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1. Overview 
Already 1760, Louis-Claude Cadet de Gassicourt produced the first organometallic compound while 

trying to prepare invisible inks by the treatment of arsenic-containing cobalt ores with various acids. 

The so-called „Cadet`s fuming liquid“ contained cacodyl oxide [(CH3)2As]2O, which is today known 

as the first organometallic compound.1 The next organometallic compounds that were reported are 

Zeise`s salt as the first platinum / olefin complex and Frankland`s diethyl zinc.2 At the beginning of 

the 20th century Victor Grignard set another milestone in the history of organometallic chemistry by 

preparing the first organomagnesium compound.3 Since that time, organometallic chemistry became 

an important part of the organic and inorganic chemistry and 20 Nobel-Prize laureates worked in this 

field of research.4 Nowadays, metalorganic compounds play a special role in synthetic organic 

chemistry, and organic chemists can choose from an ever growing toolbox of organometallic reagents, 

because nearly every metal in the periodic table has found some valuable applications in organic 

chemistry.5 On the one hand very reactive organometallics, such as organolithium, -sodium or -

potassium reagents show an excellent reactivity towards many electrophiles, but they are incompatible 

with sensitive functional groups.6 On the other hand organoboron, –indium or tin reagents show, due 

to a very covalent carbon-metal bond, a higher stability and functional group tolerance.7 For this 

reason, they need either harsh reaction conditions or appropriate catalysts in order to react with 

electrophiles.5, 8 Organomagnesium, -zinc and –copper reagents strike a balance between those 

extrems. Because of their high reactivity even at low temperatures and sufficient reactivity towards 

various electrophiles as well as high tolerance towards functional groups, organomagnesium reagents 

have an exceptional position in organometallic chemistry. Organocopper reagents possess also a well-

balanced reactivity, but a main drawback is still their thermal instability and that they have to be 

prepared by transmetallation of other organometallic species. Organozinc reagents provide improved 

chemo- and regioselectivity and higher stability compared to Grignard reagents. Otherwise, they are 

less reactive and so less used in total synthesis.9 Their moderate reactivity toward standard organic 

electrophiles is compensated by their high reactivity in transition metal-catalyzed cross-coupling 

reactions. As a result of a relatively fast transmetalation, Pd-catalyzed Negishi10 cross-coupling 

reactions usually go on faster and under milder conditions than the corresponding Stille and Suzuki 

cross-couplings.  

An application of a Negishi coupling is shown in Scheme 1, the formation of sp2-sp3 carbon-carbon 

bond with high stereoselectivity is performed via Pd-catalyzed Negishi cross-coupling reaction. β, γ- 

                                                      
1 D. Seyferth, Organometallics 2001, 20, 1488. 
2 a) E. Frankland, Liebigs Ann. Chem. 1848, 71, 171; b) E. Frankland, J. Chem. Soc. 1848, 2, 263. 
3 V. Grignard, Compt. Rend. Acad. Sc. Paris 1900, 130, 1322. 
4 Grignard, Sabatier, Ziegler, Natta, Wilkinson, Fischer, Lipscomb, Brown, Wittig, Fukui, Hoffmann, Knowles, Noyori, 
Sharpless, Chauvin, Grubbs, Schrock, Heck, Negishi, Suzuki. 
5 For an overview, see: Handbook of Functionalized Organometallics (Ed.: P. Knochel), Wiley-VCH, Weinheim, 2005. 
6 J. Clayden, Organolithiums: Selectivity for Synthesis (Ed. J.E. Baldwin), Pergamon Press, Oxford, 2002. 
7 a) Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials (Ed. D.G. Hall), Wiley-
VCH, Weinheim, 2011; b) Z.-L. Shen, S.-Y. Wang, Y.-K. Chok, Y.-H. Xu, T.-P. Loh, Chem. Rev. 2013, 113, 271. 
8 E. Negishi, Organometallics in Organic Synthesis, Wiley, New York, 1980. 
9 K.C. Nicolaou, P. Bulger, S. Sarlah, Angew. Chem. Int. Ed. 2005, 44, 4442. 
10 E. Negishi, A.O. King, N. Okukado, J. Org. Chem. 1977, 42, 1821. 
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Unsaturated ester 1 is produced via coupling of vinyl iodide 2 and Reformatsky nucleophile 3 in 78% 

yield in a key step in the total synthesis of (-)-stemoamide (4) (Scheme 1).11 

 

Scheme 1: Synthesis of (-)-stemoamide (4) as an example of a Negishi cross-coupling reaction.  

 

2. Preparation of Organometallic Reagents 

2.1 Oxidative Insertion 

The most common and oldest method to prepare organometallic reagents is the direct oxidative 

insertion of elemental metal into a halogen-carbon bond. In 1849, it was first reported by Frankland, 

who prepared dialkylzinc reagents by reacting zinc metal with alkyl halides.12 The final breakthrough 

was made by Grignard in 1900, who generated the first organomagnesium reagents also via insertion 

of elemental magnesium into a carbon-halide bond in diethyl ether, which upon reaction with 

aldehydes and ketones afforded secondary and tertiary alkcohols, respectively.13 Soon after its 

discovery, the Grignard reaction became one of the most manifold C-C bond forming tools. The exact 

mechanism of this reaction is still not entirely elucidated, but radical pathways are generally 

accepted.14 One of the major drawbacks of the first magnesium insertions is the need of high reaction 

temperatures, which limit the functional group tolerance. In addition only a small number of alkyl or 

aryl halides react easily with magnesium, since the magnesium metal is passivized by a layer of 

magnesium oxide or magnesium hydroxide. To remove them, suitable activation reagents (either 1,2-

dibromoethane or diisobutylaluminium hydride) have to be added.15 To avoid these problems, Rieke 

developed highly reactive metal powders, which also enables such compounds to be transformed into 

Grignard reagents. These “Rieke metals“ can be prepared by reduction of an anhydrous metal chloride 

with an alkali metal such as lithium, sodium or potassium in THF and also react with aryl or alkyl 

bromides at very low temperatures (Scheme 2).16 

                                                      
11 S. Torssell, E. Wanngren, P. Somfai, J. Org. Chem. 2007, 72, 4246. 
12 a) E. Frankland, Ann. Chem. 1849, 71, 171; b) E. Frankland, Ann. Chem. 1849, 71, 213. 
13 V. Grignard, C. R. Acad. Sci. 1900, 1322. 
14 a) H.M. Walborksy, Acc. Chem. Res. 1990, 23, 286. b) J.F. Garst, Acc. Chem. Res. 1991, 24, 95; c) J.F. Garst, M.P. 
Soriaga, Coord. Chem. Rev. 2004, 248, 623.   
15 a) D.J. am Ende, P.J. Clifford, D.M. DeAntonis, C. SantaMaria, S.J. Brenek, Org. Process Res. Dev. 1999, 3, 319; b) U. 
Tilstam, H. Weinmann, Org. Process Res. Dev. 2002, 6, 906. 
16 a) R.D. Rieke, L.-C. Chao, Syn. React. Inorg. Metal-Org. Chem. 1974, 4, 101; b) R.D. Rieke, Acc. Chem. Res. 1977, 10, 
301; c) R.D. Rieke, Science 1989, 246, 1260; d) L. Zhu, R.M. Wehmeyer, R.D. Rieke, J. Org. Chem. 1991, 56, 1445; R.D. 
Rieke, M.V. Hanson, Tetrahedron 1997, 53, 1925; f) R.D. Rieke, Aldrichim. Acta 2000, 33, 52; g) J. Lee, R. Velarde-Ortiz, 
A. Guijarro, J.R.Wurst, R.D. Rieke, J. Org. Chem. 2000, 65, 5428. 
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Scheme 2: Preparation and reaction of functionalized Grignard reagents using “Rieke magnesium“. 

 

However, this method still has some drawbacks, the “Rieke metals“ always have to be freshly 

prepared, the functional group tolerance is still limited and low temperatures are necessary. Recently, 

Knochel and coworkers developed a convenient methodology to generate aryl and heteroaryl 

magnesium and zinc organometallics from aryl and heteroaryl halides by a direct metal insertion in the 

presence of LiCl (Scheme 3, Scheme 4).17 The latter facilitates the insertion reaction in several ways 

and allows it to proceed more selectively and under mild conditions.18 

 

Scheme 3: Selected examples for LiCl promoted Mg insertion. 

 

                                                      
17 Zn reagents: a) A. Krasovskiy, V. Malakhov, A. Gavryushin, P. Knochel, Angew. Chem. Int. Ed. 2006, 45, 6040; b) N. 
Boudet, S. Sase, P. Sinha, C.-Y. Liu, A. Krasovskiy, P. Knochel, J. Am. Chem. Soc. 2007, 129, 12358; c) A. Metzger, M.A. 
Schade, P. Knochel, Org. Lett. 2008, 10, 1107; Mg reagents: d) F.M. Piller, P. Appukkuttan, A. Gavryushin, M. Helm, P. 
Knochel, Angew. Chem. Int. Ed. 2008, 47, 6802; e) F.M. Piller, A. Metzger, M.A. Schade, B.A. Haag, A. Gavryushin, P. 
Knochel, Chem. Eur. J. 2009, 15, 7192. 
18 a) L. Gupta, A.C. Hoepker, K.J. Singh, D.B. Collum, .J. Org. Chem. 2009, 74, 2231; b) Y. Ma, A.C. Hoepker, L. Gupta, 
M.F. Faggin, D.B. Collum, J. Am. Chem. Soc. 2010, 132, 15610; c) D.R. Armstrong, A.R. Kennedy, R.E. Mulvey, J.A. 
Parkinson, S.D. Robertson, Chem. Sci. 2012, 3, 2700. 
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Scheme 4: Selected examples for LiCl promoted Zn insertion. 

 

2.2 Halogen-Metal Exchange Reactions 

A more practical preparation of organomagnesium compounds with high functional group tolerance, 

avoiding many of the drawbacks of the direct insertion, is the halogen-magnesium exchange reaction. 

Starting from an aryl bromide or iodide and an alkyl-metal reagent, the driving force for this reaction 

class is the formation of an organometallic reagent possessing a higher stability than the exchange 

reagent itself (�� > �������
� 	> ��
���

�  > �����
�  > �����

� ).19 Based on the preliminary work of Prévost20 

in 1931 and Villieras in 1967,21 Knochel could demonstrate the potential of the iodine-magnesium 

exchange with substrates even bearing sensitive functional groups by preparing arylmagnesium 

reagents via treating aryl iodides with iPrMgBr, iPr2Mg and in the case of very electron poor aromatics 

with PhMgCl (Scheme 5).22  

 

Scheme 5: Preparation of polyfunctional Grignard reagents starting from aryl iodides. 

 

This method was further improved by the addition of stoichiometric amounts of LiCl to iPrMgCl (5) to 

form the exchange reagent iPrMgCl·LiCl (6), the so called “turbo-Grignard”, that shows an extremely 

high exchange reactivity towards aryl iodides and bromides at low temperatures and therefore reduces 

undesired side reactions.23 This behavior might be due to deaggregation of iPrMgCl (5) and the 

                                                      
19 D. Hauk, S. Lang, A. Murso, Org. Process Res. Dev. 2006, 10, 733. 
20 C. Prévost, Bull. Soc. Chim. Fr. 1931, 49, 1372. 
21 a) J. Villiéras, Bull. Chem. Soc. Fr. 1967, 5, 1520. b) J. Villiéras, B. Kirschleger, R. Tarhouni, M. Rambaud, Bull. Chem. 

Soc. Fr. 1986, 24, 470. 
22 a) L. Boymond, M. Rottländer, G. Cahiez, P. Knochel, Angew. Chem. Int. Ed. 1998, 37, 1701. b) I. Sapountzis, P. Knochel, 
Angew. Chem. Int. Ed. 2002, 41, 1610. 
23 A. Krasovskiy, P. Knochel, Angew. Chem. Int. Ed. 2004, 43, 3333. 
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formation of the monomeric magnesiate species iPrMgCl2
-Li+ (6) (Scheme 6). Furthermore, the LiCl 

also increases the solubility of the Grignard reagent.  

 

Scheme 6: Effect of LiCl on Grignard reagent iPrMgCl (5). 

 

A huge variety of aromatic and heteroaromatic bromides could now be converted into the 

corresponding magnesium reagents and react with electrophiles. However, this increased reactivity 

does not limitate the functional group tolerance (Scheme 7).24 

 

Scheme 7: Preparation and reactivity of functionalized Grignard reagents by bromine-magnesium exchange 
using the Turbo-Grignard reagent (iPrMgCl·LiCl (6)) and reaction with electrophiles. 

 

2.3 Directed Metalation 

Besides these two halogen-metal conversions, the directed metalation using alkyl metals or metal 

amide bases is the third major way to generate organometallics. In contrast to metal insertion as well 

as halogen-metal exchange reactions, there is no need for a halogen precursor, usually iodine or 

bromine. The huge advantage lies in the unlimited availability of the corresponding precursor, which 

only has to have a carbon-hydrogen-bond. 

In 1939-40, the independant discovery by Gilman and Bebb25 and Wittig and Fuhrmann26 of anisole 

ortho deprotonation by n-BuLi constituted a forerunner for a new conceptual framework in synthetic 

aromatic chemistry. These pioneering results of the directed ortho-metalation (DoM) process initiated 

fundamental reactivity, studies by Gilman27 and, in the early 1960`s, by Hauser and his coworkers,28 

who also systematically expanded the scope of directed metalation groups (DMGs). The DoM reaction 

comprises the deprotonation of a site ortho to a heteroatom-containing DMG by a strong base leading 

to an ortho-lithiated species. The complementary technique of halogen-metal exchange, also 

                                                      
24 a) A. Krasovskiy, P. Knochel, Angew. Chem. Int. Ed. 2004, 41, 1610. b) A. Krasovskiy, B.F. Straub, P. Knochel, Angew. 

Chem. Int. Ed. 2006, 45, 159. c) H. Ren, P. Knochel, Chem. Commun. 2006, 726; d) C.-Y. Liu, P. Knochel, Org. Lett. 2005, 
7, 2543. e) F. Kopp, A. Krasovskiy, P. Knochel, Chem. Commun. 2004, 2288. 
25 H. Gilman, R.L. Bebb, J. Am. Chem. Soc. 1939, 61, 109. 
26 G. Wittig, G. Fuhrmann, Chem. Ber. 1940, 73, 1197. 
27 H. Gilman, J.W. Morton, Org. React. (N.Y.) 1954, 8, 258. 
28 a) W.H. Puterbaugh, C.R. Hauser, J. Org. Chem. 1964, 29, 853; b) D.W. Slocum, D.I. Sugarman, Adv. Chem. Ser. 1974, 
No. 130, 227. 
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discovered by Gilman29 and Wittig,30 furnished further impulse to this area.31 In the 1970`s, the 

industrial use of alkyllithium bases as polymerization catalysts32 led to their commercial availability 

and allowed the metalation technique to be practiced widely.33 Non-nucleophilic, sterically hindered 

lithium bases, such as lithium diisopropylamide (LDA), which was first used by Hamell and Levine34 

in 1950, and TMPLi (TMP=2,2,6,6-tetramethylpiperidyl), first described in two different publications 

by Rickborn and Kow35 in 1972, were established. The directed ortho-lithiation was especially 

promoted by the work of Snieckus and coworkers, who introduced carbamates, amides, and a variety 

of ethers as convenient DMGs.33, 36 

However, the major drawback of the use of alkyllithium reagents and lithium amides is the high 

reactivity of the bases used, which can lead to undesired side reactions like, for example Chichibabin 

addition,37 and attacks on functional groups. Furthermore, they have to be prepared in situ since their 

stability in THF is limited and most lithiations require very low temperatures (-78 to -100 °C). 

Alternatively, the use of magnesium amide bases is generally preferred when dealing with more 

sensitive functional groups. Already 1947 Hauser and coworkers established magnesium amide bases 

of the type R2NMgX and (R2N)2Mg;38 based on Meunier`s original discoveries.39 Eaton and later 

Mulzer used the more sterically demanding amides TMPMgX and TMP2Mg (TMP = 2,2,6,6-

tetramethylpiperidyl) for the metalation of aromatic carboxamides, esters, pyridinecarboxamides and 

carbamates (Scheme 8).40 Despite pioneering and extensive studies on the directed magnesiation of 

arenes and heteroarenes, they still suffer from several limitations. One major drawback is their low 

solubility due to aggregation, and the need of large excesses of both base and electrophile.41  

                                                      
29 H. Gilman, A.L. Jacoby, J. Org. Chem. 1938, 3, 108. 
30 G. Wittig, U. Pockels, H. Droge, Chem. Ber. 1938, 71, 1903. 
31 W.E. Parsham, C.K. Bradsher, Acc. Chem. Res. 1982, 15, 300. 
32 a) A.W. Langer, Adc. Chem. Ser. 1974, No. 130; b) A.F. Halesa, D.N. Schulz, D.P. Tate, V.D. Mochel, Adv. Organomet. 

Chem. 1980, 18, 55. 
33 V. Snieckus, Chem. Rev. 1990, 90, 879. 
34 M. Hamell, R. Levine, J. Org. Chem. 1950, 15, 162. 
35 a) C.L. Kissel, B. Rickborn, J. Org. Chem. 1972, 37, 2060; b) M.W. Rathke, R. Kow, J. Am. Chem. Soc. 1972, 94, 6854. 
36 a) V. Snieckus, Pure & Appl. Chem. 1990, 62, 2047; b) T. K. Macklin, J. Panteleev, V. Snieckus, Angew. Chem. Int. Ed. 

2008, 47, 2097. 
37 A.E. Chichibabin, O.A. Zeide, J. Russ. Phys. Chem. 1914, 46, 1216. 
38 a) C.R. Hauser, H. G. Walker, J. Am. Chem. Soc. 1947, 69, 295; b) C.R. Hauser, F.C. Frostick, J. Am. Chem. Soc. 1949, 71, 
1350. 
39 L. Meunier, C. R. Hebd. Seances Acad. Sci. 1903, 136, 758. 
40 a) P.E. Eaton, C.H. Lee, Y. Xiong, J. Am. Chem. Soc. 1989, 111, 8016; b) W. Schlecker, A. Huth, E. Ottow, J. Mulzer, J. 

Org. Chem. 1995, 60, 8414. 
41 W. Schlecker, A. Huth, E. Ottow, J. Mulzer, J. Org. Chem. 1995, 60, 8414. 
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Scheme 8: Early examples of metalation by TMP-magnesium amides. 

 

A high improvement was the development of highly chemoselective TMP mixed metal/Li amides such 

as TMPMgCl·LiCl42 (7), TMPZnCl·LiCl43 (8), TMP2Mg·2LiCl44 (9) and TMP2Zn·2MgCl2·2LiCl45 

(10) (Scheme 9), which allow the selective metalation of sensitive aromatic compounds and 

heterocycles. This new generation of bases is highly soluble in THF, easily prepared, and offers 

additionally long term stability under inert atmosophere at room temperature. 

 

Scheme 9: TMP-derived, mixed metal/Li amide bases. 

 

Especially the sterically hindered TMPMgCl·LiCl (7), obtained by mixing TMPH with turbo-

Grignard 6, proved to be an excellent reagent to deprotonate a large variety of functionalized 

aromatics and heteraromatics (Scheme 10).46  

 

Scheme 10: Magnesiation of various aromatic and non-aromatic substrates by using TMPMgCl·LiCl (7). 

 

                                                      
42 A. Krasovskiy, V. Krasovskaya, P. Knochel, Angew. Chem. Int. Ed. 2006, 45, 2958. 
43 a) M. Mosrin, P. Knochel, Org. Lett. 2009, 11, 1837; b) M. Mosrin, T. Bresser, P. Knochel, Org. Lett. 2009, 11, 3406; c) 
M. Mosrin, G. Monzon, T. Bresser, P. Knochel, Chem. Commun. 2009, 5615. 
44 a) G.C. Clososki, C.J. Rohbogner, P. Knochel, Angew. Chem. Int. Ed. 2007, 46, 7681; b) C.J. Rohbogner, G.C. Clososki, P. 
Knochel, Angew. Chem. Int. Ed. 2008, 47, 1503; c) C.J. Rohbogner, A.J. Wagner, G.C. Clososki, P. Knochel Org. Synth. 
2009, 86, 374. 
45 a) S.H. Wunderlich, P. Knochel, Angew. Chem. Int. Ed. 2007, 46, 7685; b) S.H. Wunderlich, P. Knochel, Org. Lett. 2008, 
10, 4705. 
46 For a review see: B. Haag, M. Mosrin, H. Ila, V. Malakhov, P. Knochel, Angew. Chem. Int. Ed. 2011, 50, 9794. 
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For moderately activated aromatics and heteroaromatics, TMP2Mg·2LiCl (8) was developed by 

mixing TMPLi with TMPMgCl·LiCl (7) featuring an improved kinetic basicity (Scheme 11).  

 

Scheme 11: Magnesiation of various aromatic and non-aromatic substrates by using TMP2Mg·2LiCl (8). 

 

Despite the high tolerance toward nitriles, esters, and aryl ketones, there are still a number of 

functional groups, that are not compatible with TMPMgCl·LiCl (7) or TMP2Mg·2LiCl (8). For 

example, molecules bearing an aldehyde or nitro group, or sensitive heterocycles do not undergo 

directed magnesiations due to degradation. By transmetalating TMPLi or TMPMgCl·LiCl (7) with 

ZnCl2, the mild zinc amides TMPZnCl·LiCl (9)43, 47 and TMP2Zn·2MgCl2·2LiCl (10),45, 48 

respectively, can be readily prepared. These bases can be used for the mild zincation of a variety of 

sensitive substrates (Scheme 12, Scheme 13). 

 

Scheme 12: Zincation of various functionalized aromatics using TMPZnCl·LiCl (9). 

 

 

Scheme 13: Zincation of various sensitive heterocycles using TMP2Zn·2MgCl2·2LiCl (10). 

  

                                                      
47 a) T. Bresser, M. Mosrin, G. Monzon, P. Knochel, J. Org. Chem. 2010, 75, 4686; b) T. Bresser, P. Knochel, Angew. Chem. 

Int. Ed. 2011, 50, 1914. 
48 a) M. Mosrin, P. Knochel, Chem. Eur. J. 2009, 15, 1468; b) M. Kienle, C. Dunst, P. Knochel, Org. Lett. 2009, 11, 5158; c) 
A. Unsinn, P. Knochel, Chem. Commun. 2012, 48, 2680. 
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3. Objectives 
The aim of the first project was the development of new SF5-substituted Mg- and Zn-organometallics 

using established methods like the halogen-metal exchange reaction or the directed metalation. In 

general, fluorinated compounds gain a high attention in pharmaceutical, agrochemical and material 

research because of their physico-chemical and pharmacological properties. The CF3-group plays 

already an important role in a lot of biological active molecules. A very similar, but rarely known 

substituent is the SF5-group. Despite some lithium reagents, almost no SF5-substituted Mg- and Zn-

organometallics are known in the literature. Hence, a Br/Mg-exchange reaction or a directed 

metalation starting from commercially available 3-bromo-pentafluorosulfanyl benzene (11) should be 

developed (Scheme 14). Additionally, the synthesis of different heterocycles should be achieved. 

 

Scheme 14: Preparation of SF5-substituted organometallics. 

 

Based on the synthetic method for the preparation of functionalized benzo[b]thiophenes and 

benzo[b]thieno[2,3-d]thiophenes,49 developed by Kunz and Knochel, a new methodology for the 

preparation of indoles as well as azaindoles should be evolved. Starting from functionalized bromo-

ynamides a bromine-magnesium exchange reaction should be carried out, followed by a copper-

mediated ring closing reaction. Subsequent allylation or acylation reactions should explore the scope 

of the methodology affording highly diversified indoles as well as azaindoles and pyrrolo[2,3-

d]pyrimidines (Scheme 15). 

 

Scheme 15: Preparation of indoles, azaindoles and pyrrolo[2,3-d]pyrimidines via copper-mediated 
carbomagnesiation of ynamides. 

 

                                                      
49 T. Kunz, P. Knochel, Angew Chem. Int. Ed. 2012, 51, 1958. 
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Finally, the metalation of functionalized, sensitive aromatics and heteroaromatics with TMPLi (12) in 

the presence of metal salts was investigated. By using different metal salts it should be possible to get 

access to different organometallic species, which can then undergo further functionalization reactions 

with different electrophiles (Scheme 16). 

 

Scheme 16: Metalation of sensitive substrates with TMPLi (12) in the presence of metal salts. 
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1. Preparations and Reactions of SF5-substituted Aryl and Heteroaryl 

Derivatives via Mg and Zn Organometallics 

1.1 Introduction 

 

The physico-chemical and pharmacological properties of organic molecules are often significantly 

modified by the incorporation of fluorine atoms.50 Therefore, the preparation of fluoro- or 

trifluoromethyl-substituted aromatics and heteroaromatics has become an active research field.51 

Recently, it has been shown that the replacement of CF3-groups with SF5-substituents may increase the 

biological activity of pharmacologically active substances (Scheme 17).52  

 

Scheme 17: SF5-Analoga of Mefloquin, Fluoxetin and Trifluralin. 

 

Also, due to its specific physico-chemical properties53 and to the increased availability of SF5-

substituted starting materials,54 this fluorous group is beginning to find many applications in material 

sciences.52 55 A noteworthy feature of the SF5-substituent includes its remarkable chemical stability. 

Aromatic SF5-substituted compounds tolerate even harsh acidic conditions; their hydrolytic stability 

equals that of the CF3-group. However, synthetic methods leading to SF5-substituted aryl and 

heteroaryl derivatives are rare.56 

One major difference between the SF5-group and the trifluoromethyl function is its susceptibility 

toward reduction by some organometallic reagents. The attempt to lithiate 1-bromo-4-

                                                      
50 a) C. Isanbor, D. O’Hagan, J. Fluorine Chem. 2006, 127, 303; b) K.L. Kirk, J. Fluorine Chem. 2006, 127, 1013; c) J.-P. 
Bégué, D. Bonnet-Delpon, J. Fluorine Chem. 2006, 127, 992. 
51 a) A.M. Sipyagin, C.P. Bateman, Y.-T. Tan, J.S. Thrasher, J. Fluorine Chem. 2001, 112, 287; b) M. Schlosser, Angew. 

Chem 2006, 118, 5558; Angew. Chem. Int. Ed. 2006, 45, 5432; c) A.T. Parsons, S.L. Buchwald, Nature 2011, 480, 184; d) X. 
Mu, T. Wu, H.-Y. Wang, Y.-L. Guo, G. Liu, J. Am. Chem. Soc. 2011, 134, 878; e) N.D. Litvinas, P.S. Fier, J.F. Hartwig, 
Angew. Chem. 2012, 124, 551; Angew. Chem. Int. Ed. 2012, 51, 536; f) T. L. Liu, X. Shao, Y. Wu, Q. Shen, Angew. Chem. 

2012, 124, 555;  Angew. Chem. Int. Ed. 2012, 51, 540. 
52 a) J.T. Welch, D.S. Lim, Bioorg. Med. Chem. 2007, 15, 6659; b) P. Wipf, T. Mo, S. Geib, D. Caridha, G. Dow, L. Gerena, 
N. Roncal, E. Milner, Org. Biomol. Chem. 2009, 4163; c) B. Stump, C. Eberle, W.B. Schweizer, M. Kaiser, R. Brun, R.L. 
Kraut-Siegel, D. Lentz, F. Diederich, ChemBioChem 2009, 10, 79; d) D.S. Lim, J.S. Choi, C.S. Pak, J.T. Welch, J. Pestic. 

Sci. 2007, 32, 255. 
53 P. Kirsch, Modern Fluoroorganic Chemistry. Synthesis, Reactivity and Applications; Wiley-VCH: Weinheim, 2004. 
54 a) W.A. Sheppard, J. Am. Chem. Soc. 1960, 82, 4751; b) J.R. Case, N.H. Ray, H.L. Roberts, J. Chem. Soc. 1961, 2066; c) 
W.A. Sheppard, J. Am. Chem. Soc. 1962, 84, 3072; d) R.D. Bowden, P.J. Comina, M.P. Greenhall, B.M. Kariuki, A. 
Loveday, D. Philp, Tetrahedron 2000, 56, 3399; e) A.M. Sipyagin, C.P. Bateman, Y.-T. Tan, J.S. Thrasher, J. Fluorine 

Chem. 2001, 112, 287; f) S. Ait-Mohand, W.R. Dolbier Jr., Org. Lett. 2002, 4, 3013; g) R.W. Winter, G.L. Gard, J. Fluorine 

Chem. 2004, 125, 549; h) T.A. Sergeeva, W.R. Dolbier Jr., Org. Lett. 2004, 6, 2417; i) V.K. Brel, J. Fluorine Chem. 2007, 
128, 862. 
55 a) P. Kirsch, M. Bremer, Angew. Chem. 2000, 112, 4384; Angew. Chem. Int. Ed. 2000, 39, 4216; b) V.K. Brel, J. Fluorine 

Chem. 2007, 128, 862; d) D.S. Lim, J.S. Choi, C.S. Pak, J.T. Welch, J. Pestic. Sci. 2007, 32, 255. 
56 a) J.T. Welch, D.S. Lim, Bioorg. Med. Chem. 2007, 15, 6659; b) P. Wipf, T. Mo, S. Geib, D. Caridha, G. Dow, L. Gerena, 
N. Roncal, E. Milner, Org. Biomol. Chem. 2009, 4163; c) B. Stump, C. Eberle, W.B. Schweizer, M. Kaiser, R. Brun, R.L. 
Kraut-Siegel, D. Lentz, F. Diederich, ChemBioChem 2009, 10, 79. 
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(pentafluorosulfanyl)-benzene (11) with nBuLi in THF at -78 °C resulted merely in the immediate 

formation of a variety of reduction products. In contrast, by using tBuLi in diethyl ether at -78 °C, the 

desired lithium intermediate was formed without side reactions and could be applied for many 

different transformations.57 Because of the known disadvantages of lithium reagents, it would be of 

great interest to prepare SF5-substituted organomagnesium and –zinc reagents. For the synthesis of 

these organometallics the halogen-magnesium exchange using iPrMgCl·LiCl (6) and directed 

metalation with TMP-metal bases were studied. 

 

1.2 Preparation using Halogen-Magnesium Exchange 

First, a Br/Mg-exchange reaction with the commercially available 1-bromo-3-(pentafluorosulfanyl)-

benzene (11) using iPrMgCl·LiCl (6) was studied (Table 1). The aryl bromide 11 furnished after 

treatment with iPrMgCl·LiCl (6, 1.1 equiv) the arylmagnesium halide 13 within 1 h at 0 °C in 80% 

yield.58 This magnesium reagent 13 reacted with various electrophiles in good yields. Thus, after a 

transmetalation with ZnCl2, a Pd-catalyzed cross-coupling with 4-bromobenzonitrile (14a) or 5-

bromopicolinonitrile (14b) (2% PEPPSI-iPr59) furnished the functionalized SF5-substituted biphenyls 

15a and 15b in 79-83% yield (Table 1, entries 1-2). 

Remarkably, the Grignard reagent 13 underwent, after a transmetalation with ZnCl2, Negishi cross-

couplings60 with aryl bromides bearing unprotected anilines,61 such as 4-bromoaniline (14c) or 3-

amino-4-bromo-benzoic acid ethyl ester (14d) providing the functionalized amines 15c and 15d in 71-

88% yield (entries 3-4). The acylation of the Mg-reagent 13 with ethyl cyanoformate (14e) yielded the 

SF5-substituted ester 15e in 80% yield (entry 5). Addition of 13 to electron-poor aldehydes, such as 

2,3-dichlorobenzaldehyde (14f) as well as electron-rich aldehydes such as 4-methoxybenzaldehyde 

(14g) led to the SF5-functionalized alcohols 15f and 15g in 81-84% yield (entries 6-7). After 

transmetalation with CuCN·2LiCl (1.1 equiv),62 substitution with benzoyl chloride (14h) provided the 

ketone 15h in 84% yield (entry 8). 

 

Table 1: Products of type 15 obtained by Br/Mg-exchange with iPrMgCl·LiCl (6) followed by reaction with 

various electrophiles. 

 

                                                      
57 P. Kirsch, M. Bremer, M. Heckmeier, K. Tarumi, Angew. Chem. Int. Ed. 1999, 38, 1989. 
58 The yield was determined by iodolysis of reaction aliquots using iodine in THF. 
59 a) C.J. O’Brien, E.A.B. Kantchev, C. Valente, N. Hadei, G.A. Chass, A. Lough, A.C. Hopkinson, M.G. Organ, Chem. Eur. 

J. 2006, 12, 4743; b) M.G. Organ, S. Avola, I. Dubovyk, N. Hadei, E.A.B. Kantchev, C.J. O’Brien, C. Valente, Eur. J. Chem. 

2006, 12, 4749. 
60 a) E. Negishi, L.F. Valente, M. Kobayashi, J. Am. Chem. Soc. 1980, 102, 3298; b) E. Negishi, Acc. Chem. Res. 1982, 15, 
340. 
61 a) G. Manolikakes, M.A. Schade, C. Munoz Hernandez, H. Mayr, P. Knochel, Org. Lett. 2008, 10, 2765; b) G. 
Manolikakes, Z. Dong, H. Mayr, J. Li, P. Knochel, Chem. Eur. J. 2009, 15, 1324. 
62 P. Knochel, M.C.P. Yeh, S.C. Berk, J. Talbert, J. Org. Chem. 1988, 53, 2390. 
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Entry Electrophile Product Yield[a] [%] 

1  
 

83[b] 

 14a 15a  

2 
 

 

79[b] 

 14b 15b  

3 
 

 

88[c] 

 14c 15c  

4 
 

F5S

CO2EtH2N

 

71[c] 

 14d 15d  

5  
 

80 

 14e 15e  

6 

  

81[e] 

 14f 15f  

7 
  

84 

 14g 15g  

8  
 

84[d] 

 14h 15h  

[a] Isolated yields of analytically pure product. [b] Cross-coupling conditions: ZnCl2 (1.1 equiv) / 2% PEPPSI-

iPr. [c] Cross-coupling conditions: ZnCl2 (1.1 equiv) / 2% Pd(OAc)2, 4% S-Phos, 23 °C, 12 h. [d] CuCN·2LiCl 

(1.1 equiv) was added. [e] Product prepared by Klaus Groll. 
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1.3 Preparation using Directed Metalation 

Also, the SF5-substituent showed a good compatibility in the performance of directed metalations 

using TMP2Mg·2LiCl (8). Thus, the treatment of the SF5-substituted benzoic acid ethyl ester 15e with 

TMP2Mg·2LiCl (8) led to the functionalized arylmagnesium reagent 16 after 12 h at -40 °C in ca. 82% 

yield (Table 2). After transmetalation with ZnCl2 (1.1 equiv) the resulting zinc reagent underwent a 

Negishi cross-coupling with 1-iodo-4-methoxybenzene (14i) or 4-iodobenzonitrile (14j) in the 

presence of 2mol% Pd(dba)2 and 4mol% tfp63 (23 °C, 12 h), providing the SF5-substituted biphenyl 

derivatives 17a and 17b in 52-83% yield (Table 2, entries 1-2). A copper-catalyzed allylation (20% 

CuCN·2LiCl) with 3-bromocyclohexene (14k) provided the trisubstituted benzene 15c in 70% yield 

(entry 3). Furthermore, a CuI-mediated acylation with benzoyl chloride (14h) led to the corresponding 

ketoester 17d in 87% yield (entry 4).  

Table 2: Products of type 17 obtained by directed metalation of the ethyl benzoate 15e using TMP2Mg·2LiCl (8) 

followed by quenching with electrophiles. 

 

Entry Electrophile Product Yield[a] [%] 

1 
 

 

52[b] 

 14i 17a  

 
 

 

83[b] 

 14j 17b  

3 
 

 

70[c] 

 14k 17c  

4  

 

87[d] 

 14h 17d  

[a] Isolated yields of analytically pure product. [b] Cross-coupling conditions: ZnCl2 (1.1 equiv) / 2% Pd(dba)2, 

4% tfp, 23 °C, 12 h. [c] 20% CuCN·2LiCl was added. [d] CuCN·2LiCl (1.1 equiv) was added. 

                                                      
63 Y. Takahashi, T. Ito, S. Sakai, Y. Ishii, J. Chem. Soc. Chem. Commun. 1970, 1065; b) V. Farina, B. Krishnan, J. Am. 

Chem. Soc. 1991, 113, 9585; b) V. Farina, S. Kapadia, B. Krishnan, C. Wang, L.S. Liebeskind, J. Org. Chem. 1994, 59, 
5905. 
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1.4 Preparation of SF5-substituted Diarylamines 

Arylamines are an important class of pharmaceuticals, due to their ability to undergo highly specific 

interactions with proteins. Recently, Knochel and coworkers showed that the amination of 

arylmagnesium reagents with nitroarenes provides after reductive workup polyfunctional 

diarylamines.64 This method proved to be well suited for the preparation of SF5-substituted 

diarylamines. Br/Mg-exchange on 1-iodo-4-methoxybenzene or 4-iodobenzoic acid ethyl ester with 

iPrMgCl·LiCl (6) (THF, -20 °C, 0.5 h) produced the corresponding functionalized Mg-reagents 18a-b. 

These organometallics reacted smoothly with 1-bromo-3-nitro-5-pentafluorosulfanylbenzene (19), 

prepared65 from 3-nitro-5-pentafluorosulfanyl-benzene (20). After reductive treatment with 

FeCl2/NaBH4, the SF5-substituted diarylamines 21a-b were obtained in 66-82% yield (Scheme 18). 

 

Scheme 18: Synthesis of diarylamines 21a-b using arylmagnesium halides 18a-b and the SF5-substituted 

nitroarene 19. 

1.5 Preparation of SF5-substituted Indoles 

Heterocyclic building blocks are ubiquitous in medicinal chemistry. Therefore, SF5-substituted 

functionalized indoles were synthesized. Starting from 2-bromo-5-(pentafluorosulfanyl)aniline66 (22), 

the synthesis of 6-pentafluorosulfanyl-1H-indole (23) was achieved in two steps (Scheme 2). First, a 

Sonogashira cross-coupling67 was performed by treating 2-bromoaniline 22 with 

(trimethylsilyl)acetylene (1.5 equiv, 50 °C, 12 h) providing the SF5-substituted 2-

((trimethylsilyl)ethynyl)aniline (24) in 89% yield. A subsequent cyclization reaction was performed by 

treatment with KH (2.5 equiv) in NMP (23 °C, 3 h) to afford the indole 23 in 83% yield.68 The indole 

23 was readily protected at nitrogen with Boc2O leading to the N-Boc indole 25 in 94% yield (Scheme 

19). 

 

                                                      
64 a) I. Sapountzis, P. Knochel, J. Am. Chem. Soc. 2002, 124, 9390; b) F. Kopp, I. Sapountzis, P. Knochel, Synlett 2003, 885. 
65 Prepared according to the literature procedure: J. Duan, L. H. Zhang, W. R. Dolbier, Jr., Synlett 1999, 1245. 
66 Prepared according to the literature procedure: J. T. Welch, D. S. Lim, Bioorg Med. Chem. 2007, 15, 6659. 
67 a) S. Takahashi, Y. Kuroyama, K. Sonogashira, N. Hagihara, Synthesis 1980, 627; b) T. Sakamoto, M. Shiraiwa, Y. 
Kondo, H. Yamanaka, Synthesis 1983, 312. 
68 a) A.L. Rodriguez, W. Dohle, P. Knochel, Angew. Chem. 2000, 112, 2607; Angew. Chem. Int. Ed. 2000, 39, 2488; b) C. 
Koradin, W. Dohle, A.L. Rodriguez, B. Schmid, P. Knochel, Tetrahedron 2003, 59, 1571; c) A.H. Stoll, P. Knochel, Org. 

Lett. 2007, 10, 113. 
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Scheme 19: Synthesis of the SF5-substituted indole 23 and further functionalization of position 2 and 3 of the N-
protected indole 25 by using TMPMgCl·LiCl (7). 

 

Further functionalization of the N-protected indole 25 could be achieved using TMPMgCl·LiCl (7). 

The magnesiation of 25 was selective at position 2 of the indole ring with TMPMgCl·LiCl (7) 

(1.1 equiv, 0 °C, 0.5 h); subsequent trapping with cyanoformic acid ethyl ester (14e, 1.1 equiv, 

−30 °C, 1 h) afforded the N-protected ethyl 6-(pentafluorosulfanyl)-1H-indole-2-carboxylate 26 in 

93% yield. Subsequent treatment of the indole 26 with TMPMgCl·LiCl (7) (1.1 equiv, -40 °C, 2 h) led 

to a fast magnesiation at position 3. After the transmetalation with ZnCl2 (1.1 equiv), Negishi cross-

coupling reactions (2mol% PEPPSI-iPr, 23 °C, 10 h) with 4-iodo-2,6-dimethoxypyrimidine or 4-

iodobenzonitrile provided the corresponding indoles 27a-b in 62-75% yield. Alternatively, a 

transmetalation with CuCN·2LiCl (1.0 equiv) allows an efficient benzoylation (PhCOCl (1.2 equiv), -

40 °C, 12 h) affording smoothly the 2,3-disubstituted indole 27c in 87% yield (Scheme 19). 

 

1.6 Preparation of SF5-substituted Benzo[b]thiophenes 

Besides indoles, benzo[b]thiophenes are of particular interest, as they are potential drug candidates69 

and are also widespread in material science.70 Functionalized benzo[b]thiophenes can be prepared by 

the intramolecular copper-catalyzed carbomagnesiation of alkynyl(aryl)thioethers.49 Herein, this 

                                                      
69 a) C.D. Jones, M.G. Jevnikar, A.J. Pike, M.K. Peters, L.J. Black, A.R. Thompson, J.F. Falcone, J.A. Clemes, J. Med. 

Chem. 1984, 27, 1057; b) K.G. Pinney, A.D. Bounds, K.M. Dingeman, V.P. Mocharla, G.R. Pettit, R. Bai, E. Hamel, Bioorg. 

Med. Chem. Lett. 1999, 9, 1081; c) M.-J. R. P. Queiroz, R. C. Calhelha, L.A. Vale-Silva, E. Pinto, M. Sao-José Nascimento, 
Eur. J. Med. Chem. 2009, 44, 1893. 
70 a) T.Y. Zhang, J. O`Toole, C.S. Proctor, Sulfur Rep. 1999, 22, 1; b) I. McCulloch, M. Heeney, M.L. Chabinyc, D. 
DeLongchamp, R.J. Kline, M. Cçlle, W. Duffy, D. Fischer, D. Gundlach, B. Hamadani, R. Hamilton, L. Richter, A. Salleo, 
M. Shkunov, D. Sparrowe, S. Tierney, W. Zhang, Adv. Mater. 2009, 21, 1091. 
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method was applied to the synthesis of SF5-substituted, functionalized benzo[b]thiophenes of type 28 

(Scheme 20). The readily available SF5-substituted 1,2-bromoiodoarene 29 was converted to the 

corresponding organic disulfide 30 by a I/Mg-exchange reaction (iPrMgCl·LiCl (6), -80 °C, 10 min), 

subsequent transmetalation with ZnCl2 and reaction with sulfur monochloride.71 The sulfonothioate 31 

was obtained by treating the disulfide 30 with iodine and sodium benzenesulfinate.72 This 

sulfonothioate reacted with trimethylsilylethynylmagnesium chloride providing the desired 

alkynyl(aryl)thioether 32 in 80% yield. Thus, the treatment of the thioether 32 with iPrMgCl·LiCl (6) 

(1.1 equiv, 23 °C, 1 h) provided the corresponding magnesium reagent 32`. In the presence of 

stoichiometric amounts of CuCN·2LiCl cyclization occurred at 23 °C within 12 h producing the 

copper reagent 33. A subsequent allylation reaction with 2-(bromomethyl)acrylic acid ethyl ester 

(0.8 equiv) afforded the polyfunctional benzothiophene 28a in 70% yield. Similarly, the acylation with 

furan-2-carbonyl chloride (0.8 equiv) provided the acylated benzothiophene 28b in 64% yield. 

 

Scheme 20: Reaction sequence towards the SF5-substituted alkynyl(aryl)thioether 32 and subsequent 
cyclization/allylation and acylation reaction sequence. 

 

  

                                                      
71 T.J. Korn, P. Knochel, Synlett 2005, 1185. 
72 K. Fujiki, N. Tanifuji, Y. Sasaki, T. Yokoyama, Synthesis 2002, 343. 
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2. Preparation of Functionalized Indoles, Azaindoles and Pyrrolo[2,3-

d]pyrimidines via an Intramolecular Copper-mediated Carbomagnesiation 

of Ynamides 

2.1 Introduction 

The indole ring system belongs to one of the most abundant and important heterocycles. It is a key 

substructure in a multitude of naturally occurring molecules, including the amino acid tryptophan, the 

neurotransmitter serotonin, and a plethora of others (Scheme 21).73 Deformylflustrabromine B for 

example was isolated from the marine bryozoan Flustra foliacea.74. Also Eudistomin H, isolated from 

the caribbean tunicate Eudistoma olivaceum75 shows antiviral and microbial activity.76  

 

Scheme 21: Natural products containing the indole moiety. 

 

Additionally, it is a key structural element for a vast number of biologically active molecules 

(pharmaceuticals and agrochemicals).77 Almotriptan and Eletriptan for instance are used as 

antimigraine agents. Tadalafil is a PDE5 inhibitor marketed by Eli Lilly for treating erectile 

dysfunction under the name Cialis, and under the name Adcirca for the treatment of pulmonary arterial 

hypertension (Scheme 22).78 The widespread utility of indoles has stimulated the development of 

numerous methodologies for their synthesis.79  

                                                      
73 E. Fattorusso, O. Taglialatela-Scafati, Modern Alkaloids, Wiley-VCH, Weinheim 2008. 
74 L. Peters, A.D. Wright, A. Krick, G.M. König, J. Chem. Ecol. 2004, 30, 1165. 
75 K.L. Rinehart, J. Kobayashi, G.C. Harbour, R.G. Hughes, S.A. Mizsak, T.A. Scahiel, J. Am. Chem. Soc. 1984, 106, 1524. 
76 C.M. Irland, B.R. Copp, M.P. Foster, L.A. McDonald, D.C. Radisky, J.C. Swersey, Marine Biotechnology, (Eds.D.H. 
Attaway, O.R. Zaborsky) Plenum: New York, 1993.  
77 a) M. Inman, C.J. Moody, Chem. Sci. 2013, 4, 29; b) M. Somei, F. Yamada, Nat. Prod. Rep. 2005, 22, 73, c) P.S. Baran, 
A.C. Guerrero, B. D. Hafensteiner, N. B. Ambhaikar, Angew. Chem. Int. Ed. 2005, 44, 3892, d) T. Yamashita, N. Kawai, H. 
Tokuyama, T. Fukuyama, J. Am. Chem. Soc. 2005, 127, 15038; e) C.F. Nising, Chem. Soc. Rev. 2010, 3, 591. 
78 A. Kleemann, J. Engel, B. Kutscher, D. Reichert, Pharmaceutical Substances, Thieme, 5th edition 2009 
79 Review on indole synthesis: a) S. Cacchi, G. Fabrizi, Chem. Rev. 2005, 105, 2873; b) G. R. Humphrey, J. T. Kuethe, 
Chem. Rev. 2006, 106, 2875; c) M. Platon, R. Amardeil, L. Djakovitch, J.-C. Hierso, Chem. Soc. Rev. 2012, 41, 3929; d) D. 
Liu, G. Zhao, L. Xiang, Eur. J. Org. Chem. 2010, 3975; e) B. Witulski, C. Alayrac, L. Tevzadze-Saeftel, Angew. Chem. 

2003, 115, 4392; Angew. Chem. Int. Ed. 2003, 42, 4257; f) C. Bressy, D. Alberico, M. Lautens, J. Am. Chem. Soc. 2005, 127, 
13148; g) P. Thansandote, D.G. Hulcoop, M. Langer, M. Lautens, J. Org. Chem. 2009, 74, 1673; h) L. Ackermann, Org. Lett. 

2005, 7, 439. i) S. Barfüßer, H.K. Potukuchi, L. Ackermann, Adv. Synth. Catal. 2009, 351, 1064; j) J. Barluenga, and C. 
Valdés, Five-Membered Heterocycles: Indole and Related Systems, in Modern Heterocyclic Chemistry (Eds J. Alvarez-
Builla, J.J. Vaquero and J. Barluenga), Wiley-VCH, Weinheim 2011. 
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Scheme 22: Bioactive molecules containing the indole moiety. 

 

Also, the closely related azaindoles have recently received a lot of attention due to their potential 

biological properties.80 Among the natural substances where the azaindole core is present,81 it is also a 

part of synthetic analogues of naturally occurring indoles.82 And especially highly functionalized 7-

azaindoles have become major goals for medicinal chemistry studies.83 In addition, azaindoles have 

also found applications in material science and coordination chemistry.84 Most of the conventional 

indole scaffold preparations cannot be extended to the azaindole system. A frequently employed 

strategy for azaindole synthesis is to start with substituted pyridines and to build up the pyrrole ring. 

Due to the electron-deficient nature of the pyridine ring, many classical indole preparations do either 

not proceed or are not efficient.85 

Next to the standard four nucleotides, there are a number of nucleotide modifications in the RNA. 

Queuosine and Archaeosine are two of these modifications, which possess a carbon atom at position 7 

instead of a nitrogen atom. In addition, they sparked a lot of interest in the pharmaceutical industry. 

Ruxolitinib for example is a drug for the treatment of intermediate or high-risk myelofibrosis, a type 

of bone marrow cancer (Scheme 23).86, 87 

                                                      
80 a) J.J. Song, J.T. Reeves, F. Gallou, Z. Tan, N.K. Yee, C. H. Senanayake, Chem. Soc. Rev. 2007, 36, 1120; b) L. Xu, I.R. 
Lewis, S.K. Davidson, J.B. Summers, Tetrahedron Lett. 1998, 39, 5159; c) M. Nazaré, C. Schneider, A. Lindenschmidt, D. 
W. Will, Angew. Chem. 2004, 115, 4626; Angew. Chem. Int. Ed. 2004, 43, 4526; d) V. Kumar, J.A. Dority, E.R. Bacon, B. 
Singh, G.Y. Lesher, J. Org. Chem. 1992, 57, 6995; e) J.A. Turner, J. Org. Chem. 1983, 48, 3401; f) D. Wensbo, A. Eriksson, 
T. Jeschke, U. Annby, S. Gronowitz, Tetrahedron Lett. 1993, 34, 2823; g) S.S. Park, J.-K. Choi, E.K. Yum, Tetrahedron Lett. 

1998, 39, 627; h) M. Amjad, D.W. Knight, Tetrahedron Lett. 2004, 45, 539; i) S. Cacchi, G. Fabrizi, L.M. Parisi, J. Comb. 

Chem. 2005, 7, 510; j) C. Harcken, Y. Ward, D. Thomson, D. Riether, Synlett 2005, 3121; k) M. Layek, Y.S. Kumar, A. 
Islam, R. Karavarapu, A. Sengupta, D. Halder, K. Mukkanti, M. Pal, Med. Chem. Commun. 2011, 2, 478; l) S. Zhang, W-X. 
Zhang, Z. Xi, Chem. Eur. J. 2010, 16, 8419; m) D. Thomae, M. Jeanty, J. Coste, G. Guillaumet, F. Suzenet, Eur. J. Org. 

Chem. 2013, 16, 3328; n) F. Popowycz, S. Routier, B. Joseph, J.-Y. Merour, Tetrahedron 2007, 63, 1031; o) F. Popowycz, J.-
Y. Merour, B. Joseph, Tetrahedron 2007, 63, 8689; p) J.-Y. Merour, S. Routier, F. Suzenet, B. Joseph, Tetrahedron 2013, 69, 
4767; q) F. Saab, V. Beneteau, F. Schoentgen, J.-Y. Merour, S. Routier, Tetrahedron 2010, 66, 102; r) C. Schneider, E. 
David, A.A. Toutov, V. Snieckus, Angew. Chem. 2012, 124, 2776; Angew. Chem. Int. Ed. 2012, 51, 2722. 
81 N.B. Perry, L. Ettouati, M. Litaudon, J.W. Blunt, M.H.G. Munro, Tetrahedron 1994, 50, 3987 
82 C. Marminon, A. Pierré, B. Pfeiffer, V. Pérez, S. Leonce, P. Renard, M. Prudhomme, Bioorg. Med. Chem. 2003, 11, 679. 
83 C.N. Hodge, P.E. Aldrich, Z.R. Wasserman, C.H. Fernandez, G.A. Nemeth, J. Med. Chem. 1999, 42, 819. 
84 a) S.-B. Zhao, S. Wang, Chem. Soc. Rev. 2010, 39, 3142; b) K.L. Garner, L.F. Parkes, J.D. Piper, J.A.G. Williams, Inorg. 

Chem. 2010, 49, 476; c) D. Pogozhev, S. A. Baudron, G. Rogez, M. W. Hosseini, Polyhedron 2013, 52, 1329. 
85 F. Popowycz, S. Routier, B. Joseph, J.-Y. Merour, Tetrahedron 2006, 63, 1031. 
86 R.A. Mesa, U. Yasothan, P. Kirkpatrick, Nature Reviews Drug Discovery 2012, 11, 103. 
87 Alan R. Katritzky, Comprehensive heterocyclic chemistry, (Ed: Alan R. Katritzky) Elsevier Books, 2008. 
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Scheme 23: RNA nucleosides Quenosine and Archaeosine. 

 

A synthetic method which can give access to the preparation of indoles, to the various isomeric 

azaindoles (4-, 5-, 6-, or 7-azaindoles) as well as to pyrrolo[2,3-d]pyrimidines would be highly 

desirable.  

Recently, Kunz and Knochel described a general preparation of functionalized benzo[b]thiophenes and 

benzo[b]thieno[2,3-d]thiophenes via an intramolecular catalytic carbocupration88 reaction.49 

Carbocuprations are very powerful addition reactions for the construction of complex stereodefined 

organic molecules89 and their intramolecular version is very attractive for constructing heterocyclic 

organometallics.90 

The aim of this work was to develop a mild and general one-pot preparation of indoles, azaindoles and 

pyrrolo[2,3-d]pyrimidines of type 34 via a new 5-endo-dig91 copper-mediated intramolecular 

carbometalation of magnesiated derivatives of type 35, leading to cuprated heterocyclic intermediates 

of type 36 which after quenching with various electrophiles afford functionalized N-heterocycles of 

type 34 (Scheme 24). The magnesiated intermediates were readily prepared from the corresponding 

bromo-ynamides92 of type 37 using a bromine-magnesium exchange. 

                                                      
88 a) J.P. Das, H. Chechik, I. Marek, Nat. Chem. 2009, 1, 128; b) A. Abramovitch, I. Marek, Eur. J. Org. Chem. 2008, 4924; 
c) Y. Minko, M. Pasco, H. Chechik, I. Marek, Beilstein J. Org. Chem. 2013, 9, 526; For reviews on carbocupration reactions 
see also: d) J.F. Normant, A. Alexakis, Synthesis 1981, 841; e) A. Basheer, I. Marek, Beilstein J. Org. Chem. 2010, 6, No. 77; 
f) N. Chinkov, D. Tene, I. Marek in Metal-Catalyzed Cross-Coupling Reactions (Ed.: F. Diederich, A. de Meijere), 2nd ed., 
Wiley-VCH, Weinheim, 2004; g) N. Krause in Modern Organocopper Chemistry (Ed.: N. Krause), Wiley-VCH, Weinheim, 
2002. 
89 a) C. Germon, A. Alexakis, J. F. Normant, Synthesis 1984, 40; b) E. Nakamura, S. Mori, Angew. Chem. 2000, 112, 3902; 
Angew. Chem. Int. Ed. 2000, 39, 3750; c) A. Alexakis, J. E. Bäckvall, N. Krause, O. Pàmies, M. Diéguez, Chem. Rev. 2008, 
108, 2796; d) Y. Minko, M. Pasco, L. Lercher, I. Marek, Nature Protocols, 2013, 8, 749; e) L. Ackermann, Angew. Chem. 

2011, 123, 3926; Angew. Chem. Int. Ed. 2011, 50, 3842; f) R. Jeyachandran, H. K. Potukuchi, L. Ackermann, Beilstein J. 

Org. Chem. 2012, 8, 1771; g) F. Monnier, M. Taillefer, Angew. Chem. 2009, 121, 7088; Angew. Chem. Int. Ed. 2009, 48, 
6954; h) G. Lefevre, G. Franc, A. Tlili, C. Adamo, M. Taillefer, I. Ciofini, A. Jutand, Organometallics 2012, 31, 7694; A. 
Tlili, F. Monnier, M. Taillefer, Chem. Commun. 2012, 48, 6408; i) G. Danoun, A. Tlili, F. Monnier, M. Taillefer, Angew. 

Chem. 2012, 124, 12987; Angew. Chem. Int. Ed. 2012, 51, 12815. 
90 a) Z. Shen, X. Lu, Adv. Synth. Cat. 2009, 351, 3107; b) V. Kavala, D. Janreddy, M. J. Raihan, C.-W. Kuo, C. Ramesh, C.-
F. Yao, Adv. Synth. Catal. 2012, 354, 2229. 
91 a) I. L. Kruse, J. E. Baldwin, J. Chem. Soc., Chem. Commun. 1976, 18, 734; b) R. C. Thomas, I. L. Kruse, L. Silberman, E. 
J. Baldwin, J. Org. Chem. 1977, 42, 3846. 
92 Review: a) G. Evano, A. Coste, K. Jouvin, Angew. Chem. 2010, 122, 2902; Angew. Chem. Int. Ed. 2010, 49, 2840; b) K. A. 
DeKorver, H. Li, A.G. Lohse, R. Hayashi, Z. Lu, Y. Zhan, R. P. Hsung, Chem. Rev. 2010, 110, 5064; c) A. Coste, G. 
Karthikeyan, F. Couty, G. Evano, Angew. Chem. 2009, 121, 4445; Angew. Chem. Int. Ed. 2009, 48, 4381; d) K. Jouvin, J. 
Heimburger, G. Evano, Chem. Sci. 2012, 3, 756; e) J.Y. Kim, S.H. Kim, S. Chang, Tetrahedron Lett. 2008, 49, 1745; f) F. 
Nissen, V. Richard, C. Alayrac, B. Witulski, Chem. Commun. 2011, 47, 6656; g) S. Balieu, K. Toutah, L. Carro, L.-M. 
Chamoreau, H. Rousselière, C. Courillon, Tetrahedron Lett. 2011, 52, 2876. 
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Scheme 24: Preparation of indoles, 4-, 5-, 6-, and 7-azaindoles and pyrrolo[2,3-d]pyrimidines via copper-

mediated carbomagnesiation of ynamides of type 37. 

 

2.2 Preparation of Functionalized Indoles  

First, the intramolecular carbocupration for the preparation of polyfunctional indoles was tested. The 

required bromo-ynamides are available in two straightforward steps starting from the corresponding 2-

bromoanilines (38a-d). After N-sulfonylation of the anilines 38a-d and N-ethynylation using KHMDS 

(KHMDS = potassium hexamethyldisilazane) and phenyl((trimethylsilyl)ethynyl)iodonium triflate93 

afforded the corresponding ynamides 39a-d in 45-79% (Scheme 25).94  

 

Scheme 25: TMS-substituted ynamides of type 39. 

 

Additional treatment of the ynamide 39a with i-PrMgCl·LiCl (6) provided the corresponding 

magnesium reagent 40a within 0.5 h at -10 °C in over 90% yield.95 In the presence of a catalytic 

                                                      
93 a) T. Kitamura, J. Matsuyuki, H. Taniguchi, Synthesis 1994, 147; b) T. Kitamura, M. Kotani, Y. Fujiwara, Synthesis 1998, 
1416. 
94 a) P. Murch, B.L. Williamson, P.J. Stang, Synthesis 1994, 1255; b) B. Witulski, T. Stengel, Angew. Chem. 1998, 110, 495; 
Angew. Chem. Int. Ed. 1998, 37, 489; c) K. Tanaka, K. Takeishi, Synthesis 2007, 2920. 
95 The yield was determined by iodolysis of reaction aliquots using iodine in THF. 
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amount of CuCN·2LiCl96 (30 mol%) a smooth cyclization occurred (23 °C, 24 h)97 producing a 2-

metalated indole derivative (of type 36; Scheme 24) After quenching with water the fluorine-

substituted indole 41a could be obtained in 93% yield (Table 3, entry 1). A subsequent allylation 

reaction with ethyl 2-(bromomethyl)acrylate98 (0.9 equiv) afforded the polyfunctional indole 41b in 

92% yield (entry 2). Similarly, an acylation with 3-chlorobenzoyl chloride furnished the 2-acylated 

indole 41c in 92% yield (entry 3). The CF3-substituted ynamide 39b reacted smoothly with 

iPrMgCl·LiCl (6) (-20°C, 15min) to give the corresponding magnesium reagent 40b. However, in this 

case the addition of one equivalent of CuCN·2LiCl was necessary to achieve a complete ring closure 

(23 °C, 8 h). Alternatively, microwave irradiation99 of the reaction mixture (50 °C, max. 100 W) 

allows to complete the ring closure within 1.5 h. The resulting 2-metalated indole reacted with various 

electrophiles in good yields. Thus, hydrolysis, an acylation with cyclopropanecarbonyl chloride or 4-

methylbenzoyl chloride provided the desired ketones 41d-f in 76-85% yield (entries 4-6). Similarly, 

the allylation with 3-bromocyclohexene afforded the functionalized indole 41g in 65% yield (entry 7).  

 

Table 3: Preparation of functionalized indoles of type 41 by a copper-mediated carbomagnesiation of ynamides 
of type 39 and subsequent reaction with electrophiles. 

 

Entry Substrate Electrophile[a] Product[b] 

1 

 

H2O 

 

 39a  41a: 93% 

2 39a 
 

 

   41b: 92% 

3 39a 

 
 

   41c: 92% 

                                                      
96 P. Knochel, M.C.P. Yeh, S.C. Berk, J. Talbert, J. Org. Chem. 1988, 53, 2390. 
97 In the absence of the copper salt, no cyclization is observed. 
98 a) M. Rambaud, J. Villiéras, Synthesis 1984, 406; b) J. Villiéras, M. Rambaud, Org. Synth. 1988, 66, 220. 
99 C.O. Kappe, Angew. Chem. 2004, 116, 6408; Angew. Chem. Int. Ed. 2004, 43, 6250. 
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4 

 

H2O 

 

 39b  41d: 76% 

5 39b 
 

 

   41e: 85% 

6 39b 

 
 

   41f: 78% 

7 39b 

 

 

   41g: 65% 

8 

 
 

 

 39c  41h: 62% 

9 39c 

 

 

   41i: 93% 

10 39c 
 

 

   41j: 48% 

11 

NC Br

N

SO2Ph

TMS

 

H2O 

 

 39d  41k: 66% 
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12 39d 

 

 

   41l: 68% 

13 39d 
 

 

   41m: 42% 

[a] 0.9 equiv of electrophile were used. [b] Isolated yields of analytically pure product. 

 

In the case of the cyano-substituted ynamide 39d, the Br/Mg-exchange with i-PrMgCl·LiCl (6) was 

complete at -5 °C in 0.5 h and for the more sensitive ester-substituted ynamide 39c, the exchange was 

carried out at -20 °C in 1 h. The use of stoichiometric amounts of CuCN·2LiCl avoids side reactions in 

both cases. Again an alternative microwave irradiation (50 °C, max. 100 W) allows to complete the 

ring closure within 0.75-1 h (instead of 23 °C, 16 h). A subsequent allylation or acylation of the ester-

substituted reagent 39c afforded the derived indoles 41h-j in 48-93% yield (Table 3, entries 8-10). 

Likewise, hydrolysis, acylation or allylation of the corresponding cyano-substituted 2-metalled 

heterocycle gave the indoles 41k-m in 42-68% yield. (entries 11-13).  

The TMS-substituent in indoles of type 41 can be used for further functionalization in position 3. 

Thus, the TMS-substituted indole 41b was converted to the iodide 42 in 90% yield100 (Scheme 26). 

This iodoindole 42 undergoes Negishi cross-coupling reactions with various zinc reagents17, 23 using 

3mol% PEPPSI-iPr to provide the 2,3 disubstituted indoles 43a-c in 63-89% yield (Scheme 26).  

 

Scheme 26: Transformation of the TMS-substituted indole 41b to the 3-iodoindole 42 and additional Negishi 

cross-couplings. 

  

                                                      
100 Z. Bo, A.D. Schlüter, J. Org. Chem. 2002, 67, 5327. 
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2.3 Preparation of Functionalized Azaindoles  

Remarkably, this versatile indole synthesis was successfully extended to the preparation of 4-, 5-, 6-, 

or 7-azaindoles. Thus, for the synthesis of 7-azaindoles, commercial 2-amino-3-bromopyridine (44) 

was used as starting material. The synthesis of the corresponding ynamide 45 was achieved in two 

steps as described above (66% overall yield). The treatment of ynamide 45 with i-PrMgCl·LiCl (6) 

(1.1 equiv, -45 °C, 1 h) provided the heteroaryl-magnesium reagent 46 in ca. 91% yield. A subsequent 

microwave irradiation using CuCN·2LiCl (1.0 equiv) at 50 °C allowed to complete the ring closure 

within 1 h (Scheme 27). 

 

Scheme 27: Preparation of functionalized 7-azaindoles of type 47 by a copper-mediated carbomagnesiation of 

ynamide 45. Reagents and conditions: a) PhSO2Cl (1.2 equiv), pyridine (3.0 equiv), CH2Cl2, 23 °C, 72 h, 80%; 

b) KHMDS (1.0 equiv), toluene, 0 °C, 1 h, then phenyl((trimethylsilyl)ethynyl)iodonium triflate (1.2 equiv), 

23 °C, 16 h, 82%. 

 

After quenching with water the corresponding 7-azaindole 47a was isolated in 79% yield (Table 4, 

entry 1). Alternatively, allylation or acylation could be readily performed with ethyl 2-

(bromomethyl)acrylate, furoyl chloride or cyclopropanecarbonyl chloride to provide the desired 7-

azaindoles 47b-d in 69-84% yield (entry 2-4).  

Table 4: Functionalized 7-azaindoles of type 47 obtained by the copper-mediated carbomagnesiation of ynamide 

45 and subsequent reaction with various electrophiles. 

Entry Substrate Electrophile[a] Product Yield[b] [%] 

1 

 

H2O 

 

79 

 45  47a  

2 45 
 

 

84 

   47b  

3 45 
 

 

69 

   47c  
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4 45 
 

 

84 

   47d  

[a] 0.9 equiv of electrophile were used. [b] Isolated yield of analytically pure product. 

Further functionalization of 7-azaindoles 47b and 47d could be achieved via a transformation of the 

TMS-group to the corresponding iodides 48a and 48b using ICl in 64-72% yield (Scheme 28). 

Subsequent I/Mg exchange reaction with MeMgCl (1.1 equiv, -78 °C, 0.5 h)101 followed by 

transmetalation with ZnCl2 furnished the functionalized Zn-reagents 49a-b which reacted smoothly 

with 3-chlorobenzoyl chloride, cyclohexanecarbonyl chloride or cyclopropanecarbonyl chloride to 

give the 2,3-disubstituted azaindoles 50a-c in 74-85% yield (Scheme 28).  

 

 

Scheme 28: 2,3-Disubstituted 7-azaindoles of type 50 obtained by transformation of the TMS-substituted 7-
azaindoles 47b and 47d. 

 

Also the subclass of 4- and 6-azaindoles are readily available using this new method. The standard 

two-step conversion of the commercial 2-bromopyridin-3-amine (51) provides the desired ynamide 52 

in 56% overall yield. This precursor 52 undergoes a Br/Mg exchange reaction with iPrMgCl·LiCl (6) 

(1.5 equiv, -40 °C, 24 h) at position 2 providing after copper-mediated ring closure the 4-azaindole 

53a in 52% yield (Scheme 29). Remarkably, starting from the same ynamide 52, the present 

methodology allows also the preparation of 6-azaindoles using a directed metalation mediated by 

TMPLi (12).102 Thus, the 2,3-substituted pyridine 52 was conveniently metalated with TMPLi 

(1.1 equiv) in the presence of MgCl2 (1.2 equiv) at ‒78 °C within 0.5 h at position 4. A subsequent 

copper-mediated cyclization (23 °C, 48 h) followed by hydrolysis afforded the 6-azaindole 54a in 60% 

yield. 

                                                      
101 I/Mg exchange reaction with i-PrMgCl·LiCl even at -90 °C led to a fast decomposition of the organometallic reagent. 
102 a) H. Gilman, W. Langham, A.L. Jacoby, J. Am. Chem. Soc. 1939, 61, 106; b) G. Wittig, G. Fuhrmann, Ber. Dtsch. Chem. 

Ges. 1940, 73, 1197; c) T.K. Macklin, J. Panteleev, V. Snieckus, Angew. Chem. 2008, 120, 2127; Angew. Chem. Int. Ed. 

2008, 47, 2097. 
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Scheme 29: Reaction pathways allowing the conversion of ynamide 52 to 4-azaindole 53a or 6-azaindole 
54a. Reagents and conditions: a) PhSO2Cl (1.2 equiv), pyridine (3.0 equiv), CH2Cl2, 23 °C, 1 h, 76%; b) 

KHMDS (1.0 equiv), toluene, 0 °C, 1 h, then phenyl((trimethylsilyl)ethynyl)iodonium triflate (1.2 equiv), 23 °C, 
16 h, 74%. 

 

Beside hydrolysis, further functionalization of position 2 would be desirable. As a result of the 

challenging Br/Mg exchange reaction (-40 °C, 24 h, 80% conversion), successive allylation and 

acylation reactions provided only moderate yields (53b-c: 36-45%) (Table 5, entries 1-2). In the case 

of the directed metalation by TMPLi (12) an allylation with allylbromide gave the 6-azaindole 54b in 

67% yield (entry 3).  

 

Table 5: Functionalized 4- and 6-azaindoles of type 53 and 54 obtained by the copper-mediated 
carbomagnesiation of ynamide 52 and subsequent reaction with various electrophiles. 

Entry Substrate Electrophile[a] Product Yield[b] [%] 

1 

 
 

 

36 

 

 52  53b  

2 52 
 

 

45 

   53c  

3 52  

 

67 

   54b  

[a] 0.9 equiv of electrophile were used. [b] Isolated yield of analytically pure product. 
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To provide access to further functionalized 4-azaindoles, the cyclization sequence was performed 

starting from 2,6-dibromo-3-aminopyridine (56). The required ynamide 55 is available in two 

straightforward steps starting from pyridine103 56 (40% overall yield, Scheme 30). A Br/Mg exchange 

performed on 55 with iPrMgCl·LiCl (6) at -40 °C within 3 h afforded after copper-mediated ring 

closure (23 °C, 24 h) and subsequent hydrolysis, acylation with 3-chlorobenzoyl chloride or allylation 

with ethyl 2-(bromomethyl)acrylate the polyfunctional 4-azaindoles 57a-c in 55-73% yield (Scheme 

30). Interestingly, the bromine substituent at position 5 provides a convenient handle for further 

functionalization. 

 

Scheme 30: Preparation of functionalized 4-azaindoles of type 57 by a copper-mediated carbomagnesiation 
of ynamide 55. Reagents and conditions: a) PhSO2Cl (1.2 equiv), pyridine (3.0 equiv), CH2Cl2, 0-23 °C, 12 h, 

65%; b) KHMDS (1.0 equiv), toluene, 0 °C, 1 h, then phenyl((trimethylsilyl)ethynyl)iodonium triflate (1.2 
equiv), 23 °C, 16 h, 62%. 

 

The methodology was extended to the synthesis of 5-azaindoles. Thus, ynamide 58, prepared in the 

standard way in three steps from the commercial 4-aminopyridine (59) underwent a smooth Br/Mg 

exchange reaction with iPrMgCl·LiCl (6) at -78 °C in 0.5 h. CuCN·2LiCl mediated cyclization 

(1.0 equiv, 23 °C, 48 h) gave after aqueous workup the 5-azaindole 60a (Scheme 31). Furthermore, a 

functionalization of position 2 was achieved by allylation with allyl bromide as well as acylation with 

3-chlorobenzoyl chloride to give the new azaindoles 60b-c in 69-71% yield.  

 

                                                      
103 V. Canibano, J.F. Rodriguez, M. Santos, M.A. Sanz-Tejedor, M.C. Carreno, G. Gonzalez, J.L. Garcia-Ruano, Synthesis 
2001, 2175. 
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Scheme 31: Preparation of functionalized 5-azaindoles of type 60 by a copper-mediated carbomagnesiation of 

ynamide 58. Reagents and conditions: a) NBS (2.0 equiv), CCl4, 24 h 23 °C, 70%; b) NaH (2.0 equiv), PhSO2Cl 

(1.0 equiv), THF, 0-23 °C, 12 h, 51%; c) KHMDS (1.0 equiv), toluene, 0 °C, 1 h, then phenyl((trimethylsilyl)-

ethynyl)iodonium triflate (1.2 equiv), 23 °C, 16 h, 39%. 

 

2.4 Preparation of Functionalized Pyrrolo[2,3-d]pyrimidine  

Finally, the method was used for the synthesis of pyrrolo[2,3-d]pyrimidines. The standard two-step 

conversion of the commercial 2,6-dichloropyrimidin-4-amine (61) provided the desired ynamide 62 in 

20% overall yield (Scheme 32). The ynamide 62 was conveniently metalated with TMPLi (12) in the 

presence of MgCl2 at ‒78 °C within 0.5 h at position 5. A subsequent copper-mediated cyclization 

(23 °C, 72 h) followed by hydrolysis, acylation or allylation afforded the pyrrolo[2,3-d]pyrimidines 

63a-c in 67-69% yield (Scheme 32). 

 

Scheme 32: Preparation of functionalized Pyrrolo[2,3-d]pyrimidines of type 63 by a copper-mediated 
carbomagnesiation of ynamide 62. 
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2.5 Scaleable Preparation of Functionalized Indoles and Azaindoles via an 

Intramolecular Copper-mediated Carbomagnesiation of Ynamides 

Several indoles and azaindoles are efficiently prepared in THF via intramolecular copper-mediated 

carbometalation of magnesiated derivatives, leading to cuprated heterocyclic intermediates which after 

quenching with various electrophiles afford functionalized N-heterocycles. These reactions are carried 

out at 45-50 mmol scale with comparable yields as obtained for small scales. 

Thus, a large-scale Br/Mg exchange reaction with iPrMgCl·LiCl (6) was performed using ynamide 

39a. Ynamide 39a is available in two straightforward steps starting from the corresponding 2-

bromoaniline 38a according to 2.2 (Scheme 25). Treatment of the ynamide 39a with iPrMgCl·LiCl (6) 

(1.1 equiv) provided the corresponding magnesium reagent within 0.5 h at -10 °C (same exchange 

reaction rate as for reactions performed at 1 mmol scale; exchange reaction progress checked by 

iodolysis and hydrolysis of reaction aliquots and HPLC analysis). After dilution of the reaction 

mixture with THF (0.1 M), CuCN·2LiCl (1.0 equiv) was added at -10 °C. The cyclization step was 

then carried out at 23 °C for 30 h (compared to 24 h for 1 mmol scale) producing a 2-metalated indole 

derivative. The resulting mixture was cooled to 0 °C, and reacted afterwards with allyl bromide (0.9 

equiv). After a slow warming of the reaction mixture to 23 °C within 16 h, the indole 41n was 

obtained in an excellent yield of 99% (Scheme 33). To avoid side reactions all cyclization reactions 

were carried out with one equivalent of CuCN·2LiCl.  

 

 

Scheme 33: Large scale preparation of functionalized indole 41n by a copper-mediated carbomagnesiation of 

ynamide 39a. 

 

The scalability of the procedure was also applied on the preparation of 4-azaindole 57g. Starting from 

commercial 3-aminopyridine, ynamide 55 was synthesized in three straightforward steps (2.3; Scheme 

30). The ynamide 55 underwent a Br/Mg exchange reaction with iPrMgCl·LiCl (6) (1.1 equiv), 

leading to the magnesium species within 3 h at -40 °C (same exchange reaction rate as for reactions 

performed at a 1 mmol scale). After dilution of the reaction mixture with THF (0.1 M), a copper-

mediated ring closure (CuCN·2LiCl, 1.0 equiv) was complete after 24 h at 23 °C. After cooling down 

to 0 °C, an acylation with 3-chlorobenzoyl chloride (0.9 equiv) proceeded while the reaction mixture 

is slowly warmed to reach 23 °C over 16 h to give 4-azaindole 57b in 71% yield (Scheme 34; 

compared to 73% yield at a 1 mmol scale). Purification by flash column chromatography could be 

avoided by recrystallization in isohexan/EtOAc. 
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Scheme 34: Large scale preparation of 4-azaindole 57b by a copper-mediated carbomagnesiation of ynamide 55. 

 

Finally, the large scale synthesis of a 2-substituted 7-azaindole 47d was carried out. Thus, commercial 

2-amino-3-bromopyridine was used as starting material. The synthesis of the corresponding ynamide 

45 was achieved in two steps according to 2.3 (Scheme 27). The treatment of ynamide 45 with 

iPrMgCl·LiCl (6) (1.1 equiv) provided the heteroaryl-magnesium reagent within 1 h at -45 °C (same 

exchange rate as for reaction performed at a 1 mmol scale). After addition of 400 mL of THF (0.1 M), 

CuCN·2LiCl (1.0 equiv) was added at -45 °C. The cyclization step was then carried out at 23 °C in 

36 h (compared to 24 h in 1 mmol scale). The resulting mixture is cooled to 0 °C. Then, cyclopropane 

carbonyl chloride (0.9 equiv) was added dropwise. The desired 7-azaindole 47d was obtained in 79% 

yield (Scheme 35; compared to 84% in 1 mmol scale).  

 

Scheme 35: Large scale preparation of 7-azaindole 47d by a copper-mediated carbomagnesiation of ynamide 45. 
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3. New in situ Trapping Metalations of Functionalized Arenes and 

Heteroarenes with TMPLi in the Presence of ZnCl2 and other Metal Salts 

3.1 Introduction 

The lithiation of arenes and heteroarenes constitutes a powerful method to functionalize these 

molecules.6, 33, 104 TMPLi (12) was first considered in 1972 in the base-induced rearrangement of 

epoxides105 and as a sterically hindered base for deprotonation at a carbon center adjacent to a boron 

atom.106 Since then, this strong base was extensively used for the selective lithiation of a wide range of 

arenes. 

For the deprotonation of electron-deficient aromatic heterocycles, the use of TMPLi (12) is often 

necessary, since alkyllithiums prefer addition to the electron-deficient ring over deprotonation. 

Starting from ortholithiation of pyridine itself (promoted by BF3) to pyridazines, pyrazines and 

pyrimidines it is possible to generate a multitude of different heterocyclic lithium species (Scheme 

36).107 

 

Scheme 36: Lithiation of various functionalized aromatics using TMPLi (12). 

 

In 2005, Turck, Quéguiner, and co-workers described a synthesis of the antitumor alkaloid 

botryllazine A (64) (Scheme 37). Starting from commercially available 2-chloropyrazine (65), this 

synthesis involved consecutive regioselective lithiations with TMPLi (12). Three successive lithiation 

sequences afforded the diketone 66. Thereafter, a Suzuki cross-coupling reaction provided the 

tetrasubstituted pyrazine 67 in 70% yield. After two further steps, botryllazine A (64) could be 

obtained in an overall yield of 25%. 

                                                      
104 a) P. Beak, V. Snieckus, Acc. Chem. Res. 1982, 15, 306; b) M. Schlosser, Organometallics in Synthesis, 3rd ed. (Ed.: M. 
Schlosser), Wiley, New York, 2013, Chapter 1; c) Fieser and Fieser`s reagents for organic synthesis, Wiley, Hoboken, 2011, 
and earlier volumes; d) R.E. Mulvey, S.D. Robertson, Angew. Chem. 2013, 125, 11682; Angew. Chem. Int. Ed. 2013, 52, 
11470; e) C. Unkelbach, D.F. O`Shea, C. Strohmann, Angew. Chem. 2014, 126, 563; Angew. Chem. Int. Ed. 2014, 53, 553; f) 
A. Salomone, F.M. Perna, A. Falcicchio, S.O. Nilsson Lill, A. Moliterni, R. Michel, S. Florio, D. Stalke, V. Capriati, Chem. 

Sci. 2014, 5, 528. 
105 C.L. Kissel, B. Rickborn, J. Org. Chem. 1972, 37, 2060. 
106 M.W. Rathke, R. Kow, J. Am. Chem. Soc. 1972, 94, 6854. 
107 a) S.V. Kesser, P. Singh, Chem. Rev. 1997, 97, 721; b) E. Vedejs, X.J. Chen, J. Am. Chem. Soc. 1996, 118, 1809; c) N. 
Plé, A. Turck, K. Couture, G. Quéguiner, J. Org. Chem. 1995, 60, 3781; d) N. Plé, A. Turck, F. Bardin, G. Quéguiner, J. 

Heterocyclic Chem. 1992, 29, 467; e) W. Liu, J.A. Walker, J.J. Chen, D.S. Wise, B.L. Townend, Tetrahedron Lett. 1996, 37, 
5325. 
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Scheme 37: Synthesis of the antitumor alkaloid botryllazine A (64). 

 

Ortholithiation - the directed metalation of an aromatic ring adjacent to a heteroatom-containing 

functional group - has overtaken classical electrophilic aromatic substitution as the principal means of 

making regiospecifically substituted aromatic rings. In general, ortholithiation consist of two steps 

(complex-formation and deprotonation) in which two features (rate and regioselectivity of lithiation) 

are controlled by coordination between organolithium and a heteroatom and acidity of the proton to be 

removed (Scheme 38).6 

 

Scheme 38: Ortholithiation. 

 

Nevertheless, the scope for the lithiation of complex molecules with TMPLi (12) is limited; highly 

reactive lithium derivatives are produced which often have little compatibility with sensitive 

functional groups (esters, cyano or nitro groups) especially when attached to electron-deficient N-

heterocycles. 
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There are two different ways to avoid these drawbacks. Krizan and Martin reported the deprotonation 

of aryl carboxylic esters with TMPLi (12) by in situ trapping of the aryl lithium species with TMSCl 

(Scheme 39).108 This way also more sensitive groups like esters could be tolerated. 

 

Scheme 39: Deprotonation of aryl carboxylic esters with TMPLi (12) by in situ trapping with TMSCl. 

 

Eaton and Martin found a procedure to metalate N,N-diethylbenzamide (68) with TMPLi (12) in the 

presence of HgCl2 (Scheme 40). 109 Also dilithiation was possible by using a large amount of TMPLi 

(12) and HgCl2. However, the utility of the method is reduced by difficulties of purification and their 

characterization. Since the arylmercury compounds were transformed into the corresponding aryl 

bromides to have a preparative utility. 

 

Scheme 40: Deprotonation of N,N-Diethylbenzamide (68) with TMPLi (12) in the presence of HgCl2. 

 

2001, Vedsø and Begtrup reported the synthesis of ortho-substituted arylboronic esters via ortho-

lithiation and in situ trapping of the corresponding lithium species with triisopropyl borate (Scheme 

41).110  

 

Scheme 41: Preparation of organoboron reagents via transmetalation. 

 

A more general route to improve the reaction scope is the use of less reactive bases of Mg and Zn.111 

Since Wittig and co-workers introduced the first magnesiate, Ph3MgLi, prepared by combination of 

Ph2Mg and PhLi, in 1951,112 several magnesiate species were developed. The first use of a magnesiate 

                                                      
108 T.D. Krizan, J.C. Martin, J. Am. Chem. Soc. 1983, 105, 6155.  
109 P.E. Eaton, R.M. Martin, J. Org. Chem. 1988, 53, 2728. 
110 J. Kristensen, M. Lysén, P. Vedsø, M. Begtrup, Org. Lett. 2001, 3, 1435. 
111 a) R.E. Mulvey, F. Mongin, M. Uchiyama, Y. Kondo, Angew. Chem. 2007, 119, 3876; Angew. Chem. Int. Ed. 2007, 46, 
3802; b)  A. Harrison-Marchand, F. Mongin, Chem. Rev. 2013, 113, 7470; c) E. Crosbie, A.R. Kennedy, R.E. Mulvey, S.D. 
Robertson, Dalton Trans. 2012, 41, 1832; d) Y. Kondo, M. Shilai, M. Uchiyama, T. Sakamoto, J. Am. Chem. Soc. 1999, 121, 
3539; e) F. Mongin, A. Bucher, J.P. Bazureau, O. Bayh, H. Awad, F. Trécourt, Tetrahedron Lett. 2005, 46, 7989. 
112 a) G. Wittig, F.J. Meyer, G. Lange, Justus Liebigs Ann. Chem. 1951, 571, 167; b) G. Wittig, Angew. Chem. 1958, 70, 65. 
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as a deprotonating agent was reported in 1992.113 Mongin and coworkers developed a series of lithium 

magnesates for instance Bu3MgLi, (TMP)3MgLi, Bu4MgLi2, Bu3(TMP)MgLi2 and Bu2Mg(TMP)Li. 

With these bases it is possible to deprotonate halogenated pyridines114 (Scheme 42) as well as 

thiophenes115, furans116 and oxazoles117.  

 

Scheme 42: Metalation of 2-fluoro-3-chloropyridine with Bu2Mg(TMP)Li. 

 

Lithium zincates can adopt two possible formulations: R3ZnLi  and R4ZnLi2.118 Kondo and co-workers 

reported in 1999 the synthesis of tBu2Zn(TMP)Li. This deprotonation agent was chemoselectively 

used for various arenes (Scheme 43), pyridines, thiophenes, quinolines, isoquinolines and furans. 119 

Major drawback of this metalation system is the low reactivity of the formed zinc species with most 

electrophiles. 

 

Scheme 43: Zincation of 4-bromoanisole with tBu2Zn(TMP)Li. 

 

 

3.2 In situ Trapping Metalation of Functionalized Arenes and Heteroarenes 

with TMPLi in the Presence of ZnCl2 

The aim of this work was to develop a metalation of functionalized N-heteroarenes and acceptor-

substituted benzenes by the concomitant use of TMPLi (12) and various metal salts such as MgCl2, 

ZnCl2 or CuCN. This new method could give a practical access to Mg-, Zn- or Cu-organometallics. 

                                                      
113 G. Castaldi, G. Borsotti, Eur. Patent 491326A2, 1992 [Chem. Abstr. 1992, 117, 150667].  
114 H. Awad, F. Mongin, F. Trécourt, G. Quéguiner, F. Marsais, F. Blanco, B. Abarca, R. Ballesteros, Tetrahedron Lett. 2004, 
45, 6697; b) H. Awad, F. Mongin, F. Trécourt, G. Quéguiner, F. Marsais, Tetrahedron Lett. 2004, 45, 7873.  
115 O. Bayh, H. Awad, F. Mongin, C. Hoarau, F. Trécourt, G. Quéguiner, F. Marsais, F. Blanco, B. Abarca, R. Ballesteros, 
Tetrahedron Lett. 2005, 61, 4779. 
116 F: Mongin, A. Bucher, J.P. Bazureau, O. Bayh, H. Awad, F. Trécourt, Tetrahedron Lett. 2005, 46, 7989. 
117 O. Bayh, H. Awad, F. Mongin, C. Hoarau, L. Bischoff, F. Trécourt, G. Quéguiner, F. Marsais, F. Blanco, B. Abarca, R. 
Ballesteros, J. Org. Chem. 2005, 70, 5190. 
118 See review: A.E.H. Wheatley, New J. Chem. 2004, 28, 435. 
119 a) Y. Kondo, M. Shilai, M. Uchiyama, T. Sakamoto, J. Am. Chem. Soc. 1999, 121, 3539; b) M. Uchiyama, Y. Matsumoto, 
D. Nobuto, T. Furuyamam, K. Yamaguchi, K. Morokuma, J. Am. Chem. Soc. 2006, 128, 8748. 
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Scheme 44: Reaction of a mixture of ZnCl2 and aromatic or heterocyclic substrate 69 with TMPLi (12) at -78 °C 

leading to zinc reagents of type 71 via a lithiation-transmetalation sequence. 

The lithiation of functionalized carbocycles or heterocyclic arenes of type 69 with TMPLi (12) would 

provide the unstable lithiated species 70. The performance of this lithiation in the presence of ZnCl2 

(or MgCl2 and CuCN) may result in an in situ trapping of the lithiated arene 70 to yield the zinc 

reagent 71, which now has an excellent thermal stability and can be readily trapped with electrophiles 

leading to various products of type 72. To be successful, such a method requires that the metalation of 

69 with TMPLi (12) is faster than the transmetalation of TMPLi (12) to TMPZnCl·LiCl (9). It should 

be noticed that TMPZnCl·LiCl (9) is unreactive toward metalation of 69 at -78 °C (Scheme 44). 

Herein, the realization of this in situ trapping method is reported and the advantages of this lithiation-

transmetalation procedure for generating highly functionalized zinc organometallics, difficult to 

prepare otherwise, is demonstrated. It will also be shown that these lithiations can be used to provide 

metalated intermediates with a different regioselectivity to the one produced with TMPZnCl·LiCl (9) 

or TMP2Zn·2LiCl (10). This synthetic approach can be extended from ZnCl2 to MgCl2 or CuCN 

producing valuable magnesium or copper intermediates. 

 

3.3 Regioselectivity switch by in situ Trapping Metalation of Functionalized 

Arenes and Heteroarenes with TMPLi in the Presence of different metal 

salts 

First, the metalation of 2,4-dichlorobenzonitrile (69a; Scheme 45) was examined. A calculation of the 

relative acidity of H(3), H(5) and H(6) shows that H(3) is ca. 106 times more acidic than H(5) and 
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H(6).120 Thus, the reaction of 69a with a moderately powerful base such as TMPZnCl·LiCl (9) only 

allowed a metalation at position 3 leading exclusively after iodolysis to the 3-iodinated benzonitrile 

73a in 78% isolated yield. 

 

Scheme 45: Regioselectivity switch in the metalation of 69a by TMPLi (12) in the presence of metal salts or 

TMPZnCl·LiCl. [a] Calculated pKa values for H(3), H(5) and H(6). 

Since the cyano group is a good ortho-directing group,33, 121 a kinetic metalation of 69a at position 6 

using a very strong lithium base is expected. Thus, a mixture of 69a and ZnCl2·2LiCl (1.1 equiv) was 

treated with a THF solution of TMPLi (12, 1.5 equiv, ca. 0.6 M) at -78 °C. After 5 min, the metalation 

of 69a is complete furnishing after iodolysis the 6-iodobenzonitrile 72a in 74% yield (Scheme 45). 

The complexation of ZnCl2 with LiCl enhances the solubility and often increases the reaction yields 

ca. 10-20%. The metalation regioselectivity is excellent (ca. 95:5) and is complementary to the 

metalation with TMPZnCl·LiCl (9), which proceeds at position 3. Independently generated 

TMP2Zn·2LiCl (10) or “(TMP)3ZnLi·2LiCl”122 either does not metalate 69a at -78 °C or metalates 

with low regioselectivity (position 3 : position 6 = 4:1) with only 29% conversion after 10 min. 

Besides iodolysis, the resulting arylzinc derived from 69a was submitted to a Negishi cross-coupling 

with 1-chloro-4-iodobenzene (0.9 equiv) leading to the biphenyl 72b in 68% yield. All of the in situ 

trapping reactions favor the metalation at position 6. Although this new in situ trapping is very 

satisfactory using ZnCl2·2LiCl, the method to the preparation of some other useful organometallic 

intermediates was extended. Thus, mixing 69a with MgCl2·2LiCl (1.1 equiv) and adding TMPLi (12, 

1.5 equiv, -78 °C, 5 min) produced the corresponding magnesium reagent which by reaction with 

ArSSO2Ph (Ar = p-FC6H4) or 4-bromobenzaldehyde afforded the thioether 72c in 75% yield or the 

                                                      
120 For detailed information see: A. Frischmuth, M. Fernández, N.M. Barl, F. Achrainer, H. Zipse, G. Berionni, H. Mayr, K. 
Karaghiosoff, P. Knochel, Angew. Chem. Int. Ed. 2014, DOI: 10.1002/anie.201403688. 

121 M.C. Whisler, S. MacNeil, V. Snieckus, P. Beak, Angew. Chem. 2004, 116, 2256; Angew. Chem. Int. Ed. 2004, 43, 2206. 
122 a) A. Seggio, F. Chevallier, M. Vaultier, F. Mongin, J. Org. Chem. 2007, 72, 6602; b) J.-M. L`Helgoual`ch, A. Seggio, F. 
Chevallier, M. Yonehara, E. Jeanneau, M. Uchiyama, F. Mongin, J. Org. Chem. 2008, 73, 177; c) K. Snégaroff, S. 
Komagawa, F. Chevallier, P.C. Gros, S. Golhen, T. Roisnel, M. Uchiyama, F. Mongin, Chem. Eur. J. 2010, 16, 8191; d) F. 
Chevallier, Y.S. Halauko, C. Pecceu, I.F. Nassar, T.U. Dam, T. Roisnel, V.E. Matulis, O.A. Ivashkevich, F. Mongin, Org. 

Biomol. Chem. 2011, 9, 4671; e) P. Garcia-Alvarez, R.E. Mulvey, J.A. Parkinson, Angew. Chem. 2011, 123, 9842; Angew. 

Chem. Int. Ed. 2011, 50, 9668. 
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alcohol 72d in 51% yield, respectively. An in situ quench with CuCN·2LiCl is also possible and 

produces valuable copper intermediates. Thus, performing the metalation of 69a by TMPLi (12) in the 

presence of CuCN·2LiCl (1.1 equiv) provided the corresponding copper(I)-intermediate, which 

reacted smoothly with 3-bromocyclohexene (0.9 equiv) to afford 72e in 89% yield.  

To issue a quantitative statement about the reaction of TMPLi (12) in the presence of ZnCl2, 

competition experiments were performed. An estimate for the relative reactivities of 69a and ZnCl2 

was derived from the reaction series shown in schemes 1-4, where the quantity of ZnCl2 was increased 

from 0.5 to 2.0 equivalents, while 69a and TMPLi (12) were kept at a 1:1 ratio. While increasing 

amounts of ZnCl2, the concentration of metalated 69a decreased from 82% (0.5 equiv of ZnCl2) to 50% 

(2.0 equiv of ZnCl2) while the concentration of TMPZnCl·LiCl, derived from the amount of metalated 

benzothiazole, increased from <1% to 16%. The 50/16 ratio of 72a vs. iodothiazole obtained at a 2:1 

ratio of ZnCl2 vs. 69a shows that the reaction of TMPLi (12) with ZnCl2 is at least 6 times slower than 

the metalation of 1a. The same conclusion can be drawn from the 56:14 ratio of these compounds at a 

1.5:1 ratio of ZnCl2 vs. 69a. A more quantitative evaluation of these experiments is not possible 

because some material is missing in the mass balance and the relative rate of the reaction of lithiated 

69a with ZnCl2 is unknown. The percentage of conversion is always larger than the amount of isolated 

iodoarene. 

 

Scheme 46: Competition experiments for the metalation of 69a. 

 

Table 6: Results of the metalation of 2,4-dichlorobenzonitrile 69a with TMPLi (12, 1.0 equiv) in the presence of 
ZnCl2 (0.5-2.0 equiv) at -78 °C, addition of benzothiazole (1.0 equiv) at 23 °C, and additional quenching with 
iodine. 

ZnCl2 [equiv] 

 
 

0.5 82% <1% 

1.0 76% 6% 

1.5 56% 14% 

2.0 50% 16% 

 

Analogous switches of regioselectivity switch were observed for several aromatic systems. The new in 

situ trapping procedure has also been applied to the metalation of heterocyclic ring positions which are 

notoriously difficult to metalate. Thus, as expected ethyl thiophene-2-carboxylate 69b undergoes a 

smooth magnesiation at position 5 with TMPMgCl·LiCl (7) (Scheme 47). Metalation at this position is 

favored for thermodynamic reasons, since H(5) is the most acidic hydrogen in the molecule. This high 
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tendency to metalate position 5 can be overcome by an in situ quench using ZnCl2 and TMPLi (12). 

Within 5 min at -78 °C, the metalation of 69b is complete producing the C(3)-zincated thiophene as 

major regioisomer (C(3) : C(5) = 75 : 25). Interestingly, the complexation of ZnCl2 with additional 

LiCl lowers this regioselectivity. After iodolysis the thienyl iodide 72f is obtained in 64% yield. By 

adding ZnCl2, Negishi cross-couplings with electron-poor iodides such as 4-iodobenzonitrile as well as 

electron-rich iodides such as 4-iodoanisole give, after chromatographic separation, 2,3-disubstituted 

thiophenes 72g and 72h in 73-76% yield. Performing the in situ trapping with CuCN·2LiCl allows an 

allylation with 3-bromocyclohexene (0.7 equiv) furnishing 72i in 70% yield (Scheme 47).  

 

Scheme 47: Regioselectivity switch in the metalation of 69b by TMPLi (12) in the presence of metal salts or 

TMPMgCl·LiCl (7). [a] Calculated pKa values for H(3), H(4), and H(5). 

 

3.4 In situ Trapping Metalation of Functionalized Heteroarenes with 

TMPLi in the Presence of different metal salts 

This in situ trapping method also allows a smooth metalation of sensitive heterocycles. For instance, 

the direct magnesiation or lithiation of 2-chloro-3-cyanopyridine (74a) is difficult. Attempts to use 

TMPLi (12), TMP2Mg·2LiCl (8) or TMPMgCl·LiCl (7) for deprotonation led to decomposition. Only 

TMP2Zn·2MgCl2·2LiCl (10) allows the zincation of 74a at 23 °C in 48 h in good yield. In contrast, 

metalation with TMPLi (12) in the presence of ZnCl2·2LiCl allows to prepare the same zinc species 

within 5 min at -78 °C.123 After Negishi cross-coupling with methyl 4-iodobenzoate or 1-iodo-4-

(trifluoromethyl)benzene the 4-arylated pyridines 75a and 75b were isolated in 72-90% yield (Table 7, 

entries 1-2). Using TMPLi (12) in the presence of MgCl2·2LiCl allows a smooth silylation of 74a with 

TMSCl providing the pyridine 75c in 96% yield (entry 3). The performance of an in situ quench using 

CuCN·2LiCl furnishes after allylation the pyridine 75d in 96% yield (entry 4). Other cyano-, ester-, or 

nitro-substituted pyridines as well as an ester-substituted furan such as 74b,124 74c-f, for which the 

                                                      
123 13C NMR experiments showed the same zinc species for both experiments. For details see Experimental Part. 
124 Using TMPLi in the presence of MgCl2 and quenching with iodine gives 2-cyano-3-iodopyridine in 72% yield; 
alternatively with TMPLi at -78 °C and quenching with iodine gives 53% yield. T. Cailly, F. Fabis, S. Lemaître, A. Bouillon, 
S. Rault Tetrahedron Lett. 2005, 46, 135. 
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lithiated derivatives are prone to decomposition and have to be handled at low temperature, the in situ 

quench with MgCl2·2LiCl, ZnCl2·2LiCl or CuCN·2LiCl and TMPLi (12) offers a simple preparative 

alternative and furnishes directly within 5 min the corresponding organometallic intermediates which 

undergo additions to aldehydes, Negishi cross-couplings, allylations or acylations in 64-94% yield 

(entries 5-15). 

 

Table 7: Products 75 obtained by metalation with TMPLi (12) in the presence of MgCl2, ZnCl2 or CuCN and 
quenching with electrophiles. 

Entry Substrate Electrophile Product[a] Yield[a] 

 
  

 

 

1 74a R = CO2Me 75a 90%[b][f][h] 

2 74a R = OMe 75b 72%[b][f] 

3 74a TMSCl 

 

96%[c][h] 

   75c  

4 74a 
 

 

96%[e][h] 

   75d  

5  

74b  
 

84%[b][f] 

   75e  

6 
 

74c 
 

 

79%[b][f] 

   75f  

7 
  

 

94%[d][h] 

 74d  75g  
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8 74d 

 

 

86%[b][f][h] 

   75h  

9 74d 

 

 

86%[e][h] 

   75i  

10 74d 

 
 

94%[e][h] 

   75j  

 
  

 

 

11 74e R = CF3 75k 80%[b][f] 

12 74e R = CN 75l 70%[b][f] 

13 
  

 

 

 74f  75m 70%[g] 

14 74f 
 

 

 

   75n 81%[g] 

15 74f 

 

 

64%[g] 

   75o  

[a] Isolated yield of analytically pure product. [b] ZnCl2·2LiCl was added. [c] MgCl2·2LiCl was added. [d] 

MgCl2 was added. [e] CuCN·2LiCl was added. [f] Obtained by a palladium-catalyzed cross-coupling with 2% 

[Pd(dba)2] and 4% P(2-furyl)3, [g] ZnCl2 was added. [h] Products prepared by Dr. Maitane Fernández. 
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4. Summary 

4.1 Preparations and Reactions of SF5-substituted Aryl and Heteroaryl 

Derivatives via Mg and Zn Organometallics 

 

A range of polyfunctional SF5-substituted aromatic and heterocyclic compounds using zinc and 

magnesium intermediates were prepared. The commercial available 1-(bromo)-3-

(pentafluorosulfanyl)benzene could be transformed into the magnesium intermediate using 

iPrMgCl·LiCl (6) furnishing after treatment with different electrophiles  various SF5-substituted arenes 

in good yields. 

 

Scheme 48: Products obtained by Br/Mg-exchange with iPrMgCl·LiCl (6) followed by reaction with various 
electrophiles. 

 

The treatment of the SF5-substituted benzoic acid ethyl ester with TMP2Mg·2LiCl (8) led to a 

functionalized arylmagnesium reagent, which could used for further functionalization. 

 

Scheme 49: Further functionalization using TMP2Mg·2LiCl (8). 

 

By starting from commercial 1-nitro-3-(pentafluorsulfanyl)benzene it was possible to build up an SF5-

substituted indole. This indole could be further functionalized at position 2 and 3 by using 

TMPMgCl·LiCl (7). 

 

Scheme 50: Synthesis of functionalized SF5-substituted indoles. 



B. Results & Discussion 
 

 

 
47 

At last, performing a bromine-magnesium exchange reaction starting from a SF5-substituted 

alkinyl(aryl)thioether, followed by a copper-mediated ring closing reaction, lead to SF5-substituted 

benzo[b]thiophenes in good yields. 

 

Scheme 51: Synthesis of functionalized SF5-substituted benzo[b]thiophenes. 

 

4.2 Preparation of Functionalized Indoles, Azaindoles and Pyrrolo[2,3-

d]pyrimidines via an Intramolecular Copper-mediated 

Carbomagnesiation of Ynamides 

A mild and general intramolecular copper-mediated carbomagnesiation procedure for the synthesis of 

functionalized indoles as well as 4-, 5-, 6-, and 7-azaindoles and pyrrolo[2,3-d]pyrimidines starting 

from the readily available ynamides was developed (Scheme 52). Further functionalization of these N-

heterocycles with various electrophiles gave access to highly functionalized N-heterocycles in good 

yields. The use of iPrMgCl·LiCl (6) for the generation of the key magnesium intermediate tolerated a 

wide range of functional groups in the cyclization process. 

 

Scheme 52: Preparation of indoles, azaindoles and pyrrolo[2,3-d]pyrimidines by a copper-mediated cyclization 
reaction starting from bromo-ynamides. 

 

Further transformations of these N-heterocycles lead to highly functionalized indoles as well as 

azaindoles. After transformation of the TMS-group to an iodine, it was possible to apply the 

corresponding indole as an electrophile in Negishi cross-couplings (Scheme 53). 
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Scheme 53: Further functionalization of position 3. 

 

Starting from 7-azaindole 48a it was possible to perform a I/Mg exchange reaction, followed by 

transmetalation with ZnCl2. Copper-mediated acylation reactions lead to 2,3-substituted azaindoles in 

good yields (Scheme 54). 

 

Scheme 54: Further functionalization of position 3. 

 

4.3 New in situ Trapping Metalations of Functionalized Arenes and 

Heteroarenes with TMPLi in the Presence of ZnCl2 and other Metal 

Salts 

The faster deprotonation of arenes and heteroarenes with TMPLi compared to transmetalation of 

TMPLi with Mg-, Zn- or Cu-halides has allowed to develop an in situ quench method, in which 

functionalized aromatic or heteroaromatic substrates mixed with Mg-, Zn- or Cu-halides have been 

metalated within 5 min by TMPLi at -78 °C leading after transmetalation to various functionalized 

Mg-, Zn- or Cu-derivatives. The method allows to metalate smoothly a range of functionalized 

pyridines and related heterocycles more efficiently and in higher yields as well conventional 

metalations (Scheme 55).  

 

Scheme 55: In situ trapping metalation with TMPLi in the presence of metal salts. 
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In several cases, a different regioselectivity of the metalation is observed than in standard metalation 

procedures providing previously not accessible organometallics. For example using a moderately 

powerful base such as TMPZnCl·LiCl, 2,4-dichlorobenzonitrile only allows a metalation at position 3. 

Since the cyano group is a good ortho-directing group, a kinetic metalation at position 6 using the very 

strong base TMPLi is feasible. Mixing 2,4-dichlorobenzonitrile with Mg-, Zn- or Cu-halides and 

additional metalation with TMPLi lead after transmetalation to various functionalized Mg-, Zn- or Cu-

derivatives, which react with various electrophiles (Scheme 56). 

 

Scheme 56: Metalation of 2,4-dichlorobenzonitrile in position 3 or 6. 
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1. General Considerations 
If not otherwise stated, all reactions have been carried out using standard Schlenk-techniques in 

flame-dried glassware under nitrogen or argon. Prior to use, syringes and needles have been 

purged with the respective inert gas. 

 

1.1 Solvents 

Solvents were dried according to standard procedures by distillation over drying agents and 

stored under argon. 

Et2O was predried over CaCl2 and dried with the solvent purification system SPS-400-2 from 

INNOVATIVE TECHNOLOGIES INC. 

NMP (N-methylpyrrolidinone) was refluxed over CaH2 and distilled from CaH2. 

Pyridine was dried over KOH and distilled. 

THF (tetrahydrofuran) was continuously refluxed and freshly distilled from Na/benzophenone 

ketyl under nitrogen and stored over 4 Å molecular sieve under an argon atmosphere. 

Toluene was predried over CaCl2, distilled from CaH2 and stored over 4 Å molecular sieve under 

an argon atmosphere. 

Triethylamine was dried over KOH and distilled. 

Solvents for reaction workup and for column chromatography were distilled prior to use. 

 

1.2 Preparation of Reagents 

Commercially available reagents were used without further purification unless otherwise stated. 

Liquid aldehydes and acid chlorides were distilled prior to use.  

TMPH was distilled under argon prior to use.  

Preparation of CuCN·2LiCl125 solution: 

CuCN·2LiCl solution (1.0 M in THF) was prepared by drying CuCN (7.17 g, 80 mmol) and LiCl 

(6.77 g, 160 mmol) in a Schlenk-tube under vacuum at 140 °C for 5 h. After cooling, dry THF 

(80 mL) was added and stirring was continued until all salts were dissolved. 

Preparation of ZnCl2 solution: 

ZnCl2 solution (1.0 M in THF) was prepared by drying ZnCl2 (136.3 g, 100 mmol) in a Schlenk-

flask under vacuum at 140 °C for 5 h. After cooling, dry THF (100 mL) was added and stirring 

was continued until all salts were dissolved. 

Preparation of MgCl2 solution: 

A dry and argon flushed Schlenk-flask, equipped with a magnetic stirrer and a septum was 

charged with Mg turnings (2.55 g, 105 mmol) and THF (200 mL). 1,2-Dichloroethane (9.90 g, 

100 mmol, 7.92 mL) was added dropwise over 1 h. The reaction mixture was stirred at 23 °C 

until gas evolution was complete.  
                                                      
125 P. Knochel, M. C. P. Yeh, S. C. Berk, J. Talbert, J. Org. Chem. 1988, 53, 2390. 
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Preparation of LiCl solution: 

LiCl solution (0.7 M in THF) was prepared by drying LiCl (8.6 g, 202 mmol) in a Schlenk-tube 

under vacuum at 140 °C for 5 h. After cooling, dry THF (288 mL) was added and stirring was 

continued until all salts were dissolved. 

Preparation of TMPMgCl·LiCl (7):126 

In a dry and argon-flushed Schlenk-flask TMPH (2,2,6,6-tetramethylpiperidine, 14.8 g, 

105 mmol) was added to iPrMgCl·LiCl (6) (71.4 mL, 1.40 M in THF, 100 mmol) at 23 °C and 

the mixture was stirred for 3 days at 23 °C. The freshly prepared TMPMgCl·LiCl (7) was titrated 

prior to use at 0 °C with benzoic acid using 4-(phenylazo)diphenylamine as indicator. 

Preparation of TMP2MgCl·LiCl (8):127 

TMP2Mg·2LiCl solution (0.6 M in THF) was prepared by the slow addition of nBuLi (4.26 mL, 

2.35 M in hexane, 10 mmol) to a solution of TMPH (1.41 g, 10 mmol) in THF (10 mL) at -40 °C. 

After stirring for 30 min the mixture was warmed up to 0 °C and TMPMgCl·LiCl (7) (8.3 mL, 

1.2 M in THF, 10 mmol) was added dropwise. The resulting mixture was stirred for 30 min, 

warmed up to 23 °C and the solvent was evaporated under vacuum (10-3 mbar). THF was then 

added slowly under vigorous stirring until the salts were completely dissolved. 

Preparation of TMPLi (12): 

TMPLi solution (0.63 M in THF) was prepared by slow addition of nBuLi (2.17 mL, 5.0 mmol, 

2.3 M in hexane) to a solution of TMPH (706 mg, 0.85 mL, 5.0 mmol) in THF (5 mL) at -40 °C 

and stirred for 30 min at -40 °C. 

iPrMgCl·LiCl (6) was purchased as a solution in THF from Rockwood Lithium GmbH. 

nBuLi was purchased as a solution in hexane from Rockwood Lithium GmbH. 

 

Content determination of organometallic reagent: 

nBuLi was titrated using iPrOH and 1,10-phenanthroline as indicator in THF. 128 

Organomagnesium reagents were titrated using I2 in THF. 129 

TMP2Mg·2LiCl and TMPMgCl·LiCl were titrated with benzoic acid and 4-

(phenylazo)diphenylamine as indicator in THF.42 

TMPLi was titrated using N-Benzylbenzamide in THF.130 

 

1.3 Analytical Data 

Gas chromatography was performed with machines of type Hewlett-Packard 6890 or 5890 

series II, using a column of type HP 5 (Hewlett-Packard, 5% phenylmethylpolysiloxane; length: 

15 m, diameter: 0.25 mm; film thickness: 0.25 µm). The detection was accomplished by using a 
                                                      
126 A. Krasovskiy, V. Krasovskaya, P. Knochel, Angew. Chem. 2006, 118, 3024; Angew. Chem. Int. Ed. 2006, 45, 
2958. 
127 G. Clososki, C. Rohbogner, P. Knochel, Angew. Chem. 2007, 119, 7825; Angew. Chem. Int. Ed. 2007, 46, 7681. 
128 H.-S. Lin, A Paquette, Synth. Commun. 1994, 24, 2503. 
129 A. Krasovskiy, P. Knochel, Synthesis  2006, 5, 890. 
130 A.F. Burchat, J.M. Chong, N. Nielsen, J. Organomet. Chem.1997, 542, 281. 
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flame ionization detector. The carrier gas was nitrogen. Alkanes like dodecane or tetradecane 

were used as internal standards. 

Infrared spectra were recorded from 4000-400 cm-1 on a Perkin 281 IR spectrometer. Samples 

were measured neat (ATR, Smiths Detection DuraSample IR II Diamond ATR). The absorption 

bonds are reported in wave numbers (cm-1). 

Mass spectra were recorded on Finnigan MAT 95Q or Finnigan MAT 90 instrument for electron 

impact ionization (EI). High resolution mass spectra (HRMS) were recorded on the same 

instrument.  

Melting points are uncorrected and were measured on a Büchi B.540 apparatus. 

NMR spectra were recorded on Varian Mercury 200, Bruker AC 300, WH 400, or AMX 600 

instruments. Chemical shifts are reported as δ-values in ppm relative to the solvent peak, i.e. 

chloroform-d (δ 7.26 ppm for 1H-NMR and δ 77.0 ppm for 13C-NMR), DMSO-d6 (δ 2.50 ppm for 
1H-NMR and δ 39.5 ppm for 13C-NMR). For the characterization of the observed signal 

multiplicities the following abbreviations were used: s (singlet), d (doublet), t (triplet), m 

(multiplet), q (quartet), quint (quintet), sxt (sextet), oct (octet), as well as br (broad). 

Microwave irradiation was performed in a Biotage InitiatorTM Unit (Biotage, Uppsala, Sweden) 

in a closed-vessel system. 
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1.4 Chromatography 

Thin layer chromatography (TLC) was performed using aluminum plates coated with SiO2 

(Merck 60, F-254). The spots were visualized by UV-light or by staining of the TLC plate with 

the solution below followed by heating if necessary: 

- Phosphomolybdic acid (5.0 g), Ce(SO4)2 (2.0 g) and conc. H2SO4 (12.0 mL) in water 

(230 mL). 

- Iodine absorbed on silica gel. 

- KMnO4 (0.3 g), K2CO3 (20 g) and KOH (0.3 g) in water (300 mL). 

Flash column chromatography was performed using SiO2 60 (0.04-0.063 mm, 230-400 mesh) 

from Merck. 
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2. Preparations and Reactions of SF5-substituted Aryl and Heteroaryl 

Derivatives via Mg and Zn Organometallics 

2.1 Typical Procedures 

Typical procedure (TP1): Halogen/Magnesium exchange reactions 

A dry and argon flushed Schlenk-flask, equipped with a septum and a magnetic stirring bar was 

charged with the starting aryl halide in THF (approx. 1.0 M solution) and cooled to the indicated 

temperature. Then iPrMgCl·LiCl (6) (1.1 equiv) was added and the reaction mixture was stirred 

for the indicated time at this temperature until the reaction was complete (checked by GC-

analysis of reaction aliquots quenched with a solution of I2 in THF).  

Typical procedure (TP2): Palladium-catalyzed cross-coupling reactions 

In a dry argon flushed Schlenk-flask equipped with a septum and a magnetic stirring bar, the 

electrophile (0.7-0.9 equiv) was dissolved in THF (0.5 M solution) and PEPPSI-iPr (2 mol%) was 

added. Then, 3-pentafluorosulfonyl-phenylzinc chloride (1.0 equiv), prepared by transmetalation 

with ZnCl2 (1.1 equiv) from the corresponding organomagnesium reagent 13 (TP1, 1 h, 0 °C) 

was added, and the reaction mixture was stirred for the given time until GC-analysis showed full 

conversion of the electrophile. The reaction mixture was quenched with sat. aqueous NH4Cl-

solution and extracted three times with Et2O. The combined organic layers were washed with 

brine, dried over Na2SO4, filtered and the solvent removed in vacuo. The crude residue was 

purified by flash column chromatography on silica gel. 

Typical procedure (TP3): Palladium-catalyzed cross-coupling reactions with aryl bromides 

bearing unprotected anilines 

In a dry argon-flushed Schlenk-flask equipped with a septum and a magnetic stirring bar, the 

electrophile (0.8-0.9 equiv) was dissolved in THF (0.5 M solution) and Pd(OAc)2 (2 mol%) and 

S-Phos (4 mol%) were added. Then, 3-pentafluorosulfonyl-phenylzinc chloride (1.0 equiv), 

prepared by transmetalation with ZnCl2 (1.1 equiv) from the corresponding organomagnesium 

reagent 13 (TP1, 1 h, 0 °C) was added, and the reaction mixture was stirred for the given time 

until GC-analysis showed full conversion of the electrophile. The reaction mixture was quenched 

with sat. aqueous NH4Cl-solution and extracted three times with Et2O. The combined organic 

layers were washed with brine, dried over Na2SO4, filtered and the solvent removed in vacuo. 

The crude residue was purified by flash column chromatography on silica gel. 

Typical Procedure for allylation or acylation reactions (TP4): 

To the freshly prepared magnesium reagent (1.0 equiv) was added CuCN·2LiCl (1.0 M in THF) 

and the reaction mixture was stirred for 15 min at the indicated temperature. The allyl bromide or 

acyl chloride (0.6-1.2 equiv) was added and the reaction mixture was stirred for the indicated 

time at the respective temperature. The reaction mixture was quenched with sat. aqueous NH4Cl-

solution, extracted three times with Et2O, over Na2SO4, filtered and concentrated in vacuo. The 

crude residue was purified by flash column chromatography on silica gel. 

Typical procedure (TP5): Typical Procedure for the Metalation using TMP2Mg·2LiCl 

A dry and argon flushed Schlenk-flask, equipped with a septum and a magnetic stirring bar was 

charged with 3-(pentafluorosulfanyl)benzoic acid ethyl ester (15e, 1.0 equiv) in THF (0.5 M) and 
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cooled to −40 °C. TMP2Mg·2LiCl (1.5 equiv) was added dropwise and the reaction mixture 

stirred for the indicated time (the completion of the reaction was checked by GC-analysis of 

reaction aliquots quenched with a solution of I2 in THF). 

Typical procedure (TP6): Typical Procedure for the deprotonation using TMPMgCl·LiCl 

(7) 

A dry and argon flushed Schlenk-flask, equipped with a septum and a magnetic stirring bar was 

charged with the starting material in THF (0.5 M) and cooled to the appropriate temperature. 

TMPMgCl·LiCl (7) (1.1 equiv) was added dropwise and the reaction mixture stirred for the 

indicated time (the completion of the reaction was checked by GC-analysis of reaction aliquots 

quenched with a solution of I2 in THF). 

Typical procedure (TP7): Palladium-catalyzed cross-coupling reactions 

To the freshly prepared magnesium reagent, prepared by using TP5 or TP6, was added ZnCl2 

(1.1 equiv) and the reaction mixture was stirred for 10 min at the indicated temperature. The 

catalytic system (PEPPSI-iPr (2%), or Pd(dba)2 (2%) and tfp (4%)) and the aryl halide (0.9-

1.1 equiv) were added and the reaction mixture was warmed to 23 °C. After stirring for the 

indicated time the reaction mixture was quenched with sat. aqueous NH4Cl-solution, extracted 

three times with Et2O, dried over Na2SO4, filtered and concentrated in vacuo. The crude residue 

was purified by flash column chromatography on silica gel. 

 

2.2 Synthesis of Compounds of Type 15 

 

3´-(Pentafluorosulfanyl)biphenyl-4-carbonitrile (15a) 

 

The title compound was prepared from 1-bromo-3-(pentafluorosulfanyl)benzene (11; 283 mg, 

1.0 mmol). A Br/Mg-exchange reaction was performed according to TP1 with iPrMgCl·LiCl (6) 

(0.72 mL, 1.1 mmol, 1.53 M in THF) at 0 °C within 1 h. According to TP2 the corresponding 

zinc reagent reacted for 12 h with 4-bromobenzonitrile (14a; 128 mg, 0.70 mmol). Flash column 

chromatographical purification (silica; pentane:Et2O = 95:5) afforded 15a as a colorless solid 

(176 mg, 0.58 mmol, 83%).  

Mp.: 122-124 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.97 (t, J = 1.9 Hz, 1H), 7.87 – 7.75 (m, 3H), 7.75 – 

7.58 (m, 2H), 7.71 – 7.68 (m, 1H), 7.62 (t, J = 8 Hz, 1H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 143.7, 143.5, 140.3 (d, J = 0.6 Hz), 132.9 – 132.8 (m, 

2C), 130.3, 129.6, 127.9 (d, J = 2.8 Hz), 126.0 (t, J = 4.9 Hz), 125.0 – 124.7 (m), 118.5, 112.1.  
19F-NMR (280 MHz, CDCl3): δ / ppm = 85.24 – 82.26 (m, 1F), 63.32 – 62.23 (m, 4F). 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2226 (w), 1604 (w), 1479 (w), 1398 (w), 1115 (w), 832 

(s), 788 (s), 732 (w), 718 (w), 690 (w), 668 (w), 641 (w). 
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MS (EI, 70 eV): m/z (%) = 306 (M+H, 16), 305 (M+, 100), 197 (36), 178 (22), 177 (29), 151 

(26), 150 (10). 

HRMS (C13H8F5NS): calc.: 305.0298; found: 305.0277. 

 

5-[3-(Pentafluorosulfanyl)phenyl]pyridine-2-carbonitrile (15b) 

 

The title compound was prepared from 1-bromo-3-(pentafluorosulfanyl)benzene (11; 283 mg, 

1.0 mmol). A Br/Mg-exchange reaction was performed according to TP1 with iPrMgCl·LiCl (6) 

(0.72 mL, 1.1 mmol, 1.53 M in THF) at 0 °C within 1 h. According to TP2 the corresponding 

zinc reagent reacted with 5-bromopicolinonitrile (14b; 165 mg, 0.90 mmol). The reaction time 

was 5 h. Flash column chromatographical purification (silica; isohexane:Et2O = 3:1) afforded 

15b as a white solid (233 mg, 0.76 mmol, 85%).  

Mp.: 136-138 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.97 (dd, J = 30.6 Hz, J = 2.1 Hz, 1H), 8.14 (t, 

J = 2.1 Hz, 1H), 7.93 (t, J = 1.8 Hz, 1H), 7.91 – 7.84 (m, 1H), 7.75 – 7.60 (m, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 155.5 – 154.3 (m), 151.6, 151.4, 137.6, 136.6, 135.4, 

130.3, 130.0, 126.9 – 126.5 (m), 125.1 – 124.7 (m), 116.1, 110.5. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3776 (w), 3697 (w), 3079 (w), 3063 (w), 2238 (w), 1592 

(w, 1432 (w), 1405 (w), 1342 (w), 1281 (w), 1220 (w), 1160 (w), 1116 (w), 1104 (w), 1066 (w), 

1028 (w), 896 (m), 865 (m), 836 (vs), 823 (vs), 805 (s), 794 (s), 720 (m), 706 (m), 690 (m), 645 

(w). 

MS (ESI, 70 eV): m/z (%) = 348 (M+H+CH3CN, 100), 307 (M+H, 40), 293 (6). 

HRMS (C12H7F5N2S): calc.: 307.0328; found: 307.0322. 

 

3'-(Pentafluorosulfanyl)biphenyl-4-amine (15c) 

F5S

NH2

 

The title compound was prepared from 1-bromo-3-(pentafluorosulfanyl)benzene (11; 334 mg, 

1.2 mmol). A Br/Mg-exchange reaction was performed according to TP1 with iPrMgCl·LiCl (6) 

(0.90 mL, 1.3 mmol, 1.53 M in THF) at 0 °C within 1 h. According to TP3 the corresponding 

zinc reagent reacted with 4-bromoaniline (14c; 172 mg, 1.0 mmol). The reaction time was 2 h. 

Flash column chromatographical purification (silica; isohexane:Et2O:CH2Cl2 = 90:9:1) afforded 

15c as a yellow solid (260 mg, 0.88 mmol, 88%).  

Mp.: 86-87 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.92 (t, J = 1.9 Hz, 1H), 7.80 – 7.60 (m, 2H), 7.60 – 

7.34 (m, 3H), 6.91 – 6.60 (m, 2H), 3.79 (s, 2H). 
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13C-NMR (75 MHz, CDCl3): δ / ppm = 155.0 – 154.3 (m), 146.7, 142.2, 129.5, 129.3, 128.9, 

128.2, 124.1 – 123.7 (m), 123.7 – 123.3 (m), 115.4. 
19F-NMR (280 MHz, CDCl3): δ / ppm = 86.21 – 83.61 (m, 1F), 63.33 – 62.11 (m, 4F). 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 1738 (m), 1723 (w), 1622 (w), 1599 (w), 1479 (w), 1366 

(w), 1355 (w), 1287 (w), 1228 (w), 1217 (w), 824 (vs), 787 (s), 743 (m), 692 (w), 564 (vw). 

MS (EI, 70 eV): m/z (%) = 296 (12), 295 (100), 167 (16), 86 (13), 71 (66), 57 (48), 56 (34), 55 

(19). 

HRMS (C12H10F5NS): calc.: 295.0454; found: 295.0447. 

 

2-Amino-3´-(pentafluorosulfanyl)biphenyl-4-carboxylic acid ethyl ester (15d) 

 

The title compound was prepared from 1-bromo-3-(pentafluorosulfanyl)benzene (11; 334 mg, 

1.2 mmol). A Br/Mg-exchange reaction was performed according to TP1 with iPrMgCl·LiCl (6) 

(0.90 mL, 1.3 mmol, 1.53 M in THF) at 0 °C within 1 h. According to TP3 the corresponding 

zinc reagent reacted with 3-amino-4-bromo-benzoic acid ethyl ester (14d; 244 mg, 1.0 mmol). 

The reaction time was 1 h. Flash column chromatographical purification (silica; 

isohexane:Et2O = 1:1) afforded 15d as a colorless solid (260 mg, 0.71 mmol, 71%).  

Mp.: 129-131 °C 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.87 (dd, J = 2.0 Hz, 8.4 Hz, 1H), 7.85 – 7.83 (m, 1H), 

7.80 (d, J = 2.0 Hz, 1H), 7.78 – 7.72 (m, 1H), 7.65 – 7.47 (m, 2H), 4.22 (sbr, 2H), 6.75 (d, J = 8.4, 

1H), 4.32 (q, J = 7.1 Hz, 2H), 1.35 (t, J = 7.1 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 166.4, 155.2 – 153.8 (m), 147.4, 139.4, 132.3, 131.3, 

129.4, 126.6 - 126.7 (m), 125.0 - 125.2 (m), 124.5, 120.8, 115.0, 76.6, 60.6, 14.4. 
19F-NMR (280 MHz, CDCl3): δ / ppm = 85.43 – 82.86 (m, 1F), 63.34 – 62.29 (m, 4F). 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3452 (w), 3358 (w), 2984 (vw), 1680 (m), 1626 (m), 

1601 (m), 1508 (w), 1479 (w), 1434 (w), 1420 (vw), 1392 (vw), 1367 (w), 1336 (vw), 1311 (w), 

1294 (m), 1281 (w), 1243 (m), 1166 (w), 1122 (w), 1108 (m), 1047 (w), 1026 (w), 984 (vw), 927 

(vw), 912 (w), 894 (w), 849 (s), 832 (vs), 822 (vs), 793 (s), 770 (s), 749 (m), 738 (m), 696 (m), 

682 (w), 643 (s), 612 (w), 593 (m), 576 (w), 570 (w). 

MS (EI, 70 eV): m/z (%) = 368 (15), 367 (86), 323 (15), 322 (100), 167 (28), 166 (20), 74 (69), 

59 (79), 45 (31). 

HRMS (C15H14F5NO2S): calc.: 367.0665 found: 367.0660. 

 

3-(Pentafluorosulfanyl)benzoic acid ethyl ester (15e) 

 

To a solution of 3-pentafluorosulfanyl-phenyl bromide (11; 566 mg 2.0 mmol) cooled to 0 °C, 

was added iPrMgCl·LiCl (6) (1.95 mL, 2.2 mmol, 1.13 M in THF) (TP1). The reaction mixture 



C. EXPERIMENTAL SECTION 

 
60 

was stirred for 1 h. The mixture was cooled to -30 °C, ethyl cyanoformate (14e; 198 mg, 

2.0 mmol) was added and stirred for 1 h at -30 °C. The reaction mixture was quenched with sat. 

aqueous NH4Cl-solution and extracted 3 times with Et2O. The combined organic layers were 

washed with brine, dried over Na2SO4 and the solvent was removed in vacuo. Flash column 

chromatographical purification (silica; isohexane:Et2O = 95:5) afforded 15e as a colorless liquid 

(335 mg, 1.21 mmol, 61%). 

1H-NMR (300 MHz, CDCl3): δ / ppm = 8.48 – 8.43 (m, 1H), 8.22 (d, J = 7.7 Hz, 1H), 8.00 – 

7.92 (m, 1H), 7.59 (t, J = 8.0 Hz, 1H), 4.45 (q, J = 7.2 Hz, 2H), 1.44 (t, J = 7.2 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 164.8, 133.2, 132.5 – 132.4 (m), 131.6 – 131.4 (m), 

130.1 – 129-9 (m), 128.9, 127.3 – 127.1 (m), 61.8, 14.3.  
19F-NMR (280 MHz, CDCl3): δ / ppm = 84.48 – 81.97 (m, 1F), 63.12 – 62.17 (m, 4F). 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2987 (w), 1724 (m), 1438 (w), 1370 (w), 1301 (w), 1268 

(m), 1177 (w), 1129 (w), 1102 (w), 1022 (w), 896 (w), 823 (s), 751 (m), 712 (m), 683 (w), 665 

(w), 644 (w). 

MS (EI, 70 eV): m/z (%) = 276 (M+, 12), 248 (27), 231 (100), 152 (14), 95 (18), 89 (13), 76 

(18), 75 (19). 

HRMS (C9H9F5O2S): calc.: 276.0243; found: 276.0225. 

 

(2,3-Dichlorophenyl)[3-(pentafluorosulfanyl)phenyl]methanol (15f) 

 

Prepared according to TP1 from 1-bromo-3-(pentafluorosulfanyl)benzene (11; 283 mg, 

1.0 mmol) and iPrMgCl·LiCl (6) (0.86 mL, 1.1 mmol, 1.28 M in THF) (exchange conditions: 

0 °C, 1 h). 2,3-Dichlorobenzaldehyde (14f) (193 mg, 1.1 mmol) was added at 0 °C. The reaction 

mixture was quenched after 5 min at 23 °C with sat. NH4Cl-solution (10 mL) and the resulting 

mixture was extracted 3 times with Et2O. Flash column chromatographical purification (silica; 

isohexane:Et2O = 3:1) afforded 15f as a colorless oil (308 mg, 0.81 mmol, 81%). 

1H-NMR (300 MHz, CDCl3): δ / ppm = 7.89 (t, J = 1.9 Hz, 1H), 7.72 – 7.60 (m, 1H), 7.54 – 

7.34 (m, 4H), 7.28 (t, J = 7.9 Hz, 1H), 6.27 (s, 1H), 2.55 (sbr, 1H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 154.8 – 153.7 (m), 153.9, 142.9, 142.4, 133.5, 130.7, 

130.1, 128.9, 127.9, 126.0, 125.8 – 125.2 (m) 124.8 – 124.3 (m), 72.4. 
19F-NMR (280 MHz, CDCl3): δ / ppm = 86.09 – 82.41 (m, 1F), 63.65 – 61.58 (m, 4F). 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3272 (w), 2964 (vw), 2924 (vw), 1706 (vw), 1604 (vw), 

1584 (vw), 1565 (vw), 1482 (w), 1451 (w), 1438 (w), 1421 (w), 1326 (w), 1288 (w), 1241 (w) 

1195 (w), 1180 (w), 1159 (w), 1112 (w), 1099 (w), 1061 (m), 1038 (w), 976 (vw), 913 (w), 896 

(w), 836 (vs), 817 (vs), 793 (s), 781 (s), 743 (m), 726 (m), 690 (m), 643 (m), 625 (w), 615 (w), 

594 (m), 572 (m), 559 (vw). 

MS (EI, 70 eV): m/z (%) = 378 (3), 74 (63), 59 (100), 45 (73), 44 (22). 

HRMS (C13H9Cl2F5OS): calc.: 377.9671; found: 377.9669. 
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(4-Methoxyphenyl)[3-pentafluorosulfanyl)phenyl]methanol (15g)  

 

Prepared according to TP1 from 1-bromo-3-(pentafluorosulfanyl)benzene (11; 283 mg, 

1.0 mmol) and iPrMgCl·LiCl (6) (0.72 mL, 1.1 mmol, 1.53 M in THF) (exchange conditions: 

0 °C, 1 h). 4-Methoxybenzaldehyde (14g; 150 mg, 1.1 mmol) was added at 0 °C. The reaction 

mixture was quenched after 5 min at 23 °C with sat. NH4Cl-solution (10 mL) and the resulting 

mixture was extracted 3 times with Et2O. Flash column chromatographical purification (silica; 

isohexane:Et2O:CH2Cl2 = 6:2:2) afforded 15g as a colorless liquid (285 mg, 0.84 mmol, 84%). 

Mp.: 72-74 °C 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.88 (s, 1H), 7.70 – 7.62 (m, 1H), 7.52 – 7.37 (m, 2H), 

7.32 – 7.21 (m, 2H), 6.94 – 6.86 (m, 2H), 5.83 (s, 1H), 3.81 (s, 3H), 2.48 (sbr, 1H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 159.5, 154.5 – 153.6 (m), 145.2, 135.2, 129.5, 128.7, 

128.1, 125.3 – 124.4 (m), 124.6 – 123.3 (m), 114.2, 75.1, 55.3. 
19F-NMR (280 MHz, CDCl3): δ / ppm = 85.87 – 83.41 (m, 1F), 63.33 – 62.32 (m, 4F). 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3370 (w), 3306 (w), 3120 (vw), 3016 (vw), 2955 (vw), 

2915 (vw), 2839 (vw), 1611 (w), 1586 (vw), 1513 (m), 1480  (w), 1465 (w), 1436 (w), 1336 

(vw), 1303 (w), 1292 (w), 1265 (m), 1252 (m), 1188 (w), 1176 (m), 1112 (w), 1096 (w), 1030 

(m), 1008 (w), 922 (w), 901 (m), 878 (w), 822 (vs), 806 (vs), 788 (s), 764 (s), 730 (m), 694 (w), 

685 (w), 658 (w), 643 (m), 596 (w), 582 (w), 575 (w). 

MS (EI, 70 eV): m/z (%) = 340 (38), 137 (46), 135 (24), 109 (41), 77 (13), 74 (78), 59 (100), 45 

(45). 

HRMS (C14H13F5O2S): calc.: 340.0556; found: 340.0552. 

 

[3-(Pentafluorosulfanyl)phenyl](phenyl)methanone (15h) 

 

The title compound was prepared from 1-bromo-3-(pentafluorosulfanyl)benzene (11; 556 mg, 

2.0 mmol). A Br/Mg-exchange reaction was performed according to TP1 with iPrMgCl·LiCl (6) 

(1.72 mL, 2.2 mmol, 1.27 M in THF) at 0 °C for 1 h. An acylation reaction was performed 

according to TP4 using CuCN·2LiCl (2.4 mL, 2.4 mmol, 1.0 M in THF) and benzoyl chloride 

(14h; 197 mg, 1.4 mmol) at -40 °C within 12 h. Flash column chromatographical purification 

(silica; isohexane:Et2O: = 95:5) afforded 15h as a colorless solid (370 mg, 1.2 mmol, 86%). 

Mp.: 64-65 °C 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.27 – 8.19 (m, 1H), 8.04 – 7.92 (m, 2H), 7.86 – 7.77 

(m, 2H), 7.72 – 7.58 (m, 2H), 7.58 – 7.49 (m, 2H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 194.5, 154.2 – 153.6 (m), 138.4, 136.4, 133.2, 132.8, 

130.0, 129.5 – 129.3 (m), 128.9, 128.6, 127.6 – 127.3 (m). 
19F-NMR (280 MHz, CDCl3): δ / ppm = 84.44 – 81.80 (m, 1F), 63.21 – 62.17 (m, 4F). 
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IR (Diamond-ATR, neat): ν
~  / cm-1 = 1653 (m), 1597 (w), 1432 (w), 1282 (m), 1159 (w), 1107 

(w), 966 (m), 828 VS, 815 (vs), 788 (s), 739 (m), 715 (s), 699 (m), 682 (m), 648 (s). 

MS (EI, 70 eV): m/z (%) = 309 (11), 308 (36), 105 (100), 77 (26). 

HRMS (C13H9F5OS): calc.: 308.0294; found: 308.0287. 

 

2.3 Synthesis of Compounds of Type 17 

4´-Methoxy-4-(pentafluorosulfanyl)biphenyl-2-carboxylic acid ethyl-ester (17a) 

 

The title compound was prepared from 3-(pentafluorosulfanyl)benzoic acid ethyl ester (15e; 

280 mg, 1.0 mmol). The deprotonation was performed according to TP5 using TMP2Mg·2LiCl 

(2.17 mL, 1.5 mmol, 0.7 M in THF) at -40 °C for 12 h. A cross-coupling reaction was performed 

according to TP7 using Pd(dba)2 (12 mg, 0.02 mmol), tfp (10 mg, 0.04 mmol) and 1-iodo-4-

methoxybenzene (14i; 260 mg, 1.1 mmol), dissolved in THF (1.0 mL), during 12 h at 23 °C. 

Flash column chromatographical purification (silica; isohexane:Et2O = 95:5) afforded 17a as a 

colorless oil (200 mg, 0.52 mmol, 52%). 

1H-NMR (300 MHz, CDCl3): δ / ppm = 8.20 (d, J = 2.2 Hz, 1H), 7.89 (dd, J = 8.6 Hz, 

J = 2.5 Hz, 1H), 7.48 (d, J = 8.6 Hz, 1H), 7.30 – 7.24 (m, 2H), 7.02 – 6.95 (m, 2H), 4.19 (q, 

J = 7.1 Hz, 2H), 3.88 (s, 3H), 1.12 (t, J = 7.2 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 167.2, 159.7, 152.3 – 152.1 (m), 145.3, 131.8, 131.7, 

131.0, 129.5, 128.3 – 127.9 (m), 127.6 – 127.1 (m), 113.8, 61.6, 55.3, 13.7. 
19F-NMR (280 MHz, CDCl3): δ / ppm = 84.97 – 82.11 (m, 1F), 63.62 – 62.62 (m, 4F). 

MS (EI, 70 eV): m/z (%) = 383 (M+H, 17), 382 (M+, 100), 354 (17), 337 (42), 210 (14), 139 

(11). 

HRMS (C16H15F5O3S): calc.: 382.0662; found: 382.0647. 

 

4´-Cyano-4-(pentafluorosulfanyl)biphenyl-2-carboxylic acid ethyl ester (17b) 

 

The title compound was prepared from 3-(pentafluorosulfanyl)benzoic acid ethyl ester (15e; 

280 mg, 1.0 mmol). The deprotonation was performed according to TP5 using TMP2Mg·2LiCl 

(2.17 mL, 1.5 mmol, 0.7 M in THF) at -40 °C within 12 h. A cross-coupling reaction was 

performed according to TP7 using Pd(dba)2 (12 mg, 0.02 mmol), tfp (10 mg, 0.04 mmol) and 4-

iodobenzonitrile (14j; 200 mg, 1.1 mmol), dissolved in THF (1.0 mL), during 12 h at 23 °C. 

Flash column chromatographical purification (silica; isohexane:Et2O = 9:1) afforded 17b as a 

colorless solid (315 mg, 0.83 mmol, 83%). 
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Mp.: 116-118 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.32 (d, J = 2.2 Hz, 1H), 7.94 (dd, J = 8.6 Hz, 

J = 2.5 Hz, 1H), 7.74 – 7.69 (m, 2H), 7.45 – 7.37 (m, 3H), 4.15 (q, J = 7.2 Hz, 2H), 1.08 (t, 

J = 7.1 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 165.7, 144.5, 144.1 (t, J = 1.5 Hz), 133.1, 131.9, 131.3, 

131.0, 129.0, 128.9 – 128.6 (m), 128.3 – 128.0 (m), 118.4, 112.0, 61.9, 13.7. 
19F-NMR (280 MHz, CDCl3): δ / ppm = 83.77– 81.47 (m, 1F), 63.24 – 62.49 (m, 4F). 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2233 (w), 1720 (w), 1703 (w), 1600 (w), 1368 (w), 1294 

(m), 1275 (w), 1249 (w), 1156 (w), 1121 (w), 1007 (w), 900 (w), 833 (s), 791 (m), 728 (m), 670 

(w), 646 (w). 

MS (EI, 70 eV): m/z (%) = 377 (29), 349 (27), 333 (14), 332 (100), 205 (28), 177 (35). 

HRMS (C16H12F5NSO2): calc.: 377.0509; found: 377.0505. 

 

Ethyl 2-cyclohex-2-en-1-yl-5-(pentafluorosulfanyl)benzoate (17c) 

 

The title compound was prepared from 3-(pentafluorosulfanyl)benzoic acid ethyl ester (15e; 

276 mg, 1.0 mmol). The deprotonation was performed according to TP5 using TMP2Mg·2LiCl 

(2.54 mL, 1.5 mmol, 0.59 M in THF) at -40 °C within 12 h. An allylation reaction was performed 

according to TP4 using CuCN·2LiCl (0.2 mL, 0.2 mmol, 1.0 M in THF) and 3-bromocyclohex-1-

ene (14k; 97 mg, 0.6 mmol) at -40 °C within 3 h. Flash column chromatographical purification 

(silica; isohexane:Et2O: = 95:5) afforded 17c as a yellow liquid (150 mg, 0.42 mmol, 70%). 

1H-NMR (300 MHz, CDCl3): δ / ppm = 8.20 (d, J = 2.5 Hz, 1H), 7.80 (dd, J = 2.5 Hz, 8.7 Hz, 

1H), 7.50 (d, J = 8.7 Hz, 1H), 5.99 (ddd, J = 3.7 Hz, 6.1 Hz, 9.9 Hz, 1H), 5.63 (dd, J = 2.1 Hz, 

10.1 Hz, 1H), 4.42 (q, J = 7.2 Hz, 2H), 4.36-4.26 (m, 1H), 2.27 – 2.05 (m, 3H), 1.84 – 1.58 (m, 

2H), 1.51 (dd, J = 4.3 Hz, 8.5 Hz, 1H), 1.44 (dt, J = 3.5 Hz, 7.1 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 166.3, 152.1 – 150.6 (m), 151.5, 130.7, 129.6, 129.5, 

129.1, 128.8 – 128.3 (m), 127.9 – 127.4 (m), 61.7, 37.9, 32.0, 24.9, 21.1, 14.2. 
19F-NMR (280 MHz, CDCl3): δ / ppm = 85.18– 82.75 (m, 1F), 63.40 – 62.49 (m, 4F). 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3022 (vw), 2985 (vw), 2935 (w), 2863 (vw), 2840 (vw), 

1724 (m), 1601 (vw), 1486 (w), 1447 (w), 1434 (vw), 1391 (vw), 1368 (w), 1296 (w), 1273 (m), 

1240 (m), 1220 (w), 1173 (w), 1157 (w), 1136 (w), 1115 (m), 1078 (m), 1019 (w), 985 (vw), 907 

(m), 827 (vs), 786 (s), 731 (w), 717 (w), 668 (m), 625 (w), 612 (w), 597 (s), 580 (m), 570 (w). 

MS (EI, 70 eV): m/z (%) = 356 (35), 311 (35), 310 (100), 309 (30), 291 (38), 183 (24), 182 (32), 

165 (18), 155 (15), 71 (26), 57 (25). 

HRMS (C15H17F5O2S): calc.: 356.0869; found: 356.0886. 

 

5-(Pentafluorosulfanyl)-2-(phenylcarbonyl)benzoic acid ethyl ester (17d) 
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The title compound was prepared from 3-(pentafluorosulfanyl)benzoic acid ethyl ester (15e; 

276 mg, 1.0 mmol). The deprotonation was performed according to TP5 using TMP2Mg·2LiCl 

(2.54 mL, 1.5 mmol, 0.59 M in THF) at -40 °C within 12 h. An acylation reaction was performed 

according to TP4 using CuCN·2LiCl (1.5 mL, 1.5 mmol, 1.0 M in THF) and benzoyl chloride 

(14h; 105 mg, 0.75 mmol) at -40 °C within 2 h. Flash column chromatographical purification 

(silica; isohexane:Et2O: = 9:1) afforded 17d as a yellow liquid (247 mg, 0.65 mmol, 87%). 

1H-NMR (300 MHz, CDCl3): δ / ppm = 8.45 (d, J = 2.2 Hz, 1H), 8.01 (dd, J = 8.4 Hz, 2.4 Hz, 

1H), 7.77 – 7.70 (m, 2H), 7.63 – 7.55 (m, 1H), 7.52 – 7.41 (m, 3H), 4.13 (q, J = 7.2 Hz, 2H), 1.07 

(t, J = 7.1 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 195.0, 164.1, 154.8 – 153.5 (m), 144.7, 136.3, 133.7, 

130.2, 129.9 – 129.5 (m), 129.4, 128.7, 128.2, 128.0 – 127.8 (m), 62.3, 13.6. 
19F-NMR (280 MHz, CDCl3): δ / ppm = 83.55– 80.87 (m, 1F), 63.29 – 62.10 (m, 4F). 

IR (Diamond-ATR, neat): ν~  / cm-1 = 3090 (vw), 2986 (vw), 1724 (m), 1677 (m), 1598 (w), 

1583 (w), 1450 (w), 1368 (w), 1315 (w), 1297 (m), 1265 (s), 1152 (m), 1113 (m), 1081 (w), 1018 

(w), 1002 (vw), 939 (w), 896 (m), 823 (vs), 789 (s), 743 (m), 729 (m), 704 (s), 668 (m), 649 (m), 

618 (w), 598 (s), 577 (w). 

MS (EI, 70 eV): m/z (%) = 380 (4), 336 (13), 335 (13), 303 (14), 274 (33), 105 (100), 77 (22). 

HRMS (C16H13F5O3S): calc.: 380.0506; found: 380.0504. 

 

2.4 Synthesis of Compounds of type 21 

1-Bromo-3-nitro-5-(pentafluorosulfanyl)benzene131 (19) 

SF5

NO2Br  

A round-bottom flask was charged with trifluoroacetic acid (1.5 mL), 3-nitro-

(pentafluorosulfanyl)benzene (748 mg, 3.0 mmol), and H2SO4 (98%; 7.5 mL). The mixture was 

stirred vigorously, and N-bromosuccinimide (801 mg, 4.5 mmol) was added in portions over an 

8 h period. After the appropriate reaction time, the mixture was poured into 50 mL of ice water, 

the organic layer separated, and the aqueous layer extracted 3 times with CH2Cl2. The combined 

organic layers were washed with brine, dried over Na2SO4, filtered and the solvent removed in 

vacuo. Flash column chromatographical purification (silica; isohexane:Et2O = 9:1) afforded 19 as 

a yellow solid (851 mg, 2.6 mmol, 87%). 

1H-NMR (300 MHz, CDCl3): δ / ppm = 8.56 (t, J = 1.9 Hz, 1H), 8.54 (t, J = 1.8 Hz, 1H), 8.22 (t, 

J = 1.9 Hz, 1H). 

                                                      
131 J. Duan, L. H. Zhang, W. R. Dolbier, Jr., Synlett 1999, 1245-1246. 
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13C-NMR (75 MHz, CDCl3): δ / ppm = 155.2 – 153.8 (m), 148.3, 134.9 – 134.6 (m), 129.7, 

123.2 – 123.1 (m), 120.6 – 120.3 (m). 
19F-NMR (280 MHz, CDCl3): δ / ppm = 80.81 – 78.58 (m, 1F), 63.37 – 62.66 (m, 4F). 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3104 (w), 1604 (vw), 1582 (vw), 1538 (s), 1502 (vw), 

1468 (vw), 1432 (w), 1420 (w), 1346 (s), 1302 (w), 1152 (w), 1120 (w), 1098 (w), 898 (m), 832 

(vs), 736 (s), 726 (s), 686 (w), 662 (s). 

MS (EI, 70 eV): m/z (%) = 329 (79), 327 (76), 283 (21), 281 (20), 175 (44), 173 (44), 163 (11), 

155 (16), 153 (16), 99 (15), 94 (73), 93 (13), 89 (52), 83 (12), 75 (100), 74 (54), 71 (14), 69 (17), 

57 (23), 56 (13), 55 (20), 43 (20), 43 (37), 41 (18). 

HRMS (C6H3BrF5O2NS): calc.: 326.8988; found: 326.9000. 

 

3-Bromo-N-(4-methoxyphenyl)-5-(pentafluorosulfanyl)aniline (21a) 

SF5

Br N
H

OMe

 

In a dry and argon-flushed flask, equipped with a magnetic stirrer and a septum, 1-iodo-4-

methoxybenzene (755 mg, 2.6 mmol) was dissolved in THF (5.0 mL) and cooled to -20 °C, and 

iPrMgCl (5) (2.2 mL, 2.8 mmol, 1.27 M in THF) was added dropwise. The I/Mg-exchange was 

complete after 30 min, and 1-bromo-3-nitro-5-(pentafluorosulfanyl)benzene (19; 328 mg, 

1.0 mmol) was added. After 2 h stirring at -20 °C, the reaction mixture was quenched with EtOH 

(2.0 mL), and FeCl2 (279 mg, 2.2 mmol) and NaBH4 (42 mg, 1.1 mmol) were added. After 2 h of 

stirring at 23 °C, the reaction mixture was poured into water (20 mL). The aqueous phase was 

extracted 2 times with Et2O. The combined organic fractions were washed with brine, dried over 

Na2SO4 and the solvent removed in vacuo. Flash column chromatographical purification (silica; 

isohexane:Et2O: = 85:15) afforded 21a as a yellow solid (267 mg, 0.66 mmol, 66%). 

Mp.: 81-83 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.28 (s, 1H), 7.17 – 7.03 (m, 4H), 6.99 – 6.90 (m, 2H), 

5.65 (sbr, 1H), 3.85 (s, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 157.1 – 156.9 (m), 141.5, 132.8 – 132.6 (m), 130.9, 

124.6, 122.8 – 122.6 (m), 119.5 – 119.2 (m), 118.9 – 118.5 (m), 115.2 – 114.9 (m), 111.0 – 111.7 

(m), 55.5. 
19F-NMR (280 MHz, CDCl3): δ / ppm = 84.86 – 82.57 (m, 1F), 62.99 – 62.23 (m, 4F). 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3410 (w), 1592 (m), 1568 (w), 1510 (m), 1490 (w), 1452 

(m), 1440 (w), 1416 (w), 1320 (w), 1300 (w), 1284 (w), 1244 (m), 1222 (w), 1180 (w), 1168 (w), 

1112 (w), 1034 (w), 986 (w), 952 (w), 878 (w), 832 (vs), 806 (s), 774 (w), 728 (m), 678 (w), 654 

(m), 644 (w). 

MS (ESI, 70 eV): m/z (%) = 450 (25), 448 (30), 440 (100), 438 (67), 404 (32), 402 (31), 397 (1), 

354 (1). 

HRMS (C13H11BrF5NOS): calc.: 403.9743; found: 403.9578. 
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4-{[3-Bromo-5-(pentafluorosulfanyl)phenyl]amino)}-benzoic acid ethyl ester (21b) 

SF5

Br N
H

CO2Et

 

In a dry and argon-flushed flask, equipped with a magnetic stirrer and a septum, ethyl 4-

iodobenzoate (755 mg, 2.6 mmol) was dissolved in THF (5.0 mL) and cooled to −20 °C, and 

iPrMgCl (5) (2.2 mL, 2.8 mmol, 1.27 M in THF) was added dropwise. The I/Mg-exchange was 

complete after 30 min, and 1-bromo-3-nitro-5-(pentafluorosulfanyl)benzene (19; 328 mg, 

1.0 mmol) was added. After 2 h of stirring at -20 °C, the reaction mixture was quenched with 

EtOH (2.0 mL), and FeCl2 (279 mg, 2.2 mmol) and NaBH4 (42 mg, 1.1 mmol) were added. After 

2 h of stirring at 23 °C, the reaction mixture was poured into water (20 mL). The aqueous phase 

was extracted 2 times with Et2O. The combined organic fractions were washed with brine, dried 

over Na2SO4 and the solvent removed in vacuo. Flash column chromatographical purification 

(silica; isohexane:Et2O = 6:1) afforded 21b as a colorless solid (366 mg, 0.82 mmol, 82%). 

Mp.: 166-168 °C. 
1H-NMR (300 MHz, DMSO-d6): δ / ppm = 9.28 (s, 1H), 7.92 – 7.86 (m, 2H), 7.58 – 7.48 (m, 

3H), 7.20 – 7.13 (m, 2H), 4.26 (q, J = 7.2 Hz, 2H), 1.29 (t, J = 7.0 Hz, 3H). 
13C-NMR (75 MHz, DMSO-d6): δ / ppm = 165.2, 154.5 – 153.7 (m), 145.8, 144.3, 132.8 – 

132.6 (m), 131.1, 122.4, 122.2, 119.7 – 119.2 (m), 116.4, 113.8 – 113.3 (m), 60.2, 14.2. 
19F-NMR (280 MHz, DMSO-d6): δ / ppm = 86.66 – 84.80 (m, 1F), 64.18 – 63.14 (m, 4F). 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3338 (w), 1680 (m), 1588 (m), 1536 (w), 1506 (w), 1476 

(w), 1454 (w), 1434 (w), 1396 (w), 1368 (w), 1342 (w), 1314 (w), 1278 (m), 1244 (w), 1178 (m), 

1110 (m), 1084 (m), 1020 (w), 956 (w), 832 (vs), 768 (m), 732 (m), 704 (w), 682 (w), 668 (w), 

656 (m). 

MS (EI, 70 eV): m/z (%) = 448 (15), 447 (100), 445 (96), 419 (28), 417 (27), 402 (94), 400 (91), 

166 (25). 

HRMS (C15H13F5O2NBrS): calc.: 444.9770; found: 444.9770. 

 

2.5 Synthesis of Indoles 27 

3-(Pentafluorosulfanyl)aniline132 

 

Hydrochloric acid (conc., 15 mL) was added dropwise to a suspension of 1-nitro-3-

(pentafluorosulfanyl)benzene (7.53 g, 30.2 mmol) and Fe powder (10.13 g, 181.4 mmol) in EtOH 

(300 mL) under stirring at 0 °C. The resulting mixture was allowed to warm to room temperature 

and was stirred for 1.5 h. The remaining iron powder was removed by decantation and NH3 

                                                      
132 J. T. Welch, D. S. Lim, Bioorg Med. Chem. 2007, 15, 6659-6666. 
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(conc., 150 mL) was added to the resulting solution until pH 10 was adjusted. The solution was 

extracted 3 times with CH2Cl2. The combined extracts were washed with water (150 mL), dried 

over Na2SO4, filtered and concentrated in vacuo. The crude product was purified by flash column 

chromatography on silica (isohexane:EtOAc = 2:1) to afford 3-(pentafluorosulfanyl)aniline as 

orange oil (5.86 g, 26.7 mmol, 88%). 

1H-NMR (300 MHz, CDCl3): δ / ppm = 7.27 – 7.18 (m, 1H), 7.17 – 7.11 (m, 1H), 7.07 (t, 

J = 2.3 Hz, 1H), 6.83 – 6.75 (m, 1H), 3.84 (sbr, 2H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 155.2 – 154.6 (m), 146.7, 129.3, 117.7, 115.8 – 115.5 

(m), 112.4 – 112.0 (m). 
19F-NMR (280 MHz, CDCl3): δ / ppm = 86.48 – 84.24 (m, 1F), 62.50 – 61.76 (m, 4F). 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3480 (vw), 3396 (vw), 1624 (m), 1608 (m), 1494 (w), 

1460 (w), 1434 (vw), 1324 (w), 1312 (w), 1282 (w), 1126 (vw), 1094 (w), 906 (m), 826 (vs), 790 

(vs), 772 (vs), 682 (m), 644 (s). 

MS (EI, 70 eV): m/z (%) = 219 (100), 65 (37), 57 (14). 

HRMS (C6H6F5NS): calc.: 219.0141; found: 219.0118. 

 

2-Bromo-5-(pentafluorosulfanyl)aniline (22) 

 

N-Bromosuccinimide (2.67 g, 15.0 mmol) in 1,4-dioxane (15 mL) was added to a solution of 3-

(pentafluorosulfanyl)aniline (3.15 g, 15.0 mmol) in 1,4-dioxane (60 mL). The resulting mixture 

was stirred for 14 h at 23 °C. Then, the solution was extracted 3 times with EtOAc and the 

combined extracts were washed with brine, dried over Na2SO4 and concentrated in vacuo. The 

crude product was purified by flash column chromatography on silica (isohexane:CH2Cl2 = 1:1, 

2% NEt3) to afford 2-bromo-5-(pentafluorosulfanyl)aniline (22) as colorless oil (3.36 g, 

11.26 mmol, 75%). 

 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.50 – 7.43 (m, 1H), 7.12 (d, J = 2.5 Hz, 1H), 6.97 (dd, 

J = 8.9 Hz, J = 2.5 Hz, 1H), 4.27 (sbr, 2H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 154.2 – 153.2 (m), 144.3, 132.5, 116.4 – 116.0 (m), 

112.8 – 112.4 (m), 111.9 – 111.8 (m). 
19F-NMR (280 MHz, CDCl3): δ / ppm = 85.52 – 83.12 (m, 1F), 63.28 – 62.35 (m, 4F). 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3436 (vw), 3317 (w), 3205 (vw), 1621 (m), 1589 (w), 

1481 (m), 1422 (m), 1312 (w), 1300 (w), 1256 (w), 1160 (vw), 1110 (w), 1026 (w), 919 (m), 866 

(w), 830 (s), 800 (s), 785 (s), 658 (m). 

MS (EI, 70 eV): m/z (%) = 299 (100), 297 (99), 191 (15), 189 (15), 172 (13), 170 (13), 110 (13), 

90 (100) 63 (17), 52 (12). 

HRMS (C6H5F5NSBr): calc.: 296.9246; found: 296.9257. 
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5-(Pentafluorosulfanyl)-2-((trimethylsilyl)ethynyl)aniline (24) 

 

2-Bromo-5-(pentafluorosulfanyl)aniline (22; 3.28 g, 11.0 mmol), Pd(PPh3)2Cl2 (309 mg, 

0.44 mmol, 4 mol%) and CuI (42 mg, 0.22 mmol, 2 mol%) were placed in an argon flushed 

Schlenk-flask. After addition of NEt3 (35 mL) and THF (35 mL), (trimethylsilyl)acetylene 

(1.62 g, 16.5 mmol) was added. The mixture was stirred at 50 °C for 5 h. The reaction mixture 

was quenched with water (20 mL) and extracted 3 times with EtOAc. The combined organic 

layers were dried over Na2SO4 and concentrated in vacuo. The crude product was purified by 

flash column chromatography on silica (isohexane:CH2Cl2 = 85:15, 1% NEt3) to give 5-

(pentafluorosulfanyl)-2-((trimethylsilyl)ethynyl)aniline (24) as yellow crystals (3.05 g, 9.66 

mmol, 89%). 

Mp.: 54-56 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.35 (d, J = 8.6 Hz, 1H), 7.09 (d, J = 2.2 Hz, 1H), 7.06 

– 7.00 (m, 1H), 4.46 (sbr, 2H), 0.31 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 155.0 – 153.8 (m), 148.1, 132.1, 115.0 – 114.9 (m), 

111.6 – 111.1 (m), 110.8, 102.9, 99.7, 0.15. 
19F-NMR (280 MHz, CDCl3): δ / ppm = 85.88 – 83.47 (m, 1F), 62.78 – 61.87 (m, 4F). 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3493 (vw), 3390 (vw), 2965 (vw), 2906 (vw), 2153 (vw), 

1739 (vw), 1612 (m), 1560 (vw), 1491 (w), 1430 (m), 1315 (vw), 1298 (vw), 1253 (m), 1232 

(vw), 1212 (vw), 1149 (vw), 1107 (w), 1056 (vw), 933 (m), 834 (s), 804 (s), 763 (s), 703 (w). 

MS (EI, 70 eV): m/z (%) = 316 (12), 315 (73), 301 (18), 300 (100), 192 (11), 191 (11), 188 (21), 

177 (28), 172 (13), 158 (18), 150 (32), 139 (16), 130 (68), 96 (21), 89 (24), 77 (66), 73 (21). 

HRMS (C11H14F5NSSi): calc.: 315.0536; found: 315.0542. 

 

Purification of KH: 

Potassium hydride (KH, 30% suspension in mineral oil) was transferred to a Schlenk-flask, 

evaporated and filled with argon. After the addition of dry hexane, the suspension was stirred for 

a short time before the solvent was removed again with a syringe. This process was repeated four 

times to give after evaporation in vacuo and refilling with argon, a white powder of KH. 

6-(Pentafluorosulfanyl)-1H-indole (23) 

 

KH (500 mg, 12.5 mmol) was suspended under argon in NMP (15 mL). A solution of 5-

(pentafluorosulfanyl)-2-((trimethylsilyl)ethynyl)aniline (24; 2.1 g, 6.66 mmol) in NMP (10 mL) 

was added dropwise at room temperature and the reaction mixture was stirred for 3 h. The 

reaction mixture was quenched with water (20 mL) at 0 °C, then NH4Cl (30 mL) was added. The 

mixture was extracted 3 times with EtOAc and dried over Na2SO4. The crude product was 
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purified by flash column chromatography on silica (isohexane:EtOAc = 5:1) to afford 6-

(pentafluorosulfanyl)-1H-indole (23) as yellow crystals (1.35 g, 5.55 mmol, 83%). 

Mp.: 97-99 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.38 (sbr, 1H), 7.90 – 7.84 (m, 1H), 7.69 (d, J = 8.8 Hz, 

1H), 7.57 (dd, J = 8.8 Hz, J = 2.0 Hz, 1H), 7.40 (dd, J = 6.3 Hz, J = 3.2 Hz, 1H), 6.64 (ddd, 

J = 3.1 Hz, J = 2.0 Hz, J = 0.9 Hz, 1H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 149.3 – 148.3 (m), 133.9, 129.8, 128.3 – 127.6 (m), 

120.2, 117.6 – 116.9 (m), 110.1 – 109.4 (m), 102.9. 
19F-NMR (280 MHz, CDCl3): δ / ppm = 88.84 – 85.29 (m, 1F), 65.64 – 63.54 (m, 4F). 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2916 (w), 2850 (w), 1688 (w), 1588 (vw), 1454 (vw), 

1416 (vw), 1380 (vw), 1144 (m), 1072 (m), 1038 (m), 1000 (m), 916 (m), 834 (s), 806 (vs), 782 

(s), 710 (w), 660 (m), 638 (vw). 

MS (EI, 70 eV): m/z (%) = 243 (97), 135 (50), 116 (44), 108 (21), 107 (11), 89 (20), 74 (66), 73 

(12), 59 (100), 45 (73), 44 (40), 43 (33), 41 (21). 

HRMS (C8H6F5NS): calc.: 243.0141; found: 243.0145. 

 

6-(Pentafluorosulfanyl)-1H-indole-1-carboxylic acid tert-butyl ester (25) 

 

A solution of 6-(pentafluorosulfanyl)-1H-indole (23; 1.22 g, 5.0 mmol), di-tert-butyl dicarbonate 

(1.64 g, 7.5 mmol) and 4-dimethylaminopyridine (0.04 g, 0.35 mmol) in acetonitrile (15 mL) was 

stirred at 23 °C for 1 h. The reaction mixture was quenched with water and extracted 3 times with 

Et2O. The extract was washed with sat. aqueous NaHCO3-solution and brine, dried over 

anhydrous MgSO4, and concentrated under reduced pressure to give the title compound 25 as 

colourless solid (1.48 g, 4.7 mmol, 94%). 

Mp.: 89-91 °C. 
1H-NMR (400 MHz, CDCl3): δ / ppm = 8.66 (sbr, 1H), 7.76 (d, J = 3.5 Hz, 1H), 7.62 (d, 

J = 2.0 Hz, 1H), 7.60 (s, 1H), 6.61 (dd, J = 3.8 Hz, 0.7 Hz, 1H), 1.69 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 150.9 – 149.9 (m), 149.1, 133.6, 132.5, 129.3, 120.3, 

120.3 – 120.1 (m), 114.2 – 113.7 (m), 106.7, 84.8, 28.1. 
19F-NMR (280 MHz, CDCl3): δ / ppm = 86.96 – 85.12 (m, 1F), 65.59 – 64.44 (m, 4F). 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 1740 (m), 1469 (w), 1444 (w), 1396 (w), 1374 (w), 1365 

(w), 1350 (m), 1270 (w), 1256 (m), 1216 (w), 1184 (w), 1162 (m), 1137 (m), 1099 (m), 1071 (w), 

1041 (w), 1028 (w), 913 (w), 892 (w), 866 (w), 842 (s), 835 (s), 808 (vs), 782 (s), 764 (m), 756 

(s), 726 (m), 655 (m), 633 (m), 586 (m), 568 (w). 

MS (EI, 70 eV): m/z (%) = 343 (28), 287 (33), 270 (22), 135 (15), 134 (18), 83 (15), 57 (51). 

HRMS (C13H14F5NO2S): calc.: 343.0665; found: 343.0661. 
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2.6 Functionalization of Position 2 and 3 of the Indole 23 

 

6-(Pentafluorosulfanyl)-1H-indole-1,2-dicarboxylic acid 1-tert-butyl ester 2-ethyl ester (26) 

 

The title compound was prepared from 6-(pentafluorosulfanyl)-1H-indole-1-carboxylic acid tert-

butyl ester (25; 630 mg, 2.0 mmol). The deprotonation was performed according to TP6 using 

TMPMgCl·LiCl (7) (2.25 mL, 2.2 mmol, 0.98 M in THF) at 0 °C within 0.5 h. Ethyl 

cyanoformate (14e; 218 mg, 2.2 mmol) was added at -30 °C and the reaction mixture stirred for 

1 h. The reaction mixture was quenched with sat. aqueous NH4Cl-solution and extracted 3 times 

with Et2O. The combined organic layers were dried over Na2SO4 and the solvent removed in 

vacuo. Flash column chromatographical purification (silica; isohexane:EtOAc = 19:1) afforded 

26 as a white solid (729 mg, 1.9 mmol, 93%). 

Mp.: 53-54 °C. 
1H-NMR (400 MHz, CDCl3): δ / ppm = 8.59 (d, J = 1.0 Hz, 1H), 7.67 – 7.59 (m, 2H), 7.05 (s, 

1H), 4.39 (q, J = 7.2 Hz, 2H), 1.64 (s, 9H), 1.39 (t, J = 7.2 Hz, 3H). 
13C-NMR (100 MHz, CDCl3): δ / ppm = 161.3, 152.6 – 151.5 (m), 148.4, 135.8, 134.2, 129.5, 

121.7, 120.9 – 120.5 (m), 114.1 – 113.7 (m), 112.7, 85.8, 61.9, 27.8, 14.1. 
19F-NMR (280 MHz, CDCl3): δ / ppm = 86.31 – 84.03 (m, 1F), 65.40 – 63.47 (m, 4F). 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2984 (w), 2361 (m), 2339 (m), 1745 (m), 1730 (m), 1554 

(w), 1469 (w), 1433 (w), 1394 (w), 1370 (m), 1316 (s), 1294 (m), 1236 (s), 1201 (m), 1156 (m), 

1135 (s), 1084 (m), 1060 (m), 1135 (s), 970 (w), 956 (vw), 926 (vw), 893 (w), 856 (m), 846 (w), 

833 (s), 808 (vs), 766 (s), 755 (s), 743 (w), 667 (w), 645 (w), 636 (m), 621 (w). 

MS (EI, 70 eV): m/z (%) = 415 (4), 315 (83), 269 (44), 57 (100). 

HRMS (C16H18F5NO4S): calc.: 415.0877; found: 415.0869. 

 

3-(2,6-Dimethoxy-pyrimidin-4-yl)-6-(pentafluorosulfanyl)-1H-indole-1,2-dicarboxylic acid 

1-tert-butyl ester 2-ethyl ester (27a) 

 

The title compound was prepared from 6-(Pentafluorosulfanyl)-1H-indole-1,2-dicarboxylic acid 

1-tert-butyl ester 2-ethyl ester (26; 387 mg, 1.0 mmol). The deprotonation was performed 

according to TP6 using TMPMgCl·LiCl (7) (1.12 mL, 1.1 mmol, 0.98 M in THF) at -40 °C 

within 2 h. A cross-coupling reaction was performed according to TP7 using PEPPSI-iPr (14 mg, 

0.02 mmol) and 4-iodo-2,6-dimethoxypyrimidine (239 mg, 0.9 mmol) in 1 h at 23 °C. Flash 
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column chromatographical purification (silica; isohexane:EtOAc = 9:1) afforded 27a as a yellow 

solid (310 mg, 0.6 mmol, 62%). 

Mp.: 112-113 °C 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.65 (d, J = 1.9 Hz, 1H), 8.11 (d, J = 8.9 Hz, 1H), 7.69 

(dd, J = 9.0 Hz, 2.1 Hz, 1H), 6.68 (s, 1H), 4.41 (q, J = 7.1 Hz, 2H), 4.00 (d, J = 6.6 Hz, 6H), 1.66 

(s, 9H), 1.31 (t, J = 7.2 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 172.3, 165.4, 162.2, 159.4, 152.4 – 151.1 (m), 148.1, 

133.8, 133.2, 128.7, 121.4, 121.3 – 121.2 (m), 118.8, 114.7 – 114.1 (m), 100.5, 86.9, 62.4, 54.9, 

54.0, 27.8, 13.8. 
19F-NMR (280 MHz, CDCl3): δ / ppm = 86.37 – 83.72 (m, 1F), 65.04 – 63.87 (m, 4F). 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2986 (vw), 903 (vw), 2361 (vw), 1757 (m), 1745 (m), 

1600 (m), 1579 (w), 1542 (m), 1479 (m), 1458 (w), 1447 (w), 1436 (w), 1390 (w), 1362 (s), 1350 

(m), 1318 (m), 1301 (m), 1257 (w), 1221 (m), 1181 (w), 1162 (m), 1140 (s), 1106 (s), 1064 (w), 

1052 (m), 1028 (m), 995 (w), 970 (vw), 942 (w), 907 (w), 886 (w), 843 (vs), 824 (vs), 787 (m), 

765 (s), 752 (m), 720 (w), 696 (w), 682 (m), 657 (m), 632 (m), 620 (w), 609 (m), 591 (s), 576 

(m), 568 (m). 

MS (EI, 70 eV): m/z (%) = 453 (37), 407 (29), 382 (16), 381 (100), 380 (40), 351 (17). 

HRMS (C22H24F5N3O6S): calc.: 553.1306; found: 553.1296. 

 

3-(4-Cyano-phenyl)-6-(pentafluorosulfanyl)-1H-indole-1,2-dicarboxylic acid 1-tert-butyl 

ester 2-ethyl ester (27b) 

 

The title compound was prepared from 6-(pentafluorosulfanyl)-1H-indole-1,2-dicarboxylic acid 

1-tert-butyl ester 2-ethyl ester (26; 387 mg, 1.0 mmol). The deprotonation was performed 

according to TP6 using TMPMgCl·LiCl (7) (1.12 mL, 1.1 mmol, 0.98 M in THF) at -40 °C 

within 2 h. A cross-coupling reaction was performed according to TP7 using PEPPSI-iPr (14 mg, 

0.02 mmol) and 4-iodobenzonitrile (206 mg, 0.9 mmol) during 1 h at 23 °C. Flash column 

chromatographical purification (silica; isohexane:EtOAc = 9:1) afforded 27b as a yellow liquid 

(305 mg, 0.59 mmol, 66%) 

1H-NMR (300 MHz, CDCl3): δ / ppm = 8.70 (d, J = 2.2 Hz, 1H), 7.79 – 7.75 (m, 2H), 7.69 (dd, 

J = 8.8 Hz, 2.2 Hz, 2H), 7.66 – 7.62 (m, 2H), 7.58 (d, J = 8.8 Hz, 1H), 4.30 (q, J = 7.1 Hz, 2H), 

1.68 (s, 9H), 1.22 (t, J = 7.3 Hz, 2H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 161.7, 152.6 – 151.8 (m), 148.2, 135.8, 134.1, 132.4, 

131.0, 130.2, 129.4, 121.6, 121.4 – 121.2 (m), 120.0, 118.5, 114.6 – 114.4 (m), 112.1, 86.7, 62.3, 

27.8, 13.8.  
19F-NMR (280 MHz, CDCl3): δ / ppm = 85.84 – 83.84 (m, 1F), 65.16 – 63.79 (m, 4F). 
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IR (Diamond-ATR, neat): ν
~  / cm-1 = 2983 (vw), 2230 (vw), 1735 (m), 1612 (vw), 1472 (w), 

1436 (w), 1396 (w), 1371 (m), 1356 (m), 1330 (m), 1247 (m), 1224 (s), 1188 (m), 1176 (m), 

1155 (m), 1128 (s), 1090 (m), 1062 (w), 1018 (w), 980 (vw), 889 (w), 838 (vs), 822 (vs), 765 

(m), 736 (m), 716 (w), 662 (w), 654 (w), 638 (w), 626 (w), 615 (w), 595 (m), 578 (vw), 571 

(vw), 556 (w). 

MS (EI, 70 eV): m/z (%) = 417 (16), 416 (100), 371 (22), 370 (30), 370 (48), 369  

(24), 369 (24), 215 (44), 57 (22). 

HRMS (C23H21F5N2O4S): calc.: 516.1142; found: 516.1132. 

 

3-Benzoyl-6-(pentafluorosulfanyl)-1H-indole-1,2-dicarboxylic acid 1-tert-butyl ester 2-ethyl 

ester (27c) 

 

The title compound was prepared from 6-(pentafluorosulfanyl)-1H-indole-1,2-dicarboxylic acid 

1-tert-butyl ester 2-ethyl ester (26; 387 mg, 1.0 mmol). The deprotonation was performed 

according to TP6 using TMPMgCl·LiCl (7) (1.12 mL, 1.1 mmol, 0.98 M in THF) at -40 °C 

within 2 h. An acylation reaction was performed according to TP4 using CuCN·2LiCl (1.1 mL, 

1.1 mmol, 1.0 M in THF) and benzoyl chloride (169 mg, 1.2 mmol) at -40 °C within 12 h. Flash 

column chromatographical purification (silica; isohexane:EtOAc = 9:1) afforded 27c as a 

colorless oil (452 mg, 0.87 mmol, 87%). 

1H-NMR (300 MHz, CDCl3): δ / ppm = 8.72 (t, J = 1.2 Hz, 1H), 7.85 – 7.79 (m, 2H), 7.71 (d, 

J = 1.4 Hz, 2H), 7.68 – 7.59 (m, 1H), 7.54 – 7.46 (m, 2H), 4.02 (q, J = 7.2 Hz, 2H), 1.69 (s, 9H), 

1.14 (t, J = 7.2 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 190.5, 160.9, 152.8 – 152.5 (m), 147.9, 138.3, 135.9, 

134.1, 133.4, 129.2, 128.7, 128.6, 121.8, 121.7 – 121.5 (m), 120.7, 114.5 – 114.1 (m), 87.3, 62.5, 

27.7, 13.5. 
19F-NMR (280 MHz, CDCl3): δ / ppm = 85.98 – 83.51 (m, 1F), 64.96 – 63.95 (m, 4F). 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2984 (vw), 1739 (m), 1655 (w), 1599 (vw), 1580 (vw), 

1542 (w), 1473 (w), 1448 (w), 1434 (w), 1396 (w), 1370 (m), 1353 (m), 1337 (m), 1302 (m), 

1268 (m), 1225 (s), 1210 (s), 1150 (s), 1107 (s), 1083 (m), 1042 (w), 1018 (m), 960 (w), 904 

(vw), 837 (vs), 824 (vs), 807 (s), 765 (m), 751 (s), 716 (m), 695 (m), 667 (m), 642 (m), 633 (m), 

611 (w), 595 (m), 576 (w), 570 (w). 

MS (EI, 70 eV): m/z (%) = 420 (19), 419 (100), 374 (13), 373 (50), 342 (31), 265 (11), 190 (11), 

105 (15). 

HRMS (C23H22F5NO5S): calc.: 519.1139; found: 519.1136. 
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2.7 Synthesis of Benzothiophenes of Type 28 

4-(Pentafluorosulfanyl)aniline 

 

4-(Pentafluorosulfanyl)aniline was prepared according to a literature procedure.5 

1H-NMR (300 MHz, CDCl3): δ / ppm = 7.54 (d, J = 9.1 Hz, 2H), 6.63 (d, J = 8.6 Hz, 2H), 4.02 

(sbr, 2H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 149.0, 145.2 – 143.7 (m), 127.9 – 126.9 (m), 113.4. 

2-Bromo-4-(pentafluorosulfanyl)aniline 

 

4-(Pentafluorosulfanyl)aniline (4.38 g, 20 mmol) was dissolved in 1,4-dioxane (20 mL). NBS 

(3.6 g, 20 mmol) was added in several portions over a reaction time of 8 h at 23 °C. The reaction 

mixture was quenched with sat. aqueous NH4Cl-solution and extracted 3 times with Et2O. The 

combined organic layers were washed with brine, dried over Na2SO4 and the solvent removed in 

vacuo. Flash column chromatographical purification (silica; pentane:CH2Cl2:NEt3 = 7:2.8:0.2) 

afforded 2-bromo-4-(pentafluorosulfanyl)aniline as a yellow solid (4.71 g, 15.8 mmol, 79%). 

Mp.: 67-69 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.83 (d, J = 2.5 Hz, 1H), 7.51 (dd, J = 8.6 Hz, 2.5 Hz, 

1H), 6.77 – 6.70 (m, 1H), 4.44 (sbr, 2H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 146.7, 144.6 – 143.7 (m), 130.7 – 130.1 (m), 126.7 – 

125.9 (m), 113.6, 106.9. 
19F-NMR (280 MHz, CDCl3): δ / ppm = 87.36 – 84.87 (m, 1F), 65.29 – 64.20 (m, 4F). 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3512 (w), 3408 (w), 1615 (m), 1496 (m), 1472 (w), 1414 

(w), 1326 (m), 1172 (w), 1106 (m), 1067 (w), 1033 (w), 866 (m), 827 (s), 790 (vs), 692 (m), 662 

(s), 611 (m), 586 (m), 574 (m). 

MS (EI, 70 eV): m/z (%) = 299 (98), 297 (100), 191 (50), 189 (54), 172 (13), 170 (14), 110 (26), 

91 (33), 90 (50), 83 (19), 63 (27). 

HRMS (C6H5BrF5NS): calc.: 296.9246; found: 296.9245. 

 

2-Bromo-1-iodo-4-(pentafluorosulfanyl)benzene (29) 

 

2-Bromo-4-(pentafluorosulfanyl)aniline (8.94 g, 30 mmol) was suspended in a mixture of H2SO4 

(conc.; 15 mL) and water (30 mL) and cooled to 0 °C. A solution of NaNO2 (2.14 g, 31 mmol, 

6 M in water) was added dropwise over 1 h and the resulting mixture stirred further for 1 h at 

0 °C. Then CuI (286 mg, 1.5 mmol) was added in one portion and following a solution of KI 

(5.31 g, 32 mmol, 6 M in water) was added dropwise over 1 h. The resulting sluggish reaction 

mixture was stirred over night while warming to room temperature. The solids were dissolved in 
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CH2Cl2, separated from the aqueous phase, then washed with NaOH (2 M) and aq. sat. Na2S2O3-

solution and dried over Na2SO4. After removal of the solvent in vacuo, the crude product was 

purified by flash column chromatography (silica; pentane) to afford 29 as a colorless solid (6.9 g, 

16.9 mmol, 56%). 

Mp.: 61-63 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.03 – 7.96 (m, 2H), 7.40 (dd, J = 8.6 Hz, 2.5 Hz, 1H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 154.4 – 153.6 (m), 140.3, 130.2, 130.0 – 129.5 (m), 

125.8 – 125.2 (m), 105.8. 
19F-NMR (280 MHz, CDCl3): δ / ppm = 83.48 – 80.96 (m, 1F), 63.48 – 62.65 (m, 4F). 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3093 (w), 1919 (w), 1765 (w), 1642 (w), 1564 (w), 1451 

(w), 1444 (w), 1402 (w), 1372 (m), 1268 (w), 1157 (w), 1130 (w), 1113 (w), 1097 (m), 1006 (w), 

883 (m), 851 (m), 830 (vs), 810 (vs), 734 (s), 692 (m), 666 (s), 651 (m), 592 (s), 577 (m). 

MS (EI, 70 eV): m/z (%) = 410 (58), 408 (76), 281 (12), 175 (21), 173 (29), 156 (27), 154 (19), 

94 (44), 89 (30), 75 (100), 74 (56). 

HRMS (C6H3BrF5IS): calc.: 407.8104; found: 407.8109. 

 

1,1´-Disulfanediylbis[2-bromo-4-(pentafluorosulfanyl)benzene] (30) 

F5S Br

S

2  

The aryl disulfide 30 was prepared according to a literature procedure133 whereby the I/Mg-

exchange was carried out with iPrMgCl·LiCl (6) (4.13 mL, 5.25 mmol, 1.27 M in THF) at -80 °C 

from 29 (2.04 g, 5.0 mmol) in THF (12 mL) and after transmetalation with ZnCl2 (5.5 mL, 

5.5 mmol, 1.0 M in THF), S2Cl2 (0.32 g, 2.4 mmol) was added. The reaction mixture was 

quenched with sat. aqueous NH4Cl-solution and extracted 3 times with Et2O. The combined 

organic layers were washed with brine, dried over Na2SO4 and the solvent removed in vacuo. 

Flash column chromatographical purification (silica; pentane) afforded 30 as a colorless solid 

(942 mg, 1.5 mmol, 60%). 

Mp.: 116-118 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.96 (d, J = 1.9 Hz, 2H), 7.75 – 7.69 (m, 2H), 7.62 – 

7.55 (m, 2H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 153.1 – 152.0 (m), 135.1, 132.1, 131.9 – 131.6 (m), 

130.4, 120.8. 
19F-NMR (280 MHz, CDCl3): δ / ppm = 84.05 – 81.61 (m, 1F), 67.77 – 66.82 (m, 4F). 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3105 (vw), 1572 (vw), 1455 (m), 1445 (m), 1375 (w), 

1264 (vw), 1247 (w), 1156 (w), 1114 (w), 1105 (w), 1089 (w), 1027 (m), 825 (vs), 811 (vs), 740 

(vs), 698 (m), 671 (s), 649 (s). 

MS (EI, 70 eV): m/z (%) = 631 (11), 630 (64), 628 (100), 626 (50), 207 (28), 205 (24), 188 (13), 

126 (65), 107 (15), 89 (12). 

                                                      
133 T. J. Korn, P. Knochel, Synlett 2005, 1185-1187. 
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HRMS (C12H6Br2F10S4): calc.: 625.7559; found: 625.7552. 

 

S-[2-Bromo-4-(pentafluorosulfanyl)phenyl] benzenesulfonothioate (31) 

 

The sulfonothioate 31 was prepared according to a literature procedure.134 To a mixture of 

sodium benzenesulfinate (2.36 g, 14.4 mmol) and disulfide 30 (2.38 g, 4.5 mmol) in CH2Cl2 

(45 mL) was added I2 (7.30 g, 28.8 mmol) in one portion. The resulting suspension was stirred 

until the disulfide was consumed (checked by TLC). Then CH2Cl2 (100 mL) was added and the 

crude reaction mixture was washed with aq. sat. Na2S2O3-solution until the color of iodine 

disappeared. The organic layer was washed with water, dried over MgSO4 and the solvent was 

evaporated. Flash column chromatographical purification (silica; pentane:Et2O = 9:1) afforded 31 

as a colorless solid (4.06 g, 8.9 mmol, 99%). 

Mp.: 62-64 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.95 (d, J = 1.9 Hz, 1H), 7.91 – 7.84 (m, 1H), 7.74 (dd, 

J = 8.6 Hz, 1.9 Hz, 1H), 7.66 – 7.54 (m, 3H), 7.51 – 7.42 (m, 2H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 156.4 – 155.6 (m), 143.0, 141.1, 135.1, 134.4, 132.6 – 

132.2 (m), 129.2, 127.3, 125.8, 124.2. 
19F-NMR (280 MHz, CDCl3): δ / ppm = 83.35 – 80.95 (m, 1F), 68.64 – 76.71(m, 4F). 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3102 (w), 1448 (m), 1374 (w), 1327 (m), 1309 (m), 1294 

(w), 1261 (w), 1173 (w), 1142 (s), 1104 (m), 1077 (m), 1056 (w), 1024 (w), 998 (w), 832 (vs), 

750 (s), 715 (s), 681 (m), 666 (m), 629 (w), 608 (w). 

MS (EI, 70 eV): m/z (%) = 456 (7), 454 (6), 141 (100), 126 (18), 125 (11), 77 (81). 

HRMS (C12H8BrF5O2S3): calc.: 453.8790; found: 453.8788. 

 

[2-Bromo-4-(pentafluorosulfanyl)phenylsulfanylethynyl]-trimethylsilane (32) 

 

A dry and argon flushed Schlenk-flask, equipped with a septum and a magnetic stirring bar was 

charged with ethynyltrimethylsilane (1.32 g, 13.4 mmol) in THF (13 mL) and cooled to -30 °C. 

Then iPrMgCl·LiCl (6) (8.4 mL, 10.7 mmol, 1.27 M in THF) was added and the reaction was 

stirred for 30 min at this temperature before a solution of the sulfonothioate 31 (4.06 g, 

8.9 mmol) in THF (9.0 mL) was added dropwise at -60 °C. The mixture was stirred for 15 min. 

The reaction mixture was quenched with saturated aqueous NH4Cl-solution and extracted 3 times 

with Et2O. The combined organic layers were washed with brine, dried over Na2SO4 and the 

solvent removed in vacuo. Flash column chromatographical purification (silica; pentane) 

afforded 32 as a colorless solid (2.93 g, 7.0 mmol, 80%). 

Mp.: 55-56 °C. 

                                                      
134 K. Fujiki, N. Tanifuji, Y. Sasaki, T. Yokoyama, Synthesis 2002, 343-348. 
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1H-NMR (300 MHz, CDCl3): δ / ppm = 7.94 (d, J = 1.9 Hz, 1H), 7.93 – 7.89 (m, 1H), 7.64 (dd, 

J = 8.9 Hz, 1.9 Hz, 1H), 0.29 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 152.2 – 150.8 (m), 134.8, 131.9 – 131.4 (m), 130.5, 

126.5, 119.4, 110.9, 88.6 – 88.1 (m), -0.31. 
19F-NMR (280 MHz, CDCl3): δ / ppm = 83.69 – 81.30 (m, 1F), 66.17 – 65.13 (m, 4F). 

IR (Diamond-ATR, neat): ν~  / cm-1 = 2969 (w), 2361 (w), 2338 (w), 2103 (m), 1780 (w), 1576 

(w), 1454 (m), 1411 (w), 1388 (w), 1377 (w), 1264 (vw), 1250 (m), 1199 (vw), 1167 (w), 1103 

(m), 1024 (m), 877 (w), 829 (vs), 812 (s), 759 (s), 745 (s), 705 (w), 692 (w), 669 (m), 631 (m). 

MS (EI, 70 eV): m/z (%) = 414 (14), 413 (17), 412 (100), 411 (18), 410 (87), 305 (12), 289 (36), 

287 (29), 251 (16), 249 (13), 227 (39), 225 (34), 220 (26), 208 (16), 146 (25), 128 (18), 89 (28), 

77 (50), 75 (15), 57 (20), 43 (24). 

HRMS (C11H12BrF5S2Si): calc.: 409.9253; found: 409.9248. 

 

2-[5-(Pentafluorosulfanyl)-3-trimethylsilanyl-benzo[b]thiophen-2-ylmethyl]-acrylic acid 

ethyl ester (28a) 

 

The title compound was prepared from the alkynyl(aryl)thioether 32 (617 mg, 1.5 mmol). A 

Br/Mg-exchange was performed according to TP1 with iPrMgCl·LiCl (6) (1.3 mL, 1.27 M, 

1.7 mmol) at 23 °C within 1 h. A mediated cyclization with CuCN·2LiCl (1.7 mL, 1.7 mmol, 

1.0 M in THF) and a followed allylation reaction was performed according to TP4 using 2-

(bromomethyl)-acrylic acid ethyl ester (232 mg, 1.2 mmol) at 23°C within 12 h. Flash column 

chromatographical purification on silica gel (isohexane:Et2O = 9:1) afforded 28a as colorless oil 

(374 mg, 0.82 mmol, 70%). 

1H-NMR (300 MHz, CDCl3): δ / ppm = 7.83 – 7.77 (m, 1H), 7.72 – 7.66 (m, 1H), 7.56 (d, 

J = 2.5 Hz, 1H), 6.34 (d, J = 0.8 Hz, 1H), 5.43 (d, J = 0.8 Hz, 1H), 4.24 (q, J = 7.2 Hz, 2H), 3.69 

(s, 2H), 1.30 (t, J = 7.2 Hz, 3H), 0.28 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 166.1, 152.6 – 151.2 (m), 137.4 – 127.3 (m), 136.9, 

135.8, 127.4, 127.3 – 127.4 (m), 126.5, 125.4 – 124.7 (m), 108.7, 87.8, 61.1, 35.3, 14.1, -0.2. 
19F-NMR (280 MHz, CDCl3): δ / ppm = 85.61 – 83.15 (m, 1F), 63.78 – 62.86 (m, 4F). 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2963 (vw), 2100 (w), 1716 (m), 1634 (vw), 1469 (w), 

1404 (w), 1370 (vw), 1301 (w), 1272 (w), 1251 (m), 1200 (w), 1134 (m), 1116 (w), 1048 (w), 

1027 (w), 944 (vw), 904 (m), 877 (m), 836 (vs), 802 (vs), 759 (s), 741 (m), 702 (w), 679 (w), 662 

(m), 630 (w). 

MS (EI, 70 eV): m/z (%) = 444 (9), 415 (29), 401 (9), 171 (28), 88 (12), 86 (56), 84 (100), 75 

(23), 73 (67), 71 (24), 57 (34), 56 (20), 49 (88), 47 (16), 44 (32), 43 (54). 

HRMS (C17H21F5O2S2Si): calc.: 444.0672; found: 444.0663. 

 

Furan-2-yl-[5-(pentafluorosulfanyl)-3-trimethylsilanyl-benzo[b]thiophen-2-yl]-methanone 

(28b) 
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The title compound was prepared from the alkynyl(aryl)thioether 32 (617 mg, 1.5 mmol). A 

Br/Mg-exchange was performed according to TP1 with iPrMgCl·LiCl (6) (1.3 mL, 1.27 M, 

1.7 mmol) at 23°C within 1 h. A mediated cyclization with CuCN·2LiCl (1.7 mL, 1.7 mmol, 

1.0 M in THF) and a followed allylation reaction was performed according to TP4 using furan-2-

carbonyl chloride (156 mg, 1.2 mmol) at 23 °C within 12 h. Flash column chromatographical 

purification on silica gel (isohexane:Et2O = 9:1) afforded 28b as yellow solid (325 mg, 

0.76 mmol, 64%). 

Mp.: 109-111 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.56 (d, J = 2.1 Hz, 1H), 8.00 (d, J = 9.1 Hz, 1H), 7.82 

(dd, J = 8.9 Hz, 2.2 Hz, 1H), 7.77 (dd, J = 1.7 Hz, 0.6 Hz, 1H), 7.33 (dd, J = 3.7 Hz, 0.7 Hz, 1H), 

6.66 (dd, J = 3.6, 1.7 Hz, 1H), 0.42 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 177.5, 152.5, 151.6 – 150.5 (m), 148.2, 147.5, 143.9, 

143.3, 142.3, 124.6 – 123.9 (m), 122.8 – 122.5 (m), 122.4, 121.8, 112.8, 0.7. 
19F-NMR (280 MHz, CDCl3): δ / ppm = 86.23 – 83.73 (m, 1F), 64.72 – 63.77 (m, 4F). 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 1627 (m), 1564 (w), 1467 (m), 1457 (w), 1407 (w), 1386 

(w), 1285 (w), 1268 (m), 1246 (w), 1228 (w), 1158 (w), 1136 (w), 1100 (w), 1015 (w), 938 (w), 

882 (w), 835 (s), 818 (vs), 794 (s), 757 (s), 752 (s), 744 (s), 719 (m), 674 (w), 662 (m), 644 (w), 

628 (w), 611 (w). 

MS (EI, 70 eV): m/z (%) = 426 (1), 412 (21), 411 (100), 284 (9), 74 (6), 59 (9). 

HRMS (C16H15F5O2S2Si): calc.: 426.0203; found: 426.0197. 
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3. Preparation of Functionalized Indoles and Azaindolesvia an 

Intramolecular Copper-mediated Carbomagnesiation of Ynamides 

3.1 Typical Procedures 

Typical Procedure for the preparation of bromoanilines (38a-d): 

Bromoanilines (38a-d) were prepared according to a literature procedure.135 

 

Typical Procedure for the preparation of ynamides (39): 

 
Scheme 57: Preparation of ynamides of type 39. 

Protection with PhSO2Cl (TP1): 

N-(2-Bromophenyl)-benzenesulfonamides were prepared according to a literature procedure.136 

Benzenesulfonyl chloride (1.2 equiv) was added to a solution of 38 (1.0 equiv) and pyridine (3.0 

equiv) in dichloromethane (1 M) at 0°C, and the reaction mixture was stirred at 0 °C for 1 h. The 

reaction solution was diluted with ether, washed with saturated aqueous NaHCO3-solution and 

saturated aqueous NaCl-solution, dried over anhydrous Na2SO4, and concentrated in vacuo. The 

crude residue was purified by flash column chromatography on silica gel. 

 

Synthesis of ynamides of type 39, compounds 45, 52, 55, 58, 62 (TP2): 

Phenyl((trimethylsilyl)ethynyl)iodonium triflate and the corresponding ynamides were prepared 

according to a literature procedure.137 

1) A dry and argon flushed Schlenk-flask, equipped with a magnetic stirrer and a septum was 

charged with PhI(OAc)2 (13.86 g, 43 mmol) in CH2Cl2 (60 mL) and cooled to 0 °C. CF3SO3H 

(12.01 g, 7.1 mL, 80 mmol) was added dropwise using a glass pipette. After stirring at 0 °C for 

0.5 h, bis(trimethylsilyl)acetylene (6.82 g, 40 mmol) was added. After stirring at 0 °C for 2 h, the 

resulting solution was concentrated in vacuo to give an oily residue. This oil was poured 

dropwise into stirred n-hexane (150 mL). The resulting solid was collected by filtration, washed 

with Et2O, and dried in vacuo to give phenyl((trimethylsilyl)-ethynyl)iodonium triflate (1.35 g, 

30 mmol, 75%). 

Note: Although workup and crystallization procedures can be carried out in air, 

phenyl((trimethylsilyl)ethynyl)iodonium triflate should be stored under a dry inert atmosphere to 

avoid its decomposition. 

 

2) Under argon, KHMDS (1.0 equiv) was added to a solution of N-(2-bromophenyl)-

benzenesulfonamide (1.0 equiv) in toluene at 0 °C. After 1 h, phenyl((trimethylsilyl)-
                                                      
135Y. Tobe, et al. J. Am. Chem. Soc. 2002, 124, 5350. 
136 H. Kunio, Y. Suzuki, I. Abe, Y. Hasegawa, K. Suzuki, Tetrahedron: Asym. 1998, 9, 3797. 
137 K. Tanaka, K. Takeishi, Synthesis 2007, 2920. 
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ethynyl)iodonium triflate (1.2 equiv) was added in several portions. The resulting mixture was 

stirred for 16 h at 23 °C and filtered through a plug of silica gel. The crude residue was purified 

by flash column chromatography on silica gel. 

 

Typical Procedure for Halogen/Magnesium-Exchange Reactions138 (TP3): 

A dry and argon flushed Schlenk-flask, equipped with a magnetic stirrer and a septum was 

charged with the starting aryl bromide in THF (0.2-1.0 M solution) and cooled to the indicated 

temperature. Then i-PrMgCl·LiCl was added and the reaction mixture was stirred for the 

indicated time (the completion of the reaction was checked by HPLC analysis of reaction aliquots 

quenched with half concentrated aqueous NH4Cl-solution). 

 

Typical Procedure for the Copper-Mediated Cyclization Reaction (TP4): 

After the completion of the halogen/magnesium-exchange (TP3), THF was added (0.05-0.2 M 

solution), CuCN·2LiCl solution (30-100 mol%, 1.0 M in THF) was added to the reaction mixture 

at the indicated temperature and stirred for the indicated time (the completion of the reaction was 

checked by HPLC analysis of reaction aliquots quenched with sat. aqueous NH4Cl/NH3-solution; 

typically two peaks with slightly differing retention time could be detected, corresponding to the 

open-chain and cyclized form).  

 

Typical Procedure for Microwave-Assisted Reactions (TP5): 

Microwave assisted reactions were carried out using a Biotage Initiator 2.5 system. The reaction 

mixture was therefore transferred into a dry and argon flushed microwave vial equipped with a 

stirring bar and septum pressure-cap. The reaction parameters (temperature, time, max. 

irradiation) are given for the respective substance.  

 

Typical Procedure for Allylation or Acylation Reactions (TP6): 

To the freshly prepared magnesium reagent was added CuCN·2LiCl (20-100 mol%, 1.0 M in 

THF) and the reaction mixture was stirred for 15 min at the indicated temperature unless copper 

was already present in the mixture from the cyclization step. The respective allyl bromide or acyl 

chloride was added and the reaction mixture was stirred for the indicated time at the indicated 

temperature. The reaction mixture was quenched with concentrated aqueous NH4Cl/NH3-solution 

(19:1), extracted three times with EtOAc, the organic layers dried (MgSO4) and concentrated in 

vacuo. The crude residue was purified by flash column chromatography on silica gel. 

 

Typical Procedure for the Conversion of the TMS-Group to Iodide (TP7): 

To the respective TMS-substituted compound (approx. 0.2 M in CH2Cl2) was added iodine 

monochloride (ICl, 1.1 equiv) at 0 °C and the mixture was stirred for 5 min. The reaction mixture 

was quenched with sat. Na2S2O3-solution, extracted three times with CH2Cl2, the organic layers 

dried (MgSO4) and concentrated in vacuo. The crude residue was purified by flash column 

chromatography on silica gel. 
                                                      
138a) A. Krasovskiy, P. Knochel, Angew. Chem2004, 116, 3396; Angew. Chem. Int. Ed.2004,43, 3333; b) 

A. Krasovskiy, B. F. Straub, P. Knochel, Angew. Chem. 2006, 118, 165; Angew. Chem. Int. Ed. 2006, 
45, 159.   
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Typical Procedure for Cross-coupling Reactions (TP8): 

To the freshly prepared magnesium reagent was added ZnCl2 (1.1 equiv, 1.0 M in THF) and the 

reaction mixture was stirred for 15 min at the indicated temperature. The catalytic system and the 

aryl halide (0.9-1.2 equiv) were added and the reaction mixture was warmed to 23 °C. After 

stirring for the indicated time, the reaction mixture was quenched with half concentrated aqueous 

NH4Cl-solution, extracted three times with EtOAc, the organic layers dried (MgSO4) and 

concentrated in vacuo. The crude residue was purified by flash column chromatography on silica 

gel. 

Typical Procedure for iodine/Magnesium exchange with MeMgCl (TP9): 

A dry and argon flushed Schlenk-flask, equipped with a magnetic stirrer and a septum was 

charged with the starting aryl iodine in THF (0.1 M solution) and cooled to -78 °C. Then 

MeMgCl (0.19 mL, 1.1 equiv, 0.55 mmol, 2.89 M in THF) was added and the reaction mixture 

was stirred for 0.5 h (the completion of the reaction was checked by HPLC analysis of reaction 

aliquots quenched with concentrated aqueous NH4Cl-solution).  

 

3.2 Synthesis of compounds of type 39 

N-(2-Bromo-4-fluoro-phenyl)-benzenesulfonamide 

 

The title compound was prepared according to TP1 from 2-bromo-4-fluoroaniline (38a) 

(5.0 mmol). Benzenesulfonyl chloride (1.06 g, 6.0 mmol) was added to a solution of 2-bromo-4-

fluoroaniline (950 mg, 5.0 mmol) and pyridine (1.19 g, 1.21 mL, 15.0 mmol) in dichloromethane 

(5 mL) at 0 °C, and the reaction mixture was stirred at 0 °C for 1 h. Flash column 

chromatographical purification on silica gel (isohexane:EtOAc = 7:3) afforded N-(2-bromo-4-

fluoro-phenyl)-benzenesulfonamide (1.48 g, 4.8 mmol, 96%) as a brown powder.  

 

1H-NMR (300 MHz, CDCl3): δ / ppm = 7.75 – 7.63 (m, 3H), 7.59 – 7.51 (m, 1H), 7.46 – 7.38 

(m, 2H), 7.14 (dd, J = 7.7 Hz, J = 2.8 Hz, 1H), 7.07 – 6.98 (m, 1H), 6.79 (sbr, 1H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 159.8 (d, J = 250.4 Hz), 138.6, 133.4, 130.9 (d, 

J = 3.4 Hz), 129.1, 127.3, 125.4 (d, J = 8.4 Hz), 119.7 (d, J = 25.5 Hz), 117.1 (d, J = 9.8 Hz), 

115.7 (d, J = 22.2 Hz). 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3256 (M), 1597 (W), 1486 (S), 1446 (M), 1421 (W), 

1378 (M), 1337 (S), 1327 (M), 1309 (W), 1262 (M), 1249 (M), 1189 (W), 1167 (VS), 1129 (M), 

1089 (M), 1069 (W), 1035 (M), 1026 (W), 1000 (W), 963 (W), 903 (M), 876 (S), 864 (S), 838 

(S), 811 (W), 798 (M), 755 (M), 722 (VS), 700 (M), 684 (S), 672 (M). 

MS (EI, 70 eV): m/z (%) = 332 (16), 331 (93), 329 (89), 191 (18), 190 (100), 188 (97), 185 (39), 

109 (31), 77 (38). 

HRMS (C12H9BrFNO2S): calc.: 328.9521; found: 328.9502. 
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N-(2-Bromo-4-fluoro-phenyl)-N-trimethylsilanylethynyl-benzenesulfonamide (39a) 

 

The title compound was prepared according to TP2 from N-(2-bromo-4-fluoro-phenyl)-

benzenesulfonamide (13.0 mmol). Under argon, KHMDS (18.6 mL, 13.0 mmol, 0.7 M in 

toluene) was added to a solution of N-(2-bromo-4-fluoro-phenyl)-benzenesulfonamide (4.29 g, 

13.0 mmol) in toluene (130 mL) at 0 °C. After 1 h, phenyl((trimethylsilyl)-ethynyl)iodonium 

triflate (6.97 g, 15.5 mmol) was added in several portions. The resulting mixture was stirred for 

16 h at 23 °C. Flash column chromatographical purification on silica gel 

(isohexane:Et2O:CH2Cl2 = 8:2:0.2) afforded N-(2-bromo-4-fluoro-phenyl)-N-

trimethylsilanylethynyl-benzenesulfonamide (39a; 4.21 g, 9.9 mmol, 76%) as an orange oil. 

 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.89 – 7.83 (m, 2H), 7.73 – 7.65 (m, 1H), 7.59 – 7.52 

(m, 2H), 7.34 (dd, J = 8.0 Hz, J = 2.8 Hz, 1H), 7.24 – 7.18 (m, 1H), 7.06 – 6.98 (m, 1H), 0.14 (s, 

9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 162.2 (d, J = 250.4 Hz), 136.9, 134.1, 133.3 (d, 

J = 3.7 Hz), 131.5 (d, J = 9.3 Hz), 128.9, 128.6, 124.3 (d, J = 10.1 Hz), 121.3 (d, J = 25.5 Hz), 

115.4 (d, J = 22.7 Hz), 93.6, 73.8, -0.0. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2968 (VW), 2961 (VW), 2162 (W), 2137 (VW),1592 

(W), 1584 (W), 1483 (M), 1448 (W), 1392 (VW), 1373 (M), 1357 (W), 1335 (W), 1311 (VW), 

1286 (VW), 1257 (M), 1245 (M), 1205 (M), 1176 (S), 1143 (W), 1125 (W), 1097 (VW), 1088 

(M), 1071 (VW), 1034 (W), 1021 (VW), 999 VW912 (W), 863 (S), 843 (VS), 798 (W), 794 (W), 

784 (W), 755 (S), 729 (S), 720 (S), 699 (W), 685 (S), 675 (M), 663 (S). 

MS (EI, 70 eV): m/z (%) = 428 (27), 427 (100), 426 (26), 425 (89), 412 (63), 284 (54), 271 (16), 

205 (97), 204 (30), 190 (20), 183 (30), 162 (35), 139 (21), 137 (21), 135 (98). 

HRMS (C17H17BrFNO2SSi): calc.: 424.9917; found: 424.9901. 

 

N-(2-Bromo-4-trifluoromethyl-phenyl)-benzenesulfonamide  

 

The title compound was prepared according to TP1 from 2-bromo-4-(trifluoromethyl)aniline 

(38b) (40.0 mmol). Benzenesulfonyl chloride (8.48 g, 48.0 mmol) was added to a solution of 2-

bromo-4-(trifluoromethyl)aniline (9.60 g, 40.0 mmol) and pyridine (9.49 g, 9.7 mL, 120.0 mmol) 

in dichloromethane (40 mL) at 0 °C, and the reaction mixture was stirred at 23 °C for 4 h. Flash 

column chromatographical purification on silica gel (isohexane:EtOAc = 8:2) afforded N-(2-

bromo-4-trifluoromethyl-phenyl)-benzenesulfonamide (14.32 g, 38.0 mmol, 95%) as a colorless 

powder. 

Mp.: 84-86 °C. 
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1H-NMR (300 MHz, CDCl3): δ / ppm = 7.86 – 7.80 (m, 2H), 7.76 (dd, J = 8.7 Hz, 0.7 Hz, 1H), 

7.70 (d, J = 1.9 Hz, 1H), 7.63 – 7.56 (m, 1H), 7.55 – 7.45 (m, 3H), 7.21 (sbr, 1H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 138.7, 137.9, 133.7, 129.8 (q, J = 3.7 Hz), 129.3, 127.8 

(q, J = 33.7 Hz), 127.2, 125.7 (q, J = 3.9 Hz), 120.8, 114.4. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3265 (W), 3250 (W), 1608 (W), 1499 (W), 1449 (M), 

1421 (M), 1384 (M), 1362 (W), 1346 (M), 1317 (VS), 1272 (M), 1231 (W), 1167 (S), 1138 (S), 

1119 (VS), 1091 (M), 1080 (VS), 1045 (M), 1023 (W), 998 (W), 962 (W), 956 (W), 930 (W), 

905 (S), 892 (S), 845 (M), 820 (M), 809 (W), 783 (W), 756 (M), 719 (S), 703 (M), 693 (M), 684 

(VS), 653 (S). 

MS (EI, 70 eV): m/z (%) = 381 (24), 379 (23), 235 (13), 78 (18), 77 (100), 64 (32). 

HRMS (C13H9BrF3NO2S): calc.: 378.9489; found: 378.9480. 

 

N-(2-Bromo-4-trifluoromethyl-phenyl)-N-trimethylsilanylethynyl-benzenesulfonamide 

(39b) 

 

The title compound was prepared according to TP2 from N-(2-bromo-4-trifluoromethyl-phenyl)-

benzenesulfonamide (5.0 mmol). Under argon, KHMDS (10 mL, 5.0 mmol, 0.5 M in toluene) 

was added to a solution of N-(2-bromo-4-trifluoromethyl-phenyl)-benzenesulfonamide (1.90 g, 

5.0 mmol) in toluene (50 mL) at 0 °C. After 1 h, phenyl((trimethylsilyl)ethynyl)iodonium triflate 

(2.70 g, 6.0 mmol) was added in several portions. The resulting mixture was stirred for 16 h at 

23 °C. Flash column chromatographical purification on silica gel (isohexane:EtOAc = 9:1) 

afforded N-(2-bromo-4-trifluoromethyl-phenyl)-N-trimethylsilanylethynyl-benzenesulfonamide 

(39b; 1.89 g, 4.0 mmol, 79%) as a yellow solid. 

Mp.: 91-93 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.90 – 7.84 (m, 3H), 7.75 – 7.68 (m, 1H), 7.60 – 7.53 

(m, 3H), 7.38 (d, J = 7.7 Hz, 1H), 0.14 (s. 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 140.1, 136.8, 134.3, 132.5 (q, J = 33.7 Hz), 131.4 (q, 

J = 3.7 Hz), 130.9, 129.0, 128.6, 125.2 (q, J = 3.7 Hz), 123.9, 122.6 (q, J = 273.3 Hz), 92.9, 74.7, 

-0.1. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2960 (VW), 2165 (M), 1606 (W), 1449 (M), 1380 (M), 

1319 (VS), 1250 (M), 1172 (S), 1130 (VS), 1088 (M), 1077 (S), 1047 (M), 1005 (VW), 999 (W), 

923 (W), 890 (M), 839 (VS), 807 (M), 756 (S), 724 (VS), 705 (S), 684 (S), 674 (S), 654 (M). 

MS (EI, 70 eV): m/z (%) = 477 (18), 475 (16), 463 (16), 462 (65), 460 (57), 255 (22), 135 (100). 

HRMS (C18H17BrF3NO2SSi): calc.: 474.9885; found: 474.9890. 

 

N-(2-Bromo-4-cyano-phenyl)-benzenesulfonamide   
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The title compound was prepared according to TP1 from 4-amino-3-bromo-benzonitrile (38d) 

(20.0 mmol). Benzenesulfonyl chloride (4.24 g, 24.0 mmol) was added to a solution of 4-amino-

3-bromo-benzonitrile (3.94 g, 20.0 mmol) and pyridine (4.75 g, 4.85 mL, 60.0 mmol) in 

dichloromethane (20 mL) at 0 °C, and the reaction mixture was stirred at 23 °C for 48 h. Flash 

column chromatographical purification on silica gel (isohexane:EtOAc = 8:2→1:1) afforded N-

(2-bromo-4-cyano-phenyl)-benzenesulfonamide (3.13 g, 9.0 mmol, 46%) as a colorless solid. 

 

1H-NMR (600 MHz, CDCl3): δ / ppm =7.91 (d, J = 1.9 Hz, 1H), 7.86 – 7.82 (m, 2H), 7.73 – 

7.70 (m, 1H), 7.63 – 7.59 (m, 2H), 7.54 (dd, J = 8.6 Hz, J = 1.8 Hz, 1H), 7.33 (sbr, 1H), 7.23 (d, 

J = 8.0 Hz, 1H). 
13C-NMR (150 MHz, CDCl3): δ / ppm = 138.9, 138.9, 138.4, 138.3, 137.5, 134.4, 131.4, 128.2, 

116.9, 116.3, 114.1. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3192 (W), 2236 (W), 1600 (W), 1552 (VW), 1493 (M), 

1475 (M), 1449 (M), 1421 (M), 1384 (S), 1363 (M), 1346 (M), 1340 (M), 1314 (W), 1285 (W), 

1263 (W), 1238 (W), 1229 (W), 1173 V(S), 1152 (M), 1087 (S), 1074 (W), 1051 (W), 1046 (M), 

1022 (W), 998 (W), 973 (W), 934 (M), 899 V(S), 886 (S), 866 (W), 852 (M), 842 (M), 823 (M), 

757 V(S), 721 (S), 708 (M), 683 V(S), 675 (M). 

MS (EI, 70 eV): m/z (%) = 336 (38), 192 (20), 77 (100). 

HRMS (C13H9BrN2O2S): calc.: 335.9568; found: 335.9564. 

 

N-(2-Bromo-4-cyano-phenyl)-N-trimethylsilanylethynyl-benzenesulfonamide (39d)  

 

The title compound was prepared according to TP2 from N-(2-bromo-4-cyano-phenyl)-

benzenesulfonamide (16.0 mmol). Under argon, KHMDS (22.9 mL, 16.0 mmol, 0.7 M in 

toluene) was added to a solution of N-(2-bromo-4-cyano-phenyl)-benzenesulfonamide (5.40 g, 

16.0 mmol) in toluene (160 mL) at 0 °C. After 1 h, phenyl((trimethylsilyl)-ethynyl)iodonium 

triflate (8.56 g, 19.0 mmol) was added in several portions. The resulting mixture was stirred for 

16 h at 23 °C. Flash column chromatographical purification on silica gel 

(isohexane:EtOAc = 8:2) afforded N-(2-bromo-4-cyano-phenyl)-N-trimethylsilanyl-ethynyl-

benzenesulfonamide (39d; 3.12 g, 7.2 mmol, 45%) as a yellow oil. 

1H-NMR (600 MHz, CDCl3): δ / ppm = 7.90 (d, J = 1.9 Hz, 1H), 7.85 (dd, J = 8.5 Hz, 

J = 1.4 Hz, 2H), 7.74 – 7.70 (m, 1H), 7.61 (dd, J = 8.2 Hz, J = 1.9 Hz, 1H), 7.59 – 7.55 (m, 2H), 

7.38 (d, J = 8.5 Hz, 1H), 0.14 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 141.1, 137.6, 136.6, 134.5, 131.8, 131.2, 129.1, 128.6, 

124.1, 116.4, 114.5, 94.5, 75.2, -0.13. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2954 (VW), 2233 (W), 2163 (M), 1476 (W), 1448 (W), 

1381 (M), 1247 (M), 1183 (M), 1170 (S), 1156 (W), 1086 (M), 1045 (W), 919 (W), 882 (W), 842 

(VS), 817 (M), 758 (M), 722 (S), 685 (S), 661 (M). 
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MS (EI, 70 eV): m/z (%) = 434 (44), 432 (39), 416 (76), 279 (34), 277 (32), 212 (22), 199 (21), 

183 (15), 137 (18), 135 (100), 77 (41). 

HRMS (C18H17BrN2O2SSi): calc.: 431.9963; found: 431.9968. 

 

4-Amino-3-bromo-benzoic acid tert-butyl ester (38c) 

NH2

Br

CO2tBu  

4-Aminobenzoic acid (6.86 g, 50 mmol) was suspended in SOCl2 (60 mL, 11.71 g, 98.4 mmol) at 

23 °C. The suspension was refluxed for 2 h. SOCl2 was removed under reduced pressure, the last 

traces by azeotrope with CH2Cl2 (3x50 mL). The resulting acid chloride was dissolved in CH2Cl2 

(60 mL) and a solution of t-butanol (20 mL) in CH2Cl2 (20 mL) was added to the stirred solution, 

which was cooled to 0 °C. A solid white precipitate was formed - the hydrochloride salt of the 

title compound. This salt was isolated by evaporation of the solvent (CH2Cl2), followed by 

suspension of the solid in EtOAc (100 mL) and filtration. The material was suspended in 10% 

aqueous NaHCO3-solution (100 mL) and extracted into CH2Cl2 (3 x 100 mL) to give 4-amino-

benzoic acid tert-butyl ester (5.56 g, 58%) as a yellow oil. An additional bromination with NBS 

(5.59 g, 31.4 mmol, 1.0 equiv) according to a literature procedure starting from 4-amino-benzoic 

acid tert-butyl ester (6.07 g, 31.4 mmol) afforded 4-amino-3-bromo-benzoic acid tert-butyl ester 

(38c; 8.38 g, 30.8 mmol, 98%) as a brown oil.139 

1H-NMR (300 MHz, CDCl3): δ / ppm = 8.03 (d, J = 1.8 Hz, 1H), 7.73 (dd, J = 8.4 Hz, 

J = 1.9 Hz, 1H), 6.70 (d, J = 8.4 Hz, 1H), 4.44 (sbr, 2H), 1.55 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 164.7, 147.7, 134.3, 130.0, 122.8, 114.2, 107.8, 80.6, 

28.2. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3479 (W), 3474 (W), 3361 (W), 3211 (VW), 2976 (W), 

2931 (W), 1775 (W), 1689 (S), 1614 (S), 1595 (S), 1555 (W), 1504 (M), 1473 (W), 1455 (W), 

1410 (W), 1392 (M), 1367 (M), 1294 V(S), 1247 V(S), 1167 V(S), 1151 V(S), 112(S), 1033 (M), 

904 (M), 890 (M), 849 (M), 827 (M), 765 (S), 731 (M), 706 (M), 692 (S), 677 (S). 

MS (EI, 70 eV): m/z (%) = 295 (5), 273 (15), 271 (15), 215 (100), 200 (47), 198 (49), 91 (15), 

90 (22). 

HRMS (C11H14BrNO2): calc.: 271.0208; found: 271.0203. 

 

4-Benzenesulfonylamino-3-bromo-benzoic acid tert-butyl ester 

 

The title compound was prepared according to TP1 from 4-amino-3-bromo-benzoic acid tert-

butyl ester (38c) (31.0 mmol). Benzenesulfonyl chloride (6.54 g, 37.0 mmol) was added to a 

solution of 4-amino-3-bromo-benzoic acid tert-butyl ester (8.44 g, 31.0 mmol) and pyridine 
                                                      
139Y. Tobe, et al. J. Am. Chem. Soc. 2002, 124, 5350. 
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(7.36 g, 7.5 mL, 93.0 mmol) in dichloromethane (31 mL) at 0 °C, and the reaction mixture was 

stirred at 23 °C for 12 h. Flash column chromatographical purification on silica gel 

(isohexane:EtOAc = 8:2, 5% NEt3) afforded 4-benzenesulfonylamino-3-bromo-benzoic acid tert-

butyl ester (11.56 g, 28.0 mmol, 90%) as a colorless solid. 

Mp.: 121-123 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.02 (d, J = 1.9 Hz, 1H), 7.85 (dd, J = 8.6 Hz, 

J = 1.9 Hz, 1H), 7.82 – 7.77 (m, 2H), 7.67 (d, J = 8.6 Hz, 1H), 7.58 – 7.51 (m, 1H), 7.48 – 7.40 

(m, 2H), 7.24 (sbr, 1H), 1.54 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 163.7, 138.6, 138.1, 133.8, 133.6, 129.8, 129.4, 129.2, 

127.2, 120.2, 114.1, 81.8, 28.1. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 1717 (M), 1477 (W), 1448 (M), 1382 (S), 1363 (M), 1341 

(W), 1296 (M), 1276 (M), 1253 (M), 1169 (S), 1160 (S), 1121 (M), 1086 (M), 1043 (M), 970 

(W), 915 (S), 901 (S), 878 (M), 847 (M), 830 (M), 774 (W), 762 (M), 755 (S), 736 (M), 721 

(VS), 699 (M), 690 (M), 684 (S). 

MS (EI, 70 eV): m/z (%) = 413 (26), 411 (26), 357 (81), 355 (76), 340 (23), 338 (22), 199 (49), 

197 (51), 141 (79), 125 (22). 

HRMS (C17H18BrNO4S): calc.: 411.0140; found: 411.0138. 

 

4-Benzenesulfonyl-trimethylsilanylethynyl-amino)-3-bromo-benzoic acid tert-butyl ester 

(39c) 

 

The title compound was prepared according to TP2 from 4-benzenesulfonylamino-3-bromo-

benzoic acid tert-butyl ester (10.0 mmol). Under argon, KHMDS (14.3 mL, 10.0 mmol, 0.7 M in 

toluene) was added to a solution of 4-benzenesulfonylamino-3-bromo-benzoic acid tert-butyl 

ester (4.12 g, 10.0 mmol) in toluene (100 mL) at 0 °C. After 1 h, 

phenyl((trimethylsilyl)ethynyl)iodonium triflate (5.4 g, 12.0 mmol) was added in several 

portions. The resulting mixture was stirred for 16 h at 23 °C. Flash column chromatographical 

purification on silica gel (isohexane:EtOAc = 8:2, 5% NEt3) afforded 4-benzenesulfonyl-

trimethylsilanylethynyl-amino)-3-bromo-benzoic acid tert-butyl ester (39c; 3.5 g, 6.9 mmol, 

69%) as an orange solid. 

Mp.: 111-113 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.19 (d, J = 1.7 Hz, 1H), 7.90 (dd, J = 8.3 Hz, 

J = 1.9 Hz, 1H), 7.87 – 7.82 (m, 2H), 7.72 – 7.66 (m, 1H), 7.59 – 7.51 (m, 2H), 7.27 (d, 

J = 8.3 Hz, 1H), 1.57 (s, 9H), 0.13 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 163.4, 140.2, 136.9, 135.1, 134.2, 134.1, 130.1, 129.1, 

129.0, 128.6, 123.2, 93.3, 82.3, 74.3, 28.1, -0.1. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2961 (VW), 2165 (M), 1719 (S), 1592 (W), 1561 (VW), 

1478 (W), 1452 (W), 1395 (W), 1378 (M), 1367 (M), 1297 (S), 1247 (M), 1184 (M), 1172 (S), 
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1140 (M), 1112 (S), 1088 (M), 1041 (M), 905 (W), 842 (VS), 779 (M), 754 (S), 737 (W), 722 

(S), 713 (M), 686 (S), 668 (S). 

MS (EI, 70 eV): m/z (%) = 509 (30), 507 (27), 438 (44), 436 (55), 312 (67), 310 (66), 295 (25), 

293 (22), 231 (37), 199 (33), 167 (23), 137 (21). 

HRMS (C22H26BrNO4SSi): calc.: 507.0535; found: 507.0548. 

 

3.3 Synthesis of compounds of type 41 

1-Benzenesulfonyl-5-fluoro-3-trimethylsilanyl-1H-indole (41a) 

N

F

TMS

SO2Ph 

The title compound was prepared from the ynamide 39a (468 mg, 1.1 mmol). A Br/Mg-exchange 

was performed according to TP3 with i-PrMgCl·LiCl (0.87 mL, 1.39 M, 1.21 mmol, 1.1 equiv) at 

-10 °C within 0.5 h (1.0 M). After addition of THF (1 mL), a CuCN·2LiCl (0.33 mL, 30 mol%) 

mediated cyclization was performed according to TP4 at 23 °C in 24 h. The reaction mixture was 

quenched with concentrated aqueous NH4Cl/NH3-solution (19:1), extracted three times with 

EtOAc, the organic layers dried (MgSO4) and concentrated in vacuo. Flash column 

chromatographical purification on silica gel (isohexane:EtOAc = 95:5) afforded the indole 41a 

(356 mg, 1.02 mmol, 93%) as a white solid. 

Mp.: 103-105 °C. 
1H-NMR (600 MHz, CDCl3): δ / ppm = 7.93 – 7.88 (m, 3H), 7.59 – 7.55 (m, 2H), 7.50 – 7.46 

(m, 2H), 7.23 (dd, J = 9.1 Hz, J = 2.5 Hz, 1H), 7.04 (td, J = 9.1 Hz, J = 2.3 Hz, 1H), 0.35 (s, 9H). 
13C-NMR (150 MHz, CDCl3): δ / ppm = 159.4 (d, J = 239.5 Hz), 138.2, 135.6 (d, J = 9.8 Hz), 

133.9, 133.0, 132.3 (d, J = 1.1 Hz), 129.3, 126.7, 118.4 (d, J = 4.2 Hz), 114.3 (d, J = 9.5 Hz), 

112.2 (d, J = 25.5 Hz), 107.8 (d, J = 23.6 Hz), -0.9. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2955 (W), 2926 (W), 2922 (W), 1705 (W), 1582 (W), 

1515 (W), 1483 (W), 1475 (W), 1458 (M), 1447 (M), 1370 (M), 1349 (W), 1338 (W), 1313 (W), 

1289 (W), 1258 (M), 1250 (M), 1235 (W), 1214 (W), 1195 (M), 1176 (S), 1164 (M), 1155 (S), 

1144 (S), 1111 (M), 1091 (S), 1070 (M), 1055 (M), 1045 (M), 1034 (M), 1018 (M), 998 (M), 975 

(M), 951 (W), 930 (W), 891 (W), 868 (S), 852 (S), 835 (S), 828 (S), 817 (S), 810 (VS), 771 (M), 

756 (S), 740 (M), 723 (VS), 696 (M), 684 (S), 659 (M). 

MS (EI, 70 eV): m/z (%) = 349 (11), 348 (27), 347 (100), 333 (21), 332 (90), 134 (9), 77 (14). 

HRMS (C17H18FNO2SSi): calc.: 347.0812; found: 347.0810. 

 

2-(1-Benzenesulfonyl-5-fluoro-3-trimethylsilanyl-1H-indol-2-ylmethyl)acrylic acid ethyl 

ester (41b) 

 



C. EXPERIMENTAL SECTION 

 
87 

The title compound was prepared from the ynamide 39a (1.28 g, 3.0 mmol). A Br/Mg-exchange 

was performed according to TP3 with i-PrMgCl·LiCl (2.6 mL, 1.27 M, 3.3 mmol, 1.1 equiv) at 

˗10 °C within 0.5 h (1.0 M). After addition of THF (12 mL), a CuCN·2LiCl (1.0 mL, 30 mol%) 

mediated cyclization according to TP4 at 23 °C in 24 h and a subsequent allylation reaction was 

performed according to TP6 using ethyl 2-(bromomethyl)acrylate (521 mg, 2.7 mmol) at 0 °C 

within 2 h. Flash column chromatographical purification on silica gel (isohexane:EtOAc = 9:1) 

afforded the indole 41b (1.14 g, 2.48 mmol, 92%) as a yellow oil. 

 
1H-NMR (600 MHz, CDCl3): δ / ppm = 8.17 (dd, J = 9.3 Hz, J = 4.7 Hz, 1H), 7.76 – 7.72 (m, 

2H), 7.54 – 7.50 (m, 1H), 7.43 – 7.39 (m, 2H), 7.27 (dd, J = 9.4 Hz, J = 2.6 Hz, 1H), 7.01 

(dt,J = 9.0 Hz, J = 2.6 Hz, 1H), 6.18 – 6.16 (m, 1H), 5.03 – 5.02 (m, 1H), 4.09 (sbr, 2H), 4.29 (q, 

J = 7.2 Hz, 2H), 1.31 (t, J = 7.2 Hz, 3H), 0.32 (s, 9H).  
13C-NMR (150 MHz, CDCl3): δ / ppm = 166.4, 159.4 (d, J = 239.5 Hz), 143.6, 139.1, 138.9, 

134.8 (d, J = 9.5 Hz), 133.9 (d, J = 1.1 Hz), 133.8, 129.2, 126.4, 125.1, 118.2 (d, J = 3.9 Hz), 

115.7 (d, J = 9.3 Hz), 111.7 (d, J = 25.0 Hz), 107.2 (d, J = 23.5 Hz), 61.0, 30.4, 14.2, 0.4.  

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2956 (W), 1711 (M), 1635 (W), 1610 (W), 1584 (W), 

1536 (W), 1462 (M), 1447 (M), 1407 (W), 1368 (S), 1349 (W), 1334 (W), 1310 (W), 1278 (M), 

1251 (S), 1214 (M), 1189 (S), 1170 (M), 1145 (S), 1135 (S), 1118 (M), 1092 (S), 1024 (M), 999 

(W), 987 (M), 933 (M), 913 (M), 852 (VS), 838 (S), 813 (S), 756 (M), 747 (M), 724 (VS), 685 

(S), 659 (M). 

MS (EI, 70 eV): m/z (%) = 459 (10), 445 (20), 444 (63), 370 (43), 319 (26), 318 (100), 275 (25), 

258 (20), 230 (15), 226 (33), 200 (45), 172 (30). 

HRMS (C23H26FNO4SSi): calc.: 459.1336; found: 459.1328. 

 

(1-Benzenesulfonyl-5-fluoro-3-trimethylsilanyl-1H-indol-2-yl)-(3-chloro-phenyl)-methanone 

(41c) 

 

The title compound was prepared from the ynamide 39a (1.28 g, 3.0 mmol). A Br/Mg-exchange 

was performed according to TP3 with i-PrMgCl·LiCl (2.6 mL, 1.27 M, 3.3 mmol, 1.1 equiv) at 

˗10 °C within 0.5 h (1.0 M). After addition of THF (12 mL), a CuCN·2LiCl (1.0 mL, 30 mol%) 

mediated cyclization according to TP4 at 23 °C in 24 h and a subsequent acylation reaction was 

performed according to TP6 using 3-chlorobenzoyl chloride (473 mg, 2.7 mmol) at 0 °C within 

2 h. Flash column chromatographical purification on silica gel (isohexane:EtOAc = 9:1) afforded 

the indole 41c (1.2 g, 2.47 mmol, 92%) as a yellow solid. 

 

Mp.: 138-140 °C. 
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1H-NMR (300 MHz, CDCl3): δ / ppm = 8.06 – 8.00 (m, 1H), 7.89 (t, J = 1.8 Hz, 1H), 7.88 – 

7.84 (m, 2H), 7.73 -7.68 (m, 1H), 7.58 – 7.50 (m, 2H), 7.47 – 7.37 (m, 3H), 7.33 – 7.28 (m, 1H), 

7.12 (dt, J = 8.9 Hz, J = 2.5 Hz, 1H), 0.18 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 189.9, 159.8 (d, J = 241.6 Hz) 142.0, 139.8, 136.7, 

135.2, 135.1, 134.2, 133.7, 132.4 (d, J = 1.1 Hz), 130.0, 129.1, 129.0, 127.9, 127.3, 121.0 (d, 

J = 4.1 Hz), 115.7 (d, J = 9.3 Hz), 113.7 (d, J = 25.4 Hz), 108.7 (d, J = 24.0 Hz), -0.1. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 1670 (M), 1586 (W), 1517 (W), 1458 (M), 1447 (M), 

1425 (M), 1375 (S), 1307 (M), 1252 (S), 1218 (M), 1192 (VS), 1175 (S), 1148 (S), 1114 (M), 

1090 (M), 1075 (M), 1072 (M), 991 (M), 871 (S), 863 (S), 844 (VS), 812 (S), 805 (S), 768 (S), 

754 (S), 746 (S), 723 (VS), 698 (S), 687 (S), 675 (M), 667 (M). 

MS (EI, 70 eV): m/z (%) = 487 (13), 485 (27), 472 (30), 471 (20), 470 (66), 344 (19), 331 (46), 

330 (42), 329 (100), 314 (15), 235 (21). 

HRMS (C24H21ClFNO3SSi): calc.: 485.0684; found: 485.0681. 

 

1-Benzenesulfonyl-5-trifluoromethyl-3-trimethylsilanyl-1H-indole (41d) 

N

F3C

TMS

SO2Ph 

The title compound was prepared from the ynamide 39b (476 mg, 1.0 mmol). A Br/Mg-exchange 

was performed according to TP3 with i-PrMgCl·LiCl (0.87 mL, 1.27 M, 1.1 mmol, 1.1 equiv) at 

˗20 °C within 0.25 h (0.5 M). After addition of THF (4 mL), a CuCN·2LiCl (1.0 mL, 100 mol%) 

mediated cyclization according to TP4 at 23 °C in 12 h. The reaction mixture was quenched with 

concentrated aqueous NH4Cl/NH3-solution (19:1), extracted three times with EtOAc, the organic 

layers dried (MgSO4) and concentrated in vacuo. Flash column chromatographical purification on 

silica gel (isohexane:EtOAc = 9:1) afforded the indole 41d (303 mg, 0.76 mmol, 76%) as a white 

solid. 

Mp.: 70-72 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.08 – 8.03 (m, 1H), 7.94 – 7.89 (m, 2H), 7.83 – 7.80 

(m, 1H), 7.61 – 7.60 (m, 1H), 7.59 – 7.45 (m, 4H), 0.36 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 138.1, 137.5, 134.3, 134.2, 132.9, 129.5, 126.8, 125.6 (q, 

J = 32.6 Hz), 124.5 (q, J = 272.1 Hz), 122.7, 121.2 (q, J = 3.6 Hz), 119.5 (q, J = 4.1 Hz), 119.1, 

118.7, 113.7, -0.8. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 1519 (W), 1466 (W), 1448 (W), 1436 (W), 1371 (M), 

1364 (M), 1339 (W), 1329 (S), 1313 (M), 1285 (M), 1275 (W), 1264 (W), 1253 (M), 1174 (S), 

1167 (S), 1132 (M), 1117 (VS), 1089 (M), 1073 (W), 1062 (M), 1043 (M), 1026 (W), 1021 (W), 

999 (W), 956 (M), 893 (M), 840 (S), 820 (S), 798 (M), 773 (M), 764 (M), 751 (S), 728 (S), 703 

(S), 686 (S), 675 (W), 668 (M). 

MS (EI, 70 eV): m/z (%) = 398 (11), 397 (62), 383 (24), 382 (100), 242 (19), 241 (14), 183 (16), 

180 (11), 178 (13), 135 (13), 109 (10), 77 (46). 

HRMS (C18H18F3NO2SSi): calc.: 397.0780; found: 397.0778. 
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(1-Benzenesulfonyl-5-trifluoromethyl-3-trimethylsilanyl-1H-indol-2-yl)-cyclopropyl-

methanone (41e) 

N

F3C

TMS

SO2Ph

O

 

The title compound was prepared from the ynamide 39b (476 mg, 1.0 mmol). A Br/Mg-exchange 

was performed according to TP3 with i-PrMgCl·LiCl (0.87 mL, 1.27 M, 1.1 mmol, 1.1 equiv) at 

˗20 °C within 0.25 h (0.5 M). After addition of THF (4 mL), a CuCN·2LiCl (1.0 mL, 100 mol%) 

mediated cyclization according to TP4 at 23 °C in 8 h and a subsequent acylation reaction was 

performed according to TP6 using cyclopropanecarbonyl chloride (94 mg, 0.9 mmol) at -30 °C. 

The reaction mixture was allowed to warm slowly to 23 °C within 12 h. Flash column 

chromatographical purification on silica gel (isohexane:EtOAc = 9:1) afforded the indole 41e 

(396 mg, 0.85 mmol, 85%) as a white solid. 

Mp.: 126-128 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 819 – 8.14 (m, 1H), 7.88 – 7.85 (m, 1H), 7.80 – 7.75 

(m, 2H); 7.61 – 7.54 (m, 1H), 7.53 – 7.46 (m, 1H), 7.42 – 7.34 (m, 2H), 2.53 – 2.43 (m, 1H), 1.49 

– 1.41 (m, 2H), 1.30 – 1.21 (m, 2H), 0.33 (s, 9H). 
13C-NMR (100 MHz, CDCl3): δ / ppm = 200.5, 146.1, 138.3, 136.3, 134.3, 134.2, 129.0, 127.2, 

126.5 (q, J = 32.3 Hz), 124.3 (q, J = 272.2 Hz), 122.3 (q, J = 3.4 Hz), 120.4 (q, J = 4.2 Hz), 

120.4, 115.4, 25.1, 15.1, 0.2. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2961 (VW), 2168 (W), 1695 (M), 1613 (W), 1583 (VW), 

1523 (W), 1477 (VW), 1448 (M), 1369 (S), 1357 (W), 1342 (W), 1327 (S), 1296 (W), 1265 (M), 

1252 (M), 1238 (M), 1174 (S), 1153 (S), 1134 (S), 1118 (VS), 1090 (S), 1064 (S), 1049 (W), 

1037 (M), 1003 (S), 982 (W), 958 (M), 888 (M), 878 (M), 841 (VS), 829 (VS), 786 (M), 773 

(M), 764 (M), 752 (S), 725 (S), 702 (M), 688 (S), 677 (S), 654 (M). 

MS (EI, 70 eV): m/z (%) = 465 (12), 452 (13), 451 (30), 450 (100), 310 (43), 309 (55), 294 (26), 

77 (21). 

HRMS (C22H22F3NO3SSi): calc.: 465.1042; found: 465.1038. 

 

(1-Benzenesulfonyl-5-trifluoromethyl-3-trimethylsilanyl-1H-indol-2-yl)-p-tolyl-methanone 

(41f) 

 

The title compound was prepared from the ynamide 39b (476 mg, 1.0 mmol). A Br/Mg-exchange 

was performed according to TP3 with i-PrMgCl·LiCl (0.87 mL, 1.27 M, 1.1 mmol, 1.1 equiv) at 

˗20 °C within 0.25 h (0.5 M). After addition of THF (4 mL), a CuCN·2LiCl (1.0 mL, 100 mol%) 

mediated cyclization according to TP4 at 23 °C in 8 h and a subsequent acylation reaction was 
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performed according to TP6 using 4-methylbenzoyl chloride (139 mg, 0.9 mmol) at -20 °C. The 

reaction mixture was allowed to warm slowly to 23 °C within 12 h. Flash column 

chromatographical purification on silica gel (isohexane:EtOAc = 9:1) afforded the indole 41f 

(401 mg, 0.78 mmol, 78%) as an orange solid. 

Mp.:152-154 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.21 – 8.15 (m, 1H), 7.99 – 7.91 (m, 3H), 7.80 – 7.74 

(m, 2H), 7.64 – 7.59 (m, 1H), 7.57 – 7.52 (m, 1H), 7.50 – 7.42 (m, 2H), 7.30 – 7.25 (m, 2H), 2.43 

(s, 3H), 0.19 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 190.7, 145.1, 142.7, 137.5, 137.1, 135.8, 134.3, 133.8, 

129.7, 129.5, 129.3, 127.4, 126.2 (q, J = 32.5 Hz), 124.4 (q, J = 272.3 Hz), 122.0 (q, J = 3.4 Hz), 

120.0 (q, J = 3.9 Hz), 119.0, 114.7, 21.8, -0.0. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2956 (W), 1669 (M), 1599 (M), 1569 (W), 1526 (W), 

1448 (M), 1367 (M), 1333 (M), 1313 (S), 1264 (M), 1250 (M), 1228 (M), 1190 (M), 1167 (VS), 

1133 (S), 1116 (VS), 1095 (S), 1063 (S), 1017 (M), 996 (M), 965 (M), 957 (M), 887 (M), 840 

(S), 826 (S), 790 (M), 781 (S), 772 (M), 753 (S), 725 (VS), 702 (M), 684 (S), 658 (M).  

MS (EI, 70 eV): m/z (%) = 516 (8), 515 (23), 501 (22), 500 (58), 374 (17), 361  

(16), 360 (52), 359 (100), 344 (22), 285 (12), 119 (30), 91 (22), 77 (22). 

HRMS (C26H24F3NO3SSi): calc.: 515.1198; found: 515.1191. 

 

1-Benzenesulfonyl-2-cyclohex-2-enyl-5-trifluoromethyl-3-trimethylsilanyl-1H-indole (41g) 

N

F3C

TMS

SO2Ph  

The title compound was prepared from the ynamide 39b (476 mg, 1.0 mmol). A Br/Mg-exchange 

was performed according to TP3 with i-PrMgCl·LiCl (0.87 mL, 1.27 M, 1.1 mmol, 1.1 equiv) at 

˗20 °C within 0.25 h (0.5 M). After addition of THF (8 mL), a CuCN·2LiCl (1.0 mL, 100 mol%) 

mediated cyclization according to TP4 at 23 °C in 8 h and a subsequent allylation reaction was 

performed according to TP6 using 3-bromocyclohexene (94 mg, 0.9 mmol) at -30 °C.The 

reaction mixture was allowed to warm slowly to 23 °C within 12 h. Flash column 

chromatographical purification on silica gel (isohexane:EtOAc = 95:5) afforded the indole 41g 

(312 mg, 0.65 mmol, 65%) as a yellow oil. 

1H-NMR (400 MHz, CDCl3): δ / ppm = 8.27 (d, J = 8.8 Hz, 1H), 7.95 – 7.92 (m, 1H), 7.73 – 

7.67 (m, 2H), 7.59 -7.52 (m, 1H), 7.49 -7.40 (m, 3H), 5.77 – 5.70 (m, 1H), 5.49 -5.42 (m, 1H), 

4.39 – 4.31 (m, 1H), 2.26 – 2.13 (m, 2H), 2.12 – 2.03 (m, 1H), 19.6 – 1.84 (m, 2H), 1.75 – 1.62 

(m, 1H), 0.42 (s, 9H). 
13C-NMR (100 MHz, CDCl3): δ / ppm = 152.8, 139.7, 139.5, 133.8, 133.8, 129.3, 128.7, 127.9, 

126.3, 125.1 (q, J = 31.9 Hz), 124.7 (q, J = 271.7 Hz), 120.3 (q, J = 3.5 Hz), 118.9 (q, 

J = 4.2 Hz), 116.7, 115.2, 38.0, 29.5, 24.2, 23.2, 2.0. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2950 (W), 1612 (W), 1518 (W), 1448 (M), 1374 (M), 

1328 (VS), 1285 (M), 1253 (M), 1167 (S), 1117 (VS), 1090 (S), 1069 (S), 1046 (M), 994 (M), 

958 (M), 890 (S), 838 (VS), 751 (S), 723 (VS), 698 (M), 684 (VS), 655 (M). 
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MS (EI, 70 eV): m/z (%) = 478 (25), 477 (74), 336 (27), 335 (40), 321 (40), 320 (100), 262 (14), 

244 (22), 242 (17), 177 (25), 161 (18), 135 (33), 77 (29). 

HRMS (C24H26F3NO2SSi): calc.: 477.1406; found: 477.1398. 

 

1-Benzenesulfonyl-2-cyclohex-2-enyl-3-trimethylsilanyl-1H-indole-5-carboxylic acid tert-

butyl ester (41h) 

 

The title compound was prepared from the ynamide 39c (433 mg, 1.0 mmol). A Br/Mg-exchange 

was performed according to TP3 with i-PrMgCl·LiCl (0.87 mL, 1.27 M, 1.1 mmol, 1.1 equiv) at 

˗20 °C within 1.0 h (0.5 M). After addition of THF (8 mL), a CuCN·2LiCl (1.0 mL, 100 mol%) 

mediated cyclization according to TP5 at 50 °C in 0.75 h and a subsequent allylation reaction 

was performed according to TP6 using 3-bromocyclohexene (145 mg, 0.9 mmol) at -30 °C. The 

reaction mixture was allowed to warm slowly to 23 °C within 12 h. Flash column 

chromatographical purification on silica gel (isohexane:EtOAc = 98:2) afforded the indole 41h 

(282 mg, 0.56 mmol, 62%) as a white solid. 

Mp.:132-134 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.37 (d, J = 1.7 Hz, 1H), 8.16 (d, J = 9.0 Hz, 1H), 7.86 

(dd, J = 8.9 Hz, J = 1.6 Hz, 1H), 7.70 – 7.64 (m, 2H), 7.55 – 7.48 (m, 1H), 7.44 – 7.36 (m, 2H), 

5.77 – 5.66 (m, 1H), 5.47 (d, J = 10.1 Hz, 1H), 4.39 – 4.27 (m, 1H), 2.31 – 2.00 (m, 3H), 1.97 – 

1.84 (m, 2H), 1.76 – 1.62 (m, 1H), 1.59 (s, 9H), 0.42 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 166.0, 152.3, 140.4, 139.8, 133.8, 133.6, 129.2, 128.9, 

127.6, 126.7, 126.3, 124.7, 123.8, 117.3, 114.5, 80.7, 38.1, 29.5, 28.2, 24.3, 23.2, 2.0. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2950 (W), 1703 (S), 1601 (W), 1526 (W), 1455 (W), 

1448 (M), 1364 (S), 1301 (S), 1279 (M), 1248 (M), 1222 (M), 1166 (S), 1128 (VS), 1102 (M), 

1091 (S), 1046 (M), 1000 (M), 923 (M), 892 (S), 869 (M), 841 (VS), 830 (S), 752 (VS), 729 (S), 

718 (S), 699 (M), 687 (S), 658 (W). 

MS (EI, 70 eV): m/z (%) = 509 (32), 312 (32), 311 (25), 296 (37), 238 (16), 135 (13), 77 (35). 

HRMS (C28H35NO4SSi): calc.: 509.2056; found: 509.2059. 

 

1-Benzenesulfonyl-2-(3-chloro-benzoyl)-3-trimethylsilanyl-1H-indole-5-carboxylic acid tert-

butyl ester (41i) 

 

The title compound was prepared from the ynamide 39c (433 mg, 1.0 mmol). A Br/Mg-exchange 

was performed according to TP3 with i-PrMgCl·LiCl (0.87 mL, 1.27 M, 1.1 mmol, 1.1 equiv) at 
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˗20 °C within 1.0 h (0.5 M). After addition of THF (8 mL), a CuCN·2LiCl (1.0 mL, 100 mol%) 

mediated cyclization according to TP5 at 50 °C in 0.75 h and a subsequent acylation reaction was 

performed according to TP6 using 3-chlorobenzoyl chloride (158 mg, 0.9 mmol) at -30 °C. The 

reaction mixture was allowed to warm slowly to 23 °C within 12 h. Flash column 

chromatographical purification on silica gel (isohexane:EtOAc = 9:1) afforded the indole 41i 

(476 mg, 0.84 mmol, 93%) as a yellow solid. 

Mp.: 154-156 °C. 
1H-NMR (400 MHz, CDCl3): δ / ppm = 8.35 (dd, J = 1.7 Hz, J = 0.7 Hz, 1H), 8.06 (ddd, 

J = 10.4 Hz, J = 8.8 Hz, J = 1.1 Hz, 2H), 7.90 – 7.85 (m, 3H), 7.71 – 7.68 (m, 1H), 7.58 – 7.50 

(m, 2H), 7.46 – 7.38 (m, 3H), 1.59 (s, 9H), 0.29 (s, 9H). 
13C-NMR (100 MHz, CDCl3): δ / ppm = 190.0, 165.5, 141.3, 139.8, 138.5, 136.7, 135.1, 134.4, 

133.8, 133.7, 130.0, 129.2, 129.0, 128.0, 127.9, 127.3, 126.7, 125.0, 121.4, 114.0, 81.2, 28.2, 0.1.  

IR (Diamond-ATR, neat): ν
~  / cm-1 = 1712 (M), 1669 (M), 1447 (M), 1369 (M), 1294 (M), 

1252 (S), 1188 (S), 1170 (S), 1161 (S), 1137 (S), 1090 (S), 1033 (M), 1016 (M), 990 (S), 968 

(M), 910 (M), 881 (M), 843 (VS), 774 (S), 765 (VS), 753 (S), 744 (S), 724 (VS), 684 (S), 675 

(S). 

MS (EI, 70 eV): m/z (%) = 569 (22), 568 (18), 567 (51), 554 (15), 552 (32), 498 (36), 497 (27), 

496 (82), 412 (34), 370 (41), 358 (76). 

HRMS (C29H30ClNO5SSi): calc.: 567.1302; found: 567.1292. 

 

1-Benzenesulfonyl-2-(2-ethoxycarbonyl-allyl)-3-trimethylsilanyl-1H-indole-5-carboxylic 

acid tert-butyl ester (41j) 

 

The title compound was prepared from the ynamide 39c (433 mg, 1.0 mmol). A Br/Mg-exchange 

was performed according to TP3 with i-PrMgCl·LiCl (0.87 mL, 1.27 M, 1.1 mmol, 1.1 equiv) at 

˗20 °C within 1.0 h (0.5 M). After addition of THF (8 mL), a CuCN·2LiCl (1.0 mL, 100 mol%) 

mediated cyclization according to TP5 at 50 °C in 0.75 h and a subsequent allylation reaction 

was performed according to TP6 using ethyl 2-(bromomethyl)acrylate (154 mg, 0.8 mmol) at 

˗30 °C. The reaction mixture was allowed to warm slowly to 23 °C within 12 h. Flash column 

chromatographical purification on silica gel (isohexane:EtOAc:Net3 = 85:15:5) afforded the 

indole 41j (208 mg, 0.56 mmol, 48%) as a colorless oil. 

1H-NMR (400 MHz, CDCl3): δ / ppm = 8.32 (dd,J = 1.6 Hz, J = 0.7 Hz, 1H), 8.23 

(dd,J = 8.8 Hz, J = 0.6 Hz, 1H), 7.93 (dd,J = 8.8 Hz, J = 1.8 Hz, 1H), 7.77 – 7.72 (m, 2H), 7.56 – 

7.49 (m, 1H), 6.17 – 6.15 (m, 1H), 7.43 – 7.37 (m, 2H), 5.01 – 4.98 (m, 1H), 4.28 (q,J = 7.2 Hz, 

2H), 4.09 (sbr, 2H), 1.59 (s, 9H), 1.35 (t, J = 7.1 Hz, 3H), 0.34 (s, 9H). 
13C-NMR (100 MHz, CDCl3): δ / ppm = 166.4, 165.9, 143.0, 140.2, 139.1, 138.9, 133.9, 133.4, 

129.3, 127.1, 126.5, 125.2, 125.1, 123.5, 118.9, 114.3, 80.8, 61.0, 30.3, 28.2, 14.2, 0.6. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2976 (W), 1707 (S), 1635 (W), 1604 (W), 1539 (W), 

1447 (M), 1433 (W), 1367 (S), 1302 (S), 1252 (S), 1215 (M), 1188 (S), 1159 (VS), 1129 (VS), 
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1090 (S), 1024 (M), 980 (M), 932 (M), 915 (M), 867 (M), 837 (VS), 765 (S), 728 (VS), 705 (M), 

685 (S). 

MS (EI, 70 eV): m/z (%) = 565 (9), 564 (34), 559 (44), 486 (100), 396 (2), 223 (4). 

HRMS (C28H39N2O6SSi): calc.: 559.2298; found: 559.2293 [M+NH4]+. 

 

1-Benzenesulfonyl-3-trimethylsilanyl-1H-indole-5-carbonitrile (41k) 

N

NC

SO2Ph

TMS

 

The title compound was prepared from the ynamide 39d (433 mg, 1.0 mmol). A Br/Mg-exchange 

was performed according to TP3 with i-PrMgCl·LiCl (0.87 mL, 1.27 M, 1.1 mmol, 1.1 equiv) at 

˗5 °C within 0.5 h (0.5 M). After addition of THF (18 mL), a CuCN·2LiCl (1.0 mL, 100 mol%) 

mediated cyclization according to TP4 at 23 °C in 12 h. The reaction mixture was quenched with 

concentrated aqueous NH4Cl/NH3-solution (19:1), extracted three times with EtOAc, the organic 

layers dried (MgSO4) and concentrated in vacuo. Flash column chromatographical purification on 

silica gel (isohexane:EtOAc = 8:2) afforded the indole 41k (235 mg, 0.66 mmol, 66%) as an 

orange solid. 

Mp.: 153-155 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.06 – 8.01 (m, 1H), 7.94 – 7.87 (m, 3H), 7.64 – 7.47 

(m, 5H), 0.35 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 137.8, 134.6, 134.4, 133.3, 129.6, 127.4, 127.1, 127.0, 

126.9, 119.5, 118.5, 114.2, 106.7, -0.8. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2960 (W), 2950 (W), 2223 (M), 1723 (M), 1710 (W), 

1705 (W), 1512 (M), 1455 (M), 1447 (M), 1373 (S), 1296 (M), 1291 (M), 1274 (M), 1267 (M), 

1248 (S), 1178 (S), 1144 (S), 1125 (S), 1091 (S), 1071 (M), 1047 (M), 1022 (W), 969 (S), 894 

(M), 855 (S), 844 (S), 836 (VS), 809 (VS), 754 (S), 747 (S), 723 (VS), 685 (S). 

MS (EI, 70 eV): m/z (%) = 354 (23), 339 (41), 214 (22), 200 (19), 199 (100), 85 (15), 77 (20), 

71 (21). 

HRMS (C18H18N2O2SSi):calc.: 354.0858; found: 354.0855. 

 

1-Benzenesulfonyl-2-(3-chloro-benzoyl)-3-trimethylsilanyl-1H-indole-5-carbonitrile (41l)  

 

The title compound was prepared from the ynamide 39d (433 mg, 1.0 mmol). A Br/Mg-exchange 

was performed according to TP3 with i-PrMgCl·LiCl (0.87 mL, 1.27 M, 1.1 mmol, 1.1 equiv) at 

˗5 °C within 0.5 h (0.5 M). After addition of THF (18 mL), a CuCN·2LiCl (1.0 mL, 100 mol%) 

mediated cyclization according to TP5 at 50 °C in 1 h and a subsequent acylation reaction was 
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performed according to TP6 using 3-chlorobenzoyl chloride (158 mg, 0.9 mmol) at 0 °C. The 

reaction mixture was allowed to warm slowly to 23 °C within 12 h. Flash column 

chromatographical purification on silica gel (isohexane:EtOAc = 9:1→8:2) afforded the indole 

41l (333 mg, 0.68 mmol, 68%) as an orange solid. 

Mp.: 193-195 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.17 (d, J = 8.6 Hz, 1H), 8.00 – 7.96 (m, 1H), 7.93 – 

7,85 (m, 3H), 7.69 (d, J = 7.7 Hz, 1H), 7.64 (dd, J = 8.7 Hz, J = 1.5 Hz, 1H), 7.62 – 7.55 (m, 2H), 

7.52 – 7.38 (m, 3H), 0.19 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 189.6, 142.0, 139.5, 137.9, 136.7, 135.3, 134.7, 134.0, 

134.0, 130.1, 129.4, 129.1, 128.4, 127.9, 127.7, 127.4, 119.6, 119.1, 115.3, 107.7, 0.0. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2230 (W), 1671 (M), 1530 (W), 1458 (W), 1449 (M), 

1430 (W), 1375 (S), 1307 (W), 1251 (S), 1231 (M), 1191 (S), 1173 (VS), 1148 (M), 1133 (M), 

1090 (M), 1073 (W), 1000 (W), 991 (M), 966 (W), 889 (M), 840 (VS), 821 (S), 789 (M), 766 

(M), 760 (M), 751 (S), 742 (S), 722 (VS), 689 (S), 678 (M), 667 (M). 

MS (EI, 70 eV): m/z (%) = 494 (10), 492 (19), 479 (27), 478 (18), 477 (58), 339 (14), 338 (30), 

337 (36), 336 (61), 275 (12), 242 (11). 

HRMS (C25H21ClN2O3SSi): calc.: 492.0731; found: 492.0725. 

 

2-(1-Benzenesulfonyl-5-cyano-3-trimethylsilanyl-1H-indol-2-ylmethyl)-acrylic acid ethyl 

ester (41m) 

N

NC

SO2Ph

TMS

CO2Et

 

The title compound was prepared from the ynamide 39d (433 mg, 1.0 mmol). A Br/Mg-exchange 

was performed according to TP3 with i-PrMgCl·LiCl (0.87 mL, 1.27 M, 1.1 mmol, 1.1 equiv) at 

˗5 °C within 0.5 h (0.5 M). After addition of THF (18 mL), a CuCN·2LiCl (1.0 mL, 100 mol%) 

mediated cyclization according to TP5 at 50 °C in 1 h and a subsequent allylation reaction was 

performed according to TP6 using ethyl 2-(bromomethyl)acrylate (174 mg, 0.9 mmol) at 

0 °C.The reaction mixture was allowed to warm slowly to 23 °C within 12 h. Flash column 

chromatographical purification on silica gel (isohexane:EtOAc = 9:1→8:2) afforded the indole 

41m (333 mg, 0.68 mmol, 42%) as white solid. 

Mp.: 132-134 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.32 (dd, J = 8.7 Hz,J = 0.7 Hz, 1H), 7.93 (dd, 

J = 1.7 Hz,J = 0.8 Hz, 1H), 7.79 – 7.73 (m, 2H), 7,61 – 7.52 (m, 2H), 7.48 – 7.41 (m, 2H), 6.16 – 

6.12 (m, 1H), 4.96 – 4.93 (m, 1H), 4.28 (q, J = 7.1 Hz, 2H), 4.12 – 4.07 (m, 2H), 1.34 (t, 

J = 7.1 Hz, 3H), 0.33 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 166.2, 144.2, 139.7, 138.8, 138.6, 134.3, 133.8, 129.5 

(2C), 127.1, 126.6 (2C), 126.2, 125.1, 119.6, 118.0, 115.6, 106.7, 61.1, 30.2, 14.2, 0.5. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2225 (W), 1712 (M), 1458 (M), 1450 (M), 1378 (M), 

1295 (M), 1275 (M), 1252 (M), 1221 (W), 1189 (M), 1178 (M), 1167 (S), 1149 (S), 1090 (M), 
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1069 (W), 1020 (W), 978 (W), 950 (W), 928 (M), 913 (M), 886 (M), 849 (S), 837 (VS), 829 

(VS), 795 (M), 769 (W), 752 (M), 724 (S), 688 (S), 660 (W). 

MS (EI, 70 eV): m/z (%) = 466 (3), 452 (12), 451 (34), 377 (13), 325 (44), 280 (30), 266 (23), 

265 (100), 207 (16). 

HRMS (C24H26N2O4SSi):calc.: 466.1383; found: 466.1374. 

 

3.4 Synthesis of compounds of type 10 

2-(1-Benzenesulfonyl-5-fluoro-3-iodo-1H-indol-2-ylmethyl)-acrylic acid ethyl ester (42) 

N

F

SO2Ph

I

CO2Et

 

The title compound was prepared according to TP7 from 41b (506 mg, 1.1 mmol) and iodine 

monochloride (196 mg, 1.21 mmol). Flash column chromatographical purification on silica gel 

(isohexane:EtOAc = 8:2) afforded 42 (516 mg, 0.99 mmol, 90%) as a yellow solid. 

 

Mp.: 83-85 °C. 
1H-NMR (600 MHz, CDCl3): δ / ppm = 8.18 (dd, J = 9.1 Hz, J = 4.3 Hz, 1H), 7.78 – 7.75 (m, 

2H), 7.60 – 7.56 (m, 1H), 7.47 – 7.43 (m, 2H), 7.14 – 7.07 (m, 2H), 6.19 – 6.18 (m, 1H), 5.04 – 

5.03 (m, 1H), 4.32 (q, J = 7.1 Hz, 2H), 4.15 (t, J = 1.8 Hz, 2H), 1.38 (t, J = 7.1 Hz, 3H). 
13C-NMR (150 MHz, CDCl3): δ / ppm = 166.3, 160.2 (d, J = 242.6 Hz), 139.5, 138.3, 136.2, 

134.2, 132.9 (d, J = 10.4 Hz), 132.8 (d, J = 1.4 Hz), 129.4, 126.5, 125.2, 116.3 (d, J = 9.3 Hz), 

113.7 (d, J = 25.4 Hz), 107.5 (d, J = 25.0 Hz), 75.2, 61.1, 31.2, 14.2. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 1711 (S), 1631 (W), 1612 (W), 1471 (M), 1463 (M), 

1447 (S), 1430 (M), 1367 (S), 1339 (M), 1260 (S), 1215 (M), 1174 (S), 1158 (VS), 1151 (VS), 

1119 (M), 1088 (S), 1064 (S), 1024 (S), 981 (M), 956 (M), 927 (S), 914 (M), 852 (S), 809 (S), 

801 (S), 752 (S), 724 (VS), 683 (VS), 658 (S). 

MS (EI, 70 eV): m/z (%) = 513 (20), 373 (17), 372 (100), 245 (35), 216 (25), 173 (17), 172 (43), 

128 (75), 127 (48). 

HRMS (C20H17FINO4S): calc.: 512.9907; found: 512.9910. 

 

2-(1-Benzenesulfonyl-5-fluoro-3-phenyl-1H-indol-2-ylmethyl)-acrylic acid ethyl ester (43a) 

N

F

SO2Ph

Ph

CO2Et

 
The title compound was prepared according to TP8 from PhMgCl·LiCl (0.23 mL, 1.76 M, 

0.4 mmol), 42 (180 mg, 0.35 mmol) and PEPPSI-iPr (10 mg, 3 mol%) at 23 °C in 0.5 h. Flash 

column chromatographical purification on silica gel (isohexane:EtOAc = 9:1→8:2) afforded 43a 

(143 mg, 0.31 mmol,89%) as a yellow oil. 
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1H-NMR (400 MHz, CDCl3): δ / ppm = 8.23 (dd, J = 9.8 Hz, J = 4.5 Hz, 1H), 7.78 – 7.75 (m, 

2H), 7.58 – 7.52 (m, 1H), 7.46 – 7.35 (m, 5H), 7.31 – 7.27 (m, 2H), 7.11 – 7.04 (m, 2H), 6.26 – 

6.22 (m, 1H), 5.25 – 5.22 (m, 1H), 4.25 (q, J = 7.1 Hz, 2H), 4.02 (t, J = 1.8 Hz, 2H), 1.32 (t, 

J = 7.1 Hz, 3H). 
13C-NMR (100 MHz, CDCl3): δ / ppm = 166.4, 160.0 (d, J = 242.6 Hz), 138.8, 138.6, 134.8, 

133.9, 132.9(d, J = 1.3 Hz), 131.9, 131.1(d, J = 9.8 Hz), 129.3, 129.1, 128.8, 128.0, 126.4, 125.3, 

125.2 (d, J = 4.0 Hz), 116.2 (d, J = 9.0 Hz), 112.7 (d, J = 25.0 Hz), 105.4 (d, J = 24.4 Hz), 61.0, 

28.7, 14.2.  

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2981 (VW), 1710 (S), 1634 (W), 1607 (W), 1593 (W), 

1466 (S), 1447 (M), 1365 (M), 1338 (M), 1263 (S), 1211 (M), 1186 (S), 1160 (S), 1133 (S), 1089 

(S), 1047 (S), 1022 (S), 986 (M), 934 (M), 911 (M), 862 (M), 837 (S), 807 (M), 773 (M), 752 

(M), 725 (VS), 702 (S), 684 (S). 

MS (EI, 70 eV): m/z (%) = 463 (13), 323 (31), 322 (73), 277 (38), 276 (56), 249 (44), 248 (100), 

246 (16), 222 (58), 216 (16), 172 (13). 

HRMS (C26H22FNO4S): calc.: 463.1254; found: 463.1249. 

 

4-[1-Benzenesulfonyl-2-(2-ethoxycarbonyl-allyl)-5-fluoro-1H-indol-3-yl]-benzoic acid ethyl 

ester (43b) 

N

F

SO2Ph

CO2Et

CO2Et

 
(4-(Ethoxycarbonyl)phenyl)magnesium chloride/lithium chloride was prepared according to TP3 

from ethyl-4-bromobenzoate (166 mg, 0.6 mmol). The title compound was prepared according to 

TP8 from (4-(ethoxycarbonyl)phenyl)magnesium chloride/lithium chloride, (42; 257 mg, 

0.5 mmol) and PEPPSI-iPr (10 mg, 3 mol%) at 23 °C in 2 h. Flash column chromatographical 

purification on silica gel (isohexane:EtOAc = 9:1) afforded the indole 43b (198 mg, 0.37 mmol, 

74%) as a yellow oil. 

 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.27 – 8.21 (m, 1H), 8.13 – 8.07 (m, 2H), 7.82 – 7.76 

(m, 2H), 7.60 – 7.52 (m, 1H), 7.48 – 7.35 (m, 4H), 7.14 – 7.03 (m, 2H), 6.25 – 621 (m, 1H), 5.24 

– 5.20 (m, 1H), 4.39 (q, J = 7.2 Hz, 2H), 4.25 (q, J = 7.0 Hz, 2H), 4.02 (t, J = 1.7 Hz, 2H), 1.40 

(t, J = 7.1 Hz, 3H), 1.32 (t, J = 7.1 Hz, 3H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 166.2(d, J = 2.0 Hz), 161.5 (d, J = 241.5 Hz), 158.5, 

138.6, 138.5, 136.7, 135.2, 134.1, 132.9 (d, J = 0.8 Hz), 130.5 (d, J = 9.5 Hz), 130.1, 130.0, 

129.4, 129.1, 126.5, 125.3, 124.1 (d, J = 3.9 Hz), 116.3 (d, J = 9.3 Hz), 113.0 (d, J = 25.3 Hz), 

105.2 (d, J = 24.4 Hz), 61.1, 61.0, 28.7, 14.3, 14.2. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2981 (W), 1710 (VS), 1634 (W), 1611 (M), 1594 (W), 

1466 (S), 1447 (S), 1405 (M), 1366 (S), 1338 (W), 1268 (VS), 1211 (M), 1162 (S), 1133 (VS), 

1100 (VS), 1088 (VS), 1041 (S), 1017 (VS), 987 (S), 933 (M), 919 (M), 854 (M), 833 (S), 808 

(M), 776 (S), 752 (S), 726 (VS), 708 (S), 685 (VS). 
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MS (EI, 70 eV): m/z (%) = 535 (11), 395 (39), 394 (70), 350 (20), 349 (66), 348 (100), 321 (26), 

320 (33), 294 (36), 292 (37), 249 (20), 248 (58), 247 (22), 246 (23), 222 (18), 77 (27). 

HRMS (C29H26FNO6S): calc.: 535.1465; found: 535.1462. 

 

2-[1-Benzenesulfonyl-5-fluoro-3-(4-trimethylsilanyl-phenyl)-1H-indol-2-ylmethyl]-acrylic 

acid ethyl ester (43c) 

 
(4-(trimethylsilyl)phenyl)magnesium chloride/lithium chloride was prepared from (4-

bromophenyl)trimethylsilane (138 mg, 0.6 mmol) by magnesium insertion.140 Magnesium 

turnings (36 mg, 1.5 mmol) and LiCl (32 mg, 0.75 mmol) were placed in a Schlenk-flask, 

equipped with a magnestic stirrer and a septum, dried for 5 min at 250 °C in high vacuum and 

then dissolved in dry THF (1.2 mL). (4-Bromophenyl)trimethylsilane (138 mg, 0.6 mmol) was 

added and the reaction mixture was stirred until GC analysis of a quenched reaction aliquot 

showed complete conversion. Then, ZnCl2 (0.66 mL, 0.66 mmol, 1.0 M in THF) was added and 

stirred for 5 min. The title compound was subsequently prepared according to TP8 from (4-

(trimethylsilyl)phenyl)zinc chloride/lithium chloride, 42 (257 mg, 0.5 mmol) and PEPPSI-iPr 

(10 mg, 3 mol%) at 23 °C in 2 h. Flash column chromatographical purification on silica gel 

(isohexane:EtOAc = 9:1) afforded 43c (168 mg, 0.31 mmol, 63%) as a brown solid. 

 

Mp.: 127-128 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.25 (dd, J = 8.9 Hz, J = 4.4 Hz, 1H), 7.82 – 7.76 (m, 

2H), 7.62 – 7.53 (m, 3H), 7.48 – 7.41 (m, 2H), 7.33 – 7.28 (m, 2H), 7.16 – 7.05 (m, 2H), 6.28 – 

6.25 (m, 1H), 5.28 – 5.24 (m, 1H), 4.28 (q, J = 7.0 Hz, 2H), 4.05 (t, J = 1.7 Hz, 2H), 1.35 (t, 

J = 7.1 Hz, 3H), 0.31 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 166.4, 160.2 (d, J = 241.3 Hz), 140.3, 138.9, 138.6, 

134.8, 133.9, 133.8, 133.0 (d, J = 0.9 Hz), 132.3, 131.1 (d, J = 9.5 Hz), 129.3, 128.3, 126.5, 

125.3, 125.2 (d, J = 4.0 Hz), 116.2 (d, J = 9.3 Hz), 112.7 (d, J = 25.1 Hz), 105.5 (d, J = 24.3 Hz), 

61.0, 28.7, 14.2, -1.2. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 1719 (S), 1462 (M), 1446 (M), 1378 (M), 1362 (M), 1248 

(S), 1183 (M), 1160 (S), 1148 (S), 1123 (M), 1090 (M), 1035 (S), 1017 (M), 987 (M), 965 (M), 

876 (S), 855 (S), 841 (S), 825 (VS), 818 (VS),757 (S), 745 (M), 724 (VS), 683 (VS). 

MS (EI, 70 eV): m/z (%) = 535 (12), 396 (11), 395 (43), 394 (91), 350 (14), 349 (28), 348 (34), 

334 (24), 320 (36), 302 (31), 294 (29), 276 (52), 248 (39). 

HRMS (C29H30FNO4SSi): calc.: 535.1649; found: 535.1646. 

 

                                                      
140a) F. M. Piller, P. Appukkuttan, A. Gavryushin, M. Helm, P. Knochel, Angew. Chem. 2008, 120, 6907; 

Angew. Chem. Int. Ed. 2008, 47, 6802; b) F. M. Piller, A. Metzger, M. A. Schade, B. A. Haag, A. 
Gavryushin, P. Knochel, Chem Eur. J. 2009, 15, 7192. 
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3.5 Synthesis of compounds 45, 52, 55, 58, 62 

N-(3-Bromopyridin-2-ylbenzenesulfonamide 

 
The title compound was prepared according to TP1 from 2-amino-3-bromopyridine (44) 

(5.0 mmol). Benzenesulfonyl chloride (1.06 g, 6.0 mmol) was added to a solution of 2-amino-3-

bromopyridine (865 mg, 5.0 mmol) and pyridine (1.19 g, 1.2 mL, 15.0 mmol) in dichloromethane 

(5 mL) at 23 °C, and the reaction mixture was stirred at 23 °C for 72 h. Flash column 

chromatographical purification on silica gel (isohexane:EtOAc = 8:2→1:9) afforded N-(3-

bromopyridin-2-ylbenzenesulfonamide (1.25 g, 4.0 mmol, 80%) as a white solid. 

 

Mp.: 148-150 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.20 – 8.05 (m, 3H), 7.76 (dd, J = 7.9 Hz, J = 1.2 Hz, 

1H), 7.62 – 7.46 (m, 3H), 6.78 (dd, J = 7.6 Hz, J = 4.8 Hz, 1H). 
13C-NMR (75 MHz, CDCl3): δ / ppm =141.1, 139.8, 134.1, 133.2, 129.3, 128.6, 128.3, 126.7, 

123.5. 

MS (EI, 70 eV): m/z (%) = 312 (1), 249 (100), 168 (8), 77 (29). 

HRMS (C16H17BrN2O2SSi): calc.: 311.9568; found: 311.9566. 

 

N-(3-Bromo-pyridin-2-yl)-N-trimethylsilanylethynyl-benzenesulfonamide(45) 

 
The title compound was prepared according to TP2 from N-(3-bromopyridin-2-

yl)benzenesulfonylamide (5.0 mmol). Under argon, KHMDS (10 mL, 5.0 mmol, 0.5 M in 

toluene) was added to a solution of N-(3-bromopyridin-2-yl)benzenesulfonylamide (1.57 g, 

5.0 mmol) in toluene (50 mL) at 0 °C. After 1 h, phenyl((trimethylsilyl)ethynyl)iodonium triflate 

(2.7 g, 6.0 mmol) was added in several portions. The resulting mixture was stirred for 16 h at 

23 °C. Flash column chromatographical purification on silica gel (isohexane:EtOAc = 7:3) 

afforded N-(3-bromo-pyridin-2-yl)-N-trimethylsilanylethynyl-benzenesulfonamide (45; 1.68 g, 

4.1 mmol, 82%) as a brown solid. 

 

Mp.: 115-117 °C. 
1H-NMR (600 MHz, CDCl3): δ / ppm = 8.40 (dd, J = 4.5 Hz, J = 1.8 Hz, 1H), 8.04 – 8.00 (m, 

3H), 7.70 – 7.66 (m, 1H), 7.59 – 7.55 (m, 2H), 7.22 (dd, J = 7.9 Hz, J = 4.6 Hz, 1H), 0.11 (s, 9H). 
13C-NMR (150 MHz, CDCl3): δ / ppm = 149.5, 147.8, 143.1, 137.3, 134.0, 129.1, 128.7, 125.5, 

120.5, 92.4, 75.1, -0.1. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2163 (M), 1448 (M), 1416 (M), 1377 (S), 1249 (M), 1245 

(M), 1183 (S), 1170 (S), 1089 (M), 1063 (M), 1028 (S), 933 (M), 839 (VS), 814 (S), 774 (M), 

760 (S), 751 (S), 737 (VS), 715 (S), 681 (VS), 665 (S). 
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MS (EI, 70 eV): m/z (%) = 411 (10), 410 (41), 408 (41), 395 (27), 395 (25), 346 (31), 345 (29), 

344 (32), 343 (20), 331 (51), 329 (52), 239 (17), 167 (34), 139 (29), 135 (100). 

HRMS (C16H17BrN2O2SSi):calc.: 407.9963; found: 407.9977. 

 

N-(2-Bromopyridin-3-yl)benzenesulfonamide 

 
The title compound was prepared according to TP1 from 3-amino-2-bromopyridine (51) 

(5.0 mmol). Benzenesulfonyl chloride (1.06 g, 6.0 mmol) was added to a solution of 3-amino-2-

bromopyridine (865 mg, 5.0 mmol) and pyridine (1.19 g, 1.2 mL, 15.0 mmol) in dichloromethane 

(5 mL) at 0 °C, and the reaction mixture was stirred at 23 °C for 1 h. Flash column 

chromatographical purification on silica gel (isohexane:EtOAc = 8:2→7:3) afforded N-(2-

bromopyridin-3-yl)benzenesulfonamide (1.19 g, 3.8 mmol, 76%) as a brown solid. 

 

Mp.: 113-115 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.11 (dd, J = 4.7 Hz, J = 1.7 Hz, 1H), 7.98 (dd, 

J = 8.2 Hz, J = 1.8 Hz, 1H), 7.81 – 7.76 (m, 2H), 7.63 – 7.56 (m, 1H), 7.52 – 7.44 (m, 2H), 7.26 

(dd, J = 8.0 Hz, J = 4.7 Hz, 1H), 7.03 (sbr, 1H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 146.0, 138.5, 135.6, 133.7, 132.6, 129.9, 129.3, 127.2, 

123.6.  

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3062 (W), 1564 (W), 1447 (M), 1438 (S), 1376 (W), 

1328 (S), 1307 (W), 1293 (W), 1276 (W), 1234 (W), 1202 (W), 1192 (W), 1163 (S), 1122 (M), 

1090 (M), 1072 (M), 1057 (M), 1022 (W), 976 (W), 949 (W), 897 (M), 835 (W), 791 (M), 752 

(M), 735 (VS), 719 (S), 686 (VS). 

MS (EI, 70 eV): m/z (%) = 314 (28), 312 (22), 168 (18), 92 (14), 78 (11), 77 (73), 61 (15), 45 

(14). 

HRMS (C11H9BrN2O2S): calc.:311.9568; found: 311.9564. 

 

N-(2-Bromo-pyridin-3-yl)-N-((trimethylsilyl)ethynyl)-benzenesulfonamide (52) 

 
The title compound was prepared according to TP2 from N-(2-bromopyridin-3-

yl)benzenesulfonamide (14.1 mmol). Under argon, KHMDS (28.2 mL, 14.1 mmol, 0.5 M in 

toluene) was added to a solution of N-(2-bromopyridin-3-yl)benzenesulfonamide (4.44 g, 

14.1 mmol) in toluene (140 mL) at 0 °C. After 1 h, phenyl((trimethylsilyl)ethynyl)iodonium 

triflate (6.98 g, 15.5 mmol) was added in several portions. The resulting mixture was stirred for 

16 h at 23 °C. Flash column chromatographical purification on silica gel 

(isohexane:EtOAc = 8:2→7:3) afforded N-(2-bromo-pyridin-3-yl)-N-((trimethylsilyl)-ethynyl)-

benzenesulfonamide (52; 4.27 g, 10.4 mmol, 74%) as an orange solid. 

Mp.: 93-95 °C. 



C. EXPERIMENTAL SECTION 

 
100 

1H-NMR (300 MHz, CDCl3): δ / ppm = 8.39 (dd, J = 4.7 Hz, J = 1.9 Hz, 1H), 7.91 – 7.85 (m, 

2H), 7.76 – 7.67 (m, 2H), 7.62 – 7.54 (m, 2H), 7.37 -7.32 (m, 1H), 0.17 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 150.1, 142.3, 139.0, 136.8, 134.6, 134.4, 129.9, 128.6, 

123.2, 92.6, 74.8, -0.1. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2952 (VW), 2164 (M), 1561 (W), 1445 (M), 1400 (M), 

1372 (M), 1330 (W), 1306 (W), 1297 (W), 1263 (W), 1253 (M), 1188 (M), 1174 (S), 1157 (M), 

1117 (W), 1087 (M), 1059 (M), 1018 (W), 916 (W), 841 (VS), 810 (S), 758 (M), 732 (VS), 713 

(S), 685 (S), 666 (S). 

MS (EI, 70 eV): m/z (%) = 410 (24), 408 (22), 396 (15), 395 (58), 392 (55), 199 (21), 187 (17), 

145 (18), 139 (49), 137 (48), 135 (100), 77 (44). 

HRMS (C16H17BrN2O2SSi): calc.:407.9963; found: 407.9957. 

 

N-(2,6-Dibromopyridin-3-yl)benzenesulfonamide 

 
The title compound was prepared according to TP1 from 3-amino-2,6-dibromopyridine (56) 

(2.3 mmol). Benzenesulfonyl chloride (495 mg, 2.8 mmol) was added to a solution of 3-amino-

2,6-dibromopyridine (581 mg, 2.3 mmol) and pyridine (546 mg, 0.56 mL, 6.9 mmol) in 

dichloromethane (2.3 mL) at 0 °C, and the reaction mixture was stirred at 23 °C for 12 h. Flash 

column chromatographical purification on silica gel (isohexane:EtOAc = 7:3) afforded N-(2,6-

dibromopyridin-3-yl)benzenesulfonamide (616 mg, 1.5 mmol, 65%) as a brown solid. 

 

Mp.: 122-124 °C. 
1H-NMR (300 MHz, CD3OD): δ / ppm = 7.86 (d, J = 8.6 Hz, 1H), 7.81 – 7.74 (m, 2H), 7.64 – 

7.58 (m, 1H), 7.55 – 7.47 (m, 2H), 7.42 (d, J = 7.7 Hz, 1H), 6.94 (sbr, 1H). 
13C-NMR (75 MHz, CD3OD): δ / ppm = 138.3, 135.4, 134.0, 132.3, 131.9, 129.5, 129.1, 128.0, 

127.1. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3263 (W), 1543 (W), 1534 (W), 1448 (M), 1438 (S), 

1415 (M), 1378 (M), 1363 (M), 1337 (W), 1313 (M), 1268 (M), 1248 (W), 1226 (M), 1168 (S), 

1149 (S), 1117 (M), 1089 (S), 1063 (M), 1050 (S), 1023 (M), 1000 (W), 970 (W), 890 (S), 834 

(S), 821 (M), 773 (M), 750 (S), 725 (S), 720 (VS), 710 (S), 682 (VS). 

MS (EI, 70 eV): m/z (%) = 394 (30), 392 (57), 389 (27), 253 (16), 251 (38), 249 (18), 77 (100). 

HRMS (C11H8Br2N2O2S): calc.: 389.8673; found: 389.8668. 

 

N-(2,6-Dibromopyridin-3-yl)-N-((trimethylsilyl)ethynyl)-benzenesulfonamide (55) 

 
The title compound was prepared according to TP2 from N-(2,6-dibromopyridin-3-

yl)benzenesulfonamide (2.5 mmol). Under argon, KHMDS (3.57 mL, 2.5 mmol, 0.7 M in 

toluene) was added to a solution of N-(2,6-dibromopyridin-3-yl)benzenesulfonamide (980 mg, 
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2.5 mmol) in toluene (25 mL) at 0 °C. After 1 h, phenyl((trimethylsilyl)ethynyl)iodonium triflate 

(1.35 g, 3.0 mmol) was added in several portions. The resulting mixture was stirred for 16 h at 

23 °C. Flash column chromatographical purification on silica gel (isohexane:EtOAc = 8:2) 

afforded the pyridine 55 (760 mg, 1.56 mmol, 62%) as a yellow solid. 

 

Mp.: 115-117 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.86 – 7.83 (m, 2H), 7.73 – 7.69 (m, 1H), 7.59 – 7.55 

(m, 2H), 7.53 – 7.48 (m, 2H), 0.14 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 141.1, 140.6, 140.6, 136.6, 134.6, 134.2, 129.2, 128.5, 

127.8, 92.0, 75.1, -0.1. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2169 (M), 1536 (W), 1447 (W), 1415 (S), 1377 (S), 1337 

(M), 1250 (M), 1168 (S), 1116 (W), 1087 (M), 1054 (M), 914 (W), 840 (VS), 777 (M), 755 (S), 

737 (S), 721 (VS), 686 (S), 671 (S). 

MS (EI, 70 eV): m/z (%) = 488 (9), 475 (15), 473 (26), 333 (25), 199 (21), 139 (32), 137 (33), 

135 (100), 77 (41), 73 (43). 

HRMS (C16H16Br2N2O2SSi): calc.: 485.9069; found: 485.9058. 

 

N-(3,5-Dibromo-pyridin-4-yl)-benzenesulfonamide 

 
4-Amino-3,5-dibromopyridine (1.26 g, 5.0 mmol) was dissolved in THF (10 mL) and cooled to 

0 °C. NaH (400 mg, 10.0 mmol, 60% in mineral oil) was added and the reaction mixture was 

stirred at 0 °C for 0.5 h. Benzenesulfonyl chloride (883 mg, 5.0 mmol) was added and the 

reaction mixture was allowed to warm slowly to 23 °C within 2 h. The reaction mixture was 

quenched with concentrated aqueous NH4Cl-solution, extracted three times with EtOAc, the 

organic layers dried (MgSO4) and concentrated in vacuo. Flash column chromatographical 

purification on silica gel (isohexane:EtOAc = 8:2→1:1) afforded N-(2,6-dibromopyridin-3-

yl)benzenesulfonamide (1.2 g, 3.06 mmol, 51%) as a yellow solid. 

 

Mp.: 37-40 °C. 
1H-NMR (400 MHz, DMSO-d6): δ / ppm = 10.60 (sbr, 1H), 8.74 (s, 2H), 7.83 – 7.73 (m, 2H), 

7.72 – 7.63 (m, 1H), 7.63 – 7.54 (m, 2H). 
13C-NMR (100 MHz, DMSO-d6): δ / ppm = 152.1, 142.6, 142.3, 133.5, 129.7, 127.1, 123.6. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3404 (VW), 3074 (W), 2924 (W), 2849 (W), 2814 (W), 

2716 (W), 2631 (W), 2257 (W), 1729 (W), 1583 (W), 1568 (W), 1549 (W), 1527 (W), 1478 (W), 

1447 (M), 1395 (M), 1368 (W), 1344 (S), 1316 (M), 1311 (M), 1295 (W), 1259 (M), 1225 (M), 

1213 (M), 1180 (M), 1166 (S), 1160 (S), 1147 (S), 1093 (S), 1075 (M), 1065 (M), 1051 (M), 

1024 (M), 1005 (M), 996 (M), 971 (M), 920 (S), 885 (S), 856 (W), 821 (M), 763 (S), 751 (S), 

726 (S), 691 V(S). 

MS (EI, 70 eV): m/z (%) = 392 (11), 390 (5), 313 (18), 311 (16), 142 (6), 77 (100). 

HRMS (C11H8Br2N2O2S): calc.: 389.8673; found: 389.8663. 
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N-(3,5-Dibromo-pyridin-4-yl)-N-trimethylsilanylethynyl-benzenesulfonamide (58) 

 
The title compound was prepared according to TP2 from N-(3,5-dibromo-pyridin-4-yl)-

benzenesulfonamide (3.0 mmol). Under argon, KHMDS (4.3 mL, 3.0 mmol, 0.7 M in toluene) 

was added to a solution of N-(3,5-dibromo-pyridin-4-yl)-benzenesulfonamide (1.18 g, 3.0 mmol) 

in toluene (30 mL) at 0 °C. After 1 h, phenyl((trimethylsilyl)ethynyl)iodonium triflate (1.58 g, 

3.5 mmol) was added in several portions. The resulting mixture was stirred for 16 h at 23 °C. 

Flash column chromatographical purification on silica gel (isohexane:EtOAc = 9:1→8:2) 

afforded the pyridine 58 (497 mg, 1.0 mmol, 34%) as a yellow solid. 

 

Mp.: 78-80 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.70 (s, 2H), 8.00 – 7.93 (m, 2H), 7.75 – 7.66 (m, 1H), 

7.61 – 7.52 (m, 2H), 0.16 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 152.3, 143.5, 137.6, 134.5, 129.0, 128.8, 123.0, 91.0, 

75.7, -0.1. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2955 (VW), 2164 (M), 1583 (VW), 1551 (VW), 1524 

(VW), 1479 (VW), 1449 (M), 1440 (M), 1394 (W), 1386 (M), 1372 (S), 1356 (W), 1336 (W), 

1314 (W), 1289 (VW), 1248 (M), 1226 (W), 1217 (W), 1198 (W), 1187 (M), 1171 (M), 1129 

(W), 1088 (M), 1073 (W), 1063 (W), 1022 (VW), 999 (W), 930 (W), 919 (W), 888 (W), 881 

(W), 841 V(S), 760 (S), 751 (S), 730 (S), 725 (S), 694 (S), 683 (S), 652 (M). 

MS (EI, 70 eV): m/z (%) = 490 (11), 488 (20), 486 (10), 476 (13), 475 (52), 474 (20), 473 (100), 

471 (48), 333 (11), 139 (26), 137 (25), 135 (76), 77 (56), 73 (37).  

HRMS (C16H16Br2N2O2SSi): calc.: 485.9069; found: 485.9064. 

 

N-(2,6-dichloropyrimidin-4-yl)benzenesulfonamide  

 
4-Amine-2,6-dichloropyrimidine (1.64 g, 10.0 mmol) was dissolved in THF (10 mL) and cooled 

to 0 °C. NaH (800 mg, 20.0 mmol, 60% in mineral oil) was added in one portion and the reaction 

mixture was stirred at 0 °C for 1 h. Benzenesulfonyl chloride (1.766 g, 10.0 mmol) was added 

and the reaction mixture was allowed to warm slowly to room temperature and stirred for 1 h. 

The reaction mixture was quenched with concentrated aqueous NaCl-solution. The organic layer 

was separated and aqueous phase extracted three times with EtOAc. Organic layers were dried 

over Na2SO4 and concentrated in vacuo. Flash column chromatographical purification on silica 

gel (gradient from isohexane:EtOAc:DCM:NEt3 = 3:6.5:0.3:0.2 -> 0:9.5:0.3:0.2) afforded N-(2,6-

dichloropyrimidin-4-yl)benzenesulfonamide (2.43 g, 8.0 mmol, 80%) as a white solid. 

 

Mp.: 78-80 °C. 
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1H-NMR (400 MHz, DMSO-d6): δ / ppm = 7.96 – 7.89 (m, 2H), 7.65 – 7.53 (m, 3H), 6.82 (s, 

1H). 
13C-NMR (100 MHz, DMSO-d6): δ / ppm = 163.2, 159.6, 158.8, 141.4, 133.1, 129.3, 127.6, 

106.5. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2988 (W), 2674 (W), 2628 (W), 2484 (W), 1556 (S), 

1503 (M), 1492 (M), 1484 (M), 1475 (M), 1456 (M), 1443 (M), 1424 (M), 1416 (M), 1397 (M), 

1360 (M), 1354 (M), 1347 (S), 1317 (W), 1302 (W), 1291 (M), 1273 (S), 1201 (M), 1172 (W), 

1138 (S), 1119 (S), 1099 (W), 1085 (VS), 1069 (M), 1033 (VS), 998 (W), 991 (W), 968 (M), 924 

(W), 849 (VS), 836 (M), 825 (VS), 820 (S), 795 (M), 754 (M), 748 (M), 714 (S), 692 (S), 667 

(W), 657 (W). 

MS (EI, 70 eV): m/z (%) = 303 (1), 249 (12), 247 (11), 246 (61), 244 (91), 206 (8), 141 (10), 77 

(100). 

HRMS (C10H7Cl2N3O2S): calc.: 302.9636; found: 302.9623. 

 

N-(2,6-dichloropyrimidin-4-yl)-N-((trimethylsilyl)ethynyl)benzenesulfonamide (62) 

 
To a solution of N-(2,6-dichloropyrimidin-4-yl)benzenesulfonamide (1.52 g, 5.0 mmol) in 

toluene (50 mL) at 0 °C under an argon atmosphere was slowly added KHMDS (7.86 mL, 

5.5 mmol, 0.7 M solution in toluene). After 1 h, phenyl[(trimethylsilyl)ethynyl]iodoniumtriflate141 

(2.7 g, 6.0 mmol) was added in several portions. The resulting mixture was allowed to warm up 

to 23 °C and stirred for further 16 h. The reaction mixture was filtered through a plug of silica gel 

and washed with EtOAc. The crude residue was purified by flash column chromatography on 

silica gel (isohexane:EtOAc = 9:1) to afford the ynamide 62 (1.0 g , 2.5 mmol, 25%) as an 

colorless solid. 

 

M.p.: 52-54 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.30 – 8.25 (m, 2H), 7.73 – 7.66 (m, 1H), 7.68 (s, 1H), 

7.63 – 7.56 (m, 2H), 0.41 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 162.7, 160.5, 137.4, 135.1, 133.9, 129.7, 128.9, 107.1, 

87.8, 83.3, -0.2. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3066 (W), 2957 (W), 2922 (W), 2916 (W), 2850 (W), 

1748 (M), 1625 (M), 1605 (W), 1583 (W), 1549 (S), 1529 (S), 1448 (M), 1412 (M), 1371 (M), 

1333 (M), 1280 (M), 1250 (S), 1219 (M), 1209 (M), 1182 (S), 1169 (S), 1124 (S), 1085 (S), 1071 

(M), 1034 (M), 1016 (M), 1001 (M), 995 (S), 983 (S), 975 (S), 836 (VS), 811 (S), 753 (S), 727 

(S), 719 (S), 683 (S), 670 (M), 660 (M). 

MS (EI, 70 eV): m/z (%) = 399 (3), 384 (15), 364 (5), 320 (10), 167 (9), 135 (19), 95 (10), 77 

(57). 

HRMS (C15H15Cl2N3O2SSi):calc.: 399.0031; found: 399.0031. 

                                                      
141Prepared according to literature procedure: K. Tanaka, K. Takeishi, Synthesis 2007, 2920. 
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3.6 Synthesis of compounds of type 47 

1-Benzenesulfonyl-3-trimethylsilanyl-1H-pyrrolo[2,3-b]pyridine (47a) 

 
The title compound was prepared from the ynamide 45 (409 mg, 1.0 mmol). A Br/Mg-exchange 

was performed according to TP3 with i-PrMgCl·LiCl (0.87 mL, 1.27 M, 1.1 mmol, 1.1 equiv) at 

˗45 °C within 1.0 h (0.5 M). After addition of THF (8 mL), a CuCN·2LiCl (1.0 mL, 100 mol%) 

mediated cyclization according to TP5 at 50 °C in 1 h was performed. The reaction mixture was 

quenched with concentrated aqueous NH4Cl/NH3-solution (19:1), extracted three times with 

EtOAc, the organic layers dried (MgSO4) and concentrated in vacuo. Flash column 

chromatographical purification on silica gel (isohexane:EtOAc = 8:2) afforded the 7-azaindole 

47a (263 mg, 0.79 mmol, 79%) as a colorless solid. 

 

Mp.: 128-130 °C. 
1H-NMR (600 MHz, CDCl3): δ / ppm = 8.39 (dd, J = 4.8 Hz, J = 1.5 Hz, 1H), 8.24 – 8.21 (m, 

2H), 7.86 (dd, J = 7.8 Hz, J = 1.5 Hz, 1H), 7.66 (s, 1H), 7.58 – 7.54 (m, 1H), 7.50 – 7.46 (m, 2H), 

7.15 (dd, J = 7.8 Hz, J = 4.8 Hz, 1H), 0.33 (s, 9H). 
13C-NMR (150 MHz, CDCl3): δ / ppm = 148.7, 144.5, 138.5, 133.9, 131.3, 130.2, 128.9, 128.1, 

126.7, 118.6, 115.0, -0.8. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3142 (VW), 2955 (VW), 1584 (W), 1570 (W), 1502 (M), 

1469 (W), 1448 (W), 1392 (M), 1364 (S), 1350 (M), 1314 (W), 1281 (M), 1248 (M), 1191 (M), 

1173 (S), 1166 (S), 1154 (S), 1093 (M), 1072 (W), 1057 (W), 1024 (VW), 947 (S), 838 (VS), 

816 (M), 797 (S), 769 (M), 755 (VS), 730 (VS), 707 (M), 688 (VS). 

MS (EI, 70 eV): m/z (%) = 331 (23), 330 (43), 315 (91), 251 (43), 199 (20), 175 (56), 147 (15), 

110 (20), 85 (19), 78 (21), 77 (37), 69 (19), 58 (22). 

HRMS (C16H18N2O2SSi): calc.: 330.0858; found: 330.0862. 

 

2-(1-Benzenesulfonyl-3-trimethylsilanyl-1H-pyrrolo[2,3-b]pyridine-2-ylmethyl)-acrylic acid 

ethyl ester (47b) 

 
The title compound was prepared from the ynamide 45 (409 mg, 1.0 mmol). A Br/Mg-exchange 

was performed according to TP3 with i-PrMgCl·LiCl (0.87 mL, 1.27 M, 1.1 mmol, 1.1 equiv) at 

˗45 °C within 1.0 h (0.5 M). After addition of THF (8 mL), a CuCN·2LiCl (1.0 mL, 100 mol%) 

mediated cyclization according to TP5 at 50 °C in 1 h and a subsequent allylation reaction was 

performed according to TP6 using ethyl 2-(bromomethyl)acrylate (173 mg, 0.9 mmol) at -20 °C. 

The reaction mixture was allowed to warm slowly to 23 °C within 12 h. Flash column 
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chromatographical purification on silica gel (isohexane:EtOAc = 8:2) afforded the 7-azaindole 

47b (337 mg, 0.76 mmol, 84%) as a yellow oil. 

 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.37 (dd, J = 4.7 Hz, J = 1.7 Hz, 1H), 8.24 – 8.19 (m, 

2H), 7.90 (dd, J = 8.0 Hz, J = 1.7 Hz, 1H), 7.59 – 7.52 (m, 1H), 7.49 – 7.42 (m, 2H), 7.14 (dd, 

J = 8.0 Hz, J = 4.7 Hz, 1H), 6.27 – 6.25 (m, 1H), 5.10 – 5.07 (m, 1H), 4.34 (q, J = 7.0 Hz,2H), 

4.26 (sbr, 2H), 1.39 (t, J = 7.0 Hz,3H), 0.36 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 166.5, 149.7, 143.6, 143.1, 139.7, 139.2, 133.7, 129.3, 

128.6, 128.4, 125.5, 125.0, 118.6, 114.6, 61.0, 30.8, 14.2, 0.7. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 1712 (M), 1447 (M), 1401 (M), 1368 (S), 1249 (M), 1191 

(S), 1165 (S), 1132 (S), 1087 (M), 949 (M), 927 (S), 913 (M), 836 (VS), 797 (S), 771 (S), 756 

(S), 730 (VS), 704 (S), 682 (VS). 

MS (EI, 70 eV): m/z (%) = 442 (8), 428 (11), 427 (37), 353 (16), 302 (28), 301 (100), 256 (37), 

255 (22), 241 (77), 199 (13), 183 (29), 155 (16), 73 (39). 

HRMS (C22H26N2O4SSi): calc.: 442.1383; found: 442.1379. 

 

1-Benzenesulfonyl-3-trimethylsilanyl-1H-pyrrolo[2,3-b]pyridine-2-yl)-furan-2-yl-

methanone (47c) 

 
The title compound was prepared from the ynamide 45 (409 mg, 1.0 mmol). A Br/Mg-exchange 

was performed according to TP3 with i-PrMgCl·LiCl (0.87 mL, 1.27 M, 1.1 mmol, 1.1 equiv) at 

˗45 °C within 1.0 h (0.5 M). After addition of THF (8 mL), a CuCN·2LiCl (1.0 mL, 100 mol%) 

mediated cyclization according to TP5 at 50 °C in 1 h and a subsequent acylation reaction was 

performed according to TP6 using furoyl chloride (130 mg, 0.9 mmol) at 0 °C. The reaction 

mixture was allowed to warm slowly to 23 °C within 12 h. Flash column chromatographical 

purification on silica gel (isohexane:EtOAc = 8:2) afforded the 7-azaindole 47c (263 mg, 

0.62 mmol, 69%) as an orange solid. 

 

Mp.: 188-190 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.51 (dd, J = 4.8 Hz, J = 1.5 Hz, 1H), 8.43 – 8.25 (m, 

2H), 7.98 (dd, J = 8.0 Hz, J = 1.7 Hz, 1H), 7.70 (dd, J = 1.7 Hz, J = 0.6 Hz, 1H), 7.60 – 7.53 (m, 

1H), 7.52 – 7.45 (m, 2H), 7.22 (dd, J = 8.0 Hz, J = 4.7 Hz, 1H), 7.17 (dd, J = 3.6 Hz, J = 0.6 Hz, 

1H), 6.62 (dd, J = 3.6 Hz, J = 1.9 Hz, 1H), 0.21 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 177.7, 153.7, 148.7, 147.7, 145.7, 139.8, 137.9, 134.1, 

131.1, 128.8, 128.5, 125.7, 120.6, 119.2, 116.5, 112.8, 0.0. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 1650 (S), 1572 (W), 1563 (W), 1499 (W), 1464 (M), 

1449 (W), 1389 (M), 1366 (S), 1327 (M), 1281 (W), 1246 (S), 1188 (S), 1174 (S), 1158 (M), 

1122 (W), 1095 (M), 1083 (W), 1075 (W), 1048 (W), 1021 (M), 975 (S), 949 (M), 909 (M), 883 

(W), 835 (VS), 794 (S), 778 (S), 774 (VS), 754 (VS), 728 (VS), 683 (S). 



C. EXPERIMENTAL SECTION 

 
106 

MS (EI, 70 eV): m/z (%) = 424 (5), 409 (17), 270 (24), 269 (100), 268 (18), 215 (24), 212 (93), 

155 (15), 144 (44), 135 (36), 117 (21), 116 (23), 77 (26). 

HRMS (C21H20N2O4SSi): calc.: 424.0913; found: 424.0909. 

 

1-Benzenesulfonyl-3-trimethylsilanyl-1H-pyrrolo[2,3-b]pyridine-2-yl)-cyclopropyl-

methanone (47d) 

 
The title compound was prepared from the ynamide 45 (409 mg, 1.0 mmol). A Br/Mg-exchange 

was performed according to TP3 with i-PrMgCl·LiCl (0.87 mL, 1.27 M, 1.1 mmol, 1.1 equiv) at 

˗45 °C within 1.0 h (0.5 M). After addition of THF (8 mL), a CuCN·2LiCl (1.0 mL, 100 mol%) 

mediated cyclization according to TP5 at 50 °C in 1 h and a subsequent acylation reaction was 

performed according to TP6 using cyclopropanecarbonyl chloride (105 mg, 0.9 mmol) at 0 °C. 

The reaction mixture was allowed to warm slowly to 23 °C within 12 h. Flash column 

chromatographical purification on silica gel (isohexane:EtOAc = 8:2) afforded the 7-azaindole 

47d (303 mg, 0.76 mmol, 84%) as an colorless solid. 

 

Mp.: 123-125 °C. 
1H-NMR (400 MHz, CDCl3): δ / ppm = 8.45 (dd, J = 4.8 Hz, J = 1.7 Hz, 1H), 8.11 – 8.05 (m, 

2H), 7.94 (dd, J = 8.0 Hz, J = 1.6 Hz, 1H), 7.54 – 7.48 (m, 1H), 7.45 – 7.38 (m, 2H), 7.16 (dd, 

J = 8.0 Hz, J = 4.7 Hz, 1H), 2.52 – 2.44 (m, 1H), 1.50 – 1.44 (m, 2H), 1.30 – 1.23 (m, 2H), 0.34 

(s, 9H). 
13C-NMR (100 MHz, CDCl3): δ / ppm = 200.1, 149.2, 145.7, 144.2, 137.5, 134.0, 131.4, 128.7, 

128.2, 126.1, 119.3, 116.6, 24.9, 15.0, 0.3. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2163 (W), 1677 (W), 1447 (W), 1416 (M), 1377 (S), 

1250 (M), 1182 (S), 1170 (S), 1123 (W), 1089 (M), 1064 (W), 1046 (W), 1028 (M), 1007 (M), 

951 (W), 933 (W), 839 (VS), 814 (S), 798 (M), 774 (M), 757 (S), 751 (S), 737 (S), 727 (M), 715 

(M), 698 (M), 682 (S), 666 (M). 

MS (EI, 70 eV): m/z (%) = 399 (3), 398 (9), 385 (13), 384 (31), 383 (100), 319 (18), 243 (25), 

242 (56), 241 (15), 227 (41), 77 (15). 

HRMS (C20H22N2O3SSi): calc.: 398.1120; found: 398.1117. 

 

3.7 Synthesis of compounds of type 48 

2-(1-Benzenesulfonyl-3-iodo-1H-pyrrolo[2,3-b]pyridine-2-ylmethyl)-acrylic acid ethyl ester 

(48a) 

N N

SO2Ph

CO2Et

I
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The title compound was prepared according to TP7 from 47b (1.1 g, 2.5 mmol) and iodine 

monochloride (447 mg, 2.75 mmol). Flash column chromatographical purification on silica gel 

(isohexane:EtOAc = 8:2) afforded the 7-azaindole 48a (942 mg, 1.90 mmol, 76%) as a yellow 

solid. 

 
1H-NMR (400 MHz, CDCl3): δ / ppm = 8.45 (dd, J = 4.8 Hz, J = 1.7 Hz, 1H), 8.22 – 8.18 (m, 

2H), 7.66 (dd, J = 7.8 Hz, J = 1.7 Hz, 1H), 7.60 – 7.55 (m, 1H), 7.50 – 7.44 (m, 2H), 7.26 (dd, 

J = 7.9 Hz, J = 4.8 Hz, 1H), 6.28 – 6.25 (m, 1H), 5.10 – 5.08 (m, 1H), 4.34 (q, J = 7.2 Hz, 2H), 

4.30 (t, J = 1.8 Hz, 2H), 1.39 (t, J = 7.2 Hz, 3H). 
13C-NMR (100 MHz, CDCl3): δ / ppm = 166.4, 148.2, 145.5, 138.7, 138.5, 136.9, 134.1, 129.6, 

128.8, 128.4, 125.0, 124.1, 119.8, 70.9, 61.2, 31.5, 14.3.  

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2981 (W), 1711 (S), 1689 (M), 1673 (W), 1638 (W), 

1604 (W), 1574 (W), 1544 (W), 1471 (W), 1449 (M), 1408 (M), 1391 (M), 1377 (S), 1363 (M), 

1294 (S), 1261 (S), 1189 (S), 1169 (S), 1144 (S), 1116 (M), 1089 (S), 1061 (S), 1042 (M), 998 

(W), 976 (W), 957 (M), 946 (M), 926 (M), 840 (M), 817 (W), 793 (M), 766 (S), 760 (S), 726 

(VS), 695 (S), 687 (S). 

MS (EI, 70 eV): m/z (%) = 496 (6), 356 (19), 355 (100), 229 (19), 228 (59), 100 (17), 199 (31), 

156 (21), 155 (50). 

HRMS (C19H17IN2O4S): calc.: 495.9954; found:495.9946. 

 

(1-Benzenesulfonyl-3-iodo-1H-pyrrolo[2,3-b]pyridin-2-yl)-cyclopropyl-methanone (48b) 

 
The title compound was prepared according to TP7 from 47d (833 mg, 2.09 mmol) and iodine 

monochloride (373 mg, 2.3 mmol). Flash column chromatographical purification on silica gel 

(isohexane:EtOAc = 8:2) afforded the 7-azaindole 48b (670 mg, 1.5 mmol, 72%) as a yellow 

solid. 

 

Mp.: 148-150 °C. 
1H-NMR (400 MHz, CDCl3): δ / ppm = 8.51 (dd, J = 4.8 Hz, J = 1.6 Hz, 1H), 8.23 – 8.15 (m, 

2H), 7.71 (dd, J = 7.9 Hz, J = 1.6 Hz, 1H), 7.60 – 7.54 (m, 1H), 7.51 – 7.45 (m, 2H), 7.28 (dd, 

J = 7.9Hz, J = 4.9 Hz, 1H), 2.61 – 2.53 (m, 1H), 1.55 – 1.49 (m, 2H), 1.31 – 1.24 (m, 2H). 
13C-NMR (100 MHz, CDCl3): δ / ppm = 197.2, 147.5, 139.9, 137.5, 134.4, 131.4, 130.1, 128.9, 

128.5, 128.3, 124.6, 120.4, 24.1, 14.4. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 1678 (M), 1568 (M), 1446 (M), 1377 (S), 1361 (M), 1281 

(M), 1269 (M), 1186 (S), 1171 (S), 1122 (M), 1105 (M), 1087 (S), 1077 (S), 1039 (M), 1031 (S), 

1001 (S), 995 (S), 868 (M), 800 (S), 755 (S), 727 (VS), 706 (M), 695 (M), 683 (VS), 655 (M). 

MS (EI, 70 eV): m/z (%) = 452 (40), 358 (30),356 (22), 312 (18), 271 (10), 254 (11), 91 (11), 77 

(60). 

HRMS (C17H13IN2O3S): calc.: 451.9692; found: 451.9677. 

 



C. EXPERIMENTAL SECTION 

 
108 

2-(1-Benzenesulfonyl-3-cyclohexanecarbonyl-1H-pyrrolo[2,3-b]pyridin-2-ylmethyl)-acrylic 

acid ethyl ester (50a) 

 
A I/Mg-exchange was performed according to TP9 with MeMgCl. After addition of ZnCl2 

(0.6 mL, 0.6 mmol, 1.1 equiv, 1.0 M in THF), the reaction mixture was stirred for 10 min. A 

subsequent acylation reaction was performed according to TP6 using 3-chlorobenzoyl chloride 

(78 mg, 0.45 mmol) at -45 °C. The reaction mixture was allowed to warm slowly to 23 °C within 

12 h. Flash column chromatographical purification on silica gel (isohexane:EtOAc = 7:3→1:1) 

afforded the 7-azaindole 50a ( mg, 0.35 mmol, 85%) as a colorless oil. 

 
1H-NMR (600 MHz, CDCl3): δ / ppm = 8.45 (dd, J = 4.7 Hz, J = 1.9 Hz, 1H), 8.19 – 8.15 (m, 

2H), 7.78 (dd, J = 7.8 Hz, J = 1.8 Hz, 1H), 7.69 – 7.65 (m, 1H), 7.57 (t, J = 8.0 Hz, 2H), 7.40 (t, 

J = 1.9 Hz, 1H), 7.28 – 7.22 (m, 4H), 7.07 (t, J = 8.0 Hz, 1H), 6.42 – 6.39 (m, 1H), 6.08 – 6.05 

(m, 1H), 4.26 (q, J = 7.1 Hz, 2H), 3.46 – 3.44 (m, 1H), 1.34 (t, J = 7.1 Hz, 3H). 
13C-NMR (150 MHz, CDCl3): δ / ppm = 167.4, 165.8, 151.3, 148.2, 141.6, 139.2, 135.7, 134.4, 

133.9, 131.4, 129.7, 129.1, 128.6, 128.5, 126.9, 126.2, 124.1, 122.4, 95.7, 78.2, 61.1, 29.7, 22.5, 

14.2. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2954 (W), 2920 (M), 2850 (M), 1705 (M), 1700 (M), 

1589 (W), 1583 (W), 1558 (W), 1515 (W), 1476 (W), 1451 (M), 1414 (M), 1396 (M), 1364 (VS), 

1348 (M), 1331 (M), 1308 (M), 1302 (M), 1279 (M), 1243 (S), 1185 (S), 1174 (S), 1164 (S), 

1135 (S), 1110 (VS), 1086 (S), 1071 (S), 1052 (M), 1021 (M), 1000 (M), 988 (M), 976 (M), 950 

(S), 925 (W), 842 (S), 827 (S), 796 (S), 787 (S), 766 (S), 754 (S), 731 (VS), 708 (S), 685 (VS). 

MS (EI, 70 eV): m/z (%) = 508 (1), 463 (3), 446 (9), 444 (23), 415 (9), 371 (7), 367 (19), 339 

(10), 139 (100), 111 (39).  

HRMS (C26H21ClN2O5S): calc.: 508.0860; found: 508.0852. 

 

Ethyl 2-((3-(cyclohexanecarbonyl)-1-(phenylsulfonyl)-1H-pyrrolo[2,3-b]pyridine-2-

yl)methyl)acryliate(50b) 

 
A I/Mg-exchange was performed according to TP9 with MeMgCl. After addition of ZnCl2 

(0.6 mL, 0.6 mmol, 1.1 equiv, 1.0 M in THF), the reaction mixture was stirred for 10 min. A 

subsequent acylation reaction was performed according to TP6 using cyclohexanecarbonyl 

chloride (66 mg, 0.45 mmol) at -40 °C. The reaction mixture was allowed to warm slowly to 
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23 °C within 12 h. Flash column chromatographical purification on silica gel (isohexane:EtOAc 

= 8:2→1:1) afforded the 7-azaindole 50b (180 mg, 0.35 mmol, 85%) as a yellow oil. 

 
1H-NMR (400 MHz, CDCl3): δ / ppm = 8.58 (dd, J = 4.8 Hz, J = 1.8 Hz, 1H), 8.23 – 8.19 (m, 

2H), 7.97 (dd, J = 7.7 Hz, J = 1.8 Hz, 1H), 7.65 – 7.59 (m, 1H), 7.57 – 7.51 (m, 2H), 7.43 (dd, 

J = 7.8 Hz, J = 4.9 Hz, 1H), 6.38 (q, J = 1.6 Hz,1H), 6.10 (td, J = 1.9 Hz, J = 0.8 Hz, 1H), 4.24 

(q, J = 7.1 Hz, 2H), 3.50 (t, J = 1.5 Hz, 2H), 1.90 – 1.80 (m, 1H), 1.73 -1.57 (m, 4H), 1.54 – 1.47 

(m, 1H), 1.32 (t, J = 7.1 Hz, 3H), 1.28 – 1.24 (m, 1H), 1.10 -1.02 (m, 1H), 0.96 – 0.80 (m, 3H). 
13C-NMR (100 MHz, CDCl3): δ / ppm = 175.1, 165.9, 150.9, 148.3, 141.6, 139.8, 134.4, 133.5, 

129.2, 128.6, 126.9, 124.4, 122.7, 95.4, 78.2, 61.1, 44.4, 28.7, 25.3, 25.2, 22.5, 14.2. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2929 (M), 2856 (W), 1709 (S), 1638 (W), 1583 (W), 

1556 (W), 1448 (M), 1416 (S), 1361 (S), 1296 (M), 1267 (M), 1246 (S), 1155 (VS), 1126 (VS), 

1086 (S), 1024 (S), 980 (M), 917 (M), 883 (M), 845 (M), 810 (M), 756 (S), 729 (S), 684 (S). 

MS (EI, 70 eV): m/z (%) = 480 (1), 371 (19), 305 (30), 230 (12), 229 (33), 83 (13), 77 (18), 71 

(17), 57 (24), 43 (100). 

HRMS (C26H28N2O5S): calc.: 480.1719; found: 480.1735. 

 

(1-Benzenesulfonyl-3-cyclopropanecarbonyl-1H-pyrrolo[2,3-b]pyridin-2-yl)-cyclopropyl-

methanone (50c) 

 
A I/Mg-exchange was performed according to TP9 with MeMgCl. After addition of ZnCl2 

(0.6 mL, 0.6 mmol, 1.1 equiv, 1.0 M in THF) the reaction mixture was stirred for 10 min. A 

subsequent acylation reaction was performed according to TP6 using cyclopropanecarbonyl 

chloride (47 mg, 0.45 mmol) at -40 °C. The reaction mixture was allowed to warm slowly to 

23 °C within 12 h. Flash column chromatographical purification on silica gel (isohexane:EtOAc 

= 8:2→1:9) afforded the 7-azaindole 50c (132 mg, 0.34 mmol, 74%) as a colorless oil. 

 
1H-NMR (600 MHz, CDCl3): δ / ppm = 8.54 – 8.51 (m, 1H), 8.38 (d, J = 7.7 Hz, 1H), 8.27 (d, 

J = 8.2 Hz, 2H), 7.63 – 7.59 (m, 1H), 7.52 (t, J = 7.7 Hz, 2H), 7.34 – 7.29 (m, 1H), 2.59 – 2.53 

(m, 1H), 2.42 – 2.36 (m, 1H), 1.61 – 1.56 (m, 2H), 1.38 – 1.33 (m, 2H), 1.33 – 1.29 (m, 2H), 1.08 

– 1.03 (m, 2H).  
13C-NMR (150 MHz, CDCl3): δ / ppm = 199.7, 195.9, 146.9, 146.6, 140.7, 137.3, 134.6, 131.2, 

129.0, 128.8, 120.6, 119.3, 117.9, 25.2, 21.1, 15.2, 12.3.  

IR (Diamond-ATR, neat): ν
~  / cm-1 = 1565 (W), 1447 (S), 1438 (S), 1401 (W), 1377 (W), 1329 

(S), 1308 (W), 1293 (W), 1277 (W), 1234 (W), 1202 (W), 1163 (S), 1122 (M), 1090 (M), 1072 

(S), 1057 (M), 1022 (W), 976 (W), 894 (M), 835 (W), 791 (M), 752 (M), 735 (VS), 720 (S), 686 

(VS). 

MS (EI, 70 eV): m/z (%) = 394 (5), 253 (25), 226 (86), 225 (23), 213 (18), 198 (33), 197 (29), 

185 (48), 169 (47), 157 (33), 145 (32), 77 (64), 69 (38), 57 (31), 43 (100). 
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HRMS (C21H18N2O4S): calc.: 394.0987; found: 394.0980. 

 

3.8 Synthesis of compounds of type 53, 54 

1-(Phenylsulfonyl)-3-(trimethylsilyl)-1H-pyrrolo[3,2-b]pyridine (53a) 

 
The title compound was prepared from the ynamide 52 (409 mg, 1.0 mmol). A Br/Mg-exchange 

was performed according to TP3 with i-PrMgCl·LiCl (0.87 mL, 1.27 M, 1.1 mmol, 1.1 equiv) at -

45 °C within 24 h (0.5 M). After addition of THF (8 mL), a CuCN·2LiCl (1.0 mL, 100 mol%) 

mediated cyclization according to TP4 at 23 °C in 16 h was performed. The reaction mixture was 

quenched with concentrated aqueous NH4Cl/NH3-solution (19:1). Flash column 

chromatographical purification on silica gel (isohexane:EtOAc = 8:2) afforded the 4-azaindole 

53a (173 mg, 0.52 mmol, 52%) as a colorless oil. 

 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.55 (dd, J = 4.8 Hz, J = 1.5 Hz, 1H), 8.21 (dd, 

J = 8.3 Hz, J = 1.7 Hz, 1H), 7.93 – 7.88 (m, 2H), 7.71 (s, 1H), 7.62 – 7.55 (m, 1H), 7.52 – 7.45 

(m, 2H), 7.20 (dd, J = 8.3 Hz, J = 4.4 Hz, 1H), 0.39 (s, 9H). 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3119 (VW), 2953 (W), 1652 (VW), 1588 (W), 1558 (W), 

1514 (M), 1477 (W), 1451 (M), 1395 (M), 1364 (S), 1347 (W), 1330 (W), 1308 (W), 1302 (W), 

1291 (W), 1278 (W), 1264 (W), 1243 (S), 1206 (VW), 1184 (S), 1174 (S), 1163 (M), 1132 (S), 

1109 (S), 1088 (M), 1070 (W), 1051 (M), 1031 (W), 1021 (W), 1000 (W), 981 (VW), 973 (VW), 

949 (M), 925 (VW), 839 (VS), 827 (S), 796 (S), 786 (S), 766 (M), 752 (S), 730 (S), 706 (S), 684 

(S). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 153.2, 145.9, 138.2, 134.1, 133.7, 129.4, 129.2, 126.8, 

120.3, 120.2, 118.6, -1.0. 

MS (EI, 70 eV): m/z (%) = 331 (7), 330 (33).316 (25), 315 (100), 131 (22), 97 (13), 77 (15). 

HRMS (C16H18N2O2SSi): calc.:330.0858; found: 330.0863. 

 

2-(1-Benzenesulfonyl-3-trimethylsilanyl-1H-pyrrolo[3,2-b]pyridin-2-ylmethyl)-acrylic acid 

ethyl ester (53b) 

 

The title compound was prepared from the ynamide 52 (409 mg, 1.0 mmol). A Br/Mg-exchange 

was performed according to TP3 with i-PrMgCl·LiCl (0.87 mL, 1.27 M, 1.1 mmol, 1.1 equiv) at -

45 °C within 24 h (0.5 M). After addition of THF (8 mL), a CuCN·2LiCl (1.0 mL, 100 mol%) 

mediated cyclization according to TP4 at 23 °C in 16 h was performed and a subsequent 

allylation reaction was performed according to TP6 using ethyl 2-(bromomethyl)acrylate 

(174 mg, 0.9 mmol) at 0 °C.The reaction mixture was allowed to warm slowly to 23 °C within 
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12 h. The reaction mixture was quenched with concentrated aqueous NH4Cl/NH3-solution (19:1). 

Flash column chromatographical purification on silica gel (isohexane:EtOAc = 9:1) afforded the 

4-azaindole 53b (141 mg, 0.32 mmol, 36%) as a colorless oil. 

 

1H-NMR (300 MHz, CDCl3): δ / ppm = 8.52 (dd, J = 4.7 Hz, J = 1.4 Hz, 1H), 8.42 (dd, 

J = 8.4 Hz, J = 1.5 Hz, 1H), 7.78 – 7.72 (m, 2H), 7.59 – 7.52 (m, 1H), 7.47 – 7.39 (m, 2H), 7.18 

(dd, J = 8.3 Hz, J = 4.7 Hz, 1H), 6.16 – 6.14 (m, 1H), 5.03 – 5.00 (m, 1H), 4.29 (q, J = 7.2 Hz, 

2H), 4.12 – 4.09 (m, 2H), 1.36 (t, J = 7.1 Hz, 3H), 0.35 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 166.3, 152.5, 145.7, 144.5, 139.0, 138.8, 134.0, 130.9, 

129.4, 126.6, 125.1, 121.4, 120.2, 118.5, 61.0, 29.7, 14.2, 0.1. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2925 (W), 1712 (M), 1634 (W), 1586 (W), 1544 (W), 

1447 (M), 1405 (M), 1368 (S), 1297 (M), 1273 (M), 1245 (S), 1202 (M), 1188 (S), 1152 (S), 

1134 (S), 1090 (S), 1071 (M), 1024 (M), 962 (W), 930 (S), 913 (M), 837 (VS), 784 (S), 755 (M), 

730 (VS), 704 (S), 684 (S). 

MS (EI, 70 eV): m/z (%) = 442 (4), 428 (36), 427 (100), 305 (34), 302 (28), 301 (50), 285 (42), 

257 (26), 243 (22), 229 (36). 

HRMS (C22H26N2O4SSi): calc.:442.1383; found: 442.1377. 

 

(1-Benzenesulfonyl-3-trimethylsilanyl-1H-pyrrolo[3,2-b]pyridin-2-yl)-cyclopropyl-

methanone (53c) 

 

The title compound was prepared from the ynamide 52 (409 mg, 1.0 mmol). A Br/Mg-exchange 

was performed according to TP3 with i-PrMgCl·LiCl (0.87 mL, 1.27 M, 1.1 mmol, 1.1 equiv) at -

45 °C within 24 h (0.5 M). After addition of THF (8 mL), a CuCN·2LiCl (1.0 mL, 100 mol%) 

mediated cyclization according to TP4 at 23 °C in 16 h was performed and a subsequent 

allylation reaction was performed according to TP6 using cyclopropanecarbonyl chloride (94 mg, 

0.9 mmol) at 0 °C.The reaction mixture was allowed to warm slowly to 23 °C within 12 h. The 

reaction mixture was quenched with concentrated aqueous NH4Cl/NH3-solution (19:1). Flash 

column chromatographical purification on silica gel (isohexane:EtOAc = 85:15) afforded the 4-

azaindole 53c (160 mg, 0.4 mmol, 45%) as a yellow solid. 

 

Mp.: 91-93 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.50 (dd, J = 4.7 Hz,J = 1.4 Hz, 1H), 8.27 (dd, 

J = 8.3 Hz,J = 1.4 Hz, 1H), 7.81 – 7.76 (m, 2H), 7.52 – 7.45 (m, 1H), 7.42 – 7.34 (m, 2H), 7.20 

(dd, J = 8.3 Hz,J = 4.7 Hz, 1H), 2.53 – 2.44 (m, 1H), 1.49 – 1.42 (m, 2H), 1.29 – 1.25 (m, 2H), 

0.34 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 200.8, 153.1, 146.6, 146.5, 136.5, 134.2, 129.7, 129.0, 

127.2, 121.9, 121.5, 119.6, 25.1, 15.0, -0.2. 
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IR (Diamond-ATR, neat): ν
~  / cm-1 = 2955 (W), 2921 (M), 2852 (W), 1688 (M), 1528 (W), 

1448 (M), 1408 (W), 1372 (S), 1296 (W), 1261 (W), 1230 (S), 1190 (M), 1171 (S), 1123 (M), 

1092 (M), 1050 (M), 1038 (M), 1004 (S), 952 (M), 881 (M), 840 (VS), 798 (M), 778 (S), 754 

(S), 728 (VS), 699 (S), 683 (S). 

MS (EI, 70 eV): m/z (%) = 398 (2), 384 (22), 383 (74), 258 (27), 257 (100), 243 (24), 242 (61), 

227 (64). 

HRMS (C20H22N2O3SSi): calc.: 398.1120; found: 398.1113. 

 

7-Bromo-1-(phenylsulfonyl)-3-(trimethylsilyl)-1H-pyrrolo[2,3-c]pyridine (54a) 

 
The title compound was prepared from the ynamide 52 (409 mg, 1.0 mmol, 0.2 M). MgCl2 

(2.8 mL, 1.4 mmol, 0.5 M in THF) was added to 52 at 23 °C and the reaction mixture stirred for 

10 min. After cooling down to -78 °C, TMPLi (12) (1.9 mL, 1.2 mmol, 0.63 M) was added 

dropwise and the reaction mixture stirred for 30 min. CuCN·2LiCl (1.2 mL, 100 mol%) was 

added and the mediated cyclization according to TP4 at 23 °C in 48 h was performed. The 

reaction mixture was quenched with concentrated aqueous NH4Cl/NH3-solution (19:1), extracted 

three times with EtOAc, the organic layers dried (MgSO4) and concentrated in vacuo. Flash 

column chromatographical purification on silica gel (isohexane:EtOAc = 8:2) afforded the 6-

azaindole 54a (248 mg, 0.60 mmol, 60%) as a white solid. 

 

Mp.: 131-130 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.15 (d, J = 5.3 Hz, 1H), 8.01 (s, 1H), 7.89 – 7.82 (m, 

2H), 7.69 – 7.61 (m, 1H), 7.57 – 7.49 (m, 3H), 0.41 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 144.4, 142.1, 139.9, 138.6, 133.9, 133.0, 129.2, 127.2, 

125.4, 116.4, 116.0, -0.8. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2954 (W), 2921 (M), 2850 (W), 1704 (M), 1588 (W), 

1583 (W), 1570 (W), 1558 (W), 1515 (W), 1476 (W), 1450 (M), 1414 (M), 1396 (M), 1364 (S), 

1348 (M), 1331 (M), 1308 (M), 1302 (M), 1279 (M), 1243 (S), 1185 (S), 1174 (S), 1167 (S), 

1135 (S), 1110 (S), 1085 (S), 1052 (M), 1022 (M), 1000 (M), 976 (M), 950 (S), 925 (M), 865 

(M), 842 (S), 827 (M), 797 (S), 787 (S), 766 (M), 754 (S), 730 (VS), 708 (S), 684 (VS), 658 (M). 

MS (EI, 70 eV): m/z (%) = 412 (7), 410 (87), 408 (82), 395 (83), 393 (76), 313 (22), 254 (11), 

185 (21), 183 (34), 173 (35), 135 (29). 

HRMS (C16H17BrN2O2SSi): calc.: 407.9963; found: 407.9958. 

 

2-Allyl-7-bromo-1-(phenylsulfonyl)-3-(trimethylsilyl)-1H-pyrrolo[2,3-c]pyridine (54b) 
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The title compound was prepared from the ynamide 52 (409 mg, 1.0 mmol, 0.2 M). MgCl2 

(3.25 mL, 1.3 mmol, 0.4 M in THF) was added to 52 at 23 °C and the reaction mixture stirred for 

10 min. After cooling down to -78 °C, TMPLi (12) (1.9 mL, 1.2 mmol, 0.63 M) was added 

dropwise and the reaction mixture stirred for 30 min. CuCN·2LiCl (1.2 mL, 100 mol%) was 

added and the mediated cyclization according to TP4 at 23 °C in 48 h was performed and a 

subsequent allylation reaction was performed according to TP6 using allyl bromide (96 mg, 

0.8 mmol) at 0 °C.The reaction mixture was allowed to warm slowly to 23 °C within 1 h. The 

reaction mixture was quenched with concentrated aqueous NH4Cl/NH3-solution (19:1), extracted 

three times with EtOAc, the organic layers dried (MgSO4) and concentrated in vacuo. Flash 

column chromatographical purification on silica gel (isohexane:EtOAc = 9:1→8:2) afforded the 

6-azaindole 54b (240 mg, 0.53 mmol, 67%) as a colorless oil. 

 
1H-NMR (400 MHz, CDCl3): δ / ppm = 8.18 (d, J = 5.1 Hz, 1H), 7.81 – 7.72 (m, 2H), 7.66 – 

7.54 (m, 1H), 7.51 – 7.37 (m, 3H), 5.94 – 5.72 (m, 1H), 5.09 – 4.81 (m, 2H), 3.87 (dd, J = 5.9 Hz, 

3.3 Hz, 1H), 0.33 (s, 9H). 
13C-NMR (150 MHz, CDCl3): δ / ppm = 153.4, 146.0, 143.4, 139.2, 136.8, 135.0, 133.7, 129.2, 

128.8, 126.7, 120.6, 117.2, 115.4, 33.5, 0.4. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3411 (VW), 3003 (VW), 2957 (VW), 2921 (VW), 2360 

(VW), 2339 (W), 1747 (W), 1711 (VS), 1675 (W), 1576 (W), 1548 (W), 1539 (VW), 1446 (W), 

1436 (W), 1423 (W), 1419 (W), 1399 (W), 1359 (S), 1253 (W), 1220 (S), 1181 (W), 1157 (VW), 

1091 (W), 972 (VW), 901 (W), 845 (W), 782 (VW), 759 (VW), 727 (W), 688 (W), 686 (W), 668 

(W). 

MS (ESI, 70 eV): m/z (%) = 449 (30), 409 (32), 407 (34), 308 (19), 307 (21), 155 (10), 141 

(100). 

HRMS (C19H22BrN2O2SSi): calc.: 449,0349; found: 449.0355 [M+H+]. 

 

3.9 Synthesis of compounds of type 57 

1-Benzenesulfonyl-5-bromo-3-trimethylsilanyl-1H-pyrrolo[3,2-b]pyridine (57a) 

 
The title compound was prepared from the ynamide 55 (488 mg, 1.0 mmol). A Br/Mg-exchange 

was performed according to TP3 with i-PrMgCl·LiCl (0.87 mL, 1.27 M, 1.1 mmol, 1.1 equiv) at -

40 °C within 3 h (0.5 M). After addition of THF (8 mL), a CuCN·2LiCl (1.0 mL, 100 mol%) 

mediated cyclization according to TP4 at 23 °C in 48 h was performed. The reaction mixture was 

quenched with concentrated aqueous NH4Cl/NH3-solution (19:1). Flash column 

chromatographical purification on silica gel (isohexane:EtOAc = 8:2) afforded the 4-azaindole 

57a (227 mg, 0.55 mmol, 55%) as a colorless solid. 

 

Mp.: 127-129 °C. 
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1H-NMR (600 MHz, CDCl3): δ / ppm = 8.05 (d, J = 8.8 Hz,1H), 7.90 – 7.85 (m, 2H), 7.67 (s, 

1H), 7.65 – 7.58 (m, 1H), 7.55 – 7.47 (m, 2H), 7.34 (d, J = 8.6 Hz,1H), 0.37 (s, 9H). 
13C-NMR (150 MHz, CDCl3): δ / ppm = 153.6, 137.9, 137.2, 134.3, 134.3, 129.6, 128.2, 126.7, 

122.5, 122.4, 119.9,-1.1.  

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3114 (VW), 2954 (W), 2925 (W), 2922 (W), 2852 (VW), 

2169 (W), 1585 (W), 1539 (W), 1510 (M), 1452 (M), 1417 (M), 1391 (M), 1375 V(S), 1337 (W), 

1317 (W), 1289 (W), 1273 (W), 1246 (S), 1187 (S), 1174 (S), 1145 (S), 1119 (S), 1089 (S), 1055 

(M), 1022 (W), 999 (W), 951 (M), 841 V(S), 834 V(S), 818 V(S), 782 (M), 772 (S), 747 V(S), 

722 (S), 682 V(S), 671 (M). 

MS (EI, 70 eV): m/z (%) = 410 (22), 408 (21), 396 (23), 395 (100), 394 (93), 135 (18), 77 (20). 

HRMS (C16H17BrN2O2SSi): calc.: 407.9963; found: 407.9952. 

 

(1-Benzenesulfonyl-5-bromo-3-trimethylsilanyl-1H-pyrrolo[3,2-b]pyridine-2-yl)-(3-chloro-

phenyl)-methanone (57b) 

 
The title compound was prepared from the ynamide 55 (488 mg, 1.0 mmol). A Br/Mg-exchange 

was performed according to TP3 with i-PrMgCl·LiCl (0.87 mL, 1.27 M, 1.1 mmol, 1.1 equiv) at -

40 °C within 3 h (0.5 M). After addition of THF (8 mL), a CuCN·2LiCl (1.0 mL, 100 mol%) 

mediated cyclization according to TP4 at 23 °C in 48 h and a subsequent acylation reaction was 

performed according to TP6 using 3-chlorobenzoyl chloride (158 mg, 0.9 mmol) at 0 °C. The 

reaction mixture was allowed to warm slowly to 23 °C within 3 h. Flash column 

chromatographical purification on silica gel (isohexane:EtOAc = 9:1) afforded the 4-azaindole 

57b (362 mg, 0.66 mmol, 73%) as a yellow crystals. 

 

Mp.: 57-59 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.19 – 8.17 (m, 1H), 7.93 – 7.87 (m, 3H), 7.75 – 7.70 

(m, 1H), 7.65 – 7.58 (m, 2H), 7.54 – 7.41 (m, 4H), 0. 21 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 189.6, 152.8, 142.8, 139.3, 137.9, 136.8, 135.2, 134.7, 

134.0, 130.1, 129.4, 129.2, 128.3, 127.9, 127.4, 123.7, 123.7, 121.2, -0.5. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3064 (VW), 2953 (VW), 1667 (W), 1574 (W), 1543 (W), 

1517 (W), 1477 (VW), 1465 (VW), 1448 (W), 1423 (W), 1398 (M), 1371 (S), 1343 (W), 1317 

(M), 1295 (W), 1276 (W), 1248 (M), 1235 (M), 1183 (S), 1169 (S), 1164 (S), 1123 (M), 1090 

(M), 1073 (W), 991 (M), 954 (W), 913 (W), 846 V(S), 811 (S), 776 (S), 755 (S), 742 (S), 733 

V(S), 719 (S), 685 (S), 673 (M), 652 (W). 

MS (EI, 70 eV): m/z (%) = 545 (2), 535 (30), 534 (27), 533 (85), 526 (61), 409 (30), 408 (24), 

407 (100), 406 (23), 391 (81), 390 (61), 377 (19), 375 (14), 336 (13), 311 (18), 139 (24), 111 

(24), 77 (44). 

HRMS (C23H20BrClN2O3SSi): calc.: 545.9836; found: 545.9840. 
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Ethyl 2-((5-bromo-1-(phenylsulfonyl)-3-(trimethylsilanyl)-1H-pyrrolo[3,2-b]pyridine-2-yl)-

methyl)acrylate (57c) 

 
The title compound was prepared from the ynamide 55 (488 mg, 1.0 mmol). A Br/Mg-exchange 

was performed according to TP3 with i-PrMgCl·LiCl (0.87 mL, 1.27 M, 1.1 mmol, 1.1 equiv) at -

40 °C within 3 h (0.5 M). After addition of THF (8 mL), a CuCN·2LiCl (1.0 mL, 100 mol%) 

mediated cyclization according to TP4 at 23 °C in 48 h and a subsequent allylation reaction was 

performed according to TP6 using ethyl 2-(bromomethyl)acrylate (173 mg, 0.9 mmol) at 0 °C. 

The reaction mixture was allowed to warm slowly to 23 °C within 12 h. Flash column 

chromatographical purification on silica gel (isohexane:EtOAc = 9:1) afforded the 4-azaindole 

57c (298 mg, 0.57 mmol, 63%) as a white solid. 

 

Mp.: 91-93 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.30 (d, J = 8.8 Hz,1H), 7.78 – 7.71 (m, 2H), 7.64 – 

7.56 (m, 1H), 7.51 – 7.43 (m, 2H), 7.34 (d, J = 8.6 Hz,1H), 6.18 – 6.13 (m, 1H), 4.99 – 4.95 (m, 

1H), 4.31 (q, J = 7.2 Hz,2H), 4.09 (t, J = 1.8 Hz,2H), 1.37 (t, J = 7.2 Hz,3H), 0.35 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 166.2, 152.9, 145.6, 138.7, 138.5, 136.9, 134.3, 129.9, 

129.5, 126.6, 125.2, 123.8, 122.2, 119.7, 61.1, 30.1, 14.2, -0.1. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2953 (W), 2922 (M), 2851 (W), 1708 (M), 1633 (W), 

1586 (W), 1542 (M), 1463 (W), 1447 (M), 1423 (W), 1400 (M), 1375 (S), 1350 (M), 1331 (W), 

1313 (W), 1299 (M), 1275 (M), 1256 (M), 1245 (M), 1225 (M), 1190 (M), 1161 (M), 1135 (S), 

1125 (S), 1105 (M), 1087 (S), 1077 (M), 1020 (M), 999 (W), 967 (M), 935 (M), 915 (M), 844 

(VS), 806 (S), 782 (M), 754 (M), 740 (S), 717 (S), 680 (S), 661 (M). 

MS (EI, 70 eV): m/z (%) = 520 (1), 508 (28), 507 (100), 506 (27), 505 (82), 477 (13), 381 (28), 

379 (27), 335 (16). 

HRMS (C22H25BrN2O4SSi): calc.: 520.0488; found: 520.0480. 

 

3.10 Synthesis of compounds of type 60 

1-Benzenesulfonyl-7-bromo-3-trimethylsilanyl-1H-pyrrolo[3,2-c]pyridine (60a) 

N

N

SO2Ph

TMS

Br  
The title compound was prepared from the ynamide 58 (488 mg, 1.0 mmol). A Br/Mg-exchange 

was performed according to TP3 with i-PrMgCl·LiCl (0.87 mL, 1.27 M, 1.1 mmol, 1.1 equiv) at -

80 °C within 0.5 h (0.25 M). After addition of THF (6 mL), a CuCN·2LiCl (1.0 mL, 100 mol%) 

mediated cyclization according to TP4 at 23 °C in 48 h was performed. The reaction mixture was 

quenched with concentrated aqueous NH4Cl/NH3-solution (19:1). Flash column 
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chromatographical purification on silica gel (isohexane:EtOAc = 8:2) afforded the 5-azaindole 

60a (214 mg, 0.52 mmol, 52%) as a white solid. 

 

Mp.: 113-115 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.83 (s, 1H), 8.49 (s, 1H), 7.84 (s, 1H), 7.85 – 7.79 (m, 

2H), 7.66 – 7.58 (m, 1H), 7.55 – 7.47 (m, 2H), 0.41 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 147.7, 143.4, 139.8, 138.9, 135.8, 134.2, 134.1, 129.3, 

127.2, 115.8, 103.9, -0.7. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3144 (VW), 2955 (W), 1638 (VW), 1580 (W), 1536 

(VW), 1521 (W), 1478 (W), 1448 (M), 1429 (M), 1403 (M), 1362 (S), 1312 (W), 1288 (M), 1248 

(M), 1182 (S), 1169 (M), 1157 (S), 1144 (M), 1115 (S), 1088 (M), 1075 (M), 1045 (W), 1025 

(W), 1000 (W), 955 (S), 909 (M), 885 (M), 857 (M), 830 (S), 820 (S), 758 (S), 745 (S), 727 

V(S), 689 (S). 

MS (EI, 70 eV): m/z (%) = 412 (11), 411 (24), 410 (98), 409 (24), 408 (100), 396 (15), 395 (64), 

386 (62), 254 (15), 185 (26), 183 (25), 173 (17), 145 (13), 135 (39). 

HRMS (C16H17BrN2O2SSi): calc.: 407.9963; found: 407.9961. 

 

(7-Bromo-1-(phenylsulfonyl)-3-(trimethylsilyl)-1H-pyrrolo[3,2-c]pyridine-2-yl)(3-

chlorophenyl)methanone (60b) 

 
The title compound was prepared from the ynamide 58 (488 mg, 1.0 mmol). A Br/Mg-exchange 

was performed according to TP3 with i-PrMgCl·LiCl (0.87 mL, 1.27 M, 1.1 mmol, 1.1 equiv) at -

80 °C within 0.5 h (0.2 M). A CuCN·2LiCl (1.0 mL, 100 mol%) mediated cyclization according 

to TP4 at 23 °C in 48 h and a subsequent allylation reaction was performed according to TP6 

using 3-chlorobenzoyl chloride (158 mg, 0.9 mmol) at 0 °C. The reaction mixture was allowed to 

warm slowly to 23 °C within 3 h. Flash column chromatographical purification on silica gel 

(isohexane:EtOAc = 8:2) afforded the 5-azaindole 60b (351 mg, 0.64 mmol, 71%) as a yellow 

solid. 

 

Mp.: 68-70 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.96 (s, 1H), 8.65 (s, 1H), 8.10 – 8.04 (m, 2H), 7.99 (t, 

J = 1.8 Hz, 1H), 7.85 (dt, J = 7.7 Hz, J = 1.2 Hz, 1H), 7.67 – 7.58 (m, 2H), 7.57 – 7.43 (m, 3H), 

0.22 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 188.4, 148.8, 144.5, 143.9, 141.0, 139.4, 138.3, 135.1, 

134.3, 133.9, 133.6, 130.0, 129.6, 129.1, 128.2, 127.7, 126.0, 120.3, 0.3. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3064 (VW), 2950 (VW), 1672 (W), 1570 (W), 1520 

(VW), 1448 (W), 1423 (W), 1401 (W), 1369 (M), 1306 (W), 1280 (W), 1249 (M), 1179 (S), 

1140 (M), 1122 (M), 1088 (M), 1074 (W), 1033 (W), 1015 (W), 990 (M), 980 (M), 952 (M), 879 

(W), 840 V(S), 775 (M), 749 V(S), 726 (S), 685 (S), 672 (M). 
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MS (EI, 70 eV): m/z (%) = 546 (10), 535 (13), 533 (35), 528 (21), 408 (29), 407 (27), 396 (24), 

395 (100), 392 (71), 336 (47), 334 (33), 225 (23), 215 (21), 139 (56). 

HRMS (C23H20BrClN2O3SSi): calc.: 545.9836; found: 545.9837. 

 

2-Allyl-7-bromo-1-(phenylsulfonyl)-3-(trimethylsilyl)-1H-pyrrolo[3,2-c]pyridine (60c) 

 
The title compound was prepared from the ynamide 58 (488 mg, 1.0 mmol). A Br/Mg-exchange 

was performed according to TP3 with i-PrMgCl·LiCl (0.87 mL, 1.27 M, 1.1 mmol, 1.1 equiv) at -

80 °C within 0.5 h (0.2 M). A CuCN·2LiCl (1.0 mL, 100 mol%) mediated cyclization according 

to TP4 at 23 °C in 48 h and a subsequent allylation reaction was performed according to TP6 

using allyl bromide (108 mg, 0.9 mmol) at 23 °C. The reaction mixture was stirred at 23 °C for 

12 h. Flash column chromatographical purification on silica gel (isohexane:EtOAc = 8:2) 

afforded the 5-azaindole 60c (280 mg, 0.62 mmol, 69%) as a yellow oil. 

 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.81 (s, 1H), 8.55 (s, 1H), 7.82 – 7.75 (m, 2H), 7.65 – 

7.57 (m, 1H), 7.52 – 7.43 (m, 2H), 5.90 – 5.75 (m, 1H), 5.04 – 4.98 (m, 1H), 4.91 – 4.82 (m, 1H), 

3.90 (dt, J = 5.7 Hz, J = 1.7 Hz, 2H), 0.39 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 149.5, 148.1, 143.3, 142.3, 139.9, 135.4, 134.7, 133.7, 

128.9, 126.6, 118.6, 117.0, 107.3, 33.1, 0.7. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3061 (VW), 2953 (W), 2167 (VW), 1638 (VW), 1571 

(W), 1478 (VW), 1447 (M), 1429 (M), 1403 (M), 1364 (M), 1310 (W), 1291 (W), 1251 (M), 

1180 (S), 1159 (M), 1139 (M), 1121 (W), 1088 (M), 1045 (W), 1034 (W), 996 (W), 962 (M), 910 

(M), 894 (M), 880 (M), 837 V(S), 750 (S), 725 V(S), 707 (M), 684 (S). 

MS (EI, 70 eV): m/z (%) = 450 (27), 448 (18), 310 (42), 309 (60), 308 (60), 307 (51), 294 (28), 

293 (100), 291 (26), 279 (13), 277 (16), 265 (16), 135 (33), 125 (20), 77 (61), 73 (68), 59 (23). 

HRMS (C19H21BrN2O2SSi): calc.: 448.0276; found: 448.0269. 

 

2,4-Dichloro-7-(phenylsulfonyl)-5-(trimethylsilyl)-7H-pyrrolo[2,3-d]pyrimidine (63a) 

 
The title compound was prepared from ynamide 62 (200 mg, 0.5 mmol) according to TP5. After 

addition of CuCN·2LiCl solution (0.5 mL, 0.5 mmol) at -78 ºC, the copper-mediated cyclization 

was carried out according to TP2. The mixture was allowed to warm to 23 °C and stirred for 

further 72 h. After completion, the reaction was quenched with concentrated aqueous 

NH4Cl/NH3-solution (2:1), extracted three times with EtOAc and CH2Cl2, the organic layers 

dried over Na2SO4 and concentrated in vacuo. Flash column chromatographical purification on 

silica gel (isohexane:EtOAc = 9:1) afforded the azaindole 63a (134 mg,  0.33 mmol, 67%) as a 

colorless oil. 
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1H-NMR (300 MHz, CDCl3): δ / ppm = 8.30 – 8.25 (m, 2H), 7.73 – 7.66 (m, 1H), 7.68 (s, 1H), 

7.63 – 7.56 (m, 2H), 0.41 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 154.2, 153.9, 153.5, 136.9, 135.1, 129.3, 128.9, 122.0, 

114.2, -0.2. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3121 (VW), 3067 (VW), 2957 (W), 2924 (W), 2852 (W), 

2360 (W), 2358 (W), 2176 (W), 1749 (W), 1627 (W), 1548 (S), 1538 (S), 1449 (M), 1413 (M), 

1376 (M), 1331 (M), 1282 (M), 1251 (M), 1220 (M), 1208 (M), 1187 (S), 1170 (S), 1125 (M), 

1112 (M), 1085 (S), 1035 (M), 1016 (M), 1001 (M), 995 (M), 984 (M), 973 (S), 837 (VS), 751 

(S), 720 (S), 682 (S), 668 (S) 

MS (EI, 70 eV): m/z (%) = 399 (3), 388 (4), 384 (22), 320 (15), 246 (16), 135 (36), 94 (17), 77 

(100). 

HRMS (C15H15Cl2N3O2SSi): calc.: 399.0031; found: 399.0027. 

 

Cyclopropyl(2,4-dichloro-7-(phenylsulfonyl)-5-(trimethylsilyl)-7H-pyrrolo[2,3-d]pyrimidin-

6-yl)methanone (63b) 

 
The title compound was prepared from ynamide 62 (200 mg, 0.5 mmol) according to TP5. After 

addition of CuCN·2LiCl solution (0.5 mL, 0.5 mmol) at -78 ºC, the copper-mediated cyclization 

was carried out according to TP2. The mixture was allowed to warm 23 °C and stirred for further 

72 h. After completion, a subsequent acylation was performed using cyclopropanecarbonyl 

chloride (47 mg, 0.45 mmol) at 23 °C for 12 h. The reaction was quenched with concentrated 

aqueous NH4Cl/NH3-solution (2:1), extracted three times with EtOAc and CH2Cl2, the organic 

layers dried over Na2SO4 and concentrated in vacuo. Flash column chromatographical 

purification on silica gel (isohexane:EtOAc = 95:5 -> 9:1) afforded the azaindole 63b (146 mg, 

 0.31 mmol, 69%) as a colorless oil. 

 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.28 – 8.18 (m, 2H), 7.71 – 7.64 (m, 1H), 7.61 – 7.53 

(m, 2H), 2.46 – 2.36 (m, 1H), 1.62 – 1.53 (m, 2H), 1.45 – 1.36 (m, 2H), 0.41 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 200.1, 154.5, 154.2, 153.8, 144.2, 136.6, 135.2, 129.3, 

129.2, 121.1, 111.6, 25.9, 16.7, 1.5. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2960 (W), 2366 (W), 2362 (W), 2360 (W), 2358 (W), 

2357 (W), 2338 (W), 1699 (M), 1559 (M), 1522 (M), 1507 (W), 1450 (M), 1400 (M), 1389 (M), 

1377 (M), 1354 (S), 1346 (M), 1315 (W), 1283 (W), 1259 (M), 1253 (M), 1237 (M), 1218 (W), 

1192 (S), 1172 (S), 1160 (M), 1155 (M), 1131 (W), 1123 (W), 1122 (W), 1104 (M), 1093 (S), 

1083 (M), 1079 (M), 1054 (VS), 1027 (M), 1023 (M), 1002 (W), 1000 (W), 995 (W), 984 (S), 

896 (W), 878 (S), 866 (S), 843 (VS), 824 (M), 822 (M), 815 (S), 805 (M), 799 (S), 770 (M), 754 

(S), 729 (VS), 717 (M), 707 (M), 703 (M), 701 (M), 697 (M), 681 (VS), 668 (M), 661 (W), 653 

(S), 

MS (EI, 70 eV): m/z (%) = 467 (3), 456 (14), 455 (13), 454 (57), 452 (67), 314 (65), 312 (100), 

311 (30), 135 (10), 77 (66). 
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HRMS (C19H19Cl2N3O3SSi): calc.: 467.0293; found: 467.0284. 

 

(3-Chlorophenyl)(2,4-dichloro-7-(phenylsulfonyl)-5-(trimethylsilyl)-7H-pyrrolo[2,3-

d]pyrimidin-6-yl)methanone (63c) 

 
The title compound was prepared from ynamide 62 (200 mg, 0.5 mmol) according to TP5. After 

addition of CuCN·2LiCl solution (0.5 mL, 0.5 mmol) at -78 ºC, the copper-mediated cyclization 

was carried out according to TP2. The mixture was allowed to warm to 23 °C and stirred for 

further 72 h. After completion, a subsequent acylation was performed using 3-chlorobenzoyl 

chloride (79 mg, 0.45 mmol) at 23 °C for 12 h. The reaction was quenched with concentrated 

aqueous NH4Cl/NH3-solution (2:1), extracted three times with EtOAc and CH2Cl2, the organic 

layers dried over Na2SO4 and concentrated in vacuo. Flash column chromatographical 

purification on silica gel (isohexane:EtOAc = 95:5 -> 9:1) afforded the azaindole 63c (146 mg, 

 0.31 mmol, 69%) as a white solid. 

 

Mp.:170-172 °C. 
1H-NMR (400 MHz, CDCl3): δ / ppm = 8.18 – 8.13 (m, 2H), 7.92 (sbr, 1H), 7.77 (sbr, 1H), 7.73 – 

7.63 (m, 2H), 7.62 – 7.55 (m, 2H), 7.49 (t, J = 7.9 Hz, 1H), 0.23 (s, 9H). 
13C-NMR (100 MHz, CDCl3): δ / ppm = 188.7, 154.7, 154.2, 154.1, 140.8, 139.3, 136.3, 135.5, 

135.4, 134.3, 130.4, 129.3 (2C), 129.0, 127.7, 121.1, 113.6, 1.3. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3064 (W), 2956 (W), 2359 (W), 2336 (W), 1698 (M), 

1674 (M), 1651 (W), 1567 (M), 1520 (M), 1485 (W), 1480 (W), 1471 (W), 1450 (M), 1411 (M), 

1389 (M), 1373 (M), 1354 (M), 1348 (M), 1307 (M), 1245 (S), 1205 (S), 1192 (S), 1179 (S), 

1170 (S), 1158 (S), 1126 (M), 1091 (S), 1074 (M), 1032 (S), 1016 (M), 996 (M), 949 (S), 927 

(M), 897 (M), 879 (M), 841 (VS), 815 (S), 784 (M), 769 (S), 765 (S), 749 (VS), 723 (VS), 700 

(M), 689 (M), 685 (M), 679 (S), 674 (S), 668 (VS), 653 (M). 

MS (EI, 70 eV): m/z (%) = 539 (9), 537 (7), 527 (12), 526 (42), 524 (100), 522 (92), 386 

(28),385 (28), 384 (84), 383 (54), 382 (81), 381 (35), 348 (16), 346 (22), 141 (38), 139 (37), 111 

(32). 

HRMS (C22H18Cl3N3O3SSi):calc.: 536.9904; found: 536.9901. 
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3.11 Scaleable Preparation of Functionalized Indoles and Azaindoles 

via an Intramolecular Copper-mediated Carbomagnesiation of 

Ynamides 

 

2-Allyl-5-fluoro-1-(phenylsulfonyl)-3-(trimethylsilyl)-1H-indole (41n) 

 
The title compound was prepared from the ynamide 39a (21.3 g, 50 mmol). A Br/Mg-exchange 

was performed according to TP3 with i-PrMgCl·LiCl (45.8 mL, 1.2 M, 55 mmol, 1.1 equiv) at 

˗10 °C within 0.5 h (1.0 M). After addition of THF (450 mL), a CuCN·2LiCl (50 mL, 50 mmol) 

mediated cyclization according to TP4 at 23 °C in 30 h and a subsequent allylation reaction was 

performed according to TP6 using allylbromide (6.1 g, 50 mmol) at 0 °C within 16 h. Flash 

column chromatographical purification on silica gel (isohexane:EtOAc:NEt3 = 98:1:1) afforded 

the indole 41n (17.2 g, 44.4 mmol, 99%) as a yellow oil. 

 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.11 (dd, J = 9.2, 4.7 Hz, 1H), 7.76 – 7.70 (m, 2H), 7.56 

– 7.49 (m, 1H), 7.46 – 7.37 (m, 2H) 7.25 (dd, J = 9.5, 2.6 Hz, 1H), 6.98 (ddd, J = 9.1, 2.6 Hz, 

1H), 6.06 – 5.91 (m, 2H), 5.07 – 5.01 (m, 1H), 4.93 – 4.84 (m, 1H), 3.90 (dt, J = 5.3, 1.8 Hz, 2H), 

0.37 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 159.5 (d, J = 239.5 Hz), 145.8, 139.1, 136.0, 135.2 (d, J 

= 9.6 Hz), 134.0 (d, J = 1.2 Hz), 133.8, 129.2, 126.5, 117.2 (d, J = 3.9 Hz), 116.3, 115.9 (d, J = 

9.3 Hz), 111.5 (d, J = 24.9 Hz), 107.3 (d, J = 23.8 Hz), 32.1, 0.8. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2954 (W), 2168 (W), 1638 (W), 1584 (M), 1502 (W), 

1459 (S), 1447 (M), 1368 (S), 1312 (W), 1295 (W), 1251 (M), 1214 (M), 1189 (S), 1171 (S), 

1144 (S), 1118 (M), 1089 (S), 1070 (M), 1024 (W), 984 (M), 909 (M), 851 (VS), 837 (VS), 811 

(S), 753 (S), 723 (VS), 984 (VS). 

MS (EI, 70 eV): m/z (%) = 388 (29), 387 (100), 372 (17), 247 (19), 246 (75), 232 (21), 231 (85), 

230 (85), 216 (53), 173 (81), 172 (33), 154 (20), 153 (34), 135 (47), 77 (28). 

HRMS (C22H18Cl3N3O3SSi): calc.: 387.1125; found: 387.1112. 

 

(1-Benzenesulfonyl-5-bromo-3-trimethylsilanyl-1H-pyrrolo[3,2-b]pyridine-2-yl)-(3-chloro-

phenyl)-methanone (57b) 

 
The title compound was prepared from the ynamide 55 (22.0 g, 45 mmol). A Br/Mg-exchange 

was performed according to TP3 with i-PrMgCl·LiCl (41.3 mL, 1.2 M, 49.5 mmol, 1.1 equiv) at 

˗40 °C within 3 h (0.5 M). After addition of THF (360 mL), a CuCN·2LiCl (45 mL, 45 mmol) 

mediated cyclization according to TP4 at 23 °C in 24 h and a subsequent acylation reaction was 
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performed according to TP6 using 3-chlorobenzoyl chloride (7.96 g, 41.0 mmol) at 0 °C. The 

reaction mixture was allowed to warm slowly to 23 °C within 3 h. Recrystallization in 

iHex/EtOAc afforded the 4-azaindole 57b (15.9 g, 29.1 mmol, 71%) as yellow crystals. 

 

Mp.: 57-59 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.19 – 8.17 (m, 1H), 7.93 – 7.87 (m, 3H), 7.75 – 7.70 

(m, 1H), 7.65 – 7.58 (m, 2H), 7.54 – 7.41 (m, 4H), 0. 21 (s, 9H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 189.6, 152.8, 142.8, 139.3, 137.9, 136.8, 135.2, 134.7, 

134.0, 130.1, 129.4, 129.2, 128.3, 127.9, 127.4, 123.7, 123.7, 121.2, -0.5. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3064 (VW), 2953 (VW), 1667 (W), 1574 (W), 1543 (W), 

1517 (W), 1477 (VW), 1465 (VW), 1448 (W), 1423 (W), 1398 (M), 1371 (S), 1343 (W), 1317 

(M), 1295 (W), 1276 (W), 1248 (M), 1235 (M), 1183 (S), 1169 (S), 1164 (S), 1123 (M), 1090 

(M), 1073 (W), 991 (M), 954 (W), 913 (W), 846 V(S), 811 (S), 776 (S), 755 (S), 742 (S), 733 

V(S), 719 (S), 685 (S), 673 (M), 652 (W). 

MS (EI, 70 eV): m/z (%) = 545 (2), 535 (30), 534 (27), 533 (85), 526 (61), 409 (30), 408 (24), 

407 (100), 406 (23), 391 (81), 390 (61), 377 (19), 375 (14), 336 (13), 311 (18), 139 (24), 111 

(24), 77 (44). 

HRMS (C23H20BrClN2O3SSi): calc.: 545.9836; found: 545.9840. 

 

1-Benzenesulfonyl-3-trimethylsilanyl-1H-pyrrolo[2,3-b]pyridine-2-yl)-cyclopropyl-

methanone (47d) 

 
The title compound was prepared from the ynamide 45 (20.4 g, 50 mmol). A Br/Mg-exchange 

was performed according to TP3 with i-PrMgCl·LiCl (43 mL, 1.28 M, 55 mmol, 1.1 equiv) at 

˗45 °C within 1 h (0.5 M). After addition of THF (400 mL), a CuCN·2LiCl (50 mL, 50 mmol) 

mediated cyclization according to TP4 at 23 °C in 36 h and a subsequent acylation reaction was 

performed according to TP6 using cyclopropanecarbonyl chloride (4.7 g, 45 mmol) at 0 °C. The 

reaction mixture was allowed to warm slowly to 23 °C within 12 h. Flash column 

chromatographical purification on silica gel (isohexane:EtOAc:NEt3 = 9:1:0.2 -> 8:2:0.2) 

afforded the 7-azaindole 47d (14.1 g, 35.4 mmol, 79%) as an colorless solid. 

 

Mp.:123-125 °C. 
1H-NMR (400 MHz, CDCl3): δ / ppm = 8.45 (dd, J = 4.8 Hz, J = 1.7 Hz, 1H), 8.11 – 8.05 (m, 

2H), 7.94 (dd, J = 8.0 Hz, J = 1.6 Hz, 1H), 7.54 – 7.48 (m, 1H), 7.45 – 7.38 (m, 2H), 7.16 (dd, 

J = 8.0 Hz, J = 4.7 Hz, 1H), 2.52 – 2.44 (m, 1H), 1.50 – 1.44 (m, 2H), 1.30 – 1.23 (m, 2H), 0.34 

(s, 9H). 
13C-NMR (100 MHz, CDCl3): δ / ppm = 200.1, 149.2, 145.7, 144.2, 137.5, 134.0, 131.4, 128.7, 

128.2, 126.1, 119.3, 116.6, 24.9, 15.0, 0.3. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2163 (W), 1677 (W), 1447 (W), 1416 (M), 1377 (S), 

1250 (M), 1182 (S), 1170 (S), 1123 (W), 1089 (M), 1064 (W), 1046 (W), 1028 (M), 1007 (M), 
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951 (W), 933 (W), 839 (VS), 814 (S), 798 (M), 774 (M), 757 (S), 751 (S), 737 (S), 727 (M), 715 

(M), 698 (M), 682 (S), 666 (M). 

MS (EI, 70 eV): m/z (%) = 399 (3), 398 (9), 385 (13), 384 (31), 383 (100), 319 (18), 243 (25), 

242 (56), 241 (15), 227 (41), 77 (15). 

HRMS (C20H22N2O3SSi): calc.: 398.1120; found: 398.1117. 

 

  



C. EXPERIMENTAL SECTION 

 
123 

4. Unprecedented Regioselectivities in Metalations of Functionalized 

Arenes and Heteroarenes with TMPLi in the Presence of ZnCl2 and 

other Metal Salts (in situ Trapping Method) 

4.1 Typical Procedures 

Typical Procedure for metalation/transmetalation with MgCl2·2LiCl (TP1): 

A dry and argon flushed Schlenk-flask, equipped with a magnetic stirrer and a septum was 

charged with the starting aromatic compound in THF (0.2-0.25 M solution) and cooled to -78 ºC. 

Then, magnesium chloride (1.1 equiv) and LiCl (2.2 equiv) solutions were added, prior to the 

addition of TMPLi (12) (1.5 equiv). The corresponding electrophile was added (0.9 - 1.0 equiv) 

afterwards and the reaction mixture was stirred for the indicated time and at the indicated 

temperature. The completion of the reaction was checked by GC analysis of reaction aliquots 

quenched with concentrated aqueous NH4Cl-, H2O or Na2S2O3-solutions and using undecane as 

an internal standard. 

 

Typical Procedure for metalation/transmetalation with MgCl2 (TP1’): 

TP1 was performed without addition of LiCl solution. 

 

Typical Procedure for metalation/transmetalation with ZnCl2·2LiCl (TP2): 

A dry and argon flushed Schlenk-flask, equipped with a magnetic stirrer and a septum was 

charged with the starting aromatic compound in THF (0.2-0.25 M solution) and cooled to -78 ºC. 

Then, ZnCl2 (1.1 equiv) and LiCl (2.2 equiv) solutions were added, prior to the addition of 

TMPLi (12) (1.5 equiv). The corresponding electrophile was added (0.9 - 1.0 equiv) afterwards 

and the reaction mixture was stirred for the indicated timeand at the indicated temperature. The 

completion of the reaction was checked by GC analysis of reaction aliquots quenched with 

concentrated aqueous NH4Cl- or Na2S2O3-solutions and using undecane as an internal standard. 

 

Typical Procedure for metalation/transmetalation with ZnCl2 (TP2’): 

TP2 was performed without addition of LiCl solution. 

 

Typical Procedure for metalation/transmetalation with CuCN·2LiCl (TP3): 

A dry and argon flushed Schlenk-flask, equipped with a magnetic stirrer and a septum was 

charged with the starting aromatic compound in THF (0.2-0.25 M solution) and cooled to -78 ºC. 

Then, CuCN·2LiCl (1.1 equiv) solution was added, prior to the addition of TMPLi (12) 

(1.5 equiv). The corresponding electrophile was added (0.8 - 1.0 equiv) afterwards and the 

reaction mixture was stirred for the indicated time and at the indicated temperature. The 

completion of the reaction was checked by GC analysis of reaction aliquots quenched with 

concentrated aqueous NH4Cl/NH3 (2:1)-solution and using undecane as an internal standard. 

 

Typical Procedure for Cross-coupling Reactions (TP4): 

To the freshly prepared zinc reagent, Pd(dba)2 (2 mol%), tfp (4 mol%) and the aryl iodide (0.7 – 

1.0 equiv) were added and the reaction mixture stirred at 23 °C for the indicated time. The 

reaction mixture was quenched with half concentrated aqueous NH4Cl-solution, extracted three 
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times with EtOAc, the organic layers dried (MgSO4) and concentrated in vacuo. The crude 

residue was purified by flash column chromatography on silica gel. 

 

4.2 Synthesis of compounds of type 72 

2,4-Dichloro-6-iodobenzonitrile (72a)142 

 
The title compound was prepared according to TP2 from 2,4-dichlorobenzonitrile (69a) 

(1.0 mmol). TMPLi (12) (2.38 mL, 0.64 M, 1.5 mmol) was added dropwise to a solution of 2,4-

dichlorobenzonitrile (172 mg, 1.0 mmol), ZnCl2 (1.1 mL, 1.0 M, 1.1 mmol) and LiCl (3.14 mL, 

0.7 M, 2.2 mmol) in THF (2.5 mL) at -78 °C. An excess of iodine was added and stirred for 5 min 

at -78 °C prior to quench with sat. Na2S2O3-solution. Before chromatographic separation, the 

crude regioselectivity was 95:5. Flash column chromatographical purification on silica gel 

(isohexane:EtOAc = 95:5) afforded 2,4-dichloro-6-iodobenzonitrile (72a) (219 mg, 0.74 mmol, 

74%) as white solid. 

 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.85 (d, J = 2.0 Hz, 1H), 7.53 (d, J = 1.7 Hz, 1H). 

 

3,4`,5-Trichloro-[1,1`-biphenyl]-2-carbonitrile (72b) 

 
The title compound was prepared according to TP2 from 2,4-dichlorobenzonitrile (69a) 

(1.0 mmol). TMPLi (12) (2.38 mL, 0.64 M, 1.5 mmol) was added dropwise to a solution of 2,4-

dichlorobenzonitrile (172 mg, 1.0 mmol), ZnCl2 (1.1 mL, 1.0 M, 1.1 mmol) and LiCl (3.14 mL, 

0.7 M, 2.2 mmol) in THF (2 mL) at -78 °C. According to TP4 the corresponding zinc reagent was 

reacted with 1-chloro-4-iodobenzene (215 mg, 0.9 mmol) at that temperature for 5 min and 

additional 2 h at 23 °C prior to quench with sat. NH4Cl-solution. Before chromatographic 

separation, the crude regioselectivity was 97:3. Flash column chromatographical purification on 

silica gel (isohexane:EtOAc = 95:5) afforded 3,4`,5-trichloro-[1,1`-biphenyl]-2-carbonitrile (72b) 

(172 mg, 0.61 mmol, 68%) as white solid. 

 

M.p.: 160-163 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.55 (d, J = 2.0 Hz, 1H), 7.53 – 7.43 (m, 4H), 7.39(d, J 

= 1.7 Hz, 1H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 147.5, 139.5, 139.0, 136.1, 134.6, 129.9, 129.2, 128.8, 

128.5, 114.8, 110.9. 

                                                      
142 Spectral data in full accordance to those reported in the literature: S.D. Kuduk, M.R. Wood, M.G. Bock, 
PCT Int. Appl. 2004, WO2004019868. 
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IR (Diamond-ATR, neat): ν
~  / cm-1 = 3073 (w), 2231 (w), 1596 (m), 1580 (m), 1568 (w), 1543 

(m), 1494 (m), 1435 (m), 1408 (m), 1387 (m), 1291 (w), 1195 (w), 1106 (m), 1093 (s), 1073 (w), 

1065 (w), 1057 (m), 1014 (m), 910 (w), 868 (w), 858 (m), 850 (m), 828 (vs), 744 (w), 720 (m), 

707 (w), 656 (m). 

MS (EI, 70 eV): m/z (%) = 285 (30), 283 (95), 281 (100), 248 (17), 246 (25), 211 (40). 

HRMS (C13H6Cl3N): calc.: 280.9566; found: 280.9571. 

 

2,4-Dichloro-6-[(4-fluorophenyl)thio]benzonitrile (72c) 

 
The title compound was prepared according to TP1 from 2,4-dichlorobenzonitrile (69a) 

(1.0 mmol). TMPLi (12) (2.38 mL, 0.64 M, 1.5 mmol) was added dropwise to a solution of 2,4-

dichlorobenzonitrile (172 mg, 1.0 mmol), MgCl2 (2.2 mL, 0.5 M, 1.1 mmol) and LiCl (3.14 mL, 

0.7 M, 2.2 mmol) in THF (2 mL) at -78 °C. S-(4-fluorophenyl) benzenesulfonothioate (242 mg, 

0.9 mmol) was added afterwards and stirred at that temperature for 0.5 h prior to quench with sat. 

NH4Cl-solution. Before chromatographic separation the crude regioselectivity was 88:12. Flash 

column chromatographical purification on silica gel (toluene:CH2Cl2 = 7:3) afforded 2,4-

dichloro-6-((4-fluorophenyl)thio)benzonitrile (72c) (200 mg, 0.67 mmol, 75%) as white solid. 

 

M.p.: 128-130 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.62 – 7.52 (m, 2H), 7.30 – 7.15 (m, 3H), 6.70 (d, J = 

1.9 Hz, 1H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 164.0 (d, J = 252.6 Hz), 148.0 (d, J = 1.7 Hz), 139.8, 

138.8, 137.5 (d, J = 8.7 Hz), 126.5, 125.3, 124.0 (d, J = 3.5 Hz), 117.7 (d, J = 22.3 Hz), 113.3, 

109.6. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3074 (w), 2229 (w), 1590 (m), 1565 (m), 1556 (m), 1538 

(m), 1489 (s), 1461 (w), 1432 (w), 1417 (m), 1399 (w), 1381 (m), 1372 (m), 1346 (w), 1291 (w), 

1240 (s), 1226 (m), 1190 (m), 1158 (m), 1138 (m), 1094 (m), 1078 (m), 1052 (w), 1012 (w), 938 

(w), 872 (m), 844 (s), 832 (vs), 817 (s), 799 (s), 714 (w), 687 (w), 674 (w), 660 (m). 

MS (EI, 70 eV): m/z (%) = 300 (15), 299 (77), 297 (100), 270 (21), 227 (31). 

HRMS (C13H6Cl2FNS): calc.: 296.9582; found: 296.9568. 

 
2-((4-Bromophenyl)(hydroxy)methyl)-4,6-dichlorobenzonitrile (72d) 

 

The title compound was prepared according to TP1 from 2,4-dichlorobenzonitrile (69a) 

(1.0 mmol). TMPLi (12) (2.38 mL, 0.64 M, 1.5 mmol) was added dropwise to a solution of 2,4-

dichlorobenzonitrile (172 mg, 1.0 mmol), MgCl2 (2.2 mL, 0.5 M, 1.1 mmol) and LiCl (3.14 mL, 

0.7 M, 2.2 mmol) in THF (2 mL) at -78 °C. 4-Bromobenzaldehyde (167 mg, 0.9 mmol) was 

added afterwards and stirred at that temperature for 1 h prior to quench with sat. NH4Cl-solution. 



C. EXPERIMENTAL SECTION 

 
126 

Flash column chromatographical purification on silica gel (DCM) afforded 2-((4-

bromophenyl)(hydroxy)methyl)-4,6-dichlorobenzonitrile 72e (165 mg, 0.46 mmol, 51%) as white 

solid. 

 

Mp.: 135.3-137.0 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.61 – 7.47 (m, 3H), 7.22 – 7.06 (m, 3H), 6.27 (s, 1H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 166.1, 152.5, 141.6, 134.3, 134.3, 132.5, 131.2, 128.5, 

124.0, 121.7, 120.7, 80.1. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3074 (w), 2962 (w), 1777 (s), 1727 (w), 1704 (w), 1698 

(w), 1694 (w), 1682 (w), 1593 (m), 1583 (m), 1487 (m), 1447 (m), 1417 (w), 1399 (m), 1328 (w), 

1314 (w), 1282 (m), 1261 (m), 1212 (m), 1180 (w), 1101 (m), 1086 (s), 1070 (m), 1054 (s), 1035 

(m), 1022 (s), 1006 (vs), 951 (m), 942 (m), 902 (w), 884 (w), 872 (m), 850 (s), 823 (m), 807 (s), 

791 (s), 759 (s), 718 (m), 690 (m), 676 (s), 656 (s). 

MS (EI, 70 eV): m/z (%) = 357 (17), 355 (14), 281 (32), 281 (24), 277 (40), 221 (29), 208 (28), 

207 (100), 185 (27), 183 (21), 169 (19). 

HRMS (C14H8BrCl2NO): calc.: 354.9166; found: 354.9162. 

 
3,5-Dichloro-1`,2`,3`,4`-tetrahydro-[1,1`-biphenyl]-2-carbonitrile(72e) 

 
The title compound was prepared according to TP3 from 2,4-dichlorobenzonitrile (69a) 

(1.0 mmol). TMPLi (12) (2.38 mL, 0.64 M, 1.5 mmol) was added dropwise to a solution of 2,4-

dichlorobenzonitrile (172 mg, 1.0 mmol), and CuCN·2LiCl (1.1 mL, 1 M, 1.1 mmol) in THF 

(3 mL) at -78 °C. 3-Bromocyclohex-1-ene (145 mg, 0.9 mmol) was added afterwards and stirred 

at that temperature for 30 min prior to quench with sat. NH4Cl/NH3-solution. Before 

chromatographic separation the crude regioselectivity was 97:3. Flash column chromatographical 

purification on silica gel (isohexane:EtOAc = 95:5) afforded 3,5-dichloro-1`,2`,3`,4`-tetrahydro-

[1,1`-biphenyl]-2-carbonitrile (72d) (202 mg, 0.8 mmol, 89%) as white solid. 

 

M.p.: 57-59 °C. 

1H-NMR (300 MHz, CDCl3): δ / ppm = 7.31 (d, J = 2.0 Hz, 1H), 7.21 – 7.17 (m, 1H), 6.03 – 

5.93 (m, 1H), 5.59 – 5.45 (m, 1H), 3.84 – 3.72 (m, 1H), 2.15 – 2.00 (m, 3H), 1.71 – 1.36 (m, 3H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 154.1, 139.6, 138.0, 131.3, 127.7, 127.1, 126.6, 114.4, 

111.7, 40.4, 31.2, 24.7, 20.6. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3070 (w), 3024 (w), 2932 (m), 2863 (w), 2834 (w), 2230 

(m), 1576 (s), 1551 (s), 1447 (m), 1434 (m), 1398 (s), 1371 (w), 1354 (w), 1342 (w), 1306 (w), 

1260 (w), 1238 (w), 1222 (w), 1197 (w), 1158 (m), 1137 (w), 1088 (m), 1042 (m), 999 (w), 969 

(w), 938 (w), 922 (w), 897 (m), 884 (m), 872 (s), 862 (m), 838 (s), 806 (m), 752 (w), 743 (m), 

728 (m), 717 (m), 676 (w), 654 (vs). 

MS (EI, 70 eV): m/z (%) = 253 (29), 251 (100), 236 (38), 223 (29), 197 (24), 190 (31), 188 (51), 

175 (20), 162 (26), 153 (23). 
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HRMS (C13H11Cl2N): calc.: 251.0269; found: 251.0256. 

 

Ethyl 3-iodothiophene-2-carboxylate (72f) 

 
The title compound was prepared according to TP2` from ethyl thiophene-2-carboxylate (69b) 

(1.0 mmol). TMPLi (12) (2.38 mL, 0.64 M, 1.5 mmol) was added dropwise to a solution of ethyl 

thiophene-2-carboxylate (156 mg, 1.0 mmol) and ZnCl2 (1.1 mL, 1.0 M, 1.1 mmol) in THF 

(2.5 mL) at -78 °C. An excess of iodine was added and stirred for 5 min at -78 °C prior to quench 

with sat. Na2S2O3-solution. Before chromatographic separation, the crude regioselectivity was 

75:25. Flash column chromatographical purification on silica gel (isohexane:EtOAc:CH2Cl2 = 

7:1:2) afforded a mixture of ethyl 3-iodothiophene-2-carboxylate (72f) and ethyl 5-

iodothiophene-2-carboxylate (75:25) as yellow oil (242 mg, 0.86 mmol, 86%). 

 
1H-NMR (400 MHz, CDCl3): δ / ppm = 7.43 (d, J = 5.1 Hz, 1H), 7.43* (d, J = 3.7 Hz, 1H), 7.26* 

(d, J = 3.7 Hz, 1H), 7.22 (d, J = 5.1 Hz, 1H),4.38 (q, J = 7.3 Hz, 2H), 4.36*(q, J = 7.2 Hz, 

2H),1.40 (t, J = 7.1 Hz, 3H), 1.37*(t, J = 7.1 Hz, 3H). 
*shows the signals for ethyl 5-iodothiophene-2-carboxylate 

 

Ethyl 3-(4-cyanophenyl)thiophene-2-carboxylate (72g) 

 
The title compound was prepared according to TP2` from ethyl thiophene-2-carboxylate (69b) 

(1.0 mmol). TMPLi (12) (2.19 mL, 0.64 M, 1.4 mmol) was added dropwise to a solution of ethyl 

thiophene-2-carboxylate (156 mg, 1.0 mmol) and ZnCl2 (0.5 mL, 1.0 M, 0.5 mmol) in THF 

(2 mL) at -78 °C. According to TP4, the corresponding zinc reagent was reacted with 4-

iodobenzonitrile (183 mg, 0.8 mmol) at that temperature for 5 min and additional 0.5 h at room 

temperature prior to quench with sat. NH4Cl-solution. Before chromatographic separation, the 

crude regioselectivity was 75:25. Flash column chromatographical purification on silica gel 

(isohexane:CH2Cl2 = 9:1 + 2% NEt3) afforded ethyl 3-(4-cyanophenyl)thiophene-2-carboxylate 

(72g) (156 mg, 0.61 mmol, 76%) as white solid. 

 

M.p.: 96-98 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.72 - 7.66 (m, 2H), 7.60 - 7.53 (m, 3H), 7.08 (d, J = 

5.2 Hz, 1H), 4.25 (q, J = 7.1 Hz, 2H), 1.26 (t, J = 7.2 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 161.6, 146.0, 140.5, 131.5, 130.8, 130.8, 130.1, 128.7, 

118.8, 111.5, 61.2, 14.1. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3097 (W), 3006 (W), 2987 (W), 2961 (W), 2937 (W), 

2904 (W), 2837 (W), 2358 (W), 2342 (W), 2339 (W), 1703 (S), 1608 (M), 1576 (W), 1538 (W), 

1500 (M), 1480 (M), 1467 (M), 1455 (M), 1450 (M), 1442 (M), 1419 (M), 1404 (M), 1392 (M), 
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1371 (W), 1360 (W), 1306 (W), 1290 (M), 1276 (S), 1245 (S), 1220 (S), 1188 (M), 1179 (S), 

1154 (M), 1112 (S), 1103 (S), 1083 (S), 1067 (S), 1020 (S), 1014 (S), 952 (M), 940 (M), 906 

(M), 896 (M), 869 (M), 842 (M), 824 (S), 778 (VS), 753 (M), 743 (S), 724 (S), 701 (W), 697 

(W), 679 (S), 668 (M), 659 (S). 

MS (EI, 70 eV): m/z (%) = 258 (9), 257 (52), 229 (22), 213 (16), 212 (100), 185 (15), 140 (41). 

HRMS (C14H11NO2S): calc.: 257.0510; found: 257.0505. 

 

Ethyl 3-(4-methoxyphenyl)thiophene-2-carboxylate (72h) 

 
The title compound was prepared according to TP2 from ethyl thiophene-2-carboxylate (69b) 

(1.0 mmol). TMPLi (12) (2.19 mL, 0.64 M, 1.4 mmol) was added dropwise to a solution of ethyl 

thiophene-2-carboxylate (156 mg, 1.0 mmol) and ZnCl2 (1.1 mL, 1.0 M, 1.1 mmol) in THF 

(2 mL) at -78 °C. According to TP4, the corresponding zinc reagent was reacted with 4-

iodoanisole (187 mg, 0.8 mmol) at that temperature for 5 min and additional 0.5 h at room 

temperature prior to quench with sat. NH4Cl-solution. Before chromatographic separation the 

crude regioselectivity was 75:25. Flash column chromatographical purification on silica gel 

(isohexane:CH2Cl2 = 9:1 + 2% NEt3) afforded ethyl 3-(4-methoxyphenyl)thiophene-2-

carboxylate (72h) (153 mg, 0.58 mmol, 73%) as colorless oil. 

 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.48 (d, J = 5.2 Hz, 1H), 7.46 - 7.40 (m, 2H), 7.08 (d, J 

= 5.0 Hz, 1H), 6.99 - 6.91 (m, 2H), 4.26 (q, J = 7.1 Hz, 2H), 3.86 (s, 3H), 1.28 (t, J = 7.2 Hz, 

3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 162.2, 159.4, 148.2, 131.5, 130.5, 129.9, 128.0, 126.7, 

113.2, 60.8, 55.2, 14.1. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3104 (W), 3088 (VW), 2986 (W), 2358 (W), 2330 (W), 

2229 (M), 1705 (S), 1652 (W), 1635 (W), 1605 (W), 1558 (W), 1534 (W), 1498 (M), 1472 (W), 

1457 (W), 1422 (M), 1405 (W), 1388 (W), 1377 (W), 1369 (W), 1360 (W), 1285 (M), 1275 (S), 

1251 (W), 1231 (S), 1177 (M), 1156 (W), 1133 (W), 1133 (W), 1121 (M), 1115 (M), 1110 (M), 

1086 (M), 1075 (S), 1025 (M), 1019 (M), 968 (W), 906 (M), 899 (W), 868 (M), 852 (VS), 839 

(M), 822 (M), 807 (M), 777 (VS), 736 (M), 727 (S), 672 (S), 668 (M), 658 (M). 

MS (EI, 70 eV): m/z (%) = 263 (16), 262 (100), 234 (25), 217 (52), 190 (14). 

HRMS (C14H14O3S): calc.: 262.0664; found: 262.0659. 

 

Ethyl 3-(cyclohex-2-en-1-yl)thiophene-2-carboxylate (72i) 

 
The title compound was prepared according to TP3 from ethyl thiophene-2-carboxylate (69b) 

(1.0 mmol). TMPLi (12) (2.38 mL, 0.64 M, 1.5 mmol) was added dropwise to a solution of ethyl 
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thiophene-2-carboxylate (156 mg, 1.0 mmol), and CuCN·2LiCl (2.0 mL, 1 M, 2.0 mmol) in THF 

(3 mL) at -78 °C. 3-Bromocyclohex-1-ene (113 mg, 0.7 mmol) was added afterwards and stirred 

at that temperature for 30 min prior to quench with sat. NH4Cl/NH3-solution.Before 

chromatographic separation the crude regioselectivity was 87:13. Flash column 

chromatographical purification on silica gel (isohexane:CH2Cl2 = 95:5 + 2% NEt3) afforded ethyl 

3-(cyclohex-2-en-1-yl)thiophene-2-carboxylate (72i) (115 mg, 0.49 mmol, 70%) as colorless oil. 

 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.39 (d, J = 4.9 Hz, 1H), 7.03 (d, J = 5.2 Hz, 1H), 5.88 

– 5.84 (m, 1H), 5.69 – 5.65 (m, 1H), 4.46 – 4.41 (m, 1H), 4.37 – 4.39 (m, 2H), 2.11 – 2.05 (m, 

3H), 1.78 – 164 (m, 2H), 1.57 – 1.49 (m, 1H), 1.38 (t, J = 7.1 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm =162.5, 154.9, 129.9, 129.8, 129.5, 128.0, 126.3, 60.7, 

35.5, 30.8, 25.0, 21.4, 14.3. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3102 (VW), 3019 (VW), 2980 (W), 2931 (W), 2858 (W), 

2834 (VW), 2359 (W), 2339 (VW), 1702 (S), 1699 (S), 1653 (W), 1635 (W), 1528 (M), 1476 

(W), 1473 (W), 1456 (W), 1445 (M), 1436 (W), 1417 (M), 1389 (M), 1380 (W), 1365 (M), 1338 

(W), 1287 (S), 1269 (M), 1240 (VS), 1230 (VS), 1212 (S), 1188 (M), 1171 (M), 1135 (W), 1095 

(S), 1071 (VS), 1019 (M), 958 (M), 924 (M), 888 (W), 882 (W), 863 (M), 846 (M), 824 (M), 811 

(W), 777 (S), 759 (M), 749 (S), 724 (M), 707 (W), 701 (W), 697 (W), 694 (W), 692 (W), 686 

(W), 668 (M), 661 (M). 

MS (EI, 70 eV): m/z (%) = 236 (57), 190 (85), 189 (100), 171 (21), 161 (43), 125 (21), 128 (17). 

HRMS (C13H16O2S): calc.: 236.0871; found: 236.0876. 

 

4.3 Synthesis of compound of type 73 

2,4-Dichloro-3-iodobenzonitrile (73a) 

 
The title compound was prepared by reaction of 2,4-dichlorobenzonitrile (1a; 175 mg, 1.0 mmol) 

dissolved in anhydrous THF (1 mL) and TMPZnCl·LiCl (1.10 M, 1.0 mL, 1.1 mmol) at 60 °C for 

12 h. Then, a solution of iodine (254 mg, 1.0 mmol) in THF (1 mL) was added and the reaction 

mixture was stirred at that temperature for 15 min before it was quenched with sat. Na2S2O3-

solution. Flash column chromatographical purification on silica gel (isohexane:EtOAc = 95:5) 

afforded 2,4-dichloro-3-iodobenzonitrile (73a) (228 mg, 0.76 mmol, 78%) as a white powder. 

 
1H-NMR (400 MHz, CDCl3): δ / ppm = 7.61 (d, J = 8.3 Hz, 1H), 7.47 (d, J = 8.3 Hz, 1H). 
13C-NMR (100 MHz, CDCl3): δ / ppm = 145.9, 143.2, 133.4, 127.5, 115.2, 111.7, 105.8. 

MS (EI, 70 eV): m/z (%) = 297 (6), 153 (10), 131 (10), 113 (23), 97 (100), 83 (22). 

HRMS (C7H2Cl2IN): calc.: 296.8609; found: 296.8588. 
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Ethyl 5-iodothiophene-2-carboxylate (73b)143 

 
The title compound was prepared from ethyl thiophene-2-carboxylate (69b) (1.0 mmol). 

TMPMgCl·LiCl (0.94 mL, 1.17 M, 1.1 mmol) was added at 23 °C and the reaction mixture 

stirred for 3.5 h. Then, a solution of iodine (254 mg, 1.0 mmol) in THF (1 mL) was added and the 

reaction mixture was stirred at that temperature for 15 min before it was quenched with sat. 

Na2S2O3-solution. Flash column chromatographical purification on silica gel 

(isohexane:EtOAc:DCM = 7:1:2) afforded Ethyl 5-iodothiophene-2-carboxylate (73b) (170 mg, 

0.6 mmol, 60%) as yellow oil.  

 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.43 (d, J = 3.9 Hz, 1H), 7.26 (d, J = 3.9 Hz, 1H), 4.33 

(q, J = 7.1 Hz, 2H), 1.37 (t, J = 7.2 Hz. 

 

4.4 Synthesis of compounds of type 75 

Methyl 4-(2-chloro-3-cyanopyridin-4-yl)benzoate (75a) 

 
The title compound was prepared according to TP2 from 2-chloro-3-cyanopyridine (74a) 

(1.0mmol). TMPLi (12) (2.38 mL, 0.64M, 1.5 mmol) was added dropwise to a solution of 2-

chloro-3-cyanopyridine (142 mg, 1.0 mmol), ZnCl2 (1.1 mL, 1M, 1.1 mmol) and LiCl (3.14 mL, 

0.7M, 2.2 mmol) in THF (4 mL) at -78 °C. According to TP4, the corresponding zinc reagent 

was reacted with methyl 4-iodobenzoate (236mg, 0.9 mmol) at that temperature for 5 min and 

additional 2 h at room temperature prior to quench. Flash column chromatographical purification 

on silica gel (isohexane:EtOAc = 7:3) afforded methyl 4-(2-chloro-3-cyanopyridin-4-yl)benzoate 

(75a) (247mg, 0.91 mmol, 90%) as a yellow powder.  

 

M.p.:185-187 ºC. 
1H-NMR (400 MHz, CDCl3): δ / ppm = 8.61 (d, J = 5.1 Hz, 1H), 8.20 (d, J = 8.4 Hz, 2H), 7.66 

(d, J = 8.4 Hz, 2H), 7.41 (d, J = 5.1 Hz, 1H), 3.96 (s, 3H). 
13C-NMR (100 MHz, CDCl3): δ / ppm = 166.0, 155.0, 154.4, 152.1, 139.0, 132.1, 130.4, 128.6, 

122.6, 114.3, 109.3, 52.5. 

IR (Diamond-ATR, neat):  / cm-1 = 1713 (S), 1700 (M), 1695 (M), 1571 (S), 1558 (M), 1532 

(M), 1456 (M), 1432 (S), 1405 (M), 1363 (M), 1307 (M), 1290 (S), 1274 (S), 1254 (M), 1239 

(M), 1234 (M), 1210 (M), 1187 (M), 1179 (M), 1115 (S), 1106 (S), 1103 (S), 1059 (S), 1015 

                                                      
143 Spectral data in full accordance to those reported in the literature: T.T. Nguyen, N. Marquise, F. Chevallier, F. 
Mongin, Chem. Eur. J. 17 2011, 10405. 
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(M), 966 (M), 878 (M), 854 (S), 837 (M), 809 (M), 794 (M), 784 (M), 778 (S), 756 (VS), 743 

(M), 704 (VS), 683 (S), 677 (M), 675 (M), 673 (M).  

MS (EI, 70 eV): m/z (%) = 272 (46), 243 (39), 241 (100), 213 (9), 177 (33), 151 (18). 

HRMS (C14H9N2O2Cl): calc.: 272.0353; found: 272.0358. 

 

2-Chloro-4-(4-methoxyphenyl)-3-cyanopyridine 75b 

 

The title compound was prepared according to TP2 from 2-chloro-3-cyanopyridine (74a) (1.0 

mmol). TMPLi (12) (2.38 mL, 0.64 M, 1.5 mmol) was added dropwise to a solution of 2-chloro-

3-cyanopyridine (138 mg, 1.0 mmol), ZnCl2 (1.1 mL, 1.0 M, 1.1 mmol) and LiCl (3.14 mL, 

0.7M, 2.2 mmol) in THF (2 mL) at -78 °C. According to TP4, the corresponding zinc reagent 

was reacted with 4-iodoanisole (234 mg, 1.0 mmol) at that temperature for 5 min and additional 

2 h at room temperature prior to quench with sat. NH4Cl-solution. Flash column 

chromatographical purification on silica gel (isohexane:EtOAc = 1:1) afforded 2-chloro-4-(4-

methoxyphenyl)-3-cyanopyridine (75b) (176 mg, 0.72 mmol, 72%) as a white solid.  

 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.53 (d, J = 5.4 Hz, 1H), 7.62 – 7.57 (m, 2H), 7.38 (d, J 

= 5.1 Hz, 1H), 7.09 – 7.03 (m, 2H), 3.89 (s, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 161.7, 155.7, 154.4, 151.6, 130.0, 127.0, 122.3, 114.7, 

108.6, 55.5. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3010 (w), 2946 (w), 2847 (w), 2227 (w), 1606 (m), 1573 

(m), 1538 (w), 1524 (m), 1513 (s), 1464 (w), 1454 (m), 1442 (m), 1418 (w), 1369 (m), 1310 (m), 

1294 (m), 1259 (s), 1236 (m), 1202 (m), 1182 (s), 1156 (m), 1116(m), 1077 (w), 1062 (s), 1022 

(s), 973 (m), 960 (w), 851 (m), 828 (vs), 819 (vs), 799 (m), 761 (s), 725 (w), 686 (w). 

MS (EI, 70 eV): m/z (%) = 246 (31), 245 (14), 244 (100), 201 (16), 166 (10), 165 (22). 

HRMS (C12H9ClN2O): calc.: 244.0403; found: 244.0396. 

 

2-Chloro-3-cyano-4-(trimethylsilyl)pyridine (75c) 

 
The title compound was prepared according to TP1 from 2-chloro-3-cyanopyridine (74a) (1.0 

mmol). TMPLi (12) (2.38 mL, 0.64 M, 1.5 mmol) was added dropwise to a solution of 2-chloro-

3-cyanopyridine (142 mg, 1.0 mmol), MgCl2 (2.2 mL, 0.5M, 1.1 mmol) and LiCl (3.14 mL, 

0.7 M, 2.2 mmol) in THF (2.5 mL) at -78 °C. Trimethylsilylchloride (127 µL, 1.0 mmol) was 

added afterwards and stirred at that temperature for 10 min and additional 5 min at 23 °C prior to 

quench. Flash column chromatographical purification on silica gel (isohexane:EtOAc = 9:1) 

afforded 2-chloro-3-cyano-4-(trimethylsilyl)pyridine (75c) (210 mg, 0.99 mmol, 99%) as a white 

powder. 
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M.p.: 128-130 ºC. 
1H-NMR (400 MHz, CDCl3): δ / ppm = 8.50 (d, J = 4.8 Hz, 1H), 7.43 (d, J = 4.8 Hz, 1H), 0.47 

(s, 9H). 
13C-NMR (100 MHz, CDCl3): δ / ppm = 159.3, 153.5, 151.0, 126.9, 115.7, 114.8, -2.1. 

IR (Diamond-ATR, neat):  / cm-1 = 2961 (VW), 2229 (W), 1564 (W), 1558 (W), 1539 (VW), 

1533 (VW), 1509 (W), 1496 (VW), 1489 (VW), 1436 (W), 1432 (W), 1424 (VW), 1419 (VW), 

1413 (VW), 1357 (M), 1270 (W), 1256 (M), 1246 (M), 1223 (W), 1199 (W), 1178 (VW), 1159 

(VW), 1141 (W), 1121 (M), 1087 (W), 881 (VW), 845 (VS), 801 (M), 784 (W), 773 (M), 743 

(S), 720 (W), 717 (W), 712 (W), 702 (W), 698 (W), 683 (W), 680 (W), 677 (W), 672 (W), 667 

(W), 665 (VW), 661 (VW), 657 (VW), 655 (VW), 653 (VW), 651 (VW). 

MS (EI, 70 eV): m/z (%) = 212 (2), 210 (5), 197 (37), 195 (100), 73 (21), 72 (7). 

HRMS (C9H11N2ClSi): calc.: 210.0380; found: 210.0383. 

 

2-Chloro-4-(cyclohex-2-en-1-yl)-3-cyanopyridine(75d) 

 
The title compound was prepared according to TP3 from2-chloro-3-cyanopyridine (74a) (1.0 

mmol). TMPLi (12) (2.38 mL, 0.64 M, 1.5 mmol) was added dropwise to a solution of 2-chloro-

3-cyanopyridine (142 mg, 1.0 mmol) and CuCN·2LiCl (1.1 mL, 1 M, 1.1 mmol) in THF (4 mL) 

at -78 °C. 3-bromocyclohex-1-ene(115 µL, 1.0 mmol) was added afterwards and stirred at that 

temperature for 10 min and additional 1 h at 0 ºC prior to quench. Flash column 

chromatographical purification on silica gel (isohexane:EtOAc = 8:2) afforded 2-chloro-4-

(cyclohex-2-en-1-yl)-3-cyanopyridine (75d) (210mg, 0.96 mmol, 96%) as a yellow oil. 

 
1H-NMR (400 MHz, CDCl3): δ / ppm = 8.39 (d, J = 5.2 Hz, 1H), 7.22 (d, J = 5.2 Hz, 1H), 6.00 

– 5.98 (m, 1H), 5.53 – 5.49 (m, 1H), 3.76 (td, J = 5.6, 2.8 Hz, 1H), 2.10 – 2.03 (m, 3H), 1.63 – 1 

56 (m, 2H), 1.49 - 1.41 (m, 1H). 
13C-NMR (100 MHz, CDCl3): δ / ppm = 162.7, 153.0, 151.8, 131.5, 125.3, 121.4, 113.6, 110.2, 

40.1, 30.4, 24.4, 20.3. 

IR (Diamond-ATR, neat):  / cm-1 = 3024 (W), 2933 (W), 2894 (W), 2881 (W), 2862 (W), 

2860 (W), 2836 (W), 2229 (W), 1575 (VS), 1560 (W), 1554 (W), 1541 (S), 1450 (M), 1436 (W), 

1432 (W), 1393 (M), 1370 (VS), 1306 (W), 1258 (W), 1239 (W), 1204 (W), 1192 (W), 1175 

(W), 1161 (M), 1152 (W), 1135 (W), 1076 (W), 1060 (W), 1045 (M), 939 (W), 909 (M), 902 

(M), 890 (M), 841 (S), 805 (M), 796 (W), 766 (W), 751 (M), 731 (S), 716 (S), 697 (M), 686 (W), 

684 (W), 683 (W), 677 (W), 675 (W), 668 (W). 

MS (EI, 70 eV): m/z (%) =218 (66), 217 (100), 203 (30), 189 (15), 181 (14), 166 (16), 155 (18), 

54 (12). 

HRMS (C12H11N2Cl): calc.: 218.0611; found: 218.027. 
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3-Iodopicolinonitrile 

 

The title compound was prepared according to TP1` from picolinonitrile (74b) (1.0 mmol). 

TMPLi (12) (1.72 mL, 0.64 M, 1.1 mmol) was added dropwise to a solution of picolinonitrile 

(104 mg, 1.0 mmol), MgCl2 (2.6 mL, 0.5 M, 1.3 mmol) in THF (3.0 mL) at -78 °C. A solution of 

iodine in THF (in excess) was added afterwards and stirred at that temperature for 10 min and 

additional 5 min at room temperature prior to quench with sat. Na2S2O3-solution. Flash column 

chromatographical purification on silica gel (isohexane:EtOAc = 8:2 -> 6:4) afforded 3-

iodopicolinonitrile (165 mg, 0.72 mmol, 72%) as a white powder.  

 

Mp.: 108-110 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.68 (dd, J = 4.6, 1.5 Hz, 1H), 8.25 (dd, J = 7.9, 1.2 Hz, 

1H), 7.30 – 7.23 (m, 1H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 149.4, 146.7, 139.5, 127.4, 117.4, 97.6. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3056 (w), 3048 (w), 2238 (w), 1549 (m), 1434 (w), 1420 

(w), 1409 (s), 1259 (m), 1246 (w), 1234 (w), 1192 (w), 1181 (w), 1129 (w), 1104 (w), 1060 (s), 

1013 (s), 990 (m), 951 (w), 924 (w), 880 (w), 817 (w), 796 (vs), 752 (w), 744 (s), 686 (w), 668 

(w). 

MS (EI, 70 eV): m/z (%) = 231 (8), 230 (100), 127 (12), 103 (66), 76 (24), 69 (11). 

HRMS (C6H3IN2): calc.: 229.9341; found: 229.9326. 

 

NMR-data: G. Bentabed-Ababsa, S. C: S. Ely, S. Hesse, E. Nassar, F. Chevallier, T. T: Nguyen, 
A. Derdour, F. Mongin, J. Org. Chem. 2010, 75, 839. 
 
Methyl 3-(2-cyanopyridin-3-yl)benzoate (75e) 

 
The title compound was prepared according to TP2 from picolinonitrile (74b) (1.0 mmol). 

TMPLi (12) (2.38 mL, 0.64 M, 1.5 mmol) was added dropwise to a solution of picolinonitrile 

(104 mg, 1.0 mmol), ZnCl2 (1.1 mL, 1.0 M, 1.1 mmol) in THF (2 mL) at -78 °C. According to 

TP4 the corresponding zinc reagent was reacted with methyl 3-iodobenzoate (236 mg, 0.9 mmol) 

at that temperature for 5 min and additional 15 min at room temperature prior to quench with sat. 

NH4Cl-solution. Flash column chromatographical purification on silica gel 

(CH2Cl2→CH2Cl2:EtOAc = 9:1) afforded methyl 3-(2-cyanopyridin-3-yl)benzoate (75e) 

(180 mg, 0.76 mmol, 84%) as a brown powder.  

 

M.p.: 215-218 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.75 (dd, J = 4.7, 1.7 Hz, 1H), 8.08 – 8.25 (m, 2H), 7.91 

(dd, J = 8.0, 1.7 Hz, 1H), 7.82 (ddd, J = 7.7, 1.9, 1.1 Hz, 1H), 7.77 – 7.67 (m, 2H), 3.96 (s, 3H). 
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13C-NMR (75 MHz, CDCl3): δ / ppm = 166.3, 149.8, 141.1, 137.6, 135.6, 133.0, 132.2, 131.1, 

130.5, 129.9, 129.2, 126.7, 116.6, 52.4. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3049 (w), 2964 (w), 2232 (w), 1722 (s), 1587 (w), 1556 

(w), 1470 (w), 1454 (w), 1447 (w), 1427 (m), 1404 (w), 1322 (w), 1310 (m), 1284 (w), 1266 (vs), 

1230 (m), 1186 (m), 1124 (w), 1110 (m), 1090 (s), 1070 (w), 1028 (w), 1000 (w), 964 (m), 919 

(w), 824 (w), 810 (m), 774 (m), 750 (s), 731 (m), 696 (s), 665 (w). 

MS (EI, 70 eV): m/z (%) = 239 (14), 238 (15), 230 (16), 207 (29), 179 (15), 149 (15), 126 (13), 

104 (14), 88 (15), 86 (62), 84 (100), 51 (20). 

HRMS (C14H10N2O2): calc.: 238.0742; found: 238.0729. 

 
Ethyl 3-iodoisonicotinate 

 

The title compound was prepared according to TP2` from ethyl isonicotinate (74c)144 (1.0 mmol). 

TMPLi (12) (1.72 mL, 0.64 M, 1.1 mmol) was added dropwise to a solution of ethyl isonicotinate 

(151 mg, 1.0 mmol), ZnCl2 (1.3 mL, 1.0 M, 1.3 mmol) in THF (5.0 mL) at -78 °C. A solution of 

iodine in THF (in excess) was added afterwards and stirred at that temperature for 10 min and 

additional 5 min at 23 °C prior to quench with sat. Na2S2O3-solution. Flash column 

chromatographical purification on silica gel (isohexane:EtOAc = 8:2) afforded ethyl 3-

iodoisonicotinate145 (180 mg, 0.65 mmol, 65%) as a yellow oil. 

 

1H-NMR (300 MHz, CDCl3): δ / ppm = 9.09 (s, 1H), 8.61 (d, J = 4.9, 0.7 Hz, 1H), 7.63 (dd, J = 

5.0, 0.7 Hz, 1H), 4.42 (q, J = 7.2 Hz, 2H), 1.41 (t, J = 7.2 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 164.9, 159.4, 149.0, 142.5, 124.4, 92.4, 62.4, 14.1. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3040 (w), 2981 (w), 1727 (s), 1574 (w), 1528 (w), 1465 

(w), 1445 (w), 1394 (m), 1366 (m), 1298 (s), 1261 (vs), 1209 (m), 1178 (s), 1112 (s), 1078 (s), 

1010 (s), 872 (m), 842 (m), 776 (s), 700 (s), 663 (s). 

MS (EI, 70 eV): m/z (%) = 278 (8), 277 (100), 249 (43), 232 (58), 204 (18), 177 (15), 122 (10). 

HRMS (C8H8INO2): calc.: 276.9600; found: 276.9585. 

 
Ethyl 3-(4-fluorophenyl)isonicotinate (75f) 

 
The title compound was prepared according to TP2 from ethyl isonicotinate (74c) (1.0 mmol). 

TMPLi (12) (2.38 mL, 0.64 M, 1.5 mmol) was added dropwise to a solution of ethyl isonicotinate 

(151 mg, 1.0 mmol), ZnCl2 (1.1 mL, 1.0 M, 1.1 mmol) in THF (2 mL) at -78 °C. According to 

                                                      
144Alternatively, a metalation with TMP2Mg·2LiCl at -40 °C over 12 h is possible. See: G. C. Clososki, C. J. 
Rohbogner, P. Knochel, Angew. Chem. 2007, 119, 7825; Angew. Chem. Int. Ed.2007, 46, 7681. 
145 G. Bentabed-Ababsa, S. C: S. Ely, S. Hesse, E. Nassar, F. Chevallier, T. T: Nguyen, A. Derdour, F. Mongin, J. Org. 

Chem.2010, 75, 839. 
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TP4 the corresponding zinc reagent was treated with 1-fluoro-4-iodobenzene (178 mg, 0.8 mmol) 

at that temperature for 5 min and additional 2 h at room temperature prior to quench with sat. 

NH4Cl-solution. Flash column chromatographical purification on silica gel (CH2Cl2) afforded 

ethyl 3-(4-fluorophenyl)isonicotinate (75f) (155 mg, 0.63 mmol, 79%) as a yellow oil. 
 

1H-NMR (300 MHz, CDCl3): δ / ppm = 8.71 (d, J = 5.0 Hz, 1H), 8.67 (s, 1H), 7.65 (dd, J = 5.1, 

0.7 Hz, 1H), 7.35 – 7.27 (m, 2H), 7.19 – 7.09 (m, 2H), 4.18 (q, J = 7.1 Hz, 2H), 1.10(t, J = 

7.1 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 166.7, 162.7 (d, J = 248.0 Hz), 151.3, 149.1, 138.1, 

135.1, 133.4 (d, J = 3.4 Hz), 130.4 (d, J = 8.1 Hz), 122.6, 115.3 (d, J = 21.6 Hz), 61.7, 13.7. 

IR (Diamond-ATR, neat): ν
~  / cm-1 =3039 (VW), 2981 (W), 2935 (VW), 2360 (W), 2358 (W), 

2354 (VW), 2341 (VW), 2338 (VW), 2334 (VW), 2332 (VW), 1721 (S), 1607 (M), 1596 (W), 

1583 (W), 1558 (W), 1550 (W), 1542 (VW), 1539 (VW), 1512 (S), 1498 (W), 1479 (M), 1457 

(W), 1445 (W), 1437 (W), 1414 (M), 1396 (M), 1366 (M), 1313 (M), 1285 (S), 1280 (S), 1245 

(S), 1222 (S), 1178 (S), 1160 (S), 1095 (S), 1075 (M), 1015 (M), 1004 (M), 876 (W), 835 (VS), 

820 (S), 791 (S), 739 (M), 734 (M), 714 (S), 672 (S), 653 (W). 

MS (EI, 70 eV): m/z (%) = 246 (16), 245 (86), 238 (12), 217 (28), 201 (22), 200 (100), 172 (44). 

HRMS (C14H12FNO2): calc.: 245.0852; found: 245.0852. 

 

4-Chloro-1-phenylfuro[3,4-c]pyridin-3(1H)-one (75g)146 

 
The title compound was prepared according to TP1’ from ethyl 2-chloronicotinate (74d)147 (1.0 

mmol). TMPLi (12) (2.38 mL, 0.64 M, 1.5 mmol) was added dropwise to a solution of ethyl 2-

chloronicotinate (168 µL, 1.0 mmol) and magnesium chloride (2.2 mL, 0.5 M, 1.1 mmol) in THF 

(4 mL) at -78 °C. Benzaldehyde (102 µL, 1.0 mmol) was added afterwards and stirred at that 

temperature for 10 min and additional 2 h at room temperature prior to quench. Flash column 

chromatographical purification on silica gel (isohexane:EtOAc = 6:4 to 2:8) afforded 4-chloro-1-

phenylfuro[3,4-c]pyridin-3(1H)-one (75g) (231mg, 0.94 mmol, 94%) as a light orange solid.  

 

M.p.:100-102 ºC. 
1H-NMR (400 MHz, CDCl3): δ / ppm = 8.55 (d, J = 5.1 Hz, 1H), 7.40 - 7.35 (m, 3H), 7.29 (d, J 

= 5.1 Hz, 1H), 7.26 - 7.21 (m, 2H), 6.39 (s, 1H). 
13C-NMR (100 MHz, CDCl3): δ / ppm = 165.7, 161.1, 153.5, 149.3, 134.0, 129.8, 129.1, 126.6, 

119.1, 117.1, 80.9. 

IR (Diamond-ATR, neat):  / cm-1 = 1769 (S), 1718 (M), 1700 (W), 1695 (W), 1671 (M), 

1669 (M), 1653 (M), 1635 (W), 1628 (W), 1616 (W), 1594 (M), 1586 (M), 1576 (M), 1560 (M), 

1542 (W), 1533 (W), 1496 (W), 1448 (M), 1404 (M), 1347 (W), 1303 (M), 1279 (M), 1252 (M), 
                                                      
146 Spectral data in full accordance to those reported in the literature: M. Abarbri, J. Thibonnet, L.  Berillon, F.  
Dehmel, M.  Rottlaender, P.  Knochel, J. Org. Chem. 2000, 65, 4618. 
147 Alternatively, a metalation with TMP2Zn·2MgCl2 2LiCl at 23 °C over 5 h is possible. See: G. C. Clososki, C. J. 
Rohbogner, P. Knochel, Angew. Chem. 2007, 119, 7825; Angew. Chem. Int. Ed.2007, 46, 7681. 
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1218 (M), 1202 (M), 1174 (M), 1172 (M), 1124 (M), 1089 (M), 1061 (M), 1038 (M), 1029 (M), 

997 (M), 991 (M), 948 (S), 915 (M), 876 (W), 862 (M), 824 (M), 821 (M), 787 (M), 761 (S), 730 

(S), 696 (VS), 667 (M), 665 (M), 663 (M), 660 (M), 653 (M).  

MS (EI, 70 eV): m/z (%) = 332 (16), 331 (93), 329 (89), 191 (18), 190 (100), 188 (97), 185 (39), 

109 (31), 77 (38). 

HRMS (C13H8NO2Cl): calc.: 245.0244; found: 245.0243. 

 
Ethyl 2-chloro-4-(4-methoxyphenyl)nicotinate (75h) 

 
The title compound was prepared according to TP2 from ethyl 2-chloronicotinate (74d) 

(1.0 mmol). TMPLi (12) (2.38 mL, 0.64 M, 1.5 mmol) was added dropwise to a solution of ethyl 

2-chloronicotinate (168 µL, 1.0 mmol), ZnCl2 (1.1 mL, 1 M, 1.1 mmol) and LiCl (3.14 mL, 0.7 M, 

2.2 mmol) in THF (4 mL) at -78 °C. According to TP4 the corresponding zinc reagent was 

reacted with 1-iodo-4-methoxybenzene (234 mg, 1.0 mmol) at that temperature for 5 min and 

additional 3 h at room temperature prior to quench. Flash column chromatographical purification 

on silica gel (isohexane:EtOAc = 85:15 to 3:1) afforded ethyl 2-chloro-4-(4-

methoxyphenyl)nicotinate (75h) (251mg, 0.86 mmol, 86%) as a colorless oil.  

 
1H-NMR (400 MHz, CDCl3): δ / ppm = 8.39 (d, J = 5.2 Hz, 1H), 7.34 (d, J = 8.8 Hz, 2H), 7.23 

(d, J = 5.2 Hz, 1H), 6.94 (d, J = 8.8 Hz, 2H), 4.23 (q, J = 7.1 Hz, 2H), 3.82 (s, 3H), 1.15 (t, J = 

7.1 Hz, 3H). 
13C-NMR (100 MHz, CDCl3): δ / ppm = 166.0, 160.6, 150.0, 149.6, 147.9, 129.4, 129.1, 128.9, 

123.0, 114.3, 62.1, 55.4, 13.8. 

IR (Diamond-ATR, neat):  / cm-1 = 2981 (W), 2936 (VW), 2934 (VW), 2903 (VW), 2838 

(VW), 1729 (S), 1700 (W), 1696 (W), 1684 (VW), 1653 (VW), 1635 (VW), 1608 (M), 1575 (S), 

1554 (W), 1534 (M), 1514 (S), 1487 (W), 1453 (M), 1442 (M), 1416 (W), 1378 (M), 1362 (M), 

1266 (S), 1250 (VS), 1214 (M), 1196 (M), 1179 (S), 1130 (S), 1113 (M), 1094 (W), 1063 (S), 

1055 (VS), 1026 (S), 853 (M), 827 (VS), 794 (M), 781 (M), 775 (M), 742 (S), 726 (W), 702 (W), 

690 (W), 686 (W), 684 (W), 683 (W), 677 (W), 674 (W), 668 (W), 665 (W), 663 (W), 660 (W), 

657 (W), 655 (W). 

MS (EI, 70 eV): m/z (%) = 293 (35), 291 (100), 263 (13), 248 (27), 246 (75), 210 (63), 140 (17). 

HRMS (C15H14NO3Cl): calc.: 291.0662; found: 291.0655. 
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Ethyl 2-chloro-4-(cyclohex-2-en-1-yl)nicotinate (75i) 

 
The title compound was prepared according to TP3 from ethyl 2-chloronicotinate (74d) (1.0 

mmol). TMPLi (12) (2.38 mL, 0.64 M, 1.5 mmol) was added dropwise to a solution of ethyl 2-

chloronicotinate (168 µL, 1.0 mmol) andCuCN·2LiCl (1.1 mL, 1 M, 1.1 mmol) in THF (4 mL) at 

-78 °C. 3-bromocyclohex-1-ene(115 µL, 1.0 mmol) was added afterwards and stirred at that 

temperature for 10 min and additional 2 h at 0 ºC prior to quench. Flash column 

chromatographical purification on silica gel (isohexane:EtOAc = 8:2) afforded ethyl 2-chloro-4-

(cyclohex-2-en-1-yl)nicotinate (75i) (228mg, 0.86 mmol, 86%) as a colorless oil. 

 
1H-NMR (400 MHz, CDCl3): δ / ppm = 8.28 (d, J = 5.2 Hz, 1H), 7.14 (d, J = 5.2 Hz, 1H), 5.96 

– 5.91 (m, 1H), 5.54 – 5.50 (m, 1H), 4.47 – 4.31 (m, 2H), 3.42 – 3.38 (m, 1H), 2.10 - 1.99 (m, 

3H), 1.77 - 1.63 (m, 1H), 1.62 - 1.41 (m, 2H), 1.36 (t, J = 7.1 Hz, 3H). 
13C-NMR (100 MHz, CDCl3): δ / ppm = 165.9, 155.6, 149.7, 147.3, 130.5, 129.8, 127.1, 121.8, 

62.1, 39.2, 31.1, 24.6, 20.8, 14.0. 

IR (Diamond-ATR, neat):  / cm-1 = 3024 (VW), 3023 (VW), 2984 (W), 2980 (W), 2933 (W), 

2931 (W), 2928 (W), 2865 (W), 2860 (W), 2837 (W), 1729 (VS), 1700 (W), 1696 (W), 1685 

(W), 1675 (VW), 1653 (VW), 1579 (S), 1546 (M), 1456 (M), 1447 (M), 1436 (W), 1432 (W), 

1419 (W), 1393 (M), 1379 (M), 1363 (M), 1309 (M), 1270 (S), 1227 (M), 1216 (M), 1180 (S), 

1119 (S), 1095 (M), 1061 (VS), 1044 (M), 1012 (M), 939 (W), 937 (W), 911 (M), 902 (W), 890 

(M), 853 (M), 841 (M), 804 (W), 797 (W), 780 (W), 775 (W), 737 (S), 725 (S), 694 (M), 685 

(W), 667 (W), 661 (W), 658 (W), 655 (W), 651 (W). 

MS (EI, 70 eV): m/z (%) =265 (36), 236 (44), 219 (100), 200 (40), 182 (82), 166 (45), 154 (44), 

128 (31), 77 (40). 

HRMS (C14H16NO2Cl): calc.: 265.0870; found: 265.0861. 

 

Ethyl 2-chloro-4-(cyclopropanecarbonyl)nicotinate (75j) 

 
The title compound was prepared according to TP3 from ethyl 2-chloronicotinate (74d) 

(1.0 mmol). TMPLi (12) (3.26 mL, 0.46 M, 1.5 mmol) was added dropwise to a solution of ethyl 

2-chloronicotinate (168 µL, 1.0 mmol) and CuCN·2LiCl (1.1 mL, 1 M, 1.1 mmol) in THF (4 mL) 

at -78 °C. Cyclopropanecarbonyl chloride (73 µL, 0.8 mmol) was added afterwards and stirred at 

that temperature for 10 min and additional 1.5 h at 0 ºC prior to quench. Flash column 

chromatographical purification on silica gel (isohexane:EtOAc = 8:2 to 1:1) afforded ethyl 2-

chloro-4-(cyclopropanecarbonyl)nicotinate (75j) (190mg, 0.75 mmol, 94%) as a clear oil. 

 

ν
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1H-NMR (400 MHz, CDCl3): δ / ppm = 8.57 (d, J = 5.0 Hz, 1H), 7.64 (d, J = 5.0 Hz, 1H), 4.39 

(q, J = 7.1 Hz, 2H), 2.43 (tt, J = 7.8, 4.5 Hz, 1H), 1.35 (t, J = 7.1 Hz, 3H), 1.30 - 1.25 (m, 2H), 

1.17 - 1.11 (m, 2H). 
13C-NMR (100 MHz, CDCl3): δ / ppm = 199.2, 165.2, 150.7, 149.1, 146.2, 127.5, 120.2, 62.4, 

19.3, 13.8, 13.4. 

IR (Diamond-ATR, neat):  / cm-1 = 3010 (VW), 3006 (VW), 2983 (W), 1768 (VW), 1732 

(S), 1683 (S), 1663 (W), 1653 (W), 1646 (VW), 1635 (VW), 1574 (M), 1557 (W), 1545 (M), 

1521 (VW), 1506 (VW), 1464 (W), 1456 (M), 1447 (M), 1419 (W), 1383 (VS), 1363 (M), 1340 

(VW), 1262 (VS), 1235 (VS), 1198 (S), 1190 (S), 1127 (VS), 1081 (W), 1063 (S), 1046 (M), 

1016 (S), 918 (VW), 913 (VW), 883 (S), 854 (S), 842 (S), 812 (M), 780 (M), 778 (M), 739 (M), 

731 (S), 724 (M), 702 (W), 689 (W), 686 (W), 683 (VW), 664 (S). 

MS (EI, 70 eV): m/z (%) = 253 (10), 225 (19), 208 (70), 197 (81), 184 (100), 144 (21), 116 (29), 

69 (74). 

HRMS (C12H12NO3Cl): calc.: 253.0506; found: 253.0515. 

 
2-Chloro-4-iodo-3-nitropyridine  

 

The title compound was prepared according to TP2 from 2-chloro-3-nitropyridine (0.5 mmol). 

TMPLi (12) (1.19 mL, 0.64 M, 0.75 mmol) was added dropwiseto a solution of 2-chloro-3-

nitropyridine (79 mg, 0.5 mmol), zinc chloride (0.55 mL, 1.0 M, 0.55 mmol) and LiCl (1.57 mL, 

0.7 M, 1.1 mmol) in THF (2.5 mL) at -78 °C. A solution of iodine in THF (in excess) was added 

afterwards and stirred at that temperature for 10 min and additional 5 min at room temperature 

prior to quench with sat. Na2S2O3-solution. Flash column chromatographical purification on silica 

gel (isohexane:EtOAc = 85:15) afforded 2-chloro-4-iodo-3-nitropyridine (77 mg, 0.27 mmol, 

54%) as a yellow solid. 

 

Mp.:130-132 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.17 – 8.11 (m, 1H), 7.85 – 7.78 (m, 1H).  
13C-NMR (75 MHz, CDCl3): δ / ppm = 152.3, 149.9, 141.6, 133.8, 98.5. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 1536 (vs), 1527 (vs), 1488 (m), 1456 (w), 1434 (m), 1380 

(m), 1351 (s), 1338 (s), 1267 (w), 1234 (w), 1220 (w), 1208 (m), 1175 (w), 1096 (m), 1060 (m), 

967 (w), 854 (s), 826 (s), 776 (vs), 747 (w), 726 (m), 698 (s). 

MS (EI, 70 eV): m/z (%) = 284 (9), 238 (2), 211 (2), 177 (2), 129 (2), 127 (8), 111 (12), 86 (30), 

84 (88), 76 (42), 75 (34). 

HRMS (C5H2ClIN2O2): calc.: 283.8849; found: 283.8866. 
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2-Chloro-3-nitro-4-(4-(trifluoromethyl)phenyl)pyridine (75k) 

 
The title compound was prepared according to TP2 from 2-chloro-3-nitropyridine (74e)148 

(1.0 mmol). TMPLi (12) (2.38 mL, 0.64 M, 1.5 mmol) was added dropwise to a solution of 2-

chloro-3-nitropyridine (159 mg, 1.0 mmol), ZnCl2 (1.1 mL, 1.0 M, 1.1 mmol) and LiCl (3.14 mL, 

0.7 M, 2.2 mmol) in THF (2 mL) at -78 °C. According to TP4, the corresponding zinc reagent 

was treated with 1-iodo-4-(trifluoromethyl)benzene (190 mg, 0.7 mmol) at that temperature for 

5 min and additional 2 h at room temperature prior to quench with sat. NH4Cl-solution. Flash 

column chromatographical purification on silica gel (isohexane:EtOAc = 8:2) afforded 2-chloro-

3-nitro-4-(4-(trifluoromethyl)phenyl)pyridine (75k) (170 mg, 0.56 mmol, 80%) as a white solid. 

 

M.p.: 116-119 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.61 (d, J = 5.3 Hz, 1H), 7.76 (dd, J = 8.2, 0.7 Hz, 

2H),7.53 (dd, J = 8.2, 0.7 Hz, 2H),7.39 (dd, J = 5.1, 0.7 Hz, 1H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 150.4, 144.9, 143.1, 142.5, 136.3, 132.5 (q, J = 

33.1 Hz), 128.2, 126.3 (q, J = 3.8 Hz), 124.0, 123.5 (q, J = 272.6 Hz). 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 1589 (m), 1532 (vs), 1454 (w), 1407 (w), 1385 (w), 1353 

(m), 1321 (vs), 1212 (w), 1166 (s), 1148 (w), 1116 (vs), 1075 (m), 1052 (s), 1019 (m), 963 (w), 

858 (s), 842 (m), 828 (s), 770 (m), 745 (w), 731 (w), 719 (w), 658 (w). 

MS (EI, 70 eV): m/z (%) = 302 (15), 285 (32), 283 (15), 276 (30), 274 (100), 256 (15), 236 (62), 

221 (29), 220 (24), 210 (23), 194 (31), 193 (20), 183 (26), 175 (36). 

HRMS (C12H6ClF3N2O2): calc.: 302.0070; found: 302.0065. 

 
4-(2-Chloro-3-nitropyridin-4-yl)benzonitrile (7l) 

N

Cl

NO2

CN

 
The title compound was prepared according to TP2 from 2-chloro-3-nitropyridine (74e) 

(1.0 mmol). TMPLi (12) (2.38 mL, 0.64 M, 1.5 mmol) was added dropwise to a solution of 2-

chloro-3-nitropyridine (159 mg, 1.0 mmol), ZnCl2 (1.1 mL, 1.0 M, 1.1 mmol) and LiCl (3.14 mL, 

0.7 M, 2.2 mmol) in THF (2 mL) at -78 °C. According to TP4, the corresponding zinc reagent 

was reacted with 4-iodo-benzonitrile (160 mg, 0.7 mmol) at that temperature for 5 min and 

additional 2 h at room temperature prior to quench with sat. NH4Cl-solution. Flash column 

chromatographical purification on silica gel (isohexane:CH2Cl2 = 1:1 ->CH2Cl2) afforded 4-(2-

chloro-3-nitropyridin-4-yl)benzonitrile (75l) (127 mg, 0.49 mmol, 70%) as a brown solid. 

                                                      
148Alternatively, a metalation with TMP2Zn·2MgCl2 2LiCl at -40 °C over 1.5 h is possible. See: G. C. 
Clososki, C. J. Rohbogner, P. Knochel, Angew. Chem. 2007, 119, 7825; Angew. Chem. Int. Ed.2007, 46, 
7681. 
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M.p.:149-152 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.63 (d, J = 5.0 Hz, 1H), 7.84 – 7.76 (m, 2H), 7.56 – 

7.48 (m, 2H), 7.38 (d, J = 5.0 Hz, 1H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 150.5, 144.7, 142.6, 142.5, 137.1, 133.0, 128.5, 123.7, 

117.6, 114.5. 

IR (Diamond-ATR, neat): ν
~  / cm-1 =2234 (w), 1591 (m), 1530 (vs), 1504 (m), 1451 (m), 1402 

(w), 1377 (w), 1351 (s), 1309 (w), 1299 (w), 1272 (w), 1230 (w), 1200 (m), 1180 (w), 1110 (w), 

1066 (w), 1056 (m), 1018 (w), 856 (s), 841 (m), 828 (vs), 790 (w), 781 (w), 764 (m), 730 (m), 

723 (w), 705 (m), 676 (w), 652 (w). 

MS (EI, 70 eV): m/z (%) = 261 (19), 259 (52), 242 (22), 233 (18), 231 (52), 213 (28), 203 (32), 

193 (69), 178 (61), 177 (144), 167 (46), 165 (39), 152 (46), 151 (100), 142 (41), 140 (40), 125 

(42). 

HRMS (C12H6ClN3O2): calc.: 259.0149; found: 259.0141. 

 

Ethyl 3-(4-cyanophenyl)furan-2-carboxylate (75m) 

 
The title compound was prepared according to TP2 from ethyl furan-2-carboxylate 

(74f)149(1.0 mmol). TMPLi (12) (2.38 mL, 0.64 M, 1.5 mmol) was added dropwise to a solution 

of ethyl furan-2-carboxylate (140 mg, 1.0 mmol), ZnCl2 (0.5 mL, 1.0 M, 0.5 mmol) and LiCl 

(1.43 mL, 0.7 M, 1.0 mmol) in THF (2 mL) at -78 °C. According to TP4, the corresponding zinc 

reagent was reacted with 4-iodo-benzonitrile (206 mg, 0.9 mmol) at that temperature for 5 min 

and additional 2 h at 23 °C prior to quench with sat. NH4Cl-solution. Before chromatographic 

separation the crude regioselectivity was 89:11. Flash column chromatographical purification on 

silica gel (isohexane:EtOAc = 9:1 -> 8:2) afforded ethyl 3-(4-cyanophenyl)furan-2-carboxylate 

(75m) (153 mg, 0.63 mmol, 70%) as white solid. 

 

M.p.: 97-98 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.70 (s, 4H), 7.63 (d, J = 2.0 Hz, 1H), 6.64 (d, J = 

2.0 Hz, 1H), 4.33 (q, J = 7.1 Hz, 2H), 1.32 (t, J = 7.2 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 158.7, 145.4, 136.7, 132.7, 131.8, 130.1, 125.1, 118.7, 

114.0, 111.9, 61.3, 14.2. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3149 (w), 3130 (w), 3109 (w), 2993 (w), 2912 (w), 2223 

(m), 1716 (vs), 1610 (w), 1592 (w), 1556 (w), 1509 (w), 1484 (m), 1449 (w), 1419 (m), 1384 

(m), 1360 (w), 1304 (s), 1285 (s), 1262 (s), 1218 (w), 1190 (s), 1184 (m), 1177 (m), 1150 (m), 

1134 (m), 1121 (m), 1102 (s), 1074 (m), 1018 (s), 971 (m), 946 (w), 922 (w), 895 (m), 873 (w), 

863 (w), 846 (s), 834 (m), 820 (m), 799 (s), 788 (vs), 762 (m), 730 (w), 679 (m), 664 (w). 

                                                      
149Alternatively, a metalation with TMPMg·LiCl at -40 °C over 2 h leads to 50% conversion and a 
regioselectivity of 82:18. After this time only slow decomposition of the magnesiated species was 
observed. 
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MS (EI, 70 eV): m/z (%) = 242 (14), 241 (76), 213 (53), 212 (23), 196 (100), 169 (55), 140 (47). 

HRMS (C14H11NO3): calc.: 241.0739; found: 241.0714. 

 

Ethyl 3-(cyclohex-2-en-1-yl)furan-2-carboxylate (4n) 

 
The title compound was prepared according to TP3 from ethyl furan-2-carboxylate (74f) 

(1.0 mmol). TMPLi (12) (2.03 mL, 0.64 M, 1.3 mmol) was added dropwise to a solution of ethyl 

furan-2-carboxylate (140 mg, 1.0 mmol), and CuCN·2LiCl (1.1 mL, 1 M, 1.1 mmol) in THF 

(3 mL) at -78 °C. 3-Bromocyclohex-1-ene (145 mg, 0.9 mmol) was added afterwards and stirred 

at that temperature for 30 min prior to quench with sat. NH4Cl/NH3-solution. Before 

chromatographic separation the crude regioselectivity was 91:9. Flash column chromatographical 

purification on silica gel (isohexane:EtOAc = 95:5) afforded ethyl 3-(cyclohex-2-en-1-yl)furan-2-

carboxylate (75n) (160 mg, 0.73 mmol, 81%) as colorless oil. 

 
1H-NMR (300 MHz, CDCl3): δ / ppm = 7.44 (dd, J = 1.7, 0.6 Hz, 1H), 6.42 (d, J = 1.4 Hz, 1H), 

5.90 – 5.80 (m, 1H), 5.65 – 5.57 (m, 1H), 4.37 (q, J = 7.2 Hz, 2H), 4.15 – 4.05 (m, 1H), 2.12 – 

1.97 (m, 3H), 1.82 – 1.46 (m, 3H), 1.39 (t, J = 7.2 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 159.4, 144.7, 140.0, 139.2, 129.0, 128.4, 112.7, 60.6, 

32.2, 30.2, 24.8, 21.2, 14.3. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 2981 (W), 2932 (W), 2860 (W), 2358 (W), 1704 (VS), 

1653 (W), 1635 (W), 1588 (M), 1517 (W), 1506 (W), 1487 (M), 1465 (W), 1456 (W), 1447 (M), 

1436 (W), 1414 (M), 1389 (M), 1366 (M), 1307 (S), 1272 (S), 1261 (S), 1218 (M), 1176 (VS), 

1120 (VS), 1093 (S), 1069 (VS), 1032 (S), 1015 (S), 979 (M), 963 (M), 957 (M), 929 (M), 899 

(S), 872 (M), 864 (M), 841 (M), 824 (M), 785 (S), 761 (S), 724 (M), 682 (M), 679 (M), 668 (M). 

MS (EI, 70 eV): m/z (%) = 227 (13), 220 (24), 191 (24), 173 (74), 145 (25), 117 (48), 115 (35), 

91 (54), 85 (45). 

HRMS (C13H16O3): calc.:220.1099; found: 220.1091. 

 

Ethyl 3-(4-(ethoxycarbonyl)phenyl)furan-2-carboxylate (75o) 

 

The title compound was prepared according to TP2 from ethyl furan-2-carboxylate (74f) 

(1.0 mmol). TMPLi (12) (2.38 mL, 0.64 M, 1.5 mmol) was added dropwise to a solution of ethyl 

furan-2-carboxylate (140 mg, 1.0 mmol), ZnCl2 (0.5 mL, 1.0 M, 0.5 mmol) and LiCl (1.43 mL, 

0.7 M, 1.0 mmol) in tetrahydrofurane (2 mL) at -78 °C. According to TP4, the corresponding zinc 

reagent was reacted with ethyl 4-iodobenzoate (248 mg, 0.9 mmol) at that temperature for 5 min 

and additional 2 h at room temperature prior to quench with sat. NH4Cl-solution. Flash column 
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chromatographical purification on silica gel (isohexane:EtOAc = 9:1) afforded ethyl 3-(4-

(ethoxycarbonyl)phenyl)furan-2-carboxylate (75o) (167 mg, 0.58 mmol, 64%) as white solid. 

Mp.: 93.8-95.6 °C. 
1H-NMR (300 MHz, CDCl3): δ / ppm = 8.12 – 8.05 (m, 2H), 7.68 – 7.62 (m, 2H), 7.61 (dd, J = 

1.7, 0.6 Hz, 1H), 6.65 (dd, J = 1.8, 0.7 Hz, 1H), 4.41 (q, J = 7.0 Hz, 2H), 4.33 (q, J = 7.1 Hz, 2H), 

1.41 (t, J = 7.1 Hz, 3H), 1.31 (t, J = 7.2 Hz, 3H). 
13C-NMR (75 MHz, CDCl3): δ / ppm = 166.3, 158.8, 145.1, 139.5, 136.5, 133.4, 130.1, 129.3, 

129.2, 114.2, 61.1, 61.0, 14.3, 14.2. 

IR (Diamond-ATR, neat): ν
~  / cm-1 = 3126 (w), 3105 (w), 2994 (w), 2985 (w), 2943 (w), 2907 

(w), 1708 (vs), 1662 (w), 1617 (w), 1591 (m), 1568 (w), 1513 (w), 1484 (m), 1443 (w), 1420 

(m), 1407 (w), 1384 (m), 1365 (m), 1310 (m), 1283 (s), 1268 (vs), 1219 (m), 1178 (s), 1152 (m), 

1126 (s), 1111 (s), 1099 (vs), 1072 (s), 1036 (m), 1020 (s), 980 (w), 970 (s), 922 (w), 892 (m), 

870 (m), 858 (s), 838 (m), 829 (m), 800 (s), 771 (vs), 764 (vs), 712 (m), 701 (s), 680 (m). 

MS (EI, 70 eV): m/z (%) = 289 (18), 288 (100), 244 (16), 243 (100), 216 (20), 215 (37), 188 

(13), 171 (18). 

HRMS (C16H16O5): calc.: 288.0998; found: 288.1000. 

 

4.5 Kinetic experiments 

General Information: 

First of all, the iodinated compounds of 2,4-dichlorobenzonitrile (1a) and benzothiazole were 

isolated. Stock solutions of the aryl or heteroaryl iodides (0.1 M) and of an internal standard 

(0.1 M) were prepared. As internal standard for all calibration curves n-undecane was used. For 

each iodinated compound GC-samples of different iodide/internal standard ratios were prepared 

and measured (at least 7 for each iodide) and these ratios were plotted against the area ratios of 

the corresponding GC-analysis to give a linear graph with a determined equation. With these 

equations the amount of iodinated substance could be calculated. 

To show the presence of TMPZnCl·LiCl, benzothiazole was added at 23 °C to the reaction 

mixtures.  

 

Procedures: 

2-Iodobenzothiazole was prepared by reaction of benzothiazole (135 mg, 1.0 mmol) dissolved in 

anhydrous THF (1 mL) and TMPZnCl·LiCl (1.10 M, 1.0 mL, 1.1 mmol) at 23 °C for 20 min and 

quenched with a solution of iodine (254 mg, 1.0 mmol) in THF (1 mL). 

 

TMPLi (12) (1.56 mL, 0.64 M, 1.0 mmol) was added dropwise to a solution of 2,4-

dichlorobenzonitrile (1a) (172 mg, 1.0 mmol) and ZnCl2 (0.5 mmol-2.0 mmol) in THF (2.0 mL) 

at -78 °C. After warming up to 23 °C, benzothiazole (135 mg, 1.0 mmol), dissolved in THF 

(0.66 mL, 1.5 M), was added. A part of the THF was removed (ca. 1.0 M) and the reaction 

mixture stirred for 30 min at 23 °C. An excess of iodine was added and stirred for 5 min at 23 °C 

prior to quench with Na2S2O3-solution. The following yields are results of the calculation by GC-

analysis of the iodinated substances. 
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Table 8: Results of the metalation of 2,4-dichlorobenzonitrile with TMPLi (12) (1.0 equiv) in the 
presence of ZnCl2 (0.5-2.0 equiv) at -78 °C, addition of benzothiazole (1.0 equiv) at 23 °C, and 
additional quenching with iodine. 

ZnCl2 [equiv] 

 
 

0.5 82% <1% 

1.0 76% 6% 

1.5 56% 14% 

2.0 50% 16% 
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13C NMR: 

 
1H NMR: 
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13C NMR: 

 

 
1H NMR: 
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1H NMR: 

 
13C NMR: 
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1H NMR at -60 °C from the metalated intermediate: 

 

 
13C NMR at -60 °C from the metalated intermediate: 



C. EXPERIMENTAL SECTION 

 
151 

 

 



C. EXPERIMENTAL SECTION 

 
152 

 

 
 

 

 

 



C. EXPERIMENTAL SECTION 

 
153 

COSY, -60 °C: 

 
 

1H, 13C HMQC, -60 °C: 
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1H, 13C HMBC, -60 °C: 

 
 

1H, 13C HMQC, -60 °C: 

 



C. EXPERIMENTAL SECTION 

 
155 

 
1H NMR, 0 °C from the metalated intermediate: 
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13C NMR, 0 °C from the metalated intermediate: 
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COSY, 0 °C: 
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1H, 13C HMQC, 0 °C: 
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1H, 13C HMBC, 0 °C: 
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1H NMR, -60 °C: 
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13C NMR, -60 °C: 
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