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Abstract

Atmospheric Motion Vectors (AMVs) provide valuable wind information for the initial
conditions of numerical weather prediction models. However, only a small fraction of the
available observations is used in current data assimilation systems due to height assignment
issues and horizontal error correlations.

The aim of this thesis is to investigate the feasibility of correcting the pressure heights of
operational AMVs from the geostationary satellites Meteosat-9 and Meteosat-10 with
cloud-top heights derived from independent lidar observations by the polar orbiting Cloud—
Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. The
intention is to reduce the height assignment error as well as the horizontal error correlation of
AMVs for their use in data assimilation. Additionally, AMVs are treated as winds in a vertical
layer as proposed by several recent studies. Corrected and uncorrected AMV winds are
evaluated using radiosonde observations as well as short-term forecasts from the global
forecasting system of the German Weather Service.

Firstly, a direct lidar-based height reassignment of AMVs with collocated CALIPSO
observations is evaluated. Assigning AMV winds from Meteosat-10 to ~120 hPa deep layers
below the lidar cloud top reduces the Vector Root Mean Square (VRMS) differences of
AMVs from Meteosat-10 by 8-17% depending on the evaluation method, evaluation period
and AMV altitude. In addition, the AMV error correlation is reduced by about 50 km through
the correction.

Secondly, CALIPSO observations are used to derive statistical height bias correction
functions for a general AMV height correction that can be applied to all operational AMVs
from a geostationary satellite. Such a height bias correction achieves on average about 50% of
the reduction of VRMS differences attained using the direct height reassignment, but has the
clear advantage of avoiding the need for real-time lidar data and directly collocated lidar
observations. Initial assimilation and forecast experiments with statistically corrected and
layer-averaged Meteosat-10-AMVs in the framework of the current global forecasting system
of the German Weather Service reveal encouraging results.

Overall, the results of this thesis demonstrate that height assignment errors of
Meteosat-AMVs can be significantly reduced when information from lidar cloud-top
observations is incorporated. Thus, lidar-based height correction methods exhibit a promising
approach for an improved representation of AMVs in numerical weather prediction models in
the future.







Zusammenfassung

Satelliten-Windvektoren (engl. Atmospheric Motion Vectors, kurz AMVs) liefern wertvolle
Informationen zu atmospharischen Windbedingungen, die flr die Initialisierung wvon
numerischen Wettervorhersage-Modellen bendtigt werden. Allerdings wird nur ein Bruchteil
aller verfigbaren AMVs wegen Problemen mit der Hohenzuordnung und horizontalen
Fehlerkorrelationen in der Datenassimilation derzeit verwendet.

In dieser Arbeit soll untersucht werden, inwiefern die Druckhdhen von operationellen AMVs
von den geostationdren Satelliten Meteosat-9 und Meteosat-10 mit Hilfe von satelliten-
gestutzten Lidarmessungen des polar-umlaufenden Satelliten CALIPSO (engl. Cloud-Aerosol
Lidar and Infrared Pathfinder Satellite Observations) korrigiert werden kénnen, um damit
sowohl die fehlerhafte HoOhenzuordnung als auch horizontale Fehlerkorrelationen zu
verbessern. Zusatzlich werden AMVs, wie bereits von anderen aktuellen Studien
vorgeschlagen, als vertikales Schichtmittel betrachtet. Korrigierte und unkorrigierte AMVs
werden sowohl mit Radiosonden-Messungen als auch mit Modellfeldern von Kurzzeit-
Vorhersagen des Globalmodells des deutschen Wetterdienstes ausgewertet.

Zuerst wird eine direkte Hohenkorrektur von Meteosat-10-AMVs mit Hilfe von nahen
CALIPSO-Lidarmessungen der Wolkenoberkante analysiert. Dabei erzielen Schichtmittel
einer vertikalen Ausdehnung von 120 hPa unterhalb der Lidar-Wolkenoberkante eine
Verringerung der Vector Root Mean Square (VRMS) Differenzen von 8-15%, abhangig von
Auswertungsmethode, Auswertungszeitraum und AMV-Hohe. Zusétzlich wird die
horizontale Korrelation der AMV-Fehler um ca. 50 km verringert.

Als zweiter Ansatz werden CALIPSO-Lidarmessungen dazu verwendet, statistische
Hohenkorrektur-Funktionen abzuleiten, die auf alle AMVs eines bestimmten Satelliten
angewendet werden konnen. Diese statistische Hohenkorrektur erreicht ungeféhr 50% der
Verbesserung, die durch die direkte Hohenkorrektur erzielt wird, bietet aber den Vorteil,
keine direkt benachbarten Lidarmessungen in Echt-Zeit zu bendtigen. Erste Assimilations-
und Vorhersage-Experimente mit statistisch  korrigierten Meteosat-10-AMVs  im
Globalmodell des deutschen Wetterdienstes zeigen vielversprechende Ergebnisse.

Insgesamt zeigen die Ergebnisse dieser Arbeit, dass die Verwendung von Lidardaten einen
signifikanten Beitrag zur Fehlerverringerung von AMVs leistet. Die im Zuge dieser Arbeit
vorgestellten lidar-basierten Hohenkorrektur-Methoden bieten daher einen aussichtsreichen
Ansatz, AMVs in Wettermodellen zukiinftig besser reprasentieren zu kdnnen.
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1. INTRODUCTION

Satellite observations are crucial ingredients for the initialization of Numerical Weather
Prediction (NWP) models as they provide information on atmospheric processes with
unprecedented coverage and resolution. The amount and variety of available satellite
observations has increased drastically during recent decades and requires complex data
processing techniques in order to provide suitable data products to NWP centres in real-time.
Nowadays, sophisticated data assimilation systems make better use of observations by
applying enhanced forward operators and quality control procedures, as well as better forecast
models and assimilation algorithms. Overall, satellite observations continue to play an
important role in the forecast performance of NWP models in both hemispheres (Bouttier and
Kelly, 2001; Kelly and Thépaut, 2007; English et al., 2013).

One essential information source for the prevalent wind conditions is Atmospheric Motion
Vectors (AMVs). AMVs are retrievals of the atmospheric wind derived by tracking cloud and
water vapour structures in successive images from multispectral satellite imagery. The
displacement of these structures generally characterizes tropospheric motions, and therefore
the horizontal wind speed and wind direction can be determined. AMVs provide wind
information with unique spatial and temporal coverage especially over the oceans, in polar
regions and over the southern hemisphere where in-situ observations are typically rare. Given
that the current global observing system is heavily skewed towards mass/temperature
observations, reliable and area-covering wind observations in remote areas are an essential
data source for global NWP models (Velden et al., 2005; Forsythe, 2007; Weissmann et al.,
2012; Baker et al., 2014).

AMVs have been derived since the early 1970s and have been an important ingredient for
NWP models since then. In the early stages, AMVs were derived mostly manually. Over the
following years, the AMV retrieval greatly enhanced, and nowadays allows a fully automatic
extraction of AMVs. Until recently, mainly geostationary satellites were used due to the
regular image frequency recording the same scenery, which enables wind information from
about 60°N to 60°S to be derived (Menzel, 2001). Since the launch of the first polar-orbiting
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satellite carrying a Moderate Resolution Imaging Spectroradiometer (MODIS) instrument in
2002, new possibilities for extracting wind information have been exploited, allowing for
AMYV derivation also in polar regions (Key et al., 2003; Dworak et al., 2009; Key et al.,
2014).

The accuracy as well as the amount of available AMVs steadily increased during previous
decades. The sensor technology in the satellite instruments has been enhanced continuously,
now offering more channels, shorter time intervals between consecutive images and a higher
pixel resolution, which consequently leads to higher data volume and enhanced coverage.
Improved computer capacities and efficient telecommunication systems are the basis for an
efficient usage of AMVs in NWP models (Forsythe, 2007). Nowadays, AMVs from five
geostationary satellites and several polar-orbiting satellites are assimilated routinely in all
global NWP systems. Figure 1 illustrates the AMV distribution during one assimilation cycle
at the German Weather Service (DWD for Deutscher Wetterdienst). By using imagery from
geostationary and polar-orbiting satellites, AMVs are almost globally available. However, a
data gap between geostationary and polar-orbiting satellites exists at about 60° latitude for
both hemispheres, leading to difficulties in accounting for phenomena such as the polar jets.
This problem will be tackled by exploiting the possibility of combining images from different
satellites, either with two polar-orbiting satellites like the Meteorological Operational
Satellites (METOP) A/B (Hautecoeur et al., 2014) or with one geostationary and one polar-
orbiting satellite (Lazarra et al., 2014).

@ Meteosat-10 @ MTSAT-2 GOES-15 @® AQUA @ NOAA15 NOAALS
@ Meteosat-7 @ GOES-13 @ METOP-A @ TERRA @ NOAAl6 @® NOAAL9
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Figure 1: Illustration of the AMV distribution during one assimilation cycle on 7 May 2013,
12 UTC for the global model of the German Weather Service. All available AMVs (before quality
control procedures) from operational geostationary and polar-orbiting satellites with reference
times between 10:30 UTC and 13:30 UTC (assimilation window) are shown.




1.1 State of the art

The positive impact of the assimilation of AMVs on the forecast skill of global NWP systems
is frequently reviewed, and results generally emphasize the importance of AMV wind field
observations for data assimilation. A recent inter-comparison project initialized by the Met
Office and Météo France (Payan and Cotton, 2012) analysed the impact of AMVs at eight
international forecasting centres and found that NWP systems continue to benefit from the
assimilation of AMVs. Overall, the results of this collaborative impact study demonstrate the
significant relative importance of AMVs in the global observing system for data assimilation.
Several recent studies have shown that the assimilation of AMVs improves the NWP forecast
skill, e.g. from DWD (Cress and Bitzer, 2012), the European Centre for Medium-Range
Weather Forecasts (ECMWF) (Rohn et al., 2001; Bouttier and Kelly, 2001), the U.K. Met
Office (Cotton et al., 2014), and the U.S. Navy (Baker et al., 2012). The benefit obtained by
assimilating AMVs in global NWP models is not restricted to areas where the AMVs are
derived but extends to regions further away from the actual AMV position (Santek, 2010).
The positive impact of AMVs is particularly pronounced when assimilating AMVs for
tropical cyclone track forecasts (Goerss et al., 1998; Soden et al., 2001; Wang et al., 2006).
Furthermore, the beneficial contribution of AMVs derived from imagery of polar-orbiting
satellites has been demonstrated in several studies (Key et al., 2003; Bormann and Thépaut,
2004; Riishojgaard and Zhu, 2004). Beyond their relevance for NWP models, AMVs
additionally contribute to other fields of research, e.g. nowcasting systems (Mecikalski and
Bedka, 2006; Merk and Zinner, 2013; Garcia-Pereda, 2014).

1.1 State of the art

Although AMVs have proven to be an important data source for the atmospheric wind field in
NWP models, some issues remain. Several studies indicate that the assimilation of AMVs
does not yet exploit its full potential. Quality problems may often be the reason why AMV
assimilation does not always improve forecast skill more clearly (Bouttier and Kelly, 2001,
Isaksen et al., 2010). Studies on AMYV error characteristics are therefore an active field of
research (e.g. Bresky et al., 2012; Lean et al., 2015; Salonen et al., 2015a).

In particular, the height assignment of AMVs continues to be a challenging task and
introduces significant errors. Velden and Bedka (2009) estimated that height assignment
errors contribute up to 70% to the total Vector Root Mean Square (VRMS) difference
between AMV winds and radiosonde winds. In addition, these errors can be horizontally
correlated up to several hundred kilometers (Bormann et al. 2003). A number of error sources
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contribute to this: Temperature and humidity model profiles that are used to retrieve the AMV
height may contain errors that are often correlated horizontally, and multi-layer clouds or
semi-transparent clouds pose a further challenge for the height assignment process. In
practice, these issues lead to the need for a massive thinning of the originally dense AMV
dataset for data assimilation. Typical thinning strategies at NWP centres have scales of
200 km by 200 km (horizontal extent) by 100 hPa (in the vertical) for one single observation.
As a consequence, only a small percentage of all available AMVs are used for data
assimilation (Forsythe, 2007).

» Interpreting AMVs as layer-averages

AMVs are traditionally interpreted as single-level observations, and this continues to be the
established strategy in operational data assimilation systems to date. However, this
assumption might provide a suboptimal representation of AMVs. When clouds are observed
by satellite imaging instruments, radiation is generally received from finite vertical layers and
not only from the highest cloud level. In particular, upper-level clouds like cirrus are mostly
semi-transparent and the detected signal may have contributions not only from the cloud top,
but also from subjacent layers of often large vertical extent. Additionally, the motion of
clouds that are used as tracking features to derive AMVs rather represents a vertically
averaged wind over a cloud layer rather than the wind at the cloud top as is commonly
understood (Schmetz et al., 1993; Hernandez-Carrascal and Bormann, 2014; Salonen et al.,
2015a).

Several recent studies have revealed that AMVs represent vertical layers rather than discrete
levels and that this should be accounted for in NWP models to reduce AMV errors. One of the
first studies in this direction was conducted by Rao et al. (2002), suggesting benefits from
spreading AMV wind information to more than one level. A subsequent study of Velden and
Bedka (2009) compared AMV winds to layer-averaged radiosonde winds at three different
locations in the U.S. for over three years. These layers extend from the operational AMV
height downward with increasing layer depth from 10 hPa to 300 hPa. Generally, a
consistently better agreement with radiosonde winds was found when a layer-averaging was
applied, with varying optimal configurations for different satellite channels and altitude
regions. Furthermore, Hernandez-Carrascal and Bormann (2014) showed in a simulated
framework that assigning AMVs to layers that comprise the actual cloud from cloud top to
cloud base shows advantages over the traditional single level assumption. Lean et al. (2015)
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also quantified height assignment AMV error characteristics using a set of simulated AMVs
and found the closest fit of AMVs to layer-averaged model winds that are most commonly
located below the estimated cloud top.

Altogether, the potential of assigning AMVs to vertically extended layers instead of discrete
levels has been clearly demonstrated. However, current assimilation systems do not use this
information yet because the exact position and depth of this layer are relatively unknown and
most likely depend on the AMV dataset and processing (Forsythe, 2007; Weissmann et al.,
2013).

» AMV pressure height comparison with lidar cloud-top observations

Lidar observations provide reliable information on cloud-top heights that is independent from
the AMV derivation procedures and from model fields used for the processing. For example,
the space-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the
polar-orbiting Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations
(CALIPSO) satellite provides the framework for the comparison of AMV pressure heights
and lidar cloud-top observations. Initial efforts in this direction at the European Organisation
for the Exploitation of Meteorological Satellites (EUMETSAT) were presented at the
International Winds Workshop 2010 and showed a good agreement with CALIPSO lidar
observations for low-level AMVs (Seze et al., 2008). However, high- and mid-level AMVs
exhibited large differences between AMV heights and collocated lidar observations. The
authors ascribed these mismatches to very thin cirrus clouds at high levels. These can only be
observed in a limited way by satellite imaging instruments whereas lidar observations allow
for the detection of optically thin clouds. Di Michele et al. (2013) also compared AMV
pressure heights from Meteosat-9 with CALIPSO lidar observations for a 10-day period and
found similar characteristics. Both studies made first comparisons between AMV and lidar
cloud-top observations, but did not investigate the effect of a direct AMV height correction by
evaluating wind errors of the lidar-corrected AMVs with radiosondes or model fields. In
addition, neither of these comparison studies had collocation constraints in the vertical, which
can exclude situations where AMV and CALIPSO might not see the same cloud due to the

temporal and spatial distance or diverging instrument capabilities.

A first study on a lidar-based AMV height correction with airborne lidar observations was
conducted by Weissmann et al. (2013) and was intended to serve as a testbed for future space-
based applications. A small, regional sample of airborne lidar observations was used to
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correct AMVs from the Japanese geostationary Multi-Functional Transport Satellite 1R
(MTSAT-1R) during The Observing System Research and Predictability Experiment
(THORPEX) Pacific Asian Regional Campaign (T-PARC, for more information see e.g.
Weissmann et al., 2011). The verification was done with aircraft dropsondes launched during
the field campaign. Results indicated that assigning AMVs to 100-150 hPa deep layers below
the lidar cloud top reduces the AMV wind error by 10-15% compared to layers of the same
depth centered at the original AMV height.

1.2 Goals and outline

The aim of this thesis is to further elaborate the two approaches presented in the previous
section that can potentially reduce the errors of AMVs. Firstly, satellite lidar cloud-top
observations from the polar-orbiting satellite CALIPSO are used to correct AMV pressure
heights. Secondly, AMVs are treated as vertically extended layer observations instead of
single-level observations. As mentioned above, the optimal layer position and layer depth
relative to the derived (operational) AMV pressure height may be highly situation-dependent.
Lidar observations, in contrast, provide accurate information on the cloud-top height that is
independent of different AMV datasets and processing algorithms. In order to find an
appropriate layer that should be assigned to AMVs in data assimilation systems, a number of
vertical layers relative to the lidar cloud top and relative to the original AMV height are
investigated. Furthermore, different depths of these layers are tested and compared to the
traditionally used single-level approach. This procedure is schematically illustrated in
Figure 2.

In this work, two different AMV height correction methods based on lidar observations are
evaluated. In the first part of this thesis, the effect of applying a direct height reassignment to
individual AMVs with collocated CALIPSO observations is assessed. As proposed by
Weissmann et al. (2013), this thesis conducts the transition from a limited-area AMV height
correction with airborne lidar observations to larger scales using a sample of satellite lidar
observations with significantly more AMV observations and a larger time period. Operational
collocated radiosondes are used to evaluate AMV winds before and after the height
correction. To overcome the limitations of spatially and temporally sparse radiosonde
observations, model equivalents from the Global Model GME of DWD are used additionally

for the wind evaluation.




1.2 Goals and outline

? METEOSAT-10

original
AMV height

Figure 2: Illustration of the AMV height correction using space-bo rne lidar observations: Pressure
heights of Meteosat-10-AMVs are corrected with lidar observations from the polar-orbiting
satellite CALIPSO. Different layer positions and layer depths relative to the lidar cloud-top height
(green) and the original AMV height (purple) are evaluated.

However, such a direct height reassignment can only be applied to collocated
AMV/CALIPSO observations, which exhibit a comparatively small subset of all AMVs. As
an alternative approach to the direct AMV height reassignment, a general height adjustment
of operational AMVs is derived to correct systematic height biases. Applying this height bias
correction allows proceeding from a direct height reassignment of individual AMVs to a
larger scope of application, as this approach facilitates the usage of lidar information for the
AMV height correction without the need for real-time lidar data and directly collocated lidar
observations. To investigate the effect of statistically lidar-corrected and layer-averaged
AMVs in an operational NWP system, assimilation and forecast experiments are conducted
with the current Icosahedral Nonhydrostatic (ICON) global NWP model of DWD. The two
methods to correct AMV heights presented in this work are referred to as DIRECT HEIGHT

REASSIGNMENT and HEIGHT BIAS CORRECTION throughout the following chapters.

In summary, this thesis intends to address the following scientific questions:

1. Can space-borne lidar observations be used to correct pressure heights of AMVSs,
and which combination of layer depth and layer position relative to the lidar cloud-

top observation provides an optimal representation of the AMV wind?
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2. Can a statistical correction of systematic height biases be deduced from individual
AMV height reassignment values as a general height bias correction, and does it
improve forecast skill when assimilating statistically lidar-corrected and layer-
averaged AMVs in an NWP system?

» Structure of this thesis

Section 2 summarizes the basic principles of the different observation types that are used in
this thesis. This comprises the derivation of AMV observations and potential error sources
during the derivation process and information on lidar observations. In addition, information
about the operational global forecasting systems at DWD and the assimilation of AMVSs is
provided. Section 3 gives an overview on the data sets and introduces the methodology of the
two lidar-based height correction methods developed in this thesis. A brief overview of the
wind evaluation methods completes this section. Sections4 and 5 present results on lidar-
based height correction methods for the European geostationary Meteosat Second Generation
(MSG) satellites. In Section 4, results from the direct height reassignment for individual
AMVs with adjacent lidar observations are shown, followed by a brief analysis of error
correlations. Section 5 comprises results from the height bias correction, including
assimilation and forecast experiments with statistically lidar-corrected AMVs. Section 6
provides a brief outlook on potential future applications, such as an application of lidar-based
height correction methods to AMVs from other geostationary satellites. A summary of the
findings of this thesis and conclusions that can be drawn are provided in Section 7.

Parts of this thesis are contained in two publications that were submitted to the Journal of
Applied Meteorology and Climatology (JAMC) during the PhD work. The verification of the
direct height reassignment with radiosonde observations (i.e. results shown in Section 4.1) is
contained in Folger and Weissmann (2014). Furthermore, the evaluation of the direct height
correction with GME model equivalents (results shown in Section 4.2.1) and the height bias
correction (comprising the Sections 5.1 and 5.2), including an outlook to the application of
lidar-based height correction methods to other geostationary satellites (Section 6.1) are
presented in Folger and Weissmann (2016). The corresponding parts about data and
methodology used are also partly extracted from these papers, with additional and more
detailed information presented in this thesis.




2. BASIC PRINCIPLES

This thesis uses two different types of observations, which will be introduced in this section.
First, information on operational AMVs and their derivation process (including tracking and
height assignment), as well as the associated error sources is provided. Second, space-borne
lidar observations and their use to correct the operational AMV pressure heights are
discussed. The basic principle of lidar measurements is introduced and details on space-borne
CALIPSO lidar observations are presented. An overview of the global forecasting systems
GME and ICON of DWD and their AMV assimilation procedures concludes this section.

2.1 AMV observations

2.1.1 Derivation of AMVs from cloud features

The basic strategy for the AMV derivation consists of four steps: (1) choose a feature that can
be traced, (2) track that feature in consecutive satellite images and determine the magnitude
and direction of the resulting displacement vector, (3) assign a representative pressure height
to the vector, and (4) deduce a quality index for the derived AMV as an estimate on the
product quality (Borde et al., 2014a). Although the algorithms used by the AMV producing
centres vary slightly for both the tracking and the height assignment process, the basic
strategy is similar. A general introduction to the principles of the AMV derivation and
potential error sources is given in this section. As this thesis focuses on MSG-AMVs, an
overview of MSG satellites as well as their specific AMV derivation scheme will be presented

additionally.
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2.1.1.1 Tracking of atmospheric motion

AMVs are derived by tracking the displacement of atmospheric structures in sequential
satellite images. Typically, cloud structures are used for the tracking process, but water
vapour gradients may also be traced (see e.g. Biiche et al., 2006). As AMV pressure heights
of tracked cloud structures are compared to lidar cloud-top observations in this thesis, AMVs
derived from water vapour structures are not discussed further. Figure 3 shows the basic
principle of the tracking process for a cloud feature. First, a suitable tracer is detected within a
target box (orange), which is then tracked in several consecutive images within a predefined
search area (purple) by applying cross-correlation techniques (see e.g. Schmetz et al., 1993).
A horizontal wind speed and wind direction can be determined through the displacement of
the respective feature. Generally, 3-4 images are used for the tracking process for
geostationary satellites in order to allow for consistency checks between the individual wind
vectors. The time interval of these images varies from 15-60 minutes for geostationary
satellites depending on the respective instrument capabilities. In contrast, AMVs from polar-
orbiting satellites generally use only two pictures for the tracking, as the time gap between the
single images is about 100 minutes (one Earth orbit) (Menzel, 2001; Forsythe, 2007).

AMVs are derived by using images from different channels. Generally, visible channels (VIS)
are used in the lower troposphere below pressure heights of 700 hPa during daylight periods.
AMVs from infrared channels (IR) are derived throughout the troposphere, whereas AMVs
from water vapour channels (WV) are mainly found in upper levels above 600 hPa (Velden et
al., 2005; Velden and Bedka, 2009).

target box/ search area

tracer

t t + dt

Figure 3: Illustration of the tracking process of a cloud structure in two consecutive satellite
images. The feature detected in the orange target box in the left image is traced in the subsequent
right image within a pre-defined search area (purple).Through the displacement of the feature, a

horizontal wind speed and direction can be determined (yellow arrow).
Adapted from Forsythe, 2007.
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The optimal configuration for the AMV derivation depends on parameters such as the tracer
size and the time difference between the images, which may in turn depend on other
parameters such as channel or image resolution (Borde and Garcia-Pereda, 2014b; Velden et
al., 2000; Szantai et al., 2000). Garcia-Pereda and Borde (2014) found the lowest AMV errors
for time differences of 10 - 15 minutes between the sequential satellite images in combination
with tracer boxes of 16x16 or 24x24 pixels. Different processing centres pursue different
strategies for the feature tracking and the subsequent height assignment. Inter-comparison
studies between different processing centres have been conducted on a regular basis in recent
years (Genkova et al., 2010; Santek et al., 2014).

2.1.1.2 AMV height assignment

Generally, the uppermost cloud pixels (e.g. the coldest peak or the coldest 25% of all pixels)
within the target box are used to derive a representative height (Genkova et al., 2010). There
are several AMV height assignment methods that are employed operationally for cloudy
targets. A short introduction to the different concepts is provided in the following. A more
detailed overview on height assignment methods can be found e.g. in Nieman et al. (1993,
1997).

» Brightness temperature conversion

The Equivalent Black Body Temperature (EBBT) method determines a representative
pressure height by using temperature profiles of a model forecast and the brightness
temperature of the respective cloud pixels of the satellite image. The brightness temperature is
defined as the temperature an emitter (e.g. a ‘grey’ cloud structure detected by a satellite
imager) would have if it was a black body (see e.g. Besancon, 1990). The AMV is then
assigned to the model level that best fits the observed brightness temperature of the satellite
image. This method is mainly used for low-level opaque clouds from channels in the infrared
and visible range (Schmetz et al., 1993).

» Multi-channel techniques

Two multi-channel techniques are widely used at AMV processing centres to better account
for the semi-transparency of clouds: the CO,-slicing and the H,O-intercept method. Both

methods use the differences between two channels for the same satellite scene to derive an
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AMV pressure height. The CO»-slicing method uses the 13.9 micron band in combination
with an IR image (Smith and Platt, 1979; Menzel et al., 1983). Water vapour sensitive
channels provide an alterative approach to account for semi-transparency issues for satellites
with no CO,-channel available. The H,O-intercept is conceptually similar to the CO ,-slicing,
but uses a combination of one WV-image and one IR-image. (Szejwach, 1982; Schmetz et al.,

1993). Multi-channel techniques are based on the following equation:

cs bed cs
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The left hand side represents the observed satellite radiances in the respective CO ; or WV
(numerator) and IR (denominator) channel. The difference between the radiances of the
detected cloud structure and a clear-sky region (representing the surface radiation) is
determined for both channels. The clear sky radiance R is derived either from clear sky
pixels adjacent to the cloud feature or from temperature profiles of a model short-term
forecast. The right hand side includes the differences between a calculated “black” cloud
(bcd) and a clear sky radiance and is computed for different pressure heights P. The one that
best matches the observed radiance from the left hand side is selected (Nieman et al., 1993;
Forsythe, 2007). The cloud fraction n is the same for both channels and can be cancelled in
the fraction. To apply the equation to the CO,-channel, it is assumed that the emissivity € is
roughly the same for ice clouds in the IR- and CO ,-channel and therefore can be eliminated in
the fraction as well (Nieman et al., 1993). The H,O-intercept method is based on the

assumption of a constant ratio of the two cloud emissivities £(WV) and &(IR) (Schmetz

et al., 1993; Nieman et al., 1997).

» Additional corrections for low-level AMVs

As an additional approach to improve the AMV height assignment, low-level AMVs are often
assigned to the cloud base rather than the cloud top of the observed cloud feature. This
strategy is based on a study of Hasler et al. (1979), who found a better agreement of AMV

winds with wind observations at the cloud-base level for marine cumuli during a field
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campaign. The assessment of the cloud base from satellite radiances is done by analysing
cloudy and clear-sky pixels around the respective cloud structure. A brightness temperature
histogram then enables the cloud-base height to be estimated (Le Marshall et al., 1994).

Additionally, some centres apply an inversion correction to low level AMVs. If a temperature
inversion exists in the corresponding model profile of an AMV, this AMV is always relocated
to the height of the minimum temperature, assuming that the cloud is not able to penetrate in
stable inversion regions. Thereby, AMVs that are originally assigned too high in the
atmosphere due to an under-representation of the inversion depth may be shifted to a more
representative height (Forsythe, 2007).

2.1.1.3 AMYV error sources

Different error sources may add to the total AMV error and can lead to wind vectors of poor
quality. The main contribution arises from errors resulting from the height assignment
process. Velden and Bedka (2009) estimated that about 70% of the total AMV error is due to
height assignment issues. However, other error sources may contribute as well. The main

error sources are discussed in the following.

» Height assignment errors

All height assignment techniques can potentially induce large errors. The EBBT-method can
only provide reliable height estimates for opaque clouds. Uncertainties may arise for semi-
transparent clouds when contributions from levels below the actual cloud height increase the
brightness temperature, therefore leading to a height assignment that is too low in the
atmosphere. (Schmetz et al., 1993). Although multi-channel techniques achieve superior
results to the EBBT-method for semi-transparent clouds, the height assignment of upper-level
AMVs constitutes a major issue. Both methods (CO ,-slicing and H,O-intercept) have large
limitations, especially for small differences between the two channels, which cannot be
distinguished from atmospheric noise. In addition, the dependence on the (unknown) cloud
microphysics and the amount of water vapour is an issue. Both methods perform poorly for
thin and multi-layer clouds, often placing the AMV in between the two upper cloud layers
(Borde and Dubuission, 2010). Generally, an optimal combination of techniques has not yet
been found that tackles these problems satisfactorily (Borde, 2014c). Comparisons between
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different multi-channel techniques have been conducted to assess their performance for
various cloud situations, with differing results as to which technique outperforms the other
(see e.g. Daniels et al., 2006; Borde and Dubuisson 2010; Schreiner et al., 2012).

In addition to the inherent error sources of the single height assignment methods, there are
further issues that contribute to the height assignment error. In particular, the selection of the
pixels that is used for the height assignment leads to uncertainties. Generally, tracked cloud
features may contain pixels from different altitude levels. The more complex the detected
cloud structure is, the more difficult is the assignment to a specific height (Forsythe, 2007).
Consequently, the pixels that are actually tracked are not necessarily the same as those used
for the height assignment afterwards. Additionally, features tracked in the visible channel
cannot be converted directly to pressure levels, but corresponding IR images must be used.
This can lead to large height assignment errors especially in multi-layer situations, when the
brightest pixels of the target box in the respective IR image do not represent the tracked
feature of the VIS image. (Borde et al., 2014a)

Generally, the height assignment is particularly error-prone when wind varies strongly with
height (Salonen and Bormann, 2014). A pronounced “slow” speed bias is frequently found
when comparing high-level and mid-level AMVs to in-situ wind observations. The main
reason is an incorrect height assignment locating the AMV derived from a lower cloud feature
with a slow wind speed too high in the atmosphere. However, a second contributing factor is
the tracer size used in the tracking step, when the detected wind speed is averaged over the
pixels of the target box. Small target box sizes imply a reduced shifting of the detected
feature, and may introduce large errors due to sub-pixel displacements. However, larger target
boxes lead to an enlarged averaging, thereby increasing the slow speed bias (Bresky et al.,
2012).

» Representativity errors

The traditional approach of deriving AMVs is to assign them to a discrete altitude level.
However, it was already suspected in the early stages of AMV derivation that representativity
errors may arise when AMVs are interpreted as single-level observations instead of layer-
averages over a vertically extended cloud layer (Schmetz et al., 1993). As already pointed out
in Section 1, recent studies that compared AMV layer-winds to radiosonde/dropsonde
observations indicate that AMVs represent winds in vertical layers rather than winds at
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discrete levels (Velden and Bedka, 2009; Weissmann et al., 2013). Similar results are
obtained by analysing AMV error characteristics within a simulated framework (Hernandez-
Carrascal and Bormann, 2014; Lean et al., 2015), where AMVs are derived from simulated
satellite images. This approach has the advantage of knowing the “true” atmospheric model
state. However, care must be taken when interpreting the results, as model clouds can
represent real clouds only to a limited extent and do not necessarily provide a realistic
representation of cloud structures if the model resolution differs largely from scales resolved
by the satellite imagery. Further challenges are often introduced by systematic errors in the
model representation of clouds. Tracking processes of model-cloud tracers are therefore

challenging and potentially error-prone (Lean et al., 2015).

Overall, it is commonly accepted that interpreting AMVs as layer-averages may yield benefits
for data assimilation. However, AMVs are currently still assimilated as single level
observations at all NWP centres.

» Additional error sources

In addition to height assignment and representativity errors, other error sources may introduce
further uncertainties. As cloud structures are tracked over sequential images that are
15 - 100 minutes apart from each other, the detected cloud may evolve during that time period
and the cloud-top height of the tracked feature may vary in subsequent images
(Menzel, 2001). In addition, the detected wind speed of the cloud top constitutes a temporal
and spatial average of the actual tropospheric motion and is not necessarily an optimal
representation of the actual atmospheric wind field (Schmetz et al., 1993). Strictly speaking,
AMVs can only represent an unbiased estimate of the atmospheric wind if clouds are

randomly distributed and floating with the airflow (Schmetz and Nuret, 1989).

Furthermore, short-range forecast model profiles of temperature and humidity are used for the
AMV height assignment, introducing additional errors due to an imperfect representation of
the atmospheric conditions by the model (Schmetz et al., 1993). This is a particularly
dangerous issue as the resulting AMVs then may contain errors that are correlated with the
model short-term forecasts that are used commonly in data assimilation as first-guess (FG)
fields.

As the sequential images used for the tracking process must coincide, errors may also arise for
spinning radiometers such as the Spinning Enhanced Visible and InfraRed Imager (SEVIRI)
aboard the MSG satellites. For SEVIRI with a rotation rate of about 100 revolutions min *, the
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Root Mean Square Error (RMS) for the image-to-image relative accuracy is 1.2 km (Schmetz
et al., 2002), which can have a considerable effect especially on the accuracy of low-level
AMVs with small wind speed values.

2.1.2 Meteosat Second Generation

The MSG satellites with a nominal life expectancy of 7 years each are the European series of
geostationary satellites currently in operation. The MSG mission is a joint cooperation
between the European Space Agency (ESA) and EUMETSAT and provides high-resolution
imagery and improved sensor-technology compared to the preceding Meteosat First
Generation (MFG) satellites. The first MSG satellite Meteosat-8 was brought into orbit in
2002, and was followed by three successful launches of further MSG satellites. The major
instrument on board is SEVIRI, which provides full-disk imagery every 15 minutes in
12 channels ranging from the visible (0.6 um) to the infrared spectrum (14 um). SEVIRI
provides images with a pixel size of 3 km at nadir for all channels, and 1 km for the high-
resolution visible channel. As the angular stepping remains constant, the pixel resolution
decreases for off-nadir views, i.e. the resolution decreases with increasing latitude and with
increasing longitudinal distance from the satellite position (Schmetz et al., 2002). SEVIRI
enhances the derivation of AMVs significantly compared to the precursor generation of
MFG satellites both in quality and quantity as there are two water vapour channels and one
CO,-channel, therefore improving the error-prone height assignment for semi-transparent
clouds (Borde, 2014c).

» Tracking of MSG-AMVs

For the derivation of MSG-AMVs, cloud and water vapour features are tracked from imagery
of five MSG channels: The VIS channel at 0.8 um, the IR channel at 10.8 um, the two
WV channels at 6.2 pm and 7.3 pm and the high-resolution VIS channel (broadband, about
0.4 - 1.1 um) (Schmetz et al., 2002; Carranza et al., 2014). Other channels may be included in
the future (EUMETSAT, 2011). The tracking algorithm for MSG-AMVs uses four
consecutive images with 15 minutes in between each image pair. The reference time of the
derived AMV is set to the second picture (Régis Borde, personal communication). The
derivation process starts by targeting a suitable feature in a search box of 24x24 pixels. The

cloud feature with the strongest contrast (with a minimum number of high-contrast pixels) is
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then selected. Scene analysis algorithms classify each pixel as cloudy or clear sky, hence
creating a cloud mask for each image. If a minimum amount of 50 cloudy pixels is not
reached for a specific scene, a search for a clear-sky AMV by tracking water vapour gradients
in the WV-channels is attempted. The selected feature is then tracked in the consecutive
images in search boxes of 80x80 pixel size centered around the respective tracking element
(Lutz, 1999; Schmetz et al., 2002; Borde et al., 2014a).

» Height assignment of MSG-AMVs

Cloud-top heights for MSG-AMVs from opaque clouds are derived by using the EBBT-
method (prioritizing the 10.8 um channel), including a low level inversion correction if
necessary. Short-range forecast model profiles from ECMWEF are used for the brightness
temperature conversion. Several combinations of WV/IR channels and CO »/IR channels are
available for the height assignment for upper level semi-transparent clouds (prioritizing the
COgy-slicing). Clear sky radiances are extracted from clear sky pixels neighbouring the
selected feature (EUMETSAT, 2011; Borde, 2014c).

The operational AMV height assignment strategy of EUMETSAT changed on
5 September 2012 to the Cross-Correlation Contribution (CCC) method. This method
provides a more consistent height assignment as the pixels that contribute most to the tracking
process are used to set the AMV height (Borde et al. 2014a). MSG-AMVs from different
periods that comprise data from before and after the changeover are evaluated in this thesis.
Before September 2012, the determination of a representative AMV height for MSG-AMVs
was conducted for the coldest peak in the target box. In addition, a cloud-base height
assignment for low-level MSG-AMVs was implemented. With the changeover to the
CCC method in September 2012, the final pressure of the cloud feature is a weighted average
of the pressure values assigned to the individual cloudy pixels that represent the dominant
motion feature within the target box. In addition, AMVs are no longer assigned to the cloud
base at low levels (EUMETSAT, 2011; Borde et al., 2014a). Unfortunately, the resulting
operational Meteosat-AMV dataset contains no information about the height assignment
method applied for deriving individual AMVs in the final product.

The performance of the new algorithm generally exceeds the old version for high-level and
mid-level AMVs, exhibiting a higher average quality. An initial degradation of data quality in
low levels (Salonen and Bormann, 2012) was improved by applying a patch introduced in
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January 2013 (Carranza et al.,, 2014). The CCC-method is also tested by other AMV
processing centres and achieves superior results compared to the traditional algorithms (e.g.
Kim et al., 2015).

» AMV quality assessment

In order to rate the quality and representativeness of AMVs, a Quality Index (QIl) is
disseminated from EUMETSAT together with each AMV, enabling the forecasting centres to
filter out wind vectors with questionable reliability. The automatic control scheme operational
at EUMETSAT comprises several checks. First, a comparison between the three preliminary
wind vectors derived from a consecutive image quartet ensures the temporal consistency
between the single vectors. In addition, a spatial consistency check is applied by comparing
the speed, direction and pressure of the final AMV to those of neighbouring AMVs in a
similar pressure range. Furthermore, a forecast check against the FG field (short-range
forecast) of the ECMWF-model, interpolated to the AMV location and pressure level, is
applied. Other checks, such as an inter-channel consistency check, are not yet included, but

considered as a future enhancement.

These quality checks are supposed to reject poor quality wind vectors with large deviations in
wind speed and direction, but still allow for natural accelerations that may appear e.g. in the
jet entrance-exit regions. Problems may arise if strict conformity rules are applied for the
forecast check, when the AMV wind has to coincide closely to the FG field and therefore the
model field is simply reproduced. Therefore, AMVs are not discarded for poor forecast
consistency if temporal and spatial consistency checks achieve good results, but a lower
quality is assigned. The information gained from all quality checks are combined to assign
one QI for each AMV. The derived QI has values ranging from 0 to 100, with 100 indicating
the best possible quality (Holmlund, 1998; EUMETSAT, 2011).

2.2 Lidar observations of cloud-top heights

Light detection and ranging (lidar) has been an important data source for profiling
measurements for decades. In contrast to passive remote sensing techniques, a lidar actively
emits photons of certain wavelengths and is not dependent on radiation from natural sources.

This remote sensing technique enables a detailed analysis of cloud and aerosol layers, and the
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determination of a variety of atmospheric parameters such as temperature, humidity, wind or

trace gases (Weitkamp, 2005).

The basic principle of a backscatter lidar is described in the first subchapter of this section and
is based on Weitkamp (2005). Subsequently, the space-borne lidar CALIOP on board the
polar-orbiting satellite CALIPSO is introduced, including potential error sources of CALIPSO
lidar observations. These chapters contain data content from the CALIOP Algorithm
Theoretical Basis Documents about the CALIOP instrument and algorithm overview (Winker
et al., 2006), scene classification algorithms (Liu et al., 2005) and feature detection and layer
properties algorithms (Vaughan et al., 2005). In addition, information from Winker et al.
(2009, 2010), Hunt et al. (2009) and Vaughan et al. (2009) is used.

2.2.1 Principles of a backscatter lidar

A lidar essentially consists of an emitting and a receiving device for radiation and can be
applied from ground-based, air-borne or space-borne platforms. The basic principle of an air-
or space-borne lidar is illustrated in Figure 4. Photons of a certain wavelength are emitted by
short laser pulses in the nanosecond range and interact with particles in the atmosphere (air
molecules, aerosols, cloud droplets) through scattering and absorption processes. A small
fraction of the photons are scattered 180° backwards and can be detected by the lidar

signal processing
and data acquistion

LIDAR SYSTEM

transmitter receiver
(laser) (telescope)

laser beam
backscattering

A 4

scattering and
absorption processes
with cloud particles

Figure 4: Illustration of the basic components of a lidar system.
Schematic adapted from Fischer, 2013

19



2 BASIC PRINCIPLES

telescope. When the wavelength remains unchanged during a scattering process, it is called
elastic backscattering. By measuring the time difference between the emitted and received
signals (travelling with the speed of light, ~3-10% ms™), the position of the scattering process
can be determined to a high accuracy. When the laser pulse hits a region of increased particle
density or with larger particles, the backscattering signal is enhanced. Thus, lidar observations
are highly sensitive to atmospheric layers of a higher optical depth such as cloud or aerosol
layers. The backscattered lidar signal is described by the following ‘lidar equation’:

P(r,A)=K -i-ﬂ(r,l) -exp{—Z-Jr'a(r',l)-dr'}
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P(r,A) describes the signal strength for a certain wavelength 1 as a function of distance r.

The first term K is described by the following equation:
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K is a constant and contains the emitted pulse energy P,, the speed of light c, the area of the

receiver A, the overall system efficiency 7, the temporal pulse length z, and a factor ¥ in order
to account for the forward- and backward travelling of the laser pulse. As the signal strength
decreases with larger distances, a correcting term is applied by dividing by r? (second term of
the lidar equation). The backscatter coefficient SB(r,A) represents the scatter probability at an
angle of 180° to the receiver (third term). It consists of a fraction of air molecules and a
fraction of atmospheric particles (aerosols, cloud droplets etc.).

ﬁ(r’ﬂ“) = ﬁmol (r’ﬂ“) + ﬁaer (I’,ﬂ,)

The fourth term of the lidar equation represents the atmospheric transmission at the emitted
wavelength 4 and can take values from O to 1 by integrating over the extinction coefficient
a(r,A) from the emission source out to distance r. Analogously to g(r,1), a(r,A) has
contributions from air molecules and particulate matter. The backscatter and extinction
coefficients for molecular backscattering can be assessed with relatively high confidence by
using model profiles of the air molecules’ density. However, the lidar equation is
underdetermined, as both the particle backscatter and particle extinction coefficient are
unknown. They are encapsulated in one variable called the lidar ratio Saer:
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S — aaer (r)
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The lidar ratio has to be estimated to solve the lidar equation for the extinction

coefficient .., (I) . However, its assessment is often difficult, as it depends on several

parameters such as wavelength, humidity and type and shape of the scattering particles.

2.2.2 Space-borne lidar observations from CALIPSO

The polar-orbiting satellite CALIPSO was launched in 2006 as a joint satellite mission of the
National Aeronautics and Space Administration (NASA) and the French space agency Centre
National d'Etudes Spatiales (CNES). CALIPSO flies at an inclination of 98.28° in a sun-
synchronous orbit at 705 km altitude, encircling the earth in about 100 minutes. CALIPSO is
part of the A-Train, which is a constellation of several international science satellites that fly
in formation and therefore facilitate a wide variety of different observations of the same
scenery from space (see Figure 5). The nominal life expectancy of CALIPSO was originally
set to three years (until 2009), and is thus already exceeded by far, with CALIPSO still
delivering reliable data from space.

» The lidar CALIOP

The lidar CALIOP is the major instrument on board and measures vertical profiles of the

Figure 5: The A-Train constellation: The leading satellite OCO-2 (Orbiting Carbon Observatory-
2), followed by GCOM-W1 (Global Change Observation Mission W1), Aqua, CALIPSO, CloudSat
and Aura, source: http://atrain.nasa.gov/)).
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atmospheric elastic backscatter at two wavelengths (532 nm and 1064 nm). CALIOP uses a
Nd:YAG (Neodymium-doped Yttrium Aluminium Garnet) laser as transmitter, which has an
original wavelength of 1064 nm that is then divided by a dichroic beam splitter. As particle
diameters of aerosol or cloud droplets typically have similar dimensions to these wavelengths,
this laser is well suited for remote sensing applications of the atmosphere. Additional

measurements of the depolarization at 532 nm allow determining the cloud phase (ice/water).

CALIOP emits pulses of 20 nm of 110 mJ with a repetition rate of 20.16 Hz. At the Earth’s
surface, the beam diameter is 70 m. The continuous operation of CALIOP allows for lidar
observations during the day and night. CALIOP points 3° from nadir in the forward along-
track direction to avoid specular returns from still water surfaces or horizontally oriented
cloud ice crystals. The full sampling resolution of the lidar is 30 m in the vertical and 335 m
in the horizontal. As the atmosphere becomes spatially more uniform at higher altitudes and
additionally, the thinner atmosphere in these regions requires a broader averaging for signal
detection, the lidar profiles are averaged horizontally and vertically above an altitude level of
8.2 km. The horizontal and vertical resolution for the different altitude ranges are listed in
Table 1.

» Data processing and feature detection

The uncalibrated, absolute backscatter intensity is processed using various algorithms. In

. Altitude range [km] + lidar | horizontal | vertical |
E ! E shots E resolution E resolution E
E top E base E averaged E [km] E [m] E
400 ' 301 ' 15 ' 50 ' 300
301 1 202 + 5 1 167 1 180
20.2 8.2 3 1.0 60
i 8.2 i -0.5 i 1 i 0.33 i 30 i
05 ' 20 ' 1 ' 033 ' 300

[ EEEEEEE—EE_haywmhgw_,_—,——,,L —_,:,;,;:;;;;h;,_;;_;h/'mgjmhszsshm=—=—h—=———Sy ==,
e ——

Table 1: Altitude-dependent horizontal and vertical resolution for CALIOP. Grey shading indicates
the altitude ranges that are considered in this study. Adapted from Hunt et al., 2009.
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order to find aerosol or cloud features in the lidar profiles, the Selective Iterative Boundary
Locator (SIBYL) is applied to the 532 nm attenuated backscatter profiles. A feature top is
obtained by applying an altitude- and situation-dependent threshold in order to detect targets
against the noisy background. To do this, either a minimum vertical feature distance with
slightly enhanced backscatter or a very strong spike signal in a thin layer is required. If a
feature cannot be detected at full resolution, an averaging of lidar profiles with increasing
horizontal range is applied (5 km, 20 km and 80 km). This sophisticated multi-resolution
averaging scheme with a range-varying detection threshold automatically adapting to the
background conditions has proven to provide reliable information on layer-top heights from
cloud features or aerosol layers. Afterwards, several scene classification algorithms (SCA)
classify the retrieved layers as aerosol or cloud. In this context, the Cloud-Aerosol-
Distinguisher (CAD) is defined as a quality index that indicates the reliability of the retrieved
lidar information, ranging from +100 (cloud observation) to -100 (aerosol observation). The
respective “clear air” profiles are derived from model data from the Goddard Earth Observing
System Model, version 5 (GEOS-5) analysis product from NASA’s Global Modelling and
Assimilation Office (GMAO).

2.2.3 Error sources of CALIPSO lidar observations

There are a number of error sources that can deteriorate the final lidar product. To analyse the
pure lidar signal, undesired contributions from background light or detector noise have to be
assessed carefully in order to be subtracted from the detected signal. Generally, space-borne
lidars have a low signal-to-noise ratio due to the large distances between the location of the
scattering process in the troposphere and the detector. Several sources of noise impair the
actual lidar signal: Detector dark current and amplifier noise as well as statistical fluctuations
of the background (especially during daylight when the sunlight deteriorates the signal) and of
the lidar return signal itself may all contribute to the total noise rate. Weak signals as from
subvisible high-level cirrus clouds can have the same order of magnitude as the noise and are
sometimes difficult to detect. Averaging over a number of consecutive pulses helps to
enhance the signal compared to background noise patterns, which is often necessary for
tenuous aerosol layers. However, the spatial structure of these patterns may then be lost.

Some additional error sources also contribute to the total error of the lidar observation. For
example, the GMAO-model used for the calculation of the molecular backscatter as well as
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other external data (such as the accurate elevation above sea level) have limitations in
representing the true atmosphere. Moreover, the geolocation has to be assessed carefully, as
the lidar footprint moves at about 7 km/s across the ground. In addition, the background
measurement of the solar background and the determination of the system efficiency may
contain errors. Furthermore, the CALIOP laser beam is substantially attenuated for column
optical depth values larger than ~3, so that multi-layer situations can be analysed only in a

limited way.

Generally, the estimation of the particle lidar ratio S, represents a major error source for

lidar retrievals of the extinction coefficient, as it is often complicated to assess for particular
lidar scenes. Values vary strongly for different particles and incoming wavelengths and may

therefore contribute to biased retrievals. However, the error-prone determination of S__. is not

necessary for the application of retrieving cloud-top heights. Thus, the major error source for
the usage of lidar cloud-top information in this study is the vertical ranging error.
Sophisticated detection algorithms and advanced sensor technologies ensure that the ranging
error is estimated to be less than 30 m in the vertical. Therefore, CALIOP provides highly

reliable information on cloud-top heights for the height correction of AMVs.

2.3 Assimilation of AMVs in the global models at DWD

2.3.1 DWD models (GME/ICON)

In this thesis, the two global models GME and ICON from DWD are used. GME was
operational from 1 December 1999 until 20 January 2015 and was the first operational NWP
model to be based on an icosahedral-hexagonal grid. The advantage of this grid construction
is the relatively uniform grid size compared to latitude-longitude grids, where grid boxes
become smaller towards the poles. The horizontal grid spacing is 20 km, with 60 vertical
levels up to an altitude of 36 km. The system of equations is based on a hydrostatic
assumption. Forecasts up to 174 hours are computed with 00 UTC and 12 UTC as initial
times. Additionally, forecasts up to 48 hours are provided with 06 and 18 UTC as initial
times. (DWD, 2015a; Majewski et al., 2002).

The global model ICON replaced GME as the operational global model in January 2015.
ICON surpasses the capabilities of GME in several respects. The major difference is the
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dynamical core using the non-hydrostatic equations on the global domain. In addition, new
physical parameterization schemes allow for a better representation of various atmospheric
processes such as convection, radiation or cloud cover. Furthermore, ICON offers more
prognostic variables and provides e.g. better mass conservation properties. As ICON is
comparatively new, occasional small error corrections and model adjustments have been
needed since becoming operational (see e.g. DWD, 2015b). Generally, forecast quality has
proven to improve significantly and the model bias (e.g. for the wind speed and wind
direction) is reduced compared to GME (Harald Anlauf, personal communication). A
comparison of some technical details for both models is provided in Table 2 (DWD, 2015a;
Reinert et al., 2015; Z&ngl et al., 2015; Baldauf et al., 2015).

» Data assimilation system

Detailed information on data assimilation techniques can be found in Kalnay (2003), which
serves also as basis for the following brief introduction. Generally, data assimilation
techniques aim to combine a model background field (FG) with observational data in an
optimal way. Typically, this background field is a short-term forecast initialized at the
previous assimilation time step, which already contains information from earlier observations
from the assimilation during preceding time steps (“cycling”). The observational errors and
the errors of the FG field determine their respective weightings in the resulting analysis: a
high observation error leads to a low weight for the respective observation, so that the

i i ICON i GME i
| | | .
i system of equations : non-hydrostatic : hydrostatic :
. . . .
E mesh size [km] E 13 km E 20 km E
E mean grid area E 173 km? E 346 km® E
. . . .
E vertical coordinates E height E pressure E
E vertical layers E 90 E 60 E
. . . .
E model top margin E 75 km E 36 km E

Table 2: Comparison of ICON and GME for some technical aspects. Adapted from DWD, 2015.
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FG field dominates the analysis and vice versa. The analysis field is defined for every model
grid point and provides then the initial conditions from which a forecast can be started.
Numerous data assimilation strategies have been developed during recent decades. The
decision of NWP centres over which data assimilation system to use is always a trade-off
between computer capacities and the accuracy of the initial state and the subsequent forecast.

The data assimilation system at DWD (both for the former GME and the current ICON
model) is based on the three-dimensional variational technique (3DVAR) with a 3-h cycling
(00, 03, ..., 18, 21 UTC). During one 3DVAR data assimilation cycle, all observations within
a 3-h window (+/- 90 min from the corresponding time step) are combined with the model
background field, assuming implicitly that these observations take place at exactly the same
time. The assimilation window is usually equal to the time between consecutive
analyses/forecast cycles. The 3DV AR algorithm aims to minimize a cost function containing
the background field, the observations and their error covariance matrices to create an optimal
analysis state for subsequent forecasts. From the resulting analysis, a 3-h short-term forecast
is initialized, which serves again as the background field for the next assimilation cycle
(Frank et al., 2014; Reinert et al., 2015).

2.3.2 Operational AMVs at DWD

AMVs from geostationary and polar-orbiting satellites are assimilated routinely in global
NWP models. DWD operationally uses AMVs from five different geostationary satellites and
seven polar-orbiting satellites.

The main European geostationary satellite is Meteosat-10, which is located at 0° longitude
and covers Europe, Africa and large parts of the Atlantic Ocean. In addition, AMVs from the
following geostationary satellites are assimilated routinely: Meteosat-7 at 57°E, the Multi-
Functional Transport Satellite 2 (MTSAT-2) at 145°E and the two Geostationary Operational
Environmental Satellites (GOES) at 135°W (GOES-West) and 75°W (GOES-East).
Meteosat-10 belongs to the Meteosat Second Generation with 12 channels in total in the
visible and infra-red range. Meteosat-7 (MFG) is less sophisticated with only three channels.
Thus, fewer channels for the feature tracking and the subsequent height assignment are
available and e.g. do not allow for CO,-slicing due to the absence of the CO,-channel. In
addition, the interval between MFG images is 30 min compared to the 15 min interval for
MSG imagery. Consequently, considerably fewer AMVs are available. Meteosat-AMVs are
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derived operationally by EUMETSAT. GOES satellites have 6 channels each and GOES-
AMVs are provided by the National Environmental Satellite Data and Information Service
(NESDIS) of the National Oceanic and Atmospheric Administration (NOAA). MTSAT-2 was
the operational Japanese geostationary satellite with 5 channels during the period evaluated in
this study; MTSAT-2-AMVs were provided by the Japan Meteorological Agency (JMA).

In addition to geostationary satellites, AMVs from polar-orbiting satellites are used in data
assimilation in order to extract information about the wind field in polar regions. AMVs from
the satellites of the NOAA-series, from Aqua and Terra and from the METOP-satellites have
been assimilated routinely for several years. Table 3 lists all satellites that are used for the
derivation of AMVs that are assimilated operationally at DWD (Effective: October 2015).

2.3.3 AMV error correlation and thinning

AMVs exhibit significant spatially and temporally correlated errors for several reasons.
Height assignment procedures use model temperature profiles that are already mutually
correlated. In addition, AMVs that tend to be dissimilar to their neighbours are rejected during
quality control processes, thereby enhancing existing error correlations. AMV errors can
exhibit significant spatial correlations with horizontal lengths of up to 800 km (Bormann et

al., 2003). However, observation errors are usually assumed to be spatially uncorrelated in

geostationary polar-orbiting

satellites satellites
i ID : position | ID :
. . . .
E Meteosat-10 E 0° E AQUA E
E Meteosat-7 E S7°E E TERRA E
i MTSAT-2 i 145°E i NOAA-15 i
| GOES-13 1  75W 1 NOAAIS
| GOES15 ! 13°W ! NOAA19 !
E E E METOP-A E
i i i METOP-B i

Table 3: Operational and monitored satellites used for the AMV derivation and operational
assimilation at DWD. Source: Alexander Cress, DWD. Effective 25 Oct 2015.
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Figure 6: Distribution of all available AMVs from geostationary satellites for the 10 ™ May 2013 before
(left) and after (right) quality procedures are applied.

data assimilation systems to save computational cost. Most data assimilation centres apply a
spatial thinning of about 200 km in addition to an inflation of the corresponding observation
errors as a trade-off between the density of AMV wind information and correlation magnitude
(Forsythe, 2007). Moreover, the precise values for observation errors that can be assigned to
AMVs are not known, resulting in a large fraction of available AMVs being used in a
suboptimal way (Velden and Bedka, 2009).

The quality control and thinning strategy at DWD is made up of several aspects. Temporal
and spatial blacklisting thins the data drastically: AMVs are assimilated in a 6-h interval (00,
06, 12, and 18 UTC) in the global model at DWD, thereby discarding half of the available
AMV data set from 03, 09, 15 and 18 UTC. The minimum horizontal distance between
adjacent AMVs is set to 240 km each. In each thinning box, the AMV with the highest QI is
selected. This QI has to exceed a certain threshold that depends on AMV altitude, satellite,
instrument channel and latitude region. AMVs from some geographic regions (e.g. the
Himalayan Mountains) or channels (e. g. VIS-AMVs over land surfaces) are always denied,
since such AMVs often show negative long-term monitoring statistics. An additional
FG check rejects all AMV winds deviating strongly from the model background.

Overall, this thinning strategy leads to the rejection of a large part of the originally dense
AMYV data set. Figure 6 shows the distribution of all operationally derived AMVs on the left
and the AMVs actually used (after thinning and quality control procedures were applied) on
the right for 10 May 2013 in the global model GME for the five main geostationary satellites.
Depending on the satellite, only 1% - 4% of the available AMV data set is used for data
assimilation. For example, about 17000 AMVs of the original number of about 1086000
AMVs from Meteosat-10 (blue) are assimilated on the depicted day.
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3.1 Data sets and evaluation methods

3.1.1 Observational data

This study mainly focuses on the height correction of AMVs derived from images from the
European geostationary MSG satellites (Meteosat-9 and Meteosat-10). Details on the
derivation of MSG-AMVs can be found in Section 2.1.2. The MSG satellites are located at
0° longitude and provide frequent satellite imagery for the operational weather service.
Meteosat-9 was the operational European satellite until January 2013, and was then succeeded
by Meteosat-10 (Salonen and Bormann, 2014). EUMETSAT is in charge of the derivation
and quality control of MSG-AMVs and provides the final AMV data product for 1-h intervals
to the end-users, disseminating over 10° MSG-AMVs per day. The EUMETSAT AMV
product includes information about the geographical position, the pressure height, u- and v-
components of the wind, channel and QI. In addition to a detailed evaluation of lidar-based
height correction methods for MSG-AMVs (Sections 4 and 5), a brief assessment of results
for AMVs from other geostationary satellites (GOES and MTSAT-2) is provided in
Section 6.1 as an outlook for potential future applications.

For the AMV height correction, space-borne lidar observations from CALIPSO are used. As
described in Section 2.2.2, the official CALIPSO Level-2 cloud layer product provides cloud-
top heights with a horizontal sampling resolution of 335 m (for the lowest 8.2 km of the
troposphere) and 1 km (from 8.2 km to 20.2 km altitude). In order to have a consistent data
set for all altitude levels, the product with a horizontal resolution of 1 km is used in this thesis.
Averaging schemes for a coarser horizontal resolution are also available in the official data
product, with resolutions ranging from 5 km to 80 km. These broad averaging schemes are
mainly used to detect thin cirrus or faint aerosol layers that cannot be distinguished from
atmospheric noise patterns under higher resolution. Given that CALIPSO lidar observations
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w»—x  CALIPSO cloud top 5 km
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Figure 7: Example case with two CALIPSO cloud-layer products with 1-km resolution (rose) and
5-km resolution (cyan) cloud-top height. A strong cloud signal (yellow-reddish colours) at about
1.5 km - 2 km altitude is characterized as cloud at both resolutions. A faint signal at about 7 km
height is classified as cloud at 5-km resolution.

are being compared to MSG imagery in this study, the detection of very thin cirrus by the
lidar is not required, as satellite imaging instruments generally do not have the ability to
detect these structures. Sensitivity studies have often shown a more reliable cloud-top
detection for the 1-km product compared to the 5-km-averaged cloud top for the purpose of
comparison studies to AMV heights. As an example, Figure 7 shows a strong backscatter
signal from a low-level cloud at 1.5 km, which is detected for both 1-km and 5-km resolution.
However, a faint signal at about 7 km altitude is observed by the 5-km averaging scheme. The
5-km cloud-top is thereby set to a constant height level at about 7.7 km due to the broader
averaging that is able to detect also tenuous layers that cannot be directly observed in the
high-resolution data that is depicted in Fig. 7. However, these layers generally do not
represent the cloud-top observations of (optically thicker) clouds that are needed in this study
for the comparison with AMVs derived from imaging instruments.

In summary, the 1-km cloud-layer product is chosen for the AMV height correction presented
in the following chapters, as it provides reliable and high-resolution cloud-top heights, which
will be averaged for the AMV height correction (see subsequent Section 3.1.2). The cloud
layer product provides the 1-km horizontally averaged cloud-top height from the CALIOP
lidar, and in addition the number of superimposed cloud layers, the cloud phase and a quality

index for clouds.
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3.1.2 Collocation of AMVs and CALIPSO lidar observations

In order to find suitable CALIPSO lidar cloud-top observations that are close to AMVSs,
different collocation criteria are applied. These generally follow Weissmann et al. (2013), but
use stricter horizontal and temporal distance requirements as well as additional criteria for the
selection of collocated CALIPSO lidar observations. In this study, AMVs are corrected with
nearby CALIPSO lidar observations that are within 50 km horizontal distance and 30 min
time difference from the location and time of each AMV. This principle is schematically
illustrated in Figure 8. The median of all lidar cloud-top observations within this range (red
dots) is taken as a representative cloud top, which is then compared to the operational AMV
pressure height. By applying a threshold of at least 20 lidar observations (and at most 100 due
to the maximum horizontal distance of 50 km), it is ensured that dimensions of the tracked
AMV feature (which is situated within a 24x24 pixel box) and the CALIPSO cloud are
similar. In addition, the RMS difference between single lidar cloud observations and their
median value must not exceed 70 hPa in order to exclude scenes with strongly altering cloud-
top heights within short distances. Multi-layer cloud scenes as well as

Figure 8: Illustration of the collocation procedure: The lidar signal along the (dotted) flight track of
CALIPSO may detect cloudy and cloud-free areas in the vicinity (50 km radius, green circle) of the
corresponding (purple) AMV. All cloud signals within this range (red dots) are used for the calculation
of the median cloud-top. Adapted from Folger (2012).
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Figure 9: Illustration of the calculation of the median cloud top (purple line) as representative cloud-
top of all available CALIPSO lidar cloud-top observations within 50 km (corresponding to about
7 seconds on the x-axis) for one WV-AMV (yellow square) on 10 May 2012. The nominal AMV
derivation time is 13:30 UTC; therefore all shown lidar cloud- top observations are within the maximum
allowed temporal difference of 30 minutes of the AMV.

vertical distance and < 200 hPa below

lidar cloud-top

1 1 1
! parameter ! threshold !
1 1 1
: horizontal distance : <50 km :
1 1 1
: time difference : <30 min :
1 1 1
1 1 1
! AMV QI ! >50 !
1 1 1
i number of lidar cloud-top | >20 |
I observations for median I B I
1 1 1
| RMS between individual lidar 1 :
. cloud-top observationsand <70 hPa ;
! their median ! !
: CAD I >90 I
1 1 1
: multi-layer clouds : no :
1 1 1
1 1 1
; ; AMV <100 hPa above !
: : :
1 1 1

Table 4: Collocation criteria for AMV and CALIPSO observations
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cloud observations with a CAD < 90 are discarded. However, situations may still arise where
CALIPSO observes different clouds than the ones used for deriving AMVs, either due to the
temporal or horizontal distance of the lidar cloud and the corresponding AMV, or due to
different instrument capabilities. To mitigate these issues, only AMVs that are at most
100 hPa above and 200 hPa below the respective median cloud-top heights are considered.
This asymmetric interval is chosen based on the assumption that an AMV represents the
atmospheric motion of a vertically extended cloud layer and is therefore located below the
actual cloud top. All AMVs beyond this range are discarded. In addition, the AMV quality
index (ranging from 0 to 100, with 100 indicating the best possible quality) must be greater
than 50. An example case for the determination of the median is shown in Figure 9 for one
WV-AMYV on 10 May 2012.

These collocation parameters are chosen to account for the main issues that may arise when
AMYV pressure heights are compared to lidar cloud-top observations. A summary of the
collocation criteria applied is provided in Table 4. Tighter thresholds may be desirable for
some parameters (for example smaller horizontal and temporal distances), but the sample size
then reduces drastically. Therefore, the presented threshold requirements provide a trade-off
between the amount of available AMV/CALIPSO pairs and the matching accuracy. However,

507N

Latitude
=

50°S

S0°W o 25T W 0 25°E 50°E
Longitude

Figure 10: Geographic position of the 1247 AMVs with collocated CALIPSO lidar observations on
1 Apr 2012 that fulfil the collocation requirements described in Section 3.1.2.
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sensitivity studies with modified collocation criteria revealed that tightening the parameters
towards stricter values generally leads to similar findings. In this regard, the restriction of the
vertical difference between the pressure heights seems to be the most important criterion to
ensure capturing the same feature both from SEVIRI and CALIOP due to their different

instrument characteristics.

Figure 10 shows the position of Meteosat-9 AMVs and CALIPSO lidar observations on
1 April 2012 matching the described collocation requirements. For this day, 1247 collocated
observations were found within the Meteosat-9 domain (approximately 63° in each direction
from 0° longitude and 0° latitude).

3.1.3 AMV wind evaluation methods

3.1.3.1 Radiosonde observations

The direct lidar height reassignment is evaluated using nearby operational radiosonde
soundings in Section 4.1. As the wind field is usually horizontally more uniform than cloud-
top heights, the collocation criterion for nearby radiosondes is extended to 150 km and 90 min
from the corresponding AMV. Given that radiosonde wind observations are direct in-situ
measurements, the inherent errors (originating e.g. from instrument errors) are small
compared to errors of satellite-based retrievals, and observation errors are assumed to be
uncorrelated between different radiosondes. Generally, an additional error source arises from
position errors and temporal errors due to the radiosonde drift during the ascent, as the exact
position and time of the respective wind observation is not stored in the DWD database.
However, Seidel et al. (2011) assessed average radiosonde drift distances and ascending times
to be typically in the range of 5 km (20km) and 0.07 h (0.89 h) for the lower troposphere
(upper troposphere), which are smaller than the collocation criteria of 150 km and 90 min.
Overall, radiosonde wind observations provide very accurate information on the wind

conditions and will serve as a reference for the true state of the atmosphere in the following.

The calculation of the layer-average of the wind observations at the single radiosonde levels
follows Folger (2012). All wind observations within the respective layer range are taken into
account by allocating appropriate (boxcar) weightings to each radiosonde level according to
its distance from the adjacent pressure levels: One radiosonde wind observation is weighted
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with the pressure distance ranging from half-way to the overlying to half-way to the
underlying pressure level (as percentage of the entire layer), resulting in high weights for
isolated pressure levels and low weights for pressure levels with close neighboring values. If a
layer exceeds the lowest or highest radiosonde level, the layer depth is reduced accordingly.

3.1.3.2 GME model equivalents

In-situ wind observations by radiosondes generally have small errors and therefore provide an
ideal data source for the wind evaluation. However, the inhomogeneous spatial and temporal
distribution of radiosonde profiles complicates their use for evaluation purposes. The
additional need for verification radiosondes drastically limits the sample size of collocated
AMVs and lidar observations to about one percent of the original number. To overcome this
limitation, FG fields of the global model GME are additionally used for the wind evaluation
in Section 4 (direct height reassignment) and 5 (height bias correction). As already mentioned
in Section 2.3.1, FG fields are 3-h short-term forecasts from the previous time step, which are
commonly used in data assimilation as background field. Current observations (such as
AMVs) of the actual time step have not been assimilated yet in the FG fields. However,
AMVs are assimilated operationally in all preceding time steps, thereby retaining this wind
information for the actual time step through the cycling process. It should be kept in mind that
this might influence the AMV evaluation for the current time step due to the temporal
correlation of AMV errors.

Analogous to the verification with radiosonde data, the FG model equivalents serve as a
reference for the real atmospheric state. This assumption should be treated with care, as model
fields can deviate from the true state due to errors in the forecast model. However, model
errors and AMV errors can be assumed to be uncorrelated. Based on this assumption,
differences between observation and model winds provide a good data source for the
evaluation of observations that is available area-wide for every observation and therefore
commonly used in the context of data assimilation. Direct comparisons of results from
radiosonde and model evaluation shown in Section 5.2 substantiate this assumption, as similar

findings are yielded for the two evaluation methods.

Evaluating and assimilating layer-averaged observations requires a forward operator for
treating AMVs as vertical layers. An observation operator for layer-averaged AMVs was

recently implemented in the DWD system. This operator provides AMV model equivalents
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3h
forecast forecast

Figure 11: lllustration of the data assimilation process and the AMV wind evaluation. All AMVs
within a 3-h window around the respective time step (+/-90 min) are evaluated using the
FG field, which corresponds to the 3-h forecast of the last time step. Combining the FG with
current observations within the assimilation window results in the analysis (ANA), from which a
new forecast can be started.

derived from 3-h short-term (FG) forecast that are used for the wind evaluation in the present
study. The calculation of the 3-h forecast uses the operational GME settings, which also
includes the assimilation of single-level AMVs assigned to their original height in the
preceding time steps. As the FG is used for the wind evaluation, new observations are not
assimilated yet at the corresponding time step. All AMVs within the 3-h assimilation window
(+/- 1.5 h) that match the collocation requirements (see Section 3.1.2) are compared to the
FG field at the corresponding time step, leading to a maximum temporal difference between
AMV and model equivalents of 90 minutes. This approach is illustrated in Figure 11. The
geographical position of each AMV is horizontally interpolated between the model grid
points, and then the vertical layer averaging is applied. Layer-averages are calculated
according to Simpson’s rule (see e.g. Sili and Mayers, 2003). Therefore, a weighted average
of the interpolated wind values at the layer centre, layer top and layer base is computed. The
weighting coefficients of both the layer-top and the layer-base wind are */s, while the wind at
the layer centre is weighted with */s. If a layer exceeds the lowest model level, the layer depth

is reduced accordingly.

The layer-averaging scheme used for the model evaluation is different from that of the
verification with radiosonde data, as Simpson’s approach for computing layer-averages
constitutes a more feasible approach for the implementation in the observation operator and

models generally exhibit smoother wind profiles than radiosondes. However, results that will
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total amount

i ' evaluation ! - | ofcollocated | notation |
: . method | time frame . AMV/CALIPSO | hereafter
i i i . pairs i
1 April - 6 October 2012 +  “radiosonde
! ' radiosonde ! and 16 April — 13 June 2013 ! 4478 ' evaluation !
. Direct : (220 days) : : period” :
| height ! e e e e
1 correction ! ! : “first !
| . model | StMay-10June2013 13200 . evaluation
1 1 1 (11 days) 1 1 . 2 1
! ! ! ! .  period”
Height “second
' bias | model | [May-12May2013 . 7410 . evaluation |
| . | (6 days) | | I |
1 correction : : : period :

Table 5: Overview of the study periods used for the different evaluation methods

be shown in Section 4.1 and Section 4.2 (radiosonde and model evaluation, respectively)

imply that the different calculations of the layer mean yield similar findings.

3.1.4 Evaluation periods

The present study uses eight months (1 April — 6 October 2012 and 16 April — 13 June 2013)
of operational AMVs that were derived hourly from the geostationary MSG satellites
Meteosat-9 (2012 period) and Meteosat-10 (2013 period) by EUMETSAT. CALIPSO
observations are missing on 27 days of the 8-month study period so that 220 days of data are
available. Altogether, 243097 matches of MSG-AMVs and CALIPSO lidar observations are

found in this period.

AMVs are divided in different altitude regions according to Menzel (1996), where intervals
are defined that are commonly used for AMV classification. AMVs are classified as high-
level AMVs for pressure heights < 400 hPa. Mid-level AMVs are located between 400 hPa
and 700 hPa and low-level AMVs have pressure heights > 700 hPa. One common feature of
AMV height distributions is the relatively small amount of mid-level AMVSs, which
complicates statistical analyses in this region due to an often insufficient sample size. The
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Figure 12: Height distribution of all AMVs with collocated CALIPSO observations and
radiosondes used during the radiosonde evaluation period

small AMV amount in mid-levels is due to multi-layer situations when the uppermost cloud
layer hides subjacent clouds. Thus, the distribution of AMVs is skewed towards upper levels
(Régis Borde, personal communication). For the verification with radiosonde data in
Section 4.1, where the overall sample size is comparatively small, this issue is circumvented
by shifting the upper boundary of the “mid-level region” to a pressure height of 300 hPa. For
the model evaluation in Sections 4.2 and 5.2, the original separation altitudes are used to
classify high-level and low-level AMVs. Mid-level AMVs between 400 hPa and 700 hPa are
not analysed for the model evaluation.

Generally, the verification with radiosonde data requires a long period to obtain an
appropriate amount of AMV/CALIPSO pairs, as a collocated radiosonde must be additionally
available for each pair. In contrast, the evaluation with model equivalents allows an analysis
of all AMV/CALIPSO matches that fulfill the collocation requirements without the need of an
additional radiosonde. Hence, already a small subset of all available days is sufficient for
model evaluation purposes due to the larger amount of collocation pairs. The time periods
used are summarized in Table 5 and described briefly in the following.

» Radiosonde evaluation period

For the verification with radiosonde data, all available 220 days are used. Given the

comparatively low number of launched radiosondes per day, the sample size of collocated

38



3.1 Data sets and evaluation methods

(a) evaluation period 1 (b) evaluation period 2
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Figure 13: Height distribution of Meteosat-10-AMVs with collocated CALIPSO lidar observations
used for (a) the direct height reassignment (31 May 2013 — 10 June 2013) in Section 4.2 and (b) the
height bias correction (5 May 2013 — 12 May 2013) in Section 5.2 for the model evaluation

Meteosat-AMVs, CALIPSO lidar observations and operational radiosondes reduces to 4478
matches for the 8-month radiosonde evaluation period. Most of the height corrected AMVs
are located over Europe and Africa, where radiosondes are available for the wind verification.
Altogether, 1259 high-level AMVs derived from the IR- and WV-channels (337 and 922
matches, respectively) are available. The respective CALIPSO observations are all classified
as ice clouds. The mid-level data set consists of 1576 AMVs (611 IR-AMVs and 965 WV-
AMVs) and the corresponding CALIPSO cloud products comprise 67% ice clouds and 33%
water clouds. The 1643 low-level AMVs from the IR- and VIS channels (219 and 1424
matches, respectively) are expected to correspond to water clouds only. Figure 12 shows the
vertical distribution of all AMVs that are used during the radiosonde verification period.

» Model evaluation periods

For the model evaluation, two different periods are analysed. For the evaluation of the direct
lidar height reassignment in Section 4.2, the evaluation period comprises 11 days (31 May —
10 June 2013) of operational AMVs. For the height bias correction in Section 5, a 6-day time
interval is used that ranges from 7 May to 12 May 2013. These two periods are referred to as
first and second evaluation period in the following. The slightly different timeframe is chosen
because the height bias correction requires continuous (or nearly continuous) CALIPSO lidar
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observations in the preceding 30-day time interval of the respective evaluation period. This
criterion is not fulfilled for the first evaluation period due to significant gaps in the CALIPSO

data set.

High-level AMVs above a pressure height of 400 hPa and low-level AMVs below a pressure
height of 700 hPa are used for the model evaluation. Figure 13 shows the vertical distribution
of AMVs for both evaluation periods for Meteosat-10. Altogether, 13200 AMVs in the first
evaluation period and 7410 AMVs in the second evaluation period are analysed, with about
70% of them located in low-level and 30% in high-level regions.

3.2 AMV height correction methods

3.2.1 Direct height reassignment

Based on the collocation criteria defined in Section 3.1.2, the pressure heights of individual
AMVs can be corrected with nearby CALIPSO lidar observations. This direct height
reassignment is an adapted and extended version of the method presented in Weissmann et al.
(2013), where airborne lidar observations during a field campaign are used for the height
correction of MTSAT-AMVs.

3.2.1.1 Basic principle and error metrics

In order to find an optimal layer that represents the AMV wind, several combinations of
different layer positions and layer depths are evaluated. An overview of the considered layers
is illustrated in Figure 14. AMV winds are compared to radiosonde/model winds vertically
averaged over layers of varying depth from 0 hPa to 200 hPa: firstly for layers relative to the
originally assigned AMV height and secondly for layers relative to the CALIPSO lidar cloud
top height. A layer depth of O hPa denotes a discrete level, which corresponds to the
procedure applied operationally for the original AMV height. Three different layer positions

are evaluated:
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(1 layers centered at the corresponding AMV height or lidar cloud-top height,

(i) layers with 25% of the layer range above and 75% of the layer range below the

corresponding height and

(iit)  layers from the corresponding height downward.

In order to assess the benefit of lidar-corrected and layer-averaged AMVSs, two error metrics
are applied for all considered layers: The VRMS difference and the wind speed bias. These

are calculated as follows:

VRMS=%i,/duf +dv?
i=1

N
BIAS = % > (windspeed ,,,; — windspeed ;)

i=1

with du, = u, (AMV_operational) —u, (AMV_model/radiosonde), dv, analogously.

N corresponds to the number of available AMVs with corresponding CALIPSO lidar cloud-
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Figure 14: Schematic illustration of the height correction method. Layers of varying depth relative to
the lidar cloud-top height and relative to the operational AMV height are analysed. Layer depths vary
from 0 hPa (discrete level) to 200 hPa. Only AMVs that are at most 100 hPa above and 200 hPa below
the respective cloud-top height are evaluated. Not to scale.
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top observations, ‘oper’ denotes operational wind observation values and *model’ the GME
model equivalents of the respective layers. The VRMS difference defined above is sometimes
also referred to as Mean Vector Difference (MVD) (Menzel, 1996).

3.2.1.2 Assessment of AMYV error correlations

AMV error correlations pose a major issue for data assimilation, as AMV errors can be
correlated up to horizontal distances of several hundred kilometres (Bormann et al., 2003).
Generally, the incorporation of model-independent data (such as lidar observations) in
NWP systems is expected to reduce the error correlation of observations. This aspect is
investigated for the horizontal AMV error correlation when independent lidar observations
are included for the height correction.

Radiosonde observations are generally the optimal approach for evaluating such error
correlations. Bormann et al. (2003) calculated the horizontal error correlation of differences
between AMVs and radiosonde observations in order to characterize operational AMV error
correlations. As observation errors between radiosondes are assumed to be uncorrelated, it
was implied that the correlation of AMV-radiosonde differences can be directly ascribed to
the correlation of AMV errors, which can therefore be evaluated directly.

Given that the limited number of both radiosondes and lidar observations massively restrict
the sample size, the evaluation of error correlations with radiosonde observations in common
with Bormann et al. (2013) unfortunately is not possible for the present study. Instead, the
horizontal AMV error correlation of differences between AMV and model FG equivalents
(FG departures) is calculated (i) for operational AMVs and (ii) for AMVs that are assigned to
120-hPa layer-averages below the lidar cloud-top height. Drawing conclusions from the
correlation of AMV-FG differences (instead of AMV-radiosonde differences) to AMV error
correlations is not unconditionally possible, as the inherent model errors are usually highly
correlated. However, the relative reduction of the AMV error correlation can be analysed with
FG model fields, as the model error is assumed to be the same for both settings (i) and (ii).

For the assessment of horizontal AMV error correlations, all Meteosat-10 AMVs with
available collocated lidar observations during the first evaluation period (31 May — 10 June
2013) (called AMV sample “A” in the following) are evaluated. For these AMVS,
circumjacent AMVs (without a direct lidar height correction available, AMV sample “B”) are
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divided into 50-km-bins around each member of AMV A for the same point in time. In
addition, the vertical distance between the AMV pressure heights may not exceed 150 hPa for
the AMV-A/AMV-B pairs obtained. The Pearson correlation coefficient p®*"cA-'*S0 for the
u-component of the wind field is calculated for each 50-km-bin as follows (analogously for
the v-component):

oper

Pap (U) = COIT((U Aoper uA,model_oper )’ (U B,oper u B,model_oper ))

CALIPSO
Pag (U) = COYT((U Aoper uA,modeI_CALIPSO )’ (uB,oper —u B,model_oper ))

where the index A denotes the AMVs with a direct CALIPSO lidar height correction available
and B the AMVs without collocated lidar observations that surround AMV A. The notation
‘corr’ represents the calculation of Pearson’s correlation coefficient of the following term in
brackets. The index “oper’ indicates the operationally assigned wind, ‘ model_oper’ the model
winds at the operational AMV heights, and model_CALIPSO’ the lidar-corrected and layer-
averaged model equivalents. The total error correlation of FG departures for u and v
combined is then derived as

oper/CALIPSO oper/CALIPSO

Pas (U) + P (v)
5 .

pzﬁ)gr/CALIPSO (U ’ V) —

P (u,v) is the error correlation of FG departures between lidar-corrected AMVs

(sample A) and operational (non-lidar-corrected) AMVs (sample B), whereas p,fg (u,v)

describes the error correlation of FG departures when AMVs from sample A and sample B

are both not lidar-corrected, but retain their operational AMV height. Accordingly, the

comparison between pg5""°°(u,v) and pg (u,v) provides information of altered error

correlations when lidar-corrected AMVs are assimilated additionally to the operational AMV
data set.

The additional calculation of the error correlation of FG departures when AMVs from both
samples A and B are lidar-corrected is unfortunately not possible, as this is complicated to
evaluate due to an insufficient sample size of closely collocated AMVs with direct lidar
observations nearby.
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3.2.2 Height bias correction

The previously described direct AMV height reassignment is based on actual cloud-top
heights of lidar observations collocated to the respective AMV. However, this method is only
applicable to a small number of operational AMVs, as the times and positions of the AMV's
have to coincide with nearby CALIPSO lidar observations. As an alternative approach, a
height bias correction for a general mean adjustment of all AMV heights from a respective
satellite can be calculated.

3.2.2.1 Derivation of height bias correction functions

For the purpose of calculating height bias correction functions, the direct height reassignment
is applied to all AMVs with available collocated lidar observations within a certain time
period and then an average over the resulting height adjustment values is computed. This
height bias correction is then applied to a subsequent independent evaluation period.
Durations of 10 days and 30 days are used as averaging periods for computing the height bias
correction functions. The resulting corrections are applied during the second evaluation period
(7 May to 12 May 2013). The 30-day mean comprises the days from 1 April to 6 May 2013
(with missing CALIPSO data on six days within this interval). The 10-day mean is calculated
from the ten days preceding the respective date. This means that for example the height bias
correction derived from the period 2 May — 11 May 2013 is applied and evaluated on
12 May 2013. As a third approach, the 30-day period is subdivided for different latitude bands
to determine separate correction functions for the northern hemisphere (latitude larger than
25°N), the southern hemisphere (latitude larger than 25°S) and a tropical region in between.
Table 2 lists the numbers of AMVs with collocated CALIPSO lidar observations that are used

for the different height correction periods for Meteosat-10.

Height bias correction functions are calculated separately for the different channels (VIS, IR
and WV) for 50-hPa altitude-bins between 950 hPa and 200 hPa plus one additional bin each
for AMVs below and above this range. Every bin must contain at least 30 individual
adjustment values to determine a valid mean adjustment for the respective altitude bin and
AMV channel.

Mean VRMS differences and wind speed bias values are calculated for all AMVs for
(i) discrete operational levels, (ii) levels at 60 hPa below the actual lidar cloud-top
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#

| _ _ | counts |
1 height correction |
: period : L :
i i1 lowlevel 1 highlevel
1 1 1 1
i i i :
I 30 days 24027 . 12114
: : : :
1 1 1 1
1 1 1 1
| 30 days i | i
' northern hemisphere ! 3439 ! 2901 !
: : : :
1 1 1 1
! 30 days ' 10889 ' 6571 !
! tropics ! ! !
1 1 1 1
1 1 1 1
1 1 1 1
! 30 days ' 9699 ! 2606
! southern hemisphere ! ! !
1 1 1 1
1 1 1 1
| 10 days | 7873 | 4114 |
1 1 1 1

Table 6: Number of lidar-corrected AMVs used to calculate height bias correction functions over
different periods for Meteosat 10. Counts of the 30-day height correction periods comprise AMVs
in the period 1 Apr — 6 May 2013. Counts of the 10-day height correction period are averaged over

the respective counts for each of the six days of the second evaluation period.

observation and (iii) adjusted levels based on the height bias correction. In addition,
120-hPa-deep layer-averages centered at these levels are evaluated. The level 60 hPa below
the lidar cloud top is chosen as it represents the mean pressure of the 120-hPa layer.

3.2.2.2 Assimilation and forecast experiments

» Experimental setup

Correcting the operational pressure height of AMVs with directly collocated lidar
observations causes difficulties due to availability problems of real-time lidar data. Hence, a
height bias correction has been developed that can be applied more easily in data assimilation

systems. The benefit of statistically corrected Meteosat-10-AMVs is tested by conducting
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assimilation and forecast experiments with ICON, which is the global forecasting system
currently used at DWD (for details on ICON see Section 2.3.1). The experiments are
conducted for a 16 day assimilation period (1 May 2013 — 16 May 2013). For that purpose,
height bias correction functions are calculated separately for each day of the assimilation
period from a 15-day training interval preceding the respective date. This height bias
correction is then applied to all operational Meteosat-10-AMVs for the corresponding day.
The training period duration of 15 days is chosen due to a CALIPSO data gap before
16 April 2013 that does not allow for longer training periods.

In the operational setting of ICON, AMVs are assimilated every 6 hours, discarding about
half of the hourly derived AMV data set that remains after thinning and quality control
procedures. This might lead to a suboptimal usage of wind information in data assimilation
systems due to strong variations of wind observation numbers from one cycle to another and
is considered to be changed in operational usage in the future. Thus, AMVs are assimilated in
a 3-hcycling interval in this study. The horizontal resolution used in the experiments is
40 km, which is coarser than the current operational resolution (13 km) due to the limitation
of data storage capacity. Apart from these changes, the experimental setup used is equivalent
to the operational settings, including also other baseline observations from the global

observing system.

Using this experimental setup, three different experiments for different settings for
Meteosat-10-AMVs are conducted. The reference run (REF) assimilates Meteosat-10-AMVs
at their originally derived pressure height. For two further experiments, the height bias
correction is applied to the same set of Meteosat-10-AMVs as in the reference run, thereby
shifting the AMVs to an adjusted pressure height based on a 15-day training period. These
statistically corrected AMVs are then assimilated in two experiments: firstly at the discrete
lidar-corrected level (LEV) and secondly as a layer-average extending over a 120-hPa deep
layer centered at the lidar-corrected level (LYR). The three experiments are summarized in
Table 7.

» Forecast evaluation methods

In contrast to the evaluation of AMVs (with individual radiosonde or model equivalents at the
specific AMV coordinates), the evaluation of forecast model fields focuses on an
area-covering impact assessment of the obtained forecast field. The evaluation of forecast
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model fields can be conducted using different measures. For an optimal and accurate impact
assessment, the model fields obtained should be compared with independent in-situ
observations. In practice, this is only possible in a limited way due to a spatially and
temporally inhomogeneous observation network that is incapable of providing global
observations at every model grid point. However, the verification of the forecast wind field
can be performed by comparing (irregularly distributed) radiosonde soundings to the
corresponding model profile at the same location and time. This approach is used in this thesis
for the evaluation of short-term forecasts (FG fields).

In order to evaluate the performance of long-term forecasts in a more homogeneous manner, a
common evaluation approach is to compare the respective forecast field to the analysis field,
I.e. the analysis field of the 3-h data assimilation cycle of the same experiment at the same
point in time. As described in Section 2.3.1, the analysis field represents an estimate of the
atmospheric conditions at the present time step by combining the FG field and current
available observations in an optimal way. By cycling previous information during the data
assimilation process, the analysis fields also contain information from all observations since
the forecast started (and also from the current time step). Although these analysis fields are
not equivalent to the true state of the atmosphere, they represent a best estimate of the truth
that is available area-wide and is therefore commonly used for evaluation purposes in data

assimilation.

As advanced global models like ICON assimilate a large number of observations and have, in
general, a high forecast performance, effects on the forecast skill by changing the assimilation

layer assimilation

1 1 1 1
' short name ! experiment ; description ;
! : : :
: REF : reference run | AMVs assimilated at original pressure height :
: : : :
1 1 . . . 1 1
! LEV ' height bias correction: ! AMVs assimilated at adjusted pressure height !
: . levelassimilation | based on a 15-day bias-correction :
1 1 1 1
1 1 1 . . 1
! ' hei ght bias correction: ! AMVs assimilated as 120-hPa layer-averages !
; LYR ; ; centered at the adjusted pressure based on a !
1 1 1 1
1 1 1 1

15-day bias-correction

Table 7: Overview of the three assimilation experiments
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1 1 1 1
! ' radiosonde | assimilated AMVs |
, area , , ,
I i ascents | (high | mid | low) |
; I I i
: : ! 513888 :
I total 1 6702 1 I
| | ' (38.6% | 12.9% | 48.5%) |
| Northern : 123733 !
I . I 4808 I I
' hemisphere ' (46.5% | 14.4% | 39.1%)
1 1 1 1
! : ; 228879 !
I Tropics I 1416 i |
! ! ' (39.7%] 5.7% 54.6%) !
1 1 1 1
. Southern | 478 ; 161276 !
1 - 1 1 1
 hemisphere '\ (3L.0%] 21.8% 47.2%)

Table 8: Number of radiosonde ascents and assimilated AMVs for the 16-day assimilation period
(1 May — 16 May 2013) for a hemispheric subdivision of the Meteosat-10-domain. AMV counts
are additionally split in the percentages of high-level, mid-level and low-level AMVs. The listed

AMYV counts are the respective average of the three experiments REF, LEV and LYR (exact
numbers vary in the range of 0.05%-0.2%).

parameters of one single observation type (such as AMVSs) are expected to be relatively small.
Evaluation of forecast runs is therefore commonly performed using the normalized difference
of the RMS of the prognostic variables between the obtained forecast field and the reference
field (which corresponds to the analysis of the 3-h cycle of the same experiment). The
normalized RMS (or analogously VRMS) difference is calculated as follows:

mean(RMS,  [h] - RMS e [N])

norm. RMS diff. [h] =
mean (0.5 - (RMS s [N] + RMS . [N]))

RMS, ,r denotes the RMS error of the experiment LYR, RMS,. analogously for the
experiment REF. The normalized RMS difference is computed for each forecast lead time h.
The calculation of the mean both in the numerator and the denominator of the fraction

comprises all available forecast runs for the respective lead time.
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Altogether 127 3-h assimilation cycles are computed, leading to 513888 assimilated
Meteosat-10-AMVs in total. The corresponding numbers of assimilated AMVs for a
subdivision into the hemispheric and tropical parts of the Meteosat-10-domain are listed in
Table 8 in the right column. In Section 5.3.1, all operational Meteosat-10-AMVs of the
16-day assimilation period are compared to the corresponding FG model equivalent of the
respective experiment REF, LEV and LYR. In addition, the FG fields of the three
experiments are compared with radiosonde soundings for all latitudes and longitudes between
-65° and +65°, corresponding roughly to the Meteosat domain. The counts of the available
radiosondes are also listed in Table 8.

In addition to the evaluation of short-term forecasts, preliminary results from 7-day forecast
runs over the European region are shown in Section 5.3.2. The two experiments REF and
LYR are evaluated by comparing forecast fields to the analysis field of the 3-h assimilation
cycles. Forecasts are initialized at 00 UTC and 12 UTC of each day during the assimilation
period. As the corresponding analysis field is needed for the evaluation of the forecast lead
times, the forecasts of the last seven days of the assimilation period cannot be considered for
evaluation. Altogether, 17 free forecast runs (the first one from 1 May 2013, 12 UTC and the
last one from 9 May 2013, 12 UTC) are evaluated.

49






4. DIRECT HEIGHT REASSIGNMENT

This section aims to investigate whether space-based lidar observations can be used for the
height correction of AMVs and evaluates the effect of reassigning AMVs to layers of varying
depth and position relative to the lidar cloud-top height. Results for this individual height
reassignment for AMVs with directly collocated satellite lidar observations are evaluated
firstly with radiosonde wind observations (Section 4.1) and secondly with model equivalents
from the global model GME (Section 4.2). A detailed description of the approach for the

direct height reassignment can be found in Section 3.2.1.

4.1 Verification with radiosonde data

Accurate in-situ radiosonde wind observations are generally the optimal choice for the
evaluation of AMV winds. However, the temporally and spatially rare distribution of
operational radiosondes requires a long study period to achieve a sufficiently large data set of
AMVs with collocated CALIPSO observations and radiosondes for an adequate evaluation.
For this purpose, 220 days with altogether ~4500 matches are used for the verification with

radiosonde data (see Section 3.1.4 for more details).

4.1.1 VRMS differences and wind speed bias

Figure 15 shows the mean VRMS differences of AMVs and radiosonde winds. VRMS values
are calculated for assigning AMVs to vertical layers of increasing depth, which are computed
by averaging radiosonde winds over the respective layer. The first set of layers uses the
original AMV height as reference (red lines); the second set uses lidar cloud top observations
as reference (green lines). The corresponding wind speed bias is shown in Figure 16.
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Figure 15: Mean VRMS differences between AMV winds and layer-averaged radiosonde winds for
(a) high-level IR-AMVs, (b) high-level WV-AMVS, (c) mid-level IR-AMVs, (d) mid-level WV-AMVs,
(e) low-level IR-AMVs and (f) low-level VIS-AMVs. Numbers in brackets are AMV counts for the
respective graph. Red lines represent layers relative to the original AMV pressure height, green lines
relative to the lidar cloud-top height. The three different layer positions are indicated by different line

styles (cf. legend).
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layer centered at layer 25% above layer below
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Figure 16: As Figure 15 but for wind speed bias

Results for high- and mid-level AMVs above 700 hPa (Figs. 15a — 15d) from WV- and IR-
channels exhibit a distinct reduction of VRMS differences when AMVs are treated as

vertically extended layers instead of as single level observations (which are the values for
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0 hPa on the x-axis). Lowest VRMS differences are achieved either by layers below the lidar
cloud top or by layers with 25% above and 75% below the lidar cloud top. The optimal depth
of these layers varies from 120 hPa to 200 hPa. Layers below the lidar cloud top exhibit
lowest VRMS differences for a depth of 100-150 hPa and layers with 25/75% above/below

the lidar cloud top yield best results for a depth of 150-200 hPa.

Overall, the shape of the curves for these two lidar layers is fairly similar for the different
subsets presented in Figs. 15a —15d and small differences in the position of the minimum may
also be a result of the limited sample size of individual subsets instead of systematic
differences in between them. For all these four subsets, the minimum of VRMS differences

for layers relative to the lidar cloud top is in the range of 0.5 — 1.5 m's ™ lower than the lowest

values reached with layers relative to the original AMV height.

Figure 17: Mean VRMS and wind speed bias of differences between AMV winds and layer-averaged

radiosonde winds for upper level AMVs above 700 hPa (IR and WV combined). Altogether,
2835 AMVs are used (948 IR and 1887 WV). Red lines represent layers relative to the original AMV

pressure height, green lines relative to the lidar cloud top height. Note that the scales for mean VRMS

Mean VRMS [m/s]

Bias [m/s]

0 50

100

150

200

layer depth [hPa]

and wind speed bias values are different.
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Figs. 16a and 16b exhibit a significant “slow” bias of high-level AMVs assigned to their
original discrete height (values for 0 hPa on the x-axis). Such a slow wind speed bias has also
been found in other recent studies (e.g. Bresky et al., 2012). Generally, the wind speed bias is
reduced when AMVs are assigned to deeper layers and results indicate that assigning them for
example to layers of 100-150 hPa below the lidar cloud top largely removes the slow bias of
current upper level AMVs. Overall, the results presented in Figure 16 show that layers leading

to low VRMS differences tend to be similar to layers leading to a low wind speed bias.

In contrast to upper level AMVs, low-level AMVs (Figs. 15e and 15f) are typically assigned
to an estimated cloud base height rather than a level near the cloud top. Averaging over layers
that are centered at the original AMV height shows a slight advantage over the discrete value
with increasing layer depth. Worse results are revealed for layers below the original AMV
height, which might be due to the fact that these AMV heights are relative to the cloud base
and consequently, a layer below the cloud base does not represent the wind conditions of the
tracked cloud correctly. Slightly better results are obtained when lidar cloud-top information
is incorporated, but the benefit is less distinct than for mid- and high-level AMVs. 200 hPa
layers with 25/75% above/below the lidar cloud top and 200 hPa layers below the lidar cloud

— Upper level 02 Upper level - = upper level — lOVET lEVEl
AMVs Wh-AMVs IR-AMWs AMYs

relative VRMS reduction [%]

50 100 150 200 50 100 150 200
layer depth [hPa] layer depth [hPa]

Figure 18: Relative reduction of VRMS differences between AMV and radiosonde winds for assigning
AMVs to layers below the lidar cloud top instead of (a) layers of the same depth centered at the
original AMV height and (b) the discrete original AMV heights. Upper level AMVs above 700 hPa
(blue solid line) are additionally divided into upper level WV-AMVs (blue dotted) and upper level
IR-AMVs (blue dashed). The red solid line represents results for lower level AMVs (> 700 hPa).
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Figure 19: Relative reduction of VRMS differences between AMV and radiosonde winds for
assigning AMVs to layers below the lidar cloud top (blue line) and to the respective mean pressure
levels of that layer below lidar cloud top (orange line) instead of the discrete original AMV heights.

top (for IR and VIS, respectively) lead to the lowest VRMS differences, but results for layers
of the same depth centered at the original AMV heights are only 0.1-0.2 m's * higher. As low-
level AMVs are located at pressure heights greater than 700 hPa, the 200 hPa layers below the
lidar cloud top are mostly layers from the lidar cloud top to the lowest radiosonde level. The
lower benefit of lidar cloud top heights for the reassignment of low-level AMVs may result
from the relation of low-level AMVs to cloud-base winds and the inability of satellite lidars to
observe these cloud bases.

High- and mid-level AMVs overall exhibit a similar behaviour and therefore all AMVs above
700 hPa are combined in Figure 17. The combination of high- and mid-level AMVs will be
referred to as “upper level AMVs” in the following. Results indicate that lowest VRMS
differences in combination with lowest wind speed bias values are achieved for either
120-130 hPa layers below the lidar cloud top or for 200 hPa layers with 25/75% above/below
the lidar cloud top.

4.1.2 Relative VRMS reduction for lidar layers and lidar levels

Figure 18 shows the relative reduction of VRMS differences when results for layers below the
lidar cloud top are compared to results of layers of the same depth centered at the original
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Figure 20: Histogram of height differences (hPa) between the original AMV pressure height and the
mean pressure of the corresponding 120 hPa layers below the lidar cloud top for upper level AMVs
above 700 hPa (1887 WV-AMVs and 948 IR-AMVs). The dashed vertical line corresponds to the
pressure height of the lidar cloud top.

AMV height (Fig. 18a) and results using the discrete original AMV height (Fig. 18b). The
shape of the curves in Fig. 18a and 18b is similar. For upper level AMVs (blue lines), best
results are yielded for layer depths of 100-120 hPa. Highest reduction values are ~12% for
lidar layers compared to layers centered at the original AMV height (Fig. 18a) and ~17%
compared to the discrete original AMV height (Fig. 18b). The improvement is apparent in
both upper level channels IR and WV (blue dotted and dashed lines). Dividing between upper
level ice clouds and water clouds leads to a similar reduction and is therefore not shown.
About 59.4% (64.6%) of the 2835 upper level AMVs show reduced VRMS differences for
120 hPa layers below the lidar cloud top in relation to 120 hPa layers centered at the original
AMV height (to the discrete original AMV heights).

Correcting the height of low-level AMVs (red lines) with lidar information only leads to a
small VRMS reduction, but the averaging over deep layers shows advantages over using
discrete heights. The VRMS differences for 200 hPa layers below the lidar cloud top are
predominantly superior to the VRMS differences of 200 hPa layers centered at the original
AMV height and of the discrete original AMV heights (50.8% and 59.2%, respectively).

After demonstrating the benefit of assigning AMVs to vertical layers below the lidar cloud
top, it is now investigated how much of that reduction could be achieved by assigning them to

one representative discrete level relative to the lidar cloud top instead. The blue solid line in
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Figure 19 represents the treatment of AMVs as a layer-average below the lidar cloud top
(equivalent to the blue solid line in Figure 18b), whereas the orange line represents the
assignment of AMVs to the discrete mean pressure height of that lidar layer, i.e. a discrete
level located half of the layer depth below the lidar cloud top. Results indicate that assigning
AMVs to the mean pressure of the lidar layers achieves most of the reduction of assigning
AMVs to vertically extended lidar layers. However, interpreting AMVs as layer-averaged
winds leads to a relative reduction that is ~3% higher. The maximum of the curves is for both
approaches at ~120 hPa, which corresponds to using discrete levels 60 hPa below the lidar
cloud top. The corresponding wind speed bias values at this maximum are for both

approaches close to zero (not shown).

Figure 20 illustrates the distribution of differences between the original AMV pressure and
the mean pressure level of 120 hPa deep layers below the lidar cloud top for upper level
AMVs. About 75% of the AMVs are located above the mean pressure of the lidar layers and
are thus shifted to lower altitudes (negative values) with the lidar height correction. As AMVs
are derived by tracking the motion of the cloud, the lidar cloud top (dashed line) marks the
natural upper edge where AMVs should be located. However, approximately 30% of the

1 1 1 1 1
1 1 1 1 1
| | ' upper level AMVs 1 low-level AMVs !
1 1 1 1 1
: : : . : . :
: : time period : VRMS : counts : VRMS : counts :
I I P 1 reduction 1 reduction I
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 A” 1 1 1 1 1
! ! (220 days) ! 16.9 ! 2835 ! 7.1 ! 1645 !
1 1 1 1 1 1 1
1 I T T 1 T 1
! ' 1Apr.—3Sep.2012 ! ! ! ! !
1 1 1 1 1 1 1 1
! (1) ! (142 days) » 189 1 1725 5.1 | 999 !
1 1 1 1 1 1 1
1 1 1 1 1 1 1
5Sep. -60ct. 2012 | | i i i
1 2 1
| (2) | (32 days) | 11.4 | 406 | 18.5 | 249 |
1 1 1 1 1 1 1
1 1 — 1 1 1 1 1
| 3) | 16 Apr. — 12 June 2013 | 141 | 704 | 56 | 397 |

(46 days)

Table 9: Relative VRMS reduction in percent and number of matches for different time periods for

assigning AMVs to layers below the lidar cloud top instead of the discrete original AMV height. The

depth of the assigned layers is 120 hPa (200 hPa) for upper (low) level AMVs with pressure heights
above (below) 700 hPa.
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Figure 21: Relative VRMS reduction of differences between AMV and radiosonde winds as a function
of the horizontal distance between AMV and radiosonde (RS) for assigning AMVs to 120 hPa layers
below the lidar cloud top instead of layers centered at the original AMV height (green line) and the

original discrete AMV height (purple line). The dotted red line corresponds to the y-axis-label on the

right and shows the sample size.

AMVs are located above the cloud, which may be related to an erroneous height assignment
as well as to the temporal and horizontal displacement of AMV and CALIPSO lidar
observation. On average, upper-level AMVs are located 31 hPa above the lidar layer center
(and correspondingly, 29 hPa below the lidar cloud top), with only small differences between
the single channels WV and IR. In summary, this indicates that the operational processing of
upper-level AMVs should consider that AMVs rather represent wind in a layer below the
actual cloud top, but the systematic height differences are likely dependent on the applied
AMV processing systems and its settings.

4.1.3 Effects of using different subsamples

To investigate the effect of changes in the height assignment algorithm of EUMETSAT, the
analysed 220 days are divided into three different time periods in Table 9. The first one

comprises 142 days before 5 September 2012, the day when the height assignment algorithm
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was changed to the CCC-method (see Section 2.1.1.2). The second period consists of 32 days
starting on 5 September 2012 and the last period consists of 46 days from 16 April until
12 June 2013. According to the preceding results (see Fig. 17), the lidar layer depth is set to
120 hPa for upper level AMVs and 200 hPa for low-level AMVs. For upper level AMVs, the
VRMS reduction for assigning layers below the lidar cloud top instead of the discrete original
AMV heights is apparent in all three periods ranging from 11.4% to 18.9%. As stated before,
low-level AMVs do not show a clear reduction of VRMS differences through the direct height
reassignment. However, one noticeable feature is the high VRMS reduction for low-level
AMVs in the second period from 5 September to 6 October 2012. This is likely related to a
temporary degradation of the quality of low-level AMVs in the time period after the height
assignment algorithm changed to the CCC-method (Salonen and Bormann, 2012).

In order to utilize a reasonable large sample size, the collocation criterion for AMVs and
radiosondes is set to 150 km and 90 minutes. However, the temporal and spatial displacement
of AMVs and verification radiosondes introduces an additional error component that is
expected to be independent of the AMV error itself and the height correction. Therefore, a
weak collocation criterion leads to an underestimation of the actual relative VRMS reduction.
Figure 21 shows how the relative reduction of VRMS differences for upper level AMVs
increases as the horizontal collocation criterion is tightened. Naturally, the number of matches
decreases for smaller distances. The error reduction for 120 hPa layers below the lidar cloud

E E upper-level AMVs E low-level AMVs E
e erro_r | counts erro_r | counts
! ' reduction ! ' reduction ! !
250 1 169 . 2835 . 71 . 1643
' >60 ! 168 2573 8.0 1439
270 1 166 1 2265 1 83 1 1254
>80 145 1792 9.4 1003

Table 10: Relative VRMS reduction in percent and number of matches for different quality
indices QI for assigning AMVs to layers below the lidar cloud top instead of the discrete original
AMYV height. The layer depth is 120 hPa (200 hPa) for upper (low) level AMVs with pressure
heiahts above (below) 700 hPa.
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top relative to layers centered at the originally assigned AMV heights shows a strong increase
from ~12% at 150 km to ~21% at 40 km (purple line). When compared to the discrete original
AMV height, the relative VRMS reduction increases from ~17% to ~25% (green line).
Reducing the time difference does not lead to clearly larger improvements and is therefore not

shown.

This study uses a threshold for the AMV quality index QI of 50. Restricting it to higher values
(up to > 80) reduces the sample size to up to ~60%. Table 10 lists the relative VRMS
reduction for assigning 120 hPa layers (upper level AMVs) and 200 hPa layers (low-level
AMVs) below the lidar cloud top instead of the discrete original AMV heights for different
quality thresholds. Restricting the sample to upper level AMVs with QI >80 shows slightly
less improvement than including lower quality AMVs, but the differences are smaller than
2.5%. For low-level AMVs, the VRMS reduction slightly increases when only AMVs with
higher quality are regarded.

4.2 Comparison with GME model equivalents

In addition to the preceding verification with radiosonde data, AMV winds are now
additionally evaluated with  GME model equivalents to circumvent the constraint of
temporally and spatially rare radiosondes. This allows analysing a considerably larger amount
of AMVs, albeit this approach does not provide an entirely independent dataset for the
validation. Based on the results of the previous chapter, layers of varying depth ranging from
0 hPa to 200 hPa at three positions are evaluated: (i) below the lidar cloud-top height, (ii) with
25% above and 75% below the lidar cloud-top height and (iii) centered at the operational
AMV height as reference layers. Altogether, 13200 AMV/CALIPSO matches during the first
evaluation period (31 May — 10 June 2013) are analysed.

Figure 22 illustrates the distribution of height differences between operational AMV heights
and cloud-top heights derived from collocated CALIPSO lidar observations for all used
Meteosat-10-AMVs. More than 80% of all operationally assigned AMVs are located below
the actual lidar cloud top, corresponding to positive height differences on the x-axis. The
highest number of AMVs occurs within the first 50 hPa below the lidar cloud top. A further
subdivision into latitude bands reveals similar distributions for extra-tropical and tropical

regions (not shown).
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Figure 22: Histogram of height differences (hPa) between original AMV pressure heights and lidar
cloud-top heights for high-level and low-level AMVs combined. Positive values correspond to AMV
heights that are below the respective lidar cloud top.

4.2.1 VRMS differences and wind speed bias

Figure 23 shows the VRMS difference (upper panels) and wind speed bias (lower panels)
between operational AMV winds and layer-averaged FG model winds. Red dashed lines
represent layers that are centered at the operational AMV height, which serve as a reference
for the reassigned layers relative to the lidar cloud-top height (green lines). High-level AMVs
above a pressure height of 400 hPa comprise WV and IR AMVs, whereas low-level AMVs
below a pressure height of 700 hPa consist mainly of VIS and IR AMVs. Dividing the AMVs
data set for different channels used for their derivation shows similar results for both high-

level and low-level AMVs and is therefore not shown.

For high-level AMVs (Fig. 23a), lowest VRMS differences are achieved for 120-hPa layers
below the lidar cloud top, resulting in a relative VRMS reduction of about 10% when
compared to reference layers of the same depth centered at the original AMV height (red
dashed line) and of about 15% when compared to the discrete operational AMV heights (red
dashed line at 0 hPa). The wind speed bias tends to be close to zero for 100-hPa layers below
the lidar cloud top. Low-level AMVs (Fig. 23b) show lowest VRMS differences for 120-hPa
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4.2 Comparison with GME model equivalents

layers below the lidar cloud top and for 200-hPa layers with 25% above and 75% below the
lidar cloud top. For 120-hPa layers below the lidar cloud top, the reassignment reduces the
VRMS difference by 8 % and 15% compared to reference layers centered at the operational
AMV height and to the discrete operational height, respectively. The wind speed bias is
generally small for low-level AMVs, but layers below the lidar cloud top exhibit slightly

smaller values than the 25%/75% layers.

In order to investigate the effect for different latitude bands, the AMV sample used in

Figure 23 is subdivided in extra-tropical and tropical regions in Figure 24. Generally,
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Figure 23: Mean VRMS differences (upper panels) and wind speed bias (lower panels) between AMV
winds and layer-averaged model winds for (a) high-level and (b) low-level Meteosat-10-AMVs.
Numbers in brackets are AMV counts. Red dashed lines represent layers centered at the original AMV
pressure height; green solid lines represent layers below the lidar cloud-top height; green dotted lines
represent layers with 25% above and 75% below the lidar cloud-top height (cf. legend).
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Figure 24: Mean VRMS differences (upper panels) and wind speed bias (lower panels) between AMV
winds from Meteosat-10 and layer-averaged FG model winds for (a) high-level AMVs in extra-
tropical regions, (b) high-level AMVs in the tropics, (c) low-level AMVs in extra-tropical regions and
(d) low-level AMVs in the tropics. Numbers in brackets are AMV counts. Red dashed lines represent
layers centered at the original AMV pressure height; green solid lines represent layers below the lidar
cloud-top height; green dotted lines represent layers with 25% above and 75% below the lidar cloud-
top height (cf. legend). Note that the scales for high-level and low-level AMVs are different for VRMS
differences and the wind speed bias.

120-hPa layers below the lidar cloud top achieve lowest VRMS differences for high-level and
low-level AMVs in both regions (Fig. 24a — 24d, upper panels). For high-level AMVs in
extra-tropical regions (Fig. 24a, lower panel), the wind speed bias is close to zero for
120-hPa layers below the lidar cloud top and thus coincides with lowest VRMS differences.
The wind speed bias in the tropics shows larger values for the 120-hPa layer (Fig. 24b, lower
panel), but still has about the same magnitude as the wind speed bias for layers of the same
depth at the operational AMV height. As GME has some known shortcomings in high-level
tropical regions due to a relatively poor convection scheme, the tropical wind speed bias may
also result from the model error in that region. Wind speed bias values for low-level AMVs

(Fig. 24c and 24d, lower panel) are generally small for extra-tropical and tropical regions.
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4.2 Comparison with GME model equivalents

4.2.2 AMV error correlations

To investigate the effect of the CALIPSO-based height reassignment on the horizontal
correlation of AMV errors, correlation coefficients for the difference between AMVs and
FG model equivalents (FG departures) are computed as a function of horizontal distance
(Fig. 25) as described in Section 3.2.1.2. The red, dashed line in Figure 25 corresponds to the
error correlation of FG departures for AMVs at the operational pressure height, showing a
decrease of the correlation with increasing horizontal distance. The green line represents
values for the error correlation of FG departures of lidar-corrected AMVs (using 120-hPa
deep layers below the lidar cloud-top height) to operational AMVs. The lidar-corrected data
set shows significantly lower error correlation values compared to the operational AMVs,
which further emphasizes the potential benefit of lidar-corrected AMVs for data assimilation.
On average, the lidar height reassignment reduces the correlation by about 50 km. As the

evaluation is conducted with model equivalents, the absolute values of the correlation are
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Figure 25: Horizontal AMV error correlation of FG departures of operational AMVs (dashed red line)
and lidar-corrected layer-averaged AMVs (green line) when compared to surrounding operational
AMVs for Meteosat-10 from all levels as a function of horizontal distance between the AMVs. The black
dotted line shows the number of collocations used and corresponds to the y-axis on the right.
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strongly affected by the horizontal correlation of model errors and should not be evaluated.
However, the model correlation can be expected to be independent of the AMV errors and
therefore results for the corrected and uncorrected AMV data set can be compared. Bormann
et al. (2003) calculated the error correlation of AMVs using radiosondes for verification and
found correlation values that were about 30% smaller than the values in Fig. 25. This

difference is likely the contribution of the model correlation.

4.3 Summary and discussion

In this section, satellite lidar observations are used to directly correct the height of AMVs
from MSG satellite imagery with lidar cloud-top observations from CALIPSO. Appropriate
layer depths and layer positions relative to the lidar cloud top and relative to the original
AMV height are investigated by comparing AMV winds to radiosonde or GME model winds
averaged over layers of the respective depth and position.

For the verification with radiosonde data, 220 days of data with altogether about 4500
collocated AMVs, CALIPSO observations and radiosondes are analysed. Assigning upper-
level AMVs to 120 hPa layers below the lidar cloud top leads to an improvement of ~12%
compared to assigning layers of the same depth centered at the original AMV heights and of
~17% compared to using the discrete original AMV heights. Similar results are yielded for
200 hPa layers with 25% of the layer above and 75% below the lidar cloud top. The reduction
of VRMS differences for AMVs below pressure levels of 700 hPa is less distinct when layers
relative to the lidar cloud top are used instead of layers relative to the originally assigned
AMV height. Although there is only a slight VRMS reduction for these AMVs using lidar
information, there is indication that lidar observations can reduce VRMS differences in
periods with lower AMV quality due to changes in the AMV processing. The reasons why the
lidar height correction is showing much better results for upper level AMVs may be
connected to the relation of low-level AMVs to cloud-base winds and the inability of satellite
lidars to observe these cloud bases accurately.

A tighter threshold for the horizontal distance between AMVs and radiosondes used for
verification even leads to a clearly larger relative effect of the direct height reassignment. The
results imply that the direct height reassignment can actually reduce the AMV wind error by
over 20% compared to assigning AMVs to layers relative to the original height and over 25%
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compared to using the discrete original AMV height, but the sample size gets comparably

small for a tight threshold.

In the second part of this section, the evaluation of the height reassignment of AMVs with
directly collocated CALIPSO lidar observations is conducted with GME model equivalents
instead of with radiosondes for an 11-day period with 13200 AMV/CALIPSO matches. For
Meteosat-10, both high-level and low-level AMVs exhibit the lowest VRMS differences for
assigning AMVs to 120-hPa deep layers below the lidar cloud top. This leads to a reduction
of VRMS differences of 8-10% when compared to layers of the same depth centered at the
operational AMV height, and about 15% when compared to the discrete operational AMV

levels.

Overall, the results of the model evaluation of the direct height reassignment confirm the
findings for the verification with radiosonde sounding data. For the radiosonde-evaluated
upper-level AMVs that are mainly located over European continent, 120-hPa layers below the
lidar cloud top yielded lowest VRMS differences and a wind speed bias close to zero when
verified with radiosondes. These results closely coincide with the findings of the model
evaluation for extra-tropical regions for both high-level and low-level AMVs. The different
findings for low-level AMVs when verified with radiosonde observations are likely related to
the selection of the evaluation period: The model evaluation uses data after the changeover to
the CCC-method, which also switched off the application of the assignment of low-level
AMVs to the estimated cloud-base. On the contrary, the radiosonde verification evaluated
mostly AMVs before the CCC-method was introduced. Overall, the consistency of the
findings for the model evaluation and the verification with radiosonde data implies that model
error does not blur the results and emphasizes the validity of using short-term forecasts for the

evaluation.

The positive impact of assigning AMVs to layers instead of discrete levels shown in this
study coincides with findings of preceding studies (Velden and Bedka, 2009: Weissmann et
al., 2013). Using a simulated model framework, Hernandez-Carrascal and Bormann (2014)
illustrated that AMVs represent winds averaged over a cloud layer instead of the cloud-top or
cloud-base level wind. Lean et al. (2015) also quantified height assignment AMV error
characteristics using a set of simulated AMVs and found the closest fit of AMVs to layer-
averaged model winds that are most commonly located below the estimated cloud-top. This
corresponds well to the results presented in this study with lowest wind VRMS differences
and wind speed bias values when assigning AMVs to layers below the lidar cloud-top height.
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In addition, Lean et al. (2015) and Hernandez-Carrascal and Bormann (2014) stated that a part
of the benefit that is gained by assigning AMVs to layer-averages over a cloud layer can be
reached by using a discrete level positioned within the respective layer. This is also confirmed
in the present study.

Overall, there are about 1000-1300 Meteosat AMV's with nearby CALIPSO observations that
could be directly corrected with lidar information per day. About 3300-4500 operational
Meteosat-10-AMVs are assimilated every 6 h in the current global forecasting model of
DWD, leading to ~13200-18000 assimilated Meteosat-10-AMVs per day. Replacing the
original AMV data set with lidar-corrected AMVs based on the direct height correction would
lead to a large reduction of the already small number of assimilated AMVs. A more
appropriate approach would be to include the lidar-corrected AMV data set in addition to the
originally assimilated AMV data set, as both data sets generally do not overlap much. Hereby,
the number of assimilated Meteosat-10-AMVs could be increased by 6% - 10%. However, the
availability of real-time lidar data would be an essential prerequisite, which limits the
operational application of the direct height correction with CALIPSO data for assimilation
purposes.
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5. HEIGHT BIAS CORRECTION AND DATA
ASSIMILATION EXPERIMENTS

The previous section showed that a direct lidar-based height reassignment significantly
reduces the VRMS difference and the wind speed bias of AMVs. However, this direct
correction can only be applied to a small fraction of the AMV data set, where collocated
CALIPSO observations are available for the individual reassignment. In addition, the need for
real-time lidar data would pose a significant effort for data providers and NWP centres. To
address this issue, a statistical lidar-based height bias correction of AMV pressure heights is
evaluated in this section. After an introduction to the derivation of height bias correction
functions, the potential of a height bias correction based on different training intervals is
assessed using GME model equivalents. Subsequently, initial results of the forecast
performance when lidar-corrected AMVs are assimilated in the global model ICON are
presented.

5.1 Height bias correction functions

Results of a direct, CALIPSO-based height reassignment in the previous section identified
120-hPa deep layers below the lidar cloud top as an overall optimal configuration for the
height reassignment. For this reason, such layers are used as the basis for deriving the height
bias correction. As described in Section 3.2.2, three different options for the respective
training interval are tested: 10 days, 30 days, and 30 days with a hemispheric/tropical
subdivision. As an example, Figure 26 shows a 30-day height bias correction function (left
panel) and a 10-day height bias correction function (right panel) for Meteosat-10 as a function
of altitude and channel. The mean pressure of the optimal layer, meaning the discrete level at
60 hPa below the lidar cloud top, is used for the pressure adjustment values on the x-axis.
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Figure 26: Height bias correction functions for Meteosat-10 for a 30-day period (1 April 2013 —
6 May 2013, left panel) and a 10-day period (1 May 2013 — 10 May 2013, right panel) as a function
of altitude. Different line styles indicate different satellite channels (cf. legend).

Negative values indicate that the AMV is shifted downwards in the atmosphere. Mid-level
AMVs between 400 hPa and 700 hPa are not used for the height bias correction because of
the comparably small AMV sample size in this range. Typical AMV numbers for each
vertical pressure bin are about 4000 (1300) for high levels and 2400 (840) for low level
AMVs for the 30-day (10-day) correction. Generally, the shape of the curves for the 30-day
height bias correction and the 10-day height bias correction is very similar (also for the other
10-day training periods), with a more jagged shape for the 10-day correction due to the
smaller sample size. On average, the adjustment of high-level AMVs is of the order of
- 20 hPa. Low-level AMVs are also shifted downwards at most altitude levels. The largest
adjustment of 60-80 hPa occurs for AMVs with 700-800 hPa altitude. Generally, the curves of
the height bias correction functions for the latitude subdivision (not shown) also tend to have
a similar shape, with less pronounced height adjustment values for the tropics than for the
extra-tropics.
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5.2 Comparison of the direct height reassignment and the

height bias correction

As described in Section 3.1.2, the direct height reassignment uses the actual collocated lidar
observations for an individual height correction for each AMV. On the contrary, the height
bias correction aims to correct systematic AMV height biases using statistical adjustments
based on height bias correction functions derived from preceding training intervals. To
investigate the potential benefit of the height bias correction, both lidar-based height
correction methods are evaluated for the same sample of Meteosat-10-AMVs, i.e. all AMVs
with a directly collocated CALIPSO lidar observation available during the second evaluation
period (7 May — 12 May 2013).

Figure 27 shows the mean VRMS difference and wind speed bias between AMV and model
winds for results for operational AMV heights (red bars), for applying the direct height
reassignment (green bars), and for applying the three different height bias correction functions
(blue bars). The left part of each panel shows the results when assigning AMVs to discrete
levels, meaning the operational levels (red), levels at 60 hPa below the cloud top of a directly
collocated lidar observation (green) or three *“adjusted” levels based on the height bias
correction (blue). Correspondingly, the right part represents layer-averaged values for
120-hPa deep layers centered at the respective heights. Results for the direct height
reassignment are generally similar to the results presented in Section 4.2, with slight

variations due to the different evaluation periods considered in the two sections.

For high-level AMVs (Fig. 27a), the lowest VRMS differences (upper panel) are achieved for
120-hPa layers based on the direct height reassignment. However, the height bias correction
also yields a distinct reduction of VRMS differences compared to those from levels/layers
relative to the operational AMV height. About 30-50% of the reduction of the direct height
reassignment is achieved, with no clear preference for a particular correction function. In
addition, the wind speed bias (lower panel) is clearly reduced for the height reassignment as
well as for the height bias correction based on a 30-day mean and a 10-day mean when
compared to the wind speed bias at the operational AMV height. Low-level AMVs (Fig. 27b)
exhibit a similar pattern to high-level AMVs. Again, the direct height reassignment shows the
best results when layer-averages are used. In addition, layers relative to the adjusted heights
based on the height bias correction show a clear reduction of VRMS differences compared to
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the operational values. In particular, the 10-day height bias correction exhibits VRMS
differences that are almost as low as those of the direct height reassignment. The wind speed
bias for low-level AMVs is strongly reduced for the direct height reassignment as well as for
the height bias correction, especially when a layer-averaging is applied. Overall, VRMS
differences are generally lower for layer-averages than for discrete levels, which further

emphasizes the fact that AMVs represent the wind in a vertically extended layer.
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Figure 27: Mean VRMS differences (upper panels) and wind speed bias (lower panels) between AMV
and model FG winds for (a) high-level and (b) low-level Meteosat-10-AMVs. Numbers in brackets are
AMV counts. ‘“AMV oper’ corresponds to the operational AMV height and ‘CALIPSO’ to the direct lidar
height reassignment. Different height bias correction functions are designated as ‘30days’ (30-day
mean), ‘30days hemi’ (30-day mean with hemispheric and tropical sub-divisions) and *10days’ (10-day
mean). Results are shown both for assigning AMVs to discrete levels (meaning the operational level, the
level at 60 hPa below the actual lidar cloud top and the three height-bias- corrected levels) in the left part
of each panel and to 120-hPa layer-averages centered at these levels in the right part of each panel.
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5.2 Comparison of the direct height reassignment and the height bias correction

The subdivision into extra-tropical and tropical regions for the height bias correction is
investigated in Figure 28 for both high-level and low-level AMVs. For clarity, each subfigure
shows only results for the operational, discrete AMV level (red bar on the left of each panel)
and for 120-hPa layer-averages centered at the operational level and at lidar-corrected levels
(right part of each panel), omitting results for the lidar-based height correction for discrete
levels. The general tendency seen in Figure 27 is reflected in extra-tropical as well as tropical
regions: The direct height reassignment produces the lowest VRMS differences and a small
wind speed bias in all subfigures (Fig. 28a — 28d, green bars), but the height bias correction
on average achieves about 50% of this reduction. As pointed out earlier, high-level AMVs in

the tropics tend to have a stronger wind speed bias than in the extra-tropics, which may be
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Figure 28: Mean VRMS differences (upper panels) and wind speed bias (lower panels) between AMV winds
from Meteosat-10 and layer-averaged FG model winds for (a) high-level AMVs in extra-tropical regions,
(b) high-level AMVs in the tropics, (c) low-level AMVs in extra-tropical regions and (d) low-level AMVs in

the tropics. Numbers in brackets are AMV counts. ‘AMV oper level” corresponds to the discrete operational

AMV height. The right part of each panel shows results for 120-hPa layer-averages centred at the
operational AMV height (*AMV oper’), below the actual lidar cloud top (‘CALIPSO’) and centered at the
levels based on the three height bias correction functions (*30days’, “‘30days hemi’, ‘10days’).
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5 HEIGHT BIAS CORRECTION AND DATA ASSIMILATION EXPERIMENTS

related to an inadequate representation of the atmospheric state by GME. Nevertheless, the
application of both height correction methods in the tropics overall leads to a smaller bias

than the operational value.

To investigate the effect of different layer depths and level positions relative to the lidar
cloud-top height, Figure 29 shows the relative reduction of VRMS differences of both lidar
height correction methods (solid lines for the direct height reassignment and dashed lines for a
30-day height bias correction) for discrete levels and different layer depths when their results
are compared directly to the results for the discrete operational AMV heights. The relative
reduction of the VRMS difference is shown as a function of layer depth for all latitudes for
low-level and high-level AMVs combined. Overall, the best results are achieved using the
direct lidar height reassignment for 120-hPa layers below the lidar cloud top (solid green line)
with a VRMS reduction of about 11% compared to the operational AMV heights. Again, this
value deviates slightly from the reduction of VRMS differences of ~15% found in

== direct height reassighment: layer-average
= = height bias correction: layer-average
= direct height reassignment: discrete level
= = height bias correction: discrete level
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Figure 29: Relative reduction of VRMS differences between AMV and model FG winds for assigning
AMVs to layers/levels below the lidar cloud top (solid lines) and to layers/levels based on the 30-day
height bias correction (dashed lines) instead of the discrete operational AMV heights. Green lines
represent layer-averages and blue lines discrete levels relative to the respective height. Low-level and
high-level AMVs are combined. The x-axis denotes the vertical depth of the layers. The reassigned
levels are located at the mean pressure of the layers.
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5.3 Assimilation of lidar-corrected AMVs in ICON

Section 4.2, as two different evaluation periods are considered in the two sections. Using the
height bias correction, the largest reduction of VRMS differences (~9%) is also achieved for
120-hPa layers (dashed green line), reaching about 80% of the VRMS reduction that is
achieved with the direct height reassignment. The impact from using discrete levels below the
lidar cloud top (solid blue line) is less distinct. The largest error reduction (about 7%) is
achieved for levels at 50-60 hPa (drawn in the figure at 100-120 hPa) below the lidar cloud
top. Results for the discrete pressure heights that are based on the 30-day height bias
correction are least pronounced (dashed blue line) and only show a slightly positive effect
(3.5% reduction).

5.3 Assimilation of lidar-corrected AMVs in ICON

As demonstrated in the preceding chapter, the height bias correction is capable of reducing the
VRMS difference and the wind speed bias of Meteosat-10-AMVs, and may therefore provide
an efficient way of using lidar information for the AMV height correction in NWP systems.
To investigate this hypothesis, the impact of lidar-corrected and layer-averaged
Meteosat-10-AMVs is assessed in assimilation and forecast experiments with the global NWP
model ICON of DWD for a 16-day assimilation period (1 May 16 May 2013). Thereby, the
forecast skill of 3-h short-term forecasts (FG field) as well as free forecasts up to 7 days is
evaluated. As described in Section 0, three experiments are conducted: Firstly, all AMVs are
assimilated on the discrete level of their original AMV height, serving as a reference (REF).
Secondly, all Meteosat-10-AMVs are reassigned to lidar-corrected heights based on a 15-day
training period (LEV). Thirdly, all Meteosat-10-AMVs are assimilated as 120-hPa layer-
averages centered at the lidar-corrected height (LYR).

5.3.1 Evaluation of 3-h short-term forecasts (FG)

First, the forecast impact of observations is evaluated in the context of FG departures of the
AMV wind. Figure 30 shows the VRMS difference and wind speed bias between AMV and
FG model winds for the three experiments REF (red solid), LEV (green dashed) and
LYR (green solid) for the 16-day assimilation period (127 assimilation cycles at

3-h intervals). The VRMS differences (upper panels) show a consistently better agreement
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5 HEIGHT BIAS CORRECTION AND DATA ASSIMILATION EXPERIMENTS

with the FG model equivalents throughout the troposphere when AMV are assigned to 120-

hPa layers centered at the lidar-corrected height (LYR) instead of assigning them to the

original discrete height (REF) both for extra-tropical (Fig. 30a) and tropical (Fig. 30b)

regions. For the experiment LEV, the reduction of VRMS differences compared to the

reference run is not as distinct as for the experiment LYR, but it does achieve either equal or

lower VRMS differences than the experiment REF for extra-tropical regions. In the tropics,

LEV results are generally also positive, but show a slight degradation of VRMS differences

compared to REF in some upper-level regions. By integrating over the whole troposphere, the

relative reduction of the VRMS differences from the experiment LYR compared to the

reference run is 3.7% for the tropics and 4.0% for extra-tropical regions (1.5% and 0.1% for

the corresponding values for the experiment LEV).
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Figure 30: VRMS differences (upper panels) and wind speed bias (lower panels) between AMV wind

and corresponding FG model equivalent as a function of altitude for the three experiments REF, LEV
and LYR (a) for extra-tropical and (b) for tropical regions for the 16-day assimilation period
(1 May 2013 - 16 May 2013).
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5.3 Assimilation of lidar-corrected AMVs in ICON

The wind speed bias between AMV and model wind (Fig. 30, lower panels) shows absolute
values for the experiments LEV and LYR that are of equal or lower magnitude than the
operational values for low-level and high-level regions in the extra-tropics and low-level and
mid-level regions in the tropics. In contrast, an increase of the wind speed bias is observed for
extra-tropical regions for altitude regions from 300 hPa to 700 hPa and for tropical regions
above 600 hPa. However, this increase might be related to a suboptimal model representation
of the true atmospheric state, as the magnitude of the wind speed bias has the same order as
long-term monitoring model bias values (not shown). Consequently, this increase may be

related to a model bias instead of an observational bias.

To further investigate this hypothesis, the verification of the 3-h short-term forecasts
(FG fields) against radiosonde observations is shown in Figure 31. For clarity, only results for
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Figure 31: VRMS differences (upper panels) and wind speed bias (lower panels) between radiosonde

winds and FG model winds for the experiments REF(red lines) and LYR (green lines) for (a) the full

Meteosat-10 domain ( 65° N/S/W/E), (b) its northern hemispheric part, (c) its tropical part and (d) its
southern hemispheric part for the 16-day assimilation period (1 May — 16 May 2013).
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Figure 32: VRMS (left panels) and normalized VRMS differences between the experiments LYR minus
REF (right panels) as a function of forecast lead time at high levels (300 hPa, upper panels), mid
levels (500 hPa, mid panels) and low levels (850 hPa, lower panels) for the evaluation period from
1 May 2013 — 9 May 2013

the experiments REF and LYR are depicted. As the impact could be different due to a coarser
or finer radiosonde observation network, a sub-division for the northern hemisphere, the
tropics and the southern hemisphere is made. Upper panels show results for VRMS
differences, and lower panels show wind speed bias values as a function of altitude for the full
Meteosat-10-domain (Fig. 31a) and for the additional subdivision into its northern
hemispheric part (Fig. 31b), its tropical part (Fig, 31c) and its southern hemispheric part
(Fig. 31d). VRMS differences shown in the upper panels of Figure 31 do not exhibit clear
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Figure 33: Normalized RMS differences (LYR - REF) as a function of forecast lead time for the
prognostic variables (a,d) temperature, (b,e) geopotential, (c,f) relative humidity for the evaluation
period from 1 May 2013 — 9 May 2013. Left panels are for high levels (300 hPa), right panels for low
levels (850 hPa)

positive or negative effects when the lidar-corrected and layer-averaged AMVs are
assimilated. However, a slight degradation compared to the reference run is seen, especially
for tropical regions between 300 hPa and 600 hPa. Generally, the relative degradation when
integrated over all altitude levels is rather small and reaches values of -0.1% for the northern
hemisphere, -1.3% for the tropics and -0.4% for the southern hemisphere.

In contrast, a remarkable positive impact on the wind speed bias (lower panels of Fig. 31) can
be seen throughout the atmosphere for the experiment LYR with respect to the reference run
(REF). The effect is more apparent in the tropics and the southern hemisphere. Likely, this is

related to the smaller amount of in-situ wind observations that are available for the
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assimilation in global NWP models. On the contrary, a dense radiosonde network over
Europe allows for the assimilation of frequent radiosonde observations, generally leading to
comparatively well-defined wind conditions in that region. This usually results in a smaller
impact from new observational data. Integrating over all altitude levels, the relative reduction
of the wind speed bias compared to the reference run results in 6.7% for the northern
hemisphere, 20.9% in the tropical region and 19.7% in the southern hemisphere of the
Meteosat-10-domain.

5.3.2 Evaluation of 7-day forecast runs

The effect of assimilating lidar-corrected and layer-averaged AMVs on free forecasts is
displayed in Figure 32. The left panels show the VRMS for the two experiments LYR (green
lines) and REF (red lines) as a function of forecast lead-time up to seven days (168 hours)
when evaluated with the analysis field of the 3-h cycling. The three different pressure levels at
300 hPa (upper panel), 500 hPa (middle panel) and 850 hPa (bottom panel) are representative
of high levels, mid levels and low levels, respectively. Generally, the experiment LYR
outperforms the reference run for almost all forecast lead times. As the differences between
the two curves are small, the corresponding panels on the right hand side show the normalized
VRMS differences of the two experiments (LYR minus REF) with 90% confidence intervals.
Negative values indicate a positive effect from assimilating lidar-corrected and layer-averaged
AMVs. Generally, the forecast impact is neutral for the first 2-3 forecast days for all three
altitude levels shown. However, later forecast times reveal a positive (albeit mostly not
significant) effect.

This tendency can also be seen when regarding other prognostic variables, as demonstrated in
Figure 33. Normalized RMS differences for high levels (300 hPa, left panels) and low levels
(850 hPa, right panels) for the temperature (upper panels), relative humidity (mid panels) and
geopotential (lower panels) are shown as a function of forecast lead-time for the
experiment LYR with respect to the reference run REF. Again, the first 2-3 forecast days
exhibit a mostly neutral or only slightly positive effect, which is enhanced for longer forecast

lead times.
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5.4 Summary and discussion

In this section, height bias corrections functions are calculated based on the statistics of the
differences between operational AMV height and a position relative to the lidar cloud-top
height. Different lengths of the training period and settings for deriving the height bias
correction are tested and the resulting corrections are then applied to a subsequent evaluation
period. Overall, this adjustment of AMV pressure heights of Meteosat-10 leads to lower
VRMS differences and a lower wind speed bias compared to using the operational AMV
heights, with no clear preference for the duration of the training period. On average, the
reduction is about 40-50% of the reduction by the direct reassignment, but has the clear
advantage that all AMVs from a geostationary satellite can be corrected without the need for
directly collocated lidar observations. In accordance with the results from the direct height
reassignment in Section 4, it is again confirmed that AMVs are rather represented by a layer-
averaged wind instead of the wind at a discrete level: Assigning AMVs to 120-hPa deep
vertical layers based on a 30-day height bias correction leads to a reduction of VRMS
differences that is three times larger than when assigning them to discrete levels at the mean
pressure of the respective layers.

Initial assimilation and forecast experiments with lidar-corrected plus layer-averaged
Meteosat-10-AMVs are performed with the global model ICON. Results indicate that the
assimilation works well in terms of both the FG fit to radiosonde observations and forecast
performance. Generally, the positive impact is largest in tropical and southern hemispheric
regions of the Meteosat-10-domain, as the dense coverage of conventional observations in the
northern hemisphere constrains the analysis more strongly. In particular, the wind speed of
the FG fields decreases by up to 20% when verified against radiosonde soundings.

In addition, the positive impact of assimilating lidar-corrected and layer-averaged AMVs
results in an improved accuracy of the 7-day forecasts for the wind field as well as for other
prognostic variables when the forecast field is compared to the three-hourly cycled analysis
fields from the same experiment. However, it should be noted that the duration of the
evaluation period is comparatively short and a longer experiment is needed to achieve

significant results.

Generally, an alternative strategy to improve the representation of AMVs in NWP systems
would be either assigning AMVs to a lidar-corrected discrete height level, or assigning AMVs

to a layer-average relative to the operational AMV height without incorporating lidar
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information. Both approaches may achieve a part of the benefit of the proposed lidar-based
height bias correction. However, the optimal position and depth of a layer relative to the
operationally derived AMV height may be highly situation-dependent and therefore difficult
to determine. Assigning AMVs to a lidar-corrected level based on a statistical height bias
correction (without applying a layer-averaging) may be a compromise for current data
assimilation systems as this is easier to implement in NWP systems than an observation
operator for layer-averaged wind observations. However, its benefit tends be relatively small
compared to what can be gained by using a layer-approach.
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6. POTENTIAL FUTURE APPLICATIONS

6.1 Lidar-based AMYV height correction for other

geostationary satellites

After demonstrating the benefit of the direct height reassignment and the height bias
correction for Meteosat-10-AMVs, these lidar-based height correction methods can also be
applied to AMVs from other geostationary satellites. In the following, both methods are tested
for AMVs from the GOES-satellites and MTSAT-2. The evaluation periods correspond to the
ones used for Meteosat-10: Results are shown for the direct height reassignment applied
during the first evaluation period and for the 30-day height bias correction applied during the

second evaluation period.

AMVs from GOES or MTSAT-2 imagery are derived by different institutions than
MSG-AMVs, using different processing algorithms and quality control procedures.
Furthermore, the AMV height assignment is aided by different model fields and may
therefore show different characteristics than Meteosat-10 for lidar-based height correction
methods. Based on sensitivity studies using different settings for the direct height
reassignment and height bias correction, the collocation criteria for GOES- and
MTSAT-2-AMVs are tightened compared to the ones used for Meteosat-10. First, the AMV
quality index threshold is raised from 50 to 80. In addition, AMVs are only used if the
CALIPSO flight path approaches the AMV position to less than 10 km, which corresponds to
an average distance of ca.25km between the AMV and the available lidar cloud-top
observations within the 50-km radius that is used for the calculation of the median lidar
cloud-top height. While these stricter collocation criteria improve the results for
GOES-AMVs and MTSAT-2-AMVs, the results for the Meteosat-10 dataset are fairly
independent of the applied criteria. This is illustrated in Figure 34, which shows the reduction
of VRMS differences when results for layers below the lidar cloud top are compared to results
of layers of the same depth centered at the original AMV height for Meteosat-10 during the
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Figure 34: Relative reduction of VRMS differences for Meteosat-10-AMVs when AMVs are
assigned to 120-hPa layers below the lidar cloud top and compared to the operational AMV
height. The x-axis denotes different thresholds for the maximum horizontal distance between
corresponding AMV and CALIPSO observations. Dark purple bars represent results fo r a QI

greater than 50, turquoise hatched bars for a QI greater than 80.

first evaluation period. Hereby, a QI threshold of 50 (dark purple) and of 80 (turquoise) both
lead to a relatively constant reduction of VRMS differences by about 12%-14% when
constraining the horizontal distance. A subdivision for tropical and extra-tropical regions also

exhibits similar results (not shown).

Given that the findings for the two GOES-satellites show very similar characteristics, results
for GOES-East and GOES-West are combined in the following. In contrast to the evaluation
with MSG-AMV, only a 30-day average is calculated for the height bias correction due to the
smaller number of available AMVs. For GOES and MTSAT-2, there are considerably fewer
available AMVs than for Meteosat-10. Table 11 lists the numbers of all used AMVs with
collocated lidar observations for both periods. Only about 10% of the number of
Meteosat-10-AMVs is found for MTSAT-2 and GOES-AMVs. This is due to the smaller
number of operationally available AMVs from these satellites (GOES-AMVs are only
available in 3-h intervals for the time of the study period compared to hourly MSG-AMVSs or
MTSAT-2-AMVs), as well as due to the stricter collocation criteria (higher QI threshold and
smaller horizontal distance) applied for the height reassignment and height bias correction for

AMVs from these satellites.
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e
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Table 11: Number of AMVs with collocated lidar observations
used for both evaluation periods

6.1.1 Direct height reassignment

The mean VRMS difference and wind speed bias for the direct height reassignment for
GOES-AMVs and MTSAT-2-AMVs is illustrated in Figure 35. For GOES high-level AMVs
(Fig. 35a), 100-120 hPa layers below the lidar cloud top show a small benefit over the
operational AMV heights, with about 3% relative reduction of VRMS differences compared
to layers of the same depth centered at the operational AMV height and 9% compared to
discrete operational AMV heights. The corresponding wind speed bias values are close to
zero at layer depths of approximately 80 hPa.

Low-level GOES-AMVs (Fig. 35b) show a large reduction of VRMS differences for
assigning AMVs to layers relative to the lidar cloud-top height for all layer depths, with
minimum VRMS differences for 150-hPa layers. Here, the reduction reaches 22% (30%)
when these layers are compared to layers (levels) at the operational AMV height. The
corresponding wind speed bias is also clearly reduced compared to the operational values.
High-level AMVs from MTSAT-2 (Fig. 35c) exhibit a similar pattern as high-level
GOES-AMVs, achieving lowest VRMS differences for 100 hPa deep layers below the lidar
cloud top. For low-level MTSAT-2-AMVs (Fig. 35d), no distinct improvement is found for
assigning AMVs to layers relative to the lidar cloud-top height.
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Figure 35: Mean VRMS differences (upper panels) and wind speed bias (lower panels) between AMV

winds and layer-averaged model winds for (a) high-level GOES-AMVS, (b) low-level GOES-AMVS, (c)

high-level MTSAT-2-AMVs and (d) low-level MTSAT-2-AMVs. Numbers in brackets are AMV counts.

Red dashed lines represent layers centered at the original AMV pressure height; green lines represent
layers relative to the lidar cloud-top height (cf. legend).

6.1.2 Height bias correction

Figure 36 shows the VRMS difference and wind speed bias for the 30-day height bias
correction for GOES- and MTSAT-2-AMVs. Results for levels/layers based on a 30-day bias
correction (blue bars) are compared to levels/layers relative to the operational AMV height
(red bars) and relative to the lidar cloud-top height (green bars). For high-level GOES-AMV's
(Fig. 36a), the VRMS differences of the direct lidar height reassignment as well as the height
bias correction do not show advantages over the operational height. In addition, the wind
speed bias deteriorates for both height correction methods.

In contrast, low-level GOES-AMV:s (Fig. 36b) exhibit clearly lower VRMS differences with
similarly positive results for the direct height reassignment and the 30-day height bias
correction. Again, layer-averaging exhibits additional benefits compared to using discrete
levels. High-level AMVs from MTSAT-2 (Fig. 36¢) show a similar pattern as Meteosat-10-
AMVs in terms of VRMS differences. Lowest values are achieved for the direct height

reassignment, but the height bias correction also leads to a small reduction of VRMS
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Figure 36: Mean VRMS differences (upper panels) and wind speed bias (lower panels) between AMV
and model winds for (a) GOES high-level, (b) GOES low-level, (c) MTSAT-2 high-level and (d)
MTSAT-2 low-level AMVs. Numbers in brackets are AMV counts. ‘AMV oper’ corresponds to the
operational AMV height and ‘CALIPSO’ to the direct lidar height reassignment . The applied height bias
correction function is based on a 30-day mean (“*30days’). Results are shown both for assigning AMVs to
discrete levels (meaning the operational level, the level at 60 hPa below the actual lidar cloud top and
the bias-corrected level) in the left part of each panel and to 120-hPa layer-averages centered at these
levels in the right part of each panel.

differences compared to the operational values. In addition, the wind speed bias is slightly
reduced for both lidar height correction methods. For low-level AMVs of MTSAT-2
(Fig. 36d), the height bias correction shows slightly lower VRMS differences than the
operational AMV height. Wind speed bias values for both height correction methods are of
similar magnitude as the operational bias.

6.1.3 Summary and discussion

For other geostationary satellites, the positive effect of the direct height reassignment as well
as of the height bias correction is less distinct than for Meteosat-AMVs. This is likely due to
different AMV derivation algorithms that are aided by different model fields, and different
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quality control procedures that have to be explored in more detail before final conclusions can
be made. However, both height correction methods overall indicate benefits in terms of
VRMS differences and wind speed bias when compared to the operational wind errors.

MTSAT-2-AMVs show both for high-level and low-level AMVs either neutral or slightly
positive effects for both lidar height correction methods when compared to results at the
operational AMV height. For low-level GOES-AMVs, results of the direct height
reassignment as well as of the height bias correction indicate that lidar observations can
reduce VRMS differences by up to 30%. This large reduction also reflects a well known
feature of low-level GOES-AMVs in inversion regions, when AMVs are assigned too high in
the atmosphere by NESDIS (Cotton, 2012). In contrast, high-level GOES-AMVs exhibit only
small benefits for reducing VRMS differences, and even show degradation in terms of the
wind speed bias. This may be related to a wind speed bias correction of +8% applied
operationally by the data provider (NESDIS) to most GOES-AMVs above a pressure height
of 300 hPa (Christopher Velden, personal communication). Consequently, there may be a
need to either adapt the CALIPSO-based height bias correction for high-level GOES-AMVs
or to apply the height bias correction to GOES-AMVs without the wind speed bias correction.
However, it should also be kept in mind that the sample size for high-level GOES-AMVs is
comparably small and further studies are required to draw robust conclusions regarding the
benefits of a lidar-based height correction of high-level GOES-AMVs.

Generally, lidar-based height correction methods show promising results especially for low-
level GOES-AMVs, but there is still need for research. Most reliable results for GOES-AMV's
or MTSAT-2-AMVs could be obtained by verifying the AMV wind with radiosonde
observations, as it is shown for MSG-AMVs in Section 4.1. However, the traditional launch
times of operational radiosondes are around 00 UTC and 12 UTC, which coincide best with
overpassing times of the sun-synchronous orbit of CALIPSO over the Meteosat domain. In
other regions, the collocation of radiosondes and CALIPSO lidar observations is fairly
complicated and would require an extensively long study period (several years) to receive
enough collocated AMV/CALIPSO/radiosonde pairs.

6.2 Comparison of different statistical height correction strategies

The lidar-based height correction presented in this thesis constitutes a novel approach to
categorize AMV errors with independent lidar observations. A different strategy of AMV
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error characterization that is often used in AMV monitoring in NWP systems is the Level-of-
Best-Fit (LBF) method. The AMV wind is compared to model profiles in order to find the
model pressure level where the observed AMV wind fits best to the model wind. As the LBF
method is highly dependent on the underlying model field, care should be taken when
interpreting the results due to inherent model errors. In addition, it should be noted that LBF
statistics are only based on a small (and, in contrast to lidar height correction statistics) not
randomly distributed subsample of AMVs, as LBF can only be applied for certain wind
conditions (e.g. without multiple minima in the model profile). However, a recent study that
compared the LBF error statistics of the global models of ECMWF and the Met Office
suggests that long-term height differences have overall similar characteristics (Salonen et al.,
2015a).

Recently, an initial comparison between the lidar-based height bias correction and the LBF
method used at ECMWF was initialized, and first joint results were presented by Kirsti
Salonen (ECMWF) at the EUMETSAT Meteorological Satellite Conference in France in
September 2015. Statistics from both methods were compared for a study period of about two
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Figure 37: Mean adjustment based on the ECMWF best fit pressure (magenta lines) and the lidar
height bias correction (green lines) for GOES-15 IR-AMVs (left panel), Meteosat-7 VIS-AMVs (middle
panel) and Meteosat-10 WV-AMVs (right panel). Adapted from Salonen et al., 2015b

89



6 POTENTIAL FUTURE APPLICATIONS

and a half months for the five main geostationary satellites Meteosat-10, Meteosat-7,
MTSAT-2, GOES-13 and GOES-15 for the different channels VIS, IR and WV.

Figure 37 shows example cases for different satellite and channel combinations. Generally,
the shape of the curves is similar for both methods, which holds as well for other channel and
satellite combinations (not shown). However, the magnitude of the proposed height
adjustment can vary considerably up to 50-60 hPa difference between the two methods, and
there is a tendency for lidar-based corrections to locate AMVs lower than the LBF approach
(see Salonen et al., 2015b for further details).

Generally, the lidar-based AMV height correction and the LBF method provide information
on systematic height errors that are independent of each other. A comparison of these two
methods can provide new insights about AMV error characteristics and their use in
NWP models and should be exploited further in the future.
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7. CONCLUSION AND OUTLOOK

Undoubtedly, AMVs are a crucial source of wind information for constructing the initial state
for NWP models. However, major error sources such as height assignment issues, error
correlations and representativity errors due to an interpretation as a single-level wind remain,
so that the dense AMV data set must be heavily thinned in data assimilation systems. This
thesis has, for the first time, investigated the potential of reducing the wind errors of AMVs
through the incorporation of cloud-top observations from the lidar aboard the polar-orbiting
satellite  CALIPSO. High-resolution lidar cloud-top observations are expected to be
independent of the AMV derivation and therefore exhibit a reliable information source that
can be used for the AMV height correction.

The first part of this thesis addressed the research question, whether space-borne lidar
observations can be used to improve the representation of AMVs by assigning them to a lidar-
based layer position and layer depth. Individual AMVs were reassigned to different levels and
layers relative to directly collocated lidar cloud-top observations. The wind evaluation was
conducted using operational radiosondes and FG model fields from the global model GME.
Both evaluation methods consistently showed the lowest VRMS differences and wind speed
bias values for high-level AMVs for 120-hPa deep layers below the lidar cloud-top. The
evaluation of low-level AMVs revealed slightly deviating results for the radiosonde and
model evaluation due to a different operational height assignment approach (AMV
assignment to cloud base and cloud top, respectively) during the corresponding evaluation
period. Overall, the reduction of VRMS differences for the 120-hPa layers below the lidar
cloud top was quantified as 15-17% when compared to discrete operational levels, and 8-12%
when compared to reference layers of the same depth centered at the operational level. These
results depended somewhat on the respective evaluation period, evaluation method and AMV
altitude, but were generally consistent for all settings. Furthermore, the lidar-based height
reassignment reduced the “slow” bias of current upper-level AMVs, and horizontal AMV
error correlations were decreased by ~50 km. Generally, a subdivision into tropical and extra-

91



7 CONCLUSION AND OUTLOOK

tropical regions led to similar findings, supporting the robustness of the results presented in
this study.

As the direct height reassignment requires collocated lidar observations for each AMV, the
applicability of this method is restricted to space-borne lidar observations available in real-
time and is therefore rather complex to apply in operational data assimilation systems.
Therefore, the second scientific question underlying this thesis was the issue of how NWP
may benefit from incorporating lidar information for the AMV height correction in a
statistical approach without the need for real-time lidar data. To address this, an alternative
height correction to the direct AMV height reassignment was proposed by introducing a
statistical correction of systematic AMV height biases that can be applied to all AMVs of the
respective geostationary satellite. For that purpose, an average adjustment based on 30-day or
10-day training periods was calculated and then applied to a subsequent, independent
evaluation period. Results indicated that this height bias correction achieves on average 50%
of the VRMS reduction of the direct height reassignment. The height bias correction therefore
provides a feasible way of correcting operational AMV heights that requires neither real-time
lidar data nor directly collocated lidar observations and would be easy to implement in an
NWP system. When anticipated for operational use, monthly or weekly updates of the height
bias correction functions seem advisable in order to catch features due to seasonal variability
or changes in the height assignment processing. However, the optimal update interval is still
to be determined.

The applicability of using lidar-corrected and layer-averaged AMVs in NWP systems was
tested by running assimilation and forecast experiments for a 16-day period with the global
model ICON with overall encouraging results. Of special note was the reduction of the wind
speed bias by up to 20% when the resulting FG model fields are compared with radiosonde
soundings in the tropics and the southern hemisphere. However, a precise assessment of the
impact on forecast skill will require further experimentation, such as applying longer study

periods and taking into account seasonal variability.

In summary, the lidar-based height correction methods presented in this thesis have proven to
be a valuable approach for the reduction of the VRMS difference, the wind speed bias and
error correlations of operational AMVs, suggesting that NWP may benefit from assimilating
lidar-corrected and layer-averaged AMVs. Options for future applications are to be explored
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in more detail and may contain the expansion of lidar-based height correction techniques to
other geostationary (or polar-orbiting) satellites. However, further investigations in this
direction are needed before final conclusions can be made.

Moreover, the application of height correction methods based on space-borne lidar
information is not restricted to CALIPSO. Other space-borne lidars are planned to be
launched in the near future, e.g. the Earth Clouds, Aerosols and Radiation Explorer
(EarthCARE, see e.g. lllingworth et al., 2015). Thus, the assimilation of AMVs as layer-
averages in combination with lidar information for the AMV height correction is seen as a
promising approach to increase the benefit of AMVs for NWP in future. Furthermore, a lidar-
based height bias correction may be useful for deriving consistent data sets for climate

research and to evaluate AMV height assignment methods.

The lidar-based height correction approach is planned to be performed as a part of the DWD
contribution to the Satellite Application Facility for Numerical Weather Prediction
(NWP-SAF) AMV monitoring in the future. This EUMETSAT-funded initiative collects
monitoring statistics from different weather centres and provides statistical comparisons
between observations and model background fields to produce a detailed analysis of errors for
various observation types (Forsythe, 2007; Cotton, 2012).
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List of abbreviations

AMV
CAD
CALIPSO
CALIOP
CCC
CNES
DWD
EBBT
ECMWF
EUMETSAT
ESA

FG
GCOM
GME
GEOS-5
GMAO
GOES
ICON

IR

JMA
LBF
LEV
LIDAR
LYR
METOP
MFG
MODIS
MSG
MTSAT

Atmospheric Motion Vector
Cloud-Aerosol-Distinguisher

Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations
Cloud-Aerosol Lidar with Orthogonal Polarization
Cross-Correlation Contribution method

Centre National d'Etudes Spatiales

Deutscher Wetterdienst

Equivalent Black Body Temperature

European Centre for Medium-Range Weather Forecasts
European Organisation for the Exploitation of Meteorological Satellites
European Space Agency

First Guess

Global Change Observation Mission

Global Model

Goddard Earth Observing System model, version 5
Global Modelling and Assimilation Office
Geostationary Operational Environmental Satellite
Icosahedral Nonhydrostatic model

Infra-Red

Japan Meteorological Agency

Level of Best Fit

Level assimilation with lidar-corrected AMV's

Light Detection And Ranging

Layer assimilation with lidar-corrected AMVs
Meteorological Operational Satellite

Meteosat First Generation

Moderate resolution Imaging Spectroradiometer
Meteosat Second Generation

Multi-Functional Transport Satellite
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MVD
NASA
NCEP
Nd:YAG
NESDIS
NOAA
NWP
NWP-SAF
OCO

Ql

REF
RMS
SCA
SEVIRI
SIBYL
THORPEX
T-PARC
VIS
VRMS
wv
3DVAR

Mean Vector Difference

National Aeronautics and Space Administration
National Centers for Environmental Prediction
Neodymium-doped Yttrium Aluminium Garnet
National Environmental Satellite Data and Information Service
National Oceanic and Atmospheric Administration
Numerical Weather Prediction

NWP Satellite Application Facility

Orbiting Carbon Observatory

Quality Index

Reference run (assimilation experiments)

Root Mean Square error

Scene Classification Algorithms

Spinning Enhanced Visible and Infrared Imager
Selective Iterative Boundary Locator

The Observing System Research and Predictability Experiment
THORPEX Pacific Asian Regional Campaign
Visible

Vector Root Mean Square error

Water Vapour

3-Dimensional Variational data assimilation
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