
 
 

 

The response of NG2-glia after 

traumatic brain injury 

 

Dissertation 

der Fakultät für Biologie 

der Ludwigs-Maximilians-Universität München 

 

prepared at the Institute of Physiology, LMU München 

submitted by 

 

Axel von Streitberg 

The thesis was submitted at the 1st of October 2015  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Erstgutachter:  Prof. Dr. Benedikt Grothe 

Zweitgutachter: Prof. Dr. Christian Leibold  

 

Tag der Einreichung:    01.10.2015 

Tag der mündlichen Prüfung:  18.07.2016 



I 
 

 

I Summary 

The mammalian central nervous system (CNS) consists of many different cell types contributing 

to its complex functional outcome. Its task of controlling essential body functions led to a unique 

cellular composition of this organ with many tissue-specific properties. One of the resulting 

consequences is an altered response to tissue damage, leading to insufficient regeneration 

following CNS injuries or diseases, which yields detrimental outcome for the majority of brain 

pathologies. A CNS-specific cell type which has just recently been connected to injury response 

are the NG2-glia. So far, these cells were known to be the major proliferative pool outside the 

neurogenic niches and are furthermore the progenitors of oligodendrocytes in the adult brain 

parenchyma. Given their great abundance, it is of major importance to better characterize the 

behavior and functionality of NG2-glia especially in relation to brain injury. Therefore, the aim of 

this PhD thesis was to further the knowledge about the course of events and potential functions 

of the NG2-glia response following traumatic brain injury. A detailed analysis of the cellular events 

employing in vivo two-photon microscopy in stab wounded mice expressing GFP within the 

oligodendrocyte lineage, revealed a fast and heterogeneous response of the majority of NG2-glia. 

The cells showed different behaviors like hypertrophy, polarization, migration and proliferation; 

whereas a small subset of NG2-glia and all mature oligodendrocytes remained static, retaining 

their initial position and morphology. The intensity of the observed injury response of NG2-glia 

was dependent on the severity of tissue damage as well as the distance to the injury. During the 

peak of NG2-glia reactivity that was observed between 2-4 days after injury an accumulation of 

NG2-glia directly within and in very close proximity to the lesion core could be detected. This 

cellular amassment led to a transient discontinuity of the homeostatic control of NG2-glia, which 

had been observed under physiological conditions. While starting from one week after injury, this 

cellular homeostasis was progressively reinstated and completely restored one month later. These 

events of cellular accumulation of NG2-glia after brain injury argue for the contribution to a first 

scaffold that is built after tissue damage, probably participating in wound closure and highlighting 

their importance in brain pathology.  
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 II Zusammenfassung 

Das zentrale Nervensystem (ZNS) der Säugetiere besteht aus einer Vielzahl verschiedener 

Zelltypen, die alle zu der komplexen Funktionalität dieses Organs beitragen. Insbesondere die 

Aufgabe überlebenswichtige Körperfunktionen zu kontrollieren und zu regulieren führte zu einem 

einzigartigen zellulären Aufbau, der einige gewebsspezifische Eigenschaften mit sich bringt. Eine 

daraus resultierende Konsequenz ist die ZNS-spezifische Reaktion auf Verletzungen, welche sich 

von anderen Gewebstypen unterscheidet und eine unzureichende Regeneration nach diversen 

ZNS-Verletzungen sowie Krankheiten zur Folge hat. Dies hat meist schwerwiegende Folgen für die 

entsprechenden Krankheitsverläufe. Ein ZNS-spezifischer Zelltyp, der erst kürzlich mit einer 

Reaktion auf Verletzungen in Verbindung gebracht wurde sind NG2-glia. Bis vor kurzem wurden 

diese Zellen hauptsächlich zwei wichtigen Eigenschaften in Verbindung gebracht: Proliferation 

außerhalb der neurogenen Nischen und der Vorläuferstatus für myelinisierende Oligodendrozyten 

im adulten Gehirn. Angesichts der Vielzahl von NG2-glia im adulten Gehirn ist es von großem 

Interesse das Verhalten dieses Zelltyps nach Verletzungen besser zu charakterisieren. Aufgrund 

dessen war das Ziel dieser Doktorarbeit den Ablauf und die mögliche Funktionen dieser 

Verletzungsreaktion näher zu untersuchen. Hierzu wurde der Kortex transgener Mäuse, die GFP 

nach Rekombination in der Oligodendrozyten-Linie exprimieren, nach Stichwundsverletzung 

repetitiv mit Hilfe eines Zweiphotonen-Mikroskops visualisiert. Detaillierte Analysen der 

Zellreaktionen zeigten eine schnelle und heterogene Reaktion der Mehrzahl aller NG2-glia. Das 

Verhalten der reaktiven Zellen umfasste Hypertrophie, Polarisierung, Migration und Proliferation, 

wohingegen alle Oligodendrozyten und ein geringer Teil der NG2-glia statisch, bezüglich ihrer 

Morphologie und Position, blieben. Die Intensität der beobachteten Reaktion der NG2-glia war 

abhängig von der Schwere der Gewebsverletzung sowie dem Abstand zum Zentrum der Läsion. 

Während des Reaktionsmaximums, zwischen 2 und 4 Tage nach Verletzung, kam es zu einer 

Ansammlung von NG2-glia im Zentrum und der unmittelbaren Umgebung der Verletzungsstelle. 

Diese zelluläre Anhäufung führte dazu, dass die unter physiologischen Bedingungen beobachtete 

homöostatische Kontrolle von NG2-glia vorübergehend außer Kraft gesetzt wurde. Nach einer 

Woche gingen die Zellen wieder dazu über sich umzuorientieren, und nach etwa einem Monat war 

die zelluläre Homöostase wiederhergestellt. Diese Reaktivität der NG2-glia nach Hirnverletzungen 

deutet darauf hin, dass diese zu einem ersten zellulären Gerüst beitragen, welches eine wichtige 

Rolle für Wundheilung und Gewebsregeneration spielen könnte. Diese Beobachtungen heben 

erneut die Bedeutung dieses Zelltyps für Hirnverletzungen hervor.  
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1 1. Introduction 

1 Introduction  

1.1 The cellular composition of the brain 

During evolution the intricacy of organisms increased, introducing a whole set of different body 

parts with distinct sets of properties and functions the so called organs. Together, these organs 

contribute to the different body functions resulting in a division of labor, mainly orchestrated by 

the brain. This basic principle can be found not just in all organisms but even in single cells tasks 

are divided between specific parts of the cell. Within cells different cellular components are 

amongst others responsible for information storage, information gathering, information processing 

and energy distribution. This basic distribution of tasks can also be seen in groups of cells forming 

a functional unit like an organ. It is not always easy to understand what each cell is contributing 

to the functionality, but in many cases the loss of a specific cell type leads to severe phenotypes 

and even death of the whole organism. Also the central nervous system (CNS), like any other part 

of the body comprises different cell types. However, in contrast to other organs it has a quite 

distinct set of cells (Figure 1) which cannot be found in other parts of the body.  

1.1.1 Neurons 

Neurons, comprising of various distinct subtypes, are the most intensively studied cells in the CNS 

of higher organisms. These nerve cells have the important capability to be electrically excitable 

and hence are able to transmit information in form of electrical and chemical signals throughout 

the body. Typical neurons have an outstretched dendritic network where they receive input from 

other neurons. If the strength of this signal reaches a specific threshold it will be transformed in 

an action potential at the axon hillock neighboring the cell soma, which is then transmitted along 

the axons. Passing the connection between neurons, the so called synapses, the signal can then 

be transferred to a neighboring neuron. There is a great number of different neuronal subtypes 

with specialized tasks like sensory neurons in the eye or the ear responding to stimulation of 

electromagnetic or mechanical waves respectively. Additionally motoneurons that are responsible 

for muscle contractions as well as excitatory or inhibitory interneurons facilitate the 

communication between neurons are important parts of the nervous system. The implications that 

the intelligence of different species is related to the number of neurons in the brain has been a 

heavily discussed topic for the last decades (Herculano-Houzel, 2009). Rough estimations suggest 

around 86 billion neurons in the human brain with slightly less non-neuronal cells, whereas the 

rodent brain comprises of roughly 12 billion neurons and 4 times as many non-neuronal cells 
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(Herculano-Houzel, 2009). Interestingly, glial cell numbers in human brains are variable between 

the sexes and while neurons and some glial cells decrease during aging others remain rather 

constant (Pelvig et al., 2008). It is an accepted view that the amount of cells in the brain are in 

parts responsible for the cognitive ability of the organisms, but the exact correlative between 

cellular composition of the brain and the cognitive output is much more complex and has still to 

be determined (Herculano-Houzel, 2009). 

 

 

Figure 1 Different cell types in the brain. The major cellular composition of the brain depicting the neurovascular 
unit, containing neurons, astrocytes, pericytes, endothelial cells and the aligning basement membrane (not depicted 

here). 

 

 

 



 

 

3 1. Introduction 

Overall, the functionality and network of neurons is seen as the fundamental framework for our 

mind and the exerted control, supervision and regulation needed for a functional living. The 

complexity underlying this machinery has fascinated a multitude of researchers over the past 

decades, however we are still far from understanding how our brains work. Nevertheless, more 

recent findings have made it intriguingly evident that neurons cannot survive without support and 

that the surrounding non-neuronal cells are playing a major part in the healthy and diseased CNS. 

1.1.2 Astrocytes 

The most abundant non-neuronal cells in the brain are the astrocytes which are members of the 

so called macroglia. First discovered and described as a part of the neuroglia by Rudolf Virchow 

around 1850, they were thought to merely be the connective tissue between neurons (Somjen, 

1988). Now it is known that those cells have a diverse set of important functions which are 

essential for the CNS. During development astrocytes are the second arising cells, following 

neuronal cells, to peak around postnatal day (P)2 (Wang and Bordey, 2008). They have a highly 

complex and diverse morphology with long and fibrous branches which can be in direct contact 

with synapses and blood vessels. Their contribution to the neuronal network stretches from 

housekeeping functions like protein synthesizing, ion buffering and neurotransmitter recycling to 

actively shaping the neuronal network. Thereby they influence maturation of neurons, synapse 

formation and neuronal survival e.g. via secretion of trophic factors (Wang and Bordey, 2008; 

Bouzier-Sore and Pellerin, 2013). The second major contribution of astrocytes relate to the 

vasculature. Being part of the blood-brain barrier (BBB) they influence blood flow regulation, 

angiogenesis, uptake and buffering of ions, metabolic support as well as control of the penetration 

ability of various molecules (Wang and Bordey, 2008). Interestingly, more recent findings begin 

to assign astrocytes an even more active participation in synaptic transmission and formation 

(Wang and Bordey, 2008). Beside those well described functions it is suggested that they are in 

close contact with additional cell types and contribute majorly to the orchestration of cell 

distribution and behavior under physiological conditions as well as after brain injury. 

1.1.3 Oligodendrocytes 

Oligodendrocytes, the second major macroglial cell type, are best known for their function of 

myelin formation. This ensheathment emerging from a plasma membrane extension which 

enwraps axons in regularly spaced segments leads to an insulation and hence accelerated signal 

conduction velocity in myelinated axons. In vertebrates the area containing densely packed, 

myelinated fibers, the so called white matter (WM), increased during evolution in relation to the 
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complexity of the nervous system (Morell and Norton, 1980; Snaidero and Simons, 2014). Beside 

the improved conduction speed and therefore the possibility of a reduced axon diameter 

implicating decreased brain volume, myelin is also majorly responsible for the trophic and 

metabolic support of axons (Funfschilling et al., 2012; Bercury and Macklin, 2015). Therefore loss 

or disturbance of myelin and myelination, seen in many demyelination diseases like multiple 

sclerosis (MS) or leukodystrophies, results in reduced conduction velocity, major axonal pathology 

and neuronal death (Bercury and Macklin, 2015). Another interesting concept being investigated 

for the last decade is the interplay of neuronal activity and adaptive myelination. Latest findings 

could demonstrate that reduced neuronal activity due to social isolation led to impaired 

myelination and hence thinner myelin, whereas a socially stimulating environment increased 

oligodendrocyte differentiation (Liu et al., 2012). This concept was proven via optogenetic 

stimulation which elicited increased oligodendrogenesis and myelination in the premotor cortex of 

mice (Gibson et al., 2014).  

Depending on the brain region, oligodendrocytes can extent their thin processes to myelinate up 

to 80 internodes (myelin segments) of small diameter axons in the cortex or corpus callosum (CC; 

Murray and Blakemore, 1980; Hildebrand et al., 1993), whereas oligodendrocytes in the spinal 

cord sometimes just generate myelin around one single axon with huge internode lengths up to 

1500µm (Remahl and Hildebrand, 1990; Snaidero and Simons, 2014). Although myelination is 

majorly finished after the first postnatal weeks it still continues in the adult to some extend (Vigano 

et al., 2013; Wang and Young, 2014). This plasticity of myelin within the WM can also be seen in 

human adolescents and even adults (Giorgio et al., 2008). Therefore, the investigation of 

enhanced oligodendrogenesis and remyelination is of great importance, especially regarding 

demyelinating diseases. These efforts to increase remyelination and to compensate for lost 

oligodendrocytes and myelin fibers could eventually lead to restored functional integrity. 

1.1.4 Microglia 

Since their discovery by Pio del Rio-Hortega in 1932 (Kettenmann et al., 2011) the origin of 

microglia has been subject to much attention. Theories for their neuroectodermal origin, 

comparable to other neuroglial cells, were standing against the observations of migrating cells 

from a mesodermal origin (Kettenmann et al., 2011). Nowadays it is an accepted concept that 

microglia originate from the yolk sac (Ginhoux et al., 2010; Schulz et al., 2012) with 

erythromyeloid progenitors as precursors (Kierdorf et al., 2013; Gomez Perdiguero et al., 2015). 

In the mouse brain, microglia start appearing around embryonic day (E)8 via blood circulation 

dependent migration (Koushik et al., 2001; Casano and Peri, 2015) and their immigration process 
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lasts until P10 whereupon the exchange between blood and brain parenchyma is heavily 

diminished under physiological conditions (Kettenmann et al., 2011). Therefore these cells are 

tissue-resident macrophage-like cells which serve immune-related functions in the brain but also 

take part in the CNS development and the homeostasis as glial cells (Casano and Peri, 2015). 

During development they actively phagocyte apoptotic neurons, promote neurogenesis and axonal 

growth via trophic factors and participate in synaptic refinement as well as vessel patterning 

(Casano and Peri, 2015). However, especially the phagocytosis of apoptotic neurons and the 

synaptic pruning still continue to play a role in the adult brain. As part of the immune system 

microglia are very motile cells scanning their environment for potential detriments and are able to 

react very quickly after pathological insults by transforming from a ramified to an amoeboid 

morphology and migrating to the site of injury (Nimmerjahn et al., 2005; Kettenmann et al., 2011). 

They are able to recognize and phagocytose viruses, bacteria or other pathogenic material and 

mediate cytotoxicity e.g. via released nitric oxygen (NO; Kettenmann et al., 2011). Signaling to 

other immune cells as well as other glial cells by the release of cytokines or the presentation of 

antigens to T-cells are also contributing to their functions within the immune system (Kettenmann 

et al., 2011). Subsequently they are able to promote wound repair by removing cell debris and 

recruiting cells to the lesion site (Casano and Peri, 2015).  

1.1.5 Neurovascular unit 

To provide the brain with nutrients, metabolic support and oxygen together with the clearance of 

harmful substances like carbon dioxide, the coverage with vessels and blood flow is essential for 

a functioning brain. The brain is very sensitive to lack of blood and oxygen supply in particular, 

which becomes tremendously clear in events of stroke where short periods of interrupted or 

reduced blood circulation can lead to a horrendous outcome (Arai et al., 2011; Go et al., 2014). 

As the brain is such a sensitive and important organ, it has in contrast to the vasculature of other 

organs a specific barrier, the blood brain barrier (BBB), to block pathogens and other harmful 

substances from entering the CNS (Sa-Pereira et al., 2012). The main components forming to the 

BBB are endothelial cells, pericytes, astrocytes and the intermediate basal membrane (Sa-Pereira 

et al., 2012). 

1.1.5.1 Endothelial cells and the basement membrane 

Cerebral endothelial cells like other endothelial cells are forming the interior surface and hence 

the first barrier of blood vessels. Nevertheless, they can be distinguished by means of their 

functional, morphological and biochemical properties from other endothelial cells in the body (Sa-
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Pereira et al., 2012). They form dense cellular networks with tight and adherens junctions between 

adjacent endothelial cells resulting in a structure that is 50-100 times tighter, than in peripheral 

microvessels. This limits the influx of hydrophilic substances but not of small lipophilic molecules 

like O2 or CO2 (Abbott, 2002; Sa-Pereira et al., 2012). Sparse pinocytic vesicular transport systems 

(Sedlakova et al., 1999) and the endothelial plasma membrane without fenestrations also 

contribute to the tight regulation of passage (Fenstermacher et al., 1988; Sa-Pereira et al., 2012). 

To control the uptake of nutrients, hormones and other important molecules, brain endothelial 

cells have a great number of specific transport systems and receptors with the consequential big 

amount of mitochondria to cover the resulting energy demand (Oldendorf et al., 1977; Sa-Pereira 

et al., 2012). The basement membrane, a tightly interwoven protein layer comprising of proteins 

like collagen, elastin, fibronectin and laminin formed and maintained by endothelial cells, pericytes 

and astrocytes, aligns the endothelial cells with other cellular components of the BBB (Zlokovic, 

2008; Sa-Pereira et al., 2012). Its function relays more on the stability and integrity of the BBB 

then on additional blockage of molecule influx (Persidsky et al., 2006; Sa-Pereira et al., 2012). 

1.1.5.2 Pericytes 

Another important component of the BBB situated next to the basement membrane, are the 

pericytes. Already described in 1873 by Charles Rouget (Sa-Pereira et al., 2012), pericytes are 

present in a wide range of species and located at the abluminal side of microvessels (Sa-Pereira 

et al., 2012). In the brain they are located between two layers of basement membranes covering 

the outer layer of endothelial cells as well as the astrocytes endfeet (Figure 1) which are the outer 

part of the BBB (Krueger and Bechmann, 2010; Dore-Duffy et al., 2011). They are distributed 

along walls of pre-capillary arterioles, capillaries and post-capillary venules in a non-regular 

manner (Krueger and Bechmann, 2010). The number of pericytes covering the different vessel-

types seem to be dependent on the tissue type and the degree of tightness of the interendothelial 

junctions (Shepro and Morel, 1993). Interestingly, the brain has a much higher pericyte-to-

endothelia ratio than other organs (Dalkara et al., 2011). Pericytes are polymorphic with mostly 

spherical or oval cell bodies and long, branching cytoplasmic processes along the axis of the blood 

vessels which are enwrapping the vessels (Sa-Pereira et al., 2012). This ensheathment is very 

variable between cells and can be extended to lengths of 800 nanometers (nm; Zlokovic, 2008). 

Due to their morphological proximity to vessels, most of their discovered functions are therefore 

also related to the vasculature. First and foremost they are an essential part of the BBB 

contributing to its maintenance and stabilization as well as its low permeability and molecule-

specific transport (Sa-Pereira et al., 2012). During development, but also after brain injury or 
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hypoxia, pericytes are also contributing to the angiogenic processes of sprout formation, 

migration, maturation and termination (Dore-Duffy et al., 1999; Sa-Pereira et al., 2012). For this 

complex process they have to closely cooperate and communicate with other vasculature related 

cells like the endothelial cells e.g. via secretion of vascular endothelial growth factor (VEGF) or 

NO (Sa-Pereira et al., 2012). Furthermore, because of the expression of contractile proteins like 

tropomyosin and myosin (Joyce et al., 1985) pericytes have some features of smooth muscle cells: 

they are able to contract and hence modulate the blood flow within their covered vessels 

(Fernandez-Klett et al., 2010; Sa-Pereira et al., 2012). Due to their expression of adhesion 

molecules which are able to stimulate major histocompatibilty complex-class II dependent antigen 

presentation and their production of immunomodulatory cytokines in vitro, it has been speculated 

that they are even able to participate in the regulation of immune response within the BBB (Fabry 

et al., 1993; Verbeek et al., 1995; Sa-Pereira et al., 2012). Additionally, the expression of acid 

phosphatase in their lysosomes and their ability to take up small and soluble molecules from the 

blood or brain parenchyma led to the assumption that they are even capable of phagocytosis (Sa-

Pereira et al., 2012). Last but not least, the potential of embryonic endothelial cells to 

transdifferentiate into many different cell types like fibroblasts, smooth muscle cells or endothelial 

cells has drawn the interest of many researchers to pericytes, trying to investigate the potential 

of this multipotency (DeRuiter et al., 1997; Sa-Pereira et al., 2012). Latest results showed that 

after ischemia neuronal progenitors originated from pericytes in the monkey and that it was 

possible to differentiate primary rat CNS pericytes in vitro with the addition of basic fibroblast 

growth factor (bFGF) into cells of the neural lineage (Yamashima et al., 2004; Dore-Duffy et al., 

2006). Therefore, their plasticity could be a great tool for cell-based therapies (Sa-Pereira et al., 

2012). 

1.1.6 Ependymal cells 

Beside the neurovascular unit also the ventricular system is lined by specific cell types. The most 

prominent cells along the ventricular surface spanning from the lateral ventricles to the filum 

terminale are the ependymal cells. They are ciliated, have a cuboidal to columnar morphology 

with a fairly round nucleus and their apical surface is covered with microvilli (Del Bigio, 2010). 

Like pericytes being involved in the BBB, ependymal cells also form a barrier between the 

ventricular system and the brain parenchyma regulating molecule uptake and exchange. Next to 

the trophic and metabolic support via an cerebrospinal fluid (CSF) exchange system ependymal 

cells may also secrete growth factors like fibroblast growth factor (FGF) and VEGF in the 

surrounding parenchyma, especially influencing the neighboring stem cell niche (Del Bigio, 2010). 
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Another speculated function involves their coordinated beating of cilia which is suggested to 

influence the circulation of CSF and the gradients of molecule-concentration within the CSF (Del 

Bigio, 2010). In the choroid plexus that is the CSF producing organ, choroidal epithelial cells 

derived from ependymal cells are capable of uptake and secretion of CSF and its containing 

molecules, metabolites and nutrients (Skipor and Thiery, 2008). Furthermore ependymal cells 

have been suggested to have neural stem cell capacity (Johansson et al., 1999). However, this 

was partially revised later on as these cells show only parts of the features of a stem cell like 

giving rise to neurons and glial cells following stroke but not others as they were not able to self-

renew (Carlen et al., 2009).  

1.1.7 Progenitor- and stem cells in the adult brain 

Endogenous stem or progenitor cells and the question of their capacity to self-renew and to be 

multipotent within the brain and how this could be exploited for therapeutic purposes have been 

very hot topics in the last decades. The endogenous progenitors for the most prominent CNS cell 

type, the neurons, are neural stem or progenitor cells. They still persist after development in the 

adult mammalian brain and are located in the niches of the subependymal zone in the lateral wall 

of the lateral ventricle, the subgranular zone in the dentate gyrus of the hippocampus and the 

hypothalamus (Dimou and Gotz, 2014). The progenitor cells of the subependymal zone, mostly 

referred to as radial glia during development, proliferate and generate transit-amplifying 

progenitors and neuroblasts. They are able to migrate along the rostral migratory stream into the 

olfactory bulb where they finally differentiate into neurons (Dimou and Gotz, 2014). In the 

hypothalamus, the resident progenitor cells are called tanycytes. They have been classified in two 

subtypes differing in location and output of cells: α-tanycytes producing few neurons and majorly 

glial cells and β-tanycytes being majorly neurogenic but lacking self-renewal capacities and 

multipotency in vitro. This combination results in an relatively low neurogenic potential of this 

area (Dimou and Gotz, 2014). The third neurogenic niche, the subgranular zone of the dentate 

gyrus is comprised of self-renewing and neurogenic astrocyte-like cells which by producing 

intermediate progenitors can give rise to differentiating neuroblasts (Ming and Song, 2011). Taken 

together, those niches would host an ideal reservoir of potential neuronal substitution needed in 

pathological conditions. Hence a great effort is being made to investigate possibilities to make use 

of those niches for therapeutic strategies. 
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1.2 NG2-glia – an underestimated glial cell type 

Another interesting cell type persisting in the adult brain, which often has been attributed with 

progenitor and even stem cell like features, are the NG2-glia or oligodendrocyte progenitor cells 

(OPC). 

1.2.1 Development of the oligodendrocyte lineage 

To learn more about a specific cell type, it is very useful to investigate its origin and early 

development. Oligodendrocytes and hence OPCs or NG2-glia originate from the neuroepithelium 

at different timepoints during late embryogenesis and until early postnatal periods, like astrocytes 

(Wang and Bordey, 2008). For years the exact process of oligodendrocyte development was 

heavily debated in the field, until fate mapping studies clearly showed that those cells arise 

successively from different areas (Richardson et al., 2006). In the spinal cord the largest 

proportion of NG2-glia is generated in the ventral cord starting at E12.5 whereas a smaller 

proportion originates from the dorsal part around E15 (Cai et al., 2005; Vallstedt et al., 2005; 

Richardson et al., 2006). A similar pattern could also be shown for the development of forebrain 

oligodendrocytes (Figure 2) via fate mapping of Nkx2.1-, Gsh2- and Emx1-cre mouse strains 

(Kessaris et al., 2006). Starting at around E11.5 the first wave of cortical NG2-glia is generated 

from precursors which originate at the ventricular zone of the medial ganglionic eminence (MGE) 

and the anterior entopeduncular area (AEP). Subsequently the cells migrate into all areas of the 

telencephalon and enter the cortex around E16 (Kessaris et al., 2006). This is followed by a second 

wave of cells, coming from an area spanning from the lateral or caudal ganglionic eminence (LGE 

and CGE) to parts of the MGE. The second together with the third wave of endogenous cortical 

progenitors, appearing in the cortex around the day of birth, make out the majority of the 

oligodendrocyte lineage traceable at postnatal stages, whereas the first wave is largely depleted 

(Kessaris et al., 2006). Even if these two waves of progenitor pools give rise to the majority of 

the oligodendrocyte lineage in the adult brain there are still possibilities of other sources 

contributing to the heterogeneous composition of this cell population (Ventura and Goldman, 

2006). Interestingly, if one of the populations giving rise to oligodendrocytes is destroyed by the 

targeted expression of diphtheria toxin the other populations can compensate this event and 

oligodendrocyte differentiation as well as myelination is proceeding normally (Kessaris et al., 

2006). 
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Figure 2 Competing waves of oligodendrocyte progenitors during development. The first wave of NG2-glia 
arise from Nkx2.1+ precursors located at the MGE arriving at the cortex at around e16 followed by the second wave of 
Gsh2+ from the areas of LGE and CGE. The third wave of Emx1+ endogenous cortical progenitors starts around the day 
of birth (modified from Kessaris et al., 2006). 

 

After birth a big proportion of this progenitor pool starts to differentiate into myelinating 

oligodendrocytes reaching a peak of myelination at the second postnatal week and lasting mainly 

until the fourth postnatal week (Greenwood and Butt, 2003). Differentiation into oligodendrocytes 

and myelination are continued also after this period, but to a much reduced extent (Wang and 

Young, 2014).  

Although a large amount of NG2-glia differentiate during this time window, a big proportion of 

cells remains in the progenitor status even in the adult brain. Because NG2-glia share the same 

heritage with mature and myelinating oligodendrocytes it is important to distinguish those distinct 

differentiation stages of the oligodendrocyte lineage. Therefore, specific marker antigens have 

been identified, demarcating the differentiation steps within the oligodendrocyte lineage (Figure 

3). The NG2-glia within the adult as well as the developing brain share the expression of the 

membrane protein neuron-glia antigen 2 (NG2) which is a chondroitin sulfate proteoglycan and 

also the name giver of the term NG2-glia (Nishiyama et al., 1997). Other potential markers for 

this progenitor population, are the membrane proteins platelet-derived growth factor receptor α 

(PDGFRα; Dawson et al., 2003) and junctional adhesion molecule A (JAMA; Stelzer et al., 2010). 
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An antigen which has been proposed to also label parts of the progenitor cell population of the 

oligodendrocyte lineage is the G-protein coupled receptor 17 (GPR17; Boda et al., 2011). Latest 

results of GPR-17 expressing cells seem to point to a subset of NG2-glia with a slower 

differentiation rate (Vigano et al., 2015). After differentiation to mature oligodendrocytes, these 

cells can be labeled with antibodies for the cytoplasmic proteins glutathione-S-transferase pi 

(GSTπ), adenomatosis polyposis coli (APC, with the antibody CC-1) and the less specific 

aspartoacylase (ASPA; Moffett et al., 2011). In the case that mature oligodendrocytes are also 

myelinating, they are able to be detected with antibodies against antigens which are typically 

expressed inside the myelin sheath like the myelin-associated glycoprotein (MAG), myelin 

oligodendrocyte glycoprotein (MOG), myelin basic protein (MBP) and myelin proteolipid protein 

(PLP; Baumann and Pham-Dinh, 2001).  

 

 

Figure 3 Oligodendrocyte lineage. Illustration of cells within the oligodendrocyte lineage in the adult brain at various 
differentiation stages with the according expression profiles containing different antigens, which can be used for 
labeling.  
    

Additionally to these immunohistochemical methods it is also possible to differentiate between 

NG2-glia and mature oligodendrocytes via morphological discrimination. While NG2-glia have a 
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rather large, elongated and often bent cell body with thick and ramified processes, mature 

oligodendrocytes have a round and smaller cell body with thin and less ramified processes.   

1.2.2 Fate of NG2-glia 

As mentioned at the beginning of this chapter, the multipotency and stem cell potential of NG2-

glia has been the subject of many discussions over the last decades. Early observations of this 

cell type mainly carried out in vitro showed their potential to differentiate into oligodendrocytes 

as well as type-2 astrocytes giving them the term “O-2A” adult progenitor cell (Raff et al., 1983; 

Wolswijk and Noble, 1989; Wren et al., 1992; Shi et al., 1998). Accordingly, continuous in vitro 

work expanded the possible differentiation/stem cell potential of NG2-glia also for neuronal 

progenitors. In the neurosphere assay, where dissociated and specifically cultured cells are tested 

for their potential to form multipotent spheres, enriched postnatal NG2-glia cultures were found 

to differentiate into oligodendrocytes, astrocytes and neurons (Reynolds and Weiss, 1992; 

Richards et al., 1992; Belachew et al., 2003; Aguirre and Gallo, 2004; Aguirre et al., 2004; Dimou 

and Gotz, 2014). In the adult, the general neurosphere-forming capacity decreases, but there are 

still some studies showing WM derived NG2-glia to form neurospheres (Nunes et al., 2003). 

Moreover, cells derived from other areas of the brain showing marker expression of NG2 or Olig2 

were neurosphere-forming (Dimou and Gotz, 2014). These are promising results in regard to their 

multipotency and the theoretical use of NG2-glia in cell-therapies, nevertheless clear evidence by 

genetic fate mapping is still missing (Dimou and Gotz, 2014). Furthermore, lineage analysis carried 

out in vivo are contradictory to the results obtained in vitro. In contrast to the generally more 

plastic progenitors during development, which form oligodendrocytes, astrocytes and some 

neurons in the spinal cord (Masahira et al., 2006) and oligodendrocytes and neurons in the 

olfactory bulb (Aguirre and Gallo, 2004), the plasticity of NG2-glia seems to be rather restricted 

to oligodendrocytes and some astrocytes at later embryonic stages (Zhu et al., 2008; Huang et 

al., 2014) and to the oligodendrocyte lineage in the adult (Dimou et al., 2008; Kang et al., 2010; 

Simon et al., 2011; Zhu et al., 2011; Huang et al., 2014). If adult NG2-glia are also capable of 

generating neurons has been a very controversial topic for the last years. So far, two studies have 

shown the detection of some labeled neurons in the piriform cortex after recombination in the 

Plp1-CreERT2 (Guo et al., 2010) or PDGFRα-CreERT2 (Rivers et al., 2008) mouse lines. However, 

until now the majority of results were speaking against this neurogenic capacity in adult NG2-glia 

and the neurogenic observations derived from the PDGFRα-CreERT2 mice could not even be 

reproduced by the lab describing it first (Clarke et al., 2012). Therefore, it is very likely that some 
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of these data, showing the generation of neurons could have resulted from technical difficulties 

of fate mapping studies. 

These fate mapping studies make use of the CreER/LoxP technique. For this purpose, mouse lines 

are generated containing the cyclization recombination (Cre) specific DNA recombinase fused with 

a modified estrogen receptor binding domain (ER) in their genome. This ER domain has a high 

affinity to the artificial estrogen tamoxifen, but not the endogenously expressed estrogens. After 

targeted placement of this construct under a specific promotor in the genome transcription occurs 

in the cell type of interest. Together with this construct two locus of crossover phage (LoxP) sites 

are introduced, flanking the reading frame (or parts of the reading frame) of a gene of interest. 

Another possibility is to place the LoxP next to a stop cassette situated in front of the gene 

encoding a reporter protein. After tamoxifen induction the CreER fusion protein can translocate 

from the cytoplasm into the nucleus and actively excise the genomic area which is flanked by the 

LoxP sites. Hereby, cell type specific labelling for fate mapping or selective gene deletion can be 

achieved (Sauer, 1998).  

Ectopic, low level CreER expression or tamoxifen side effects, especially during long treatment 

phases could be some of the resulting difficulties from these fate-mapping studies (Dimou and 

Gotz, 2014; Dimou and Gallo, 2015). Overall, the observed plasticity of NG2-glia is certainly 

dependent on the environment, facilitating multipotency during development or rather restricting 

it to certain lineages in many areas of the adult brain (Dimou and Gotz, 2014). Also pointing 

toward this direction is the concept of increased plasticity of cells after injury. Indeed, some 

studies could detect NG2-glia generating astrocytes after different CNS injury paradigms with the 

help of fate mapping approaches (Tatsumi et al., 2008; Sellers et al., 2009; Busch et al., 2010; 

Komitova et al., 2011). Contradictory, others were not able to confirm these results and detected 

progeny of the oligodendrocytes lineage after injury (Dimou et al., 2008; Barnabe-Heider et al., 

2010; Kang et al., 2010; Zawadzka et al., 2010; Simon et al., 2011). Interestingly, the study from 

Zawadzka et al. (2010) using a fate-mapping approach of PDGFRα- and Olig2-CreERT2 mouse lines 

after a demyelination model showed differentiation of NG2-glia into Schwann cells (Figure 

4).Notably, this was seen in toxin induced demyelination, but not after experimental autoimmune 

encephalomyelitis (EAE; Zawadzka et al., 2010; Dimou and Gallo, 2015). Besides the above 

mentioned technical issues, these inconsistent results could also be due to different regional input, 

resulting from variations of the lesion paradigm, technical protocols or mouse lines. So far this 

leads to the conclusion that NG2-glia, despite having some potential for multipotency, have to be 

in the appropriate environment for an effective implementation (Figure 4). Consequently, this 
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yields some great promise for cell-based therapies when NG2-glia are pushed into the right 

direction as already demonstrated via in vivo reprogramming of NG2-glia into neurons after brain 

injury (Heinrich et al., 2014).     

 

 

Figure 4 Fate of NG2-glia in health and disease. NG2-glia generate majorly oligodendrocytes and NG2-glia but 
also a small amount of astrocytes during development. However, they are restricted to the oligodendrocyte lineage in 
the healthy adult brain. This changes under pathological conditions when NG2-glia are also able to form astrocytes and 

Schwann cells under certain conditions. If they are also able to differentiate into neurons is still heavily debated and 
confirming evidence seems to be rather sparse (modified from Dimou and Gallo, 2015). 
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1.2.3 Properties of NG2-glia 

Besides being the major proliferating cell population in the adult brain parenchyma (Gensert and 

Goldman, 1997; Dawson et al., 2000; Horner et al., 2000; Aguirre and Gallo, 2004; Buffo, 2007; 

Dimou et al., 2008) and their ability to differentiate into mature oligodendrocytes during 

development and in the adult brain (Dimou et al., 2008; Rivers et al., 2008), recent studies 

unraveled more and more roles of NG2-glia contributing to the functionality of the brain. Together 

with their great abundance in the mammalian brain (5-8%; Horner et al., 2000; Hill et al., 2011), 

this led to the terminology of NG2-glia as a 4th glial cell population, to highlight their general 

functionality in the brain beside their progenitor potential that is expressed in the term OPC 

(Horner et al., 2002). Interestingly, non-myelinating but enwrapping glial cells can be already 

found in lower invertebrates without myelinated axons, like Drosophila, where they closely interact 

with axons (Banerjee and Bhat, 2008) also pointing to functions beside their progenitor status 

(Mangin and Gallo, 2011).  

Under physiological conditions the cells are homogenously distributed and form a homeostatic 

network with distinct territories controlled by self-repulsion, as shown by in vivo live-imaging in 

the somatosensory cortex (Hughes et al., 2013). This cellular homeostasis is even maintained 

when differentiation or death of one cell occurs, as the neighboring cells are able to counteract 

these events via proliferation and migration, leading to the restoration of this network (Hughes et 

al., 2013). To achieve this surveillance of the neighboring area the cells are motile and move with 

no distinct directionality ~2µm per day, scanning the area with highly motile filopodia (Hughes et 

al., 2013). Additionally to this cellular behavior within the cell lineage, NG2-glia were shown to be 

tightly integrated within the astrocytic and neuronal network (Wigley and Butt, 2009). In contrast 

to their repulsive behavior in respect to cells of the own lineage they have been shown to form 

contacts with axons (myelinated and unmyelinated), neuronal cell bodies, astrocytes and pericytes 

(Wigley and Butt, 2009). While there is not so much known concerning their connection to 

pericytes, besides a potential involvement in blood flow regulation (Wigley and Butt, 2009), many 

studies have been conducted, investigating the connection between NG2-glia and neurons/axons. 

The anatomical and functional properties of those connections led to the assumption that NG2-

glia form synapses with neurons at positions like the nodes of Ranvier, the dendrites and the 

neuronal cell soma which could influence functions like differentiation, migration and proliferation 

of NG2-glia (Mangin and Gallo, 2011). Those neuron-glia synapses were shown to be either 

glutamatergic mediating excitatory postsynaptic currents (EPSC) via α-amino-3-hydroxyl-5-

methyl-4-isoxazole-propropnate (AMPA) receptors or γ-aminobutyric acid (GABA)-ergic mediating 
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also mainly EPSCs. The GABA-ergic synapses are also able to mediate inhibitory postsynaptic 

currents (IPSC) via GABAA receptors under specific circumstances (Lin and Bergles, 2004; Sun and 

Dietrich, 2013). Several studies could demonstrate that synaptic input and the resulting current 

lead to locally restricted Ca2+ increase in those processes of NG2-glia that are connected to 

synapses (Blaustein and Lederer, 1999; Bergles et al., 2000; Lin et al., 2005; Mangin et al., 2008; 

Tong et al., 2009; De Biase et al., 2010). If the EPSC induced opening of voltage-dependent Na+ 

channels can lead to a generation of an action potential remains a heavily discussed topic, the 

evidence, however seems to be dwindling and species-specific (Karadottir et al., 2008; Frohlich et 

al., 2011; Clarke et al., 2012; Sun and Dietrich, 2013). Nonetheless there are voltage-activated 

sodium channels expressed in NG2-glia which could at least lead to an amplification of the synaptic 

input (Sun and Dietrich, 2013). 

Alternative possibilities for cell-cell communication are based on released factors or molecules. 

Adenosine triphosphate (ATP) as a sensor for energy metabolism and cellular homeostasis (Butt, 

2011) could be released by neurons or astrocytes and bound by metabotropic P2Y and ionotropic 

P2X receptors present on NG2-glia leading to intracellular Ca2+ increase (Hamilton et al., 2010). 

Even if direct synaptic release on NG2-glia has just been shown for glutamate and GABA receptors 

(Gallo et al., 2008), other possible modes of activation could involve muscarinic and nicotinic 

acetylcholine receptors (AChR; Cui et al., 2006; Velez-Fort et al., 2009), dopamine receptors 

(Barres et al., 1990), cannabinoid receptors (Mato et al., 2009), glycine receptors, purinergic 

receptors and like recently discovered N-methyl-D-aspartate (NMDA)- and kainate receptors 

(Kukley and Dietrich, 2009; De Biase et al., 2010; Sun and Dietrich, 2013). However most of the 

early work was carried out in O-2A progenitor cell lines (derived from rat optic nerve) which are 

considered the in vitro NG2-glia equivalent but might as well have different characteristics due to 

the underlying artificial conditions (Barres et al., 1990; Sun and Dietrich, 2013). Via these signaling 

pathways NG2-glia could be influenced in their differentiation, proliferation or migration behavior 

(Yuan et al., 1998; Ghiani et al., 1999; Agresti et al., 2005; Gudz et al., 2006; Gallo et al., 2008; 

Chen et al., 2009; Tong et al., 2009), but to dissect the specific outcome of one of those effectors 

in vivo would be very challenging.  

Another interesting aspect of the NG2-glia population is their heterogeneity. So far, the major 

findings concentrate on the difference between NG2-glia from white matter (WM) and grey matter 

(GM). Also their electrophysiological properties add to this WM/GM heterogeneity, which was 

shown via patch-clamp recordings from acute slices demonstrating different membrane 

properties, channel expression profiles and reaction to depolarization between WM and GM NG2-
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glia (Chittajallu et al., 2004). Furthermore different reaction profiles after depolarization could be 

detected for a subclass of cortical NG2-glia, suggesting an additional heterogeneity within the 

same region (Chittajallu et al., 2004). The first study investigating heterogeneity of NG2-glia 

demonstrated that NG2-glia from the WM have a higher proliferation rate compared to the GM 

(Dawson et al., 2003), which could in part be explained with different responsiveness to PDGF 

(Hill et al., 2013). Later on, also an elevated differentiation rate was detected for the NG2-glia of 

the WM (Dimou et al., 2008; Rivers et al., 2008; Kang et al., 2010). To get a better understanding 

of the underlying mechanisms causing this difference, transplantation experiments have been 

performed, grafting GM and WM cells in both WM and GM (Vigano et al., 2013). Grafted cells 

derived from the WM showed much higher differentiation efficiency in both areas compared to 

their GM counterparts, arguing for intrinsic differences, whereas the improved differentiation 

capacity of GM derived transplanted cells in the WM indicated an additional environmental effect 

(Vigano et al., 2013). Taken together, these findings suggest that both intrinsic and extrinsic 

factors play an important role in the heterogeneous capacity of GM and WM NG2-glia to 

differentiate (Vigano et al., 2013). However, also within the same area NG2-glia show 

heterogeneity in expression of the transcription factor achaete-scute homolog 1 (Ascl1) and the 

receptor GPR17 in just a subset of cells, adding to the complexity of the NG2-glia population 

(Parras et al., 2007; Boda et al., 2011; Zhang et al., 2014). 

 

1.3 Brain injuries and the evoked cellular response 

One essential reason to study the roles and behaviors of different brain cells is to unravel their 

distinct participation in brain function. This becomes particularly relevant in cases of disease and 

injury when the cells of the CNS are detained from exerting their tasks. The CNS with its complex 

networks is the target of many diseases with just a small minority so well investigated that efficient 

treatments can be carried out. Notably, although some basic wound healing processes are 

comparable between all tissue types the whole recovery process in the CNS seems to be somehow 

insufficient. In contrast to other organs CNS tissue regeneration is rather reminiscent of 

chronic/unresolved wounds resulting in tremendous symptoms and pathologies for the majority 

of brain pathologies (Shechter and Schwartz, 2013). This leads to a great demand for research to 

further our understanding of brain function in general and the specific cellular and molecular 

events discerning physiological from pathological conditions to improve treatment strategies for 

these severe conditions. 
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1.3.1 Brain injury models 

As it is not possible to study many features of the brain pathologies in human patients, one has 

to create model systems, in which a comparable outcome can be reconstructed. When it comes 

to injuries and diseases the medical research has so far always taken advantage of using animals, 

most favorable rodents like mice and rats. The big advantages of working with the mouse model 

are their short reproduction cycle, low housing costs and the relatively close genetic resemblance 

to humans as well as a long history of research and thus already a huge selection of genetically 

manipulated mouse lines. Basic research on the molecular, cellular or under some circumstances 

even functional level has also been performed in bacteria, worms or flies (with increasing 

complexity). However, almost all medical relevant topics are investigated in rodents.  

Models for brain injuries together with models for brain diseases share many basic similarities like 

inflammation, cell death and subsequent functional impairment. Furthermore, the majority of brain 

diseases are so complex that the only promising option for investigation is the singled out study 

of specific facets of the disease course, often representing specific cellular or tissue damage. As 

soon as those different pathological aspects are well understood, they can be assembled to 

address the pathology as a whole. Therefore, it is essential to understand the cellular and 

molecular basis of brain injuries and diseases for the challenging aim to improve clinical therapy.  

1.3.1.1 Comparison of injury models 

For the comparison of different injury models one has to particularly consider three major 

properties of the individual model: first, the actual methodology and hence how the injury is 

introduced to the system, second, in which region the injury occurs and third, at what timepoint 

in life/during development it is carried out. An additional variation, which becomes essential for 

dissecting the underlying mechanisms, is to manipulate the model system itself by e.g. knocking 

out genes of interest.  

So far, the major region-wise segmentation of CNS injury research has been done between brain 

(Kermer et al., 1999) and spinal cord (Wrathall, 1992) and within those regions between GM 

(Reier et al., 2002; Back, 2014) and WM (Fern et al., 2014; Kou and VandeVord, 2014). 

Concerning the methodology of the injury models the different injury paradigms can be subdivided 

into indirect and direct injuries with the majority of direct injuries being models for traumatic brain 

injury (TBI) which will be covered in the next chapter. Indirect injuries are manipulations of the 

system which then lead to brain damage as a secondary effect. This can be induced via primary 

injuries like the rupture or occlusion of an artery in stroke/ischemia models leading to severe 
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lesions in the afflicted areas (Tajiri et al., 2013). Other options are via injection or feeding of toxins 

like lysolecithin or cuprizone (Blakemore and Franklin, 2008) or injection of viruses like the 

Theiler´s murine encephalomyelitis virus (Pachner, 2011) leading to cell death of 

oligodendrocytes, demyelination and axonal damage in these specific MS models (Pachner, 2011). 

However, those models only mimic the demyelination part of MS and do not address the complex 

pathology to the full extent. Therefore, other models have been created addressing the 

immunological part of the disease by active immunization of genetically predispositioned animals 

against myelin proteins also leading to demyelination (Pachner, 2011). Furthermore, infection with 

bacteria has been employed to e.g. model white matter injuries in perinatals (Dean et al., 2015). 

Beside these closely disease linked models, some very specialized and artificial methods have 

been designed to isolate distinct injury processes. One example would be the very tedious 

approach invented by Madison and Macklis (1993). For that technique they targeted neurons 

which have received cytotoxic, photoactivatable beads via retrograde transport along axons from 

neurons located in the contralateral hemisphere, with laser illumination leading to a rather 

noninvasive and specific neuronal death (Madison and Macklis, 1993).      

1.3.1.2 Traumatic brain injury    

Basically all approaches to directly injure the brain are counted as models of TBI. In the clinic, the 

definition of TBI has been imprecise for a long time, especially regarding the challenging concept 

of combining the huge variety of causes and pathologies. Together with the changing 

epidemiologic patterns and an increasing significance of a milder version of TBI which results in a 

more subtle neurocognitive and neuroaffective deficits finding a precise definition was challenging 

(Menon et al., 2010). In a recent study, Menon et al. (2010) formulated the following definition: 

“TBI is defined as an alteration in brain function, or other evidence of brain pathology, caused by 

an external force” (Menon et al., 2010). In the USA alone 235,000 people are hospitalized for 

nonfatal TBI, 1.1 million are treated in emergency departments resulting in 50,000 casualties 

every year (Niemeier et al., 2015). TBI can be classified in open or closed injuries, depending 

whether the skull and the dura of the patient was penetrated (Morales et al., 2005). This can also 

lead to different outcome in disease course and symptoms. The resulting pathologies can comprise 

primary injuries due to direct mechanical disruption which leads to focal or diffuse lesions of brain 

tissue, hematomas, axonal damage and consequently secondary injuries like intracranial 

hemorrhage, brain swelling and ischemic damage (Morales et al., 2005). Thus, patients of TBI 

can show a multitude of neurologic and mental symptoms including weakness, loss of balance, 

change in vision, dyspraxia paresis, aphasia sensory and memory loss, depression, anxiety, 
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cognitive deficits or disorientation. Some of these symptoms can become chronic and there is no 

effective treatment so far (Menon et al., 2010; Niemeier et al., 2015). Being a major cause of 

death and disability all over the world, finding potential therapeutic strategies for TBI is a very 

important aim for medical research. Therefore, experimental models for TBI have been created 

to investigate the progression of the pathology, the underlying mechanisms and in the long run 

options for therapy. Another benefit of those rather simple lesion paradigms is that they can also 

be employed for a basic understanding on how the brain reacts to an insult, which can then be 

translated to almost all brain diseases where tissue damage is occurring.  

Marmarou et al. (1994) designed the impact acceleration model where a stainless steel protection 

plate is attached to the skull of the animal reducing the risk of skull fracture, when a weight is 

dropped on the head of the animal, mimicking the more complex diffuse brain injury (Marmarou 

et al., 1994). The diffuse injury model using an air-driven impactor hitting the brain via a 

protection plate and a molded, gel-filled base supporting the animals head is an alternative model 

for this complex injury (Cernak et al., 2004; Morales et al., 2005). This is complemented by the 

classic models for focal TBI: the weight drop model using a guided weight lowered on the skull 

without any further protection (Feeney et al., 1981), the controlled cortical model with an rigid 

impactor transmitting mechanical pressure directly on the intact dura (Smith et al., 1995) and the 

midline fluid percussion model employing a pendulum released impact of a fluid bolus on the 

intact dural surface (Sullivan et al., 1976; Morales et al., 2005). An even more basic model of focal 

brain injury with skull and dura penetration is the stab wound injury (SWI) model. In that case a 

craniotomy is performed followed by a cut or stitch in the somatosensory cortex using a lancet, 

leading to damage of the dura, blood vessels and the affected gray matter but sparing the white 

matter (Buffo et al., 2005). 

1.3.1.3 Cellular response to brain injury  

Parts of the functional and symptomatic pathology after TBI can be explained by the observable 

tissue damage. However, employing such a simple assessment can hardly contribute to a sufficient 

comprehension of the responsible events for the resulting pathology. Particularly in the first days 

after the injury, as illustrated in Figure 5, the evoked response involves complex interactions 

between cells of numerous lineages, comprising tissue resident cell types and extrinsic cells with 

various functions infiltrating the CNS after insult (Burda and Sofroniew, 2014). Therefore one has 

to understand the cellular events first before continuing the analysis on the molecular level to 

really dissect the cause and consequence of those forced changes in brain tissue.  
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Figure 5 Time course and cellular reaction after CNS injury. General events following an insult in the CNS 
including beneficial (green) and detrimental effects (red), like persisting scar formation or extracellular matrix ECM 
accumulation, which inhibit the beneficial event of wound healing. Cellular responses depict the main cellular 
accumulation periods of resident CNS cells following injury (modified from Shechter and Schwartz, 2013; Burda and 
Sofroniew, 2014)  
  

1.3.1.4 Immune cells 

The CNS has been described as an immunologically privileged or specialized site due to the general 

BBB blockage of immune cell infiltration (Ransohoff et al., 2003; Anthony and Couch, 2014). This 

is overcome in case of injury or disease when leucocytes are able to migrate into the CNS 

mediating an immune response, which often leads to a secondary damage (Ransohoff et al., 2003; 

Anthony et al., 2012). However, compared with the periphery, the active recruitment of leukocytes 

is delayed and to a reduced extent (Anthony et al., 2012). The majority of research investigating 

neuroinflammation has been conducted in regard to autoimmune diseases like MS, where 

inflammation is probably a major cause of this detrimental pathology. Therefore, it is known that 

mainly T-cells and macrophages but also natural killer cells, mononuclear phagocytes and in some 

cases even B-cells and neutrophils are able to enter the brain in MS-models like experimental 

autoimmune encephalomyelitis (EAE; Ransohoff et al., 2003). Nevertheless, also in other cases of 

brain injury, especially after damage of the vasculature and hence leakage of the BBB, leukocytes 

are within the first responders to the injury. They fundamentally contribute to the first steps of 

the damage response: cleaning the damaged sites, protecting against potential infection of the 

exposed parenchyma and promoting tissue regeneration (Shechter and Schwartz, 2013). The 

continuous recruitment of immune cells and their detrimental role in subsequent inflammation 
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and secondary tissue damage has led to the concept of a dual role of the immune system having 

first beneficial and later on damaging effects on the brain tissue (Shechter and Schwartz, 2013). 

This dual role was recently connected to the M1 and M2 phenotype of macrophages (Mills, 2015) 

and this inflammatory response could be a target for manipulation in clinical therapy, e.g. via 

specific chemokines involved in cell-cell communication (Gyoneva and Ransohoff, 2015). I will 

outline the combined findings of microglia and macrophages in the next chapter because 

macrophages, the major responsive elements of the immune system entering the CNS were until 

recently hard to distinguish from resident microglia. 

1.3.1.5 Microglia and macrophages 

Microglia, the resident immune cells of the CNS, share many similarities with peripheral 

macrophages and therefore, have been pooled with this cell type in many studies (Silver et al., 

2015). Visualizing cortical microglia after laser lesion with the help of in vivo imaging could 

demonstrate that microglia in close vicinity to the injury site react almost immediately to tissue 

damage by reorientation and outgrowth of their processes (Nimmerjahn et al., 2005). 

Subsequently, those cells accumulate in the lesion core via active migration shielding the injury 

site already starting 1 hour after the injury (Nimmerjahn et al., 2005). Also multiple spherical-

shaped inclusions could be observed at 10 to 15 minutes after injury indicating phagocytic activity. 

These findings emphasize the role of microglia as first responders to the lesion by sealing of the 

injury site and starting to clear the first tissue debris (Nimmerjahn et al., 2005). Indeed, preventing 

or reducing microglial activation with the help of pharmacologic or genetic techniques deteriorates 

lesion pathology and tissue recovery (Lalancette-Hebert et al., 2007; Hines et al., 2009; Silver et 

al., 2015). Depending on the size of the damage and the consecutive breach of the BBB, it is 

suggested that infiltrating lymphocytes and especially macrophages additionally contribute to this 

first immune response (Hanisch and Kettenmann, 2007). Interestingly, a study differentially 

labeling microglia and macrophages after spinal cord injury (SCI) showed that microglia contact 

damaged axons earlier then infiltrated macrophages, whereas macrophages have an increased 

and more effective phagocytic activity (Greenhalgh and David, 2014). The general microglia 

response, like in macrophages, is dependent on the different activity states which adapt to the 

severity of the insult and involve signaling to other cells, including neurotrophic factors for 

neuronal survival, inflammatory mediators in cases of bacterial or viral invasion and anti-

inflammatory factors at later stages to reduce tissue damage (Hanisch and Kettenmann, 2007). 

Beside these mostly initial and rather positive functions, microglia and invaded macrophages are 

also attributed to be effectors of secondary tissue damage. In this context, the suggested M1 
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phenotype of “classically” activated macrophages and microglia seems to be more detrimental 

then the “alternatively” activated M2 type. Even if some of the signaling and activation pathways 

eliciting those phenotypes are unraveled, the complete picture, especially in vivo, remains unclear. 

Furthermore, since the majority of the in vivo work has been conducted investigating axonal 

recovery after SCI there is still just rudimentary knowledge of the mechanisms in the brain (Silver 

et al., 2015). Nevertheless, especially in SCI, there are already promising clinical trials ongoing 

based on the results that ex vivo activated macrophages injected into the injured spinal cord 

promote axonal regeneration and reduce tissue damage, providing hope for future research in 

this direction (Kigerl and Popovich, 2006; Silver et al., 2015). 

1.3.1.6 Astrocytes 

The response of astrocytes following neurological disorders and injuries, also called astrogliosis, 

has been investigated for quite some time. However, the underlying concept and the complete 

molecular and cellular processes involved are still not fully understood (Pekny and Pekna, 2014). 

The most prominent features of astrogliosis are hypertrophy, the upregulation of the intermediate 

filament glial fibrillary acidic protein (GFAP) and proliferation (Pekny and Pekna, 2014). This 

reactivity is shown after a multitude of neuropathologies like neurotrauma, ischemia, brain 

hemorrhage, perinatal asphyxia, CNS infections, epilepsy, CNS tumors, diabetic retinopathy, 

Alzheimer’s disease (AD), Parkinson’s disease, amyotrophic lateral sclerosis (ALS) and MS 

(Hostenbach et al., 2014; Pekny and Pekna, 2014). The modes of activation could involve 

cytokines like transforming growth factor (TGF)-α (Rabchevsky et al., 1998), interleukin (IL)-6 

(Klein et al., 1997), ciliary neurotrophic factor (CNTF; Winter et al., 1995), leukemia inhibitory 

factor (LIF) and oncostatin M (Balasingam et al., 1994) as well as signaling pathways like the gp-

130/signal transducer and activator of transcription 3 (STAT3; Sriram et al., 2004; Hostenbach et 

al., 2014; Pekny and Pekna, 2014). Therefore, it is very likely that cell-cell communication via 

secreted molecules between astrocytes, microglia, NG2-glia, neurons, endothelial cells or other 

cell types in the environment plays an important role in the emerging reactive states of these 

cells. This glial reaction and the consequential tissue alterations following brain pathologies are 

often referred to as glial scar. Latest results employing in vivo imaging of astrocytes after cortical 

stab wound injury site contradict the long leading assumption that astrocytes are the only 

contributors to this event, because it was demonstrated that they do not migrate towards the 

injury (Bardehle et al., 2013). Nevertheless, reactive astrocytes show hypertrophic and polarized 

morphologies and proliferate to some extent. However, this injury response occurs at a rather late 

phase after lesion (5-7 days). Interestingly, astrocytes in direct contact to blood vessels, the so 
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called juxtavascular astrocytes, showed a higher proliferation capacity compared to the remaining 

astrocyte population (Bardehle et al., 2013). Overall it is clear that astrocytes participate in the 

glial reaction to injury by forming a border region between the lesion and the surrounding tissue. 

This favors relatively quick tissue stabilization due to demarcation of the lesion but also potentially 

impedes the regenerative process later on (Voskuhl et al., 2009; Pekny and Pekna, 2014). Other 

positive effects of astrocytes within and surrounding the lesioned area during the acute phase of 

the injury include the restoration of the homeostasis and the BBB, regulation of the blood flow, 

recycling of neurotransmitters as well as synapse and neuronal protection, which could be 

demonstrated via ablation of reactive and proliferating astrocytes (Bush et al., 1999; Sofroniew 

et al., 1999; Faulkner et al., 2004; Pekny and Pekna, 2014). In contrast, at later and chronic 

stages of brain pathologies, reactive astrocytes and thus astrogliosis together with the so called 

glial scar are majorly connected to numerous undesired effects. The majority of these effects 

result from the expression or secretion of molecules like ephrin-a5 (Overman et al., 2012) leading 

to deteriorated synaptic and axonal regeneration, impeding functional recovery (Lee et al., 2010; 

Pekny and Pekna, 2014). Interestingly, many therapeutic approaches for diseases like epilepsy or 

stroke already target astrocytes both to improve astrocytic function in the early recovery process 

as well as to reduce their detrimental effects at more chronic stages to ameliorate functional 

recovery (Pekny and Pekna, 2014; Freitas-Andrade and Naus, 2015). Another interesting finding 

connected to reactive astrocytes was their capability to form neurospheres in vitro (Lang et al., 

2004; Buffo et al., 2008). This stem cell like response seems to be elicited via the sonic hedgehog 

pathway and is only induced by invasive injuries disrupting the BBB like stab wound injury or 

ischemia, whereas noninvasive injuries like chronic amyloidosis or induced neuronal death do not 

elicit this response (Sirko et al., 2013). This points to a more diverse role of astrocytes depending 

on the pathology and the affected region, which could also be demonstrated with a gene 

expression analysis of astrocytes in models of SWI, ischemia and neuroinflammation showing a 

large amount of injury-specific gene expression (Zamanian et al., 2012; Sirko et al., 2015). Taken 

together astrocytes seem to play an essential role in events following a multitude of brain 

pathologies but also inhibit complete tissue recovery at later stages.      

1.3.1.7 Other cell types 

Over the last years more and more cell types were connected to the cellular response after CNS 

injuries. As a general feature of the wound healing and scarring process in all tissue types and 

organs, it is suggested that fibroblasts depositing extracellular matrix (ECM) proteins are major 

components of the emerging connective tissue (Gurtner et al., 2008). Even without fibroblasts as 
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a source, ECM proteins can also be found after CNS injuries which are considered to inhibit tissue 

recovery especially in regard to neuronal survival and axonal growth (Shechter and Schwartz, 

2013). In addition, connective tissue with a non-glial origin has been reported as a component of 

the glial scar after SCI (Krikorian et al., 1981; Fawcett and Asher, 1999; Camand et al., 2004) but 

the origin of these fibroblast-like cells in the CNS is still unclear. So far, multiple sources of origin 

like resident fibroblasts, endothelial cells, bone marrow-derived circulating progenitor cells, 

monocytes or fibrocytes have been suggested (Krenning et al., 2010). One fate-mapping study 

could at least demonstrate that the fibroblast-like progeny of perivascular collagen1α1 cells are a 

main source of the fibrotic component of the scar tissue after contusive SCI (Soderblom et al., 

2013). Another contributor to the glial scar after SCI was identified via fate-mapping of a subset 

of pericytes using a Glast-CreER mouse-line. These pericytes and their progeny outnumbered 

astrocytes within the glial scar in the spinal cord and were essential for the formation of connective 

tissue and thus the primary regeneration step following injury (Goritz et al., 2011). Noteworthy, 

the origin of the fate-mapping studies of Göritz et al. (2011) and Soderblom et al, (2013) could 

be partially overlapping due to the claim that both lineage tracings represent the major population 

of the connective tissue after SCI (Soderblom et al., 2013). Also massive proliferation of PDGFRβ+ 

and CD105+ stromal cells originated from the neurovascular unit and their deposition of ECM-

molecules could be demonstrated within the brain (Fernandez-Klett et al., 2010). Interestingly, 

they appear directly within the lesion core aligning next to the GFAP+ area of the glial scar 

(Fernandez-Klett et al., 2010). Latest findings complemented the list of cell types contributing to 

the glial scar after SCI with specifically recombined ependymal cells in the FoxJ1-CreER mouse-

line. These neural stem cells are multipotent and give rise to astrocytes which then migrate to the 

lesion core after SCI (Barnabe-Heider et al., 2010), restricting secondary lesion enlargement, 

improving axonal regeneration as well as neuronal survival and hence are an important factor for 

spinal cord integrity after injury (Sabelstrom et al., 2013). So far, the majority of these findings 

focused on the spinal cord. Because there is a multitude of regional differences in injury response 

one cannot simply transfer these results to brain pathologies (Schnell et al., 1999; Batchelor et 

al., 2008; Zhang and Gensel, 2014). Nonetheless, some basic similarities like deposition of 

extracellular matrix proteins could be confirmed so far, in part because of the comparable cellular 

composition in both regions (Burnside and Bradbury, 2014). Therefore, it is important to 

investigate the related questions regarding tissue recovery in an appropriate injury model.  
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1.3.1.8 NG2-glia 

Since the last 10 years also NG2-glia, came more and more into the focus of many researchers 

investigating CNS injuries. The first pathological context those cells were studied in, was their 

capacity to give rise to new oligodendrocytes and thus lead to remyelination after demyelinating 

events (Keirstead et al., 1998; Di Bello et al., 1999) or diseases like MS (Chang et al., 2000; Chang 

et al., 2002; Zhao et al., 2005)and ALS (Kang et al., 2013). For those pathologies it could be 

demonstrated that NG2-glia react upon a demyelination event with proliferation, accumulation in 

the lesion area and hence differentiation into myelinating oligodendrocytes (Redwine and 

Armstrong, 1998; Levine and Reynolds, 1999; Sim et al., 2002; Penderis et al., 2003). The 

resulting remyelination efficiency differs between species and affected regions, spanning from 

almost total regeneration and functional recovery in a mouse model of focal demyelination 

(Penderis et al., 2003) to the wide array of remyelination failure in chronic human MS lesions 

(Hartley et al., 2014). As there is no effective treatment strategy for MS patients so far, a great 

endeavor has been put into the search of the underlying mechanisms to improve therapy and 

eventually prolong the life span of the patients (Franklin and Ffrench-Constant, 2008; Kremer et 

al., 2015). On the contrary in the recovery phase after SCI, NG2-glia are considered a rather 

detrimental player after injury (Filous et al., 2014; Levine, 2015). Especially the name-giving 

molecule NG2 is a part of growth inhibitory chondroitin sulfate proteoglycans (CSPGs) which can 

be expressed by NG2-glia and to some extent by astrocytes following injury and participate in 

deteriorated axonal and neurite outgrowth, resulting in impaired tissue recovery (Tang et al., 

2003; Tan et al., 2005; Tan et al., 2006). In general, NG2-glia accumulate in the injury core and 

react with increased proliferation following SCI (Levine et al., 2001; McTigue et al., 2001). 

Interestingly, abrogation of β-catenin signaling in NG2-glia led to reduced glial scarring and 

improved axonal regeneration after SCI. However, as the microglia and astrocyte reactivity was 

also reduced under these conditions it is not yet clear which cells were mainly causing the 

impediment for regeneration (Rodriguez et al., 2014). Also models of intraspinal hemorrhage 

(Sahinkaya et al., 2014) and chronic cerebral hypoperfusion (McQueen et al., 2014) led to 

oligodendrocyte loss with consecutive NG2-glia reactivity, proliferation and differentiation into 

mature oligodendrocytes. Furthermore, a mouse model of AD plaque deposition led to increased 

NG2-glia numbers which was however not observed in postmortem human AD brain tissue where 

NG2-glia numbers were reduced (Behrendt et al., 2013). Comparable to the reactivity after SCI, 

NG2-glia respond to TBI in the brain with increased proliferation, accumulation in the injury core 

and some limited degree of differentiation (Levine et al., 2001; Simon et al., 2011; Dimou and 



 

 

27 1. Introduction 

Gotz, 2014), whereas the majority of cells did not differentiate but remained NG2-glia (Dimou et 

al., 2008; Komitova et al., 2011). Also NG2-glia labeled in an Olig2-CreERT2 mouse line proliferated 

and accumulated around the lesion core following cryolesion. However, this lesion paradigm led 

to their differentiation into astrocytes (Tatsumi et al., 2008). Remarkably, not all CNS pathologies 

lead to NG2-glia reactivity as it was demonstrated after massive induction of neuronal death (Cruz 

et al., 2003) which did not evoke an altered proliferation in NG2-glia (Sirko et al., 2013). Overall, 

these results show that NG2-glia participate globally in responses after different forms of brain 

injury and their reactivity in non-demyelinating lesions like TBI indicate that they exert additional 

functions besides their differentiation and remyelination capacity. Therefore, it is essential to get 

a better understanding of the cellular and molecular events following CNS injury to characterize 

the contribution of NG2-glia to the post-lesion processes and tissue regeneration.   

1.3.2 Potential factors regulating NG2-glia migration  

As the study of Hughes et al. (2013) could demonstrate via live in vivo imaging, NG2-glia are 

motile cells which are also able to exert directed short range migration in case of cell death or 

differentiation of neighboring cells (Hughes et al., 2013). In all higher organisms cell migration 

plays essential roles throughout the whole life starting from early development, for general tissue 

surveillance, maintenance and repair following injury and disease. Studies in cell culture systems 

and invertebrates have greatly advanced the understanding of physiology and mechanisms 

involved in migration (Lehmann, 2001; Raftopoulou and Hall, 2004). The previously mentioned in 

vivo imaging technique has created the possibility to observe migrating mammalian cells in the 

living animal. In brief, extracellular cues like soluble factors or matrix proteins elicit an intracellular 

response leading to coordinated reorganization of the cytoskeleton and ultimately the movement 

of the cell (Raftopoulou and Hall, 2004). Therefore, analysis of the responsible mechanisms 

involved in the NG2-glia migration could contribute to a better understanding of general migratory 

mechanisms, but also NG2-glia functionality and even possible techniques to manipulate migration 

and hence their injury response. 

1.3.2.1 The Rho GTPase Cdc42 and its involvement in cell polarity and 

migration 

Many factors and signaling molecules, like molecules of the mitogen-activated protein kinase 

(MAPK) cascades, lipid kinases, phospholipases, Ser/Thr and Tyr kinases and scaffold proteins, 

have been suggested to be involved in the intracellular mechanisms leading to migration 

(Raftopoulou and Hall, 2004). Another crucial component of the regulating pathways seems to be 
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the ubiquitously expressed Rho GTPase-family acting as a molecular switch, by changing from a  

Guanosine diphosphate (GDP)-bound, inactive to a Guanosine-5'-triphosphate (GTP)-bound, 

active form or vice versa (Raftopoulou and Hall, 2004). One family member of the Rho GTPase 

proteins is cell division control protein 42 homolog (cdc42), which has been shown to be a key 

regulator in cellular events like polarization (Etienne-Manneville and Hall, 2002; Cau and Hall, 

2005; Garvalov et al., 2007), migration (Raftopoulou and Hall, 2004) and proliferation in yeast, 

Drosophila and C.elegans cells (Fuchs et al., 2009; Wang et al., 2009; Warner et al., 2010). Modes 

of action could include cdc42 mediated activation of downstream signaling pathways like 

mechanistic target of rapamycin (mTOR; Wang et al., 2009) and c-Jun N-terminal kinases 

(JNK)/MAPK as well as targets like Wiskott-Aldrich Syndrome protein (WASp)/Arp2/3 complex and 

partitioning defective 6 homolog alpha (Par6)/atypical protein kinase C (aPKC; Raftopoulou and 

Hall, 2004; Cau and Hall, 2005; Hall, 2005; Cappello et al., 2006). Those findings have been 

conducted in cell types like macrophages (Allen et al., 1998), fibroblasts (Nobes and Hall, 1995; 

Hall, 1998), astrocytes (Holtje et al., 2005; Etienne-Manneville, 2006) and neurons (Cappello et 

al., 2006; Garvalov et al., 2007) but were majorly performed in vitro. Especially in astrocyte 

cultures many intrinsic functions of cdc42 signaling have been analyzed using the so called scratch 

assay, mimicking cellular reactivity after injury in vitro (Holtje et al., 2005). The obtained 

observations could demonstrate effects of cdc42 on polarization (Osmani et al., 2006) and directed 

migration towards the scratch (Robel et al., 2011). An attempt to transfer those findings in vivo, 

employing live imaging of cortical astrocytes after stab wound injury, could confirm an effect of 

cdc42 on astrocyte polarization and proliferation. However, as cortical astrocytes did not migrate 

after injury, alterations in migratory behavior could not have been detected (Bardehle et al., 

2013). Other in vivo studies in targeted genetic ablation models of cdc42 in neurons showed 

effects on neuronal polarity, axon formation, cytoskeletal organization and filopodial dynamics 

(Garvalov et al., 2007) as well as altered polarity of mitosis and a consecutive change of cell fate 

of neural progenitors (Cappello et al., 2006). Assessing the influence of cdc42 in postnatal NG2-

glia, specific cdc42 ablation did not affect proliferation, migration or differentiation in vitro 

(Thurnherr et al., 2006) even if it was suggested that the Rho GTPase-family generally controls 

cytoskeleton remodeling, process protrusion and migration of NG2-glia (Bacon et al., 2007; Bauer 

et al., 2009). Also in vivo no developmental effects, besides a stage-specific myelination 

phenotype with abnormal accumulation of cytoplasm at the inner tongue of the oligodendrocyte 

process, could be detected (Thurnherr et al., 2006). Nevertheless, it is not yet unraveled if cdc42 
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is able to influence the in vivo behavior of NG2-glia especially in regard to their elevated reactivity 

ensuing injury.  

1.3.2.2 The chondroitin sulfate NG2 as a potential regulating factor for 

migration and polarization 

Another factor which was just recently connected to the migratory behavior of NG2-glia is the 

name giving transmembrane proteoglycan NG2. Phosphorylation of NG2 via protein kinase c (PKC) 

led to redistribution of the protein from the apical cell surface to the lamellipodia, polarization and 

increase of cell motility, which was demonstrated in vitro with a scratch wound assay of human 

astrocytoma cells (Makagiansar et al., 2004). Also binding of soluble NG2 to the surface of 

endothelial cells induces cell motility in vitro and angiogenesis in vivo (Fukushi et al., 2004). 

Additionally, connections of chondroitin sulfate proteoglycans to cdc42 (Eisenmann et al., 1999) 

and another Rho GTPase, Rac (Majumdar et al., 2003) have been found in melanoma, implicating 

an involvement in cell motility and polarity. Comparable to the effect of cdc42 in neural 

progenitors, NG2 is connected to asymmetric cell division in NG2-glia (Sugiarto et al., 2011) and 

its targeting to cellular retraction fibers in glioma cell lines has been connected to fiber formation 

and polarization (Stallcup and Dahlin-Huppe, 2001). A recent study by Biname et al. (2013) 

investigated the connection between NG2 and Rho GTPases in NG2-glia. They could demonstrate 

an influence of NG2 on cell polarity via Ras homolog gene family member A (RhoA) activity and 

the multi-PDZ domain protein MUPP1/syntaxin 1 (Syx1) signaling pathway, leading to decreased 

polarization in vitro and in vivo as well as in vitro migration after depletion of NG2 (Biname et al., 

2013). To further our understanding of these processes in NG2-glia it is essential to investigate 

those effects in vivo and in more detail. Since most of the in vivo analysis, so far, have been 

conducted in still images, live two-photon laser scanning microscopy (2PLSM) is an essential 

addition to this tool box, especially concerning the migratory behavior to follow cells over time.  
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2 Aim of the study 

As the brain is such an important but complex organ, brain pathology leads to detrimental and 

often life threatening consequences. The overall treatment strategies are very limited and in most 

cases symptomatic. Therefore, it is of great importance to get a better characterization of the 

cellular and molecular events during brain pathology. NG2-glia just recently got more attention of 

neuroscientists and is thus not well characterized. Especially under pathological conditions 

preliminary findings suggest a great potential in tissue and functional recovery. To improve the 

understanding of NG2-glia behavior following brain injury these questions were addressed in my 

study: 

 

1. How is the cellular response of NG2-glia after injury in detail? 

2. What is the timeline of this response behavior? 

3. What is the function of NG2-glia response following brain injury? 

4. How could this behavior be altered? 

 

To investigate the cellular events after brain injury in more detail and in a consecutive manner 

repetitive in vivo imaging with two-photon laser scanning microscopy (2PLSM) was performed 

following stab or punctate wound injury in the somatosensory cortex of mouse lines with green 

fluorescent protein (GFP)-labeled NG2-glia. The obtained time series were analyzed to follow the 

cellular behavior in the phase following brain injury. For a better understanding of the underlying 

mechanisms and as an attempt to achieve altered NG2-glia behavior after injury, cdc42- and NG2-

deficient mice were investigated employing the same protocol. Additionally, immunohistochemical 

and with my colleague Sarah Schneider NG2-glia depletion studies were performed for a better 

characterization of their functions in wound closure and tissue repair.    
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3 Results 

3.1 The cellular changes of NG2-glia following injury 

For analysis of the cellular reaction of NG2-glia after injury repetitive in vivo 2PLSM of adult Sox10-

iCreERT2 x CAG-eGFP mice was performed. In this mouse line the GFP-reporter protein labels cells 

of the oligodendrocyte lineage, spanning from NG2-glia to mature oligodendrocytes, after 

tamoxifen induction. Some of the early experiments have been performed by my colleague 

Christoph Straube and three resulting image stacks have been included in the analysis for this 

thesis.  

Following induction in 3-5 months mice of both sexes, a craniotomy followed by a small punctate 

wound injury was performed (PWI, ~100µm long and 700µm deep) in the somatosensory cortex. 

Subsequently, the craniotomy was sealed with a cranial window, Texas-Red-conjugated dextran 

was injected into the tail vein for vessel labeling and the first imaging session was performed 

usually around 45 minutes after injury (0 days post injury[dpi]; Figure 6A). At this timepoint, most 

NG2-glia showed their typical distribution and morphology with ramified branches. To resolve the 

behavior of NG2-glia in more detail, the same cortical area of interest was repetitively imaged at 

different timepoints after injury and their cellular reaction analyzed. Specific areas and cells were 

identified at later timepoints with labeling of the relatively stable vessels as landmarks (Figure 6B-

D) and NG2-glia were discriminated from mature oligodendrocytes based on their morphology.  

Already after 2dpi dramatic changes in the morphology and the position of many NG2-glia around 

the lesion site could be observed. This also led to an accumulation of cells within and in direct 

proximity to the lesion core, while only a small subpopulation of NG2-glia remained static in terms 

of morphology and position (Figure 6B, C, E). In case the image quality was not impaired due to 

increasing background the majority of the cells could be traced at the consecutive timepoints 

(Figure 6B-D), arguing against the occurrence of massive NG2-glia cell death between 0 and 4dpi. 

In contrast to the majority of NG2-glia, mature oligodendrocytes did not show any observable 

cellular responses following this injury paradigm but remained rather stable (white arrows in 

Figure 6B-D). For a better characterization of the behavior of NG2-glia, their detectable responses 

were classified in the following categories: (a) Hypertrophy, representing the enlargement of the 

volume of cell bodies and/or processes (Figure 6B´), (b) Polarization, describing the change in 

cell morphology toward an elongated cell (process/es or cell soma) in a certain direction (Figure 

6C´), (c) migration, defined as the movement of the cell body for at least 10µm (Figure 6C´) and 

(d) proliferation (Figure 6D´).  



 

 

32 3. Results 

 

 

Figure 6 Fast and Heterogeneous reaction of NG2-glia after injury. (A) Schematic illustration of the 
experimental procedure. (B-D) Images of GFP+ NG2-glia and oligodendrocytes (white arrows) surrounding a punctate 
wound injury (PWI; white ellipse) at d0, d2 and d4 after lesion. Blood vessels are labeled with Texas-Red dextran (red). 
(B´-D´) Examples of cells (higher magnification from B-C) showing the combined reaction of hypertrophy and migration 
(B´), polarization toward the injury (C´; yellow arrow indicates the direction) and proliferation (D´). (E-F) Pie charts 

represent the heterogeneous reaction of all NG2-glia surrounding the injury site between 0 and 2dpi (E; Polarization 
represents the cells polarizing toward the injury; the classification of the multiple reactions is represented in pie E´) 
and 2 and 4 dpi (F; n=220 cells from 8 animals for d0-d2 and n=180 cells from 6 animals for d2-d4). Images show 
maximum intensity projections of 30µm deep stacks. Scale bars represent 100µm in B-D and 25µm in B´-D´. 

 

The observed response of the majority of NG2-glia was fast and heterogeneous (188 of 254 cells 

from 8 mice; Figure 6E) in the direct surrounding (up to 500µm) of the lesion already at 2dpi, 



 

 

33 3. Results 

with cells showing one or more of these behavioral categories. The majority of reactive cells 

showed a combined reaction, comprising of at least two of these reaction types between 0 and 

2dpi (Figure 6E, E´). Interestingly, the degree and type of this heterogeneous reaction was not 

drastically altered at 4dpi (Figure 6F). 

 

To assess whether a reduced induction rate led to selected recombination in a specific subtype of 

NG2-glia with a diverse reaction profile, animals with low induction rates (1x gavaging with 

~20µg/ml tamoxifen) were compared with animals receiving a higher induction rate (3x gavaging 

with 40µg/ml tamoxifen; Figure 7). As expected, the high induction rate led to a massive increase 

of GFP-labeled cells compared to the low induction protocol (Figure 7A, B). Analyzing the NG2-

glia response in both groups revealed some small alterations in polarization and proliferation at 

2dpi (Figure 7C) as well as migration at 4dpi (Figure 7C´). However, these differences were not 

significant due to rather big variations between the animals receiving the same induction 

treatment. Overall, the cellular response of the recombined NG2-glia seem to be comparable 

between the two experimental groups (Figure 7C), also considering the heterogeneous reaction 

profile between 0 and 2dpi (Figure 7D-D´). Therefore no subclass with a specific reaction profile 

seemed to be preferentially recombined at lower tamoxifen levels and subsequently animals with 

low and high induction rates were pooled for further analysis.  
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Figure 7 Alterations in induction rates do not change the overall reactivity of NG2-glia. (A, B) Images of 
recombined cells of the oligodendrocyte lineage with induction rates of 1x gavaging with ~20µg/ml tamoxifen (A) and 
3x gavaging with 40µg/ml tamoxifen (B) at 0dpi after PWI (indicated with a white dashed ellipse). (C, C´) Comparison 
of the different reaction categories at 2dpi (C; n=3 animals for low induction and n=5 for animals for high induction) 
and 4dpi (C´; n=3 for each induction variant) for animals with low and high induction rates. (D, D´) Pie charts of the 
reactivity after low (D) and high induction (D´) between 0 and 2dpi. Images show maximum intensity projections of 
30µm deep stacks. Scale bars represent 100µm. 
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3.1.1 NG2-glia undergo morphological changes following brain injury 

The next point of interest was to follow the response and reaction profiles of NG2-glia for a longer 

period after injury. Therefore the results from the analysis of the short timepoints (0-4 dpi) were 

combined with results from experiments carried out to specifically investigate the consecutive 

timepoints (4-28 dpi). Due to decreasing reactivity at these later timepoints, increasing gaps 

between the imaging sessions were introduced for this long experimental period.  

 

 

Figure 8 Temporal reaction of NG2-glia after injury. (A-C) Images of cells of the oligodendrocyte lineage around 
the injury site at d0 (A), d4 (B) and d28 (C) after PWI. (D, E, G, H) Graphs depict the percentage (mean+SEM) of cells 
showing hypertrophy, polarization, proliferation and migration at given timepoints (n=3-8 animals per timepoint). “New” 
(green bars) represent the cells showing hypertrophy (D), polarization in any direction (E), proliferation (G) and 
migration (H) for the first time at the indicated timepoint. “Old” (red bars) represent cells which showed this behavior 
already at the previous timepoint (for detailed statistical evaluation see chapter 9.1). (F, I)  Directionality of polarized 
(F) or migrated (I) cells (mean+SEM; yellow bars: toward the PWI; grey bars: all other directions) over time. N=9 
animals for d4, n=8 for d0 and d2, n=4 for d6, d8 and d21, n=3 for all other timepoints; mostly 20-30 cells per animal. 
Images show maximum intensity projections of 30µm deep stacks. Scale bars represent 100µm. 
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The analyzed NG2-glia reactivity peaked during the first days after injury (until 4dpi), followed by 

a decrease of the reactivity and a stabilization of the overall morphology between three and four 

weeks after the insult (Figure 8). Especially when comparing the images of 0 and 28dpi the 

distribution and morphology of NG2-glia appeared very similar with just a slight increase of NG2-

glia cell number persisting at the lesion core (Figure 8A and C). 

3.1.1.1 Hypertrophy of NG2-glia 

Following the hypertrophic response of NG2-glia over time revealed hypertrophy to be a rather 

quick but transient event. It was observed in 42% of the NG2-glia at 2dpi (106 out of 254 cells 

from 8 mice), decreasing to 27% at 4dpi (63 out of 222 cells from 6 mice) and almost no 

hypertrophic cells at 6dpi (4 out of 114 cells; Figure 8D). Notably, 75% of hypertrophic NG2-glia 

at 4dpi have been already hypertrophic at 2dpi and hence kept their altered morphology for this 

period (47 out of 63 cells; red bar). In contrast, only 7% of the traceable NG2-glia population 

became hypertrophic for the first time between 2 and 4dpi (16 out of 222 cells; green bar; Figure 

8D). To further validate the observation of hypertrophy, volume analysis of selected cells at 

different timepoints was performed in collaboration with Felix Buggenthin and Carsten Marr from 

the Institute of Computational Biology of the HelmholtzZentrum Munich. This analysis showed 

that hypertrophic cells had a 3-fold bigger volume than non-hypertrophic or control cells (144 cells 

from 13 animals). The existence of a hypertrophic and a non-hypertrophic subpopulation of NG2-

glia and a high overlap between analog and digital classification for hypertrophy could be 

confirmed with a systematic statistical evaluation (see Figure 23). To assess how the different 

behavioral categories were interrelated, the cells were clustered according to their reaction at 

2dpi. The resulting cell clusters were then analyzed concerning their subsequent reaction at 4dpi. 

Concerning the behavior of hypertrophic cells, migration and polarization seemed to be not 

affected of preceding hypertrophy, as hypertrophic and not hypertrophic cells showed comparable 

responses regarding those two behavioral categories (Figure 9D). Interestingly, almost half of the 

hypertrophic cells at 2dpi (47±7%) lost their hypertrophy at the 4dpi. However, the likelihood for 

this population remaining hypertrophic at 4dpi was still higher compared to non-hypertrophic NG2-

glia at 2dpi becoming hypertrophic at 4dpi for the first time (Figure 9D). Notably, hypertrophic 

NG2-glia at 2dpi were more prone to proliferate at 4dpi compared to the non-hypertrophic NG2-

glia (42±6% vs. 15±3%; Figure 9D) arguing for a tendency for increased size of the cell soma 

before cell division (Figure 9B). However, around half of the hypertrophic population of NG2-glia 

at 2dpi (58±6%; Figure 9D) did not show any detectable cell division at the consecutive timepoint 

(Figure 9D; examples Figure 9A and C).  
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Figure 9 Examples of hypertroph NG2-glia and their further behavior. (A) NG2-glia (white arrow) next to a 
vessel, moving away from the vessel and showing a hypertroph morphology at 2dpi migrates further and loses its 
hypertroph morphology at 4dpi. (B) Hypertrophy at 2dpi can also be followed by cell division. (C) Example of a cell 
(white arrow) getting hypertroph at 2dpi and remaining hypertroph until 4dpi without any further detectable reaction. 
(D) Proportion of cells that were hypertroph (red) or not (blue) at 2dpi and their further reaction at 4dpi (n=6 animals; 
mean; unpaired t-test: Polarization: p=0.3095; Hypertrophy: p=0.0012; Migration: p=0.5684; Proliferation: p=0.0116). 
Images show maximum intensity projections of 30 (A: d0 and d2, C) or 40 (A: d4, B) µm deep stacks. Scale bars 
represent 20µm. 

3.1.1.2 Polarization of NG2-glia 

Polarization was defined as a change in morphology of NG2-glia leading to an accumulation of 

processes or an elongated cell soma at one side of the cell, reflecting a (re-) orientation toward 

this direction. The directionality of these morphological changes was assigned to one of four 

quadrants surrounding the area of the cell, with one of the quadrants comprising the lesion area. 

Like hypertrophy, polarization levels started increasing already at 2dpi and a decrease could first 

be detected at 8dpi (Figure 8E). Analysis of the direction of the polarization showed that most 

NG2-glia were polarized toward the injury site until 4dpi, while they shifted more and more from 

the injury directed to a rather random orientation (with a tendency to orientate away from the 

injury site) later on (Figure 8F). Assessing the interrelationship between a polarized morphology 

and the consecutive behavior, showed as expected that NG2-glia with a polarized morphology had 

a higher tendency to migrate (40±7%) than cells without this morphological characteristic 
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(12±4%; Figure 10D). Interestingly, more than half of the NG2-glia showing polarization at 2dpi 

(60±7%) did not migrate subsequently or even lost their polarized morphology at 4dpi (48±7%; 

Figure 10D), an observation uncoupling polarization from migration. Importantly, this solely states 

that some polarized cells did not show any migratory behavior at the consecutive timepoints 

(Figure 10A and B). However, it cannot be stated that migration can occur without polarization as 

a prerequisite behavior, due to the non-visualized time between each imaging session when 

potential polarized morphology of cells preceding the detectable migration would have been 

undetected. In contrast to polarization and migration, hypertrophy and proliferation seemed to be 

rather independent of a preceding polarized morphology (Figure 10D).  

 

 

Figure 10 Examples of polarizing NG2-glia at 2dpi and their reaction at 4dpi. NG2-glia showing polarization 
at 2dpi can retract their processes and not show any further reaction (A, B) or changes its polarization (C) at 4dpi. (D) 
Proportion of cells that showed polarization toward the injury (red) or no polarization (blue) at 2dpi and their further 
reaction at 4dpi (White arrows indicating NG2-glia; yellow arrows indicating oligodendrocytes; n=6 animals; mean; 

unpaired t-test: Polarization: p=0.001; Hypertrophy: p=0.5954; Migration: p=0.0065; Proliferation: p=0.3307). Images 
show maximum intensity projections of 30 (A, C) or 40 (B) µm deep stacks. Scale bars represent 20µm. 

The results for the morphological changes (hypertrophy and polarization) of NG2-glia highlight 

fast and transient morphological alterations which were already observed shortly after injury 

followed by a relatively quick return to physiological levels. This is in particular the case for 
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hypertrophy whereas polarization levels were decreasing not as fast, also pointing to a longer 

lasting reorientation phase until the homeostatic control of NG2-glia was reestablished after acute 

tissue damage. 

3.1.2 The migratory response of NG2-glia following brain injury 

Comparable to the quick events of polarization and hypertrophy, NG2-glia migration was an early 

response following injury (Figure 6C´and Figure 8H). The question remained if the observed 

migration was an active cellular process or if the cells were just displaced due to tissue remodeling 

after injury. Therefore, images of the same cells at different timepoints were registered according 

to the channel of the relatively stable blood vessels by Felix Buggenthin and Carsten Marr from 

the Institute of Computational Biology of the HelmholtzZentrum Munich. The resulting 

superimposed images of the stacks confirmed active migration of NG2-glia (see Figure 24).  

Comparable to polarization and in contrast to the fast and transient hypertrophy after injury, 

migratory behavior of NG2-glia was relatively stable between 2 and 11 dpi, while it declined 

thereafter (Figure 8H). Due to the longer imaging periods after 11 dpi, slow moving cells had 

more time to cover the threshold distance for migration of 10 µm. Therefore, they were also 

considered as migrating cells as long as they kept the direction of their movement constant. As a 

consequence, the amount of migration did just slightly decrease from 8dpi on and did not reach 

control levels. However, the maximum migration distance and the velocity (Figure 11E and F) 

returned to control, uninjured levels already between 11 and 14dpi. Remarkably, both already 

migrating cells at 2dpi that kept moving until 4dpi (red bars at Figure 8H) as well as cells that 

initiated a migratory behavior only at 4dpi could be observed (green bars at Figure 8H). 

Evaluating the consecutive behavior of cells which migrated at 2dpi, revealed a stronger reactivity 

at 4dpi compared with the non-migratory NG2-glia. Whereas proliferation was not drastically 

changed, migratory NG2-glia showed a higher likelihood of being hypertrophic, polarized or 

migratory at 4dpi (53±7%, 51±4% and 45±9% respectively; Figure 11D). As expected, the 

directionality of migrating NG2-glia correlated with the orientation of the observed polarization. 

In the reorientation phase, polarization was even preceding migration in terms of change of 

directionality. This resulted in the majority of polarized NG2-glia orientating away from the injury 

already at 6dpi (Figure 8H). The major shift of directionality of the migrating cells appears with 

one timepoint delay at 8dpi (Figure 8I). These results revealed that NG2-glia indeed respond with 

quick migration directed toward the lesion site during the first week after injury contributing to an 

increase of cells within the lesion core before the migration direction returned to a more 

randomized orientation, which is comparable to physiological conditions. 
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Figure 11 Examples of migrating NG2-glia and their further reaction. (A) NG2-glia (white arrow) migrating 
over a vessel and showing a hypertroph morphology. (B) Cell migrating until d2 followed by a cell division at 4dpi. (C) 
NG2-glia that keeps migrating over time. (D) Proportion of cells that showed a migratory behavior (red) or not (blue) 
at 2dpi and their further reaction at 4dpi (n=6 animals; data are presented as mean; unpaired t-test: Polarization: 
p=0.0112; Hypertrophy: p=0.0015; Migration: p=0.0197; Proliferation: p=0.5253). Images show maximum intensity 
projections of 30µm deep stacks. Scale bars represent 20µm. (E) Mean velocity (n=3-8 animals per timepoint; 
mean+SEM; µm per day) of migrating cells. (F) Maximum migration distance (n=3-8 animals per timepoint) of migrating 
cells (for detailed statistical evaluation see chapter 9.1).  

3.1.3 The injury-induced proliferative behavior of NG2-glia 

Even though proliferation of NG2-glia already appeared at 2dpi, it represented a rather late 

response following injury with its peak at 4dpi. Thereafter the percentage of dividing cells declined 

and reached control levels already between 8 and 11dpi (Figure 8G). Even if no cell could be 
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detected that proliferated twice at two distinct timepoints (0 out of 72 dividing cells at all 

timepoints analyzed; Figure 12D), some NG2-glia (especially in close proximity to the injury core) 

underwent more than one round of cell division between 2 and 4dpi because they resulted in 3 

cells as progeny (2 out of 72 proliferating cells from 6 animals; Figure 12E). Moreover, the massive 

increase of NG2-glia within and in very close proximity to the injury core between two consecutive 

timepoints (e.g. Figure 15B) argued for repetitive cell division of those cells. However, migration 

was also contributing to this accumulation. For cells in close proximity and directly within the 

lesion core it was in most cases not possible to re-identify them at later timepoints due to the 

high cellular density and reactivity in this region. Nonetheless, none of the analyzed NG2-glia in 

the periphery of the lesion did proliferate more than once after brain injury. As expected for self-

repulsive cells following cell division, the majority of daughter cells started to polarize in opposite 

directions (Figure 12A and B). Another explanation could be that the processes of the mother cell 

are distributed during cell division to both daughter cells according to their position on the cell 

surface. However, also proliferative events with both progenies orientating approximately toward 

the same area (polarized toward the quadrant comprising the PWI; 5 out of 72 cell divisions; 

example Figure 12C) could be seen. Also the degree of migration of daughter cells after 

proliferation was quite variable, with some progeny migrating away from each other and others 

staying in close proximity during the subsequent timepoints (Figure 12). As the proliferation of 

NG2-glia peaked at 4dpi, the behavior-specific clustering was not performed at 2dpi due to the 

low number of cells which proliferated until 2dpi. Therefore, the proliferative cells at 4dpi were 

clustered according to their preceding reactivity at 2dpi. Cells undergoing cell division later on 

were more likely to be hypertrophic than non-hypertrophic at the preceding timepoint (63±6% 

and 14±6%; Figure 12D), whereas polarization and migration seemed to be rather independent 

of consecutive proliferation (Figure 12D).  

Overall these results could demonstrate that the increase in NG2-glia number during the first 

phase after injury descended from directional migration and enhanced proliferation, whereas 

repetitive cell divisions were rather restricted to the injury core. Moreover, no increase in cell 

death of NG2-glia was observed at those early timepoints. 
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Figure 12 Examples of proliferating NG2-glia and their further reaction. (A-C) NG2-glia dividing at 2dpi mostly 
remain close to each other at 4dpi and partially polarize to opposite directions. (D) Proportion of cells that proliferated 
(red) or not (blue) at 2dpi and their further reaction at 4dpi (n=6 animals; mean; unpaired t-test: Polarization: 
p=0.2748; Hypertrophy: p=0.0123; Migration: p=0.6477). (E) Migrating NG2-glia (white arrows) proliferating twice 
between 2 and 4dpi. Images show maximum intensity projections of 30 (A, C) or 24 (B) µm deep stacks. Scale bars 
represent 20µm. 
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3.1.4 Influence of direct blood vessel contact on NG2-glia behavior 

To assess if close contact to blood vessels influences NG2-glia behavior after injury the co-labelling 

of blood vessels was included in the analysis. Even if all NG2-glia have most likely some processes 

or filopodia in very close or direct contact to a blood vessel, only a subgroup of cells were in direct 

proximity to a vessel with their cell soma (Figure 13A). Due to active migration of NG2-glia it was 

of interest whether the cells showed a preferential movement toward the vessels or even away 

from them following acute injury. Therefore, the direct contact of NG2-glia to the blood vessels 

was assessed at several timepoints after TBI as well as under control conditions. As the percentage 

of NG2-glia in direct contact to the vessels was around 30% at all analyzed timepoints, no 

preferential movement, neither towards nor away from the blood vessels, was evident. A slight 

increase could be observed between 0 and 2dpi (30±3% vs. 36±4%), but this increase was not 

significant (Figure 13B). Due to the high variation between animals and the low animal number it 

cannot be excluded that there could be a slight preference of NG2-glia to get closer to vessels 

following an acute injury. However, this tendency would be relatively small. To further investigate 

if the cells in close proximity to the vessels are a subclass of NG2-glia with distinct response 

mechanisms after injury, the cells were sorted according to their direct blood vessel contact at 

0dpi and their reaction to the injury at 2dpi was analyzed. The vast majority of cells with direct 

contact to the vessels also maintained this contact at the consecutive timepoint (89±4%), whereas 

just a minority migrated away from the vessels (11±4%; Figure 13C). Along the same line, from 

the cells with no direct contact only 15±5% moved their cell body in close contact to a blood 

vessel, whereas 85±5% of NG2-glia did not come in close proximity the vasculature. Regarding 

the possibility of different subclasses of NG2-glia with or without direct contact to vessels, no 

strong alterations of the general injury response could be observed in any of the analyzed 

behavioral categories (Figure 13C). Therefore, in contrast to the juxtavascular astrocytes with 

their preferential proliferation after injury, no such subset of NG2-glia seems to exist.   
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Figure 13 NG2-glia with direct contact to blood vessels. (A) Example of two NG2-glia with direct or no direct 
contact to a blood vessel. (B) Graph depicts the percentage (mean+SEM) of NG2-glia being in direct contact to blood 
vessels between 0 and 28dpi as well as under control conditions without lesion (n=9 animals for d4, n=8 for d0 and 
d2, n=4 for d6, d8 and d21, n=3 for all other timepoints; ~20-30 cells per animal). (C) Proportion of cells that had 
direct (red) or no direct contact to blood vessels (blue) at 0dpi and their further reaction at 2dpi (n=6 animals). Images 
(A) show maximum intensity projections of 20µm deep stacks. Scale bars represent 20µm. 

 

3.2 NG2-glia response in relation to injury size and distance to the 

injury 

3.2.1 Increasing injury size reduces static cells 

As stated previously, approximately one quarter of the analyzed NG2-glia did not show any 

detectable cellular response upon PWI (Figure 6E and F). This posed the question if a 

subpopulation of quiescent NG2-glia exists that does not respond after injury or if the relatively 

small PWI did not provide sufficient cues for activation of all surrounding NG2-glia. Therefore, a 

larger stab wound injury (SWI; ~1mm in length; Figure 14B and B’ and Figure 15D-F) was 

performed and the resulting NG2-glia response was then compared with the smaller PWI (~100µm 
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in length; Figure 14A and A’). Indeed, after SWI a decreased amount of static NG2-glia at 2dpi 

could be observed (13±2% vs. 26±5% after PWI; Figure 6E and Figure 14D). Comparison of the 

different reaction categories at 2dpi showed a slight increase in hypertrophy, migration and 

proliferation of NG2-glia, however this effect was not significant due to high variation within the 

experimental groups (Figure 14C). 

3.2.2 Cells close to the injury show the strongest reaction 

Another property related to the concentration of injury-released stimuli is the distance to the lesion 

site. Due to an augmented diluting effect with increasing distance in the parenchyma, one would 

expect far off cells to be less responsive compared with cells close to the injury core. Indeed, 

when the reaction of NG2-glia was analyzed in relation to their distance to the lesion core, a 

positive correlation between the strength of the reaction and the distance could be detected 

(Figure 14E-G), with cells showing a stronger response within 200µm of the lesion site at 2dpi 

than further distant NG2-glia (Figure 14F). This strong correlation decreased at 4dpi with only the 

proportion of polarization and migration of NG2-glia maintaining slightly elevated levels within the 

first 150µm compared with cells further away from the injury core (Figure 14E). In contrast to all 

other reaction categories, the proportion of proliferating NG2-glia showed no dependency on the 

distance to the injury within the analyzed area at 2 and 4dpi (Figure 14E and F). Nonetheless, 

NG2-glia in close proximity proliferated slightly more than cells further away and also proliferation 

rates decreased to physiological levels when the distance to the injury was big enough (data not 

shown). Comparing cells closer to the dura mater (visualized via second harmonic signal) to cells 

deeper in the tissue also revealed a stronger reaction of cells closer to the brain surface (data not 

shown). This also points to a non-negligible influence of the stimuli released in the injury core on 

NG2-glia behavior due to larger tissue damage (lancet-shaped knife) and heavier bleeding on the 

brain surface.  

Taken together, these results revealed a general ability of the total NG2-glia population to respond 

after injury if their threshold is reached by the stimuli released from the lesion site. However, as 

proliferation showed less dependency on the distance to the injury, with the exception of the 

highly reactive cells directly in the lesion core, triggering cell division of NG2-glia seems less 

influenced by the cues released after injury. 
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Figure 14 The degree of NG2-glia reaction depends on the size and proximity to the injury. (A, B) Images 
of the NG2-glia reaction between d0 and d2 after PWI (A, A´) and the bigger stab wound injury (SWI) (B, B´). (C) 
NG2-glia show a stronger reaction after SWI compared to PWI (mean+SEM; n=8 mice for PWI and n=3 mice for SWI) 
(D) with a lower percentage of static cells at 2dpi (compare to Fig. 6E). (E-G) Cells in closer proximity to the injury 
show increased reactivity compared to the ones further away from the lesion core at d2 (E, F) while this difference was 
less pronounced at 4dpi (G, polarization represents cells directed toward the injury; n=220 cells from 8 animals at d2 
and n=180 cells from 6 animals at d4). Images show maximum intensity projections of 30µm deep stacks. Scale bars 
represent 100µm. 

 

3.3 NG2-glia fill the injury core 

As the intensity of the NG2-glia response correlated with the proximity of the cells to the lesion 

core, NG2-glia in the lesion core or in direct proximity (~50µm) to the lesion displayed the 

strongest reaction. The reaction of these lesion-core NG2-glia were too intense in the majority of 

cases and even within the first 2dpi (Figure 15A and A’) to trace those cells over time. The 

accumulation of cells in this area exacerbated the re-identification of some cells at later timepoints. 

Due to these difficulties just 20 cells from 7 animals were traceable between 0 and 4dpi. All of 

those traceable NG2-glia located within the lesion core showed a response behavior until 2dpi 

(Figure 15B and C) mainly with high levels of hypertrophy, migration and proliferation. 

Polarization, which was still observed at 2dpi (29%) could not be detected any more at 4dpi 

because the cells located in the core of the lesion developed rather bulky, hypertrophic shapes 

with no clear orientation of cell soma or processes (Figure 15B). It is worth mentioning, that the 

observed preference of NG2-glia to orientate themselves towards the injury site would rather be 

redundant for cells which are already located in the lesion center. Intriguingly, no cell, even 

considering the non-analyzable cells, in very close proximity to the injured area could be observed 

which showed a static behavior (Figure 15C). Even if individual cells could not be clearly re-

identified at the consecutive timepoints, it can be stated, that the cells are not at their previous 

position any more, therefore arguing for a response of all these cells. This further emphasizes the 

general ability of NG2-glia to react to the events following brain injury if they receive enough input 

to trigger their response. 

In contrast to the very fast accumulation of NG2-glia in the injury core of a PWI already after 2dpi 

(Figure 15A’), NG2-glia needed longer to fill up the larger lesion area after a SWI (4 days; Figure 

15D-F).  
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Figure 15 NG2-glia fill the injury core. (A) Images of GFP+ cells at d0 (A) and d2 (A´) after PWI. Dotted circle 
indicates the core of the injury that corresponds to the analyzed area. (B) Graph showing a very high reactivity of NG2-
glia for all criteria (except polarization) at d2 and d4 after injury (Polarization represents cells directed toward the injury; 
n=20 cells from 7 animals for d0, n=34 cells due to proliferation from 7 animals for d2 and n=23 cells from 4 animals 
at d4). (C) Pie chart of the heterogeneous reaction between 0 and 2dpi of NG2-glia showing no static cells (n=18 cells 
from 7 animals). Images show maximum intensity projections of 20µm deep stacks. Scale bars represent 100µm. (D-
F) Images of 0, 2 and 4 days after SWI showing NG2-glia only filling up the injury core at 4dpi. White ellipse represents 
the injury site. Images show maximum intensity projections of 30µm. Scale bars represent 100µm. 



 

 

49 3. Results 

3.4 NG2-glia number return to physiological levels one month after 

injury 

Following the intense response until 4dpi, NG2-glia reactivity started to decline. At later 

timepoints, NG2-glia began to slowly diminish in number and by 28dpi the area around the lesion 

core resembled an uninjured region in terms of morphology and distribution of NG2-glia. This 

could be shown with in-vivo imaging of the smaller PWI (Figure 8C) and with 

immunohistochemistry of the larger SWI (Figure 16). Therefore, the cell number of NG2+ and 

GFP+ cells in the SW injured Sox10-iCreERT2 x CAG-eGFP mice receiving the maximal induction 

rate (3x gavaging with 40µg/ml tamoxifen resulting in a very high recombination rate) were 

analyzed. The analyzed area spanning 50µm around the lesion core (visualized with a GFAP 

staining) showed a slight increase of NG2+ (from 331±32 to 437±19 cells/mm2) and GFP+ (from 

451±49 to 533±34 cells/mm2) cells compared with the non-injured control situation already after 

2dpi (Figure 16A and F). Also in line with the observed migration behavior and the peak of 

proliferation at 4dpi, the cell numbers roughly doubled at 4dpi for GFP+ cells (from 451±49 to 

781±74 cells/mm2) and NG2+ cells (from 331±32 to 812±100 cells/mm2; Figure 16A, B and F). 

Interestingly, at 7dpi GFP+ cells still slightly increased in number (from 781±74 to 825±60 

cells/mm2), whereas NG2+ cells already started to decrease at this timepoint (from 812±100 to 

670±156 cells/mm2; Figure 16B, C and F). At 14dpi also GFP+ cell numbers started to decrease 

(from 825±60 to 699±62 cells/mm2) and NG2+ cells decreased even further (from 670±156 to 

441±41 cells/mm2; Figure 16D and F). Like mentioned earlier, GFP+ and NG2+ cell numbers were 

comparable to control levels at 28dpi (GFP: 451±49 vs. 457±44 cells/mm2; NG2: 331±32 vs. 

316±15 cells/mm2; Figure 16E and F). 
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Figure 16 Number of NG2+ cells in the injury core over time. (A-E) Confocal images of NG2+ and GFP+ cells at 
4 (B), 7 (C), 14 (D), and 28 (E) days after SWI as well as a non-lesioned area (A) demonstrating the accumulation of 
NG2-glia between 4 and 7dpi and the decrease of cell number until 28dpi. (F) Cell counts of NG2+ cells per mm2 in the 
injury core (and in 50µm surrounding; 1way ANOVA+Tukey post-test: ** indicates significance of p<0.001 and * for 
p<0.05; dF=17). Images for the 4dpi timepoint were kindly provided by Sarah Schneider. Images show maximum 
intensity projections of 10µm. Scale bars represent 100µm. 
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As described above, the NG2-glia numbers in and around the injury core reached their maximum 

between 4 and 7 days and decreased thereafter, analyzed by post-mortem still analysis. 

Visualizing NG2-glia via live imaging made it possible to follow this cellular decrease over time. 

Especially within the core cells started already to disappear between 4 and 6dpi (two cells of the 

five cells marked with a yellow arrows; Figure 17A and B). In some of those cases it was not 

possible to reliably identify which specific cells disappeared because NG2-glia are motile and due 

to their close proximity it could not be excluded that they took the position of a neighboring cell, 

while this cell disappeared. Therefore it could solely be stated that from the group of cells in close 

proximity to each other some were lost at the consecutive timepoint and thus the number of cells 

in that area decreased.  As there were still high levels of cell division and migration at 6dpi (see 

Figure 8G) the total cell numbers were still at a relative high level around that timepoint (7dpi; 

Figure 16F). Between 6 and 8dpi another 3 cells disappeared (yellow arrows; Figure 17B and C). 

Therefore the majority of cells which were located directly in the core of the injury vanished 

already between 4 and 8dpi (Figure 17A-C). Comparing these results with the data obtained with 

immunohistochemistry (see Figure 16) the disappearance of cells seemed to be shifted toward an 

earlier timepoint. One possible explanation could result from the smaller injury type (PWI vs. SWI) 

and therefore a reduced recovery time. Between 8 and 11dpi, only one more cell disappeared in 

the periphery (yellow arrow; Figure 17C and D). From 11dpi onwards, the cells re-orientated 

themselves but major cell disappearance could not been detected (Figure 17D-G). At 21dpi the 

cellular distribution and morphology already started to resemble the physiological condition 

(Figure 17G). 
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Figure 17 Cells disappearing from the injury core over time. (A-G) Images of GFP+ cells of a Sox10-iCreERT2 x 
eGFP animal in and around the injury core (white, dotted ellipse) at 4 (A), 6 (B), 8 (C), 11 (D), 14 (F) and 21dpi (G). 
Cells disappearing at later timepoints are marked with yellow arrows. Images show maximum intensity projections of 
40µm. Scale bars represent 50µm. 

 

Due to the occurrence of cell division after 4dpi, when other cells have already started to disappear 

(see Figure 17A and B), it posed the question about the fate of the progeny of these late cell 

divisions. Even if proliferation levels were decreasing to almost physiological levels after 6dpi, 

there was still some “late” proliferation (6dpi-28dpi) occurring, especially between 4 and 6dpi (see 

also Figure 8G). Therefore 20 of those late proliferating cells from 3 animals were analyzed for a 

period of at least 15 and maximal 22 days post proliferation (dpp; Figure 18A and B). As total cell 

number was decreasing it is also very likely that not all progeny survived after cell division. Analysis 

of the progeny after late proliferation, showed that in 35±7% of the analyzed cell divisions just 

one cell survived whereas in 65±7% both progeny survived (Figure 18B). Interestingly, it was 

never observed that both daughter cells disappeared. Therefore, the majority of cell divisions 

produced two viable daughter cells, at least surviving for the analyzed time window (example: 

upper panel of Figure 18A). Nevertheless, the large amount of cell divisions with only one daughter 
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cell surviving (example: lower panel of Figure 18B) raised the question for the purpose of these 

cell divisions. The timing of the observed cell deaths was either relatively short after proliferation 

(between 2 and 5dpp) or at a later phase (between 10 and 15dpp), whereas the longest timepoints 

(20-22dpp) showed no more disappearance of progeny (Figure 18C), suggesting a critical time 

window for the survival of NG2-glia progeny.  

 

Figure 18 Cell survival after late cell division. (A) Images of “late” proliferating NG2-glia (after d4) of Sox10-
iCreERT2 x eGFP animals between 4 and 28dpi. Upper panel showing a cell division followed by the survival of both 
daughter cells (white arrowheads). Lower panel showing a proliferation with the subsequent death of one progeny 

(yellow arrowhead), whereas the other one survives (white arrowhead). (B) Percentages of cell survival after cell 
divisions (survival of one or both daughter cells respectively). (C) Timing of cell death after proliferation (dpp=days 
post proliferation). Images show maximum intensity projections of 30µm. Scale bars represent 20µm.   

 

3.5 Potential differentiation of NG2-glia following tissue damage 

A cellular event which is expected to occur at later stages after brain lesion is the differentiation 

of NG2-glia into mature oligodendrocytes. This is primarily the case in pathologic events like 

demyelination, when mature oligodendrocytes undergo cell death and thus have to be replaced 

by the pool of oligodendrocyte progenitors. Nevertheless, also after injuries without any specific 

demyelination effect, cell death occurs and potentially lost oligodendrocytes could be replaced. 

Therefore, the morphological changes of NG2-glia during the later phases after PWI were 

assessed. Even if morphological criteria are not enough to successfully prove differentiation, they 
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could give a first hint to which extent differentiation of NG2-glia after TBI might occur. Therefore 

112 cells in 3 animals were followed from 4dpi until a minimum of 3 weeks after injury. In total 

15±2% of the analyzed cells developed an oligodendrocyte-like morphology (examples: yellow 

arrowheads in Figure 19A and B), whereas 85±2% kept their NG2-glia-like morphology (Figure 

19C). Interestingly, those morphological changes were only observed after cell division (white 

arrowheads; Figure 19A and B). Therefore a small proportion of cells might potentially undergo 

differentiation following traumatic brain injury. However, whether these cells are really 

differentiating, actively myelinating and integrating into the persisting network remains to be 

determined. 

 

 

Figure 19 Potential differentiation of NG2-glia following PWI. (A and B) Examples of NG2-glia developing an 
oligodendrocyte-like morphology between 14 and 21dpi (yellow arrowheads) after previous cell division (white 
arrowheads). (C) Quantification of NG2-glia with NG2-glia or Oligodendrocyte morphology of cells, followed at the later 
timepoints (4-28 dpi) after brain injury, at the latest timepoint analyzed (21, 27 or 28 dpi; mean+SEM% of cells; n=3 
animals). Scale bars represent 20µm.   
 

3.6 Attempts to alter the NG2-glia response following injury 

To further access the mechanistical insight underlying NG2-glia reactivity after brain injury two 

different approaches were used to specifically manipulate gene expression in NG2-glia (specific 
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deletion of cdc42 and NG2) and analyze the resulting behavior of those cells after PWI using 

repetitive live in vivo imaging. 

3.6.1 The effect of the Rho GTPase cdc42 on the NG2-glia response after 

brain injury 

The first approach targeted the Rho GTPase cdc42 that is suggested to be involved in migration 

and polarization of different cell types. Therefore, cdc42fl/fl mice were crossed with Sox10-iCreERT2 

x eGFP mice, resulting in the deletion of cdc42 in cells of the oligodendrocyte lineage after 

recombination with tamoxifen in adult animals. Unfortunately, all experimental mice displayed a 

nervous behavior during animal handling, rendering an adequate anesthesia more difficult. 

Therefore heavy breathing artefacts, which unfortunately could not be avoided, derogated the 

image quality (Figure 20A-C and A’-C’). Nevertheless, the cellular behavior categories comprising 

polarization, hypertrophy, migration and proliferation could be analyzed with some reservations. 

As there is no working antibody for cdc42 and the stability of the protein in NG2-glia is not known 

the analysis was performed in animals at a longer time (4 months) beside the 1 month timepoint 

which was based on previous studies with astrocytes. The cellular response of NG2-glia at the 4 

months timepoint (long term; LT; Figure 20A-C) was then compared with the original setting of a 

1 month interval after induction (short term; ST; Figure 20D and E). In mice with ST recombination 

NG2-glia responded to a PWI within a short time window (0-2dpi) with hypertrophy, polarization, 

migration (white arrows in Figure 20A-C) and proliferation (Figure 20A, B; examples of migrating 

and proliferating cells Figure 20A’-C’). This reactive behavior was also maintained until 4dpi (Figure 

20C). However, due to the heavy breathing artifacts, clear analysis about migration distance and 

velocity could not be performed. As no obvious difference in the reactivity could be detected 

between the two experimental groups with altered recombination periods (ST vs. LT; Figure 20D 

and E), the results were pooled and compared to the WT control, for which Sox10-iCreERT2 x eGFP 

animals were used (Figure 20F and G). Beside a non-significant augmentation of hypertrophy at 

2dpi (55±12 vs. 42±4 % of analyzed cells) the reactivity of NG2-glia lacking cdc42 were quite 

comparable to control NG2-glia (Figure 20F and G). Together with the accumulation of NG2-glia 

in the injury core, which was also comparable to the control situation (Figure 20 B and C), the 

general cellular reactivity of NG2-glia seemed to be not majorly affected by cell-specific deletion 

of cdc42.  



 

 

56 3. Results 

 

Figure 20 The effect of cdc42 on NG2-glia reaction. (A-C) Images of GFP-labelled cells of the oligodendrocyte 
lineage (green) and TexasRed labelled blood vessels (red) in cdc42fl/fl x Sox10-iCreERT2 x eGFP animals 4 months after 
induction at 0 (A), 2 (B) and 4 (C) days after PWI (single images; white arrows indicate migrating and proliferating 
cells, scale bars represent 100µm). (A’-C’) Examples for cells (higher magnifications from A-C) showing migration (white 

arrows) and proliferation (yellow arrow; images show a maximum intensity projection of 26µm deep stacks; scale bars 
represent 20µm). (D, E) Comparison of reaction profiles from NG2-glia 1 month (ST) and 4 months (LT) after induction 
at 2 (mean+SEM; D) and 4dpi (mean+SEM; E). (F, G) Reaction profiles from NG2-glia of pooled cdc42 deficient animals 
compared to control cells of Sox10-iCreERT2 x eGFP animals at 2 (mean+SEM; F) and 4dpi (mean+SEM; G).  
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3.6.2 The effects of NG2-glia-specific deletion of the proteoglycan NG2 

following TBI 

The second approach to alter the NG2-glia response after injury targeted the proteoglycan NG2 

itself, which was also linked to cell migration and polarization (see introduction). To further analyze 

possible effects of NG2 on NG2-glia, two different mouse-lines were used: the NG2-enhanced 

yellow fluorescent protein (EYFP) line (Karram et al., 2008) and the NG2-CreERT2 x CAG-eGFP line 

(Huang et al., 2014). In the NG2-EYFP “knockin” mouse line EYFP was expressed under the NG2-

promotor and homozygous knockout mice lacked expression of NG2 (Karram et al., 2008). The 

NG2-CreERT2 x CAG-eGFP mouse line was based on the NG2-EYFP line comprising a substitution 

of EYFP with the open reading frame of CreERT2, which was then crossed with an eGFP reporter 

line (Huang et al., 2014). Therefore recombination in homozygous animals led to cell specific eGFP 

expression. As already observed in the cdc42-deficient NG2-glia, also NG2-deficient NG2-glia 

showed a fast and heterogeneous response behavior after PWI, accumulating in the injury core 

already at 2dpi (Figure 21A-C). The cellular behavior included hypertrophy, polarization (white 

arrows; Figure 21A’), migration (white arrows; Figure 21A’ and B’) and proliferation (white arrows; 

Figure 21A-B and B’) which was observed in all analyzed mouse lines. However, a strong increase 

of cells due to enhanced proliferation at 2dpi together with sparse repetitive cell division (also 

visible in Figure 21B’) was detected in both mouse lines, however the proliferation in total (0-4dpi) 

was not significantly different from control animals. Beside the increase in proliferation already at 

2dpi, the general reactivity was comparable to the Sox10-iCreERT2 x CAG-eGFP control animals 

(Figure 21D and E). Pooling the data from all NG2-knockout animals resulted in a significant shift 

to an earlier proliferation already at 2dpi (26±1 vs. 11±2%; Figure 21F) while the tendency of 

reduced hypertrophy at 2 (30±2% vs. 42±4%) and 4dpi (15±4% vs. 27±4%) as well as the slight 

decrease of proliferation at 4dpi was not significant (19±4% vs. 27±3%; Figure 21F and G). 

Interestingly, also the heterozygous animal showed a tendency for a time-shift in proliferation 

(Figure 21D and E). Overall, the NG2-glia response after injury in mice lacking NG2 was 

comparable to the control animals in terms of migration, the general cellular behavior and NG2-

glia accumulation in the injury core. Nevertheless, small alterations of NG2-glia behavior after loss 

of NG2, especially concerning proliferation, cannot be excluded.  
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Figure 21 NG2 and its effect on NG2-glia reaction following injury. (A-C) Image stacks of GFP+ NG2-deficient 

NG2-glia and pericytes (green) and TexasRed labelled blood vessels (red) of NG2-cre animals at 0 (A), 2 (B) and 4dpi 
(C; white arrows indicate migrating cells; yellow arrows indicate polarized cells; images show maximum intensity 
projection of 20µm deep stacks; scale bar represents 100µm). (A’ and B’) Examples for cells (higher magnifications 
from A-C) showing migration and polarization (white arrow; A’) and migration after proliferation (white arrow; B’; 
images show a maximum intensity projection of 22µm deep stacks; scale bars represent 20µm). (D, E) Comparison of 
NG2-glia responses in different mouse lines at 2dpi (mean+SEM; D) and 4dpi (mean+SEM; E). Reaction profiles of 
pooled NG2-KO animals compared to Sox10-iCreERT2 x eGFP control animals at 2dpi (mean+SEM; F) and 4dpi 
(mean+SEM; G). 
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4 Discussion 

NG2-glia in the adult brain have gotten more and more into the focus of researchers since they 

were shown to be more than just progenitors for oligodendrocytes, but also associated with 

additional functions and interesting abilities (Vigano et al., 2013; Young et al., 2013; Dimou and 

Gallo, 2015). Amongst others, they have been shown to be the major proliferating cells in the 

healthy adult brain parenchyma (Dimou et al., 2008; Kang et al., 2010) and to react after acute 

or chronic injuries in the adult CNS (Levine and Reynolds, 1999; Hampton et al., 2004) with 

overexpression of the proteoglycan NG2 (Levine, 1994), morphological changes and increased cell 

division (Keirstead et al., 1998; Buffo et al., 2005; Zawadzka et al., 2010; Behrendt et al., 2013). 

The observed changes in proliferation rate are achieved by shortening of their cell cycle length 

and very likely via recruitment of more quiescent NG2-glia into the cell cycle (Simon et al., 2011). 

Also demyelination in postnatal forebrain slice cultures influenced NG2-glia proliferation and led 

to the acceleration of differentiation after evoked cell division (Hill et al., 2014). Along that line 

another recent study showed that after single cell ablation of NG2-glia with focal laser lesion, 

neighboring NG2-glia reacted relatively homogenously with proliferation and migration to replace 

the ablated cell (Hughes et al., 2013). However, if the proliferative and migratory response of 

NG2-glia is solely restricted to replacement of depleted NG2-glia also after a more extensive TBI 

has not yet been analyzed. Despite all these findings, many questions related to the response of 

NG2-glia to TBI remain unanswered. For example, it is not known if the demonstrated cellular 

homeostasis of NG2-glia is maintained during the acute phase of TBI, how long and to what 

extend the reactivity of NG2-glia remains and most importantly, what function this injury response 

might have. Furthermore, it is unknown if NG2-glia are enriched at the injury site, and if this 

enrichment is resulting from migration or proliferation. Therefore, repetitive in vivo 2-photon laser 

scanning microscopy after TBI in the somatosensory cortex of adult Sox10-iCreERT2 x CAG-eGFP 

mice was performed to study the detailed response behavior of NG2-glia. The subsequent analysis 

revealed that NG2-glia responded very fast following TBI (already observable at 2dpi) by 

hypertrophy, polarization and migration toward the injury, while proliferation as a later event, 

occurred mainly between 2 and 6dpi. Although the response behavior of NG2-glia is very 

heterogeneous and depends on the injury size and the distance to the injury, the majority of NG2-

glia showed at least one of the defined reaction categories. 
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4.1 The impaired homeostatic control of NG2-glia after injury 

Studying NG2-glia with in vivo imaging under physiological conditions demonstrated that they are 

evenly distributed within the cortex, building a dense cellular network with exclusive territories, 

which are maintained through self-repulsive behavior (Hughes et al., 2013). This homeostatic 

network is even preserved when NG2-glia differentiate or undergo apoptosis via proliferation and 

migration of neighboring NG2-glia replacing the missing cells and thereby keeping the cellular 

density constant (Hughes et al., 2013). However, analyzing the behavior of NG2-glia after a more 

intense TBI, massive proliferation and migration toward the lesion led to very high cell densities 

within and around the lesion core. This had the consequence, that NG2-glia get in very close 

proximity to each other and transiently overcome their homeostatic distribution. Those cells at the 

injury core responded with high levels of hypertrophy, migration and proliferation. As a result, a 

massive increase of NG2-glia number, exceeding NG2-glia in the periphery, occurred and despite 

their usual self-repulsive behavior those cells entered the territories of neighboring cells forming 

a dense cellular network (Figure 15). Finally, the cellular homeostasis together with the cellular 

density of NG2-glia is largely reestablished between 3 and 4 weeks after injury. This is achieved 

by reorientation of polarization and migration from NG2-glia beginning as early as one week 

following injury resulting in a progressive reduction of cell numbers with increasing post lesion 

times (Figure 8, Figure 16, Figure 17 and Figure 22). Also after Diphtheria Toxin induced depletion 

of NG2-glia in the GM of adult mice the cells were able to reestablish their cellular homeostasis 

within a month via increased proliferation of resident cells that escaped the depletion (Birey and 

Aguirre, 2015). 

The change in proliferation behavior of NG2-glia does not seem to be a specific event only 

occurring after TBI but has also been seen in other diseases and injury models. NG2-glia in 

Alzheimer´s Disease (AD) mouse models (Behrendt et al., 2013) and in MS in human also show 

altered proliferation (Maeda et al., 2001; Cui et al., 2013), although the proliferative behavior 

varies between the different pathologies. In contrast to the increased density of NG2-glia after 

TBI and AD, NG2-glia number is strongly decreasing within some chronic demyelinating lesions in 

MS (Chang et al., 2002; Sim et al., 2002). This could possibly explain the failure of NG2-glia to 

counteract the demyelination process by eliciting a response mechanism leading to sufficient 

differentiation and replacement of missing oligodendrocytes in chronic MS lesions. All these 

different response behaviors of NG2-glia seem connected with an impaired NG2-glia homeostasis. 

However, these changes of NG2-glia homeostasis might be beneficial in terms of tissue integrity 

and wound closure after TBI or detrimental for regeneration after demyelinating events. 



 

 

61 4. Discussion 

Therefore, it is essential to further investigate signals influencing or maintaining this homeostasis, 

to potentially improve therapies for pathological conditions. 

 

Figure 22 Schematic model of the reaction of NG2-glia at different timepoints after injury. 

 

4.2 The morphological changes of NG2-glia after traumatic brain 

injury 

As a part of their response behavior after acute brain injury, NG2-glia show morphological 

alterations already after a short period (1-2dpi; e.g. Figure 6 and Figure 23A). The first observed 

change in morphology was the expansion of the size of the cell soma and processes, termed 

hypertrophy (examples see Figure 9). The validation of this quick and transient event was 
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performed by our collaborator Felix Buggenthin, confirming the performed analysis and the 

existence of two distinct clusters of NG2-glia (hypertrophic and non-hypertrophic; Figure 23C). 

The hypertrophic cells showed a wide variety of their volume-fold enlargements (mean between 

2-4 fold) compared to the previous timepoint analyzed (Figure 23B). 

Trying to understand the function of this morphologic response, the most apparent relation to an 

enlargement of the cell soma would be a subsequent cell division. Indeed, hypertrophic NG2-glia 

had a higher likelihood of proliferating at the later timepoint compared with the non-hypertrophic 

cells (Figure 9) contributing to the compensatory proliferation that occurs in tissue repair (Tamori 

and Deng, 2014). Nevertheless, more than half of the hypertrophic NG2-glia did not undergo cell 

division later on, arguing for further effects of this cellular behavior.  

Highlighting an alternative mechanism controlling tissue integrity and organ size, a recent study 

investigated the impact of cell apoptosis of follicle cells due to cell competition in the postmitotic 

follicular epithelium of Drosophila (Tamori and Deng, 2013). They demonstrated that neighboring 

cells compensated for the resulting loss of local tissue volume via compensatory cellular 

hypertrophy. This increase of cellular volume (2-4 fold larger than “normal cells”) was the result 

of an accelerated endocycle, a variant cell cycle leading to increased DNA synthesis with gap 

phases but without active mitosis. These rounds of endoreplication seemed to be triggered via 

the insulin/insulin-like growth factor (IGF)-like signaling pathway (Tamori and Deng, 2013), which 

is connected to regulating cellular growth and endoreplication rates through nutrient sensing in 

various cell types (Hietakangas and Cohen, 2009; Tamori and Deng, 2014). Beside cellular 

competition, also tissue damage is an important trigger for compensatory mechanisms to retain 

tissue integrity. This was addressed by another recent study performing puncture wounds in the 

mitotically quiescent epithelial tissue of Drosophila (Losick et al., 2013). This tissue damage got 

repaired after forming an initial melanized scab within 2 days. Important contributors to this 

wound healing process were epithelial cells near the lesion site which fused to giant syncytiums 

containing up to 120 nuclei. Also under these conditions cells increased their endocycle after 24h 

with no subsequent cell division, leading to hypertrophy. Blocking the observed polyploidization 

and cell fusion via the knockdown of Cyclin E and the expression of a dominant negative form of 

the Rac GTPase RacN17 led to a large delay in wound closure suggesting an important role of 

these cellular events in stabilization of damaged tissue and tissue regeneration (Losick et al., 

2013; Tamori and Deng, 2014). 
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Figure 23 Cells classified as hypertrophic show a significant difference in volume fold change. (A) 
Exemplary images for a hypertrophic (top row) and a non-hypertrophic (bottom row) NG2-glia at two succeeding 
timepoints. (B) Boxplot comparison of n=64 hypertrophic and n=52 non-hypertrophic NG2-glia from 10 different mice 
with injury and n=28 cells from 3 control animals without a lesion (Values represented as mean with whiskers extended 
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to maximum and minimum of data). Cells classified as hypertrophic show a significant difference in volume fold change 
in comparison to non-hypertrophic and control cells. In contrast, the difference in the volume fold change of non-
hypertrophic versus control cells is not significant (Wilcoxon Rank Sum Test: hypertrophic vs. control: p=8,2653e-11; 
hypertrophic vs. non-hypertrophic: p=2.7023e-13; non-hypertrophic vs. control: p=0.8520). (C) A Gaussian mixture 
model with two populations best describes the volume fold change of 116 cells after injury. The average fold change µ 
of the non-hypertrophic population (solid red fit) is 0.98, the average fold change µ of the hypertrophic population is 
3.31 (dashed red fit). The threshold of the volume fold change between the two populations was determined as the 
intersection of the two distributions at 1.70. (D) The average fold change µ in a control set (n=28 cells from a non-
injured sample) is 0.97. The 95 percentile of a fitted Gaussian distribution to the control population is 1.57 and can also 
be used as a fold change threshold. The two statistically determined fold change thresholds lead to a hypertrophic and 
a non-hypertrophic subpopulation that overlap with 88% (Gaussian mixture model) and 94% (95 percentile of the 
control set) with the visual classification, respectively. Scale bars represent 10µm. Graphs and data for the figure kindly 
provided by Felix Buggenthin. 

 

Also in mammals, hypertrophy and polyploidization can be seen in liver hepatocytes, acting as a 

compensatory mechanism to retain homeostasis after cell loss or tissue damage (Miyaoka et al., 

2012; Duncan, 2013) or corneal endothelial cells (Honda et al., 1982; Ikebe et al., 1988; Tamori 

and Deng, 2014). Like in Drosophila, IGF has been suggested to be involved in mechanical stretch-

induced hypertrophy of rabbit cardiomyocytes (Blaauw et al., 2010). However, the exact molecular 

mechanisms eliciting hypertrophy are still unknown and have to be addressed in future studies. 

Even if polyploidization is unlikely in NG2-glia it cannot be excluded especially for some cells in 

the core of the injury due to their cellular amassment. Independent from the intracellular events 

leading to the observed hypertrophy, the tendency of higher numbers of hypertrophic cells in 

close proximity to the lesion core (Figure 14 and Figure 15) and at the acute phase after injury 

(Figure 8) argues for a contribution to the mechanical tissue stabilization after TBI, possibly 

contributing to a scaffold-like structure.  

The second morphological alteration observed in NG2-glia after TBI was polarization. Polarization, 

also defined as the asymmetry of distribution and organization of cellular contents is involved in 

many important features of all living organisms, like asymmetric cell division and most importantly 

cell migration (Woodham and Machesky, 2014). Without these events no multicellular organism 

would be able to develop properly and to survive. Like hypertrophy cells quickly adapted this 

morphological change (1-2dpi) with a strong tendency to orientate toward the lesion core (Figure 

8 and Figure 10). Due to the strong link between polarization and migration comprising the whole 

process of cytoskeletal reorganization, many factors and pathways, like the Rho GTPase polarity 

proteins (Hall, 1998; Raftopoulou and Hall, 2004; Etienne-Manneville, 2006), intermediate 

filaments (Leduc and Etienne-Manneville, 2015) and even electric currents (Cao et al., 2013) are 

considered to influence these cellular events.  

However, even if many of the analyzed NG2-glia showing a polarized morphology migrated later 

on, more than half of the cells did not migrate at the subsequent timepoint (Figure 10). This 
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suggests other functions of polarization besides being a prerequisite for migration, even if in some 

cases the migratory behavior might be initialized but did not progress any further due to 

insufficient stimuli. As NG2-glia are screening their environment with filopodia located at their 

processes (Hughes et al., 2013), it is very likely that they re-orientate their sensing processes 

towards the direction containing a higher concentration of relevant cues, which are released from 

the lesion site. Also in Drosophila epidermis (Galko and Krasnow, 2004; Losick et al., 2013; Tamori 

and Deng, 2014) and mammalian corneal endothelium (Honda et al., 1982) cells at the margin of 

the injury site were shown to elongate and orientate themselves toward the damaged area as an 

early event of the wound-healing process. Recent in-vivo imaging of astrocytes after SWI also 

demonstrated a polarization of astrocytes without subsequent migration of this cell type (Bardehle 

et al., 2013), further supporting polarization also as a standalone cellular behavior after tissue 

damage. Therefore, it is of interest to further investigate polarization as an independent cellular 

response after brain injury, even if it will be challenging to dissect polarization from migration due 

to their shared cellular mechanisms. 

 

4.3 NG2-glia display directional migration toward the lesion site 

Highly motile filopodia of NG2-glia sensing their surrounding area for loss of NG2-glia or retraction 

of their processes are essential for the maintenance of the cellular homeostasis of NG2-glia 

(Hughes et al., 2013). Due to the exerted self-repulsive behavior, NG2-glia in the adult healthy 

brain remain in their distinct domains, show no long range migration and their movement has no 

directional bias (Hughes et al., 2013). In contrast to the physiological situation, NG2-glia after TBI 

migrate over longer distances toward the injury site for the first 6dpi. Our collaborators Felix 

Buggenthin and Carsten Marr used a registration technique based on the channel of the rather 

stable blood vessels to confirm that the movement was active migration and not just passive 

movement due to tissue alterations (Figure 24; examples for active migrating cells: white arrows 

Figure 24C’).  
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Figure 24 Automated registration of 3D image stacks at 0, 2 and 4dpi indicates migration of NG2-glia 
toward lesion site. (A) Pipeline for registration of image stacks using blood vessels as landmarks (for details, see the 
methods section): At every timepoint, the image stack is split into two grayscale stacks to separate the landmarks 
(blood vessels) from the data of interest (GFP+ cells). (B) Overlay of z-projections from 0dpi (red), 2dpi (green) and 
4dpi (blue) showing stained blood vessels. Linear shifts due to slight changes of the imaging angle and non-linear shifts 
due to tissue swelling are observable. (C) Overlay of z-projections from 0dpi (red), 2dpi (green) and 4dpi (blue) showing 
GFP-labeled NG2-glia. Due to the systematic shifts between the timepoints, observation of migration might be spurious. 
(B’) Overlay of z-projections of blood vessel stacks. After non-rigid registration, the blood vessels of all timepoints are 
adequately aligned. (C’) Overlay of z-projections of GFP+ cells after transforming the stacks from 2dpi and 4dpi in 
accordance to the computed registration parameters from the blood vessel stacks. After registration migration of cells 
toward the lesion site between the different timepoints is clearly observable (white arrows). Images show maximum 
intensity projections of 30µm. Scale bars represent 40µm. Figure kindly provided by Felix Buggenthin. 

 

After the acute migratory response within the first days after insult, migration continues but the 

directionality of the movement returns to a more randomized orientation within the tissue (Figure 

8). Finally, two weeks after injury the migration distance and velocity of NG2-glia return to 

physiological levels (Figure 11). Also during development progenitors of the oligodendrocyte 

lineage show directed migration over long distances from their places of origin to axonal tracts 

and other brain regions before they begin to differentiate (Kessaris et al., 2006). As a prerequisite 

for migration of NG2-glia or other cell types continual remodeling of the cytoskeleton, which can 

be controlled by Rho-GTPases like cdc42, RhoA and Rac has to occur (Etienne-Manneville and 

Hall, 2002). However, tissue-specific ablation of cdc42 did not affect NG2 proliferation, 

differentiation and directed migration in vitro (Thurnherr et al., 2006). Similar to the results 

obtained in vitro, also in vivo imaging of cdc42fl/fl x Sox10-iCreERT2 x eGFP mice in this work did 

not show any obvious effects of cdc42 on the response behavior of NG2-glia after injury, including 

migration and polarization (Figure 20). These results cannot exclude, that cdc42 is involved in the 

underlying mechanisms for migration and polarization but it seems that either cdc42 has not such 

a strong effect in NG2-glia of the adult brain or can be compensated by another protein for these 

injury-triggered behaviors. 

In contrast to the in vitro findings for cdc42 in NG2-glia, a recent study could show that the 

proteoglycan NG2 effects migration and polarization in vitro by regulating cell polarity via the 

RhoA/rho-associated, coiled-coil-containing protein kinase 1 (ROCK) pathway activation (Biname 

et al., 2013). This study demonstrated that NG2-glia in stab wounded NG2-EYFP knock-in mice 

lacking the NG2-proteoglycan showed an altered polarization toward the injury, however they did 

not study migration in vivo (Biname et al., 2013). In addition, other studies have proposed the 

influence of NG2 on migration and polarization of NG2-glia via proteins associated with cell motility 

(Chatterjee et al., 2008; Biname et al., 2013). However, the focus of these studies has been on 

the molecular pathways and interactions of NG2 with proteins like Syntenin-1, Rho-GTPases or 

polarity complex proteins associated with remodeling of the cytoskeleton, with the majority of 
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these results obtained in vitro. The only in vivo results by Biname et al. (2013) demonstrated a 

shift of polarized cells away from the injury site in NG2-EYFP knock-in mice (Biname et al., 2013). 

However, they solely distinguished between a longitudinal and a more roundish cell body often 

disregarding their processes. Thus, actual in vivo data about migration and polarization of NG2-

glia after knocking out NG2 were still missing. Analyzing the response of NG2-glia after injury in 

NG2-CreERT2 x CAG-eGFP (Huang et al., 2014) mice lacking the NG2-protein with in vivo imaging 

showed that neither migration nor polarization seemed to be majorly effected. Similarly, NG2-glia 

of a NG2-EYFP knock-in mouse line (Karram et al., 2008) responded comparable to NG2-glia of 

control animals. The only stable effect detected in those mouse lines was a shift to an earlier peak 

in cell division, yet this was also seen in the heterozygous NG2-EYFP mouse (Figure 21). This 

outcome could reflect a dose dependent effect already visible in heterozygous animals or result 

from the different background of the NG2-KO mouse lines. Importantly, in both cdc42 and NG2 

deficient mice the accumulation of NG2-glia in and around the injury core was comparable to the 

WT situation (Figure 20 and Figure 21). Therefore, both proteins, most likely involved in the 

protein cascade leading to reorganization of the cytoskeleton, seem to either have non-essential 

functions for the analyzed cell behavior categories after acute brain injury or they are substitutable 

by other proteins. Overall, the essential proteins and signal cascades leading to a directed 

remodeling of the cytoskeleton and migration of NG2-glia remain to be identified. Also the cues 

that are released after injury inducing this targeted migration are so far not known. bFGF has 

been suggested to be a chemo-attractant that was shown to be released e.g. by reactive 

astrocytes under various pathological situations like demyelination in multiple sclerosis or acute 

cortical insults (Rowntree and Kolb, 1997; Clemente et al., 2011). Moreover, a study employing 

immunohistochemistry could demonstrate a gradient of bFGF after SWI with high levels of the 

cytokine in and around the injury core and lower levels more distant (Biname et al., 2013). Also 

VEGF, released by endothelial cells after injury, could be a promoting factor for NG2-glia migration 

(Hayakawa et al., 2011). The here obtained observations that NG2-glia do exhibit directional 

migration toward the injury site - as opposed to astrocytes (Bardehle et al., 2013) - now prompts 

the search for factors and pathways responsible for mediating this migratory response. However, 

first results in cdc42 and NG2 deficient mice showed, that the identification of an essential part of 

the underlying signal cascade might be challenging due to the potential substitutability of proteins. 

Therefore combined approaches might be advisable for future projects. 
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4.4 NG2-glia increase their proliferation rate following injury 

NG2-glia, are the major proliferative cell in the healthy adult brain parenchyma, with a long cell 

cycle length of several weeks in the GM (Psachoulia et al., 2009; Simon et al., 2011; Clarke et al., 

2012). Upon traumatic injury they rapidly shorten their cell cycle length and show a general 

increase in proliferation (McTigue et al., 2001; Buffo et al., 2005; Simon et al., 2011). Employing 

repetitive in vivo imaging after TBI, this study could demonstrate for the first time that the majority 

of NG2-glia only divide once in the area around the lesion core during the first days after injury. 

Within the core of the injury cells most likely divide more often due to the rapid cellular increase. 

However, these elevated NG2-glia numbers also result from migration of this glial cell population 

toward the injury. In contrast to the other reaction categories, proliferation of NG2-glia was 

observed as a rather late event (peaking at 4dpi) and was not as dependent on the injury size 

and the distance to the injury. This highlights the idea that proliferation of NG2-glia after injury is 

not strictly triggered by stimuli released from the lesion site. The factors mediating NG2-glia 

proliferation have been studied in vitro and in vivo, mainly after demyelination identifying 

cytokines like tumor necrosis factor-α (TNF-α), interleukin-1β (IL1β) and interferon-γ (IFNγ) as 

well as the chemokine CXCL1 as potential effector molecules on NG2-glia proliferation (Arnett et 

al., 2001; Rhodes et al., 2006; Filipovic and Zecevic, 2008; Clemente et al., 2013; Moyon et al., 

2015). However, if these factors also influence the proliferative behavior of NG2-glia after 

traumatic brain injury remains to be determined. This increase in proliferation of NG2-glia is not 

restricted to TBI, as it was also shown after sensory deprivation in the developing barrel cortex 

(Mangin et al., 2012) and in other types of injury like chronic plaque deposition (in general models 

of AD) or demyelination (Keirstead et al., 1998; Behrendt et al., 2013). Yet, as also shown for 

astrocytes and in contrast to microglia which react to all kinds of brain pathology, increase of 

NG2-glia proliferation seems to be mainly elicited after lesions including BBB damage, while 

cellular damage like ablation of half of the neurons in the adult mouse cerebral cortex (Cruz et 

al., 2003) does not trigger NG2-glia proliferation (Sirko et al., 2013). Therefore, these studies 

strongly support the concept that the response of macroglial cells reacting to injury is also 

influenced by blood-derived factors. Assessing the effect of direct vicinity to blood vessels on NG2-

glia behavior after injury did not show any influence on proliferation (Figure 13). However, as 

NG2-glia are not a part of the neurovascular unit and have most likely no direct access to the 

blood vessels it is not surprising that they do not show an increased proliferation tendency, like 

seen for the juxtavascular astrocytes (Bardehle et al., 2013). Taken together, the regulation of 

NG2-glia proliferation is most likely influenced by both blood-derived factors emerging from the 
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area of tissue damage and other signaling molecules potentially released from neighboring NG2-

glia or other cell types.   

 

4.5 Heterogeneity in the cellular response of NG2-glia after injury 

After TBI, NG2-glia in the somatosensory cortex showed a rather heterogeneous behavior, in 

contrast to the homogenous behavior observed under physiological conditions (Hughes et al., 

2013). Whether this heterogeneous response is due to intrinsically different subsets of NG2-glia 

or due to their specific local environment including different concentration of signal molecules 

influencing their behavior, is not known. However, as cells in very close proximity to each other 

also displayed heterogeneous behavior despite receiving a similar input of released stimuli, the 

influence of the local environment alone is unlikely. On the other side, intrinsic heterogeneity of 

NG2-glia has already been reported between cells from the GM and WM of the cerebral cortex 

(Vigano et al., 2013). However, to which extent this heterogeneity is also playing a role within the 

same area, like here in the GM of the cerebral cortex, is still unclear. Yet, a recent study performing 

quantitative single cell RNA sequencing in mice from the primary somatosensory cortex and the 

hippocampal CA1 region identified six clusters of oligodendrocyte subpopulations. Most likely, the 

majority of these subclasses represent different maturation stages (from immature to 

myelinating), yet they also identified an intermediate population specifically in the somatosensory 

cortex that might be in a distinct cellular state (Zeisel et al., 2015). Additionally, only a subset of 

NG2-glia in the adult cerebral cortex expressed the G-protein coupled receptor, GPR17 (Boda et 

al., 2011; Vigano et al., 2015). Following acute brain injury these GPR17-expressing cells showed 

a higher differentiation rate compared to the remaining NG2-glia population, constituting a reserve 

pool for repair after injury (Vigano et al., 2015). Also different phases of cell cycle or maturation 

state in neighboring NG2-glia most likely contribute to the heterogeneous state of NG2-glia and 

to variations in gene expression. Indeed, the NG2-glia population was shown to divide 

heterogeneously, in terms of asymmetric and symmetric cell divisions and marker expression of 

sister cells. This distribution of cell cycle events was altered by aging, physical activity and also 

following acute injury (Boda et al., 2015). Overall, the heterogeneous response behavior of NG2-

glia most likely results from a combination of both, intrinsic heterogeneity of the individual cells 

and local differences in the environment. 

While the majority of NG2-glia around the injury core responded by showing at least one of the 

four observed reaction categories, some NG2-glia did not show any detectable alterations in 
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morphology or any migratory and proliferative behavior (static cells; Figure 6B-F and Figure 14D). 

This could be the result of an insufficient concentration of triggering molecules in the surrounding 

of those cells in relation to their e.g. metabolic and proliferative state. Additionally, the morphology 

of mature oligodendrocytes also labeled in the Sox10-iCreERT2 x eGFP mice was very stable after 

TBI, which was advantageous for their use as landmarks (additionally to the labeled blood vessels) 

during in vivo imaging. Even in direct proximity to the lesion core mature oligodendrocytes never 

displayed any drastic changes in morphology and only sparsely disappeared, showing that those 

cells are less plastic and highlighting the importance of oligodendrocytes to remain in their distinct 

networks. Therefore these results demonstrated that oligodendrocytes in the somatosensory 

cortex did not contribute morphologically to scar formation or wound healing following acute brain 

injury. 

 

4.6 NG2-glia as a major reactive gliosis population contribute to 

wound closure 

As described before, NG2-glia responded very fast to acute injury accumulating in the core of the 

lesion and probably contributing to a first cellular scaffold. However, what is the exact role of this 

NG2-glial accumulation? To address this question my colleague Sarah Schneider took advantage 

of the acetyl-transferase establishment of cohesion 1 homologue 2 (Esco2)fl/fl mouse line (Whelan 

et al., 2012b) crossed with the Sox10-iCreERT2 x CAG-eGFP mouse line. Esco2 is an important 

protein in the cell cycle regulating the proper cohesion of the sister chromatids and  after loss of 

gene function proliferative cells undergo apoptosis (Whelan et al., 2012a). Therefore, in the 

Esco2fl/fl x Sox10-iCreERT2 x CAG-eGFP line induction led to the specifically ablation of proliferating 

NG2-glia. Strikingly, the resulting restraint of NG2-glia accumulation in the lesion core after acute 

brain injury caused a delayed wound closure in these animals (Figure 25). Due to the high levels 

of proliferation in close vicinity to the injury core, the reduction of recombined NG2-glia and hence 

the general NG2-glia number was especially reduced in that region compared with the WT control 

(Figure 25 A-C). Most likely due to this elicited prevention of NG2-glia accumulation the wound 

closure was clearly impaired at 4 and 7dpi (Figure 25 D and E). However, at 14dpi, when also 

NG2-glia numbers around the injury where comparable to the WT control, a sufficient wound 

closure could be observed (Figure 25C-E). Therefore, it is very likely that NG2-glia indeed play an 

important role in the first phase of scaffold formation, tissue remodeling and recovery after an 

acute injury. Also secondary functions of NG2-glia like signaling to other cell types are very likely 
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to contribute to the events following acute brain injury, as astrocytic reactivity after TBI is reduced 

when proliferating NG2-glia have been ablated (Schneider and Dimou, unpublished observations). 

Along the same line, abrogation of β-Catenin signaling in NG2-glia led to reduction of their 

proliferative behavior after SCI together with reduced accumulation of activated 

microglia/macrophages and astrocyte activity (Rodriguez et al., 2014). This argues for the 

importance of cell-cell interactions for the injury response and the specific contribution from 

various cell types of the brain for an efficient tissue recovery. 

 

In summary, the intensity of the NG2-glia response increased depending on the injury size and 

distance from the lesion core. Overall, NG2-glia responded fast and strong within the first 2-6dpi 

resulting in a massive increase of cell number and cellular density directly within as well as in 

close vicinity to the injury core. Whereas the homeostasis of NG2-glia was transiently overcome 

within the lesion core it was maintained in more distant regions by neighboring NG2-glia replacing 

migrated cells with increased proliferation. The cellular scaffold of NG2-glia formed in the core of 

the injury seemed to improve tissue regeneration as ablation of proliferating NG2-glia impaired 

wound closure after acute brain injury. Already one week after injury the general reactivity of 

NG2-glia decreased. This concurred with a progressive restauration of the general cellular density, 

distribution and morphology of NG2-glia. Finally, three to four weeks after TBI physiological 

conditions of NG2-glia were restored in terms of morphology and distribution of cells (Figure 8 

and Figure 16). This implies a new role of NG2-glia during the first phase of acute brain injury in 

tissue regeneration. 
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Figure 25 Depletion of NG2-glia after injury leads to impaired wound closure. (A) Confocal images of NG2+ 
cells in Escowt and Escofl animals at 2 and 7 dpi. (B) NG2-glia in Escowt and Escofl animals at 4dpi. In Escofl animals, 
areas with complete absence of NG2-glia can be observed (dashed ellipse). (C) Cell counts of NG2+ cells per mm2 in 

Escowt and Escofl animals in control, non-lesioned brains and at different timepoints after the lesion. Escofl mice show a 
reduced cell number after injury (n=3 animals for each genotype and timepoint, cell counts are presented as 
mean+SEM; 1way ANOVA with Tukey post-test: *** indicates significance level of p<0.0001). (D) Lesion size in the 
cerebral cortex visualized by the lack of DAPI positive cells in Escowt and Escofl animals at different timepoints after the 
lesion. (E) Size of the lesion in mm2 at 2, 4, 7 and 14dpi in Escowt and Escofl animals. Escofl animals show a significantly 
bigger lesion compared to Escowt control littermates. (n=3 for Escowt (2, 7 and 14dpi), n=4 for Escowt (4 and 14dpi), 
n=5 for Escofl (2dpi), n=6 for Escofl (4 and 7dpi) animals), data are presented as mean±SEM; 1way ANOVA with Tukey 
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post-test: ** indicates significance level of p<0.001. Scale bars represent 25µm in (A) blow-up, 50µm in (A) and (B), 
100µm in (D). Figure kindly provided by Sarah Schneider. 

 

4.7 The cellular response after brain injury 

In general, several components are included in the complex and multifaceted events occurring in 

tissue regeneration following tissue damage. These include the systemic response and 

extracellular matrix deposition which are shared between various tissue types. Nevertheless, the 

CNS as a somehow privileged tissue type has its distinct cellular composition which results in 

tissue-specific events after injury, amongst others leading to an insufficient regenerative capacity 

(Shechter and Schwartz, 2013). This has a detrimental impact on the majority of CNS pathologies. 

Hence, it is of great importance to further investigate the cellular components and the underlying 

mechanisms contributing to the injury response and the regeneration in this tissue. 

Until recently, astrocytes were the most likely candidates to contribute to the so called glial scar 

formation after CNS injury. However, results from this study as well as a recent study by Bardehle 

et al. (2013) challenge this concept. Indeed, as a first reaction to the injury, microglial cells start 

to respond and proliferate around the injury (Nimmerjahn et al., 2005), macrophages infiltrate 

(Anthony and Couch, 2014) and then NG2-glia start to react with roughly one day delay (e.g. 

Figure 6). In contrast, only a small proportion of astrocytes react at later timepoints with 

polarization and proliferation while migration could not be observed (Bardehle et al., 2013). This 

late and low level reaction of astrocytes renders them less important for the first steps of scar 

formation and tissue recovery in the cerebral cortex than it was assumed before. Though, an 

indirect role via signaling to other cells initializing their response for e.g. wound closure or scar 

formation preceding their cellular reaction cannot be excluded. One of the potential targets of 

astrocyte interaction after tissue damage are immune cells like T cells, which could be influenced 

via cytokines and other soluble factors released by astrocytes (Xie and Yang, 2015). In contrast 

to astrocytes, other cell types like neural stem cells were shown to be recruited to the injury site 

in the brain if the elicited damage extended to the white matter (Brill et al., 2009). Single-cell RNA 

sequencing of acutely isolated neural stem cells revealed a heterogeneous pool of cells with a 

distinct sub-population that became responsive after global forebrain ischemia (Llorens-Bobadilla 

et al., 2015). In the spinal cord where neural stem cells are recruited to the injury site in a similar 

manner, they differentiated into astrocytes contributing beneficially to wound healing (Sabelstrom 

et al., 2013). Also the injury responses of pericytes (Goritz et al., 2011) and perivascular fibroblasts 

(Soderblom et al., 2013) seem to advance the healing process in the spinal cord. A recent study 
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investigating the response of pericytes after different types of tissue injuries, like pulmonary, renal 

and cardiac injuries, claimed a response of this cell type after SCI and SWI in the cortex (Birbrair 

et al., 2014). Unfortunately, this study using NG2-DsRed mice, ignored the fact that NG2-glia were 

also shown to be responsive after injury by citing the study of Barnabé-Heider et al. (2010), which 

just stated that the response of NG2-glia after SCI was not as intense as the ones from astrocytes 

and ependymal cells (Barnabe-Heider et al., 2010). These flaws could therefore lead to a 

misleading conclusion about the rate of pericyte reactivity following injury. However, a general 

responsiveness of pericytes after several tissue injuries is very likely. Endothelial cells and 

endothelial progenitor cells were also shown to participate in revascularization and neuronal repair 

via cell-cell communication after extensive vascular damage like in stroke (Ma et al., 2015). 

Therefore, many of the resident brain cell types seem to participate in the injury response and 

the consecutive tissue repair. Resident microglia and invading immune cells are supposedly the 

first responders (0-1dpi) followed by NG2-glia, potentially fibroblast-like cells, pericytes (2-4dpi) 

and astrocytes (5-7dpi; Figure 26). Interestingly, a recent study could demonstrate that the 

cellular reaction after cortical brain injury differed between male and female mice. This gender 

difference was especially pronounced in the neuroinflammatory response, whereas astrocytes 

seemed less effected (Acaz-Fonseca et al., 2015). Whether additional cellular components also 

contribute to wound closure and if all those findings can be translated between different regions 

of the CNS is still not fully understood. Moreover, the discussion to what extent different cell types 

play a beneficial or detrimental role in wound healing and tissue regeneration remains a heavily 

discussed topic, which has to be further clarified for advancement of the treatment strategies in 

various CNS pathologies (Cregg et al., 2014). 
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Figure 26 Cellular reactivity after brain injury. Different cell types become reactive upon injury showing 
proliferation, polarization, migration and hypertrophy. NG2-glia, microglia and probably fibroblast-like cells accumulate 
in and around the injury core and decrease at later timepoints, while astrocytes do not migrate but keep their reactive 
profile for a longer time. 
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4.8 NG2-glia and their injury response as a potential target for clinical 

application 

Analyzing the functionality and capability of different cell types can help to better understand the 

pathological events in which those cells are involved. Hopefully, this could lead to an improved 

therapy and possibly even preventive measures to stop the disease course of interest. In the past 

decades the focus of clinical research associated with NG2-glia has been on their potential to 

substitute for lost oligodendrocytes during demyelinating diseases like MS (Hartley et al., 2014; 

Kremer et al., 2015). Despite the still existing prevalence of immunomodulatory drugs in MS 

treatment, some advances have been made in regard to improve remyelination (Kremer et al., 

2015). In a large scale study employing an in vitro screen of 727 NIH approved drugs for 

differentiation and myelination of NG2-glia (Najm et al., 2011), two very promising targets were 

identified, ameliorating myelination in vitro, in vivo and in mouse models of MS (Najm et al., 

2015). These promising results could be relevant for not just the classical demyelinating diseases 

but also for functional restoration after SCI. There, demyelination and oligodendrocyte loss occurs 

after disturbance of nodal organization and subsequent conduction blockage as a secondary 

damage (Papastefanaki and Matsas, 2015). Therefore, the emphasis of clinical research aiming to 

improve therapy after SCI shifted their focus from strictly enhancing neuronal regeneration to also 

provide protection for oligodendrocytes and enhance remyelination (Mekhail et al., 2012; 

Papastefanaki and Matsas, 2015). However, to achieve full functional recovery one has to bear in 

mind when boosting NG2-glia proliferation and differentiation after SCI, that the proteoglycan 

NG2 has been shown to have detrimental effects on axonal outgrowth and sensory recovery (Tan 

et al., 2005). Another critical aspect of NG2-glia manipulation is the high prevalence of this cell 

type in different types of gliomas (Chekenya and Pilkington, 2002; Liu et al., 2011; Xu et al., 

2011). Due to their relatively high proliferation rate also in humans they are susceptible for 

oncogenic mutations, potentially leading to tumor formation (Visvader, 2011). Having high 

malignancy rates, very limited treatment options (Talibi et al., 2014; Venur et al., 2015) and 

therefore a poor probability of survival (Frosina, 2015), gliomas are a considerable risk for all kinds 

of effectors on NG2-glia behavior.  

This also holds true for the recent advances in transplantation and reprogramming of NG2-glia to 

improve repair and regeneration after tissue damage. In these experimental approaches 

researchers are trying to manipulate a target cell type via altered gene expression to differentiate 

into a cell type of interest (e.g. neurons for neuronal reprogramming). Attempting to improve 

therapies for diffuse traumatic axonal injuries, human NG2-glia have been transplanted in a 
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corresponding mouse model which elicited massive migration and differentiation of those cells 

along the WM tracts (Xu et al., 2015). Also in a rat model for ischemic brain injury of periventricular 

leukomalacia, transplanted mouse NG2-glia led to ameliorated neuronal death, increased 

proliferation of neural stem cells and improved functional outcome (Chen et al., 2015). 

Additionally, first studies showed promising results of NG2-glia as a target cell type for neuronal 

reprogramming and thus representing an intrinsic source for new neurons (Heinrich et al., 2014). 

Despite these promising results, other aspects beside the risk of potential malignancy have to be 

considered, especially when manipulating the endogenous NG2-glia population. More and more 

findings contribute to the concept, that NG2-glia are not just sole progenitor cells waiting to be 

differentiated into myelinating oligodendrocytes or reprogrammed in other cell types without any 

further functions. Their communication with neurons have been already demonstrated for the so 

called neuro-glial synapses (Mangin and Gallo, 2011; Sakry et al., 2011) and this interplay has 

been furthered with the discovery of their production of neuromodulatory factors (Sakry et al., 

2015) and the activity dependent ectodomain cleavage of NG2 (Sakry et al., 2014). In addition, 

this study now concurs to the findings showing NG2-glia as a major responsive element after all 

kinds of CNS injuries contributing to wound closure and potential functional recovery beyond the 

so called glial scar. 
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5 Materials 

5.1 Equipment 

Name Company 

Binocular MZ6 Leica 

Centrifuge (table centrifuge) Neolab 

Cold-light source KL1300LCD Leica 

Cryostate CM 3050 Leica 

Drill K1070 High Speed Rotary Micromotor Kit Foredom 

Geldoc™ XR BIO-RAD 

Hair trimmer Philips 

Heating Mat Thermo Control Professional Verticare BV 

Laminar flow Bdk 

Laser Mai Tai High-Performance Mode-Locked Ti-Sapphire  Spectra-Physics 

Magnetic stirrer IKAMAG® RCT Bachofer 

Microscope AxioImager M2 Zeiss 

Microscope Axiovert 40CFL Zeiss 

Microscope LSM700 (confocal microscope) Zeiss 

Microscope LSM7 MP (multiphoton microscope) Zeiss 

Microscope FV 1000MPE (multiphoton microscope) Olympus 

Microscope SZ61 (standing stereo operation microscope) Olympus 

Microwave Privileg 

Perfusion pump Gilson 

pH meter WTW inoLab 

Power supply EAPS 2016-100 Philips 

Scale  Scaltec 

Scale analytic (precision scale) Sartorius 

Shaker Duomax 1030 Heidolph 

SMART Table UT2 Newport 

Stage for 2PMS (self-build) LMU 

Stereotactic apparatus (Digital Standard) Stoelting 

Thermocycler 3000 Biometra 
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Thermomixer comfort Eppendorf 

Vortex-Genie Vortex-Genie Bender & Hobein AG 

Water bath Haake 

5.2 Consumables 

Name Company 

Augen- und Nasensalbe Bepanthen 

Cellulose Swabs (Pur-Zellin) Hartmann 

Cooling Mixture CCL100 Nalco 

Cotton buds (Rotilabo) Roth 

Cover Glasses (Menzel) 5mm Thermo Scientific 

Coverslips Roth 

Delicate Task Wipes Kimtech Science 

Dental Cement (Paladur; liquid + powder) Heraeus 

Drill heads (5+3) Meisinger 

Insulin needles, U-100, 1ml  BD Micro Fine 

Liquid Blocker Science Services 

Filtropur S 0,2 Spritzenfilter Sarstedt 

Microscope slides Roth 

Microscope slides Superfrost Thermo Scientific 

Parafilm PM-996 Parafilm 

Reaction tubes for PCR Eppendorf 

Reaction tubes (0.5 ml; 1.5 ml; 2 ml) Plastibrand 

Reaction tubes safelock (1.5 ml; 2 ml) Eppendorf 

Serological pipettes (5 ml; 10 ml; 15 ml) Sarstedt 

Sugi Sponge Strips (rectangular) Kettenbach 

Sugi Sponge Points Kettenbach 

Super glue (precision) Loctite 

Surgical blade (22) Schreiber 

Suture Vicryl Polyglactin 910 Ethicon 

Syringe Omnifix-F Tuberculin 1ml Braun 

Syringe (50ml) Braun 

V-LanceTM Knife, 19 Gauge Alco Surgical 
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Well-Plate, 24 wells Orange Scientific 

 

5.3 Chemicals and pharmaceuticals 

Chemical Company 

Acetic acid Roth 

Atipamezol (Antisedan) Orion Pharma 

Agarose Serva 

Bromphenol blue Sigma 

Buprenorphine (Temgesic) RB Pharmaceuticals 

Calcium chloride dihydrate Sigma 

Carprofen (Rimadyl) 50mg Pfizer 

Citric acid monohydrate Roth 

Corn oil Sigma 

D(+)-glucose-monohydrate Merck 

4′,6-diamidino-2-phenylindole, dilactate (DAPI) Invitrogen 

dNTPs PeqLab 

Ethanol Roth 

Ethidiumbromid Roth 

Ethylenediamine-tetraacetic acid (EDTA) Sigma 

Ethylene glycol Sigma 

Fentanyl citrate (Fentanyl) Hexal 

Flumazenil (Anexate) Roche 

Glycerol Sigma 

Glycine Sigma 

Goat Serum Gibco 

HEPES Sigma 

Hydrochloric acid Merck 

Ketaminhydrochlorid (Ketavet) 100 mg/ml Pfizer 

Lidocain (Xylocain) 0.2mg/ml pump spray Astra Zeneca 

Magnesium sulphate hexahydrate Merck 

Medetomidin (Domitor) 1mg/ml Pfizer 

Midazolam (Dormicum) 5mg/ml Roche 
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Mounting solution (AquaPolymount) Polysciences 

0,9% NaCl solution (Saline) Braun 

Paraformaldehyde (PFA) Sigma 

PCR Reaction buffer 10 x Qiagen 

Protein kinase K Roth 

Potassium chloride Sigma 

Potassium dihydrogen phosphate Merck 

Saccharose Merck 

Sodium chloride Sigma 

Sodium dodecyl sulphate (SDS) Sigma 

di-sodium hydrogen phosphate dihydrate Merck 

Sodium hydroxide Fluka 

Tamoxifen Sigma 

Taq Polymerase NEB 

Triton X-100 Sigma 

TRISbase Sigma 

TRISHCL Sigma 

Tween20 Sigma 

Xylazinhydrochlorid (Rompun) 2% Bayer 

Xylene cyanole Sigma 

 

5.4 Buffers and solutions 

5.4.1 DNA Preparation 

 Lysis buffer 

Substance Concentration 

NaCl 1M 

TRISHCl, pH=8,5 (1.211g TRISBase/1l H2O) 1M 

SDS 10% 

EDTA 0.5M 

Protein kinase K (freshly added) 10mg/ml 

Filled up with ddH2O. 
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 10x PCR Buffer uni 

Substance Concentration 

KCl 500mM 

TRISHCl 100mM 

Filled up with ddH2O and adjusted to pH=8.7 

 

 dNTP mix 

Substance Concentration 

dATP, dTTp, dCTP, dGTP 2.5mM each 

Filled up to 1l with ddH2O. 

 

 50x TAE buffer 

Substance Concentration 

TRISBase 242g (121.14 g/mol) 

Acetic Acid (100%) 57,1ml 

Na2EDTA*H2O 37,2g (372.2 g/mol) 

Filled up to 1l with ddH2O and adjusted to pH=8.0. 

 

 Ethidium bromide 

Substance Concentration 

Ethidium bromide 100mg 

H2Odd 2ml 

 

 4x DNA loading buffer 

Substance Concentration 

Glycerin (100%) 20ml 

50x TAE buffer 1ml 

Bromphenol blue 200µl 

Xylene cyanol solution 500µl 

H2Odd 50ml 
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5.4.2 Immunohistochemistry 

 20% Paraformaldehyde (PFA)  

Substance Concentration 

Na2HPO4 134g 

PFA 400g 

Sodium hydroxide solution 32% 

Filtered through paper filter, filled up to 2l with H2Odd and adjusted to pH=7.4 

 

 10x Phosphate buffered saline (PBS) 

Substance Concentration 

Na2HPO4 x 2H2O 0.08M 

KH2PO4 0.01M 

NaCl 1.5M 

KCl 0.03M 

Filled up with 1l H2Odd and adjusted to pH=7.4. 

 30% Saccharose solution for cryoprotection 

Substance Concentration 

Saccharose 15g 

Add 50ml of 1xPBS; mix thoroughly  

 

 Storing solution for floating sections 

Substance Concentration 

Glycerol 4M 

Ethylene glycol 5.4M 

Phosphate buffer, pH 7.2 - 7.4 25mM 

 

 Blocking solution 

Substance Concentration 

TritonX-100 0.5% 

Goat Serum 10% 

Dilute in 1xPBS 
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5.4.3 Animal handling and imaging 

 Tamoxifen 

Substance Concentration 

Tamoxifen 40mg/ml 

Ethanol (100%) 10% 

Cornoil 90% 

For dissolution the preparation has to be shaken for 3-4h at 37°C.  

 

 Rimadyl 

Substance stock (mg/ml) dose (mg/kg) ml/3ml 

Carprofen (Rimadyl) 50  4 0.06 

NaCl 0.9  2.94 

 

 

 “Sleep mix” 

Substance stock (mg/ml) dose (mg/kg) ml/5ml 

Fentanyl citrate (Fentanyl) 0.05 0.025 0.25 

Midazolam (Dormicum) 5 5 0.5 

Medetomidin (Domitor) 1 0.5 0.25 

NaCl 0.9  4 

 

 “Awake mix” 

Substance stock (mg/ml) dose (mg/kg) ml/5ml 

Buprenorphine (Temgesic) 0.3 0.1 0.17 

Flumazenil (Anexate) 0.1 0.5 2.5 

Atipamezol (Antisedan) 5 2.5 0.25 

NaCl 0.9  2.08 
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 Cortex buffer 

Substance mM g/l g/100ml 

NaCl 125 7.21 0.72 

KCl 5 0.372 0.037 

Glucose 10 1.802 0.18 

HEPEs 10 2.38 1ml (1M stock solution) 

CaCl2 2 2ml (1M stock solution) 0.2ml (1M stock solution) 

MgSO4 2 2ml (1M stock solution) 0.2ml (1M stock solution) 

The mix was filled up to 100ml with ddH20, adjusted to pH=7.4 and sterile filtered under 

the hood using Filtropur S 0.2µm (Sarstedt) filters. Aliquots of 10ml were stored at 4°C. 

6 Methods 

6.1 Animals 

6.1.1 Mouse strains 

All experiments were performed in accordance and under the Guidelines of Use of Animals and 

Humans in Neuroscience Research, revised and approved by the Society of Neuroscience, and 

licensed by the State of Upper Bavaria under license number 55.2-1-54-2532-171-11. 

The mouse lines used for experiments: 

1-Sox10-iCreERT2 x CAG-eGFP 

2-Sox10-iCreERT2 x CAG-eGFP  

1-Sox10-iCreERT2 x cdc42fl/fl x CAG-eGFP 

NG2-CreERT2 x CAG-eGFP 

NG2-EYFP 

The 1-Sox10-iCreERT2 line as well as the 2-Sox10-iCreERT2 line were used for analysis, as both 

showed reliable and comparable recombination of cells from the oligodendrocyte lineage after 

induction in adult animals (Simon et al., 2012). 

6.1.2 Genotyping 

Colonies of experimental mice were kept and bred in the animal facility. Each mouse received a 

numbered ear clip (0001-9999) or was tagged via 99 ear punch system. To identify the genotype 

of each mouse small tail biopsies were taken for DNA isolation and a polymerase chain reaction 
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(PCR) was performed. Therefore, tail pieces were incubated in 500µl lysis buffer, shaking at 55°C 

over night. After a centrifugation step at 10000rpm for 5 minutes (min) for sedimentation of tissue 

residues the supernatant was transferred and DNA was precipitated via addition of 0.5ml 

isopropanol for 5min and pelleted by 10min centrifugation at10000 rpm. After discarding the 

supernatant the pellet was dried at room temperature (RT). The DNA was dissolved in 200µl 

10mM Tris buffer at 55°C. For genotyping 2µl of DNA was used in a total of 25µl reaction mix. 

The standard reaction mix contained: 

Substance Volume (µl) 

H2O 11 

MgCl 2.5 

Buffer uni 2.5 

Primer 1 0.5 

Primer 2 0,5 

Q-Solution 5 

dNTP’s 0.5 

Taq Polymerase 0.5 

DNA 2 

Total 25 

 

Following primer pairs were used: 

Primer name Sequence (always 5’-3’) 

GFP-II-Reporter AG-2: CTG CTA ACC ATG TTC ATG CC 

CAT-2: GGT ACA TTG AGC AAC TGA CTG 

Sox10-iCreERT2 CS32: AAA CAC CCA CAC CTA GAG AC 

CS33: ACC ATT TCC TGT TGT TCA GC 

Cdc42fl/fl Fw: TTG TAA TGT AGT GTC TGT CCA TTG G 

Rev: TGT CCT CTG CCA TCT ACA CAT ACA C  

NGCE-Cre (NG2-CreERT2) NG2Cre-fw: GGC AAA CCC AGA GCC CTG CC 

NG2wt-rev: GCT GGA GCT GAC AGC GGG TG 

NG2Cre-rev: GCC CGA ACC GAC GAT GAA GCA 

GFP-ZEG (NG2-EYFP) F2: CTA CGG CAA GCT GAC CCT GAA GTT C 

R2: GCC GAT GGG GGT GTT CTG CTG GTA G 
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Following the PCR loading buffer was added to the reaction mix and loaded on a 2% agarose gel 

(with 1xTBS buffer and 3 drops of Ethidium bromide) to detect the PCR products. The following 

PCR protocols were carried out: 

 

6.1.3 Tamoxifen induction 

Adult (3-4 months old) Sox10-iCreERT2xCAG-eGFP mice received  three times every second day 

0.4µg tamoxifen per gram of body weight by oral gavaging (stock solution: 40µg/ml tamoxifen in 

corn oil with 10% EtOH). For the analysis of altered induction rates and possibly resulting subtype 

specific recombination also a reduced amount (one time gavaging; 0.4µg tamoxifen per gram of 

body weight) was used to label fewer cells.  

6.1.4 Operation 

Starting at least 9 days after recombination the animals were operated introducing a cranial 

window. To reduce pain Rimadyl (containing Carprofen) in a NaCl solution was injected 

subcutaneously with a concentration of 4mg/kg bodyweight before the operation. Mice were 

anaesthetized by intraperitoneal injection of the “sleep mix” containing midazolam (5mg per kg 

of body weight), medetomidine (0.5mg per kg) and fentanyl (0.025mg per kg) and an unilateral 

craniotomy was performed using a high speed dental drill over the somatosensory cortex followed 

by a small punctate (depth of ~0.7mm and length of ~0.1mm) or a large stab wound injury (depth 

of ~0.7mm and length of ~1mm) using a 19 gauge lancet shaped knife. After flushing the resulting 

craniotomy with cortex buffer and cessation of potential bleeding a glass coverslip (5mm diameter) 

for the cranial window was fixed over the craniotomy and sealed with dental acrylic (Paladur). 

The control operations included all the previously described steps excluding the knife-induced 

injuries. For the longer imaging periods after injury (starting from 4dpi) the craniotomy and injury 

was performed like described before, but instead of sealing the tissue with a cranial window the 

skull piece was re-placed on the craniotomy and closed with a suture. Four days later, in a 

subsequent operation, the skull piece was removed again and the craniotomy sealed with a cranial 

window as described above. For the control operations a craniotomy followed by the placement 

of a cranial window was performed as described above without any further injury. Following all 

these operations, a metal head bar was attached on top of the contralateral hemisphere with 

super glue to allow the fixation of the mouse head during imaging and 50µl of a Texas-Red-

conjugated dextran (70kDa) containing solution (10mg ml-1) was intravenously injected (tail vein) 

to label blood vessels. After surgery and imaging, antagonization of the anesthesia was induced 
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via injection of the “awake mix” containing atipamezol (2.5mg per kg), flumazenil (0.5mg per kg) 

and buprenorphine (0.1mg per kg).  

6.2 In vivo two-photon microscopy 

Anaesthetized animals were fixed with the help of the metal head bar on a custom made, heated 

stereotactic stage, orientated perpendicular to the optical axis of the microscope and imaging was 

performed with an Olympus FV 1000MPE or Zeiss LSM7 MP microscope each equipped with a 

multi-photon, near infrared, pulsed MaiTai High-Performance Mode-Locked Ti-Sapphire DeepSee 

laser (Spectra Physics). The Olympus setup contained a 20x water immersion objective (1.0 

numerical aperture [NA]), a FV10-MROPT filter (BA=420-500nm for detection of second harmonic 

signals; BA=515-560nm for detection of GFP; BA=590-650 for detection of Texas-Red) and 

internal photomultiplier tube detectors. The Zeiss setup contained a 10x air based and a 20x water 

immersion objective (1.0 NA), comparable filter sets (BA=445-500, BA=520-560nm and BA=570-

610nm) and BiG as well as LSM 710 NDD detection modules. The laser was tuned to 910nm and 

laser intensity was adjusted depending on tissue depth (<50mW). Emission of green fluorescence 

of intrinsic eGFP expression of recombined Sox10 expressing cells, red fluorescence of Texas-red 

labeled blood vessels and blue second harmonic signal (detectable at half the emission wavelength 

~460nm) of fiber-like structures like the dura were detected and optical sections with the 

resolution of 1024x1024 in the x-y dimension were recorded every 2µm to a depth of maximal 

600µm below the dura. The orientation of the image plain was controlled by scanning the dura 

mater prior to each imaging session. To re-identify and re-image the area of interest at later 

timepoints the labeled blood vessels and the stable oligodendrocytes were used as landmarks. 

The first imaging session was performed on the day of the operation (0dpi; ~30 minutes after 

operation) and imaging was repeated at day 2, 4, 6/7, 8, 11, 14, 21 and 28. 

6.2.1 Image processing and analysis 

Recorded image stacks were processed and analyzed using the Fiji (based on ImageJ 1.48i) 

software. To reduce technical noise, stacks were slightly smoothed using two-dimensional 

Gaussian filter (sigma=0.7–1.0) and in some cases background was reduced using Subtract 

Background (radius=50-500). Cells of interest were identified and the channel showing the blood 

vessels together with the stable oligodendrocytes were used to re-identify the cells at the different 

timepoints. For each cell and timepoint the approximate distance to the dura (visible due to second 

harmonic signal in the blue channel) and to the injury core was measured and the morphological 

characteristics and position changes were analyzed. A cell was considered as polarized, when the 
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majority of processes are orientated towards one direction, often combined with a transformation 

and elongation of the cell body. The directionality of the polarization was assessed by subdividing 

the area surrounding the cell in 4 quadrants. The quadrant, in which the lesion site was placed in 

the center, was considered as PW direction and the remaining 3 quadrants as not PW direction. 

Cells were then categorized according to their reaction and timepoint and for each group 

percentages of the respective traits were calculated and compared to the other groups. For the 

assessment if a reaction category was new or old (Figure 8) the traits of the mother cell were 

counted for the two daughter cells as preliminary reaction. For the reaction profiles (Figure 6E 

and F) and the distance analysis (Figure 14F and G) 254 cells from 8 animals were pooled for d0-

d2 (Figure 6E) and 222 cells from 6 animals for d2-d4 (Figure 14F). Also for the different reaction 

profiles (Figure 8D-I) 254 cells from 8 animals and 222 cells from 6 animals were analyzed for 2 

and 4dpi respectively. Additionally 144 cells from 4 animals (6dpi), 148 cells from 4 animals (8dpi), 

115 cells from 3 animals (11dpi), 151 cells from 4 animals (21dpi), 110 animals from 3 animals 

(28dpi) and 199 cells from 3 animals for the control were analyzed for the later timepoints. For 

the stab wound paradigm (Figure 14C and D) 121 cells from 3 animals were compared to the 254 

cells (2dpi; PWI). The analysis of the cells in the injury core (Figure 15B and C) includes 34 cells 

from 7 animals (2dpi) and 23 cells from 4 animals (4dpi). The velocity and maximum migration 

(Figure 11E and F) assays comprise 115 cells from 3 animals (14dpi) additionally to the cells used 

for Figure 8D-I. For the follow-up profiling (Figure 9, Figure 10, Figure 11 and Figure 12) 157 cells 

from 6 animals were analyzed.  

6.2.2 Hypertrophy analysis 

For the analysis of volume change in hypertrophic cells 116 cells (n=64 hypertrophic cells and 

n=52 non-hypertrophic cells) from 10 different animals were selected for the injured conditions. 

For the control conditions n=28 cells from 3 animals were selected. Each cell was identified at the 

first and the consecutive imaging timepoint and a small stack containing the cell body together 

with the major processes was cut out for each timepoint. These pairs of stacks of each cell were 

then further processed and analyzed by Felix Buggenthin. 

 

6.3 Immunohistochemistry 

Animals at different timepoints after the injury (2, 4, 7, 14, 28 dpi and nonlesioned site) were 

anaesthetized and transcardially perfused with 4% paraformaldehyde (PFA). The collected brains 

were postfixed in 4% PFA for 30 minutes followed by cryoprotection in 30% sucrose. 30µm thick 
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sections were cut and stained, after blocking with the goat serum containing blocking solution and 

subsequent washing steps with PBS, with the following primary antibodies: rabbit (rb)-NG2 

(1:500, AB5320 Millipore), m-GFAP (1:500, G3893 Sigma-Aldrich) and chick-GFP (1:500, GFP-

1020 Aves Lab). After incubation over night at 5°C, secondary antibodies were chosen: anti-chick 

A488 (1:500, A11039 Life Technologies), anti-rb Cy3 or A647 (1:500, 711-165-152 or 111-605-

144 Dianova) and anti-m Cy3 or Dylight 649 (1:500, 115-165-003 or 115-496-072 Dianova) 

according to the primary antibodies fluorochrome conjugated and the sections were incubated 

with the secondary antibodies for 2 hours at room temperature. Additionally nuclei were stained 

with DAPI (4’,6-diamidino-2-phenylindole, 1:10000, D9564 Sigma Aldrich). Multi-channel confocal 

images were obtained using a Zeiss confocal microscope system (LSM 710) and analyzed using 

the cell counter plug-in for FIJI (http://fiji.sc/Fiji based on ImageJ 1.48i). Analysis was performed 

on 3 sections of 3 animals for each timepoint. The area spanning 50µm around the lesion core 

(identified using GFAP staining) was counted until up to ~350µm below the pial surface with an 

image depth of ~10µm. A total number of 1167 cells were counted. The numbers of NG2+ cells 

at the different timepoints after injury were statistically tested using one-way ANOVA combined 

with a Tukey post-test.  

 

6.4 Statistics 

Statistics was performed on the non-pooled datasets. Results are represented as means or as 

mean+SEM. The sample size (n≥3 animals) was justified by experience from previous studies and 

no exclusion of data points or datasets were performed. For the analysis no randomization was 

used and the investigator was not blinded to the group allocation during the experiment or 

analysis. As we expect our data to be normally distributed and the majority of assessable 

experiments including at least 5 data points passed the Kolmogorov-Smirnov test (with Dallal-

Wilkinson-Lilliefor P-value) for a Gaussian distribution, we used unpaired t-test or one-way ANOVA 

with Tukey post-test for grouped analysis. For the data which was not normally distributed 

Wilcoxon Rank Sum Test was used. The sample size of n≥3 was justified by the experience from 

previous studies. Data were considered as significant with p<0.05 *, p<0.01 ** and p<0.0001 

***. Statistics was performed with GraphPad Prism 5.0. 
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9.1 Detailed Statistics 

Detailed Statistics of data represented in Figure 8 

Category Test p-value Comparisons dF 

Hypertrophy ANOVA+Tukey post-test p<0.05 d2 vs. d4 dF=32 

Hypertrophy ANOVA+Tukey post-test p<0.01 Control vs. d4; d4 vs. d6 dF=32 

Hypertrophy ANOVA+Tukey post-test p<0.0001 Control vs. d2; d2 vs. d6; d2 vs. d8; d2 vs. 

d11; d2 vs. d21; d2 vs. d28 

dF=32 

Polarization ANOVA+Tukey post-test p<0.05 d2 vs. d11; d4 vs. d28; d6 vs. d21; d8 vs. 

d28 

dF=32 

Polarization ANOVA+Tukey post-test p<0.01 Control vs. d4; Control vs. d6; Control vs. d8; 

d2 vs. d21; d6 vs. d28 

dF=32 

Polarization ANOVA+Tukey post-test p<0.0001 Control vs. d2; d2 vs. d28 dF=32 

Proliferation ANOVA+Tukey post-test p<0.01 d2 vs. d4 dF=32 

Proliferation ANOVA+Tukey post-test p<0.0001 Control vs. d4; d4 vs. d8; d4 vs. d11; d4 vs. 

d21; d4 vs. d28 

dF=32 

Migration ANOVA+Tukey post-test p<0.05 Control vs. d2; Control vs. d4; Control vs. d11 dF=32 

Migration ANOVA+Tukey post-test p<0.01 Control vs. d6 dF=32 

  

 

Detailed Statistics of data represented in Figure 11 

Category Test p-value Comparisons dF 

Velocity ANOVA+Tukey post-test p<0.05 Control vs. d2; Control vs. d4; d2 vs. d28; 

d4 vs. d14 

dF=35 

Velocity ANOVA+Tukey post-test p<0.01 d2 vs. d21; d4 vs. d21; d2 vs. d28 dF=35 

Max. 

Migration 

distance 

ANOVA+Tukey post-test p<0.05 Control vs. d2; Control vs. d4; d2 vs. d14; 

d4 vs. d14; d8 vs. d28 

dF=35 

Max. 

Migration 

distance 

ANOVA+Tukey post-test p<0.01 d6 vs. d21; d6 vs. d28; d8 vs. d21 dF=35 

Max. 

Migration 

distance 

ANOVA+Tukey post-test p<0.0001 d2 vs. d21; d2 vs. d28; d4 vs. d21; d4 vs. 

d28 

dF=35 
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9.3 Abbreviations 

2PLSM  Two-photon laser scanning microscopy 
AChR  Acetylcholine receptor 
AD  Alzheimers disease 
AEP  Anterior entopeduncular area 
ALS  Amyotrophic lateral sclerosis 
AMPA  α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 
aPKC  Atypical Protein kinase C 
APC  Adenomatous polyposis coli 
Ascl1  Achaete-scute homolog 1 
ASPA  Aspartoacylase 
ATP  Adenosine triphosphate 
BBB  Blood brain barrier 
bFGF  Basic fibroblast growth factor 
CC  Corpus callosum 
CC-1  See APC 
CCL2  Ccl2 chemokine 
cdc42  Cell division control protein 42 homolog 
CGE  Caudal ganglionic eminence 
CNS  Central nervous tissue 
CreERT2 Cre recombinase fused to a truncated estrogen receptor 
CSPG  Chondroitin sulfate proteoglycan 
d  Day 
DAPI  4′,6-Diamidino-2-phenylindol 
DNA  Deoxyribonucleic acid 
dNTPs  Deoxynucleoside triphosphates 
dpi  Days post injury 
dpp  Days post proliferation 
E  Embryonic day 
EAE  Experimental autoimmune encephalomyelitis 
ECM  Extracellular matrix 
e.g.  Exempli gratia 
EPSC  Excitatory postsynaptic potential 
Esco2  Acetyl-transferase establishment of cohesion 1 homologue 2 
EYFP  Enhanced yellow fluorescent protein 
FGF  Fibroblast growth factor 
GABA  γ-Aminobutyric acid 
GDP  Guanosine diphosphate 
GFAP  Glial fibrillary acidic protein 
GFP  Green fluorescent protein 
GM  Grey matter 
GPR17  G-protein coupled receptor 17 
GSTπ  Glutathione-S-transferase π 
GTP  Guanosine-5'-triphosphate 
h  Hour 
IFNγ  Interferon-γ 
IL  Interleukin 
IGF  Insulin-like growth factor 
IPSC  Inhibitory postsynaptic potential 
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JAMA  Junctional adhesion molecule A 
JNK  c-Jun N-terminal kinases 
kDa  Kilo Dalton 
kg  Kilogram 
KO  Knockout 
LGE  Lateral ganglionic eminence 
LIF  Leukemia inhibitory factor 
LT  Long term 
MAG  Myelin-associated glycoprotein 
MAPK  Mitogen-activated protein kinase 
MBP  Myelin basic protein 
min  Minutes 
mm  Millimeter 
MOG  Myelin oligodendrocyte 
MS  Multiple sclerosis 
mTOR  Mechanistic target of rapamycin 
µm  Micrometer 
µl  Microliter 
NA  Numerical aperture 
NG2  Neuron-glia antigen 2 
nm  Nanometer 
NMDA  N-Methyl-D-aspartate 
NO  Nitric oxide 
OPC  Oligodendrocyte progenitor cell 
Par6  Partitioning defective 6 homolog alpha 
P  Postnatal day 
PBS  Phosphate buffered saline 
PCR  Polymerase chain reaction 
PDGFRα Platelet-derived growth factor receptor α 
PFA  Paraformaldehyde 
PKC  Protein kinase C 
PLP  Proteolipid protein 
PWI  Punctate wound injury 
RhoA  Ras homolog gene family member A  
ROCK  Rho-associated, coiled-coil-containing protein kinase 1 
RT  Room temperature 
SCI  Spinal cord injury 
SDS  Sodium dodecyl sulphate 
ST  Short term 
STAT3  Signal transducer and activator of transcription 3 
Syx1  Syntaxin 1 
SWI  Stab wound injury 
TBI  Traumatic brain injury 
TGF-α  Transforming growth factor alpha 
TNF-α  Tumor necrosis factor-α 
VEGF  Vascular endothelial growth factor 
WASp  Wiskott-Aldrich Syndrome protein 
WM  White matter 
WT  Wild type 
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