
ON PULSAR RADIO EMISSION

Ph.D. Thesis in Astronomy

at the Faculty of Physics
of the Ludwig-Maximilians-Universität München

submitted by

Maximilian Imgrund
from Lohr am Main, Germany

Munich, March 2016



First evaluator: Prof. Dr. Harald Lesch
Second evaluator: Prof. Dr. Michael Kramer

Date of oral exam: 14.06.2016



Für meinen lieben Küchen-Pauli



iv

iv



Zusammenfassung

Diese Arbeit möchte einen Beitrag zum Verständnis der Radiostrahlung von Pulsaren leisten.
Pulsare sind Neutronensterne mit einem Radius von etwa 106cm und einer Masse von etwa eins
bis drei Sonnenmassen, die mit einer Periode zwischen Sekunden und Millisekunden rotieren.
Sie besitzen immense Magnetfelder von 108 bis 1013 Gauss. Diese Felder tragen dazu bei, die
Rotationsenergie im Wesentlichen in Dipolstrahlung, Röntgenstrahlung und dem Treiben eines
Windes umzusetzen. Es wird weniger als ein Tausendstel des gesamten Energieverlustes in
Radiostrahlung umgewandelt. Dies geschieht jedoch durch einen kollektiven Plasmaprozess in
kohärenter Weise und auf einer Zeitskala von einer Nanosekunde und weniger.
Da auf dem Gebiet bereits seit fast einem halben Jahrhundert geforscht wird, beschäftigen
wir uns in Kapitel 1 mit den erarbeiteten theoretischen Konzepten und Ideen für einen Strah-
lungsprozess und das Aussehen der sogenannten Magnetosphäre, dem mit Plasma gefüllten
Bereich um einen Neutronenstern, als Ganzes. Wir zeigen auf, dass zwar viele grundlegende
Fragen zur Zufriedenheit geklärt sind, aber insbesondere solche, die den Rahmen für den Ra-
diostrahlprozess bilden, einer großen Unsicherheit unterliegen. Vor allem ist es immer noch
unklar, aus welcher Quelle die Radioemission ihre Energie schöpft. Die frühen Theorien um
die Arbeiten von Goldreich and Julian [1969] und Ruderman and Sutherland [1975] prog-
nostizieren das Auftreten hoher elektrischer Felder, die einen starken elektrischen Strom zu
erzeugen vermögen. Um die Energie für die Radioemission bereit zu stellen, sind hingegen
eher mild relativistische Teilchenenergien und ein geringer Strom geeignet. Wie die Umwand-
lung von Strom in Flussenergie geschieht, ist jedoch unklar. Vielmehr stehen vielen früheren
Modellen neuere Simulationen entgegen, die ebenfalls keinen relativistischen Fluss nahe des
Pulsars vorhersagen.
Wir untersuchen die beobachtete Strahlung und deren Form, insbesondere im Hinblick auf
die aufgezeigten theoretischen Modelle in Kapitel 2. Dort erfahren wir, dass die Radioemis-
sion wahrscheinlich auf extrem kurzen Zeitskalen, vergleichbar mit der inversen Plasmafre-
quenz, erzeugt wird. Wir arbeiten heraus, warum dies hohe Ansprüche an den theoretis-
chen Emissionsprozess stellt und de facto nur noch einen Kandidaten plausibel erscheinen
lässt. Wir schließen, dass wesentliche grundlegende Fragen den Energietransport und die En-
ergiequelle des Strahlprozesses betreffend zum derzeitigen Stand der Theorie unbeantwortet
bleiben. Auch die raumzeitliche Komprimierung der benötigten Energie auf wenige Zentimeter
und Nanosekunden bleibt ungeklärt, insbesondere im Hinblick darauf, dass nur ein Bruchteil
der theoretisch zur Verfügung stehenden Energie umgewandelt wird.
Da die für die Kompression relevanten Fluktuationen auf einer Mesoskala zwischen Nanosekun-
den und Mikro- bis Millisekunden stattfindet, sollte man diese Fluktuationen auch mit Beobach-
tungsdaten nachweisen können. Um dies zukünftig zu ermöglichen, beschließen wir in Kapitel
3 die Statistik des Empfängers der Radiostrahlung genauer zu untersuchen, da dies auch für
andere Bereiche der Pulsarforschung relevant ist.
Die in Kapitel 4 beschriebenen Ergebnisse zeigen, dass die entwickelte Bayes’sche Methode in
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vi Chapter 0. Zusammenfassung

der Tat konventionelle Verfahren zur Parameterextraktion aus gemessenen Daten in Präzission
und Genauigkeit übertreffen kann. So gewichtet die Methode Rotationsphasenmessungen an-
ders als konventionelle Verfahren und gibt den Einzelmessungen eine bessere Fehlerschätzung.
Dies ist von großer Relevanz für die Gravitationswellensuche mit sogenannten Pulsar-Timing-
Arrays, da die Aussagekraft der Gesamtmessung wesentlich vom Verständnis der Genauigkeit
der Einzelmessung abhängt.
Die Arbeit an Einzeldaten mit Bayesschen Methoden zeigt aber auch schnell numerische Gren-
zen auf. So ist es wünschenswert, Analysen unter Einbeziehung aller Einzeldaten zu ermöglichen.
Hierzu wurde eine Softwarebibliothek geschrieben, die gerade nicht benötigte Einzeldaten auf
die Festplatte auslagert und dies auch für große Datenmengen (wesentliche Bruchteile der Fest-
plattenkapazität, und nicht des Arbeitsspeichers) ermöglicht (siehe Kapitel 5). Die Bibliothek
ist so allgemein geschrieben, dass sie auch in anderen datenintensiven Gebieten der Forschung
Anwendung finden kann.
Während wir damit Grundlagen zur Auswertung von Fluktationsmodellen durch Beobachtungs-
daten gelegt haben, nähern wir uns dem Problem von der theoretischen Seite aus in Kapitel 6.
Wir schlagen vor, dass die energetische Kopplung der Radiostrahlung magnetischer Natur sein
könnte, da diese auch in der Physik der Sonnenausbrüche relevant ist. Wir argumentieren
sehr allgemein, dass aufgrund der topologischen Begebenheiten in Pulsarsystemen die Rota-
tion des Neutronensterns magnetische Energie in das System pumpt. Diese Energie kann dann
durch den Zerfall von Strömen wieder freigesetzt werden. Wir zeigen auf, dass bereits die An-
nihilation von Elektronen und Positronen ausreichen könnte, um Radioemission auf nicht zu
vernachlässigenden Energieskalen zu erzeugen. Dieser Mechanismus benötigt keine relativis-
tischen Energien und unterliegt somit nicht dem Problem, hohe kinetische Energien zu fordern.
Wir folgern, dass die bestehenden Lücken in der Theorie des Radioemissionsprozesses in Zukunft
möglicherweise geschlossen werden könnten, wenn wir Beobachtungsdaten statistisch genauer
auswerten und vor Allem am grundlegenden Problem des Energietransportes forschen.
Die vorliegende Arbeit ist auch ein Beispiel dafür, dass man sich der sehr theoretischen Frage
des Emissionsprozess derart nähern kann, dass die Forschungsergebnisse auch anderen Berei-
chen der Forschung direkt nutzen können.
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Summary

This work intends to contribute to the understanding of the radio emission of pulsars. Pulsars
are neutron stars with a radius of about 106cm and a mass of about one to three solar masses,
that rotate with a period between seconds and milliseconds. They exhibit tremendous magnetic
fields of 108 to 1013 Gauss. These fields facilitate the conversion of rotational energy to mainly
dipole radiation, x-ray emission and the pulsar wind. Less than a thousandth of the total energy
loss is being emitted as radio emission. This contribution however is generated by a collective
plasma radiation process that acts coherently on a time scale of nanoseconds and below.
Since the topic has been an active field of research for nearly half a century, we introduce the
resulting theoretical concepts and ideas for an emission process and the appearance of the so
called “magnetosphere”, the plasma filled volume around a pulsar, in Chapter 1. We show
that many basic questions have been answered satisfactorily. Questions concerning the emis-
sion process, however, suffer some uncertainty. Especially the exact energy source of the radio
emission remains unclear. The early works of Goldreich and Julian [1969] and Ruderman and
Sutherland [1975] predict high electric fields to arise that are capable of driving a strong elec-
tric current. To supplement the energy to power the radio emission, rather mildly relativistic
particle energies and a moderate current are favourable. How the system converts current into
flow is unclear. In fact, the earlier theories are opposed by recent simulations that also do not
predict a relativistic flow near the pulsar.
We examine the observed radiation and its form, especially in light of the illustrated models in
Chapter 2. We notice that the radio emission is generated in extremely short time scales, that
are comparable to the inverse of the plasma frequency. We elaborate why this places high de-
mands on the theoretical models leaving in fact only one viable candidate process. We conclude
that profound questions of energy flow and energy source remain unanswered by current the-
ory. Furthermore, the compression of available energy in space and time to a few centimetres
and nanoseconds remains unclear, especially when facing the fact that only a small fraction of
the theoretically available energy is being converted.
Since the fluctuations relevant for the compression of the energy take place on an intermediate
scale of nanoseconds to micro- and milliseconds, it should be possible to detect these observa-
tionally. To facilitate this, we decide to analyse the statistics of the receiver equation of radio
radiation in Chapter 3, also since this is relevant to other topics of pulsar research.
The results presented in Chapter 4 show that the developed Bayesian method excels conven-
tional methods to extract parameters from observation data in both precision and accuracy.
The method for example weights rotation phase measurements differently than conventional
techniques and assigns a more accurate error estimation to single measurements. This is of
great relevance to gravitational wave search with so called “pulsar timing array”, as the valid-
ity of the total measurement is substantially dependent on the understanding of the accuracy
assigned to the single observations.
However, the work on single observation data with Bayesian techniques also exemplifies the
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viii Chapter 0. Summary

numerical limits of this method. It is desirable to enable algorithms to include single observa-
tion data in the analysis. Therefore we developed a runtime library that writes out currently
unneeded data to hard disk, being capable to manage huge data sets (substantial fractions of
the hard disk space, not the main memory) in Chapter 5. This library has been written in a
generic form so that it can be also used in other data-intensive areas of research.
While we thereby lay the foundations to evaluate fluctuation models by observational data, we
approach the problem from theoretical grounds in Chapter 6. We propose that the energetic
coupling of radio emission could be of magnetic origin, as this is also a relevant mechanism in
solar flare physics. We argue in a general way that the rotation of the pulsar pumps energy into
the magnetic field, due to topological reasons. This energy can be released again by current
decay. We show that already the annihilation of electrons and positrons may suffice to generate
radio emission on non-negligible energy scales. This mechanism is not dependent on relativistic
flow and thus does not suffer from the problem of requiring high kinetic particle energies.
We conclude that the existing gaps in the theory of the radio emission process could possibly be
closed in the future, if we analyse observational data statistically more accurate and especially
if we put more effort into understanding the problem of energy transport.
This thesis serves as an example that scientific investigation of a very theoretical question such
as the origin of radio emission can lead to results that may be used directly in other areas of
research.
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CHAPTER 1
The problem of pulsar radio emission

1.1 A brief introduction to pulsars

Pulsars are fast rotating neutron stars possessing large magnetic fields of 108 to 1013 Gauss
and rotation periods of milliseconds to seconds [Manchester et al., 2005]. The first pulsars
were discovered by Hewish et al. [1968] detecting the pulsed radio emission. Besides our
main subject, the radio emission, they are also sources of γ-rays. The energy driving these
emissions is drawn from the rotational energy of these compact (radii of 106cm) objects of
about one to two solar masses. While the millisecond population is expected to be spun up
by mass accretion and thus called recycled [Bhattacharya and van den Heuvel, 1991, Tauris
and van den Heuvel, 2006], periods on the order of a second can be easily explained by a toy
model of angular momentum and energy conservation. Magnetic flux conservation leads to the
high values of the magnetic field, which dominates structure of the surrounding plasma, the
so called magnetosphere. The currents and magnetic fields exert a torque on the neutron star
slowing it down in time and carrying away rotational energy. The radio emission only accounts
for a tiny fraction (< 0.1%) of the total energy dissipated, while most energy is expected to
be lost by dipole radiation and the pulsar wind. However there are rare examples where the
observed output matches the theoretical output measured by the change in rotation period.
One of these examples is the Crab pulsar [Lyne and Graham-Smith, 2012].

1.2 Qualitative estimations on magnetic field and energy

Being the remnant of a supernova explosion, a neutron star still carries a fraction of the angular
momentum of the star. under the assumption that the star lost parts of its mass but only a
negligible amount of angular momentum per mass, we immediately deduce that the angular
momentum for a small lump of mass remaining at the star scales as:

mωprer
2
pre = mωpostr

2
post (1.1)

⇒ ωpost = ωpre
r2
pre

r2
post

(1.2)

which can easily lead from a rotation in a months time to a rotation period of a few milliseconds.
The immense rotational energy of a star of about 1.4 solar masses then amounts to:

Erot = INS
ω2

2
= INS

2π2

P 2
(1.3)

1



2 Chapter 1. The problem of pulsar radio emission

where INS is the moment of inertia of the neutron star and P denotes its period. There exists a
lower limit to the pulsars rotation period as matter on its surface should still be gravitationally
bound. We conclude that in this case the centrifugal force should be still dominated by the
force exerted by gravitation:

ω2r <
GM

r2
NS

⇒ P > 2π

√
r3
NS

GM
(1.4)

Where M denotes the neutron star mass, rNS ≈ 106cm the neutron star radius and G the
gravitational constant. For a neutron star of 1.5M� we derive a critical period Pcrit of about 0.5
milliseconds. Indeed the pulsar population is limited to the millisecond to second period regime
with pulsars aggregating at the second and millisecond regime respectively. When accreting, the
imposed lower limit to the rotation period restricts the transport of rotational momentum. Non-
accreting pulsars slow down to end up in the second regime by the effects of dipole radiation
and pulsar wind energy losses, which we will discuss briefly in the magnetosphere section 1.3
below.
Assuming the star to be a sphere of equally dense matter we can estimate the rotational energy
available to be dissipated by inserting the moment of inertia for a sphere, I = 2

5mr
2:

Erot =
4π2

5
M�

r2
NS

P 2
= 1.6 · 1052erg (1.5)

We can calculate the power dissipated by taking the derivative of the rotational energy w.r.t.
time:

Prot = −4π2INS
Ṗ

P 3
= INSωω̇ (1.6)

This quantity is called spin-down luminosity [Lorimer and Kramer, 2004] and denotes the total
power output of the pulsar that is usually only observable by the slow-down of the period.
The collapse not only spins up the supernova remnant, but also amplifies the magnetic field of
the star. This can be easily seen by assuming magnetic flux conservation over a hemisphere. as
Φ ∝ Br2 = const, we deduce that

Bpost ≈ Bpre
r2
pre

r2
post

(1.7)

enlarging the magnetic field of the progenitor star to values of 108 to 1013 Gauss. As is known
from electrodynamics, a rotating dipole will emit dipole radiation of a strength characterized
by the absolute magnetic moment m, the angle α between the magnetic moment and the spin
axis α and its cyclic frequency ω = 2π 1

P . Following the argumentation of Lorimer and Kramer
[2004] we may estimate the lost power by dipole emission as

Pdip = − 2

3c3
m2ω4 sin2 α (1.8)

Equating this with the spin-down luminosity and solving for the cyclic frequency derivative
yields

ω̇ =
2

3INSc3
m2 sin2 αω3 (1.9)

Reformulating this equation for the frequency derivative ν̇ = ω̇/(2π) we define the braking
index nbr

ν̇ = K · νnb (1.10)

2



1.2. Qualitative estimations on magnetic field and energy 3

with K being defined implicitly by equation 1.9. In principle this index may be calculated by
observing the frequency and its derivative as taking the derivative of (1.10) w.r.t. time and
solving for nbr.

ν̈ = K · nbrνnbr
ν̇

ν

(1.10)⇒ nbr =
νν̈

ν̇2
(1.11)

In practise however, timing errors and changes of the moment of inertia due to e.g. crust quakes
complicate a simple measurement. Typical values of ν̇ amount to 10−15Hz/s. As nbr is expected
to be on the order of unity, we can deduce that ν̈ ≈ ν̇2/ν leading to a change of 10−30Hz/s2

Following the treatment of pulsar braking indices by Johnston and Galloway [1999] this does
not even amount for a whole period in 600 years of observation. Young pulsars exhibit larger
values of ν̇ rendering the measurement possible. They however often show glitching, jumps in
the rotational phase, caused by crust quakes of matter in the neutron star’s outer layer [Shemar
and Lyne, 1996]. Being unpredictable, they introduce errors to the pulsar phase and thus
aggravate the problem of measuring the second derivative of the pulsar frequency. Johnston
and Galloway [1999] have overcome this limit by integrating equation (1.10), however, derive
braking indices that are mostly higher than expected from classical estimations.
It is clear from equation (1.9) that we expect nbr = 3. However measured values deviate
from this value by orders of magnitude giving no clear picture. As we’ve evaluated the dipole
emission only occurring for α > 0, other terms such as the pulsar wind term may alter the
theoretical prediction of nbr. For an example see Contopoulos and Spitkovsky [2006].
To conclude this section, let us calculate the relation between the expected surface magnetic
field and the theoretical energy loss. Inserting the magnetic dipole moment m = Bsurfr

3 of a
sphere of constant density [Jackson, 1998] into (1.9) and solving for Bsurf we deduce that

Bsurf =

√
3ω̇INSc3

2 sin2 αω3r6
NS

=

√
3ω̇mc3

5 sin2 αω3r4
NS

(1.12)

Inserting a period of a second, 1.5 solar masses, α = 90◦ and a relative frequency derivative of
10−15 we arrive at a magnetic field of about 1013 Gauss. At this rate of deceleration, we expect
the object to drain a power of

P = 1.2 · 1030 erg

s
(1.13)

when inserting these numbers in equation (1.6).
We conclude that the period and basic parameters suffice to deduce the approximate energy
loss of the system. It is important to notice that, as we will see, only a small fraction of this
huge energy is being converted into radio radiation.
When the dipole and rotational axis are nearly aligned, dipole radiation is not efficient any
more, as can be seen by equation (1.8) for α approaching zero. In this case, the magnetospheric
energy loss is dominant and magnetospheric models have to explain how the magnetosphere
dissipates energy and exerts a torque onto the neutron star, slowing it down.
To explain the observed braking, the magnetosphere must be able to drain and transport energy
from the pulsar. After describing the magnetosphere models under discussion and possible
radio emission processes in the following sections, we will come back to this basic problem of
energy conversion and transport.
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4 Chapter 1. The problem of pulsar radio emission

1.3 Pulsar magnetosphere models

1.3.1 There is no neutron star in vacuum

Pulsar magnetospheric physics are driven by two basic assumptions. Firstly, there exists a dipole
magnetic field that is possibly misaligned with the rotation vector of the pulsar (oblique rotator
case) and secondly that this magnetic field is filled up with plasma. That there cannot be a
pure vacuum solution is one of the main results of the well-known and often criticized paper
of Goldreich and Julian [1969]. Their work however remains central to the field for the basic
arguments presented. Their work has been preceded phenomenologically [Deutsch, 1955] and
quantitatively [Hones and Bergeson, 1965, Pacini, 1967] but remains outstanding as the first
application of more general principles to the case of a pulsar.
Let us reconsider some of their arguments for the case of an aligned rotator in our symbolic
language. We assume that the stellar matter of the neutron star is an excellent conductor. As
charge carriers are moved through an magnetic field by rotation, they are subject to the Lorentz
force. In a force free equilibrium case, we thus conclude that

~E + (~ω × ~r)× ~B = 0 (1.14)

where ~E is the electric field, ~B the magnetic field, ~ω the axis of rotation and ~r the position
vector of the surface element. We will discuss the validity of this equation further in section
1.3.3. Consequently we may calculate the electric field induced by inserting the magnetic
dipole field. If the neutron star would reside in a vacuum, Laplace’s equation for the external
electrostatic potential has to hold, which results in a potential that reads

Φ =
−Bsurfωr5

ns

3cr3
P2(cos θ) (1.15)

where r, θ, φ denote polar coordinates that are centred at the neutron star’s centre and θ = 0
is along the rotational axis and P2 denotes the Legendre polynomial of second degree. In this
case a surface charge would form in order to cancel the electric field component normal to the
surface. This can happen only if the matter at the star’s surface is bound gravitationally to the
star. However, the arising field component E|| parallel to the magnetic field lines takes values
of

E|| =
~E · ~B
|B|

= −ωBsurfrNS
c

cos3 θ [Lorimer and Kramer, 2004] (1.16)

The minimum surface electric field that surmounts gravity at θ can be calculated equating the
gravitational and electric force and solving for the magnetic field:

GMNSm

r2
NS

= e
ωBsurfrNS

c
(1.17)

Bmin =
G ·MNSmc

r3
NSω

(1.18)

The minimum magnetic field to generate a surface electric field surmounting gravity takes
values of a few ten of Gauss for an electron and about 104 Gauss for a proton, inserting the
exemplary values of MNS = 1.5M� and P = 1s. The values of magnetic fields calculated in
section 1.2 supersede these values by factors of 106 to 1012 rendering binding of this surface
charge to the neutron star’s surface unlikely.
If we now assume the co-rotating magnetosphere to be filled with plasma, the charge density
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1.3. Pulsar magnetosphere models 5

that arises in the co-rotating part of the magnetosphere has been calculated by Goldreich and
Julian as

−e · nGJ :=
−B
Pc

1

1− ( 2πr
Pc )2 sin2 θ

(1.19)

This density is a net charge density and as such the local number density consisting possibly of
charge carriers of both signs may be a multiple of this exemplary density. The minimum num-
ber density that is associated with this charge density above the magnetic pole consequently
amounts to

nGJ =
B

ecP
= 6.9 · 10−2 · B0

P0

(rNS
r

)3 1

cm3
(1.20)

where r is the distance to the neutron star’s centre and this formula omits the angular de-
pendence in equation (1.19). There exists a more general solution discussed by Hones and
Bergeson [1965] extending to the oblique rotator, the more common case in the pulsar popu-
lation for which magnetic and rotation axis are misaligned.
At that densities we may still treat the plasma as effectively collision-less. Having negligible
resistance, the plasma can be treated with ideal magnetohydrodynamics(MHD). The very high
magnetic field strengths let the plasma only flow along the field lines, as movement in other di-
rections would instantaneously be stopped by synchrotron radiation. The synchrotron cooling
time may be estimated as 8 ·108/((B/Gauss)2γ) [Ghisellini, 2013] leading to values of picosec-
onds and well below in our case.
As we will see in the following sections, there exist areas exhibiting finite conductivity, render-
ing the MHD approximation invalid.

1.3.2 The light cylinder

Up to now we have only considered a rigidly co-rotating magnetosphere extending into space.
However, due to inertia the plasma is not able to follow this rotation for large radii from the
axis of rotation as this would imply the plasma to have speeds superseding the speed of light.
As a lump of plasma will pass a distance of 2πrL in P , the limit imposed by staying subluminal
amounts to

rL =
cP

2π
(1.21)

which limits rigid rotation to about 5 to 5000 pulsar radii depending on the period. At that
radius the inertia of the plasma exerts a drag on the magnetic field that lets the field lines
bend against rotation. The lines passing this cylinder are expected to be closed at infinity. This
divides the magnetic field lines of the pulsar in two classes, open field lines that extend beyond
the cylinder and dipole like closed field lines. As sin2 θ/r is constant along a field line for a
dipole magnetic field, following Lorimer and Kramer [2004] we estimate the angle of open
field lines tracking the last closed field line that touches the light cylinder. For this field line we
can deduce its opening angle at one pulsar radius rNS:

sin2 θL
rL

=
1

RL
=

sin2 θP
rNS

⇒ rP ≈ rNS sin θP =

√
2πr3

NS

cP
(1.22)

We depicted qualitatively the magnetic field in Figure 1.1. As the field lines adapt a toroidal
component by being swept back, Ampere’s law tells us that either an electric field in form of a
displacement current arises or an electric current is driven through the magnetic field lines:

~∇× ~B =
1

c
(∂t ~E + 4π~j) (1.23)
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6 Chapter 1. The problem of pulsar radio emission

projection along rotation axis

light cylinder
open field lines

closed field lines

perpendicular to rotation axis

Figure 1.1: Schematic features of the impact of the light cylinder: We depict the idea how the light
cylinder affects the geometry of the pulsar magnetosphere in the aligned rotator case. As the inertia of
the plasma prohibits co-rotation with the pulsar, the field lines are dragged behind the counter-clockwise
rotation of the pulsar. This implies that the field lines crossing the light cylinder are not closed but open
to the surroundings. The toroidal component at the light cylinder implies a current to be drawn from the
surface or a high electric field will be built up by the displacement current.

As is illustrated in Figure 1.1, integrating the rotation of the magnetic field over a slice of the
light cylinder perpendicular to the rotation axis can by Stoke’s theorem be reformed to a line in-
tegral over the light cylinder line. The line integral and thus the left side of Ampere’s law(1.23)
does not vanish, giving rise to a toroidal magnetic field component. The r.h.s. of Ampere’s law
states that there will be a rising electric field or a current is driven through the area.
While the exact impact of this drag or twisting and the associated currents on the magneto-
sphere remains an issue to be solved, the fact that there is such an inevitable current is central
to the understanding of the pulsar magnetosphere problem.
As the neutron star will not change spin direction, the displacement current’s derivative is non-
oscillating and thus has to be zero on the long term evolution. Short term deviations, however,
could produce a static electric field that could possibly remain. As this electric field has a large
component parallel to the magnetic field lines, it is in conflict with the assumption of infinite
conductivity in ideal magnetohydrodynamics. As the inevitable directed current flows along
these possibly existing fields, we arrive treating the pulsar like an electric circuit, an idea that
was followed by e.g. Shibata [1991] and that is being revived supported by numerical simula-
tions.
Before turning to these more recent ideas, let us close with some critical remarks that the light-
cylinder argument introduces to the Goldreich-Julian model. As a current is drawn from the
pulsar, the pulsar will effectively be charged if there is no back-flow onto the surface, an effect
that indeed leaves us with an electric field but no current flowing any more. A large electric
field accelerates charge carriers to high energies. There exist several mechanisms such as e.g.
electron-photon interaction that can lead to creation of electron positron pairs, an effect we
will detail in the next section. These pairs act as a source of plasma that could sustain the

6



1.3. Pulsar magnetosphere models 7

current, even if all charge carriers are drained from the neutron star. If the electric field is
not large enough, electron-positron generation stops and the pulsar indeed acquires a rigidly
rotating magnetosphere, that, however, is contained mostly within the light cylinder. This has
been shown in simulations [Chen and Beloborodov, 2014] and confirmed the expectations of
numerous authors [see e.g. Michel, 2004, and references therein]. As Sturrock [1971] already
suggested, this could explain the so called pulsar death line, after which a pulsar cannot pro-
duce enough pairs to sustain an electron-positron plasma. Then its current ceases and the radio
emission vanishes.

1.3.3 Spark Gap Models and Ideal MHD

Consequently there must necessarily exist non force-free regions of E|| > 0, so called gaps,
in the pulsar magnetosphere where particles are accelerated to high energies [Chen and Be-
loborodov, 2014]. The main idea of the mechanism is that once the particles reach an energy
of 2mec

2, curvature radiation photons may trigger pair production. Secondary pairs arise by
acceleration of the created pairs, triggering a cascade of creation events. Following Chen and
Beloborodov [2014] there have been proposed three gap regions: The polar-cap or inner gap
[Ruderman and Sutherland, 1975, Sturrock, 1971], the slot gap above the polar cap [Arons,
1983, Muslimov and Harding, 2004] and the outer gap [Cheng et al., 1986] to produce pairs.
The exact pair creation location is still an open issue [Grenier and Harding, 2015] and the mul-
tiplicity of the following pair production cascade1 seems to be lower than expected [Timokhin
and Harding, 2015]. There are by now numerous authors that disfavour the inner gap as the
source of pair creation, such as Chen and Beloborodov [2014], Jessner et al. [2001].
Let us motivate the interplay between gaps and current. In vacuo there can exist an electric
field. The presence of plasma, however, comes with consequences. In magnetohydrodynamics
the current flowing is approximated as being dependent on the electric field and the electric
conductivity σ:

~j ∝ σ ~E (1.24)

Multiplying this equation with ~E tells us that a current flow having finite conductivity and thus
resistance, will dissipate an energy density of ~j · ~E. Integrating this power loss over volume
leads to the well-known formula for electric work in a circuit P = U · I. This intrinsically
relates the electric field parallel to the current with dissipating or gaining energy. In ideal
magnetohydrodynamics however we assume the conductivity to be infinite. As the current
is finite, we conclude from (1.24) that the electric field parallel to the current must vanish,
~E|| → 0, leading to a force free plasma. There still can be perpendicular fields that balances
out the magnetic force on the flowing plasma. This is the deeper reason why equation (1.14)
holds, as the Lorentz force on a particle is balanced out and thus effectively equals zero.
If the parallel component of the electric field is not zero, energy is being converted from electric
to kinetic energy or vice versa. In both cases, we may deduce by proportionality of the current
to the field that

P = jE|| ∝ σE2
|| (1.25)

which means that at high conductivity, already a small electric field will inject a lot of power
into the plasma, quickly driving it to high values of γ. This power has to be supplied electrically
or magnetically and converted via a displacement current from the outside to maintain the
electric field. As the force free magnetosphere approximation breaks down at the light cylinder,
it is not clear why the associated power should free itself near the polar cap, as the plasma
is in rigid motion with the magnetic field lines there and locally there can be reached a force

1Number of particles gained by one elementary input electron
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8 Chapter 1. The problem of pulsar radio emission

free equilibrium. A naive guess in the sense of the presented arguments would render the slot
and outer gap as more likely candidates, as typical magnetohydrodynamical resistivity is much
more easily to be produced there. Both inertial effects of the plasma and mixing with an outer
field become important. While reconnection is deemed impossible by the high fields above the
polar cap, it is expected to play a major role in generating the pulsar wind as magnetic fields
drop to moderate values far above the polar cap.
If, however the rotational energy has been converted to kinetic energy somewhere, there must
exist regions where E|| 6= 0 to make the conversion possible. Let us assume for a moment
that all energy that dissipates (equation (1.13)) would have been converted to kinetic energy
somewhere on the way and particle number is conserved. We could argue that if an electron
positron plasma should carry this energy outwards, its kinetic energy flow has to match the
total output:

P ≈ mc2γ
∫
PC

nc dA =
2π2mc

e
r3
NS

Bsurfγ

P 2
(1.26)

where we inserted the area of the polar cap radius according to equation (1.22) and the
Goldreich-Julian density as of equation (1.20). Solving for γ we find

γ =
e

2π2mcr3
NS

P 2P
Bsurf

(1.27)

Which evaluates to γ factors of 105 for our exemplary case of a pulsar with P = 1s and Bsurf =
1013 Gauss. Indeed McCann [2011] find photons with energies pointing to such high γ factors.2

However the authors exclude emission from a radius nearer than 2% of the light cylinder radius
and leave open whether the hard photons have been up-scattered to such high energies by the
inverse Compton effect. We will discuss such high gamma factors w.r.t. radio emission in the
final section of this chapter.
While such high energies are being reached, there exists no straightforward argument why a
pure magnetic coupling should power a stream of plasma (in contrast to a current), except
that magnetic energy is completely dissipated, since higher γ values do not lead to stronger
currents. As charge flow is invariant of energy and only dependent on the number density and
velocity of a current of charges, and finally it is current and not flow that couples to magnetic
fields.
A current of low γ may transport energy from a source to a sink magnetically. As e.g. Spicer
[1982] argue, energy transport in ideal MHD conditions is free of dissipation (if that were not
the case, electric fields would arise due to resistance). Never the less, energy can be transported
along a current by the associated magnetic field. This is simply an expression of Ampere’s law.
Imagine a current flowing through a flux tube. Clearly it carries a magnetic contribution of
~∇ × ~B that is coupled to the whole magnetic energy density available εB = | ~B2|

8π . If this
current decays, a displacement current arises due to magnetic induction and the energy in the
associated magnetic field is released again.
The rotation of a pulsar w.r.t. the surrounding space and the light cylinder argument demand
this rotation to cease with distance from the star. Also in the case of an oblique rotator, the
magnetic field is at least “wound up” around itself as the ideal MHD current freezes in the
magnetic field lines. This process inevitably pumps magnetic energy into the system that has to
be released e.g. by pulsar wind in zones where conductivity takes low enough values to play a
role. We will discuss some of the coupling of the current to the magnetic energy in chapter 6.

2While their work is concerned with the Crab pulsar, a very young pulsar with a 33ms period, we just want to point
out that such high photon energies exist and should be explained by a proper magnetospheric model
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1.3. Pulsar magnetosphere models 9

1.3.4 Current models

Let us sum up the arguments and counter-working mechanisms presented graphically in Figure
1.2. Solving the pulsar magnetosphere problem amounts to resolve the contradictions depicted.
While this work will treat aspects of the problem of coherent radio emission, the background
and framework in which radio emission takes place is the pulsar magnetosphere. Even though
there is a strong separation in both time scale and length scale , the assumptions on the magne-
tosphere set the stage for, and will be the background and boundary conditions of, the problem
of coherent radio emission.
Radio emission as well as energy dissipation (measured as slow-down of rotation frequency
and in terms of γ-radiation) constitute the well-established observables of the problem. We
have investigated the two main theoretical concepts, the vacuum / rotating dipole model and
the light cylinder problem.
The rotating dipole in vacuo would generate high fields that could prevail if no net charges
arise or no currents are flowing. In the case of current flow, deviations from ideal MHD, that
have to be explained by microphysics have to exist to still yield high field values. To maintain
an electron positron plasma, pairs lost due to annihilation and possibly outflow have to be
constantly replaced. This is most easily done using the free energy provided by acceleration
by an electric field. Plasma can also be drawn from the surface of the neutron star by high
field values. Thus while globally a near to ideal MHD treatment is appropriate in presence of a
plasma, deviations have to arise to ensure long-term existence of the magnetosphere.
The light cylinder argument supported by the well established theory of relativity dominates
the large scale shape of the magnetosphere. It motivates that by Ampere’s law there will be
a current flowing and points to another source of free energy; the differential rotation of the
pulsar w.r.t. the surrounding medium. How this essentially magnetic energy will be converted
and transported is not yet totally explained, but, as we have argued, recent observations and
models suppose the energy to be converted forming the pulsar wind and accelerating particles
at the outer gap where the strength of the magnetic field may not be dominant over plasma
dynamics any more. Plasma inertia leads to the opening of some of the magnetic field lines to
the outside, establishing the idea of a constant current flowing to or from the outside.
Thus, while the concept of the rotating dipole implies large fields, the light cylinder implies
large currents to be essential. A correct model will settle somewhere in the middle of both
extremes, as both currents and fields are required by the fundamental processes expected to
take place.
The problem of an open current charging the neutron star has been early on proposed to be
solved by a back-flow along an equatorial current sheet, taking a path along the separatrix of
the magnetic field lines at the intersection of the closed field lines and the light cylinder and
back over the first open field lines. Along a thereby closed circuit, we expect power to be dis-
sipated and induced magnetically for the following reason: As a static potential does not lead
to a perpetual flow but charge separation, a static potential may be present, but is of minor im-
portance to the current. If however energy is dissipated over kinetic channels, then

∫
d~l · ~E 6= 0

along the current and thus the line integral along the current does not vanish. This however
means, that curl ~E does not vanish by virtue of Stoke’s theorem. Maxwell’s equations however
tell us that there needs to be a term ∂t ~B associated with the rotation of the electric field. This
points to a magnetic dynamo coupling. As the rotation of the pulsar always acts in the same
direction, we would by this naive arguments expect the magnetic field strength to rise indefi-
nitely.
However, we assumed the line of the circuit to be constant in shape and closed, an assumption
ultimately driven by the ideal MHD scenario that currents only flow along field lines. As this
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10 Chapter 1. The problem of pulsar radio emission
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1.4. Coherent radio emission 11

cannot be the case for the previously presented arguments of the light cylinder and energy
dissipation, we conclude that the shape of the circuit geometry has to be time variant. We
conclude that there exists magnetic reconnection and complex magnetic dynamo like processes
that complicate the analytical treatment of the pulsar magnetosphere.
Fortunately there has been large progress in numerical simulation of the pulsar magnetosphere
[Chen and Beloborodov, 2014, Contopoulos et al., 1999, Tchekhovskoy et al., 2013, Timokhin,
2006]. In virtually all recent treatments the authors argue that there exists a back-current on
the star, minor electric fields in the interior, but strong fields in the wind zone and at the light
cylinder radius. Both currents and densities are found to agree with the Goldreich Julian value,
however there is some evidence of possibly larger number densities than Goldreich-Julian. If
this is the case we can immediately conclude the presence of a low γ flow, as for relativistic
energies the current is dominated by number density as β → 1. There is also analytical ev-
idence for these low gamma factors to be more realistic [Kunzl et al., 1998, Petrova, 2015].
Numerically this is also a result of [Tchekhovskoy et al., 2013, figure 2].
As we have already noticed, when transporting the energy from spin-down kinetically, particles
should be accelerated to high relativistic speeds. As we are only in a minor relativistic regime,
this might not be the case. We consequently expect that magnetic energy coupling to trans-
port the rotational energy outwards. Therefore the magnetic energy density inside the light
cylinder should exceed the kinetic energy density, a result that can also be seen in Chen and
Beloborodov [2014, Figure 3b] who also show that in case of decelerating rotation and falling
below the limit for pair creation the magnetosphere starves, the current ceases and high static
fields arise. The plasma in this case however is confined within the light cylinder. This last re-
sult resolves the long known contradictions of the proposed existence of only statically charged
pulsar magnetospheres based on the work of Goldreich Julian, a critique raised by e.g. Michel
[2004]. The solution is that of a pulsar with only static charge and no currents and simply is
the solution of a seemingly “dead” pulsar.

1.4 Coherent radio emission

From their discovery onwards, the most striking feature about the radio emission was its bright-
ness. Let us consider Figure 3 of Allen and Horvath [2000] and assume that the luminosities
reported have been emitted thermally by black body emission. In this case we may assign the
so called brightness temperature, the temperature at which a perfect absorber would emit such
a high intensity in the radio range:

Tbb =
Lνc

2

2Aδνν2kB
(1.28)

where Lν is the received radiation over the whole bandwidth, A is the area of the black body,
ν the frequency at which the radiation has been received, δν the receiver bandwidth and kB
the Boltzmann constant. This formula has been taken from Imgrund [2012] and is valid for a
bandwidth that is small w.r.t. the whole spectrum. Inserting the values from Allen and Horvath
[2000], we see that Lν/δν ≈ 2 · 1019 erg

sHz . We may estimate the radiating area A by the found
variability time scale, assuming a coupling with the speed of light. As pulsar radio radiation
shows variations in single pulses of milliseconds and below, we may estimate an area that
is below 4π(c · 1ms)2 = 1.1 · 1016cm2. Assuming an observation frequency of 100 MHz and
inserting Boltzmann’s constant, we find Tbb = 3 · 1023K, a value far too high to correspond to
a real temperature. pointing to a non-thermal and coherent origin of the emission. Total radio
luminosities are assumed to fall in the range of about 1021 to 1028 erg per second, amounting

11



12 Chapter 1. The problem of pulsar radio emission

to a small fraction of the total luminosity calculated by slow-down of the period.
While this never the less enormous power output can be supplied by rotational energy, the time
scale at which this energy is being released was believed to be microseconds. However, recent
observations both of spectral form [Krzeszowski et al., 2014] and intensity [Hankins et al.,
2003] set new limits and give hints that the radio emission may consist of nanosecond shots of
intense radiation.
The problem of coherent emission is two fold. On the one hand there needs to be explained
how a tiny fraction of a large energy flow is being radiated without possibly more energy loss
and on the other hand, that this process is happening very fast and seems to be depleting the
energy available in the region of coherent emission.
Let us estimate the energy of a single shot of radiation from [Hankins et al., 2003] following
their argumentation. If a Lν = 1000Jy pulse has been emitted in t = 2 ns, we would address a
volume of (ct)3 ≈ (60cm)3 to the radiation process. This process is emitting an energy density
of Etot = Lνπr

2
Crabδνt/(ct)

3 ≈ 5 · 1018 erg
cm3 given a receiver bandwidth of δν = 0.5Ghz and the

distance to the examined Crab pulsar, rcrab ≈ 2kpc. Assuming the pulses have been emitted
directly above the polar cap, we estimate a gamma factor per particle of γ = Etot/(nGJmec

2) ≈
3 · 1011. This energy supersedes kinetic supply and wavelike interactions are hard to imagine
at such relativistic masses. Such high energies lead to a plasma frequency below a Hz for
Goldreich-Julian densities, as plasma frequency is proportional to γ−3/2. As virtually all plasma
instabilities couple to the plasma frequency as a scaling factor, this makes emission from a
counter-streaming plasma which’s centre of mass frame is at rest w.r.t. us unlikely. The emission
cannot easily reach GHz. Conversely, the observation of radio emission at frequencies of about
100MHz can place a limit on charge density and γ factors [Kunzl et al., 1998]. Hence we
expect the electric or magnetic coupling to supply the energy to the process, as local kinetic
energy densities does not suffice. If e.g. magnetically supplied, a magnetic field energy density
of B =

√
8πE = 1.1 · 1010 Gauss decaying locally suffices to power the enormous intensities.

The pioneering work of Hankins et al. [2003] has been investigating giant pulses from the Crab
pulsar and it is not clear whether the same mechanism governs ordinary pulsar radiation that
averages to mJy intensities. Recent work on the observed spectrum however Krzeszowski et al.
[2014] expect the radio emission to be omnipresent in the pulsar population to also consist of
nanoshots of radiation. However the intensities received fall under the threshold where the
single shots can be resolved individually. In analogy to the above but with a factor of about
106 smaller intensities, one can conclude that the magnetic fields required to decay are on the
order of 107 Gauss. Estimating the energy density difference by magnetic field decay

∆E ≈ ∆B
dE
dB

=
B2

4π

∆B

B
(1.29)

shows that also a small fraction of a large total magnetic field may suffice to drive such powers
if a process can be identified to convert the magnetic field energy into radio emission. This fact
again points into mechanisms based on current decay, as in solar flare physics [Spicer, 1982].
The current is intimately related to the displacement current via Ampere’s law (equation 1.23)
that provides a way of short-term generation of high field values. Furthermore the current is
balanced by the global magnetic field configuration and thus field energy.
Having posed the challenge of highly coherent emission at large intensities, let us review can-
didate processes that have been proposed to actually produce the radio radiation observed.
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1.5. Overview of candidate processes 13

1.5 Overview of candidate processes

1.5.1 Curvature radiation

Taking the Goldreich-Julian model literally means that, if all plasma has escaped along open
field lines, we are left with the (now disfavoured) inner gap, starting to undergo pair creation in
a very large electric field. We will follow the arguments presented by Ruderman and Sutherland
[1975]. As the authors calculate, the potential drop at the polar cap will be on the order of
∆U = 1014V directly over the polar cap. This consequently leads to acceleration of the charge
carriers to Lorentz factors of 3·106, which is on the order of the energy estimated to be necessary
to carry all spin-down energy kinetically. With synchrotron losses being tremendous, the charge
carriers follow strictly the form of the magnetic field lines. As the curvature of these lines is
growing with distance from the star’s surface, the leptons emit most radiation after having
passed and left the inner gap. The positrons then reach a maximum gamma factor and photon
energy of

γmax = 1.2 · 107B12h4

P0
~ωc =

3

2
γ3
max

~c
ρ

= 5.4 · 104B
3
12h

6
4

ρP 3
0

2mec
2 (1.30)

where h denotes the size of the inner gap and ρ the curvature radius of the field lines. While
the most energetic particles decelerate along the distance of one neutron star radius due to
synchrotron emission, the lower energetic ones prevail and give away their energy at dipole-
dominated parts of the magnetosphere, leading to a curvature radius of ρ ≥ 2

√
r · cP = 1.4 ·

109
√
r8P cm. With now mild Lorentz factors of around 800, the frequency of the curvature

radiation falls into the radio band at GHz frequency. The fraction of total energy radiated
by a single particle is around 10−13 and thus too low to explain coherent radiation. What is
missing here is a mechanism to bunch the charge carriers before they undergo radio radiation,
as for particles bunched below wavelength of the emitted radiation one can treat them as one
coherently radiating particle.
Ruderman and Sutherland however argue that the faster passing population of positrons at high
gamma factors triggered the two stream instability to kick in, an argument that we will highly
discourage in section 1.5.2 and that has been criticized by many authors [see e.g. Melrose,
1992]. This is a well-known problem of theories of radio emission in pulsars: While a viable
radiation process may be quickly found by assuming the energy to be present kinetically, the
extreme coherence can only be explained if the charge carriers exhibit collective behaviour. The
other extreme also occurs in theories, where a priori there is a way of bunching the particles,
but the energy source driving the radiation is missing, too small, or the process is happening
yet too fast to explain the extreme focussing of energy.
Ironically, curvature radiation was found a possibly viable explanation for nearly all but the
coherent radio emission [Lesch et al., 1998] and is widely used in numerical models to explain
part of the energy losses, but not the energetically negligible coherent radio emission. As
discussed in section 1.3.4, the suspected emission region has been conceptually shifted outward
due to missing accelerating fields in the inner magnetosphere.

1.5.2 Maser & plasma instabilities

We will discuss emission from plasma instabilities exemplary for the two-stream instability, a by
now textbook example of a plasma instability which has been named by numerous authors as
the root of more complex processes or the reason for bunching. From both observational and
theoretical constraints it has been clear that a current is flowing through the open field lines
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14 Chapter 1. The problem of pulsar radio emission

and that this current most likely possesses charge carriers of different signs. In this case there
exists a frame of reference where both constituents of the current are counter-streaming
As the distribution function in phase-space is two-peaked (one peak for every sign of charge
carriers), there exists free energy w.r.t. the thermal equilibrium case in which the whole particle
distribution is Maxwellian. This free energy will be converted into electrostatic energy by the
instability.
Assume a small disturbance in the particle density that presents w.l.o.g. a slightly negatively

charged region. By Poisson’s law, this charge density will create an electric field with opposite
signs to each side of it. As the current passes, electrons slow down encountering this potential
and the stream of electrons is getting more dense in that region, while positrons speed up
leading to a decrease of their density in that region. The potential is evidently growing by this
process, the disturbance is amplified and the instability grows. For a cold beam, where the
temperature of both electrons and positrons are assumed to be zero, this instability grows until
all particles are trapped in potentials and the fields are dragged into a triangle like shape, as
depicted in Figure 1.3. We will sum up the results presented by Imgrund [2012].
The linear effect of the relativistic two-stream instability is the amplification of Langmuir waves.
The linear growth rate Γmax, at wave vector kmax for a relativistic positron-electron plasma with
no net charge are

Γmax =
ωp,rel

2
; kmax =

√
3

4

ωp,rel

v0
=

√
3πe2n0

m

√
1

c2γ0(γ2
0 − 1)

(1.31)

where γ0 denotes the Lorentz-factor of the electron-positron stream in the frame where both
have the same velocity. We emphasize that the two stream instability is happening very fast,
exhibiting a growth rate that is half the plasma frequency. In fact, the system has virtually no
time to equilibrate to a global phase in position space, leading to only small wave packets or
even just noise and turbulence. If the two stream instability is slightly suppressed however
- an effect that may be caused e.g. by a small external electric field - the time to develop
phase-coherent disturbances grows and with that the area of synchronous oscillation, and thus
perhaps coherent radiation.
The Two Stream instability features complex physics in the regime of growing temperature or
relaxing the assumption of a symmetric electron and positron density distribution. Thermal
effects [e.g. White, 1985] for example let the instability break down when the thermal energies
become comparable to the relative kinetic energy. This can be understood noticing that the
resonant wavelength is coupled to the relative speed of two parts of the population. If no
frequency dominates, the instability will not form coherent bunches because amplifications at
different wavelengths interact only over one global potential. If now the distribution parts are
interacting at a continuum of available relative speeds, no global wavelength will be dominantly
resonant any more.
There are also intrinsic difficulties at high Lorentz factors: As the growth rate falls down like
γ−3/2 the time to full development of the instability can get very long. Even in a mild electric
field, this may inhibit the instability completely as the resonant wavelength is constantly shifted
by current acceleration by the electric field. As the source of free energy is kinetic, we expect
the radio emission only to be explainable by a population of particles with high Lorentz-factors,
because energy would not suffice otherwise to yield the energy output (see section1.4). This
evidently complicates arguing for the then highly suppressed two stream instability at wrong
wavelengths to act as a source of coherent emission.
As some electric field however should be present to get the most ordered structures and thus
highest coherence, we are left with the need to justify occurrence of the two stream instability
in an unclear scenario, as radio emission by such structures would cause an electric field to rise
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Figure 1.3: Particle in Cell simulation of the Two Stream instability: Phasespace plot of positron
/ electron quasiparticles in violet resp. blue for different timesteps of the simulation Imgrund [2012].
The nearly cold beam is interacting non-linear with the potential generated by itself. If the charge carriers
would have higher temperature, there would be a full build-up of “islands” in phasespace that are depleted
of particles.
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16 Chapter 1. The problem of pulsar radio emission

that effectively blocks the Two Stream instability until the fields have relaxed again. While this
sketch of a radiation process is attractive, realistic calculations are cumbersome.
The basic mechanism of the two stream instability has been extended both in the linear and
non-linear regime leading to maser instabilities and Langmuir solitons. There exists also rich
literature ( e.g. [Bernstein et al., 1957, Schamel, 1971, Schamel and Luque, 2005]) on electron
cavities and phase space holes driven by two stream instability or similar processes. Basically,
there exist stationary potential solutions that do not exhibit the two stream instability.
Extending this idea of static potentials, one finds that the electric current attainable is limited
by space-charge effects, a result that can be derived in a very similar framework to the works
on static potential solutions. Beloborodov [2008] for example argue that such an effect known
as pierce diode [Pierce, 1944] is not only able to chop the current into bunches but also may be
responsible for decreasing conductivity and thus enabling electric fields to build up. Explaining
bunching or at least motivating a high γ background population is vital to provide coherence
and having available an energy reservoir large enough to explain radio emission.

1.5.3 Langmuir solitons

All presented instabilities rely on the basic mechanism of self-amplifying potential differences.
The most sophisticated treatment of this mechanism is based on work done by Zakharov [1972]
and exemplifies the idea of a collapse of Langmuir waves to soliton solutions that present a sta-
ble spatial grid for the high γ background population to emit coherent radio radiation. An
extensive treatment of the idea can be found in Pelletier et al. [1988] and references therein.
We will shortly present their findings in the following.
When a relativistic beam is interacting with a slower plasma population, the aforementioned
mechanisms may take place, or soliton-like solutions will be formed. “Either the unstable
waves react to the beam particle motions, and quasilinear effects arise due to wave particle
interactions, or a physical state of weak turbulence develops due to wave-particle or to wave-
wave-interactions, or else wave saturation occurs through wave-wave interactions and leads
to a state of strong Langmuir turbulence” [Asseo et al., 1990, paraphrasing Goldman [1984]].
There exists a dimensionless parameter w defined as the ratio of Langmuir wave energy density
to thermal energy parting the treatment into three cases, the weak regime w � 1, the strong
regime w < 1 and the ultra strong regime w ≥ 1. In case of the strong regime, the wave
packets’ envelope is unstable leading to the case of the modulational instability. Strong tur-
bulence is an expression of dominant non-linear effects. As such, the characteristic non-linear
time scale τNL = (ωpw)−1 has to fall below the dispersion time scale τL = (ωp∆k2∆k||λ

2
D)−1

for the non-linearities to have an effect, where ∆k and ∆k|| are the total respectively parallel
component of the Langmuir wave vector and λD the Debye length. The authors derive that
w > (λ2

D∆k2
||). There also exist transverse dispersive effects that have to be overcome and thus

w > (λ2
0∆k2

⊥/8π
2) where k⊥ is the perpendicular wave vector of the Langmuir wave and λ0 the

resonant parallel wavelength.
Having fulfilled theses conditions, the ponderomotive effect leads to non-linear contributions
to the dispersion relation of the plasma. This non-linear term can be treated approximatively
around the non-disturbed linear solution which transforms into the non-linear Schrödinger
equation. The one dimensional Schrödinger equation adapts a soliton-like solution in this case.
While the linear evolution of the system would have dispersed an existing wave packet, the
non-linearity balances dispersion by focussing the wave packet. In one dimension there exists
a stable static envelope solution for such a Langmuir wave packet that is similar to a soliton.
Shape and amplitude of this quasi-soliton are coupled. We find the system effectively to be
confined to the one-dimensonal case by a strong magnetic field. When the field weakens, the
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1.5. Overview of candidate processes 17

quantity value
parallel length in Debye lengths 5λD

parallel length in plasma wavelengths 44ωP
perpendicular length in plasma wavelengths 1.34 · 103ωP

parallel temporal width for observer ≈ 10−7s
perpendicular temporal width for observer ≈ 5 · 10−8s

number of solitons 2.6 · 103

Table 1.1: Characteristics of Langmuir microwave substructure: This table from Asseo et al. [1990,
Table 1] shows the characteristic length and time scales of the long-lived soliton substructures that serve
as a background lattice to generate radio emission from an assumed high-γ stream passing over them or
by itself.

soliton is about to decay as dispersive effects in the other spatial dimensions occur.
The length of the wave packet also influences its stability. For long lengths, the soliton is about
to decay as it becomes vulnerable to modulational instability. When the wave packet is too
short and the system has two or more spatial dimensions, the packet will be prone to collapse
as the non-linear term is dominating and will not be balanced by dispersion any more. As the
system may only be treated as effectively one dimensional when the frequencies of the plasma
system are small compared to the cyclotron frequency, there exists effectively a minimum and
maximum packet length in which the plasma may form long-lived solitons in an ordered lattice
also referred to as Langmuir microstructures by Asseo et al. [1990]. The characteristics of such
a lattice can be found in tabular 1.1. The temporal width in all directions nearly match due to
relativistic motion of the structures w.r.t. the observer and settles at tens of nanoseconds.
Pelletier et al. [1988] argue that two types of radiation sources arise; one source is the highly
relativistic background striving over the Langmuir microstructures, the other one is emission by
the structures themselves. In the original paper, the first source was thought to have a negligible
power output w.r.t. the second type, a statement revised in Asseo [1994] by noting that there
might be more phase-coupling in the background plasma present as previously considered. The
Langmuir microstructure itself radiates as the three dimensional solution has also wave-like
components that are assumed to be able to penetrate the surrounding magnetosphere. In this
case, however, it is not clear how the enormous energies can be reached and whether the
electric field built up contains enough energy from the relativistic pump beam to explain the
enormous energy drain. It is important to note that irrespective of the actual channel realized
in reality, the proposed power is ultimately assumed to be fed by the relativistic kinetic flow.

1.5.4 Modulational instability

It has been clear from the beginning on [Goldman, 1984] that the Langmuir microstructures
could be prone to the modulational instability and decay faster than expected. Weatherall
[1998] directly opposes the view presented by Asseo et al. [1990] and explains the radio emis-
sion by conversion of the energy from the Two Stream driven pump wave to radio emission.
The crucial argument criticized is the quasi one dimensional treatment of a still existing elec-
tromagnetic coupling in transverse direction despite the plasma being kinetically trapped to the
field lines. Weatherall [1997] calculates that the non linear plasma dispersion relation leads
to the four-wave interaction typical for a modulational instability. The relation that is to be
fulfilled is ω(~k0 + ~k)− ω(~k0 + ~k)− ω(~k0 − ~k) + ω(~k0) = 0 where the pump mode is effectively
the Two Stream instability / Langmuir soliton collapse mode ~k0 and a transverse perturbation
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18 Chapter 1. The problem of pulsar radio emission
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Figure 1.4: Modulational instability - Momentum conservation: A strong pump wave vector ~k0 de-
cays into two ~k0 ± ~k components that give rise to transversal growing envelope modulations with wave
vector±~k [Weatherall, 1997].

~k. The momentum conservation scheme is depicted in figure 1.4. There exist non linear terms
that interact at much lower frequency than the plasma frequency that then drive the plasma
into transversal instability. Weatherall [1997] describes this process as follows:

1. The wave energy increases exponentially during the growth of a single monochromatic
wave (pump wave) because of an external instability.

2. As the wave amplitude grows, it eventually stimulates the growth of modulational insta-
bilities. Because these transverse modulations grow at the expense of wave energy in the
pump wave, the modulational instability can saturate the pump wave growth.

3. The system reaches a fully developed turbulent state characterized by the rapid formation
of intense localized wave packets [...]. These collapsed wave structures are damped by
the escape of radiation.

4. The system relaxes to a state of lower energy density. In this weakly turbulent state,
when the instability growth time is long, one-dimensional soliton-like structures some-
times emerge.

As with the Langmuir microstructure, the modulational instability also relies on relativistic
transformations to explain the power of the received radiation. Thus, while these plasma phys-
ically very sophisticated and interesting topics can even be measured in the laboratory [e.g.
Antipov et al., 1981], the exact application to the pulsar case in an not yet settled theoretical
model of the magnetosphere is both promising but not sufficiently motivated.

1.6 The radio emission problem

As we have motivated in this chapter, the problem of radio emission connects to the problem
of the magnetospheric background in which emission takes place. The true magnetosphere is
situated somewhere between the extremes of a completely current driven, ideal MHD system
and the strong gap solutions based on the pure Goldreich-Julian model. While this fact has
been known for decades recent numerical simulations of the magnetosphere point more into
the current-dominated regime. This in retrospective weakens the ground-breaking arguments
of Ruderman and Sutherland [1975] that lead to a high γ flow through a low γ region.
All viable candidates for radio emission however highly depend on the existence of a free ki-
netic energy source by the high gamma beam. Simple arguments presented in section 1.4

18



1.6. The radio emission problem 19

corroborate the need for high Lorentz factors to be present in case of a kinetic energy source.
There are however two strong arguments against highly relativistic flow in the radio emission
zone, connected to the high electric fields needed to accelerate the particles to high energies.
Electric fields accelerate particle, but particles with opposite charges will be pulled in oppo-
site directions. This counter-streaming charge carriers then could undergo plasma instabilities.
However, in their inertial frame they exhibit large γ factors leading to a very low plasma fre-
quency, as ωp,rel ∝ γ−3/2. Leaving out the exact details of interaction, this frequency never
the less sets the length scale of any kinetic plasma process. As Goldreich Julian densities above
the polar cap reach the observed radio frequencies for low γ currents, relativistically counter-
streaming plasma exhibits too low frequencies.
Boosting by Lorentz transformation and assuming a high relative speed of the radiating frame
towards the observer may both focus radiative output by beaming effects and convert the ob-
served frequencies to the proper range by the relativistic optical Doppler effect. This also
weakens the problem of relative gamma, as a relativistic plasma flow carrying a small current
exhibits low relative particle energy in the plasma inertial frame. A fast moving plasma inertial
frame (in which the total mass flow is zero) however constitutes a relativistic stream of particles
(and not necessarily high current) in the observer frame. Acceleration by an electric field can
only supply a current but not a relativistic flow, if neutral plasma is accelerated. Thus the need
for an additional mechanism generating flow or converting current into flow arises.
The main candidate process for converting a high γ current into a flow is generation of positron
electron pairs by photon scattering on the stream of electrons, where the momentum of the ini-
tial particle is converted to flow, not current of the generated pairs. This however binds initially
kinetic energy in the form of rest mass and the newly generated particles will be accelerated
themselves by the electric field and are able to carry a current. Having more charge carriers
available, it will be harder to explain that a static accelerating field is maintained.
Numerical simulations both of global models and micro- and meso-physics of cascade processes
(see section1.3.4) indeed support that near the polar cap, only small Lorentz factors occur. Con-
sequently we find the system in a current dominated regime that however is not able to supply
the local kinetic energy density needed to explain radio emission.
Being in a mild relativistic current regime a priori sets plasma length and time scales that fall
into the radio emission’s range of length and time scales, which boils down to the simplest
assumptions possible. The main open question of this regime boils down on pointing out an
energy source for radio emission, as kinetic energy will not suffice.
Physically, the free energy in the magnetosphere clearly stems from magnetic coupling to
plasma currents and overall topology of the plasma being in an dynamical equilibrium due
to the differential rotation of the pulsar w.r.t. the outside. The most striking feature in the
pulsar case is that the light cylinder argument clearly demands a current to be flowing through
the magnetosphere. This fact has been expected by all theoretical models that predict radio
emission and is supported by observations [Kramer et al., 2006a]. As charge and electric cur-
rent is not a function of the Lorentz factor but just the velocity β, increasing the flow instead of
the current will not assist any process aimed at transporting field energy outward. In this light,
a process that leads to tremendous increase of kinetic flow on small scales to reduce magnetic
fields induced by differential rotation seems counter-intuitive. Increasing current instead of
flow would pave a much more balanced way to reach equilibrium as this amounts to straight-
forward coupling in a process demanding a current.
Thus, current and magnetic field are strongly coupled by Ampere’s law. Slowing down or stop-
ping this current leads to high displacement currents due to induction. As outlined in section
1.3.4 the arising electric field will free energy stored in the magnetic field. We argue that this
process could possibly pose as an alternative energy source to the electric fields by global mag-
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20 Chapter 1. The problem of pulsar radio emission

netospheric configuration. We will investigate this relation further in chapter 6.
Even though there exist many proposed radiation mechanisms, neither the magnetospheric
boundary conditions of the process are clear nor the exact flow of energy. Furthermore, for
most processes the back-reaction of the built up field (as radio emission induces a resistivity)
has not been examined properly, even though this may change the underlying physics pro-
cess drastically, especially for high relativistic flow. The observational and numerical results of
the recent years point to an only mildly relativistic current flowing and furthermore elementary
emission time scales that fall below a nanosecond. Both findings question the basic assumptions
made for the most successful attempts to describe radio emission. While these developments
clearly justify investigating the radio emission in more detail, new candidate processes are hard
to find facing the overwhelming plethora of observational constraints to be fulfilled. We will
describe some of the most important observational phenomena in the following chapter.
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CHAPTER 2

The appearance of pulsar radiation

In this chapter we will introduce only the most striking and important observational features
of pulsar radio emission. First observed at MHz frequencies and on variability of seconds,
the frequency range, time resolution and total time span of observations has been increased
tremendously. An overview over the observed phenomena is given in Figure 2.1.
There have been extracted Times of Arrival(ToAs) from the observations of rotation period,
time points of observation where the pulsar has a constant rotation phase w.r.t the line of sight.
Why this is possible will be explained in the following section.
Tracking the received rotation phase enables determination of several orbital parameters, fit-
ting for peculiar motion, for slow-down by dissipation of rotational energy (see chapter1) and
many more. The influence of the interstellar medium (ISM) is imprinted in the signal. It
manifests itself as dispersion measure, DM), turbulence or density fluctuations that cause short
time-scale energy fluctuations of the signal, called scintillations, and apparent movements of
the star on the sky to name just a few.
The variability of the radio signal has been examined on smaller and smaller time-scales, find-
ing nulling, moding and microstructure in the variability of single pulses and ultimately
nanoshots of radiation taking place in so called giant pulses. Recent observations suggest
that all radio emission might consist of those nanoshots. Facing the enormous number of re-
sults in the area of pulsar radio emission, we will focus on processes and phenomena relevant
to the observation and physics of the emission process.
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Figure 2.1: Various pulsar and radio time-scales: Pulsar radio emission is affected by all of the
named processes. To correctly interpret and model the pulsars radiation, one in principle has to master
subsequent stages of the displayed time- and length scale hierarchy. External influences are depicted in
blue.
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Figure 2.2: Single pulses from PSR1133+16 that exhibit typical features of pulsar radio emission:
While the energy of a single pulse as well the form is varying on a pulse to pulse basis, there exists a
characteristic average envelope when integrating over several pulses.

2.1 Single pulses

We have encountered the periodicity of the emission up to this point multiple times in this
thesis. Investigating single pulses as depicted in Figure 2.2 however makes clear, that the
proclaimed exact measurement of e.g. the period down to more than ten digits cannot be
accounted to observations of single pulses. Single pulses from a pulsar show high variability
in form and intensity. It is only the integration over many of those pulses, that subsequently
leads to a consistent average pulse named profile. This average pulse exhibits less noise both
in the sense of averaging out receiver noise and fluctuations of the individual pulses and can
be compared to a reference profile called a template. By analysing the phase shift of the ob-
servation to the reference profile, the pulsar rotation phase can be tracked over many distinct
observations called epochs. These phase-over-time measurements can be related to each other
with a rotation model describing the physics of the neutron star itself (angle between rotation-
and magnetic axis, period, period derivatives) and the surrounding (possibly orbit for binary
and n-ary systems, relative position and movement to earth, ISM influences, relativistic contri-
butions). Fitting the parameters to the ToAs constitutes the process of pulsar timing, in the
best case leading to a phase connected solution, a situation where not only the pulse phase of
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2.2. Polarisation and beam geometry 23

each pulse is known, but also its number, counting every physically happening rotation over all
observations. It is this model and its parameters that can be determined to very high accuracy.
A single pulse however clearly cannot provide very exact phase information. One of the puzzles
this thesis seeks out to contribute to amounts to finding ways of extracting statistically accurate
information out of these highly noisy and fluctuating elementary observations. This was done
to develop new methods that may be able to fit parameters of emission models.
As an example, extracting ToAs and their significance out of single pulses or few pulse inte-
grations will be examined with a novel method in Chapter 4. There are many pulsars that
are not bright enough to resolve their single pulses. In this case one can still integrate over a
long observation time and find an average profile, but the single pulse stays hidden in receiver
and antenna noise. With growing sensitivity of instrumentation and for very luminous pulsars
however, we are able to receive the single pulse fluctuations.
The more bright these fluctuations are, the more they cause an effect called ’phase jitter’[Keane,
2013], a random movement of total observation phase. This jitter can dominate the believed
accuracy of the observation by ToA generation. We will discuss the mathematical details of this
jitter in Chapter 4. Its origin is the modulation of fluctuations that constitute the actual radio
emission by an envelope function that represents the rigidly corotating magnetospheric condi-
tions. Demodulating this signal gives insights into the actually happening physical process on
mesoscopic scale, enlightening local physics of the emission region and not the magnetospheric
model. The mathematical model presented in this thesis is only a first step into this direction
due to the difficulties in both analytical treatment and numerical evaluation of the data at hand.
Future generation radio telescopes will have a higher sensitivity and thus be more likely limited
by phase jitter than receiver noise [Liu et al., 2012]. While classical techniques of integration
sufficed to mitigate the jitter effect, understanding the meso-scale fluctuations in the radio
emission process will most probably play a large role in understanding and minimizing timing
errors. Let us investigate slightly larger integration times in the following.

2.2 Polarisation and beam geometry

Integrating the pulsar’s single pulses over sufficient times to yield a stable profile naturally
leads to the question of profile stability. Profile stability is the main assumption underlying the
confidence of pulsar timing, as two different profiles cannot be compared in phase [Liu et al.,
2012]. Most profiles seem to be stable enough or at least exhibit only a small set of profile
variations. Exceptions are young pulsars which sometimes undergo jumps in their rotation fre-
quency (glitching) due to changes in the neutron star’s crust. These events have also been
associated with profile shape changes[Lyne et al., 2010].
As the charge carriers movement is confined to be parallel to the magnetic field, pulsar ra-
dio emission is highly polarized. Recent results on polarisation can be found in Noutsos et al.
[2015] and references therein. We will loosely follow some of their arguments. Ruderman and
Sutherland [1975] proposed that if radio emission is connected to the plasma frequency, the
frequency of observation corresponds with the radius of emission from the pulsar, as frequency
scales with plasma density. This idea has been coined radius to frequency mapping (RFM).
As higher densities lead to higher plasma frequencies, the assumed emission height of high fre-
quency components is at smaller heights compared to the lower frequencies. Thus, for higher
frequencies we expect propagation effects through the magnetosphere to play a larger role,
possibly leading to the observed depolarization at high frequencies. There are however works
opposing RFM [Weltevrede and Johnston, 2008, and references therein] as height estimations
by independent methods yield no consistent results.
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Figure 2.3: Toy model for position angle: Drawn is an ideal very small cut through the beam cone.
The coloured lines are the paths that the line of sight takes through the emission region when the pul-
sar’s magnetic axis is perpendicular to the rotation axis. The projection of the magnetic field lines onto
the plane perpendicular to the line of sight are depicted in black. The right panel shows the angle of
polarisation over position. Note that the arguments follow by rotational symmetry of the emission region.

The angle of polarisation of the linear emission is dependent on magnetic field line direction.
Hence the projection of the magnetic field lines w.r.t. the plane perpendicular to the observer’s
line of sight is the relevant quantity to determine polarisation direction. As can be seen from
Figure 2.3, a naive model of the beam cone and emission region shows that the angle of polari-
sation is expected to rotate when the line of sight sweeps over the emission cone. While qualita-
tively this picture is correct, quantitative observations will be dependent on further parameters
like the angle between rotational and magnetic field axis and detect further components and
deviations from the idealization chosen [see e.g. Noutsos et al., 2015, Figure 5].
From these qualitative arguments it becomes clear that a proper mapping of the rotation phase
data along the line of sight gives insights into polarisation and intensity data of the emission
region. However these data must always be taken with care as propagation effects may change
the picture drastically [Arons and Barnard, 1986, Barnard and Arons, 1986, Blaskiewicz et al.,
1991, Wang et al., 2010].
There are cases in which the line of sight slowly moves perpendicular to its projected path over
the emission zone. This in principle makes a two-dimensional examination of the emission
zone possible, assuming stability of the emission zone over longer times than the movement of
the line of sight takes. One such example are binary systems or free precession [Stairs et al.,
2000]. In this case, the change of the line of sight has a systematic effect on the measured
profile shapes and polarisations.
Weisberg and Taylor [2002] for example use this effect to map the changing cuts of the radi-
ation cone in two dimensions to generate an image of the cone. They deduce an hour-glass
shaped beam to be present in the examined system. Comparing the expectancies of the theory
of propagation, polarization and intensity with observational results not yet leads to a consis-
tent picture but supports various geometrical possibilities and locations of the emission region.
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Figure 2.4: Simulation of drifting subpulses: Many pulsars show subpulse intensity variations that
move over the envelope in the course of subsequent pulsar pulses. Note that there can be more than one
subpulse in a single pulse. The time P2 characterizes the distance between single subbeams, while P3 is
related to the whole time it takes for one beam to rotate around the emission zone (see section 2.3).

2.3 Subpulses and subpulse drift

While we have treated the single pulse to be completely random up to this point, there exist
some clearly systematic phenomena in the variations of single pulses. Subpulse drift as shown
in Figure 2.4 for example is observed in about half the pulsar population [Weltevrede et al.,
2006b] and was also observed in millisecond pulsars [Edwards and Stappers, 2003]. There
exist maxima in single pulses called subpulses that drift slowly over the whole envelope in sub-
sequent pulses. As is evident from the average pulse below the figure, this phenomenon can
only be observed when resolving single- or few pulses or folding the single pulses with the cor-
rect period. Consequently we expect new results on the phenomenon since many pulsars could
not be observed on the single pulse level as their intensity is too faint. There are authors[e.g.
Weltevrede et al., 2006b] who suspect the phenomenon to be present in virtually all pulsars,
but may not be observable in the single pulses as the different subpulses may overlap. The phe-
nomenon has been early described observationally by [Backer, 1973, Drake and Craft, 1968]
and a possible explanation has been given in the framework of spark-gap models by Ruderman
and Sutherland [1975]. They describe the inner gap giving rise to sparks that drive coherent
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26 Chapter 2. The appearance of pulsar radiation

emission: Before assuming an inner gap, the strength of the electric field tangent to the polar
cap has been given by equation (1.14). Due to the inner gap however, there is an additional
term arising, that can be deduced by noticing that near the polar cap, closed line integrals over
the electric field amounts to zero. Additionally to the vacuum terms, there arises a term caused
by the inner gap being present. Imagine a line integral taking a path starting at half the polar
cap radius, continuing along the magnetic field lines over the gap, then perpendicular to the
border of the open field line region, back to the surface of the star and then closing over the
polar cap again [compare Ruderman and Sutherland, 1975, Figure 4]. Besides the vacuum
electric field, only two of four sides of the path amount to non-zero. As the path in the stellar
surface is trivially zero and ~E · ~B = 0 at the open field line’s boundary, the only non-trivial line
integral parts left are the one from the surface over the gap region and the second segment to
the border of the open field lines.
The line integral over the gap yields the potential drop as

∫
d~s · ~E = ∆V . Since the sum how-

ever amounts to zero, the part between upper spark border and closed field lines must deviate
from the vacuum value. This is achieved by the rotation deviating from the vacuum value. As
the authors conclude this change in velocity amounts to

δv =
∆V

BsurfrP
c (2.1)

which can be evaluated in the inner spark gap model to P̂3

P ≈ 5.6B12/P
2
0 s and comparing this

velocity with the circumference of the polar cap leads to the period

P̂3 = 2π
Bsurfr

2
p

∆V c
(2.2)

If we have n such sparks present, P3 from Figure 2.4 relates to P̂3 as P3 ≈ nP̂3. P2 is then
simply the distance from spark to spark when compared to the whole rotation period P . These
sparks are arranged in a beam carousel that slowly precesses around the magnetic field axis
and thus periodically wander through the line of sight. While there is also contrary evidence
like subpulse drift in both directions [see e.g. Weltevrede et al., 2006a, for a recent review],
this model is still very popular.
Careful analysis of the single pulses can parametrize a projection from the time series to the
beam carousel rest frame that is rotating under the line of sight by precession. Deshpande and
Rankin [1999, Figure 5] integrate the projections of the lines of sight to the co-rotating beam
carousel to generate an impressive map of the radio emission zone. This of course assumes that
the emission regions themselves do not undergo drastic changes during the time of integration.

2.4 Moding and nulling

A dramatic change however can be detected when the profile shape is varying between differ-
ent discrete shapes, a process called moding or the radio emission ceases completely, called
nulling. The phenomenon has been described first by Backer [1970]. While nulling can be
ascribed to single pulses, moding and statistics of it are only evident over several pulses as
mode changes might be minuscule. The question of when to assign a pulse to a certain mode
is still not clear. While the time-scales for moding are evident for many pulsars, the exact time
point of change from one mode to the other is not. A novel mechanism for detecting nulling
and assigning single pulses to certain modes is proposed in Chapter 4.
The question is of some importance to the understanding of the emission mechanism. On one
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2.5. Interstellar medium effects 27

Figure 2.5: Exemplary frequency over phase plot: This plot shows a heatmap of the intensity received
from PSR 1713+0747, that has been time integrated. While the right panel has been corrected for
dispersion measure, the left panel shows the data before dispersion. The white horizontal stripes are
produced by the receiver while the pulsars’ signal can be seen as black curved line expressing the non-
linear dependence of dispersion on frequency in the left panel. When corrected for the dispersion measure,
the signal is synchronous over all frequencies, and can be seen as the vertical line in the right panel.

hand, sub-pulse drift is shown to be systematically affected by mode changes at least for some
pulsars [Fowler et al., 1981, Taylor et al., 1975]. On the other hand nulling has been identified
to correlate with changes in the spin-down rate[Kramer et al., 2006a]. Both facts point to the
mechanism being related to global states of the magnetosphere. If mode switching is in fact
related to changes in the magnetosphere, rapidity and fluctuation spectrum could prove valu-
able determining the associated length and time-scales and finally the mechanisms generating
this complex interplay. Cordes [2013] discuss the statistics and systematics of random mode
changes and also stress that assigning correct modes to pulses at hand is vital to these analyses.

2.5 Interstellar medium effects

2.5.1 Refractive index, Dispersion Measure and Rotation Measure

Up to now we have assumed the signal from a pulsar to arrive at earth in the actual condition
it has been emitted at the pulsar. This is not the case due to atmospheric effects and the ISM.
In the following we will visit the most important effects for pulsar radio astronomy and discuss
how to correct for them.
ISM effects usually are strongly frequency dependent and thus can be examined using frequency
and time resolved intensity maps. The main cause why the ISM affects radio radiation is the
change of the refractive index induced by the presence of free charge carriers. As the electron
is the dominating light particle, it is the (in this regime) non-relativistic plasma frequency as-
sociated with the electron density that dominates the calculation of the refractive index. The
interaction of the charge carriers with the electromagnetic waves changes the electric perme-
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28 Chapter 2. The appearance of pulsar radiation

ability η(ω) for waves of frequency ω as [Jackson, 1998]

ε

ε0
= 1−

ω2
p

ω2
, ωp =

√
4πne2

m
(2.3)

The refractive index η then amounts to

η = <
(√

µε

µ0ε0

)
=

√
1−

ω2
p

ω2
, ω > ωp (2.4)

where we neglected magnetic permeability and ω must exceed the plasma density to propagate.
At typical ISM densities of n = 0.01cm−3 to 0.2cm−3[see e.g. Taylor and Cordes, 1993] this
amounts to frequencies of 1 − 10kHz that are easily surmounted by the frequencies at which
pulsars are observed. It is the dependence of the refractive index on local plasma density that
causes most of the ISM effects. As the refractive index relates to the group velocity vG of a
plasma wave as vG = cη, the propagation time of the pulsars signal to earth at distance d will
be delayed frequency dependent defining the dispersion measure

∆t =

∫ d

0

dl

(
1

vG
− 1

c

)
ω�ωp

=

∫ d

0

dl

(
1

c

(
1 +

ω2
p

2ω2

)
− 1

c

)
=

e2

2πmc︸ ︷︷ ︸
=:D

1

f2

∫ d

0

dln(l) (2.5)

where f is the observation frequency and D ≈ 4.1 · 103MHz2pc−1cm3s. We now may define∫ d
0

dln(l) =: DM , the dispersion measure. As the delay is proportional to the inverse square
of the frequency, instantaneously emitted signals will be delayed frequency-dependent. Clear
evidence for this can be seen in Figure 2.5 in the left panel, as the pulsar’s pulse wraps around
the pulsar period due to the missing dispersion measure correction. The dispersion measure
can be used to estimate the distance to a given pulsar by assuming a constant density to be
present or using more sophisticated models of ISM densities [e.g. Greiner et al., 2015, Taylor
and Cordes, 1993].
When treating a signal s(ω) in Fourier space, we can also represent the dispersion measure as

linear operator T (ω′, ω) = δ(ω−ω′)exp
[
i
2πω2

p

ω D ·DM
]

working on the signal to yield s′(ω), the
received signal:

s′(ω′) =

∫
dωT (ω′, ω)s(ω) (2.6)

Most ISM influences may be translated into this operator language that in principle ad hoc
gives an inversion of the effect by inverting the associated operator, if possible. Another exam-
ple of this is the Faraday effect leading to a quantity called rotation measure. In the formalism
described above this can be formulated introducing another term into equation (2.3) that dis-
tinguishes between different circular polarisation states:

ε

ε0
= 1−

ω2
p

ω2
∓

2πω2
pωB

ω3
, ωB =

eB||

mc
(2.7)

where ωB is the cyclotron angular frequency. Following [Lorimer and Kramer, 2004] the ab-
solute time corrections implied by this term are on nanosecond time-scales and below. While
absolute delays between polarisations are minuscule, the relative phase delay between the two
circular polarisations are not negligible since the delay causes a phase difference of

∆Φ = 2πω∆tB =
e3

πm2c2f2

∫ d

0

dln(l)B||(l) = 2λ2 · e3

2πm2c4

∫ d

0

dln(l)B||(l)︸ ︷︷ ︸
=:RM

(2.8)
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where λ is the observed wavelength and ∆tB is derived analogous to ∆t. The rotation measure
(RM) then again is the measure of the influence of the ISM without the frequency/wavelength
dependence. Because RM ∝

∫
dB||n and DM ∝

∫
dn we may divide the rotation measure by

the dispersion measure to find the density weighted average magnetic field component along
the line of sight. Evaluating the numbers yield

〈B||〉 = 1.23µG

(
RM

rad m−2

)(
DM

cm−3pc

)−1

(2.9)

Whereas for pulsar observation, dispersion measure and rotation measure pose an inevitable
source of noise and disinformation, it becomes clear that the radio signals received may be of
value investigating ISM structures. Fitting for example for dispersion measure changes is on
one hand vital for precision timing, on the other hand it can give insights on ISM turbulence.

2.5.2 Scintillation and scattering

While first observed by Lyne and Rickett [1968], Scheuer [1968] introduced the well known
model for scintillation and scattering based on a scattering screen half-way to the pulsar. This
approximation may be made as the total scattering angle is “less than 10−5 radians for interplan-
etary and interstellar scintillation” [Rickett, 1977] and thus very small. We may approximate
the refractive index:

η ≈ 1−
ω2
p

2ω2
= 1− e2

2πme

n

f2
, ω � ωp (2.10)

This leads to a linear dependence on local density fluctuations. Assuming fluctuations on the
way to earth, the wave vector k is fluctuating:

∆k = ∆

(
2π

c
ηf

)
=

e2

mc

∆n

f
(2.11)

Assuming the spatial extent of the fluctuation to be a, we find the relative phase shift

δΦ ≈ ∆ka =
e2

mc

∆na

f
(2.12)

under the assumption that the fluctuation has equal extend in both dimensions, as a in the
numerator is the extension along the line of sight and a in the denominator the transverse
extension. Along the line of sight, the ray is passing through d/a such random fluctuations,
amounting to a total phase fluctuation of

Φ ≈
√
d

a
δΦ =

e2

mc

√
da∆n

f
(2.13)

We may now assume this fluctuation to happen at a screen midway between pulsar and earth
that has an extend of a. In this case, the angle of diffraction α can be calculated as

α ≈ Φ

ka
=

Φc

2πaf
=

e2

2πm

√
d

a

∆n

f2
(2.14)

The cone opening angle seen by the observer however is only the half of α as the light rays
falling onto the screen have to be bent twice this angle to form a symmetric path to the observer.
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30 Chapter 2. The appearance of pulsar radiation

We thus conclude that the observer sees the light coming from the pulsar as if it came from a
diffusely radiating source of Φobs = α/2 extent. Since the distance the light travels is longer for
rays diffracted under larger angles, an initially sharp pulse will have late arriving components.
The time a ray virtually scattered midway at an angle Φ′obs takes to reach earth amounts to

t =
d

c

√
1 + Φ′2obs

Φ′obs�1
≈ d

c

(
1 +

Φ′2obs
2

)
(2.15)

Thus the time delay scales with the observing angle to the square. Due to rotation symmetry
Φ′obs is distributed as

I(Φ′obs) ∝ 2πexp

[
− 1

2Φ2obs
Φ′2obs

]
Φ′obsdΦ′obs (2.16)

It follows from dt ∝ 2ΦdΦ that

I(∆t) ∝ I(Φ′obs(t)) = πexp
[
− c

2dΦ2
obs︸ ︷︷ ︸

:=1/τs

t
]

(2.17)

Where the time-scale of scattering delay is

τs =
2dΦ2

obs

c
=

e4

8π2m2c

d2

2a

δn

f4
(2.18)

This result is in accordance with Cordes [2002] and Spangler [1988]1. As scattering does not
occur at one length scale a only, the true delay seen is the total effect of the whole turbulent
spectrum. Filling out the details is non-trivial. We for example have not distinguish between
weak and strong regimes of turbulence and we assumed the scattering disk to be large w.r.t.
the fluctuation scale. This describes the Diffractive Interstellar Scintillation (DISS) regime.
There also exists a theory for the Refractive Interstellar Scintillation (RISS) regime, in which
fluctuations larger than the scattering disk parameter are dominant. As length scales are big-
ger, RISS scintillations happen on larger time-scales than DISS scintillations and slowly blend
over into DM variations. For an overview on the effect of fluctuations on pulsar timing, see
Stinebring [2013] and references therein.
As the scattering disk’s radius is proportional to f−2 and the temporal broadening scales asf−4

it is immediately evident that higher frequencies will arrive way more unaffected from scintil-
lation effects. The dependency possibly could also be used to investigate the ISM as the volume
probed by the scattering delay varies with frequency and thus can probe for density fluctuations
on different scales. This additional information however complicates corrections of scintillation
effects.
As all ISM effects lead to additional correlations of the signal in time and frequency, analysis of
the time-correlation function has been a valuable measure for correlation strength and struc-
ture. There has been made promising progress in understanding scintillation effects due to
new measurement techniques such as cyclic spectroscopy [Demorest, 2011], a technique that
exploits the quasi-periodicity of pulsar signals to measure ISM effects directly. The key point
of the method is to Fourier-transform the correlations from time domain to frequency domain
dependent on phase lag and by doing that to de-modulate ISM effects and pulsar envelope
function.
While the interstellar medium inevitably plays an obfuscating role in pulsar observation, it also
poses a rich source of additional information that is both not yet fully understood and used.

1The derivation loosely follows Lorimer and Kramer [2004] correcting some minor inconsistencies
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2.6. From single pulses to nanoshots 31

2.6 From single pulses to nanoshots

Reminding ourself of Figure 2.1, we see that ISM effects, pulse jitter, subpulse drift, moding and
nulling have been the effects dominating the temporal modulation of the single pulses besides
the pulse envelope. While all of these originate from external factors and not the actual radio
emission process, their presence partly masks or smears underlying effects.
As understanding of primary effects and disturbances as well as sensitivity and bandwidth in-
creased, observations unravelled smaller and smaller elementary time-scales for the radiation
to occur. Observations like Hankins and Eilek [2007], Hankins et al. [2003], Jessner et al.
[2010] show that the elementary process may happen below the nanosecond level. While
these extreme outbursts on such time-scales have only been resolved in giant pulses, the noise
present and temporal resolution possible may hide that perhaps all emission takes place on that
time-scales. Being individually unresolved, nanoshots of radiation still expose a certain spec-
trum that has been suggested to fit observational constraints [Krzeszowski et al., 2014, Löhmer
et al., 2008].
Following just their simplest argument, nano-shots can be described by a potential that de-
cays as φ(t) = φ0exp [−t/τe]. Superposing those elementary interactions randomly leads to a
spectrum given by

S(ω) =
S0

1 + ω2τ2
e

(2.19)

While the whole form fitted is a bit more complex, the characteristic plateau that decays to
higher frequencies is preserved. The potential function can also be changed slightly, adding a
factor linear to time, without the spectrum being altered dramatically. This renders discerning
between different models difficult, but may be possible collecting more accurate data in the
future. The reduced χ2 values also still leave room for model variation while showing clear
evidence for a sub-nanosecond decay.
Hankins et al. [2003] argues that of all known emission process candidates only the decay
of plasma turbulence [Weatherall, 1998] is capable of explaining an emission time-scale of
≈ 2ns. In light of more recent results suggesting an emission in < 0.4ns [Hankins and Eilek,
2007, Löhmer et al., 2008] even this extreme model is at its limit. We agree with Hankins
et al. [2009] that even though there exists one candidate mechanism that reproduces the time-
scale, there has to be put more effort in explaining the coupling of the emission process to the
magnetosphere and uncover the details of emission.
Hence in light of observations the gap between theory and the system becomes clear as two
main questions:

• What is the physics on the scales between nanoshots and microsecond variability?

• How is energy compressed to such small temporal and spatial dimensions before being
converted to radio emission?

Facing this spread of theory and observation, we decided to work on statistical behaviour of the
receiver equation (see Chapter 4) and algorithms for transparently accessing large datasets (see
Chapter 5). This was done to ameliorate analysis of single pulse data and develop a framework
in which the envelope and other modulations of single pulses can possibly be removed to reveal
a more unbiased view on the micro-structure and its variability. The second question was
addressed from the theoretical side, proposing magnetic field energy to play a larger role in
generation of radio emission (see Chapter 6).

31



32 Chapter 2. The appearance of pulsar radiation

32



CHAPTER 3
Problem treatment

In the previous chapters we have described several basic problems of pulsar radio radiation.
It becomes evident that, despite many promising attempts, key issues are not solved to satis-
faction. Facing half a century worth of papers, theses and books, it is hard to contribute new
ideas [Michel, 2004]. To maximise possible usefulness to the whole field instead of the emis-
sion process problem alone, we decided to contribute mainly by methodological progress in the
intersection of three problems (See also Chapters 4 and 5):

• Statistical properties of the receiver equation

• Noise in pulsar timing

• Handling large datasets in Bayesian context

The treatment of these related problems seeks out to enable analysis of single- and subpulse
data to find more signatures of the emission process barely visible and buried in noise. From
a more general perspective, we investigated a possible energy source for radio emission (see
Chapter 6) by investigating electron-positron annihilation in the context of a large current and
magnetic field.
Before the “big picture” will be dissolved into the details of the following chapters, let us lay
out a few general remarks about the problem and methods that could be useful to solve it.
For decades, integrating and thus averaging the data received has been proven necessary and
useful to generate stable profiles. The procedure is fast, easy to understand, reliable and data-
reducing. Hence, why would one, instead of integrating, develop a much more complex method
that is based on single pulse data and takes a long time to compute?
We will answer this legitimate question in the following three sections.

3.1 Integration equals losing information

Over the years, many of the observational features (see chapter 2) were discovered by a better
temporal or frequency resolution. Before having that resolution, the phenomena were covered
by integration of the data. This becomes evident e.g. by looking at the energy fluctuations and
integrated profile of the drifting subpulses in Figure 2.4. There is no trace of the subpulse drift
left in the summation of the pulses while it cannot be ignored from the intensity plot of single
pulses. Thus, integration is a great tool to mitigate random influences such as noise from an
observation, but should be handled with care as we possibly lose valuable information when

33



34 Chapter 3. Problem treatment

inversioninversion
averaging

P(s|m, p)p
P(d|s) =

∫
dnP(d, n|s)

noise

parameters signal

+

model

data

Figure 3.1: Bayesian vs. classical parameter estimation: A model with parameters imprints its phys-
ical content in a signal that is then received as data with noise. Classical estimators try to invert the
relationships to the parameter and propagate the noise as uncertainty (error bars). Bayesian methods
do not invert the relationship but rely on determining the remaining plausibility that a certain parameter
takes a certain value, given the data. See also section 3.2.

blindly doing that.
By integrating data, we assume a certain way to think about the data to be true. It is merely
a psychological reason, that the seemingly smooth and noise-free profile we get by integration
gives us the best estimation on pulsar timing, a fact we will highly question in the next chapter.
The logical fallacy made in this case is that a property inherent to the phenomenon is exactly
related to the integrated data. In this case it is the envelope’s phase of every single pulse that
is assumed to be bound to the average pulse profile’s phase. There can be many reasons why
the average profile is not exactly settling to the single pulse’s envelope and thus there may be
more information contained in the single pulses than in the average pulse.
An exaggerated but accurate example of this fallacy can be seen in the following statement:
On average, humans have less than two legs. In fact, the average of human leg count set-
tles between one and two and it becomes clear that we should not mistake the average for
something that is straight-forward realized in reality. It is evident in this case, that we lost
essential information about human leg count by averaging. But then - what is the meaning of
the average?

3.2 Integration may be the answer to a different question

Of course an average quantity can have a meaning in a physical system. Depending on the
setting, however, it is likely that we settle on the wrong interpretation of the average. Let us go
a step back and reconsider which goal we tried to reach when calculating the average, namely
finding out about a physical parameter in our model of pulsar radiation, the envelope.
In the following we will present ideas that loosely follow some arguments of Jaynes and Bret-
thorst [2003] and introduce standard Bayesian theory. The interested reader may be referred to
Jaynes and Bretthorst [2003, and references therein]. For a more general introduction on prob-
ability theory in the context of information theory see for example Cover and Thomas [2006].
Observations in general seek to increase knowledge about which physical model is not wrong
and which parameter ranges of the model are compatible with the data aggregated. Given a
certain model is true, the information about a model manifests itself in a signal from the physics
derived that then will be measured. This data include undesirable external influences, noise,
that obfuscates undisturbed observation of the signal. Figure 3.1 shows the schematic of the
measurement problem. The aim of an observation is to invert the functional relationship be-
tween the signal and the data, as well as the parameters and the signal. This problem of signal
reconstruction thus has been oversimplified to inversion of a probably only injective relation-
ship. Historically this has lead to development of the theory of error propagation to separate
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Figure 3.2: Bayesian knowledge updating: On the left hand panel, the conditional probability of the
data given a certain signal value of s is shown (known as the likelihood), while on the right panel, the
prior probability is drawn. The middle panel shows the posterior distribution conditional to the data
measured. We overlayed the contour lines of the likelihood to make evident that the prior changes the
likelihood’s estimate of the signal. See the example in section 3.2.

noise and signal from each other. For additive, uncorrelated noise with zero mean and constant
signal, this justifies the average as being an estimator on the signal:

di = s+ ni, P(ni) ∝ exp

[
− 1

2σ2
n

n2
i

]
(3.1)

sc :=
1

N

N∑
i=1

di =
1

N

N∑
i=1

(s+ ni) = s+
1

N

N∑
i=1

ni
N→∞

= s+ 〈ni〉 = s (3.2)

where di are the measured data values, ni is the additional noise term,P (()x) denotes the
probability density function of x, σ2

n its variance and s the signal from the model assumed
constant in this calculation. As is evident, the behaviour of the sum term of the noise determines
accuracy of the observation on s. While in this case, the noise can clearly be filtered out, in non-
linear systems this must not be true. As most of the radio observations for timing pulsars record
d2
i , the square of the electric field amplitude measured at the receiver, the simple arguments

from above have to be modified, as we will derive in chapter 4.
Finding a good estimator for a certain parameter is a highly non-trivial endeavour and, most
likely, it will not finally be the average. Bayesian statistics however provide at least a framework
in which a certain question of reconstruction can be asked in a mathematical consistent way
without trying to invert a given relation. The key is inverting the statistical way from model
to data. For a certain given model parameter, there usually can be formulated a conditional
probability on the arising signal. The same bridge exists between the signal and the measured
data. Let us state without proof that

P(a|b) · P(b) = P (a, b) (3.3)
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The joint probability of a and b is given by the conditional probability of a given b times the
probability that b. It holds furthermore

P(a) =

∫
dbP(a, b) (3.4)

We can marginalize out b the joint probability of a and b to yield the probability on a1.
The first equation in 3.1 states that P(di|s, ni) = δ(di−(s+ni)). The quantity we are interested
in is P(di|s), but using equations 3.4 and 3.3 we can reformulate that statement

P(di|s) =

∫
dniP(di, ni|s) =

∫
dniP(di|ni, s) · P(ni) (3.5)

Where we now may insert the model of 3.1. This yields

P(di|s) =

∫
dni · δ(di − (s+ ni)) ·

1√
2πσ2

n

exp

[
− 1

2σ2
n

n2
i

]
=

1√
2πσ2

n

exp

[
− 1

2σ2
n

(s− di)2

]
(3.6)

We now have calculated the conditional probability of finding data di when the signal s is given.
Reconstructing s out of observation is done using Bayes’ theorem for inverting conditional
probabilities:

P(s|di)︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
P(di|s) ·

Prior︷︸︸︷
P(s)

P (di)︸ ︷︷ ︸
Evidence

(3.7)

The posterior probability distribution describing the new probability on the signal, having mea-
sured the data equals the likelihood, how likely it is to find a certain data value multiplicated by
the prior probability on the signal to be present and divided through the probability of finding
the data, called evidence. As the evidence is independent of the signal, it becomes clear that
this is merely a normalization factor. Assuming that the prior knowledge of the signal is a flat
distribution P(s) = const, and inserting equation 3.6 into the formula we find

P(s|di) =
1√

2πσ2
n

exp

[
− 1

2σ2
n

(s− di)2

]
(3.8)

Let us give a pictorial example(see Figure3.2) for the updating rule and, for the moment,
assume a Gaussian prior centred around zero. Let us further assume that the noise and the
prior have the same variance of unity. We have graphically represented the update of the
knowledge (the posterior, middle panel) compared with prior knowledge (on the right panel)
and the likelihood of measuring a certain data d given a signal s being present (left panel). We
see that the final reconstruction takes into account both prior knowledge and the new findings
represented by data d and will give a reconstructed signal s|d given a certain datum. The prior
has been chosen to give a large influence in order to be clearly visible in the figure. In practise,
one would prefer to choose a more ignorant prior when there is no previous knowledge on the
signal.

1This is a further example of a process where information is lost by integration, as correlations between a and b will
be dropped.
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Returning to the flat prior and assuming we have consecutively measured various values, we
may apply Bayes’ theorem repeatedly for the new data2 to find the posterior given all data
{d0, ..., dN−1}:

P(s|d0, ..., dN−1) ∝
N−1∏
i=0

exp

[
− 1

2σ2
n

(s− di)2

]

∝ exp

[
− 1

2σ2
n/N

(s− 1

N

N−1∑
i=0

di)
2

]
(3.9)

which is a Gaussian centred at the average data value with a variance of σ2
n/N . In the following

we will write d without an index when we mean the whole data set. Thus, the simple example
described above leads to the same estimation like the classical procedure. This however is the
case as the

• problem is linear

• prior knowledge was assumed to have a flat probability distribution

• noise has Gaussian statistics with zero mean and is independent

• signal was only single-valued

Of course there might be other deviations that deem “averaging” or a more complex form of it
non-optimal. If one of the above points is violated, there may arise a more complex estimator,
for example a more differentiated weighting of the data.
Bayesian statistics do not only give a framework for the accurate reconstruction of the data, but
also make some more subtle nuances of the involved statistics evident. It has been a common
critique that by specifying a prior distribution, Bayes’ theorem would give way to introduce
arbitrary influences to the result. It is true that a prior distribution can introduce prejudice
into the problem. If we e.g. a priori exclude a certain signal region A to be not possible,
setting a subset of P(s ∈ A) = 0, a reconstruction of a signal that nevertheless falls into this
region is excluded by the theorem. Thus, one has to choose a prior wisely to reflect the most
ignorant state about the signal if starting from a point of no knowledge at all. However, in this
framework we have to choose a prior and name it. In classical reconstructions formulae, the
prior has been chosen by construction of the estimation formula. We see this by the following
argument. Let us transform the signal’s prior with a function s′ = f(s). As P(s) is a distribution,
it transforms differently than a pure value:

P (s) ds = P (s′)

(
∂f

∂s

)−1

ds′ = P (s′)
∂f−1

∂s′
ds′ (3.10)

We conclude that an initially flat prior distribution can take arbitrary forms by transforming
the signal’s coordinate since P (s′) = ∂f

∂sP (s). But this means, when transforming the signal
in (3.9), the prior assumed on the signal is not a uniform distribution any more since equation
(3.10) holds.
The straight-forward classical estimator for s′c is f(sc) with sc being the classical estimate of s
given by equation (3.2) and it is tempting to conclude that

∂P ((s|d))

∂s

∣∣∣∣
sc

= 0⇒
P
(
(f−1(s′)|d)

)
∂s′

∣∣∣∣∣
s′c

=
P
(
(f−1(s′)|d)

)
∂f−1︸ ︷︷ ︸

=0

∂f−1

∂s′

∣∣∣∣
s′c

(3.11)

2We implicitly assume statistical and logical independence of the single measurement here

37



38 Chapter 3. Problem treatment

And in fact, this is the case. However, the right hand side is not the correct posterior distribu-
tion. The correct posterior distribution is given by

P (s′|d) ds′ = P
(
f−1(s′)|d

) ∂f−1

∂s′︸ ︷︷ ︸
:=g(s′)

ds′ (3.12)

Notice that the P on the left hand side takes not the same functional form than that on the right
hand side. The argument the function on the left hand side takes is an element of the space of
s′. The argument the integrand of the distribution on the right hand side takes is an element
of the original signal space. This is a major caveat when dealing with the typical physicists’
notation of probabilities. It is hiding the fact that these functions differ as they are integrands
in two different spaces. Deriving the new integrand g(s′) w.r.t. s′ at s′c will only yield a local
extremum too if3

∂2f−1

∂s′2

∣∣∣∣
s′c

= 0 (3.13)

as we deduce by carrying out the product rule and noticing that the first term will be zero by
equation (3.11). As the point s′c is effectively determined by the data, equation (3.13) should
be fulfilled at arbitrary points in the space of s′. Assuming smoothness of the transformation
function f and their first and second derivative, this means we will restrict ourselves to linear
transformations only.
It is a well known statement that inverting non-linear relations with classical parameter esti-
mation will be biased (which is effectively the case if the maximum and thus the whole distri-
bution is shifted). We want to make a more subtle point here. There is a way of ensuring that
s′c = f(sc) is the ’correct’ classical estimator. If we took not a uniform prior but the prior

P ′(s) ∝ ∂f(s)

∂s
(3.14)

the transformation had put the functional form of the integrand of P (s′|d) into the form given
by equation (3.11) as the derivative of f−1 and f would cancel out. Thus, the estimator for the
transformed signal can then possibly again be justified by statistics under assumption of a prior
differing from the uniform distribution.
Thus, given classical and Bayesian estimation agree in a most likely value of the signal, we have
shown that under non-linear transformation, agreement may only be reached by assuming a
prior being present in the classical case. This means that classical methods may have implicit
prior assumptions on their signal that are not evident by the actual form of estimation. We thus
conclude that, against commonly raised concerns, the seemingly arbitrary choice of a prior in
Bayesian statistics is also inherent in classical parameter estimation theory. However in the
latter case, the prior assumptions taken are not explicitly specified and thus, may be arbitrary
too, or, even worse: clearly wrong. We deem it a much better way of doing science to speak
about the prior assumptions made, than simply swiping them under the rug of apparently
simple math.

3Excluding exotic cases where P
(
f−1(s′)|d

)∣∣
s′c

= 0 for example
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3.3 Ignoring a problem does not help solving it

Having understood that the result of parameter estimation relies on

• well specified prior knowledge (or at least a wisely chosen non-informative prior)

• a well-fitting physical model of the signals in the data

• exact knowledge of sources of noise

• the data taken

we realize that taking the data does by far not suffice to interpret it correctly. The exact path
from a solid model to the signal expected to the data gathered and back has to be calculated in
order to infer a parameter’s probability distribution. We agree that there are “short-cuts” like
the law of large numbers and the central limit theorem that finally may equalize the findings
of a more complex statistical model with “taking the average” of some form that leads to the
desired quantity in a simple way. However, there may be subtle influences by non-linearities
or simply wrong model assumptions that may flaw secondary parameters’ estimations such as
ToAs in a way not noticeable in the final stages of the analysis.
Chapter 2 named various effects that modify the expected signal and the observation of this
signal drastically. In light of knowing this, one should at least check and make sure, that there
are no subtle effects left in the parameter’s estimation. As we will see in the following chapter,
there is indeed noise present in pulsar timing data which origin is not completely understood.
If one could model the emission process and the propagation effects in more detail, we argue
that at least some part of this noise may be understood and be part of a signal instead of a
simple noise term.
The foremost problem with Bayesian methods however, is the computational feasibility on large
datasets. While for simple models analytical solutions can be found, more complex models will
rely on approximative calculations or resource-intensive numerical evaluation.
There have been developed frameworks like Information Field Theory [for an introduction see
e.g. Enßlin, 2013, Lemm, 1999, and references therein] that can simplify calculations while
still taking the most significant corrections into account. These theories may provide operators
that amount to calculating and weighting simple averages or higher statistical moments, to
ameliorate numerical evaluation.
As the reduction may depend on the actual parameters’ values, preprocessing the dataset by
“blindly” integrating will most likely lose data. If we do not want to lose information on the
way, it must be possible to reprocess the data as a whole, in an automated, transparent and
reproducible way. Finally we will be facing huge datasets that are to be reduced dynamically,
given the parameter’s probability density function.
Even at the stage of first steps towards Bayesian analysis of pulsar data, we face a numerical
limit when memory shortage on the local system, not computational power is the bottleneck
due to the massive data sets. To pass this limit we decided to write Rambrain (see chapter 5), a
library that abstracts away the details of data storage and that cares for swapping out the data
in a memory-efficient way. The advantage of having such a library is simple: When writing
complex algorithms, the burden of memory management now is handled by this library. It is
much easier to write algorithms accessing large datasets when the algorithm can be put in sim-
ple statements that do not have to deal with physical limitations of the machine the code will
be run on. Abstractions of this form may prove essential to pave the way to handle big datasets
in science.
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40 Chapter 3. Problem treatment

Having such a long history, the field of pulsar and radio emission science has produced numer-
ous models and a plethora of observational data to draw from. It is very likely that the solution
to the problem of radio emission lies before our very eyes, but we lack the methods to extract
it from both data and theory. It is this ignorance of actually known facts that we seek out to
reduce in this thesis.
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CHAPTER 4
Paper : A Bayesian method for pulsar template generation

M. Imgrund, D.J. Champion, M. Kramer, H. Lesch
This chapter has been published in slightly modified form in Monthly Notes of the Royal Astronomical Society,
June 1, 2015 449 (4): 4162-4183

Abstract: Extracting Times of Arrival (ToAs) from pulsar radio signals depends on the knowl-
edge of the pulsar’s pulse profile and the method being used to compare such profiles. We
contrast classical generation mechanism of averaging received intensity to generate these so
called templates with a new approach based on Bayesian inference. Contrary to relying on
purely integrated data we explore the statistical properties of the receiver equation. The novel
“statistical templates” enrich the classically static information about the profile shape by assign-
ing statistically reasonable uncertainties. We explore the benefit of this statistical information
on both simulated and real measurement data from PSR B1133+16, PSR B0329+54 and PSR
J1713+0747. After thoroughly analysing and testing the algorithm we apply the novel ap-
proach to classical problems such as Nulling detection, Moding and ToA generation.
We show that statements of classical analysis like “pulsar showed nulling” or “pulsar radiates
in mode A” are enhanced with probabilities that can be used as weights in subsequent anal-
ysis. Implementing ToA generation we find this algorithm to yield comparable timing errors
to the classical method but giving a more accurate estimate of the remaining uncertainty in
the ToAs. Consequently we propose using such a method when being dominated by fluctua-
tions, for example on bright observations, pulsars showing moding or observations with the
increasing sensitivity of future telescopes like the square kilometer array (SKA).

4.1 Introduction

Pulsars are used as clocks of nanosecond precision at galactic distances, particularly in areas
of fundamental physics such as general relativity [Cordes et al., 2004, Kramer et al., 2006b].
These measurements make use of the exceptional rotational stability of the pulsar observed as
electromagnetic pulses with radio telescopes. Most of these analyses rely on determining the
arrival times of the pulses out of tens of thousands of integrated single pulses.
The individual (or single-) pulses observed from a pulsar are extremely variable, not only in
flux but also in the shape of the pulse. It is only when 10s of 1000s of pulses are averaged in
an integrated pulse profile that it becomes stable [Helfand et al., 1975, Liu et al., 2012]. Some
pulsars exhibit temporal variations in this pulse profile; showing no emission for a period of

41



42 Chapter 4. Bayesian Template Generation

time - nulling (see Sec. 4.3.5), or switching between one or more additional stable profiles (see
Sec. 4.3.7). For the majority of pulsars however, the pulse profile remains stable, in some cases
over at least years.
There exist ready to use tool sets like PSRCHIVE[Hotan et al., 2004] and TEMPO2 [Edwards
et al., 2006, Hobbs et al., 2006] to analyse raw observation data. They are used to assign
times of arrival to integrated observations and constrain the parameters of the physical model
under consideration. The remaining differences between the model’s prediction of an arrival
time and the actual time measured are called timing residuals. Timing residuals can be as low
as a few tens or hundreds nanoseconds, while the periods of observational data span several
years. This amounts to tracking the rotational phase of the pulsar at a certain observational
epoch to an accuracy of 10−4 and well below. A single pulse however is a highly variable object
that apparently cannot be tracked down to that accuracy (see e.g. fig. 4.11). It is immediately
evident that this very exact phase information is imprinted in, and has to be recovered out of,
tens of thousands of very individual pulses.
The classical way of generating times of arrival (ToAs) is based on techniques comparing the
shift of an epoch under consideration to a template. The template is often an integrated pulse
profile of the entire data set for that pulsar at the appropriate observing frequency and band-
width. Usually it is then fit with an analytic function to produce a noiseless template. These
templates are occasionally updated and the ToAs reproduced.
Observations integrated over shorter times are then tested for a phase shift w.r.t. the template.
The user of PSRCHIVE e.g. has the choice among five algorithms all comparing the data of
an observation to the reference. These methods state a relative shift and an error estimate
on it. They yield sub-bin accuracy by e.g. discrete cross-correlation and interpolation Hotan
et al. [2005] or examining the phase gradient in the fourier space representation as in Taylor
[1992]. The phase shift is then converted into a ToA using the timestamp and folding period of
the observation. In a next step, the actual pulsar timing is carried out.
Pulsar timing is the process by which a rotational model of the pulsar is produced and the value
of its rotation phase is mapped to the ToAs at the observatory of every pulse. This model is fit
to the ToAs from observations to produce a phase coherent solution that accounts for every
rotation of the pulsar in the range of observations. It is the coherence of this solution that gives
pulsar timing its extraordinary precision.
All data input to this procedure, the template and the observed profiles, relies on integrated
and thus averaged data before correlating. Single pulses cannot be compared directly for they
are often not bright enough to be distinguished from noise introduced on the signal’s way to
the telescope and by the antenna-receiver-amplifier system. Furthermore their distinct and in-
dividual shape make it difficult to correlate them to the average profile as simply matching the
shape of the pulse with the template is not possible. Thus timing individual pulses by compar-
ing them to a template lacks the necessary precision.
The classical way of integrating pulses to form a stable profile justifies itself to mitigate the
outlined problems. However in actual observations, the reduced χ2 value, a measure compar-
ing how well a given model fits the data taking into consideration the reported uncertainties
in the data, is much larger than unity [see e.g. Bailes, 2010]. As the global timing models of
pulsars stand on very solid grounds, the deviance from unity points to an underestimation of
the remaining error in the data by the classical procedure and algorithms. This additional error
is believed to have its root in additional noise sources like e.g. scattering by the interstellar
medium. A comprehensive overview of the noise budgets can be found e.g. in Cordes and
Shannon [2010].
Mitigating errors after determining ToAs has been intensively investigated by assessing and
fitting the possibly introduced effects on the ToAs [Coles et al., 2011, Cordes and Shannon,
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2010]. As Bayesian methods already have been successfully used for correlating ToA-data from
different pulsars, extending these to mitigate the timing errors by supposing a Bayesian timing
model on the ToAs as described by Lee et al. [2014], Lentati et al. [2014], Vigeland and Vallis-
neri [2014] and others suggests itself.
The shape of single pulses is affected mainly by the short term noise contributions coming from
current observational conditions. One can aptly paraphrase these imponderables as interstellar
weather and pulse jitter caused by the fluctuating state of the magnetosphere or radiation pro-
cess. Both influences affect mainly the single pulse statistics or influence the profile over short
timescales, but can systematically affect timing and even dominate timing precision [Osłowski
et al., 2011].
Increasing the gain of the observations with future systems like the Square Kilometre Array
(SKA) aggravates this problem. These fluctuations demand for longer integration times if no
solution is found to incorporate them in the determination of ToAs rather than trying to average
them out [Liu et al., 2011].
Finding a generic way of dealing with single pulse individuality can ameliorate the situation
and fill the statistical gap between single pulses and an integrated profile without the need to
take further modelling assumptions1.
In this paper we will show a way to address the problem of generating pulsar ToAs with single
pulse statistics and the benefits of having a more accurate statistical representation for single
pulses’ behaviour. By using more information than the classical method (which integrates this
information) we hope to improve the accuracy of pulsar ToA generation and to allow ToAs from
shorter observations to be unbiased by pulse jitter.
We introduce a model for statistics of the single pulses and substitute the classical template by
a “statistical template” representing the single pulse statistics. We will then work out the steps
of statistical template generation and phase shift detection replacing the classical counterparts.
Hereto we will derive a measurement model for squared and amplified receiver voltage in Sec.
4.2. We argue how to handle the signals from pulsars best, splitting them in a radiation process
and a phase coupled template part. Using the Bayesian formalism, we deduce the posterior
distribution for both the amplitude and phase model introduced and thus show a way to in-
fere a statistical template from input data. Though focusing on the important application of
generating ToAs, we will also demonstrate the benefit of using statistical templates on other
applications such as determining nulling and analysing a moding pulsar. Sec. 4.3 will evaluate
the proposed algorithm and methods using both simulated and real pulsar data. We show how
a statistical template can enhance the view on the pulsars profile from a statistical perspective.
Comparing the generation of ToAs to the classical results we will highlight improvements in the
χ2 value of the fit. We summarize our findings in Sec. 4.4.

4.2 Modelling pulsar measurements

4.2.1 Terminology of the used statistical model for single pulses

In order to describe single pulse statistics we use the notion of a fluctuating envelope besides
to the classical set of terms of single pulses and integrated profiles.
Instead of modeling an average profile, we assume a single pulse to be the result of multiply-
ing a stationary Gaussian random noise process, which amounts to the physical process that
generates the radiation in the pulsar magnetosphere, with a possibly unstable envelope (see

1Incorporating assumptions on e.g. scattering of the ISM or pulse jitter behaviour however may further improve the
results presented
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Figure 4.1: Scheme for single pulse statistics as described in Sec. 4.2.1

fig.4.1). This envelope models the periodic influence of the magnetosphere. The uncertainty in
the envelope may reduce with observation time when the envelope is not fluctuating. However
if the magnetosphere conditions for some region mapping to the pulse phase are fluctuating,
the envelope will stay fluctuating in that region.
Only in the limit of no uncertainty the envelope would equal the (scaled) average of the pulses
and amount to the same thing as a classical integrated profile. As averaging single pulses gen-
erates a pulse profile, we emphasize that there are many possible fluctuating envelopes which
are integrated to the same profile.
The empiric or analytic template that is used for generating times of arrival will consequently
be substituted by a Bayesian statistical template describing the fluctuating envelope.

4.2.2 Amplitude model

Every Bayesian analysis is based on formulating a signal and noise model to describe the statis-
tical imprint of a certain signal in the data. Thus, before inserting the outlined statistical model
of the signal , we have to understand the influence of an arbitrary signal. Therefore we will
introduce the basic measurement model, insert our signal model and then derive the formulae
for signal reconstruction using Bayes’ theorem.
Typical pulsar measurements at radio frequencies give the intensity of received radiation by
suitable sampling of d, the quadrature of the received voltage. The problem is to infer a un-
known signal s (which in our case amounts to the noise-free series of single pulses as emitted
from the pulsar) from the noisy data d. The noise - leaving aside radio interference - is dom-
inated by thermal fluctuations of both receiver and antenna and is accurately described by
white noise of a usually known variance σ2

n entering before quadrature of the signal. Thus, the
baseline corrected data d measured, given a signal s and a random noise n amounts to

d = (n + s)2 (4.1)

d− n2 = s2 + 2sn (4.2)
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where

P(d|s,n) = δ(d− (n + s)2) (4.3)

P(n) = Gn(0,N) (4.4)

where P (x|y) is the short notation for the probability density of X = x given Y = y, where
X,Y would be the corresponding random variables. We use boldface lower case letters to
emphasize that data, signal and noise consist of many single values d = {d1, d2, · · · dt, · · · } for
which the equations stated are valid component-wise. Thus operations like taking a root of a
vector or multiplying two vectors are carried out only on the components of the vector. For the
scalar product of vectors a and b we use the notations a†b and

√
a†a = ||a||. We abbreviate

det(·) as | · | and define δ(a) :=
∏
k δ(ak). Putting a hat over a vector v̂ = diagmat(v) denotes

constructing a diagonal matrix with a diagonal with the elements ofv. When dealing with sets,
A \ g denotes the set A without the elements g.
Gx(m,V) denotes that x is distributed as the multivariate Gaussian distribution with mean m
and covariance matrix V. It is defined as

Gx(m,V) :=
1√

2π|V|
exp

[
−1

2
(x−m)†V−1(x−m)

]
Integrating over a vector a is denoted by P (b) =

s
DaP (a,b) =

s
da1 · · · dakP (a,b).

The classical way of determining the template intensity amounts to averaging eq.(4.2) over
several pulsar periods, noticing that the term mixing signal and noise vanishes leaving us with
the desired quantity of 〈s2〉 when subtracting σn from the averaged data. To uses Bayes’ theo-
rem, we will instead calculate the exact probability distribution to measure d at a certain time,
given a certain signal value s at that time:

P(d|s) =
x

DnP(n,d|s) =
x

DnP(d|n, · · · )P(n) (4.5)

=
x

Dnδ(d− (n + s)2)
1√
|2πN|

exp

[
−1

2

||n||2

σ2
n

]
(4.6)

We substitute ñ = (n + s)2,n = ±
√

ñ− s,dn = dñ

2
√

ñ
and notice that

√
|N| = σNtot

n , where Ntot
is the total number of samples in all bins.

=

∞x

0

D
ñ√
ñ

δ(d− ñ)
1

|
√

2πσNtot
n |

exp

[
−1

2

||
√

ñ± s||2

σ2
n

]
(4.7)

=
1√

|2πd|σNtot
n

exp

[
−1

2

||
√

d± s||2

σ2
n

]
(4.8)

where we now have to assign a signal model for s. We assume

s = exp [f ] · gσn (4.9)

Where we have decided for the signal to be measured in units of noise temperature of the
receiver-antenna system. The ±-operator means that the whole density would be a sum of the
densities with the respective sign. This operator vanishes later on, when integrating over g
and using P (g) = P (−g). f and g are Gaussian random variables with also to be determined
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covariances F and G which describe the statistical properties of the envelope respectively the
radiation process. The exponential form for the envelope was chosen since on one hand it is
able to grasp the occurring fluctuations to high radiation densities of single pulses and on the
other we may easily assume a scale-free prior for the amplitude, as we will see below.
We assume the radiation process to have stationary statistics given by

G = G(t− t′)

and the part that is generating the observed envelope to be periodic in time. Even though
the covariance matrix of exp [f ] alone has non-diagonal components, the product’s covariance
matrix 〈g(t)exp [f ] (t)g′(t)exp [f ]

′
(t)〉 has only diagonal components if we marginalize over g,

because of the stationarity of g as assumed in (4.2.2). Thus we describe the covariance matrix
solely by it’s Fourier-coefficients at ωk = k · 2π

T . Since the expectation of the signal’s covariance
matrix for a certain g integrated over a specific pulse certainly does not vanish, the non-diagonal
components of the signal’s matrix carry information about g which we will discard in this paper.
T denotes the real pulsar period, which we will discriminate from the assumed period τ later
on.

Joint Probability and Information Hamiltonian

For a moment, let us assume the covariance matrices F and G are known. Then we may write
for the joint probability

P (f ,g, s, τ︸ ︷︷ ︸
=:A∪{s}

|F,G︸ ︷︷ ︸
=:B

) = δ(exp [f ] gσn − s)Gf (0,F)Gg(0,G)P(τ)

and we define the parameter sets A and B where P (τ) is the probability density over the
assumed period τ . In order to define the Information Hamiltonian HB [A,d] := − logP (A,d|B)
we notice that P (A,d|B) =

s
DsP(d|s)P (A ∪ {s}|B) and use the measurement model given

by (4.8):

− logP (A,d|B) = HB [A] =

[
(
√

d− exp [f ] · gσn)†
1

σ2
n

(
√

d− exp [f ] · gσn)+

f†F−1f + g†G−1g

]
− logP(τ) +

1

2
log(|2πσ2

n|Ntot |2πF||2πG||d|) (4.10)

Since we are interested in the pulsar’s statistical template given by the envelope characteristics
we marginalize over the radiation process g by integrating it out. This calculation is outlined
in Sec. 4.6.1. We are left with

HB [A] =
1

2

[√
d
† 1

σ2
n

[1 + êxp [f ]Gêxp [f ]]−1
√

d + f†F−1f+

+ log(|2πD−1
f ||2πσ

2
n|Ntot |2πF||2πG||d|)

]
− logP(τ) (4.11)

where the operator [1 + êxp [f ]Gêxp [f ]]−1 together with the noise variance is a variation of the
operator leading to the well-known case of the Wiener filter [Wiener, 1949]. This similarity
arises due to the integration over the Gaussian random field g added upon the signal field s.
However, the normalisation w.r.t. the data differs and we further distinguish between the peri-
odic part described by (f ,F) and the radiation part now showing up only as G. The functioning
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of the operator can be understood by considering its interplay with given data. Maximizing
probability equals minimizing the Hamiltonian. Thus high data values will be compensated by
large mean values of f. Conversely, for too high values of f the exact value of the data becomes
irrelevant, leading to a sub-optimal solution independent of the data. The optimal solution
resembles the actual probability distribution the data would be drawn from. As a function of d,
the joint probability is a special case of a gamma distribution ∝ exp

[
−|| dm ||

]
||d||−.5 where m

is the mean value of the distribution. In this light the operator resembles the classical formula
〈d〉 = m = σ2

n + σ2
s since m

∧
= σ2

n[1 + s†s
σn

] for our case.
G becomes diagonal in Fourier space since g is assumed to be stationary. As exp [f ] is a periodic
signal, its Fourier space is limited to discrete frequencies that are a multiple of the assumed
periodicity. We may absorb the values of Gω, where ωk = k · 2π

τ into F. In the following we will
discard information about G from single pulses. Since our main interest lies on the statistics of
the envelope, we may take this loss.
Under these assumptions, and neglecting non-diagonal terms arising when Fourier transform-
ing f (see Sec. 4.7 and 4.2.2), the Gω =: σ2

gk
may be absorbed into an effective mean f as is

evident in eq. (4.11):
exp [2fk] · σ2

gk
= exp

[
2(fk + fk)

]
where fk = log σgk . We redefine f in (4.11) in that way and yield

HB [A \ g] =
1

2

[∥∥∥∥ d

σ2
n

1

1 + exp [2f ]

∥∥∥∥+ (f − f)†F−1(f − f)+

+ log(|2πD−1
f ||2πσ

2
n|Ntot |2πF||d|)

]
− logP(τ) (4.12)

where G is now the unity matrix and we assume F−1 to be diagonal with components 1
σ2
fk

.

We arrive at our model for a single pulse’s amplitudes in Fourier space, assuming all timing
parameters to be given:

Hf ,σ2
f
[f ,d] =

1

2

[∥∥∥∥ d

σ2
n

1

1 + exp [2f ]

∥∥∥∥+ (f − f)†
1

σ2
f

(f − f) + logC(F, σn,d)

]
(4.13)

This is the negative logarithm of the likelihood function. Bayes’ law gives us the posterior

P (f |d) =
exp

[
−Hf ,σ2

f
[f ,d]

]
s

Dfexp
[
−Hf ,σ2

f
[f ,d]

] (4.14)

when we assume a flat prior on f which effects in a scale-free prior on the assumed amplitude,
since s ∝ exp [f ] is exponentiated.

The receiver equation’s pdf

Assuming G to be a diagonal of ones (meaning vanishing correlations) for this argument, the
pdf of the receiver equation of each bin decouples and for a specific bin and different pulses K
takes the form of

P
(
f |~d
)
∝
∏
K

exp

[
−1

2

dK
1 + f2

]√
1

(1 + f2)2π
/
√
dK
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Figure 4.2: Fourier transform of a whole epoch of single pulses of pulsar B0329+54. The x axis has
been scaled to the pulsar’s signal harmonics. Inset: detail of one spike.

which simply states that the variance of
√
dK can be explained as sum of the variance of the

noise (the one in the denominator of the exponentiated term) plus the variance of g ( equals
unity per definition) times the signal strength of the envelope f . The square root term of dK
after the exponential is a normalization factor w.r.t. f . We deduce that for a constant signal
envelope f and vanishing correlations of g

P
(
f |~d
)
∝ exp

[
−1

2

∑
K dK

1 + f2

]√
1

(1 + f2)

= exp

[
−1

2

〈d〉
(1+f2)
NK

)

]√
1

(1 + f2)
NK

(4.15)

where NK is the number of pulses involved. This probability density function attains it’s maxi-
mum for 〈d〉 = 1 at f =

√
〈d〉 − 1 justifying the average data subtracting the noise background

as the maximum likely guess. Carrying out a saddle point analysis, we conclude that

σf =

√
(1 + f2)2

(2NKf2)
=


√

1
2NK

1
f forf � 1√

1
2NK

f forf � 1

For a signal that is constant and not the modulation of a stationary noise process, we would
have expected σc ∝

√
c/NK as c� 1 such that the relative error decreases with signal strength.

In our case the relative error decreases too, but only to reach 1 as a limit (see Fig. 4.3). Against
our intuition we expect the shape of the profile to be most uncertain at the highest signal values
while the areas of lowest uncertainty can be found where f ≈ 1.
We emphasize that this relative uncertainty will not be integrated out by measuring more
pulses, as the uncertainty in both high and low signal areas equally fall with the sqare root
of NK leaving the ratio of the remaining error untouched. This fact explains the often ex-
pressed observation that stronger pulses do exhibit larger timing errors [Osłowski et al., 2011,
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Figure 4.3: Comparison of absolute and relative error (as uncertainty over actual signal strength) for a
single measurement of a signal f

Shannon et al., 2014]. The reason was found implicitly by numerous authors (e.g. Cordes
[1993], Kulkarni [1989], Rickett [1975]) for the case of self-correlation of the signal. We em-
phasize that even without self-correlation, we expect the higher pulses to have a higher intrinsic
uncertainty.
The non-diagonal terms introduced by G mark the departure from simply averaging the data.
Let us review the influence of a non-white stationary process on the data’s spectrum.

The influence of g on the signal’s spectrum

When investigating a Fourier transform of a whole observation’s time series containing several
hundred pulses (see fig. 4.2) two prominent features dictate the spectrum: Spikes of the pul-
sar’s signal dominate over receiver background noise. If the signal was strictly periodic, we
would expect it to be described solely in terms of the Fourier coeffieents of harmonics of the
base frequency 1/P . As the pulsar’s signal contains periodicity, we expect spikes to show up in
this case too2. However, we are facing a stochastic process g that is modulated via a periodic
envelope f . As is commonly known, multiplication in time domain translates to convolution in
Fourier domain. As g(ω) is expected to be a red noise process, we expect it to cast the sharp
pulsar signal to finite width in Fourier space. Indeed - as the inlay of the figure shows - the
signal’s power is leaked to the neighbouring bins. The width of the spectral line however is
rather narrow, pointing to a fast decline of the spectrum of g in Fourier space. Consequently,
the spectrum of g in time domain is spread out widely, pointing to non-vanishing correlations
over a long time. These correlations diminish the independence of both adjacent lying bins and
the bins of neighbouring pulses.
As the multiplication f(t) ·g(t) amounts to a convolution in Fourier space, evaluating the poste-
rior distribution in Fourier space exactly was found to be unfeasible. Instead, we approximated
the convolution by taking only the diagonal terms, losing mathematical rigorosity and precision
but keeping the problem solvable in reasonable computational time. The interested reader may
refer to Sec. 4.7 of the appendix for a more detailed discussion why solving this in time domain
would be favorable, but currently is not feasible.

2these spikes are not an artifact of folding the data as no folding was applied
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The clear departure from the average comes from the off-diagonal elements of
√

dM
√

d† where
M is the operator derived. As is evident from the structure of M, it is expected to be off-
diagonal only until the correlations introduced by G(t − t′) decay. Thus, writing this equation
as a matrix equation, symmetry tells us that we can possibly store only a limited combination
of
√
d(t−∆t)

√
d
∗
(t+ ∆t) values and average them as they are multiplied by the same number

when performing the matrix multiplication. The matrix M , subject to the exact envelope shape
and correlations of the radiation process can be calculated afterwards and former data may be
reprocessed with the new M in that way without losing the statistical information from the
single pulse level, even though we may integrate parts of the single pulse data to yield smaller
data sets. This could possibly be exploited in the future to profit from single pulse statistics
without having to store all single pulses.

Maximum-a-posteriori-Filter

We are interested in finding the f , σf values most compatible with the data and thus set out to
maximize the a-posteriori distribution3 given the data. For a prior specified by σf,p and fp we
derive the integral over f of (4.14) w.r.t. f and expect the derivative to vanish. This procedure
yields an implicit formula for maximizing the posterior distribution of f .

0
!
=

x
Df

Kmax∑
K=0

kmax∑
k=0

(fK,k − fk)

σ2
k

exp

[
−Hfk,p,σ

2
fp

[fK,k, dK,k]

]

0 =

Kmax∑
K=0

kmax∑
k=0

∫
dfK,k

(fK,k − fk)

σ2
k

exp

[
−Hfk,p,σ

2
fp

[fK,k, dK,k]

]

which may be solved for every k independently as

0 =

Kmax∑
K=0

〈fK,k − fk〉
exp

[
−H

fk,p,σ
2
fp

[fK,k,dK,k]

]
fk = 〈fK,k〉

exp

[
−H

fk,p,σ
2
fp

[fK,k,dK,k]

] (4.16)

where we organize our data in pulse numbers indexed K and have summed over single Fourier
coefficients dk of these data of pulse K.
The new variance assumed of σf may be calculated equally by evaluating the expectation value
of (fk,K − fk)2, since deriving w.r.t. σk yields:

0
!
=

∫
df

Kmax∑
K=0

(
(fK,k − fk)2

σ3
k

− 1

σk
)exp

[
−Hfk,p,σ

2
fp

[fK,k, dK,k]

]

0 =

Kmax∑
K=0

kmax∑
k=0

∫
dfK,k(

(fK,k − fk)2

σ3
k

− 1

σk
)exp [· · · ]

3Maximum A Posteriori or MAP refers to taking the most likely value of the posterior as best guess
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which may be solved for every k independently as

0 =

Kmax∑
K=0

〈((fK,k − fk)2 − σ2
k)〉

exp

[
−H

fk,p,σ
2
fp

[fK,k,dK,k]

]

σk =
√
〈(fK,k − fk)2〉exp[··· ] (4.17)

Doing this once is assuming a prior of the form of the initial f , σf . A very general choice may be
suitable. Then taking the expectancy values of (4.16) as prior input to (4.14) and iterating is
known as the expectation-maximization (EM) algorithm proposed by Dempster et al. [1977].
We may in this way in principle get rid of assumptions going into the first prior by iterating
since this procedure converges on a prior fully compliant with the data, assuming gaussian
distribution of f. However the EM algorithm may only find local maximum which equals a
global maximum if the pulsar is really radiating with a log-normal probability distribution.
The optimization problem in both f and σf may be solved using a suitable iteration method
(see e.g. appendix 4.8). We assumed here that the pulsar is sufficiently described by a log-
normal distribution and that the dataset converges to the same (global) fix point for all initial
pairs of values. In principle, a detour from this assumption, for example assuming moding
(see sec.4.3.7), may open the possibility to filter out or analyse phenomena like giant pulses,
subpulse drift separately. At this stage of development, we like to emphasize that ,assuming a
log-normal distribution, we weight large fluctuations in a nonlinear fashion while retaining a
scale-free prior.

4.2.3 Detuning model

The problem of determining ToAs is closely related to a phase shift over the analyzed sin-
gle pulses. A wrongly set folding period can cause phase-drifts over the dataset’s pulses and
correlates different Fourier coefficients of the true signal. While this only leads to minuscule
smearing of the profile when integrating, it may have a more serious impact on single pulse
coefficients. As a wrong folding may go unnoticed on sub-bin scale over the whole epoch, it
is crucial to study it’s influence on phase measurements to determine its possible impact on
timing.
Analysing Fourier transformations of finite (consecutive) pulses allow us to measure a phase-
drift corresponding to the detuning of the assumed periodicity τ and the real periodicity T = τ

a ,
where a is a correction factor. The equations denoted with a letter before the number are
derived in appendix 4.6.2. For the signal from a single Fourier coefficient with frequency
ω′ = 2πn

T = 2πna
τ we will get a Fourier coefficient over the period [Kτ − τ

2 : Kτ + τ
2 ] of

pulse K:

d̃k,K = snexp
[
2πik(

n

k
a− 1)K

]
· sinc[πk(

n

k
a− 1)] (4.18)

where s and d with subscripts k,K denotes the kth complex Fourier coefficient of the Kth

sample. For n = k eq (4.18) reads

d̃k,K = skexp [2πik(a− 1)K] · sinc[πk(a− 1)] (4.19)

which means that, since a ≈ 1, the sinc-factor is approximately 1 for k � 1
(a−1) .Thus the

relative phase of the Kth and the (K + 1)th pulse gives access to the model parameter a.
Let us now derive the Fourier coefficients for the full spectrum of a periodic, purely real signal.
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for such a signal, sn = s∗−n. Inserting this relation and denoting the phase as arg(sn) =: Φsn
we get:

dk,K =

∞∑
n=1

ansinc[π(na− k)] ·

exp [i(2πnaK + Φsn)]︸ ︷︷ ︸
I

+
d

k
exp [−i(2πnaK + Φsn)]︸ ︷︷ ︸

II

 (4.20)

where k = an+k
2 , d = k − k . This formula can be written as dk,K =

∑∞
n=1Aknan. The main

phase information again is to be found in term I of (4.20) for n = k. However this is not the
only term relevant in analysing a single coefficient dk,K . Assuming n = k±m the sinc function
slowly converges towards zero as 1

m and determines the factor for coefficient 1. Coefficient two
together with the sinc function goes like 1

2k±m for m > 0. Thus in the limit of big difference in
k and m, both terms equally contribute and the phase relation deforms more and more to an
elliptic one.
We emphasize that for small detuning, the sinc-term is nearly zero for k 6= n. In this case we
may calculate only with the diagonal matrix and thus correct the data for the phase ∆Φ(a) =
exp [i2πnaK]. Thus for (a− 1) ·nmax ·Kmax � 1, the detuning amounts to less than a bin over
the whole epoch, and does not significantly affect phase values or leak signal into neighbouring
coefficients. Thus for all practical purposes we can use the phase shift model in Sec. 4.2.6 to
generate ToAs without having to worry about a possibly present sub-bin detuning in the folding
period.

4.2.4 Phase model

Even for a perfectly tuned signal, we still have to face the noise introduced by the receiver and
antenna system temperature on the phase. Again we will have to assign a measurement model
for the data phase according to the signal. The noise passes the same linear transformation
than the true Fourier coefficients and we conclude that

dk,K =

∞∑
n=1

Akn(sn + nn,K) (4.21)

where n is a white noise process with variance σ2
n. Since A is dependent on the true signal

phases, the inverse problem as a whole is quite complex. But if we neglect term II of (4.20) we
may invert the remaining matrix Ã without considering the true signal phases and apply it to a
given dataset.

∞∑
k=1

Ã−1
nkdk,K︸ ︷︷ ︸

=:d′k,K

= ||sn||exp [iΦsn ] + nn,K (4.22)

Ãkn := sinc[π(na− k)]exp [i2πnaK] (4.23)

This is possible since term II destroys phase information in a very smooth way and - as will
be concluded below - high coefficient numbers will have higher phase errors due to the drop
in signal amplitude and the relative growth of error. Consequently, higher coefficients do not
give as much information about the phase and thus about a anyway. Having preprocessed the
data with Ã−1 we arrive at the noisy signal and the phase carries information about Φsn . Thus,
given a and having processed the data vector, we may now fit for the average signal phase
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Figure 4.4: The phase error introduced to a signal by white noise scales as the expectancy value of the
arctan of the signal to noise ratio

and variance by imposing a suitable model. We may estimate the error introduced in the true
signal’s phase by inspecting eq. (4.21) and Fig. 4.4:

tan(∆Φ) ≈ ||n||
||s||

=
σn

σnexp [2f ]
(4.24)

Rather than integrating this precisely one can use the following approximation without signifi-
cant loss of accuracy

σΦs :=〈arctan(exp [−2f ])〉P(f |d) (4.25)

P (Φd|Φs) =
∏
i

∞∑
k=−∞

exp

[
−

(Φd′i − Φsi + 2πk)2

2σ2
Φn

]
/C (4.26)

This approximation is valid only for a good signal to noise ratio (S/N), where we also expect
the most significant evidence to be. For low S/N it underestimates the error and we must
numerically integrate the complete formula to get an error estimate. We emphasize that this is
the very step where the confidence of the phase data and thus the weight in later calculations is
calculated using the actual amplitude data point measured together with the statistics gathered.
Φs itself is parametrized by a so-called wrapped Gaussian4 and a mean of Φs, and variance σΦs .
we assume a prior of zero average and large variance.

4a wrapped Gaussian is literally a gaussian distribution wrapped around the unit circle by identifying all points
modulo 2π

53



54 Chapter 4. Bayesian Template Generation

4.2.5 Joint probability for phase

Finally we arrive at the joint probability of the phase model calculating analogue to the ampli-
tude:

P (Φd,Φs|T, σΦn , a) =
∏
i

∞∑
k=−∞

exp

[
−

(Φd′i − Φsi + 2πk)2

2σ2
Φn

]
∏
j

∞∑
l=−∞

exp

[
−

(Φsj − Φsj + 2πl)2

2σ2
Φs

]
/C (4.27)

Where T := {f , σf , σΦs ,Φs} will be the parameters of the full statistical template reconstructed
and Φd′ = Φd′(Φd) is the phase correction according to (4.23) or other corrections for the
assumed phase shift. Integrating out Φs we find:

P (Φd|T, σΦn , a) =
∏
i

∞∑
k=−∞

exp

[
−

(Φd′i(Φdi)− Φsi + 2πk)2

2(σ2
Φn

+ σ2
Φs

)

]
/C (4.28)

We now again invert this relation using Bayes’ theorem and take a MAP-Ansatz on our model
parameters σΦs ,Φs, a.

4.2.6 Phase shift model for a single epoch as reference

In order to generate ToAs we will have to determine the relative shift in the time of arrival of the
pulses compared to another epoch taken as a reference. For the sake of simplicity, we assumed
that the pulsar period does not to change with time (which is only a matter of interpreting
the relative phase correctly or further imposing the detuning model). The pulsar’s signal is
assumed to be slipped by a time ∆t compared to the overall period. This amounts to a change
in the phase of the Fourier coefficients given by:

dk =

∫ τ
2

− τ2
dt d′t · exp [−iωk(t−∆t)] = d′k · exp [iωk∆t] (4.29)

Thus, having reconstructed the template characteristics T = {fk, σk,Φk, σΦs} for the first time
interval, the subsequent intervals may be analysed by carrying out a parameter study over ∆t.
This is done by shifting the measured phases Φd → Φd′ according to (4.29) and taking e.g. a
MAP-approach over the joint probability of the phase (4.28), now varying ∆t, not a which is
assumed to be 1.
We now are also able to give the approximation for a ≈ 1. We derived in this case a phase shift
of ∆Φ(a) = exp [i2πnaK]. Comparing with (4.29), the problem of detuning for small a may be
approximated by testing all pulses for a shift of

∆t = aK · T (4.30)

dependent on the pulsar period number K. All practical cases of detuning fall in the category of
the aforementioned reduction to systematic phase shift.

4.2.7 Reference independent difference phase model

The simplest way to form a reference template is to select a single observation. However this
relies on the chosen observation being statistically representative of the sample as a whole and
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Figure 4.5: Overview of ToA generation: The statistical imprint of the various epochs (A) is used to
generate statistical templates (B). The data of the epochs (D) is non-linearly filtered using the statistical
templates to yield a probability distribution (C) for the shift of every epoch relative to a reference epoch.
For every epoch, the mean phaseshift in topocentric pulsar periods is then added to epochs MJD to calcu-
late the specific ToA (E). The error is calculated as the variance of (C) for this shift. The reference epoch’s
error on the ToA is determined as if it would have been timed by every other epoch.
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would discard the extra information available in the whole dataset.
This in principle could be mitigated by building a total statistical template over all epochs
observed. We discarded this method for two reasons. First of all it assumes that the pulsar
template shape and statistical behaviour is the same in every single epoch (which is not the case
for e.g. moding pulsars). Furthermore forcing the template to take the same probability density
in signal amplitude for distinct epochs is too strict an assumption as for example ISM variations
modulate the signal amplitude systematically. Instead, one may formulate a probability for
the relative shift of two distinct epochs, given a certain epoch’s statistical template is correct,
and then demand that the probability distribution has to agree for all templates at once. We
depicted this process schematically in Fig. 4.5. The calculated probability on a relative phase
between two epochs, given all knowledge gathered, is a clear, basic statement coming without
the notion of a “reference epoch”. It can be incorporated in further analyses without introducing
a direct bias caused by the phase information of statistical templates used since the exact phase
assumed in the template drops out of the calculation. The knowledge gathered just filters the
data to be compared in a clever way.
Mathematically speaking, we demand that

P
(
〈Φ(i)

d 〉 − 〈Φ
(ref)
d 〉 = ∆Φ(i)|T1...Tn

)
=
∏
j

P
(
〈Φ(i)

d 〉Tj − 〈Φ
(ref)
d 〉Tj = ∆Φ(i)|Tj

)
(4.31)

The formula for one factor of this product may be deduced from (4.28) by taking the product of
the equation for two epochs’ shifts ∆Φ1,∆Φ2 = ∆Φ1 + ∆Φ and integrating out the difference
to the used template, ∆Φ1. A factor then reads:

P
(
〈Φ(i)

d 〉Tj − 〈Φ
(ref)
d 〉Tj = ∆Φ(i)|Tj

)
=

=
∏
k

1√
2πσ

(i)
k

2
· exp

 1

2σ
(i)
k

2 (〈Φd, k(i)〉Tj − 〈Φd, k(ref)〉Tj − k∆Φ)2

 (4.32)

Where σ(i)2
= σ

(i)
s′,k

2
+σ

(ref)
s′,k

2
is the sum of the new phase variances estimated from the epochs’

data, given Tj holds. The formula deduced simply states that the difference of the filtered mean
phases of the two epochs under consideration is the mean phase difference times the Fourier
coefficient number.
While the gathered probabilities on phase differences are reference free, in order to output
a TOA, we have to define that the absolute phase of a certain epoch amounts to zero. In
the classical procedure, the template was assumed to have zero phase. Additionally there
exist several conventions on defining the physical point on a profile where the phase is zero,
including but not limited to defining the mid of the profile at the “center of mass” of the profile
or at the highest peak. To that extent we declare a “reference epoch” which’s ToA is declared to
be exactly the timestamp of the rising edge of the first bin of the pulse. As we assume the epoch
with the highest S/N-ratio to have the lowest variances in its statistical template as seen from
the others, we choose this one to be the reference epoch. While, per definitionem, this TOA’s
relative phase is exactly zero, the corresponding ToA has to have a variance to be fitted into
TEMPO2. Thus we calculate the variance of the reference as it would have been determined by
all other epoch’s relative shifts as

1

σ(ref)2 =
∑
j

1

σ(j)2 (4.33)

For the other epochs, the probability distribution of the relative phase shift provides the correct
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error estimate on the ToA automatically.
Another big advantage of parametrizing the ToAs by their difference is that (4.31) can be
calculated independently for every template and added logarithmic. This can be done since
the measured variable, phase difference, is the same for every pair of epochs, no matter which
statistical template is assumed for the moment. This gives us the freedom to rasterize the
probability distribution as a whole without preferring one template over the others and stay
in the Bayesian picture until reducing the probability distribution measured into mean phase
differences and variances in the very last step. This becomes essential when also short epochs
with weak signal over noise ratio are to be included in the analysis. In this case multiple phases
are still plausible e.g. mistaking one peak for the other (see also fig. 4.7 and Sec. 4.3.2) since
the yielded probability distribution for one template may be too far from the gaussian form to
be reduced to a mean and variance. The ToA tToA of epoch i with mean phase shift ∆Φ(i) and
variance σ(i)2

w.r.t. the declared reference then amounts to:

tToA = trising edge + P0,i × (∆Φ(i) ± σ(i)) (4.34)

where P0,i is the folding period of epoch i and the phase difference takes values in the interval
[−.5 : .5].
Developing an interface to Bayesian extensions of TEMPO2, like TempoNest[Lentati et al.,
2014], to communicate the whole probability distributions on the relative phase information
to the pulsar timing code would be a further step to enhance the statistics on the ephemeris’
parameter sets. While this may be desirable in the future we simply reduce the yielded proba-
bility distributions to their mean and variance and calculated ToAs directly comparable to the
ones from tools like pat included in the PSRCHIVE toolset and processable by TEMPO2 without
modifications.

4.3 Application to data

Having derived all relevant equations we may now apply the formulae upon given datasets and
test the approach. We analyse (frequency and polarisation integrated) single pulse data unless
otherwhise stated. Starting with simulated datasets we afterwards evaluate a dataset of PSR
B1133+16 with 2041 consecutive single pulses consisting of 1024 bins each. Furthermore we
determined ToAs from short time integrations of data of PSR J1713+0747 and analysed these
ToAs with the TEMPO2 software package comparing with ToAs generated using “pat” from
PSRCHIVE and a very accurate classical analytical template.

4.3.1 Simulated data

We wrote a simulated data generator serving single pulses of non-fluctuating shape f but multi-
plied with gaussian red noise to account for a highly fluctuating radiation process and analysed
the convergence of the amplitude model in Fourier space. The classical average is in this case
the statistically optimal procedure to determine the pulse profile since the assumption that there
is exactly one profile holds, and a quickly converging law of large numbers applies. Fig.4.6 de-
picts the reconstruction from ten, hundred and a thousand pulses comparing classical template
integration with Bayesian reconstruction. Both methods perform equally well, as was expected.
However, the Bayesian reconstruction also gives us an estimate on the profile stability and thus
a better understanding of the remaining statistical uncertainty. Reconstructing a constant signal
shape is a difficult task for a log-normal Bayesian model since the guess of a non-fluctuating
shape is statistically only feasible by collecting lots of data. Thus, even though the test seems
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Figure 4.6: Reconstructions of the original signal shape by both Bayesian and classical methods and
their errors after 10, 100 and 1000 pulses respectively. The lower half shows the errors of the estimation
to the original signal shape and the Bayesian estimation of the remaining uncertainty σf on the expected
log-normal mean f
.

58



4.3. Application to data 59

simple, it is actually a very strict test for the Bayesian measurement model to pass as the cor-
rect solution for infinite observation time is delta peaked. The algorithm is expected to perform
much better on real data for which the profile shape measured is much more fluctuating for
small integrations since it has a way of incorporating the instabilities of the profile. Since in an
observation of finite length the algorithm will never show zero variance on the profile shape,
it estimates the profile intensity slightly but systematically too high. This gives rise to a prob-
lem if one is set out to measure the intensity of radiation naively by interpreting the statistical
template as a way of describing the profile. The template gives a statistical way to determine
all compatible intensities or the probability distribution of these, but not the “true” intensity
directly.
The high modes exhibit a large absolute error. This is an effect of low signal to noise ratio at
imperfect numerical integration. For low amplitudes, the Hamiltonian for different values of
f becomes rather flat and thus the outcome just reflects the prior we have been taken. In this
case the prior was a log-normal Gaussian model with 2σf around the average found. Notice that
the σf the algorithm suggests (leaving aside the singularities of the profile) captures the true
error (except for singularities and the imperfect numerical integration of high modes) giving a
handle on the remaining statistical uncertainty.

4.3.2 Determining phase shift

We used a template with four peaks of Gaussian shape, sizes ranging from 1.8◦ to 3.6◦ and
generated a dataset with an overall signal over noise ratio of −17dB ≈ 1

50 . We compared two
independently generated datasets of one hundred pulses with 1024 bins each, shifted by 1.8◦,
which amounts to a shift of 5.12 bins. As Fig.4.7 shows, the Bayesian reconstruction yields
∆Φ = −1.81◦ ± 0.04◦. The other maxima in the probability distribution are of smaller size
but reflect the the spacing of the templates peaks and the possibility of mistaking one peak
for another. Having a local signal to noise ratio of four for every peak and a resolution of
360◦/1024 ≈ 0.35◦ available, we may estimate the uncertainty of every peaks location to be
1.3◦5 in every single peak in every single pulse. Having derived the phase drift using 200 × 4
peaks, we classically calculate the remaining error due to the receiver noise to 1.3◦√

2·400
≈ 0.046◦.

In the fluctuation free case (the simulated emitted signal is exactly the four peaked shape
before the receiver noise is added and the signal is squared) it can be shown that this error is
the minimum reachable error. The test of our algorithm reaches this accuracy, too.

4.3.3 Real data

Generating templates from real data yields reconstructions of surprising confidence. Fig. 4.8
depicts the amplitude reconstructions from certain numbers of consecutive pulses. In each fig-
ure, the long-term convergence gathered from the whole dataset may serve as a reference. We
emphasize that for data gathered by a pulsar with fluctuating shape, classical and Bayesian re-
construction are in general not expected to yield the same curve, since fluctuations are handled
differently by both models. Both can only be compared to their own long-term limit. Further-
more the statistics of the profile seem to change with time for the dataset examined. We will
analyse this short term behaviour in the next section.
The Bayesian reconstruction does exhibit lower noise at high fourier coefficients and converges

5Calculating the exact timing precision achievable is highly nontrivial. We estimated this error as follows: Assume
a single peak at a S/N of one to be locateable to about its width, having a signal to noise ratio of four should increase
this precision by a factor of

√
4. Adding the errors on the bin and resolution quadratically, we end up with an average

of 1.3◦ per peak.
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Figure 4.7: Unnormalized logarithmic probabilities for phase shifts. The comb structure comes from the
four peaks present in the template.
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rather quickly to its ultimate form. The main features such as peaks and curvature appear
already at 64 pulses while the classical average remains dominated by fluctuations occurring.
However systematic offsets in the Bayesian reconstruction appear. These may largely be back-
tracked to the actual pulsars intensity changes and nulling periods. A numerical fluctuation of
the algorithm is rendered unlikely since each point of the construction is calculated indepen-
dently and thus an equal rise in all coefficients is highly improbable. The classical average also
shifts upwards and downwards with varying intensity, but the effect is mostly indistinguishable
from noise. For this real life example, the method derived is clearly superior to the classical
method in areas of low signal to noise ratio, given that it converges very fast to its ultimate form
and showing denoised systematic profile changes. It is reproducing the classical outcomes in
the lower coefficients and not picking up the noise of the higher coefficients. After 128 pulses
a confidence of about ten percent is already reached for all coefficients present. This paves the
way to investigate changes in the radiation profiles on these scales. We could further diversify
our pulses in intensity classes and perhaps in different modes of radiation given the contrast
and fastness of the envelope estimate. Fig. 4.9 shows the differences of the two reconstruction
methods in time domain and the single pulse probability density function as described by the
Bayesian statistical template (depicted as grey shade): While the classical average just assumes
the pulsar to have a certain profile shape, the Bayesian method is rather based on exclusion and
describes profile shapes compatible with the data gathered. Thus, after as few as ten pulses,
the Bayesian reconstruction in time domain already resembles the final form of the radiation
profile. Notice that it still allows for signals out of the profile, since statistics do not exclude
low signals after ten pulses.

4.3.4 Reconstruction stability to fluctuations

The workings and main differences of the two algorithms become evident when analysing
the change of the classical profile and statistical template introduced by small changes of the
dataset. This is examined by comparing the reconstructions of a window of fifty pulses moved
along the dataset. An example of stepping one pulse further is shown in Fig. 4.10. Dropping
one pulse and inserting another should not change the overall template much. If the template
changes, we expect it to change smoothly with time. For the Bayesian reconstruction, this
property can be easily observed whilst individual fluctuations dominate the classical average
picture. This can be deduced from the right peak of the template. While the algorithm de-
rived gives a rather smooth increase in intensity over the whole peak, the classical average is
dominated by spikes of individual fluctuation. One could argue that the classical spikes might
just be smoothed out of the form of the fourier transform. This is contradicted by highly local-
ized changes in the Bayesian reconstruction that are statistically significant. The change of the
left peak may be seen as an example for a localized statistical change. The classical average
does not change much there, but the Bayesian reconstruction shows a significant rise of the
left flank of the peak. The algorithm is found to behave in such a way over the whole dataset.
Furthermore it incorporates the fluctuation seen in real envelopes. This may increase accuracy
of derived parameters like the ToAs since e.g. the confidence of a peak appearing at a certain
point should be, but is not, taken into consideration by classical timing procedures.

4.3.5 Nulling

Given a set of proposed models, like different statistical templates, Bayesian statistics can also
assign a probability on how likely every single model is to describe the data, given that one
of the proposed models is true. An example for the ability to discriminate between different
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Figure 4.8: Template reconstruction for a subset of pulses
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models is nulling detection. Two sets of parameters are analysed within the framework: One
set of f , σf is generated from a training set of nulling periods taken from the first 50 pulses,
the other one is taken from the overall reconstruction as above. The likelihood of a model i
described by a set of parameters mi is compared as

P (mi|d) =

s
DsP (mi, s,d)∑

i

s
DsP (mi, s,d)

(4.35)

which may be derived straight-forwardly from Bayes’ theorem. Deciding between the white
noise model and the model derived from all thousand pulses, this formula gives the probabilities
given in Fig. 4.11 for a certain single data frame to be nulling or the pulsar’s signal. These
probabilities could be used as weights when determining further parameters without biasing
the statistics by deciding whether there was a pulse or nulling. Furthermore when looking at
the plot, the Bayesian probabilities resemble our state of uncertainty for pulses which are in the
50% region when a by eye decision should be made. Fortunately, the method is able to quantify
this uncertainty for us automatically. Nulling information could in principle further improve
the accuracy of detuning and time of arrival analysis.

4.3.6 Determining Times Of Arrival

ToAs from simulated data

Timing simulated data sets is a precise way to test the algorithm for theoretical performance
since the true signal to be found out of noisy data are known. We implemented the phase shift
model (as described in Sec. 4.2.6). We generated a statistical template out of 10,000 simulated
pulses and then measured the accuracy on timing N = 10, · · · , 50, 000 pulses with that fixed
reference, where we used a MAP approach. Statistics was gathered over 20 randomly shifted
datasets for each value of N recording the absolute error on the ToA and deriving the mean
error and standard deviation to quantify the accuracy of the algorithm. The algorithm per-
formed as depicted in Fig. 4.12. As expected, the systematic phase error was well bounded by
the fluctuations given by the test datasets. The deviation from the true value followed a 1/

√
N

law for large N as expected and reached the accuracy that is information theoretical possible.
When there were more than 10,000 pulses in the dataset to time, a systematic error appeared.
This was expected, since the reference statistical template itself (generated from 10,000 pulses)
does not contain more accurate phase information. Since we were measuring an absolute, not
a relative shift here, the error contained in the template becomes systematic. The sudden drop
of the systematic error between 10 and hundred pulses is a random sampling artifact of the
simulation involved. The average over the discrete maximum values taken was in this case ac-
cidentally zero. We also evaluate the reached accuracy for different S/N-ratios in Fig. 4.13. It
is interesting to notice that the algorithm returns a rather flat probability distribution rendering
a lot of phase values likely. This can be deduced from the high errors encountered leading to a
plateau for low values of N . At a certain point the probability distribution begins to peak and
accuracy increases with a jump, locking onto the signal. This may be explained by passing the
point where different peaks of the profile shape can be distinguished statistically. This is not a
drawback of the method but reflects the fact that, also in the ideal case, the error follows the
1/
√
N slope only for large N and a unique maximum. After that point the performance follows

a stable 1/
√
N curve.

We also simulated the whole process from measuring epochs to determine the ToAs therein.
To this end we simulated 20 epochs with 100 pulses each. Then we generated statistical tem-
plates from each epoch and used that to time the relative shifts of every other epoch. Then
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we naively averaged the maximum a-posteriori values of the shifts and their variances using
classical formulae for measurement value addition to find the ToAs and compare them with
their true values. The dataset contained 2000 single pulses. The results of this simulated mea-
surement is displayed in Fig. 4.14. We reach an accuracy of 1.9× 10−3 radians, which is nearly
the theoretical maximum for 100 pulses per epoch as can be seen from Fig.4.12. When timing
with only 10 epochs, the accuracy dropped to about 3 × 10−2 radians. In that case, the theo-
retically possible accuracy for each epoch was missed. That practically means, that gathering
knowledge of later epochs can improve measurements of the past by reprocessing them with
the newer statistical templates.

ToAs from real data

The method carried out in such a way fails when tested with real data. Reducing the phase
shift information of every statistical template to classical mean shifts and their variances before
correlating the different templates’ measurement flaws the precision of the method. This can be
understood easily considering very noisy templates. These may cause different very likely shift
values separated by a larger interval of unlikely phase values, e.g. different peaks of the profile
may be mistaken for each other. When reducing, the mean and variance of only the most likely
peak was determined giving a rather low sigma value on it, since in its neighbourhood, the
probability density can be approximated as a gaussian. This sets a too large weight on the sta-
tistical template compared with the other templates if the algorithm accidentally locked on the
wrong peak. The consequence is a large bias in the direction of the mistaken peak. However,
if one does not reduce the data template by template, but examines the probability density on
the relative phase shift of two epochs using all statistical templates at once, one circumvents
the possibility of this local fallacy and gets an overall correct probability distribution.
An algorithm obeying these caveats has been outlined in Sec. 4.2.7. By measuring the same
quantity (relative shift of two epochs) with different statistical templates we may rasterize the
probability distribution for that quantity considering all references at once and in parallel. Since
pulsar timing expects us to state a single ToA per epoch and the expected error on it, the MAP
ansatz taken in the very last step is now justified.
We compare our algorithm using 48 epochs of ten second integrations of PSR J1713+0747 with
a total observation duration of 25.8 hours covering about 1.6 years observed in Effelsberg. 31
epochs were observed at 1350MHz and 17 epochs observed at 2650MHz, both with a receiver
bandwidth of 200MHz. The reported errors on the ToAs are found to be in agreement with the
RMS reported by TEMPO2 yielding low χ2 values. Even though single pulse observations carry
much more statistical information that the data at hand, the statistical templates generated
show variations.
The ToAs generated reach an RMS of 967ns and a weighted RMS of 533ns at a fit χ2 of 0.71.
The classical method yields 895ns unweighted or 337ns weighted RMS with a reduced χ2 of
17. We compare the ToAs generated by our algorithm with classical ones generated by the tool
pat. To prevent overfitting we only fitted for phase shift in TEMPO2 and a shift between the
two observation frequencies where appropriate using a recent ephemeris [EPTA data release,
Desvignes et al., 2015] that is more accurate than the given observations. We collected the
results in Table 4.1. Besides the slightly increased RMS and weighted RMS we note that the
more appropriate χ2 values of the Bayesian ToAs are strengthening our case.
With larger residuals being produced one could argue that the algorithm presented is less ac-
curate and simply enlarges the error bars accordingly. We argue that this is not the case and
the errors stated are more appropriately describing the accuracy of the data set at hand. First
let us investigate the low χ2 values which in some cases turn out to be smaller than unity. This
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possibly points to overestimated errors. However, by using a more accurate ephemeris to time
the data, we tend to line up the pulsar phases to a more accurate value automatically. Thus, a
fit using only the data at hand is expected to be less precise, leading to an increase in χ2 values.
Furthermore, when reducing the probability density functions, we stated the maximum likely
value for the ToAs. This educated guess must not agree with the expectation value and may
turn out to be the better guess when having more data. In addition, the analysis was carried
out using the statistical templates from two different frequencies. Inherent differences between
the two frequencies’ profiles, e.g. changed ISM effects and profile evolution, lead to different
statistical templates. The two frequencies’ templates consequently are not completely compat-
ible with each other and tend to give enlarged errors expressing this discrepancy. Secondly let
us address the worse weighted RMS values. As there are a few dominant observations in the
classical case, the measured residuals reduce more when shifting the over all phase to the mean
of the observations with the lowest error bars. Whereas the actual distribution of unweighted
residuals shows about the same accuracy in both cases, shifting the brightest observations to
small residuals highly reduces the weighted RMS in the classical case. At the end, the high
reduced χ2 values indicate that we may overfit quantities such as the phase. The more accurate
error bars of the Bayesian algorithm prevent overfitting the weighted RMS value as there are
no such bright observations to reduce the weighted RMS systematically by optimizing for these
ToAs.
Comparing the change of RMS and actual residuals’ position for different ephemerides shows
that indeed the classical ToAs are scattered around further than their error bars whereas the
Bayesian ToAs are moved within their believed accuracy. For ephemerides representing differ-
ent states of knowledge, the later is the expected behaviour. New knowledge should in general
not change drastically what we assumed beforehand but lead to a more accurate description
within the statistical bounds of a data set containing less knowledge.
We argue that these desirable properties of the Bayesian algorithm have not been produced
by scaling the error bars in a trivial way. Fig. 4.15 shows a histogram of the ToA errors re-
ported by both algorithm. It is clear that the Bayesian timing has a different distribution of
error estimates that cannot be explained by linear transformation. There are only two ToAs of
bright observation that fall into the main range of the classical algorithm and the ToAs seem
to be grouped differently. The overall shape of the distribution shows similarities but cannot
be scaled in any obvious way. The error bars also do not scale trivially with brightness of the
observation. When removing the brightest observation the classical timing’s reduced χ2 values
drop to about seven to twelve. Removing the same observation for the Bayesian analysis does
change the reduced χ2 by less than ten percent.
We conclude that while the absolute residuals turn out to be less accurate for the Bayesian
case, the timing result seems to be more stable to small changes of ephemeris or binning of
data points. The method shows large improvements in χ2 value outperforming the classical
error estimation by a factor of about seven to twenty.

4.3.7 Moding

We examined the algorithm’s timing behaviour on a moding pulsar. We used a dataset of pulsar
B0329+54 observed in Effelsberg at 21 cm consisting of 5000 single pulse observations with
1024 bins each. Using the same formula (4.35) as for the nulling anlysis, the alorithm decides if
a single pulse or a subset of pulses was emitted in a certain pulsar mode described by statistical
template mi (consisting of the same set of parameters like Ti ). We auto-generated a moding
analysis by generating a statistical template T over all data. Then we analysed the probability
of each given single pulse to appear, given the template T describes the radiation correctly.
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Classical timing Bayesian timing︷ ︸︸ ︷ ︷ ︸︸ ︷
frequency rms Wrms χ2 red. χ2 rms Wrms χ2 red. χ2

1360MHz 310ns 228ns 349 12 378ns 301ns 8.9 0.30
2650MHz 1445ns 1422ns 440 28 1542ns 1189ns 23.6 1.5

Both 895ns 337ns 789 17 967ns 533ns 32.5 0.71

Table 4.1: Comparison of timing residuals of observations taken at 1350MHz and model accuracy as
reported by TEMPO2 for classical and Bayesian ToAs.
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Figure 4.16: We overlayed the average profile curves of different modes over a scatter plot of the single
pulses coloured according to the probability of belonging to mode 1-3. The dotted shape amounts to an
average over all pulses.
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Basically this means evaluating the joint probability for the phase (4.27) and amplitude (by
integrating (4.11) over s). We ordered this list of probabilities descending and initially divided
it into nmodes sections of equal length, where we assumed a certain nmodes to be the correct
number.
In principle, the number of statistically distinct modes is also subject to uncertainty. One may
also calculate the probability, that a certain nmodes holds. This could in principle further im-
prove the results derived in the following but is of secondary interest for a first analysis of the
behaviour of the algorithm.
Given this initial assignment of the single pulses to modes, we started an iteration procedure.
In each step, a new set of statistical templates according to the weights of the previous step
are calculated: {T (0)

1 , ..., T
(0)
nmodes}. These were then used as models in eq. (4.35) to assign the

probability for each individual pulse to belong to a certain mode. These probabilities become
the new weights for that pulse. We experimented with this iterating procedure and found about
five steps to be sufficient that the difference from step to step is negligible.
The algorithm allows an unambiguous assignment of single pulses to a certain statistical tem-
plate except for a very small number of pulses. The statistical nature of single pulses makes
it difficult to grasp what classification is happening. Thus we decided to make a scatter plot
(Fig. 4.16) of 5000 single pulses assigned to three modes. The single pulses were blurred to
simulate a density kernel and plotted with an opacity of 1% in the colour of the probability to
belong to a certain mode. For orientation, we overlayed the average pulse shapes each mode
would generate if it was the sole mode observed along with an average over all pulses, drawn
in dotted white.
The term moding usually refers to the appearance of few distinguishable shapes of the inte-
grated pulse profile. As a single pulse profile is very different from its neighbouring pulses, it
was very common to assign different modes to consecutive pulses. Thus the question arises,
whether to still call this behaviour moding or not. On one hand, we could try to further de-
velop the algorithm to make mode switching on such small timescales very unlikely. Then the
algorithm would pick up “modes” in a more classical sense. On the other hand, the integrated
profiles of these “sub”-modes are quite distinct and certainly their ratio has an impact on the
average profile shape over a few minutes integrating and thus also on timing (as we will ex-
amine below). Understanding the relationship between these sub-modes and the astonishingly
stable moding behaviour over a larger integration time could lead to a deeper understanding
of the conditions in the pulsar magnetosphere.
These submodes also seem to be correlated over the whole profile. For example, mode three in
the figure is the only one having an earlier rise of intensity at 230 degrees and additionally a
very low slope in the middle of the profile.
Taking these different correlations into account can also archive a more accurate timing and
make the timing stable against different integration times and noise. Fig. 4.17 shows two ex-
amples of how a moding template on single pulse level can improve detecting the phaseshift of
a few tens to hundreds of pulses. Statistical templates were generated from 5000 pulses and
later used to time simulated epochs consisting of consecutive subsets of 25 in the upper and
50 single pulses in the lower panel, taken from the same 5000 pulses. The most likely value
for the shift of each set was binned to generate histograms of the observed frequency. Knowing
that there was no subpulse drift over the 5000 pulses as a whole, we expect the phase to be
measured as zero for every subset. This is indeed the case, if we assume the pulsar to radiate in
different modes (depicted in green). When run over subsets of 25 pulses, the non-moding tem-
plate (depicted in red) fails to detect the correct shift by repeatedly mistaking one peak for the
other. Unfortunately the few outliers which would have identified the right peak are scattered
around zero with a systematic bias. We suspect this bias to be caused by the single statistical
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Figure 4.17: This figure compares the phase detection performance of a single or a moding statistical
template on 25 respectively 50 pulse integrations.

template trying to cover two or more very distinct modes of radiation. Doubling the number
of pulses in a subset fixes the problem of not matching the right peaks. However, there is still
a bias and the results have a larger variance than the moding template. The moding template
detects the correct pulse phase with satisfying accuracy while showing a lower variance. This
can be understood having a look at the generated modes. The maximum value of the second
peak for every single mode is further left for pulses which are less intense. In the average
picture over all pulses this correlation cannot be accounted for. When looking at subsets of
pulses however, the lower probability of reaching a high intensity mode shifts the peak to the
left. Consequently, the reference template is detected to be shifted to the right. The ansatz
using one statistical template reduces this inaccuracy to about half a degree, which is still a low
value in the light that e.g. the peaks of the first and second mode, if we assume three modes
(see Fig.4.16), are separated by 1.5 degrees and the average taken from 50 pulses is still very
noisy. Using a statistical moding template, the variance in variability exceeds the inaccuracy
introduced by integrating a smaller subset than the one the template was generated from.
We conclude that assuming even a low number of modes to be present can significantly improve
the timing results both in variance and systematic error.

4.4 Conclusions

We developed and evaluated a log-normal Bayesian model for single pulse analysis of pulsars.
The algorithm described is able to reproduce the results of classical averaging procedures when
considering non-fluctuating templates up to the approximations taken. The method is surpris-
ingly versatile in situations of weak signal or a fluctuating template shape, since it is shown to
be more robust against fluctuations. Thus it may enable one to examine fast changes in the
radiation profile or distinguish different modes of radiation, such as the nulling analysis, an
example for model discrimination, has shown.
Secondary parameters’ reconstruction may be implemented easily by calculating their imprint
on the data and then evaluating the joint probability using the model derived, as was demon-
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strated with phase drift on simulated epochs. The parameter studies derived in such a way
profit from additional statistical information incorporated in the template automatically since
only the statistically significant part of the data will have an imprint on the probability distri-
bution of the parameters under examination.
The benefit of rather understanding which parameter values are compatible with the data gath-
ered than trying to reconstruct one possible signal out of the dataset might be worth the effort.
This may give statistical access to hitherto poorly examined parameters and topics such as small
time-scale variations of the radiation process and magnetosphere by providing strong and rea-
sonable reconstructions. It may be an appropriate choice when a classical estimator leaves us
with a definite but perhaps insignificant answer.
A first test to generate ToAs from real data showed that the algorithm developed can reduce χ2

values while reaching the accuracy of classical methods. These values can further be improved
as we did not use single pulses but few second integrations. It gave correct ToAs even though
the statistical templates used were generated from the same data that was to time. The classical
way of template generation is known to affect the results of timing if the same data is used for
template generation [Hotan et al., 2005].
If one intends to use the method on routine basis as an alternative to the classical one, the
data volume to keep for logging and generating reproducible output increases drastically. One
would have to find a way of reducing the data without loosing the possibility to reprocess it or
re-validate it.
Data compression and performance might be improved at the same time for Bayesian methods,
as van Haasteren [2013] already points out. Computational feasibility sets a limit to the po-
tential use of Bayesian analysis, but there exist ready to use methods for speeding up Bayesian
calculations, such as Taylor et al. [2012] or the Metropolis-algorithm [Metropolis et al., 1953].
The formulae presented may also be sped up by analysing them in perturbative manner. Enßlin
et al. [2009] and references therein develop an information field theory, taking the information
Hamiltonian H = − logP (· · ·) as a starting point. This allows for approximating the numerical
integrations involved analytically and breaking their influence down to computationally sim-
pler matrix arithmetic.
Furthermore consolidating different data channels, like radio data at different frequencies, is
easily possible in a Bayesian framework.
Once the computational complexity is dealt with, the Bayesian method might provide a way
to reduce observation time for low signal to noise pulsars and give a handle on the statistical
uncertainties involved in template generation. It gives access to a broad range of secondary
applications such as sophisticated methods of interference detection or testing pulsars long-
term behaviour for template changes or short- and long-term moding behaviour affecting ToA-
analyses.
Hence the basic analysis carried out has shown that Bayesian reconstruction of pulsar templates
is not only feasible, but also forms a more complete picture on the pulsars template shape. The
additional data turns out to be very valuable for subsequent analysis of secondary parameters
mitigating the effects of insignificant fluctuations. Benefits known to arise by inspection of the
stochastic behaviour in the analysis will be automatically propagated by implementing a mea-
surement using the proposed Bayesian template.
The C++ implementation of the algorithm ran about a day on 25.8 hours of 10s preintegrated
data on a powerful desktop computer6 to generate the TOAs of Table 4.1. Taking such efforts
today to improve mainly the χ2-values may seem like exaggeration. However, with the next
generation telescopes like the SKA, we will face a high S/N ratio in single pulse or short obser-
vations. We will be entering a regime where we cannot afford losing statistical data any more.

632 GB RAM / Intel Hexacore i7-3960X CPU @ 3.30GHz
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Improving timing performance in this regime will crucially depend on understanding the cause
and controlling the impact of fluctuations in the signal. Waiting for the fluctuations and noise
to average out may not be necessary or even inferior to a method like the one suggested.
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Appendix to paper

4.6 Calculations

4.6.1 Integration over g

Starting from eq. (4.10):
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Integrating over g leads to:
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(4.36)

where D̃f = ̂exp [−f ]G−1 ̂exp [−f ] + 1 is always greater than 1 leading to a broadening of
the likelihood in case of bad signal noise ratio. We may reformulate the matrix in the data-
dependent term as

1− D̃−1
f = [D̃−1

f ][D̃f − 1] = [ ̂exp [−f ]G−1 ̂exp [−f ] + 1]−1 ̂exp [−f ]G−1 ̂exp [−f ]

= [1 + êxp [f ]Gêxp [f ]]−1 (4.37)

which leads us to the final form

HB [A] =
1

2

[√
d
† 1

σ2
n
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4.6.2 Discrete Fourier coefficients of a detuned signal

For the signal consisting of a single Fourier coefficient with frequency ω′ = 2πn
T = 2πna

τ the
measured coefficient over a period [Kτ − τ

2 : Kτ + τ
2 ] of pulse K is readily calculated as
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For the full spectrum of a real signal, where sn = s∗−n we get
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where we now introduce k = an+k
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where we assumed b0 to be zero and used sn =: an(i sin Φsn + cos Φsn), anreal.

4.7 Some considerations on the evaluation of the receiver
Posterior

Having rigorously marginalized out the stationary process g, we seek to maximize the posterior
probability density function with respect to the template parameters. When projecting this
equation into Fourier space, G is a diagonal matrix and the multiplication with f̂ transforms
to a convolution that breaks this diagonality, leading to a coupling of the Fourier coefficients.
While in the diagonal case the pdf completely factorizes in separate Fourier coefficients, which
are independently and quickly integrated, there is only one Nbin-dimensional integral in the
exact case. For typical Nbins of 1024 the computational demand is simply too high. Thus we
decided for imposing diagonality in Fourier space, which discards the non-diagonal terms of f
leading to a solvable integral. However, this discards phase information as now f has also the
properties of a stationary process. Consequently we have derived an amplitude-only model. An
Amplitude model alone does not contain valuable information about TOAs since the amplitude
is invariant to time shifts. Therefore, we impose a model on the phase of the signal based on
wrapped gaussians and being evaluated phenomenologically. This model uses the amplitude
information to estimate the phase error of an observation at hand. The phenomenological way
was chosen as the exact calculations for quadrature of the stochastic signal mix the phases of
different Fourier channels in a highly non-trivial fashion again leading to an unwanted coupling
of phases present only at the single pulse level.
This ansatz tries to find a compromise between numerical feasibility and accuracy. For the
case of real measurements containing additional noise and fluctuations, we expected to grasp
the uncertainties left with acceptable precision and lead to acceptable χ2-values at the end.
However losing the mathematical precision, we expect not to reach the accuracy of the classical
timing codes when it comes to evaluating exact, nonfluctuating test data sets. Indeed our
round mean square errors turned out to be 25% worse in these cases while the reached χ2 was
comparable accurate.
The question surely arises why we did not evaluate the pdf in time domain. In time domain, the
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main operator acting on the data is the inverse of a diagonal matrix (f̂) plus a Toeplitz-matrix
G 7 that can be further reduced to a circular Toeplitz-Matrix by the symmetry in f̂ . There
exist fast ways (up to O(N logN)) of calculating the operators scalar product with the data
[Ng and Pan, 2010] however this does not reduce the dimensionality of the integration when
it comes to varying the template parameters of interest. Unfortunately, expanding the operator
linearly (to develop a mean field theory for the signal field, which should lead to a very good
estimate and first order corrections for the correlations present in the problem) does not help
in this case, as the derivatives refer to specific entries of the inverse matrix. Calculating the
inverse matrix itself scales O(N3) or best O(N2) in our case, and as we need N entries for
the calculation of the mean field gradient, the computational demand is again unacceptable.
A class of transformations on f that leave the determinant of the operator invariant, combined
with a pdf on the invariants of the transformation, could make exact evaluation of the derived
equations possible. In lack of such a tool we decided to approximate the problem in Fourier
space.

4.8 Iterative solver for fields

Finding the maximum a-posteriori (MAP) probability set equals finding a global maximum for
f and σf both at the same time. Equations (4.16) and (4.17) explicate optimization w.r.t.
one parameter only in the context of correct prior knowledge. Furthermore, we want to find
the optimal solution w.r.t. both parameters. We may resolve these issues by assuming that
there is only one maximum (which might not be the case as there might be several modes
of radiation in the system etc.) and rely on a suitable iteration scheme. We implemented a
method of steepest ascend. The Hamiltonian may be seen as a potential to be broken up in
parts dependent on fk and σk for every Fourier coefficient. For the sake of shortness let us call
this part Φ(f(t), σ(t)). We now try to find the path of the steepest ascend, parametrized by t:
γt = (f , σ). Infinitesimally, isolines may be found using dΦ(γt) = 0. Working this out for our
Hamiltonian leads to

0 = 〈 (f − f)2

σ3
− 1

σ
〉∂σ
∂t

+ 〈 f − f

σ2
〉∂f

∂t
(4.38)

Consequently, the direction of the steepest ascend/descent follows the differential equation
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− 1

σ

)
∂f

∂t
(4.39)

where orthogonality is easily shown. Since for most cases occurring setting f according to
(4.16) is an acceptable method while a reasonable update procedure of σ prior to optimizing
it was missing, we update σ when updating f by the method, but not vice versa. Integrating
(4.39) is approximated by

∆σ =
∂σ

∂f
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(
〈(f − f)2〉

σ
− σ

)
∆f

〈f − f〉
(4.40)

⇒ σnew =
〈(f − fnew)2〉+ 〈(f − fold)

2〉
2σold

(4.41)

7a matrix whose entries depend only on the distance to the diagonal
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and determining fnew as in (4.16). As is evident by derivation, this method is generic for a
prior of the form of a Gaussian, however could be refined by also updating the f value by
similar considerations.
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CHAPTER 5
Paper : Rambrain

a library for virtually extending physical memory

Imgrund, M. and Arth, A.
This chapter has been submitted in slightly modified form to Astronomy and Computing

Abstract: We introduce Rambrain, a user space C++ library that manages memory consump-
tion of data-intense applications. Using Rambrain one can overcommit memory beyond the
size of physical memory present in the system. While there exist other more advanced tech-
niques to solve this problem, Rambrain can save development time by providing a fast, general
and easy-to-use solution. Rambrain takes care of temporarily swapping out data to disk and
can handle multiples of the physical memory size present. Rambrain is thread-safe, OpenMP
and MPI compatible and supports asynchronous IO. The library is designed to require minimal
changes to existing programs.

5.1 Introduction

Facing large amounts of data, be it simulations or observation results, many astrophysicists have
become part-time software engineers. As the primary target of their work focuses on producing
astrophysical results, developing e.g. code to analyse data, is an inevitable obstacle on their way
to the actual goal. In the case of the authors this goal is either to analyse extensive data sets of
pulsar timing information [based on Imgrund et al., 2015] or to post-process large snapshots of
cosmological simulations (see Arth et al. in prep.). While typical software-engineering amounts
to serialising given tasks to be executed as quickly as possible, many everyday codes evaluating
data or simulation results are written to be run only a few times. In this light, the primary focus
of an astrophysicist often lies on saving development time and not execution time.
One of the time consuming tasks is writing code that needs to deal with large data sets. When
developing applications which use large amounts of main memory, a single larger dataset may
suffice for the system to run out of memory. The typical ad hoc solution to this is finding
a machine with more main memory. It is obvious that this solution is only temporary when
facing growing amounts of data. The other extreme is to code memory management functions
specifically in an optimised way for the problem at hand, so called “out-of-core computing”.
This, however, is very time-consuming.
Therefore we introduce Rambrain, a library that facilitates quick development of applications
in need of large main memory. It is built to easily integrate with existing C++ code on Linux
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and helps applications to swap out temporarily unneeded data to transparently access multiples
of the actual physical memory available on the system.
While there may exist other problem specific solutions that have a slightly better performance,
we argue that in most situations the flexibility of a fast, reliable and out-of-the-box solution
is preferred to a few percent performance gain. Before introducing Rambrain, let us quickly
review other solutions to the problem at hand and discuss when these are to be preferred and
in what cases they are to be discarded. While there may exist other problem specific solutions
that have a slightly better performance, we argue that in most situations the flexibility of a fast,
reliable and out of the box solution is preferred to a few percent performance gain. Before
introducing Rambrain, let us quickly review other solutions to the problem at hand and discuss
when these are to be preferred and in what cases they are to be discarded.

5.2 Common strategies to avoid out-of-memory errors

The most basic strategy to still run an application in a situation of scarce free memory is using
native system swapping. Modern operating systems like Linux manage association of physical
memory to various processes running at a given moment. As an application developer, you
are presented a more or less consecutive virtual memory address space. It is in general not
clear whether a chunk of virtual memory, a so called “page”, is residing in a physical main
memory location, called a “frame”, at a given time or not. This layer of abstraction facilitates
assignment of memory to a process, so that the system can overcommit physical memory and
reassign virtual pages to physical frames, when desired. When free frames become scarce, the
system writes out currently unused pages to secondary storage (such as hard disks) in order to
free frames. When a process tries to access a non-resident page, a page fault is triggered and
the page is read in from secondary storage by the memory manager of the system [Ligh et al.,
2014, p.20] and if necessary, according frames are freed by writing the occupying pages out
beforehand. While this process is efficient under normal operation, the system typically slows
down to being unusable when actively consuming nearly all physical memory. Especially when
multiple processes compete for the remaining space (a typical situation for a developer working
and debugging), the computer is virtually unusable until the memory-intense calculation has
finished.
This swapping mechanism is also limited by the available swap space on the secondary stor-
age. While adding more swap space with the system’s on-board mechanisms1 is possible, it
needs super user privileges and reserves the whole swap size on the disk even if it is not used
completely. Furthermore, it aggravates the situation when multiple processes are competing
for memory, as more and more parts of other programs can be swapped out and need to be
swapped in again in order to continue execution.
Using system swapping as a mechanism for overcommitting main memory can also provoke the
action of the so called “Out-Of-Memory Killer (OOM-Killer)". As available memory becomes
sparse, the system tries to keep most processes running. In order to free memory for other
processes, the OOM-Killer will kill one or more processes by assigning a score correlated with
importance, memory consumption, execution and idle times of the candidate process. The
OOM-Killer thus can abort simulation or analysis at the very last step and protections against
are hard to find [see e.g. Rodrigues, 2009]. The OOM-killer can by now be controlled a bit finer
via the /proc file system, but shutting it off for a certain process needs administrator privileges.
However, one has to keep in mind that even if one can force the own application to stay alive,
the OOM-killer can simply shut down system processes which may trigger secondary effects on

1Using the system tools mkswap/swapon as root.
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the target process.
A more controllable user-space solution is desirable, such as the memory mapping system calls
combined with moderate sized swap files on the secondary storage. Memory mapping tech-
niques are fast because they use the same paging and copy mechanisms such as system swap-
ping, but are subject to stronger limitations than letting the system handle the paging itself.2

The consecutive logical address space that is handed over to the process has to be managed by
the user. This means that the user has to take care of allocating multiple data structures on top
of the space, a mechanism that the new/delete operators deal with in C++, normally. While
handling for example a vector of fixed size structures in a memory map is simple, allocating ob-
jects of different sizes will be highly non-trivial. As the system is responsible for writing out the
memory mapped regions to the file on secondary storage, efficient interaction with the kernel
when changing the memory-mapped region is challenging when trying to optimise this process
for performance. This renders such a technique possible, but complicates robust implementa-
tion and favourable run time behaviour in highly dynamic situations.
Of course, there exist already such solutions, such as the STXXL [Dementiev et al., 2008] that fa-
cilitate out-of-core computation providing large standard containers in analogy to the Standard
Template Library (STL). While this is a very useful idea, it has still some drawbacks imposed by
it’s specialised approach. Rambrain has built in class support for the full C++ standard in con-
trast to the limitation to POD-support of the STXXL. Rambrain provides direct access to pointers
in memory and thus will pose no overhead over heap allocation once the pointers have been
provided. Additionally, objects created with Rambrain can be used in association with normal
STL-containers and will be swapped, too.
An alternative approach, using parallel virtual file systems is also imaginable [see for example
Tang et al., 2004]. However, this kind of approach still leaves the programmer with the burden
to write IO operations himself, even if they may be encapsulated e.g. as a function.
Furthermore, optimizing the data flow on this level comes near to developing an out-of-core
algorithm for the problem at hand that takes control over all input and output operations man-
ually. Introductory reviews of such algorithms can be found in Toledo [1999a], Vitter [2001].
Of course one can design a very clever way of handling input and output data to boost perfor-
mance. This, however, opposes the goal to find a more generic solution that gives the developer
moderate control over input and output flow while taking from him the burden of handling the
input and output manually. Specialised solutions cover for example n-body codes [Salmon and
Warren, 1997] or linear algebra calculations [Reiley and van de Geijn, 1999, Toledo, 1999b].
From the view of the application developer, the situation is very simple: When writing a pro-
gram the developer knows what data he uses, what he will use next, and what is not needed for
longer time. This information is always present directly in the source code. In the next section
we will introduce the interface which communicates this information to the library.

5.3 Interfacing Rambrain

In order to manage the storage needs of a C++ application, we are faced with the problem of
designing an interface to tell Rambrain, which data is to be managed and when it has to be
present. In this chapter we introduce this interface built to require minimal changes of existing
code while at the same time providing rich convenience features when possible.

2Both the number and size of memory maps are limited by the system.
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Listing 5.1: Typical two dimensional field initialisation

double k_x =1. , k_y =1.;
2 unsigned int x_max=1024, y_max=1024;

4 double ∗ ar r [x_max ] ;
for (int x=0;x<x_max;++x ) //allocate rows

6 ar r [x ] = new double[y_max ] ;
for (int x=0;x<x_max;++x ) { //initialize field

8 double ∗ l i n e = ar r [x ] ;
double xx = x / (double) x_max ;

10 for (int y=0;y<y_max;++y ) {
double yy = y /(double) y_max ;

12 l i n e [ y ] = s in (( xx∗k_x+yy∗k_y ) ) ;
}

14 }
//do something and delete afterwards:

16 for (int x=0;x<x_max;++x )
delete ar r [x ] ; //deallocate lines

5.3.1 Basic usage

As a memory manager keeping track of data has some overhead on its own, it is only useful
when the data managed is large. Rambrain can manage simple primitives, arrays, whole classes
and also supports nesting of managed objects into managed classes. For a start, consider the
code in listing 5.1 that is initialising a two dimensional plane wave field of data type double on
heap memory. We allocate an array of pointers to the respective field rows in line 4, allocate
the actual rows in line 6, and set up a plane wave over all field values in lines 7 to 14. Some
calculations are executed prior to the deallocation of the rows in line 17.
If we assume now that y_max and x_max take large values, the allocated doubles will consume
a non-negligible amount of RAM, passing a gigabyte at roughly 116002 elements. Thus, the
developer would have to swap out elements if he seeks to avoid system-swapping to occur, to
ensure that the program does not run out of physical memory. Manual implementation inserts
many lines of code when allocating memory and around line 8. Alternatively, the user would
write his own memory manager version calling functions to load and unload data. When several
objects are needed at once, loading and unloading become the dominant part of the code.
Furthermore the additional lines start to obfuscate algorithmic code structure. The nested for-
loops as well as the essential initialisation done will be difficult to spot. Minimal changes to
this passage of code will allocate the arrays so that Rambrain is aware of them and dynamically
loads and unloads the lines if needed, as can be seen in listing 5.2.
The overall structure is minimally changed. Up to adding line 8 we only wrap data objects. We
introduce two template classes here, managedPtr<> and adhereTo<> to emplace Rambrain.
When using Rambrain in a minimal way, these two classes will be the only ones referenced by
the developer.
The first class, managedPtr<>, replaces allocation and deallocation by Rambrain wrappers.
This replacement is necessary to hide away the pointer to the actual data in logical memory, as
the element may or may not be present when the user dereferences that pointer.
Consequently, we need a way to give back access to the data. This is done by adhereTo<>
which states its meaning in camel-case: This objects adheres to the data. While the respective
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Listing 5.2: typical two dimensional field initialisation with Rambrain

double k_x =1. , k_y =1.;
2 unsigned int x_max=1024, y_max=1024;

4 managedPtr<double> ∗ ar r [x_max ] ;
for (int x=0;x<x_max;++x ) //allocate rows

6 ar r [x ] = new managedPtr<double>(y_max) ;
for (int x=0;x<x_max;++x ) { //initialize field

8 adhereTo<double> glue ( a r r [ x ]) ;
double ∗ l i n e = glue ;

10 double xx = x / (double) x_max ;
for (int y=0;y<y_max;++y ) {

12 double yy = y /(double) y_max ;
l i n e [ y ] = s in (( xx∗k_x+yy∗k_y ) ) ;

14 }
}

16 //do something and delete afterwards:
for (int x=0;x<x_max;++x )

18 delete ar r [x ] ; //deallocate lines

adhereTo<> object exists according to scoping rules, it is guaranteed that the user can fetch a
valid pointer to the data by assigning the adhereTo<> object to the pointer, as is done in line
9. In the following, we will also refer to this as “pulling the pointer".
The scoping relieves the user from the need to explicitly state that the data is no longer used
for the moment. While the corresponding adhereTo<> object exists, the pointer to the data
remains valid. When this “glue” to a managedPtr<> is deleted, for example by going out of
scope, the object may be swapped out to disk in order to free space in physical memory for other
objects, if needed. This already concludes what a developer needs to know about Rambrain to
write his own code using the library in the most basic fashion.

5.3.2 Advanced usage

Currently, Rambrain is equipped with the following advanced features that give more detailed
control or convenience. The line numbers given refer to the code examples in listing 5.3. The
advanced features show that the interface is both minimalistic and powerful enough to facilitate
development with Rambrain.

• Allocation of simple datatypes. The user may allocate a single object or multiple objects
at once, passing an initial value. Also multidimensional arrays are supported, that will be
collapsed to an array of managedPtr<>s of the size of the last dimension. (lines 1-4)

• Class allocation. Class objects may have nested managedPtr<>s which can be swapped
out independently of the class object. Rambrain supports parametrized as well as default
constructors. Destructors will be called in the correct sequence. Furthermore, the member
hierarchy can be tracked. Finally, Rambrain will ensure correct deallocation of the object.
As some or all parts of it may have been swapped out, this is a non-trivial task. The code
supports array initialisation on classes, too. (lines 6-15)

• Different kinds of loading stages. The user may explicitly state whether to load ob-
jects immediately or delay actual loading until the first pointer is being pulled from the
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Listing 5.3: Advanced features

managedPtr<double> a1 ; //single element
2 managedPtr<double> a2 (5) ; //array of five elements

managedPtr<double> a3 (5 ,1 . ) ; //five elements, all set to 1.
4 managedPtr<double,2> a1 (5 ,5 ,0) ; //two dim., vals set to 0.

6 class B { public :
B() ; B(double &a , double &b) ;

8 ~B() ;
void someFunction () ;

10 managedPtr<double> data ; } //Class with ctors/dtor

12 managedPtr<B> b1 ; //single element, default constructor
managedPtr<B> b2(1) //single element, default constructor

14 managedPtr<B> b2 (1 , a , b) ; //single element, param. ctor
managedPtr<B> b2 (5 , a , b) ; //5 elements, parametrised ctor

16
adhereTo<double> glue1 (a1) ;//Load right away

18 adhereTo<double> glue2 (a2 ,false) ; // Load when used
const adhereTo<double> glue3 (a3) ; // Access const

20
double ∗c1=glue1 ;

22 double ∗c2=glue2 ; //If not present, will be fetched here
const double ∗c3 = glue3 ;

24
//= adhereTo<double> a1_glue(a1); double* a1data = a1_glue;

26 ADHERETOLOC(double , a1 , a1data ) ;

28 void B : : someFunction () {
ADHERETO(double , data ) ; //shadows member B::data

30 data [0] = 42 . ; }

32 //MT: Do not fail if too much memory is requested:
managedMemory : : defaultManager−>setOutOfSwapIsFatal (false) ;

34 //MT: Avoid deadlock when needing multiple data at once:
double ∗c5 ,∗ c6 ;

36 adhereTo<double> c5_glue (a1) , c6_glue (a2) ;
{LISTOFINGREDIENTS

38 c5 = c5_glue ;
c6 = c6_glue ; }
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adhereTo<> object.
Rambrain can profit from const-accessing the data. In case of the object having been
swapped out already, the swap file copy is not changed and reused and thus another
write-out is not necessary. If the developer requests write access, the object has to be
rewritten to the file system for a swap-out. Therefore, when only reading data, using
const-pointers is highly encouraged as will be seen in section 5.5.4. (lines 17-19)

• Convenience macros. When adhering to an object and pulling a pointer should happen
in the same slot, we provide convenience macros that create the adhereTo<>-object
together with pulling a pointer in a single line. For class members this may happen
shadowing a parameter. In this case, the resulting code reads as if the class would contain
an unmanaged array of the same name. Of course, const-versions of these macros exist,
too. (lines 21-30)

• Multithreading options. When using Rambrain in a single threaded context, Rambrain
throws an exception when the user tries to pull pointers referencing more data than the
physical memory limit at once. This can be disabled by a function call to enable over-
commitment in multithreaded situations. In this case, pulling a pointer that would vio-
late the limits blocks until enough RAM has become available by other threads destroying
their adhereTo<>s. (line 33). However, this can potentially introduce a deadlock. Take
for example a couple of threads that need two pointers each to start their calculation.
Assume only half or less of these managedPtr<>s fit into RAM. In this case, all or some
threads may have requested the first of the needed two pointer in parallel. Since Ram-
brain cannot free pulled pointers while the respective adhereTo<>s in scope exist, it
blocks all threads and waits for memory to become available to swap-out. This, however,
will never happen, as all threads are waiting and no thread is eventually finishing to un-
lock data for swapping. To circumvent this situation, the user may use a globally locking
scope conveniently provided by Rambrain (lines 37-39). It is however highly encouraged
not to over-commit memory also in multi-threaded situations as performance may drop
by this forced serialisation.

5.3.3 Design considerations for user code

Having introduced the basic usage style of the library, let us evaluate the impact of using Ram-
brain on code design. While the syntax suggests that there would be nothing to keep in mind,
a few limits and caveats apply.

Maximum problem size

Rambrain’s physical memory usage is limited to a certain amount the managedPtr<>s may
consume.3 As Rambrain cannot use the native OS paging mechanisms, it is bound to the
memory limits set by the user. Consequently, the set of currently existing adhereTo<>s4 marks
data as in-use and determines what cannot be swapped out. Additional managed pointers may
only consume the remaining free memory. Thus, Rambrain will be unable to manage problems
that demand the simultaneous use of more data than this limit. The code has to be written in a
way that the maximum simultaneously accessed data amounts to less bytes than the limit. This
usually is the case anyway as algorithms are being formulated in a local way on the data.

3Currently we do not track the overhead imposed by the usage of Rambrain, as well as other heap allocations. This
is planned for a future release.

4Explicit delayed loading can be emplaced to limit this to the set of adhereTo<>s that a pointer was pulled from.
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Data structures

The size of the simultaneously used data structures relates to the way of solving a problem. A
matrix operation, for example, can typically be formulated on various matrix representations
such as rows, columns, sparse single elements or smaller submatrices. To gain something
from managing such a subobject, the user has to take care that the payload per managed
pointer is large enough, so that the overhead of managing the data becomes small. We propose
allocating smaller structures via traditional mechanisms and leaving the data-intense elements
to Rambrain. If however a managedPtr<> is chosen, it is vital to keep in mind that this block
of data can only be swapped out and in as a whole.
Ideally, all elements of a single requested managedPtr<> will be needed in one step of a
calculation. If not, Rambrain might end up having to swap in many excess bytes to use just
one or two elements. Fortunately enough, the same argument applies for normal CPU cache
locality and developers are used to developing for this consecutive, local access scheme. For
a review of the term locality and further hints please see for example Chellappa et al. [2008],
Denning [2005]. Therefore, existing and highly optimised libraries are perfectly suited to be
used together with Rambrain.

5.4 Architecture and Design

frontend backend

adhereTo<>

managedPtr<> managedMemory

managedSwap

type specific allocation

ensures data locality

swap strategy

disk storage

Figure 5.1: Architecture of Rambrain: Rambrain is divided into four major classes, each serving a
distinct purpose. The classes in dashed boxes are abstract classes.

Having described the interface of Rambrain, let us now describe how Rambrain is inter-
nally implemented and what design decisions have been taken to serve the user’s data re-
quests. As depicted in Fig. 5.1, Rambrain is divided into four independent classes. While the
user front end is implemented in a standardized way by the two classes managedPtr<> and
adhereTo<>, whose functioning has been described above, the abstract backend classes can
be inherited to implement a custom strategy which elements to select for swapping. We cur-
rently serve two implementations of these classes each. One amounts to a dummy class that
is used for testing purposes. The other implementations, cyclicManagedMemory as well as
managedFileSwap, will be described in the following sections. We provide profound source
code documentation for all classes. The documentation can be compiled from source code
using doxygen [van Heesch, 2015] or viewed online [Imgrund and Arth, 2015a,b] in a daily
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Figure 5.2: Cyclic managed memory: Having accessed one element, it is very likely that the former
next element will be the next one this time, too. Obeying this ordering, the algorithm will asynchronously
pre-fetch “pre-emptive" elements and swap out allocated but unused elements when necessary.

generated version.

5.4.1 Swapping Strategy

It is a major design decision which elements to choose for swap-out to secondary storage when
facing many currently not used objects. In this section we argue that a generic strategy should
be at least capable of handling random access and access in the same order in an efficient way
and describe the actual implementation.
When swapping out the same amount of data to media not capable of fast random access,
swap-out size and fragmentation factors limit the speed achieved in a practical situation: The
throughput per byte to be written/read is reduced when writing small chunks only, as the
overhead of managing the transfer both physically and logically will take a greater fraction
of execution time of the request. This is especially true when using hard disks as secondary
storage: When fragments of the data needed are distributed over larger parts of the disk, the
read/write head of the disk has to be positioned differently at every fragment. This process
consumes more time than accessing consecutively stored data. While this argument does not
apply for modern solid state disks anymore, splitting data over multiple locations still poses an
overhead as there must exist structures to describe and manage the splitting. Consequently a
strategy writing out and reading in larger and consecutive parts at once will in general be faster
than a strategy swapping out small chunks.
With no prior knowledge on what access pattern the user will impose on the data we can only

make general assumptions and search for a strategy which can learn access patterns. The actual
pattern encountered will lie somewhere in between the two extremes of a completely ordered
and repeated sequence and random access patterns. Thinking of looping over an array of data,
which is very common in scientific codes, the most simple strategy is based on the assumption
that if one element has been accessed right after the other, it repeatedly may be requested in
that sequence in the future. Having accessed all elements, it is most likely that the first element
will be accessed again. When there are multiple array objects, this also holds when a subset of
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objects is under consideration. Even when needing only a subset of all arrays, it is likely that
the elements of the array will be accessed in the same order. This assumption suggests a cyclic
strategy which we implement in the cyclicManagedMemory class and illustrate in Fig. 5.2.
This order is represented as a doubly linked list of element pointers with connected end points.
To organize this as an effective queueing system, the most recently accessed element is marked
with a so called “active" pointer and the last still allocated and not swapped out element as
“counteractive". The counteractive element is followed by swapped out elements or elements
that are in the process of being written to secondary storage. When accessed in an ordered
way, we may keep elements in physical memory for as long as possible. The cycle defines a
reasonable sequence of swap-out: the elements that have not been accessed for the longest
time are the next candidates for swap-out. They are conveniently found by dereferencing the
counteractive pointer and moving this pointer backwards as elements are swapped. This will
write large chunks of data consecutive into the swap files. When a swapped out element is
requested by the user, also the elements that are presumed to be needed next will be loaded
pre-emptively and the elements will be placed in front of the former active element.
In this way, accessing the next element in a local sequence will be very fast as it can have
already been loaded and no re-ordering has to be done to the cycle at all. Only the active
pointer has to be moved backwards one element to apparently move all active elements one
position forward in the cycle. As long as the arrays themselves will be accessed consecutively,
local ordering is also preserved by this scheme when interchanging access to various arrays.

5.4.2 Pre-emptive element swap-in and decay

It is a non-trivial question to decide the amount of bytes which are to be swapped in pre-
emptively. A pre-emptively swapped in element will use up free physical space. Thus one
has to make sure to not load unneeded elements that would be swapped out again immedi-
ately. This could cause major increase of IO-operations, thereby slowing down the system. It
is prevented by tracking the amount of pre-emptively swapped in bytes. Pre-emptive swap-in
will take place only as long as only a certain number of pre-emptively loaded bytes or less are
present. If a pre-emptively loaded memory element is accessed by the user, it’s size will be
subtracted from the pre-emptive budget. If an element has to be swapped in from the swap file,
the next elements will be fetched too, until the pre-emptive budget is filled up again. In this
way, random access does not cause additional overhead by swapping in unnecessary bytes as
the pre-emptive budget will always be near its limit and thus no further pre-emptive elements
are swapped in.
This procedure however can lead to a constantly filled up pre-emptive budget. Imagine that an
array A fills the RAM completely before an array B is accessed consecutively. Given that some
elements of A have been loaded pre-emptively, they will never be used while B is accessed.
Thus, they effectively block the pre-emptive budget that would be useful in loading B consec-
utively. To avoid this situation, Rambrain implements a decay of pre-emptive elements. The
amount of decaying pre-emptive elements is determined by probabilistic arguments to prevent
random access from producing too many useless pre-emptive bytes in the following way:
The maximum size of the pre-emptive budget can be used to estimate the probability of hitting
a pre-emptive element at random:5

Ppreemptive ≈ Lpreemptive/(Lram + Lswap) ≤ Lpreemptive/Lram

Where Lram is the maximum physical memory allowed, Lswap the amount of occupied swapped
5Assuming equally distributed element sizes which are only a fraction of the pre-emptive budget.
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out bytes and Lpreemptive the size of the pre-emptive budget. Now, every time an element is not
available in RAM, we determine the amount of pre-emptive elements that have been accessed
since the last element had to be swapped in. The probability that these N elements have been
accessed randomly consequently can be estimated by PNpreemptive. If this value drops below
1 percent, we let decay twice the amount of the free pre-emptive budget, but at least one
byte. Decaying implies swapping out pre-emptive elements to make space for new pre-emptive
elements. This typically implies loading at least two elements pre-emptively, as the pre-emptive
swap-in fraction is by default set to ten percent and this fraction squared equals the significance
level assumed above.

5.4.3 Swap file usage

When loaded into RAM, the data area of a managedPtr<> has to be allocated consecutively
as pulling a pointer guarantees consecutive layout. On secondary storage devices we may split
up the data over various swap file locations. While this is not desirable, it is of use when free
swap file location is running out and we want to use smaller left-over chunks from previous
deallocations.
Another major difference to managing heap memory, like the memory allocator in the standard
libraries that is interfaced by the new/delete operator implementations, is that one cannot
easily use the free space for the management overhead. This is because the managing struc-
tures have to be accessible very fast and would cause considerable latency when resident in
secondary storage.
Of course managing the chunks of the swap file in physical memory poses unavoidable over-
head. It will limit the amount of managed memory as this overhead grows over the physical
size of memory available. At the moment the user has to manage large enough data amounts
in one managedPtr<> to keep this overhead small. While this sounds like reintroducing the
problem we sought out to solve, we find a typical memory overhead to be 5 to 10 percent of the
amount of allocated structures when the data content is about 1kB. This amounts to being able
to manage half a terrabyte of data as if it were in RAM on a 32GB machine. The data would be
saved in roughly 5 ·108 managedPtr<>s of this size. It is advisable to switch to higher memory
loads per managedPtr<> which reduces the overhead by the according factor, making more
space addressable on disk. We plan to pack up objects into larger sets in future versions of the
library to further reduce the overhead. It is also planned to monitor the overhead and strictly
constrain it to the overall limit in future releases.6

Thus, given the task to swap out a managedPtr<>, the standard implementation of this com-
ponent, managedFileSwap, checks its list of free chunks of memory in the swap files and
tries to find the first free chunk the managedPtr<> fits into. If it fails to find such a chunk,
it starts to split the data consecutively over the remaining gaps. If this also fails, it cleans up
cached managedPtr<>s produced by const accesses and tries again. If no free space is left,
it will simply fail. As this unfortunate case may happen after days of calculation, we also pro-
vide a swap policy mechanism that states how the library should react in that case. Policies
amount to “fail in case of a full swap", “ask the user if he wants to assign more swap space" or
“automatically extend swap space if free disk space is left to do so".

6This, however, is a non-trivial task as typically the standard memory allocation implementation has the control
over the system call extending heap size.

91



92 Chapter 5. Rambrain

5.4.4 Asynchronous IO and Direct Memory Access

The main techniques to write out large data sets to secondary storage are Memory Mapping
(MM), Direct Memory Access (DMA) and using Asynchronous IO (AIO) or a mixture of these.
We briefly review the different approaches with respect to the task of transferring objects from
primary to secondary storage:

• Memory Mapping: The memory management unit in control of the virtual address space
can be used to seemingly load contents of a whole file into physical memory. The same
process used for paging will be utilised to write out or read in missing pieces and let an
application use all space at once. When dealing with large files, this technique is very
popular, as it is fast (may use DMA internally). However, when files become too big, the
memory management unit quickly runs into similar problems to the one encountered with
native swapping. A possible fix may be to map only parts of the swap files. In this case,
however, one has to control tightly which mappings to close first, as closing will block
when the mapped region is not written to disk completely. While there exists kernel hint-
ing, a technique to tell the kernel which pages to write out first, the one-to-one mapping
of allocations to the page file poses a bigger obstacle. Optimal decisions where to store
certain elements are hard to find in a generic way and one is again limited to consecutive
memory allocations. Splitting data would render pulling a pointer to consecutive memory
impossible. Furthermore, the advantage of directly mapping allocations to swap file loca-
tions quickly can become a problem when the data has to be moved to still use a minimal
memory mapped region. We thus quickly deferred using this method. There may be some
interesting features to it, as automatic pre-fetching might already mimic an early stage of
pre-emptive loading. Cleverly opening and closing such page-file “windows", however, is
hard to handle having no guarantees for future access patterns.

• Direct Memory Access: DMA can in principle copy parts of memory directly to secondary
storage without routing the data through the CPU. It is fast in both throughput and la-
tency. However, it imposes memory alignment restrictions on both sides and supports
only writing chunks of a certain size (typically 512kB for hard disks). Since writing is
direct, the action bypasses any buffering by the kernel and thus directly leads to disk ac-
cess. While this can be advantageous in situations where one writes out many consecutive
datasets and implements a write cache on ones own, it typically leads to overhead in our
use case. Together with the imposed alignment restrictions, it is not clear how to write
an efficient implementation without writing complex scheduling code or having lots of
overhead when user objects do not fit into the DMA alignment. DMA, while fast, is very
complex to handle in situations where a priori it is not clear what the user requests from
Rambrain. Thus the benefits of fast IO and low CPU impact vanish in light of kernel file
system buffering efficiency. There is a long going discussion involving Linus Torvalds who
highly discourages the use of DMA by the user [please see Torvalds, 2002].

• Asynchronous IO: The Linux kernel provides the user with the possibility to load and
save data asynchronously to the files. Primary actions are taken only on the file system
cache which has gone through a long evolution and is by now a very fast and efficient way
to use free physical space without negative effects under high load. Furthermore, DMA
or Memory Mapping techniques may be present in the background to bring the cache in
sync with the secondary storage. Implementing Asynchronous IO upon normal buffering
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implies fast execution and efficient write-out while at the same time being robust to archi-
tecture changes. Finally the most efficient way of actually carrying out a certain storage
operation may only be found out at system level.
The interested reader may be warned, however, that there currently exist three AIO im-
plementations: kio (Kernel Asynchronous IO), libaio (which is just a C wrapper for the
former) and POSIX AIO. The latter is currently implemented as blocking AIO, the former
is not guaranteed to be truly asynchronous, as its implementation is file system driver
specific. We use a pool of submitting threads using AIO to provide true AIO where pos-
sible and simulated AIO otherwise, using the libaio wrapper for the system calls. In this
way, IO operations will be non-blocking and have a low impact on CPU load.
By using asynchronous read and write requests, Rambrain is capable of loading data in
the background with small impact on the CPU load. A technique for doing this is to first
create the adhereTo<>-object, which triggers swapping in of the object. While the asyn-
chronous IO is swapping in the element, other calculations can be done. When finally
pulling the requested pointer, it may already have been copied in in the background. A
graphical scheme comparing synchronous and explicit asynchronous requests to Ram-
brain is available in Figure 5.3 and a schematic listing of the code producing this access
scheme can be found in listing 5.4. Putting the highlighted line four after line six would
constitute a synchronous version of the code. As the application can already process other
data while fetching in next needed objects, this can effectively hide latency similar to GPU
programming techniques or pre-fetching for caches [see e.g. Callahan et al., 1991].

Listing 5.4: Explicit asynchronous access

managedPtr<double> data (1024) , data2 (1024) ;
2 . . .

adhereTo<double> glue ( data ) ;
4 adhereTo<double> glue2 ( data2 ) ;

double∗ p t r = glue ;
6 do_something_on_data ( p t r ) ;

double∗ ptr2 = glue2 ;
8 do_something_on_data2 ( ptr2 ) ;

Having chosen AIO for transferring the data to secondary storage, the actual implementation
is simple on the interface side but quite demanding on the scheduler side, as the scheduler
has to deal with non-complete swap-outs and swap-ins when scheduling further action. As a
rule of thumb, it has been found very useful to “double-book" memory in the sense that chunks
moving from or to physical memory will demand their size in both budgets. At the same time
we also track the amount of memory which will be freed by such actions (and thus can be
waited for when needed). When completed, the budget of free memory on the source side will
be restored to the correct value and the bytes which were pending before will be subtracted
from the pending bytes count. In this way, the scheduler can find the right strategy, given
currently pending IO, and demand a small amount of IO to satisfy its constraints imposed by
user requests.

5.4.5 Compatibility to multithreading

Multithreading complicates writing the scheduler code a lot since one has to be very careful
that the needs of one thread do not interfere with the needs of another thread. Scheduler and
swap both are written as one instance shared by all threads. This design decision was taken
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Figure 5.3: Exemplary interaction of user code with Rambrain library. Rambrain may be faster when
giving clues about upcoming data requirements. While in (a) the time waiting for data to arrive is wasted,
the user may use this idle time for calculations on already arrived data, as depicted in (b) and written in
listing 5.4. As preventing idle time is highly desirable, Rambrain tries to behave like case (b) without the
user explicitly hardcoding this. In order to do so Rambrain tries to guess the upcoming data demands of
the program and automatically pre-fetches elements that will be needed.
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as data may be shared among threads and thus needs a common swapping procedure. Copy-
ing data between threads however will result in various managedPtr<>s for each instance.
Consequently, passing managedPtr<>s and adhereTo<>s from one to another thread has to
happen thread safe, as well as access to one managedPtr<> from multiple threads. Thread
safety in this sense does not mean that one thread has exclusive access to a managed pointer,
but that the mechanisms ensuring the availability of the data are written in a way that the
object is present if at least one adhereTo<> in any thread is present and that the object may
be swapped out at destruction of the very last adhereTo<> instance.

5.5 Results and Discussion

In this section we measure how code which utilises Rambrain compares to a code without
Rambrain. Measuring performance is a non-trivial task for technical as well as theoretical rea-
sons. First of all, tests should be reproducible and measure the overhead imposed by Rambrain.
However, reaching this goal is non-trivial, as file system operations, kernel Asynchronous IO or
scheduler performance in a multithreaded situation may affect the overall performance as well.
Especially the typical use case - a developer seeking to work and debug on the same system - is
hard to simulate in a reproducible and meaningful way. Separating library-imposed overhead
and IO performance would be of no use either, as the user is interested in overall performance.
Most of the carried out tests however will be highly speeded up by disk caching, which is also
found in a productive system. We emphasize that while only RAM-to-RAM copying is done by
the OS in these cases, these tests measure best the overhead implied by the workings and logic
of the Rambrain library, since once the user is I/O limited, test results will be dominated by
hardware performance.
In order to provoke swapping actions we set up a test system finding a PC with the smallest
physical RAM module sizes removing all RAM modules up to one. The tests were then carried
out using OpenSuse 13.2 (based on kernel 3.16) on an Intel(R) Core(TM)2 Quad CPU Q6700
operating at 2.66GHz on an ASUSTeK P5NT WS mainboard with 32Kb L1 Cache, 4MB L2 Cache
and a standard unbranded 2GB memory module. The hard disk used is a Samsung SpinPoint
S250.

5.5.1 Library overhead without swapping

We present the overhead the library imposes on the execution time of a user code in a regime,
where actually nothing has to be swapped. This allows to judge whether Rambrain reaches
near-to-native performance and thus can be employed if it is unclear whether it will be needed
on the target system. We propose a test in which we perform a rather simple n-body simulation
of a fixed set of particles using a Forward-Euler integrator [Euler, 1768]. While each timestep
only depends on the last position and velocities of all particles, we save the trajectories and
velocities along the way in two dimensional arrays. A typical use case for this is in place
visualisation of such a simulation. Therefore, the memory used by the program grows over
time, adding two vectors per particle in each iteration. The results of both runs are shown in
Fig. 5.4.

In the beginning of the simulation, when hardly any data is present, we notice quite a big
relative overhead of the Rambrain library. However, this only amounts to an absolute difference
of only one to two seconds. From a few MB of data on, both curves show the same scaling with
time, which is given by the algorithm itself. The relative overhead presented by the blue line
declines very rapidly and finally converges down to a value between one and two percent close
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Figure 5.4: Execution time of a n-body code: We present timing information from a simple n-body
code which accumulates data by saving particle trajectories and velocities. By comparing a version with
and without rambrain we see that the overhead of the library amounts for only a few percent of execution
time in the regime of reasonable data sizes.

to the two GB mark.
In conclusion, a code utilising Rambrain is always a bit slower in the regime where no data
has to be swapped out compared to native code. However, the impact on execution time is not
a very big factor and we see no strict need for user to completely switch off Rambrain in this
case.

5.5.2 Matrix operations

In this subsection we demonstrate the internal movement of data for a common problem: Trans-
posing a big matrix which itself does not completely fit in memory. We save matrices block wise,
as it is done in many linear algebra libraries [see e.g. Blackford et al., 2002]. This allows for a
straight forward migration to a Rambrain version of the algorithm, simply replacing one layer
of pointers by a managedPtr<> class.

The result is shown in Figure 5.5. The left part of the plot shows the data allocation phase.
At first the main memory is filled up very quickly with data, then data is consecutively swapped
out to make room for more allocations. In the transposition phase afterwards, data is exchanged
from swap to memory and back, loading all necessary blocks for the current transposition step.
Please note that the asynchronous nature of Rambrain makes it very difficult to measure these
values at a few discrete time points, since it is not clear when exactly the AIO events are handled
in the background. Finally, the deletion of data is also plotted in the graph, but happens so fast
that it is below the resolution limit of this plot.
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Figure 5.5: Data movement for one ’Block’ algorithm matrix transpose: We show how data is moved
between main memory and swap in one matrix transpose run. The vertical line marks the time point
when the execution progresses from data allocation to the actual transposition.

5.5.3 Asynchronous IO and pre-emptive reading/writing

In this subsection we address the possible speed-up in execution time one can gain by efficiently
using the asynchronous nature of Rambrain and the possibility to pre-emptively load and un-
load elements automatically.
To measure the performance of this mechanism, we propose the test shown in listing 5.5. We
set up a two dimensional array which is realised by a list of managed pointers. While keeping
the first dimension (i.e. the amount of one dimensional arrays) fixed at 1024, we vary the
size of the underlying arrays (second dimension, bytesize). In order to measure the speed-up
by asynchronism and pre-emptive actions we need to give the library some time to work in
the background. Therefore, as in a typical use case, we iterate over the arrays in consecutive
order and write the result of a simple integer multiplication into the respective array. We vary
the percentage of the array that data is written to (load) as a second parameter, simulating an
arbitrary computational load that scales with the data. The results of this test are presented in
Figure 5.6.

It is clearly observable that the execution time decreases due to pre-emptive strategy. In-
creasing the work which is done on the data in the left plot, the library’s overhead is already
masked at a few tens of percent of touched array elements. Working on the file buffer cache
only, this test shows the minimal overhead of the Rambrain libraries. In a real use case scenario,
the required computational load to completely mask swapping is increased. This result clearly
encourages the user to leave the standard behaviour of pre-emptive support enabled whenever
possible. Even if the data access is completely random, it does not imply a big performance
drawback to try to be pre-emptive. Of course a problem-specific approach pre-fetching exactly
the next needed elements without trying to guess can improve performance here. However,
this strongly violates our assumption, that we value development time over execution time.
We therefore argue that this optimisation leads towards developing a customized out-of-core
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Listing 5.5: Standard implicitly asynchronous loading

unsigned int numel = 1024 , b y t e s i z e ;
2 managedPtr<managedPtr<char>> arr ( numel , b y t e s i z e ) ;

ADHERETOLOC ( managedPtr<char>, arr , p t r ) ;
4 float load ;

float r ewr i t e t imes = ( float ) load / 100. ;
6 int i t e r a t i o n s = 10230;

8 for ( int i = 0; i < i t e r a t i o n s ; ++i ) {
unsigned int use = ( i % numel ) ;

10 //AdhereTo
adhereTo<char> glue ( p t r [ use ] ) ;

12 //Pull the pointer to the object
char ∗ l o c = glue ;

14
//Produce some computational load

16 for ( int r = 0; r < rewr i t e t imes ∗ b y t e s i z e ; r++ ) {
loc [ r % b y t e s i z e ] = r ∗ i ;

18 }
}
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Figure 5.6: Pre-emptive loading: We compare enabled and disabled pre-emptive mechanism of Ram-
brain and find that the pre-emptive behaviour of Rambrain results in a significant performance boost.
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algorithm, something no generic memory manager can substitute for.

5.5.4 Constant vs Non-Constant

Our next test is designed to examine how much time is saved by properly pulling const point-
ers when possible. As outlined in section 5.3.2 it is possible to request a pointer to constant
data from an adhereTo<> object instead of a pointer to mutable data. This should be done
in general, see e.g. Meyers [2012], but is of special importance to the case of Rambrain. Not
following this best practise will leave Rambrain with no clue on whether the data has been
modified and forcing Rambrain to write the data out to the swap again. Hence, if the data has
already a representation in the swap and is addressed as constant, this copy is kept as long as
the swap has enough free space. When the in-memory copy of the data pointer is later deleted
and a swap-out occurs, the data needs not to be written out again, saving expensive writing
operations.
In order to test this mechanism we allocate two blocks of data consisting of an array of smaller
data chunks. The first one we call the real data while the second one is the dummy data which
we will adhere to and pull a pointer from to ensure the real data being swapped out due to
memory restrictions. Afterwards we access the real data and the dummy data in alternating
sequence, once swapping in the data const and once non-const. We measure the time it
takes to swap in the dummy data in both cases, ergo capturing the time it takes to also swap
out the real data. We present the resulting behaviour for different sizes of data blocks in Figure
5.7.
We notice that the change in execution time by const-access obviously scales with the amount
of data, since it is highly dependent on the time it takes to complete the swap-out. In the regime
of a data block amounting to between one and ten megabytes, we decrease the execution time
of the relevant code sections by about 20 to 30 percent. Since these are relatively small data
sizes in comparison to the main memory, we can assume that these data swap-outs are com-
pletely handled by the disk cache. Therefore we save only the time for cache management and
basically a memory copy. When we enter the regime of secondary storage IO we can expect the
difference in execution time to be even larger since the secondary storage itself is much slower
than the main memory. For most storage types, storing data takes longer than reading data,
thus we expect this mechanism to save even more time in this case. It is strongly advised to
use const-access whenever possible, also in light of other caches’ properties and optimizations
being used by the compiler.

5.5.5 Comparison with native OS swapping

Finally, let us compare the performance of Rambrain in the use case against system swapping.
In principle, a local administrator can equip a Linux system with more swap space than usual by
creating additional swap files or partitions with the system command mkswap and enable them
for use with the command swapon. However, please note that it is not possible to do so as a
normal user. Additionally, this approach requires the allocation of the whole swap file space on
secondary storage already in the beginning - regardless of how much of it will be actually used.
Using this technique we create and enable a 10GB swap file on the described test machine.
We compare a code which uses Rambrain to a non-managed code utilising system swapping.
We carry out two different runs: In the first one, data is written consecutively to an 8GB sized
matrix. In the second one, the application randomly writes to elements of this matrix. In the
latter test we explicitly disabled the pre-emptive swapping algorithm.
On some attempts to run unmanaged, the native application is killed by the OOM-killer. This
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Figure 5.7: Speed-up by pulling const pointers: We run a simple test where data is drawn once as
constant and once as writeable pointers and compare the time it takes to swap out the data afterwards in
a regime where all the data still fits in the disk cache.

probably happens due to the fast growth of heap memory. Also having a swap file which is not
at least about 25 percent bigger than the actual swapped size often provokes the OOM-killer to
terminate the process. Even if the OOM-killer does not kill the test process, it may be that it may
shut down other processes in the background to free memory for the test process. When the
attempts succeed, the system is virtually unusable as even opening another shell prompt takes
minutes. Furthermore, the interference of the native code with the system does not stop when
the application exits, but leaves the system in a slowly reacting state for minutes to hours of
usage, as large parts of other applications and system processes have been swapped out to disk.
We expect that running other applications such as an integrated development environment in
parallel will aggravate the situation when trying to solve the problem using OS swapping.
But also the actual execution time of Rambrain-managed code is favouring the use of our library.
In the case of consecutive access, the version using Rambrain is about 10 percent faster than
the native version. In case of random access, Rambrain is only 2% faster than the native code,
if we obey the design limitation that at least all elements of a single managedPtr<> will be
accessed.
This test result is further confirmed by daily experience of the authors being able to develop
code on the same machine their analysis software runs in parallel without being disturbed by
the process which uses Rambrain.

5.6 Conclusions And Outlook

We introduced the reader to writing code that utilises the Rambrain library. We described in de-
tail why the proposed interface is sufficient to consistently handle data swap-out automatically
and leads to satisfactory performance. We have demonstrated that the outlined mechanisms not
only work properly, but also outperform naive approaches to mimic their strategy. Of course
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the library cannot compete with a fully specialized out-of-core algorithm, but can save a lot
of development time in providing automatic facilities for large data sets. The library handles
asynchronous transfer of data which provides latency hiding of disk IO operations and reduces
idle times to a few percent if computational load allows. Furthermore, we have shown that
the memory and CPU overhead of the library are both in the acceptable regime of only several
percent. As all of this is provided by minimal user-side interaction, we feel the goal of writing a
memory manager that enables the user to transparently access multiples of the physical mem-
ory to be fulfilled. As memory management is a short-cut to just stating what data is currently
needed, the user can focus on the main goals of his application at the price of only a small
overhead.
The interested reader may find the code released as open source project [Imgrund and Arth,
2015a] accompanied by extensive further documentation, a list of the small set of prerequisites,
notes about the (also system-wide) configuration options, a complete list of features and code
examples. Interesting features are planned for future releases, such as direct mapping of file
content to managedPtr<>’s so that loading the data beforehand is not necessary any more.
Carrying out over 100 automatic tests partly consisting of random interaction with the library
on every development step and keeping track of performance has proven very useful to find
bugs which only occur under rare circumstances e.g. in multithreaded situations and improved
robustness of the code a lot.
We feel this library to be ready for use by a more general scientific audience.
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CHAPTER 6
Paper : Does Pulsar Radio Emission come with a twist?

M. Imgrund, H. Lesch
This chapter has been submitted in slightly modified form to Astronomy&Astrophysics

Abstract: Pulsars are expected to wind up their magnetic field to some extend as the plasma far
from the rotation axis cannot co-rotate faster than the speed of light. We estimate the approxi-
mate additional magnetic field energy caused by this twist, assuming a dynamical equilibrium
and typical densities of the Goldreich-Julian model. Assuming an electron positron plasma,
we calculate the magnetic energy being dissipated by an annihilation event and show that it
is of the order of > 1022 erg

s . We calculate the plasma’s radiation reaction to the displacement
field built up by the magnetic field decay. We find the expected radiation to be of the same
magnitude than the decayed energy if radiated coherently.

6.1 Introduction

Since the discovery of pulsars by Hewish et al. [1968], their highly non-thermal coherent pulsed
radio emission (brightness temperatures of 1029K or even 2 · 1041K for nanoshots in Hankins
and Eilek [2007], see also Lorimer and Kramer [2004], Lyne and Graham-Smith [2012] and
references therein) remains one of the most intriguing puzzles of astrophysics. Especially the
mechanism producing this coherent radio emission is not adequately understood. Over the last
fifty years there have been many proposals on the actual origin on both emission mechanisms
and its relation to the structure of the pulsar magnetosphere. The principal problem is to
explain why relativistic leptons (energies of several MeV) during their one-dimensional motion
along the strong magnetic fields emit photons with energy of only 10−5 eV (in the radio range),
but in a coherent way. Given the observed luminosities a huge number of particles has to
perform the same energy loss process at exactly the same time. Proposed were for example
mechanism such as maser emission, curvature radiation, radiation by plasma instabilities such
as the two stream instability or modulational instability, radiation by strong acceleration in
the pulsar field, solitons and their interaction as well as up-scattering of photons by Langmuir
waves [see e.g. Melrose and Gedalin, 1999, and references therein].

Most of these processes generate the necessary power, but lack a natural explanation for
one of the following features:

• Ubiquity among pulsar population

• Specific origin in magnetosphere
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• Coherent radiation process

• Microsecond fluctuations

• Radiation possibly consists of nanosecond shots

Recent developments [Hankins et al., 2003, Krzeszowski et al., 2014, Löhmer et al., 2008]
suggest that pulsar radio emission might consist of sub-nanosecond shots of radiation. This
poses a remarkable challenge to theoretical models as sub-nanosecond time-scales correspond
to fractions of the plasma wavelength.
We want to stress that electron-positron-annihilation within well established and observational
confirmed assumptions about the pulsar parameters on the base of Maxwell-Equations may suf-
fice to explain the power and physical origin of the coherent pulsar’s radio emission. We show
that the reaction of the plasma to the displacement field generated by the overall magnetic field
at the site of an electron-positron annihilation event may convert this energy to electromagnetic
emission in the radio regime.

6.2 Topological aspects and magnetic field spin-up

It is a well-established fact that the co-rotating part of the pulsar magnetosphere cannot extend
farther than the so called light cylinder radius rL = P · c where c denotes the speed of light and
P the pulsar’s rotation period. Rigid rotation of plasma would exceed the speed of light and
thus is relativistically forbidden. This divides the field lines up into two classes, one of which is
co-rotating with the pulsar inside the light cylinder radius and one that extends and opens to the
outside region. The second class of “open” field lines passing the light cylinder will be bent by
the inertia of the slower rotating plasma leading to a toroidal magnetic field component. This
winding up of magnetic field lines can drive strong winds and transport angular momentum
outward, as is the case in AGN and accretion disk jet physics[Blandford and Payne, 1982, Meier
et al., 2001]. In pulsar physics the short rotation period of the neutron star enhances this effect
further as the plasma’s inertial forces quickly bend the field lines against the rotation. Ampere’s
law with Maxwell’s extensions states that in this case we either build up an electric field or a
current will be driven through the area:

~∇× ~B =
1

c
(∂t ~E + 4π~j) (6.1)

where ~B and ~E denote the magnetic and electric field and ~j the current density. This can be
easily seen by integrating over the surface that is perpendicular to the spin axis and crossed by
the open field lines at some point. This simple reasoning strongly supports the assumption that
a large current will be driven through the open field lines. However, this current does not solve
the topological problem of induced magnetic field twisting caused by spinning. The pulsar is
still rotating and spinning up the open field lines from its polar cap onwards. As the field lines
get effectively sheared, this rotation constantly pumps energy into the magnetic field, as the
shear leads to an increase of magnetic field line length and thus magnetic field strength.
Let us estimate this effect of twisting using a toy model of a cylinder of length rL and polar
cap radius rp as depicted in Figure 6.1. In this (homogeneous) case, the spin-up leads to an
toroidal field component that grows as

B⊥(t) = B|| ·
2πrpt/P

rL
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Figure 6.1: Toy model of magnetic twisting: when the polar cap depicted in blue rotates, it drags along
the field lines. As the field lines are solidly connected at their ends, they twist up and will be stretched.

where B|| is the strong parallel magnetic dipole field typical for a pulsar and B⊥ the toroidal
field. We will neglect the back-reaction of the now twisted current on the field configuration
as we seek an estimate for the twisting angle necessarily present when a current flows. For the
angle of twisting we find

α = tan ε =
B⊥
B||

and the field’s energy density becomes

E =
B2

8π
=
B2
||

8π
(1 + α(t)2) (6.2)

Thus the effectively differential rotation caused by relativistic limits will constantly pump en-
ergy into the magnetic field unless the twisting angle is somehow decreased. We stress here that
irrespective of the actual geometry that will be established, once the field lines pass the light
cylinder, differential rotation must take place in an ideal MHD scenario. Allowing no slippage,
the field lines will also twist for the case of an oblique rotator, as the polar cap is still rotating
around itself when projected along the rotation vector. The magnetic field energy stored in this
twist will propagate by transporting the twist and current into the magnetosphere, which is a
well-established idea in solar flare physics [see e.g. Spicer, 1982]. As Spicer [1982] stresses,
the stored energy may be regained by current decay. While it is clear that the exact amount of
twisting and thus field energy is determined by geometrical factors such as the actual length of
the field line, we argue that this is not important seeking for a dynamic equilibrium solution.
If we assume that there exists a dynamical equilibrium between twisting up and current decay
and possible other processes, the twisting will be an energy source that is partly consumed by
local current decay, and the twisting angle will remain constant as magnetic field energy will
be restored by currents and field twist moving into the area. Nevertheless, locally the power
that the magnetic field loses due to current decay may be calculated by deriving equation (6.2)
w.r.t. time:

P = ∂tE =
B2
||α

2

4π

α̇

α
(6.3)

We emphasize that this loss term is not the only loss term of the pulsars rotational energy
but just a small fraction of total losses experienced. Both dipole and pulsar wind losses are
dominant to this - as we will see below - comparably small contribution.
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If a long term dynamical equilibrium can be reached, the derivative of the electric field w.r.t.
time in Ampere’s law has to vanish - an assumption that is also established by assuming ideal
MHD. Even if an electric field is built up, this field would not grow indefinitely and the time
derivative of the electric field is zero. Accordingly we are left with both other terms that let us
calculate the value of α at a certain radius r from the polar cap’s centre axis by integrating over
the area and using Stokes’ theorem. This yields

B⊥
B||

= α =
2πrj

cB||
= 2πe

rnβ

B||
(6.4)

where n denotes the plasma density, e the elementary charge and β the plasma velocity as
fraction of light speed c. For simplicity we assume the current to be uncharged and consisting
of both electrons and positrons of same density and velocity in an counter-current flow. The
second factor in equation (6.3), the relative time derivative of α can consequently be identified
with

α̇

α
=
ṅ

n
(6.5)

as the background magnetic field and the mean current velocity is expected to stay constant in
an equilibrium case. The change in density however occurs naturally by annihilation events in
an electron positron plasma. To compensate for the change of α and reach an equilibrium, we
expect this process to be a consumer of the twist that is produced by the rotation of the pulsar.
This change leads to a steady inflow of magnetic twist and particles to compensate for the loss.

6.3 Spin-down of field lines in a pulsar magnetosphere

Goldreich and Julian [1969] calculated the excess charge density due to plasma motion through
an magnetic field to be proportional to the ratio of the magnetic field and the light cylinder
radius. This leads to a particle density of

nGJ =
1

ec

B||

P
δ (6.6)

where we introduced a multiplicity factor δ that accounts for possibly larger background den-
sities. In contrast to the interpretation of Goldreich and Julian [1969] we assume that we have
an electron-positron plasma which density is on this order and assume for simplicity that no net
charges arise. Observations indeed support a current of nGJc to be on the right order [Kramer
et al., 2006a]. Yuen et al. [2012] furthermore carry out RM measurements that give density
values that are consistent with the Goldreich-Julian density. We assume in the following that

• The pulsar magnetosphere’s plasma density follows the density proposed by Goldreich
and Julian [1969]

• The plasma consists mainly of electrons and positrons [see e.g. Chen and Beloborodov,
2014, for a recent numerical simulation].

The current density associated with the Goldreich-Julian density is

j = ecβn =
B||

P
βδ (6.7)

Inserting this into (6.4) leaves us with

α =
2π

c

r

P
βδ (6.8)
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leading to a magnetic energy density that is increased over its a priori value by

Eex =
1

8π

[
B2
||(1 + α2)−B2

||

]
=

π

2c2

B2
||

P 2
r2βδ (6.9)

In an electron positron plasma, we expect annihilation to occur naturally. We estimate the
cross section of this reaction by the Klein-Nishina cross section[Klein and Nishina, 1929] for
low values values of γ = 1/

√
1− β2:

σKN =
π

2
r2
e/γ

where re is the classical electron radius. Thus, the rate at which density decreases naturally by
annihilation events amounts to

Γ = ṅ = σKNcn
2β =

πr2
ec

2

n2β

γ
(6.10)

Other current destructive processes like positronium formation[Baring and Harding, 2001]
could possibly dominate the process of annihilation alone. As discussed in Baring and Hard-
ing [2001], bound positronium is neutral, the charges can no longer form an electric current.
This would increase the effect calculated here. The Thompson cross section alone might be
enhanced by the large magnetic field [Gonthier et al., 2014] also in case of positron electron
annihilation as there is free energy in the magnetic field to decay. For simplicity we present the
arguments here with the unmodified Thomson cross section, following the line of a worst case
scenario.
The decrease in charge density by annihilation leads to a decrease in current flow. A spon-
taneous current decrease will trigger a high induction voltage that is trying to increase the
current again if the associated energy is not dissipated otherwise. In the latter case, magnetic
twist will be decreased. We assume for the moment that for a dynamic equilibrium, both elec-
tric fields and gamma values of the plasma should merely stay at the same level and the energy
stored in the magnetic field is dissipated. In this case annihilation acts as a sink of the magnetic
twist while the pulsar’s rotation acts as its source. We may calculate the total dissipation by
inspecting (6.4) and noticing that α̇/α = ṅ/n and inserting this in (6.3). We are left with

P =
r2
ec

8

B2
||α

2nβ

γ

where we now may insert our values for α and n to find

P =
π2r2

ee
2c

2

(
1

ec

B||δ

P

)3
r2β3

γ
=
π2r2

e

2ec2

(
B||δ

P

)3
r2β3

γ
(6.11)

Let us now calculate the total energy dissipation by this process, noticing that B|| falls with
(z/RNS)3 where z is the distance from the polar cap. As this decay is rapid, we may calculate
in cylindrical geometry. Let us use RP =

√
2πR3

NS/(cP ) as expression for the polar cap radius

107



108 Chapter 6. Does Pulsar Radio Emission come with a twist?

1× 107

1× 108

1× 109

1× 1010

1× 1011

1× 1012

1× 1013

1× 1014

0.001 0.01 0.1 1 10

B
0

in
10

1
2
G

P0 in s

Pulsar Population

ATNF catalogue data
Line of constant power output

Figure 6.2: Scaling of power loss due to current decay: Plotting the scaling of the power loss due to
current decay over the range of the pulsar population provided by the ATNF Pulsar Catalogue[Manchester
et al., 2005] we find good agreement between the scaling of the proposed process and observational data.

as in Sturner [1995]. We calculate the total energy output as:

P =
r2
eπ

2

2ec2

(
B||δ

P

)3 ∫ RP

0

dr2πr

∫ ∞
RNS

dz

(
R3
NS

z3

)3

r2

=
π3r2

e

32ec2

(
B||δ

P

)3
β3

γ
R4
PRNS (6.12)

=
π5r2

ee
2

8c

(
1

ec

B||δ

P

)3
1

P 2

β3

γ
R7
NS (6.13)

= 7.7 · 1021 · B
3
12δ

3

P 5
0

β3

γ
R7
NS,6

erg

s
(6.14)

where a number N in the indices of the last equation denote that quantities have been nor-
malized to the N th power of ten of the value in cgs-units and RNS is the neutron star’s radius.
Note that the strong dependence on both the pulsar radius and charge density factor may serve
as an explanation for the observed radio luminosities given there is a strong dissipative process
that leads to conversion of the magnetic energy into radio radiation. The calculated power
misses the observed roughly 1025 erg

s [Allen and Horvath, 2000, Figure 3, assuming a bandwidth
of 100MHz to GHz] by about three dimensions. Depending on the seventh power of actual
values of neutron star radii and a possible density factor δ to the power of three, the exact
total value is subject to high uncertainty. However, the scaling with pulsar parameters is very
accurate. As is evident from figure 6.2, plotting a line of constant power depending on the
input parameters magnetic field and period yields a line connecting both the millisecond and
primary pulsar population supporting our case.
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6.4 Induced field and radio radiation

When we calculate the energy associated with each elementary annihilation, we find

Eevent =
P
Γ

=
πe

c

(
B||δ

P

)
r2β2 (6.15)

which is on the order of 10 erg at the border of the polar cap. To estimate on what time-scale
the energy is being released, let us consider the spacetime volume a single event occupies:

la = 4
√
c/Γ = 4

√
2γ

πr2
e

1

n2β
(6.16)

This amounts to a length scale of about 6.4cm or 0.2ns. calculating the ratio of this length scale
and the plasma wavelength we find:

la
λpl

=
1

2πc
4

√
32π

r2
e

1

β
· e4

m2γ5
= 0.5

1

βγ5/4
(6.17)

This means that already at mildly relativistic particle flows, the expected length scale of the
area the displacement current is dominant is small compared to the plasma wavelength and
will take a minor role in the reaction of the plasma. Thus we may approximate the reaction of
the plasma in the spacetime volume as a collective process of the plasma particles in a volume
l3a. As the process of annihilation itself is happening very fast, the plasma needs some time to
react to the field built up instantaneously by magnetic induction. If we assume that the electric
field built up is of the strength of the energy drop of the magnetic field, the above yields a field
of:

Eel =

√
8π
Eevent

l3a

= (29/8π11/8er3/4
e )n5/4r

β7/4

γ3/8
(6.18)

= 0.92 ·
B

5/4
||

P
5/4
0

r

RP
r

3/2
NS,6

β7/4

γ3/8
statV (6.19)

6.5 Collective plasma reaction and estimated radiation out-
put

Modelling this field to appear instantaneously we calculate the reaction of the plasma via Am-
pere’s law, where we assume the rotation of the magnetic field to be cancelled out by the net
current β0:

∂E

∂t
= Ė = −4πenc(β − β0)⇒ Ë = −4πecnβ̇ ∝ ∂tj

Modelling the flow via the equation of motion for a single charge carrier, we find

˙(mcγβ) = Ee = mcγ3β̇
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where we used that

γ̇ = γ3ββ̇ ⇒ ˙(γβ) = γ̇β + γβ̇ = γ3β̇( β2 +
1

γ2︸ ︷︷ ︸
β2+(1−β2)=1

) = γ3β̇ (6.20)

Combining the two above equations we find an harmonic oscillator for the electric field:

Ë + E
4πe2n

mγ3︸ ︷︷ ︸
ω2

p,rel

= 0

It is clear that while the approximated field takes a moderate value, it has not been generated
by a plasma inherent but much faster process. Consequently the plasma reacts collectively
being kicked by this field. We may estimate the instantaneously radiated energy by Lienard’s
formula [Jackson, 1998] for the relativistic radiation which in our case simplifies as follows:

Psingle =
2e2γ6

3c

(β̇)2 − (β × β̇︸ ︷︷ ︸
0

)2


which induces a damping factor to our harmonic oscillator that will diminish the available
free energy. As we expect the plasma to behave collectively, we have to introduce a factor of
Nα where N denotes the number of particles and α a coherence factor taking a value in the
interval of [1 : 2] where 2 amounts to full coherence while 1 represents incoherent emission.
We calculate the total radiated energy per particle, and thus the damping per particle as:

Pcoherent,single =
2e2γ6

3c
Nα−1β̇2

While the exact solution implies a non-linear interaction, let us estimate the time-scales and
impact of the radiation process by assuming a damping term proportional to Ė. Let us assume
that the electric field induced by an annihilation event decays as fast as possible. This amounts
to assuming critical damping which equals λ = ωp,rel. Since the damping does not grow linear
with acceleration but quadratic we expect the actual solution to decay even faster. The well-
known solution to this case is

E(t) = a1exp [−ωp,relt] + a2texp [−ωp,relt] (6.21)

where we now solve for an initial field value of E(0) = E0 and postulate that the plasma was
initially in equilibrium, leading to Ė(0) ∝ (β−β0) = 0. This yields a1 = E0 and a2 = E0ω0 and
thus conclude for the field and its second derivative:

E(t) = E0exp [−ωp,relt] + ωp,relE0texp [−ωp,relt]

−4πencβ̇(t) = Ë(t) = ωp,relexp [−ωp,relt]
(
−E0ωp,rel + E0ω

2
p,relt

)
(6.22)

As the received power is proportional to E2, the received electric field spectrum will scale with
β̇. The expected time dependence of this field is given by equation (6.21) and can be written
as a linear combination of the spectra demanded by [Krzeszowski et al., 2014, equation (5)].
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The mean total power emitted can be estimated by calculating the total energy of a single event
multiplied with the annihilation rate.

Ptotal = ΓA(n)

∫ ∞
0

dtNPsingle,coherent(t)

= ΓA(n)
2e2γ6

3c
Nα

∫ ∞
0

dt
( ωp,rel

4πenc
exp [−ωp,relt]

·
(
−E0ωp,rel + E0ω

2
p,relt

))2

= ΓA(n)
2e2γ6

3c
Nα E2

0

4πmc2
ωp,rel

4γ3n
(6.23)

As the field is given by equation (6.19) and the annihilation rate by (6.10), we may readily
calculate the total power density dissipated:

Ptotal =
2(3α−3)/4π(13−3α)/4e5r

(7−3)α/2
e

3m3/2c2
n4−α/2r2·

· β9/2−3/4αγ(3α−1)/4 (6.24)

Pα=2
total = 1.5 · 108 ·

(
B12δ

P0

)3(
r

rP

)2

γ5/4β3 erg

cm3s
(6.25)

Pα=1.5
total = 3.5 · 101 ·

(
B12δ

P0

)13/4(
r

rP

)2

γ7/8β27/8 erg

cm3s
(6.26)

Let us compare these power densities with the power expected to dissipate in equation (6.11).
The most striking feature is that regardless of the coherence factor assumed, the scaling parallel
to the polar cap is the same for both the input and output processes. In the case of complete
coherence, α = 2, we even find the same scaling w.r.t. the magnetic field and thus in the whole
volume. Evaluating equation (6.11) we find

P = 1.8 · 108 ·
(
B12δ

P0

)3(
r

rP

)2
β3

γ

erg

cm3s
(6.27)

Thus the total power of the independent microscopic dissipation matches the expected value
from Ampere’s law astonishingly well. If we allow for an over-density described by δ larger than
one, we may reproduce the same or more energy output at however higher but still moderate
particle energies.

6.6 Conclusion

We have shown that annihilation in a mildly relativistic current with charge densities of the or-
der of the Golreich Julian density can convert magnetic energy to electric energy. Assuming this
energy to be converted roughly in the volume of spacetime associated with electron positron
annihilation, we deduced that the electric energy is radiated nearly completely. The process
that can be modelled as a classical damped harmonic oscillator will dissipate this energy on the
time-scales of T = 1/ωp,rel a quantity that evaluates to nanoseconds and below for typical pul-
sar densities. The time evolution of the electric field follows the form demanded by measured
spectra [Krzeszowski et al., 2014]. Only the total energy output does not easily reach observed
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values. Since it is strongly dependent on the radius of the neutron star and magnetosphere
density, the actual number is uncertain and may be higher. A satisfying scaling behaviour with
pulsar energies was discovered. As the described process only accounts for part of the energy
output observed, other processes are not excluded [e.g. plasma instabilities such as Weatherall,
1998, also provide nanosecond time variability]
Even if the derived mechanism does not completely account for the emission received it sug-
gests that the inevitable twisting of the magnetic field lines and its transport can be expected to
play a major role. Perhaps treating the pulsar as a giant electromagnetic dynamo with an elec-
tric circuit as proposed by Shibata [1991] and others will at the end be more successful than
searching for the source of radio emissions on the ground of micro- and plasma physics alone.
For if annihilation, an effect that decays only a tiny fraction of the plasma density, unleashes
1021 erg

s of magnetic energy - what would the right mechanism do?
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CHAPTER 7

Final remarks

Having analysed the radio emission problem theoretically in Chapter 1 and observationally in
Chapter 2, we identified some of the biggest still unresolved issues. At the present state of the-
ory, the problem of energy transport and conversion is still not satisfactorily solved. Especially
in light of the newest simulation results, the kinetic energy of the plasma might not suffice to
reach the necessary energy densities. While there is virtually only the modulational instability
left as candidate process to explain the radio emission, the exact way of supplying the energy
density necessary and the boundary condition in which the modulational instability takes place
are not clear.
Our theoretical findings however also point to current decay being a versatile converter of
magnetic energy to electric fields that could then drive emission. We expect more detailed nu-
merical simulations to improve the magnetospheric models further in the next years. While the
radio emission is of clearly microscopic origin and may perhaps not be generated in large-scale
simulations, the new numerical results will serve as a guide to realistic boundary conditions for
the radio emission process. Since the energy loss due to radio emission is negligible to other
loss terms, we expect magnetospheric models to reach very high precissions also if they were
incapable of revealing the radio emission process itself.
It has become clear that a high relativistic flow is not the only possibility of powering radio
emission and there are many arguments against this scenario. First of all, numerical simula-
tions do not reproduce the inner gap proposed by Ruderman and Sutherland [1975]. Secondly,
there exist heuristical arguments against high Lorentz factors: For example, the high inertia
of the charge carriers leads to a very low plasma frequency. Besides, it is unclear how a high
relativistic flow can be powered in a setting that naturally produces currents.
Deciding that the best contribution can be made to statistical problems of data analysis, we fo-
cused on a thorough reinvestigation of the receiver equation. We understood that it is a direct
consequence of this equation, that the brightest pulses are not the best timers. We furthermore
showed how to improve the estimates of the remaining uncertainties. This led to more precise
and accurate timing results yielding a better reduced χ2 value than classical methods of ToA
generation.
Future generation telescopes and receivers will put phase jitter and thus correlated noise in
the focus of the observation data. As we argued, being able to process data losslessly and thus
perhaps on the single pulse niveau, to fit global parameters, needs a fast and reliable interface
to transparently access single pulse data. We developed a library that helps analyzing such
huge datasets. We suspect that in the next years, an even more extended framework will be
necessary to handle the data challenges ahead. Having shown that the interpretation of the
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data microscopically will depend on the macroscopic data fitted, we emphasize that the best
possible parameter reconstruction will only be achieved, when reprocessing the data with the
gathered posterior distributions is possible.
Finally we strongly suggest further investigation of the radio emission process. Understanding
the actual physical events is not only an interesting question of plasma physics, but turns out
to be crucial for the understanding of secondary parameters like ToAs and the noise they are
subjected to.
If we take the chance to analyse data the best way possible, and try to learn of the existing
theoretical problems, we believe that the problem of radio emission can be solved by mutual
progess in theory and observation.
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