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Zusammenfassung

Diese Arbeit beschreibt den Aufbau eines neuartigen Experiments zur Produktion
eines ultrakalten Gases aus chemisch stabilen 23Na40K-Molekülen im absoluten Grundzu-
stand. Es ist zu erwarten, dass die langreichweitigen Wechselwirkungen zwischen
Grundzustandsmolekülen die Beobachtung neuer Vielteilchen-Quantenzustände und
die Simulation prototypischer Spingittermodelle zur Erforschung von Quantenmag-
netismus und Hochtemperatursupraleitern ermöglichen.

Unter anderem werden in dieser Arbeit die folgenden experimentellen Prozeduren
vorgestellt: Einfangen von 23Na40K-Atomen und Kühlung diese bis zur Quante-
nentartung, Assoziation schwach gebundener Feshbach-Moleküle und Transfer der
Feshbach-Moleküle in den molekularen Grundzustand mittels STIRAP. Dieser Trans-
fer wurde in unserem Experiment mit einer Effizienz von 60% über den Zwischenzus-
tand |d3Π, ν = 5, J = 1, Ω = 1〉 erfolgreich durchgeführt, wobei die Hyperfeinstruktur
des Zwischenzustandes nicht aufgelöst wurde.

Außerdem wird eine störungstheoretische Untersuchung der Eigenschaften eines
einkomponentigen, schwach wechselwirkenden, zweidimensionalen Gases von Fermio-
nen mit einem Dipolmoment d , welches senkrecht zur Ebene ihrer Translationsbewe-
gung ausgerichtet ist, präsentiert. Falls die Dipolmomente zu dieser Ebene gekippt
werden, wird die Wechselwirkung anisotrop. Kollektive Anregungen im stoßfreien
Regime werden in dieser Situation untersucht. Es wird weiterhin die Existenz stabiler
supersolider Zustände in einem System von bosonischen Dipolen in zwei Dimensionen
vorhergesagt, sofern eine zusätzliche abstoßende Dreikörperkontaktwechselwirkung
vorhanden ist. Diese neuartigen Quanteneffekte sollten experimentell zugänglich
sein, sobald die NaK-Grundzustandsmoleküle durch weitere evaporative Kühlung die
Quantenentartung erreichen.





Abstract

This thesis reports on the construction of a novel experimental apparatus to create
an ultracold sample of chemical stable 23Na40K polar molecules at their absolute
ground states. The long range nature of the dipolar interactions between the ground
state molecules, is expected to facilitate to observe new quantum many-body states
and to simulate prototypical lattice spin models for exploring quantum magnetism
and high Tc superconductivity.

The experimental procedures are presented in this thesis including: trapping and
cooling 23Na and 40K atoms to quantum degeneracy, associating weakly bound state
molecules with Feshbach resonances, and transferring the Feshbach molecules to the
rovibrational ground states via stimulated Raman adiabatic passage. As a result, suc-
cessful transfer has been demonstrated in our experiment with a single-path transfer
efficiency ' 60% via a hyperfine non-resolved intermediate state |d3Π, ν = 5, J =
1, Ω = 1〉.

In addition, a perturbative theoretical study on the Fermi liquid properties of a
single-component weakly-interacting two dimensional dipolar fermions with dipole
moments d oriented perpendicularly to the plane of their translational motion is
presented in the thesis. When the dipole moments are tilted with respect to the
translational plane, the effect of anisotropic interaction appears, and collective ex-
citations in the collisionless regime are studied in this configuration. Furthermore,
stable dilute supersolid states with two-dimensional bosonic dipoles are predicted to
exist with an additional three-body repulsive contact interaction. These novel quan-
tum effects should be accessible experimentally once the NaK ground state molecules
reach quantum degeneracy by further evaporative cooling.
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CHAPTER 1

Introduction

After the first creation of Bose-Einstein condensate with atomic gases[1, 2], dilute
ultracold atomic system has become a versatile and useful planform for simulating
standard condensed matter models, discovering novel quantum phases, and advancing
our knowledge of nature over the last two decades[3, 4].

Several landmark experiments have been realized with ultra cold atomic gases,
for example superfluid - Mott insulator transition in optical lattices [5], vortices
and superfluidity in both Bose[6] and Fermi gases[7], and BEC-BCS crossover with
two-component Fermi gas [8, 9]. These achievements benefit from the experimental
techniques being developed recently which allow to control the experimental param-
eters with high precision. One powerful tool is to control the interaction of atoms
via Feshbach resonances[10]. By tuning magnetic fields, an ultracold atomic system
can be made repulsive interacting (a > 0), attractive interacting (a < 0), non inter-
acting (a = 0) or strongly interacting (|a| →)∞ in a continuous manner. Secondly,
the dimensions of the systems can be controlled experimentally by using optical lat-
tices[11], ranging from 0D to 3D. Ultracold atoms in an optical lattice can be used
to test and simulate various properties of Hubbard models that has been extensively
studied in theoretical condensed matter physics[12, 13, 14].

However, ultracold atomic systems are governed by van der Waals interaction,
∼ 1/r6, which is a “short-range” interaction in 3D. At the ultracold limit, the inter-
actions between atoms can be well described by a single parameter s-wave scattering
length, a [15]. It simplifies theoretical descriptions of the system, nevertheless, limits
the scope of physics that can be investigated. For some models such as Heisen-
berg model [16] and t-J model [17] that describing quantum magnetism and high Tc
superconductivity, long range interactions over few lattice sites are required.

Therefore, it is timely to synthesis experimental techniques developed from ultra-
cold experiments, to construct a setup aiming to create a quantum system governed
by long range interactions. Ultracold polar molecular systems have been considered
to be a nice candidate: compared to ultracold Rydberg atomic systems[18], polar
molecules are expected to have longer lifetime hence are more feasible to investigate
dynamical properties. Polar molecular systems also have tunable dipole moments
compared to magnetic atoms [19, 20], so the interaction between the molecules can
be controlled by an external polarizing field.
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The interaction between polar molecules at large separation r is [21]:

U(r) =
d2

r3
(1− 3 cos2 θ), (1.1)

where d is the dipole moment of molecules and θ is the angle between r and the
dipole orientation. r∗ = md2/~2 is called dipole length characterizing the inter-
action strength between the molecules. The 1/r3 character and anisotropy of the
dipole-dipole interaction give rise to realizing novel quantum states, such as quan-
tum magnetism[22], exotic superfluidity[23, 24], and topological phases[25]. Besides
quantum many-body effects, cold and ultracold polar molecules have the applications
for precise measurement[26], quantum information process[27, 28], etc.

To date, direct cooling of chemically inert polar molecules is still not sufficient
to reach ultracold temperatures due to its complex molecular structures [26]. A
breakthrough experiment accomplished in JILA provides an alternative way to cre-
ate polar molecules near quantum degeneracy [29]. In that experiment, a weakly
bound Feshbach molecules were associated from an ultracold 40K 87Rb mixture first.
These weakly bound molecules are transferred to rovibrational ground state by using
the technique called stimulated Raman adiabatic passage (STIRAP). STIRAP is an
adiabatic process, therefore the phase space density of the sample is conserved.

The surprising discovery of chemical reactions of 40K 87Rb at ultralow temperatures
[30, 31] appeared to be a major challenge of performing further evaporation towards
quantum degeneracy. Some other bi-alkali-metal molecules like KCs, NaK, NaCs and
RbCs were predicted to be chemical stable [32].

We have chosen NaK molecules in our experiments for the following reasons,

1. Laser cooling of Na and K atoms are now standard techniques.

2. NaK ground state molecules are chemical stable, so further evaporation is pos-
sible.

3. Potassium atoms have both bosonic (39K and 41K) and fermionic (40K) isotopes,
therefore NaK molecules can either be Bosons or Fermions.

This thesis reports the theoretical studies of ultracold polar molecular systems and
the experimental effort of creating an ultracold sample of fermionic 23Na40K ground
state molecules.

As to the theoretical part, I investigate weakly interacting dilute dipolar bosonic
and fermionic gases in two dimensions. It the dilute limit, nr2

∗ � 1 (kF r∗ � 1
for fermions), analytical results can be obtained perturbatively. In addition, it is
more feasible to perform experiments in the dilute limit given the fact that most of
ultracold atomic experiments were done in this regime. In particular, I have studied
the Fermi liquid properties of dipolar fermions in 2D and obtained “Lee-Huang-Yang”
type coefficients for the equation of state. These beyond-mean-field coefficients could
be measured via in-situ imaging techniques [33, 34]. Collective excitations in the
collisionless regime, “zero sounds”, are predicted to exist in this system.
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The studies of ultracold dipolar bosonic gases may open perspective for the ob-
servation of supersolid states. This remarkable quantum phenomenon combining
superfluidity with a crystalline order has been discussed over the last half century
without a solid experimental evidence. We propose that, stable continuous space
supersolid states exist in a dilute two-dimensional dipolar bosonic system.

I further present details of the experimental apparatus we built over the last few
years. The implementation of specific experimental techniques for making degener-
ated Bose-Fermi 23Na40K mixture, associating weakly bound Feshbach molecules and
adiabatically transferring towards to the ground states, is a major part of the work
reported herein.

Our apparatus can also be used to investigate Bose polaron physics where impurity
atoms strongly interact with a Bose-Einstein condensate. Preliminary experimental
results are included in this thesis.

Outline

• In Chapter 2 Fermi liquid properties of a weakly interacting 2D gas of single-
component fermionic polar molecules with dipole moments d oriented perpen-
dicularly to the plane of their translational motion was studied. The low-energy
scattering problem with dipole-dipole interactions is solved and a perturbation
theory up to the second order of the small parameter kF r∗ is developed. Equa-
tion of states and thermodynamic quantities are obtained analytically.
This chapter is based on the publication: Fermi liquid of two-dimensional polar
molecules, Phys. Rev. A 85, 023614 (2012), which was written originally by
myself (first authorship).

• Chapter 3 focuses on the zero sound in systems where the fermionic dipoles
are tilted with respect to the plane of their translational motion (which can
be realized in our experimental apparatus). It is shown that the propagation
of zero sound is provided by both mean field and beyond mean field effects,
and the anisotropy of the sound velocity is the same as the one of the Fermi
velocity. Dynamical structure factor is calculated and the damping rate of the
zero sound is estimated to be smaller than the relaxation rate of incoherent
quasiparticle excitations.
This chapter is based on the publication: Zero sound in a two-dimensional dipo-
lar Fermi gas, Phys. Rev. A 88, 033625 (2013), which was written originally
by myself (first authorship).

• Chapter 4 considers two-dimensional bosonic dipoles oriented perpendicularly
to the plane. It is shown that continuous space supersolid states can be stabi-
lized with a three-body repulsive contact interaction in the dilute regime. The
phase diagram of the system over the whole parameter space is obtained.
This chapter is based on the publication: Stable Dilute Supersolid of Two-
Dimensional Dipolar Bosons, Phys. Rev. Lett. 115, 075303 (2015), which was
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written originally by myself (first authorship).

• Chapter 5 is dedicated to the details of the experimental apparatus and the
experimental procedures of creating ground state molecules. It is divided into
three sections detailing three major steps: making a degenerated Bose-Fermi
mixture, associating weakly bound Feshbach molecules and STIRAP transfer.

This chapter summarizes my major experimental contribution during my PhD
period. There is no result published from this experimental setup as the time of
writing this thesis. Being the first generation of this experiment, Dr. Nikolaus
W. Buchheim and I have constructed the setup together since 2011 to 2016. The
similarities between the thesis of Dr. Buchheim [123] and this thesis are due to
the great overlapping of our experimental works, which can not be identified
individually. Dr. Buchheim has agreed the rights of citing and quoting the
figures and texts appeared in this chapter from Dr. Buchheim’s thesis [123].

• Chapter 6 presents the implementation of asymptotic-bound-state (ABM) model
for 23Na40K system. This model has been used for analyzing spin characters of
the Feshbach molecules.

• Chapter 7 starts with a short background introduction of quantum impurity
problems with an emphasis on Bose polarons that fermionic 40K impurity atoms
strongly interact with a Bose-Einstein condensate. Preliminary results of in-
verse rf spectroscopy of Bose polarons are included.

• I conclude the thesis in Chapter 8, with an outlook of future experiments.
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CHAPTER 2

Fermi liquid of two-dimentional polar
molecules

In this Chapter, we study Fermi liquid properties of a weakly interacting 2D gas
of single-component fermionic polar molecules with dipole moments d oriented per-
pendicularly to the plane of their translational motion. This geometry allows the
minimization of inelastic losses due to chemical reactions for reactive molecules and,
at the same time, provides a possibility of a clear description of many-body (beyond
mean field) effects. The long-range character of the dipole-dipole repulsive inter-
action between the molecules, which scales as 1/r3 at large distances r, makes the
problem drastically different from the well-known problem of the two-species Fermi
gas with repulsive contact interspecies interaction. We solve the low-energy scatter-
ing problem and develop a many-body perturbation theory beyond the mean field.
The theory relies on the presence of a small parameter kF r∗, where kF is the Fermi
momentum, and r∗ = md2/~2 is the dipole-dipole length, with m being the molecule
mass. We obtain thermodynamic quantities as a series of expansion up to the second
order in kF r∗ and argue that many-body corrections to the ground-state energy can
be identified in experiments with ultracold molecules, like it has been recently done
for ultracold fermionic atoms. Moreover, we show that only many-body effects pro-
vide the existence of zero sound and calculate the sound velocity.

Note1: This chapter is based on the publication: Fermi liquid of two-dimensional
polar molecules, Phys. Rev. A 85, 023614 (2012), which was written originally by
myself (first authorship).

Note2: In this chapter, “we” refers to Zhenkai Lu and G. V. Shlyapnikov.

2.1. Introduction

The recent breakthrough in creating ultracold diatomic polar molecules in the ground
ro-vibrational state [29, 35, 36, 37] and cooling them towards quantum degeneracy
[29] has opened fascinating prospects for the observation of novel quantum phases
[38, 26, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 23, 50, 51, 52, 53, 54, 55]. A
serious problem in this direction is related to ultracold chemical reactions, such as
KRb+KRb⇒K2+Rb2 observed in the JILA experiments with KRb molecules [56,
30], which places severe limitations on the achievable density in three-dimensional
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samples. In order to suppress chemical reactions and perform evaporative cooling, it
has been proposed to induce a strong dipole-dipole repulsion between the molecules
by confining them to a (quasi)two-dimensional (2D) geometry and orienting their
dipole moments (by a strong electric field) perpendicularly to the plane of the 2D
translational motion [57, 58]. The suppression of chemical reactions by nearly two
orders of magnitude in the quasi 2D geometry has been demonstrated in the recent
JILA experiment [31]. At the same time, not all polar molecules of alkali atoms,
on which experimental efforts are presently focused, may undergo these chemical
reactions [32]. In particular, they are energetically unfavorable for RbCs bosonic
molecules obtained in Innsbruck [37], or for NaK and KCs molecules which are now
being actively studied by several experimental groups (see, e.g. [59]). It is thus
expected that future experimental studies of many-body physics will deal with non-
reactive polar molecules or with molecules strongly confined to the 2D regime.

Therefore, the 2D system of fermionic polar molecules attracts a great deal of in-
terest, in particular when they are in the same internal state. Various aspects have
been discussed regarding this system in literature, in particular the emergence and
beyond mean field description of the topological px+ ipy phase for microwave-dressed
polar molecules [43, 23], interlayer superfluids in bilayer and multilayer systems [44,
50, 46, 60], the emergence of density-wave phases for tilted dipoles [48, 49, 52, 53,
54]. The case of superfluid pairing for tilted dipoles in the quasi 2D geometry beyond
the simple BCS approach has been discussed in Ref. [54]. The Fermi liquid behavior
of this system has been addressed by using the Fourier transform of the dipole-dipole
interaction potential [61, 62, 49, 42, 63, 64, 54] and then employing various types of
mean field approaches, such as the Hartree-Fock approximation [49] or variational
approaches [42, 63]. It should be noted, however, that the short-range physics can
become important for the interaction between such polar molecules, since in combi-
nation with the long-range behavior it introduces a peculiar momentum dependence
of the scattering amplitude [23].

On the other hand, this is a subtle question of many-body (beyond mean field)
effects in the Fermi liquid behavior of 2D polar molecules, and it can be examined in
ultracold molecule experiments. For the case of atomic fermions, a milestone in this
direction is the recent result at ENS, where the experiment demonstrated the many-
body correction to the ground state energy of a short-range interacting two-species
fermionic dilute gas [33, 34]. This correction was originally calculated by Huang,
Lee, and Yang [65, 66] by using a rather tedious procedure. Later, it was found by
Abrikosov and Khalatnikov [67] in an elegant way based on the Landau Fermi liquid
theory [68].

In this chapter, we study a weakly interacting 2D gas of fermionic polar molecules
which are all in the same internal state. It is assumed that each molecule has an
average dipole moment d which is perpendicular to the plane of the translational
motion, so that the molecule-molecule interaction at large separations r is

U(r) =
d2

r3
=

~2r∗
mr3

, (2.1)
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where r∗ = md2/~2 is the characteristic dipole-dipole distance, and m is the molecule
mass. The value of d depends on the external electric field. At ultralow temperatures
that are much smaller than the Fermi energy, characteristic momenta of particles are
of the order of the Fermi momentum kF , and the criterion of the weakly interacting
regime is:

kF r∗ � 1. (2.2)

In this regime, the Fermi liquid properties of this system, such as the ground state
energy, compressibility, effective mass, can be written as a series of expansion in
the small parameter kF r∗. We obtain explicit expressions of these quantities up to
the second order in kF r∗, which requires us to reveal the role of the short-range
physics in the scattering properties and develop a theory beyond the mean field. Our
analysis shows that only many-body (beyond mean field) effects provide the existence
of undamped zero sound in the collisionless regime.

The chapter is organized as follows. In Section 2.2 we analyze the low-energy 2D
scattering of the polar molecules due to the dipole-dipole interaction. We obtain the
scattering amplitude for all scattering channels with odd orbital angular momenta.
The leading part of the amplitude comes from the so-called anomalous scattering,
that is the scattering related to the interaction between particles at distances of the
order of their de Broglie wavelength. This part of the amplitude corresponds to
the first Born approximation and, due to the long-range 1/r3 character of the dipole-
dipole interaction, it is proportional to the relative momentum k of colliding particles
for any orbital angular momentum l. We then take into account the second Born
correction, which gives a contribution proportional to k2. For the p-wave scattering
channel it is necessary to include the short-range contribution, which together with
the second Born correction leads to the term behaving as k2 ln k. In Section 2.3,
after reviewing the Landau Fermi liquid theory for 2D systems, we specify two-
body (mean field) and many-body (beyond mean field) contributions to the ground
state energy for 2D fermionic polar molecules in the weakly interacting regime. We
then calculate the interaction function of quasiparticles on the Fermi surface and,
following the idea of Abrikosov-Khalatnikov [67], obtain the compressibility, ground
state energy, and effective mass of quasiparticles. In Section 2.4 we calculate the zero
sound velocity and stress that the many-body contribution to the interaction function
of quasiparticles is necessary for finding the undamped zero sound. In Section 2.5,
we conclude and emphasize that the 2D gas of fermionic polar molecules represents a
novel Fermi liquid, which is promising for revealing many-body effects. Moreover, we
show that with present facilities it is feasible to obtain this system in both collisionless
and hydrodynamic regimes. We also summarize some recent development of this
subject based on various theoretical tools, such as quantum Monte-Carlo, variational
methods, etc.

2.2. Low-energy scattering of fermionic polar molecules in 2D
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2.2.1. General relations

We first discuss low-energy two-body scattering of identical fermionic polar molecules
undergoing the 2D translational motion and interacting with each other at large
separations via the potential U(r) (2.1). The term “low-energy” means that their
relative momenta satisfy the inequality kr∗ � 1. In order to develop many-body
theory for a weakly interacting gas of such molecules, we need to know the off-shell
scattering amplitude defined as [15],

f(k′, k) =

∫
exp(−ik′r)U(r)ψ̃k(r)d2r, (2.3)

where ψ̃k(r) is the true wavefunction of the relative motion with momentum k. It is
governed by the Schrödinger equation [15],

(
−~2

m
∆ + U(r)

)
ψ̃k(r) =

~2k2

m
ψ̃k(r). (2.4)

For |k′| = |k| we have the on-shell amplitude which enters an asymptotic expression
for ψk(r) at r →∞ [15, 23]:

ψ̃k(r) = exp(ikr)− m

~2

√
i

8πkr
f(k,ϕ) exp(ikr), (2.5)

with ϕ being the scattering angle, i.e. the angle between the vectors k′ and k.
The wavefunction ψ̃k(r) can be represented as a sum of partial waves ψ̃l(k, r)

corresponding to the motion with a given value of the orbital angular momentum l:

ψ̃k(r) =
∞∑

l=−∞
ψ̃l(k, r)il exp(ilϕ). (2.6)

Using the relation

exp(ikr) =

∞∑

l=−∞
ilJl(kr) exp[il(ϕk − ϕr)], (2.7)

where Jl is the Bessel function, and ϕk and ϕr are the angles of the vectors k and r
with respect to the quantization axis. Eqs. (2.6) and (2.7) allow one to express the
scattering amplitude as a sum of partial-wave contributions:

f(k′, k) =

∞∑

l=−∞
exp(ilϕ)fl(k

′, k), (2.8)
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with the off-shell l-wave amplitude given by

fl(k
′, k) =

∫ ∞

0
Jl(k

′r)U(r)ψ̃l(k, r)2πrdr. (2.9)

Similar relations can be written for the on-shell scattering amplitude:

f(k,ϕ) =
∞∑

l=−∞
exp(ilϕ)fl(k), (2.10)

fl(k) =

∫ ∞

0
Jl(k

′r)U(r)ψ̃l(k, r)2πrdr. (2.11)

The asymptotic form of the wavefunction of the l-wave relative motion at r →∞
may be represented as

ψ̃l(k, r) ∝ cos(kr − π/4 + δl(k))√
kr

, (2.12)

where δl(k) is the scattering phase shift. This is obvious because in the absence of
scattering the l-wave part of the plane wave exp(ikr) at r →∞ is (kr)−1/2 cos(kr −
π/4). Comparing Eq. (2.12) with the l-wave part of Eq. (2.5) we obtain a relation
between the partial on-shell amplitude and the phase shift:

fl(k) = −4~2

m

tan δl(k)

1− i tan δl(k)
. (2.13)

Note that away from resonances the scattering phase shift is small in the low-
momentum limit kr∗ � 1.

For the solution of the scattering problem it is more convenient to normalize the
wavefunction of the radial relative motion with orbital angular momentum l in such
a way that it is real, and for r →∞ one has:

ψl(k, r) = [Jl(kr)− tan δl(k)Nl(kr)] ∝ cos(kr − lπ/2− π/4 + δl(k)), (2.14)

where Nl is the Neumann function. One checks straightforwardly that

ψ̃l(k, r) =
ψl(k, r)

1− i tan δl(k)
.

Using this relation the off-shell scattering amplitude (2.9) can be represented as

fl(k
′, k) =

f̄l(k
′, k)

1− i tan δl(k)
, (2.15)

where f̄l(k
′, k) is real and follows from Eq. (2.9) with ψ̃l(k, r) replaced by ψl(k, r).
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Setting k′ = k we then obtain the related on-shell scattering amplitude:

f̄l(k, k) ≡ f̄l(k) = −4~2

m
tan δl(k). (2.16)

2.2.2. Low-energy p-wave scattering

As we will see, the slow 1/r3 decay of the potential U(r) at sufficiently large distances
makes the scattering drastically different from that of short-range interacting atoms.
For identical fermionic polar molecules, only the scattering with odd orbital angular
momenta l is possible. For finding the amplitude of the p-wave scattering in the
ultracold limit, kr∗ � 1, we employ the method developed in Ref. [23] and used
there for the scattering potential containing an attractive 1/r3 dipole-dipole tail. We
divide the range of distances into two parts: r < r0 and r > r0, where r0 is in the
interval r∗ � r0 � k−1. In region I where r < r0, the p-wave relative motion of two
particles is governed by the Schrödinger equation with zero kinetic energy:

− ~2

m

(
d2ψI
dr2

+
1

r

dψI
dr
− ψI
r2

)
+ U(r)ψI = 0. (2.17)

At distances where the potential U(r) already acquires the form (2.1), the solution
of Eq. (2.17) can be expressed in terms of growing and decaying Bessel functions:

ψI(r) ∝
[
AI2

(
2

√
r∗
r

)
+K2

(
2

√
r∗
r

)]
. (2.18)

The constant A is determined by the behavior of U(r) at short distances where
Eq. (2.1) is no longer valid. If the interaction potential U(r) has the form (2.1) up
to very short distances, then A = 0, so that for r → 0 equation (2.18) gives an
exponentially decaying wavefunction.

It should be noted here that for the quasi 2D regime obtained by a tight confinement
of the translational motion in one direction, we can encounter the situation where
r∗ . l0, with l0 being the confinement length. However, we may always select r0 �
l0 if the condition kl0 � 1 is satisfied. Therefore, our results for the 2D p-wave
scattering obtained below in this section remain applicable for the quasi2D regime.
The character of the relative motion of particles at distances r . l0 is only contained
in the value of the coefficient A, and the extra requirement is the inequality kl0 � 1.

At large distances, r > r0, the relative motion is practically free and the potential
U(r) can be considered as perturbation. To zero order, the relative wavefunction is
given by

ψ
(0)
II (r) = J1(kr)− tan δI(k)N1(kr), (2.19)

where the phase shift δI(k) is due to the interaction between particles in region I.
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Equalizing the logarithmic derivatives of ψI(r) and ψ
(0)
II at r = r0 we obtain:

tan δI =−πk
2r0r∗
8

[
1+

r∗
r0

(
2C− 1

2
−2A+ln

r∗
r0

)]
, (2.20)

with C = 0.5772 being the Euler constant.
We now include perturbatively the contribution to the p-wave scattering phase shift

from distance r > r0. In this region, to first order in U(r), the relative wavefunction
is given by

ψ
(1)
II (r) = ψ

(0)
II (r)−

∫ ∞

r0

G(r, r′)U(r′)ψ
(0)
II (r′)2πr′dr′, (2.21)

where the Green function for the free p-wave motion obeys the radial equation:

−~2

m

(
d2

dr2
+

1

r

d

dr
− 1

r2
+ k2

)
G(r, r′) =

δ(r − r′)
2πr

.

For the normalization of the relative wavefunction chosen in Eq. (2.14), we have:

G(r, r′) = − m

4~2





ψ
(0)
II (r′)N1(kr), r > r′

ψ
(0)
II (r)N1(kr′). r < r′

(2.22)

Substituting this Green function into Eq. (2.21) and taking the limit r →∞, for the
first order contribution to the phase shift we have:

tan δ
(1)
1 (k)=tan δI(k)− m

4~2

∫ ∞

r0

[ψ
(0)
II (r)]2U(r)2πrdr. (2.23)

Using Eqs. (2.19) and (2.20) we then obtain:

tan δ
(1)
1 (k)=−2kr∗

3
−πk

2r2
∗

8

(
−2A+2C+ln

r∗
r0
− 3

2

)
. (2.24)

To second order in U(r), we have the relative wavefunction:

ψ
(2)
II (r) = ψ

(1)
II (r) +

∫ ∞

r0

G(r, r′)U(r′)2πr′dr′

×
∫ ∞

r0

G(r′, r′′)U(r′′)ψ
(0)
II (r′′)2πr′′dr′′. (2.25)

Taking the limit r → ∞ in this equation we see that including the second order
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contribution, the scattering phase shift becomes:

tan δ1(k) = tan δ(1)(k)− m2

8~4

∫ ∞

r0

ψ
(0)
II (r)2U(r)2πrdr

×
∫ ∞

r
N1(kr′)U(r′)ψ

(0)
II (r′)2πr′dr′. (2.26)

As we are not interested in terms that are proportional to k3 or higher powers of

k, we may omit the term tan δI(k)N1(kr) in the expression for ψ
(0)
II (r). Then the

integration over dr′ leads to:

tan δ1(k) = tan δ
(1)
1 (k)− (πkr∗)

2

2

∫ ∞

kr0

J2
1 (x)

x2
dx

×
[2

3
x (N0(x)J2(x)−N1(x)J1(x))− 1

2
N0(x)J1(x) +

1

6
N1(x)J2(x)− 1

πx

]

(2.27)

For the first four terms in the square brackets, we may put the lower limit of inte-
gration equal to zero and use the following relations:

∫ ∞

0
J3

1 (x)N1(x)
dx

x
= − 1

4π
,

∫ ∞

0
J2

1 (x)J2(x)N0(x)
dx

x
=

1

8π
,

∫ ∞

0
J3

1 (x)N0(x)
dx

x2
=

1

16π
,

∫ ∞

0
J2

1 (x)J2(x)N1(x)
dx

x2
= − 1

16π
.

For the last term in the square brackets we have:

∫ ∞

kr0

J2
1 (x)

dx

x3
≈ 1

16
− C

4
+

ln 2

4
− 1

4
ln kr0. (2.28)

We then obtain:

tan δ1(k) = tan δ
(1)
1 (k)− π(kr∗)

2

8

[
7

12
+ C − ln 2 + ln kr0

]

= −2kr∗
3
− πk2r2

∗
8

ln ξkr∗, (2.29)

where:

ξ = exp

(
3C − ln 2− 11

12
− 2A

)
. (2.30)

Using Eqs. (2.16) and (2.29) we represent the on-shell p-wave scattering amplitude
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f̄1(k) in the form:

f̄1(k) = f̄
(1)
1 (k) + f̄

(2)
1 (k), (2.31)

with

f̄
(1)
1 (k) =

8~2

3m
kr∗ (2.32)

and

f̄
(2)
1 (k) =

π~2

2m
(kr∗)

2 ln ξkr∗. (2.33)

The leading term is f̄
(1)
1 (k) ∝ k. It appears to first order in U(r) and comes from

the scattering at distances r ∼ 1/k. This term can be called “anomalous scattering”

term (see [15]). The term f
(2)
1 (k) ∝ k2 ln ξkr∗ comes from both large distances ∼ 1/k

and short distances. Note that the behavior of the wavefunction at short distances
where U(r) is no longer given by Eq. (2.1), is contained in Eq. (2.29) only through
the coefficient ξ under logarithm.

2.2.3. Scattering with |l| > 1

The presence of strong anomalous p-wave scattering, i.e. the scattering from inter-
particle distances ∼ 1/k, originates from the slow 1/r3 decay of the potential U(r) at
large r. The strong anomalous scattering is also present for partial waves with higher
l. In this section we follow the same method as in the case of the p-wave scattering
and calculate the amplitude of the l-wave scattering with |l| > 1. For simplicity we
consider positive l, having in mind that the scattering amplitude and phase shift
depend only on |l|.

To zero order in U(r), the wavefunction of the l-wave relative motion at large
distances r > r0 is written as:

ψ
(0)
l(II)(k, r) =

[
Jl(kr)− tan δl(I)(k)Nl(kr)

]
, (2.34)

where δl(I)(k) is the l-wave scattering phase shift coming from the interaction at

distances r < r0. We then match ψ
(0)
l(II)(k, r) at r = r0 with the short-distance

wavefunction ψl(I)(r) which follows from the Schrödinger equation for the l-wave
relative motion in the potential U(r) at k = 0. This immediately gives a relation:

tan δl(I)(k) =
kJ ′l (kr0)− wlJl(kr0)

kN ′l (kr0)− wlNl(kr0)
, (2.35)

where the momentum-independent quantity wl is the logarithmic derivative of ψl(I)(r)
at r = r0. Since we have the inequality kr0 � 1, the arguments of the Bessel functions
in Eq. (2.35) are small and they reduce to Jl(x) ∼ xl , Nl(x) ∼ x−l. This leads to
tan δl(I)(k) ∼ (kr0)2l. Thus, the phase shift coming from the interaction at short

distances is of the order of (kr0)2l. As we confine ourselves to second order in k, we
may put tan δl(I)(k) = 0 for the scattering with |l| > 1.
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Then, like for the p-wave scattering, we calculate the contribution to the phase
shift from distances r > r0 by considering the potential U(r) as perturbation. To
first and second order in U(r), at r > r0 we have similar expressions as Eq. (2.23),
(2.25) for the relative wavefunction of the l-wave motion. Following the same method
as in the case of the p-wave scattering and retaining only the terms up to k2, for the
first order phase shift we have:

tan δ
(1)
l (k) = − m

4~2

∫ ∞

r0

[ψ
(0)
l(II)(r)]

2U(r)2πrdr

' −πkr∗
2

∫ ∞

kr0

J2
l (x)

1

x2
dx = − 2kr∗

4l2 − 1
. (2.36)

The second order phase shift is:

tan δ
(2)
l (k) = −m

2

8~4

∫ ∞

r0

ψ
(0)
l(II)(r)

2U(r)2πrdr ×
∫ ∞

r
Nl(kr

′)U(r′)ψ
(0)
l(II)(r

′)2πr′dr′

' −(πkr∗)
2

2

∫ ∞

kr0

J2
l (x)

x2
dx

∫ ∞

x

Nl(y)Jl(y)

y2
dy, (2.37)

and we may put the lower limit of integration equal to zero. For the integral over dy,
we obtain :

∫ ∞

x

Nl(y)Jl(y)

y2
dy

=
1

2l(2l − 1)
Jl(x)Nl−1(x) +

1

2l(2l + 1)
Jl+1(x)Nl(x)

+
2x

4l2 − 1

[
Nl−1(x)Jl+1(x)−Jl(x)Nl(x)

]
− 1

πlx
. (2.38)

Then, using the relations:

∫ ∞

0

J2
l (x)

x3
dx =

1

4l(l2 − 1)
,

∫ ∞

0

J2
l (x)

x
Nl−1(x)Jl+1(x)dx =

1

4l(l + 1)π
,

∫ ∞

0

J3
l (x)

x
Nl(x)dx = − 1

4l2π
,

∫ ∞

0

J2
l (x)

x2
Jl(x)Nl−1(x)dx =

1

8l2(l + 1)π
,

∫ ∞

0

J2
l (x)

x2
Jl+1(x)Nl(x)dx = − 1

8l2(l + 1)π
,
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we find the following result for the second order phase shift:

tan δ
(2)
l (k) =

3π(kr∗)
2

8

1

l(l2 − 1)(4l2 − 1)
. (2.39)

So, the total phase shift is given by

tan δl(k) = tan δ
(1)
l (k) + tan δ

(2)
l (k) = − 2kr∗

4l2 − 1
+

3π(kr∗)
2

8l(l2 − 1)(4l2 − 1)
. (2.40)

Then, according to Eq. (2.16) the on-shell scattering amplitude f̄l(k) is

f̄l(k) = f̄
(1)
l (k) + f̄

(2)
l (k), (2.41)

where

f̄
(1)
l (k) =

8~2kr∗
m

1

4l2 − 1
, (2.42)

f̄
(2)
l (k) = −3π~2

2m
(kr∗)

2 1

|l|(l2 − 1)(4l2 − 1)
. (2.43)

Note that Eqs. (2.42) and (2.43) do not contain short-range contributions as those
are proportional to k2|l| and can be omitted for |l| > 1.

2.2.4. First order Born approximation and the leading part of the scattering
amplitude

As we already said above, in the low-momentum limit for both |l| = 1 and |l| > 1 the

leading part of the on-shell scattering amplitude f̄l(k) is f̄
(1)
l (k) and it is contained in

the first order contribution from distances r > r0. For |l| > 1 it is given by Eq. (2.42)

and follows from Eq. (2.36) with ψ
(0)
l(II) = Jl(kr). In the case of |l| = 1 this leading

part is given by Eq. (2.32) and follows from the integral term of Eq. (2.23) in which

one keeps only J1(kr) in the expression for ψ
(0)
II (r). This means that f̄

(1)
l (k) actually

follows from the first order Born approximation.

The off-shell scattering amplitude can also be represented as f̄l(k
′, k) = f̄

(1)
l (k′, k)+

f̄
(2)
l (k′, k), and the leading contribution f̄

(1)
l (k′, k) follows from the first Born approx-

imation. It is given by Eq. (2.9) in which one should replace ψ̃l(k, r) by Jl(kr):

f̄
(1)
l (k′, k) =

∫ ∞

0
Jl(kr)Jl(kr

′)U(r)2πrdr. (2.44)

Note that it is not important that we put zero for the lower limit of the integration,
since this can only give a correction which behaves as k2 or a higher power of k.
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Then, putting U(r) = ~2r∗/mr
3 in Eq. (2.44), we obtain:

f̄
(1)
l (k′, k) =

π~2

m

Γ(l − 1/2)√
π

klr∗
(k′)l−1

F

(
−1

2
,−1

2
+ l, 1 + l,

k2

k′2

)
, (2.45)

where F is the hypergeometric function. The result of Eq. (2.45) corresponds to
k < k′, and for k > k′ one should interchange k and k′.

For identical fermions the full scattering amplitude contains only partial amplitudes
with odd l. Since the scattered waves with relative momenta k′ and −k′ correspond
to interchanging the identical fermions, the scattering amplitude can be written as
(see, e.g. [15]):

f̃(k′, k) = f(k′, k)− f(−k′, k). (2.46)

Then, according to equation (2.10) one can write:

f̃(k′, k) = 2
∑

l odd

fl(k
′, k) exp(ilϕ). (2.47)

In the first Born approximation there is no difference between fl(k
′, k) and f̄l(k

′, k)
because tan δl(k) in the denominator of Eq. (2.15) is proportional to k and can be

disregarded. Therefore, one may use f̄
(1)
l (k′, k) of Eq.(2.45) for fl(k

′, k) in Eq. (2.47).

One can represent f̃(k′, k) in a different form recalling that in the first Born approx-
imation we have:

f(k′, k) =

∫
U(r) exp[i(k− k′)r]d2r. (2.48)

Performing the integration in this equation, with U(r) given by Eq. (2.1), and using
Eq. (2.46) we obtain:

f̃(k′, k) =
2π~2r∗
m

{|k + k′| − |k− k′|}. (2.49)

Equation (2.49) is also obtained by a direct summation over odd l in Eq. (2.47), with
fl(k

′, k) following from Eq. (2.45).

2.3. Thermodynamical quantities at T = 0

2.3.1. General relations of Fermi liquid theory

Identical fermionic polar molecules undergoing a two-dimensional translational mo-
tion and repulsively interacting with each other via the potential (2.1) represent a
2D Fermi liquid. General relations of the Landau Fermi liquid theory remain similar
to those in 3D (see, e.g. [68]). The number of “dressed” particles, or quasiparti-
cles, is the same as the total number of particles N , and the (quasi)particle Fermi
momentum is

kF =

√
4πN

S
, (2.50)
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where S is the surface area. At T = 0 the momentum distribution of free quasipar-
ticles is the step function

n(k) = θ(kF − k), (2.51)

i.e. n(k) = 1 for k < kF and zero otherwise.The chemical potential is equal to the
boundary energy at the Fermi circle, µ = εF ≡ ε(kF ).

The quasiparticle energy ε(k) is a variational derivative of the total energy with
respect to the distribution function n(k). Due to the interaction between quasipar-
ticles, the deviation δn of this distribution from the step function (3.5) results in the
change of the quasiparticle energy:

δε(k) =

∫
F (k, k′)δn(k′)

d2k′

(2π)2
. (2.52)

The interaction function of quasiparticles F (k, k′) is thus the second variational
derivative of the total energy with regard to n(k). The quantity δn(k) is signifi-
cantly different from zero only near the Fermi surface, so that one may put k = kFn
and k′ = kFn′ in the arguments of F in Eq. (3.6), where n and n′ are unit vectors in
the directions of k and k′. The quasiparticle energy near the Fermi surface can be
written as:

ε(k) = εF + ~vF (k − kF ) +

∫
F (k, k′)δn(k′)

d2k′

(2π)2
. (2.53)

The quantity vF = ∂ε(k)/~∂k|k=kF is the Fermi velocity, and the effective mass of a
quasiparticle is defined as m∗ = ~kF /vF . It can be obtained from the relation (see
[68]):

1

m
=

1

m∗
+

1

(2π~)2

∫ 2π

0
F (θ) cos θdθ, (2.54)

where θ is the angle between the vectors n and n′, and F (θ) = F (kFn, kFn′).
The compressibility κ at T = 0 is given by [68]:

κ−1 =
N2

S

∂µ

∂N
. (2.55)

The chemical potential is µ = εF , and the variation of µ due to a change in the
number of particles can be expressed as

δµ =

∫
F (kFn, k′)δn(k′)

d2k′

(2π)2
+
∂εF
∂kF

δkF . (2.56)

The quantity δn(k′) is appreciably different from zero only when k′ is near the Fermi
surface, so that we can replace the interaction function F by its value on the Fermi
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surface. Then the first term of Eq. (2.56) becomes

∫
F (θ)

dθ

2π

∫
δn(k′)

d2k′

(2π)2
=

δN

2πS

∫
F (θ)dθ.

The second term of Eq. (2.56) reduces to

∂εF
∂kF

δkF =
~2kF
m∗

δkF =
2π~2

m∗
δN

S
. (2.57)

We thus have (see [68]):

∂µ

∂N
=

1

2πS

∫ 2π

0
F (θ)dθ +

2π~2

m∗S
=

2π~2

mS
+

1

2πS

∫ 2π

0
(1− cos θ)F (θ)dθ. (2.58)

Equation (2.58) shows that the knowledge of the interaction function of quasiparticles
on the Fermi surface, F (θ), allows one to calculate ∂µ/∂N and, hence, the chemical
potential µ = ∂E/∂N and the ground state energy E. This elegant way of finding the
ground state energy has been proposed by Abrikosov and Khalatnikov [67]. It was
implemented in Ref. [67] for a two-component 3D Fermi gas with a weak repulsive
contact (short-range) interspecies interaction.

We develop a theory beyond the mean field for calculating the interaction function
of quasiparticles for a single-component 2D gas of fermionic polar molecules in the
weakly interacting regime. We obtain the ground state energy as a series of expansion
in the small parameter kF r∗ and confine ourselves to the second order. In this sense
our work represents a sort of Lee-Huang-Yang [65, 66] and Abrikosov-Khalatnikov
[67] calculation for this dipolar system. As we will see, the long-range character of
the dipole-dipole interaction makes the result quite different from that in the case of
short-range interactions.

2.3.2. Two-body and many-body contributions to the ground state energy

We first write down the expression for the kinetic energy and specify two-body (mean
field) and many-body (beyond mean field) contributions to the interaction energy.
The Hamiltonian of the system reads:

Ĥ=
∑

k

~2k2

2m
â†kâk+

1

2S

∑

k1,k2,q

U(q)â†k1+qâ
†
k2−qâk2 âk1 , (2.59)

where â†k and âk are creation and annihilation operators of fermionic polar molecules,
and U(q) is the Fourier transform of the interaction potential U(r):

U(q) =

∫
d2rU(r)e−iq·r, (2.60)
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The first term of Eq. (2.59) represents the kinetic energy and it gives the main
contribution to the total energy E of the system. This term has only diagonal matrix
elements, and using the momentum distribution (3.5) at T = 0 we have:

Ekin
S

=

∫ kF

0

~2k2

2m

2πkdk

(2π)2
=

~2k4
F

16m
. (2.61)

The interaction between the fermionic molecules is described by the second term
in Eq. (2.59) and compared to the kinetic energy it provides a correction to the total
energy E. The first order correction is given by the diagonal matrix element of the
interaction term of the Hamiltonian:

E(1) =
1

2S

∑

k1,k2,q

U(q)〈â†k1+qâ
†
k2−qâk2 âk1〉 =

1

2S

∑

k1,k2

[U(0)− U(k2 − k1)]nk1nk2 .

(2.62)
The second order correction to the energy of the state |j〉 of a non-interacting system
can be expressed as:

E
(2)
j =

∑

m 6=j

VjmVmj
Ej − Em

, (2.63)

where the summation is over eigenstates |m〉 of the non-interacting system, and Vjm
is the non-diagonal matrix element. In our case the symbol j corresponds to the
ground state and the symbol m to excited states. The non-diagonal matrix element
is

Vjm=
1

2S

〈
m

∣∣∣∣∣∣
∑

k1,k2,q

U(q)â†k1+qâ
†
k2−qâk2 âk1

∣∣∣∣∣∣
j

〉
. (2.64)

This matrix element corresponds to the scattering of two particles from the initial
state k1, k2 to an intermediate state k′1, k′2, and the matrix element Vmj describes
the reversed process in which the two particles return from the intermediate to initial
state. Taking into account the momentum conservation law k1 + k2 = k′1 + k′2 the
quantity VjmVmj = |Vjm|2 is given by

|Vjm|2 =
1

(2S)2
nk1nk2(1− nk′1)(1− nk′2)×

∣∣U(k′1 − k1)− U(k′2 − k1)
∣∣2 , (2.65)

and the second order correction to the ground state energy takes the form:

E(2) =
1

(2S)2

∑

k1,k2,k′1

[
∣∣U(k′1 − k1)− U(k′2 − k1)

∣∣2 ×
nk1nk2(1− nk′1)(1− nk′2)

~2(k2
1 + k2

2 − k′21 − k′22 )/2m

]
.

(2.66)
From Eq. (2.66) we see that the second order correction diverges because of the term

proportional to nk1nk2 , which is divergent at large k′1. This artificial divergence is
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eliminated by expressing the energy correction in terms of a real physical quantity, the
scattering amplitude. The relation between the Fourier component of the interaction
potential and the off-shell scattering amplitude is given by [15]:

f(k′, k) = U(k′ − k) +
1

S

∑

k′′

U(k′ − k′′)f(k′′, k)

(Ek − Ek′′ − i0)
, (2.67)

where Ek = ~2k2/m and Ek′′ = ~2k′′2/m are relative collision energies. Obviously,
we have: Ek − Ek′′ = ~2(k1

2 + k2
2 − k′′1

2 − k′′2
2)/2m, with k1, k2 (k′′1, k′′2) being

the momenta of colliding particles in the initial (intermediate) state, as the relative
momenta are given by k = (k1 − k2)/2, k′′ = (k′′1 − k′′2)/2. We thus can write:

U(k′− k)=f(k′,k)− 2m

~2S

∑

k′′1

U(k′−k′′)f(k′′,k)

k2
1+k2

2−k′′21 −k′′22 −i0
. (2.68)

Then, putting k′ = k we have

U(0) = f(k, k)− 2m

~2S

∑

k′′1

U(k− k′′)f(k′′, k)

k2
1 + k2

2 − k′′21 − k′′22 − i0
,

and setting k′ = −k we obtain

U(k2−k1) = f(−k, k)− 2m

~2S

∑

k′′1

U(−k−k′′)f(k′′, k)

k2
1+k2

2−k′′21 −k′′22 −i0
,

Using these relations the first order correction (2.62) takes the form:

E(1) =
1

2S

∑

k1,k2

[f(k, k)− f(−k, k)]nk1nk2

− 1

2S2

∑

k1,k2,k′1

[U(k−k′)−U(−k−k′)]f(k′, k)

~2(k2
1+k2

2−k′21 −k′22 −i0)/2m
nk1nk2 . (2.69)

The quantity [U(k− k′)−U(−k− k′)] in the second term of Eq. (2.69), being ex-
panded in circular harmonics exp(ilϕ) contains terms with odd l. Therefore, partial
amplitudes with even l in the expansion of the multiple f(k′, k) vanish after the inte-
gration over d2k′. Hence, this amplitude can be replaced by [f(k′, k)− f(k′,−k)]/2.
As we are interested only in the terms that behave themselves as ∼ k or ∼ k2,
the amplitudes in the second term of Eq. (2.69) are the ones that follow from
the first Born approximation and are proportional to k. Therefore, we may put
[U(k− k′)− U(−k− k′)] = [f(k, k′)− f(−k, k′)] and f(k′, k) = f∗(k, k′). Then the
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first order correction takes the form:

E(1) =
1

2S

∑

k1,k2

[f(k, k)− f(−k, k)]nk1nk2 −
1

(2S)2

×
∑

k1,k2,k′1

|f(k′, k)−f(k′,−k)|2

~2(k2
1+k2

2−k′21 −k′22 −i0)/2m
nk1nk2 . (2.70)

Using the expansion of the full scattering amplitude in terms of partial amplitudes
as given by Eq. (2.47) we represent the first order correction as

E(1) =
1

S

∑

k1,k2

∑

l odd

fl(k)nk1nk2 −
1

S2

∑

k1,k2

∑

l odd

×
∫

d2k′

(2π)2

f2
l (k)

~2(k2
1+k2

2−k′21 −k′22 −i0)/2m
nk1nk2 . (2.71)

The contribution of the pole in the integration over d2k′ in the second term of
Eq. (2.71) gives imf2

l (k)/4~2 for each term in the sum over k1, k2, and l, and we

may use here the amplitude f̄
(1)
l (k). In the first term of Eq. (2.71) we should use

fl(k) = f
(1)
l (k) + f

(2)
l (k). However, we may replace f

(2)
l by f̄

(2)
l because the account

of tan δ(k) in the denominator of Eq. (2.15) leads to k3 terms and terms containing

higher powers of k. For the amplitude f
(1)
l (k), we use the expression:

f
(1)
l (k) = f̄

(1)
l + i tan δ(k)f̄

(1)
l = f̄

(1)
l − im[f̄

(1)
l ]2/4~2,

which assumes a small scattering phase shift. The second term of this expression,
being substituted into the first line of Eq. (2.71), exactly cancels the contribution
of the pole in the second term of (2.71). Thus, we may use the amplitude f̄l in the
first term of equation (2.71) and take the principal value of the integral in the second
term. The resulting expression for the first order correction reads:

E(1) =
1

S

∑

k1,k2

f̄(k)nk1nk2−
1

(2S)2
×

∑

k1,k2,k′1

2m|f(k, k′)− f(−k, k′)|2

~2(k2
1 + k2

2 − k′21 − k′22 )
nk1nk2 , (2.72)

where f̄(k) =
∑

l odd f̄l(k).
The second order correction (2.66) can also be expressed in terms of the scattering

amplitude by using Eq.(2.67). Replacing U(k1 − k′1) = U(k− k′) and U(k′2 − k1) =
U(−k− k′) by f(k′, k) and f(−k, k′), respectively, we have:

E(2) =
1

(2S)2

∑

k1,k2,k′1

[ |f(k′, k)− f(k′,−k)|2

~2(k2
1 + k2

2 − k′21 − k′22 )/2m
× nk1nk2(1− nk′1)(1− nk′2)

]
.

(2.73)
Note that the divergent term proportional to nk1nk2 in Eq. (2.73) and the (diver-
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gent) second term of Eq. (2.72) exactly cancel each other, and the sum of the first
and second order corrections can be represented as E(1) +E(2) = Ẽ(1) + Ẽ(2), where

Ẽ(1) =
1

S

∑

k1,k2

f̄(k)nk1nk2 , (2.74)

and

Ẽ(2) =
1

(2S)2

∑

k1,k2,k′1

{ |f(k′, k)− f(k′,−k)|2

~2(k2
1 + k2

2 − k′21 − k′22 )/2m
×nk1nk2 [(1−nk′1)(1−nk′2)− 1]

}
.

(2.75)
The term Ẽ(1) originates from the two-body contributions to the interaction energy
and can be quoted as the mean field term. The term Ẽ(2) is the many-body contri-
bution, which is beyond mean field.

It is worth noting that the term proportional to the product of four occupation
numbers vanishes because its numerator is symmetrical and the denominator is anti-
symmetrical with respect to an interchange of k1, k2 and k′1, k′2. The terms containing
a product of three occupation numbers, nk1nk2nk′1 and nk1nk2nk′2 are equal to each
other because the denominator is symmetrical with respect to an interchange of k′1
and k′2. We thus reduce Eq. (2.75) to

Ẽ(2)=− 1

2S2

∑

k1,k2,k′1

2m|f(k′, k)−f(k′,−k)|2

~2(k2
1+k2

2−k′21−k′22 )
nk1nk2nk′1 . (2.76)

Equations (2.74) and (2.76) allow a direct calculation of the ground state energy.
With respect to the mean field term Ẽ(1) this is done in Appendix A.1. However, a
direct calculation of the many-body correction Ẽ(2) is even a more tedious task than
in the case of two-component fermions with a contact interaction. We therefore turn
to the Abrikosov-Khalatnikov idea of calculating the ground state energy (and other
thermodynamic quantities) through the interaction function of quasiparticles on the
Fermi surface.

2.3.3. Interaction function of quasiparticles

The interaction function of quasiparticles F (k, k′) is the second variational derivative
of the total energy with respect to the distribution nk. The kinetic energy of our
system is linear in nk (see Eq. (2.59)), and the second variational derivative is related
to the variation of the interaction energy Ẽ. We have [68]:

δẼ =
1

2S

∑

k,k′

F (k, k′)δnkδnk′ , (2.77)

where Ẽ = Ẽ(1) + Ẽ(2), and the quantities Ẽ(1) and Ẽ(2) are given by equations
(2.74) and (2.76). On the Fermi surface we should put |k| = |k′| = kF , so that the
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interaction function will depend only on the angle θ between k and k′. Hereinafter
it will be denoted as F̃ (θ).

The contribution F̃ (1)(θ) = 2SδẼ(1)/δnkδnk′ is given by

F̃ (1)(θ) = 2f

(
|k− k′|

2

)
= 2

∑

l odd

f̄l

(
kF | sin

θ

2
|
)

, (2.78)

where f̄l = f̄
(1)
l + f̄

(2)
l , and the amplitudes f̄

(1)
l and f̄

(2)
l follow from Eqs. (2.32) and

(2.33) at |l| = 1, and from Eqs. (2.42), (2.43) at |l| > 1. We thus may write equation
(2.42),

f̄
(1)
l (k) =

8~2

m

1

4l2 − 1
kr∗,

for any odd l, and

f̄
(2)
l (k) =

π~2

2m
(kr∗)

2 ×

{
ln(ξkr∗); |l| = 1

− 3
|l|(l2−1)(4l2−1)

; |l| > 1

with ξ from Eq. (2.30). Making a summation over all odd l we obtain:

f̄ (1)(k) =
∑

l odd

f
(1)
l (k) =

2π~2

m
kr∗, (2.79)

f̄ (2)(k)=
∑

l odd

f
(2)
l (k)=

π~2

m
(kr∗)

2

[
ln(ξkr∗)−

25

12
+3ln 2

]
. (2.80)

Putting k = kF | sin(θ/2)| and substituting the results of equations (2.79) and (2.80)
into Eq. (2.78) we find:

F̃ (1)(θ) =
4π~2kF r∗

m
| sin θ

2
|+ 2~2

m
(kF r∗)

2

× π sin2 θ

2

[
ln |ξr∗kF sin

θ

2
| − 25

12
+ 3 ln 2

]
. (2.81)

The many-body correction (2.76) we represent as Ẽ(2) = Ẽ
(2)
1 + Ẽ

(2)
2 , where

Ẽ
(2)
1 =−8(π~r∗)2

mS2

∑

k1,k2,k′1

|k′1−k1|2

k2
1+k2

2−k′21 −k′22
nk1nk2nk′1, (2.82)

Ẽ
(2)
2 =

8(π~r∗)2

mS2

∑

k1,k2,k′1

|k1−k′1|·|k2−k′1|
k2

1+k2
2− k′21 −k′22

nk1nk2nk′1, (2.83)

and we used Eqs (2.46) and (2.49) for the scattering amplitudes. The contribution
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to the interaction function from Ẽ
(2)
1 is calculated in Appendix A.2 and it reads:

F̃
(2)
1 (θ)=

2~2(kF r∗)
2

m

[
3π+2π sin2 θ

2

(
4

3
−ln| tan

θ

2
|
)]

. (2.84)

The contribution from Ẽ
(2)
2 is calculated in Appendix A.3. It is given by

F̃
(2)
2 (θ) =

2~2k2
F r

2
∗

m

{
− sin2 θ

2

{
π ln 2 +

π

2
− π ln | sin θ

2
|+ 4 ln | cos

θ

2
| − 4 ln(1 + | sin θ

2
|)

+ G(θ) +
4 arcsin | sin θ

2 | − 2π

| cos θ2 |
}
− 1

| cos θ2 |

(
π − 2 arcsin | sin θ

2
|+ | sin θ|

)

− 4

[
cos2 θ

2
ln

1 + | sin(θ/2)|
1− | sin(θ/2)|

+ 2| sin θ
2
|
]}

, (2.85)

where

G(θ) =

∫ π

0
2 sin2 ϕ ln

(
sinϕ+

√
sin2 θ

2
+ cos2

θ

2
sin2 ϕ

)
dϕ,

so that

dG(θ)

dθ
=
π

2
cot

θ

2
− | sin(θ/2)|

sin(θ/2)

1

cos(θ/2)
+

arcsin | cos(θ/2)|
| cos(θ/2)|

(
tan

θ

2
− cot

θ

2

)
. (2.86)

We thus have F̃ (θ) = F̃ (1)(θ) + F̃
(2)
1 (θ) + F̃

(2)
2 (θ), where F̃ (1), F̃

(2)
1 , F̃

(2)
2 follow

from Eqs. (3.20), (2.84), and (2.85). This allows us to proceed with the calculation
of thermodynamic quantities.

2.3.4. Compressibility, ground state energy, and effective mass

We first calculate the compressibility at T = 0. On the basis of Eq. (2.58) we obtain:

∂µ

∂N
=

2π~2

mS
+

1

2πS

∫
(1− cos θ)

[
F̃ (1)(θ) + F̃

(2)
1 (θ) + F̃

(2)
2 (θ)

]
dθ

=
2π~2

mS
+

32~2

3mS
kF r∗ +

3π~2

2mS
(kF r∗)

2

(
ln[4ξkF r∗]−

3

2

)

+
6π~2

mS
(kF r∗)

2 − ~2

πmS
(kF r∗)

2(30− 8G+ 21ζ(3)), (2.87)

where G = 0.915966 is the Catalan constant, and ζ(3) = 1.20206 is the Riemann zeta
function. Calculating coefficients and recalling that kF =

√
4πN/S we represent the

inverse compressibility following from Eq. (2.55) in a compact form:

κ−1 =
~2k2

F

2m

N

S

(
1+

16

3π
kF r∗+

3

4
(kF r∗)

2 ln(ζ1kF r∗)

)
, (2.88)
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where we obtain the coefficient ζ1 = 2.16 exp(−2A) by using Eq. (2.30) for the co-
efficient ξ which depends on the short-range behavior through the constant A (see
Eq. (2.18)). For the chemical potential and ground state energy we obtain:

µ =
2π~2N

mS
+

64~2N

9mS
kF r∗ +

3π~2N

4mS
(kF r∗)

2

(
ln[4ξkF r∗]−

7

4

)

+
3π~2N

mS
(kF r∗)

2 − ~2N

2πmS
(kF r∗)

2(30− 8G+ 21ζ(3))

=
~2k2

F

2m

(
1 +

32

9π
kF r∗ +

3

8
(kF r∗)

2 ln(ζ2kF r∗)

)
. (2.89)

E

N
=
π~2N

mS
+

128~2N

45mS
kF r∗ +

π~2N

4mS
(kF r∗)

2

(
ln[4ξkF r∗]−

23

12

)

+
π~2N

mS
− ~2N

6πmS
(30− 8G+ 21ζ(3))

=
~2k2

F

4m

(
1 +

128

45π
kF r∗ +

1

4
(kF r∗)

2 ln(ζ3kF r∗)

)
, (2.90)

with numerical coefficients ζ2 = 1.68 exp(−2A) and ζ3 = 1.43 exp(−2A). Note that
the first term in the second line of Eq. (2.87) and the first terms in the first lines of
Eqs. (2.89) and (2.90) represent the contributions of the kinetic energy, the second and
third terms correspond to the contributions of the mean field part of the interaction
energy, and the last two terms are the contributions of the many-body effects.

The effective mass is calculated in a similar way by using Eq. (2.54):

1

m∗
=

1

m
− 1

(2π~)2

∫ 2π

0
(F (1)(θ)+F

(2)
1 (θ)+F

(2)
2 (θ)) cos θdθ

=
1

m

[
1+

4kF r∗
3π

+
(kF r∗)

2

4

(
ln[4kF r∗ξ]−

8

3
+

48G−20−14ζ(3)

π2

)]

=
1

m

[
1 +

4

3π
kF r∗ +

1

4
(kF r∗)

2 ln(ζ4kF r∗)

]
, (2.91)

where the numerical coefficient ζ4 = 0.65 exp(−2A). Note that if the potential U(r)
has the dipole-dipole form (2.1) up to very short distances, we have to put A = 0
in the expressions for the coefficients ζ1, ζ2, ζ3, ζ4. Considering the quasi2D regime,
this will be the case for r∗ greatly exceeding the length of the sample in the tightly
confined direction, l0. Then, as one can see from equations (2.88), (2.89), (2.90), and
(2.91), the terms proportional to (kF r∗)

2 are always negative in the considered limit
kF r∗ � 1. These terms may become significant for kF r∗ > 0.3.
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2.4. Zero sound

In the collisionless regime of the Fermi liquid at very low temperatures, where the
frequency of variations of the momentum distribution function greatly exceeds the
relaxation rate of quasiparticles, one has zero sound waves. For these waves, vari-
ations δn(q, r, t) of the momentum distribution are related to deformations of the
Fermi surface, which remains a sharp boundary between filled and empty quasipar-
ticle states. At T → 0 the equilibrium distribution nq is the step function (3.5), so
that ∂nq/∂q = −nδ(q − kF ) = −~vδ(εq − εF ), where v = vFn, with n being a unit
vector in the direction of q. Then, searching for the variations δn in the form:

δn(q, r, t) = δ(εq − εF )ν(n) exp i(kr− ωt)

and using Eq. (3.6), from the kinetic equation in the collisionless regime:

∂δn

∂t
+ v · ∂δn

∂r
− ∂nq

∂q
· ∂δεq
~∂r

= 0,

one obtains an integral equation for the function ν(n) representing displacements of
the Fermi surface in the direction of n [68]:

(ω − vFn · k)ν(n) =
kF

(2π)2~
n · k

∫
F (kFn, kFn′)ν(n′)dn′.

Introducing the velocity of zero sound u0 = ω/k and dividing both sides of this
equation by vFk we have:

(s− cos θ)ν(θ) =
m∗ cos θ

(2π~)2

∫ 2π

0
F̃ (θ − θ′)ν(θ′)dθ′, (2.92)

where s = u0/vF , and θ, θ′ are the angles between k and n, n′, so that θ − θ′ is the
angle between n and n′. The dependence of the interaction function of quasiparticles

F̃ = F̃ (1) + F̃
(2)
1 + F̃

(2)
2 on (θ−θ′) follows from Eqs. (3.20), (2.84), and (2.85) in which

one has to replace θ by (θ − θ′).
The solution of equation (2.92) gives the function ν(θ) and the velocity of zero

sound u0, and in principle one may obtain several types of solutions. It is important
to emphasize that undamped zero sound requires the condition s > 1, i.e. the sound
velocity should exceed the Fermi velocity [68]. We will discuss this issue below.

For solving Eq. (2.92) we represent the interaction function F̃ as a sum of the
part proportional to kF r∗ and the part proportional to (kF r∗)

2. As follows from
Eqs. (3.20), (2.84), and (2.85), we have:

F̃ (θ−θ′)=
4π~2

m
kF r∗

∣∣∣∣sin
θ−θ′

2

∣∣∣∣+
2~2

m
(kF r∗)

2Φ(θ−θ′), (2.93)

where the function Φ(θ − θ′) is given by the sum of three terms. The first one is the
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term in the second line of Eq. (3.20), the second term is the expression in the square
brackets in Eq. (2.84), the third term is the one in curly brackets in Eq. (2.85), and
we should replace θ by (θ − θ′) in all these terms. It is important that the function
Φ(θ− θ′) does not have singularities and Φ(0) = Φ(±2π) = 2π. Using Eq. (2.93) the
integral equation (2.92) is reduced to the form:

(s− cos θ)ν(θ) = β cos θ

∫ 2π

0
ν(θ′)

∣∣∣∣sin
θ − θ′

2

∣∣∣∣ dθ′ +
β2m

2m∗
cos θ

∫ 2π

0
ν(θ′)Φ(θ − θ′)dθ′,

(2.94)
where β = (m∗/πm)kF r∗ � 1.

We now represent the function ν(θ) as

ν(θ) =

∞∑

p=0

Cp cos pθ. (2.95)

Then, integrating over dθ′ in Eq. (2.94), multiplying both sides of this equation
by cos jθ and integrating over dθ, we obtain a system of linear equations for the
coefficients Cj . We write this system for the coefficients ηj = Cj(1 − β/(j2 − 1/4)),
so that Cj = ηj(1 + βUj), where Uj = (j2 − 1/4− β)−1. The system reads:

(s− 1)(1 + βU0)η0 + [η0 −
1

2
η1] + βU0η0 =

β2

2
Φ̄0; (2.96)

(s− 1)(1 + βU1)η1 + [η1 − η0 −
1

2
η2] + βU1η1 =

β2

2
Φ̄1; (2.97)

(s− 1)(1 + βUj)ηj + [ηj −
1

2
(ηj−1 + ηj+1)] + βUjηj =

β2

2
Φ̄j ; j ≥ 2, (2.98)

where

Φ̄j =
C̃j
π

∫ 2π

0
cos θ cos jθdθ

∫ 2π

0

∞∑

p=0

Cp cos pθ′Φ(θ − θ′)dθ′, (2.99)

with C̃j = 1 for j ≥ 1 and C̃0 = 1/2, and we put m∗ = m in the terms proportional
to β2.

In the weakly interacting regime the velocity of zero sound is close to the Fermi
velocity and, hence, we have (s − 1) � 1 (see, e.g. [68]). Since β � 1, we first find
coefficients ηj omitting the terms proportional to β and β2 in Eqs. (2.96)-(2.98). For
j � 1 equation (2.98) then becomes:

(s− 1)ηj −
1

2

d2ηj
dj2

= 0,

and searching for s > 1 we may write

ηj ' exp{−
√

2(s− 1)j}; j � 1. (2.100)
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If j � 1/
√
s− 1, then we may also omit the terms proportional to (s − 1) in the

system of linear equations for ηj (2.96)-(2.98). The system then takes the form:

η0 −
1

2
η1 = 0;

η1 − η0 −
1

2
η2 = 0;

ηj −
1

2
[ηj−1 + ηj+1] = 0; j ≥ 2.

Without loss of generality we may put η0 = 1/2. This immediately gives ηj = 1 for
j ≥ 1, which is consistent with Eq. (2.100) at j � 1/

√
s− 1. We thus have the zero

order solution: {
η0 = 1/2;

ηj = 1; 1 ≤ j � 1/
√
s− 1.

(2.101)

In order to find the coefficients ηj taking into account the terms linear in β, we
consider j such that βUj ∼ β/j2 � (s− 1), i.e. j �

√
β/(s− 1). Then we may omit

the terms proportional to (s− 1) in equations (2.96)-(2.98). Omitting also the terms
proportional to β2 this system of equations becomes:

η0 −
1

2
η1 + βU0η0 = 0; (2.102)

η1 − η0 −
1

2
η2 + βU1η1 = 0; (2.103)

ηj −
1

2
[ηj−1 + ηj+1] + βUjηj = 0; j ≥ 2. (2.104)

Putting again η0 = 1/2 the solution of these equations reads:

η1 = 1 + βU0;

ηj = 1 + βjU0 + 2β

j−1∑

p=1

(j − p)Up; j ≥ 2.

Confining ourselves to terms linear in β we put Up = 1/(p2 − 1/4) and, hence,
U0 = −4. Then, using the relation

j−1∑

p=1

1

p2 − 1/4
=

4(j − 1)

2j − 1
,
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which is valid for j ≥ 2, we obtain:





η0 = 1
2 ;

η1 = 1− 4β;

ηj = 1− 2β
{

2j
2j−1 +

∑j−1
p=1

p
p2−1/4

}
; j ≥ 2.

(2.105)

For j &
√
β/(s− 1) we should include the terms proportional to (s−1) in Eq. (2.104).

This leads to the solution in the form of the decaying Bessel function:

ηj '
√

2(s− 1)/πK√
1/4+β

(
√
s− 1j),

which for small β is practically equivalent to Eq. (2.100).
We now make a summation of equations (2.96)-(2.98) from j = 0 to j = j∗ �

1/
√
s− 1. The summation of the second terms of these equations gives

√
(s− 1)/2,

whereas the contribution of the terms proportional to (s − 1) is much smaller and
will be omitted. The sums

∑j∗
j=0 Ujηj and

∑j∗
j=0 Φ̄j converge at j � 1/

√
s− 1, and

the upper limit of summation in these terms can be formally replaced by infinity. We
thus obtain a relation:

√
s− 1

2
+
∞∑

j=0

βηjUj −
β2

2

∞∑

j=0

Φ̄j = 0. (2.106)

Confining ourselves to contributions up to β2, in the second term on the left hand
side of Eq. (2.106) we use coefficients ηj given by Eqs. (2.105), and write Uj =
1/(j2 − 1/4) + β/(j2 − 1/4)2. In the expressions for Φ̄j we use C0 = 1/2 and Cp = 1
for p ≥ 1. We then have:

∞∑

j=0

βηjUj = −2β+
∞∑

j=1

β

j2 − 1/4
+ β2{8 + S1 − 2S2 − 2S3}. (2.107)

The contribution linear in β vanishes because
∑∞

j=1 1/(j2−1/4) = 2. The quantities
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S1, S2, and S3 are given by

S1 =
∞∑

j=1

1

(j2 − 1/4)2
= π2 − 8;

S2 =
∞∑

j=2

1

j2 − 1/4

j−1∑

p=1

p

p2 − 1/4
=
∑

j=1

j

(j2 − 1/4)(j + 1/2)
;

S3 =
∞∑

j=1

j

(j − 1/2)(j2 − 1/4)
,

so that

S2 + S3 =
∞∑

j=1

2j2

(j2 − 1/4)2
=
π2

2
.

We thus see that the contribution quadratic in β also vanishes because the term in the
curly brackets in Eq. (2.107) is exactly equal to zero. Hence, we have

∑∞
j=0 βηjUj = 0

up to terms proportional to β2.
The sum in the third term on the left hand side of Eq. (2.106), after putting

C0 = 1/2 and Cp = 1 for p ≥ 1 in the relations for Φ̄j , reduces to

∞∑

j=0

Φ̄j =
1

4π

∞∑

j=−∞

∫ 2π

0
cos θ cos jθdθ

×
∞∑

p=−∞

∫ 2π

0
cos pθ′Φ(θ − θ′)dθ′. (2.108)

For θ in the interval 0 ≤ θ ≤ 2π we have a relation:

∞∑

j=−∞
cos jθ = π[δ(θ) + δ(θ − 2π)],

which transforms Eq. (2.108) to

∞∑

j=0

Φ̄j =
π

4
[2Φ(0) + Φ(2π) + Φ(−2π)] = 2π2, (2.109)

and equation (2.106) becomes:

√
s− 1

2
− β2π2 = 0.

This gives s = 1+2(βπ)4, and recalling that β = kF r∗/π (we put m∗ = m) we obtain
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for the velocity of zero sound:

u0 = vF [1 + 2(kF r∗)
4]. (2.110)

Note that in contrast to the 3D two-species Fermi gas with a weak repulsive contact
interaction (scattering length a), where the correction (u0−vF ) exponentially depends
on kFa, for our 2D dipolar gas we obtained a power law dependence. This is a
consequence of dimensionality of the system.

It is important that confining ourselves to only the leading part of the interaction
function F̃ , which is proportional to kF r∗ and is given by the first term of Eq. (3.20),
we do not obtain undamped zero sound (s > 1) 1. This corresponds to omitting the
terms β2Φ̄j/2 in equations (2.96)-(2.98) and is consistent with numerical calculations
[54]. Only the many-body corrections to the interaction function of quasiparticles,
given by equations (2.84) and (2.85), provide non-zero positive values of Φ(0) and
Φ(±2π), thus leading to a positive value of (u0−vF ). One then sees that many-body
effects are crucial for the propagation of zero sound.

In principle, we could obtain the result of Eq. (2.110) in a simpler way, similar to
that used for the two-species Fermi gas with a weak repulsive interaction (see, e.g.
[68]). Representing the function ν(θ) as ν(θ) = cos θν̃(θ)/(s − cos θ) we transform
Eq. (2.92) to the form:

ν̃(θ) =
m∗

(2π~)2

∫ 2π

0

F̃ (θ − θ′)ν̃(θ′) cos θ′

s− cos θ′
dθ′. (2.111)

Since s is close to unity, it looks reasonable to assume that the main contribution to
the integral in Eq. (2.111) comes from θ′ close to zero and to 2π. Using the fact that
F̃ (θ) = F̃ (2π − θ) we then obtain:

ν̃(θ) =
m∗F̃ (θ)ν̃(0)

4π~2

√
2

s− 1
. (2.112)

We now take the limit θ → 0 and substitute F̃ (0) = (4π~2/m)(kF r∗)
2 as follows froms

Eqs. (3.20), (2.84), and (2.85). Putting m∗ = m we then obtain s = 1 + 2(kF r∗)
4

and arrive at Eq. (2.110).
Note, however, that for very small θ or θ very close to 2π the dependence F̃ (θ)

is very steep. For θ → 0 the leading part of the interaction function, which is
linear in kF r∗, vanishes, and only the quadratic part contributes to F̃ (0). Therefore,
strictly speaking the employed procedure of calculating the integral in Eq. (2.111)
is questionable for very small θ. This prompted us to make the analysis based on
representing ν(θ) in the form (2.95) and on solving the system of linear equations
(2.96)-(2.98).

1In fact, we arrived at this conclusion confining ourselves to the contributions up to β2. In stead
of considering higher order contributions we checked numerically that the solution with s > 1 is
absent if we omit the (kF r∗)

2-terms in the interaction function of quasiparticles.
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Equation (2.111) is useful for understanding why undamped zero sound requires
the condition s > 1 so that u0 > vF . For s < 1 there is a pole in the integrand of
Eq. (2.111), which introduces an imaginary part of the integral. As a result, the zero
sound frequency ω will also have an imaginary part at real momenta k, which means
the presence of damping (see, e.g. [68]).

We could also consider an odd function ν(θ), namely such that ν(2π− θ) = −ν(θ)
and ν(0) = ν(2π) = 0. In this case, however, we do not obtain an undamped zero
sound.

2.5. Concluding remarks

We have shown that (single-component) fermionic polar molecules in two dimensions
constitute a novel Fermi liquid, where many-body effects play an important role.
For dipoles oriented perpendicularly to the plane of translational motion, the many-
body effects provide significant corrections to thermodynamic functions. Revealing
these effects is one of the interesting goals of up-coming experimental studies. The
investigation of the full thermodynamics of 2D polar molecules, including many-
body effects, can rely on the in-situ imaging technique as it has been done for two-
component atomic Fermi gases [33, 34]. This method can also be extended to 2D
systems for studying thermodynamic quantities [69, 70]. Direct imaging of a 3D
pancake-shaped dipolar molecular system has been recently demonstrated at JILA
[71]. For 2D polar molecules discussed in this chapter, according to equations (2.88)-
(2.90), the contribution of many-body corrections proportional to (kF r∗)

2 can be on
the level of 10% or 20% for kF r∗ close to 0.5. Thus, finding many-body effects in
their thermodynamic properties looks feasible.

It is even more important that the many-body effects are responsible for the prop-
agation of zero sound waves in the collisionless regime of the 2D Fermi liquid of polar
molecules with dipoles perpendicular to the plane of translational motion. This is
shown in Section IV of this sections, whereas mean-field calculations do not find un-
damped zero sound [54]. Both collisionless and hydrodynamic regimes are achievable
in on-going experiments. This is seen from the dimensional estimate of the relaxation
rate of quasiparticles. At temperatures T � εF the relaxation of a non-equilibrium
distribution of quasiparticles occurs due to binary collisions of quasiparticles with
energies in a narrow interval near the Fermi surface. The width of this interval
is ∼ T and, hence, the relaxation rate contains a small factor (T/εF )2 (see, e.g.
[68]). Then, using the Fermi Golden rule we may write the inverse relaxation time
as τ−1 ∼ (g2

eff/~)(m/~2)n(T/ε)2, where n is the 2D particle density, the quantity

∼ m/~2 represents the density of states on the Fermi surface, and the quantity geff
is the effective interaction strength. Confining ourselves to the leading part of this
quantity, from Eqs. (2.72) and (2.79) we have geff ∼ ~2kF r∗/m. We thus obtain:

1

τ
∼ ~n
m

(kF r∗)
2

(
T

εF

)2

. (2.113)
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Note that as εF ≈ ~2k2
F /2m ≈ 2π~2n/m, for considered temperatures T � εF

the relaxation time τ is density independent. Excitations with frequencies ω �
1/τ are in the hydrodynamic regime, where on the length scale smaller than the
excitation wavelength and on the time scale smaller than 1/ω the system reaches a
local equilibrium. On the other hand, excitations with frequencies ω � 1/τ are in
the collisionless regime. Assuming T ∼ 10nK, for KRb molecules characterized by
the dipole moment d ' 0.25 D in the electric field of 5kV/cm as obtaind in the JILA
experiments, we find τ on the level of tens of milliseconds. The required condition
T � εF is satisfied for εF & 70 nK, which corresponds to n & 2 · 108 cm−2. In such
conditions excitations with frequencies of the order of a few Hertz or lower will be in
the hydrodynamic regime, and excitations with larger frequencies in the collisionless
regime.

The velocity of zero sound is practically equal to the Fermi velocity vF = ~kF /m∗.
This is clearly seen from Eq. (2.110) omitting a small correction proportional to
(kF r∗)

4. Then, using Eq. (2.91) for the effective mass and retaining only corrections
up to the first order in kF r∗, we have:

u0 '
~kF
m

(
1 +

4

3π
kF r∗

)
. (2.114)

In the hydrodynamic regime the sound velocity is:

u =

√
N

m

∂µ

∂N
' ~kF

m

(
1 +

8

3π
kF r∗

)
, (2.115)

where we used Eq. (2.87) for ∂µ/∂N and retained corrections up to the first order in
kF r∗. The hydrodynamic velocity u is slightly larger than the velocity of zero sound
u0, and the difference is proportional to the interaction strength. This is in sharp
contrast with the 3D two-component Fermi gas, where u0 ≈ vF > u ≈ vF /

√
3.

We thus see that it is not easy to distinguish between the hydrodynamic and col-
lisionless regimes from the measurement of the sound velocity. A promising way to
do so can be the observation of damping of driven excitations, which in the hydrody-
namic regime is expected to be slower. Another way is to achieve the values of kF r∗
approaching unity and still discriminate between u0 and u in the measurement of the
sound velocity. For example, in the case of dipoles perpendicular to the plane of their
translational motion the two velocities are different from each other by about 20%
at kF r∗ ' 0.5. These values of kF r∗ are possible if the 2D gas of dipoles still satisfies
the Pomeranchuk criteria of stability. These criteria require that the energy of the
ground state corresponding to the occupation of all quasiparticle states inside the
Fermi sphere, remains the minimum energy under an arbitrarily small deformation
of the Fermi sphere. The generalization of the Pomeranchuk stability criteria to the
case of the 2D single-component Fermi liquid with dipoles perpendicular to the plane
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of their translational motion reads:

1 +
m∗

(2π~)2

∫ 2π

0
F̃ (θ) cos jθ dθ > 0, (2.116)

and this inequality should be satisfied for any integer j. As has been found in
Ref. [54], the Pomeranchuk stability criteria (2.116) are satisfied for kF r∗ approaching
unity from below if the interaction function of quasiparticles contains only the first
term of Eq. (3.20), which is the leading mean field term. We have checked that the
situation with the Pomeranchuk stability does not change when we include the full

expression for the interaction function, F̃ (θ) = F̃ (1)(θ) + F̃
(2)
1 (θ) + F̃

(2)
2 (θ), following

from Eqs. (3.20), (2.84), and (2.85). Thus, achieving kF r∗ approaching unity looks
feasible. For KRb molecules with the (oriented) dipole moment of 0.25 D the value
kF r∗ ≈ 0.5 requires densities n ≈ 2 · 108 cm−2.

Finally, we would like to emphasize once more that our results are applicable
equally well for the quasi2D regime, where the dipole-dipole length r∗ is of the order of
or smaller than the confinement length l0 = (~/mω0)1/2, with ω0 being the frequency
of the tight confinement. The behavior at distances r . l0 is contained in the
coefficient A defined in Eq. (2.18). Therefore, the results for the velocity of zero sound
which is independent of A, are universal in the sense that they remain unchanged
when going from r∗ � l0 to r∗ . l0. The only requirement is the inequality kF l0 �
1. It is, however, instructive to examine the ratio r∗/l0 that can be obtained in
experiments with ultracold polar molecules. Already in the JILA experiments using
the tight confinement of KRb molecules with frequency ω0 ≈ 30 kHz and achieving
the average dipole moment d ' 0.25 D in electric fields of 5 kV/cm, we have r∗ ' 100
nm and l0 ' 50 nm so that r∗/l0 ' 2. A decrease of the confinement frequency to
5 kHz and a simultaneous decrease of the dipole moment by a factor of 2 leads to
r∗/l0 ∼ 0.2. On the other hand, for d close to 0.5 Debye (which is feasible to obtain
for other molecules) one can make the ratio r∗/l0 close to 10 at the same confinement
length.



CHAPTER 3

Zero sound in a two-dimensional dipolar
Fermi gas

In the previous chapter, we study Fermi liquid properties of a weakly interacting
2D gas of single-component fermionic dipoles (polar molecules or atoms with a large
magnetic moment). In particular, we have predicted that the existence of zero sound
is solely a many-body effect beyond mean-field theory in that system. In this chapter,
we extend the theory to study zero sound in systems where the fermionic dipoles are
tilted with respect to the plane of their translational motion. It is shown that the
propagation of zero sound is provided by both mean field and many-body (beyond
mean field) effects, and the anisotropy of the sound velocity is the same as the one
of the Fermi velocity. The damping of zero sound modes can be much slower than
that of quasiparticle excitations of the same energy. One thus has wide possibilities
for the observation of zero sound modes in experiments with 2D fermionic dipoles,
although the zero sound peak in the structure function is very close to the particle-
hole continuum.

Note: This chapter is based on the publication: Zero sound in a two-dimensional
dipolar Fermi gas, Phys. Rev. A 88, 033625 (2013), which was written originally by
myself (first authorship).

3.1. Introduction

The creation of quantum gases of atoms with large magnetic moments [72, 38, 19,
20] and ultracold clouds of ground state diatomic polar molecules [29, 26] strongly
stimulated the work in the domain of dipolar cold gases, because the long-range
anisotropic dipole-dipole interaction drastically changes the nature of quantum de-
generate regimes. Presently, there is a growing number of proposals to study new
classes of many-body states in these systems [21, 39]. A serious difficulty for studying
many-body physics with polar molecules is related to ultracold chemical reactions,
such as KRb+KRb⇒K2+Rb2 observed in the JILA experiments [56, 30], which lead
to a rapid decay of the system at required densities. Therefore, the attention is now
shifted to non-reactive molecules, in particular RbCs, NaK, and KCs, for which the
ultracold chemistry is expected to be energetically unfavorable [32]. Another route
assumes the suppression of chemical reactions for reactive molecules by confining
them to the (quasi)two-dimensional (2D) geometry and orienting their dipole mo-
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ments (by a strong electric field) perpendicularly to the plane of the 2D translational
motion [57, 58]. This induces a strong intermolecular repulsion, and the suppression
of chemical reactions by two orders of magnitude has been already demonstrated [31].

Therefore, 2D gases of polar molecules attract a special attention, in particular
when the molecules are fermionic and they are in the same internal state. One
then has an additional reduction of chemical reactions. Various aspects have been
discussed regarding this system in literature, in particular the emergence and beyond
mean field description of the topological px + ipy phase for microwave-dressed polar
molecules [43, 23], interlayer superfluids in bilayer and multilayer systems [44, 50,
46, 60], the emergence of density-wave phases [48, 49, 52, 53, 54, 73], and superfluid
pairing for tilted dipoles [42, 54]. The Fermi liquid behavior of this system has been
addressed by using the Fourier transform of the dipole-dipole interaction potential
(see [54] and refs. therein). The many-body theory (beyond mean field) describing
Fermi liquid properties of a weakly interacting 2D gas of identical fermionic dipoles
with dipole moments d oriented perpendicularly to the plane of their translational
motion, has been developed in Ref. [74]. The theory relies on the presence of a
small parameter pF r∗, where pF is the Fermi momentum, and r∗ = md2/~2 is the
dipole-dipole length, with m being the molecule mass. With the use of the low-
momentum solution of the scattering problem up to terms ∼ (pr∗)

2, thermodynamic
quantities were obtained as a series of expansion up to the second order in pF r∗.
Recent Monte Carlo calculations [75] confirmed the findings of Ref. [74] in the low-
density limit (pF r∗ < 1) and studied a quantum transition to the crystalline phase
at high densities.

In some sense, the 2D gas of identical fermionic dipoles perpendicular to the plane
of their translational motion, constitutes a novel Fermi liquid because the existence
of zero sound in this system is provided only by many-body effects [74]. Zero sound
modes represent collective oscillations related to deformations of the Fermi surface
and are important characteristics of Fermi liquids and gases in the collisionless regime
[76, 68]. This stimulates an interest to zero sound for tilted dipoles and to possibilities
for the observation of zero sound modes in experiments. In the present chapter
we show that in the 2D gas of identical fermionic tilted dipoles the propagation of
zero sound is due to both mean field and many-body effects. The sound modes
are anisotropic, and the anisotropy of the sound velocity is the same as the one of
the Fermi velocity. Importantly, the damping rate of zero sound can be much lower
compared to the damping rate of quasiparticle excitations with the same energy. This
is different from the situation in 3He [77], where these damping rates are of the same
order of magnitude. The small damping rate of zero sound in the 2D dipolar Fermi
gas opens wide possibilities for the observation of the sound modes in experiments, in
spite of the fact that the zero sound peak is very close to the particle-hole continuum
in the structure function.

The chapter is organized as follows. In Section 3.2 we give general relations for
various quantities of the 2D gas of tilted fermionic dipoles and in Section 3.3 we de-
rive the many-body contribution to the interaction function of quasiparticles in this
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system. Section 3.4 is dedicated to the derivation of our results for the dynamical
structure factor and zero sound velocity. It is in particular shown that for tilted
dipoles the second order mean field contribution to this quantity and the many-body
contribution are of the same order of magnitude. In Sections 3.5 and 3.6 we calculate
the relaxation rate of quasiparticles and the damping rate of zero sound, showing
that the latter can be much smaller at the same excitation energy. We conclude in
Section 3.7, emphasizing that the slow damping of zero sound provides wide possi-
bilities for the measurement of zero sound modes. Aside from the observation of the
surface modes in trapped samples, which in the collisionless regime are analogous
to zero sound and have been observed in the 2D atomic Fermi gas [78], one should
be able to observe zero sound in the response to small modulations of the density
in (quasi)uniform gases like those created in the recent experiment [79]. In contrast
to experiments in liquid 3He, where the observation of zero sound is based on the
difference between the zero sound and Fermi velocities [80], in ultracold gases the
zero sound can be observed through the measurement of the dynamical structure
factor in two-photon Bragg spectroscopy experiments. This method was successfully
developed for Bose-condensed gases [81, 82] and then used for ultracold fermions [83].
Although the zero sound peak in the structure function is located very close to the
particle-hole continuum, it can be visible as it may be higher than the maximum of
the continuum due to slow damping of the zero sound.

3.2. General relations. Anisotropy of the Fermi surface

We consider a 2D gas of single-component fermionic dipoles tilted by an angle θ0

with respect to the plane of their translational motion (see Fig. 1). These dipolar
particles interact with each other via the potential which at large separations r is

U(r) =
d2

r3
(1− 3 sin2 θ0 cos2 θ), (3.1)

where θ is the angle between the vector r and the x axis in which the dipoles are
tilted. The Hamiltonian of the system reads:

Ĥ =
∑

p

ξpâ
†
pâp +

1

2S

∑

p1,p2,q

U(q)â†p1+qâ
†
p2−qâp2 âp1 , (3.2)

where S is the surface area, ξp = ~2p2/2m−µ with µ being the chemical potential, â†p
and âp are creation and annihilation operators of fermionic dipoles with momentum
p, and U(q) is the Fourier transform of the interaction potential U(r):

U(q) =

∫
d2rU(r)e−iq·r, (3.3)
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Figure 3.1. – 2D gas of dipoles tilted by an angle θ0 in the x, z-plane.

We focus on the weakly interacting regime, where the interaction energy per particle
is much smaller than the Fermi energy and the inequality

pF r∗ � 1 (3.4)

is satisfied.
The potential U(r) becomes partially attractive at sufficiently large tilting angles

θ0, providing a possibility of superfluid pairing. This occurs at θ0 exceeding a critical
value 0.72 [54]. Assuming the absence of superfluid pairing the ground state of the
system is a Fermi liquid and one may use the Landau theory relying on the existence
of ”dressed particles”, or quasiparticles. At T = 0 the momentum distribution of free
quasiparticles is the step function

n(p) = θ(pF − p), (3.5)

i.e. n(p) = 1 for p < pF and zero otherwise.The chemical potential is equal to the
boundary energy at the Fermi circle, µ = εF ≡ ε(pF ). The quasiparticle energy
ε(p) is a variational derivative of the total energy with respect to the distribution
function n(p). Due to the interaction between quasiparticles, the deviation δn of
this distribution from the step function (3.5) results in a change of the quasiparticle
energy:

δε(p) =

∫
F (p, p′)δn(p′)

d2p′

(2π)2
. (3.6)

The interaction function of quasiparticles F (p, p′) is thus the second variational
derivative of the total energy with regard to n(p). The quantity δn(p) is significantly
different from zero only near the Fermi surface, so that one may put p = pFn and
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p′ = pFn′ in the arguments of F in Eq. (3.6), where n and n′ are unit vectors in the
directions of p and p′.

The knowledge of the interaction function of quasiparticles allows one to calculate
the compressibility relying only on the integration on the Fermi surface. One then
obtains straightforwardly the chemical potential, ground state energy, and other ther-
modynamic quantities. This idea belongs to Landau [84] and it was pushed forward
by Abrikosov and Khalatnikov [67] and implemented for a two-component 3D Fermi
gas with a weak contact repulsion, revealing many-body (beyond mean field) effects
and reproducing the results of an earlier (direct) calculation of Lee-Huang-Yang [66,
65]. The many-body theory relying on the Abrikosov-Khalatnikov approach has
been developed in Ref. [74] for 2D fermionic single-component dipoles perpendicu-
lar to the plane of their translational motion (θ0 = 0). This theory accounts for the
short-range physics in the scattering properties and represents thermodynamic quan-
tities as a series of expansion in the small parameter pF r∗ up to the second order.
The construction of a similar theory for tilted dipoles requires extremely cumbersome
calculations and is beyond the scope of the present chapter. Instead, we intend to
reveal the properties of zero sound.

A distinguished feature of tilted 2D fermionic dipoles is a small anisotropy of the
Fermi surface. The related corrections to the Fermi momentum, chemical potential,
etc., are proportional to pF r∗, and we omit higher order corrections. Relations for
these quantities have been derived in Ref. [54], and we present them here for com-
pleteness without going into detailed calculations. In contrast to strongly interacting
systems, in the weakly interacting regime the quasiparticle energy is well defined at
any momenta, not only near the Fermi surface. One may write:

ε(p) =
~2p2

2m
− µ+

∫
F (p, p′)n(p′)

d2p′

(2π)2
, (3.7)

and take into account that exactly on the Fermi surface the quasiparticle energy is
zero:

ε(pF) =
~2p2

F

2m
− µ+

∫
F (pF, p′)n(p′)

d2p′

(2π)2
= 0. (3.8)

In order to express the Fermi momentum through the density n and the interaction
strength, one has to solve equations (3.7) and (3.8) selfconsistently with the particle
number equation

n =

∫
d2p

(2π)2
n(p). (3.9)

Integrating the right-hand side of this equation one has

∫
p2
F (φ)dφ

2π
= p2

F0 = 4πn, (3.10)

where φ is the angle between the vector pF and the x axis. Turning back to equation
(3.8) we notice that to linear order in pF r∗ one may use the distribution function of
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a non-interacting Fermi gas n(p′) = θ(pF0 − p′) and put the interaction function of
quasiparticles expressed through the Fourier transforms of the interaction potential
U(r) [54, 74]:

F1(p, p′) = [U(0)− U(p− p′)] = 2πd2|p− p′|(cos2 θ0 − sin2 θ0 cos2 φp−p′), (3.11)

where φp−p′ is the angle between the vector p−p′ and the x axis. Then, integrating
Eq.(3.8) over dφ and using Eq.(3.10) we have:

µ = εF0

(
1 +

32

9π
pF r∗P2(cos θ0)

)
, (3.12)

with εF0 = ~2p2
F0/2m, and P2(cos θ0) = (3 cos2 θ0 − 1)/2 being the second order

Legendre polynomial. Eq.(3.8) immediately gives the anisotropic Fermi momentum:

pF (φ) = pF0

(
1 +

8

15π
pF r∗ sin2 θ0 cos 2φ

)
. (3.13)

For the quasiparticle energy near the Fermi surface, from Eq.(3.7) we have:

ε(p) = vF (φ)(p− pF (φ)), (3.14)

where

vF (φ) = vF0

(
1 +

4

3π
pF r∗P2(cos θ0)− 2

5π
pF r∗ sin2 θ0 cos 2φ

)
(3.15)

is the radial component of the Fermi velocity, and vF0 = ~pF0/m.

3.3. Interaction function of quasiparticles

The interaction function of quasiparticles F (p, p′) consists of two parts: the mean
field part and the many-body one, and we need to know this function on the Fermi
surface (|p| = |p′| = pF ). The mean field term is expressed through the scattering
amplitude [74], and the contribution linear in pr∗ and p′r∗ is given by Eq.(3.11). The
contribution F2(p, p′) which is quadratic in pr∗ and p′r∗, depends on the short-range
physics. It is obtained from the solution of the 2D scattering problem, and we omit
terms which are proportional to higher powers of pr∗ and p′r∗ (see [74] for θ0 = 0).
Thus, the mean field contribution to the interaction function can be written as

Fmf (p, p′) = F1(p, p′) + F2(p, p′), (3.16)

with F1(p, p′) from Eq.(3.11). We do not specify the expression for F2(p, p′) and
only mention that F2 = 0 for p = p′.

The many-body part of the interaction function is obtained as the second vari-
ational derivative of the many-body (beyond mean field) contribution to the total
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energy. This contribution is expressed in terms of the off-shell scattering amplitude
f(p′, p) [74]:

Ẽmb = − 1

2S2

∑

p1,p2,p′1

2m|f(p′, p)− f(p′,−p)|2

~2(p2
1 + p2

2 − p′21 − p′22 )
× n(p1)n(p2)n(p′1)δp1+p2−p′1−p′2 ,

(3.17)
where p = (p1−p2)/2 and p′ = (p′1−p′2)/2. As we are interested only in the powers
of pr∗ and p′r∗ not larger than two, the small anisotropy of the Fermi surface can be
omitted. For the off-shell amplitudes in Eq.(3.17) we may take the result of the first
Born approximation which is linear in pr∗ and p′r∗:

f(p′, p)− f(p′,−p) =2πd2|p′ + p|(cos2 θ0 − sin2 θ0 cos2 φp+p′)

− 2πd2|p− p′|(cos2 θ0 − sin2 θ0 cos2 φp−p′). (3.18)

We then obtain the many-body contribution to the interaction function:

Fmb(p, p′) = F̃1(p, p′) + F̃2(p, p′); (3.19)

F̃1(p, p′) = −4~2

m
(pF0r∗)

2

∫

p1<pF0

d2p1

p2
F0

δp+p1−p′−p2

p2
1 − p2

2

{
cos2 θ0(|p′ − p| − |p′ − p1|)

+ sin2 θ0

[
(p′ cosφp′ − p1 cosφp1)2

|p′ − p1|
−

(p′ cosφp′ − p cosφp)2

|p− p′|

]}2
; (3.20)

F̃2(p, p′) = −2~2

m
(pF0r∗)

2

∫

p1<pF0

d2p1

p2
F0

δp+p′−p1−p2

2p2
F0 − p2

1 − p2
2

{
cos2 θ0(|p1 − p| − |p′ − p1|)

+ sin2 θ0

[
(p′ cosφp′ − p1 cosφp1)2

|p′ − p1|
− (p1 cosφp1 − p cosφp)2

|p− p1|

]}2
, (3.21)

where we have used the step function (3.5) for the distribution function of quasipar-
ticles when integrating over p1, p2, and p′1.

For the analysis of the zero sound modes we will need the p2 terms of the interaction
function only at p = p′. One can easily check that in this case the integral in Eq.(3.21)
is equal to zero. In the integral of Eq.(3.20) we use the notations:

p + p′

2pF0
= w;

p− p′

2pF0
= b;

p1 + p2

2pF0
= y. (3.22)

Then we have p1/pF0 = y−b; (p1−p′)/pF0 = y−w, and equations (3.19-3.21) are
reduced to:

Fmb(p, p′) = F̃1(p, p′)=
~2

m
(pF0r∗)

2

∫ ymax

0

d2y

by cosφyb

×
{

cos2 θ0(2b− |y −w|) + sin2 θ0

[
(y cosφy − w cosφw)2

|y −w|
− 2b cos2 φb

]}2

, (3.23)
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where φy, φw, φb are the angles between the vectors y, w, b and the x axis, and φyb
is the angle between y and b. The variable y changes from 0 to ymax = b cosφyb +√

1− b2 sin2 φyb. For p′ → p we have b → 0, and omitting the terms proportional

to b2 and higher powers of b, we may write ymax = 1 + b cosφyb. We now recall that
F (p, p′) = F (p′, p). It is easy to check that F (p′, p) is given by the same equation
(3.23), but with a different sign and ymax = 1− b cosφyb. Then, for p′ → p (b→ 0)
we have:

F (p, p′) + F (p′, p)

2
= F (p, p) =

2~2

m
(pF0r∗)

2

∫ 1+b cosφyb

1−b cosφyb

dy

∫ 2π

0

dφy
4b cosφyb

×
{

cos2 θ0(2b− |y −w|) + sin2 θ0

[
(y cosφy − w cosφw)2

|y −w|
− 2b cos2 φb

]}2
.(3.24)

For b → 0 the result of the integration over dy in Eq.(3.24) is simply obtained by
putting y = 1 in the integrand and multiplying it by 2b cosφyb. Then, omitting the
terms proportional to b and putting w = 1 we obtain:

F (p, p) =
~2

m
(pF0r∗)

2

∫ 2π

0
dφy

{
2(1−cosφys) cos4 θ0

−2 sin2 θ0 cos2 θ0(cosφy−cosφs)
2+sin4 θ0

(cosφy−cosφs)
4

2(1−cosφys)

}
. (3.25)

The integration in Eq.(3.25) is straightforward and it gives:

F (p, p) =
4π~2

m
(pF0r∗)

2
{

cos4 θ0 − sin2 θ0 cos2 θ0

(
1

2
+ cos2 φp

)

+ sin4 θ0

(
1

8
+

1

2
cos2 φp

)}
. (3.26)

For dipoles perpendicular to the plane of their translational motion (θ0 = 0) equation
(3.26) reproduces the result of Ref. [74].

3.4. Dynamical structure factor and zero sound modes

We now calculate the dynamical structure factor and analyze zero sound modes.
Consider a small scalar potential

Φ(r, t) = Φ(k,ω) exp(ikr− iωt) (3.27)

acting on the system via the interaction Hamiltonian

Ĥe =

∫
ρ̂(r, t)Φ(r, t)d2r, (3.28)
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where ρ̂(r, t) is the operator of the particle density. The linear density response
function of the system, which is the density-density correlation function, is defined
as

χ(k,ω) =
d〈ρ(k,ω)〉
dΦ(k,ω)

∣∣∣
Φ→0

, (3.29)

with the symbol 〈...〉 standing for the statistical average. The dynamical structure
factor S(k,ω) is related to the imaginary part of the response function:

− π[S(k,ω)− S(k,−ω)] = Imχ(k,ω). (3.30)

In the collisionless regime, where the frequency ω of variations of the momentum
distribution function greatly exceeds the relaxation rate, the distribution variations
δn(p, r, t) are related to deformations of the Fermi surface. Omitting the collisional
integral, the kinetic equation in the presence of an external force reads [76]:

∂δn

∂t
+
∂ε(p)

∂~p
· ∂δn
∂r
− ∂n(p)

∂~p
·
{
∂δε(p)

∂r
+
∂Φ(r, t)

∂r

}
=0, (3.31)

where n(p) is the equilibrium distribution function, ε(p) is the quasiparticle energy
at equilibrium, and its variations δε(p, r, t) are related to the variations of the distri-
bution function through the interaction function of quasiparticles:

∂δε(p, r, t)

∂r
=

∫
F (p, p′)

∂δn(p′, r, t)

∂r

d2p′

(2π)2
. (3.32)

Relying on Eq.(3.27) we represent the variations of the distribution function in the
form δn(p, r, t) = δn(p, k,ω) exp(ikr− iωt) and transform equation (3.31) to

(kvp−ω−iη)δn(p, k,ω)−kvp
∂n(p)

∂ε(p)

{∫
F (p, p′)δn(p′, k,ω)

d2p′

(2π)2
+ Φ(k,ω)

}
= 0,

(3.33)
with η → +0 and vp = ∂ε(p)/∂~p, and we also took into account that ∂n(p)/∂~p =
vp∂n(p)/∂ε(p).

The distribution variations δn(p, k,ω) are different from zero only for momenta
p near the Fermi surface, where vp = vF (p). Putting Φ(k,ω) = 0 in Eq.(3.33)
one finds a dispersion relation for the excitation modes. In the limit of interactions
tending to zero (F → 0) we immediately obtain particle-hole modes near the Fermi
surface, ω = kvF (p). Collective zero sound modes will be obtained below in this
section.

We first note that the quantity 〈ρ(k,ω)〉 entering equation (3.29) for the density
response function, is given by

〈ρ(k,ω)〉 =

∫
δn(p, k,ω)

d2p

(2π)2
, (3.34)
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and we calculate δn(p, k,ω). Introducing the function ν̃(p̂):

δn(p, k,ω) = − kvF (p)

kvF (p)− ω − iη
∂n(p)

∂ε(p)
ν̃(p̂), (3.35)

equation (3.33) is reduced to

ν̃(p̂)+
1

~

∫ 2π

0
F (pF (φp)n, pF (φp′)n

′)
kvF (p′)

kvF (p′)− ω − iη
pF (φp′)

p̂′vF (p′)
ν̃(p̂′)

dφp′

(2π)2
+Φ(k,ω) = 0,

(3.36)
where n and n′ are unit vectors in the directions of p and p′, respectively.

Due to the anisotropy of the Fermi surface, the vectors p and vF (p) are not parallel
to each other and both pF and vF depend on the angle φp between p̂ and the x axis.
However, the anisotropy is small and it only leads to a small correction to the term
pF (φp′)/p̂

′vF (p′) in the integrand of Eq.(3.36), so that this term can be put equal
to m/~. We will also represent the scalar product kvF (p) as kvF (φp) cos(φp − φk).
We thus write Eq.(3.36) as:

ν(φp)−
m

~2

∫ 2π

0
F (φp,φp′)

ν(φp′) cos(φp′ − φk)
s(φp′)− cos(φp′ − φk) + iη

dφp′

4π2
+ Φ(k,ω) = 0, (3.37)

where s(φp) = ω/kvF (φp). Assuming |s − 1| � 1 we integrate in Eq.(3.37) singling
out the contribution from φp′ near φk and denoting the rest of the integration as
C(φp). This yields:

ν̃(φp)− C(φp) + Φ(k,ω)− mF (φp,φk)ν̃(φk)

2π~2
√
s2(φk)− 1

= 0. (3.38)

Substituting the obtained ν̃(φp) into equation (3.37) we find a relation:

0 = ν̃(φp)− mF (φp,φk)[C(φk)−Φ(k,ω)]

2π~2
√
s2(φk)−1

− m2

8π3~4
∫ 2π

0

F (φp,φp′ )F (φp′ ,φk) cos(φp′−φk)ν̃(φk)√
s2(φk)−1 [s(φp′ )−cos(φp′−φk)]

dφp′ + Φ(k,ω). (3.39)

Here we omitted the unimportant contribution of φp′ away from φk in the integral

m

4π2~2

∫ 2π

0

F (φp,φp′)[C(φp′)− Φ(k,ω)] cos(φp′ − φk)
s(φp′)− cos(φp′ − φk)

dφp′ .

From equation (3.38) we immediately see that

C(φk)− Φ(k,ω) = ν̃(φk)[1−mF (φk,φk)/(2π~2
√
s2(φk)− 1)].
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Then, putting φp = φk in Eq.(3.39) gives:

ν̃(φk) =− Φ(k,ω)

{
1− mF (φk,φk)

2π~2
√
s2(φk)−1

+

(
mF (φk,φk)

2π~2
√
s2(φk)− 1

)2

− m2

8π3~4

∫ 2π

0

F 2(φk,φp′) cos(φp′ − φk)dφp′√
s2(φk)− 1 [s(φp′)− cos(φp′ − φk)]

}−1

. (3.40)

The mean field contribution to F (φk,φk) is equal to zero, and hence in the second
and third terms in the square brackets in Eq.(3.40) we have to use the many-body
interaction function F (φk,φk) given by Eq.(3.26). The third term is exactly cancelled
by the contribution of φp′ near φk to the integral in fourth term. For φp′ away from φk
in this integral, we should use the mean field contribution to the interaction function
given by Eq.(3.11), which is linear in pF0r∗. This is because the use of quadratic
contributions to the interaction function would lead to terms proportional to cubic
or higher order powers of pF0r∗, which are much smaller than the second term in the
square brackets. Representing Eq.(3.11) on the Fermi surface in the form:

F1(φk,φp′) = 4πd2pF0 sin
|φk − φp′ |

2

{
P2(cos θ0) +

1

2
sin2 θ0 cos(φk + φp′)

}
(3.41)

and putting s(φp′) = 1, the integration of the fourth term in the square brackets in
Eq.(3.40) yields:

m2

8π3~4

∫ 2π

0

F 2(φk,φp′) cos(φp′ − φk)dφp′√
s2(φk)− 1 [s(φp′)− cos(φp′ − φk)]

=
(pF0r∗)

2P2(cos θ0) sin2 θ0(2 cos2 φk − 1)√
s2(φk)− 1

. (3.42)

In Eqs. (3.41) and (3.42) we omitted the anisotropy of the Fermi surface as it leads
to corrections which contain higher orders of pF0r∗. As a result, equation (3.40)
transforms to

ν̃(φk) = −Φ(k,ω)

[
1−

2(pF0r∗)
2
{
P 2

2 (cos θ0) + 1
8 sin4 θ0

}
√
s2(φk)− 1

]−1

. (3.43)

The pole of ν̃(φk) corresponds to the solution of Eq.(3.37) with Φ(k,ω) = 0, i.e.
to the eigenmodes of zero sound. In the expression for s0(φk) the anisotropy due to
mean field effects and the anisotropy due to the many-body contribution cancel each
other, and s0 becomes independent of φk:

s0 = 1 + 2(pF0r∗)
4

{
P 2

2 (cos θ0) +
1

8
sin4 θ0

}2

. (3.44)
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For θ0 = 0 equation (3.44) reproduces the result of Ref. [74]. The zero sound velocity
in the dispersion relation ω = v0k is:

v0 = vF (φk)s0. (3.45)

Thus, the zero sound modes exist at any tilting angle θ0 (for θ0 > θc ' 0.72 this is
true at temperatures exceeding the critical temperature of the superfluid transition).
The anisotropy of the zero sound is practically the same as the anisotropy of the
Fermi velocity (omitting corrections to vF which are ∝ (pF0r∗)

2). Equation (3.42)
clearly shows that in contrast to perpendicular dipoles (θ0 = 0), for tilted dipoles the
mean field contribution is non-zero in the second order. This is related to the angular
dependance of the interaction function F (p, p′) of quasiparticles, which in the tilted
case depends on both angles φp and φp′ , not only on the difference between them.
The mean field contribution for perpendicular dipoles appears only in higher orders
of perturbation theory. It is proportional to higher powers of pF0 and therefore is
omitted. Note that without the many-body contribution to the interaction function
we would obtain that the propagation of zero sound is possible only when the result
of Eq.(3.42) is positive. Namely, the zero sound exists for θ0 < arccos(1/

√
3) ' 0.96

and is anisotropic requiring φk < π/4, or it exists for θ0 > 0.96 and φk > π/4. This
is consistent with numerical calculations of Ref. [54]. As we see, the many-body
contribution drastically changes the result.

We now return to Eq.(3.43) and use it for obtaining the linear response function
on the basis of equations (3.29), (3.34), and (3.35). Integrating in Eq.(3.34) and
dividing the result by Φ(k,ω) we obtain:

χ(k,ω) =

∫
d2p

(2π)2

cos(φp − φk)
s(φp)− cos(φp − φk) + iη

∂n(p)

∂ε(p)

ν̃(φp)

Φ(k,ω)

= − ms

2π~2
√
s2 − 1

ν̃(φk)

Φ(k,ω)
=

m

2π~2

s√
s2 − 1−

√
s2

0(φk)− 1
, (3.46)

where s ≡ s(φk). Actually, we should have put s = 1 in the numerator of Eq.(3.46).
However, keeping s in the numerator of the expression for χ(k,ω) makes it consistent
with the result for a non-interacting 2D gas, which corresponds to s0 = 1 and is valid
for any s < 1. Thus, equation (3.46) becomes also valid for any s significantly smaller
than unity, where the interaction between particles is not important. Relying on
equations (3.30) and (3.46) we straightforwardly calculate the dynamical structure
factor. For s < 1 we have:

S(k,ω) =
m

(2π~)2

s
√

1− s2

s2
0 − s2

; s < 1. (3.47)

For s > 1 there is only a δ-functional contribution of the zero sound:

S(k,ω) =
m

(2π~)2
s
√
s2

0 − 1 δ(s− s0); s > 1. (3.48)
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Figure 3.2. – (color online) Dynamical structure factor (in units of m/(2π~2)2) as a function
of ω/kvF for s0 = 1.05.

The obtained dynamical structure factor is shown in Fig.2. Note that for a non-
interacting 2D Fermi gas one obtains a square root singularity in S for ω/kvF → 1.
The interaction between particles eliminates this singularity and we have S vanish-
ing as

√
1− (ω/kvF )2 for ω/kvF → 1, which is different from the 3D unpolarized

interacting Fermi gas where S vanishes logarithmically for ω/kvF → 1.

3.5. Relaxation rate of quasiparticles

The conditions of the collisionless regime, required for the existence of zero sound,
are easily achievable in experiments with polar molecules or magnetic atoms. This
is seen from the dimensional estimate of the relaxation rate of quasiparticles. At
temperatures T � εF the relaxation of a non-equilibrium distribution of quasiparti-
cles occurs due to binary collisions of quasiparticles which have energies in a narrow
interval near the Fermi surface. The width of this interval is ∼ T and, hence, the
relaxation rate contains a small factor (T/εF )2 (see, e.g. [68]). The rate is also pro-
portional to the 2D density n and to the density of states on the Fermi surface, which
is ∼ m/~2. Using the Fermi golden rule we may write a dimensional estimate for the
inverse relaxation time as τ−1 ∼ (g2

eff/~)(m/~2)n(T/εF )2, where the quantity geff
is the effective interaction strength. Confining ourselves to the leading part of this
quantity, from Eq. (3.11) we have geff ∼ pFd2 ∼ ~2pF r∗/m. We thus obtain:

1

τ
∼ ~n
m

(pF r∗)
2

(
T

εF

)2

∼ mT 2r2
∗

~3
. (3.49)

Interestingly, for considered temperatures T � εF the relaxation time τ is density
independent. Excitations with frequencies ω � 1/τ are in the collisionless regime.
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Assuming T ∼ 10nK, for dysprosium atoms which have magnetic moment 10µB
equivalent to the dipole moment d ' 0.1 D, we find that τ is on the level of tenths
of a second. The required condition T � εF is satisfied for εF & 50 nK, which
corresponds to n & 3 · 108 cm−2. In such conditions excitations with frequencies of
the order of a Hertz or higher will be in the collisionless regime.

The occurrence of relaxation of excitations in the collisionless regime is important
for understanding the visibility of zero sound. The dynamical structure factor S(k,ω)
characterizes the scattering process in which the momentum k and energy ~ω are
transferred to the system. The visibility of the zero sound peak in the structure factor
can be smeared out by the fact that it is very close to the particle-hole continuum
(see Fig.2). The related distance is ∼ (pF0r∗)

4 in units of ω/vFk. In order to make
sure that this is not the case one has to find the actual height and width of the zero
sound peak. Also, one can think of observing the oscillations of the cloud induced
by small modulations of the density, with a time delay after switching off the driving
force perturbing the density. In both cases the picture is determined by the damping
of zero sound and quasiparticles excitations.

Thus, we should compare the relaxation rate of quasiparticles near the Fermi sur-
face with the damping rate of zero sound. First, we calculate the rate of relaxation
of a quasiparticle near the Fermi surface, with a given energy ε(p)� εF0 at T → 0.
The relaxation mechanism involves the interaction of this quasiparticle with the filled
Fermi sphere, which annihilates the quasiparticle, creates a hole with momentum p1

(annihilates a particle with momentum p1 inside the Fermi sphere), and creates
quasiparticles with momenta p2 and p3. As the relaxation rate τ−1 is small, we
use the first order perturbation theory (Fermi golden rule) relying on the interaction
Hamiltonian Ĥint given by the second term of Eq.(4.1). We then have:

1

τ
=

2π

~
∑

p1,p2,p3

|〈â†p1
âp2 âp3Ĥintâ

†
p〉|2 × δ(ε(p) + ε(p1)− ε(p2)− ε(p3)), (3.50)

where the symbol 〈...〉 stands for the average over the equilibrium state, and

Ĥint =
1

2S

∑

p1,p2,p3

U(p1 − p3)â†p3
â†p4

âp2 âp1 .

Using the Wick theorem and the relations

〈â†pi âp′i〉 = n(pi)δpip′i , 〈âpi â
†
p′i
〉 = (1− n(pi))δpip′i ,

we reduce equation (3.50) to

1

τ
=

2π

~

∫ ∞

0

p1dp1

(2π)2

∫ ∞

0

p2dp2

(2π)2

∫ 2π

0
dφ1

∫ 2π

0
dφ2 n(p1)(1− n(p2))(1− n(p3))

× [U(p− p2)− U(p1 − p2)]2δ(ε(p) + ε(p1)− ε(p2)− ε(p3))δp+p1,p2+p3 , (3.51)
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where φ1 (φ2) are the angles between the vectors p1 (p2) and the x axis, and the
presence of the Kronecker symbol δp+p1,p2+p3 reflects the momentum conservation
law.

We omit the small anisotropy of the Fermi surface in the δ-function and occupation
numbers. Since the anisotropy is omitted in all derivations below, we will use the
notations vF and pF for the Fermi velocity vF and Fermi momentum pF . As all
involved quasiparticle states are near the Fermi surface, we represent the energies of
these states in the form ε(pi) = ~vF qi, where qi = pi−pF and |qi| � pF . The particle
that undergoes the relaxation is certainly above the Fermi surface, and q = p−pF > 0.
We first integrate in Eq.(3.51) over the angles φ2 and φ1. The dependence of the
integrand on these angles is contained in the δ-function and in the Fourier transforms
U(p − p2) and U(p1 − p2). From the energy and momentum conservation laws we
have p3 = p+ p1 − p2 = |p + p1 − p2|, which gives a relation:

pp1[(1− cos(φ1 − φ)] = pp2[1− cos(φ2 − φ)] + p1p2[1− cos(φ2 − φ1)], (3.52)

with φ being an angle between the vector p and x axis.
The calculation of the integral in Eq. (3.51) is presented in the Appendix and it

gives the following result for the inverse relaxation time:

1

τ
=

4~
πm

(pF r∗)
2q2

{(
3

4
ln
p2
F

q2
+

3

4
+

3

2
ln 2

)
(cos2 θ0 − sin2 θ0 cos2 φ)2

+F(θ0,φ) + F̃(θ0,φ)

}
. (3.53)

where

F(θ0,φ) = sin2 θ0 cos2 θ0(2 cos2 φ− 1) + sin4 θ0

(
1

4
+ cos2 φ− 2 cos4 φ

)
,(3.54)

F̃(θ0,φ) = F(θ0,φ)− π

2

(
cos4 θ0 − cos2 θ0 sin2 θ0 +

1

8
sin4 θ0

)
. (3.55)

Recalling that the quasiparticle energy is ε(q) = ~vF q and p2
F = 4πn, we represent

Eq.(3.53) in the form:

1

τ
=

6~
m
n(pF r∗)

2

(
ε(q)

εF

)2

A(q, θ0,φ), (3.56)

where

A = (cos2 θ0 − sin2 θ0 cos2 φ)2 ln

[
4e1/2εF
ε(q)

]
+

2

3

(
F(θ0,φ) + F̃(θ0,φ)

)
. (3.57)
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The dependence τ−1 ∝ q2 is generic for Fermi liquids [68], and the appearance of the
logarithmic factor in Eq.(3.56) is due to the 2D geometry of the system.

The obtained relaxation rate strongly depends on the tilting angle θ0 and on the
angle φ of the quasiparticle wavevector p with respect to the tilting direction. The
rate reaches maximum when the dipoles are perpendicular to the plane of their trans-
lational motion (θ0 = 0). In this case

Amax = ln

[
4e1/2εF
ε(q)

]
.

The minimum value of τ−1 is achieved for the dipoles lying in the plane of their
translational motion (θ0 = π/2) at the angle φ equal to π/2. We then have

Amin =
1

3
− π

24
' 0.2.

The absolute value of the relaxation time of an excitation of a given frequency
(in units of the Fermi energy) at a given density, strongly depends on a particular
system. For example, in the case of dysprosium atoms (d ' 0.1D and r∗ ' 25 nm) at
a density n ∼ 109 cm−2 we have the Fermi energy approaching 200 nK (5 kHz), and
equation (3.56) gives the relaxation time τ of the order of a second or higher for the
excitation energy of 10−2εF (50 Hz). At the same time for NaK molecules, selecting
the electric field that provides d ' 0.4D (r∗ ' 100 nm), for ε(q) ' 10−2εF (which is
150 Hz as we now have εF ' 15 kHz) we obtain τ ≈ 20 ms at the same density of
109 cm−2 and θ0 = 0.

3.6. Damping of zero sound

The calculation of the damping rate of zero sound modes is more involved. It has
to include the zero sound through the non-equilibrium character of the distribution
function. The discussion of this topic has been initiated by Landau [85] who assumed
that the transition probability for the scattering of quasiparticles with given momenta
in the wave of zero sound is the same at temperatures T � ~ω, where ω is the
frequency of the zero sound, and at T = 0. He then established a relation between
the damping of zero sound at T � ~ω and at zero temperature [85, 77]. In a later
stage, theoretical studies of the attenuation of zero sound in liquid 3He were based
on microscopic considerations [86, 87].

Following the idea of Landau we first consider the attenuation of zero sound at
temperatures T � ~ω and start with the kinetic equation (3.31) in which we include
the colliasional integral I(n) and put the external potential Φ→ 0:

∂δn

∂t
+
∂ε(p)

∂~p
· ∂δn
∂r
− ∂n(p)

∂~p
· ∂δε(p)

∂r
= I(n), (3.58)
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where n(p) is the equilibrium distribution function, δn(p, r, t) is the deviation of the
distribution function from the equilibrium value, and variations of the quasiparti-
cle energy are expressed through δn by Eq.(3.32). In the presence of zero sound,
variations of the distribution function follow from Eq.(3.35). Omitting the small
anisotropy of the Fermi surface, δn can be written as (see Eq.(3.35)):

δn(p, r, t) = −∂n(p)

∂ε(p)
ν(φ) exp{ikr− iωt}, (3.59)

where the function ν(φ) has a sharp peak for φ→ φk, with φ ≡ φp and φk being the
angle between the wave vector of the zero sound k and the tilting direction.

At temperatures T � ~ω one may omit the frequency and momentum of the zero
sound in the energy and momentum conservation laws. Then the collisional integral
reduces to the form [88]:

I(n) =
1

T

∫
Wn(ε(q))n1(1− n2)(1− n3)(ζ2 + ζ3 − ζ1 − ζ)

× δ(ε(q) + ε1 − ε2 − ε3)
d2p1d

2p2

(2π)4
, (3.60)

where εi = ε(qi), ni = n(ε(qi)), and ζi = ν(φi) + (m/2π~2)
∫
ν(φ′i)F (φi,φ

′
i)dφ

′
i. The

momentum conservation law reads p + p1 = p2 + p3. The quantity W is given by

W =
2π

~
[U(p− p2)− U(p1 − p2)]2, (3.61)

and the notations are the same as in Section V.
The functions ζi are taken on the Fermi surface, and we can do the same with

respect to U(p − p2) and U(p1 − p2). The only way to satisfy the momentum
conservation on the Fermi surface and get a non-zero quantity [ζ(φ)+ζ(φ1)−ζ(φ2)−
ζ(φ3)] is to put φ1 = φ + π (and, hence, φ3 = φ2 + π). We then have W (φ2,φ)
following from equation (3.61) with [U(p−p2)−U(p1−p2)] from Eq.(B.7), and the
collisional integral becomes:

I(n) =
m

~2T

∫ 2π

0

dφ2

(2π)4

∫ ∞

−∞
dq1

∫ ∞

−∞
dq2

W (φ2,φ)

| sin(φ2 − φ)|
× [ζ(φ2) + ζ(φ2 + π)− ζ(φ)− ζ(φ+ π)]n(ε(q))n1(1− n2)(1− n3). (3.62)

Assuming εq � T and using the finite temperature Fermi-Dirac distribution for n1,
n2, and n3 we then obtain:

I(n) =
π2mT 2

2(~2vF )2

∫ 2π

0

dφ2

(2π)4

W (φ2,φ)

| sin(φ2 − φ)|
[ζ(φ)+ζ(φ+π)−ζ(φ2)−ζ(φ2+π)]

∂n(ε(q))

∂ε(q)
.

(3.63)
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We now set

ν(φ) =
ν̄(φ)

s0(φk)− cos(φ− φk)
, (3.64)

where ν̄(φ) is a smooth function, and s0 is given by Eq.(3.44). To zero order in pF r∗
we omit the second term in the expression for ζ(φi) and then obtain:

∫ 2π

0

π2W (φ2,φ)

2| sin(φ2 − φ)|
dφ2

(2π)4
[ζ(φ) + ζ(φ+ π)− ζ(φ2)− ζ(φ2 + π)]=

π~3

m2
(pF r∗)

2B(φ),

(3.65)
where

B(φ) =

∫ 2π

0
dφ2

{
ν̄(φ)

s0 − cos(φ− φk)
+

ν̄(φ+ π)

s0 + cos(φ− φk)
− ν̄(φ2)

s0 − cos(φ2 − φk)

− ν̄(φ2 + π)

s0 + cos(φ2 − φk)

}
×

{∣∣∣∣sin
(
φ2 − φ

2

)∣∣∣∣
[
cos2 θ0− sin2 θ0 sin2

(
φ2 + φ

2

)]

−
∣∣∣∣cos

(
φ2 − φ

2

)∣∣∣∣
[
cos2 θ0− sin2 θ0 cos2

(
φ2 + φ

2

)]}2
dφ2

| sin(φ2 − φ)|
. (3.66)

To zero order in pF r∗ we may put all ν̄ functions in Eq.(3.66) equal to ν̄(φk). This,
in particular, yields:

B(φk) =
4ν̄(φk)

s2
0 − 1

{
(cos2 θ0 − sin2 θ0 cos2 φk)

2 ln

[
s0 + 1

s0 − 1

]
+ 2F̃(θ0,φk)

}
, (3.67)

where the function F̃(θ0,φk) has been introduced in Eq.(3.55). Using Eq.(3.65) the
collisional integral (3.63) reduces to

I(n) =
1

τT

∂n

∂ε(q)
B(φ), (3.68)

with
1

τT
=

πT 2

2~εF
(pF r∗)

2, (3.69)

and making use of Eqs. (3.59) and (3.68) the kinetic equation (3.58) takes the form:

[ω−kvF cos(φ−φk)]ν(φ)−mkvF
4π2~2

cos(φ−φk)
∫ 2π

0
dφ′F (φ,φ′)ν(φ′) = − iB(φ)

τT
. (3.70)

In the presence of damping the zero sound, frequency ω is complex for real k. We
will use the notation ω/kvF = s, where the real part of s is equal to s0 and the
imaginary part is related to the attenuation of zero sound. We also assume that the
damping rate is much smaller than the shift of the frequency ω from kvF , given by
kvF (s0 − 1). This means that (s0 − 1) greatly exceeds the imaginary part of s. We



3.6 Damping of zero sound 55

thus may first proceed with Eq.(3.70) in the same way as we did in Section IV (see
equations (3.36) - (3.39)) and represent (3.70) in the form similar to Eq.(3.39). The
difference is that now we replace Φ(k,ω) by the term iB(φ)/τT . We have:

ν̃(φ)− mF (φ,φk)ν̃(φk)

2π~2
√
s2(φk)− 1

+
m2F (φk,φk)F (φ,φk)ν̃(φk)

4π2~4(s2(φk)− 1)

− m2

8π3~4

∫ 2π

0

F (φ,φ′)F (φ′,φk)ν̃(φk) cos(φ′ − φk)dφ′√
s2(φk)− 1 [s(φ′)− cos(φ′ − φk)]

=
−iB(φ)

kvF τT
, (3.71)

where the function ν̃ has been introduced in Eq.(3.35) and it is related to ν as
ν(φ) = ν̃(φ) cos(φ− φk)/(s− cos(φ− φk)). The contribution of φ′ close to φk in the
integral over dφ′ in the last term of the lhs of Eq.(3.71) and the third term of the lhs
cancel each other, and Eq.(3.71) reduces to

ν̃(φ)− m2

8π3~4

∫ 2π

0

F1(φ,φ′)F1(φ′,φk)ν̃(φk) cos(φ′ − φk)dφ′√
s2(φk)− 1 [s(φ′)− cos(φ′ − φk)]

− mF (φ,φk)ν̃(φk)

2π~2
√
s2(φk)− 1

=
−iB(φ)

kvF τT
, (3.72)

with the mean-field interaction function F1 given by Eq.(3.41).
We now take the limit φ → φk and note that then the lhs of Eq.(3.72) can be

conveniently expressed in terms of s0 and s, which leads to the relation:

ν̃(φk)


1−

√
s2

0 − 1

s2 − 1


 = − iB(φk)

kvF τT
. (3.73)

In equation (3.67) for B(φk) we may replace ν̄(φk) with ν̃(φk) and thus obtain from
Eq.(3.73):

Ims = − 8

kvF τT
D(θ0,φk), (3.74)

with

D(θ0,φk) =
1

2
(cos2 θ0 − sin2 θ0 cos2 φk)

2 ln

[
s0 + 1

s0 − 1

]
+ F̃(θ0,φk). (3.75)

Writing the zero sound frequency as ω = s0kvF − i/2τ0T , for the damping rate τ−1
0T

we find:
1

τ0T
=

16D(θ0,φk)

τT
. (3.76)

We now proceed in the same way as has been done in Ref. [87] for the attenuation
of zero sounf in 3He and as described in [88]. In the regime where the zero sound
frequency ω is comparable with T or exceeds it, the reduction of the number of the



56 Chapter 3. Zero sound in a two-dimensional dipolar Fermi gas

zero sound quanta per unit time due to quasiparticle collisions is given by

∫
W̄ ({pi}) [1n2(1− n3)(1− n4)− n3n4(1− n1)(1− n2)]

× δ(p1 + p2 − p3 − p4 − p)× δ(ε1 + ε2 − ε3 − ε4 − ~ω)
∏

dpi. (3.77)

The quantity W̄ is not necessarily the same as W . However, assuming that the
angular integrations are the same at an arbitrary ratio ~ω/T and in the classical
limit T � ~ω, we may proceed with the integration over the energies. This gives:

∫ ∏
dεi[n1n2(1− n3)(1− n4)− n3n4(1− n1)(1− n2)]

× δ(p1 + p2 − p3 − p4 − p)× δ(ε1 + ε2 − ε3 − ε4 − ~ω) ∝ T 2ω

[
1 +

ω2

4π2T 2

]
.

(3.78)

The absorption coefficient is proportional to this integral, and the proportionality
coefficient (which depends only on ω) can be found from the limiting case of T � ~ω.
So, the quantity in the square brackets in the rhs of Eq.(3.78) represents the ratio of
the damping rate of zero sound at an arbitrary value of ~ω/T to the damping rate at
T � ~ω. Using Eq.(3.69) for τT we thus obtain the following damping rate at T = 0:

1

τ0
=

ω2

8πT 2

1

τ0T
=

2εF
π~

(
~ω
εF

)2

(pF r∗)
2D(θ0,φk) =

4~
m
n

(
~ω
εF

)2

(pF r∗)
2D(θ0,φk),

(3.79)
and using Eq.(3.44) for s0 we rewrite D(θ0,φk) in the form:

D(θ0,φk) =2(cos2 θ0 − sin2 θ0 cos2 φk)
2 ln

(
1

pF r∗

)

+ F̃(θ0,φk)− (cos2 θ0 − sin2 θ0 cos2 φk)
2 ln

(
P 2

2 (cos θ0) +
1

8
sin2 θ0

)
.

The condition that the damping rate is much smaller than (s0 − 1)ω requires the
inequality

~ω
εF
� (pF r∗)

2, (3.80)

which is important for the visibility of the zero sound in the dynamical structure
factor.

The damping rate of zero sound is strongly anisotropic, and the anisotropy is
similar to that of the relaxation rate of quasiparticles. The rate reaches maximum
for dipoles perpendicular to the plane of their translational motion. We then have

Dmax = 2 ln

(
1

pF r∗

)
,
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and for pF r∗ ≈ 0.5 and εF /~ω ∼ 100 the damping time τ0 is by an order of magni-
tude larger than the relaxation time of quasiparticles with energy equal to ~ω. The
damping rate is minimal for dipoles lying in the plane of translational motion and
the angle φk = π/2. Then we obtain

Dmin =
4− π

16
' 0.05.

3.7. Concluding remarks

The obtained results draw promising prospects for the observation of zero sound in
2D gases of polar molecules or magnetic atoms in the two-photon Bragg spectroscopy
experiments by measuring the dynamical structure factor. This becomes especially
feasible in view of the recent success in creating spatially uniform ultracold quantum
gases [79]. The distance of the zero sound peak from the border of the particle-
hole continuum (see Fig.2) is ∼ ω(pF r∗)

4. Comparing it with the damping rate
of the zero sound given by equation (3.79) we see that the latter is much smaller
if the condition (3.80) is satisfied. This condition is easily fulfilled even for rather
small pF r∗. For realistic systems one can think of the zero sound frequency of the
order of a few tens or hundreds of Hertz, whereas the Fermi energy can easily be
a few kiloHertz (a few hundreds of nanokelvins), so that the ratio εF /~ω exceeds
10. Under the condition (3.80) the height of the zero sound peak in the structure
function (2π~)2S/m is ∼ εF /~ω, which is simply obtained replacing the δ-function
in Eq.(3.47) by τ0kvF . The maximum of the particle-hole continuum following from
equation (3.48) is ∼ (pF r∗)

−2 and it is much lower under the condition (3.80). Thus,
the zero sound peak is not smeared out by the particle-hole continuum and can
be visible in the dynamical structure factor. For example, if pF r∗ ≈ 0.5, then the
separation between the border of the particle-hole continuum and the zero sound
peak is ∼ ω(pF r∗)

4 ∼ 20 Hz for the sound frequency of a few hundred Hertz. It can
be easily resolved as the relative frequency of the two Bragg beams can be controlled
on the level of a Hertz.

Owing to a remarkable progress in experiments with ultracold quantum gases, it
is also promising to directly observe the propagation of zero sound in the 2D dipolar
Fermi gas. Using a tightly-focused and far detuned laser beam one can create a
potential to introduce a localized density modulation in the gas, without heating it.
This technique has been used to directly study the propagation of sound in Bose-
Einstein condensates [89] and in resonantly interacting Fermi gases [90, 91, 92]. In
our system, the far detuned laser can be focused to the center of the 2D sample,
and one can choose a proper power and shape of the excitation pulse to resonantly
drive the desired zero sound mode (see, e.g. [92]). After the zero sound mode is
excited, one can observe the time evolution of the density profile and thus extract
the information on the propagation of the mode.

Incoherent particle-hole excitations will also be excited during the pulse. However,
as we have shown above, the decay of the zero sound is slower than that of particle-
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hole excitation. After a time of the order of a fraction of the zero sound damping
time τ0, let say 0.2τ0 or 0.3τ0, quasiparticle excitations are damped out and one
is expected to see only the zero sound contribution to modulations of the density.
The time τ0 can be easily made on the level of a second. For example, this is the
case for NaK molecules in the electric field providing d ' 0.3D (r∗ ' 50nm). Then,
at the 2D density n ∼ 109 cm−2 we have the Fermi energy approaching 1µK and
pF r∗ ≈ 0.5, and Eq.(3.79) gives τ0 ∼ 0.2s for dipoles perpendicular to the plane of
their translational motion.



CHAPTER 4

Stable dilute supersolid of two-dimensional
dipolar bosons

We consider two-dimensional bosonic dipoles oriented perpendicularly to the plane.
On top of the usual two-body contact and long-range dipolar interactions we add
a contact three-body repulsion as expected, in particular, for dipoles in the bilayer
geometry with tunneling. The three-body repulsion is crucial for stabilizing the
system, and we show that our model allows for stable continuous space supersolid
states in the dilute regime and calculate the zero-temperature phase diagram.

Note: This chapter is based on the publication: Stable Dilute Supersolid of Two-
Dimensional Dipolar Bosons, Phys. Rev. Lett. 115, 075303 (2015), which was
written originally by myself (first authorship).

4.1. Introduction

Recent advances in the field of cold polar molecules [29, 26] and magnetic atoms [19,
20] interacting via long-range dipole-dipole forces make it realistic to create novel
many-body quantum states in these systems. For polar molecules, ultracold chemical
reactions observed at JILA [56, 30] and leading to a rapid decay of the system can
be suppressed by tightly confining the molecules to a (quasi)two-dimensional (2D)
geometry, orienting the dipoles perpendicularly to the plane of their translational
motion, and thus inducing a strong intermolecular repulsion [57, 58, 31]. Therefore,
2D geometries are intensively discussed in the context of ultracold dipolar gases
[21, 93, 94], together with possible experiments with non-reactive molecules, such as
NaK[59, 95] and RbCs[96, 97].

The studies of ultracold dipolar gases may open perspectives for the observation
of supersolidity. This remarkable quantum phenomenon combines superfluidity with
a crystalline order [98, 99] (see [100] for review). It is still under debate as to what
extent experimental results in solid helium prove the existence of this conceptually
important phase [101]. On the other hand, supersolidity is rather well understood
theoretically for soft-core two-body potentials [100, 102, 103, 104, 105] which can be
realized, for example, in Rydberg-dressed atomic gases. However, such supersolids
require a dense regime with at least several particles within the interaction range,
which can be difficult to achieve. The same holds for supersolids discussed for 2D
dipolar Bose gases [106] near the gas-solid phase transition [41, 107]. It is thus
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an open question whether supersolids can exist in the dilute regime. The creation
of such supersolids, especially if they are tunable regarding the lattice period, will
allow for studies of non-conventional superfluid properties of supersolids and other
aspects of supersolidity. Dilute 2D dipolar bosons may show the (helium-like) roton-
maxon structure of the spectrum by fine-tuning the short-range part of the interaction
potential and can be made unstable with respect to periodic modulations of the order
parameter (roton instability) [108]. However, instead of forming a supersolid state
when approaching such an instability, the gas collapses [109].

In this work we predict a stable supersolid state in a dilute two-dimensional dipolar
system. In contrast to the earlier proposed soft-core supersolids, where the lattice
period is of the order of the core radius, in our case it is tunable by varying the
density and the dipole moment. In addition to the contact two-body term (g2) and
the dipole-dipole long-range tail characterized by the dipole moment d, we include a
contact repulsive three-body term (g3) which may prevent the collapse. Three-body
forces are ubiquitous and arise naturally in effective field theories when one integrates
out some of the high-energy degrees of freedom in the system [110]. In particular, our
model can be realized for dipoles in the bilayer geometry with interlayer tunneling
[111]. Tracing out the degree of freedom associated with the layer index one obtains
an effective single-layer model in which g2 and g3 can be independently controlled by
tuning the interlayer tunneling amplitude. Here we work out the phase diagram of
this model and identify stable uniform and supersolid states.

4.2. Method

4.2.1. Hamiltonian

The Hamiltonian of the system reads

H = −
∫
d2rψ̂†(r)

~2∇2

2m
ψ̂(r) +H2

+
g3

6

∫
d2rψ̂†(r)ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)ψ̂(r), (4.1)

where ψ̂(r) is the bosonic field operator, m is the particle mass, and the normalization
volume is set equal to unity. The first term in Eq. (4.1) corresponds to the kinetic
energy, the third one to the contact three-body repulsion (g3 > 0), and the two-
body interaction Hamiltonian H2 at low energies can be substituted by an effective
momentum-dependent (pseudo)potential (see, e.g., [112])

Ṽ (k, k′) = Ṽ (|k− k′|) = g2 − 2πd2|k− k′|, (4.2)

where k and k′ are the incoming and outgoing relative momenta, g2 is the contact
term which depends on the short-range details of the two-body potential, and the
momentum-dependent part corresponds to the long-range dipolar tail for dipoles
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oriented perpendicularly to the plane of their translational motion. We thus have

H2 =
1

2

∫
d2rd2r′ψ̂†(r)ψ̂†(r′)

∑

q

Ṽ (q)eiq(r′−r)ψ̂(r)ψ̂(r′). (4.3)

4.2.2. Bogoliubov excitation spectrum of a uniform BEC

The onset of supersolidity is frequently associated with the presence of a low-lying
roton minimum in the excitation spectrum [113, 114, 115, 116, 102]. In our case the
standard Bogoliubov approach for a uniform Bose condensate of density n gives the
excitation spectrum

ε(k) =
√
E2
k + 2Ek(g2n+ g3n2 − 2πnd2k), (4.4)

where Ek = ~2k2/2m, and we assume that (g2 + g3n) > 0. The validity conditions
for the mean-field approach read

nr2
∗ � 1; m(g2 + g3n)/~2 � 1, (4.5)

where r∗ = md2/~2 is a characteristic range of the dipole-dipole interaction. The
structure of the spectrum is characterized by a dimensionless parameter β given by

β = γ/(1 + g2/g3n); γ = 4π2~2r2
∗/mg3. (4.6)

The excitation energy ε(k) shows a roton-maxon structure (local maximum and min-
imum at finite k) for β in the interval 8/9 < β < 1, and at β = 1 the roton minimum
touches zero. For β > 1 the excitation energies become imaginary, and the uniform
superfluid (U) is dynamically unstable and is no longer the ground state.

4.2.3. Variational ansatz

A promising candidate for the new ground state is a supersolid state in which the
condensate wavefunction is a superposition of a constant term and a lattice-type
function of coordinates [98, 99, 113, 102]. We considered various lattice structures
and found that the ground state can be either a triangular lattice supersolid (T) or a
stripe supersolid (S). For T, the lattice is built up on three vectors in the x, y plane
of the translational motion, with the angle of 2π/3 between each pair: k1 = (k, 0),
k2 = (−k/2,

√
3k/2), and k3 = (−k/2,−

√
3k/2), while for the S phase the density

modulation depends only on one wave vector k = (k, 0).
The variational ansatz for the condensate wavefunction of the T phase then takes

the form:

ψT (r) =
√
n

(
cos θ +

√
2/3 sin θeiΦ

∑

i

cos kir

)
, (4.7)
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and for the S phase we have:

ψS(r) =
√
n
(

cos θ +
√

2 sin θeiΦ cos kx
)

, (4.8)

which satisfies the normalization condition
∫
dr|ψT (S)(r)|2 = n, with n being the

mean density. The variational parameters of the wavefunctions are θ, Φ, and k.
Density modulations appear at θ 6= 0, and thus θ is the order parameter which
exhibits the U to supersolid transition. We have checked that the lowest energy
always corresponds to Φ = 0 and for brevity we omit this parameter.

For obtaining the energy functionals of the T and S states, we replace the field
operators in Eqs. (4.1) and (4.3) with ψT (r) and with ψS(r), respectively. This
yields

Ei=
[
Ekn−4πn2d2kDi(θ)

]
sin2 θ+g2n

2Ci(θ)+g3n
3Ti(θ), (4.9)

where the symbol i stands for T and S, and the functions DT (S)(θ), CT (S)(θ), and
TT (S)(θ) are related to the two-body dipole-dipole, two-body contact, and three-body
contact interactions, respectively.

4.2.4. Energy functionals

For calculating the energy functional we replace the field operators ψ̂(r) in the Hamil-
tonian (1) of the system with the condensate wavefunction ψT (r) (7) for the triangular
supersolid and with ψS(r) (8) for the stripe phase. In both cases the kinetic energy
term proves to be

K = −
∫
d2rψ∗T (S)(r)

~2∇2

2m
ψT (S)(r) =

~2k2n

2m
sin2 θ. (4.10)

In the calculation of the contribution of the two-body interaction we use the ef-
fective momentum-dependent interaction amplitude of Eq.(2). Substituting this am-
plitude into equation (3) in which the field operators ψ̂(r) are replaced with the
condensate wavefunction ψT (S)(r) we obtain:

HT (S)
2 = HT (S)

2c +HT (S)
2d , (4.11)

HT (S)
2c =

g2

2

∫
d2r|ψT (S)(r)|4, (4.12)

HT (S)
2d =

1

2

∫
d2r|ψT (S)(r)|2f(|r− r′|)|ψT (S)(r

′)|2, (4.13)

where Eqs. (4.12) and (4.13) represent the contributions of the contact and dipole-
dipole interactions, respectively, and the function f(|r− r′|) writes:

f(|r− r′|) = −πd2

∫
d2q

(2π)2
q exp(iq(r− r′)). (4.14)
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The integration yields:

HT (S)
2c = g2n

2CT (S)(θ), (4.15)

HT (S)
2d = −4πn2d2kDT (S)(θ). (4.16)

For the triangular phase the functions CT (θ) and DT (θ) are given by

CT (θ) =
1

2

(
cos4 θ + 6 cos2 θ sin2θ + 4

√
2

3
cos θ sin3θ +

5

2
sin4 θ

)
, (4.17)

DT (θ) =

[
cos2θ +

√
2

3
cos θ sin θ +

(
1

4
+

1

2
√

3

)
sin2 θ

]
, (4.18)

and for the stripe phase we have:

CS(θ) =
1

2

(
1 + 4 sin2 θ cos2 θ +

1

2
sin4 θ

)
, (4.19)

DS(θ) =

(
1− 3

4
sin2 θ

)
. (4.20)

The integration of the third term of Eq.(1), representing the contribution of the
three-body contact interaction,

HT (S)
3 =

g3

6

∫
d2r|ψT (S)(r)|6, (4.21)

leads to
HT (S)

3 = g3n
3TT (S)(θ). (4.22)

The expressions for the functions TT and TS read:

TT (θ) =
1

6

{
cos6θ + 15 cos4θ sin2θ + 20

√
2

3
cos3θ sin3θ +

75

2
cos2θ sin4θ

+30

√
2

3
cos θ sin5θ +

85

9
sin6θ

}
. (4.23)

TS(θ) =
1

6

(
1 + 12 sin2 θ − 9

2
sin4 θ − 6 sin6 θ

)
. (4.24)

The summation of K (4.10), Hi2c (4.15), Hi2d (4.16), and Hi3 (4.22), where the
symbol i stands for T and S, leads to the energy functional in the form Eq. (4.9).
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4.3. Results

By minimizing Eq. (4.9) with respect to k we obtain

Ei(kmi) = g2n
2Ci(θ)+ g3n

3(Ti(θ)− 2γ sin2θD2
i (θ)), (4.25)

where kmi=4πnr∗Di(θ). In the dilute limit of Eq.(4.5) the particle number per unit
modulation volume is n(2π/kmi)

2∼1/nr2
∗�1, which justifies the mean-field approach.

The energy functional ET (S) can be expanded in powers of θ. The zero-order term
E(θ = 0) = g2n

2/2 + g3n
3/6 gives the energy density of the uniform state. The

expansion of ET contains terms ∝ θ3, which is a consequence of the fact that the
vectors k1, k2, and k3 form a closed triangle (“triad”, k1 + k2 + k3 = 0) [99]. In
contrast, the expansion of ES contains only even powers of θ. According to the
Ginzburg-Landau theory [68, 117], the U-supersolid transition should occur to the T
phase and it is expected to be first order, so that θ jumps from 0 to a finite value.
However, deeply in the supersolid regime the states with different structures are
energetically competing and, in particular, the stripe phase can become the ground
state of the system.

First-order transitions are convenient to analyse in the grand-canonical picture.
We obtain the phase diagram by variationally minimizing the grand potential Ω =
ET (S) − µn with respect to θ and n for given values of the chemical potential µ and
the interaction parameters g2, g3 and d. We have checked the phase diagram by
employing the full numerical minimization of the grand potential density, which is
equivalent to solving the corresponding Gross-Pitaevskii (GP) equation.

First, let us consider g2 = 0. In this case the energy functional E only contains
terms ∝ n3, and the phase diagram is determined by a single dimensionless parameter
γ defined in Eq. (4.6). The U to T transition occurs before the roton minimum
touches zero (for g2 = 0 we have β = γ), namely at γ0 ' 0.99, where θ jumps
from 0 to 0.0946. The inverse compressibility κ−1 = ∂µ/∂n = 6E/n2 is positive
for γ smaller than approximately 1.4, indicating the existence of a stable supersolid
state. However, our numerics predicts the collapse instability at about γc ≈ 0.88 and
indicates that for lower values of γ the ground state is a uniform superfluid. The
discrepancy between the numerics and variational ansatz comes from the fact that
the latter does not take into account higher order momentum harmonics.

For g2 6= 0, we turn to the rescaled dimensionless density ñ = ng3/|g2|, chemical
potential µ̃ = µg3/g

2
2, and grand potential Ω̃T (S) = (g2

3/|g2|3)ΩT (S) = ẼT (S) − µ̃ñ.
The rescaled energy functional is given by

Ẽi = [Ti(θ)− 2γ sin2 θD2
i (θ)]ñ

3 + sgn(g2)ñ2Ci(θ). (4.26)

The phase diagram can be presented in the parameter space (µ̃, γ) and the phases are
characterized by θ ∈ [−π/2,π/2] and ñ. One can easily see that in the high-density
regime Ω̃T (S) is dominated by the term [TT (S)(θ)− 2γ sin2θD2

T (S)(θ)]ñ
3, whereas the
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two-body contact interaction, i.e., the term containing CT (S)(θ), becomes irrelevant1.

In this case the T phase has a lower Ω̃ than the S phase, and we obtain the same
stability condition as in the case of g2 = 0. Numerically we find that the phase
diagram for g2 > 0 contains only a stable U state at γ < γc and the region of collapse
for γ > γc.

The situation is quite different for g2 < 0. The phase diagram is shown in Fig. 4.1
where all continuous curves correspond to the variational results and all symbols to
the exact numerical solution of the GP equation. Let us first discuss the variational
results. The dashed curves mark the U-Tθ<0 and U-Tθ>0 transitions, which occur for
µ̃ < 3/2 and µ̃ > 3/2, respectively. These are first order transitions which weaken on
approaching the point µ̃ = 3/2, γ = 2/3 (black dot). The same holds for the dotted
curves, which correspond to the transitions from the T phases to the S phase. The
black dot thus stands as a four-critical point and it is the only place in the phase
diagram where the transitions are second order and occur when the roton minimum
touches zero. In this case the grand potential Ω̃ = const +O(θ4), i.e., the terms ∝ θ2

and ∝ θ3 are absent.
The region on the left of the black solid curve in Fig. 4.1 is the vacuum state:

ñ = 0, Ω = 0. Directly on the curve, vacuum can coexist with matter which has
a finite density and zero pressure. We thus are dealing with a self-trapped droplet
state 2[118]. With increasing γ, the vacuum curve eventually bends towards negative
µ̃ and tends to the variational collapse line γ ≈ 1.4 (not shown).

By solving the GP equation numerically we observe that the overall structure of
the phase diagram is well captured by the variational ansätze (4.7) and (4.8). Close
to the four-critical point the agreement is quantitative, which is generally expected
in the regions where θ � 1. Far from this point we see that the exact collapse line
moves to γ ≈ 0.88 (crosses in Fig. 4.1) and the vacuum curve (empty orange circles)
bends towards negative µ̃ faster than its variational version. The rest of the symbols
in Fig. 4.1 are inside the U phase (filled circles), Tθ<0 phase (down triangles), Tθ>0

phase (up triangles), and S phase (squares). We see that the actual U-Tθ<0 phase
boundary is well described by the variational method, but one can notice a move of
the S phase upwards and towards negative µ̃. In fact, the vacuum-S-Tθ>0 tri-critical
point moves to µ̃ ≈ −1.27, γ = 0.78 (outside of the plot).

In Fig. 4.1 we also show density profiles corresponding to the points enclosed by
rectangular frames in the phase diagram. The blue and yellow colors stand for minima
and maxima of the density. Without this rescaling the contrast, for instance, in the
lowest rightmost picture would be very weak. However, one can clearly distinguish
smooth density profiles, which can be described by a few harmonics in the spirit of
Eqs. (4.7) and (4.8), and sharper profiles (as one moves further away from the four-
critical point) requiring more harmonics or a different ansatz. The spatial coordinates

1 In fact, one can think of the g2 = 0 case as being represented by a vertical line in Fig.1 drawn at
infinite µ̃.

2Such droplets have been discussed for 3D Bose condensates with contact two- and three-body
interactions by A. Bulgac.
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Figure 4.1. – (color online) Phase diagram for g2 < 0. Continuous curves correspond to
transitions between different phases obtained from the variational ansätze (4.7) and (4.8).
Increasing γ one passes the U-T transition (dashed), then T-S (lower dotted curve), and S-T
(upper dotted curve). To the left of the solid black curve the ground state of the system is
vacuum. The black dot is the four-critical point for the U, S, and two T phases. The symbols
indicate our numerical results: the filled circles are inside the U phase, the downward and
upward pointing triangles are inside the Tθ<0 and Tθ>0 phases, respectively, and squares are
in the stripe phase. The empty circles are on the vacuum-stripe line and crosses are at the
collapse instability border. The color-coded pictures show density profiles corresponding to
the symbols in the phase diagram put in frames: the upper set (violet frame) contains three
points of the Tθ>0 phase at γ = 0.8, the middle set (green frame) shows one point in the S
phase and two points in the hexagonal Tθ<0 phase at γ = 0.6, and the lower set (grey frame)
corresponds to the six points at γ = 0.5.
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have also been rescaled (except for the upper set in the violet frame) because the
wave vector km changes very strongly from point to point.

To the right of the vacuum curve (empty circles in Fig. 4.1) the pressure is P =
−Ω > 0 and, therefore, this region of the phase diagram requires an external trapping.
In Fig. 4.2 we present the exact GP result for an isotropically trapped gas with g2 < 0,
γ = 0.575, the global chemical potential µ̃ = 0.6, and trap frequency ω̃ = 0.05 (in
units of g2

2/~g3). The result is consistent with the local density approximation in
which moving from the trap center towards its edge is equivalent to the trajectory
along a horizontal line in Fig. 4.1 determined by the local chemical potential µ(r) =
µ−mω2r2/2. In Fig. 4.2 one can clearly distinguish the U phase in the trap center,
the transition to the Tθ<0 phase, and eventually to the S phase. As the local chemical
potential decreases, the contrast and the period of the density modulation increase,
which is consistent with the free space results.

We should point out that first-order transitions involving density jumps are for-
bidden in 2D systems with dipolar interaction tails. The reason is that the surface
tension in between two such phases can have a negative contribution which logarith-
mically diverges with the length of the interface and can thus overcome the positive
local scale-independent contribution [119] (see also [100]). This means that the first-
order transition curves that we describe here become (narrow) regions of intermediate
“microemulsion” phases [119]. It is argued [100, 120] that the observation of these
phases requires exponentially large system sizes which are likely much larger than the
size of a typical ultracold sample. Nevertheless, we note that already the simplest
vacuum-U interface that we predict in our dilute weakly-interacting system should
be a good candidate for studying these interfacial effects. However, we leave this
subject for future work.

4.4. Numerical methods

The numerical calculation is performed in the grand canonical ensemble, with a given
chemical potential µ and fixed volume of the system V = LxLy. The field operator

ψ̂ is treated as a classical field, and is discretized on a two-dimensional grid with
periodic boundary conditions in the coordinate and momentum space. The grand
potential reads:

Ω[ψ∗, ψ] =

∫
d2r ψ∗(r)h0ψ(r) +

1

2

∫
d2r d2r′ f(r− r′)|ψ(r′)|2|ψ(r)|2

+
g2

2

∫
d2r |ψ(r)|4 +

g3

6

∫
d2r |ψ(r)|6 − µ

∫
d2r |ψ(r)|2,

(4.27)

where the single-particle Hamiltonian h0 includes a possible presence of the harmonic
trapping potential:

h0 = − ~2

2m
∇2 +

1

2
mω2r2. (4.28)



68 Chapter 4. Stable dilute supersolid of two-dimensional dipolar bosons

Figure 4.2. – (color online) The density profile for a harmonically trapped gas with µ̃ = 0.6,
γ = 0.575, and trapping frequency ω̃ = 0.05. The coordinates x, y are in units of

√
~2g3/mg2

2 .
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The number of grid points that we use along each direction ranges from 64 to 128 in
the absence of the trapping potential and from 512 to 1024 in presence of an isotropic
harmonic trap.

The ground state is determined by minimizing the grand potential (4.27) with the
use of the conjugate gradient algorithm. An ingredient of this method is the line
minimization, that is in each iteration the wavefunction is changed as

ψi+1(r) = ψi(r) + λ∆ψ̄i(r), (4.29)

where ψi(r) is the wavefunction in a current step, and λ is a real parameter chosen
to minimize (4.27) along the proposed direction ∆ψ̄i(r). This procedure allows us
to find the global minimum encountered when moving downhill in Ω[ψ∗, ψ] along a
line. Consequently, it improves the efficiency of the calculation. The direction along
which to move ψi(r) is constructed as

∆ψ̄i(r) = ∆ψi(r) +

∫
d2r∆ψ∗i (r) [∆ψi(r)−∆ψi−1(r)]∫

d2r |∆ψi−1(r)|2
∆ψ̄i−1(r), (4.30)

in order to be conjugate with respect to the direction ∆ψ̄i−1(r) used in the previous
step, and

∆ψi(r) = − δΩ

δψ∗
= − [HGP(r)− µ]ψi(r), (4.31)

is the gradient of the functional Ω[ψ∗, ψ] evaluated with ψi(r), where

HGP = h0 +

∫
d2r′ f(r− r′)|ψ(r′)|2 + g2|ψ(r)|2 +

g3

2
|ψ(r)|4 (4.32)

is the Gross-Pitaevskii Hamiltonian. The integral in the second term of Eq. (4.32)
can be calculated by using the convolution theorem [121], namely

∫
d2r′ f(r− r′)|ψ(r′)|2 = F−1

{
F [f ] (q)F

[
|ψ|2

]
(q)
}

(4.33)

where F [f ] (q) and F
[
|ψ|2

]
(q) are the Fourier transforms of f(r) and |ψ(r)|2 respec-

tively, and F−1 is the inverse transform. We set that the convergence is reached when
the relative difference in the grand potential between the neighboring time steps is
smaller than 5× 10−9.

In the absence of external trapping, the wave function can remain finite at the
boundary. Due to the periodic boundary condition, the structure of the modulation
for a non-uniform state is then limited by the size of the system imposed in the
simulation. In order to overcome this constraint, for each given set of parameters
(g2, g3, d, µ) we run the simulation several times with different Lx and Ly ranging
from 4π/km to 9π/km respectively, where km = 4πnr∗DT (S)(θ) is fixed by the vari-
ational ansatz. In the end we choose the ground state as the one corresponding to
the lowest grand potential density Ω/V .
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Different trial wavefunctions are used in the simulation, including a uniform state,
triangular (hexagonal) lattice state, square lattice state, stripe state, a combination
of triangular (hexagonal) and stripe states. This is done in order to check whether
the final result is biased by the initial conditions or not. We have also compared with
each other the results obtained with a different number of grid points to make sure
that they are not affected by the discretization of space.

4.5. Concluding remarks

In conclusion, we have found that a dilute 2D dipolar Bose gas can reside in a
variety of supersolid phases stabilized by three-body repulsion. Our results represent
a starting point for the analysis of collective modes of homogeneous, trapped or self-
trapped supersolids. The developed approach can also be employed in the studies of
novel vortex and soliton structures, and in the search for translationally nonperiodic
phases, in particular density-disordered superfluid (superglass) phases.

Promising candidates for the creation of such dipolar Bose gases are (non-reactive)
polar molecules in the bilayer geometry with interlayer tunneling. The validity of the
Hamiltonian (4.1) requires the tunneling amplitude t be much larger than the inter-
action energy per particle (chemical potential). For the 2D confinement frequency
∼ 50 kHz and interlayer spacing λ ≈ 200 nm one has t ∼ 100 nK for non-reactive
NaK molecules. In the region of stability of supersolid states in the phase diagram in
Fig.1 we have γ in between 0.3 and 0.85, so that for r∗ ∼ λ one has the three-body
coupling constant g3 ∼ 2π2~2λ2/m. The characteristic value of the chemical poten-
tial in the stability region is |µ| ∼ g2

2/g3 (|µ̃| ∼ 1) and it can be easily made about
10 nK, which is much smaller than t. The chemical potential is related to the 2D
density as µ = g2n+ g3n

2/2, and for g3 specified above the value |µ| ∼ 10 nK corre-
sponds to n ∼ 5× 108 cm−2. Therefore, the Kosterlitz-Thouless critical temperature
TKT = π~2ns/2m (ns is the superfluid density just below TKT and in our conditions
it is about a factor of 3 or 4 lower than the total density) will be ∼ 20 nK. Then, in
analogy with spinor Bose gases (see [122]) for the supersolid-uniform difference in the
interaction energy per particle of a few nanokelvin the system should Bose-condense
to the supersolid state in the region of its stability shown in Fig.1. We thus see that
the observation of dilute supersolid states proposed here is feasible at temperatures
of a few tens of nanokelvins.



CHAPTER 5

The experimental setup and procedure

My major work during this PhD period was to construct an experimental setup for
creating a sample of ultracold NaK polar molecules at their absolute ground state
with my colleagues from scratch. In this chapter, I will first give an overview about
the experimental setup and the experimental procedures. I then proceed to give
some details about the individual steps for producing ultracold NaK ground state
molecules. Further details about the experimental setup have been well presented in
Dr. Nikolaus.W. Buchheim’s thesis [123].

Note: This chapter summarizes my major experimental contribution during my
PhD period. There is no result published from this experimental setup as the time
of writing this thesis. Being the first generation of this experiment, Dr. Nikolaus
W. Buchheim and I have constructed the setup together since 2011 to 2016. The
similarities between the thesis of Dr. Buchheim [123] and this thesis are due to the
great overlapping of our experimental works, which can not be identified individually.
Dr. Buchheim has agreed the rights of citing and quoting the figures and texts
appeared in this chapter from Dr. Buchheim’s thesis [123].

5.1. Overview

In order to produce an ultracold sample of 23Na40K ground state molecules, the
essential steps are summarized as follows,

1. Laser cooling and trapping 23Na and 40K atoms simultaneously in a magneto-
optical trap (MOT).

2. Loading 23Na and 40K mixture into a magnetic trap and performing evaporative
and sympathetic cooling of Na and K respectively.

3. Loading the mixture into an optical dipole trap for transporting to the glass
cell and further evaporation to reach quantum degeneracy.

4. Preparing 23Na and 40K atoms into right spin states.

5. Using radio-frequency (rf) method to associate weakly bound state, Feshbach
molecules.
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6. Transferring adiabatically the Feshbach molecules to the deeply bounded ground
state via Stimulated Raman Adiabatic Passage (STIRAP).

7. Loading the ground state molecules into one dimensional lattice and apply
strong external electric field to polarize the molecules.

We designed and constructed the experimental apparatus deliberately to perform
these steps. The experimental system architecture could be divided into the following
parts:

1. An ultra high vacuum (UHV) environment with pressure (p < 10−10 mbar) to
suppress background gas collisions, together with atomic sources.

2. Separated laser systems for two different chemical elements are used for laser
cooling and imaging atoms.

3. Plugged magnetic trap containing a pair of magnetic coils producing quadrupole
magnetic field and a Coherent Verdi (532 nm, 10W) laser.

4. Trapping laser system for optically trapping and transporting atoms.

5. Feshbach coils system to generate and to stabilize magnetic field for associating
Feshbach molecules.

6. Raman laser system, containing two separated lasers phase-locked into an ultra
low expansion (ULE) cavity, to investigate molecular line structures and to
perform STIRAP.

7. High resolution imaging system combined with one dimensional optical lattice
system.

8. High voltage power system generating high electrical field to polarize the ground
state molecules under the vacuum.

9. Various radio-frequency (rf) and microwave (MW) systems for manipulating
hyperfine states and/or Zeeman sub levels.

10. Central real-time experiment control unit with a timing resolution of 1µs, with
a Python-based interface.

An overview of the main experimental setup (high vacuum part) is displayed in the
Fig. 5.1 (The figure is taken from Fig. 2.2 of Ref.[123] with the permission of
reproduction from Dr. Buchheim).

In the following sections, we provide some details about each sub systems and their
application in the experimental procedures.
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Figure 5.1. – CAD model of the current experimental setup. Right-up: Na oven section.
Left-down: Magnetic trap section. This figure is taken from Fig. 2.2 of Ref.[123] with the
permission of reproduction from Dr. Buchheim.

5.2. Creating a degenerate 23Na40K Bose-Fermi mixture

Making degenerated Bose or Fermi gas has been well established in the ultra cold
atomic community [124, 125]. The experimental creation of various Bose-Fermi has
also been achieved with 40K87Rb[126, 127] and 40K23Na[128]. We follow the stan-
dard experimental techniques to achieve quantum degenerate 23Na40K Bose-Fermi
mixture.

Our cooling scheme contains three major steps. 1) A pre-cooling process with
lasers in a dual species MOT. 2) Evaporative cooling of 23 Na in a plugged quadrupole
magnetic trap and sympathetic cooling of 40K. 3) Evaporative cooling of mixture in
a optical dipole trap.

5.2.1. Na Zeenman slower and Na laser system

We use a spin-flip Zeeman slower to create a cold Na atomic beam. The Na oven is
operating at of 330◦C = 603.15K, corresponding to a vapor pressure of ' 0.4mbar,
and the density is ' 7.2 · 1014 1

cm3 [123]. Na oven is separated from the main chamber
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by a dual stage differential pumping section to maintain a low pressure of background
gas at the main chamber.

The working principle of Zeeman slower has been well discussed in literatures[129],
and the working parameters of our setup are presented in Ref. [123]. After passing
the Zeeman slower, the fraction of 23Na atoms with a velocity smaller than the MOT
capture velocity is estimated to be ∼ 60%[123].

All the light used for Na Zeeman slower, 3D MOT and imaging system are derived
from a single second harmonic generation (SHG) modules. A commercial external
cavity diode laser with wavelength 1178nm (Toptica DLPro) seeds a Raman fiber
amplifier (MPB Communications). The Raman amplifier outputs 10W infrared light
and pass a frequency-doubling module and results in 1.5W power at 589nm.

We use usual D2 line cooling technique for 23Na. The laser frequency is stabilized
to 23Na F = 2→ F ′ = 3 cycling transition via RF modulated Doppler-free saturated
absorption spectroscopy technique [130]. To bring the atoms staying at F = 1 ground
state back to the cycling transition, an additional ‘repumper’ laser which is on the
resonant of F = 1 → F ′ = 2 transition is required. The electronic hyperfine ground
states splitting of 23Na is 1771.6 MHz. For Zeeman slower light and 3D MOT light,
we use Electro-optic modulators (EOMs) to generate frequency side bands which
are ∼ 1.7 GHz away from the carrier frequency. Therefore, the cooling light and
repumping light are intrinsically overlapped, and no further alignment is required.
However, for other purposes such as optical pumping and hyperfine resolved imaging,
we use a special Acousto-optic modulator (AOM) with large modulation frequencies
(up to ∼ 2 GHz, Crystal Technology) and the frequency of the first order diffraction
is away from the input by the microwave modulation frequency. In addition, we use
various AOMs with the double-pass configurations to tune and control the frequencies
of different laser ports.

All the laser ports are coupled to polarization maintaining optical fibers and then
routed to the main setup to get better beam qualities and versatilities.

5.2.2. K 2D-MOT and K laser system

We use a standard 2D-MOT as the atomic source of 40K [131]. We do not apply
on-axis cooling and pushing beams for the 2D-MOT. We use enriched of 40K sample
and the fraction of 40K is ∼ 3%. The 2D-MOT is operating at temperature ' 60◦C.
The 2D-MOT chamber is connected to the 3D-MOT chamber via a ' 1cm differential
pumping tube with ' 3mm diameter, in order to keep 3D-MOT chamber under high
vacuum during the operation. In addition, we use a camera to monitor the position
of the 40K atomic beam by its fluorescence. We tune the position of the atomic beam
to the center region of differential pumping tube by 2D-MOT coils.

Saturated absorption spectroscopy technique is not feasible to lock the lasers to any
transitions of 40K due to the low abundance. Thus, we lock a home-built external
cavity diode laser (master laser) to the D2 line of 39K. All other lasers used for
cooling, repumping and imaging are then locked to the master laser via master-slave
configuration: the beat-note signals are detected by fast photodiodes and then pass
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a digital phase-frequency discriminator (dPFD) to generate a rf signal. The error
signal is generated by comparing rf signal from the dPFD and a local oscillator (it
can be a voltage-controlled oscillator (VCO) or a direct digital syntheziser (DDS)).
The error signal is then fed back to the slave laser and stabilize the frequency . By
that, controllable large tuning range offset lock between master and slave lasers are
achieved. The potassium laser system is versatile that can be used for both 39K and
40K isotopes.

For 40K D2 line cooling scheme, the cycling transition is F = 9/2 → F ′ = 11/2
and the repumping transition is F = 7/2→ F ′ = 9/2. The hyperfine splitting of 40K
electronic excited states is small, therefore the repumping light needs equal amount
power as the cooling light. We use four commercial tapered amplifier (TA) diode
lasers (Toptica TA pro) in the current experiment, two for the 2D-MOT and two
for the 3D-MOT. The pair that is used for the 2D-MOT is operated with a cooling
to repumping power ratio of 1.0, the 3D-MOT pair with a ratio of 10.0. Since the
cooling and the repumping light are from different lasers, we superimpose the beams
and couple into a single mode polarization maintaining (SM/PM) fiber.

5.2.3. Dual species 3D MOT

It is crucial to start with a stable 3D MOT (atom number and temperature) in our
experiments. For this purpose, we use an laser intensity stabilization setup to elim-
inate possible laser intensity fluctuation due to fiber polarization drift or vibration.
We also use retro-reflected MOT configuration which is more compact and stable.
We do not operate dark-spot MOT in our setup since we didn’t see significant bene-
fits of using it. With these experimental efforts, the long-term stability of the atom
number for both species is < ±5%.

At the end of 3D MOT loading, we employ the compressed MOT (cMOT) technique
[123] to increase the density for better loading into the magnetic quadrupole trap.

5.2.4. Plugged magnetic trap and evaporative cooling

The temperature of 23Na 40K clouds reach the Doppler limit after MOT. To cool
down the clouds further, we need to perform evaporative cooling in a magnetic trap.

Therefore, we use circular polarized lasers with a ' 1G guiding field to optically
pump 23Na 40K mixture to the stretched low field seeking hyperfine states (|F =
2,mF = 2〉 for 23Na and |F = 9/2,mF = 9/2〉 for 40K) after MOT to avoid spin-
exchange collisions.. We then directly ramp up the magnetic field to ' 250G/cm
to catch most of atoms. To make sure we have a pure spin polarized mixture of
23Na|F = 2,mF = 2〉 and 40K|F = 9/2,mF = 9/2〉, we perform spin-purification
techniques after loading into the magnetic trap: we keep the magnetic trap gradient
at 8.25G/cm and wait for ' 2s that all atoms at non-stretched states leave the trap
due to the gravity.

We use a pair of coils at anti-Helmholtz configuration to create a quadrupole mag-
netic field. The center of the anti-Helmholtz coils has zero magnetic field and it
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leads to the depolarization of atoms and losses (Majorana losses in literatures[132]).
To avoid Majorana losses, we focus a high intensity laser beam ( (λ = 532nm, P =
5W, w0 = 50µm) that is blue detuned with respect to the D1 and the D2-line in 23Na
and 40K to the center of the magnetic trap. This laser beam is called plug laser.

We use forced microwave evaporation on F = 2 → F ′ = 1 hyperfine transition of
23Na in the plugged magnetic trap. Due to the large inter-species s-wave scattering
length between 23Na and 40K, ' −690a0, it is very efficient to sympathetically cool
down fermionic 40K in the trap.

Three-body loss appears at the end of the evaporation process when the density
of the clouds becomes large [133]. To suppress three-body loss, we gradually de-
crease the magnetic field gradient at the end of the evaporation while keeping the
re-thermalization still efficient [123].

To conclude, after the evaporative cooling in the plugged quadrupole trap, we can
produce a spin polarized thermal ensemble of ' 8 · 107 23Na |F = 2,mF = 2〉 and
' 5 · 106 40K |F = 9/2,mF = 9/2〉 atoms at a temperature of ' 6µK. Shot to
shot atom number fluctuations and long term atom number drift is below 10% of the
average value. We then load the cold mixture into an optical dipole trap.

5.2.5. Optical dipole trap and transport

To associate Feshbach molecules, it requires a homogenous magnetic field with high
stability. In addition, it is also required to have large optical access for future exper-
iments. Therefore we load the cold mixture into an optical dipole trap and use this
optical trap to transport the mixture from the main chamber to the glass cell. The
glass cell is made of transparent windows and is immune to Eddy currents.

Optical dipole trap relies on the principle of AC Stark shift from far detuned laser
lights, and has been widely used in ultracold experiments (see e.g. Ref. [134]).
Spatially varying light shifts due to a focused high intensity laser form a trapping
potential for the atoms:

U(r, z,ω) =
3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
· I(r, z), (5.1)

where ω0 and Γ are the angular transition frequency and natural linewidth of the
nearest atomic transition, ω = 2πc

λ the angular frequency of the trapping laser and
I(r) the spatial intensity distribution of the trapping laser. We define trap depth U0

of an optical dipole trap as U0 = U(r = 0, z = 0) [123].
Typically, Gaussian beams are used in experiments. The intensity distribution of

a single Gaussian beam is given:
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2P

πw(z)2
exp(− 2r2

w(z)2
), (5.2)
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with

w(z) = w0

√
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)2, (5.3)

where P is the power, w0 the beam waist and λ the wavelength of the laser. Within
the harmonic approximation, the trapping potential can be expressed as,
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The radial and axial trapping frequencies ωr and ωz are given by:
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.

From Eq. (5.1), it can be seen that higher intensity results in larger energy shift.
The atoms tend to locate at the focus of the dipole trap for red-detuned. The atoms
are transported to the science glass cell by moving the focus of the dipole trap [136].
The details of our setup are presented in Ref. [123].

In our experiment, we load the cold mixture from the magnetic trap into a single
beam dipole trap. The wavelength of the dipole trap is λ = 1064nm which is far away
from D1 and D2 transitions of 23Na and 40K. The maximum power of the dipole
trap is P = 7.5W, and the the waist is of w0 = 40µm.

At the end of the MW evaporation in the magnetic trap, we simultaneously ramp
up the power of the dipole trap and switch off the quadrupole magnetic field and the
plug beam. We optimize the loading efficiency by tuning the position the dipole trap
beam with respect to the magnetic trap.

As reported in Ref.[135] and also observed in our experiment, the lifetime of 23Na
|F = 2,mF = 2〉 + 40K |F = 9/2,mF = 9/2〉 mixture is short in the dipole trap
(τ . 100ms) due to inelastic hyperfine changing collisions. Therefore we transfer
23Na from F = 2,mF = 2 to F = 1,mF = 1 (the lowest energy Zeeman substates)
by applying a MW Landau-Zener sweep with a B ' 1.35G guiding field. Currently,
we could load ∼ 10% 23Na atoms and ∼ 60% 40K from the magnetic trap to the
dipole trap.

We transport the 23Na 40K mixtures from the main chamber to the glass cell over
∼ 25cm within 750ms. The transport efficiency is ' 65% for 23Na and ' 90% for
40K. The temperatures of the mixture before/after transport stay the same, ' 12µK.
The temperature increase from ' 6µK to ' 12µK during the dipole trap loading is
due to adiabatic heating [137].

5.2.6. Degenerate Bose-Fermi mixture

After transporting into the glass cell, further evaporation is required for the mixture
to reach quantum degeneracies. The single beam dipole trap does not provide suf-
ficient confinement along the axial axis, therefore the density of the clouds and the
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resulting thermalization rate is not high enough to reach efficient evaporation. To
change that, we axially compress the trap by sending a second crossed laser beam
(λ = 1550nm, P = 5W, w0 = 100µm).

To evaporate the mixture further, we ramp down to transport dipole trap power
from 90% downto few percent level (depending on the target temperature we would
like to achieve) and ramp up the crossed dipole beam from 10% to 40% simulta-
neously. Experimentally we are able to change the initial MOT loading condition
and control the endpoint of the evaporation to obtain a mixture with different atom
number ratios and different temperatures. In Fig. 2.24 of Ref.[123], we show absorp-
tion images of degenerate Bose-Fermi mixtures of 23Na and 40K with various atom
number ratios.

If we load 23Na alone, we can produce a pure Bose-Einstein condensate with' 5·106

23Na atoms.
We can produce degenerate Bose-Fermi mixture of 40K 23Na at temperature as

low as ' 40% of the Fermi temperature while ' 95% of 23Na atoms are condensed
[123]. It provides an ideal starting point for further experiments, such as association
of weakly bound Feshbach molecules, molecular spectroscopy, Bose polarons, etc.

5.3. RF association of Feshbach molecules

5.3.1. Introduction

In this section, I present the experimental details of associating 23Na40K Feshbach
molecules by using radio-frequency (rf) method. Theoretical details on Feshbach
resonances and Feshbach molecules can be found in the next chapter.

Since the first creation of ultracold 85Rb 87Rb Feshbach molecules, heteronuclear
Feshbach molecules have been produced in various systems, including Bose-Bose mix-
tures of 87Rb 133Cs [138], 87Rb 41K [139] and 87Rb 23Na [140], in Bose-Fermi mixtures
of 87Rb 40K [141], 23Na 6Li[142] and 23Na 40K [128], and in Fermi-Fermi mixture of
6Li 40K [143].

There are two well established methods in the ultracold community to associate
Feshbach molecules [144]: one is so called magneto-association by sweeping the mag-
netic fields across the Feshbach resonances [145, 144], and the second method is called
radio frequency association by applying a rf pulse to an ultracold mixture [128, 146].
Currently, we use rf association method to associate Feshbach molecules in our setup.
Compared to magneto-association, rf association is easier technical-wise and clearer
way to produce molecules. The theoretical model of rf association has been discussed
in Ref. [147, 148].

In Ref [135], 21 Feshbach resonances of 23Na40K have been identified and charac-
terized. I list the 11 s-wave resonances in Table 5.1:

These low-field and wide Feshbach resonances are the ideal candidates for rf as-
sociations: it is easy to control magnetic fields at low fields with high stability, and
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Collision channel Position B0 (G) Width ∆B (G)

|F = 1,mF = 1〉Na|F = 9/2,mF = −3/2〉K 116.9 0.5
|F = 1,mF = 1〉Na|F = 9/2,mF = −3/2〉K 129.5 4.6

|F = 1,mF = 1〉Na|F = 9/2,mF = −5/2〉K 175 20.0
|F = 1,mF = 1〉Na|F = 9/2,mF = −5/2〉K 96.5 0.5
|F = 1,mF = 1〉Na|F = 9/2,mF = −5/2〉K 106.9 1.8

|F = 1,mF = 1〉Na|F = 9/2,mF = −5/2〉K 138 30
|F = 1,mF = 1〉Na|F = 9/2,mF = −7/2〉K 81.6 0.2
|F = 1,mF = 1〉Na|F = 9/2,mF = −7/2〉K 89.8 1.1 (2.5)
|F = 1,mF = 1〉Na|F = 9/2,mF = −7/2〉K 108.6 6.6

|F = 1,mF = 1〉Na|F = 9/2,mF = −9/2〉K 78.3 1.1
|F = 1,mF = 1〉Na|F = 9/2,mF = −9/2〉K 88.2 4.3 (12)

Table 5.1. – 11 reported s-wave Feshbach resonances in Ref. [135].Values in brackets are te
the results from our measurements.

the large widths indicate strong coupling between the open collisional channel and
the closed molecular bound states [10]. We initially use the resonance at 138G with
|F = 1,mF = 1〉Na|F = 9/2,mF = −5/2〉K channel for association, and currently
use the one at 88.2G with |F = 1,mF = 1〉Na|F = 9/2,mF = −9/2〉K channel 1.

5.3.2. Experimental setup

We associate the Feshbach molecules at the center of the glass cell. We have built
and installed essential hardware around the glass cell for the molecule association.

Feshbach magnetic coils

It is crucial to have a stable homogeneous magnetic field. We placed a pair of water-
cooled Helmholtz coils on the top/bottom of the glass cell. The electrical current
is controlled by a feed-back circuit : the current is measured with a high precision
current transducer (LEM IT 700-SB ultrastab) and compared with a target value,
the error signal is then fed back to the gate-source voltage of 4 identical high power
MOSFETs (Semikron SKM111AR) which conntrol the current of Feshbach coils.(see
Sec. 3.2 of Ref.[123] for the design of this control circuit). We are able to get 10−5

stability with this control circuit.

RF components

We use custom built direct digital synthesizer (DDS) circuits to generate radio-
frequency (rf) signal. DDS circuits can also generate continuous frequency sweeps.

1The nuclear spin characters of this resonance has larger overlap to the ground state, thus better
for STIRAP process.
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The rf signal is amplified by a 25W power amplifier. We place a home-built rf antenna
as close as possible to the glass cell in order to get larger Rabi frequencies.

5.3.3. Experimental steps

In Fig. 5.2, we illustrate the scheme of rf association. The experimental steps are
summarized as follows,
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Figure 5.2. – rf association scheme of 23Na40K Feshbach molecules. We use the Feshbach
resonance of |F = 1,mF = 1〉Na|F = 9/2,mF = −9/2〉K channel (the resonance locates at
88.2G with ∼ 10G width) . The 23Na40K mixture is prepared in the non-resonant collision
channel |F = 1,mF = 1〉Na|F = 9/2,mF = −7/2〉K at 85.5G (slightly below the resonance) .
A rf pulse drives the transition from the non-resonant channel to the resonant one. Depending
on the frequency of the RF pulse either the hyperfine state of free 40K atoms is changed or
weakly bound molecules are associated. Two consecutive rf pulses transfer unassociated
40K atoms to F = 9/2,mF = −3/2 state in order to reduce the background signal during
absorption imaging of Feshbach molecules. This figure is taken from Fig. 3.1 of Ref.[123]
with the permission of reproduction from Dr. Buchheim.

1. We start from a near degenerated mixture of 23Na |F = 1,mF = 1〉 40K |F =
9/2,mF = 9/2〉.

2. Perform a multi-level Landau-Zener sweep at a magnetic field 14.5G to transfer
40K atoms from |F = 9/2,mF = 9/2〉 to |F = 9/2,mF = −7/2〉 state2.

2 We use Stern-Gerlach technique to check the fidelity of the state preparation: different Zeeman
substates of 40K atoms are spatially separated in the absorption imaging after applying a short
magnetic field gradient pulse.
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3. Ramp up the Feshbach coils to the 85.5G and hold the mixture until the
magnetic field is stabilized. The mixture of 23Na |F = 1,mF = 1〉 40K
|F = 9/2,mF = −7/2〉 is not on resonant at 85.5G, so it gives sufficient time
for field stabilization.

4. We apply a Blackman rf pulse with frequencies close to 40K |F = 9/2,mF =
−7/2〉 → |F = 9/2,mF = −9/2〉 hyperfine transition.

5. Apply two consecutive rf π pulses with resonant frequencies of 40K |F =
9/2,mF = −7/2〉 → |F = 9/2,mF = −5/2〉 and 40K |F = 9/2,mF = −5/2〉 →
|F = 9/2,mF = −3/2〉 to bring unassociated 40K atoms to |F = 9/2,mF =
−3/2〉 state.

6. Directly use absorption imaging technique to count the atom number of 40K at
|F = 9/2,mF = −9/2〉 state 3. The Zeeman splitting between |F = 9/2,mF =
−3/2〉 and |F = 9/2,mF = −9/2〉 is ' 3Γ at 85.5G, therefore we can selectively
count atoms number of different hyperfine states by using different imaging light
frequencies. In order to increase the reliability of Feshbach molecule counting,
we use σ− light with resonant frequency of |F = 9/2,mF = −9/2〉 → |F ′ =
11/2,mF = −11/2〉 cycling transition.

5.3.4. Experimental results

Fig.5.3 shows a typical rf spectrum when we scan the rf frequencies. Two features
are clearly observed: an atomic peak near the unperturbed hyperfine transition (with
resonant frequency 22.81kHz), and a molecular peak arising from 40K atoms that have
been rf associated into bound molecules. The distance between the atomic peak and
the onset of the molecular feature yields the binding energy Eb of the molecules. At
85.5G, the binding energy of the Feshbach molecules is ∼ 85kHz.

It worths mentioning that, the rf spectrum Fig.5.3 also shows an non-symmetric
character . This tail is related to the universal Tan’s contact (see Chap. 7 for details).

We use time of flight (TOF) technique to measure the temperature of the Feshbach
molecules. The temperature ranges from 330nk to 800nk depending on the initial
temperature of the mixture when we associate.

We optimize the rf pulse parameters systematically. We find it is needed to use
maximum rf power (corresponding to a Ω ' 2π · 14kHz Rabi frequency of atomic
transition |F = 9/2,mF = −7/2〉 → |F = 9/2,mF = −9/2〉), and the optimal
pulse duration is ' 0.3ms. Further increase of pulse duration does not increase
the molecule number. We produce ' 104 Feshbach molecules with rf pulse, the
corresponding association efficiency is ' 10%.

We measure the lifetime of the Feshbach molecules, τ ∼ 2ms (1/e-lifetime). This
short lifetime is due to two facts, there is a large amount of remaining unassociated

3the Feshbach molecules are weakly bounded, therefore this number equals to the molecules number
we associated.
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Figure 5.3. – rf spectrum of 23Na40K Feshbach molecules association at a magnetic field of
B = 85.5G. The binding energy of the molecule is ' +85kHz. The grey shaded area indicates
the effect of the inter-species interaction in the strongly interacting collision channel. This
figure is taken from Fig. 3.4 of Ref. [123] with the permission of reproduction from Dr.
Buchheim.

free atoms in the trap, and the atom-molecule and molecule-molecule collisions lead
to the loss of Feshbach molecules. In Ref. [149], this collisional stability of different
collisional partners has been studied in details for 40K87Rb systems. The universal
laws should apply to 40K23Na as well, therefore the reaming 23Na bosons dominate
the loss.

To increase the lifetime, we follow the method developed in MIT [128] that ramping
down the power of the transport dipole trap down to 0.5% right after the rf associa-
tion. It immediately decrease the density of the sample, secondly 23Na atoms leave
the optical trap due to the gravity. With this technique, the lifetime of Feshbach
molecules is ∼ 13.5ms(1/e-lifetime) [123], which is enough for STIRAP transfer.

5.3.5. Summary

We produce ' 104 23Na40K Feshbach molecule via rf association at 85.5G that is
slightly below a broad s-wave Feshbach resonance in the |F = 1mF = 1〉Na|F =
9/2mF = −9/2〉K collision channel at 88.2G. The temperature of the Feshbach
molecules is ' 300nK and the molecules live long enough to perform STIRAP transfer
towards to the absolute hyperfine rovibronic ground states.
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Collisional partners loss rate for (a > 0)

X+ BF β(a) ∝ a−1

B+ BF β(a) ∝ P (a)a
F+ BF β(a) ∝ a−3.12

B+B+F K3(a) ∝M(a)a4

Table 5.2. – “BF” refers to the Feshbach molecule, “B” to the boson, “F” to the fermion,
and “X” to a distinguishable K atom. P (a) and M(a) are functions resulting from Efimovian
states (see Ref.[149] and references therein).

The association efficiency is∼ 10% which is probably due to the limited overlapping
between Bose-Femi clouds in the trap. The efficiency might be improved by changing
different trap geometry or by using magneto-association [146].

5.4. Creating rovibrational ground states of 23Na 40K molecules

During the period of this thesis writing, we have successfully transferred Feshbach
molecules to rovibrational ground states with Stimulated Raman adiabatic passage
(STIRAP) method. Compare to the previous successful ground state molecules ex-
periments of 40K 87K[29], 87Rb 133Cs[96, 97] and 23Na 40K[95], we are the first exper-
iment that using hyperfine-non-resolved intermediate states. We demonstrate that
STIRAP method is still valid for transferring Feshbach molecules to rovibrational
ground state via a generalized multi-level intermediate manifold. In this section, I
summarize the first results of creating 23Na 40K ground state molecules.

The intermediate states are crucial for the success of STIRAP. We have investi-
gated both theoretically and experimentally on the molecular structure of d3Π/D1Π
complex extensively. This part of study has been well presented in Chapter 4 of
Ref.[123], therefore I skip this part in this section.

5.4.1. Theoretical background

The theory of stimulated Raman adiabatic passages has been developed over last
two decades, and has applied to various systems including atomic systems, molecular
systems and quantum dots[150]. We follow the classical reviews on this subject [151,
152, 153, 150].

In general, STIRAP works for a three level (lamda) system. We use our system
as an example to illustrate the essential properties of STIRAP in Fig 5.4. The
molecular three levels system consists of the initial Feshbach molecule state |FB〉,
target rovibrational ground state |X1Σ, ν = 0,J = 0〉 and an intermediate state in
d3Π/D1Π complex, |d3Π, ν = 5, J = 1〉. The intermediate state is assumed to have
short lifetime with a decay rate 2π · Γ (Γ ' 10MHz), and the initial and the target
states have longer lifetime. These three levels are coherently coupled by two lasers:
the pump laser (with frequency ωP ) couples |FB〉 state and the intermediate state
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with a single photon Rabi frequency 2π ·ΩP and a single photon detuning 2π ·∆P =
2π(ω1 − ωP ), and the Stokes laser (with frequency ωS) couples the intermediate
state and the target ground state with a single photon Rabi frequency 2π · ΩS and
a single photon detuning 2π ·∆S = 2π(ω2 − ωS), where ω1 and ω2 are the resonant
transition frequencies of |FB〉 → |d3Π, ν = 5, J = 1〉 and |d3Π, ν = 5, J = 1〉 →
|X1Σ, ν = 0, J = 0〉, respectively. The two-photon resonant condition is defined as
∆P = ∆S = ∆. For simplicity, we introduce |1〉 represents the initial state, |2〉 the
intermediate state, and |3〉 the final state,

|d3Pn=5J=1〉

Pump Laser 
Stokes Laser

*

Γ

|X1Σn=0J=0〉

|FB〉
DP

DS

wP,WPwP,WP

Molecular lamda system

Figure 5.4. – Schematic of a three level lamda system. In this system, the three levels
include the initial Feshbach molecule state |FB〉, target rovibrational ground state |X1Σ, ν =
0, J = 0〉 and an intermediate state in d3Π/D1Π complex, |d3Π, ν = 5, J = 1, Ω = 1〉. These
three states are coherently coupled by a pair of lasers with frequencies ωP/S , Rabi frequencies
ΩP/S and single photon detunings with respect to the molecular transition frequencies ∆P/S ,
respectively. The two-photon resonant condition is ∆P = ∆S = ∆. This figure is taken from
Fig. 4.11 of Ref.[123] with the permission of reproduction from Dr. Buchheim.

In the rotating wave approximation [151], the non-Hermitian evolution matrix of
the three-level system is given by:

W (t) =
1

2




2∆P ΩP (t) 0
ΩP (t) −iΓ ΩS(t)

0 ΩS(t) 2∆S


 , (5.5)

where we assume that the Rabi frequencies are time-dependent (as the case for STI-
RAP) explicitly.

Under the two-photon resonant conditions, the eigenstates of the coupled system
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Eq.(5.5) are [123]:

|Φ+〉 =
ΩP (t)

Ω(t)
|1〉+

ΩS(t)

Ω(t)
|3〉

|Φ2〉 = |2〉

|Φ−〉 =
ΩS(t)

Ω(t)
|1〉 − ΩP (t)

Ω(t)
|3〉, (5.6)

where the two-photon Rabi frequency is defined as Ω =
√

Ω2
P + Ω2

2, and we use |1〉,
|2〉, |3〉 to represent the initial state, the intermediate state and the target state for
simplicity.

The eigenstates |Φ+〉 and |Φ−〉 do not contain |2〉 component, so they evolves
freely without loss. In experiments, we start from a well defined quantum state
|FB〉, corresponding to |Φ−〉 at ΩP (0)→ 0. By changing the ratio of ΩS(t)/ΩP (t) in
time, |Φ−〉 → |3〉 that Feshbach molecules are adiabatically transferred to the target
states.

The adiabaticity criterium of STIRAP is given as [153]:

|〈 d
dt

Φ−|Φ+/2〉| �
1

2

√
Ω2
P + Ω2

S , ∀ t ∈ [0, τ ]. (5.7)

It leads to the following experimental requirements [153, 123]:

D <<
1

τ
<<

Ω2
0

π2Γ
, (5.8)

where D is the relative linewidth of the Raman lasers, Ω0 is the Rabi frequency of
the Raman lasers 4, and τ is the pulse duration of the STIRAP.

5.4.2. Molecular structure of the intermediate manifold

A suitable intermediate state is crucial for the success of STIRAP transfer as men-
tioned in the previous section. To choose the intermediate state, we considered the
following requirements:

1. The initial state |FB〉 is open-channel dominated therefore it is mainly a triplet
state (see Chap. 6 for details). The rovibrational ground state |X1Σ, ν = 0, J =
0〉 is purely singlet character. Therefore the intermediate state must have both
singlet and triplet characters. In diatomic alkali molecules, significant singlet-
triplet mixing is primarily mediated by spin-orbit coupling of near degenerate
vibrational levels of singlet and triplet potentials.

2. Besides the singlet-triplet mixing, the wave function of the initial Feshbach state
and the ground state are significantly different. therefore the intermediate state

4We assume that the pump and the Stokes lasers have similar Rabi frequencies.
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must have good Frank-Condon overlapping to both the Feshbach state and the
ground state.

3. The relative linewidth of the Raman lasers need to be narrow for the STIRAP
experiments. It’s better to choose optically accessible transitions (the lasers for
the corresponding transitions can be purchased from markets) for experimental
feasibilities.

The molecular potential curves of 23Na40K is shown in Fig.5.5, where we only include
the lowest electronic states. With the collaboration with the group of Prof. Olivier
Dulieu and Dr. Nadia Bouloufa 5, we decided to use |d3Π, ν = 5, J = 1〉 state
in d3Π/D1Π complex while planning the experiment. This complex corresponds to
the atomic 23Na(32P ) + 40K(42S) asymptotes at large internuclear distance. The
intermediate state used in previous experiments at MIT is in c3Σ+/B1Π complex
corresponding to 23Na(32S) + 40K(42P ) at large internuclear distance [95, 154].

LAC team predicted the transition dipole moments (TDM) of the initial Feshbach
state to intermediate states and intermediate states to the ground state for different
vibrational levels of d3Π/D1Π complex, shown in Fig.5.6. The wavelength of the
pump laser is ' 652nm and the Stokes laser is ' 487nm

Experimentally, we have performed photo association spectroscopy [156] and have
identified the vibrational levels ν = 0 to ν = 6 of d3Π potential (for experimental
details, see Sec. 4.3 in Ref.[123, 161]), summarized in Table.5.3.

Vibrational level Pump laser frequency (GHz)

ν = 0 450177

ν = 1 452129

ν = 2 453574

ν = 3 455926

ν = 4 457773

ν = 5 459340

ν = 6 461371

Table 5.3. – Seven lowest vibrational levels of d3Π potential identified from photoassoci-
ation experiment. The value shown in the table are the experimental results. Theoretical
predications are done by LAC team.

The vibrational level ν = 5 of d3Π potential is expected to have large singlet-
triplet mixing therefore it is chosen as the intermediate state for our STIRAP scheme
that the TDMs of both transitions are balanced. We further perform high resolution
spectroscopy on this vibrational level. The fine structure of ν = 5 is shown in Fig.5.7.
It contains three components and can be labelled with Ω = 0, Ω = 1, Ω = 2 , where

5 Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Cachan, Université Paris-Saclay,
91405 Orsay, France.
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Figure 5.5. – Potential energy curves of the electronic ground state and the lower electronic
excited states. Raman lasers (pump: ∼ 652nm, Stokes: ∼ 487nm ) with frequencies ωP/S and
Rabi frequencies ΩP/S couple a pair of vibrational states in the spin-orbit coupled d3Π/D1Π
complex to weakly bound a3Σ Feshbach molecules and the rovibronic groundstate in X1Σ.
Excited state molecular spectroscopy is performed on the pump transition. This figure was
initially produced by Dr. Christoph Gohle, and has been included in both Ref. [123] as Fig.
4.1 and in this thesis.

Ω is the projection of the total electronic angular momentum along the internuclear
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Figure 5.6. – Transition dipole moments of the Feshbach state and the |X1Σ, ν = 0, J = 0〉
ground state to the vibrational levels of the d3Π/D1Π complex in atomic units, calculated
in Ref.[155]. Binding energies are with respect to the atomic 23Na(32P ) + 40K(42S) asymp-
tote.The highlighted state is chosen for the candidate in our STIRAP experiment for its
balanced TDMs of both transitions. This figure was initially produced by LAC team (see
context), and has been included in both Ref. [123] as Fig. 4.2 and in this thesis.

axis6 [123, 157].
We further performed molecule excitation spectroscopy by driving the Feshbach

molecule to intermediate state |d3Π, ν = 5,J = 1, Ω = 1〉transitions at 85.5G. We
observe a Zeeman triplet feature and can be labelled as mJ = −1, 0, +1 states, see
Fig.5.8.

However, in Fig.5.8 the molecular hyperfine structure is not resolved (In Sec. 4.4.3
of Ref. [123], we have presented a theoretical model to explain the reasons). Each
Zeeman substates ( mJ = −1, 0, +1) contains contributions from different nuclear

6We use Hund’s case a to label the states in d3Π/D1Π complex: the good “quantum number” in
this case is Ω the projection of the total electronic angular momentum along the internuclear
axis, J the total angular momentum[123, 157].
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Figure 5.7. – Fine structure of the 3dΠ ν = 5 vibrational level. This figure is taken from
Fig. 4.6 of Ref.[123] with the permission of reproduction from Dr. Buchheim.

spin components (We have built a theoretical model to estimate the contribution of
all hyperfine states to each Zeeman substates in Sec. 4.4.2 of Ref.[123]). Since the
initial Feshbach molecule state is not a nuclear spin pure state either, the pump laser
simultaneously couples to several intermediate states and the three-state picture of
STIRAP fails. In the following section, I will discuss the method to overcome this
multi-level coupling issue. It leads to a successful STIRAP transfer towards to the
ground states.

5.4.3. Raman laser system

Narrow linewidth pump and Stokes lasers are critical for performing high resolution
molecular spectroscopy, electromagnetically induced transparency and STIRAP ex-
periments. For this purpose we have constructed a narrow linewidth Raman laser
system. The details of this laser system is presented in the master thesis of Diana
Amaro [158]. Some key modification and improvement of the system have been made
afterwards, and is summarized as follows:

1. The wavelengths of the pump laser and the Stokes laser are 652nm and 487nm
respectively. Commercial diode lasers of these two wavelengths are both avail-
able. We originally use diode lasers for both lasers.

2. We stabilize laser frequencies by using a dual wavelength high finesse ultra-
low-expansion (ULE) cavity (Custom-made by Advanced thin films co.) via
Pound-Drever-Hall technique [159, 160]. The finesse is ' 200000 for 652nm
and ' 37000 for 487nm.

3. In order to have large frequency-tuning range for spectroscopy scanning, we
have a master-slave configuration for each wavelength. The master and slave
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Figure 5.8. – Molecular excitation spectrum of Feshbach molecules to the J = 1, Ω = 1
intermediate state at 85.5G. A Zeeman triplet mJ = −1, 0, 1 is clearly observable. The
molecular hyperfine structure is not resolved. The data points are averaged over 12 measure-
ments. The figure is taken from Fig. 4.9 in Ref.[123] with the permission of reproduction
from Dr. Buchheim.

lasers are phase-locked via offset locking similar as in the K laser system. By
controlling the local oscillator’s frequency (we use a DDS circuit), we have
achieved > 1GHz free tuning range.

4. The noise pedestal of the pump diode laser limits the coherence time [123] due
to the short cavity length of laser diodes. We now lock a dye laser (Coherent
899)[161] directly to the ULE cavity via feeding back a fast inter-cavity EOM.
The dye laser has longer cavity length and less noise pedestal, therefore it allows
us to perform STIRAP transfer. Secondly, the Dye laser outputs > 400mW
power which can increase the Rabi frequency of the transition.

5.4.4. Identification of the rovibrational ground state |X1Σ, ν = 0, J = 0〉

To experimentally identify the rovibrational ground state |X1Σ, ν = 0, J = 0〉 of
23Na40K molecules, we use “dark-state resonance” technique [152]. We keep the
pump laser frequency on the resonance, ∆P = 0, and scan the frequency of the
Stockes laser. When the Stockes laser frequency is not on resonance, the pump laser
depletes the initial Feshbach state. Once the Stockes laser frequency is on resonance,
∆S = 0, the three level lamda system is also on the two-photon resonant. Under
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this condition, the system forms a dark state and the absorption of the pump laser
is blocked, so the number of Feshbach molecules revives (see Sec. 4.5.2 of Ref.[123]
for more experimental details).

We determine the binding energy of |X1Σ, ν = 0, J = 0〉 ground state by measuring
the frequency of both lasers using a commercial wavemeter (Toptica, WS7) with 10
MHz resolution. Our result, D0 = 5212.045cm−1 agrees well with the result in MIT
[95].

By taking into account of the nuclear spins of the atoms, there are (2INa+1)(2IK+
1) = 36 hyperfine states at |X1Σ, ν = 0, J = 0〉 level. The energy splitting between
different hyperfine states is ∼ hundreds kHz at 85.5G. By diagonalizing the following
hyperfine Hamiltonian, we obtain the energy diagram of hyperfine states, shown
in Fig.5.9. The absolute hyperfine ground state is |X1Σ, ν = 0, J = 0〉 ⊗ |mK =
−4,mNa = 3/2〉 .

HHF = c4 · IK · INa + µB(gIKIK + gINaINa) ·B (5.9)

where the scalar spin-spin coupling constant is given as c4 ' −466Hz [154, 95].
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5.4.5. Preliminary result of STIRAP transfer

It has been studied in Ref. [162, 163, 164], how STIRAP can still work for multiple
level systems with magnetic substates. The STIRAP efficiency can be improved for
a detuned scheme where ∆P = ∆S 6= 0. A numerical model of simulating multi-level
STIRAP transfer has been developed in Ref.[123].

Fig.5.10 shows the current STIRAP scheme we use in the experiment: we use
σ+ + σ− polarization for the pump laser and π light for the Stokes laser. The initial
Feshbach state has the total spin project of mF = −7/2, therefore the pump laser
can couple the Feshbach state to two intermediate states: |mNa = −1/2,mK = −4〉
and |mNa = −3/2,mK = −3〉. The Stokes laser has π polarization and it couples
intermediate states to the hyperfine ground states with same nuclear spin characters.

We keep the two photon resonance and the single photon detuning to be 30MHz,
that ∆P = ∆S = −30MHz. We use cos2 (in intensity) pulse shape, and the pulse
duration is ' 30µs. To detect the efficiency of the STIRAP, we do inverse-STIRAP
that brings the ground state molecules back to the Feshbach states and then use
absorption imaging to count the number of Feshbach molecules.

By scanning the frequency of the Stokes laser, we have seen the signal of successful
STIRAP transfer once the two photon resonance condition ∆P = ∆S is satisfied. In
Fig.5.11, we show the preliminary result of successful STIRAP transfer. The efficiency
of the round trip is ' 40% corresponding to the efficiency of a single STIRAP ' 60%.

However, the absolute hyperfine ground state has the nuclear spin characters
|mNa = 3/2,mK = −4〉 and the ground state molecules we produced so far does
not have this nuclear spin character.

5.4.6. Summary and Outlook

During writing this thesis, we have successfully transferred Feshbach molecules to
the ground states via a multi-state STIRAP process. Our preliminary result shows
the efficiency of one-way STIRAP is ' 60%. However a modification of STIRAP
scheme is required in order to reach the hyperfine ground state |mNa = 3/2,mK =
−4〉. Furthermore, various properties of the ground state molecules (lifetime, dipole
moment, etc.) need to be determined.
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Figure 5.10. – Multilevel STIRAP scheme. We use σ+ +σ− polarization for the pump laser
and π light for the Stokes laser. The detuning of the lasers are ∆P = ∆S = −30MHz.
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CHAPTER 6

Asymptotic-bound-state model for
Feshbach resonances

In order to analyze the spin character of the Feshbach resonances and predict their
position and the width, the asymptotic-bound state model [166] has been proved
to be powerful for these purpose. We have implemented ABM model to 23Na 40K
system. In this chapter, we use the ABM to analyze the spin characters of 23Na-40K
Feshbach resonances. Instead of giving a detailed theoretical derivation, the aim of
this chapter is to provide a self consistent description and summarize the result we
obtained.

Note: The theoretical background of this chapter is based on the publication [166],
which was the first paper using the ABM to analyze LiK system.

6.1. Introduction

Feshbach resonances play an important role in the field of ultracold atomic gases
(see Reviews [3, 10, 145]). With Feshbach resonances, an ultracold atomic system
can be made repulsively interacting (a > 0), attractively interacting (a < 0), non
interacting (a = 0) or strongly interacting (|a| → ∞) in a continuous manner. The
ability of tuning the two-body interaction over many orders of magnitude by vary-
ing external magnetic field allows the researchers to realize various quantum phases
experimentally with atomic gases, such as fermionic superfluid states[7], superfluid-
Mott insulator transition[165], and BEC-BCS crossover[8, 9], etc.

Feshbach resonances depend strongly on the internal atomic structures of the col-
liding atom pair, which can be controlled by external fields. For alkali-metal atoms,
their internal structures are initiated by the hyperfine interaction which can be en-
ergetically modified by external magnetic field via the Zeeman interaction. Pairs of
colliding atoms are prepared in a given spin channel, and its collision threshold and
its two-body bound states depend in general differently on the external magnetic
field. A resonance appears when the collision threshold is energetically degenerate
with a bound state[10].

In addition, a detailed information about the spin characters of two body bound
states (Feshbach molecules) for a given Feshbach resonance at certain magnetic fields,
are crucial to determine the coupling strength between the Feshbach molecules and
intermediate state of our STIRAP process[123].
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Therefore, we need to build a theoretical model to describe the Feshbach resonances
for 23Na 40K system, to predict the position and the width of the resonances, and to
determine the spin characters of the corresponding bound states.

In principle, the two body scattering problem can be solved by a set of radially
coupled Schödinger equations in the spin basis. The set of equations is called ‘Cou-
pled Channels’ equations and can be solved numerically[145]. However, this method
requires certain modification of the ab-initio potentials and is sometimes time con-
suming. In this chapter, we use a simpler model called ‘asymptotic bound-state
model’ (ABM model) which has been successfully used in 6Li 40K system[166]. The
ABM neglects the mixing of singlet and triplet state due to the spin-orbital cou-
plings, therefore allowing the use of uncoupled orbital and spin states. The radial
singlet and triplet eigenstates can be determined directly from the corresponding
Born-Oppenheimer potentials.

In this chapter, we first present the theoretical background of the model based on
Ref.[166]. We then proceed to summarize the results from this model which give
various properties of Feshbach resonances that we are currently using.

6.2. Basics of Asymptotic Bound-state Model

In ultracold atomic experiments, two colliding partners of atoms are typically both
prepared in a hyperfine sublet |F ,mF 〉, where F is the total spin and mF is the
projection along the quantization axis (normally along the magnetic field direction).
We call the product state formed by the hyperfine substates of the two atoms the
entrance channel or open channel. In a two-channel model picture of Feshbach reso-
nances, there is coupled bound state which is called the closed channel. The energies
of the entrance channel and the closed channel normally depend differently on the
magnetic fields. Feshbach resonances appear at the magnetic field value where the
entrance channel energy equals to the energy of the closed channel. The ABM is able
to determine the energies of the two channels.

The effective Hamiltonian of the two-body system in the center of mass frame is a
sum of two terms:

H = Hrel +Hint. (6.1)

Hrel describes the relative motion of the atoms,

Hrel =
p2

2µ
+ V, (6.2)

where p2

2µ is the relative kinetic energy with the redueced mass, µ , and V is the effec-
tive interaction between the atoms resulting from all Coulomb interactions between
the nuclei and electrons of both atoms. Hint stands for the hyperfine and Zeeman
interactions of the atoms.

The energy spectrum of Hrel contains a set of discrete eigenstates, denoted as
|ψSlν 〉|Y l

ml
〉 (the quantum number S, l, ν and ml will be defined explicitly in the later
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texts) with a binding energy εSlν , and the continuum states of Hrel corresponding
to the scattering continuum. In a standard Asymptotic Bound state model, the
scattering continuum states are not included.

The key idea of ABM is to solve the Schrödinger equation with Hamiltonian Eq.
(6.1) by using the bound eigenstates of Hrel as a basis, {|ψSlν 〉|Y l

ml
〉|σ〉}, where |σ〉

labels spin degrees of freedom:

(Hrel +Hint)|ψSlν 〉|Y l
ml
〉|σ〉 = Eb|ψSlν 〉|Y l

ml
〉|σ〉, (6.3)

which leads to:

εSlν δσσ′δνν′δSS′δll′ + 〈ψS
′l

ν′ |ψSlν 〉〈σ′|Hint|σ〉 = Eb〈ψS
′l

ν′ |ψSlν 〉δσσ′δll′ , (6.4)

where we use the fact that Hrel is diagonal in {|σ〉} basis and spherical harmonics
are orthonormal. The off-diagonal terms come from Hint.

The binding energies εSlν and the Franck-Condon factors are 〈ψS′lν′ |ψSlν 〉 parameters
in the secular equation Eq. (6.4) are the input parameters of the ABM model, which
could be determined from Born-Oppenheimer potentials.

In general, the eigenvalues Eb depend on the value of external magnetic fields B.
To determine the positions of Feshbach resonances, one needs to find the magnetic
field value at which an eigenvalue Eb crosses the threshold energy of the entrance
channel, Eth.

6.3. Spin basis and Hamiltonian

Spin characters are crucial in the ABM model, and different spin basis are used in the
model. Therefore unitary transformations between different spin basis are required
during the calculation. In this section, we summarize different sets of spin basis that
we use in the model.

The colliding pair of atoms are labeled as α and β respectively. We denote the
electron spins of the atoms as sα, sβ, the corresponding quantum numbers projected
along the magnetic field are msα ,msβ , the nuclear spins are iα, iβ, and their quantum
numbers projected along the magnetic field are µα,µβ. For given atomic atomic
species, sα, sβ and iα, iβ are constants.

We then have product spin basis of the two-body systems:

{|msα ,msβ ,µα,µβ〉}. (6.5)

The total electron spin of the colliding atoms are S = sα + sβ (bold symbols corre-
spond to vectors) and its projection along the magnetic field is Ms, we then define
the ABM spin basis as:

{|σ〉} = {|S,MS ,µα,µβ〉}. (6.6)

In addition, summing over the electron spin and the nuclear spin of individual
atom, we have the total spin, fα = sα + iα and fβ = sβ + iβ, and the corresponding
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projections along the magnetic field are mfα and mfβ , they result in the following
basis:

{|fα,mfα , fβ,mfβ 〉}. (6.7)

6.3.1. Relative Hamiltonian

The Hamiltonian which governs the relative motions of the two particles reads, Hrel =
p2

2µ+V, and the central interaction depends only on the quantum number S associated
with the magnitude of the total electron spin S. Therefore the central interaction
can be decomposed as: V =

∑
S |S〉VS〈S|. For two-alkali-metal atomic systems, Vs

is either the singlet (S = 0) or triplet (S = 1). Together with the nuclear spin parts,
we can specify the ABM basis states as |ψSlν 〉|Y l

ml
〉|S,MS ,µα,µβ〉, where ν and l

are the vibrational and orbital angular momentum quantum numbers of the relative
motion, and ml is the orbital projection quantum number along quantization axis.
Importantly, the ABM basis are the eigenstate of the relative Hamiltonian and satisfy
the projected eigenstate equations,

[
− ~2

2µ

d2

dr2
+ V S

l (r)

]
ψSlν (r)Y l

ml
(r) = εSlν ψ

Sl
ν (r)Y l

ml
(r). (6.8)

Here, V S
l (r) = l(l + 1)~2/(2µr2) + V S(r).

In practice, starting from empirical Born-Oppenheimer potential [168], the wave-
functions and energies are determined numerically using the LEVEL program (de-
veloped by R. J. Le Roy’s group, University of Waterloo, Canada1).

6.3.2. Internal energy

The internal energy for a single atom, Hintα or Hintβ reads,

Hint = ahf i · s + (γes− γii) ·B (6.9)

where s and i are the electron and nuclear spins respectively. γe and γi are the
corresponding electron and nuclear gyromagnetic ratios.

In the absence of an external magnetic field,Hint is diagonal in the basis |fα,mfα , fβ,mfβ 〉.
With external magnetic field, the eigenstates of Hint are the well-known Breit-Rabi
states. Thus we call |fα,mfα , fβ,mfβ 〉 Breit-Rabi basis and are labelled by their
zero-field limit quantum numbers, fα,mfα , fβ,mfβ .

6.3.3. Angular momentum conservation

Experimentally, one prepares certain atomic mixture (the entrance channel) which
corresponds to a state in the Breit-Rabi basis. To determine possible resonances, one

1http://scienide2.uwaterloo.ca/ rleroy/level/
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needs to work in a vector space spanned by all the states that can be coupled to the
entrance channel.

In fact, H conserves the orbital quantum number l because the effective potential
in Hrel is assumed to be isotropic. It means that the vector space can be divided
into subspaces with different values of l. Furthermore, H conserves

MF = MS + µα + µβ. (6.10)

Hence, we only need to enumerate possible ABM states, |ψSlν 〉|Y l
ml
〉|σ〉, whose

MS + µα + µβ equal to the MF of the entrance channel. By that, the computa-
tion complexity is greatly reduced.

6.4. The standard ABM

In the standard ABM, one only needs to find a magnetic field at which the energy of
the entrance channel is the same as the closed channel’s.

6.4.1. Entrance channel energy

At large inter-particle distance (asymptotic limit), the effective interaction between
the two atoms can be neglected, V = 0. Furthermore, the kinetic energy approximates
to zero at the ultra cold limit. Thus the energy of the entrance channel (threshold
energy Eth) is the sum of the energies of the free atoms at given magnetic field,

Eth = 〈αβ|Hint|αβ〉 = 〈αβ|Hintα +Hintβ |αβ〉
= ahf ,αiα · sα + (γesα − γi,αiα) ·B + ahf ,βiβ · sβ + (γesβ − γi,βiβ) ·B. (6.11)

To simplify the calculation in the product basis, we express the hyperfine interac-
tion terms with the ladder operators:

iα · sα =
1

2

(
s+
α i
−
α + s−α i

+
α

)
+ sziz (6.12)

The eigenstates of Hint (Breit-Rabi states) are labelled by the low field quantum
number (f , mf ). Eth is the sum of two eigenstates’ energies.

6.4.2. Closed channel energy

Having determined the threshold energy Eth, we need to determine the closed channel
energy by solving Eq. (6.4) at given magnetic field. As mentioned previously, we use
ABM states ψSlν (r)Y l

ml
(r) as the basis. Hrel is diagonal in the ABM basis, and the

off-diagonal terms come from Hint.
Eq. (6.4) can be solved for subspaces of different l separately. In addition, we only

include the ABM states which have the same value MF as the entrance channel’s due
to the spin conservation.
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Assuming that we take into account only one vibrational level and dealing only
with alkali-metal atoms (sα = sβ = 1

2) the number of unknown parameters in Eq.

(6.4) is just three - the energies of singlet and triplet bound states for given l: εS=0,l
ν=0 ,

εS=1,l
ν=0 and the non-trivial Frank-Condon factor 〈ψS=0,l

ν=0 |ψ
S=1,l
ν=0 〉. They can be obtained

from molecular potentials.
The off-diagonal matrix elements 〈σ′|Hint|σ〉 can be calculated for each magnetic

field value, B. The eigenvalue Eb and the corresponding eigenvectors of Eq.(6.4) can
be obtained by diagonalizing the Hamiltonian H in the ABM basis.

We then compare Eth and Eb at different magnetic fields. The crossings of Eth
and Eb are the Feshbach resonances in the system.

6.5. The dressed ABM

The standard ABM can predict the positions of Feshbach resonances, however the
standard ABM can not estimate the width of Feshbach resonances. In order to
determine the width of Feshbach resonances one needs to extend the ABM and include
the coupling between the resonant level and the continuum states. The dressed
ABM [166] uses the Mittag-Leffler expansion to approximate the contribution of
continuum states by coupling of the resonant state with the entrance (open) channel.
The inclusion of continuum states’ contribution will shift the position of Feshbach
resonances. This section reviews Sec. IV of Ref. [166] where dressed-ABM was
originally developed.

6.5.1. The contribution of the continuum states

The first step is to partition the whole Hilbert space into orthogonal subspaces P
and Q so that the states of the open channels are in P, while Q is spanned by states
from the closed channels.

We thus define projector operators P and Q, which project onto the subspaces P
and Q, respectively. Thus the two-body Schrödinger equation can be split into a set
of coupled equations,

(E −HPP )|ψP 〉 = HPQ|ψQ〉, (6.13)

(E −HQQ)|ψQ〉 = HQP |ψP 〉, (6.14)

where |ψP 〉 ≡ P |ψ〉, |ψQ〉 ≡ Q|ψ〉, HPP ≡ PHP , HPQ ≡ PHQ. The energy E =
~2k2/2µ is defined with respect to the open channel dissociation threshold.

The S matrix in P space reads:

S(k) = SP (k)

(
1− 2πi

|〈φQ|HQP |ψ+
P 〉|2

E − εQ −A(E)

)
, (6.15)

where HQP = QHP describes the coupling between P and Q subspaces. φQ is the
eigenstate of HQQ in Q space, and εQ is the corresponding eigenvalue, the energy of
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undressed bound state.
The complex energy shift, describing the dressing of the bare bound state by the

coupling to the P space, A(E), equals:

A(E) =

〈
φQ|HQP

1

E + iδ −HPP
HPQ|φQ

〉
, (6.16)

and can be calculated by the Mittag-Leffler expansion:

1

E + iδ −HPP
=

µ

~2

∑

n

|Ωn〉〈ΩD
n |

kn(kn − 1)
. (6.17)

where n runs over all poles of the SP matrix, and the Gamow state |Ωn〉 is an
eigenstate of HPP with eigenvalue εPn = ~2k2

n/(2µ). We then have:

A(E) =

〈
φQ|HQP

(
µ

~2

∑

n

|Ωn〉〈ΩD
n |

kn(kn − 1)

)
HPQ|φQ

〉
(6.18)

We could assume that the scattering in the open channel (P space) is dominated by
a single bound state with kn = iκP . Thus the sum over all poles of the SP matrix
is then reduced to only one term which corresponds to the bound state in the open
channel. The contribution from the rest of poles is assumed to be negligible, so

A(E) ≈ µ

~2

−i〈φQ|HQP |ΩP 〉〈ΩD
P |HPQ|φQ〉

κP (k − iκP )
. (6.19)

The key point of dressed ABM model is that the dressed state can be considered
as a (quasi-) bound state of the whole (P +Q) system, which corresponds to a pole
of the S matrix, given in Eq. (6.15). Therefore, the energy of the dressed state is
obtained by finding the poles of the S matrix:

E − εQ −A(E) = 0, (6.20)

which is equivalent to a cubic equation for x =
√
E:

√
Eth − εPx3 − i(Eth − εP )x2 −

√
Eth − εP εQx+ i(Eth − εP )εQ +

i

2
K2 = 0 (6.21)

where we denote K2 = |〈ΩP |HPQ|φQ〉|2, a positive constant characterizes the coupling
between open-channel bound state and the closed channel one’s.

6.5.2. Implementation the dressed ABM

The Breit-Rabi state |αβ〉 that corresponds to the entrance channel forms a one-
dimensional subspace of P. The rest of the states in the Breit-Rabi basis (with the
total MF the same as the entrance channel) span a subspace of Q. The Breit-Rabi
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basis partitions naturally the considered MF subspace into open channel subspace
(P)and closed channel subspace (Q). It is straightforward to distinguish subspace
spanned by |αβ〉 and orthogonal subspace spanned by the rest of basis’s vectors.

Therefore it is convenient to transform the H matrix used in the standard ABM
(ABM basis) to the Breit-Rabi basis. In the Breit-Rabi basis blocks HPP , HQQ, HPQ
can be easily identified.

The bare binding energy of the least bound state in the entrance channel is the
diagonal matrix element of H:

εP = 〈αβ|H|αβ〉 (6.22)

(energies are defined so that the threshold energy Eth = 0). The bare binding energies
of the states in the subspace of Q are obtained by diagonalization of HQQ in the
subspace of Q

HQQ|φQ〉 = εQ|φQ〉, (6.23)

while the basis in P subspace remains unaltered. The resulting eigenvalues differ
slightly from the eigenvalues obtained in the standard ABM because this time the
eigenproblem is diagonalized in subspace orthogonal to |αβ〉, which is not an eigen-
state of H.

The next step is to consider each crossing of εQ and Eth and solve Eq. (6.21), in
order to obtain the energies of the dressed states. Eq.(6.21) is a cubic equation with
parameters εP , εQ and 〈ΩP |HPQ|φQ〉 which depend on the value of the magnetic
field B. Eq. (6.21) has three real roots provided that the energy of the dressed
state corresponding to |φQ〉 is below threshold - one of the roots is then the dressed
energy of |αβ〉 state, one is dressed energy of |φQ〉 and the remaining one crosses the
threshold energy in the same point as the previous one, but doesn’t approach the
bare energy εQ for B away from the threshold.

6.5.3. Transformation of spin basis in the dressed ABM

The transformation of H between the ABM basis and the Breit-Rabi basis is quite
involved since the Breit-Rabi states depend on the value of magnetic field B. While
the single-specie Breit-Rabi states were obtained by diagonalizing the internal energy
Hamiltonian Hint, which read:

|fαmfα〉 =
∑

i

dαi (B)|mαµα〉, (6.24)

|fβmfβ 〉 =
∑

i

dβi (B)|mβµβ〉, (6.25)

where the summations take over all single-specie product states.
We denote |bri〉, |prodi〉 and |σi〉 , the ith vector of Breit-Rabi, product and ABM

basis respectively. To determine the matrix element of transformation between the
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product state and Breit-Rabi states,

|bri〉 =
∑

j

cij(B)|prodj〉, (6.26)

we include Breit-Rabi states |bri〉 as the product of two single-specie states, |bri〉 =
|fαmfα〉|fβmfβ 〉, where mfα + mfβ = MF . While the product states |prodj〉 =
|mαµα〉|mβµβ〉 with mα + µα + mβ + µβ = MF . Therefore the cij coefficients are

simply the products of the corresponding dαk and dβk coefficients - the projections of
single-specie Breit-Rabi states on the product basis.

To transform states from the product basis to the ABM basis, we use Clebsch-
Gordan coefficients:

|bri〉 =
∑

j

cij(B)|prodj〉 =
∑

j,k

cij(B)CG(σk, prodj)|σk〉 ≡
∑

k

dik(B)|σk〉, (6.27)

where the Clebsch-Gordan coefficient is denoted as 〈σk|prodj〉 = CG(σk, prodj).
Finally, the matrix element of the H in the Breit-Rabi basis is given by:

〈bri1 |H|bri2〉 =
∑

j1,j2

di1j1〈σj1 |H|σj2〉di2j2 . (6.28)

The vector space of the closed channels, Q is a (N −1) dimensional space, whereas
P is a one-dimensional space. The resulting HQQ is thus a (N −1)× (N −1) matrix.
To identify the HQQ matrix, it is straightforward in the Breit-Rabi basis - the whole
H matrix except the row and the column which correspond to the open channel state.
HQQ can be diagonalized, the eigenstates are the bare bound states in Q space
{|φQ1〉, |φQ2〉, ...}, with eigenvalues (binding energies) {|εQ1〉, |εQ2〉, ...}. We further
transforms the full Hamiltonian H in the Q space {|φQ1〉,φQ2〉, ...} basis, so that the
HQQ block is diagonal and HPP is unaltered. The rest matrix elements corresponds
to the coupling between the open channel space P and the closed channel space Q,
|〈ΩP |HPQ|φQ〉, the term used for solving Eq. (6.21).

We could identify the bare bound states in Q space responsible for the Feshbach
resonances - the ones cross threshold energy. It allows us to calculate the corre-
sponding coupling constant K2. Therefore the Feshbach resonant positions in the
dressed ABM model can be determined by solving Eq. (6.21) at threshold, which is
for Eth = 0:

εP (B)εQ(B)− 1

2
K2(B) = 0. (6.29)

Finally, for each detected crossing, we calculate the width of resonance ∆B which
is proportional to the magnetic field difference between the crossings of the dressed
B0 and uncoupled Q bound states B̃0 with the threshold energy:

∆B =
aP

aP + aPbg
(B0 − B̃0), (6.30)
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where aPbg is calculated as

aPbg ≈ r0 =
1

2

(
2µC6

~2

) 1
4

(6.31)

and

abg =
1

κP
=

√
− ~2

2µ

1

εP
. (6.32)

6.6. Open/Closed channel fraction

One application of ABM model is to determine the open/closed channel fraction
of Feshbach molecule states at various magnetic fields. For the STIRAP process,
we start from a Feshbach molecule state at certain magnetic field, and this ‘halo’
Feshbach state is a superposition state of open-channel scattering wavefunction and
closed channel bound molecular state[10]

|FB〉 =
√
Z(B)φC(R)|close〉+

√
1− Z(B)φbg(R)|open〉 (6.33)

where Z represents the fraction of the fraction of the closed channel, the unit nor-
malization of |FB〉 ensures that the open channel fraction is 1− Z. The value of Z
depends on the magnetic fields. Therefore the up-leg Rabi frequency of STIRAP pro-
cess (Feshbach molecule to intermediate state transition) depends on the magnetic
field where we associate Feshbach molecules. Since the coupling between interme-
diate molecule state and scattering state is negligible, increasing the close channel
fraction will increase the Rabi frequency.

We denote −Eb, the binding energy of the Feshbach molecules, and Ec is the energy
of the state |close〉 relative to the energy of the separated atoms (open channel). Then
using Hellmann-Feynmann theorem

∂(−Eb)
∂x

= 〈FB|∂H
∂x
|FB〉, (6.34)

it follows then, Z = ∂(−Eb)/∂Ec = ∂(−Eb)/(δµ · B), where δµ is the difference of
the magnetic moments between the open channel and the closed channel. In order
to get the fraction of the closed/open channel, one needs the information about the
binding energy of the Feshbach molecule Eb(B), and the difference of the magnetic
moment δµ.

In our situation, the magnetic field where we create the Feshbach molecules is very
close to the resonance, therefore we could use the universal binding energy formula
Eb ∼ ~2

2m(a−ā)2
with a(B) ∼ abg(1 + ∆B

B−B0
). We use ABM model to calculate the

difference of the magnetic moments between the open and closed channels. In fact
δµ is a function of the magnetic field B, however the variation of δµ is small within
the width of the resonance. We set δµ as a constant.
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6.7. Application in 23Na40K system

6.7.1. Modification of the model

In the previous section, we present the dressed ABM model with only one bound state
in the open channel space P. This approximation is fine for small background scat-
tering length, however it turns out to be insufficient for large background scattering
length. In 23Na40K system, the background scattering length is large and negative,
and it indicates that a virtual scattering (quasi-bound) state is above and close to
the threshold. Therefore, to amend the dressed ABM model for 23Na40K, one needs
to include this virtual state into the Mittag-Leffler expansion of 1

E+iδ−HPP , which
leads to a different value of A(E) :

A(E) ≈ µ

~2

−i〈φQ|HQP |ΩP 〉〈ΩD
P |HPQ|φQ〉

κP (k − iκP )
− µ

~2

−i〈φQ|HQP |Ωvs〉〈ΩD
vs|HPQ|φQ〉

κvs(k + iκvs)
,

(6.35)
where |Ωvs〉 is Gamow state that corresponds to a virtual-state pole close to threshold,
κvs = ikvs (kvs is wave vector of the virtual state) and −〈φQ|HQP |Ωvs〉〈ΩD

vs|HPQ|φQ〉
is a real constant.

The presence of an additional term in Eq. (6.35) also leads to a modification of
Eq. (6.29)[167]:

Eb(B) + εQ(B)−
1
2∆2

vs

Evs(1 +
√

Eb
Evs

)
= 0, (6.36)

where Eb is actual binding energy, εQ(B)is the binding energy without open-close
coupling and can be obtained from the dressed ABM models. ∆2

vsis the coupling
constant of the virtual bound state in the open channel and the bound molecular
state in the closed channel. Evs can be obtained from the background scattering
length Evs ∼ ~2

2m(abg−ā)2
. Thus the only undetermined parameter is ∆2

vs.

6.7.2. Free parameters of 23Na40K system

As mentioned in previous sections, there are few unknown parameters in ABM mod-
els:

1. the bound state energies of singlet/triplet potentials,

2. the Franck-Condon factors between singlet and triplet bound states,

3. the energy of virtual bound state in the open channel Evs,

4. the coupling constant ∆2
vs.

For an unknown system, one could in principle keep these parameters as free param-
eters, and determine them from fitting to experimental observed Feshbach resonances
(positions and widths of the resonances). However, 23Na40K system is well studied
in literatures, and it makes these parameters deterministic.
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Binding energies

The electronic ground state potentials (both singlet and triplet potentials) are re-
ported in Ref.[168]. The bound state energy can be obtained by using LEVEL pro-
gram. We only include the least bound states: for the triplet potential εT = −1654
MHz, and for the singlet potential εS = −210 MHz.

LEVEL program can also calculate bound states’ wavefunctions which allow us to
calculate the Franck-Condon factors(FCF). The FCF of the two singlet and triplet
bound states is 0.499.

Virtual bound states

The energy of the virtual bound state can be obtained from the background scattering
length abg:

Evs ∼
~2

2µ(abg − ā)2
, (6.37)

for 23Na40K, abg = −690a0, and the mean scattering length ā = 51a0 [128]. It gives
Evs = kB × 110µK.

The coupling constant ∆2
vs was obtained by fitting the experimentally observed

Feshbach resonance width for 23Na |F = 1,mF = 1〉 + 40K |F = 9/2,mF = −5/2〉
channel, ∆2

vs = (h×5.26MHz)2 in Ref.[128]. To calculate ∆2
vs for other open channels,

we assume that the spatial overlapping between the virtual bound state in the open
channel and the ‘triplet’ bound state in the closed channel is a constant for all the
spin combinations. Therefore we only need to calculate the spin overlapping and
rescale ∆2

vs for other open channels.
To check the correctness, we first apply our code to 23Na |F = 1,mF = 1〉 + 40K
|F = 9/2,mF = −5/2〉 channel and compare the result with the one in Ref.[128].
The result from ABM model is also consistent with the experimental datas.

6.8. 23Na |F = 1,mF = 1〉 + 40K |F = 9/2,mF = −9/2〉 channel

Currently, we use the resonance around 88 Gauss to associate Feshbach molecules
and the corresponding open channel is 23Na |F = 1,mF = 1〉 + 40K |F = 9/2,mF =
−9/2〉. We present details of this Feshbach resonance from ABM calculation in this
section.

6.8.1. Resonance position and width

Fig.6.1 shows two crossings between the entrance channel and bound molecular states
around 76 Gauss and 79 Gauss 2. Fig.6.2 shows the crossing within dressed ABM
model where the resonance position shifts towards to larger magnetic field value, and

2The magnetic field values of the resonances are smaller than the experimental datas. This is an
artefact from standard ABM model which can amended by dressed ABM model.
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the asymptotic behavior of the binding energy close to the resonance. The dressed
ABM model gives the resonant position at 86.4 Gauss and the width is 5.95 Gauss.

Figure 6.1. – The result from standard ABM model, 23Na |F = 1,mF = 1〉 + 40K |F =
9/2,mF = −9/2〉. Black solid line corresponds to the threshold energy. Blue and red dashed
lines represent two bound states. The figure shows two crossings, therefore there are two
Feshbach resonances expected for this collision channel.

6.8.2. Spin components of Feshbach molecules

We can also use ABM model to calculate the spin components of Feshbach molecules,
both open channel and closed channel, shown in Table 6.1.

J mJ µNa µK closed channel (amplitude) open channel (amplitude)

0 0 -3/2 -2 0.017 0.0

0 0 -1/2 -3 -0.036 0.0

0 0 1/2 -4 -0.045 0.0

1 -1 -3/2 -1 0.129 0.319

1 -1 -1/2 -2 -0.377 0.0

1 -1 1/2 -3 0.077 0.0

1 -1 3/2 -4 0.148 -0.893

1 0 -3/2 -2 0.151 0.0

1 0 -1/2 -3 0.323 0.0

1 0 1/2 -4 0.457 0.319

1 1 -3/2 -3 -0.632 0.0

1 1 -1/2 -4 -0.273 0.0

Table 6.1. – Spin components of the Feshbach molecular state at 85.5G calculated with the
asymptotic bound state model.
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Figure 6.2. – The result from the dressed ABM model, 23Na |F = 1,mF = 1〉 + 40K
|F = 9/2,mF = −9/2〉. We zoom in the region around the Feshbach resonance that we are
using for molecule association. Black solid line corresponds to the threshold energy. Red
solid line represents a bare bound state energy without open-close channel coupling. Blue
dots represent the root of Eq. (6.36) at different magnetic fields which correspond to the real
binding energies of the Feshbach molecules.

6.8.3. Close channel fraction

With dressed ABM model, we are able to get the difference of the magnetic moment
δµ between open and closed channels. We use RF loss spectroscopy to determine the
binding energies of Feshbach molecules at different magnetic fields experimentally
(see Fig.6.3). We are then able to calculate the closed channel fraction. The result
is shown in Fig. 6.4. For Feshbach molecules with ∼ 80kHz binding energy at 85.5
Gauss, the close channel fraction is ∼ 2%.

6.9. Discussion and outlook

Compare to the experimental datas from measuring the binding energies of the Fesh-
bach molecules by RF loss spectroscopy, we find that the resonant position is ∼ 88.9
Gauss, and the width is ∼ 11 Gauss. So it shows discrepancy between the experimen-
tal datas and the ABM results. The possible reason that we use ∆2

vs from reported
in Ref.[128], and we find that the widths of Feshbach resonances reported by Zwier-
lein’s group [59] are systematically smaller than our experimental datas. Therefore
we suspect that the value of ∆2

vs we use is underestimated.
In order to increase to Rabi frequency for the STIRAP process, it is better to

increase the close channel fraction of the Feshbach molecules. It requires to associate
the Feshbach molecules with large binding energies away from the resonances. RF
association is not suitable for associating deeply bound Feshbach molecules due to
the Franck-Condon arguments, however magnetic field sweeping association should
in principle work. We will try to use magnetic field sweeping method in the future.
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Figure 6.3. – Feshbach molecule binding energies at various magnetic fields. Red points are
the experimental datas, Blue solid line fits the experimental datas to the universal binding

energy formula, Eb ∼ ~2

2m(a−ā)2 .

Figure 6.4. – Close channel fraction of Feshbach molecules vs. magnetic fields.





CHAPTER 7

Bose polaron

In our experiments, we can successfully prepare a degenerate 23Na40K Bose-Fermi
mixture with different atom number ratios under control. In addition, the inter-
species interactions between 23Na and 40K, characterized by the s-wave scattering
length, a, can be well controlled by tuning the external magnetic field. Thus it
provides an ideal experimental platform for studying so called Bose polaron problems,
where impurity atoms interact with a Bose-Einstein condensate. In this chapter, we
present the physical background, the experimental method, and preliminary results
towards Bose polaron physics.

7.1. Introduction

Quantum impurity problems are the building blocks of quantum many-body physics.
As originally pointed ot by Landau and Pekar[169, 170], a single moving electron in
the ionic lattice can cause distortion of the underlying environment that is sufficient
to change the electron’s motion backwards, and the electron tends to localize at
sufficiently strong interactions. The resulting ‘dressed’ electron is called polaron
in literature. The properties of these ‘phononic’ dressed electrons are crucial to
understand many solid state material. In fact, the concept of ‘polaron’ goes beyond
conventional solid state system, and was also extensively studied in superfluid 4He
[171], polar semiconductors[172], and high temperature superconductors[173].

With the advanced development of ultracold atom community, new possibilities
to study the properties of quantum impurities in the ultracold atomic systems have
emerged. The experimental creation of various Bose-Fermi[126, 135, 127], Bose-Bose
[174, 175, 140] or Fermi-Fermi [176] mixtures gives the chance to investigate different
types of polarons, Fermi polaron (an impurity moving in a fermionic environment) or
Bose polaron (an impurity moving in a bosonic environment). One powerful tool in
the ultracold experiments is that the interactions between impurities and the environ-
ment can be tuned via Feshbach resonances[3, 10, 145]. It allows us to access different
regimes, ranging from weakly interacting, medium interacting (Fröhlich regime) and
strongly interacting [177].

The case of the Fermi polaron has received considerable experimental attention[178,
179]. In particular, Fermi polaron’s spectral function has been studied via the tech-
nique of inverse radio-frequency (rf) spectroscopy both in two and three dimensions
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[178, 179]. It has been shown that in the strongly interacting regime, an impurity in
a Fermi sea can be treated as quasi-particle - the Fermi polaron- with a well-defined
energy and effective mass.

However, the Bose polaron problem, which is more related to the original Landau-
Pekar problem, has not yet been studied in any ultracold atom experiment. The
Bose polaron in the strongly interacting regimes remains also a challenging problem
in theoretical physics and various theoretical tools have been used to study, including
Green function perturbation theories, self-consistent Born approximation, mean-field
approach, Feynmann path integral approach, Monte Carlo simulations, renormaliza-
tion group calculations, and Gaussian variational ansatz (see review [177]). However
different methods lead to ambiguous results (see e.g. [177]).

Therefore an experimental realization of Bose polaron with ultracold atoms will
serve as a testbed for studying the properties of Bose polaron and testing theoretical
models. 23Na40K system have several wide Feshbach resonances at low magnetic
field, is thus an ideal system for that purpose.

7.2. Inverse radio-frequency (rf) spectroscopy

In order to access Bose polaron physics in the strongly interacting regime where
impurities resonantly interact with the background bosons, one has to consider the
three-body process[133]. One impurity atom resonantly interacts with a neighboring
boson and forms a weakly bound state. The released binding energy was taken by a
third atom. The recombination rate scales as ∼ a4 [149, 180], where a is the s-wave
scattering length between the impurity and the background boson. This process leads
to heatings and losses which limits the lifetime of system to perform experimental
measurements. To overcome this obstacle, it has been proposed in Refs. [181, 182]
to use inverse radio-frequency (rf) spectroscopy for experimental detection: one first
prepares a weakly interacting mixture which lives sufficiently long, and then uses
radio frequency photon to spin-flip the impurity into a strongly interacting channel.
The properties of the polarons can be extracted from the measured spectral response.
This method has been successfully used in Fermi polaron experiments with 6Li40K
system[178, 179].

7.2.1. Theoretical framework

The inverse rf spectral response of Bose polaron problem has been calculated within
field theory method [182], second-quantization method [181], and variational ansatz
method[183]. We follow the formulations in Ref. [181] to illustrate the essential
theoretical background, and we summarize the theoretical predictions in the following
subsection.

We assume the concentration of impurities is small that we could neglect the statis-
tics and the interactions between the impurities. Thus we could consider a single
impurity of mass M , which has two hyperfine states (| ↑〉, | ↓〉). The background en-
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vironment is a Bose-Einstein condensate (BEC) consists of a different bosonic species
with mass m. The Hamiltonian of the system reads:

H = Hi +Hb + | ↑〉 ⊗ 〈↑ |Hint↑ + | ↓〉 ⊗ 〈↓ |Hint↓ (7.1)

where Hb is the BEC Hamiltionian, Hi = P̂2

2M is the impurity Hamiltonian with
momentum p, Hint,σ describes density-density interactions between the bosons and
the impurity in state σ,

Hint,σ = gIB,σ · ρBEC , (7.2)

where gIB,σ is the coupling constant between the impurity and boson. At the ultra-
cold limit, the effective coupling constant is related to the s-wave scattering length
aIB,σ,

gIB,σ =
2πaIB,σ

µ
, (7.3)

where µ is the reduced mass µ = Mm
M+m and we also set ~ = 1.

The background BEC is typically in the weakly interacting regime, therefore Bo-
goliubov approximation is valid to use. Therefore one can separate the Hamiltonian
into two parts : the condensed part is treated as a ‘mean field’ background and a
bath of free phonons for the excitation part:

Hb =
∑

k 6=0

ωkb
†
kbk, (7.4)

with the dispersion relationship:

ωk = ck

√
1 +

(kξ)2

2
, (7.5)

where ξ = 1/(
√

2mc) is the healing length, c is the speed of sound in the BEC, and
k = |k|.

As a consequence, the interaction terms Hint,σ can be separated into two parts as
well,

Hint,σ =
2πaIB,σ

µ
n0 +

∑

k 6=0

Vkσe
ik·x(b̂†−k + b̂k), (7.6)

where n0 is the BEC density and N0 is the number of atoms in the condensate part,
and the interaction matrix element is given by:

Vk,σ =
2πaIB,σn0

µ

(
ξk√

2 + (ξk)2

)1/2

. (7.7)

The effect of a rf phonon is to change the internal state of the impurity atom
without changing its moment, we thus treat the rf spin flip as an instantaneous
action. Experimentally, it requires that the rf pulse duration is shorter than any
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relaxing process duration. Under this condition, the rf spectral response can be
computed within Fermi’s golden rule as follows,

I(p,ω) =
∑

n

|〈n↑,p|V̂rf |i↓,p〉|2δ(ω − (En↑ − Ei↓)), (7.8)

where |i↓,p〉 is the initial state that the impurity stays at | ↓〉 with momentum p and
energy Ei↓, |n↑,p〉 stands for a final state, and the sum is over all possible final states

with momentum p. The rf transition operator V̂rf = | ↑〉〈↓ | instantaneously changes
the internal state of the impurity without retardation. I(p,ω) can be rewritten as:

I(p,ω) = R 1

π

∫ ∞

0
eiωtAp(t)dt, (7.9)

Ap(t) = eiEi↓t〈i↑p|e−i(Hb+Hi+Hint↑)t|i↓p〉, (7.10)

where ω corresponds to the rf photon frequency. The quantity Ap(t) gives the rf
spectra of Bose polarons.

It worths to mention that Ap(t) given in Eq. (7.10) has the form of the amplitude
of a real-time evolution propagator. The physical interpretation of this propagator
is clear, that an eigenstate of the initial Hamiltonian Hb +HI +Hint↓, |i↓p〉 evolves
with the Hamiltonian Hb +HI +Hint↑ in the real time domain. It leads to another
theoretical method used in Ref. [182].

In Ref.[182], a two-field theory was constructed: one field φx,τ represents the bo-
son background and the second field ψx,τ is the impurity field. The corresponding
euclidean action reads as follows,

S =

∫
dτ

∫
d3x

{
φ∗
(
∂τ −

1

2mφ
∇2 − µφ

)
φ

+ ψ∗
(
∂τ −

1

2mψ
∇2 − µψ

)
ψ +

gφφ
2
|φ|4 + gφψ|φ|2|ψ|2

}
, (7.11)

where gφφ is the coupling constant between the bosons while gφψ is the coupling
constant between the impurity and the background.Therefore, this theory is identical
as the previous theory formulated with Hamiltonian.

The two-field theory results in two propagators, the Bose propagator and the impu-
rity propagator. The rf spectral response is the real part of the impurity propagator
and the effective mass can also be extracted from the impurity propagator. The prop-
agator can be estimated by T −Matrix approximation, as presented in Ref.[182].

7.2.2. Theoretical prediction

We summarize the theoretical predication from Ref.[182] and Ref.[181].
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RF spectral response

The theoretical prediction of the rf spectral response at with different interaction
strength is shown in the following figure, taken from Fig. 7 of Ref.[182] with permis-
sion.FIELD-THEORETICAL STUDY OF THE BOSE POLARON PHYSICAL REVIEW A 88, 053632 (2013)

the next iteration !
(2)
φψ and so on. The process is iterated until

convergence to a numerically stable result is reached. We find
that n ! 10 iterations are typically sufficient. To verify the
numerical stability of the final result, however, we carry on
until up to n = 20 iterations.

From the T matrix !
(n)
φψ in the nth step of this “self-

consistency loop” we calculate the improved, dressed im-
purity Green’s function G

(n)
ψ via Dyson’s equation depicted

in Fig. 1(a). In the numerical solution using imaginary
frequencies, it is of utmost importance to adjust the impurity
chemical potential µψ to a value that guarantees that the
impurity atom does not have a finite occupation in the final
iteration, i.e., one has to satisfy the condition

[
G

(0)
ψ (iω = 0, p; µψ )

]−1 − ρ0!
(n)
φψ (iω = 0, p; µψ ) " 0

(23)

for all p. In fact, if we require Eq. (23) to be an equality with
the choice of µψ = µpol at p = 0, this uniquely determines
the ground-state energy of the attractive polaron via the
basic definition of the chemical potential, µpol = E(Nψ +
1) − E(Nψ ), where Nψ = 1 for the impurity problem; hence
Eatt = µpol. The energies obtained from the self-consistent
T-matrix approach are shown in Fig. 3 along with the results
of the NSCT approximation. Specifically, at unitarity where
changes with respect to the NSCT schema are particularly
strong, we find Eatt/&0 = −6.84(1) while the NSCT approach
yields Eatt/&0 = −5.390. We see that the changes are of the
order of 25% around unitarity.

To study the impact of self-consistency on the excitation
spectrum of the system, we have to perform an analytical
continuation of the impurity Green’s function to real fre-
quencies. Although this is in principle possible, it would
require the analytical continuation from a finite, discrete set of
numerical data which is a mathematically ill-defined problem.
In order to avoid the related complications and yet obtain
fairly precise results, we make use of the observation that by
far the largest effect of self-consistency arises already in the
first iteration [cf. the dotted line in Fig. 3(a)]. Thus we expect
that all major aspects of the impact of self-consistency on the
impurity spectral function are already present at this stage.
The numerical cost of this first iteration is modest. One has to
calculate only the integral appearing in Eq. (9), but with the
bare Fermi propagator replaced by

G
(1)
ψ (&, p) = 1

& − p2

2mψ
− ρ0!

NSC
φψ (&, p) + i0+

(24)

where !NSC
φψ is the non-self-consistent T matrix we obtained in

the previous section; see Eqs. (8) and (9). Since the integrand is
known analytically, the frequency integration and subsequent
continuation to real frequencies may be carried out analytically
so that only the momentum integral has to be done numerically.

The qualitative changes following from this scheme with
respect to the non-self-consistent one can be seen in Fig. 7. The
continuum onset is pulled to negative energies and now follows
the curve which in the non-self-consistent approximation is
described by the polaron peak. A similar behavior has been
found for the molecule spectral function in a renormalization-
group study of the Fermi polaron [8]. This may be seen as

n1/3aφψ

)−1

Ω
/
Ω

0

FIG. 7. (Color online) Polaron spectral function calculated using
the self-consistent scheme discussed in Sec. IV. The black lines are
identical to the ones in Fig. 2. Note how the continuum of excitations
now follows the attractive polaron peak.

a further indication of the Bose polaron being hybridized
with the molecule; cf. Appendix A. Moreover, we observe
a strong suppression of both the attractive and the repulsive
polarons’ spectral weight. This large suppression, however,
does not come as a surprise. Indeed, by solving Eq. (22) self-
consistently we incorporate more fluctuations which entangle
the impurity with the bosons’ degrees of freedom. This loss
of spectral weight in the attractive polaron is compensated
by a transfer of weight to excited continuum states, which is
facilitated by the reduced excitation gap as compared to the
NSCT approach. The substantial reduction of the quasiparticle
weight is accompanied by changes to the effective mass of
a similar magnitude. In the self-consistent calculation the
effective mass is no longer related to the quasiparticle weight
by the simple relation (21) and takes values larger than
(α + 1)mφ . However, apart from a small upward shift, it still
essentially follows its behavior from the NSCT approximation
[see Fig. 4(b)]. The repulsive polaron is shifted to slightly
higher energies [see Fig. 3] while its quasiparticle width is
substantially reduced with respect to the NSCT result for all
but the strongest interspecies interactions.

Further changes can be seen when one considers the mo-
mentum dependence of the impurity spectral function, which
is shown in Fig. 8 for two different values of the interspecies
coupling. The most prominent differences appear for positive
values of a−1

φψ [Fig. 8(a)] where the attractive polaron peak
touches the continuum and dies out rapidly instead of running
parallel to it as it does in the NSCT approximation. The
qualitative behavior of the repulsive polaron, however, remains
unchanged, showing a smooth interpolation from a very broad
peak at low momenta to a sharp peak with an effective mass
of αmφ towards higher momenta. The changes with respect to
the NSCT approach are less pronounced for negative values
of a−1

φψ [Fig. 8(b)]. Here one notices only that when the
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Figure 7.1. – Inverse rf spectra based of vanishing momentum (p = 0) polarons with
self-consistent T -matrix approach, taken from Fig. 7 in Ref.[182] with permission. n is the
density of the BEC, aφψ is the interaction (s-wave scattering length) between the impurity
and the Bose background, Ω0 = n2/3/mφ.

The interaction parameter is defined as (n1/3aφψ)−1, and the typical energy scale
is set to Ω0 = n2/3/mφ in the calculation.

Theory predicts two dominating spectral features, one at positive Ω and one is
at negative Ω. We call the low-energy features as attractive polarons because they
mainly appear when the interaction is attractive (aφψ < 0). The high-energy features
are called repulsive polarons mainly appearing at repulsive interaction (aφψ > 0).

In general, at the weakly interacting regime, |(n1/3aφψ)−1| � 1, polarons are well
defined quasi-particles, and the interaction shift approximates to the mean-field in-
teraction shift. At strongly interacting regimes, |(n1/3aφψ)−1| � 1, the spectral
response becomes broad and the quasiparticle characters are smeared out.
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Momentum dependence

Previous plot shows the rf spectral response for impurities with zero momentum
p=0. Experimentally, we use an ensemble of atoms in a trap as impurities which has
certain momentum distribution depending on the statistics of the impurity atoms
and the trap geometry. The momentum dependence of rf spectral response was also
investigated in Ref.[182]. The following figure is taken from Fig. 8 in Ref. [182] with
permission: FIELD-THEORETICAL STUDY OF THE BOSE POLARON PHYSICAL REVIEW A 88, 053632 (2013)

n−1/3p

Ω
/Ω

0
(a)

n−1/3p

Ω
/
Ω

0

(b)

FIG. 5. (Color online) Impurity spectral function Apol(!, p) as a
function of frequency and momentum for (a) (n1/3aφψ )−1 = 1 and
(b) (n1/3aφψ )−1 = −5. In both graphs, n1/3aφφ = 0.1. Solid line:
free-impurity dispersion. Dashed line: free-molecule-like dispersion.
Dash-dotted line: dispersion according to the effective mass of the at-
tractive polaron at p = 0. For positive aφψ , the attractive polaron peak
gradually bends away from its dispersion at vanishing momentum,
reflecting an increase in the momentum-dependent effective mass. At
negative aφψ , the effective mass stays approximately constant as a
function of momentum.

momenta, this width becomes negligible and the attractive
polaron behaves as a free particle.

Our results depend only weakly on the boson-boson
coupling gφφ which suggests considering the simplifying limit
gφφ → 0. This limit should be understood in the following
sense: while a finite value of gφφ is essential for the mechanical
stability of the system, we are interested only in the effects of
the Bose gas on the impurity, not the inverse. The limit gφφ →
0 is nothing but a mathematical commodity which actually
means that boson-boson interactions are very weak but still
sufficiently large to ensure stability [69,70]. Carrying out the
limit leads to important simplifications in the calculation. First,

all Bose propagators become free-particle propagators, thus
eliminating the mathematically tricky Bogoliubov dispersion.
Second, the loop diagram in Fig. 1(b) vanishes identically,
leaving only the mean-field-like contribution to the impurity
self-energy (7), i.e., the self-energy is just proportional to the T
matrix $φψ . Furthermore, all anomalous contributions which
are neglected in our calculation at finite gφφ > 0 now indeed
vanish. As already stated, in the approximation gφφ → 0 the
in-medium T matrix is identical to the T matrix in vacuum given
in Eq. (13) up to the impurity’s chemical potential absorbed
in !. Considering the simplicity of the self-energy in the limit
gφφ → 0, it comes as a surprise that at vanishing momentum
the resulting spectral function turns out to be almost identical
to the one obtained for finite boson-boson interactions (cf.
Figs. 3 and 4 for an explicit comparison of the quasiparticle
properties for finite and vanishing boson-boson interactions).
This is particularly remarkable since we deliberately chose the
rather large value n1/3aφφ = 0.1 for the plots involving a finite
boson-boson interaction.

The simplicity of the NSCT approximation with a noninter-
acting BEC allows some simple analytical relations between
quasiparticle properties to be given. The first relates the
quasiparticle weight and the effective mass. In fact, since in this
approximation the self-energy is a function of ! − p2/2(α +
1)mφ , the effective mass can simply be expressed as

m∗ = 1 − ∂!Re'ψ

1
α

− 1
α+1∂!Re'ψ

∣∣∣∣
E(p)

= α(α + 1)
Z + α

. (21)

One sees that the effective mass is strictly bounded by the
impurity and the molecule mass and follows a smooth interpo-
lation between the two as the scattering length is tuned across
the resonance. This nicely reflects the crossover of the polaron
to a molecule described in Appendix A. The quasiparticle
weight Z and the effective mass m∗ are shown as functions
of a−1

φψ in Fig. 4. One may also determine the momentum at
which the attractive polaron enters the excitation continuum at
small negative aφψ . In this regime the polaron always has an
effective mass close to αmφ such that the polaron dispersion
relation is well approximated by Eatt(p) ≈ gφψn + p2/2αmφ

while the onset of the continuum is exactly at p2/2(α + 1)mφ

(in contrast to the case of a nonzero gφφ discussed above).
Consequently, the two intersect at p ≈

√
−4π (α + 1)2naφψ .

Finally, the energy of the attractive polaron may be calculated
analytically. While the resulting expression is cumbersome, it
permits obtaining the leading correction to the universal dimer
energy which at small positive scattering lengths is given by
Eatt ∼ (−1/a2

φψ − 8πaφψn)(α + 1)/2αmφ .4

The difference in the “dispersion” of the continuum onset
depending on whether one assumes a finite gφφ or not is in
fact the only qualitative difference that can be seen in the
spectral function [cf. Fig. 6, where, in contrast to Fig. 5(b), the
continuum onset coincides with the free-molecule dispersion
marked by the dashed line]. As a consequence, while there is a
visible deviation in the crossing between the attractive polaron

4In terms of the two-channel model discussed in Appendix A,
the second term may be interpreted as an effective boson-molecule
repulsion.
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function of frequency and momentum for (a) (n1/3aφψ )−1 = 1 and
(b) (n1/3aφψ )−1 = −5. In both graphs, n1/3aφφ = 0.1. Solid line:
free-impurity dispersion. Dashed line: free-molecule-like dispersion.
Dash-dotted line: dispersion according to the effective mass of the at-
tractive polaron at p = 0. For positive aφψ , the attractive polaron peak
gradually bends away from its dispersion at vanishing momentum,
reflecting an increase in the momentum-dependent effective mass. At
negative aφψ , the effective mass stays approximately constant as a
function of momentum.

momenta, this width becomes negligible and the attractive
polaron behaves as a free particle.

Our results depend only weakly on the boson-boson
coupling gφφ which suggests considering the simplifying limit
gφφ → 0. This limit should be understood in the following
sense: while a finite value of gφφ is essential for the mechanical
stability of the system, we are interested only in the effects of
the Bose gas on the impurity, not the inverse. The limit gφφ →
0 is nothing but a mathematical commodity which actually
means that boson-boson interactions are very weak but still
sufficiently large to ensure stability [69,70]. Carrying out the
limit leads to important simplifications in the calculation. First,

all Bose propagators become free-particle propagators, thus
eliminating the mathematically tricky Bogoliubov dispersion.
Second, the loop diagram in Fig. 1(b) vanishes identically,
leaving only the mean-field-like contribution to the impurity
self-energy (7), i.e., the self-energy is just proportional to the T
matrix $φψ . Furthermore, all anomalous contributions which
are neglected in our calculation at finite gφφ > 0 now indeed
vanish. As already stated, in the approximation gφφ → 0 the
in-medium T matrix is identical to the T matrix in vacuum given
in Eq. (13) up to the impurity’s chemical potential absorbed
in !. Considering the simplicity of the self-energy in the limit
gφφ → 0, it comes as a surprise that at vanishing momentum
the resulting spectral function turns out to be almost identical
to the one obtained for finite boson-boson interactions (cf.
Figs. 3 and 4 for an explicit comparison of the quasiparticle
properties for finite and vanishing boson-boson interactions).
This is particularly remarkable since we deliberately chose the
rather large value n1/3aφφ = 0.1 for the plots involving a finite
boson-boson interaction.

The simplicity of the NSCT approximation with a noninter-
acting BEC allows some simple analytical relations between
quasiparticle properties to be given. The first relates the
quasiparticle weight and the effective mass. In fact, since in this
approximation the self-energy is a function of ! − p2/2(α +
1)mφ , the effective mass can simply be expressed as

m∗ = 1 − ∂!Re'ψ

1
α

− 1
α+1∂!Re'ψ

∣∣∣∣
E(p)

= α(α + 1)
Z + α

. (21)

One sees that the effective mass is strictly bounded by the
impurity and the molecule mass and follows a smooth interpo-
lation between the two as the scattering length is tuned across
the resonance. This nicely reflects the crossover of the polaron
to a molecule described in Appendix A. The quasiparticle
weight Z and the effective mass m∗ are shown as functions
of a−1

φψ in Fig. 4. One may also determine the momentum at
which the attractive polaron enters the excitation continuum at
small negative aφψ . In this regime the polaron always has an
effective mass close to αmφ such that the polaron dispersion
relation is well approximated by Eatt(p) ≈ gφψn + p2/2αmφ

while the onset of the continuum is exactly at p2/2(α + 1)mφ

(in contrast to the case of a nonzero gφφ discussed above).
Consequently, the two intersect at p ≈

√
−4π (α + 1)2naφψ .

Finally, the energy of the attractive polaron may be calculated
analytically. While the resulting expression is cumbersome, it
permits obtaining the leading correction to the universal dimer
energy which at small positive scattering lengths is given by
Eatt ∼ (−1/a2

φψ − 8πaφψn)(α + 1)/2αmφ .4

The difference in the “dispersion” of the continuum onset
depending on whether one assumes a finite gφφ or not is in
fact the only qualitative difference that can be seen in the
spectral function [cf. Fig. 6, where, in contrast to Fig. 5(b), the
continuum onset coincides with the free-molecule dispersion
marked by the dashed line]. As a consequence, while there is a
visible deviation in the crossing between the attractive polaron

4In terms of the two-channel model discussed in Appendix A,
the second term may be interpreted as an effective boson-molecule
repulsion.
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Figure 7.2. – Momentum dependence of polaron spectral response using self-consistent T -
matrix approach in Ref. [182]. Solid line: free impurity dispersion. (a) (n1/3aφψ)−1 = 1. (b)
(n1/3aφψ)−1 = −5.

The essential point is that the rf spectral response touches the free impurity dis-
persion line at high momentum regions, |n−1/3p| & 5. It means that for fast moving
impurities, the effect of interaction vanishes and the impurities become free particles.
This effect can be understood by the simple argument that, the s-wave scattering
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length aφψ is the low-momentum limit of the s-wave phase shift’ tangent, δ0(k),

aφψ = − lim
k→0

1

k
tan δ0(k), (7.12)

for sufficient large collisional momentum, aφψ is not enough to characterizes the
inter-particle interaction, thus higher order of the expansion should be included,

k cot δ0(k) = −a−1
φψ + reffk

2/2, (7.13)

so the phase shift goes to zero at high momentum limit.

Tan’s contact tails

As pointed out in Ref. [181], the rf spectral signal should contain an incoherent
part with a characteristic high frequency power-law tail which corresponds to the
excitations of the background BEC. It is a manifestation of the universal “contact”
physics studied by Shina Tan [184, 185, 186, 187].

7.3. Experimental details

7.3.1. Experimental sequence

We follow the theoretical proposals and perform inverse rf spectroscopy with 23Na40K
mixtures. The experimental procedures are summarized as follows:

1. We prepare a large 23Na cloud with a few 40K in a crossed dipole trap. 23Na is
at |F = 1,mF = 1〉 state and 40K is at |F = 9/2,mF = −7/2〉.

2. We perform combined evaporation, and the evaporation procedure was opti-
mized to get a mixture with large atom ratio NNa/NK . After the evaporation,
23Na is condensed with ∼ 3 · 105 atoms (this number is the ‘condensed part’,
not including the thermal part; measured from long TOF images). The atom
number of 40K is fluctuating, a few 104, corresponding to < 10% of the Na
atom number.

3. We use a Feshbach resonance of 23Na |F = 1,mF = 1〉 + 40K |F = 9/2,mF =
−9/2〉 at 78.1G with 1.1G width.

4. After evaporation in the crossed dipole trap, we ramp up the homogenous
magnetic field to various values around the Feshbach resonance and stabilize it.
Afterwards, we apply a rf pulse (π pulse) to spin flip the impurities 40K from
the |mF = −7/2〉 to |mF = −9/2〉 state.

5. For each magnetic field value, we first determine the bare atomic transition
frequency of 40K without 23Na background. We then use the same pulse with
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Figure 7.3. – Life time of the impurity vs magnetic field. The error bar indicates the fitting
deviation to an exponential decay.

a 23Na BEC to determine the frequency shift and broadening due to the inter-
action with the 23Na background.

6. To overcome the problem of 40K atom number fluctuations from shot to shot,
we use two-state imaging techniques: we transfer the remaining |mF = −7/2〉
atoms from |mF = −7/2〉 to |mF = −3/2〉 by two consecutive rf π pulses and
then we record the atom numbers at |mF = −9/2〉 and at |mF = −3/2〉 by spin-
resolved high-field imaging method. For the data analysis, we can determine
how many atoms get transferred, N(mF = −9/2)/[N(mF = −3/2) +N(mF =
−9/2)].

7.3.2. Experimental calibration

Impurity lifetime

We measure the impurity lifetime coexisting with a 23Na BEC at different magnetic
field values around the Feshbach resonance, as shown in Fig.7.3. The lifetime was
determined by fitting to an exponential decay curve in time. The lifetime of the
impurity is > 1ms for all magnetic fields ensures that the broadening of rf spectral
response due to finite lifetime should be < 1kHz.

Trapping frequencies

We use parametric heating methods to measure the trapping frequencies of dipole
trap at different laser power, and then extrapolate to the low power value to get the
trapping frequencies( ωx, ωy, ωz) for both species.
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Cloud size and density distribution

The cloud size of the 23Na BEC and the 40K Fermi cloud was estimated by assuming
a Thomas-Fermi profile in a trap.

For bosons, the density profile is given by,

n(x, y, z) = n0

(
1− x2

R2
x

− y2

R2
y

− z2

R2
z

)
, (7.14)

and the Thomas-Fermi radius (i = x, y, z) is given by [188]:

Ri =

(
15Nabg

lhi

)1/5

· lhi , (7.15)

whereN is the atom number of BEC, abg is the scattering length of bosons (abg ∼ 60a0

for 23Na), and lhi is the harmonic oscillator length along i axis.
For fermions, the density profile is [189],

n(x, y, z) =
8

π2

N

RxRyRz

(
1− x2

R2
x

− y2

R2
y

− z2

R2
z

)3/2

, (7.16)

and the Thomas-Fermi radius (i = x, y, z) is given by:

Ri = lhi (48N)1/6, (7.17)

where N is the atom number of the Fermi gas, and lhi is the harmonic oscillator
length along i axis.

Since we know the atom numbers of the two species and the trapping frequency,
we are able to determine the cloud sizes and the densities. For the trap we use, the
Thomas-Fermi radius of the 23Na BEC is roughly the same as 40K cloud’s. The aver-
age density of 23Na BEC is ∼ 1014 cm−3, and the Fermi energy, EF = ~2

2m(3π2n)2/3,
is ∼ 10 kHz.

Scattering length

The initial state is 23Na |F = 1,mF = 1〉 + 40K |F = 9/2,mF = −7/2〉. There are
two relevant Feshbach resonances around 78.1G in this scattering channel.

We extract the parameters for the two Feshbach resonances: One is at 81.5 G and
is 1 G wide, the other is at 90.2 G and is 2.5 G wide [59, 123]. The background
scattering length is about −690a0[128] , where a0 is the Bohr radius. Using the
universal Feshbach resonance formula [10],

a(B) = abg

(
1 +

∆B1

B −B1
+

∆B2

B −B2

)
. (7.18)

We plot the scattering length versus the magnetic field of the initial channel in Fig.7.4.
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The scattering length of the final channel, 23Na |F = 1,mF = 1〉 + 40K |F =
9/2,mF = −9/2〉, is shown in Fig.7.5, where we include two Feshbach resonances in
this channel: One is at 78.1 G and is 1.1 G wide, the other is at 89.2 G and is 12.85
G wide [123].

Since we perform our measurements around 78.1 G, the initial mixture is ‘weakly’
interacting with a scattering length about −390a0.
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Figure 7.4. – The scattering length vs. magnetic field of the initial channel, |F = 1,mF = 1〉
+ 40K |F = 9/2,mF = −5/2〉.
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Figure 7.5. – The scattering length vs. magnetic field of the final channel, |F = 1,mF = 1〉
+ 40K |F = 9/2,mF = −9/2〉.
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7.4. Experimental results: rf spectral response across the FB
resonance

We took rf spectral response at various magnetic fields around Feshbach resonances
at 78.1G. The results are shown in Fig. 7.6. We convert the experimental data to a
color scaled figure, Fig. 7.7. We fit the experimental data to Gaussian distribution
curves phenomenologically, and extract the centers and the widths from the fitting.

We then calculate the frequency differences between the situations with or without
23Na BEC. It shows how impurity atoms get dressed by the BEC. We plot the
frequency shifts in Fig.7.8.

7.5. Discussion

Experimentally, we have seen following features which agree with theoretical predic-
tions qualitatively:

1. We see frequency shifts when impurity atoms interact with 23Na BEC. With
repulsive interactions, the resonant rf frequencies shift towards lower values
(corresponds to positive value of Ω/Ω0 in Ref.[182]) , and with attractive inter-
actions, the resonant frequencies shift towards to higher values.

2. Close to the Feshbach resonance where the interaction becomes stronger, we
see the rf spectra become broad (∼ 10kHz level), simultaneously the transition
amplitude decrease.

3. Away from the Feshbach resonance, the rf spectra are more localized and the
transition amplitudes approach to the ones without 23Na atoms.

4. Away from the RF resonance, the spectra develop tails that extend to very high
energy.

7.5.1. Discrepancies between experiments and theory

The energy scale is given as Ω0 = ~2n2/3/mB [182]. Under our experimental con-
ditions, the peak density of 23Na BEC is ∼ 1014 cm−3, the frequency shifts should
be tens of kHz when 1/(knaIB) ∼ 1, where kn = (6π2n)1/3. However, the maximum
frequency shifts is 2kHz in our experiments. In Fig.7.9, we compare the experimental
results with theoretical predictions while keeping the boson density as a free param-
eters. It shows that the experimental results are smaller than theoretical predictions
by one order of magnitude.

7.5.2. Possible reasons

To understand the discrepancies between the experimental datas and the theory, we
have checked a few possible reasons.
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Figure 7.6. – rf spectral response of impurities at various magnetic fields. Black dots are
the experimental data points of bare 40K atomic transitions without 23Na atoms. Red dots
are the experimental data points while spin-flipping 40K with 23 a Na BEC background. Solid
lines show the results of fitting experimental datas to a Gaussian distribution.
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Figure 7.7. – Color scaled rf spectral response of impurities at various magnetic fields across
the Feshbach resonance.

Figure 7.8. – Frequency shifts of impurity atoms due to 23Na BEC at various magnetic
fields across the Feshbach resonance.
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Figure 7.9. – Comparison between experimental datas and theoretical prediction with
various BEC density. Circles correspond to experimental datas. Left figure: n = 5·1012cm−3.
Right figure: n = 1013cm−3. Private communication from Yulia E. Shchadilova, Richard
Schmidt, Fabian Grusdt, and Eugene Demler.

One obvious reason could be that the overlapping between 23Na and 40K clouds
is poor due to different trapping frequencies and gravitational sag. We have used
in-situ imaging techniques to check the in-trap positions of the two clouds and they
are well overlapped.

According to Ref.[182], the fermionic impurity atoms becomes ‘supersonic’ when
the Fermi velocity (vF = ~kF /M) exceeds the critical velocity of the BEC (cS =√
ng/m). In our system, we estimate the Fermi velocity of 40K is ∼ 10mm/s while

the critical velocity of 23Na BEC is ∼ 6 mm/s. It means that the majority of
impurities are ‘supersonic’ and become ‘undressed’.

Up to date, we do not have a concrete idea of understanding the discrepancies in
our experiments.

7.6. Outlook

As mentioned in introduction, Bose polaron is an interesting subject to study. It is
feasible to investigate following properties in our experiments.

High frequency tails: The rf spectra of 40K impurities with 23Na BEC show
an unsymmetrical behavior (see Fig. 7.10). The tails appear at the high frequency
regions and range over tens of kHz and they might be related to universal ‘Tan’
contact physics.

Effective mass: The effective mass of Bose polarons at strongly interacting
regimes is an ambiguous question in theoretical physics. The lifetime of impurities in
our experiments is> 1 ms and it enables us to observe low-frequency cloud oscillations
(f > 1 kHz). We have prepared a new imaging system to observe clouds with higher
resolution . By comparing the oscillation frequencies with and without Na atoms,
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Figure 7.10. – RF spectra of impurity 40K atoms at 78.5 Gauss. Red points show the
spectrum without Na atoms. Blue points represent the spectrum with a Na BEC where a
tail is clearly visible.

we should be able to extract the effective mass of Bose polaron at various interaction
regimes.





CHAPTER 8

Conclusion and outlook

In this thesis, I have presented in details a novel experimental apparatus designed for
creating ultracold 23Na40K ground state molecules. Owing to its large dipole moment
and chemical stability, this system should lead to a new generation of experiments
to explore many-body physics with long range dipole-dipole interaction.

During the course of this PhD project, several crucial steps towards to the goal
have been achieved experimentally:

• Creation of a degenerated Bose-Fermi 23Na40K mixture with controllable atomic
ratios.

• Association of weakly bound Feshbach molecules with 23Na|F = 1, mF = 1〉
+40K|F = 9/2, mF = −9/2〉 channel.

• Implementation of asymptotic-bound state model to 23Na40K system to obtain
the spin characters of Feshbach molecules.

• Identification of a suitable intermediate state |d3Π, ν = 5, J = 1, Ω = 1〉 in
d3Π/D1Π complex for STIRAP process.

• Demonstration of successful STIRAP transfer to the rovibrational ground state,
|X1Σ, ν = 0, J = 0〉.

In addition, with the experimental apparatus, it is also feasible to study Bose
polaron problems and preliminary experimental results of inverse rf spectroscopy is
included in this thesis.

Some theoretical studies have been accomplished and they serve as the motivation
and could be investigated in our experimental apparatus in future:

• Fermi liquid properties of a weakly-interacting two dimensional dipolar fermions.

• Stable supersolid states of two-dimensional dipolar bosons in the dilute limit.

Outlook

Current STIRAP scheme does not lead to the absolute hyperfine ground state |X1Σ, ν =
0, J = 0〉⊗|mNa = 3/2,mK = −4〉, thus we have to investigate further. Properties of
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the ground state molecules need to be characterized experimentally, such as lifetime,
polarizability and collisional stability.

NaK ground state molecules are expected to be chemically stable at ultracold
temperatures. This will allow us to perform further evaporative cooling to reach the
quantum degeneracy at which quantum many body effects start to appear.

We have built a high resolution imaging system combined with a 1D optical lattice.
The resolution obtained is ' 0.8µm for 589nm. This high resolution imaging system
will allow us to detect spatial correlation of the molecular sample. The molecular
sample becomes a two-dimensional system after loading the molecule sample into the
1D optical lattice, and it will be suitable for testing theoretical proposals presented
in this thesis.

We have designed and tested the in-vacuum high voltage electrodes [123]. The
electric fields created by the electrodes can polarize the molecules being tilted with
respect to the plane of their translational motion. It paves the way to study the
anisotropy properties of dipole-dipole interaction.



APPENDIX A

Calculation of integrals for the
thermodynamical quantities

A.1. Direct calculation of the first order contribution to the
interaction energy

For directly calculating the first order (mean field) contribution to the interaction

energy Ẽ(1) (2.74), we represent it as Ẽ(1) = Ẽ
(1)
1 + Ẽ

(1)
2 where

Ẽ
(1)
1 =

∫
f̄ (1)

(
|k1 − k2|

2

)
nk1nk2

d2k1d
2k2

(2π)4
, (A.1)

Ẽ
(1)
2 =

∫
f̄ (2)

(
|k1 − k2|

2

)
nk1nk2

d2k1d
2k2

(2π)4
, (A.2)

and the amplitudes f̄ (1) and f̄ (2) are given by Eqs. (2.79) and (2.80), respectively.

In the calculation of the integrals for Ẽ
(1)
1 and Ẽ

(1)
2 we turn to the variables x =

(k1 − k2)/2kF and y = (k1 + k2)/2kF , so that d2k1d
2k2 = 8πk4

Fd
2xd2ydϕ, where

ϕ is the angle between the vectors x and y, and the integration over dϕ should be
performed from 0 to 2π. The distribution functions nk1 and nk2 are the step functions
(3.5). The integration over dk1 and dk2 from 0 to kF corresponds to the integration
over dy from 0 to y0(x,ϕ) = −x| cosϕ| +

√
1− x2 sin 2ϕ and over dx from 0 to 1.

Using Eq. (2.79) we reduce Eq. (A.1) to

Ẽ
(1)
1 =

S~2k4
F

π2m
kF r∗I1, (A.3)

where

I1 =

∫ 2π

0
dϕ

∫ 1

0
x2dx

∫ y0(x,ϕ)

0
ydy

=
1

2

∫ 2π

0
dϕ

∫ 1

0
x2dx× [1− 2| cosϕ|

√
1− x2 sin2 ϕ+ x2(cos2 ϕ− sin2 ϕ)].
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The last term of the second line vanishes, and the integration of the first two terms
over dϕ and dx gives:

I1 =

∫ 1

0
x2
(
π − 2x

√
1− x2 − 2 arcsinx

)
=

8

45
.

Then Eq. (A.3) yields:

Ẽ
(1)
1 =

8S

45π2

~2k4
F

m
kF r∗ =

N2

S

128

45

~2k2
F

m
kF r∗, (A.4)

which exactly coincides with the second term of the first line of Eq. (2.90).

Using Eq. (2.80) the contribution Ẽ
(1)
2 takes the form:

Ẽ
(1)
2 =

S~2k4
F

2π2m
(kF r∗)

2

{[
ln(ξkF r∗)−

25

12
+3 ln 2

]
I2+I3

}
, (A.5)

where the integrals I2 and I3 are given by

I2 =

∫ 2π

0
dϕ

∫ 1

0
x3dx

∫ y0(x,ϕ)

0
ydy

=
1

2

∫ 2π

0
dϕ

∫ 1

0
x3dx×

[
1− 2| cosϕ|x

√
1− x2 sin2 ϕ+ x2(cos2 ϕ− sin2 ϕ)

]

=
1

2

∫ 1

0
x3[2π − 4x

√
1− x2 − 4 arcsinx]dx =

π

32
,

and

I3 =

∫ 2π

0
dϕ

∫ 1

0
x3 lnxdx

∫ y0(x,ϕ)

0
ydy

=
1

2

∫ 2π

0
dϕ

∫ 1

0
dx× x3 lnx

[
1− 2| cosϕ|x

√
1− x2 sin2 ϕ+ x2(cos2 ϕ− sin2 ϕ)

]

=
1

2

∫ 1

0
x3 lnx[2π − 4x

√
1− x2 − 4 arcsinx]dx =

π

32

(
1

6
− ln 2

)
.

Substituting the calculated I2 and I3 into Eq. (A.5) we obtain:

Ẽ
(1)
2 =

S~2k4
F

64πm
(kF r∗)

2

[
ln(4ξkF r∗)−

23

12

]
=
N2

S

π~2

4m
(kF r∗)

2

[
ln(4ξkF r∗)−

23

12

]
.

(A.6)
This exactly reproduces the third term of the first line of Eq. (2.90).
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A.2. Calculation of the interaction function F̃ (2)
1

The interaction function F̃
(2)
1 is the second variational derivative of the many-body

contribution to the interaction energy, Ẽ
(2)
1 (2.82), with respect to the momentum

distribution function. It can be expressed as

F̃
(2)
1 (k, k′) = −2~2

m
(kF r∗)

2(Ĩ1 + Ĩ2 + Ĩ3), (A.7)

where

Ĩ1 = 2

∫

|k1|<kF

d2k1

k2
F

|k− k1|2

k2+k′2−k2
1−k2

2

δk+k′−k1−k2 , (A.8)

Ĩ2 = 2

∫

|k1|<kF

d2k1

k2
F

|k− k′|2

k2+k2
1−k′2−k2

2

δk+k1−k′−k2 , (A.9)

Ĩ3 = 2

∫

|k1|<kF

d2k1

k2
F

|k1 − k′|2

k2
1+k2−k′2−k2

2

δk1+k−k′−k2 , (A.10)

and the presence of the Kronecker symbols δq reflects the momentum conservation
law. On the Fermi surface we put |k| = |k′| = kF and denote the angle between k and
k′ as θ. Due to the symmetry property: F (k, k′) = F (k′, k) we have F (θ) = F (2π−θ)
and may consider θ in the interval from 0 to π.

In order to calculate the integral Ĩ1, we use the quantities s = (k + k′)/2kF and
m = (k − k′)/2kF and turn to the variable x = (k1 − k2)/2kF = (2k1 − s)/2kF .
For given vectors k and k′, the vectors s and m are fixed and |s| = cos(θ/2), |m| =
sin(θ/2). The integral can then be rewritten as:

Ĩ1 =

∫
m2 + x2

m2 − x2
d2x.

The integration region is shown in Fig.A.1, where the distance between the points O1

and O2 is RO1O2 = s. The distance between the points O1 and N is RO1N = k1/2kF ,
and RNO2 = k2/2kF , so that RON = x/2. The quantity |x| changes from 0 to l1(ϕ)
where

l21(ϕ) + cos2 θ

2
− 2l1(ϕ) cos

θ

2
cosϕ = 1,

and l1(ϕ) · l1(ϕ + π) = sin2(θ/2), with ϕ being an angle between m and x. In the
polar coordinates the integral Ĩ1 takes the form:

Ĩ1 =

∫ 2π

0
dϕ

∫ l1(ϕ)

0

(
−1 + 2 sin2 θ

2

1

sin2(θ/2)− x2

)
xdx,



132 Appendix A. Calculation of integrals for the thermodynamical quantities

O
1

O
2

O

P

N

O
1 O

2
O

P
N

Figure A.1. – (color online). Left: The integration area for Ĩ1 (in blue). The distance
between the points O1 and P is RO1P = k/2kF , RPO2

= k′/2kF , and RO1N = k1/2kF .
Right: The integration area for Ĩ2 and Ĩ3 (in red). The distance between the points O2 and
N is RO2N = k1/2kF , RO1P = k/2kF , and RO2P = k′/2kF .

and after a straightforward integration we obtain:

Ĩ1 = π

(
2 sin2 θ

2
ln | tan

θ

2
| − 1

)
. (A.11)

In the integral Ĩ2, using the variable y = (k1 + k2)/2kF we observe that it changes
from 0 to l2(ϕ̃) where

l22(ϕ̃) + sin2 θ

2
− 2l2(ϕ̃) sin

θ

2
cos(ϕ̃) = 1

and l2(ϕ̃) − l2(ϕ̃ + π) = 2 sin θ
2 cos ϕ̃, with ϕ̃ being an angle between y and m. We

then have:

Ĩ2 = −2

∫
m2

m · y
d2y = −2 sin

θ

2

∫ 2π

0
dϕ̃

∫ l2(ϕ̃)

0

dy

cos ϕ̃
= −4π sin2 θ

2
. (A.12)

For the integral Ĩ3 we have:

Ĩ3 = −1

2

∫
s2 + y2 − 2s · y

m · y

= − 1

2 sin θ
2

∫ 2π

0

dϕ̃

cos ϕ̃

∫ l2(ϕ̃)

0
dy

[
y2 + cos2 θ

2
− 2y cos

θ

2
sin ϕ̃

]

= −2π

(
cos2 θ

2
+

1

3
sin2 θ

2

)
, (A.13)

where we used the relation l2(ϕ̃) = l2(−ϕ̃).
Using integrals Ĩ1 (A.11), Ĩ2 (A.12), and Ĩ3 (A.13) in Eq. (A.7), we obtain equation
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(2.84):

F̃
(2)
1 (θ)=

2~2r2
∗k

2
F

m

[
3π+2π sin2 θ

2

(
4

3
−ln | tan

θ

2
|
)]

.

.

A.3. Calculation of the interaction function F̃ (2)
2

The interaction function F̃
(2)
2 is the second variational derivative of the many-body

contribution to the interaction energy, Ẽ
(2)
2 (2.83), with respect to the momentum

distribution. It reads:

F̃
(2)
2 (k, k′) =

2~2

m
(kF r∗)

2(I ′1 + I ′2), (A.14)

where

I ′1 = 2

∫

|k1|<kF

d2k1

k2
F

|k−k1| · |k′−k1|
k2+k′2−k2

1−k2
2

δk+k′−k1−k2 , (A.15)

I ′2 = 4

∫

|k1|<kF

d2k1

k2
F

|k−k′| · |k1−k′|
k2+k2

1−k′2−k2
2

δk+k1−k′−k2 (A.16)

The integration area for I ′1 is shown in Fig. A.2, where the distance between the
points O1 and P is RO1P = k/2kF , RPO2 = k′/2kF , RO1N = k1/2kF , and RON =
x/2. We thus have RNP = (k− k1)/2kF and RNP ′ = (k′ − k1)/2kF . In the region
of integration we should have |RO1N | = k1/2kF ≤ 1/2. This leads to

I ′1 = 4

∫
|RNP | · |RNP ′ |

m2 − x2
d2n = −

∫ 2π

0
dϕ

∫ l3(ϕ)

0
xdx

×
√

[x2 + sin2(θ/2)]2 − 4x2 sin2(θ/2) cos2 ϕ

x2 − sin2(θ/2)
, (A.17)

where ϕ is the angle between x and m (see Fig. A.2), and the quantity l3(ϕ) obeys
the equation

l23(ϕ)− 2 cos
θ

2
sinϕ · l3(ϕ) + cos2 θ

2
= 1.

Turning to the variable z = r2 − sin2(θ/2) the integral I ′1 is reduced to

I ′1 = −1

2

∫ 2π

0
dϕ

∫ l23(ϕ)−sin2(θ/2)

− sin2(θ/2)

√
R

z
dz, (A.18)

with

R = z2 + 4z sin2 θ

2
sin2 ϕ+ 4 sin4 θ

2
sin2 ϕ.
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Figure A.2. – (color online). Left: The integration area for I ′1 (in blue): RO1P = k/2kF ,
RPO2 = k′/2kF , RO1N = k1/2kF , and ϕ is the angle between the vectors ROP and RON ,
which is the same as the angle between m and x. Right: The integration area for I ′2 (in red):
RO1P = k/2kF , RO2P = k′/2kF , RO2N = k1/2kF , α is the angle between RPM and RPN ,
and φ is the angle between RPN and ROO2

.

It is easy to see that:

Ir =

∫ l23(ϕ)−sin2(θ/2)

− sin2(θ/2)

√
R

z
dz

=
{√

R−
√
a ln

(
2a+ bz + 2

√
aR
)

+
b

2
ln
(

2
√
R+ 2z + b

)}∣∣∣
l23(ϕ)−sin2(θ/2)

− sin2(θ/2)

+
√
a · P

∫ l23(ϕ)−sin2(θ/2)

− sin2(θ/2)

dz

z
= Ir↑ − Ir↓,

where a = 4 sin4(θ/2) sin2 ϕ, b = 4 sin2(θ/2) sin2 ϕ, and the symbol P stands for the
principal value of the integral. The quantities Ir↑ and Ir↓ denote the values of the
integral at the upper and lower bounds, respectively (in the last line we have to take
the principal value of the integral and, hence, if the upper bound of the integral is
positive we have to replace the lower bound with sin2(θ/2)). Then Ir↑ and Ir↓ are
given by:

Ir↑ = 2| sinϕ| · l(ϕ)− 2 sin2 θ

2
| sinϕ| · ln

(
8 sin2 θ

2
sin2 ϕ

)

− 2 sin2 θ

2
| sinϕ| · ln

(
sin2 θ

2
+ cos

θ

2
sinϕ · l(ϕ) + l(ϕ)

)
+ 2 sin2 θ

2
| sinϕ| · ln |2 cos

θ

2
sinϕ · l(ϕ)|

+ 2 sin2 θ

2
sin2 ϕ

[
ln 4 + ln

(
| sinϕ| · l(ϕ) + cos

θ

2
sinϕ · l(ϕ) + sin2 θ

2
sin2 ϕ

)]
,

Ir↓ = sin2 θ

2
− 2 sin2 θ

2
| sinϕ| ·

[
ln

(
4 sin4 θ

2

)
+ ln

(
sin2 ϕ+ | sinϕ|

)]

+ 2 sin2 θ

2
| sinϕ| · ln

(
sin2 θ

2

)
+ 2 sin2 θ

2
sin2 ϕ · ln

(
4 sin2 θ

2
sin2 ϕ

)
.
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The integral I ′1 can be expressed as:

I ′1 = −1

2

∫ 2π

0
[Ir↑ − Ir↓]dϕ,

and for performing the calculations we notice that l3(ϕ) · l3(ϕ+ π) = sin2 θ
2 , l3(ϕ)−

l3(ϕ + π) = 2 cos θ2 sinϕ, and l3(ϕ) + l3(ϕ + π) = 2
√

cos2 θ
2 sin2 ϕ+ sin2 θ

2 . We then

obtain:

I ′1 = − sin2 θ

2

(
π ln 2 + π/2− π ln sin

θ

2
+ 4 ln | cos

θ

2
| − 4 ln(1 + sin

θ

2
) + G(θ)

)

+ sin2 θ

2

(
2π

| cos θ2 |
+

4 arcsin(sin θ
2)

| cos θ2 |

)
−

k2
F

| cos θ2 |

(
π − 2 arcsin(sin

θ

2
) + | sin θ|

)
,

(A.19)

with

G(θ) =

∫ π

0
2 sin2 ϕ ln

(
sinϕ+

√
sin2 θ

2
+ cos2

θ

2
sin2 ϕ

)
dϕ. (A.20)

The integration area for I ′2 is shown in Fig. A.2, and we get:

I ′2 = −4

∫
|m| · |RPN |

m · y
d2y = −8

∫
d2ρ

cosφ
, (A.21)

where we denote RPN = ρ, and φ = α− θ/2 is the angle between the vectors m and
ρ, with α being the angle between the vectors RPM and RPN (see Fig. A.2). We
then have:

I ′2 = −8

∫ π

0
dα

∫ sinα

0

ρdρ

cos(α− θ/2)

= −4

[
cos2 θ

2
ln

1 + sin(θ/2)

1− sin(θ/2)
+ 2 sin

θ

2

]
. (A.22)

Using I ′1 (A.19) and I ′2 (A.22) in Eq. (A.14) we get equation (2.85) for the inter-

action function F̃
(2)
2 (θ).





APPENDIX B

Calculation of the integral for the relaxation
rate of quasiparticles

It is convenient to represent Eq.(3.52) in the form:

sin(φ2 − φ1 − φ̃) =
pp1[1− cos(φ1 − φ)]− (p2p1 + pp2)√

[p2p1 + pp2 cos(φ1 − φ)]2 + p2p2
2 sin2(φ1 − φ)

, (B.1)

where

sin φ̃ =
p2p1 + pp2 cos(φ1 − φ)√

[p2p1 + pp2 cos(φ1 − φ)]2 + p2p2
2 sin2(φ1 − φ)

;

cos φ̃ =
pp2 sin(φ1 − φ)√

[p2p1 + pp2 cos(φ1 − φ)]2 + p2p2
2 sin2(φ1 − φ)

.

For the derivative dp3/dφ2 we have:

∣∣∣∣
dp3

dφ2

∣∣∣∣ =

√
[p2p1 + pp2 cos(φ1 − φ)]2 + p2p2

2 sin2(φ1 − φ)

p3
| cos(φ2 − φ1 − φ̃)|

= 2pF

∣∣∣∣sin
(
φ1 − φ

2

)∣∣∣∣

√
cos2

(
φ1 − φ

2

)
+ (q − q2)(q2 − q1)/p2

F .

In the Fourier transforms U(p−p2) and U(p1−p2) we may put |p| = |p1| = |p2| =
pF . Then equation (3.52) gives either φ2 = φ1 or φ2 = φ. In both cases, using
Eq.(3.11) we obtain:

U(p− p2)− U(p1 − p2)

= ±4πd2pF

∣∣∣∣sin
(
φ1 − φ

2

)∣∣∣∣
{

cos2 θ0 − sin2 θ0 sin2

(
φ1 + φ

2

)}
. (B.2)
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Integrating over φ2 in Eq.(3.51) we then have:

∫ 2π

0
dφ1

∫ 2π

0
dφ2[U(p− p2)− U(p1 − p2)]2

δ(ε(p) + ε(p1)− ε(p2)− ε(p3))δp+p1,p2+p3 =
16π2md4

~2
I(q1, q2), (B.3)

where the quantity I(q1, q2) also depends on q, θ0, φ and is given by

I(q1, q2) =

∫ 2π

0
dφ1

∣∣∣sin
(
φ1−φ

2

)∣∣∣
[
cos2 θ0 − sin2 θ0 sin2

(
φ1+φ

2

)]2

√
cos2

(
φ1−φ

2

)
+(q−q2)(q2−q1)/p2

F

. (B.4)

Formally, when integrating over φ1 one should put a constraint cos2[(φ1 − φ)/2] ≥
(q2− q)(q2− q1)/p2

F in order to satisfy the inequality sin2(φ2−φ1− φ̃) ≤ 1. However,
at T = 0 the created particles are above the Fermi surface, so that q2 > 0 and
q3 = q+ q1− q2 > 0. The annihilated particle is below the Fermi surface and, hence,
q1 < 0. We thus have q > q2 and q2 > q1, and the inequality cos2[(φ1 − φ)/2] ≥
(q2 − q)(q2 − q1)/p2

F is satisfied for any φ1. Putting n(p1) = 1, n(p2) = n(p3) = 0 in
Eq.(3.51) and writing pidpi = pFdqi we set the following limits of integration over q1

and q2:

−q ≤ q1 ≤ 0; (B.5)

0 ≤ q2 ≤ q + q1. (B.6)

Equations (B.3) and (B.4) describe the contributions which correspond to φ2 close
to φ1 or to φ. Another contribution comes from φ1 close to φ + π. In this case we
may put φ1 = φ+ π in the Fourier transform U(p1 − p2), which gives:

|U(p− p2)− U(p1 − p2)| = 4πd2pF

[ ∣∣∣∣sin
(
φ1 − φ

2

)∣∣∣∣
{

cos2 θ0 − sin2 θ0 sin2

(
φ1 + φ

2

)}

−
∣∣∣∣cos

(
φ1 − φ

2

)∣∣∣∣
{

cos2 θ0 − sin2 θ0 cos2

(
φ1 + φ

2

)}]
.

(B.7)

Performing similar calculations as above we obtain Eq.(B.3) in which the function



139

I(q1, q2) is replaced with Ĩ(q1, q2) given by 1:

Ĩ(q1, q2) =

∫ 2π

0
dφ2

{
∣∣∣sin

(
φ2−φ

2

)∣∣∣
[
cos2 θ0 − sin2 θ0 sin2

(
φ2+φ

2

)]2

2

√
cos2

(
φ2−φ

2

)
− 2(q2−q1)/pF

−
[
cos2 θ0 − sin2 θ0 sin2

(
φ2 + φ

2

)]
×
[
cos2 θ0 − sin2 θ0 cos2

(
φ2 + φ

2

)]

+
2
∣∣∣sin

(
φ2−φ

2

)∣∣∣
∣∣∣cos

(
φ2−φ

2

)∣∣∣

4 sin2
(
φ2−φ

2

)
+ (q − q2)2/p2

F

[
cos2 θ0 − sin2 θ0 cos2

(
φ2 + φ

2

)]2 }
,

(B.8)

where we keep only leading powers of q, q1, q2. Note that when integrating the first
term in the curly brackets we have a constraint that the argument of the square root
in the denominator is positive.

With both contributions taken into account, equation (3.51) reduces to

1

τ
=

2~
πm

(pF r∗)
2

∫ 0

−q
dq1

∫ q1+q

0
dq2(I(q1, q2) + Ĩ(q1, q2)). (B.9)

The integrals (B.4) and (B.8) take the forms

I(q1, q2) = 4

∫ 1

0

dx√
x2 + (q − q2)(q2 − q1)/p2

F

{
(cos2 θ0 − sin2 θ0 cos2 φ)2

+ sin4 θ0

[
x4(sin4 φ+ cos4 φ− 6 sin2 φ cos2 φ) + x2(6 cos2 φ sin2 φ− 2 cos4 φ)

]

+2x2 sin2 θ0 cos2 θ0(2 cos2 φ− 1)
}

= 2(cos2 θ0 − sin2 θ0 cos2 φ)2 ln

(
4p2
F

(q−q2)(q2 − q1)

)
+ 4F(θ0,φ); (B.10)

1Strictly speaking, for φ1 close to φ + π we have to use the relation ε(pi) = ~2p2i /2m for the
quasiparticle energy. Regarding all the rest, the calculations are similar to those for the case
where φ2 is close to φ or to φ1.
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Ĩ(q1, q2) = 2

∫ 1

0
dx

[
1√

x2 + 2(q2 − q1)/pF
+

4x

4x2 + (q − q2)2/p2
F

]

×
{

(cos2 θ0 − sin2 θ0 cos2 φ)2 + 2x2 sin2 θ0 cos2 θ0(2 cos2 φ− 1)

+ sin4 θ0[x4(sin4 φ+ cos4 φ− 6 sin2 φ cos2 φ) + x2(6 cos2 φ sin2 φ− 2 cos4 φ)]
}

−2π

(
cos4 θ0 − cos2 θ0 sin2 θ0 +

1

8
sin4 θ0

)

= (cos2 θ0 − sin2 θ0 cos2 φ)2 ln

(
8p3
F

(q − q2)2(q2 − q1)

)
+ 4F̃(θ0,φ), (B.11)

where we omitted higher powers of q, q1, and q2 and introduced the functions:

F(θ0,φ) = sin2 θ0 cos2 θ0(2 cos2 φ− 1) + sin4 θ0

(
1

4
+ cos2 φ− 2 cos4 φ

)
,

F̃(θ0,φ) = F(θ0,φ)− π

2

(
cos4 θ0 − cos2 θ0 sin2 θ0 +

1

8
sin4 θ0

)
.

Substituting the results of Eqs. (B.10) and (B.11) into equation (B.9) and inte-
grating over q1 and q2 we obtain:

1

τ
=

4~
πm

(pF r∗)
2q2

{(
3

4
ln
p2
F

q2
+

3

4
+

3

2
ln 2

)
(cos2 θ0 − sin2 θ0 cos2 φ)2 + F(θ0,φ) + F̃(θ0,φ)

}
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Miranda, J. L. Bohn, J. Ye, and D. S. Jin. “Dipolar collisions of polar molecules
in the quantum regime”. In: Nature 464 (2010), pp. 1327–1328 (cit. on pp. 2,
7, 37, 59).

[31] M. H. G. de Miranda, A. Chotia, B. Neyenhuis, D. Wang, G. Quéméner, S.
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[130] T. W. Hänsch, I. S. Shahin, and A. L. Schawlow. “High-Resolution Saturation
Spectroscopy of the Sodium D Lines with a Pulsed Tunable Dye Laser”. In:
Phys. Rev. Lett. 27 (11 Sept. 1971), pp. 707–710 (cit. on p. 74).

[131] K. Dieckmann, R. J. C. Spreeuw, M. Weidemüller, and J. T. M. Walraven.
“Two-dimensional magneto-optical trap as a source of slow atoms”. In: Phys.
Rev. A 58 (5 Nov. 1998), pp. 3891–3895 (cit. on p. 74).

[132] D. M. Brink and C. V. Sukumar. “Majorana spin-flip transitions in a magnetic
trap”. In: Phys. Rev. A 74 (3 Sept. 2006), p. 035401 (cit. on p. 76).

[133] P. O. Fedichev, M. W. Reynolds, and G. V. Shlyapnikov. “Three-Body Re-
combination of Ultracold Atoms to a Weakly Bound s Level”. In: Phys. Rev.
Lett. 77 (14 Sept. 1996), pp. 2921–2924 (cit. on pp. 76, 112).

[134] Rudolf Grimm, Matthias Weidemüller, and Yurii B. Ovchinnikov. “Optical
Dipole Traps for Neutral Atoms”. In: ed. by Benjamin Bederson and Her-
bert Walther. Vol. 42. Advances In Atomic, Molecular, and Optical Physics.
Academic Press, 2000, pp. 95–170 (cit. on p. 76).

[135] Cheng-Hsun Wu, Ibon Santiago, Jee Woo Park, Peyman Ahmadi, and Martin
W. Zwierlein. “Strongly interacting isotopic Bose-Fermi mixture immersed in
a Fermi sea”. In: Phys. Rev. A 84 (1 July 2011), p. 011601 (cit. on pp. 77–79,
111).

[136] T. L. Gustavson, A. P. Chikkatur, A. E. Leanhardt, A. Görlitz, S. Gupta,
D. E. Pritchard, and W. Ketterle. “Transport of Bose-Einstein Condensates
with Optical Tweezers”. In: Phys. Rev. Lett. 88 (2 Dec. 2001), p. 020401 (cit.
on p. 77).

[137] J.T.M Walraven. Elements of Quantum Gases: Thermodynamic and Colli-
sional Properties of Trapped Atomic Gases. 2010 (cit. on p. 77).

[138] Tetsu Takekoshi, Markus Debatin, Raffael Rameshan, Francesca Ferlaino,
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K. Dieckmann. “Ultracold Heteronuclear Fermi-Fermi Molecules”. In: Phys.
Rev. Lett. 102 (2 Jan. 2009), p. 020405 (cit. on p. 78).

[144] Francesca Ferlaino, Steven Knoop, and Rudolf Grimm. “Ultracold Feshbach
molecules”. In: Cold Molecules: Theory, Experiment, Applications. Ed. by R.
Krems, B. Friedrich, and W.C. Stwalley. CRC Press, 2009, pp. 319–354 (cit.
on p. 78).
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