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Abstract

Atmospheric Motion Vectors (AMVs) provide valuable wind information for the initial
conditions of numerical weather prediction models. However, only a small fraction of the
available observations is used in current data assimilation systems due to height assignment
issues and horizontal error correlations.

The aim of this thesis is to investigate the feasibility of correcting the pressure heights of
operational AMVs from the geostationary satellites Meteosat-9 and Meteosat-10 with
cloud-top heights derived from independent lidar observations by the polar orbiting Cloud–
Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. The
intention is to reduce the height assignment error as well as the horizontal error correlation of
AMVs for their use in data assimilation. Additionally, AMVs are treated as winds in a vertical
layer as proposed by several recent studies. Corrected and uncorrected AMV winds are
evaluated using radiosonde observations as well as short-term forecasts from the global
forecasting system of the German Weather Service.

Firstly, a direct lidar-based height reassignment of AMVs with collocated CALIPSO
observations is evaluated. Assigning AMV winds from Meteosat-10 to ~120 hPa deep layers
below the lidar cloud top reduces the Vector Root Mean Square (VRMS) differences of
AMVs from Meteosat-10 by 8-17% depending on the evaluation method, evaluation period
and AMV altitude. In addition, the AMV error correlation is reduced by about 50 km through
the correction.

Secondly, CALIPSO observations are used to derive statistical height bias correction
functions for a general AMV height correction that can be applied to all operational AMVs
from a geostationary satellite. Such a height bias correction achieves on average about 50% of
the reduction of VRMS differences attained using the direct height reassignment, but has the
clear advantage of avoiding the need for real-time lidar data and directly collocated lidar
observations. Initial assimilation and forecast experiments with statistically corrected and
layer-averaged Meteosat-10-AMVs in the framework of the current global forecasting system
of the German Weather Service reveal encouraging results.

Overall, the results of this thesis demonstrate that height assignment errors of
Meteosat-AMVs can be significantly reduced when information from lidar cloud-top
observations is incorporated. Thus, lidar-based height correction methods exhibit a promising
approach for an improved representation of AMVs in numerical weather prediction models in
the future.
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Zusammenfassung

Satelliten-Windvektoren (engl. Atmospheric Motion Vectors, kurz AMVs) liefern wertvolle
Informationen zu atmosphärischen Windbedingungen, die für die Initialisierung von
numerischen Wettervorhersage-Modellen benötigt werden. Allerdings wird nur ein Bruchteil
aller verfügbaren AMVs wegen Problemen mit der Höhenzuordnung und horizontalen
Fehlerkorrelationen in der Datenassimilation derzeit verwendet.

In dieser Arbeit soll untersucht werden, inwiefern die Druckhöhen von operationellen AMVs
von den geostationären Satelliten Meteosat-9 und Meteosat-10 mit Hilfe von satelliten-
gestützten Lidarmessungen des polar-umlaufenden Satelliten CALIPSO (engl. Cloud–Aerosol
Lidar and Infrared Pathfinder Satellite Observations) korrigiert werden können, um damit
sowohl die fehlerhafte Höhenzuordnung als auch horizontale Fehlerkorrelationen zu
verbessern. Zusätzlich werden AMVs, wie bereits von anderen aktuellen Studien
vorgeschlagen, als vertikales Schichtmittel betrachtet. Korrigierte und unkorrigierte AMVs
werden sowohl mit Radiosonden-Messungen als auch mit Modellfeldern von Kurzzeit-
Vorhersagen des Globalmodells des deutschen Wetterdienstes ausgewertet.

Zuerst wird eine direkte Höhenkorrektur von Meteosat-10-AMVs mit Hilfe von nahen
CALIPSO-Lidarmessungen der Wolkenoberkante analysiert. Dabei erzielen Schichtmittel
einer vertikalen Ausdehnung von 120 hPa unterhalb der Lidar-Wolkenoberkante eine
Verringerung der Vector Root Mean Square (VRMS) Differenzen von 8-15%, abhängig von
Auswertungsmethode, Auswertungszeitraum und AMV-Höhe. Zusätzlich wird die
horizontale Korrelation der AMV-Fehler um ca. 50 km verringert.

Als zweiter Ansatz werden CALIPSO-Lidarmessungen dazu verwendet, statistische
Höhenkorrektur-Funktionen abzuleiten, die auf alle AMVs eines bestimmten Satelliten
angewendet werden können. Diese statistische Höhenkorrektur erreicht ungefähr 50% der
Verbesserung, die durch die direkte Höhenkorrektur erzielt wird, bietet aber den Vorteil,
keine direkt benachbarten Lidarmessungen in Echt-Zeit zu benötigen. Erste Assimilations-
und Vorhersage-Experimente mit statistisch korrigierten Meteosat-10-AMVs im
Globalmodell des deutschen Wetterdienstes zeigen vielversprechende Ergebnisse.

Insgesamt zeigen die Ergebnisse dieser Arbeit, dass die Verwendung von Lidardaten einen
signifikanten Beitrag zur Fehlerverringerung von AMVs leistet. Die im Zuge dieser Arbeit
vorgestellten lidar-basierten Höhenkorrektur-Methoden bieten daher einen aussichtsreichen
Ansatz, AMVs in Wettermodellen zukünftig besser repräsentieren zu können.
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1. INTRODUCTION

Satellite observations are crucial ingredients for the initialization of Numerical Weather

Prediction (NWP) models as they provide information on atmospheric processes with

unprecedented coverage and resolution. The amount and variety of available satellite

observations has increased drastically during recent decades and requires complex data

processing techniques in order to provide suitable data products to NWP centres in real-time.

Nowadays, sophisticated data assimilation systems make better use of observations by

applying enhanced forward operators and quality control procedures, as well as better forecast

models and assimilation algorithms. Overall, satellite observations continue to play an

important role in the forecast performance of NWP models in both hemispheres (Bouttier and

Kelly, 2001; Kelly and Thépaut, 2007; English et al., 2013).

One essential information source for the prevalent wind conditions is Atmospheric Motion

Vectors (AMVs). AMVs are retrievals of the atmospheric wind derived by tracking cloud and

water vapour structures in successive images from multispectral satellite imagery. The

displacement of these structures generally characterizes tropospheric motions, and therefore

the horizontal wind speed and wind direction can be determined. AMVs provide wind

information with unique spatial and temporal coverage especially over the oceans, in polar

regions and over the southern hemisphere where in-situ observations are typically rare. Given

that the current global observing system is heavily skewed towards mass/temperature

observations, reliable and area-covering wind observations in remote areas are an essential

data source for global NWP models (Velden et al., 2005; Forsythe, 2007; Weissmann et al.,

2012; Baker et al., 2014).

AMVs have been derived since the early 1970s and have been an important ingredient for

NWP models since then. In the early stages, AMVs were derived mostly manually. Over the

following years, the AMV retrieval greatly enhanced, and nowadays allows a fully automatic

extraction of AMVs. Until recently, mainly geostationary satellites were used due to the

regular image frequency recording the same scenery, which enables wind information from

about 60°N to 60°S to be derived (Menzel, 2001). Since the launch of the first polar-orbiting
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satellite carrying a Moderate Resolution Imaging Spectroradiometer (MODIS) instrument in

2002, new possibilities for extracting wind information have been exploited, allowing for

AMV derivation also in polar regions (Key et al., 2003; Dworak et al., 2009; Key et al.,

2014).

The accuracy as well as the amount of available AMVs steadily increased during previous

decades. The sensor technology in the satellite instruments has been enhanced continuously,

now offering more channels, shorter time intervals between consecutive images and a higher

pixel resolution, which consequently leads to higher data volume and enhanced coverage.

Improved computer capacities and efficient telecommunication systems are the basis for an

efficient usage of AMVs in NWP models (Forsythe, 2007). Nowadays, AMVs from five

geostationary satellites and several polar-orbiting satellites are assimilated routinely in all

global NWP systems. Figure 1 illustrates the AMV distribution during one assimilation cycle

at the German Weather Service (DWD for Deutscher Wetterdienst). By using imagery from

geostationary and polar-orbiting satellites, AMVs are almost globally available. However, a

data gap between geostationary and polar-orbiting satellites exists at about 60° latitude for

both hemispheres, leading to difficulties in accounting for phenomena such as the polar jets.

This problem will be tackled by exploiting the possibility of combining images from different

satellites, either with two polar-orbiting satellites like the Meteorological Operational

Satellites (METOP) A/B (Hautecoeur et al., 2014) or with one geostationary and one polar-

orbiting satellite (Lazarra et al., 2014).

Figure 1: Illustration of the AMV distribution during one assimilation cycle on 7 May 2013,
12 UTC for the global model of the German Weather Service. All available AMVs (before quality
control procedures) from operational geostationary and polar-orbiting satellites with reference

times between 10:30 UTC and 13:30 UTC (assimilation window) are shown.
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The positive impact of the assimilation of AMVs on the forecast skill of global NWP systems

is frequently reviewed, and results generally emphasize the importance of AMV wind field

observations for data assimilation. A recent inter-comparison project initialized by the Met

Office and Météo France (Payan and Cotton, 2012) analysed the impact of AMVs at eight

international forecasting centres and found that NWP systems continue to benefit from the

assimilation of AMVs. Overall, the results of this collaborative impact study demonstrate the

significant relative importance of AMVs in the global observing system for data assimilation.

Several recent studies have shown that the assimilation of AMVs improves the NWP forecast

skill, e.g. from DWD (Cress and Bitzer, 2012), the European Centre for Medium-Range

Weather Forecasts (ECMWF) (Rohn et al., 2001; Bouttier and Kelly, 2001), the U.K. Met

Office (Cotton et al., 2014), and the U.S. Navy (Baker et al., 2012). The benefit obtained by

assimilating AMVs in global NWP models is not restricted to areas where the AMVs are

derived but extends to regions further away from the actual AMV position (Santek, 2010).

The positive impact of AMVs is particularly pronounced when assimilating AMVs for

tropical cyclone track forecasts (Goerss et al., 1998; Soden et al., 2001; Wang et al., 2006).

Furthermore, the beneficial contribution of AMVs derived from imagery of polar-orbiting

satellites has been demonstrated in several studies (Key et al., 2003; Bormann and Thépaut,

2004; Riishojgaard and Zhu, 2004). Beyond their relevance for NWP models, AMVs

additionally contribute to other fields of research, e.g. nowcasting systems (Mecikalski and

Bedka, 2006; Merk and Zinner, 2013; Garcia-Pereda, 2014).

1.1 State of the art

Although AMVs have proven to be an important data source for the atmospheric wind field in

NWP models, some issues remain. Several studies indicate that the assimilation of AMVs

does not yet exploit its full potential. Quality problems may often be the reason why AMV

assimilation does not always improve forecast skill more clearly (Bouttier and Kelly, 2001;

Isaksen et al., 2010). Studies on AMV error characteristics are therefore an active field of

research (e.g. Bresky et al., 2012; Lean et al., 2015; Salonen et al., 2015a).

In particular, the height assignment of AMVs continues to be a challenging task and

introduces significant errors. Velden and Bedka (2009) estimated that height assignment

errors contribute up to 70% to the total Vector Root Mean Square (VRMS) difference

between AMV winds and radiosonde winds. In addition, these errors can be horizontally

correlated up to several hundred kilometers (Bormann et al. 2003). A number of error sources
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contribute to this: Temperature and humidity model profiles that are used to retrieve the AMV

height may contain errors that are often correlated horizontally, and multi-layer clouds or

semi-transparent clouds pose a further challenge for the height assignment process. In

practice, these issues lead to the need for a massive thinning of the originally dense AMV

dataset for data assimilation. Typical thinning strategies at NWP centres have scales of

200 km by 200 km (horizontal extent) by 100 hPa (in the vertical) for one single observation.

As a consequence, only a small percentage of all available AMVs are used for data

assimilation (Forsythe, 2007).

► Interpreting AMVs as layer-averages

AMVs are traditionally interpreted as single-level observations, and this continues to be the

established strategy in operational data assimilation systems to date. However, this

assumption might provide a suboptimal representation of AMVs. When clouds are observed

by satellite imaging instruments, radiation is generally received from finite vertical layers and

not only from the highest cloud level. In particular, upper-level clouds like cirrus are mostly

semi-transparent and the detected signal may have contributions not only from the cloud top,

but also from subjacent layers of often large vertical extent. Additionally, the motion of

clouds that are used as tracking features to derive AMVs rather represents a vertically

averaged wind over a cloud layer rather than the wind at the cloud top as is commonly

understood (Schmetz et al., 1993; Hernandez-Carrascal and Bormann, 2014; Salonen et al.,

2015a).

Several recent studies have revealed that AMVs represent vertical layers rather than discrete

levels and that this should be accounted for in NWP models to reduce AMV errors. One of the

first studies in this direction was conducted by Rao et al. (2002), suggesting benefits from

spreading AMV wind information to more than one level. A subsequent study of Velden and

Bedka (2009) compared AMV winds to layer-averaged radiosonde winds at three different

locations in the U.S. for over three years. These layers extend from the operational AMV

height downward with increasing layer depth from 10 hPa to 300 hPa. Generally, a

consistently better agreement with radiosonde winds was found when a layer-averaging was

applied, with varying optimal configurations for different satellite channels and altitude

regions. Furthermore, Hernandez-Carrascal and Bormann (2014) showed in a simulated

framework that assigning AMVs to layers that comprise the actual cloud from cloud top to

cloud base shows advantages over the traditional single level assumption. Lean et al. (2015)
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also quantified height assignment AMV error characteristics using a set of simulated AMVs

and found the closest fit of AMVs to layer-averaged model winds that are most commonly

located below the estimated cloud top.

Altogether, the potential of assigning AMVs to vertically extended layers instead of discrete

levels has been clearly demonstrated. However, current assimilation systems do not use this

information yet because the exact position and depth of this layer are relatively unknown and

most likely depend on the AMV dataset and processing (Forsythe, 2007; Weissmann et al.,

2013).

► AMV pressure height comparison with lidar cloud-top observations

Lidar observations provide reliable information on cloud-top heights that is independent from

the AMV derivation procedures and from model fields used for the processing. For example,

the space-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the

polar-orbiting Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations

(CALIPSO) satellite provides the framework for the comparison of AMV pressure heights

and lidar cloud-top observations. Initial efforts in this direction at the European Organisation

for the Exploitation of Meteorological Satellites (EUMETSAT) were presented at the

International Winds Workshop 2010 and showed a good agreement with CALIPSO lidar

observations for low-level AMVs (Sèze et al., 2008). However, high- and mid-level AMVs

exhibited large differences between AMV heights and collocated lidar observations. The

authors ascribed these mismatches to very thin cirrus clouds at high levels. These can only be

observed in a limited way by satellite imaging instruments whereas lidar observations allow

for the detection of optically thin clouds. Di Michele et al. (2013) also compared AMV

pressure heights from Meteosat-9 with CALIPSO lidar observations for a 10-day period and

found similar characteristics. Both studies made first comparisons between AMV and lidar

cloud-top observations, but did not investigate the effect of a direct AMV height correction by

evaluating wind errors of the lidar-corrected AMVs with radiosondes or model fields. In

addition, neither of these comparison studies had collocation constraints in the vertical, which

can exclude situations where AMV and CALIPSO might not see the same cloud due to the

temporal and spatial distance or diverging instrument capabilities.

A first study on a lidar-based AMV height correction with airborne lidar observations was

conducted by Weissmann et al. (2013) and was intended to serve as a testbed for future space-

based applications. A small, regional sample of airborne lidar observations was used to
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correct AMVs from the Japanese geostationary Multi-Functional Transport Satellite 1R

(MTSAT-1R) during The Observing System Research and Predictability Experiment

(THORPEX) Pacific Asian Regional Campaign (T-PARC, for more information see e.g.

Weissmann et al., 2011). The verification was done with aircraft dropsondes launched during

the field campaign. Results indicated that assigning AMVs to 100–150 hPa deep layers below

the lidar cloud top reduces the AMV wind error by 10–15% compared to layers of the same

depth centered at the original AMV height.

1.2 Goals and outline

The aim of this thesis is to further elaborate the two approaches presented in the previous

section that can potentially reduce the errors of AMVs. Firstly, satellite lidar cloud-top

observations from the polar-orbiting satellite CALIPSO are used to correct AMV pressure

heights. Secondly, AMVs are treated as vertically extended layer observations instead of

single-level observations. As mentioned above, the optimal layer position and layer depth

relative to the derived (operational) AMV pressure height may be highly situation-dependent.

Lidar observations, in contrast, provide accurate information on the cloud-top height that is

independent of different AMV datasets and processing algorithms. In order to find an

appropriate layer that should be assigned to AMVs in data assimilation systems, a number of

vertical layers relative to the lidar cloud top and relative to the original AMV height are

investigated. Furthermore, different depths of these layers are tested and compared to the

traditionally used single-level approach. This procedure is schematically illustrated in

Figure 2.

In this work, two different AMV height correction methods based on lidar observations are

evaluated. In the first part of this thesis, the effect of applying a direct height reassignment to

individual AMVs with collocated CALIPSO observations is assessed. As proposed by

Weissmann et al. (2013), this thesis conducts the transition from a limited-area AMV height

correction with airborne lidar observations to larger scales using a sample of satellite lidar

observations with significantly more AMV observations and a larger time period. Operational

collocated radiosondes are used to evaluate AMV winds before and after the height

correction. To overcome the limitations of spatially and temporally sparse radiosonde

observations, model equivalents from the Global Model GME of DWD are used additionally

for the wind evaluation.
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However, such a direct height reassignment can only be applied to collocated

AMV/CALIPSO observations, which exhibit a comparatively small subset of all AMVs. As

an alternative approach to the direct AMV height reassignment, a general height adjustment

of operational AMVs is derived to correct systematic height biases. Applying this height bias

correction allows proceeding from a direct height reassignment of individual AMVs to a

larger scope of application, as this approach facilitates the usage of lidar information for the

AMV height correction without the need for real-time lidar data and directly collocated lidar

observations. To investigate the effect of statistically lidar-corrected and layer-averaged

AMVs in an operational NWP system, assimilation and forecast experiments are conducted

with the current Icosahedral Nonhydrostatic (ICON) global NWP model of DWD. The two

methods to correct AMV heights presented in this work are referred to as DIRECT HEIGHT

REASSIGNMENT and HEIGHT BIAS CORRECTION throughout the following chapters.

In summary, this thesis intends to address the following scientific questions:

1. Can space-borne lidar observations  be used to correct pressure heights of AMVs,

and which combination of layer depth and layer position  relative to the lidar cloud-

top observation provides an optimal representation of the AMV wind?

Figure 2: Illustration of the AMV height correction using space-bo rne lidar observations: Pressure
heights of Meteosat-10-AMVs are corrected with lidar observations from the polar-orbiting

satellite CALIPSO. Different layer positions and layer depths relative to the lidar cloud-top height
(green) and the original AMV height (purple) are evaluated.
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2. Can a statistical correction of systematic height biases be deduced from individual

AMV height reassignment values as a general  height bias correction , and does it

improve forecast skill when assimilating statistically lidar-corrected and layer-

averaged AMVs in an NWP system?

► Structure of this thesis

Section 2 summarizes the basic principles of the different observation types that are used in

this thesis. This comprises the derivation of AMV observations and potential error sources

during the derivation process and information on lidar observations. In addition, information

about the operational global forecasting systems at DWD and the assimilation of AMVs is

provided. Section 3 gives an overview on the data sets and introduces the methodology of the

two lidar-based height correction methods developed in this thesis. A brief overview of the

wind evaluation methods completes this section. Sections 4 and 5  present results on lidar-

based height correction methods for the European geostationary Meteosat Second Generation

(MSG) satellites. In Section 4, results from the direct height reassignment for individual

AMVs with adjacent lidar observations are shown, followed by a brief analysis of error

correlations. Section 5 comprises results from the height bias correction, including

assimilation and forecast experiments with statistically lidar-corrected AMVs. Section 6

provides a brief outlook on potential future applications, such as an application of lidar-based

height correction methods to AMVs from other geostationary satellites. A summary of the

findings of this thesis and conclusions that can be drawn are provided in Section 7.

Parts of this thesis are contained in two publications that were submitted to the Journal of

Applied Meteorology and Climatology (JAMC) during the PhD work. The verification of the

direct height reassignment with radiosonde observations (i.e. results shown in Section 4.1) is

contained in Folger and Weissmann (2014). Furthermore, the evaluation of the direct height

correction with GME model equivalents (results shown in Section 4.2.1) and the height bias

correction (comprising the Sections 5.1 and 5.2), including an outlook to the application of

lidar-based height correction methods to other geostationary satellites (Section 6.1) are

presented in Folger and Weissmann (2016). The corresponding parts about data and

methodology used are also partly extracted from these papers, with additional and more

detailed information presented in this thesis.
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2. BASIC PRINCIPLES

This thesis uses two different types of observations, which will be introduced in this section.

First, information on operational AMVs and their derivation process (including tracking and

height assignment), as well as the associated error sources is provided. Second, space-borne

lidar observations and their use to correct the operational AMV pressure heights are

discussed. The basic principle of lidar measurements is introduced and details on space-borne

CALIPSO lidar observations are presented. An overview of the global forecasting systems

GME and ICON of DWD and their AMV assimilation procedures concludes this section.

2.1 AMV observations

2.1.1 Derivation of AMVs from cloud features

The basic strategy for the AMV derivation consists of four steps: (1) choose a feature that can

be traced, (2) track that feature in consecutive satellite images and determine the magnitude

and direction of the resulting displacement vector, (3) assign a representative pressure height

to the vector, and (4) deduce a quality index for the derived AMV as an estimate on the

product quality (Borde et al., 2014a). Although the algorithms used by the AMV producing

centres vary slightly for both the tracking and the height assignment process, the basic

strategy is similar. A general introduction to the principles of the AMV derivation and

potential error sources is given in this section. As this thesis focuses on MSG-AMVs, an

overview of MSG satellites as well as their specific AMV derivation scheme will be presented

additionally.
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2.1.1.1 Tracking of atmospheric motion

AMVs are derived by tracking the displacement of atmospheric structures in sequential

satellite images. Typically, cloud structures are used for the tracking process, but water

vapour gradients may also be traced (see e.g. Büche et al., 2006). As AMV pressure heights

of tracked cloud structures are compared to lidar cloud-top observations in this thesis, AMVs

derived from water vapour structures are not discussed further. Figure 3 shows the basic

principle of the tracking process for a cloud feature. First, a suitable tracer is detected within a

target box (orange), which is then tracked in several consecutive images within a predefined

search area (purple) by applying cross-correlation techniques (see e.g. Schmetz et al., 1993).

A horizontal wind speed and wind direction can be determined through the displacement of

the respective feature. Generally, 3-4 images are used for the tracking process for

geostationary satellites in order to allow for consistency checks between the individual wind

vectors. The time interval of these images varies from 15-60 minutes for geostationary

satellites depending on the respective instrument capabilities. In contrast, AMVs from polar-

orbiting satellites generally use only two pictures for the tracking, as the time gap between the

single images is about 100 minutes (one Earth orbit) (Menzel, 2001; Forsythe, 2007).

AMVs are derived by using images from different channels. Generally, visible channels (VIS)

are used in the lower troposphere below pressure heights of 700 hPa during daylight periods.

AMVs from infrared channels (IR) are derived throughout the troposphere, whereas AMVs

from water vapour channels (WV) are mainly found in upper levels above 600 hPa (Velden et

al., 2005; Velden and Bedka, 2009).

Figure 3: Illustration of the tracking process of a cloud structure in two consecutive satellite
images. The feature detected in the orange target box in the left image is traced in the subsequent
right image within a pre-defined search area (purple).Through the displacement of the feature, a

horizontal wind speed and direction can be determined (yellow arrow).
Adapted from Forsythe, 2007.
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The optimal configuration for the AMV derivation depends on parameters such as the tracer

size and the time difference between the images, which may in turn depend on other

parameters such as channel or image resolution (Borde and Garcia-Pereda, 2014b; Velden et

al., 2000; Szantai et al., 2000). Garcia-Pereda and Borde (2014) found the lowest AMV errors

for time differences of 10 - 15 minutes between the sequential satellite images in combination

with tracer boxes of 16x16 or 24x24 pixels. Different processing centres pursue different

strategies for the feature tracking and the subsequent height assignment. Inter-comparison

studies between different processing centres have been conducted on a regular basis in recent

years (Genkova et al., 2010; Santek et al., 2014).

2.1.1.2 AMV height assignment

Generally, the uppermost cloud pixels (e.g. the coldest peak or the coldest 25% of all pixels)

within the target box are used to derive a representative height (Genkova et al., 2010). There

are several AMV height assignment methods that are employed operationally for cloudy

targets. A short introduction to the different concepts is provided in the following. A more

detailed overview on height assignment methods can be found e.g. in Nieman et al. (1993,

1997).

► Brightness temperature conversion

The Equivalent Black Body Temperature (EBBT) method determines a representative

pressure height by using temperature profiles of a model forecast and the brightness

temperature of the respective cloud pixels of the satellite image. The brightness temperature is

defined as the temperature an emitter (e.g. a ‘grey’ cloud structure detected by a satellite

imager) would have if it was a black body (see e.g. Besançon, 1990). The AMV is then

assigned to the model level that best fits the observed brightness temperature of the satellite

image. This method is mainly used for low-level opaque clouds from channels in the infrared

and visible range (Schmetz et al., 1993).

► Multi-channel techniques

Two multi-channel techniques are widely used at AMV processing centres to better account

for the semi-transparency of clouds: the CO2-slicing and the H2O-intercept method. Both

methods use the differences between two channels for the same satellite scene to derive an
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AMV pressure height. The CO2-slicing method uses the 13.9 micron band in combination

with an IR image (Smith and Platt, 1979; Menzel et al., 1983). Water vapour sensitive

channels provide an alterative approach to account for semi-transparency issues for satellites

with no CO2-channel available. The H2O-intercept is conceptually similar to the CO 2-slicing,

but uses a combination of one WV-image and one IR-image. (Szejwach, 1982; Schmetz et al.,

1993). Multi-channel techniques are based on the following equation:

The left hand side represents the observed satellite radiances in the respective CO 2 or WV

(numerator) and IR (denominator) channel. The difference between the radiances of the

detected cloud structure and a clear-sky region (representing the surface radiation) is

determined for both channels. The clear sky radiance Rcs is derived either from clear sky

pixels adjacent to the cloud feature or from temperature profiles of a model short-term

forecast. The right hand side includes the differences between a calculated “black” cloud

(bcd) and a clear sky radiance and is computed for different pressure heights P. The one that

best matches the observed radiance from the left hand side is selected (Nieman et al., 1993;

Forsythe, 2007). The cloud fraction n is the same for both channels and can be cancelled in

the fraction. To apply the equation to the CO2-channel, it is assumed that the emissivity ε is

roughly the same for ice clouds in the IR- and CO 2-channel and therefore can be eliminated in

the fraction as well (Nieman et al., 1993). The H 2O-intercept method is based on the

assumption of a constant ratio of the two cloud emissivities ( )WVe  and ( )IRe  (Schmetz

et al., 1993; Nieman et al., 1997).

► Additional corrections for low-level AMVs

As an additional approach to improve the AMV height assignment, low-level AMVs are often

assigned to the cloud base rather than the cloud top of the observed cloud feature. This

strategy is based on a study of Hasler et al. (1979), who found a better agreement of AMV

winds with wind observations at the cloud-base level for marine cumuli during a field
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campaign. The assessment of the cloud base from satellite radiances is done by analysing

cloudy and clear-sky pixels around the respective cloud structure. A brightness temperature

histogram then enables the cloud-base height to be estimated (Le Marshall et al., 1994).

Additionally, some centres apply an inversion correction to low level AMVs. If a temperature

inversion exists in the corresponding model profile of an AMV, this AMV is always relocated

to the height of the minimum temperature, assuming that the cloud is not able to penetrate in

stable inversion regions. Thereby, AMVs that are originally assigned too high in the

atmosphere due to an under-representation of the inversion depth may be shifted to a more

representative height (Forsythe, 2007).

2.1.1.3 AMV error sources

Different error sources may add to the total AMV error and can lead to wind vectors of poor

quality. The main contribution arises from errors resulting from the height assignment

process. Velden and Bedka (2009) estimated that about 70% of the total AMV error is due to

height assignment issues. However, other error sources may contribute as well. The main

error sources are discussed in the following.

► Height assignment errors

All height assignment techniques can potentially induce large errors. The EBBT-method can

only provide reliable height estimates for opaque clouds. Uncertainties may arise for semi-

transparent clouds when contributions from levels below the actual cloud height increase the

brightness temperature, therefore leading to a height assignment that is too low in the

atmosphere. (Schmetz et al., 1993). Although multi-channel techniques achieve superior

results to the EBBT-method for semi-transparent clouds, the height assignment of upper-level

AMVs constitutes a major issue. Both methods (CO 2-slicing and H2O-intercept) have large

limitations, especially for small differences between the two channels, which cannot be

distinguished from atmospheric noise. In addition, the dependence on the (unknown) cloud

microphysics and the amount of water vapour is an issue. Both methods perform poorly for

thin and multi-layer clouds, often placing the AMV in between the two upper cloud layers

(Borde and Dubuission, 2010). Generally, an optimal combination of techniques has not yet

been found that tackles these problems satisfactorily (Borde, 2014c). Comparisons between
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different multi-channel techniques have been conducted to assess their performance for

various cloud situations, with differing results as to which technique outperforms the other

(see e.g. Daniels et al., 2006; Borde and Dubuisson 2010; Schreiner et al., 2012).

In addition to the inherent error sources of the single height assignment methods, there are

further issues that contribute to the height assignment error. In particular, the selection of the

pixels that is used for the height assignment leads to uncertainties. Generally, tracked cloud

features may contain pixels from different altitude levels. The more complex the detected

cloud structure is, the more difficult is the assignment to a specific height (Forsythe, 2007).

Consequently, the pixels that are actually tracked are not necessarily the same as those used

for the height assignment afterwards. Additionally, features tracked in the visible channel

cannot be converted directly to pressure levels, but corresponding IR images must be used.

This can lead to large height assignment errors especially in multi-layer situations, when the

brightest pixels of the target box in the respective IR image do not represent the tracked

feature of the VIS image. (Borde et al., 2014a)

Generally, the height assignment is particularly error-prone when wind varies strongly with

height (Salonen and Bormann, 2014). A pronounced “slow” speed bias is frequently found

when comparing high-level and mid-level AMVs to in-situ wind observations. The main

reason is an incorrect height assignment locating the AMV derived from a lower cloud feature

with a slow wind speed too high in the atmosphere. However, a second contributing factor is

the tracer size used in the tracking step, when the detected wind speed is averaged over the

pixels of the target box. Small target box sizes imply a reduced shifting of the detected

feature, and may introduce large errors due to sub-pixel displacements. However, larger target

boxes lead to an enlarged averaging, thereby increasing the slow speed bias (Bresky et al.,

2012).

► Representativity errors

The traditional approach of deriving AMVs is to assign them to a discrete altitude level.

However, it was already suspected in the early stages of AMV derivation that representativity

errors may arise when AMVs are interpreted as single-level observations instead of layer-

averages over a vertically extended cloud layer (Schmetz et al., 1993). As already pointed out

in Section 1, recent studies that compared AMV layer-winds to radiosonde/dropsonde

observations indicate that AMVs represent winds in vertical layers rather than winds at
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discrete levels (Velden and Bedka, 2009; Weissmann et al., 2013). Similar results are

obtained by analysing AMV error characteristics within a simulated framework (Hernandez-

Carrascal and Bormann, 2014; Lean et al., 2015), where AMVs are derived from simulated

satellite images. This approach has the advantage of knowing the “true” atmospheric model

state. However, care must be taken when interpreting the results, as model clouds can

represent real clouds only to a limited extent and do not necessarily provide a realistic

representation of cloud structures if the model resolution differs largely from scales resolved

by the satellite imagery. Further challenges are often introduced by systematic errors in the

model representation of clouds. Tracking processes of model-cloud tracers are therefore

challenging and potentially error-prone (Lean et al., 2015).

Overall, it is commonly accepted that interpreting AMVs as layer-averages may yield benefits

for data assimilation. However, AMVs are currently still assimilated as single level

observations at all NWP centres.

► Additional error sources

In addition to height assignment and representativity errors, other error sources may introduce

further uncertainties. As cloud structures are tracked over sequential images that are

15 - 100 minutes apart from each other, the detected cloud may evolve during that time period

and the cloud-top height of the tracked feature may vary in subsequent images

(Menzel, 2001). In addition, the detected wind speed of the cloud top constitutes a temporal

and spatial average of the actual tropospheric motion and is not necessarily an optimal

representation of the actual atmospheric wind field (Schmetz et al., 1993). Strictly speaking,

AMVs can only represent an unbiased estimate of the atmospheric wind if clouds are

randomly distributed and floating with the airflow (Schmetz and Nuret, 1989).

Furthermore, short-range forecast model profiles of temperature and humidity are used for the

AMV height assignment, introducing additional errors due to an imperfect representation of

the atmospheric conditions by the model (Schmetz et al., 1993). This is a particularly

dangerous issue as the resulting AMVs then may contain errors that are correlated with the

model short-term forecasts that are used commonly in data assimilation as first-guess (FG)

fields.

As the sequential images used for the tracking process must coincide, errors may also arise for

spinning radiometers such as the Spinning Enhanced Visible and InfraRed Imager (SEVIRI)

aboard the MSG satellites. For SEVIRI with a rotation rate of about 100 revolutions min -1, the



2 BASIC PRINCIPLES

16

Root Mean Square Error (RMS) for the image-to-image relative accuracy is 1.2 km (Schmetz

et al., 2002), which can have a considerable effect especially on the accuracy of low-level

AMVs with small wind speed values.

2.1.2 Meteosat Second Generation

The MSG satellites with a nominal life expectancy of 7 years each are the European series of

geostationary satellites currently in operation. The MSG mission is a joint cooperation

between the European Space Agency (ESA) and EUMETSAT and provides high-resolution

imagery and improved sensor-technology compared to the preceding Meteosat First

Generation (MFG) satellites. The first MSG satellite Meteosat-8 was brought into orbit in

2002, and was followed by three successful launches of further MSG satellites. The major

instrument on board is SEVIRI, which provides full-disk imagery every 15 minutes in

12 channels ranging from the visible (0.6 μm) to the infrared spectrum (14 μm). SEVIRI

provides images with a pixel size of 3 km at nadir for all channels, and 1 km for the high-

resolution visible channel. As the angular stepping remains constant, the pixel resolution

decreases for off-nadir views, i.e. the resolution decreases with increasing latitude and with

increasing longitudinal distance from the satellite position (Schmetz et al., 2002). SEVIRI

enhances the derivation of AMVs significantly compared to the precursor generation of

MFG satellites both in quality and quantity as there are two water vapour channels and one

CO2-channel, therefore improving the error-prone height assignment for semi-transparent

clouds (Borde, 2014c).

► Tracking of MSG-AMVs

For the derivation of MSG-AMVs, cloud and water vapour features are tracked from imagery

of five MSG channels: The VIS channel at 0.8 μm, the IR channel at 10.8 μm, the two

WV channels at 6.2 μm and 7.3 μm and the high-resolution VIS channel (broadband, about

0.4 - 1.1 μm) (Schmetz et al., 2002; Carranza et al., 2014). Other channels may be included in

the future (EUMETSAT, 2011). The tracking algorithm for MSG-AMVs uses four

consecutive images with 15 minutes in between each image pair. The reference time of the

derived AMV is set to the second picture (Régis Borde, personal communication). The

derivation process starts by targeting a suitable feature in a search box of 24x24 pixels. The

cloud feature with the strongest contrast (with a minimum number of high-contrast pixels) is
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then selected. Scene analysis algorithms classify each pixel as cloudy or clear sky, hence

creating a cloud mask for each image. If a minimum amount of 50 cloudy pixels is not

reached for a specific scene, a search for a clear-sky AMV by tracking water vapour gradients

in the WV-channels is attempted. The selected feature is then tracked in the consecutive

images in search boxes of 80x80 pixel size centered around the respective tracking element

(Lutz, 1999; Schmetz et al., 2002; Borde et al., 2014a).

► Height assignment of MSG-AMVs

Cloud-top heights for MSG-AMVs from opaque clouds are derived by using the EBBT-

method (prioritizing the 10.8 μm channel), including a low level inversion correction if

necessary. Short-range forecast model profiles from ECMWF are used for the brightness

temperature conversion. Several combinations of WV/IR channels and CO 2/IR channels are

available for the height assignment for upper level semi-transparent clouds (prioritizing the

CO2-slicing). Clear sky radiances are extracted from clear sky pixels neighbouring the

selected feature (EUMETSAT, 2011; Borde, 2014c).

The operational AMV height assignment strategy of EUMETSAT changed on

5 September 2012 to the Cross-Correlation Contribution (CCC) method. This method

provides a more consistent height assignment as the pixels that contribute most to the tracking

process are used to set the AMV height (Borde et al. 2014a). MSG-AMVs from different

periods that comprise data from before and after the changeover are evaluated in this thesis.

Before September 2012, the determination of a representative AMV height for MSG-AMVs

was conducted for the coldest peak in the target box. In addition, a cloud-base height

assignment for low-level MSG-AMVs was implemented. With the changeover to the

CCC method in September 2012, the final pressure of the cloud feature is a weighted average

of the pressure values assigned to the individual cloudy pixels that represent the dominant

motion feature within the target box. In addition, AMVs are no longer assigned to the cloud

base at low levels (EUMETSAT, 2011; Borde et al., 2014a). Unfortunately, the resulting

operational Meteosat-AMV dataset contains no information about the height assignment

method applied for deriving individual AMVs in the final product.

The performance of the new algorithm generally exceeds the old version for high-level and

mid-level AMVs, exhibiting a higher average quality. An initial degradation of data quality in

low levels (Salonen and Bormann, 2012) was improved by applying a patch introduced in
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January 2013 (Carranza et al., 2014). The CCC-method is also tested by other AMV

processing centres and achieves superior results compared to the traditional algorithms (e.g.

Kim et al., 2015).

► AMV quality assessment

In order to rate the quality and representativeness of AMVs, a Quality Index (QI) is

disseminated from EUMETSAT together with each AMV, enabling the forecasting centres to

filter out wind vectors with questionable reliability. The automatic control scheme operational

at EUMETSAT comprises several checks. First, a comparison between the three preliminary

wind vectors derived from a consecutive image quartet ensures the temporal consistency

between the single vectors. In addition, a spatial consistency check is applied by comparing

the speed, direction and pressure of the final AMV to those of neighbouring AMVs in a

similar pressure range. Furthermore, a forecast check against the FG field (short-range

forecast) of the ECMWF-model, interpolated to the AMV location and pressure level, is

applied. Other checks, such as an inter-channel consistency check, are not yet included, but

considered as a future enhancement.

These quality checks are supposed to reject poor quality wind vectors with large deviations in

wind speed and direction, but still allow for natural accelerations that may appear e.g. in the

jet entrance-exit regions. Problems may arise if strict conformity rules are applied for the

forecast check, when the AMV wind has to coincide closely to the FG field and therefore the

model field is simply reproduced. Therefore, AMVs are not discarded for poor forecast

consistency if temporal and spatial consistency checks achieve good results, but a lower

quality is assigned. The information gained from all quality checks are combined to assign

one QI for each AMV. The derived QI has values ranging from 0 to 100, with 100 indicating

the best possible quality (Holmlund, 1998; EUMETSAT, 2011).

2.2 Lidar observations of cloud-top heights

Light detection and ranging (lidar) has been an important data source for profiling

measurements for decades. In contrast to passive remote sensing techniques, a lidar actively

emits photons of certain wavelengths and is not dependent on radiation from natural sources.

This remote sensing technique enables a detailed analysis of cloud and aerosol layers, and the
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determination of a variety of atmospheric parameters such as temperature, humidity, wind or

trace gases (Weitkamp, 2005).

The basic principle of a backscatter lidar is described in the first subchapter of this section and

is based on Weitkamp (2005). Subsequently, the space-borne lidar CALIOP on board the

polar-orbiting satellite CALIPSO is introduced, including potential error sources of CALIPSO

lidar observations. These chapters contain data content from the CALIOP Algorithm

Theoretical Basis Documents about the CALIOP instrument and algorithm overview (Winker

et al., 2006), scene classification algorithms (Liu et al., 2005) and feature detection and layer

properties algorithms (Vaughan et al., 2005). In addition, information from Winker et al.

(2009, 2010), Hunt et al. (2009) and Vaughan et al. (2009) is used.

2.2.1 Principles of a backscatter lidar

A lidar essentially consists of an emitting and a receiving device for radiation and can be

applied from ground-based, air-borne or space-borne platforms. The basic principle of an air-

or space-borne lidar is illustrated in Figure 4. Photons of a certain wavelength are emitted by

short laser pulses in the nanosecond range and interact with particles in the atmosphere (air

molecules, aerosols, cloud droplets) through scattering and absorption processes. A small

fraction of the photons are scattered 180° backwards and can be detected by the lidar

Figure 4: Illustration of the basic components of a lidar system.
Schematic adapted from Fischer, 2013
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telescope. When the wavelength remains unchanged during a scattering process, it is called

elastic backscattering. By measuring the time difference between the emitted and received

signals (travelling with the speed of light, ~3·108 ms-1), the position of the scattering process

can be determined to a high accuracy. When the laser pulse hits a region of increased particle

density or with larger particles, the backscattering signal is enhanced. Thus, lidar observations

are highly sensitive to atmospheric layers of a higher optical depth such as cloud or aerosol

layers. The backscattered lidar signal is described by the following ‘lidar equation’:
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),( lrP  describes the signal strength for a certain wavelength λ as a function of distance r.

The first term K is described by the following equation:
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K is a constant and contains the emitted pulse energy 0P , the speed of light c, the area of the

receiver A, the overall system efficiency η, the temporal pulse length τ, and a factor ½ in order

to account for the forward- and backward travelling of the laser pulse. As the signal strength

decreases with larger distances, a correcting term is applied by dividing by r2 (second term of

the lidar equation). The backscatter coefficient ),( lb r  represents the scatter probability at an

angle of 180° to the receiver (third term). It consists of a fraction of air molecules and a

fraction of atmospheric particles (aerosols, cloud droplets etc.).
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The fourth term of the lidar equation represents the atmospheric transmission at the emitted

wavelength λ and can take values from 0 to 1 by integrating over the extinction coefficient

),( la r  from the emission source out to distance r. Analogously to ),( lb r , ),( la r  has

contributions from air molecules and particulate matter. The backscatter and extinction

coefficients for molecular backscattering can be assessed with relatively high confidence by

using model profiles of the air molecules’ density. However, the lidar equation is

underdetermined, as both the particle backscatter and particle extinction coefficient are

unknown. They are encapsulated in one variable called the lidar ratio Saer:

(1)   (2)         (3)                              (4)
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The lidar ratio has to be estimated to solve the lidar equation for the extinction

coefficient )(raera . However, its assessment is often difficult, as it depends on several

parameters such as wavelength, humidity and type and shape of the scattering particles.

2.2.2 Space-borne lidar observations from CALIPSO

The polar-orbiting satellite CALIPSO was launched in 2006 as a joint satellite mission of the

National Aeronautics and Space Administration (NASA) and the French space agency Centre

National d'Études Spatiales (CNES). CALIPSO flies at an inclination of 98.28° in a sun-

synchronous orbit at 705 km altitude, encircling the earth in about 100 minutes. CALIPSO is

part of the A-Train, which is a constellation of several international science satellites that fly

in formation and therefore facilitate a wide variety of different observations of the same

scenery from space (see Figure 5). The nominal life expectancy of CALIPSO was originally

set to three years (until 2009), and is thus already exceeded by far, with CALIPSO still

delivering reliable data from space.

► The lidar CALIOP

The lidar CALIOP is the major instrument on board and measures vertical profiles of the

Figure 5: The A-Train constellation: The leading satellite OCO-2 (Orbiting Carbon Observatory-
2), followed by GCOM-W1 (Global Change Observation Mission W1), Aqua, CALIPSO, CloudSat

and Aura, source: http://atrain.nasa.gov/)).
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atmospheric elastic backscatter at two wavelengths (532 nm and 1064 nm). CALIOP uses a

Nd:YAG (Neodymium-doped Yttrium Aluminium Garnet) laser as transmitter, which has an

original wavelength of 1064 nm that is then divided by a dichroic beam splitter. As particle

diameters of aerosol or cloud droplets typically have similar dimensions to these wavelengths,

this laser is well suited for remote sensing applications of the atmosphere. Additional

measurements of the depolarization at 532 nm allow determining the cloud phase (ice/water).

CALIOP emits pulses of 20 nm of 110 mJ with a repetition rate of 20.16 Hz. At the Earth’s

surface, the beam diameter is 70 m. The continuous operation of CALIOP allows for lidar

observations during the day and night. CALIOP points 3° from nadir in the forward along-

track direction to avoid specular returns from still water surfaces or horizontally oriented

cloud ice crystals. The full sampling resolution of the lidar is 30 m in the vertical and 335 m

in the horizontal. As the atmosphere becomes spatially more uniform at higher altitudes and

additionally, the thinner atmosphere in these regions requires a broader averaging for signal

detection, the lidar profiles are averaged horizontally and vertically above an altitude level of

8.2 km. The horizontal and vertical resolution for the different altitude ranges are listed in

Table 1.

► Data processing and feature detection

The uncalibrated, absolute backscatter intensity is processed using various algorithms. In

Altitude range [km]

top base

lidar

shots

averaged

horizontal

resolution

[km]

vertical

resolution

[m]

40.0 30.1 15 5.0 300

30.1 20.2 5 1.67 180

20.2 8.2 3 1.0 60

8.2 -0.5 1 0.33 30

-0.5 -2.0 1 0.33 300

Table 1: Altitude-dependent horizontal and vertical resolution for CALIOP. Grey shading indicates

the altitude ranges that are considered in this study. Adapted from Hunt et al., 2009.



2.2 Lidar observations of cloud-top heights

23

order to find aerosol or cloud features in the lidar profiles, the Selective Iterative Boundary

Locator (SIBYL) is applied to the 532 nm attenuated backscatter profiles. A feature top is

obtained by applying an altitude- and situation-dependent threshold in order to detect targets

against the noisy background. To do this, either a minimum vertical feature distance with

slightly enhanced backscatter or a very strong spike signal in a thin layer is required. If a

feature cannot be detected at full resolution, an averaging of lidar profiles with increasing

horizontal range is applied (5 km, 20 km and 80 km). This sophisticated multi-resolution

averaging scheme with a range-varying detection threshold automatically adapting to the

background conditions has proven to provide reliable information on layer-top heights from

cloud features or aerosol layers. Afterwards, several scene classification algorithms (SCA)

classify the retrieved layers as aerosol or cloud. In this context, the Cloud-Aerosol-

Distinguisher (CAD) is defined as a quality index that indicates the reliability of the retrieved

lidar information, ranging from +100 (cloud observation) to -100 (aerosol observation). The

respective “clear air” profiles are derived from model data from the Goddard Earth Observing

System Model, version 5 (GEOS-5) analysis product from NASA’s Global Modelling and

Assimilation Office (GMAO).

2.2.3 Error sources of CALIPSO lidar observations

There are a number of error sources that can deteriorate the final lidar product. To analyse the

pure lidar signal, undesired contributions from background light or detector noise have to be

assessed carefully in order to be subtracted from the detected signal. Generally, space-borne

lidars have a low signal-to-noise ratio due to the large distances between the location of the

scattering process in the troposphere and the detector. Several sources of noise impair the

actual lidar signal: Detector dark current and amplifier noise as well as statistical fluctuations

of the background (especially during daylight when the sunlight deteriorates the signal) and of

the lidar return signal itself may all contribute to the total noise rate. Weak signals as from

subvisible high-level cirrus clouds can have the same order of magnitude as the noise and are

sometimes difficult to detect. Averaging over a number of consecutive pulses helps to

enhance the signal compared to background noise patterns, which is often necessary for

tenuous aerosol layers. However, the spatial structure of these patterns may then be lost.

Some additional error sources also contribute to the total error of the lidar observation. For

example, the GMAO-model used for the calculation of the molecular backscatter as well as
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other external data (such as the accurate elevation above sea level) have limitations in

representing the true atmosphere. Moreover, the geolocation has to be assessed carefully, as

the lidar footprint moves at about 7 km/s across the ground. In addition, the background

measurement of the solar background and the determination of the system efficiency may

contain errors. Furthermore, the CALIOP laser beam is substantially attenuated for column

optical depth values larger than ~3, so that multi-layer situations can be analysed only in a

limited way.

Generally, the estimation of the particle lidar ratio aerS represents a major error source for

lidar retrievals of the extinction coefficient, as it is often complicated to assess for particular

lidar scenes. Values vary strongly for different particles and incoming wavelengths and may

therefore contribute to biased retrievals. However, the error-prone determination of aerS is not

necessary for the application of retrieving cloud-top heights. Thus, the major error source for

the usage of lidar cloud-top information in this study is the vertical ranging error.

Sophisticated detection algorithms and advanced sensor technologies ensure that the ranging

error is estimated to be less than 30 m in the vertical. Therefore, CALIOP provides highly

reliable information on cloud-top heights for the height correction of AMVs.

2.3 Assimilation of AMVs in the global models at DWD

2.3.1 DWD models (GME/ICON)

In this thesis, the two global models GME and ICON from DWD are used. GME was

operational from 1 December 1999 until 20 January 2015 and was the first operational NWP

model to be based on an icosahedral–hexagonal grid. The advantage of this grid construction

is the relatively uniform grid size compared to latitude-longitude grids, where grid boxes

become smaller towards the poles. The horizontal grid spacing is 20 km, with 60 vertical

levels up to an altitude of 36 km. The system of equations is based on a hydrostatic

assumption. Forecasts up to 174 hours are computed with 00 UTC and 12 UTC as initial

times. Additionally, forecasts up to 48 hours are provided with 06 and 18 UTC as initial

times. (DWD, 2015a; Majewski et al., 2002).

The global model ICON replaced GME as the operational global model in January 2015.

ICON surpasses the capabilities of GME in several respects. The major difference is the
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dynamical core using the non-hydrostatic equations on the global domain. In addition, new

physical parameterization schemes allow for a better representation of various atmospheric

processes such as convection, radiation or cloud cover. Furthermore, ICON offers more

prognostic variables and provides e.g. better mass conservation properties. As ICON is

comparatively new, occasional small error corrections and model adjustments have been

needed since becoming operational (see e.g. DWD, 2015b). Generally, forecast quality has

proven to improve significantly and the model bias (e.g. for the wind speed and wind

direction) is reduced compared to GME (Harald Anlauf, personal communication). A

comparison of some technical details for both models is provided in Table 2 (DWD, 2015a;

Reinert et al., 2015; Zängl et al., 2015; Baldauf et al., 2015).

► Data assimilation system

Detailed information on data assimilation techniques can be found in Kalnay (2003), which

serves also as basis for the following brief introduction. Generally, data assimilation

techniques aim to combine a model background field (FG) with observational data in an

optimal way. Typically, this background field is a short-term forecast initialized at the

previous assimilation time step, which already contains information from earlier observations

from the assimilation during preceding time steps (“cycling”). The observational errors and

the errors of the FG field determine their respective weightings in the resulting analysis: a

high observation error leads to a low weight for the respective observation, so that the

ICON GME

system of equations non-hydrostatic hydrostatic

mesh size [km] 13 km 20 km

mean grid area 173 km2 346 km2

vertical coordinates height pressure

vertical layers 90 60

model top margin 75 km 36 km

Table 2: Comparison of ICON and GME for some technical aspects. Adapted from DWD, 2015.

2.3 Assimilation of AMVs in the global models at DWD
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FG field dominates the analysis and vice versa. The analysis field is defined for every model

grid point and provides then the initial conditions from which a forecast can be started.

Numerous data assimilation strategies have been developed during recent decades. The

decision of NWP centres over which data assimilation system to use is always a trade-off

between computer capacities and the accuracy of the initial state and the subsequent forecast.

The data assimilation system at DWD (both for the former GME and the current ICON

model) is based on the three-dimensional variational technique (3DVAR) with a 3-h cycling

(00, 03, …, 18, 21 UTC). During one 3DVAR data assimilation cycle, all observations within

a 3-h window (+/- 90 min from the corresponding time step) are combined with the model

background field, assuming implicitly that these observations take place at exactly the same

time. The assimilation window is usually equal to the time between consecutive

analyses/forecast cycles. The 3DVAR algorithm aims to minimize a cost function containing

the background field, the observations and their error covariance matrices to create an optimal

analysis state for subsequent forecasts. From the resulting analysis, a 3-h short-term forecast

is initialized, which serves again as the background field for the next assimilation cycle

(Frank et al., 2014; Reinert et al., 2015).

2.3.2 Operational AMVs at DWD

AMVs from geostationary and polar-orbiting satellites are assimilated routinely in global

NWP models. DWD operationally uses AMVs from five different geostationary satellites and

seven polar-orbiting satellites.

The main European geostationary satellite is Meteosat-10, which is located at 0° longitude

and covers Europe, Africa and large parts of the Atlantic Ocean. In addition, AMVs from the

following geostationary satellites are assimilated routinely: Meteosat-7 at 57°E, the Multi-

Functional Transport Satellite 2 (MTSAT-2) at 145°E and the two Geostationary Operational

Environmental Satellites (GOES) at 135°W (GOES-West) and 75°W (GOES-East).

Meteosat-10 belongs to the Meteosat Second Generation with 12 channels in total in the

visible and infra-red range. Meteosat-7 (MFG) is less sophisticated with only three channels.

Thus, fewer channels for the feature tracking and the subsequent height assignment are

available and e.g. do not allow for CO 2-slicing due to the absence of the CO 2-channel. In

addition, the interval between MFG images is 30 min compared to the 15 min interval for

MSG imagery. Consequently, considerably fewer AMVs are available. Meteosat-AMVs are
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derived operationally by EUMETSAT. GOES satellites have 6 channels each and GOES-

AMVs are provided by the National Environmental Satellite Data and Information Service

(NESDIS) of the National Oceanic and Atmospheric Administration (NOAA). MTSAT-2 was

the operational Japanese geostationary satellite with 5 channels during the period evaluated in

this study; MTSAT-2-AMVs were provided by the Japan Meteorological Agency (JMA).

In addition to geostationary satellites, AMVs from polar-orbiting satellites are used in data

assimilation in order to extract information about the wind field in polar regions. AMVs from

the satellites of the NOAA-series, from Aqua and Terra and from the METOP-satellites have

been assimilated routinely for several years. Table 3 lists all satellites that are used for the

derivation of AMVs that are assimilated operationally at DWD (Effective: October 2015).

2.3.3 AMV error correlation and thinning

AMVs exhibit significant spatially and temporally correlated errors for several reasons.

Height assignment procedures use model temperature profiles that are already mutually

correlated. In addition, AMVs that tend to be dissimilar to their neighbours are rejected during

quality control processes, thereby enhancing existing error correlations. AMV errors can

exhibit significant spatial correlations with horizontal lengths of up to 800 km (Bormann et

al., 2003). However, observation errors are usually assumed to be spatially uncorrelated in

geostationary
satellites

polar-orbiting
satellites

 ID position ID

Meteosat-10 0° AQUA

 Meteosat-7 57°E TERRA

 MTSAT-2 145°E NOAA-15

 GOES-13 75°W NOAA-18

 GOES-15 135°W NOAA-19

   METOP-A

   METOP-B

Table 3: Operational and monitored satellites used for the AMV derivation and operational

assimilation at DWD. Source: Alexander Cress, DWD. Effective 25 Oct 2015.

2.3 Assimilation of AMVs in the global models at DWD
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data assimilation systems to save computational cost. Most data assimilation centres apply a

spatial thinning of about 200 km in addition to an inflation of the corresponding observation

errors as a trade-off between the density of AMV wind information and correlation magnitude

(Forsythe, 2007). Moreover, the precise values for observation errors that can be assigned to

AMVs are not known, resulting in a large fraction of available AMVs being used in a

suboptimal way (Velden and Bedka, 2009).

The quality control and thinning strategy at DWD is made up of several aspects. Temporal

and spatial blacklisting thins the data drastically: AMVs are assimilated in a 6-h interval (00,

06, 12, and 18 UTC) in the global model at DWD, thereby discarding half of the available

AMV data set from 03, 09, 15 and 18 UTC. The minimum horizontal distance between

adjacent AMVs is set to 240 km each. In each thinning box, the AMV with the highest QI is

selected. This QI has to exceed a certain threshold that depends on AMV altitude, satellite,

instrument channel and latitude region. AMVs from some geographic regions (e.g. the

Himalayan Mountains) or channels (e. g. VIS-AMVs over land surfaces) are always denied,

since such AMVs often show negative long-term monitoring statistics. An additional

FG check rejects all AMV winds deviating strongly from the model background.

Overall, this thinning strategy leads to the rejection of a large part of the originally dense

AMV data set. Figure 6 shows the distribution of all operationally derived AMVs on the left

and the AMVs actually used (after thinning and quality control procedures were applied) on

the right for 10 May 2013 in the global model GME for the five main geostationary satellites.

Depending on the satellite, only 1% - 4% of the available AMV data set is used for data

assimilation. For example, about 17000 AMVs of the original number of about 1086000

AMVs from Meteosat-10 (blue) are assimilated on the depicted day.

Figure 6: Distribution of all available AMVs from geostationary satellites for the 10 th May 2013 before
(left) and after (right) quality procedures are applied.
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3. DATA AND METHODOLOGY

3.1 Data sets and evaluation methods

3.1.1 Observational data

This study mainly focuses on the height correction of AMVs derived from images from the

European geostationary MSG satellites (Meteosat-9 and Meteosat-10). Details on the

derivation of MSG-AMVs can be found in Section 2.1.2. The MSG satellites are located at

0° longitude and provide frequent satellite imagery for the operational weather service.

Meteosat-9 was the operational European satellite until January 2013, and was then succeeded

by Meteosat-10 (Salonen and Bormann, 2014). EUMETSAT is in charge of the derivation

and quality control of MSG-AMVs and provides the final AMV data product for 1-h intervals

to the end-users, disseminating over 10 6 MSG-AMVs per day. The EUMETSAT AMV

product includes information about the geographical position, the pressure height, u- and v-

components of the wind, channel and QI. In addition to a detailed evaluation of lidar-based

height correction methods for MSG-AMVs (Sections 4 and 5), a brief assessment of results

for AMVs from other geostationary satellites (GOES and MTSAT-2) is provided in

Section 6.1 as an outlook for potential future applications.

For the AMV height correction, space-borne lidar observations  from CALIPSO are used. As

described in Section 2.2.2, the official CALIPSO Level-2 cloud layer product provides cloud-

top heights with a horizontal sampling resolution of 335 m (for the lowest 8.2 km of the

troposphere) and 1 km (from 8.2 km to 20.2 km altitude). In order to have a consistent data

set for all altitude levels, the product with a horizontal resolution of 1 km is used in this thesis.

Averaging schemes for a coarser horizontal resolution are also available in the official data

product, with resolutions ranging from 5 km to 80 km. These broad averaging schemes are

mainly used to detect thin cirrus or faint aerosol layers that cannot be distinguished from

atmospheric noise patterns under higher resolution. Given that CALIPSO lidar observations



3 DATA AND METHODOLOGY

30

are being compared to MSG imagery in this study, the detection of very thin cirrus by the

lidar is not required, as satellite imaging instruments generally do not have the ability to

detect these structures. Sensitivity studies have often shown a more reliable cloud-top

detection for the 1-km product compared to the 5-km-averaged cloud top for the purpose of

comparison studies to AMV heights. As an example, Figure 7 shows a strong backscatter

signal from a low-level cloud at 1.5 km, which is detected for both 1-km and 5-km resolution.

However, a faint signal at about 7 km altitude is observed by the 5-km averaging scheme. The

5-km cloud-top is thereby set to a constant height level at about 7.7 km due to the broader

averaging that is able to detect also tenuous layers that cannot be directly observed in the

high-resolution data that is depicted in Fig. 7. However, these layers generally do not

represent the cloud-top observations of (optically thicker) clouds that are needed in this study

for the comparison with AMVs derived from imaging instruments.

In summary, the 1-km cloud-layer product is chosen for the AMV height correction presented

in the following chapters, as it provides reliable and high-resolution cloud-top heights, which

will be averaged for the AMV height correction (see subsequent Section 3.1.2). The cloud

layer product provides the 1-km horizontally averaged cloud-top height from the CALIOP

lidar, and in addition the number of superimposed cloud layers, the cloud phase and a quality

index for clouds.

Figure 7: Example case with two CALIPSO cloud-layer products with 1-km resolution (rose) and
5-km resolution (cyan) cloud-top height. A strong cloud signal (yellow-reddish colours) at about
1.5 km - 2 km altitude is characterized as cloud at both resolutions. A faint signal at about 7 km

height is classified as cloud at 5-km resolution.
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3.1.2 Collocation of AMVs and CALIPSO lidar observations

In order to find suitable CALIPSO lidar cloud-top observations that are close to AMVs,

different collocation criteria are applied. These generally follow Weissmann et al. (2013), but

use stricter horizontal and temporal distance requirements as well as additional criteria for the

selection of collocated CALIPSO lidar observations. In this study, AMVs are corrected with

nearby CALIPSO lidar observations that are within 50 km horizontal distance and 30 min

time difference from the location and time of each AMV. This principle is schematically

illustrated in Figure 8. The median of all lidar cloud-top observations within this range (red

dots) is taken as a representative cloud top, which is then compared to the operational AMV

pressure height. By applying a threshold of at least 20 lidar observations (and at most 100 due

to the maximum horizontal distance of 50 km), it is ensured that dimensions of the tracked

AMV feature (which is situated within a 24x24 pixel box) and the CALIPSO cloud are

similar. In addition, the RMS difference between single lidar cloud observations and their

median value must not exceed 70 hPa in order to exclude scenes with strongly altering cloud-

top heights within short distances. Multi-layer cloud scenes as well as

Figure 8: Illustration of the collocation procedure: The lidar signal along the (dotted) flight track of
CALIPSO may detect cloudy and cloud-free areas in the vicinity (50 km radius, green circle) of the

corresponding (purple) AMV. All cloud signals within this range (red dots) are used for the calculation
of the median cloud-top. Adapted from Folger (2012).
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Figure 9: Illustration of the calculation of the median cloud top (purple line) as representative cloud-
top of all available CALIPSO lidar cloud-top observations within 50 km (corresponding to about
7 seconds on the x-axis) for one WV-AMV (yellow square) on 10 May 2012. The nominal AMV

derivation time is 13:30 UTC; therefore all shown lidar cloud- top observations are within the maximum
allowed temporal difference of 30 minutes of the AMV.

parameter threshold

 horizontal distance ≤ 50 km

 time difference ≤ 30 min

 AMV QI ≥ 50

number of lidar cloud-top
observations for median

≥ 20

RMS between individual lidar
cloud-top observations and

their median
≤ 70 hPa

 CAD ≥ 90

 multi-layer clouds no

 vertical distance
AMV ≤ 100 hPa above
and ≤ 200 hPa below

lidar cloud-top

Table 4: Collocation criteria for AMV and CALIPSO observations
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cloud observations with a CAD < 90 are discarded. However, situations may still arise where

CALIPSO observes different clouds than the ones used for deriving AMVs, either due to the

temporal or horizontal distance of the lidar cloud and the corresponding AMV, or due to

different instrument capabilities. To mitigate these issues, only AMVs that are at most

100 hPa above and 200 hPa below the respective median cloud-top heights are considered.

This asymmetric interval is chosen based on the assumption that an AMV represents the

atmospheric motion of a vertically extended cloud layer and is therefore located below the

actual cloud top. All AMVs beyond this range are discarded. In addition, the AMV quality

index (ranging from 0 to 100, with 100 indicating the best possible quality) must be greater

than 50. An example case for the determination of the median is shown in Figure 9 for one

WV-AMV on 10 May 2012.

These collocation parameters are chosen to account for the main issues that may arise when

AMV pressure heights are compared to lidar cloud-top observations. A summary of the

collocation criteria applied is provided in Table 4. Tighter thresholds may be desirable for

some parameters (for example smaller horizontal and temporal distances), but the sample size

then reduces drastically. Therefore, the presented threshold requirements provide a trade-off

between the amount of available AMV/CALIPSO pairs and the matching accuracy. However,

Figure 10: Geographic position of the 1247 AMVs with collocated CALIPSO lidar observations on
1 Apr 2012 that fulfil the collocation requirements described in Section 3.1.2.
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sensitivity studies with modified collocation criteria revealed that tightening the parameters

towards stricter values generally leads to similar findings. In this regard, the restriction of the

vertical difference between the pressure heights seems to be the most important criterion to

ensure capturing the same feature both from SEVIRI and CALIOP due to their different

instrument characteristics.

Figure 10 shows the position of Meteosat-9 AMVs and CALIPSO lidar observations on

1 April 2012 matching the described collocation requirements. For this day, 1247 collocated

observations were found within the Meteosat-9 domain (approximately 63° in each direction

from 0° longitude and 0° latitude).

3.1.3 AMV wind evaluation methods

3.1.3.1 Radiosonde observations

The direct lidar height reassignment is evaluated using nearby operational radiosonde

soundings in Section 4.1. As the wind field is usually horizontally more uniform than cloud-

top heights, the collocation criterion for nearby radiosondes is extended to 150 km and 90 min

from the corresponding AMV. Given that radiosonde wind observations are direct in-situ

measurements, the inherent errors (originating e.g. from instrument errors) are small

compared to errors of satellite-based retrievals, and observation errors are assumed to be

uncorrelated between different radiosondes. Generally, an additional error source arises from

position errors and temporal errors due to the radiosonde drift during the ascent, as the exact

position and time of the respective wind observation is not stored in the DWD database.

However, Seidel et al. (2011) assessed average radiosonde drift distances and ascending times

to be typically in the range of 5 km (20km) and 0.07 h (0.89 h) for the lower troposphere

(upper troposphere), which are smaller than the collocation criteria of 150 km and 90 min.

Overall, radiosonde wind observations provide very accurate information on the wind

conditions and will serve as a reference for the true state of the atmosphere in the following.

The calculation of the layer-average of the wind observations at the single radiosonde levels

follows Folger (2012). All wind observations within the respective layer range are taken into

account by allocating appropriate (boxcar) weightings to each radiosonde level according to

its distance from the adjacent pressure levels: One radiosonde wind observation is weighted
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with the pressure distance ranging from half-way to the overlying to half-way to the

underlying pressure level (as percentage of the entire layer), resulting in high weights for

isolated pressure levels and low weights for pressure levels with close neighboring values. If a

layer exceeds the lowest or highest radiosonde level, the layer depth is reduced accordingly.

3.1.3.2 GME model equivalents

In-situ wind observations by radiosondes generally have small errors and therefore provide an

ideal data source for the wind evaluation. However, the inhomogeneous spatial and temporal

distribution of radiosonde profiles complicates their use for evaluation purposes. The

additional need for verification radiosondes drastically limits the sample size of collocated

AMVs and lidar observations to about one percent of the original number. To overcome this

limitation, FG fields of the global model GME are additionally used for the wind evaluation

in Section 4 (direct height reassignment) and 5 (height bias correction). As already mentioned

in Section 2.3.1, FG fields are 3-h short-term forecasts from the previous time step, which are

commonly used in data assimilation as background field. Current observations (such as

AMVs) of the actual time step have not been assimilated yet in the FG fields. However,

AMVs are assimilated operationally in all preceding time steps, thereby retaining this wind

information for the actual time step through the cycling process. It should be kept in mind that

this might influence the AMV evaluation for the current time step due to the temporal

correlation of AMV errors.

Analogous to the verification with radiosonde data, the FG model equivalents serve as a

reference for the real atmospheric state. This assumption should be treated with care, as model

fields can deviate from the true state due to errors in the forecast model. However, model

errors and AMV errors can be assumed to be uncorrelated. Based on this assumption,

differences between observation and model winds provide a good data source for the

evaluation of observations that is available area-wide for every observation and therefore

commonly used in the context of data assimilation. Direct comparisons of results from

radiosonde and model evaluation shown in Section 5.2 substantiate this assumption, as similar

findings are yielded for the two evaluation methods.

Evaluating and assimilating layer-averaged observations requires a forward operator for

treating AMVs as vertical layers. An observation operator for layer-averaged AMVs was

recently implemented in the DWD system. This operator provides AMV model equivalents
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derived from 3-h short-term (FG) forecast that are used for the wind evaluation in the present

study. The calculation of the 3-h forecast uses the operational GME settings, which also

includes the assimilation of single-level AMVs assigned to their original height in the

preceding time steps. As the FG is used for the wind evaluation, new observations are not

assimilated yet at the corresponding time step. All AMVs within the 3-h assimilation window

(+/- 1.5 h) that match the collocation requirements (see Section 3.1.2) are compared to the

FG field at the corresponding time step, leading to a maximum temporal difference between

AMV and model equivalents of 90 minutes. This approach is illustrated in Figure 11. The

geographical position of each AMV is horizontally interpolated between the model grid

points, and then the vertical layer averaging is applied. Layer-averages are calculated

according to Simpson’s rule (see e.g. Süli and Mayers, 2003). Therefore, a weighted average

of the interpolated wind values at the layer centre, layer top and layer base is computed. The

weighting coefficients of both the layer-top and the layer-base wind are 1/6, while the wind at

the layer centre is weighted with 4/6. If a layer exceeds the lowest model level, the layer depth

is reduced accordingly.

The layer-averaging scheme used for the model evaluation is different from that of the

verification with radiosonde data, as Simpson’s approach for computing layer-averages

constitutes a more feasible approach for the implementation in the observation operator and

models generally exhibit smoother wind profiles than radiosondes. However, results that will

Figure 11: Illustration of the data assimilation process and the AMV wind evaluation. All AMVs
within a 3-h window around the respective time step (+/-90 min) are evaluated using the

FG field, which corresponds to the 3-h forecast of the last time step. Combining the FG with
current observations within the assimilation window results in the analysis (ANA), from which a

new forecast can be started.
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be shown in Section 4.1 and Section 4.2 (radiosonde and model evaluation, respectively)

imply that the different calculations of the layer mean yield similar findings.

3.1.4 Evaluation periods

The present study uses eight months (1 April – 6 October 2012 and 16 April – 13 June 2013)

of operational AMVs that were derived hourly from the geostationary MSG satellites

Meteosat-9 (2012 period) and Meteosat-10 (2013 period) by EUMETSAT. CALIPSO

observations are missing on 27 days of the 8-month study period so that 220 days of data are

available. Altogether, 243097 matches of MSG-AMVs and CALIPSO lidar observations are

found in this period.

AMVs are divided in different altitude regions according to Menzel (1996), where intervals

are defined that are commonly used for AMV classification. AMVs are classified as high-

level AMVs for pressure heights < 400 hPa. Mid-level AMVs are located between 400 hPa

and 700 hPa and low-level AMVs have pressure heights > 700 hPa. One common feature of

AMV height distributions is the relatively small amount of mid-level AMVs, which

complicates statistical analyses in this region due to an often insufficient sample size. The

evaluation
method time frame

total amount
of collocated

AMV/CALIPSO
pairs

notation
hereafter

radiosonde
1 April – 6 October 2012

and 16 April – 13 June 2013
(220 days)

4478
“radiosonde
evaluation

period”Direct
height

correction
model 31 May – 10 June 2013

(11 days) 13200
“first

evaluation
period”

Height
bias

correction
model 7 May – 12 May 2013

(6 days) 7410
“second

evaluation
period”

Table 5: Overview of the study periods used for the different evaluation methods
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small AMV amount in mid-levels is due to multi-layer situations when the uppermost cloud

layer hides subjacent clouds. Thus, the distribution of AMVs is skewed towards upper levels

(Régis Borde, personal communication). For the verification with radiosonde data in

Section 4.1, where the overall sample size is comparatively small, this issue is circumvented

by shifting the upper boundary of the “mid-level region” to a pressure height of 300 hPa. For

the model evaluation in Sections 4.2 and 5.2, the original separation altitudes are used to

classify high-level and low-level AMVs. Mid-level AMVs between 400 hPa and 700 hPa are

not analysed for the model evaluation.

Generally, the verification with radiosonde data requires a long period to obtain an

appropriate amount of AMV/CALIPSO pairs, as a collocated radiosonde must be additionally

available for each pair. In contrast, the evaluation with model equivalents allows an analysis

of all AMV/CALIPSO matches that fulfill the collocation requirements without the need of an

additional radiosonde. Hence, already a small subset of all available days is sufficient for

model evaluation purposes due to the larger amount of collocation pairs. The time periods

used are summarized in Table 5 and described briefly in the following.

► Radiosonde evaluation period

For the verification with radiosonde data, all available 220 days are used. Given the

comparatively low number of launched radiosondes per day, the sample size of collocated

Figure 12: Height distribution of all AMVs with collocated CALIPSO observations and
radiosondes used during the radiosonde evaluation period
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Meteosat-AMVs, CALIPSO lidar observations and operational radiosondes reduces to 4478

matches for the 8-month radiosonde evaluation period. Most of the height corrected AMVs

are located over Europe and Africa, where radiosondes are available for the wind verification.

Altogether, 1259 high-level AMVs derived from the IR- and WV-channels (337 and 922

matches, respectively) are available. The respective CALIPSO observations are all classified

as ice clouds. The mid-level data set consists of 1576 AMVs (611 IR-AMVs and 965 WV-

AMVs) and the corresponding CALIPSO cloud products comprise 67% ice clouds and 33%

water clouds. The 1643 low-level AMVs from the IR- and VIS channels (219 and 1424

matches, respectively) are expected to correspond to water clouds only. Figure 12 shows the

vertical distribution of all AMVs that are used during the radiosonde verification period.

► Model evaluation periods

For the model evaluation, two different periods are analysed. For the evaluation of the direct

lidar height reassignment in Section 4.2, the evaluation period comprises 11 days (31 May –

10 June 2013) of operational AMVs. For the height bias correction in Section 5, a 6-day time

interval is used that ranges from 7 May to 12 May 2013. These two periods are referred to as

first and second evaluation period in the following. The slightly different timeframe is chosen

because the height bias correction requires continuous (or nearly continuous) CALIPSO lidar

Figure 13: Height distribution of Meteosat-10-AMVs with collocated CALIPSO lidar observations
used for (a) the direct height reassignment (31 May 2013 – 10 June 2013) in Section 4.2 and (b) the

height bias correction (5 May 2013 – 12 May 2013) in Section 5.2 for the model evaluation
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observations in the preceding 30-day time interval of the respective evaluation period. This

criterion is not fulfilled for the first evaluation period due to significant gaps in the CALIPSO

data set.

High-level AMVs above a pressure height of 400 hPa and low-level AMVs below a pressure

height of 700 hPa are used for the model evaluation. Figure 13 shows the vertical distribution

of AMVs for both evaluation periods for Meteosat-10. Altogether, 13200 AMVs in the first

evaluation period and 7410 AMVs in the second evaluation period are analysed, with about

70% of them located in low-level and 30% in high-level regions.

3.2 AMV height correction methods

3.2.1 Direct height reassignment

Based on the collocation criteria defined in Section 3.1.2, the pressure heights of individual

AMVs can be corrected with nearby CALIPSO lidar observations. This direct height

reassignment is an adapted and extended version of the method presented in Weissmann et al.

(2013), where airborne lidar observations during a field campaign are used for the height

correction of MTSAT-AMVs.

3.2.1.1 Basic principle and error metrics

In order to find an optimal layer that represents the AMV wind, several combinations of

different layer positions and layer depths are evaluated. An overview of the considered layers

is illustrated in Figure 14. AMV winds are compared to radiosonde/model winds vertically

averaged over layers of varying depth from 0 hPa to 200 hPa: firstly for layers relative to the

originally assigned AMV height and secondly for layers relative to the CALIPSO lidar cloud

top height. A layer depth of 0 hPa denotes a discrete level, which corresponds to the

procedure applied operationally for the original AMV height. Three different layer positions

are evaluated:
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(i) layers centered at the corresponding AMV height or lidar cloud-top height,

(ii) layers with 25% of the layer range above and 75% of the layer range below the

corresponding height and

(iii) layers from the corresponding height downward.

In order to assess the benefit of lidar-corrected and layer-averaged AMVs, two error metrics

are applied for all considered layers: The VRMS difference and the wind speed bias. These

are calculated as follows:
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N corresponds to the number of available AMVs with corresponding CALIPSO lidar cloud-

Figure 14: Schematic illustration of the height correction method. Layers of varying depth relative to
the lidar cloud-top height and relative to the operational AMV height are analysed. Layer depths vary
from 0 hPa (discrete level) to 200 hPa. Only AMVs that are at most 100 hPa above and 200 hPa below

the respective cloud-top height are evaluated. Not to scale.
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top observations, ‘oper’ denotes operational wind observation values and ‘model’ the GME

model equivalents of the respective layers. The VRMS difference defined above is sometimes

also referred to as Mean Vector Difference (MVD) (Menzel, 1996).

3.2.1.2 Assessment of AMV error correlations

AMV error correlations pose a major issue for data assimilation, as AMV errors can be

correlated up to horizontal distances of several hundred kilometres (Bormann et al., 2003).

Generally, the incorporation of model-independent data (such as lidar observations) in

NWP systems is expected to reduce the error correlation of observations. This aspect is

investigated for the horizontal AMV error correlation when independent lidar observations

are included for the height correction.

Radiosonde observations are generally the optimal approach for evaluating such error

correlations. Bormann et al. (2003) calculated the horizontal error correlation of differences

between AMVs and radiosonde observations in order to characterize operational AMV error

correlations. As observation errors between radiosondes are assumed to be uncorrelated, it

was implied that the correlation of AMV-radiosonde differences can be directly ascribed to

the correlation of AMV errors, which can therefore be evaluated directly.

Given that the limited number of both radiosondes and lidar observations massively restrict

the sample size, the evaluation of error correlations with radiosonde observations in common

with Bormann et al. (2013) unfortunately is not possible for the present study. Instead, the

horizontal AMV error correlation of differences between AMV and model FG equivalents

(FG departures) is calculated (i) for operational AMVs and (ii) for AMVs that are assigned to

120-hPa layer-averages below the lidar cloud-top height. Drawing conclusions from the

correlation of AMV-FG differences (instead of AMV-radiosonde differences) to AMV error

correlations is not unconditionally possible, as the inherent model errors are usually highly

correlated. However, the relative reduction of the AMV error correlation can be analysed with

FG model fields, as the model error is assumed to be the same for both settings (i) and (ii).

For the assessment of horizontal AMV error correlations, all Meteosat-10 AMVs with

available collocated lidar observations during the first evaluation period (31 May – 10 June

2013) (called AMV sample “A” in the following) are evaluated. For these AMVs,

circumjacent AMVs (without a direct lidar height correction available, AMV sample “B”) are



3.2 AMV height correction methods

43

divided into 50-km-bins around each member of AMV A for the same point in time. In

addition, the vertical distance between the AMV pressure heights may not exceed 150 hPa for

the AMV-A/AMV-B pairs obtained. The Pearson correlation coefficient ρoper/CALIPSO for the

u-component of the wind field is calculated for each 50-km-bin as follows (analogously for

the v-component):

))(),(()( model_oper,oper,model_oper,oper,
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where the index A denotes the AMVs with a direct CALIPSO lidar height correction available

and B the AMVs without collocated lidar observations that surround AMV A. The notation

‘corr’ represents the calculation of Pearson’s correlation coefficient of the following term in

brackets. The index ‘oper’ indicates the operationally assigned wind, ‘ model_oper’  the model

winds at the operational AMV heights, and ‘model_CALIPSO’  the lidar-corrected and layer-

averaged model equivalents. The total error correlation of FG departures for u and v

combined is then derived as
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),(CALIPSO
BA, vur  is the error correlation of FG departures between lidar-corrected AMVs

(sample A) and operational (non-lidar-corrected) AMVs (sample B), whereas ),(oper
BA, vur

describes the error correlation of FG departures when AMVs from sample A and sample B

are both not lidar-corrected, but retain their operational AMV height. Accordingly, the

comparison between ),(CALIPSO
BA, vur  and ),(oper

BA, vur  provides information of altered error

correlations when lidar-corrected AMVs are assimilated additionally to the operational AMV

data set.

The additional calculation of the error correlation of FG departures when AMVs from both

samples A and B are lidar-corrected is unfortunately not possible, as this is complicated to

evaluate due to an insufficient sample size of closely collocated AMVs with direct lidar

observations nearby.
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3.2.2 Height bias correction

The previously described direct AMV height reassignment is based on actual cloud-top

heights of lidar observations collocated to the respective AMV. However, this method is only

applicable to a small number of operational AMVs, as the times and positions of the AMVs

have to coincide with nearby CALIPSO lidar observations. As an alternative approach, a

height bias correction for a general mean adjustment of all AMV heights from a respective

satellite can be calculated.

3.2.2.1 Derivation of height bias correction functions

For the purpose of calculating height bias correction functions, the direct height reassignment

is applied to all AMVs with available collocated lidar observations within a certain time

period and then an average over the resulting height adjustment values is computed. This

height bias correction is then applied to a subsequent independent evaluation period.

Durations of 10 days and 30 days are used as averaging periods for computing the height bias

correction functions. The resulting corrections are applied during the second evaluation period

(7 May to 12 May 2013). The 30-day mean comprises the days from 1 April to 6 May 2013

(with missing CALIPSO data on six days within this interval). The 10-day mean is calculated

from the ten days preceding the respective date. This means that for example the height bias

correction derived from the period 2 May – 11 May 2013 is applied and evaluated on

12 May 2013. As a third approach, the 30-day period is subdivided for different latitude bands

to determine separate correction functions for the northern hemisphere (latitude larger than

25°N), the southern hemisphere (latitude larger than 25°S) and a tropical region in between.

Table 2 lists the numbers of AMVs with collocated CALIPSO lidar observations that are used

for the different height correction periods for Meteosat-10.

Height bias correction functions are calculated separately for the different channels (VIS, IR

and WV) for 50-hPa altitude-bins between 950 hPa and 200 hPa plus one additional bin each

for AMVs below and above this range. Every bin must contain at least 30 individual

adjustment values to determine a valid mean adjustment for the respective altitude bin and

AMV channel.

Mean VRMS differences and wind speed bias values are calculated for all AMVs for

(i) discrete operational levels, (ii) levels at 60 hPa below the actual lidar cloud-top
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observation and (iii) adjusted levels based on the height bias correction. In addition,

120-hPa-deep layer-averages centered at these levels are evaluated. The level 60 hPa below

the lidar cloud top is chosen as it represents the mean pressure of the 120-hPa layer.

3.2.2.2 Assimilation and forecast experiments

► Experimental setup

Correcting the operational pressure height of AMVs with directly collocated lidar

observations causes difficulties due to availability problems of real-time lidar data. Hence, a

height bias correction has been developed that can be applied more easily in data assimilation

systems. The benefit of statistically corrected Meteosat-10-AMVs is tested by conducting

counts
height correction

period
low level high level

30 days 24027 12114

30 days
northern hemisphere 3439 2901

30 days
tropics 10889 6571

30 days
southern hemisphere 9699 2606

10 days 7873 4114

Table 6: Number of lidar-corrected AMVs used to calculate height bias correction functions over

different periods for Meteosat 10. Counts of the 30-day height correction periods comprise AMVs

in the period 1 Apr – 6 May 2013. Counts of the 10-day height correction period are averaged over

the respective counts for each of the six days of the second evaluation period.
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assimilation and forecast experiments with ICON, which is the global forecasting system

currently used at DWD (for details on ICON see Section 2.3.1). The experiments are

conducted for a 16 day assimilation period (1 May 2013 – 16 May 2013). For that purpose,

height bias correction functions are calculated separately for each day of the assimilation

period from a 15-day training interval preceding the respective date. This height bias

correction is then applied to all operational Meteosat-10-AMVs for the corresponding day.

The training period duration of 15 days is chosen due to a CALIPSO data gap before

16 April 2013 that does not allow for longer training periods.

In the operational setting of ICON, AMVs are assimilated every 6 hours, discarding about

half of the hourly derived AMV data set that remains after thinning and quality control

procedures. This might lead to a suboptimal usage of wind information in data assimilation

systems due to strong variations of wind observation numbers from one cycle to another and

is considered to be changed in operational usage in the future. Thus, AMVs are assimilated in

a 3-h cycling interval in this study. The horizontal resolution used in the experiments is

40 km, which is coarser than the current operational resolution (13 km) due to the limitation

of data storage capacity. Apart from these changes, the experimental setup used is equivalent

to the operational settings, including also other baseline observations from the global

observing system.

Using this experimental setup, three different experiments for different settings for

Meteosat-10-AMVs are conducted . The reference run (REF) assimilates Meteosat-10-AMVs

at their originally derived pressure height. For two further experiments, the height bias

correction is applied to the same set of Meteosat-10-AMVs as in the reference run, thereby

shifting the AMVs to an adjusted pressure height based on a 15-day training period. These

statistically corrected AMVs are then assimilated in two experiments: firstly at the discrete

lidar-corrected level (LEV) and secondly as a layer-average extending over a 120-hPa deep

layer centered at the lidar-corrected level (LYR). The three experiments are summarized in

Table 7.

► Forecast evaluation methods

In contrast to the evaluation of AMVs (with individual radiosonde or model equivalents at the

specific AMV coordinates), the evaluation of forecast model fields focuses on an

area-covering impact assessment of the obtained forecast field. The evaluation of forecast
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model fields can be conducted using different measures. For an optimal and accurate impact

assessment, the model fields obtained should be compared with independent in-situ

observations. In practice, this is only possible in a limited way due to a spatially and

temporally inhomogeneous observation network that is incapable of providing global

observations at every model grid point. However, the verification of the forecast wind field

can be performed by comparing (irregularly distributed) radiosonde soundings to the

corresponding model profile at the same location and time. This approach is used in this thesis

for the evaluation of short-term forecasts (FG fields).

In order to evaluate the performance of long-term forecasts in a more homogeneous manner, a

common evaluation approach is to compare the respective forecast field to the analysis field,

i.e. the analysis field of the 3-h data assimilation cycle of the same experiment at the same

point in time. As described in Section 2.3.1, the analysis field represents an estimate of the

atmospheric conditions at the present time step by combining the FG field and current

available observations in an optimal way. By cycling previous information during the data

assimilation process, the analysis fields also contain information from all observations since

the forecast started (and also from the current time step). Although these analysis fields are

not equivalent to the true state of the atmosphere, they represent a best estimate of the truth

that is available area-wide and is therefore commonly used for evaluation purposes in data

assimilation.

As advanced global models like ICON assimilate a large number of observations and have, in

general, a high forecast performance, effects on the forecast skill by changing the assimilation

short name experiment description

REF reference run AMVs assimilated at original pressure height

LEV
height bias correction:

level assimilation
AMVs assimilated at adjusted pressure height

based on a 15-day bias-correction

LYR
height bias correction:

layer assimilation

AMVs assimilated as 120-hPa layer-averages
centered at the adjusted pressure based on a

15-day bias-correction

Table 7: Overview of the three assimilation experiments
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parameters of one single observation type (such as AMVs) are expected to be relatively small.

Evaluation of forecast runs is therefore commonly performed using the normalized difference

of the RMS of the prognostic variables between the obtained forecast field and the reference

field (which corresponds to the analysis of the 3-h cycle of the same experiment). The

normalized RMS (or analogously VRMS) difference is calculated as follows:

( )
( )( )][RMS][RMS5.0mean

][RMS][RMSmean
][diff.RMSnorm.
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LYRRMS  denotes the RMS error of the experiment LYR, REFRMS  analogously for the

experiment REF. The normalized RMS difference is computed for each forecast lead time h.

The calculation of the mean both in the numerator and the denominator of the fraction

comprises all available forecast runs for the respective lead time.

area
radiosonde

ascents
assimilated AMVs

(high | mid | low)

 total 6702
513888

(38.6% | 12.9% | 48.5%)

Northern
hemisphere

4808
123733

(46.5% | 14.4% | 39.1%)

 Tropics 1416
228879

(39.7% | 5.7% | 54.6%)

Southern
hemisphere

478
161276

(31.0% | 21.8% | 47.2%)

Table 8: Number of radiosonde ascents and assimilated AMVs for the 16-day assimilation period
(1 May – 16 May 2013) for a hemispheric subdivision of the Meteosat-10-domain. AMV counts
are additionally split in the percentages of high-level, mid-level and low-level AMVs. The listed

AMV counts are the respective average of the three experiments REF, LEV and LYR (exact
numbers vary in the range of 0.05%-0.2%).
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Altogether 127 3-h assimilation cycles are computed, leading to 513888 assimilated

Meteosat-10-AMVs in total. The corresponding numbers of assimilated AMVs for a

subdivision into the hemispheric and tropical parts of the Meteosat-10-domain are listed in

Table 8 in the right column. In Section 5.3.1, all operational Meteosat-10-AMVs of the

16-day assimilation period are compared to the corresponding FG model equivalent of the

respective experiment REF, LEV and LYR. In addition, the FG fields of the three

experiments are compared with radiosonde soundings for all latitudes and longitudes between

-65° and +65°, corresponding roughly to the Meteosat domain. The counts of the available

radiosondes are also listed in Table 8.

In addition to the evaluation of short-term forecasts, preliminary results from 7-day forecast

runs over the European region are shown in Section 5.3.2. The two experiments REF and

LYR are evaluated by comparing forecast fields to the analysis field of the 3-h assimilation

cycles. Forecasts are initialized at 00 UTC and 12 UTC of each day during the assimilation

period. As the corresponding analysis field is needed for the evaluation of the forecast lead

times, the forecasts of the last seven days of the assimilation period cannot be considered for

evaluation. Altogether, 17 free forecast runs (the first one from 1 May 2013, 12 UTC and the

last one from 9 May 2013, 12 UTC) are evaluated.
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4. DIRECT HEIGHT REASSIGNMENT

This section aims to investigate whether space-based lidar observations can be used for the

height correction of AMVs and evaluates the effect of reassigning AMVs to layers of varying

depth and position relative to the lidar cloud-top height. Results for this individual height

reassignment for AMVs with directly collocated satellite lidar observations are evaluated

firstly with radiosonde wind observations (Section 4.1) and secondly with model equivalents

from the global model GME (Section 4.2). A detailed description of the approach for the

direct height reassignment can be found in Section 3.2.1.

4.1 Verification with radiosonde data

Accurate in-situ radiosonde wind observations are generally the optimal choice for the

evaluation of AMV winds. However, the temporally and spatially rare distribution of

operational radiosondes requires a long study period to achieve a sufficiently large data set of

AMVs with collocated CALIPSO observations and radiosondes for an adequate evaluation.

For this purpose, 220 days with altogether ~4500 matches are used for the verification with

radiosonde data (see Section 3.1.4 for more details).

4.1.1 VRMS differences and wind speed bias

Figure 15 shows the mean VRMS differences of AMVs and radiosonde winds. VRMS values

are calculated for assigning AMVs to vertical layers of increasing depth, which are computed

by averaging radiosonde winds over the respective layer. The first set of layers uses the

original AMV height as reference (red lines); the second set uses lidar cloud top observations

as reference (green lines). The corresponding wind speed bias is shown in Figure 16.
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Figure 15: Mean VRMS differences between AMV winds and layer-averaged radiosonde winds for
(a) high-level IR-AMVs, (b) high-level WV-AMVs, (c) mid-level IR-AMVs, (d) mid-level WV-AMVs,
(e) low-level IR-AMVs and (f) low-level VIS-AMVs. Numbers in brackets are AMV counts for the

respective graph. Red lines represent layers relative to the original AMV pressure height, green lines
relative to the lidar cloud-top height. The three different layer positions are indicated by different line

styles (cf. legend).

ddd
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Results for high- and mid-level AMVs above 700 hPa (Figs. 15a – 15d) from WV- and IR-

channels exhibit a distinct reduction of VRMS differences when AMVs are treated as

vertically extended layers instead of as single level observations (which are the values for

Figure 16: As Figure 15 but for wind speed bias
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0 hPa on the x-axis). Lowest VRMS differences are achieved either by layers below the lidar

cloud top or by layers with 25% above and 75% below the lidar cloud top. The optimal depth

of these layers varies from 120 hPa to 200 hPa. Layers below the lidar cloud top exhibit

lowest VRMS differences for a depth of 100-150 hPa and layers with 25/75% above/below

the lidar cloud top yield best results for a depth of 150-200 hPa.

Overall, the shape of the curves for these two lidar layers is fairly similar for the different

subsets presented in Figs. 15a –15d and small differences in the position of the minimum may

also be a result of the limited sample size of individual subsets instead of systematic

differences in between them. For all these four subsets, the minimum of VRMS differences

for layers relative to the lidar cloud top is in the range of 0.5 – 1.5 m s -1 lower than the lowest

values reached with layers relative to the original AMV height.

Figure 17: Mean VRMS and wind speed bias of differences between AMV winds and layer-averaged
radiosonde winds for upper level AMVs above 700 hPa (IR and WV combined).  Altogether,

2835 AMVs are used (948 IR and 1887 WV). Red lines represent layers relative to the original AMV
pressure height, green lines relative to the lidar cloud top height.  Note that the scales for mean VRMS

and wind speed bias values are different.
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Figs. 16a and 16b exhibit a significant “slow” bias of high-level AMVs assigned to their

original discrete height (values for 0 hPa on the x-axis). Such a slow wind speed bias has also

been found in other recent studies (e.g. Bresky et al., 2012). Generally, the wind speed bias is

reduced when AMVs are assigned to deeper layers and results indicate that assigning them for

example to layers of 100-150 hPa below the lidar cloud top largely removes the slow bias of

current upper level AMVs. Overall, the results presented in Figure 16 show that layers leading

to low VRMS differences tend to be similar to layers leading to a low wind speed bias.

In contrast to upper level AMVs, low-level AMVs (Figs. 15e and 15f) are typically assigned

to an estimated cloud base height rather than a level near the cloud top. Averaging over layers

that are centered at the original AMV height shows a slight advantage over the discrete value

with increasing layer depth. Worse results are revealed for layers below the original AMV

height, which might be due to the fact that these AMV heights are relative to the cloud base

and consequently, a layer below the cloud base does not represent the wind conditions of the

tracked cloud correctly. Slightly better results are obtained when lidar cloud-top information

is incorporated, but the benefit is less distinct than for mid- and high-level AMVs. 200 hPa

layers with 25/75% above/below the lidar cloud top and 200 hPa layers below the lidar cloud

Figure 18: Relative reduction of VRMS differences between AMV and radiosonde winds for assigning
AMVs to layers below the lidar cloud top instead of (a) layers of the same depth centered at the

original AMV height and (b) the discrete original AMV heights. Upper level AMVs above 700 hPa
(blue solid line) are additionally divided into upper level WV-AMVs (blue dotted) and upper level
IR-AMVs (blue dashed). The red solid line represents results for lower level AMVs (≥ 700 hPa).
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top (for IR and VIS, respectively) lead to the lowest VRMS differences, but results for layers

of the same depth centered at the original AMV heights are only 0.1-0.2 m s -1 higher. As low-

level AMVs are located at pressure heights greater than 700 hPa, the 200 hPa layers below the

lidar cloud top are mostly layers from the lidar cloud top to the lowest radiosonde level. The

lower benefit of lidar cloud top heights for the reassignment of low-level AMVs may result

from the relation of low-level AMVs to cloud-base winds and the inability of satellite lidars to

observe these cloud bases.

High- and mid-level AMVs overall exhibit a similar behaviour and therefore all AMVs above

700 hPa are combined in Figure 17. The combination of high- and mid-level AMVs will be

referred to as “upper level AMVs” in the following. Results indicate that lowest VRMS

differences in combination with lowest wind speed bias values are achieved for either

120-130 hPa layers below the lidar cloud top or for 200 hPa layers with 25/75% above/below

the lidar cloud top.

4.1.2 Relative VRMS reduction for lidar layers and lidar levels

Figure 18 shows the relative reduction of VRMS differences when results for layers below the

lidar cloud top are compared to results of layers of the same depth centered at the original

Figure 19: Relative reduction of VRMS differences between AMV and radiosonde winds for
assigning AMVs to layers below the lidar cloud top (blue line) and to the respective mean pressure
levels of that layer below lidar cloud top (orange line) instead of the discrete original AMV heights.
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AMV height (Fig. 18a) and results using the discrete original AMV height (Fig. 18b). The

shape of the curves in Fig. 18a and 18b is similar. For upper level AMVs (blue lines), best

results are yielded for layer depths of 100-120 hPa. Highest reduction values are ~12% for

lidar layers compared to layers centered at the original AMV height (Fig. 18a) and ~17%

compared to the discrete original AMV height (Fig. 18b). The improvement is apparent in

both upper level channels IR and WV (blue dotted and dashed lines). Dividing between upper

level ice clouds and water clouds leads to a similar reduction and is therefore not shown.

About 59.4% (64.6%) of the 2835 upper level AMVs show reduced VRMS differences for

120 hPa layers below the lidar cloud top in relation to 120 hPa layers centered at the original

AMV height (to the discrete original AMV heights).

Correcting the height of low-level AMVs (red lines) with lidar information only leads to a

small VRMS reduction, but the averaging over deep layers shows advantages over using

discrete heights. The VRMS differences for 200 hPa layers below the lidar cloud top are

predominantly superior to the VRMS differences of 200 hPa layers centered at the original

AMV height and of the discrete original AMV heights (50.8% and 59.2%, respectively).

After demonstrating the benefit of assigning AMVs to vertical layers below the lidar cloud

top, it is now investigated how much of that reduction could be achieved by assigning them to

one representative discrete level relative to the lidar cloud top instead. The blue solid line in

Figure 20: Histogram of height differences (hPa) between the original AMV pressure height and the
mean pressure of the corresponding 120 hPa layers below the lidar cloud top for upper level AMVs

above 700 hPa (1887 WV-AMVs and 948 IR-AMVs). The dashed vertical line corresponds to the
pressure height of the lidar cloud top.
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Figure 19 represents the treatment of AMVs as a layer-average below the lidar cloud top

(equivalent to the blue solid line in Figure 18b), whereas the orange line represents the

assignment of AMVs to the discrete mean pressure height of that lidar layer, i.e. a discrete

level located half of the layer depth below the lidar cloud top. Results indicate that assigning

AMVs to the mean pressure of the lidar layers achieves most of the reduction of assigning

AMVs to vertically extended lidar layers. However, interpreting AMVs as layer-averaged

winds leads to a relative reduction that is ~3% higher. The maximum of the curves is for both

approaches at ~120 hPa, which corresponds to using discrete levels 60 hPa below the lidar

cloud top. The corresponding wind speed bias values at this maximum are for both

approaches close to zero (not shown).

Figure 20 illustrates the distribution of differences between the original AMV pressure and

the mean pressure level of 120 hPa deep layers below the lidar cloud top for upper level

AMVs. About 75% of the AMVs are located above the mean pressure of the lidar layers and

are thus shifted to lower altitudes (negative values) with the lidar height correction. As AMVs

are derived by tracking the motion of the cloud, the lidar cloud top (dashed line) marks the

natural upper edge where AMVs should be located. However, approximately 30% of the

upper level AMVs low-level AMVs

time period VRMS
reduction counts VRMS

reduction counts

All
(220 days) 16.9 2835 7.1 1645

(1) 1 Apr. – 3 Sep. 2012
(142 days) 18.9 1725 5.1 999

(2) 5 Sep. – 6 Oct. 2012
(32 days) 11.4 406 18.5 249

(3) 16 Apr. – 12 June 2013
(46 days) 14.1 704 5.6 397

Table 9: Relative VRMS reduction in percent and number of matches for different time periods for
assigning AMVs to layers below the lidar cloud top instead of the discrete original AMV height. The
depth of the assigned layers is 120 hPa (200 hPa) for upper (low) level AMVs with pressure heights

above (below) 700 hPa.
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AMVs are located above the cloud, which may be related to an erroneous height assignment

as well as to the temporal and horizontal displacement of AMV and CALIPSO lidar

observation. On average, upper-level AMVs are located 31 hPa above the lidar layer center

(and correspondingly, 29 hPa below the lidar cloud top), with only small differences between

the single channels WV and IR. In summary, this indicates that the operational processing of

upper-level AMVs should consider that AMVs rather represent wind in a layer below the

actual cloud top, but the systematic height differences are likely dependent on the applied

AMV processing systems and its settings.

4.1.3 Effects of using different subsamples

To investigate the effect of changes in the height assignment algorithm of EUMETSAT, the

analysed 220 days are divided into three different time periods in Table 9. The first one

comprises 142 days before 5 September 2012, the day when the height assignment algorithm

Figure 21: Relative VRMS reduction of differences between AMV and radiosonde winds as a function
of the horizontal distance between AMV and radiosonde (RS) for assigning AMVs to 120 hPa layers
below the lidar cloud top instead of layers centered at the original AMV height (green line) and the

original discrete AMV height (purple line). The dotted red line corresponds to the y-axis-label on the
right and shows the sample size.
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was changed to the CCC-method (see Section 2.1.1.2). The second period consists of 32 days

starting on 5 September 2012 and the last period consists of 46 days from 16 April until

12 June 2013. According to the preceding results (see Fig. 17), the lidar layer depth is set to

120 hPa for upper level AMVs and 200 hPa for low-level AMVs. For upper level AMVs, the

VRMS reduction for assigning layers below the lidar cloud top instead of the discrete original

AMV heights is apparent in all three periods ranging from 11.4% to 18.9%. As stated before,

low-level AMVs do not show a clear reduction of VRMS differences through the direct height

reassignment. However, one noticeable feature is the high VRMS reduction for low-level

AMVs in the second period from 5 September to 6 October 2012. This is likely related to a

temporary degradation of the quality of low-level AMVs in the time period after the height

assignment algorithm changed to the CCC-method (Salonen and Bormann, 2012).

In order to utilize a reasonable large sample size, the collocation criterion for AMVs and

radiosondes is set to 150 km and 90 minutes. However, the temporal and spatial displacement

of AMVs and verification radiosondes introduces an additional error component that is

expected to be independent of the AMV error itself and the height correction. Therefore, a

weak collocation criterion leads to an underestimation of the actual relative VRMS reduction.

Figure 21 shows how the relative reduction of VRMS differences for upper level AMVs

increases as the horizontal collocation criterion is tightened. Naturally, the number of matches

decreases for smaller distances. The error reduction for 120 hPa layers below the lidar cloud

upper-level AMVs low-level AMVs

QI
error

reduction
counts

error
reduction

counts

≥ 50 16.9 2835 7.1 1643

≥ 60 16.8 2573 8.0 1439

≥ 70 16.6 2265 8.3 1254

≥ 80 14.5 1792 9.4 1003

Table 10: Relative VRMS reduction in percent and number of matches for different quality
indices QI for assigning AMVs to layers below the lidar cloud top instead of the discrete original

AMV height. The layer depth is 120 hPa (200 hPa) for upper (low) level AMVs with pressure
heights above (below) 700 hPa.
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top relative to layers centered at the originally assigned AMV heights shows a strong increase

from ~12% at 150 km to ~21% at 40 km (purple line). When compared to the discrete original

AMV height, the relative VRMS reduction increases from ~17% to ~25% (green line).

Reducing the time difference does not lead to clearly larger improvements and is therefore not

shown.

This study uses a threshold for the AMV quality index QI of 50. Restricting it to higher values

(up to ≥ 80) reduces the sample size to up to ~60%. Table 10 lists the relative VRMS

reduction for assigning 120 hPa layers (upper level AMVs) and 200 hPa layers (low-level

AMVs) below the lidar cloud top instead of the discrete original AMV heights for different

quality thresholds. Restricting the sample to upper level AMVs with QI ≥ 80 shows slightly

less improvement than including lower quality AMVs, but the differences are smaller than

2.5%. For low-level AMVs, the VRMS reduction slightly increases when only AMVs with

higher quality are regarded.

4.2 Comparison with GME model equivalents

In addition to the preceding verification with radiosonde data, AMV winds are now

additionally evaluated with GME model equivalents to circumvent the constraint of

temporally and spatially rare radiosondes. This allows analysing a considerably larger amount

of AMVs, albeit this approach does not provide an entirely independent dataset for the

validation. Based on the results of the previous chapter, layers of varying depth ranging from

0 hPa to 200 hPa at three positions are evaluated: (i) below the lidar cloud-top height, (ii) with

25% above and 75% below the lidar cloud-top height and (iii) centered at the operational

AMV height as reference layers. Altogether, 13200 AMV/CALIPSO matches during the first

evaluation period (31 May – 10 June 2013) are analysed.

Figure 22 illustrates the distribution of height differences between operational AMV heights

and cloud-top heights derived from collocated CALIPSO lidar observations for all used

Meteosat-10-AMVs. More than 80% of all operationally assigned AMVs are located below

the actual lidar cloud top, corresponding to positive height differences on the x-axis. The

highest number of AMVs occurs within the first 50 hPa below the lidar cloud top. A further

subdivision into latitude bands reveals similar distributions for extra-tropical and tropical

regions (not shown).
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4.2.1 VRMS differences and wind speed bias

Figure 23 shows the VRMS difference (upper panels) and wind speed bias (lower panels)

between operational AMV winds and layer-averaged FG model winds. Red dashed lines

represent layers that are centered at the operational AMV height, which serve as a reference

for the reassigned layers relative to the lidar cloud-top height (green lines). High-level AMVs

above a pressure height of 400 hPa comprise WV and IR AMVs, whereas low-level AMVs

below a pressure height of 700 hPa consist mainly of VIS and IR AMVs. Dividing the AMVs

data set for different channels used for their derivation shows similar results for both high-

level and low-level AMVs and is therefore not shown.

For high-level AMVs (Fig. 23a), lowest VRMS differences are achieved for 120-hPa layers

below the lidar cloud top, resulting in a relative VRMS reduction of about 10% when

compared to reference layers of the same depth centered at the original AMV height (red

dashed line) and of about 15% when compared to the discrete operational AMV heights (red

dashed line at 0 hPa). The wind speed bias tends to be close to zero for 100-hPa layers below

the lidar cloud top. Low-level AMVs (Fig. 23b) show lowest VRMS differences for 120-hPa

Figure 22: Histogram of height differences (hPa) between original AMV pressure heights and lidar
cloud-top heights for high-level and low-level AMVs combined. Positive values correspond to AMV

heights that are below the respective lidar cloud top.



4.2 Comparison with GME model equivalents

63

layers below the lidar cloud top and for 200-hPa layers with 25% above and 75% below the

lidar cloud top. For 120-hPa layers below the lidar cloud top, the reassignment reduces the

VRMS difference by 8 % and 15% compared to reference layers centered at the operational

AMV height and to the discrete operational height, respectively. The wind speed bias is

generally small for low-level AMVs, but layers below the lidar cloud top exhibit slightly

smaller values than the 25%/75% layers.

In order to investigate the effect for different latitude bands, the AMV sample used in

Figure 23 is subdivided in extra-tropical and tropical regions in Figure 24. Generally,

Figure 23: Mean VRMS differences (upper panels) and wind speed bias (lower panels) between AMV
winds and layer-averaged model winds for (a) high-level and (b) low-level Meteosat-10-AMVs.

Numbers in brackets are AMV counts. Red  dashed lines represent layers centered at the original AMV
pressure height; green solid lines represent layers below the lidar cloud-top height; green  dotted lines

represent layers with 25% above and 75% below the lidar cloud-top height (cf. legend).
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120-hPa layers below the lidar cloud top achieve lowest VRMS differences for high-level and

low-level AMVs in both regions (Fig. 24a – 24d, upper panels). For high-level AMVs in

extra-tropical regions (Fig. 24a, lower panel), the wind speed bias is close to zero for

120-hPa layers below the lidar cloud top and thus coincides with lowest VRMS differences.

The wind speed bias in the tropics shows larger values for the 120-hPa layer (Fig. 24b, lower

panel), but still has about the same magnitude as the wind speed bias for layers of the same

depth at the operational AMV height. As GME has some known shortcomings in high-level

tropical regions due to a relatively poor convection scheme, the tropical wind speed bias may

also result from the model error in that region. Wind speed bias values for low-level AMVs

(Fig. 24c and 24d, lower panel) are generally small for extra-tropical and tropical regions.

Figure 24: Mean VRMS differences (upper panels) and wind speed bias (lower panels) between AMV
winds from Meteosat-10 and layer-averaged FG model winds for (a) high-level AMVs in extra-

tropical regions, (b) high-level AMVs in the tropics, (c) low-level AMVs in extra-tropical regions and
(d) low-level AMVs in the tropics. Numbers in brackets are AMV counts. Red dashed lines represent

layers centered at the original AMV pressure height; green solid  lines represent layers below the lidar
cloud-top height; green dotted lines represent layers with 25% above and 75% below the lidar cloud-
top height (cf. legend). Note that the scales for high-level and low-level AMVs are different for VRMS

differences and the wind speed bias.
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4.2.2 AMV error correlations

To investigate the effect of the CALIPSO-based height reassignment on the horizontal

correlation of AMV errors, correlation coefficients for the difference between AMVs and

FG model equivalents (FG departures) are computed as a function of horizontal distance

(Fig. 25) as described in Section 3.2.1.2. The red, dashed line in Figure 25 corresponds to the

error correlation of FG departures for AMVs at the operational pressure height, showing a

decrease of the correlation with increasing horizontal distance. The green line represents

values for the error correlation of FG departures of lidar-corrected AMVs (using 120-hPa

deep layers below the lidar cloud-top height) to operational AMVs. The lidar-corrected data

set shows significantly lower error correlation values compared to the operational AMVs,

which further emphasizes the potential benefit of lidar-corrected AMVs for data assimilation.

On average, the lidar height reassignment reduces the correlation by about 50 km. As the

evaluation is conducted with model equivalents, the absolute values of the correlation are

Figure 25: Horizontal AMV error correlation of FG departures of operational AMVs (dashed red line)
and lidar-corrected layer-averaged AMVs (green line) when compared to surrounding operational

AMVs for Meteosat-10 from all levels as a function of horizontal distance between the AMVs. The black
dotted line shows the number of collocations used and corresponds to the y-axis on the right.
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strongly affected by the horizontal correlation of model errors and should not be evaluated.

However, the model correlation can be expected to be independent of the AMV errors and

therefore results for the corrected and uncorrected AMV data set can be compared. Bormann

et al. (2003) calculated the error correlation of AMVs using radiosondes for verification and

found correlation values that were about 30% smaller than the values in Fig. 25. This

difference is likely the contribution of the model correlation.

4.3 Summary and discussion

In this section, satellite lidar observations are used to directly correct the height of AMVs

from MSG satellite imagery with lidar cloud-top observations from CALIPSO. Appropriate

layer depths and layer positions relative to the lidar cloud top and relative to the original

AMV height are investigated by comparing AMV winds to radiosonde or GME model winds

averaged over layers of the respective depth and position.

For the verification with radiosonde data, 220 days of data with altogether about 4500

collocated AMVs, CALIPSO observations and radiosondes are analysed. Assigning upper-

level AMVs to 120 hPa layers below the lidar cloud top leads to an improvement of ~12%

compared to assigning layers of the same depth centered at the original AMV heights and of

~17% compared to using the discrete original AMV heights. Similar results are yielded for

200 hPa layers with 25% of the layer above and 75% below the lidar cloud top. The reduction

of VRMS differences for AMVs below pressure levels of 700 hPa is less distinct when layers

relative to the lidar cloud top are used instead of layers relative to the originally assigned

AMV height. Although there is only a slight VRMS reduction for these AMVs using lidar

information, there is indication that lidar observations can reduce VRMS differences in

periods with lower AMV quality due to changes in the AMV processing. The reasons why the

lidar height correction is showing much better results for upper level AMVs may be

connected to the relation of low-level AMVs to cloud-base winds and the inability of satellite

lidars to observe these cloud bases accurately.

A tighter threshold for the horizontal distance between AMVs and radiosondes used for

verification even leads to a clearly larger relative effect of the direct height reassignment. The

results imply that the direct height reassignment can actually reduce the AMV wind error by

over 20% compared to assigning AMVs to layers relative to the original height and over 25%
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compared to using the discrete original AMV height, but the sample size gets comparably

small for a tight threshold.

In the second part of this section, the evaluation of the height reassignment of AMVs with

directly collocated CALIPSO lidar observations is conducted with GME model equivalents

instead of with radiosondes for an 11-day period with 13200 AMV/CALIPSO matches. For

Meteosat-10, both high-level and low-level AMVs exhibit the lowest VRMS differences for

assigning AMVs to 120-hPa deep layers below the lidar cloud top. This leads to a reduction

of VRMS differences of 8-10% when compared to layers of the same depth centered at the

operational AMV height, and about 15% when compared to the discrete operational AMV

levels.

Overall, the results of the model evaluation of the direct height reassignment confirm the

findings for the verification with radiosonde sounding data. For the radiosonde-evaluated

upper-level AMVs that are mainly located over European continent, 120-hPa layers below the

lidar cloud top yielded lowest VRMS differences and a wind speed bias close to zero when

verified with radiosondes. These results closely coincide with the findings of the model

evaluation for extra-tropical regions for both high-level and low-level AMVs. The different

findings for low-level AMVs when verified with radiosonde observations are likely related to

the selection of the evaluation period: The model evaluation uses data after the changeover to

the CCC-method, which also switched off the application of the assignment of low-level

AMVs to the estimated cloud-base. On the contrary, the radiosonde verification evaluated

mostly AMVs before the CCC-method was introduced. Overall, the consistency of the

findings for the model evaluation and the verification with radiosonde data implies that model

error does not blur the results and emphasizes the validity of using short-term forecasts for the

evaluation.

The positive impact of assigning AMVs to layers instead of discrete levels shown in this

study coincides with findings of preceding studies (Velden and Bedka, 2009: Weissmann et

al., 2013). Using a simulated model framework, Hernandez-Carrascal and Bormann (2014)

illustrated that AMVs represent winds averaged over a cloud layer instead of the cloud-top or

cloud-base level wind. Lean et al. (2015) also quantified height assignment AMV error

characteristics using a set of simulated AMVs and found the closest fit of AMVs to layer-

averaged model winds that are most commonly located below the estimated cloud-top. This

corresponds well to the results presented in this study with lowest wind VRMS differences

and wind speed bias values when assigning AMVs to layers below the lidar cloud-top height.
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In addition, Lean et al. (2015) and Hernandez-Carrascal and Bormann (2014) stated that a part

of the benefit that is gained by assigning AMVs to layer-averages over a cloud layer can be

reached by using a discrete level positioned within the respective layer. This is also confirmed

in the present study.

Overall, there are about 1000–1300 Meteosat AMVs with nearby CALIPSO observations that

could be directly corrected with lidar information per day. About 3300-4500 operational

Meteosat-10-AMVs are assimilated every 6 h in the current global forecasting model of

DWD, leading to ~13200-18000 assimilated Meteosat-10-AMVs per day. Replacing the

original AMV data set with lidar-corrected AMVs based on the direct height correction would

lead to a large reduction of the already small number of assimilated AMVs. A more

appropriate approach would be to include the lidar-corrected AMV data set in addition to the

originally assimilated AMV data set, as both data sets generally do not overlap much. Hereby,

the number of assimilated Meteosat-10-AMVs could be increased by 6% - 10%. However, the

availability of real-time lidar data would be an essential prerequisite, which limits the

operational application of the direct height correction with CALIPSO data for assimilation

purposes.
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5. HEIGHT BIAS CORRECTION AND DATA

ASSIMILATION EXPERIMENTS

The previous section showed that a direct lidar-based height reassignment significantly

reduces the VRMS difference and the wind speed bias of AMVs. However, this direct

correction can only be applied to a small fraction of the AMV data set, where collocated

CALIPSO observations are available for the individual reassignment. In addition, the need for

real-time lidar data would pose a significant effort for data providers and NWP centres. To

address this issue, a statistical lidar-based height bias correction of AMV pressure heights is

evaluated in this section. After an introduction to the derivation of height bias correction

functions, the potential of a height bias correction based on different training intervals is

assessed using GME model equivalents. Subsequently, initial results of the forecast

performance when lidar-corrected AMVs are assimilated in the global model ICON are

presented.

5.1 Height bias correction functions

Results of a direct, CALIPSO-based height reassignment in the previous section identified

120-hPa deep layers below the lidar cloud top as an overall optimal configuration for the

height reassignment. For this reason, such layers are used as the basis for deriving the height

bias correction. As described in Section 3.2.2, three different options for the respective

training interval are tested: 10 days, 30 days, and 30 days with a hemispheric/tropical

subdivision. As an example, Figure 26 shows a 30-day height bias correction function (left

panel) and a 10-day height bias correction function (right panel) for Meteosat-10 as a function

of altitude and channel. The mean pressure of the optimal layer, meaning the discrete level at

60 hPa below the lidar cloud top, is used for the pressure adjustment values on the x-axis.
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Negative values indicate that the AMV is shifted downwards in the atmosphere. Mid-level

AMVs between 400 hPa and 700 hPa are not used for the height bias correction because of

the comparably small AMV sample size in this range. Typical AMV numbers for each

vertical pressure bin are about 4000 (1300) for high levels and 2400 (840) for low level

AMVs for the 30-day (10-day) correction. Generally, the shape of the curves for the 30-day

height bias correction and the 10-day height bias correction is very similar (also for the other

10-day training periods), with a more jagged shape for the 10-day correction due to the

smaller sample size. On average, the adjustment of high-level AMVs is of the order of

- 20 hPa. Low-level AMVs are also shifted downwards at most altitude levels. The largest

adjustment of 60-80 hPa occurs for AMVs with 700-800 hPa altitude. Generally, the curves of

the height bias correction functions for the latitude subdivision (not shown) also tend to have

a similar shape, with less pronounced height adjustment values for the tropics than for the

extra-tropics.

Figure 26: Height bias correction functions for Meteosat-10 for a 30-day period (1 April 2013 –
6 May 2013, left panel) and a 10-day period (1 May 2013 – 10 May 2013, right panel) as a function

of altitude. Different line styles indicate different satellite channels (cf. legend).
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5.2 Comparison of the direct height reassignment and the

height bias correction

As described in Section 3.1.2, the direct height reassignment uses the actual collocated lidar

observations for an individual height correction for each AMV. On the contrary, the height

bias correction aims to correct systematic AMV height biases using statistical adjustments

based on height bias correction functions derived from preceding training intervals. To

investigate the potential benefit of the height bias correction, both lidar-based height

correction methods are evaluated for the same sample of Meteosat-10-AMVs, i.e. all AMVs

with a directly collocated CALIPSO lidar observation available during the second evaluation

period (7 May – 12 May 2013).

Figure 27 shows the mean VRMS difference and wind speed bias between AMV and model

winds for results for operational AMV heights (red bars), for applying the direct height

reassignment (green bars), and for applying the three different height bias correction functions

(blue bars). The left part of each panel shows the results when assigning AMVs to discrete

levels, meaning the operational levels (red), levels at 60 hPa below the cloud top of a directly

collocated lidar observation (green) or three “adjusted” levels based on the height bias

correction (blue). Correspondingly, the right part represents layer-averaged values for

120-hPa deep layers centered at the respective heights. Results for the direct height

reassignment are generally similar to the results presented in Section 4.2, with slight

variations due to the different evaluation periods considered in the two sections.

For high-level AMVs (Fig. 27a), the lowest VRMS differences (upper panel) are achieved for

120-hPa layers based on the direct height reassignment. However, the height bias correction

also yields a distinct reduction of VRMS differences compared to those from levels/layers

relative to the operational AMV height. About 30-50% of the reduction of the direct height

reassignment is achieved, with no clear preference for a particular correction function. In

addition, the wind speed bias (lower panel) is clearly reduced for the height reassignment as

well as for the height bias correction based on a 30-day mean and a 10-day mean when

compared to the wind speed bias at the operational AMV height. Low-level AMVs (Fig. 27b)

exhibit a similar pattern to high-level AMVs. Again, the direct height reassignment shows the

best results when layer-averages are used. In addition, layers relative to the adjusted heights

based on the height bias correction show a clear reduction of VRMS differences compared to
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the operational values. In particular, the 10-day height bias correction exhibits VRMS

differences that are almost as low as those of the direct height reassignment. The wind speed

bias for low-level AMVs is strongly reduced for the direct height reassignment as well as for

the height bias correction, especially when a layer-averaging is applied. Overall, VRMS

differences are generally lower for layer-averages than for discrete levels, which further

emphasizes the fact that AMVs represent the wind in a vertically extended layer.

Figure 27: Mean VRMS differences (upper panels) and wind speed bias (lower panels) between AMV
and model FG winds for (a) high-level and (b) low-level Meteosat-10-AMVs. Numbers in brackets are

AMV counts. ‘AMV oper’ corresponds to the operational AMV height and ‘CALIPSO’ to the direct lidar
height reassignment. Different height bias correction functions are designated as ‘30days’ (30-day

mean), ‘30days hemi’ (30-day mean with hemispheric and tropical sub-divisions) and ‘10days’ (10-day
mean). Results are shown both for assigning AMVs to discrete levels (meaning the operational level, the

level at 60 hPa below the actual lidar cloud top and the three height-bias- corrected levels) in the left part
of each panel and to 120-hPa layer-averages centered at these levels in the right part of each panel.
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The subdivision into extra-tropical and tropical regions for the height bias correction is

investigated in Figure 28 for both high-level and low-level AMVs. For clarity, each subfigure

shows only results for the operational, discrete AMV level (red bar on the left of each panel)

and for 120-hPa layer-averages centered at the operational level and at lidar-corrected levels

(right part of each panel), omitting results for the lidar-based height correction for discrete

levels. The general tendency seen in Figure 27 is reflected in extra-tropical as well as tropical

regions: The direct height reassignment produces the lowest VRMS differences and a small

wind speed bias in all subfigures (Fig. 28a – 28d, green bars), but the height bias correction

on average achieves about 50% of this reduction. As pointed out earlier, high-level AMVs in

the tropics tend to have a stronger wind speed bias than in the extra-tropics, which may be

Figure 28: Mean VRMS differences (upper panels) and wind  speed bias (lower panels) between AMV winds
from Meteosat-10 and layer-averaged FG model winds for (a) high-level AMVs in extra-tropical regions,

(b) high-level AMVs in the tropics, (c) low-level AMVs in extra-tropical regions and (d) low-level AMVs in
the tropics. Numbers in brackets are AMV counts. ‘AMV oper level’  corresponds to the discrete operational

AMV height. The right part of each panel shows results for 120-hPa layer-averages centred at the
operational AMV height (‘AMV oper’), below the actual lidar cloud top (‘CALIPSO’) and centered at the

levels based on the three height bias correction functions (‘30days’, ‘30days hemi’, ‘10days’).
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related to an inadequate representation of the atmospheric state by GME. Nevertheless, the

application of both height correction methods in the tropics overall leads to a smaller bias

than the operational value.

To investigate the effect of different layer depths and level positions relative to the lidar

cloud-top height, Figure 29 shows the relative reduction of VRMS differences of both lidar

height correction methods (solid lines for the direct height reassignment and dashed lines for a

30-day height bias correction) for discrete levels and different layer depths when their results

are compared directly to the results for the discrete operational AMV heights. The relative

reduction of the VRMS difference is shown as a function of layer depth for all latitudes for

low-level and high-level AMVs combined. Overall, the best results are achieved using the

direct lidar height reassignment for 120-hPa layers below the lidar cloud top (solid green line)

with a VRMS reduction of about 11% compared to the operational AMV heights. Again, this

value deviates slightly from the reduction of VRMS differences of ~15% found in

Figure 29: Relative reduction of VRMS differences between AMV and model FG winds for assigning
AMVs to layers/levels below the lidar cloud top (solid lines) and to layers/levels based on the 30-day

height bias correction (dashed lines) instead of the discrete operational AMV heights. Green lines
represent layer-averages and blue lines discrete levels relative to the respective height. Low-level and

high-level AMVs are combined. The x-axis denotes the vertical depth of the layers. The reassigned
levels are located at the mean pressure of the layers.
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Section 4.2, as two different evaluation periods are considered in the two sections. Using the

height bias correction, the largest reduction of VRMS differences (~9%) is also achieved for

120-hPa layers (dashed green line), reaching about 80% of the VRMS reduction that is

achieved with the direct height reassignment. The impact from using discrete levels below the

lidar cloud top (solid blue line) is less distinct. The largest error reduction (about 7%) is

achieved for levels at 50-60 hPa (drawn in the figure at 100-120 hPa) below the lidar cloud

top. Results for the discrete pressure heights that are based on the 30-day height bias

correction are least pronounced (dashed blue line) and only show a slightly positive effect

(3.5% reduction).

5.3 Assimilation of lidar-corrected AMVs in ICON

As demonstrated in the preceding chapter, the height bias correction is capable of reducing the

VRMS difference and the wind speed bias of Meteosat-10-AMVs, and may therefore provide

an efficient way of using lidar information for the AMV height correction in NWP systems.

To investigate this hypothesis, the impact of lidar-corrected and layer-averaged

Meteosat-10-AMVs is assessed in assimilation and forecast experiments with the global NWP

model ICON of DWD for a 16-day assimilation period (1 May  16 May 2013). Thereby, the

forecast skill of 3-h short-term forecasts (FG field) as well as free forecasts up to 7 days is

evaluated. As described in Section 0, three experiments are conducted: Firstly, all AMVs are

assimilated on the discrete level of their original AMV height, serving as a reference (REF).

Secondly, all Meteosat-10-AMVs are reassigned to lidar-corrected heights based on a 15-day

training period (LEV). Thirdly, all Meteosat-10-AMVs are assimilated as 120-hPa layer-

averages centered at the lidar-corrected height (LYR).

5.3.1 Evaluation of 3-h short-term forecasts (FG)

First, the forecast impact of observations is evaluated in the context of FG departures of the

AMV wind. Figure 30 shows the VRMS difference and wind speed bias between AMV and

FG model winds for the three experiments REF (red solid), LEV (green dashed) and

LYR (green solid) for the 16-day assimilation period (127 assimilation cycles at

3-h intervals). The VRMS differences (upper panels) show a consistently better agreement
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with the FG model equivalents throughout the troposphere when AMV are assigned to 120-

hPa layers centered at the lidar-corrected height (LYR) instead of assigning them to the

original discrete height (REF) both for extra-tropical (Fig. 30a) and tropical (Fig. 30b)

regions. For the experiment LEV, the reduction of VRMS differences compared to the

reference run is not as distinct as for the experiment LYR, but it does achieve either equal or

lower VRMS differences than the experiment REF for extra-tropical regions. In the tropics,

LEV results are generally also positive, but show a slight degradation of VRMS differences

compared to REF in some upper-level regions. By integrating over the whole troposphere, the

relative reduction of the VRMS differences from the experiment LYR compared to the

reference run is 3.7% for the tropics and 4.0% for extra-tropical regions (1.5% and 0.1% for

the corresponding values for the experiment LEV).

Figure 30: VRMS differences (upper panels) and wind speed bias (lower panels) between AMV wind
and corresponding FG model equivalent as a function of altitude for the three experiments REF, LEV

and LYR (a) for extra-tropical and (b) for tropical regions for the 16-day assimilation period
(1 May 2013 - 16 May 2013).
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The wind speed bias between AMV and model wind (Fig. 30, lower panels) shows absolute

values for the experiments LEV and LYR that are of equal or lower magnitude than the

operational values for low-level and high-level regions in the extra-tropics and low-level and

mid-level regions in the tropics. In contrast, an increase of the wind speed bias is observed for

extra-tropical regions for altitude regions from 300 hPa to 700 hPa and for tropical regions

above 600 hPa. However, this increase might be related to a suboptimal model representation

of the true atmospheric state, as the magnitude of the wind speed bias has the same order as

long-term monitoring model bias values (not shown). Consequently, this increase may be

related to a model bias instead of an observational bias.

To further investigate this hypothesis, the verification of the 3-h short-term forecasts

(FG fields) against radiosonde observations is shown in Figure 31. For clarity, only results for

Figure 31: VRMS differences (upper panels) and wind speed bias (lower panels) between radiosonde
winds and FG model winds for the experiments REF(red lines) and LYR (green lines) for (a) the full

Meteosat-10 domain ( 65° N/S/W/E), (b) its northern hemispheric part, (c) its tropical part and (d) its
southern hemispheric part for the 16-day assimilation period (1 May – 16 May 2013).
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the experiments REF and LYR are depicted. As the impact could be different due to a coarser

or finer radiosonde observation network, a sub-division for the northern hemisphere, the

tropics and the southern hemisphere is made. Upper panels show results for VRMS

differences, and lower panels show wind speed bias values as a function of altitude for the full

Meteosat-10-domain (Fig. 31a) and for the additional subdivision into its northern

hemispheric part (Fig. 31b), its tropical part (Fig, 31c) and its southern hemispheric part

(Fig. 31d). VRMS differences shown in the upper panels of Figure 31 do not exhibit clear

Figure 32: VRMS (left panels) and normalized VRMS differences between the experiments LYR minus
REF (right panels) as a function of forecast lead time at high levels (300 hPa, upper panels), mid

levels (500 hPa, mid panels) and low levels (850 hPa, lower panels) for the evaluation period from
1 May 2013 – 9 May 2013
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positive or negative effects when the lidar-corrected and layer-averaged AMVs are

assimilated. However, a slight degradation compared to the reference run is seen, especially

for tropical regions between 300 hPa and 600 hPa. Generally, the relative degradation when

integrated over all altitude levels is rather small and reaches values of -0.1% for the northern

hemisphere, -1.3% for the tropics and -0.4% for the southern hemisphere.

In contrast, a remarkable positive impact on the wind speed bias (lower panels of Fig. 31) can

be seen throughout the atmosphere for the experiment LYR with respect to the reference run

(REF). The effect is more apparent in the tropics and the southern hemisphere. Likely, this is

related to the smaller amount of in-situ wind observations that are available for the

Figure 33: Normalized RMS differences (LYR - REF) as a function of forecast lead time for the
prognostic variables (a,d) temperature, (b,e) geopotential, (c,f) relative humidity for the evaluation

period from 1 May 2013 – 9 May 2013. Left panels are for high levels (300 hPa), right panels for low
levels (850 hPa)



5 HEIGHT BIAS CORRECTION AND DATA ASSIMILATION EXPERIMENTS

80

assimilation in global NWP models. On the contrary, a dense radiosonde network over

Europe allows for the assimilation of frequent radiosonde observations, generally leading to

comparatively well-defined wind conditions in that region. This usually results in a smaller

impact from new observational data. Integrating over all altitude levels, the relative reduction

of the wind speed bias compared to the reference run results in 6.7% for the northern

hemisphere, 20.9% in the tropical region and 19.7% in the southern hemisphere of the

Meteosat-10-domain.

5.3.2 Evaluation of 7-day forecast runs

The effect of assimilating lidar-corrected and layer-averaged AMVs on free forecasts is

displayed in Figure 32. The left panels show the VRMS for the two experiments LYR (green

lines) and REF (red lines) as a function of forecast lead-time up to seven days (168 hours)

when evaluated with the analysis field of the 3-h cycling. The three different pressure levels at

300 hPa (upper panel), 500 hPa (middle panel) and 850 hPa (bottom panel) are representative

of high levels, mid levels and low levels, respectively. Generally, the experiment LYR

outperforms the reference run for almost all forecast lead times. As the differences between

the two curves are small, the corresponding panels on the right hand side show the normalized

VRMS differences of the two experiments (LYR minus REF) with 90% confidence intervals.

Negative values indicate a positive effect from assimilating lidar-corrected and layer-averaged

AMVs. Generally, the forecast impact is neutral for the first 2-3 forecast days for all three

altitude levels shown. However, later forecast times reveal a positive (albeit mostly not

significant) effect.

This tendency can also be seen when regarding other prognostic variables, as demonstrated in

Figure 33. Normalized RMS differences for high levels (300 hPa, left panels) and low levels

(850 hPa, right panels) for the temperature (upper panels), relative humidity (mid panels) and

geopotential (lower panels) are shown as a function of forecast lead-time for the

experiment LYR with respect to the reference run REF. Again, the first 2-3 forecast days

exhibit a mostly neutral or only slightly positive effect, which is enhanced for longer forecast

lead times.
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5.4 Summary and discussion

In this section, height bias corrections functions are calculated based on the statistics of the

differences between operational AMV height and a position relative to the lidar cloud-top

height. Different lengths of the training period and settings for deriving the height bias

correction are tested and the resulting corrections are then applied to a subsequent evaluation

period. Overall, this adjustment of AMV pressure heights of Meteosat-10 leads to lower

VRMS differences and a lower wind speed bias compared to using the operational AMV

heights, with no clear preference for the duration of the training period. On average, the

reduction is about 40-50% of the reduction by the direct reassignment, but has the clear

advantage that all AMVs from a geostationary satellite can be corrected without the need for

directly collocated lidar observations. In accordance with the results from the direct height

reassignment in Section 4, it is again confirmed that AMVs are rather represented by a layer-

averaged wind instead of the wind at a discrete level: Assigning AMVs to 120-hPa deep

vertical layers based on a 30-day height bias correction leads to a reduction of VRMS

differences that is three times larger than when assigning them to discrete levels at the mean

pressure of the respective layers.

Initial assimilation and forecast experiments with lidar-corrected plus layer-averaged

Meteosat-10-AMVs are performed with the global model ICON. Results indicate that the

assimilation works well in terms of both the FG fit to radiosonde observations and forecast

performance. Generally, the positive impact is largest in tropical and southern hemispheric

regions of the Meteosat-10-domain, as the dense coverage of conventional observations in the

northern hemisphere constrains the analysis more strongly. In particular, the wind speed of

the FG fields decreases by up to 20% when verified against radiosonde soundings.

In addition, the positive impact of assimilating lidar-corrected and layer-averaged AMVs

results in an improved accuracy of the 7-day forecasts for the wind field as well as for other

prognostic variables when the forecast field is compared to the three-hourly cycled analysis

fields from the same experiment. However, it should be noted that the duration of the

evaluation period is comparatively short and a longer experiment is needed to achieve

significant results.

Generally, an alternative strategy to improve the representation of AMVs in NWP systems

would be either assigning AMVs to a lidar-corrected discrete height level, or assigning AMVs

to a layer-average relative to the operational AMV height without incorporating lidar
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information. Both approaches may achieve a part of the benefit of the proposed lidar-based

height bias correction. However, the optimal position and depth of a layer relative to the

operationally derived AMV height may be highly situation-dependent and therefore difficult

to determine. Assigning AMVs to a lidar-corrected level based on a statistical height bias

correction (without applying a layer-averaging) may be a compromise for current data

assimilation systems as this is easier to implement in NWP systems than an observation

operator for layer-averaged wind observations. However, its benefit tends be relatively small

compared to what can be gained by using a layer-approach.
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6. POTENTIAL FUTURE APPLICATIONS

6.1 Lidar-based AMV height correction for other

geostationary satellites

After demonstrating the benefit of the direct height reassignment and the height bias

correction for Meteosat-10-AMVs, these lidar-based height correction methods can also be

applied to AMVs from other geostationary satellites. In the following, both methods are tested

for AMVs from the GOES-satellites and MTSAT-2. The evaluation periods correspond to the

ones used for Meteosat-10: Results are shown for the direct height reassignment applied

during the first evaluation period and for the 30-day height bias correction applied during the

second evaluation period.

AMVs from GOES or MTSAT-2 imagery are derived by different institutions than

MSG-AMVs, using different processing algorithms and quality control procedures.

Furthermore, the AMV height assignment is aided by different model fields and may

therefore show different characteristics than Meteosat-10 for lidar-based height correction

methods. Based on sensitivity studies using different settings for the direct height

reassignment and height bias correction, the collocation criteria for GOES- and

MTSAT-2-AMVs are tightened compared to the ones used for Meteosat-10. First, the AMV

quality index threshold is raised from 50 to 80. In addition, AMVs are only used if the

CALIPSO flight path approaches the AMV position to less than 10 km, which corresponds to

an average distance of ca. 25 km between the AMV and the available lidar cloud-top

observations within the 50-km radius that is used for the calculation of the median lidar

cloud-top height. While these stricter collocation criteria improve the results for

GOES-AMVs and MTSAT-2-AMVs, the results for the Meteosat-10 dataset are fairly

independent of the applied criteria. This is illustrated in Figure 34, which shows the reduction

of VRMS differences when results for layers below the lidar cloud top are compared to results

of layers of the same depth centered at the original AMV height for Meteosat-10 during the
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first evaluation period. Hereby, a QI threshold of 50 (dark purple) and of 80 (turquoise) both

lead to a relatively constant reduction of VRMS differences by about 12%-14% when

constraining the horizontal distance. A subdivision for tropical and extra-tropical regions also

exhibits similar results (not shown).

Given that the findings for the two GOES-satellites show very similar characteristics, results

for GOES-East and GOES-West are combined in the following. In contrast to the evaluation

with MSG-AMV, only a 30-day average is calculated for the height bias correction due to the

smaller number of available AMVs. For GOES and MTSAT-2, there are considerably fewer

available AMVs than for Meteosat-10. Table 11 lists the numbers of all used AMVs with

collocated lidar observations for both periods. Only about 10% of the number of

Meteosat-10-AMVs is found for MTSAT-2 and GOES-AMVs. This is due to the smaller

number of operationally available AMVs from these satellites (GOES-AMVs are only

available in 3-h intervals for the time of the study period compared to hourly MSG-AMVs or

MTSAT-2-AMVs), as well as due to the stricter collocation criteria (higher QI threshold and

smaller horizontal distance) applied for the height reassignment and height bias correction for

AMVs from these satellites.

Figure 34: Relative reduction of VRMS differences for Meteosat-10-AMVs when AMVs are
assigned to 120-hPa layers below the lidar cloud top and compared to the operational AMV
height. The x-axis denotes different thresholds for the maximum horizontal distance between
corresponding AMV and CALIPSO observations. Dark purple bars represent results fo r a QI

greater than 50, turquoise hatched bars for a QI greater than 80.
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6.1.1 Direct height reassignment

The mean VRMS difference and wind speed bias for the direct height reassignment for

GOES-AMVs and MTSAT-2-AMVs is illustrated in Figure 35. For GOES high-level AMVs

(Fig. 35a), 100-120 hPa layers below the lidar cloud top show a small benefit over the

operational AMV heights, with about 3% relative reduction of VRMS differences compared

to layers of the same depth centered at the operational AMV height and 9% compared to

discrete operational AMV heights. The corresponding wind speed bias values are close to

zero at layer depths of approximately 80 hPa.

Low-level GOES-AMVs (Fig. 35b) show a large reduction of VRMS differences for

assigning AMVs to layers relative to the lidar cloud-top height for all layer depths, with

minimum VRMS differences for 150-hPa layers. Here, the reduction reaches 22% (30%)

when these layers are compared to layers (levels) at the operational AMV height. The

corresponding wind speed bias is also clearly reduced compared to the operational values.

High-level AMVs from MTSAT-2 (Fig. 35c) exhibit a similar pattern as high-level

GOES-AMVs, achieving lowest VRMS differences for 100 hPa deep layers below the lidar

cloud top. For low-level MTSAT-2-AMVs (Fig. 35d), no distinct improvement is found for

assigning AMVs to layers relative to the lidar cloud-top height.

Meteosat-10 MTSAT-2
GOES (East and

West comb.)

high level 3673 621 226first evaluation period
(31 May –

11 June 2013) low level 9527 487 1192

high level 2144 295 143second evaluation period
(7 May –

12 May 2013) low level 5266 278 698

Table 11: Number of AMVs with collocated lidar observations
used for both evaluation periods
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6.1.2 Height bias correction

Figure 36 shows the VRMS difference and wind speed bias for the 30-day height bias

correction for GOES- and MTSAT-2-AMVs. Results for levels/layers based on a 30-day bias

correction (blue bars) are compared to levels/layers relative to the operational AMV height

(red bars) and relative to the lidar cloud-top height (green bars). For high-level GOES-AMVs

(Fig. 36a), the VRMS differences of the direct lidar height reassignment as well as the height

bias correction do not show advantages over the operational height. In addition, the wind

speed bias deteriorates for both height correction methods.

In contrast, low-level GOES-AMVs (Fig. 36b) exhibit clearly lower VRMS differences with

similarly positive results for the direct height reassignment and the 30-day height bias

correction. Again, layer-averaging exhibits additional benefits compared to using discrete

levels. High-level AMVs from MTSAT-2 (Fig. 36c) show a similar pattern as Meteosat-10-

AMVs in terms of VRMS differences. Lowest values are achieved for the direct height

reassignment, but the height bias correction also leads to a small reduction of VRMS

Figure 35: Mean VRMS differences (upper panels) and wind speed bias (lower panels) between AMV
winds and layer-averaged model winds for (a) high-level GOES-AMVs, (b) low-level GOES-AMVs, (c)
high-level MTSAT-2-AMVs and (d) low-level MTSAT-2-AMVs. Numbers in brackets are AMV counts.
Red dashed lines represent layers centered at the original AMV pressure height; green lines represent

layers relative to the lidar cloud-top height (cf. legend).
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differences compared to the operational values. In addition, the wind speed bias is slightly

reduced for both lidar height correction methods. For low-level AMVs of MTSAT-2

(Fig. 36d), the height bias correction shows slightly lower VRMS differences than the

operational AMV height. Wind speed bias values for both height correction methods are of

similar magnitude as the operational bias.

6.1.3 Summary and discussion

For other geostationary satellites, the positive effect of the direct height reassignment as well

as of the height bias correction is less distinct than for Meteosat-AMVs. This is likely due to

different AMV derivation algorithms that are aided by different model fields, and different

Figure 36: Mean VRMS differences (upper panels) and wind speed bias (lower panels) between AMV
and model winds for (a) GOES high-level, (b) GOES low-level, (c) MTSAT-2 high-level and (d)

MTSAT-2 low-level AMVs. Numbers in brackets are AMV counts. ‘AMV oper’ corresponds to the
operational AMV height and ‘CALIPSO’ to the direct lidar height reassignment . The applied height bias
correction function is based on a 30-day mean (‘30days’). Results are shown both for assigning AMVs to

discrete levels (meaning the operational level, the level at 60 hPa below the actual lidar cloud top and
the bias-corrected level) in the left part of each panel and to 120-hPa layer-averages centered at these

levels in the right part of each panel.
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quality control procedures that have to be explored in more detail before final conclusions can

be made. However, both height correction methods overall indicate benefits in terms of

VRMS differences and wind speed bias when compared to the operational wind errors.

MTSAT-2-AMVs show both for high-level and low-level AMVs either neutral or slightly

positive effects for both lidar height correction methods when compared to results at the

operational AMV height. For low-level GOES-AMVs, results of the direct height

reassignment as well as of the height bias correction indicate that lidar observations can

reduce VRMS differences by up to 30%. This large reduction also reflects a well known

feature of low-level GOES-AMVs in inversion regions, when AMVs are assigned too high in

the atmosphere by NESDIS (Cotton, 2012). In contrast, high-level GOES-AMVs exhibit only

small benefits for reducing VRMS differences, and even show degradation in terms of the

wind speed bias. This may be related to a wind speed bias correction of +8% applied

operationally by the data provider (NESDIS) to most GOES-AMVs above a pressure height

of 300 hPa (Christopher Velden, personal communication). Consequently, there may be a

need to either adapt the CALIPSO-based height bias correction for high-level GOES-AMVs

or to apply the height bias correction to GOES-AMVs without the wind speed bias correction.

However, it should also be kept in mind that the sample size for high-level GOES-AMVs is

comparably small and further studies are required to draw robust conclusions regarding the

benefits of a lidar-based height correction of high-level GOES-AMVs.

Generally, lidar-based height correction methods show promising results especially for low-

level GOES-AMVs, but there is still need for research. Most reliable results for GOES-AMVs

or MTSAT-2-AMVs could be obtained by verifying the AMV wind with radiosonde

observations, as it is shown for MSG-AMVs in Section 4.1. However, the traditional launch

times of operational radiosondes are around 00 UTC and 12 UTC, which coincide best with

overpassing times of the sun-synchronous orbit of CALIPSO over the Meteosat domain. In

other regions, the collocation of radiosondes and CALIPSO lidar observations is fairly

complicated and would require an extensively long study period (several years) to receive

enough collocated AMV/CALIPSO/radiosonde pairs.

6.2 Comparison of different statistical height correction strategies

The lidar-based height correction presented in this thesis constitutes a novel approach to

categorize AMV errors with independent lidar observations. A different strategy of AMV
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error characterization that is often used in AMV monitoring in NWP systems is the Level-of-

Best-Fit (LBF) method. The AMV wind is compared to model profiles in order to find the

model pressure level where the observed AMV wind fits best to the model wind. As the LBF

method is highly dependent on the underlying model field, care should be taken when

interpreting the results due to inherent model errors. In addition, it should be noted that LBF

statistics are only based on a small (and, in contrast to lidar height correction statistics) not

randomly distributed subsample of AMVs, as LBF can only be applied for certain wind

conditions (e.g. without multiple minima in the model profile). However, a recent study that

compared the LBF error statistics of the global models of ECMWF and the Met Office

suggests that long-term height differences have overall similar characteristics (Salonen et al.,

2015a).

Recently, an initial comparison between the lidar-based height bias correction and the LBF

method used at ECMWF was initialized, and first joint results were presented by Kirsti

Salonen (ECMWF) at the EUMETSAT Meteorological Satellite Conference in France in

September 2015. Statistics from both methods were compared for a study period of about two

Figure 37: Mean adjustment based on the ECMWF best fit pressure (magenta lines) and the lidar
height bias correction (green lines) for GOES-15 IR-AMVs (left panel), Meteosat-7 VIS-AMVs (middle

panel) and Meteosat-10 WV-AMVs (right panel). Adapted from Salonen et al., 2015b
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and a half months for the five main geostationary satellites Meteosat-10, Meteosat-7,

MTSAT-2, GOES-13 and GOES-15 for the different channels VIS, IR and WV.

Figure 37 shows example cases for different satellite and channel combinations. Generally,

the shape of the curves is similar for both methods, which holds as well for other channel and

satellite combinations (not shown). However, the magnitude of the proposed height

adjustment can vary considerably up to 50-60 hPa difference between the two methods, and

there is a tendency for lidar-based corrections to locate AMVs lower than the LBF approach

(see Salonen et al., 2015b for further details).

Generally, the lidar-based AMV height correction and the LBF method provide information

on systematic height errors that are independent of each other. A comparison of these two

methods can provide new insights about AMV error characteristics and their use in

NWP models and should be exploited further in the future.
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7. CONCLUSION AND OUTLOOK

Undoubtedly, AMVs are a crucial source of wind information for constructing the initial state

for NWP models. However, major error sources such as height assignment issues, error

correlations and representativity errors due to an interpretation as a single-level wind remain,

so that the dense AMV data set must be heavily thinned in data assimilation systems. This

thesis has, for the first time, investigated the potential of reducing the wind errors of AMVs

through the incorporation of cloud-top observations from the lidar aboard the polar-orbiting

satellite CALIPSO. High-resolution lidar cloud-top observations are expected to be

independent of the AMV derivation and therefore exhibit a reliable information source that

can be used for the AMV height correction.

The first part of this thesis addressed the research question, whether space-borne lidar

observations can be used to improve the representation of AMVs by assigning them to a lidar-

based layer position and layer depth. Individual AMVs were reassigned to different levels and

layers relative to directly collocated lidar cloud-top observations. The wind evaluation was

conducted using operational radiosondes and FG model fields from the global model GME.

Both evaluation methods consistently showed the lowest VRMS differences and wind speed

bias values for high-level AMVs for 120-hPa deep layers below the lidar cloud-top. The

evaluation of low-level AMVs revealed slightly deviating results for the radiosonde and

model evaluation due to a different operational height assignment approach (AMV

assignment to cloud base and cloud top, respectively) during the corresponding evaluation

period. Overall, the reduction of VRMS differences for the 120-hPa layers below the lidar

cloud top was quantified as 15-17% when compared to discrete operational levels, and 8-12%

when compared to reference layers of the same depth centered at the operational level. These

results depended somewhat on the respective evaluation period, evaluation method and AMV

altitude, but were generally consistent for all settings. Furthermore, the lidar-based height

reassignment reduced the “slow” bias of current upper-level AMVs, and horizontal AMV

error correlations were decreased by ~50 km. Generally, a subdivision into tropical and extra-
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tropical regions led to similar findings, supporting the robustness of the results presented in

this study.

As the direct height reassignment requires collocated lidar observations for each AMV, the

applicability of this method is restricted to space-borne lidar observations available in real-

time and is therefore rather complex to apply in operational data assimilation systems.

Therefore, the second scientific question underlying this thesis was the issue of how NWP

may benefit from incorporating lidar information for the AMV height correction in a

statistical approach without the need for real-time lidar data. To address this, an alternative

height correction to the direct AMV height reassignment was proposed by introducing a

statistical correction of systematic AMV height biases that can be applied to all AMVs of the

respective geostationary satellite. For that purpose, an average adjustment based on 30-day or

10-day training periods was calculated and then applied to a subsequent, independent

evaluation period. Results indicated that this height bias correction achieves on average 50%

of the VRMS reduction of the direct height reassignment. The height bias correction therefore

provides a feasible way of correcting operational AMV heights that requires neither real-time

lidar data nor directly collocated lidar observations and would be easy to implement in an

NWP system. When anticipated for operational use, monthly or weekly updates of the height

bias correction functions seem advisable in order to catch features due to seasonal variability

or changes in the height assignment processing. However, the optimal update interval is still

to be determined.

The applicability of using lidar-corrected and layer-averaged AMVs in NWP systems was

tested by running assimilation and forecast experiments for a 16-day period with the global

model ICON with overall encouraging results. Of special note was the reduction of the wind

speed bias by up to 20% when the resulting FG model fields are compared with radiosonde

soundings in the tropics and the southern hemisphere. However, a precise assessment of the

impact on forecast skill will require further experimentation, such as applying longer study

periods and taking into account seasonal variability.

In summary, the lidar-based height correction methods presented in this thesis have proven to

be a valuable approach for the reduction of the VRMS difference, the wind speed bias and

error correlations of operational AMVs, suggesting that NWP may benefit from assimilating

lidar-corrected and layer-averaged AMVs. Options for future applications are to be explored

7 CONCLUSION AND OUTLOOK
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in more detail and may contain the expansion of lidar-based height correction techniques to

other geostationary (or polar-orbiting) satellites. However, further investigations in this

direction are needed before final conclusions can be made.

Moreover, the application of height correction methods based on space-borne lidar

information is not restricted to CALIPSO. Other space-borne lidars are planned to be

launched in the near future, e.g. the Earth Clouds, Aerosols and Radiation Explorer

(EarthCARE, see e.g. Illingworth et al., 2015). Thus, the assimilation of AMVs as layer-

averages in combination with lidar information for the AMV height correction is seen as a

promising approach to increase the benefit of AMVs for NWP in future. Furthermore, a lidar-

based height bias correction may be useful for deriving consistent data sets for climate

research and to evaluate AMV height assignment methods.

The lidar-based height correction approach is planned to be performed as a part of the DWD

contribution to the Satellite Application Facility for Numerical Weather Prediction

(NWP-SAF) AMV monitoring in the future. This EUMETSAT-funded initiative collects

monitoring statistics from different weather centres and provides statistical comparisons

between observations and model background fields to produce a detailed analysis of errors for

various observation types (Forsythe, 2007; Cotton, 2012).
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List of abbreviations

AMV Atmospheric Motion Vector

CAD Cloud-Aerosol-Distinguisher

CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations

CALIOP Cloud-Aerosol Lidar with Orthogonal Polarization

CCC Cross-Correlation Contribution method

CNES Centre National d'Études Spatiales

DWD Deutscher Wetterdienst

EBBT Equivalent Black Body Temperature

ECMWF European Centre for Medium-Range Weather Forecasts

EUMETSAT European Organisation for the Exploitation of Meteorological Satellites

ESA European Space Agency

FG First Guess

GCOM Global Change Observation Mission

GME Global Model

GEOS-5 Goddard Earth Observing System model, version 5

GMAO Global Modelling and Assimilation Office

GOES Geostationary Operational Environmental Satellite

ICON Icosahedral Nonhydrostatic model

IR Infra-Red

JMA Japan Meteorological Agency

LBF Level of Best Fit

LEV Level assimilation with lidar-corrected AMVs

LIDAR Light Detection And Ranging

LYR Layer assimilation with lidar-corrected AMVs

METOP Meteorological Operational Satellite

MFG Meteosat First Generation

MODIS Moderate resolution Imaging Spectroradiometer

MSG Meteosat Second Generation

MTSAT Multi-Functional Transport Satellite
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MVD Mean Vector Difference

NASA National Aeronautics and Space Administration

NCEP National Centers for Environmental Prediction

Nd:YAG Neodymium-doped Yttrium Aluminium Garnet

NESDIS National Environmental Satellite Data and Information Service

NOAA National Oceanic and Atmospheric Administration

NWP Numerical Weather Prediction

NWP-SAF NWP Satellite Application Facility

OCO Orbiting Carbon Observatory

QI Quality Index

REF Reference run (assimilation experiments)

RMS Root Mean Square error

SCA Scene Classification Algorithms

SEVIRI Spinning Enhanced Visible and Infrared Imager

SIBYL Selective Iterative Boundary Locator

THORPEX The Observing System Research and Predictability Experiment

T-PARC THORPEX Pacific Asian Regional Campaign

VIS Visible

VRMS Vector Root Mean Square error

WV Water Vapour

3DVAR 3-Dimensional Variational data assimilation
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