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Abstract

The genome sequence of an organism contains all of the information needed

to make that organism. However, the sequence alone is not sufficient to

achieve the exquisite spatial, temporal, gene expression necessary to gener-

ate the highly specialised cell types of complex organisms. The chromatin

landscape ensures maintenance of cell fate, yet also ensures a level of gene

expression plasticity that allows an organism to adapt to environmental

changes. This work focuses on understanding how chromatin structure reg-

ulates transcriptional activity in the highly related, post-mitotic, neurons

and glia cells within the Drosophila brain.

Two cell-type-specific tools were previously developed in my host lab that

assessed the gene activity in neurons and glia cells. These two techniques as-

sessed each end of the gene expression spectrum, from the first step of tran-

scription (RNA polymerase II binding), to protein translation (ribosome-

bound mRNAs). To complement these datasets, I developed a fluorescence-

activated nuclei sorting (FANS) approach to isolate nuclei from neurons

and glia, and mapped the nucleosome occupancy, histone modifications,

and nuclear RNA, genome-wide in these cell types. Comparing the Pol II

binding, nuclear RNA, and ribosome-mRNA analysis revealed that very dif-

ferent gene sets are identified as cell-type-specific with each method. The

different gene sets identified for each technique are enriched for different

gene functions (ontologies), indicating that the regulation of different gene

classes may be co-ordinated at different steps of gene expression.

Using my chromatin state data, I explore the regulatory mechanisms gov-

erning differential expression in neurons and glia. I identify a novel regu-

latory mechanism involved in achieving specific gene expression of a subset

of neuron-enriched genes. These genes have highly disordered nucleosomes

at the promoter region, and highly differential Pol II recruitment between

neurons and glia. The chromatin state at these genes is unusual, with high



spreading of H2K27ac across the gene body and no H3K36me3, despite high

levels of gene expression. I show that this neuronal gene group is enriched

in binding by the insulator protein su(Hw), which is absent from neurons.

I propose a model where the absence of su(Hw) in neurons, in concert with

the high level of histone acetylation, is a mechanism for ensuring expression

of these genes in neurons, and repression in other cell types.

I also use the multiple datasets obtained in this work, and those previously

obtained in my host lab, to assess the relationship between nucleosome ar-

chitecture, Pol II binding, and the histone variant H2A.Z. I focus on the

most extreme cases of nuclear architecture at gene promoters; those with

highly ordered nucleosomes and those with high occupancy and disordered

nucleosomes (fuzzy promoters). The two promoter classes I identified have

highly different Pol II binding profiles and H2A.Z incorporation. The un-

derlying DNA sequence at these two architectural classes is highly different

and likely a major contributing factor in establishing the differential chro-

matin states. I suggest a mechanism where the fuzzy genes have highly

dynamic and competitive binding between nucleosomes and RNA Pol II,

which would aid in inhibiting H2A.Z incorporation and facilitate rigorous

gene regulation.

Zusammenfassung

Die Genomsequenz eines Organismus enthält alle nötigen Informationen um

diesen Organismus zu formen. Jedoch ist die Sequenz alleine nicht ausre-

ichend um die einzigartige räumliche und zeitliche Genexpression zu gener-

ieren, die für die Bildung hochspezialisierter Zelltypen komplexer Organis-

men nötig ist. Die Chromatinlandschaft stellt das Zellschicksal sicher. Sogar

das Level der Plastizität der Genexpression, die einem Organismus erlaubt

sich an Umweltveränderungen anzupassen, wird hierdurch gesteuert. Die

vorliegende Arbeit konzentriert sich darauf zu verstehen, wie die Chromatin-

struktur die transkriptionelle Aktivität in Neuronen und Gliazellensehr ver-

wandte, postmitotischezellen, im Gehirn von Drosophila reguliert.



Zwei Zelltyp-spezifische Werkzeuge, die die Genaktivität in Neuronen und

Gliazellen messen, wurden im Vorfeld von meinem aktuellen Labor en-

twickelt. Diese beiden Techniken bemessen alle Stadien des Genexpression-

sspektrums, vom ersten Schritt der Transkription (Pol II-Bindung) bis zur

Translation der mRNA zum Protein (Ribosomen-gebundene mRNA). Auf-

bauend auf diese Datensätze, entwickelte ich die Methode der Fluoreszenz-

aktivierten-Nuclei-Sortierung (FANS) um Neuronenzellkerne von Gliazel-

lkernen zu isolieren und den Aufenthaltsort der Nukleosomen, der His-

tonmodifikationen und der nuklearen RNA zu bestimmen. Der Vergleich

zwischen den Analysen der Pol II-Bindung, nuclearer RNA und ribosoma-

ler mRNA enthüllte, dass sehr verschiedene Gengruppen spezifisch für die

jeweilige Methode waren. Diese verschiedenen, für die jeweilige Technik

identifizierten, Gengruppen sind angereichert in verschiedenen Genfunktio-

nen (Ontologien), was darauf hinweist, dass die Regulation verschiedener

Klassen von Genen für die verschiedenen Schritte der Genexpression koor-

diniert werden.

Durch die Nutzung meiner Datensätze des Chromatinstatus untersuchte

ich den Regulationsmechanismus der differentiellen Expression in Neuro-

nen und Gliazellen. Ich identifizierte einen neuen Regulationsmechanis-

mus, der eine Rolle spielt beim Erreichen der spezifischen Genexpression

in einer Untergruppe von neuronspezifischen Genen. Diese Gene besitzen

chaotisch angeordnete Nukleosomen in der Promoterregion und ein sehr un-

terschiedliches Pol II-Bindungsverhalten zwischen Neuronen und Gliazellen.

Der Chromatinstatus an diesen Genen ist ungewöhnlich. Er zeigt eine hohe

Ausbreitung von H2K27ac über den Genkörper und kein H3K36me3, trotz

der hohen Genexpression. Des Weiteren zeige ich, dass das Insulatorprotein

Su(Hw), welches in Neuronen abwesend ist, in dieser neuronalen Gengruppe

angereichert ist. Daher stelle ich ich ein Modell vor, in dem die Abwesenheit

von Su(Hw) in Neuronen, gepaart mit hohem Level an Histonacetylierung,

einen Mechanismus zur Aufrechterhaltung der Expression dieser Gene in

Neuronen, aber zur Repression in anderen Zelltypen, repräsentiert.

Zudem nutze ich die verschiedenen Datensätze, sowohl die, die ich in dieser

Arbeit erhielt als auch die im Vorfeld von meinem Labor erstellten um

die Beziehung zwischen Nukleosomenarchitektur, Pol II-Bindung und der



Histonvariante H2AZ zu ermitteln. Ich fokussierte mich auf die extremen

Fälle der nuklearen Architektur in der Promoterregion der Gene; solche

mit hoch geordneten und solche mit sehr chaotischen Nukleosomen. Diese

zwei Promoterklassen unterscheiden sich sehr im Pol II-Bindungsprofil und

der Einbindung von H2AZ. Die zugrundeliegende DNA-Sequenz an diesen

zwei architektonisch unterschiedlichen Klassen unterscheidet sich ebenfalls

und ist möglicherweise ein Hauptfaktor, der zur Etablierung verschiedener

Chromatinzustände beiträgt. Ich schlage daher einen Mechanismus vor,

in dem die chaotischen Gene hochdynamische und kompetitive Bindung

zwischen den Nukleosomen und RNA Pol II-Bindung aufweisen, welche die

Einbindung von H2AZ inhibiert und eine präzise Genregulation erleichtert.
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GLOSSARY

Glossary

BSA - Bovine Serum Albumin; Protein de-
rived from bovine blood, used to prevent nuclei
from adhering together.

CAST-ChIP - Chromatin Affintiy Purifica-
tion of Specific Cell Types; method for identifying
genomic regions bound by chromatin-associated
proteins in specific cell types.

ChIP - Chromatin affinity purification; tech-
nique for identifying genomic regions bound by a
particular protein.

CRM - cis-regulatory module; a genomic
region that has a regulatory effect on the activity
of a distal gene.
CNS - Central nervous system.

DHS - DNAseI-hypersensitive site; a ge-
nomic region that is sensitive to digestion by
DNAseI, indicating that the region is not bound
by nucleosomes or other chromatin proteins.

FACS - Fluorescence-Activated Cell Sort-
ing; method for collecting fluorescently labeled
cells from a mixed population of cells.

FANS - Fluorescence-Activated Nuceli Sort-
ing; method for isolating fluorescently labeled
nuclei from a mixed population of nuclei.

FSC -Forward scatter; fluorescent-intensity
measurement using a FACS-machine that indi-
cates the size of a particle.

GFP - Green fluorecence protein; fluores-
cent protein derived from Aequorea victoria com-
monly used to tag proteins and label cells.

GMC - Ganglion mother cell. Progenitor of
neuronal and glial cells.

H2A.Z - Histone variant H2A.Z. This
nomenclature is also used here to refer to H2AvD
from Drosophila.

TRAP -Translating Ribosome Affinity Pu-
rification; method for identifying mRNAs bound
to the ribosome in specific cell types.

MNase - Micrococcal nuclease; an enzyme
derived from Staphylococcus aureus that digests
DNA, with preference for non-nucleosome bound
DNA.

NDR -Nucleosome depleted region. Region
upstream of the TSS that often has low nucleo-
some density.

NucRNA - Nuclear RNA. RNA isolated
from the nucleus only.

PIC - Pre-inititiation complex. Large com-
plex of proteins, including the transcriptional
machinery, assembled at the promoter prior to
transcription.

Pol II - RNA polymerase II. Transcribes
mRNA.

SSC -Side scatter; measurement collected
during FACS that indicates density and granu-
larity of particle.

TADs - Topologically-asociated domains;
genomic regions that have high interactions
within the same domain, but low interactions
with adjacent domains.

TES - Transcription end site; the annotated
point where the last nucleotide is added during
transcription.

TSS -Transcription start site; the annotated
point where the first nucleotide is added at the
beginning of transcription.
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Chapter 1

Introduction

The genome sequence of an organism contains all of the information needed to make

that organism. However, the sequence alone is not sufficient to achieve the exquisite

spatial, temporal, gene expression necessary to generate the highly specialised cell types

of complex organisms. Gene expression is highly regulated at many levels, and every

step from transcriptional initiation to protein degradation is a finely balanced process.

One of the key challenges in molecular biology is to understand how genes are expressed

in the right place at the right time, generating functionally distinct types of cells from

the same genomic sequence. Much of what defines a cell type is a specific gene ex-

pression profile, which in turn is determined by the action of transcription factors and

chromatin features. Transcription factors, co-factors, chromatin modifying and remod-

eling enzymes act in concert to modulate and define the chromatin landscape of the

entire genome. The chromatin landscape ensures maintenance of cell fate, yet also

ensures a level of gene expression plasticity that allows an organism to adapt to envi-

ronmental changes. If we understand the mechansims that drive cell-type-specific gene

expression programs, and potentiate the cell for dynamic changes in gene expression,

we will begin to understand the dynamic cross-talk between nature and nurture. The

focus of my thesis work was to define the transcriptional and chromatin state of the

highly specialised neurons and glial cells of the Drosophila brain, using the powerful

combination of genomics tools and Drosophila genetics.
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1. INTRODUCTION

1.1 Regulating gene expression

1.1.1 The transcriptional machinery

RNA polymerases

Information stored in the genome is transcribed into useful RNA molecules by RNA

polymerases. There are three major types of RNA polymerase in eukaryotes, named

Pol I, Pol II, and Pol III (1). Each type of polymerase has distinct functional speci-

ficities (2, 3, 4, 5). Pol I is localised to the nucleolus and primarily transcribes the

18S and 28S ribosomal RNAs. Pol II is localised to the nucleosoplasm and is respon-

sible for transcribing protein-coding genes into mRNAs. The Pol III complex is also

nucleoplasm-localised and transcribes the 5S ribosomal RNAs and tRNAs. A fourth

RNA polymerase, which transcribes small-interfering RNAs, was more recently discov-

ered in plants (6, 7, 8). Additionally, a single-peptide RNA polymerase, discovered

in HeLa cells, can transcribe a subset of mRNA-encoding genes that lack the core-

promoter elements and regulatory sequences found at most Pol II-transcribed genes

(9). The specificity of the different polymerases for their DNA substrate in vivo is

lost with in vitro assays, as additional proteins are required to give each polymerase

template specificity. These are known as transcription factors.

Transcription factors

Transcription needs to begin at particular points on the DNA template, so that the

correct RNA product is produced. RNA polymerase requires additional proteins to

achieve site-specific transcription initiation (10, 11). The accessory proteins associ-

ated with RNA polymerase are collectively called general transcription factors (see

review (12)). Those transcription factors associated with Pol II are named “TFII A-

H”, referring to “transcription factor of Pol II”, and the letters A to H referring to

the sub-cellular fraction where the activity was first discovered (13). The general tran-

scription factors function to specify where the transcription machinery assembles and

begins transcription. TFIID is the first to bind, guided by sequences at the promoter,

and defining the site at which the rest of the general transcription factors and Pol II as-

semble to form the pre-initiation complex (PIC). Assembly of the PIC at the promoter

is sufficient to achieve basal levels of transcription. However, modulation of the basal

transcription levels is necessary to achieve the required transcriptional output from the

gene.
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1.1 Regulating gene expression

Gene-specific modulation of basal expression is achieved through cross-talk between

specific transcription factors and the general transcription machinery. There are many

general co-factors involved in mediating this cross talk, such as TATA-binding protein-

associated factors (TAFs, see review (12)), and the Mediator complex (see reviews

(14, 15)). The general co-factors are capable of repressing the level of basal transcrip-

tion when any specific activating signal is absent, as well as amplifying the transcrip-

tional output when the specific signal is present. Thus highly specific signals from an

environmental cue, or within a specific cell type, can be integrated and transferred to

the general transcription machinery to generate a specific transcriptional outcome.

Regulating transcription through Pol II pausing

Different cell types could respond to the same environmental cue in different ways de-

pending on how the downstream signal is interpreted and read into gene expression

output. One key mechanism for achieving rapid induction of gene expression upon

an environmental response is Pol II pausing. Pol II pausing occurs when the tran-

scriptional machinery is recruited to a gene’s promoter and transcription of the gene is

intitiated. After transcribing around 50 bp of the gene, the Pol II stops transcribing

and remains in a stably bound state (16). Pol II pausing is regulated by multiple pro-

teins, such as negative elongation factor (NELF), and also the context of the chromatin

(see 1.1.2) (17, 18) . This type of regulatory mechanism was first thought to be unique

for regulating the heatshock genes in Drosophila, for which Pol II pausing was origi-

nally discovered (19, 20). Currently, Pol II pausing is seen as a more global mechanism

of gene regulation, which acts as a check-point between transcription inititiation and

productive elongation (21, 22).

Regulation by pausing is prominently observed at those genes requiring rapid in-

duction upon an environmental stimulus. Indeed, in neuro-endocrine cell cultures, the

immediate early genes c-fos, JunB, and MkP-1 are regulated by Pol II pausing (23).

Moreover, in rat neurons, the rapid activation of the immediate early genes relies upon

promoter proximal pausing, and absence of pausing results in a delayed transcriptional

response (24). Thus, Pol II pausing is important for achieving specific and rapid gene

expression when needed, as well as a general regulatory check-point during transcrip-

tion. How Pol II pausing is modulated at specific genes, i.e. whether the Pol II is

released from pausing or retained in a poised state, is likely a concerted effort of mul-

tiple regulatory proteins and chromatin dynamics, and has yet to be fully described.
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1. INTRODUCTION

1.1.2 Chromatin

All genes of a genome are not required all of the time, in all cell types. Thus, to regulate

which genes get expressed when and where, there needs to be tight control of which

genomic regions are accessible to the transcription machinery. This regulation takes the

form of chromatin. Chromatin is the protein/DNA complex that functions to enable

the genome to fit into the nucleus, as well as providing a mechanism for regulating

access to the DNA. Occluding transcription factor binding sites, inhibiting elongation

of the RNA polymerase during transcription, and completely shutting down access to a

gene are just a few examples of the numerous ways chromatin can be used to modulate

transcriptional output from the genome.

The nucleosome

When chromatin is reduced to the most de-condensed state, what can be observed

is a repeating unit resembling “beads on a string”. This basic repeating unit is the

nucleosome, a composite of ∼ 150 bp of DNA wrapped around a complex of eight

histone proteins (figure 1.1). The nucleosome functions to package the genome into

a more compact form, capable of fitting into the nucleus and aiding in chromosome

segregation during mitosis. However, nucleosomes also function to modulate access

to the genomic regions which they encompass. Nucleosomes are refractory to gene

expression. In in vitro transcription assays, addition of template DNA incorporated

into nucleosomes prevents transcription (see review(25)). In addition to inhibiting

transcriptional progression, nucleosomes affect the binding of transcription factors, and

access of the PIC to the promoter. Thus, where a nucleosome is placed on the DNA

and how strongly it binds to the DNA is important for regulating accessibility to the

genome.

The order of nucleosomes at genes

Nucleosomes can greatly affect what parts of the genome are accessible. This raises the

question of what drives nucleosomes to be present on one DNA fragment, and absent

from another. The average architecture of nucleosomes around the transcription start

site of gene is highly organised, and consists of three main features: a nucleosome-

depleted region upstream of the transcription start site TSS, a highly positioned “+1”

nucleosome, and an ordered array of nucleosomes into the gene body (figure 1.2). There

has been a long-standing debate as to whether the DNA sequence is the defining fac-

tor (cis-regulation), or whether trans-acting factors are the most important. The
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1.1 Regulating gene expression

Histone tails

DNA
Histone
octamer 

Figure 1.1: The primary unit of chromatin is the nucleosome - The large amounts
of genomic DNA are packaged into chromatin to fit into the nucleus, as well as regulate
the access of the DNA to proteins. The crystal structure of the nucleosome shows how the
DNA and histone proteins interact to generate the nucleosome. Figure generated using
Cn3D; data from (26).
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1. INTRODUCTION

answer is that both are important, depending on the piece of DNA and the func-

tion of the nucleosome on that piece of DNA. Studies from the late 1970s into the

1980s tackled the question of whether DNA sequence guides nucleosome positioning

by reconstituting nucleosomes in vitro onto small fragments of DNA. The earliest of

these experiments used polymers of nucleic acids – either alternating co-polymers (such

as poly(dAdT).poly(dAdT)) or complementary homopolymers (poly(dA).poly(dt))- -

finding that the alternating copolymers form well-defined chromatin structures, but the

complementary homopolymers do not, showing that DNA sequence matters (27, 28).

The size and sequence of DNA affects the affinity of histones to the DNA, thus histones

are not binding randomly to DNA (29, 30).

However, the DNA sequence alone is not enough to generate the placement of

nucleosomes observed in vivo. Both cis- and trans-acting factors contribute to the nu-

cleosomal arrangement, which has been elegantly demonstrated by comparing in vitro

reconstituted nucleosome positioning with the in vivo nucleosome patterns (31, 32).

The earliest example (31), using a 234 base pair mouse satellite repeat, gave the un-

derlying sequence as the predominant influence that guides nucleosome positioning.

Whereas the more recent genome-wide analysis in S. cereviseae (32) places the empha-

sis on trans-acting factors, requiring ATP, to drive in vivo nucleosome positions (figure

1.3). Indeed, the function of particular chromatin remodelling enzymes, complexes that

slide, remove or exchange histones, are essential to achieve highly ordered nucleosome

arrays (33). Clearly, both the underlying DNA sequences and trans-acting factors are

needed to achieve proper nucleosome order throughout the genome, but the relative

contribution each has is likely gene/region dependent. Interestingly, even though an

ordered nucleosome architecture is a highly conserved phenomenon across eukaryotes,

there is not a clear link between nucleosome architecture and transcriptional activity.

NDR

TSS

+1-1 Nucleosome array

Figure 1.2: Features of nucleosome architecture around the promoter - The nu-
cleosome depleted region (NDR) is a region of low nucleosome density across the promoter,
upstream of the transcription start site (TSS). The +1 and -1 nucleosomes flank the NDR
and are highly positioned. The nucleosomes into the gene body form a highly ordered
array (nucleosome array) which can be observed as an average pattern across many genes
and genomes.
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Native
In vitro - 

DNA guided
In vitro - 

ATP + extract

Intrinsic NDR

In vitro - DNA guided

In vitro - ATP + Whole cell extract 

A

B

Figure 1.3: In vitro reconstitution of nucleosomes - Assembly of nucleosomes on
genomic DNA reveals the sequence-dependent and sequence independent contributions to
nucleosome positioning. A) Salt-gradient dialysis of histones onto naked DNAs reveals an
NDR (blue region in in vitro DNA-guided), yet little nucleosome order as seen by the lack of
stripes into the gene body. When ATP and cell extract is added to the in vitro reconstituted
chromatin, a nucleosome organisation similar to the native state is observed (32). Yellow
represents high read counts, blue represents low read counts B) Schematic representation
of the DNA-sequence-driven NDR formation (top) and the ordered nucleosome array in
the presence of ATP and whole cell extract (bottom). Section A from Zhang et.al., 2011
(32). Reprinted with permission from AAAS.
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1.1.3 Modifying the chromatin landscape

The chromatin environment is not static but highly dynamic. The dynamic nature of

chromatin is driven by the opposing needs of the cell to both access the genome and

prevent unwanted access or damage to the genome. The cell uses multiple mechanisms

to modify the chromatin landscape, including post-translational modifications of the

histones, using variant forms of histone proteins, and chromatin remodelling enzymes.

Histone variants and post-translational modifications can act as binding platforms for

chromatin remodelers, and also alter the structural characteristics of the nucleosome

core particle itself, for example by increasing the stability of the nucleosome. In addition

to influencing the intra-nucleosome interactions, the histone variants and modifications

can also alter the higher order structure of chromatin by modulating how nucleosomes

interact with each other. I will focus on one histone variant, H2A.Z, and three post-

translational modifications, H3K27ac, H3K27me3, and H3K36me3 in my work. Our

previous work uncovered an unexpected role of H2A.Z in regulating invariant genes,

and being absent from cell-type-specific genes (34), an aspect of regulation that I will

further dissect. The three histone modifications were chosen to define the activity state

in cell-type-specific and invariant genes because these modifications are well studied,

yet may show unexpected results when studied cell-type-specifically.

Histone variant H2A.Z

There are multiple histone variants present in Drosophila that fulfill various functions

in gene regulation. I will concentrate on the specific function of the H2A variant H2A.Z

(although named H2AvD in Drosophila melanogaster I will refer to it as H2A.Z for clar-

ity), as this variant was a specific focus my research. The histone variant H2A.Z and

the cannonical H2A gene share a common evolutionary origin; the distinct H2A variant

is present from yeast to man (35). There are vast differences in the protein sequence

between H2A.Z and canonical H2A, as they share only 63 % sequence identity (figure

1.4). These alterations result in subtle differences in the structure of the nucleosome

core particle, leading to a less stable interaction between the H2A.Z–H2B dimer with

the H3–H4 tetramer (36).

H2A.Z is essential in Drosophila and other multicellular species, but is not needed

for survival in yeast (37, 38) . The six differential residues and one deletion in the

C-terminal helix (red box, figure 1.4) are essential for H2A.Z function, since when mu-

tated to their H2A equivalent, flies do not survive (39). Interestingly, an additional

C-terminal patch of differential residues (green box, figure 1.4 is not necessary for flies

8



1.1 Regulating gene expression

H2A.Z
H2A

N

C

αN α1 α2

α3 αC

Figure 1.4: H2A.Z and H2A comparison - The sequence conservation between
Drosophila H2A and H2A.Z. The secondary structure is shown schematically below the
sequence alignments. The red box surrounding αC indicates the essential region of H2A.Z
and the green box indicates an H2A.Z region essential for adult survival.

to reach pupation, but is necessary for adult survival, indicating a difference in H2A.Z

function between developmental and adult stages (39).

The distribution of H2A.Z across the genome in Drosophila is dispersed. Poly-

tene staining showed that H2A.Z is present at thousands of euchromatic bands, and

at the heterochromatic chromocenter (40). Genome-wide analysis revealed that H2A.Z

is enriched at the promoters of genes, primarily the +1 nucleosome, and dispersed

throughout the genome (41). Euchromatic and heterochromatic H2A.Z nucleosomes

have a basic organisation that is indistinguishable (42). Whether looking at genes,

DNA-replication origins, or transposable elements, H2A.Z appears to demarcate their

boundaries. H2A.Z is deposited into specific chromatin locations by Swr1, the catalytic

core of a multi-subunit complex that replaces canonical H2A with H2A.Z in vivo (43).

Swr1 is targeted to the chromatin by the NDR (44), and formation of the NDR is

required for H2A.Z to be deposited at the promoter region of genes (45).

The functions of H2A.Z in gene regulation are diverse. H2A.Z is implicated in

gene activation, DNA damage response and prevention of heterochromatin spread. As

mentioned previously, H2A.Z-containing nucleosomes are more structurally labile than

their canonical counterparts (36). Indeed, low-salt soluble chromatin in Drosophila S2

cells is enriched for H2A.Z, and nucleosomes containing both the histone variants H3.3

and H2A.Z are particularly unstable (46, 47). Conversely, FRET-analysis of H2A.Z-

containing nucleosomes showed that they are more stable than canonical nucleosomes

(48), and H2A.Z occupancy in Drosophila S2 cells anti-correlates with H3-H4 histone

turnover (18). These dicrepencies are likely to be context specific.
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1. INTRODUCTION

H3K36me3

The tri-methylation of histone H3 at lysine 36 is a mark associated with active tran-

scription, however it is actually functions as a repressive mark. H3K36 is methylated

by the lysine methyltransferase Set2. Set2 associates with the C-terminal domain of

RNA polymerase II, specifically with the Ser2-phosphorylated elongating form (49, 50).

Thus the H3K36me3 modification is found at actively transcribed genes, and is particu-

larly enriched at the 3′ ends of genes. However, H3K36me3 is a repressive modification,

in that it reduces trans histone exchange over the gene bodies (51), and recruits a

histone-deacetylase complex RPD3. RPD3 is involved in de-acetylation of H3K27ac,

among other forms of histone aceytlation, which would have a negative effect on gene

activity (52). Reduction of histone turnover and acetylation within the gene bodies of

actively transcribed genes functions to surpress cryptic transcription (53).

In mammalian cells, H3K36me3 plays a lesser role in the suppression of cryptic

transcription and plays a more significant role in splicing. SetD2, the mammalian

homologue of Set2, performs only tri-methylation of H3K36 (54). Other enzyme com-

plexes are responsible for mono- and di-methylation of this histone residue. In human

cells, down-regulation of SetD2 leads to intragenic transcription within only around

11 % of active genes in human cell culture (55), whereas changes in RNA processing,

such as intron retention and aberrant splicing affects approximately 25 % of genes in

renal carcinoma cell lines (56). Additionally, intronless genes have far lower levels of

H3K36me3 than intron-containing genes, regardless of expression level (57). Thus, a

more important role of H3K36me3 in higher eukaryotes may be in splicing, rather than

suppression of cryptic transcription.

H3K27ac

Addition of acetyl groups to the histone tails functions to reduce the overall charge of the

histone proteins, thus destabilising the histone-DNA interaction, and acts as a signal for

regulatory proteins (see reviews (58, 59)). One family of histone acetyl-transferases is

the CBP/p-300 (nej in Drosophila), which is able to acetylate multiple sites on all core

histones within mononucleosomes (60, 61). Although CBP/p-300 preferentially acety-

lates histones H3 and H4, it has a rather broad range of substrates, such as TFIIE and

TFIIF of the basal transcription machinery (62). The specific activity of CBP/p-300 is

achieved through its role as a integrator of specific signalling pathways with the basal

transcription machinery. Different transcription factors are able to specifically modu-

late the activity and substrate specificity of CBP/p300, leading to specific activation

10
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of the required target genes (63). For example, in the cyclic-AMP(cAMP) response

signalling cascade, the specific transcription factor CREB (cAMP response element

binding protein) becomes phosphorylated. Phosphorylated CREB interacts with CBP,

which in turn specifically associates with RNA Pol II. This specific association mediates

the specific recruitment of the transcription machinery to the cAMP-response genes,

an induction which is dependent on CREB-phosphorylation (64). Thus, CBP/p300

functions as a molecular adaptor protein that bridges many diverse signalling cascades

with the general transcriptional machinery.

Multiple lysine residues along all histone proteins can be acetylated, however in

this work I will focus on the acetylation of H2K27. The acetylation of H3K27ac is

catalysed by CBP/p-300, supported by the finding that deletion of CBP/p-300 results

in drastic loss of H3K27ac (65). Acetylation of H2K27 is independent of transcriptional

elongation, and has been shown to be enriched at a gene promoter prior to recruitment

of RNA Pol II (65). Thus H3K27ac is likely one of the first steps in establishing open,

accessible chromatin during induction of gene expression. Moreover, the acetylation

of H3K27 is not only an important signal for gene activity at the promoter, but has

also been shown to be the most informative histone modification for predicting and

identifying active cis-regulatory modules (CRMs) (66, 67). Indeed, H3K27ac signa-

tures at promoters and CRMs are correlated with tissue-specific gene expression (68),

making H3K27ac an ideal modification to identify novel cell-type-specific enhancers in

previously uncharacterised cell types.

H3K27me3

H3K27 is not only modified with an acetyl group but can also be methylated. Methy-

lation of H3K27 has the opposite function to acteylation, in that it is associated with

gene repression. H3K27 is methylated by the polycomb-repressive complex 2 (PRC2).

Polycomb proteins, and the H3K27me3 they modulate, are an essential mechanism for

gene silencing, cell-fate establishment and maintainence in eurkaryotes (reviewed in

(69), and (70)). PRC2 is conserved from Drosophila to mammals, and is even found

in some uni-cellular eukaryotes, albeit not in S. pombe or S. cereviseae. PRC2 is com-

prised of many components, with the key components enhancer of zeste homolog 1 and

2 (EZH1 and EZH2) being required for H3K27 di- and tri-methylation. The silent state

of polycomb-repressed domains throughout cell divisions is mediated by PRC2 binding

to H3K27me3 (71). Thus, after DNA-replication, PRC2 can bind to the H3K27me3

of the maintained nucleosomes, and modify the newly incorporated nucleosomes at the

same region.
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1. INTRODUCTION

There is a complex level of cross-talk between active chromatin marks and the

PRC2/H3K27me3-mediated repression. For example, PRC2 binding to H3 is lost when

H3 is modified with the “active” modification H3K4me3, and is also inhibited by pres-

ence of H3K36me3 (72). The inhibition of PRC2 activity by active chromatin mod-

ifications prevents aberrant H3K27me3 and repression of active chromatin domains.

Conversely, a directed erasure of active chromatin states by polycomb-repression is

mediated through the polycomb-like protein PHF1. PHF1 can bind to H3K36me3

and promote recruitment of PRC2 to the active domain (73, 74). This cooperativity

modulates a switch from an active chromatin state to a repressive environment.

Combinatorial chromatin states

Ever since the idea of the histone code was seeded, there has been a great interest in

deciphering it. Recently, several research consortia have produced vast amounts of data

in their efforts in identifying the key to the epigenetic regulation code. These studies

used integrative analysis to compare multiple histone modifications and chromatin pro-

teins, generating a classification system defined as “chromatin states” (75, 76, 77) .

A chromatin state is a combination of histone marks or chromatin proteins that are

commonly found within the same genomic region. While different numbers of chro-

matin states have been identified in the different studies, from five (76) to nine (75)

and fifteen state(77), the features found in the states are similar between the studies.

For example, there is always a polycomb repressed group with particular features, such

as H3K27me3 and binding by polycomb proteins (black chromatin in figure 1.5). While

these chromatin states correlate with gene activity with the cell type they were mod-

elled in, they have weak predicitve power for determining gene activity in other cell

types.

Now that many combinatorial chromatin states have been “de-coded”, it is becom-

ing increasingly clear that we do not have a full comprehension of what these chromatin

states actually mean. For instance, there are many cases where an active chromatin

state was observed at cell-type-specific enhancers, even in the cell type where the en-

hancer is not functioning (75). A similar lack of correlation between gene activity and

chromatin state was also observed when cells differentiate from embryonic stem cells

to mesendodermal cells (78). While some promoters change from an active chromatin

state to a polycomb-repressed (H3K27me3) state, the majority of genes that change

expression during differentiation remain invariant at the chromatin level. Indeed, the

observation that chromatin state differences do not lead to gene expression change
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1.1 Regulating gene expression

Figure 1.5: The five chromatin states in Drosophila cells - Summary of the
chromatin features assayed in (76). Principal component analysis computed five broad
chromatin states: Classic heterochromatin (green), Polycomb-regulated (blue), Repressive-
active (black), Specifically active (red) and General-active (yellow).

differences, and that gene expression differences do not rely on chromatin state differ-

ences, has been made in several studies. For example, chromatin state differences were

observed between male and female Drosophila larvae, yet these chromatin differences

did not lead differential gene expression outputs (79). Further, large changes in gene

expression upon differentiation of erythroid cells were not accompanied by alterations

in chromatin state or DNA-acessibility (80). Strikingly, where a particular histone

modification is placed relative to DNA elements, rather than the presence or absence of

the mark, may be more important in defining the gene activity. For example, bi-modal

distribution of H3K4me1 and H3K27ac indicates active enhancers, whereas a single

peak of these histone marks indicates a switch to an inactive state (81). These studies

clearly demonstrate that different genomic regions are governed by different combi-

nations of chromatin factors, but as yet any definable “code” to these combinations

remains elusive.

1.1.4 Higher order chromatin structure

3D organisation of the genome

An additional layer of complexity to achieve precise spatio-temporal gene expression is

to regulate how the genome is organised within the confined three-dimensional space

of the nucleus. Chromosome conformation capture (3C), and its derivatives such as

Hi-C, are techniques for measuring which parts of the genome are in close proximity to

other parts of the genome (see review (82)). There is vast structural organisation of the

genome within the nucleus. Not only are there defined interactions between genomic
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regions, but there are also defined interactions of the genome with specialised nuclear

compartments, such as with the nuclear lamin or nuclear pore complexes (83, 84).

Genomes are highly organised into broad domains, known as topologically associated

domains (TADs), that can be megabases in size. These TADs are highly demarcated,

and have large numbers of intra-domain contacts, but low inter-domain contacts. The

organised domain structure of the genome overlaps extensively with epigenetic signa-

tures (85), and segregation between domains relies on the function of insulator proteins.

Long-range interactions between genomic regions are more frequent in active regions

(85), and the distances between interacting sites can be vast (86). While there is an

enormous amount of structural organisation within the genome, it is not as plastic as

one would expect. For instance, interaction frequencies between enhancers and promot-

ers remain largely unchanged during differentiation, despite vast changes in enhancer

activities (86). The overall organisation of TADs was shown to be stable between differ-

ent ES-stem cell lineages, yet there are numerous differences in the interactions within

TADs (87). Thus, there appears to be a general, overarching, organisation that can be

modulated within certain constraints.

However, there are examples where alterations in the genome organisation appear to

coordinate gene expression changes. For instance, in the extreme example of the heat-

shock response, where the majority of gene expression is shut down upon heat shock,

there are large-scale rearrangements of TAD architectures and dramatic rearrangements

of the nuclear architecture (88). This suggests that 3D organisation is quite flexible and

can be quickly rearranged when necessary. Comparing different ES-cell lineages, 36 % of

the genome undergo a switch between an active and inactive state (87). The switching

occurs across entire domains of chromatin (single TADs, or a series of adjacent TADs),

and has a significant effect on gene expression. However, the effect is subtle, with only

a few genes having altered expression within the domain. Interactions between the

genome and the nuclear lamin, a repressive environment within the nucleus, undergo

co-ordinated changes during differentiation, correlating with gene expression changes

(89). Understanding how genes are spatially regulated, and co-regulated, will require

more in-depth analysis comparing and contrasting chromatin interactions, chromatin

landscapes, transcription-factor binding analysis, and gene expression to be able to

build a global view of the co-ordination of gene expression changes with 3D genome

organisation.
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1.1 Regulating gene expression

Insulators

Many cis-regulatory elements can function over long distances to enhance or repress

the activity of a gene. Insulators act as a mechanism to reduce spurious activation of

genes that are in close proximity to the target gene of active enhancers. Two modes

of insulator action can be to block spreading of neighbouring chromatin states, or

to regulate looping interactions between chromatin regions. Insulators are important

for demarcating boundaries between different structural domains, either by interact-

ing with each other or with another nuclear structure such as the lamin ((90),figure

1.6). Insulators can facilitate transcriptional activation of a gene by bringing enhancers

into close proximity to a promoter, or can facilitate repression of a gene by inhibiting

enhancer-promoter interactions (figure 1.6, right panel, see review (91)). This role in

spatial arrangement of the genome is the primary mechanism by which insulators affect

gene expression, rather than playing a role in direct repression or activation of a gene

(92).

Chromosome 
Territories

TADs

Aligned Insulators
Enhancer

Promoter

Insulators

Nuclear scale (µm) Chromosome scale: Megabases
(µm-nm)

Gene scale: Kilobases (<nm)

Figure 1.6: Levels of genome organisation - Figure adapted from (91). There is large-
scale organisation of chromatin into domains that governs the packaging of the genome
into the nucleus (nuclear scale). Insulators likely function at this level by determining
genomic regions associated with the lamin domains at the nuclear envelope. At the level
of the chromosomes (middle panel), there are topologically-associated domains (TADs)
where the chromatin is frequently interconnected. Insulators function in delimiting the
domain boundaries between the TADs so that inter-TAD interactions are infrequent. At
the level of the gene (right panel), insulators function to modulate interactions between
enhancers/cis-regulatory modules and their prospective promoters.

One of the most well-studied insulators in Drosophila is the gypsy insulator, also

known as suppressor of hairy wing (Su(Hw)). The Su(Hw) insulator is a zinc finger

protein that co-operates with two other bridging proteins, centrosomal protein 190kD
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(CP190) and modifier of mdg4 (Mod(mgd4)), to form inter-insulator interactions (92).

CP190 also acts as bridging protein with other insulator-binding proteins, such as

boundary element-associated factor of 32kD (BEAF) and CCCTC-binding factor pro-

tein (CTCF). Each type of insulator-binding protein has been associated with particular

functional chromatin domains (76, 85). Su(Hw) is associated with more specific reg-

ulation, since it was identified as part of the black chromatin state (section 1.5), it is

involved in repressing neuronal-genes in oocytes (93), and it changes binding patterns

during the ecdysone response in larvae (94). Other insulators, for example BEAF-32

and CTCF, are associated with more cell-type-invariant chromatin states (34). Because

insulators function primarily through loop formation, the bridging proteins are essential

for insulator function. CP190 recruitment is the main regulatable step during the mas-

sive chromosomal rearrangements that occur during the heat-shock response (94). This

indicates that modulating the inter-insulator interactions is a faster and more effective

way of regulating global chromatin reorganisation, rather than defining new insulator

platforms. Where more subtle gene expression changes are made, such as tissue-specific

gene regulation or the ecdysone-response, differences can be observed in the enrichment

of the direct DNA-binding insulator proteins (such as Su(Hw), (94, 95)). However, just

as was seen for the Hi-C studies, differences in insulator binding and consequential

3D-interactions are more subtle than might be expected. More subtle alterations in in-

sulator strengths and intra-domain interactions, rather than large changes in insulator

binding sites, probably drive tissue- and time-specific gene regulation.

1.2 Neurons and glia as a model of specific gene regulation

All neurons within the adult Drosophila brain are derived from a limited number of

progenitor cells, known as neuroblasts (reviewed in (96)). Neuroblasts are stem cells

that produce neuronal/glial lineages and self-renew, using asymmetric cell division.

Depending on the type of neuroblast, the daughter cell that is not maintained as a

neuroblast generates a ganglion mother cell (GMC), often through an intermediate

neural progenitor, which then divides once more to generate two terminally differen-

tiated neurons/glia. Neuroblasts in the embryo are formed by delamination from the

surface epithelium, and although these neuroblasts generate all cells in the larval cen-

tral nervous system (CNS) they contribute to only 10 % of the neurons in the adult

CNS (97). During morphogenesis, the CNS is largely remodelled, such that the other

90 % of adult neurons have their origins from neuroblasts generated in the larval stage

of Drosophila development. Different neuroblasts are located in different brain regions,

and regional amplification of these neuroblasts is thought to lead to the specialised
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brain structures in the adult. Key brain structures are built up sequentially, segment

by segment, across development. For example, the mushroom body, an important brain

structure for learning and memory, is built up from γ lobes in the larval stage, then

the α′ and β′ are formed during the final larval and pupation stages, and the neurons

projecting into the α and β lobes are generated after pupation (98).

The importance of neurons for transmitting and interpreting external signals is

well known. However, the importance of glial cells in aiding and modulating neu-

ronal function is under appreciated. Glia perform many neuron-supporting roles in the

Drosophila brain. For example, glia form a barrier between the nervous system and the

circulating haemolymph, analogous to the blood-brain barrier in mammals. Recycling

neurotransmitters, such as histamine clearance and recycling, and providing a buffer-

ing system to protect neurons, are also important roles for glia (see review (99). Glia

arise from gliablasts, which give rise only to glia, or neuro-glia blasts, which form both

neurons and glia. Like neuroblasts, gliablasts arise from delamination from the surface

epithelium in the embryo. The first defining step in glial identity is expression of the

transcription factor glia cells missing (Gcm). Gcm activates expression of downstream

transcription factors necessary for ensuring glial cell fate commitment, such as reversed

polarity (repo) and pointed. Glia cells comprise only a small proportion of cells in the

brain; this greatly contrasts with mammals where glia are the most abundant cell type

in the brain. Although the majority of glia cells in the adult brain are post-mitotic like

neurons, there is still some division of glia cells at very low levels in young adults.

Though still formed of diverse sub-types, neurons and glia represent two classifi-

cations of post-mitotic cells that are derived from very close developmental origins.

Despite having close developmental origins, neurons and glia have vastly different mor-

phologies and functions which are closely intertwined with each other. This closeness

of origin and diversity of function poses an interesting problem of how genes are pre-

cisely regulated in these cell types. Although the transcription factor pathways and

regulatory pathways that are required for neuron and glia cell fate determination are

known, how these factors coordinate the regulation of all genes so that the required

expression levels are achieved in each cell type is yet to be deciphered. Studying gene

regulation in such complex, post-mitotic cell types as neuron and glia, is a necessary

next step to further our knowledge. Exploring the chromatin states that drive neu-

ron or glia-specific gene expression will also test if our broad model of gene-regulatory

mechanisms, derived mainly from yeast and cell culture, still apply in a more complex

context.
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1.3 Genomics methods to study specific cell types

An adaptation of this section has been published as a review in Molecular Cell (100).

Most gene expression or chromatin profiling studies have focused on either cell cul-

ture or whole organism analysis. In recent years, many tools have been developed that

couple cell-type-specific genetic methods with high-throughput sequencing technolo-

gies, greatly improving the resolution with which we can observe gene regulation. This

section will give an overview of these novel methods and discuss the contribution these

tools will have towards a more refined and complete understanding of gene regulation

in multicellular organisms.

1.3.1 General approach

Protocols for analysing specific cell types have at least five steps in common: 1) labelling

the cell type of interest, 2) isolation of labeled material, 3) genome-wide profiling, 4)

data analysis, and 5) validation of observations. Labelling the cell type of interest

generally uses a transgenic construct, where a tagged fusion protein (often fluorescent)

allows the visualisation of the cell population. The construction and the localisation

of the fusion protein depends on the application. In some cases a nuclear localised tag

is necessary, or whole cells are labeled using free GFP, and for some approaches the

tagged protein is part of a given protein machinery such as the ribosome. For some

approaches transgenes are avoided altogether, by immunostaining for proteins specific

to the cell type of interest. The isolation of the cell population is then based on fluo-

rescence detection or affinity purification of the tag. Separating the cell type of interest

from the rest can use physical separation techniques, for example manual-isolation, or

be done biochemically, for instance affinity purification of chromatin-bound tagged pro-

teins. The methods discussed here are separated by the cellular level that is profiled,

ranging from techniques to analyse whole cells, to profiling the nucleus, down to direct

analysis of protein-DNA/RNA interactions (figure 1.7).

The method chosen depends both on the biological questions the analysis is trying

to address, as well as the physical limitations of biological material and the equipment

available. Assessing the steady state transcriptome of the cell types of interest is often

desired, as this is fundamental to gain an understanding of how the cells differ from

each other. Analysing the differences in nascent transcription, by sequencing total

nuclear RNAs, can begin to tease out temporal changes in gene expression from the

steady state of RNA. Measuring the levels of mRNAs bound to the ribosome reflects the
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potentially translated portion of the transcriptome, and can thus predict which proteins

may be present in the cell type. In addition to knowing what is expressed, knowing

what is regulating the expression of genes in specific cell types is also important. There

are several tools available to analyse the chromatin state and DNA-binding factors

cell-type-specifically. It must be taken into account that different approaches require

various treatments, cross-linking and protease treatment for example, and different

amounts of biological material, time and labour.
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Figure 1.7: Current techniques in labelling specific cell types - Different cell-type-
specific techniques use different tagging methods to label the cell type of interest. Whole
cell isolation methods generally rely on labelling with free GFP. Methods for isolating nuclei
use epitope-tagged proteins directed to the outer membrane of the nuclear envelope (for
INTACT), GFP guided by a nuclear-localisation signal, or epitope-tagged histone proteins
(FANS). Biochemical methods rely on direct tagging of the protein being investigated,
for example Pol II (CAST-ChIP, TaDa), or a tissue-specifically expressed enzyme that
generates a modified nucleotide (TU-tagging).

1.3.2 Whole-cell transcriptomics

The transcriptome provides vast information about the function and identity of a cell

type. The receptors, signalling pathways, metabolic processes and much more can be

inferred from the transcriptome, and so provide information about how a cell type fulfils

its functional role. RNA is localised in both the cytoplasm and the nucleus, therefore

most methods aim for whole cell isolation in order to collect as much information as
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possible. There are three established methods for isolating whole cells from complex

tissues: manual isolation, fluorescence-activated cell sorting (FACS) and laser-capture

micro-disection (LCM) (figure 1.8).

Manual isolation method

The manual isolation method (figure 1.8, left panel) was developed for isolating different

populations of mouse neurons, and later used for gene expression analysis of many

neuronal subsets in Drosophila (101, 102) . The method starts with animals that

have the cell type of interest fluorescently labeled. After dissecting and sectioning the

tissue, the cells are released by protease treatment, and then plated on a petri dish.

The labeled cells are picked using a pipette under a fluorescent stereo microscope and

placed in fresh media. Two to three rounds of selection are used to ensure 100 % purity

of the sample. At least 30 purified cells were collected for the mouse brain analysis, and

100 cells for the Drosophila analysis, which yields very low levels of RNA. Dealing with

such limited material requires an amplification step before profiling with microarray or

sequencing platforms is possible, which may introduce bias in the data, such that rare

transcripts may go undetected.

Fluorescence-activated cell sorting

Fluorescence-activated cell sorting (FACS, figure 1.8) begins much the same way as

manual sorting, with GFP-labeled protease-dissociated cells. However, the dissociated

cells are then in run single-file past lasers and detectors and the characteristics of the

cells are displayed to the user. The user can then select features of cell populations,

such as GFP intensity and size, and the machine then deflects them into a collection

tube. Direct sorting of the dissociated cells is the usual method, but cells can also be

cultured prior to sorting. Both options were used in an analysis of C. elegans muscle

cells (103), where blastomeres from embryos were dissociated, then either directly sorted

to isolate embryonic muscle cells or differentiated in vitro to generate mature muscle

cells, then sorted . Cell sorting is useful for subdividing the GFP positive populations

of cells further, for example by size, when the labelling is not as specific as needed.

One excellent example is of the isolation of Drosophila neuroblasts from their daughter

cells by Berger et al. (104), which took advantage of both the differences in GFP

intensity and the size of the cells they wanted to isolate. This method requires nicely

separated cells, preferably spherical, to work effectively. One rather large downside

to this technique is the equipment itself, which is both very expensive and technically

difficult to operate.
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Laser-capture micro-dissection

Laser-capture-microdissection (LCM, figure 1.8) is a precise dissection technique that

circumvents the need for cell dissociation. To isolate the cells, whole tissue samples are

flash frozen and then cryo-sectioned. Different approaches have been applied to visualise

the desired cell types, such as rapid immuno-staining, or GFP expression. There are

several methods for cutting out and collecting the cells for analysis, each of which have

differing advantages and disadvantages (105, 106). For example, Leica platforms use

UV lasers to cut around the cell and simply let the cell fall into a collection tube by

gravity. Whereas platforms from Arcturus Biosciences, such as the ArcturusXT, use

UV lasers to cut around the cell, followed by an IR laser to heat-adhere the cell to a

membrane, which can be lifted away from the remaining tissue.

Manual
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Figure 1.8: Whole-cell isolation methods - Methods for isolating whole cells from
a complex tissue composition include manual isolation, fluorescence-activated cell sorting
(FACS) and laser-capture microdissection (LCM). Manual sorting involves multiple round
of manual selection of GFP-positive, protease-dissociated cells; typical yield is low. FACS
involves running protease-dissociated cells in buffer, single-file past a detector; the buffer
stream is electronically controlled to break off phased-droplets. The detector measures
when a GFP-positive cell is present in the flow, and charges the droplet that contains the
positive cell. Number of cells collected can be in the high thousands. A magnetic charge
then directs the charged droplet towards a collection tube. LCM involves cryosectioning
tissue samples and identifying the labelled cells of interest with a microscope. A UV laser
is used to cut out the cell from the other tissue, and an infrared laser is used to adhere the
cell to a special cap so that the cell can be removed. Thousands of cells can be collected.
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Comparing the whole-cell isolation techniques

FACS, LCM, and manual isolation approaches have both advantages and disadvantages

to consider. Firstly, there are differences in how the cells are treated. Both manual

sorting and FACS use protease-treated cells, a potential stress, and the cells are intact

during isolation, which may result in gene expression changes due to the changed en-

vironment. Because the cells are dissociated, non-specific RNAs from lysed cells may

stick to the specific cells, contaminating the samples. This problem is overcome in

LCM since the tissue is intact and fixed to a slide for the entire protocol. However,

although LCM systems can reach the accuracy of one micron, contamination by neigh-

bouring cells or missing segments (e.g. axon branches) in tightly packed tissues it is

to be expected (for a comparison see (107)). Manual isolation has the advantage over

the other techniques in that there is a relatively simple setup and no special equipment

required, providing significant cost benefits. FACS and LCM require equipment that

is expensive, often overbooked, and requires specialist training to use.

1.3.3 Nuclei isolation for transcript and chromatin analysis

The whole-cell transcriptome provides an overview of the steady state mRNA levels of

the cell. However, by analysing the newly synthesised, unprocessed transcripts within

the nucleus, the transcriptional rate of gene expression can be obtained. Analysing the

chromatin state, and chromatin-bound proteins can provide information about how

genes are regulated in specific cell types. However, the current genome-wide methods

for chromatin analysis are not as sensitive as RNA analysis, and require comparatively

more material. Nuclei isolation is a more reliable and efficient way to isolate chromatin

from specific cell types than isolating whole cells.

Fluorescence-activated nuclei sorting

FACS is frequently used to sort nuclei, where it is aptly named fluorescence-activated

nuclei-sorting (FANS). Nuclei are relatively easier to sort compared to whole cells,

perhaps because nuclei are more uniform in size and shape than cells. The approaches

used to label the nuclei of interest include either expressing a fluorescent protein such

as GFP, nls::GFP, and H2B-GFP (108, 109), or immunofluorescence staining of a tag

or a nuclear-localised endogenous protein e.g. SBP-H2B, or NeuN (110, 111) (table

1.1). Depending on the intended use of the sorted nuclei, they can either be cross-

linked with formaldehyde (for ChIP) or left in the native state (for native-ChIP or

RNA isolation). Unfixed nuclei lose their integrity more easily, whereas fixed nuclei are
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prone to clumping. It is crucial to avoid nuclei clumping during sorting, as this reduces

efficiency, results in impure samples and can clog the machines.

Isolation of nuclei tagged in specific cell types

Isolation of nuclei tagged in specific cell types (INTACT) is an alternative method for

isolating nuclei that eliminates some of the limitations of FACS (figure 1.9). INTACT

was originally developed in Arabidopsis (112), then quickly adapted to C. elegans and

D. melanogaster (113, 114). INTACT relies on expressing a tag localised to the outer

surface of nuclei, and two different tagging approaches have been published (table 1.1).

The original approach used a more complicated construct containing a WPP domain,

which inserts into the outer surface of the nuclei, GFP for detection, and a BRLP. The

BRLP is biotinylated in vivo by co-expressing BirA. The second, more straightforward

tagging approach used Unc84 to insert into the nuclear envelope, and two GFPs in

tandem. The tagged nuclei are immuno-purified using anti-tag magnetic beads, and

the non-specific populations are washed away.

Table 1.1: Transgenic proteins for nuclei isolation techniques

FANS INTACT

NLS-GFP WPP-GFP-BLRP
H2B-GFP Unc84-2xGFP
H2B-SBP
NeuN-staining

FANS

Laser

+
+

+
+

+

INTACT
Prepare nuclei from 

whole tissue

Magnetic 
a�nty 
purify

Select 
�uorescent 

nuclei

puri�ed nuclei
bound to beadspuri�ed nuclei

collected 
into bu�er

Prepare nuclei from 
whole tissue

Figure 1.9: Methods for isolating nuclei from specific cell types - Fluorescence-
activated nuclei sorting (FANS) and isolation of nuclei tagged in specific cell types (IN-
TACT) are the two current methods for isolating nuclei of specific cell types. FANS follows
the same principals of FACS, except that nuclei are prepared for sorting. INTACT involves
immunopurifying nuclei labelled with an outer-nuclear envelope construct.
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Comparing the nuclei-isolation techniques

There is little difference between these nuclei-isolation methods in how the nuclei are

prepared, just whether the material is cross-linked or not. FANS generally uses cross-

linking, whereas INTACT is generally carried out under native, non-crosslinked condi-

tions, with the exception of C.elegans (115). The major difference between FANS and

INTACT is the amount of material and time required. Just like FACS of whole cells,

sorting nuclei is a time-consuming and inefficient process, which needs high amounts

of starting material. INTACT is comparatively much faster than sorting nuclei and a

higher yield of nuclei can be isolated from lower starting material. INTACT is par-

ticularly appealing when considering the long time-frames for sorting enough material

for a ChIP-seq experiment (∼8 hours for 40 x 106 nuclei (110)) and the efficiency of

sorting is relatively low (∼ 50 % loss (116)). On the other hand, sorting nuclei with

the cell type of interest marked by staining against an endogenous protein circumvents

the need to express a possibly toxic transgene.

1.3.4 Biochemical methods for transcription and chromatin profiling

One of the biggest challenges in obtaining cell-type-specific information is collecting

sufficient material for the experiment. Biochemical methods have a big advantage over

other isolation techniques in that they are rapid, simple and highly efficient. The

high efficiency of biochemical techniques means that each experiment requires far less

starting material than other techniques. There are several options for both RNA and

chromatin analyses that enable profiling of small populations of cells without demanding

high amounts of starting material.

Direct tagging and affintiy purification of RNA-binding machinery

The two most commonly used targets for this experimental approach are polyA-binding

proteins (PAB, (117)) or the ribosome (TRAP or ribo-tag (118, 119)), shown in fig-

ure 1.10(top left). The PAB-based method was first developed for profiling C. elegans

muscle cells (117). The technique is relatively straightforward: Flag-PAB1 is expressed

using a muscle-specific promoter, the worms cross-linked, the Flag-PAB-1 affinity pu-

rified, and the associated RNAs purified. This approach was later applied to profiling

Drosophila photoreceptor cells (120), C. elegans neurons and then different cell types

and developmental stages in C. elegans (121, 122, 123, 124). No further PAB studies

have been published for Drosophila, possibly due to the lethality of the transgene when

expressed under the control of various Gal4 drivers.
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Translating Ribosome Affinity Purification (TRAP)has been the method of choice

for RNA profiling in mouse (118, 125, 126, 127). In this method, the ribosomal subunit

L10A is tagged with GFP and expressed in the cell-type of interest. A polysome

extraction is made from whole tissue, and the tagged ribosomes, along with their mRNA

cargo, are immuno-purified. This technique is well established in mouse, and there are

several BAC-TRAP lines available for specific cell types. TRAP was also used in

Drosophila to profile a population of ∼ 200 cells in the pars-intercerebralis .

TU-Tagging

Originally developed for Drosophila (128), and recently transferred to mouse studies

(129), TU-tagging is a method to analyse newly synthesised and non-coding RNAs

in specific cell types (figure 1.10, top right). This method works by expressing the

Toxoplasma gondii uracil phosphoribosyltransferase (UPTR) in the cell type of interest.

UPTR acts to couple ribose-5-phosphate to uracil, generating a uridine monophosphate

that is incorporated into RNA (130). Feeding flies or mice the uracil analogue 4-

thiouracil leads to thio-labelled RNA in the UPTR-expressing cell type. The thio-

labelled RNA are then coupled to biotin, and the biotin-thio-RNA is purified using

streptavidin.

Chromatin profiling without cell isolation

There are two recently published techniques, Chromatin Affinity purification from Spe-

cific cell Types (CAST-ChIP) and TargetedDamID (TaDa) (figure 1.10, lower panels),

that can be used to profile protein-DNA interactions in specific cell types without

the need for isolating cells or nuclei. CAST-ChIP is a method to directly pull-down

chromatin-bound proteins from specific cell types, using a modified ChIP assay (34).

A tagged form of the desired protein is expressed in the cell type of interest. Then,

the whole tissue is cross-linked and fragmented to release the chromatin, followed by

ChIP-seq using an antibody against the tag. This technique has been published for

Pol II (eGFP-RPB3) and H2A.Z-GFP profiling of neurons, glia and fatbody in the

Drosophila head.

TaDa is a method developed to profile Pol II binding in Drosophila neural stem

cells with no cell isolation, crosslinking, or immuno-precipitation (131). TaDa is based

on DamID technology (132), and cleverly solves a major issue with expressing Dam-

fusion proteins in specific cell types with Gal4 drivers: that Dam-fusion proteins are

toxic when expressed at high levels. Southall et.al.,(2013) (131) resolved this issue by
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Figure 1.10: Biochemical-based methods for RNA and chromatin analysis -
Translating ribosome affinity purification (TRAP) and PolyA-binding protein affinity pu-
rification (PAB): Tagged RNA-binding proteins are expressed in a specific cell type. After
the tissue is homogenized, the tagged RNA-binding proteins and the associated RNAs are
immunopurified. A related approach is used for chromatin analysis using Chromatin affin-
ity purification from specific cell types (CAST-ChIP), except that the tagged proteins bind
chromatin and the associated DNA is isolated. TU-tagging allows cell-type-specific RNAs
to be directly isolated. By expressing the protozoan enzyme UPRT in specific cells, 4TU
is incorporated into RNA. The tissue is homogenized, the RNAs isolated, then the 4TU-
labeled RNA is then biotinylated and streptavidin-purified. In targeted DamID (TaDa),
a bacterial sequence-specific DNA methylase (Dam) fused to a Pol II subunit is expressed
cell-type-specifically. The Pol II-Dam fusion methylates the DNA near where Pol II binds,
the chromatin is then isolated, and digested with the methylation-specific restriction en-
zyme Dpn1. The methylated DNA is then amplified and sequenced, providing an indirect
measurement of where Pol II was associated.
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1.3 Genomics methods to study specific cell types

developing a bi-cistronic construct containing an mCherry primary ORF and the Dam

fusion in the secondary ORF. When cell-type-specific Gal4 is active, the construct is

transcribed at high levels, but the translation of the DamID fusion is low and non-toxic.

The DamID fusion methylates the DNA around its binding site, and the genomic DNA

is then extracted and digested with the methyl-specific restriction enzyme Dpn1. The

cut (methylated) DNA is ligated to sequencing adapters and amplified by PCR for

microarray or sequencing analysis.

Comparing the biochemical methods

The main concern for the biochemical methods is that tagging and over-expressing the

protein of interest perturbs the function of that protein. Therefore it is essential to

ensure the tagged form of the protein is functioning in the same way as the endogenous

protein (for instance, by performing rescue experiments). Another concern is that

differences in transgene expression between the cell populations differ, which could skew

the results. For example, if there is much higher expression of the fusion protein in one

cell type, then more regions are likely to be identified purely because they are more

occupied by the fusion protein in that cell type. Of the RNA profiling techniques, TRAP

has been the most widely published, possibly due to concerns over the toxicity of tagged-

PAB or 4-thiouracil (133). However, TRAP is only for isolating mRNAs that are bound

to the ribosome, and cannot give information about non-coding RNA expression or

microRNAs. Because the ribosome-bound RNAs are many RNA-processing steps away

from active transcription, it may be difficult to compare chromatin features with gene

expression levels using TRAP data. For chromatin analysis, CAST-ChIP and TaDa are

limited to profiling proteins that can be functionally tagged and over-expressed, and

cannot be used for mapping post-translational modifications e.g histone marks. TaDa

has the benefit over CAST-ChIP of not needing immunoprecipitation, as a very good

antibody to the tag is necessary for CAST-ChIP to work effectively.

1.3.5 Bioinformatics analysis

In order to identify differences between cell types, the genomic data needs to be anal-

ysed with specifically designed statistical software. There are several software packages

available that compare data counts at features such as ChIP-seq peaks or RNA-seq

transcript annotations. These include Cuffdiff (134), baySeq (135), edgeR (136), De-

Seq (137), diffreps (138), and BitSeq (139) to name a few (see reviews (140, 141).

Tools of the Bioconductor project, and most other tools, are publicly available (see
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www.bioconductor.org). Analysing datasets from specific cell types can follow two ap-

proaches: either comparing one cell type to the “input” or“total” tissue, or comparing

cell types to each other. The“input/total” sample may be an easily dissectible body

part, organ or tissue, for example whole head, whole brain, or the striatum of the mouse

brain. Finding significant enrichment over the input is difficult in cases where a high

percentage of the labeled cell type is part of the whole, such as neurons in the fly brain,

because the two profiles may be too similar. In my work I will identify differences

between cell types and cell-type-specific enrichments by using pair-wise comparisons.

The output of these analysis is a list of genes that is specific to each cell type, and the

knowledge of how these cells may perform and maintain their function.

1.3.6 Validation of cell-type specificity

Once a gene is identified as cell type specific, the specificity should be validated to

ensure that the measurement is not an artefact. The two commonly used options to

evaluate the specificity of results found by ChIP or RNA profiling, are computationally

and with fluorescent imaging. Most studies use a computational validation such as gene

ontology (GO) analysis, which is a relatively quick way to determine the characteristics

of the genes identified in each dataset. This type of analysis evaluates whether the

expected characteristics are enriched in the dataset, for example ion-channel activity

being enriched in neuron-specific datasets (34, 114). However, one caution that comes

with GO-analysis is that the annotation is far from complete, and will be more difficult

for less well-studied cell types. Another validation approach is to compare the cell-

type-specific datasets to existing data from dissected organs or tissues. In Drosophila,

there is a extensive resource of microarray data from dissected tissues at different de-

velopmental stages known as FlyAtlas (142). Although the dissected tissue may be

quite heterogeneous, it can provide an estimate of whether a gene should be enriched

in a particular tissue. Immunohistochemistry followed by fluorescence microsopy is

often used to complement the computational validation. Depending on the resources

available for the gene of interest, several approaches can be take. For example, Bonn et

al. used fluorescent in situ hybridization to test co-localisation of a Drosophila meso-

derm marker (Mef2) with the RNA of the mesoderm-specific genes they identified (81).

Another approach would be direct staining of the gene product, or driving a reporter

gene with the gene of interest promoter region (such as enhancer-TRAP). Confirming

co-localisation of the newly identified cell-type-specific gene with known markers from

that cell type is currently the best method for visualy validating the results from the

genome-wide analysis.
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Chapter 2

Aims of the project

The overall aim of this research is to understand how chromatin structure

regulates transcriptional acitivity in specific cell types of the Drosophila

brain.

2.1 First aim

Develop a tool to map histone modifcations, nucleosome occupancy and ex-

pression level in Drosophila neurons and glia

Analysis of chromatin and gene regulation in specific cell types requires experimental

tools. As discussed in the introduction, there are several available options for isolating

and analysing chromatin and RNA from specific cell types. As I aim to map post-

translational modifications of histones as well as measure transcription, I need to use a

method that is suitable for these analyses. I chose to use Fluorescence-activated nuclei

sorting (FANS) for my experiments, as FANS is a well established method, in terms of

available literature, for isolating both chromatin and nuclear RNAs of specific cell types.

One key drawback of using FANS is that it is inefficient. A lot of input material and

time is required to isolate enough material for genome-wide analysis. Therefore, I aim

to thoroughly optimize and stream-line the genome-wide analysis of specific cell types

to generate a FANS-based protocol that is highly efficient with both time and material.

This optimization is essential in order to make the other aims of this project achievable.

29



2. AIMS OF THE PROJECT

2.2 Second aim

Determine how comparable the CAST-CHIP Pol II, TRAP and FANS

RNA-seq methods are in identifying cell-type-specific genes

With the sequencing of the nucRNA from FANS-isolated neurons and glia complete,

we will have three available datasets that measure the gene activity in neurons and glia.

These three methods: CAST-ChIP of RPB3 (Pol II), FANS-nucRNA and TRAP all

measure different steps in the gene-expression cycle: Pol II recruitment, elongation

and translation. I aim to compare these methods in terms of the genes identified, to

determine how well the gene calls overlap between the methods. Also, if there are any

differences, whether using a combination of techniques will give us a better insight into

how specific gene groups are regulated.

2.3 Third aim

Analyze the chromatin state of neuronal-enriched, glia-enriched and invari-

ant genes

Many features of chromatin states have been mapped out using large-scale datasets

from cell cultures, however these models of chromatin states have not been tested in

vivo. Whether the cell culture model of gene regulation exists within the organism is a

key question from these studies. Using neurons and glia are ideal for addressing gene

regulation in vivo as they are well characterised, so we already know much about the

function of them, and they are post-mitotic, thus removing any complicating factors

due to DNA replication. Using this system to study cell-type-specific gene regulation in

vivo we have already shown that the histone variant H2A.Z marks cell-type-invariant

genes as identified by Pol II binding(34). This observation highlights the benefits of

refining the resolution at which we study gene regulation mechanisms. In chapter 3,

I will determine the chromatin state of different sets of genes, identified as cell-type-

specific or invariant from different types of gene classification: by Pol II binidng or

nucRNA analyses. These analysis may reveal unique chromatin features that demarcate

the specific expression pattern of the gene groups. In chapter 4, I will explore the

relationship between nucleosome architecture, H2A.Z deposition and Pol II regulation.
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Chapter 3

Measuring gene expression and
chromatin states in specific cell
types

3.1 Summary

In this chapter, I demonstrate the development of a fluorescence-activated nuclei sorting

(FANS)-based method for mapping histone modifications, nucleosome positioning and

total RNA in neurons and glia. I have optimised a protocol that minimises the number

of input nuclei required for each assay, greatly improving the applicability of the tool

for other applications. I compare the gene calls identified as neuron-enriched or glia-

enriched with gene groups previously identified by the Chromatin affinity purification

of specific cell types (CAST)-ChIP Pol II binding, and Translating Ribosome Affinity

Purification (TRAP). I show that there is more overlap of gene calls that are neuron-

enriched than those that are glia-enriched. The differences in genes identified between

the three techniques reveal unique enrichments of gene functions, indicating that the

specific gene classes may be regulated at different stages of the gene-expression process.

Comparing a range of cell-type-specific tools, which measure different stages of gene

expression, is thus useful in further teasing-out the complexities of how neurons and

glia achieve their specialised functions.

3.2 Introduction

CAST-ChIP is a method that allows genome-wide profiling of chromatin-bound factors

in specific cell types. This method was used successfully for mapping Pol II binding

and the histone variant H2AZ in neurons, glia, and fatbody of the adult Drosophila
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head (34). Some of the major questions arising from the CAST-ChIP analysis were

how the Pol II recruitment to the neuronal and glial-enriched genes was regulated, and

what the activity status of those Pol II-bound genes was. To address these questions,

the chromatin state of neurons and glia would need to be measured, including assaying

histone modifications. CAST-ChIP is not a suitable tool for such analysis as it cannot

be used for assaying post-translational modifications such as histone modifications or

the phosphorylation status of RNA Polymerase II. Therefore, a technique capable of

measuring a range of chromatin features would be necessary. Isolating nuclei of specific

cell types is the simplest method for obtaining cell-type-specific chromatin. There are

currently two techniques for isolating nuclei from specific cell types, FANS and Isolation

of Nuclei Labelled in Specific Cell Types (INTACT), which are discussed in detail in the

introduction 1.3.3. Both the INTACT method (data not shown) and FANS method

were tested for this work, however, FANS was able to be established more rapidly.

Therefore, FANS-isolation was used as the method of choice for this work.

One of the major benefits of isolating nuclei from the cell type of interest, instead

of a biochemical approach such as CAST-ChIP, is that any histone mark, transcription

factor, or chromatin-binding protein can be assayed within the same genetic back-

ground. The type of chromatin feature assayed is only limited by the availability of

antibodies to that feature, so many more different types of assay are possible with

minimal adjustments to the basic nuclei isolation protocol. Thus the effects of differ-

ent genetic backgrounds, or differential expression of tagged reporter genes, is greatly

diminished for these approaches compared to biochemical approaches. In this work,

I will assay three different histone modifications, map the occupancy of nucleosomes,

and measure the RNA transcript levels within neurons and glia. These analysis will

address how neuronal and glial genes are differentially regulated.

Nucleosomes govern access to the genome. By measuring the occupancy of nucleo-

somes within the different cell types, I hope to gain a better understanding of how the

neuron and glia genes are specifically regulated. For example, differences in nucleosome

occupancy between the two cell types could indicate regions that act as enhancers in

one cell type but not the other. Determining the underlying transcription factor mo-

tifs at these nucleosome-differential regions could provide vast information about what

transcription factors could regulate specific gene sets. The occupancy of nucleosomes

across the promoter is also known to be different between specifically regulated and

constitutively expressed genes. Comparing nucleosome positioning and occupancy be-

tween neurons and glia at specific gene subsets could provide a better understanding
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3.2 Introduction

of the mechanisms governing the specialisation of gene expression in each cell type.

Measuring the histone modifications and nucRNA levels of neurons and glia will al-

low me to assess the activity state of the genes in each cell type. The histone marks

H3K27ac and H3K36me3 are two general markers for active genes. H3K27ac is also

used as a proxy for active enhancers, thus measuring the binding pattern of this modi-

fication and comparing it to the differential nucleosome regions would aid in identifying

active enhancers that are specific in each cell type. The histone modification H3K36me3

is an indicator of transcriptional elongation, however the role of this modification in

transcriptional regulation is complex. This mark is established during transcriptional

elongation, but acts as a repressive mark by recruiting a histone deacetylase com-

plex and reducing nucleosome turnover. Interestingly, this mark is absent from some

specifically regulated genes, even when those genes are active (76). Thus, the role of

H3K36me3 and how this mark, or absence of the mark, affects the gene expression

program within specific cell types is not clear. As most previous studies into the bio-

chemistry of H3K36me3 have been in yeast, and genomic studies in Drosophila have

been in cell cultures, studying how this histone modification marks genes within specific

cell types will be highly interesting.

The CAST-ChIP data revealed sets of genes with Pol II recruitment to the promoter

that was specific to one cell type. Yet, the binding of Pol II to a promoter does not

necessarily mean that the gene is transcriptionally active. The Pol II could be bound

to the gene and maintained in a “paused” state (see 1.1.1), awaiting a specific signal

before transcriptional elongation commences, such as for the hsp70 gene. Alternatively,

the Pol II could be transcribing the gene at very high levels. Thus, a complementary

method for determining the gene activity would be beneficial. An alternative method,

Translating Ribosome Affinity Purification (TRAP), has also been used in my host lab

to map mRNAs bound to ribosomes in neurons and glia (T. Schauer, LMU unpub-

lished). This method revealed many more genes enriched specifically in each cell type

compared to CAST-ChIP of Pol II. However, this method is also not a good measure

of the actual transcriptional activity of genes within neurons and glia. Those mRNAs

bound to ribosomes have been completely processed, and may have been bound to the

ribosome long after the transcription of the gene has stopped. Therefore an additional

dataset, which measures the transcript levels of genes within the nucleus, will provide a

better approximation of the actual transcription status of genes within neurons and glia.

Having the CAST-ChIP, TRAP, and nucRNA datasets provides the opportunity to

assess how comparable three state-of-the-art techniques are for measuring gene activity
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in specific cell types. All techniques measure different steps of gene regulation, so

comparing all three could give an insight into which genes are regulated at what stage

of gene expression. For example, genes that have specific Pol II recruitment but are

not identified in the RNA-seq methods could indicate genes that are regulated by Pol

II pausing, and a difference in RNA would only be seen under the right environmental

conditions. Defining the genes that are cell-type-specific in all methods, or only in a

single method could aid in discerning the different regulatory pathways that lead to

the specific expression of that gene in that cell type.

Aims

• Develop and optimize FANS-based approaches for MNase-seq, ChIP-seq, and

RNA-seq of neurons and glia.

• Identify genes specifically enriched in neurons or glia using nucRNA-seq analysis.

• Map the nucleosome occupancy in neurons and glia using MNase-seq.

• Assay histone modifications H3K27ac, H2K36me3, and H3K27me3 in neurons

and glia using ChIP-seq.

• Compare neuron-enriched or glia-enriched gene calls between three cell-type-

specific tools: nucRNA-seq, CAST-ChIP, and TRAP.

3.3 ChIP-seq, MNase-seq and nucRNA-seq using FANS

3.3.1 Generating reporter lines for isolating nuclei

The initial challenge of this project was to develop a method for analysing gene activity

and chromatin state within specific cell types of the Drosophila head. Although the

CAST-ChIP method was already developed in my host lab, this method does not enable

analysis of post-translational modifications, and requires an epitope tagged transgene

for each type of protein that is assayed. Because my aims included assaying histone

modifications, as well as comparing multiple chromatin features and RNA expression

between the cell types, I chose to develop a Fluorescence-Activated Nuclei Sorting

(FANS) protocol. A FANS method has the benefit that it provides the flexibility to

perform ChIP-seq, MNase-seq and RNA-seq analysis within the same genotype for

each cell type, and with the same isolation method. Thus, experimental variation

such as transgene expression level and efficiency of immunoprecipitation between the

experiment types was not relevant. This is because each experiment, whether ChIP-

seq, MNase-seq or nucRNA-seq, uses the exact same fly line and selection criteria for
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each cell type assayed. Because the amount of labelling does not affect the isolation

efficiency and the number of nuclei collected can be precisely counted, the experimental

errors between cell types is also minimised. For all experiments carried out in this work,

there are only three genetic backgrounds used: wild-type, elav ::H2B-GFP (for labelling

neurons with H2B-GFP), and repo::H2B-GFP (for labelling glia cells with H2B-GFP).

Elav is a transcription factor that is required for neuronal cell fate determination. The

elav promoter is commonly used to drive Gal4 expression specifically in most neurons

of the adult Drosophila brain (143). Repo is a transcription factor that regulates glial

differentiation, and maintains glial identity (144). The repo promoter is used to drive

transgene expression across all glia subtypes. All datasets generated in this work,

including datasets not used for the analysis, are listed in table 3.1. Fatbody data sets,

which are not part of the analysis presented in this thesis, were collected under the

same conditions as neuron and glia datasets, except using the take-out Gal4 driving

H2B-GFP, to specifically label the fatbody nuclei.

Table 3.1: Datasets produced in this work

Assay Cell type replicates

H3K36me3 neurons 2
glia 2
fatbody 2

H3K27ac neurons 2
glia 2

H3K27me3 neurons 2
glia 2

MNase-seq neurons 2
glia 2
fatbody 2
head 1

nucRNA-seq neurons 2
glia 2

H3K4me3 head 2

3.3.2 Isolating nuclei from Drosophila neurons and glia

To mark the neuronal and glial nuclei for FACS isolation, I chose to transgenically

express H2B-GFP (figure 3.1, A). This tagged protein results in very highly fluorescent

nuclei in the cell type it is expressed in, which is an important criteria for FANS. To ex-

press H2B-GFP in neurons, I used a fly line homozygous for both the elav ::Gal4 driver

construct and the UAS::H2B-GFP reporter gene. Gal4 expression under the control
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of the repo promoter (repo::Gal4) is slightly toxic and, while heterozygous viable, the

line is homozygous lethal, therefore making lines homozygous for both Gal4 driver and

H2B-GFP is not possible. To overcome this shortfall, I generated a fly line with H2B-

GFP directly under the control of the repo promoter (described in 6.2).To ensure that

the reporter gene expression is restricted to glia, I performed immunohistochemistry

on brains dissected from the repo::H2B-GFP line (figure 3.1, B, 6.4), staining for GFP,

elav protein, and repo protein. This shows that the H2B::GFP expression co-localises

with repo-positive nuclei, and does not co-localise with elav -positive nuclei, confirm-

ing that the expression of H2B-GFP is limited to glia. Neuronal-specific expression of

H2B-GFP was confirmed previously using immunohistochemistry to ensure H2B-GFP

was not expressed in repo-positive cells (34).

One concern is that the tagged-H2B may interfere with chromatin structure if H2B-

GFP expression is too high relative to endogenous H2B levels. To check the relative

amounts of endogenous H2B to H2B-GFP expression I performed a western blot using

α-H2B antibody (figure 3.1, C, methods 6.2.3). I compared whole head levels, as well as

the relative amounts in FANS-purified nuclei and it is clear that H2B-GFP expression is

far lower than the endogenous H2B. The H2B-GFP protein is barely visible compared

to the large amount of endogenous H2B-GFP. There is also no difference observed in

nucleosome positioning in metagene analysis between wild-type chromatin and H2B-

GFP containing chromatin, (section 3.3.4) further demonstrating that H2B-GFP does

not interfere with the chromatin structure in this system.

To isolate the specifically labeled nuclei, I used a FACS-ARIA III cell sorter (meth-

ods 6.3.3). Preparation of the nuclei for sorting was optimised to increase the efficiency,

so as to maximise the yield of specific nuclei from the input. Separating the sample

into single nuclei is highly important for obtaining optimal yield. Thus, re-suspending

the nuclei in Nuclei-Purification buffer (NPB, methods 6.6) with BSA and passing the

nuclei gently through a 22G needle, then a 25G needle, was necessary to optimally

separate the nuclei prior to sorting. The appropriate dilution and sorting speed was

established with each preparation, with a sorting speed chosen to be less than 10 000

events per second to ensure nuclei were not subject to very high pressures. I used

qualitative measures, such as the speed of re-clumping during sorting, and what pro-

portion of events are excluded from the first selection step (figure 3.2, A, gate P1). I

used three basic parameters to isolate the GFP positive population: Side scatter (SSC,

the density and granularity of the nuclei), forward scatter (FSC, size) and GFP inten-

sity (figure 3.2). SSC and FSC (gate P1) were used to remove debris and very large
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Figure 3.1: Labelling specific cell types in the Drosophila brain - A) Schematic
of transgenes used to label each cell type with H2B-GFP. For glia-specific H2B-GFP ex-
pression, a transgenic fly was generated with H2B-GFP directly under control of the repo
promoter. B) Confocal microscopy using immunohistochemistry against GFP, Elav, and
Repo, to test specificity of H2B-GFP expression in the repo::H2B-GFP line. C) Western
blot showing that the GFP-tagged form of H2B is far less abundant than the endogenous
H2B protein.
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particles (clumps of nuclei); the second gate compared two different FSC parameters,

FSC-H (height of FSC intensity) and FSC-A (area of FSC intensity), to select only

those events of single nuclei and eliminate doublets. Finally, SSC and GFP intensity

were used to select the GFP positive population of nuclei. An additional plot com-

paring GFP fluorescence with autofluorescence was used to confirm correct selection of

GFP positive nuclei.

At the beginning of each sorting session, a small sample of nuclei (∼ 2000) were

sorted and then run through the sorter a second time to measure the accuracy of the

sorting. This second sort shows the proportion of non-specific nuclei that are being

collected with the GFP positive nuclei, for instance doublets of positive and negative

nuclei that were within the size cutoff range (figure 3.2, C). If the proportion of the

positive population was less than 90 %, then the gates were adjusted, or nuclei diluted

further until the purity of the population was acceptable (over 90 % purity). After

collection, the nuclei were also checked with a fluorescence microscope to confirm the

GFP fluorescence and also to check the structure of the nuclei were still circular and

not destroyed from the sorting process.

3.3.3 Establishing genomic assays for FANS-isolated nuclei

FANS enabled me to isolate populations of neuronal and glial nuclei with high purity.

However, one major drawback of this isolation method is that it is time consuming and

inefficient. For example, around 35 % of the sample is lost from the first gate, due

to clumping nuclei and other debris, and the low proportion of glia in the whole head

population (3 %). As a consequence, one day of sorting would be needed to acquire

enough material to perform a single standard ChIP assay for neurons, and considerably

more time would be needed for analysing glia. To overcome this, I optimised all of the

assays for using a limited number of nuclei. I chose to use 1 x106 nuclei for each assay,

as this was a reasonable number of nuclei to collect, including several technical repli-

cates, during a single day of sorting of glia nuclei. Each assay (MNase-seq, RNA-seq,

and ChIP-seq) required different optimisation, which is described in the corresponding

sections of each analysis in this chapter; also in the methods (6). This optimisation

allowed me to assay many more chromatin features than would be possible following

the standard protocols for chromatin and transcription analysis.
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Figure 3.2: FACS isolation of nuclei - A) FACS-Aria (FACS-diva software) analysis of
gating. Gate P1 removes the majority of debris from the sample, gate P2 removes doublets,
and gate P3 selects for GFP-positive nuclei. B) Population statistics of sorting. There are
a far larger number of neuronal nuclei than glia nuclei in the populations: 37 % compared
to 3 % of parent population. C) Control check of sorted material showing that most GFP
positive nuclei are truely GFP positive, thus contamination of non-GFP positive nuclei is
minimal.
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3.3.4 Assaying nucleosome organisation in neurons and glia

One of the key aims of my research was to better understand how neuron-specific and

glia-specific genes are regulated. The competition between nucleosomes and effector

proteins for binding the DNA means that when and where a nucleosome is present

on the DNA has important implications on gene expression. Nucleosome-free regions

may contain transcription factor binding motifs that are involved in regulating nearby

genes. Identifying the regions that are differentially nucleosome-free between different

cell types would enable us to assess if there is differential enrichment of transcription

factor binding sites between the two cell types. The differences in transcription factor

binding sites could provide clues about which transcription factors are involved in the

different regulatory networks involved in establishing and maintaining neuronal or glial

cell fate and function.

To map the chromatin structure in neurons and glia, I performed MNase-seq anal-

ysis. I developed an MNase-seq protocol that used 1 x106 nuclei per sample (methods

6.3.6. Because of the limited material, I did not perform an H3-ChIP after MNase di-

gestion, instead opting to electrophorese the MNase-digest material and purifying the

mono-nucleosome band from the gel. The major step for optimisation was to determine

the correct amount of MNase needed to achieve around 80 % mononucleosomes (figure

3.3, A and B). Determining the ideal electrophoresis conditions to separate the MNase-

digested material was also critical (3 % agarose gel at very low voltage for 5-6 hours).

This approach ensured significant separation of the mononucleosome band from the

di-nucleosome band, greatly reducing the risk of cross contamination. Two biological

replicates of neurons and glia were made, each consisting of two pooled MNase-digestion

replicates to ensure the MNase digestion levels were as similar as possible between sam-

ples. The mono-nucleosomal DNA fragements for each sample were sequenced using

an Illumina hiseq 2000 (EMBL genecore). The neuronal and glial MNase samples were

sequenced across a total of 1.5 sequencing lanes each, making a total of approximately

500 million reads for each cell type. Very deep sequencing of the MNase samples was

necessary to identify the nucleosome-occupancy differences between the cell types with

high confidence (Pawel Bednarz, University Warsaw, data not shown). The sequencing

data was mapped to the Drosophila genome (dm3) by Pawel Bednarz using Bowtie

(145), and the data were processed and analysed using the MNase-analysis tool DAN-

POS (146).
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Figure 3.3: MNase-seq to analyse nucleosome occupancy - A) MNase titration
to achieve correct mononucleosome enrichment, visualised using agarose electrophoresis
and ethidium bromide staining. A two-fold dilution series was used to find the amount
of MNase-enzyme to achieve approximately 80 % mononucleosome release. B) MNase
digestion of Input and post-FANS samples. The red line indicates the region of the gel
that was removed for DNA purification. C) Average profile plots of all genes, using the
MNase-seq data aligned to the TSS. The read counts are higher for neurons and glia
because additional sequencing was performed and the biological replicates were merged.
The pattern between all samples is highly similar.
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Figure 3.4: Highly specific differences in nucleosome occupancy between cell
types - Genome-browser snapshots of MNase-seq data showing that single nucleosome
differences can be detected between neurons and glia. The differences in nucleosome oc-
cupancy occur in many genomic regions, and can be found near promoters, as well as
at intergenic and intragenic loci. The two biological replicates for neurons and glia are
shown, demonstrating the highly similar MNase-digestion pattern between the biological
replicates. MNase data was processed and smoothed using DANPOS 6.5
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One advantage of using FANS to isolate the nuclei is that the number of nuclei

in each sample can be precisely counted, thus the level of MNase-digestion between

samples is highly similar (figure 3.3, C, methods 6.5). Although the average profile of

the MNase-seq data across all genes is highly similar , there are many regions across

the genome that have distinctly different nucleosome occupancy between the cell types

(figure 3.4, shaded boxes). These differences can be found across all genomic regions,

not only near the promoters of genes. In many cases, there appears to be a single

nucleosome difference between the two cell types, with the neighbouring regions having

highly similar nucleosome occupancy. These differences were quantified bioinformati-

cally using DANPOS (146) by our collaborators Bartek Wilczynski and Pawel Bednarz

(University of Warsaw), who are using the cell-type-specific nucleosome-free regions to

build a predictive model of specific gene activity neurons and glia. This modelling will

be the basis for the PhD thesis of Pawel Bednardz, and so will not be discussed further

here.

3.3.5 Assaying histone modifications in neurons and glia

The major reason for using a FANS-based approach in these analyses was to be able

to assess the post-translational modifications of histones. Assessing the signature of

histone marks across different types of genes may provide information about how

those genes are regulated. I assayed two “active” histone modifications, H3K27ac

and H3K36me3, and the polycomb-repressed mark H3K27me3 (figure 3.5, A) to assess

the chromatin state of genes between neurons and glia. Details of the known func-

tions of these histone modifications are described in the introduction (1.1.3). Before

performing the ChIP-seq analysis with antibodies against the histone marks, I gener-

ated a general ChIP-seq protocol optimised for 1 x 106 nuclei (methods 6.3.4) using

an antibody against the Pol II subunit RPB3 (T.Schauer, LMU, unpublished). The

RPB3-antibody was ideal for establishing the FANS-ChIP protcol as the optimal con-

ditions for this antibody using the standard ChIP protocol, as well as good positive

and negative controls, were known. The major contributing factor to the success of this

protocol was altering the sonication, specifically changing from a Branson sonifier 250

to the covaris S220 sonicator. By performing a time-course sonication with the covaris

sonicator, using aliquots of 1 x 106 nuclei, I was able to determine the best sonication

conditions for the ChIP analysis was six minutes of sonication time (figure 3.5, B).

The immunoprecipitation conditions were then optimised separately for each individ-

ual histone mark antibody , by adjusting bead and antibody levels (methods 6.3.5).

The conditions were considered optimal if (1) the ratio of positive control to negative
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control was greater than 5-fold (methods 6.3.1), and (2) the yield of DNA after purifi-

cation was high enough for sequencing from a maximum of four pooled technical ChIP

replicates. Firstly this ensures that the signal to noise background in the sequencing is

optimal. Secondly, this was to reduce the amount of nuclear sorting for each biological

replicate as much as possible, to ideally allow completion in a single sorting session.

In some cases of glia sorting, one sorting day was not sufficient to collect enough nu-

clei, so some ChIPs were performed using nuclei that had been sorted on different days.

After optimising the ChIP protocol for each antibody, I performed ChIP-seq analysis

of all three histone marks on FANS-isolated neuron and glia nuclei (methods 6.3.5).

Each ChIP-seq was performed with two biological replicates, and the input chromatin

was sequenced for all H3K36me3 replicates, as a control for back ground signal. Inputs

were not sequenced from the other ChIP-seq samples as this is assumed to be identical

in all samples. The EMBL-genecore facility performed sequencing library preparations

and sequencing (Illumina hiseq 2000). Sequencing data was mapped to the Drosophila

genome (dm3), and peaks were called using MACS by Pawel Bednarz. A method for

identifying differences between ChIP-seq signals between cell types, known as Diff-reps,

was also tested, however the output of those analyses has not been optimized. Section

C of figure 3.5 shows the average profile plots of each biological replicate for the ChIP-

seq data (methods 6.5). Each graph displays the average coverage of all annotated

genes (ensembl) across the Drosophila genome in the two biological replicates of the

two cell types. All replicates for each histone modification looks similar, with the

background levels being slightly different between samples (look at flanking regions

before TSS and after TES, figure 3.5, C). The average shape of each plot reflects the

expected pattern of these histone marks according to the current models. For the active

marks, H3K27ac was more highly enriched at the 5′ ends of genes and H3K36me3 was

more enriched at the 3′ ends of genes. These are the expected patterns since H3K27ac

marks active genes (by CBP/P-300, see 1.1.3), and H3K36me3 is placed by Set2 which

interacts with the elongating form of the polymerase and thus is restricted to the 3′

end of genes. The H3K27ac is depleted from the 3′ end of the gene because H3K36me3

mediates recruitment of the histone deacteylase RPD3, which deacetylates histones,

including H3K27ac (see 1.1.3). Thus H3K27ac is restricted to the 5′ ends of genes,

where RPD3 does not de-actylate the histones. The repressive mark H3K27me3 shows

an even distribution across the gene body, and forms large domains that can be observed

by viewing the data on the genome browser (data not shown).
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Figure 3.5: ChIP-seq of Histone H3 modifications - A) Schematic of histone H3
N-terminal tail. Histone modifications assayed in this work are H3K27ac, H3K27me3, and
H3K36me3. The sites for these modifications are highlighted in red. B) A time course
of covaris sonication on 1 x 106 nuclei (4, 10, 20, and 40 minutes sonication time) was
used to assess the optimal conditions for generating 200 bp chromatin fragments. C)
Average profile plots of the H3K27ac, H3K36me3, and H3K27me3 data in neurons and
glia, across all genes. The pattern and levels of ChIP-seq enrichment are highly similar
between samples.
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3.3.6 Nuclear RNA-seq to identify cell-type-specific genes

Before comparing the chromatin states between neurons and glia, I first needed to

identify genes that are expressed differentially in each cell type. This would enable me

to split genes into different classifications, such as neuron-enriched and glia-enriched,

and observe what happens at these genes at the chromatin level. There are already

two datasets available from our research group which can be used to identify neuron-

and glia-specific genes. These datasets were generated by a previous PhD student in

the group, Tamas Schauer. The first dataset contains Pol II binding sites in neurons

and glia (34), obtained by a method termed CAST-ChIP described in the introduction

(section 1.3.4). The second dataset (T. Schauer, LMU, unpublished) was generated

using TRAP (section 1.3.4) and provides information about ribosome-bound mRNAs

(polyA-selected) in neurons and glia.

Each of these methods can aid in identifying specific gene activity between the cell

type, however, they do not measure transcriptional activity directly. The binding of

RNA polymerase II at gene promoters does not directly imply gene expression, and can-

not be used to directly determine the amount of gene expression. The RNA polymerase

may be recruited there and stalled, generating no transcript at all. TRAP analysis is

at the other extreme, measuring only those mRNAs that are bound to the ribosome.

Theoretically, TRAP should provide a closer estimation of what the proteome of each

cell type may consist of, but for measuring gene expression in the nucleus it may be

less adequate. Indeed, some genes identified by TRAP could be highly stable mRNAs

that are no longer transcribed at all. In this case, the chromatin state of these genes

would probably not give any insights into how those genes are specifically regulated,

since this would likely be a post-transcriptional process.

To obtain an overview of currently transcribed genes, I aimed to generate a dataset

that would more directly reflect the actual transcriptional rate of genes within neurons

and glia. I achieved this by isolating and sequencing total RNA from FANS-isolated

neuron and glia nuclei (methods 6.3.8. This nuclear-RNA (nucRNA) dataset would also

be complementary to the CAST-ChIP and TRAP datasets in that it measures an in-

termediate step between Pol II binding and translation by the ribosome. The nucRNA

data should contain both fully processed and non-processed mRNAs and non-coding

RNAs that are greater than 75 bp. I used a library preparation protocol (Nugen,

methods 6.3.8) that maintained the directionality of each RNA fragment sequenced,

meaning that transcription of non-coding RNAs that occur in the antisense direction
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of coding RNAs can be distinguished from sense transcription. Each sample was pro-

duced in duplicate, with a corresponding “input” sample. The samples were sequenced

on an Illumina hiseq 2000 (EMBL genecore), on a single lane for each sample. The

input sample was produced from the same nuclei preparation for each specific dataset.

However, the nuclei were run through the FACS machine but the final FACS gate for

selecting GFP-positive nuclei was not used. Thus, the input nuclei were not selected

for fluorescence but were treated in the same conditions as the specific nuclei, and rep-

resent the “whole head” sample for each biological replicate. Mapping of each nucRNA

sample to the Drosophila genome (dm3) and the DESeq2 analysis to identify enriched

genes, was performed by Pawel Bednardz (University of Warsaw).

The mapped nucRNA-seq data was assessed visually using the genome browser to

obtain an overview of the quality of the data, and if gene that are expected to be

enriched in each dataset have the expected expression pattern. An example of two

well characterised genes is shown in figure 3.6. Two transcription factors are generated

from the pointed (pnt) that are soley expressed in glia cells, and are important for

establishing glial identity (147). As expected, pnt had higher expression in the glial

nucRNA datasets than the neuron datasets (figure 3.6, top panel). Neuronal Synap-

tobrevin (n-syb) is a neuron-specific gene ivolved in vesicle fusion at synapses. The

nucRNA analysis reveals that n-syb has enriched expression in the neuronal data set

and depleted expression from the glial dataset, as expected (figure 3.6, bottom panel).

From the read counts I generated a cluster plot using the DESeq2 package to deter-

mine the variation between samples (figure 3.7, A). This plot shows that the neuron-

specific samples cluster together with the neuron A input sample, and that the re-

maining samples cluster together. As another test to see if the biological replicates

are similar to each other, I generated a principle component plot (figure 3.7, B). The

principal component plot shows that the neuron-specific replicates and the glia-specific

replicates form discrete clusters. The inputs would be expected to cluster together,

however as can be observed in figure 3.7, A, the neuron-A-input sample clusters more

closely with the neuron-specific samples. The other input samples cluster closely to

each other. As the neuron-A-input sample is more similar to the neuron-specific sam-

ples than to the other input samples, I would suggest that this input sample had some

selection for GFP fluorescence during the nuclei purification. The purpose of the in-

puts was to determine if there are any major difference in gene expression between the

two transgenic fly lines used in this study. As the neuron-A-input is not suitable for
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Figure 3.6: Well characterised genes show the expected expression patterns in
the nucRNA data - Genome-browser snapshots (IGV) were taken of the nucRNA and
CAST-ChIP Pol II datasets at two genes that have been well characterised as specific to
each cell type. Pointed (pnt) is a known glia-specific gene, neuronal-synaptobrevin (n-syb)
is a well known neuron-specific gene.
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Figure 3.7: DEseq analysis of neuronal and glial nucRNA - A) Clustered heatmap
showing the similarity between all nucRNA samples. B) Principle component analysis
showing that the cell-type-specific nucRNA measurements are more similar between repli-
cates than between cell types. Neuron input A is more similar to the Neuron-specific
samples, indicating a fault with the isolation process. C) Scatterplot of RPKMs compar-
ing the neuronal dataset with the glial dataset. Those genes identified as cell-type-specific
from the DESeq analysis are indicated in red (neuron-enriched) and blue (glia-enriched),
numbers of genes shown in D. Genes were identified as enriched for each cell type based
on the p-value cutoff of less than 0.01 in the DESeq analysis.
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this purpose, I did not use these input data and continue the analysis of the cell-type-

specific data. To compare the differences in nucRNA transcription between the two

transgenic lines, I aim to isolate nuclei from these lines and purify nucRNA without

FACS isolation, to eliminate any inadvertent selection of fluorescent nuclei (not shown).

The genes that have differential expression between the two cell types were selected

from the DESeq2 output for having an adjusted p-value of 0.01 (Wald-test implemented

in the DESeq2 package). These are the standard cutoff criteria, and the same criteria

that was used for the analysis of the TRAP dataset, thus I chose the same parameters

for my nucRNA analysis. The analysis was performed between the neuron-specific

and glia-specific datasets, and the input datasets were not taken into consideration.

The 0.01 p-value cutoff resulted in 2271 genes being called neuron specific, and 1744

genes to be glia specific (figure 3.7C and D). To check the overall level of expression of

these two gene classes, I plotted the RPKM (reads per kb per million mapped reads,

produced by Pawel Bednarz) of each dataset as a boxplot (figure 3.8). This shows

the distribution of RPKM between the two cell types, across the neuron-specific and

glia-specific genes. Note that the y-axis is different for each plot. As can be seen with

these plots, the neuron-specific genes generally have a higher expression level than the

glia-specific genes (mean RPKM: 6.55 for neurons and 5.45 for glia).
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Figure 3.8: Normalised expression at cell-type-specific genes - boxplots of RPKMs
(log2) at neuron- and glia-enriched genes (calculated using DESeq2) Neuron-enriched genes
have generally higher expression level than the glia-enriched genes. A and B indicate the
biological replicates for the nucRNA-sequencing for each cell type.
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3.4 Assessing the nucRNA gene calls

Before analysing the chromatin state of neuronal and glial-specific genes, I first needed

to assess the genes identified as cell-type-specific from the nucRNA data. I assessed the

gene sets computationally, using publicly available resources to determine if the genes

identified as neuronal-enriched or glia-enriched were consistent with what is known

about the gene functions (gene ontology, GO) and expression pattern (FlyAtlas).

3.4.1 Characteristics of the cell-type-specific genes

To assess if the expected types of genes were enriched from DESeq2 analysis of the two

cell types, I used the online Drosophila genomic database FlyMine

(see http://www.flymine.org/). FlyMine performs GO-term enrichment analysis on

the gene lists, and the results of these analyses can be seen in tables 3.2 and 3.3. The

neuron-specific gene set contained many GO terms that are indeed expected for neu-

rons. Signalling and cell communication are the most highly enriched, and many other

GO terms such as neurogenesis, axon-guidance, behaviour, neurotransmitter secretion,

and cognition are very significantly enriched in the neuronal gene set. Many more

significant GO-terms were found for the neuronal genes than shown in table 3.2, but

the majority of overlapping terms were removed and I selected those terms with the

highest p-value that could be displayed in a single table. The glia-specific gene set has

far less enriched GO terms than the neuronal specific gene set (table 3.3). This may be

due in part to less being known about glia cell function than neurons, and thus there

are less GO terms that would match the glia gene-set significantly.

An alternative analysis that is also computed through FlyMine is an overview of

how each gene set is represented in the FlyAtlas database (148). The FlyAtlas database

was generated by dissecting tissues from adult flies or larvae, isolating the mRNA and

measuring gene expression levels using a microarray that covers the majority of genes

in the Drosophila genome. In this dataset, all genes were identified as having higher

expression (up) or lower expression (down) relative to the average of the whole fly.

The neuronal-enriched genes are in agreement with what is observed in the FlyAtlas

(figure 3.9, neuron-enriched). The neuronal-enriched genes are found up-regulated in

the FlyAtlas tissues that are composed of neuronal cell types; the head, brain, eye,

larval CNS, and thoracoabdominal ganglion. The glia-enriched genes are found to be

down-regulated in most tissues, with the exception of testis (figure 3.9, glia-enriched).

The lack of up-regulation of glia genes in the head and brain makes sense in that these

tissues are largely made up of neurons, with glia contributing to only a few percent of
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Table 3.2: Neuron-enriched genes GO analysis

Biological process p-value

Cell communication 2.40 x 10−47

Biological regulation 2.45 x 10−47

Signalling 2.97 x 10−47

Response to stimulus 5.92 x 10−44

Neuron differentiation 5.94 x 10−32

Neuron development 9.36 x 10−30

Synaptic transmission 8.47 x 10−27

Nervous system development 1.88 x 10−20

Locomotion 2.29 x 10−20

Axonogenesis 2.47 x 10−19

Localisation 9.54 x 10−19

Taxis 2.52 x 10−18

Mitotic spindle elongation 2.33 x 10−18

Intracellular signal transduction 2.86 x 10−17

Synapse organisation 2.37 x 10−16

Single-organism behaviour 3.56 x 10−16

Behaviour 3.18 x 10−15

Neurogenesis 9.71 x 10−15

Axon guidance 2.60 x 10−14

Photoreceptor cell development 4.63 x 10−14

Response to chemical 5.42 x 10−14

Chemotaxis 5.47 x 10−14

Cognition 6.01 x 10−14

Neuron projection guidance 7.60 x 10−14

Transport 1.37 x 10−13

Cytoskeleton organisation 1.47 x 10−13

Synapse assembly 2.42 x 10−13

Growth 2.28 x 10−12

Regulation of neurotransmitter levels 2.39 x 10−12

Eye development 1.15 x 10−11

Neurotransmitter secretion 7.78 x 10−11

Neuron recognition 1.87 x 10−10

Phosphorus metabolic process 8.23 x 10−10

Memory 3.95 x 10−09

Vesicle localisation 6.16 x 10−09

Secretion 2.04 x 10−08

Metamorphosis 9.05 x 10−08

Cell adhesion 1.28 x 10−07

Learning 1.71 x 10−07

Circadian rhythm 1.82 x 10−07
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Table 3.3: Glial-enriched genes GO analysis

Biological process p-value

Proteolysis 3.70 x 10−09

Detection of chemical stimulus 1.32 x 10−08

Transmembrane transport 7.51 x 10−08

Sensory perception 1.81 x 10−06

Chitin metabolic process 2.59 x 10−05

Glucosamine-containing compound metabolic process 1.49 x 10−04

Amino sugar metabolic process 1.83 x 10−04

Aminoglycan metabolic process 2.36 x 10−04

Sensory perception of taste 3.75 x 10−03

Body morphogenesis 5.62 x 10−03

Chitin-based cuticle development 1.23 x 10−02

Neurological system process 3.42 x 10−02

the cell numbers (figure 3.2, B: Repo::H2B-GFP). Why glia-enriched genes are enriched

in the testis is unclear. One example from mouse found a homeo-box gene Gtx that is

expressed in glia and testis (149), which would regulate many downstream target genes

that would also be the same. Because glia are such a minority cell population in the

Drosophila brain, very little is known about what genes are expressed in them. This

exemplifies how the cell-type-specific analysis performed in this research can lead to a

better understanding glia cell biology.

3.4.2 Comparing tools for identifying cell-type-specific genes

The nucRNA dataset for neurons and glia is distinct, yet complementary to the CAST-

ChIP Pol II binding and TRAP-analysis obtained previously in the lab. All three of

these tools measure gene activity in neurons and glia, using the same cell-type-specific

promoters (elav or repo) to label the cell type of interest. Therefore, it would be

expected that many of the genes identified as cell-type-specific by one method would

also be identified in the other methods. Genes that are identified by only a single

method are also expected, since each method measures a distinct step in the gene

expression process and genes may be regulated at different points of gene expression. I

wanted to determine how well the three methods for cell-type-specific gene identification

agreed with each other. Because the data types are not easily comparable (i.e. ChIP-

seq versus RNA-seq), I instead focused on comparing those genes that were called as

specific within each method, then compared the gene lists to each other.
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Figure 3.9: FlyAtlas analysis of neuron- and glia-enriched genes - FlyAtlas-shows
that the neuron-enriched genes are enriched for those known to be expressed in the head,
brain and CNS. The glia-enriched genes are generally not over-expressed in any tissue, with
the exception of the testis. TA-ganglion=Thoraco-abdominal ganglion
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3.4.3 Different cell-type-specific techniques call different gene sets

To determine how different these techniques are in terms of the genes that were called

cell-type-specific, I overlapped the gene sets using a weighted venn package, Vennerable,

in R (figure 3.10). There is surprisingly little overlap between the groups, particularly

for the glia-specific genes (figure 3.10), where only 60 genes intersect between the nu-

cRNA and CAST-ChIP gene lists. There is more overlap between the neuronal gene

sets, with 117 genes intersecting between the nucRNA and CAST-ChIP gene calls.

There is much more overlap between the TRAP and nucRNA gene sets for each cell

type, which may be because both methods measure RNA and are more experimentally

comparable. I also plotted the gene expression level in the nucRNA of those genes

identified as cell-type-specific in the CAST-CHIP or TRAP analysis, with a control

comparison to the nucRNA gene lists (figure 3.11). Since one possibility for the lack of

overlap between the nucRNA and Pol II binding is if the gene expression is very low

at the Pol II-identified genes, then the genes would not be called as statistically signif-

icant between the cell types. This appears not to be the case, as the level of nucRNA

expression at the CAST-ChIP and TRAP genes is as high as the average level of the

nucRNA-identified genes (figure 3.11, A).
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Figure 3.10: Cell-type-specific genes defined by nucRNA are not reflected by
Pol II binding or TRAP - Weighted Venn diagrams showing the overlap of cell-type-
specific genes called in each method. There is more overlap between the three cell-type-
specific methods for the neuron-enriched genes than the glia-enriched genes.
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When looking at the scatterplots of the CAST-ChIP and TRAP genes at the nu-

cRNA expression levels (figure,3.11,B and C), it is clear that these genes are in the

central region of the nucRNAs expression range. It can also be observed from the scat-

terplots that some of the genes that are specific for one cell type in the CAST-ChIP

or TRAP analysis actually have higher nucRNA expression in the other cell type. A

comparison of the level of Pol II binding at the transcription start site (TSS) and the

nucRNA RPKM indicates that there is a positive correlation between the level of Pol

II binding and expression (appendix A.1). Thus I conclude that it is not a complete

disagreement within the total data that is contributing to the differences in gene calls,

but likely the subtle differences between the methods in how genes are called as cell-

type-enriched that is contributing to the major differences.

There are several technical reasons why the genes called with each technique are so

different. First, there are vast differences in the dynamic range between ChIP-seq data

and RNA-seq data. The ChIP-seq data typically has a range of 0–1000 reads, whereas

RNA-seq can have a range of 0–10 000 reads, or more. Background binding for ChIP-

seq experiments also means that peaks need to reach coverage above a threshold before

they are considered as true peaks, which also reduces the dynamic range. First a region

needs to be identified as a peak, and then the level of reads across this region needs to

be significantly different between the cell types. Therefore peaks that have low levels

of transcription may fall below detectable levels in the ChIP-seq analysis, but can be

measurable in the RNA-seq analysis.

A biological reason for the disparity between gene groups is that these three tech-

niques measure different stages of gene expression. The CAST-ChIP method measures

the binding of Pol II, but cannot determine whether the bound Pol II is actively tran-

scribing or not. The nucRNA measures processed and un-processed transcripts that

were within the nucleus at the time of isolation. NucRNA analysis therefore provides

better information about what is transcribed, yet lacks information about the level

of mature mRNAs produced from each gene. TRAP measures the abundance of mR-

NAs at the final stage of gene expression. Some mRNAs identified in TRAP may be

long-lived, and transcription no longer occurring. Some genes may also have the same

transcription level in all tissue-types, but the stability of the mRNA is different between

the cell types. This would lead to a gene being identified as specific in TRAP, but not in

the nucRNA. Each step of regulation could differ in one cell type compared to another

cell type. The challenge will be to tease apart what is true biological regulation from

the noise and error each technique introduces.
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Figure 3.11: Comparison of different cell-type-specific gene calls - Comparing the
level of expression in the nucRNA dataset in the three cell-type-specific gene classifications.
A) Boxplots showing the RPKMs of the nucRNA datasets of those genes identified as cell-
type-specific by either nucRNA, Pol II binding, or TRAP analysis. B) Scatterplots showing
the nucRNA expression levels of cell-type-specific genes identified by either CAST-ChIP
Pol II binding, or TRAP. The genes identified as cell-type-specific for CAST-ChIP-Pol II
and TRAP gene calls are highlighted in red for neuron-enriched and blue for glia-enriched,
gene calls identified as cell-type-specific from the nucRNA data analysis are highlighted in
grey.
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3.4.4 Characteristics of genes identified from a single method

Do the genes that are identified as neuronal-enriched or glia-enriched in only one method

have specific characteristics? For instance, if the genes identified as cell-type-specific

in the TRAP analysis only are indeed regulated at the translational level, then a spe-

cific type of gene may be regulated in this way. Thus by comparing and contrasting

the three cell-type-specific techniques, which type of gene is regulated at what level of

gene expression may be identified. Using the statistical program R, I generated lists

of genes corresponding to the non-overlapping regions of the Venn digram in figure

3.10. I then entered these gene lists into the Flymine database, to identify enriched

GO-terms for each gene set. I manually refined each GO-analysis to remove redundant

and non-sensical GO-terms, for example both signalling and single organism signalling

were present in the nucRNA-only neuronal GO analysis but I selected only signalling.

The results of the refined GO analysis are presented in tables 3.4 and 3.5 for neuron-

enriched genes, and table 3.6 for glia-enriched genes.

Comparing the results for the Neuronal-enriched genes hows there is a clear dif-

ference in the enriched GO-terms between the three methods. Some GO-terms are

shared between the genes called by two methods, such as signal transduction found in

nucRNA-only and Pol II-only or G-protein coupled receptor signalling pathway between

TRAP and CAST-ChIP. However, many of the GO-terms are unique to each method.

GO-terms for behaviour, learning, memory, and cognition are uniquely enriched in the

nucRNA-only gene set (table 3.4). GO-terms enriched in generating neurons and their

connections, e.g. neurogenesis, axonogenesis, synapse assembly and axon guidance, are

uniquely enriched in the nucRNA-only gene set. Cell communication and signalling

are the main enrichment for CAST-ChIP (Pol II)-only genes. There is an unexpected

enrichment in the TRAP-only gene set for cilium assembly and organisation. TRAP-

only genes are also enriched for functions in transcriptional regulation, although the

p-value for these is much lower. Within the transcriptional-regulation GO term, the

most common protein domain is homeobox domain (43 % of cases); the next most

commonly enriched protein domain is zinc-finger (13 % of cases).
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Table 3.4: GO analysis of nucRNA-only neuron-enriched genes

Biological process p-value

Signalling 7.65 x 10−38

Response to stimulus 3.38 x 10−36

Synaptic transmission 4.17 x 10−25

Neuron differentiation 9.02 x 10−25

Generation of neurons 5.61 x 10−24

Localisation 3.47 x 10−20

Spindle elongation 5.95 x 10−17

Locomotion 5.55 x 10−16

Transport 1.09 x 10−15

Cytoskeleton organisation 1.29 x 10−15

Synapse organisation 2.59 x 10−15

Axonogenesis 5.99 x 10−15

Growth 5.51 x 10−14

Taxis 9.13 x 10−13

Behaviour 9.63 x 10−13

Neurogenesis 4.81 x 10−12

Neurotransmitter secretion 6.25 x 10−12

Synapse assembly 8.16 x 10−12

Axon guidance 3.78 x 10−11

Metamorphosis 5.15 x 10−11

Cell differentiation 3.49 x 10−09

Regulation of synapse assembly 5.21 x 10−09

Neurotransmitter transport 1.04 x 10−08

Learning or memory 4.67 x 10−08

Cognition 4.67 x 10−08

Secretion 4.92 x 10−08

Phosphorylation 7.59 x 10−08

Endocytosis 3.26 x 10−07

Spindle organisation 1.17 x 10−06

Memory 1.62 x 10−06

Centrosome duplication 2.42 x 10−06

Long-term memory 1.66 x 10−06

Mitotic cell cycle 2.39 x 10−05

Cell adhesion 3.26 x 10−05

Regulation of gene expression 4.81 x 10−05
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Table 3.5: GO analysis of neuron-enriched Pol II only and TRAP only genes

CAST-ChIP-only neuron-enriched genes
Biological process p-value

G-protein-coupled receptor signalling pathway 1.28x 10−16

Cell communication 1.20 x 10−12

Neuropeptide signalling pathway 4.23 x 10−08

Signal transduction 1.08x 10−07

Synaptic transmission 3.18 x 10−05

Neurotransmitter transport 1.6 x 10−02

TRAP-only neuron-enriched genes
Biological process p-value

Cilium assembly 6.27 x 10−12

Cilium organisation 9.27 x 10−12

Sensory perception of taste 2.77 x 10−10

Neuropeptide signalling pathway 2.02 x 10−09

G-protein-coupled receptor signalling pathway 2.93 x 10−06

Detection of stimulus 0.011
Regulation of transcription, DNA-templated 0.015
Regulation of RNA biosynthetic process 0.015
Transcription, DNA-templated 0.030
RNA biosynthetic process 0.033
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The GO-analysis comparisons for the glia-enriched genes are shown in table 3.6.

As with the neuronal-enriched genes, the GO-terms are unique for each method class.

Those genes identified only by the nucRNA analysis are enriched for functions in pro-

teolysis and sensing perception (chemical stimulus or taste). In contrast to the neuron-

enriched genes, where regulation of transcription is enriched in the TRAP-only class,

this GO term is enriched at the Pol II only class. Genes involved in metamorphosis are

also significantly enriched for the Pol II-only gene class. Those genes in the TRAP-only

class are enriched for metabolic functions, and female mating behaviour and receptivity.

Table 3.6: GO analysis of glia-enriched genes identified by a single method

nucRNA-only glia-enriched genes
Biological process p-value

Proteolysis 3.37x 10−11

Sensory perception of chemical stimulus 2.24 x 10−09

Detection of stimulus 2.90 x 10−06

Sensory perception of taste 2.60 x 10−04

Body morphogenesis 0.013
Microtubule-based movement 0.044

CAST-ChIP-only glia-enriched genes
Biological process p-value

Post-embryonic development 2.50 x 10−05

Metamorphosis 2.68 x 10−04

Negative regulation of transcription from RNA polymerase II promoter 2.23 x 10−03

Regulation of transcription from RNA polymerase II promoter 3.61 x 10−03

Small molecule metabolic process 8.02 x 10−03

TRAP-only glia-enriched genes
Biological process p-value

Glucosamine-containing compound metabolic process 2.11 x 10−09

Chitin metabolic process 1.31 x 10−08

Cuticle development 2.13 x 10−08

Septate junction assembly 6.93 x 10−02

Regulation of female receptivity 6.93 x 10−02

Toll signalling pathway 0.022
Negative regulation of endopeptidase activity 0.047
Female mating behaviour 0.048
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3.4.5 Characteristics of genes identified with all methods

The genes identified by all three methods are likely the most extreme examples of cell-

type-specific gene expression; they have the most robust differences in transcript and

Pol II levels (figure 3.12. These are the genes which would fit into the expected model,

of differential Pol II recruitment leading to differential mRNA expression, and finally

to differential protein levels in the two cell types. However, there are very few of these

genes, with only 42 neuronal and 52 glial genes (figure 3.10). As expected, these genes

are highly enriched for expression in head and nervous-system tissues in the FlyAtlas

datasets (not shown). The neuron-enriched genes have no significant GO enrichment,

likely due to the low number of genes, however they have significant enrichment of the

immunoglobulin-like fold protein domain (p-value 1.8 x 10−08). This protein domain

is found in genes such as the beaten-path family of cell-adhesion molecules, which are

involved in axon guidance (150). The glia-enriched genes are significantly enriched for

two GO-terms: localisation and transmembrane transport (p-values 7.95 x 10−07 and

8.0 x 10−06, respectively).
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Figure 3.12: Genes called in all three methods - Scatterplot showing the expression
level in the nucRNA dataset of those genes identified as specific in all methods.Those genes
identified in all methods are not necessarily those with the highest expression, or largest
difference in expression.
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3.5 Discussion and future directions

This chapter highlights the challenges that come from analysing the chromatin state

and gene expression in specific cell types. It is necessary to push the limits of the

current methods for assaying chromatin structure and gene expression, so that we can

reach an ever finer resolution. Here, I have established methods for RNA-seq, MNase-

seq, and ChIP-seq from a small number of nuclei that made it possible to assay small

populations of cells within a complex organism. While the limits of these techniques

have by no means been reached, the advantage of my methods is that no additional am-

plification processes are required, apart from the usual sequencing library preparation.

However, many amplification methods are being developed and once it is established

that they introduce no bias to certain DNA/RNA signals, then the size of the cell

population being studied may become extremely small. It may be possible to assay a

single neuron per brain hemisphere.

The finding that there are loci with single nucleosome differences between the neu-

rons and glia is striking (section 3.3.4). The depth of sequencing reads (approximately

500 million reads per sample) has no doubt contributed to observing such a phe-

nomenon. Whether these single nucleosome differences are true or some artefact of

the MNase-seq assay is yet to be established. Some alternative methods are possi-

ble: Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE) (151) and the

commonly used DNAse-I foot-printing assay (152). These two methods are used to

identify open chromatin regions, which is the opposite of the MNase-protection assay,

and would thus be a good complement to the MNase-seq data. Indeed I have also

established the FAIRE-seq assay in the lab, and it is now possible to perform this as-

say on FANS-isolated nuclei. A more recent technology, named ATAC-seq (assay for

transposase-accessable chromatin sequencing) (153), is also a good alternative method

to develop and would require far less starting material, thus would be applicable to

smaller cell populations. Once it has been established that these nucleosome-free re-

gions are real, then dertermining the functional relevance of such regions would be

highly interesting. Identifying underlying transcription factor motifs would be the first

step. However, these regions could have many different functions, so separating them

into distinct regions such as within intron-exon boundaries, or within the first intron,

would be useful in determining the functional role of these regions.
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The direct comparison of different cell-type-specific methods is extremely difficult.

There are different efficiencies of enrichment, and multiple variables for each different

method, such that even comparison between two cell types is not without difficulty.

Thus, many further experiments are required before we can conclude from these com-

parisons that the methods indeed identify gene sets that are regulated at specific stages

of gene expression. The conclusions drawn from these analyses underline the impor-

tance of keeping the shortcomings of an approach in mind when interpreting the data.

Although there may be some biological significance to the findings here, this only aids

in developing directed hypotheses, and more directed experimental work is needed to

follow up and test these findings.

A major technical reason why the different methods have such disparate findings

is the method of isolation for each technique. Both CAST-ChIP and TRAP use im-

munoprecipitation to enrich for the cell-type-specific material, whereas the nucRNA

dataset comes from FANS-isolated nuclei. Immunoprecipitation can result in higher

background noise by non-specific antibody binding and non-specific binding to the

beads. This reduces the dynamic range of the technique and could hide real differences

in tissue-specific expression if that expression is normally low.

The nucRNA dataset may suffer from different types of background, firstly genomic

DNA contamination, and secondly non-specific RNAs from lysed cells binding to the

outer membrane of the nuclei. Although the RNA isolated from nuclei was treated

with DNAse I (methods 6.3.8), there is still the possibility that some of the reads in

these samples are derived from DNA and not RNA transcripts. However, the extent of

any contamination can be seen by mapping the RNA reads to the genome, without any

annotation guidance. If there is genomic DNA contamination, then there will be a low

level of reads evenly spread across the genome. An example of this type of contamina-

tion can be seen for one sample of the nucRNA (appendix A.2), where the glia-specific

samples have a very slight coverage over the entire genome, indicating that there is

genomic DNA contamination. However, the level of contamination is extremely low,

and would contribute very little to the reads compared to the RNA.

Testing the kinetics of the differences in Pol II recruitment, elongation, or trans-

lational control would require more quantitative approaches to measure the gene-

expression pattern at each stage. For example, using methods for measuring transcrip-

tional kinetics, such as a pulse-chase experiment with radioactive nucleotides, would
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tease out the differences of expression at the level of elongation. These types of meth-

ods could be used not only to identify nascent transcription, but also as a measure of

the lifetime of mRNAs. Such experiments would be useful in determining whether the

results from comparisons between Pol II binding, nucRNA, and TRAP make biological

sense. Testing for kinetic differences in Pol II recruitment will be a difficult challenge,

as ChIP-seq has far less dynamic range and is less quantitative than the RNA-seq

techniques. Using an alternative method such as NET-seq (154), which uses the very

last incorporated nucleotide as a proxy for where Pol II was bound, could be a good,

quantitative alternative to ChIP-seq of Pol II.

One important point in these analyses is that the CAST-ChIP dataset was exten-

sively validated experimentally. The genes identified as neuron- and glia-enriched were

validated using enhancer-TRAP lines where the insertion site was near the identified

cell-type-specific Pol II peak. Using these lines to drive H2B-GFP followed by immuno-

histochemistry of dissected brains, confirmed that the CAST-ChIP analysis identified

genes with the correct cell-type-specificity. The TRAP and nucRNA datasets have not

been validated experimentally in this way so far. Experimental validation of the cell-

type-specific findings will be a necessary step, to ensure that the genomic data have

not produced artefacts. Immunohistochemistry, or RNA FISH on dissected Drosophila

brains would be the ideal method for testing cell-type-specific expression. RNA-FISH

against target genes found only in the TRAP dataset would also be extremely inter-

esting to see if there is different sub-cellular localisation of ribosome-bound RNAs in

the neurons, for example. ChIP-qPCR, and RT-qPCR of several target genes would

also be useful for assessing if the sequencing data reveals the true levels, and is not

an amplification artefact. Using an alternative nuclei isolation method, such as IN-

TACT, for both Pol II ChIP-seq and RNA seq would be a good way to determine how

much the methodology affects the genes identified. For example, does Pol II ChIP

against endogenous Pol II from isolated nuclei show the same binding patterns as the

CAST-CHIP? This experimental validation will be a necessary next step to progress

this analysis towards a manuscript that would be highly informative and useful for any

researcher performing cell-type-specific genomics experiments. However, the compu-

tational analysis performed thus far has revealed highly interesting differences in how

different gene groups may be regulated differentially to achieve the required cell-type-

specificity.
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Chapter 4

Mechanisms of cell-type-specific
gene regulation in the Drosophila
head

4.1 Summary

In this chapter, I describe two major mechanisms that govern cell-type-specific gene

expression. One mechanism is regulated through the specific recruitment of RNA poly-

merase (Pol II) to the gene promoters, and the other mechanism is hypothesised to be

regulated by cell-type-specific modulation of transcriptional elongation.

The genes regulated by Pol II recruitment show differential nucleosome occupancy

in the promoter regions, and an unusual chromatin signature. An interesting feature of

genes that are regulated through specific Pol II recruitment is lack of the “active” hi-

stone modification H3K36me3, despite high level of transcription. These active genes,

with no H3K36me3, have H3K27ac broadly spread across the gene body. Neuron-

enriched genes that are regulated at the level of Pol II recruitment, are predicted to be

bound by the insulator protein suppressor of hairy wing Su(Hw) in non-neuronal cell

types. Thus, binding of Su(Hw) outside of neurons is likely a mechanism to achieve

repression of a subset of neuronal genes outside of neurons.

Genes regulated at the level of transcriptional elongation present highly similar

promoter architecture, chromatin state and level of Pol II recruitment between different

cell types, yet have higher levels of transcription in one cell type. How the higher

expression in one cell type is achieved is unclear, but likely depends on distal regulatory

elements, rather than sequences within the promoter.
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4.2 Introduction

Chromatin networks of histone modifications, histone variants and multitudes of in-

teracting proteins deliver the precise spatial and temporal patterns that control gene

expression to establish a complex organism. However, it is now evident that even in

the brain, where the majority of cells are post-mitotic and their fates have long been

established, the chromatin landscape appears to maintain a high level of plasticity.

Without this plasticity, no molecular adaptation to changing environments would be

possible. The chromatin structure within the brain, which is assumed to be established

at the final stages of differentiation, is not as tightly set as previously imagined.

Fly learning behaviour requires modulation of chromatin structure. For exam-

ple, geneome-wide analysis of transcription in brain tissues of mated and virgin female

Drosophila revealed an up-regulation of genes encoding chromatin remodellers 24 hours

after mating takes place (155). However, the available experimental evidence from such

studies only give limited insight into cell-type-specific functions. The key question is

whether the majority of genes within these post-mitotic cells are confined within a sta-

ble chromatin structure, or can they have altered expression and be transformed into

a new chromatin state in specific cells?

Measuring gene activity, and identifying how activity differs between two closely

related cell types, is not a simple task. Recruitment of Pol II to a gene’s promoter does

not necessarily reflect the transcriptional output from that gene. It is also not the case

that genes with high levels of expression would have high amounts of detectable Pol II

binding. Dynamic interactions between chromatin and the transcriptional machinery

influence and modulate every step of gene expression. One example of this is promoter

proximal pausing, characterised by Pol II pausing 30–50 nucleotides into the gene.

Pausing acts as a regulatory check-point before Pol II progresses to transcriptional

elongation, with suggested functions to anticipate future gene expression requirements,

and modulate the transcriptional output (154, 156). Gene regulatory mechanisms, such

as Pol II pausing, occur in the context of a highly complex chromatin structure. The

nucleosome plays a repressive role in transcriptional elongation, as well as governs the

access of regulatory proteins to binding sites. Modifying nucleosomes, such as acetyla-

tion or methylation of the histone tails, contributes to a complex “code” that modulates

gene activity (157). However, the term “histone code” presents a vastly oversimplified

function of histone modifications, and the contribution histone modifications make to

gene regulation is far from clear. A prime example of this complexity is described in
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this chapter; the histone modification H3K36me3 is associated with active genes, but is

not correlated with gene expression level and some active genes do not have this mark

at all (76).

In the previous chapter, I demonstrated that the different techniques for measur-

ing cell-type-specific gene activity, RPB3-CAST-ChIP and FANS-RNA-seq, resulted

in vastly different gene groups being identified (section 3.4.3). The question arises as

to whether these genes are regulated by different mechanisms. In this chapter, I fo-

cus on the comparison of chromatin states between those genes identified using the

RPB3-CAST-CHIP method (Pol II binding) and those identified from the analysis of

nucRNAs (nascent transcripts). I chose to investigate these two techniques as they

are expected to more closely represent the actual state of gene activity at the level of

chromatin, whereas the TRAP is expected to be far removed from what is happening

at the chromatin level.

Aims

• Assess nucleosome architecture across cell-type-specific and invariant promoters.

• Compare H2AZ, H3K27ac, and H3K36me3 between cell-type-specific and invari-

ant genes.

• Assess the characteristics of gene groups that possess different chromatin states.

4.3 Activity of cell-type-specific and invariant genes

In the majority of the results for this chapter I will be using metagene analysis (using

NGS-plot, (158)) to look at the average profiles of genomic data over subsets of genes

defined as neuron-enriched, glia-enriched, or invariant as defined by two different meth-

ods; CAST-ChIP or nucRNA analysis (section 3.4.3). Before analysing the chromatin

state of the different cell-type-specific gene groups, I wanted to assess the nucRNA lev-

els of the CAST-ChIP gene sets, and conversely the Pol II binding levels of the nucRNA

gene sets. Thus, I performed metagene analysis of the CAST-ChIP and nucRNA data

split into the different gene sets, which have two levels of categorisation (table 4.1).

The first level is whether the genes are from the CAST-ChIP or the nucRNA analysis;

the second level is whether the genes are classified as neuron-enriched, glia-enriched, or

invariant. The specific questions addressed here are: what is the Pol II binding profile

of those genes called as specific or invariant from the nucRNA-seq analysis, and con-

versely what is the nucRNA expression profile of genes identified as specific or invariant
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by Pol II binding? This analysis will provide the basis for interpreting the chromatin

profiles of the different gene groups.

Table 4.1: Gene groups used in these analyses

Neuron-enriched Glia-enriched Invariant

Identified by Pol II 300 561 1880
Identified by nucRNA 2271 1744 4670

I first analysed the Pol II binding and nucRNA expression levels of those genes

identified as neuron- or glia-enriched based on the CAST-ChIP Pol II analysis. I gen-

erated average profile plots (NGS plot) of the CAST-ChIP and nucRNA data in both

neurons and glia, spliting the data by the different gene categories (figure 4.1). For

the Pol II analysis, I chose to align the data to the TSS, rather than scaling the data

across the entire gene, because the majority of detectable Pol II enrichment for the

CAST-ChIP Pol II data is at the TSS, with very little enrichment over the gene body.

The upper two panels of figure 4.1 show that the genes called as cell-type-specific by

the CAST-ChIP method do indeed have cell-type-specific Pol II binding. For example,

genes called as neuronal do indeed have Pol II enrichment in neurons, and little Pol II

enrichment in glia. An important observation to note is the difference in height of the

Pol II peaks in the different cell types. Neuronal genes in neurons have a much higher

level of Pol II binding than glial genes do in glia. Comparing the peaks relative to

invariant genes is useful, since by definition the Pol II binding is the same in both cell

types. In this way it can be seen that neuron-enriched genes in neurons have a level of

Pol II binding similar to that of invariant genes, and glia-enriched genes in glia have

Pol II binding that is much lower than invariant genes.

Differences identified by Pol II binding correlate with differences in nucRNA
expression

The lower panel of (figure 4.1) shows the nucRNA level of those genes identified as spe-

cific or invariant in the CAST-ChIP assay. In this analysis, the data are scaled across

the entire gene length between the transcription start site (TSS) and the transcription

end site (TES), so that the average nucRNA level across the entire gene body can be

observed. As might be expected, the RNA levels reflect the Pol II binding profiles.

In neurons, the neuron-enriched genes have an equivalent level of RNA expression as

invariant genes, just as the Pol II peaks were equivalent in the top left panel of figure

4.1. However, the neuronal genes have significantly more 3′ reads than the invariant
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Figure 4.1: Average Pol II and nucRNA profiles of Pol II-identified genes -
Metagene analysis of the CAST-ChIP RPB3 data (upper panel) and the nucRNA data
(lower panel) from neurons and glia. Data was divided into three gene classes as identified
from the Pol II binding analysis: invariant, neuron-enriched, or glia-enriched (black, red,
and blue, respectively). RPKM stands for read-count per million mapped reads. For the
RPB3 data, the data are centred around the transcription start site(TSS). For the nucRNA
data, the data are scaled across the gene body.

71



4. MECHANISMS OF CELL-TYPE-SPECIFIC GENE REGULATION
IN THE DROSOPHILA HEAD

genes. This may be an artefact of library preparation, since neuronal genes are gener-

ally much longer than invariant genes. The library preparation uses a mixture of polyA

selection and random hexamers, thus longer genes may have less enrichment towards

the 5′ end because the cDNA synthesis at the 3′ end is more efficient. Glia-enriched

genes, as identified from the Pol II binding, have a low level of nucRNA expression in

neurons, which is also comparable to the level of Pol II binding within this cell type.

Gene expression within glia cells also reflects the Pol II binding profile, the expression

level of glia-enriched genes within glia is lower than that of invariant genes.

The expression pattern of cell-type-specific genes identified by Pol II binding showed

the expected trends. However it is easy to see how the majority of glia-enriched genes

identified by Pol II binding were not called as specific from the nucRNA analysis (section

3.4.3). Genes with more Pol II in glia than in neurons (blue line, bottom panels,

figure 4.1) have similar levels of nucRNA in both cell types, which is generally very

low. This indicates that Pol II binding analysis identified genes that show the desired

expression pattern within a cell type, i.e within glia cells, genes with glia-enriched Pol

II binding have higher expression than genes with neuron-enriched Pol II. However the

Pol II binding did not necessarily identify genes that have significantly different RNA

expression levels between cell types. Pol II binding correlates to the RNA expression

level to a certain extent. Genes with a low level of Pol II binding have lower expression,

and genes with a high amount of Pol II binding have higher RNA expression. But

this relationship is not a perfect correlation (section A.1), which could explain why the

genes called as significant differences between the two techniques can be in disagreement

(section 3.4.3).

Genes identified as different by nucRNA have invariant Pol II binding

I next analysed the Pol II binding and nucRNA expression levels of those gene iden-

tified by the nucRNA DESeq analysis (figure 4.2). The analysis was performed using

the same parameters as those of figure 4.1. When observing the Pol II binding at the

nucRNA-identified genes, it is clear that there is little difference in the Pol II profiles

between the cell types (upper panels, figure 4.2). Here, the neuron-enriched genes have

a high level of Pol II binding in both neurons and glia. Conversely, glia-enriched genes

have no Pol II binding in neurons and only a very small amount more in glia cells.

Thus, specificity of expression at the RNA level is not reflected in the Pol II binding

profile of those genes.
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Figure 4.2: Genes identified by nucRNA have invariant Pol II binding - Meta-
gene analysis of the CAST-ChIP RPB3 data (upper panel) and the nucRNA data (lower
panel) from neurons and glia. Data was divided into three gene classes as identified from
the nucRNA analysis: invariant, neuron-enriched, or glia-enriched (black, red, and blue,
respectively). RPKM stands for read-count per million mapped reads. For the RPB3 data,
the data are centred around the transcription start site(TSS). For the nucRNA data, the
data are scaled across the gene body)
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Visualising the average profile plots of the nucRNA expression levels for those gene

identified by the nucRNA DESeq analysis reveals some intriguing results (bottom pan-

els, figure 4.2). Here, the neuron-enriched genes have a very high level of expression in

neurons and mid-range expression in glia. It is immediately clear that neuron-enriched

gene expression within glia cells is higher than glia-enriched gene expression in glia

cells (bottome right, figure 4.2). Indeed, glia-enriched gene expression is relatively low

in glia, but in neurons glia genes have nucRNA levels that are extremely low, being

nearly zero reads (blue line, figure 4.2). This is initially counterintuitive, as it might

be natural to expect that the glia-enriched genes should have higher expression than

neuron-enriched genes in glia cells. However, this pattern occurs because DESeq is

comparing between cell types, and not gene expression of groups within the same cell

type. Thus there is certainly significantly more expression of the neuron-enriched genes

in neurons compared to glia, but this does not mean that there is no expression of these

genes within glia.

Different cell-type-specific methods uncovered different mechanisms of gene
regulation

The observation that the glia-enriched genes are very lowly expressed within glia cells,

and have even lower expression in neurons is intriguing. Two possible explanations for

this observation are: 1) that glia-specific genes are strongly repressed by default in all

cell types and specifically de-repressed in glia cells, or 2) glial genes have a low basal

expression level in all cell types and are specifically repressed in neurons. It is likely

that both possibilities occur, and further analysis is necessary to determine the most

prominent scenario. One method to differentiate between neuron-specific repression of

the glia genes or glia-specific up-regulation would be to compare the cell-type-specific

data to the average expression level of the whole fly, or other non-neuron related tis-

sues. This comparison would provide an indication as to whether the glia-enriched gene

expression is at the same level in glia as in other tissues, indicating neuron-specific re-

pression. Conversely, if the glia-enriched genes are expressed in the other tissues to the

same level as that found in neurons, then this would indicate glia-specific up-regulation.

Most of the genes defined as specific from Pol II binding are different from those

genes defined as specific from nucRNA expression analysis (figure 3.10). Both methods

identify genes that are cell-type-specific, and both ways of calling genes were consistent

with current knowledge and public data sets (section 3.4). However, the experimental

bias of each method, discussed in section 3.5, may have incidentally identified gene

groups that are regulated by different mechanisms. Very generally, these analyses
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indicate two methods of achieving proper spatial expression of a gene: 1) recruitment

of Pol II or 2) modulating transcriptional elongation. For example, genes that have

differing amounts of Pol II across the gene body between cell types, but no difference at

the promoter, would not be identified from the Pol II analysis because the sensitivity

of the CAST-ChIP assay is too low across the genic regions. Thus genes that have

differences in the recruitment of Pol II to the promoter were selected by the CAST-ChIP

assay. In contrast to this, the neuronal genes identified by the nucRNA analysis may

have an equivalent level of Pol II binding in both neurons and glia, but far more RNA

expression in neurons. This suggests that the average speed or amount of elongation

at these genes is far higher in neurons than glia, but the recruitment of Pol II to the

promoter is the same. Another possibility is that these genes have differential mRNA

stability or export from the nucleus between the cell types. The chromatin features

that facilitate cell-type-specific Pol II recruitment may be different from the chromatin

features that govern cell-type-specific elongation. I therefore wanted to analyse the

chromatin state at both types of gene set, since this may provide information about

how the different types of regulation are achieved.

4.4 Nucleosome architecture at specific promoters

Is there a difference in chromatin architecture at promoters between the different cell-

type-specific and invariant genes? Do genes that are regulated at the level of Pol

II recruitment have a different nucleosome composition than genes regulated at the

elongation level? To address these questions, I generated average profile plots using

the neuron and glia MNase-seq datasets, splitting the data into neuron-enriched, glia-

enriched and invariant genes that were called either from Pol II binding (CAST-ChIP)

or nucRNA analysis (table 4.1). I expected to observe lower nucleosome occupancy at

the nucleosome-free region (NFR) and higher nucleosome order in the cell type where

the genes are active (ordered architecture, figure 4.3, A), and expected a covering-up

of the NFR in the cell type where the genes are not active (fuzzy architecture, figure

4.3, A). However, this quality was not observed (figure 4.3).

When looking at the gene sets identified by Pol II binding, there was a weak correla-

tion between Pol II binding and depletion of nucleosome at the nucleosome-free region

(NFR) (top panels, figure 4.3, B). A high level of Pol II binding at cell-type-specific

genes corresponded to only a small depletion of nucleosomes in the cell type where

the Pol II was binding. This relationship was more defined for neuron-enriched genes

than for glia-enriched genes. This again demonstrates a relationship between Pol II
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binding and NFR formation, since the neuron-enriched genes in neurons have a much

higher enrichment of Pol II binding compared to invariant than the glia-enriched genes

in glia. However, high amounts of Pol II binding was not sufficient to completely clear

the NFR of nucleosomes (on average), since the cell-type-specific genes were far more

fuzzy than invariant genes. For example, neuron-enriched genes had comparable Pol

II binding to invariant genes (compare to figure 4.1, top left), yet the specific genes

had little NFR formation or ordered nucleosome arrays compared to the invariant genes.
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Figure 4.3: Nucleosome architecture at cell-type-specific genes - Metagene anal-
ysis of the neuron and glia MNase-seq data. Data were divided by the type of analysis,
either by Pol II binding (upper panels) or nucRNA analysis (lower panels), and further
divided into three gene classes: invariant, neuron-enriched, or glia-enriched (black, red,
and blue, respectively).
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The nucleosome pattern of genes identified by nucRNA-seq show a completely dif-

ferent pattern than those genes identified by Pol II binding (bottom panels figure 4.3).

It is immediately obvious that the nucleosome patterns in the two cell types are nearly

identical, even though there were significant differences in nucRNA expression level

between neurons and glia. The neuron-enriched genes had the lowest nucleosome oc-

cupancy over the gene body, consistent with higher levels of expression. The neuron-

enriched genes also had a deep NFR and an ordered nucleosome array. This pattern is

highly similar to that of the invariant genes, although invariant genes has far higher nu-

cleosome occupancy over the gene body, likely because the invariant genes were not as

highly expressed as the neuronal genes, leading to less clearance of nucleosomes from

the gene body. The similarity in the nucleosome pattern at invariant and neuronal

genes makes sense in that these genes were expressed to some level in both neurons and

glia, and had equivalent levels of Pol II binding at the promoter in both cell types. The

amount of expression of the neuron-enriched genes was much higher in neurons than

glia. Thus, an open “active” promoter architecture would be expected, particularly

since the level of Pol II binding influences nucleosome occupancy over the NFR more

than expression level (chapter 5). The glia-enriched genes showed the opposite pattern

to the neuronal and invariant genes. Glia-enriched genes had high nucleosome occu-

pancy, and no detectable nucleosome positioning, in either neuron or glia cells. Both

Pol II binding and gene expression levels of the glia-enriched genes was very low, even

in glia cells, consistent with the observed nucleosome pattern.

4.5 H2AZ correlates with invariant Pol II binding

We have previously shown that genes with cell-type-specific Pol II binding lack the

histone variant H2AZ (34). The question is whether this observation still holds for the

neuronal and glial enriched genes that were identified by nucRNA analysis. To ad-

dress this question, I generated average profile plots of the head H2AZ data from (34),

aligned to the TSS of the different gene classes (figure 4.4). Confirming our previous

observation, the genes that are cell-type-specific based on Pol II binding lacked H2AZ

enrichment, whereas the invariant genes had high H2AZ enrichment (figure 4.4, left

panel). In contrast to this, genes identified as neuron-enriched in the nucRNA analysis

had H2AZ levels nearly equivalent to that of invariant genes. Yet, genes identified as

glia-enriched by the nucRNA analysis had no H2AZ enrichment, and so showed no

difference from the Pol II-identified glia genes (figure 4.4, right panel).
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Why do neuronal-enriched genes, based on nucRNA analysis, have incorporation of

H2AZ, even though they have cell-type-specific expression? The answer may be that

the nucRNA-identified neuronal gene have invariant Pol II binding and nucleosome ar-

chitecture between the cell types (figures 4.3, bottom panels, and 4.2 top panels). The

finding that H2AZ is associated with invariant genes, and not cell-type-specific genes,

was based on classifying genes using Pol II binding. The neuron-enriched genes have

highly ordered nucleosomes, with a deep nucleosome-free region and have the same level

of Pol II binding in both cell types. Thus the incorporation of H2AZ at these genes

may be influenced more by the cell-type-invariant recruitment of Pol II to the promoter,

rather than by the actual transcriptional output of the gene, which is cell-type-specific.

This observation would suggest that H2AZ plays a role outside of regulating the rate of

transcriptional elongation of the gene. The relationship between gene activity, H2AZ

binding and promoter architecture will be explored more deeply in the next chapter (5).
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Figure 4.4: H2AZ profile at cell-type-specific genes - Metagene analysis of H2AZ
binding in whole head, divided into analysis type: genes called as specific or invariant
based on Pol II binding (left panel) or based on nucRNA analysis (right panel), then
further divided into invariant, neuron-enriched and glia-enriched gene classes (black, red,
blue, respectively) and split.
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4.6 Histone modifications at cell-type-specific genes

The previous section indicates that incorporation of H2AZ correlates with invariant Pol

II recruitment and ordered nucleosome architecture, rather than correlating with gene

expression level. It would be therefore interesting to observe whether the active histone

modifications H3K27ac and H3K36me3 follow the same trend as H2AZ, marking a cell-

type-invariant chromatin state, or whether they follow the expected patterns, where

the marks correlate with transcriptional activity. I generated metagene plots to observe

the average trend of H3K27ac and H3K36me3 at the neuron-enriched, glia-enriched,

and invariant genes identified by either Pol II binding or nucRNA analysis (figures 4.5,

and 4.6). I chose to plot the H3K27ac data across the TSS ± 1000 bp, since the general

enrichment of these data are at the 5′ end of the gene (figure 3.5, C). Conversely, I

plotted the H3K36me3 modification centred around the transcriptional end site (TES)

± 1000 bp, as this modification is generally enriched at the 3′ ends of genes (figure 3.5,

C). Each plot is normalised to the level of nucleosomes using cell-type-specific CAST-

ChIP H2B-GFP data (T. Schauer, unpublished), to ensure high histone modification

levels are not due to high nucleosome occupancy over that region.

H3K27ac correlates with gene activity

The active histone modification H3K27ac was observed as expected, and closely re-

flected the activity of each gene group (figure 4.5). Where there is Pol II binding,

there is a corresponding level of H3K27ac (figure 4.5, upper panels), with enrichment

of the active mark reflecting also cell-type-specificity of Pol II binding. For example,

neuron-enriched genes had higher H3K27ac than glia-enriched genes in neurons (upper

panels, figure 4.5). With the nucRNA gene calls, the level of H3K27ac also appeared

to correlate with the RNA expression level (bottom panels, figure 4.5. For instance,

neuron-enriched genes in neurons had far higher H3K27ac relative to invariant genes,

than the neuron-enriched genes in glia did. Thus, H3K27ac showed the expected pat-

tern as a mark of gene activity; where there was gene activity, either by nucRNA or

Pol II binding, H3K27ac was present at a comparable level.

H3K36me3 does not correlate with gene activity

The results for the H3K36me3 were not as straightforward to interpret as those of the

H3K27ac, in that there does not seem to be a direct correlation between this mark and

gene activity (figure 4.6). The most interesting observation comes from the profiles

of the Pol II gene calls with the neuron-specific H3K36me3 ChIP-seq data (top left

panel, figure 4.6). Here there was no difference in H3K36me3 binding levels between
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Figure 4.5: H3K27ac at cell-type-specific genes - Metagene analysis of the neuron
and glia H3K27ac ChIP-seq data. Data was split by type of analysis, either by Pol II bind-
ing (upper panels) or nucRNA analysis (lower panels), and further divided into three gene
classes: invariant, neuron-enriched, or glia-enriched (black, red, and blue, respectively).
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the neuron and glia enriched genes, even though the neuronal enriched genes have far

higher levels of Pol II and nucRNA in this cell type (figure 4.1). The level of H3K36me3

was also far lower at cell-type-specific genes compared to invariant genes in neurons,

with genes identified by Pol II binding (upper left panel, figure 4.6). Within glia

cells, this histone modification seemed to partially reflect the activity of glia-enriched

genes (two right panels, figure 4.6). The glia-enriched genes, by Pol II binding, had

higher levels of H3K36me3 than the neuron-enriched genes in glia. Also, those glia-

enriched genes identified by nucRNA analysis had a higher level of H3K36me3 in glia

cells than in neurons. However, the level of H3K36me3 did not correlate well with the

activity level of neuronal nucRNA genes (red line, figure 4.6, bottom panels). With

these nucRNA-neuronal genes, the level of H3K36me3 was approximately the same

enrichment as invariant genes in both neurons and glia. Thus, there was not the

increase in H3K36me3 in neurons compared to glia that would be expected with the

increase in transcriptional output of neuron-enriched genes.

4.7 H3K27ac and H3K36me3 in gene activity

The previous observations indicate that H3K27ac correlates with gene activity, whereas

H3K36me3 only appears to correlate with gene activity in some cases, such as for the

glia-enriched genes. I therefore wanted to look more closely at the relationship between

the amount of Pol II binding or nucRNA expression and the level of the histone marks.

To do this, I ranked the genes by the level of Pol II binding, based on the read count ±
250 bp around the TSS, or by normalised read counts (RPKM) of the nucRNA data.

For ranking the neuron-enriched genes I used the neuronal datasets for the ranking,

for the glia-enriched genes I used the glial datasets for ranking, and for the invariant

genes I used either whole head Pol II binding data (for Pol II-identified genes), or the

average of all nucRNA inputs RPKMs (for nucRNA-identified genes). I then plotted

the histone modification data as heatmaps, normalised to the H2B-GFP, ordered from

the highest Pol II binding/nucRNA levels at the top to lowest at the bottom (figures

4.7 and 4.8). Heatmaps showing the Pol II data and nucRNA data, ranked in the same

way, show that the ranking was performed correctly (figures 5.1 and 5.3).

There is little correlation between Pol II binding and active histone marks

From these analyses, the amount of Pol II bound at the promoter region of cell-type-

specific genes did not strongly correlate with the level of H3K27ac (figure 4.7). There

appeared to be little correlation between Pol II binding and H3K36me3 levels (figure

4.7). Higher Pol II occupancy at invariant gene promoters seemed to lead to higher
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Figure 4.6: H3K36me3 at cell-type-specific genes - Metagene analysis of the neuron
and glia H3K36me3 ChIP-seq data. Data was split by type of analysis, either by Pol II bind-
ing (upper panels) or nucRNA analysis (lower panels), and further divided into three gene
classes: invariant, neuron-enriched, or glia-enriched (black, red, and blue, respectively).
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levels of H3K27ac, however the genes with the highest Pol II binding appeared to

have less H3K36me3. One explanation for this observation is that the genes with

the highest Pol II binding at the promoter are “stalled” or “paused” genes. If these

genes are regulated by Pol II pausing they may not actually be transcribed, and since

H3K36me3 is deposited in conjunction with the transcribing polymerase, H3K36 would

not be methylated at these genes.

H3K27ac correlates with nucRNA expression level

When the genes were ranked by nucRNA expression level, a general trend of H3K27ac

could be observed (figure 4.8). The most highly expressed genes had high levels of

H3K27ac, with the mark appearing to spread into the gene body. The lower the expres-

sion; the lower the H3K27ac level was. It is interesting to note that both the invariant

and neuronal gene classes still had H3K27ac even at the lowest gene expression levels,

where nucRNA levels were barely detectable (figure 5.3. As discussed previously, the

chromatin signature (ordered nucleosomes, Pol II binding, and H2AZ-incorporation) of

the neuron-enriched gene class was the same as that of invariant genes (section 4.5),

so perhaps presence of some H3K27ac is associated with genes that are maintained

in an open/active state. This maintenance of the active state could ensure that the

neuronal-enriched and invariant promoters are potentiated for transcription by having

open/active promoters, with incorporation of H2AZ and some H3K27ac. Other factors

would influence the activation of transcription of these potentiated genes, which would

lead to increased H3K27ac levels.

Glia-enriched genes, as identified by nucRNA analysis, showed a different pattern

of histone marks from neuronal and invariant genes. High expression of glial genes

within glia correlated with high H3K27ac. Glia-enriched genes with low expression

had little detectable H3K27ac, and this modification was barely detectable in neuronal

cells (figure 4.8). A difference in the type of regulation of the glia-eniriched genes

from neuron-enriched genes could explain this observation. If glia-enriched genes are

normally repressed in all tissues, the chromatin state would have no active marks and

high nucleosome occupancy, to ensure the complete shutdown of these genes. Then the

de-repression of these genes in glia would lead to specific H3K27ac in glia. Another

interpretation is that if these glia genes are specifically repressed in neurons, then the

active marks would be specifically removed in neurons, to ensure that no expression is

possible in neurons.

83



4. MECHANISMS OF CELL-TYPE-SPECIFIC GENE REGULATION
IN THE DROSOPHILA HEAD

−1000 TSS 33% 66% TES 1000 −1000 TSS 33% 66% TES 1000−1000 TSS 33% 66% TES 1000 −1000 TSS 33% 66% TES 1000

N
eu

ro
na

l 
G

lia
l 

In
va

ri
an

t 

H3K27ac H3K27acH3K36me3 H3K36me3
Neurons Glia

Genes ranked by TSS Pol II counts

H3K36me3 colour key

−3 −2  0  1  3

H3K27ac colour key

−1.2 −0.6   0  1.2  2.4
Log2 fold change vs. H2B Log2 fold change vs. H2B

High

Low

High

Low

High

Low

Figure 4.7: Active histone marks ordered by Pol II binding at TSS - Heatmaps
of H3K27ac and H3K36me3 data across neuronal, glial and invariant genes. Genes were
ordered by calculating number of reads over a 500 bp window across the TSS and ranking
genes from highest reads to lowest.
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H3K36me3 does not correlate with nucRNA expression levels

Tri-methylation of H3K36 did not generally correlate with nucRNA expression levels

(figure 4.8). Indeed, as with the highest level of Pol II binding, the most highly ex-

pressed genes had less H3K36me3 across the gene body than the lowest expressed genes.

This observation was not unexpected as infrequently transcribed genes were shown to

be more dependant on H3K36me3 than highly transcribed genes (159). Only the most

highly expressed glia-enriched genes within glia cells appeared to show some enrich-

ment for H3K36me3. These analyses showed that there was little correlation between

the level of gene expression and the level of H3K36me3. Those genes at the higher end

of the expression spectrum had the same, or less, H3K36me3 than those genes at the

lower end of the gene expression spectrum. Only in the very lowest expressed genes,

at the very bottom of each heatmap, was there a reduction in H3K36me3 levels. It is

likely that these genes are repressed and may have never been transcribed, thus would

not have the histone modification. It is also possible that the H3K36me3 is actively

removed at these genes (by Kdm4), and so is not detected.

The lack of relationship between gene activity and H3K36me3 likely contributes to

the observation that this modification is mostly invariant between cell types. H3K36me3

functions to repress cryptic transcription, and does so by reducing nucleosome turnover

(see section 1.1.3). Therefore, any transcription of the gene, whether frequent or in-

frequent, would acquire and retain this modification. The average accumulation of

H3K36me3 would then be expected to be similar between all active genes. For exam-

ple, if a gene was expressed at four copies per cell in glia and 100 copies per cell in

neurons, the level of H3K36me3 across that gene would be the same in both cell types

because the modification would be set after the first round of transcription, and would

be maintained regardless of how many rounds of transcription there were. Extremely

high levels of gene expression that result in massive histone loss, such as the heat shock

response, would probably lead to lower H3K36me3 since the histones themselves are

no longer there to be modified.

Taken together, the results from my analysis clarify the observations made in section

4.6. Where there is more Pol II binding, or higher nucRNA expression, there are higher

levels of H3K27ac, thus this modification is useful as a marker of gene activity. The level

of H3K36me3 does not directly correlate with the level of gene activity, and appears

to be enriched at any gene that is in an active state, regardless of the level of that

activity. Hence, H3K36me3 is not a useful marker of gene activity and would not aid in
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identifying gene activity differences between cell types. However, the observation that

the neuron-enriched genes, as identified by Pol II binding, have both Pol II binding

and nucRNA transcripts but lack H3K36me3 was not explained by these analyses. The

lack of H3K36me3 at expressed genes has been observed within the “red” chromatin

domains in the five state chromatin model (figure 1.5, (76)). Red chromatin contains

those genes which are specifically activated. These specifically regulated genes have

active gene expression, yet lack H3K36me3. Interestingly, the neuron-enriched Pol II

genes strongly displaced this chromatin state, yet the glia-enriched genes did not. For

the genes whose specificity was assessed on the nucRNA level, those neuronal genes

had high levels of H3K36me3 in both cell types. Further, in the glia nucRNA genes,

H3K36me3 was cell-type-specifically enriched in glia cells compared to neurons. This

underscores the complications with assigning combinations of chromatin features with

gene-activity features, as clearly being specifically regulated does not necessarily mean

that the genes will have the H3K36me3-less chromatin state.

4.8 Active, H3K36me3-less genes have broad H3K27ac

When looking at histone modification data at individual genes (figure 4.9), there were

indeed active genes with complete absence of H3K36me3. Genome-browser snapshots

in figure 4.9 show examples of genes that were expressed and also had Pol II binding,

but no H3K36me3 binding was detected. These types of genes were not always cell-

type-specific. In some cases they were neuronal, in others they were glial, but in many

cases this chromatin state was found where the gene expression was invariant between

the two cell types. One clear feature of these genes was that H3K27ac appeared to

spread across the entire gene in a broad peak, sometimes stretching beyond the bound-

aries of the gene (e.g glec and SoxN, figure 4.9). This spreading of H3K27ac would

be consistent with the function of H3K36me3 to recruit the histone deacetylase com-

plex RPD3, which de-acetylates H3K27ac. If H3K36me3 is absent from these genes,

then the H3K27ac would not be removed from the 3′ end of the gene and so remain

dispersed across the active gene body. The intriguing question is how do some genes

escape regulation by H3K36me3? And what are the consequences of this type of regu-

lation, particularly when H3K36me3 is important for suppressing cryptic transcription

and regulating splicing? Could there be a functional consequence of such a chromatin

state that was selected for at these genes, such as generation of non-coding regulatory

RNAs from within the gene body?
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Figure 4.9: Expressed genes with no H3K36me3 have broad H3K27ac binding
- Snapshots of the H3K27ac, H3K36me3, Pol II, and nucRNA data at several genomic
regions using the IGV-browser. Representative gene regions are shown that are active;
have Pol II and nucRNA, and have no H3K36me3. There is a clearly observable spreading
of H3K27ac across these regions.There are examples of this chromatin state where the Pol
II and nucRNA is invariant (glec, emc, rho, SoxN) or cell-type-specific (GstD1, miple).
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Do those genes with medium-high expression and no H3K36me3 show a spread-

ing of H3K27ac across the gene body? To address this question, I split all annotated

genes into those having an identified H3K36me3 peak and those that do not. Since

the peak calling of H3K36me3 may be different in each cell type, I analysed each cell

type separately, producing a list of genes with and without H3K36me3 for each cell

type. I then further split these genes into subsets based on the RPKM of the cell

type the H3K36me3 peaks were defined in. This produced a list of genes with or with

out H3K36me3, each further divided into high expression (RPKM greater than 100),

medium expression (RPKM 30–100) or low expression (RPKM lower than 30). The

number of genes in each category is shown in table 4.2.

Table 4.2: Splitting based on H3K36me3 and RPKM

RPKM + H3K36me3 -H3K36me3

High 497 143
Neurons Medium 1506 397

Low 5450 4676

High 524 155
Glia Medium 2238 505

Low 4809 4434

I then assessed the average chromatin profile for the six H3K36me3 gene classes,

by generating average profile plots of the H3K27ac and H3K36me3 data from both

neurons and glia (figure 4.10). The top-most panels of sections A and B in figure 4.10

is a control plot. These control plots show that the peak calls from the H3K36me3

data do indeed correspond to the actual H3K36me3 enrichment across these gene sets.

These average profile plots further demonstrate that the gene expression level did not

influence the level of H3K36me3 (top left panel of figure 4.10, parts A and B). Here it

could be seen that the lowest expression class had slightly higher levels of H3K36me3

than the medium and high expression groups. The H3K36me3 binding across the genes

classified as having no H3K36me3 was very low (upper right panels, figure 4.10, parts

A and B). This demonstrated that the peak calling, and subsequent gene classifications

was consistent with how the data actually looks on the metagene level.

The bottom panels of figure 4.10, show the average H3K27ac profile across each gene

group in neurons (figure 4.10, A) and glia (figure 4.10, B). Of those genes that have

H3K36me3, the level of H3K27ac enrichment corresponds to the level of expression.

The shape of the H3K27ac profile at H3K36me3-positive genes is also as would be
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Figure 4.10: Active genes with no H3K36me3 have broad H3K27ac - Genes were
first split based on whether an H3K36me3 peak was called or not, then each group was
further divided as having high, medium or low expression. A) The average profile analysis
in neurons. B) The averge profiles in glia.
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expected from this histone modification: there is high enrichment at the 5′ end of the

gene that decreases in a slope towards the 3′ end of the gene. At H3K36me3-negative

genes, the level of H3K27ac still corresponds to the level of gene expression, with low

expressed genes having no enrichment of this modification at all. However, the shape of

the H3K27ac profile is vastly different from the H3K36me3-positive genes. As observed

in the genome-browser snapshots (figure 4.9), the H3K27ac profile across H3K36me3-

negative genes with medium to high expression is flat and broad. There is very little 5′

bias to the enrichment and consequently very little slope to the profile. I would expect

that other active histone modifications, particularly histone acetylation, would also be

spread across these genes. Indeed an inspection of publicly available data of many

histone modifications in the head supports this hypothesis (data from the modencode

consortium, http://www.modencode.org).

4.9 Su(Hw) is enriched at H3K36me3-less neuronal genes

It is straightforward to see how the active, H3K36me3-less genes have broad H3K27ac,

and likely broad enrichment of many active histone modifications. However, what the

functional consequence of such a chromatin state is and why these particular genes

have this pattern is unclear. The genes identified as neuron-enriched from the Pol II

analysis most strongly display this chromatin state. It has been previously shown that

binding of the insulator protein su(Hw) is enriched at genes with neuronal function

(93). We have also confirmed the observation that su(Hw) is present in glia, yet is

absent from neurons ((93), and Mirjam Appel, unpublished). The question arises as

to whether all neuron-enriched genes contain su(Hw) sites, or whether there is some

preference for particular neuronal genes. I hypothesised that those genes identified as

neuron-enriched by Pol II binding, which present the unusual H3K36me3-less chromatin

structure, would contain more su(Hw) binding sites than those neuronal genes with a

constitutively “active” chromatin structure. If this were true, it would present a very

interesting mode of regulating those neuron-enriched genes, where loss of su(Hw) in

neurons would lead to a de-repression of those genes, and the subsequent incorporation

of broad histone acetylation would push those neuronal genes into a highly active state,

specifically in neurons.

Our bioinformatics collaborator Pawel Bednarz analysed the insulator occupancy

of the different neuronal-enriched gene groups identified in my analysis (figure 4.11,

A). Shown in figure 4.11 (A) are two gene groups that have the two distinct chromatin
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states: 1) Those genes identified by Pol II binding, which have fuzzy nucleosome ar-

chitecture, broad H3K27ac and no H3K36me3. 2) A further refined group of genes

identified by the nucRNA analysis, those genes which are higher expressed in neurons

compared to whole fly, and have invariant expression between glia and whole fly. This

second group has highly ordered nucleosome architecture, H2AZ, and the normal ex-

pected patterns of H3K27ac and H3K36me3. The refined group of nucRNA-identified

genes was used because the total nucRNA group actually contains some genes with the

same chromatin state as identified by the Pol II binding. In the refined group, those

genes that are likely regulated by Pol II recruitment, and have the active H3K36me3-

less chromatin state are depleted from the gene list. In the analysis, publicly available

ChIP-seq data of four insulator binding proteins (suHw, BEAF, CP190, and CTCF) in

Drosophila Kc167 cells, were used to define insulator binding sites (94).

Our approach was to ask what insulator binding sites were found associated with the

genes in each of the three gene groups. Different methods for assessing the relationship

between the neuron-enriched genes and insulator binding sites were investigated. The

first approach was to look at the nearest insulator flanking the gene (figure 4.11, B,

left panel). In this approach the identity of the nearest insulator to the 5′ and 3′ end

of the gene was assessed. As can be seen in the bar graph (figure 4.11, B, left panel),

there is little difference in the distributions of the four insulators between the two gene

groups. Thus, there is no enrichment for a particular insulator for either gene group

when looking at the nearest flanking insulator. However, the most interesting result

came from looking at the insulator binding inside the neuronal gene regions (figure

4.11, B right panel). We decided to analyse the internal sites as we knew neuronal

genes are generally much longer than the average gene, and contain very large introns

(not shown), thus increasing the possibility for regulatory proteins to bind within the

gene body. When identifying the internal insulator binding sites, all insulator binding

sites that fell within the annotated gene region were counted, thus each gene could

have multiple insulator binding sites. It can be seen in the bar graph (figure 4.11, B

right panel) that su(Hw) sites are significantly enriched in the Pol II-identified neuronal

gene class, compared to the neuron-enriched genes identified by nucRNA (glia-invariant,

neuron-up compared to whole fly). Interestingly, the proportions of CTCF and CP190

binding sites remain relatively constant between the gene groups, but BEAF is increased

in proportion in the nucRNA gene group. Thus, when looking at internal insulator

binding, those neuron-enriched genes with the fuzzy nucleosome architecture, broad

H3K27ac and low H3K36me3 have significantly more su(Hw) binding sites than those

neuron-enriched genes with a more ordered, standard chromatin signature.
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Figure 4.11: SuHw is enriched at fuzzy neuronal genes - A) A graphical summary
of the chromatin signature at the neuronal-enriched gene groups identified from Pol II
binding, or from a refined nucRNA analysis. The nucRNA analysis genes were refined
according to whether the gene expression in glia was equal to whole fly and expression in
neurons was up compared to whole fly. B) Publicly available insulator binding data for
suHw, BEAF, CP190, CTCF were used to define regions of insulator binding. The number
of insulator regions was counted for each type of insulator (red and yellow circles in the
models) that was either the nearest flanking insulator to the gene (left), or within the gene
body of each gene (right) for the three gene groups. The bar graph shows the proportion
that each insulator contributes as a percent of the total number of insulator sites found.
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4.10 Discussion

The observations made in this chapter highlight two distinct mechanisms for achieving

cell-type-specific gene regulation, summarised in figure 4.12. In the one case, there is

a cell-type-specific recruitment of RNA polymerase to the promoter. The chromatin

state appears to play a highly important role in this type of regulation. The promoters

have a closed, or “fuzzy” nucleosome architecture, which would facilitate highly specific

recruitment of Pol II to the gene promoter. To recruit Pol II to these fuzzy promot-

ers would require the concerted effort of multiple transcription factors and chromatin

remodellers in order to allow the PIC to compete with the nucleosomes for promoter

DNA binding.
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Figure 4.12: Model of the different neuron-specific gene regulation mechanisms
- Model of the modes of cell-type-specific regulation of the neuronal-specific genes observed
in this chapter. Genes regulated at the level of Pol II recruitment (A) show differences in
chromatin state between neurons and glia. These genes are likely to be associated with the
insulator protein, Su(Hw) in other tissues. Lack of SuHw and increased histone acetylation
in neurons would guide neuron-specific expression.Presence of Su(Hw) in glia may aid in
preventing Pol II recruitment to the promoter. Genes regulated by Pol II elongation (B)
have a canonical “active” chromatin state, but how the specific modulation of elongation
is achieved is not clear.

Neuronal gene regulation through loss of su(Hw)

It is still not clear what the function is for these genes having highly disordered nucle-

osome occupancy, broad spreading of H2K27ac and lack of H3K36me3. Those genes

with this unusual chromatin state are enriched for su(Hw) binding, suggesting an inter-

esting mechanism for regulating some neuron-specific genes illustrated in figure 4.13.

In non-neuronal tissues su(Hw) would be present and binding to the regions within the

neuronal-enriched genes. This su(Hw) binding would lead to a repression of those neu-

ronal genes in other tissues, but in neurons, where su(Hw) is not present, these genes
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would become active. Therefore, the neuron-specificity of these genes is not necessar-

ily caused by neuron-specific enhancer regions or neuron-specific transcription factors,

lack of su(Hw) binding could be enough to achieve this specificity. Neurons and glia

cells are derived from the same lineage; the “ancestral” cell type is the neuroblast,

and neurons and glia can be separated by as little as two cell divisions. Su(Hw) is

expressed in the larval neuroblast (104), thus su(Hw) expression must be specifically

repressed in neurons after the neuronal and glial lineage separation. Su(Hw) was shown

to be more highly enriched at lamin-associated domains (LADs) (89), indicating that

the neuronal genes may be associated within the repressive environment of the nuclear

lamin in tissues outside of neurons. If it is the case that these neuron-enriched genes are

associated with a repressive environment up until the final cell division, then I would

expect that these genes would remain within the space of that repressive environment

within neurons, since genomic regions do not change much during developmental shifts

(160). Thus, when su(Hw) is absent from neurons, much of the repression would be

diminished, but it is likely that the gene activity requires additional enhancement to

achieve full expression. This additional enhancement could be achieved through broad

incorporation of the histone acteylation marks. Having broad domains of H3K27ac

(and likely H3K18ac) would aid in “opening” the chromatin, and making it more ac-

cessible within the domain, and prevent interaction with the lamin. This would then

presumably enable the gene to be expressed even if the gene was near to or within a

generally repressive environment such as the nuclear lamin (89).

Regulation of gene expression through modulating elongation

The neuron-specific nucRNA genes had an extremely large difference in expression

level between neurons and glia. Yet, there was no difference in nucleosome occupancy,

chromatin marks, or Pol II recruitment at these genes between the two cell types. These

genes had open promoters in both cell types, thus recruiting Pol II to these genes would

not involve competitive binding between the transcription machinery and nucleosomes.

It would be expected that these genes would not rely on specific transcription factors

or chromatin remodellers for recruitment of Pol II, since Pol II is recruited in both cell

types. However, specific inputs would be required to achieve the specific up-regulation

of these genes in neurons. I make the assumption that since it is nuclear RNA being

measured, and not total RNA, that the longevity of the RNA molecule is not the

predominant factor leading to increased gene expression in one cell type. Therefore,

the mechanism for the up regulation of these genes in likely lies in modulating the

elongation rates of Pol II.
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Figure 4.13: Model for achieving neuron-specific expression of su(Hw)-
regulated genes - Schematic of how chromatin state and su(Hw) function amy regulate
a subset of neuron-specific genes. In other tissues, meaning those tissues with a non-neural
lineage, su(Hw) is present. In these cells, su(Hw) and other regulatory factors completely
repress the neuronal genes. In the neuroblast, and in differentiated glia, su(Hw) is present
but other factors may be absent, resulting in a slight de-repression of the neuronal genes
in these cell types. In fully differentiated neurons, su(Hw) is absent. With the cumulative
effect resulting from loss of su(Hw) and other repressive factors, the neuronal genes are
highly de-repressed. Additionally, hyper-acetylation of these genes forms a highly active
chromatin state, thus driving increased expression of these genes in neurons.
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The importance of elongation in transcriptional control is only recently being ap-

preciated (see review (161)). Even though the chromatin state across the elongation-

regulated genes is invariant between cell types, it is most likely that there is still con-

siderable contribution of chromatin features to the regulation of elongation. The con-

tribution of underlying sequence elements in modulating the elongation rate may come

from distal cis regulatory modules, rather than being directly at the promoter region.

Defining the point(s) of the elongation process where the genes are regulated would be

essential to know how the regulation could be achieved. There are many ways in which

elongation can be modulated. For instance, the point of regulation could be through

the regulated release of Pol II from a paused state to active elongation. Alternatively,

the rate at which nucleosomes are removed/remodelled preceding the transcribing Pol

II could be a major mechanism for specifically modulating the transcriptional rate.

The involvement of non-coding RNAs or an influence by the splicing machinery are

also possibilities for mediating the regulation of elongation.

Different methods for assaying specific gene activity reveal different regulatory
mechanisms

The analysis here has revealed subsets of neuron-specific genes that are regulated by

either Pol II recruitment or elongation. The methods used to identify which genes are

cell-type-specific and which are invariant seem to greatly influence the type of cell-type-

specific regulation that is observed. With the CAST-ChIP analysis of Pol II binding,

there is obviously a bias for identifying genes regulated at the point of Pol II recruit-

ment since differences in elongating Poll II are undetectable with the current data. The

nucRNA expression data revealed a different bias, identifying mainly those genes that

have significant differences in RNA expression levels without detectable differences in

the chromatin state between cell types. By comparing and contrasting both techniques

for identifying cell-type-specific genes, some sense might be made out of the seemingly

conflicting datasets. These comparisons revealed that instead of looking for a single,

unifying mechanism that guides neuron-specific gene expression, a far more complex

system with many modes of regulation needs to be considered.
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4.11 Future Directions

The observations made from the genome-wide analysis in this chapter lead to many

questions and many possible directions for future work. The most intriguing direction

would be to identify the mechanisms governing the specific regulation of transcrip-

tional elongation, if indeed this regulation is at the level of transcriptional elongation.

Other possibilities for achieving the same outcome could be increased mRNA stabil-

ity, or decreased mRNA export in the cell type with the higher RNA levels. Thus

initial experiments would need to test these possibilities. Such experiments could

include “pulse-chase” experiments (TU-tagging, for example), where nascent RNAs

can be distinguished from older RNAs. If the regulation is indeed at the level of

transcriptional elongation, and not by a post-transcriptional mechanism, then I ex-

pect some level of influence of chromatin in this regulation. Identifying computation-

ally any enriched sequence motifs in nearby nucleosome-free regions would be a first

step. Using public datasets for other histone modifications (such as data of the mod-

encode consortium, http://www.modencode.org), histone variants, chromatin remod-

ellers, nucleosome-turnover, and insulators would further refine the chromatin state

governing the difference between regulation by Pol II recruitment and regulation by

Pol II elongation. Further assessment of gene features within each regulation class may

help to further understand the mechanism, such as whether there are different numbers

of splice sites or intron lengths, or if the genes fall into possible co-regulatory domains.

How the regulation of Pol II recruitment is orchestrated at specific gene types is

also an interesting question. Specifically, the involvement of su(Hw) to repress a subset

of neuron-specific genes outside of neurons is a highly interesting avenue to pursue.

Two relatively straight-forward experiments would be to A: force expression of su(Hw)

within neurons, and B: deplete su(Hw) in glia cells and other, non-neuronal, tissues.

The read-out of these analyses would be RNA-seq of FANS-isolated neurons and glia (or

other tissue). The hypothetical outcome of over-expressing su(Hw) in neurons would

be that the neuron-enriched genes would have reduced expression, possibly to equiv-

alent levels as the normal expression of these genes in glia. This would be the case if

we assume that su(Hw) alone is sufficient to repress the neuron-enriched genes to the

level of expression found in glia. If other factors also play a role in providing addi-

tional repression, outside of neurons, then over-expression of su(Hw) in neurons would

not have a very big effect on the neuronal gene expression. The predicted outcome of

reducing Su(Hw) expression in glia, for example by using an RNAi line, would be that

the neuron-enriched genes would have increased expression in the glia. This outcome
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again relies on the assumption that su(Hw) alone is sufficient to repress the gene ex-

pression. If there are many other factors involved, depletion of su(Hw) alone may have

little effect on the gene expression, as the genes would be repressed by an accumulative

effect of several proteins.

The chromatin state of active genes with no H3K36me3 may or may not play a role

in helping to activate the Su(Hw)-regulated neuronal genes. However, the presence of

such a chromatin state alone is in itself an intriguing observation. The primary question

is how H3K36me3 is absent from these active genes. There needs to be some removal

mechanism that leads to no detectable H3K36me3, and that is specifically targeted to

particular genes. I can conceive of two possibilities for achieving an H3K36me3-less

active state. One that these genes have H3K36me3 deposited during transcription but

the methyl mark is rapidly removed by a histone de-methylase, likely KDM4a. An-

other possibility is that the H3K36me3 is not placed on these genes at all, meaning

that the recruitment or activity of the methyltransferase is inhibited at these genes.

There is some evidence against the first mechanism. Since experiments using Kdm4a

mutants in Drosophila showed that many genes affected by a Kdm4a knock-down have

no H3K36me3, even in the absence of the demethylase (162). This means that the genes

modulated by Kdm4A are regulated by a mechanism other than removal of H3K36me3.

One thing to note is that only 99 are affected by the Kdm4a mutant, here I found that

there were over 500 genes that had the active H3K36me3-less signature. Therefore, as-

sessing the affect of Kdm4a knockdown in neurons and glia may yield different results

than seen in the study by Crona et.al (162).

Assessing the second possibility, that H3K36me3 is not placed at all, would be more

difficult. A first experiment would be to ask whether the Ser2-phosphorylated form of

the elongating polymerase was present at these genes. Since Set2 associates with this

modified form of the elongating polymerase, if there is lack of this Pol II modification,

then the downstream methyl-transferases would not be recruited. Another experiment

would be to test the effect of a Set2 knockdown at these genes. In principal, lack of

Set2 should not affect the correct expression of the H3K36me3-less genes if the methyl-

transferase is not active at them.

It would be very interesting to assess what effect having no H3K36me3 has on the

genes. Lack of H3K36me3 certainly leads to spreading of H3K27ac, and likely H3K18ac,

thus these regions would be expected to become “hyper” activated and open. The ex-

planation that this chromatin state would help genes that are in a repressive context
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to overcome the repression is certainly not the only possibility. For instance, does lack

of H3K36me3, and increased histone acetylation, lead to higher cryptic transcription

or affect splicing? If so, this chromatin state could be a mechanism to allow internal

transcription from within the gene. Such internal transcription might be necessary to

generate novel transcripts of the gene, or to allow transcription of regulatory RNAs,

for example. Such questions could be addressed both computationally and experimen-

tally. From the existing nucRNA data, which is directional, we could assess the level of

internal antisense transcription at these genes. Determining internal sense transcrip-

tion would be difficult since it would not be simple to define internal transcriptional

start sites from normal transcription. Here, an experimental approach that captures

only the very 5′ end of the transcript would be useful, such as CAGE (cap analysis

of gene expression (163)). This analysis would determine if there is indeed more in-

ternal transcription initiation at the H3K36me3-less genes. If such a phenomenon as

increased cryptic transcription exists at these genes, then asking whether this is an

essential factor of these genes would be the next inquiry. Depending on the mechanism

of generating the chromatin state, I could conceive several experiments. Knock-down

of Kdm4a is one, but another is tethering Set2 to these genes, through an inactive Cas9

for example (164). Tethering Set2 to the 3′ end of specific genes could force H3K36me3

at these genes, and the consequence of this forced H3K36me3 on gene expression and

the phenotype of the fly could be investigated.
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Chapter 5

The role of promoter architecture
in defining gene expression
programs

5.1 Summary

In this chapter, I focus on a small subset of genes that represent the most extreme

cases of nucleosome architecture around the promoter. These two gene sets, with ei-

ther ordered or fuzzy promoter types, have vast differences in Pol II binding profiles

and incorporation of H2A.Z. Interestingly, around half of the genes with extremely

fuzzy nucleosome architecture have high levels of very precisely bound Pol II immedi-

ately downstream of the TSS. Conversely, the majority of genes with the most highly

ordered nucleosomes show broad Pol II binding and highly variable gene expression

levels. The underlying DNA sequences of these two promoter types is highly different

and is likely a major contributor in establishing the differential chromatin states. I

suggest a mechanism whereby the fuzzy genes have highly dynamic and competitive

binding between nucleosomes and RNA Pol II, which inhibits incorporation of H2A.Z

and facilitates extremely rigorous gene regulation.

5.2 Introduction

Promoter architecture plays a major role in defining how transcriptional machinery is

recruited, as well as the pausing status and the elongation rate of a gene. Nucleosomes

are refractory to gene expression, by hindering both the progression of Pol II through a

gene and recruitment of Pol II to the promoter DNA. However, there is little evidence
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that supports the notion that nucleosome positioning has an impact on gene expres-

sion. As demonstrated from the previous chapter, there are cell-type-specific genes

with constitutively open promoters, whose chromatin architecture is invariant between

cell types, but there are also cell-type-specific genes where the chromatin architecture

is altered with changes in gene activity.

It is generally viewed that transcriptional activity and the presence of H2A.Z are

linked to an open and uniform promoter architecture (41). The suggested consequence

of this relationship is that when genes transition from an inactive to active state, the

promoters would become cleared, incorporate H2A.Z, and adapt a more ordered archi-

tecture. Yet, this scenario is not supported when looking at specific cell types of adult

tissues, as it was found that genes with cell-type-specific Pol II binding do not incor-

porate H2A.Z at their promoters (see (34) and chapter 4). H2A.Z was instead found

to be highly similar across all cell types tested, and correlated with tissue-invariant

genes. As discussed in the previous chapter (4), those cell-type-specific genes identi-

fied by Pol II binding have a different chromatin state than invariant genes: they are

active, with no H3K36me3, and fuzzy nucleosome architectures. Pol II pausing could

be a major regulatory mechanism governing cell-type-specific genes, as it negatively

correlates with H2A.Z (18). Pol II pausing is a specialised gene regulatory mechanism

that is important for both spatial and temporal gene expression (see 1.1.1). Regulation

by Pol II pausing correlates with a distinct nucleosome architecture at the promoter.

At highly paused genes, the nucleosome-depleted region (NDR) is occupied until the

pre-initiation complex is recruited to the promoter, and the nucleosome-array is less

ordered than non-paused genes (165). However the cell-type-specific genes showed little

clearing of nucleosomes across the promoter, even in the cell type where Pol II is bound.

Thus, the current model we have of Pol II pausing is likely to be more complicated than

we thought.

The majority of studies have focused on first characterising a particular expression

characteristic of the gene, such as Pol II pausing level, or (as I have done in the previous

chapter 4) the cell-type-specificity of the genes expression pattern. Then the chromatin

state of each gene class is assessed. In this chapter, I aimed instead to investigate

chromatin function from a nucleosome-centric starting point. To aim to first identify

genes with a particular nucleosome organisation across the promoter, and then look at

the expression, histone modifications, and underlying sequences of those genes. This

approach will ideally allow me to assess what may drive the two different types of gene
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regulation– open constitutive promoters versus closed regulated promoter– without bias

to expression levels or cell-type specificity.

5.2.1 Aims

• Define gene classes based on nucleosome architecture around the promoter.

• Assess activity status of ordered versus fuzzy gene classes.

• Identify underlying sequence preferences of ordered versus fuzzy gene classes.

• Compare the chromatin states of ordered versus fuzzy genes.

• Assess the pausing status of fuzzy verus ordered genes.

5.3 Pol II binding correlates with NDR formation

Once striking observation from the analysis in chapter 4 (section 4.4) was that the

cell-type-specific genes based on Pol II binding had fuzzy promoter architecture com-

pared to the invariant genes. The level of Pol II binding at the gene did not appear to

have much impact on NDR formation (upper panels figure 4.3). I had expected that

the cell type in which the Pol II was bound would have had a much reduced level of

nucleosomes upstream of the TSS, compared to the cell type where there was no Pol II

binding. Also, the +1 nucleosome was expected to be more highly ordered in the cell

type where Pol II was bound. The opposite was observed for those genes identified as

neuron-enriched by the nucRNA analysis (lower panels figure 4.3). Here, the nucleo-

somes formed highly ordered arrays across the gene body, and had a deep NDR in both

neurons and glia, despite the genes being far more highly expressed in neurons.

How much does Pol II binding or RNA expression level influence the organisation

of nucleosomes at the promoters? If there is more transcription machinery bound to

the gene then there must be reduced nucleosome occupancy, since it is assumed that

nucleosomes and Pol II would not be able to bind to the same piece of DNA at the

same time. However, the view from this genomic data is only a snapshot, and does

not capture the dynamics of the system. If some genes had highly dynamic transitions

between a Pol II-bound state and a nucleosome-bound state, then both high Pol II and

high nucleosome occupancy would be observed at the same regions. Why some genes

would be regulated by a more static chromatin state, and some by a more dynamic

chromatin state is an interesting question.
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Before further analysis, I wanted to ensure that the observations made about the

nucleosome architecture at cell-type-specific genes were not just the result of making

average profiles of multiple genes. I wanted to look at both the influence of Pol II bind-

ing and nucRNA level on nucleosome architecture at the promoter, since they appear

to have different effects. First, I examined the influence of Pol II binding. I generated

a ranked list of genes by calculating the number of reads from the Pol II ChIP across

a 500 bp window around the TSS, ranked from highest to lowest amount of binding

(methods 6.5). I then used these ranked gene lists to generate ranked heatmaps of the

MNase-seq data for neurons and glia (left side, figure 5.1). Control heatmaps of the

Pol II binding data (right side, figure 5.1) show the ranking of the Pol II was performed

correctly and that it is useful to compare the binding levels of Pol II with the MNase

heatmap .

It can be clearly seen from these heatmaps that even at the highest level of Pol II

binding there was little NDR formation at the neuron-enriched genes (neuronal genes,

neuronal MNase, figure 5.1). For the glia-enriched genes, there appears to be some

ordered nucleosome array clusters across a range of Pol II binding levels. However,

this nucleosome arrangement is present in both the neuron and glia MNase-seq data,

whereas the genes only had Pol II binding in glia. Those genes with invariant Pol II

binding show highly ordered nucleosome arrays and large NDRs for all genes that show

some Pol II binding. Those genes with no Pol II enrichment do not show any ordered

nucleosome organisation nor do they ahve an NDR. Thus it appears that at invariant

genes, the level of Pol II binding does correlate with a clearance of the nucleosomes at

the promoter.

I wanted to further demonstrate that the effects of Pol II binding levels on nucle-

osome architecture are different between cell-type-specific and invariant genes. There-

fore, I split each gene group into three categories, based on the level of Pol II binding:

high, medium and low binding. For invariant genes, I generated a fourth group of very

high binding as the Pol II binding is far higher in this group than any Pol II binding in

the cell-type-specific groups. I then generated average profile plots of the MNase-seq

data, split into the different gene catergories (figure 5.2). These results clearly demon-

strate a difference in nucleosome organisation between invariant and cell-type-specific

genes. Neuron-enriched genes presented a very fuzzy nucleosome architecture at the

promoter, in both neuron and glia MNase-seq data. However, the neuron-enriched

genes with the highest levels of Pol II binding had a decrease in nucleosome occupancy

in neuronal MNase compared to glia MNase. The glia-enriched genes showed the same
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Figure 5.1: Pol II binding across TSS - Heatmap of MNase-seq and RPB3 (Pol II)
ChIP-seq reads across cell-type specific and invariant genes, defined by Pol II binding.
Genes ranked in descending order of read counts across a 500 bp window around the TSS.
Pol II levels from neurona RPB3 CAST-ChIP were used to rank the neuron-enriched genes,
glia RPB3 CAST-ChIP data was used to rank the glia-enriched genes, and whole-head
RPB3-ChIP data was used to rank the invariant genes.
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Figure 5.2: Nucleosome architecture around the promoter based on Pol II
binding - Average profile plots of the neuron or glia MNase-seq data. Genes from the
neuron-enriched, glia-enriched, or invariant classes were further classified as having very
high (invariant only), high, med, or low Pol II counts over a 500 bp window across the
TSS.
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general pattern as neuron-enriched genes, although the +1 and +2 nucleosomes were

more defined, and again the promoter region had a high density of nucleosomes that was

slightly lower in the glia cells than the neurons. Invariant genes showed a completely

different pattern than the cell-type-specific genes. The higher the Pol II binding, the

more well positioned the +1 nucleosome became and the lower the density of nucleo-

somes over the NDR. It is clear from these analysis that there are different arrangments

of nucleosome with increased Pol II binding at invariant genes compared to cell-type-

specific genes.

5.4 RNA expression and nucleosome positioning are not
correlated

As demonstrated in the previous chapter (chapter 4, section 4.4), there was no cor-

relation between the level of nucRNA expression and nucleosome positioning at gene

promoters. Again, to demonstrate this further, I generated heatmaps where genes were

ranked from the highest level of expression to the lowest for each gene set (figure 5.3).

In these heatmaps, it was very clear that the level of RNA expression had little cor-

relationwith the level of nucleosome occupancy at the promoters of neuron-enriched

genes. The nucleosome array of these genes is highly ordered in both the neuron and

glia, and the level of RNA expression appears to not correlate with how ordered the

nucleosomes are at these genes. The glia-enriched genes were more difficult to inter-

pret, since the RNA levels were generally depleted from the neuron nucRNA to levels

lower than the surrounding regions. Very few of the glia-enriched genes had very high

expression, and most appeared to have levels comparable to background (levels outside

of the scaled gene regions) in glia cells. The nucleosome architecture was completely

disordered at the glia-enriched genes. Those genes with the highest levels of expres-

sion had lower nucleosome occupancy, but there was little formation of an NDR or

ordered nucleosome array. Much like with the neuron-enriched genes, the invariant

genes had highly ordered nucleosome arrays and deep NDRs. Also, at the invariant

genes the level of RNA expression had little influence on the order of the nucleosome

architecture, but does appear to influence the level of nucleosome occupancy into the

gene body. The highest expressed genes have less nucleosome density into the gene,

but the +1 nucleosome position and NDR remain the same at all RNA expression levels.

The observations seen in the heatmaps of figure 5.3 are more easily interpreted as

average profile plots, splitting the genes into high, medium and low expression (figure
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Figure 5.3: Ranking genes based on nucRNA expression - Heatmaps of MNase-
seq and nucRNA-seq in neurons and glia, at cell-type-specific and invariant genes based
on nucRNA expression level. Neuronal genes were ranked based on neuronal nucRNA-seq
expression level, glia genes were ranked based on glial nucRNA-seq expression level, and
invaraiant genes were ranked based on the average expression level of the nucRNA-seq
input samples.
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Figure 5.4: Nucleosome architecture based on expression level - Average profile
plots of MNase-seq data from neurons or glia, split into high, medium, or low expression
levels based on the nucRNA-seq data.
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5.4). Here, the trends described from the heatmap were more clearly visible. The nu-

cleosome architecture at neuronal genes was barely influenced by the expression level

of those genes. The highest expression group showed nearly identical expression to

the lowest expression group (figure 5.4, upper panels.) As seen in the heatmap, the

nucleosome density into the gene body of invariant genes decreased with higher RNA

levels. However, the NDR of the invariant genes remained depleted to the same de-

gree regardless of RNA expression level (figure 5.4, lower panels). Interestingly, the

glia-enriched genes have the most changes in nucleosome architecture across the differ-

ent expression level groups (figure 5.4, middle panels). Here, the highest level of gene

expression had a very flat nucleosome pattern, with the “NDR” region having nearly

equal nucleosome density levels as the gene body. The lowest expressed genes have a

larger difference between the nucleosome density across the promoter region and the

gene body. Please note the difference in scale between the different gene classes. For

example, for the glia-enriched genes, the lowest point on the scale bar (log2(RPKM)

= 2.2) is equivalent to the second highest point on the neuronal and invariant gene

graphs. Thus, the glia-enriched genes have very high nucleosome density across the

entire region, compared to the neuronal and invariant genes.

5.5 Defining promoters based on nucleosome architecture

From the previous analysis (sections 5.3, and 5.4), there are clearly differences in how

the nucleosomes are organised at the promoters of cell-type-specific and invariant genes.

However, it is apparent that not all genes regulated cell-type-specifically have the same

promoter architecture, and not all invariant genes have a constitutively open promoter

architecture. It would be interesting to better understand the characteristics that

underly the “fuzzy” versus “ordered” types of promoter and how they are involved in

gene regulation. To achieve this, I rationalised that it would be better to define gene

sets solely based on the promoter architecture, rather than a pre-defined expression

pattern. With a defined set of genes whose defining characteristic was the occupancy

and positioning of nucleosomes around the TSS, I could then observe what types of

characteristics, i.e. expression and chromatin state, are associated with each promoter

type. To define the two groups of genes, “ordered” or “fuzzy”, a score of orderedness and

fuzziness was calculated for every gene promoter (figure 5.5 A), using the head MNase-

seq data set. This was calculated by Pawel Bednardz. To determine the “orderedness”

of each gene, the ratio between the read count at the nucleosome summit and the

neighbouring trough (linker) was calculated for the first four nucleosomes of the gene.
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Figure 5.5: Dividing genes based on promoter nucleosome architecture - A)
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Then, the weighted average of the ratios was calculated, with higher weight given to

the +1 nucleosome, then the +2 etc. The fuzziness score was calculated by taking

a constant number minus standard deviation of a signal from TSS to where the +4

nucleosome was expected to be. To select genes with the most extreme ordered or

fuzzy architectures for further analysis, I took all genes with a score over 5, with 1283

and 1167 genes for ordered and fuzzy categories, respectively. The majority of genes

fall below the threshold score of 5 (figure 5.5 B). I generated an average profile plot,

graphing the MNase-seq data across the two gene categories (figure 5.5 C). This shows

that the selection was appropriate for identifying ordered and fuzzy genes. The ordered

genes showed the expected features, such as a nucleosome-depleted region upstream of

the TSS, a highly positioned +1 nucleosome, and an ordered nucleosome array into the

body of the gene. The fuzzy genes in this selection had none of the features; there was

a very slight depletion of read coverage upstream of the TSS, relative to the surround

regions, and there was no defined +1 nucleosome or nucleosome array.

5.6 Removing low coverage genes from the analysis

As can be seen in Figure 5.5 (C), the average coverage of MNase-seq reads over the gene

body is generally lower in the fuzzy gene class compared to the ordered gene class. It

is difficult to determine how well positioned a nucleosome is over a genomic locus when

the coverage of MNase-seq reads is very low. This is because if there is not enough

coverage there will be little difference in read depth between where the nucleosome

would be “positioned” and the adjacent linker region. Therefore those genes with very

low coverage needed to be removed from further analysis. To accomplish this, I deter-

mined the number of reads per base pair for every gene (methods 6.5.1) and divided

the genes into quintiles based on this read depth (figure 5.6 A). The lowest quintile

(quintile 5) has many genes falling below one read per base pair, a coverage depth that

is not reliable for determining nucleosome positioning. Only genes that fall into the

top four quintiles were used for further analysis, this resulted in a large loss of genes

within the fuzzy category (281 remaining from 1167) and also a loss of genes from the

ordered category (796 remaining from 1283).

When each quintile was plotted as an average profile plot aligned to the TSS (Figure

5.6 B), the level of coverage didi not affect the depth of the NDR nor did it seem to

affect the average position of the +1 nucleosome. However, the higher the coverage, the

more defined the nucleosome arrays were (compare quintiles 1 (black) and 5 (red) in

figure 5.6 B, for instance). Inspecting those genes that were removed from the analysis,
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I found that they have very high expression levels (not shown). This makes sense in

that these genes are likely so highly expressed that they have depletion of nucleosomes

across the gene body, due to constant progression of Pol II across the gene.

5.7 Activity characteristics of ordered and fuzzy genes

To determine the overall activity characteristics of ordered and fuzzy gene classes, I

plotted the read counts of RPB3-ChIP across the TSS as well as the average RPKM

from whole head nucRNA-seq of each gene group (figure 5.7, B and C). I also gen-

erated heatmaps for the MNase-seq, RPB3 (Pol II) and nucRNA data, ranked using

the heirarchical clustering function (158), to visualise the Pol II binding or nucRNA

levels across the different gene sets (figure 5.7, D,E, and F). The boxplots for RPB3

(figure 5.7, B) show that Pol II bound to generally lower levels in the fuzzy gene group

compared to ordered genes. Interestingly, the pattern of the heatmap for RPB3 was

very different between the ordered and fuzzy gene classes (figure 5.7, E ). The ordered

gene class had a very dispersed average RPB3 binding profile, whereas the fuzzy gene

class had a highly concise RPB3 profile spanning only approximately 200 base pairs,

with the highest point around 50 base pairs after the TSS. The broad binding pattern

observed in the ordered gene average profile appears to be produced by broad binding

of Pol II across the same gene promoters, rather than precise Pol II binding at different

points from the TSS for each gene.

The heatmap of the fuzzy gene class showed two clearly defined sub-populations:

genes with high levels of precisely positioned Pol II binding, and genes with no Pol II

present. The boxplot for nucRNA reads at the two gene classes (figure 5.7, C) showed

that there was little difference in gene expression, on average, between the two gene

groups. The heatmap of the nucRNA profile showed a complementary pattern to the

RPB3 heatmap (figure 5.7, D). Ordered genes had a low read density across the NDR,

and had relatively equal read levels between the TSS and further into the gene. Fuzzy

genes, on the other hand, had a higher read density just after the TSS compared to

further down stream regions. In conclusion, the Pol II binding data and nucRNA data

show that those genes with ordered promoters have broad Pol II binding and highly

variable levels of gene expression. Conversely, genes with fuzzy promoters are enriched

for two different types of characterisitic; genes with sharp Pol II recruitment and high

levels of gene expression, or genes with no Pol II recruitment and low gene expression.

These observations are consistent with previous findings that invariant genes have broad

Pol II binding, and cell-type-specific genes have highly specific Pol II binding sites (166).
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5.8 Defining promoter classes based on Pol II binding

There are clearly two distinct populations of genes within the fuzzy gene class, as shown

by the analysis of Pol II and nucRNA (section 5.7). One group of genes had highly

sharp Pol II recruitment, and were expressed on the nucRNA level. The other group of

genes had neither Pol II recruitment, nor nucRNA expression. These two populations

likely have different features in terms of chromatin signature and promoter architecture.

As demonstrated in sections 5.3 and 5.4, the level of Pol II binding was much more

correlated with changes in the surounding chromatin architecture than RNA levels.

Therefore, I separated active genes from inactive genes, based on Pol II occupancy, in

both the ordered and the fuzzy gene lists. This was achieved by intersecting each gene

list with the the list of Pol II peak calls for the head RPB3 ChIP-seq (CCAT peak

calls, (34)), resulting in four distinct gene classes: Ordered + Pol II, Ordered No Pol

II, Fuzzy + Pol II, and Fuzzy No Pol II (table 5.1).

Pol II No Pol II

Ordered 402 394
Fuzzy 110 179

Table 5.1: Defining promoter classes by Pol II binding

The average Pol II profile at these four classes of genes is shown in figure 5.8 (A).

The two populations previously observed for the fuzzy genes have been clearly sep-

arated, with a relatively even number of genes having either high levels of precisely

localised Pol II binding or no detectable Pol II binding. There was not such a clear

distinction between being Pol II bound and not Pol II bound at the ordered genes. For

example, the ordered genes with no Pol II peak had an overall higher level of reads

compared to the fuzzy genes with no Pol II (peak (figure 5.8 A, grey for for ordered

Pol II, light green for fuzzy Pol II). The higher Pol II binding for ordered genes did

not appear to result in higher transcription, as the nuclear RNA levels of the No Pol

II gene classes were at the same level (figure 5.8 C).

The higher level of Pol II binding in the ordered no Pol II gene category compared

to the fuzzy no Pol II category was not due to technical differences in how accessible

the chromatin was to sonication. Appendix C.4 shows that the input chromatin is

at the same background level in all gene categories. It is likely that the low level of

read enrichment came from bound Pol II, which was just not called as Pol II-bound

in the peak-calling analysis, simply because of the technical limitations of this type of
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analysis. Peak calling from genomics data requires a threshold to be reached above the

background noise, and sharper peaks are easier to call than broadly dispersed peaks

with blurry edges. Because of the nature of Pol II binding at ordered genes, which

is rather lower and much broader than fuzzy genes, the Pol II peaks at ordered genes

would be more difficult to call. Despite this, however, I retained the same classifications

for further analysis, given that the Pol II binding in the ordered no Pol II class is

not called as significant in the peak calling and the nucRNA levels are equally as low

as the fuzzy no Pol II class.

Despite the differences in Pol II binding and nucRNA levels for the ordered genes,

the nucleosome pattern at these promoters was nearly identical (figure 5.8, B). However,

the NDR of the ordered no Pol II genes had a slightly higher read coverage than

that of the ordered Pol II genes. The nucleosome pattern of fuzzy genes changed

when the genes are split into the ± Pol II categories. The fuzzy no Pol II genes

retained a completely flat nucleosome architecture, whereas the fuzzy Pol II genes

had a reduction of reads over the promoter, and a slight positioning of the +1 and +2

nucleosome was apparent. The NDR present for the fuzzy Pol II genes was still not to

the level of depletion seen in both classes of ordered genes. This means that despite the

high level of Pol II binding at the fuzzy Pol II genes, the Pol II was not completely

out-competing nucleosomes for binding to the promoter region.

5.9 Underlying sequence preferences of promoter classes

One explanation of why there is little difference in promoter architecture at ordered

genes, regardless of activity level, is that the DNA sequence at these promoters is driv-

ing nucleosome eviction rather than chromatin remodellers or the pre-initiation com-

plex (PIC). A long stretch of AT (or CG) nucleotides is unfavourable to nucleosome

formation as it increases the rigidity of the DNA, which makes wrapping it around a

nucleosome thermodynamically unfavourable. Therefore, those genes with an ordered

promoter architecture and deep NDR across the promoter would be expected to be

highly enriched for AT. Conversely, those genes with fuzzy promoters, where nucleo-

somes occupy the promoter region, would be expected to have mixed sequences that

would favour nucleosome formation.

To determine if there are any differences in the composition of nucleotides between

the ordered and fuzzy gene classes, I used the genomic coordinates of each annotated

TSS to generate a fasta file of sequences 500 bp either side of the TSS (methods 6.5.2).
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I then used the composite fasta file to make an alignment and probability-score logo

of each gene class using the online web-tool weblogo 3.4 (167). From this analysis it

was clear that both sets of ordered genes ± Pol II had the same level of AT enrichment

(figure 5.9). When the fuzzy gene group was split based on Pol II a different picture

arose (figure 5.9). In this case the genes with Pol II had no detectable sequence bias,

whereas the genes with no Pol II binding showed an enrichment of A and T nucleotides.

This difference in the underlying sequences of the fuzzy genes and not the ordered genes

could be explained by the observations that the ordered gene class ± Pol II had more

similar Pol II profiles, only one was much lower, and the fuzzy gene class had an all-

or-nothing distinction in terms of Pol II binding.

5.10 Histone variant H2A.Z is enriched at ordered genes

To determine if there may be differences in the chromatin state (histone variants and

histone modifications), that could contribute to the architectural differences of the gene

classes, I analysed the binding of histone variant H2A.Z and several histone marks at the

ordered and fuzzy genes ± Pol II. I analysed a whole-head H2A.Z ChIP-seq dataset (34),

as well as the neuronal histone mark datasets H3K36me3, H3K27ac, and H3K27me3. I

used the neuron-specific histone datasets as I did not perform head ChIP-seq analysis

of these histone modifications, and the neuron datasets will represent a major propo-

ration of the cells in the head. All analysis was plotted as log2 fold change over head

H3-ChIP-seq to remove the influence of different nucleosome levels (34) (figure 5.10.

The results of the chromatin analysis are most intriguing for H2A.Z (figure 5.10

A), where a vast difference exists between ordered and fuzzy genes, regardless of gene

activity. The fuzzy genes with Pol II had a slight peak of H2A.Z at the promoter region,

which was the contribution of a small number of genes (figure 5.10 E). Ordered genes

had high levels of H2A.Z around the promoter, regardless of the level of Pol II binding

or transcription at the genes (figure 5.10 A). Ordered genes also had high levels of the

active histone marks H3K27ac and H3K36me3 (figure 5.10 B and C), with the Ordered

no Pol II gene class showing slightly lower levels of these marks than the Ordered

Pol II gene class. Despite a lack of H2A.Z at the Fuzzy Pol II genes, these genes

showed H3K27ac and H3K36me3 levels that were comparable to the ordered genes.

Those genes that had fuzzy promoters, without Pol II did not have enrichment of the

“active” chromatin marks, and had some increase in H3K27me3 enrichment compared

to the other gene groups (figure 5.10 D).
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Figure 5.10: Histone marks reflect nucleosome architecture more than ex-
pression level - Average profile plots of H2A.Z (A), H3K27ac (B), H3K36me3 (C), and
H3K27me3 (D) across the ordered and fuzzy ± Pol II gene groups. E) Heatmaps, ranked
by heirarchical clustering, of H2A.Z binding across the tss of ordered and fuzzy genes ±
Pol II genes.
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These findings are in agreement with the observations discussed in chapter 3. Those

genes with constitutively open promoter architectures, the invariant and neuronal-

nucRNA genes, had high levels of the active histone marks regardless of the level of

gene activity. Here, the ordered promoters showed the same features, high levels of

active marks and H2A.Z, even when the genes had different levels of Pol II binding

and gene expression. A key point of difference between these analysis and those of

chapter 3 is that the fuzzy genes with Pol II had enrichment of H3K36me3. This

indicates that the H3K36me3-less feature is not the predominant chromatin state for

genes regulated through modulating accessibility to the promoter, by occluding the

promoter with nucleosomes. Therefore a fuzzy nucleosome architecture is a feature of

active-H3K36me3-less genes, but active genes with fuzzy promoters are not necessarily

H3K36me3-less.

5.11 H2A.Z binding is predictive of ordered promoters

The observation that H2A.Z was highly enriched at ordered genes and depleted at fuzzy

genes (figure 5.10) led me to ask what the chromatin architecture is of genes with and

without H2A.Z. To do this, I generated a list of genes called to have H2A.Z (CCAT

peak-calling from (34), classed as H2A.Z), and a list of all remaining genes that were

not called to have an H2A.Z peak (No H2A.Z). To ensure that the genes were clas-

sified correctly, I generated an average profile plot of the H2A.Z data (figure 5.11, A),

which clearly showed high levels of H2A.Z binding at the H2A.Z genes and no H2A.Z

binding for the No H2A.Z genes.

Next, I used the H2A.Z gene classes to plot the head MNase-seq data (figure 5.11,

B). It can be seen clearly from the analysis that splitting genes based purely on presence

or absence of H2A.Z produced two types of average nucleosome profiles: an ordered

nucleosome architecture for H2A.Z genes, and a fuzzy nucleosome architecture for non-

H2A.Z genes. Both sets of genes were expressed, as shown by analysis of nucRNA data

(figure 5.11, C), albeit to a lower level for non-H2A.Z genes (p-value = 0.0664). Inter-

estingly, there was a difference in the level of Pol II binding across the two gene classes

(figure 5.11, D). H2A.Z bound genes had a significantly higher level of Pol II binding

across the promoter region than the non-H2A.Z genes (p-value = 0.004154, Welch 2

sample t.test). I next determined how many of the genes from each of my promoter

architecture groups, ordered and fuzzy, overlapped with the H2A.Z and the No H2A.Z

groups. As expected, 95 % of the genes in the ordered gene category overlapped with

genes called as containing an H2A.Z peak whereas less than 40 % of the genes in the
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fuzzy category overlapped with H2A.Z-bound genes. This indicates a strong link be-

tween the “orderedness” of a promoter’s nucleosomes and H2A.Z, which is independent

of gene expression levels.
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Figure 5.11: H2A.Z is present at ordered genes and not fuzzy genes - Genes
were split according to whether or not there was an H2A.Z peak called at the gene or
not. A) Average profile plots of H2A.Z-ChIP data showing that the gene divisions based
on peaks call were correct. B) Average profile plots of head MNase-seq data aligned to
the TSS at H2A.Z-positive and H2A.Z-negative genes. C) RPKMs of H2A.Z-positive and
H2A.Z-negative genes. D) Difference in the level of Pol II binding across the TSS ± 250
bp between H2A.Z-positive and H2A.Z-negative genes.
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5.12 Fuzzy genes are enriched for paused Pol II

The Fuzzy Pol II gene class shows the characteristics associated with paused Pol II

(introduction 1.1.1), such as the shape and position of the Pol II binding profile and

the high levels of short nucRNA reads at the 5′ end of genes. High levels of H2A.Z have

been shown to be negativley correlated with Pol II pausing (18), which is in agreement

with the observation made here that fuzzy genes have far lower levels of H2A.Z than

the ordered genes. To test if the fuzzy genes are more frequently regulated by Pol II

pausing than the ordered genes, I calculated a Pausing Index (PI), (figure 5.12 A). I

then ranked all genes and split them into quintiles based on the PI (6256 genes in each

group).

With the quintiles of PI, I assessed whether the RNA expression and chromatin

structure follow the patterns one would expect from the different pausing quintiles. I

generated average profile plots of both the nuclear RNA and the MNase-seq datasets

splitting the data into the pausing quintiles (figure 5.12, C and D). Both the RNA and

the MNase patterns show what would be expected from separating genes by PI. The

nucRNA had a high peak of reads at the 5′ end of genes for the highest PI quintile, and

also had the highest levels of transcripts overall (figure 5.12, C). The shape of the nu-

cRNA profile was quite different across the genes in the next highest quintile (quintile

60-80). The profile at these genes was generally much flatter, with only a small peak of

reads accumulating at the 5′ end of the gene. The remaining lower quintiles continued

to decrease in expression levels consistent with the decreasing levels of Pol II binding.

When observing the MNase-seq data for each PI quintile, some interesting features

can be noted (figure 5.12, D). First, for genes with the highest level of pausing, the

nucleosome pattern was consistent with the current models for Pol II pausing. The

key features are a deep NDR, a highly positioned +1 nucleosome, and the nucleosomes

become quickly depleted and disordered into the gene body. Under closer inspection

there were also an observable difference between the highest quintile and the 60–80

quintile in the position of the +1 relative to the TSS. The 60–80 quintile had much

lower levels of Pol II than the highest quintile, however the NDR was just as deep.

The middle quintile and the 60–80 quintile had highly similar RNA and nucleosome

profiles, with small differences in levels that are proportional to the difference in Pol

II binding. The lowest quintile and the second lowest (20–40 quintile) had very little

nucleosome organisation, and there was no observable NDR. These observations show

that when genes are ranked based on pausing index, the nucleosome architecture at the
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Figure 5.12: Calculating the pausing index based on RPB3 ChIP-seq - Dividing
genes based on level of Pol II pausing reveals a promoter nuclear architecture fitting the
current model for gene activity and promoter structure. A) Calculating the pausing index
based on RPB3 ChIP-seq data. Read-counts were calculated over the TSS ± 250 bp and
also over the gene body, from 500 bp into the gene to the TES. Counts were then divided
by the length of the region they were calculated over to get average reads per bp for the
TSS or gene body. These average numbers are then used to generate the pausing index. B)
The average profile of RPB3 data across genes split into quintiles based on pausing index.
C) nucRNA levels across pausing-quintiles. D) nucleosome profiles at the TSS across the
pausing quintiles.

125



5. THE ROLE OF PROMOTER ARCHITECTURE IN DEFINING
GENE EXPRESSION PROGRAMS

promoter falls into the expected patterns: 1) Genes with a high pausing index have a

deep NDR, a highly positioned +1 nucleosome and depletion of nucleosomes into the

gene; 2) Pol II-bound genes with a low pausing index show an NDR, a highly positioned

+1 nucleosome, and an ordered array of nucleosomes into the gene; 3) Genes with very

low or no Pol II have no NDR, the +1 nucleosome is not well positioned and there is

no ordered nucleosome array into the gene.

To assess the level of pausing in the ordered Pol II and fuzzy Pol II gene sets, I

intersected each gene list with the genes in each pausing index quintile, and generated

pie charts to compare the distribution of the groups (figure 5.13). The ordered and

fuzzy gene sets have a strikingly different distributions of the pausing quintiles. The

genes with fuzzy nucleosome architecture indeed have a higher proportion of the most

highly paused genes compared to the ordered genes (35 % in fuzzy versus 22 % in

ordered). This was expected, as these genes had sharp Pol II binding profiles (section

5.7). The ordered genes have a larger proportion of genes within the second highest

pausing quintile than the fuzzy gene class. This was also in agreement with the broad

Pol II binding profile at these genes (section 5.7). There were very few genes in either

the ordered or fuzzy category that had a PI in the lowest two quintiles.
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Figure 5.13: Fuzzy genes have higher pausing indices - Pausing indices were split
into quintiles, and the number of genes in the ordered or fuzzy gene class that fell into
each pausing index group was calculated. Ordered genes are more enriched for genes in the
60–80 and middle pausing index quintiles. Fuzzy genes are more enriched for genes that
fall into the highest and 60–80 pausing quintiles.
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5.13 Discussion

Specific gene expression programs require specialised regulation. Different types of

genes will be subjected to more or less stringent regulatory processes, which would

evolve alongside the evolution of the gene itself. Here I have described the character-

istics of gene regulation through the architecture of nucleosomes across the promoter

region. When observing promoter architecture from the point of view of Pol II binding,

there is a clear relationship between the level of Pol II binding and clearance of nucleo-

somes from the promoter, i.e. NDR formation. However, when the gene expression/Pol

II binding is observed from the perspective of the nucleosome architecture, the result

was unexpected. I identified a subset of genes with very high Pol II binding, yet had

the fuzziest nucleosome architectures of all genes in the genome. I have summarised

the findings and projected model of gene regulation at constitutively open promoters

of “ordered” genes compared to “fuzzy” genes (figure 5.14).

At the DNA sequence level, the ordered and fuzzy promoters are very different. The

ordered promoters are highly AT-rich, which indicates that these promoters would be

intrinsically unfavourable to nucleosome binding. Conversely, the fuzzy promoters have

highly varied sequences across the promoter region and thus would be more favourable

for nucleosome formation. These underlying DNA sequences would be the basis on

which the chromatin state and regulatory mechanisms are formed. Although the cause

and consequence of what drives the chromatin state at different genes is not clear, the

DNA sequence differences at gene promoters is likely a fundamental factor.

Ordered gene promoters could be founded on an intrinsic NDR, guided by the under-

lying DNA sequence. This intrinsically open region would be a large enough platform

for SWR1 to bind and deposit H2A.Z within the surrounding nucleosomes (figure 5.14,

A). This mechanism would imply that H2A.Z deposition is independent of transcrip-

tional activity, and would be in agreement with the observation that ordered genes have

high levels of H2A.Z incorporation, regardless of Pol II occupancy (section 5.10). Other

chromatin remodellers would be involved in defining the ordered spacing of the nucle-

osome array, a mechanism that is also likely to be independent of transcription. This

generates an open promoter that would be available for pre-initiation complex (PIC)

assembly, with little hinderance from the local chromatin architecture (figure 5.14, B).

During the transcription process of the ordered genes, the active histone modifications

are set in place (figure 5.14, C). Both H2A.Z and H3K36me3 have been demonstrated

to negatively correlate with nucleosome turnover (51, 168). Thus at the the ordered
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Figure 5.14: Model for establishing different nucleosome architectures - Model
depicting how the ordered and fuzzy promoter arcitectures may be established. For or-
dered promoter architectures; A) the DNA sequence under the promoter is unfavourable
for nucleosome formation. The intrinsic nucleosome-depleted region (NDR) allows SWR1
to bind and incorporate H2A.Z, even in the absence of transcription. B) Pol II is recruited
to the ordered gene promoters and transcriptional elongation occurs with little regulation
at teh inititation step (pausing). During transcription the active histone marks are added
to the genebody nucleosomes. C) Low nucleosome turnover, likely driven by high H2A.Z
and H3K36me3, results in maintainence of the active chromatin state after transcription
has ceased. Fo fuzzy promoter architectures; D) the DNA sequence under the promoter is
favourable for nucleosome formation, meaning transcription factors compete with nucleo-
somes for binding the DNA. E) When transcription factors do bind, the PIC is assembled
and inititates transcription, but Pol II is paused 50-100 base pairs into the gene. Nucleo-
somes re-occupy the promoter region once Pol II has progressed into the paused state, so
that no nucleosome-free region is available for H2A.Z incorporation. F) After transcription
is complete, high nucleosome turnover ensures the chromatin is reset to a repressive state
in the absence of the necessary transcription factors.
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genes, nucleosome turnover is expected to be low, and therefore the active histone modi-

fications may be maintained for long periods after transcription of the gene has stopped.

A key feature of the ordered promoters is that they are constitutively open, meaning

that they have an NDR even in the cell type where the gene is not currently active.

However, this does not mean that these genes are not subjected to additional modes of

activation. As shown in the previous chapter (chapter 4), there are genes expressed in

all cell types that have an additional increased expression level in neurons. Thus, these

ordered genes likely have low levels of basal transcription that is increased, either at

the level of Pol II recruitment or elongation, by additional factors. I expect that these

genes, while not necessarily house-keeping genes, would not have deleterious effects if

expressed when not required. This is because genes which cause problems when mis-

expressed would be expected to have evolved a more complex mechanism that ensures

efficient and precise shutdown of the gene when it is not required, and have efficient

and precise gene activation when it is required. If a gene is not deleterious to the cell

when expressed even when it is not required, then there would be no evolutionary ad-

vantage to develop a highly thourough and specialised repression system for those genes.

Fuzzy gene promoters have an underlying sequence that we would expect to be

preferable to nucleosome formation. Thus fuzzy promoters are intrinsically occluded

by nucleosomes, and assembly of the PIC at the promoter would require a coordinated

effort of many factors (figure 5.14, D and E). Dynamic competition between these fac-

tors and the nucleosomes for binding the promoter DNA ensures the precise regulation

of these genes. Only when the binding is tipped in favour of the regulatory factors can

the transcriptional machinery be recruited to these genes. Once the PIC is assembled,

the Pol II progresses into the gene and is further regulated by pausing mechanisms

(figure 5.14, E). Additionallly, the active histone marks are established across these

genes during transcription (figure 5.14, E). Higher nucleosome turnover at these genes

would drive dynamic removal of these marks, to ensure complete repression of the gene

in the inactive state (figure 5.14, F).

High levels of Pol II pausing have been shown to alter the nucleosome architecture

at the promoter, leading to a positioned +1 nucleosome, and clearing of the NDR (17).

However, that high Pol II binding and pausing always leads to a cleared NDR and posi-

tioned + 1 nucleosome is not true. I have shown in this chapter that there is a subclass

of genes that have the fuzziest nucleome architecture of all genes in the genome, yet

have high levels of Pol II binding, a significant proportion of which is in the highest
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two quartiles of paused Pol II. These genes do represent a small proportion of the total

genes present in the Drosophila genome and are likely an exception rather than the rule.

However, I that these genes will be regulated with exceptionally rigourous control, and

thus exemplify the chromatin features involved in precise spatial and temporal gene

expression.

The majority of the fuzzy, paused Pol II genes, lack H2A.Z. And, although a re-

lationship between H2A.Z and ordered nucleosome architectures has been shown pre-

viously, it is not clear what the function of this relationship actually is. In yeast,

depletion of H2A.Z did nothing to affect the ordered arrangement of the nucleosomes

at the promoter (33). Loss of H2A.Z in Drosophila is lethal, presumably through a loss

of global gene activity, which would make sense in that H2A.Z is found to be enriched

with tissue-invariant genes (34), whose expression is necessary for basic cell functions.

H2A.Z is clearly not necessary for the activity of many genes, particularly those reg-

ulated through Pol II pausing (18). However, it has yet to be shown whether ectopic

incorporation of H2A.Z at non-H2A.Z genes has an effect on gene expression. I would

expect that forced incorporation of H2A.Z at non-H2A.Z genes would greatly impact

their ability to be temporally and specifically regulated. I propose that the rapid incor-

poration of nucleosomes over the promoter region is a necessary step to ensure exclusion

of H2A.Z, and thus ensure the maintainence of specific regulation of that gene.

It is likely that higher binding preference of nucleosomes at the promoter is not the

only driving force behind exclusion of SWR1 and H2A.Z; other chromatin remodelers

will be neccessary. Interestingly, a recently published manuscript showed that loss of

the ubiquitous histone chaperones FACT and Spt6 are involved in blocking H2A.Z

incorporation into intragenic regions (169). The model proposed in Jeronimo et. al.,

(2015), describes how active transcription requires the removal of nucleosomes, and

thus the exposure of DNA to the SWR1 complex. FACT and Spt6 are then required

for removal of H2A.Z and incorporation of cannonical H2A, and thus the repression

of internal transcription start sites. I speculate that FACT could have an equally

important role in preventing H2A.Z incorporation at active fuzzy promoters, and thus

ensure specific regulation. It has been shown previously that inhibition of FACT,

using a temperature-sensitive FACT mutant, has highly precise phenotypic outcomes

depending on the time of development FACT was inhibited (170). For example, the

inability to eclose completely from the pupae, even though development to the adult

form is unhindered (data not shown). This would be consistent with a loss of control

of temporal and spatial specific gene regulation.
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5.14 Future directions

It would be extremely interesting to determine what the consequences would be if a

promoter was modified to resemble to opposite architecture, for example by editing the

amount of AT. Would a transition from fuzzy to ordered promoter sequence enable the

incorporation of H2A.Z? Would it cause a severe phenotype due to ectopic expression?

Would the gene then exhibit an ordered nucleosome array, even though the sequence

underlying the gene region was unchanged? Testing these questions would be techni-

cally challenging. One experiment could be using reporter constructs of selected gene

promoters upstream of GFP, for example. The promoter regions could then be altered

to be more or less nucleosome favourable. These reporter constructs would need to

be incorporated into the genome at the same location, such as using phiC31 insertion

sights. Such an experimental set-up would enable the nucleosome organisation, H2A.Z

incorporation and expression level to be assessed as well as determining if ectopic ex-

pression at different developmental stages occurs.

Many further experiments would be useful to test the two models of gene regula-

tion described in this chapter. Firstly, whether the underlying DNA sequence is indeed

guiding an intrinsic loss of nucleosomes at the ordered gene promoters. In vitro nucleo-

some reconstitution assays would be ideal to test this hypothesis. If the system behaves

in the same way that yeast promoters do, then reconstitution of nucleosomes without

any cell extract or ATP would show little occupancy of nucleosomes over the ordered

gene promoters, but high occupancy of nucleosomes over the fuzzy promoters. This

system could also be further used to test the incorporation of H2A.Z, by adding H2A.Z,

SWR1, and ATP to see if H2A.Z is indeed preferentially incorporated into the ordered

genes. Testing whether there is truly more regulation by Pol II pausing at the fuzzy

genes could be done by RNAi of the Negative Elongation Factor (NELF). NELFs role

is to promote Pol II pausing, and removal of NELF is needed for Pol II to proceed into

productive elongation. By artificially removing NELF, the pausing check point is re-

moved and there will be alterations at the transcriptional level at pause-regulated genes.

To test whether FACT is involved in repressing incorporation of active genes with

fuzzy promoters, the temperature-sensitive Dre4 mutant fly strain could be used (170).

Once flies have reached adulthood, switching them to restrictive temperature would

inhibit FACT function, and a non-ts mutant Dre4 can be used as a control. Comparing

the H2A.Z occupancy by ChIP-seq between the Dre4ts mutant and control group would

provide a global picture of where H2A.Z is incorporated in the absence of FACT activity.
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The answer to the question of how genes are expressed in the right place, and at the

right time, is clearly complex. In this thesis, I have demonstrated that multiple ge-

nomics tools can be used to obtain a more refined picture of the chromatin state aids

by dissecting out some of the inherent complexity. My analyses revealed levels of gene

regulation that were not previously considered. Just as I have shown in chapter 3,that

one method for measuring gene activity alone is not enough for grasping the entire

repertoire of active genes, looking at a single type of “model” cell, or an average of a

whole organism, is not sufficient for understanding the complexities of gene regulation.

Indeed, precise spatial and temporal gene expression is driven by combinations of subtle

mechanisms and co-operativity that is lost when looking at global averages. A key con-

clusion I make is that although the end result of gene regulation can be the same, i.e.

that a given protein is present in a specific cell type, how that is achieved can be vastly

different for each individual gene. Some genes will be regulated by Pol II recruitment,

some genes will be regulated by transcriptional elongation, some genes will be regulated

during mRNA translation, and perhaps at every step in-between. Including at the level

of RNA processing, transport and degradation. We now have many tools to assay these

steps of regulation with high spatial precision. By using combinations of these tools, we

can start to build a more refined and complex understanding of gene-regulatory systems.

There are, however, still limitations to this type of analysis. For example, even

though I have assessed two distinct populations of cells with defined functions, I am

still averaging across multiple cells. I have used the pan-neuronal elav-Gal4 driver to

label what I term “neurons”, yet, there is a highly diverse mixture of neuronal sub-types

that comprise this population. Each neuron in the head is likely to have some unique

features involved in the functional specialisation of that neuron, which are lost when

averaging the whole neuronal population. There are also limitations in that I have

averaged multiple genes, defined by some unifying feature, which will average out any

information about the many mechanisms governing their expression. This means that
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only the mechanisms that are most prevalent in the gene population will be distinguish-

able. However, by refining my analyses from whole head to neurons and glia, I have

uncovered that the most prevalent gene-regulatory mechanisms strongly differ between

these cell types. My project has also only measured a single time point. Tested here

were adult flies, which were 2–4 days old, and at a circadian time-point of 17:00–18:00.

Even within a single neuron, gene expression likely changes over time, so we are still

missing the context of chromatin state in the temporal regulation of genes. Thus, the

analysis performed here provides a more refined view of the most abundant mechanisms

involved in regulating major gene expression differences between neurons and glia at a

single time point.

To further address the question about temporal gene regulation in the Drosophila

head, we are currently performing experiments to study gene expression changes during

fasting. I have obtained and mapped ChIP-seq datasets measuring the binding of Pol II

in adult female heads after six and nine hours of food deprivation (not shown). These

new data complement an RNA-seq dataset that measured the changes in gene expres-

sion from zero to 24 hours of starvation (T. Schauer, unpublished). This new avenue

of research will also move forward into cell-type-specific gene regulatory mechanisms

of the fasting response. These data will allow us to understand the gene regulatory

changes during fasting both spatially and temporally.

Cell-type-specific tools have by no means been pushed to the limits. With further

optimisation, the tools used here could be used to assay far smaller sub-populations.

Particularly, the split-Gal4 system could be used to assay small, highly defined, cell

populations (171). Our understanding of mechanisms driving cell-type-specific gene

regulation will grow exponentially, especially when technologies for single-cell analysis

become more routine. While many techniques have been developed to achieve a more

refined view of general gene regulation mechanisms, such as Gro-seq for probing Pol II

pausing (172), ATAC-seq for nucleosome architecture (153), ChIP-exo for looking at

highly defined protein-DNA interactions (173), or ribosome foot-printing for measuring

translational progression (174), these techniques have yet to be applied to cell-type-

specific systems. Further technological advances are required if we aim to investigate

the dynamics of the chromatin and transcriptional state in specific cell types. To my

knowledge, only steady-state analyses of specific cell types have been investigated thus

far, as was shown in my research here. However, methods for studying the dynamic

responses of the chromatin state and expression to environmental stimuli will be needed

to understand the dynamics of the gene-regulatory system.
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The results presented in chapter 4 are a good example of the advantages of using mul-

tiple methods in genome-wide studies. The comparison between a Pol II-centric method

for identifying gene activity and a method better suited to measuring transcriptional

elongation, revealed distinct mechanisms for achieving neuron-specific gene expression.

While much further analysis is needed to understand what drives the cell-type-specific

elongation, this study uncovered a novel insulator-based model for achieving neuron-

specific gene activity. I have shown that a particular subset of neuron-specific genes are

highly enriched for the insulator Su(Hw), an insulator that is absent from neurons yet

present in glia, and other tissues. Neuron-specific activation would be achieved through

relief of repression by Su(Hw) in neurons, a mechanism analogous to the REST-complex

function in mammals (175).

Using only a single method to identify neuron-enriched or glia-enriched genes, the

complexity of the different types of gene regulation may have been lost. Had only the

nucRNA analysis been used as the measure for neuron-enriched or glia-enriched gene

expression, I would not then have been aware of the Su(Hw)-mediated mechanism for

regulating a subset of neuron-enriched genes. Had I only used Pol II binding as the

measure for gene activity, I would not have been aware of specifically regulated genes

with highly invariant chromatin states. It is by comparing and contrasting the two

types of gene activity measurement that we can visualise the different types of regula-

tion.

I have generated many testable hypotheses from the data analysis presented in this

research. However, the analysis performed here is only a small sample of the many

types of analysis that can be performed on these data. For example, whether there is

enrichment for transcription factor binding sites at the cell-type-specific nucleosome-

free regions is still on going. Additionally, the nucRNA data could be explored much

further, for instance by identifying non-coding RNAs from each cell type, or identify-

ing differential 3′UTRs. I envision that incorporating many publicly available datasets

into future analysis will allow us to obtain an even more detailed view of the chromatin

state and gene regulatory mechanisms. Computational analysis is extremely valuable

for observing the data, and generating testable hypotheses. However, taking an hypoth-

esis formed in silico and testing it experimentally in vivo and in vitro is also highly

important to further our understanding. My overall aim of the research presented in

this thesis was to better understand how chromatin structure regulates specialised gene

expression programs in neurons and glia. The system-wide approach I have taken, ob-

serving and refining the relationships between many different types of dataset, has lead
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to finding multiple mechanisms governing the specialised gene regulation. As is the

way with biology, more questions have arisen than definite answers. But the questions

themselves have become more directed and refined than was previously possible.
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Chapter 6

Materials and methods

6.1 Drosophila husbandry

Food preparation

All fly stocks were grown on basic food, containing: 76 g cornmeal, 60 g dried yeast, 8.4

g agar, 31.4 g saccarose, 62.7 g glucose, 8.7 g sodium potassium tartrate, 0.7 g calcium

chloride, and 2.6 g nipagen per litre of solution. After cooking, the food was left to dry

overnight before plugging with stoppers. Additional dried yeast was added on top of

the food before use.

Stock generation and maintenance

The Elav::H2B-GFP line was maintained as a homozygous stock, containing two copies

each of the Elav-Gal4 driver line. The Repo::H2B-GFP line was made homozygous,

using balancer chromosomes (CyO for 2nd chromosome, and TM3,Ser for 3rd chromo-

somes). Repo::H2B-GFP flies were outcrossed for six generations with 2202U (wild-

type) to ensure the genetic backgrounds between the Elav::H2B-GFP and Repo::H2B-

GFP were as similar as possible. Stocks were maintained in small vials at 18 ◦C.

Line amplification and collection

Stocks for large-scale collection were expanded to bottles of standard food with addi-

tional dried yeast. Flies were flipped to new food every 2–3 days and grown at 25 ◦C at

70 % humidity. Flies were collected within one day of eclosion, into bottles containing

standard food and sufficient yeast. Collected flies were kept at 25 ◦C until the follow-

ing day between 17:00–18:00, where they were transferred to Falcon tubes and quickly

frozen in liquid nitrogen.
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6.2 Generating Repo::H2B-GFP Drosophila line

6.2.1 Cloning H2B-GFP behind Repo promoter

Cloning strategy

The H2B-GFP transgene was amplified using PCR 6.2.1 from k161pHS-H2B-GFP (vec-

tor map, appendix D.1). The PCR amplification used primers containing Not1 and

Xba1 restriction sites (see primer list D.1). The H2B-GFP PCR amplicon was cloned

into a pCasper4 vector containing the Repo regulatory region (vector map, appendix

D.3). The Repo regulatory region is sufficient to drive specific expression of the H2B-

GFP transgene in glial cells.

PCR amplification

PCR amplification was performed using the following components:

Table 6.1: PCR reaction setup - for 50 µL reaction

Component Quantity

5 X Phusion buffer 10 µL
10 mM dNTPs 1 µL
10 mM primers 2.5 µL of each
Phusion polymerase 1 µL
Template 1 ng
H20 To 50 µL

Amplification of the H2B-GFP transgene from the k161pHS-H2B-GFP plasmid was

performed following the PCR cycle conditions in table 6.2.

Table 6.2: PCR conditions

Temperature Time

98 ◦C 1 minute
25 98◦C 20 seconds

cycles 55◦C 15 seconds
72◦C 45 seconds
72◦C 6 seconds
4◦C Finish
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Restricition Endonuclease Digestion

PCR amplicons were purified using Wizard SV Gel and PCR clean up kit (Promega)

prior to restriction digestion. Restriction digestion conditions were performed as in

table 6.3.

Table 6.3: Restriction digest conditions

Reagent H2B-GFP pCaspeR4Repo

DNA 1520 ng 1125 ng
Buffer 3 5 µL 5 µL
BSA 0.5 µL 0.5 µL
NotI 0.5 µL 0.5 µL
XbaI 0.5 µL 0.5 µL
H2O 38.5 µL 41 µL

The samples were incubated at 37 ◦C for 1 hour, then the reaction was stopped by

incubating the samples at 65 ◦C for 10 minutes. The samples were then purified using

Wizard SV Gel and PCR clean up kit (Promega).

Ligation

Ligation of the H2B-GFP insert into the pCaspeR4-Repo vector was carried out using

two different insert:vector ratios. Reactions were carried out in 20 µL volumes contain-

ing 1 x T4 DNA ligase buffer, 100 ng of vector, 15 or 100 ng of insert, 1 µL T4 ligase

(NEB), and H2O to 20 µL. Ligation reactions were incubated at room temperature for

20 minutes, then immediately used for bacterial transformation.

Transformation of plasmid into bacteria

Competent cells (DH5α, 50 µL) were thawed slowly on ice, 5– 10 µL of the DNA solu-

tion was mixed with the cells, and then left on ice for 30 minutes. The cells were then

heat-shocked at 42◦ C for 30 seconds, then immediately transfered to ice and 800 µL

of LB media was added to them. Cells were incubated at 37 ◦C with shaking for 1.5

hours. After the incubation, the cells were pelleted by centrifugation, the supernatant

removed, then resuspended in 100 µL LB media and plated on LB+ampicillin media.

Identifying positive clones

After overnight incubation at 37 ◦C, several colonies were picked and used to inoculate

first 10 µL of distilled H2O, then LB+ampicillin broth. The inoculated H2O sample

was used as template in a PCR reaction set up as in 6.2.1. Amplicons were visualised

by running the PCR reactions of a 1 % agarose gel, 80 V, for 45 minutes. Positive
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colonies, already inoculated in LB+ampicillin broth, were grown at 37 ◦C overnight.

Plasmids were purified from the overnight cultures using a mini-prep kit (Promega)

and sent for sequencing. While waiting for sequencing results, larger overnight cultures

of the positive clones were inoculated from the previous cultures to purify a larger

quantity of plasmid (midi-prep kit, Promega) to send for Drosophila transformation

(section 6.2.2). Positive clones were re-sequenced after midi-prep clean-up, to ensure

the correct construct was maintained in the culture.

6.2.2 Generation of transgenic lines

Transgenic Drosophila were generated by the company TheBestGene (thebestgene.com).

The Repo::H2B-GFP fly was generated using p-element insertion to incorporate the

transgenes into the genome (176), thus insertion sites are random. Insertion was into

the fly line 2202U, which is the same genetic background as the Elav-Gal4::H2B-GFP

line. The vector contains the white gene as a selective marker for positive transfor-

mants. Positive transformants of the Repo::H2B-GFP were made homozygous, and

then checked using western-blot analysis and immunohistochemistry (sections 6.2.3

and 6.4).

6.2.3 Western blot analysis of Repo::H2B-GFP flies

Sample preparation

Analysis of textitDrosophila head proteins was performed by isolating heads on dry ice,

then transferring the heads to a microcentrifuge tube and adding an aliquot of 2 X SDS

Buffer, normally to achieve one head per µL of buffer. The heads were ground using

disposable dounce until only the exoskeleton remained, the samples were then boiled

for two minutes and centrifuged at maximum speed for two minutes. The supernatant

was collected, and stored at -20 ◦C until required. Analysis of FANS-isolated nuclei

samples was performed by adding the appropriate amount of 2 X SDS loading buffer

to the samples, and mixing the sample by pipetting. The samples were boiled for two

minutes, centrifuged at maximum speed for two minutes, and the supernatant was col-

lected and stored at -20 ◦C until required.

SDS-PAGE

A 15 % acrylamide gel was cast using 4.5 mL acrylamide (30 %), 2.25 ml 4x Tris-Cl/SDS

buffer (pH 8.8), 2.25 mL H2O, 40 µL APS (10 %) and 18 µL TEMED. Samples were

diluted as required to volumes of 20 µL with 2 X SDS loading buffer and the SDS-

PAGE was run at 200 V for 45 minutes.
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Transfer to membrane

An appropriately sized piece of nitrocellulose membrane (Protran BA 83 Whatman,

GE Healthcare Life Sciences) was equilibrated with transfer buffer for 5–10 minutes.

The gel and membrane were arranged within the transfer apparatus between two layers

of Whatmann paper, and a double layer of sponge to ensure close contact of the gel

with the membrane. Assembly was done with all components saturated with transfer

buffer. The samples were transferred from the gel to the membrane at 100 V for 60

minutes.

Antibody staining

The membrane was blocked for one hour at room temperature in TBST+ 5 % milk. The

membrane was then incubated with α H2B-HRP antibody (ab64039, abcam), diluted

1:40 000 in TBST + 5 % Milk, for one hour at room temperature. After incubation,

the membrane was washed three times, for five minutes each. The membrane was

then incubated with chemiluminescent HRP-substrate (Millipore) for one minute and

exposed to photographic film for detection (Kodak).

6.3 Chromatin and expression analysis

6.3.1 Quantitative-PCR

PCR primer design

The primer design for histone modifications (H3K27ac, H3K27me3, H3K36me3) were

designed by selecting regions from published sequencing data (81, 177, 178). Positive

control regions were defined by selecting the genomic sequence under positive peaks in

the IGV browser (www.broadinstitute.org. Negative regions were selected from either

nearby genomic regions with no positive enrichment of the histone modification, or other

genes that showed no enrichment. Primers to amplify these regions were designed man-

ually in Ape http://biologylabs.utah.edu with the following parameters as guides:GC

content 50–60 %, length 18–24 nucleotides, melting temp 60–63 ◦C. Primers were ana-

lyzed against the Drosophila genome using BLAST http://blast.ncbi.nlm.nih.gov/Blast,

to confirm specificity for the target sequence. New primer pairs were tested using a

standard curve to check for non-linear amplification and off-target amplification prod-

ucts. Primer pairs for nucRNA qPCR analysis were designed and tested by Tamas

Schauer.
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Reverse-transcription for RNA analysis

Reverse transcription of RNA samples was performed using the SuperScript III (Invit-

rogen) reverse transcription kit. Samples were prepared as per the kit protocol using

random hexamers as primers.

Reaction setup and analysis

The input samples for each ChIP were diluted 1:20 and 1:200, and the ChIP sample was

diluted to 1:20 in nuclease-free water. If ChIP samples were of very low concentration,

dilutions of 1:10 and 1:100 (input) and 1:10 (sample) were used. The qPCR reaction

was set up at room temperature adding 6 µL DNA, 1.5 µL primer pairs (table D.1, and

7.5 µL fast SYBR green master mix (Applied Biosystems). Quantitative PCR amplifi-

cation was performed using a 7500 FAST Real-Time PCR system (Applied Biosystems)

using standard amplification conditions, with a melting curve. ChIP enrichment over

input, as percentage input, was calculated as follows:

Calculated cycle difference between 10 F dilution of input =

Ct value (1:200) - Ct value (1:20)

Calculated 100 % = Ct value (1:200) - (2 x calculated cycle difference)

Normalised ChIP Ct = ChIP Ct - calculated 100 % / -cycle difference

% input =10 normalisedChIPCt x 100

6.3.2 Isolation of Drosophila heads

The amount of Drosophila used varied depending on the required use of the nuclei.

Heads were dissociated from Drosophila frozen at -80◦C by strongly tapping the tube

on the bench. Three cycles of five rapid taps on each end of the tube and placing the

tube back into liquid nitrogen for one minute, were sufficient to remove most heads

from the sample. The sample was sieved through a 630 µm and a 420 µm mesh. Torsos

of the flies are retained in the 630 µm sieve, heads are retained in the 420 µm sieve,

whilst wings and legs pass through. Heads were ground to a fine powder on dry ice

using a mortar and pestle.

6.3.3 Fluorescence-activated nuclei sorting

The nuclei of the cell type of interest were labelled with the reporter gene H2B-GFP

(section 1.3.3. Heads were collected from approximately 50 mL of Drosophila, frozen

in liquid nitrogen as in section 6.3.2. The ground heads were resuspended in 50 mL

of Buffer NPB (section 6.6), and incubated for 2 minutes on ice. Samples were then
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cross-linked with 1 % formaldehyde for 10 minutes at room temperature, after which

the formaldehyde was quenched for 5 minutes by addition of 2.5 mL of 2.5 M glycine.

The samples were then transferred back to ice, and homogenised using a 100 mL electric

dounce homogeniser at 4 ◦C, ensuring 30 up/down cycles were completed. The samples

were then filtered through a 60 µm filter followed by filtration using a 10 µm filter (Mil-

lipore) that was pre-wet with NPB + 5 % BSA. Nuclei were pelleted by centrifuging at

2000 rpm, for five minutes, at 4 ◦C. The supernatant was carefully removed, then the

pellet of nuclei were gently re-suspended with 1 mL of NPB + 5 % BSA. The nuclei

were centrifuged at 1000 rpm for one minute, the supernatant removed and the nuclei

again resuspended in 1 mL of NBP + 5 % BSA.

GFP-positive nuclei were collected using a FACS-Aria III cell sorter. Prior to

sorting, the nuclei were diluted by adding 100 µL nuclei sample to 1 mL NPB + 5

% BSA. The nuclei were gently separated by passing 10 X through a 22G needle,

then 5 X with a 25G needle, with a 1 mL syringe, and the sample was then filtered

into the sorting tube through a 40 µm cell strainer (BD Biosciences). The optimal

dilution was calibrated for each sort; normally the optimal was a 10-fold dilution.

Events were kept to a maximum of 10 000 events/s to reduce the required pressure

and increase the yield, the laser intensities were adjusted as necessary for each sorting

session. For chromatin analysis, samples of one million nuclei were collected, collection

tubes were pre-incubated with NBP + 5 % BSA and 1 mL of NPB was added to the

collection tube for sorting. Frequent re-suspension of the samples was necessary to

decrease clumping, and increase the yeild of nuclei per sample. The entire FACS-Aria

system, including sample collection, is kept at 4 ◦C for the entire sort. After sample

collection, the samples were centrifuged at 2000 rpm for 15 minutes, and the majority

of the supernatant was carefully removed, leaving around 500 µL. The nuclei were then

re-suspended in the remaining supernatant, and transferred to a low-binding micro-

centrifuge tube (Costar). The nuclei were centrifuged for five minutes at 2000 rpm,

and the remaining supernatant was removed. The nuclei pellets were stored at -80 ◦C

until needed.

6.3.4 Chromatin Preparation

Standard Protocol

Ground heads from 15 mL of flies prepared as in section 6.3.2, were transferred to a

50 ml Falcon tube and 25 mL of NPB was added and the sample was left to incubate

on ice for 5 minutes. The sample was homogenised using a 100 mL electric dounce

homogeniser at 4 ◦C for 25 times. The sample was then cross-linked by adding 675 µL
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of 37 % formaldehyde, rotating at room temperature for 10 minutes. Formaldehyde was

quenched in the sample by the addition of 1.25 mL of 2.5 M glycine, rotating at room

temperature for 5 minutes. The sample was filtered through a 60 µm filter (Millipore)

and centrifuged at 2000 rpm for 5 minutes at 4 ◦C to pellet the nuclei. After removing

the supernatant, the pellet was resuspended in 1 mL RIPA buffer and transferred to a

1.5 mL micro-centrifuge tube. The sample was centrifuged at 2000 rpm for 1 minute,

the supernatant removed and the pellet again resuspended in 1 mL RIPA buffer. This

was completed a total of 3 times. After the final wash, the pellet was resuspended

in 300 µL RIPA buffer, and sonicated using a Branson Sonicator with the settings:

Intensity 4; pulse 40; 15 seconds pulsing; 45 second break, repeated 7 times. The sam-

ple was then split into two 150 µL aliquots and transferred to covaris snap cap tubes.

Each aliquot was sonicated using the Covaris sonicator with settings: 4 minutes, DF

200. After Covaris sonication, the samples were centrifuged at maximum speed (20,

000 RPM) at 4 ◦C for 10 minutes. The soluble chromatin in the supernatant was taken

up and kept at -80 ◦C until required.

Protocol for FACS isolated nuclei

A total of one million nuclei collected by FACS (section 6.3.3), were centrifuged at 1000

rpm, 4 ◦C, for 20 minutes. The majority of supernatant was removed, leaving ∼ 0.5 mL

of supernatant which was used to re-suspend the pellet. The sample was transferred to

a siliconised 1.5 mL micro-centrifuge tube and centrifuged at 1000 rpm, for 10 minutes

at 4 ◦C. The supernatant was removed and the pellet was resuspended in 150 µL RIPA

buffer. The sample was transferred to a Covaris snap-cap tube, and sonicated using the

Covaris sonicator using the settings: 6 minutes, DF 175. The samples were transferred

to siliconised 1.5 mL micro-centrifuge tubes and were centrifuged at maximum speed

(20 000 RPM) at 4 ◦C for 10 minutes. The soluble chromatin in the supernatant was

taken up and kept at -80 ◦C until required.

6.3.5 Chromatin immunoprecipitation

All centrifugation steps were at 4 ◦C for one minute at 500rpm. Preparing the beads

Protein-G Fast flow sepharose beads (GE Healthcare) were gently resuspended to a

slurry (50/50 mixture of beads and water). For each ChIP sample 25 µL beads was

used, however the total volume of beads required for each experiment was pooled into a

single tube for the washing and blocking steps. To wash the beads, the required volume

of beads was transferred to a sterile micro-centrifuge tube, 1 mL of nuclease-free water

was added and the beads were rotated at 4 ◦C for 15 minutes. After centrifugation

and removal of the supernatant, the beads were washed quickly two more times, using
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1 mL nuclease-free water, centrifuging, and removing supernatant between the washes.

The beads were then blocked by adding 1 mL of RIPA+BSA (section 6.6) and rotat-

ing the beads for at least one hour at 4 ◦C, then washed four times 5 minutes with

rotation in RIPA buffer (section 6.6). Chromatin prepared as described in section 6.3.4

was thawed on ice, and 10 µg of chromatin was diluted to 650 µL in ice cold RIPA buffer.

The ChIP assay was performed by incubating 500 µL of the diluted chromatin

with the beads, rotating for 3 hours at 4 ◦C. A 50 µL sample of the diluted chro-

matin was also collect as an input sample. The ChIP sample was centrifuged at 500

rpm for 1 minute, the supernatant was removed from the beads and kept in a fresh

micro-centrifuge tube. This sample was used to assess the chromatin fragment size

later. To the beads, 1 mL of RIPA buffer was added and the samples were washed with

rotation for five minutes. The centrifugation, supernatant removal (now discarding),

and addition of fresh RIPA buffer was performed a total of four times. The beads

were then more stringently washed with LiCl buffer (section 6.6) for 10 minutes. The

beads were then centrifuged at 500 rpm, the supernatant removed, and the beads were

washed quickly twice with 1 mL of TE buffer (section 6.6). After the final wash of

TE buffer was removed, the beads were resuspended in 100 µL TE buffer, and 50 µL

of TE buffer was added to each input sample. All tubes, including the supernatant

samples, were sealed with parafilm and incubated overnight at 65 ◦C with vigorous

shaking (1000 rpm). The samples were then incubated with 1 µL RNase A (thermo

scientific) at 37 ◦C for 30 minutes. The proteins within the samples were then degraded

by adding 5 µL SDS, and 1 µL proteinase K (10 mg/ml, Roche) and incubating at 55
◦C for 1.5 hours. The DNA was then purified using Ampure-XP beads (Agencourt)

following the manufacturer’s directions, with the following exceptions: three washes of

600 µL 70 % ethanol were used at step 6, a dry time of 15 minutes was used, and 15

µL was used for elution. The Ampure-XP beads were added directly to the bead/DNA

slurry because material would be lost by transferring the supernatant to a fresh tube.

Technical replicates of the ChIP samples were pooled together by eluting the DNA off

the beads with the same 15 µL elution buffer for all samples. The concentration of

DNA was measured using the Qubit dsDNA high sensitivity assay (life technologies).

A minimum of 2 ng of DNA was sent to the EMBL genecore (Heidleberg) for library

preparation and sequencing (Illumina hiseq 2000).

Optimizing ChIP conditions for different antibodies

Each antibody required optimisation to the one million nuclei protocol before perform-

ing ChIP-seq analysis. I first optimised performed a standard ChIP-qPCR analysis
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with the recommended amount of antibody. From this analysis, I determined the opti-

misation procedure, normally titrating the antibody concentration, then adjusting the

bead concentration before optimal conditions were achieved. The antibody and bead

conditions for each antibody is shown in table 6.4.

Table 6.4: ChIP conditions for different antibodies

Antibody Volume antibody Volume beads
H3K36me3 (abcam ab9050) 2.5 µL 25 µL
H3K27ac (abcam ab 4729) 1 µL 25 µL
H3K27me3 (millipore 07-449) 2 µL 20 µL

6.3.6 Micrococcal nuclease titration

Nuclei were prepared as in section 6.3.3, diluted 1:10 and counted using a haemocytome-

ter to estimate nuclei concentration. For each sample, 500 000 nuclei were centrifuged

at 1 000 rpm for 1 min, and the pellet resuspended in 25 µL of MN buffer (section

6.6). MNase was added to replicate samples to 0, 0.1, 0.2, 0.3, 0.4, 0.5, and 1 units

per sample. Samples were incubated at 37 ◦C for 10 mins with gentle shaking, imme-

diately transferred to ice and 4 µL of stop solution (137.5 mM EDTA, 5.5 % SDS) was

added. Samples were incubated overnight at 65 ◦C to reverse formaldehyde cross-links,

RNAse-treated, and Proteinase K treated as in section 6.3.5, with the exception that

SDS was not added for protienase-K treatment. Samples were mixed with 6 X orange

loading dye and DNA separated using gel electrophoresis with a 3 % TBE agarose gel,

65 V, 400 mA, 6 hours. The gel was stained with ethidium bromide and visualised

using a GelDoc-IT system (UVP).

6.3.7 Micrococcal Nuclease Sequencing

One million FANs-isolated nuclei were collected directly into MN buffer, centrifuged at

1500 rpm for 20 minutes at 4 ◦C, the majority of the supernatant removed, and the

pellet was gently resuspended in the remaining buffer. The sample was transferred to

a siliconised micro-centrifuge tube, and centrifuged for 10 minutes at 1500 rpm, at 4
◦C. The supernatant was removed to the level of the pellet to ensure the nuclei were

retained, and the pellet was resuspended in 25 µL of buffer MN. To the resuspended

sample, 0.3 units of MNase was added, and the sample was incubated at 37 ◦C for 10

mins with gentle shaking (300 rpm). The samples were transferred to ice and 4 µL
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of stop solution was added (section 6.6). Samples were incubated at 65 ◦C, RNase-

treated, proteinase-K treated and run on an agarose gel as described in section 6.3.6.

The mono-nucleosomal DNA fragments in the gel were excised under low intensity UV

light, using a clean scalpel. The gel fragments were then cut into small pieces and the

DNA eluted from the gel using freeze and squeeze gel extraction columns (BioRad).

DNA was then purified using minelute column DNA purification kit (Qiagen) following

the manufacturer’s guidlines with the following exceptions: 1 mL of buffer PB was

used for binding the DNA to the column, the columns were washed twice with buffer

PE, the columns were spun dry for two minutes, and the columns were left open at

room temperature for 2 minutes to remove excess ethanol. The DNA was eluted using

12 µL elution buffer, leaving the sample for 5 minutes before centrifugation. The

eluted material was passed over the column a second time to increase the yeild of DNA

eluted. The concentration of the purified DNA was measured using the Qubit dsDNA

high sensitivity assay (life technologies). A total of 10 ng was sent for sequencing at

the EMBL genecore facility (Heidelberg), who also prepared the libraries. samples were

sequenced with 50 bp paired-end reads, initially one sample per sequencing lane, then

the neuron and glia specific samples were sequenced again, with the same DNA but

new library preparation, by multiplexing the four samples together on two lanes. This

resulted in approximately 500 million reads for each cell type.

6.3.8 Nuclear-RNA seq

Heads were collected as previously described (section 6.3.2) from 20 mL of frozen flies,

and ground to a fine powder on dry ice using a mortar and pestle. The powdered

sample was then added to 50 mL of NPB (section 6.6) that contained 250 µL RNaseIn

(Promega). Note that no protease inhibitor complex was added to the buffer. The

samples were then homogenised 30 times using a 100 mL Dounce homogenizer, at 4
◦C, then filtered sequentially through 60 µm and 10 µm filters (Millipore) that were

pre-wet with NPB + 5 % BSA. Nuclei were pelleted by centrifuging at 2000 rpm, for

five minutes, at 4 ◦C. The supernatant was carefully removed, then the pellet of nuclei

were gently re-suspended with 1 mL of NPB + 5 % BSA + RNaseIN (200 units/mL).

The nuclei were centrifuged at 1000 rpm for one minute, the supernatant removed and

the nuclei again resuspended in 1 mL of NBP+BSA+RNasIN buffer. This washing

step was repeated for a total of five times to ensure maximal removal of RNA from the

outside of nuclei, whilst retaining the intergrity of the nuclei. GFP-positive nuclei were

then collected using FANs (section 6.3.3). Nuclei were collected into 1 mL of NPB,

containing 2 X concentrated RNaseIN. Samples of 0.5 million nuclei were collected se-

quentially for up to four hours. This ensured that high-population neuron isolations
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were within the same experimental time-frame as glia isolations. Samples were kept on

ice until sorting was finished.

Samples were then centrifuged at 2000 rpm, 4 ◦C, for 15 minutes. The supernatant

was carefully removed until approximately 500 µL of liquid was left. The nuclei pellet

was then resuspended in the remaining supernatant and transferred to a low-binding

micro-centrifuge tube (Costar). The samples were then centrifuged at 2000 rpm, 4 ◦C,

for 5 minutes and as much of the supernatant was removed as possible. During the

centrifugation the lysis buffer was prepared from the Agencourt RNAdvance tissue kit

(Agencourt), 400 µL of which was immediately added to the nuclei pellet after the

supernatant was removed. The samples were incubated at 37 ◦C, for 25 minutes, then

transferred to -80 ◦C for storage. Shortly after this, the RNA was isolated from the

samples following the instructions of the Agencourt RNAdvance kit protocol, including

the DNase digestion step. RNA concentration was measured using Quibit RNA detec-

tion kit, and quality of the RNA was tested using a bioanalyzer (Agilient technologies).

The Ovation human FFPE RNA-seq library preparation kit (Nugen) was used to

prepare directional sequencing libraries for 5 ng of each RNA sample, as per kit di-

rections. A custom-designed primer set was used to target the ribosomal RNA for

degradation. The library was amplified using 15 PCR cycles and the libraries were

purified an additional time to remove primer-dimers from the amplification. Libraries

were sequenced by the EMBL genecore facility using an Illumina hiseq 2000 machine,

100 bp paired-end sequencing.

6.4 Immunohistochemistry of Drosophila brains

Flies were asphyxiated with CO 2, and placed in 70 % ethanol for several minutes to

remove air pockets. Flies were then transferred to PBS (section 6.6) and the brains

dissected. Dissected brains were incubated in 200 µL PBST (PBS, 0.3 % Triton-X100)

and 4 % formaldehyde, at room temperature for 20 minutes to cross-link. The brains

were then rinsed two times with 200 µL PBST, and then washed three times, for 20

minutes each, with rotation in 200 µL PBST. The dissected brains were then blocked

with PBST + 5 % foetal calf serum and 5 % milk, with rotation at room temperature

for 30 minutes. Primary antibody was then added at a concentration of 1:200, in PBST

+ 5 % foetal calf serum, and the samples incubated for two nights at 4 ◦C with rota-

tion. The two quick wash steps and three longer wash steps were repeated three times,

then the secondary antibody was added as 1:500 dilutions and the sample was again
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incubated for 2 nights at 4 ◦C with rotation. The five wash steps were repeated as

before, except that Hoechst was added for the first 20 minute wash step at a dilution of

1:1000. Glass slides were prepared with hole-punch reinforcement stickers to generate a

shallow well. The immunostained brains were then transferred to the well and a drop of

focus-clear (CelExplorer) was added to the well. Coverslips were then placed over the

slides and sealed with nail polish. Images were obtained of the immunostained brains

were captured with a confocal laser-scanning microscope (LSM-710, Zeiss). Image data

processing was performed using Fiji (ImageJ 1.48r, http://imajej.nih.gov.ij.

6.5 Bioinformatics analysis

6.5.1 Mapping and data transformation

Mapping of raw sequencing reads to the Drosophila genome was performed by Pawel

Bednarz (University of Warsaw), using the mapping tool bowtie (145). Sorting the

mapped bam files was performed using the samtools sort function of samtools. Peaks

were called using MACs (179). To find genes associated with peak calls, for example

the H2AZ genes, defined in a bed file, the following command line was used using

bedtools: intersectBed -a example.bed -b refSeq.bed -wb. To obtain the coverage of

reads over certain annotated regions, as defined by a .bed file, the following command

line was used: coverageBed a example.bed -b Data/genome/Drosophila genome.gff >

example coverage.tsv

6.5.2 Analysis in R

The statistical package R was used for the majority of simple data manipulation and

analysis.

Venn diagrams

The Vennerables package was used to generate the weighted venn diagrams (see http://r-

forge.r-project.org/projects/vennerable). Comparisons were made between flybase gene

numbers identified in the three method types.

Scatterplots and linear regression

Scatterpots were generated in R using the scatterplot function. Linear regression was

calculated using the lm function.
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Generating TSS and genebody bed files

The following code was used in R to define 500 bp around the TSS of all annotated

genes:

Genes<- read.csv“gene annotation”, sep = “\t”, header=FALSE)

Genes<- subset (Genes, select =c(1,2,3,4,6))

colnames(Genes)<- c(“chr Name”,“start pos”, “start min”, “gene”, “strand”)

NewDoc=matrix(FALSE, ncol=4, nrow=length(Genes$chr Name))

colnames(NewDoc)=c(“chr”, “Start”, “Stp”, “gene”)

NewDoc=as.data.frame(NewDoc)

for(i in 1:length(Genes$chr Name)){ if(Genes$strand[i]==“+”){
middle=Genes$start pos[i]}
else{middle=Genes$start min[i]}

NewDoc$Start[i]=middle-250

NewDoc$Stp[i]=middle+250

NewDoc$chr[i]=as.character(Genes$chr Name[i])

NewDoc$gene[i]=as.character(Genes$gene[i])

The following code was used to define the genebody region for Pol II pausing anal-

ysis:

NewDoc=matrix(FALSE, ncol=5, nrow=length(Genes$chr Name))

colnames(NewDoc)=c(“chr”, “Start”, “Stp”, “gene”,“remove”)

NewDoc=as.data.frame(NewDoc)

for(i in 1:length(Genes$chr Name)){
if(Genes$strand[i]==“+”){
strt=Genes$start pos[i]+500}
else{strt=Genes$start pos[i]}

if(Genes$strand[i]==“+”){
stp=Genes$start min[i]}
else{stp=Genes$start min[i]-500}

NewDoc$Start[i]=strt

NewDoc$Stp[i]=stp
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NewDoc$chr[i]=as.character(Genes$chr Name[i])

NewDoc$gene[i]=as.character(Genes$gene[i])

NewDoc$remove[i]=strt>stp}
write.table(NewDoc sub, “genebody.txt”, sep=“\t”, col.names=F, quote=F, row.names=F)

To remove genes where the length of the gene is less than 500 bp:

NewDoc sub<- subset(NewDoc,remove==FALSE)

NewDoc sub<-subset(NewDoc sub, select=c(1,2,3,4))

write.table(NewDoc sub, “genebody.txt”, sep=“\t”, col.names=F, quote=F, row.names=F)

Generating fasta files for promoter regions

A file with the sequence 200 bp around the TSS of all annotated genes was generated

using the following code:

library(“seqinr”)

Name position=read.csv(“ref TSS gene”, sep = “\t”, header=FALSE)

head(Name position)

Name position=subset(Name position, select=c(1,2,3,4,6))

colnames(Name position)=c(“chr Name”,“start pos”,“start min”, “gene”,“strand”)

fasta=read.fasta(file =“/Drosophila melanogaster.BDGP5.69.fa”, seqtype = “AA”,

as.string = FALSE, forceDNAtolower = TRUE,set.attributes = TRUE, legacy.mode =

TRUE, seqonly = FALSE, strip.desc = FALSE) NewDoc3=matrix(FALSE, ncol = 4,

nrow = length(Name position$chr Name))

colnames(NewDoc3)=c(“chr”,“sequence”, “gene”, “strand”)

NewDoc3=as.data.frame(NewDoc3)

for(i in 1:length(Name position$chr Name)){
a=sub(“>”, “”, Name position$chr Name[i])

x=which(names(fasta)==a)

if(Name position$strand[i]==“+”){
middle=(as.numeric(as.character(Name position$start pos[i])))}
else{middle=(as.numeric(as.character(Name position$start min[i])))}

start=middle-100

stp=middle+100
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NewDoc3$sequence[i]=paste(fasta[[x]][start:stp],collapse=”)

NewDoc3$chr[i]=as.character(Name position$chr Name[i])

NewDoc3$gene[i]=as.character(Name position$gene[i])

NewDoc3$strand[i]=as.character(Name position$strand[i])}

An example of generating the fasta file of the neuronal gene promoter sequence is

shown in the following code:

library(“Hmisc”) indexes=c() for(i in 1:length(NewDoc$chr)){
if (NewDoc$gene[i]%nin% invariant$V1){indexes=append(indexes,i)}}

invariant seq <- NewDoc[-indexes,]

indexes<-c()

for(i in 1:length(NewDoc$chr)){
if (NewDoc$gene[i]%nin% neuronal$V1){indexes=append(indexes,i)}}

neuronal seq <- NewDoc[-indexes,]

Calculating Pol II pausing index

The number of counts from head RPB3 ChIP-seq replicates were calculated using bed-

tools (section 6.5.1) over the TSS.bed and the genebody.bed files generated above. The

pausing index was then calculated for each replicate separately, using the following code

in R:

First, the data were normalised for each replicate to generate coverage per base pair

over each region. An example of this calculation is shown below:

TSS RPB3A<- read.table(“RPB3 Fed 6h A TSS.txt”)

head(TSS RPB3A) colnames(TSS RPB3A)<- c(“chr”,“start”,“stop”,“gene”,“depth”,

“bases at depth”, “length”,“fraction”)

depth per bp<-TSS RPB3A$depth/TSS RPB3A$length

head(depth per bp)

NewDoc<-matrix(FALSE, ncol=7,nrow=length(TSS RPB3A$gene)) colnames(NewDoc)<-

c(“chr”,“start”,“stop”,“gene”,“depth”, “length”, “depth per bp”)

NewDoc<- as.data.frame(NewDoc)
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NewDoc$chr<-TSS RPB3A$chr

NewDoc$start<-TSS RPB3A$start

NewDoc$stop<-TSS RPB3A$stop

NewDoc$gene<-TSS RPB3A$gene

NewDoc$depth<-TSS RPB3A$depth

NewDoc$length<-TSS RPB3A$length

NewDoc$depth per bp<-depth per bp

TSS RPB3A normalised<-(NewDoc)

write.table(TSS RPB3A normalised, “TSS RPB3 normalised.txt”, sep=“\t”, col.names=T,

row.names=F, quote=F)

Then, the ratio between the Pol II binding at the TSS and the genebody were cal-

culated using the following code:

NewDoc<-matrix(FALSE, ncol=5, nrow=length(TSS RPB3A normalised$chr))

colnames(NewDoc)<-c(“chr”, “gene”,“depth TSS”,“depth GB”, “PI”)

NewDoc<-as.data.frame(NewDoc)

NewDoc$chr<-TSS RPB3A normalised$chr

NewDoc$gene<-TSS RPB3A normalised$gene

NewDoc$depth TSS<-TSS RPB3A normalised$depth per bp

NewDoc$depth GB<-GB RPB3A normalised$depth per bp

NewDoc$PI<-NewDoc$depth TSS/NewDoc$depth GB

RPB3 A PI<-NewDoc write.table(RPB3 A PI, “RPB3 A PI.txt”, sep=“\t”, col.names=T,

row.names=F, quote=F)

The average ratio between the replicates was calculated and used for ranking genes

by pausing index.

6.5.3 Average profile plots and heatmaps

Average profile plots and heatmaps were generated using the tool NGS-plot (158).

Average profile plots were made as comparable as possible by using the configuration

file option. This file allows mapping of the specified data into the same plot, for example

the neuron and glia nucRNA samples split by neuron, glia, and invariant gene classes

were within the same plot.
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6.5.4 Sequencing enrichment analysis

The analysis of nucleotide enrichment across promoter regions was performed with the

online tool Weblogo3 (167). Fasta files generated from each gene class (section 6.5.2)

were used to generate the graphs.

6.6 Buffers

LiCl buffer

250 mM LiCl, 10 mM Tris-Hcl (pH 8), 1 mM EDTA, 0.5 % NP-40, 0.5 % DOC. Pro-

tease inhibitor complex and PMSF were added fresh on the day of use.

MN buffer

60 mM KCl, 15 mM NaCl, 15 mM Tris (pH7.4), 0.5 mM DTT, 0.25 mM sucrose, 1

mM CaCl.

Nuclei-purification buffer (NPB), pH 7

20 mM MOPS, 40 mM NaCl, 90 mM KaCl,2 mM EDTA, 0.5 mM EGTA, 0.1 % NP-40.

Stored at 4 ◦C for up to three months. 0.5 mM spermidine, 0.2 mM spermine, ad

protease-inhibitor complex were freshly added on the day of use.

PBS

137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4.

RIPA buffer

150 mM NaCl, 25 mM HEPES (pH 7.5), 1 mM EDTA, 1 % Triton-X 100, 0.1 % SDS,

0.1% DOC. Protease inhibitor complex and PMSF were added fresh on the day of use.

10 X TBS/ TBST

0.2 M Tris (pH 7.5), 1.2 M NaCl. TBST was made from 1 X TBS + 5 mL 10 %

Tween-20.

TE buffer

10 mM Tris-HCl (pH 8), 1 mM EDTA.
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Appendix A
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Figure A.1: Pol II binding correlates with RNA levels - Scatterplots comparing
the Pol II binding level over the TSS (log2) with the nucRNA RPKM (log2). All genes
were assessed, if there was zero coverage at any gene, either in the Pol II binding or the
nucRNA, then the gene was removed from analysis. Neurons means the Pol II binding level
was calculated from the neurons CAST-ChIP RPB3 data and the nucRNA RPKM was of
the neuron-specific nucRNA data. Glia compares the glia RPB3 CAST-ChIP versus the
glia-specific nucRNA data. The regression was computed using the lm function in R.
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Appendix B
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Figure B.1: Splitting genes into high, medium and low expression - Boxplots of
RPKM for the neuronal nucRNA and glial nucRNA datasets. Genes were split according
to the DESeq gene calls (neuronal genes, glial genes, and invariant genes).Then further
split into high, medium, and low expression based on the RPKM of the cell type where the
gene was called specific, and the inputs for invariant genes.
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Figure B.2: Active-H3K36me3 genes with broad H3K27ac also enriched for
other active modifications - Genome-browser snapshots showing the same gene set
examples shown in 4.9, using available data from the modencode consortium. The data
are for Adult head, mixed population and are shown as the regions where peaks for each
histone modification was called. These data are in agreement with the data obtained in this
work, in that these genes have no H3K36me3 and have broad H3K37ac peaks. Enrichment
of H3K18ac and H3K4me3 is also seen at these genes, indicating that multiple active
marks may be enriched, and perhaps even broadly spread, across these genes. Data from
the modencode consortium, http://www.modencode.org
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Figure B.3: Histone marks and gene length - A) Drosophila genes were split into
eight categories based on the entire genomic region of the gene from the TSS to the TES.
The shortest gene groups are 500 bp or shorter. These genes are theoretically too short for
incorporation of H3K36me3, as the Pol II finishes transcribing the genes before the Set2 is
recruited. Further groups were made with increased by 1kb intervals: 1kb-2kb, 2kb-3kb,
3kb-4kb, three broader groups: 4kb-6kb, 6kb-8kb and 8kb-16kb, and a final group of genes
that are 16kb and longer. The average profiles of H3K36me3 and H3K27ac data are shown
for each group in each cell type. B) Average gene lengths of genes with H3K36me3 and
without H3K36me3
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Appendix C
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Figure C.1: Fuzzy genes have little H2AZ - The proportion of ordered genes with
H2AZ is much higher than ordered genes with no H2AZ. The Fuzzy genes have a higher
proportion of genes with no H2AZ compared to fuzzy genes with H2AZ
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Figure C.2: Ordered and Fuzzy gene groups have different features - A) Cell-type-
specificity of different gene groups. The ordered genes were highly enriched in the invariant
gene class and the fuzzy genes contained more cell-type-specific genes. B) GO-enrichment.
Ordered genes were enriched for pathways related to gene expression and transcriptional
events, whereas fuzzy genes had no pathway enrichment. C) Distribution of genes across
the genome. Genes in the ordered gene class are depleted on the X-chromosome, but the
fuzzy gene class are enriched on the X-chromosome. The fact that X-chromosome genes
are specifically to achieve dosage compensation is consistent with the enrichment of cell-
type-specific genes in the fuzzy gene class, these genes need to be regulated in a specialised
way and thus have a different chromatin architecture than the invariant or housekeeping
genes.
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Appendix D

Vectors and sequences

1986 AatII (1)
1986 ZraI (1)

1288 FspI (1)
1063 Eam1105I (1)

3030 SbfI (1)

3404 EcoRI (1)
3459 XhoI (1)

3882 XbaI (1)
3904 SpeI (1)

H2B 3892...4260
4264 EagI (1)

4543 Bsu36I (1)

7937 SnaBI (1)

7075 BbeI (1)
7075 KasI (1)
7075 NarI (1)
7075 SfoI (1)

5872 StuI (1)
5722 HpaI (1)

8031 SmaI (1)
8031 XmaI (1)
8058 BstXI (1)
8489 BsaBI (1)
8861 EcoRV (1)

9734 BsrGI (1)
9899 NsiI (1)

10105 PpuMI (1)
10279 EcoNI (1)

k161-pHSHH2B-
GFP

10610 bp

Figure D.1: k161 PHS H2B-GFP - Plasmid from which H2B-GFP transgene was
PCR-amplified. Vector graphics made with Ape (A plamid Editor v2.0.26)
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D. VECTORS AND SEQUENCES

Repo::H2B-GFP from 1 to 1700

Repo promoter

H2B

SV40 polyA tail

203521203571 GFP

250 HpyCH4III (1)
285 NotI (1)

305 SpeI (1)
320 BglI (1)

440 BsaWI (1)
540 Eco47III (1)

645 TatI (1)
646 RsaI (1)

749 BseSI (1)
749 SduI (1)

845 NcoI (1)

908 NdeI (1)
944 Bsu36I (1)

1001 AflIII (1)
1002 PmlI (1)

1037 HincII (1)

1061 ClaI (1)
1127 AccI (1)
1127 BstZ17I (1)

1239 MfeI (1)
1300 BstBI (1)

1353 AlwNI (1)
1353 MspA1I (1)

1353 PvuII (1)
1397 XbaI (1)

1457 BfmI (1)
1466 DraI (1)

1052 AflII (1)

Figure D.2: Cloning construct Repo::H2B-GFP - The H2B-GFP gene construct
was cloned into the pCasPer. Graphics made with Ape (A plamid Editor v2.0.26)

Repo::H2B-GFP translated sequence:

MPPKTSGKAAKKAGKAQKNITKTDKKKKRKRKESYAIYIY

KVLKQVHPDTGISSKAMSIMNSFVNDIFERIAAEASRLAH

YNKRSTITSREIQTAVRLLLPGELAKHAVSEGTKAVTKYT

SSKHRPVATMSKGEELFTGVVPILVELDGDVNGHKFSVSG

EGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFTYGVQCF

SRYPDHMKRHDFFKSAMPEGYVQERTIFFKDDGNYKTRAE

VKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVY

IMADKQKNGIKANFKTRHNIEDGGVQLADHYQQNTPIGDG

PVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITH

GMDELYK
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3194 BlpI (1)

2948 SacI (1)

2758 SnaBI (1)

2202 BsaBI (1)

411 EcoNI (1)

primer 4603..4622

4829 Acc65I (1)

4829 KpnI (1)

6298 BstEII (1)

6462 PacI (1)

7988 RsrII (1)

8133 BglII (1)

seq090703 12332..12332

204281 F 12322..12342

seq090703 12303..12303

9100 PshAI (1)

8469 SwaI (1)

203571 12528..12549

seq090703 12548..12548

seq090703 12587..12601

12642 NotI (1)

12644 SfiI (1)

12675 XbaI (1)

202868 12679..12698

203521 12858..12879

SV40 polyA tail 12675..13541

SV40 late polyA 13528..13337

14573 ZraI (1)

15271 FspI (1)

15491 Eam1105I (1)

pCaSpeR4_Repo_SV40tail

16472 bp

AmpR 14907..15566

14573 AatII (1)

203522 14873..14853

Repo promoter 4833..12633

5262 BsiWI (1)

Figure D.3: pCaSpeR4 vector with Repo promoter region - This vector was used to
clone the H2B-GFP transgene and iset into the Drosophila genome using p-elemtn insertion.
The vector contains a large regulatory region that controls glia-specific expression of the
repo gene. Vector graphics made with Ape (A plamid Editor v2.0.26).
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