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1. Einleitung 

 

 

 

1.1. Das hepatozelluläre Karzinom 

 

 

1.1.1. Epidemiologie 

 

Karzinome der Leber stellen, mit einer Inzidenz von circa 650.000 Neuerkrankungen 

weltweit sowie knapp 700.000 Todesfällen im Jahr 2008, die dritthäufigste malig-

nombedingte Todesursache dar [2]. Auf die USA bezogen handelt es sich bei mehr 

als 75% aller malignen Neoplasien der Leber um ein hepatozelluläres Karzinom 

(HCC). Dieses stellt somit die häufigste Ursache primärer Neoplasien der menschli-

chen Leber dar, vor dem cholangiozellulärem Karzinom [3]. Weltweit liegt der Anteil 

des HCC, gemessen an allen Lebertumoren, bei ca. 90%, Männer sind weltweit etwa 

doppelt so häufig betroffen wie Frauen [4].  

Es lassen sich große geographische Unterschiede in der Inzidenz feststellen: In den 

Staaten Mitteleuropas und anderen entwickelten Ländern liegt die Inzidenz des He-

patozellulären Karzinoms bei ca. 2,5/100.000 Einwohnern. In anderen Teilen der 

Welt, wie etwa in Südostasien, bei bis zu 22/100.000 Einwohner. Die Inzidenz variiert 

somit, je nach geographischer Lage, um den Faktor zehn [2]. Ein eindeutiger Trend, 

im Sinne einer ansteigenden Inzidenz, lässt sich in den Industrienationen nicht signi-

fikant belegen, jedoch stieg die Zahl der Neuerkrankungen in den USA in den letzten 

zwei Jahrzehnten um den Faktor zwei an. Eine solche Entwicklung ist in Europa nicht 

erkennbar, lediglich die Häufigkeit des Auftretens der Erkrankung nahm bei Frauen 

und jungen Erwachsenen zu [5, 6].  
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1.1.2. Ätiologie 

 

Bei mehr als 80% aller Patienten mit einem hepatozellulären Karzinom liegt eine Le-

berzirrhose, also eine chronische Schädigung der Leber, vor. Hierbei handelt es sich 

um einen bindegewebigen Umbau der Leber, der im Verlauf zu einer Einschränkung 

der Leberfunktion führt. Ursächlich hierfür können eine Vielzahl unterschiedlicher 

Faktoren sein: virale Hepatitiden (besonders chronische Hepatitis B und C), alkohol-

toxische Leberschädigung, metabolische Lebererkrankungen (wie zum Beispiel die 

Glykogenose Typ I), eine Hämochromatose oder primär biliäre Cholangitis [7-14]. 

Anhand einer großen Studie mit über 22.000 Patienten in Taiwan konnte etwa der 

Zusammenhang zwischen HBV-Infektion und hepatozellulären Karzinom belegt wer-

den. Die sich aufgrund einer Infektion mit dem Hepatitis B Virus entwickelnde Zirrho-

se gilt als Präkanzerose [15]. In der Literatur findet man dazu übereinstimmend die 

Hypothese, dass eine Erhöhung der Zellproliferation im Rahmen der Zirrhose ein 

Faktor für die Entstehung eines hepatozellulären Karzinoms ist [16, 17].  

Es ist darüber hinaus auch bekannt, dass ein hepatozelluläres Karzinom in einer 

nicht zirrhotisch-veränderten Leber entstehen kann. So sind Aflatoxine (insbesondere 

‚Aflatoxin B1‘), produziert durch Arten des Aspergillus-Pilzes, als (HCC-bedingende) 

Karzinogene bekannt [18]. In der EU gelten Nüsse als potentielle Quellen, die reale 

wie auch kritische Exposition ist allerdings schwierig zu bestimmen [19, 20].  

Des Weiteren ist noch das fibrolamelläre hepatozelluläre Karzinom (FHCC oder 

FLHCC) zu nennen. Betroffen sind typischerweise jüngere Patienten, meist vor dem 

30. Lebensjahr, bei denen 

sich weder eine Leberzir-

rhose noch eine viral be-

dingte Hepatitis findet [21, 

22].  

Mittlerweile wird auch ein 

Zusammenhang zwischen der Entwicklung eines hepatozellulären Karzinoms und 

Diabetes mellitus beschrieben. Anhand einer großen Kohorte in den USA konnte ge-

zeigt werden, dass der Diabetes mellitus das Risiko, an einem hepatozellulären Kar-

zinom zu erkranken, erhöht und zwar unabhängig vom Vorliegen einer alkoholtoxi-

schen Leberschädigung, viralen Hepatitiden oder demographischen Faktoren [23]. 

Abbildung 1: Nach Llovet et al. [1] 
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Abbildung 2: Updated Barcelona Clinic Liver Cancer (BCLC) staging 

classification and treatment schedule. [1] 

 

1.2. Klassifikationssysteme und gegenwärtige Therapieoptionen des HCC  

 

 

1.2.1. Klinische Klassifikationssysteme 

 

Hier gibt es verschiedene Unterscheidungen: Zu nennen ist hier zum einen das TNM-

System, das die Größe des Primärtumors, eventuelle Lymphknoten- oder Fernmeta-

stasen beschreibt. Als weiteres System die Child-Pugh-Klassifikation, die eine Ein-

schätzung der Leberfunktion beschreibt [24, 25]. Zur Evaluation einer eventuellen 

Lebertransplantation werden die MILAN-Kriterien bzw. deren Weiterentwicklung, die 

„up-to-seven“-Kriterien verwendet [26-29].  

 

 

1.2.2. Klassifikationssysteme mit Therapieempfehlungen  

 

1.2.2.1. Schema nach den Barcelona Clinic Liver Cancer Kriterien 

 

Die Behandlung sollte grundlegend in einem Zentrum für diese Erkrankung erfolgen, 

interdisziplinär besprochen und individuell gewählt werden. Wichtigste Kriterien hier-

für sind das Stadium der Erkrankung und die Leberfunktion. Man muss hierbei zu-

dem vorab unter-

scheiden, ob es 

sich um ein HCC 

auf dem Boden 

einer Zirrhose 

handelt oder um 

ein HCC ohne zir-

rhotisch-

veränderte Leber 

[30-48].  
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1.2.2.2. Münchner HCC-Algorithmus 

 

Dieses Therapie-Schema orientiert sich primär an der Leberfunktion. Nach erstem 

Staging, bei guter Funktion (CHILD A), das nur einen Herd ≤ 5 cm ergab, steht die 

Resektion im Fokus, sofern der portalvenöse Blutdruck noch im Normbereich liegt. In 

allen anderen Szenarien steht die TACE als erste Option, unabhängig ob das HCC 

noch innerhalb der MILAN-Kriterien liegt. Je nach Ergebnis eines Restagings nach 

drei Monaten wird dann wie folgt entschieden:  

Kommt es zu einem Ansprechen (stationärer Befund innerhalb der MILAN-Kriterien 

oder „Response-to-Therapy“ (Therapieansprechen) plus sechs monatige Beobach-

tungszeit) wird die Indikation zur Lebertransplantation gestellt. Bei Progress erfolgt 

dann die Umstellung hin zu einem palliativen Therapiekonzept.  

Anzumerken ist, dass der Ansatz für HCC außerhalb der MILAN-Kriterien hinsichtlich 

Transplantation bzw. palliativer Therapie unter Studienbedingungen erfolgt [49]. 

 

 

 

 

Abbildung 3: Münchner HCC-Algorithmus [49] 

3   
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1.3. Tumorstammzellen 

 

 

1.3.1. Definition und Überblick der Literatur 

 

Grundlegend gibt es zwei verschiedene Theorien, entwickelt am Beispiel der Leukä-

mie, die die Heterogenität von Tumoren zu erklären versuchen: auf der einen Seite 

das stochastische Modell, in dem gilt, dass alle Tumorzellen prinzipiell in der Lage 

sind, verschiedene Eigenschaften anzunehmen. Dies hängt von Vorgängen in den 

Zellen selbst ab, wie zum Beispiel Transkriptionsfaktoren oder von äußeren Fakto-

ren, beispielsweise der Immunantwort. Welche Zelle schließlich bestimmte Funktio-

nen annimmt, unterliegt lediglich einem stochastischen / zufälligen Effekt und prinzi-

piell sind Einflüsse auf eine Zelle sowie die damit einhergehenden Veränderungen / 

Fähigkeiten wieder vollständig reversibel [50, 51]. 

Dem stochastischen Modell entgegen steht das hierarchische Modell. Dieses Modell 

beschreibt Stammzellen im Tumorgewebe. Diese Stammzell-(Sub-)Population kann 

sich weiter differenzieren, besitzt aber insbesondere die Fähigkeit sich selbst zu er-

neuern (englisch: self-renewal); dadurch sorgen sie für den Erhalt des Tumors. Auf 

der Grundlage des hierarchischen Modells sollte es auch möglich sein, die gesamte 

Tumorzellpopulation in unterschiedliche (Sub-)Populationen zu unterteilen bzw. zu 

klassifizieren [50].  

Die ersten Hinweise auf eine solche Stammzellpopulation bei Tumoren wurden vor 

über 40 Jahren für die Leukämie und das Multiples Myelom beschrieben [52]. Weni-

ge Jahre später konnte gezeigt werden, dass es auch bei soliden Tumoren eine 

Gruppe von Zellen gibt, die Stammzellfähigkeiten besitzt [53]. Im Laufe der Zeit wur-

den bei mehr und mehr Tumoren Zellen identifiziert, die self-renewal-Fähigkeiten be-

sitzen, so zum Beispiel für das Bronchialkarzinom, das Mammakarzinom oder das 

Glioblastom [54-56].  

Zum Thema Tumorstammzellen (engl. cancer stem cells, CSC) möchte ich an dieser 

Stelle R.Y. Tsai aus „The International Journal of Biochemistry & Cell Biology“ zitie-

ren: „Stammzellen und Tumorstammzellen repräsentieren unterschiedliche biologi-

sche Merkmale, die einen für das Leben und die anderen für den Tod“ [57]. 
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1.3.2. Marker zur Identifikation von Tumorstammzellpopulationen 

  

In den 1970er Jahren wurden erstmals Zellpopulationen anhand ihrer Oberflächen-

proteine beschrieben [58, 59]. In der Praxis wurden die ersten Hypothesen wenig 

später aufgestellt, weshalb Oberflächenproteine eine wichtige Rolle spielen könnten. 

Zu erwähnen sei hierbei die These, dass die Modulation des Immunsystems eine 

signifikante Rolle bei der Kontrolle eines Tumors spielt, wie etwa beim Kolonkarzi-

nom: Organspezifische bzw. organbezogene (Oberflächen-)Antigene werden von 

den malignen Tumorzellen exprimiert, auf die das Immunsystem dann reagiert [60, 

61]. 

Zu den identifizierten Tumorstammzellmarkern gehören CD133, das u.a. im Rahmen 

von Karzinomen des Colons, des Pankreas, der Mamma oder der Lunge beschrie-

ben wurde [62-65]. Ebenso zu nennen ist der Marker CD44 bei Karzinomen von 

Kopf- und Hals oder der Prostata [66, 67]. Weitere Marker, die zur Identifikation von 

Tumorstammzellen beschrieben wurden, sind beispielsweise EpCAM (Kolorektales 

Karzinom [68]) oder CD90 (Bronchialkarzinom [69]).  

 

 

1.3.3. Rolle von Sphäroid-Zellen im Tumorstammzellmodell 

 

Tumorstammzellen spielen nach dem heutigen Stand der Wissenschaft eine ent-

scheidende Rolle in der Tumorbiologie (siehe 1.3.1). Um diese besser untersuchen 

zu können, ist es zum einen wichtig, diese Zellen (korrekt) zu identifizieren, aber 

auch deren Anzahl zwecks besserer Forschungsbedingungen für Laborversuche zu 

maximieren. Beides ist mit gewissen Schwierigkeiten verbunden, u.a. da diese Zell-

gruppe lediglich eine Subpopulation aller Tumorzellen darstellt. Es handelt sich hier-

bei um einen kleinen Prozentsatz von Zellen, gemessen an der Gesamtpopulation.  

Anfang dieses Jahrhunderts gab es erste Arbeiten, die zeigen konnten, dass das so-

genannte Sphäroid-Modell (engl. „spheres“) besonders gut für die Kultivierung von 

Stammzellen geeignet ist [70, 71]. Diese Publikationen beschreiben die Produktion 

von neuronalen Stammzellen mit Hilfe der Sphäroidzellkultur und beziehen sich da-

bei auch auf die grundlegenden Arbeiten in der Erforschung neuronaler Stammzellen 

von Samuel Weiss [72, 73]. Dass das Sphäroid-Modell auch auf andere Tumoren 
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übertragbar zu sein scheint, konnte bisher u.a. für das Pankreaskarzinom gezeigt 

werden, aber auch beim Prostatakarzinom (hier in Zusammenhang mit der Oberflä-

chenmarker CD44), dem kleinzelligen Bronchialkarzinom sowie oralem Plat-

tenepithelkarzinom [63, 74-76]. 

Beschrieben wurde dafür bisher die Möglichkeit, Tumorstammzellen als Sphäroide 

mittels serumfreien Mediums wachsen zu lassen. Es wird vermutet, dass Zellen ohne 

Stammzelleigenschaften nicht in einer serumfreien Umgebung überleben können 

oder zumindest, dass Tumorstammzellen mit den anspruchsvolleren Kulturbedingun-

gen, u.a. durch das Fehlen des Serums, besser zurechtkommen. Es wird also ver-

sucht, das Wachstum von ‚Zellen mit Überlebensvorteilen‘, wie es auch für Tu-

morstammzellen vermutet wird, durch Selektion zu fördern [77, 78].  

 

 

1.3.4. Charakterisierung von Tumorstammzellen des HCC 

 

Beim HCC kann es nach Lebertransplantation zu Tumorrezidiven in der transplantier-

ten Leber kommen [79, 80]. Als mögliche Ursache wurde die Hypothese aufgestellt, 

dass Tumorstammzellen die Ursache dieser Rezidive darstellen könnten [81]. Allein 

im Ausblick auf zielgerichtete Therapien ist es wichtig diese Zellsubpopulation zu 

identifizieren bzw. auch zu charakterisieren [82].  

 

Erste Hinweise auf eine Tumorstammzellpopulation beim hepatozellulären Karzinom 

gab es schon in den 1980er Jahren, doch die ersten erfolgsversprechenden Identifi-

zierungsversuche gelangen erst 25 Jahre später [83].  

Der erste Marker, für welchen Stammzelleigenschaften für das hepatozelluläre Kar-

zinom beschrieben wurde, war das Oberflächenprotein CD133. Bei CD133-positiven 

Zellen konnte eine höhere Proliferation, besseres „self-renewal“ sowie höhere Diffe-

renzierungskapazität im Gegensatz zu CD133-negativen Zellen, festgestellt werden 

[84-86]. Bekannt wurde dieser Marker ursprünglich durch die Identifikation von häma-

topoetischen Stammzellen [87]. Weitere Marker wurden für die Stammzellen des he-

patozellulären Karzinoms beschrieben, darunter EpCAM, CD90 und CD44 [88-90]. 

Auf Grund der Anzahl an unterschiedlichen Stammzellmarkern wurde schnell klar, 

dass die Betrachtung von Co-Expressionen verschiedener Marker interessant sein 
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könnte. Es kristallisierte sich die Kombination der Marker CD133 und CD44 heraus, 

um besonders präzise eine Subpopulation mit Stammzelleigenschaften zu charakte-

risieren. So wurde gezeigt, dass die Co-Expression von CD133 und CD44 zu schnel-

lerem Tumorwachstum sowie ausgeprägter hämatogener Metastasierung des he-

patozellulären Karzinoms führt [91, 92]; besonders die Fähigkeit zur Metastasierung 

definiert CD133pos-CD44pos-HCC-Zellen als eine hochaggressive Subpopulation des 

hepatozellulären Karzinoms, die man anhand ihrer Eigenschaften als Tumorstamm-

zellen betrachtet . 
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1.4. Medizinische Beeinflussung von Tumorstammzellen des HCC 

 

 

1.4.1. Chemotherapeutika 

 

In den aktuellen Therapieleitlinien spielt Chemotherapie keine primäre Rolle (siehe 

1.2.2 Klassifikationssysteme mit Therapieempfehlungen). Nur im fortgeschrittenen 

Stadium wird Sorafenib eingesetzt. 

Sorafenib ist ein Multikinaseinhibitor, der unter anderem die Tumorproliferation über 

die Hemmung der Raf-Kinase (rapidly accelerated fibrosarcoma) sowie die Angioge-

nese über die Hemmung von VEGFR (vascular endothelial growth factor receptor) 

und PDGFR-β (platelet-derived growth factor receptor) stört [93]. Daher wird Sorafe-

nib zur Therapie des fortgeschrittenen HCC oder von Nierenzellkarzinomen einge-

setzt, beim HCC konnte ein längeres Gesamtüberleben gezeigt werden [45, 94, 95]. 

Zur Wirkung von Sorafenib auf Tumorstammzellen gibt es bisher nur wenig Literatur. 

Eine Forschungsgruppe aus den USA konnte unter anderem zeigen, dass die 

Proliferation von Tumorstammzellen des HCC (CD133pos, CD44pos und CD24pos) ge-

hemmt werden konnte [96]. Eine weitere Arbeit beschreibt die Wirkung von Sorafenib 

auf CSC des Pankreaskarzinoms [97].  

 

 

1.4.2. Strahlentherapie 

 

Als lokales Verfahren wird die selektive interne Radiotherapie (SIRT) eingesetzt, die, 

ähnlich der TACE, die starke arterielle Vaskularisierung der HCC nutzt. Microspheres 

mit radioaktiv-markierten Substanzen wie etwa Yttrium-90 werden über einen arteriel-

len Katheter in die den Tumor versorgenden Arterien eingebracht [98, 99]. Es gelten 

hohe Anforderungen an die Infrastruktur, unter anderem muss das nuklearmedizini-

sche als auch interventionell-radiologische Know-how vorhanden sein. Die Bestrah-

lung mittels einer extrakorporalen Strahlungsquelle ist besonders bei Leberzirrhose 

durch das Risiko der Entwicklung eines strahleninduzierten Leberversagens be-

schränkt. Aber auch die Strahlensensitivität von gesundem Leberparenchym (sowie 
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anderer, sich im Strahlenfeld befindlicher Organe) schränkt die Einsatzmöglichkeiten 

ein [100, 101].  

Inwieweit Strahlentherapie bei der Tumor(-stammzell-)Therapie des HCC von Nutzen 

sein kann, ist nicht eindeutig geklärt, da die Radiosensitivität als Stammzelleigen-

schaft schwierig zu untersuchen ist [102]. 
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2. Material und Methoden 

 

 

 

2.1. Zellkultur 

 

 

Für die Versuche wurde die Huh-7-Zelllinie (Sigma, Deisenhofen, Deutschland) ver-

wendet. 

Monolayer-Kultur: Kultiviert wurden die Zellen in DMEM/F12 Medium (Invitrogen, 

Darmstadt, Deutschland) mit einem 10-prozentigen Anteil von fetalem Kälberserum 

(Fetal Calf Serum, Invitrogen, Darmstadt, Deutschland) in 75 cm3 Zellkulturflaschen 

(Thermo/NUNC, Schwerte, Deutschland). Die Zellkulturen wurden in einem 5:1-

Verhältnis dreimal pro Woche gesplittet, dafür wurde Trypsin/EDTA (PAN Biotech, 

Aidenbach, Deutschland) sowie DPBS (PAN Biotech, Aidenbach, Deutschland) ver-

wendet, die Zellkulturflaschen wurden bei jeder Passagierung durch neue ersetzt. 

Regelmäßig wurden Mykoplasmentests durchgeführt. Für die Experimente wurden 

frühe Passagen verwendet (3-10). 

Sphäroid-Kultur: Zur Herstellung der Sphäroidkulturen wurden Monolayer Huh-7 Zel-

len aus frühen Passagen (3-10) separiert. Diese wurden, in speziell niedrig adhären-

ten, ‚Six Well Plates‘ (M&B Stricker, Tutzing, Deutschland) in einer Dichte von  

10.000 Zellen pro Milliliter Medium, in Kultur genommen. Das Kulturmedium besteht 

zu 98% DMEM/F12 (Invitrogen, Darmstadt, Deutschland) und 2% B-27 (serum free 

supplement, Gibco/Invitrogen, Darmstadt, Deutschland). Alle zwei Tage wurde ca. 1 

Milliliter Medium hinzugefügt und nach einer Woche wurden sämtliche, jetzt nicht ad-

härent gewachsene Zellen in spezielle, nicht-adhäsive 75 cm3 Zellkulturflaschen 

(M&B Stricker, Tutzing, Deutschland) überführt. Als Kulturmedium wurde hier eben-

falls das oben beschriebene, serumfreie Medium B-27 verwendet. Diese Sphäroid-

kulturen wurden einmal pro Woche, im Verhältnis 20:1 gesplittet. Nach Zentrifugation 

wurde Trypsin/EDTA (PAN Biotech, Aidenbach, Deutschland) sowie DPBS verwen-

det. Für die Experimente wurden Sphäroide der frühen Passagen 10-20 verwendet. 



14 

 

Vor der Durchführung von Versuchen wurden die Zellen jedes Mal mittels einer Neu-

bauer Zählkammer gezählt, um eine möglichst gleiche Verteilung der Zellen zu ge-

währleisten. Sowohl für die Monolayer-Kultur, als auch bei den Spheres, wurden re-

gelmäßige Mykoplasmentests durchgeführt, um eine Kontamination, im Sinne einer 

daraus resultierenden Verfälschung der Ergebnisse, zu detektieren. 
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2.2. Rapamycin- und 5-Fluorouracil-Versuche 

 

 

Um die vermutete Zellpopulation besser zu charakterisieren, wurden zu Beginn Ver-

suche mit den gängigen Chemotherapeutika Rapamycin (Pfizer (früher Wyeth), 

Münster, Deutschland) und 5-Fluorouracil (Pfizer, Münster, Deutschland) begonnen. 

Dafür wurden jeweils eine Million Zellen mit zwölf Milliliter Medium (90% DMEM/F12 

plus 10% fetales Kälberserum, siehe Punkt 2.1. Zellkultur) für zwei Tage in Kultur 

genommen. Nach 48 Stunden begann die Therapie mit den Chemotherapeutika. 

5-Fluorouracil: Verwendet wurden die Dosen 10μg und 25μg. Nach 48 Stunden wur-

den die Zellen zunächst mit Trypsin/EDTA (siehe Punkt 2.1. Zellkultur) abgelöst und 

dann für die FACS-Analyse vorbereitet. 

Rapamycin: Der Aufbau gleicht prinzipiell dem der 5-Fluorouracil-Versuche. Die ver-

wendeten Dosen waren 9μl, 18μl und 27μl. Da Rapamycin in DMSO (Applichem, 

Darmstadt, Deutschland) gelöst werden muss, bevor man es verwenden kann und 

DMSO per se zelltoxisch ist, wurde neben einer null-Kontrolle auch eine DMSO-

Kontrolle angelegt. Die Auswertung fand nach 48 Stunden statt. Nach Trypsinierung 

der Zellen wurde die FACS Analyse vorbereitet. 
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2.3. Strahlentherapie 

 

 

Die kultivierten Zellen wurden mit Photonen (6 MeV) und mit einer Dosisrate von 3 

Gray pro Minute bestrahlt. Verwendet wurde hierfür ein Linearbeschleuniger (Sie-

mens Mevatron M, München, Deutschland). Nicht bestrahlte Zellen wurden außer-

halb des Bestrahlungsraumes während der Bestrahlung aufbewahrt und konnten 

somit als Kontrollen verwendet werden. 

Monolayer-Kultur: Die Zellen befanden sich in Kultur. Zwei Tage vor Bestrahlung 

wurden Zellen, wie oben beschrieben, trypsiniert und eine Million Zellen in eine neue 

75 cm3 Zellkulturflasche überführt. Am Tag der Bestrahlung erfolgte ein Medien-

wechsel, im Anschluss wurden die Zellen bestrahlt und umgehend wieder für weitere 

48 Stunden im Brutschrank inkubiert. Die Kontrollen wurden ebenfalls mittransportiert 

und außerhalb des Bestrahlungsraumes gelagert. 

Sphäroid-Kultur: Wie auch in der Monolayer-Reihe befanden sich die Sphäroide be-

reits in Kultur. Fünf Tage vor den Bestrahlungsexperimenten wurden die Zellen 

trypsiniert und jeweils eine Million Zellen in neue, nicht-adhäsive 75 cm3 Zellkulturfla-

schen überführt. Alle zwei Tage sowie am Tag der Bestrahlung (vor der eigentlichen 

Bestrahlung) wurden 3,5 Milliliter Medium hinzugefügt. Nach Bestrahlung erfolgt die 

weitere, 48-stündige Inkubation im Brutschrank. 

Die Auswertung der Bestrahlungsversuche fand nach weiteren 48 Stunden statt, 

Testläufe wurden nach 12 beziehungsweise 24 Stunden durchgeführt, es konnte al-

lerdings kein grundlegender Unterschied der untersuchten Kriterien detektiert wer-

den. 
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2.4. FACS - Analyse 

 

 

Die Analyse der Zellen geschah mittels FACS (Durchflusszytometrie). Durch die 

Verwendung spezieller Antikörper gegen Oberflächenmoleküle, die wiederum mit 

einem Fluoreszenzfarbstoff markiert sind, wurden unterschiedliche Zellen bzw. Zell-

populationen detektiert.  

Färbung der Oberflächenmoleküle der Zellen: Alle FACS-Analysen, in denen die 

Oberflächenmoleküle der Zellen betrachtet wurden, begannen mit der Trypsinierung 

der Zellen (siehe Punkt 2.1. Zellkultur). Als FACS-Puffer wurde DPBS verwendet, 

dem noch zehn Gramm BSA (Albumin Fraktion V, biotinfrei, Carl Roth, Karlsruhe, 

Deutschland) hinzugefügt wurde. Es wurden ca. 500.000 Zellen je Probe verwendet, 

die dann in 400 µl der DPBS-Lösung aufgenommen wurden. Die verwendeten Anti-

körper waren „CD133-APC“ (Miltenyi Biotec, Bergisch Gladbach, Deutschland) und  

„CD44-PE“ (BD, Heidelberg, Deutschland) sowie entsprechende ISO-Antikörper 

„Mouse IgG1-APC“ und „Mouse IgG1-PE“ (beide BD, Heidelberg, Deutschland). Um 

eine Aussage bezüglich der Vitalität bzw. der Apoptoseinduktion treffen zu können, 

wurde 7AAD (BD, Heidelberg, Deutschland) verwendet. 

Intrazelluläre Färbung zur Bestimmung der Proliferation: Bei einigen Versuchen wur-

de das Proliferationsverhalten der Zellen untersucht. Dies geschah mittels BrdU 

(Bromdesoxyuridin), das von proliferierenden Zellen als Substrat für die DNA-

Synthese verwendet wird und mittels spezifischer Antikörper angefärbt werden kann. 

Für die Versuche wurde das „FITC BrdU Flow Kit“ (BD, Heidelberg, Deutschland) 

anhand der beiliegenden Beschreibung verwendet. 

Datenakquisition und -analyse: Es wurde FACSCalibur™ (BD, Heidelberg, Deutsch-

land) für die Akquisition verwendet. Zum Auswerten der Daten wurden neben 

FACSCaliburTM auch Flowing Software (Perttu Terhu, Turku, Finnland) sowie die 

Software WinMDI (Joseph Trotter, San Diego, USA) zur Analyse der Daten verwen-

det. 
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Gesamte Zellpopulation 

 

 

 

 

 

 

 

 

 

tote Zellen (7AAD positiv) 

 

 

 

vitale Zellen (7AAD negativ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbildung 4: FACS Plot, Bestimmung der Vitalität (eigene Daten) 
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2.5. Statistische Auswertung 

 

 

Die Auswertung erfolgt größtenteils mittels GraphPad Prism 5 (GraphPad Software, 

San Diego, USA) und zudem auch mittels SPSS (IBM, Armonk, USA). Bei allen 

Auswertungen wurde von einer ‚nicht-Gaußschen Verteilung‘ ausgegangen und 

dementsprechend die Tests nach Kruskal-Wallis bzw. Friedman verwendet. Ein p-

Wert von < 0.05 wurde als signifikant angenommen. Die abgebildeten Diagramme 

wurden mittels GraphPad Prism erstellt. 
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3. Ergebnisse 

 

 

 

3.1. Rapamycin - und 5-Fluorouracil - Versuche 

 

 

Ziel dieser Versuche war es, in Monolayer-Kultur zu untersuchen, wie sich die Be-

handlung mittels Rapamycin bzw. 5-Fluorouracil auf die Zelllinie Huh-7 auswirkt und 

speziell auf die Marker CD133 und CD44 auswirkt.  

Unter Therapie mit 5-FU sieht man, dass die Zellen, die CD133 und CD44 als Ober-

flächenmoleküle exprimieren, zunehmen.  
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Abbildung 5: Monolayer 5FU Versuch CD133/CD44 
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Im Detail verglichen zeigt sich, dass die Zunahme dieser Zellen, vermutlich mit der 

Expression von CD44 zusammenhängt und weniger mit CD133. 

 

 

 

 

 

 

 

 

 

 

 

Dieser Effekt lässt sich auch bei den Versuchen mit Rapamycin beobachten: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Schaut man sich hier vergleichsweise die Expression von CD133 und CD44 separat 

an, ist der Effekt hier vermutlich auch auf die CD44-Expression zurückzuführen. 

Abbildung 6: Monolayer 5FU Versuch CD133 vs. CD44 

 

Abbildung 7: Monolayer Rapamycin Versuch CD133/CD44 
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Dieser Effekt könnte bedeuten, dass die CD44pos-Population einen Überlebensvorteil, 

z.B. durch Resistenz gegenüber den Chemotherapeutika besitzt.  

Anhand der DMSO-Kontrollen konnte gezeigt werden, dass es keine Unterschiede 

zwischen den Dosierungen gab. Somit kann man annehmen, dass es zur Selektion 

der Population durch Rapamycin kommt und nicht durch das zelltoxische Lösungs-

mittel DMSO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbildung 8: Monolayer Rapamycin Versuch CD133 vs. CD44 

 

Abbildung 9: Monolayer Rapamycin Versuch, DMSO Kontrolle 
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3.2. Entwicklung der Populationen ohne Einfluss exogener Noxen 

 

 

Um auszuschließen, dass es sich bei dem unter 3.1. gezeigten Expressionsverhalten 

nicht um eine Beobachtung handelt, die normalem Wachstumsverhalten entspricht, 

wurde das Expressionsverhalten genauer analysiert: Zum einen durch FACS-

Analysen innerhalb einer Passage, zum anderen durch Expressionsanalysen zu Be-

ginn jeder neuen Passage. 

 

 

3.2.1.  Innerhalb einer Passage (Monolayer) 

 

Zu den Zeitpunkten Tag 0 (T0), Tag 2 (T2), Tag 4 (T4) und Tag 8 (T8) wurden die 

Zellen via FACS Analyse betrachtet (p=0,39): 

 

 

 

 

 

 

 

 

 

 

 

 

 

Man erkennt, dass es zwar zu einem vermeintlichen Anstieg zwischen T0 und T2 

kommt, dieser relativiert sich aber im Verlauf. Dies könnte hypothetisch mit einer 

Stammzellaktivierung zu tun haben, die die Folge des „Ausdünnens“ der Zellen ist. 

Abbildung 10: Monolayer, Expression innerhalb einer Passage CD133/CD44 
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Im Vergleich der Expressionen von CD133 und CD44 ergab sich keine Signifikanz 

(p=0,64). 
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3.2.2. Über mehrere Passagierungen (Monolayer) 

 

Über einen Zeitraum von zehn Passagierungen wurde bei jeder Passagierung eine 

FACS-Analyse mit Antikörper gegen die Oberflächenmarker CD133 und CD44 

durchgeführt, um festzustellen, ob zu einer Veränderung der Populationen kommt. 

Dabei konnte keine signifikante Veränderung der Populationen festgestellt werden. 

Die doppelpositive Population zeigt hierbei keine signifikante Entwicklung (p=0,44). 

 

 

Abbildung 11: Monolayer, Expression innerhalb einer Passage CD133 vs. CD44  
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Vergleicht man hier zusätzlich noch jeweils die Populationen von CD133 und CD44 

miteinander, ist ebenso wenig ein signifikanter Effekt zu erkennen (p=0,95). 
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Abbildung 12: Monolayer Passagierung CD133/CD44 

Abbildung 13: Monolayer Passagierung CD133 vs. CD44 
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3.3. Fotografische Dokumentation der Sphäroid-Kultur 

 

 

Anhand der folgenden Fotografien kann man einen Eindruck des dreidimensionalen 

Wachstums der Huh7-Zellen in der Sphäroid-Kultur gewinnen. Die Zellen wurden 

unter dem Mikroskop bei 400-facher Vergrößerung nach zwei, vier und acht Tagen 

Inkubation fotografiert. 

 

 

 

 

Tag 2 

 

 

 

 

 

 

 

Tag 4 

 

 

 

 

 

 

 

 

Tag 8 

 

 

 

Abbildung 14: Wachstum der Spheres nach 2, 4 und 8 Tagen (eigene Daten) 
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3.4. Entwicklung der Spheres-Populationen ohne exogene Einflüsse inner-

halb einer Passage 

 

 

Untersucht wurde hier, analog zum Versuch bei den Monolayer-Zellen, ob es zu ei-

ner Veränderung des Expressionsverhaltens innerhalb einer Passage kommt. Eben-

so wurden die Zeitpunkte Tag 0, Tag 2, Tag 4 und Tag 8 verglichen (T0, T2, T4 und 

T8).   

 

 

 

 

 

 

 

 

 

 

 

 

Man kann einen Trend erkennen, der eine beinahe Verdopplung der  

CD133pos-CD44pos-Zellen innerhalb einer Passage zeigt (wenn auch nicht statistisch 

signifikant, p=0,39).  

Die Gegenüberstellung von CD133 und CD44 bestätigt den Zusammenhang: Der 

Marker CD44 wird vermehrt nachgewiesen, wobei es tendenziell eher zu einem Ab-

fall der CD133pos-Population kommt. Hier zeigt sich aber keine Signifikanz (p=0,13). 

Abbildung 15: Sphäroide, Expression innerhalb einer Passage CD133/CD44 
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Sphäroide, Expression innerhalb einer Passage
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Abbildung 16: Sphäroide, Expression innerhalb einer Passage CD133 vs. CD44 
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3.5. Bestrahlung der Huh-7 – Zellen 

 

 

3.5.1. Vorversuche 

 

Für den ersten Vorversuch wurden, neben der obligatorischen Kontrolle, die Bestrah-

lungsdosen 2 Gray und 8 Gray gewählt und die gleichzeitige Expression der Marker 

CD133 und CD44 untersucht. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Deutlich zeigt sich eine Anreicherung der CD133pos-CD44pos-Population. Geht man 

ins Detail und schaut sich vergleichend die einzelne Expression der Marker CD133 

und CD44 an, so kann man feststellen, dass der Marker CD133 keine signifikanten 

Veränderungen aufweist. Die CD44-Expression hingegen nimmt, relativ zur Kontrolle, 

zu.  

 

Abbildung 17: Monolayer, Vorversuch Bestrahlung CD133/CD44 
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Monolayer, 48h nach Bestrahlung
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3.5.2. Monolayerkultur 

 

Nach Betrachtung der Ergebnisse der Vorversuche (3.5.1. Vorversuche) wurden die 

Dosen 2 Gray, 4 Gray, 8 Gray und 12 Gray gewählt. Die Ergebnisse aus den Vorver-

suchen konnten bestätigt werden; es konnte vielmehr gezeigt werden, dass die 

CD133pos-CD44pos-Population, relativ zur Kontrolle, dosisbezogen anreichert.  

 

 

 

 

 

 

 

 

 

 

 

 

Abbildung 18: Monolayer, Vorversuch Bestrahlung CD133 vs. CD44 

Abbildung 19: Monolayer, Bestrahlung CD133/CD44 
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Dies hängt hier, wie auf Grund der Vorversuche vermutet, mit der Erhöhung des An-

teils der CD44pos-Zellen zusammen. 

Statistisch signifikant (p=0,003) zeigte sich, dass mit Intensivierung der Bestrahlung 

der Anteil an CD44pos-Zellen steigt. Dem entgegen verändert sich der Anteil an 

CD133pos-Zellen nicht signifikant. 

 

 

 

3.5.3. Sphäroidkultur 

 

Entsprechend der Monolayer-Versuche wurden auch hier die Bestrahlungsdosen 2 

Gray, 4 Gray, 8 Gray und 12 Gray untersucht. Die Dosis-Wirkungs-Beziehung konnte 

auch hier gezeigt werden, es kam zu einer relativen Erhöhung der  

CD133pos-CD44pos-Population (p=0,02). 

Abbildung 20: Monolayer, Bestrahlung CD133 vs. CD44 
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Spheres, 48h nach Bestrahlung
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Auch für die Spheres gilt: Es kommt zu einer Anreicherung der  

CD44pos-Zellen unter Intensivierung der Bestrahlung. Dies unterstreicht die These, 

dass diese Population eine Resistenz gegenüber Bestrahlung besitzt. 
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Abbildung 21: Spheres, Bestrahlung CD133/CD44 

Abbildung 22: Monolayer, Bestrahlung CD133 vs. CD44 
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Wie auch schon in der Monolayer-Kultur steigt der Anteil an CD44pos-Zellen statis-

tisch signifikant an (p=0,04). Die CD133pos-Zellen verändern sich, im Gegensatz da-

zu, in ihrem Anteil nicht signifikant. 
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3.6. Untersuchung des Apoptoseverhaltens 

 

 

Um eine Aussage über die Vitalität der Zellen machen zu können, wurde das 

Apoptoseverhalten genauer analysiert. Wie im Methodenteil unter Punkt 2.4 FACS - 

Analyse erwähnt, wurde 7AAD verwendet, um vitale Zellen zu selektieren und nur 

diese weiter zu analysieren. In diesen Dotplots zeigte sich nach Bestrahlung, dass 

neben der 7AADpos- und der 7AADneg-Population eine weitere Population auftrat. 

Diese war nicht 7AAD-negativ, aber deren Signal zeigt auch nicht die Intensität der 

avitalen, 7AAD-positiven Zellen. Diese Zellen befinden sich in Apoptose. 

 

 

 

 

 

 

 

 

 

 

CD44 negativ: Kontrolle                       12 Gray 

 

 

 

 

 

 

 

 

 

CD44 positiv: Kontrolle                       12 Gray 

 

 

Abbildung 23: CD44neg und CD44pos Kontrolle vs. 12 Gray, apoptotische Zellen 
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3.6.1. Apoptoseverhalten in Monolayer-Kultur 

 

Verglichen wurden dafür CD44pos- mit CD44neg-Zellen. Dabei zeigte sich kein signifi-

kanter Unterschied zwischen diesen beiden Populationen (p=0,62) in Bezug auf de-

ren Apoptoseverhalten.  
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Bei genauerer Betrachtung der beiden CD44-Populationen konnte allerdings festge-

stellt werden, dass der Anteil an apoptotischen CD44pos-Zellen sich nicht signifikant, 

mit der Erhöhung der Bestrahlungsdosis, veränderte (p=0,31). Dem entgegen stieg 

der Anteil der apoptotischen CD44neg-Zellen jedoch signifikant an (p=0,04).  

 

 

 

 

 

 

 

 

 

 

 

Abbildung 24: Apoptoserate Monolayer 48h nach Bestrahlung 

Abbildung 25: Vergleich der Apoptoseraten (Monolayer) zwischen den CD44pos- und CD44-neg-

Populationen, 48h nach Bestrahlung 
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In der Monolayer-Kultur zeigten CD44pos-Zellen eine, im Vergleich zu den CD44neg-

Zellen, erhöhte ‚Ausgangsapoptoserate‘. Da der Ausgangsanteil apoptotischer 

CD44pos-Zellen sich in der Monolayer-Kultur nicht signifikant veränderte, kann man 

davon ausgehen, dass die CD44pos-Population nicht maßgeblich durch die Bestrah-

lung beeinflusst wird. 

 

 

3.6.2. Apoptoseverhalten in Spheres-Kultur 

 

Entsprechend der Untersuchung in Monolayer-Kultur wurde auch das Apoptosever-

halten der Spheres in Bezug auf den CD44-Status untersucht. Bei CD44neg-Zellen 

zeigte sich, in Relation zur Bestrahlungsintensität, eine Erhöhung des Anteils apopto-

tischer Zellen im Gegensatz zu CD44pos-Zellen (p=0,03).  
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Wie auch in der Monolayer-Kultur zeigte sich für die Spheres, dass, mit Erhöhung der 

Bestrahlungsdosis, der Anteil an CD44neg-Zellen anstieg (p=0,007). Der Anteil der 

CD44pos-Population steigt im Gegensatz dazu nicht signifikant an (p=0,14). Dies deu-

tet daraufhin, dass sich das Apoptoseverhalten der CD44pos-Zellen in der Spheres-

Kultur nach Bestrahlung nicht verändert.  

Abbildung 26: Apoptoserate Spheres 48h nach Bestrahlung 
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Abbildung 27: Vergleich der Apoptoseraten (Spheres) zwischen den CD44pos- und CD44-neg-

Populationen, 48h nach Bestrahlung 
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3.7. Untersuchung des Proliferationsverhaltens 

 

 

Zur Untersuchung des Einfluss der Bestrahlung auf die Proliferation wurde, nach Be-

strahlung der Zellen, ein BrdU Assay durchgeführt und die Zellen mittels FACS un-

tersucht. Betrachtet wurden hierfür die Intervalle sechs, zwölf und 24 Stunden nach 

Bestrahlung. 

 

 

3.7.1. Proliferation in Monolayer-Kultur 

 

Es zeigte sich, dass die gemessene Zellproliferation nach sechs und zwölf Stunden 

nicht wesentlich von den Kontrollen abweicht, jedoch nach 24 Stunden um ca. 66% 

im Vergleich zur Kontrolle abfällt. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

3.7.2. Proliferation in Spheres-Kultur 

 

Die Ergebnisse stellen sich sehr ähnlich derer der Monolayer-Kultur dar: wenig Ver-

änderung zu den Zeitpunkten nach sechs bzw. zwölf Stunden; nach 24 Stunden 
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Abbildung 28: Proliferation Monolayer 6h, 12h und 24h nach Bestrahlung 
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kommt es aber wieder zu einem deutlichen Abfall des Anteils an proliferierenden Zel-

len, in diesem Fall um ca. 50%. 
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Abbildung 29: Proliferation Spheres, 6h, 12h und 24h nach Bestrahlung 
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4. Diskussion 

 

 

 

4.1. Zusammenfassung und kritische Bewertung der Experimente 

 

 

4.1.1. Strahlenresistenz des hepatozellulären Karzinoms durch CD44-pos-

Zellen  

 

Die Vorversuche mit den Substanzen Rapamycin und 5-Fluouracil ließen bereits 

vermuten, dass es einen Zusammenhang zwischen der Expression des Oberflä-

chenmarkers CD44 und der Belastbarkeit der HCC-Zellen geben könnte. Erste Be-

strahlungsversuche schienen diesen Trend zu bestätigen, woraufhin Bestrahlungs-

reihenversuche mit den Dosen 2 Gray, 4 Gray, 8 Gray und 12 Gray durchgeführt 

wurden. 

Diese Versuche zeigten, in Bezug auf die Expression des Markers CD44, dass es zu 

einem Anstieg der CD44pos-Zellpopulation mit Erhöhung der Bestrahlungsintensität 

kommt. Dieser Effekt ließ sich sowohl für die Monolayer-Kultur als auch für die Sphe-

res-Kultur zeigen. Einen Zusammenhang zwischen Bestrahlungsintensität und Ex-

pression von CD133 konnte nicht festgestellt werden.  

Die Bestimmungen der Expression erfolgten mittels FACS und jeweils immer bezo-

gen auf einen Nullwert als Kontrolle (durch die Verwendung eines ISO-Antikörpers). 

Dadurch ist beschriebener Effekt gut zu charakterisieren und die Reproduzierbarkeit 

gewährleistet. 

Diese Ergebnisse lassen vermuten, dass diese Zellen, die CD44pos-Zellen, eine Form 

der Resistenz gegen die zellschädigende Wirkung der Bestrahlung besitzen. Dies 

wird in der Literatur als Eigenschaft der Tumorstammzellpopulation beschrieben [50]. 

 

Der Marker CD133 diente dabei lediglich zur Identifikation der Tumorzellpopulation, 

er ist, wie bereits erwähnt, nicht signifikant mit beobachteten Effekten verbunden. 

Dies widerspricht den Ergebnissen anderer Forschungsgruppen, welche die Strah-

lenresistenz von CSC, identifiziert durch den Marker CD133, vermittelt sehen [103]. 
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Eine Erklärung für diese Schlussfolgerung könnte darin liegen, dass in der zitierten 

Arbeit nur der Marker CD133 untersucht wurde. So kann nicht verglichen werden ob 

der beschrieben Effekt eigentlich auf den – nicht untersuchten – Marker CD44 zu-

rückzuführen ist. Zudem verwenden Piao et al. ausschließlich Bestrahlungsdosen ≥ 

10 Gray [103]. Die damit verbundenen und als schwerwiegender einzuschätzenden 

Zellschäden sind ein weiterer Faktor, der die unterschiedlichen Resultate erklären 

und zu der anderen Schlussfolgerung führen könnte. Bei den in dieser Arbeit be-

schriebenen Versuchen wurden geringere Dosen verwendet, sodass dieser Effekt 

nicht bzw. in geringem Ausmaß auftreten sollte.  

Dass man von der Ansicht „CD133 ist ein Tumorstammzellmarker“ abkommt, zeigt 

auch das Beispiel des nicht-kleinzelligen Bronchialkarzinoms. Bis zur Veröffentli-

chung der Arbeit von Meng et al. ging man von dieser Hypothese aus. Meng et al. 

zeigten, dass sowohl die CD133pos-Population als auch die CD133neg-Population die 

Fähigkeit zur Tumorneubildung aufwiesen – eine Fähigkeit die, wie auch die Strah-

lenresistenz, als Tumorstammzelleigenschaft angesehen wird [104]. 

 

In Zusammenschau der Ergebnisse kann somit gefolgert werden, dass die Expressi-

on des Oberflächenmarkers CD44, bei Zellen des hepatozellulären Karzinoms, in 

Zusammenhang mit der Strahlenresistenz steht. Die Expression des Markers CD133 

hat, meinen Beobachtungen nach, keinen Einfluss auf dieses Ergebnis. 

 

 

4.1.2. Veränderung des apoptotischen Verhaltens der CD44-positiven Popula-

tion unter Bestrahlung  

 

Bei der Betrachtung des apoptotischen Verhaltens der Zellpopulationen zeigte sich, 

dass sich die Strahlentoxizität nicht in gleichem Maße auf die Gesamtpopulation 

auswirkt. Beim Vergleich von CD44pos- mit CD44neg-Zellen, unter gesteigerten Be-

strahlungsdosen, stellte sich für die Monolayer-Kultur per se kein signifikanter Unter-

schied dar. Jedoch konnte gezeigt werden, dass der Anteil an apoptotischen 

CD44neg-Zellen mit Erhöhung der Bestrahlungsdosis signifikant zunimmt; für 

CD44pos-Zellen hingegen nicht. Dies lässt vermuten, dass bei Tumorzellen, die den 

Marker CD44 exprimieren, unter Bestrahlung zu keiner bzw. in signifikant geringerem 
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Maße zur Induktion von Apoptose kommt; bei Tumorzellen, die CD44 nicht exprimie-

ren, dagegen schon.  

Bei genauerer Betrachtung der Monolayer-Teilpopulationen fiel auf, dass der Anteil 

apoptotischer CD44pos-Zellen für die Kontrolle deutlich über dem Anteil der Kontrolle 

bei CD44neg-Zellen lag. Jedoch veränderte sich der Anteil apoptotischer CD44pos-

Zellen auch durch Erhöhung der Bestrahlungsintensität nicht. Im Gegensatz dazu 

stieg der die Apoptoserate für CD44neg-Zellen dosisbezogen an. Weshalb CD44pos-

Zellen eine höhere Ausgangsapoptoserate zeigen, ist nicht klar. Eine Erklärung für 

die hohe Apoptoserate der CD44pos-Kontrolle in Monolayer-Kultur könnte sein, dass 

die Wachstumsbedingungen für CSC in Monolayer-Kultur schlechter sind im Ver-

gleich zu den Bedingungen in serumfreien Medien. 

Die Tatsache, dass der Anteil an CD44pos-Zellen konstant bleibt, lässt vermuten, 

dass die schädigende Wirkung ionisierender Strahlen sich in keinem bzw. in geringe-

rem Maße auf die CD44pos-Zellen in Monolayer-Kultur auswirkt. Der Mechanismus 

wie eine Induktion der Apoptose verhindert wird ist aktuell unklar. 

 

In der Spheres-Kultur ist das Ergebnis eindeutig: Die CD44pos-Teilpopulation zeigt 

keine signifikante Änderung der Apoptoserate unter Bestrahlung. Bei CD44neg-

Spheres dagegen wurde vermehrt Apoptose induziert. Die dosisbezogene, signifi-

kante Zunahme der Apoptoserate ließ sich klar zeigen. 

 

 

4.1.3. Wirkung von Bestrahlung auf Huh-7-Zellen in Relation zur Zeit  

 

Gemessen wurde die Proliferation mittels BrdU-Assay sechs, zwölf und 24 Stunden 

nach Bestrahlung. Diese Bestimmung wurde durchgeführt, um festzustellen, wie sich 

allgemein die Proliferation über diesen Zeitraum verändert.  

Die Kontrollen zeigen über diesen Zeitraum keine signifikante Änderung der Rate an 

proliferierenden Zellen. Dies gilt sowohl für Monolayer- als auch Spheres-Kultur. Für 

die bestrahlten Zellen gilt, dass in beiden Kulturen der Anteil an proliferierenden Zel-

len nach sechs Stunden über dem der Kontrolle liegt und sich der Anteil nach zwölf 

Stunden nochmal erhöht. Eine Erklärung dafür liegt am ehesten darin, dass viele Zel-
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len bis zu diesem Zeitpunkt abgestorben sind, und sich daher die Relationen zuguns-

ten der proliferierenden Zellen verschieben. 

Allerdings zeigt sich nach 24 Stunden, dass sich der Anteil der bestrahlten, proliferie-

renden Zellen um mehr als 50% im Vergleich zum Wert nach zwölf Stunden vermin-

dert. Eine mögliche Erklärung könnte darin zu finden sein, dass sich die Relationen 

wieder verschoben haben: Neugebildete Zellen, die folglich BrdU-negativ sind, sor-

gen für diesen Effekt. Diese neugebildeten Zellen könnten größtenteils durch CSC 

entstanden sind. Es sind aber weitere Arbeiten notwendig um diesen Effekt zu unter-

suchen. 
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4.2. Bedeutung der Ergebnisse 

 

 

4.2.1. Bedeutung für die Onkologie 

 

In den letzten Jahren gab es einige Veröffentlichungen, die die zentrale Rolle von 

CD133pos-CD44pos-Zellen beschrieben – und das nicht nur in Bezug auf das hepato-

zelluläre Karzinom: Schon 2008 wurde in Bezug auf das Kolonkarzinom eine solche 

Population beschrieben, die Fähigkeiten besitzen solle, Kolonkarzinome zu initiieren 

[105]. Eine weitere Arbeit beschreibt einen Zusammenhand des krankheitsfreien 

Überlebens bei CRC mit dem Vorhandensein von CD133pos-CD44pos-Zellen [106]. 

Ebenso gibt es eine Beschreibung beim Gallenblasenkarzinom, dass CD133pos-

CD44pos-Zellen dort ein schnelleres Tumorwachstum bedingen sowie auch die Neu-

bildung von Gallenblasenkarzinomen fördern können [107]. Beim Magenkarzinom 

scheint zwar die CD133pos-CD44pos-Subpopulation keine Rolle zu spielen, zumindest 

laut einer italienischen Arbeit [108]. Jedoch beschreibt eine andere Studie, dass ge-

rade die Expression von CD133 und CD44 (sowie des Markers ALDH1) bei Patienten 

mit einem Magenkarzinom, einer schlechteren Prognose zugeordnet werden können 

[109].  

Zusammenfassend gibt es dafür somit zahlreiche Hinweise bei einer Vielzahl von 

Tumoren, dass das Tumorstammzellkonzept eine wichtige Rolle bei Tumorgenese 

und -wachstum zu spielen scheint. Mehrere wissenschaftliche Arbeiten stimmen da-

rin überein, dass die Co-Expression von CD133 und CD44 eine Tumorstammzellpo-

pulation identifizieren könnte [64, 66, 68, 91].  

Es gibt Hinweise auf einen Zusammenhang von Chemotherapieresistenz, eine der 

größten Hürden der Onkologie, und der Expression von eben diesen Oberflächen-

proteinen [110, 111].    

Für das Kolonkarzinom zeigt eine Publikation aus dem Jahr 2014 von einer schwedi-

schen Arbeitsgruppe, dass die Kombination der Marker CD133 und CD44 zu einer 

erhöhten Resistenz gegenüber Strahlentherapie führt [112]. 

Anhand der hier gezeigten Ergebnisse liegt die Vermutung nahe, dass die Strahlen-

resistenz als (Stammzell-)Eigenschaft der HCC-Subpopulation den CD133pos-

CD44pos-Zellen zugeschrieben werden kann.  
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Gegenwärtige (Standard-)Therapieverfahren zielen nicht direkt auf Tumorstammzell-

populationen ab. Dies gilt für alle Tumore inklusive des hepatozellulären Karzinoms. 

Im Fall des HCC liegt zudem für keine, zum Einsatz kommende Therapie der Nach-

weis vor, dass Tumorstammzellen wirkungsvoll und nachhaltig geschädigt werden. 

Das könnte eine Erklärung für das niedrige Gesamtüberleben (bei fortgeschrittenen 

HCC) sein und ebenfalls eine Theorie für die Entstehung von Rezidiven darstellen.  

Individualisierte Tumortherapie bedarf primär einer erfolgreichen Identifikation und 

Isolation der CSC-Populationen [82, 113]. Diese könnten in Folge gezielt therapeu-

tisch angegriffen werden und so die Situation (Krankheitsfreies Überleben, Gesamt-

überlegen) für die Patienten entscheidend verbessern. Vlashi et al. gehen sogar so 

weit zu behaupten, dass die ordinären Bulk-Tumorzellen keine wesentliche Bedeu-

tung im Sinne der Therapie haben – im Vergleich zu den CSC, die in das Fadenkreuz 

der Therapie rücken sollten [114]. 

 

 

4.2.2. Bedeutung für die Transplantationsmedizin 

 

Einer erfolgreichen (Leber-) Transplantation folgt immer eine Immunsuppression, um 

eine Immunreaktion gegen das körperfremde Transplantat zu unterdrücken [115]. Ein 

supprimiertes Immunsystem dagegen kann das Risiko für die Entstehung von Tumo-

ren erhöhen (weshalb auch eine möglichst geringe Immunsuppression erfolgen soll-

te) [116].  

Die Neubildung von Tumoren kann unterschiedliche Ursprünge haben, unter ande-

rem kann dies durch bereits vorhandene (zirkulierende) CSC bedingt sein. 

Patienten, auf der Warteliste zur Lebertransplantation, müssen heute unter Umstän-

de mehrere Jahre auf ein Organ warten. Um diese Zeit zu überbrücken bzw. weiter 

innerhalb der Transplantationskriterien (MILAN- bzw. „up-to-seven“-Kriterien) zu blei-

ben, erhalten Patienten oftmals sogenannte Bridging-Therapieverfahren, zum Bei-

spiel Resektion, TACE, RFA oder SIRT [27, 117]. Daraus ergeben sich zwei Aspekte:  

Zum einen erhöht sich mit fortschreitender Zeit auch das Risiko, das mehr Tu-

morstammzellen gebildet werden könnten und ggf. ausgeschwemmt werden könn-

ten. Dies könnte dann, nach einer erfolgreichen Transplantation zu einer Erhöhung 

des Rezidivrisikos führen. 
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Zwar ist die Rezidivrate nach Lebertransplantation (bei Indikation HCC) nicht sonder-

lich hoch, so liegt sie bei ca. 20%, wie eine Übersichtsarbeit zeigen konnte [118]. Je-

doch könnte dies mit einer hohen Anzahl an Patienten in einem frühen Stadium der 

Erkrankung (zum Zeitpunkt der Transplantation) zusammenhängen, in dem es noch 

nicht oder nur in geringem Maße zu einer hämatogenen Ausschwemmung von CSC 

gekommen war.  

Die MILAN-Kriterien sind heute nicht mehr das Maß aller Dinge in Bezug auf die 

Einsschlußkriterien vor Lebertransplantation, hingegen finden die „up-to-seven“-

Kriterien vermehrt Anwendung. Patienten innerhalb der „up-to-seven“-Kriterien profi-

tieren ebenfalls von einer Lebertransplantation [119]. Man muss allerdings festhalten, 

dass das Risiko für das Vorliegen von im Blut zirkulierenden Tumorstammzellen in 

diesem Kollektiv zunehmen könnte. Dies ist bisher nicht untersucht worden, könnte 

allerdings zu höheren Rezidivraten führen und sich auch auf das Gesamtüberleben 

der Patienten auswirken. Gerade in Bezug auf die weitere Lockerung der Kriterien, 

zum Einschluss von Patienten in Transplantationsprogramme, sollte dies nicht außer 

Acht gelassen werden.   

Zum anderen wäre es möglich, wie schon in Bezug auf die Bedeutung für die Onko-

logie angesprochen, die Bridging-Therapie durch gezieltes Angreifen der Tu-

morstammzellen effizienter zu gestalten. Hier könnte gerade die Strahlentherapie, 

nach erfolgreicher Zerstörung der Stammzellpopulation mittels „targeted-therapy“, 

eingesetzt werden. Es wurde in der Vergangenheit versucht, die Strahlentherapie als 

bridging-Verfahren zu nutzen [120]. Das Potential, die Zeit bis zum Vorhandensein 

eines Spenderorgans zu verlängern, wurde in einer Arbeit von O’Connor et al. ge-

zeigt [121]. Dennoch ist man momentan davon abgekommen, Strahlentherapie flä-

chendeckend im Rahmen der Therapieschemata zu verwenden (1.2.2 Klassifika-

tionssysteme mit Therapieempfehlungen).  

 

 

4.2.3. Ein Blick in die Zukunft 

 

Es gibt Hoffnungen, dass sich in den nächsten Jahren die Zahl der Transplantationen 

in der Bundesrepublik Deutschland erhöhen wird. Die geänderte Regelung zur Or-

ganspende war vielleicht etwas moderat im Vergleich dazu, was sich viele (Trans-



47 

 

plantations-) Mediziner gewünscht hatten – gerade im Vergleich zu Österreich. Bei 

der dort geltenden ‚Widerspruchsregelung‘ müssen sowohl österreichische Staats-

bürger als auch Ausländer, selbst wenn sich letztere nur zur Durchreise in Österreich 

aufhalten, einer Verwendung ihrer Organe nach der Feststellung des Hirntodes expli-

zit widersprechen.  

Aber, nicht zuletzt durch den Transplantationsskandal im Sommer 2012, ist die tat-

sächliche Entwicklung nicht abzuschätzen. Die Resektion von HCCs wird also wei-

terhin wichtigster Bestandteil der Therapie bleiben. Die Frage nach dem Outcome 

einer Hepatektomie bei HCC, in Abhängigkeit von potentiellen Tumorstammzellen, 

wurde von einer chinesischen Arbeitsgruppe untersucht. Sie haben den Patienten 

am ersten postoperativen Tag Blut entnommen und versucht HCC-

Tumorstammzellen zu isolieren, sie suchten nach Zellen mit einem 

CD45negCD90posCD44pos-Expressionsprofil. Zwar gab es kein eindeutig signifikantes 

Ergebnis, jedoch konnte gezeigt werden, dass, bei einem Anteil von über 0,01% die-

ser Zellen im peripheren Blut (gemessen an allen HCC-Zellen), die Wahrscheinlich-

keit für den Patienten ein Rezidiv zu erleiden doppelt so hoch war. Dies im Vergleich 

zu Patienten mit einem, im peripheren Blut zirkulierenden Anteil von unter 0,01%. 

Diese Arbeit weckt die Hoffnung, dass man anhand einer simplen Blutentnahme ge-

paart mit zugegebenermaßen aufwendigen Aufarbeitungen, eine prädiktive Aussage 

bezüglich des Krankheitsverlaufes getroffen werden kann [122]. Aber nur Hoffnung in 

geringem Maße, denn es bedarf sicherlich einer Reihe von wissenschaftlichen Neue-

rungen, speziell was die Detektion der Zellen im peripheren Blut angeht, um zu ei-

nem nicht näher definierbaren Zeitpunkt eine valide Aussage treffen zu können. Die 

FACS-Analyse ist hierfür zwar ein weltweit etabliertes und zuverlässiges Verfahren, 

jedoch ist gerade in Hinsicht auf die notwenigen Markierung der Zellen (und gerade 

bei dermaßen kleinen Prozentsätzen der Subpopulationen) eine sichere Reprodu-

zierbarkeit (noch) nicht gewährleistet. In Zukunft würde es dann auch nötig werden 

Oberflächenmarker zur genaueren Klassifizierung mit in die Klassifikationssysteme 

und Therapieempfehlungen aufzunehmen. Als ein teilweise vergleichbares Beispiel 

könnte man das Mammakarzinom mit dem Status des Human Epidermal Growth 

Factor Receptors nennen oder auch die Gruppe der Lymphome mit diversen CD-

Oberflächenmarkern (z.B. CD30 beim Hodgkin-Lymphom). Dort werden die Oberflä-
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chenmarker teilweise zwar immunhistochemisch bestimmt wird, haben aber einen 

Einfluss auf Prognose und Therapie [123, 124]. 

 

Ich möchte an dieser Stelle nochmal betonen, dass die Lebertransplantation nach 

wie vor den Goldstandard der Therapie bei den nicht primär resektablen HCC-

Erkrankungen darstellt. Sie eröffnet sowohl den behandelnden Ärzten, aber in erster 

Linie dem Patienten die bestmögliche Heilungschance. Eine gewisse Kooperation 

von Seiten des Patienten vorausgesetzt, kann sich die Lebenserwartung eines Pati-

enten um viele Jahre bis Jahrzehnte erhöhen, auch wenn es später zu einer Re-

Transplantation kommen könnte.  

Gerade auch in Bezug auf diese therapeutischen Möglichkeiten der Transplantation 

ist es als wichtig zu erachten, dass Tumorstammzellforschung weiter betrieben wird, 

um dadurch das krankheitsfreie Überleben zu maximieren.     
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5. Zusammenfassung 

 

Das hepatozelluläre Karzinom ist eine der häufigsten tumorbedingten Todesursa-

chen weltweit. Getriggert durch virale Hepatitiden (insbesondere der Typen B und C), 

Alkoholabusus und andere Faktoren nimmt die Inzidenz sowohl in Industrienationen 

als auch in anderen Staaten des Globus zu.  

Ziel dieser Arbeit war es, die bekannte Strahlenresistenz des hepatozellulären Karzi-

noms genauer zu untersuchen. Es wurden verschiedene Subpopulationen, zu unter-

scheiden anhand ihrer Oberflächenmarker, mit unterschiedlichen Dosen bestrahlt.  

Dabei konnte eine Subpopulation identifiziert werden, die CD133pos-CD44pos-

Subpopulation, die resistent gegenüber Bestrahlung ist; die ihr gegenüberstehenden 

CD133pos-CD44neg-Population war dagegen strahlensensibel. Dieser Effekt ist sowohl 

in normaler, zweidimensionaler (= Monolayer-) Zellkultur als auch bei der dreidimen-

sionalen Spheres-Zellkultur nachgewiesen worden; letztere ist dabei als näher an in-

vivo-Bedingungen anzusehen.  

Des Weiteren wurde die Apoptoseinduktion durch Bestrahlung untersucht. Hier wird 

gezeigt, dass die CD44neg-HCC-Zellen im Gegensatz zur deren CD44pos-Gegenpart, 

unter Bestrahlung eine erhöhte Apoptoserate aufweisen.  

Interessanterweise zeigen die Kontrollen CD44pos-Zellen in Monolayer-Kultur eine 

erhöhte Apoptoserate, in Spheres-Kultur hingegen nicht. Dies unterstützt die Vermu-

tung, die besagt, dass Tumorstammzellen in Spheres-Kultur bessere Wachstumsbe-

dingungen vorfinden [76, 125].   

 

In Zusammenschau mit anderen Arbeiten, die belegen, dass CD44pos-Zellen auch die 

Neubildung von Tumoren initiieren können, erhärtet sich der Verdacht, dass es sich 

bei CD44pos-Zellen des HCC um einen Stammzellsubpopulation des hepatozellulären 

Karzinoms handelt.   
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7. Eidesstattliche Versicherung 
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8. Abkürzungen 

7AAD 7-Aminoactinomycin 

APC Allophycocyanin 

ALDH1 Aldehyd-Dehydrogenase 1 

BCLC Barcelona Clinic Liver Cancer 

BrdU Bromdesoxyuridin 

BSA Bovine serum albumin 

CD Cluster of Differentiation 

CLT Cadaveric Liver Transplantation 

CRC Colorektal Carcinoma = Kolorektales Karzinom 

CSC Cancer stem cells 

DMSO Dimethylsulfoxid 

DPBS Dulbecco's Phosphate-Buffered Saline 

EDTA Ethylendiamintetraacetat 

EpCAM Epithelial cell adhesion molecule 

EU Europäische Union 

FACS Fluorescence-activated Cell Sorting 

FITC Fluoresceinisothiocyanat 

FHCC Fibrolamelläres hepatozelluläres Karzinom 

FLHCC Fibrolamelläres hepatozelluläres Karzinom 

HBV Hepatitis B Virus 

HCC Hepatozelluläres Karzinom 

IgG1 Immunglobulin G 1 

INR International Normalized Ratio 

LDLT Living Donor Liver Transplantation 

PDGFR Platelet-derived Growth Factor Receptor 

PE Phycoerythrin 

PEI perkutane Ethanolinjektion 

RFA / RF(I) Radiofrequenzablation 

SIRT Selektive interne Strahlentherapie 

TACE Transarterielle Chemoembolisation 

TAE Transarterielle Embolisation 
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UICC Union for International Cancer Control 

USA Vereinigte Staaten von Amerika 

VEGFR Vascular Endothelial Growth Factor Receptor 

WHO World Health Organisation 

WPRO Western Pacific Region (WHO Definition) 
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