
 

 

 

Studying Kinesin-2 

Regulation and Coordination 

in vitro 

 

Katharina Freifrau von Roman 

 

 

Dissertation der Fakultät für Biologie 

der Ludwig-Maximilians-Universität München 

zur Erlangung des akademischen Grades 

„Doktor der Naturwissenschaften“ 

(Dr. rer. nat.) 

 

 

 

vorgelegt von 

Katharina Freifrau von Roman 

aus München 

 

München 2016 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Gutachter Prof. Dr. Manfred Schliwa 

2. Gutachter Prof. Dr. Angelika Böttger 

  

Datum der Einreichung: 15. Februar 2016 

  

Datum der mündlichen Prüfung: 07. Juni 2016 

  



 

 

Ehrenwörtliche Versicherung 

Ich versichere hiermit an Eides statt, dass die vorgelegte Dissertation von mir 

selbstständig und ohne unerlaubte Hilfe angefertigt wurde. Ich habe weder anderweitig 

versucht eine Dissertation einzureichen oder eine Doktorprüfung abzulegen, noch habe 

ich diese Dissertation oder Teile derselben einer anderen Prüfungskommission 

vorgelegt. 

 

München, den 31.01.2016 

 

Katharina Freifrau von Roman 

  



 

 

Publications 

Poster Presentation 

Katharina Freiin von Roman, Melanie Brunnbauer, Hendrik Dietz, Manfred Schliwa, Zeynep 

Ökten, Regulation of sea urchin Kinesin-2, DGZ/FeBS Workshop "The spider's web: how 

microtubules organize cellular space", 2011, Potsdam, Germany 



 
   

I 

Table of contents 

 

1. Zusammenfassung ........................................................................................ 1 

2. Summary ....................................................................................................... 3 

3. Introduction .................................................................................................. 5 

 Necessity for molecular motors ................................................................................... 5 3.1.

 Kinesin family of motor proteins ................................................................................ 6 3.2.

 Kinesin-2 ................................................................................................................. 6 3.2.1.

 Phylogeny of Kinesin-2 homologs.......................................................................... 6 3.2.2.

 Structure and domain organization of heterotrimeric Kinesin-2 ............................ 7 3.2.3.

 Kinesin regulation mechanisms .................................................................................. 9 3.3.

 General autoregulatory mechanisms ....................................................................... 9 3.3.1.

 Kinesin-2 regulation .............................................................................................. 10 3.3.2.

 The intraflagellar transport ...................................................................................... 11 3.4.

 Aim of the work .......................................................................................................... 15 3.5.

4. Materials and Methods .............................................................................. 16 

 Materials ..................................................................................................................... 16 4.1.

 Reagents and laboratory consumables .................................................................. 16 4.1.1.

 Instruments ............................................................................................................ 16 4.1.2.

 DNA ...  .................................................................................................................. 17 4.1.3.

 Synthesized DNA sequences ................................................................................ 17 4.1.4.

 Methods ....................................................................................................................... 21 4.2.

 Molecular biological methods ............................................................................... 21 4.2.1.

 Cell biological methods ........................................................................................ 24 4.2.2.

 Biochemical methods ............................................................................................ 25 4.2.3.

 Biophysical methods ............................................................................................. 33 4.2.4.

 

 



 
   

II 

5. Developing molecular tools to reconstitute C. elegans 

Kinesin-2/OSM-3 heterotetramer in vitro ................................................ 34 

 Experimental concept ................................................................................................ 34 5.1.

 Results  ........................................................................................................................ 35 5.2.

 Protein expression and quality control .................................................................. 35 5.2.1.

 Coupling motor proteins to a DNA origami structure .......................................... 36 5.2.2.

 Unspecific interaction between DNA origami structure and DNA 5.2.3.

binding proteins .................................................................................................... 37 

 Coupling of motor proteins to dsDNA .................................................................. 39 5.2.4.

 Summary of Results .............................................................................................. 44 5.2.5.

 Discussion .................................................................................................................... 45 5.3.

 Summary and Outlook .............................................................................................. 48 5.4.

6. Regulating the Kinesin-2 catalytic activity from 

Chromadorea to Amphibia ....................................................................... 49 

 Experimental concept ................................................................................................ 50 6.1.

 Results  ........................................................................................................................ 52 6.2.

 Kinesin-2 from S. purpuratus and X. laevis possess both a helix 6.2.1.

breaker position and a conserved FIP site ............................................................. 52 

 Co-expression of the C-terminal proteins lead to heterodimer 6.2.2.

formation ............................................................................................................... 56 

 Stable interaction between KAP and CTP dimers and monomers 6.2.3.

except SpKRP95 ................................................................................................... 56 

 Generation of heterodimeric SpKinesin-2 and XlKinesin-2 motors 6.2.4.

with C-terminal truncations .................................................................................. 59 

 XlKAP interacts with both of the full-length monomeric subunits 6.2.5.

and with the FIP truncation constructs .................................................................. 60 

 Complex formation of purified XlKAP with XlKinesin-2 dimers 6.2.6.

and monomers ....................................................................................................... 63 

 The C-terminal part of the KRP85- and the corresponding 6.2.7.

Kin2A-tail are involved in motor regulation ........................................................ 65 

 The heterotrimeric Kinesin-2 motor from X. laevis displays 6.2.8.

processive runs in single molecule TIRF assays ................................................... 68 

 Summary of results ............................................................................................... 69 6.2.9.

 



 
   

III 

 Discussion .................................................................................................................... 70 6.3.

 KAP and Kinesin-2 random coiled tail ................................................................. 70 6.3.1.

 Influence of Kinesin-2α random coiled tail in motor regulation .......................... 73 6.3.2.

 Influence of KAP in the Kinesin-2 activation ....................................................... 74 6.3.3.

 Summary and Outlook .............................................................................................. 76 6.4.

 Conditions and binding topologies for complexing trimeric 6.4.1.

Kinesin-2 ............................................................................................................... 76 

 Requirements for autoregulation of heterodimeric Kinesin-2 .............................. 77 6.4.2.

7. Literature .................................................................................................... 80 

8. List of figures .............................................................................................. 88 

 

 

 



1. ZUSAMMENFASSUNG 

   

1 

1. Zusammenfassung 

Um eine effiziente Organisation ihres Cytoplasmas sicherzustellen, benötigen eukaryotische 

Zellen intrazellulare Transportprozesse, durch welche ein gerichteter Transport zwischen den 

Organellen und der Zellmembran gewährleistet ist. Hierfür koppeln molekulare Motoren die 

aus der Hydrolyse von Nukleotiden freigesetzte Energie an intramolekulare 

Konformationsänderungen. Insgesamt existieren drei Superfamilien von molekularen 

Motoren, die sich auf unterschiedlichen Filamenten des Cytoskelettes bewegen. Myosine 

benutzen hierbei Aktinfilamente, wohingegen Kinesine und Dyneine auf Mikrotubuli 

beschränkt sind. 

Prozessive Motorproteine gewährleisten einen kontinuierlichen unidirektionalen Transport 

von intrazellulärer Fracht über weite Strecken. Eine spezielle und komplexe Form des 

intrazellulären Transportes kann in Zilien und Flagellen beobachtet werden, welcher als 

intraflagellarer Transport (IFT) bezeichnet wird. Die beiden Motorproteine Kinesin-2 und 

OSM-3 arbeiten hierbei zur Sicherstellung des anterograden Transportes zusammen, 

wohingegen der retrograde Transport durch das Motorprotein Dynein erfolgt. Das 

heterotrimere Kinesin-2 stellt innerhalb der Kinesin-Familie eine Besonderheit dar, da es aus 

zwei verschiedenen Motoruntereinheiten (Kin2α/Kin2β) und einer dritten Untereinheit KAP 

(kinesin associated protein) ohne katalytische Funktion aufgebaut ist. 

Einer der Schwerpunkte dieser Arbeit lag in der Untersuchung der molekularen Basis der 

Autoregulation von Strongylocentrotus purpuratus (S. purpuratus) und Xenopus laevis 

(X. laevis) Kinesin-2, welche einen unnötigen ATP Verbrauch verhindert. An dieser 

Regulation ist eine Region beteiligt, die von einer kurzen konservierten Aminosäuresequenz 

(Aminosäuren FIP) am Beginn der unstrukturierten C-terminalen Schaftdomäne der 

Kin2α-Untereinheit ausgeht. Entsprechende heterodimere N-terminale Deletionsmutanten 

führten zu einem konstitutiv aktiven Motor in ATPase-Aktivitätstests. Zusätzlich hat die 

sogenannte Kin2α-Schwanzdomäne auch einen Einfluss auf die 

Motor-Mikrotubuli-Interaktion, da dessen Entfernung zu einer geringeren Substrataffinität 

führt. 

Die Untereinheit KAP scheint essentiell für die Funktion von Kinesin-2 in vivo zu sein. 

Allerdings wurde bisher davon ausgegangen, dass KAP keinen Einfluss auf die Motoraktivität 

in vitro ausübt. Es konnte jedoch gezeigt werden, dass ein in vitro hergestelltes heterotrimeres 

Xenopus Kinesin-2/KAP-Protein sich prozessiv auf immobilisierten Mikrotubuli bewegt.  
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Die Wechselwirkung zwischen Kin2α/Kin2β und der nicht-katalytisch wirkenden 

KAP-Untereinheit lässt sich am C-terminalen Teil des Motors lokalisieren. In X. laevis ist vor 

allem der unstrukturierte Schwanz der Kin2β-Untereinheit in die Komplexierung von KAP 

involviert. Zudem ist an der Interaktion mit KAP offensichtlich eine konservierte 

Aminosäuresequenz zwischen einem konservierten „helix breaker“ und der bereits erwähnten 

FIP-Stelle beteiligt. 

Der zweite Schwerpunkt der Arbeit lag auf der Entwicklung von molekularen Hilfsmitteln zur 

Untersuchung eines in vitro hergestellten heteromeren Kinesin-2/OSM-3 Komplexes. Hierbei 

wurden zwei verschiedene Strategien verfolgt, um Einblicke in die Koordination zweier 

verschiedener am IFT beteiligter Motorproteine zu erhalten. Hierfür wurden erfolgreich 

Fusionsproteine an einer DNA Struktur befestigt, welche aus dem entsprechenden 

Motorprotein und einem DNA Bindeprotein bestehen. Eine Untersuchung von zwei 

hintereinander gekoppelten OSM-3 Motoren führte dabei zu einer 

Geschwindigkeitsverdopplung verglichen mit nur einem einzelnen OSM-3 Motor. Als 

Grundlage für weitere Untersuchungen wurde erfolgreich eine Methode für die kovalente 

Verbindung von DNA und Motorprotein etabliert. 
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2. Summary 

Eukaryotic cells rely on intracellular transport processes to ensure an efficient organization of 

their cytoplasm, particularly by a directed delivery of cargo between organelles and beyond 

the cell membrane. Molecular motors are transport vehicles that couple the released energy 

from the hydrolysis of nucleotides to conformational changes. There are three superfamilies 

of motor proteins that all move on the eukaryotic cytoskeleton. Myosins use actin filaments, 

whereas dyneins and kinesins are confined to microtubules. 

Processive motor proteins support a continuous and unidirectional long-range transport of 

intracellular cargo. A special and complex form of intracellular transport occurs in cilia and 

flagella and is termed intraflagellar transport (IFT). In IFT two motor proteins, namely 

Kinesin-2 and OSM-3 work in concert to ensure the anterograde transport, while dynein is 

responsible for the retrograde transport back to the cell body. Native Kinesin-2 is unique as 

being a heterotrimer, consisting of two different motor subunits (Kin2α/Kin2β) and a third 

non-catalytic kinesin associated protein (KAP), while most other motor proteins are 

homodimers. 

One of the major objectives within this work was to dissect the molecular basis of the 

Kinesin-2 autoregulation to prevent an unneeded ATP consumption. As already known for 

Caenorhabditis elegans (C. elegans) Kinesin-2, autoinhibition could be seen for 

heterodimeric Kinesin-2 from S. purpuratus and X. laevis in vitro. The C-terminal random 

coil domain following the conserved amino acid sequence (FIP) from Kin2α was shown to 

asymmetrically regulate the Kinesin-2 ATPase activity. In addition, the Kin2α random coiled 

tail has an effect in motor-microtubule interaction, as deleting this tail leads to a lower 

substrate affinity compared to a heterodimer with deleted Kin2β tail. 

So far the non-catalytic subunit KAP was indicated to be essential for normal protein function 

in vivo, but published to have no influence on the catalytic motor activity in vitro. Conversely 

it could be found that an in vitro reconstituted heterotrimeric Xenopus Kinesin-2/KAP is able 

to move processively on immobilized microtubules.  

Regarding the interaction between Kin2α/Kin2β and KAP, the non-catalytic KAP binds the 

C-terminal part of both subunits of Kinesin-2. In X. laevis especially the random coiled tail of 

the Kin2β subunit is involved in a complex formation between KAP and Kinesin-2, while 

obviously also a conserved amino acid sequence between a conserved helix breaker and the 

FIP site has the ability to interact with KAP. 
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The second focus of the thesis was to develop molecular tools to study an in vitro 

reconstituted Kinesin-2/OSM-3. To this end, two different strategies were pursued to gain 

insight into the coordinated action of the respective motors, as known from IFT occurring 

in vivo. Motor protein-DNA binding protein fusion proteins were generated and successfully 

coupled to a DNA structure. An arrangement consisting of two OSM-3 motor proteins 

exhibited a doubled velocity compared to a single OSM-3 protein. In addition to this an 

alternative approach involving the covalent interaction between the motor protein and DNA 

was also developed. 
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3. Introduction 

 Necessity for molecular motors 3.1.

In the course of evolution cells grew bigger and their intracellular structure became more 

elaborate, most notably by compartmentalization of membrane-bound organelles. To ensure 

an efficient intracellular transport of cargo, eukaryotic cells developed mechanisms of 

directed transport. One of these mechanisms involves three classes of processive molecular 

motors which move along the cytoskeletal filaments (Figure 3.1). Myosins move on actin 

filaments, whereas kinesins and dyneins move on microtubules. They do so by coupling the 

chemical energy harnessed from the hydrolysis of ATP to large conformational changes. 

Once attached, processive motors take multiple ‘steps’ on their respective filaments without 

detaching. Thus, these motors are capable of supporting a continuous and unidirectional 

long-range transport of intracellular cargoes, representing one of the most crucial 

achievements of eukaryotes during the course of evolution. In vivo many opposing motors, 

like kinesins and dyneins are attached to any given cargo, resulting in a bidirectional 

transport of cargo along the cytoskeletal filaments 1,2. 

 

Figure 3.1: Motor proteins – myosin, kinesin, dynein. (A) Myosin V, (B) conventional kinesin and (C) ciliary 

dynein. The top row shows high-resolution electron micrographs of quick-frozen and rotary-shadowed 

individual molecules. Corresponding schematic overviews are shown below. The motor domains are 

indicated in yellow, associated proteins are shown in brown, and coiled-coil domains are represented by 

parallel black lines 3. 
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 Kinesin family of motor proteins 3.2.

Kinesins comprise a superfamily of motor proteins organized in 14 subfamilies which are 

responsible for diverse intracellular functions 4–6. They consist of a relatively well conserved 

motor domain and a more divergent non-motor region that evolved to function as a tool for 

motor regulation, cargo binding and localization in the cell 7. The motor domain is either 

localized at the N-terminal, C-terminal or in the middle of the polypeptide chain. The first 

and second group of kinesins are plus-end directed and minus-end directed motor proteins, 

respectively, whereas kinesins with a central motor domain are responsible for microtubule 

destabilization 5,7. 

 Kinesin-2 3.2.1.

While most kinesin families exist as homodimers, the Kinesin-2 family is special within the 

kinesin superfamily. Kinesin-2 proteins, such as OSM-3 from C. elegans are built as 

homodimers, as well as heterotrimers. These heterotrimers consist of two different 

polypeptide chains and an associated third non-motor subunit KAP (Kinesin associated 

protein). Comparing both forms of Kinesin-2, the heterotrimeric form is slower, less 

processive and has a higher tendency to detach from its track 8–12. 

In this context it was shown that one of the two different Kinesin-2 motor subunits in 

C. elegans is unprocessive but binding with its processive partner subunit results in a 

processive heterodimeric motor protein 9. On the other hand, work on mouse Kinesin-2 

indicated that the heterodimeric motor protein as well as the engineered homodimeric motor 

proteins are processive 13. 

 Phylogeny of Kinesin-2 homologs 3.2.2.

Kinesin-2 motors are a widespread family in ciliated eukaryotes ranging from ciliated 

protists to algae, fungi and animals (Figure 3.2) 14. Interestingly they are not present in 

non-ciliated organisms. This fact is consistent with the assumption that Kinesin-2 has its 

principal task in the highly conserved IFT and axoneme assembly, which is one of the most 

prominent examples of coordinated transport 4,14. Wickstead et al. proposed that the variety 

of kinesin families occurred from multiple gene-duplication before eukaryotic cells divert 

from a proto-eukaryotic cell 14. The different motor subunits of Kinesin-2 arose also from 

autonomous multiple-gene duplications prior to metazoan evolution as the kinesin subunits 

Kinesin-2α (KLP20; KRP85; Kin2A), Kinesin-2β (KLP11; KRP95; Kin2B) and 
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Kinesin-2γ (OSM-3) homologs are all present in choanoflagellates and Metazoa (Figure 3.2). 

However the subunits Kinesin-2α and Kinesin-2β are closely related but are distinguished 

from the Kinesin-2γ subunit, which forms homodimers instead of heterodimers 15. As the 

heterotrimeric complex, including the third non-motor subunit KAP developed 

independently several times in evolution, this form seems to exhibit a functional advantage 

of heteromeric architecture over homomeric motor proteins 15,16. 

 

Figure 3.2: Phylogenetic excerpt of the evolution of heterotrimeric Kinesin-2. Descending from an early 

eukaryote, Kinesin-2 exists in the kingdoms Plantae, Fungi and Animalia. Furthermore it can be also 

found in ciliated Protista. Bilaterian Kinesin-2 is found for example in C. elegans, S. purpuratus, X. laevis 

and M. musculus. 

 Structure and domain organization of heterotrimeric Kinesin-2 3.2.3.

Kinesin-2 belongs to the N-type kinesins and is thus responsible for the plus-end directed 

anterograde transport along microtubule filaments. This globular motor domain contains a 

nucleotide and microtubule binding site 17,18. The catalytic head domain is attached to the 

neck via a neck linker domain, which in part plays an essential role in the movement and 

stepping mechanism of the motor protein. For example the extension of the neck by 
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introducing a varying number of GS-repeats turns an unprocessive KLP11/KLP11 

homodimer into a motor that is able to take processive steps on its track 19. Furthermore 

Brunnbauer et al. showed that the stability of the neck is directly linked to torque generation 

of kinesins 20. The neck is followed by the stalk domain which is described as an α-helical 

domain with a coiled-coil structure 21,22. This region is thought to play a key role in the 

heterodimer formation as the beginning of the stalk is composed of various charged amino 

acids, which exhibit an opposite polarity between both polypeptide chains and lead to an 

interruption of the predicted coiled-coil 21,22. However, Vukajlovic et al. could show that 

only a short nucleation seed of two heptad repeats in the C-terminal end of the predicted 

stalk is sufficient to induce heteromerization in C. elegans 23. In Xenopus Kinesin-2 de 

Marco et al. also verified the importance of the C-terminal heptad repeats for 

heteromerization. Consistent with Vukajlovic et al., de Marco et al. could further show that 

the charged amino acids are not essential for dimerization in Xenopus Kinesin-2 24. 

Furthermore the coiled-coil stalk is interrupted by an evolutionary conserved helix breaker 

sequence occurring in both polypeptide chains. This helix breaker directly influences the 

motor activity as shown for C. elegans and Mus musculus (M. musculus) Kinesin-2 25,26. 

Figure 3.3 gives a schematic overview of the main parts of the Kinesin-2 motor protein. 

Among kinesins, the catalytic head domain is conserved up to 40%, while the stalk displays 

the most variable part of the motor protein explaining their ability to bind different cargoes 

and thus being able to perform a diverse number of cellular tasks 27,28. The most distal 

C-terminal tail domain is unstructured and thought to interact with the associated subunit 

KAP. Furthermore it is speculated to be involved in motor regulation 21,29,30. The non-motor 

subunit KAP is an α-helical protein with no microtubule and nucleotide-binding site 30,31. It 

possesses ten Armadillo-repeats, a motif found in proteins important for protein-protein 

interactions amongst others 32. As this motif was found in KAP homologues from nematode 

to mouse, a direct involvement in the intracellular transport and signal transduction was 

suggested 29,32. Furthermore KAP exhibits a tyrosine-rich C-terminal end and binding sites 

for Dynactin, Fodrin, APC and Kinesin-2, and therefore appears to be necessary for cargo 

binding and linking Kinesin-2 to organelles 16,31,33–36. 

KAP seems to exhibit a non-conserved complex formation with its corresponding 

heterodimeric motor protein. In this context Doodhi et al. published an interaction with the 

C-terminal part of Drosophila melanogaster (D. melanogaster) Kinesin-2 as well as an 

importance of the N-terminal part of KAP 37. In addition to this Vukajlovic showed that the 

random coiled tail of the C. elegans motor subunit KLP11 is enough to complex a truncated 
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KAP protein consisting only of the Armadillo repeats 23. Binding the heterodimer KAP is 

proposed to stabilize the rod sequence, suggesting that it is important for the structural 

integrity of native Kinesin-2 9,30,36–38. Furthermore KAP was shown to be essential for in vivo 

Kinesin-2 activity from algae to mammals 16,39,40. 

 

Figure 3.3: Schematic overview of the Kinesin-2 structure. The N-terminal catalytic head domains are 

followed by the neck and by an α-helical stalk domain. In the middle of the stalk a hinge segment 

interrupts the coiled-coil structure by a conserved helix breaker sequence. The C-terminal end consists of 

a random coiled tail, which is thought to directly influence the motor activity and to associate with the 

third non-motor subunit KAP (adapted from 7). 

 Kinesin regulation mechanisms 3.3.

 General autoregulatory mechanisms 3.3.1.

An important detail of all motor proteins is their self-regulation to prevent futile ATP 

consumption, especially when the motor is not bound by its designated cargo. Kinesins 

evolved different autoinhibitory tools to remain inactive when not associated with their 

respective cargo. So far autoinhibition seems to be a general mechanism of kinesins 

including the families of Kinesin-1, Kinesin-2, Kinesin-3 and Kinesin-7. Studies on 

Kinesin-1, Kinesin-2 comprising the C. elegans motor proteins KLP11/KLP20 and OSM-3, 

the Kinesin-3 protein KIF1A and Kinesin-7 member CENPE revealed that these proteins 

exist in a collapsed folded as well as in an extended conformation 9,25,41–43. As shown in 

Figure 3.3 motor proteins with coiled-coil parts in the stalk domain are interrupted in the 

coiled-coil region by a so called hinge segment. Several publications suggest that back 

folding of the tail domain to the catalytic heads inhibits the motor activity 44–49. Furthermore 

diverse studies show that mutations in the hinge region or a complete removal lead to 

constitutive activated motor proteins with an extended conformation 8,44,50. 
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The best studied Kinesin-1 is a homodimeric motor protein consisting of two identical 

kinesin heavy chains (KHC) and two associated kinesin light chains (KLC) that are 

responsible for regulation and cargo binding 18,51,52. Studies revealed that the folded 

conformation of Kinesin-1 allows the tail domain to interact with the motor domain and thus 

to regulate ATP consumption and microtubule binding. A tail peptide of 13 amino acids 

could be crystalized in complex with both motor subunits 53. Furthermore a more expanded 

exogenous tail peptide was shown to inhibit the ATPase function as well as the motility of 

Kinesin-1 from D. melanogaster 44. 

Besides inducing autoinhibition, there exist some detailed mechanisms to reactivate inhibited 

motor proteins. Kinesin-1 is activated by two proteins, namely FEZ1 and JIP1 that bind the 

inhibitory C-terminal part of the enzyme. FEZ1 interacts with the KHC tail whereas JIP1 is 

associated to the KLC subunit 54. Furthermore autoinhibition is also released by binding 

glass beads to the C-terminal end of Kinesin-1 44. In addition to imitating cargo binding, the 

Kinesin-7 member CENPE could be reactivated by phosphorylation of the tail domain 43. 

 Kinesin-2 regulation 3.3.2.

Homodimeric Kinesin-2 was shown to occur in a folded autoinhibited conformation. In this 

collapsed state parts of the stalk domain fold back interacting with the catalytic head domains 

and thus inhibiting the overall motor activity 25. Cargo binding to homodimeric Kinesin-2 

may release the tail-head interaction. Furthermore heterotrimeric Kinesin-2 also exists in two 

different states: a 10S and a 6S state 30. Diverse publications report that these states represent 

a folded inhibited and an extended active state of Kinesin-2, similar to Kinesin-1 regulation. 

Cargo binding via the KAP subunit as well as posttranslational modifications could be the 

reason for reactivation of the motor protein 9,30,55. Regarding posttranslational modifications, 

several studies suggested a regulatory mechanism in IFT transport and motor-cargo 

interactions by phosphorylation 56–59. Recently Liang et al. showed that the FLA8 subunit of 

Chlamydomonas reinhardtii (C. reinhardtii) Kinesin-2 is phosphorylated at a conserved 

serine in the tail domain. In addition a phosphomimetic FLA8 mutant was not able to enter the 

flagella 60. In accordance with this observation Kinesin-2 interacts only with IFT complex B 

in an unphosphorylated state. The authors speculate that cargo binding to Kinesin-2 results in 

motor activation as well as entry in flagella. Phosphorylation at the flagella tip leads to motor 

deactivation and a release of cargo. This important finding is a further hint for the relevance 

of KAP in autoregulation of heterodimeric Kinesin-2, as the phosphorylated serine is 

embedded in a conserved sequence (aa RPVS) from Chlamydomonas to human. However, the 
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hydrophobic amino acid valine is replaced by an isoleucine in C. elegans and an alanine in 

Tetrahymena. In Chlamydomonas the conserved sequence is found at the Kinesin-2α tail, 

whereas in C. elegans, S. purpuratus, X. laevis, M. musculus and Homo sapiens (H. sapiens) 

the sequence is located within the Kinesin-2β tail. 

Several studies indicate that KAP is essential for a normal motor protein function in vivo as a 

knockdown mutant leads to severe cell dysfunctions 39,61. In contrast the loss of function of 

KAP1 in C. elegans only leads to a different phenotype with a faster occurring anterograde 

IFT transport, while the axonemes are assembled by the remaining partner protein 

OSM-3 62,63. Nonetheless KAP was published as having no influence concerning the catalytic 

motor activity in vitro 
38. Comparing the KAP subunit with other accessory subunits such as 

the light chains of myosin and KLC in Kinesin-1, it is plausible that the third non-motor 

subunit of Kinesin-2 is integrated in the regulatory mechanism. In this context KAP binds to 

Dynactin on melanosomes linking the heterodimeric Kinesin-2 to the organelles, while both 

KAP and Dynactin enhance anterograde movement of Kinesin-2 and IFT particles 16,64. 

Understanding the regulation of Kinesin-2 is an essential requirement for getting further 

insights in diverse cell and developmental functions of this motor protein. 

Besides the regulatory mechanisms of Kinesin-2, a further important question to be answered 

is the detailed motor process of transporting cargo. Here Kinesin-2 motor proteins are best 

known for the intraflagellar transport (IFT) driving transport inside cilia. 

 The intraflagellar transport 3.4.

During evolution, most eukaryotic cells from protozoa to humans developed highly 

conserved structures like cilia or flagella, which act as ubiquitous organelles with various 

functions: sensory reception or cell motility 65. Furthermore many animal cells contain 

immotile primary cilia, the function of which is less clear so far 65. Nevertheless a growing 

number of studies on different cell types containing primary cilia show that these structures 

serve as a cellular antenna for mechanical and chemical stimulations 66. 

Cilia and flagella are microtubule-based protrusions of the plasma membrane, which emerge 

as an outgrowth from the basal body. The inner structure consists of the highly organised 

axoneme, a ring-shaped assembly of nine doublet microtubules, which is fixed at the basal 

body in the cytoplasm. As the cilium does not have its own protein synthesis machinery, the 

assembly and maintenance of these structures require the IFT, which was first identified in 
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the green alga C. reinhardtii 67. IFT is responsible for the transport of building blocks for 

cilia such as microtubules, membrane, matrix and signalling proteins 65,68–70 (Figure 3.4). 

 

Figure 3.4: TEM image of a flagellum from C. reinhardtii. Longitudinal sections of a Chlamydomonas 

flagellum showing arrays of IFT particles. Two arrays of IFT particles in the mid-region of a flagella are 

indicated by red arrows 71. 

In the last few years the interest in cilia and flagella has increased as it became clear that 

defects in their assembly and function are associated with numerous human diseases such as 

the autosomal dominant polycystic kidney disease, which is one of the most life-threatening 

genetic diseases of humans 66,72. Other examples for diseases caused by dysfunction and loss 

of cilia are respiratory distress, male sterility, retinal degeneration and the Bardet-Biedl 

syndrome 70,73. The Bardet-Biedl syndrome is characterized by a pleiotropic phenotype, 

which ranges from pigmentary retinopathy, polydactyly, renal malformations and learning 

disabilities to hypogenitalism 74. Mutations in eleven BBS (Bardet-Biedl syndrome) genes 

are thought to cause defects in the centrioles or cilia, which may be a significant factor 

underlying this disease 75–77. 

In C. elegans, the dendritic sensory cilia are subdivided in three sections. The first section 

starts at the proximal end of the cilia, which is equivalent with the so-called transition zone 

and is named proximal segment (1 µm). The transition fiber links the basal body and the 

membrane around the neck of the cilium 78. The following section is the 4 µm middle 

segment, which contains doublet microtubules. The so-called distal segment (2.4 µm) 

containing singlet microtubules, is located at the end of the cilia. 
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Three molecular motors work in concert to build and maintain these cilia: Kinesin-2 and 

OSM-3, both responsible for the anterograde transport as well as dynein responsible for the 

retrograde transport 79–81 (Figure 3.5). 

 

Figure 3.5: Schematic overview of IFT. In the cilia middle segment, OSM-3 and Kinesin-2 coordinate to 

move the IFT cargo. OSM-3 alone is responsible for cargo transport in the distal segment 

(provided by Melanie Brunnbauer). 

The heterotrimeric motor protein Kinesin-2 is expressed in all ciliated neurones. As already 

mentioned in chapter 3.2., it consists of the two motor subunits KLP11 and KLP20 which 

bind the cargo-adapter subunit KAP1. KAP1 is the proposed physical link of KLP11/KLP20 

to the IFT particles 40. The homodimeric motor protein OSM-3 is exclusively expressed in a 

subset of ciliated neurones responsible for chemosensation, such as sensory neurons in 

C. elegans and zebrafish photoreceptors 82. 

In the cilia middle segment both motor proteins move coordinated at 0.7 µm/s 83, while in 

the distal segment only OSM-3 is needed to transport the IFT vesicle. OSM-3 alone moves 

then at a faster rate of 1.3 µm/s. In the case that OSM-3 is mutated, the distal segment fails 

to assemble and only Kinesin-2 moves the cargo until reaching the end of the middle 

segment at a rate of 0.5 µm/s. In the case that Kinesin-2 is mutated the full-length cilia is 

assembled by OSM-3. Thus OSM-3 moves alone at a rate of 1.1-1.3 µm/s along the middle 

and the distal segment, respectively 63 (Figure 3.6). 
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Figure 3.6: Anterograde transport of IFT motors along middle and distal segments of sensory 

cilia. In vivo motility of IFT motors within the sensory cilia of wild-type OSM-3_GFP (A) and 

KAP1_GFP (B) show, that motility of OSM-3_GFP along the distal segment is faster than along the 

middle segment. KAP1_GFP (and therefore KLP11/KLP20) never enters the distal segment and only 

moves in the middle segment at a slow velocity. The histograms show IFT velocity profiles along the 

middle and distal segments 63. 

The IFT particles can be furthermore partitioned into two separate complexes – IFT-A and 

IFT-B. Complex A and complex B contain approximately six and eleven subunits, 

respectively 84,85. The regulation of the anterograde IFT is ensured by the proteins BBS7 and 

BBS8, which are both linked to the Bardet-Biedl syndrome 77,83,86. Particularly both these 

proteins appear to regulate the formation of the IFT particles by holding the subcomplexes 

IFT-A and IFT-B together. Therefore BBS7 and BBS8 stabilize the integrity of the IFT 

particles 83 (Figure 3.5). 

In this context Pan et al. propose that in C. elegans the IFT particles are moved along the 

sensory cilia by a concerted action of Kinesin-2 and OSM-3 87. It is plausible to assume that 

the detected intermediate motility rate of both proteins could be traced back to the possibility 

that the slower Kinesin-2 is exerting drag on the faster moving OSM-3, and the faster 

OSM-3 tends to pull the slower moving Kinesin-2 along. This interaction may produce a 

mechanical competition that translates into tension across the IFT particles, leading to their 

dissociation in the absence of the BBS proteins. Up to this date nothing is known about the 

molecular mechanism of generating intermediate velocities as observed in vivo and the exact 

mechanism of how these two anterograde motors coordinate their catalytic heads to move 

forward.  
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 Aim of the work 3.5.

This work deals with two mechanistic aspects of kinesin-2 motors: 

(A)  Kinesin-2 motor coordination and 

(B)  Regulation mechanisms of heteromeric Kinesin-2 

(A) The first part focuses on the molecular mechanisms of motor coordination as observed in 

the anterograde IFT transport in vivo. For this purpose a framework of minimum requirements 

had to be established to achieve coordinated movement in vitro. To this end, a suitable 

scaffold had to be generated to reconstitute a Kinesin-2/OSM-3 heterotetramer in vitro.  

Based on further work done by Diehl et al. a dsDNA was used to bring both motor proteins in 

close proximity to each other 88,89. To attach the motor proteins to the dsDNA two different 

approaches were investigated. One approach was to link all proteins in an unspecific and 

covalent manner to the dsDNA. Therefor the dsDNA was composed of two DNA-protein 

binding sites for complex building with the motor proteins carrying a terminal DNA binding 

protein. In addition the dsDNA was linked at its three prime end to a reactive terminal 

mercapto-group. This thiol-residue was used to react with an iodoacetamide ligand 

(C16H31ClIO5) building a thioether bond under the release of hydriodic acid. Next, the 

mercapto-conjugated dsDNA was reacted with a Halo-tagged kinesin motor protein (Figure 

4.2). Besides using a dsDNA to link both motor proteins, a second approach using a more 

complex DNA origami structure containing protein binding sites was analyzed. 

(B) The second part of this work addresses the regulation of heterotrimeric Kinesin-2 in vitro. 

Recent publications discuss the unstructured tail domain at the C-terminal end of the stalk as a 

relevant factor in autoinhibition of heterotrimeric Kinesin-2 9,30,36–38. The homodimeric 

OSM-3, as well as Kinesin-1, was shown to exist in a folded autoinhibited conformation, 

where the tail domain is in near contact with the both heads. For this reason the question 

arises, if heterodimeric Kinesin-2 is regulated in a similar manner? Several deletion mutants 

of Kinesin-2 from X. laevis and S. purpuratus were generated to investigate the influence of 

the tail domain in self-regulatory mechanisms. For this purpose the truncation of a conserved 

sequence in the stalk was chosen while the heterodimerization of both subunits should not be 

influenced. In addition, the association of the third non-motor subunit KAP with its respective 

heterodimeric motor was dissected in vitro. Next to the complex formation, the activity of the 

trimeric KAP/Kinesin 2 complex has to be studied in a single molecule assay.  
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4. Materials and Methods 

 Materials 4.1.

 Reagents and laboratory consumables 4.1.1.

All used reagents were purchased by Biomol, BioRad, Biomers, Braun, Fluka, Invitrogen, 

Merck, Millipore, NEB, PeqLab, Roche, Roth, Serva and Sigma-Aldrich. Chemicals were 

always of p.a. quality. Laboratory consumables were purchased from Greiner, Nunc, 

QIAGEN, Peske and Sarstedt. 

 Instruments 4.1.2.

Centrifuges Rotina 420, Hettich 

 Biofuge 15R, Heraeus 

 Thermo-Fisher Megafuge 40R Centrifuge 

 Eppendorf-Centrifuge 5418 R 

Ultracentrifuges OptimaTM MAX-XP, Beckman Coulter 

Fluorescence microscopes Axiovert 200, Zeiss 

 Xl71, Olympus 

 Leica DMI 6000 B 

Light microscope Labovert, Leitz 

Laser scanner Typhoon FLA 9500, GE Healthcare 

Horizontal gel electrophoresis system Peglab 

Vertical gel electrophoresis system Mini-PROTAN Tetra Cell, BioRad 

Nanodrop ND-1000, Peglab 

Orbital shaker GFL 

Orbital shaker incubator Innova 43, New Brunswick Scientific 

pH-meter Satorius 

Scale Satorius 
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Thermoshaker Thriller, Peglab 

Tissue culture hood Infinity Class II BSC, ESCO 

Microplate reader / spectrophotometer Infinite M200, Tecan 

 Molecular Devices 

 DNA 4.1.3.

 Synthesized DNA sequences 4.1.4.

The synthesized full-length DNA sequences were purchased in the pUC57 vector from 

Mr. Gene or Genescript. The provided DNA was amplified and subsequently cloned 

into the pFastBacTM 1 vector. 

The full-length sequences of KLP11, KLP20 and KAP were a gift from Prof. Jonathan 

M. Scholey (University of California, Davis). 

The so-called IFT sequences were all provided by Biomers. 

Construct Manufacturer Sequence 

Full-length_KLP11_His6 Prof. J. M. Scholey Supplementary 

Full-length_KLP20_FLAG Prof. J. M. Scholey Supplementary 

Full-length_KAP_His6 Prof. J. M. Scholey Supplementary 

Full-length_OSM-3_FLAG_EE Mr. Gene Supplementary 

Full-length_KRP85_FLAG_WT Genescript Supplementary 

Full-length_KRP95_His6_WT Genescript Supplementary 

Full-length_SpKAP_His6 Genescript Supplementary 

Full-length_Kin2A_FLAG_WT Genescript Supplementary 

Full-length_Kin2B_His6_WT Genescript Supplementary 

Full-length_XlKAP_His6 Genescript Supplementary 

   

C-terminal_KLP20_FLAG Biomers Supplementary 

C-terminal_KLP20_no tag Biomers Supplementary 

C-terminal_KLP11_FLAG Biomers Supplementary 



4. MATERIALS AND METHODS 

   

18 

C-terminal_KRP85_FLAG Biomers Supplementary 

C-terminal_KRP95_FLAG Biomers Supplementary 

C-terminal_KRP95_His6 Biomers Supplementary 

C-terminal_Kin2A_FLAG Biomers Supplementary 

C-terminal_Kin2B_FLAG Biomers Supplementary 

C-terminal_Kin2B_His6 Biomers Supplementary 

   

IFT1 ATTO 488 Biomers ATTO 488_5‘_cggaggactgtcctcccgagtg

cggctacgacgttacccgggtgagca_3‘ 

IFT2 Biomers 5‘_cgtagccgcactcgggaggacagtcctccg_3‘ 

IFT2 thiol Biomers 5‘_cgtagccgcactcgggaggacagtcctccg_3‘

_thiol 

IFT3 Biomers 5‘_tggctggttagtcggaggactgtcctcccg_3‘ 

IFT3 thiol Biomers 5‘_tggctggttagtcggaggactgtcctcccg_3‘ 

_thiol 

IFT4 ATTO 550 Biomers ATTO 550_5‘_cgggaggacagtcctccgacta

accagccatgctcacccgggtaacgt_3‘ 

4.1.4.1. PCR-Primers 

All used PCR-Primers were synthesized by Biomers. 

Construct Primer Sequence 

S. purpuratus 

KRP85_FIP_WT KRP85_Fw 5‘_ataactagtatgccgggtggc_3‘ 

KRP85_FIP_Rev 5‘_tatgcggccgctcacttgtcgtcatcgtccttgt

agtcgccgcctggtatgaagctatcaatgatgagc

atgg_3‘ 

KRP95_FIP_WT KRP95_Fw 5‘_ataactagtatgtcaaagaaaagtgctgagact

gtgaagg_3‘ 

KRP95_FIP_Rev 5‘_tatgcggccgctcaatggtggtgatggtgatg

gccgcctgggatgaagttatcagctatcacc_3‘ 
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X. laevis 

Kin2A_FIP_WT Kin2A_Fw 5‘_ataactagtatgccgatcaacagagcagacaa

gccc_3‘ 

Kin2A_FIP_FLAG_Rev 5‘_tatgcggccgctcacttgtcgtcatcgtccttgt

agtcccctcctggaataaagctatcaattatgttcat

ctgaagtcgc_3‘ 

Kin2B_FIP_WT Kin2B_Fw 5‘_ataactagtatgagcaaaagcaaaagcagcg

aaagc_3‘ 

Kin2B_FIP_His6_Rev 5‘_tatgcggccgctcaatggtggtgatggtgatg

ccctcccggaataaagttttcaataatcagatgtttc

agtttcagttcgcg_3‘ 

 

OSM-3_EE_His6 Fw_OSM-3 5’_aggactagtatggcagagagcgtccgggtcg

cc_3‘ 

 Rev_OSM-3_His6 5’_tatgcggccgctcaatggtggtgatggtgatg

gggccctttgggattcagagaggc_3‘ 

OSM-3_EE_FLAG_Halo Fw_OSM-3 5’_aggactagtatggcagagagcgtccgggtcg

cc_3‘ 

 Rev_OSM-3_FLAG_AscI 5’_tatggcgcgcccttgtcgtcatcgtccttgtagt

cgccgcctttgggattcag_3‘ 

KLP11_EE_His6_Halo KLP11_Fw_SpeI 5’_aggactagtatggtggaaataatgaaaaaatct

tcaaaacaggag_3‘ 

 Rev_KLP11_AscI 5’_tatggcgcgccatggtggtgatggtgatgattc

tggcttcttctcatcg_3‘ 

4.1.4.2. Sequencing-Primer 

All used PCR-Primers were synthesized by Biomers. 

Construct Primer Sequence 

KRP85 KRP85_01 5‘_cgcagatgatatgg_3‘ 

KRP85_02 5‘_ggagagggtctagacg_3‘ 

KRP85_03 5‘_gcaggagaggatgg_3‘ 
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KRP95 KRP95_01 5‘_ggagatagagc_3‘ 

KRP95_02 5‘_ccaggagaacaagg_3‘ 

KRP95_03 5‘_gctggagcagactc_3‘ 

Kin2A Xl_Kinesin-2A_WT_01 5‘_cagaaccagaggctggaggtg_3‘ 

Xl_Kinesin-2A_WT_02 5‘_gatatgcaaacagagcc_3‘ 

Xl_Kinesin-2A_WT_03 5‘_gaacttgaagagcggagaaag_3‘ 

Kin2B Xl_Kinesin-2B_WT_01 5‘_gatctgagcagctttgtgacc_3‘ 

Xl_Kinesin-2B_WT_02 5‘_cagctggataaacgcgtgggcg_3‘ 

Xl_Kinesin-2B_WT_03 5‘_aacgccaggaactgg_3‘ 

Polyhedrin Primer PH 5‘_cctataaatattccggattattcataccg_3‘ 

4.1.4.3. Vectors 

All constructs used during this work, were cloned into the pFastBacTM 1 plasmid (Invitrogen) 

with the help of the restriction sites SpeI and NotI. This plasmid serves as a donor plasmid to 

generate bacmids in the chemically competent Escherichia coli (E. coli) MAX Efficiency 

DH10BacTM cells (Invitrogen). 

4.1.4.4. Cell lines 

XL1-Blue (Stratagene) 

The E. coli XL1 Blue strain was used for plasmid amplification. 

MAX Efficiency DH10Bac
TM

 (Invitrogen) 

The chemically competent E. coli MAX Efficiency DH10BacTM cells were used to generate 

recombinant bacmids by transposing the gene of interest from the plasmid pFastBacTM 1 in 

between the lacZ gene in the bacmid for further blue-white screening. 

SF9 cells (Invitrogen) 

The Spodoptera frugiperda (S. frugiperda) SF9 cell line was used to express recombinant 

proteins with the help of the Bac-to BacTM eukaryotic expression system (Invitrogen). 
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 Methods 4.2.

 Molecular biological methods 4.2.1.

4.2.1.1. Cloning 

Polymerase chain reaction (PCR) 

The desired DNA constructs were manufactured with the help of specific templates and 

adequate primers that introduce two different restriction sites by PCR. All PCR reactions were 

performed according to the manufacturer’s instructions (Invitrogen) with the high-fidelity 

Pfx50TM DNA polymerase (Invitrogen). 

Preparative restriction enzyme digestion 

The obtained DNA as well as the used vector pFastBacTM 1 had to be digested by adequate 

restriction enzymes before the ligation step could be performed. Therefor the PCR products 

and the vector were digested according to the manufacturer’s recommendations from New 

England Biolabs (NEB) in a total volume of 60 µL for the PCR fragments and 20 µL for the 

vector, respectively. Digested DNA fragments were separated by agarose gel electrophoresis 

in order to remove unwanted side products. 

DNA gel extraction 

To obtain the digested DNA insert and the vector the agarose gel was stained with ethidium 

bromide and the desired band was excised under long-wave UV light to prevent DNA 

damage. The DNA was subsequently extracted from the gel slice using the QIAquick Gel 

Extraction Kit from QIAGEN. The extraction was conducted according to the manufacturer’s 

instructions. 

Vector dephosphorylation 

Before ligating the linearized vector pFastBacTM 1 with the digested DNA insert, the vector 

was dephosphorylated in order to prevent recirculation events. The dephosphorylation was 

performed according to the manufacturer’s instructions from New England Biolabs (NEB). 

Antarctic Phosphatase was inactivated at 65°C for 5 min. 

Ligation of DNA inserts with pFastBac
TM

 1 vector 

The predigested and purified DNA insert and the pFastBacTM 1 vector were ligated by 

directional cloning according to the manufacturer’s instructions from New England Biolabs 

(NEB) with the T4 Ligase. The ligation was incubated over night at 16°C. Furthermore two 
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control ligations were prepared. The positive control was performed with a phosphorylated 

vector, whereas the negative control was conducted with the dephosphorylated vector. 

Transformation into XL1 Blue cells 

The recombinant plasmid-DNA was applied with a final concentration of 1.25 µg, mixed with 

thawed E. coli XL1-Blue cells and incubated for 1 min at 42°C to induce transformation. 

Afterwards the ligation preparation was chilled on ice for around 2 min. After adding 500 µL 

cold SOC medium the transformed DNA was amplified by incubating the cells at 37°C and 

800 rpm for 1 h, and selected by growing over night at 37°C on pre-warmed LB-AmpR agar 

plates. Four ampicillin resistant colonies were inoculated in 4 mL LB-AmpR medium and 

incubated by shaking over night at 37°C and 180 rpm to further amplify the DNA of interest. 

Isolation and purification of Plasmid-DNA 

Plasmid-DNA was isolated using the Plasmid Mini-Kit (QIAGEN). The pelleted bacterial 

culture was resuspended in 200 µL resuspension buffer and cells were lysed by the addition of 

200 µL lysis buffer. The lysate was gently incubated by inverting at RT for 4 min. To 

precipitate denatured proteins and other cell residues 200 µL of neutralization buffer was 

added, and the suspension was incubated on ice for 5 min. The precipitate was pelleted by 

centrifugation at 4°C and 11.000 rpm for 10 min. The supernatant was transferred to a new 

tube, and 550 µL isopropanol (p.a.) was added to precipitate the DNA of interest. After 

incubation on ice for 10 min the plasmid DNA was pelleted at 4°C and 11.000 rpm for 

30 min. The DNA pellet was washed with 70% EtOH (p.a.) and re-pelleted by centrifugation 

at 4°C and 11.000 rpm for 5 min. The pellet was air-dried, resuspended in 50 µL TE buffer 

and stored at -20°C. 

Analytical restriction enzyme digestion 

All amplified recombinant plasmids were analytical digested by restriction enzymes. The 

digestion was performed according to the manufacturer’s instructions from New England 

Biolabs (NEB). To characterize the correct sizes, the digested DNA was separated by agarose 

gel electrophoresis and stained with ethidium bromide. 

Purification of recombinant plasmid DNA 

Before transforming the recombinant plasmids into DH10 cells, the isolated DNA from 

amplified XL1 Blue cells was purified. Therefor the selected and resuspended plasmids were 

adjusted with ddH2O to a total volume of 100 µL. After adding 5 volumes of PB buffer 

(QIAGEN) the solution was applied to a QIAprep spin column and centrifuged for 1 min at 
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maximal speed. The column was washed with 750 µL PE buffer (QIAGEN), centrifuged and 

after discarding the flow-through again centrifuged to dry the matrix. In order to elute the 

bound DNA 100 µL EB buffer (QIAGEN) at 70°C were added to the column and incubated 

for 15 min at RT. The purified DNA was collected by centrifugation and stored at -20°C. 

Generation and isolation of bacmids in DH10 cells 

1.5 µL of purified plasmid-DNA were added to 200 µL of thawed competent DH10 cells and 

incubated at 42°C for 1 min. The suspension was chilled on ice for 2 min and afterwards 

transferred to 800 µL of ice-cold SOC medium to incubate at 37°C and 180 rpm for 4 h. The 

suspension was plated on pre-warmed LB-Blue/Gal agar and incubated at 37°C for 3 days. 

White colonies were dilution plated to exclude false positive results. 

Two white colonies were inoculated in 6 mL LB-Blue/Gal medium and incubated by shaking 

over night at 37°C and 180 rpm. The bacterial culture was pelleted by centrifugation at 4°C 

and 4.500 rpm for 10 min, and was resuspended in 500 µL resuspension buffer. Cells were 

lysed by adding 500 µL lysis buffer, gently inverted and incubated at RT until the suspension 

was clear. For neutralization 500 µL neutralization buffer were added, mixed by inverting and 

incubated on ice for 10 min. Denaturated proteins and cell residues were precipitated by 

centrifugation at 4°C and maximum speed for 10 min. The supernatant was mixed with 

1.5 mL isopropanol (p.a.) and incubated on ice for 10 min to precipitate the bacmids. After 

centrifugation at RT and 14.000 rpm for 30 min, the pellet containing the bacmid DNA was 

washed with 250 µL 70% EtOH (p.a.) and re-pelleted at RT and 14.000 rpm for 5 min. The 

final pellet was air-dried, subsequently resuspended in 70 µL TE buffer and stored at -20°C. 

TE buffer 10 mM Tris-HCl, 1 mM EDTA, pH 8.0 

TAE buffer 24.2% Tris base, 5.7% glacial acetic acid, 50 mM EDTA, pH 7.0 

Resuspension buffer 50 mM Tris-HCl pH 8.0, 10 mM EDTA, 100 µg/mL RNAseA 

Lysis buffer 200 mM NaOH, 1% SDS 

Neutralization buffer 3 M KAc pH 5.5 

SOC medium 2% tryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KCl, 

10 mM MgCl2, 2% 1 M glucose 

LB-AmpR medium 1% tryptone, 0.5% yeast extract, 0.5% NaCl, 100 µg/mL 

ampicillin 
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LB-AmpR agar 1% tryptone, 0.5% yeast extract, 0.5% NaCl, 100 µg/mL 

ampicillin, 1.5% agar 

LB-Blue/Gal medium 1% tryptone, 0.5% yeast extract, 1% NaCl, 50 µl/mL kanamycin, 

7 µg/mL gentamycin, 10 µg/mL tetracycline 

LB-Blue/Gal agar 1% tryptone, 0.5% yeast extract, 1% NaCl, 50 µl/mL kanamycin, 

7 µg/mL gentamycin, 10 µg/mL tetracycline, 100 µg/mL 

Blue-Gal, 40 µg/mL IPTG 

 Cell biological methods 4.2.2.

4.2.2.1. Cell culture 

The SF9 cell line was used to express recombinant proteins and represents a clone of the so-

called SF21 cell line, which is a continuous cell line from ovaries of S. frugiperda and serves 

as a host for the baculovirus 
90. 

The cells were grown in shaking culture at 28°C and 110 rpm, and the cell density was kept 

between 0.5 and 5×106 cells/mL. The density was controlled every second day by diluting the 

cells 1/10 in Trypan Blue solution and counting the number of viable cells in a Neubauer 

counting chamber. 

PBS 140 mM NaCl, 2.7 mM KCl, 1.8 mM KH2PO4, 10 mM Na2HPO4, 

pH 7.4 

SF9 growing medium Sf-900 serum free medium, 10% FBS, 1% gentamycin 

Trypan blue solution 0.4% Trypan Blue in PBS 

4.2.2.2. Bac-to-bac expression system 

Virus generation and amplification 

The SF9 cells were transfected at a density of 0.5×106 cells/mL with the purified bacmids. 

2 mL cells were provided in a 6 well plate and incubated at 30°C to allow the cells to attach to 

the plate before washing the cells twice with 1 mL Sf-900 serum free medium. During that 

time 15 µL bacmid DNA was mixed with 200 µL Sf-900 serum free medium and 10 µL 

Cellfectin II and incubated for 35 min. Subsequently 800 µL Sf-900 serum free medium were 

added and the prepared solution was pipetted to the washed cells. The plate was incubated for 

5 h at 30°C. Afterwards the medium was removed and 2 mL SF9 growing medium was 



4. MATERIALS AND METHODS 

   

25 

added. The plate was incubated for 3 days at 30°C. After that time the transfected cells had 

produced the first virus generation P0, which is released to the supernatant. The supernatant 

was sterile filtered and stored at 4°C. 

To amplify the produced viruses and to generate the next virus generation P1 30 mL of SF9 

cells at a density of 0.5×106 cells/mL were infected with 500 µL of P0 and incubated one 

week at 30°C. Afterwards the supernatant P1 was centrifuged for 15 min at 3.500 rpm to 

pellet the dead SF9 cells and decanted into a new falcon. All virus generations were stored at 

4°C. 

Protein expression 

For protein expression 50 mL of SF9 cells at a density of 2×106 cells/mL were infected with 

500 µL P1 virus generation and incubated for 2 days at 28°C and 110 rpm in shaking culture. 

To get higher amounts of protein the volume of cells and viruses were scaled-up. In case of 

producing heteromeric proteins the cells were infected with more than one virus. 

After the appropriate incubation time the cells produced the protein of interest, which is 

located inside the cell. The cell suspension was centrifuged for 10 min at 3.500 rpm and the 

supernatant was discarded. The cell pellet was either stored at -20°C or immediately used for 

protein purification. 

 Biochemical methods 4.2.3.

4.2.3.1. Protein purification via FLAG-tag 

The pelleted SF9 cells from a 50 mL scale were carefully resuspended in 2 mL cold lysis 

buffer and centrifuged for 10 min and 30.000 rpm at 6°C. Protein containing supernatant was 

incubated with 50 µL <FLAG>mouse antibody coated agarose beads for 1 h on a rotor at 4°C. 

Agarose beads with bound protein were subsequently pelleted for 10 min and 500 rpm at 4°C 

and were washed three times with 1 mL washing buffer 1 and four times with 1 mL washing 

buffer 2 in order to remove unspecific bound host cell proteins. Between the washing steps 

beads were pelleted for 1 min and 14.000 rpm at 4°C and the supernatant was discarded. To 

elute the protein of interest 50 µL elution buffer, containing a ten times excess of FLAG 

peptides, were added to the pelleted beads and the suspension was incubated for 30 min on a 

rotor at 4°C. Afterwards the beads were pelleted for 2 min and 14.000 rpm at 4°C. The 

supernatant with the eluted protein was either aliquoted, shock frozen in liquid nitrogen and 

stored at -80°C, or immediately used in further experiments. 
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Lysis buffer 80 mM Pipes, 300 mM KAc, 1 mM MgCl2, 1 mM DTT, 

0.5% Triton-X 100, protease inhibitor cocktail, 0.1 mM ATP 

Washing buffer 1 80 mM Pipes, 500 mM KAc, 1 mM MgCl2, 1 mM DTT, 

0.1% Tween 20, protease inhibitor cocktail 

Washing buffer 2 80 mM Pipes, 200 mM KAc, 1 mM MgCl2, 1 mM DTT, 

protease inhibitor cocktail 

Elution buffer 80 mM Pipes, 200 mM KAc, 1 mM MgCl2, 1 mM DTT, 

100 µg/mL FLAG peptide, protease inhibitor cocktail 

4.2.3.2. Protein purification via His6-tag 

The protein purification via His6-tag was performed analogous to the purification via 

FLAG-tag. Instead of the <FLAG>mouse antibody coated agarose beads, Ni-NTA coated 

magnetic Dynabeads® were used. The purification was performed according to the 

manufacturer’s instructions (Invitrogen). The protein was eluted from the beads with elution 

buffer containing an excess of imidazole. 

Lysis buffer 50 mM Pipes, 300 mM KAc, 10 mM imidazole, 1 mM DTT, 

0.5% Triton-X 100, protease inhibitor cocktail, 0.1 mM ATP, 

pH 8.0 

Washing buffer 50 mM Pipes, 300 mM KAc, 20 mM imidazole, 1 mM DTT, 

protease inhibitor cocktail, pH 8.0 

Elution buffer 50 mM Pipes, 300 mM KAc, 500 mM imidazole, 1 mM DTT, 

protease inhibitor cocktail, pH 7.5 

4.2.3.3. Gel filtration 

Gel filtration was performed with an Äkta explorer 100 (GE Healthcare) using the 

ENrich™ 650 10x300 column (Biorad) and served as an additionally step to verify the 

integrity of the purified proteins. The sample volume was around 300 µL. 

Gel filtration buffer 80 mM Pipes, 200 mM KAc, 1 mM MgCl2, 1 mM DTT, 

1 mM EGTA 
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4.2.3.4. Tubulin polymerization 

Depending on the subsequent application of the microtubules, two different procedures were 

used to polymerize tubulin. 

Tubulin that served as microtubules in microscopic assays was immediately thawed 

from -80°C to 4°C. Afterwards 25 µL were pipetted with or without additional biotin and/or 

fluorescent labeled tubulin on the wall of a centrifugation tube. The tubulin was centrifuged 

for 5 min and 80.000 rpm at 6°C. The supernatant was gently mixed with 1 µL GTP and 

polymerized over night at 37°C. Afterwards 0.5 µL paclitaxel were added and the solution 

was stored at RT. 

Tubulin that was applied as microtubules in further ATPase assays was handled in a different 

manner. A suitable amount of frozen tubulin was thawed at once at 4°C and centrifuged for 

10 min and 80.000 rpm at 6°C. The supernatant was mixed with 1 mM GTP and incubated for 

30 min at 37°C. Subsequently 20 µM paclitaxel were added and the solution was incubated 

over night at RT. Polymerized microtubules were centrifuged through a sucrose cushion for 

15 min and 80.000 rpm at RT. The microtubule pellet was gently washed with 12A25 buffer, 

subsequently resuspended in 12A25 buffer and stored at RT. The concentration was 

determined photometrically with tubulin dimers and calculated with help of the Lambert-Beer 

law (ε = 1.03) 91. 

���� = � ∙ � ∙ 	 

A280  absorption at 280 nm 

ε  extinction coefficient 

d  path length  

 

 

Biotin 6 mg/mL 

Paclitaxel 4 mM in DMSO 

GTP 100 mM in H2O 

12A25 buffer 12 mM Aces-KOH, 25 mM KAc, 2 mM MgAc, 0.5 mM EGTA, 

pH 6.8, 20 µM paclitaxel 

sucrose cushion 40% sucrose in 12A25 buffer 
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4.2.3.5. ATPase assay 

The microtubule stimulated ATPase activity was quantified within a coupled enzymatic assay, 

in which the ATP hydrolysis to ADP is coupled to the oxidation of NADH/H+ to NAD+. In 

order to keep the ATP concentration constant, the pyruvate kinase (PK) couples the 

regeneration of ATP to an oxidation of phosphoenolpyruvate (PEP) to pyruvate. Pyruvate 

itself is reduced to lactate by the enzyme lactate dehydrogenase (LDH), which couples the 

reaction to the oxidation of NADH/H+ to NAD+. This last oxidation step can be measured by 

the decrease of NADH absorbance at 340 nm. Therefore the regeneration system couples the 

hydrolysis of one ATP by a motor protein to the oxidation of one NADH molecule (Figure 

4.1). 

 

Figure 4.1: Schematic overview of ATP regeneration system. 

The decrease in NADH absorption was analyzed for 1 h at RT in a 96-well micro plate using 

a spectrophotometer. The final reaction volume of 50 µL comprises 10 µL of motor protein 

dilution in 12A25 buffer containing the regeneration system (100 nM), 37 µL of microtubule 

dilution in 12A25 buffer (0.5 µM-40 µM) and 3.3 µL Mg-ATP (3 mM). Two control 

measurements were performed to evaluate the basal motor protein activity, where either the 

Mg-ATP or the microtubule dilution was substituted for 12A25 buffer. 

The Michaelis-Menten kinetic of the enzyme was determined by stimulation with different 

microtubule concentrations while the ATP concentration remains constant over time. The 

Michaelis-Menten constant KM is the substrate concentration that is required for an effective 

turnover and is often associated with the affinity of an enzyme to its substrate. A lower KM is 

related to a higher substrate affinity. The second important factor is the catalytical constant 

kcat, which is a direct measure of the turnover rate meaning the production of product under 

saturated enzyme conditions. 
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VATPase  ATPase rate 

[MT]  microtubule concentration 

KM  Michaelis-Menten constant 

Vmax  maximum ATPase rate 

 

12A25 buffer 12 mM Aces-KOH, 25 mM KAc, 2 mM MgAc, 0.5 mM EGTA, 

pH 6.8 

ATP regeneration system 1.5 mM NADH in 100 mM Hepes, 3 mM PEP in 12A25 buffer, 

1.6 U/mL PK, 2.2 U/mL LDH 

Paclitaxel 4 mM in DMSO 

Mg-ATP 100 mM ATP in H2O, 100 mM MgCl2 

4.2.3.6. Microtubule motility assays 

Gliding assay 

Before using the purified microtubule-based motor proteins in further experiments, their 

activity was tested in in vitro gliding assays. 

To reconstitute the movement of kinesins in vitro, the proteins were absorbed on the glass 

surface of a flow chamber and motility buffer containing fluorescent microtubules and 4 mM 

ATP were flowed insight. Prior to this the microtubules were diluted in BRB80/paclitaxel 

depending on their quantity. The bound kinesins transporting the captured filaments in a 

gliding movement over the glass surface were examined using a 

total internal reflection fluorescence (TIRF) microscope. Gliding velocities were analyzed 

using the program ImageJ. 

In some cases it was necessary to fix the kinesins via a biotinylated m<FLAG> antibody to 

the glass surface of the coverslip. Therefor biotinylated BSA (BBSA) was flushed into the 

flow chamber and incubated for 1 min. After a washing step with BRB80/BSA, streptavidin 

was bound to the immobilized BBSA and incubated for 1 min. Unbound streptavidin was 

washed out with BRB80/BSA and the biotinylated m<FLAG> antibody was adsorbed to 

streptavidin. After a third washing step with BRB80/BSA the motor protein was bound to the 

antibody via its FLAG-tag.  
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Single molecule assay 

To investigate the direct velocity of one motor protein and its run length, single molecule 

assays were performed using a TIRF microscope. 

A flow chamber was prepared with BBSA and streptavidin as described above. Instead of the 

antibody biotinylated microtubules were flowed into the chamber to bind to the immobilized 

streptavidin. Subsequently motility buffer containing the fluorescent motor protein and 4 mM 

AMP/PNP was washed insight. The correct binding of protein to the unlabeled microtubules 

was monitored via the TIRF microscope. Afterwards motility buffer containing 4 mM ATP 

was pipetted in the flow chamber and the moving kinesins were observed using fluorescence 

microscopy. The velocity and the run length of each moving motor protein was investigated 

using the program ImageJ. 

Instead of fluorescent motor proteins, fluorescent labeled dsDNA with bound kinesins was 

applied in single molecule assays. 

BRB80 80 mM Pipes, 2 mM MgCl2, 1 mM EGTA, 5 mM DTT, pH 6.9 

BRB80/BSA 80 mM Pipes, 2 mM MgCl2, 1 mM EGTA, 5 mM DTT, 

1 mg/mL BSA, pH 6.9 

BRB80/paclitaxel 80 mM Pipes, 2 mM MgCl2, 1 mM EGTA, 5 mM DTT, 

5 µM paclitaxel, pH 6.9 

hsBRB80 80 mM Pipes, 2 mM MgCl2, 1 mM EGTA, 5 mM DTT, 

100 mM KAc, pH 6.9 

Motility buffer 0.145 mg/mL glucoseoxidase (Sigma, G2133), 0.0485 mg/mL 

catalase (Sigma, C3155), 0.2 mg/mL casein, 0.4% glucose in 

hsBRB80 

BBSA 1 mg/mL (Sigma) 

Streptavidin 1 mg/mL (Sigma) 

4.2.3.7. Purification and activation of fluorescent mercapto-dsDNA 

In order to purify the “IFT-DNA” from an excess of free fluorescent dye and to regenerate the 

mercapto-group an EtOH precipitation was performed. 

Both ssDNA oligonucleotides containing either the fluorescent dye or the thiol-group were 

mixed in an equimolar ratio and incubated for 1 h. Mercapto-groups were regenerated by the 
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addition of 1/10 volume of TCEP and the mixture was incubated for 30 min at RT. After 

addition of 1/10 volume of NaAc the solution was mixed and 2.5 volume of ice-cold EtOH 

(p.a.) was added and mixed again. The solution was frozen for 1 h at -20°C and centrifuged 

(30 min, 14.000 rpm, 4°C). The pellet was washed with 70% EtOH (p.a.), inverted and 

re-pelleted (30 min, 14.000 rpm, 4°C). After drying the pellet was resuspended in the initial 

volume of ddH2O and immediately used to react with the iodoacetamide ligand. 

TCEP 100 mM in ddH2O 

NaAc 3 M sodium acetate in ddH2O 

4.2.3.8. Generating a covalent complex between Halo-tagged proteins with 

acetamide-labeled dsDNA 

The purified and activated dsDNA contains a terminal thiol-group that reacts with an 

iodoacetamide ligand building a thioether bond under the release of hydriodic acid. Therefor 

the dsDNA was mixed with a five-fold excess of the iodoacetamide ligand and incubated over 

night at RT. Unreacted iodoacetamide ligand was removed using agarose gel electrophoresis. 

The fluorescent band was excised and purified with the QIAquick Gel Extraction Kit from 

QIAGEN. The extraction was conducted according to the manufacturer’s instructions. Due to 

the loss of product, the column-bound dsDNA was eluted in a smaller volume of ddH2O than 

initially deployed. 

In order to covalently bind the coupled dsDNA to a Halo-tagged kinesin, the dsDNA was 

added in excess to <FLAG> antibody coated agarose beads containing the bound protein. The 

suspension was incubated on a rotor for 1 h at 4°C. The beads with the bound protein/dsDNA 

complex were washed five times with washing buffer and eluted with a suitable volume of 

elution buffer. The protein/dsDNA complex was stored at -80°C, or immediately used in 

further experiments. 

The relative reactivity of alpha-haloacetates toward functional groups is at first 

mercapto-containing molecules. For this reason this reactive group presents the second most 

common group on crosslinking reagents. These reagents are often designed as 

heterobifunctional crosslinkers, that contain at one end the mercapto-reactive group and on 

the other end an amine-reactive group, which is coupled to a target molecule before the 

thiol-group. In case of the mercapto-conjugated dsDNA the functional alkylchloride-group 

builds an ether bond with the reactive oxygen of the amino acid Asp106 in the binding pocket 
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of the HaloTag. The chloride is complexed in a second reaction with two hydrogen atoms of 

the amino acids Asn41 and Trp107 of the HaloTag 92,93 (Figure 4.2). 

 

Iodoacetamide ligand 100 mM in DMSO 

Lysis buffer 50 mM Hepes pH 7.5, 150 mM NaCl, 1 mM TCEP, 

0.5 mM EDTA, 0.5% Triton-X 100, protease inhibitor cocktail, 

0.1 mM ATP 

Washing buffer 50 mM Hepes pH 7.5, 150 mM NaCl, 1 mM TCEP, 

0.5 mM EDTA, protease inhibitor cocktail, 0.1 mM ATP 

 Elution buffer 50 mM Hepes pH 7.5, 150 mM NaCl, 1 mM TCEP, 

0.5 mM EDTA, protease inhibitor cocktail, 0.1 mM ATP, 

100 µg/mL FLAG peptide 

 

Figure 4.2: HaloTag technology. (A) The HaloTag is engineered from a bacterial dehalogenase from 

Rhodococcus rhodochrous (R. rhodochrous) to covalently attach to a functionalized chloroalkane. 

(B) Reaction of HaloTag iodoacetamide (O4) ligand with mercapto-conjugated residue (source Promega). 
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 Biophysical methods 4.2.4.

4.2.4.1. Transmission electron microscopy (TEM) 

The origami structure Trolley was analyzed with bound kinesin OSM-3 and microtubules in 

transmission electron microscopy. For this the DNA origami was incubated with 

OSM-3_GAL4 or OSM-3_CAP and unlabeled microtubules for 10 min at RT and 

subsequently immobilized by adsorption onto glow-discharged formvar- and carbon-coated 

Cu400-TEM grids, which were prepared using a plasma cleaner. 

5 µL of the origami-protein solution were pipetted onto the grid and incubated for 3 min. The 

liquid was removed using a kim wipe. 5 µL of grid stain were pipetted onto the grid and were 

immediately removed. In a second staining step 20 µL of uranyl formate were incubated for 

30 s on the grid before removing. The grids were imaged on a Philips CM100. 

Grid stain 2% aqueous uranyl formate, 25 mM NaOH 
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5. Developing molecular tools to reconstitute C. elegans 

Kinesin-2/OSM-3 heterotetramer in vitro 

In dendritic sensory cilia of C. elegans the heterodimeric Kinesin-2 and the homodimeric 

OSM-3 are both responsible for a cooperative anterograde transport of IFT particles. Both 

proteins feature different motion speeds depending on whether the motors act alone or in 

cooperation. 

In vivo velocity data of these motors suggest that they move coordinated with an intermediate 

velocity (0.7 µm/s) in the middle segment of the cilia, while in the distal segment only OSM-3 

is responsible for the transport of cargo and moves at a rate of 1.3 µm/s. In the case that 

OSM-3 is mutated, only Kinesin-2 moves the IFT vesicles with 0.5 µm/s 63,83. As detailed in 

chapter 3, the intermediate velocity of 0.7 µm/s was suggested to result from coordinated 

stepping of the slower Kinesin-2 and the faster OSM-3, or by continuously alternating 

stepping actions of the two motors 63,83,87. The former would require both motors to interact 

simultaneously with the microtubules and exert drag onto each other, whereas the latter would 

allow only one motor to interact with the microtubule at the same time and to display an 

intermediate velocity. However, a so far unknown regulatory mechanism involving accessory 

proteins cannot be excluded to explain the velocities observed in vivo. If the intermediate 

velocities are indeed a direct result of the coordinated action of the respective motors, the in 

vitro reconstitution of this transport by the slower Kinesin-2 and the faster OSM-3 is expected 

to result in an intermediate velocity between the two motors.  

To demonstrate if solely the combination of the two kinetically different motors is in fact 

sufficient to account for the intermediate velocities as observed in vivo, molecular tools were 

developed to couple the respective motor proteins. 

 Experimental concept 5.1.

In this thesis two main strategies involving defined DNA structures were employed to couple 

Kinesin-2 and OSM-3 motors. In the first approach the DNA features a DNA binding site, 

whereas Kinesin-2 and OSM-3 are expressed as recombinant proteins with the corresponding 

DNA binding protein. Here, the DNA binding proteins are the galactose-responsive 

transcription factor GAL4 from Saccharomyces cerevisiae (S. cerevisiae) and a mutated form 

of the catabolite gene activator protein (CAP) from E. coli. Two different DNA structures 
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were used to bind the proteins, namely a DNA origami and a double stranded DNA (dsDNA) 

both carrying the two protein binding sites. An independent approach involved the covalent 

coupling of a Halo-tagged Kinesin-2 protein to a dsDNA that was functionalized with a 

thiol-residue. 

 Results 5.2.

 Protein expression and quality control 5.2.1.

The motor proteins OSM-3_CAP and OSM-3_GAL4 were purified and subsequently 

investigated in gliding assays to ensure the quality for further experiments. Figure 5.1 shows 

the purified proteins as well as the result of the gliding assay. Both proteins display almost the 

same gliding velocities that are consistent with values reported in the literature 25,87. 

 

Figure 5.1: Purification of OSM-3_CAP and OSM-3_GAL4 fusion proteins and their corresponding 

gliding velocity. (A) FLAG-affinity purification of OSM-3_CAP and OSM-3_GAL4. (B) OSM-3_CAP 

and OSM-3_GAL4 were analyzed in gliding assay to ensure the protein quality for further experiments.  
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 Coupling motor proteins to a DNA origami structure 5.2.2.

5.2.2.1. Microtubule decoration by DNA origami bound OSM-3 

To test if DNA origami bound OSM-3 is able to interact with microtubules OSM-3_GAL4 

and OSM-3_CAP fusion proteins were incubated in a 1:1 molar ratio with unlabeled 

microtubules. These complexes were adsorbed onto copper grids and visualized using TEM 

microscopy. Figure 5.2 shows a TEM micrograph of the DNA origami structure as well as the 

immobilized and DNA origami decorated microtubules. OSM-3_GAL4 as well as 

OSM-3_CAP are able to decorate microtubules. In both cases all DNA origami structures are 

associated with the filaments. In contrast to OSM-3_GAL4, OSM-3_CAP decorates the 

microtubules in a rather parallel occurring fashion. 

 

Figure 5.2: Transmission electron microscopy (TEM) imaging of the used DNA origami with and without 

bound OSM-3 motor proteins. (A) TEM image of DNA origami with the highlighted DNA binding site 

for GAL4 and CAP that are embedded in the folded DNA origami. (B) TEM image of microtubule bound 

OSM-3_GAL4 with attached DNA origami structures. (C) TEM image of microtubule bound 

OSM-3_CAP with attached DNA origami structures. 
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 Unspecific interaction between DNA origami structure and DNA 5.2.3.

binding proteins 

Decoration experiments were performed in order to exclude an unspecific interaction of the 

DNA origami structure with unlabeled microtubules (Figure 5.3). Prior to this the origami 

structure was fluorescently labeled with the intercalating SYBR® Gold dye for subsequent 

fluorescence microscopy assays. 

 

Figure 5.3: Microtubule decoration experiments with either DNA origami with or without DNA binding 

sites for the DNA binding proteins GAL4 and CAP. Unlabeled filaments were incubated with 

SYBR® Gold fluorescently labeled DNA origami structures. Afterwards a Kinesin-2-GFP fusion protein 

was flown into the microscopic chamber as a positive control for a successful polymerization of the 

microtubules. 

These results indicate that the DNA origami structure is not able to interact with microtubules 

in the absence of motor proteins. 

To further prove the specificity of the interaction between the motor proteins and the DNA 

origami structure decoration experiments were performed. Both OSM-3_CAP and 

OSM-3_GAL4 were incubated with the DNA origami. In addition OSM-3 without DNA 

binding protein as well as a DNA origami structure without protein binding sites were 

analyzed as controls. Figure 5.4 shows the results of the decoration experiments. 

OSM-3_GAL4 and OSM-3_CAP are both able to bind the origami structure with and without 

the corresponding protein binding site. 
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In order to evaluate if a titrated blocking of the origami structure with BSA prior to the 

incubation with OSM-3_GAL4 would prevent an unspecific interaction, both origami 

structures were blocked with three different BSA concentrations. Nevertheless OSM-3_GAL4 

was still able to bind the origami structure without binding sites and to decorate unlabeled 

microtubules. 

 

Figure 5.4: Microtubule decoration experiments with OSM-3 associated DNA binding proteins and DNA 

origami with and without DNA binding sites. (A) OSM-3_CAP and OSM-3_GAL4 attached to the 

DNA origami structures with and without DNA binding sites are both able to decorate unlabeled 

filaments. (B) A previous blocking of the origami structure with different BSA concentrations prior to the 

incubation with the motor proteins did not result in a more specific interaction. In both cases unlabeled 

filaments could be visualized. 
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 Coupling of motor proteins to dsDNA 5.2.4.

5.2.4.1. Design of dsDNA containing a GAL4-binding site and a 

thiol-residue 

To circumvent the described problem of unspecific binding, a dsDNA was used to drastically 

reduce the surface for unspecific interaction between the motor and DNA. Here, two dsDNA, 

both carrying a GAL4-binding site, with a three prime overlap were designed to 

independently attach the Kinesin-2_GAL4 and OSM-3_GAL4 motors to the DNA (Figure 

5.5). The three prime overlap was used to subsequently hybridize the individual 

dsDNA-motor units. The synthesized ssDNA strands were named IFT1-4. In addition, the 

ssDNA IFT2 and IFT3 are both functionalized with a thiol-residue at their three prime end to 

allow the covalent attachment of Kinesin-2 and OSM-3 via the HaloTag at their C-terminal 

end. 

To analyze the single molecule velocity and the run length of Kinesin-2 and OSM-3 alone and 

in combination in TIRF microscopy the dsDNA was linked with two different fluorescent 

ATTO dyes, namely ATTO 488 and ATTO 532. The melting points of the hybridized dsDNA 

IFT1/2 and IFT3/4 are all situated above room temperature to prevent a spontaneous 

dissociation. Figure 5.5 shows a schematic overview of the designed dsDNA construct. 

 

Figure 5.5: Schematic overview of the designed dsDNA. The dsDNA consists of four ssDNA strands that 

are hybridized with each other. IFT1 and IFT4 are associated with different ATTO dyes, namely 

ATTO 488 and ATTO 532, whereas IFT2 and IFT3 carry a terminal thiol-residue. The melting 

temperatures (Tm) of the hybridized dsDNA’s IFT1/2, IFT3/4 and IFT1/2/3/4 are indicated. 

In order to build a dsDNA with two binding sites for a kinesin protein, with a dimension of 

the motor domain of around 12 nm in the width, the length of a dsDNA needs to be 

determined. Considering the fact that KLP11/20 and OSM-3 may interact during the IFT, the 

distance between both motor proteins should not be more than one step size. Therefore a 
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distance of 42 bp (13.7 nm) between both GAL4 sequences was chosen to allow one step of a 

single motor protein. In terms of the coupling reaction with the thiol-residue the approximate 

calculated distance between both proteins will range around 25.5 nm. Figure 5.6 gives a 

schematic overview of the arranged motor proteins in complex with the dsDNA. 

 

Figure 5.6: Schematic overview of the dsDNA with bound motor proteins. (A) OSM-3 and CeKinesin-2 

(KLP11/KLP20) are bound via DNA binding protein GAL4 at the dsDNA. (B) OSM-3 and CeKinesin-2 

are bound via their HaloTag at the dsDNA. 

The total length of the synthesized and subsequently hybridized dsDNA is 78 bp. This 

corresponds to 25.5 nm of dsDNA with 7.5 helical twists. Hence the dsDNA should be quite 

rigid. The flexibility of the DNA sequence was determined using a DNA curvature analysis. 

Here the global 3D structure is calculated from the nucleotide sequence. Figure 5.7 shows all 

directions of the DNA curvature analysis. 
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Figure 5.7: DNA curvature analysis of the designed dsDNA. The global 3D structure of a DNA molecule 

from its nucleotide sequence is calculated according to the dinucleotide wedge model. The curvature is 

indicated in all three directions X-Z, X-Y and Z-Y. To analyze the DNA curvature an algorithm of 

Christoph Gohlke was used (www.lfd.uci.edu/~gohlke; Version: 2015.01.29). 

5.2.4.2. Hybridization of the dsDNA framework 

SDS-PAGE was performed in order to investigate the hybridization of the respective ssDNA 

units IFT1-4 to dsDNA. The ssDNA as well as the dsDNA was detected with a Typhoon 

scanner by exciting either the ATTO 488 dye or the ATTO 532 dye with a wavelength of 

488 nm and 550 nm, respectively (Figure 5.8). 

 

Figure 5.8: Hybridization of the designed ssDNA IFT1-4. To test the hybridization the ssDNA strands were 

incubated at room temperature and analyzed in a 12% SDS-PAGE. The applied DNA concentration 

was 1 µM.  

The IFT1 subunit could be visualized with a wavelength of 488 nm and IFT4 with 550 nm. 

The subunits IFT2 and IFT3 do not carry a fluorescent dye and thus are not visible in 

SDS-PAGE. As expected, the electrophoretic mobility of the hybridized dsDNA IFT1/2 and 

IFT3/4 is shifted in SDS-PAGE (Figure 5.8). Furthermore the subsequent hybridized dsDNA 

IFT1/2/3/4 showed a supershift of the same size when excited with 488 nm and 550 nm, 

respectively (Figure 5.8). 
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5.2.4.3. Complex formation of GAL4 conjugated motor proteins with 

dsDNA 

Due to the successful establishment of the dsDNA framework, the next step was to attach a 

motor protein. In order to obtain a complex formation OSM-3_GAL4 was purified and 

incubated in a 1:1 molar ratio with one of both dsDNA units. Subsequently these complexes 

were incubated to build a dsDNA structure IFT1/2/3/4-OSM-3_GAL4 (2x) containing two 

motor proteins. This complex was analyzed in TIRF microscopy in a single molecule assay. 

OSM-3 without GAL4 served as a control to exclude unspecific binding between the 

wild-type motor protein and the dsDNA. Here no interaction could be observed in TIRF 

microscopy (data not shown). Figure 5.9 shows the velocity distribution of these complexes. 

Rather surprisingly, the distribution represents two velocity populations. The slower one 

exhibits a mean velocity of about 1 µm/s that is consistent with the known OSM-3 

velocity 8,87, while the faster population displays a mean velocity of about 2 µm/s, a rate that 

has so far not been reported. 

 

Figure 5.9: Single molecule velocity distribution of OSM-3 complexed dsDNA. Single molecule assay of 

GAL4 conjugated OSM-3 that is complexed with a dsDNA containing a GAL4-binding site. The slower 

population shows a mean velocity of 0.99 ± 0.07 µm/s [S.D.], while the faster population exhibits a mean 

velocity of 2.11 ± 0.11 µm/s [S.D.]. The distribution was plotted by Gaussian fitting of the data points 

(N = 169) with OriginPro2015. 
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5.2.4.4. Covalent coupling of a thiol-conjugated dsDNA with a 

Halo-tagged protein 

In addition to the reported non covalent coupling of motor protein to the dsDNA, a covalent 

coupling process of the thiol-conjugated IFT3/4 with KLP11_Halo/KLP20 was developed. 

The HaloTag is located at the C-terminal end of KLP11. The heterodimer was incubated with 

IFT3/4 during purification and analyzed in SDS-PAGE to break all non-covalent bondings. 

Figure 5.10 shows the covalent complex. The SDS-PAGE was excited with a wavelength of 

532 nm to visualize the fluorescent dsDNA IFT3/4 coupled to the HaloTag within the subunit 

KLP11. Next, the SDS-PAGE was stained with Coomassie Brilliant Blue. Furthermore the 

purification and coupling reaction was performed in two different buffers to assess the 

efficiency of the respective reactions. For this purpose Bicine and NH4HCO3 were chosen. 

 

Figure 5.10: FLAG-affinity purification of Halo-tagged KLP11/KLP20 coupled to a thiol-conjugated 

dsDNA. During the purification of KLP11_Halo/KLP20 the protein was incubated with HaloTag ligand 

conjugated IFT3/4. The subunits KLP11_Halo and KLP20 are indicated by an asterisk. The proteins were 

separated by size in SDS-PAGE and visualized first by scanning at 532 nm and secondly by Coomassie 

staining.  

The SDS-PAGE shows the expected separation of the KLP20 and KLP11 subunits. The 

overlay of the fluorescent scan at 532 nm and the Coomassie stained gel shows the successful 

labeling of the KLP11 subunit via its C-terminal HaloTag. As all non-covalent bonds should 

be broken after addition of SDS, the SDS-PAGE analysis proves the covalent connection 

between the KLP11_Halo subunit and the HaloTag ligand functionalized dsDNA. On the 

other hand, the KLP20 subunit does not display any unspecific labeling by the dsDNA, nor 

does the KLP11 subunit lacking the C-terminal HaloTag (not shown). 
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Taken together, the KLP11_Halo subunit can be covalently and specifically coupled to the 

dsDNA using a HaloTag specific ligand. This strategy allows the construction of individual 

protein-DNA hybrids that can subsequently be coupled using appropriate overhangs as 

demonstrated above (Figure 5.10). 

 Summary of Results 5.2.5.

The aim of this study was to develop a robust experimental procedure to couple defined 

numbers of motor proteins to study their collective behavior in vitro. To this end, the DNA 

origami technology was employed. To establish a specific interaction between the respective 

motor proteins and the DNA origami structure, the previously described interactions between 

the DNA binding proteins GAL4 and CAP with specific DNA sequences were used 94–98. A 

DNA origami molecule was designed which contained specific recognition sites for the DNA 

binding proteins GAL4 and CAP. In addition, the corresponding DNA origami was designed 

lacking the respective binding sites for GAL4 and CAP proteins as a control. The motor 

proteins were C-terminally tagged with the GAL4 and CAP proteins to establish the link 

between the DNA origami and the motor. The kinesin motors bound the DNA origami 

structure independent of the specific binding sequences for the GAL4 and CAP proteins as 

assessed by microtubule decoration experiments. In an attempt to eliminate the unspecific 

interaction between the DNA origami molecule and the motor protein, a dsDNA template 

containing only one binding site for GAL4 was designed to independently couple the motors 

to the dsDNA. Finally, using appropriate overhangs on the respective dsDNA, the individual 

dsDNA-motor hybrids were linked by DNA hybridization. Using this strategy, two 

OSM-3_GAL4 motors were individually coupled to the dsDNA and subsequently hybridized 

via the complementary ssDNA overhangs. This complex has been studied in a single 

molecule assay in TIRF microscopy. The mean velocity of the coupled 

IFT1/2/3/4_OSM-3_GAL4 (2x) displayed two velocity populations with 1 µm/s and 2 µm/s, 

respectively. This strategy involves the coupling of two motor proteins via a non-covalent 

interaction between DNA binding proteins and the dsDNA. 

An iodoacetamide functionalized HaloTag ligand was used to establish a covalent link 

between the motor protein and DNA. The thiol-functionalized dsDNA was first covalently 

coupled to the HaloTag ligand. KLP11_Halo/KLP20 was subsequently added to covalently 

link the dsDNA to the respective motor. The success of this strategy has been demonstrated 

using SDS-PAGE. The C-terminal KLP11_Halo subunit of the heterodimeric Kinesin-2 



5. DEVELOPING MOLECULAR TOOLS TO RECONSTITUTE C. ELEGANS KINESIN-2/OSM-3 

HETEROTETRAMER IN VITRO 

   

45 

motor displayed a specific fluorescent band whereas the KLP20 subunit did not show any 

unspecific fluorescent labeling.  

To sum up, this work established molecular tools to specifically couple motor proteins to 

study their collective behavior in vitro. Moreover, the experimental design presented here 

allows simple changes to the relevant experimental parameters. For instance, the distance 

between the motors or the number of coupled motors can be easily adapted by solely changing 

the design of the dsDNA.  

 Discussion 5.3.

The vast majority of intracellular cargo is transported by teams of motors in vivo. Here, the 

main part of transport is bidirectional as the cargo carries several minus- and plus-end 

directed dynein and kinesin motors at the same time 78,79,83. Therefore on the microtubules, 

frequent reversals of cargo are observed. One notable exception to this type of transport is 

observed in the cilia where kinesin and dynein are responsible for the intraflagellar transport. 

Instead of displaying a bidirectional transport, IFT particles are transported unidirectional 

towards the ciliary tip by two kinetically distinct kinesin-2 motors. Here the direction of 

transport is reversed by the dynein motor. Interestingly, both kinesin-2 motors seem to 

cooperate during IFT and move with an intermediate velocity of 0.7 µm/s, while uncoupled 

Kinesin-2 and OSM-3 motors move with a rate of 0.5 µm/s and 1.3 µm/s, respectively 63,83. 

Within this thesis it was necessary to establish a basic approach to study the molecular 

mechanism of such motor coordination in vitro. 

One approach was to arrange the motor proteins with the help of DNA binding proteins on a 

DNA origami scaffold containing the corresponding protein binding sequences. Here the two 

DNA binding proteins GAL4 and CAP were tested in decoration experiments with DNA 

origami structure with and without a protein binding domain. However in all cases an 

interaction between motor protein and origami structure was observed, leading to the 

conclusion that the interaction is unspecific (Figure 5.11).  

The DNA recognition sequences for GAL4 and CAP are both consensus sequences that are 

not conserved during evolution. Examination of 16 natural recognition sequences of GAL4 

reveals a 17 bp consensus sequence 94,99. It consists of two palindromic CGG triplets that are 

essential for DNA binding by GAL4, whereas the other 11 bp are relatively unimportant for 

binding 99. The CAP consensus sequence exhibits only some base pairs that are important for 
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recognition and binding 95,96,98,100,101. Thus the composition of both used DNA recognition 

sequences for GAL4 and CAP could lead to the observed unspecific interaction, as the 

origami structure offers a large contact surface for the both proteins. Furthermore OSM-3 

interacts with the DNA origami structure in the absence of GAL4 or CAP (Figure 5.11). Due 

to this unspecific interaction the DNA origami approach is not suitable for studying motor 

protein coordination at least in the case of the Kinesin-2 motor. 

 

Figure 5.11: Overview of results obtained in decoration experiments with DNA origami and OSM-3 

mutant and fusion proteins. The OSM-3 fusion proteins possess the DNA binding proteins CAP and 

GAL4, respectively. The OSM-3 mutant is a constitutive active motor protein with an exchange of two 

glycines (GG) to glutamate (EE) in the flexible hinge region. The crosses indicate an interaction between 

DNA origami and motor protein. The red crosses indicate an unspecific DNA-protein interaction, while 

the green crosses indicate the expected DNA-protein interaction. 

In TEM micrographs of OSM-3_GAL4 and OSM-3_CAP, decorated microtubule filaments 

revealed a different orientation of bound origami structures. As shown in Figure 5.2, DNA 

origami structures bound via OSM-3_GAL4 are mainly aligned in an upright manner in 

regard to the microtubule filaments. In comparison DNA origami structures bound with help 

of OSM-3_CAP were arranged parallel to the microtubule filaments. These observations may 

be related to the different position of the DNA recognition sites of GAL4 and CAP within the 

DNA origami structure (Figure 5.2). The GAL4 binding site is located at the end of the 

origami structure, whereas the CAP site is rather located in the middle of the structure. These 

differences may be one explanation of the different molecular arrangements observed in the 

TEM micrographs. 

Derr et al. generated a similar approach based on DNA origami to study motor complexes 

in vitro. Here they used a DNA origami structure to covalently attach predefined numbers of 

kinesins and dyneins together on the same DNA scaffold 102. Despite the covalent 

dynein-DNA linkage, an agarose electrophoretic shift assay showed a non-stoichiometric 

interaction when a ratio of more than one dynein per DNA origami was used. This 

quantification was possible due to the size of the dynein motor that caused a visible shift of 
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the respective DNA origami-dynein bands. In contrast, no such analysis was shown for the 

kinesin-DNA origami complex.  

Taken together, the use of DNA origami appears to be unsuited to study kinesin motors. Thus 

the basic approach was simplified to minimal requirements for GAL4 binding in order to 

reduce the possibility of unspecific interactions with the DNA origami structure (Figure 5.6). 

In order to investigate this, a short dsDNA sequence was analyzed regarding its binding 

specificity for GAL4. The dsDNA is composed of four ssDNA fragments offering two protein 

binding sites, which are hybridized right to each other as shown by electrophoretic mobility 

shift assays. Furthermore this concept offers a time-optimized handling with more flexibility 

than the origami structure. 

OSM-3_GAL4 was chosen to study motor binding to the integrated GAL4 site. The 

successful established protein-DNA complex was analyzed in TIRF microscopy to study its 

behavior in single molecule assays. Here OSM-3_GAL4 was incubated with the prior 

hybridized IFT1/2/3/4 dsDNA consisting of two GAL4 binding sites. The complex possessed 

two velocity populations with either 1 µm/s or 2 µm/s, suggesting that one or two motor 

proteins are coupled to the dsDNA. The slower one of about 1 µm/s corresponds to a single 

OSM-3 motor protein being either attached to IFT1/2 or IFT3/4. The faster population 

exhibits a mean velocity of about 2 µm/s, corresponding to two motor proteins in near steric 

proximity. Indeed, Diehl et al. reported a doubled Kinesin-1 velocity, in the case that two 

motor proteins were suspended on an artificial protein scaffold 88. Furthermore a ten times 

increased velocity was shown for a Myosin VI construct comprised of four catalytic domains 

compared to the wild-type motor protein 103. Recent studies deal with multiple protein 

complexes to characterize the mechanisms of cargo transport by motor teams. Here the 

observed velocities are strongly dependent on the type of molecular motor 102,104–106. In a 

further attempt Qiu et al. dimerized two dyneins by complementary DNA oligomers with help 

of a SNAP-tag to study the stepping mechanism of this motor protein 107. 

In order to exclude the decomposition of the DNA protein complex due to the possible 

reversible GAL4-DNA binding reaction 108, a novel covalent coupling protocol of the motor 

protein and the designed dsDNA was developed in this thesis. Here, the dsDNA was 

conjugated with a terminal thiol-group and activated using an iodoacetamide ligand to allow a 

following covalent interaction with a Halo-tagged motor protein. The covalent coupling with 

KLP11_Halo/KLP20 could be successfully shown in SDS-PAGE.  
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The yield of the coupling reaction between KLP11_Halo and the dsDNA in Bicine buffer is 

higher than in a NH4HCO3 buffered solution. A possible reason could be the reactivity of 

primary amino groups with the iodoacetyl group of the used HaloTag iodoacetamide ligand. 

Bicine offers a tertiary amino group whereas, depending on the pH and the temperature of the 

solution, NH4HCO3 decomposes to CO2 and ammonia. The relative rate of reaction of a 

tertiary amine with iodoacetyl derivatives is lower compared to the reaction rate of primary 

amines or NH3. Liberated NH3 could deactivate the added Halo crosslinking agent and lead to 

the observed reduced coupling yield.  

 Summary and Outlook 5.4.

Within this thesis different approaches were used to study motor protein coordination in vitro. 

In summary a covalent coupling of protein and DNA scaffold, instead of a non-covalent 

interaction by DNA binding proteins, is preferable. Comparing both options for the 

engineering of motor complexes, the advantage of DNA origami structures over dsDNA 

oligomers is their size and rigidity. However the dsDNA scaffold offers a simple and quick 

method, where the possibility of unspecific interactions is reduced to a minimum. For further 

conclusions about the measured OSM-3 velocities, single molecule assays should be 

performed with covalent coupled motor-DNA complexes containing only one motor protein 

in order to verify the obtained result. 

Alternatively, the protein-DNA coupling could also be established by a SNAP-tagged 

Kinesin-2 and benzylguanine-conjugated dsDNA. A necessary activation of the 

thiol-conjugated dsDNA to react with iodoacetamide would be omitted here. 

For further experiments the dsDNA should be elongated to increase the distance of around 

8 nm between two coupled motor proteins. Here one would be able to draw conclusions from 

possible differences in velocity and run length regarding motor coordination and team work. 

The use of a dsDNA scaffold to attach motor proteins in vitro is a concept that offers also the 

possibility to generate so-called IFT trains consisting of large motor/cargo complexes. These 

trains deliver material to the ciliary tip and also remove it to transport it back to the cell body. 

Generating these trains would offer a possibility to study series-connected motor proteins of 

the same and different protein families, respectively.  
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6. Regulating the Kinesin-2 catalytic activity from 

Chromadorea to Amphibia 

Kinesin-2 being a processive molecular motor ensures an efficient transport of cargo by 

coupling the consumption of ATP to conformational changes. To prevent futile ATP 

hydrolysis, cells developed control mechanisms to regulate the motor activity when the motor 

is not involved in transport processes 5,41,49,59. In contrast to homodimeric Kinesin-1, where 

the C-terminal distal tails play an essential role 44,53, a detailed molecular mechanism of how 

heterotrimeric Kinesin-2 is autoregulated does not exist. Moreover, its C-terminal tail is 

involved in the heterotrimerization of the motor with the accessory non-motor subunit KAP. 

Nevertheless the impact of the mechanistic ramifications is not yet understood.  

Previous studies on C. elegans Kinesin-2 emphasized the importance of the so-called helix 

breaker position (termed the kink position) situated in the middle of the stalk domain (Figure 

6.1) and the relative positions of the two head domains in autoregulation 9. The removal of the 

kink or swapping the positions of the head domains leads to a constitutive active motor. 

Furthermore it was shown that deleting both C-terminal distal tails following the predicted 

coiled-coil also leads to activation 23. These results confirm the effects of the tail domain as 

well as the tails’ position relative to the heads in the regulation mechanism. However, two 

questions remain unclear so far:  

(A) What is the role of the accessory subunit KAP in autoregulation? 

(B) Are both tails required for an efficient regulation of heterodimeric Kinesin-2 9,36? 

 

Figure 6.1: Schematic overview of the heterodimeric Kinesin-2 structure. 
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 Experimental concept 6.1.

In this work the autoregulation and heterotrimerization were dissected in molecular detail 

using the Kinesin-2 motors from S. purpuratus and X. laevis (Figure 6.2). 

To this end, heterodimeric Kinesin-2 as well as heterotrimeric Kinesin-2/KAP motors were 

expressed to investigate, if these motor proteins from S. purpuratus and X. laevis are also 

autoinhibited similar to CeKinesin-2. Furthermore the association of the heterodimeric motor 

with the accessory subunit KAP was analyzed in detail. An overview of constructs used in 

this study is shown in Figure 6.2.  

To dissect the KAP binding to the C-terminus of the heterodimeric motor, C-terminal 

proteins (CTP) were expressed along with the respective KAP subunits (Figure 6.2). Central 

questions addressed within this thesis were: 

(A) Are the CTPs sufficient to yield the heterotrimeric complex? 

(B) Are both CTPs required to bind KAP? 

To assess the involvement of the C-terminal distal tails in autoregulation, wild-type tails were 

truncated at the conserved proline residue that demarcates the end of the predicted coiled-coil 

region. These truncation constructs are termed FIP site highlighting the three conserved amino 

acids phenylalanine (F), isoleucine (I) and proline (P) (Figure 6.2). Central questions 

addressed here were: 

(A) Does the FIP-truncation affect the heterodimerization? 

(B) Are both C-terminal distal ends required for autoregulation and if not, which subunit is 

responsible for the autoregulation of the heterodimeric motor? 
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Figure 6.2: Overview of the generated constructs. The crosses on the right site indicate existing constructs 

from the three organisms C. elegans, S. purpuratus and X. laevis. 
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 Results 6.2.

 Kinesin-2 from S. purpuratus and X. laevis possess both a helix 6.2.1.

breaker position and a conserved FIP site 

The sequence alignment of the Kinesin-2 proteins reveals a highly conserved catalytic head 

domain (~ aa 1-aa 370) and a more diverse tail domain (Figure 6.3). Albeit within the tail 

domain there is an invariantly conserved helix breaker position roughly in the middle of the 

stalk. Another such conserved position is found at the end of the predicted coiled-coil 

sequence with a proline of the FIP site that is followed by the random coil at the C-terminal 

distal end (Figure 6.3). 

The catalytic regulation mechanism is very well studied for the homodimeric Kinesin-1, 

where the motor is autoinhibited by the interaction of the C-terminal distal end of the tail with 

the catalytic head domains that is mediated through the helix breaker 44,53. Indeed, the 

wild-type sequences of the Kinesin-2 motors from S. purpuratus (KRP85 and KRP95) and 

from X. laevis (Kin2A and Kin2B) display an analogous helix breaker in the coiled-coil 

prediction algorithms (Figure 6.4, Figure 6.5). However, it is important to note that these 

predictions are limited to homodimeric coiled-coil formations. Even though a stable 

coiled-coil is predicted for the entire length of the stalk, functional studies have demonstrated 

that the C-terminus of the stalk domain is required for the heterodimerization. In this context, 

the N-terminal part of the stalk is not sufficient to support heterodimerization 23,24. 

The fact that Kinesin-2 from S. purpuratus and X. laevis also contain a helix breaker suggests 

that the catalytic activity of these motor proteins is regulated by tail folding onto the head 

domains as well. 

In contrast to the coiled-coil prediction for KLP20 from C. elegans, where only one helix 

breaker occurs at the amino acid residues 444 and 445, KRP85 from S. purpuratus as well as 

the corresponding motor subunit Kin2A from X. laevis contain more than one helix breaker 

(Figure 6.4, Figure 6.5). 
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Figure 6.3: Alignment of Kinesin-2 sequences from C. elegans, S. purpuratus, X. laevis and M. musculus. 

The evolutionary conserved helix breaker and the FIP site are highlighted. The sequences were aligned using the 

program MultAlin (http://multalin.toulouse.inra.fr/multalin/). 
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Figure 6.4: Coiled-coil predictions for Kinesin-2 from S. purpuratus. The stalk of both subunits is predicted 

as coiled-coil interrupted by a conserved helix breaker consisting of two glycines. The end of the coiled-

coil is indicated by the conserved FIP sequence which is followed by a random coiled tail until the 

C-terminal end of the protein. (A) Coiled-coil prediction for the subunit KRP95. The coiled-coil occurs 

between amino acid position aa 398 and aa 592. (B) Coiled-coil prediction for the subunit KRP85. The 

stalk region is predicted as a coiled-coil between aa 415 and aa 598. Furthermore the coiled-coil of 

KRP85 is interrupted a second time at the conserved amino acids tryptophan548 and threonine549. 
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Figure 6.5: Coiled-coil predictions for Kinesin 2 from X. laevis. The stalk of both subunits is predicted as 

coiled-coil interrupted by a conserved helix breaker consisting of two glycines. The end of the coiled-coil 

is indicated by the conserved FIP sequence which is followed by a random coiled tail until the C-terminal 

end of the protein. (A) Coiled-coil prediction for the subunit Kin2B. The coiled-coil occurs between 

amino acid position aa 398 and aa 592. (B) Coiled-coil prediction for the subunit Kin2A. The stalk region 

is predicted as a coiled-coil between aa 415 and aa 598. Consistent with the analysis of the Kinesin-2 

from S. purpuratus (Figure 6.4), the coiled-coil of KRP85 is interrupted a second time at the conserved 

amino acids tryptophan550 and threonine551. 
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 Co-expression of the C-terminal proteins lead to heterodimer 6.2.2.

formation 

The respective CTPs from C. elegans, S. purpuratus and X. laevis were co-expressed and 

purified. To this end the proteins were tagged with FLAG and His6, respectively. The 

co-immunoprecipitation of one subunit via FLAG-tag pulled down the His6-tagged partner as 

shown in Figure 6.6. The CTPs are thus capable of autonomous heterodimer formation. 

 

Figure 6.6: FLAG-affinity purification of Kinesin-2 CTPs from C. elegans, S. purpuratus and X. laevis. All 

proteins were co-expressed using the baculovirus expression system and co-purified by FLAG-affinity 

purification and subsequently separated in SDS-PAGE. The proteins of interest are indicated by an 

asterisk. The FLAG-tagged subunit is indicated by a white asterisk. 

 Stable interaction between KAP and CTP dimers and monomers 6.2.3.

except SpKRP95 

As shown previously with Kinesin-2 from C. elegans, the co-expression of the wild-type 

motor with its corresponding KAP subunit from S. purpuratus and X. laevis results in the 

formation of the heterotrimeric complex (Figure 6.7) 9. 
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Figure 6.7: FLAG-affinity purification of dimeric and trimeric Kinesin-2 from C. elegans, S. purpuratus 

and X. laevis. All proteins were co-expressed using the baculovirus expression system and co-purified by 

FLAG-affinity purification and subsequently separated in SDS-PAGE. Both catalytic subunits are 

indicated by an asterisk. 

To assess the prerequisites of KAP association with the heterodimeric motor, co-purifications 

of the CTPs from all three organisms with their corresponding KAP subunits were performed. 

For this purpose KAP was co-expressed with the CTP dimer and the corresponding 

monomers. Figure 6.8 shows that KAP from all three organisms was able to form a 

heterotrimeric complex with the corresponding CTP heterodimers. The KAP subunit 

co-precipitates with the monomeric CTPs from C. elegans and X. laevis demonstrating that 

both C-terminal distal tails can independently interact with the accessory subunit KAP. 

Only the CTP of the KRP95 subunit from S. purpuratus, the homologue of KLP11 from 

C. elegans and Kin2B from X. laevis, did not co-precipitate with SpKAP.  

To verify this result the His6-tagged SpKAP was co-expressed with the FLAG-tagged KRP95 

and purified via the FLAG-tag and His6-tag, respectively. In both cases neither KRP95 nor 

SpKAP could be co-purified with the corresponding protein, demonstrating that SpKAP 

interacts only with KRP85 but not with KRP95 (Figure 6.8). 
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Figure 6.8: FLAG-affinity purification of Kinesin-2 CTPs from C. elegans, S. purpuratus and X. laevis. All 

proteins were co-expressed using the baculovirus expression system and co-purified by FLAG-affinity 

purification and subsequently separated in SDS-PAGE. The proteins of interest are indicated by an 

asterisk. (A) Co-purifications of Kinesin-2 CTPs from C. elegans. Both the dimeric and the trimeric 

protein containing CeKAP were co-purified. Furthermore CeKAP could be co-purified with each subunit 

KLP11 CTP and KLP20 CTP individually. (B) Co-purifications of Kinesin-2 CTPs from S. purpuratus. 

Both the dimeric and the trimeric protein containing SpKAP were co-purified. In addition SpKAP could 

be co-purified with the KRP85 CTP subunit, whereas KRP95 CTP was not co-purified. (C) 

Co-purifications of Kinesin-2 CTPs from X. laevis. Both the dimeric and the trimeric protein containing 

XlKAP were co-purified. Furthermore XlKAP could be co-purified with each subunit Kin2A CTP and 

Kin2B CTP. (D) Affinity purification of KRP95 CTP-FLAG with SpKAP-His6. Half of the same 

co-expression was purified using <FLAG> resin and the other half using Ni-NTA resin, respectively. 

Neither KRP95 CTP nor SpKAP could be co-purified with the other protein. 
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 Generation of heterodimeric SpKinesin-2 and XlKinesin-2 motors 6.2.4.

with C-terminal truncations  

To dissect the involvement of the C-terminal distal tail domains in autoregulation, the 

respective motor protein subunits were truncated at the conserved proline position (Figure 

6.3). For the co-expression experiments, the subunits were tagged with FLAG and His6, 

respectively. The subsequent purification of the respective motors via the FLAG-tag resulted 

in a heterodimeric protein with a stoichiometric 1:1 composition (Figure 6.9). 

 

Figure 6.9: FLAG-affinity purification of Kinesin-2 wild-type motor from X. laevis and C-terminal 

truncation constructs in the Kin2B (Kin2B_FIP) and the Kin2A subunits (Kin2A_FIP), 

respectively. The identities of the subunits are indicated by an asterisk. The molar ratios of the proteins 

are as follows: Kin2A/Kin2B (1.2 : 1.0), Kin2A/Kin2B_FIP (1.2 : 1.0) and Kin2A_FIP/Kin2B (1.2 : 1.0). 

In addition to single FIP truncations in the respective heterodimeric motors, double FIP 

truncations were generated as well. Size exclusion chromatography (SEC) was performed to 

analyze the protein composition, because the constructs are of equal size. Figure 6.10 shows a 

co-expression and the SEC from Kin2A_FIP/Kin2B_FIP. The heterodimer elutes as a 

monodisperse population with no aggregates in a 1.0:1.0 molar ratio. 
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Figure 6.10: Affinity purification and size exclusion chromatography (SEC) of Kinesin-2 double-FIP 

deletion mutant from X. laevis. (A) FLAG-affinity purification of Kinesin-2 from X. laevis where both 

catalytic subunits are truncated at the FIP site. Both proteins were co-expressed, subsequently co-purified 

and analyzed in SDS-PAGE. (B) Size exclusion chromatography of the Kinesin-2 double-FIP deletion 

mutant from X. laevis. As both catalytic subunits are equal sized SEC was performed to analyze the 

protein composition. The co-purified protein (LP) was applied to the column together with BSA as a 

standard sized protein. The SDS-PAGE of the collected fractions shows the separated heterodimer 

Kin2A_FIP/Kin2B_FIP as a mono-disperse population with no aggregates. 

 XlKAP interacts with both of the full-length monomeric subunits 6.2.5.

and with the FIP truncation constructs 

To further investigate which part of the C-terminal tail of Kinesin-2 forms a complex with the 

KAP subunit, co-immunoprecipitations of KAP and the FIP proteins were performed. XlKAP 

was co-expressed with the double-truncated XlKin2A_FIP/Kin2B_FIP along with the single 

FIP truncation constructs XlKin2A-FIP/Kin2B and XlKin2A/Kin2B_FIP. The co-purification 

showed that Kin2A/Kin2B_FIP does not interact efficiently with XlKAP (Figure 6.11). 
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Figure 6.11: FLAG-affinity purifications of wild-type and FIP-truncated deletion mutants of Kinesin-2 

from X. laevis with XlKAP. The proteins were co-expressed and subsequently co-purified. The proteins 

of interest are indicated by an asterisk. XlKAP is indicated by a red asterisk. The molar ratios of the 

trimeric co-expressions are as follows: KAP/Kin2A/Kin2B (1.1 : 1.0 : 1.0) and KAP/Kin2A/Kin2B_FIP 

(0.2 : 1.0 : 1.0). 

The use of Coomassie staining to visualize the expression of recombinant proteins however 

has a detection limit of about 100 ng, and has the disadvantage that the reproducibility is very 

low due non-standardized destaining of the SDS-PAGE gel 109. 

To visualize the motor proteins in a more sensitive assay, XlKAP was labeled via its 

C-terminal SNAP-tag with a fluorescent Alexa 564 dye. To verify the successful 

co-purification of the fluorescent XlKAP with the dimer Kin2A/Kin2B as well as the 

monomers Kin2A and Kin2B, a gel electrophorese was performed. Before staining the protein 

bands with Coomassie, the fluorescently labeled XlKAP was visualized using a typhoon 

scanner. Figure 6.12 shows that the trimeric full-length protein was assembled in a 

stoichiometric ratio whereas the co-expressions of XlKAP with the monomeric full-length 

motor subunits did not lead to an efficient complex formation. 
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Figure 6.12: FLAG-affinity purification of XlKAP and co-expressions with XlKinesin-2 and both catalytic 

subunits. The proteins were co-expressed and subsequently co-purified. During purification XlKAP was 

labeled with ATTO 550 via its SNAP-tag. The proteins were separated by size in SDS-PAGE and 

visualized first by scanning at 532 nm and subsequently by Coomassie-staining. The molar ratio of the 

trimeric motor protein was calculated: KAP/Kin2A/Kin2B (0.9 : 1.0 : 0.9). 

To further support the conclusions of the results obtained from co-immunoprecipitation 

assays, the fluorescently labeled complexes were used to decorate surface-attached unlabeled 

microtubules. Here the non-hydrolysable ATP analog AMP-PNP was used to attach the 

respective motor proteins to the microtubules in a TIRF microscope. First it was established 

that fluorescently labeled XlKAP could not decorate the surface-attached microtubules by 

itself (Figure 6.13 A). Figure 6.13 B shows that the trimeric motor protein 

XlKAP/Kin2A/Kin2B as well as the dimeric proteins XlKAP/Kin2A and XlKAP/Kin2B 

decorate unlabeled microtubule filaments. The used proteins were applied at the same 

concentration to allow a subsequent comparison of their decoration tendency. 
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Figure 6.13: Microtubule decoration experiments with Kinesin-2 from X. laevis. (A) Fluorescent labeled 

XlKAP did not decorate ATTO 488-labeled microtubules. After addition of ATTO 550-labeled trimeric 

XlKinesin-2 the filaments became visible at 532 nm. (B) Microtubule decoration of ATTO 550-labeled 

Kin2A/Kin2B/XlKAP, Kin2A/XlKAP and Kin2B/XlKAP. 

 Complex formation of purified XlKAP with XlKinesin-2 dimers and 6.2.6.

monomers 

To investigate if XlKAP is capable of forming a complex with the separately purified motor 

subunits in vitro, XlKAP was purified and fluorescently labeled as described above. The 

unlabeled motor proteins were bound to the surface-attached ATTO 488 labeled microtubules 

using AMP-PNP. Lastly, the Alexa 564 labeled XlKAP was flown into the flow chamber to 

test possible interactions with the unlabeled motor proteins. With the exception of monomeric 

FIP-truncated proteins Kin2A_FIP and Kin2B_FIP, all full-length proteins as well as the 

dimeric truncated proteins were able to interact with XlKAP (Figure 6.14). 
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Figure 6.14: Microtubule decoration experiments with subsequent complexed XlKinesin-2 dimers and 

monomers with XlKAP. Fluorescent ATTO 550-labeled XlKAP interacts with wild-type XlKinesin-2 

dimer and monomers as well as deletion truncated XlKinesin-2 dimers. The motor proteins were 

incubated with ATTO 488-labeld microtubules. After addition of ATTO 550-labeled XlKAP, the 

filaments were visualized with a wavelength of 488 nm and 532 nm.  
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 The C-terminal part of the KRP85- and the corresponding 6.2.7.

Kin2A-tail are involved in motor regulation 

The activities of the SpKinesin-2 and XlKinesin-2 motors were examined in gliding assays to 

assess the quality of the respective protein purifications. The full-length wild-type motor 

served as a reference for the truncated proteins as all motors should possess nearly the same 

gliding velocity. This fact is due to the experimental settings, where a large number of 

surface-immobilized proteins transport the captured filaments as a collective unity. Kinesins 

were thereby attached to the glass surface via their C-terminal end. Because the motors are 

attached to the surface via their tail domains, the gliding velocities of the respective constructs 

are expected to be independent of the influence of the tail domains. Figure 6.15 shows that the 

filament gliding velocities of the respective constructs are indeed consistent with exception of 

KRP85_FIP/KRP95 and Kin2A_FIP/Kin2B, where the homologous Kin2α random coiled tail 

was truncated.  
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Figure 6.15: Gliding assays of Kinesin-2 from S. purpuratus and X. laevis. (A) Gliding assay of wild-type 

Kinesin-2 and mono FIP-truncated deletion mutants from X. laevis. The wild-type (284 ± 2 nm/s [S.D.]) 

and Kin2A/Kin2B_FIP (306 ± 14 nm/s [S.D.]) exhibit almost the same gliding velocity, while 

Kin2A_FIP/Kin2B (229 ± 17 nm/s [S.D.]) displays slightly reduced velocity. (B) Gliding assay of 

wild-type Kinesin-2 and mono FIP-truncated deletion mutants from S. purpuratus. The wild-type 

(315 ± 22 nm/s [S.D.]) and KRP85/KRP95_FIP (307 ± 14 nm/s [S.D.]) show nearly the same gliding 

velocity, while KRP85_FIP/KRP95 (218 ± 20 nm/s [S.D.]) again displays slightly reduced velocity. 

For the microtubule-activated ATPase assays of the motor proteins from X. laevis and 

S. purpuratus, the corresponding constructs were purified and assayed simultaneously to 

ensure experimental comparability. The data was fitted to Michaelis-Menten equation (Figure 

6.16).  
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Figure 6.16: ATPase assay of Kinsesin-2 from S. purpuratus and X. laevis. The proteins were co-purified and 

subsequently analyzed in a microtubule-activated ATPase assay. (A) ATPase assay of wild-type 

Kinesin-2 and mono FIP-truncated deletion mutants from X. laevis. (B) ATPase assay of wild-type 

Kinesin-2 and mono FIP-truncated deletion mutants from S. purpuratus. 

Both, wild-type Kinesin-2 motors as well as the KRP95 and Kin2B FIP-truncated constructs 

displayed a suppressed ATPase activity which is consistent with an autoinhibited state. 

Intriguingly, the removal of the C-terminal distal part of the tail in the homologous KRP85 

and Kin2A subunits relieved the autoinhibition of the Kinesin-2 motors from S. purpuratus 

and X. laevis leading to increased ATP turnover rates.  
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 The heterotrimeric Kinesin-2 motor from X. laevis displays 6.2.8.

processive runs in single molecule TIRF assays  

All previous results beg the question, if binding of the KAP subunit activates the 

autoregulated heterodimeric full-length Kinesin-2 in an in vitro single molecule assay. To 

elucidate this question, wild-type full-length trimeric Kinesin-2 from X. laevis was 

co-expressed and fluorescently labeled using the SNAP-tagged KAP subunit during 

purification. Subsequently the labeled protein was studied in TIRF microscopy. The activity 

of the purified trimer and dimer proteins was examined in gliding assays to assess the quality 

of the respective protein purifications (Figure 6.17). Both the dimeric as well as the trimeric 

XlKinesin-2 exhibit nearly the same gliding velocity. 

 

Figure 6.17: Gliding assay of dimeric and trimeric Kinesin-2 wild-type from X. laevis. Both proteins exhibit 

almost the same gliding velocity (Kin2A/Kin2B: 240.7 ± 13.7 nm/s [S.D.], N = 25; 

Kin2A/Kin2B/XlKAP: 294.7 ± 21.9 nm/s [S.D.], N = 43) 

Subsequently the trimeric motor protein was incubated with surface-immobilized unlabeled 

microtubules and the single molecule walking events were initiated by addition of ATP. 

Figure 6.18 shows the preliminary velocity and the run length distributions of the trimeric 

XlKinesin-2, respectively. The reconstituted naturally occurring trimeric motor protein is able 

to display processive runs on immobilized microtubules with a mean velocity of 

162.4 ± 6.4 nm/s [S.D.] (N = 92). The run length distribution exhibits a mean length of 

14.8 ± 2.7 µm [S.D.] (N = 92). 
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Figure 6.18: Velocity distribution and run length of trimeric Kinesin-2 from X. laevis. (A) Velocity 

distribution of trimeric Kinesin-2 from X. laevis. (B) Run length of trimeric Kinesin-2 from X. laevis. The 

mean velocity of 162.4 ± 6.4 nm/s [S.D.], N = 92 and the mean run length of 14.8 ± 2.7 µm [S.D.], 

N = 92 was plotted by Gaussian and single exponential fitting of the data points with OriginPro2015. 

 Summary of results 6.2.9.

The naturally occurring Kinesin-2 trimer could be reconstituted for C. elegans, S. purpuratus 

and X. laevis in vitro. 

The dimeric Kinesin-2 from S. purpuratus and X. laevis is autoinhibited in ATPase assays like 

the related Kinesin-2 KLP11/KLP20 from C. elegans. 

Truncating right after the FIP site has no effect on heterodimerization of Kinesin-2 from 

S. purpuratus and X. laevis. In terms of motor regulation, the corresponding deletion mutants 

KRP85_FIP/KRP95 and Kin2A_FIP/Kin2B lead to a constitutive active motor protein in 

ATPase assays.  

The interaction of all Kinesin-2 CTPs with their corresponding KAP subunit leads to a 1:1 

co-expression of the subunits. Furthermore all three KAP proteins have the ability to complex 

with the dimeric form of Kinesin-2 CTP as well as only one tail CTP. The only exception is 

KRP95 CTP from S. purpuratus, where no co-immunoprecipitation could be observed. 

Complex formation of XlKAP with full-length dimer and both monomers, as well as the 

double and mono truncated FIP-deletion mutants after purification is possible in vitro. 

Interaction of XlKAP with deleted monomers at the FIP site could not be observed. 

Furthermore SpKAP is also able to complex the full-length dimer in vitro. 

The in vitro reconstituted naturally occurring XlKinesin-2 trimer is able to walk processively 

on immobilized microtubules.  
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 Discussion 6.3.

 KAP and Kinesin-2 random coiled tail 6.3.1.

In this thesis the interaction of the non-motor subunit KAP with heterodimeric Kinesin-2 was 

analyzed to obtain detailed insights in the complex formation between these proteins. One aim 

was to assess which part of the protein is required for KAP interaction in different organisms. 

Previous TEM studies on heterotrimeric Kinesin-2 motors showed that the KAP subunit from 

C. elegans, S. purpuratus and M. musculus interacts only with the C-terminal tail domain of 

the respective motor proteins 23,30,38. To dissect the contributions of each subunit to 

heterotrimer formation, pulldown experiments of KAP along with its respective C-terminal 

heterodimeric and monomeric motor tails were performed. The three organisms C. elegans, 

S. purpuratus and X. laevis were chosen to study the heterodimer formation between KAP and 

the motor proteins. 

The co-immunoprecipitations of KAP and CTP Kinesin-2 deletion mutants showed, except 

for the subunit KRP95 from S. purpuratus, consistent results (Figure 6.8). All heterodimeric 

and monomeric CTP proteins interact with KAP (Figure 6.8). Only the KRP95 subunit could 

not be co-purified with SpKAP (Figure 6.8). These findings conflict with already published 

studies about C. elegans KAP/Kinesin-2 interaction, where CeKAP exclusively interacts with 

full-length heterodimeric Kinesin-2 or the monomeric KLP11 subunit 9,23. However KAP 

could not always be visualized by Coomassie staining. As seen in Figure 6.12, 

XlKAP-ATTO 550 was successfully co-purified with each Xenopus motor subunit Kin2A and 

Kin2B, but could not be stained by Coomassie Brilliant Blue. This dye adsorbs basic and 

aromatic amino acids in the polypeptide chain. In XlKAP these amino acids display 32.6% of 

the whole protein sequence. A possible conclusion of the inconsistent KAP staining could be 

an insufficient partial protein unfolding, where KAP offers different polypeptide surfaces 

depending on its respective binding partner. For further evidence, KAP from C. elegans and 

S. purpuratus should be covalently labeled with a fluorescent dye and again co-expressed 

with full-length heterodimer and both monomers. 

To further investigate which part of the C-terminal tail of XlKinesin-2 is required for XlKAP 

binding, co-immunoprecipitation experiments of XlKAP and the FIP site deletion mutants 

were performed. Here the pulldown experiments were compared to XlKAP and full-length 

heterodimer and monomer purifications (Figure 6.19). XlKAP is able to form a stable 

interaction with the full-length heterodimer Kin2A/Kin2B, as well as both full-length 
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monomers Kin2A and Kin2B, respectively. However XlKAP solely interacts 

nonstoichiometrically with the Kin2A/Kin2B_FIP deletion mutant, but not with the other 

single truncated Kin2A_FIP/Kin2B protein as well as the double truncated 

Kin2A_FIP/Kin2B_FIP motor protein. A possible reason could be that XlKAP was not 

stained by Coomassie as already mentioned. Here co-immunoprecipitations with 

XlKAP-ATTO 550 should be performed to verify this result. 

Beside this approach XlKAP/Kinesin-2 interaction was verified in decoration experiments 

using a TIRF microscope (Figure 6.19). Here co-expressed XlKAP-ATTO 550 with its 

respective full-length heterodimer and both monomers was able to decorate unlabeled, 

immobilized microtubules. The most efficient decoration was displayed by the co-expressed 

heterotrimer. The lowest decoration tendency was for the dimer XlKAP/Kin2A. 

Furthermore XlKAP-ATTO 550 was able to interact with independently purified Kinesin-2 

wild-type and mutants that were immobilized on ATTO 488-labeled filaments (Figure 6.14). 

Here XlKAP was able to interact with full-length heterodimer and both monomers. In 

addition, the deletion mutants Kin2A_FIP/Kin2B and Kin2A/Kin2B_FIP as well as the 

double truncated motor protein Kin2A_FIP/Kin2B_FIP displayed an interaction with the 

XlKAP subunit. The monomeric FIP-deletion mutants Kin2A_FIP and Kin2B_FIP were the 

only exception. No interaction with XlKAP was detectable here. Comparing the interaction 

intensity of the respective truncated motor proteins, the complex formation between XlKAP 

and the FIP site truncated Kin2A heterodimer is more efficient than with Kin2A/Kin2B_FIP. 

This observation is confirmed by decoration results of XlKAP with full-length monomers 

Kin2A and Kin2B, where the XlKAP-Kin2A complex displayed a reduced tendency for 

interaction compared to full-length heterodimer and monomeric Kin2B (Figure 6.14). This 

result was also observed in filament decoration assays with co-expressed XlKAP-Kin2A 

(Figure 6.13). Taken together, the XlKAP subunit appears to have a more pronounced 

tendency to interact with the C-terminal part of the Kin2B subunit than with the Kin2A 

subunit within the heterodimer. This is consistent with previous results by Vukajlovic who 

showed that CeKAP only binds the Kin2B subunit homolog KLP11 23. 

Interestingly XlKAP displayed an interaction with the double truncated heterodimer but not 

with the corresponding monomers. These results lead to the conclusion that XlKAP binds in 

the C-terminal part of XlKinesin-2 to the random coiled-coil. In addition it seems obvious that 

XlKAP also interacts with a sequence between the helix breaker (Kin2B: G477G478) and the 

FIP site (Kin2B: FIP592) (Figure 6.20). Interestingly C. elegans CeKAP was shown to interact 
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only with the KLP11 random coiled tail 23. Furthermore Vukajlovic showed that a mutated 

dimeric CeKinesin-2 without random coil tails is not able to interact with CeKAP. However 

this protein was deleted 21 amino acids prior to the conserved FIP site 23. This sequence 

between a second predicted and conserved helix breaker and the FIP site also seems to be 

conserved throughout evolution (Figure 6.20). 

 

Figure 6.19: Overview of the used motor proteins in pull-down experiments and decoration experiments 

with the non-motor subunit KAP. The number of crosses indicates the intensity of interaction 

(+++ very strong; ++ strong; + weak; - no interaction; n.d. not determined). 
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Figure 6.20: Sequence comparison of the C-terminal part of both subunits of Kinesin-2 from different 

organisms. Both evolutionary conserved helix breakers (HB1, HB2) and the FIP site (FIP) are indicated. 

Furthermore a conserved sequence, including a possible phosphorylated serine, is boxed 60. This serine 

occurs at the Kinesin-2α subunit of C. reinhardtii, but on the Kinesin-2β subunit of C. elegans, 

S. purpuratus, X. laevis and M. musculus. 

 Influence of Kinesin-2α random coiled tail in motor regulation 6.3.2.

In a former study on C. elegans Kinesin-2 it was pointed out that Kinesin-2 without the 

random coiled tail showed a reduced microtubule affinity compared to the full-length 

protein 23. Further experiments created an interaction of the C-terminal part of KLP11 and 

KLP20 with filaments as well as complex formation of the C-terminal part of KLP20 with a 

tail-truncated KLP11 homodimer 23. 
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Based on these results a more detailed analysis of the random coiled tails in Kinesin-2 

regulation was performed. To this end, the heterodimeric Kinesin-2 from S. purpuratus and 

X. laevis was used to evaluate the influence of both random coiled tails on motor protein 

regulation. In X. laevis Kinesin-2 the C-terminal part of coiled-coil II and the entire 

coiled-coil III, ending in a conserved FIP motif, are essential for heterodimerization 24. Thus 

the generated motor proteins were deleted right after this FIP site to ensure heterodimerization 

while studying the tail influence in motor activity. The Kinesin-2 mutants from S. purpuratus 

as well as from X. laevis displayed the same gliding velocity compared to the respective 

wild-type protein (Figure 6.15). Furthermore these gliding velocities are comparable with 

already published motilities 10,38,39,55,87. In order to gain further insights into the ATP turnover 

rate and to examine the direct activity of the deletion mutants, ATPase assays were 

performed. Here the respective mutants from S. purpuratus and X. laevis with the shortened 

Kin2α tail showed a higher turnover rate compared to the wild-type protein and the deletion 

mutant with the truncated Kin2β tail. Consistent with results obtained with the S. purpuratus 

proteins, the motor protein with the deleted Kin2β tail from X. laevis exhibited a higher 

turnover rate than the wild-type protein (Figure 6.16). Similar results were obtained with the 

respective S. purpuratus constructs (Figure 6.16). These results indicate a fundamental 

influence of the Kin2α random coiled tail in regulating Kinesin-2 motor activity, while the 

Kin2β tail has no effect on the regulatory mechanisms of Kinesin-2 in both organisms.  

In this context Vukajlovic proved the importance of the random coiled tails of the C. elegans 

heterodimer 23. In heterodimeric CeKinesin-2, homodimeric OSM-3 as well as Kinesin-1, an 

exchange of two amino acids in the helix breaker sequence or a removal of the hinge region, 

to disable a backfolding of the tails onto the catalytic heads, established a constitutive active 

motor protein 9,25,44,50. 

 Influence of KAP in the Kinesin-2 activation 6.3.3.

Although the non-motor subunit KAP of heteromeric Kinesin-2 is implicated in motor 

regulation and is essential for a normal protein function in vivo, the underlying molecular 

mechanisms remain unclear 9,16,39,63,110. In vivo the stoichiometry of the heterodimeric motor 

protein relative to KAP is less than one, including organisms ranging from algae to 

vertebrates 14. In this context it seems possible that heterodimeric Kinesin-2 may function in 

the absence of the associated subunit KAP. Otherwise one can speculate about two occurring 

motor protein fractions in vivo – one activated and one inactivated. Indeed Yamazaki et al. 
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published KAP as having no influence in regard to the catalytic motor activity in vitro 38. Here 

the authors analyzed heterodimeric and heterotrimeric Kinesin-2 from mouse in gliding- and 

ATPase assays, respectively. The gliding velocity as well as the kcat value of both proteins is 

comparable. The same properties in gliding assays of XlKinesin-2 heterodimer and 

heterotrimer could also be observed during this thesis. Furthermore a co-expressed 

XlKinesin-2 heterotrimer was able to exhibit a robust motility as revealed in in vitro 

single-molecule assays. 

Here the trimeric motor protein showed a mean velocity of about 162.4 nm/s and a mean run 

length of 14.8 µm. The value of the mean velocity is interestingly around 50% lower than the 

published value of about 0.4 µm/s so far 9,10,12. However until now, all reported in vitro 

experiments were conducted with dimeric Kinesin-2 in optical trap measurements as well as a 

GFP-labeled SpKinesin-2 55. In vivo it is plausible that some posttranslational modifications 

lead to a different observed velocity. However the calculated mean run length is much higher 

than the published distance of 0.45 µm 12. Regarding the length of a primary cilium of about 

5-10 µm, motor proteins involved in IFT should be able to walk this distance. A recently 

published article about the influence of fluorescent tags on the motility in single molecule 

assays could offer a further hint 111. The reason for this difference needs to be addressed in 

further experiments. Besides the co-expressed heterotrimeric Kinesin-2 from X. laevis, a 

belated complexed heterodimeric Kinesin-2 with KAP from S. purpuratus was also analyzed 

in single molecule assay in vitro (preliminary data). Here only some moving motor proteins 

were obtained, while most of them were inactive. Beside the ability of fluorescently labeled 

KAP to build a complex with dimeric XlKinesin-2 in decoration experiments, this result 

verifies the ability of KAP to activate an autoinhibited SpKinesin-2 in vitro. This observation 

is a further hint, that KAP plays a primary role in the regulatory mechanism of heterodimeric 

Kinesin-2. 

A further interesting point would be the influence of the third non-motor subunit KAP on 

motor spiraling around one protofilament. Brunnbauer et al. reported Kinesin-2 spiraling from 

diverse organisms, including X. laevis, and thus torque generation during cargo transport. 

Here the stability of the neck region is directly involved in the spiraling behavior of the motor 

protein 20. The more stable the neck the less is the motor spiraling. In vitro Kinesin-2 displays 

a striking decrease of run length compared to Kinesin-1 9,12. However Kinesin-1 as a 

long-range transporter was shown to move on one protofilament instead of spiraling around 

the microtubule 112–114. Surprisingly trimeric XlKinesin-2 showed a mean run length of 
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14.8 µm in in vitro single molecule assays, verifying that this co-expressed motor did not 

spiral around the attached filaments. Here the associated KAP subunit would serve as a neck 

stabilizing co-factor. Furthermore protofilament tracking has an advantage over spiraling in 

that less ATP would be used by the moving motor proteins. 

 Summary and Outlook 6.4.

 Conditions and binding topologies for complexing trimeric 6.4.1.

Kinesin-2 

The complex formation between KAP and the catalytic motor subunits Kin2α and Kin2β was 

analyzed in co-immunoprecipitations and decoration experiments in TIRF microscopy. In due 

consideration of the already discussed interaction of KAP with diverse Kinesin-2 mutants and 

full-length motor proteins, as well as motor activation by Kin2A tail deletion, KAP seems to 

bind the C-terminal part of Kinesin-2. Furthermore KAP obviously interacts with both 

subunits of Kinesin-2 from C. elegans, S. purpuratus and X. laevis. Here the random coiled 

tail is primarily involved in this complex formation. Besides the random coiled tail, a part 

between the helix breaker and the FIP site also has the ability to interact with KAP. Certainly 

this interaction is very weak compared to the interaction with the Kinesin-2 CTPs. Thus it is 

plausible that KAP interacts with some of these amino acids, which show a higher 

conservation within the aforementioned Kinesin-2 proteins of the studied organisms. Here 

further deletion mutants of the C-terminal part of Kinesin-2 could be used to get a more 

detailed insight into the binding region of KAP. As these experiments are a qualitative 

analysis of the KAP binding behavior, the complex formation should also be studied in 

quantitative assays. Here the binding strength of XlKAP with monomeric full-length Kin2A 

and Kin2B subunits as well as the full-length heterodimer should be analyzed in 

thermophorese assays. 

The conducted decoration experiments showed an enhanced interaction of KAP with the 

Kin2B subunit and Kin2A-FIP/Kin2B motor protein than the counterpart proteins Kin2A 

subunit and Kin2A/Kin2B-FIP. Therefore KAP seems to interact especially with the random 

coiled tail of the Kin2β subunit. However in the case of SpKinesin-2 and XlKinesin-2, it is 

plausible to speculate that KAP binding to the Kin2A and KRP85 random coiled tail leads to 

a stabilization of the tail, suppressing the back folding onto the catalytic heads. In this context 

Liang et al. recently postulated the importance of a phosphorylated conserved serine in the 
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random coiled tail of C. reinhardtii subunit FLA8, while in C. elegans, S. purpuratus and 

X. laevis the conserved serine is embedded in the random coiled tail of the other subunit 60 

(Figure 6.20). The authors showed that a phosphorylated CrKinesin-2 was not able to bind the 

IFT complex B and thus KAP. Due to this circumstance they speculate that phosphorylation 

of FLA8 at the flagella tip leads to motor protein inactivation and cargo release. Therefore 

phosphorylation of Kinesin-2 using PKA should be investigated in order to see differences in 

KAP binding and motor activation. 

Besides analyzing the complex formation of KAP and the motor protein, single molecule 

assays of the expressed trimeric motor complex were also conducted. Here the trimeric 

wild-type X. laevis KAP/Kinesin-2 motor protein was able to take multiple steps on the 

immobilized microtubules. Heterodimeric X. laevis Kinesin-2 could be a constitutive active 

motor protein in single molecule assays despite the fact, that the related S. purpuratus 

Kinesin-2 is autoinhibited 55. Nevertheless the dimeric wild-type X. laevis Kinesin-2 was 

shown to be autoinhibited in in vitro ATPase assays within this work. Hence the activation 

state of this protein should be elucidated in single molecule assays. Beside this approach one 

could speculate that KAP binding to heterodimeric full-length Kinesin-2 from X. laevis leads 

to an activation of the autoinhibited motor protein. As it seems possible that KAP binding 

stabilizes the neck region of the motor protein leading to protofilament tracking instead of 

spiraling around the microtubule, further experiments should be conducted. Therefor surface 

attached trimeric Kinesin-2 should be analyzed regarding generation of microtubule rotation 

in vitro. If KAP really stabilizes the neck, rotation should not be observed compared to 

heterodimeric Kinesin-2. 

 Requirements for autoregulation of heterodimeric Kinesin-2 6.4.2.

The performed ATPase assays with the distantly related Kinesin-2 proteins from 

S. purpuratus and X. laevis suggested that the Kin2α random coiled tail of both organisms is 

of particular relevance in Kinesin-2 regulation. Recent studies show for homodimeric 

Kinesin-1 that when the C-terminal tail interacts with the motor heads, autoregulation of the 

motor protein consequently takes place 44,53. Heterodimeric Kinesin-2 seems to be regulated in 

an asymmetric manner, as it consists of two different subunits. To further dissect the results 

obtained from the ATPase assays pull-down experiments with the random coiled tails and the 

catalytic head domains should be conducted 44,53. Furthermore also pull-down experiments 
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and decoration experiments, respectively, with monomeric and also dimeric Kinesin-2 CTPs 

and dimerized heads should be investigated. 

As the Kin2α random coiled tail is of particular relevance for Kinesin-2 regulation, the 

intracellular processes controlling the conformation of this tail domain should be elucidated. 

Here the potential effects of phosphorylation of the conserved threonine residue in the Kin2α 

subunit and the serine/tyrosine in the Kin2β subunit in the second helix breaker should be 

investigated to elucidate if phosphorylation impacts the motor activity (Figure 6.20). 

As removal of the first helix breaker did not result in an enhanced motor activity, the second 

helix breaker should be scrutinized for better understanding the self-inhibitory folding of the 

tail domain on the motor regulation. Furthermore preliminary data of further ATPase assays 

indicate the relevance of a higher salt concentration for Kinesin-2 motor activation. Here the 

used potassium acetate was converted to a physiologic salt concentration. In this context 

further experiments with varying potassium acetate concentrations should be conducted. 

Even though the fitted curves of the ATPase assays with S. purpuratus and X. laevis wild-type 

and mutated proteins do not reach the saturation level, some qualitative assumptions about the 

influence of the Kinesin-2 random coiled tails in substrate affinity can be made. Regarding the 

substrate affinity the proteins with the deleted Kin2β random coiled tail from both organisms 

showed a comparable KM rate and seemed to be involved in motor-microtubule interaction. In 

X. laevis the protein with deleted Kin2α random coiled tail exhibited a lower substrate affinity 

than the protein with deleted Kin2β tail. Surprisingly in S. purpuratus the Kin2α tail deletion 

mutant seemed not to influence the motor interaction with filaments. This finding corresponds 

with the ATP turnover rate of the Kinesin-2 mutant with the shortened Kin2β tail. Here no 

difference between wild-type protein and deletion mutant could be verified, leading to the 

conclusion that the SpKin2β random coiled tail is not involved in motor regulation. 

Furthermore despite the different substrate affinities of SpKin2α/Kin2β_FIP and 

XlKin2α/Kin2β_FIP both motor proteins are activated in ATPase assays. Due to these results 

it seems obvious that the substrate affinity of the used proteins has no effect on the motor 

activity. 

These results further indicate the importance of the Kin2β random coiled tail in SpKinesin-2 

and both random coiled tails in XlKinesin-2 as its loss reduces the microtubule affinity. This 

is further supported by experiments with tail-truncated motor proteins of CeKinesin-2 as well 

as tail-head interaction studies 23. Vukajlovic co-purified homodimeric Kin2β motor heads 

with Kin2α CTP and dimeric Kin2α/Kin2β CTP. Furthermore in ATPase assay both 
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monomeric tails of Kin2α and Kin2β as well as dimeric tails reduce the motor activity of 

Kinesin-2 about 50% 23. Thus the Kin2α subunit, as well as the Kin2β subunit of C. elegans 

and X. laevis seem to play the same role in Kinesin-2 regulation, including KAP binding, 

tail-head interaction and tail-filament interaction, respectively. These results should be 

verified for S. purpuratus and X. laevis Kinesin-2 deletion mutants in vitro. 
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