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Summary and aim of this dissertation

Ants are remarkable in the way they form large, highly organized and structured colonies,
consisting of up to several million individuals. This is achieved despite the small brains of
individual ants and their limited information about the complex states of the colony and its
environment, as well as the lack of a central guiding instance. Still, the ant colony is able to
act as a whole and collectively finds solutions to the problems that it is challenged with,
allowing the survival and propagation of the colony. This remarkable behavior of ant
colonies is achieved by means of self-organization, which has become an important research
field in biology with ants serving as model organisms. As result, researchers have successfully
explained aspects of self-organization in ants by developing models of their collective
behavior (Camazine et al. 2001b; Holldobler and Wilson 2009).

In this context, the results of the research group led by Jean Louis Deneubourg from
Belgium are most important. Based on the finding that ants respond to trail pheromones in a
probabilistic manner, they developed models to explain some fundamental properties of the
social behavior of ant colonies. For instance, they explaied how ants are able to collectively
find the shorter of two different paths between nest and food (shortest path experiments)
or how ant colonies are able to select the higher quality food source if food sources of
different quality are available (Beckers et al. 1992; Beckers et al. 1993). We refer to this class
of models as the Deneubourg model and to its underlying mathematical function as the
Deneubourg choice function (DCF). The DCF has been used by other models that explain
different aspects of collective ant behavior, i.e. how they coordinate the division of labor
between the members of the colony (Bonabeau et al. 1996), the influence of noise
(Dussutour et al. 2009a), the path efficiency in artificial networks (Vittori et al. 2006), the
symmetry breaking in foraging behavior (Lanan et al. 2012), the role of multiple pheromones
(Dussutour et al. 2009b) and foraging in dynamic environments (Bandeira de Melo and
Araujo 2011; Ramsch et al. 2012).

Although the Deneubourg model can explain important aspects of the social behavior of ant
colonies, it bears some shortcomings:
e Computer simulations could not fully reproduce the experimental results of the
shortest path experiments, despite the fact that the parameters of the DCF were
freely adjusted to get an optimal fit to the experiments.

e Realistic parameter values for the DCF were never deduced experimentally.
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To our knowledge, the parameters of the DCF lack biological interpretation.
The model does not include a theory of perception describing the relation between

pheromone perception and ant behavior.

The aim of this dissertation was to overcome these shortcomings by measuring the exact

dose-response relationship between pheromone concentration and ant response, deduce all

relevant parameter values for the DCF, find a new model based on a theory of perception,

test and compare both models and apply the new model to important biological aspects of

ant colony behavior.

The results presented in this dissertation may be summarized as follows:

The Deneubourg model in its original conception does not explain the experimental
results if we use realistic parameter values that were deduced from experiment.

As the missing theory of perception, psychophysical theory proved to be appropriate
to describe the dose-response relationship between pheromone concentration and
ant response. Most importantly it could be shown that Weber’s law, a fundamental
law in sensory physiology, is fulfilled. Important biological parameters like behavioral
thresholds and error rates could be defined consistently and experimentally
deduced.

By incorporating psychophysical theory into the model, the modified Deneubourg
model was able to qualitatively and quantitatively explain the shortest path
experiments.

Memory and motivation significantly altered the ants’ behavior and their response to
trail pheromones, resulting in the change of characteristic psychophysical
parameters. For instance, the response threshold was shifted and the error rate in

trail following changed in a way that we predicted.

We therefore suggest to refine one of the leading theories of collective ant behavior, the

Deneubourg model, by integrating psychophysical theory into the model. Thus we may gain

a more exact explanation of the experimental results, a clearer definition of important

biological parameters and altogether a deeper insight into the collective behavior of ants.
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General introduction

“With algorithms, the colony masters the problems natural selection has
designed it to solve. The required information is distributed among the colony
members. Thus, a distributed intelligence is greater than the intelligence of any
one of the members, sustained by the increased pooling of information through

communication.” (Holldobler and Wilson 2009, "The Superorganism", p. 58)

A typical ant colony usually consists of many thousand individuals and in some species like
wood ants or leaf cutter ants, this number may go up to several million. These individuals
are constantly active in exploring for new food sources and bringing the food they found
inside the nest, feeding and taking care of the brood, guarding and defending the colony, as
well as finding new nest sites and moving the whole colony if the old nest is no longer
suitable. Many ant species practice farming of aphids and live on the nectar they produce.
Leaf cutter ants cultivate fungus which they feed with freshly cut plant material. The
architecture of ant nests is often highly complex with different chambers, tunnels and a
sophisticated system of air conditioning to control the climate within the nest. Around their
nest, ants build complex networks of trails connecting the nest to food sites, often 50 or
more meters away (Holldobler and Wilson 1990; Seifert 2007; Holldobler and Wilson 2009).
The most remarkable thing about this complex organization is that it works without a central
guiding instance (Detrain and Deneubourg 2006). For this reason, ants have become an
important model organism for research on self-organization (Camazine et al. 2001a). Self-
organization allows patterns to emerge in a system on a global level, without the use of
global information but instead by interactions between the components of the system using
only local information (Camazine et al. 20013, p. 8). It was shown that many aspects of the
behavior of ant colonies can be explained by principles of self-organization (Camazine et al.
20014, ch. 13 and 14; Detrain and Deneubourg 2006). Below is a list of some important
properties of self-organization in ant colonies that have been described in the literature:

e A central control does not exist (Detrain and Deneubourg 2006).

e [Individuals have only very limited knowledge about the state of the whole system

and the environment (Detrain and Deneubourg 2006).
e Individual ants act on a small set of behavioral algorithms (Holldobler and Wilson

2009, pp. 53-60).
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e Ants use different kinds of signals for communication (tactile, acoustic, chemical), but
predominantly using pheromones deposited in the environment (Holldobler and
Wilson 1990, p.227; Holldobler 1995).

e Changes in the internal and/or external environment of the colony trigger positive
and negative feedback loops, enabling structure and pattern to emerge (Camazine et
al. 20014, ch. 2).

e The colony as a whole reacts dynamically to the changes in the environment
(Camazine et al. 20014, ch. 3), shifting the colony into a state that represents a good
solution to the problems that the environment has posed upon the colony
(Holldobler and Wilson 2009, p. 58).

e In many cases, colonies show a complete and abrupt transition from one stable state
into another (symmetry breaking or bifurcation) (Detrain and Deneubourg 2006).

A key to the understanding of self-organization in ants is to understand the way they
communicate, which is mainly based on pheromones (Wilson 1958). It was shown that ants
do not respond to pheromones in binary manner but rather probabilistically: The higher the
pheromone concentration an ant encounters, the higher the probability that it will respond
to it (Hangartner 1969; Van Vorhis Key and Baker 1982; Choe et al. 2012; Perna et al. 2012).
Based on these findings and principles of self-organization, models have been developed
that explain some basics of collective ant behavior:

e How ant colonies are able to select the shorter of two paths of different lengths
(Goss et al. 1989; Deneubourg et al. 1990).

e How ant colonies are able to select the higher quality food source if food sources of
different quality are presented to the colony (Beckers et al. 1993).

e How ant colonies are able to coordinate the division of labor by caste specific
response thresholds (Bonabeau et al. 1996).

e How ant colonies are able to find the shortest path between nest and food (Vela-
Pérez et al. 2013).

Since these models are all very similar and go back to the work of the Belgium research
group of J.L. Deneubourg, we refer to this class of models as the Deneubourg model and to
its underlying mathematical function as the Deneubourg choice function (DCF), see Box 1
below. The key elements of the model are, despite some variations, always the same: the

amount of pheromone deposited in the environment contains information about the quality
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of the environment, ants respond probabilistically to different pheromone concentrations

according to the DCF or slight modifications of it, and a positive feedback loop attracts the

ants towards the most favorable environment.

Although the model was very successful in explaining important aspects of ant colony

behavior, it has some shortcomings:

In cases in which the model was tested by computer simulations that were compared
to experimental results, the simulated results did not fit very well to the
experimental results, see Fig. 1B (Goss et al. 1989; Deneubourg et al. 1990; Bonabeau
et al. 1996). This was despite the fact that the parameter values of the DCF could be
freely adjusted to fit the experiments. Thus, the models were able to explain the
colony behavior only qualitatively and not quantitatively.

The parameter values of the DCF were set freely to give an optimal fit to the colony
behavior (Goss et al. 1989; Deneubourg et al. 1990; Bonabeau et al. 1996; Vela-Pérez
et al. 2013) while real parameter values were never deduced by experiment (see Fig.
1).

We know of no biological interpretations of the parameters of the DCF.

The response of an ant to a pheromone is determined by the way it perceives the
pheromone through its sensory organs, the further processing by its nervous systems
and the final translation into behavior. Thus, a deeper understanding of the
pheromone based behavior of an ant colony should be based on a theory of
perception. This theory is missing in the Deneubourg model.

The model did not distinguish between detection tasks and discrimination tasks. In
detection tasks the animal has to detect a stimulus of varying intensity against a
background with no stimulus (or just noise), while in discrimination tasks the animal
has to distinguish a stimulus of varying intensity from a background stimulus of
constant intensity. Both tasks lead to a different dose-response relationship. In the
initial phase of self-organization, which mainly determines the development of the
system, the ants have to perform detection tasks, while in the following phase, they
have to perform discrimination tasks. These differences have not been considered by

the model so far.
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Box 1: The Deneubourg model,
(modified from von Thienen et al. 2014; von Thienen et al. 2015)

The Deneubourg model (Deneubourg et al. 1990; Beckers et al. 1992) is based on the finding that
ants encode information about the environment by dropping varying amounts of pheromones on
their trails. This information is then used by other individuals for directional choices (Wilson 1962).
The model describes the decision ants take at a bifurcation of two pheromone trails: the trail with
higher concentration is selected by the ants in a probabilistic and non-linear manner depending on
the pheromone concentrations of the two trails given by the Deneubourg choice function with
exponents =2:

(k+cL)b
k+c, Y +(k+cy)

p — decision probability, c. — pheromone concentration of left branch, cr - pheromone concentration of right
branch, b — exponent, k — constant.

T

The model could explain how ants are able to collectively select the shorter of two paths of
different length between nest and food by depositing pheromone on their way towards the food
and back (shortest path experiments) (Goss et al. 1989). The model explains the outcome of the
experiments by initial differences between the pheromone concentrations of the two paths. When
the paths are of different length, there is a time delay between the ants arriving at the food via the
long compared to the short path. During this period, the long path carries no pheromone at all at
the side closest to the food and the returning ants prefer the short path on their way back to the
nest and deposit pheromone on it. This generates a positive feedback loop in favor of the short
path. Thus, in most experiments, the great majority of ants follow the short path (See Fig. 1A). If
both paths are of equal length, no time delay occurs. However, small stochastic differences between
the paths occur at the beginning and positive feedback amplifies the path with an initially slightly
higher concentration so that it is finally selected by most of the ants. Consequently, in most of the
experiments symmetry breaking occurs and either one or the other path is preferred by the great
majority of ants with equal probability (see Fig. 1B).

long path

nest | food )

short path

FIG. 2.-Schematic experimental setup of the shortest path experiments. In the majority of experiments, most
of the ants took the short path between nest and food. Modified from Goss et al. (1989).
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FIG. 1.—Results of the original shortest path experiments, modified from Goss et al. (1989). The x-axis shows the
distribution of ants that chose the short path (n=500); the y-axis shows the number of experiments or
simulations in percent (n=1000). Black=original experimental results, grey=results of Monte Carlo simulations
with parameters b=2, k=20. A: One path is twice as long as the other; in 13 out of 14 experiments (93%) more
than 80% of the ants took the short path while this did not happen at all for the long path. B: Both paths
(named “A” and “B”) are of equal length; in 10 out of 26 experiments (38%) more than 80% of the ants took
path A and in 13 experiments (50%) this happened for path B.
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The aim of this dissertation was to overcome these shortcomings. To achieve it, following
tasks had been defined:

Task 1:  Experimentally measure the exact dose-response relationship between
pheromone concentration and ant response.

Task 2:  Deduce all relevant parameter values of the DCF from these experiments.

Task3: Find a new model based on a theory of perception that fits well to the
experimental results and deduce all relevant parameter values for the underlying
mathematical functions.

Task 4: Test if one of the experiments explained by the Deneubourg model can still be
satisfactorily explained by using the DCF after adding the parameter values that had
been deduced by the experiments before.

Task 5: Do the same test with the functions based on the new model.

Task 6:  Apply the new model to an important aspect of ant colony behavior, the
combined effect of trail pheromones and route memory.

Task 7:  Apply the new model to a further important aspect of ant colony behavior,
the combined effect of trail pheromones and motivation to forage.

For Task 1-3, three different ant species that are phylogenetically and ecologically clearly
distinct were used: Linepithema humile, Lasius niger and Euprenolepis procera. As theory of
perception (Task 3), psychophysical theory was investigated, which had already been
successfully applied to humans and other animals in many studies, see Box 2 below. As
mathematical tool to describe the relationship between pheromone concentration and
response, a psychometric functions (PF) was used. As test for the models (Task 4 and 5), the
results of the experiments from Goss et al. (1989) and Deneubourg et al. (1990) with L.
humile were used. In these experiments ants selected the shorter of two paths (shortest
path experiments). Like in the original publications, the experiments were simulated by
computer and the simulated results were compared to the experimental results. The only
difference was the use of realistic parameter values derived from the measurements of the
dose-response relationship (Task 1). Finally psychophysical theory was applied to
experiments in which the combined effect of pheromone and memory and the combined
effect of pheromone and motivation on the behavior of ant colonies was tested (Tasks 6 and
7). The results of Task 1-3 are presented in chapter 1 (von Thienen et al. 2014), the results of
Task 4 and 5 are presented in in chapter 2 (von Thienen et al. 2015) and the results of Tasks

6 and 7 are presented in chapter 3 (von Thienen et al. 2016).



General introduction 10

Box 2: Psychophysical theory,

(modified from von Thienen et al. 2014; von Thienen et al. 2015)

Psychophysical theory was developed by G.T. Fechner (1860) based on the works of E.H. Weber
(1834) to find a relationship between the strength of a physical stimulus and its sensory impressions
(Klein 2001; Wichmann and Hill 2001; Kingdom and Prins 2010). It plays a major role in psychology
and neurobiology. The main subjects of psychophysical theory are humans but it has also been
successfully applied to perception and behavior in primates, birds and insects (Britten et al. 1992;
Sarris 2006; Dyer et al. 2008; Chittka et al. 2009; Sasaki et al. 2013; Akre and Johnsen 2014) and in
decision making processes (Kacelnik and Brito e Abreu 1998; Gold and Shadlen 2007). Weber (1834)
discovered that the ability to discriminate between two stimuli depends on the ratio of the stimulus
strengths, which is, within certain limits, independent of the absolute stimulus strengths (Weber’s
law). Fechner (1860) discovered later that the sensory impression of a physical stimulus is
proportional to the logarithm of the stimulus strength, which is the reason why, for example, sound
levels are measured on a logarithmic scale (decibel).

In the context of the psychophysical theory, a mathematical framework has been developed that
relates physical stimuli to sensory impressions. This framework incorporates the effect of noisy
backgrounds that influence the ability to detect a signal and it gives clear mathematical definitions
of sensory thresholds. One of the most useful mathematical tools is the psychometric function (PF),
which describes the relationship between the probability of a positive response p to a stimulus and
the stimulus strength x (see Fig. 3)

p(x)=y+(1-2-y) F(x).

x — stimulus strength, A — guess rate, y — lapse rate, F(x) — function describing the probability to detect a
stimulus by the underlying sensory mechanism (Kingdom and Prins 2010 p. 74). For F(x) a probability
distribution like the Weibull distribution is applied.

1.00
1.00

0.75
0.75

response
0.50
¢
-
response
0.50

0.25
0.25

0.00
0.00

_ tdiys tdsys
stimulus (log) stimmhus (log)
a) Psychometric function for detection b) Psychometric fimetion for discrimination

Fig. 3: Schematic examples of psychometric functions. In detection experiments (a) the psychometric function
(PF) gives the probability that a stimulus is reported stronger (response) than a null-stimulus. It starts at 0.5
when both stimuli are zero or close to zero and cannot be distinguished. In discrimination experiments (b) the
PF gives the probability that a stimulus is reported stronger (response) than a constant stimulus, which is
larger than zero. Lapse rate (A, dotted horizontal line), guess rate (y, dashed horizontal line), 75%-detection
threshold (tdtzs, dashed vertical line), 75%-discrimination threshold (tdszs, dashed vertical line). Note that the
75%-threshold is the point at half the distance between guess rate and upper asymptote, thus, it may not be
exactly at p=0.75. Solid lines show the PF.

Psychophysical theory explains the probabilistic nature of the response to a stimulus by
incorporating the influence of the random fluctuations of internal and external noise. It is assumed
that a stimulus will only be clearly detected when the sensory impression produced by the stimulus
exceeds a certain internal sensory threshold that is clearly above random noise. This assumption is
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called the high threshold assumption. The sensory threshold is usually defined as the stimulus
strength that produces a correct response in 75% of the cases. This is assumed to be well above the
influence of noise. In the context of psychophysical theory, other important explanations of the
probabilistic nature of sensory impressions exist, for instance the detection theory (Kingdom and
Prins 2010, p. 74ff).

There are two important classes of psychophysical experiments: 1) Detection experiments

measure the response to a varying test stimulus compared to a null reference stimulus, while 2)
Discrimination experiments measure the response to a varying test stimulus compared to a fixed
reference stimulus. Response is defined as the probability to detect the stimulus as stronger than
the reference (null or fixed) stimulus.
The PF is used to define and measure the 75%-detection threshold (tdt;s) and the 75%-discrimination
threshold (tdszs), which are usually defined as the stimulus strength at which 75% of the responses
are correct. In detection experiments, the 75%-detection threshold is taken as a measure for the
smallest detectable stimulus. Similarly, in discrimination experiments the 75%-discrimination
threshold is taken as a measure for the smallest noticeable difference or contrast. The lapse rate
defines the errors that the test subjects make. According to psychophysical theory, the lapse rate is
influenced by the motivation or attentiveness of the test subjects, by disturbances or by learning
effects, which are caused by repeating the measurements with the same test subject. For further
details see (von Thienen et al. 2014; von Thienen et al. 2015).
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Chapter 1

Pheromone communication in ants: a detailed analysis of concentration
dependent decisions in three species

Wolfhard von Thienen, Dirk Metzler, Dong-Hwan Choe, Volker Witte (2014)
Behavioral Ecology And Sociobiology 68:1611-1627
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Abstract The collective behavior of ants and the emergence
of self-organizing patterns in ant colonies have been explained
with various theoretical approaches based on models of trail
following behavior elicited by pheromones. Although existing
models can explain collective behavior of ants, there is little
empirical evidence on how ants precisely respond to various
pheromone concentrations. Thus, important knowledge is
lacking about how much realistic description of ant behavior
can be provided by the models and their underlying mathe-
matical functions. To fill in this gap, we conducted exper-
iments with three different ant species to explore their
responses to varying concentrations of pheromones that
elicit ants’ trail following behavior. We found that ants’
decision making processes in trail following are best
explained by psychophysical theory (PT), which de-
scribes the relationship between physical stimuli, sensory
perception and decision making in humans, other pri-
mates, birds and insects. Furthermore, the theory pro-
vides clear definitions of biological parameters, such as
detection- and discrimination thresholds. The species
studied were distinctively different in the shape and
parameters of their psychometric functions, which we
attribute to specific adaptions to their environment. The
observed differences are discussed in relation to their
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natural trail following behaviors. Our study opens a
new perspective of understanding and explaining impor-
tant aspects of collective ant behavior using a well-
established theory of perception.

Keywords Antbehavior - Communication - Pheromones -
Psychophysics - Weber’s law

Introduction

Self-organization and pattern formation are important
concepts in biology. The mathematician Alan Turing
developed a model explaining how different kinds of
complex biological structures could emerge from un-
structured systems (Turing 1952). Grassé (1959) ex-
plained the building of complex nest structures by ter-
mites based on self-organizing mechanisms. Similar self-
organizing mechanisms have been found in other social
insects, particularly ants, which have become important
model organisms for the study of self-organization.
Ants use different kinds of signals for communication
(tactile, acoustical, chemical) and these signals often modulate
each other (Holldobler 1995). Yet, as Wilson had proposed
(1958), their social behavior is mainly mediated by chemicals
and a large amount of evidence has been found, showing that
pheromones play an important role in the emergence of col-
lective social behavior in ant colonies (Holldobler and Wilson
1990, p. 227). Thus, to understand the social behavior of ants,
it is important to understand how information is encoded and
transmitted by pheromones and how this information is trans-
lated into specific behavior. It has been shown that ants,
confronted with a binary choice of trails, prefer the trail with
the higher pheromone concentration over that of lower con-
centration and that trail following fidelity increases with
higher pheromone concentrations (Hangartner 1969; Van

@ Springer
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Vorhis Key and Baker 1982; Choe et al. 2012). This behavior
resembles an analog communication system, which has the
potential to transmit information about different states of the
environment.

Importantly, the information content of continuous phero-
mone concentration is a central component of various models
of self-organizing behavior of ant colonies, for example, how
ants are able to find the shortest of two trails between their nest
and a food source (Goss et al. 1989; Deneubourg et al. 1990).
With a similar model, it was shown that the ability of ants to
exploit the best quality food source in the environment de-
pends on different pheromone concentrations deposited on the
trails (Beckers et al. 1993). We refer to this class of models as
Deneubourg models. To mathematically describe ant behav-
ior, these models make use of the same or a slightly modified
choice function, which we refer to as the Deneubourg choice
function (see section “Deneubourg model”).

Although it is possible to explain important aspects of
collective ant behavior with these models, empirical evi-
dence for crucial model assumptions concerning the precise
decisions ants take depending on given pheromone concen-
trations is rare. The above-mentioned experiments of
Hangartner, Van Vorhis Key and Baker, Choe et al. clearly
revealed a relationship between the ants’ decision and the
concentration of the trail pheromones. However, their re-
sults applied only to two ant species and involved only up
to six different pheromone concentrations, without know-
ing whether the concentration range matched natural con-
ditions. Particularly low and high concentrations were not
studied, which are presumably important in ant communi-
cation and thus also in models of self-organization. Conse-
quently, there seems to be a lack of empirical data on the
precise relationship between pheromone concentration and
ant decision making.

The aim of this study was to fill in this gap by measuring
the decisions that ants take depending on different pheromone
concentrations. Another aim was to fit an appropriate choice
function to the empirical data. We focused on three different
ant species and on their glandular sources that had been shown
in past studies to contain trail pheromones. For each, we
conducted three different experiments. The experiments were
carried out with phylogenetically distinct ant species to find
out if there are differences in decision making that can be
attributed to specific adaptations to a given environment. We
compared the empirical data with the Deneubourg model and
modified this model by considering a well-established general
theory of perception, the psychophysical theory (see below).
With this theory, the understanding of sensory perception in
various animals and humans can be combined with knowl-
edge about collective ant behavior to give deeper insight into
the biology of decision-making processes in the trail following
behavior of ants (see section “Applying the psychophysical
theory to models of collective ant behavior”).

@ Springer

The models

Understanding the Deneubourg model and the psychophysical
theory are essential for the understanding of this article. Here,
we give a short introduction for readers who are not familiar
with these concepts. In addition, we describe our application
of the psychophysical theory to the Deneubourg model.

Deneubourg model

The Deneubourg model was developed to explain important
aspects of the collective behavior of ants that are based on
pheromones (Deneubourg et al. 1990; Beckers et al. 1992).
The model is based on the finding that ants encode informa-
tion about the environment by dropping varying amounts of
pheromones on their trails and this information is then used by
other individuals for directional choices (Wilson 1962). The
model describes the decision ants take at a bifurcation: the ants
choose the trail with higher concentration in a probabilistic
and nonlinear manner depending on the pheromone concen-
trations of the two trails given by the Deneubourg choice

function with exponents ~2:

(k+cL)’
(k4 )’ + (k4 )"’

where p is the decision probability, ¢ is the pheromone
concentration of left branch, ¢y is the pheromone concentra-
tion of right branch, b is the exponent, and & is a constant.

As more ants choose the trail with a higher concentration,
more ants will deposit pheromones on that trail increasing its
pheromone concentration and generating a positive feedback
loop. Using the Deneubourg model, Goss et al. (1989) ex-
plained how Linepithema humile select the shortest of two
paths to a food source by depositing pheromones on their way
to and from the food (shortest path experiments). Various
modifications of the model have also been developed to
explain other types of collective ant behaviors, for instance
the selection of the richest food source (Beckers et al. 1992),
the division of labor by caste specific response thresholds to
stimuli like pheromones (Bonabeau et al. 1996) or how ants
form paths of minimal length between nest and food (Vela-
Pérez et al. 2013). The key elements of the model, however,
remain the same; the amount of pheromone deposited in the
environment contains information about the quality of the
environment, ants respond probabilistically to different
pheromone concentrations according to the above-
mentioned choice function or slight modifications of it,
and a positive feedback loop attracts the ants to the
favorable environmental condition.
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Psychophysical theory

Psychophysical theory was developed by G.T. Fechner
(1860) based on the works of E.H. Weber (1834) to find
a relationship between the strength of a physical stimulus
and its sensory impressions (Klein 2001; Wichmann and
Hill 2001; Kingdom and Prins 2010). It plays a major
role in psychology and neurobiology. Its main subjects
are humans but it has also been successfully applied to
perception and behavior in primates, birds and insects
(Britten et al. 1992; Sarris 2006; Dyer et al. 2008;
Chittka et al. 2009; Sasaki et al. 2013; Akre and
Johnsen 2014) and in decision-making processes
(Kacelnik and Brito e Abreu 1998; Gold and Shadlen
2007). Weber (1834) discovered that the ability to dis-
criminate between two stimuli depends on the ratio of
the stimulus strengths, which is within certain limits
independent of the absolute stimulus strengths (Weber’s
law). Fechner (1860) discovered later that the sensory
impression of a physical stimulus is proportional to the
logarithm of the stimulus strength, which is the reason
why, for example, sound levels are measured on a loga-
rithmic scale (decibel).

In the context of the psychophysical theory, a math-
ematical framework has been developed that relates
physical stimuli to sensory impressions. This framework
incorporates the effect of noisy backgrounds that influ-
ence the ability to detect a signal and it gives clear
mathematical definitions of sensory thresholds. One of
the most useful mathematical tools is the psychometric
function (PF), which describes the relationship between
the probability of a positive response p to a stimulus
and the stimulus strength x

p(x) =7+ (I=A=y)-F(x),

where is x denotes stimulus strength, A is the guess rate,
v is the lapse rate, and F(x) is the function describing the
probability to detect a stimulus by the underlying sensory
mechanism (Kingdom and Prins 2010 p. 74). For F(x), a
probability distribution like the Weibull distribution is
applied (see Online Appendix A).

The psychophysical theory explains the probabilistic
nature of the response to a stimulus by incorporating the
influence of the random fluctuations of internal and
external noise. It is assumed that a stimulus will only
be clearly detected when the sensory impression pro-
duced by the stimulus exceeds a certain internal sensory
threshold that is clearly above random noise. This as-
sumption is called the high threshold assumption. The
sensory threshold is usually defined as the stimulus
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Fig. 1 Schematic examples of psychometric functions. In detection
experiments (a), the psychometric function (PF) gives the probability
that a stimulus is reported stronger (response) than a null-stimulus. It
starts at 0.5 (both stimuli are zero or close to zero and cannot be
distinguished). In discrimination experiments (b), the PF gives the prob-
ability that a stimulus is reported stronger (response) than a constant
stimulus, which is larger than zero. Lapse rate (\, dotted horizontal
line), guess rate (v, dashed horizontal line), 75 % detection threshold
(ta7s, dashed vertical line), 75 % discrimination threshold (4475, dashed
vertical line). Note that the 75 % threshold is the point at half the distance
between guess rate and upper asymptote; thus, it may not be exactly at p=
0.75. Solid lines show the PF

strength that produces a correct response in 75 % of
the cases. This is assumed to be well above the influence
of noise. In the context of the psychophysical theory,
other important explanations of the probabilistic nature
of sensory impressions exist, for instance the detection
theory (Kingdom and Prins 2010, p. 74ff).

There are two important classes of psychophysical
experiments: (1) In detection experiments, the response
to a varying test stimulus compared to a null reference
stimulus is measured and (2) in discrimination
experiments, the response to a varying test stimulus
compared to a fixed reference stimulus is measured.
Response is defined as the probability to detect the
stimulus as stronger than the reference (null or fixed)
stimulus.
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The parameters that define the PF are the slope (b), the
threshold (t), the lapse rate ()\) and the guess rate (). The
threshold defines the inflection point of the PF. In addition, the
PF is used to define and measure the 75 % detection threshold
(t4175) and the 75 % discrimination threshold (475), which are
usually defined as the stimulus strength at which 75 % of the
responses are correct. For a precise definition, see Online
Appendix A. In detection experiments, the 75 % detection
threshold is taken as a measure for the smallest detect-
able stimulus. Similarly, in discrimination experiments
the 75 % discrimination threshold is taken as a measure
for the smallest noticeable difference or contrast. The
lapse rate defines the errors that the test subjects make.
According to psychophysical theory, the lapse rate is
influenced by the motivation or attentiveness of the test
subjects, by disturbances or by learning effects, which
are caused by repeating the measurements with the same
test subject. The guess rate defines the response proba-
bility when the test subjects cannot detect the stimulus
and have to guess.

It has been shown that Weber’s law does not hold in regions
of low and high stimuli. A simple way to describe this effect is
to add a small constant k¢ to the stimulus strength (Stevens
1957). Other and more sophisticated modifications of the PF
are known (e.g., Stevens 1957).

Applying the psychophysical theory to models of collective
ant behavior

The Deneubourg model was able to explain important
aspects of the collective behavior of ants by assuming
that the decision of each single ant follows simple sto-
chastic rules that can be described by the Deneubourg
choice function. It did not give further biological explana-
tions of the underlying stochastic nature of ant decisions.
To fill in this gap, we propose that the perception of a
stimulus (pheromone) by ants follows the principles of
psychophysical theory and this determines their decisions.
The theory provides a well-established framework for the
stochastic nature of perception and behavior, which can be
described by a PF. The function describes not only the
relationship between pheromone concentrations and the
resulting decision probabilities, but it also considers factors
like noise, error rate and sensory and behavioral thresh-
olds, and thus provides parameters which can be useful
for understanding biological systems. For a more detailed
interpretation of these parameters, see “Discussion”
section.

The model can be tested experimentally by measuring trail
following behavior of ants at a bifurcation of trails with
varying pheromone concentrations. We hypothesized that
the decision probability follows a PF and Weber’s law is
fulfilled, at least within certain concentration ranges.
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Materials and methods
Species used

Experiments were conducted with queenright colonies of
Euprenolepis procera, Linepithema humile and Lasius niger.
The three species are distinct in several respects: L. niger and
E. procera belong to different genera of the same subfamily
Formicinae, but they have different habitats and life styles.
L. humile belongs to the subfamily Dolichoderinae and again
differs considerably in its habitat and life style.

E. procera (Formicinae) lives in the tropical rainforests of
Malaysia and Indonesia. It is the only ant species known to
feed entirely on mushrooms (Witte and Maschwitz 2008).
Colonies are polygynous and consist of 500-20,000 individ-
uals. The ants forage only at night and induce mass recruit-
ment when they discover freshly grown mushrooms in their
environment. They establish and maintain a trail system that
leads from the nest to different mushroom sites and they
follow these trails with high fidelity. Trail sections are aban-
doned when a food source is exhausted. However, when
mushrooms regrow after some time at a previously exploited
site, the ants reactivate abandoned trails with high fidelity
(von Beeren et al. 2014). The trails can lead over distances
of ca. 5 m through very uneven material (leaves, litter, wood,
etc.), the ants do not clear the trails of obstacles as other ant
species do and no light penetrates to the rainforest floor at
night. Therefore, the reactivation of trails probably depends on
long-lasting trail pheromones since optical and/or sensorimo-
tor orientation is very unlikely. Ant colonies were collected at
the field station in Ulu Gombak, Malaysia, and kept in plastic
boxes (50x33x21 cm) under controlled conditions in a cli-
mate chamber (24 °C and humidity 85 %). Ant colonies were
fed with half a mushroom (4garicus bisporus) twice a week.
Ants were starved 5 days prior to the experiments. We con-
ducted experiments on three colonies that each contained
about 5,000 individuals. Trail pheromone extracts were pre-
pared from the rectum. In preceding experiments, the rectum
was identified as the source of trail pheromone(s). In these
tests, the trail effects of Dufour gland, poison gland and
rectum extracts were tested with three different bioassays
and results showed that only the extract from the rectum
induced significant trail following (Witte, unpublished data).

L. humile (Dolichoderinae) originates from Argentina. It is
invasive in most continents (Wetterer et al. 2009) and forms
extensive polygynous supercolonies (Giraud et al. 2002). The
ants maintain contact between different nests by frequently
exchanging brood and workers and by internest recruitment
(Holway and Case 2000). L. humile is a dietary generalist; it
uses locally stable and persistent food sources like honeydew
(which they gain via trophobiosis from aphids) but also dis-
tributed and short-lived food sources like insects, seeds or
carrion (Mallis 1942; Suarez et al. 1998). Trail following of
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L. humile depends mainly on pheromones and to a lesser
extent on optical orientation (Aron et al. 1993). The ants were
collected in Port Leucate, southern France. They were kept in
tightly sealed plastic boxes (32x20x 15 cm) under controlled
conditions in a climate chamber (22 °C and 65 % humidity).
Laboratory nests were supplied with a droplet of honey and
half a cricket twice a week. Ants were starved 5 days prior to
the experiments. We used five colonies each containing about
1,000 individuals. Trail pheromones were extracted from Pa-
van’s gland. Various studies (Wilson and Pavan 1959;
Robertson et al. 1980) as well as our own experiments (Witte,
unpublished data) have shown that this gland is the source of
pheromones that elicit a trail-following response. (Z)-9-
Hexadecenal, a molecule produced in the Pavan’s gland, has
been suggested as a main component of the trail pheromone
complex (Cavill et al. 1979, 1980; Van Vorhis Key and Baker
1982). However, (Z£)-9-hexadecenal was analytically not de-
tectable in natural trails, whereas two components of the
pygidial gland (dolichodial and iridomyrmecin) were detect-
able and showed a trail following effect when the mixture was
provided as a linear trail (Choe et al. 2012). We therefore
included pygidial gland extract in one of our experiments with
L. humile. In our analysis we also included the data of a
behavioral assay done with ants from California (USA) using
synthetic (£)-9-hexadecenal (Choe et al. 2012).

L. niger (Formicinae) is one of the most common ants in
Europe. It builds monogynous colonies with an average size
of 14,000 individuals (Seifert 2007). The ants feed opportu-
nistically on insects and they build long-lasting trails to
trophobiosis sites, where they collect honeydew. They are
active at day and night but in summer, their peak of activity
is during the night (Seifert 2007). Besides pheromones, L.
niger ants are reported to use memory and optical cues to a
great extent for trail following (Aron et al. 1993; Evison et al.
2008; Czaczkes et al. 2011; Griiter et al. 2011). Parts of five
colonies, each consisting of about 5,000 individuals, were
collected close to the biocenter of the Ludwig Maximilians
University in Planegg, Germany. They were kept in plastic
boxes (32x20x15 cm) under controlled conditions in a cli-
mate chamber (22 °C and 65 % humidity). Laboratory nests
where supplied with a droplet of honey and half a cricket twice
a week. Five days prior to the experiments, the ants were
starved. The trail pheromones were extracted from the rectum
(Bestmann et al. 1992).

Experimental setup and behavioral assay

A plastic box containing one colony was brought into the
experimental arena (see Online Appendix E). The box was
connected via bridges to a food source. The bridges consisted
of paper strips. After 20-30 min, the ants had usually discov-
ered the food and established a trail between nest and food
source. The food was half a mushroom for E. procera and a

drop of honey and half a cricket for both L. humile and L.
niger. For the experiment, a section of the trail was exchanged
with a Y-shaped bridge carrying different concentrations of
pheromones (see Online Appendix, Table B3). Ten ants alto-
gether crossing the branches were counted. The Y-bridge was
then exchanged for a new bridge to minimize influences due
to pheromone deposition by ants. Usually ten bridges were
used per treatment, resulting in 100 ant decisions. The pro-
portion of ants crossing a branch gives a measure for the
probability of the ants’ decision. In all experiments, one trail
was defined as test trail and the other as reference trail. We
refer to the probability of the ants’ decisions as pp, and pp, for
test trail and reference trail, respectively; the pheromone con-
centration is referred to as cpy,; and cpp. A cardboard box was
placed around the sides of the experimental arena to reduce the
ants ability to orient and/or learn based on optical cues. In
experiments with E. procera, light was dimmed to a minimum
to promote activity since E. procera is only active during the
night. To even out effects of optical and/or sensorimotor
learning, the orientation of test trail and reference trail were
switched each time a new Y-bridge was applied. We assumed
that by altering the sides, possible memory effects were equal-
ly likely for test- and reference trail and thus eliminated each
other. To make sure that only those ants were evaluated that
were following the pheromone trail towards the food source
and that were taking a clear choice, ants were only counted
when they followed the trail for at least 2 cm before reaching
the bifurcation and when they crossed the bridge completely.
The level of ant travel on the bridge was controlled by tem-
porarily removing a straight part of the bridge to slow down
the ant flow so that it was always possible to follow individual
ants’ decisions. Each experiment started with pheromone
concentration 0 as the control.

Preparation of pheromone and application

Ants were frozen at —20 °C for 7 min. Pheromones were then
extracted by dissecting the pheromone sources in 50 ul di-
chloromethane (DCM, 99.9 %, Roth, Art.Nr. 7334.1). Fol-
lowing this step, the solution was separated from the gland
tissue by extracting the liquid with a syringe (Hamilton Mi-
croliter glass syringe, 700 series, 100 ul). The liquid was
further diluted with DCM to a standard solution. The number
of glands extracted depended on the amount and concentration
of pheromone needed for each experiment and was calculated
in advance of each experiment. At least ten glands were
extracted and diluted in 1 ml solvent for experiments with
E. procera and L. niger and at least five glands were extracted
and diluted in 2 ml solvent for experiments with L. humile.
The standard solution was used to gain a dilution series with a
constant solution factor of two, giving 125 pl of pheromone
solution for each concentration in a dilution series.
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The pheromone trails for the experiments were prepared by
applying the pheromone solutions to Y-shaped bridges of
paper (see Online Appendix E). The pheromone was applied
on the straight part of the bridge and on one of the two other
arms using a micropipette (10 ul, BRAND) to give a total trail
length of 7 cm. The bridges were used for the experiments
within 2—5 min after pheromone application. For each bridge,
we used 4 ul of the solution. The measures used in this article
are defined in Table 1.

Estimation of realistic concentration ranges

Physiologically realistic concentration ranges of pheromones
were estimated prior to our experiments. This was done by
comparing the ants’ response to natural trails and artificial
trails of different pheromone concentrations. Based on this
estimation, we defined for each species a base concentration
(be) that we used for all our experiments. It was 0.0057 AE/cm
for E. procera and L. niger and 0.0014 AE/cm for L. humile
(for a detailed description, see Online Appendix F). All pher-
omone concentrations we report are given relative to the base
concentration with 1 bc as unit. Note that we expect the
pheromone concentration on natural trails to vary greatly
within species (see, e.g., Beckers et al. 1992; Choe et al.
2012) and the bc is only an estimation that can be expected
to be close to naturally occurring pheromone concentrations.
All our experiments go far below and above the bc, and they
are designed in a way that the results are independent of the
absolute pheromone concentration of the bc. The 75 % detec-
tion threshold of the PF is the only exception since it is given
in be units. For (Z)-9-hexadecenal that had been previously
investigated (Choe et al. 2012), we were able to give absolute
quantities of pheromone per cm of trail.

Experiment 1: detection

In this experiment, we tested the ants’ ability to detect differ-
ent pheromone concentrations and we evaluated the 75 %
detection thresholds. One side of the Y-bridges was always
treated with pure DCM and without pheromone. The other
side of the Y-bridges was treated with a series of pheromone
concentrations.

For L. humile we used different pheromone sources: as
described in section “Species used”, the extract of Pavan’s
gland was reported to contain the trail pheromones of
L. humile. We used this extract in our experiments. In addition,
the compounds from the pygidial gland and the synthetic
pheromone (£)-9-hexadecenal have been reported to elicit trail
following of L. humile (see section “Species used”). To deter-
mine if the pygidial gland extract shows a trail effect, we
conducted the detection experiments with pygidial gland ex-
tract as well. To compare the results between Pavan’s gland
and (Z)-9-hexadecenal, we included the data from detection
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experiments of Choe et al. (2012) with L. humile and (Z)-9-
hexadecenal.

Experiment 2: discrimination

In this experiment, we tested the ants’ ability to discriminate
between two trails of different concentrations and evaluated
the 75 % discrimination thresholds. As in the detection exper-
iment, one side of the Y-bridge was treated with a series of
pheromone concentrations. The other side of the Y-bridge was
used as reference trail, and applied with a constant pheromone
concentration (1 bc).

Experiment 3: concentration dependency

The hypothesis that the decisions of the ants in discrimination
experiments do not depend on the absolute pheromone con-
centration within certain concentration ranges (and thus fulfill
Weber’s law) was tested in three different ways (see below).

Experiment 3a: absolute concentration dependency of fixed
concentration ratio

This experiment was similar to the discrimination exper-
iment described above, but the concentration ratio be-
tween both trails was held constant at 0.5 over a wide
range of different concentrations of up to 2'* bc units. It
was not possible to test higher concentrations due to the
high numbers of ants that would have to be dissected to
accomplish this. The trail with the lower pheromone
concentration was defined as test trail.

Experiment 3b: absolute concentration dependency of varying
concentration ratios

We repeated the discrimination experiment of E. procera
using a 2.5 times higher base concentration than before. In
this way, we gained a second set of the same concentration
ratios but with absolute concentrations 2.5 times higher. This
experiment was conducted only with E. procera.

Experiment 3c: test of symmetry

We reevaluated the data of the discrimination experi-
ment with a different method: we used the fact that the
concentration ratios of the discrimination experiments
are symmetric around 1. For instance, the ratio 0.25:1
between test- and reference trail in the lower half of the
series is the same as the ratio 4:1 in the upper half of
the series if test trail and reference trail are exchanged.
In this way, we gained a series of pairs of the same
concentration ratios at different absolute concentrations,
which we compared.
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Table 1 Measures used in this

article Measure Symbol Equation Unit
Length of pheromone trail 4 - cm
Volume of solvent Vg - ml
Volume of pheromone solution Vph - ml
Ant-equivalent AE - gland
Pheromone concentration Cph cpp = AE AE/ml

vs

Trail concentration T. T, = Sehveh AE/cm

n

Statistical methods and model fitting
Software

We used the software “R”, Version 2.14.2 (R Development
Core Team 2013). For a list of R-libraries being used, see
Online Appendix D.

Calculation of results and their confidence intervals

We fitted binomial distributions to the outcome of each ex-
periment since the ants made binary decisions. The probability
that the ants chose the test trail (pp,) and their 95 % confidence
limits were estimated with the R-function binom.confint()
using the Wilson method (Wilson 1927; Dorai-Raj 2009).

Model evaluation

To fit the parameters of the models that we evaluated, we used
the optimize() function in R with the method “L-BFGS-B”
(Byrd et al. 1995) which is able to fit more than one parameter
at a time. To calculate the goodness-of-fit (GOF) of the
models, we performed a log-likelihood ratio test between the
model being evaluated and the full model (Hilborn and Man-
gel 1997, Chapter 7). In addition, we calculated the 95 %
confidence limit of the model parameters, the predicted values
and a 95 % prediction interval. These were evaluated using
parametric bootstrapping with 1,000 simulated parameter
values for each parameter (Efron and Tibshirani 1986;
Kingdom and Prins 2010, p. 98 ff.).

Comparing models

We compared the PF and the Deneubourg choice function in
their ability to fit our experimental data. Since these models
are non-nested, we assessed the significance of differences in
model fit by comparing the Akaike information criterion
(AIC) of the models and by parametric bootstrapping
(Efron and Tibshirani 1986; Hilborn and Mangel 1997
chapter 7; Kingdom and Prins 2010 chapter 8). For a
detailed description, see Online Appendix G.

Applying the model to external data

To test repeatability and therefore the general value of the PF,
we modeled data that had been collected for L. humile and
synthetic (£)-9-hexadecenal in another laboratory at a distant
location (California, USA) (Choe et al. 2012). If the PF is
species-specific, we expected similar parameter estimates re-
gardless of location.

Results
General remarks

Due to the large amount of data, we present here only selected
results. First, we present the data fitted to the PF with the
detection experiments, followed by the discrimination experi-
ments, followed by the concentration dependency experiments
(Figs. 2, 3, 4, and 5). This part is followed by a section in which
we present the results of a model comparison between the PF
and the Deneubourg choice function. It includes the results of
the detection and discrimination experiments fitted to the
Deneubourg choice function (Fig. 6). Confidence limits are
always given for E. procera, but they are omitted for the other
species if this improved clarity of the figures (confidence limits
of the other species are of similar magnitude). The online
Appendix contains figures including confidence limits and de-
tailed results for all experiments and species tested in the same
order as above. Measurement series were usually made over a
period of several days and with different colonies because
foraging decreased after a certain time. Possible confounding
effects were evaluated by including date and colony as factors in
generalized linear models using the R-function glm() and
drop1() and in generalized linear mixed effects models using
glmer(). We found only minor side effects of the factors date and
colony. For detailed results, see Online Appendix, Table B4.

Results of experiments

The results of the detection experiments and discrimination
experiments show a clear relationship between pheromone
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Fig. 2 Detection experiment fitted with the psychometric function. The
symbols (filled circle, empty triangle, empty diamond) show the proba-
bility that ants take the test trail (response) and the bars show the 95 %
confidence interval (only shown for E. procera). The x-axis shows the
pheromone concentration of the test trail measured in base concentrations
(bc) on alog, scale. The lines show the fitted psychometric functions. The
goodness-of-fit (GOF) was evaluated using a log likelihood ratio test, see
section “Model evaluation”. The symbols at the bottom indicate the 75 %
detection thresholds. The cross (x) indicates an outlier for Lasius niger.
GOF goodness-of-fit, bc base concentration, b slope, #;75 75 % detection

concentration and response in all experiments (p<0.001,
GLM) (see Online Appendix, Table B1). The fitted PFs as

0.0312

0.125 05 1 2 4 8
concentration (bc)

threshold, A lapse rate, N total sample size, » number of measurements per
concentration (each measurement represents ten binomial ant decisions).
E. procera: GOF=0.96, bc=0.0057 AE/cm, b=1.05 (range 0.72-1.63),
t4175=0.89 be (range 0.62—1.2 be), A (lapse rate)=0.05 (range 0.03-0.07),
N=138, n=10/10/10/10/20/20/20/10/10/10/8 (from left to right).
L. humile: GOF=0.25, bc=0.0014 AE/cm, 5=0.6 (range 0.42—1.08),
t475=0.05 be (range 0.04-1.11 be), A=0.11 (range 0.09-0.13), N=100,
n=10 (each). L. niger: GOF=0.39, bc=0.0057 AE/cm, n=80, b=1.21
(0.6-3.86), t4,75=0.16 bc (range 0.08-0.25 bc), A=0.18 (range 0.15-0.2),
N=80, n=10 (each)

well as the Deneubourg choice functions gave a GOF >0.05 in
all cases (see Online Appendix, Tables B1 and B2). The fitted
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Fig.3 Detection experiments with L. humile using Pavan’s gland extract
and (Z)-9-hexadecenal fitted with the psychometric function. The sym-
bols (filled circle, empty triangle) show the probability (response) that
ants take the test trail and the bars show the 95 % confidence interval. The
filled triangle at bottom indicates the 75 % detection threshold that was
set as equal for both experiments (see text). The solid line shows the fitted
function for Pavan’s gland. The dashed line shows the fitted function for
synthetic (£)-9-hexadecenal. The cross (x) at bottom shows the lower
limit of the analytical method to detect (Z)-9-hexadecenal on trails, the
empty triangle shows the be of the measurement with Pavan’s gland. The
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GOF between both fitted functions is 0.61. GOF goodness-of-fit, bc base
concentration, b slope, #;,75 75 % detection threshold, \ lapse rate, N total
sample size, n number of measurements per concentration (each mea-
surement represents ten binomial ant decisions for Pavan’s gland and five
decisions for (2)-9-hexadecenal). Pavan’s gland: GOF=0.25, bc=0.0014
AE/em (=30.8 pg/cm), b=0.6 (range 0.42—1.08), 74,75=0.05 bc (range
0.04-1.11 be), A=0.11 (range 0.09-0.13), N=100, n=10 (each). (2)-9-
Hexadecenal: GOF=0.64, 6=0.68 (range 0.39-2.34), #4,75=1.64 pg/cm
(0.62-3.96 pg/cm), A=0.06 (range 0.02-0.1), N=60, n=12 (each)
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Fig. 4 Discrimination experiments fitted with the psychometric function.
The symbols (filled circle, empty triangle, empty diamond) show the
probability that ants take the test trail (response) and bars show the
95 % confidence interval (only shown for E. procera). The lines show
the fitted psychometric functions. The x-axis shows the concentration
ratio between test trail and reference trail on a log, scale. The reference
trail had a constant concentration of 1 bc. The test trail had varying
concentrations measured in proportions of be. The symbols at the bottom
indicate the 75 % discrimination thresholds. GOF goodness of fit, bc base
concentration, b slope, ;75 75 % discrimination threshold, A lapse rate, N

functions showed a typical S-shape with horizontal asymp-
totes at the lower and upper part. In detection experiments, the
lower horizontal asymptotes lay at ~0.5. At this concentration,
the trails were taken randomly with equal chance. At higher
concentrations, the fitted functions converged towards hori-
zontal asymptotes that lay between 0.79 and 0.98. These
asymptotes were especially low in L. niger. The 75 % detec-
tion thresholds for all species fell in a region in which the
responses were rising. This indicates that our choices for the
base concentrations were reasonable and that our measure-
ments were in a region in which the ants showed a clear and
differentiated response. In many cases, especially at lower
concentrations, not only the fitted functions but also the data
showed a horizontal asymptote. The thresholds and the posi-
tions of the curves parallel to the x-axis cannot be directly
compared since we do not know absolute pheromone concen-
trations (see section “Model evaluation”). The differences
between using Pavan’s gland as pheromone source for
L. humile from Southern France and (Z)-9-hexadecenal as
pheromone source for L. humile from USA were only minor
(see Fig. 3). To make this comparison, we assumed that the
t475 of the experiments with Pavan’s gland extract is equal to
the #4.75 of (£)-9-hexadecenal. By doing so, we were able to
rescale the data for Pavan’s gland extract to absolute concen-
trations (1 bc=30.8 pg/cm). This assumption is reasonable
since this pheromone is regarded as the active trail pheromone
of L. humile, known to be produced in Pavan’s gland (see

total sample size, » number of measurements per concentration (each
measurement represents ten binomial ant decisions). E. procera: GOF=
0.55, bc=0.0057 AE/cm, 5=1.0 (range 0.82—1.23), t4575=2.14 (range
1.85-2.52), A=0.11 (range 0.09-0.14), N=237, n=30/10/10/20/10/20/
20/30/30/20/20/17 (from left to right). L. humile: GOF=0.86, bc=
0.0014 AE/cm, b=0.87 (range 0.75-1.01), t4475=2.48 (range 2.16—
2.85), A=0.02 (range 0-0.05), N=80, n=10 (each). L. niger: GOF=
0.57, bc=0.0057 AE/cm, 5=0.56 (range 0.4-0.79), t4575=3.82 (range
2.59-6.49), A=0.21 (range 0.15-0.25), N=210, n=20/10/10/10/20/20/
20/20/20/20/20/10/10 (from left to right)

section “Species used”) and thus should produce similar re-
sponses. The assumption only holds if no other trail phero-
mones modulate or amplify the effect. In contrast to Pavan’s
gland extract and (Z)-9-hexadecenal, the detection experi-
ments with pygidial gland extract did not show trail following
responses in L. humile (see Online Appendix, Fig. Clc).

In discrimination experiments (see Fig. 4), the fitted func-
tions and data show horizontal asymptotes at lower concen-
trations. At these concentrations, the majority of ants followed
the reference trail. When both trails carried equal amounts of
pheromone, the decisions were taken with equal chance at
Ppe=0.5. At higher concentrations, the fitted functions showed
a horizontal asymptote below 1. As in detection experiments,
it was lowest for L. niger. For E. procera, we repeated the
same experiment at concentrations 2.5 times higher than be-
fore (see Fig. 5b). The results were similar, but the lower
asymptote was closer to 0. In contrast to the detection exper-
iments, the discrimination thresholds can be directly com-
pared between the species. Comparing the thresholds between
the species, we found that the threshold values were very
similar for L. humile and E. procera while the threshold in
L. niger was higher (see Fig. 4). Comparing the thresholds
between the lower and the higher concentration series in
E. procera, we found that the higher series shows a higher
threshold (see Fig. 5b).

In detection and discrimination experiments, the fitted ex-
ponents were always <2 and in most cases <<~1 in the PF as
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4 Fig. 5 Concentration dependency experiments. The symbols (filled
circle, empty triangle) show the probability that ants take the test trail
(response) and bars show the 95 % confidence interval (only shown for
Euprenolepis procera). a Absolute concentration dependency of fixed
concentration ratio. The concentration ratio between test and reference
trail was constant (0.5), while the absolute concentration varied. The
concentration of the reference trail was always twice the concentration
of the test trail. Lines show the fitted psychometric functions (for
Linepithema humile and Lasius niger, they are shown only as dashed
lines without symbols for data and confidence intervals). The symbols at
the bottom (filled circle, empty triangle, empty diamond) indicate the
75 % detection thresholds from the detection experiments. GOF goodness
of fit, bc base concentration, b slope, &, constant, N total sample size, n
number of measurements per concentration (each measurement
represents ten binomial ant decisions). E. procera: GOF=0.15, bc=
0.0057 AE/cm, b=0.8 (range 0.65-1.0), k,=0.34 (range 0.12-0.85),
N=306, n=30/20/30/40/40/30/30/30/28/10/18 (from left to right).
L. humile: GOF=0.34, bc=0.0014 AE/cm, »=0.52 (range 0.41-0.64),
kpe=0.02 (range 0.0-0.06), N=150, n=10 (each). L. niger: GOF=0.08,
bc=0.0057 AE/cm, b=0.5 (range 0.4-0.63), k,=0.02 (range 0.0-0.09),
N=151, n=10/10/10/10/10/20/10/20/10/10/10/21 (from left to right). b
Absolute concentration dependency of varying concentration ratios for
E. procera. The discrimination experiment was carried out twice with
absolute concentrations that differed by a factor of 2.5 between both
measurement series. By pairwise comparison of the same concentration
ratios of the two series (e.g., 0.125), it can be tested, if the responses are
different and thus depend on the absolute concentrations. Solid line shows
the low concentration series (1 bc=0.0057 AE/cm). Dotted line shows the
2.5 times higher concentration series (1 bc=0.01425 AE/cm). The
number above bars gives the p value and sample size of two-sample
Wilcoxon test for pairs of equal concentrations. GOF goodness-of-fit, bc
base concentration, b slope, 7475 75 % discrimination threshold, A lapse
rate, N total sample size. E. procera, low concentration: GOF=0.55, bc=
0.0057 AE/cm, b=1.0 (range 0.82—1.23), #4575=2.14 (range 1.85-2.52),
A=0.11 (range 0.09-0.14), N=237. E. procera, high concentration:
GOF=0.89, bc=0.01425 AE/cm, 5=0.63 (range 0.54-0.75), t4575=3.33
(range 2.77-4.07), A=0.03 (range 0.0-0.05), N=110. ¢ Test of symmetry,
E. procera (low concentration series). Shown are pairs of same
concentration ratios from the results of the discrimination experiment.
For example, the concentration ratio 0.25:1 is the same as the
concentration ratio 1:4. Both differ by a factor of 4 in absolute
concentrations. By comparing the pairs of equal concentration ratios, it
can be tested, if the responses are different and thus depend on the
absolute concentrations. Number above bars give p value and sample
size of two-sample Wilcoxon test. For further details, see text

well as in the Deneubourg choice function (see Online Ap-
pendix, Tables B1 and B2).

The concentration dependency experiments (Fig. 5)
showed that the response to pheromone concentration ratios
at a bifurcation is independent from the underlying absolute
pheromone concentrations within certain lower and upper
concentration limits. In experiment 3a (Fig. 5a), we used
constant concentration ratios of 0.5 and varied the absolute
pheromone concentrations. The probability to choose the
test trail started at pp=0.5 at the lower concentration range.
With rising concentrations it dropped and became asymp-
totic at pp=0.33 (E. procera) and pp=0.39 (L. humile and
L. niger). For E. procera, the measurements showed similar
results in a concentration range between 1 and 16 bc
(0.0057-0.0912 AE/cm), spanning a region that differs by a

factor of 16 between the lowest and highest concentrations.
For L. humile, this region spans from 0.0156 to 32 bc
(0.000022-0.5 AE/cm), differing by a factor of 2,048 with
an outlier at 4 bc (see Online Appendix, Fig C3a). For L.
niger, it spans from 0.0625 to 4 bc (0.00036-0.023 AE/cm),
differing by a factor of 64 with two outliers at 0.5 and 2 be (see
Online Appendix, Fig C3b). We fitted the model with the
additional parameter k¢ (see section “Psychophysical theo-
ry”). Note that, for all experiments, the perceptive range likely
spans much further into regions of high concentrations, which
could not be tested.

In experiment 3b, we compared two discrimination exper-
iments with E. procera that differed in absolute concentrations
by a factor of 2.5 (see Fig. 5b). We made a pairwise compar-
ison between equal concentration ratios. The results of the
different concentrations ratios from 0 and up to 8 were similar
and showed no statistically significant difference (p>0.05,
two-sided Wilcoxon test). Thus, the region of similar results
spans a concentration region that spans a region from 0.03125
up to 8, which differ by a factor of 256. In contrast to
experiment 3a, these results contain not only one single con-
centration ratio (0.5) but also other concentration ratios.

The test of symmetry (Experiment 3¢) showed similar
results. We made pairwise comparisons with concentration
ratios of the lower and upper half of the discrimination exper-
iment for E. procera (see Fig. 5b). Again, the pairs showed no
statistically significant difference. The results for the other
species are similar (see Online Appendix, Fig. C4).

Results of model evaluation

To explain our data, we investigated two models: one is based
on Weber’s law and the psychophysical theory with the PF
(see section “Psychophysical theory”) and the other one is the
Deneubourg model with the Deneubourg choice function (see
section “Deneubourg model”).

Psychometric function

Figures 2, 3, 4, and 5b in the “Results” section contain the
fitted PF as lines. The figures in Online Appendix C1 and C2
show the same for each species separately including predic-
tion intervals. The PF fits the experiments with GOFs between
0.08 and 0.96. Table 2 shows the fitted parameters of the PF
that provide important biological information. In addition, we
define a measure for the information capacity (IC) an ant is
able to transmit with the pheromone of a specific gland. We
define it as the length of the trail an ant is able to mark with
pheromone quantities that are detectable by other ants of the
same species. The length of the detectable trail is equal to the
amount of pheromone the ant carries in the gland divided by
the amount of pheromone an ant needs to be able to detect it.
This amount is proportional to the z475. Thus the amount of
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Fig. 6 Detection experiments (a) and discrimination experiments (b) for
all three species fitted with the Deneubourg choice function. The lines
show the fitted functions. For explanations, see Figs. 2 and 4. GOF
goodness of fit, bc base concentration, b exponent, k constant, N total
sample size, n number of measurements per concentration (each mea-
surement represents ten binomial ant decisions). a Euprenolepis procera,
detection: GOF=0.97, bc=0.0057 AE/cm, b=1.57 (range 1.16-2.54), k=
0.91 (range 0.5-2.05), N=138, n=10/10/10/10/20/20/20/10/10/10/8
(from left to right). Linepithema humile, detection: GOF=0.41, bc=
0.0014 AE/cm, b=0.52 (range 0.44-0.64), k=0.02 (range 0.01-0.04),

information an ant is able to convey by depositing pheromone
is inversely proportional to the #4:75. In this way, we can use the
tar7s as a measure for the IC an ant is able to transmit. It is
independent from the absolute concentration of the bc and
thus a useful biological parameter (see Online Appendix A).
According to Bausenhart et al. (2012), the parameters of
the PF may not depend solely on stimulus strength but also on
additional factors like spatial orientation (left/right). One ap-
proach to account for this effect is to fit separate PFs and
calculate the average of each parameter resulting in an

@ Springer

N=100, n=10 (each). Lasius niger, detection: GOF=0.28, bc=0.0057
AE/cm, b=0.5 (range 0.4-0.65), k=0.06 (range 0.03-0.13), N=80, n=10
(each). b E. procera, discrimination: GOF=0.11, bc=0.0057 AE/cm, b=
1.08 (range 0.96-1.23), k&=0.15 (range 0.09-0.23), N=237, n=30/10/10/
20/10/20/20/30/30/20/20/17 (from left to right). L. humile, discrimina-
tion: GOF=0.22, bc=0.0014 AE/cm, b=1.06 (range 0.96-1.19), £=0.02
(range 0.0-0.06), N=80, n=10 (each). L. niger, discrimination: GOF=
0.45,bc=0.0057 AE/cm, b=0.56 (range 0.49—0.65), k=0.13 (range 0.06—
0.23), N=210, n=20/10/10/10/20/20/20/20/20/20/20/10/10 (from left to
right)

averaged PF. There was a major difference between the aver-
aged PFs and the pooled PFs only in the detection experiments
with E. procera (averaged PF: 1475=0.58, IC=302) and
L. humile (averaged PF: t3,75=0.07, IC=96306).

Deneubourg model
We fitted the Deneubourg choice function to our data and

calculated the GOF using the same methods as with the PF.
The Deneubourg choice function fits our experiments with
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Table 2 Psychometric measures of three ant species
Species Experiment 75 % threshold Information capacity (cm/gland) Slope Lapse rate
E. procera Detection 0.89 be 197 1.05 0.05
L. humile Detection
Pavan’s gland 0.05 be 13,450 0.6 0.11
79 1.64 pg/cm 11,185 0.68 0.06
L. niger Detection 0.16 be 1,094 1.21 0.18
E. procera Discrimination
Low 2.1 1.0 0.11
High 33 0.63 0.03
L. humile Discrimination 2.5 0.87 0.02
L. niger Discrimination 3.8 0.56 0.21

The 75 % threshold in discrimination experiments is dimensionless. In the case of L. humile and the pheromones (Z)-9-hexadecenal, we are able to give
absolute concentrations in pg/cm for the 75 % detection threshold, in the other cases it is given in bc. Information capacity for L. humile with pheromones
(2)-9-hexadecenal are based on the average of two measurements of total quantity of pheromone per ant (see Choe et al. 2012)

GOFs between 0.08 and 0.97. Figure 6 gives the result for the
detection and discrimination experiments. For further results,
see Online Appendix, Table B2 and Figs. C5-C7.

Comparing models

Testing the alternative hypothesis, that the PF fitted the data
better than the Deneubourg choice function gave no clear
result if we compared the seven experiments separately. In
three experiments, the PF showed a lower AIC with a maxi-
mum difference of 5.8, indicating a better fit. In four experi-
ments the Deneubourg choice function showed a lower AIC
with a maximum difference of 3.0. The parametric
bootstrapping yielded a similar result with the PF showing a
significantly better fit in three experiments.

Discussion

In our experiments, the ants clearly reacted to different pher-
omone concentrations and their decisions could be described
both by the PF as well as the Deneubourg choice function.
However, we propose using the PF as a decision rule in
models on collective ant behavior since it gives the possibility
for discussing the biological meaning of specific model pa-
rameters like sensory thresholds, lapse rate and IC. In addi-
tion, psychophysical theory provides a well-established
framework for the explanation of the stochastic nature of
responses by noise generated within the nervous system. By
using the PF, the principles of the Deneubourg model, such as
the explanation of the shortest path experiments, need not be
changed. The underlying mechanisms remain valid, and only
the calculation of choice probabilities changes. In this respect,
our findings support the general approach of the Deneubourg

model. An important finding is that the magnitude of nonlin-
earity expected by the Deneubourg model with exponents ~2
could not be confirmed.

The comparison between the results for Pavan’s gland
extract tested with L. humile from southern France and syn-
thetic (2)-9-hexadecenal tested with L. humile from California
(USA) shows that these two chemicals were similar in their
influence on ant behavior. Furthermore, it demonstrates the
repeatability and the general value of the psychophysical
approach to describe ant behavior by showing that a PF based
on L. humile colonies from one location is capable of
predicting the behavior of other colonies of the same species
even if they are clearly separate in time and space.

The results of experiments 3a (see Fig. 5a and Online
Appendix Figs. C7b and c) show that the fitted functions
follow a horizontal line at concentrations above the detection
threshold. This shows that the ability of ants to discriminate
different pheromone concentrations is independent of the
underlying absolute pheromone concentrations within certain
lower and upper concentration limits. The lower and upper
limits differ by a factor of at least 16 in experiment 3a for
E. procera, and up to a factor of at least 2,048 for L. humile.
This shows that Weber’s law is fulfilled within these limits in
our experiments with three ant species. The very low concen-
trations were probably below the perception threshold so that
the ants were not able to detect the trails and hence took the
trails with equal chance (p=0.5). The fact that Weber’s law is
only valid within certain limits is well documented in psycho-
physics and can be described by adding a small constant (k)
to the pheromone concentrations (see section “Psychophysical
theory”). With this modification, we obtain a GOF between
0.08 and 0.34 for the whole concentration series. Biologically,
fulfilling Weber’s law makes sense for ants since absolute
pheromone concentrations may vary considerably due to col-
lective pheromone deposition and environmental effects
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(temperature, rain, dew, substrate, etc.). Due to Weber’s law,
the information about different states of the environment,
encoded in concentration ratios, remains stable and reliable
even if the underlying absolute concentrations vary.

Recently, it has been shown in L. humile that the angle ants
turn away from their current heading depends on the number
of ants that had been close left and right to their current
position in the past (Perna et al. 2012). This relationship also
follows Weber's law. The authors assume that the pheromone
concentration at a certain point is proportional to the number
of ants passing that point. It follows that the response to
concentration differences is independent from absolute con-
centrations and follows Weber’s law (Perna et al. 2012). Our
results confirm the assumptions made in that study.

To further discuss our findings with respect to differences
between the biology of the three species, we first attempt a
biological interpretation of the psychometric measures we
defined, and then discuss these interpretations in relation to
the ecology and specific behavior of the three species. Ac-
cording to psychophysical theory, the lapse rate defines the
errors test subjects make due to low motivation, disturbances
or learning. In classical psychophysical experiments, these
factors are considered to bias the experiments and are kept
as low as possible. In the case of ants, the lapse rate may
provide important biological information since it can serve as
a direct measure for trail fidelity. Ants might show a varying
motivation to follow a trail due, for example, to different
levels of starvation (Mailleux et al. 2011). Furthermore, they
might incorporate other information into their decision pro-
cess like visual orientation and learning. Such effects might
influence the trail following fidelity and thus the lapse rate.
The lapse rate in pheromone detection can be interpreted as a
measure for the ants’ ability to explore new solutions, avoid
getting stuck and adapt to changing environments. Important-
ly, due to species-specific differences in learning ability, visual
orientation and other traits, characteristic differences in lapse
rates can be expected. The discrimination threshold gives a
measure for the ability of ants to discriminate between trails of
different pheromone concentrations. As described in “The
models” section, the collective behavior of ants greatly de-
pends on information encoded in different concentration ratios
of the trail pheromones. In this way, the discrimination thresh-
old can again be interpreted as a measure for the ability of ants
to act collectively. While lapse rate and discrimination thresh-
old are measures for the collective response of ants to phero-
mone trails, the information capacity can be interpreted as a
measure of the ability of individual ants to change the collec-
tive behavior of the colony. If the IC is high, a single ant can
deposit more information units in its environment and thereby
modify the behavior of the colony to a greater extent com-
pared to ants with a lower IC. The IC can also be taken as a
measure for the collectiveness of trail laying. If ants have a
low IC, it takes more ants to establish a trail system compared
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to ants that have a high IC. However, the IC cannot be
interpreted on its own since the amount of pheromone an ant
needs for conveying a message also depends on the volatility
of the pheromone. Pheromones with a high volatility allow the
ants to react to short-term changes in the environment but the
ants need a comparatively high IC. On the other hand, long-
lasting pheromones might tend to build up in higher concentra-
tions on the trail as ants continue trailing. Under such circum-
stances, individual ants need higher amounts of pheromone (i.e.,
a higher IC) to lead other ants away from well-established trails
and change the collective behavior. Here it is of interest to note
that £. procera and L. humile responded to artificial pheromone
trails even if they were 22 h old, while L. niger showed no
significant reaction if the trails were more than 160 min old (W.
von Thienen, unpublished data). Beckers et al. (1993) measured
a mean lifetime of trail pheromone of ca. 47 min for L. niger;
however, Evison et al. (2008) report that trails of L. niger in the
presence of optical cues had a longer mean lifetime. The detec-
tion threshold gives a measure for the lowest level of pheromone
concentration to which ants are responding. Since we do not
know the absolute pheromone concentrations, the detection
threshold cannot be compared between different species. As
we gave a psychometric definition of the detection threshold,
it is important to show how this definition may relate to defini-
tions given in other studies. For instance, Choe et al. (2012) used
the term “‘subthreshold concentration” to describe the lowest of a
series of tested pheromone concentrations that gave a different
response than no pheromone (Choe et al. 2012). In another
study, the threshold was defined as the pheromone concentration
which 50 % of the ants follow on a trail of a certain length (Van
Vorhis Key and Baker 1982). The psychometric detection
threshold represents the inflection point of the PF in which the
slope reaches its maximum. Thus, it is the point on the curve that
can be defined with the highest statistical certainty and its
definition follows clear mathematical conventions that can be
applied to data of different studies. However, thresholds given
by different studies can only be compared if same or at least
similar assays had been used and the measures for concentra-
tions can be related. Since these requirements were met, we were
able to calculate the 75 % threshold of synthetic (£)-9-
hexadecenal from data of (Choe et al. 2012) and relate it to the
75 % threshold of Pavan’s gland.

In the following section, we will discuss the ecology and
specific behavior of the three species while considering the
interpretation of the psychometric measures given before.
E. procera showed comparatively high discrimination abili-
ties, a low lapse rate, a low IC and long-lasting trails. It thus
may trigger fine-tuned collective reactions with high trail
fidelity. The trail system thereby has to be maintained by
many ants and each individual is limited in triggering a
collective reaction on its own. These findings are consistent
with the biology of E. procera: these ants establish and main-
tain a trail system that leads from the nest to the different
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mushroom sites, and they follow these trails with high fidelity.
If a food source is exhausted, the ants stop foraging. After
some time, the mushrooms grow again at the same site and the
ants reactivate the abandoned trail, probably by orienting on
long-lasting trail pheromones (see section “Species used”).
Thus, E. procera needs only low information capacities since
it probably uses a long-lasting pheromone on long-lasting
trails and the trail system can be established and maintained
by many ants together.

The results of the experiments with the Pavan’s gland for
L. humile showed high discrimination abilities, low lapse rate
and a very high IC together with long-lasting trails. Thus, this
species is able to trigger very fine-tuned collective reactions
even by single ants. Despite long-lasting pheromones, a single
ant will still be able to trigger a group response and recruit
other ants to new locations due to its high IC. Thus, L. humile
is able to establish trails by individual ants as well as collec-
tively. Due to its low lapse rate, it shows a high trail fidelity,
which is consistent with the finding that it mainly depends on
pheromones and less on optical orientation (Aron et al. 1993).
L. humile is able to share information about slight changes in
the available food supply of the environment and react to it
while maintaining long-lasting trails to stable food sources as
well. Thus, it is able to use all kinds of food in its environment
ranging from long-term food sources like aphid farming to
short-term sources like seed, insects or carrion. This might be
one cause for its ecological success.

Based on chemical analyses of natural trails deposited by
L. humile workers from California (USA), Choe et al. (2012)
estimated that the rate of (£)-9-hexadecenal on the trails could
not exceed 0.3 pg/cm. Conversely, our estimation for the
natural trail concentration in L. humile of Southern France
was 1.5 AE/ml (range 0.8-2.7 AE/ml) which is equivalent to
18.5 pg/cm (range 9.9-33.3 pg/cm) and about 30—100 times
higher (see Online Appendix, Table F1). This discrepancy
warrants further research.

L. niger showed low discrimination abilities and a high
lapse rate compared to the other two species. This can be
explained by the fact that it uses optical orientation as well
as memory to a great extent (Aron et al. 1993; Evison et al.
2008; Czaczkes et al. 2011; Griiter et al. 2011). Thus, its
collective behavior is not governed by pheromones alone,
leaving the ants a relatively high degree of freedom to explore
the terrain beyond the pheromone trails, find new food sources
and adapt to changing environments. The IC of L. niger is 11
times lower than that of L. humile but six times higher than
that of E. procera. This has to be interpreted with care: the
amount of pheromone the ants need is comparatively
high since the pheromone is short lived compared to
the other two species. On the other hand, the ants reduce
pheromone deposition as soon as they have learned to
localize a food source optically, resulting in the need for
lower pheromone amounts.

Our results also show that at least one parameter differs
within a single species when measured under different condi-
tions. The 75 % discrimination thresholds in the low and high
concentration series of E. procera differ in the low (f4575=2.1)
and high (#4575=3.3) concentration series. A possible explana-
tion is that response thresholds in ants vary according to
physiological state and environmental conditions. Fixed and
adaptive response thresholds in fact play a major role in
models designed to explain polyethism in ants (Detrain and
Pasteels 1991; Bonabeau et al. 1996; Theraulaz et al. 1998;
Gautrais et al. 2002; Diwold et al. 2009). The measurement of
PFs in ant colonies under variable conditions may give more
insight into the role of adaptive thresholds.

Our findings provide a base for quantitatively evaluating,
verifying and improving the models of ant behavior by com-
paring these models with the parameters deduced from exper-
iments. With psychophysical methods, we are able to quantify
and compare parameters like thresholds, noise and errors and
might be able to measure effects of motivation and learning.
Thus, psychophysical theory and related methods provide a
biological framework for stimulating further studies of the
social behavior of ants and their chemical communication
system and establish a relationship between the properties of
the sensory apparatus of ants and their social and collective
behavior.
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HIGHLIGHTS

e The Deneubourg model explaining how ants are able to find the shortest of two paths between nest and food source has been tested based on
parameters deduced from experiments.

e The Deneubourg model could be confirmed.

e However, the model uses a mathematical choice function describing the decision of ants depending on pheromone concentrations. This choice
function has to be exchanged by a psychometric function for the model to satisfactorily explain the shortest path experiments.

e The finding of Aron et al. (1989) that ants modulate their pheromone deposition depending on their direction to or from the nest is important for the
selection of the shortest path.

e For the first time, psychophysical theory has been successfully applied to the pheromone based social behavior of insects.
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ABSTRACT

The emergence of self-organizing behavior in ants has been modeled in various theoretical approaches
in the past decades. One model explains experimental observations in which Argentine ants (Line-
pithema humile) selected the shorter of two alternative paths from their nest to a food source (shortest
path experiments). This model serves as an important example for the emergence of collective behavior
and self-organization in biological systems. In addition, it inspired the development of computer
algorithms for optimization problems called ant colony optimization (ACO). In the model, a choice function
describing how ants react to different pheromone concentrations is fundamental. However, the
parameters of the choice function were not deduced experimentally but freely adapted so that the
model fitted the observations of the shortest path experiments. Thus, important knowledge was lacking
about crucial model assumptions. A recent study on the Argentine ant provided this information by
measuring the response of the ants to varying pheromone concentrations. In said study, the above
mentioned choice function was fitted to the experimental data and its parameters were deduced. In
addition, a psychometric function was fitted to the data and its parameters deduced. Based on these
findings, it is possible to test the shortest path model by applying realistic parameter values. Here we
present the results of such tests using Monte Carlo simulations of shortest path experiments with
Argentine ants. We compare the choice function and the psychometric function, both with parameter
values deduced from the above-mentioned experiments. Our results show that by applying the
psychometric function, the shortest path experiments can be explained satisfactorily by the model.
The study represents the first example of how psychophysical theory can be used to understand and
model collective foraging behavior of ants based on trail pheromones. These findings may be important
for other models of pheromone guided ant behavior and might inspire improved ACO algorithms.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Background

Pheromones play an important role in the emergence of collective
social behavior in ants (Holldobler and Wilson, 1990 p. 227). Impor-
tantly, it has been shown that ants, confronted with a binary choice of
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trails of different pheromone concentrations, prefer the trail with the
higher concentration. Furthermore, trail following fidelity increases
with pheromone concentrations (Choe et al., 2012; Hangartner, 1969;
Van Vorhis Key and Baker, 1982). This resembles a communication
system, which has the potential to transmit continuous information
about different states of the environment.

1.2. Models of ant behavior

The information content of continuous pheromone concentration
levels is a central component in models of self-organizing behavior of
ant colonies, for example the way in which Argentine ants (Line-
pithema humile) are able to find the shorter of two alternative paths
between their nest and a food source and in case of equal path
lengths, they collectively select only one of the two paths
(Deneubourg et al., 1990; Goss et al.,, 1989). In the following, we refer
to these experiments for simplicity as shortest path experiments. This
model had great influence by serving as an important example of
collective behavior and self-organization of biological systems
(Camazine et al,, 2001) and inspired the development of optimizing
processes called ant colony optimization (ACO) in the field of bionics
and informatics (Dorigo and Stiitzle, 2004; Dorigo et al., 1996). Using a
similar model, it was shown that the ability of ants to exploit the best
quality food source in the environment depends on pheromone
concentrations deposited on the trails (Beckers et al., 1992, 1993).
The above-mentioned models make use of the same or a slightly
modified choice function to describe the stochastic behavior of the
ants. We refer to this class of models as the Deneubourg model and to
the choice function as the Deneubourg choice function (DCF) (see
Section 2.1 Deneubourg model). The DCF is not only used by ACO and
the above mentioned models, but also in other models of ant behavior,
for instance in explaining the influence of noise (Dussutour et al.,
2009a), the path efficiency in artificial networks (Vittori et al.,, 2006),
the symmetry breaking in foraging behavior (Lanan et al., 2012), the
role of multiple pheromones (Dussutour et al., 2009b) and foraging in
dynamic environments (Bandeira de Melo and Aratjo, 2011; Ramsch
et al, 2012).

According to the Deneubourg model, ants decide between two
trails at a bifurcation in a probabilistic manner, which depends on the
ratio of pheromone concentrations and is described by a choice
function. Monte Carlo simulations of the shortest path experiments
based on the Deneubourg model produced results similar to experi-
ments conducted with real Argentine ants (Deneubourg et al., 1990;
Goss et al., 1989). However, the function parameters were freely
adapted to fit the results of the shortest path experiments, since
experimental evidence on exact reaction of Argentine ants to different
pheromone concentration was rare. In later experiments, Perna et al.
(2012) and Vittori et al. (2006) deduced the parameters of the DCF for
L. humile experimentally and found different values for the function
parameters, especially for the exponent. They did not measure
pheromone concentrations directly but assumed that the pheromone
concentration at a certain point is proportional to the number of ants
that had passed that point before. To our knowledge, the parameters
of the DCF have never been deduced experimentally based on
controlled pheromone concentrations, despite the fact that they are
used by many models. Thus, crucial model assumptions have not been
tested. A previous study attempted to fill this gap in knowledge (von
Thienen et al., 2014) by measuring the response of Argentine ants to
varying pheromone concentrations at a bifurcation by using gland
extract as well as synthetic pheromone. In the same study, the DCF as
well as the psychometric function (see Section 2.2 Psychophysical
theory) were fitted to the experimental data and their parameters
had been deduced. A major finding was that the amount of non-
linearity proposed by the Deneubourg model was much lower than
expected and that the response to different pheromone concentra-
tions follows Weber’s law (see Section 2.2 Psychophysical theory).

1.3. Aim of this study

In the study presented here, we used the previously deduced
parameters for computer simulations of shortest path experiments.
Thereby, the data from the previous experimental study allowed, for
the first time, computer simulations based on realistic model para-
meter values, so as to verify the Deneubourg model and the under-
lying mathematical functions. Thus, based on empirical data, we were
able to verify a model of ant behavior that serves as an important
example for collective behavior and self-organization in biological
systems (Camazine et al., 2001). Here we present and compare the
results of these computer simulations and discuss their implications
for the understanding of collective ant behavior.

2. The models

An understanding of the Deneubourg model and psychophysi-
cal theory are essential for the comprehension of this article. Here,
we provide a short introduction into these concepts.

2.1. Deneubourg model

The Deneubourg model was developed to explain important
aspects of the collective ant behavior that are based on pheromones
(Deneubourg et al., 1990; Goss et al., 1989). The model is based on the
finding that ants encode information about the environment by
dropping varying amounts of pheromones on their trails and that
this information is used by other individuals for directional choices
(Wilson, 1962). The model was able to partly explain experiments in
which ants have the choice between alternative paths on their way
from the nest to the food and back (see Fig. 1) (Aron et al., 1989;
Deneubourg et al,, 1990; Goss et al., 1989). In such an experiment, a
bridge with two branches was placed between the ants’ nest and a
food source. After an exploration phase, the ants discovered the food
and started foraging. Later, the majority of ants preferred one of the
two alternative paths. Experimental repetition showed that the path
selected in the majority of experiments depended on the difference in
length between both paths. If the paths were of equal length, the
choice was either left or right with equal probability (see Fig. 2B). If
one path was shorter than the other, the shorter path was selected by
most of the ants in most of the experiments (see Fig. 2A). Such effects
in the foraging behavior of insects have been referred to as symmetry
breaking (De Vries and Biesmeijer, 2002; Lanan et al., 2012) and can
be seen in the asymmetric distribution along the x-axis in Fig. 2A and

4 N

nest ‘ e

short path

Fig. 1. Schematic experimental setup of the shortest path experiments. In the
majority of experiments, most of the ants took the short path between nest and
food. Modified from Goss et al. (1989).
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Fig. 2. Results of the original shortest path experiments, modified from Goss et al. (1989). The x-axis shows the distribution of ants that chose the short path (n=500); the
y-axis shows the number of experiments or simulations in percent (n=1000). Black=original experimental results, light grey=results of Monte Carlo simulations with
parameters b=2, k=20, dark grey=our simulations, reproducing the original model and parameter values. Error bars give 95%-binomial confidence intervals of our
simulations. A: One path is twice as long as the other; in 13 out of 14 experiments (93%) more than 80% of the ants took the short path while this did not happen at all for the
long path. B: Both paths (named “A” and “B”) are of equal length; in 10 out of 26 experiments (38%) more than 80% of the ants took path A and in 13 experiments (50%) this

happened for path B.

B, where most of the experiments and simulations fell in the range
0-20% and 80-100%. It happened in experiments and simulations
with equal path lengths as well as in experiments and simulations
with unequal path lengths.

According to the model, ants at bifurcations decide to follow the
two paths in a probabilistic manner depending on the pheromone
concentration of the trails given by the Deneubourg choice function

(k+cs)”

S= . ... b° M

(k+cs)P + (k+cp)
where ps and p; = 1—ps are the probabilities to follow the short or
the long trail, ¢s respectively c¢; are the pheromone concentrations on
the short respectively long trail, b is the exponent, and k is a constant.
Please note, for reasons of simplicity, we refer to one of the paths as
“short” and the other as “long” even if both paths are of equal length.

The model explains the outcome of the experiments by initial
differences between the pheromone concentrations of the two paths.
If the paths are of different length, there is a time delay between the
ants arriving at the food via the long compared to the short path.
During this period, the long path carries no pheromone at all at the
side closest to the food and the returning ants prefer the short path on
their way back to the nest and deposit pheromone on it. This
generates a positive feedback loop in favor of the short path. Thus,
in most experiments, the great majority of ants follow the short path
(see Fig. 2A). If both paths are of equal length, no time delay occurs.
However, small stochastic differences between the paths occur at the
beginning and positive feedback amplifies the path with an initially
slightly higher concentration so that it is finally selected by most of
the ants. Consequently, in most of the experiments either one or the
other path is preferred by the great majority of ants with equal
probability (see Fig. 2B). The model only works, if the ants deposit
pheromone while heading in both directions. It is not known whether
all ant species show such trailing behavior, but L. humile does (Aron
et al, 1989). In addition, after finding food, L. humile workers deposit
more pheromone on their return to the nest than on their way out
(Aron et al., 1989); an important fact that had not been incorporated in
the model of the shortest path experiments so far. The results of the
experiments were partly reproduced by Monte Carlo simulations

(see grey columns in Fig. 2). However, the outcome of simulations is
highly dependent on the parameters used for the DCF and it is
possible to generate various kinds of distribution patterns depending
on the exponent b and the constant k. von Thienen et al. (2014) found
that the expected amount of non-linearity defined by the exponent
(b~ 2) was much lower than expected (b=1.06). Another important
detail ignored in the literature so far is the fact that, according to the
experiments, the ants nearly exclusively decided for the short path
while even under best model assumptions, such a high value was not
reached by the model: In 13 out of 14 experiments (93%) more than
80% of the ants chose the short path while this happened in only ca.
66% of the model simulations (see Fig. 2A). The same holds for other
experiments with a different path length ratio of 1.4, which we do not
report here. Thus, the model was able to give a general explanation of
how ants are able to select the shortest path and explain the occurring
phenomenon of symmetry breaking, but it could not explain the
detailed experimental results.

2.2. Psychophysical theory

Psychophysical theory has been developed by Fechner (1860)
based on works of Weber (1834) to find a relationship between the
strength of a physical stimulus and its sensory impression (Kingdom
and Prins, 2010; Klein, 2001; Wichmann and Hill, 2001). It plays a
major role in psychology and neurobiology. Its main subjects are
humans but the part of psychophysics that deals with animals
(comparative psychophysics) is a fast growing field of research with
work done on primates, birds and insects (Akre and Johnsen, 2014;
Britten et al., 1992; Chittka et al., 2009; Dyer et al., 2008; Sarris, 2006;
Sasaki et al., 2013). An important discovery in psychophysics is that
the ability of a test subject to discriminate between two stimuli
depends on the ratio of the stimuli strengths and is independent of
the absolute stimuli strengths within certain limits (Weber's law).
There is increasing evidence that Weber’s law is very common in
animals and relevant for the understanding of decision making based
on sensual perception like hearing, vision, chemoreception etc. (Akre
and Johnsen, 2014). Another important discovery (Fechner, 1860) is
that the sensory impression of a physical stimulus is proportional to
the logarithm of the stimulus strength. This is the reason why, for
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example, sound levels are measured on a logarithmic scale (decibel).
Psychophysical theory explains the probabilistic nature of the
response to a stimulus by the influence of the random fluctuations
of internal and external noise. It is assumed that a stimulus will only
be clearly detected when the sensory impression produced by the
stimulus exceeds a certain internal sensory threshold that is clearly
above random noise. This assumption is called the high threshold
assumption. The threshold is usually defined as the stimulus intensity,
which produces a correct response in 75% of the cases (75%-thresh-
old). This is assumed to be well above the influence of noise. Another
threshold often used is the stimulus intensity at which 50% of the
responses are correct (50%-threshold). This is the case when the
stimulus is too low to be distinguished from background noise and
thus the test subjects have to guess. Two classes of psychophysical
experiments are important: (1) In detection experiments the response
to a test stimulus compared to a background with no stimulus is
measured. (2) In discrimination experiments the response to a test
stimulus compared to a fixed reference stimulus is measured.

To describe these experiments, a framework has been developed
that relates physical stimuli to sensory impressions. This framework
incorporates the effect of noisy backgrounds that influence the ability
to detect a signal and gives clear mathematical definitions of sensory
thresholds. One of the major mathematical tools is the psychometric
function (PF). In detection experiments, it describes the ability to
detect a stimulus of intensity x against a background with no stimulus

p=r+(1—=2—y) Fx, tdts), (2)

where p is the probability to detect the stimulus, tdt;s is the 75%-
detection threshold, 1 is the guess rate, y is the lapse rate and F) is “a
function, describing the probability of detecting a stimulus by the
underlying sensory mechanism” (Kingdom and Prins, 2010 p. 74).

In discrimination experiments the PF describes the ability to
discriminate a stimulus of intensity x compared to a constant
reference stimulus of intensity s,

p=24+2-(r—4 FiX,sp). 3)

where p is the probability do discriminate the stimulus from the
reference stimulus. If both stimuli are equal, test subjects guess
with equal probability p=0.5 and the magnitude of these stimuli
represent the 50%-discrimination threshold tdssq with s, = tdss.
The lapse rate defines the errors that the test subjects make.
According to psychophysical theory, the lapse rate is influenced by
disturbances or by the motivation or attentiveness of the test subjects
and by learning effects, which are caused by repeating the measure-
ments with the same test subject. The guess rate defines the response
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probability when the test subjects cannot detect the stimulus and
have to guess. Thus, in experiments with two possible choices, the
guess rate equals 0.5. The PF is consistent with Weber’s law,
independent of the slope parameter and the lapse rate, as long as
the guess rate equals 0.5.

Usually p is measured by presenting the test subjects the test
stimulus and recording their ability to detect it. p is given by the
sum of all positive responses divided by the number of measure-
ments. After measuring p experimentally, all parameters of the PF
can be deduced by fitting the function to the data (see von Thienen
et al., 2014). The PF has a sigmoidal shape on a logarithmic x-scale
(see Fig. 3). The sigmoidal part of the PF for detection defined by
F() lies in the region between p =y and p =1- . For discrimina-
tion, it lies in the region from 1 to 2 - (y —A).

For F() a cumulative probability function, like the Weibull
function, is used, which has the general form

W) =1-e®’ (4)

where s is the scale parameter and b is the form parameter. By
applying the Weibull function, we get the PF for detection:

. b
pi=r+(1—2-7) [1—e'"“”' () } )

where p; is the probability to detect the test stimulus of intensity
sy, tdtys is the 75%-detection threshold, A is the lapse rate, y is the
guess rate and b is the slope.

For the discrimination between different stimuli, we get the PF
for discrimination:

b
Pe=242-(r—2)" [1_61;1(1”-([«550) } )

where p, is the probability to discriminate the test stimulus of
intensity s from a reference stimulus of strength tdssg, which
represents the 50%-discrimination threshold.

According to von Thienen et al. (2014), the Weibull function was
chosen in experiments with ants, because in preliminary studies it
gave a better fit compared to other functions and it is reported to give
a good fit for the PF in other contexts (Klein, 2001, p. 1430). It was
formulated in a way, that threshold and slope are independent and
the threshold does not change the shape of the function, it only results
in a parallel shift along the x-axis.

To apply the PF to bifurcation experiments with ants, we take the
pheromone concentrations as test- and reference stimuli and apply
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Fig. 3. PF for discrimination (A) and detection (B). The PF for discrimination gives the response defined as the probability that a stimulus is reported stronger than a constant
reference stimulus which is different from zero. In case of detection, the reference stimulus equals zero. Lapse rate (4, dotted horizontal line), guess rate (y, dashed horizontal
line), 75%-discrimination threshold (tds;s dashed vertical line), 75%-detection threshold (tdt;s, dashed vertical line).
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following Egs. (7) and (8b) (von Thienen et al, 2014, modified)
depending if only one trail carries pheromone or both trails carry
pheromone. If only one trail carries pheromone, we apply the PF for
detection

b
(s
PsjL=r+(1=2-y)- [1—;“(] & ([d[“) ] 7

where ps; is the probability to follow the trail that carries the
pheromone, which can be either the short or the long trail. p; s =
1—pg,, is the probability to follow the trail with no pheromone, cg; is
the pheromone concentration of the trail that carries the pheromone,
tdtys is the pheromone concentration at the 75%-detection threshold.

If both trails carry pheromone, we apply the PF for discrimina-
tion

Ps=A4+2-(y—=2)- [1—e'"“”'<5f> ] (8a)

where ps is the probability to follow the short trail. p, =1—ps is
the probability to follow the long trail, cs is the pheromone
concentration on the short trail and c; is the pheromone concen-
tration on the long trail.

The PF for discrimination shows two asymmetries depending on
which branch of the bifurcation is defined as reference stimulus.

1. Two different PFs yield results that are slightly different,
depending on which trail is the reference stimulus with a
maximum difference of 0.06. This is corrected in the fitting
procedure of von Thienen et al. (2014) by averaging the
exponential terms. The resulting function lies in the middle of
the two alternative functions.

Ps=A+2-(y—2)- []— (eln“”' (Zﬁi)b-ﬂ—elmﬂ)' (ié)b) ~O.5:|
=A+(—2)- [l—eln“”' (%f)b“-’m(]#). <é)b} &

where p; = 1—ps is the probability to follow the long trail.

2. The second asymmetry occurs, because the guess rate was
fitted at y=0.47 for L. humile (von Thienen et al., 2014). This
represents a bias of the PF towards the reference stimulus and
reflects the situation that Weber’s law is not exactly fulfilled at
low concentrations (von Thienen et al., 2014). Thus, to simulate
ant behavior at a bifurcation, we have to take into account that
the results differ slightly, depending on which stimulus is
defined as reference stimulus. In our simulations, we let the
virtual ants randomly decide which trail they take as reference
(see Section 3.1).

3. Materials and methods
3.1. Simulations

Table A1 and Table A2 in Appendix A provide the parameters of the
PF and the DCF deduced from previous experiments (von Thienen
et al., 2014). We repeated the Monte Carlo simulations of Goss et al.
(1989) using the DCF and the parameters of Table Al. In addition, we
did the same simulations with the PF and the parameters of Table A2.
For the simulations, we used the same model assumptions as reported
by Goss et al. (1989) and Deneubourg et al. (1990):

® 1000 simulations with 1000 iterations each,
® 500 ants are counted between the 501th and 1000th iteration,
® short-trail-length=20 units, long-trail-length =40 units,

® ants walk 1 unit in length per iteration,

® 1 ant leaving the nest per iteration, after reaching the food,
they immediately return,

® per trail passage, an ant deposits 0.5 pheromone units per ant
(phpa) at each end of the short respectively long arm of the y-
bridge, altogether one pheromone unit for each trail passage
heading towards the food or heading towards the nest,

® the first ant chooses the branch randomly by a binomial
decision with p=0.5 and n=1.

The ants’ choice at the two bifurcations was simulated as a random
decision. The probability that it takes the short branch is given by the
ratio of pheromone concentrations of the two branches according to
the model formula. For the DCF, Eq. (1) is used, while for the PF, Eq. (7)
is used if one trail carries no pheromone (detection). If both trails carry
pheromone, Eq. (8b) is used (discrimination). In case of the DCF, we
also distinguished between detection and discrimination. The equa-
tion is the same in both cases, but the fitted exponent is different (see
Table Al). To handle the above described asymmetry of the PF,
depending on which trail is reference stimulus, we assume that both
trails are randomly chosen as reference trail with equal probability.
We also tested the possibility to take the average of the two
alternatives, which did not affect the results. Simulations were progr-
ammed in C+ + (gcc 4.4.5). Random numbers were generated using
a method from Park and Miller (1988) cited by Press et al. (1992),
p. 279.

3.2. Analysis

In each simulation-run, we performed 1000 simulations. In
each simulation, we counted the number of ants out of 500 taking
the short path and the number of ants taking the long path
(starting with the 501st ant, similar to Goss et al. (1989). In the
first step, we tested whether either paths had been selected more
often by the virtual ants in the majority of simulations within a
simulation-run. We counted the number of simulations S, in which
the path defined as “short” was selected more often than the path
defined as “long”. We tested the null hypothesis that S is
binomially distributed with p=0.5 and n=1000. In case of equal
path lengths, we applied a two-sided binomial test. In case of
different path lengths, our test was one-sided.

In the majority of the original experiments, one path was collec-
tively selected by the great majority of ants (symmetry breaking), even
if both paths were of equal length. Consistent with the original work
of Goss et al. (1989), we measured the strength of this effect by
counting the proportion of simulations in which more than 400 (80%)
of the ants took the short path. We defined it as the 80%-short path
selection rate (spsr80) and calculated its 95%-binomial confidence
interval. Similarly, we calculated the 80%-long path selection rate
(Ipsr80). The spsr80 is equivalent to the 80-100% range of the original
experiments in Goss et al. (1989) (see Fig. 2) and the Ipsr80 is
equivalent to the 0-20% range. The 0.9999-quantile of a binomial
distribution with n=500 and p=0.5 lies at 59% (n=>500, p=0.5). Thus,
results > 59% and certainly results > 80% have to be considered as
highly significant with p « 0.0001. Since the distribution in the original
experiments nearly exclusively fell in the region of the spsr80 or
1psr80, we focus on these rates when we compare the distribution of
the original experiments to our simulations.

For all tests, we used R version 3.0.1 (2013-05-16) (R Development
Core Team, 2013). For binomial testing, we used binom.test(), (library
stats) (Mailleux et al., 2000). For calculating binomial confidence limits
we used binom.confint(), (library binom) Dorai-Raj (2009), with the
method “wilson” (Wilson, 1927). All these packages are freely available
at the CRAN repository.
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4. Results

Figs. 2, 4-6 show the results of the simulations. They are
presented in a format similar to Goss et al. (1989) and show the
distributions of ants taking the short path. The outcome of each
simulation is grouped into one of five ranges (x-axis). Each range
specifies the percentage of ants taking the short path in a single
simulation. The y-axis gives the percentage of experiments or
simulations in which the outcome fell into the specified range. For
example Fig. 2A shows that in 67% of all simulations, between 80%
and 100% of the ants took the short path. Please note that the
range 80-100% is equivalent to our definition of the 80%-short
path selection rate (spsr80) (see Section 3.2) which is presented on
top of the figure bars. Detailed results with confidence intervals
are given in Table A3 in the appendix. We first present results of
simulations that repeat the original simulations of Goss et al.
(1989), then we focus on simulations with different path lengths
followed by simulations of equal path lengths.

4.1. Repetition of original simulations of Goss et al. (1989)

Our simulations of the DCF using the original parameter values
from Goss et al. (1989) gave results similar to their simulations. If both
paths were of equal length (see Fig. 2B) the short path was taken by
most of the ants in 49% of the simulations, which was not significant
(p=0.36, two sided binomial test, n=1000). The spsr80 (33%) and the
Ipsr80 (33%) were nearly equal. If one path was twice as long as the
other (see Fig. 2A) the short path was taken by most of the ants in 81%
of the simulations, which was significant (p <0.0001, one sided
binomial test, n=1000). The spsr80 was 65%.

4.2. Results with fitted parameters and different path lengths

When more realistic parameters deduced from previous experi-
ments were applied to the DCF (see Fig. 4, dark grey bars), the
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Fig. 4. Monte Carlo simulations of different path lengths with the DCF and the PF
with realistic parameter values. Parameters for the DCF: b=1.06, k=0.02
(discrimination) and b=0.52, k=0.02 (detection). Parameters for the PF: y=0.47,
4=0.02, b=0.87 (discrimination) and y=0.43, 2=0.11, b=0.6, tdt;5=0.053 (detec-
tion). The x-axis shows the distribution of ants that chose the short path (n=500).
The y-axis shows the number of experiments (n=14) or simulations (n=1000) in
percent. Black=original experimental results modified from Goss et al. (1989), dark
grey=simulation of the DCF, light grey=simulation of the PF. Error bars give
95%-binomial confidence intervals of the simulations.

simulations showed that the short path was preferred in 57% of the
simulations, which was significant (p < 0.0001, one sided binomial
test, n=1000), but low compared to 100% in the original experiments.
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Fig. 5. Monte Carlo simulations of different path lengths and pheromone modula-
tion with the DCF and the PF. The assumption was made that ants deposit four
times more pheromone on their way back from food to nest. The x-axis shows the
distribution of ants that chose the short path (n=500). The y-axis shows the
number of experiments (n=14) or simulations (n=1000) in percent. Black=
original experimental results modified from Goss et al. (1989), light grey=simula-
tion of the PF, dark grey=simulation of the DCF. Error bars give 95%-binomial
confidence intervals of the simulations. Parameters were set within their con-
fidence limits to give a distribution pattern as close as possible to the original
experimental results. Parameters for the DCF: b=1.19, k=0.02 (discrimination)
and b=0.52, k=0.02 (detection). Parameters for the PF: y=0.48, 1=0, b=1.02
(discrimination) and y=0.43, 1=0.13, b=1.1, tdt;5=0.04 (detection).
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Fig. 6. Monte Carlo simulations as in Fig. 5, but with both paths of equal length (20
units). The x-axis shows the distribution of ants that chose the short path (n=500).
The y-axis shows the number of experiments (n=26) or simulations (n=1000) in
percent. Black=original experimental results modified from Goss et al. (1989), light
grey=simulation of the PF, dark grey=simulation of the DCF. Error bars give
95%-binomial confidence intervals of the simulations. For further details and
parameter settings please refer to Fig. 5.
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The spsr80 was 44% and much below the sprs80 of the original
experiments (93%). Applying the PF and realistic parameter values (see
Fig. 4, light grey bars), the simulations showed similar results to the
DCF. In 58% of the 1000 simulations, the short path was taken by most
of the ants, which was significant (p < 0.0001, one sided binomial test,
n=1000) and the spsr80 was 49%.

4.3. Results with pheromone modulation and different path lengths

It is known that Argentine ants returning from the food to the nest
lay more pheromone than when heading out from the nest (Aron
et al., 1989). In this study, the ants made 2-times longer streaks, which
were 2-times less distant from each other if they returned to the nest
compared to their behavior in the opposite direction. From these data
we deduced that the pheromone amount deposited on the way back
to the nest is 1.6 to 4 times higher than on the way to the food (see
Table S3, Supplemental content).

We included the assumption that ants modulate the pheromone
amount by factor of four into the model with the PF and set the
parameters to the confidence limits which gave the highest short path
selection rate. In 80% of the simulations the short path was taken by
most of the ants, which was significant (p <0.0001, one sided
binomial test, n=1000). The spsr80 was 72%, which is 21% below
the original experimental results (93%), but 6% higher than the original
simulations of (Goss et al., 1989) (66%). By applying the DCF, the short
path was taken by most of the ants in 71% of the simulations, which
was significant (p < 0.0001, one sided binomial test, n=1000). The
spsr80 was 57%, which is 36% below the original simulations.

4.4. Difference between DCF and PF

To evaluate why the PF showed a higher short path selection rate
than the DCF in experiments with different path lengths, we tested
the hypothesis that the lapse rate, a parameter unique for the PF, is
responsible for the difference. This parameter describes the tendency
of ants to show no response to the trail pheromone and can be
interpreted as a measure for the independence of ants from pher-
omone trails (see von Thienen et al.,, 2014). In the initial phase of the
experiment, it usually occurs that one trail carries pheromone while
the other carries none. By applying the PF, ca. 86% of the ants follow
the path with pheromone, while in case of the DCF, nearly all ants
follow the pheromone trail (96%). This difference is mainly contributed
to the lapse rate of 0.11 of the PF for detection. It is important in the
initial phase of the experiment and causes an asymmetry between
short and long path selection. The first ant randomly selects the short
or the long path with equal probability. Due to the pheromone
deposited by the first ant, the majority of subsequent ants will follow
this selection. However, a small fraction of ants will also follow the
other trail and in some cases reverse the initial selection. This small
fraction is higher for the PF (14%) than for the DCF (ca. 4%), due to the
lapse rate of the PF. If the short path is selected by the first ant, it is
very unlikely that the final outcome will be reversed towards the long
trail, since the positive feedback described by the Deneubourg model
already favors the short path. In this case, we do not expect a major
difference between PF and DCF, the rate for short path selection will
be close to 100%. However, if the long path is selected by the first ant,
the small fraction of following ants taking the short trail will enhance
the general preference for the short path and thus be able to reverse
the initial selection of the long path towards the short path. This
tendency to reverse the initial selection of the long path towards the
short path will depend on the amount of subsequent ants taking the
short path, which is much higher in case of the PF. Thus, we expect
the probability for short path selection to be greater for the PF than for
the DCF. To test this hypothesis, we made a simulation-run in which
the first ant always selected the long path. In the same way, we made
a simulation-run in which the first ant always selected the short path.

By doing so, we were able to compare the ability of the two functions
to reverse this initial choice as the experiment progressed. Settings
were the same as described in Fig. 5. The results are presented in
Table 1 and confirm the hypothesis: If the first ant selects the short
path, this selection is usually also the final result and the spsr80 is
similar for both functions (95% and 92%). If the long path is initially
selected, the PF reaches a higher spsr80 (51%) compared to the DCF
(26%). If the lapse rate of the PF is set to 0, the spsr80 drops to 0%.

4.5. Test of additional assumptions

The results of the simulations of different path lengths with the PF
are of slightly better quality than the original simulations of Goss et al.
(1989), showing an 8% higher spsr80. However, there is still a
discrepancy between experiment and model since the model does
not reach the high spsr80 that occurred in the experiments (experi-
ment: 93%, model PF 72% and model DCF 57%, see Fig. 5). Obviously,
real ants decided exclusively for the short path, while the virtual ants
did not. Therefore, we tested additional assumptions and reached in
simulations with the PF higher values for the spsr80 that reproduced
the original experiments very well (model: 89%, experiment: 93%).
These results are presented in the Supplement S1.

4.6. Simulation of equal path length

We repeated all simulations with equal path lengths (named “A”
and “B”). They showed very similar results to the original experiments
of Goss et al. (1989) (see Fig. 2B) with no significant preference for
either path but with the symmetry breaking effect. An example,
which is representative for all simulations with equal path lengths, is
given in Fig. 6. Results for the DCF were as follows: In 50% of the
simulations either path A or path B was taken by most of the ants,
which was not significant (p=0.92, two sided binomial test, n=1000).
The selection rate in the range 80%-100% and 0%-20% were nearly
equal (44% and 46%) and show that in 90% of the simulations one
single path was collectively selected. Results for the PF: In 51% of the
simulations path A and in 49% path B was taken by most of the ants,
which is not significant (p=0.59, two sided binomial test, n=1000).
The selection rate in the range 80%-100% and 0%-20% were nearly
equal (49% and 47%) and show that in 96% of the simulations one
single path was collectively selected.

4.7. Sensitivity of the PF and DCF to the pheromone scale

The pheromone scale is proportional to the amount of pheromone
a single ant releases at the beginning and end of the trail each time it
passes these points (pheromone unit per ant—phpa). Since we have no
knowledge about the pheromone amounts single ants drop, it was
arbitrarily set to 0.5 units in our simulations. Like in the simulations of
Goss et al. (1989), this gives one pheromone unit per trail passage in

Table 1
Results of simulations with 1st ant selection fixed.

1st ant Function spsr80 (%)
Long path PF 4=0.11 51
A=0 0
DCF 26
Short path PF 4=0.11 95
A=0 100
DCF 92

Notes: The simulations of Fig. 5 had been repeated with the first ant forced to select
the long path for 1000 simulations. This was repeated for the short path for another
1000 simulations. In case of the PF, we present results for the lapse rate 4=0.11 and
1=0.
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each direction. Since phpa is not known, the underlying pheromone
scale is unknown and the parameters of the model that depended on
the pheromone scale might have influenced the result of the simula-
tions depending on the pheromone scale being used. For the DCF, this
means that it is independent of the pheromone scale, as long as the
parameter k is kept proportional to the scale. Thus, since absolute
pheromone amounts were unknown, k was a free parameter. Simi-
larly, the PF for detection is independent of the pheromone scale, as
long as the detection threshold (tdt;s) is kept proportional to the scale.
Therefore, tdt;s was also a free parameter. However, this happens only
in a few iterations during the initial phase of the simulations, in which
the PF for detection is applied. Due to Weber’s law, the PF for
discrimination, which was applied in most iterations, is independent
from the pheromone scale. A detailed analysis of the whole parameter
space of both functions showed that the DCF was much more sensitive
to the pheromone scale than the PF (see S2, Supplemental content).
By systematically varying these parameters, we found that k=0.02
and tdt;5=0.04 gave the best approximations to the distribution
found in the experiments of Goss et al. (1989). Please note that von
Thienen et al. (2014) measured pheromone concentrations in a
different scale based on an estimation of concentrations occurring in
natural trails (base concentration, bc) which is proportional to the scale
we used in our simulations. Since we do not know the amount of
pheromone ants drop, the factor of proportionality between these
scales is unknown.

4.8. Parameter space

To get a more detailed picture of how the two functions
differed with respect to the experiments with different path
lengths, we systematically varied the parameters of the functions,
repeated 100 simulations for each parameter value and calculated
the spsr80. These simulations confirmed the results from above
and show that both functions were only able to explain the results
of the shortest path experiments by assuming that ants deposit
more pheromone on their way returning to the nest than coming
from it. While both functions fail to reach the high spsr80 of the
original experiments, the simulations with the PF reached higher
values for the spsr80 over the whole parameter space and over the
confidence region of the fitted parameters compared to simula-
tions with the DCF. By assuming a higher exponent/slope in the
initial phase, simulations with the PF were consistent with the
experimental results, while simulations with the DCF were not. For
details see S2, Supplemental content.

5. Discussion

Until the recent study by von Thienen et al. (2014), we knew of no
empirical evidence based on controlled pheromone concentrations for
the specific parameter values used in the Deneubourg model and in
other models that use the DCF. Three studies by Deneubourg et al.
(1990), Perna et al. (2012) and Vittori et al. (2006) deduced these
parameters for L. humile experimentally. They measured pheromone
concentrations indirectly assuming that the concentration at a certain
point is proportional to the number of ants that had passed that point
before. The parameter b (exponent of the Denenbourg choice func-
tion) was fitted to different values: 1.06 (Perna et al, 2012), 2
(Deneubourg et al,, 1990) and 4 (Vittori et al., 2006). The parameters
had been fitted to discrimination tasks while parameters for detection
were not evaluated. In contrast to these experiments, von Thienen
et al. (2014) measured the response of ants to controlled pheromone
concentrations with gland extracts and with the synthetic pheromone
(Z)-9-hexadecenal. They deduced the model parameters for detection
as well as for discrimination tasks (b=1.06 for discrimination and
b=0.52 for detection). In addition, von Thienen et al. (2014) showed

that the ants’ response in discrimination experiments is independent
from absolute concentrations and Webers' law is fulfilled. When
applying the DCF, this is only possible with b~ 1, see also Perna
et al. (2012). By applying such realistic parameter values, we
attempted to reproduce the experimental results of the shortest path
experiments by Monte Carlo simulations.

In our simulations with equal path lengths, the experimental
results could be reproduced very well by using either the DCF or
the PE. The results were independent from the specific function and
the parameters being used. This shows that a simple positive feedback
mechanism, which is common to both functions, is sufficient to
explain the results of experiments with equal path lengths.

In contrast to experiments with equal path lengths, we can
expect that simulations of different path lengths are very sensible
to slight changes in the model assumptions, due to the high
dynamic of the whole process and thus reveal subtle differences
between models and model parameters. This can be clearly seen in
the results of our simulations of different path lengths, which
show great differences between the functions and parameters
being used. By applying the DCF and a realistic value for the
exponent b, a significant but low preference of the short path
could be reproduced (spsr80=44%, Ipsr80=30%), although the
parameter k was free and set to its optimum for short path
selection. By assuming a pheromone modulation by a factor of
four, the short path was selected significantly more often than the
long path (spsr80=57%, Ipsr80=21%), but not as often as in the
experiments (spsr80=93%, Ipsr80=0%). The reason for the dis-
crepancy between the original simulations of Goss et al. (1989)
and our simulations of the DCF is the low value of the exponent b,
which was expected to be twice as high (b~ 2) as it actually
turned out to be (b=1.06). As mentioned before, it is important to
note that the DCF is only consistent with Weber’'s law if the
exponent is close to one.

By applying the PF and using realistic parameter values, the result
was slightly better than the DCF (spsr80=49%, lpsr80=27%). By
assuming a pheromone modulation by a factor of four, a highly
significant short path selection rate resulted (spsr80=72%, Ipsr80=
17%). This result reproduced the original experiments even better than
the original simulations of Goss et al. (1989) (spsr80=66%,
Ipsr80=16%). This shows that under the assumption of pheromone
modulation, the PF was closer to the experimental results than
the DCE.

We evaluated the differences of both functions with respect to
their ability to reproduce the shortest path experiments. The lapse
rate, a parameter that is only part of the PF, was responsible for this
difference. It allowed simulations with the PF to reproduce higher
values of the short path selection rate compared to simulations with
the DCF. The lapse rate can be interpreted biologically as a measure for
the independence of ants from pheromone trails (von Thienen et al.,
2014). It is responsible for an asymmetry between the selection of the
short and long path by enhancing the tendency to reverse an initial
selection of the long path towards the short path and thus enhancing
the selection of the short path. This asymmetry had never been
described before and adds an additional mechanism that favors short
path selection to the Deneubourg model. It shows that the initial
phase of the experiment is very important and that a certain degree of
freedom from pheromone guided behavior is an important feature of
short path selection, which only the PF describes.

Although the PF reproduced the shortest path experiment better
than the DCF, there was still a gap between simulations and experi-
mental results. In the experiment, the ants exclusively selected the
short path (spsr80=93%), while in the model this could not be fully
reproduced (57% DCF and 72% PF). Thus, real ants were better in
selecting the short path than virtual ants, indicating other factors that
influence ant behavior not incorporated in the model so far. By
including the additional assumption that ants show a higher
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responsiveness to pheromones for a short time after they have found
food and in the beginning of the recruitment, we were able to nearly
fully reproduce the experiments by applying the PF (spsr80=89%), see
S1 in the supplement for details. This was not possible by applying the
DCF. These differences between PF and DCF can be explained by an
enhancement of the tendency to reverse an initial long path selection
due to the lapse rate of the PE. As a possible biological explanation, we
assume that in the beginning, only highly motivated ants or specia-
lized ants like scouts may be involved in foraging and we assume that
these ants express a higher slope of the PF. This assumption has not
been tested for L. humile, but we know from experiments with
Pharao’s ants that 20% of individual ants involved in foraging show
a significantly higher response to pheromone trails (Jackson and
Chaline, 2006). Other factors that we had not tested could be
important too. For example, it was shown that the trail following
behavior in L humile is a complex system influenced by other
pheromones from different glandular sources as well by different
forms of physical contact between the ants (Cavill et al., 1980; Choe
et al,, 2012; Robertson et al., 1980; Van Vorhis Key and Baker, 1981,
1982). Factors, such as food quality and learning, influence the ants’
response to pheromones (Aron et al, 1993; Beckers et al, 1993;
Czaczkes et al.,, 2011; Evison et al,, 2008; Griiter et al., 2011). Thus,
single pheromone models of ant behavior may be too simple to
describe the complex nature of ant behavior. To refine our theoretical
understanding of these processes, we would need more empirical
evidence on communication in L. humile. However, even if our models
of ant behavior need to incorporate a higher complexity of ant
systems, it is important to know exactly how ants respond to different
kinds of stimuli and give a mathematical and biological description for
this relationship, which can be achieved by using the PF.

Besides the reason that the PF fits well to experimental evidence,
there are other, maybe more important, reasons for PF's suitability as
tool to describe important aspects of collective ant behavior. It is part
of the psychophysical theory with a well-established practical and
theoretical toolset to measure and evaluate the relation between
stimuli, sensory perception and behavior. It is consistent with Weber’s
law, which is fundamental to many aspects of sensory perception and
behavior in animals. It provides clear definitions of biological para-
meters, like sensory and behavioral thresholds, which are important
for the understanding of the collective behavior of ants. Thus, our
results may be of great importance for the development of realistic
models of collective ant behavior. In addition, applying psychophysical
theory to collective ant behavior opens the field of behavioral and
comparative psychophysics to collective behavior in general, especially
to the collective behavior of social insects like bees, bumble bees,
wasps, termites and ants by exactly measuring their behavioral
responses to physical stimuli and signals.

For ACO algorithms, we do not expect a generally better perfor-
mance by using the PF since the equations are more complex than the
DCF. However, certain aspects of PF might lead to better performing
ACO algorithms. For instance, the concept of the lapse rate might
prevent algorithms to run into stagnation and show a better conver-
gence to an optimal solution. Further concepts like depositing higher
pheromone amounts at the return path or higher slopes in the
beginning might lead to a faster or better convergence towards the
optimal solution.

5.1. Conclusions

For the first time, psychophysical theory has been successfully
applied to pheromone-based social behavior of insects. The Deneu-
bourg model for the explanation of the shortest path experiments
could be confirmed based on parameters deduced from new experi-
ments. However, the Deneubourg choice function should be excha-
nged by a psychometric function for the model to better explain the
data of the shortest path experiments. The finding of Aron et al. (1989)

that ants modulate their pheromone deposition depending on their
direction to or from the nest is important for the selection of the
shortest path. In addition, we found that a certain degree of freedom
in the initial phase of the experiment, allowing some ants to ignore
the trail pheromone, is important for the final outcome of the
experiment. Further, although empirical data are missing, our simula-
tions suggest that in the initial phase specialized ants with an
increased response to pheromone might be important to fully explain
the experimental results of the shortest path experiments.
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Appendix A

See Tables A1-A3.

Table A1
Fitted parameters of the DCF for Linepithema humile.

Experiment b k GOF
Discrimination 0.96 0.0 bc 0.22
1.06 0.02 bc
1.19 0.06 bc
Detection 0.44 0.01 bc 0.41
0.52 0.02 bc
0.64 0.04 bc

From von Thienen et al. (2014).

Notes: Values for fitted parameters are given in the order lower confidence limit,
fitted value, and upper confidence limit from top to bottom with confidence limits
in italics. Confidence limits were calculated at 95%-level by parametric bootstrap
(n=1000). GOF was calculated by a log-likelihood ratio test between the model
being evaluated and the full model.

b—Exponent.

k—Constant.

GOF—Goodness of fit.

bc—Base concentration (0.0014 AE/cm (ant equivalent/centimeter) = 30.8 pg/cm).
Please note that the bc resembles the pheromone concentration that can be
expected on a naturally laid trail according to von Thienen et al. (2014). It is not
equivalent to the pheromone amount a single ant drops (phpa).

Table A2
Fitted parameters of the PF for Linepithema humile.

Experiment b y A tdtys GOF
Discrimination 0.75 0.46 0 - 0.86
0.87 047 0.02
1.02 048 0.05
Detection 0.42 0.35 0.08 0.04 bc 0.25
0.6 043 0.11 0.053 bc
1.1 0.53 0.13 0.11 bc

From von Thienen et al. (2014).

Notes: Values for fitted parameters are given in the order lower confidence limit,
fitted value, and upper confidence limit from top to bottom with confidence limits
in italics. Confidence limits were calculated at 95%-level by parametric bootstrap
(n=1000). GOF was calculated by a log-likelihood ratio test between the model
being evaluated and the full model.

b—Slope.

y—Guess rate.

A—Lapse rate.

tdt75—75%-Detection threshold.

GOF—Goodness of fit.

bc—Base concentration (0.0014 AE/cm (ant equivalent/cm) = 30.8 pg/cm). Please
note that the bc resembles the pheromone concentration that can be expected on a
naturally laid trail according to von Thienen et al. (2014). It is not equivalent to the
pheromone amount a single ant drops (phpa).
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Table A3
Detailed results of simulations.

Description Simulations preferring short n p spsr80 1psr80
path
Original simulations repeated, equal path length, Fig. 2B DCF 454 49% 1000 0.36 300 33% 299 33%
485 328 327
516 358 357
Original simulations repeated, different path length, Fig. 2A DCF 780 81% 1000 <0.0001 622 65% 77 9%
806 652 93
829 681 113
Fitted parameters, different path length, Fig. 4 DCF 535 57% 1000 <0.0001 408 44% 275 30%
566 438 303
596 469 332
546 58% 1000 <0.0001 455 49% 241 27%
577 486 267
607 517 295
Pheromone modulation, different path length, Fig. 5 DCF 676 71% 1000 <0.0001 540 57% 181 21%
705 571 205
732 601 231
769 80% 1000 <0.0001 690 72% 146 17%
795 719 168
819 746 192
Higher slope/exponent in the beginning and pheromone modulation, different ~ DCF 477 51% 1000 0.38 477 51 461 49%
path length, Fig. 6 508 508 492
539 539 523
872 89% 1000 <0.0001 872 89% 89 11%
893 893 107
911 9n 128
Pheromone modulation, equal path length, Fig. 6 DCF 467 50% 1000 0.92 412 44% 424 46%
498 443 455
529 474 486
478 51% 1000 0.59 457 49% 437 47%
509 488 468
540 519 499

Notes: Values in italics give 95%-binomial confidence intervals.
n—Number of simulations.

p—pa-Value from binomial test (equal path length: two sided, different path length: one-sided).

spsr80—80%-Short path selection rate.
Ipsr80—80%-Long path selection rate.

Appendix B. Supporting information

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.jtbi.2015.02.030.
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Abstract Ants are able to modulate their behavior according
to private and collective information. Collective information is
coded in different concentrations of pheromone deposited in
the environment, especially on ant trails, whereas private in-
formation is learned and memorized by individual ants. It has
been shown that both kinds of information act synergistically
on the collective trail-following behavior of ant colonies.
Another important factor influencing ant behavior is their mo-
tivation to follow pheromone trails. Here, we show how pri-
vate information and motivation modulate the response to
collective information. We investigate these effects using a
recently proposed approach that employs psychophysical
methods to measure the response to varying pheromone con-
centrations. We studied the effect of private information (route
memory) in the species Lasius niger, Euprenolepis procera,
and Linepithema humile. Additionally, the effect of motiva-
tion was studied in the species E. procera and L. humile.
Using psychophysical methods, we quantified these effects
for important biological parameters like behavioral thresholds
and error rates. The differential changes in these parameters
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Significance statement Collective organization in ants is significant to
environmental adaptation. Worker foraging may be guided by private
(memory) and social (pheromonal) information, and the relative reliance
on these information sources should vary interspecifically. Memory and
motivation were found to vary in their influence on response thresholds to
trail pheromones and error rates in three ant species. This variation among
species underscores specific ecological adaptations.
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between the three species imply specific adaptations to their
environment.

Keywords Ant behavior - Pheromones - Memory -
Motivation - Starvation

Introduction

Ants use different kinds of signals to communicate (phero-
mones, tactile, and acoustical signals), of which trail phero-
mones are of great importance for the emergence of collective
behavior (Wilson 1958; Holldobler and Wilson 1990, p. 227;
Holldobler 1995; Holldobler 1999). The response to the pher-
omone signal may be altered by route memory acquired by
visual learning (Aron et al. 1988; Aron et al. 1993; Czaczkes
etal. 2011; Griiter et al. 2011; Czaczkes et al. 2013). Different
ant species show considerable differences in the extent to
which they use visual learning and trail pheromones as source
of information if both are available. Linepithema humile ants
mainly respond to trail pheromone and less to visual learning
while ants of the species Temnothorax unifasciatus and Lasius
niger show a much higher response to visual learning com-
pared to trail pheromone (Aron et al. 1988; Aron et al. 1993).
These differences between species can be explained by
L. humile mainly depending on collective information while
L. niger and T unifasciatus use individual information to a
great extent besides collective information (Aron et al. 1993).

The response of L. humile to a combination of visual learn-
ing and trail pheromone depends on how often the training for
visual learning was repeated implying that the strength of
visual learning influences the response to the pheromone
(Aron et al. 1993). In L. niger, results are controversial.
Aron et al. (1993) and Griiter et al. (2011) found only a minor
influence of repeated training, while Evison et al. (2008)
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showed visual learning enhances the response to trail phero-
mone at all concentration levels in L. niger: This discrepancy
might be explained through differences in bioassays and pher-
omone concentrations used between the studies.

When ants are able to use visual learning and pheromones
as two independent information sources, the error rate in trail
following is reduced, thus increasing trail-following speed.
Consequently, the availability of two independent information
sources increases the foraging efficiency of ants (Griiter et al.
2011; Czaczkes et al. 2013).

Although the above-mentioned studies revealed crucial in-
formation about the social communication in ants, there were
some aspects that they did not consider.

1. All of the above-mentioned studies used only up to four
pheromone concentrations, which were only measured
indirectly. Thus, we do not know the exact relationship
between route memory, pheromone concentration and
route following.

2. The time gap between training and testing was short, since
the training of the ants was done immediately before test-
ing their behavior. Only in the study of Evison et al.
(2008), the time gap between training and testing was
up to 120 min which might be an alternative explanation
of'the discrepancy of their results with those of Aron et al.
(1993) and Griiter et al. (2011).

3. Visual learning can influence the response to trail phero-
mone in two different ways. First, if the information pro-
vided by pheromone and visual learning is congruent,
both information sources act synergistically and may for
instance increase the foraging efficiency. On the other
hand, if information from the two different sources are
not congruent, they cause a conflict between social and
private information and may, for instance, increase the
errors ants make in following a pheromone trail
(Czaczkes et al. 2011; Griiter et al. 2011). Both ways are
of different biological importance and may show charac-
teristic differences between species. However, the studies
on ants mentioned so far investigated either the synergis-
tic situation or the conflicting situation but not both which
may be another cause for the differences in their findings.

Besides private information and pheromones, the nutrition-
al status of a colony influences the foraging behavior of an ant
colony. In Myrmica sabuleti starvation increases the individ-
ual motivation to forage and the communication among indi-
viduals by lowering the response threshold to recruitment sig-
nals (de Biseau and Pasteels 2000). When L. niger ants are
experiencing increased levels of starvation, individuals inside
the nest show a growing tendency to aggregate around the nest
entrance, ready to take in food from returning ants by troph-
allaxis, while ants close to the entrance show an increased
tendency to leave the nest in search of food. This behavior
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can be explained by the high motivation of starved colonies to
exploit new food sources. By aggregating close to the en-
trance, the ants speed up the process of food intake. Ants
gathering close to the entrance are assumed to have a lower
response threshold to the recruitment signals (trail pheromone
and/or tactile signals) and thus show a higher tendency to
leave the nest and follow the pheromone trail towards the food
source (Mailleux et al. 2011).

In our experiments, we aimed to go further than the above-
mentioned studies by investigating the relationship between
pheromone concentration and trail-following behavior, in-
cluding the effect of private information (route memory) and
motivation (starvation) on this relationship. In our investiga-
tion of route memory, we included the effects of conflicting as
well as synergistic information sources. By using clearly phy-
logenetically and ecologically distinct species, we tested
whether differences between species can be attributed to spe-
cific adaptations to a given environment.

To evaluate the relationship between ants’ response and
pheromone concentration under the influence of memory or
starvation, we used a previously established psychophysical
method to assess the pheromone-dependent responses in ants
(von Thienen et al. 2014) and fitted psychometric functions
(PF) to the data (see Appendix for an introduction into
psychophysics).

Based on the above-mentioned studies, we hypothesized
that the addition of private information or motivation would
alter the collective behavior of the ants. Further, these changes
would reflect in the parameters of the PFs. Due to the high
sensitivity of psychophysical methods, we expected to gain a
deeper insight into factors like thresholds and error rates that
influence ant behavior. In detail, we expected to find follow-
ing effects:

Hypothesis 1

The effects of memory should be lower in a species that main-
ly depends on collective information compared to a species
that uses private information as well. Thus, we expect
L. humile to show smaller effects of memory than L. niger.
For E. procera, we could not make such a prediction since
data about the extent of their collective and private informa-
tion use are not available.

Hypothesis 2

Memory should alter the response to the trail pheromone.
Hypothesis 3

Remembering an existing food source should lower the detec-

tion threshold if the trail leads towards the food source since
pheromone and memory effects should amplify each other.
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Hypothesis 4

a) If two independent information sources (pheromone and
memory) are providing contradictory information, the
lapse rate (a measure for the error rate) should increase
due to an increased uncertainty.

b) In the opposite case, where pheromone and memory pro-
vide congruent information, the lapse rate should decrease.

Hypothesis S
Starvation should alter the response to the trail pheromone.
Hypothesis 6

Starved ants will be eager to get food and thus should have a
higher attentiveness to the pheromone resulting in a lower
detection threshold.

Hypothesis 7

Starved ants will be eager to get food and thus have a very low
tendency to ignore a pheromone trail, resulting in a low lapse
rate.

Hypothesis 8

Starvation should alter the discrimination response (the re-
sponse if two pheromones sources of different concentration
are offered to the ants).

Materials and methods

We used the same species, pheromone sources, experimental
setups, statistical methods, and fitting procedures as described
in a previous study (von Thienen et al. 2014). Here, we give a
summary.

Species and pheromones used

Experiments were conducted with laboratory colonies of the
species L. humile, E. procera, and L. niger. L. humile
(Dolichoderinae) originates from Argentina, but is now inva-
sive on most continents (Wetterer et al. 2009), where it forms
extensive polygynous supercolonies (Giraud et al. 2002).
Brood and workers are frequently exchanged between the
nests (Holway and Case 2000). L. humile uses locally stable
food sources like honeydew, but also distributed and short-
lived food sources like insects, seeds or carrion (Mallis
1942; Suarez et al. 1998). As trail pheromone, we used syn-
thetic (£)-9-hexadecenal (Bedoukian Research, Danbury/

USA, product no. P4100-90), a molecule from the Pavan’s
gland which was identified as the main component of the trail
pheromone complex (Wilson and Pavan 1959; Cavill et al.
1979; Cavill et al. 1980; Robertson et al. 1980; Van Vorhis
Key and Baker 1982). E. procera (Formicinae) lives in the
tropical rainforests of Malaysia and Indonesia. It feeds mainly
on mushrooms (Witte and Maschwitz 2008). Colonies are
polygynous and consist of 500-20,000 individuals. The ants
forage only at night and maintain an extensive trail system, in
which individual trails to different mushroom patches can be
abandoned and reactivated (von Beeren et al. 2014). As source
for the trail pheromone, we used extracts from the rectum,
which had been identified as the source of the trail pheromone
(Witte, unpublished data, cited in von Thienen et al. 2014).
Lastly, L. niger (Formicinae) builds monogynous colonies
with an average of 14,000 individuals (Seifert 2007). The ants
feed on insects and build long-lasting trails to trophobiosis
sites, where they collect honeydew. They are active during
the day and at night (Seifert 2007). We used extract from the
rectum as source for trail pheromone (Bestmann et al. 1992).
For each species, the colonies used for our experiments were
of similar size (15002000 workers including queen(s)).

Pheromones were prepared and dissolved in dichlorometh-
ane (DCM) as described by von Thienen et al. (2014).
Pheromone concentrations for E. procera and L. niger are
given in ant equivalents per cm (AE/cm). An ant equivalent
corresponds to the pheromone content of one rectum. For L.
humile, we give absolute concentrations in pg/cm. All concen-
trations reported here are given in units relative to a base
concentration (bc), which is 0.0057 AE/cm for E. procera
and L. niger and 30.8 pg/cm for L. humile. The base concen-
tration was similar to that of naturally formed trails, see von
Thienen et al. (2014).

Detection experiments

To test the ants’ ability to detect different pheromone concen-
trations, we conducted bifurcation experiments in which ants
had to cross a y-shaped bridge between their nest and a food
source. One branch of the y-bridge was marked with varying
concentrations of pheromone forming an artificial trail of
length 7 cm and width 2 mm. We refer to this branch as test
trail. The other branch, the reference trail, did not carry any
pheromone. The probability that the ants took the test trail—
calculated as the proportion of ants crossing the test trail—was
taken as a measure of the ants’ response to the pheromone. For
each bridge, the first 10 ants were counted. The orientation of
test trail and reference trail were switched each time a new y-
bridge was applied. We used at least 10 bridges with 100
tested ants in total for each concentration. In a few cases, ants
stopped foraging before reaching this number. In another few
cases, ants were foraging very actively so that we could test
more than 100 ants.
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Discrimination experiments

To test the ants’ ability to discriminate different pheromone
concentrations, we conducted bifurcation experiments similar
to those above. However, the reference trail was marked with
pheromone of constant concentration (1 base concentration)
instead of being unmarked.

Behavioral assay for memory

Prior to the experiments, ants had been deprived of food for
3 days to motivate them to forage. In a first step, ants were
conditioned to the left side of the y-bridge by offering food ad
libitum at the end of the left side bridge and allowing the ants
to forage for 60 min. To enhance the orientation, the left side
was lit with a microscopic fiber optic source. After about
20 min, the ants had discovered the food and established a
constant stream of foraging ants between the nest and the
food. The subsequent training phase lasted another 40 min,
so that most of the active foragers should have visited the food
source at least once. We conducted detection experiments 24 h
after the training phase. The environment of the test arena,
including the lighting, remained constant. As a control, we
tested untrained ants with the same behavioral assay. It is
possible that differences in the foraging strategies of the spe-
cies result in differences of how often individual ants visit the
food source. The bioassay measures the behavior at colony
level, not at individual level. However, since colonies were of
similar size (1500-2000 workers) and the ants were continu-
ously foraging, we do not expect great differences between the
species in individual visiting frequency.

With these experiments, we measured different combina-
tions of memory and pheromone treatments: The effect of
pheromone without memory was measured using untrained
ants (control). We refer to these measurements as pheromone
alone (P-alone). If pheromone was placed at the same side
that the ants had been conditioned to (left side), the test looked
at the combined effect of pheromone and positive condition-
ing. We refer to these treatments as pheromone plus memory
(P+M). If pheromone was placed at the opposite side (right
side), the test investigated the effect of pheromone contradic-
ting conditioning. We refer to these treatments as pheromone
versus memory (PvsM). Measurements of P+M and PvsM are
considered as simultaneous since the orientation of test trail
and reference trail were switched each time a new y-bridge
was applied. Therefore, effects of timing and order can be
excluded. To test the effect of memory in the absence of pher-
omone, we evaluated the response at concentration 0 bc. P+M
measurements tested the effect of positive conditioning with-
out pheromone. PvsM tested the effect of opposite condition-
ing without pheromone. Finally, P-alone represented the null
effect of neither pheromone nor memory. In this case, we
expected the ants to select either side by chance with equal
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probability and used this as additional control. Since ants
stopped foraging after a certain time, we used up to three
colonies for each treatment. The treatments of a single colony
always included all pheromone concentrations. For the treat-
ments of P+M and PvsM, the same colonies were used, while
for P-alone, the colonies were distinct.

Behavioral assay for motivation

To investigate the influence of motivation, we used ants of the
species E. procera and L. humile in detection experiment, as
described above. Since no method exists to measure the ants’
motivation directly, we used the following indirect method.
We assumed that by depriving ants of food for several days,
their motivation to forage would increase. Thus, we took the
time without fresh food as an indirect measure for the motiva-
tional state of the ants. Prior to the behavioral experiment,
L. humile was starved for 6 or 9 days by removing the food
supply of the laboratory colonies. E. procera was starved for 3
or 6 days. In preliminary experiments, these starvation periods
showed clear effects. As a control, the same experiments were
conducted with ants that had not been starved at all (0 days).
We ran an additional control in the absence of pheromone
(concentration 0 bc) whereby we expected that ants would
select either side with equal probability. To test the effect of
motivation on the ants’ ability to discriminate between two
pheromone sources, we performed a discrimination experi-
ment on E. procera only. For each species, we used the same
colony for all experiments. Please note that it is likely the ants
were not without food right from the time the food supply was
removed because an unknown amount of food was stored in
their crops. Thus, we do not know the exact time at which all
food supplies were completely exhausted and the ants began
to starve. However, our aim was to study a motivation effect
qualitatively, rather than quantitatively which would depend
on the exact starvation period (if this is possible at all).

Statistical methods and model fitting

As results of our experiments, we calculated the ants’ re-
sponses to different pheromone concentrations, fitted PFs to
the data and evaluated the parameters of the PFs. This was
done according to von Thienen et al. (2014). As statistical
software we used “R”, Version 2.14.2 (R Development Core
Team 2013). We estimated the probability of ants choosing the
test trail (response) and its 95 % confidence interval using the
function binom.confint() from the package binom (Dorai-Raj
2009) with the Wilson-method (Wilson 1927).

To test hypothesis 1, we compared the effect of
memory in the treatments P+M and P-alone for the
species L. humile and L. niger using a generalized lin-
ear model (GLM) to predict the responses of the ants.
The model included the numerical covariable pheromone
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concentration, the factors species (two levels: L. humile,
L. niger), training (two levels: trained and untrained)
and the interaction between species and training. A spe-
cies was considered as showing a significantly higher
effect of memory, if the GLM-estimate of the interaction
between species and training was positive and yielded a
p value below significance level («=0.05). We used the
R-functions glm() with the option
family="quasibinomial” and the default link function,
such that a logistic regression analysis was performed
(R Development Core Team 2013).

To test hypothesis 2, we pairwise compared the results
of the three treatments (P+M, PvsM, P-alone) for each
species. We applied a similar GLM as before including
the numerical covariable pheromone concentration and
the factor freatment for each comparison (two levels for
each comparison). A species was considered as showing a
significant memory effect if factor freatment showed a p
value below significance level in at least one of the com-
parisons (apg=0.0017, Bonferroni adjusted for three com-
parisons). The memory effect was considered to increase
the ants’ response to the pheromone if the GLM-estimate
of the treatment P+M was positive and the p value was
below the significance level (aw=0.05).

To test hypotheses 5 and 8, we applied a similar GLM
including the numerical covariable pheromone
concentration and the factor hunger (three levels: 0/6/
9 days for L. humile and 0/3/6 days for E. procera).
The effect of starvation was considered as significant if
the significance level for the factor hunger was below
the significance level (aw=0.05).

To compare the parameter values of the PFs (hypothe-
ses 3 and 4), we pairwise compared their confidence in-
tervals between the different treatments (P+M, PvsM and
P-alone). If they did not overlap, the PF parameter values
were considered as significantly different (ags=0.017,
Bonferroni adjusted for three comparisons). The confi-
dence intervals were evaluated by parametric bootstrap
with 1000 iterations. In a similar way, we compared the
parameters of the starvation treatments to the control (hy-
potheses 6 and 7) (aps=0.025, Bonferroni adjusted for
two comparisons).

To compare different treatments in the absence of phero-
mone (at 0 bc), we used a proportion tests with the R-function
prop.test() which is based on a x” test (R Development Core
Team 2013).

Statement concerning blindness of the study: The
counting of the ants had been done by two students who
did not know the hypotheses. The students knew the pher-
omone concentration, training, and/or starvation period of
the ants. Additionally, they knew that ants respond in a
probabilistic manner to pheromone trails of different con-
centrations in bifurcation experiments.

Results

Table 1 and Figs. 1, 2, and 3 show the results of the memory
experiments. Table 2 and Figs. 4, 5, and 6 show the results of
the motivation experiments. Table 3 shows a summary of the
comparisons of hypothetical and actual results.

Comparison of memory effect between L. niger
and L. humile

The generalized linear model gave a positive and significant
estimate for the interaction between training and the species
L. niger (Estimate=0.55, t=2.86, p=0.0045) showing that
the effect of visual memory in L. niger was significantly
higher than in L. humile. These results are consistent with
hypothesis 1.

Memory experiments—L. humile

1. Pairwise comparison of the three treatments by GLM
showed no significant difference (Fig. 1, Table 1). This
is not consistent with hypothesis 2.

2. The detection threshold of the PF was higher but not sig-
nificantly higher for P+M compared to P-alone. This is
not consistent with hypothesis 3.

3. The lapse rate was not significantly higher in PvsM com-
pared to P-alone which is not consistent with hypothesis
4a. The lapse rate in P+M was significantly lower which
is consistent with hypothesis 4b.

4. The response in the absence of pheromone at 0 bc for the
treatment P+M was not significantly different from 0.5,
showing no significant effect (»p =0.76, two-sided propor-
tion test, n=100). In contrast, the response for PvsM was
significantly lower than 0.5 (p=0.03, one-sided propor-
tion test, #=100). The response for P-alone at 0 bc was,
as expected, not significantly different from 0.5 (p=0.62,
two-sided proportion test, n=100).

Memory experiments — E. procera

1. The comparison of treatments P+M and PvsM as well as
the comparison between PvsM and P-alone showed sig-
nificant higher GLM-estimates which is consistent with
hypothesis 2 (Fig. 2, Table 1). The other comparison was
not significant.

2. The detection thresholds in P+M and P-alone showed no
significant differences, which is not consistent with hy-
pothesis 3.

3. The lapse rate of PvsM was significantly higher compared
to P-alone and the lapse rate of P+M was significantly
lower, which is consistent with hypothesis 4a and b.

@ Springer



398

Behav Ecol Sociobiol (2016) 70:393-407

Table 1 Memory experiments—

pairwise comparison of different Species Treatment Detection Lapse rate GLM
treatments threshold
Estimate t p
L. humile P+M 0.15-0.21-0.29 0.0-0.02-0.03 0.23 1.5 0.13
P-alone 0.11-0.15-0.2 0.08-0.10-0.12
PvsM 0.05-0.08-0.11 0.07-0.09-0.11 0.07 0.44 0.66
P-alone 0.11-0.15-0.2 0.08-0.10-0.12
P+M 0.15-0.21-0.29 0.0-0.02-0.03 0.16 12 0.25
PvsM 0.05-0.08-0.11 0.07-0.09-0.11
E. procera P+M 0.19-0.25-0.33 0.0-0.0-0.01 0.16 1.29 0.2
P-alone 0.14-0.2-0.28 0.04-0.06-0.08
PvsM 0.16-0.24-0.42 0.17-0.21-0.24 —-0.39 -3 0.003
P-alone 0.14-0.2-0.28 0.04-0.06-0.08
P+M 0.19-0.25-0.33 0.0-0.0-0.01 0.55 4.13 5.9e-5
PvsM 0.16-0.24-0.42 0.17-0.21-0.24
L. niger P+M 0.03-0.06-0.1 0.06-0.06-0.1 0.44 —4.14 4.1e-5
P-alone 0.1-0.15-0.27 0.1-0.14-0.16
PvsM 0.31-0.6-1.04 0.17-0.21-0.24 —0.62 —6.8 4.7e-11
P-alone 0.1-0.15-0.27 0.1-0.14-0.16
P+M 0.03-0.06-0.1 0.06-0.06-0.1 1.05 8.8 1.0e-15
PvsM 0.31-0.6-1.04 0.17-0.21-0.24
The ants were trained for 40 min to associate the left side with food 24 h before the experiment. Parameter values
are given with their confidence limits in italics, calculated by parametric bootstrap with 1000 iterations
(age=0.0017, Bonferroni adjusted for 3 comparisons). Parameter values are considered as significantly different
if their confidence intervals did not overlap. GLM gives the results (Estimate, t and p value) for the factor
treatment of a generalized linear model estimating the ants’ response by including the numerical covariable
pheromone concentration and the factor treatment with two levels. The upper treatment shows significantly
higher responses if Estimate is positive and p value is below significance level (apr=0.0017, Bonferroni adjusted
for 3 comparisons). Bolded results are significant. The 75 %-detection threshold is given in units relative to the
base concentration (bc), which is 0.0057 AE/cm for E. procera and L. niger and 30.8 pg/cm for L. humile
P+M pheromone plus memory, PvsM pheromone versus memory, P-alone pheromone alone
4. The response in the absence of pheromone at 0 be for the 4. The response in the absence of pheromone at 0 be for the

treatment P+ M was not significantly different from 0.5,
showing no significant effect of memory (p=0.76, two-
sided proportion test, 7=100). The same holds for PvsM
(»=0.76, two-sided proportion test, n=100). The re-
sponse for P-alone at 0 bc was, as expected, not signifi-
cantly different from 0.5 (p=0.76, two-sided proportion
test, n=100).

Memory experiments—L. niger

The comparison of treatment P+M to the other treatments
showed significantly higher GLM-estimates which is con-
sistent with hypothesis 2 (Fig. 3, Table 1).

The detection threshold in P+M was significantly lower
compared to P-alone, which is consistent with hypothesis
3.

The lapse rate of PvsM was significantly higher compared
to P-alone and the lapse rate of P+M was significantly
lower, which is consistent with hypothesis 4a and b.
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treatment P+M was not significantly different from 0.5,
showing no significant effect of memory (p=0.4, two-
sided proportion test, n=110). The response for PvsM
was lower than 0.5 but with significance level slightly
above 0.05 (p=0.076, one-sided proportion test,
n=110). The response for P-alone at 0 bc was, as expect-
ed, not significantly different from 0.5 (p=0.58, two-
sided proportion test, n=160).

Motivation experiments—L. humile

The treatments showed a significant effect in the GLM, which
is consistent with hypothesis 5 (Fig. 4, Table 2). The thresh-
olds after 6 and 9 days were significantly lower than the con-
trol, which is consistent with hypothesis 6. The results were
not consistent with hypothesis 7 since the lapse rates were not
significantly lower. As expected, the effect of the absence of
pheromone at 0 bc was not significant (0 days p=0.92, 6 days
p=0.92, 9 days p=1, two-sided proportion test, »=100).
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Fig. 1 Influence of memory in detection experiments with L. humile.
Results are presented for untrained ants as control (P-alone), trained
ants with pheromone placed on the side to which the ants had been
conditioned to (P+M) and trained ants with pheromone on the opposite
side (PvsM). The y-axis shows the probability (response) of ants taking
the test trail with the pheromone. The symbols (s, A, ©) represent the
results and the bars show the 95 %-confidence interval. For clarity
reasons, confidence intervals are only given for P+M, other Cls are of

Motivation experiments — E. procera

The treatments showed a significant effect in the GLM which
is consistent with hypothesis 5 (Fig. 5, Table 2). Consistently
with hypothesis 6, the threshold of the PF was significantly
lower after 6 days compared to the control. However, the lapse
rate was significantly higher, falsifying hypothesis 7. The
measurements after 3 days hunger showed no major differ-
ences from the control. As expected, the effect of the absence
of pheromone was not significant (0 days p=0.92, 3 days
p=0.92, 6 days p=0.76, two-sided proportion test).

E. procera was the only species in which we tested the
effect of starvation in discrimination experiments. The com-
parison between the treatments by GLM was significant
which is consistent with hypothesis 8 (Fig. 6, Table 2). The
difference was mainly caused by the high lapse rate of sated
ants (control) while the discrimination thresholds were not
significantly different. Since the pheromone stimuli at both
branches were equal at 1 bc, we expected the ants to respond
by chance with a probability of 0.5 for either branch after 0 as
well as after 6 days. This expectation was met when the re-
sponses were not significantly different from 0.5 (0 days
p=0.76, 6 days p=0.92, two-sided proportion test).

similar magnitude. The x-axis shows the pheromone concentration on the
test trail with synthetic (Z)-9-hexadecenal measured in base
concentrations (1 bc=30.8 pg/cm) on a logy-scale. The reference trail
carried no pheromone. The symbols at the bottom indicate the 75 %-
detection thresholds. Lines show fitted PFs. Number of measurements
for each treatment at each concentration=10 (each measurement
represents 10 binomial ant decisions)

Discussion

Memory and motivation showed clear effects on the col-
lective pheromone guided behavior of the ant species we
investigated. These effects are reflected in the parameters
of the psychometric function and show that memory and
motivation modulate the process by which the perception
of trail pheromones is transformed into behavior. The ef-
fects differ between the species and reflect different eco-
logical needs. Of all three species under investigation,
L. niger showed the strongest effects of memory. Their
response to trail pheromone of various concentration was
clearly enhanced, the detection threshold was much lower
and the lapse rate sank. L. humile, on the other hand,
showed only small effects of memory. The responses to
the trail pheromone showed no significant differences.
Only the lapse rate of P+M was significantly lower com-
pared to P-alone. Comparing the results between L. niger
and L. humile with a generalized linear model showed that
the effect of memory is significantly greater in L. niger
than in L. humile. This is consistent with our first hypoth-
esis that memory has a lower effect on the response to
trail pheromones in a species that mainly depends on
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Fig. 2 Influence of memory in
detection experiments with

E. procera. The x-axis shows the
pheromone concentration on the
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collective information compared to one that uses private
information as well. E. procera is positioned somewhere
between the other two species. The ants showed a signif-
icant effect of memory, but only when memory and
pheromone gave contradictory information. This
manifested in a much lower lapse rate while the
detection thresholds showed no significant differences. As
we have stated, there are no studies on the extent of the

T T T T T T T T T T T T T T T

0.002 0.0078 0.0312 0.125 05 1 2 4 8 16 32

concentration (bc)

use of collective and private information for E. procera.
For this reason, we could not rank them like Aron et al.
(1993) did for L. humile and L. niger. At this point, it is
important to mention that Aron et al. (1993) did not give
an exact quantitative definition of collectiveness relating it
instead to factors like colony size, short- or long-lived
food sources or emigration strategies. Other information
sources besides pheromones and vision that the ants might
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Table 2 Motivation
experiments—pairwise Species/experiment ~ Hunger  threshold Lapse rate GLM
comparison of different ]
treatments Estimate  t p
L. humile 0 days 0.06-0.08-0.11 0.0-0.01-0.02 0.042 2.02  0.043
detection 6 days 0.03-0.04-0.05  0.04-0.05-0.06
9 days 0.01-0.02-0.02 0.0-0.01-0.02
E. procera 0 days 1.34-1.65-1.95 0.0-0.0-0.003 0.058 236 0.02
detection 3 days 0.98-1.19-1.42 0.0-0.003-0.012
6 days 0.33-0.4-0.48 0.048-0.065-0.086
E. procera 0 days 1.65-2.0-7.0 0.41-0.42-0.44 —0.05 2.6 0.009
discriminxation 6 days 1.66-19-2.4 0.23-0.25-0.26

Threshold gives the 75 %-detection threshold or the 75 %-discrimination threshold, respectively. Parameter
values are given with their confidence limits in italics, calculated by parametric bootstrap with 1000 iterations
(for detection ag=0.025, Bonferroni adjusted for 2 comparisons, for discrimination o = 0.05). Parameter values
are considered as significantly different if their confidence intervals did not overlap. The comparison is made
between x-days hunger and 0 days hunger. GLM gives the results (Estimate, t, and p value) for the factor hunger
of a generalized linear model estimating the ants’ response by including the numerical covariable pheromone
concentration and the factor hunger with three levels. The treatment shows significantly higher responses if
Estimate is positive and p value is below significance level (ov=0.05). Bolded results are significant. The 75 %-
detection threshold is given in units relative to the base concentration (bc), which is 0.0057 AE/cm for E. procera
and 30.8 pg/cm for L. humile. The 75 %-discrimination threshold is dimensionless

use, like sensorimotor orientation, had not been consid-
ered. We know that E. procera depends on a high degree
on pheromone-based communication (von Thienen et al.
2014) and we know from many field and laboratory

observations that E. procera ants are very sensitive to
visual stimuli despite their nocturnal activity pattern.
Thus, it is reasonable to assume that they incorporate vi-
sual information into their trail-following behavior ranking
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Fig. 4 Influence of motivation in detection experiments with L. humile.
Results are presented for ants that had been without food for 0 (control), 6
and 9 days. The symbols (», A, O) show the probability (response) that
ants take the test trail carrying the pheromone and the bars show the
95 %-confidence interval. For clarity reasons, confidence intervals are
only given for the control, other Cls are of similar magnitude. The x-axis

shows the pheromone concentration on the test trail with synthetic (2)-9-
hexadecenal measured in base concentrations (1 bc=30.8 pg/cm) on a
log,-scale. The reference trail carried no pheromone. The symbols at the
bottom indicate the 75 %-detection thresholds, while /ines show the fitted
PFs. Number of measurements at each concentration= 10 (each measure-
ment represents 10 binomial ant decisions)
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them between L. niger and L. humile. Further research is
necessary to find a consistent definition and method to
measure the degree of collectiveness in ant species.
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Parameters of the PF like lapse rate and detection/
discrimination threshold might be important aspects in
such a method.
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Fig. 6 Influence of motivation in discrimination experiments with
E. procera. Results are presented for ants that had been without food
for 0 (control) and 6 days. The x-axis shows the ratio of pheromone
concentrations between test and reference trail on a log,-scale. The
reference trail had a constant concentration of 1 base concentration of
rectum extract (1 bc=0.0057 AE/cm). The test trail had varying
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concentrations measured in proportions of bc. The symbols at the
bottom indicate the 75 %-discrimination thresholds. Number of
measurements at each concentration= 10 (except at concentration ratio
0 at 0 days: 9, and concentration ratio 0 at 6 days: 20), each measurement
represents 10 binomial ant decisions. For further explanations, please
refer to Fig. 4
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Table 3  Comparison of hypothetical and actual results

Hypothesis

Testing method (see also statistics section)

1. The effects of memory are lower in a species that mainly
depends on collective information (L. humile) compared to a
species that uses private information as well (L. niger)

L. humile
2. Memory changes the response to the pheromone No
3. Memory lowers the detection threshold No
4. (a) Contradictory information leads to a higher lapse rate No
(b) Congruent information leads to a lower lapse rate Yes
5. Starvation changes the response to the pheromone Yes
6. Starvation lowers the detection threshold Yes
7. Starvation lowers the lapse rate No
8. Starvation changes the discrimination response N/A 2

Yes GLM with the covariable pheromone
concentration and the factors training
and species

E. procera L. niger

Yes Yes GLM with the covariable pheromone

concentration and the factor treatment

No Yes Comparison of the confidence intervals of
the detection thresholds of P+M and
P-alone.

Yes Yes Comparison of the confidence intervals of

Yes Yes the lapse rates of (a) P+M and P-alone,

(b) PvsM and P-alone

Yes N/A'! GLM with the covariable pheromone
concentration and the factor hunger

Yes N/A'! Comparison of the confidence intervals of
the detection thresholds

No N/A ! Comparison of the confidence intervals of
the lapse rates

Yes N/A 2 GLM with the covariable pheromone

concentration and the factor hunger

Yes indicates that the results are consistent with the hypothesis, No if not

P+ M pheromone plus memory, PvsM pheromone versus memory, P-alone pheromone alone

(1) Motivation was not tested in L. niger

(2) Discrimination experiments for motivation were done with E. procera only

In motivation experiments, the two species under investi-
gation, L. humile and E. procera, showed similar results. The
responses to the pheromone were significantly enhanced by
starvation in both species. The detection thresholds were sig-
nificantly lower after the longest starvation period. However,
they were lower, but not significantly, at the medium starva-
tion period. These results show that the effect of starvation
increased with the starvation period in both species.

Looking separately at the results of each species, we find
that the GLM-analysis of the memory experiments with
L. humile showed no significant effect on the pheromone re-
sponse after 24 h. In contrast, the analysis of the PF-
parameters showed subtle details. The lapse rate was signifi-
cantly lower in the P+M treatment compared to P-alone. In
the opposite case, where both information sources were con-
tradictory, the lapse rates did not differ significantly. We ex-
plain this asymmetry by collective information being much
more important than private information to L. humile ants. In
case of congruent information, visual memory helps reducing
the uncertainty while alone, the effect of private information is
too weak to increase the uncertainty. The detection threshold
in P+M compared to P-alone was not significantly different,
but in PvsM it was significantly lower compared to P-alone.
The fact that we detected no differences in the responses by
GLM-analysis is consistent with the results of Aron et al.
(1993) showing only small effects of memory. However, they

found that visual orientation decreased with rising pheromone
concentration and visual orientation was used when no pher-
omone based information was available. We could not repro-
duce these effects. We assume that in our experiments, the
memory decayed after 24 h and did not show similar strong
effects like in Aron et al. (1993). In their experiments, the ants
had been tested immediately after the training. Memory
decaying effects are well known in different insect species,
for instance honeybees (Hammer and Menzel 1995), butter-
flies (Rodrigues and Weiss 2012), and ants (Johnson 1991).
In motivation experiments, L. humile showed clear effects
after 9 days of food deprivation. The GLM-analysis of the
responses showed significantly higher values and the
detection threshold was significantly lower. The PF after
6 days laid more or less between the control and the PF after
9 days, showing that motivation increased with the duration of
the starvation period. The lapse rate after 6 and 9 days gave
somewhat contradicting results. After 6 days, the lapse rate
was significantly higher compared to the control, contrasting
hypothesis 7, however, not different from the control after
9 days. Mailleux et al. (2011) had shown that a fraction of
starved ants gather around the nest entrance. They proposed
that the ants have a lower response threshold. In a similar way,
we hypothesize that a fraction of the starved ants (for instance
specialized scouts) have a higher lapse rate. They more or less
ignore pheromone trails and explore the outside for new food
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sources if the colony is starving. It can be speculated that at a
higher level of starvation, even these ants follow the phero-
mone trail to get food as fast as possible using all available
workers, which would explain the low lapse rate after 9 days
of starvation. In this way, the colony follows two different
strategies to get food if they are starving. One is to follow a
pheromone trail which leads to a recently discovered food
source, while the other is to explore new food sources.
Depending on the environment and the state of hunger, ants
could be able to find an optimum between these two strategies
by adapting the response thresholds and lapse rates of special-
ized workers. However, this hypothesis is speculative and
needs to be investigated more deeply through experiment.

E. procera showed no memory effect after 24 h in the
absence of pheromone (at 0 bc). The GLM-analysis of the
responses showed no significant difference between P+M
and P-alone. This shows that there is no or only a very weak
orientation enhancing effect of route memory. E. procera is
nocturnal so that visual orientation is of little use to the ants in
the rain forest at night (Witte and Maschwitz 2008; von
Beeren et al. 2014). This explains why route memory did
not enhance their orientation. The detection threshold did
not change significantly, which we again attribute to the ants
being nocturnal. In strong contrast to these findings, the dif-
ference between the responses in PvsM and P-alone were
significant. We attribute this mainly to an increased error rate
since the lapse rates were different. This shows that the con-
ditioned stimulus increased the error rate when information
was contradictory. In the opposite case, the lapse rate was
lower, showing that the uncertainty gets lower if two congru-
ent information sources are available. We consider it as an
important result of our experiments that, although a positive
effect on the responses was not detectable by the GLM-
analysis after 24 h, the memory effect still exists and alters
the error rate of the ants.

The motivation experiments with E. procera showed clear
differences from the control after 6 days without fresh food.
The threshold of the fitted PF was lower compared to the
control and motivation increased the ants’ response to the trail
pheromone. In contradiction to hypothesis 7, the lapse rate
was increased. Similar to L. humilis, we explain this by an
increased tendency to ignore established trails and explore
new food sources by a fraction of the hungry ants. However,
since we have only few measurements in the region of the
upper asymptote, this result should be interpreted with cau-
tion. The responses after 3 days showed a lower detection
threshold compared to the control but the difference was not
significant. The lapse rates were similar. We assume that the
ants had stored parts of the food in their crops and pieces of
mushrooms in their nest and were not starving yet. The results
of the discrimination experiment with E. procera showed a
strong effect after 6 days without fresh food. Interestingly, the
detection thresholds were nearly identical and the great
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differences in the PFs manifested in the differences between
the lapse rates. This shows that only a small fraction of sated
ants respond to pheromone differences while the majority of
ants ignore them. However, those ants that respond to the
pheromone differences do so in the same way as hungry ants
with a nearly identical discrimination threshold. The discrim-
ination threshold is regarded as a measure of the ants’ ability
to distinguish different pheromone concentrations which is
very important for the ants to act collectively (von Thienen
etal. 2014). It seems to be invariant to the motivational state of
the ants. We see that the lapse rate is very high in discrimina-
tion experiments compared to that of detection experiments. A
possible explanation is that a low error rate in the detection of
trail pheromone is important for the ants regardless of hunger,
since it enables them to stay on the pheromone trail (trail
fidelity) or to detect a trail if they are lost or leaving the nest.
This is especially important in the rainforest at night, where no
visual cues are available. Thus, the lapse rate in detection
experiments was low, regardless of satiation. On the other
hand, a low lapse rate in the discrimination of trails of different
pheromone concentration might be important for the ants to
distinguish between food sources of different profitability. It is
known that L. niger encodes food quality (sugar content and
volume) in pheromone amounts (Beckers et al. 1992;
Mailleux et al. 2000). Although empirical evidence is missing,
it is reasonable to assume the same for E. procera. Our results
imply that hungry ants have a higher tendency to follow the
trail leading to the food source of higher quality than sated
ants. Thus, hungry ants provide the colony with high quality
food and reduce the state of hunger as fast as possible, while
sated ants tend to exploit food supplies in the vicinity of the
nest with little consideration for food quality.

As expected, L. niger showed the clearest effects of route
memory of all three species. The ants’ response to phero-
mone in combination with the conditioned stimulus was
significantly higher than the response to pheromone alone.
However, in the absence of pheromone at concentration 0
be, the memory effect was not significant. As in E. procera,
this shows again that, although memory alone has no signif-
icant effect after 24 h, it still has a strong effect in combi-
nation with pheromone. The detection threshold was 2.5
times lower, showing that the ants’ sensitivity to the trail
pheromone was increased by memory. Like in E. procera,
the lapse rates were different between the treatments show-
ing that the error rate decreases if two independent informa-
tion sources provide congruent information. Evison et al.
(2008) found a similar amplification effect on the phero-
mone response in L. niger. In the presence of memory, the
longevity of pheromone trails, measured indirectly via the
response to pheromone, was 20 h compared to a mean life-
time of 47 min found by Beckers et al. (1993) in experi-
ments with no memory effect. As in our results, this shows
that memory enhances the response to trail pheromones.
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Like in L. humile, we found some evidence for decaying
memory in L. niger. Aron et al. (1993) as well as Griiter et al.
(2011), had shown that memory did not change the response
to trail pheromone at different concentration levels for
L. niger. In our experiments, we found that memory clearly
increases the responses to trail pheromones at different con-
centration levels. We explain this discrepancy by a time-
dependent decay in memory. In the experiments of Aron et
al. (1993) and Griiter et al. (2011), the ants had been tested
immediately after training. Thus, the ants’ response was prob-
ably at its maximum and a higher concentration of pheromone
did not increase the response. In terms of the PF, the response
was at a level in the range of the upper asymptote, so a further
increase in pheromone concentration did not lead to a stronger
response. In our experiments, we measured a long term mem-
ory effect after 24 h and the memory was probably already
decayed. Therefore, the concentration dependent nature of the
ants’ response was not masked by a strong memory effect in
our experiments. In terms of the PF, the response was at a
medium range between lower and upper asymptote in which
the function shows a clear pheromone-dependent effect. It is
important to note at this point that only by using psychophys-
ical methods and investigating a series of suited pheromone
concentrations, did the long-term memory effects become ev-
ident in subtle details. We want to point out that our evidence
for decaying memory is based on the comparison of experi-
ments using different colonies and bioassays. Thus, there
might be other explanations for the discrepancies in the exper-
imental outcome. Future research may clarify this point by
measuring the PF immediately after training and after defined
time intervals.

There are good reasons why psychophysical theory can be
successfully applied to the collective trail-following behavior
of ants. In many cases, behavior is a reaction to physical stim-
uli occurring in the environment. Stimuli are perceived by the
sensory organs of the animal, processed by its’ nervous sys-
tem and finally, translated into behavior. Psychophysical the-
ory was developed to understand this process and within its’
context, important laws like Weber’s law have been found and
mathematical models have been developed to describe the
relationship between stimulus, perception and behavior. By
using psychophysical methods to investigate trail following
in ants, an established model of perception was applied to
explain important aspects of collective ant behavior (von
Thienen et al. 2014; von Thienen et al. 2015). The results of
the experiments presented in this study add further aspects to
this approach. They show that the inner state of the ants (mem-
ory and motivation) modulates the process by which stimuli
are translated into behavior. This modulation is shown in the
shape and parameters of the PF, which reveal important bio-
logical information. Our findings may lead to the development
of new or improved models of ant behavior, for instance to
explain their collective choice between food sources of

different quality depending on the level of starvation. Our
results could also allow a better understanding of the ability
of ants to find the shortest of different routes of varying com-
plexity if visual learning and pheromones are combined. As
discussed before, the results presented here may also lead to a
consistent and quantitative definition of collectiveness in ant
behavior by incorporating parameters of the PF into such a
definition. Trail-pheromone following behavior can be con-
sidered as social learning (Franks and Sendova-Franks 2013).
Thus, our approach may also be important for understanding
what strategies animals, especially social insects, follow in
their use of private and social learning (Laland 2004). While
all three species studied use both learning types, they do so to
a different extent due to their ecological requirements. Laland
(2004) assumed that Hamilton’s rule (Hamilton 1964) could
apply to social learning and higher relatedness leads to in-
creased social learning, because the benefits of information
shared with relatives outweighs the costs to the individual.
Our results show the opposite. L. niger shows a higher relat-
edness but a lower use of social learning, compared to
L. humile (L. niger colonies are monogynous while L. humile
colonies are polygynous (Seifert 2007)).

Psychophysics may be an appropriate tool for investi-
gation whenever collective behavior is based on a com-
munication process that transmits information about grad-
ually different environmental states through a signal of
varying intensity. This approach may even apply to other
forms of collective behavior. For instance the swarming
behavior of fish or birds has been explained by models
in which distance to other individuals or the radius around
an individual are key parameters (Reynolds 1987;
Hildenbrandt et al. 2010; Hemelrijk and Hildenbrandt
2011). But how is distance or radius measured by an
individual? So far, models have not incorporated a concept
of perception of radius and distance, instead making as-
sumptions that the individual has an exact knowledge of
these parameters. However, we know from human exam-
ples that perception of distance and shape is not exact and
follows psychophysical laws (Baird 1970). The same holds
for the estimation of the size of cubes by chicken, which
also follow a PF (Sarris 2006). Thus, the incorporation of
a psychophysical theory of perception of distance and ra-
dius could also improve the swarm models of birds and
fish by providing a more sophisticated explanation of the
variable shape of swarms. Our findings may also be of
great interest to computer scientists developing algorithms
in the field of ant colony optimization (ACO). Such algo-
rithms may be improved by incorporating parameters that
modulate the response to the signal used by the algorithm.
For instance, an algorithm that calculates transport routes
or landing priorities at airports may use the concept of
starvation to give target points or vehicles a higher priority
improving efficiency.
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Appendix

Introduction into psychophysical methods used by von
Thienen et al. (2014)

In psychophysics, a psychometric function (PF) describes the relationship
between the probability of a positive response p to a stimulus and the
stimulus strength x

p(x) =7+ (1=A=)-F(x).

x—stimulus strength, A—guess rate, v—Ilapse rate, F(x)—function
describing the probability to detect a stimulus by the underlying sensory
mechanism (Kingdom and Prins 2010 p. 74). For F(x) a probability dis-
tribution like the Weibull distribution is applied. For mathematical details,
please refer to von Thienen et al. (2014).

von Thienen et al. (2014) used the PF to provide a mathematical
description for the response of ants to trail pheromones of varying con-
centrations. They performed two types of psychophysical experiments:
Detection experiments and discrimination experiments. The detection ex-
periments measured the ability to detect a trail pheromone of varying
intensity against a null stimulus or noise. Discrimination experiments
measured the ants’ ability to discriminate a trail pheromone of varying
concentration from a reference trail pheromone of constant concentration.
Both types are of specific biological importance for understanding the
collective behavior of ants. Detection is the ants’ ability to detect a pher-
omone trail and become attracted to it. It is important, for instance, to
describe how ants at the nest entrance respond to a trail that leads out of
the nest to a food source. Discrimination is the ability to differentiate
pheromone concentrations at a trail bifurcation. This is especially impor-
tant in situations where ants have to collectively find the better of two
alternate solutions, for instance food of different quality. PFs are S-shaped
curves providing a probability of response, theoretically ranging from 0.5
to 1 in detection experiments and from 0 to 1 in discrimination experi-
ments. The stimuli were presented as trail pheromone of varying concen-
trations on one of the two branches of a y-shaped bridge. Parameters of
the PF are the /apse rate (the distance between upper asymptote and 1)
and the 75 %-detection/discrimination threshold. von Thienen et al.
(2014) interpreted the lapse rate biologically in two ways: as a measure
for the errors that ants make and as a measure for the independence from
pheromone guided behavior. It might be important for ants not to get
stuck in suboptimal solutions and explore alternate solutions. The thresh-
olds are standardized measures of the ants’ ability to detect a stimulus or
to discriminate between two stimuli, respectively. von Thienen et al.
(2014) had shown that differences between the PFs of the three species
(L. humile, E. procera, and L. niger) can be attributed to specific adapta-
tions to their environment. L. humile ants coordinate the work of extreme-
ly large and interconnected colonies (Holway and Case 2000; Giraud
et al. 2002). They depend on persistent as well as short-lived food sup-
plies (Mallis 1942; Suarez et al. 1998). Thus, they depend highly on
collective information and must be able to communicate even the smallest
changes in their environment. This reflects in a low lapse rate and a low
detection threshold. L. niger, on the other hand, has comparably small
colony sizes and uses persistent as well as short-lived food sources
(Seifert 2007). Thus, collective information is less important compared
to L. humile while individual information plays an important part. This
reflects in a higher lapse rate and a high detection threshold. E. procera is
positioned between these two extremes. Their colonies are also much

@ Springer

smaller than those of L. humile. Furthermore, the ants are nocturnal so
that visual cues are rare (Witte and Maschwitz 2008; von Beeren et al.
2014). Consequently, they depend more on collective information and
show a high trail fidelity, which reflects in the lowest lapse rate of all
three species. Since their food sources are much more stable compared to
the other two species, they do not have to share as much information and
consequently have a comparatively high detection threshold.
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General discussion and outlook

Overview

The results presented in this dissertation show that psychophysical theory is a well suited tool
for investigating collective ant behavior. It enables us to look more comprehensively than
before into some of the processes of collective decision making and behavior in ants and find
new aspects of this behavior. Psychophysical theory is able to mathematically describe the
relationship between pheromone concentration and behavioral response of ants to trail
pheromones. For the first time, a theory of perception that was originally established by
Weber and Fechner to understand sensory processes in humans, could be applied to the
collective, self-organizing behavior of eusocial insects. By integrating psychophysical theory
into the Deneubourg model, it is possible to considerably improve this model and find new
biological important aspects of collective ant behavior. In this chapter, our main findings will
be discussed in the light of the aim presented in the general introduction. Finally, we include

an outlook on some approaches for further research.

Psychophysical theory as a framework to describe collective behavioral responses

of ants to trail pheromones

To accomplish the first three tasks outlined in the general introduction, detailed
measurements of ant responses had been done in discrimination as well as detection
experiments over a broad range of pheromone concentrations for all three species (chapter
1). To our knowledge, this had never been done before in such detail. For instance, the works
of Hangartner (1969), Van Vorhis Key (1982) and Choe et al. (2012) focused either on
discrimination tasks or detection tasks. They measured only up to six pheromone
concentrations, without knowing whether these concentrations matched natural conditions.
Particularly low and high concentrations were not studied, which are presumably important in
models of self-organization.

DCF and PF fitted well to the data of the measured dose-response relationship between
pheromone concentration and ant response (chapter 1). This shows that both models are able
to describe the collective response of ants to trail pheromones in the three species under
investigation. However, the PF has some advantages over the DCF. The parameters of the DCF

were originally not deduced experimentally but were set in such a way that the shortest path
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experiments could be explained satisfactorily. In strong contrast, the parameter values that
had been deduced from our measurements presented in chapter 1 were quite different. In
addition, the Deneubourg model was not based on a theory of perception and a biological
interpretation of its parameters was not given (see general introduction). The PF overcomes
these limitations. It fitted to the data at least as well the DCF with parameter values deduced
from experiment. Under the additional assumption of pheromone modulation, the PF was
closer to the experimental results of the shortest path experiments than the DCF. Since the PF
is based on an established theory of perception, it opens the possibility of linking the
collective behavior of ants to the neurological processes of stimulus perception and response
in ants (see below). The parameters of the PF can be interpreted in a consistent biological
manner and reveal deeper insights into the behavior of ants. The measurement of the dose-
response relationship presented in chapter 1 included the responses to constant
concentration ratios at different levels of pheromone concentration. Thus, it could be shown
for the first time that Weber’s law, a fundamental law of neurophysiology and psychophysics
(see Box 2), is fulfilled by the collective responses of the ants in all three species. Considering
these findings, the main conclusion of this dissertation is to modify the Deneubourg model by
exchanging the Deneubourg choice function with the psychometric function.

In the following paragraph we will discuss the biological interpretation of the parameters of
the PF and characteristic differences of the parameter values for the three species under
investigation. The discrimination threshold is a measure for the ant’s ability to discriminate
between trails of different pheromone concentrations. Collective behavior of ants, such as the
selection of high quality food sources (Beckers et al. 1993), greatly depends on information
encoded in concentration ratios of the trail pheromones. Thus, the discrimination threshold
can be interpreted as a measure for the ants’ ability to act collectively. In addition, the ability
to discriminate different pheromone concentrations is an important feature for ants to sense
gradients of pheromone concentration left and right from their antennae. It allows them to
stay on a pheromone trail and follow it (Hangartner 1967). In this way, the discrimination
threshold can be taken as a measure for trail fidelity, which again, is important for collective
behavior.

The detection threshold is the ability of ants to detect pheromones in their environment.
Whenever a change in the ants’ behavior depends on reaching a pheromone threshold, this

parameter is important. For instance, it was proposed that division of labor within the ant
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colony can be explained by different response thresholds of specialized workers (Bonabeau et
al. 1996). Mailleux et al. (2011) showed that ants of starving colonies gathering around the
nest entrance show an increased tendency to leave the nest compared to ants deeper inside
the nest. It was assumed that these ants have a lower response threshold to the recruitment
signals (trail pheromone and/or tactile signals) and thus show a higher tendency to leave the
nest and forage.

By relating the detection threshold to the amount of pheromone an ant carries, it is
possible to define the information capacity as another biologically important parameter
(chapter 1). It represents the total length of a trail an ant is able to mark with pheromone
quantities that are detectable by other ants of the same species. It is inversely proportional to
the detection threshold. Ants with a high information capacity can deposit more information
units in their environment and thus change the behavior of the colony to a greater extent
compared to ants with a lower information capacity. In this way, the information capacity
defines the ability of individual ants to change the collective behavior of the colony. This
parameter is independent from absolute pheromone concentrations which is a great
advantage since, for most ant species, we are not able to measure absolute pheromone
concentrations that make up the pheromone trails. This is due to the low pheromone
amounts ants use and our lack of knowledge of exact chemical compositions of the
pheromone trails. The information capacity overcomes these difficulties and gives us
important new biological facts about the species under investigation that were not available
so far.

The lapse rate defines the errors ants make in following a pheromone trail. Thus, it can be
taken as a measure for the trail fidelity: the lower the lapse rate, the better ants follow and
stay on a pheromone trail. On the other hand, a high lapse rate may help ants to keep flexible,
explore new solutions and adapt to changing environments. If a certain percentage of ants
ignore or leave the pheromone trails, there will always be a chance for them to discover
unexplored terrain, discover new food sources, better homes and potential dangerous
enemies.

The three species under investigation show considerable differences in these parameters,
which can be explained by the different ecological needs of the three species (chapter 1). L.
humile is highly collective orientated and thus depends to a great extent on collective

information (Aron et al. 1993). This is consistent with high discrimination abilities (low
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discrimination threshold), a high information capacity and a low lapse rate. Due to these
abilities, the ants are able to communicate slight changes in the available food supply and
react to it. They are also able to maintain long lasting trails to stable food sources. This fits
well to their ecological needs. They are dietary generalists and they use stable and persistent
food sources, like honeydew, but also distributed and short lived food sources, like insects,
seeds or carrion (see Mallis 1942; Suarez et al. 1998).

Compared to L. humile, L. niger depends less on collective information instead using optical
orientation and visual memory to a great extent besides trail pheromones (Aron et al. 1993;
Evison et al. 2008; Czaczkes et al. 2011; Gruter et al. 2011). Therefore, this species needs
comparatively low discrimination abilities (high discrimination threshold) and a low
information capacity although they feed on insects which represent a short lived and locally
unstable food source (Seifert 2007). In addition, visual memory enables them to maintain
long-lasting trails to trophobiosis sites, where they collect honeydew (Seifert 2007) despite
their high lapse rate. On the other hand, a high lapse rate can be a great advantage, since the
ants are not bound to the pheromone trails as sole medium of orientation, giving them a
chance to find unpredictable food sources, like insects, and flexibly react to changes in their
environment.

E. procera is positioned between the other two species in terms of collectivity. Compared to
L. humile, it shows a similar discrimination threshold but a much lower information capacity. It
is even five times lower than that of L. niger. The lapse rate, compared to L. humile is much
higher but only half the lapse rate of L. niger. This can be explained by the specific ecological
needs of this ant species. The ants are nocturnal and maintain stable trails to mushroom sites
which are their main food supply and they follow these trails with high trail fidelity (Witte and
Maschwitz 2008; von Beeren et al. 2014). The mushroom sites get exhausted after some days
and are abandoned by the ants. However, after a few days the mushrooms regrow and the
ants reactivate the trails, probably orienting on a long living component of the pheromone
trail. Since they have no other means of orientation in the dark rain forest at night, the low
discrimination threshold allows them to stay on their pheromone trails without optical aid.
Although food sources are periodically changing, they are long lasting and many ants are
active in maintaining stable trails leading towards them. Thus, the ants need only a very low

information capacity.
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Test of the models

Task 4 and 5 of this dissertation were to test the Deneubourg model as well as the new
model, which is based on psychophysical theory. This was done by simulating the shortest
path experiments by computer simulation to compare how accurate both models are able to
reproduce the experimental results (chapter 2). In contrast to the original experiments and
computer simulations of Goss et al. (1989) and Deneubourg et al. (1990), the parameter
values of the choice functions were not set in such a way that gave the best fit to the shortest
path experiments, but were deduced from actual measurements (see chapter 1). The
simulations showed that neither the Deneubourg model nor the new model with the PF were
able to satisfactorily explain the experimental results. The models were able to explain the
general outcome i.e. the collective selection of the shortest path and symmetry breaking, but
were not able to exactly reproduce the frequency with which the shortest path was selected.
By incorporating the fact that the ants deposit more pheromone when returning to the nest
(Aron et al. 1989) and making the hypothetical assumption that ants show a higher
responsiveness in the beginning of the recruitment, the new model with the PF was able to
fully reproduce the original experimental results of the shortest path experiments. This was
not possible with the original Deneubourg model. These results show that although the
Deneubourg model revealed some fundamental aspects of collective ant behavior by
simulating ant behavior in a computer, real ants are far better in finding an optimal solution to
the shortest path problem than virtual ants. Thus ants must use alternative or additional
means to find solutions to the shortest path problem. Further experiments are needed to test
if pheromone modulation and/or higher responsiveness are the source of the difference.
Since the DCF and arbitrary parameter values had been used to explain other types of
collective ant behavior (see “Summary”), these explanations should also be revised by further

research in the light of the new findings presented here.

Collective vs. individual PF

Holldobler and Wilson proposed that the collective behavior of ants is determined by a few
and simple genetically determined social algorithms that individual ants follow (Holldobler
and Wilson 2009, pp. 53-58). Following this concept, we may ask how the algorithm that
determines the response of individual ants to different pheromone concentrations is

structured, and how it determines the collective behavior of the colony.
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The experiments presented in chapter 1 measured the behavioral response of a collective
of ants, not that of individual ants. It is remarkable that a theory, designed for the behavior of
individuals, is able to describe the behavior of a collective consisting of several hundreds or
thousands of individuals. The ant colony seems to respond to external signals like an
individual, showing that it performs like an superorganism, as Holldobler and Wilson (2009)
proposed. This leads to the question of how far the PF of the collective is determined by the
response of the individual ants to the pheromone, what the underlying neurophysiological
processes are and how similar collective and individual PFs are. The individual workers of an
ant colony are closely related sisters that share the same or only a few mothers (depending on
whether they are polygynous or monogynous) and a few fathers. Thus, it is reasonable to
assume that their genetically determined individual response to the trail pheromone is
similar. In this case, the collective PF should be a good approximation of the average
individual PF. However, this is only a conjecture and we do not know the variability of PF
parameters between individual ants. We presently know of no experiments in which the
individual behavioral dose-response relationship of individual ants was measured. It is
guestionable whether this is possible at all, since such an experiment needs repeated
measurements at different concentration levels under constant conditions on individual ants.
This is probably not possible since individual ants cannot be induced to respond to ca. 100
bifurcation choices without drastically influencing their behavior during the experiment. A
possible approach to overcome these difficulties may be to directly measure the
neurophysiological response of the olfactorial receptors like it has been done with silk moths
(Kaissling 1970; Kaissling and Priesner 1970; Kaissling 2014), deduce a neurophysiological
dose-response curve and fit a PF to these data. Presently we have no data of the underlying
neurophysiological processes in ants and we do not know the relationship between
neurophysiological responses and behavioral response. We can measure the stimulus strength
as well as the behavioral response, but know nothing of what happens in between. However,
there are data available from other animals. For instance, we know from experiments with
monkeys that the PF, describing the behavioral response of individual monkeys to motion
signals, highly correlates to the PF that describes cortical neuron response to the same motion
signals (Britten et al. 1992). The authors concluded that “the psychophysical decisions [..]
were based upon a relatively small number of neural signals.” Behavioral and

neurophysiological experiments with the silkmoth Bombyx mori and the pheromone



General discussion and outlook 64

bombykol indicate a relationship between stimulus strength, neuron response and behavior.
The dose-response relationship follows an S-shaped curve which the authors of the study
explained by the probability distribution of pheromone molecules docking to the receptors at
the antennal hairs (Kaissling and Priesner 1970). Thus, we have good reasons to assume that
the specific shape of the PF might be the result of the stochastic process of pheromone
molecules docking at the receptor cells of the ant’s antennal hairs. However, our results show
great differences between the three species we investigated, which indicates that additional,
species specific factors influence the parameter values of the PF. These factors may be found
in species specific differences of the kinetics and structure of the pheromone-receptor
complex, the anatomy of the antennal hairs and the distribution of receptor cells on its
surface and/or in the neurophysiological processing of the stimulus. Besides species specific
differences in signal processing, our experiments with memory and motivation showed that
the inner state of the ants modulates this process to a great extent (see chapter 3). Again, we
do not know the factors that determine this modulation. It may be caused by changes in the
pheromone-receptor complex, structure and exposition of the antennal hairs and/or in the
neurophysiological processing. In the discussion of chapter 3 we have also indicated that
there might be differences in the parameters of the PF between different worker groups.
These differences may manifest at different levels of specialization i.e. caste, specialized
worker or individual personality. All of these open questions show that we are still far from a

full understanding of collective ant behavior.

Memory

Task 6 of this dissertation was to apply the new model to collective ant behavior by
measuring the combined effect of trail pheromones and route memory (chapter 3). Memory
can be viewed as information that is being acquired, stored and retrieved (Vaas 2000).
According to this definition, memory is a process by which animals are able to utilize
information that had been acquired and stored before. Information is extremely important
for animals to adapt their behavior to a constantly changing environment (Dall et al. 2005).
They use different kinds of information, like personal information generated by interactions
of an animal with its environment and social information that is generated by the behavior
of other animals (Dall et al. 2005). In this sense, route memory is information that individual
ants acquire about the three dimensional structure of their environment which is stored for

later retrieval. It can be viewed as source of private information. In contrast to private
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information, trail pheromones can be viewed as source of social or collective information
(see for instance Czaczkes et al. 2011). Trail pheromones have also been interpreted as a
means of social learning (Franks and Sendova-Franks 2013), in which the learned information
is acquired, stored and retrieved by the members of the collective through an external
medium.

Various studies showed that route memory acquired by visual learning changes the
response of ants to trail pheromones (Aron et al. 1988; Aron et al. 1993; Czaczkes et al.
2011; Gruter et al. 2011; Czaczkes et al. 2013a). Ant species show considerable differences in
their responses if visual learning and trail pheromones as source of information are both
available. L. humile, a species that highly depends on collective information and less on
private information provided by vision, shows a much higher response to trail pheromones
than Leptothorax unifasciatus or L. niger, who use both information sources to a great extent
(Aron et al. 1988; Aron et al. 1993). If route memory and trail pheromone are available to
the ants as two independent information sources, the ants reduce the error rate in trail
following and increase their trail following speed. This shows that two independent
information sources allow the ants to increase their foraging efficiency (Gruter et al. 2011;
Czaczkes et al. 2013a).

The results presented in chapter 3 show that route memory has clear effects in all three
species. L. niger showed the strongest effects of memory while L. humile showed only small
effects. This demonstrates that memory had a lower effect on the response to trail
pheromones in a species that mainly depends on collective information compared to a
species that uses private information as well. This confirms the findings of Aron et al. (1993).
The strength of the memory effect in E. procera was intermediate compared to the other
two species, but it is difficult to rank their degree of collectivity in relation to the other two
species. The reason is that at present, we know of no consistent method to evaluate the
degree of collectivity in ants. However, the results presented here give some hints as to
which further research could lead to finding such a consistent method. First, the findings of
(Aron et al. 1993) show that the extent to which social and private information are used are
important indicators for collectivity. However, so far only the combined effect of visual
memory and trail pheromones were investigated in this context. Other sources of
information like sensorimotor orientation and tactile or acoustic communication have also

to be considered as important factors although such a multifactorial approach will be very
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demanding. In chapter 1 the biological meaning of the parameters of the psychometric
function have been described. Lapse rate, information capacity, detection and discrimination
thresholds are considered as indicators for the collectivity of an ant species. They could be
used to define the degree of collectivity. However, these parameters are not necessarily
altered into the same direction if a species is more or less collective. For instance, like stated
in chapter 1 and 3, we know from personal observations that E. procera is a highly collective
orientated species. The low discrimination threshold and the low lapse rate clearly point into
this direction. In contrast, they have only a very low information capacity, which is an
indicator against collectivity. The specific strategies of this species in getting their main food
supply through periodically growing mushroom sites was an explanation for this discrepancy
(see chapter 1). The ants probably reactivate already existing trails and thus only a few ants
are needed to deposit pheromone to reestablish a trail, which explains the low information
capacity. This example shows that a definition for collectivity, based on a few parameters,
might be difficult. However, the lapse rate is a clear indicator since it shows the extent to
which ants ignore pheromone trails and are able to act independently from the main source
of collective information. Further research including more ant species may clarify this issue
(see also below “An outlook to a definition of collectivity”).

In all three species, memory had the effect of increasing the error that ants make in
following the pheromone trails if information provided by trail pheromone and route
memory were contradictory. In the opposite case, when both information sources provided
the same information, the error rate sank. This confirms similar findings in L. niger (Czaczkes
et al. 2011; Gruter et al. 2011; Czaczkes et al. 2013a). In contrast to former studies of the
combined effect of memory and pheromone (Aron et al. 1988; Aron et al. 1993; Evison et al.
2008; Czaczkes et al. 2011; Griter et al. 2011; Czaczkes et al. 2013a), we measured
synergistic as well as antagonistic memory effects, which again revealed subtle details. For
instance, in E. procera and L. humile the memory effect was low in a synergistic situation, in
which the information provided by route memory and pheromone were the same. In the
antagonistic situation, in which both information sources provided contradictory
information, the memory effect was strong and mainly manifested in an increased error
rate. This showed that even if a positive effect of memory is low or not detectable, memory
is still present and influences the ants’ behavior. One of the main differences of our study

from the above mentioned studies was the time scale in which the memory effect was
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measured. Except in some measurements of Evison et al. (2008), the measurements in the
former studies were done immediately after the training. Some of these measurements
showed only very low or not detectable memory effects (Aron et al. 1993; Griter et al.
2011). In our study, the memory effects were measured 24 hours after the training and still
showed clear effects in all cases. This shows that all three species maintain their route

memory for at least 24 hours.

Motivation

Similar to route memory, an aim of this dissertation was to apply the new model to
collective ant behavior by measuring the combined effect of trail pheromone and the ants’
motivation to forage (chapter 3). Since food is the source of energy, proteins and
micronutrients, starvation can be expected to influence ant behavior, especially their
motivation to forage. For instance, it was shown in the ant species Myrmica sabuleti that
starvation increases the motivation to forage as well as the communication among
individuals by lowering the response threshold to recruitment signals (de Biseau and
Pasteels 2000). If L. niger ants are experiencing a food shortage, more and more ants
aggregate around the nest entrance, ready to speed up the process of food intake from
returning ants by trophallaxis. In addition, the ants at the nest entrance show an increased
tendency to leave the nest, probably due to a lower response threshold to recruitment
signals (Mailleux et al. 2011).

L. humile and E. procera showed similar results if the combined effect of trail pheromone
and starvation was measured. The responses to the pheromone were significantly enhanced
by starvation and the detection thresholds were lower depending on the length of the
starvation period. The lapse rate showed some unexpected results. It was expected that the
lapse rate would be lower or at least would remain at a lower level in a starving colony
compared to a sated colony. This expectation was reasonable because a low lapse rate
increases the efficiency in the following of the trails leading towards existing food sources. In
contrast to this expectation, the lapse rate after six days starvation was higher than the
control while the lapse rate after nine days was lower compared to six days in L. humile. This
can be explained by the hypothesis that different worker castes have different lapse rates
and that these lapse rates are adapted to the level of starvation. For instance, if specialized
ants like scouts have a high lapse rate after six days without food, they more or less ignore

pheromone trails to be able to explore unknown terrain and find new food sources. If the
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degree of starvation of the colony becomes higher after nine days without food, even these
ants may start following the pheromone trail to an existing food source to accelerate the
food intake resulting in an overall lower lapse rate after nine days starvation compared to six
days starvation. Thus, the colony may follow different foraging strategies: depending on the
state of the colony and its environment. The ants find an optimum between the two
strategies by adapting the lapse rates of specialized workers. A similar effect could be found
in E. procera. Unexpectedly, their lapse rate increased with the length of the starvation
period. Again, this can be explained by a fraction of specialized ants having a lower lapse

rate to leave established trails and find new food sources for the starving colony.

In the discrimination experiments with E. procera there were great differences in the PFs
of sated and starved colonies, which manifested in the differences between the lapse rates.
In a sated colony, only a fraction of the ants seem to respond to pheromone differences.
These ants respond in the same way as hungry ants because they have nearly identical
discrimination thresholds. The discrimination threshold is an important measure of ants’
ability to act collectively (von Thienen et al. 2014) and it seems to be invariant to the

motivational state of the ants.

Outlook and proposals for further research
In this section, an outlook to possible further research approaches will be discussed based

on the results presented so far.

Swarm behavior

The results presented in this dissertation may inspire further research in the field of swarm
behavior of birds and fish, especially using some of the models that have successfully
reproduced such behavior (Reynolds 1987; Hildenbrandt et al. 2010; Hemelrijk and
Hildenbrandt 2011). These models base on a few simple assumptions about the behavior of
the individual swarm members, mainly that they try to keep optimal distances to their
closest neighbors. This simple local interaction is sufficient to reproduce real swarm
behavior. However, the models are based on the simplifying assumption that the individual
has perfect knowledge of distance and radius. We know from psychophysical theory that this
is not the case (Baird 1970; Davies and Green 1994; Sarris 2006). By replacing this
assumption with a more realistic, psychophysical based approach, we might get more

realistic models of swarm behavior, especially in understanding its stochastic fluctuations.
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For instance Hildenbrandt et al. (2010) developed a model of swarm behavior of starlings in
which the birds try to keep an optimal distance to the starlings in their proximity. The model
was able to reproduce the real swarm behavior very well. According to the model, a bird
experiences four forces, one that directs him away from its neighbors, one that attracts him
towards its neighbors, one that aligns it to the flight direction of its neighbors and one that
keeps him in the vicinity of the roosting site. These forces depend on geometric parameters
like distance and radius and they are constantly evaluated by the birds such that if one bird
changes its position and heading, the neighboring birds react according to the interaction
rules and adjust their position and heading. This results in a constantly changing three
dimensional movement of the whole swarm. The model incorporates stochastic influences
by adding a random force to the other four forces described above. It was shown by
simulation that the variability in the swarm movement can be explained by local differences
in the movement of the flock and depends on parameters like flock size and number of
interacting neighbors. However, it was not investigated how far variability in the individual
estimation of distance influences the variability of the swarm movements. By doing so, the
model could be made more realistic, if the random force is replaced by the assumption that

the estimation of distance follows a psychometric function.

Measuring the effect of neonikotinoids

In chapter 3 it was shown that the new approach described in this dissertation is able to
reveal subtle details in the dose-response relationship of pheromone concentration and ant
response. The same approach may be used in further research to investigate other factors
that might influence collective ant behavior. For instance, we know from many examples that
our ecosystems are threatened by various kinds of human activities like insecticides that are
brought into the environment. We have strong evidence that insecticides like
neonikotinoides, in addition to other possible factors, are responsible for the decline of honey
bee populations in the US and Europe in the last decade (Grimm et al. 2012). It was
demonstrated that sublethal doses of neonikotinoids change navigation, recruitment, and
learning behavior of bees (Menzel 2014). In a similar way, we may ask if neonikotinoids alter
the behavior of ant colonies. Due to the great importance of ants for the ecosystems
worldwide, effects of neonikotinoids on ants may put great stress on our ecosystems. The

measurement of the ant response to pheromones of varying concentrations and fitting a PF to
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the data, as described in this dissertation, may be used to measure the effect of

neonikotinoids on ant behavior by exposing them to different doses of neonikotinoides.

The lapse rate — a mechanism to keep flexible

As it has been mentioned in chapter 1 and 2, the lapse rate is a measure of the ants’ ability to
act independently from pheromone trails. The lapse rate may help ant colonies to constantly
explore the environment outside of the established pheromone trails and thus find new food
sources, explore new nest sites or detect enemies. In a situation where a food source gets
exhausted, it can be expected that ants with a high lapse rate are able to find and switch to a
new food source faster than ants with a lower lapse rate. This hypothesis may be tested by
computer simulations and experiments similar to the ones described by Czaczkes et al.
(2013b). The simulations should be designed in such a way that the ants are offered a food
source, establish a trail towards the food source and forage at that food source. Shortly
before the food source gets exhausted, a new food source is offered and the time that it takes
the ants to switch to the new food source is measured. By repeating this simulation for
different lapse rates, the hypothesis can be tested. The lapse rates should be simulated in two
different ways. One is to use the same lapse rate for all ants and change this lapse rate for the
different simulation runs. In this case, all ants in a simulation run have the same lapse rate,
which is equivalent to the collective lapse rate of the colony. The other is to assign different
lapse rates to two fractions of the ants. This resembles the situation in which two different
worker classes show different properties of the PF (see below) and the collective lapse rate
resembles an average of the individual lapse rates. By modifying the size of the ant fractions,
the collective lapse rate of the colony is modified and tested. It can be expected that both
versions of the experiment lead to different behavior of the ant colony. As a secondary step,
the hypothesis may be verified by experiment with real ants. The experiment should be done
with ant species that show clearly distinct lapse rates like L. humile and L. niger. All
information sources besides trail pheromones should be eliminated as much as possible by
making the measurements in darkness or with dimmed red light, which the ants are not able

to see.

Caste specific differences between PFs
In the discussion of the starvation experiments (chapter 3) it was hypothesized that the lapse

rate shows significant differences between different worker castes and that the ants may be
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able to adjust the lapse rate to different degrees of starvation. This could be the case for other
parameters of the PF as well. This would enable the ant colony to coordinate its workforce
and fine tune it to the specific demands of the environment. This hypothesis could be tested
on a species with a morphologically distinct worker class like species of the genera

Camponotus.

An outlook to a definition of collectivity

In chapter 1 and 3 we discussed the interpretation of the PF-parameters in relation to the
degree of collectivity of the three ant species we investigated. All social insects act collectively
to a great extent, but besides collective information, ants also use private information like
vision (Aron et al. 1988; Aron et al. 1993), polarized light (overview in Holldobler and Wilson
1990, p. 366 ff), tactile information (Holldobler and Wilson 1990, p. 258 ff), sensorimotor
information (Macquart et al. 2007) and geomagnetic information (Anderson and Vander Meer
1993). In the work of Aron et al. (1993) the relative use of private information (route memory)
and collective information (trail pheromone) was investigated in the ant species L. niger and L.
humile. It was stated that L. humile is more collectively orientated compared to L. niger due to
factors like colony size, food source longevity and emigration strategies. In other studies the
relation between social (collective) and private information in social insects and other animals
was discussed (Dall et al. 2005; Czaczkes et al. 2011; Griter et al. 2011; Czaczkes et al. 2013a)
as well as the relation between social and private learning (Laland 2004; Franks and Sendova-
Franks 2013). Here we want to describe a possible approach to give an exact definition of to
what degree an ant species is collectively organized with respect to its’ use of trail
pheromones as means to convey information to the collective. We propose to use the
parameters of the PF since they can be interpreted as measures for different aspects of
collective behavior (see chapter 1 and 3). The lapse rate defines how constrained the ants are
to act according to the collective information or, putting it another way, how far they are able
to act independently from the collective information and follow their private information and
motivation. The information capacity defines the abilities of individual ants to change the
collective behavior of the colony. The detection threshold defines the ability to detect
pheromones or the sensitivity towards the collective information and the discrimination
threshold defines the ability to act collectively. We propose to use following formula as an

index of trail pheromone oriented collectivity of an ant species:
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TCl=trail orientated collectivity index
Adis= lapse rate discrimination

Adet = lapse rate detection
tat75=75%-detection threshold
tds75=75%-discrimination threshold

All parameters are dimensionless except the detection threshold. Thus, the dimension is
trail length (cm) per ant equivalent (AE). From the results in chapter 1 we may calculate the
trail oriented collectivity index for the three species: L. humile shows the highest index with
3636 AE/cm, L. niger shows the lowest index with 44 AE/cm and E. procera lies in between
with 227 AE/cm. This result is consistent with the statement of (Aron et al. 1993) that L.
humile are more collectively orientated than L. niger and with our interpretation in chapter 1
that E. procera is positioned between these two species in terms of collectivity. However,
future research is necessary to show if this definition is practical. As a first step, we propose to
measure the index for other ant species which show collective behavior mediated by trail
pheromones, for instance species of the genera Formica- such as Formica fuscocinerea and

species of the genera Lasius such as Lasius neglectus or Lasius fuliginosus.

Better ACO-algorithms

In the field of informatics, the Deneubourg model inspired many solutions for optimization
problems. These so called Ant Colony Optimizations (ACO) are based on the Deneubourg
choice function (Dorigo et al. 1996; Dorigo and Stitzle 2004). A famous example for a such a
problem is the traveling salesman problem (TSP). This problem belongs to the class of NP-

complete problems (NP = nondeterministic polynomial') which play an important role in

I Nondeterministic polynomial means that an algorithm may be constructed which selects the different
instances of the problem randomly (nondeterministic), constructs a solution for each instance and tests in
polynomial time if the solution solves the problem. A NP-problem is complete if any other NP-problem can be
reduced to it in polynomial time. Polynomial time means, that the time an algorithm needs to find a solution
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decision theory. Algorithms that calculate an exact solution for NP-complete problems may
take too long to be useful for practical purposes, even when the most powerful computers
are being used. Therefore, algorithms like ACO have been developed to find a solution by
approximating the exact solution in acceptable time. The TSP is an extensively studied
example for such a problem. A travelling salesman has to visit different cities which are
connected by roads of given length. The cities and their connections represent the instances
of the problem. The salesman must find the shortest route that connects all cities that he
wants to visit before coming home. The problem can be solved by a simple algorithm that
sums up the distances between the cities for each possible city combination and tests if this
sum represents the shortest sum found so far. If the salesman has to visit only a few cities
(few problem instances), he can find a solution simply by mental calculation. However, if
more and more cities are added to his tour (many problem instances), the possible
combinations of cities grow faster than the number of instances and even if he has the
fastest and most powerful computer at hand, the time needed to solve the problem will be
unacceptable. For instance, if he has to visit 20 cities and his computer takes one
nanosecond to calculate a single tour, it will take him nearly 2 years to find the shortest tour.
An ACO algorithm follows a different approach which does not necessarily give an exact
solution but usually gives a good approximation to it and is much faster. It lets a group of
virtual ants explore the possible routes and find the best solution for the problem. This is
done by letting each virtual ant walk randomly from city to city until it has visited each city
once and returns home. After all ants have returned home, the shortest route found so far is
calculated and marked with a virtual pheromone. In the next round, the same happens but
this time, the virtual ants slightly prefer the routes marked with pheromone. This process is
repeated many times and, after 100 to 1000 iterations, the algorithm usually converges to a
solution that is close to the theoretical optimum in an acceptable time. The problem may be
visualized as a Hamilton graph in which the shortest Hamilton circuit represents the solution
and the ants randomly explore the state-space until the algorithm converges to an optimal
solution (Dorigo and Stlitzle 2004, p. 40). One of the main differences to real ants is that no
centralized instance exists which calculates and compares the lengths of the routes found so

far.

for a problem is no more than a polynomial function of the problem size. Although the test for each instance
can be performed in polynomial time, there are no algorithms known that are able to solve a NP-complete
problems in polynomial time. The reason is that the number of possible solutions grow much faster than the
number of problem instances. For more details, see Dorigo and Stiitzle (2004).
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As stated in the discussion of chapter 2, we do not expect that ACO algorithms show a
better time performance when using the PF since the PF is more complex than the DCF and
therefore needs more computer power. However, certain new aspects that we found might
lead to better ACO-algorithms or new solutions: The concept of the lapse rate might avoid
situations in which ACO algorithms get into stagnation before reaching an optimum. This
situation happens if all virtual ants follow the same path without coming close to the optimal
solution. Usually this is avoided by adding a priori information to the algorithm about each
node of the state-space or by performing local search algorithms that, for each ant, calculate
optimal proposals for the step to take in the next iteration (Dorigo and Stiitzle 2004, p. 70,
pp. 215-216). The concept of the lapse opens an alternate approach. By incorporating the
lapse rate into ACO algorithms, there are always a set of ants which more or less ignore the
pheromone trails and randomly explore solutions beyond established pheromone marked
routes. This could be achieved by defining a set of virtual ants that weakly or not at all
respond to the pheromone. Another improvement by the incorporation of the lapse rate
may be that the algorithm finds closer approximations to the optimal solution. The reason is
the asymmetry between short path and long path selection that had been described in
chapter 2. This asymmetry is caused by the lapse rate and manifests in the tendency to
reverse the selection of the long path towards the short path if it was selected in the initial
phase of the simulation. In a similar way, it can be expected that good solutions are
preferred over less good solutions.

The modulation of pheromones described in chapter 2, by which ants deposit more
pheromone as they return to the nest, has already been incorporated in some ACO
algorithms by the so called Elitist Ant Systems (Dorigo and Stiitzle 2004, p. 73). In this case,
the best of all solutions found so far is marked with an additional pheromone amount.
However, the idea behind the Elitist Ant System is different than the approach that real ants
follow since the evaluation of a best solution needs a central instance which the ants do not
have. Instead, they incorporate directional information into the system by dropping more
pheromone while returning to the nest. Since classical problems solved by ACO, like the
travelling salesman problem, do not incorporate information about direction, the concept of
pheromone modulation will not improve these algorithms. However, if the problem is such
that directional information is important, the concept of pheromone modulation may be

useful. For example, if a salesman prefers to visit cities in the east before he visits cities in
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the west (a priori definition), the virtual ants may deposit more pheromone when heading
east causing the algorithm to prefer cities in the east. Please note that the property
“direction” may be replaced by any other property of the system which needs to be
incorporated in the optimization process and which can be coded as virtual pheromone
deposited at the nodes of the state-space.

We found that memory modulates the pheromone response (chapter 3). This concept is
already being used by ACO algorithms by incorporating a priori information (Dorigo and
Stitzle 2004, p. 70). In addition, it could be used to develop learning ACO algorithms. As an
example, we again take the travelling salesman. Here, he periodically takes the same tour.
According to the actual traffic situation between the different cities, he may modify his tour
due to traffic congestion caused by building operations that frequently occur at different
segments of the tour. The information about the latest tour he has taken can be
incorporated as a priori information for his next tours by slightly increasing the response of
the virtual ants for the modified tour segments or by adding a second, long lasting virtual
pheromone dose to the segment, increasing the ants’ response. This would result in a tour
that prefers certain tour segments depending how often they have been taken by the
travelling salesman. Similar to memory, we found that starvation alters the response to the
pheromone (chapter 3). This concept may be used to assign a time dependent priority to
each node of the state-graph. As an example we again take the travelling salesman. The
customers at the different cities may have given him certain time slots in which they want to
be visited. This is stored as a priori information to the algorithm. In each iteration of the
algorithm, the difference between actual time and the pre-defined time-slot is calculated
and used to update the priority of the city. A similar concept has already been used by
Bencheihk et al. (2011) to calculate the scheduling of aircraft landing at an airport by an ACO

algorithm. In this algorithm, deviation from the scheduled time of arrival is being penalized.

Conclusion

For the first time we were able to explain and successfully apply aspects of collective ant
behavior using an established model of perception, the psychophysical theory. In addition, it
was the first time that psychophysical theory was successfully applied to collective behavior
of animals. We have shown that the dose-response relationship between pheromone

concentration and ant response can be well described by a psychometric function and
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follows Weber’s law in the three ant species we investigated. Thus, for the first time, an
exact description of this dose-response relationship based on empirical measurements could
be deduced. In addition, clear definitions for important biological parameters like detection-
and discrimination-thresholds, information capacity and error rates could be given and
measured. The results revealed considerable differences between the three species, which
could be attributed to their specific ecological needs. The results and the deduction of
realistic parameter values for the Deneubourg choice function and for the psychometric
function gave us the possibility to test an established model of collective ant behavior. The
results showed that the shortest path experiments with L. humile could not be explained by
the established model, the Deneubourg model. Only by using the psychometric function and
adding further assumptions like the modulation of pheromone deposition, could the
shortest path experiments be explained satisfactorily. By using our methods to measure
psychometric functions, we were able to show that memory and motivation modulate the
responses to trail pheromones in the three ant species we investigated, changing detection
thresholds and error rates. Again, the species showed considerable differences which could
be explained by their ecological needs and by the extent up to which they use collective and
private information. Our results showed that L. humile uses collective information to a much
greater extent than L. niger, with E. procera positioned in between the other two species in
terms of collectivity. Our results show that psychophysical methods may be a suitable tool to
investigate collective animal behavior whenever this behavior is based on the transmission
of information about gradually varying environmental states through a signal of varying
intensity. The psychophysical approach may apply not only to ants but also to other animals

showing collective behavior.
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Online Appendix A: Equations

Weber’s law
Equation 1 — Weber’s law

EU
k=22 1
R (1)

EU — "ebenmerklicher Unterschied" (just detectable difference), R — reference stimulus, k — constant.

Psychometric function
We fitted the psychometric function using the Weibull distribution as the probability distribution. The
general form of the Weibull distribution is:

Equation 2 — Weibull distribution

p=l-e’", 2)
s — Scale parameter, b — Form parameter.

Equation 3 — Psychometric function
The general form of the psychometric function is given by
p=y+{-2-7) F(x). (3a)
With F(x) “describing the probability of correct stimulus detection or discrimination by the underlying
sensory mechanism” (Kingdom and Prins 2010 p. 74). For F(x) we apply the Weibull distribution from

above in a modified form (see comment below):

Detection: p=y+ (l -A- ]/)- l—-e , (3b)

Discrimination: p=A+2-(y—A)-|1-e , (3¢)

t — Pheromone concentration at threshold, ¢ — Pheromone concentration of test trail, 1 — lapse rate,

y — guess rate, b — slope.

In the fitting procedure, the parameters A, b and y were fitted and the parameter a was set to a=0.5
(detection) and a=y (discrimination). In detection experiments, the parameter ¢ was also fitted and in

discrimination experiments it was set to =1 bc.
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In discrimination experiments the ants have no information about which trail is the test trail and which is
the reference trail. Since the PF is asymmetrical, both cases yield slightly different results for the

exponential term. Following common practice 1in psychophysics, we take the average

(eln(l_a)mb i eln(l—a)-(i]b

For the concentration dependency experiment, we use equation 3¢ with ¢ set to the concentration of the

)- 0.5 of both cases as the exponential term when we fit the data.

reference trail and ¢ set to ¢=0.5-t. We chose the Weibull function because in pre-evaluations, it gave a
good fit compared to other functions (for instance exponential) and it is reported to give a good fit for the
psychometric function (Klein 2001, p. 1430). We have formulated it in a way that threshold and slope are
independent and the threshold does not change the shape of the function, it only results in a parallel shift

along the x-axis.

Equation 4 — 75%-threshold
The sensory thresholds are defined as the stimulus strength at which the response probability is
p=r+05-(1-1-7)~0.75. 4)

This represents half the distance between guess rate and upper asymptote of the PF. In discrimination
experiments, the 75%-discrimination threshold is evaluated by the inverse of equation 3c by setting p
according to equation 4. In detection experiments, the parameter ¢ is free and included in the fitting
process since we do not know the absolute concentrations, and it gives the 75%-detection threshold. In
discrimination experiments, we take the ratio between the 75%- and the 50%-discrimination thresholds as
a measure for the contrast that the test subjects are able to recognize. Since the 50%-discrimination
threshold is situated at 1, this is equivalent to the 75%-discrimination threshold.

Under low threshold conditions, the psychometric function can be modified by adding a small constant
amount of pheromone k& pf'to the pheromone concentrations with the effect that at low concentrations the

Weibull-term becomes asymptotic towards 0.5.
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Equation 5— Information capacity

C
IC =
tdt (6)

IC — Information capacity, measured in units length (cm) of a trail an ant can mark with one gland,

tdt7s —75%-detection threshold, ¢ — proportionality constant, set to 1.

Equation 6— Deneubourg choice function

B (k+c)b
p_(k+c)b+(k+c_ref)b’ ®)

c_ref — pheromone concentration of reference trail, ¢ — pheromone concentration of test trail,

b — exponent, k — constant.
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Online Appendix B: Detailed results

Table B1: Detailed results of fitting the psychometric function

Experi- Species N GOF AIC z-GLM Dsp Function parameters
ment p-GLM b A v a t75 IC
Detection  E. 138  0.96 563 2.7 1.8 072 0.03 048 05 0.62 bc 146
procera 8e-3 1.05 0.05 0.52 0.89 bc 197
163007 056 12be 282
Detection L. humile 100 0.25 388 6.4 1.8 042 0.09 035 05 0.04bc 6452
1.5e-10 0.6 0.11 0.43 0.05 be 13450
Pavan’s 1.08 0.13 0.52 0.11 be 17857
__________________ gland
Detection L. humile 60 0.64 147 1.2 0.39 0.02 0.3 0.5 0.62pg/cm 4228
(2)-9 0.68 0.06 044 1.64 pg/cm 11185
23401 056 396pgkm 27005
Detection L. niger 80 039 294 44 1.2 06 0.15 04 0.5 0.08bc 708
le-5 1.21 0.18 0.49 0.16 bc 1094
386020 055 025bc 2065
Discrimin.  E. 237  0.55 873 1.8 20 082 0.09 050 05 18
Low procera Se-71 1.0 0.11 0.52 2.14
123 014053252
Discrimin.  E. 110 0.89 362 9.5 14 054 0.0 0.50 05 277
High procera 2e-21 0.63 0.03 0.51 3.33
075005052 407
Discrimin. L. humile 80 0.86 221 8.9 0.8 075 0.0 045 05 216
4e-19 0.87 0.02 047 2.48
101005 048 285
Discrimin. L. niger 210  0.57 821 11 1.6 04 0.15 052 05 259
le-29 0.56 0.21 0.54 3.82
079025 055 649
_____________________________________________________________________________________________________________________________ kpf
Conc.Dep. E 306 0.15 1514 -5 27 065 0 0.5 0.12
procera 4e-7 0.8 0.34
R 0.85
Conc.Dep L. humile 150 0.34 660 0.97 2.0 041 0 0.5 0.0
0.3 0.52 0.02
. 0.06
Conc L. niger 141  0.08 646 -1 1.8 04 0 0.5 0.0
Dep 0.3 0.5 0.02
0.63 0.09

Notes: Values for fitted parameters are given in the order lower confidence limit, fitted value, and upper confidence
limit from top to bottom with confidence limit in italics. Parameters with no confidence limits are fixed. Confidence
limits were calculated at 95%-level by parametric bootstrapping (n = 1,000).

N total number of measurements,

GOF goodness of fit,

AIC AIC (Akaike information criterion),

z-GLM, p-GLM z- and p-value of GLM for factor concentration,
Dsp Dispersion,

b slope,

A lapse rate,

y guess rate,

a decision probability at threshold,

t75 75%-threshold (detection resp. discrimination),
IC information capacity,

k pf constant added to concentrations, measured in bc.
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Table B2: Detailed results of fitting the Deneubourg choice function

Experiment Species N GOF AIC Dsp Function parameters
b k
Detection E. procera 138 0.97 560 1.78 1.16 0.50
1.57 0.91
_____________________________________________________________________________ 254 205
Detection L. humile 100 0.41 384 1.84 0.44 0.01
Pavan’s 0.52 0.02
______________________ gand 064 004
Detection L. humile 60 0.13 1533 1.26 0.44 0.01
(Z)-9-hex. 0.48 0.02
_____________________________________________________________________________ 073 006
Detection L. niger 80 0.28 293 1.29 0.40 0.03
0.5 0.06
_____________________________________________________________________________ 065 013
Discrimin E. procera 237 0.11 879 2.01 0.96 0.09
Low 1.08 0.15
_____________________________________________________________________________ 125 023
Discrimin E. procera 110  0.96 359 1.41 0.83 0.00
High 0.92 0.03
_____________________________________________________________________________ 102 006
Discrimin L. humile 80 022 226 0.93 0.96 0.00
1.06 0.02
_____________________________________________________________________________ 119 006
Discrimin L. niger 210  0.45 821 1.61 0.49 0.06
0.56 0.13
_____________________________________________________________________________ 065 023
Conc.Dep E. procera 306 0.15 1514 2.67 0.73 0.0
1.03 0.32
_____________________________________________________________________________ 126 077
Conc.Dep L. humile 150 034 660 2.04 0.55 0.0
0.68 0.02
_____________________________________________________________________________ 083 006
Conc.Dep. L. niger 141  0.08 646 1.84 0.52 0.0
0.66 0.02
0.82 0.1

Note: See table above for parameter descriptions.
b exponent,
k constant.
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Table B3: Pheromone concentrations used in the experiments

Experiment Species Lowest Highest Number of
concentration concentration  concentrations
measured
_Detection  Eprocera | Obe 4be ] o
Detection L. humile 0bc 2 be 10
Pavan’s
e gland
Detection L. humile 0 pg/cm 200 pg/cm 5
(2)-9-
i hexadecenal.
Detection  Lomger | Obe 2be 8
Discrimination E. procera 0 be 16 be 12
oW
Discrimination E. procera 0bc 8 be 10
gh
Discrimination L. humile 0bc 8 be 8
Pavan’s
e gland
_Discrimination L. niger | O0be ... 32bc ] 13
_Concentration dependency _E. procera | O0be ... 32bc ] o
Concentration dependency L. humile 0bc 32 be 15
Pavan’s
e ogland
Concentration dependency L. niger 0 be 8 be 12

Note: The ranges of pheromone concentration (i.e. highest and lowest values) on the test trail are shown.
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Table B4: Effects of three factors in generalized linear models and mixed effects models

Experiment Species glm glm glm glm glmer glmer glmer glmer
full date  colony conc full date colony  conc
Detection E procera 552 _ 551 - 645 558 556 - 654
Detection L. humile 411 - 417 496 420 - 421 503
Pavan’s
___________________________ AN .
_Detection L. niger 303 - 314 348 MU - 314 356
_Discrimination low _ E. procera 1151 1168 - 1627 1161 1173 - 1643
Discrimination E. procera 451 457 - 748 458 460 - 757
high
Discrimination L. humile 247 272 272 449 267 284 284 468
Pavan’s
___________________________ AN .
_Discrimination L. niger 947 973 914 1118 91 959 978 M35
Concentration E. procera 1536 1535 1536 1553 1558 1562 1556 1564
ependency
Concentration L. humile 669 669 669 668 673 671 671 672
dependency Pavan’s
___________________________ gland .
Concentration L. niger 645 642 643 650 653 652 651 656
dependency

Notes: The effect of the factors pheromone concentration, colony and date are evaluated by dropping the
factors from a full model and comparing the AIC (Akaike information criterion). Resulting AICs are shown for
generalized linear models (glm) and generalized linear mixed models (glmer). No results are given (-) if the
relevant factor has only one level. A lower value of the AIC compared to the full model indicates an effect of
the factor. Compared to the factor “concentration”, the factors “date” and "colony” show only small effects.

full AIC (Akaike information criterion) of full model,

date
colony
conc

factor date is dropped
factor colony is dropped
factor pheromone concentration is dropped
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Online Appendix C: Supplementary Figures

Figures Cla—
Figures C2a—
Figures C3a-b
Figures C4a—
Figures C5a—b
Figures C6a—c
Figures C7a—

function.

detection experiments fitted with the psychometric function,

discrimination experiments fitted with the psychometric function,
concentration dependency experiments fitted with the psychometric function,
symmetry tests,

detection experiments fitted with the Deneubourg choice function,
discrimination experiments fitted with Deneubourg choice function,

concentration dependency experiments fitted with Deneubourg choice
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Fig. C1

Detection experiment (a) Linepithema humile (Pavan’s gland), (b) Lasius. niger, (¢) L. humile (pygidial
gland) fitted with the psychometric function. The response to different pheromone concentrations is
shown. Circles show the probability that ants take the test trail (response) and bars show the 95%-
confidence interval. The x-axis shows the pheromone concentration of the test trail measured in base
concentrations on a logz-scale; the reference trail carried no pheromone. The solid line shows the fitted
psychometric function and dashed lines show its 95%-prediction interval. The symbol () at the bottom
indicates the 75%-detection threshold.

GOF=Goodness of fit, bc=base concentration, b=slope, ti75=75%-detection threshold, A=lapse rate,
N=total sample size, n=number of measurements per concentration (each measurement represents 10
binomial ant decisions).

L. humile (Pavan’s gland): GOF=0.25, bc=0.0014 AE/cm, b=0.6 (range 0.42—1.08), ta7s =0.05 bc (range
0.04-1.11 bc), A=0.11 (range 0.09—0.13), N=100, n=10 (each).

L. niger: GOF=0.39, bc=0.0057 AE/cm, b=1.21 (0.6-3.86), tar7s=0.16bc (range 0.08-0.25 bc), A=0.18
(range 0.15-0.2), N=80, n=10 (each). The measurement at 0.125 bc was regarded as an outlier and not
included in the fitting process.

L. humile (pygidial gland): bc=0.0057 AE/cm, N=70, n=10 (each). Kruskal-Wallis test shows no
significant difference between measurements (p=0.372, Kruskal-Wallis, N=70).
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Fig. C2
Discrimination experiment fitted with the psychometric function showing the response to different

pheromone concentration ratios. (a) Euprenolepis procera, high concentration measurement series. (b)
Linepithema humile, (c) Lasius niger. The x-axis shows the concentration ratio between test trail and
reference trail on a logsx-scale. The test trail had varying concentrations measured in base concentrations.
The reference trail had a constant concentration of 1 bc. Circles show the probability that ants take the test
trail (response) and bars show the 95%-confidence interval. The solid line shows the fitted psychometric
function and dashed lines show its 95%-prediction interval. Symbol (¢) at bottom indicate the 75%-
discrimination threshold.

GOF=Goodness of fit, bc=base concentration, b=slope, t4s75=75%-discrimination threshold, A=lapse rate,
N=total sample size, n=number of measurements per concentration (each measurement represents 10
binomial ant decisions).

E. procera, high concentration: GOF=0.89, bc=0.01425 AE/cm, b (slope)=0.63 (range 0.54-0.75), tas75
=3.33 (range 2.77-4.07), 2=0.03 (range 0.0—0.05), N=110, n=5/10/10/10/10/20/10/10/15/10 (from left to
right).

L. humile: GOF=0.86, bc=0.0014 AE/cm, b=0.87 (range 0.75-1.01), tgs75=2.48 (range2.16-2.85), A=0.02
(range 0—0.05), N=80, n=10 (each).

L. niger: GOF=0.57, bc=0.0057 AE/cm, b=0.56 (range 0.4-0.79), t4s75=3.82 (range 2.59-6.49), A=0.21
(range 0.15-0.25), N=210, n=20/10/10/10/20/20/20/20/20/20/20/10/10 (from left to right).
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Fig. C3

Concentration dependency of fixed concentration ratio. (a) Linepithema humile, (b) Lasius niger. The
response to the same concentrations ratio of 0.5 between test and reference trail at different absolute
concentrations are shown. The x-axis shows the pheromone concentration of the test trail measured in
base concentrations on a logs-scale. The concentration of the reference trail was twice the concentration of
the test trail. Circles show the probability that ants take the test trail (response) and bars show the 95%-
confidence interval. The solid line shows the fitted psychometric function with additional parameter k pf
and the corresponding 95%-prediction interval as dashed lines. The asterisk (*) marks a measurement
series with both trails carrying no pheromone. The dotted vertical line shows the 75%-detection threshold
measured in detection experiments.

GOF=Goodness of fit, bc=base concentration, b=slope, k pf=constant, N=total sample size, n=number of
measurements per concentration (each measurement represents 10 binomial ant decisions).

L. humile: GOF=0.34, bc=0.0014 AE/cm, b=0.52 (range 0.41-0.64), k_pf=0.02 (range 0.0-0.06), N=150,
n=10 (each).

L. niger: GOF=0.08, bc=0.0057 AE/cm, b=0.5 (range 0.4-0.63), k pf=0.02 (range 0.0-0.09), N=151,
n=10/10/10/10/10/20/10/20/10/10/10/21 (from left to right).
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Fig. C4

Symmetry of concentration ratios. (a) Euprenolepis procera (high concentration measurement series), (b)
Linepithema humile, (c) Lasius niger. Shown is the probability that ants take the test trail (response) at
different concentration ratios of the discrimination experiments. Each pair shows an equal concentration
ratio but differs in the absolute concentrations. The left part of each pair shows the concentration ratio
below 1, and the right shows the same concentration ratio above 1. The absolute concentrations differ for
E. procera and L. humile by the factors of 8, 4, 2, 1 (from left to right), and for L. niger by the factors of

32,16, 8,4, 2, 1. Number above bars give p-value and sample size of two-sample Wilcoxon-test.
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Fig. C5

Detection experiment fitted with Deneubourg choice function for (a) Linepithema humile, (b) Lasius

niger. The response to different pheromone concentrations is shown. The x-axis shows the pheromone

concentration of the test trail measured in base concentrations on a log»-scale; the reference trail carried no

pheromone. Circles show the probability that ants took the test trail (response) and bars show the 95%-

confidence interval. The solid line shows the fitted Deneubourg choice function and dashed lines show its

95%-prediction interval. The measurement at 0.125 bc in (b) was regarded as an outlier and not included

in the fitting process.

GOF=Goodness of fit, bc=base concentration, b=exponent, k=constant, N=total sample size, n=number of

measurements per concentration (each measurement represents 10 binomial ant decisions).

L. humile: GOF=0.41, bc=0.0014 AE/cm, b=0.52 (range 0.44-0.64), k=0.02 (range 0.01-0.04), N=100, n

=10 (each).
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Fig. C6

Discrimination experiments fitted with the Deneubourg choice function. The response to different
pheromone concentration ratios is shown. (a) Euprenolepis procera, high concentration measurement
series, (b) Linepithema humile, (¢) Lasius niger. The x-axis shows the pheromone concentration of the test
trail measured in base concentrations on a logz-scale; the reference trail carried no pheromone. Circles
show the probability that ants take the test trail (response) and bars show the 95%-confidence interval. The
solid line shows the fitted Deneubourg choice function and dashed lines show its 95%-prediction interval.
GOF=Goodness of fit, bc=base concentration, b=exponent, k=constant, N=total sample size, n=number of
measurements per concentration (each measurement represents 10 binomial ant decisions).

E. procera, high concentration: GOF=0.96, bc=0.0057 AE/cm, b=0.92 (range 0.83-1.02), k=0.03 (range
0.0-0.06), N=110, n=5/10/10/10/10/20/10/10/15/10 (from left to right).

L. humile: GOF=0.22, bc=0.0014 AE/cm, b=1.06 (range 0.96—1.19), k=0.02 (range 0.0—0.06), N=80, n=10
(each).

L.niger: GOF=0.45, bc=0.0057 AE/cm, b=0.56 (range 0.49-0.65), k=0.13 (range 0.06-0.23), N=210,
n=20/10/10/10/20/20/20/20/20/20/20/10/10 (from left to right).
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Fig. C7

Concentration dependency of fixed concentration ratios fitted with the Deneubourg choice function. (a)
Euprenolepis procera, (b) Linepithema humile, (¢) Lasius niger. The response to the same concentrations
ratio of 0.5 between test and reference trail at different absolute concentrations is shown. The x-axis
shows the pheromone concentration of the test trail measured in base concentrations on a log>-scale. The
concentration of the reference trail was twice the concentration of the test trail. Circles show the
probability that ants take the test trail (response) and bars show the 95%-confidence interval. The solid
line shows the fitted Deneubourg choice function and the corresponding 95%-prediction interval as dashed
lines. The asterisk (*) marks a measurement series with both trails carrying no pheromone.
GOF=Goodness of fit, bc=base concentration, b=exponent, k=constant, N=total sample size, n=number of
measurements per concentration (each measurement represents 10 binomial ant decisions).

E. procera: GOF=0.15, bc=0.0057 AE/cm, b=1.03 (range 0.73—-1.26), k=0.32 (range 0.0-0.77), N=306,
n=30/20/30/40/40/30/30/30/28/10/18 (from left to right).

L. humile: GOF=0.34, bc=0.0014 AE/cm, b=0.68 (range 0.55-0.83), k_pf=0.02 (range 0.0-0.06), N=150,
n=10 (each).

L. niger: GOF=0.08, bc=0.0057 AE/cm, b=0.66 (range 0.52—0.82), k pf=0.02 (range 0.0-0.1) ), N=151,
n=10/10/10/10/10/20/10/20/10/10/10/21 (from left to right).
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Online Appendix D: Libraries of R being used

Library Used for Version
base Basic functions 2.14.0
stats Statistical functions 2.14.0
MASS Statistical functions 7.3-16
coin Chi-square-Test 1.0-21
Ime4 Mixed-effects model 1.0-5
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Online Appendix E: Experimental setup

Fig. E1

Experimental setup (schematic). The connection between nest and food was established via paper bridges.

The ants had to decide which trail to follow at the bifurcation of the Y-maze. The two branches of the Y-

maze had been prepared with pheromone solutions of different concentrations while the straight part of

the Y-maze was prepared with both pheromone solutions. The paper bridges were 1 cm wide. The

bifurcation was positioned 2 cm distant from the left edge of the Y-maze and the distance between

bifurcation and right edge of an arm was 5 cm. Thus, the total length of one complete arm from the left

edge to the right edge of the Y-maze was 7 cm. The angle between both Y-arms was 100°.

nest

intermediate platforms
connected via paper
bridges

platform
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Online Appendix F: Estimation of realistic concentration ranges and base concentrations

Realistic concentration ranges

Physiologically realistic concentration ranges of pheromones were estimated prior to our experiments. The
experimental setup was similar to that described in the main article (see Fig. E1) but instead of the Y-
bridges, we offered ants the choice between two different trails to follow (see Fig. Fla). One was a trail
that had been established by the ants for 30-45 minutes on a paper bridge connecting their nest to a food
source (referenced here as “natural trail””). The other trail was a paper bridge (width=1 cm, length=5 cm)
marked with gland extract of known pheromone concentration leading away from the natural trail but also
towards the food source (referenced here as “artificial trail”). We offered a series of such artificial trails
marked with different pheromone concentrations and attempted to measure at which pheromone
concentration half of the ants would follow the artificial trail. We assumed that if half of the ants followed
the artificial trail (decision probability=0.5), its pheromone concentration to be equal to the pheromone
concentration of the natural trail. Since all artificial bridge pheromone concentrations were known, we
were able to estimate the pheromone concentration of a naturally constructed trail by graphical linear
interpolation between the concentrations that were giving the closest results below and above the decision
probability p=0.5. For each pheromone concentration, 10 artificial trails were tested by counting 10 ant
decisions each. To minimize possible memory effects, in half of the tests for each concentration the
artificial trail was placed on the left side of the natural trail and in the other half on the right side. For

results see Table F1 below.

Table F1: Estimation of realistic trail concentrations and base concentrations

Species Natural trail concentration ~ Preparation of pheromone Base concentration (bc)
(AE/ml) solution (AE/cm)
(glands/ml=AE/ml)
E. 9.77 (range 7-14) 10 0.0057
procera
L. niger 10.56 (range 8—13) 10 0.0057
L. humile 1.5 (range 0.8-2.7) 2.5 0.0014

We performed an control experiment for our assumption that ants take both trails with equal chance if the
pheromone concentration on both trails is equal: As before, we lead ants away from the natural trail by
paper bridges that had been cut out of the natural trail immediately before the test at a different position
ca. 40 cm towards the food source (see Fig. 1b). Although at a different position, both trails can be
expected to have the same or at least similar pheromone concentrations. Each bridge was tested with 20
ants, then it was exchanged by a new bridge to avoid possible differences in pheromone concentrations

caused by ants marking the trails during the test. For E. procera 6 bridges (120 ants) were used and for L.
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humile and L. niger 4 bridges (80 ants). 95%-Confidence intervals and p-values were calculated with a
binomial proportion test (R-function binom.test()). Results see table F2. The null hypothesis that the ants

took both trails with equal chance could not be rejected.

Table F2: Control experiment for realistic trail estimation

Species Proportion of ants taking the trail n p (proportion test)
leading away from the natural trail

E. procera 45% (range 34%—56%) 120 0.43

L. niger 54% (range 41%—64%) 80 0.74

L. humile 47% (range 38%-56%) 80 0.52

Base concentrations

Based on our estimations for realistic concentration ranges, we attempted to simplify the pheromone
preparation and standardize the pheromone concentrations for our bioassay (see “Experimental setup” in
the main article). To achieve this, we always prepared solutions with concentrations of 10 glands/ml for E.
procera and L.niger and 5 glands/2 ml for L. humile. In our bioassay, 4 ul of pheromone solution was
applied to 7 cm of artificial trail on a Y-bridge. Thus, the concentrations expressed in units of AE/cm are
0.0057-AE/cm for E. procera and L. niger and 0.0014-AE/cm for L. humile. These concentrations were
taken as base concentration (bc) in all experiments using glands as pheromone source.

Example for the Estimation of base concentration

Dissolving 10 glands in 1 ml DCM gives a pheromone concentration of

cPh = 10ﬂ .
ml

Applying 4 pl of this solution to a trail of length 7 cm gives a base concentration of

:w.ﬂzsj.loﬁﬂ.
ml  Tem cm

bc
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Fig. F1

Experimental setup for estimating realistic concentration regions (schematic).

a) The connection between nest and food was established via paper bridges (width=1 cm). The ants
had the choice between two trails, one natural and the other artificial. The artificial trails we tested
(width=1 cm, length=5 cm) were marked with artificial pheromone of different concentrations. We
assumed that the number of ants taking both trails was equal, if the pheromone concentration on both trails
was equal. By using artificial trails with different pheromone concentrations and counting the ants, we
were able to estimate the concentration at which equal number of ants took both trails. Thus we were able
to estimate the concentration of the natural trail.

b) As control, we cut a piece out of the paper bridge of the natural trail (width=1 cm, length=3 cm) at
a different position and again offered the ants the choice of two trails by placing the outcutted piece beside
the natural trail. If the assumption we made before was correct, the number of ants taking the trails should

be eaunal since the nheromone concentrations can be exnected to be eaual.
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Online Appendix G: Model comparison

The hypothesis that the psychometric function fits the data (D) better than the Deneubourg
choice function was tested. First the Akaide information criterion (AIC) of both models was
calculated. A lower AIC indicates a better fit. We further estimated the significance of this
result by calculating the log-likelihood ratio LLr(D) between the fitted psychometric
function and the fitted Deneubourg choice function. Then we performed a parametric
booststrap by generating 1,000 sets of simulated data (S) using the Deneubourg choice
function and its’ fitted parameters. In the same way as before, we fitted both functions to the
simulated data and calculated the log-likelihood ratio. Thus, we gained a set of 1,000
simulated log-likelihood ratios LLr(S). The null-hypothesis that the Deneubourg choice
function fits the experimental data as well or better than the psychometric function was
rejected if LLr(D) was smaller than the lower 5%-confidence bound of LLr(S). The p-value
was evaluated by calculating the number of LLr(S)<LLr(D) divided by the number of

simulations. For results, see Table G1 below.
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Table G1: Comparing the psychometric function to the Deneubourg choice function

Experiment Species LLr(D) LLroos  AAIC par N p
_Detection ... E procera 041 253 32 . 2/4 1,000 0.62 ..
Detection L. humile -0.23 -3.02 -3.6 2/4 1,000 0.72
Pavan’s
______________________________________ gland e
Detection T Loniger | -169 30307 oA oo T ods
Discrimination E. procera -3.91 -1.8 5.8 2/3 1,000 0.007
O e eees
Discrimination E. procera 0.24 -2.11 2.4 2/3 1,000 0.83
b
Discrimination L. humile -3.18 -1.77 4.3 2/3 1,000 0.01
Pavan’s
______________________________________ gland
Discrimination L. niger -1.17 -1.62 0.3 2/3 1,000 0.006
LLr(D) log likelihood-ratio between Deneubourg choice function and psychometric function,
LLro.05 lower 5% confidence bound of simulated log likelihood-ratios,
AAIC Difference between AIC for the Deneubourg choice function and AIC for the psychometric function,
par number of free parameters for calculating the AIC (Deneubourg choice function/psychometric function),
N number of simulations,

p

p-value.
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Article: Modeling shortest path selection of the ant Linepithema humile using psychophysical
theory and realistic parameter values

Wolfhard von Thienen,!” Dirk Metzler,! Volker Witte!

1. Fakultit fiir Biologie, Department Biologie II, Ludwig-Maximilians Universitdt Miinchen
GroBhaderner Str. 2, D-82152 Planegg, Germany
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Telephone: 049-8233-31286

* Corresponding author

S1.  Tests of additional assumptions

The results of the simulations of different path lengths with the PF were of slightly better quality
than the original simulations of Goss et al. (1989), showing an 8% higher spsr80. However, there
was still a discrepancy between experiment and model since the model does not reach the high
spsr80 that occurred in the experiments (experiment: 93%, model PF 72% and model DCF 57%,
see Fig. 5). Thus, real ants exclusively decided for the short path, while the virtual ants did not.
Therefore, we tested additional and speculative assumptions, like simulating a combination of two
pheromones with different diffusion rates, path memory, negative and positive feedback between
pheromone concentration and pheromone deposition, and higher pheromone deposition on the
return path in the initial phase. These additional assumptions did not clearly enhance the decision
rate for the short path. We know from a study on Pharao’s ants that ants involved in foraging show
a significantly higher response to pheromone trails (Jackson and Chaline, 2006). We speculated that
this could also be the case for L. humile and extended the model by adding the assumption that ants
involved in the beginning of foraging have an increased pheromone response. We did so by
increasing the slope four times in the first 100 iterations of the simulations. By doing so, we were
able to nearly exactly reproduce the experimental results. In 89% of the simulations, the short path
was taken by most of the ants, which was significant (p<0.0001, one sided binomial test, n=1000).
The spsr80 was 89%, which was close to the original experimental results of Goss et al. (1989)
(93%). For the DCF, we tested the same assumption by increasing the exponent. This showed the
opposite effect and there was no significant preference of the short path. In 51% of the simulations,
the short path was taken by most of the ants, which was not significant (p=0.38, one sided binomial

test, n=1000). The spsr80 was 51% and the Ipsr80 49%. To test if the cause for this difference


mailto:w@thienen.de
mailto:metzler@bio.lmu.de
mailto:witte@bio.lmu.de

Supplemental material chapter 2

116

between DCF and PF was the same as described in the main article (see 4.4), we repeated the

simulations and forced the first ant to select either the long or the short path. The results show that

the ability to reverse the initial selection of the long path was enforced by the higher responsiveness

in the initial phase. In case of the PF, 79% of the simulations with an initial long path selection were

reversed towards the short path, while in case of the DCF, this did not happen at all (0%) (see Table

ST1).

100%
|

93%
’ 899

g 51%

percentage of experiments
50%
|

0-20% 2040% 40-60% 60-80% 80-100%
spsr80

0%
L

distribution of ants on short path

FIG S1.—Monte Carlo simulations as in
Fig 5 of the main article. The assumption
was made that ants deposit four times
more pheromone on their way back from
food to nest and that in the initial phase
(first 100 iterations) the slope (PF) or
exponent (DCF) of the function (detection
and discrimination) was increased four
times. The x-axis shows the distribution
of ants that chose the short path (n=500).
The y-axis shows the number of
experiments (n=14) or simulations
(n=1000) in percent. Black=original
experimental results modified from Goss
et al. (1989), light grey=simulation of the
PF, dark grey=simulation of the DCF.
Error bars give 95%-binomial confidence
intervals of the simulations. Parameters
for the DCEF: b=1.19,  k=0.02
(discrimination) and 5=0.52, £=0.02
(detection). Parameters for the PF:

y=0.48, /=0, b=1.02 (discrimination) and y=0.43, 1=0.13, b=1.1, tdt;5=0.04 (detection).
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Table ST1

Results of simulations with 1% ant selection fixed

1*" ant Function spsr80

long path PF 79 %
DCF 0%

short path PF 96 %
DCF 100 %

Notes: The simulations of Fig. S1 had been repeated with the first ant forced to select the long path for 1000
simulations. This was repeated for the short path for another 1000 simulations.

S2.  Parameter space
S2.1  Simulations

Simulations were performed as described in the main article. The only difference was that we
systematically varied the discrimination parameters of the functions and repeated 100 simulations
for each parameter combination and calculated the 80%-short path selection rate (spsr80) (see 3.2
in the main article). This rate was 93% in the original experiments of Goss et al. (1989). Table ST2
shows the values defining the simulated parameter space. Simulations were done with different path
lengths as described in the main article. Detection parameters for the PF were kept constant and set
to their fitted values according to Table A2 in the main article. The exponent of the DCF was set to
its fitted value according to table Al in the main article. The parameters k& of the DCF for

discrimination and detection were set equal.

Table ST2

Parameter space

Function Parameter Low High Steps Increment per step
DCF k 0.000575 35.875 80 multiply by 1.15
DCF and PF b 0.125 3.1 120 add 0.025

PF A 0.005 0.4 80 add 0.005

PF and DCF  phpa 0.04 4.8 120 add 0.04

Notes:

DCF = Deneubourg choice function

PF = psychometric function

Pphpa = pheromone units per ant (amount of pheromone an ant releases on the trail at each side)
k = constant

b = exponent (DCF), slope (PF)

A =lapse rate
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S2.2  Results

Results are presented in the figures below. The spsr80 in these figures is encoded as a heat map
ranging from 0% to 100% .

By applying the fitted parameters, the simulations with both functions were not able to reproduce
the experimental results (see Fig. S2A and B). The confidence regions of the DCF and the PF were
positioned in regions with a 80%-short path selection rate (spsr80) well below the experimental
results of Goss et al. (1989).

Assuming that ants modulated pheromone deposition and released four times more pheromone on
their return path than in the opposite direction, the simulations with the PF gave values for the
spsr80 between 80% and 90% over a wide and contiguous region of the parameter space including
some small regions with values >90% (see Fig. S3B). However, only a small fraction of the
confidence region of the PF covered values >80%. The same simulations with the DCF showed that
the short path selection rate exceeded 80% only for smaller and more scattered regions. Only parts
of the confidence region covered values between 60% and 70% (see Fig. S3A). This suggests that
both functions are only able to give an acceptable explanation of the shortest path experiments by
taking into consideration that ants release more pheromone on their return path towards the nest
than in the opposite direction. Simulations with the PF were closer to the experimental results than
simulations with the DCF, but still, both functions could not fully reproduce the exact experimental
results if realistic parameter values were applied.

We made further simulations with the additional assumption that in the initial phase the
exponent/slope is increased four times (see paragraph S1 above). The simulations with the PF
yielded results between 90% and 100% over a vast and contiguous region of the parameter space.
This region included most of the confidence region of the PF parameters (see Fig. S4B). Thus, the
results were consistent with the experimental results of Goss et al. (1989). The same simulations
with the DCF showed that only a small region of the parameter space reached values around 80%
and the whole confidence region lay outside of this region (see Fig. S4A).

Finally, we tested if the simulations are sensible to the scale in which pheromone amounts are
measured (see paragraph 4.7 in the main article). This scale is proportional to the amount of
pheromone a single ant releases at the beginning and end of the trail each time it passes these points
(pheromone unit per ant — phpa). It was arbitrary set to 0.5 pheromone units in our simulations,
giving one pheromone unit per passagelike in the simulations of Goss et al. (1989). The simulations
with the PF (see Fig. S5) displayed a pattern with horizontal layers indicating that the results

remained relative stable over the given pheromone range.
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The same simulations with the DCF and the parameter combination phpa and exponent showed
horizontal patterns only for exponents <1.2, indicating that the results were invariant to the
pheromone scale only for exponents <1.2 (see Fig. S6B). Since the confidence region of the
exponent lay in this region, the simulations were more or less invariant to the pheromone scale
giving values between 45% and 55% for the spsr80. The simulations with the parameter
combination phpa and k showed a high dependency on the pheromone scale (see Fig. S6A). The
results showed a clear pattern with layers parallel to a line representing the proportionality between
k and phpa. This showed that the results of the simulations were invariant to the pheromone scale as

long as k and phpa were kept proportional.
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FIG. S2.—Simulations covering the parameter space of the DCF (A) and the PF (B). 9600 parameter
combinations were simulated, each with 100 simulations. Colors indicate the 80%-short path
selection rate (spsr80) of each parameter combination. The star symbol in the heat map indicates
the result of the original experiments of Goss et al. (1989), which was 93%. The circled plus symbol
represents the position of the fitted parameters, dashed lines show their confidence region (see table
Al and A2 in the main article). The parameter k£ of the DCF was free, thus it covers the whole y-
axis. The black diamond in (A) represents the position of the parameter setting of Goss et al. (1989)
(=20, b=2). The y-axes are scaled logarithmic.
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FIG. S3.—Simulations covering the parameter space of the DCF (A) and the PF (B). Ants deposited
four times more pheromone returning from food to nest than in the opposite direction. 9600
parameter combinations were simulated, each with 100 simulations. Colors indicate the 8§0%-short
path selection rate (spsr80) of each parameter combination. The star symbol in the heat map
indicates the result of the original experiments of Goss et al. (1989), which was 93%. The circled
plus symbol represents the position of the fitted parameters, dashed lines show their confidence
limits (see table A1 and A2 in the main article). The parameter k of the DCF was free, thus it covers
the whole y-axis. The black diamond in (A) represents the position of the parameter setting of Goss
et al. (1989) (4=20, b=2). The y-axes are scaled logarithmic.



126

Supplemental material chapter 2

100

80

60

40

20

=
o
=
=
o]

2.000

0.200

0.020

0.002

exponent

00

80

0

0.400

0.200

40

20

0.100

0.050

ajel asde)

0.025

0.0125

0.00625

slope




Supplemental material chapter 2 127




Supplemental material chapter 2 128

FIG. S4.—Simulations covering the parameter space of the DCF (A) and the PF (B). Ants deposited
four times more pheromone returning from food to nest than in the opposite direction and the
additional assumption was made that the exponent/slope was increased by factor four in the initial
phase of the simulations (first 100 iterations). 9600 parameter combinations were simulated, each
with 100 simulations. Colors indicate the 80%-short path selection rate (spsr80) of each parameter
combination. The star symbol in the heat map indicates the result of the original experiments of
Goss et al. (1989), which was 93%. The circled plus symbol represents the position of the fitted
parameters, dashed lines show their confidence limits (see table A1 and A2 in the main article). The
parameter k£ of the DCF was free, thus it covers the whole y-axis. The black diamond in (A)
represents the position of the parameter setting of Goss et al. (1989) (k=20, b=2). The y-axes are
scaled logarithmic.
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FIG. S5.—Simulations with varying pheromone units per ant (phpa), covering the parameter space
of the PF. In (A), slope and phpa were varied. In (B), lapse rate and phpa were varied. 14400 (A)
and 9600 (B) parameter combinations were simulated, each with 100 simulations. Colors indicate
the 80%-short path selection rate (spsr80) of each parameter combination. The star symbol in the
heat map indicates the result of the original experiments of Goss et al. (1989), which was 93%. The
circled plus symbol represents the position of the fitted parameter and the p/ipa that was used in our
simulations of the main article (0.5), bars show the confidence limits of the fitted parameter
according to table A2 in the main article. Ants deposited four times more pheromone heading from
nest to food than in the opposite direction. Note that horizontal layers indicate that the simulations
were invariant to changes of the pheromone scale.
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FIG. S6.— Simulations with varying pheromone units per ant (phpa), covering the parameter space
of the DCF. In (A), k and phpa were varied. In (B), exponent and phpa were varied. 9600 (A) and
14400 (B) parameter combinations were simulated, each with 100 simulations. Colors indicate the
80%-short path selection rate (spsr80) of each parameter combination. The star symbol in the heat
map indicates the result of the original experiments of Goss et al. (1989), which was 93%. The
circled plus symbol represents the position of the fitted parameter and phpa that was used in our
simulations of the main article (0.5). The vertical line in (A) shows the confidence limits of £. Since
k was a free parameter, this line covers the whole y-axis. Bars in (B) represent the confidence limits
of the exponent according to table A2 in the main article. Ants deposit four times more pheromone
heading from nest to food than in the opposite direction. Along the dotted line in (A), the ratio
between k and phpa is constant. Layers, parallel to this line, indicate that the spsr80 is constant, as
long as k and phpa are kept proportional. orizontal layers in (B) indicate that the simulations were
invariant to changes of the pheromone scale. The axes in (A) and (B) are scaled logarithmic.
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S3.  Calculation of pheromone deposition in directions to and from the food
Table ST3

Streak length and streak distance L. humile, modified from (Aron et al., 1989)

toward nest towards food
Minimum streak length (cm) 0.19-0.03=0.16 0.10-0.01=0.09
Maximum streak length (cm) 0.19+0.03=0.22 0.10+0.01 =0.11
Minimum distance between streaks 0.31-0.09=0.22 0.57-0.07=10.50
Maximum distance between streaks 0.31 +0.09=0.40 0.57+0.07=0.64

The total length of pheromone streaks P/ on a trail of length 77/ can be calculated from these data

using following formula:

Pl =sl-

sl+d ©

Pl = total length of pheromone streaks
Tl = Trail length

sl = average streak length

d = average distance between streaks

This gives following results:

Maximum Pl towards nest Minimum P1 towards food Ratio Maximum

50.0 cm 12.3 cm 4

Minimum P1 towards nest Maximum Pl towards nest Ratio Minimum

28.6 cm 18.0 cm 1.6
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