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Abstract 

 

The large FK506-binding proteins FKBP51 and FKBP52 are Hsp90 associated cochaperones that 

modulate steroid hormone receptor signaling. It has been shown that FKBP51 is a negative regulator 

whereas FKBP52 is a positive regulator of the glucocorticoid receptor. A majority of patients suffering 

from depression show an altered response to glucocorticoids. Furthermore, polymorphisms in the 

FKBP51 encoding gene were associated with human stress response and several psychiatric 

disorders. Recently, FKBP51 knockout or knockdown was shown to have a protective effect on stress-

coping behavior in animal models of anxiety and depression.  

In a neuroblastoma cell line FKBP51 suppresses the elongation of neurites whereas FKBP52 enhanced 

it. All FKBP ligands reported so far, including rapamycin and FK506, show only negligible selectivity 

between FKBP51 and FKBP52, since the residues within the active site are completely conserved both 

on the sequence and the structural level. Due to the antagonistic effect of FKBP51 and FKBP52, the 

opposing activity of these proteins cannot be examined with the present FKBP inhibitors. Therefore, 

we envisioned a chemical genomics tool to address these selectivity problems. Using structure-based 

design and protein mutagenesis we engineered an enlarged cavity into the active sites of FKBP51 and 

FKBP52. In turn, we synthesized a series of complementary ligands with protruding side chains that 

were designed to fit into this new cavity and to prevent binding to the wild-type proteins. The best 

ligands of this series showed low nanomolar affinities while maintaining 500 to 1000-fold selectivity 

for mutated FKBP51/52 over wildtype proteins.  

Using these artificially selective ligands in a cell model of neuronal differentiation (N2a cells), we 

showed that specific inhibition of overexpressed FKBP51 restores neurite outgrowth whereas specific 

inhibition of overexpressed FKBP52 has the opposite effect. This is the first proof of pharmacological 

activity of FKBP51 ligands in a relevant cellular model. Furthermore we unambiguously show that 

selectivity is crucial for the effect. This could at least in part explain the inconsistencies and 

conflicting results that have plagued the field of neuroimmunophilin FKBP ligands in the past.  

During our synthesis campaign we made the discovery that certain ligands can induce a 

conformational change in the binding pocket of FKBP51 and that these substances consistently show 

substantial selectivity versus FKBP52. Based on several co-crystal structures we rationally designed a 

series of these induced fit ligands which finally led to inhibitors (iFit-1, IFit-2) with low nanomolar 

affinities (4-6 nM) for wildtype FKBP51 and up to 10000 fold selectivity versus FKBP52. These ligands 

are the most potent and selective ligands reported for FKBP51 so far. In a neurite outgrowth assay 

they enhanced neurite outgrowth whereas FK506 was less active. These ligands provide the basis for 

the development of drug-like FKBP51 inhibitors to pharmacologically probe the role of FKBP51 in a 

whole animal context. 
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A. Introduction 
 

1. The biology of Immunophilins 

 

1.1 FK506-binding proteins and Cyclophilins 

 

 

Fig. 1: The prototypic FKBP ligands FK506 and rapamycin and the cyclophilin ligand CsA. Blue (FK506, rapamycin): FKBP 

binding domain, blue (CsA) cyclophilin binding domain. Green (CsA, FK506) calcineurin binding domain, green (rapamycin) 

mTOR binding domain. 

 

FK506-binding proteins (FKBP) and cyclophilins (Cyp) belong to the class of immunophilins which are 

defined by their ability to bind immunosuppressive ligands like FK506, rapamycin (Rap), and 

Cyclosporin A (CsA, Fig. 1). FKBPs and Cyps minimally contain a peptidyl-prolyl-isomerase (PPIase) 

domain that catalyzes the interconversion of cis-trans isomers of X-Pro peptides and that binds to 

immunosuppressive drugs. For all aminoacids except proline the equilibrium of cis/trans 

isomerization lies on the trans side. In proteins these 19 aminoacids adopt almost exclusively the 

trans configuration. X-Proline dipeptides can occur either in the cis or the trans configuration in 

folded proteins, whereas in the unfolded state there is an ratio of cis/trans 2:8. Therefore in many 

protein folding processes the cis/trans isomerization of X-Pro displays the rate determining step. 

PPIases help proteins to fold in a correct way by catalyzing the isomerization of proline residues.1  

The immunosuppression is not mediated by inhibition of the PPIase activity but by enabling FKBPs to 

form a ternary complex with calcineurin (for FK506) or mTOR (for Rap). In complex with FKBP-FK506 

calcineurin is not able to dephosphorylate nuclear factor of activated T-cells (NF-AT) which is needed 

for IL-2 expression and T-cell activation. The main mediators are FKBP12, and partially FKBP12.6 and 
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FKBP51.2 mTOR assembles two complexes mTORC1 and mTORC2. The kinase activity of mTORC1 can 

be specifically inhibited by FKBP-Rap complexes which in turn leads to less phosphorylation of 

p70S6Kinase and 4E-BP1, both key regulators in protein translation and thereby causing the 

immunosuppressive effect.2, 3,4  

 

 

Fig 2: Proline cis/trans isomerization 

 

The human genome encodes 17 different FKBPs, which are named according to their size in 

kilodaltons (e.g., FKBP12, FKBP38, FKBP51 and FKBP52). Table 1 shows the different known FKBPs 

and their biochemical roles in mammalian cells known so far5.  

 

Name Associated Binding 

Partners 

Functions Cellular 

Compartment 

hFKBP12a6, 7 

hFKBP12.68, 9 

hFKBP12c5 

FK506/Calcineurin 

Rap/mTOR 

Type I TGFβ receptor 

Muscle ryanodine receptor 

Inositol receptor 

cardiac ryanodine receptor 

regulator of cell cycle Cytosol 

hFKBP15p5  Protein coding cofactor ER 

hFKBP22p5    

hFKBP25p5    

hFKBP24p5    

hFKBP63p5    

hFKBP65p10  elastin chaperone  

hFKBP3611, 12 clathrin and Hsp72 glyceraldehyde-3-phosphate 

dehydrogenase inhibitor 

Nuclear 

hFKBP3713 Aryl receptor Transcription of genes Cytosol 

hFKBP37i14  Amarosis syndrome Cytosol 

hFKBP3815 Bcl, FK506 Development of cancer cells Cytosol 
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Hedgehog signalling 

hFKBP5116 SHR, HSP90, Akt Negative Modulator of SHR Cytosol 

hFKBP5217 SHR, HSP90 Positive Modulator of SHR Cytosol 

hFKBP25n18 YY1, HMG-II Transcription of genes Nuclear/Cytosolic 

hFKBP1355 F-Actin Colocalized with F-Actin in 

growth cones of dorsal root 

ganglion neurons 

Cytosol 

Table 1: Biochemical roles and distribution of human FKBPs 

 

The second class of immunophilins are the cyclophilins. The human genome encodes at least 16 

unique cyclophilins, all containing a highly conserved Cyp18-homology domain, which shows PPIase 

activity. Many of them bind tightly to the unselective cyclophilin ligands CsA and sanglifehrin A. 19, 20 

The Cyp-CsA complex forms a ternary complex with the phosphatase calcineurin (CN) similar to 

FKBP12-FK506. In this heterocomplex calcineurin is also unable to dephosphorylate its substrate 

NF-AT which is required for T-cell activation which again leads to the immunosuppressive effect3. 
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1.2 The biology of FKBP51 and FKBP52 

 

1.2.1 Structure and function of FKBP51 and FKBP52 

                         

 

Fig 3: Crystal structures of FKBP51 and FKBP52  

 

The large FKBP homologs FKBP51 and FKBP52 have first been identified in complex with steroid 

hormone receptors (SHR).21, 22 The binding to SHRs is mediated by the heatshock protein 90 (Hsp90), 

where they act as co-chaperones.23 Since then these proteins received great attention because of 

their steroid hormone signaling-regulating roles. Many endocrine related diseases are known for 

which FKBP51 and FKBP52 are potential therapeutic targets, such as for example stress related 

diseases, prostate cancer, breast cancer, male and female contraception and metabolic diseases. To 

better understand the role of these FKBPs in these diseases new non-immunosuppressive ligands are 

needed.  

FKBP51 and FKBP52 are close homologs and share 70% sequence similarity.23 They possess a similar 

domain architecture (Fig. 3), consisting of the FKBP12 like N-terminal PPIase domain (FK1), followed 

by another FKBP12 like domain (FK2) which although structurally similar to FK1 possesses no PPIase 

activity. At the C-terminus a tetratricopeptide (TPR) domain facilitates the binding to the EEVD motif 

at the C-terminus of Hsp90.24, 25 The overall architecture of the domains of FKBP51 and FKBP52 is 

very similar. The orientation of FK1 and FK2 differ only slightly but the TPR domain orientation of 

FKBP52 is tilted compared to that of FKBP51. It has to be considered that FKBP52 was not crystalized 

TPR domain 

FK2 

 

FK1 

FK2 

 

FK1 

FKBP51 FKBP52 
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as a whole, but in two parts due to its instability in solution. The crystal structure in Fig. 3 shows the 

reconstruction based on the two parts. The loop linking the FK2 and the TPR domain could be flexible 

and the orientations of the TPR domains could be due to different crystal packing.  

The FK1 and FK2 domain are connected by a linker of seven to nine amino acids. FKBP52 has a casein 

kinase 2 phosphorylation (CK2) sequence (TEEED) in this linker which is not present in FKBP51 (the 

correspondent sequence is FED). It is thought that the phosphorylation of FKBP52 by CK2 at T143 

decreases binding to Hsp90 and thereby abrogates the activating effect. This effect could be due to a 

reorientation of the FK1 domain upon phosphorylation.26 

 

 

1.2.2 The role of FKBP51 and FKBP52 in steroid receptor signaling 

 

FKBP51 and FKBP52 are regulators of steroid hormone receptor (SHR) binding activity. In most 

reports FKBP51 acts as a negative modulator on SHRs27, whereas FKBP52 is a positive regulator of 

androgen receptor (AR)28, glucocorticoid receptor (GR)29 and progesterone receptor (PR)30. Fig. 4 

shows a model of the maturation and regulation of SHRs. Either FKBP51 or FKBP52 enters the mature 

Hsp90-dimer-SHR complex, which is stabilized by p23. The FKBP binds to the C-terminus of Hsp90 via 

the TPR domain. The present model proposes the FK1 domain and especially the proline rich loop of 

FKBP51 and FKBP52 interacts directly with the ligand binding domain of the SHR. If FKBP51 is present 

the binding affinity for the respective hormone decreases, whereas if FKBP52 is in the complex the 

binding affinity is increased.31  
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Fig. 4: Model of FKBP51 and 52 on steroid hormone maturation and ligand binding. 

 

The PPIase enzymatic activity is not required for the modulation of the SHRs, but the FK1 domain and 

especially the proline rich loop which sits on top of the binding pocket, is crucial.32 Differences in this 

loop seem to be the cause for the different functions of the FKBPs, shown by the mutations, A116V 

and L119P in FKBP51 that switched the activity to full FKBP52-like characteristics towards AR 

activation.32  

FKBP51 and FKBP52 also play a role in steroid hormone receptor localization. In the ligand free state 

the SHRs primarily stay in the cytoplasm, whereas ligand bound SHRs are mainly nuclear or 

translocate to the nucleus.33, 34 It has been suggested that the accumulation of ligand bound SHR in 

the nucleus is enhanced by active retrograde transport driven by the dynein-dynactin complex which 

co-immunoprecipitate with the Hsp90-FKBP52 and with the GR and MR.35, 36  
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1.2.3 Effects of FKBP51 and FKBP52 on the endocrine system 

 

1.2.3.1 FKBP52 knockout mouse 

 

FKBP52 knockout mice (52KO) are viable but females are completely infertile. Male 52KO mice 

display a phenotype consistent with androgen insensitivity syndrome, hypospadias, penis length and 

weight of the penis was reduced, smaller seminal vesicles, smaller prostate glands, slightly lower 

sperm motility, collectively showing that mainly secondary sex organs are affected whereas primary 

sex organs like testes seemed to be unaffected.28, 37 Female 52KO mice show no big change in 

phenotype but are sterile. This is due to progesterone insensitivity causing failures in decidualization 

and embryonic implantation.38 Thus, FKBP52 is crucial for correct development of reproductive 

organs in male and female mice which is mainly caused by AR and PR insensitivity.  

 

1.2.3.2 FKBP51 knockout mouse 

 

Under basal conditions FKBP51 knockout mice (51KO) show no robust phenotype. 51KO male and 

female mice are fertile and males show normal reproductive organs. Thus AR signaling is unaffected 

and also no changes in GR activity could be observed.37 A possible explanation for the unanticipated 

absence of an effect on GR is the nature of the cortisol secretion under stress, and indeed recently 

Touma and coworkers could show, that 51KO in mice leads to a more active coping behavior after 

exposure to different types of stress. Additionally the hypothalamus-pituitary-adrenal (HPA) axis 

response on stress was altered. 51KO mice showed a stronger suppression of corticosterone 

secretion after treatment with a low dose of dexamethasone.39 These findings were supported by the 

results of Hartmann et al. who showed in a chronic model of social defeat stress, that 51KO mice 

responded less to a novel acute stimulus and showed an enhanced recovery, as well as more active 

stress-coping behavior.40 Additionally O’Leary and coworkers demonstrated that FKBP51 deficiency in 

aged mice led to more active stress-coping in the forced swim test and the tail suspension test. Both 

are well established paradigms to assess antidepressive effects.41 All these findings strongly support 

the hypothesis that FKBP51 plays an important role in endocrine regulation of the HPA axis by 

reducing GR responsiveness. This makes FKBP51 a promising target in stress related diseases.  
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1.2.4 FKBP51 in stress related diseases 

 

In stress related diseases such as major depression, bipolar disorder, post-traumatic stress disorder 

(PTSD) and anxiety disorder patients often display an imbalance in the stress hormone system called 

the hypothalamus-pituitary-adrenal (HPA) axis (Fig. 5). In healthy individuals this hormone system 

triggers the physiological and behavioral response to stressors. This can be measured by an increase 

in blood cortisol levels that peaks after 15-30 min and then slowly declines after termination of the 

stressor. Cortisol is a catabolic steroid hormone that activates energy metabolism in various tissues 

and acts as a negative regulator on the HPA axis.42  

 

 

Fig. 5: Hypothalamus-pituitary-adrenal axis with hormone regulation cascades 

 

Upon stress the hypothalamus secretes corticotropin releasing hormone (CRH) which induces the 

production of adrenocorticotropic hormone (ACTH) in the pituitary gland. ACTH in turn increases the 

release of cortisol in the adrenal gland into the blood. Cortisol is binding to the GR and MR which in 

turn inhibit the further release of CRH and ACTH thereby maintaining homeostasis of the HPA axis. 

Additionally, an ultrashort feedback loop is thought to be present at the cellular level. Activated GR 
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increases the FKBP51 expression which in turn decreases the affinity of the GR for cortisol. 

Malfunctions in these negative feedback loops are thought to be a cause for an inappropriate 

reaction of the HPA axis to stress which is often observed in depressive patients. 

FKBP51 is a known negative modulator of GR activity. Its physiological relevance was supported by 

findings in squirrel monkeys which show an increased blood cortisol level associated to decreased GR 

activity and an overexpression of the more potent squirrel monkey FKBP51.43, 44 These findings 

initiated human genetic studies on FKBP51 in major depression. In these studies identified single 

nucleotide polymorphisms in the FKBP51 encoding gene were associated with the response to 

antidepressants and with more lifetime depressive episodes.45 Similar studies followed that 

confirmed these findings46, 47 and found gender-specific effects.47, 48 FKBP51 genetic variants could 

also be linked to bipolar disorders48 and significant associations where also found to suicidal 

events.49-52 Polymorphisms in the FKBP51 encoding gene also influence the recovery from 

psychosocial stress in healthy individuals53. Another link could be observed from FKBP51 gene 

variants to peritraumatic dissociation54 which is an important risk factor for development of a PTSD.55 

The connection to PTSD was also found in other studies.56 All these findings clearly show that FKBP51 

contributes to the etiology of stress-related psychiatric disorders. 

 

1.2.5 Cancer and cell proliferation 

 

FKBP51 is up-regulated by androgens (natural: dehydrotestosterone, synthetic: R1881) which made it 

an interesting target for androgen dependent cancer types. Indeed, FKBP51 has consistently been 

reported to be up-regulated in human prostate cancer cells.57 FKBP51 was also found to be up-

regulated in prostatic hyperblasia.58 Further FKBP51 was shown to promote the assembly of the 

Hsp90 chaperone complex and thereby regulates androgen receptor signaling in prostate cancer 

cells.59, 60 However, the unanticipated potentiation of AR by FKBP51 is a very special case because in 

all other reported studies FKBP51 is a negative regulator of SHR. Although, this effect was not seen in 

all reported studies and seems to be cell-type dependent.61 The FKBP unselective ligand FK506 was 

shown to inhibit cell growth after androgen stimulation in a new prostate cancer type where FKBP51 

and FKBP52 are overexpressed.  

It was demonstrated that FKBP51 suppresses the proliferation of colorectal adenocarcinoma, 

possibly due to its deactivating effect on glucocorticoid receptors62. Following dexamethasone 

treatment myeloma cells show prior cell death up-regulation of FKBP51. This could be exploited to 

enhance the myeloma killing effect of dexamethasone in future63. By an siRNA approach a link of 

FKBP51 to drug-induced NF-κB activation in human acute lymphoblastic leukemia could be shown. 
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This was supported by inhibition using rapamycin64. In a recent study the role of FKBP51 in 

melanocyte malignancy was outlined65. In a different cell line Pei and coworkers were able to 

identify FKBP51 as a negative regulator of the Akt pathway by serving as a scaffolding protein for 

PHLPP. A reduced expression of FKBP51 in certain cancer types could be correlated with increased 

AKT phosphorylation which resulted in a reduced cell sensitivity to chemotherapeutics66. 

Much less is known about the implications of FKBP52 in cancer but recently it could be shown that 

prevention of hormone-induced dissociation of the Hsp90-FKBP52-AR complex results in inhibition of 

androgen-stimulated prostate cancer cell proliferation67.  

Due to their modulating actions on steroid hormone receptors and their implications in the according 

diseases, FKBP51 and FKBP52 represent promising drug targets for anti-cancer therapy.  

 

1.2.6 Immune function 

 

FKBPs also play a role in immune function and inflammation. The best known effect of FKBPs is their 

ability to form ternary complexes with the immunosuppressive drugs FK506 and rapamycin (see 

Chapter 1.1). Besides these prominent immunosuppressive effects various other implications were 

published during the last years. Recent studies showed FKBP51 to be up-regulated in CD34+ bone 

marrow cells in patients with rheumatoid arthritis.68, 69 Park and co-workers demonstrated that 

FKBP51 can modulate NF-κB-dependent gene expression in Newcastle disease virus-infected 

chickens.70 Further it was shown that FKBP51 modulates the stability of IκB and the phosphorylation 

of NF-κB and enhances its DNA binding.71 A very recent study connects FKBP51 expression with 

asthma after administration on inhaled corticosteroids.72 Additionally, in patients suffering from 

chronic obstructive pulmonary disease an up-regulation of FKBP51 could be observed.73 FKBP51 plays 

also a role in endogenous MHC class II-restricted antigen presentation. FK506 was able to inhibit the 

presentation of endogenous MHC class II-restricted minor histocompatibility antigens in primary 

dendritic cells (DC) in vitro. This effect could be rescued by RNAi mediated reduction of FKBP51.74  

 

1.2.7 Effect on neurodegenerative diseases 

 

Besides their role in immunosuppression, FKBPs have repeatedly been linked to neurodegeneration 

in several animal models like transient focal cerebral ischemia in rats or in MPTP mouse models of 

Parkinson's disease.75, 76 Gold et al. showed in a rat sciatic nerve crush model that the 

immunosuppressive drug FK506 accelerated nerve (re-)generation.77 This effect could also be 
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transferred to human patients receiving hand transplants.78 FK506 binds unselectively to FKBP 

proteins and the mediator of the the neuroprotective effect could not be elucidated so far. Early 

research was focused on the most abundant FKBP12 as the main mediator of the neuroprotective 

effect of FK506. It could be shown that adding FK506 to primary neurons during or after glucose 

deprivation limited the induced damage. This effect could be reverted by a FKBP12 antibody or the 

competitive inhibitor rapamycin.79 Importantly, the use of non-immunosuppressive derivatives of 

FK506 which are not able to form a ternary complex ruled out a calcineurin-dependent mechanism 

for the observed neuroprotective activity.80, 81 In primary hippocampal cell cultures from FKBP12 

knockout mice FK506 retained neurotrophic activity, thus devalidating the prototypic FKBP12 as the 

relevant target in this model. The mitochondrial FKBP38 and the Hsp90 co-chaperone FKBP52 have 

been suggested as alternative targets82, 83 (for detailed reviews see84,85). Present FKBP ligands that 

show neuroprotective effects bind unselectively the whole group of FKBPs, with most research 

focused on FKBP12, FKBP38 and FKBP52. Quinta and co-workers could show that neurite outgrowth 

in mouse N2a cells is favored by FKBP52 over-expression or FKBP51 knock-down, and is impaired by 

FKBP52 knock-down or FKBP51 over-expression, nicely showing the antagonistic activities of FKBP51 

and 52 on neuronal differentiation.86 FKBP51 and FKBP52 were also found to play a role in tau 

turnover which is a key phenomenon in Alzheimer’s disease.87, 88  

All these findings suggest that immunophilins and especially the larger homologs FKBP51 and FKBP52 

are important for neuronal processes involved in neurprotection, neuroregeneration and neuronal 

differentiation. Additionally, because of the antagonistic effects of FKBP51 and FKBP52 in different 

systems it is particularly important to develop FKBP subtype selective Ligands to dissect the opposing 

roles of these proteins. 

 

1.3 Chemical biology of FKBP ligands 

 

1.3.1 Immunosuppressive FKBP ligands 

 

Since the discovery of FK506 and rapamycin (Fig. 1) in the 1990s and the characterization of their 

immunosuppressive effect a lot of research has been devoted to the improvement of these ligands in 

terms of side effects, solubility and efficacy. Fig. 6 shows FK506 and rapamycin analogs that are used 

in the clinic. The efforts in this field increased even more after the discoveries that rapamycin has 

beneficial effect on longevity in mice89, improves behavioral and cognitive deficits in models of 
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neurodegeneration like Alzheimer’s90, Parkinson’s91 and Huntington’s disease92 and in cancers due to 

misregulated mTOR pathway.93  

 

 

Fig. 6: Clinically used FK506 and rapamycin analogs
84

 

 

1.3.2 Non-immunosuppressive FKBP ligands 

 

Up to now almost no drugs are available to treat chronic neurodegenerative diseases. Gold and co-

workers found in the early 1990s that besides its immunosuppressive effects FK506 has also 

neurotrphic activity. These effects were shown in a rat sciatic nerve model.77, 94 These findings 

stimulated a whole field to search for non-immunosuppressive immunophilin ligands that still display 

this neuroprotective effect. These ligands were termed neuroimmunophilin ligands. 

Almost 20 years of medicinal chemistry and biochemistry efforts produced a variety of non-

immunosuppressive ligands based on the known natural products (Fig. 7) where the effector domain 

is changed. This abolished the binding to calcineurin/ mTOR (e.g., FK1706, meridamycin, 

normeridamycin, ILS920, Way-124466, Wye-592, L685-818). These ligands demonstrated their effect 

in animal models of cerebral ischemia83, 95, traumatic brain injury96, diabetic neuropathy97, 

Parkinson’s disease75, 98, 99, and various types of physical neuronal injury.81, 100-102 
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Fig. 7: Neuroimmunophilin ligands based on biosynthetic or semi-synthetic analogs of 

FK506 or rapamycin
84

 

 

In addition a vast number of synthetic FKBP ligands have been reported which are based on the 

pipecolyl/prolyl diketoamide core derived from FK506 and rapamycin. All these compounds lack the 

effector domain of FK506 and are thus not immunosuppressive. Fig. 8 shows a collection of reported 

synthetic neuroimmunophilin ligands that showed neurotrophic activity. VX-10,367 and VX-7109 

where patented for stimulating neurite growth in nerve cells and are the most potent FKBP12 ligands 

known to date.103 GPI1046 received a lot of attention due to its effect on neurite outgrowth from 

sensory neuronal cultures with reports of picomolar potency In vivo. Additionally GPI-1046 

stimulated the regeneration of lesioned sciatic nerve axons.80, 104 Analogs of GPI1046 were also 

published to be neurotrophic (GPI1485, JNJ460).105 However these results were challenged by other 
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groups.104, 106 Moreover, GPI1046 was also reported to be inactive in PPIase assay by us and others.85 

Our own unpublished data shows that GP1046 is also inactive for the higher homologs FKBP51 and 

FKBP52.  

Most of the studies in the literature are focused on FKBP12 but Gold and coworkers showed that also 

other proteins can mediate the effect.82 This was corroborated by using various FK506 analogs that 

are claimed not to bind FKBP12 (VX-853, V-13,661 and V-13,670, Fig. 8).75, 102 Furthermore the 

selective FKBP38 inhibitor DM-CHX was shown to be active in an animal model of focal cerebral 

ischemia.83 

All these results show that FKBP ligands can have neuroprotective or neurotrophic activities and may 

be potentially useful in certain neurodegenerative diseases or after neuronal loss. Although a lot of 

inconsistencies still exist possibly by differences in cellular and animal models or ligands used. Also 

the relevant targets are still controversially discussed.85 

 

 

Fig.8: Synthetic neuroimmunophilin ligands. The core of FK506 or rapamycin or equivalent groups 

are shown in yellow
84
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1.4 Targeting the PPIase binding pocket of FKBP51 and FKBP52 

 

 

      

Fig. 9: (A) Natural product FKBP ligand FK506, FKBP binding domain (blue), effector domain (green). (B) Synthetic FKBP 

ligand SLF FKBP binding domain (blue). (C) Co-crystal structure of FK506 and FKBP51. (D) Co-crystal structure of SLFand 

FKBP51.  

 

As outlined in the previous chapter most of the synthetic immunophilin ligands were designed to 

bind FKBP12. These ligands were derived from the diketoamide pipecolinic core of FK506 and 

rapamycin lacking the effector domain and are exemplified by SLF107 (Fig. 9).The pyranose ring was 

exchanged by a tert-pentyl group which proved to be a good isoster. SLF showed binding affinity for 

FKBP12 in the range of FK506 (low nanomolar) but for the larger homologs FKBP51 and FKBP52 it 

was substantially less affine (low micromolar).108 Therefore, the Hausch group solved the co-crystal 

structure of SLF and FKBP51109 and compared it to the co-crystal structure of FK506 and FKBP51110 as 

a starting point for rational ligand design. The amino acids of the binding pocket are almost 

superimposeable and SLF also shows the important hydrogen bonds from I87 to the pipecolate 

carbonyl group and from Y113 to the amide carbonyl group. W90 forms the bottom of the binding 

pocket and the pipecolyl ring sits on top of the indole ring. SLF was the only ligand in the literature 

W90 

I87 

Y113 W90 

I87 

Y113 

 (A)          (B) 

 

 

 

 

 

 

 (C)          (D) 
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that was described for FKBP51108 at the start of this thesis while for FKBP52 three ligands were 

known.95, 105  

Gopalakrishnan and co-workers performed the first structure activity relationship (SAR) analysis to 

determine the contributions of individual substructures of SLF (Fig. 10).109 The affinities were 

measured using the fluorescence polarization assay described by Kozany et al.108 SLF bound to 

FKBP51 with ~8µM and to FKBP52 with ~10µM. 

 

 

Fig. 10: Synthetic analogs of SLF for SAR analysis 

 

Replacement of the pipecolyl core by proline or 4,5-dehydropipecolinic acid resulted in a 4-6 fold 

reduction in potency. The change to thiomorpholine-3-carboxylic acid abolished binding to FKBP51 

and FKBP52.  

Furthermore they employed different top-groups. The smaller groups (Fig. 10, A-D) showed no 

binding to FKBP51 and FKBP52. To eliminate the free charge at the free acid moiety of F and G they 

changed it to morpholine H which increased the binding affinity by 2-4 fold compared to SLF and a 

slight preference for FKBP52 could be observed. This trend could also be seen in a sulfonamide series 

of compounds also published by the Hausch group111. They replaced the ester at C1 G by an amide 

which abolished binding to FKBP51 and FKBP52. Finally, they replaced the oxyacetyl group of the SLF 

top-group by an amine I which resulted in the best binding compound 1 (Fig. 11) of this series. It 

showed binding to FKBP51 of ~4 µM and to FKBP52 of ~1µM.  
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Fig. 11: Exchange of tert-pentyl by 3,4,5-trimethoxyphenyl  

 

They continued by replacing the tert-pentyl group with 3,4,5-trimethoxyphenyl (Fig. 11) which 

resulted in a 2 fold decrease in binding for the larger FKBPs. Additionally two clinically used non-

immunosuppressive FK506 analogs were tested on their binding to FKBP51 and FKBP52 (Fig. 8). 

Biricodar showed affinity in the range of SLF ~8 µM whereas Timcodar showed no affinity for any 

FKBP tested.  

 

 

Fig. 12: Overlay of the important amino acids of the binding pocket of FKBP12, FKBP51 and FKBP52. The not conserved 

amino acids are marked in red. 
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The binding pocket of all FKBPs is highly conserved .The most prominent changes are found in the 

70s loop (amino acids 71-76 of FKBP51/52) and the proline rich loop (amino acids 118-122 of 

FKBP51/52) (Fig. 12). The most important change in the amino acid sequence between FKBP51 and 

FKBP52 can be found in position 119 in the proline rich loop. A L119P mutation in FKBP51, which 

introduces the proline found in FKBP52, conferred significant potentiation activity towards steroid 

hormone receptors, whereas the converse P119L mutation in FKBP52 decreased potentiation.32  

Thus, they planned to target the proline rich loop with with a new series of compounds comprising a 

substituted cyclohexyl ring (Fig. 13) instead of the tert-pentyl. This would be more close to the 

pyranose ring of FK506.  

 

 

Fig. 13: Cyclohexyl substituted ligand series targeting the proline rich loop 

 

The SAR of these compounds and the crystal structures that they published showed that FKBP51 and 

FKBP52 are tolerant to different stereochemistries at the cyclohexyl substituent. The best binding 

compounds of this series C1 and C2 (Fig. 14) show binding affinities of 1 µM to 4 µM. 

 

 

Fig. 14: Best binding examples of the substituted cyclohexyl ligand series. 
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For FKBP12 it was shown that the diketo amide moiety can be bioisosterically exchanged to 

sulfonamide112, 113. To determine the binding of sulfonamide ligands to FKBP51 and FKBP52 

Gopalakrishnan et al. developed a solid phase strategy for the synthesis of a focused sulfonamide 

library111.  

Out of 36 compounds with aromatic sulfonamides they identified 5 hits for the binding to FKBP51 

and FKBP52 which displayed a slight preference for FKBP52. The hits showed moderate binding 

affinities with ~10 µM.  

For the best hits the morpholine top-group (Fig. 15) was employed and increased the binding affinity 

to nanomolar levels for S1 and to low micromolar for S2. Therefore ligand S1 displays the best known 

ligand for the large FKBPs to date. With this strategy they could show that a bioisosteric replacement 

of the diketo amide to sulfonamide with conservation of the hydrogen bonds leads to potent FKBP51 

and FKBP52 inhibitors.  

All of the described ligands in this chapter unfortunately show no selectivity between FKBP51 and 

FKBP52 and at least 10 to 100-fold higher affinity for FKBP12.  

 

 

Fig. 15: Top-group substitutions of the best hits 

1.5 Artificially selective ligands 

 

 

Fig. 16: Chemical inducer of dimerization AP1510 based on an SLF dimer 
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In the early 1990s Spencer et al.114 developed chemical inducers of dimerization (CID) to control 

intracellular signal pathways that are normally controlled by protein-protein interactions. Therefore, 

they conjugated two FK506 molecules together via a linker and termed it FK1012. This was improved 

by the development of the bivalent synthetic analog AP1510115 (Fig. 16). These CIDs can bind and 

dimerize proteins of interest which are fused to a FKBP12 “tag” and thereby specifically activate 

signaling. The major disadvantage is the high affinity to endogenous FKBPs which are highly 

expressed. This leads to unwanted heterodimers that interfere with the signaling pathways which are 

to be observed.  

 

 

Fig. 17: Priciple of artificial selective ligands. Bulky 

modification at the ligand abolishes binding to the wildtype 

but allows binding to the mutant 

 

To address this selectivity problem the group of Holt116 used a chemical genomics approach to 

redesign the FKBP12-ligand interface by engineering a new pocket into the active site. At the same 

time they synthesized ligands that exploit the newly formed cavity in the binding pocket (Fig. 17 and 

Fig. 18). These ligands showed a substantial decrease in binding affinity to the wildtype but high 

affinity to the mutant protein. This technique is also called the bump and hole concept.  
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Fig. 18: (A) Model of ligand 10 in the crystal structure of FKBP12
WT

. Steric clash of the Cα substituent with Phe36 (red). (B) 

Co-crystal structure of 10 with the mutated FKBP12
F36V

. Cα substituent fits into the new formed cavity. 

 

To achieve that goal they investigated the co-crystal structure of FK506 and FKBP12 and concluded 

that an exchange of the Cα carbonyl to larger substituents would sterically clash with either Tyr26 or 

Phe36 and should abolish or decrease binding. In turn a compensating mutation at one of these 

amino acids would restore binding (Fig. 17 and Fig. 18). The best ligand (1, Fig. 20) showed an affinity 

of 1.8 nM to the F36V mutant of FKBP12 and to the wildtype FKBP12 of 2930 nM. This ligand can 

differentiate 1,000-fold between WT and was further dimerized via a short linker to form AP20187 

(Fig. 19) which was then used to activate Fas signaling in a mouse model of conditional cell 

ablation116.  

 

 

Fig. 19 Mutant selective FKBP12 CID AP20187.  

 

CIDs have been used in a broad range of applications for dimerization of for example membrane 

receptors: Erythropitin receptor117, PDGF-ß-R / Insulin receptor118, epithelial growth factor receptors 

/ hepatocyte growth factor / thrombopoietin receptor119 or for the induced activation of apoptosis by 

dimerization of the FAS receptor or the dimerization of caspases115, 120-122.  

Banaszynski et al. from the Wandless group further expanded that field by designing a method to 

reversibly regulate protein stability in living cells using a synthetic analog termed Shield-1123  

Phe36 Val36 

Cα Cα 
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Another very prominent example of the bump and hole strategy is the selective inhibition of mutant 

kinases shown by Bishop from the lab of Kevan Shokat.124 With this technique they designed a 

selective cdc28 inhibitor and showed for the first time the effect of the inhibition of this specific 

kinase. This technique was also applied to other kinases.125  

 

2. Aim of the study 

 

 

Fig. 20: Starting point of the synthetic campaign 

 

FKBP51 is a known negative modulator of glucocorticoid receptor (GR) activity whereas its closest 

homolog FKBP52 activates the GR.  

The natural product FK506, rapamycin and all other reported FKBP ligands show if at all a selectivity 

for FKBP12 because of their high structural and sequence similarity84. Due to the opposing effects of 

FKBP51 and FKBP52 these ligands are not suited to study the role of these proteins in GR signalling.  

The goal of the study was to design and synthesize ligands that solve that selectivity issue of the 

known FKBP ligands.  

We envisioned a chemical genomics tool to artificially design selective ligand mutant pairs for FKBP51 

and FKBP52. Therefore structure-based design should be used to synthesize ligands with protruding 

Cα substituents and site directed mutagenesis to introduce an enlarged cavity into the active sites of 

FKBP51 and FKBP52 to compensate for the Cα substituent. Starting point for the synthesis was the 

FKBP12F36V mutant selective ligand 1116 (Fig. 20). This chemical genomics tool was intended to be 

applied to more complex in vitro GR binding assays and cellular assays like GR reportergene assays to 

probe the pharmacological tractability of FKBP51 and its potential as a druggable target.  
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B. Results and Discussion 
 

1. Chemical genomics to selectively address FKBP-sub-types 

 

1.1 Design of FKBP mutant specific engineered (FMSE) ligands 

 

 

Fig. 21: FKBP mutant-specific engineered ligand 1 

 

All FKBP ligands reported so far, including rapamycin and FK506, show only negligible selectivity for 

individual FKBP homologs since the residues within the active site are completely conserved both on 

the sequence and the structural level except for FKBP38.110 FKBP51 and 52 have been shown to have 

opposing effects on steroid hormone receptors as well as on neurite outgrowth. FKBP51 in most 

cases reduces receptor sensitivity, whereas FKBP52 is a positive regulator of SHRs.31 Likewise in a 

neuroblastoma cell line FKBP51 suppressed the elongation of neurites whereas FKBP52 enhanced 

it.86 Due to these antagonistic effects, these proteins cannot be examined with present FKBP 

inhibitors. Chemical genomics provides for this case the perfect tool to artificially overcome this 

selectivity issue by engineered mutant-ligand pairs. A large hydrophobic amino acid in the active site 

is mutated to a smaller amino acid, which generates a new hole in the binding pocket. In turn, a 

complementary ligand is engineered with a protruding sidechain that fits into this new cavity. This 

sidechain performs two tasks; first it should increase the affinity to the mutated protein and second 

decrease the affinity to the wildtype. In previous work in the Hausch lab phenylalanine 67 was 

mutated to valine to open a new cavity in the binding pocket. Complementarily, compound 1 
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(Fig. 21) with a Cα ethyl in (S)-configuration was synthesized, which is a tight and selective binder of 

FKBP12 carrying a homologous F36V mutation.116 Compound 1 showed moderate binding affinity to 

FKBP51F67V (51mut) of IC50~2µM and to FKBP52F67V (52mut) of IC50~22µM. The affinities to the 

wildtype proteins were >100 µM. While this compound showed good selectivity vs the wildtype 

proteins of greater than 50 fold, the affinity had to be improved substantially to allow for cellular 

experiments. We thus used 1 as a starting point to synthesize a series of analogs to optimize the 

interaction with the mutated FKBP51/52 binding site (Fig. 22).  

 

 

Fig. 22: General structure of FKBP mutant specific engineered 

ligands 

 

1.2 Synthesis of the FMSE ligands 

 

The top group of the ligands 5a was synthesized by an improved procedure based on the synthetic 

route published by Keenan et al.107 The first step was an aldol condensation of commercially available 

3-hydroxyacetophenone and 3,4-dimethoxy-benzaldehyde using potassium hydroxide (Fig. 23). The 

chemoselective reduction of the double bond of 2 was performed in a high pressure autoclave using 

Lindlar catalyst. The free aromatic alcohol of 3 was subsequently alkylated with tertbutyl 2-

bromoacetate. 4a was then subjected to (R)-stereoselective reduction in the autoclave using a Noyori 

catalyst. 5a was obtained with excellent enantiomeric excess of >95%. 
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Fig 23: (a) KOH, EtOH/H2O, 80-99%, RT. (b) Pd/C/BaSO4, H2 30-40 bar, MeOH, 88-95%. (c) K2CO3, BrCH2COOtBu, aceton, 

60-75%. (d) Noyori cat, H2, i-propanol, 80%, >95% ee. 

 

The pipecolinic acid analogs 7a and b were synthesized from commercially available (S)-Pipecolinic 

respective (S)-thiopipecolinic acid using standard Fmoc protection (Fig. 24). 7a and 7b and the Fmoc-

(S)-Proline analog 7c were further esterified with the alcohols 5a and b. 

 

 

Fig. 24: (a) TEA, Fmoc-Cl, DCM, RT, 90-95%. (b) 5a or 5b EDC, DCM, RT, 50-70%. (c) 4-Methyl-piperidine, 

DCM, RT, 70-90% 

 

Based on the FKBP12F36V co-crystal structure with compound 1 it is clear that the Cα substituent has 

to be in the (S)-configuration to fit best into the new hole (Fig 21)107. First attempts to synthesize 

different Cα substituted ligands were performed by non-stereoselective alkylation of commercially 

available 2-(3,4,5 trimethoxyphenyl)acetic acid using various alkylbromides, and eventually 

separation of the diastereomers of the final product. Unfortunately, the coupling of 17-19 (Fig. 25) to 

8 resulted in almost exclusive formation of the unwanted Cα (R)-configuration which was determined 

by comparison with the HPLC shift of the active isomer of compound 1 and is in line with the low 

binding affinity of the products 24dia (data not shown). This was subsequently corroborated with the 
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HPLC shifts of the active compound which were later synthesized in a stereoselective manner 

(compounds 24-28). 

We envisioned a stereoselective synthesis using the Evans auxiliary (Fig. 26) to obtain Cα 

substitutions in (S)-configuration.126 We chose allyl because of its larger size compared to ethyl and 

because the literature shows broad application of allyl halides in stereoselective Evans alkylation.127, 

128 Therefore 2-(3,4,5-trimethoxyphenyl)acetic acid 11 was converted to the stable active 

pentafluorophenol ester to give 20 which was then coupled with (S)-isopropyloxazolidinone to give 

the imide 21. 

 

 

Fig. 25: (a) LiHMDS 2.2 eq, R-Br, THF, RT, 60-80% (b) HATU, 

DIEPA, DCM, 50-60%.  

 

The key step in this synthesis, the stereoselective alkylation was performed after formation of the 

sodium enolate, which reacted with allyl bromide to give 22 with 60% yield and dr >95:5 (determined 

by HPLC and NMR). The imide was cleaved to give the free acid 23.  

 

 

Fig. 26: (a) EDC, C6H5OH, DCM, RT 90-95%. (b) BuLi, (S)-isopropyloxazolidinone, THF, -78°C-0°C, 60-80%. (c) NaHMDS, THF, 

allyl bromide, -78°C, 50-60%. (d) LiOH, H2O2, THF/H2O 8:5, 0°C-RT, 60-90%  
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The allyl substituted ligand series was synthesized by amide bond formation of 8a-c/9a-c with 23 to 

give the final compounds 24-28 with a dr of >90:10 (determined by HPLC and NMR). Compounds 18 

and 19 were obtained after tert-butyl deprotection with 10% TFA in DCM with 50% yield. The 

3,4-dehydropipecolinic ester core 33 was synthesized from (S)-allylglycine 29 according to the 

published procedure of Varray et al.129 33 was coupled to 23 and the ester was cleaved to give 34, 

which was esterified with the morpholine top group 5b providing the ligand 35 with dr of >95:5.  

 

 

Fig. 27: (a) HATU, DIPEA, DCM, RT, 40-50%. (b) TFA, DCM, 0°-RT, 50-60%. (c) o-nitrobenzenesulfonyl 

chloride, TEA, DCM, RT, 60%. (d) TMSCl, MeOH, 0°C-RT, 99%. (e) Allylbromide, K2CO3, DMF, RT, 83%. 

(f) RT,Grubbs Cat. II, DCM, reflux, 90%. (g) Thiophenol, Cs2CO2, CH3CN, RT, 81%. (h) HATU, DIPEA, 23, 

DCM, RT, 68%. (i) LiOH, THF/H2O, RT, 80%. (j) EDC-HCl, DMAP, 5b, DCM, 0°C-RT, 62%.   

 

1.3 Biochemical characterization of the FMSE-ligand-mutant pairs 

 

To determine the IC50 values of the engineered ligands to the proteins, we performed in vitro 

fluorescence polarization binding assays with the FK1-domains of FKBP51, FKBP52 and the 

corresponding mutated FK1-domains according to Kozany et al.108 Table 1 shows the binding 
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affinities of the synthesized ligands. We generated a series of Cα allyl compounds bearing different 

core and top groups. The final compounds were synthesized either with a hydrophilic top group, 

containing a free acid moiety for better solubility, or a morpholine group for better cell permeability. 

Compound 24 was the first synthesized and showed already an improvement compared to the ethyl 

compound 1. The affinity for FKBP51F67V increased upon exchange of ethyl to allyl to 0.7 µM showing 

that the artificial cavity in the mutated proteins can accommodate bigger substituents than ethyl. We 

next exchanged the pipecolinic core to proline to probe the effect of a smaller ring on binding. The 

IC50 of the proline derivative 25 increased by 2-fold for the mutated proteins but also 4-fold for the 

wildtypes. Thus, the selectivity vs the wild type proteins decreased slightly. By exchanging the 

hydrophilic acid moiety by morpholine a strong increase in binding affinity occurred. Substitution of 

the free acid of 24 by morpholine yielded 26 and increased the affinity by 12-fold for the wildtype 

proteins and by almost 100-fold for the mutated proteins. The selectivity of mutated vs wildtype 

proteins increased to 1000-fold. Encouraged by this effect we synthesized the proline derivative 27, 

unfortunately the binding affinity decreased by 3-fold for the wildtype, and 10-fold for the mutant. 

This is in contrast to proline compound 25 with the free acid top group where this proline 

modification resulted in an increase of affinity compared to pipecolate. The selectivity of 27 also 

decreased slightly. We further substituted the core by thiomorpholine 28, which caused a drop of 10-

fold in affinity whereas exchange to the 3,4-dehydropipecolinic core 35 showed affinity in the range 

of 26. Tab. 1 shows the SAR of the allyl series.  

 

 

 

Tab. 1: SAR of the allyl series for FKBP51F67V 

 

 

Fig. 28 shows the binding curves of the two best compounds 26 and 35. Compound 26 was kindly 

synthesized by the LDC based on our results as a control for further experiments.  

In summary, we improved the binding affinity to the mutated proteins by 1000-fold compared to 

compound 1 while maintaining 500 to 1000-fold selectivity for mutated FKBP51/52 over wildtype 

proteins. These selective ligand-mutant pairs can be used in a model system created by chemical 

genomics to examine the selective inhibition of FKBP51 and 52. This system can be used in different 

cellular assays (e.g. reporter gene, neurite outgrowth assay) where FKBP mutant proteins can be 



B. Results and Discussion _____________________________________________________________ 

29 
 

overexpressed. The best ligands bind with IC50 in the low nanomolar range, which enables for specific 

inhibition of mutated protein over endogenous proteins.  
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Fig.28: Biochemical characterization of artificially selective FKBP mutant-ligand 

pairs with 26 and 35. Purified FK1-domains of 51wt (2 nM), 52wt (2 nM), 

51mut (2 nM) and 52mut (10 nM) were measured in a fluorescence 

polarization binding assay by titrating 26 or 35 using 3nM of compound F2 

(Chapter 4.1) as a tracer
108

. 
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Tab.2: General structure of the ligands, and binding affinities (IC50) in µM. Purified FK1-domains of 51wt (2 nM), 52wt (2 

nM), 51mut (2 nM) and 52mut (10 nM) were measured in a fluorescence polarization binding assay by titrating the 

compounds using 3nM of compound F2 (Chapter 4.1) as a tracer
108

. (a) Solubility limit. (b) Compounds were provided by a 

collaboration with the Lead Discovery Center GmbH (LDC) 
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1.4 Effect of selective inhibition of mutated FKBP51 and 52 on neurite 

outgrowth in N2a neuroblastoma cells 

 

FK506 analogs have repeatedly shown neurotrophic or neuroregenerative effects in cellular and 

animal models. However, due to overlapping functions of FK506-binding proteins and the lack of 

selectivity of the ligands it proved difficult so far to exactly pinpoint the relevant FKBP. Some FKBPs 

show negative and others positive effects on neuronal function.  

To pharmacologically probe the role of FKBP51 and FKBP52 on neuronal function we used N2a cells 

as a cellular model for the differentiation of neuronal progenitor cells. Quinta et al. had previously 

shown that FKBP51 and FKBP52 have opposing effects in this model.86 Similar effects were observed 

in our system. Overexpressing FKBP51 inhibited neurite outgrowth (Fig. 29B, lanes 3 in Figs. 29C/D) 

compared to control transfection. In contrast, overexpression of FKBP52 enhanced the outgrowth of 

neurites compared to control (Fig. 30, lane 3). Fortunately, the neurite outgrowth-suppressing or 

stimulating effects of FKBP51 or FKBP52 were not affected by the point mutation F67V in the active 

site. 

As we were especially interested in whether FKBP51 can be pharmacologically targeted, we tested 

the effect of the selective inhibitors on FKBP-modulated neurite outgrowth. Transfection with empty 

vector pRk5 displays the basal neurite length after starvation (Fig. 29A, Fig. 29D/E, lane 1). The 

addition of 26 and 35 only marginally affected neurite outgrowth under these conditions. Likewise 

they did not revert the neurite outgrowth suppression by overexpressed wildtype FKBP51 (Fig 29D/E, 

lane 4), to which they bind with 1000-fold less affinity than to the mutant FKBP. However, the neurite 

outgrowth suppressed by the mutated FKBP51 was almost completely rescued by the mutant-

selective inhibitors 35 (Fig. 29C, Fig. 29D, lane 6). Almost identical results were obtained with the 

ligand 26 (Fig. 29E, lane 6). 
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Fig. 29: Rescue of neurite outgrowth assay in N2a-cells overexpressing FKBP51 by artificially selective ligand 26 and 35. (A) 

Transfection control vector prK5 and application of DMSO (B) Overexpression of FKBP51F67V and application of DMSO (C) 

Overexpression of FKBP51F67V and application of 20 µM Compound 35. (D) and (E) Each bar represents the mean of the 

neurite length (in mm) of 20-30 cells after the indicated treatment. 

 

Next we tested the consequence of selective inhibition of FKBP52 on neurite outgrowth. Again, 35 

did not inhibit the basal neurite outgrowth or the enhancement induced by the wildtype FKBP52 

(Fig. 30, lane 2 and 4). In contrast, inhibition of the mutated FKBP52 abolished the neurite 

stimulation completely even below basal level (Fig. 30, lane 6). 
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Fig. 30: Suppression of FKBP52 enhanced neurite outgrowth in N2a-

cells overexpressing FKBP52 by artificially selective ligand 35. 

 

 

The previous results strongly suggested inhibition of FKBP51 and FKBP52 to have opposite effects. To 

unambiguously proof this we co-overexpressed FKBP51 (wildtype and mutant) and FKBP52 (wildtype 

and mutant) in all four possible combinations and monitored the effects of the mutant-selective 

ligand 35 on neurite outgrowth behavior (Fig. 31). Simultaneous overexpression of FKBP51 and 52 

wildtype and mutants in all combinations (Fig. 31, lane 3, 5, 7 and 9) resulted in neurite length 

comparable with basal conditions (overexpression of control vector) which can be attributed to the 

opposing effects of FKBP51 and FKBP52. As expected, 35 had no effect on basal conditions, and only 

a small effect on cells overexpressing wildtype FKBP51 and wildtype FKBP52 (Fig. 31, lane 2, 4). 

Likewise, inhibition of mutated FKBP52 coexpressed with wildtype FKBP51 by 35 caused a shortening 

of the neurites due to selective, blocking the positive effect of FKBP52 while sparing the suppressing 

effect of FKBP51 (Fig. 31, lane 7 and 8). Selective inhibition of mutated FKBP51 co-expressed with 

wildtype FKBP52 by 35 lead to neurite outgrowth in line with leaving the positive effect of FKBP52 

(Fig. 31, lane 5 and 6). Importantly inhibiting the two mutated proteins at the same time resulted in 

neurites with the same length as the corresponding DMSO control (Fig 31 lane 10) consistent with a 

mutually canceling effect of simultaneously inhibiting both FKBPs. Taken together, in these model 

experiments with artificially selective ligand mutant pairs, we unambiguously showed that FKBP 

inhibiting ligands can have neurite outgrowth-stimulating or suppressing effects, depending whether 

FKBP51 or FKBP52 is more relevant in the system.  

In summary, we for the first time demonstrated activity of FKBP51 ligands in a relevant cellular 

model thereby providing the first experimental proof of concept for the feasibility to 
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pharmacologically target FKBP51. We showed in a cell model of neuronal differentiation, that specific 

inhibition of overexpressed FKBP51 restores neurite outgrowth whereas specific inhibition of 

overexpressed FKBP52 has the opposite effect. We therefore propose FKBP51-selective ligands as 

neuroprotective agents and that selectivity vs. FKBP52 will be crucial for a therapeutic benefit. This 

could be helpful for neurodegenerative diseases like Alzheimer’s and Parkinson’s disease but also 

during stress or in depression, which are characterized by neural loss or atrophy. 
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Fig. 31: Co-expression of FKBP51 and 52 and engineered sensitive 

mutants thereof. Either addition of DMSO or inhibition by 35. 

* indicates mutated proteins 
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2. Solving the selectivity issue by an induced fit mechanism 

 

 

2.1 Induced fit as a basis for selectivity  

 

 

 

Fig 32: (A) Co-crystalstructure of SLF and FKBP51FK1. (B) Structure of IF63. (C) Co-crystalstructure of 24 and FKBP51FK1. For 

better visibility of the binding pocket K121 was removed from the crystal strucures) highlighted are in blue the important 

hydrogen bonds from I87 to the C1 carbonyl group and from Y113 to the pipecolinic amide carbonyl C8. Further W90 is 

shown which displays the bottom of the binding pocket. F67 that is displaced to accommodate 24 is indicated in red. 

 

Our model system (chapter 1.3) showed that selectivity between FKBP51 and FKBP52 is necessary. 

However, the design of wildtype selective ligands for the wildtype proteins is extremely challenging 

due to the structural similarity of the binding pocket of the different FKBP subtypes. All ligands tested 

before showed almost the same binding affinity for FKBP51 and 52.  

In the assay results of our model system we noticed a slight preference of some of the Cα-substituted 

compounds for FKBP51 (1, 24, 25, 26, Tab. 2). This was unexpected as the Cα-allyl group would clash 
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with F67 in a binding mode typical for FKBP ligands (Fig. 32A, 34A). Intrigued by this finding we 

solved the co-crystal structures of 24 at a resolution of 1.4 Å and compared it with the co-crystal 

structure of the unselective FKBP ligand SLF with FKBP51 (Fig. 32A). This revealed that compound 24 

induces a conformational change in the binding pocket of FKBP51 that allows the protruding Cα allyl 

group to fit into a newly formed hole. More precisely, the Cα allyl substituent of 24 displaces F67 

(Fig. 32C) which flips out of the binding pocket to form a new hole in the binding pocket. Fig. 33 

shows the superposition of the co-crystal structures of FKBP51FK1/24 and FKBP51FK1/SLF. The major 

changes are found in the 60s and 70s loop which together with the proline rich loop contains the 

most important structural differences between the FK1 domains of FKBP51 and FKBP52. The 40s and 

the proline rich loop are known to be the most flexible part of the protein.109, 110 

 

Fig. 33: Superposition of the backbone traces of the co-crystal structure of FKBP51FK1/24 (pink) and the 

co-crystal structure of FKBP51FK1/SLF (green).  

 

The most interesting and prominent structural changes are observed in the amino acid sequence 

from G64 to N74 (GKKFDSSHERN, 60s to 70s loop Fig. 33, Fig. 34). The flip of F67 causes most of the 

surrounding amino acids to change their conformation. The side chains of K65 and K66 are not 

defined in the crystal structure, probably due to their flexibility, as they are solvent accessible. No 

ordered electron density for these amino acids could be observed. Interestingly, D68 almost retains 

the conformation compared to the co-crystal structure of FKBP51FK1/SLF although it is directly 
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neighboring F67 and it lost its saltbridge to R73, which possibly is replaced by S70. The conformation 

of S69 stays the same whereas S70 is flipped upwards together with a large conformational change 

of H71. The orientation of D72 only slightly changes whereas the orientation of R73 and N74 are 

completely changed.  

 

 

 

Fig. 34: Structural changes of G64 to N74 (60s and 70s) induced by 24. (A) 24 modeled into the co-crystal structure of 

FKBP51FK1/SLF. (B) co-crystal structure of FKBP51FK1/24 
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These extraordinary results provided a structural explanation for the unexpected binding of 24 to 

FKBP51. We therefore started the synthesis of a series of variously Cα substituted ligands to further 

elaborate the scope of this induced fit mechanism. 

 

2.2 Synthesis of iFit FKBP51 ligands 

 

The iFit (inducing fit) ligands were synthesized by a similar synthetic route as the FKBP subtype 

specific engineered ligands.  

We synthesized ligands consisting of three main parts the “Core”, the “Cα-Sub” and the “Top group” 

(Fig. 35). Core structures are either (S)-proline or (S)-pipecolinic acid. The “Top group” is a complex 

alcohol or amine, containing one or two substituted phenyl/pyridine rings with an ionizable moiety 

(acid, morpholine or pyridine) to increase solubility or cell permeability. The “Cα-Sub” is an alkyl 

substituent in Cα-position of the Core with (S)-conformation that protrudes into the hydrophobic 

binding pocket of FKBP proteins and induces the conformational rearrangement. We synthesized Cα 

substituents of different sizes ranging from allyl to benzyl to identify the best group for the induced 

sub-pocket. 

 

 

 

Fig. 35: General structure of synthesized iFit ligands 
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2.2.1 Cyclopropylmethyl and benzyl series 

 

2.2.1.1 Design and synthesis of Cα cyclopropylmethyl and benzyl ligands 

 

  

Fig. 36: (a) EDC, DCM, RT, 50-70%. (b) 4-Methyl-piperidine, DCM, RT, 70-90% 

 

Fmoc-(S)-pipecolate 6a and Fmoc-(S)-Proline 6c were esterified with alcohols 5a-d and after Fmoc 

cleavage the Products 36b and 37a-e could be obtained with good yields.  

We aimed to enlarge the Cα bump from allyl to cyclopropylmethyl because the co-crystal structure of 

24 clearly indicated that a cyclopropyl ring would fit better into the induced sub-pocket than the 

smaller allyl group. The synthesis of the cyclopropylmethyl substituent under the conditions used for 

allyl proved to be challenging. The stereoselective alkylation of the Evans imide with 

cyclopropylmethyl bromide only gave trace amount of the desired product (Fig. 37). 
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Fig. 37: (a) NaHMDS, THF, R-Br, -78°C, <5%. (b) LiOH, H2O2, THF/H2O 8:5, 0°C-RT, (c) EDC, (S),(S)-pseudoephedrine, DCM, RT, 

80-90%. (d) LiHMDS, LiCl, cyclopropylmethyl iodide or benzyl bromide, THF, -78°C-0°C, 40-50%. (e) 4 M H2SO4, dioxane, 0°C-

reflux, 50-60%. 

 

We concluded that the Evans imide was too deactivated to be properly reacted with non-allylic 

primary or secondary alkylbromides. We therefore decided to use a more active amide auxiliary for 

this type of substrate, the Myers pseudoephedrine (Fig. 37). This auxiliary shows a higher scope of 

possible alkylations in the literature.130 Using the Myers auxiliary the primary cyclopropylmethyl 

halide could be successfully reacted with moderate yield. Towards this end 2-(3,4,5 

trimethoxyphenyl) acetic  acid 11 was first coupled with (S),(S)-pseudoephedrine to give 40. The 

amide enolate was formed using LiHMDS and was further alkylated with either cyclopropylmethyl 

bromide or benzyl bromide, to give 41a and b. For the reactions to occur, it proved to be crucial to 

dry the LiCl at 150°C over night in high vacuum and additionally flame dry it under high vacuum prior 

use. The acids 39a and b were liberated, using 4 M H2SO4 in dioxane under reflux.  

39a and b were coupled to 36b, 37a and to 37b by the same conditions using HATU to provide the 

ligands 42-45 (Fig. 38). 

 

 

Fig. 38: (a) HATU, DIPEA, DCM, RT, 40-50%. (b) TFA, DCM, 0°-RT, 50-60%. 
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2.2.1.2 Biochemical activity of cyclopropylmethyl and benzyl ligands 

 

We tested this series of compounds in our in vitro FP competition assay (Tab. 3). From our FKBP 

subtype-specific engineered ligand screen we knew that changing from a pipecolinic core to proline 

core and exchange of the free acid moiety to morpholine can increase the binding affinity to the 

wildtype FKBPs in the allyl series (see Tab. 2) but at a cost of reduced selectivity. Fortunately, the 

larger Cα substituent cyclopropyl-methyl, restored selectivity and further increased the affinity 

(Tab. 3). Compound 42 binds to FKBP51 with 9.9 µM and shows no binding to FKBP52 up to the 

solubility limits of compound 42. To explore the limits of the induced cavity, we enlarged the Cα 

substituent from cyclopropylmethyl to benzyl. Compound 45 lost completely its ability to bind to 

either wildtype FKBP51 or FKBP52, indicating that the protruding phenyl ring is too big to be 

accommodated by the protein. Another interesting effect is that 42 shows affinity for FKBP12 in the 

range of FKBP52 which is not the case for all other compound series tested so far. Up to now all 

ligands show much higher affinity for FKBP12, typically 10-1000 fold. 

With increasing from allyl to cyclopropylmethyl we were able to increase the affinity to FKBP51 

around 2-fold, increase the selectivity vs FKBP52 at least >10-fold and further discovered the first iFit 

ligands that show binding to FKBP12 in the same range as to FKBP51 (e.g. compound 42).  

To explore whether the induced fit binding mode observed with 24 also extended to this new series 

we solved the co-crystal structures of FKBP51FK1 and 27 at a resolution of 1.2 Å and that of 42 with a 

2.1 Å resolution (Fig. 39A, 39C). The ligands adopt a very similar conformation as 24, and retain the 

two important hydrogen bonds to I87 and Y113. The overall architecture of the proteins is mostly 

superimposable (Fig. 40A). The main differences are in the 40s and the proline rich loop. The 40s 

loop of the 27 and 42 co-crystal structure is superimposable and adopts from S69 to N74 almost the 

same conformation as the co-crystal structure with SLF, interestingly, a flip of these amino acids as 

observed in the co-crystal structure of 24 does not occur(Fig. 34A,B). G64 to D68 is superimposable 

in the three induced fit crystal structures. The proline rich loop of all co-crystal structures diverge 

likely due to the flexibility of this region that has been observed earlier.109, 110 

The proline cores of 24 and 42 adopt two different envelope conformations (Fig. 40C) which has an 

impact on the orientation of the C1 carbonyl to Cα segment. Especially the orientation at the C1 and 

the C8 carbonyl which form the important hydrogen bonds to I87 and Y113 is important. Although 

the proline core cannot be perfectly overlapped to the pipecolate core, the C1 carbonyl to Cα 

segment of 27 resembles much better the conformation of 24 than the conformations of the closer 

homolog 42 (Fig. 40C). 
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Tab. 3: General structure of the ligands, and binding affinities (IC50) in µM. Purified FK1-domains of FKBP51
WT

 

(2 nM), FKBP52
WT

 (2 nM), FKBP51
F67V

 (2 nM) and FKBP52
F67V

 (10 nM) were measured in a fluorescence 

polarization binding assay by titrating the compounds using 3nM of compound F2 (Chapter 4.2) as a tracer.
108
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Fig 39: (A) Co-crystal structure of 27 and FKBP51FK1. (B) Structure of 27. (C) Co-crystal structure of 42 and FKBP51FK1. (D) 

Structure of 42. For better visibility of the binding site K121 was removed from the crystal strucures 

 

From these crystal structures it is not obvious why 26 or 27 lost selectivity compared to 24 and 42. It 

seemed that increasing the size of the Cα substituent accounts for increasing selectivity, which is 

displayed by the binding affinities (Table 3). The co-crystal structures of the iFit ligands revealed that 

the pro-(S)-proton at Cβ of the iFit ligands pointed into the open space of the binding pocket. We 

therefore decided to introduce a substituent at the Cβ (Fig. 39C) position, that additionally could be 

cyclized with the allyl substituent. We thus continued with the synthesis of the cyclohexenyl/ 

cyclohexyl series of compounds. 
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Fig. 40. (A) Superposition of the backbone traces of the co-crystal structure of FKBP51FK1/24 

(grey) and the co-crystal structure of FKBP51FK1/27 (green). (B) Overlay of 27 (green) and 42 

(blue). (C) Overlay of 27 (green) and 24 (grey). 
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2.2.2 Cyclohexenyl/Cyclohexyl series 

 

2.2.2.1 Design and synthesis of cyclohexenyl/cyclohexyl ligands  

 

 

Fig. 41 (a) NaHMDS, THF, cyclohexenyl-bromide, -78°C, 50-60%. (b) LiOH, H2O2, THF/H2O 8:5, 0°C-RT, 60-90%. (c) Pd/C, 30 

bar H2, MeOH, RT, 90-99%.  

 

The Evans auxiliary modified trimethoxyphenylacetic acid building block 21 could be successfully 

reacted with cyclohexenyl bromide under the same conditions as established for allyl bromide to give 

46 as a mixture of four diastereomers with an overall yield of 63% (Fig. 41, Annex Fig. A). After flash 

chromatography, the mixture could be separated to obtain fractions of 46a/b with 55% and fractions 

of 46c/d with 8% yield (Annex Fig. B and C). 46a/b and 46c/d were each obtained with a 

diastereomeric rate at Cα of 99%. The reaction also showed a preference for one diastereomer at the 

Cβ position. 46a/b was obtained as a 85:15 mixture of diastereomers. This annotation is supported by 

analytical HPLC and finally analyzed by 13C NMR analysis (analytical HPLC, Annex Fig. C, NMR, Annex 

Fig. D). 46a/b could not be separated and was subsequently used as mixture of diastereomers. The 

absolute configuration of the preferred diastereomer was finally determined in the co-crystal 

structure of the cyclohexenyl-containing ligand 51 and will be discussed later. The imide 46a/b was 

cleaved to give the free acid 47a/b as a 85:15 mixture of diastereomers which could be partially 

resolved by analytical HPLC (Annex Fig. E). In parallel, the double bond of 46a/b was reduced to give 

48 with a diastereomeric excess of 99% at Cα. No tailing in the analytical HPLC (Annex Fig. F) and no 

additional peaks in the NMR (Annex Fig. G) can be observed for 48. The acid 49 was liberated as 

described for 47. 
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Fig. 42: (a) HATU, DIPEA, DCM, RT, 40-70%. (b) 10% TFA, DCM, RT, 50-70% (for 50, 55 and 56). * 85:15 

mixture of diastereomers 

 

Coupling of 47a/b to 37a-d readily provided the cyclohexenyl derivatives 50-53 (Fig. 42) as mixtures 

of diastereomers at Cβ of 85:15 which could not be further separated. The di-amide ligand 55 was 

synthesized like its ester homologs 50-53 and was also obtained as a 85:15 mixture of diastereomers. 

To further explore different Cα substituents and to remove the Cβ stereocenter we synthesized 

cyclohexyl analogs 56 and 57 from 37a and 37b coupled with 49. Table 4 shows the inhibition 

constants (Ki) of the cyclohexenyl/cyclohexyl series calculated from the binding data obtained with 

the fluorophores F2 and F4. Due to the high binding affinity of the cyclohexyl/cyclohexenyl-

containing ligands tracer F2 was not sufficient anymore. We therefore had to design a new tracer F4 

for our fluorescence polarization assay (for a detailed description see Chapter 4.3).  

We were pleased to see our rationale confirmed. The cyclization at the Cβ position increased the 

affinity substantially to low nanomolar levels. The best iFit ligands to date, compounds 56 and 57, 

show a Ki of 4 ± 0.3 nM and 6 ± 2 nM for FKBP51FK1. This is comparable to the natural product 

rapamycin (Ki 6 ± 1 nM) and almost one order of magnitude better than the natural product FK506 

(Ki 93 ± 19 nM). Most important, the compounds showed no binding or very weak binding to FKBP52. 

Another interesting fact of the compounds is the preference over FKBP12. All 

cyclohexenyl/cyclohexyl compounds show at least 4-5 fold selectivity for FKBP51 over FKBP12 which 

makes them the first of this kind. For the cyclohexyl iFit ligands the selectivity of FKBP51 vs FKBP12 
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increased to >15-20 fold. All known FKBP ligands show a strong preference for FKBP12 over FKBP51 

and FKBP52 of 100 to 1000 fold. Further optimization of this feature could lead to even more FKBP51 

selective ligands.  

 

2.2.2.2 Biochemical activity of cyclohexenyl/cyclohexyl ligands 

 

 

Fig. 43: (A) Co-crystal structure of 43 and FKBP51. (B) Structure of 51. For better visibility of the binding pocket K121 was 

removed from the crystal strucures  

 

We solved a co-crystal structure of 51 and FKBP51 of a resolution of 1.25 Å (Fig. 43A). The pipecolinic 

core of 51 adopts a chair conformation. The whole ligand is except the core and the Cα substituent 

almost superimposable to 27 (Fig. 44A). With the help of the co-crystal structure we were able to 

define the preferred configuration at the Cβ carbon. As indicated in Fig. 43B the best binding 

configuration at Cβ is (S). Probably 47a is also the major diastereomer of the alkylation (Fig. 41). 

However, we cannot exclude the possibility, that 47a is the minor diastereomer formed in the 

alkylation but has a much higher binding affinity.  

The cyclohexenyl ring sits tightly in the induced subpocket with the alkene moiety pointing into the 

binding pocket (Fig. 43A). 
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Tab.4: General structure of the ligands, R2 is represented by the grey boxes. Inhibition 

constants (Ki) in nM. Purified FK1-domains of FKBP51
WT

 (4,5 nM) with F4 (3 nM), 

FKBP52
WT

 (400 nM) with F1 (20 nM), and FKBP12
WT

 (10 nM) with F1 (3 nM) were 

measured in a fluorescence polarization binding assay by titrating the compounds. 
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Fig. 44: (A) Overlay of ligand 27 and 51 in complex with FKBP51FK1. (B) Ribbon. (B) Superposition of the backbone traces of 

the co-crystal structure of FKBP51FK1/27 (green) and the co-crystal structure of FKBP51FK1/51 (cyan)  

 

 

The overall architecture of the co-crystal structures 27, 42 and 51 are superimposable except the 60s 

and the proline rich loop. Fig. 44B shows the ribbon overlay of the 51FK1/27 and 51FK1/51 co-crystal 

structure. The major differences can be found in the amino acids L61 to F66 (60s loop). The amino 

acids have to further reorientate to accommodate to the larger cyclohexenyl substituent (Fig. 45). 

The proline rich loop shows its slight flexibility which was also visible in the other co-crystal 

structures (Fig. 44B).  

To further elaborate the binding properties of cyclohexenyl substituted ligands we synthesized four 

more compounds with different top groups 50-53 and one with a proline core 54. For ligand 52 (Ki 50 

± 62 nM) we chose the symmetric dipyridine top group known from the structurally related drug 

candidate Biricodar (Vertex Pharmaceuticals). The pyridine rings replace the substituted phenyl rings; 

pyridine constitutes a good compromise between hydrophobicity and solubility due to the 

protonizeable amine. The advantage is lower molecular weight and a decrease in complexity by 

losing one stereocenter. The exchange resulted in a slight loss in affinity compared to 51 (Ki = 26 ± 

4 nM), but retained selectivity for FKBP51. Replacement of the morpholine by a free acid 50 (Ki = 23 ± 

4 nM) showed no substantial difference in binding affinities but strongly increases the water 

solubility. The top group of 53 was identified in a different ligand series in our group, as a smaller 

replacement for the bisubstituted top groups of the described ligands. Even more than the bipyridine 

top group it decreases molecular weight and removes one stereocenter. The binding affinity of the 

resulting compound 53 dropped substantially but selective binding for FKBP51 was sill clearly 
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detectable at low micromolar levels. The exchange of the pipecolate core to proline 54 (Ki = 40 ± 6 

nM) resulted in a slight decrease of binding affinity compared to 51. The exchange of the top-group 

ester by an amide 55 (Ki 328 ± 40 nM) decreased the affinity by more than 10 fold compared to 52 

(Ki = 23 ± 4 nM). This could be due to the additional H-donor of the amide which is predicted to 

intramolecularly point to the trimethoxyphenyl group in a typical FKBP bound conformation. This 

interaction is likely less favorable than the van-der-Waals contacts of the corresponding pipecolate 

ester. It is noteworthy that 55 is the first pipecolate amide ligand with clearly detectable affinity for 

FKBP51. This is important as the pipecolate ester represents an undesired metabolic liability. The 

best compounds of this series and the best binding iFit ligands to date are 56 (Ki = 4 ± 0.3 nM) and 57 

(Ki = 6 ± 2 nM). The reduction of the double bond of the cyclohexenyl ring resulted in a 4-fold 

increase in binding affinity.  

These compounds are the first reported FKBP51 ligands which bind with low nanomolar affinity and 

additionally show selectivity of more than 10000-fold over FKBP52. Another important point is the 

selectivity vs FKBP12. 56 and 57 are the first FKBP ligands that have selectivity > 10 for FKBP51 vs 

FKBP12. 
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Fig. 45: (A) Structural change of the 60s loop induced by 51. (A) 51 modeled into the co-crystal 

structure of FKBP51FK1/27(green). (B) co-crystal structure of FKBP51FK1/51 (cyan).  
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2.2.2.3 Effect of iFit ligands on neurite outgrowth  
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Fig. 46: Selective inhibition of FKBP51 wildtype by FK506, 50 and 57 

at 1 µM 

 

Fig. 46 shows our first results using iFit ligands in a neurite outgrowth assay performed under basal 

conditions without overexpression of FKBP51 or FKBP52 proteins. The first lane (blue) displays the 

DMSO control, which reflects the basal length of neurite outgrowth in this assay. By adding the 

unselective FK506 we observe no increase in neurite length but rather a slight decrease. This result is 

different to the results reported by Quinta et al86 but it is consistent with our previous results which 

showed that inhibition of both FKBPs at the same time show no effect (Fig. 46). In contrast selective 

ligands 50 and 57 significantly increased the neurite lengths. These results support our previous 

hypothesis that selectivity for FKBP51 could be beneficial for the development of ligands with 

neuroregenerative properties. 
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2.2.3 Cα-hydroxy series 

 

    

Fig 47: (A) Co-crystal structure of 51 and FKBP51. (B) Modeling of the 64a into the co-crystalstructure of 51 

 

Molecular modeling revealed that a potential hydrogen bond could be formed between D68 and an 

hydrogen donor group at Cα (Fig. 47). To test if an additional hydroxy group at Cα is tolerated, we first 

synthesized compound 60 (Fig. 48). We started from commercially available 2-(3,4,5 

trimethoxyphenyl)acetic acid and oxidized it with seleniumdioxide131 to obtain 58 the α-keto acid was 

alkylated with allylmagnesium bromide to give racemic 59. The racemate was coupled to 37a to give 

60 as a 1:1 mixture of diastereomers with modest 25% yield. Upon treatment of 60 with 10% TFA to 

deprotect the t-Bu-group, however the Cα hydroxy group readily eliminated to give the undesired 62 

as the major product and only trace amounts of 61. As expected 62 showed no affinity for FKBP51 or 

52 (data not shown).  
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Fig. 48: (a) SeO2, pyridine, reflux, 92%. (b) Allylmagnesium bromide, THF, -78°C-RT, 60%. (c) 37a, HATU, DIPEA, DCM, RT, 

25%. (d) 10% TFA/DCM, 0°C-RT 

 

To solve this problem we designed a different synthetic route where the alkylation was performed in 

the last step (Fig. 49). First, we synthesized Biricodar/63.132 Then the Cα-carbonyl was alkylated using 

cyclohexylmagnesium bromide which readily yielded a racemic mixture of 64a/b. The diastereomers 

64a and 64b could be separated using reversed phase HPLC. Under these conditions no elimination 

of the Cα hydroxy group was observed. 

 

 

Fig. 49: (a) HATU, DIPEA, DCM, RT, 40-70%. (b) Cyclohexylmagnesium bromide, THF, -78°C 

 

Of these only one diastereomer 64a (Ki = 77 ± 11 nM, Tab. 4) bound with good binding affinity in the 

nanomolar range, whereas the other diastereomer did not show any binding within the limits of the 

assay. Thus, addition of a hydroxy group at Cα seems to be tolerated (in the correct stereochemical 

configuration) but overall it does not seem to add additional binding energy. However, it highly 

simplifies the synthesis of the ligands and allows simple access to a broad range of potential Cα 

substituents (described in the outlook). 
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We plan to expand these series of compounds to the morpholine top group to improve the binding 

affinity. Main advantage of this methodology is that a broad scope of Grignard reagents can be used. 

Furthermore, it is not dependent on tedious stereoselective alkylations using auxiliaries although it 

requires separation of the diastereomers by preparative HPLC.  

 

2.2.4 Cα symmetric ligand series 

 

 

Fig. 50: (a) HATU, DIPEA, DCM, RT, 74-78%. (b) 10% TFA/DCM, RT, 64-82% 

 

To estimate the contribution on binding of the three methoxy groups of the lower part of the ligands, 

we synthesized compound 68 from commercially available α-keto-2-phenylacetic acid. In addition we 

synthesized the symmetric Cα ligand 69 from 2,2-diphenylacetic acid. Due to the high binding affinity 

of the cyclohexyl ligand series we also synthesized the symmetric dicyclohexyl ligand 70. Both 

symmetric ligands lost their affinity to the larger FKBPs completely and only Cα keto analogue showed 

moderate affinity for FKBP12 (Table 6).  
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Tab. 7: General structure of the ligands, and binding affinities (IC50) 

in µM. Purified FK1-domains of FKBP51
WT

 (280 nM), FKBP52
WT

 

(400 nM), FKBP12
WT

 (10 nM) were measured in a fluorescence 

polarization binding assay by titrating the compounds using 20 nM F2 

as a tracer for FKBP51
WT

/52
WT

 and 3 nM for FKBP12
WT

. 

 

2.2.5 Synthesis of Cα substituted rapamycin 

 

 

 

Fig. 51: (a) TBSOTf, 2,6-Lutidine, RT, 80%. (b) NaCNBH3, MeOH, 0°C-50°C, 20%.  
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The immunosuppressive effect of rapamycin results from inducing ternary protein complexes with 

the FKBPs and the kinase mTOR, an important regulator of cell growth and proliferation. The most 

prominent partner of rapamycin is believed to be FKBP12. Research in Hausch lab showed that 

rapamycin complexes of larger FKBP protein family members can tightly bind to mTOR and potently 

inhibit its kinase activity (März et al. Manuscript in preparation).  

To investigate the role of the different FKBPs involved in the ternary FKBP-rapamycin-mTOR 

complexes a FKBP subtype-selective rapamycin analog is needed. We intended to synthesize a Cα 

modified rapamycin derivative as depicted in Fig. 51 by introducing an ether at the C9 carbonyl 

group. We started with protection of the hydroxyl groups 10, 28 and 40 by TBS. For this reaction 

TBS-Cl was not reactive enough, so TBDMS-OTf had to be used. Under these conditions hydroxy 

group 28 and 40 were protected smoothly to give 71 with 80% yield. It was also possible to isolate 

the hemiacetal hydroxyl group 10 protected product 72 with 3% yield. With the double protected 

derivative 71 we next targeted the selective reduction of the Cα carbonyl assuming that the 

α-keto-amide would be the most electrophile position. The reduction proved to be very difficult. 

Using numerous different reaction conditions (Superhydride, LiAl(OtBu)3H, DIBAL, LiAlH4, NaBH4, 

NaB(OAc)3H) only trace amounts of product could be obtained. Finally we discovered reaction 

conditions (NaCNBH3 0°C-50°C) that reduced the C9 carbonyl with moderate 20% yield.  

We decided to further modify the obtained compound with a methyl group at the C9 hydroxy group. 

We explored different bases (Lutidine, K2CO3, LiHMDS, NaH) and MeI or MeOTf but until now no 

product could be isolated.  

To overcome the problems of the aforementioned synthetic route we engaged in the synthesis of a 

Cα-hydroxy, Cα-allyl derivatized rapamycin analog. This was inspired by the results with the synthetic 

ligand 64a. Mechanistic studies on rapamycin and ascomycin showed that the C9 carbonyl group is 

the most reactive in the molecule133, 134, so we planned a simplified synthetic route without 

protecting groups. We decided to start with allylmagnesium bromide but this reaction produced 

mono- to polyallylated compounds due to the high reactivity of the reagent also at -78°C. Fig. 52 

indicates the most reactive functional groups of rapamycin for an attack of allylmagnesium bromide. 

The most electrophilic positions of rapamycin are the C1 ester, the C9 carbonyl group, the C10 

hemiacetal, and the two other carbonyl groups at C26 and C32. To improve the chemo selectivity we 

decided to use less reactive reagents and activate the C9 carbonyl by a lewis acid. We chose 

allytrimethylsilane and tetraallyltin as allyl donors, while the carbonyl group was activated by 

In(OTf)3. Allytrimethylsilane failed to produce any product but with tetraallyltin defined peaks of 

mono-, di-, tri and tetrasubstituted products were observed. By RP-HPLC it was possible to separate 

mono-allylated 24% 75-978, di-allylated 7% 75-1021, and tri-allylated 3% 75-1063 derivatives.  
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Fig. 52: (a) THF, -78°C. (b) InOTf3, THF, RT, 24,2%. 

 

All of the alkylated rapamycin derivatives of 75 showed a dramatically decreased affinity for the 

wildtype and the F67V mutated FKBP proteins, and showed a selectivity for FKBP12 of greater than 

100-fold. Unfortunately with the applied alkylation conditions no good binder could be isolated from 

the reaction mixture. Mono-allylated 75-978 binds to FKBP12 with an IC50 of around 5 µM whereas 

rapamycin binds in this assay to FKBP12 with an IC50 of around 30 nM which accounts to a 100-fold 

loss in binding affinity. Di- and tri allylated 75-1021 and 75-1063 lost affinity to FKBP12 in the same 

order of magnitude and showed only micromolar affinity. Binding affinity to FKBP51FK1/FKBP52FK1 

wildtype and F67V mutant decreased to undetectable levels greater than 100 µM. From the Cα 

hydroxy ligand series (Chapter 2.2.3) it is clear that the stereochemistry at Cα is essential for binding. 

The stereochemistry of the reduction could not be determined of the isolated derivatives because 

not enough material for NMR interpretation was obtained.  

 

2.3 Structural basis for the selectivity 

2.3.1 Structure-activity relationship of the iFit ligands 

 

We synthesized a series of Cα-substituted ligands to identify new compounds that induce the 

conformational change and thereby increase the selectivity. The exchange of the free acid 

substructure to the morpholine substructure increased the binding affinity in the allyl and 
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cyclopropylmethyl series substantially whereas in the cyclohexenyl/cyclohexyl series this exchange 

showed no additional increase in binding affinity. The Biricodar pyridine top-group lowered the 

affinity 2 fold compared to the free acid or morpholine analogs but decreases molecular weight and 

has one less stereocenter. We employed the even smaller monovalent top-group of 53 which 

resulted in a substantial loss in activity to micromolar levels.  

The exchange from pipecolate to proline core is context-dependent and accounts only for minor 

changes in binding affinity whereas the piperidine-2-carboxamide core showed a 10-fold decrease in 

binding affinity.  

We increased the Cα substituent to cyclopropylmethyl which slightly increased the affinity. Upon 

increasing the size to cyclohexenyl/cyclohexyl the affinity could be increased to low nanomolar 

levels. These compounds are the first reported FKBP51 ligands that bind with sub-micromolar to low 

nanomolar affinity, and additionally show up to 10000-fold selectivity over FKBP52 and up to 10-fold 

selectivity over FKBP12. To determine if the alkene of the cyclohexenyl ring has an important effect 

on binding, we reduced the double bond. This further increased the binding affinity by almost 10-

fold.  

We synthesized the hydroxy compounds 64 and isolated the correct diastereomer which binds with 

similar affinity as the related compound 52. Although we only synthesized one example yet it 

indicates that the Cα-cyclohexyl/Cα-hydroxy substitution is almost equivalent to Cα-cyclohexenyl. We 

wanted to explore the limits of the induced binding pocket, so we enlarged the 

allyl/cyclopropylmethyl series to benzyl. This substituent is too large to be accommodated by the 

FKBP proteins. No binding affinity in the range of the assay could be measured.  

 

 

Tab. 8: SAR of iFit ligands (~ equal but context dependent)  

 

The final SAR for binding of the iFit ligands to wildtype FKBP51 is shown in Tab. 8. The free acid 

showed in combination with cyclohexyl slightly better binding affinity than the morpholine top 

group, followed by the bipyridine substituent. The smallest monovalent top group showed the worst 

binding affinity. In combination with cyclohexenyl or cyclohexyl the pipecolinic core gave the best 

binding affinity, and for the Cα substituents cyclohexyl was a little bit better than cyclohexenyl but 
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both of them were around 10 to 100-fold better than cyclopropylmethyl and allyl. The worst Cα 

substituents were ethyl and benzyl.  

 

2.3.2 Quantification of the induced conformational change 

 

We quantified the conformational change in FKBP51 by measuring the distances from F67 to I87, 

W90 and F130, and the dihedral angle that defines the orientation of the phenyl ring of F67 (Fig. 53). 

We compared these values to the co-crystal structure of unselective ligands FK506 and SLF, and to 

the apo structure. The distance from F67 Cζ↔I87 Cδ increased from 7.1-7.3 Å to 14.9-15.2 Å. In the 

same way, the distance between F67 Cζ↔W90 Cθ increased from 7.0-7.3 Å to 12.5-12.8 Å. The 

distance between F67 Cζ↔F130 Cζ extended from 3.7-3.8 Å to 10.8-10.9 Å. The dihedral angle of 

F67 changed from 58.9°-63.8° to -152.2°-(-177.0°). All Cα substituents synthesized by us varying from 

allyl to cyclohexyl are able to induce this conformational change in FKBP51. This induced 

conformation seems to be substantially less favorable for FKBP52, resulting in selectivities between 

100 to 1000-fold. In addition cyclohexenyl and cyclohexyl strongly contribute to binding affinity. 

 

 

 

Fig. 53: Conformational reorganization of F67: (A) apo crystal structure of FKBP51FK1; (B) co-crystal structure FKBP51FK1 

and 51. The dihedral angle N-Cα-Cβ-Cγ defining the conformational flip is indicated. (C) Distance of F67 Cζ to I87 Cδ, F67 Cζ 

W90 Cθ and F130 Cζ in Å. Distance of F67 Cζ of co-crystal structures to F67 Cζ of the apo structure without ligand in Å. 

Dihedral angle of F67 N-Cα-Cβ-Cγ. 
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2.3.3 Evaluation of the co-crystal structures 

 

2.3.3.1 The Cα-Substituent 

 

To examine the structural basis for the unexpected selectivity of the iFit ligands for FKBP51 we solved 

four co-crystal structures with the FK1 domain of FKBP51 and compounds 24, 27, 42 and 51. Fig. 54 

shows the induced subpocket in the protein and a spacefilling model of the ligands. Fig. 54A and 54B 

show the allyl compounds 24 and 27. As described in Chapter 2.2.1 we enlarged the Cα substituent to 

cyclopropylmethyl, because we hypothesized that a bigger substituent would fill the cavity better 

than allyl. By comparing the space filling models of the co-crystal structures of allyl ligands 24 and 27 

(Fig. 54A and B) and the cyclopropyl of 42 our assumption proved to be true. It is easy to recognize 

that cyclopropyl fits much better into the hole than the allyl substituent of 27 (Fig. 54C), and thereby 

not only increases the binding affinity but also the selectivity for FKBP51. We observed that a 

substitution at Cβ would be tolerated, leading to the cyclized substituent cyclohexenyl (Fig. 54D). This 

substitution dramatically increased the affinity and selectivity further. Fig. 16D shows how nicely the 

cyclohexenyl fits into the cavity that it induces. The alkene moiety points into the pocket and the 

aliphatic part outwards. The alkene moiety per se however, does not seem to be essential since the 

reduced cyclohexyl ligands interacts even better with FKBP51. So we conclude that if the 

stereochemistry of the alkene could be better defined it would be suitable for further modifications. 

 

    

Fig 54: (A) Co-crystal structure of 24 and FKBP51FK1. (B) Co-crystal structure of 27 and FKBP51. For better visibility of the 

induced sub-pocket K121 was removed from the crystal strucures. 
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Fig 54: (C) Co-crystal structure of 42 and FKBP51. (D) Co-crystal structure of 51 and FKBP51. For better visibility of the 

induced sub-pocket K121 was removed from the crystal strucures. 

 

2.3.3.2 The Trimethoxyphenyl Moiety  

 

Fig. 55 shows the orientation of the trimethoxyphenyl moiety in the four co-crystal structures. The 

(S)-configuration at Cα directs the trimethoxyphenyl ring out of the binding pocket. The movement is 

further limited by the top-group which does not allow it to turn. In all structures the ring adopts the 

same orientation. Only the para methoxy group seems to be free to change orientation, indicating 

that this methoxy might be less important. In our SAR we showed that by removing the methoxy 

groups the affinity drops dramatically. The crystal structures show van der Waals interaction 

between the methoxy groups and the side chains. Aromatic hydrogen bonds can be observed from 

the ortho positions of the trimethoxyphenyl ring to D68 on one side and to Y113 on the other side 

which are both in 3.4 Å distance. The side chains of the amino acids Y57, D68, Y113, S188 and I122 

are in van der Waals distance to the trimethoxyphenyl ring. More different substructures have to be 

synthesized to perform a SAR study to better understand the structural implications of this part of 

the ligand.  

 

 

(C)         (D) 

 

42 51 Cyclohexyl Cyclopropylmethyl 
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Fig 55: Comparison of the trimethoxyphenyl moiety (A) Co-crystalstructure of 24 and FKBP51FK1. Aromatic hydrogen 

bonds formed between D68/Y113 and the ortho positions of the trimethoxy phenyl ring (B) Co-crystalstructure of 27 

and FKBP51FK1. (C) Co-crystalstructure of 42 and FKBP51FK1. (D) Co-crystalstructure of 51 and FKBP51FK1. For better 

visibility of the sub-pocket K121 was removed from the crystal strucures 

 

2.3.3.3 The Top Group 

 

We tested four different top groups in our SAR study. Of these, two of them were crystalized, the 

morpholine substructure and the free acid substructure. In general, the morpholine and the free acid 

top groups show the best binding affinities in a similar range. Interestingly for smaller Cα substituents 

like allyl and cyclopropylmethyl, the morpholine substructure performed around one order of 

magnitude better than the free acid top group. In contrast, the bigger cyclohexenyl/cyclohexyl 

substituents show only marginal differences between the two top groups. The free acid performed 

here around two times better than the morpholine. In the co-crystal structures the A and B phenyl 

rings all show almost the same conformation. Only in one of the SLF structures the A ring is rotated 

180° compared to 24, indicating the free acid is flexible and does not contribute substantially to the 

binding (Fig. 56B-C). Both rings sit nicely in shallow groves on the surface of the protein, mainly 
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contributing to binding by non-directed hydrophobic interactions. In addition, in all co-crystal 

structures aromatic hydrogen bonds of both rings to the amino acid backbone are present.  

 

   

  

  

Fig. 56: (A) General structure of the ligands. (B) Co-crystal structure of FKBP51FK1 and IF63. (C) Co-crystal 

structure of FKBP51FK1 and 21. (D) Co-crystal structure of FKBP51FK1 and 27. (E) Co-crystal structure of FKBP51 

and 42. (F) Co-crystal structure of FKBP51FK1 and 51. 

 

Ring A forms a hydrogen bond from its ortho position to the amide carbonyl of Q85 and ring B from 

the meta position to the amide carbonyl of G84. In addition the morpholine co-crystal structures of 
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27 and 51 show in addition a bridging water molecule which connects the morpholine amine with the 

amide carbonyl of Q85. These findings probably explain the strong gain in affinity for the ligands with 

small Cα substituents but cannot explain why in the large cyclohexeny/cyclohexyl series this increase 

is not present or even reversed. More research on the top group has to be performed to evaluate the 

SAR. 

 

3. Summary and Outlook on Selective FKBP Ligands 

 

Taken together, by using functionally active FKBP51 and FKBP52 mutants that were sensitive to 

engineered inhibitors (FMSE inhibitors) we unambiguously demonstrate that FKBP ligands can have 

both neurite outgrowth-stimulating and neurite outgrowth-suppressing effects. Furthermore, the 

shown results provide a rationale for the design of selective ligands for FKBP51 by exploiting a 

conformational change which induces an extended binding pocket. We synthesized and evaluated 

the first selective FKBP51 ligands that bind with low nanomolar affinity and a selectivity of >1000-fold 

over FKBP52. We further applied these ligands in a cellular assay using mouse neuroblastoma cells 

(N2a) where selective inhibition of FKBP51 increased the neurite growth. These results replicated our 

results from the FSSE ligands under basal conditions. We showed that selective inhibition of 

endogenous FKBP51 has outgrowth-stimulating effects. The net effect of unselective FKBP inhibitors 

will thus depend on the relative importance of FKBP51 or FKBP52 in each cell type of interest. 

Neurite outgrowth-promoting substances have repeatedly been shown to enhance neuronal 

regeneration after neuronal insult, injury or degeneration. In the context of depression or related 

affective disorders the reduction of neuronal plasticity by the stress-induced FKBP51 is thought to 

contribute to the behavioral and cognitive deficits observed in these patients. Our results suggest 

that selective FKBP51 inhibitors could be superior to non-selective FKBP inhibitors at ameliorating 

these deficiencies.  

We postulate that our findings on iFit ligands represent a general phenomenon and that all 

compounds that induce the conformational change described by us will display a bias for FKBP51. 

Moreover, we believe that the induced additional pocket in FKBP51 discovered by us can be used to 

rationally design additional FKBP51-selective inhibitors. 

Addition of cyclohexylmagnesium bromide to Biricodar in THF at -78°C readily produced 61 as a 1:1 

mixture of diastereomers which could be successful separated by preparative HPLC (Fig. 57). This 

allows for a broad spectrum of reaction types to be employed. The first step is analogous 

modification with different alkylmagnesium bromides and change to the morpholine top group, that 

has proven to give an increase in affinity (Scheme 57). Up to now cyclohexyl is the biggest Cα 
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substituent that is tolerated. Using the Grignard method it is easily possible to increase the ring to 

cycloheptane or cyclooctane or decrease it to cyclopentane. Further by using cycloalkenylmagnesium 

bromides it is possible to further modify the rings by Simmons-Smith cyclopropanation, oxidation, 

halogenation and so forth.  

The method could be further optimized by using less reactive organometallic reagents like alkylboron 

or alkylzinc reagents which can be applied to stereoselective synthesis135-137. 

With the same methodology but starting from cyclohexyl-α-keto-acetic acid, it is possible to 

investigate on the trimethoxy moiety. The starting point is 2-cyclohexylacetic acid138 80 which is 

coupled to form 81. Then a screen with different commercially available aromatic or aliphatic 

Grignard reagents can be performed (Scheme 57) to probe different R3 parts of the ligand.  

 

 

 

Scheme 57: (a) HATU, DIPEA, CH3CN, RT. (b) RMgBr, THF, -78°C. (c) RMgBr, THF, -78°C. 
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4. Fluorescent Immunophilin Tracers 

4.1 Synthesis of fluorescent rapamycin derivatives 

 

 

 

Fig. 58:Fluorescent FKBP ligand F1 and Fluorescent rapamycin derivative F2 

 

The best of our small molecule ligands reached the limits of the fluorescence polarization assay using 

the fluorescent tracer F1, due to its binding affinity to FKBP51FK1 of around 400 nM and to 

FKBP52FK1 of around 900 nM. Therefore using this tracer no compounds can be measured that bind 

better than around 200 nM for FKBP51. In our group the fluorescent rapamycin derivative F2 was 

prepared (Fig. 58)108. This tracer showed affinity for FKBP51 below 1 nM, and for FKBP52 around 1 

nM. With the fluorescence polarization mode of our Tecan plate reader it is possible to measure 

concentrations of fluorescein-labeled ligands as low as 1 nM. To measure Ki inhibition constants of 

ligands in a competition experiment it is necessary to use protein concentration equal to the Ki of the 

tracer, and tracer concentrations ideally below half the Ki value of the tracer. In this case F2 would 

have to be used in picomolar concentrations, which is not measurable in polarization mode with our 

reader. We considered two possible solutions for that problem. First, using a tracer that can be 

diluted to even lower concentrations, meaning a brighter fluorophore has to be used. Alternatively, a 

tracer with binding affinity between F1 and F2 has to be synthesized. It is difficult to predict how a 

complex fluorophores like fluorescein would influence the affinity of the ligand, so we started to 

synthesize a series of fluorescent rapamycin derivatives. We synthesized the C40-glycine modified 

rapamycin analog 71 according to Kozany et al (Fig. 59).108 Then we couple different fluorophores 

bearing an active ester to it.  
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Fig. 59: (a) NaN3, H2O, 0°C-RT, 99%. (b) 2,4,6-trichlorobenzoyl chloride, TEA, DMAP, rapamycin, THF, 0°C, 33%. (c) PPh3, 3:1 

THF/H2O, RT, 60%. (d) MFP590 (F3-oSu), DIPEA, DMF, RT, 20%. 

 

The MFP590 fluorophore was the first to be employed. Compared to fluorescein it shows a red 

shifted emission spectrum with an absorption maximum of 597 nm and an emission maximum of 624 

nm (Fig 60). Red shifted fluorophors offer better signal to noise ratios then green shifted fluorophors 

like fluorescein.  

 

 

Fig. 60 (A) Absorption (blue)/Emission (red) spectra of MFP590 εMax = 1.2x10
5
 L mol

-1
 cm

-1
. (B) Absorption spectra of 

F3, maximum 599 nm. 

MoBiTec® 
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We recorded an absorption spectra of ligand F3, which resembled the reported absorption maxima 

of the MFP590 (Fig. 60B).  

We titrated increasing concentrations of protein against F3 with three concentrations (20 nM, 5 nM, 

2 nM) unfortunately this fluorescent rapamycin derivative lost binding affinity for FKBP51FK1 

completely. This result is consistent with the findings of Kozany et al who showed that binding 

affinity for FKBP51 is strongly dependent on the linker length between the ligand and the 

fluorophor.108 More fluorophores with different linker length have to be coupled and tested. 

 

4.2 Synthesis of a fluorescent iFit ligand 

 

 

Fig. 61: (a) HATU, DIEPA, DMF, 23% 

 

Due to the problems we encountered with the fluorescent rapamycin derivatives we decided to 

synthesize a fluorescent iFit ligand according to the synthesis of fluorescent derivative F2 of SLF 

(Fig. 61).108 The free acid of 50 was activated and reacted with aminomethyl-fluorescein to give F4.  

We recorded an absorption spectra of F4 which is in line with the spectra of fluorescein showing an 

absorption maximum at 498nm with an εMax of 46900 L / (mol/cm) (Fig. 62A). We performed a FP 

binding assay and the ligand was able to bind to the FK1 domain of FKBP51 with an EC50 of 5.8 ± 0.3 

nM in addition we calculated the dissociation constant Kd = 4.4 ± 1.2 nM (Fig. 62B). To demonstrate 

the applicability of the tracer F4 for the characterization of unlabeled ligands, we tested its 

performance in FP-competition assays (Fig. 62C). The unlabeled iFit ligand 50 was able to efficiently 

compete the tracer from FKBP51FK1. We determined an IC50 value of 69.4 ± 6.3 nM and calculated 

the inhibition constant Ki = 23.5 ± 4.0 nM. We measured the binding of the fluorescent iFit ligand to 

FKBP52FK1 and as anticipated the affinity was 500 fold less than for FKBP51FK1. We assessed an EC50 

of 2611 ± 340 nM and calculated a KD of 2945 ± 1920 nM (Fig. 62D).  

In summary, fluorescent iFit ligand F4 binds 10 fold more potent to FKBP51FK1 than the unlabeled 

precursor compound 50, likely due to additional contacts of the conjugated fluorescein. The tracer 

can be competed by non-labeled ligands which enables its use in FP competition assays. Most 

important its binding affinity for FKBP51 lies between that of F1 and F2 which enables for measuring 
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binding affinities below 200 nM which was necessary to evaluate our most advanced iFit ligands. 

Finally, F4 further demonstrates nicely in a direct binding experiment to FKBP52FK1 the selectivity of 

the iFit ligands for FKBP51.  

 

F4: absorption spectra
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Fig. 62: (A) Absorption spectra of F4 (5.4 µM), maximum 498 nm. εMax = 46900 L / mol
-1

 cm
-1

. (B) Binding of 3 nM F4 to 

FKBP51FK1 measured by fluorescence polarization. (C) Competition of F4 (3 nM) with 50 for the binding to FKBP51FK1 

(4.5 nM). (D) Binding of 3 nM F4 to FKBP52FK1 measured by fluorescence polarization.  

 

4.3 Facile synthesis of a fluorescent CsA analogue to study Cyclophilin 40 

and Cyclophilin 18 ligands 

 

Cyp40 is a modulator of steroid hormone receptors and a further potential Hsp90 and SHR-

associated drug target. To be able to screen for novel inhibitors for this immunophilin a fluorescein- 

labeled CsA analogue was synthesized.  

This tracer was produced by a facile four step synthesis (Scheme 23). We show the binding of this 

tracer to Cyp40 and Cyp18 by measuring the fluorescent polarization change and demonstrate its 

(A)       (B) 

 

 

 

 

 

(C)       (D) 
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competition with Cyclosporin A. The binding data was confirmed using an enzymatic PPIase assay. 

The described tracer allows for a robust assay in a high throughput format to support the 

development of novel Cyp40 ligands. The results were published in Journal of medicinal chemistry 

letters (Gaali et al).139 

 

 

Fig. 63: (a) Boc2O, TEA, MeOH, RT, quant. (b) Grubbs Cat. II. Gen, DCM, reflux, 52% (c) 10% TFA, DCM, 0°C, 81%. (d) NHS-

fluorescein, TEA, DCM/THF 2:1, RT, 23%. 

 

4.3.1 Synthesis of the tracer 

 

The unselective cyclic undecapeptide cyclosporin A (CsA, Scheme 23) binds unspecifically to the class 

of cyclophilins in the nanomolar range. It is clinically used as an immunosuppressive drug140. We used 

CsA as a starting point for our tracer synthesis. By analyzing the co-crystal structure of Cyp18/CsA we 

noticed, that the terminal trans-alkene moiety of the unnatural aminoacid butenyl-methyl-L-

threonine (position 1 of CsA in Scheme 23) points out of the binding pocket, and is solvent 

accessible.141 This alkene is very suitable for a Grubbs metathesis reaction and thus can be used to 

introduce the fluorescent label.  

We decided to attach an amine containing linker to CsA that could be easily coupled to carboxy-

containing fluorophores. We first tried to couple Boc-allylamine or allylammoniumchloride to CsA 

which resulted in poor yields probably because metathesis catalysts are known to be sensitive to 

primary amines that are in close distance to the double bond. We thought to overcome this problem 

by using a longer linker. Therefore we first protected commercially availalable paravinylamino-
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benzene 88 with Boc2O to obtain 89 with quantitative yields. This was then coupled to CsA using 

second generation Grubbs catalyst to give 90 in good yields. The primary amine was liberated using 

10% TFA to produce 91 which was reacted with 5/6-carboxyfluorescein N-hydroxysuccinimide (NHS-

Fluorescein) to give the final compound CsA-Fl. 

 

4.3.2 Development of a fluorescence polarization assay for cyclophilin 40 and 

Cyp18 

 

The proteins Cyp40 and Cyp18 were cloned and expressed according to Gaali et al.139 The 

functionality of the purified proteins was verified by a coupled enzymatic assay measuring their 

PPIase activity. We determined Kd values of 106 ± 13 nM for Cyp40 and 12 ± 2 nM for Cyp18 (Fig. 

64A, Tab. 8). The absolute change in anisotropy was substantially larger for Cyp40 compared to 

Cyp18, likely reflecting the bigger size of the former. To verify the binding affinity of tracer CsA-Fl to 

Cyp40 and Cyp18, a coupled enzymatic PPIase assay was performed (Fig. 65).142 The measured values 

of 101 ± 24 nM for Cyp40 and 12 ± 4 nM for Cyp18 match very well with the FP-assay results shown 

above. 

 

 

 

 

 

 

 

 

Fig. 64: (a) Binding of CsA-Fl (10 nM) to Cyp18 and Cyp40 measured by fluorescence polarisation. (b) Competition of CsA 

with CsA-Fl (10 nM) for the binding to Cyp18 (10 nM) and Cyp40 (100 nM) measured by fluorescence polarisation.  

 

To demonstrate the use of the tracer CsA-Fl for the characterization of unlabeled ligands, we tested 

its performance in FP-competition assays (Fig. 64B). The prototypic ligand CsA could efficiently 

compete with CsA-Fl for the binding to Cyp40 and Cyp18. The measured Kd values were again 

(A)        (B) 
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corroborated with a PPIase assay (Fig. 65, Tab. 8). For Cyp40 there was an excellent match between 

FP and PPIase results while for Cyp18 a slightly lower Ki was observed in the PPIase assay. 

In general, CsA-Fl binds slightly more potent to both Cyp18 and Cyp40 than CsA likely due to 

additional contacts of the conjugated fluorescein. The affinities measured in this work are consistent 

with the literature values for Cyp40 as well as with the majority of reports for Cyp 18. For Cyp18 

substantial discrepancies in CsA affinities have been reported. The consensus values, however, match 

very well with the results reported in this work.29  

 

 

 

 

 

 

 

 

 

 

 

Figure 65                              : (A) Inhibition of the PPIase activity of Cyp40 (100 nM) by CsA (dashed, ) and CsA-Fl 

(continuous, ). (A) Inhibition of the PPIase activity of Cyp18 (10 nM) by CsA  (dashed, ) and CsA-Fl (continuous, ). 

 

 

 Cyclophilin FP-assay (Ki or KD) PPIase assay (Ki) 

CsA Cyp40 227 ± 22 231 ± 55 

Cyp18 34 ± 6 7 ± 1 

CsA-Fl Cyp40 106 ± 13 101 ± 24 

Cyp18 12 ± 1 12 ± 4 

Table 8: Binding and inhibition constants (nM) measured by fluorescence 

polarization or by an enzymatic PPIase assay 

 

 

In summary, we developed a facile synthesis of a fluorescein-labelled tracer CsA-Fl, which shows high 

affinity binding to Cyp40 and Cyp18. The tracer can be competed by CsA. Therefore CsA-Fl enables a 

fluorescence polarisation assay in high throughput format, which can be used for screening and 

subsequent profiling of inhibitors of Cyp40 to identify structures for the development of potential 

new drugs against breast and prostate cancer. 

(A)        (B) 
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C. Experimental Section 

 

1. Analytical Methods 

1.1 Nuclear magnetic resonance  

 

1D 1H, 13C-NMR and 2D HSQC, HMBC and COSY were recorded at the department of chemistry and 

pharmacy of the LMU on a Bruker AC 300, a Bruker XL 400, or a Bruker AMX 600 at room 

temperature. Chemical shifts for 1H or 13C are given in ppm (δ) relative to tetramethylsilane (TMS) as 

internal standard. CDCl3 and d6-DMSO were used as solvents. 1H and 13C spectra were calibrated on 

the specific solvent. The coupling constants (J) are given in Hertz (Hz). The multiplicities are 

abbreviated as singlet (s), dublet (d), triplet (t), quartet (q) and multiplet (m).  

 

1.2 Mass spectroscopy 

 

Mass spectra (m/z) were recorded on a Thermo Finnigan LCQ DECA XP Plus mass spectrometer at the 

Max Planck Institute of Psychiatry, while the high resolution mass spectrometry was carried out at 

MPI for Biochemistry (Microchemistry Core facility) on Varian Mat711 mass spectrometer.  

 

1.3 HPLC 

 

The purity of the compounds was verified by reversed phase HPLC. All gradients were started after 

1 min of equilibration with starting percentage of solvent mixture. 

 

Analytical: 

Pump: Beckman System Gold 125S Solvent Module  

Detector: Beckman System Gold Diode Array Detector Module 168 

Column: Phenomenex Jupiter 4µ Proteo 90Å, 250 x 4.6 mm 4 micron 
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Solvent A: 95% H2O  

 5% CH3CN 

 0.1% TFA 

Solvent B: 95% CH3CN 

 5% H2O 

 0.1% TFA 

Standard Gradient: 0-100% B in 20min, 1 ml/min 

Detection  

wavelength: 220nm/280nm 

 

Chiral:  

Pump: Waters 515 HPLC Pump 

Detector: LDC Analytical Spectromonitor 5000 Photodiode Array Detector 

Column: DAICEL Chemical Industries LTD. Chiralcel OD-H 

 

Solvent A: Hexane 

Solvent B: i-propanol 

Standard Gradient: 1:1 60 min, 0.5 ml/min 

Detection  

wavelength: 220nm 

 

Preparative:  

Pump: Beckman System Gold Programmable Solvent Module 126 NMP 

Detector: Beckman Programmable Detector Module 166 

Column: Phenomenex Jupiter 10µ Proteo 90 Å, 250 x 21.2 mm 10 micron 

 

Methods: Described at the specific compound 

 

Semi- 

preparative:  

Pump: Beckman System Gold 125S Solvent Module  

Detector: Beckman System Gold Diode Array Detector Module 168 

Column: Phenomenex Jupiter 10µ Proteo 90 Å, 250 x 10 mm 10 micron 

 

Methods: Described at the specific compound 
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LC-MS: 

Pump: Beckman System Gold 125S Solvent Module  

Detector: System Gold Diode Array Detector Module 168 

Column: YMC Pack Pro C8, 100 x 4.6 mm, 3μm 

 

Solvent A: 95% H2O  

   5% CH3CN 

 0.1% Formic acid 

Solvent B: 95% CH3CN 

   5% H2O 

 0.1% Formic acid 

Standard Gradient: 0-100% B in 11 min, 1 ml/min 

Detection  

wavelength: 220nm, 280nm 

 

1.4 Silica chromatography 

 

For manual column chromatography, Silicagel 60 (Roth) with a particle size of 0.04-0.063 mm was 

used. Automated flash chromatography was performed, using an Interchim Puriflash 430 with an UV 

detector at 254 nm. Preparative thin layer chromatography (TLC) was performed on glas plates 

coated with 2 mm SiO2 (Merck SIL-G-200, F-254,). 

For TLC aluminum plates coated with SiO2 (Merck 60, F-254) were used. The spots were visualized by 

UV light and/or by staining of the TLC plate with one of the solutions below followed, if necessary, by 

heating with a heat gun.  

 

Hanessians:  5 g Ce(SO4)2, 25 g NH4Mo7O24 4 H2O, 450 mL H2O, 50 mL H2SO4 

 

Ninhydrin:  0.5 g Ninhydrin, 100 mL EtOH, 5mL AcOH  

 

Kaliumpermanganat: 1.5 g KMnO4, 10 g K2CO3, 1.25 mL 10% NaOH in 200 mL H2O 
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1.5 Data analysis of neurite outgrowth 

 

The handling and treatment of N2a cells was performed by Alexander Kirschner. Pictures of cells 

were provided as image files. Data analysis was performed using the open source program ImageJ 

(http://rsbweb.nih.gov/ij/) and the plugin NeuronJ to measure the neurite length. Per lane of the 

diagrams neurites of 20-30 cells were measured and the average with standard error was plotted 

using Sigmaplot11. 

 

2. Reagents and solvents 

 

2.1 Reagents 

 

Reagents were obtained from ABCR, Aldrich, Alfa Aeser, Fluka, Merck, Novabiochem, Roth, Sigma 

Aldrich and Synchem in common qualities puriss., p.a. or purum and used without further 

purification.  

 

Compound name CAS No. Company Product code Purity 

Allylmagnesium bromide 1M in 

THF 

1730-25-2 Aldrich 225754 - 

4’-(Aminomethyl)fluorescein 

hydrochloride 

91539-64-9 Invitrogen 1032248 ≥95 

3-Bromocyclohexene 1521-51-3 ABCR AB114158 95% 

Benzoylformic acid 611-73-4 Merck 8.41629 95% 

Cyclohexanone 108-94-1 Aldrich 398241 99% 

Cyclohexene 110-83-8 Fluka 29230 ≥99.5% 

Cyclohexylmagnesium bromide 

(1 M, in THF) 

931-50-0 ABCR AB140471 - 
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Dicyclohexylacetic acid 52034-92-1 Aldrich 333840 99% 

DCC 538-75-0 Aldrich D,800-2 99% 

Diphenylacetic acid 117-34-0 Aldrich D204307 99% 

3,4-Dimethoxybenzaldehyde 120-14-9 Aldrich 143758 99% 

DIPEA 7087-68-5 Fluka 03440 99% 

DMAP 1122-58-3 Aldrich 522805 99% 

EDC 25952-53-8 Fluka 03449 ≥99.0% 

Formic acid 64-18-6 Roth 4724.3 ≥98% 

Grubbs Catalyst 2nd Gen. 246047-72-3 Aldrich 569747 ≥99 

Fmoc-Pro-OH 71989-31-6 Novabiochem 852017 ≥98% 

HATU 148893-10-1 Novabiochem 8.51013 ≥99% 

HOAt 39968-33-7 ABCR AB281963 - 

HCl 7647-01-0 Roth 9277.1 37% 

3’-Hydroxyacetophenone 121-71-1 Aldrich 328103 ≥99% 

1-Hydroxy-7-azabenzotriazole 39968-33-7 ABCR AB281963 ≥99 

In(OTf)3 128008-30-0 Aldrich 442151 ≥99% 

Iodomethylcyclopropane 33574-02-6 Synchem CIC048 95% 

KMnO4 7722-64-7 Merck 1.05082 ≥99% 

K2CO3 584-08-7 Roth X894.2 ≥99.9% 

KI 7681-11-0 Roth 8491.1 ≥99 % 

KOH 1310-58-3 Roth 6751.1 ≥95% 

LiCl 7447-41-8 Aldrich L9650 ≥99 % 

LiHMDS 1M in THF 4039-32-1 Aldrich 22,577-0 - 



C. Experimental Section_______________________________________________________________ 

79 
 

L-Pipecolinic acid 3105-95-1 Alfa Aesar L15373 99% 

LiOH 1310-65-2 Sigma 545856 ≥99 % 

4-Methyl piperidine 626-58-4 Aldrich M73206 96% 

MgSO4 7487-88-9 Roth 0261.3 99% 

NaCl 7647-14-5 VWR 27810.295 99.8 % 

n-BuLi 2M in cyclohexane 109-72-8 Aldrich 302120 - 

NaH 60% dispersion 7646-69-7 Aldrich 45,291-2 60% 

NaHCO3 144-55-8 Roth 8551.1 ≥ 99 % 

NaHMDS 1M in THF 1070-89-9 Aldrich 24558-5 - 

NaNO2 7632-00-0 Roth 8604.1 ≥98.7% 

NH4Cl 12125-02-9 Merck 1.01145 99.8 % 

2-Nitrobenzenesulfonyl chloride 1694-92-4 Aldrich N1,150-7 97% 

Noyori catalyst 212143-24-3 ABCR AB131601 90% 

4-Phenoxystyrene 4973-29-9 ABCR AB173746 90% 

Pd/C 7440-05-3 Aldrich 75992 5% 

Pentafluorophenol 771-61-9 Aldrich 103799 99% 

(S)-4-iso-Propyloxazolidin-2-one 17016-83-0 Aldrich 298883 99% 

(S)-Pyrrolidine-2-carboxylic acid 147-85-3 Fluka 81710 ≥99% 

(1S,2S)-(+)-Pseudoephedrine 90-82-4 Aldrich 287636 98% 

Rapamycin 
53123-88-9 Cfm Oskar 

Tropitzsch 

53123-88-9 ≥95% 

tert-Butyl bromoacetate 5292-43-3 Fluka 17035 ≥97% 

Tetraallyltin 7393-43-3 VWR C04W023 96% 
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Triethylamine 121-44-8 Merck 8.08352 99% 

3,4,5-Trimethoxyphenyl acetic 

acid 

951-82-6 ABCR AB125360 99% 

TFA 76-05-1 Roth P088.2 ≥99.9% 

 

2.2 Non-commercial reagents 

 

5b, 5c, 5e, 25 and 26 were provided by the Lead Discovery Center in Dortmund. 5d was kindly 

provided by Yansong Wang (RG Hausch, MPI Psychiatry). The fluorescent tracers F1 and F2 were 

prepared as described in Kozany et al.108 by Christoph Kress (RG Hausch, MPI Psychiatry).  

 

2.3 Solvents 

 

Solvents were purchased from Roth or Sigma Aldrich with qualities, ROTOSOLV, ROTIPURAN; 

ROTIDRY or HPLC quality with ≥99% purity. Anhydrous solvents were used from Sigma Aldrich with 

sure seals. 

 

 

Compound name CAS No. Company Product code Purity 

n-Hexane 110-54-3 Roth 7339.1 ≥98% 

Cyclohexane 110-82-7 Roth 6570.4 ≥99.5% 

Ethylacetate 141-78-6 Roth CP42.6 ≥ 99.5% 

Chloroform 67-66-3 Roth Y015.3 ≥ 99% 

CDCl3 865-49-6 Roth Ae54.1 ≥ 99.38 % 

Dichloromethane 75-09-2 Roth 6053.5 ≥ 99.5% 

Dichloromethane sure seal, 75-09-2 Aldrich 270997 ≥ 99.8% 
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≥99.8 anhydrous) 

Tetrahydrofuran (sure seal, 

≥99.9 anhydrous) 

109-99-9 Aldrich Ae07.1 
≥ 99.9% 

2-propanol 67-63-0 Roth 7343.1 ≥ 99.9% 

Acetone 67-64-1 Roth 5025.4 ≥ 99.5 % 

Methanol 67-56-1 Roth 8388.4 ≥ 99 % 

Methanol HPLC 67-56-1 Roth 7342.1 ≥ 99.9 % 

Acetonitrile HPLC 75-05-8 Roth 8825.2 ≥ 99.9% 

Toluene 108-88-3 Roth Ae06.1 ≥ 99.5 % 

Diethylether 60-29-7 Roth T900.1 ≥ 99.8 % 

DMF 68-12-2 Roth A5291.1 99% 

DMF (sure seal, ≥99.8 

anhydrous) 

68-12-2 Aldrich 227056 
≥99.8 

 

3. General procedures 

 

All reactions were carried out with magnetic stirring and, when air or moisture sensitive, in flame-

dried glassware under argon (Westfalen, 99.999 Vol% Klasse 5.0). Syringes were used to transfer 

reagents. Reagents used in very moisture-sensitive reactions were dried overnight under high 

vacuum (< 1x10-2 mbar).  

 

4. Synthesis of used compounds  

 

4.1 General synthesis procedure A for the coupling of morpholine 

containing top-groups 
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The alkylated acid (20 mg, 75 µmol) was dissolved in 300 µL DCM or DMF, then DIPEA (41 µL, 

0.24 mmol) and HATU (46 mg, 0.12 mmol) were added and stirred for 15 min. Subsequently, the 

different top groups with a free secondary amine (32 mg, 60 µmol) in 300 µL DCM were added and 

stirred for 14 h. The reaction mixture was concentrated and flash chromatographed or purified by 

preparative HPLC. 

 

 

4.2 General synthesis procedure B for the coupling of free acid top-

groups 

 

The alkylated acid (57 mg, 0.21 mmol) and DIPEA (0.13 mL, 0.78 mmol) were dissolved in dry DCM 

(2 mL) at RT and stirred for 15min. Then, HATU (110 mg, 0.29 mmol) was added and stirred for 

another 15min. Subsequently, the different top groups with a free secondary amine (32 mg, 0.06 

mmol) in 300µL DCM was added and stirred for 14 h. The raw product was purified with flash 

chromatography and then the acid was liberated using 10% TFA in DCM at RT for 5h. The reaction 

mixture was concentrated and flash chromatographed or purified by preparative HPLC.  

 

4.3 Synthetic procedures 

 

(E)-3-(3,4-Dimethoxyphenyl)-1-(3-hydroxyphenyl)prop-2-en-1-one (2) 

 

 

 

3,4-Dimethoxybenzaldehyd (30.6 g, 184 mmol) and 3-hydroxyacetophenone (25 g, 184 mmol) were 

dissolved in 250 mL EtOH and cooled to 0°C in an ice bath. KOH (41.2 g, 734 mmol) was dissolved in 

200 mL H2O, cooled to ~10°C and added to the aforementioned ketone/aldehyde solution. The 

reaction mixture was allowed to warm to RT and stirred for 16 h. The solution was poured into an 

erlenmayer flask filled with ice. The ice-cooled solution was acidified with conc. HCl to pH<2. An 
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orange solid precipitated, which was filtered and afterwards dissolved in EtOAc. The product 2 was 

used without further purification (51.57g, 181 mmol, 99%). 

 

TLC [EtOAc/n-hexane 1:1.5]: Rf = 0.31. 

 

HPLC [0-100% Solvent B, 30 min]: Rt = 20.8 min, purity (220 nm) = 95% 

 

1H-NMR (300 MHz, CDCl3): δ = 7.71 (d, J = 6.6 Hz, 2H), 7.61 (d, J = 7.7 Hz, 1H), 7.53 (d, J = 1.7 Hz, 1H), 

7.47 (d, J = 1.7 Hz, 1H), 7.39-7.34 (m, 2H), 7.07-7.00 (m, 2H), 3.87 (s3, 3H), 3.82 (s, 3H). 

 

13C-NMR (150 MHz, CDCl3): δ = 189.3, 158.4, 151.6, 149.2, 144.5, 139.5, 129.9, 127.5, 123.9, 120.1, 

119.8, 119.5, 114.7, 112.0, 111.1, 56.1, 55.8. 

 

Mass (ESI+): calculated [C17H16O4+ H]+ 285.11, found 285.00 [M + H]+.  

 

3-(3,4-Dimethoxyphenyl)-1-(3-hydroxyphenyl)propan-1-one (3) 

 

 

 

100 mg Lindlar catalyst was placed into an autoclave (Modell II, Roth) and the autoclave was flushed 

with argon. (E)-3-(3,4-Dimethoxyphenyl)-1-(3-hydroxy-phenyl)prop-2-en-1-one 1 (25,6 g, 90 mmol) 1 

was dissolved in 150 mL MeOH and poured into the autoclave, which was then closed and again 

flushed with argon. Then, 30 bar hydrogen gas (Westfalen, 99,999 Vol% Klasse 5.0) was introduced 

into the autoclave and the solution was stirred for 72 h at RT. The raw product was filtered through 

cellite and MeOH was evaporated in vacuo. Purification was performed by manual column 

chromatography with EtOAc/n-hexane 1:2 to afford 3 (22.65g, 79 mmol, 88%) as a white solid.  

 

TLC [EtOAc/n-Hex 1:2]: Rf = 0.27. 

 

HPLC [0-100% Solvent B, 30 min]: Rt = 20.9 min, purity (220 nm) = 96% 
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1H-NMR (300 MHz, CDCl3): δ = 7.55 - 7.45 (m, 2H), 7.31 – 7.24 (m, 1H), 7.05 (d, J = 1.8 Hz, 1H), 6.8 – 

6.75 (m, 3H), 3.87 (s, 3H), 3.82 (s, 3H), 3.25 (t, J = 7.4 Hz, 2H), 2.98 (t, J = 7.5 Hz, 2H). 

 

13C-NMR (150 MHz, CDCl3): δ = 200.1, 156.2, 149.5, 147.0, 139.1, 132.1, 130.0, 122.0, 120.3, 114.9, 

112.3, 112.8, 56.1, 43.9, 30.9. 

 

HRMS (EI+): calculated [C17H18O4 + H]+ 287.1205, found 287.1278 [M + H]+. 

 

tert-Butyl-2-[3-{3-(3,4-dimethoxyphenyl)propanoyl}phenoxy] acetate (4a) 

 

 

 

To a solution of 3-(3,4-Dimethoxyphenyl)-1-(3-hydroxyphenyl)propan-1-one 3 (2 g, 7.0 mmol) and 

K2CO3 (1.9 g, 14.0 mmol) in 20 mL acetone was added tert-butyl-bromoacetate (1.1 mL, 7.7 mmol) 

and stirred for 20 h at RT. K2CO3 was filtered out and washed with aceton. The solvent was removed 

in vacuo. The raw product was dissolved in EtOAc and washed 3 times with brine. The aqueous phase 

was extracted with EtOAc. The combined organic layers were dried over MgSO4. The crude product 

was concentrated and purified by column chromatography (EtOAc/n-Hexane, 1:2) 4a (2.06g, 

5.14 mmol, 74%). 

 

TLC [EtOAc/n-Hexane 1:2]: Rf = 0.32 

 

HPLC [0-100% Solvent B, 30 min]: Rt = 26.2 min, purity (220 nm) = 98% 

 

1H-NMR (300 MHz, CDCl3): δ = 7.59 (dq, J = 5.4 Hz, J = 0.9 Hz, 1H), 7.48 (dd, J = 1.2 Hz, J = 1.5 Hz, 1H), 

7.38 (t, J = 8.1 Hz, 1H), 7.16 – 7.12 (m, 1H), 6.84 – 6.78 (m, 3H), 4.58 (s, 2H), 3.89 (s, 3H), 3.87 (s, 3H), 

3.27 (t, J = 8.1 Hz, 2H), 3.02 (t, J = 6.9 Hz, 2H), 1.51 (s, 9H). 

 

13C-NMR (150 MHz, CDCl3): δ = 198.9, 167.6, 158.2, 149.0, 147.5, 138.3, 133.8, 129.7, 121.5, 120.2, 

120.1, 113.13, 111.9, 111.4, 82.62, 65.7, 56.0, 40.8, 29.8. 
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Mass (ESI+): calculated without t-butyl [C23H28O6+ H]+ 345.13, found 345.20 [M + H]+. 

 

(R)-tert-Butyl-2-[3-{3-(3,4-dimethoxyphenyl)-1-hydroxypropyl}phenoxy] 

acetate (5a) 

 

 

 

tert-Butyl-2-[3-{3-(3,4-dimethoxyphenyl)propanoyl}phenoxy]acetate 4a (2.06 g, 5.14 mmol) was 

dissolved in isopropanol and filled into an autoclave (Roth, Modell II). Then K2CO3 (0.71 g, 5.14 mmol) 

was added and flushed with argon. Noyori catalyst (46 mg, 41 µmol, Scheme. 24) was added and 

after closing the autoclave, it was flushed again with argon. Now 35-40 bar hydrogen gas (Westfalen, 

99,999 Vol% Klasse 5.0) was filled into the autoclave and the solution was stirred for 72h. The raw 

product was filtered through cellite and the solvent was removed under reduced pressure.  

The product was purified by column chromatography (EtOAc/n-Hex, 1:2). 5a (1.73g, 4.28 mmol, 83%) 

was obtained as a white solid. The enantiomeric excess (ee = 98%) was determined using chiral 

analytical HPLC.  

 

 

 

Noyori catalyst (ABCR, AB131601) 

 

TLC [EtOAc/n-Hex 1:2]: Rf = 0.25. 

 

HPLC (Chiral): [i-Propanol/n-hexane, isochratic, 1:1 60 min]: Rt = 37 min, purity (220 nm) = 97% 
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1H-NMR (300 MHz, CDCl3): δ = 7.29 – 7.21 (m, 1H), 6.98 – 6.90 (m, 2H), 6.80 – 6.70 (m, 4H), 4.69 – 

4.66 (m, 1H), 4.52 (s, 2H), 3.86 (s, 3H), 3.85 (s, 3H), 2.70 – 2.60 (m, 2H), 2.11 – 1.95 (m, 2H), 1.49 (s, 

9H). 

 

13C-NMR (150 MHz, CDCl3): δ = 168.4, 160.7, 149.9, 147.1, 145.5, 134.4, 129.8, 122.5, 120.4, 112.2, 

111.6, 108.8, 82.1, 74.2, 65.9, 56.1, 39.1, 29.4, 28.7. 

 

HRMS (EI+): calculated für [C23H30O6 + Na]+ 425,1935, found 425,1946 [M + Na]+. 

 

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (6a) 

 

 

 

L-pipecolinic acid 1 (3.6 g, 10 mmol) was dissolved in 40 mL 10 % aqueous Na2CO3 solution and 

combined with a solution of Fmoc succinimide (3.4 g, 10 mmol) in 45 mL dioxane. The formed 

suspension was stirred for 22 h at RT. Then the reaction was quenched by addition of another 50 mL 

of H2O, followed by extraction with EtOAc. The aqueous phase was acidified to pH = 2, and again 

extracted with EtOAc. The organic phase was washed with 1 M HCl and brine, and dried over MgSO4) 

7a was concentrated (4.3 g, 8.3 mmol, 83%) and obtained as a white solid without further 

purification. 

 

TLC [EtOAc/cyclohexane 1:1, 0.1% TFA] Rf = 0.46. 

 

HPLC [0-100% Solvent B, 30 min]: Rt = 24.5 min, purity (220 nm) = 97% 

 

1H-NMR (300 MHz, CDCl3): δ (ppm) = 7.55-7.62 (m, 2H), 7.28-7.41 (m, 4H), .76-5.05(m, 1H), 4.37-

4.49 (m, 2H), 4.05-4.33 (m, 2H), 3.15 (t, J= 13.2Hz, 1H), 2.19-2.37 (m, 1H), 1.77 (s, 2H), 1.69-1.82 

(m, 3H), 1.28-1.53 (m, 2H). 

 

13C-NMR (150 MHz, CDCl3): δ (ppm) = 177.69, 156.96, 156.18, 144.19, 141.63, 128.02, 127.39, 

125.41, 120.30, 68.18, 67.91, 54.58, 54.48, 47.53, 42.27, 42.00, 27.07, 26.87, 25.02, 24.79, 21.07, 

20.94. 
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Mass: (ESI+): calculated [C21H21NO4 + H]+ 514.41, found 514.43 [M + H]+. 

 

(S)-1-[9H-Fluoren-9-yl]methyl-ester-2-[(R)-1-{3-(2-tert-butoxy-2-oxo-

ethoxy)phenyl}-3-(3,4-dimethoxyphenyl)propyl]piperidin-2-carboxylate  

 

 

 

 

5a (100 mg, 0.248 mmol), 7a (96 mg, 0.27 mmol) were dissolved in 2 mL DCM at RT. Then EDC-HCl 

(52 mg, 0.27 mmol) was added and the micture was stirred for 14 h at RT. After concentration in 

vacuo the raw product was subjected to column chromatography (EtOAc/n-Hexane, 1:2) to yield 

Fmoc protected 8a as a slight yellow oil (139 mg, 0.19 mmol, 76%).  

 

TLC [EtOAc/n-Hexane 1:2]: Rf = 0.36. 

 

HPLC [0-100% Solvent B, 20 min]: Rt = 17.9 min, purity (220 nm) = 96% 

 

1H-NMR (300 MHz, CDCl3): δ = 7.73 (m, 2H), 7.59 (t, J = 6.6 Hz, 1H), 7.16-7.49 (m, 6H), 6.94 (d, J = 7.6 

Hz, 1H), 6.89 (s, 1H), 6.72-6.82 (m, 2H), 6.62 (m, 2H), 5.76 (br s, 1H), 5.02 (d, J = 3.7 Hz, 1H), 4.25-4.49 

(m, 5H), 4.07-4.14 (m, 1H), 3.83 (s, 6H), 3.14 (t, J = 11.1 Hz, 1H), 2.46-2.54 (m, 2H), 2.16-2.33 (m, 2H), 

2.00-2.07 (m, 1H), 1.68-1.78 (m, 4H), 1.46 (s, 9H), 1.39-1.56 (m, 1H).  

 

13C-NMR (150 MHz, CDCl3): δ = 174.50, 171.33, 168.28, 158.48, 147.73, 144.30, 142.12, 133.90, 

130.07, 128.07, 127.45, 125.48, 120.50, 120.35, 114.34, 113.66, 112.12, 111.74, 82.74, 76.82, 76.59, 

68.20, 66.16, 56.32, 56.20, 47.63, 38.44, 31.98, 31.54, 28.42, 27.23, 25.18, 21.20. 

 

Mass (ESI+): calculated [C44H49NO8 + H]+ 736.35 found 736.36 [M + H]+. 
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(S)-[(R)-1-{3-(2-tert-Butoxy-2-oxoethoxy)phenyl}-3-(3,4-dimeth-oxyphenyl) 

propyl] piperidin-2-carboxylate (8a/37a) 

 

 

 

Fmoc-protected 8a/37a (100 mg, 0.136 mmol) was dissolved in 1.8 mL dry DCM, then 0.2 mL 4-

Methyl-Piperidine was added and stirred for 14h. The solvent was removed in vacuo and the raw 

product was purified with column chromatography (Gradient 50%-100% EtOAc in n-hexane) to afford 

8a as a colorless oil (345 mg, 0.66 mmol, 76%) 

 

TLC [EtOAc/n-hexane 1:2]: Rf = 0.36. 

 

HPLC [0-100% Solvent B, 20 min]: Rt = 15.5 min, purity (220 nm) = 95% 

 

1H-NMR (300 MHz, CDCl3): δ = 7.28 (t, J = 7.9 Hz, 1H), 6.98 (d, J = 7.7 Hz, 1H), 6.93 (s, 1H), 6.84 (m, 

2H), 6.71 (d, J = 8.3 Hz, 1H), 6.69 (s, 1H), 5.77 (dd, J = 6.3, 6.8 Hz, 1H), 4.55 (s, 2H), 3.91 (s, 6H), 3.42 

(m, 1H), 3.33 (s, 1H), 3.01 (m, 1H), 2.39-2.63 (m, 3H), 2.11-2.27 (m, 1H), 2.05-2.09 (m, 1H), 1.92 (m, 

1H), 1.54 (s, 9H), 1.54-1.74 (m, 4H). 

 

13C-NMR (150 MHz, CDCl3): δ = 173.42, 168.29, 158.34, 149.20, 147.64, 142.54, 134.06, 129.92, 

120.49, 120.19, 114.11, 113.54, 111.99, 111.60, 82.74, 75.21, 66.05, 61.45, 56.30, 56.21, 48.57, 

38.55, 31.63, 29.41, 28.44, 25.70, 22.56. 

 

Mass (ESI+): calculated [C29H39NO7 +H]+ 514.43, found 514.45 [M + H]+. 
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Oxycarbonyl-2-((R)-3-(3,4-dimethoxyphenyl)-1-(3-(2-morpholinoethoxy) 

phenyl)propyl) (S)-1-(9H-Fluoren-9-yl)methylpiperidine-2-carboxylate 

 

 

 

A solution of alcohol 5b (171 mg, 0.43 mmol), carboxylic acid 6a (150 mg, 0.43 mmol), and DMAP 

(6 mg, 47 µmol) in 10 mL DCM at room temperature was treated with DCC (113 mg, 0.51 mmol). The 

mixture was stirred for 14 h after which the organic solvent was removed in vacuo. The solid was 

dissolved in diethyl ether (50mL) and filtered through a plug of celite. The filtrate was concentrated 

and then flash chromatographed (DCM/MeOH 9.7:0.3) to afford Fmoc protected 8b as brownish oil 

(280 mg, 0.38 mmol, 89%). 

 

TLC [100% EtOAc]: Rf = 0.56.  

 

HPLC [0-100% Solvent B, 15 min]: Rt = 8.8 min, purity (220 nm) = 98% 

 

1H NMR (300 MHz, CDCl3) δ 7.76 (dd, J = 14.6, 7.5 Hz, 2H), 7.60 (t, J = 6.6 Hz, 1H), 7.54 – 7.14 (m, 6H), 

6.93 (d, J = 7.7 Hz, 3H), 6.89 – 6.80 (m, 1H), 6.76 (d, J = 8.3 Hz, 1H), 6.71 – 6.56 (m, 2H), 5.78 (s, 1H), 

5.04 (s, 1H), 4.91 (s, 1H), 4.53 – 4.23 (m, 3H), 4.22 – 3.96 (m, 4H), 3.88 – 3.80 (m, 6H), 3.77 – 3.69 (m, 

3H), 3.17 (t, J = 11.8 Hz, 1H), 2.99 (d, J = 12.0 Hz, 1H), 2.85 – 2.67 (m, 2H), 2.65 – 2.49 (m, 4H), 2.40 – 

2.13 (m, 1H), 2.13 – 1.90 (m, 1H), 1.83 – 1.66 (m, 3H), 1.56 – 1.48 (m, 2H). 

 

13C NMR (75 MHz, CDCl3) δ 170.83, 158.70, 156.42, 155.77, 149.03, 147.28, 143.90, 143.88, 141.68, 

141.23, 133.50, 129.63, 127.67, 127.06, 125.03, 120.06, 119.95, 119.05, 118.88, 113.94, 113.06, 

111.66, 111.33, 67.76, 66.85, 65.59, 57.59, 54.89, 54.56, 54.06, 47.23, 38.10, 33.97, 31.17, 29.70, 

27.01, 26.82, 25.61, 24.92, 24.57, 20.57. 

 

Mass: (ESI+) calculated 735.40 [C44H50N2O8 + H]+, found 735.57 [M + H]+. 
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(S)-((R)-3-(3,4-Dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propyl) 

piperidine-2-carboxylate (9a/37b) 

 

 

 

Fmoc protected 8b (250 mg, 0.34 mmol) was treated with 20% 4-methylpiperidine in DCM at room 

temperature. The mixture was stirred for 14 h. 4-Methylpiperidine and DCM were evaporated under 

reduced pressure. The raw product was purified by column chromatography (EtOAc/cyclohexane 2:8, 

0,2% TEA) to afford 9a/37b as a slight yellow oil (160 mg, 0.31mmol, 84%). 

 

TLC [EtOAc/cyclohexane 2:8, 0.2% TEA]: Rf = 0.3. 

 

HPLC [0-100% Solvent B, 20 min]: Rt = 11.6 min, purity (220 nm) = 92% 

 

1H NMR (300 MHz, CDCl3) δ= 7.19 (t, J= 8.1 Hz, 1H), 6.95 (s, 1H), 6.86 (d, , J= 7.8Hz, 1H), 6.72-6.80 (m, 

3H), 6.66-6.62 (m, 2H), 5.70 (t, J= 7.2 Hz, 1H), 4.35-4.18 (m, 2H), 3.85-3.77 (m, 6H), 3.42-3.27 (m, 1H), 

3.08 (s, 3H), 3.06 (s, 3H), 2.85 (s, 2H), 2.62-2.44 (m, 3H), 2.31-2.17 (m, 3H), 2.10-1.89- (m, 3H), 1.89-

1.67 (m, 3H), 1.60-1.48 (m, 2H).  

 

13C NMR (75 MHz, CDCl3) δ= 21.59, 22.00, 26.01, 31.15, 37.82, 44.12, 45.89, 55.91, 55.95, 56.67, 

57.17, 64.55, 65.60, 77.65, 111.35, 111.83, 112.36, 111.72, 119.27, 120.18, 129.57, 133 .31, 140.98, 

147.29, 148.84, 158.45, 167.88. 

 

Mass: (ESI+), calculated 513.32 [C29H40N2O6 + H]+, found 513.29 [M + H]+. 
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(R)-(R)-3-(3,4-Dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propyl-

thiomorpholine-3-carboxylate (9b) 

 

 

 

A solution of alcohol 5b (0.10 g, 0.25 mmol), Fmoc-thiopipecolate (92 mg, 0.37 mmol), and catalytic 

amount of DMAP (3 mg, 25 µmol) in 10 mL DCM was treated with EDC (53 mg, 0.28 mmol). The 

mixture was stirred for 14 h at RT. The crude product was concentrated, flash chromatographed 

(DCM/MeOH 97:3) and consequently dissolved in 1.8 mL DCM. Then 0.2 mL 4-methylpiperidine was 

added and the mixture was stirred for 14 h at RT. 4-Methylpiperidine and DCM were evaporated 

under reduced pressure. The raw product was purified by flash chromatogrpahy (DCM/MeOH 92:8). 

9b was obtained as a slight yellow oil (32 mg, 0.13 mmol, 48%). 

 

TLC [MeOH/DCM 8:92]: Rf = 0.18. 

 

HPLC [0-100% Solvent B, 20 min]: Rt = 11.7 min, purity (220 nm) = 92% 

 

1H NMR (300 MHz, d6-DMSO) δ 7.24 – 7.16 (m, 1H), 6.91 – 6.73 (m, 5H), 6.66 (td, J = 8.2, 7.8, 2.0 Hz, 

1H), 5.63 (dd, J = 8.4, 4.7 Hz, 1H), 4.09 – 4.00 (m, 2H), 3.97 (t, J = 3.6 Hz, 1H), 3.72 – 3.67 (m, 6H), 3.58 

– 3.51 (m, 4H), 3.06 – 2.85 (m, 3H), 2.69 – 2.60 (m, 2H), 2.60 – 2.50 (m, 2H), 2.47 – 2.39 (m, 5H), 2.17 

– 2.04 (m, 2H), 1.98 (d, J = 14.7 Hz, 2H). 

 

13C NMR (75 MHz, d6-DMSO) δ 170.62, 158.91, 148.86, 147.47, 142.32, 133.89, 129.68, 120.20, 

118.75, 114.35, 112.88, 111.96, 74.91, 66.47, 65.39, 59.53, 57.34, 55.87, 54.09, 46.21, 38.16, 31.03, 

28.82, 27.36. 

 

Mass: (ESI+), calculated 531.25 [C28H38N2O6S+H]+, found 531.21 [M+H]+. 
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(S)-1-((9H-Fluoren-9-yl)methyl)ester-2-((R)-3-(3,4-dimethoxyphenyl)-1-(3-(2-

morpholinoethoxy) phenyl)propyl) pyrrolidine-2-carboxylate  

 

 

 

5b (200 mg, 0.50 mmol), Fmoc-proline (185 mg, 0.55 mmol) and DMAP (12 mg, 0.10 mmol) were 

dissolved in DCM at 0°C then EDC (143 mg, 0.75 mmol) was added and the reaction was allowed to 

warm to RT, followed by stirring for 14 hours. The raw product was subjected to column 

chromatography (gradient 0%-5% MeOH in DCM). Fmoc protected 36b (276 mg, 0.383 mmol, 77%) 

was obtained as a slight yellow oil. 

 

TLC [MeOH/DCM 5:95]: Rf = 0.2. 

 

HPLC [0-100% Solvent B, 20 min]: Rt = 16.7 min, purity (220 nm) = 98% 

 

1H NMR (400 MHz, CDCl3): δ 7.78 – 7.67 (m, 2H), 7.65 – 7.53 (m, 1H), 7.53 – 7.45 (m, 1H), 7.42 – 7.26 

(m, 3H), 7.25 – 7.18 (m, 1H), 6.94 – 6.53 (m, 7H), 5.73 (dt, J = 8.0, 5.8 Hz, 1H), 4.49 (dt, J = 8.9, 3.7 Hz, 

1H), 4.41 (dd, J = 10.1, 6.8 Hz, 2H), 4.34 – 4.13 (m, 1H), 4.14 – 4.07 (m, 2H), 3.85 – 3.82 (m, 6H), 3.77 

– 3.66 (m, 4H), 3.31 (td, J = 9.1, 3.2 Hz, 1H), 3.26 – 3.14 (m, 1H), 3.07 (dt, J = 10.4, 6.8 Hz, 1H), 2.80 

(dt, J = 6.9, 5.7 Hz, 4H), 2.64 – 2.52 (m, 4H), 2.35 – 2.18 (m, 1H), 2.15 – 1.96 (m, 2H), 1.95 – 1.76 (m, 

2H). 

 

13C NMR (125 MHz,CDCl3) δ 171.90, 159.63, 157.44, 150.39, 148.33, 144.14, 143.58, 139.48, 135.20, 

129.28, 127.63, 126.29, 125.14, 121.85, 120.96, 119.20, 115.53, 114.12, 113.68, 113.06, 77.03, 67.50, 

67.38, 66.80, 63.34, 56.83, 54.73, 52.94, 48.12, 47.31, 36.38, 34.08, 28.00, 24.98. 

 

Mass (ESI+): calculated [C43H48N2O8 +H]+ 721.35, found 721.25 [M + H]+. 
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(S)-(R)-3-(3,4-Dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propyl-

pyrrolidine-2-carboxylate (9c/36b) 

 

 

 

Fmoc protected 9c/36b (234 mg, 0.32 mmol) was dissolved in 1.8 mL dry DCM, then 200 µL 

4-methyl-piperidine was added and stirred for 14 h. The product was purified using flash 

chromatography (gradient 0%-10% MeOH in DCM) to obtain 36b (140 mg, 0.28 mmol, 86%) as a 

yellow oil. 

 

TLC [MeOH/DCM 6:94]: Rf = 0.10. 

 

HPLC [0-100% Solvent B, 20 min]: Rt = 11.6 min, purity (220 nm) = 92%. 

 

1H NMR (300 MHz, CDCl3) δ 7.25 – 7.18 (m, 1H), 6.94 – 6.83 (m, 2H), 6.83 – 6.72 (m, 2H), 6.70 – 6.61 

(m, 2H), 5.72 (dd, J = 7.9, 5.9 Hz, 1H), 4.64 (dd, J = 7.8, 5.3 Hz, 1H), 4.14 – 4.07 (m, 2H), 3.85 – 3.82 (m, 

6H), 3.77 – 3.66 (m, 4H), 3.31 (td, J = 9.1, 3.2 Hz, 1H), 3.26 – 3.14 (m, 1H), 3.07 (dt, J = 10.4, 6.8 Hz, 

1H), 2.80 (dt, J = 6.9, 5.7 Hz, 4H), 2.64 – 2.52 (m, 4H), 2.35 – 2.18 (m, 1H), 2.15 – 1.96 (m, 2H), 1.95 – 

1.76 (m, 2H). 

 

13C NMR (75 MHz, CDCl3) δ 172.34, 158.73, 148.77, 147.17, 146.44, 141.28, 134.43, 133.35, 129.43, 

119.09, 118.46, 113.45, 113.13, 111.75, 111.19, 73.61, 66.82, 65.70, 59.64, 57.63, 55.92, 54.05, 

40.65, 31.64, 29.89, 24.75. 

 

Mass (ESI+): calculated [C28H38N2O6 +H]+ 499.28, found 499.22 [M + H]+. 
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Pentafluorophenyl 2-(3,4,5-trimethoxyphenyl)acetate (20) 

 

 

 

2-(3,4,5-Trimethoxyphenyl)acetic acid (8.2 g, 36.2 mmol) was dissolved in 140 ml dry DCM, then EDC 

(10.4 g, 54.3 mmol) was added and stirred for 15 min at RT. 2,3,4,5,6-pentafluorophenol (10.0 g, 

54.3 mmol) was dissolved in 60 ml dry DCM and added to the solution. The mixture was stirred for 

6 h at RT and then concentrated and subjected to flash chromatography (EtOAc/cyclohexane, 2:8). 20 

(13.4 g, 34.1 mmol, 94%) was obtained as a white solid. 

 

TLC [EtOAc/cyclohexane, 2:8]: Rf = 0.31. 

 

HPLC [0-100% Solvent B, 30 min]: Rt = 25.8 min, purity (220 nm) = 95%. 

 

1H-NMR (300 MHz, CDCl3): δ = 6.56 (s, 2H), 3,90 (s, 2H), 3.87 (s, 6H), 3.85 (s, 3H). 

 

13C-NMR (150 MHz, CDCl3): δ = 167.39, 153.48, 137.59, 127.47, 106.19, 60.855, 56.12, 40.37. 

 

HRMS (ESI+): calculated [C17H13F5O5 + H+] 393.0756, found 393.0711 [M] + H+. 
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(S)-4-isopropyl-3-[2-(3,4,5-trimethoxyphenyl)acetyl]oxazolidin-2-one (21)  

 

 

 

 

n-Butyllithium (2.5 M in Cyclohexane, 1.4 mL, 3.6 mmol) was added to (S)-4-Isopropyl-oxazolidin-2-

one (0.46 g, 3.6 mmol) dissolved in 17 mL dry THF at -78°C, then was stirred for 1 h -78°C. After that 

20 (1.4 g, 3.6 mmol) dissolved in 17 mL dry THF was added to the above solution and stirred for 2h at 

-78°C and 14 h at 0°C. The reaction mixture was quenched by adding sat. NH4Cl solution. The 

aqueous solution was extracted with DCM. The org. phases were dried over MgSO4. The crude 

product was concentrated and purified by column chromatography (EtOAc/cyclohexane, 1:2). 21 was 

afforded as a yellow oil (0.67 mg, 1.98 mmol, 53%). 

 

TLC [EtOAc/cyclohexane, 2:8]: Rf = 0.31. 

 

HPLC [0-100% Solvent B, 30 min]: Rt = 22.4 min, purity (220 nm) = 98%. 

 

1H-NMR (300 MHz, CDCl3): δ = 6.56 (s, 2H), 4.43-4.41 (m, 2H), 4.38-4.17 (m, 3H), 3.85 (d, 9H), 2.38-

2.27 (m, 1H), 0.96 (d, J = 6 Hz, 3H), 0.85 (d, J = 6 Hz, 3H). 

 

13C-NMR (150 MHz, CDCl3): δ = 167.39, 153.48, 137.59, 127.47, 106.19, 60.855, 56.12, 40.37. 

 

Mass (ESI+): calculated [C17H23NO6 + H+] 338.16, found 338.20 [M] + H+. 
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(S)-4-Isopropyl-3-((S)-2-(3,4,5-trimethoxyphenyl)pent-4-enoyl)oxazolidin-2-

one (22)  

 

 

 

21 (2.0 g, 5.9 mmol) was dissolved in 5 mL anhydrous THF, cooled to -78°C and then NaHMDS 

(7.1 mL, 7.1 mmol, 1M in THF) was added to the solution. After stirring for 30min at -78°C, the 

reaction was stirred for another 30min at 0°C, then allylbromide (0.63 mL, 7.1 mmol) was added and 

stirred for 2h at -78°C, and another 10 h at 0°C. The reaction was quenched by the addition of 

saturated NH4Cl solution. The biphasic aqueous solution was extracted with DCM. The organic phases 

were combined and dried over MgSO4. The crude mixture was concentrated and purified by column 

chromatography (EtOAc/cyclohexane, 2:8). 22 was obtained as yellow oil (1.0 g, 2.7 mmol, 45%, d.r. 

>95:5). 

 

TLC [EtOAc/cyclohexane 2:8]: Rf = 0.31. 

 

HPLC [0-100% Solvent B, 30 min]: Rt = 25.0 min, purity (220 nm) = 98%. 

 

1H NMR (600 MHz, CDCl3) δ 6.60 (s, 2H), 5.80 – 5.70 (m, 1H), 5.20 – 5.15 (dd, J = 9.5, 5.8 Hz, 1H), 5.14 

– 5.07 (dq, J = 17.1, 1.6 Hz, 1H), 5.04 – 4.98 (dq, J = 10.2, 1.1 Hz, 1H), 4.40 – 4.34 (m, 1H), 4.18 – 4.13 

(m, 2H), 3.85 – 3.82 (s, 6H), 3.83 – 3.79 (s, 3H), 2.93 – 2.84 (m, 1H), 2.52 – 2.44 (m, 1H), 2.43 – 2.35 

(m, 1H), 0.92 – 0.84 (m, 6H). 

 

13C NMR (150 MHz, CDCl3) δ 173.36, 153.67, 153.04, 137.10, 135.07, 133.80, 117.14, 105.43, 62.99, 

60.82, 58.93, 56.12, 47.79, 38.67, 28.37, 17.88, 14.58. 

 

HRMS (EI+): calculated [C20H27NO6 + H]+ 378.19, found 378.13 [M+ H]+. 
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(S)-2-(3,4,5-Trimethoxyphenyl)pent-4-enoic acid (23) 

 

 

 

22 (0.70 g, 1.86 mmol) was dissolved in 10 mL THF/H2O (1:1) and cooled to 0°C for 5min. Then LiOH 

(89 mg, 3.71 mmol) was added followed by addition of H2O2 (0.60 mL, 7.42 mmol). The reaction 

mixture was stirred at 0°C for 4 h. The reaction was quenched by the addition of 1.5 M Na2SO3. The 

aqueous solution was diluted with brine and extracted with DCM. Then, the aqueous phase was 

acidified to pH<2 and further extracted with DCM. The organic layers were combined and dried over 

MgSO4. The raw product was concentrated and purified using flash chromatography (gradient 0%-

30% EtOAc in n-hexane, 0.1% AcOH). 23 (324 mg, 1.22 mmol, 66%) was obtained as a yellow oil.  

 

TLC [EtOAc/n-hexane 1:2]: Rf = 0.22. 

 

HPLC [0-100% Solvent B, 30 min]: Rt = 17.9 min, purity (220 nm) = 98%. 

 

1H NMR (300 MHz, CDCl3) δ 6.56 (d, J = 1.1 Hz, 2H), 5.84 – 5.67 (m, 1H), 5.19 – 5.00 (m, 2H), 3.87 – 

3.84 (m, J = 0.7 Hz, 9H), 3.58 (dd, J = 8.6, 6.9 Hz, 1H), 2.88 – 2.75 (m, 1H), 2.53 (dtt, J = 14.5, 6.8, 1.4 

Hz, 1H). 

 

13C NMR (75 MHz, CDCl3) δ 178.95, 153.31, 137.47, 134.79, 133.38, 117.31, 105.08, 60.81, 56.14, 

51.50, 37.18, 20.72. 

 

Mass: (ESI+), calculated 287.12 [C14H18O5 + H]+, found 287.13 [M + H]+. 
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2-(3-((R)-3-(3,4-Dimethoxyphenyl)-1-(((S)-1-((S)-2-(3,4,5-trimethoxyphenyl) 

pent-4-enoyl)piperidine-2-carbonyl)oxy)propyl)phenoxy)acetic acid (24) 

 

 

 

General synthesis procedure B for free acid ligands with 37a (0.10 g, 0.20 mmol) and 23 (57 mg, 

0.21 mmol) was used. The crude product was purified using flash chromatography (gradient 0%-10% 

MeOH in DCM) to obtain 24 (38 mg, 54 µmol, 55%) as a colorless oil. The diastereomeric rate was 

determined by HPLC. 

 

TLC [EtOAc/cyclohexane, 1:1, 1% AcOH]: Rf = 0.28. 

 

HPLC [60-80% Solvent B, 20 min]: Rt = 8.1 min, purity (220 nm) = 95%, dr 95:5. 

 

1H NMR (599 MHz, d6-DMSO) δ 7.20 (dd, J = 7.8, 0.8 Hz, 1H), 6.85 – 6.71 (m, 4H), 6.67 (d, J = 2.0 Hz, 

1H), 6.59 (s, 2H), 6.56 (dd, J = 8.2, 2.0 Hz, 1H), 5.76 – 5.64 (m, 1H), 5.48 (dd, J = 8.7, 4.6 Hz, 1H), 5.22 

(dd, J = 5.9, 2.5 Hz, 1H), 5.03 – 4.92 (m, 2H), 4.65 (s, 2H), 3.71 (t, J = 2.3 Hz, 3H), 3.69 (s, 3H), 3.68 (s, 

4H), 3.64 (s, 3H), 3.61 (s, 1H), 3.51 (s, 3H), 2.75 – 2.64 (m, 2H), 2.44 – 2.37 (m, 2H), 2.34 – 2.25 (m, 

2H), 2.15 – 2.06 (m, 2H), 1.84 (ddd, J = 34.5, 8.0, 5.4 Hz, 2H), 1.63 – 1.52 (m, 2H), 1.05 – 0.95 (m, 2H). 

 

13C NMR (151 MHz, CDCl3) δ 176.94, 175.44, 175.30, 162.96, 157.84, 153.83, 152.17, 147.35, 141.80, 

141.17, 140.09, 138.19, 134.63, 125.13, 123.41, 121.43, 117.28, 110.32, 80.06, 69.53, 64.83, 61.09, 

60.78, 60.65, 60.51, 56.95, 52.14, 42.66, 35.80, 31.40, 29.98, 25.70. 

 

Mass: (ESI+), calculated 728.30 [C39H47NO11+Na]+, found 728.40 [M+H]+. 
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(S)-(R)-3-(3,4-Dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propyl-1-

((S)-2-(3,4,5-trimethoxyphenyl)pent-4-enoyl)pyrrolidine-2-carboxylate (27) 

 

 

 

General synthesis procedure A for morpholine ligands with 9c (31 mg, 62 µmol) and 23 (17 mg, 

62 µmol) was used. Then the crude product was purified using flash chromatography (gradient 0%-

10% MeOH in DCM) to obtain 27 (31 mg, 44 µmol, 67%) as a light yellow oil. The diastereomeric rate 

was determined by HPLC. 

 

TLC [MeOH/DCM, 3:97, 1% TEA]: Rf = 0.24. 

 

HPLC [0-100% Solvent B, 20 min]: Rt = 15.8 min, purity (220 nm) = 95%, dr 95:5. 

 

1H NMR (400 MHz, d6-DMSO) δ 7.17 (t, J = 7.9 Hz, 1H), 6.86 (t, J = 1.9 Hz, 1H), 6.82 – 6.77 (m, 2H), 

6.73 – 6.68 (m, 2H), 6.64 – 6.57 (m, 1H), 6.49 (s, 2H), 5.77 – 5.62 (m, 1H), 5.48 (dd, J = 8.3, 5.0 Hz, 1H), 

5.05 – 4.87 (m, 3H), 4.45 (dd, J = 8.7, 3.4 Hz, 1H), 4.17 – 4.02 (m, 3H), 3.77 (dd, J = 8.5, 6.0 Hz, 1H), 

3.74 – 3.62 (m, 6H), 3.59 – 3.46 (m, 9H), 3.28 – 3.18 (m, 4H), 2.68 – 2.57 (m, 4H), 2.52 – 2.37 (m, 5H), 

2.31 – 2.11 (m, 5H), 1.83 – 1.73 (m, 2H). 

 

13C NMR (100 MHz, d6-DMSO) δ 171.88, 170.71, 158.80, 153.15, 149.10, 147.33, 142.50, 137.04, 

136.45, 135.00, 133.82, 129.55, 120.44, 118.37, 116.77, 114.28, 112.73, 112.34, 112.06, 105.68, 

75.33, 66.60, 65.65, 60.08, 59.00, 57.39, 55.95, 54.07, 49.32, 46.83, 38.96, 38.10, 30.91, 29.17, 24.83. 

 

Mass: (ESI+), calculated 747.39 [C42H54N2O10+H]+, found 747.51 [M+H]+. 
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(R)-(R)-3-(3,4-Dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propyl-4-

((S)-2-(3,4,5-trimethoxyphenyl)pent-4-enoyl)thiomorpholine-3-carboxylate 

(28) 

 

 

 

General synthesis procedure A for morpholine ligands with 9b (32 mg, 60 µmol) and 23 (20 mg, 

75 µmol) was used. The crude product was purified using flash chromatography (gradient 0%-80% 

EtOAc in cylcohexane) to obtain 28 (31 mg, 4 µmol, 67%) as a light yellow oil. The diastereomeric rate 

was determined by HPLC. 

 

TLC [EtOAc/cyclohexane, 3:7, 4% AcOH]: Rf = 0.42. 

 

HPLC [0-100% Solvent B, 20 min]: Rt = 15.88 min, purity (220 nm) = 92%, dr ≥ 99:1. 

 

1H NMR (400 MHz, d6-DMSO) δ 7.29 – 7.23 (m, 1H), 7.16 (t, J = 7.8 Hz, 1H), 6.95 – 6.57 (m, 5H), 6.52 

(s, 2H), 5.71 – 5.65 (m, 1H), 5.62 – 5.54 (m, 1H), 5.03 – 4.87 (m, 2H), 4.10 – 4.04 (m, 3H), 3.73 (d, J = 

2.2 Hz, 3H), 3.69 (s, 3H), 3.69 – 3.67 (m, 6H), 3.62 (d, J = 2.3 Hz, 3H), 3.60 (s, 3H), 3.57 (s, 2H), 3.55 (s, 

2H), 3.48 (d, J = 1.9 Hz, 1H), 3.32 (s, 1H), 3.14 – 3.08 (m, 1H), 2.91 (dd, J = 13.9, 4.0 Hz, 1H), 2.75 – 

2.62 (m, 5H), 2.53 – 2.44 (m, 6H), 2.38 – 2.29 (m, 1H). 

 

13C NMR (101 MHz, d6-DMSO) δ 172.40, 168.83, 158.77, 153.39, 153.14, 149.03, 149.01, 147.44, 

142.29, 142.22, 136.93, 136.73, 135.78, 135.03, 133.78, 129.93, 120.46, 116.81, 114.19, 112.68, 

112.28, 105.51, 75.80, 66.52, 65.46, 60.19, 56.36, 56.00, 55.90, 55.79, 55.75, 55.35, 54.01, 52.52, 

52.20, 51.58, 47.42, 44.49, 33.69, 31.73, 31.00, 26.99, 24.85, 22.54. 
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Mass: (ESI+), calculated 779.36 [C42H54N2O10S+H]+, found 779.37 [M+H]+. 

 

(S)-Methyl 2-(2-nitrophenylsulfonamido)pent-4-enoate (30) 

 

 

 

30 was synthesized according to Varray et al129. L-Allyl-glycine (1.0 g, 8.69 mmol) was dissolved in 

10 mL MeOH, cooled to 0°C, and then 3 mL TMS-Cl was added. The mixture was allowed to warm to 

RT and stirred for 24 h. The solvent was removed in vacuo and the resulting white oil was dissolved in 

hot EtOAc and precipitated with hexane. L-Allyl-glycine methylester (1.1 g, 8.51 mmol, 98%) was 

obtained as white crystals without further purification and reacted with o-nitrobenzenesulfonyl 

chloride (2.08 g, 9.37 mmol). For this it was dissolved in 15 mL anhydrous DCM, then TEA (1.40 mL, 

17.03 mmol) was added and stirred for 5h. The reaction mixture was diluted with DCM and washed 

with brine. The aqueous phases were reextracted with DCM. The organic phases were combined, 

dried over MgSO4, and the solvent was removed in vacuo. The product was purified using flash 

chromatography (gradient 0%-30% EtOAc in cyclo-hexene). 30 (1.22 g, 3.88 mmol, 46%) was 

obtained as a slightly yellow solid.  

 

TLC [EtOAc/cyclohexane, 1:1.5]: Rf = 0.40. 

 

HPLC [0-100% Solvent B, 20 min]: Rt = 17.3 min, purity (220 nm) = 98%. 

 

HRMS (EI+): calculated [C12H14N2O6S+ H]+ 315.0651, found 315.0637 [M+ H]+. 
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(S)-Methyl 2-(N-allyl-2-nitrophenylsulfonamido)pent-4-enoate (31) 

 

 

 

31 was synthesized according to Varray et al129. 30 (1.0 g, 3.18 mmol) was dissolved in 25 mL DMF. 

Then allylbromide (0.44 mL, 5.10 mmol) and potassium carbonate (2.40 g, 17.18 mmol) were added 

and stirred at RT for 10 h. The raw product mixture was diluted with H2O and then extracted with 

DCM. The organic solvent was removed in vacuo and the organic phase was dried over MgSO4. 31 

(0.94 g, 2.64 mmol, 83%) was obtained without further purification as an orange oil.  

 

TLC [EtOAc/cyclohexane, 3:7]: Rf = 0.24. 

 

HPLC [0-100% Solvent B, 20 min]: Rt = 19.1 min, purity (220 nm) = 95%. 

 

HRMS (EI+): calculated [C15H18N2O6S+ H]+ 355.0963, found 355.0936 [M+ H]+. 

 

(S)-Methyl 1,2,3,6-tetrahydropyridine-2-carboxylate (32) 

 

 

 

32 was synthesized according to Varray et al129. 31 (0.90 g, 2.54 mmol) was dissolved in 200 mL dry 

DCM, then Grubbs II catalyst (0.22 g, 0.25 mmol) was added. The reaction was stirred for 2.5 h, then 

50 mL 15% H2O2 was added and stirred for 15 min. The aqueous phase was extracted with DCM and 

the organic phases were combined and dried over MgSO4. The raw product was subjected to flash 
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chromatography (gradient 0%-40% EtOAc in cyclohexane) to give protected 32 (0.74 g, 2.27 mmol, 

89%) as a dark brown oil.  

Protected 32 (0.64 g, 1.96 mmol) was dissolved in 1 mL dry CH3CN, then Cs2CO3 (1.0 g, 3.10 mmol) 

and Thiophenol (0.23 mL, 2.25 mmol) was added and stirred for 1.5 h. The suspension turned from 

light yellow into a strong yellow slurry. The reaction mixture was subsequently diluted with DCM and 

extracted with H2O. The aqueous Phase was reextracted with DCM. The organic phases were 

combined and dried over MgSO4. The crude product was concentrated and purified using flash 

chromatography (gradient 0%-10% MeOH in DCM) to give 32 (0.22 g, 1.59 mmol, 81%) as a dark 

brown oil.  

 

TLC [MeOH/DCM, 5:95]: Rf = 0.25, stained with KMnO4 stain 

 

HPLC: not UV active. 

 

HRMS (EI+): calculated [C7H11NO2+ H]+ 142.0868, found 142.0864 [M+ H]+. 

 

(S)-Methyl-1-((S)-2-(3,4,5-trimethoxyphenyl)pent-4-enoyl)-1,2,3,6-

tetrahydropyridine-2-carboxylate (34) 

 

 

 

23 (0.14 g, 0.53 mmol), HATU (0.22 g, 0.58 mmol) and DIPEA (0.36 mL, 2.13 mmol) were dissolved in 

2 mL dry DCM and stirred for 15 min. Then 32 (75 mg, 0.53 mmol) in 1 mL dry DCM was added and 

stirred for 14 h at RT. The crude product was diluted with DCM and washed with brine. The organic 

layer was dried over MgSO4, concentrated and the methyl ester was cleaved by dissolving in 1 mL 1:1 

THF/H2O and addition of LiOH (10 mg, 0.42 mmol). The mixture was stirred for 14 h then was diluted 

with brine and extracted with DCM. The aqueous layer was acidified to pH=2 and again extracted 

with DCM. The organic phases were combined and dried over MgSO4. 34 (84 mg, 0.22 mmol, 79%) 
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was obtained without further purification as a pale yellow oil. The diastereomeric rate was 

determined by HPLC. 

 

TLC [EtOAc/cyclohexane, 2:1]: Rf = 0.60. 

 

HPLC [0-100% Solvent B, 20 min]: Rt = 15.6 min, purity (220 nm) = 95%, dr 95:5. 

 

1H NMR (300 MHz, CDCl3) δ 6.45 (s, 2H), 5.81 (ddd, J = 13.8, 6.9, 3.9 Hz, 1H), 5.76 – 5.66 (m, 1H), 5.62 

(dd, J = 6.7, 1.6 Hz, 1H), 5.56 (dd, J = 10.2, 2.9 Hz, 1H), 5.09 – 4.97 (m, 2H), 4.12 – 4.03 (m, 1H), 3.83 

(s, 6H), 3.81 (s, 3H), 3.79 – 3.72 (m, 2H), 3.63 – 3.51 (m, 1H), 2.85 (d, J = 6.4 Hz, 1H), 2.70 (dd, J = 17.4, 

5.9 Hz, 1H), 2.43 (m, 2H). 

 

13C NMR (75 MHz, CDCl3) δ 176.22, 172.77, 153.28, 136.85, 136.32, 133.90, 123.33, 122.98, 116.51, 

105.05, 60.86, 56.11, 50.17, 49.37, 43.19, 39.33, 26.36. 

 

Mass: (ESI+), calculated 376.18 [C20H25NO6+H]+, found 376.28 [M+H]+. 

 

2-(3-((R)-3-(3,4-Dimethoxyphenyl)-1-(((S)-1-((S)-2-(3,4,5-trimethoxyphenyl) 

pent-4-enoyl)-1,2,3,6-tetrahydropyridine-2-carbonyl)oxy)propyl)phenoxy) 

acetic acid (35) 

 

 

 

34 (20 mg, 53 µmol), DMAP (1.0 mg, 5.3 µmol) and DCC (7.0 mg, 59 µmol) were dissolved in 1 mL 

DCM at 0°C and stirred for 15 min. Then 37b (23 mg, 59 µmol) in 500 µL DCM was added, and the 

mixture was allowed to warm to RT and stirred for 14 h. The crude product was concentrated and 
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purified using flash chromatography (gradient 0%-8% MeOH in DCM). 35 (17 mg, 22.4 µmol, 42 %) 

was obtained as a colorless oil. The diastereomeric rate was determined by HPLC. 

 

TLC [MeOH/DCM, 6:94]: Rf = 0.42. 

 

HPLC [0-100% Solvent B, 20 min]: Rt = 16.6 min, purity (220 nm) = 98%, dr 95:5. 

 

1H NMR (400 MHz, d6-DMSO) δ 7.23 (ddd, J = 10.0, 7.7, 3.1 Hz, 1H), 7.14 – 7.08 (m, 1H), 6.88 – 6.77 

(m, 2H), 6.72 – 6.56 (m, 3H), 6.55 (s, 1H), 6.44 (d, J = 7.7 Hz, 1H),  5.71 – 5.63 (m, 1H), 5.57 (d, J = 2.8 

Hz, 1H), 5.49 – 5.45 (m, 1H), 5.38 (dd, J = 8.5, 5.1 Hz, 1H), 5.29 (dt, J = 5.7, 2.6 Hz, 1H), 4.98 (dd, J = 

17.2, 2.1 Hz, 1H), 4.91 (dd, J = 10.2, 2.2 Hz, 1H), 4.08 – 4.03 (m, 3H), 3.72 – 3.69 (m, 3H), 3.67 -3.63 

(m, 6H), 3.60 (s, 3H), 3.57 (s, 3H), 3.55 (s, 2H), 3.54 (s, 2H), 3.50 – 3.47 (m, 2H), 2.69 (dd, J = 12.8, 6.1 

Hz, 2H), 2.67 – 2.61 (m, 3H), 2.43 (t, J = 5.0 Hz, 3H), 2.30 (dd, J = 8.8, 7.0 Hz, 2H), 2.24 (t, J = 7.4 Hz, 

2H), 1.95 (d, J = 6.5 Hz, 2H). 

 

13C NMR (101 MHz, d6-DMSO) δ 173.73, 172.42, 158.74, 153.18, 149.05, 147.40, 142.24, 136.62, 

134.74, 133.73, 133.41, 130.14, 124.03, 122.95, 120.36, 118.25, 116.77, 114.02, 112.69, 112.22, 

105.67, 75.54, 66.62, 65.79, 60.30, 57.54, 56.39, 56.30, 56.02, 55.92, 55.75, 54.07, 51.56, 49.97, 

49.38, 48.03, 42.98, 33.65, 31.71, 27.03, 26.55, 24.84. 

 

Mass: (ESI+), calculated 759.39 [C43H54N2O10+H]+, found 759.42 [M+H]+. 

 

(S)-1-((9H-Fluoren-9-yl)methyl)ester-2-(1,7-di(pyridin-3-yl)heptan-4-yl) 

piperidine-2-dicar-boxylate  

 

 

 

A solution of alcohol 5c (0.30 g, 1.1 mmol) and carboxylic acid 6a (0.39 g, 1.1 mmol) in 10 mL DCM 

was treated with EDC (0.23 g, 1.2 mmol). The reaction mixture was stirred for 14 h at RT. The solvent 
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was removed in vacuo and the crude mixture was purified by flash chromatography (gradient 0%-

100% EtOAc in cyclohexane) to afford Fmoc protected 37c as a yellow oil (0.49 g, 0.8 mmol, 73%). 

 

TLC [EtOAc 99% + 1% TEA]: Rf = 0.2. 

 

LCMS: [0-100% Solvent B, 10 min]: Rt = 7.1 min, purity (220 nm) = 96%. 

 

1H NMR (300 MHz, CDCl3) δ 8.47 – 8.34 (m, 4H), 7.77 (d, J = 7.1 Hz, 2H), 7.63 – 7.56 (m, 2H), 7.53 – 

7.45 (m, 2H), 7.45 – 7.27 (m, 4H), 7.24 – 7.06 (m, 2H), 4.93 (dd, J = 29.0, 23.9 Hz, 2H), 4.50 – 4.23 (m, 

3H), 4.23 – 4.01 (m, 1H), 2.67 – 2.47 (m, 4H), 2.23 (d, J = 13.3 Hz, 1H), 1.82 – 1.38 (m, 10H), 1.35 – 

1.16 (m, 4H). 

 

13C NMR (75 MHz, CDCl3) δ 171.54, 156.48, 149.32, 147.14, 143.57, 141.28, 137.13, 135.83, 127.71, 

127.04, 125.09, 123.28, 120.07, 74.16, 67.71, 60.38, 54.22, 47.09, 41.86, 33.45, 32.37, 29.69, 26.28, 

24.46, 21.27, 20.55, 14.25. 

 

Mass: (ESI+), calculated 604.32 [C38H41N3O4 + H]+, found 604.30 [M + H]+. 

 

(S)-1,7-Di(pyridin-3-yl)heptan-4-yl piperidine-2-carboxylate (37c) 

 

 

 

Fmoc-protected 37c (0.44 g, 0.73 mmol) was dissolved in 1.8 mL dry DCM, then 0.2 mL 

4-Methylpiperidin was added and stirred for 14 h at RT. The crude mixture was concentrated and 

purified by flash chromatography (gradient 0%-15% MeOH in DCM). 37c (0.22 g, 0.58 mmol, 80%) 

was obtained as a slight yellow oil.  

 

TLC [MeOH/DCM 10:90]: Rf = 0.42. 

 

HPLC [0-50% Solvent B, 20 min]: Rt = 9.0 min, purity (220 nm) = 90%. 
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1H NMR (300 MHz, CDCl3) δ 8.46 – 8.38 (m, 4H), 7.42-7.38 (m, 2H), 7.18-7.14 (m, J = 7.5 Hz, 2H), 4.83 

(tt, J = 6.3, 4.9 Hz, 1H), 3.16 – 3.03 (m, 2H), 2.73 (dt, J = 12.2, 5.2 Hz, 1H), 2.62 – 2.56 (m, 4H), 2.12 

(ddt, J = 12.0, 7.5, 5.9 Hz, 1H), 2.00 (s, 1H), 1.78 – 1.69 (m, 1H), 1.69 – 1.63 (m, 4H), 1.62 – 1.56 (m, 

3H), 1.55 – 1.51 (m, 1H), 1.51 – 1.46 (m, 4H). 

 

13C NMR (75 MHz, CDCl3) δ 169.23, 149.61, 147.27, 137.42, 137.13, 136.99, 136.08, 135.90, 123.48, 

75.55, 56.98, 45.31, 43.48, 36.56, 32.26, 27.26, 26.20, 22.20. 

 

Mass: (ESI+), calculated 382.25 [C23H31N3O2 + H]+, found 382.20 [M + H]+. 

 

(S)-1-((9H-Fluoren-9-yl)methyl)ester-2-((R)-1-(3-(2-(tert-butoxy)-2-oxoethoxy) 

phenyl)-3-(3,4-dimethoxyphenyl)propyl) piperidine-2-carboxylate 

 

 

 

6a (0.25 g, 0.71 mmol), DIPEA (0.37 g, 2.85 mmol) and HATU (410 mg, 1.07 mmol) were dissolved in 

1.5 mL DMF and stirred for 30 min. Then (R)-tert-butyl-2-(3-(1-amino-3-(3,4-dimethoxyphenyl) 

propyl)phenoxy)acetate 5e (0.29 g, 0.71 mmol) dissolved in 2 mL DCM was added to the reaction 

mixture and stirred at RT for 14 h. The solvent was removed in vacuo and the crude product was 

purified by flash chromatography (EtOAc/cyclohexane 3:7) to afford Fmoc protected 37e (0.48 g, 

0,65 mmol, 92%) as a slightly yellow solid.  

 

TLC [EtOAc/cyclohexane 3:7]: Rf = 0.25. 

 

HPLC [0-100% Solvent B, 20 min]: Rt = 20.5 min, purity (220 nm) = 98% 

 

1H NMR (400 MHz, DMSO) δ 7.83-7.80 (m, 2H), 7.63-7.58 (m, 2H), 7.46 – 7.39 (m, 4H), 7.32 – 7.20 (m, 

2H), 7.04-7.02 (m, 2H), 6.88-6.84 (m, 3H), 6.80 – 6.74 (m, 2H), 5.20-5.17 (m, 1H), 5.00 – 4.93 (m, 4H), 
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4.83 (t, J = 6.2 Hz, 1H), 4.17-4.11 (m, 1H), 3.83 (s, 3H), 3.75 (s, 3H), 3.53-3.47 (m, 1H), 2.82 (t, J = 4.3 

Hz, 1H), 2.69 (t, J = 7.9 Hz, 2H), 2.34-2.20 (m, 2H), 2.08-1.91 (m, 2H), 1.79-1.66 (m, 3H), 1.34 (s, 9H). 

 

13C NMR (101 MHz, DMSO) δ 170.45, 168.32, 162.49, 158.23, 155.70, 148.71, 147.54, 145.61, 144.45, 

141.16, 134.01, 129.35, 128.18, 127.22, 125.45, 120.40, 119.48, 113.43, 112.65, 112.08, 81.47, 64.94, 

59.93, 55.91, 54.51, 51.97, 46.97, 41.90, 38.41, 36.27, 32.22, 31.25, 28.31, 26.80, 24.78, 21.20. 

 

Mass: (ESI+), calculated 531.25 [C44H50N2O8+H]+, found 531.21 [M+H]+. 

 

 

tert-Butyl-2-(3-((R)-3-(3,4-dimethoxyphenyl)-1-((S)-piperidine-2-

carboxamido)propyl) phenoxy) acetate (37e) 

 

 

 

Fmoc protected 37e (0.43 mg, 0.59 mmol) was dissolved in 4.5 mL dry DCM, then was added 0.5 mL 

4-methylpiperidine and stirred for 14 h. The raw product was concentrated and subjected to flash 

chromatography (gradient 0-100% EtOAc in cyclohexane, then EtOAc/MeOH 99:1, 1% TEA). 37e (160 

mg, 0.312, 53%) was obtained as a white solid.  

 

TLC [EtOAc/MeOH 99:1, 1% TEA]: Rf = 0.20. 

 

HPLC [0-100% Solvent B, 20 min]: Rt = 14.8 min, purity (220 nm) = 95% 

 

1H NMR (300 MHz, CDCl3) δ 7.26 – 7.20 (m, 1H), 7.18 (d, J = 9.4 Hz, 1H), 6.94 – 6.88 (m, 1H), 6.86 (dd, 

J = 2.6, 1.5 Hz, 1H), 6.78 – 6.72 (m, 2H), 6.69 – 6.64 (m, 2H), 4.96 (q, J = 7.7 Hz, 1H), 4.49 (s, 2H), 3.85 

(s, 3H), 3.83 (s, 3H), 3.23 – 3.15 (m, 1H), 3.02 – 2.91 (m, 1H), 2.68 – 2.58 (m, 1H), 2.59 – 2.50 (m, 2H), 

2.21 – 2.00 (m, 4H), 1.98 – 1.87 (m, 1H), 1.80 – 1.70 (m, 1H), 1.59 – 1.49 (m, 1H), 1.47 (s, 9H). 
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13C NMR (75 MHz, CDCl3) δ 172.71, 167.65, 158.24, 148.73, 146.82, 144.02, 133.90, 129.60, 120.08, 

119.82, 113.37, 112.87, 111.74, 111.20, 82.20, 65.69, 60.12, 55.90, 52.51, 45.68, 37.93, 32.24, 29.75, 

28.02, 25.69, 23.88. 

 

Mass: (ESI+), calculated 530.30 [C29H40N2O6+H]+, found 530.28 [M+H]+. 

 

N-((1S,2S)-1-Hydroxy-1-phenylpropan-2-yl)-N-methyl-2-(3,4,5-trimethoxy 

phenyl)acetamide (40) 

 

 

 

Trimethoxyphenyl acetic acid 11 (5.0 g, 22.1 mmol), triethylamine (3.5 mL, 46.0 mmol), EDC-HCl 

(3.9 g, 20.26 mmol) and HOAt (2.76 g, 20.26 mmol) were dissolved in DCM at 0°C. Then 

(S,S)-pseudoephedrine (3.0 g, 18.4 mmol) was added and the reaction was stirred at RT for 14 h. The 

crude product was concentrated and purified using flash chromatography (gradient 0%-100% EtOAc 

in cyclohexane). 40 (6.37 g, 17.06 mmol, 92%) was obtained as a white solid.  

 

TLC [EtOAc, 1% TEA]: Rf = 0.33. 

 

HPLC [0-100% Solvent B, 20 min]: Rt = 14.4 min, purity (220 nm) ≥ 99%. 

 

1H NMR (300 MHz, CDCl3) δ 7.38 – 7.20 (m, 5H), 6.47 (s, 2H), 4.66 – 4.40 (m, 1H), 4.25 – 3.94 (m, 1H), 

3.84 (s, 6H), 3.82 (s, 3H), 3.65 (s, 2H), 2.85 (s, 3H), 1.11 – 1.02 (m, 3H). 

 

13C NMR (75 MHz, CDCl3) δ 173.11, 153.10, 142.00, 136.81, 130.26, 128.65, 128.40, 127.78, 126.77, 

126.49, 105.74, 75.43, 60.81, 58.73, 56.13, 42.02, 32.76, 14.40. 
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Mass: (ESI+), calculated 374.20 [C21H27NO5+H]+, found 374.20 [M+H]+. 

 

(S)-3-Cyclopropyl-N-((1S,2S)-1-hydroxy-1-phenylpropan-2-yl)-N-methyl-2-

(3,4,5-trimethoxyphenyl)propanamide (41a) 

 

 

 

40 (1.0 g, 2.7 mmol) and Lithiumchloride (0.68 mg, 16.07 mmol) were put each into a Schlenck flask 

and kept under high vacuum for 14 h. Additionally LiCl was heated to 150°C using an oil bath. Then 

40 was dissolved in 18 mL anhydrous THF and added to the dry LiCl. The mixture was cooled to -78°C. 

LDA (2.95 mL, 5.89 mmol, 2.0 M in THF/heptane/ethylbenzene) was addded dropwise and then 

stirred for 1h. The reaction mixture was warmed to 0°C, and stirred for 15 min, finally warmed briefly 

to RT, then cooled again to 0°C and treated with cyclopropylmethylbromide (1.3 mL, 13.4 mmol). The 

reaction mixture was stirred for 2h at 0°C then slowly warmed to RT and stirred for another 14 h. The 

raw product was diluted with brine, acidified with 1 M HCl to pH~2 and extracted with DCM. The 

organic phases were combined and dried over MgSO4. The crude product was concentrated and 

purified by flash chromatography (gradient 0%-50% EtOAc in cyclohexane). 41a (0.65 g, 1.51 mmol, 

56%) was obtained as yellow crystals.  

 

TLC [MeOH/DCM, 5:95]: Rf = 0.40. 

 

HPLC [0-100% Solvent B, 20 min]: Rt = 14.4 min, purity (220 nm) = 98%, dr 95:5. 

   

1H NMR (300 MHz, CDCl3) δ 7.41 (s, 1H), 7.38 – 7.31 (m, 2H), 7.28 (d, J = 1.0 Hz, 2H), 6.52 (s, 2H), 4.58 

(d, J = 6.3 Hz, 1H), 4.14 (d, J = 7.1 Hz, 1H), 3.87 – 3.80 (m, 9H), 3.65 (t, J = 7.2 Hz, 1H), 2.79 (s, 3H), 

2.12 – 1.93 (m, 1H), 1.58 – 1.46 (m, 1H), 1.14 (d, J = 6.8 Hz, 3H), 0.67 (s, 1H), 0.43 (dd, J = 8.5, 4.6 Hz, 

2H), 0.23 – -0.00 (m, 2H). 
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13C NMR (75 MHz, CDCl3) δ 175.54, 153.41, 142.33, 136.85, 135.47, 128.31, 127.60, 126.37, 104.71, 

75.45, 60.83, 56.18, 50.68, 40.34, 27.33, 14.17, 9.42, 4.66, 4.63. 

 

Mass: (ESI+), calculated 428.24 [C25H33NO5+H]+, found 428.52 [M+H]+. 

 

(S)-3-cyclopropyl-2-(3,4,5-trimethoxyphenyl)propanoic acid (39a) 

 

 

 

41a (0.28 mg, 0,66 mmol) was dissolved in 4 mL dioxane at RT. 4 mL of a 4 M solution of H2SO4 in 

water were added dropwise. The mixture was refluxed for 4h (150°C). The reaction was quenched by 

addition of 50% (w/v) NaOH followed by extraction with DCM. The aqueous phase was acidified with 

1 M HCl to pH<2 and extracted again. The organic layers of the acidic extraction were combined and 

dried over MgSO4. The raw product was concentrated and purified using preparative TLC 

(MeOH/DCM, 9:91, 1% AcOH). 39a (68 mg, 0.24 mmol, 37%) was obtained as a yellow oil. 

 

TLC [EtOAc/cyclohexane, 1:1, 1% AcOH]: Rf = 0.35. 

 

HPLC [0-100% Solvent B, 20 min]: Rt = 15.1 min, purity (220 nm) = 95%. 

 

1H NMR (300 MHz, CDCl3) δ 6.57 (s, 2H), 3.87 (s, 6H), 3.84 (s, 3H), 3.62 (dd, J = 8.2, 7.0 Hz, 1H), 1.91 

(dt, J = 13.9, 7.8 Hz, 1H), 1.75 (dt, J = 13.7, 6.8 Hz, 1H), 0.75 – 0.61 (m, 1H), 0.49 – 0.41 (m, 2H), 0.16 – 

0.04 (m, 2H). 

 

13C NMR (75 MHz, CDCl3) δ 179.79, 153.24, 137.35, 134.17, 105.09, 60.44, 56.14, 52.16, 38.39, 9.20, 

4.46. 

 

Mass: (ESI+), calculated 281.14 [C15H20O5+H]+, found 281.37 [M+H]+. 
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(S)-3-phenyl-2-(3,4,5-trimethoxyphenyl)propanoic acid (39b) 

 

 

 

40 (0.5 g, 1.34 mmol) and dry Lithiumchloride (0.34 g, 8.03 mmol, dried as described for 41a) were 

dissolved in 5 mL anhydrous THF and cooled to -78°C. LDA (1.4 mL, 2.95 mmol) was added and stirred 

for 1 h. The reaction mixture was warmed to 0°C, and stirred for 15 min, finally warmed briefly to RT, 

then cooled again to 0°C and treated with Benzylbromide (0.8 mL, 6.69 mmol). The reaction mixture 

was stirred at 0°C for 14 h. The crude product was concentrated and purified by flash 

chromatography (gradient, 0%-40% EtOAc in cyclohexane). 41b (0.33 mg, 0.77 mmol, 58%) was 

obtained as a yellow oil which was directly further reacted. 

 

TLC [EtOAc/cyclohexane, 2:1]: Rf = 0.33. 

 

HPLC [0-100% Solvent B, 20 min]: Rt = 23.5 min, purity (220 nm) = 95%, dr = 95:5. 

 

Mass (ESI+), calculated 464.24 [C28H33NO5+H]+, found 464.27 [M+H]+. 

 

41b (0.28 mg, 0.60 mmol) was dissolved in 4 mL dioxane and then 3.5 mL of a 4 M aq solution of 

H2SO4 was added. The mixture was refluxed for 4h. (150°C). The reaction was quenched by addition 

of 50% (w/v) NaOH then was extracted with DCM. Now was acidified with 1 M HCl to pH<2 and again 

extracted. These organic layers were combined and dried over MgSO4. The raw product was purified 

using preparative TLC (EtOAc/cyclohexane, 3:7, 4% AcOH). 39b (113 mg, 0.36 mmol, 60%) was 

obtained as a yellow oil. 

 

TLC [EtOAc/cyclohexane, 3:7, 4% AcOH]: Rf = 0.42. 

 

HPLC [0-100% Solvent B, 20 min]: Rt = 19.9 min, purity (220 nm) ≥ 99%. 
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1H NMR (300 MHz, CDCl3) δ 7.29 – 7.20 (m, 3H), 7.14 (dd, J = 7.9, 1.7 Hz, 2H), 6.53 (s, 2H), 3.85 (s, 

6H), 3.84 (s, 3H), 3.40 (dd, J = 13.8, 8.5 Hz, 2H), 3.04 (dd, J = 13.7, 6.8 Hz, 1H). 

 

13C NMR (75 MHz, cdcl3) δ 178.92, 153.27, 138.58, 137.50, 133.49, 130.37, 128.90, 128.41, 126.54, 

105.19, 60.84, 56.16, 53.59, 39.38, 20.76, 1.03. 

 

Mass: (ESI+), calculated 317.14 [C18H20O5+H]+, found 317.13 [M+H]+. 

 

(S)-(R)-3-(3,4-dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propyl-1-

((S)-3-cyclopropyl-2-(3,4,5-trimethoxyphenyl)propanoyl)pyrrolidine-2-

carboxylate (42) 

 

 

 

General synthesis procedure A for morpholine ligands with 36b (40 mg, 80 µmol) and 39a (22 mg, 

80 µmol) was used. Then was purified using preparative HPLC (gradient 55%-70% Solvent B in Solvent 

A, 20min) to obtain 42 (17 mg, 7.7 µmol, 28%) as a colorless oil. The diastereomeric rate was 

determined by HPLC. 

 

TLC [MeOH/DCM, 8:92]: Rf = 0.44. 

 

HPLC [0-100% Solvent B, 20 min]: Rt = 16.3 min, purity (220 nm) = 95%, dr 95:5 

 

1H NMR (400 MHz, d6-DMSO) δ 7.52 (d, J = 7.7 Hz, 1H), 7.33 – 7.20 (m, 1H), 6.97 – 6.85 (m, 2H), 6.84 

– 6.78 (m, 2H), 6.64 – 6.56 (m, 2H), 6.50 (s, 1H), 5.54 (ddd, J = 37.2, 8.3, 4.8 Hz, 2H), 4.46 (dd, J = 8.6, 

3.4 Hz, 1H), 4.41 – 4.29 (m, 3H), 3.84 – 3.74 (m, 3H), 3.73 – 3.69 (m, 5H), 3.69 – 3.67 (m, 5H), 3.61 – 

3.58 (m, 3H), 3.56 – 3.49 (m, 6H), 2.59 (s, 4H), 2.47 (p, J = 1.8 Hz, 1 H), 2.38 – 2.28 (m, 1H), 2.23 – 2.05 
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(m, 2H), 1.93 – 1.76 (m, 2H), 1.75 – 1.65 (m, 1H), 1.37 – 1.26 (m, 1H), 1.22 (dt, J = 12.1, 6.8 Hz, 2H), 

0.60 (s, 1H), 0.36 – 0.22 (m, 2H), 0.02 (qd, J = 10.2, 4.6 Hz, 2H). 

 

13C NMR (101 MHz, d6-DMSO) δ 171.83, 171.50, 158.19, 153.15, 152.99, 149.04, 147.39, 142.69, 

136.39, 135.86, 133.76, 133.68, 123.98, 120.49, 114.37, 112.75, 112.42, 105.67, 75.17, 63.75, 62.51, 

60.23, 56.30, 55.99, 55.78, 52.16, 49.87, 46.13, 30.78, 29.12, 24.88, 21.14, 14.40, 9.61, 8.81, 4.85. 

 

Mass: (ESI+), calculated 761.40 [C43H56N2O10+H]+, found 761.41 [M+H]+. 

 

 

2-(3-((R)-1-(((S)-1-((S)-3-cyclopropyl-2-(3,4,5-trimethoxyphenyl)propanoyl) 

piperidine-2-carbonyl)oxy)-3-(3,4-dimethoxyphenyl)propyl)phenoxy)acetic 

acid (43) 

 

 

 

General synthesis procedure B for free acid ligands with 37a (100 mg, 0.20 mmol) and 39a (55 mg, 

0.20 mmol) 57.0 mg, 0.21 mmol) was used. The crude product was concentrated and purified using 

flash chromatography (gradient 0%-10% MeOH in DCM) to obtain 43 (38 mg, 54 µmol, 55%) as a 

colorless oil. The diastereomeric rate was determined by HPLC. 

 

TLC [MeOH/DCM, 6:94]: Rf = 0.27. 

 

HPLC [0-100% Solvent B, 20 min]: Rt = 19.3 min, purity (220 nm) = 95%, dr = 95:5. 

 

1H NMR (400 MHz, d6-DMSO) δ 7.22 (s, 1H), 7.12 (dd, J = 15.6, 7.9 Hz, 1H), 6.85 – 6.69 (m, 3H), 6.63 – 

6.55 (m, 2H), 6.51 (s, 1H), 5.50 (dd, J = 8.2, 5.2 Hz, 1H), 5.25 (s, 1H), 4.64 (s, 2H), 3.71 (d, J = 2.0 Hz, 
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2H), 3.68 (s, 3H), 3.67 (s, 3H), 3.60 (d, J = 2.5 Hz, 1H), 3.56 (s, 6H), 3.53 (s, 3H), 2.68 – 2.60 (m, 1H), 

2.52 (t, J = 5.3 Hz, 2H), 2.45 – 2,40 (s, 2H), 2,38 – 2,33 (m, 2H), 2.14 (d, J = 12.0 Hz, 1H), 1.94 – 1.84 

(m, 2H), 1.64 – 1,57 (m, 4H), 0,63 – 0,56 (m, 1H), 0.36 – 0.28 (m, 2H), 0.07 – -0.03 (m, 2H). 

 

13C NMR (101 MHz, d6-DMSO) δ 172.66, 170.73, 170.52, 158.01, 153.09, 149.14, 147.59, 142.39, 

136.43, 135.93, 133.44, 129.79, 120.34, 113.88, 112.82, 112.64, 112.34, 109.94, 105.52, 75.34, 64.87, 

60.20, 57.45, 56.30, 55.95, 55.88, 52.05, 47.92, 43.37, 30.92, 26.67, 21.10, 14.38, 9.71, 4.73. 

 

Mass: (ESI+), calculated 720.34 [C40H49NO11+H]+, found 720.32 [M+H]+. 

 

(S)-(R)-3-(3,4-dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propyl-1-

((S)-3-cyclopropyl-2-(3,4,5-trimethoxyphenyl)propanoyl)piperidine-2-

carboxylate (44) 

 

 

 

General synthesis procedure A for morpholine ligands with 39a (8 mg, 29 µmol) and 37b (14 mg, 

27 µmol) was used. Then was purified using flash chromatography (gradient 0%-10% MeOH in DCM) 

to obtain 44 (6 mg, 7.74 µmol, 29%) as a colorless oil. The diastereomeric rate was determined by 

HPLC. 

 

TLC [MeOH/DCM, 8:92]: Rf = 0.52. 

 

HPLC [0-100% Solvent B, 20 min]: Rt = 15.1 min, purity (220 nm) = 95%, dr 95:5 

 

1H NMR (600 MHz, CDCl3) δ 7.26-7.24 (m, 1H), 7.02 – 6.97 (m, 1H), 6.90 – 6.71 (m, 5H), 6.60 (s, 2H), 

5.45-5.43 (m, 1H), 4.88-4.86 (m, 1H), 4.08-4.05 (m, 2H), 3.84 – 3.74 (m, 6H), 3.72 – 3.70 (m, 8H), 3.70 
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– 3.59 (m, 2H), 3.55-3.53 (m, J = 4.7 Hz, 4H), 3.49 – 3.45 (m, 1H), 2.76 – 2.64 (m, 4H), 2.53 – 2.41 (m, 

5H), 2.16 – 2.06 (m, 3H), 1.99-1.97 (m, J = 7.2 Hz, 1H), 1.92 – 1.82 (m, 3H), 1.74 – 1.60 (m, 3H), 0.88 – 

0.75 (m, 1H), 0.31 – 0.20 (m, 2H), 0.05 – -0.06 (m, 2H). 

 

13C NMR (125 MHz, CDCl3) δ 175.62, 170.15, 159.63, 156.01, 150.39, 148.33, 143.58, 137.88, 135.20, 

132.08, 129.28, 121.85, 119.20, 115.53, 114.12, 113.68, 113.06, 107.04, 77.03, 67.38, 66.80, 60.70, 

58.74, 56.83, 54.73, 52.94, 48.18, 43.29, 36.38, 34.08, 33.96, 25.91, 25.47, 22.24, 9.61, 7.11. 

 

Mass: (ESI+), calculated 775.42 [C44H58N2O10+H]+, found 775.48 [M+H]+. 

 

2-(3-((R)-3-(3,4-dimethoxyphenyl)-1-(((S)-1-((S)-3-phenyl-2-(3,4,5-trimethoxy 

phenyl) propanoyl)piperidine-2-carbonyl)oxy)propyl)phenoxy)acetic acid (45) 

 

 

 

General synthesis procedure B for free acid ligands with 41b (68 mg, 0.21 mmol) and 37a (100 mg, 

0.20 mmol) was used. Then was purified using reversed phase flash (Gradient 40%-70% MeOH in H2O 

+ 1%AcOH) to obtain 45 (49 mg, 0.13 mmol, 49%) as a slight yellow oil. The diastereomeric rate was 

determined by HPLC. 

 

TLC [MeOH/DCM, 8:92]: Rf = 0.20. 

 

HPLC [isochratic 60% B, 20 min]: Rt = 10.4 min, purity (220 nm) = 98%, dr 95:5. 

 

1H NMR (599 MHz, d6-DMSO) δ 7.27 – 7.03 (m, 6H), 6.86 – 6.65 (m, 5H), 6.59 (s, 2H), 5.50 (dd, J = 8.2, 

5.1 Hz, 1H), 5.19 (dd, J = 6.0, 2.5 Hz, 1H), 4.61 (s, 2H), 4.35 (dd, J = 8.9, 6.0 Hz, 1H), 3.99 (d, J = 13.2 

Hz, 1H), 3.70 (s, 3H), 3.69 (s, 3H), 3.66 (s, 1H), 3.62 (s, 6H), 3.53 (d, J = 0.7 Hz, 3H), 3.31 – 3.26 (m, 2H), 
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2.85 (dd, J = 13.5, 5.9 Hz, 1H), 2.70 (td, J = 13.4, 2.9 Hz, 1H), 2.43 (ddd, J = 14.0, 9.0, 5.7 Hz, 1H), 2.33 

(dt, J = 14.0, 8.1 Hz, 1H), 2.08 (d, J = 13.4 Hz, 1H), 1.88 (qd, J = 8.5, 8.0, 5.4 Hz, 2H), 1.54 – 1.44 (m, 

2H), 1.44 – 1.35 (m, 1H), 1.12 – 1.03 (m, 1H), 1.01 – 0.93 (m, 1H). 

 

13C NMR (151 MHz, d6-DMSO) δ 172.30, 170.60, 158.34, 153.05, 149.12, 147.61, 142.67, 140.25, 

136.47, 135.16, 133.44, 130.00, 129.79, 129.59, 129.38, 129.37, 128.49, 128.26, 126.26, 120.50, 

118.49, 113.89, 112.61, 112.53, 112.42, 105.76, 75.42, 65.12, 60.25, 56.09, 55.98, 55.86, 55.72, 

52.13, 49.02, 43.34, 41.21, 38.10, 31.04, 26.52, 20.78. 

 

Mass: (ESI-), calculated 756.34 [C43H49NO11+H]-, found 756.33 [M+H]+. 

 

(S)-3-((S)-2-((S)-cyclohex-2-en-1-yl)-2-(3,4,5-trimethoxyphenyl)acetyl)-4-

isopropyl-oxazolidin-2-one (46a) 

 

 

 

21 (3.0 g, 8.89 mmol) was dissolved in 1 mL anhydrous THF and cooled to -78 °C. Then NaHMDS 

(14.23 mL, 14.23 mmol, 1 M in THF) was added dropwise and stirred for 1h. The reaction mixture was 

briefly warmed to 0°C and cooled again to -78°C. Cyclohexene bromide (1.0 mL, 8.9 mmol) was 

added dropwise and stirred for 1h at -78°C finally it was slowly warmed to 0°C and stirred for another 

14 h. The reaction mixture was quenched with sat. NH4Cl solution and extracted with DCM. The 

organic phase was dried over MgSO4 and the solvent was removed in vacuo. The raw product was 

purified using column chromatography (EtOAc/cyclohexane 1:3) to obtain a mixture of 46a/b (2.03 g, 

4.9 mmol, 55%) as yellow orange solid. A dr at Cß of 85:15 was determined via 13C NMR (Annex 

Fig. D). The distribution shown above is based on the co-crystal structure with 51.  

 

TLC [EtOAc/n-hexane 1:2]: Rf = 0.5. 
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HPLC 46a/b [55-65% Solvent B, 20 min]: Rt = 20.3 min, purity (220 nm) ≥ 99%. 

HPLC 46a/b [55-65% Solvent B, 20 min]: Rt = 16.6 min, purity (220 nm) ≥ 99%. 

 

1H NMR (300 MHz, d6-DMSO) major diastereomer δ 6.54 – 6.53 (s, 2H), 5.74 – 5.66 (m, 1H), 5.61 – 

5.54 (dd, J = 10.3, 2.3 Hz, 1H), 4.73 – 4.67 (d, J = 11.2 Hz, 1H), 4.49 – 4.42 (m, 1H), 4.34 – 4.27 (m, 1H), 

4.20 – 4.15 (dd, J = 9.0, 3.1 Hz, 1H), 3.70 – 3.69 (s, 6H), 3.62 – 3.60 (s, J = 1.9 Hz, 3H), 1.68 – 1.55 (m, 

3H), 1.47 – 1.35 (m, 2H), 1.34 – 1.20 (dd, J = 14.4, 7.5 Hz, 2H), 1.11 – 0.98 (m, 1H), 0.73 – 0.69 (d, J = 

7.0 Hz, 3H), 0.35 – 0.32 (d, J = 6.8, 3H). 

 

13C NMR (75 MHz, d6-DMSO) major diastereomer δ 172.85, 172.83, 153.81, 153.09, 137.22, 133.09, 

129.97, 128.88, 106.30, 63.53, 60.45, 57.97, 56.30, 54.06, 37.30, 28.12, 26.52, 25.25, 20.99, 17.56, 

14.44. 

 

Mass: (ESI+), calculated 418.22 [C23H31NO6+H]+, found 418.25 [M+H]+. 

 

(S)-2-((R)-Cyclohex-2-en-1-yl)-2-(3,4,5-trimethoxyphenyl)acetic acid (47) 

 

 

 

46 (0.65 mg, 1.56 mmol) was dissolved in 13 mL THF/H2O 8:5 at RT. Then lithium hydroxide (75 mg, 

3.12 mmol) and hydrogen peroxide (0.68 mL, 28.1 mmol) were added and stirred until complete 

dissolved. The reaction mixture was cooled to 0°C and stirred for 4h and another 2h at RT. Finally the 

reaction was quenched with 5 mL 1.5 M Na2SO3 solution and was subsequently diluted with brine and 

extracted with DCM. The aqueous phase was acidified to pH<2 and extracted again with DCM. All 

organic phases were checked with TLC and LCMS, product containing phases were combined, dried 

over MgSO4 and concentrated. 47 (470 mg, 1.53 mmol, 96%) was obtained without further 

purification as a yellow oil with a dr 85:15 (determined via 13C NMR).  

 

TLC [EtOAc/n-hexane 1:1.5, 1% AcOH]: Rf = 0.40. 
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HPLC [55-65% Solvent B, 20 min]: Rt = 19.0 min, purity (220 nm) = 98%. 

 

1H NMR (300 MHz, d6-DMSO) major diastereomer δ 6.61 (s, 2H), 5.72 (dd, J = 10.0, 2.3 Hz, 1H), 5.61 

(d, J = 10.3 Hz, 1H), 3.72 (s, 6H), 3.62 (s, 3H), 3.50 (dtd, J = 8.6, 6.1, 1.1 Hz, 1H), 3.13 (dd, J = 11.1, 4.6 

Hz, 1H), 1.91 (s, 2H), 1.41 – 1.20 (m, 3H), 1.10 – 0.91 (m, 1H). 

 

13C NMR (75 MHz, d6-DMSO) major diastereomer δ 174.80, 159.27, 153.00, 136.89, 134.47, 129.95, 

128.78, 105.95, 60.30, 57.67, 56.28, 38.26, 26.37, 25.16, 20.75,  

 

Mass: (ESI+), calculated 307.15 [C17H22O5 +H]+, found 307.18 [M+H]+. 

 

(S)-3-((S)-2-Cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)-4-isopropyl 

oxazolidin-2-one (48) 

 

 

 

46 (0.20 mg, 0.48 mmol) was dissolved in 10 mL of MeOH and placed in an autoclave (Roth, Lab 

autoclave model II). Palladium on activated charcoal (10% Pd basis, 20 mg, 18.8 µmol) was added and 

the autoclave was flushed with argon and hydrogen gas. Finally it was filled with 30 bar hydrogen gas 

and the reaction mixture stirred for 2 d. The reaction progress was monitored by LCMS. If educt was 

still present another amount of Palladium on activated charcoal (10% Pd basis, 10 mg, 9.40 µmol) 

was added and above described procedure repeated. The palladium containing crude product was 

filtered through celite and concentrated. 48 (188 mg, 0.45 mmol, 94%, dr 99:1) was obtained as 

slight yellow oil and used without further purification. No residual 46 could be observed in the NMR 

spectra. The diastereomeric rate was determined by HPLC. 

 

TLC [EtOAc/n-hexane 1:2]: Rf = 0.5. 
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HPLC [60-70% Solvent B, 20 min]: Rt = 17.9 min, purity (220 nm) = 98%, dr ≥ 99:1. 

 

1H NMR (300 MHz, d6-DMSO) δ 6.56 (s, 2H), 4.79 (d, J = 10.6 Hz, 1H), 4.38 (dt, J = 7.3, 3.5 Hz, 1H), 

4.27 – 4.21 (m, 2H), 3.71 (s, 6H), 3.61 (s, 3H), 2.25 (td, J = 7.0, 3.4 Hz, 1H), 2.04 (d, J = 10.9 Hz, 1H), 

1.65 (d, J = 11.0 Hz, 2H), 1.56 (d, J = 8.0 Hz, 2H), 1.25 – 0.99 (m, 6H), 0.84 (d, J = 1.6 Hz, 3H), 0.80 (d, J 

= 6.9 Hz, 3H). 

 

13C NMR (75 MHz, d6-DMSO) δ 173.58, 154.13, 153.06, 137.13, 133.36, 108.74, 106.47, 63.15, 60.37, 

58.76, 56.19, 53.74, 31.49, 30.26, 28.33, 26.28, 25.80, 25.66, 17.88, 14.63. 

 

Mass: (ESI+), calculated 420.24 [C23H33NO6 +H]+, found 420.25 [M+H]+. 

 

(S)-2-Cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetic acid (49) 

 

 

 

48 (0.50 g, 1.19 mmol) was dissolved in 6 mL THF/H2O 8:5 and cooled to 0°C, then lithium hydroxide 

(57.1 mg, 2.38 mmol) and hydrogen peroxide (0.52 mL, 21.45 mmol) were added and stirred for 24 h. 

Subsequently the reaction mixture was quenched by adding 5 mL of a 1.5 M Na2SO3 solution. Finally 

the reaction was quenched with 5 mL 1.5 M Na2SO3 solution and was subsequently diluted with brine 

and extracted with DCM. The aqueous phase was acidified to pH<2 and extracted again with DCM. All 

organic phases were checked with TLC and LCMS, product containing phases were combined, dried 

over MgSO4 and concentrated. 49 (220 mg, 0.71 mmol, 60%) was obtained as a pale yellow oil 

without further purification. 

 

TLC [EtOAc/n-hexane 1:1.5, 1% AcOH]: Rf = 0.33. 

 

HPLC [60-70% Solvent B, 20 min]: Rt = 14.4 min, purity (220 nm) = 95% 
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1H NMR (300 MHz, CDCl3) δ 6.54 (s, 2H), 3.84 (s, 6H), 3.82 (s, 3H), 3.12 (d, J = 10.7 Hz, 1H), 2.01 – 1.83 

(m, 3H), 1.81 – 1.59 (m, 3H), 1.42 – 1.21 (m, 2H), 1.20 – 0.99 (m, 3H). 

 

13C NMR (75 MHz, CDCl3) δ 179.31, 153.13, 137.33, 132.79, 105.60, 60.80, 58.89, 56.12, 40.86, 31.91, 

30.25, 26.23, 25.91. 

 

Mass: (ESI+), calculated 309.17 [C17H24O5+H]+, found 309.20 [M+H]+. 

 

2-(3-((R)-1-(((S)-1-((S)-2-((S)-Cyclohex-2-en-1-yl)-2-(3,4,5-trimethoxyphenyl) 

acetyl)piperidine-2-carbonyl)oxy)-3-(3,4-dimethoxyphenyl)propyl)phenoxy) 

acetic acid (50) 

 

 

 

General synthesis procedure B for free acid ligands with 37a (50 mg, 0.20 mmol) and 47 (29.8 mg, 

0.20 mmol) was used. Then was purified using flash chromatography (gradient 0%-4% MeOH in DCM) 

to obtain 50 (25 mg, 33.5 µmol, 67%, dr 85:15) as a slight yellow oil. The dr was determined by NMR. 

 

TLC [MeOH/DCM, 6:94]: Rf = 0.12. 

 

HPLC [0-100% Solvent B, 20 min]: Rt = 20.0 min, purity (220 nm) = 98%. 

 

1H NMR (600 MHz, d6-DMSO) major diastereomer δ 7.08 (td, J = 8.1, 1.7 Hz, 1H), 6.80 (dd, J = 8.3, 1.1 

Hz, 1H), 6.75 (ddd, J = 8.3, 2.6, 0.9 Hz, 1H), 6.69 – 6.66 (m, 2H), 6.64 (d, J = 11.4 Hz, 2H), 6.60 – 6.58 

(m, 1H), 6.38 – 6.34 (m, 1H), 5.69 – 5.65 (m, 1H), 5.59 (dq, J = 9.8, 3.6 Hz, 1H), 5.52 (dd, J = 10.0, 2.4 

Hz, 1H), 5.47 – 5.40 (m, 1H), 5.30 – 5.25 (m, 1H), 4.62 (d, J = 1.3 Hz, 1H), 4.13 (d, J = 13.4 Hz, 1H), 3.71 



C. Experimental Section_______________________________________________________________ 

122 
 

(d, J = 0.8 Hz, 1H), 3.69 (s, 3H), 3.68 (s, 3H), 3.62 – 3.61 (m, 3H), 3.59 (s, 3H), 3.57 (s, 3H), 3.53 (d, J = 

0.7 Hz, 3H), 2.82 – 2.71 (m, 2H), 2.67 – 2.53 (m, 1H), 2.42 – 2.32 (m, 1H), 2.25 (ddt, J = 24.0, 13.8, 8.2 

Hz, 2H), 2.11 (d, J = 12.9 Hz, 1H), 1.90 (s, 2H), 1.84 – 1.73 (m, 2H), 1.62 – 1.51 (m, 2H), 1.24 – 1.12 (m, 

1H), 1.06 (dtd, J = 22.1, 12.1, 3.1 Hz, 1H) 

 

13C NMR (151 MHz, d6-DMSO) major diastereomer δ 171.70, 170.42, 158.01, 152.87, 149.01, 147.50, 

142.19, 136.44, 133.42, 129.78, 128.05, 120.17, 118.44, 113.74, 112.91, 112.46, 112.01, 106.25, 

105.80, 75.23, 64.94, 60.03, 56.06, 56.05, 55.92, 55.76, 52.41, 51.92, 43.29, 38.91, 38.02, 30.80, 

26.69, 25.42, 21.21. 

 

Mass: (ESI+), calculated 746.35 [C42H51NO11+H]+, found 746.38 [M+H]+. 

 

(S)-(R)-3-(3,4-Dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propyl-1-

((S)-2-((S)-cyclohex-2-en-1-yl)-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-

carboxylate (51) 

 

 

 

General synthesis procedure A for morpholine ligands with 47 (10 mg, 33 µmol) and 37b (17 mg, 

33 µmol) was used. The product was purified using flash chromatography (gradient 0%-6% MeOH in 

DCM). 51 (16 mg, 20 µmol, 75%, dr 85:15) was obtained as a colorless oil. The dr was determined by 

NMR. 

 

TLC [MeOH/DCM, 6:94]: Rf = 0.22. 

 

HPLC [50-60% Solvent B, 20 min]: Rt = 10.5 min, purity (220 nm) = 98%. 
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1H NMR (400 MHz, d6-DMSO) major diastereomer δ 7.08 (t, J = 7.9 Hz, 1H), 6.93 – 6.87 (m, 1H), 6.83 

– 6.76 (m, 2H), 6.72 (q, J = 2.5, 2.0 Hz, 1H), 6.68 (d, J = 2.0 Hz, 1H), 6.62 (d, J = 11.1 Hz, 2H), 6.36 (t, J = 

7.1 Hz, 1H), 5.69 – 5.63 (m, 1H), 5.55 – 5.49 (m, 1H), 5.47 – 5.38 (m, 1H), 5.26 (s, 1H), 4.06 (dd, J = 

14.6, 6.1 Hz, 2H), 3.72 – 3.70 (m, 2H), 3.69 (s, 3H), 3.67 (s, 3H), 3.61 (t, J = 1.5 Hz, 1H), 3.58 (s, 1H), 

3.55 (s, 2H), 3.53 (s, 2H), 3.29 – 3.27 (m, 10H), 2.82 – 2.70 (m, 2H), 2.65 – 2.56 (m, 1H), 2.32 – 2.22 

(m, 2H), 2.11 (d, J = 13.2 Hz, 2H), 1.90 (s, 2H), 1.80 (dt, J = 14.9, 6.8 Hz, 3H), 1.59 (d, J = 13.8 Hz, 3H), 

1.49 – 1.36 (m, 1H), 1.21 (d, J = 3.6 Hz, 3H), 0.88 – 0.77 (m, 2H). 

 

13C NMR (101 MHz, d6-DMSO) major diastereomer δ 172.07, 170.39, 158.51, 153.10, 148.83, 147.53, 

142.35, 136.56, 133.51, 130.70, 129.85, 128.16, 120.38, 118.26, 114.15, 112.85, 112.65, 112.33, 

106.17, 75.31, 66.60, 65.63, 60.20, 60.11, 57.40, 56.45, 56.04, 55.93, 55.77, 54.00, 52.60, 52.01, 

51.96, 43.13, 37.92, 30.92, 28.64, 28.01, 26.71, 25.32, 22.42, 21.21, 20.82. 

 

Mass: (ESI+), calculated 801.43 [C46H60N2O10+H]+, found 801.42 [M+H]+. 

 

(S)-1,7-Di(pyridin-3-yl)heptan-4-yl-1-((S)-2-((S)-cyclohex-2-en-1-yl)-2-(3,4,5-

trimethoxy phenyl) acetyl)piperidine-2-carboxylate (52) 

 

 

 

47 (42 mg, 0.14 mmol) was dissolved in 500 µL DMF, then HATU (91 mg, 0.25 mmol) and DIPEA (86 

µL, 0.50 mmol) were added and stirred for 30 min. Then 37c (48 mg, 0.14 mmol) in 500µL DMF was 

added and stirred for 14 h. Subsequently, 3 mL H2O/MeOH 1:1 with 0.1% TFA was added and 

subjected to reversed phase flash chromatography (gradient 0%-45% MeOH in H2O + 0.1% TFA). 52 

(53 mg, 79 µmol, 63%, 85:15) was obtained as a yellow oil. The dr was determined by NMR. 
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TLC [MeOH/DCM, 15:85]: Rf = 0.25. 

 

HPLC [0-100% Solvent B, 20 min]: Rt = 13.2 min, purity (220 nm) = 95%. 

 

1H NMR (300 MHz, CDCl3) major diastereomer δ 8.69 (d, J = 15.8 Hz, 4H), 8.23 (dd, J = 24.2, 7.7 Hz, 

2H), 7.81 (s, 2H), 6.51 (d, J = 12.9 Hz, 2H), 5.83 – 5.68 (m, 1H), 5.65 – 5.48 (m, 1H), 5.30 (s, 1H), 4.84 

(s, 1H), 3.85 – 3.82 (m, 1H), 3.81 (s, 3H), 3.78 (s, 6H), 3.63 – 3.43 (m, 1H), 2.95 – 2.84 (m, 2H), 2.80 – 

2.67 (m, 4H), 2.21 (d, J = 12.9 Hz, 2H), 1.99 (s, 3H), 1.76 – 1.34 (m, 14H), 1.12 (d, J = 11.3 Hz, 1H). 

 

13C NMR (75 MHz, CDCl3) major diastereomer δ 172.71, 172.51, 171.03, 170.84, 152.77, 145.17, 

144.97, 141.86, 141.49, 139.45, 136.89, 133.18, 130.02, 128.94, 126.52, 105.84, 72.97, 60.90, 56.13, 

53.91, 52.42. 

 

Mass: (ESI+), calculated 670.39 [C40H51N3O6+H]+, found 670.39 [M+H]+. 

 

(S)-2-(3,4-Dimethoxyphenoxy)ethyl-1-((S)-2-((R)-cyclohex-2-en-1-yl)-2-(3,4,5-

trimethoxy phenyl)acetyl)piperidine-2-carboxylate (53) 

 

 

 

47 (45 mg, 0.15 mmol) was dissolved in 700 µL dry DMF then N-ethyl-N-isopropylpropan-2-amine 

(102 µL, 0.60 mmol) and HATU (83 mg, 0.22 mmol) was added and stirred for 15 min. Then 37d 

(45 mg, 0.15 mmol) was dissolved in 600 µL DCM/DMF 1:1 and added to the reaction mixture. Then 

was stirred for 14 h at RT. The product was purified using flash chromatography (Gradient 0%-

50% EtOAc in cyclohexane). 53 (12 mg, 20 µmol, 13%, dr 85:15) was obtained as a slight yellow oil. 

The dr was determined by NMR. 
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TLC [EtOAc/cyclohexane, 1:1]: Rf = 0.29. 

 

HPLC [60-80% Solvent B, 20 min]: Rt = 12.0 min, purity (220 nm) = 95%. 

 

1H NMR (400 MHz, d6-DMSO) major diastereomer δ 6.81 – 6.77 (m, 1H), 6.67 (d, J = 6.9 Hz, 1H), 6.59 

(s, 2H), 6.46 (d, J = 2.7 Hz, 1H), 5.68 – 5.63 (m, 1H), 5.55 – 5.52 (m, 1H), 5.15 – 5.12 (m, 1H), 4.44 – 

4.39 (m, 1H), 4.16 – 4.10 (m, 2H), 4.02 – 3.95 (m, 2H), 3.82 – 3.76 (m, 1H), 3.69 (s, 3H), 3.67 (s, 6H), 

3.66 (s, 3H), 3.62 – 3.60 (m, 3H), 3.59 – 3.52 (m, 1H), 2.73 – 2.66 (m, 2H), 2.09 – 2.01 (m, 1H), 1.98 – 

1.86 (m, 3H), 1.84 – 1.73 (m, 2H), 1.70 – 1.52 (m, 3H), 1.32 (d, J = 7.5 Hz, 2H). 

 

 

13C NMR (101 MHz, d6-DMSO) major diastereomer δ 172.25, 171.15, 153.21, 152.92, 150.00, 143.62, 

136.44, 134.87, 133.53, 131.40, 128.24, 113.13, 106.42, 104.61, 101.36, 66.53, 63.39, 60.70, 56.48, 

56.37, 56.19, 55.83, 52.76, 52.36, 43.22, 38.91, 26.91, 26.74, 26.58, 25.39, 21.13, 20.93. 

 

Mass: (ESI+), calculated 598.30 [C33H43NO9+H]+, found 598.28 [M+H]+. 

 

(S)-(R)-3-(3,4-dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propyl-1-

((S)-2-((R)-cyclohex-2-en-1-yl)-2-(3,4,5-trimethoxyphenyl)acetyl)pyrrolidine-2-

carboxylate (54) 

 

 

 

General synthesis procedure A for morpholine ligands with 47 (30 mg, 98 µmol) and 37b (40 mg, 

80 µmol). The product was purified using flash chromatography. 54 (44 mg, 20 µmol, 70%, dr 85:15) 

was obtained as colorless oil. The dr was determined by NMR. 
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TLC [MeOH/DCM, 8:92]: Rf = 0.29. 

 

HPLC [0-100% Solvent B, 20 min]: Rt = 16.6 min, purity (220 nm) = 98%. 

 

1H NMR (400 MHz, d6-DMSO) major diastereomer δ 7.24 – 7.14 (m, 1H), 6.94 (d, J = 29.5 Hz, 1H), 

6.88 – 6.78 (m, 2H), 6.70 (dd, J = 6.1, 2.0 Hz, 1H), 6.68 – 6.63 (m, 1H), 6.63 – 6.59 (m, 1H), 6.57 (d, J = 

5.9 Hz, 2H), 5.72 – 5.64 (m, 1H), 5.58 (ddd, J = 14.8, 10.1, 2.2 Hz, 1H), 5.41 (ddd, J = 12.6, 8.2, 5.0 Hz, 

1H), 5.09 (dd, J = 10.2, 2.5 Hz, 1H), 4.47 (ddd, J = 14.3, 8.6, 3.1 Hz, 1H), 4.22 – 4.13 (m, 1H), 3.73 – 

3.71 (m, 1H), 3.70 (s, 2H), 3.68 (s, 3H), 3.64 – 3.61 (m, 3H), 3.55 (s, 3H), 3.54 (d, J = 1.5 Hz, 4H), 3.32 

(s, 9H), 3.23-3.19 (m, 1H), 2.89 – 2.74 (m, 2H), 2.75 – 2.61 (m, 2H), 2.46 – 2.24 (m, 2H), 2.25 – 2.13 

(m, 2H), 1.97 – 1.86 (m, 2H), 1.80 – 1.67 (m, 3H), 1.67 – 1.54 (m, 1H), 1.53 – 1.29 (m, 3H), 1.27 – 1.14 

(m, 1H). 

 

13C NMR (101 MHz, d6-DMSO) major diastereomer δ 171.90, 171.05, 159.55, 153.08, 149.26, 147.35, 

142.64, 136.73, 133.54, 130.79, 129.87, 129.38, 128.68, 120.50, 114.23, 112.82, 112.32, 106.54, 

106.04, 75.16, 67.84, 66.99, 60.86, 59.81, 58.96, 57.75, 56.19, 54.80, 53.88, 47.26, 32.66, 30.54, 

29.34, 28.63, 25.48, 24.79, 21.81, 21.31. 

 

Mass: (ESI-), calculated 787.42 [C45H58N2O10 +H]-, found 787.35 [M+H]+. 
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2-(3-((R)-1-((S)-1-((S)-2-((R)-Cyclohex-2-en-1-yl)-2-(3,4,5-trimethoxyphenyl) 

acetyl)piper-idine-2-carboxamido)-3-(3,4-dimethoxyphenyl)propyl)phenoxy) 

acetic acid (55) 

 

 

 

General synthesis procedure B for free acid ligands with 37e (50 mg, 0.20 mmol) and 47 (30 mg, 0.20 

mmol) was used. The product was purified using preparative TLC (MeOH/DCM 8:92) to obtain 55 

(25 mg, 33.5 µmol, 67%, dr 85:15) as a slight yellow oil. The diastereomeric rate was determined by 

NMR.  

 

TLC [MeOH/DCM, 8:92]: Rf = 0.29. 

 

HPLC [0-100% Solvent B, 20 min]: Rt = 11.7 min, purity (220 nm) = 98%. 

 

1H NMR (400 MHz, dmso) major diastereomer δ 7.10 – 7.05 (m, 1H), 6.92 – 6.86 (m, 1H), 6.81 (t, J = 

8.4 Hz, 1H), 6.72 (dq, J = 11.8, 2.0 Hz, 2H), 6.69 – 6.64 (m, 1H), 6.63 – 6.57 (m, 1H), 6.56 – 6.51 (m, 

2H), 5.70 – 5.61 (m, 1H), 5.53 (d, J = 10.2 Hz, 1H), 5.12 – 5.04 (m, 1H), 4.79 – 4.66 (m, 2H), 4.66 – 4.53 

(m, 3H), 3.73 – 3.69 (m, 2H), 3.69 – 3.66 (m, 6H), 3.62 – 3.60 (m, 1H), 3.55 – 3.51 (m, 9H), 2.93 – 2.81 

(m, 2H), 2.79 – 2.67 (m, 2H), 2.40 – 2.27 (m, 2H), 2.16 – 2.02 (m, 2H), 1.96 – 1.84 (m, 2H), 1.84 – 1.73 

(m, 3H), 1.56 (d, J = 8.2 Hz, 2H), 1.31 (d, J = 9.6 Hz, 1H). 

 

13C NMR (101 MHz, dmso) δ 172.44, 170.72, 170.56, 158.10, 152.97, 149.05, 147.45, 145.74, 136.42, 

134.04, 133.70, 131.15, 129.51, 128.15, 120.46, 113.07, 112.76, 112.70, 112.19, 106.01, 64.77, 63.52, 

60.15, 56.41, 55.97, 55.92, 55.78, 52.86, 52.23, 51.90, 43.24, 38.97, 38.62, 32.03, 27.78, 27.48, 26.54, 

25.31, 21.12, 20.41. 
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Mass: (ESI-), calculated 745.37 [C42H52N2O10 +H]+, found 745.40 [M-H]+. 

 

2-(3-((R)-1-(((S)-1-((S)-2-Cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl) 

piperidine-2-carbonyl)oxy)-3-(3,4-dimethoxyphenyl)propyl)phenoxy)acetic 

acid (56) 

 

 

 

 

General synthesis procedure B for free acid ligands with 37a (96 mg, 0.20 mmol) and 49 (58 mg, 

0.20 mmol) was used. The crude product was purified using preparative TLC (EtOAc/cyclohexane 

1:1.5 +1% AcOH) to obtain 56 (17 mg, 33.5 µmol, 23%) as a colorless oil.  

 

TLC [EtOAc/cyclohexane 1:1]: Rf = 0.20. 

 

HPLC [0-100% Solvent B, 20 min]: Rt = 20.6 min, purity (220 nm) ≥ 99%. 

 

1H NMR (599 MHz, d6-DMSO) δ 7.03 (t, J = 7.9 Hz, 1H), 6.90 – 6.84 (m, 1H), 6.83 – 6.73 (m, 2H), 6.70 

– 6.65 (m, 2H), 6.62 (s, 1H), 6.57 (dd, J = 8.1, 2.0 Hz, 1H), 6.28 (d, J = 7.6 Hz, 1H), 5.40 (dd, J = 7.6, 6.0 

Hz, 1H), 5.27 (dd, J = 5.8, 2.4 Hz, 1H), 4.36 (s, 2H), 4.19 (d, J = 13.4 Hz, 1H), 3.69 (s, 3H), 3.67 (s, 3H), 

3.60 (s, 1H), 3.58 (s, 6H), 3.51 (s, 3H), 3.48 – 3.43 (m, 1H), 2.67 – 2.60 (m, 1H), 2.37 – 2.29 (m, 2H), 

2.22 (dt, J = 13.9, 8.1 Hz, 1H), 2.14 – 2.06 (m, 2H), 1.99 – 1.91 (m, 2H), 1.78 – 1.69 (m, 2H), 1.63 (d, J = 

12.4 Hz, 1H), 1.54 – 1.41 (m, 2H), 1.35 – 1.28 (m, 1H), 1.19 (d, J = 17.2 Hz, 2H), 1.15 – 1.02 (m, 2H), 

0.96 – 0.85 (m, 2H), 0.80 (ddt, J = 20.6, 12.1, 7.3 Hz, 2H). 
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13C NMR (151 MHz, d6-DMSO) δ 172.48, 172.08, 170.61, 158.61, 152.66, 149.15, 147.47, 142.13, 

136.20, 134.32, 133.43, 120.48, 118.07, 113.80, 113.07, 112.53, 112.13, 106.25, 75.16, 66.46, 60.33, 

56.62, 55.90, 55.74, 53.12, 52.03, 43.53, 41.10, 37.94, 32.41, 31.32, 30.58, 29.98, 26.87, 26.32, 25.93, 

25.38, 20.93. 

 

Mass: (ESI-), calculated 748.37 [C42H53NO11+H]+, found 768.41[M+H]+. 

 

(S)-(R)-3-(3,4-dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propyl-1-

((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate 

(57) 

 

 

 

General synthesis procedure A for morpholine ligands with 49 (30 mg, 97 µmol) and 37b (50 mg, 

97 µmol). The product was purified using flash chromatography (gradient 0%-15% MeOH in DCM). 57 

(11 mg, 13.6 µmol, 14%) was obtained as a colorless oil. 

 

TLC [MeOH/DCM 6:94]: Rf = 0.44. 

HPLC [0-100% Solvent B, 20 min]: Rt = 17.7 min, purity (220 nm) = 98%. 

 

1H NMR (400 MHz, d6-DMSO) δ 7.08 (t, J = 7.9 Hz, 1H), 6.93 – 6.87 (m, 1H), 6.83 – 6.76 (m, 2H), 6.72 

(q, J = 2.5, 2.0 Hz, 1H), 6.68 (d, J = 2.0 Hz, 1H), 6.62 (d, J = 11.1 Hz, 2H), 6.36 (t, J = 7.1 Hz, 1H), 5.47 – 

5.38 (m, 1H), 5.26 (s, 1H), 4.06 (dd, J = 14.6, 6.1 Hz, 2H), 3.72 – 3.70 (m, 2H), 3.69 (s, 3H), 3.67 (s, 3H), 

3.61 (t, J = 1.5 Hz, 1H), 3.58 (s, 1H), 3.55 (s, 3H), 3.53 (s, 3H), 3.29 - 3.27 (m, 10H), 2.82 – 2.70 (m, 2H), 

2.65 – 2.56 (m, 1H), 2.32 – 2.22 (m, 2H), 2.11 (d, J = 13.2 Hz, 2H), 1.90 (s, 2H), 1.80 (dt, J = 14.9, 6.8 

Hz, 4H), 1.59 (d, J = 13.8 Hz, 4H), 1.49 – 1.36 (m, 1H), 1.21 (d, J = 3.6 Hz, 3H), 0.88 – 0.77 (m, 2H). 
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13C NMR (151 MHz, d6-DMSO) δ 172.55, 170.94, 162.94, 153.03, 149.33, 147.72, 137.03, 133.56, 

129.26, 120.19, 112.20, 75.37, 60.37, 56.68, 55.84, 55.30, 53.99, 51.62, 46.53, 43.54, 36.39, 32.08, 

30.77, 27.00, 25.93, 25.39, 21.16, 17.17, 9.63. 

 

Mass: (ESI-), calculated 803.34 [C46H62N2O10+H]+, found 803.38[M+H]+. 

 

2-Oxo-2-(3, 4, 5-trimethoxyphenyl) acetic acid 58 

 

 

 

1-(3,4,5-Trimethoxyphenyl)ethanone (2.93g, 13.9mmol) and selenium dioxide (2.32 g, 20.9 mmol) in 

60 mL pyridine were heated to 100°C for 14 h. The mixture was filterted through celite, concentrated 

in vacuo and purified with flash chromatography (EtOAc/cyclohexane 15:1, 1% AcOH). 58 (2.2 g, 

9.1 mmol, 65%) was obtained as a yellow solid.  

 

TLC [EtOAc/cyclohexane, 15:1, + 1% AcOH]: Rf = 0.14. 

 

HPLC [0-100% B, 20 min]: Rt = 10.8 min, purity (220 nm) 90%. 

 

1HNMR (600 MHz, CDCl3) δ= 3.91(s, 6H), 3.95(s, 3H),7.50 (s, 2H). 

13C NMR (150 MHz, CDCl3) δ= 56.31, 61.03, 108.04, 127.55, 144.19, 153.06, 165.74, 186.94. 

 

HRMS(EI+), calculated 240.0634[C11H12O6+H+] +.found 240.0624[M+H+] 
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(R)-2-hydroxy-2-(3,4,5-trimethoxyphenyl)pent-4-enoic acid (59) 

 

 

 

58 (100 mg, 0.42 mmol) was dissolved in 3.5 ml dry THF and cooled to -78°C then 

Allylmagnesiumbromid (1 M in THF, 0.42 mL, 0.42 mmol) was added dropwise, stirred for 4 h then 

was allowed to warm to RT and the reaction mixture was quenched, using NH4Cl (sat). The aqueous 

phase was extracted with DCM and the product was purified by silica chromatography 

(EtOAc/cyclohexane, 1:1 +1% AcOH). 59 (88mg, 0.36 mmol, 87%) was obtained as white crystals. 

 

TLC [EtOAc/cyclohexane, 1:1 + 5% AcOH]: Rf = 0.38. 

 

HPLC [0-100% Solvent B, 20 min]: Rt = 17.7 min, purity (220 nm) = 98%. 

 

1H NMR (300 MHz, CDCl3) δ 6.89 (s, 2H), 5.79 (dt, J = 17.2, 8.3 Hz, 1H), 5.32 – 5.21 (m, 2H), 3.89 (s, 

6H), 3.86 (s, 3H), 3.03 (dd, J = 13.9, 7.3 Hz, 1H), 2.80 (dd, J = 14.0, 7.0 Hz, 1H). 

 

Mass: (ESI-), calculated 281.10 [C14H18O6+H]-, found 281.13 [M+H]+. 
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(S)-1,7-Di(pyridin-3-yl)heptan-4-yl-1-(2-oxo-2-(3,4,5-

trimethoxyphenyl)acetyl)piperidine-2-carboxylate (63) 

 

 

 

58 (94 mg, 0.40 mmol) was dissolved in 500 µL DMF, then HATU (191 mg, 0.52 mmol) and DIPEA 

(0.18 mL, 1.05 mmol) were added and stirred for 30min. Subsequently, 37c (0.10 g, 0.26 mmol) in 

500 µL DMF was added and stirred for 14 h at RT. The solvent was reduced in vacuo. The crude 

product was dissolved in 4 mL MeOH/H2O 1:1 solution and purified with reversed phase flash 

chromatography (Column: Interchim puriFlash IR-50C18-20G, gradient 0%-20% MeOH in H2O + 1% 

TEA). 63 was obtained as a slight brown oil (104 mg, 0.17 mmol, 66%)  

 

TLC [MeOH/DCM 20:80]: Rf = 0.15. 

 

HPLC [0-100% Solvent B, 20 min]: Rt = 11.6 min, purity (220 nm) = 95%. 

 

1H NMR (300 MHz, d6-DMSO) δ 8.67 (dd, J = 11.4, 5.7 Hz, 4H), 8.26 – 8.18 (m, 2H), 7.77 (td, J = 8.3, 

5.4 Hz, 2H), 7.22 (s, 2H), 5.17 (d, J = 5.7 Hz, 1H), 4.97 (s, 1H), 3.82 (s, 6H), 3.77 (s, 3H), 3.31 (d, J = 13.1 

Hz, 1H), 3.13 – 3.05 (m, 1H), 2.78 – 2.70 (m, 4H), 2.16 (d, J = 13.8 Hz, 1H), 1.83 – 1.69 (m, 1H), 1.70 – 

1.56 (m, 6H), 1.53 – 1.45 (m, 1H), 1.45 – 1.31 (m, 2H), 1.28 – 1.19 (m, 2H), 1.19 – 1.11 (m, 1H). 

 

13C NMR (75 MHz, d6-DMSO) δ 190.83, 190.80, 170.86, 170.67, 170.12, 167.75, 167.53, 158.66, 

158.59, 153.87, 153.48, 144.31, 144.16, 142.19, 141.00, 127.91, 126.57, 118.59, 107.23, 75.25, 60.99, 

56.71, 51.82, 44.25, 33.28, 31.93, 26.27, 26.10, 24.53, 20.99. 

 

Mass: (ESI-), calculated 604.30 [C34H41N3O7+H]+, found 604.31[M+H]+. 
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(S)-1,7-Di(pyridin-3-yl)heptan-4-yl-1-((R)-2-cyclohexyl-2-hydroxy-2-(3,4,5-

trimethoxy phenyl)acetyl)piperidine-2-carboxylate (64a) 

 

 

 

63/Biricodar (69 mg, 0.11 mmol) was dissolved in 700 µL anhydrous THF and cooled to -78°C. Then 

cyclohexylmagnesium bromide (1 M in THF, 343 µL, 0.34 mmol) was added and stirred for 2h. The 

reaction mixture was quenched with NH4Cl (sat) solution and extracted with DCM. The organic 

phases were combined and dried over MgSO4. The diastereomers were separated using preparative 

HPLC (Gradient 45%-60% solvent B in Solvent A) yielding 64a (14 mg, 20 µmol, 20%). The 

diastereomeric rate was determined by HPLC. 

 

TLC [MeOH/DCM 5:95]: Rf = 0.45. 

 

HPLC 64a [25-40% Solvent B, 20 min]: Rt = 15.7 min, purity (220 nm) = 95%, dr ≥ 99:1  

HPLC 64b [25-40% Solvent B, 20 min]: Rt = 16.7 min, purity (220 nm) = 95%, dr ≥ 99:1 

 

1H NMR (599 MHz, d6-DMSO) δ 8.31 (t, J = 7.9 Hz, 2H), 8.22 – 8.09 (m, 2H), 7.74 (s, 2H), 7.71 – 7.64 

(m, 2H), 6.49 (d, J = 18.9 Hz, 2H), 4.92 – 4.85 (m, 1H), 4.04 (dd, J = 11.4, 3.6 Hz, 1H), 3.66 (s, 6H), 3.64 

(s, 3H) 2.77 – 2.63 (m, 6H), 2.19 – 2.15 (m, 2H), 1.99 (dd, J = 14.2, 3.3 Hz, 2H), 1.79 – 1.43 (m, 14H), 

1.37 – 1.11 (m, 4H), 1.11 – 0.95 (m, 4H). 

 

13C NMR (101 MHz, d6-DMSO) δ 177.12, 170.90, 156.48, 151.65, 146.83, 141.45, 135.84, 135.72, 

123.83, 104.86, 84.10, 79.16, 60.70, 58.79, 56.83, 43.78, 40.62, 35.64, 31.32, 29.27, 27.81, 26.75, 

26.02, 25.91, 25.47, 22.24. 
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Mass: (ESI+), calculated 688.40 [C40H53N3O7+H]+, found 688.39 [M-H]+. 

 

2-(3-((R)-3-(3,4-Dimethoxyphenyl)-1-(((S)-1-(2-oxo-2-phenylacetyl)piperidine-

2-carbonyl) oxy)propyl)phenoxy)acetic acid (68) 

 

 

 

General synthesis procedure B for free acid ligands with 37a (50 mg, 97 µmol) and Phenylglyoxylic 

acid (16 mg, 0.11 mmol was used. The crude mixture was concentrated and purified using flash 

chromatography (Gradient 0%-60% EtOAc in cyclohexane +0.1 % AcOH) to obtain 68 (33 mg, 72 

µmol, 89%) as a brownish oil. 

 

TLC [EtOAc/cyclohexane 45:50 + 5% AcOH]: Rf = 0.18. 

 

HPLC [0-100% Solvent B, 20 min]: Rt = 16.1 min, purity (220 nm) = 98% 

 

1H NMR (600 MHz, CDCl3) δ 7.81 (dd, J = 7.5, 1.5 Hz, 2H), 7.61 – 7.53 (m, 1H), 7.53 – 7.45 (m, 2H), 

7.25 (d, J = 14.9 Hz, 1H), 7.04 – 6.97 (m, 2H), 6.90 – 6.83 (m, 2H), 6.82 – 6.74 (m, 2H), 5.68 (t, J = 7.0 

Hz, 1H), 4.64 (s, 2H), 4.48 (t, J = 8.3 Hz, 1H), 3.83 (s, 3H), 3.75 (s, 3H), 3.66 (dt, J = 12.2, 6.0 Hz, 1H), 

3.54 (dt, J = 12.3, 6.0 Hz, 1H), 2.65 (t, J = 7.9 Hz, 2H), 2.28 (td, J = 7.9, 6.9 Hz, 1H), 2.08 – 1.96 (m, 2H), 

1.81 (ddt, J = 12.3, 8.4, 5.6 Hz, 1H), 1.74 – 1.54 (m, 4H). 

 

13C NMR (125 MHz, CDCl3) δ 190.18, 171.80, 170.15, 163.11, 159.07, 150.39, 148.33, 144.02, 135.46, 

135.20, 133.32, 130.12, 129.38, 129.32, 121.85, 119.24, 115.58, 114.12, 113.68, 113.54, 77.03, 66.03, 

59.12, 56.83, 42.84, 36.38, 34.08, 25.91, 25.47, 22.24. 

 

Mass: (ESI+), calculated 612.22 [C33H35NO9+Na]+, found 612.24 [M-Na]+. 
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2-(3-((R)-3-(3,4-dimethoxyphenyl)-1-(((S)-1-(2,2-diphenylacetyl)piperidine-2-

carbonyl) oxy)propyl)phenoxy)acetic acid (69) 

 

 

 

 

General synthesis procedure B for free acid ligands with 37a (50 mg, 0,097 mmol) and Diphenyl 

acetic acid (22 mg, 0.11 mmol) was used. Then was purified using flash chromatography (Gradient 

0%-50% EtOAc in cyclohexane +0.1 % AcOH) to obtain 69 (42 mg, 72 µmol, 89%) as a brownish oil.  

 

TLC [EtOAc/cyclohexane 45:50 + 5% AcOH]: Rf = 0.34. 

 

HPLC [0-100% Solvent B, 20 min]: Rt = 19.8 min, purity (220 nm) = 95% 

 

1H NMR (600 MHz, CDCl3) δ 7.39 – 7.35 (m, 6H), 7.27 – 7.23 (m, 1H), 7.23 – 7.19 (m, 4H), 7.02 – 6.98 

(m, 1H), 6.95 – 6.92 (m, 1H), 6.89 – 6.84 (m, 2H), 6.81 – 6.74 (m, 2H), 5.92 (t, J = 7.0 Hz, 1H), 4.82 (s, 

1H), 4.69 – 4.60 (m, 3H), 3.83 (s, 3H), 3.75 (s, 3H), 3.74 – 3.66 (m, 1H), 3.45 (dt, J = 12.2, 6.1 Hz, 1H), 

2.64 – 2.54 (m, 2H), 2.47 – 2.38 (m, 1H), 2.27 – 2.19 (m, 1H), 2.06 – 1.97 (m, 1H), 1.76 – 1.56 (m, 5H). 

 

13C NMR (125 MHz, CDCl3) δ 172.91, 171.80, 170.15, 159.07, 150.39, 148.33, 144.02, 137.82, 135.20, 

130.60, 129.38, 128.97, 127.61, 121.85, 119.24, 115.58, 114.12, 113.68, 113.54, 77.03, 66.03, 58.74, 

56.83, 56.11, 43.29, 36.38, 34.08, 25.91, 25.47, 22.24. 

 

Mass: (ESI+), calculated 674.27 [C39H41NO8+Na]+, found 674.30 [M-Na]+. 
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(S)-(R)-3-(3,4-Dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propyl-1-

(2,2-dicyclo hexylacetyl)pyrrolidine-2-carboxylate (70) 

 

 

 

General synthesis procedure A for morpholine ligands with 65 (18 mg, 80 µmol) and 37b (39 mg, 

80 µmol) was used. The crude product was concentrated and purified using flash chromatography 

(gradient 0%-15% MeOH in DCM). 70 (14 mg, 30 µmol, 38%) was obtained as a slight yellow oil. 

 

TLC [MeOH/DCM 5:95]: Rf = 0.39. 

 

HPLC [0-100% Solvent B, 20 min]: Rt = 14.7 min, purity (220 nm) ≥ 99%. 

 

1H NMR (600 MHz, CDCl3) δ 7.30-7.25 (m, 1H), 7.03 – 6.94 (m, 3H), 6.90 – 6.74 (m, 3H), 5.61 (t, J = 6.8 

Hz, 1H), 4.63 (t, J = 4.0 Hz, 1H), 4.06 (t, J = 3.8 Hz, 2H), 3.83 (s, 3H), 3.75 (s, 3H), 3.57 (t, J = 4.8 Hz, 4H), 

3.52 – 3.37 (m, 4H), 2.73 – 2.63 (m, 2H), 2.50 (t, J = 4.7 Hz, 4H), 2.44 (dt, J = 6.7, 5.6 Hz, 1H), 2.34 (dt, J 

= 6.8, 5.7 Hz, 1H), 2.21 – 2.17 (m, 1H), 2.10-1.98 (m, 3H), 1.95 – 1.86 (m, 6H), 1.71-1.59 (m, 4H), 1.64-

1.62 (m, 3H), 1.32-1.25 (m, 4H), 1.12-1.11 (m, 2H), 0.97-0.81 (m, 4H). 

 

13C NMR (125 MHz, CDCl3) δ 176.24, 171.90, 159.63, 150.39, 148.33, 143.58, 135.20, 129.28, 121.85, 

119.20, 115.53, 114.12, 113.68, 113.06, 77.03, 67.38, 66.80, 61.22, 56.83, 54.73, 52.94, 52.72, 46.25, 

41.21, 38.97, 36.38, 34.08, 32.08, 30.69, 28.00, 26.27, 26.02, 25.90, 25.55, 24.98. 

 

Mass: (ESI+), calculated 705.45 [C42H60N2O7+H]+, found 705.35 [M-H]+. 
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TBS-Rap (71) 

 

 

 

Rapamycin (50 mg, 55 µmol) was dissolved in 1 mL DCM and cooled to 0°C. Then TBDMS-OTf (65 mg, 

0.25 mmol) and 2,6-Lutidine (38 µL, 0.33 mmol) was added. Then it was stirred further at 0°C for 2h. 

The reaction was quenched, using NH4Cl (sat) solution. The aqueous phase was extracted with DCM. 

The organic phase was dried over MgSO4. The product was purified using column chromatography 

(EtOAc/cyclohexane 2:8). 71 (95 mg, 83 µmol, 38%).  

 

TLC [EtOAc/cyclohexane 2:8]: Rf = 0.29. 

 

HPLC reversed phase [isochratic 100% Solvent B without TFA, 20 min]: Rt = 27.8 min, purity (220 nm) 

= 98%. 

HPLC normal phase* [isochratic EtOAc/n-hexane 1:1, 30 min]: Rt = 3.9 min, purity (280 nm) = 98%. 

*(Phenomenex Luna Silica (2) column, Waters 515 HPLC pump, LCD Analytical spectromonitor 5000 

detector, 277 nm) 

 

1H NMR (599 MHz, CDCl3) δ 6.41 (dd, J = 14.8, 11.1 Hz, 1H), 6.34 – 6.26 (m, 1H), 6.15 (dd, J = 15.1, 

10.3 Hz, 1H), 6.04 (d, J = 10.9 Hz, 1H), 5.33 – 5.22 (m, 2H), 5.05 (d, J = 4.2 Hz, 1H), 4.17 (dd, J = 13.0, 

6.4 Hz, 1H), 3.83 (d, J = 5.7 Hz, 1H), 3.80 (s, 1H), 3.71 (dd, J = 9.2, 6.0 Hz, 1H), 3.64 (s, 1H), 3.41 (s, 3H), 

3.38 – 3.35 (m, 2H), 3.35 – 3.32 (m, 1H), 3.27 (s, 3H), 3.13 (d, J = 6.6 Hz, 3H), 2.92 – 2.84 (m, 1H), 2.70 

– 2.64 (m, 1H), 2.60 (dd, J = 16.0, 8.1 Hz, 1H), 2.39 (dd, J = 15.9, 3.5 Hz, 1H), 2.33 – 2.24 (m, 2H), 2.03 

– 1.94 (m, 2H), 1.86 – 1.80 (m, 2H), 1.80 – 1.75 (m, 2H), 1.64 (s, 3H), 1.62 – 1.55 (m, 3H), 1.54 – 1.45 

(m, 3H), 1.44 – 1.35 (m, 3H), 1.35 – 1.30 (m, 3H), 1.27 – 1.23 (m, 2H), 1.22 – 1.14 (m, 2H), 1.12 – 1.09 

(m, 2H), 1.06 (dd, J = 6.7, 2.3 Hz, 2H), 1.02 (d, J = 6.6 Hz, 3H), 1.00 – 0.96 (m, 3H), 0.93 – 0.89 (m, 4H), 



C. Experimental Section_______________________________________________________________ 

138 
 

0.90-0.87 (m, 18H), 0.82 (d, J = 11.0 Hz, 8H), 0.70 (q, J = 12.1 Hz, 2H), 0.07 (s, ,3H), 0.05 (s, 3H), -0.01 

(s, 3H), -0.07 (s, 3H). 

 

13C NMR (151 MHz, CDCl3) δ 210.83, 208.14, 193.46, 169.38, 166.11, 139.10, 137.78, 135.90, 132.82, 

130.58, 129.24, 127.05, 126.68, 98.58, 84.70, 84.29, 84.12, 78.81, 75.43, 66.89, 58.25, 57.93, 55.85, 

51.20, 46.84, 44.05, 42.20, 41.66, 40.09, 38.77, 38.52, 35.99, 35.00, 34.09, 33.86, 32.88, 31.71, 31.07, 

27.20, 26.85, 25.85, 25.75, 25.64, 25.16, 21.40, 20.50, 18.12, 16.08, 15.53, 15.11, 14.18, 13.81, 12.68, 

10.13, -4.52, -4.77, -5.00. 

 

Mass: (ESI+), calculated 1164.72 [C63H107NO13Si2+Na]+, found 1164.73 [M-Na]+. 

 

TBS-Rap-OH (72) 

 

 

 

To a stirred solution of 71 (132 mg, 0.12 mmol) in 3.5 mL Methanol at -5°C (ice/Aceton bath) was 

added in several portions NaCNBH3 (145 mg, 2.31 mmol). After addition was complete reaction was 

allowed to warm to RT and then heated to 50°C and stirred for 1h. The reaction was quenched, using 

NaHCO3 (sat) solution and extracted with DCM. The organic phases were dried over MgSO4. The 

product was purified using flash chromatography (gradient 0%-50% i-Propanol in cyclohexane). 73 

(27 mg, 24 µmol, 20%) was obtained as a slight yellow oil.  

 

TLC [EtOAc/cyclohexane 1:1]: Rf = 0.42. 

 

HPLC [10-30% Solvent B, 20 min]: Rt = 14.7 min, purity (280 nm) 96%. 

HPLC normal phase* [10-30% EtOAc in n-hexane, 30 min]: Rt = 18.3 min, purity (220 nm) = 98%. 

*(Phenomenex Luna Silica (2) column, Beckmann 126s solvent module, detector 168, 220/280 nm) 
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1H NMR (600 MHz, CDCl3) δ 6.36 (dd, J = 14.6, 11.0 Hz, 1H), 6.21 (dd, J = 14.7, 10.6 Hz, 1H), 6.16 – 

6.08 (m, 2H), 5.53 (dd, J = 14.9, 8.7 Hz, 1H), 5.27 – 5.20 (m, 2H), 5.18 (dt, J = 8.2, 4.3 Hz, 1H), 4.23 

(tdd, J = 10.8, 5.4, 3.3 Hz, 2H), 4.16 (dd, J = 7.2, 2.4 Hz, 1H), 4.13 – 4.06 (m, 1H), 3.85 (dd, J = 7.2, 3.5 

Hz, 1H), 3.81 (t, J = 7.1 Hz, 1H), 3.38 (s, 3H), 3.36 (dd, J = 10.6, 5.9 Hz, 1H), 3.34 – 3.29 (m, 1H), 3.25 (s, 

3H), 3.14 (s, 3H), 2.89 – 2.81 (m, 1H), 2.75 (dtd, J = 13.6, 6.5, 3.5 Hz, 1H), 2.65 – 2.56 (m, 2H), 2.47 – 

2.37 (m, 1H), 2.31 (s, 1H), 2.23 (d, J = 15.0 Hz, 1H), 2.03 – 1.94 (m, 2H), 1.86 – 1.80 (m, 2H), 1.80 – 

1.75 (m, 2H), 1.64 (s, 3H), 1.62 – 1.55 (m, 3H), 1.54 – 1.45 (m, 3H), 1.44 – 1.35 (m, 3H), 1.35 – 1.30 

(m, 3H), 1.27 – 1.23 (m, 2H), 1.22 – 1.14 (m, 2H), 1.12 – 1.09 (m, 2H), 1.06 (dd, J = 6.7, 2.3 Hz, 2H), 

1.02 (d, J = 6.6 Hz, 3H), 1.00 – 0.96 (m, 3H), 0.93 – 0.89 (m, 4H), 0.88 (d, J = 2.5 Hz, 12H), 0.82 (d, J = 

11.0 Hz, 8H), 0.70 (q, J = 12.1 Hz, 2H), 0.07 (s, ,3H), 0.05 (s, 3H), -0.01 (s, 3H), -0.07 (s, 3H). 

 

13C NMR (150 MHz, CDCl3) δ 213.07, 207.99, 174.14, 171.78, 169.84, 139.27, 137.70, 135.61, 133.14, 

130.26, 129.22, 127.79, 126.64, 84.16, 82.81, 78.85, 75.63, 74.88, 60.02, 58.05, 55.83, 52.74, 46.67, 

43.10, 41.28, 40.64, 40.01, 39.03, 38.57, 36.02, 34.85, 33.83, 33.21, 33.08, 31.83, 31.52, 30.94, 29.73,  

29.14, 28.43, 26.33, 24.79, 22.60, 21.62, 20.55, 18.11, 17.97, 17.36, 15.34, 15.27, 14.16, 11.81, 10.96, 

-4.43, -4.53, -4.74, -5.12. 

 

Mass: (ESI+), calculated 1166.73 [C63H108NO13Si2+Na]+, found 1166.73 [M-Na]+. 

 

Allyl-Rap (75) 

 

 

 

Rapamycin (20 mg, 22 µmol) was placed in a flask and dried over night at high vacuum Then it was 

dissolved in 200 µL anhydrous THF and cooled to -78°C. indium(III) trifluoromethanesulfonate 

(18 mg, 33 µmol) and a tetraallylstannane (98 µL, 98 µmol, 1 M in THF) were added dropwise. The 

reaction mixture was stirred for 1h at -78°C and 14 h at -20°C. The raw product was diluted with 4 mL 
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MeOH, filtered and the variously substituted products were purified with preparative HPLC (gradient 

50%-70% CH3CN in H2O without TFA). Fractions containing compounds with masses + allyl 

 

HPLC (75-978) [65%-75% solvent B in 20min]: Rt = 13.1 min, purity (220 nm) = 97% 

UV spectra (λmax): 210nm, 265 nm, 278 nm, 288 nm (characteristic for triene moiety of rapamycin 

based on Sehgal et al143, λmax: 267 nm, 277 nm, 288 nm) 

Mass: (ESI+), calculated 978.59 [C54H85NO13+Na]+, found 978.57 [M-Na]+. 

 

HPLC (75-1021) [65%-75% solvent B in 20min]: Rt = 18.0 min, purity (220 nm) = 90% 

UV spectra (λmax): 220 nm, 268 nm, 278 nm, 289 nm 

Mass: (ESI+), calculated 1020.64 [C57H91NO13+Na]+, found 1020.60 [M-Na]+. 

 

HPLC (75-1062) [70%-100% solvent B in 20min]: Rt = 13.3 min, purity (220 nm) = 85% 

UV spectra (λmax): 220 nm, 265 nm, 278 nm, 289 nm 

Mass: (ESI+), calculated 1062.69 [C60H97NO13+Na]+, found 1062.72 [M-Na]+. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



C. Experimental Section_______________________________________________________________ 

141 
 

MFP590-Rap (F3) 

 

 

 

C40-Glycyl-rapamycin 87 was synthesized as described.144 87 (1 mg, 1.0 µmol) was dissolved in 10 µL 

DMF, then DIEPA (2 µL, 2.1 µmol) was added. MFP590 (0.5 mg, 0.6 µmol) was dissolved in 20 µL DMF 

and was added to the above solution and stirred for 48h. The crude product was diluted with 2 mL 

CH3CN/H2O 80:20 filtered and purified with semi preparative HPLC (gradient 60%-100% CH3CN in 

H2O). F3 was obtained as 183 µM solution in DMSO. The concentration was determined by 

absorption spectroscopy using ε597 = 1.2x105 M-1cm-1 of MFP590.  

 

HPLC [60%-80% solvent B in 20 min]: Rt = 18.2 min. 

 

UV spectra (λmax): 267 nm, 278 nm, 289 nm, 597 nm (characteristic for triene moiety of rapamycin 

based on Sehgal et al143, λmax: 267 nm, 277 nm, 288 nm) 

 

UV/Vis spectra (80 % MeOH, 20 % Tris-HCl, 5 mM, pH 8.8) 10 µM: ε597 = 1.2x105 M-1cm-1 

 

Mass: (ESI+), calculated 1543.85 [C90H119F3N4O18]+, found 1543.80 [M]+. 
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Fluorescent iFit ligand (F4) 

 

 

 

50 (5 mg, 6.7 µmol) was dissolved in 50 µL DCM then HATU (5 mg, 13 µmol) and DIPEA (5 µL, 

29 µmol) was added and stirred for 15min. Subsequently 4'-(Aminomethyl)-fluorescein (2 mg, 

6.7 µmol) was added and stirred at RT for 2.5 h. The crude product was diluted with 1 mL MeOH and 

purified with preparative HPLC (gradient 50%-90% MeOH in H2O without TFA, 30 min, Rt = 20 -

22 min, 220 nm). F4 was obtained as a yellow fluorescent solid (1.7 mg, 1.6 µmol, 23%). 

 

HPLC [60%-90% solvent B, 20 min]: Rt = 13.0 min, purity (220 nm) = 98% 

 

UV/Vis spectra (80 % MeOH, 20 % Tris-HCl, 5 mM, pH 8.8) 5.4 µM: ε278 = 15850 M-1cm-1, ε280 = 15650 

M-1   cm-1, ε498 = 46900 M-1cm-1. 

 

Mass: (ESI+), calculated 1089.44 [C63H64N2O15+H]+, found 1089.40 [M+H]+. 

 

tert-Butyl 4-vinylbenzylcarbamate (89) 

 

 

 

To 4-vinylaminobenzene (1 g, 7.5 mmol, TCI Europe) and TEA (0.73 mL, 9.0 mmol) dissolved in 20 mL 

dry MeOH was added Boc-anhydride (2.5 g, 11.3 mmol). After stirring for 14 h, the resulting reaction 
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mixture was concentrated in vacuo and flash chromatographed (silica gel, EtOAc/i-Hex) to obtain 74 

as a white solid (1.75g, quant. yield).  

 

TLC [EtOAc/i-Hex 1:9]: Rf = 0.38. 

 

HPLC [0%-100% solvent B, 20 min]: Rt = 25.0 min, purity (220 nm) = 98% 

 

1H NMR (300 Mhz, CDCl3): δ = 7.38 (d, J = 9 Hz, 2 H), 7.26 (d, J = 9 Hz, 2 H), 6.72 (dd, J = 10.86 Hz, 

17.61 Hz 1H), 5.75 (dd, J = 0.93 Hz, 17.60 Hz, 1 H), 5.25 (dd, J = 0.92 Hz, 10.88 Hz, 1 H), 4.31 (d, J = 

5.00 Hz, 2 H), 1.48 (s, 9 H). 

 

13C NMR (75 MHz, CDCl3): δ = 155.87, 138.55, 136.72, 136.43, 127.65, 126.42, 113.77, 44.45, 28.41.  

 

HRMS: calculated 234.1494 [C14H19NO2+H]+, found: 234.1481 [M+H]+. 

 

Cyclosporin with linker (90) 

 

 

 

CsA (100 mg, 84 µmol) and Grubbs catalyst 2nd Generation (3.5 mg, 4.2 µmol, Aldrich) were 

dissolved in 1 mL dry DCM. Then 89 (196 mg, 0.84 mmol) was added and refluxed for 20 h. The 

resulting mixture was filtered through celite, concentrated in vacuo and flash chromatographed 

(silica gel, EtOAc/i-hexane) to obtain 90 as a brown oil (60 mg, 43 µmol, 52 % yield). 

 

TLC [EtOAc, 100% ]: Rf = 0.36. 
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HPLC [65%-85% solvent B, 20 min]: Rt = 18.1 min, purity (220 nm) = 95% 

 

1H NMR (600 Mhz, CDCl3): δ = 8.00 (d, J = 9.76 Hz, 1H), 7.64 (d, J = 7.68 Hz, 1H), 7.50 (d, J = 8.24 Hz, 

1H), 7.29 (d, 8.18 Hz, 2H), 7.20 (d, J = 8.04 Hz, 2H), 7.10 (d, J = 8.00 Hz, 1H), 6.30 (d, J = 15.82 Hz, 1H), 

6.15 (m, 1H), 5.68 (dd, J = 4.38 Hz, 10.98 Hz, 1H), 5.56, (d, J = 5.65 Hz, 1H), 5.32, (dd, 3.94 Hz, 11.55 

Hz, 1H), 5.12 (d, J = 10.82 Hz, 1H), 5.04 (dd, J = 7.09 Hz 14.11 Hz, 2H), 4.93 (d, J = 6.02 Hz, 1H), 4.91 (d, 

J = 6.14 Hz, 1H), 4.82 (m, 1H), 4.74 (d, J = 13.93 Hz, 1H), 4.66 (m, 1H), 4.54 (t, J = 7.41 Hz, 7.41 Hz, 1H), 

4,27 (s, J = 7.68 Hz, 2H), 3.78 (m, 1H), 3.53 (s, 3H), 3.40 (s, 3H), 3.26 (s, 3H), 3.11 (s, 3H), 3.09 (s, 3H), 

2.70 (s, 3H), 2.68 (s, 3H), 2.44 (m, 2H), 2.12 (m, 2H), 1.98 (m, 2H), 1.78 (m, 2H), 1.72 (m, 2H), 1.61 (m, 

2H), 1.45 (s, 9H), 1.34 (d, J = 7.27 Hz, 6H), 1.24 (d, J = 6.89 Hz, 6H), 1.21 (d, J = 6.11 Hz , 6H), 1.08 (d, J 

= 6.55 Hz, 6H), 1.03 (d, J = 6.78 Hz, 6H), 0.96-0.83 (m, 21H), 0.80 (d, J = 6.60 Hz, 3H), 0.71 (d, J = 6.36 

Hz, 3H). 

 

13C NMR (150 MHz, CDCl3): δ = 173.96, 173.78, 173.70, 173.43 171.58, 171.34, 171.10, 170.54, 

170.31, 170.16, 170.08, 155.82, 137.09, 130.86, 129.69, 128.87, 127.65, 126.24, 75.22, 64.41, 58.94, 

57.84, 57.58, 55.52, 55.48, 55.45, 50.35, 48.75, 48.49, 48.18, 45.11, 40.39, 39.56, 38.92, 37.53, 36.85, 

36.60, 36.60, 34.21, 31.51, 31.34, 31.17, 29.79, 29.78, 29.51, 29.22, 28.40, 25.34, 24.87, 24.60, 24.30, 

23.82, 23.69, 23.64, 23.46, 23.39, 21.82, 21.09, 20.40, 19.93, 18.69, 18.38, 18.20, 16.83, 16.03, 9.91. 

 

HRMS: calculated 1393.8377 [C73H124N12O14+H]+, found 1393.8974 [M+H]+
. 
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Cyclosporin with deprotected linker (91) 

 

 

 

90 (40 mg, 29 µmol) was dissolved in 1.8 mL dry DCM and cooled to 0°C in an ice bath. Then 200 µL 

TFA was added drop wise. The reaction was stirred for 2h. DCM/TFA was evaporated via air blow. 

The mixture was flash chromatographed (MeOH/DCM, 5:95, 1%TEA) to obtain 91 as white solid 

(30 mg, 23 µmol, 81% yield). 

 

TLC [MeOH/DCM,5:95 + 1% TEA]:  Rf = 0.28. 

 

HPLC [30%-70% solvent B, 20 min]: Rt = 18.6 min, purity (220 nm) = 90 % 

 

1H NMR (600 Mhz, CDCl3): δ = 7.98 (d, J = 9.75 Hz, 1H), 7.64 (d, J = 7.60 Hz, 1H), 7.52 (m, 1H), 7.49 (d, 

J = 8.32 Hz, 1H), 7.29 (d, 8.29 Hz, 2H), 7.20 (d, J = 8.04 Hz, 2H), 7.09 (d, J = 7.95 Hz, 1H), 6.29 (d, J = 

18.00 Hz, 1H), 6.14 (m, 1H), 5.67 (dd, J = 4.30 Hz, 11.06 Hz, 1H), 5.53, (d, J = 5.75 Hz, 1H), 5.30 (dd, 

3.96 Hz, 11.41 Hz, 1H), 5.11 (d, J = 15.00 Hz, 1H), 5.03 (m, 2H), 4.92 (dd, J = 3.96 Hz, 11.41 Hz, 1H), 

4.81 (m, 1H), 4.71 (d, J = 13.99 Hz, 1H), 4.64 (dd, J = 8.44 Hz, 9.66 Hz, 1H), 4.52 (m, 1H), 3.89 (s, 1H) 

3.78 (m, 1H), 3.51 (s, 3H), 3.38 (s, 3H), 3.23 (s, 3H), 3.08 (s, 3H), 3.07 (s, 3H), 2.69 (s, 3H), 2.66 (s, 3H), 

2.42 (ddd, J = 6.66 Hz, 13.45 Hz, 16.19 Hz, 2H), 2.11 (m, 2H), 1.98 (m, 2H), 1.76 (m, 2H), 1.70 (m, 2H), 

1.59 (m, 2H), 1.33 (d, J = 7.07 Hz, 6H), 1.22 (d, J = 6.91 Hz, 6H), 1.22 (d, J = 6.09 Hz, 6H), 1.09 (s, 3H), 

1.08 (s, 3H) 1.06 (d, J = 6.69 Hz, 6H), 1.01 (d, J = 6.64 Hz, 6H), 0.97-0.83 (m, 18H), 0.79 (d, J = 6.00 Hz, 

3H), 0.71 (d, J = 6.00 Hz, 3H). 

 

13C NMR (150 MHz, CDCl3): δ = 173.88, 173.73, 173.68, 173.43, 171.53, 173.31, 171.08, 170.48, 

170.32, 170.17, 170.09, 137.43, 130.80, 129.79, 128.21, 127.75. 127.35, 75.73, 67.94, 58.88, 57.85, 
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57.62, 57.55, 55.47, 55.42, 55.40, 50.33, 48.75, 48.48, 48.17, 45.10, 40.38, 39.50, 38.92, 37.50, 36.72, 

36.47, 35.95, 34.14, 31.56, 31.31, 31.20, 29.79, 29.77, 29.51, 29.19, 28.60, 25.58, 25.33, 24.86, 24.60, 

24.29, 23.80, 23.68, 23.63, 23.45, 23.37, 23.32, 21.07, 20.38, 19.88, 18.67, 19.37, 18.17, 16.83, 16.02, 

9.83. 

 

HRMS: calcultated 1293.8914 [C68H116N12O12+H]+, found 1293.8667 [M+H]+. 

 

CsA-Fl 

 

 

 

92 (5 mg, 4 µmol) and TEA (1 µL, 12 µmol, Roth) was dissolved in 600 µL DCM/THF then 5(6)- 

carboxyfluorescein N-hydroxy-succinimide (2 mg, 4 µmol) was added and stirred at RT for 2h. 1 mL 

80:20 MeOH/H2O was added and filtrated. The crude mixture was purified by preparative HPLC 

(gradient: 65%-85% MeOH in H2O, + 0.1% TFA). CsA-Fl (0.54 mg, 0.9 µmol, 23%) was obtained as a 

yellow solid.  

 

HPLC: [gradient 65%-85% solvent B in solvent A]: Rt = 9 min, purity (220 nm) = 96 %  

 

UV/Vis spectra (80 % MeOH, 20 % Tris-HCl, 5 mM, pH 8.8) 10 µM: ε254 = 22100 M-1cm-1, ε280 = 

12100 M-1cm-1, ε468 = 7500 M-1cm-1. 

 

 

HRMS: calculated 1651.9391 [C89H126N12O18+H]+,  found 1651.8666 [M+H]+. 
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4.4 Biochemical Methods 

 

All biochemical assays were performed under the guidance of Dr. Christian Kozany and Bastian 

Hoogeland.  

 

Inhibition of the cis–trans peptidyl–prolyl isomerase activity  

 

The PPIase activity was determined as described108 using Suc-AAPF-pNA (Sigma–Aldrich) as peptide 

substrate. The peptide substrate (4 mM) was dissolved in a solution of LiCl (470 mM) in dry 

trifluoroethanol and stored under argon. All solutions and buffers used were precooled to 4°C.  

A 40x concentrated protein solution (25 µL, 400 nM Cyp18 or 4 µM Cyp40), 5 µL DMSO or 5 µL of a 

200x stock of CsA or CsA-Fl in DMSO were added to 845 µL assay buffer (50 mM HEPES pH 8, 100 mM 

NaCl). The samples were incubated in protein low binding cups (Eppendorf) for 30 minutes at room 

temperature and were then transferred to cuvettes. After addition of chymotrypsin (100 µL, 60 

mg/mL; Carl Roth GmbH) the reaction was started by addition of the peptide substrate (25 µL, 4 

mM). The increase in absorption was recorded at 390 nm and 4°C. The amount of released p-

nitroanilide (pNA) is directly proportional to the trans isomer of the peptide substrate, starting from 

a cis–trans mixture. The measured absorption units were correlated to release pNA by the molar 

extinction coefficient of 13,300 M-1 cm-1at 390 nm. The curves were analyzed by using Sigma Plot11 

and fitted with a three parameter fit (single) for an exponential rise to a maximum. Since 

subsaturating final substrate concentration (100 µM) were ([S] << KM) the measured IC50 could be 

directly converted to Ki . 

 

Fluorescence polarization assay for the binding of CsA-Fl to cyclophillins 

 

For fluorescence polarization assays a 10 µM stock solution of proteins was serially diluted 1:1 in 

assay buffer (20 mM HEPES pH 8, 0.01% Triton-X100). 30 µL of each protein dilution was mixed with 

30 µL of CsA-Fl (20 nM in assay buffer) and transferred to a black 384-well assay plate (No.: 3575; 

Corning Life Sciences B.V.). After incubation at room temperature for 30 min the fluorescence 

anisotropy was measured with a plate reader (GENios Pro, Tecan) by using an excitation filter of 

485/20 nm and emission filters of 535/25 nm. The binding assays were performed in duplicates. The 

binding curves were analysed by using SigmaPlot 11. Data were fitted to the equation according to 

Kozany et al. to derive KD values.108 
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Fluorescence polarization competition assay for binding of unlabelled 

cyclophilin ligands 

 

A 2 mM stock solution of CsA dissolved in DMSO was serially diluted 1:1 in DMSO. Every sample of 

this serial dilution was diluted by a factor of 50 in assay buffer (20 mM HEPES pH 8, 0.01% Triton-

X100) supplemented with 20 nM ligand  CsA-Fl. To 30 µL of each of these competitive ligand 

mixtures, 30 µL of protein (20 nM Cyp18, 200 nM Cyp40) dissolved in assay buffer were added. The 

samples were transferred to black 384-well assay plates (No.: 3575; Corning Life Sciences) and 

treated as described above. The competition curves were analyzed by using Sigma Plot 11. For the 

analysis of Ki values, data were fitted according to Kozany et al108. 

 

Fluorescence polarization assay for the binding of fluorescent iFit ligand F4 to 

FKBP51 

 

For fluorescence polarization assays a 97 µM stock solution of protein was serially diluted 1:1 in 

assay buffer (20 mM HEPES pH 8, 0.01% Triton-X100). 20 µL of each protein dilution was mixed with 

20 µL of F4 (20 nM in assay buffer) and transferred to a black 384-well assay plate (No.: 3575; 

Corning Life Sciences B.V.). After incubation at room temperature for 30 min the fluorescence 

anisotropy was measured with a plate reader (GENios Pro, Tecan) by using an excitation filter of 

485/20 nm and emission filters of 535/25 nm. The binding assays were performed in duplicates. The 

binding curves were analysed by using SigmaPlot 11. Data were fitted to the equation according to 

Kozany et al. to derive KD values.108  

 

Fluorescence polarization competition assay for binding of unlabelled FKBP 

ligands 

 

A stock solution of test compound was dissolved in DMSO and serially diluted 1:1 in DMSO. Every 

sample of this serial dilution was diluted by a factor of 33,33 in assay buffer (20 mM HEPES pH 8, 

0.01% Triton-X100) supplemented with 3 nM ligand F4. To 20 µL of each of these competitive ligand 

mixtures, 20 µL of protein (4.5 nM FKBP51FK1) dissolved in assay buffer were added. The samples 

were transferred to black 384-well assay plates (No.: 3575; Corning Life Sciences) and measured as 

described above. The competition curves were analyzed by using Sigma Plot 11. For the analysis of Ki 

values, data were fitted according to Kozany et al.108 
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D. Abbrevations 
 

 

ACTH  Adrenocorticotropic Hormone 

AR  Androgen Receptor 

Brine  Saturated NaCl solution 

BuLi  n-butyllithium 

CID  Chemical Inducer of Dimerization 

CK2  Casein Kinase 2 

CN  Calcineurin 

CRH  Corticotropin Releasing Hormone 

CsA  Cyclosporine A 

Cyp  Cyclophilin 

DCM  Dichloromethane 

DCC  N,N′-Dicyclohexylcarbodiimide 

DIPEA  N,N-Diisopropylethylamine  

EDC   1-Ethyl-3-(3-dimethylaminopropyl)carbodiimid 

EE  Ethyl acetate 

ER  Estrogen Receptor 

F  Phenylalanine 

FKBP  FK506 binding protein 

FP  Fluorescence Polarisation 

GR  Glucocorticoid receptor 

HOAt 1-Hydroxy-7-azabenzotriazole 

HATU O-(7-Azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate 

HPA Hypothalamus pituitary adrenal 

HPLC High Pressure Liquid Chromatography 

Hsp90 Heat shock protein 90 

LDC Lead Discovery Center 

LiHMDS  Lithium hexamethyldisilazid 

LiOH  Lithium hydroxide 

LMU  Ludwig Maximilian University 

MeOH  Methanol 
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MD  Major depression 

MPI  Max Planck Institute 

MR  Mineralcorticoid Receptor 

mTOR  mammalian target of rapamycin 

NaHMDS Natrium hexamethyl disilazid 

NF-AT  Nuclear factor of activated T-cells 

n-Hex  n-Hexane 

NMR  Nuclear magnetic resonance 

PPIase  Peptidyl-prolyl-cis/trans-Isomerase  

PR  Progesterone Receptor 

PTSD  Post-traumatic stress disorder 

Rap  Rapamycin 

RT  Room Temperature 

SAR  Structure Activity Relationship 

SHR  Steroid Hormone Receptor 

TFA  Trifluoroacetic acid 

TEA  Triethylamine 

TLC  Thin layer chromatography 

THF  Tetrahydrofuran 

V  Valine 

WT  Wildtype 
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E. Annex 
 

 
 

 
Annex: (A) Crude product of 46. (B) Purified minor product 46c/d.  
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Annex: (C) Purified major product 46a/b. (B) 

13
C spectra of 46a/b as a mixture of diastereomers 
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Annex: (E) Partial resolution of 47a/b, no tailing for the reduced 49. (F) Tailing of 46a/b, no tailing for the reduced 48. 

E 
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Annex: (G) 
13

C NMR of 49. No diastereomers can be observed.  
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