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Zusammenfassung

Kollektive Quanteneffekte haben traditionell keine große Aufmerksamkeit in
der Hochenergiephysik erfahren. Vor kurzem ist jedoch ein Modell für die Phy-
sik schwarzer Löcher vorgeschlagen worden, in dem diese als Bose-Kondensate
von Gravitonen nahe an einem kritischen Punkt beschrieben werden. In ei-
ner anderen Forschungsrichtung haben Abschätzungen der Hochenergiekolli-
sionen in der elektroschwachen Theorie Hinweise darauf geliefert, dass Streu-
prozesse mit mehreren Higgs- oder Vektorbosonen im Endzustand in Reich-
weite künftiger Teilchenbeschleuniger sein könnten. In beiden Fällen dürften
kollektive Quanteneffekte zentral für das Verständnis der Physik sein.

Im ersten Teil dieser Arbeit behandeln wir das Gravitonkondensat-Bild
für schwarze Löcher von Dvali und Gomez. Wir untersuchen ein Bosonisches
Vielteilchensystem (attraktives Lieb-Liniger), das einen Quantenphasenüber-
gang zeigt und als Modell für Gravitonkondensate vorgeschlagen worden ist.
Wir zeigen, dass - selbst für makroskopische Teilchenzahlen - Quanteneffekte
am kritischen Punkt wichtig sind. Das wird an der Verschränkung unter-
schiedlicher Impulsmoden und dem Quantenmissklang zwischen zwei aufein-
anderfolgenden Dichtemessungen besonders klar. Wir heben hervor, dass der
führende Beitrag zu diesen Phänomenen aus langwelligen Moden hervorgeht
und daher von der ultravioletten Physik unabhängig ist. Diese Ergebnisse
implizieren für schwarze Löcher im Gravitonkondensat-Bild, dass die semik-
lassische Beschreibung zusammenbricht, und sie könnten der Schlüssel dazu
sein, das lange bestehende Informationsproblem zu lösen.

Dann wenden wir uns der Frage der Informationsverarbeitung in schwar-
zen Löchern zu. Inspiriert von den Eigenschaften dreidimensionaler attrak-
tiver Bose-Kondensate schlagen wir einen konkreten Mechanismus für das
schnelle Scrambling in Gravitonkondensat-schwarzen-Löchern vor. Um diese
Behauptung zu stützen führen wir Simulationen am Lieb-Liniger Modell in
einem geeigneten Regime durch, die Verschränkungs-Erzeugung in logarith-
mischer Zeit offenbaren. Wir weisen auch darauf hin, dass die Idee, Insta-
bilität und gegebenenfalls Chaos als Ursache für schnelles Quantenbrechen
und Scrambling zu betrachten, relevant für andere Modelle von schwarzen



iv Zusammenfassung

Löchern sein kann.
Im zweiten Teil dieser Arbeit verwenden wir Integrabilitäts-Techniken

(Bethe-Ansatz) um den Phasenübergang des attraktiven Lieb-Liniger Mo-
dells analytisch zu analysieren. Wir leiten den Kontinuumslimes der Bethe-
Gleichungen her und lösen ihn für den Grundzustand bei beliebiger Kopp-
lungsstärke. Wir stellen eine genaue Äquivalenz zwischen der Bethe-Ansatz
Beschreibung im Vielteilchen-Limes und dem groß-N Sattelpunkt von Eukli-
discher zweidimensionaler U(N) Yang-Mills Theorie, auf der Sphäre quanti-
siert, her. Der Übergang zwischen der homogenen und solitonischen Phase
des Lieb-Liniger Modells ist dadurch dual zum Douglas-Kazakov Übergang
zwischen Confinement und Deconfinement.

Im letzten Teil widmen wir uns Streuamplituden von vielen Teilchen. In
einem einfachen Integralmodell untersuchen wir im Detail den Zusammen-
bruch der Störungstheorie und betonen, dass reine Baum-Näherungen para-
metrisch noch früher versagen. Wir demonstrieren dann, dass sich die Streu-
amplituden hoher Multiplizität, in drei verschiedenen (Integral- und quan-
tenmechanischen) Modellsystemen, auf Basis der führenden Ordnung von
(nicht-perturbativen) Sattelpunkten, vorhersagen lassen. In den nicht Borel-
summierbaren Fällen dominiert allein der Beitrag eines nicht-perturbativen
Sattelpunkts. Wir zeigen auf, dass die Amplituden hoher Multiplizität daher
wohl eine lohnenswerte Anwendung für die Techniken der Resurgenztheorie
sind.



Abstract

Collective quantum effects have traditionally not received much attention
in high energy physics. Recently, however, a model for black hole physics
was put forward, in which black holes are described as Bose-condensates of
gravitons close to a critical point. In a different line of research, estimates of
high-energy collisions in the electro-weak theory have hinted that scattering
processes with multiple Higgs or vector Bosons in the final state might be
in reach for future particle colliders. In both scenarios, collective quantum
effects may be crucial for understanding the physics.

In the first part of this thesis, we address the black hole condensate pic-
ture of Dvali and Gomez. We study a Bosonic many-body system (attractive
Lieb-Liniger) which exhibits a quantum phase transition and was proposed
as a model for the graviton condensate. We demonstrate that, even for
macroscopic particle number, quantum effects are prominent at the critical
point. This becomes especially clear in the entanglement of different momen-
tum modes and in the quantum discord between two successive density mea-
surements. We point out that the leading contribution to these phenomena
arises from long-wavelength modes and is therefore insensitive to ultra-violet
physics. For black holes in the graviton condensate picture, these findings
imply a breakdown of the semiclassical description and may be the key to
resolving the long-standing information problem.

We then turn our attention to the question of information processing
in black holes. Inspired by the properties of three-dimensional attractive
Bose condensates, we propose a concrete mechanism for fast scrambling in
graviton-condensate black holes. To bolster our claims, we perform sim-
ulations of the Lieb-Liniger model in an appropriate regime that reveal
entanglement-generation in logarithmic time. We also point out that the
idea of instability and possibly chaos as the origin of fast quantum breaking
and scrambling may also be relevant for other models of black holes.

In the second part of this thesis, we use techniques of integrability (Bethe
ansatz) to address the phase transition of the attractive Lieb-Liniger model
analytically. We derive the continuum limit of the Bethe equations and solve



vi Abstract

it for the ground state at arbitrary coupling. We establish an exact equiva-
lence between the Bethe-ansatz description in the large-particle-number limit
and the large-N saddle point of Euclidean two dimensional U(N) Yang-Mills
theory quantized on a sphere. The transition between the homogeneous
and solitonic phases of the Lieb-Liniger model is thus dual to the Douglas-
Kazakov confinement-deconfinement transition.

In the last part, we consider scattering amplitudes involving many par-
ticles. In a simple integral-model, we study in detail the breakdown of per-
turbation theory and emphasize that the pure tree-level approximation fails
earlier, parametrically. We then demonstrate, in three different (integral
and quantum mechanical) model systems, that the physical high multiplicity
amplitudes can be predicted on the basis of leading-order information from
(non-perturbative) saddle points. In the non-Borel summable cases, one non-
perturbative saddle contribution alone dominates the amplitudes. We high-
light that high-multiplicity amplitudes may thus be a fruitful application for
the methods of resurgence theory.
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Chapter 1

Introduction

1.1 Invitation

This world is a curious place. The physics that governs humans’ everyday
lives, and also most of the stuff that we can build, is extremely well de-
scribed by the quantum theory of electrons and nuclei interacting through
Maxwell’s laws. In spite of the simplicity of this theory, the world displays
a stunning variety of different phenomena. Among these are some that ini-
tially surprise even students of physics, not to mention their initial discov-
erers. One example is superconductivity, the phenomenon in which rather
simple materials like mercury or lead, at low temperatures, lose any resistiv-
ity [Onn11] and gain the ability to sustain currents when no external voltage
is applied [Onn14], while expelling magnetic fields [MO33]. A satisfactory
theoretical explanation was only given much later [GL50; BCS57]. Another
example is the fractional quantum Hall effect [TSG82], in which a material
acts as if it contained particles with a fraction of an electron charge, even
though no such elementary particles are actually there [Lau83]. In these ex-
amples, the effective theory of electrons is still completely valid. The key
reason that such striking phenomena may occur is the conspiration of many
particles in conjunction with the laws of quantum mechanics - they are col-
lective quantum effects.

We are more interested in the high energy frontier of physics, the field that
occupies itself with the description of the interactions of particles when they
are forced to approach each other to tiny distances. But also with extreme
conditions of gravity - for example in the vicinity of the densest astronomical
objects - black holes. Rest assured that the world is not any less curious in the
high energy realm. Collective quantum effects, however, have traditionally
not played a very prominent role in this field of study for different reasons.
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One is that the way we set up particle collisions in experiments can only ever
bring two of them close to each other in any collision and our energies are
insufficient to produce a very large number of them in the process1. Others
reasons are just historical.

Over the last decade, high energy physicists had the privilege to wit-
ness experimentalists and observers confirm our basic theories to unprece-
dented levels of accuracy. To pick just a few examples, the discovery of a
new light particle [AA+12; Cha+12], identified as the long sought Higgs
Boson [Hig64], has completed the electroweak sector of our standard model
of particle physics [Wei67]. The discovery [SB+92] and ever more precise
measurement [KS+11; AA+15] of temperature anisotropies in the cosmic
microwave background radiation has forcefully confirmed our understand-
ing of the interplay between inflating gravitational backgrounds and quan-
tum fluctuations [MC81]. And lastly, the direct detection of gravitational
waves [AA+16c] created in the collision of two black holes has once again vin-
dicated Einstein [Ein16] and our rudimentary understanding of black holes.

Even though no direct experimental evidence of any new heavy particles
is in sight2 (see, e.g., [KS+16]), important conceptual problems still remain
in high energy physics. One example is our lack of detailed understanding of
the interplay between quantum mechanics and black hole physics. Following
a recent proposal by Dvali and Gomez [DG13b; DG14], we have pursued
the idea that black hole physics may, after all, be a manifestation of collec-
tive quantum effects in high energy physics. In this work, we present some
of the results obtained for simplified model systems and the conclusion we
draw for black holes. From this point, we were intrigued to further explore
the relevance of quantum collective effects. During our efforts to unravel
the phenomena using techniques of integrability, we discovered a surprising
equivalence between our model system (Lieb-Liniger) and an otherwise seem-
ingly unrelated theory in two dimensions (Yang-Mills). Finally, we turned
to particle collisions, in which many particles are produced. These may only
be accessible at future experiments, but until then, we need to dramatically
improve upon our capabilities to calculate such processes, where quantum col-
lective effects are dominant. In this domain, the present work contains some
formal developments that aim to further our understanding of the required
mathematical tools.

This work on collective quantum effects in areas of high energy physics, as
diverse as gravity and scattering in field theory, has lead us to recognize their

1Those who study collisions of heavy nuclei at high energies might take issue with this
oversimplified account. Collective quantum effects may indeed be relevant for them, but
in a different manner than the high multiplicity scattering studied in one part of this work.

2Barring 2σ deviations like the current diphoton excess at 750 GeV [AA+16a].
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potential impact on both areas. With this work, we hope to draw further
attention to the present ideas that may be vital to finally understanding the
inner workings of black holes as well as collisions at future particle colliders.

1.2 Results
As one part of this thesis, we have studied the phase transition in the Lieb-
Liniger model [LL63], a system of heavy attractive Bosons in one spatial
dimension, as a proxy for black hole graviton condensates. We have explored
further indicators for the phase transition and present the spectrum of exci-
tations, entanglement of few-particle subsystems, and the so-called ground
state fidelity as examples. With a peak in the entanglement of fluctuations
and the quantum discord as well, we have clear evidence that the system
behaves most quantum-mechanical near its critical point. The quantumness
is due to long-wavelength modes in this example. We interpret these phe-
nomena as clues for black holes in the graviton condensate picture.

We then turn to time-dependent phenomena in order to address the ques-
tion of fast scrambling that has been conjectured to take place in actual
black holes. With intuition from laboratory atomic condensates and some
insights from quantum chaos, we conjure an appealing picture for the origin
of scrambling in the black hole portrait of Dvali and Gomez. We back the
claims with simulations in the Lieb-Liniger model in an appropriate regime,
where we observe entanglement generation in logarithmic time. We believe
that these insights about scrambling are more widely applicable than the
graviton condensate model and comment on their broader relevance.

We stick to the attractive Lieb-Liniger model some longer, now rather for
its own sake. We extend the techniques of integrability to the infinite particle
number limit in order to tackle the phase transition and derive continuum
Bethe description. We find the ground state explicitly for arbitrary coupling.
We then reveal a surprising equivalence with two dimensional U(N) Yang-
Mills theory quantized on a sphere [DK93]. The phase transition of the Lieb-
Liniger model thus maps to the Douglas-Kazakov confinement-deconfinement
transition of the latter system.

Finally, we consider high multiplicity scattering amplitudes in Bosonic
theories. We study in more detail the manner of the expected breakdown
of perturbation theory. This yields some cautionary conclusions for naive
reasoning about its limit of applicability and a nice parallel to our previous
observations from the Lieb-Liniger model. We then put forward some new
results about the analog of scattering amplitudes in zero and one dimensions.
In these models, high multiplicity amplitudes may be dominated by one
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non-perturbative saddle points and can be determined on the basis of the
leading-order saddle point approximation.

This thesis thus covers a wide range of aspects regarding collective quan-
tum effects in high energy physics, ranging from the question of black-hole-
information to field theoretic studies. And from more speculative attempts
to results with many digits of precision.

1.3 Outline
As our research has tackled collective quantum phenomena from three dis-
tinct angles, this whole thesis is divided in three parts.

Chapter 2, Black Hole Condensate Model, contains our work on the Dvali-
Gomez black hole portrait. After a necessary, but brief, review of conven-
tional black hole physics and the quantum portrait, 2.4–2.7 study the quan-
tumness of condensates close to a critical point and draw conclusions for
black holes as graviton condensates. These results have been published in
[FPW13]. Sections 2.8–2.12 present a concrete proposal, how graviton con-
densate black holes manage to scramble information. This research has been
published in [DF+13].

Our work on the integrable Lieb-Liniger model, that has uncovered an
unexpected equivalence with two-dimensional Yang-Mills theory is contained
in chapter 3, Bethe Ansatz at Large-N . The content of 3.3–3.5 has been
published in [FFP15].

Chapter 4, High-Multiplicity Scattering, finally contains our work regard-
ing scattering processes that produce many particles and the role of resur-
gence theory in their calculation. These results will be contained in an up-
coming publication [Fla16].

Note that this work is not aimed to provide a review of collective quantum
behavior in condensed matter systems. References are, of course, provided,
where we invoke known examples.

For completeness, we have to point out that some of the results obtained
and published together with our collaborators have subsequently been re-
ported in the dissertations of some of the collaborators. Explicitly, results
from [FPW13] and [DF+13] were reported by A. Pritzel [Pri14] and N. Win-
tergerst [Win14], while results of [FFP15] will also be reported by A. Franca
(in preparation). In this thesis, however, we give an independent account
of the jointly pursued research directions and even present some additional
results in each chapter that have not appeared anywhere before.



Chapter 2

Black Hole Condensate Model

2.1 Motivation
Black holes have been a source of puzzle for physicists nearly ever since
Schwarzschild wrote down his exact solution to the gravitational field equa-
tions [Sch16]. Luckily, however, at least the subject of our puzzlement has
gradually evolved over time.

The main problems we currently face in the description of black holes
have to do with Hawking radiation [Haw76]. More precisely, how to reconcile
the apparently perfectly thermal properties1 of the radiation that remains,
when the black hole has completely evaporated, with the unitarity of time
evolution in quantum physics. We may just as well ask where the standard
semiclassical picture of black holes goes wrong and how one might improve
it.

The graviton condensate portrait of black holes developed by Dvali and
Gomez [DG13b; DG14] is one attempt in this direction. They posit that the
rigid classical background should be replaced by a condensate of gravitons
(quanta of the gravitational field). In spite of the extremely weak interaction
of long wavelength gravitons (the condensate gravitons are supposed to have
a wavelength comparable to the radius of the black hole horizon), their sheer
number ensures that quantum effects are still important. This last fact is key
in making the picture viable. Because collective quantum effects are thought
to be important in the condensate, a classical (i.e., mean field) description
can easily fail to capture relevant corrections.

In this chapter, we will explore the possible implications of this black

1Except for gray body factors due to the gravitational potential barrier and, of course,
a UV cutoff; see, e.g., [Vis15] for a recent discussion.
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hole portrait in some detail. Because a faithful mathematical description of
a condensate of actual gravitons is elusive2, we employ a toy model - already
proposed by Dvali and Gomez - in order to attain a better understanding of
the nature of the quantum collective effects that we might find in an actual
graviton condensate.

After a brief review of some relevant black hole physics (section 2.2) and
an introduction to the ideas of Dvali and Gomez (s. 2.3), we exhibit the toy
model and relevant techniques in 2.4. We study the properties of the phase
transition and find some new indicators of criticality (s. 2.5). Section 2.6
presents clear and novel evidence that quantumness is most important at the
critical point - even at finite particle number, where the exact ground state
is a superposition of solitons. We then (s. 2.7) speculate on the import of
these findings for actual black hole graviton condensates. The novel results
of sections 2.5–2.7 have been presented in our publication [DF+13].

The second half of the chapter is geared towards understanding fast scram-
bling in the black hole portrait. After introducing some known facts about
attractive Bose condensates in three dimensions (s. 2.8) and some properties
of quantum chaotic systems (s. 2.9), we assemble the pieces and present novel
ideas about fast scrambling in section 2.10. In 2.11, we substantiate our ideas
with additional, now real time, simulations in the toy model. Finally (s. 2.12)
we also comment on which parts of this picture may also be relevant to other
microscopic models of black holes. The new insights of sections 2.10 and 2.12
have been put forward in our publication [FFP15].

2.2 Short Review of Black Hole Physics
In this section, we will recapitulate some of the classic results of the semi-
classical treatment of black holes. We will cherry-pick the directions that
are relevant as background-material for our work and will not try to give a
complete or historically faithful account of the subject (see, e.g., [Wal01] for
a more thorough review).

When we talk about black holes, we usually imply Schwarzschild black
holes. Just for definiteness, their classical metric in Schwarzschild coordinates
is

ds2 =
(

1 − RS

r

)
dt2 − 1

1 − RS
r

dr2 − r2 dΩ2 (2.1)

where RS = 2GNM is the Schwarzschild radius, which marks the position
of the horizon, M is the ADM-mass of the object, and dΩ2 is the metric on

2Note, however, the approach of [HR16; GH+15] to develop a calculational formalism.
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the two-sphere. It will be important to keep in mind that the Schwarzschild
radius is the only classical length scale present in this problem and that the
zone around the horizon therefore has low curvature for a large black hole.

The maximally extended Schwarzschild metric is that of an eternal black
hole. We will, however, usually reason about black holes that are formed in
gravitational collapse and, as we shall review momentarily, evaporate over
long time scales. The region of interest is, nevertheless, described classically
by the Schwarzschild metric.

Our ideas should be easily transferable to other black hole geometries.
Only extremal black holes (those with maximum charges) probably require
additional attention.

2.2.1 Semiclassical Black Holes
One of the most far-sighted observations in black hole physics was made by
Bekenstein, who realized that some black hole properties behave like ther-
modynamic variables [Bek73]. Explicitly, the horizon area is associated with
entropy and the surface gravity κ with temperature

S = A

4L2
P

T = κ

2π
(2.2)

in natural units (ℏ = c = kB = 1).
Soon after, Hawking found out that the temperature is not only a crutch

to make the laws of black hole thermodynamics work. By quantizing quan-
tum fields on the background of a black hole (formed in collapse), he was
able to show that radiation with a Planckian spectrum emanates from the
horizon [Haw74; Haw75]. That is, the black hole behaves like a thermal
black-body radiator3. As black holes give off radiation, they must naturally
diminish in mass. Thus, the Stefan-Boltzmann law leads to a black hole
lifetime that scales like tBH ∼ M3/M3

Pl (barring further accretion of matter).
It took much longer, until concrete evidence was found that the black hole

entropy is also statistically meaningful as the logarithm of the degeneracy of
states. Strominger and Vafa conceived a string-theoretic setup in which the
BPS-properties of an extremal black brane allowed them to make a connec-
tion with its weak-coupling description as a stack of D-branes [SV96]. The
degeneracy of states obtained at weak coupling coincides with the expected
black hole entropy. Their example confirms that there is a microscopic de-
generacy of states associated with the thermodynamic black hole entropy.

3Only then could the constants of proportionality in (2.2) actually be fixed.
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Given that the Hawking radiation looks thermal and originates in the
near-horizon zone, which is self-cleaning4, it is a short step to conclude that
the evaporation does not reveal any information about the internal state of
a black hole (this also pertains to global charges trapped in the black hole).
This is at the heart of the black hole information problem (see [Pre92] for
an early review). It is important to reiterate that this result is based on
quantizing fluctuations on top of a rigid Schwarzschild background.

The assumption that Hawking radiation does not contain any information
about the state from which a black hole was formed allows for two equally un-
desirable outcomes. Either, black hole evaporation stops when the remaining
mass is of the order of the Planck-mass (then the semiclassical evaporation
need not be trusted any more). The heavy “particle” that remains, a black
hole remnant, then needs to have as much degeneracy as the evaporated black
hole. Such an infinite density of states most likely spells trouble in the form
of infinite decay rates and infinite contributions in loop calculations [Hoo85].
Or the information is lost in the black hole and the theory is non-unitary.
This second possibility has severe problems of its own [BSP84]. It has fi-
nally fallen from grace [Haw05] when the AdS/CFT correspondence [Mal99]
implied that a gravitational theory on anti-de-Sitter space (a rather specific
one, though) should have a dual description as a certainly unitary conformal
field theory in one fewer dimension5,6.

Now, the information problem is one of understanding by which mecha-
nism information is released in Hawking radiation. And which part of the
argument for information loss needs to be reconsidered.

2.2.2 More about Black Hole Information
Given that black holes do lose information through Hawking radiation, one
may ask at which point during their evaporation information can meaning-
fully be gathered by an outside observer. This question was first addressed by
Page, who dared to treat the black hole just like any other evaporating quan-
tum system [Pag93a; Pag93b]. He found out that the entanglement between
the black hole “interior” and the emitted Hawking radiation is generically
determined by the size of the smaller Hilbert space. Thus, the entanglement
must, at the latest, cease to increase when the dimension of the internal

4I.e., which only supports decaying quasi-normal modes [RW57].
5Thus realizing the older dream of holography in quantum gravity [Hoo93; Sus95].
6An obvious idea is to calculate properties of black holes in AdS by using the CFT-

description. Apart from the technical complication that this is a strongly-coupled CFT, it
is not yet clear how bulk operators close to or inside the black hole should be implemented,
although some progress has been made recently [PR14].
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Hilbert space has shrunk to half its original value. The corresponding age of
the black hole is denoted as Page-time and scales like tP ∼ M3/M3

Pl.

A related, but distinct, question is how long black holes retain newly
inserted information. That is, assuming one has been gathering information
about an old black hole for at least a Page-time, when a (unknown) qubit of
information is thrown into the black hole, how quickly can one reconstruct
this qubit from the Hawking radiation. Hayden and Preskill found that, after
internal thermalization of the black hole state, information is released nearly
immediately [HP07]. Black holes behave as information mirrors7. They were
then able to give a lower bound for the thermalization time, based on the
notion of black-hole-complementarity8. In order not to violate the quantum
no-cloning theorem, thermalization cannot happen faster than

tsc ∼ RS log(RS/LP) (2.3)

in Schwarzschild time. The conjecture that this lower bound actually repre-
sents the thermalization-time was reinforced and popularized by [SS08] under
the name of fast-scrambling.

Ever since, it has been an intriguing task to give a microscopic explanation
of the fast-scrambling time (see, e.g., [LS+13; BM11; BM12]) which is much
shorter than time-scales expected for, e.g., diffusion.

2.3 Black Hole Quantum Portrait
This section reviews some parts of the proposal put forward by Dvali and
Gomez in a series of publications [DG13b; DG12b; DG13a; DG12a; DG14]
for a novel picture of black hole physics. They used insights from the study of
quantum many-body systems to develop the framework and gave convincing
arguments why similar physics may be at play in the realm of black holes.
Our account of these matters will start from the black hole information para-
dox, but will subsequently reproduce their ideas in a way close to the account
in [DG13b].

7Nonetheless, it might be much harder in practice to decipher the emitted informa-
tion [HH13].

8Complementarity is the concept that both, an observer falling into the black hole
and an outside observer, should each have a consistent, though not necessarily iden-
tical, quantum-mechanical description of physics within their respective past light-
cones [STU93].
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The black hole information paradox arises, when the result of thermal
Hawking radiation is applied to the entirety of the evaporation process. One
should therefore scrutinize the (implicit) assumptions made in the derivation
of Hawking radiation.

On the one hand, Einstein gravity is treated as an effective, weakly cou-
pled effective quantum field theory in the calculation. For large black holes
this seems warranted, because the curvature radius is small around the hori-
zon - the crucial region for the calculation. By standard effective field theory
reasoning, higher order operators corresponding to effects from UV physics
should be suppressed by powers of the cutoff scale (presumably Planck mass)
and therefore be negligible [Don94]. Still, one may ask whether UV physics
provides unexpected effects in the near horizon region. All stretched horizon
models, e.g. ’t Hooft’s brickwall [Hoo85] rely on this. The story of long
strings at the horizon [Sus93] also belongs in this category. Concrete fuzzball
ideas like [Mat05] also leverage specific UV degrees of freedom to avoid in-
troducing a horizon. While these investigations are interesting in their own
right, they have not produced a persuasive coherent picture for Schwarzschild
black holes.

On the other hand, the theory is treated in the semiclassical approxi-
mation. The field operator (e.g. for the metric) is split into a c-numbered
classical part (the Schwarzschild metric) plus small fluctuations on top of it.
Among the fluctuations, only the ones with wavelength sufficiently smaller
than Schwarzschild radius are taken into account. As we will demonstrate in
some detail in section 2.6, there is ample opportunity for these assumptions
to go wrong, even in simple many-body systems. The proposal of Dvali and
Gomez contains a concrete argument, why strong collective effects should
be at play in Schwarzschild black holes and render semiclassical reasoning
unreliable.

2.3.1 Graviton Condensates
Let us consider a situation where we confine N low energy gravitons with
wavelength λ to a volume of size R. We can then wonder whether their
interaction may suffice to create a self sustained bound state. We can obtain
the following estimate from the virial theorem. For a bound state, the average
kinetic and potential energy scale similarly

⟨Ekin⟩ ∼ ⟨V ⟩ (2.4)

Note that we are omitting factors of order one here and in the rest of this
section. We will now make crude estimates for both quantities: the kinetic
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energy approximated as N times the energy of a single graviton

⟨E⟩ ∼ N
ℏ
λ

(2.5)

and the total potential energy as roughly N2/2 times the mutual Newtonian
potential of a pair

⟨V ⟩ ∼ N2GN(ℏ/λ)2

R
(2.6)

If we now assume that the gravitons have the maximum possible wavelength
in the given volume λ ∼ R, the self-sustainability condition (2.4) becomes

R ∼
√
NLPl (2.7)

Let us interpret this equation. The total mass of the gravitons turns out
to be M ∼

√
NMPl and the expected size of the bound state scales exactly

like the Schwarzschild radius associated with this mass. Of course the approx-
imations used above were taken for gravitons on a Minkowski background.
The mass, for example, did not take into account redshifts and the potential
was just the Newtonian approximation. We will, nevertheless, take this hint
seriously that a self sustained bound state of gravitons would look very much
like a black hole. Let us therefore explore the possibility that Schwarzschild
black holes should properly be thought of as self sustained bound states of
gravitons.

Consider, now, the mutual attraction of low energy gravitons with wave-
length λ ∼ R. Their dimensionless scattering strength scales like α ∼ L2

Pl/R
2.

We can define the collective interaction as the product of the two body inter-
action with the number of participating particles

g ∼ αN ∼ 1 (2.8)

and find that it is of order one for the kind of bound state discussed above.
This is very noteworthy, because a collective coupling of order one often
implies the onset of collective quantum effects as we will see in rich detail
below. It is this observation that makes us optimistic that a black hole in a
properly understood description as a graviton condensate may easily avoid
the information paradox.

2.3.2 Hawking Radiation in the Condensate Picture
In [DG13b; DG13a] it has also been concluded that a self sustained graviton
bound state would lose constituents at a rate commensurate with Hawking
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radiation. The evaporation is due to re-scattering of condensate gravitons
and can be estimated from the corresponding Feynman diagrams.

The corrections to thermality are thought to be suppressed by just a factor
of 1/N [DG13b] (this might be related to a recent observation in string-black-
holes [Ven13]). This is in stark contrast to the semiclassical reasoning, where
corrections are exponentially suppressed by the black hole action exp(−S)
(see, e.g., [Mal03]).

Another consequence, implicit in the black hole portrait, is the non-
violation of global symmetries. As the only physics involved is that of long
wavelength gravitons, and Hawking radiation merely a result of rescattering,
there is no reason for global charges to be violated. As long as the deposited
global charge is much smaller than the number of condensate gravitons, it
should only lead to 1/N -hair [DG13a]. See [DG16] for a discussion of a
situation, where baryon charge comes to dominate.

2.3.3 Relevance of Toy Models
While this picture of graviton condensates may be an appealing possibility to
explore for solving the long standing black hole puzzles, its major drawback
is that detailed calculations of graviton condensates in the regimes envisioned
are not currently possible.

The closest cousins to graviton condensates that have been studied may
be gravitational geons [BH64]. These compact gravitational objects are, how-
ever, sourced by highly energetic classical gravitational waves and are there-
fore a long stretch from the long wavelength, highly quantum-mechanical
condensates that we envision.

In this work, we will follow the proposal of [DG14] to study tractable
Bosonic condensates as a proxy for graviton condensates. While we will
have to be careful not to draw any definitive conclusions about black holes,
insights from toy models will help to shape our understanding of real graviton
condensates.

2.3.4 A Parallel with Black Holes in M-Theory
As a tangent, we will point out a parallel with string theoretically motivated
ideas about black holes. This connection has not been commented upon in
the literature yet, but we will come back to it again in section 2.12. To
this end, we have to recall some facts about the BFFS matrix model as a
formulation of M-theory [BF+97] and the description of black holes in this
framework [BF+98a; BF+98b].
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In the strong coupling limit, type IIA string theory obtains an additional
spatial dimension. The resulting eleven-dimensional theory is known as M-
theory [Wit95] and is closely interwoven with various other limits of string
theory. While its low energy description is 11d supergravity, Banks, Fischler,
Shenker, and Susskind used the IIA limit to argue that M-theory in the
infinite-momentum-frame should coincide with the short distance description
of a stack of D0-branes9. Thus they conjectured the theory to be supersym-
metric U(N) Yang-Mills matrix-quantum-mechanics, where N is the number
of participating D0-branes and 9 matrix multiplets implement the transverse
coordinates of the branes [BF+97].

Despite its simple appearance, the matrix theory has been shown to not
only account for D0-branes, but to contain super-membranes [BF+97], as
well, and even string excitations [Mot97].

Shortly after the conjecture, some of the original authors and Klebanov
investigated how Schwarzschild black holes could be realized in the matrix
theory [BF+98a]. With the spatial dimension corresponding to the infinite-
momentum-frame compactified on a circled, a big Schwarzschild black hole
needs to be boosted to actually fit. From this boost, they conjectured that
the minimum dimension of the matrices N to faithfully describe the black
hole without including redundant degrees of freedom is

Nmin ∼ MRS ∼ S (2.9)

where M is the mass and RS is the Schwarzschild radius. This value corre-
sponds to the entropy of the black hole S.

Then they went on to confirm that the matrix model in the appropriate
regime and with this N has the same scaling of the statistical entropy as
an actual black hole. Furthermore, the expected transverse extent matches
the Schwarzschild radius. In [BF+98a], these considerations were made in
the context of 7 + 1 dimensional black holes with the other three transverse
dimensions compactified on a torus. In [BF+98b], the arguments were then
generalized to other dimensions and the picture was simplified, consisting
now of a gas of D0 branes in some matrix background. See [IM+98] for a
different perspective on the matrix black hole, which is more aligned with
the AdS/CFT reasoning.

We want to point out the following intriguing similarity between black
holes in matrix theory and the black hole graviton condensate picture. The
D0 branes in the IIA limit of M-theory correspond to the multiplet of the first

9The D0 branes are the only objects in the theory that carry the requisite charges.
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Kaluza-Klein excitation of the eleven-dimensional supergraviton. Thus, a gas
of N D0 branes, which supposedly is the matrix description of black holes, is
very similar in spirit to the bound state of N gravitons of the black hole por-
trait. Even the conjectured numbers N match, although the considerations
culminating in the respective pictures are quite unalike.

2.4 The Lieb-Liniger Model
In this section, we will introduce the Lieb-Liniger model [LL63]. It will be
our workhorse not only in the rest of this chapter, where we treat it as a
proxy of graviton bound state behavior, but also in chapter 3, where we
study it further in its own right. It is a nonrelativistic quantum mechanical
many-body system composed of N indistinguishable Bosons with mass m
and mutual contact-interaction in one spatial dimension. It can be described
by the following Hamiltonian acting on the Bose-symmetric wave-function
Ψ(x1, . . . , xN) as a differential operator

H = − ℏ2

2m

N∑
i=1

∂2
i − c

∑
i̸=j

δ(xi − xj) (2.10)

where a positive c parametrizes the strength of the delta attraction10. We
will always consider the model to be quantized on a ring of radius R, i.e.,
with periodic boundary conditions

Ψ(. . . , xi + 2πR, . . .) = Ψ(. . . , xi, . . .) (2.11)

It is easy to see that the system compactified at radius R is unitarily equiva-
lent to a version with radius R′ and a modified strength of the delta potential
c′ = cR/R′ as well as scaled energy levels. Thus, a thermodynamic limit, in
which the radius is made large at fixed c and fixed particle density effectively
renders the system strongly coupled (we will later observe the manifestation
of this fact).

For the discussion in this chapter, it will be most convenient to use the
second quantized form of the Lieb-Liniger Hamiltonian

H =
∫
dx

[
− ℏ2

2m
ψ†(x) ∂2

x ψ(x) − ℏ2

2mR
πα

2
ψ†(x)ψ†(x)ψ(x)ψ(x)

]
(2.12)

where ψ(x) is the field operator obeying canonical commutation relations and
a dimensionless α now parametrizes the mutual interaction of the bosons.
The scaling of the interaction has been chosen to simplify notation below.

10The original study of Lieb and Liniger was mostly interested in repulsive interactions,
but we will concentrate on the attractive case.
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We can, furthermore, introduce canonical creation and annihilation oper-
ators a†

k and ak for the momentum modes indexed by k and expand the field
operator

ψ(x) = 1√
2πR

∞∑
k=−∞

ak e
ixk/R (2.13)

After choosing units in which 1 = ℏ = R = 2m, the Hamiltonian can be
rewritten as

H =
∞∑

k=−∞
k2 a†

kak − α

4

∞∑
k,l,m=−∞

a†
ka

†
lam+kal−m (2.14)

For the sake of completeness, it should be noted already that the Lieb-
Liniger model is integrable. We will, however, postpone the discussion of this
fact until chapter 3, where integrability takes center stage.

2.4.1 Gross-Pitaevskii Equation for the Dilute Bose
Gas

In this section, we will review some well-known facts about Bose-Einstein
condensate physics and results obtained by applying mean-field techniques
to the Lieb-Liniger model. These analyses show that the Lieb-Liniger model,
in an appropriate large particle number limit, undergoes a second order quan-
tum phase transition11 [KSU03]. It is this transition that we will be most
interested in, for the rest of the chapter. A more thorough discussion of
Bose-condensate physics may be found in [PS03].

Mean-field treatment applies to states that are close to Bose-Einstein
condensates. That is, where one mode is macroscopically occupied

|Ψ⟩ = C Pd(a†
1a0, a

†
2a0, . . .)

(
a†

0

)N
|0⟩ (2.15)

where a†
0 is the creation operator of the normalized condensate mode Ψ0(x)

(not to be confused with the Fourier modes above), Pd is a polynomial of
degree d that takes particles out of the condensate (depletion), C is a nor-
malization, and the maximal depletion d/N is much smaller than 1.

When the Hamiltonian (2.12) is evaluated between states of this form,
it can be expanded in powers of the depletion d/N . To leading order, all
creation and annihilation operators in the Hamiltonian act on the conden-
sate mode and the time-independent Schrödinger equation implies the Gross-
Pitaevskii equation (also known as nonlinear Schrödinger equation) for the

11A thermal, liquid-gas phase transition of first has also been found, recently [HOC14].
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mode function [
∂2
θ + π αN |Ψ0(θ)|2

]
Ψ0(θ) = µΨ0(θ) (2.16)

where µ is the chemical potential and an angular variable θ = x/R is used.
It is already clear now that the relevant effective coupling of the Lieb-Liniger
system is αN , enhanced by the number of particles. That the state charac-
terized by the Gross-Pitaevskii equation really corresponds to the quantum
mechanical ground state in the large particle number limit has only been
proven rigorously quite recently in [LSY00] for repulsive systems. The lead-
ing correction is obtained in the Bogoliubov approximation, as we will see
later.

Exact solutions of the nonlinear Schrödinger equation are known [CCR00]
(see also fig. 2.1)

Ψ0(θ) =


√

1
2π for αN ≤ 1√

K(m)
2πE(m) dn

[
K(m)
π

(θ − θ0)
∣∣∣m] for αN > 1

(2.17)

where the conditions on the coupling indicate the lowest energy solution in
the given range (the homogeneous solution is naturally still a valid solution
for αN > 1). The parameter m needs to be determined from the condition

4 K(m) E(m) = π2αN (2.18)

The respective chemical potential is

µ =
{

αN
2 for αN ≤ 1

(2−m) K2(m)
π2 for αN > 1

(2.19)

The energy per particle in the mean-field state is

E/N =
{ −π2α for αN ≤ 1

−4
3

K2(m)
E(m) [(2 −m) E(m) + (1 −m) K(m)] for αN > 1 (2.20)

In [KSU03], it was realized that this implies a quantum phase transition
between a homogeneous phase at low values of the effective coupling αN ≤ 1
and a solitonic phase, in which the Bosons lump together, at larger effective
coupling. Based on the behavior of the energy per particle, the transition
was judged to be of second order.
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Figure 2.1: Mean-field solution of the Gross-Pitaevski equation in the ho-
mogeneous phase (green, short dashes) as well as in the solitonic phase
for αN = 1.1 (orange, long dashes) and αN = 2.0 (blue, solid curve). Nor-
malized to unit norm.

2.4.2 Bogoliubov Approximation
Here we will introduce the Bogoliubov approximation for the Lieb-Liniger
model and report some results of Kanamoto, Saito and Ueda [KSU03] about
the explicit modes.

Taking the condensate mode as determined by the Gross-Pitaevskii equa-
tion, we now turn to the next-to-leading order in the expansion of the Hamil-
tonian with respect to the depletion, while holding αN constant. The result-
ing Hamiltonian is quadratic in the non-condensate modes. To this order,
the effect on the condensate is just a reduction in the effective number of
particles through depletion.

Explicitly, on top of the homogeneous mean field Ψ0 = 1/
√

2π, the Hamil-
tonian, in terms of Fourier modes, is approximately

H =
∑
k ̸=0

(k2 − αN/2) a†
kak − αN

4
∑
k ̸=0

(
a†
ka

†
−k + aka−k

)
(2.21)

It can be diagonalized with a Bogoliubov transformation

ak = uk bk + v⋆k b
†
−k (2.22)

where the coefficients need to satisfy u2
k − v2

k = 1 in order for the bk, b†
k opera-

tors to fulfill the standard ladder-operator algebra. Here the diagonalization
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is easy to obtain

u2
k = 1

2

(
1 + k2 − αN/2

ϵk

)
, v2

k = 1
2

(
−1 + k2 − αN/2

ϵk

)
(2.23)

such that
H =

∑
k ̸=0

ϵk b
†
kbk with ϵk =

√
k2(k2 − αN) (2.24)

The ground state is obviously the b-vacuum, a squeezed state in terms of the
original a-operators.

We should briefly pause and comment on the applicability of the approx-
imation. The expected number of depleted particles is

⟨d⟩ =
∑
k ̸=0

⟨a†
kak⟩ =

∑
k ̸=0

|vk|2 (2.25)

and is determined by the effective coupling only. The depletion in the k = 1
mode seems to diverge at the critical point αN = 1, i.e., the approximation
breaks down there. Nevertheless, for any fixed effective coupling αN < 1,
as we take the infinite particle number limit N → ∞, the depleted fraction
⟨d⟩/N diminishes. Thus, for any effective coupling away from criticality, the
Bogoliubov approximation becomes good, eventually.

In the non-homogeneous condensate, the approximate Hamiltonian is still
quadratic, but it mixes the modes in a more complicated fashion. Thus,
the Bogoliubov transformation requires a direct decomposition into normal
modes

δψ(θ) =
∑
k

[
uk(θ) bk + v⋆k(θ) b

†
k

]
(2.26)

where the bk, b†
k operators still behave as ladder operators. The mode func-

tions need to satisfy the Bogoliubov-de-Gennes equation to diagonalize the
Hamiltonian

−∂2
θuj + 2αN |Ψ0|2 uj + αNΨ2

0 vj = (µ+ Ej)uj (2.27)
−∂2

θvj + 2αN |Ψ0|2 vj + αNΨ⋆2
0 uj = (µ− Ej)vj (2.28)

We cite an analytic expression for the first modes, here, because we will rely
on them later.

u1(θ) = C1 sn2
[

K(m)
π

(θ − θ0)
∣∣∣m] (2.29)

v1(θ) = −C1 cn2
[

K(m)
π

(θ − θ0)
∣∣∣m] (2.30)
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with normalization

C2
1 = mK(m)

2π[(2 −m) K(m) − 2 E(m)]
(2.31)

Finally, let us introduce k-particle density matrices with matrix elements

ρ(ij...)(mn...) = ⟨a†
ia

†
j · · · aman · · · ⟩ (2.32)

where there are k creation and k annihilation operators in the expectation
value and the k-sequences in brackets represent the matrix-element-indices.
It is obvious that the N -particle density matrix characterizes the state com-
pletely. Successively smaller density matrices, generically, contain ever less
complete information about the quantum state. A pure condensate, however,
is fully characterized by the one-particle density matrix, because all particles
occupy the same mode. A macroscopic occupation of just one eigenvalue
of the one-particle density matrix is often used to define a Bose-Einstein
condensate.

2.4.3 Symmetry Breaking in Finite Volume
In the solitonic regime of the Lieb-Liniger model, the Bosons tend to lump.
As the Hamiltonian is translationally invariant, however, the true ground
state, will be an eigenstate of zero total momentum. This state can be re-
garded as a superposition of condensate states with different center of mass
coordinates. It is, by the strict definition above, not a Bose-Einstein conden-
sate, but a fragmented condensate, as discussed in, e.g., [KSU06]. As the
particle number is increased, the overlap of condensate states with differing
center of mass decreases exponentially, and so do matrix elements of opera-
tors between them (e.g. the Hamiltonian). In the infinite particle number
limit, the states with different center of mass fall into different superselection
sectors. This explains the appearance of spontaneous symmetry breaking -
even though the system under consideration has finite spatial extent12.

The center of mass motion of the soliton could be trapped with an external
potential, but separation of scales is tricky if one does not want to deform
the soliton condensate wave-function as well. We will make use of another
technique in section 2.6.4, where we will come back to the issue.

With the above discussion in mind, we will sometimes be slightly sloppy
and also refer to a soliton in a smeared state as a condensate.

12The well-known proof of the absence of spontaneous symmetry breaking in finite
volume relies on the assumption that expectation values of composite operators remain
finite (e.g. finite energy density).
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2.4.4 Numerical Diagonalization
The Bogoliubov approximation only becomes exact in the N → ∞ limit.
This, however, is the semiclassical limit, which we argued, is responsible
for most of the so called black hole paradoxa. Especially for our purposes,
it is therefore necessary to have a complementary way to study the Bose
condensate - one that can track 1/N effects. Here we will briefly describe the
method we used.

We use direct numerical diagonalization of the Hamiltonian to simulate
the system. Of course, even for a finite number of Bosons, the Hilbert space
is infinite dimensional. A suitable truncation is required for numerical diago-
nalization to be feasible. One consideration played a significant role in select-
ing this specific numerical method. At the quantum critical point that we
are most interested in, we suspect the system to possess large entanglement.
Many numerical methods break down for strong long-range entanglement
(compare, e.g., [PV+06] or [AV01]). Direct diagonalization, in contrast, has
no such limitations.

We use the energy eigenstates of the free system as a basis for the Hilbert
space, similar to the techniques reported in [KSU03]. These are states with
well defined occupation number nl in each free particle orbital with wavenum-
ber l. We usually restrict the occupation to modes with momenta |l| ≤ 1
and sometimes ≤ 2. All terms involving higher momentum modes are simply
discarded from the Hamiltonian (2.14) preserving its hermiticity. In order
to verify that this approximation still gives reasonably accurate results, we
performed some simulations including momentum modes |l| = 2, 3 as well.
Only for αN ≳ 1.5 do these modes start to give relevant contributions. The
simulations confirm that for αN ≲ 2, the restriction to the lowest excited
free orbital gives qualitatively correct results. It is not unexpected that the
truncation to the lowest momentum modes is good because the soliton (2.17)
starts out with maximal width and only becomes narrower when αN is in-
creased way past the phase transition.

A further simplification arises from the translation invariance of the sys-
tem. As total momentum is conserved and we are interested in the ground
state of total momentum zero, we can further restrict the Hilbert space to
the states in the momentum zero sector

L =
∑
l

l nl = 0 (2.33)

Finally, the matrix for the Hamiltonian in this basis is diagonalized using
standard numerical techniques.

Our code allowed to simulate particle numbers up to roughly N ≲ 10000
for |l| ≤ 1. In order to guard against unexpected scaling properties, all cal-



2.4 The Lieb-Liniger Model 21

culations were performed for various particle numbers. However, since the
relevant effective coupling is αN , the analyses may be done for a fixed N by
varying α.

We should note that the size of the Hilbert space grows much faster for
Bosonic systems in two or three spatial dimensions. For an analogous trun-
cation scheme, the size is enhanced by an additional power of the dimension.
This places much stronger restrictions on the number of particles accessible
in simulations and limits the utility of direct diagonalization in higher dimen-
sion.

As a final comment on our numerical techniques, we want to mention,
again, that the ground state so obtained is a momentum eigenstate and
does not correspond to a localized soliton (see the discussion in 2.4.3). It
will instead represent a superposition of solitons centered around all possible
positions x. There are several ways to overcome this problem. One is, by
making successive measurements to first localize the soliton and measure the
quantities of interest afterwards. This is what our discussion of the quantum
discord is physically based on. Another possibility that we have explored is
to introduce a weak, symmetry breaking potential to trap the soliton,

H ′ = H + ϵV with V = 1
N2

∫
dθ ψ†(θ) cos θ ψ(θ) (2.34)

As the parameter ϵ is increased, the potential becomes deeper and the soliton
more localized. The symmetry breaking potential, however, comes with some
problems of its own. As total momentum is no longer conserved, the Hilbert
space cannot be restricted to L = 0 and simulations become significantly
slower. Also, because a separation of scales between the compactification
radius, the width of the potential well, and the size of the soliton is impossi-
ble, right after the phase transition, it becomes harder to interpret observed
effects. This is, why the results presented in this work do not rely on such a
localization potential.

2.4.5 Experimental Realization
Studies of the Lieb-Liniger model are not a purely theoretic exercise as the
model has also been realized experimentally. This should not come as a big
surprise, because the contact interaction is a good effective description in a
regime where two-body scattering is dominated by the s-wave contribution.

It has long been known that light traveling through a self-focusing nonlin-
ear optical fibre can form solitons and that the classical evolution is governed
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by a nonlinear Schrödinger equation [HT73]. In this case, the interacting
Bosons are dressed photons or polaritons. The quantum nature of these soli-
tons has been studied [DC87] and observed in experiment [DS+93]. In this
realization, however, it seems difficult to address the phase transition that
we will be interested in.

The progress in controlling ultra-cold gases (see [BDZ08] for a broader re-
view) has provided another way to produce attractive one-dimensional Bose
condensates. In this case, a gas of cold atoms is prepared in an elongated
axisymmetric trap that renders the physics effectively one-dimensional. Ex-
periments have been conducted with atoms that naturally have a negative
scattering length (explicitly 7Li in certain spin states) [SP+02]. A more flexi-
ble alternative is to employ Feshbach-resonance techniques [KS+02; PW+04;
HG+09]. By varying an external magnetic field, a Feshbach resonance (orig-
inally studied in nuclear physics [Fes58]) with other Zeeman-split states may
be induced for certain species of atoms (like 85Rb) [TVS93; VT+97]. Be-
cause the scattering length varies wildly around the resonance, this allows
for experiments at virtually arbitrary interaction strength.

To compare experimental results, the Lieb-Liniger coupling c in (2.10)
needs to be matched to the three-dimensional s-wave scattering length a by

c = − ℏ2a

mr2 (2.35)

where r is the oscillator length of transverse trapping potential (see [Ols98]
for a detailed treatment).

2.5 Indicators of Phase Transition

In this section we will study the known phase transition of the one-dimensional
attractive Bose gas in some additional detail using both the Bogoliubov ap-
proximation and the numerical techniques outlined before. Of course, the
number of particles is limited in our simulation and a true phase transition
does not occur as discussed in 2.4.3. Nevertheless, precursors to the phase
transition will be discernible. We will study three indicators and discuss their
physical interpretation. This sets the stage for more insightful measures of
quantumness that will be the focus of the next section.

The results presented below are new (except for 2.5.1). They were part
of our publication [FPW13].



2.5 Indicators of Phase Transition 23

0.0 0.5 1.0 1.5 2.0
αN0

2

4

6

8

10
ΔE

Figure 2.2: Energy spectrum of excitations above the ground state En−E0 as
a function of the effective coupling αN ; calculated numerically for N = 5000
with modes truncated to l = −1, 0, 1. The orange line highlights the phase
transition point αN = 1. A version of this plot was included in [FPW13].

2.5.1 Spectrum of Excited States

The spectrum of excitations has already been calculated in the Bogoliubov
approximation in section 2.4.2. It was clear that the excitations in the zero
momentum sector around the homogeneous state and soliton both become
gapless at the phase transition. This behavior is intimately related to the
change in ground state. At the phase transition, the cost of forming a soliton
out of the homogeneous state vanishes as the two solutions exchange their
roles.

Another class of excitations, those with net momentum, need to be in-
terpreted separately. Their gap also diminishes at the phase transition, it
does, however, not grow again on the solitonic side. Instead, it stays small.
Physically speaking, these excitations correspond to the translation modes of
the soliton and their gap is expected to be the kinetic energy of the moving
soliton ℏ2k2/(2msol). Thus it also scales as 1/N on the strong coupling side,
but this is rather a hint that there is a localized object than a characteristic
of the transition point itself.

The excitation spectrum has already been investigated numerically by the
authors of [KSU03] and our numerical calculations confirm their results. The
spectrum of zero momentum excitation for N = 5000 particles is displayed
in figure 2.2. It is clear that the energy gap shrinks at the critical point.
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Yet, there is only one mode with small gap (not counting the translations
of the soliton). Thus, one cannot attribute a large entropy to the system
at the phase transition point (S ≪ N), even though the density of states is
significantly enhanced, there (see already fig. 2.13 which we need for different
purposes later).

In the Bogoliubov approximation, the gap goes to zero at the phase tran-
sition point (even though the approximation itself ceases to be valid there).
This result, however is only exact for infinite N . For finite N , Kanamoto et
al. have conjectured that the minimal gap should behave like 1/ 3

√
N . This

scaling has only been proven quite recently by Panchenko [Pan15] using ana-
lytical methods to diagonalize the Hamiltonian matrix that we have treated
numerically.

2.5.2 One-Particle Entanglement
In section 2.4.2, we have reviewed that the classical limit of our Bosonic
many-body system - mean field - corresponds to a pure one-particle density
matrix. I.e., a matrix with just one nonzero eigenvalue. The von Neumann
entropy of this matrix

S1 = − Tr(ρ1 log ρ1) (2.36)
therefore measures deviations from a mean-field state. It is also referred
to as one-particle entanglement because it can just as well be interpreted
as quantifying, how well the knowledge of the mode occupied by any one
particle characterizes the state of the whole system.

Explicitly, in the momentum eigenbasis (2.13) used for our numerical
calculations with |l| ≤ 1, the one-particle density matrix has a simple form

(ρ1)ij = δij
∑
{nk}

|α{nk}|2
ni
N

(2.37)

where nk are the occupation numbers of the different momentum modes

|0num⟩ =
∑
{nk}

α{nk}|{nk}⟩ (2.38)

and the δij is a direct consequence of the fact that we consider an angular
momentum eigenstate with ∑

k

k nk = Ltot = 0 (2.39)

for all nonzero α{nk}.



2.5 Indicators of Phase Transition 25

0.0 0.5 1.0 1.5 2.0
αN0.0

0.2

0.4

0.6

0.8
S1

Figure 2.3: One particle entanglement as a function of the effective coupling
αN ; calculated numerically for N = 50 (green, small dashes), N = 500
(orange, long dashes) and N = 5000 (blue, solid curve) with modes truncated
to l = −1, 0, 1. A version of this plot was included in [FPW13].

The figure 2.3 shows the numerical results for the one-particle entangle-
ment evaluated with respect to the collective coupling. Different curves are
displayed for different simulations with increasing particle number (50, 500,
5000).

At very weak coupling, we know that the particles form a homogeneous
Bose-Einstein condensate and mean-field should be a good approximation
even for low particle numbers. On this side of the phase transition, the
one-particle entanglement is expected to be tiny and the figure confirms this
expectation. As the phase transition is approached, however, we expect
collective effects to become important as the ground state is reorganized.
This effect is also clearly observed.

After the phase transition, the figure shows a marked increase in the one-
particle entanglement. At stronger coupling, the entanglement grows further,
even though we argued previously (see section 2.4.2) that mean field should
become a good description again for stronger couplings, in the large particle
number limit. The effect we observe here is the superposition of would-be-
solitons discussed already in 2.4.3. Actual symmetry breaking only occurs
for an infinite number of degrees of freedom. For any finite particle number,
as in the numerical calculation, there is no superselection and the observed
ground state has to be interpreted as an s-wave superposition of solitons
localized at different center of mass.
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In our simulation, we only took three momentum modes into account (l =
−1, 0, 1). The finite size of the density matrix then bounds the entropy Snum

1 ≤
log 3. For the range of effective coupling shown in the plot, this truncation
gives a qualitatively good approximation. For even larger αN , the soliton
becomes narrower, more momentum modes are involved and the true one-
particle entanglement would increase further, albeit slowly.

Let us also comment on the change of shape as the particle number is var-
ied. The curve becomes much sharper as the number is increased. Already
for 5000 particles, the curve has a visibly sharp kink close to αN = 1. This
is easily explained, because level repulsion becomes weaker as the number
of degrees of freedom is increased. For infinitely many particles, actual level
crossing would occur, changing the derivative of the one-particle entangle-
ment instantaneously. The one-particle entanglement itself does not become
discontinuous in this limit, however, as its growth may be attributed to the
superposition of mean-field solitons and the soliton develops continuously
from the homogenous solution.

2.5.3 Ground State Fidelity
Above, we have seen that the phase transition results in a sharp increase
of the one-particle entanglement. We related the monotonic growth of this
quantity to the fact that the observed ground state in the solitonic regime
behaves like a superposition of mean-field solitons. Thus, the one-particle en-
tanglement has a large contribution arising from the classical order parameter
and basic quantum mechanics13. In this section, we will introduce another
indicator for the phase transition, that does not receive this kind of semiclas-
sical contribution, before we develop an improved measure of quantumness
in the next section.

The so-called ground state fidelity was conceived [ZP06] to detect quan-
tum phase transitions. It indicates the overlap between ground states of the
same system at slightly different couplings14.

F0(gN, gn+ δ) = |⟨0gN |0gN+δ⟩| (2.40)

Around generic values of the coupling, the ground state changes adiabatically.
The fidelity is therefore close to unity.

13The effect is not any more spectacular than the statement that the ground state wave
function of any macroscopic object - in the absence of interactions and decoherence - is
still an s-wave.

14The name “fidelity” is imported from the quantum information community, where
state overlaps are used to quantify the distinguishability of states.
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Figure 2.4: The ground state fidelity susceptibility as a function of the effec-
tive coupling αN ; calculated numerically for N = 3000 (green, small dashes),
N = 10000 (orange, long dashes) and N = 5000 (blue curve) with modes
truncated to l = −1, 0, 1. A version of this plot was included in [FPW13].

At the quantum critical point of an infinitely large system, however, level
crossing occurs. The ground state suddenly changes into a state of (infinites-
imally) different energy eigenvalue - the two are orthogonal. The fidelity
across a phase transition is therefore exactly zero. For a large but finite sys-
tem, its levels still repel 15, but the reorganization of the ground state nev-
ertheless diminishes the overlap around the would-be phase transition point.
This kind of “orthogonality catastrophe” has been known for a long time in
one form or another [And67], but provides a good generic characteristic for
phase transitions.

The definition of the ground state fidelity suffers from an arbitrary choice
of a small-but-finite parameter δ. An improved characteristic can be con-
structed from the second derivative of the ground state fidelity. This fidelity
susceptibility [CGZ07] can be defined as

χ0(αN) = lim
δ→0

2 logF0(αN, αN + δ)
δ2 (2.41)

where it was used that F (αN, αN) = 1 is a local maximum with respect to
its second argument.

In [Yan07] it was later shown that, for a broad class of physical systems,
first and second order quantum phase transitions (as well as transitions of

15Barring systems with different superselection sectors.
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the Berezinksii-Kosterlitz-Thouless type) are associated with a divergence in
the ground state fidelity susceptibility.

We have argued above that the ground state fidelity has a dip at the
critical point. In figure 2.4, the expected shape for the fidelity susceptibility
is clearly observed. Note that the fidelity susceptibility is nonzero only in a
small region around the phase transition point. As the number of particles is
increased in our simulation, the peak moves closer to αN = 1. The peak also
becomes sharper and is expected to behave like χ0 → δ′′(αN−1) in the limit.

As it signals a dramatic change in the structure of the ground state, the
ground state fidelity (and its derivatives) are a useful tool to localize a phase
transition. In the next section, we strive to create a measure of quantumness
that is triggered by the quantum correlations at the transition.

2.6 Quantumness at the Critical Point
In this section, we will construct two measures of quantumness. One to
demonstrate that quantum effects are really important at criticality, even at
large particle number. And another one, suitable for numerical calculations,
that is not dominated by the trivial form of quantum superposition inherent
to the true s-wave ground state of any localized object of finite mass.

These original results were also published in [FPW13]. Section 2.6.4
represents an improvement upon the arguments contained in said work.

2.6.1 Fluctuation Entanglement
First, we would like to extract the entanglement of the fluctuations of the
momentum modes on top of a classically observed c-valued “mean field”
δak = ak − amf

k with the rest of the system. One reason we are interested in
the modes ak of the physical particles as opposed to the Bogoliubov excita-
tions (2.22) is that we imagine an external observer weakly coupled to the
Bosonic system in the fundamental Lagrangian. In the simplest setup, they
would couple linearly to the Bosonic field - i.e. the ak operators.

We will also concentrate on the entanglement of a given momentum mode
with the rest of the system - as opposed to, e.g., the one-particle entangle-
ment. One reason for doing so is that we imagine the observer measuring
macroscopically long wavelengths in order to characterize the system. The
motivation for using momentum modes of the field is that for linear couplings
to the environment, field values (and their Fourier components) represent
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the environmentally selected pointer states and not localized single-particle
states [AZ96].

As a working definition we will calculate the von Neumann entropy of the
reduced density matrix δρk for the fluctuations of one mode k on top of a
suitable mean-field coherent state |mf⟩

Sk = − Tr[δρk log δρk] (2.42)

(δρk)nm ∝ 1√
m!n!

Tr
[
ρ (δa†

k)m|mf⟩⟨mf|(δak)n
]

(2.43)

with a suitable normalization and a mean-field state corresponding to the
field value that would be observed classically.

The fluctuation entanglement may be regarded as a (different) form of
quantum discord - a notion that we will introduce in the next section.

2.6.2 Bogoliubov Treatment
Above, we have defined the fluctuation entanglement as a suitable measure
of quantumness. In the large N limit with fixed αN , we know that the
Bogoliubov approximation becomes good. Let us, therefore, calculate the
fluctuation entanglement expected in the limit.

A Bogoliubov state can be written as a displaced and multi-mode squeezed
vacuum. It is a Gaussian state in the sense that its Wigner function [Wig32]

W (z, z⋆) ≡ 1
π2

∫
d2ξ exp(−iξz⋆ − iξ⋆z) Tr[ρ exp(iξa† + iξ⋆a)] (2.44)

is Gaussian, because squeezing and displacement preserve this property. Inte-
grating out certain modes also preserves Gaussianity in the remaining modes.
Hence, the density matrix δρk that we want to study is still Gaussian and
can therefore be written in the most general Gaussian form

δρk = C exp
[

− λ
(
δa†

kδak − τ ⋆

2
δa†

kδa
†
k − τ

2
δakδak

)]
(2.45)

where λ and τ are coefficients characterizing the state and C is the appropri-
ate normalization. Formally, this density matrix may be diagonalized using
yet another Bogoliubov transformation of ak, a†

k. Note that this formal trans-
formation is a priori not related to the physical Bogoliubov transformation
in a homogeneous mean-field state involving ak, a†

−k.
After diagonalizing the density matrix with this transformation, we can

easily determine its normalization

C = 2 e−λ/2 sinh
(
λ

2

√
1 − |τ |2

)
(2.46)
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Our final goal, the von Neumann entropy, directly follows

Sk = Tr[δρk log δρk] = −λC d(1/C)
dλ

− logC

= λ

2

√
1 − |τ |2

[
coth

(
λ

2

√
1 − |τ |2

)
− 1

]
− log

(
1 − e−λ

√
1−|τ |2

)
(2.47)

The parameters λ and τ still need to be determined. We can do so by
comparing

⟨δa†
kδak⟩ ≡ Tr[δρkδa†

kδak] = 1
2
√

1 − |τ |2
coth

(
λ

2

√
1 − |τ |2

)
− 1

2
(2.48)

and

⟨δakδak⟩ ≡ Tr[δρkδakδak] = τ ⋆

2
√

1 − |τ |2
coth

(
λ

2

√
1 − |τ |2

)
(2.49)

where the left hand side needs to be calculated explicitly in the desired Bo-
goliubov state.

In the weak coupling regime, the mean-field ground state is homogeneous
and the Bogoliubov squeezing acts between ak, a

†
−k. The left hand sides

of (2.48) and (2.49) are calculated by inserting (2.22):

⟨δa†
kδak⟩ = v2

k, ⟨δakδak⟩ = 0 (2.50)

which implies
λ = log(u2

k/v
2
k), τ = 0 (2.51)

so that the fluctuation entanglement is

Sk = u2
k log u2

k − v2
k log v2

k (2.52)

Using the explicit forms for the Bogoliubov coefficients (2.23), we see that
the fluctuation entanglement for the first momentum mode diverges at the
critical point. By expanding (2.52) for αN → 1−, we can quantify the
divergence

S1 ∼ 1
2

log(1 − αN) (2.53)

Note also that the entanglement in higher-k modes stays finite at the criti-
cal point, underscoring that it is an infrared effect, insensitive to the short
distance structure of the theory.
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Figure 2.5: Fluctuation entanglement calculated in the Bogoliubov approxi-
mation. The orange line highlights the phase transition point. A version of
this plot was included in [DF+13].

In the solitonic phase, the treatment is complicated by the fact that the
Bogoliubov transformation mixes, not only modes of opposite momentum,
but all momentum modes. The calculation of the left hand side of (2.48)
and (2.49) now involves the Fourier components of all Bogoliubov de Gennes
mode functions

⟨δa†
mδan⟩ =

∑
k

(∫
dθeimθvk(θ)

)(∫
dθe−inθvk(θ)⋆

)
(2.54)

⟨δakδak⟩ =
∑
k

(∫
dθe−imθuk(θ)

)(∫
dθe−inθvk(θ)⋆

)
(2.55)

Close to the phase transition, the first mode (2.29) gives the dominant contri-
bution to these expressions and thus the fluctuation entanglement. We have
not attempted to find an analytic expression for these Fourier components,
but rather relied on numerical integration to evaluate them. The parame-
ters λ and τ are then determined numerically in turn and the fluctuation
entanglement can be evaluated. It, again, shows a divergence at the phase
transition point. The numerical data is consistent with a logarithmic diver-
gence. The coefficient of the logarithm is close to 0.25, i.e. different from the
coefficient on the weak coupling side.

Our figure 2.5 visualizes the Bogoliubov results for the fluctuation entan-
glement with respect to the effective coupling αN . The divergence at the
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critical point is clearly visible and very sharp.

A divergence of the entanglement entropy close to a quantum critical point
has already been observed in spin-chains and other lattice models [VL+03;
ON02]. In these cases, the entanglement was between nearest neighbor sites,
i.e. on length scales comparable to the cutoff of the corresponding field theory.
In contrast to these cases, the phase transition of the Bosons exhibits huge
entanglement in modes of macroscopically large wavelength at the phase
transition. To our knowledge, this is the first case with divergent long range
entanglement. We will discuss the implications for the black hole portrait
later.

2.6.3 Quantum Discord
Now, we will construct another measure of quantumness that, unlike the
previous one, can meaningfully be evaluated for finite-N systems. It is not
dominated by the trivial form of quantum superposition inherent to the true
s-wave ground state of any localized object of finite mass. Instead, it isolates
the truly quantum correlations that characterize the phase transition point.

We want to isolate the quantum part of correlations from just classical
ones. This task has already been addressed in the quantum information liter-
ature. A measure called quantum discord was devised for bipartite systems
in [OZ02] (see [HV01] for simultaneous and closely related developments).
We need to introduce this measure, before we can explain our generalization
for indistinguishable Bosons. The next few paragraphs follow the presenta-
tion of [OZ02].

For a classical ensemble of a bipartite system, the mutual information is
a measure of correlations between the two subsystems A and B

J(A : B) = H(A) −H(A|B) (2.56)

Where H(A) = −∑
pa log pa is the Shannon entropy for the probabilities pa

of subsystem A and H(A|B) = ∑
pbH(A|B = b) the conditional entropy

involving all possible measurement outcomes of subsystem B. There is a
classically equivalent way to write the mutual information

I(A : B) = H(A) +H(B) −H(AB) (2.57)

where H(AB) is the entropy of the joint probability distribution, i.e. that of
the total system.

We judiciously used a different letter, here because after adapting both
quantities for quantum mechanical systems, they will not coincide any more.
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In this adaptation, the Shannon entropy is naturally replaced by the von-
Neumann entropy S. Only the conditional entropy H(A|B) needs more
thought. As it classically involves probabilities of A after a measurement
on subsystem B, the proposed quantum generalization involves a set of or-
thogonal projection operators Πb onto different measurement outcomes that
sums up to unity. In order to make the quantity independent of the choice
of measurements, we minimize over all possible choices

S(A|B) ≡ min
{Πb}

∑
b

pb S

[
Πb ρAB Πb

Tr(Πb ρAB Πb)

]
(2.58)

where naturally pb = Tr(Πb ρAB). The quantum discord is then defined as

δ(A : B) = I(A : B) − J(A : B) (2.59)
= S(A|B) − S(AB) + S(B) (2.60)

and still involves the minimization over all possible sets of measurements.
This clearly is a measure of quantum correlations, as it involves two different
correlation measures, but vanishes for classical ensembles. In [OZ02], it was
also argued that the measurements minimizing the quantum discord should
correspond to proper pointer states of the system.

If the system B was composed of a single particle, projectors onto orthog-
onal orbitals {ψ(x)} would be used:

Πi = a†
ψ aψ (2.61)

where aψ is the annihilation operator corresponding to the orbital ψ. If, fur-
thermore, the system A consisted of other distinguishable particles, entropies
of its density matrix could be used.

2.6.4 Numerical Result
In the Lieb-Liniger model, the Bosons are not distinguishable however and
no subset of particles forms a proper sub-system. Nevertheless, we will follow
the same prescription as above to formulate a measure of quantumness that is
closely inspired by the quantum discord. As it still has some intuitive physical
merit, we will not worry too much about the non-factorization issue16 For
reasons of practical calculability, we restrict both A and B to a single Boson
each. Thus, the entropy of A is implemented as that of the one-particle

16Of course, the formal proofs of properties of the quantum discord may not apply to
our generalization.
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Figure 2.6: The two-Boson quantum discord as a function of the effective
coupling αN ; calculated numerically for N = 40, including the modes |l| =
0, 1, 2.

density matrix, the joint entropy is that of the two-particle density matrix
and measurements onB are just single-particle (density) measurements (2.61)
in different orbitals. Thus our two-Boson quantum discord is calculated as

δ = S(1|1) − S(ρ2) + S(ρ1) (2.62)

with
S(1|1) = min

{ψ}
Tr(a†

ψaψ ρ) S[ρ1(a†
ψaψ ρ a

†
ψaψ)] (2.63)

and ρ1(·) the normalized one-particle density matrix of its argument.
The physical appeal is that S(1|1) is the expected one-particle entangle-

ment after measuring the density in an optimal orbital. If the system is in
a pure condensate state, with all particles occupying the same mode, the
optimal measurement will use just this mode. For a pure condensate state,
S(ρ1), S(ρ2) and also S(1|1) thus vanish. If the system is in a superposition
of condensate states (in orthogonal orbitals), the optimal one-particle pro-
jectors each just isolate one of the condensates out of the superposition and
S(1|1) therefore still vanishes. Only in more complex quantum states does
S(1|1) contribute.

For the Lieb-Liniger model in the strong coupling regime, with large but
finite particle number, the superposition of solitons contains not just orthogo-
nal modes. Nevertheless, the density measurement of S(1|1) has the potential
to pin down the position of the condensate, after which the one-particle en-
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Figure 2.7: The optimal modes in the two-particle quantum discord at αN =
2.0 calculated for N = 40, including the modes |l| = 0, 1, 2.

tropy should be considerably reduced compared with a state of genuinely
strong quantum correlations.

For our explicit implementation, we exploited the fact that (2.63) can be
calculated exactly from the three-particle density matrix. Thus, we first de-
termined the three-particle density matrix of the ground state and performed
the optimization of the basis {ψ(x)} in this formulation.

Figure 2.6 shows the two-Boson quantum discord in the ground state
for varying coupling. It is strongly peaked at the would-be phase transition
point. The offset of the maximum away from αN = 1 is consistent with
that observed in the minimum of the excitation gap at this number of parti-
cles. The discord vanishes at weak coupling, where the state becomes a pure
condensate. At strong coupling, the discord does not tend to zero, as the
superposition of solitons is arguably still quantum - although dominated by
classical correlations.

We calculated the discord for N = 20, 30, 40 (including momentum modes
l = 0, 1, 2) and found it to be quite stable with changing particle number.
The peak slightly narrows as more particles are included. The height of
the peak does not change significantly. The divergence of the quantumness
attested with the fluctuation entanglement in the Bogoliubov approximation
cannot be seen with the limited resolution of one- and two-particle density
matrices.

It is also quite insightful to look at the optimal measurement orbitals.
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These (actually their absolute value) are displayed in figure 2.7 for two values
of the effective coupling. At αN exceeding the phase transition, the best
orthogonal orbitals contain strongly localized modes (keep in mind that the
basis contains only |l| ≤ 2 modes). This, on the one hand, nicely confirms
our interpretation of the state as a superposition of solitons; on the other
hand, it illustrates the point of Ollivier and Zurek that the projectors select
the classically stable pointer states.

2.7 Quantumness of Black Holes
Above, we have studied the Lieb-Liniger model close to its critical point
αN = 1. While this toy model is, of course, much simpler to treat than the
graviton condensate that we envision to constitute a black hole, we should,
nevertheless, extract some tentative lessons.

To understand how the graviton condensate black hole would differ from
the standard picture outside the horizon, we may reason in terms of k-particle
density matrices, or equivalently, equal time correlators. So we can attribute
a gravitational mean field that probably coincides with the Schwarzschild pre-
diction up to backreaction effects, which may be small. The main difference
lies in the existence of nontrivial more-particle density matrices, or equiva-
lently, higher-point equal-time correlations. These are prominent around the
phase transition in the toy model and we expect them to play an important
role in black hole physics as well. In principle, such correlations have the
power to imprint information in outgoing Hawking radiation, and we would
expect them to do so.

An obvious question then is, whether such correlations could be observ-
able for astrophysical black holes. Sadly, we are not in a position to answer
this important question, but we can at least dissect it a little. There are
two issues that play a role. One is, how strong the correlations actually are,
another, how far outside the would-be horizon the correlations manifest them-
selves. The former part of the question may be amenable to a semiclassical
treatment. Under the assumption that the correlations are just about strong
enough to release the minimal required amount of information in Hawking
radiation, one might be able to set a bound on the strength of correlations.
The latter part of the question is much harder to answer. The philosophy of
the graviton condensate model, that the relevant physics plays out in long
wavelength modes, suggests that the effect decays only on length scales com-
parable to the Schwarzschild radius. Redshift effects are, however, not taken
into account in this consideration.
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Given that there should be nontrivial quantum correlations of the metric
around a black hole, according to the graviton condensate picture, we should
also pose the question in which way these may be observed. An obvious idea
is to use interference of coherent light traveling past the black hole in close
proximity. The effect on the expected interference pattern then depends on
the nature of the correlations. Here it is worthwhile to remind the reader that
the unstable circular orbit of light around a Schwarzschild black hole has a ra-
dius of r = 1.5RS. This is also the minimum distance at which one can shine
light (of distant stars) past a black hole. So this feature of the Schwarzschild
metric severely limits the observability of the conjectured correlations. Us-
ing a coherent light source spiraling into the black hole would present a way
around this limitation. It is worth investigating the observational prospect
further, because planned telescopes are apparently approaching the required
resolution [FD+11]. See also [Gid14] for a recent discussion of other obser-
vational consequences of (nonlocal) modifications of black hole physics.

We should also point out that the ring-down after a black hole merger,
as recently observed in gravitational waves [AA+16c; AA+16b], represents
an extreme form of radiation emitted close to the horizon. It would be very
helpful to figure out, whether the effects of the graviton condensate picture
measurably change the endpoint of the expected black hole merger waveform
(see [Gid16] for an immediate first attempt in this spirit, motivated, however,
by different models).

We must also briefly address the recent controversy about “firewalls”.
From an interesting thought experiment, Almheiri et al. concluded, that in-
formation release in Hawking radiation and a perfect mean field outside the
black hole horizon force the horizon itself to be full of extremely short wave-
length excitations in the eyes of an infalling observer [AM+13]. Although
the claim has been vigorously debated (see, e.g., [MS13; Bou13; VV13]), the
thought experiment seems to teach some lessons for the semiclassical black
hole picture. The graviton condensate picture, in contrast, already violates
one of the basic assumptions of the firewall argument - an infalling observer
cannot simply diagnose empty space as the equivalence principle for the mean-
field background would suggest. By performing appropriate measurements
(even of higher equal-time-correlators in one point), the observer would con-
clude that the state he observes is not just the perturbative vacuum. Thus
we believe that firewalls need not occur in the graviton condensate model, be-
cause the quantum structure of black hole states is already modified outside
the horizon.
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Figure 2.8: Schematic behavior of the mean-field energy with respect to the
characteristic size of the condensate for one dimensional (left) and three-
dimensional (right) condensates. The two curves show the subcritical (blue,
solid curve) and supercritical (orange, dashed) regimes. A similar illustration
has appeared in our publication [DF+13].

2.8 Higher-Dimensional Condensates
So far, we have been discussing Bose-Einstein condensates of attractive par-
ticles in only one spatial dimension. While this toy model with its phase
transition has revealed a number of interesting features that may be relevant
for a proper description of black holes, it is still worthwhile to widen the
scope and consider condensates in more than one spatial dimension. In this
section, we will briefly highlight some of the more interesting properties of
such condensates. These will motivate us to study the physics of unstable
systems and, in particular, condensates in the following sections.

2.8.1 Instability to Collapse
To get an idea about the qualitative behavior of Bose Einstein condensates
with attractive contact interaction in higher dimensions, let us consider the
scaling of the energy of a condensate of size R in an arbitrary number d of
spatial dimensions,

Ed ∼ N

R2 − αN
N

Rd
(2.64)

where the first term represents the kinetic energy and the second the mean-
field attraction in spirit of the discussion of section 2.3.1. While the coeffi-
cients of order one (suppressed here) in both terms depend on the shape of
the condensate, the qualitative behavior is reproduced correctly. In figure 2.8
we display this energy functional in d = 1 and 3 and for both, a small and a
large value of the effective coupling αN . As we know very well by now, there
is a stable mean-field ground state for the condensate in d = 1 at all values of
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Figure 2.9: Stable (blue, solid curve) and unstable (orange, dashed) solutions
of the three-dimensional Gross-Pitaevski equations. We show the character-
istic size of the condensate over the effective coupling αN . The solution is ob-
tained as a Gaussian ansatz in a harmonic trapping potential as in [PM+97].
The arrows indicate the stability properties around the bifurcation point.

the coupling. The curves of the energy functional also indicate the existence
of the phase transition. At low αN , the ground state expands as much as
the compactification allows, while at large αN , there is a preferred size. In
d ≥ 3, the physics is very different. While there is a (meta-) stable mean-field
state for small effective coupling, that tends to maximize its size, condensates
with tiny radius are already unstable towards shrinking further. When the
effective coupling exceeds O(1), the situation worsens and the stable solution
ceases to exist. This situation is concisely represented in figure 2.9, which
shows the actual stable solution for a condensate in a harmonic trap in three
dimensions (with a Gaussian ansatz of its shape) as in [PM+97]. The ar-
rows indicate the stability properties. At the critical point, the stable and
unstable solutions disappear in a saddle node bifurcation.

The marginal case of d = 2 cannot be decided on simple dimensional
grounds. It turns out, however, that it is unstable in a similar way to the
three dimensional case.

This instability of the nonlinear Schrödinger equation has been studied
in great detail mathematically (see [SS07] for an extensive treatment) and
displays an intriguing structure involving self similarity of the limiting col-
lapse solution. For our purposes, however, the collapse is accompanied by a
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second phenomenon that prevents the energy from being redistributed into
very short wave length modes as we will discuss below.

Nevertheless, the fact that higher dimensional Bosonic condensates are
unstable after the would-be critical point, is a key insight that informs our
subsequent ideas.

2.8.2 Explosion of the Condensate
Above, we have seen that supercritical condensates in d ≥ 2 are unstable and
prone to collapse. In experiments involving ultra-cold atoms, however, the
observed behavior is qualitatively different [SG+99; CC+00]. The collaps-
ing condensate emits particles at an unexpectedly high rate, a phenomenon
dubbed “explosion” of the condensate. This effect has been explained theo-
retically [DS01] within the effective theory of point-like interactions, so the
cutoff scale (atomic radius of the Bosons) does not seem to come into play.

The ejection of Bosons from the condensate is mainly mediated by two-
body scattering processes during which two condensate particles interact,
ejecting one of them while the other is absorbed by the condensate again
(three body decay). This process is obviously forbidden by momentum con-
servation for homogeneous condensates, but produces sizable particle losses
for trapped condensates. Another process that contributes even in the ho-
mogeneous case has two condensed particles scattering and both leaving the
condensate (two body decay). As the question for particle losses is properly
phrased as one for the non-equilibrium time evolution of given initial condi-
tions, the Schwinger-Keldysh formalism is the right tool to answer it. The
total amplitude for the two processes may then be calculated from self en-
ergy diagrams using the optical theorem. Detailed derivations may be found
in [Sto99].

This account for the explosion of an attractive Bose condensate is strongly
reminiscent of the processes that are thought to be responsible for Hawking
evaporation in the graviton condensate picture (see section 2.3.2).

In [FW15], Foit and Wintergerst tried to push the analogy with Hawking
radiation even further. Their aim was to make the attractive Bose condensate
more akin to actual gravity by introducing a relativistic dispersion relation
Hkin ∼ |⃗k|a†

kak for the Bosons. Under favorable assumptions about the domi-
nant contribution to incoherent scattering, they were able to reproduce many
of the evaporation properties expected from actual black holes.

In the present work, we do not want to take Bosonic toy models quite
as literally. Instead, we will use the key insight that higher dimensional
condensates are unstable, to develop a novel idea how the mysterious fast
scrambling time might arise.
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2.9 Ehrenfest Time for Unstable Systems
In the previous section we have seen that higher dimensional attractive con-
densates are unstable in the supercritical regime. This motivates us to con-
sider more closely the quantum mechanical properties of systems that feature
a classical instability. As is well known in the study of quantum chaos, such
systems generically deviate from their classically expected time evolution af-
ter a relatively short “quantum break time”. In the next section, we will then
continue to apply this insight to black holes.

Already in the early days of quantum mechanics, a natural question to
ask was, how long a system with given initial conditions could be described
classically (quantum break time). In recognition of Ehrenfest’s contribution
[Ehr27] to this problem, the timescale in question is also called Ehrenfest time.
The characteristic duration after which quantum effects become important
usually scales like some power of the typical action S in units of ℏ. It was
only realized much later that the quantum break time is significantly shorter
in systems at a dynamical instability [BZ78] or in chaotic dynamics. There,
it generically scales like

t ∼ λ−1 log(S/ℏ) (2.65)
where λ is the dominant (local) Lyapunov exponent of the instability.

2.9.1 Derivation of Ehrenfest Time
The reason for the quick deviation between the classical and quantum time
evolution at an instability is especially transparent in a phase space picture.
The derivation presented here is similar to the argument in [Zur03].

A classical ensemble may be represented by a probability density on
phase space ρ(t, q, p). Its dynamics is, of course, implemented by the Poisson
bracket {·, ·}PB

∂tρ = {H, ρ}PB (2.66)
with the classical Hamiltonian H.

A quantum state may be represented by a distribution function on phase
space as well. In section 2.6.2, we already briefly used the Wigner func-
tion (2.44) and will apply it again, here. It shares a critical property with a
classical probability density - expectation values may be calculated as

Tr(ρA) =
∫
d2z W (z, z⋆)AW(z, z⋆) (2.67)

where the function AW is obtained by bringing the operator A into Weyl order
and then replacing creation and annihilation operators with z⋆, z. Unlike a
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classical density distribution, however, the Wigner function is not strictly
positive, and can therefore not be given a naive probabilistic interpretation.

The time evolution of the Wigner function is implemented by the following
differential equation (see, e.g., the comprehensive review [Lee95] and original
references therein).

∂tW = 2
ℏ

sinh
[

1
2

(
∂

∂z⋆1

∂

∂z2
− ∂

∂z1

∂

∂z⋆2

)]
×

HW(z1, z
⋆
1)W (z2, z

⋆
2)
∣∣∣∣∣z1 = z2 = z
z⋆

1 = z⋆
2 = z⋆

(2.68)

where HW is the Hamilton function obtained by Weyl-ordering the Hamilto-
nian and then replacing operators by c-numbers.

As the complex phase space coordinates contain a power of z ∝ ℏ−1/2,
the leading order in ℏ of the above equation is just the classical Hamiltonian
flow (2.66). The important point, however, is that higher orders in ℏ, i.e.
quantum corrections, are suppressed by additional derivatives of the density
measured in characteristic scales of the problem.

To see the implications of this fact, let us start with a quantum state
localized in phase space at an instability, but with small derivatives of its
Wigner function, so that quantum effects are initially weak. The instability
will exponentially stretch the density distribution in the direction of the
largest Lyapunov exponent λ. By the Liouville theorem, however, the leading
order Hamiltonian flow is volume preserving. So while being stretched in one
direction, the density distribution must be exponentially compressed in some
other direction with an expected Lyapunov of −λ, so that its width evolves
as

∆(t) ∼ ∆0 e
−λt (2.69)

As soon as the state is compressed to the characteristic scale of (2.68), quan-
tum effects become equally important to the classical flow. This width is
reached after the logarithmic timescale (2.65) which, indeed, is the quantum
break time for this system.

2.9.2 Illustrative Example
Above, we have invoked the compression of the phase space distribution
to argue for the logarithmic quantum break time near an instability. Let
us illustrate the argument in a minimal setup17 - quantum mechanics of a

17This kind of exercise is certainly not new.
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particle of mass m in one dimension near the top of a symmetry breaking
potential

V (x) = −αx2 + βx4 (2.70)

At this point of phase space, there is a (local) dynamical instability with
Lyapunov exponent λ =

√
2α/m.

Figure 2.10 shows the evolution of a minimum uncertainty wave packet
starting at x = p = 0. The images in the top row show density plots of
the Wigner function at several points in time 18. The bottom row shows
the corresponding evolution of a classical density distribution. The Wigner
function is stretched similar to the classical probability density. As soon as
it becomes narrow, however, the ℏ corrections change the evolution. Most
notably, the Wigner function develops negative values (highlighted in orange)
in some patches of phase space - a direct indication of nonclassical behavior.

2.9.3 Chaos and Thermalization
So far, we have only discussed the effect of an instability that is localized in
phase space. If the classical version of the dynamical system also exhibits
chaotic behavior, the conclusions are more far reaching.

If generic classical paths experience an instability throughout their evo-
lution, then outcomes are very sensitive to initial conditions. If the dynam-
ics, furthermore, mixes trajectories in phase space, the system is said to be
chaotic [Gut91].

The quantum mechanical versions of such systems also exhibit character-
istic phenomena regarding, e.g., their statistics of level spacings [Ber87] and
assisted tunneling [LB90]. Another feature that has only recently been uncov-
ered are fast thermalization timescales [AH12b; AH12a]. Quantum chaotic
systems may effectively thermalize on timescales of the order of the Ehrenfest
time. The argument is an extension of the reasoning presented above. In a
chaotic system, the quantum mechanical phase space distribution is not only
stretched, which leads to a form of diffusion in the transverse direction, it is
also mixed in phase space. The spreading happens in a time scale that goes
like the Ehrenfest time. The diffusion then ensures that the state becomes
effectively featureless, i.e. thermal (although it remains pure).

While our model system is integrable and does certainly not exhibit chaos,
the potential for fast thermalization should be kept in mind for our discussion
of possible graviton condensate behavior.

18These images were obtained by numerically evolving the wave function according to
the Schrödinger equation and using (2.66) to obtain the values of the Wigner function.
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Figure 2.10: Wigner quasi density distribution (top row) and classical density
(bottom row) as they evolve for a state centered at an instability. The hor-
izontal axis represents the phase space coordinate x and the vertical axis p.
Positive values of the densities are shaded in grey, negativ values in orange.
The contour lines highlight regions with negative value of the Wigner func-
tion.
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2.10 Scrambling in Condensate Black Holes

Above, we have surveyed several important aspects, that we will assemble in
this section to give a potential explanation for fast scrambling in the black
hole N -portrait. We have published these ideas and the simulations of the
subsequent section in [DF+13].

In section 2.8.1, we have explained that higher dimensional attractive
Bose condensates are unstable towards collapse. Of course, we do not know
reliably, how a condensate of gravitons would behave - their interactions are,
of course, much more intricate than those of heavy, nonrelativistic scalars. It
is, however, suggestive that graviton condensate black holes would exhibit a
similar dynamical instability. The only characteristic length scale of a black
hole that survives in the classical limit is the Schwarzschild radius. Therefore,
the Lyapunov exponent of a classical dynamical instability of the graviton
condensate would also be λ ∼ R−1

S .
Above, we have also shown that systems at a dynamical instability exhibit

a relatively short quantum break time that scales with the logarithm of ℏ.
Applying this insight to the putative instability of the graviton condensates
leads us to conjecture that their quantum break time would scale like

tqb ∼ RS log(S/ℏ) (2.71)

according to (2.65). Here S is the typical action of a black hole, which scales
like N - just as the black hole entropy does.

We instantly recognize the time scale as that of fast scrambling. There-
fore we putatively claim that quantum breaking due to the instability of the
graviton condensate is at the origin of fast scrambling in black holes.

Above, we have always been careful to differentiate quantum breaking
from thermalization. In the conventional wisdom, black hole scrambling
is really an expression of complete thermalization, although it is doubtful
whether the thought experiments invoked so far are actually sensitive towards
high order correlators.

It is therefore worth pointing out that, if the presumed instability per-
sists during the evolution of the black hole condensate, according to section
2.9.3, the condensate would also be expected to thermalize in a timescale
proportional to tqb - in agreement with most assumptions about scrambling.
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2.11 Quantum Breaking of the Toy Model
In the previous section, we have put forward a proposal for the origin of
fast scrambling in graviton condensate black holes. Sadly, we are not yet in
a position to check all the assumptions made on the way. It is, therefore,
all the more important to test at least those parts of the overall picture,
that are accessible with standard techniques. Below, we will revisit the one
dimensional condensate toy model and numerically analyze its behavior at an
instability19. At the least, this will prove that some Bosonic condensates at
an instability do actually exhibit crucial elements of the qualitative behavior
described previously.

We have also reported on the results of these simulations in [DF+13].

2.11.1 Quench across the Critical Point
In contrast to higher dimensional condensates, there is a stable mean-field
solution for all values of the effective coupling in the Lieb-Liniger model.
In order to study the behavior of this condensate in an unstable regime,
we have to prepare the instability willfully. The steps, however, are well
motivated by a comparison to higher dimensional condensates. For a real
three dimensional Bose gas, we might probe the instability by assembling
a condensate in a trap at weak coupling and then tuning the coupling past
criticality. Thanks to Feshbach resonance techniques, this is exactly how
some experiments actually look at the instability of the condensate [CC+00].
We can perform the same steps on a one dimensional condensate and also
arrive at an instability. Starting in a homogeneous ground state of N Bosons,
we will instantly dial the coupling α to the strong coupling regime and then
observe the evolution of the state.

The procedure just outlined is also known as a quench and the study of
quantum systems quenched across a critical point is a fruitful direction, even
for its own sake [SPS04]. Note that there is no choice of bringing the system
to the strong coupling side adiabatically in the large-N limit. As the excita-
tions become light at the critical point, the corresponding characteristic time
scale diverges (critical slowing down) and no change of the coupling can be
regarded as adiabatic.

To elucidate, why quenching the homogeneous condensate to the strong
coupling side results in unstable behavior, remember the discussion about

19Of course, it would be desirable to directly study a higher dimensional condensate.
The requisite computational effort, however, would be disproportionately high.
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Figure 2.11: Evolution of one-particle entanglement after a quantum
quench αN = 0 → 1.8 for different numbers of particles N =
16, 32, 64, 128, 256, 512, 1024 (from left to right). A version of this plot was
included in [DF+13].

the Bogoliubov approximation. We already know the energy of fluctuation
modes around the homogeneous condensate (2.24), which we repeat here for
convenience:

ϵk =
√
k2(k2 − αN) (2.72)

The k = 1 fluctuation receives an imaginary energy in the solitonic regime
αN > 1. It is therefore an exponentially growing mode and will invariably
lead away from the pure condensate. The expected Lyapunov exponent is
just

λ =
√
αN − 1 (2.73)

An in-depth analysis in this direction can be found in [CD96]. We will rather
study the resulting time evolution numerically, below.

2.11.2 Numerical Results
In order to diagnose scrambling, we would split the system into two initially
unentangled parts and track their entanglement during time evolution. For
a Bose condensate of N particles, k-particle subsets are a natural candidate
to consider in this prescription. Of course, due to Bose-symmetry, any k-
particle subsystem does not form a subspace within the physical Hilbert
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space, but k-particle sub-density matrices nevertheless provide a convenient
tool to parametrize entanglement with the rest of the system.

ρ
(k)
{m}{n} = C Tr

[
ρ

(∏
l

(a†
l )ml

)(∏
l

aml
l

)]
(2.74)

Here {ml} and {nl} are integer partitions of k and label the occupation
numbers of l-orbitals in the k-particle basis of the reduced density matrix.
The normalization C is determined by the condition Tr ρ(k) = 1.

A Bose gas would be a fast scrambler, if its time evolution would generate
large entropy in all sub-density matrices ρ(k) for k ≪ N in a timescale that
scales like logN .

We do not expect our toy model to be a fast scrambler, however. Already
the intuition that it will evolve “towards” the stable mean-field ground state
tells us that the required instability cannot persist and the system will stop
to generate entanglement efficiently. Still, we can use the one-particle density
matrix to detect quantum breaking. As discussed already (section 2.5.2), any
mean-field state has zero entropy in the one particle density matrix and its
entropy thus measures deviations from classicality.

The numerical calculations will, again, be carried out using exact diag-
onalization as described in section 2.4.4. The homogeneous initial state is
projected onto the spectrum of energy eigenstates. Time evolution is trivial
on each of these. The one-particle entanglement can then be calculated for
any instant in time.

In figure 2.11, we display the evolution of the von Neumann entropy of
the one particle density matrix after a quench. Here the quench takes a
perfect homogeneous condensate, the ground state for g = 0, to gN = 1.8.
This is already significantly past the phase transition to make the Lyapunov
exponent (2.72) sizable for the one dimensional condensate. Different curves
exhibit the entanglement evolution for different numbers of particles N . We
see that the entanglement rises steeply and comes close to saturating the
maximal possible value Smax = log 3 ≈ 1.10 in the restricted basis l = −1, 0, 1.
The subsequent time evolution shows incoherent oscillations, which we do not
consider very interesting for our purposes, as non-integrable systems might
behave differently.

It is more insightful to analyze the behavior of the quantum break time
with respect to N . In figure 2.12 we evaluated the quantum break times
for different particle numbers. The break time is implemented as the time
at which the one-particle entanglement reaches its first maximum. Similar
results are obtained by measuring the time to exceed a given threshold. The
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Figure 2.12: Quantum break time for the condensate as a function of particle
number. The horizontal axis is logarithmic in the particle number. The green
line represents a linear fit in this logarithmic-linear space. A similar plot was
included in [DF+13].

solid line represents the best fit of the form a log(bN). The excellent agree-
ment between the numerical experiments and the logN relation is a great
confirmation for the logarithmic in N quantum break time that we have ar-
gued for. The observed prefactor a ≈ 0.57 is not very close to the Bogoliubov
prediction (here λ = 0.89), but at least in the same ballpark. It is not too
worrisome, though, because it represents the averaged Lyapunov exponent
during the time until the maximum is reached and not just the local value.

A look at the density of states (figure 2.13) offers a complementary per-
spective on the fast quantum break time at the instability. In the figure, one
can locate the condensate in the line extrapolating the weak coupling ground
state. It is apparent that the density of states is relatively high around this
line on the strong coupling side. In fact, we have checked that the density
scales logarithmically with N

∆n
∆E

∼ λ logN (2.75)

We have also checked that the condensate has large overlap only with the
states in this band. Thus, we again see the quantum break time arise, now
from the dephasing of different energy eigenstates.
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Figure 2.13: Density of states in the total momentum zero sector as a function
of the effective coupling αN and energy per particle E/N . Darker is higher
density. The orange line highlights the phase transition point, the blue line
represents the ground state energy. A similar plot was included in [DF+13].

These numerical results for the one-dimensional condensate underscore,
that Bose condensates with an instability naturally produce the λ−1 logN
timescale that matches the scrambling time of black holes. As we have dis-
cussed before, such an instability is automatically present for higher dimen-
sional condensates slightly past the critical point. And if Hawking evapora-
tion happens at the appropriate rate, the black hole graviton condensate may
be stuck at the instability during its whole evolution. In this way, the numer-
ical results support our picture of scrambling in the black hole condensate
portrait.

2.12 Outlook
This chapter was concerned with the graviton condensate portrait for black
holes. Following a suggestion by Dvali and Gomez, we used the Lieb-Liniger
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system as a toy model and studied its phase transition. At the quantum crit-
ical point, the first Bogoliubov mode becomes light, increasing the density of
states. The number of nearly degenerate states is not excessive, however, be-
cause the minimal mass gap scales like N−1/3, a far cry from the exponential
degeneracy of black holes. It is still one of the important unsolved questions
of the graviton condensate picture to plausibly explain the black hole entropy.
Simply replacing the Lieb-Liniger coupling α with a momentum dependent
term proportional to k2 looks somewhat plausible with the graviton interac-
tion in mind and would hint at many more Bogoliubov modes becoming light
in (2.24). Whether the resulting model is viable, however, is a completely
separate question. A momentum dependent coupling was already introduced
in [BM+13] and analyzed more closely with the black hole entropy in mind
in [DF+15]. More investigations regarding the entropy are, however, clearly
mandated, especially as BMS transformations at the horizon [HPS16] have
also been considered to provide the required states in the graviton condensate
model [AD+16].

We have, moreover, found clear additional signs of the phase transition
in the form of a sudden increase in the one particle entanglement and a dip
in the ground state fidelity even at relatively low particle number.

We, then, focused our attention on quantumness at the critical point. We
have seen that, on top of the fixed mean-field background (which corresponds
to the large particle number limit), the momentum modes of fluctuations are
most entangled at the critical point. Actually, we have seen that this fluctua-
tion entanglement diverges. We can therefore claim that quantumness really
is an important phenomenon at the phase transition point. It is also note-
worthy that the entanglement resides in the first momentum mode only, i.e.,
that it is a long wavelength or infrared phenomenon. The latter observation
is important for our black hole picture, where a central claim is that black
hole physics is governed by Einstein-effective-theory and not the choice of
UV-completion.

At finite particle number, the divergence in the fluctuation entanglement
is not a great quantity to consider, because the true ground state always
has zero momentum and therefore represents a quantum superposition of
solitons (at large coupling). The entanglement due to this superposition
drowns out the relevant effect. Instead, at finite particle number, we have
studied the quantum discord for two Bosons in the condensate. It has become
clear that, at large coupling, an initial measurement localizes the soliton
and the correlations are then actually classical. At the critical point, in
contrast, the initial measurement has little power to pin down the state -
the correlations are relatively strong and purely quantum. Because of the
specific way, we constructed this measure, it stays finite at the critical point,
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unlike the fluctuation entanglement. Still, it clearly points to the fact that
there exist important long range correlations in the system at criticality.

It is now an obvious challenge to experimentalists to make appropriate
measurements on ultracold atomic condensates to observe the predicted quan-
tum correlations at criticality. Entanglement, however, seems to be difficult
to quantify in the way experiments are currently conducted.

In section 2.7, we have already addressed the observational challenges
posed by the graviton condensate portrait to astronomical observations of
real-life black holes.

In the second half of this chapter, we have attacked the question of
fast scrambling in the black hole portrait. Using insights from atomic con-
densates and from quantum chaos, we have presented a plausible mecha-
nism in which higher dimensional condensates slightly past criticality natu-
rally exhibit quantum breaking during the logarithmic timescale of the fast
scrambling time. We have underpinned this using simulations in the one-
dimensional Lieb-Liniger model in analogous conditions. We have then ar-
gued that graviton condensate black holes, that are supposed to be stuck at
criticality during their evaporation and shrinking, should exhibit full-blown
fast scrambling.

We have previously pointed out a parallel between the graviton conden-
sate portrait and the BFFS matrix model of black holes. We can now apply
the new insights to matrix models. While matrix models of black holes were
already used as evidence for fast scrambling in by Sekino and Susskind [SS08],
we can now reinterpret their scrambling behavior in terms of instability and
chaos. Very recently, the Lyapunov exponent (actually the whole Lyapunov
spectrum) of the classical matrix model has been determined in numerical
simulations [GHS16] (see [ABT11] for closely related earlier studies). While
“classical scrambling” as the complete de-localization of a perturbation was
observed and attested in this work, we would like to emphasize the fact that
the observed classical instability directly implies quantum breaking and most
likely thermalization as well.

It is quite remarkable, that chaos as an important ingredient in black hole
physics has recently enjoyed much attention from an independent line of re-
search. It emanated from studies of the time evolution of the Ryu-Takayanagi
entropy in a black hole spacetime with infalling perturbations [SS14]. With
the potential of holographic computations, more investigations into the re-
lationship between black holes and chaos followed, see, e.g., [MSS15; Pol15].
We would like to take this as independent indications that chaotic behavior
plays a decisive role in the evolution of a black hole as a dynamical system.



Chapter 3

Bethe Ansatz at Large-N

3.1 Motivation
In the previous chapter, we have treated the Lieb-Liniger model as a toy
model for black hole behavior. So far, we have neglected one important
property of this system, its integrability. That is, the spectrum and energy
eigenstates can be obtained exactly from the roots of a set of transcendental
equations, the Bethe equations [LL63], - as opposed to solving the differen-
tial Schrödinger equation1. Integrability may thus serve as a fourth alterna-
tive approach to studying the model, next to the perturbative methods, nu-
meric simulations as in the previous chapter, and experiment. It has already
proven useful in the Lieb-Liniger model for the study of various properties,
such as zero-temperature correlation functions [CC07b], quenches [PDC13],
and dynamics [CC07a; KS+13] and for making a connection with the KPZ-
problem [CL14].

With another tool at hand for solving the Lieb-Liniger system, we are nat-
urally interested in probing strong collective behavior, i.e., the phase transi-
tion, again. This has not been undertaken with methods of integrability yet,
although for finite particle number, precursors to the phase transition were
observed in the numerical Bethe solution, e.g., in [SDD07; SS+05]. The po-
tential to study the phase transition in the Bethe ansatz was also mentioned
in [OL07]. In this chapter we will close this obvious gap.

In the process of solving the Bethe ansatz in the infinite particle number
limit for fixed effective coupling, we realize that there is an exact equivalence
between the ground state of the Lieb-Liniger system and two-dimensional

1For a classical system, integrability is equivalent to the existence of infinitely many
conserved quantities. About the difficulties of transferring this definition to the quantum
mechanical case, see, e.g., [CM11]
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nonabelian Yang-Mills theory in the ’t Hooft limit. The Lieb-Liniger phase
transition turns out to be exactly related to the Douglas-Kazakov phase tran-
sition of Yang-Mills [DK93], a confinement-deconfinement transition.

After a short review of the Bethe ansatz in the context of the Lieb-Liniger
model (section 3.2), we derive the large particle number limit of the Bethe
equations (s. 3.3). While this limit is quite easily obtained for repulsive
systems and has already been treated in [LL63], additional technical compli-
cations need to be overcome for attractive systems. The phase transition is
directly apparent from the solution to the Bethe equations that we present.
We calculate the ground state energy in this framework to verify the order of
the phase transition. Then we review the necessary basics of two-dimensional
Yang-Mills theory in 3.5 and state the newly obtained equivalence. We have
published the newly obtained results of sections 3.3 and 3.5 in [FFP15].

3.2 Review of the Bethe Ansatz

In this section, we will quickly review the Bethe ansatz in its application to
the Lieb-Liniger model, before we proceed to present our generalization of
the method to large particle number, in the next section.

The easiest way to obtain the Bethe equations in the current model is
the so-called coordinate-form Bethe ansatz. The solution method goes back
to H. Bethe [Bet31], who, in 1931, studied the antiferromagnetic Heisenberg
spin chain using analogous techniques. Lieb and Liniger successfully adapted
the idea to their model in [LL63] and this section roughly follows their very
clear exposition. See [KBI93] for a more complete review of the Bethe-ansatz
technique.

We will first make an ansatz for the Schrödinger wave function of an
energy eigenstate of Hamiltonian (2.10), which we repeat here for convenience
(again, we choose units in which ℏ = 2m = 1)

H = −
N∑
i=1

∂2
i − c

∑
i̸=j

δ(xi − xj) (3.1)

Whenever the coordinates xi of all N Bosons are distinct from one another,
the interaction potential is zero and the wave function is a superposition of
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plane waves in all coordinates. We therefore write

Ψ(x1, . . . , xN) =
∑
π∈SN

aπ
N∏
j=1

exp
[
i kπ(j) xj

]
for 0 ≤ x1 < · · · < xN < 2πR

(3.2)

where we have guessed that there must be a sum over all permutations, π,
of momentum assignments, but leave the momenta kj and coefficients of
each permutation aπ to be determined. Whenever the coordinates xj are not
increasing with j, the wave function is dictated by Bose symmetry. We will
later comment, whether this apparently restrictive ansatz captures all states
in the spectrum.

We will first determine the aπ in terms of the kj. Integrating the time
independent Schrödinger equation over infinitesimal intervals around ∆jl =
xj − xl = 0 produces familiar looking junction conditions

−(∂j − ∂l)Ψ
∣∣∣0+

∆jl=0−
= 2cΨ

∣∣∣
∆jl=0

(3.3)

where the superscript plus and minus indicate the directional limits; or, using
Bose symmetry,

−(∂j+1 − ∂j)Ψ = cΨ for xj = x−
j+1 (3.4)

From the sum in (3.2), focus on the terms for a certain permutation π and
of the permutation π̃ = π ◦ (j j+1), in which the elements assigned to j
and j+1 are interchanged. If (3.4) is satisfied for each such pair of terms,
it is satisfied for the total wave-function as well. For these two terms, (3.4)
reduces to

−[ikπ(j+1) − ikπ(j)] aπ − [ikπ̃(j+1) − ikπ̃(j)] aπ̃ = c (aπ + aπ̃) (3.5)

which holds, if the coefficients satisfy

aπ̃ = aπ
ikπ(j+1) − ikπ(j) + c

ikπ(j+1) − ikπ(j) − c
(3.6)

Choosing the normalization for the wave-function aid = 1, it is easy to see
that this relation implies well defined assignments for all aπ. With a bit of
counting, one can also confirm that there are enough conditions from (3.4)
for this choice of aπ to be unique up to normalization (see the original work
of Lieb and Liniger). Thus, the Bethe wave function is determined by the set
of psudo-momenta kj. Note that the relation also implies that Ψ vanishes, if
any two pseudo-momenta are equal.
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One additional step is required, however. We still need to impose the
periodic boundary conditions (2.11) with L = 2πR. Periodicity in the first
coordinate, for example, implies

Ψ(0, x2, . . . , xN) != Ψ(L, x2, . . . , xN) = Ψ(x2, . . . , xN , L) (3.7)

∂1Ψ(0, x2, . . . , xN) != ∂1Ψ(L, x2, . . . , xN) = ∂NΨ(x2, . . . , xN , L) (3.8)

where the first equality in each line expresses the periodic boundary condi-
tions and the second one is due to Bose symmetry. Because these must hold
for all choices of x2, . . . , xN and because the kj are distinct, we can identify
terms in the wave function on the left hand side and on the right hand side
that must satisfy the equality separately. The terms for

πL =
(

1 2 ... N
π(1) π(2) ... π(N)

)
and πR =

(
1 2 ... N

π(2) π(3) ... π(1)

)
(3.9)

need to satisfy the equation. Their coefficients are related by (3.6) as

aπR = aπL ×
ikπ(2) − ikπ(1) + c

ikπ(2) − ikπ(1) − c
×
ikπ(3) − ikπ(1) + c

ikπ(3) − ikπ(1) − c
× · · · (3.10)

Including the exp[ikπ(1)L] factor, we finally obtain the so-called Bethe equa-
tions for j = 1 . . . N .

eikjL =
∏
l ̸=j

kj − kl − ic

kj − kl + ic
(3.11)

They determine the allowed sets of pseudo-momemta or Bethe roots {kj}
and will be the main focus of our formal derivations presented in section
3.3. The fact that we only need to solve a set of transcendental equations
to characterize the Lieb-Liniger model as apposed to a partial differential
Schrödinger equation is one face of integrability.

At this point we should pause and take note of some relevant properties
of the Bethe states (characterized by the set roots {k}). They are, of course,
energy eigenstates with associated eigenvalue

E{k} =
∑
j

ℏ2

2m
k2
j (3.12)

and they are also momentum eigenstates with

P{k} = ℏ
∑
j

kj (3.13)

while the pseudo-momenta are not directly measurable. Therefore we will
just refer to them as Bethe roots from here on. Note also that we can shift
all kj simultaneously by multiples of 2π/L which corresponds to a Galilei
boost on the whole solution.
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3.2.1 Weak coupling limit
In the weak coupling limit c ≪ 1

NL
, by physical arguments, the Bethe

roots will deviate very little from the allowed free particle wave vectors
kj ≈ nj2π/L with integer nj. Solutions can be found for arbitrary num-
bers of roots clustered around each of the free wave vectors. Of course, the
roots still don’t coincide and we will see later that their deviations from the
free momenta are much larger than c, yet much smaller than 1/L. We can
thus persuade ourselves in the weak coupling limit that the Bethe equation
gives enough solutions to account for all states of the free particle Fock space.
By continuity2, the Bethe ansatz wave functions are therefore a complete set
of the physical Hilbert space of the system at arbitrary coupling. This com-
pleteness argument is analogous to the one formally proven by Yang and
Yang [YY69] in the case of repulsive interactions.

The roots in the weak coupling (i.e., thermodynamic) limit were already
described in [Gau71] and will later arise as a by-product of our general deriva-
tion.

3.2.2 Strong Coupling Limit Solution
In the strong coupling limit c ≫ 1

NL
, in contrast, the ground state spacing of

kj is very close to ic. The state, derived in [Tha81], is therefore also known as
a string (like “pearls on a string”). For convenience, we will index the Bethe
roots with j ∈ −N−1

2 , . . . , N−1
2 in this section. To parametrize the strong

coupling state, we introduce

kj+1 − kj ≡ i(c+ δj j+1) (3.14)

with 0 < δj ≪ c as we will see self consistently. In the Bethe equations (3.11),
the neighboring roots now dominate, giving a contribution

kj − kj−1 − ic

kj − kj−1 + ic
× kj − kj+1 − ic

kj − kj+1 + ic
≈ δj−1 j

δj j+1
(3.15)

For roots away from the center of the string, a relevant term due to the
asymmetric contribution from the boundary arises. For l such that |j − l| >
n/2 − |j|, there is no matching term from the opposite side of j, so that a
suppressed contribution remains

− n
2 +2j∏
l=− n

2

kj − kl − ic

kj − kl + ic
≈ (1 − 2j/N)2

(1 + 2j/N)2 + O(1/N) (3.16)

2In the infinite N limit, we encounter a phase transition. For any large but finite N
however, no discontinuities should occur.
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for fixed j/N at large N .
Taking both into account, we get a relation between the offsets δ

δj−1 j

δj j+1
≈ exp[−jcL+ 4 arctanh(2j/N)] (3.17)

Similar considerations determine the offset δ at the boundary of the string

e−(N−1)cL/2 ≈
δ(N−3)/2 (N−1)/2

2c
× 2
N2 (3.18)

Together, (3.17) and (3.18) determine all Bethe roots. For sufficiently large
coupling c, all offsets δ are small and the string solution is self consistently
valid.

As a note of caution, numerical simulations need to be implemented care-
fully, not to lose track of these exponentially small deviations δ, as we will
detail in section 3.4.

3.3 Continuum Limit of the Bethe Ansatz
In this section we will present a proof of our main formal result in the attrac-
tive Lieb-Liniger system, an N → ∞ formulation of the Bethe equations, as
well as its ground state solutions in the homogeneous and solitonic regimes.
The derivations in this section were all contributed by the author.

As we have discussed in 2.4.1, and in agreement with the validity of the
weak and strong coupling limits discussed in 3.2.1 and 3.2.2, the effective
coupling

g = cNL (3.19)

needs to be fixed as N → ∞ in order to preserve the phase transition. We
will use units in which L = 1 from here on.

It has been shown in [McG64] that the Bethe roots of the ground state are
purely imaginary, because the ground state is a bound state of the attractive
Bosons (of course, the soliton only forms after the phase transition). Adding
a real part to all roots corresponds to giving total momentum to the bound
state. For convenience, we will thus redefine

kj → ikj (3.20)

This redefinition contributes, for example, a negative sign to the expression
for the ground state energy (3.12) and should therefore be kept in mind.
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We arrive at a convenient form of the Bethe equations (3.11)

kj =
∑
l ̸=j

log kj − kl + g/N

kj − kl − g/N
(3.21)

where we have chosen the branch of the logarithm that corresponds to the
ground state. It is clear from the discussion of section 3.2.1 that other
branches are associated with excited states of the system (and produce Bethe
roots that are not purely imaginary).

We will show below that the Bethe equations are asymptotically satisfied,
if the roots are described by

kj ≡ g k(j/N) (3.22)

and will determine the continuous function k(x).

3.3.1 Constraint on the Root Distribution
Let us already notice a crucial constraint on the root distribution arising
from 3.21. The roots need to satisfy

|ki − kj| > g/N (3.23)

We have mentioned before that this inequality holds at weak coupling and
will see so, explicitly, below. Actually the inequality is true for all g by
continuity. Assume that, as we increase g, at some point, kj+1 − kj = g/N
for some pairs of roots. Focus on the smallest root for which the inequality
is violated. For this root, there is only one diverging term on the right hand
side of (3.21) and the Bethe equation cannot be satisfied.

In the continuum limit, this constraint implies

k′(x) ≥ 1 (3.24)

where, in the limit, the relation weakens to greater-equal.

3.3.2 The Integral Equation
We will now derive the continuum limit of the Bethe equations (3.21) for all
points where k′(x) > 0 and k′′(x) ̸= 0. For this purpose, let us split the sum
on the right hand side into a contribution from those l that fall in a given
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interval of the continuum variable y = l/N ∈ [x − ϵ, x + ϵ] around x = j/N
and the rest.

kj=xN =
ϵN∑

∆=1
log

1 + 2
N

kj−∆ + kj+∆ − 2kj
(kj+∆ − kj + g/N)(kj − kj−∆ − g/N)

+

∑
|l−j|>ϵN

log kj − kl + g/N

kj − kl − g/N
(3.25)

Although ϵ is initially arbitrary, we will consider the limit limϵ→0 limN→∞ of
going to the continuum before shrinking the interval.

Let c > 1, then, for ϵ sufficiently small, we can bound the magnitude of
the sum in the first line by

ϵN∑
∆=1

∣∣∣∣∣∣ log

1 + 2
N

ck′′(x)
min[k′(x− ϵ)2, k′(x+ ϵ)2] − 1

∣∣∣∣∣∣ (3.26)

which, in the limit N → ∞ goes to

ϵ×

 2c|k̄′′(x)|
min[k′(x− ϵ)2, k′(x+ ϵ)2] − 1

 (3.27)

and vanishes as ϵ → 0. So, for any point with k′ > 1, k′′ ̸= 0, only the second
sum in (3.25) contributes in the continuum limit.

For the sum in the second line of (3.25), the contributing root differences
become much larger than g/N as N → ∞ for any given ϵ. Therefore

lim
N→∞

log kj − kl + g/N

kj − kl − g/N
= 2g
N

1
kj − kl

(3.28)

In the continuum limit, we can then write an integral instead of the sum

g k(x) = 2
∫

[−1/2,x−ϵ)
∪(x+ϵ,1/2]

dy
1

k(x) − k(y)
(3.29)

Defining the density of roots

ρ(k) = 1
k′[x(k)]

with
∫ kmax

kmin
ρ(u)du = 1 (3.30)

we can bring the integral equation into its final form

g k = 2 P
∫ kmax

kmin
du

ρ(u)
k − u

(3.31)

where P indicates principal value integration - a remnant of the ϵ excision in
the sum. This form of the Bethe equations is the main result of this section.



3.3 Continuum Limit of the Bethe Ansatz 61

3.3.3 Homogeneous Phase Solution
The solution to the integral equation (3.31) is well known - a semi-circle
[Pip91]

ρ(k) = 1
π

√
g − g2k2

4
(3.32)

with kmax = −kmin = 2/√g. Where it does not violate the constraint, this
root distribution uniquely characterizes the state of the system. We will
later see examples, how physical observables can be calculated from this
information.

In the weak coupling limit, in agreement with section 3.2.1, all roots
deviate relatively little from the free ground state ki = 0 in comparison
to the natural momentum scale of the compactification. Furthermore, their
distances are still large compared to the constraint as assumed in section 3.3.1.

max k′ = π
√
g

(3.33)

Yet, we see that the constraint is violated for g ≥ π2 (Note that the normal-
ization of the collective coupling differs from the one in chapter 2, where the
phase transition was always at αN = 1). In the derivation of the integral
equation, we assumed that k′(x) > 1. Before we can treat the regime of
larger effective couplings, we have to revisit the situation of k′(x) ≈ 1.

3.3.4 Continuum Limit of the String
When the distance of adjacent Bethe roots is nearly saturating the constraint,
i.e., kj+1 − kj = c + δj j+1 with small δ, we have already seen that (3.17)
determines the δ. Let us translate this relation into continuum variables

δj j+1 ≡ N

g
δ(j/N) (3.34)

then
(log δ)′(x) = N [gx− 4 arctanh(2x)] (3.35)

For roots in the center, x close to zero, this implies

log δ(x) ≈ N

2
(g − 8)x2 (3.36)

Figure 3.1 shows a logarithmic plot of the δ obtained from a numeric solution
of the Bethe equations at N = 250 in the strong coupling regime (g = 16),
as well as a polynomial fit. The fit parameter nicely confirms the functional
form just obtained.
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Figure 3.1: Numerical solution to the Bethe equation for N = 250 at g =
16, which is well on the strong coupling side, parametrized by δ(x) as in
our treatment of the continuum string. The green line represents a fit of
ax2 + bx3 + c. The fit coefficient a = −1006.5 is in good agreement with
the theoretical prediction −(g − 8)N/2 = −1000 given the value of N . The
dashed line indicates the theoretical prediction for the boundary of the string
interval (see section 3.3.5).

Here we only assume that the constraint is nearly saturated for some
range of j and do not yet reason about the outermost roots as in (3.18).
Instead, let us consider the point y where the continuum function reaches
k′(y) = 1 + ϵ with ϵ > 0, but where we still trust the nearest neighbor-
only approximation. Then, as δ(x) = k′(x) − 1, we can integrate (3.35) and
determine the integration constant.

The shape of the resulting function is explicitly N dependent and tends
to zero for x < y as N is sent to infinity3. At x = y, the derivative

k′′(y) = δ′(y) = δ(y) (log δ)′(y) (3.37)
= ϵN [gx− 4 arctanh(2x)] −−−→

N→∞
∞ (3.38)

diverges in the limit.

3This check can only be completed after the fact, when we determine the interval, in
which continuum solution actually contains a string, because the arctanh contribution
could in principle change the sign of the derivative. With hindsight, we can confirm that
this doesn’t happen.
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We thus have to allow for an interval, in which the continuum root density
saturates the constraint. In this interval, the root density does not need to
obey the integral equation. At the boundaries of the interval, its derivative
must be discontinuous. By looking at the string solution again, we also know
that the interval should be centered about x = 0.

3.3.5 Solitonic Ground State
In light of the last section, we make the ansatz that the density saturates the
constraint in an interval

ρ(k) =

1 k ∈ [−b, b]
ρ̃(k) k ∈ [−a,−b) ∪ (b, a]

(3.39)

Inserting this form into (3.31) yields a modified integral equation for ρ̃

g

2
k + log k − b

k + b
= P

∫
[−a,−b]
∪[b,a]

du
ρ̃(u)
k − u

(3.40)

Luckily, the solution to this integral equation is known [DK93] and can be
derived using methods detailed in [Pip91] and contour integration. The so-
lution reads

ρ̃(k) = 2
πa|k|

√
(a2 − k2)(k2 − b2) Π1

(
b2

k2 ,
b2

a2

)
(3.41)

where Π1 is the elliptic function of the third kind (see appendix A for defini-
tions of the special functions4).

The boundaries of the interval, a and b need to be determined from the
following conditions

4 K(x) [2 E(x) − (1 − x) K(x)] = g,

ag = 4 K(x) and x = b2/a2 (3.42)

in order for (3.41) to fulfill the integral equation. E and K are elliptic func-
tions of the first and second kind.

It is interesting to note that for g → π2, the strong coupling solution
approaches the semi-circle law (3.32) so that the root distribution is a con-
tinuous function of g, even at the phase transition.

4Especially the convention regarding the square of the arguments varies across the
literature.
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Figure 3.2: Solutions of our continuum Bethe equations (green curve) in
contrast to numerical results with N = 400 (blue dots) for various values of
the effective coupling g. The root density ρ(k) is displayed as a function of
k. The bottom right plot shows a zoom to the end of the interval in which
the density saturates the constraint. A version of this plot was included
in [FFP15].
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Figure 3.3: Energy of the ground state of the Lieb-Liniger model calculated
analytically in the continuum Bethe ansatz (green curve) and numerically
for N = 400 particles. The black dashed line indicates the strong coupling
limit. A version of this plot was included in [FFP15].

3.3.6 Ground State Energy
Above, we have derived an integral equation governing the distribution of
Bethe roots in the ground state at large N and obtained analytic expressions
for the regimes g2 ≷ π2. The root distributions contain the full physical
information of the state - calculating observables from them, however, is usu-
ally nontrivial. Here we will determine the ground state energies associated
with these root distributions. They serve as a sanity check because we can
compare to the values obtained in mean-field theory (see section 2.4.1).

From (3.12), we conclude that the energy per particle is finite in the
continuum limit

ϵg = Eg
N

= −g2
∫
k2ρ(k) dk (3.43)

where the negative sign is a result of our redefinition k → ik. On the weak
coupling side, the value can easily be obtained by partial integration. On the
strong coupling side, it is beneficial to use the integral representation of Π1
and exchange the two integrals. Contour integration techniques then yield
the desired result. Using (3.42), the energy can be written in concise form

−ϵ =

g for g ≤ π2

1
48g

2
[
8(a2 + b2) + g(a2 − b2)2

]
for g > π2 (3.44)
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The order of the quantum phase transition is defined through the order
of continuity of the ground state energy. From (3.42), we can obtain a series
expansion of a and b around g ∼ π2 and insert these in (3.44) to obtain

−ϵ = g + 2
π2 (g − π2)2 + O

[
(g − π2)3

]
for g > π2 (3.45)

Thus, the ground state energy and its first derivative are continuous at the
phase transition, unlike its second derivative. So the phase transition is of
second order, as mentioned before.

As an analytic check on our results, we will verify that the ground state
energy coincides with the mean-field result as it should (see section 2.4.2) for
a discussion of the validity of mean field). The parameters x from (3.42) and
m from (2.18) are related as

x =
(

1 −
√

1 −m

1 +
√

1 −m

)2

(3.46)

Expression (3.44) can then be transformed identically into (2.20), using the
alternative evaluation relations5 for elliptic functions (17.3.29) and (17.3.30)
from [AS64].

3.4 Numerical Validation
In this section, we will perform some numerical checks to validate our results
obtained above. To this end, we solve the Bethe equations numerically for
large-but-finite N and compare the ensuing root distribution with our ana-
lytic prediction for the continuum. Below, we will first outline the numerical
techniques that we implemented, before presenting the simulation results and
comparing them with the prediction.

The method we have used is similar to the one described in the purely
numerical studies of [SDD07]. We parametrize the roots as

kj ≡ c(j + ∆j) (3.47)

Using the {∆j} as variables allows us to make good use of the floating point
format to capture the exponentially small deviations in the string solution
at strong coupling (see 3.2.2). Thus we can perform the calculations in

5We are indepted to M. Crescimanno for pointing these out.
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Figure 3.4: Deviation of the numerical finite-N root distribution (blue dots)
with respect to our continuum prediction as a function of N for various values
of the effective coupling g in a doubly logarithmic scaling. The green lines
represent power law fits to the error. A version of this plot was included
in [FFP15].

hardware supported double precision floating point numbers. As we know
that the ground state root distribution has to be symmetric, we can also save
some amount of calculation by explicitly manipulating only half of the roots.

We then minimize the sum of squared errors
∑
j

[LHSj − RHSj]2 (3.48)

where LHSj (RHSj) refer to the left (right) hand side of the j-th Bethe
equation (3.21). The minimization uses the Levenberg-Marquardt algorithm
implemented in Mathematica. Special care is required to make the algorithm
robust towards roots that overshoot and momentarily violate the bound on
their distance. Replacing

log(ki − kj ± c) → log max[(∆i − ∆j) + (i− j ± 1), ϵflt] + log c (3.49)

for i > j, with ϵflt the smallest nonzero floating point number, proved useful.
In the weak coupling regime g ≪ 1, the algorithm is quite insensitive to-

wards different choices of initial conditions and converges quickly. To obtain
solutions at strong coupling, we found it convenient to solve at weak coupling
first and track the solution, while increasing the coupling step by step. We
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Figure 3.5: Power law in N that governs the convergence of the numerical
finite-N solution to the continuum limit. A version of this plot was included
in [FFP15].

initialized each step directly by the previous solution and observed satisfac-
tory convergence speeds. Another speedup might possibly be achieved by
extrapolating in a suitable fashion for each initialization.

This setup allowed us to easily simulate systems with N ∼ 400 roots
and g significantly exceeding the phase transition on a commodity personal
computer.

The numerical roots were already displayed in fig. 3.2, where they are
hard to discern from the predicted continuum solution by eye. In the bottom-
right plot of the figure, we show a magnification of the strong coupling solu-
tion around the end of the flat section. This is, where the deviation from the
continuum solution is most marked and finite-N effects are important.

To quantify the deviations, we used the following measure

∆(N, g) = 1
N

N∑
i=1

[ki − g k(i/N)]2
∣∣∣∣
g

(3.50)

where k(x) was obtained from the analytic root density ρ(k) of (3.32, 3.39) by
numerical integration. We should remark that the inherent numerical errors
of the finite-N Bethe roots were estimated to be much smaller than these
deviations.

In fig. 3.4, the doubly logarithmic plot reveals that, for each effective cou-
pling g, the deviations decrease as a power law in N , to good approximation.
The exponent fit parameter for these power laws are reproduced in fig. 3.5.
Based on those numbers, we conjecture that the finite-N deviations scale like

∆(N, g) ∼ N−2 (3.51)

at large N .
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It may also be observed that the convergence to the continuum solution
is faster away from the critical point g = π2.

3.5 Equivalence with 2D Yang-Mills Theory
In this section we will first review some necessary basics of Yang-Mills theory
quantized on a Euclidean two-manifold. We will then point out a surprising
equivalence between the description of the large Ncolor saddle of Yang-Mills
and our continuum limit of the Bethe equations. This equivalence was not
yet known and our main reason to publish [FFP15].

3.5.1 Review of 2D Yang-Mills
The action of pure Yang-Mills theory in two dimensions has the standard
form

S = − 1
4e2

∫
M
d2x

√
g Tr[F µνFµν ] (3.52)

where Fµν is the nonabelian field strength associated with the gauge field Aµ
and e is the coupling. Below, we will focus on U(N) gauge groups. We have
already written the integral to be over a two-manifold M with metric gµν .

Like two-dimensional electromagnetism, this theory does not propagate
any degrees of freedom. It should also be noted that it is super-renormalizable.
Furthermore, it does not depend on the metric gµν , but only on the associated
measure d2x

√
det g. This fact can be readily appreciated after introducing

an auxiliary field ϕ and rewriting [DI99]

S = i

2

∫
M
d2x ϵµν Tr[Fµνϕ] − e2

2

∫
d2x

√
g Trϕ2 (3.53)

The invariance under area preserving diffeomorphisms is such a powerful
symmetry that the theory is, in fact, exactly soluble [Mig75].

Nevertheless, 2d Yang-Mills shares some important characteristics with
its higher-dimensional cousins, namely confinement and a deconfining phase
transition, and has variously served as a toy model or a theory on its own
right. It also has important applications in mathematics that we will not
elaborate here.

The concrete form of the partition function will be relevant for us, later,
so we will give a brief sketch how it comes about. The original derivation
was given by Migdal [Mig75] using a lattice regularization on R2 and general-
ized by Rusakov [Rus90] to arbitrary topologies. The outline presented here
follows a more field theoretic treatment due to Witten ([Wit91] and [DI99]).
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The only invariant constructed from the Riemannian measure is the total
area a =

∫
dx

√
g, so we can already anticipate that the partition function

can only depend on the combination ae2.
As an initial step, let us canonically quantize the theory on a cylinder

with circular equal-“time” slices of length L. The wave functional is a
gauge-invariant functional from gauge connections into C. Due to gauge
invariance it can only be a function of the holonomy of the connection
w[A] = P exp(i

∫
A1dx). It must still be invariant under the adjoint ac-

tion of the gauge group w → g w[A] g−1, or in other words, it must be a
class function. Characters provide a convenient basis of class functions and,
accordingly, we choose them as the basis for the Hilbert space.

ΨR[A] = χR(w[A]) (3.54)

The Hamiltonian is
H = e2

2

∫
dx Trπ2

1 (3.55)

which is the square of the canonical momentum. Acting as a differential
operator on the wave function gives

HΨR[A] =
∫
dx
∑
a

δ

δAa(x)
δ

δAa(x)
Tr
R
w[A] = e2L

2
c2(R) ΨR[A] (3.56)

where c2(R) is the quadratic Casimir in the representation R. Thus, ΨR

are energy eigenfunctions and the matrix element relevant for the partition
function is

⟨R|e−HT |R⟩ = e−e2a c2(R)/2 (3.57)

What remains to be done in order to calculate the partition function,
is to decompose the manifold into cylindrical patches, glue those together
and trace over all states. Invariance under area preserving diffeomorphisms
greatly simplifies the task. Consider a junction (pair-of-pants topology)
where the state on each of the three boundary circles is described by a rep-
resentation as above. For an insertion of a Casimir operator, we can deform
the metric so that the operator is close to any one of the boundaries and
effectively measures the state at the chosen boundary. Because the matrix
elements still have to agree in any case, the partition function with prescribed
boundaries can only be nonzero, when the representations on all boundaries
are equal. Because diffeomorphisms also allow us to deform the geometry
to be dominated by three cylindrical tubes, the partition function must be
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proportional to the right hand side of (3.57). See [DI99] for more detailed
derivations.

Furthermore, a cylinder may be decomposed into a pair-of-pants and a
disk. This fact allows us to fix the partition function on the disk with fixed
boundary to be proportional to (3.57) as well, with inverse proportionality
constant. Plugging these building blocks together and summing over all
representations gives the final form for the partition function

ZM =
∑
R

(dimR)2−2g e−ae2c2(R)/2 (3.58)

where (dimR) is the proportionality constant for each junction which obvi-
ously has to appear in power of the Euler characteristic of the manifold.

We have completely sidestepped issues of renormalization, which just
amount to a multiplicative renormalization of the Euler characteristic and
an additive renormalization of the quadratic Casimir for this theory. The
renormalization conditions implicitly adopted above are in line with lattice
regularization.

In [DK93], Douglas and Kazakov have constructed the large-N limit of
this partition function for U(N) gauge groups on a sphere. We will explicitly
exhibit the main steps to clarify the quantities that appear in our equivalence
with the Lieb-Liniger Bethe ansatz.

We characterize each representation of U(N) by a sequence of N decreas-
ing (and not necessarily positive) integers n1 ≥ n2 ≥ · · ·nN , the compo-
nents of highest weight. These numbers may be usefully related to either
one Young tableau with (positive) row lengths given by shifted ni or to two
Young tableaux, one defined by the set of positive, another by the negative
ni [DZ83].

All required quantities can easily be expressed in terms of the components
of highest weight:

dimR =
∏
i>j

(
1 − ni − nj

i− j

)
c2(R) =

∑
i

ni(ni − 2i+N + 1)
(3.59)

In the ’t Hooft large-N limit, the following continuum variables are intro-
duced

λ = e2N (’t Hooft coupling)
x = i/N

h(x) = (i− ni)/N − 1/2
(3.60)
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The fact that the ni are necessarily decreasing translates into a constraint on
h(x)

h′(x) ≥ 1 (3.61)

Using (3.59), the partition function (3.58) on a sphere can be rewritten as a
path integral over the row lengths of the Young tableau.

Zsphere =
∫
Dh e−N2S[h]

S[h] = −
∫
dx dy log[h(x) − h(y)] + aλ

2

∫
dx h(x)2 − aλ

24

(3.62)

In the large-N limit, the partition function is dominated by the saddle point.
The corresponding representation is determined by the following “equation
of motion”

aλ h = 2 P
∫
dv

ρ(v)
h− v

(3.63)

where we have introduced the density ρ(h) = 1/h′[x(h)] ≤ 1 to parametrize
the growth of the Young tableau.

Douglas and Kazakov also solved the resulting integral equation with
constraint and identified a third order phase transition. This confinement-
deconfinement phase transition is usually referred to as Douglas-Kazakov
transition. As the transition is triggered by varying the radius of a Euclidean
sphere, one may think of it as a thermal transition.

3.5.2 Connection Between LL and YM
In the previous section, we have reviewed the large-N limit of U(N) Yang-
Mills theory on a two-sphere. Equation (3.63), together with a constraint on
the density ρ(h), determines the dominant representation contributing to the
partition function. After introducing all this background, it is now trivial to
observe a direct equivalence with equation (3.31) governing the distribution of
Bethe roots in the ground state of the Lieb-Liniger model. Also the constraint
on the density agrees. Thus, after identifying the dimensionless combination
of area and ’t Hooft coupling aλ with the effective Lieb-Liniger coupling g,
the solutions are in one-to-one correspondence. The distribution of Bethe-
roots has the exact same behavior as the growth of the dominant Young
tableau.

Lieb-Liniger ⇔ U(Nc) Yang-Mills
N ⇔ Nc

g = cLN ⇔ aλ = e2aN
ρ(k) ⇔ ρ(h)

(3.64)
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The Douglas-Kazakov phase transition turns out to have a direct equivalent
in the homogenous/solitonic phase transition in the Lieb-Liniger model.

The appearance of the Douglas-Kazakov phase transition is all the more
exciting for it is deeply connected with random matrix theory [MS14] and
diverse other physical and mathematical questions (e.g. [FMS11; CP13]).

In this context, we should give credit to various relations between the (su-
persymmetric) Yang-Mills theory and integrable systems that have already
been reported (see, e.g., [GS04; NS09] and references therein). In the known
examples, however, the integrable system was mapped to the moduli space
of the gauge theory, and the roots were identified with eigenvalues of the
complex scalar in the vector multiplet. In our mind the existence of addi-
tional relations makes it even more intriguing to fully understand the relation
between the various theories involved. Note also that [GMN16] has already
made good use of our correspondence in conjunction with such other rela-
tions.

3.6 Outlook
In this chapter, we have concentrated on the integrability property of the
Lieb-Liniger model and formulated the Bethe ansatz equations in the large-N
limit. We have thus been able to determine the ground state of the system for
arbitrary effective coupling. We have then pointed out an exact equivalence
between the Bethe ansatz ground state of the Lieb-Liniger model and the ’t
Hooft limit of two-dimensional U(N) Yang-Mills theory on a sphere.

It is especially the potential duality that mandates further investigation.
To elevate its status from a mere mathematical curiosity, one would have
to identify a useful dictionary between physical observables on both sides.
The Wilson loops of two-dimensional Yang-Mills, for example, have been de-
termined long ago [DK94]. The remaining task, of course, is to formulate
physical observables in the continuum description and possibly identify ones
with a meaningful equivalent on the gauge theory side. A deeper under-
standing of the reason underlying the equivalence would, of course, also be
desirable.

Another future direction is to include 1/N corrections in our formalism.
Versions of the Euler-Maclaurin formula exist [Lyn85] that make it possible
to write the leading error incurred in the continuum limit in suitable form.
Carefully taking into account all possible sources of contributions suppressed
by 1/N , it should be possible to arrive at an integral equation for the sub-
leading terms of the root distribution as well. Of course, the formulation
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of observables is then complicated by similar 1/N corrections. In the end,
however, the 1/N corrections would yield answers that are not easy to come
by with mean-field and Bogoliubov techniques, and thus of genuine interest.



Chapter 4

High-Multiplicity Scattering

4.1 Motivation
It is well known that perturbation theory in quantum mechanics and field the-
ory1 only produces an asymptotic series for most physical quantities [Lip77].
The classic argument for this behavior was given by Dyson [Dys52]. He ar-
gued that, if the perturbative series had a finite radius of convergence, one
would be able to analytically continue physical quantities to small negative
couplings. We know, however, that even the vacuum of QED becomes un-
stable to electron-positron production for negative fine structure constant -
suggesting that analytic continuation is impossible. The mathematical origin
for the asymptotic growth of the terms in the perturbation series is (at least)
twofold. On the one hand, the number of Feynman diagrams contributing
to a given process grows drastically with the number of vertices in the di-
agrams. On the other hand, in field theories that require renormalization,
even the value of an individual diagram of a certain build at each order may
grow factorially after momentum integration2. We will focus on the former
in this work, also because our concrete calculations are restricted to quantum
mechanics, where renormalization is not required.

In practice, the asymptotic nature of the perturbative series does usually
not play a role in weakly coupled field theories3. The leading first few orders
of perturbation theory are sufficiently accurate to match experimental results
- compare, e.g., the impressive accuracy of the electron g − 2 prediction in
the Standard Model [GH+06]. The asymptotic growth of perturbation the-

1Similar conclusions are, of course, also reached in string theory [She90; ASV12].
2This phenomenon is known as renormalon. See [Ben99] for a review and [AU12] for

recent advances in the context of resurgence theory.
3Unless the analytic continuation to complex or large values of the coupling is sought

for [CKÜ15].
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ory is a more urgent issue for scattering amplitudes with a high multiplicity
of particles in the final or initial state, as even the leading Feynman diagram
is of high order in the coupling [Gol90; Cor90]. Motivated by the study
of lepton number violating sphaleron processes, amplitudes with high mul-
tiplicity attracted considerable attention in the early 1990s. References to
some important works of the time can be found in the reviews [Vol94; Rub95;
LRT97]. While Rubakov, Son and Tinyakov [RST92; Son96] have developed
a semiclassical technique to approximate scattering into the dominant co-
herent state, we still lack the ability to calculate more general amplitudes
with high-multiplicity final states. The associated question, how they avoid
to endanger unitarity [Zak91] is also still unresolved. These issues have be-
come more urgent, recently, as Khoze has pointed out the possibility that
high-multiplicity amplitudes of the electro-weak sector may be accessible at
future particle-colliders [Kho14; JK15].

In this chapter, we will analyze scattering amplitudes of many interacting
particles with inspiration from resurgence theory. In order to gain a better
understanding and to develop calculational techniques, we use analogs of
scattering amplitudes in low dimensional toy models (simple integrals and
quantum mechanics).

After quickly reviewing the saddle-point approximation in section 4.2 and
commenting on the quantities of interest in the model systems (s. 4.3), we
study the breakdown of perturbation theory for the quartic integral in consid-
erable detail in section 4.4. While the amplitudes of this model have received
a fair amount of attention in the past, we contribute new and concise esti-
mates about the critical coupling for the demise of the tree approximation
and the breakdown of perturbation theory. In performing resummation, we
encounter higher-order poles in the Borel-plane that point towards the possi-
bility of non-perturbative dominance. In section 4.5, we explore the possibil-
ity to obtain high-multiplicity amplitudes from tree-level information of all
saddle points, only. We succeed in all cases under considerations and find an
appealing situation in non-Borel-summable models, where a non-perturbative
(complex) saddle completely dominates the amplitudes. Some of the more
technical aspects of our derivations are collected in 4.7. The observations
of 4.4 and 4.5 will be the content of our upcoming publication [Fla16].

4.2 Review of Perturbative Series
The saddle point approximation (also referred to as “steepest descent” or
“constant phase”) is widely applied in various fields of physics. In quantum
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field theory, it is the way to obtain the perturbative series from the (Eu-
clidean) path integral. As we will study the limits to perturbation theory
and the relevance of non-perturbative contributions, it is worth to revisit the
method.

In this section, we will quickly review the saddle point method and we
point out how it naturally leads to resurgent transseries4 for physical quanti-
ties. Much of the material in this section is covered in [Din73], with references
to some more recent developments indicated specifically.

4.2.1 Saddle Point Method and Borel-Summation
As a model for a (Euclidean) path integral, consider the simple integral over
an exponential of the form

Z =
∫ ∞

−∞
dϕ e−S(ϕ) (4.1)

where the action S is assumed to fall off sufficiently quickly. If S̃ has suf-
ficiently deep minima, these (actually a certain set of saddle points) will
dominate the integral. We can make the statement more precise if there is a
small (positive) coupling constant λ, by which we can scale the exponent

Z = 1√
λ

∫ ∞

−∞
dϕ e− 1

λ
S̃(ϕ) (4.2)

with S̃(ϕ) independent of λ. The prefactor 1/
√
λ is appropriate, if the

quadratic term of S(ϕ) was canonically normalized. We will preserve the
tilde on S̃ in the following paragraphs to remind the reader of the possibly
relevant rescaling of the fields.

We will reformulate this integral and finally find that this formulation
is equivalent to standard Borel-resummed perturbation theory. Going step
by step, however, will naturally reveal that specific subleading saddle points
with their respective perturbative series need to be included as well.

As a first step, we complexify the integration variable and identify all
saddle points of the action in the complex plane. For simplicity, we will
assume the saddles are isolated. We then construct contours through the
saddle points, along which the imaginary part of the exponent is constant.

Im(S̃/λ) = const. (4.3)

4We will, however, not attempt to introduce J. Écalle’s theory in full glory, but instead
refer the reader to some mathematical review articles on the subject.
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Two such contours pass perpendicularly through each saddle point. The real
part of the exponent increases monotonically, away from the saddle point
along one of the contours and decreases along the other. In a generic situation,
the contour does not run into other saddle points. We will however come back
to this important special case, later.

We can now continuously deform the initial integration path (initially
along the real axis) in such a way that it runs along a set of constant phase
contours. The integral can thus be computed as a sum of line integrals along
constant phase contours. Not all saddle points of the action necessarily lie on
this deformed integration path, however. Figure 4.1 illustrates the procedure:
there, the integral can be computed as a sum of contour integrals along
constant phase contours I and III (through saddles A and C). The contours
of constant phase are also known as Lefschetz thimbles and Picard-Lefschetz
theory is the branch of mathematics that studies such structures.

Let us now turn to the evaluation of a single integral along the constant
phase contour γ through saddle point G. The treatment follows the elegant
outline of [BH91]. The integral can be rewritten as

Zγ = e−S̃G/λ
∫ ∞

0
ds e−s

[ √
λ

S̃ ′(ϕ+
γ (s))

−
√
λ

S̃ ′(ϕ−
γ (s))

]
(4.4)

where ϕ+/−
γ (s) are the inverse functions on the contour γ in both directions,

such that [S̃(ϕ+/−
γ (s)) − S̃G]/λ = s. One can easily check that the term in

square brackets is reproduced by another contour integral narrowly encircling
an appropriate section of the original steepest descent contour.

Zγ = e−S̃G/λ
∫ ∞

0
ds e−s

√
λ

2πi
√
s

∮
dχ

√
(S̃(χ) − S̃G)/λ
S̃(χ) − S̃G − λs

(4.5)

The square root is defined positive along one direction of the constant phase
contour and is thus negative on the other side of the branch point, repro-
ducing the necessary signs. The integrand of the second integral may be
expanded in a power series in λs.

Zγ = e−S̃G/λ
∫ ∞

0
ds e−s 1

2πi
√
s

∮
dχ

∞∑
n=0

(λs)n

(S̃(χ) − S̃G)n+1/2
(4.6)

If, on the one hand, we pull out the summation sign and perform the ds
integral first, we arrive at a series representation for Zγ. This interchange
of integration and summation is usually not legal and, consequently, the
resulting series is not convergent, but rather asymptotic (therefore no equality
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Figure 4.1: Illustration of the saddle point method with a polynomial action
S̃ with complex coefficients (explicitly: S̃ = ϕ4 − 4ϕ3 + 5ϕ2 − 2iϕ). The gray
level represents its real part (lighter is bigger). The points A, B and C are
saddle points of the action. The blue, orange and green curves are the lines
of constant imaginary part of the exponent emanating from the respective
saddles. Along the curves I, II and III, the real part of the exponent is
monotonically decreasing and renders the line integral over exp(−S̃/λ) finite.
In order to obtain the intended integration path (black arrow), contours I
and III through saddles A and C need to be summed.
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sign).

Zγ ∼
∞∑
n=0

anλ
n with an ≡ 1

2πi

∮
dχ

(n− 1/2)!
(S̃(χ) − S̃G)n+1/2

(4.7)

where the dχ integration loop may now be contracted to a small circle around
the saddle point. This is the standard perturbative series at the saddle point
G.

If, on the other hand, we only switch the dχ integration and summation
in (4.6), we get an expression that is the Borel-summation of the previous
series. This interchange of integration and summation is usually valid for at
least a certain range of s and BZγ needs to be analytically continued along
the real axis before performing the integral.

Zγ = e−S̃G/λ
∫ ∞

0
ds e−s BZγ(sλ) with BZγ(s) ≡

∞∑
0

an s
n

n!
(4.8)

Here we used the integral representation of the Euler beta function to trade
powers of s against the argument of the factorial.

So, to summarize this short review,

• the perturbative series is only asymptotic

• its Borel-summation yields the value of contour integration along one
steepest descent contour

• in order to reproduce the full integral, an appropriate set of saddle
points with their corresponding steepest descent integrals (or equiva-
lently, resummed perturbative series) needs to be taken into account.

For multi-dimensional integrals, the treatment is a bit more subtle and
logarithmic terms arise as well. More details about these issues can be found
in [How97].

The general structure of the result, consisting of power series, exponen-
tials (in the case above), and logarithms (in the more general case), is known
as a transseries of a resurgent function. On the mathematical side, Ecalle
pioneered the investigation of such structures [Eca81] (see, e.g., [Dor14] for
an accessible review and [Sau07] for a more mathematical flavor). The ap-
plication of related ideas to physics started probably independently with the
work of [Bog80; Zin81].



4.3 Amplitude-Analogs 81

4.2.2 Stokes Phenomenon and Resurgence
Let us now emphasize a relation that connects the perturbation series from
different saddle points.

When considering the Borel plane of complex parameter s, the form of
(4.4) makes clear that the integrand has poles for those s corresponding to
the difference in action with other saddle points. As long as these poles do
not lie on the positive real axis, resummation is not hampered.

Asymptotics of high derivatives of BZγ(s), i.e. late perturbative coef-
ficients an, are then dictated by the closest pole by Darboux’ lemma [Dar]
(see [KW89] for an elegant derivation). Explicitly, for a function of which the
closest singularity near zero has the form f(t) ∼ c (s0 − s)−w the derivatives
are

f (k)(0) ≈ c
k! kw−1

Γ(w) sw+k
0

(4.9)

asymptotically for large k.
A closer analysis reveals that successively better approximations to high

perturbative coefficients may be obtained by including not just the leading
order information of the adjacent saddle points, but by using the next-to-
leading, etc. information as well (see, e.g., [BDU13] for an illustrative exam-
ple). The resulting relations are known as resurgence-relations, because they
suggest that the same information is encoded in the perturbation series of all
different saddle point. A more surprising manifestation of such resurgence
has been found in quantum mechanics [ZJ04; DU14].

4.3 Amplitude-Analogs
In this section, we will introduce the amplitude analogs that we are going
to consider in the rest of this chapter. In field theory, scattering amplitudes
may be calculated from the partition function, which has the following path
integral representation

Z(j) =
∫
Dϕ exp

[
i

ℏ

(
S +

∫
ddx jϕ

)]
(4.10)

where ϕ stands for the set of fields, j for the respective sources, and S for
the local field theory action. Below, we will use units such that ℏ = 1.
Usually, Wick rotation to Euclidean space is performed to give meaning to
the formal path integral. The oscillatory exponent iS is thus replaced by the
much better convergent Euclidean action −SE. The perturbative expansion
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for Z contains all Feynman graphs. It is also useful to define the generating
functional of connected diagrams

W (j) = −i logZ(j) (4.11)

In Euclidean space, we will omit the i from this definition WE = − logZE.
Amplitudes can be obtained from this generating functional

a(p1, . . . , pN) = ∂

i ∂j(p1)
· · · ∂

i ∂j(pN)
iW (j)

∣∣∣∣∣
j=0

(4.12)

where only the momenta of the participating particles pi are indicated and
other labels like helicity are suppressed. To be precise, the quantity a, above,
is a connected Green’s function and the LSZ-theorem for the calculation of
scattering processes requires the residue of its on-shell pole in momentum-
space. We will, however, still continue to use the term “amplitude”, as is
often done in the literature.

The models that we are going to consider are “field theories” in 0 + 0 and
0+1 dimensions - the former are integrals, the latter are quantum mechanical
systems. The great advantage of using such models is that reference values
for amplitudes are available, so that new calculational techniques can be
assessed more easily.

In 0 + 0 dimensions and with a single real scalar field, the exponent of
the Euclidean action exp[−SE(ϕ)] can be regarded as a (not yet normalized)
probability distribution over the real line. Then the Euclidean partition func-
tion Z(j) is nothing but the moment-generating function for this probability
distribution. Its logarithm, W (j), is the generating function of cumulants.
Thus, the analog of high multiplicity amplitudes in 0 + 0 dimensions are
high-order cumulants. We will use the terms “cumulant” and “amplitude”
interchangeably during the discussion. These toy models are also sometimes
advertised as the zero-momentum sector of the path integral, but we would
rather like to emphasize the formal similarities.

In 0 + 1 dimensions, i.e., quantum mechanics, the connected generating
functional is closely related to the ground state energy, E0, which may be
calculated from the Euclidean partition function with periodic boundary con-
ditions in imaginary time (see e.g. [Col88]):

ZT = Tr e−HT (4.13)

Thus
E0 = − lim

T→∞

1
T

logZT (4.14)
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Of course, the partition function may just as well be calculated in the path
integral. So, high-multiplicity amplitudes have a formal analog in high deriva-
tives of the ground state energy with respect to a static source. Naturally,
the sources used for physical field theory scattering amplitudes are on-shell
and therefore time-dependent. We will however restrict ourselves to static
sources, because exact reference values can feasibly be obtained in this case.

In both, 0 + 0 and 0 + 1 dimensions, we do not ampute our amplitudes.
In both cases, the difference amounts to a finite rescaling of the source. For
field theory, more care should probably be taken.

4.4 Fate of Perturbation Theory
Here we want to gain a better understanding of the way in which perturbation
theory breaks down for high-multiplicity amplitudes. One important reason
for the breakdown is the rapidly increasing number of Feynman diagrams.
For concreteness, we choose ϕ4 integral. While this example has been con-
sidered numerous times before, e.g., [GV91; AH+01; HJ15], we nevertheless
contribute some new observations as detailed below.

Because our focus is on combinatorics, we can use a 0 + 0 dimensional
toy model, i.e., a simple integral, in place of a field theoretic path inte-
gral [CLP78].

Z(j) =
∫ ∞

−∞
dϕ exp

(
− µ2

2
ϕ2 − λ

4!
ϕ4 + jϕ

)
(4.15)

As mentioned above, the cumulants aN of this integral are the equivalents
to field theory amplitudes with N external legs. They can be computed
perturbatively, in the familiar language of Feynman diagrams, as connected
graphs where the propagators are all just 1/µ2. The combinatorics, however,
is the same as for ϕ4 field theory.

W (j) = logZ(j) =
∑
n

a2n
j2n

(2n)!
(4.16)

=
∑
n

(
atree

2n
λn−1

µ6n−4 + a1−loop
2n

λn

µ6n + · · ·
)
j2n

(2n)!
(4.17)

Because of the Z2 symmetry of the action, only even cumulants are nonzero.
Below, we will use units in which µ = 1 to simplify the results.

When using the saddle point approximation to this simple integral, just
one saddle point contributes and the theory is Borel-summable. Neverthe-
less, we expect the perturbative expansion of a2n in powers of λ to be an
asymptotic expansion, only.
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Figure 4.2: Relative error of the partial sums of the perturbative series (with
respect to reference results) as a function of loop order l in the quartic integral
with λ = 1/25. The three series of dots represent partial sums for the
cumulants with N = 6 external legs (blue, bottom-most curve), N = 16
(orange, center), and N = 26 (green, top-most).

To streamline the presentation, we will postpone the discussion of our
techniques used to calculate cumulants and their perturbative coefficients to
section 4.7.

4.4.1 Qualitative Behavior
In figure 4.2, we display the relative error of partial sums of the perturbative
series (4.17) for the cumulants as a function of loop order and for different
multiplicities N = 2n.

In a weakly coupled theory, the naive expectation would see tree level as
a first approximation, while the next few orders are expected to give sublead-
ing corrections that improve upon the result. Only if the series is summed
past the term of smallest magnitude (point of optimal truncation), does the
diverging nature beset calculations5. The figure (blue curve) confirms that
the perturbative series for small N meets this expectation.

In an intermediate regime of N (orange curve), tree level ceases to be a
good approximation to the actual result and the one-loop contribution even
exceeds tree level. Nevertheless, summing up sufficiently many perturbative
terms yields a satisfactory approximation to the cumulant. At higher loop

5Some form of this reasoning is, e.g., inherent in all tree-level unitarity arguments.
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order, the series diverges again.
For even larger values of N , no partial sum of the perturbative series is

faithful to the true cumulant (green curve).
That loop-level becomes as important as tree-level parametrically be-

fore λN = 1, has already been observed for on-threshold-production in
ϕ4-theory [Vol93], but has apparently not been widely appreciated. The
existence of the intermediate regime is noteworthy, because general consider-
ations about the validity of perturbation theory must not be taken as evidence
for the accuracy of often-used tree-level results.

Later, we will see that Borel-Padé resummation is a practical tool to ob-
tain arbitrarily good approximations in all three regimes. And in the second
half of the chapter, we will explore alternative methods to evaluate high-
multiplicity amplitudes without calculating so many perturbative orders.

4.4.2 Regime Boundaries
One important task is to determine the boundaries between the three regimes
described above, i.e., the critical value of the particle number at fixed cou-
pling or vice versa.

In order to determine the limit of validity of tree level, we can compare
the magnitude of the tree level with the one-loop contribution.

atree
2n λn−1 != a1−loop

2n λn (4.18)

As soon as the latter exceeds the former, we should not trust the tree ap-
proximation any more.

We have been able to prove a new closed-form expression for the tree-level
cumulants in the present theory

atree
2n = (−1)n−1 (3n− 3)!

(n− 1)! 6n−1 (4.19)

which at large number of particles becomes

atree
2n

n→∞−−−→ 4
3
√

3π
(2n− 2)!

(9
8

)n [ 1√
n

+ O(n−3/2)
]

(4.20)

This asymptotic form was previously obtained in [GV91; Vol92].
We have also derived an asymptotic form for the one-loop coefficient of

the cumulants
a1−loop

2n ∼ (−1)n (3n)!
n! 6n

1√
n

(4.21)
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We, thus, get the critical number of external legs N = 2n that marks the
demise of the tree level approximation

Ncrit ∝ λ−2/3 (4.22)

Numerical checks, of course, confirm this result.

It is significantly harder, to establish where perturbation theory, finally,
breaks down. By standard reasoning, optimal truncation makes sense as long
as there is a local minimum in the magnitude of the l-loop contribution with
respect to l (compare the shapes of curves in figure 4.2).

∂

∂l
a

(l)
2n λ

n−1+l = 0 (4.23)

Therefore, we use the point where this minimum disappears to determine the
second regime boundary. Alternatively, we may write

log λcrit = − min
l

∂ log a(l)
2n

∂l
(4.24)

We have found approximations for the perturbative terms al2n that become
better as the loop order is increased (see section 4.7.1). The leading-order
approximation of this sort is(

a
(l)
2n

)
lo

≈ (−1)l+n

2n+2l−2 3n+l−1
(2n+ 2l − 3)!! (4n+ 4l − 5)!!

(n+ 2l − 2)!
(4.25)

Using this expression in (4.23) and expanding for large N = 2n indicates
that the asymptotic critical relation is

Ncrit ∝ 1/λ (4.26)

with a constant of proportionality of 8/9. This is an indication rather than
a proof, because we would still need to establish that the leading order ap-
proximation (4.25) is sufficiently accurate. Instead, we will rely on numerical
calculations to corroborate this relation.

Figure 4.3 shows the critical values λcrit as a function of N , obtained us-
ing (4.24), in a doubly logarithmic plot. A linear fit to the data points is
also included. As the fit reproduces the data points extremely well, its slope
−1.006 forcefully supports the conjectured regime boundary (4.26). Even
the exponent of the intercept 0.882 is in good agreement with the constant
of proportionality obtained analytically.

To summarize,
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Figure 4.3: Critical coupling of the breakdown of perturbation theory (second
regime boundary) as a function of the multiplicity. Obtained directly from
the perturbative coefficients on the basis of (4.24). The green line is a linear fit
to the doubly-logarithmic data points that has a slope −1.006 and intercept
−0.125.

• for few external legs n ≲ O(λ−2/3), the naive assumptions about per-
turbation theory are valid.

• for intermediate values of N , tree level results may be off by many or-
ders of magnitude, but perturbation theory gives a good approximation
when sufficiently many loop orders are taken into account.

• for a large number of external legs N ≳ O(1/λ), perturbation theory
breaks down and resummation or completely different methods are re-
quired.

4.4.3 Physical Picture
While it may be too early to draw physical conclusions, the appearance of a
critical point at λN ∼ 1 allows us to highlight the parallel with the critical
point of the Bosonic system studied in the previous chapters.

We can paint a tentative physical picture for high energy scattering pro-
cesses that is consistent with our results. In a high-energy collision, one
should focus on the interaction volume. As particles are produced in the
collision, as soon as their number in the interaction volume exceeds λN ∼ 1,
we expect collective effects to become important. This may imply unstable
behavior as described in 2.8.1 and, most probably, a fast quantum break time.
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Then it is natural to expect that perturbation theory does not give useful
results any more, which is just, what we have observed.

4.4.4 Resummation
After having studied the perturbative series and its demise in so much detail,
we will now try to obtain accurate results from the perturbative coefficients.
This is an application of known techniques, but we will make an interesting
observation in the process.

As we have seen in 4.2, Borel-resummation is, in principle, suited to
obtain the exact result. A direct application of the Borel transform and a
Laplace re-transform to a truncation of the perturbative series, however, does
not improve upon the result. Together, both operations leave a polynomial
invariant. We need a more powerful method to approximate the Borel-plane
function outside its circle of convergence.

In the past, Padé approximants have already proven handy in resumma-
tion (a recent example is [AW12]), and we follow the same strategy, to find
a Padé approximant for the Borel transform of the truncated series, before
applying the inverse Laplace transform. A Padé approximant is a rational
function of the form

P(n,n)f(s) =
∑n
k=0 ak s

k

1 +∑n
k=1 bk s

k
(4.27)

that coincides with f(s) in the first 2n+ 1 Taylor coefficients. Padé approx-
imants are useful, because they can, to some extent, reconstruct the pole
structure of f , even when only a limited number of Taylor coefficients are
known. In the inverse Laplace transform, care must be taken to select an
integration path that does not miss some of the reconstructed poles.

In figure 4.4, we highlight how Borel-Padé resummation really yields ex-
tremely precise results, when many perturbative terms are included. It must,
however, also be noted that a sufficient number of terms have to be used to
achieve better than order-one results. For high-multiplicity amplitudes this
minimum number is already quite demanding.

An important observation can be made in the Borel-plane. On the neg-
ative real axis of the Borel-plane (complex variable s), there is an expected
singularity corresponding to the non-perturbative saddles of this theory. The
location of these saddles in ϕ is purely imaginary and their steepest descent
contours do not contribute directly in this model. Through resurgence rela-
tions, they are, however, strongly intertwined with late perturbative coeffi-
cients.



4.4 Fate of Perturbation Theory 89

2 4 6 8 10 12 14
l

10-6

0.001

1

ΔaN
rel

Figure 4.4: Relative error of the Borel-Padé resummation of the cumulants
as a function for the loop order to which the approximation was calculated.
The parameters match figure 4.2 with λ = 1/25 and N = 16 for the orange,
dashed curve and N = 26 for the green curve.

It is a formal, but interesting, observation that for higher cumulants, these
poles in the Borel plane are also of higher order. Which is to say, the Borel
transform of the cumulant aN generically looks like

B aN ∼ 1
(s− Snp)N/2+1 (4.28)

at the pole in the Borel parameter s. The resurgence relations have to be
adapted accordingly. To be precise, for the ϕ4-model the analytic structure
can be evaluated exactly. In this case, it is actually a pole of order N/2,
superimposed with the start of a branch cut.

The higher-order nature of the pole in the Borel plane (convolutive model),
is a reflection of the fact that the perturbation series around the “non-
perturbative” saddle starts at negative order for higher cumulants

anp
N = e−Snp

∞∑
k=0

ck λ
k−N/2 (4.29)

This in turn can be explained by the fact that the derivatives ∂/∂j also act
on the saddle action in the exponent and bring down successive inverse pow-
ers of the coupling. This phenomenon is important, because sufficiently high
inverse powers in λ can overcome the non-perturbative exponential suppres-
sion. We take it as a first indication that non-perturbative saddle points
might take center-stage for high-multiplicity amplitudes and will actually
observe this in practice in section 4.5.2.
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4.5 Resurgence of High-Mult. Amplitudes
Previously we have been occupied with the perturbative series of high mul-
tiplicity amplitudes in a zero-dimensional model. Now, we will turn to the
actual physical values of amplitudes, exemplified in integrals and a quantum
mechanical (i.e. one-dimensional) model. Quite surprisingly, we see that,
in all cases we have considered, the value of the amplitudes can be approxi-
mated with only the knowledge of the tree-level approximation to all (nonper-
turbative) saddle points. This phenomenon is quite distinct from standard
resurgence relations, that connect late perturbative orders (in the coupling)
with early terms in the expansion about nonperturbative saddles. We will,
therefore, refer to our new observation as “resurgence of high-multiplicity
amplitudes”.

First, we will again consider the quartic integral from the previous sec-
tions. Then we change the situation to be non Borel-summable and take
a closer look at cumulants of the non-degenerate double well. Finally, we
generalize this consideration to quantum mechanics and look at a quantum
mechanical particle in a non-degenerate double-well potential. In the two
latter models, the correct saddle-point approximation contains exponentially
suppressed contributions from “nonperturbative” saddles. Though still expo-
nentially suppressed, these come to dominate high multiplicity amplitudes.

While we do not yet have a unified description for the three manifestations
we studied, it is nevertheless suggestive that the phenomenon itself should
have broader import, likely also for field theoretic calculations in more than
one dimension.

4.5.1 Quartic Integral Cumulants
For a first occurrence of resurgence of high-multiplicity amplitudes, let us
consider the integral with quartic action (4.15), again. We have seen in
section 4.4.1 that perturbation theory “breaks down” for high multiplicity
amplitudes, as soon as the effective coupling λN exceeds unity. We have
also seen that the physical values of the amplitudes could still be recovered
from the perturbative series by Borel or, in practice, Borel-Padé summation
(therefore the quotation marks around the “breakdown”). The procedure,
however, was very tedious and required many terms in the perturbative series,
a requirement that would be hard to fulfill in an actual 3 + 1 dimensional
field theories.

Here we will go down another route and see how to achieve an approxi-
mation to the high order cumulants/amplitude-analogs (4.16) directly. After
the fact, we became aware that some of the arguments of the following dis-
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Figure 4.5: Numeric absolute values of the cumulants (rescaled by N !)
of the quartic integral as a function of the number of external legs N for
λ = 1/25 (blue dots). The orange line is a prediction based only on tree-level
approximations to the saddle points.

cussion were already formulated in [GV91], as we will indicate below.

In figure 4.5, we present a logarithmic plot of the reference values for the
cumulants (obtained using the techniques of 4.7.1) rescaled by N !. It is clear
that they follow an exponential law to good accuracy. The orange line is not
a fit to the data, but a prediction based only on tree-level knowledge. The
rest of this section explains, how it can be obtained.

Recall that the cumulants/amplitudes are defined as derivatives of the
generating function W (j). An asymptotic behavior of factorial-times-expo-
nential type in high derivatives is, of course, reminiscent of the Darboux
theorem (4.9), which states that high derivatives are dominated by the posi-
tion and behavior of closest pole or branch cut in the function. It remains to
be explained, however, why and where W (j) is singular in the source j. For
real values of source and the coupling, Z(j) is obviously positive and nonsin-
gular. For complex values of the source, however, the partition function Z(j)
may vanish exactly and W then incurs a logarithmic branch cut.

To understand the vanishing of Z(j), let us analyze the steepest descent
contours for the integral. For any real j, there is one saddle point on the
real line and its steepest descent path is identical to the originally intended
integration contour. If we consider purely imaginary values of the source
j = ijim, however, this saddle point moves into the complex ϕ-plane as
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Figure 4.6: Saddle points and relevant steepest descent contours in the
quartic integral (λ = 1/25) for two different values of purely imaginary source.
Before the bifurcation, all saddles lie on the imaginary axis (left for j = 4i),
after, two move out and both their steepest descent contours become relevant
(right for j = 7i).

we increase jim and the integral acquires an imaginary part. For even larger
values of jim, the perturbative saddle and one complex nonperturbative saddle
bifurcate6. Afterwards, both saddles take symmetric positions in the complex
plane and both of their steepest descent contours need to be taken into
account to calculate Z(ijim). This situation is depicted in figure 4.6.

Z(j = ijim) =
∫

I
dϕ e−Sj +

∫
II
dϕ e−Sj (4.30)

Due to the symmetry of the action in the complex ϕ-plane for purely imag-
inary source, the integrals along the two saddle point contours I and II pro-
duce values that are exactly complex conjugate to each other. Thus, Z(j) is
real and has a zero when the real part of the integrals (4.30) vanishes. The
cumulant generating function W (j) naturally has a logarithmic singularity,
there.

The associated (purely imaginary) value of j = ijcrit can be approximated
from the leading order of perturbation theory

Re
∫

I
dϕ e−Sj(ϕ)

∣∣∣∣∣
j=ijcrit

≈ Re
√√√√ 2π
S ′′
j (ϕA)

e−Sj(ϕA)
∣∣∣∣∣
j=ijcrit

!= 0 (4.31)

6This point has strong implications for the asymptotics of tree-level amplitudes as was
emphasized in [GV91].
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Equipped with the knowledge, where W (j) has a logarithmic singularity, we
can predict the asymptotics of the (even) cumulants using Darboux theorem

aN/N ! ≈ (−1)N/2+1

N jNcrit
(4.32)

In figure 4.5, we have already seen that this expression predicts the cumu-
lants very well. In table 4.1, we compare the values of jcrit determined by
a fit to reference values with the values from the leading order saddle point
approximation (4.31). Arguably the accuracy of our prediction is satisfactory
for a leading order calculation, although it seems to. Higher accuracy may,
of course, be achieved by substituting successively better approximations
in (4.31).

λ 0.1 0.05 0.02 0.01 0.005 0.002 0.0001
jcrit, ref 4.377 5.461 7.731 10.353 14.102 21.634 30.221
jcrit,pred 4.366 5.452 7.730 10.377 14.180 21.810 30.464

Table 4.1: The value of jcrit in (4.32) that determines the asymptotics of
quartic cumulants. Comparison between the numerical reference value and
the tree-level prediction.

The zero in Z(j) was already observed numerically by Goldberg and
Vaughn [GV91], who also foresaw that it would determine high multiplic-
ity amplitudes. They did, however, not realize that its position could be
predicted from appropriate tree-level information, which is the main theme
of the present discussion.

While we have expended much energy in the previous section to obtain
perturbative coefficients for the high order cumulants - even before resum-
mation -, we have now obtained a surprisingly good approximation for the
actual value of the cumulants. For this approximation, we just used the lead-
ing order perturbative coefficients of the saddle points, as well as knowledge,
how the different saddles interact.

4.5.2 Double-Well Integral Cumulants
Above we have studied the cumulants of a zero-dimensional field theory model
that is Borel-summable. We were able to approximate cumulants from knowl-
edge of the interplay of (complex) saddle points and leading order perturba-
tive information. Here we will turn to a non-Borel-summable case and see
that the situation in this model is conceptually even simpler.
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Figure 4.7: Action (or, for 0 + 0 dimensions, equivalently “potential”) as a
function of the integration variable of the zero dimensional amplitude. The
orange dot indicates the nonperturbative saddle point.

For now, we stay with a zero-dimensional model, but use a non-degenerate
double-well action (see fig. 4.7).

Z(j) =
∫ ∞

−∞
dϕ exp

(
− µ2

2
ϕ2 + τλ

3!
ϕ3 − λ2

4!
ϕ4 + jϕ

)
(4.33)

The action S(ϕ) is plotted in figure 4.7. It has a global minimum at ϕ = 0
and a local minimum. It is clear that the decomposition of the integration
path into steepest descent thimbles must take contours through both saddles
into account. A clearer view of the involved paths can be gained by adding
small imaginary parts to the parameters and the situation can be deformed
to look very similar to figure 4.1.

The partition function Z(j) can thus be written as a sum of two steepest
descent integrations. One through the absolute minimum (perturbative sad-
dle) and one associated with the second minimum (nonperturbative saddle),
where the latter contribution is exponentially suppressed exp(−Snp) by the
saddle action.

For the cumulant generating function W (j) = logZ(j), the logarithm can
be expanded, treating the nonperturbative exponential as a small parameter.
The result is a sum of all different powers of exp(−Snp), each accompanied
by a power-series in the coupling λ. A full-blown trans-series structure. To
obtain very precise results, each power-series needs to be resummed in turn.
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Figure 4.8: Comparison of contributions to the amplitudes of the zero-
dimensional non-degenerate double-well integral (4.33) with parameter
choices λ = 1/10, τ = 17/10. Empty blue circles represent numerical ref-
erence values; green dots are resummed perturbative contributions; orange
triangles are nonperturbative saddle contributions; brown inverted triangles
are contributions from the square of the non-perturbative saddle.

For our purposes, however, we will only use the tree-level approximation
to the nonperturbative contributions

a(np,1)
n = dn

djn
1√
S ′′

np
e−Snp (4.34)

and similarly for the contribution from the second nonperturbative power
a(np,2)
n .

In figure 4.8, we compare the reference values for the cumulants, shown
as blue circles, with different contributions (see section 4.7.2 for details on
the calculations). The resummed perturbative series is plotted as green dots.
The lowest order nonperturbative terms (4.34) are displayed as orange tri-
angles and the second order nonperturbative terms a(np,2)

n as brown inverted
triangles.

For very low multiplicity amplitudes, the (resummed) perturbation the-
ory agrees very well with the reference values and the error is exponentially
small - consistent with the nonperturbative saddle contribution. But what
we can clearly take away from this figure is that, for higher cumulants, the
dominant contribution comes from the nonperturbative saddle (later even
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Figure 4.9: Asymptotic behavior of the first nonperturbative contribu-
tion a(np,1)

n to the zero dimensional amplitudes. Actual values (blue curve),
as well as far asymptotics (orange, long dashes) and derivative acting repeat-
edly on exponent (green, short dashes). The small rectangle indicates the
detail visible in fig. 4.8.

the second order nonperturbative term). What is even more striking is that
the plot contains the contribution from the leading order about the saddle
point, only. The emerging picture is therefore similar to the previous model
insofar as tree level information from all saddles is sufficient. It is much sim-
pler, however, in another respect, as the contribution of the nonperturbative
saddle, alone, dominates the amplitudes.

It is also quite interesting to see how the shape of the nonperturbative
contribution a(np,1)

n comes about. Figure 4.9 illustrates its behavior. While
the far asymptotics matches the prediction from the nearest singularity in
exp(−Snp)/

√
S ′′

np using Darboux theorem, the relevant part of the curve is
explained by another effect. Acting repeatedly on the exponent with ∂/∂j
gives

a(np,1)
n ≈ 1√

S ′′
np

[∂jSnp]n e−Snp (4.35)

and reproduces the observed behavior well. This form is the counterpart to
the higher-order pole in the Borel-plane that we discussed in section 4.4.4.
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4.5.3 Quantum Mechanical Double-Well
Finally, we turn our attention to a quantum mechanical model. As dis-
cussed before, the appropriate analogs of high multiplicity amplitudes are
high derivatives of the ground state energy in a quantum mechanical system.

Previously, we have studied both, a Borel-summable and a non-Borel-
summable case and found that high multiplicity amplitudes could be deter-
mined with only leading order (in the coupling) information of all saddle
points. In the latter case, the application to quantum mechanics seems sim-
pler, as the high multiplicity amplitudes are dominated by the nonperturba-
tive contribution (in its lowest perturbative approximation) alone. We will
therefore consider a non Borel-summable case in which the nonperturbative
saddle contribution is known.

We will even take the direct generalization of the double-well example in
the form of a quantum mechanical particle in the non-degenerate double-well
potential, governed by the Hamiltonian

H = −∂2
ϕ − ϕ2 + β ϕ4 + (j0 + j)ϕ (4.36)

where a rescaling of ϕ and the energy were used to set the kinetic and har-
monic prefactors to unity, for convenience. The constant β is the quartic
coupling, while j0 is the lifting of the minima, and j the source.

It has already been found a long time ago by Balitsky and Yung that
a nonperturbative saddle point contributes in the path integral for physical
quantities, like the ground state energy [BY86]. It is well known that the
decay of a state in the false vacuum is governed by a bounce field configura-
tion (see [Col77] for a lucid explanation and the famous application to field
theory). The bounce starts in the false vacuum, runs up to the turning point
with equal potential and back again. Balitsky and Yung noticed that the
analytically continued field configuration, actually contributes as a relevant
saddle point to the path integral of the model. This complex bounce starts
in the absolute minimum and runs to a complex turning point and back
again and is illustrated in figure 4.10. It may be interpreted as a complex
instanton/anti-instanton pair and the vacuum of the non-degenerate double-
well may be viewed to contain a dilute gas of these molecules. See [BD+15]
for a recent analysis in the context of resurgence.

They explicitly calculated the contribution to the ground state energy due
to the dilute gas of these pairs. The main complication in the calculation
arises from the fact that the separation between instanton and anti-instanton
costs very little energy and cannot be treated in the Gaussian approximation.
A more thorough quasi-zero-mode integration is required. Actually, when j0
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t

ϕ

Figure 4.10: Complex saddle point field configuration of the non-degenerate
double-well (blue curve is real part; orange, dashed curve imaginary part).
It can be interpreted as an instanton/anti-instanton bound state, where the
instanton interpolates between the absolute minimum of the potential and a
complex turning point.

is reduced and the minima become degenerate, the binding potential between
instanton and anti-instanton vanishes, the molecular gas makes way for a
plasma of liberated instanton/anti-instantons and some physical effects (e.g.,
level-splitting) become suppressed by only a single instanton action.

In our conventions, the nonperturbative contribution to the ground state
energy reads

Enp = 2
− 5(j0+j)

4
√

β
+3
β

(j0+j)
2
√

β
−1
e

− 2
√

2
3β Γ

(
j0+j
2
√
β

)
cos
(
j0+j
2
√
β
π
)

× [1 + O(β)] (4.37)

The cos in our expression is the continuation of (−1)p from [BY86] to nonin-
teger p. The e··· is the standard instanton/anti-instanton suppression factor
of the double well problem. The factor 1 + O(β) is a reminder that this
expression is the leading term of yet another asymptotic series in the cou-
pling. The factor Γ(·) comes from the integration of the size “modulus” or
quasi-zero-mode.

In figure 4.11, we compare the different contributions to the amplitudes
with reference values, again. Resummed perturbative values and derivatives
of (4.37) are shown. The latter represent tree-level information of the saddle
(including, however, the quasi-zero-mode integration). Calculational details
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Figure 4.11: Comparison of contributions to the amplitudes of the quantum-
mechanical non-degenerate double-well system with parameter choices β =
1/20, j0 = 3/

√
80. Empty blue circles represent numerical reference values;

green dots are resummed perturbative contributions; orange triangles are
nonperturbative saddle contributions.

about the reference values and perturbation theory may be found in sec-
tion 4.7.2.

It is obvious that perturbation theory gives very good answers at small
coupling, where the deviations are exponentially small and approximately ex-
plained by the leading nonperturbative contribution. At larger multiplicity,
the amplitudes are, again, dominated by the nonperturbative values. The ob-
served deviations in this region are consistent with perturbative corrections
to the saddle, O(β) suppressed.

We can, again, wonder, how the qualitative behavior of the derivatives of
the nonperturbative contribution can be explained. Unlike in the previous
case, this time it is the pole in the Γ function of (4.37), that determines the
growth through the Darboux theorem. This pole at j0 + j = 0 is related
to the phase transition from the molecular gas to the plasma of instantons
and anti-instantons. Just as we have done for the figure, one may, however,
calculate the derivatives without any knowledge of this transition.

So in this quantum mechanical example, as well, tree level information of
the saddle points of the path integral was enough to determine high multiplic-
ity amplitudes. Like in the previous case, their physical value was dominated
by the contribution of the nonperturbative saddle, alone. The simplicity of
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this observation is promising for field theoretic calculations, as we will discuss
next.

4.6 Outlook
In the first half of this chapter, we have elucidated the breakdown of perturba-
tion theory due to the growing combinatorics in a field theory toy model. We
have seen that the tree level approximation cannot be trusted even before per-
turbation theory breaks down. The critical multiplicity for the breakdown of
perturbation theory is strongly reminiscent of the quantum collective effects
studied in the previous chapters. It would be very interesting to gain more
physical insight into the nature of this phenomenon for an actual field theory.

In the second half of the chapter, we have considered the physical val-
ues for the amplitudes directly. In an approach that resembled experimental
mathematics, we have been able to predict high multiplicity amplitudes in
all models under consideration to surprising accuracy. Our only input was
tree-level information of all saddle points of the respective theories. In the
non-Borel-summable models, our observation is even more striking. There,
we have found the non-perturbative saddle point, alone, to dominate high-
multiplicity amplitudes. We should stress that we were working in a “topo-
logically trivial” sector each time. So standard perturbation theory gives a
contribution, but is overwhelmed by the non-perturbative one.

We will now briefly outline, how these ideas might manifest themselves
in field theory. It seems especially promising to consider field theoretic mod-
els, in which non-perturbative (possibly complex) saddle points make a real-
valued contribution to physical quantities. Such saddles have been studied
quite intensely, recently [DU12; BP+15; BD+15], in the context of resur-
gence. Our hope is that such non-perturbative saddles would, again, domi-
nate high-multiplicity amplitudes.

The most direct application of our ideas might use the field theory of a
real scalar with a non-degenerate double-well potential. In [Vol92], Voloshin
observed that, as a function of a constant source, the energy has a branch cut.
The cut starts, where the source renders the two vacua degenerate, because
beyond that point, the original vacuum becomes meta-stable. Similar to our
argument in 4.5.1, the position of this branch cut determines high-multiplicity
amplitudes (for constant sources). It is not known, which saddle points need
to be taken into account for the path integral in the true vacuum for the non-
degenerate case7. We find it plausible that a complex saddle point similar

7There are very few field theories, for which such insights are available [Wit11].
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to the one of 4.5.3 (in form of a complex bubble) exists and contributes. If
such a solution can be constructed8, one could calculate high derivatives of
its contribution and compare to the prediction made by Voloshin9. If the
amplitudes coincide (including prefactors), this might establish the role of
the complex bubble.

We should note that our proposed method of calculating the saddle-point
contribution for small, but arbitrary, source is related to the technique using
“distorted instantons” of [LVV90]. At the same time, we need to stress that
our calculations were in the topologically trivial sector, where there was no
a-priori reason for the perturbative contribution to be sub-dominant.

In drawing a connection with our earlier investigations of black holes, we
also want to mention gravitational scattering (see [Gid13] for a review and
further references). The formation and evaporation of (micro) black holes in
particle collisions is probably also a large-N scattering process and has re-
cently been addressed in [DG+15]. Our observations about high-multiplicity
scattering may also be relevant to these problems and other forms of UV-
completion by classicalization [DG+11].

Independent of this specific application, we also want to draw attention
to the fact that high-multiplicity amplitudes seem to be a great application
for concepts of resurgence theory. They are a field of study, where non-
perturbative contributions are not just important for the sake of having a
complete understanding and cancelling exponentially suppressed imaginary
parts. Instead, the non-perturbative saddles dominate these physical quanti-
ties.

4.7 Technicalities and Proofs
In this section, we have collected the more interesting techniques and proofs
used to obtain the results of this chapter. Most of these methods represent
generalizations of known techniques.

4.7.1 Quartic Integral
First, we will present the methods for the quartic integral (4.15). We will
outline, how reference values for the cumulants were obtained. Then we will

8We have conducted some numerical experiments in this regard, with encouraging
outcome.

9The process described by us is similar to, but distinct from, scattering within the false
vacuum [Vol91].
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turn to the perturbative coefficients for the cumulants and exhibit, how they
were calculated and we will prove an exact form for the tree-level cumulants
and an asymptotic one for the one-loop cumulants. We will also study, how
perturbative coefficients at large loop-order behave.

Reference Cumulants

In calculating reference values for the cumulants of the quartic integral, we
profit from the fact that at least the normalized moments have an expression
in terms of special functions

µ̄n =
√

2 Γ(n+1
2 )

( 6
λ
)(n−1)/4 e−3λ/4 U(n+1

4 , 1
2 ,

3
2λ)

K1/4( 3
4λ)

for n ∈ 2N (4.38)

where K is the Bessel function and U the Tricomi confluent hypergeometric
function. These can then be evaluated numerically to arbitrary precision.
The odd moments naturally vanish. The reference cumulants can thus be
obtained from their standard recursion relation

an = µ̄n −
n−1∑
m=1

(
n−1
m−1

)
am µ̄n−m (4.39)

Perturbative Coefficients

In order to calculate the perturbative coefficients of the cumulants, we used a
recursion relation. The generating function W satisfies the Schwinger-Dyson
equation

− 1
µ

dW

dµ
=
(
dW

dj

)2
+ d2W

dj2 (4.40)

Similar to [AH+01], we can obtain recursive stepping equations for the cumu-
lant coefficients. After inserting the expansion (4.16) and comparing orders
in j, we get

atree
2n = 1

2n− 4

n−2∑
m=1

(
2n

2m+1

)
atree

2m+2 a
tree
2n−2m (4.41)

a1−loop
2n = 1

n

n−2∑
m=0

(
2n

2m+1

)
a1−loop

2m+2 atree
2n−2m + 1

2n
atree

2n+2 (4.42)

For the tree coefficients with n > 2 and the 1-loop coefficients. These equa-
tions are used in the closed form derivations below.
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The general form of the stepping equation for l-loop cumulant coefficients
reads

a
(l)
2n = 1

2n+ 4l − 4

[
2
n−2∑
m=0

(
2n

2m+1

)
a

(l)
2m+2a

tree
2n−2m+

l−1∑
k=1

n−1∑
m=0

(
2n

2m+1

)
a

(l−k)
2m+2a

(k)
2n−2m + a

(l−1)
2n+2

]
(4.43)

Tree-Level Cumulants

The sequence of tree level cumulants is given by the closed form expression

atree
2n = (−1)n−1 (3n− 3)!

(n− 1)! 6n−1 (4.44)

This corresponds to the integer sequence OEIS A025035 up to alternating
signs. Incidentally, these are the number of ways to group 3n− 3 objects in
triples, but we do not know a combinatorial way to relate the tree graphs to
triple-groupings.

This expression can easily be proven by induction. It obviously gives the
correct numbers up to atree

4 . Assuming that it holds up to atree
2n−2, we can

calculate the sum on the right hand side of (4.41). Note that all factors that
are powers of the form xn−1 trivially satisfy the stepping equations and are
therefore dropped.

(2n)!
2n− 4

n−2∑
m=1

(3m)! (3n− 3m− 3)!
m! (2m+ 1)! (n−m− 1)! (2n− 2m− 1)!

(4.45)

This sum can be expressed as a generalized hypergeometric function.

= (2n)!
2n− 4

3
4n− 2

(3n− 4)!
(n− 1)! (2n− 3)!

(
4F3

[
1
3 ,

2
3 ,

1
2 − n, 1 − n

3
2 ,

5
3 − n, 4

3 − n
; 1
]

− 2
)

(4.46)
For these values of hypergeometric parameters, the Clausen formula applies
and yields:

= (2n)!
2n− 4

3
4n− 2

(3n− 4)!
(n− 1)! (2n− 3)!

(
(2

3)n−1 (1)n−1 (4
3)n−1

(2)n−1 (1
3)n−1 (2

3)n−1
− 2

)
(4.47)

where (n)k is the Pochhammer symbol. This expression further simplifies to

= (3n− 3)!
(n− 1)!

, (4.48)
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completing the induction.
Asymptotically for large n, the magnitude of tree level cumulants becomes

atree
2n

n→∞−−−→ 4
3
√

3π
(2n− 2)!

(9
8

)n ( 1√
n

+ O(n−3/2)
)

(4.49)

This asymptotic form was previously obtained in [GV91] from the tree-level
generating functional and in [Vol92] from the second Schwinger-Dyson equa-
tion using semi-analytic methods.

One-Loop Cumulants

Here we will show that the one-loop cumulants are asymptotically given by

a1−loop
2n ∼ (−1)n (3n)!

n! 6n
1√
n

(4.50)

This form self-consistently satisfies the stepping equation (4.42). Inserting
the exact form of atree

2n and the asymptotics for a1−loop
2n into the stepping

equation and dividing by the left hand side, we see that the atree
2n+2 contribution

is subleading and that the sum is dominated by m close to n. We therefore
replace the summation index m → 2n−2− l and then take the limit n → ∞,
so that the right hand side becomes

8
27

∞∑
l=0

(4
3

)l (3l + 3)!
(l + 1)! (2l + 3)!

= 8
27 3F2

[
1, 4

3 ,
5
3

2, 5
2

; 1
]

= 1 (4.51)

This confirms that the asymptotic form given above is at least proportional
to the true asymptotics.

Cumulant Coefficients at High Loop

Here we will derive the approximations used for the perturbative coefficients
of the cumulants at high loop order. The partition function Z(j) is a diverg-
ing power series in λ, where each series coefficient is j dependent. When we
expand the generating function of connected graphs as a power series in λ as
well

W (j) =
∑
k

wk(j)λk ≡ logZ(j) = log
(∑

l

zl(j)λl
)

(4.52)

each of its coefficients wk is given as a linear combination of coefficients zl
with l ≤ k (we suppress the j dependence here for notational convenience).
One can imagine that if the series coefficients of Z grow fast enough, each wk
is dominated by zk of the same order. This idea is formalized in a theorem
due to Bender [Ben74; Ben75].
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Assuming that the zl satisfy the conditions of the theorem (this can be
proven easily in our case), then the coefficients wk are approximated by

wk =
r∑
i=0

dl
zk−i

z0
+ O

(zk−r−1

z0

)
(4.53)

for some r ≥ 0, where the di are expansion coefficients of

D(j) =
∑
i

diλ
i ≡ z0(j)

Z(j)
(4.54)

In practice we will only use the first few di and equally few zl for l ∼ k.
For the system studied here, we are in the comfortable situation that a

closed form expression is available for the zl

zl(j)
z0(j)

= (4l − 1)!!
l!

(−1
24

)l
exp(− j2

2 ) 1F1[2l + 1
2 ; 1

2 ; j2

2 ] (4.55)

as well as their series expansion in powers of j

zl(j)
z0(j)

=
∑
n

m̄
(l)
2n j

2n (4.56)

m̄
(l)
2n = (4l − 1)!!

l!n!
(−1

2

)n(
− 1

24

)k
2F1[2l + 1

2 ,−n; 1
2 ; 1] (4.57)

Note that this series in j actually converges and cannot be used in the theo-
rem for the asymptotic coefficients of a logarithm.

After determining the first few di as polynomials in j,

d0 = 1 (4.58)
d1 = 1

8 + 1
4j

2 + 1
24j

4 (4.59)
d2 = − 29

384 − 29
96j

2 − 7
64j

4 − 1
288j

6 + 1
1152j

8 (4.60)
d3 = 107

1024 + 321
512j

2 + 3839
9216j

4 + 145
2304j

6 − 11
9216j

8 − 5
13824j

10 + 1
82944j

12 (4.61)

however, it becomes easy to extract the sought for cumulants by picking out
appropriate (k, n) coefficients from (4.56). Note that in this process, moments
with different numbers of external legs are involved in approximating a given
cumulant.

Closed form expressions for successively better approximations to cumu-
lant coefficients with l loops are obtained:(

a
(l)
2n

)
lo approx

≈ (−1)l+n

2n+2l−2 3n+l−1
(2n+ 2l − 3)!! (4n+ 4l − 5)!!

(n+ 2l − 2)!
(4.62)
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(
a

(l)
2n

)
nlo approx

≈ (−1)l+n

2n+2l−2 3n+l−1
(2n+ 2l − 5)!! (4n+ 4l − 9)!!

(n+ 2l − 2)!
×(

(114−217n+136n2−32n3+2n4)+(−229+288n−84n2)l+(150−96n)l2−32l3
)

(4.63)

For a given number of external legs n, these approximations become better as
the loop order is increased. Thus these approximations are complementary
to the exact and asymptotic forms obtained for tree and 1-loop contributions
before.

If there is no closed-form expression for the coefficients of the moments,
one can instead substitute the asymptotic coefficients of the moments from
resurgence relations. We have verified that this method, that may prove
useful in other cases, gives satisfactory results as well.

4.7.2 Double-Well Integral

In terms of techniques, we do not have much to add for the double-well inte-
gral (4.33). We quickly comment on the adaptations for the reference values
and perturbative coefficients.

The numerical reference values are this time obtained by brute force. The
integral (4.33) is calculated numerically to very high accuracy for a set of val-
ues for j and the derivatives of W (j) are then obtained using finite-differences.
The value of the distance dj is varied to ensure that no significant error is
incurred in this step.

The perturbative coefficients of the cumulants are, again calculated using
stepping equations. These are only slightly complicated with respect to (4.43)
by the fact that odd coefficients are non-vanishing due to the cubic interaction
and different initialization conditions

atree
3 = τ atree

4 = −1 + 3τ 2 (4.64)

4.7.3 Quantum Mechanical Double-Well

Here we outline, how reference amplitudes and the perturbative coefficients
were obtained for the quantum mechanical double-well system defined by the
Hamiltonian (4.36).
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Reference Values

The reference values for the amplitudes are obtained by brute force as finite-
difference derivatives10. To this end, the Hamiltonian is diagonalized for
different values of j using standard techniques.

The orthogonal basis of Hermite functions (centered around x = 0) is
chosen. The well known recursion relations for Hermite polynomials are
then used to express the Hamiltonian as a matrix in this basis. The result is
a hermitian band matrix with entries specified by

hn,m =



2n−1
2 a−2 − 2n−1

2 a2 + 6n2−6n+3
4 βa4 m = n√

n
2 (j0 + j)a m = n+ 1

1
2

√
n2 + n

(
− a−2 − a2 + (2n+ 1)βa4

)
m = n+ 2

1
4
√
n

√
n+ 1

√
n+ 2

√
n+ 3βa4 m = n+ 4

(4.65)

Where a is a scaling factor for the x-coordinate, introduced in order to im-
prove the resulting accuracy at a given matrix-dimension. Empirically, good
results were obtained when a was chosen to minimize the first discarded
diagonal matrix entry.

The basis is truncated at sufficiently large dimension (typically 400, 600
or 800 rows were used and this number was varied to estimate the truncation
error) and the Hamiltonian is diagonalized with high floating point accuracy
using standard methods implemented in Mathematica.

Perturbative Coefficients

To determine the perturbative coefficients of amplitudes in the quantum me-
chanical double-well, the potential is expanded around its absolute minimum
and the Hamiltonian can be written as

H = −∂2
x̃ + x̃2 + λqx̃3 + λ2x̃4 + j̃x̃ (4.66)

The relation between the parameters (and energy) of (4.36) and (4.66) is
trivial to obtain.

The terms in the perturbative series were generated by the method out-
lined in [BW73], generalized to account for powers of the source j̃. When
both, the energy Ẽ, as well as the ground state wave function ψ are expanded

10The step size ∆j was varied to ensure a sufficiently small approximation error.
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in positive powers of λ and j̃,

ψ(x̃) = e−x̃2/2 ∑
a,c,f

αa,c,f j̃
aλcx̃f (4.67)

Ẽ = 1 +
∑
b,d

ϵb,d j̃
bλd (4.68)

the Schrödinger equation produces a recursion relation for the coefficients
αa,c,f of the wave function

2fαa,c,f = −(f + 1)(f + 2)αa,c,f+2 + qαa,c−1,f−3 + αa,c−2,f−4+
αa−1,c,f−1 +

∑
(b,d)∈[0,a]×[0,d]

\{(0,0),(a,c)}

2αb,d,2αa−b,c−d,f (4.69)

and the coefficients for the energy ϵb,d are identified as

ϵb,d = −2αb,d,2 (4.70)

Initialization conditions come from the convention for the normalization
of the wave function ψ(0) = 1 or

αb,d,0 = δb,0δd,0 (4.71)

and we also need
αa,c,f = 0 for f > 3c+ a (4.72)

As an example, we show several of the q-dependent coefficients of the
ground state energy ϵb,d in table 4.2.

ϵb,d d = 0 1 2 3 4
b = 0 1 0 3

4 − 11
16q

2 0 −21
16 + 171

32 q
2 − 465

256q
4

1 0 −3
4q 0 31

8 q − 33
16q

3 0
2 −1

4 0 3
4 − 27

32q
2 0 −31

8 + 477
32 q

2 − 99
16q

4

3 0 −1
8q 0 33

16q − 189
128q

3 0
4 0 0 1

16 − 9
64q

2 0 −33
32 + 729

128q
2 − 6237

2048q
4

5 0 0 0 3
16q − 27

128q
3 0

6 0 0 0 0 − 1
16 + 63

128q
2 − 189

512q
4

Table 4.2: A few of the perturbative coefficients ϵb,d for the ground state
energy (4.68) of the non-degenerate double well system.
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Conclusion

In this thesis, we have presented new results from several domains of high
energy physics that will hopefully draw more attention to collective quantum
effects in this realm. The conclusions reached here are closely in line with
those of our respective publications.

With our focus on the graviton condensate picture of black holes, we
have studied a Bosonic toy model that is also directly relevant in ultra-cold
atoms. We have provided additional evidence of the phase transition in
this system. Close to its critical point, interesting phenomena occur. Many
excited states become light - maybe a precursor to the enormous entropy of
actual black holes. We have also found quantum effects to be most significant
near the quantum critical point. This result highlights, how many particle
systems with weak two-body coupling, naively thought to behave more and
more classical as the particle number is increased, may still be essentially
quantum; a cornerstone of the graviton condensate picture of black holes.
The quantumness, here, is encoded in higher-order long-range equal-time
correlations - in contrast to more conventional spin chain systems, where
correlations at the critical point have often been observed to be between
nearest-neighbor sites. The presence of long range correlations may also be
the key to understanding how black holes can lose information during the
Hawking evaporation process. While our results do not allow us to draw
detailed conclusions about actual black hole phenomenology, they give us
renewed confidence that the long standing questions about black holes may
still find a resolution in the realm of quantized Einstein effective theory,
independently of the UV-completion of gravity.

We have also considered the question of fast information scrambling in
black holes. Inspired by the known instability of three dimensional atomic
Bose condensates, we have developed a picture for information scrambling in
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the graviton condensate portrait. It is suggestive that the system would be-
come entangled during the fast scrambling time. To strengthen the argument,
we have performed real time simulations in our toy model at an analogous
unstable point. After a quench across the phase transition, we have clearly
identified entanglement creation on a time scale that scales as logN , just the
quantum break time we argued for.

While it is reassuring that we can even find hints of scrambling in the
graviton condensate model, the proposed mechanism that posits instability
and chaos as the root causes of scrambling transcends the concrete model.
In this vein, we have pointed out the connection with matrix models of black
holes, where classical chaos has recently been confirmed numerically.

Furthermore, we have derived the continuum limit of the Bethe equations
for the attractive Lieb-Liniger model. An integral equation together with
a constraint determine the large-N distribution of Bethe roots. Solutions
to these equations have been presented for the weak and strong coupling
phases, and confirmed by numerical calculations of the Bethe roots. At
the phase transition, the functional form of the solution changes, although
the distribution itself is continuous. The ground state energy that we have
obtained from the continuum Bethe ansatz coincides with the mean-field
result, as expected. It confirms that the phase transition is of second order.

We have highlighted that the continuum root distribution reveals an ex-
act equivalence between the ground state of the Lieb-Liniger model and the
’t Hooft large Ncolor limit of Yang-Mills theory quantized on a sphere. As it
stands, the equivalence maps the Bethe root distribution to the density of
boxes in the Yang tableaux of dominant representation in Yang-Mills. So far,
we do not know, whether there is a useful dictionary between physical observ-
ables of both systems, or whether the equivalence is a mere mathematical
coincidence. Further research is necessary to implement physical quantities
in the continuum-Bethe formalism and potentially make a connection with
Yang-Mills observables.

An obvious open problem is to determine the 1/N corrections in our
formalism. While the leading order is equivalent to results from standard
Bogoliubov calculations (see, e.g., the first excited state), the first 1/N cor-
rections are much less trivial to obtain in a different way.

In the last part of this thesis, we have explored the behavior of high-
multiplicity scattering amplitudes, which may play a role in the processes
accessible at future particle colliders, but seem divergent in perturbation
theory.

First we have studied the detailed nature of the breakdown of perturba-
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tion theory for amplitudes with large particle number. In a tractable, Borel-
summable, 0+0 dimensional model, we have derived exact asymptotic forms
for tree- and one-loop amplitudes as well as approximations for high-loop
contributions. We have highlighted that the tree-level approximation ceases
to be good even before perturbation theory breaks down. This is especially
important to have in mind, when only tree level results are available and their
accuracy needs to be assessed. We have found that Borel-Padé resummation
is a practical tool to approximate the physical values of the amplitude from
the coefficients of the diverging perturbation expansion.

Inspired by the Borel-plane structure of the high-multiplicity amplitudes,
we have turned to the question of predicting the amplitudes nonperturba-
tively. In three different cases under consideration, we have been able to
approximate the amplitude by combining leading-order information about
all (also nonperturbative) saddle-points. For theories, in which nonpertur-
bative saddles contribute to the path integral, we encountered a strikingly
simple situation. We found the high-multiplicity amplitudes to be dominated
by the contribution from the nonperturbative saddle, in spite of its usual ex-
ponential suppression.

Although it is far from clear, how general the latter results are and
whether they directly translate to a field theory setting, they raise the hope,
that approximations to high-multiplicity scattering amplitudes might be ob-
tained by using the correct nonperturbative saddles in a similar fashion. In
this way, resurgence theory and the systematic exploration of nonperturba-
tive saddles find a natural application in high multiplicity amplitudes.

All in all, we have seen that collective quantum effects may play a very
important role in high-energy physics. Although the black hole graviton con-
densate portrait is still speculative, we have shown that it and its associated
collective effects yield a plausible qualitative explanation for otherwise mys-
terious phenomena, like scrambling. The way to understand and calculate
high multiplicity amplitudes, also seems intimately interwoven with the exis-
tence of collective effects. Thus we hope that this thesis represents merely a
first step. And that others will pick up the baton to more fully understand
collective quantum effects in field theory and gravity.
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Appendix

A Special Functions
For convenience and definiteness, we reproduce the definitions of special func-
tions used in this thesis. The conventions follow [MT15].

• Elliptic function of the first kind

E(x) =
∫ 1

0

√
1 − xu2 du√

1 − u2
(1)

• Elliptic function of the second kind

K(x) =
∫ 1

0

1√
1 − xu2

du√
1 − u2

(2)

• Elliptic function of the third kind

Π1(x, y) =
∫ 1

0

1
(1 − xu2)

√
1 − yu2

du√
1 − u2

(3)

• Generalized hypergeometric function

pFq

[
a1, . . . , ap
b1, . . . , bq

; x
]

=
∞∑
k=0

ck x
k (4)

with c0 = 1 and

ck+1

ck
= (k + a1) · · · (k + ap)

(k + b1) · · · (k + bq)(k + 1)
(5)

wherever this sum converges, and defined through analytic continuation
otherwise.
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