er(r))2Varβ∗X (β∗X |data)

Var(ψ|data) eq. 5.11= EφI (VarφN |φI (g1(φ))|data) + VarφI (EφN |φI (g1(φ))|data)
NIL≈ EφI (VarφN (g1(φ))|data) + VarφI (EφN (g1(φ))|data)
= Eβ∗X (β∗X

2|data)Varr(r) + Varβ∗X (β∗X |data)(1 + Er(r))2

= Varβ∗X (β∗X |data)Varr(r) + Eβ∗X (β∗X |data)2Varr(r)+
Varβ∗X (β∗X |data)(1 + Er(r))2

E(β̂(n)
X ) and Var(β̂(n)

X ) are not affected by the variability of φN ; this relation holds for
an arbitrary choice of prior distributions as long as the NIL assumption is valid and was
already detected while using conditionally conjugate priors (Subsection 5.1.3).
The approximate variance of the posterior mean of βX strongly depends on the prior

mean of r, but not on the prior variance of r. Even in the case of exact prior knowledge
about r, Varβ∗X (β∗X |data) < Var(β̂(n)

X ), if r > 0. The reason for this is, that higher
measurement error results in increased uncertainty about the true measurements X.
Var(ψ|data) is affected by the prior variance of r, and thus by the prior uncertainty

about the size of the measurement error.
The asymptotic properties of the posterior distribution can easily be calculated and are

useful as a reference for evaluating the strength of IL.

5.3.4. Indirect learning from prior distributions on the
parameters of the main outcome model

The role of the prior distribution of βX (here a normal prior with density fN) regarding the
posterior distribution of βX is exemplified in the following; the prior distributions for the
remaining parameters Θ−r,βX are taken to be non–informative. Furthermore, constraints
resulting from limited parameter domains are neglected and discussed later (Subsection
5.3.5). Thus,

f(r|β∗0 , β∗X , µX∗ , σ2
ε∗ , σ

2
X∗) ∝ f(r|β∗X) ∝ fN(β∗X(1 + r))fr(r)

approximates fr(r) (aside from multiplicative constants), if σ2
βX
→∞, i.e. if the prior for

βX is non–informative. As long as the prior of βX is non–informative, IL is prevented and
the posterior distribution of the parameter of interest is characterized by the properties
derived in Subsection 5.3.3.
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A 3–point prior for r is used to facilitate integration regarding r:

P(r = r(0) − q) = P(r = r(0)) = P(r = r(0) + q) = 1
3

with r(0) = 0.25. For the present example, indications for IL are investigated for (i) β(0)
X =

1, σβX = 100, (ii) β(0)
X = 1, σβX = 1 and (iii) β(0)

X = 0, σβX = 1 using the approximate
KL–distance (eq. 5.15).
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Figure 5.7.: DKL(f(r|β∗X), f(r)) for varying prior uncertainty q and assuming normal prior
distributions for βX with (i) β(0)

X = 1, σβX = 100 (solid line), (ii) β(0)
X = 1, σβX = 1 (dashed

line) and (iii) β(0)
X = 0, σβX = 1 (dotted line).

The approximate NIL case occurs for the situations in (i) and (ii), because the approxi-
mate KL–distance between the conditional posterior distribution and the marginal prior
distribution of r approximately equals zero (Figure 5.7). In contrast, IL of varying inten-
sity occurs with a wider prior distribution for r in situation (iii). Figure 5.7 backs up the
observation of Gustafson (2005), that wider priors for r increase the bias of the estimate
for βX ; the reason for this behavior is the prevention of IL.
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Since we focus on situations with knowledge regarding the measurement error origi-
nating solely from the prior distribution of φN , the prior distributions for Θ−φN should
be chosen in a way to prevent IL. The amount of IL becomes also visible through the
conditional distribution of r for different values of β∗X :
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Figure 5.8.: Limiting posterior probabilities of r for varying prior distributions of βX and a
3–point prior for r with q=0.2. P (r = 0.05|β∗X): dashed lines, P (r = 0.25|β∗X): dotted lines,
P (r = 0.45|β∗X): dotdashed lines. Horizontal gray lines: 0, 1

3 , 1; vertical lines: 0, β
(0)
X /(1+0.25).

The discrete Uniform prior distribution for r is only preserved for the prior distribution
of βX with β(0)

X = 1 and σβX = 100, whereas the conditional prior distribution for r differs
from the marginal prior distribution for narrower prior distributions of βX depending on
the considered values of β∗X . For the informative prior distributions of βX with σβX = 1,
the discrete Uniform distribution is reached for β∗X = 0 and approximately for β∗X =
β

(0)
X /(1 − r(0)). Figure 5.8 shows that the effect of IL varies not only with σ2

βX
, but also

with β(0)
X .

In the following, the effects of IL from the prior distribution of βX on the properties of
the posterior distribution of the parameter of interest βX , will be discussed.
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Approximate posterior mean

Figure 5.9 depicts the approximate posterior mean for varying prior information for βX
and r. Choosing informative priors for βX results in an approximate posterior mean of
βX between β(0)

X and β̂∗X(1 + r(0)).
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Figure 5.9.: Approximate values of E(βX |data) for varying prior distributions of βX and r; a):
r(0) = 0.25, q = 0.05, b): r(0) = 0.25, q = 0.2, c): r(0) = 0.35, q = 0.05, d): r(0) = 0.35, q = 0.2;
n=250.

The informative priors for r affect the posterior means almost independently from the
prior parameters of βX (Figure 5.9 a) and c)) and are therefore the only source of prior
knowledge for the posterior mean of βX . In contrast, IL is relevant if the prior for r is less
informative (Figure 5.9 b) and d)). The trade–off between the sources of prior knowledge,
which depends strongly on the chosen prior distributions, becomes obvious.
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Approximate variance of the posterior mean

If the prior distribution of βX is non–informative and thus, IL is prevented, Var(β̂(n)
X )

will only be affected by the prior mean r(0), but not by the prior uncertainty about r
(Subsection 5.3.3 and Figure 5.10 a) and c)) and will approximate Varβ∗X (β∗X |data)Er(1 +
r)2; in contrast, IL is present for the less informative prior distributions for r used in
Figure 5.10 b) and d) and influences the variance of the posterior mean of βX . The
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Figure 5.10.: Approximate values of Var(E(βX |data)) for varying prior distributions of βX
and r; a): r(0) = 0.25, q = 0.05, b): r(0) = 0.25, q = 0.2, c): r(0) = 0.35, q = 0.05, d):
r(0) = 0.35, q = 0.2;n = 250; solid line: app. Var(E(βX |data)) equals Var(β∗X |data).

variance of the posterior mean may even increase through IL. This occurs in our example,
if β(0)

X strongly deviates from the true value of βX . IL reduces the variance of the posterior
mean when the prior knowledge about βX and the prior knowledge about r indicate the
same value of βX .
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Approximate posterior variance

The approximate posterior variance is strongly affected by IL:
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Figure 5.11.: Approximate values of Var(βX |data) for varying prior distributions of βX and r;
a): r(0) = 0.25, q = 0.05, b): r(0) = 0.25, q = 0.2, c): r(0) = 0.35, q = 0.05, d): r(0) = 0.35, q =
0.2; n=250.

Increasing σβX involves a lower approximate posterior variance of βX in the case of a
less informative prior of r (Figure 5.11 b) and d)), whereas the posterior variance of βX
is nearly constant for an informative prior of r (Figure 5.11 a) and c)). Thus, the prior
variability of r strongly influences the approximate posterior variance of βX . IL reduces
the posterior variance and the impact of the variability of r on the approximate posterior
variance of βX is smaller.

Conclusion

The influence of the informativeness of the prior distribution for r differs with the prior
distributions of other parameters, which seem to modify the impact of the prior of r on
the posterior distribution of βX . Thus, the amount of IL does not only depend on the
prior distribution of r, as it is also visible in Gustafson (2005), but also on the prior
distributions of Θ−r.
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5.3.5. Indirect learning induced by constraints on parameters in
the main outcome model

In the absence of IL from prior distributions (NILP), the limiting posterior of r (eq. 5.18)
simplifies to

f(r|β∗0 , β∗X , µX∗ , σ2
ε∗ , σ

2
X∗)

NILP≈ fr(r)I(0,min{σ2
ε∗/(β∗X

2σ2
X∗ ),1})(r) · const.

The constraints on r directly affect f(r|Θ−r) and the normalizing constant depends also
on β∗X ; this implies IL from the constraints. For the simple examples in that subsection
we take σ2

ε∗ and σ2
X∗ as fixed to the true values.

IL exists for the prior parameter choices (i)–(iii) for βX , especially, if the prior distri-
bution for r is less informative: The approximate KL–distance is strongly affected by
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Figure 5.12.: Estimation of Eβ∗X (DKL(f(r|β∗X), f(r))) based on n = 250 observations for vary-
ing q and assuming a normal prior distribution for βX with (i) β(0)

X = 1, σβX = 100 (solid line),
(ii) β(0)

X = 1, σβX = 1 (dashed line) and (iii) β(0)
X = 0, σβX = 1 (dotted line); gray: approximate

Eβ∗X (DKL(f(r|β∗X), f(r))) for n→∞.

the constraints for higher values of q, also for non–informative prior distributions of βX .
The reason is, that the conditional prior distribution of the non–identifiable parameter
changes after including the constraints, as depicted in Figure 5.13.
Figure 5.12 and Figure 5.13 indicate that the usage of non–informative priors on βX

only mitigates IL through constraints but cannot avoid IL. IL through constraints will
be prevented if the prior distribution of r is informative and n is large involving small
variability of β∗X |data in order to meet the limits of the constraints.
IL through constraints influences the posterior distribution of βX in two aspects both

originating from changes of the conditional prior distribution of r in comparison to the
marginal prior distribution: 1) The prior mean of r changes and 2) the relationship
between the information sources for the unobserved X changes.
In the NILP case, the magnitude of the effect arising from the constraints on the

posterior distribution of βX is driven by the distribution of β∗X , and thus, also by the
sample size n, and by the informativeness of the prior distribution for Θ−r as illustrated
with Figure 5.14.
The constraint affects the properties of the posterior distribution of βX , even if the

probability mass of the non–identifiable parameter lies within the constraints and is of
higher relevance, when the prior distribution for r is less informative. The reason for this
is, that β∗X is random and therefore, β∗X delivers additional variability. The constraint
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Figure 5.13.: Limiting posterior probabilities for r for varying prior information of βX con-
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Figure 5.14.: Approximate posterior expectation (left) and variance (right) of βX for varying
prior means of r (solid: r(0) = 0.25, dashed: r(0) = 0.35) and varying informativeness of the
prior distribution of r based on 50 (purple), 125 (green) and 250 (brown) observations and
approximate NILP; gray and lightened colors: approximate posterior mean and variance in the
NIL case without constraints.

negatively influences the posterior expectation of βX and may yield reduced posterior
variances of βX if less informative prior distributions for r are chosen.
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Under the chosen constraints, extreme values in the upper domain of r are a posteriori
less probable (Figure 5.13), yielding E(r|β∗X) < E(r) and E(βX |r, β∗X) < β

(0)
X ; further, r|β∗X

and thus, also βX |data are less variable.

5.3.6. Indirect learning induced by constraints on parameters in
the exposure model

In the previous subsections we focused our considerations on scalar φN . However, the
measurement error in the Augsburger Umweltstudie is more complex and is described
with several parameters. Indeed, the prior knowledge about these non–identifiable pa-
rameters may be independently specified, but the samples from the conditional posterior
distributions may depend on each other. The reason is that the non–identifiable parame-
ters may underlay constraints, as e.g. σ2

UB and σ2
UC , because σ2

X∗B + σ2
UB + σ2

UC = σ2
X∗C

(in a situation without individual–specific measurement errors).
In eq. 5.17, an alternative parametrization of the measurement error is presented,

which is used for this subsection to illustrate IL within the non–identifiable parameters.
In addition, we consider a Berkson–type error:

X∗C|X, Y ∼ N(X, σ2
UC)

Y |X ∼ N(β0 + βXX, σ
2
ε)

X|X∗B ∼ N(X∗B, σ2
UB)

X∗B ∼ N(µX∗B , σ2
X∗B).

In this case, the identifiable parameters are calculated as

β∗0 =β0 + µX
∗B(1− λC)βX

β∗X =λCβX
σ2
ε∗ =σ2

ε + β2
Xσ

2
UCλC

µX
∗B∗ =µX∗B

σ2
X∗B
∗ =σ2

X∗B

σ2
X∗C
∗ =σ2

X∗C

with λC = σ2
X∗B

+σ2
UB

σ2
X∗B

+σ2
UB

+σ2
UC

and φN = (σ2
UB , σ2

UC). The conditional prior distribution of
φN |φI is

f(σ2
UB , σ2

UC |β∗0 , β∗X , σ2
ε∗ , µ

X∗B∗, σ2
X∗B
∗
, σ2

X∗C
∗)

NILP≈ fσ2
UB

(σ2
UB)fσ2

UC
(σ2

UC)·

I{σ2
UB

,σ2
UC
|σ2
X∗C
∗−σ2

X∗B
∗=σ2

UB
+σ2

UC
}(σ2

UB , σ2
UC)·

I{σ2
UB
|0≤σ2

UB
}(σ2

UB)I{σ2
UC
|0≤σ2

UC
}(σ2

UC) · const.

if IL from the prior distributions of Θ−φN is prevented, which can only approximately be
achieved. As an example, suppose σ2

X∗C = 0.56, σ2
X∗B = 0.2, σ2

UC = 0.06 and σ2
UB = 0.2.

We use truncated normal priors for σ2
UB and σ2

UC

fσ2
UB

(σ2
UB) ∝ fN(σ2

UB)I{σ2
UB
|0≤σ2

UB
≤σ2

X∗C
−σ2

X∗B
}(σ2

UB)

fσ2
UC

(σ2
UC) ∝ fN(σ2

UC)I{σ2
UC
|0≤σ2

UC
≤σ2

X∗C
−σ2

X∗B
}(σ2

UC)
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with expectations 0.06 and 0.2 and standard deviations 0.03 and 0.1. In order to meet
the condition

σ2
X∗C − σ2

X∗B = σ2
UB + σ2

UC

marginal and conditional prior distributions differ, possibly involving modified conditional
prior expectations (see Figure 5.15).

−0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
2

4
6

8
10

12
14

σUC
2

D
en

si
ty

−0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

2
4

6
8

10
12

14

σUB
2

D
en

si
ty

Figure 5.15.: Marginal (solid lines) and conditional (dashed lines) prior densities of σ2
UC and

σ2
UB.

The information described by the conditional prior distributions of φN is used for the
Bayesian analysis instead of the initially intended knowledge specified by the marginal
prior distributions. This learning effect can only be prevented through a deliberate choice
of the prior distributions on φN including also the constraints since the dependency of
the prior distributions originates in the design of the models. In comparison to Subsec-
tion 5.3.5, the impact of constraints on φN does not depend on the data or the prior
distributions regarding Θ−φN .

5.4. Simulation study: Properties of Bayesian
measurement error models

In Chapter 4 we derive method–of–moment correction formulas for the measurement error
correction in linear mixed models with AR(1) errors. Bayesian methods on the same
simulation example as in Section 3.6 are examined in this section. Again, 100 data sets
are generated for each size of measurement error; the data are centralized for the Bayesian
analyses.
Besides classical (C) and Berkson (B) measurement error, a mixture (M) of both error

types is considered: in addition to the incomplete values of the personal exposure mea-
surements fixed–site measurements are included in the analysis. Note, that the settings
for mixture error for Bayesian analyses comprise more data than for the frequentist ana-
lyses: both data sources are used for Bayesian analyses. In the following simulations
different aspects of Bayesian regression models for measurement error are considered and
compared to the frequentist models. Results are also given for SF = 0 for the sake of
completeness, but bear in mind that the model specification is different for computational
reasons.
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Non–informative normal prior distributions are used for the regression coefficients (β0,
βX) of the main model and non–informative Uniform prior distributions are chosen for σ2

τ ,
σ2
ε and ρ and, if necessary, for the variance of X, σ2

X , and the autocorrelation parameter
ρX
∗B :

• Effect coefficients: β0 ∼ N(0, 106), βX ∼ N(0, 106)

• Variances: σ2
ε ∼ Unif(0, 100), σ2

τ ∼ Unif(0, 100), σ2
X ∼ Unif(0, 100)

• Autocorrelation coefficients: ρX∗B ∼ Unif(0, 1), ρ ∼ Unif(0, 1)

The comparison of Bayesian with MOM–corrected effect estimates is accomplished with
fixed prior knowledge regarding the parameters characterizing the measurement error; the
results are presented in Subsection 5.4.1. In the subsequent Subsections 5.4.2–5.4.5 the
lack of knowledge about the exposure model in the analysis of classical error–prone data, of
a varying fraction of missing personal measurements, of simultaneous estimation of missing
values and of the sensitivity to the choice of the prior distribution for the parameters
characterizing the measurement error on the effect estimations will be examined.
The Bayesian analyses in the present section are based on 5000 MCMC iterations with

additional 1000 discarded burnin–iterations.

5.4.1. Comparison to frequentist estimation
Parameters characterizing the measurement error are assumed to be known and obser-
vations with missing values of X∗C are excluded in models for classical measurement
error–prone data. Further, the exposure model for the analysis of X∗C is correctly speci-
fied, i.e. X is specified as a sum of the autocorrelated Berkson error prone measurements
X∗B, (if reasonable) νB and (if reasonable, the autocorrelated) Berkson errors UB.
The results for the Scenarios (I)–(III) are depicted in Appendix, Figure C.1 and the

corresponding values for bias and RMSE are listed in Table 5.3 for Bayesian analyses and
in Table 3.2 for the frequentist case.
As expected, the joint usage of the Berkson and classical error–prone measurements

yields better estimates with regard to RMSE than using only a single data source, if
σ2
UB , σ2

UC > 0 . Therefore, including both data sources always should be preferred, espe-
cially considering the high bias occurring with a misspecified exposure model in the model
for classical error–prone data (Subsection 5.4.2).
Bayesian and frequentist error correction yield comparable results for the estimates of

the effect coefficients in Scenarios (I) and (II); a favored method cannot be identified by
the means of RMSE values. While the results are also similar for Berkson and classical
error–prone data in Scenario (III), the Bayesian method for mixture error provides better
RMSE values than the frequentist method for mixture error.
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SF of Truth Berkson Classical Mixture

Scen. σ2
UB , σ

2
UC Bias RMSE Bias RMSE Bias RMSE Bias RMSE

(I) 0 0.016 0.363 0.016 0.363 0.019 0.422 0.016 0.363
0.5 0.024 0.242 -0.016 0.406 0.012 0.295 0.014 0.276
1 0.004 0.186 -0.002 0.380 0.024 0.248 0.013 0.234
2 0.003 0.138 0.003 0.374 -0.002 0.183 -0.003 0.177
5 -0.012 0.096 0.015 0.393 -0.008 0.117 -0.010 0.117

(II) 0 0.069 0.385 0.071 0.392 0.078 0.408 0.071 0.392
0.5 -0.038 0.237 -0.063 0.366 -0.034 0.285 -0.048 0.261
1 0.015 0.178 0.015 0.403 -0.006 0.239 -0.001 0.225
2 0.031 0.150 0.007 0.376 0.026 0.185 0.028 0.180
5 -0.006 0.092 -0.037 0.396 -0.010 0.116 -0.009 0.115

(III) 0 -0.011 0.654 -0.006 0.674 -0.055 0.749 -0.007 0.671
0.5 0.033 0.273 -0.005 0.618 0.101 0.424 0.046 0.374
1 -0.013 0.199 0.005 0.673 0.034 0.296 0.004 0.272
2 -0.009 0.166 0.018 0.675 0.012 0.202 0.002 0.196
5 0.009 0.097 0.109 0.680 0.033 0.147 0.025 0.145

Table 5.3.: Bias and RMSE of the Bayesian effect estimations for Scenarios (I)-(III); bold:
lowest absolute bias and lowest RMSE of each row (disregarding the results based on the true
data).
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5.4.2. Lacking knowledge about the exposure model
In the previous subsection the exposure model in the Bayesian model for the classical mea-
surement error was correctly specified, i.e. just as in the data generating process. However,
the exposure model is in practice rather complex and often unknown. In particular when
personal measurements are used, the exposure model depends on individual–specific pa-
rameters whereof the knowledge from validation studies cannot be transferred. Therefore,
we examine the Bayesian models for classical error–prone data without prior knowledge
about the structure and the parameters of the exposure model. To this end, we use a flat
prior for the variance of X: σ2

X ∼ Unif(0, 100). Thus, the true exposure, which actually
shows an individual–specific structure and autocorrelation, is misspecified.
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Figure 5.16.: Bayesian estimates of corrected regression coefficients for increasing size of mea-
surement errors based on measurements with classical measurement error and with lacking know-
ledge of the exposure model.

The estimates for the classical error–prone data are biased, especially in Scenario (III).
Of course, also the lack of knowledge regarding the Berkson error model in the analysis of
both data sources would result in biased estimates due to the same reasons; in this case,
the specification of a model for the fixed–site measurements is not needed.
Two aspects are relevant for the explanation of these results. First, IL about σ2

X occurs
through the constraint σ2

X + σ2
UC = σ2

X∗C (see Subsection 5.3.6) yielding an informative
limiting posterior distribution of σ2

X . Second, the attenuation of the effect estimate is
insufficiently corrected if the autocorrelation structure of X∗B is neglected, as it becomes
obvious for Scenario (I) using the formulas for calculating the attenuation factor derived
in Subsection 3.3.3:

σ2
X∗Bg

∗C
T (ρX∗B) + σ2

UB

σ2
X∗Bg

∗C
T (ρX∗B) + σ2

UB + σ2
UC
6= σ2

X∗B + σ2
UB

σ2
X∗B + σ2

UB + σ2
UC

for ρX∗B > 0.

5.4.3. Varying fractions of missing personal measurements
Previously (Subsection 5.4.1), we discovered benefits of using both data sources in all sce-
narios in comparison to using only one data source. Since this benefit strongly depends on
the fraction of missing personal measurements we will further evaluate this relation in the
present subsection for scaling factor 1. The parameters characterizing the measurement
error are again assumed to be known. Observations with missing values of X∗C are ex-
cluded and the exposure model is correctly specified in models for classical measurement
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SF of Truth Berkson Classical Mixture

Scen. σ2
UB , σ

2
UC Bias RMSE Bias RMSE Bias RMSE Bias RMSE

(I) 0 0.012 0.181 0.035 0.369 0.019 0.200 0.018 0.198
0.2 0.020 0.196 0.041 0.375 0.033 0.226 0.036 0.220
0.4 -0.022 0.180 -0.012 0.368 -0.018 0.252 -0.022 0.231
0.6 0.009 0.189 0.003 0.325 0.018 0.343 0.016 0.268
0.8 0.019 0.191 0.040 0.391 0.000 0.458 0.012 0.294
1 -0.047 0.214 -0.015 0.320 -0.015 0.320

(II) 0 -0.005 0.223 0.011 0.388 0.002 0.244 0.004 0.242
0.2 0.020 0.189 0.003 0.382 0.030 0.230 0.026 0.220
0.4 -0.002 0.196 0.065 0.406 -0.018 0.276 -0.005 0.271
0.6 -0.003 0.179 0.038 0.350 -0.001 0.312 0.011 0.244
0.8 -0.004 0.216 -0.055 0.401 0.007 0.443 -0.025 0.322
1 0.012 0.169 0.025 0.384 0.023 0.381

(III) 0 -0.019 0.181 -0.095 0.648 -0.007 0.240 -0.035 0.230
0.2 -0.023 0.208 -0.035 0.667 -0.001 0.276 -0.028 0.258
0.4 -0.014 0.192 -0.039 0.651 0.019 0.317 -0.012 0.298
0.6 -0.025 0.231 -0.039 0.628 0.008 0.408 -0.031 0.384
0.8 0.010 0.204 0.072 0.700 0.112 0.506 0.062 0.431
1 -0.019 0.223 0.134 0.650 0.134 0.650

Table 5.4.: Bias and RMSE of the Bayesian effect estimations for Scenarios (I)–(III) with
varying percentage of missing personal measurements (p); bold: lowest absolute bias or lowest
RMSE of each row (disregarding the results based on the true data).

error–prone data. The results for the Scenarios (I)–(III) are depicted in Appendix, Figure
C.2 and the corresponding values for bias and RMSE are listed in Table 5.4.
The joint usage of Berkson and classical error–prone measurements out–performs the

usage of only classical error–prone, incomplete measurements for all analyzed fractions
of missing values, even for p = 0. Against the background that the underlying exposure
model is implicitly estimated by the Bayesian regression model for classical measurement
error, the benefit of any additional information for the exposure model can easily be
recognized.
Further, the results indicate, that personal measurements with a high percentage of

missing values provide worse results than complete Berkson error–prone measurements
for Scenarios (I) and (II).

5.4.4. Impact of simultaneous estimation of missing personal
measurements

In the Subsections 5.4.1–5.4.3 we did not estimate the missing values of X∗C within the
Bayesian analysis. We will analyze in the present subsection to what extent the simulta-
neous estimation of missing values will affect the results in Scenario (I). The parameters
characterizing the measurement error are again assumed to be known and the exposure
model is correctly specified in models with classical error–prone data.
The simultaneous prediction of missing values in the models for classical error–prone

data provides a slight improvement of the effect estimates (Figure 5.5). The result is only
valid for a correctly specified exposure model and cannot be transferred to situations with
misspecified or unknown exposure model.
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SF of Without prediction With prediction

σ2
UB , σ

2
UC Bias RMSE Bias RMSE

Classical 0 0.019 0.422 0.015 0.361
0.5 0.012 0.295 0.010 0.279
1 0.024 0.248 0.022 0.235
2 -0.002 0.183 -0.002 0.182
5 -0.008 0.117 -0.009 0.117

Mixture 0 0.016 0.363 0.016 0.363
0.5 0.014 0.276 0.014 0.276
1 0.013 0.234 0.013 0.234
2 -0.003 0.177 -0.003 0.177
5 -0.010 0.117 -0.010 0.117

Table 5.5.: Bias and RMSE of the Bayesian effect estimations for Scenario (I) with and without
prediction of missing values in X∗C; bold: lowest absolute bias or lowest RMSE of each row.

The results are equal for the models with and without predicting the missing values of
X∗C when both measurement sources are included in the analysis.

5.4.5. Sensitivity to prior parameter choices for the
non–identifiable parameters

Setup

In regression models with a measurement error depending only on a single parameter
Gustafson (2005) found out that less variable prior knowledge results in a reduced precision
of the estimation. In contrast, we demonstrated in Section 5.3 that these observations
may originate from indirect learning from the prior distribution on βX ; further, conside-
rations with conditionally conjugate prior distributions in Subsection 5.1.3 reveal, that
the variability of the prior knowledge is positively associated with the marginal posterior
variability of the effect coefficient. Simulations with the following priors back up these
results:

(I) σ2
UC ∼ Unif(0.9 · σ2 (0)

UC , 1.1 · σ2 (0)
UC )

(II) σ2
UC ∼ Unif(0.1 · σ2 (0)

UC , 1.9 · σ2 (0)
UC )

(III) σ2
UC ∼ IG(302.0, 60.2)

(IV) σ2
UC ∼ IG(5.70, 0.94)

The parameters in (III) and (IV) are chosen in that way, that the prior expectation equals
σ

2 (0)
UC and the prior variance is equal to case (I) and (II), respectively, in order to analyze

the effect of the shape of the measurement error prior distribution. The prior distributions
(I)–(IV) are depicted in Figure 5.18 and Figure 5.19.
Data without autocorrelation within the measurement errors and the model error term

is considered and the sensitivity to the prior choice in a simple linear mixed model is
examined (Scenario (I)); the scaling factor for the measurement error variances σ2

UB and
σ2
UC is fixed to 1. The latent parameters despite σ2

UB in the models including X∗B and
σ2
UC in the models including X∗C are assumed to be known and the exposure model is

correctly specified.
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Bias, variance and RMSE

As already deviated from theoretical considerations in the previous sections, shape and
variability of the prior distribution will not have any impact on E(β̂X) and Var(β̂X), if IL
is prevented, as it is also visible in Table 5.6.

interval ·σ2
UB/σ2

UC Berkson Classical Mixture

Prior with 95 % prob. mass Bias RMSE Bias RMSE Bias RMSE
Point -0.002 0.380 0.024 0.248 0.013 0.234
Gamma [0.9,1.1] -0.003 0.386 0.024 0.247 0.013 0.234
Gamma [0.7,1.3] -0.003 0.381 0.023 0.246 0.016 0.235
Unif [0.9,1.1] -0.002 0.381 0.024 0.246 0.014 0.234
Unif [0.7,1.3] 0.001 0.382 0.025 0.246 0.015 0.236

Table 5.6.: Bias and RMSE of the Bayesian effect estimations for Scenario (I) with varying
shape and variability of the prior distributions for the sizes of the measurement errors; bold:
lowest absolute bias or lowest RMSE of each column.

Indeed, Var(βX |data) depends on the type and the variability of the prior distributions,
but the impact of different prior distributions for the measurement error on the effect
estimations in the simulations is diminutive. Therefore, we demonstrate the dependency
between Var(βX |data) and the prior parameters with the approximate properties deviated
in Section 5.3.
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Figure 5.17.: Approximate values for Var(βX |data) according to eq. 5.14 for a regression
analysis with covariate X∗C with the latent parameters despite σ2

UC assumed to be known and
with Unif(σ2

UC
(0)−γ, σ2

UC
(0) +γ) as the prior distribution for σ2

UC; σ2
UC

(0) varies from 0.001 to 0.26
and is depicted with decreasing intensity; horizontal line: variance of the naive effect estimate;
vertical lines: values for γ chosen for simulation.
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Figure 5.17 shows, that the approximate posterior variance of βX changes only slightly
for low values of γ when a Unif(σ2

UC
(0) − γ, σ2

UC
(0) + γ) prior distribution is used for σ2

UC

and increases with increasing γ.

Marginal posterior distributions

The prior choice in the simulation setup prevents IL from the prior distributions of Θ−φN
in the models for Berkson and classical error–prone measurements. For the models with
Berkson error–prone covariates, this becomes obvious in the following figures: the poste-
rior distributions for σ2

UC and σ2
UB are very similar to the respective prior distributions.

For the models with classical error–prone covariates and with measurements of both
types, IL induced by constraints on the parameters in the exposure model exists, respec-
tively. In the models for both measurement types, IL is stronger for σ2

UB in comparison
to σ2

UC and the posterior distributions of σ2
UC and σ2

UB are correlated: the mean absolute
Pearson correlation coefficients are higher for less informative priors (-0.59 for the more
informative Uniform prior distribution, -0.90 for the less informative Uniform prior distri-
bution, -0.49 for the more informative Inverse Gamma prior distribution, -0.86 for the
less informative Inverse Gamma prior distribution).

Sensitivity to prior parameter choices for the autocorrelation coefficient of
the measurement error

Whereas the variance of individual–specific measurement error, σ2
νB and σ2

νC , may exhibit
similar properties than σ2

UB and σ2
UC , we examined the sensitivity to prior parameter

choices for the autocorrelation coefficient of the measurement error using simulations.
Therefore, Uniform prior distributions are imposed on ρB and ρC. Again, bias and RMSE
change only slightly; the posterior distribution of ρB and ρC highly resemble the respective
prior distribution in models for Berkson and classical error–prone measurements and are
affected by IL if both data sources are included.
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Figure 5.18.: Prior distributions for σ2
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UC with 95 % of the probability mass between
0.9σ2

UB and 1.1σ2
UB or/and 0.9σ2

UC and 1.1σ2
UC (black); pointwise, empirical 95 % interval of the

100 posterior distributions of σ2
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5.5. Conclusions
Considerations with conditionally conjugate prior distributions and the transparent repa-
rametrization according to Gustafson (2005) reveal, that the prior expectations regarding
the non–identifiable parameters equal the respective posterior expectations, as seen also
in Figure 5.5, if information about the measurement error solely originates from the
informative prior distributions for the non–identifiable parameters (i.e. IL is prevented).
Therefore, the expectations of the prior distributions for the non–identifiable parameters
are the decisive parameters for the posterior expectation of the effect estimate. Even the
marginal and conditional prior distributions and the conditional posterior distribution of
the non–identifiable parameters are equal in that case. In many situations, this property
is desirable, because the prior distribution for the non–identifiable parameters provides
the only source of information about the measurement error. The considerations with
conditionally conjugate prior distributions demonstrate, that the main model and the
exposure model deliver additional information about the measurement error. We do not
dwell on the former issue because the influence of these information sources are negligible
in the data situation of the Augsburger Umweltstudie; we implicitly discussed the latter
issue in the simultaneous analysis of personal and fixed–site measurements. The properties
of the prior distribution for the non–identifiable parameters, e.g. mean and variability,
are directly incorporated in the estimation of the regression coefficients in the absence of
indirect learning. The shape of the prior distributions of the non–identifiable parameters
only affects the shape of the posterior distribution of the effect estimate and thus also
confidence intervals of the effect estimates, but not its expectation (Section 5.3). The
variability of the estimated true data X is higher than its actual variability through the
additional variability due to prior uncertainty regarding the size of the measurement error
if the posterior mean of the size of the measurement error is positive.
Three types of indirect learning are to be differentiated: (I) IL from prior distributions

on the parameters of the main outcome model, (II) IL from constraints on parameters
of the main outcome model and (III) IL from constraints on parameters of the exposure
model. The first type of IL is often undesirable and can be prevented through an ade-
quate prior choice for the parameters of the main model. The second type of IL will
affect the posterior distribution of the effect estimates if few prior knowledge about the
non–identifiable parameters is available and at the same time, the variability of the identi-
fiable parameters is high, e.g. through a small sample size. The third type of IL occurs
in Bayesian regression models for measurement error, which include an exposure model
or more than one non–identifiable parameters. IL type (III) may be volitional, but the
analyst should be aware of the mutual interaction between the prior assumptions within
the Bayesian model calculation; for instance, nescience about the exposure model in a
Bayesian regression model with a measurement error–prone covariate results in an infor-
mative conditional prior distribution due to IL learning type (III) which may raise biases
due to the erroneous specification of the exposure model (see the simulations results in
Subsection 5.4.2). Further, IL type (III) cannot be alleviated by increasing the sample
size of the main study in contrast to IL type (II). In general, indirect learning is highly
relevant in situations with little knowledge about the size of the measurement error. A
major difference to identifiable Bayesian regression models is, that it is not possible to
specify a Bayesian regression model for error–prone covariates through non–informative
prior distributions where the data speaks for itself (except further data is included de-
scribing the measurement error), because IL occurs. Since Bayesian regression models for
error–prone covariates always comprise prior knowledge about the parameters describing
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the measurement error, albeit through constraints, inference with the non–identifiable
model is possible.
On the basis of these findings two steps should be conducted for the prior specification

of a Bayesian regression model with measurement error–prone covariates:

1. Specify the prior distributions for the non–identifiable parameters on the basis of
the prior knowledge regarding the shape and location.

2. Choose the prior parameters of Θ−φN in a way that prevents undesired indirect
learning effects
a) through non–informative priors for the parameters of the main model to prevent

IL of type (I)
b) through enough information about the measurement error and through an ade-

quate sample size to prevent IL of type (II)
c) through the consistent specification of the prior distributions for all parameters

describing the exposure model and the measurement error to prevent IL of type
(III).

The similarity of the prior and the posterior distribution of the parameters describing
the exposure model and the measurement error indicates the success of preventing
IL, e.g. the KL distance between the distributions may be used.

The focus of this chapter was on the adequate specification of a prior knowledge on the
basis of expert knowledge. However, the prior knowledge about the measurement error
may also originate from a preceding analysis, as e.g. in Chang et al. (2011), Gryparis
et al. (2009) and Prescott and Garthwaite (2005). We showed, that this approach is
adequate, if IL is prevented. The argumentation can also be extended to the usage of
prior information gained from the simultaneous modeling of validation data. Several
sources for prior information within a single model result in IL of type (III).
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6. Measurement error correction for the
Augsburger Umweltstudie

The method of moments correction and the Bayesian approach for measurements with
Berkson, classical and mixture measurement error in a mixed model framework is applied
to the models of the Augsburger Umwelstudie by using the data of the validation and
comparison studies described in Section 1.3. For the main model of the Augsburger
Umweltstudie, the 5–min. resolved heart rate is the health outcome and the correspond-
ing (log–transformed) personal PNC measurements are regarded as the deficient covariate
X∗C; the fixed–site PNC measurements are considered as the Berkson error–prone covari-
ate. The confounder model established for the analysis of the Augsburger Umweltstudie
(Hampel et al., 2012b) is used, which includes a linear time trend, linear and quadratic
effects of 2–h. lagged temperature at the measurement station, a linear effect of 1–h.
lagged relative humidity and a binary variable for time of the day (before/after noon).
Due to differences in toxicity and thus also in health effects Wilson and Brauer (2006)

argue to separately analyze personal ambient and personal non–ambient exposure. Fur-
ther, the indoor measurements differ in the size, complexity and structure of Berkson
error in comparison to outdoor measurements. Therefore, the main analyses are based
on outdoor measurements; indoor measurements are only examined with a sensitivity
analysis using the Bayesian approach.
The parameters for the (two–stage) correction of the measurement errors are estimated

with validation data as well as with data from the Augsburger Umwelstudie as described
in Chapter 2 and are listed in Table 6.1.

Variance Autocorrelation
X∗B 0.34 0.932
UB
it 0.3 0.582

νBi 0.21
UC
it 0.03 0.696

νCi 0.03

Table 6.1.: Parameter specifications for application (concurrent mobile and fixed–site measure-
ments).

6.1. Correction with the method of moments
The log–transformed fixed site measurements are adapted to the mean of the log–trans-
formed individual measurements by adding a constant to fulfill the assumptions for the
bias correction defined in Subsection 2.1.2. Varying degrees of lagged effects of the log–
transformed PNC concentrations are examined up to a lag of 60 minutes.
Three models are considered: Fixed–site PNC levels are used as covariate in the first

model (HMM∗B, eq. 3.1). For the second model, only observations with individual mea-
surements are used (HMM∗C, eq. 3.2) and for the third model, missing individual PNC
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observations are substituted with the values from the fixed–site measurement station
(HMM∗M, eq. 3.3).
Confidence intervals for the effect coefficients are based on the delta method due to

higher coverage probabilities compared to confidence intervals based on bootstrap (Section
4.4). The variance of the attenuation factor, Var(λ̂), is calculated using 100 bootstrap
samples of the appropriate data sets: the different visits of the individuals are resampled
from the data of the main study and the different periods defined by battery changes are
resampled from the data of the comparison measurements.
The correlation structure of the model errors is individual–specific due to individual–

specific patterns of missing values and varying measurement duration.

6.1.1. Multivariate analysis
For measurement error correction in the multivariate case, equation system 3.43 is adapted
for unbalanced longitudinal data. tr(V̂ ∗−1

i XiX
∗
i
>) is approximated as follows:

tr(V̂ ∗C−1

i XiX
∗C
i

>) ≈tr(V̂ ∗C−1

i X∗Ci X
∗C
i

>)−
tr(σ2

UCV̂ ∗C
−1

i DiWρC,iD
>
i )− tr(σ2

νCV̂
∗C−1

i DiJTiD>i )

tr(V̂ ∗M−1

i XiX
∗M
i

>) ≈tr(V̂ ∗M−1

i X∗Mi X∗Mi
>)+

tr(σ2
UBV̂ ∗M

−1

i Di(1Ti −Gi)G>i ◦WρB,iD
>
i )+

tr(σ2
νBV̂

∗M−1

i Di(1Ti −Gi)G>i ◦ JTiD>i )−
tr(σ2

UCV̂ ∗M
−1

i Di(1Ti −Gi)(1Ti −Gi)> ◦WρC,iD
>
i )−

tr(σ2
νCV̂

∗M−1

i Di(1Ti −Gi)(1Ti −Gi)> ◦ JTiD>i )

The deletion matricesDi are different in the two equations and indicate the missing values
in X∗Ci and X∗Mi respectively. The results of the measurement error correction with the
method of moments for the multiple regression analysis of the Augsburger Umwelstudie
are depicted in Figure 6.1.
The application of the developed bias correction on the data of the Augsburger Umwelt-

studie reveals a slight increase of the estimated effect coefficient considering the models
for concurrent measurements. Delayed effects are not significantly different from zero.
The preferred strategy is the model based on mixture data, because more information is
used.
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Figure 6.1.: Naive (triangles) and MOM–corrected (circles) effect estimates for the association
between heart rate and concurrent and lagged individual PNC levels with Berkson, classical and
mixture measurement error in the multiple regression analysis.
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The attenuation of the effect estimate is stronger for the mixture error (Figure 6.2).
The estimated attenuation factors are slightly left skewed. Distributional properties of the
estimates of the parameters describing the measurement errors are presented in Section
6.2 and are depicted in Figure 6.4.
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Figure 6.2.: Density estimation for the estimated attenuation factors based on bootstrapped
data for the multiple regression analysis.

6.1.2. Bias correction in a simple regression model
To further illustrate the theoretical results, also simple regression models are calculated.
The attenuation factors for the analyses using measurements with classical measurement
error and with mixture error are estimated using

λ̂∗C =
∑n
i=1 tr

[
V̂ ∗C

−1

i Di

(
Σ̂X∗B + σ̂2

νBJT + Σ̂UB

)
D>i

]
∑n
i=1 tr

[
V̂ ∗C

−1
i Di

(
Σ̂X∗B + σ̂2

νBJT + σ̂2
νCJT + Σ̂UB + Σ̂UC

)
D>i

] (6.1)

and

λ̂∗M =
{

n∑
i=1

tr
[
V̂ ∗M

−1

i Di

(
Σ̂X∗B + ((1T −Gi)1>T ) ◦ (σ̂2

νBJT + Σ̂UB)
)
D>i

]}
{

n∑
i=1

tr
[
V̂ ∗M

−1

i Di

(
Σ̂X∗B + ((1T −Gi)(1T −Gi)>)◦

(σ̂2
νBJT + σ̂2

νCJT + Σ̂UB + Σ̂UC)
)
D>i

]}−1

, (6.2)

based on the considerations in the Subsections 3.3.3, 3.4.3, 3.3.3 and 3.5.5. The values of
the parameters of the variance–covariance matrices in eq. 6.1 and eq. 6.2 are described in
Table 6.1. The regression coefficients and their MOM–corrected equivalents up to a lag
of 60 minutes are displayed in Figure 6.3. The results only slightly differ from the results
of the multiple regression model.
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Figure 6.3.: Naive (triangles) and MOM–corrected (circles) effect estimates for the association
between heart rate and concurrent and lagged individual PNC levels with Berkson, classical and
mixture measurement error in the simple regression analysis.
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6.2. Bayesian measurement error models
The application of Bayesian measurement error models is focused on varying approaches
to include prior knowledge; delayed effects are not considered. Three Bayesian modeling
approaches are compared: 1) the usage of fixed external information about the mea-
surement errors, 2) the usage of uncertain external information and 3) the simultaneous
modeling approach including all data sources (Augsburger Umweltstudie, the validation
study and the comparison measurements).
The latter approach takes advantage of the flexible formulation of dependencies between

different data sources in the Bayesian model. Thus, several information sources for the
description of measurement errors can be simultaneously considered. Moreover, Bayesian
modeling enables a more differentiated consideration of the Berkson error, e.g. separate
Berkson error components for different seasons. The specification of the relations between
the data sets is demanding. Model specifications are adopted from previous chapters.

6.2.1. Model formulation
Posterior distributions

Some abbreviations for models are introduced throughout previous chapters; these are
strongly utilized for the following application of Bayesian modeling to the Augsburger
Umweltstudie. The posterior distributions defined in eq. 5.1–5.3 are composed of several
sub–models:

f(ΘC,X|Y ,X∗C,Z) ∝ f(Y |X,Z,θH)︸ ︷︷ ︸
HMM

f(X∗C|X,θM)︸ ︷︷ ︸
CMM

f(X|Z,θEC )︸ ︷︷ ︸
BMM0

f(ΘC) (6.3)

f(ΘB,X|Y ,X∗B,Z) ∝ f(Y |X,Z,θH)︸ ︷︷ ︸
HMM

f(X|X∗B,θEB)︸ ︷︷ ︸
BMM1 or BMM2

f(ΘB) (6.4)

f(ΘM,X|Y ,X∗C,X∗B,Z) ∝ f(Y |X,Z,θH)︸ ︷︷ ︸
HMM

f(X∗C|X,θM)︸ ︷︷ ︸
CMM

f(X|X∗B,Z,θEB)︸ ︷︷ ︸
BMM1 or BMM2

f(ΘM)

(6.5)

Likelihoods

Some of the sub–models, which are incorporated in the likelihoods included in eq. 6.3–6.5
are already defined earlier; the remaining sub–models are introduced in the following. An
overview about the abbreviations used for sub–models included in the likelihoods of the
Bayesian analyses is given in Table 6.2.
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Abbr. Description Parameters Equation
HMM HM for true measurements θH = (β0, βX ,βZ , σ

2
τ , σ

2
ε , ρ)> Eq. 2.1

of main data
HMM∗B HM for fixed–site measure- θH = (β0, βX ,βZ , σ

2
τ , σ

2
ε , ρ)> a Eq. 3.1

ments of main data
HMM∗C HM for personal measure- θH = (β0, βX ,βZ , σ

2
τ , σ

2
ε , ρ)> a Eq. 3.2

ments of main data
BMM∗B EM for fixed–site measure- θE∗B = (µX∗B , σ2

X∗B , ρ
X∗B)> Eq. 2.10

ments of main data
BMM0 EM for personal measure- θEB0 = (µX , σ2

UB , σ2
νB , ρ

B)> Eq. 6.6
ments of main data
without X∗B

BMM1 One–stage EM for personal θEB1 = (σ2
UB , σ2

νB , ρ
B)> Eq. 6.7

measurements of main data
BMM2 Two–stage EM for personal θEB2 = (βZB , σ2

UBActk
, βBBack

0 , β∗B, Eq. 6.8
measurements of main data βZBBack , σ2

νB , σ
2
UB , ρB)>

CMM Classical measurement error θM = (σ2
νC , σ

2
UC , ρC)> Eq. 2.5

model for main data
a Note, that the parameters in the naive health models HMM∗B and HMM∗C are no
longer marked with a “∗” to simplify and unify the referencing to the results with
and without measurement error correction.

Table 6.2.: Abbreviations for sub–models included in the likelihoods of the Bayesian analyses.

The specification of an exposure model for fixed–site measurements (BMM∗B) is op-
tional for all models and necessary for models intended to simultaneously predict missing
values of fixed–site exposure.
BMM1 is used as exposure model for personal measurements in the frequentist approach.

Two alternative exposure models are additionally considered: BMM0, which is applied
when fixed–site measurements are not available, and BMM2, which allows for further
parameters monitored at the fixed measurement site as well as for information about the
activity and the microenvironment of the individuals.
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The three types of exposure models are defined as follows:

BMM0: EM for personal measurements of main data without X∗B

XiM tM =µX + νBiM + UB
iM tM

(6.6)
νBiM ∼N(0, σ2

νB)
UB
iM
∼N(0,ΣB

iM
),ΣB

iM
= σ2

UBWρB,iM

θEB0 =(µX , σ2
UB , σ2

νB , ρ
B)>

BMM1: One–stage EM for personal measurements of main data

XiM tM =X∗BiM tM + νBiM + UB
iM tM

(6.7)
νBiM ∼N(0, σ2

νB)
UB
iM
∼N(0,ΣB

iM
),ΣB

iM
= σ2

UBWρB,iM

θEB1 =(σ2
UB , σ2

νB , ρ
B)>

BMM2: Two–stage EM for personal measurements of main data

Activity model:

XiM tM =X∗BBackiM tM
+ZB

iM tM
βZB + UB

iM tM
(6.8)

UB
iM tM

∼N(0, σ2
UBAct ,kiMtM

)

Background model (based on observations without PM related activities):

X∗BBackiM tM
=βBBack

0 + β∗BX∗BiM tM +ZBBack
iM tM

βZBBack + νBiM + UBBack
iM tM

νBiM ∼N(0, σ2
νB)

UBBack
iM

∼N(0,ΣBBack
iM

),ΣBBack
iM

= σ2
UBWρB,iM

θEB2 =(βZB , σ2
UBActk, β

BBack
0 , β∗B,βZBBack , σ2

νB , σ
2
UB , ρB)>

Time–activity and temporal data deliver additional information, which can be used to
explain parts of the deviations of personal measurements from fixed–site measurements.
The two–stage exposure model for the Augsburger Umweltstudie is based upon the expo-
sure model developed for the validation study in Section 2.4. The background models are
calculated separately for seasons (as applied e.g. by Gryparis et al., 2007b) and separately
for indoor and outdoor observations (as applied e.g. by Bliznyuk et al., 2014); σ2

UB , σ2
νB

and ρB are assumed to be equal for spring and fall. The indoor and the outdoor models
are not related through an infiltration model since appropriate data or expert knowledge
about an infiltration model are not available. Only observations without PM related ac-
tivities are used for the background model for indoor observations; i.e. only observations
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during not staying in traffic are included in the analysis of outdoor data. For simplicity,
the indices in eq. 6.8 are not adapted.
The confounding variables for the background model ZBBack include personally mea-

sured temperature in the models for indoor observations and personally measured dew
point temperature and time in the models for outdoor observations. The effects of the
continuous covariates time and temperature in the background model are modeled with
natural cubic splines with 6 degrees of freedom; the effect of dew point temperature is li-
nearly modeled due to convergency issues. Modeling the smooth effects of the background
model with natural cubic splines and the choice of the degrees of freedom are along the
lines of Chang et al. (2011). The model errors in the background models are assumed to
follow an AR(1) process (in contrast to Section 2.4, where we allowed for autocorrelated
in the activity model instead of the background model).
The activity models are calculated separately for indoor and outdoor observations. ZB

includes for indoor observations indicators for cooking and smoke, and for outdoor obser-
vations indicators for traffic and smoke. Activity–specific variances σ2

UBAct ,k
are allowed.

Prior knowledge about non–identifiable parameters

We differentiate between three types of prior knowledge about the non–identifiable pa-
rameters φN = (θM ,θE)>, with θE ∈ {θEB0 ,θEB1 ,θEB2}:

1. Fix prior knowledge: φN is assumed to be known (e.g. from external analyses) and
to be non–stochastic.

2. Uncertain prior knowledge: φN is stochastic and information about the uncertainty
regarding φN is available.

3. Prior knowledge from validation data: Validation data contain information about
φN .

The detailed specification of the prior distributions is listed in Table 6.3 and visualized
in Figure 6.4. For the analyses with fix prior knowledge, the same parameter values as for
the frequentist analyses are used, which are assessed in Chapter 2 and depicted in Table
6.1. Further these parameter values serve as expectations of Uniform prior distributions
in the analyses with uncertain prior knowledge. The specification of non–informative prior
distributions for the non–identifiable parameters is required in the simultaneous modeling
approach, i.e. if the actual prior information is deduced from the simultaneous modeling
of validation data; the resulting prior distributions for σ2

UB , σ2
νB and ρB differ from the

prior knowledge gained from internal calculations (Figure 6.4). Non–informative Uniform
priors (Unif(0, 100)) are chosen for variance parameters describing the classical and the
Berkson error. Unif(0, 1) distributions are chosen for autocorrelation parameters. The
prior for the mean of the personal measurements (µX) is set to N(0, 106).
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Figure 6.4.: Prior densities for the three types of prior knowledge: fixed (vertical solid line),
uncertain (dashed) and prior knowledge from validation data (dotted) in contrast to the density
of the bootstrap replicates used for the frequentist analysis (solid).

Models describing measurement errors using the validation data and the comparison
measurements are established to include prior knowledge from validation data into the
Bayesian health outcome analyses. Some parameters in the models for the comparison
measurements and the validation data equal non–identifiable parameters in the models
for the main data in order to connect the data sources, whereas some other parameters,
like the effect coefficients of the activities, are separately defined for each data source.
Table 6.4 gives an overview about these models.
CMC is described in Section 2.3; the remaining models will be introduced in the

following. The specification of an exposure model for fixed–site measurements X̃∗BiV tV
of individual iV , iV = 1 . . . , nV , at time point tV , tV = 1 . . . , TV , of the validation study
(BMV∗B) is optional:
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Abbr. Description Parameters Equation
BMV∗B EM for fixed–site measurements ωE∗B = (µX∗B , σ2

X∗B , ρ
X∗B)> Eq. 6.9

measurements of validation data
BMV1 One–stage EM for ωEB1 = (σ2

UB , σ2
νB , ρ

B)> Eq. 6.10
personal measurements of
validation data

BMV2 Two–stage EM for ωEB2 = (β
Z̃B , σ

2
UBactk

, f̃ ∗B, Eq. 6.11
personal measurements of β

Z̃BBack , σ
2
νB , σ

2
UB , ρB)>

validation data
CMV Classical measurement error ωMV = (σ2

νC , σ
2
UC , ρC)> Eq. 6.12

model for validation data
CMC Classical measurement error ωMC = (αC0 , αC1 , σ2

V C , Eq. 2.11
model for comparison σ2

νC , σ
2
UC , ρC)

measurements

Table 6.4.: Abbreviations for sub–models included in the prior distributions for non–identifiable
parameters of the Bayesian analyses based on validation data.

BMV∗B: EM for fixed–site measurements of validation data

X̃∗BiV tV =µX∗B + Ũ∗BiV tV (6.9)
Ũ∗BiV ∼N(0, Σ̃∗BiV ); Σ̃∗BiV = σ2

X∗BWρX∗B ,iV

ωE∗B =(µX∗B , σ2
X∗B , ρ

X∗B)>

Two alternative exposure models are considered for the personal measurements X̃iV tV of
the validation data. Firstly, the one–stage exposure model is based only on the fixed–site
measurements. Secondly, the two–stage exposure model is separated in an activity model
and a background model:
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BMV1: One–stage EM for personal measurements of validation data

X̃iV tV =X̃∗BiV tV + ν̃BiV + ŨB
iV tV

(6.10)
ν̃BiV ∼N(0, σ2

νB)
ŨB
iV
∼N(0, Σ̃B

iV
), Σ̃B

iV
= σ2

UBWρB,iV

ωEB1 =(σ2
UB , σ2

νB , ρ
B)>

BMV2: Two–stage EM for personal measurements of validation data

Activity model:

X̃iV tV =X̃∗BBackiV tV
+ Z̃B

iV tV
β
Z̃B + ŨB

iV tV
(6.11)

ŨB
iV tV
∼N(0, σ2

UBAct,kiV tV
)

Background model (based on observations without PM related activities):

X̃∗BBackiV tV
=β̃BBack

0 + X̃∗Bβ̃∗B + Z̃BBack
iV tV

β
Z̃BBack + ν̃BiV + ŨBBack

iV tV

ν̃BiV ∼N(0, σ2
νB)

ŨBBack
iV

∼N(0, Σ̃BBack
iV

), Σ̃BBack
iV

= σ2
UBWρB,iV

ωEB2 =(β
Z̃B , σ

2
UBActk, β̃

BBack
0 , β̃∗B,β

Z̃BBack , σ
2
νB , σ

2
UB , ρB)>

The stratified model structure and the included confounding variables in BMV2 are
deduced from the exposure model developed in Section 2.4 by variable selection. Sepa-
rate background models for different seasons and indoors/outdoors and separate activity
models for indoors/outdoors are specified. Only observations without PM related activi-
ties are used for the background model; for simplicity, the indices in eq. 6.11 are again
not adapted. The included confounding variables are listed in Figure 6.5.
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Background model (X̃∗B and Z̃BBack)

Indoor observations

Winter: PNC 2500–10000 nm (UAS)

Spring: PNC 50–100 nm (UAS), PNC 100–500 nm (UAS),
temperature (natural cubic spline with 6 df)

Summer: PNC 1000–2500 nm (UAS)

Outdoor observations

Winter: PNC 3–10 nm (UAS), PNC 50–100 nm (UAS), PNC
2500–10000 nm (UAS), dew point temperature

Spring: PNC PM1 (UAS), PNC CPC (UAS), time (natural
cubic spline with 6 df), dew point temperature (natu-
ral cubic spline with 6 df)

Summer: PNC PM2.5, time (natural cubic spline with 6 df)

Activity model (Z̃B)

Indoor observations: smoke of candles, smoke of wood, cooking,
smell of food, cleaning, dust, ironing, spray

Outdoor observations: means of traffic (car driving, using public
transport, not in traffic), passive smoking,
smell of food, smell of smoke

Figure 6.5.: Variables in the two–stage EM for personal measurements of validation data
(BMV2).
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In the Bayesian analysis, we also allow for classical measurement error of the personal
PNC measurements in the validation study assuming the following structure:

CMV: Classical measurement error model for validation data

X̃∗CiV tV =X̃C
iV tV

+ ν̃CiV + ŨC
iV tV

(6.12)
ν̃CiV ∼N(0, σ2

νC)
ŨC
iV
∼N(0, Σ̃C

iV
), Σ̃C

iV
= σ2

UCWρC,iV

ωMV =(σ2
νC , σ

2
UC , ρC)>

Non–informative prior distributions for the remaining parameters

Non–informative normal prior distributions (N(0, 106)) are used for all regression coeffi-
cients of the health, exposure and measurement models. Non–informative Uniform priors
are chosen for the remaining parameters, which do not describe the measurement errors:
Unif(0, 1000) for σ2

ε and σ2
τ , Unif(0, 1000) for the remaining variance parameters) and

Unif(0, 1) distributions for autocorrelation parameters. All parameters are assumed to be
a priori independent of each other.

6.2.2. Implementation
Preprocessing of the data aims at a data basis for the Bayesian analyses, which is compa-
rable to the data used for the frequentist analysis conducted in the previous subsection.
Therefore, only outdoor measurements are used for the main analyses. Observations
during activities or combinations of activities, which occur only less than ten times, are
excluded from the data of the Augsburger Umweltstudie. The 1–min. resolution of the
validation data requires either the transformation of the parameters describing the classi-
cal measurement error or the aggregation of the latent, true exposure data to a 5–min.
resolution. The latter possibility is applied, because the transformation of variances of
log–transformed data with different original resolution is challenging and the additivity
assumption concerning the classical measurement error for a certain data resolution does
not hold for a different temporal resolution. Again, observations during rare activities or
combinations of activities (less than four times) are excluded from the validation study.
All PM concentrations are logarithmically transformed. The data are standardized

for the calculations of the sub–models; parameters, which enter several sub–models are
adequately re–transformed if necessary. Observations of the main study with missing data
in the health outcome or some covariate are excluded from the main analysis.
The first 1000 MCMC iterations are discarded and the subsequent 10000 iterations are

used for statistical inference.

6.2.3. Results
The comparison of different Bayesian modeling strategies for the main study is subject of
this subsection. Beside three types of prior distributions, five options to build the likeli-
hood are considered (the single model components for each option are listed in brackets):

1. Using only Berkson error–prone data with a one–stage exposure model
(HMM/BMM1/BMM∗B) and
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2. with a two–stage exposure model (HMM/BMM2),

3. using only classical measurement error–prone data (HMM/BMM0/CMM) and

4. simultaneously using Berkson and classical error–prone data with a one–stage ex-
posure model (HMM/BMM1/BMM∗B/CMM) and

5. with a two–stage exposure model (HMM/BMM2/CMM).

We concentrate on models based on observations with available personal PNC measure-
ments and on outdoor observations, because the Berkson error during staying indoors
highly depends on the individuals and therefore, the external knowledge about the Berk-
son error of indoor observations may not be adequate.

Effects of personal PNC

The effect estimates for the effect of personal PNC on the heart rate for different model
alternatives are depicted in Figure 6.6:

Effect estimate
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[1]: Personal PNC measurements available
[2]: Personal and fixed–site PNC measurements available
[3]: Personal and fixed–site PNC measurements and values of confounding variables available

Figure 6.6.: Posterior means for the effect of personal PNC on the heart rate and their 95 %
credible intervals in comparison to frequentist estimates (solid, gray line: MOM–corrected effect
estimate; dashed, gray lines: 95 % confidence interval for MOM–corrected effect estimate); effect
estimates from models, which did not converge are not shown.

The results of HMM∗B and HMM/BMM1/BMM∗B differ from the results for Berkson
error–prone measurements shown in Section 6.1 due to a different data basis. As expected,
the Bayesian estimate using classical error–prone data (HMM∗C) is attenuated and the
Bayesian estimate using Berkson error–prone data (HMM∗B) shows wider credible inter-
vals in comparison to the MOM–corrected effect. Bayesian accounting for Berkson error
in the models HMM/BMM1/BMM∗B only slightly modifies the effect estimate and the
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credible intervals. The Markov Chains of the effect estimates for HMM/BMM2 do not
converge.
The Bayesian effect estimates for HMM/BMM0/CMM, HMM/BMM1/BMM∗B and

HMM/BMM2/CMM converge and tend to equal or go below the MOM–corrected esti-
mate; the effect estimates of the former two models exhibit credible intervals, which are
slightly narrower than the confidence intervals of the MOM–corrected estimate. The
results will be explained in detail with respect to various aspects in the subsequent para-
graphs.

Convergence

Convergence problems only occur for the Bayesian health outcome models for Berkson
error–prone data with a two–stage exposure model, i.e. HMM/BMM2. The Markov
chains of the exposure effect estimate strongly depend on the initial conditions. Data and
prior information seem to provide an insufficient amount of information for the aim of
getting a stable state of each chain. An improvement of these models may be possible
through additional prior information, as e.g. by including knowledge about the activity
model. The results demonstrate, that sufficient information about the exposure model
is essential for the calculation of Bayesian regression models with a Berkson error–prone
covariate beyond adequate knowledge about the size of the measurement error itself.

Indirect learning

Unintended indirect learning may severely affect the results of a Bayesian regression model
for measurement error–prone data as explained in Chapter 5. IL is diagnosed by compa-
ring the estimated conditional posterior distributions of the non–identifiable parameters
in the models with the corresponding prior distributions. This comparison is depicted in
the Figures 6.7 and 6.8 for the examined models except HMM/BMM2 due to failure of
convergence.
The prior distributions in the left columns of the Figures 6.7 and 6.8 differ from the

prior distributions in the right columns: in the left columns, the estimated conditional
posterior distributions of the parameters using uncertain prior distributions are depicted,
whereas the right columns show the results from using Bayesian models for the validation
data and the comparison measurements. Several prior distributions appear for Berkson
error parameters in the case of prior knowledge from validation data, because different
prior distributions are used depending on the exposure model. For the two–stage exposure
model, season–specific prior distributions are allowed assuming equal prior distribution
for spring and fall.
The resemblance of the estimated conditional posterior distributions for the non–iden-

tifiable parameters with the respective prior distribution of the models for either Berkson
or classical measurement error (HMM/BMM1 and HMM/BMM0/CMM) confirms that
the chosen prior distributions for Θ−φN prevent IL type (I).
IL type (II) can be ruled out because σ2

ε∗ and σ2
τ∗ are by far larger than σ2

UC and σ2
νC ,

even if the variability of the quantities is considered. Therefore, the Figures 6.7 and 6.8
indicate IL type (III). The occurrence of IL type (III) becomes clear because the prior
distributions for the non–identifiable parameters are specified independently from each
other.
In the models HMM/BMM0/CMM and HMM/BMM1/BMM∗B/CMM, the parameters

describing the Berkson error indirectly learn from the parameters describing the classical
error, but not the other way round; indirect learning about the Berkson error strongly
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depends on the model. In contrast, Berkson error and classical measurement error pa-
rameters are mutually affected in the models HMM/BMM2/CMM, i.e. the models with
a two–stage exposure model including season–specific Berkson errors. Subsequently, IL
type (III) is examined in detail for each model.
For the model HMM/BMM0/CMM, non–informative prior distributions for σ2

UB , σ2
νB

and ρB are specified for the model with uncertain expert prior knowledge as well as for the
model with prior knowledge from validation data; note, that these prior distributions are
not depicted in Figure 6.8. The estimated conditional posterior distributions for σ2

UB , σ2
νB

and ρB are informative due to IL type (III) and are very similar for the two types of
prior knowledge for the classical measurement error (uncertain expert prior knowledge
and prior knowledge from validation data).
The estimations of the conditional posterior distributions for σ2

UB , σ2
νB and ρB differ

from the corresponding prior distributions in the models HMM/BMM1/BMM∗B/CMM
for both types of prior knowledge. Uncertain expert prior knowledge about σ2

UB and σ2
νB

is moderately and prior knowledge about ρB is strongly adapted through IL. External
prior knowledge for σ2

UB , σ2
νB and ρB from a one–stage exposure model for the validation

data substantially differs from the internal estimation of the parameters, e.g. prior values
for σ2

UB are about two times higher with internal estimation compared to the external
estimation. IL strongly modifies the prior knowledge about σ2

UB gained from the validation
data.
Expert prior knowledge about the Berkson error is specified as not season–specific and

is not accounted for activity effects; the estimated conditional posterior distributions for
σ2
UB , σ2

νB and ρB from model HMM/BMM2/CMM strongly differ from the corresponding
prior distributions hinting at a misspecified structure. Prior knowledge from validation
data is moderately adapted through IL. Only the two–stage exposure model, which is
based on prior knowledge from the validation data, provides prior knowledge about the
Berkson error, which affects the prior knowledge about the classical measurement error.
In general, the results reveal, that modeling uncertain expert prior knowledge with

uniform distributions restricts in some cases the adaption through IL type (III).
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Figure 6.7.: Estimated conditional posterior distributions of parameters characterizing the
classical measurement error for uncertain expert prior knowledge (left) and prior knowledge
gained from validation data (right). The gray lines, marking the prior distributions, represent
in the left column the specified prior knowledge for θM and in the right column the estimated
conditional posterior distribution resulting from the model CMC.
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Figure 6.8.: Estimated conditional posterior distributions of parameters characterizing the
Berkson error for uncertain expert prior knowledge (left) and prior knowledge gained from vali-
dation data (right). The gray lines, marking the prior distributions, represent in the left column
the specified prior knowledge for θEB1/θEB2 and in the right column the estimated conditional
posterior distribution resulting from the models BMV1 (solid line) and BMV2 (dashed lines).
Note the differing scale of the x–axis in the first row.
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Simultaneous modeling of several data sources

The model for the description of the classical measurement error is equal for all analyses
– frequentist as well as Bayesian analyses. The properties of the measurement error are
extracted in advance in the MOM approach and the Bayesian models with fixed and un-
certain expert knowledge, whereas the measurement model is simultaneously estimated
with the measurement error correction of the health outcome model. Simultaneous mo-
deling of several data sources, i.e. the simultaneous modeling of the health outcome data
and the validation and/or the comparison data, yields similar conditional posterior distri-
butions for the non–identifiable parameters as separate modeling, if IL does not occur
(see model HMM/BMM0/CMM in Figure 6.7 and model HMM/BMM1 in Figure 6.8).
This indicates, that information about the measurement error can be adequately intro-
duced into the health model by simultaneous modeling (see also Section 5.5). Moreover,
simultaneous modeling enables to use the information about a non–identifiable parameter
gained from one data source for the information extraction about another parameter from
another data source; e.g., we adjusted the simultaneous models for classical measurement
error in PNC measurements of the validation data.

Transferability

Transferability of prior knowledge from external data sources is crucial for Bayesian re-
gression analyses for measurement error. Indeed, possibly occurring IL type (III) may
modify knowledge from external data and may perhaps correct inadequate external prior
knowledge, but the extent of the modification depends on the uncertainty of the prior
knowledge and on the degree of the compliance with the main data. In the present
example, the adequacy of transferring prior knowledge about the Berkson error from
exposure models for the validation data is doubted, because of the large discrepancy
between internal and external information.

Activities

Activity effects, which are estimated within the two–stage exposure models for the Augs-
burger Umweltstudie, BMM2, are depicted in Figure 6.9.
Smoke and traffic positively affect personal PNC, but only the multiplicative trans-

formed effect estimate for traffic is significantly different from 1. The realization–specific
variability of personal exposure to PNC is negligible small during not staying in traf-
fic, whereas the realization–specific variability during staying in traffic or during being
exposed to smoke is larger than 0.
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[3]: Personal and fixed–site PNC measurements and values of confounding variables available

Figure 6.9.: Posterior means for the effects of smoke and traffic on personal PNC in the
exposure model for the main study and their 95 % credible intervals.
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6.2.4. Additional analyses
Bayesian mixture

The analyses presented in Subsection 6.2.3 are restricted on data with available personal
PNC measurements for a better comparability between the model types. Effect estimates
on the basis of the complete available outdoor data are presented in Figure 6.10.

Effect estimate
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[2]: Personal or fixed–site PNC measurements available
[3]: Fixed–site PNC measurements and values of confounding variables available

Figure 6.10.: Posterior means for the effect of personal PNC on the heart rate based on the
complete available data set and their 95 % credible intervals (solid, gray line: MOM–corrected
effect estimate; dashed, gray lines: 95 % confidence interval for MOM–corrected effect estimate).

The effect estimates lay between the MOM–corrected estimate for X∗M and the Bayes-
ian–corrected estimates depicted in Figure 6.6. The lower effect estimate in comparison to
the Bayesian–corrected estimates originates from the fact, that the Berkson error–prone
measurements indicate a reduced effect, when the extended data basis is used as visible
in Figure 6.1. The higher effect estimate in comparison to the MOM–corrected effect
estimate for X∗M occurs due to partial indirect learning: IL about the Berkson error
exists only for observations with fixed–site and personal measurements, whereas for the
remaining observations the specified prior distributions provide the information about the
Berkson error. In the present case, this trade–off yields a reduction in σ2

UB , a stronger
attenuation of the effect and hence a stronger measurement error correction (Figure 6.11).

Smooth effect of PNC

So far, a linear effect of personal PNC levels on the heart rate was presumed. Polynomial
and semiparametric modeling approaches relax this assumption and can easily be com-
bined with Bayesian regression models for an error–prone covariate. The health model
with a forth degree polynomial for the effect of personal PNC is

YiM tM =β0 + βX,1XiM tM + βX,2X
2
iM tM

+ βX,3X
3
iM tM

+ βX,4X
4
iM tM

+
ZiM tMβZ + τiM + εiM tM .

Indeed, orthogonal polynomials are known to overcome the multicollinearity involved by
raw polynomials, but orthogonalization of the data has to be accomplished before the
calculation of the Bayesian model, when JAGS or WinBUGS is used. However, X is
latent in our Bayesian regression model for an error–prone covariate and the values of X
change in each iteration. Therefore, raw polynomials are used.
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Figure 6.11.: Example for partial indirect learning. Gray solid line: uncertain prior distri-
bution; estimated conditional posterior distribution for HMM/BMM1/BMM∗B/CMM based on
the complete outdoor data (black solid line) and based on data restricted to observations with
available personal PNC measurements (black dashed line).

Crainiceanu et al. (2005) propose the usage of low–rank thin–plate splines for Bayesian
semiparametric regression models due to favorable mixing properties in comparison to
other approaches. The health model using low–rank thin–plate splines for the effect of
personal PNC is

YiM tM =β0 + βXXiM tM +
K∑
k=1

uk|XiM tM − κk|3 +ZiM tMβZ + τiM + εiM tM .

with fixed knots κ1 < κ2 < . . . < κK . Penalization of the regression coefficients uk, k =
1, . . . , K is conducted through the equivalent representation of the penalized regression
model as a linear mixed model (Crainiceanu et al., 2005):

Y =β0 +XβX +Rb+ZβZ + Sτ + ε.

with R = RKΩ−1/2
K , [RK ]i,· = (|XiM tM − κ1|3, |XiM tM − κ2|3 . . . , |XiM tM − κK |3) as the

i–th row of RK , b = Ω−1/2
K u as random effects with E(b) = 0 and Var(b) = σ2

b and

S =



1T1 0 · · · 0
0 1T2 · · · 0
... ... . . . . . .

0 0 ... 1Tn

 .

b, τ and ε are assumed to be mutually independent. ΩK denotes a penalty matrix with
[ΩK ]l,k = |κl − κk|. K = 13 knots and the prior σ2

b ∼ IG(10−6, 10−6) are used for the
analysis. The linear and non–linear effect estimates are compared in Figure 6.12 for model
HMM/BMM1/BMM∗B/CMM and fixed prior knowledge.
The polynomial and the semiparametric model show a nearly linear increasing effect in

the lower and medium domain of the data, which is flattened involving high uncertainty
in the upper domain of the data. Since the mixing of the Markov chains in the semipa-
rameteric model is not adequate, these results, in particular the credible intervals, should
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Figure 6.12.: Estimates for the linear, polynomial and semiparametric effect of the log–
transformed, centered personal PNC on heart rate based on model HMM/BMM1/BMM∗B/CMM
with fixed prior knowledge. Solid line: mean effect; gray regions: pointwise 95 % credible inter-
vals of the effect.

be interpreted with caution. However, the mean effect strongly resembles the mean poly-
nomial effect indicating that the polynomial effect sufficiently describes the non–linear
effect.

Final models

The previous examinations of Bayesian models for the Augsburg Umweltstudie are fo-
cused on the comparison to the frequentist approaches with regard to certain aspects,
like different ways of specifying the likelihood (especially the exposure model) and of
including prior knowledge, the simultaneous modeling of fixed–site and personal PNC
measurements and a smooth effect of personal PNC on the heart rate. The developed
MOM approach cannot deal with non–constant Berkson error. The Bayesian approach is
more flexible and the extension of the model regarding indoor/outdoor–specific Berkson
error can easily be accomplished. All these aspects are integrated in two final Bayesian
models: one model for the outdoor observations and one model for the indoor and outdoor
observations of the Augsburger Umweltstudie:

HMMfin: Final health model for true measurements of main data

YiM tM =β0 + βXXiM tM +ZiM tMβZ + τPatiM + τiM + εiM tM (6.13)
εiM ∼N(0,Σε,iM ),ΣiM = σ2

εWρ,iM

τPatiM ∼N(0, σ2
τPat

),
τiM ∼N(0, σ2

τ ),

θH
fin =(β0, βX ,βZ , σ

2
τPat

, σ2
τ , σ

2
ε , ρ)>

For clarity, we again abstain from using separate indices for the models based on outdoor
and on indoor/outdoor observations. In addition, the random intercept is changed for the
final model, since up to four measurement series of a single patient are available for the
analysis: to account for dependencies of measurement series of a single person a random
patient intercept, τPatiM , PatiM = 1, . . . , nPat (nPat: number of patients in the Augsburger
Umweltstudie), is included in addition to the random intercept for the measurement series,
τiM .
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We used the model HMM/BMM2/CMM for the likelihood and the model
BMV2/CMV/CMC for the prior distribution to include all available data in the final
models.

Effect estimate
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[1]: Complete outdoor data
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Figure 6.13.: Posterior means for the effect of personal PNC on the heart rate and their 95 %
credible intervals for the final models.

Indoor/outdoor and outdoor data yield the same posterior mean for the effect of per-
sonal PNC on the heart rate (Figure 6.13). The effect is smaller than in the previous
results, which is attributed to the additional random effect for the patient.
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7. Conclusion

7.1. Summary and discussion
An exposure model and methods for covariate measurement error correction in longitudi-
nal health outcome analyses were developed in this thesis with the aim to combine several
data sources motivated by the Augsburger Umweltstudie. The bias analyses regarding the
impact of covariate measurement error in the longitudinal setting were the basis for the
frequentist correction approach using the method of moments. Adequate inclusion of
prior knowledge about a single or several parameters describing classical and Berkson
error in Bayesian analyses for the correction of measurement error were examined and
discussed. The developed methods and the obtained insights were applied to the Augs-
burger Umweltstudie.

Exposure model

This paragraph has been published in advance within the article “Personal exposure
to ultrafine particles: Two-level statistical modeling of background exposure and time-
activity patterns during three seasons” (Deffner et al., 2016) in Journal of Exposure
Science and Environmental Epidemiology.
A two–stage modeling approach for the validation study was necessary in order to

separate the effect of non–ambient sources from the background exposure. An activity
model was established which accounts for autocorrelation in the longitudinal data without
masking the categorical effects. The study design and the small sample size aimed at
describing the exposure to PNC during certain activities and not at the general description
of personal exposure to PNC. As the background model describes the data without many
distributional assumptions, the model is of a rather explorative nature and requires further
evaluation. Therefore, we refrained from using the model in a regression calibration
approach for measurement error correction. Especially considering the limited sample size
regarding the included individuals as well as the restricted number of scenarios and of
days per season, larger studies are needed to further back up our findings of the activity
model. Indeed, the volunteers and the frequency of the examined activities were not
representative of the general population, but in fact, this requirement is not necessary.
Instead, representativity of the measurements during a certain activity suffices for the
applied models and interpretations. Our two–stage model is a first attempt to describe
personal exposure to PNC within a single modeling approach. The flexible modeling
approach allowed us to identify the relevant predictors.
The developed exposure model helped identifying and describing the determining fac-

tors for personal exposure to PNC in everyday situations. Personal PNC levels and their
determinants varied depending on the location (indoor/outdoor) of the individual and
on the season. Also, the influence of particles from outdoor sources differed seasonally.
Personal outdoor exposure on background indoor concentrations was mainly driven by
ambient particle concentrations and dew point temperature. Cooking, smell of food and
smoke of candles were significantly associated with increased personal indoor PNC levels.
Exposure during car driving was higher than as a pedestrian. Lowest outdoor levels were
found during commuting with public transport or while not staying in traffic. The know-
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ledge about the main predictors for personal PNC provides a basis for the development
of strategies to reduce the PM concentration in the direct environment of human beings.

Model definition

Using surrogates, e.g. ambient exposure measurements, instead of personal exposure
measurements entails measurement error. We examined Berkson error, classical measure-
ment error and a special mixture error of a covariate as well as the simultaneous analysis
of classical and Berkson error–prone data in linear mixed models with autocorrelated
errors and permitted a wide range of error structures including individual–specific and
autocorrelated measurement errors. Zeger et al. (2000) argue that exposure measure-
ment error cannot be clearly attributed to either Berkson or classical measurement error.
Three types of mixtures between Berkson and classical measurement error were consi-
dered throughout this work: 1) the occurrence of either Berkson or classical measurement
error, 2) the occurrence of classical measurement error of Berkson error–prone data and
3) the simultaneous consideration of measurements with classical and Berkson error.
The adequate definition of an exposure model within error correction methods is essen-

tial. However, this step is exacerbated with longitudinal data due to often limited transfer-
ability of the results from other studies and due to complex, individual–specific structures
and is especially challenging for indoor exposure.
The emphasis was on general linear mixed models, i.e. normally distributed model

errors following an AR(1) process were assumed, to receive an impression for the impact
of measurement errors on that type of model. Moreover, the measurement errors were
supposed to be non–differential, which is fulfilled in the Augsburger Umweltstudie, and
to exhibit a certain structure, which indeed extends the usual structure, but still may be
too simplistic. The complex model structure enabled valuable insights into the role of
exposure measurement error during the analysis of the association between exposure and
human health.
In general, the AR(1) assumptions for model errors, measurement errors and Berkson

error–prone measurements bears two unattractive consequences: 1) the true exposure
measurements and the naive model errors do not follow an AR(1) process and 2) the
AR(1) assumption does not hold for temporally aggregated data or for analyses on a
different temporal resolution.

Assessing the sizes of measurement errors

Deriving information about the measurement error from repeated measurements in a line-
ar mixed model setting is elaborate and hardly realizable, because many repetitions and
time points are necessary. Information from validation studies or comparison measure-
ments seem to be more promising as shown with the practical example of the Augsburger
Umweltstudie.
Simultaneous modeling of mobile and fixed–site exposure measurements involves the

restriction that assumptions regarding the size of Berkson and classical measurement
error have to add up to the measurement error underlying the observed data. Thus,
either information about Berkson or information about classical measurement error gained
from external validation studies can be used. We decided to use the information from
the comparison measurements for determining the classical measurement error in the
application of the developed methods to the Augsburger Umweltstudie. This proceeding
involves two questionable issues:

1. The individual–specific classical measurement error is assessed through the variabi-
lity between battery changes, which may be too conservative.
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2. There is not any gold standard method for the measurement of PM available; all
used measurement devices exhibited some measurement error.

Method of moments

The effect of Berkson and classical measurement error is well known for the linear model
but not for complex models with AR(1)-errors and random effects. Expressions for the
attenuation factor in general simple and multiple linear mixed models for longitudinal
unbalanced and unequally spaced data with covariate measurement error were derived.
Analogously to the linear model, Berkson error–prone measurements yield unbiased effect
estimations but the error variance of the model and the variance of the random effects
are overestimated involving wider confidence intervals. The size of attenuation of the
effect estimation resulting for a covariate with classical measurement error may change
with autocorrelated errors in both directions. Each variance included in the attenuation
factor is therefore modified with a multiplicative factor depending on the correlation co-
efficients. Individual–specific components in the error structure can be neglected in the
bias calculation for classical measurement error, if the number of observations for each
cluster is high enough. Expression for a small number of observations per individual were
also derived. An explicit formula for the probability limit of the bias in the presence of
additional covariates would be very complex, but the information about the measurement
error was directly incorporated in the estimations equations, which were computationally
solved. Mixture error has similar characteristics as classical measurement error. However,
the main difference is, that the individual–specific components of the error strengthen
attenuation. Furthermore, autocorrelated or individual–specific Berkson error has a com-
plex impact on the estimation of the effect using data with mixture error. Our simulations
demonstrated strong differences regarding the attenuation of the effect estimates depen-
ding on the presence of random effects and autocorrelation within the data and within
the measurement error.
Error correction in the considered data situation through the method–of–moments pro-

vides only an approximation, because the estimation of the correlation structure of the
model error term cannot be adapted. The presented approach is extensible to more com-
plex correlation structures.
Although longitudinal data with covariate measurement error have already been exa-

mined in the past mostly by numerically solving possibly modified score equations, our
considerations reveal valuable insights into the components and properties triggering the
attenuation of the effect estimate. We presented basic relationships between covariate
measurement error and the results of linear regression analyses for longitudinal data
amongst strong assumptions regarding the health model and the measurement errors.
These assumptions permitted us to comprehend the effects of measurement error a linear
mixed model in detail within a defined model class. The knowledge about the attenuation
of the effect estimate and its exact calculation even in our complex but practically relevant
data situation and even under several restrictive assumptions enables the easy evaluation
of the relevance of the measurement error. Our approach elucidates the complex effect of
the measurement error in a transparent way in contrast to other methods, e.g. (RE)ML or
Bayes estimation. Furthermore, the extensions of the approach, e.g. to several covariates,
unbalanced observations and missing values, and the adequate allowance for the measure-
ment error in the calculation of the variability of the effect estimate are realistic problems
and of high practical relevance in the analysis of longitudinal data with measurement
error.
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The usage of a more complex exposure model, like a two–stage exposure model con-
sisting of a background exposure model and an activity model, and the usage of a hierarch-
ical multi–level model, as e.g. obtained through the inclusion of a random patient effect
in addition to the random effect for each measurement series, requires further, possibly
challenging methodological work.
In general, the method of moments is a simple, effective and practically established

method for the correction of measurement error (Carroll et al., 2006) requiring only little
computational demand.

Introducing prior knowledge in Bayesian models for measurement error
correction

We examined the two–stage Bayesian linear mixed regression models with autocorrelated
error terms with regard to covariate measurement error theoretically as well as with
simulations. The main focus was the adequate introduction of prior knowledge about the
measurement error.
The informativeness of a prior distribution of a certain parameter strongly depends on

the data situation, the model and the prior distribution chosen for the other parameters.
Broad literature is available for the adequate choice of non–informative priors, but only
few research works are dedicated to the issue of informative prior choice especially in the
field of covariate measurement error where prior knowledge about the measurement error
is essential for estimating the non–identifiable model. Usually, the uncertainty of the prior
distribution reflects the confidence in the prior knowledge in comparison to the information
gained through the data. The transfer of this concept to Bayesian regression models for
measurement error fails since the data lack information about the latent parameters as
our theoretical considerations and simulations showed. Instead, the prior distributions of
the non–identifiable parameters include the complete information about these parameters
and the data is not relevant; this information can only be influenced by indirect learning,
i.e. by the prior distributions of the remaining parameters or by the mutual interaction
between the parameters through constraints. We defined three types of indirect learning:
(I) IL from prior distributions on the parameters of the main outcome model, (II) IL
induced by constraints on parameters in the main outcome model and (III) IL induced by
constraints on parameters in the exposure model. In general, indirect learning changes
the originally specified marginal prior distributions of the non–identifiable parameters.
The concept applies also for prior knowledge from internal or external validation studies.
The uncertainty about the parameters describing the measurement error had only a

diminutive effect on the variance of βX in our simulations as well as the shape of the
prior distribution; similar results are found by (Dellaportas and Stephens, 1995). The
performance of Bayesian methods was similar to the frequentist approach for Berkson
and classical error–prone data and yielded better results when both data sources are
included. Using classical error–prone measurements with missing values provided a better
performance than using Berkson error–prone measurements in Scenario (III), for less or
equal than 60 % of missing values in Scenario (II) and for less or equal than 40 % of
missing values in Scenario (I).
Allowing for mismeasured covariates by a Bayesian regression carries several advantages.

Measurement error correction is accomplished simultaneously with model calculation in-
cluding the implicit adaption of the variance of the estimated effect coefficient. Knowledge
about the measurement error as well as the attendant uncertainty is directly included into
the estimation procedure; therefore, the specification of the prior distribution regarding
the size of the measurement error will be simple in practice, if IL is adequately consi-
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dered. Compared to the elaborate or often impossible derivation of the attenuation factor
for the method of moments in complex models (e.g. hierarchical models, non–linear effects
of the error–prone covariate, multiple correlated, error–prone predictors), extending the
Bayesian method is simple. The Bayesian approach allows the simultaneous modeling of
several exposure measurements involving an improvement of the estimates also in com-
parison to the frequentist approach. Estimates for true measurements are provided and
missing values of the personal measurements can be simultaneously estimated. Moreover,
different types of exposure measurements may be incorporated into the model and improve
the results. In comparison to frequentist approaches, like the method–of–moments or ML,
the application of a Bayesian model for the correction of covariate measurement error has
two major advantages: 1) increased flexibility through the possibility of specifying prior
distributions on the non–identifiable parameters and 2) the possibility to combine various
sources of information (Carroll et al., 2006).
The Bayesian approach has also some disadvantages. Undesired effects of IL may occur,

if the model is specified in an inapt way. Furthermore, the flexibility of Bayesian models
may entice the analyst to apply this approach in situations with little prior knowledge
about the size and the structure of the measurement error by using less informative
prior distributions for the parameters describing the exposure model and the classical
measurement error. However, the misspecification of the underlying structure of the
measurements may cause severely biased results. This is also observed by Richardson et al.
(2002) and Wang and Sullivan Pepe (2000), who propose a mixture of distributions as
prior distribution for the unknown, true measurements to allow a higher flexibility (see also
Carroll et al., 1999a,b). In contrast, the frequentist approach directly urges the analyst to
give thoughts to the underlying structure. Convergence problems appear in situations with
implausible prior knowledge, which is not corrected through IL from prior distributions
of other non–identifiable parameters. Long computing times for complex models and no
detailed understanding of the impact of measurement error on the regression model are
other weaknesses of the Bayesian method.

Application

Applying the correction methods to the Augsburger Umweltstudie revealed slight differ-
ences in the effect coefficients compared to the naive estimations. The examined complex
error structure had little impact on the investigated effect estimations in the Augsburger
Umweltstudie. Thus, the conclusions deduced from the original naive analyses persist.
The combination of the information from the main study and the validation studies

were accomplished with a two–stage procedure: (I) modeling with deficient data and
(II) error correction with validation data. Bayesian analyses presented in Section 5 and
Subsection 6.2 combine these steps in one model.
In order to combine the data from the Augsburger Umweltstudie with the data from

the validation study and the comparison measurements a Bayesian model was established.
The Bayesian effect estimates were similar to the MOM–estimates for comparable models.
Indirect learning type (III) occurs in simultaneous models for Berkson and classical error–
prone data, but only slightly affected the estimated effect.
The very flexible, two–stage exposure model for the Bayesian model based on the pre-

viously developed exposure model for the validation study. However, logarithmically
transformed exposure measurements were used in the Bayesian model to obtain additive
measurement error, which is easier to handle than multiplicative error, but this approach
required to presume multiplicative effects of the covariates in the exposure model. Indeed,
methods for the inclusion of variable selection and the choice of the complexity of smooth
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effects into the Bayesian model are available, but their application to each data source
would enormously magnify the complexity of the model. Moreover, we abstained from
using a rational quadratic correlation structure in favor of a sparse model. We only con-
sidered separate Berkson errors for different seasons and for staying indoors or outdoors,
but not activity–specific or more detailed microenvironment–specific Berkson errors.
The outdoor observations in the Augsburger Umwelstudie were categorized in “staying

in traffic” and “staying not in traffic”, whereas the outdoor observations in the valida-
tion study can be differentiated into the categories “staying not in traffic”, “staying in
traffic as pedestrian”, “staying in traffic with a car” and “staying in traffic with public
transport”. The background model for the Augsburger Umweltstudie was based on the ob-
servations during “staying in traffic”, whereas the observations during “staying in traffic”
as a pedestrian were used in the background model for the validation study, because only
few observations during “staying not in traffic” were collected in the validation study.
The different data sources are solely connected through the non–identifiable parameters.

However, also assuming equal distributions for other parameters, like activity effects, may
be reasonable.
We have shown with our data example, that the specification of all parameters, which

are necessary for the error correction, is possible through estimations from validation
studies or from comparison measurements.

7.2. Outlook
The developed bias correction formulas are generally applicable to the considered types
of covariate measurement errors in linear mixed models with a first–order autocorrelated
error term. The theoretical, general considerations are transferable to other longitudinal
studies. The method–of–moments for multiple regression can easily be extended to several
error–prone covariates, like e.g. in multi–pollutant models, as proposed by McShane et al.
(2001) for the analysis of matched case–control studies.
Moreover, the concept of the mixture error can be generalized to observations with

differing measurement errors, like indoor and outdoor observations or observations from
different microenvironments. Thus, G can be seen as an arbitrary categorical covariate;
the size and structure of the measurement error has to be known for each category.
Even temporally or spatially varying Berkson error are supposable through an adequate
definition of ΣUB depending on time and space.
Our considerations regarding the introduction of prior knowledge about latent parame-

ters in not–identifiable models are of a generic nature and can be applied to other problems
with latent parameters, e.g. to sensitivity analyses regarding unmeasured confounder vari-
ables (de Vocht et al., 2009; Steenland and Greenland, 2004). However, the transfer to
more complex models or situations like e.g. to categorical covariates measured with error
or to response variables, which do not follow a conditional Normal distribution requires
further research. Especially, indirect learning from constraints regarding the domains of
some parameters might pose a crucial issue in that situations.
We motivated our work through the Augsburger Umwelstudie for which only measure-

ments from a single fixed–site monitor are available. Therefore, the spatial heterogeneity
of ambient exposure is only insufficiently covered and the Berkson error is large. For
example, Bliznyuk et al. (2014) and Gryparis et al. (2007b) propose a Bayesian approach
for including data from several sources for the prediction of ambient exposure. Another
possibility to cover spatial and temporal variation is the usage of predicted exposure
form an adequate exposure model. The prediction uncertainty represents the size of the
Berkson error and can directly be used for calculating the variance of a MOM–corrected
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estimate in a model with mixture error–prone data or as prior uncertainty in a Bayesian
model. Since we did not detect any lagged effects of personal exposure to PNC on the
heart rate, we did not pursue more advanced methods for modeling lagged effects. The
extension of our Bayesian model by distributed lagged effects may be easy to accomplish,
but the effect of indirect learning of the imposed structure has to be clarified.
The theoretical achievements for correcting covariate measurement error in linear mixed

models, which are exemplary applied to a single health outcome (heart rate) of the Augs-
burger Umweltstudie, provide the methodological background for correcting various other
health outcomes analyzed within this study as well as for correcting the biases in analyses
with error–prone mobile temperature and relative humidity as covariates. Personal expo-
sure to air temperature or relative humidity, on which data was also collected within the
Augsburger Umweltstudie and the validation study, is of growing interest, but its asso-
ciation with human health was only rarely examined in the past (Keatinge et al., 1986;
Lanzinger et al., 2014; Nguyen et al., 2015).
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A. Two–stage personal exposure model:
model equations

A.1. Stage 1: Background model (before variable
selection)

The regression equations for modeling PNC of individual i at time point t with the
maximum set of predictors are presented in the following.
Model for indoor observations:

PNCit =β0 + weekitβ1 + day of the weekitβ2 + at homeitβ3+
not at homeitβ4 + windowitβ5 + f1(timeit) + f2(temperatureit)+
f3(rel. humidityit) + f4(dew point temperatureit) + f5(ambient PM2.5it)+
f6(ambient PM10it) + f7(ambient PNCCPCit) + f8(ambient BCit)+
f9(ambient PNC3−10nmit) + f10(ambient PNC10−30nmit)+
f11(ambient PNC30−50nmit) + f12(ambient PNC50−100nmit)+
f13(ambient PNC100−500nmit) + f14(ambient PNC500−1000nmit)+
f15(ambient PNC1000−2500nmit) + f16(ambient PNC2500−10000nmit)+
f17(ambient PNC10−300nmit) + f18(ambient PNC10−800nmit)+
f19(ambient PNCPM1 it) + f20(ambient PNCPM2.5 it)+
f21(ambient PNCPM10 it) + τi + εit

Model for outdoor observations:

PNCit =β0 + weekitβ1 + day of the weekitβ2 + f1(timeit) + f2(temperatureit)+
f3(rel. humidityit) + f4(dew point temperatureit) + f5(ambient PM2.5it)+
f6(ambient PM10it) + f7(ambient PNCCPCit) + f8(ambient BCit)+
f9(ambient PNC3−10nmit) + f10(ambient PNC10−30nmit)+
f11(ambient PNC30−50nmit) + f12(ambient PNC50−100nmit)+
f13(ambient PNC100−500nmit) + f14(ambient PNC500−1000nmit)+
f15(ambient PNC1000−2500nmit) + f16(ambient PNC2500−10000nmit)+
f17(ambient PNC10−300nmit) + f18(ambient PNC10−800nmit)+
f19(ambient PNCPM1 it) + f20(ambient PNCPM2.5 it)+
f21(ambient PNCPM10 it) + τi + εit
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A.2. Stage 2: Activity model
The regression equations for modeling the residual (resulting from the background model)
of realization j of activity k at time point t are presented in the following: Model for indoor
observations:

residualkjt =β0 + β1smoke of woodkjt + β2smoke of candleskjt + β3cookingkjt+
β4cleaningkjt + β5ironingkjt + β6spraykjt + β7dustkjt + β8smell of foodkjt+
β9steamkjt + seasonβ10 + bkj + εkjt

Model for outdoor observations:

residualkjt =β0 + means of traffickjtβ1 + β2construction areakjt+
β3smell of foodkjt + β4smell of smokekjt + β5smell of vehicle exhaustkjt+
seasonβ6 + bkj + εkjt
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B. Derivations

B.1. Coefficient estimates for a single activity effect
assuming a block–diagonal AR(1) correlation
matrix for the error term

A block–diagonal correlation matrix for ε is considered:

Σ = diag(Wρ,1,Wρ,2,Wρ,3).

With

X>W−1
ρ X = 1

1− ρ2

6(1− ρ) + (T − 6)(1− ρ)2 2(1− ρ) + (na − 2)(1− ρ)2

2(1− ρ) + (na − 2)(1− ρ)2 2(1− ρ) + (na − 2)(1− ρ)2


and

|X>W−1
ρ X| = 1

(1− ρ2)2

[
2(1− ρ) + (na − 2)(1− ρ)2

] [
4(1− ρ) + (T − na − 4)(1− ρ)2

]
=: 1

(1− ρ2)2D
−1
2

the effect estimate is given by

β̂ =D· 2(1− ρ) + (na − 2)(1− ρ)2 −2(1− ρ)− (na − 2)(1− ρ)2

−2(1− ρ)− (na − 2)(1− ρ)2 6(1− ρ) + (T − 6)(1− ρ)2

 ·


(1− ρ)(Y1 + Yta1−1 + Yta1
+ YtaS + YtaS+1 + YT )

+(1− ρ)2(∑ta1−2
t=2 Yt +∑taS−1

t=ta1 +1 Yt +∑T−1
t=ta1 +2 Yt)

(1− ρ)(Yta1
+ YtaS ) + (1− ρ)2∑taS−1

t=ta1 +1 Yt


β̂0 =D·[

2(1− ρ) + (na − 2)(1− ρ)2
]

(1− ρ)(Y1 + Yta1−1 + YtaS+1 + YT ) + (1− ρ)2

ta1−2∑
t=2

Yt +
T−1∑

t=taS+2
Yt


β̂1 =D·[

(Y1 + Yta1−1 + YtaS+1 + YT )(1− ρ)2 (−(1− ρ)(na − 2)− 2) +ta1−2∑
t=2

Yt +
T−1∑

t=taS+2
Yt

 (1− ρ)3 (−(1− ρ)(na − 2)− 2) +

(Yta1
+ YtaS )(1− ρ)2 (4 + (T − na − 4)(1− ρ)) − taS−1∑

t=ta1 +1
Yt

 (1− ρ)3 (4 + (T − na − 4)(1− ρ))

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B.2. Covariance matrix of two autocorrelated
processes of order 1

Let εA ∼ N(0,ΣA) with ΣA = σ2
AWρA , εB ∼ N(0,ΣB) with ΣB = σ2

BWρB , εA and εB
independent and ε = εA + εB. For ρA, ρB 6= 0,

Var(ε) = σ2
AWρA + σ2

BWρB

6= (σ2
A + σ2

A)WρAB

for any arbitrary choice of ρAB > 0.

B.3. Auxiliary calculations for correlation matrices

W−1
ρ∗

eq. 2.2= 1
1− ρ∗2



1 −ρ∗ 0 · · · 0 0
−ρ∗ 1 + ρ∗2 −ρ∗ · · · 0 0

0 −ρ∗ 1 + ρ∗2 · · · 0 0
... ... ... . . . · · · · · ·
0 0 0 · · · 1 + ρ∗2 −ρ∗

0 0 0 · · · −ρ∗ 1



∂Wρ∗

∂ρ∗
=



0 1 2ρ∗ · · · (T − 2)ρ∗T−3 (T − 1)ρ∗T−2

1 0 1 · · · (T − 3)ρ∗T−4 (T − 2)ρ∗T−3

2ρ∗ 1 0 · · · (T − 4)ρ∗T−5 (T − 3)ρ∗T−4

... ... ... . . . · · · · · ·
(T − 2)ρ∗T−3 (T − 3)ρ∗T−4 (T − 4)ρ∗T−5 · · · 0 1
(T − 1)ρ∗T−2 (T − 2)ρ∗T−3 (T − 3)ρ∗T−4 · · · 1 0


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W
−

1
ρ
∗
∂
W

ρ
∗

∂
ρ
∗

=
1

1
−
ρ
∗2

              

−
ρ
∗

1
ρ
∗

ρ
∗2

ρ
∗3

··
·

ρ
∗T
−

2

1
−
ρ
∗2

−
2ρ
∗

1
−
ρ
∗2

ρ
∗ (

1
−
ρ
∗2

)
ρ
∗2

(1
−
ρ
∗2

)
··
·

ρ
∗T
−

3 (1
−
ρ
∗2

)
ρ
∗ (

1
−
ρ
∗2

)
1
−
ρ
∗2

−
2ρ
∗

1
−
ρ
∗2

ρ
∗ (

1
−
ρ
∗2

)
··
·

ρ
∗T
−

4 (1
−
ρ
∗2

)
. . .

. . .
. . .

. . .
. . .

. .
.

. . .
ρ
∗T
−

3 (1
−
ρ
∗2

)
··
·

ρ
∗2

(1
−
ρ
∗2

)
ρ
∗ (

1
−
ρ
∗2

)
1
−
ρ
∗2

−
2ρ
∗

1
−
ρ
∗2

ρ
∗T
−

2
··
·

ρ
∗3

ρ
∗2

ρ
∗

1
−
ρ
∗

              

W
−

1
ρ

∗
W
ρ

=
1

1
−
ρ
∗

2

        

1
−
ρ
∗
ρ

ρ
−
ρ
∗

ρ
(ρ
−
ρ
∗
)

ρ
2
(ρ
−
ρ
∗
)

··
·

ρ
(T
−

2)
a

(ρ
a
−
ρ
∗
)

ρ
(1

+
ρ
∗

2
)−

ρ
∗
(1

+
ρ

2
)

(1
+
ρ
∗

2
)−

2ρ
∗
ρ

ρ
(1

+
ρ
∗

2
)−

ρ
∗
(1

+
ρ

2
)

ρ
[ρ

(1
+
ρ
∗

2
)−

ρ
∗
(1

+
ρ

2
)]

··
·

ρ
(T
−

3)
[ρ

(1
+
ρ
∗

2
)−

ρ
∗
(1

+
ρ

2
)]

ρ
2
[ρ

(1
+
ρ
∗

2
)−

ρ
∗
(1

+
ρ

2
)]

ρ
(1

+
ρ
∗

2
)−

ρ
∗
(1

+
ρ

2
)

(1
+
ρ
∗

2
)−

2ρ
∗
ρ

ρ
(1

+
ρ
∗

2
)−

ρ
∗
(1

+
ρ

2
)

··
·

ρ
(T
−

4)
[ρ

(1
+
ρ
∗

2
)−

ρ
∗
(1

+
ρ

2
)]

. . .
. . .

. . .
. . .

. .
.

. . .
ρ

(T
−

3)
[ρ

(1
+
ρ
∗

2
)−

ρ
∗
(1

+
ρ

2
)]

··
·

ρ
[ρ

(1
+
ρ
∗

2
)−

ρ
∗
(1

+
ρ

2
)]

ρ
(1

+
ρ
∗

2
)−

ρ
∗
(1

+
ρ

2
)

(1
+
ρ
∗

2
)−

2ρ
∗
ρ

ρ
(1

+
ρ
∗

2
)−

ρ
∗
(1

+
ρ

2
)

ρ
(T
−

2)
(ρ
−
ρ
∗
)

··
·

ρ
2
(ρ
−
ρ
∗
)

ρ
(ρ
−
ρ
∗
)

ρ
−
ρ
∗

1
−
ρ
∗
ρ

        
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tr
(
W−1

ρ∗
∂Wρ∗

∂ρ∗
W−1

ρ∗ Σa

)

=
T∑
i=1

T∑
j=1

(W−1
ρ∗
∂Wρ∗

∂ρ∗

)
ij

(W−1
ρ∗ Σa)ji


= σ2

a

(1− ρ∗2)2

{
−2ρ∗(1− ρ∗ρa) + 2ρ∗T−2ρT−2

a (ρa − ρ∗)+

2
T−1∑
t=2

ρ∗t−2ρt−2
a

(
ρa(1 + ρ∗2)− ρ∗(1 + ρ2

a)
)

+

2(1− ρ∗2)(ρa − ρ∗)
T−1∑
t=2

(ρ∗ρa)t−2−

2(T − 2)ρ∗(1 + ρ∗2 − 2ρ∗ρa)+

2(1− ρ∗2)
[
(1 + ρ∗2)ρa − ρ∗(1 + ρ2

a)
] T−3∑
k=1

k∑
t=1

(ρaρ∗)t−1
}

= 2σ2
a

(1− ρ∗2)2

{
−ρ∗(1− ρ∗ρa) + ρ∗T−2ρT−2

a (ρa − ρ∗)+

(
ρa(1 + ρ∗2)− ρ∗(1 + ρ2

a)
) 1− ρ∗T−2ρT−2

a

1− ρ∗ρa
+

(1− ρ∗2)(ρa − ρ∗)
1− ρ∗T−2ρT−2

a

1− ρ∗ρa
−

(T − 2)ρ∗(1 + ρ∗2 − 2ρ∗ρa)+

(1− ρ∗2)
[
(1 + ρ∗2)ρa − ρ∗(1 + ρ2

a)
] 1

1− ρ∗ρa

[
(T − 3)− ρ∗ρa − (ρ∗ρa)T−2

1− ρ∗ρa

]}

= 2σ2
a

(1− ρ∗2)2

{
−ρ∗(1− ρ∗ρa)−

(
1− ρ∗T−2ρT−2

a

)
(ρa − ρ∗) + ρa − ρ∗ − (T − 2)ρ∗(1 + ρ∗2 − 2ρ∗ρa)+

1− ρ∗T−2ρT−2
a

1− ρ∗ρa

(
ρa(1 + ρ∗2)− ρ∗(1 + ρ2

a) + (1− ρ∗2)(ρa − ρ∗)
)

+

(1− ρ∗2)(ρa − ρ∗)
[
(T − 2)− 1− (ρ∗ρa)T−2

1− ρ∗ρa

]}

= 2σ2
a

(1− ρ∗2)2

{
−ρ∗(1− ρ∗ρa)− (T − 2)ρ∗(1 + ρ∗2 − 2ρ∗ρa) + (T − 2)(1− ρ∗2)(ρa − ρ∗) + ρa − ρ∗+

1− ρ∗T−2ρT−2
a

1− ρ∗ρa

(
ρa(1 + ρ∗2)− ρ∗(1 + ρ2

a)− (ρa − ρ∗)(1− ρ∗ρa)
)}

=2(T − 1)σ2
a

(1− ρ∗2)2

[
−2ρ∗ + ρ∗2ρa + ρa

]
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B.4. Solving eq. 3.14 and eq. 3.15 for ρ∗ and σ2
ε∗

Eq. 3.15 can be further simplified using the auxiliary calculations in Appendix B.3:

tr
(
W−1

ρ∗
∂Wρ∗

∂ρ∗
W−1

ρ∗ VT

)
= 1
T
tr
(
W−1

ρ∗
∂Wρ∗

∂ρ∗

)
tr
(
W−1

ρ∗ VT
)

⇔ 2(T − 1)σ2
a

(1− ρ∗2)2

[
−2ρ∗ + ρ∗2ρa + ρa

]
+

2(T − 1)σ2
b

(1− ρ∗2)2

[
−2ρ∗ + ρ∗2ρb + ρb

]
=

− 2(T − 1)ρ∗
T (1− ρ∗2)2

[
σ2
a

(
2(1− ρ∗ρa) + (T − 2)(1 + ρ∗2 − 2ρ∗ρa)

)
+

σ2
b

(
2(1− ρ∗ρb) + (T − 2)(1 + ρ∗2 − 2ρ∗ρb)

)]
⇔ σ2

a

[
−(T − 2)ρ∗2ρa + Tρa − Tρ∗ + (T − 2)ρ∗3

]
+

σ2
b

[
−(T − 2)ρ∗2ρb + Tρb − Tρ∗ + (T − 2)ρ∗3

]
= 0

⇔ σ2
a

[
ρa(T − (T − 2)ρ∗2)− ρ∗(T − (T − 2)ρ∗2)

]
+

σ2
b

[
ρb(T − (T − 2)ρ∗2)− ρ∗(T − (T − 2)ρ∗2)

]
= 0

⇒ ρ∗ = ρaσ
2
a + ρbσ

2
b

σ2
a + σ2

b

σ2
ε∗ = σ2

a

g∗1,T (ρa)
T (1− ρ∗2) + σ2

b

g∗1,T (ρb)
T (1− ρ∗2)

= 1
T (1− ρ∗2)

[
σ2
ag
∗
1,T (ρa) + σ2

bg
∗
1,T (ρb)

]
= (σ2

a + σ2
b )2

T [(σ2
a + σ2

b )2 − (ρaσ2
a + ρbσ2

b )2]{
σ2
a

T (σ2
a + σ2

b )2 − 2(T − 1)ρa(σ2
a + σ2

b )(ρaσ2
a + ρbσ

2
b ) + (T − 2)(ρaσ2

a + ρbσ
2
b )2

(σ2
a + σ2

b )2 +

σ2
b

T (σ2
a + σ2

b )2 − 2(T − 1)ρb(σ2
a + σ2

b )(ρaσ2
a + ρbσ

2
b ) + (T − 2)(ρaσ2

a + ρbσ
2
b )2

(σ2
a + σ2

b )2

}

= (σ2
a + σ2

b ) [T (σ2
a + σ2

b )2 − 2(T − 1)(ρaσ2
a + ρbσ

2
b )2 + (T − 2)(ρaσ2

a + ρbσ
2
b )2]

T [(σ2
a + σ2

b )2 − (ρaσ2
a + ρbσ2

b )2]
= σ2

a + σ2
b

with g∗1,T (ρ) := T − 2(T − 1)ρρ∗ + (T − 2)ρ∗2.
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B.5. Simplification of equation 3.27 for
ρX
∗B = ρB = ρC = ρ = 0

ρX
∗B = ρB = ρC = ρ = 0 implicates that also ρ∗C = 0. Therefore,

g∗CT (0) = 1− T

T
(
T + σ2

ε∗C
σ2
τ∗C

) =
σ2
ε∗C

[
1 + (T − 1)σ

2
τ∗C
σ2
ε∗C

]
Tσ2

τ∗C + σ2
ε∗C

g∗CT (1) = 1− T 2

T
(
T + σ2

ε∗C
σ2
τ∗C

) = σ2
ε∗C

Tσ2
τ∗C + σ2

ε∗C
.

The attenuation factor results as

λC = σ2
X∗Bg

∗C
T (0) + σ2

νBg
∗C
T (1) + σ2

UBg∗CT (0)
σ2
X∗Bg

∗C
T (0) + σ2

νBg
∗C
T (1) + σ2

νCg
∗C
T (1) + σ2

UBg∗CT (0) + σ2
UCg∗CT (0)

=

[
1 + (T − 1)σ

2
τ∗C
σ2
ε∗C

]
(σ2

X∗B + σ2
UB) + σ2

νB[
1 + (T − 1)σ

2
τ∗C
σ2
ε∗C

] (
σ2
X∗B + σ2

UB + σ2
UC

)
+ σ2

νB + σ2
νC

.

B.6. Derivation of limT→∞ g
∗
T (ρ)

g∗T (ρ) is defined as

g∗T (ρ) :=
[
g∗1,T (ρ)− σ2

τ∗

σ2
ε∗(1− ρ∗2)dg

∗
2,T (ρ)

]
/T

with

g∗1,T (ρ) :=T − 2(T − 1)ρρ∗ + (T − 2)ρ∗2

g∗2,T (ρ) :=2(1− ρ∗)2(1 + ρT−1) + 4(1− ρ∗)3
T−2∑
t=1

ρt + (1− ρ∗)4
(
T − 2 + 2

T−3∑
k=1

k∑
t=1

ρt
)

and

d :=1 + σ2
τ∗

σ2
ε∗(1− ρ∗2)

[
(T − 2)(1− ρ∗)2 + 2(1− ρ∗)

]
.

For |ρ| < 1, the geometric series can be transformed to

T−2∑
t=1

ρt = ρ− ρT−1

1− ρ

and
T−3∑
k=1

k∑
t=1

ρt =
T−3∑
k=1

ρ− ρk+1

1− ρ = (T − 3) ρ

1− ρ −
1

1− ρ

T−3∑
k=1

ρk+1 = (T − 2) ρ

1− ρ −
ρ− ρT−1

(1− ρ)2 .
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Thus, the following approximations hold:

g∗1,T (ρ) =
[
T − 2(T − 1)ρρ∗ + (T − 2)ρ∗2

]
≈T (1− 2ρρ∗ + ρ∗2)

g∗2,T (ρ) =(T − 2)(1− ρ∗)4 + 2(1 + ρT−1)(1− ρ∗)2 + 4(1− ρ∗)3ρ− ρT−1

1− ρ +

2(1− ρ∗)4
[
(T − 2) ρ

1− ρ −
ρ− ρT−1

(1− ρ)2

]

≈(1− ρ∗)2
{
T (1− ρ∗)2

(
1 + 2 ρ

1− ρ

)
+ 2 + 4(1− ρ∗) ρ

1− ρ − 2ρ(1− ρ∗)2

(1− ρ)2

}

≈(1− ρ∗)4 1 + 2ρ
1− ρ T

d =1 + σ2
τ∗

σ2
ε∗(1− ρ∗2)

[
(T − 2)(1− ρ∗)2 + 2(1− ρ∗)

]
≈1 + σ2

τ∗

σ2
ε∗(1− ρ∗2)T (1− ρ∗)2

=1 + σ2
τ∗

σ2
ε∗

1− ρ∗
1 + ρ∗

T

lim
T→∞

g∗T (ρ) = 1
T
g∗1,T (ρ)− σ2

τ∗

σ2
ε∗(1− ρ∗2)Tdg

∗
2,T (ρ)

=1− 2ρρ∗ + ρ∗2.

For ρ = 1 :

g∗1,T (1) ≈T (1− ρ∗)2

g∗2,T (1) ≈T 2(1− ρ∗)4

d ≈1 + σ2
τ∗

σ2
ε∗(1− ρ∗2)T (1− ρ∗)2 = 1 + T

σ2
τ∗

σ2
ε∗

1− ρ∗
1 + ρ∗

g∗T (1) = 1
T
g∗1,T (1)− σ2

τ∗

σ2
ε∗ (1− ρ∗2)Tdg

∗
2,T (1)

≈(1− ρ∗)2
[
1− σ2

τ∗T (1− ρ∗)
σ2
ε∗(1 + ρ∗) + σ2

τ∗T (1− ρ∗)

]

=(1− ρ∗)2 σ2
ε∗(1 + ρ∗)

σ2
ε∗(1 + ρ∗) + σ2

τ∗T (1− ρ∗)
lim
T→∞

g∗T (1) =0 for ρ∗ 6= 1.
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C. Additional simulation results

C.1. Bias, variance and RMSE for the corrected
estimations in the Scenarios (I)–(III) for
ρX
∗B = 0.5

SF of Truth Berkson Classical Mixture

Scen. σ2
UB , σ

2
UC Bias RMSE Bias RMSE Bias RMSE Bias RMSE

(I) 0 -0.006 0.186 -0.006 0.186 -0.018 0.191 -0.006 0.186
0.5 -0.002 0.168 -0.020 0.193 -0.008 0.197 -0.009 0.178
1 0.003 0.153 -0.020 0.193 0.008 0.193 0.001 0.174
2 0.006 0.132 -0.020 0.194 0.020 0.158 0.007 0.147
5 0.008 0.099 -0.020 0.195 0.004 0.124 0.001 0.118

(II) 0 0.019 0.161 0.021 0.162 0.021 0.176 0.023 0.166
0.5 -0.006 0.174 0.004 0.194 0.000 0.202 0.005 0.193
1 -0.007 0.154 0.005 0.194 -0.028 0.199 -0.016 0.183
2 -0.008 0.128 0.005 0.194 -0.010 0.172 -0.015 0.164
5 -0.007 0.091 0.006 0.195 -0.008 0.120 -0.008 0.120

(III) 0 0.001 0.131 0.001 0.131 -0.001 0.153 0.002 0.138
0.5 0.035 0.121 0.042 0.136 0.021 0.156 0.035 0.139
1 0.030 0.110 0.042 0.136 0.034 0.141 0.030 0.142
2 0.023 0.096 0.041 0.135 0.022 0.142 0.025 0.136
5 0.014 0.073 0.041 0.135 0.010 0.117 0.025 0.118

Table C.1.: Bias and RMSE of MOM–corrected effect estimations for Scenarios (I)-(III) with
ρX
∗B = 0.5; bold: lowest absolute bias or lowest RMSE of each row (disregrading the results

based on the true data).
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C.2. Visualization of simulation results of Subsection
5.4.1
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Figure C.1.: Simulation results for measurement error corrected effect estimates for increasing
size of measurement errors: Bayesian estimates based on measurements with Berkson error
(beige), with classical measurement error (blue) and with mixture measurement error (pink);
frequentist estimates are depicted with the corresponding lighter colors.
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C.3. Visualization of simulation results of Subsection
5.4.2
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Figure C.2.: Simulation results for measurement error corrected effect estimates for increasing
percentage of missing personal measurements: Bayesian estimates based on measurements with
Berkson error (beige), with classical measurement error (blue) and with mixture measurement
error (pink); frequentist estimates are depicted with the corresponding lighter colors.
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D. Bayesian models for measurement error
using conditionally conjugate prior
distributions

In this section, full conditional distributions for model 3.1 and Berkson and classical
measurement error (eq. 2.4 and eq. 2.5) are given.

D.1. Choice of priors
The following independent, conditionally conjugate – if possible – prior distributions are
used for the unknown parameters:

• Effect coefficients: β0 ∼ N(β(0)
0 , σ2

β0), βX ∼ N(β(0)
X , σ2

βX
)

• Variances: σ2
τ ∼ IG(δτ,1, δτ,2), σ2

ε ∼ IG(δε,1, δε,2),
σ2
νB ∼ IG(δνB,1, δνB,2), σ2

UB ∼ IG(δUB,1, δUB,2), σ2
νC ∼ IG(δνC,1, δνC,2), σ2

UC ∼ IG(δUC,1, δUC,2)

• Correlation coefficients: ρ ∼ Unif(γρ,1, γρ,2), ρB ∼ Unif(γρB,1, γρB,2), ρC ∼ Unif(γρC,1, γρC,2)

D.2. Likelihood
The likelihood for the data is:

f(Y ,X∗C,X∗B|X,θ) ∝f(Y |X,θH)f(X∗C|X,θM)f(X|X∗B,θEB)

=(2π)− 3nT
2 |Σε|−

n
2 |ΣUC|−

n
2 |ΣUB |−

n
2
(
σ2
τ

)−n2 (σ2
νB

)−n2 (σ2
νC

)−n2
×

n∏
i=1

exp
{
−1

2

[
(Yi − χiβ − τi1T )>Σ−1

ε (Yi − χiβ − τi1T )+

(X∗Ci −Xi − νCi 1T )>Σ−1
UC(X∗Ci −Xi − νCi 1T )+

(Xi −X∗Bi − νBi 1T )>Σ−1
UB(Xi −X∗Bi − νBi 1T )+

τ 2
i

σ2
τ

+ νCi
2

σ2
νC

+ νBi
2

σ2
νB

]}

with χi = (1T ,Xi),β = (β0, βX)>,1T = (1, . . . , 1), a vector of length T .

D.3. Full conditional distributions
In the following, β(0) = (β(0)

0 , β
(0)
X )> and κβ = ( 1

σ2
β0
, 1
σ2
βX

)>. The full conditional distribu-
tions are
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f(β|·) ∝ exp

− 1
2σ2

ε

β>
 n∑
i=1
χ>i W

−1
ρ χi +

σ2
ε/σ

2
β0 0

0 σ2
ε/σ

2
βX

β−
2

n∑
i=1

(Yi − τi1)>W−1
ρ χiβ − 2β(0)>

σ2
ε/σ

2
β0 0

0 σ2
ε/σ

2
βX

β


⇒ β|· ∼N
 n∑

i=1
χ>i W

−1
ρ χi +

σ2
ε/σ

2
β0 0

0 σ2
ε/σ

2
βX

−1

 n∑
i=1

(Yi − τi1)>W−1
ρ χi + β(0)>

σ2
ε/σ

2
β0 0

0 σ2
ε/σ

2
βX

 ,
σ2
ε

 n∑
i=1
χ>i W

−1
ρ χi +

σ2
ε/σ

2
β0 0

0 σ2
ε/σ

2
βX

−1

f(Xi|·) ∝ exp
{
−1

2

[
β2
XX

>
i Σ−1

ε Xi +X>i Σ−1
UCXi +X>i Σ−1

UBXi−

2βXX>i Σ−1
ε (Yi − β01T − τi1T )− 2βXX>i Σ−1

UC(X∗Ci − νCi 1T )−

2βXX>i Σ−1
UB(X∗Bi − νBi 1T )

]}

⇒Xi|· ∼N
[β2

1Σ−1
ε + Σ−1

UC + Σ−1
UB

]−1

[
βXΣ−1

ε (Yi − β01T − τi1T ) + Σ−1
UC(X∗Ci − νCi 1T ) + Σ−1

UB(X∗Bi + νBi 1T )
]
,

[
β2

1Σ−1
ε + Σ−1

UC + Σ−1
UB

]−1
.

f(τi|·)
eq.2.3∝ exp

{
− 1

2σ2
ε(1− ρ2)

[
τ 2
i

(
(T − 2)(1− ρ)2 − 2(1− ρ) + σ2

ε(1− ρ2)
σ2
τ

)
−

2τi
(

(1− ρ)2
T−1∑
t=2

(Yit − χitβ)− (1− ρ)(Yi1 + YiT − χi1β − χiTβ)
)]}

⇒ τi|· ∼N
[(T − 2)(1− ρ)2 − 2(1− ρ) + σ2

ε(1− ρ2)
σ2
τ

]−1

[
(1− ρ)2

T−1∑
t=2

(Yit − χitβ) + (1− ρ)(Yi1 + YiT − χi1β − χiTβ)
]
,

σ2
ε(1− ρ2)

[
(T − 2)(1− ρ)2 − 2(1− ρ) + σ2

ε(1− ρ2)
σ2
τ

]−1


Analogously follows
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νCi |· ∼N
(T − 2)(1− ρC)2 − 2(1− ρC) + σ2

UC(1− ρC2)
σ2
νC

−1

[
(1− ρC)2

T−1∑
t=2

(X∗Cit −Xit) + (1− ρC)(X∗Ci1 +X∗CiT −Xi1 −XiT )
]

σ2
UC(1− ρC2)

(T − 2)(1− ρC)2 − 2(1− ρC) + σ2
UC(1− ρC2)

σ2
νC

−1
νBi |· ∼N

[(T − 2)(1− ρB)2 − 2(1− ρB) + σ2
UB(1− ρB)

σ2
νB

]−1

[
(1− ρB)2

T−1∑
t=2

(Xit −X∗Bit ) + (1− ρB)(Xi1 +XiT −X∗Bi1 −X∗BiT )
]

σ2
UB(1− ρB2)

[
(T − 2)(1− ρB)2 − 2(1− ρB) + σ2

UB(1− ρB)
σ2
νB

]−1
.

The full conditional distributions of the variance parameters are Inverse Gamma distri-
butions:

f(σ2
ε |·) ∝(σ2

ε)−(nT2 +δε,1+1) exp
{
− 1
σ2
ε

[
δε,2 + 1

2

n∑
i=1

(Yi − χiβ − τi1T )>W−1
ρ (Yi − χiβ − τi1T )

]}

σ2
ε |· ∼IG

(
δε,1 + nT

2 , δε,2 + 1
2

n∑
i=1

(Yi − χiβ − τi1T )>W−1
ρ (Yi − χiβ − τi1T )

)

σ2
UC |· ∼IG

(
δUC,1 + nT

2 , δUC,2 + 1
2

n∑
i=1

(X∗Ci −Xi − νCi 1T )>W−1
ρC (X∗Ci −Xi − νCi 1T )

)

σ2
UB |· ∼IG

(
δUB,1 + nT

2 , δUB,2 + 1
2

n∑
i=1

(Xi −X∗Bi − νBi 1T )>W−1
ρB (Xi −X∗Bi − νBi 1T )

)

f(σ2
τ |·) ∝σ2

τ
−(n2 +δτ,1+1) exp

{
− 1
σ2
τ

[
δτ,2 + 1

2

n∑
i=1

τ 2
i

]}

σ2
τ |· ∼IG

(
δτ,1 + n

2 , δτ,2 + 1
2

n∑
i=1

τ 2
i

)

σ2
νB|· ∼IG

(
δνB,1 + n

2 , δνB,2 + 1
2

n∑
i=1

νBi
2
)

σ2
νC|· ∼IG

(
δνC,1 + n

2 , δνC,2 + 1
2

n∑
i=1

νCi
2
)
.
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f(ρ|·) ∝ |Wρ|−
n
2 exp

{
− 1

2σ2
ε

n∑
i=1

[
(Yi − χiβ − τi1T )>W−1

ρ

(Yi − χiβ − τi1T )]} I[γρ,1,γρ,2](ρ)

f(ρC|·) ∝ |W C
ρ |−

n
2 exp

{
− 1

2σ2
UC

n∑
i=1

[
(X∗Ci −Xi − νCi 1T )>W−1

ρC

(X∗Ci −Xi − νCi 1T )
]}
I[γ

ρC,1,γρC,2](ρC)

f(ρB|·) ∝ |W B
ρ |−

n
2 exp

{
− 1

2σ2
UB

n∑
i=1

[
(Xi −X∗Bi − νBi 1T )>W−1

ρB

(Xi −X∗Bi − νBi 1T )
]}
I[γ

ρB,1,γρB,2](ρB)
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