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Abstract 

 

The aim of this thesis was the development and investigation of new energetic polymers and 

plasticizers, on the basis of different polymer backbones or organic compounds with varying 

energetic or nitrogen-rich functional groups, along with the syntheses of suitable precursors 

for further (polymeric) processing. 

One of the main requirements of the newly developed compounds was their suitability as 

energetic binder or plasticizer, respectively, which includes high thermal and physical 

stabilities (to stabilize the energetic filler) and moderate to good energetic properties. In order 

to guarantee a good and save handling as well as a long storage time of the bound 

formulation, it is also mandatory that the developed compounds possess a high chemical 

stability, thus reactions with the energetic filler can be avoided. 

This thesis is divided into four sections. The first part is a continuation of my master thesis.1 It 

describes the synthesis and characterization of a glycidyl polymer containing nitramino 

groups. Known energetic polymers based on the glycidyl backbone possess energetic 

functional groups like azides (glycidyl azide polymer, GAP), or nitrate esters (poly(glycidyl 

nitrate), polyGLYN). As a new energetic compound based on the glycidyl backbone, a 

nitramine based polymer was developed, which was obtained in a four-step synthesis, using 

GAP as starting material. Analytical data as well as the results of the sensitivity testing and 

detonation parameter calculations have been accepted for publication in the Central European 

Journal of Energetic Materials. 

The second part attempted the syntheses and investigation of energetic polyurethanes, 

polyureas and related polymers, using hexamethylene diisocyanate, diisocyanato ethane and 

diisocyanato methane with several energetic and nitrogen-rich diols, diamines, dicarbamates 

and dihydrazides. It turned out that only the polyaddition reactions with diols towards 

polyurethanes were successful and resulted in satisfying analytical and energetic data. Parts of 

the results of the polyurethane investigations have been accepted for publication in the 

Journal of Applied Polymer Science. 

The third topic focuses on the investigation of polymers on the basis of mono- and 

difunctionalized tetrazolyl epoxides. For the syntheses towards the mono- and 

difunctionalized epoxy precursors several starting materials were prepared. Amongst others, 

two different constitutional isomers of divinyl and bisallyl derivatives of 1,2-bis(tetrazole-5-
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yl)ethane were successfully synthesized and characterized. The attempted syntheses following 

different reaction paths towards the desired epoxides only revealed traces of the desired 

compounds in the reaction medium or yielded monoepoxy compounds instead of the 

difunctional molecules. Results of analytical and physical data concerning the divinyl and 

bisallyl derivatives of 1,2-bis(tetrazole-5-yl)ethane were submitted for publication in 

Zeitschrift für Naturforschung B − A Journal for Chemical Science. 

Subject of the fourth part of this thesis is the synthesis of energetic plasticizers on the basis of 

2,2-bis(azidomethyl)propane-1,3-diol, 2,2-dinitropropane-1,3-diol and 1,2-bis(hydroxyethyl 

tetrazole-5-yl)ethane. The syntheses were carried out in a one-step synthesis with three 

different acyl chlorides, varying in carbon chain length. The synthesized compounds were 

investigated regarding their high and low temperature behavior, as well as their plasticizing 

effects by analyzing certain properties of mixtures of them with two different energetic 

polymers. Parts of these results have been submitted for publication in Propellants, 

Explosives, Pyrotechnics. 



	

 

  



Table	of	Contents	
	

 
 

v 

Table of Contents 

 

Abstract ii 

 

1. Introduction 2 

1.1 Classification of Energetic Materials 2 

1.2 Primary Explosives 2 

1.3 Secondary Explosives 4 

1.4 Propellants 5 

1.5 Pyrotechnics 6 

1.6 Energetic Polymers 7 

1.6.1 Energetic Polymers Based on Cellulose 9 

1.6.2 Energetic Polymers Based on Nitrate Esters 10 

1.6.3 Energetic Polymers Based on Azides 11 

1.6.4 Energetic Polymers Based on Other Energetic Functional Groups 13 

1.7 Energetic Plasticizers 14 

1.8 References 16 

 

2. Concepts and Aims 20 

 

3. Energetic Nitramine Polymer with Glycidyl Backbone 22 

3.1 Introduction 23 

3.2 Results and Discussion 24 

3.2.1 Synthesis 24 

3.2.2 Spectroscopic and Elemental Analysis 25 

3.2.3 Thermodynamic and Energetic Properties 27 

3.3 Conclusion 31 

3.4 Experimental Part 32 



Table	of	Contents	
	

 
 

vi 

3.5 References 35 

4. Energetic Polymers Based on Polyurethanes, Polyureas and Related Compounds 38 

4.1 Introduction 39 

4.2 Results and Discussion 40 

4.2.1 Polyurethanes 40 

4.2.1.1 Precursors 40 

4.2.1.1.1 Precursors with Diisocyanate Function 40 

4.2.1.1.2 Precursors with Alcohol Function 41 

4.2.1.2 Polymerization Reactions 49 

4.2.1.2.1 Syntheses 49 

4.2.1.2.2 Characterization 51 

4.2.1.2.3 Thermal Behavior 55 

4.2.1.2.4 Energetic Properties 59 

4.2.2 Polyureas and Related Compounds 64 

4.3 Conclusion 68 

4.4 Experimental Part 68 

4.4.1 General Procedures 69 

4.4.2 Precursors with Diisocyanate Function 70 

4.4.3 Precursors with Alcohol Function 72 

4.4.4 HMDI Based Polyurethanes 78 

4.4.5 DIE/DIM Based Polyurethanes 84 

4.4.5 Precursors with Diamino Function 88 

4.5 References 88 

 

5. Energetic Polymers Based on Epoxides 92 

5.1 Introduction 93 

5.2 Monoepoxy Polymers 95 



Table	of	Contents	
	

 
 

vii 

5.2.1 Syntheses 95 

5.2.2 Characterizations 98 

5.3 Diepoxy Polymers 99 

5.3.1 Syntheses 99 

5.3.2 Characterization 102 

5.3.2.1 Spectroscopic Analyses 102 

5.3.2.2 Crystal Structure 114 

5.3.2.3 Thermal Stability 116 

5.3.3 Energetic Data 117 

5.4 Conclusion 119 

5.5 Experimental Part 120 

5.5.1 Compounds for Monoepoxy 120 

5.5.2 Difunctionalized Compounds 124 

5.6 References 131 

 

6. Energetic Plasticizers 135 

6.1 Introduction 136 

6.2 Results and Discussion 137 

6.2.1 Synthesis 137 

6.2.2 Spectroscopic Analysis 138 

6.2.3 Thermodynamic Properties 147 

6.2.3.1 Thermal Stability 147 

6.2.3.2 Low Temperature Behavior 151 

6.2.4 Sensitivities and Energetic Properties 152 

6.2.5 Applications 156 

6.3 Conclusion 157 

6.4 Experimental Part 158 



Table	of	Contents	
	

 
 

viii 

6.4.1 General Procedure (GP1) 158 

6.4.2 2,2-Bis(azidomethyl)propane-1,3-diol Based Esters 159 

6.4.3 2,2-Dinitropropane-1,3-diol Based Esters 162 

6.4.4 1,2-Bis(hydroxyethyl tetrazol-5-yl)ethane Based Esters 164 

6.5 References 166 

 

7. Summary 171 

 

8. Materials and Methods 177 

8.1 Chemicals 177 

8.2 General Methods 177 

8.3 Calculations 181 

8.4 References 181 

 

9. Appendix 185 

9.1 Abbreviations and Formula Symbols 185 

9.2 Crystallographic Data 189 

9.3 List of Publications 192 

9.3.1 Articles 192 

9.3.2 Poster Presentations 193 

 



	

 
 

 

 



Introduction	
	

 
 

2 

1. Introduction 

1.1 Classification of Energetic Materials 

 

With respect to its altering reaction behaviors and therefore varying application fields, the 

group of energetic materials can roughly be divided into four subgroups: 1. Primary 

explosives 2. Secondary explosives 3. Pyrotechnics and 4. Propellants (Figure 1.1).  

Secondary explosives can additionally be divided into compounds for military and civil 

purposes, as well as propellants into rocket propellants and propelling charges for 

ammunition.2 

 

Figure 1.1 Classification of energetic materials. 

 

 

1.2 Primary Explosives 

 

Primary explosives are mainly used as initiators for explosive systems, taking advantage of 

the large heat quantity or shock wave, resulting from their rapid transition from combustion 

(or deflagration) to detonation. Therefore, as one of its main characteristics, a primary 

explosive presents high sensitivities towards external stimuli like heat, impact, friction or 
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electrical discharges.2 3 After thus effected initiation, the released energy triggers the 

exothermic reaction of the less sensitive but energetically much more powerful secondary 

explosive within the respective explosive system. The usual detonation velocities (Vdet) of 

primary explosives range between 3500 to 5500 m s−1 and hence are much slower than those 

of secondary explosives.2  

Currently, due to their power and high sensitivities, lead azide and lead styphnate, as well as 

cadmium azide represent some of the most common primary explosives (Figure 1.2). 2  

 

 

 

Figure 1.2 Examples of primary explosives a) lead azide, b) lead styphnate, c) cadmium 

azide, d) tetracene, e) diazodinitrophenole. 

 

However, a severe disadvantage of these compounds represents their content of toxic heavy 

metal cations.4 Therefore, some metal-free organic primary explosives, like tetracene or 

diazodinitrophenole have been developed (Figure 1.2). Besides these metal-free compounds, 

two other very promising replacements for lead azide containing the non- or less-toxic metals 

potassium (potassium 1,1’-dinitramino-5,5’-bistetrazolate, K2DNABT)5 and copper (copper(I) 

5-nitrotetrazolate, DBX-1)6 were developed in the last few years (Figure 1.3). 

 

 

 

Figure 1.3 Promising, less toxic primary explosives a) K2DNABT, b) DBX-1. 
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1.3 Secondary Explosives 

 

Secondary explosives represent relatively stable and abundant components of explosive 

materials. Since their behavior towards external stimuli appears to be rather insensitive, its 

initiation needs to be triggered by an external detonator (usually containing a primary 

explosive). However, the resulting energy output of the secondary explosive is remarkably 

higher compared to primary explosives. Just like the corresponding detonation velocity (Vdet = 

5500 to 9000 m s−1), pressure (pCJ) and heat (∆EU°), which represent important parameters of 

the energetic performance.  

Widely known secondary explosives are TNT (2,4,6-trinitrotoluene), HMX (high melting 

explosive / her majesty’s explosive, octogen, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazine) or 

RDX (research department explosive / royal demolition explosive, hexogen, hexahydro-1,3,5-

trinitro-1,3,5-triazine) (Figure 1.4).2 

 

 

 

Figure 1.4 Examples of secondary explosives a) TNT, b) RDX c) HMX. 

 

A quite promising new replacement for the broadly militarily used RDX seems to be the 

bistetrazole compound TKX-50 (dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate) 

(Figure 1.5).7 It shows a better energetic performance than RDX, but at the same time has 

proven to be less toxic towards micro bacterial organisms than RDX. 

 

 

 

Figure 1.5 A promising RDX replacement, TKX-50. 

 

Besides the military aspect, secondary explosives also find application within the civil sector. 
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They find application as explosives in the fields of tunneling, mining or oil drilling. Here, 

explosives with lower energetic performances are used due to aspects of safety and a cheaper 

synthesis (compared to RDX or HMX), like ANFO (ammonium nitrate fuel oil) or HNS 

(hexanitrostilbene) (Figure 1.6).8 

 

 

 

Figure 1.6 Structure of HNS. 

 

 

1.4 Propellants 

 

Unlike the previously described energetic materials, propellants are meant to deflagrate 

instead of detonate, generating a possibly high specific impulse Is, which represents an 

essential parameter of propellants, describing their efficiency regarding propulsion.9 

Propellants can be divided into two subgroups: ammunition and rocket propellants. The oldest 

known propellant charge is black powder, which can be assigned to the ammunition group. It 

is composed of 75 % KNO3, 10 % sulfur and 15 % charcoal dust. However, due to its low 

performance and massive generation of corrosive gases (NOx and SOx), it is barely used 

today. Instead, the via nitration of cellulose generated nitrocellulose (NC, single-base 

propellant) represents a suitable replacement for black powder in e.g. pistols, burning almost 

without residues, due to its high oxygen balance. In order to improve the specific impulse 

double- and even triple-base propellants (nitrocellulose + nitroglycerine / + nitroguanidine) 

were developed (Figure 1.7). Those find application according to the respective type of 

artillery.  

However, since the released high temperatures caused noticeable erosion problems in the gun 

barrel due to increased iron carbide formation, current research focuses on propellants that 

burn with possibly low temperature, but still result in good values for Is.
10 Additionally by 

increasing the N2/CO ratio, it is aimed to reduce the CO emission which contributes to the 

observed erosion. Since 1970, so called low-vulnerability ammunition (LOVA) propellants, 
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which do not deflagrate or detonate after external stimuli, became more and more prominent.2 

 

 

 

 

Figure 1.7 Structures of the propellants a) nitrocellulose, b) nitroglycerine, c) 

nitroguanidine. 

 

Since rockets are usually fired only once, the requirements for rocket propellants differ from 

those of ammunition propellants. Here, the specific impulse plays an even more important 

role and should be as high as possible. The subgroup of rocket propellants can further be 

divided into solid and liquid propellants. Solid propellants are for example composed of 

double-base propellants or ammonium perchlorate in combination with aluminum. Liquid 

propellants are for example mixtures of HNO3 or NO2/N2O4 with hydrazine derivatives like 

MMH (Monomethylhydrazine).2 

 

 

1.5 Pyrotechnics 

 

Representing the average group within energetic materials regarding their exothermic reaction 

speed, pyrotechnics are compositions designed for a variety of applications, exploiting the 

generation of heat, light, smoke and noise. However, not only its composition, but also 

homogeneity of the pyrotechnic’s mixture, as well as the particle size, represent crucial 

factors for the resulting reaction behavior.2 11 Heat generating pyrotechnics find application as 

initiators, quickly triggering the release of a flame after impact of external stimulations, 

setting up e.g. a detonation. The generation of smoke is used for the purpose of camouflage, 

releasing a cloud of aerosol. Light emitting pyrotechnics particularly represent useful tools for 

the purpose of localization of either castaways or landing places for e.g. aircrafts in signal 

ammunition. But of course, they are also used for civil purposes in fireworks. The 

illumination intensities and the emitted wavelengths are directly linked to the used component 

mixture.2  
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1.6 Energetic Polymers 

 

Over the decades, the use of energetic materials increased and the demand for more safety and 

better handling properties of those materials grew even more. This involved a reduction of the 

sensitivity towards outer stimuli like heat, impact, shock, etc., without decreasing the 

energetic performance of the system. Consequently, insensitive munitions12, composite 

propellants13 and polymer-bonded explosives (PBX)14 were developed amongst others. Here, 

the crystalline or liquid energetic components are embedded in a matrix of cross-linked 

polymers. Thus, a better and easier handling of the mixtures is achieved, also by reducing the 

formulations sensitivity towards external stimuli.15 16  

Proper mixing of the binder and its energetic filler can be achieved by melting a 

(homogenous) mixture of the components and a subsequent slow hardening by controlled 

cooling, or (in case of liquid binders) by the addition of a curing agent to a well mixed 

composite of the ingredients for cross-linking the polymer chains (hardening process). 

In order to guarantee a high long-term safety standard of the energetic formulation, adhesion 

properties and interaction behavior between binder and the energetic filler are, besides the 

thermal and physical stability of the binder, of great importance. An insufficient adhesion or 

interaction can lead to severe problems, regarding safety in handling and use. Examples of 

resulting failures, due to lacks of adhesion or interaction, are crack-formations in the 

explosive composition17, detachment of the polymeric matrix or exudation of the bound 

ingredients18 19. 

Specific problems concerning insufficient binder-filler interactions cause nitramine containing 

explosives, like the broadly used RDX and HMX. With most binders the nitramine groups 

only show poor interaction behaviors, which leads to dewetting of the energetic filler. 

Therefore, certain adhesion promoters were developed. One example of such promoters are 

substituted amides, which are able to interact with nitro groups.19 

Today’s state-of-the-art binder, which fulfills many of the demanded properties as binder for 

propellant and explosive formulations is hydroxyl-terminated polybutadiene (HTPB) (Figure 

1.8).  

 

 

Figure 1.8 Hydroxyl-terminated polybutadiene (HTPB). 
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All in all, this compound shows very good properties, especially regarding its mechanical 

properties, ageing stability and chemical stability, together with desirable viscosity and solids 

loading.15 When used as a binder the polymer provides a void-free matrix by wetting the solid 

filler and improving the mechanical and safety properties of the energetic formulation, which 

even guarantees a safe handling also in large casting amounts. However, the non-energetic 

character of HTPB leads to a loss of the energetic performance, unless the formulation 

harbours a high solids loading. But the increased amount of energetic solids leads in turn to 

safety issues and processing problems, which limits the possibilities of application fields. This 

dilemma can be avoided by the replacement of the inert binder by, or the addition of energetic 

polymers. This can also improve the composition’s efficiency and even contribute to its 

energy output, simultaneously providing enhanced thermal and physical stability. This basic 

concept led to the development of various classes of energetic polymers over the last few 

decades.15 16 14 Many known energetic polymers contain azido or nitrato moieties as energetic 

functional groups. In Figure 1.9 different developed energetic polymers are depicted. 
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Figure 1.9 Selected energetic polymers a) nitrocellulose (NC) b) glycidyl azide polymer 

(GAP), c) poly[3,3-(bisazidomethyl)oxetane] (polyBAMO), d) poly(3-azidomethyl-3-methyl 

oxetane) (poly(AMMO), e) poly(glycidyl nitrate) (polyGLYN), f) poly(3-nitratomethyl-3-

methyl oxetane) (polyNIMMO), g) polyvinyl nitrate (PVN).  

 

The presence of the energetic functional groups, provided by the energetic polymer, allows a 

decrease in the amount of used energetic filler. This directly enhances the safety of the 

energetic formulation. 

 

 

1.6.1 Energetic Polymers Based on Cellulose 

 

The first encounter with nitrocellulose (NC) was accidentally made by SCHÖNBEIN in 1846.20 

Its high oxygen content and residue-free combustion represented good features. Together with 

other desirable properties, this aspect rendered NC a versatile material for different kinds of 

application. It was used as celluloid for former movies, in table tennis balls, membranes or 

varnishes. In the field of energetic materials, it is used in pyrotechnical compositions, as 

propellant or as binder. Despite its numerous negative properties, like its poor long term 

stability, as well as low thermal (Tdec~160 °C) and physical stability (IS > 3 J, FS 

>353 N, depending on the degree of nitration)18, NC is still in use today, because of its 
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extremely low costs and easy application. 

Further examples of cellulose based energetic compounds are azidocellulose and 

azidocellulose nitrate21 which find application as propellants22. Azidocellulose can be 

obtained by substitution reactions of sodium azide with either iodocellulose or the respective 

tosylated compound.23 

 

 

1.6.2 Energetic Polymers Based on Nitrate Esters 

 

The best known polymers based on nitrate esters (aside from NC) PVN, polyGLYN and 

polyNIMMO, are derived from three different monomer types: vinyl compounds, epoxides 

and oxetanes. 

Whereas PVN is mostly obtained from the nitration of polyvinyl alcohol24, which means the 

energetic group is introduced after the polymerization step. The polymerization step of the 

other two compounds is performed after the synthesis of the respective nitrated monomer 

(Scheme 1.1).15 

 

 

 

Scheme 1.1 Nitritaion of the monomers of polyGLYN and polyNIMMO 

 

The synthesis has to be carried out in this order. Otherwise the nitration would lead to nitrated 

terminal hydroxyl groups, which are necessary for the subsequent cross-linking reactions, if 

the compounds are applied as binder. Special attention has to be payed to the exact adherence 

of the stoichiometry of the monomer to N2O5. If the nitrating agent is used in an 

excess (> 2 equivalents), this will result in a ring opening reaction and the formation of 

threefold nitrated nitroglycerin derivatives. 
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Despite their good energetic properties and moderate to good sensitivities (IS 10 J (PVN, 

polyGLYN)18 25 to insensitive (polyNIMMO)16, FS 112 N (polyGLYN)25, 196 N (PVN)18 to 

insensitive (polyNIMMO)16) the polymers based on nitrate esters lack in terms of thermal 

stability. With 170-175 °C their decomposition temperatures are relatively low. 18 26 

 

 

1.6.3 Energetic Polymers Based on Azides 

 

When discussing energetic polymers based on azides GAP, polyAMMO and polyBAMO 

have to be named. Amongst these three compounds, GAP represents the best known one. 

Just like the previously mentioned polyGLYN, GAP possesses a glycidyl backbone and is 

therefore based on an oxirane monomer. Contrary to polyGLYN, the introduction of the 

energetic group is carried out after the polymerization step (Scheme 1.2). The polymerization 

of the used monomer epichlorohydrin (ECH) is cationically initiated, usually by a Lewis acid 

and a (difunctional) alcohol. After the formation of polyepichlorohydrin the halogen-azide-

exchange is carried out with sodium azide. 

 

 

 

Scheme 1.2 Synthesis of GAP. 

 

GAP is the most promising candidate for truly finding application in energetic formulations so 

far. It stands out due to its relatively high density (1.3 g cm−3)27 and good thermal (216 °C)18, 

as well as its physical stability (IS 7 J, FS >360 N)18 (values are given for the hydroxyl 

terminated form with standard molecular weight of Mn = 2000 g mol−1). Furthermore, GAP 

possesses a positive heat of formation (∆fHm), with literature given values up to +490.7 kJ 

mol−1 15. All these properties classify GAP as an interesting compound for application as 

binder in propellant formulations.16 Due to its honey-like consistency GAP needs to be cured, 

if applied as binder, which is usually achieved by the formation of cross-linking carbamate 

groups via the addition of isocyanate compounds.28 Unfortunately, GAP does not show the 

best mechanical properties, in that context.29 Therefore, the search for an adequate energetic 
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binder, which can be applied in energetic formulations is not yet completed. 

Like polyNIMMO, polyAMMO and polyBAMO are based on oxetane monomers. Unlike in 

the case of the previously described syntheses, the order of the carried out reaction steps is not 

of that importance in those cases. Both compounds can be synthesized over both routes, the 

previous introduction of the energetic group or first the polymerization step (Scheme 

1.3).30 31 32 

 

 

 

Scheme 1.3 Synthetic routes for polyAMMO and polyBAMO. 

 

Contrary to GAP, polyAMMO and polyBAMO are solids at room temperature. In terms of 

the energetic output of the overall binder system this can be seen as an advantage, since no 

(usually non-energetic) curing agents are needed.33 The solid character of these compounds 

also explain the higher sensitivities towards friction and impact with IS >5 J and FS >288 N 

(values for polyBAMO)18, compared to the viscous GAP. The thermal stabilities of the 

oxetane based polymers are in the approximate range of GAP or above (203 °C 

(polyBAMO)34 and 244 °C (polyAMMO)35 vs 216 °C (GAP)). 
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1.6.4 Energetic Polymers Based on Other Energetic Functional Groups 

 

Besides the already mentioned polymers based on nitrate esters or azido groups, several other 

energetic polymer classes are described in literature. Beneath those, two particular compounds 

(classes) should be mentioned: 

On the one hand, a polymer based on nitro groups, polynitropolyphenylene (PNP) (Figure 

1.10), which is obtained in an ULLMANN reaction using 1,3-dichloro-2,4,6-trinitrobenzene in 

nitrobenzene with copper powder.18  

 

 

 

Figure 1.10 Polynitropolyphenylene (PNP). 

 

PNP stands out because of its high thermal stability (280-304 °C)18, which, together with the 

relatively good oxygen balance for energetic binders (−49 %) and insensitivity towards 

friction predestines this compound for LOVA high ignition temperature propellants. Its 

downside is a high impact sensitivity (3-5 J).18  

The second compound class, which turned out to be of interest for newly developed energetic 

polymers nowadays, are tetrazoles. They offer interesting properties for the demands of new 

energetic polymers.36 They bring along a high nitrogen content (up to 79 % for 1H-tetrazole) 

and hence an environmentally friendliness (due to their solely gasous decomposition products 

N2 and CO/CO2 and, in general, a lesser toxicity towards biota). Additionally, they possess 

overall good thermal stabilities and considerable energetic properties. They also offer high 

heats of formation, but are more stable than compounds harboring azide groups. 15 

Consequently, polymers based on tetrazoles are considered to be promising new binders for 

energetic formulations.  

One example of a tetrazole based polymer is poly(vinyl tetrazole) (PVT) (Figure 1.11).37 
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Figure 1.11 Polyvinyl tetrazole (PVT). 

 

1.7 Energetic Plasticizers 

 

Not only polymers (binders), but also plasticizers, play a certain role in energetic 

formulations, concerning their safety characteristics and processability. By adding 

plasticizers, the chain dynamics of (amorphous) polymers are modified in a positive way. This 

is acchieved by increasing its flexibility and softening point, resulting in a decreased glass 

transition temperature Tg.
38 The used binders often show poor low temperature behavior by 

becoming brittle and friable at certain temperatures. This leads to an increased failure rate 

(e.g. crack formation) and therefore bad safety characteristics. The addition of a plasticizer 

influences the consistency of the binder and hence leads to an earlier transition from a brittle 

like state (T<Tg) into the desired flexible, rubber-like material (T>Tg). 

The average number of molecular weight of a typical plasticizer ranges from 200 to 

2000 g mol−1. While plasticizers with lower molecular weights tend to be more effective in 

reducing the glass transition temperature, they also are highly volatile and show some 

exudation behavior over time. This migration of plasticizers out of a formulation (exudation), 

represents a common problem which is related to the low molecular weight of the applied 

molecules, negatively affecting the quality of the explosive composition over time. Hence, in 

order to enable a better incorporation of the additives, molecular weights between 400 and 

1000 g mol−1 proved to possess the best plasticizing characteristics.16 Besides, an approach 

targeting an increased structural similarity between the energetic polymers and the plasticizer 

has resulted in more stable formulations with reduced exudation.16 

As for the above mentioned binders, there are two classes of common plasticizers: the 

energetic and the non-energetic ones. 

The non-energetic plasticizers are predominantly used for their excellent properties in 

modifying Tg, strength and elongation toughness of a binder. The obvious disadvantage of this 

type of plasticizer is the lack of energetic qualities. Typical representatives of utilized non-
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energetic plasticizers in energetic compositions are triacetin, organic phthalates, like dioctyl 

phthalate (DOP) or esters of adipic acid, like dioctyl adipate (DOA) (Figure 1.12).13 39 

 

 

 

Figure 1.12 Examples of non-energetic plasticizers a) triacetin, b) dioctyl phthalate (DOP), 

c) dioctyl adipate (DOA). 

 

The energetic representatives should preferably show a similar plasticizing effect, like their 

non-energetic counterparts, but also contribute to the oxygen balance and energetic 

performance of an energetic system. Because of their advantageous oxygen balance, most of 

the used energetic plasticizers are based on nitrate esters or nitramines (Figure 1.13) 

 

 

 

Figure 1.13 Examples of broadly used plasticizers based on nitrate esters a) nitroglycerine 

(NG), b) trimethylol ethane trinitrate (TMETN), c) diethylene glycol dinitrate (DEGDN). 

 

Nonetheless, there are also examples of azido based plasticizers, which are often used in 

combination with GAP to improve its poor mechanical properties.16 Selected examples of 

azido based plasticizers are depicted in Figure 1.14. 
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Figure 1.14 Examples of azido based plasticizers a) ethylene glycol bis(azidoacetate) 

(EGBAA), b) diethylene glycol bis(azidoacetate) (DEGBAA), c) pentaerythritol tetrakis 

(acidoacetate) (PETKAA). 

 

Oligomers or dimers of GAP, polyNIMMO and polyGLYN were also developed as energetic 

plasticizer. Due to the structural similarity to their corresponding polymers, they represent 

useful plasticizers in terms of compatibility.16 
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2. Concepts and Aims 

 

Despite the broad variety of already established energetic polymers and plasticizers, the 

development of new energetic polymers is still of interest. Since previously developed 

compounds are not suited to fully replace the well-established non-energetic binders and 

plasticizers in insensitive and high performance propellants, explosives or pyrotechnic 

formulations. Most of these compounds show considerable disadvantages, like low thermal or 

physical stability, low adhesive properties, poor low temperature behavior or, in general bad 

mechanical properties. 

Therefore, the aim of this dissertation was the development of new polymers and plasticizers 

with different energetic functional groups and the investigation of their physical and energetic 

properties. The main focus was put on three different energetic functional groups:  

1. Organic azides, due to their high heats of formation and good thermal stability  

2. Nitro groups, due to their low physical sensitivities and high oxygen balance 

3. Triazoles and tetrazoles, due to their high nitrogen content, their environmental 

friendliness and good thermal and physical stability. 

The main demands for the suitability as binder of the newly developed compounds were high 

thermal (decomposition temperature >200 °C) and physical (impact sensitivity > 15 J, friction 

sensitivity >100 N) stability and, in case of liquid products, possibly low glass transition 

temperatures to stabilize the energetic filler. Moreover, a high chemical stability is required to 

avoid reactions between the binder and the filler and therefore guarantee a long-term stability. 

The energetic properties of the new compounds should exceed or at least be equal with those 

of established energetic polymers or plasticizers. 
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3. Energetic Nitramine Polymer with Glycidyl Backbone 

 

Abstract: A new energetic glycidyl based polymer containing nitramine groups (glycidyl 

nitramine polymer, GNAP) was synthesized using glycidyl azide polymer (GAP) as starting 

material. The synthesis involved STAUDINGER azide-amine conversion, followed by 

carbamate protection of the amino group, nitration with nitric acid (100 %) and trifluoroacetic 

anhydride and was completed by deprotection with aqueous ammonia. 

The obtained products were characterized by elemental analysis and vibrational spectroscopy 

(IR). The energetic properties of GNAP were determined using bomb calorimetric 

measurements and calculated with the EXPLO5 V6.02 computer code, showing better values 

regarding energy of explosion (∆EU° = −4813 kJ kg−1) detonation velocity (Vdet = 7165 m s−1) 

as well as detonation pressure (pCJ = 176 kbar) than the comparative polymers GAP and 

polyGLYN. The explosion properties were tested by impact sensitivity (IS), friction 

sensitivity (FS), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) 

and electrostatical discharge (ESD) equipment. The results revealed GNAP to be insensitive 

towards friction and electrostatical discharge, less sensitive towards impact (40 J) and a 

decomposition temperature (170 °C) in the range of polyGLYN. 
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3.1 Introduction 

 

Polymers play an important role in modern energetic formulations of any kind. They are 

mostly used as binders in order to reduce the sensitivity of energetic materials towards heat, 

impact, friction and to improve the mechanical resistance, by constructing a protective matrix 

around the mainly solid energetic ingredients.1  

The use of inert polymers, such as hydroxyl-terminated polybutadiene (HTPB) or terpolymers 

based on butadiene, acrylonitrile and acrylic acid (polybutadiene acrylonitrile, PBAN) is 

widely reported.2 Although these polymers are well suited as binders due to their benefitial 

properties, they have major issue of being non-energetic. The use of such binders in energetic 

formulations leads to a loss of the energetic performance of the overall system. Therefore the 

development of energetic polymers gained more and more interest in the past decades.1 3 4 

Two examples of energetic polymers, which are already commercially available are the 

glycidyl azide polymer (GAP) and poly(glycidyl nitrate) (polyGLYN) (Figure 3.1). 

 

 

 

Figure 3.1 Structures of GAP and polyGLYN. 

 

Due to their liquid consistency both compounds need to be cured if used as binders in 

energetic formulations. This is achieved by adding a curing agent to the binder containing 

explosive composition. Usually diisocyanato compounds are used to cure the hydroxyl-

terminated glycidyl polymers forming an urethane linkage. The reaction of GAP with the 

curing agent diphenylmethane-4,4’-diisocyanate (MDI) is shown in Scheme 3.1 as example. 5 

 

 

 

Scheme 3.1 Curing of hydroxyl-terminated GAP using MDI. 
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This curing step of glycidyl polymer however has the disadvantage of reducing the final 

energy output of the formulation, as the used isocyanates are non-energetic. Furthermore, 

curing of these polymers is often accompanied with gas evolution leading to void formation in 

the composition. Therefore, the objective of this work was to synthesize a solid glycidyl based 

energetic polymer for binder applications. 

 

 

3.2 Results and Discussion 

3.2.1 Synthesis 

 

It was necessary to convert the azide moieties of GAP into amino groups before proceeding to 

the desired nitramine by applying the STAUDINGER reaction.6 To avoid multiple nitration, the 

amino groups of 1 were protected using ethyl chloroformate. After nitration, the deprotection 

of 3 was performed with aqueous ammonia. The desired compound 4 was obtained as a 

yellow, sticky powder. Due to the solid character of GNAP (4), no or at least less curing 

agents should be needed if used in energetic formulations. The synthetic route to obtain 

GNAP is shown in Scheme 3.2. 

 

 

 

Scheme 3.2 Synthetic route towards glycidyl nitramine polymer (GNAP). 
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3.2.2 Spectroscopic and Elemental Analysis 

 

The obtained compounds were characterized using IR spectroscopy and elemental analysis. 

Measured IR spectra of GAP and all synthesized compounds are depicted in Figure 3.2. 

After the concluded STAUDINGER azide-amine conversion, the values of the measured 

elemental analysis of 1 fitted well with the calculated contents for one hydrochloride molecule 

and 0.5 molecules of water per repeating unit of the amino polymer. A comparison of the IR 

spectra of GAP and 1 reveals significant differences. The characteristic strong vibration of the 

azide group of GAP at about 2100 cm−1 (A)7 is completely vanished in the spectrum of the 

amino hydrochloride 1. Instead, the valence and bending vibrations of the ammonium group 

at 3380 cm−1 (B) and 1600 cm−1 (C), respectively appear.7 8 
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Figure 3.2 Measured IR spectra of GAP, compounds 1-3 and GNAP. 

 

Elemental analysis and measured IR spectra of the carbamate protected amino polymer 2, as 

well as for the nitrated carbamate compound 3 proved the formation of both desired products. 

The IR spectrum of 2 shows the two characteristic carbamate vibrations, the C=O stretching 
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at 1700 cm−1 (D) and the N−H bending vibration (Amide II vibration) at 1520 cm−1 (E) with 

strong intensities. In the vibrational spectrum of 3, the signals at 3300 cm−1 (F) and 1520 cm−1 

(E) vanish due to the nitration of the protected N−H group. Instead, a strong signal at about 

1600 cm−1 (G) appears, which can be assigned to the asymmetric vibration of the nitramino 

group. 7 Besides, the vibration of the carbamate C=O group (D) is moved to higher 

wavenumbers (1770 cm−1). 

After the deprotection of 3 and the following acidification, the elemental analysis of the 

obtained compound (4) revealed a small percentage of remaining carbamate protecting groups 

in the polymer (1 out of 18 repeating units). 

The measured IR spectrum of GNAP shows a lack of the carbamate vibrations and a 

reappearance of the N−H stretching band at about 3270 cm−1 (H) for the primary nitramine.7 

Furthermore the two existing asymmetric and symmetric vibrations (1600 cm−1 and 

1300 cm−1) of the nitramine group are visible (G, J).7 This proves the successful synthesis of 

the glycidyl nitramine polymer (GNAP, 4). 

 

 

3.2.3 Thermodynamic and Energetic Properties 

 

Differential scanning calorimetry measurements for the determination of the decomposition 

temperatures (Tdec.) of GNAP were performed in closed Al-containers, containing a hole 

(0.1 mm) for the gas release. GNAP shows a decomposition point at 170 °C (onset of 

decomposition) (Figure 3.3). This value is below the decomposition point of GAP (216 °C)9 

and in the range of polyGLYN (170 °C)10. In addition, a TGA was recorded in the 

temperature range 20-400 °C at a heating rate of 5 °C min−1 in an argon atmosphere (Figure 

3.4). GNAP shows a beginning weight loss around 170 °C, which can be explained by the 

beginning decomposition of the side chain starting with the nitramine groups. The second step 

around 220 °C is assignable to the decomposition of the polymeric backbone. Having reached 

the end temperature of 400 °C an overall (not fully completed) weight loss of 76.7 % was 

obtained. 
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Figure 3.3 DSC plot of GNAP (onset temperatures). 

 

 

 

Figure 3.4 TGA plot of GNAP. 

 

The sensitivity data were obtained using a BAM drop hammer and friction tester. 11 These 

methods revealed that GNAP is insensitive towards friction (>360 N) and less sensitive 

towards impact (40 J). Compared to GAP (IS: 8 J, FS: > 360 N)9 and polyGLYN (IS: 10 J, 

FS: 112 N)r
, GNAP shows higher stability towards impact (40 J) and equal or better stability 

towards friction (>360 N), which can be regarded as an advantage in terms of safety. 

For analyzing the energetic properties of GNAP, the energy of combustion (ΔUc) was 

determined via bomb calorimetry. The enthalpy of formation could be calculated from the 

obtained value applying the HESS thermochemical cycle, as reported in literature.12 The 
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required heats of formation of H2O (l) and CO2(g) with −286 kJ mol−1 and −394 kJ mol−1 

respectively, were obtained from literature.13 The combustion reaction of GNAP is given in 

Scheme 3.3. 

 

C3H6N2O3 + 3 O2 → 3 CO2 (g) + 3 H2O (l) + N2 (g) 

 

Scheme 3.3 Combustion reaction of GNAP (repeating unit).  

 

All calculations concerning the detonation parameters were carried out using the program 

package EXPLO5 (version 6.02)14 and were based on the calculated heats of formation and 

attributed to the corresponding densities. The obtained data of GNAP is given in Table 3.1 

and compared to the energetic values of GAP and polyGLYN. 
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Table 3.1 Energetic data of GNAP compared to GAP and polyGLYN. 

 
GNAP GAPp polyGLYNq 

Formula (repeating unit) C3H6N2O3 C3H5N3O C3H5NO4 

Molecular mass [g mol−1] 118.09 99.09 119.08 

Impact sensitivity [J]a 40 8 10r

Friction sensitivity [N]b >360 >360 112r 

Ω [%]c −81 −121 −60 

Tdec [°C]d 170 200 170 

ρ [g cm−3]e 1.5 1.3 1.4 

−ΔUcomb [cal g−1]f 3831 - - 

−ΔHcomb [kJ mol−1]g 1896 - - 

∆fHm° [kJ mol−1]h −146 142 −323 

∆fU ° [kJ kg−1]i −1261 1545 −2609 

EXPLO 5 V6.02 values    

−∆E U° [kJ kg−1]j 4813 4307 4433 

TE [K]k 2974 2677 3019 

pCJ [kbar]l 176 129 144 

Vdet [m s−1]m 7165 6638 6476 

Gas vol. [L kg−1]n 844 822 808 

Is [s]o 209 207 205 
a BAM drophammer; b BAM friction tester; c oxygen balance, d

 temperature of decomposition by DSC (β = 5 °C, onset 
values); e density derived from pycnometer measurement, f experimental combustion energy (constant volume); g 
experimental molar enthalpy of combustion, h molar enthalpy of formation; i energy of formation; j energy of explosion; k 
explosion temperature; l detonation pressure; m detonation velocity; n assuming only gaseous products; o specific impulse 
(isobaric combustion, chamber pressure 70 bar, equilibrium expansion); p values obtained from the EXPLO5 V6.02 database 
and ref. 9; q values obtained from refs. 10 and 15; r values determined 2003 by Fraunhofer-Institut für Chemische Technologie, 
Pfinztal, Germany. 
 

Comparison of the values of ∆EU° (an indication of the work performed by the explosive) of 

GNAP and the references GAP and polyGLYN revealed that GNAP possesses an 

approximately 10 % higher energy of explosion (GNAP: −4813 kJ kg−1, GAP: −4307 kJ kg−1, 

polyGLYN: −4433 kJ kg−1). Other important values for the evaluation of the energetic 

performance are the detonation velocity Vdet and the detonation pressure pCJ. In case of Vdet, 

the value of GNAP (7165 m s−1) exceeds the values of GAP and polyGLYN by 500 m s−1 and 

700 m s−1, respectively. A comparison of the detonation velocities shows that pCJ of GNAP 

(176 kbar) is higher by about 50 kbar, in case of GAP and 30 kbar, in case of polyGLYN. 

Regarding the specific impulse Is, all the three glycidyl polymers given values are in close 

range (205-209 s). 
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Summing up the calculated results of the energetic data, GNAP shows better results in terms 

of ∆EU°, Vdet and pCJ compared to GAP and polyGLYN, which establishes GNAP as an 

interesting substance for further investigations concerning its suitability as binder in energetic 

formulations. 

 

 

3.3 Conclusion 

 

A new glycidyl based energetic polymer was synthesized. With GAP as starting material the 

desired compound glycidyl nitramine polymer (GNAP) was obtained in a four step synthesis, 

as a yellow sticky powder. The successful syntheses of the compounds were proven by 

infrared spectroscopy and elemental analysis. The thermal and physical stabilities of GNAP 

were determined by DSC measurements and BAM drop hammer and friction tester, 

respectively. It turned out, that GNAP is insensitive towards friction and equal or less 

sensitive towards impact than the commercially available energetic polymers GAP and 

polyGLYN. 

The energetic data of GNAP were calculated using the values of the bomb calorimetric 

measurements and the EXPLO5 version 6.02 computer program. The obtained values reveal a 

higher energy of explosion, detonation velocity and pressure of GNAP than for the values of 

the comparative compounds GAP and polyGLYN. 

Due to its solid character, no or at least less curing agents are needed when used as a binder. 

GNAP is therefore of interest as a potential new energetic binder in energetic formulations. 

Due to its solid character no or at least less curing agents are needed when used as a binder. 

GNAP could thus be of interest as a potential new energetic binder in energetic formulations. 
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3.4 Experimental Part 

 

CAUTION! All nitramine containing compounds are potentially explosive energetic 

materials, although no hazards were observed during preparation and handling of these 

compounds. Nevertheless, this necessitates additional meticulous safety precautions 

(grounded equipment, Kevlar® gloves, Kevlar® sleeves, face shield, leather coat, and ear 

plugs). 

 

Glycidyl amino hydrochloride polymer (1) 

 

 

 

GAP (5.01 g, 50.56 mmol, Mn ~ 2000 g/mol, OH-terminated ) was dissolved in 20 mL THF 

and 2 equivalents PPh3 (26.52 g, 101.12 mmol) dissolved in 150 mL THF, were added slowly. 

After stirring for 24 h at 60 °C, the mixture was poured into 200 mL water and stirred for 

further 24 h at rt. The colorless precipitate was filtered off and the remaining solution was 

acidified with conc. HCl and washed with dichloromethane (5 x 50 mL). The aqueous phase 

was evaporated. After drying in vacuo 5.43 g (49.55 mmol, 98 %) of 1 were obtained as 

colorless powder. 

 

Melting point: Tmelt = 90 °C. 

IR (ATR, cm−1): ߥ෤ = 3380 (w), 2876 (s), 2362 (m), 2339 (w), 1991 (vw), 1738 (w), 1593 (m), 

1593 (w), 1489 (s), 1458 (m), 1421 (w), 1350 (w), 1328 (w), 1091 (vs), 1011 (s), 938 (m), 

914 (m), 843 (w). 

EA (C3H8ClNO): calculated: C 30.39, H 7.65, N 11.81, Cl 29.90 %; found: C 30.03, H 7.44, 

N 11.65, Cl 31.17 %. 
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Glycidyl ethyl carbamate polymer (2) 

 

 

 

1 (5.83 g, 53.20 mmol) was dissolved in 80 mL (160 mmol) 2 M NaOH and cooled down to 

0 °C. Ethyl chloroformate (6.93 g, 63.85 mmol) was added dropwise. The solution was stirred 

for 30 min at 0 °C. The solvent was decanted and the viscous orange residue was dissolved in 

50 mL dichloromethane and washed with brine (2x 30 mL) followed by water (1x 30 mL). 

The organic phase was dried over MgSO4 and evaporated. After drying under reduced 

pressure, 4.13 g (28.50 mmol, 54 %) of 2, as an orange viscous liquid was obtained. 

 

IR (ATR, cm−1): ߥ෤ = 3329 (m), 2980 (w), 2934 (w), 2875 (w), 1690 (vs), 1525 (s), 1480 (m), 

1445 (m), 1378 (w), 1335 (w), 1245 (vs), 1170 (m), 1093 (s), 1029 (s), 778 (m). 

EA (C6H11NO3): calculated: C 49.65, H 7.64, N 9.65 %; found: C 48.69, H 7.56, N 9.34 %. 
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Glycidyl ethyl N-nitrocarbamate polymer (3) 

 

 

 

Trifluoroacetic anhydride (TFAA) (83.69 g, 393.7 mmol) was cooled down to 0 °C. Conc. 

nitric acid (29.77 g, 472.44 mmol) was added dropwise and the mixture was stirred for 

10 min. Subsequently, the reaction mixture was added to precooled 2 (3.81 g, 26.25 mmol) 

and stirred for 1 h at 0 °C. The solution was poured in ice water and stirred overnight. The 

solvent was decanted and the yellowish residue was dissolved in dichloromethane (50 mL) 

and washed with brine (2x 20 mL) and water (1x 20 mL). The combined aqueous phases were 

extracted once with dichloromethane. After drying the combined organic phases over MgSO4, 

the solvent was evaporated and 3 was dried under reduced pressure to give 4.16 g 

(21.90 mmol, 83 %) of a yellowish, rubber-like solid. 

 

IR (ATR, cm−1): ߥ෤ = 2986 (w), 2914 (vw), 2878 (vw), 1765 (s), 1643 (w), 1568 (s), 1433 (w), 

1371 (w), 1288 (m), 1235 (m), 1204 (s), 1174 (vs), 1150 (vs), 986 (s), 873 (s), 750 (s), 

679 (w). 

EA (C6H10N2O5): calculated: C 37.90, H 5.30, N 14.73 %; found: C 37.01, H 5.22, N 

14.58 %. 
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Glycidyl nitramine polymer (GNAP, 4) 

 

 

 

3 (3.97 g, 20.87 mmol) was added to 125 mL conc. aqueous ammonia. The mixture was 

stirred for 2 h at 45 °C until a clear solution was obtained. After acidifying with conc. HCl the 

solution was stirred overnight at room temperature. The solvent was decanted and the residue 

was washed with boiling water (100 mL). The water was decanted and 4 was dried in vacuo 

to yield 64 % (1.58 g, 13.38 mmol) of a yellow, sticky powder. 

 

Density: ρ = 1.5 g cm−3. 

DSC (5 °C min−1): Tdec: 170 °C. 

IR (ATR, cm−1): ߥ෤ = 3505 (vw), 3267 (m), 3128 (w), 2930 (w), 2885 (w), 1718 (vw), 1566 

(s), 1440 (m), 1384 (s), 1304 (vs), 1093 (vs), 1073 (vs), 858 (vw), 770 (w), 740 (w). 

EA (C3H6N2O3 * 0.06 C3H5O2): calculated: C 31.19, H 5.18, N 22.87 %; found: C 31.21, 

H 5.14, N 22.76 %. 

Sensitivities: IS: 40 J; FS: > 360 N; ESD: 1.5 J. 
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4. Energetic Polymers Based on Polyurethanes, Polyureas and 

Related Compounds 

 

Abstract: On the basis of several synthesized diols, in particular 2,2-

bis(azidomethyl)propane-1,3-diol (BAMP), 2,2-dinitropropane-1,3-diol (DNPD) or BTEOH, 

polyurethanes were synthesized in polyaddition reactions using hexamethylene diisocyanate 

(HMDI), diisocyanato ethane (DIE) or diisocyanato methane (DIM). The obtained 

polyurethanes were mainly characterized using spectroscopic methods (IR, NMR) and 

elemental analysis. For the determination of low and high temperature behavior, differential 

scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used. Investigations 

concerning friction and impact sensitivities were carried out using a BAM drop hammer and 

friction tester. The energetic properties of the polymers were determined using bomb 

calorimetric measurements and calculated with the EXPLO5 V6.02 computer code. The 

obtained values were compared to the glycidyl azide polymer (GAP). The compounds turned 

out to be insensitive towards friction (>360 N) and less sensitive or insensitive towards impact 

(≥ 40 J). The compounds showed decomposition temperatures between 170 and 350 °C and 

possessed moderate or low energetic properties, which renders some of the synthesized 

polymers potential compounds for applications as binders in energetic formulations. 
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4.1 Introduction 

 

Polyurethanes (PUs) and polyureas (PUAs) can be found in many areas of the daily life, due 

to their broad versatility. Depending on their ingredients (di- or multifunctional isocyanates 

and di- or multifunctional alcohols or amines) these compounds can possess many different 

properties. They are mainly used as foams in various fields, e.g. in mattresses, car seats or in 

the building industry, but also as varnishes, adhesives or flexible plastics.1 

Another field in which polyurethanes find application is the military sector. For example, the 

in the 1950-60’s used formulation for the submarine launchable Polaris A1 missile contained 

amongst others a polyurethane propellant.2 Apart from that, the polyurethane formation is 

mainly used to cure hydroxyl-terminated liquid energetic (pre)polymers, like GAP or 

poly(NIMMO), after the mixing process with energetic ingredients. As an example, the 

reaction of GAP with the curing agent diphenylmethane-4,4’-diisocyanate (MDI) is depicted 

in Scheme 4.1.3 4 

 

 

 

Scheme 4.1 Curing of hydroxyl-terminated GAP via the formation of a urethane linkage 

using MDI. 

 

Due to their overall positive properties, their versatility, chemical and thermal stability 3 and 

good mechanical properties, as well as increased oxygen balance (PUs) or nitrogen content 

(PUAs), polyurethanes and -ureas seemed to be promising compounds for the use as energetic 

binders. Furthermore, carbamate or urea moieties, respectively can form hydrogen bridges to 

the energetic filler and therefore lead to increased adhesion forces. And, especially for 

nitramine containing energetic fillers, these carbamate and urea based compounds may be 

particularly qualified as energetic binder, since these moieties are structurally similar to the 

amide group, which turned out to form good interactions with nitro groups.5 Herein we report 

different synthetic approaches towards new energetic polyurethanes, polyurea and related 

compounds. 
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4.2 Results and Discussion 

4.2.1 Polyurethanes 

4.2.1.1 Precursors 

4.2.1.1.1 Precursors with Diisocyanate Function 

 

The polyaddition reactions towards the target polyurethanes were carried out using three 

different diisocyanates: hexamethylene diisocyanate (HMDI, 1), diisocyanato ethane (DIE, 

5b) and diisocyanato methane (DIM, 5a). HMDI was obtained from commercial sources, DIE 

and DIM were synthesized (slightly modified) according to established procedures.6 The 

diisocyanates were prepared pursuant to the CURTIUS rearrangement based on the acyl azides 

4a and 4b, which were obtained over two steps, starting with the corresponding methyl esters 

2a and 2b (Scheme 4.2). 

 

 

 

Scheme 4.2 Synthesis of the diisocyanates 5a and 5b. 

 

Due to their instability, the acyl azides (4a and 4b) were not further concentrated after 

purification, but directly converted into the corresponding diisocyanates (5a and 5b). After 

the completion of the reaction, DIE (5a) and DIM (5b), with regard to their high reactivity, 

were also directly used for the polyaddition reaction. The successful formation of the desired 

diisocyanates (5a and 5b) was confirmed by TLC and IR measurements. Here, the acyl azide 
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vibration at 2140 cm−1 vanished and the isocyanate vibration occurred at 2280 cm−1 7 instead. 

 

 

4.2.1.1.2 Precursors with Alcohol Function 

 

The diols, prepared in this work were meant to introduce the energetic content into the target 

polyurethanes. They were either chosen due to their high nitrogen content (azide, triazole, 

tetrazole) or because of a resulting good oxygen balance (nitro groups). The diols, which were 

used for the polyurethane syntheses are depicted in Figure 4.1. 

 

 

 

Figure 4.1 Diols applied in the syntheses of polyurethanes. 

 

Syntheses 

The acetylene based diol (6) was purchased from commercial sources. Diols 7 8, 8 9, 9 10 and 

11 11 were already mentioned in literature and synthesized according to the published 

procedures. Whereas diol 10 was obtained via a copper-catalyzed azide-alkyne cycloaddition 

using BAMP (8) and propargyl acetate (Scheme 4.3). 
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Scheme 4.3 Synthesis of 10 via copper-catalyzed azide-alkyne cycloaddition. 

 

The crude product was recrystallized in methanol which gave 10 as colorless crystals in good 

yield (69 %). 

As a further approach, the acetyl protecting group of 10 was removed using alkaline 

hydrolysis, obtaining a ditriazolo compound, 2,2-bis(hydroxymethyl-1H-1,2,3-triazol-1-

yl)methyl)propane-1,3-diol (4-ol, 12) with a tetravalent alcohol function (Scheme 4.4). 

 

 

 

Scheme 4.4 Alkaline hydrolysis of 10 yielding 12 (4-ol) with a fourfold alcohol function.  

 

After purification via column chromatography and a following recrystallization, 4-ol (12) 

could be obtained as colorless crystals in low yield (20 %). 

 

Characterization 

All synthesized precursors with alcohol function were analyzed using elemental analysis as 

well as spectroscopic (1H, 13C (for some compounds additionally 14N) NMR and IR) and 

spectrometric methods. Compounds 7-9 and 11 gave consistent results with the literature 

values. 8-11 
1H and 13C NMR spectra of 10 and 12 were compared. The signals in the 1H NMR spectra of 

the unmodified groups in 10 and 12 still occur in the same regions, with 8.11-7.97 ppm for 

CHtriazole, 5.12-5.04 ppm for the OH-group of the propane-1,3-diol fragment, 4.39-4.34 ppm 

for the methylene unit attached to the triazole N and 3.11 ppm for the methylene unit attached 

to the hydroxyl group in the propane-1,3-diol fragment. Nevertheless, they can clearly be 



Energetic	Polymers	Based	on	Polyurethanes,	Polyureas	and	Related	Compounds	
	

 
 

43 

distinguished from each other, by the disappearance of the signal of the methyl group at 

2.03 ppm in the spectrum of 12 and the simultaneous appearance of the signal at 5.22 ppm, 

which can be assigned to the newly formed OH-groups. Same can be applied for the 13C NMR 

spectra of 10 and 12. Whereas the signals of the unmodified molecule fragments show nearly 

unchanged values, the signals of the acetyl group (with 170.1 (C=O) and 20.6 ppm (CH3)) of 

12 vanish in the spectrum of 10, which verifies the successful cleavage of the acetyl group. 

Besides this, the elemental analyses of both compounds verifed very pure products. 

 

Crystal Structures 

Crystal structures of 10 and 12 were obtained using single crystal X-ray structure analysis. 

Single crystals suitable for X-ray diffraction were obtained by recrystallization of the products 

from MeOH (10) or an ethanol/methanol mixture (12).  

Compound 10 crystallizes in the triclinic space group P-1 with two formula units per unit cell 

(Figure 4.2). Calculated density for T = 173 K is 1.389 g cm−3. The bond lengths and angles 

within the molecular structure of 10 are consistent with comparable values in literature. 12 13 

Although, the molecule per se is symmetrically assembled, the crystal structure of 10 does not 

possess any center of symmetry. 
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Figure 4.2 Molecular structure of 10. Thermal ellipsoids are set to 50 % probability. 

Selected bond distances [Å]: O1−H1 0.904(3), O1−C2 1.419(2), O2−H2 0.871(2), O2−C3 

1.412(2), N1−N2 1.342(2), N1−C5 1.354(2), N2−N3 1.321(2), N3−C6 1.361(2), C5−C6 

1.365(3), N4−N5 1.350(2), N4−C11 1.347(2), N5−N6 1.322(2), N6−C12 1.363(2), C11−C12 

1.366(2); selected bond angles (°): C1−C4−N1 113.2(1), C1−C10−N4 114.0(1), C2−O1−H1 

111.6(2), C3−O2−H2 107.8(2); selected torsion angles (°) C1−C2−O1−H1 −73.2(2), 

C1−C3−O2−H2 84.2(2), C1−C4−N1−N2 −92.1(1), C1−C4−N1−C5 88.1(2), 

C1−C10−N4−N5 96.9(1), C1−C10−N4−C11 −83.2(2), C4−C3−N4−N3 4.0(2), 

C1−C4−N1−N2 −92.1(1), C4−N1−C5−H5 1.9(2), C10−N4−C11−H11 2.4(2), 

O3−C7−C6−N3 58.9(3), O3−C7−C6−C5 −119.7(2), O5−C13−C12−N6 88.9(2), 

O5−C13−C12−C11 −89.2(2). 

 

In the crystal structure, the molecules are connected by two different intermolecular hydrogen 

bonds, which are depicted in Figure 4.3. The corresponding distances and angles are given in 

Table 4.1. All hydrogen bond lengths lie well within the sum of van der Waals radii (rw(O) + 

rw N) = 3.07 Å) 14 13 and are short with D···A distances of 2.761(2) Å (O1−H1···N3ii) and 

2.856(2) Å (O2−H2···N6i) and are moderately directed with angles of 167.76(2)° and 

167.65(3)°, respectively. 
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Figure 4.3 Hydrogen bonding scheme in the crystal structure of 10. Thermal ellipsoids are 

set to 50 % probability. Symmetry operators: (i) x, −1+y, z; (ii) 1+x, y, z. 

 

Table 4.1 Atom distances [Å] and bond angles (°) of the intermolecular hydrogen bonds 

in the crystal structure of 10. 

 

D−H···A d(D−H) [Å] d(H···A) [Å] d(D···A) [Å] <(D−H···A) [°] 

O1−H1···N3ii 0.904(3) 1.871(3) 2.761(2) 167.76(2) 

O2−H2···N6i 0.871(2) 2.000(2) 2.856(2) 167.65(3) 

Symmetry operators: (i) x, −1+y, z; (ii) 1+x, y, z. 

 

Compound 12 crystallizes in the monoclinic space group P21/n with four formula units per 

unit cell (Figure 4.4). Calculated density for T = 173 K is 1.489 g cm−3. One of the CH2OH 

moieties of the propane-1,3-diol unit is disordered. For each atom in that group two different 

positions (C7A−O3A−H3A and C7B−O3B−H3B) within the crystal are possible. Both 

positions are nearly equally occupied with 50.3 % (O3B) vs 49.7 % (O3A). Here again, 

despite the theoretical symmetry of the molecule, the crystal structure is asymmetrically 

assembled. 
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A closer look at the bond lengths and angles within the molecular structure of the compound 

reveals no evident differences relative to those of other heterocyclic ring systems. 12  13  

 

a) 

 

 

b) 

 

 

c) 

 

 

Figure 4.4 Crystal structure of 12 showing a) both disordered positions, and the respective 

separated positions b) C7A−O3A−H3A and c) C7B−O3B−H3B. Thermal ellipsoids are set to 

50 % probability. Selected bond distances [Å]: O1−H1 0.844(2), O1−C3 1.432(2), O2−H2 

0.826(2), O2−C6 1.462(2), O3A−H3A 0.839(3), O3A−C7A 1.422(1), O3B−H3B 0.840(3), 
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O3B−C7B 1.405(1), O4−H4 0.839(4), O4−C11 1.425(2), N1−N2 1.349(2), N1−C5 1.349(2), 

N2−N3 1.319(2), N3−C2 1.364(2), C1−C2 1.371(2), N4−N5 1.344(2), N4−C9 1.349(2), 

N5−N6 1.320(2), N6−C10 1.361(2), C9−C10 1.371(2); selected bond angles (°) C3−O1−H1 

108.3(2), C6−O2−H2 105.9(1), C6−C5−C7A 102.1(4), C6−C5−C7B 113.8(4), 

C7A−O3A−H1A 109.5(1), C7A−O3B−H1B 109.5(1), C11−O4−H4 110.7(2), C5−C3A−O3A 

109.8(1), C5−C3B−O3B 112.6(1); selected torsion angles (°) C5−C4−N1−N2 −107.7(1), 

C5−C4−N1−C1 73.7(2), C5−C6−O2−H2 145.7(2), C5−C7A−O3A−H3A 60.0(1), 

C5−C7B−O3B−H3B 2.3(1), C5−C8−N4−N5 −81.5(1), C5−C8−N4−C9 93.2(2), 

O1−C3−C2−C1 −102.7(2), O1−C3−C2−N3 75.1(2), O4−C11−C10−C9 102.8(2), 

O4−C11−C10−N6 −78.8(1), C10−C11−O4−H4 −78.5(2), C2−C3−O1−H1 61.9(2). 

 

The disordered moieties of C7A/B−O3A/B−H3A/B differ, besides different angles of C6-C5-

C7A/B with 102.1° and 113.8°, also in the orientation of the OH group with torsion angles of 

60.0° vs. 2.3° towards the respective C5−C7 bond. This disorder enables the extra 

stabilization of the crystal system, since only the H3B atom (of the disordered moiety) 

participates in the formation of hydrogen bonds. Hence, the structure is stabilized by four 

different intermolecular hydrogen bonds, which are depicted in Figure 4.5. The 

corresponding distances and angles are given in Table 4.2. The hydrogen bonds are either 

formed between the respective hydroxyl groups or, in one case, between the OH group and 

the N6i atom of the triazole ring. All hydrogen bond lengths lie well below the sum of van der 

Waals radii (rw(O) + rw(N) = 3.07 Å, rw(N) + rw(N) = 3.20 Å). 14 Two contacts are short with 

D···A distances of 2.728(1) Å (O1−H1···N6i) and 2.671(1) Å (O2−H2···O1ii) and are strongly 

directed with D−H···A angles of 174.44(3)° and 174.90(9)°. The contacts, in which the 

disordered hydroxyl group is involved are moderately strong with D···A distances of 2.957(1) 

Å (O3B−H3B···O4iv) and 2.957(1) Å (O4−H4···O3Biii) and are not strongly directed with 

D−H···A angles of 149.27(2)° and 138.88(2)°.  
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Figure 4.5 Hydrogen bonds of 12 (parts of the involved molecules were omitted for 

clarity). Thermal ellipsoids are set to 50 % probability. Symmetry operators: (i) −x, −y, −z; 

(ii) 0.5−x, −0.5+y, 0.5−z; (iii) −0.5−x, −0.5+y, 0.5−z; (iv) −0.5−x, 0.5+y, 0.5+z. 

 

Table 4.2 Atom distances [Å] and bond angles (°) of the intermolecular hydrogen bonds 

in the crystal structure of 12. 

 

D−H···A d(D−H) [Å] d(H···A) [Å] d(D···A) [Å] <(D−H···A) [°] 

O1−H1···N6i 0.844(2)) 1.940(6) 2.728(1) 174.44(3) 

O2−H2···O1ii 0.826(3) 1.848(6) 2.671(1) 174.90(9) 

O3B−H3B···O4iv 0.840(3) 2.204(1) 2.957(1) 149.27(2) 

O4−H4···O3Biii 0.839(4) 2.273(1) 2.957(1) 138.88(2) 

Symmetry operators: (i) −x, −y, −z; (ii) 0.5−x, −0.5+y, 0.5−z; (iii) −0.5−x, −0.5+y, 0.5−z; (iv) −0.5−x, 0.5+y, 0.5+z. 
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4.2.1.2 Polymerization Reactions 

 

Most polyurethane syntheses were carried out with HDMI as diisocyanato component, due to 

its commercial availability. Only the diols from the most promising products (regarding yield, 

purity and energetic properties) were chosen for the reactions with DIE and DIM. Therefore 

DNPD, BAMP and BTEOH were used for further polymerization reactions, but only the 

DNPD and BAMP based reactions were successful with DIE and DIM. 

 

4.2.1.2.1 Syntheses 

 

The polyaddition reactions were carried out using dibutyltin dilaurate (DBTDL) as catalyst 

over two different synthetic routes (Scheme 4.5). The obtained products showed a broad 

spectrum of different consistencies (Figure 4.6). The BAMP based polyurethanes 15a 

(Figure 4.6 b), 15b and 15c were yellowish viscous liquids (viscosity increased with the 

increased number of carbon chains) with excellent to moderate yields of 91 %, 52 % and 

42 %. In case of the DNPD based polyurethanes 14a, 14b and 14c the products were either an 

orange elastic foil (14a) (Figure 4.6 a) or red ductile solids (14b, 14c) with yields of 96 %, 

57 % and 54 %. The polyurethanes with acetylene (13) and triazole (16, 17) content were 

obtained as white powders in good (79 %, 13) to moderate yields 56 %-45 % (16 and 17). The 

tetrazole based polyurethane 18 was obtained as partly hard elastic colorless solid (Figure 

4.6 c) in good yield (85 %). 

 

 

Figure 4.6 Pictures of the different polymer consistencies exemplified by a) HMDI-

DNPD (14a); b) HMDI-BAMP (15a) and c) HMDI-BTEOH (18). 
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Scheme 4.5 Synthetic routes towards the desired polyurethanes 13-18.  

 

An attempt has also been made to transform the acetylene polyurethane 13 via a 1,3-dipolar 

cycloaddition into a polyurethane with a backbone implemented triazole (19) (Scheme 4.6).  
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Scheme 4.6 Attempted synthesis of a backbone implemented triazole polyurethane (19).  

 

Analysis of the obtained colorless solid revealed only starting material 13. Reasons for this 

might either be too mild conditions, which could be resolved by using a stronger Lewis acid 

like ZnCl2, or the steric hindrance of the polymer, which inhibits the formation of the required 

conformation for the [3+2] cycloaddition. 

 

 

4.2.1.2.2 Characterization  

 

NMR measurements were performed in DMSO-d6. As example, the recorded 1H and 13C 

NMR spectra of HMDI-BAMP (15a) are depicted in Figure 4.7. In the proton NMR spectrum 

the trans and the cis conformer of the carbamate N−H group are visible at 7.13 ppm and 

6.89 ppm. The signals of the methylene groups of the diol fragment appear at 3.87 ppm 

(CH2−O) and 3.40 ppm (CH2−N3). The methylene groups of the HMDI corresponding carbon 

chain show signals at 2.96 ppm (CH2−NH), 1.31 ppm and 1.23 ppm. The 13C NMR spectrum 

shows a similar signal pattern as the 1H NMR spectrum. The signals of the carbon atoms 

corresponding to the diol fragment occur at 62.4 (CH2−O), 51.3 (CH2−N3) and 43.2 (Cq) ppm. 

The signals appearing at 40.21 ppm (CH2−NH), 29.3 ppm and 25.9 ppm can be assigned to 

the carbon atoms of the HMDI chain. At 156.7 ppm the signal of the carboxyl carbon of the 

carbamate group is visible. 
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Figure 4.7 a) 1H and b) 13C NMR spectrum of HMDI-BAMP (15a). 

 

The tetrazole based polyurethane 18 could not be dissolved properly in any common 

deuterated solvent, therefore NMR spectroscopy in solution was not possible. The other 

compounds (13, 14a,b, 15b, 16, 17) show similar values for the specific fragment 

CH2−NH−CO−O−CH2−. In the 1H NMR spectra, the DNPD based compounds 14a and 14b 

show signals around 7.60 ppm for the N−H group and 5.01 ppm for the CH2−O fragment. 

Whereas the signals of the other compounds 13, 15b, 16 and 17 are shifted to higher field 

compared to the signals of 14a and b with values at 7.29-7.13 ppm and 4.65 (13) or 3.87-

3.68 ppm, respectively. The chemical shift of the signal for the CH2−NH group depends on 

the respective diisocyanate unit. The compounds based on HMDI (13, 14a, 16, 17) show 

signals around 2.95 ppm, while the signal of the DIE based 14b and 15b occurs at 3.02 ppm. 

In the 1H NMR spectra of 16 and 17, an extra signal can be found at 5.72 ppm, which can be 

assigned to the NH-fragment of an urea group. The occurrence of this signal indicates the 

presence of water in the reaction solvent, which, together with isocyanates, leads to the 

formation of carbamic acid. Due to its instability, carbamic acid decomposes while 

eliminating CO2 to the corresponding amine, which further reacts with the remaining 

isocyanate to urea compounds. 

The 13C NMR spectra of compounds 13, 14a,b, 15b, 16 and 17 also confirm the successful 

formation of the polyurethanes. The signal of the quaternary C atom of the carboxyl group 

occurs around 154 ppm, the carbon atom of the CH2−O fragment shows signals around 

61 ppm (14a,b, 15b, 16-18) or 51.3 ppm (13). For the CH2−NH carbon atom the DNPD based 

14a and 14b show signals around 30 ppm, while the signals for 15b-17 occur around 40 ppm. 
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The NMR spectra of compounds 14c and 15c could not be assigned properly due to a variety 

of signals, most likely because of a broad dispersion of chain lengths in the obtained product.  

The measured IR spectra of all compounds clearly show the characteristic vibrations for 

monosubstituted carbamates (Figure 4.8). At about 3330 cm−1 the N−H valence vibration (A) 

is visible, the valence vibration of the C=O group (amide I) occurs around 1700 cm−1 (B), as 

well as the amide II vibration (N−H bending) and the asymmetric C−O bending vibration at 

about 1525 cm−1 (C) and 1235 cm−1 (D), respectively.7 The asymmetric and symmetric 

valence vibrations of the NO2 groups in 14a-c appear at about 1565 cm−1 (overlapping signal 

with the amide II vibration) and 1320 cm−1 (E). 7  

Besides this, the characteristically strong azide vibration is visible at 2100 cm−1 (F) in case of 

the BAMP based 15a-c. Elemental analysis revealed some remaining inclusions of water and 

organic solvent in the synthesized polymers. These results, together with the IR and NMR 

measurements prove the successful synthesis of compounds 14-18. 
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Figure 4.8  IR spectra of 14-18.  
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For further characterization, the molecular weights of 14-15 were determined by GPC 

measurements. As eluent THF containing 0.2 % trifluoroacetic acid was used. The average 

molecular masses (Mn) are determined to be 3100 g mol−1 (15a), 850 g mol−1 (14b and 15b) 

and in the range of 600 g mol−1 (14c and 15c), corresponding to approximately 10, 3 and 2 

molecular formulas in one chain. Although 14a was soluble in THF, no significant separation 

could be achieved, most likely due to reprecipitation of the compound on the column. The 

relatively short chains of the DIE and DIM based urethanes may derive from the fact that the 

used diols were poorly soluble in the given solvent benzene. 

 

 

4.2.1.2.3 Thermal Behavior  

 

An important factor for energetic binders is their thermal stability and in case of liquid 

materials a preferably low glass transition temperature Tg. The determination of the low and 

high temperature behavior of the polyurethanes was carried out via differential scanning 

calorimetry (DSC). Figure 4.9 shows the decomposition temperatures of compounds 14a-c, 

15a-c and 18. 
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Figure 4.9  DSC plots of decomposition temperatures of 14-18 (onset temperatures).  

 

As expected, the compounds based on the same diol show decomposition temperatures in the 

same temperature range. DNPD based 14a-c decompose around 170 °C, which is initiated by 

the geminal nitro groups. BAMP based 15a-c are stable up to higher temperatures (around 

210 °C), which is in accordance with the thermal stability of aliphatic azides.15 The triazole 
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based polyurethane 18 shows a glass transition around 185 °C (which indicates the transition 

from the hard elastic state into the liquid phase) and a subsequent decomposition point at 

266 °C.  

The obtained DSC plots of 16 and 17 did not show any significant changes in the curve 

progression, since either the used amounts of substance (1-2 mg) were insufficient for a 

detectable phase transformation, or the compounds are stable up to higher temperatures. 

Due to their liquid or elastic character additional low temperature DSC measurements were 

carried out with 15a-c and 14a to determine their glass transition temperature (Tg). The 

obtained plots are depicted in Figure 4.10. 

 

 

Figure 4.10 DSC plots of glass transition temperatures of 14-15 (TgMid).  

 

The glass transition temperatures of 15a and b with −38 °C and −27 °C are in a good 

temperature range for application as binder in energetic formulations. Nevertheless, if applied 

in such matter, a plasticizer additive will be needed to reduce Tg below the requested 
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minimum working range (usually −55 °C). The low glass transition temperature of 15c is 

quite unexpected, since short carbon chains usually result in higher values. This might derive 

from the non-polymeric character of these compounds (see molecular masses), which usually 

gives lower glass transition temperatures, compared to polymers with a higher number of 

repeating units. 

Although 14a shows an elastic character, no glass transition could be observed in the 

measured temperature range of −120 °C to 10 °C. Either the glass transition point is lower 

than −120°C or 14a does not possess any Tg. 

To determine the weight loss during the heating process thermogravimetric analysis (TGA) 

was used for the compounds 14 and 15 (Figure 4.11).  

 

 

Figure 4.11 TGA plots of compounds 14-15.  

 

As already observed in the DSC plots (Figure 4.9) the compounds based on the same 

energetic diol show similar behavior. 14b and c show a beginning weight loss at 100 °C, 

which can be assigned to the loss of H2O and organic solvent during the heating process. The 

second step (recognizable by the small dent in the curve at approximately 95 wt%), starting 

around 170 °C is the beginning decomposition of the polyurethane, starting with the geminal 

nitro groups. The following steps of weight losses are assignable to the decomposition of the 

remaining polyurethane backbone, including the carbamate group and the aliphatic chain. 
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Similar observations can be made for the other four compounds. The decomposition of the 

compounds is initiated by the decomposition of the energetic functional groups, around 

165 °C for 14a and c (after solvent loss, recognizable by the dent in the curve at about 97 

wt%) or 200 °C for 15a and b and is followed by a stepwise decomposition of the polymeric 

backbone. 15c shows a beginning weight loss at lower temperatures (~150 °C). This can be 

derived from the low molecular weight fragments, which may volatilize at lower 

temperatures. At the end temperature of 700 °C the compounds have reached an overall 

weight loss of 90 % (15a and 14c) to (not fully completed) 80 % (14b).  

 

 

4.2.1.2.4 Energetic Properties  

 

For the determination of inherent energetic potential, compounds 14-18 were investigated. 

Sensitivity data concerning impact and friction sensitivity were obtained using a BAM drop 

hammer and friction tester.16 These methods revealed that compounds 14-18 are insensitive 

towards friction (>360 N) and less or not sensitive towards impact (൒40 J). Compared to GAP 

(IS: 8 J, FS: > 360 N)17 this can be regarded as clear advantage in terms of safety. 

For analyzing the energetic properties of 14-18, the energy of combustion (ΔUc) was 

determined via bomb calorimetry. The enthalpy of formation could be calculated from the 

obtained values applying the HESS thermochemical cycle, as reported in literature.18 The 

combustion reactions of polyurethanes 14-18 are given in Scheme 4.7. 
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a) C11H18N4O8 + 11.5 O2 → 11 CO2 (g) + 9 H2O (l) + 2 N2 (g) 

b) C7H10N4O8 + 5.5 O2  → 7 CO2 (g) + 5 H2O (l) + 2 N2 (g) 

c) C6H8N4O8 + 4 O2  → 6 CO2 (g) + 4 H2O (l) + 2 N2 (g) 

d) C13H22N8O4 + 16.5 O2 → 13 CO2 (g) + 11 H2O (l) + 4 N2 (g) 

e) C9H14N8O4 + 10.5 O2  → 9 CO2 (g) + 7 H2O (l) + 4 N2 (g) 

f) C8H12N8O4 + 9 O2  → 8 CO2 (g) + 6 H2O (l) + 4 N2 (g) 

g) C29H34N8O4 + 35.5 O2 → 29 CO2 (g) + 17 H2O (l) + 4 N2 (g) 

h) C23H34N8O4 + 29.5 O2 → 23 CO2 (g) + 17 H2O (l) + 4 N2 (g) 

i) C16H26N10O4 + 20.5 O2 → 16 CO2 (g) + 13 H2O (l) + 5 N2 (g) 

 

Scheme 4.7 Combustion reaction of a) HMDI-DNPD (14a); b) DIE-DNPD (14b); c) DIM-

DNPD (14c); d) HMDI-BAMP (15a); e) DIE-BAMP (15b); f) DIM-BAMP (15b); g) HMDI-

TriPh (16); h) HMDI-TriOAc (17); i) HMDI-BTEOH (18) (repeating units). 

 

For a rough comparison of the analytically obtained energetic values, the enthalpy of 

formation was also calculated via quantum-chemical calculations (CBS-4M). As example 

compound the corresponding monomeric molecule of 14a, 3-hydroxy-2,2-dinitropropyl(6-

formamidohexyl)carbamate, was chosen (Figure 4.12). 

 

 

 

Figure 4.12 Molecular structure of the monomeric molecule 3-hydroxy-2,2-

dinitropropyl(6-formamidohexyl)carbamate of 14a. 
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Calculations were carried out using the Gaussian G03W (revision B.03) program package.20 

The enthalpies of the gas-phase species M were computed according to the atomization 

energy method (Equation 4.1) using CBS-4M enthalpies given in Table 4.3.20 21 22 

 

∆fH°(g, M, 298) = H(molecule, 298) − ΣH°(atoms, 298) + Σ∆fH°(atoms, 298)  (4.1) 

 

Table 4.3 CBS-4M electronic enthalpies for atoms C, H, N, O and their literature values 

for atomic ΔH°f
298. 

 −H298
CBS-4M [ a.u.] NIST [kJ mol−1]

H 0.500991 218.2 

C 37.786156 717.2 

N 54.522462 473.1 

O 74.991202 249.5 

 

In order to convert the standard enthalpies of formation ΔfH°(g) for the gas-phase into values 

for the solid phase, the enthalpy of sublimation ΔHsub. is required. This value can be estimated 

using the TROUTON’s rule, whereby Tm is the melting point of the solid 23 24: 

 

ΔHsub. [J mol-1] = 188 Tm [K] 

 

As an approximation, the decomposition temperature of Tdec = 165 °C was used as the melting 

temperature and the enthalpy of sublimation was estimated to be 83 kJ mol−1. The obtained 

quantum chemical results are summarized in Table 4.4. 

 

Table 4.4 Calculation results for the monomeric molecule 3-hydroxy-2,2-dinitropropyl(6-

formamidohexyl)carbamate of 14a. 

 

−H298
 
a [a.u]. −Δf H (g, M) b [kJ mol−1] −Δf H°(s) c [kJ mol−1] 

1250.181899 912 1008 
            a CBS-4M electronic enthalpy; b gas phase enthalpy of formation; c solid state enthalpy of formation. 

 

All calculations concerning the detonation parameters were carried out using the program 

package EXPLO5 (version 6.02)25 and were based on the calculated or experimentally 

obtained heats of formation and attributed to the corresponding densities, determined via 
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pycnometer. The program is based on the steady-state model of equilibrium and uses the 

Becker-Kistiakowsky-Wilson equation of state (BKW EOS.) for gaseous detonation products 

and the Murnaghan EOS for both solid and liquid products. It is designed to enable the 

calculation of detonation parameters at the Chapman-Jouguet point (C-J point). The C-J point 

was found from the Hugoniot curve of the system by its first derivative.25 The obtained data 

of compounds 14-18 are given in Table 4.5 and compared to the energetic values of GAP. 
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Table 4.5 Energetic data of compounds 14-18 compared to GAP. 

14a CBS-4M 14a 14b 14c 15a 15b 15c 16 17 18 GAPs 

Formula C11H18N4O8 C11H18N4O8 C7H10N4O8 C6H8N4O8 C13H22N8O4 C9H14N8O4 C8H12N8O4 C29H34N8O4 C23H34N8O4 C16H26N10O4 C3H5N3O 

FW (monomer) 
[g mol−1] 

334.28 334.28 278.18 264.15 354.36 298.26 284.23 558.63 550.56 422.44 99.09 

IS [J]a 40 40 40 40 40 40 40 >40 >40 >40 7 

FS [N]b >360 >360 >360 >360 >360 >360 >360 >360 >360 >360 >360 

ESD [J]c 1.5 1.5 1.5 1.5 - - - - - - - 

N [%]d 16.76 16.76 20.14 21.21 31.62 37.57 39.42 20.06 20.55 33.16 42.41 

  []e −111 −111 −63 −49 −145 −113 −101 −203 −194 −155 −121 

Tdec [°C]f 165 165 168 168 205 210 220 350 >400 220 216 

Tg [°C]g - - - - −38 −25 - - - - 

ρ [g cm−3]h 1.5 1.5 1.5 1.3 1.3 1.3 1.3 1.5r 1.5r 1.3 1.3 

−∆Ucomb [cal g−1]i - 4626 3291 3319 4969 4324 3660 6588 5603 5416 - 

−∆Hcomb [kJ mol−1]j - 6466 3822 3658 7366 5390 4347 15393 12865 9571 - 

∆f Hm° [kJ mol−1]k −1008 −435 −362 154 −894 −153 −516 −878 −1045 −441 142 

Explo5 V6.02 values       

−∆E U° [kJ kg−1]l 2901 4545 4805 6244 967 3051 1862 1062 832 2031 4307 

TE [K]m 2038 2742 3234 4310 1061 2179 1657 1027 928 1549 2677 

pCJ [kbar]n 120 156 176 179 64 98 73 91 98 91 129 

Vdet [m s−1]o 6222 6873 6986 7038 5065 5885 5182 5930 6233 5869 6638 

Gas vol. [L kg−1]p 777 787 771 838 774 793 777 606 692 763 822 

Is [s]q 168 199 210 269 122 177 150 115 114 153 207 
a BAM drop hammer (1 of 6); b BAM friction tester (1 of 6); c electrostatical discharge , 

d nitrogen content; e oxygen content; f temperature of decomposition by DSC (onset values); g glass transition 
temperature (TgMid), 

h derived from pycnometer measurements; i experimental combustion energy (constant volume); j experimental molar enthalpy of combustion, k molar enthalpy of formation; l 
energy of explosion, m explosion temperature; n detonation pressure; o detonation velocity ; p assuming only gaseous products; q specific impulse (isobaric combustion, chamber pressure 70 bar, 
equilibrium expansion); r estimated from structure determination, s values obtained from the EXPLO5 V6.02 database and ref. 17. 
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As expected, due to their lower carbon content, the DIE and DIM based compounds 14b,c and 

15b,c show better energetic properties, than their corresponding HMDI based derivatives 14a 

and 15a. Whereas compounds 14a-c in accordance with their higher oxygen balance Ω, show, 

in total, better energetic values, than the azide containing 15a-c. The energetic results based 

on the calculated enthalpy of formation of 14a show, over all, little lower detonation values 

than the experimental obtained values, but are still in the range of GAP. Compared to GAP, 

14a-c show a 6 to 45 % higher energy of explosion −∆E U°, which is an indicator for the 

performed work of an explosive. Other important values for the evaluation of the energetic 

character of a compound are the detonation velocity Vdet and detonation pressure pCJ. A 

comparison of these values shows, that compounds 14a-c exceed the detonation velocity of 

GAP by 250-400 m s−1. In case of the detonation pressure, the values of 14a-c are about 30 to 

50 kbar higher. The specific impulse Is of 14a-c, an indication for the qualification as 

propellant, is in the same range like GAP. All in all, the calculations showed moderate 

energetic properties for the synthesized polyurethanes 14-18, which establishes most of these 

compounds as interesting substances for further investigations concerning their suitability as 

binder in energetic formulations. 

 

 

4.2.2 Polyureas and Related Compounds 

 

To date only few syntheses of energetic polyureas or related compounds are reported in 

literature.26 Most of these syntheses are carried out at harsh conditions, in the melt or at least 

at very high temperatures (> 100 °C). As example, the polyaddition reaction of HMDI with N-

[1-(2-hydroxyethyl)-1H-tetrazol-5-yl]-N-methylhydrazine in the melt is depicted in Scheme 

4.8.27 

 

 

 

Scheme 4.8 Polyaddition reaction of HMDI and N-[1-(2-hydroxyethyl)-1H-tetrazol-5-yl]-

N-methylhydrazine in the melt. 
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Herein, we report the attempted syntheses of energetic polyureas and related polymers in 

organic solvent medium at moderate temperatures. 

 

Attempted Polyaddition Reactions 

In order to test reaction conditions and process of the polyurea addition, a non-energetic 

polyurea was prepared from ethylene diamine and HMDI at first (Scheme 4.9). 

 

 

 

Scheme 4.9  Synthesis of a non-energetic polyurea from HMDI (1) and ethylene diamine. 

 

The desired polyurea (20) was formed directly on contact between the HMDI solution and the 

dropwise added ethylene diamine in nitrogen atmosphere at reduced temperature (0 °C) and 

without any addition of a catalyst. 

IR spectra showed the successful formation of the urea group with the N-H stretching 

vibration at 3326 cm−1, the carbonyl stretching vibration at 1619 cm−1 (amide I) and the amide 

II vibration at 1578 cm−1. Elemental analysis indicated 0.5 remaining molecules of H2O per 

repeating unit of 20 (calculated for C10H20N4O2*0.5 H2O: C 50.61, H 8.92, N 23.61 %; found: 

C 50.77, H 8.92, N 23.85 %).  

In order to synthesize energetic or at least polyureas with an increased nitrogen content 

several attempts with different reaction conditions were undertaken using HMDI and different 

diamino or related compounds (Scheme 4.10). The used compounds for the polyaddition 

reactions are depicted in Figure 4.13 and were either obtained from commercial sources (21, 

23, 24) or synthesized according to literature procedures (2227, 2528). 
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Figure 4.13 Used diamines and related compounds for polyurea syntheses. 

 

 

 

Scheme 4.10 Attempted syntheses towards various nitrogen rich polyurea. 

 

Analyses of the obtained products were carried out using EA, IR, NMR spectroscopy and 

mass spectrometry. 

The reactions of 3,5-diamino-1,2,4-triazole (21, DAT) with HMDI in THF over 24 h at 65 °C 

gave a yellowish solid after the aqueous work up. While the IR spectrum showed the desired 

signals for the urea group, the amide I and II vibration at 1616 cm−1 and 1516 cm−1, another 

carbonyl stretching vibration was visible at 1710 cm−1. Together with the results of the 
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elemental analysis, where an increased nitrogen and decreased carbon content was observed 

(calculated for C10H17N7O2: C 44.94, H 6.41, N 36.68 %; found: C 41.30, H 6.43, N 40.46 %) 

and the broad signal range in the 1H NMR spectra, everything points to the fact, that diverse 

side products were formed, most likely due to the reactive triazole NH group. 

To avoid the formation of side products via the triazole NH, the acetylated DAT derivative 1-

acetyl-3,5-diamino-1,2,4-triazole (ADAT, 22) was synthesized.28 Again, no product could be 

obtained in the polyaddition approach with HMDI after 3 d in THF at 65 °C. During the 

aqueous work up, large amounts of gas evolved, which indicated the presence of bigger 

amounts of unreacted HMDI. The unsuccessful synthesis of 27 is most likely because of the 

inactivity of ADAT (22), caused by the acetylation, resulting in an even more electron poor 

heterocycle and, therefore in a decreased electron density of the attached amine moieties. 

Due to its two amino moieties, nitroguanidine (NQ) (23) was also chosen for the synthesis of 

a polyurea (28) with HMDI in DMF at 50 °C over three days.  

The IR spectra of the obtained yellowish solid showed again the desired urea carbonyl 

vibration at 1660 cm−1 and the amide II vibration at 1510 cm−1, but it lacks vibrations of the 

nitro group, indicating no integration of the energetic NQ fragment. Elemental analysis, as 

well, indicated that no formation of 28 had taken place (calculated for C9H16N6O4: C 39.70, H 

5.92, N 30.87 %; found: C 54.17, H 9.15, N 20.16 %). The found urea but missing nitroimino 

vibrations in the IR spectrum very strongly suggest the formation of a HMDI-hexamethylene 

diamine polyurea, which was possibly formed due to present water in the used organic 

solvent. 

The reaction of diaminourea (24, DAU) and HMDI was carried out in DMSO for 24 h at 

65 °C and gave a colorless precipitate. Whereas, IR measurements were not suitable for the 

determination of a successful polymer synthesis, due to the presence of the urea group in the 

starting material, elemental analysis (calculated for C9H18N6O3: C 41.85, H 7.02, N 32.54 %; 

found: C 35.33, H 7.67, 18.17 %) indicated no formation of 29. This was also confirmed by 

the measured mass spectrum, which did not give any assignable values. The obtained product 

was not further investigated. 

The reaction towards 30 was carried out using 25 and HMDI in acetonitrile at 65 °C over 

24 h.  

The obtained colorless solid showed in the IR analyses the carbamate vibrations at 1732 cm−1 

(amide I), 1565 cm−1 (amide II) and 1248 cm−1 (C-O stretching) in the IR spectrum but also a 

strong signal at 1620 cm−1, indicating the presence of the urea group. Furthermore, the 



Energetic	Polymers	Based	on	Polyurethanes,	Polyureas	and	Related	Compounds	
	

 
 

68 

asymmetric and symmetric stretching vibrations of the nitro groups are visible at 1565 cm−1 

and 1325 cm−1, respectively. 

Nevertheless, the elemental analysis showed a quite contaminated product (calculated for 

C29H34N8O4: C 37.15, H 4.80, N 19.99 %; found: C 54.90, H 9.04, N 18.71 %). The obtained 

product could not be purified. 

 

 

4.3 Conclusion 

 

In this chapter polyaddition reactions towards polyurethanes, polyurea and related polymers 

were described. The reactions with diamino, dicarbamates or hydrazide moieties did not give 

any assignable products. Whereas the syntheses towards polyurethanes with various diols 

were successful and gave products with different consistencies. As diisocyanates 

hexamethylene diisocyanate (HMDI), diisocyanato ethane (DIE) and diisocyanato methane 

(DIM) were used. The successful syntheses were mainly proven by elemental analysis, 1H, 
13C NMR and infrared spectroscopy. The formed polymers were insensitive towards friction 

and less or insensitive towards impact. The calculations of the energetic properties, based on 

bomb calorimetric measurements and the computer program EXPLO5 (version 6.02) showed 

moderate energetic properties for the compounds. Along with thermal stabilities between 170 

and 350 °C and, in case of the liquid polymers, glass transition temperatures as low as 

−38 °C, the synthesized polyurethanes are promising compounds for applications as new 

energetic binders in energetic formulations. 

 

 

4.4 Experimental Part 

 

CAUTION! All tetrazole, azide or nitro group containing compounds, are potentially 

explosive energetic materials, although no hazards were observed during preparation and 

handling of these compounds. Nevertheless, this necessitates additional meticulous safety 

precautions, while handling these compounds (grounded equipment, Kevlar® gloves, Kevlar® 

sleeves, face shield, leather coat, ear plugs and safety shield, during reactions). 
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4.4.1 General Procedures 

 

General Procedure 1 (GP1), Preparation of the diisocyanates DIE and DIM  

The slightly modified reaction was carried out, according to a literature described procedure. 6 

Concentrated hydrochloric acid was added dropwise to a solution of the respective hydrazide, 

sodium nitrite and ice (2 g) in CCl4 (15-20 mL) at 0 °C, maintaining the temperature below 

10 °C. After the addition was completed the mixture was stirred for 2 h and allowed to warm 

to rt. The completion of the transformation into the acyl azide was observed via TLC and IR 

measurements. The phases were separated and the aqueous phase was extracted, using 

benzene (3 x 10 mL). The combined organic phases were dried over sodium sulfate and 

filtrated into a preheated, nitrogen flushed flask. Due to its instability, the acyl azide was not 

further purified, but directly processed to the corresponding diisocyanate. The solution was 

therefore heated up in 5 °C steps to 80 °C and stirred for 4 h. The completion of the 

rearrangement was monitored via TLC and IR measurements. The obtained diisocyanate 

solution was directly used for the polyaddition step. 

 

General Procedure 2 (GP2), Preparation of the HMDI based polyurethanes  

A solution of the respective diol in dry organic solvent was degassed for 30 min. HMDI and 

DBTDL (0.01 mL, 18 µmol) were added in a nitrogen countercurrent and the solution was 

stirred for 24 h at 50 °C. The reaction mixture was then slowly poured on H2O (300 mL) and 

stirred overnight at room temperature. The solvent was decanted and the remaining precipitate 

was dried in vacuo. 

 

General Procedure 3 (GP3), Preparation of the DIE and DIM based polyurethanes  

To a freshly prepared solution of the respective diisocyanate in benzene under inert 

atmosphere, the corresponding diol and DBTDL (0.01 mL, 18 µmol) were added in a nitrogen 

countercurrent under vigorous stirring. The reaction mixture was stirred at 50 °C for 24 h and 

then slowly poured on H2O (200 mL). After stirring overnight the solvent was decanted, the 

remaining product was washed with hot water and dried in vacuo. 
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4.4.2 Precursors with Diisocyanate Function 

 

Succinyl Hydrazide (3a) 6 

 

 

 

A solution of hydrazine hydrate (6.8 mL, 7.0 g, 140 mmol) and dimethyl succinate (4) 

(3.6 mL, 4.0 g, 27.4 mmol) in methanol (100 mL) was heated to reflux for 2 h. The mixture 

was then stirred overnight at room temperature. The resulting precipitate was filtered off. The 

colorless solid was washed using methanol and diethyl ether and dried in vacuo, yielding 

3.80 g (26.0 mmol, 95 %) of a colorless crystalline solid. 

 
1H NMR (400 MHz, DMSO-d6, ppm): δ = 8.96 (s, 2H, NH), 4.13 (s, 4H, NH2), 2.24 (s, 4H, 

CH2). 
13C NMR (101 MHz, DMSO-d6, ppm): δ = 170.7 (Cq), 28.9 (CH2).  

IR (ATR, cm−1): ߥ෤ = 3308 (m), 3288 (s), 3198 (m), 3181 (m), 3043 (w), 1624 (s), 1527 (s), 

1459 (m), 1347 (m), 1240 (m), 1181 (m), 1126 (w), 1010 (vs), 947 (m), 749 (m), 659 (m). 

EA (C4H10N4O2): calculated: C 32.87, H 6.90, N 38.34 %; found: C 32.92, H 6.87, N 

38.25 %. 

 

Diisocyanato Ethane (DIE, 5a) 

 

 

 

5a was synthesized with HClconc (1.4 mL, 16.8 mmol) 3a (1.0 g, 6.8 mmol) and sodium nitrite 

(1.1 g, 16.0 mmol) in CCl4 (15 mL) applying GP1. 
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Malonyl Hydrazide (3b) 6 29 

 

 

 

A solution of hydrazine hydrate (9.2 mL, 9.5 g, 189 mmol) and dimethyl malonate (9, 8.7 mL, 

10 g, 75.6 mmol) in methanol (200 mL) was heated to reflux for 2 h. The mixture was then 

stirred overnight at room temperature. The resulting precipitate was filtered off. The colorless 

solid was washed using methanol and diethyl ether and dried in vacuo, yielding 9.23 g 

(69.9 mmol, 92 %) of a colorless crystalline solid. 

 
1H NMR (400 MHz, DMSO-d6, ppm): δ = 9.05 (s, 2H, NH), 4.23 (s, 4H, NH2), 2.89 (s, 2H, 

CH2). 
13C NMR (101 MHz, DMSO-d6, ppm): δ = 166.0 (Cq), 40.1 (CH2). 

IR (ATR, cm−1): ߥ෤ = 3296 (m), 3264 (m), 3199 (m), 3126 (m), 3032 (m), 2997 (m), 2868 

(m), 1663 (s), 1645 (s), 1591 (vs), 1529 (vs), 1416 (m), 1362 (m), 1339 (m), 1247 (m), 1203 

(m), 1141 (w), 1051 (vs), 1004 (m), 954 (s), 906 (m), 788 (m), 693 (vs). 

EA: (C3H8N4O2): calculated: C 27.27, H 6.10, N 42.41 %; found: C 27.41, H 5.91, N 

42.24 %. 

 

Diisocyanato Methane (DIM, 5b) 

 

 

 

Compound 5b was synthesized with HClconc (1.4 mL, 16.8 mmol) 3b (1.0 g, 7.6 mmol) and 

sodium nitrite (1.2 g, 16.8 mmol) in CCl4 (20 mL) applying GP1. 
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4.4.3 Precursors with Alcohol Function 

 

2,2-Dinitropropane-1,3-diol (DNPD, 7) 8 

 

 

 

A solution of nitromethane (0.88 mL, 1.00 g, 16.4 mmol) and formaldehyde (2.90 mL, 2.66 g, 

31.9 mmol) in H2O (2.5 mL) was cooled to 0 °C. Afterwards a mixture of sodium hydroxide 

(0.75 g, 18.8 mmol) in H2O (2 mL) was added dropwise. The temperature was kept below 

40 °C during addition. After stirring at 0 °C for 90 min, sodium nitrite (1.13 g, 16.4 mmol) 

was added. This mixture was added slowly to a solution of silver nitrate (5.57 g, 32.8 mmol) 

in H2O (7.2 mL), while the temperature was kept below 25 °C. After stirring for another 2 h 

the precipitated silver was filtered off and the product was extracted using diethyl ether (3 x 

15 mL). The extract was concentrated in vacuo and the resulting solid was purified by 

recrystallization using dichloromethane, yielding 1.80 g (10.82 mmol, 66 %) of 7 as a 

colorless crystalline solid. 

 
1H NMR (400 MHz, acetone-d6, ppm): δ = 5.34 (t, 3JHH = 6.1 Hz, 2H, OH), 4.51 (d, 3JHH = 

6.1 Hz, 4H, CH2). 
13C NMR (101 MHz, acetone-d6, ppm): δ = 119.7 (Cq), 61.7 (CH2). 

IR (ATR, cm−1): ߥ෤ = 3238 (br, s), 2972 (w), 2881 (w), 1562 (vs), 1460 (w), 1445 (w), 

1348 (m), 1319 (s), 1258 (m), 1067 (vs), 1035 (vs), 922 (w), 874 (w), 843 (w), 762 (m), 684 

(w). 

EA (C3H6N2O6): calculated: C 32.87, H 6.90, N 38.34 %; found: C 32.92, H 6.87, N 38.25 %. 
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2,2-Bis(azidomethyl)propane-1,3-diol (BAMP, 8) 9 

 

 

 

Sodium azide (1.74 g, 28.8 mmol) and 2,2-bis(bromomethyl)propane-1,3-diol (2.8 g, 

10.7 mmol) were dissolved in 20 mL DMSO and heated to 100 °C for 48 h. Then H2O 

(15 mL) and brine (15 mL) were added. The solution was extracted using ethyl acetate 

(3 x 20 mL). The combined organic phases were washed with brine (2 x 20 mL) and dried 

over sodium sulfate. After filtration n-heptane (25 mL) was added to the crude liquid and the 

solvents were removed under reduced pressure. Drying in vacuo, yielded 1.85 g (9.94 mmol, 

93 %) of 8 as a yellowish liquid. 
 

1H NMR (400 MHz, DMSO-d6, ppm): δ = 4.74 (t, 3JHH = 5.2 Hz, 2H, OH), 3.29 (s, 4H, 

CH2−N3), 3.27 (d, 3JHH = 5.2 Hz, 4H, CH2−OH). 
13C NMR (101 MHz, DMSO-d6, ppm): δ = 59.8 (CH2−OH), 51.2 (Cq), 45.5 (CH2−N3). 
14N NMR (DMSO-d6, ppm): δ = −129 (Nβ), −170 (Nγ), −310 (Nα). 

IR (ATR, cm−1): ߥ෤ = 3358 (br m), 2937 (w), 2884 (w), 2092 (vs), 1723 (w), 1661 (m), 1447 

(m), 1357 (w), 1272 (s), 1179 (vw), 1128 (vw), 1036 (s), 922 (w), 887 (w). 

EA (C5H10N6O2): calculated: C 32.26, H 5.41, N 45.14 %; found: C 32.13, H 5.68, N 

42.61 %. 
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2,2-Bis((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)propane-1,3-diol (9)10 

 

 

 

BAMP (0.50 g, 2.69 mmol) was dissolved in 10 mL of a 1:1 solution of water and t-BuOH. 

To this solution, phenylacetylene (0.59 mL, 5.37 mmol) was added, followed by aqueous 

solutions of sodium ascorbate (53 mg in 1.0 mL water, 10 mol%) and copper(II) sulfate 

pentahydrate (7 mg in 0.5 mL water, 1 mol%). The reaction mixture was refluxed for 12 h at 

room temperature. Water (50 mL) was added and the solution was filtrated. The white 

precipitate was washed with water (2 x 25 mL) and dried in vacuo to yield 0.53 g (1.36 mmol, 

51 %) of a colorless powder. 

 
1H NMR (400 MHz, DMSO-d6, ppm): δ = 8.51 (s, 2H, CHtriazole), 7.86 (pseudo d, Japp = 

7.7 Hz, 4H, Ho), 7.45 (pseudo t, Japp = 7.7 Hz, 4H, Hm), 7.34 (pseudo t, Japp = 7.7 Hz, 2H, Hp), 

5.06 (t, 3JHH = 4.5 Hz, 2H, OH), 4.50 (s, 4H, CH2−Ntriazole), 3.24 (d, 3JHH = 4.5 Hz, 4H, 

CH2−OH). 
13C NMR (101 MHz, DMSO-d6, ppm): δ = 146.0 (Cq,triazole), 130.7 (triazole−Cq¸phenyl), 128.9 

(CHtriazole), 127.9 (Cm), 125.2 (Co), 123.2 (Cp), 60.0 (CH2-OH), 49.8 (Cq), 45.4 (CH2−Ntriazole). 

IR (ATR, cm-1): ߥ෤ = 3182 (w), 3147 (w), 2908 (vw), 2860 (vw), 1736 (vw), 1465 (w), 1445 

(w), 1360 (w), 1232 (w), 1190 (w), 1145 (vw), 1100 (w), 1082 (s), 1059 (vs), 1053 (s), 983 

(w), 899 (vw), 818 (vw), (vw), 797 (w), 772 (vs), 712 (w), 686 (s). 

EA (C21H22N6O2): calculated: C 64.60, H 5.68, N 21.52 %; found: C 64.50, H 5.46, 

N 21.19 %. 

MS (DEI+): m/z (%) = 390.2 [M+] (77), 362.2 (17), 334.2 (40), 333.2 (23), 246.2 (76), 214.2 

(43), 156.1 (42), 116.1 (100), 103.1 (69), 91.1 (49), 41.1 (23), 39.1 (14). 
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2,2-Bis(acetoxymethyl-1H-1,2,3-triazol-1-yl)methyl)propane-1,3-diol (10) 

 

 

 

BAMP (3.00 g, 16.12 mmol) was dissolved in 20 mL of a 1:1 solution of water and t-BuOH. 

To this solution, propargyl acetate (3.16 g, 32.14 mmol) was added, followed by aqueous 

solutions of sodium ascorbate (200 mg in 0.2 mL water) and copper(II)sulfate pentahydrate 

(26 mg in 0.1 mL water). The reaction mixture was refluxed for 12 h at 50 °C. The solvent 

was concentrated under reduced pressure to approx. 15 mL. Recrystallization out of methanol 

followed by filtration and washing with water gave 4.04 g (10.57 mmol, 66 %) of 10 as 

colorless crystals. 

 

DSC (5 °C min-1): Tmelt = 144, Tdec = 310 °C. 
1H NMR (400 MHz, DMSO-d6, ppm): δ = 8.11 (s, 2H, CHtriazole), 5.12 (s, 4H, CH2−OAc), 

5.04 (d, 3JHH = 4.6 Hz, 2H, OH), 4.39 (s, 4H, CH2−Ntriazole), 3.11 (t, 3JHH = 4.6 Hz, 4H, 

CH2−OH), 2.03 (s, 6H, CH3). 
13C NMR (101 MHz, DMSO-d6, ppm): δ = 170.1 (C=O), 141.6 (Cq,triazole), 126.5 (CHtriazole), 

59.8 (CH2−OH), 57.0 (CH2−OAc), 49.5 (Cq), 45.3 (CH2−Ntriazole), 20.6 (CH3). 

IR (ATR, cm-1): ߥ෤ = 3240 (m), 3158 (w), 2933 (w), 2880 (w), 2105 (w), 1748 (m), 1733 (s), 

1556 (w), 1470 (w), 1434 (w), 1392 (m), 1364 (w), 1338 (w), 1253 (m), 1222 (vs), 1148 (m), 

1130 (m), 1096 (m), 1048 (vs), 997 (m), 967 (w), 956 (w), 895 (w), 845 (w), 831 (w), 804 

(m), 770 (w), 718 (w), 684 (w), 674 (w), 664 (w). 

EA (C15H22N6O6): calculated: C 47.12, H 5.80, N 21.98 %; found: C 47.06, H 5.87, 

N 21.98 %. 

MS (DEI+): m/z (%) = 382.3 [M]+ (6), 337.2 (17), 295.3 (19), 182.2 (24), 140.2 (34), 84.1 

(30.34), 43.1 (100). 
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2,2-Bis(hydroxymethyl-1H-1,2,3-triazol-1-yl)methyl)propane-1,3-diol (4-ol, 12) 

 

 

 

Compound 10 (1.5 g, 3.92mmol) was dissolved in 20 mL of a 1:1 solution of water and 

ethanol and cooled to 0 °C. An aqueous sodium hydroxide solution (1.25 g, 31.36 mmol, in 5 

mL H2O) was added dropwise, keeping the temperature below 10Ԩ. The solution was stirred 

at room temperature for 12 h. The solution was then acidified with conc. HCl. The solvent 

was removed under reduced pressure. The crude residue was then purified via column 

chromatography (stationary phase: silica, mobile phase: n-hexane/aceton/methanol (1:1:3). 

Recrystallization in a methanol/ethanol mixture gave 0.6 g of 12 (3.01 mmol, 51 %) as 

colorless crystals. 

 
1H NMR (270 MHz, DMSO-d6, ppm): δ = 7.97 (s, 2H, CHtriazole), 5.22 (br. s, 2H, OH), 5.12 

(br. s, 2H, OH), 4.53 (s, 4H, Cq,triazole−CH2−OH), 4.34 (s, 4H, CH2−Ntriazole), 3.11 (s, 4H, 

Cq−CH2−OH) ppm. 
13C NMR (68 MHz, DMSO-d6, ppm): δ =147.8 (Cq,triazole), 124.4 (CHtriazole), 59.8 (CH2−OH), 

55.0 (CH2−OH), 49.3 (Cq), 45.4 (CH2−Ntriazole) ppm. 

EA (C11H18N6O4): calculated: C 44.29, H 6.08, N 28.52 %; found: C 44.22, H 6.31, N 

25.52 %. 

MS (DEI+): m/z (%) = 255.3 [M]+ (9.9), 195.2 (59.4), 168.2 (61.5), 125.2 (28.4), 81.1 

(55.5), 45.1 (100), 31.1 (45.3). 
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1,2-Bis(hydroxyethyl-5-tetrazolo)ethane (BTEOH, 11) 11 

 

 

 

NaOH (1.73 g, 43.2 mmol) was dissolved in water (40 mL). Compound 5 (3.84 g, 23.1 mmol) 

and chloroethanol (4.10 g, 3.4 mL, 50.9 mmol) were added and the mixture was stirred at 

100 °C for 18 h. After concentrating under reduced pressure, hot ethanol (20 mL) was added. 

After cooling, the formed precipitate was filtered off while the filtrate was washed with cold 

ethanol and filtered again. After concentrating under reduced pressure and further drying in 

vacuo, 4.42 g (17.4 mmol, 75 %) of 11 were obtained as a colorless viscous liquid. 

 
1H NMR (400 MHz, DMSO-d6, ppm): δ = 5.12 (m, 2H), 5.04 (m, 2.2H), 4.44 (m, 4.5H); 4.37 

(m, 1.7H), 3.87 (m, 4.5H), 3.76 (m, 4.1H), 3.44 (m, 4.5H), 3.38 (m, 10.5H). 
13C NMR (101 MHz, DMSO-d6, ppm): δ = 164.6, 164.4, 155.0, 154.8, 62.8, 62.5, 59.7, 59.1, 

55.4, 55.4, 49.4, 49.3, 23.2, 22.6, 20.8, 20.3. 

IR (ATR, cm−1): ߥ෤ = 3356 (m), 2945 (w), 2884 (w), 1644 (br w), 1524 (m), 1500 (m), 1425 

(s), 1361 (m), 1244 (m), 1198 (m), 1129 (m), 1064 (vs), 958 (m), 867 (s). 

MS (DEI+) m/z (%): 255.3 [M+H]+ (3.5), 195.2 (59.6), 168.2 (100.0), 124.2 (28.5), 81.1 

(44.5), 45.1 (57.2), 31.1 (15.84). 
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4.4.4 HMDI Based Polyurethanes 

 

Poly[hexamethylene(but-2-yne)carbamate] (HMDI-BuDi, 13) 

 

 

 

HMDI-BuDi was synthesized from but-2-yne-1,3-diol (2.05 g, 23.8 mmol) in ethyl acetate 

(50 mL) with 1 eq. of HMDI (3.82 mL, 23.8 mmol) and DBTDL, applying GP2. The reaction 

gave 4.79 g (18.8 mmol, 79 %) of 13 as a colorless powder. 

  
1H NMR (400 MHz, DMSO-d6, ppm): δ = 7.29 (br. t, 2H, NH), 4.65 (br. s, 4H, CH2−O), 2.95 

(br. q, 3JHH = 6.5 Hz, 4H, CH2−NH), 1.36 (br. m, 4H, CH2−CH2−NH), 1.22 (br. m, 4H, 

CH2−CH2CH2). 
13C NMR (101 MHz, DMSO-d6, ppm): δ = 155.3 (C=O), 81.5 (−C≡), 51.3 (CH2−O), 40.3 

(CH2−NH), 29.8 (CH2−CH2−NH), 25.9 (CH2−CH2CH2). 

IR (ATR, cm−1): ߥ෤ = 3323 (m), 2942 (m), 2864 (w), 2021 (vw), 1685 (vs), 1541 (vs), 1363 

(w), 1339 (w), 1259 (m), 1219 (m), 1153 (m), 1050 (w), 996 (m), 775 (w). 

EA (C12H18N2O4): calculated: C 56.68, H 7.13, N 11.02 %; found: C 56.53, H 7.51, N 

11.49 %.  
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Poly[hexamethylene(2,2-dinitropropylene)carbamate] (HMDI-DNPD, 14a) 

 

 

 

HMDI-DNPD was synthesized from DNPD (1.0 g, 6.0 mmol) in THF (40 mL) with 1 eq. of 

HMDI (0.97 mL, 6.0 mmol) and DBTDL, applying GP2. The reaction gave 1.92 g 

(5.74 mmol, 96 %) of 14a as orange, ductile solid.  

 

DSC (5 °C min-1): Tdec = 165 °C. 
1H NMR (400 MHz, DMSO-d6, ppm): δ = 7.58 (br. m, 2H, NH), 5.00 (br. s, 4H, CH2−O), 

2.95 (br. m, 4H, CH2−NH), 1.35 (br. m, 4H, CH2−CH2−NH), 1.21 (br. m, 4H, CH2−CH2CH2). 
13C NMR (101 MHz, DMSO-d6, ppm): δ = 153.9 (C=O), 115.6 (Cq), 60.9 (CH2−O), 30.4 

(CH2−N), 29.0 (CH2−CH2−NH), 25.8 (CH2−CH2CH2). 

IR (ATR, cm−1): ߥ෤ = 3330 (m), 2934 (m), 2860 (w), 1712 (vs), 1570 (vs), 1527 (vs), 1457 

(m), 1408 (m), 1322 (m), 1235 (vs), 1130 (s), 1047 (s), 960 (w), 848 (m), 766 (m), 729 (w). 

EA (C11H18N4O8 * 0.25 THF * 0.5 H2O):calculated: C 39.89, H 5.86, N 15.51 %; found: C 

39.81, H 5.92, N 15.55 %. 
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Poly[hexamethylene(2,2-bis(azidomethyl)propylene)carbamate] (HMDI-BAMP, 15a) 

 

 

 

HMDI-BAMP was synthesized from BAMP (1.11 g, 5.95 mmol) in THF (40 mL) with 1 eq. 

of HMDI (0.96 mL, 5.95 mmol) and DBTDL, applying GP2. The reaction gave 1.91 g 

(5.39 mmol, 91 %) of 15a as yellowish, highly viscous liquid. 

 

DSC (5 °C min-1): Tdec = 205 °C. 
1H NMR (400 MHz, DMSO-d6, ppm): δ = 7.13 (br. s, 1.7H, NH trans conformer), 6.89 (br. s, 

0.3H, NH cis conformer), 3.87 (br. s, 4H, CH2−O), 3.40 (br. s, 4H, CH2−N3) 2.96 (br. s, 4H, 

CH2−NH), 1.37 (br. s, 4H, CH2−CH2−NH), 1.23 (br. s, 4H, CH2−CH2CH2). 
13C NMR (101 MHz, DMSO-d6, ppm): δ = 155.7 (C=O), 62.4 (CH2−O), 51.3 (CH2−N3), 43.2 

(Cq), 40.2 (CH2−N), 29.3 (CH2−CH2−NH), 25.9 (CH2−CH2CH2). 

IR (ATR, cm−1): ߥ෤ = 3324 (w,), 2929 (m), 2857 (w), 2097 (vs), 1694 (vs), 1525 (s), 1449 (m), 

1412 (w), 1359 (w), 1235 (vs), 1136 (s), 1035 (s), 900 (w), 805 (w), 772 (m), 729 (w), 666 

(w). 

EA (C13H22N8O4 * 0.3 THF * 0.1 H2O): calculated: C 45.15, H 6.56, N 29.66 %; found: C 

45.17, H 6.71, N 29.57 %. 

MS (DCI+): m/z (%) = 355.4 (9) [monomeric unit + H]+, 201.4 (5), 187.3 (41), 86.2 (11), 57.2 

(100), 43.2 (17). 
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Poly[hexamethylene(2,2-bis((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)propylene]carbamate 

(HMDI-TriPh, 16) 

 

 

 

HMDI-TriPh was synthesized from 9 (1.93 g, 4.9 mmol) in a 9:1 mixture of THF/DMSO 

(50 mL) with 1 eq. of HMDI (0.79 mL, 4.9 mmol) and DBTDL, applying GP2. The reaction 

gave 1.54 g (2.8 mmol, 56 %) of 16 as a colorless powder. 

 

DSC (5 °C min-1): Tdec = 350 °C. 
1H NMR (400 MHz, DMSO-d6, ppm): δ = 8.52 (s, 2H, CHtriazole), 7.83 (br. m, 4H, Ho), 7.45 

(br. m, 4H, Hm), 7.33 (br. t, 2H, Hp), 7.19 (br. m, 2H, NH), 4.56 (br. s, 4H, CH2−Ntriazole), 3.73 

(br. s, 1.5H, CH2−O), 2.94 (br. m, 4.3H, CH2−NH), 1.28 (br. m, 10.2H CH2−CH2−NH). 

IR (ATR, cm−1): ߥ෤ = 3321 (w), 3136 (w), 2933 (w), 2857 (w), 1704 (m), 1649 (w), 1615 (m), 

1547 (m), 1482 (m), 1463 (m), 1440 (m), 1358 (w), 1334 (w), 1249 (s), 1233 (s), 1184 (m), 

1138 (m), 1099 (w), 1045 (s), 972 (w), 913 (w), 824 (vw), 764 (vs), 710 (w), 694 (s). 

EA (C29H34N8O4 * 0.5 H2O): calculated: C 61.36, H 6.21, N 19.74 %; found: C 61.49, H 6.39, 

N 19.34 %. 

MS (DEI+): m/z (%) = 559.7 [monomeric unit +H]+ (3), 414.6 (3), 391.5 (100), 246.4 (77), 

116.2 (87), 103.2 (48).  
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Poly[hexamethylene(2,2-bis((acetoxymethyl-1H-1,2,3-triazol-1-

yl)methyl)propylene)carbamate] (HMDI-TriOAc, 17) 

 

 

 

HMDI-TriOAc was synthesized from 10 (2.11 g, 6.0 mmol) in THF (50 mL) with 1 eq. of 

HMDI (0.96 mL, 6.0 mmol) and DBTDL, applying GP2. The reaction gave 1.68 g (3.1 mmol, 

51 %) of 17 as a colorless powder. 

 

DSC (5 °C min-1): Tdec = >400 °C. 
1H NMR (400 MHz, DMSO-d6, ppm): δ = 8.11 (s, 2H, CHtriazole), 7.16 (br. m, 1.6H, NH trans 

conformer), 6.87 (br. m, 0.4H, NH cis conformer), 5.12 (br. s, 4H, CH2−OAc), 4.85 (br. m, 

4H, CH2−Ntriazole), 3.68 (br. m, 3.5H, CH2−O), 2.96 (br. m, 4.4H, CH2−NH), 1.28 (br. m, 

10.8H, CH2−CH2−NH). 

IR (ATR, cm−1): ߥ෤  = 3325 (w), 3146 (w), 2930 (m), 2857 (w), 1713 (s), 1650 (m), 1540 (s), 

1461 (m), 1440 (m), 1367 (m), 1224 (vs), 1141 (s), 1032 (s), 961 (m), 923 (w), 831 (w), 773 

(m), 732 (w), 703 (w). 

EA (C23H34N8O8 * 0.7 H2O * 0.5 THF): calculated: C 50.11, H 6.63, N 18.70 %; found: C 

50.27, H 6.83, N 18.57 %. 

MS (DEI+): m/z (%) = 424.5 [M+H]+ (3), 337.4 (10), 212.3 (9), 140.2 (19), 43.1 (100). 
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Poly[hexamethylene(1,2-bis(hydroxyethyl-5-tetrazolo)ethane)carbamate] (HMDI-BTEOH, 

18) 

 

 

 

HMDI-BTEOH was synthesized from 11 (1.00 g, 3.9 mmol) in acetonitrile (50 mL) with 

1.5 eq. of HMDI (0.95 mL, 5.9 mmol) (to compensate the remaining alcohol in BTEOH) and 

DBTDL, applying GP2. The reaction gave 1.67 g (3.4 mmol, 88 %) of 17 as a colorless 

powder. 

 

IR (ATR, cm−1): ߥ෤  = 3329 (m), 2921 (m), 2851 (w), 1705 (vs), 1532 (vs), 1455 (m), 1367 (w), 

1248 (vs), 1238 (vs), 1178 (m), 1098 (s), 1029 (vs), 872 (w), 801 (w), 774 (m), 727 (w), 667 

(w). 

EA: (C16H26N10O4 * 1 H2O * 0.7 THF): calculated: C 45.99, H 6.90, N 28.53 %; found: C 

45.59, H 6.72, N 26.06 %. 
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4.4.5 DIE/DIM Based Polyurethanes 

 

Poly[ethylene(2,2-dinitropropylene)carbamate] (DIE-DNPD, 14b) 

 

 

 

DIE-DNPD was synthesized from a solution of DIE in benzene and DNPD (1.0 g, 6.0 mmol), 

applying GP3. The reaction gave 0.95 g (3.42 mmol, 57 %) of 14b as reddish, glutinous solid. 

 

 

DSC (5 °C min-1): Tdec = 168 °C. 
1H NMR (400 MHz, DMSO-d6, ppm): δ = 7.62 (br, 2H, NH), 5.01 (br, 4H, CH2−O), 3.02 (br, 

4H, CH2−N). 
13C NMR (101 MHz, DMSO-d6, ppm): δ = 154.1 (C=O), 115.4 (Cq), 61.1 (CH2−O), 29.0 

(CH2−NH). 

IR (ATR, cm−1): ߥ෤  = 3333 (w), 2957 (w), 2886 (w), 1714 (vs), 1562 (vs), 1520 (s), 1438 (m), 

1322 (m), 1230 (vs), 1143 (s), 1116 (s), 1043 (s), 963 (w), 863 (w), 845 (m), 764 (m), 673 

(w). 

EA (C7H10N4O8 * 0.5 H2O * 0.3 C6H6): calculated: C 34.40, H 4.49, N 17.83 %, found C 

34.32, H 4.52, N 18.23 %. 
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Poly[methylene(2,2-dinitropropylene)carbamate] (DIM-DNPD, 14c) 

 

 

 

DIM-DNPD was synthesized from a solution of DIM in benzene and DNPD (1.27 g, 

6.8 mmol), applying GP3. The reaction gave 0.97 g (3.7 mmol, 54 %) of 14c as reddish solid. 

 

DSC (5 °C min−1): Tdec = 168 °C. 

IR (ATR, cm−1): ߥ෤  = 3318 (w), 2960 (w), 2923 (w), 2853 (w), 2358 (w), 2341 (w), 1729 (w), 

1713 (w), 1517 (m), 1538 (w), 1520 (w), 1456 (w), 1394 (w), 1321 (w), 1257 (s), 1085 (s), 

1012 (vs), 927 (vw), 863 (w), 849 (w), 792 (vs), 686 (w). 

EA (C6H8N4O8 * 1 H2O * 0.35 C6H6): calculated: C 31.43, H 3.94, N 18.12 %; found: C 

31.36, H 4.33, N 17.96 %. 
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Poly[ethylene(2,2-bis(azidomethyl)propylene)carbamate] (DIE-BAMP, 15b) 

 

 

 

DIE-BAMP was synthesized from a solution of DIE in benzene and BAMP (1.12 g, 

6.00 mmol), applying GP3. The reaction gave 0.93 g (3.12 mmol, 52 %) of 15b as yellow, 

viscous liquid. 

 

DSC (5 °C min−1): Tdec = 210 °C. 
1H NMR (400 MHz, DMSO-d6, ppm): δ = 7.19 (br, 2H, NH), 3.83 (br, 4H, CH2−O), 3.29 (br, 

CH2−N3), 3.02 (br, 4H, CH2−NH). 
13C NMR (101 MHz, DMSO-d6, ppm): δ = 154.9 (C=O), 58.6 (CH2−O), 50.0 (CH2−N3), 43.2 

(Cq), 39.3 (CH2−NH). 

IR (ATR, cm−1): ߥ෤ = 3328 (w), 2938 (w), 2875 (w), 2360 (w), 2094 (vs), 1697 (s), 1524 (m), 

1447 (m), 1404 (w), 1359 (w), 1253 (vs), 1142 (s), 1042 (s), 950 (m), 896 (w), 772 (w), 700 

(w), 667 (w). 

EA (C9H14N8O4 * 0.1 H2O): calculated: C 36.02, H 4.77, N 37.34 %; found: C 35.75, H 4.91, 

N 37.58 %. 

MS (DEI+): m/z (%) = 597.7 (0.1) [dimeric unit + H]+, 387.5 (2), 299.4 (2) [monomeric unit 

+ H]+, 273.4 (6), 131.2 (56), 113.2 (39), 86.2 (80), 81.2 (24), 72.2 (19), 69.2 (36), 57.2 (44), 

54.2 (47), 43.1 (82), 30.1 (64), 28.1 (100). 
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Poly[methylene(2,2-bis(azidomethyl)propylene)carbamate] (DIM-DNPD, 15c) 

 

 

 

DIE-BAMP was synthesized from a solution of DIE in benzene and BAMP (1.12 g, 

6.00 mmol), applying GP3. The reaction gave 0.93 g (3.12 mmol, 52 %) of 15b as yellow, 

viscous liquid. 

 

DSC (5 °C min−1): Tdec = 210 °C. 

IR (ATR, cm−1): ߥ෤ = 3323 (w), 2956 (w), 2875 (w), 2089 (vs), 1697 (s), 1514 (s), 1448 (m), 

1393 (w), 1360 (w), 1219 (vs), 1116 (m), 1094 (w), 1050 (m), 1002 (s), 950 (w), 890 (w), 777 

(w), 704 (w), 667 (w). 

EA (C8H12N8O4 * 1 H2O * 0.3 C6H6): calculated: C 36.14, H 4.89, N 34.41 %; found: C 

36.57, H 5.29, N 34.68 %. 
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4.4.5 Precursors with Diamino Function 

1-Acetyl-3,5-diamino-1,2,4-triazole (22)28 

 

 

 

A solution of 3,5-diamino-1,2,4-triazole (21, 10 g, 101 mmol) was dissolved in H2O (40 mL). 

Afterwards acetic anhydride (12.4 g, 11.5 mL, 121 mmol) was added dropwise at rt. After 

stirring for 1 h the colorless precipitate was filtered off, washed with water and dried in 

vacuo, yielding 12.83 g (90.91 mmol, 90 %) 22 as colorless powder. 

 
1H NMR (400 MHz, DMSO-d6, ppm): δ = 7.34 (s, 2H, NH2), 5.64 (s, 2H, NH2), 2.34 (s, 3H, 

CH3). 
13C NMR (101 MHz, DMSO-d6, ppm): δ = 169.9 (Cq), 161.6 (Cq), 156.5 (Cq), 23.0 (CH3). 

IR (ATR, cm−1): ߥ෤ = 3415 (m), 3390 (m), 3294 (m), 3223 (m), 3129 (m), 1709 (s), 1640 (s), 

1569 (m), 1450 (m), 1395 (s), 1366 (vs), 1337 (s), 1178 (m), 1134 (m), 1117 (m), 1066 (m), 

1044 (m), 973 (m), 839 (w), 758 (w), 700 (w). 

EA (C4H7N5O): calculated: C 34.04, H 5.00, N 49.62 %; found: C 33.99, H 4.92, N 49.32 %. 
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5. Energetic Polymers Based on Epoxides 

 

Abstract: This chapter deals with the attempts of developing energetic epoxy resins based on 

tetrazoles. Hence, several approaches are described for obtaining mono- and difunctional 

epoxy (bis)tetrazoles. In the course of obtaining suitable starting materials for the reactions 

towards the respective epoxy tetrazoles, 1,2-bis(tetrazole-5-yl)ethanes containing divinyl and 

bisallyl groups were synthesized. The compounds could be isolated as 2,2’- and 1,2’-N-

substituted constitutional isomers and were analyzed using 1H, 13C, 2D NMR and IR 

spectroscopic measurements, as well as elemental analysis and mass spectrometry. Further 

investigations concerning their thermal and physical stability revealed that the compounds are 

insensitive towards impact and friction and stable up to 190 °C (divinyl compounds) and 

230 °C (bisallyl compounds). Furthermore their detonation properties were calculated with 

the EXPLO5 V6.02 software using calculated heats of formation (CBS-4M). Approaches of 

epoxidating the respective double bonds only gave a monoepoxydated compound in one case, 

which was identified by NMR and HRMS measurements. 
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5.1 Introduction 

 

Epoxides represent a broad and versatile compound class in the field of polymer syntheses. 

On the basis of epoxides, polymers (epoxy resins) can be obtained over different synthetic 

routes. Compounds with one epoxy group can be polymerized via a cationic polymerization, 

using a Lewis acid/alcohol system as initiator resulting in a glycidyl polymer (Scheme 5.1). 

This route is used, for example, for the synthesis of the energetic polymers GAP or 

polyGLYN.1 

 

 

Scheme 5.1 Cationic polymerization towards glycidyl polymers. 

 

Another synthetic route towards epoxy resins is based on, at least, difunctional epoxy 

compounds, such as bisphenol A epoxy resins, which are obtained in a reaction of bisphenol 

A diglycidyl ether (1, BADGE) and a diol (bisphenol A) (Scheme 5.2). Non-energetic binders 

of that typ are used, for example, in pyrotechnic formulations (Epon 813/Veramides 140 

binder system).2 For that purpose the epoxy prepolymers are additionally cured using 

multifunctional amines like triethylenetetramine (TETA). 

 

 

 

Scheme 5.2 Reaction towards bisphenol A epoxy resin. 
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There are different ways of preparing epoxides. They either can be synthesized from alkenes 

using epoxidizing agents (Scheme 5.3 a), such as peroxy acids.3 They also can be obtained 

after ring opening reactions of alcohols with epichlorohydrin (ECH) in basic milieu, like 

BADGE (Scheme 5.3 b)4, or in general over other intramolecular nucleophilic substitution 

reactions with alcohols5 (Scheme 5.3 c). 

 

 

 

 

Scheme 5.3 Reactions towards epoxides a) over epoxidizing agents, b) with alcohols and 

ECH, c) intramolecular substitution reactions. 

 

The goal of the work, described in this chapter was the synthesis of nitrogen-enriched 

(tetrazole based) epoxy resins for the use as energetic binders. Several attempts were carried 

out in order to obtain both, mono- and diepoxy tetrazolo compounds for subsequent 

polymerization steps (see Scheme 5.1 and 5.2). The desired target monomers are depicted in 

Figure 5.1. 
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Figure 5.1 Target epoxides for further polymerization reactions towards epoxy resins. 

 

 

5.2 Monoepoxy Polymers 

5.2.1 Syntheses 

 

For the syntheses of the target monoepoxy compound 4 three different precursors were used 

(Figure 5.2). 

 

 

 

Figure 5.2 Used precursors for the attempted epoxide syntheses of 4. 
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Allyltetrazole (8) was synthesized according to a literature described procedure and was 

obtained as a yellow liquid in good yield (82 %).6 1H-tetrazole (9) was obtained from 

commercial sources.  

As new compound, 11 was synthesized in a two-step reaction on the basis of 1H-tetrazole (9) 

(Scheme 5.4)  

 

 

 

Scheme 5.4 Synthesis of the monotosylated precursor 11 (for 10 and 11 the main isomers 

are depicted). 

 

3-Tetrazolyl propane-1,2-diol (10) was obtained analog to the synthetic procedure described 

for 2,3-dihydroxypropyl-5-aminotetrazole7 in a simple substitution reaction of 9 with 3-

monochloropropane-1,2-diol (3-MCPD) in very good yield (97 %, including all isomers, 

which were not separated) as yellowish, viscous oil. It was then treated with tosyl chloride. 

After purification via column chromatography 11 could only be obtained in low yield (31 %, 

including all isomers, which were not separated), as yellow oil. The small yield can be 

explained by the high number of possible side reactions. 

Starting from 8, 9 and 11 different synthetic routes towards the desired epoxide 4 were tested 

(Scheme 5.5). 

 



Energetic	Polymers	Based	on	Polymers	Based	on	Epoxides	
	

 
 

97 

 

 

Scheme 5.5 Attempted syntheses towards monoepoxy compound 4. 

 

Compound 8 was treated with the epoxidizing agents mCPBA and the in situ formed 

dimethyldioxirane (DMDO) from acetone and oxone. The reactions were monitored by TLC, 

but no reaction progress was visible. The mass spectra of aliquots taken from the reaction 

mixtures confirmed the presence of 4 in the reaction medium of the mCPBA approach 

(calculated [M+H]+: 127.0614, found: 127.0615). However, 4 could not be isolated from the 

reaction mixture successfully. The reaction approach with DMDO did not give any suitable 

reaction product, probably because of the low concentration of formed DMDO (around 0.07-

0.09 M in the reaction medium)8. 

The reaction of ECH with 9 gave a colorless oil, but neither analytics (MS, NMR) from the 

crude reaction mixture nor from the obtained oil gave any assignable results. Most likely, a 

polymeric product was formed during the reaction, which could not be identified. 

The attempted cyclization of 11 according to a literature procedure9 was also not successful, 

probably because of the low amount of 11 and the broad number of possible side products, the 

desired product could not be isolated. 
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5.2.2 Characterizations 

 

Compound 8 was analyzed using NMR, IR and elemental analysis, giving results which were 

consistent with literature values. 6 Compounds 10 and 11 were mainly characterized by mass 

spectrometry, IR spectroscopy and elemental analysis, since the resulting products consisted 

of different constitutional isomers, which complicated the assignment of the obtained values 

in the NMR spectra.  

The successful formation of the target diol 10 was proven by high resolution mass 

spectrometry (calculated for [M+H]+: 145.0720, found: 145.0721). Elemental analysis was 

not possible because of the highly viscous consistency of 10, which hindered the complete 

removal of water and ethanol. The IR spectrum of 10 showed the broad band of the OH 

groups around 3300 cm−1 in medium intensities. A comparison with the IR spectrum of 11 

shows a decreasing intensity of the OH valance vibration and an appearance of signals at 

3140 cm−1 (valance vibration of Ar−H) and 1355 and 1170 cm−1 (sulfonate vibrations), which 

proved the presence of the tosylate group.10 Additional mass spectrometry and elemental 

analysis confirmed the successful synthesis of 11. 

Due to its twofold alcohol function, 10 might be an interesting compound as crosslinking 

agent or initiator for cationic polymerizations (see Scheme 5.1) in the field of energetic 

binders and formulations. 
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5.3 Diepoxy Polymers 

5.3.1 Syntheses 

 

For the different attempted reactions towards the desired difunctional epoxy tetrazoles 5-7 

several starting materials were synthesized (Figure 5.3). 

 

 

 

Figure 5.3 Synthesized starting materials for the syntheses of the difunctional epoxy 

bistetrazoles 5-7 (the main isomers are depicted). 

 

Compounds 1,2-bis(tetrazol-5-yl)ethane (12, BTE) and 1,2-bis(hydroxyethyl tetrazol-5-

yl)ethane (13, BTEOH) were synthesized in close accordance to literature procedures.11 12 1,2-

Bis(2-vinyl-2H-tetrazol-5-yl)ethane (14a, 2,2-DvBTE) was prepared in a 

substitution/elimination reaction using 12 and 1,2-dibromoethane in analogy to described 

procedures for related divinyl bistetrazoles (Scheme 5.6).13 

 

 

 

Scheme 5.6 Synthesis of the divinyl derivatives (14a and b) of BTE. 

After the purification via column chromatography compound 14a was obtained as colorless 
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solid in 31 % yield, which could be recrystallized in an n-hexane/EtOAc mixture. As second 

product the constitutional isomer 1-vinyl-5-(2-(2-vinyl-2H-tetrazol-5-yl)ethyl)-1H-tetrazole 

(14b, 1,2-DvBTE) could also be purified as colorless solid in low yield (18 %). 

The bisallyl derivatives of BTE were obtained in a substitution reaction using allylbromide 

(Scheme 5.7). 

 

 

 

Scheme 5.7 Synthesis of the bisallyl derivatives (15a and b) of BTE. 

 

 

After the purification via column chromatography, compounds 15a (1,2-bis(2-allyl-2H-

tetrazol-5-yl)ethane, 2,2-BaBTE) and 15b (1-allyl-5-(2-(2-allyl-2H-tetrazol-5-yl)ethyl)-1H-

tetrazole, 1,2-BaBTE) were obtained as colorless liquids in low yields with 28 and 15 %, 

respectively. 

Compound 16 was obtained as highly viscous oil in a similar reaction step like for 10 (see 

Scheme 5.4) in good yield (92 %, including all isomers, which were not separated). With this 

compound the transformation to the corresponding ditosylated compound for a twofold 

intramolecular ring closure was also attempted, but gave no product after the purification step. 

In order to obtain the difunctional epoxy BTE derivatives 5-7 several reaction conditions and 

paths were tested. A summary of the attempted reaction routes is given in Scheme 5.8. 
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Scheme 5.8 Attempted syntheses of the diepoxidated compounds 5-7 using a) 

epichlorohydrin in various setups and b) two different epoxidizing agents (mCPBA and 

DMDO). 

 

Although the various attempts with ECH and 12 or 13 (with varying basic conditions, and 

used phase transition catalyst) showed reaction progress by color changes of the reaction 

medium or precipitates after work up, the resulting analytical values (EA, MS, NMR) could 

not be assigned to any possible reaction product. Most likely, polymeric products were 

formed, which were not further investigated, tough. 

The reactions of 14a and 15a with the epoxidizing agents mCPBA and DMDO did not yield 

the difunctionalized epoxy compounds 5 and 6, but only gave starting material (14a) or the 

monoepoxidated compound 17 as yellowish liquid in moderate yield (62 %) (Figure 5.4). 
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Figure 5.4 Obtained monoepoxy compound 2-glycidyl-5-(2-(2-allyl-2H-tetrazol-5-

yl)ethyl)-2H-tetrazole (17). 

 

 

5.3.2 Characterization 

 

The synthesized compounds were characterized using elemental analysis, mass spectrometry, 

as well as 1H, 13C NMR and IR spectroscopy. The crystal structure of 14a was obtained using 

single crystal X-ray diffraction. 

BTE (12) and BTEOH (13) gave consistent results with the literature values.11 12 Compound 

16 was characterized using mainly IR and mass spectrometry. 

Because of its fourfold alcohol function 16 might represent an interesting compound as 

crosslinking agent or initiator for cationic polymerizations (see Scheme 5.1) in the field of 

energetic binders and formulations. 

 

5.3.2.1 Spectroscopic Analyses 

 

As solvent for the NMR measurements DMSO-d6 was used. For a clear assignment of the 

exact positions of the carbon and hydrogen atoms in 2,2-BaBTE (15a) and 1,2-BaBTE (15b) 

2D NMR measurements were carried out. The obtained spectra of the HMQC and HMBC 2D 

NMR measurements are depicted in Figure 5.8 and 5.9.  

Both isomers can be distinguished sheer alone because of their signal patterns in the 1D 1H 

and 13C NMR spectra (Figure 5.5 and 5.6). In the 1H NMR spectrum of 15a five different, 

partly overlapping signals can be observed: at 6.04 ppm (CH of the allyl group), 5.29 ppm 

(CHcis of the terminal CH2 of the allyl group), 5.28 ppm (aliphatic CH2 of the allyl group), 

5.20 ppm (CHtrans of the terminal CH2 of the allyl group) and 3.33 ppm (CH2) in a 2:6:2:4 
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ratio. The signals show different coupling patterns due to their different interactions with the 

surrounding hydrogen atoms. The CH of the allyl group appears as a doublet of doublet of 

triplets analog to its 3JHH couplings to the CHtrans and CHcis of the terminal CH2 and to the 

aliphatic CH2. The geminal hydrogen atoms of the terminal CH2 group show also a doublet of 

doublet of triplets splitting, representing the respective 3JHH, 4JHH (to the aliphatic CH2) and 

the 2JHH coupling. Both geminal hydrogen atoms can be distinguished because of their 

differing 3JHH coupling constants (17.2 Hz (Htrans) and 10.1 Hz (Hcis)). The aliphatic CH2 

group of the allyl group splits into a doublet of doublet of doublets representing the respective 

couplings to the CH and the terminal CH2 hydrogen atoms.  

The 1H NMR spectrum of 15b shows ten different overlapping signals (Figure 5.5) with a 

2:5:3:4 ratio. The signal at 3.39 ppm represents the two different CH2 groups attached to the 

respective Cq of the tetrazole rings and shows a A2B2 spin system of higher order. The signal 

is also overlapped by the signal of residual water, which explains the higher integral value. 

A comparison of the 13C NMR spectra of 15a and b (Figure 5.6) proves the existence of two 

different isomers, too. Whereas the spectrum of 15a shows only five different signals (as 

indicator for symmetrically substituted tetrazole rings), 15b must be the asymmetric 1,2’-N-

substituted isomer, because of its ten different signals.  
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Figure 5.5 1H NMR spectra of 15a and 15b. 
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Figure 5.6 13C NMR spectra of 15a and 15b. 

 

In order to determine, which kind of symmetrically N-substituted isomer was formed as 15a 

(1,1’- or 2,2’-), along with the general assignment of the proton and carbon positions in 15a 

and 15b the HMQC and HMBC 2D NMR measurements were the methods of choice. 

Here, the 1- or the 2-N-substituted position can be distinguished by the occurring 3JCH long-

range heteronuclear carbon-proton coupling between the quaternary carbon in the tetrazole 

ring and the protons of the aliphatic CH2 allyl group attached to the N1 atom of the tetrazole 

ring (Figure 5.7).  
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Figure 5.7 3JCH couplings for the differentiation between the 2- and 1-N-substituted allyl 

positions. 

 

The HMBC experiments (Figure 5.8) verified the 2,2’-N-substitution pattern for 15a, since no 
3JCH coupling between the H4 hydrogens and the C1 carbon atoms are visible in the 2D NMR 

spectrum. However, the 2D HMBC spectrum of 15b shows the presence of the 3JCH coupling 

between C2 and H8 (illustrated by the red dashed circle), which confirms the asymmetric 

1,2’-N-substituted structure. 

  



Energetic	Polymers	Based	on	Polymers	Based	on	Epoxides	
	

 
 

107 

 

 

Figure 5.8  HMBC 2D NMR spectra of 15a and 15b. (Red dashed circle shows the 

occurring 3JCH coupling for the 1-N-substituted isomer). 
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For the assignment of the remaining carbon and hydrogen positions in 15a and 15b the 

HMQC measurements were beneficial (Figure 5.9). The resulting spectra enabled the 

allocation of the carbon atoms signals C3 and C4 of 15b to the overlapping signals of their 

corresponding protons H3 and H4 (see enlargement). Even though C3 and C4 are in close 

proximity to one another (131.8 and 131.3 ppm). 

A precise distinction between the two different C9 carbon atoms and their corresponding H9 

protons of 15b was not possible, tough. 
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Figure 5.9  HMQC 2D NMR spectra of 15a and 15b. 
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The measured 1H spectrum of 14a shows four different signals with a 2:2:2:4 ratio (Figure 

5.10). At 7.79 ppm the CH of the vinyl group is visible as a doublet of doublets, representing 

the interactions with the geminal hydrogen atoms of the terminal vinyl-CH2. These two 

geminal hydrogen atoms of the vinyl group show also doublets of doublets, as coupling 

patterns. The signal at 6.06 ppm can be assigned to the Htrans of the terminal vinyl-CH2, 

because of its bigger 3JHH coupling constant (15.5 Hz) compared to the 3JHH coupling value 

(8.7 Hz) of the Hcis at 5.47 ppm. The protons of the aliphatic CH2 group occur at 3.41. Similar 

to the results of the 15b measurement, the 1H NMR spectrum of 14b shows eight different, 

partly overlapping signals with a ratio of 1:1:1:1:2:4, representing the asymmetric 1,2’-N-

substituted divinyl compound. The new signals of the CH and the CHtrans protons of the 1-N-

substituted vinyl group can clearly be assigned with 7.47 ppm and 5.97 ppm, whereas the 

signals of the two CHcis protons are overlapping and cannot be allocated properly. The signal 

around 3.47 ppm represents the two different CH2 groups attached to the respective Cq of the 

tetrazole rings and shows a A2B2 spin system of higher order. 
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Figure 5.10 1H NMR spectra 14a and 14b. 

 

The obtained results of the 2D NMR measurements of 15a and 15b can be applied to the 1D 

NMR measurements of 14a and 14b.  

Here again, the comparison of the 13C NMR spectra of 14a and b (Figure 5.11) also proves 

the existence of two different isomers. Whereas the spectrum of 14a shows only four different 

signals (as indicator for symmetrically substituted tetrazole rings), 14b must be the 

asymmetric 1,2’-N-substituted isomer, because of its eight different signals. In analogy to the 

bisallyl compounds 15a and b, 14a and b show signals at 164.9 ppm (Cq,tetrazole), 130.1 ppm 

(CH vinyl), 109.0 ppm (CH2 vinyl) and around 22.9 ppm (aliphatic CH2), which represent the 
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2-N-substituted fragment. The additional signals in the 13C NMR spectrum of 14b at 153.3, 

126.5, 109.9 and 20.5 ppm can be assigned in an analogous manner to the 1-N-substituted 

isomer. 

 

 

 

 

 

Figure 5.11 13C NMR spectra 14a and 14b. 

 

The obtained 1H (Figure 5.12) and 13C NMR (Figure 5.13) spectra of compound 17 prove the 

formation of the monoepoxidated 2,2-BaBTE (15a), since the spectra clearly show the signals 

for the 2-N-substituted allyl group with all its coupling patterns and ratios, but also additional 

signals, which are not consistent with the values for the 1-N-substituted fragment.  
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The extra signals in the 1H NMR spectrum of 17 are referring to the glycidyl group. The 

signals at 5.03 ppm and 4.62 ppm represent the diastereotopic protons of the CH2 group 

attached to the oxirane ring, showing doublets of doublets with a 3JHH (3.1 Hz and 6.8 Hz) 

coupling to the proton of the CH group of the oxirane ring and a 2JHH geminal (14.6 Hz) 

coupling. At 3.44 ppm a dddd is visible, which can be assigned to the proton of the CH group 

in the oxirane ring, coupling with each of the surrounding diastereotopic protons of the CH2 

groups. The diastereotopic protons of the CH2 oxirane group occur at 2.86 ppm and 2.67 ppm 

showing again doublet of doublets with coupling constants of 3JHH = 4.2 and 2.5 Hz and 2JHH 

= 5.0 Hz. 

 

 

Figure 5.12 1H NMR spectrum of 17. 

 

In the 13C NMR spectrum, only a closer look reveals the ten different carbon signals. The 

signals representing the respective Cq, CH2-N and CH2-Cq carbon atoms occur at very similar 

values with 164.9 vs. 164.8 ppm, 54.6 ppm vs. 54.5 ppm and 23.10 vs. 23.09 ppm (Figure 

5.13). Besides this, the obvious two new signals (compared to 15a) at 49.1 (CH) and 
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44.9 ppm (CH2) can be assigned to the carbon atoms of the oxirane ring. 

 

 

 

Figure 5.13 13C NMR spectrum of 17. 

 

 

5.3.2.2 Crystal Structure 

 

The crystal structure of 14a was obtained using single crystal X-ray structure analysis. Single 

crystals suitable for X-ray diffraction were obtained by recrystallization of the product from 

an n-hexane/ethyl acetate mixture. Compound 14a crystallizes in the monoclinic space group 

P21/c with two formulas per unit cell. Calculated density for T = 173 K is 1.414 g cm−3. The 

bond lengths and angles within the crystal structure of 14a are consistent with comparable 

values in literature.14 15 The formula unit of 2,2-DvBTE (14a) is shown in Figure 5.14 along 

with selected bond lengths, angles and torsion angles. The molecular structure itself shows a 

slightly twisted assembly with a torsion angle of 110.8° for the C1i-C1-C2-N2 fragment. The 

vinyl group is nearly in one plane with the tetrazole ring with a torsion angle of the vinyl 

group towards the tetrazole ring of 4.0°. 
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Figure 5.14 Crystal structure of 2,2-DvBTE (14a). Thermal ellipsoids are set to 50 % 

probability. Symmetry operator: (i) −x, 2−y, −z. Selected bond distanced (Å): N1-N2 

1.316(1), N1-N4 1.327(1), N2-C2 1.353(1), N3-C2 1.327(1), N3-N4 1.336(1), N4-C3 

1.419(1), C1-C2 1.487(2), C3-C4 1.304(2); selected bond angles (°): C1i-C1-C2 112.1(1), 

C4-C3-N4 123.0(1), C4-C3-H3 124.8(1), N4-C3-H3 112.2(1); selected torsion angles (°): 

C1i-C1-C2-N2 110.8, C1i-C1-C2-N3 −67.6(1), C4-C3-N4-N1 −175.3(1), C4-C3-N4-N3 

4.0(2), H3-C3-N4-N1 5.2(1), H3-C3-N4-N3 −175.6(1). 

 

Due to the lack of suitable donors no hydrogen bonds are observed in the crystal system to 

stabilize the supramolecular structure. As shown in Figure 5.15, the crystal structure of 14a 

consists of stacked alternately oriented molecules which form infinite zig-zag rows along the 

a-axis. The layers are stacked above each other. 

 

 

 

Fgure 5.15 Crystal structure of 14a. Thermal ellipsoids are set to 50 % probability. View 

along the b-axis.  
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5.3.2.3 Thermal Stability 

 

The behavior at high temperatures of compounds 14-15 was determined via differential 

scanning calorimetry with a heating rate of 5 °C min−1. The obtained plots are depicted in 

Figure 5.16. 

 

 

 

Figure 5.16 DSC plots of decomposition temperatures of 14-15. 

  



Energetic	Polymers	Based	on	Polymers	Based	on	Epoxides	
	

 
 

117 

The compounds harboring the same functional groups show similar melting and 

decomposition temperatures. The vinyl based compounds 14a and 14b show melting points 

around 90 °C and decomposition temperatures around 190 °C. Whereas the liquid allyl based 

compounds are stable up to higher temperatures with Tdec around 230 °C. 

 

 

5.3.3 Energetic Data 

 

For the determination of inherent energetic potential, sensitivities and energetic properties of 

14-15 were investigated. The impact and friction sensitivities of 14-15 were explored by 

BAM methods.16 All compounds were tested as insensitive towards impact (>40 J) and 

friction (>360 N). 

For calculating the energetic properties of compounds 14-15 quantum chemical calculations 

had to be run. Initial structure optimizations were performed for 14b, 15a and b at the 

B3LYP/cc-pVDZ level of theory using the Gaussian 09 revision A.02 program package17. 

The enthalpies (H) and free energies (G) were calculated using the CBS-4M method.18 

 

Table 5.1 Calculation results. 

 

 −H298
 
a / a.u. −Δf H (g, M) b /kJ mol−1 Δf Hvap 

c/ ΔHsub
d /kJ mol−1 

14a 747.665119 703.8 68.65 

14b 747.6624795 710.8 67.90 

15a 826.139667 650.8 44.83 

15b 826.134454 667.1 45.28 
a CBS-4M electronic enthalpy; b gas phase enthalpy of formation; c enthalpy of vaporization; d enthalpy of sublimation. 

 

Detonation parameters were calculated using the EXPLO5 V6.02 computer code19 with the 

CBS-4M generated enthalpies of formation. The calculations were performed using the 

densities obtained by pycnometric measurements at room temperature or from the crystal 

structure measurement. The calculated detonation values of 14-15 are given in Table 5.2. 
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Table 5.2 Energetic Data of the divinyl and bisallyl compounds 14a,b and 15a,b. 

 

14a 14b 15a 15b 

Formula C8H10N8 C8H10N8 C10H14N8 C10H14N8 

FW [g mol−1] 218.22 218.22 246.27 246.27 

IS [J]a >40 >40 >40 >40 

FS [N]b >360 >360 >360 >360 

N [%]c 51.35 51.35 45.50 45.50 

Tdec [°C]e 190 186 225 230 

ρ [g cm−3]f 1.4o 1.4p 1.2 1.2 

∆f Hm° [kJ mol−1]g 635 643 605 622 

∆f U ° [kJ kg−1]h 2907 2970 2452 2504 

Explo5 V6.02  values     

−∆E U° [kJ kg−1]i 3681 3743 3398 3448 

TE [K]j 2317 2341 2131 2150 

pCJ [kbar]k 148 149 99 99 

Vdet [m s−1]l 7109 7132 6148 6167 

Gas vol. [L kg−1]m 702 703 737 737 

Is [s]n 197 198 188 189 
a BAM drop hammer (1 of 6); b BAM friction tester (1 of 6); c

 nitrogen content; d oxygen content; e temperature of 
decomposition by DSC (onset values), f derived from pycnometer measurements; g molar enthalpy of formation; h energy of 
formation; i energy of explosion; j explosion temperature; k detonation pressure; l detonation velocity ; m assuming only 
gaseous products; n specific impulse (isobaric combustion, chamber pressure 70 bar, equilibrium expansion), o obtained from 
x-ray measurements and recalculated for ρ at rt using equation given in ref.20, p estimated from structure determination.  

 

The obtained detonation values show moderate energetic properties for 14-15. Due to their 

higher ∆f Hm° value and density, as well as lower carbon content, vinyl based 14a and 14b 

show an about 1000 m s−1 increased detonation velocity (Vdet) and an about 50 kbar higher 

detonation pressure (pCJ), when compared to the respective allyl based isomers 15a and 15b. 

A comparison of the corresponding isomers, in relation to each other, revealed slightly 

increased detonation values for the unsymmetrically substituted compounds, due to their 

higher enthalpy of formation.  
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5.4 Conclusion 

 

In order to obtain starting materials for energetic epoxy resins several approaches towards 

mono- and difunctional epoxy tetrazoles were carried out. In the course of generating suitable 

precursors for the epoxidation steps, divinyl and bisallyl derivatives of 1,2-bis(tetrazol-5-

yl)ethane were synthesized and characterized. Two different constitutional isomers of each 

compound could be isolated. The compounds were investigated regarding their thermal 

behavior as well as their sensitivities and energetic properties. In summary, the epoxidation 

approaches using mCPBA and DMDO were not fully successful, but only gave a 

monoepoxidated allyl bistetrazole. 

  



Energetic	Polymers	Based	on	Polymers	Based	on	Epoxides	
	

 
 

120 

5.5 Experimental Part 

5.5.1 Compounds for Monoepoxy 

1-Allyl-1H-tetrazole (8)6 

 

 

 

NaN3 (2.73 g, 41.9 mmol) and allylamine (7, 2.00 g, 35.0 mmol) were dissolved in ethyl 

orthoformate (8.63 mL). Glacial acetic acid (20.58 mL) was added slowly at 0 °C. The 

solution was then stirred for 3 h at 100 °C. After cooling to rt conc. HCl (3.42 mL, 

35.0 mmol) was added dropwise and the solution was stirred overnight. The reaction mixture 

was filtered and concentrated under reduced pressure. Ethanol (15 mL) was added and the 

mixture was filtered and concentrated again. To purify the product a column chromatography 

was performed (EtOAc/n-hexane 3:1) yielding 3.15 g (28.61 mmol, 82 %) of compound 8 as 

a yellow liquid.  

 
1H NMR (400 MHz, DMSO-d6, ppm): δ = 9.40 (s, 1H, CHtetrazole), 6.06 (ddt, 3JHH = 17.0, 

10.3, 5.9 Hz, 1H, −CH=CH2), 5.31 (ddt, 1H, 4JHH = 1.3 Hz, 3JHH = 10.3 Hz, 2JHH = 1.2 Hz, 

CH=CHHcis), 5.20 (ddt, 4JHH = 1.6, 3JHH = 17.0 Hz, 2JHH = 1.2 Hz, 4H, CH=CHHtrans), 5.20 

(ddd, 4JHH = 1.6, 1.3 Hz, 3JHH = 5.9 Hz, 2H, CH2−N). 
13C NMR (101 MHz, DMSO-d6, ppm): δ = 143.9 (CHtetrazole), 131.6 (−CH=CH2), 119.5 

(CH=CH2), 49.6 (CH2−N). 

IR (thin film, ATR, cm−1): ߥ෤ = 3133 (w), 2989 (w), 1720 (w), 1647 (w), 1481 (m), 1423 (m), 

1340 (w), 1290 (w), 1250 (w), 1167 (s), 1100 (vs), 1022 (w), 991 (m), 966 (m), 939 (s), 874 

(m), 767 (m), 720 (m), 659 (s). 

EA (C4H6N4): calculated: C 43.63, H 5.49, N 50.88 %; found: C 43.51, H 5.43, N 50.91 %. 
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3-Tetrazolyl propane-1,2-diol (10) 

 

 

 

1H-Tetrazole (10, 0.25 g, 3.6 mmol) and NaOH (0.14 g, 3.6 mmol) were dissolved in H2O 

(2 mL), 3-MCPD (0.39 g, 3.6 mmol) was added dropwise and the solution was stirred for 18 h 

at 100 °C. The solvent was removed under reduced pressure and hot ethanol (20 mL) was 

added to the remaining solution which was then cooled for 18 h to 7 °C. The precipitate was 

filtered off, the solvent was removed under reduced pressure and traces of volatiles were 

removed in vacuo yielding 0.50 g (3.47 mmol, 97 %) of compound 13 as yellowish oil. 

 

IR (ATR, cm−1): ߥ෤ = 3252 (m), 2986 (m), 2881 (m), 2688 (m), 2495 (m), 1442 (m), 1427 (m), 

1398 (m), 1360 (w), 1286 (w), 1230 (w), 1177 (w), 1146 (w), 1106 (m), 1074 (m), 1037 (vs), 

942 (w), 878 (w), 836 (w), 793 (w), 738 (m), 699 (m), 664 (w). 

HRMS (ESI): m/z calculated [M+H]+: 145.0720, found: 145.0721. 
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1-(1H-Tetrazol-1-yl)-2-hydroxy-3-(4-methylbenzenesulfonate)propane (11) 

 

 

 

3-Tetrazolyl propane-1,2-diol (10) (0.60 g, 4.1 mmol) was dissolved in DCM (10 mL) and 

pyridine (10 mL). The mixture was cooled to 0 °C and p-TsCl (0.91 g, 4.8 mmol) was added 

in portions. The solution was stirred for 18 h at room temperature, while the reaction process 

was monitored by TLC (eluent: EtOAc/chloroform 6:4). The solvent was removed under 

reduced pressure and the residue was purified using column chromatography (eluent: 

EtOAc/chloroform 6:4) yielding 0.38 g (1.27 mmol, 31 %) of compound 14 as a yellow oil. 

 

IR (thin film, ATR, cm−1): ߥ෤ = 3355 (w), 3144 (w), 2958 (w), 2926 (w), 1926 (w), 1730 (w), 

1597 (w), 1494 (w), 1442 (w), 1401 (w), 1355 (s), 1308 (w), 1285 (w), 1211 (w), 1189 (m), 

1173 (vs), 1131 (w), 1121 (w), 1095 (w), 1027 (w), 1018 (w), 987 (m), 932 (m), 813 (m), 757 

(m), 707 (w), 686 (w), 663 (s), 634 (w), 611 (w), 592 (w), 577 (w). 

MS (FAB+): m/z = 299.4 [M+H]+. 

EA (C11H14N4O4S): calculated: C 44.29, H 4.73, N 18.78, S 10.75 %; found: C 44.58, H 4.97, 

N 17.71, S 10.43 %. 
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1-(Oxiran-2-ylmethyl)-1H-tetrazole (4) 

 

 

 

- via mCPBA 

 

1-Allyl-1H-tetrazole (8, 0.30 g, 2.72 mmol) was dissolved in DCM (20 mL) and cooled to 

0 °C. mCPBA (1.88 g, 10.9 mmol) was added in one portion and the reaction mixture was 

stirred for 2-72 h at room temperature. The reaction process was monitored by TLC (eluent: 

n-Hex/DCM/EtOAc 5:2:3). The mixture was heated to 40 °C. The compound could not be 

isolated. 

 

HRMS (ESI+): m/z calculated [M+H]+: 127.0614, found: 127.0615. 
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5.5.2 Difunctionalized Compounds 

 

Bistetrazoloethane (12, BTE)11 

 

 

 

Succinonitrile (8.00 g, 99.9 mmol), zinc(II) chloride (27.34 g, 209.9 mmol) and sodium azide 

(19.50 g, 299.9 mmol) were suspended in water (100 ml). The mixture was heated to 100 °C 

under stirring overnight. After cooling to room temperature the precipitate was filtered off and 

washed with water. The precipitate was suspended in hydrochloric acid (64 ml water with 

16 ml conc. HCl) and heated to 85 °C. Then conc. HCl was added dropwise until everything 

was dissolved. The recrystallization mixture was cooled to 7 °C overnight and filtration 

followed by washing with water led to the final product 12 yielding 15.7 g (94.50 mmol, 

94 %). 

 
1H NMR (400 MHz, acetone-d6, ppm): δ = 3.38 (s, 4H, CH2). 
13C NMR (101 MHz, DMSO-d6, ppm): δ = 154.8 (Cq), 20.9 (CH2). 

IR (ATR, cm-1): ߥ෤ = 3136 (w), 3015 (w), 2874 (w), 2704 (m), 2628 (m), 1582 (m), 1413 (m), 

1260 (m), 1221 (m), 1113 (m), 1092 (m), 1058 (s), 1000 (m), 947 (m), 868 (m), 807 (m), 788 

(m), 716 (w), 697 (m). 

EA (C4H6N8): calculated: C 28.92, H 3.64, N 67.44 %; found: C 29.04, H 3.59, N 67.41 %. 
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1,2-Bis(2-vinyl-2H-tetrazol-5-yl)ethane (14a, 2,2-DvBTE) and 1-vinyl-5-(2-(2-vinyl-2H-

tetrazol-5-yl)ethyl)-1H-tetrazole (14b, 1,2-DvBTE) 

 

1,2-Dibromoethane (8.3 ml, 96.30 mmol) was dissolved in acetonitrile (30 ml) and heated to 

80 °C. BTE (12, 4.000 g, 24.08 mmol) was dissolved in acetonitrile (20 ml) and triethylamine 

(8.3 ml, 96.30 mmol). This mixture was added into the reaction flask over 5 h using a 

dropping funnel. Stirring at 80 °C was continued for 2 d. After cooling to ambient 

temperature, brine (50 ml) was added and the aqueous phase was extracted with ethyl acetate 

(3 x 100 ml). The combined organic phases were dried over MgSO4 and the volatiles were 

removed in vacuo. The crude product was purified using column chromatography on silica gel 

(eluent: n-hexane/DCM/EtOAc = 5/3/2).  

 

a) 2,2-DvBTE (14a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound 14a was obtained as a colorless solid in 31 % yield (1.63 g, 7.46 mmol, Rf = 0.6) 

and was recrystallized from a n-hexane/ethyl acetate mixture. 

 

DSC (5 °C min−1): Tmelt = 92 °C; Tdec = 190 °C. 
1H NMR (400 MHz, DMSO-d6, ppm): δ = 7.79 (dd, 3JHH = 15.5 Hz, 8.7 Hz, 2H, −CH=CH2), 

6.06 (dd, 3JHH = 15.5 Hz, 2JHH = 1.5 Hz, 2H, CH=CHHtrans), 5.48 (dd, 3JHH = 8.7 Hz, 2JHH = 

1.5 Hz, 2H, CH=CHHcis), 3.42 (s, 4H, CH2−Ctetrazole). 
13C NMR (101 MHz, DMSO-d6, ppm): δ = 164.9 (Ctetrazole), 130.1 (−CH=CH2), 109.0 

(CH=CH2), 22.9 (CH2−Ctetrazole). 

IR (ATR, cm-1): ߥ෤ = 3119 (w), 3108 (w), 3060 (w), 3010 (w), 2988 (w), 2399 (w),1919 (w), 

1842 (w), 1738 (w), 1694 (w), 1643 (m), 1509 (s), 1480 (w), 1442 (w), 1408 (w), 1384 (m), 

1353 (m), 1290 (w), 1263 (w), 1182 (m), 1130 (w), 1078 (w), 1031 (m), 1006 (s), 961 (s), 914 

(s), 776 (w), 757 (s), 740 (s), 730 (s). 

EA (C8H10N8): calculated: C 44.03, H 4.62, N 51.24 %; found: C 44.10, H 4.68, N 51.24 %. 

HRMS (ESI+): m/z calculated [M+H]+: 219.1101, found: 219.1100.  
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b) 1,2-DvBTE (14b) 

 

 

 

Compound 14b was obtained as a colorless solid in 18 % yield (0.95 g, 4.33 mmol, Rf = 0.2). 

 

DSC (5 °C min−1): Tmelt = 88 °C : Tdec = 186 °C. 
1H NMR (400 MHz, DMSO-d6, ppm): δ = 7.79 (dd, 3JHH = 15.5 Hz, 8.7 Hz, 2H, 

N2‘−CH=CH2), 7.47 (dd, 3JHH = 15.3 Hz, 8.7 Hz, 1H, N1−CH=CH2), 6.05 (dd, 3JHH = 15.5 

Hz, 2JHH = 1.1 Hz, 1H, N2‘−CH=CHHtrans), 5.97 (dd, 3JHH = 15.3 Hz, 2JHH = 1.1 Hz, 1H, 

N1−CH=CHHtrans ), 5.47 (dd, 3 JHH = 8.7 Hz, 2JHH = 1.1 Hz, 1H, CH=CHHcis), 5.46 (dd, 3 JHH 

= 8.7 Hz, 2JHH = 1.1 Hz, 1H, CH=CHHcis), 3.47 (m, 4H, CH2−Ctetrazole). 
13C NMR (101 MHz, DMSO-d6, ppm): δ = 164.9 (Cq,tetrazole−N1‘−N2‘−CH=), 153.3 

(Cq,tetrazole−N1−CH=), 130.1 (N2’−CH=CH2), 126.5 (N1−CH=CH2), 109.9 (N1−CH=CH2), 

109.0 (N2’−CH=CH2), 22.2 (CH2−Ctetrazole), 20.5 (CH2−Ctetrazole). 

IR (ATR, cm-1): ߥ෤ = 3100 (w), 2988 (w), 1743 (w), 1647 (m), 1501 (m),, 1437 (m), 1410 (m), 

1378 (m), 1342 (w), 1291 (w), 1258 (m), 1181 (m), 1127 (m), 1087 (s), 1013 (vs), 950 (s), 

919 (m), 792 (m), 726 (w), 700 (w). 

EA (C8H10N8): calculated: C 44.03; H 4.62; N 51.35 %; found: C 44.12, H 4.59, N 51.20 %. 
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1,2-Bis(2-allyl-2H-tetrazol-5-yl)ethane (15a, 2,2-BaBTE) and 1-allyl-5-(2-(2-allyl-2H-

tetrazol-5-yl)ethyl)-1H-tetrazole (15b, 1,2-BaBTE) 

 

Allyl bromide (4.8 ml, 55.38 mmol) was dissolved in acetonitrile (20 ml) and heated to 55 °C. 

BTE (12, 4.000 g, 24.08 mmol) was dissolved in acetonitrile (20 ml) and triethylamine 

(7.7 ml, 55.38 mmol). This mixture was added into the reaction flask over 5 h using a 

dropping funnel. Stirring at 65 °C was continued for 2 days. Brine (50 ml) was added and the 

aqueous phase was extracted with ethyl acetate (3 x 100 ml). The combined organic phases 

were dried over MgSO4 and the volatiles were removed in vacuo. The crude product was 

purified using column chromatography on silica gel (eluent: n-hexane/DCM/EtOAc = 5/3/2). 

 

a) 2,2-BaBTE (15a) 

 

 

 

Compound 15a was obtained as a yellowish liquid in 28 % yield (1.71 mg, 6.94 mmol, Rf = 

0.4). 

 

DSC (5 °C min−1): Tdec = 225 °C. 
1H NMR (400 MHz, DMSO-d6, ppm): δ = 6.04 (ddt, 3JHH = 17.2, 10.1, 5.9 Hz, 2H, 

−CH=CH2), 5.29 (ddt, 4JHH = 1.3 Hz, 3JHH = 10.1 Hz, 2JHH = 1.2 Hz, 2H, CH=CHHcis), 5.28 

(ddd, 4JHH = 1.6, 1.3 Hz, 3JHH = 5.9 Hz, 4H, CH2−N), 5.20 (ddt, 4JHH = 1.6 Hz, 3JHH = 17.2 

Hz, 2JHH = 1.2 Hz, 2H, CH=CHHtrans), 3.33 (s, 4H, CH2-Cq,tetrazole). 
13C NMR (101 MHz, DMSO-d6, ppm): δ = 165.2 (Cq,tetrazole), 131.4 (−CH=CH2), 120.0 

(CH=CH2), 55.0 (CH2−N), 23.6 (CH2-Cq,tetrazole). 

IR (ATR, cm-1): ߥ෤ = 3090 (w), 2934 (w), 1730 (m), 1648 (w), 1495 (s), 1424 (m), 1400 (m), 

1375 (w), 1336 (m), 1292 (w), 1260 (w), 1203 (m), 1174 (m), 1077 (m), 1028 (m), 989 (s), 

936 (s), 921 (s), 795 (s), 710 (w), 673 (w). 

EA (C10H14N8): calculated: C 48.77, H 5.73, N 45.50 %; found: C 48.46, H 5.44, N 45.13 %. 

HRMS (ESI+): m/z calculated [M+H]+: 247.1414, found: 247.1412.  



Energetic	Polymers	Based	on	Polymers	Based	on	Epoxides	
	

 
 

128 

b) 1,2-BaBTE (15b) 

 

 

 

Compound 15b was obtained as a yellowish liquid in 15 % yield (0.89 g, 3.71 mmol, Rf = 

0.2). 

 

DSC (5 °C min−1): Tdec = 230 °C. 
1H NMR (400 MHz, DMSO-d6, ppm): δ = 6.06 (m, 1H, N2‘−CH2−CH=CH2), 6.03 (m, 1H, 

N1−CH2−CH=CH2), 5.31 (m, 1H, N2‘−CH2−CH=CHHcis), 5.30 (m, 2H, N2‘−CH2), 5.28 (m, 

1H, N1−CH2−CH=CHHcis), 5.24 (m, 1H, N2‘−CH2−CH=CHHtrans), 5.11. (m, 2H, N1−CH2), 

5.10 (m, 1H, N1−CH2−CH=CHHtrans), 3.41 (m, 2H, CH2−Cq,tetrazole), 3.39 (m, 2H, 

CH2−Cq,tetrazole). 
13C NMR (101 MHz, DMSO-d6, ppm): δ = 165.0 (Cq,tetrazole−N1‘−N2‘−CH2), 154.6 

(Cq,tetrazole−N1−CH2), 131.8 (N1−CH2−CH=), 131.3 (N2‘−CH2−CH=), 120.2 

(N2‘−CH2−CH=CH2), 119.1 (N1−CH2−CH=CH2), 55.1 (N2‘−CH2−), 49.1 (N1−CH2−), 22.7 

(CH2−Cq,tetrazole), 21.5 (CH2−Cq,tetrazole). 

IR (ATR, cm-1): ߥ෤ = 3089 (w), 2940 (w), 1647 (w), 1522 (m), 1498 (s), 1459 (m), 1420 (s), 

1336 (m), 1292 (w), 1249 (m), 1199 (w), 1172 (w), 1177 (w), 1083 (m), 1030 (m), 989 (vs), 

924 (vs), 849 (m), 791 (s), 703 (w), 670 (w). 

EA (C10H14N8): calculated: C 48.77, H 5.73, N 45.50 %; found: C, 48.75; H, 5.70; N, 

44.73 %. 

HRMS (ESI+): m/z calculated [M+H]+: 247.1414, found: 247.1412. 
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3,3’-(Ethane-1,2-diylbis(2H-tetrazol-5,2-diyl)) bis(propane-1,2-diol) (16, BTE-4OH) 

 

 

 

BTE (12, 1.00 g, 6.0 mmol) and NaOH (0.48 g, 12.0 mmol) were dissolved in H2O (20 mL) 

and 3-MCPD (1.33 g, 12.0 mmol) was added dropwise within one hour. The reaction mixture 

was stirred for 18 h at 100 °C. After cooling to room temperature, the solution was acidified 

(pH 6) using aqueous HCl. The solvent was then removed under reduced pressure and hot 

ethanol (20 mL) was added to the remaining solution which was then cooled for 18 h to 7 °C. 

The precipitate was filtered off and the solvent was removed under reduced pressure. After 

drying in vacuo 1.80 g (5.72 mmol, 95 %) of 16 were obtained as highly viscous, colorless 

oil. 

 

IR (thin film, ATR, cm−1): ߥ෤ = 3278 (m), 2929 (m), 2878 (m), 1649 (w), 1523 (w), 1498 (w), 

1427 (m), 1406 (m), 1365 (w), 1328 (w), 1255 (w), 1203 (w), 1077 (m), 1036 (vs), 927 (w), 

873 (w), 788 (w), 746 (w), 698 (w), 629 (w), 561 (w). 

HRMS (ESI+): m/z calculated [M+H]+: 315.1524, found: 315.1524. 

EA (C10H18N8O4): calculated: C 38.21, H 5.77, N 35.65 %; found: C 33.94, H 6.23, N 

27.91 %.  
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2-Allyl-5-(2-(2-(oxiran-2-yl methyl)-2H-tetrazol-5-yl)ethyl)-2H-tetrazole (17) 

 

 

 

a) With oxone 

DiallylBTE (15a, 200 mg, 0.813 mmol) was dissolved in acetone (30 ml) and water (18 ml). 

Sodium bicarbonate (2.047 g, 24.38 mmol) was added and the mixture was cooled to 0 °C. 

Oxone (1.998 g, 6.501 mmol) was added in small portions while stirring (1 h, 0 °C). The 

mixture was allowed to warm to room temperature while stirring was continued overnight. 

The precipitate was filtered off. Brine was added to the filtrate followed by extraction with 

ethyl acetate (3 x 100 ml). The combined organic phases were dried over MgSO4 and the 

volatiles were removed in vacuo. Column chromatography on silica gel (eluent: 

iso-hexane/DCM/EtOAc = 5/2/3) gave 17 in negligible yield.  

 
1H NMR (400 MHz, DMSO-d6, ppm): δ = 6.04 (ddt, 3JHH = 17.1, 10.2, 6.0 Hz, 1H, 

−CH=CH2), 5.30 (ddt, 4JHH = 1.2 Hz, 3JHH = 10.2 Hz, 2JHH = 1.3 Hz, 1H, CH=CHHcis), 5.28 

(ddd, 4JHH = 1.5, 1.2 Hz, 3JHH = 6.0 Hz, 2H, N−CH2−CH=), 5.20 (ddt, 4JHH = 1.5 Hz, 3JHH = 

17.1 Hz, 2JHH = 1.3 Hz, 1H, CH=CHHtrans), 5.03 (dd, 3JHH = 3.1 Hz, 2JHH = 14.6 Hz, 1H, 

CHH’−CHepoxide), 4.62 (dd, 3JHH = 6.8 Hz, 2JHH = 14.6 Hz, 1H, CHH’−CHepoxide), 3.44 (dddd, 
3JHH = 6.8, 4.2, 3.1, 2.5 Hz, 1H, −CH−O), 3.34 (s, 4H, CH2−Cq,tetrazole), 2.86 (dd, 3JHH = 

4.2 Hz, 2JHH = 5.0 Hz, 1H, CHH’−O), 2.67 (dd, 3JHH = 2.5 Hz, 2JHH = 5.0 Hz, 1H, CHH’−O). 
13C NMR (101 MHz, DMSO-d6, ppm): δ = 164.8 (Cq,tetrazole), 164.7 (Cq,tetrazole), 131.0 

(−CH=CH2), 119.7 (CH=CH2), 54.6 (CH2−N), 54.5 (CH2−N), ), 49.0 (CH−O), 44.9 

(CH2−O), 23.1 (CH2-Cq,tetrazole), 23.1 (CH2-Cq,tetrazole). 

HRMS (ESI+): m/z calculated [M+H]+: 263.1363, found: 263.1361. 
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b) With mCPBA 

DiallylBTE (15a, 150 mg, 0.609 mmol) was dissolved in dichloromethane (10 ml). The 

solution was cooled to 0 °C. 3-chloroperbenzoic acid (70 %, 600 mg, 2.438 mmol) was added 

in one portion and stirring was continued for 2 h. The mixture was then allowed to warm to 

room temperature and stirring was continued for further 3 d. A 10 % aqueous solution of 

sodium thiosulfate was added, followed by extraction with ethyl acetate (3 x 100 ml). The 

combined organic phases were dried over MgSO4 and the volatiles were removed in vacuo. 

Column chromatography on silica gel (eluent: iso-hexane/dichloromethane/ethyl acetate = 

5/2/3) gave 0.1 g (0.38 mmol, 62 %) of 17 as yellowish oil. 

 
1H NMR (400 MHz, DMSO-d6, ppm): δ = 6.04 (ddt, 3JHH = 17.1, 10.3, 5.9 Hz, 1H, 

−CH=CH2), 5.30 (ddt, 4JHH = 1.3 Hz, 3JHH = 10.3 Hz, 2JHH = 1.2 Hz, 1H, CH=CHHcis), 5.27 

(ddd, 4JHH = 1.6, 1.3 Hz, 3JHH = 5.9 Hz, 2H, N−CH2−CH=), 5.20 (ddt, 4JHH = 1.6 Hz, 3JHH = 

17.1 Hz, 2JHH = 1.2 Hz, 1H, CH=CHHtrans), 5.02 (dd, 3JHH = 3.2 Hz, 2JHH = 14.7 Hz, 1H, 

CHH’−CHepoxide), 4.62 (dd, 3JHH = 6.8 Hz, 2JHH = 14.7 Hz, 1H, CHH’−CHepoxide), 3.44 (dddd, 
3JHH = 6.8, 4.1, 3.2, 2.5 Hz, 1H, −CH−O), 3.33 (s, 4H, CH2−Cq,tetrazole), 2.86 (dd, 3JHH = 4.1 

Hz, 2JHH = 5.0 Hz, 1H, CHH’−O), 2.67 (dd, 3JHH = 2.5 Hz, 2JHH = 5.0 Hz, 1H, CHH’−O).  
13C NMR (101 MHz, DMSO-d6, ppm): δ = 164.8 (Cq,tetrazole), 164.7 (Cq,tetrazole), 131.0 

(−CH=CH2), 119.7 (CH=CH2), 54.6 (CH2−N), 54.5 (CH2−N), ), 49.0 (CH−O), 44.9 

(CH2−O), 23.1 (CH2-Cq,tetrazole), 23.1 (CH2-Cq,tetrazole). 

HRMS (ESI+): m/z calculated [M+H]+: 263.1363, found: 263.1361. 
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6. Energetic Plasticizers 

 

Abstract: Different carboxylic acid derivatives of 2,2-dinitropropane-1,3-diol (DNPD), 2,2-

bis(azidomethyl)propane-1,3-diol (BAMP) and 1,2-bis(hydroxyethyl tetrazol-5-yl)ethane 

(BTEOH) were synthesized in this study in order to investigate their suitability as energetic 

plasticizers. The syntheses were carried out using the acyl chlorides of acetic, propionic and 

butyric acid. The obtained products were characterized by elemental analysis, nuclear 

magnetic resonance (1H, 13C, 14N NMR) and vibrational spectroscopy (IR). The energetic 

properties of the synthesized compounds were calculated on the basis of the computed heats 

of formation at the CBS-4M level of theory using the EXPLO5 version 6.02 computer code. 

Investigations of physical stabilities were carried out using BAM drop hammer and friction 

tester. Low and high temperature behavior was determined by differential scanning 

calorimetry (DSC). The energetic and physical properties of the synthesized compounds were 

compared to the literature known energetic plasticizers N-butyl nitratoethylnitramine 

(BuNENA) and diethylene glycol bis(azidoacetate) ester (DEGBAA). For analyzing the 

plasticizing abilities, mixtures of glycidyl azide polymer (GAP) and poly(3-nitratomethyl-3-

methyloxetan) (polyNIMMO) were prepared with two propionyl based compounds in 

different ratios and investigated with respect to their glass transition temperatures and 

viscosity. Both compounds showed plasticizing effects in the range of BuNENA. 
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6.1 Introduction 

 

The use of plasticizers in modern explosive and propellant formulations is essential due to the 

improvement of performance parameters as well as safety and mechanical conditions. When 

added, plasticizers should mainly influence thermal stability, glass transition temperature and 

processing of such formulations in a positive way.1 

Established non-energetic plasticizers are, for example organic phthalates, like dioctyl 

phthalate (DOP) and esters of adipic acid, like dioctyl adipate (DOA) which have the 

disadvantage of reducing the energy output of an explosive formulation, when used as 

plasticizing additive.2 3 

A broad spectrum of energetic plasticizers for propelling systems and smokeless powders 

provide organic compounds containing nitro groups4, nitrate esters4, or nitratoethyl nitramines 

(NENAs)5. Another interesting substance class within this field are compounds with a 

geminal dinitromethylene unit. To date only a few investigations concerning 2,2-

dinitropropane-1,3-diyl compounds and their suitability as energetic plasticizers are 

known.6 7 8 

Another substance class, which gained more attention in the field of energetic plasticizers, are 

organic azido compounds.9 10 11 Besides their good energetic properties, like high heats of 

formation and minimum smoke generation, azido plasticizers generally show good mixing 

compatibility with established energetic binders, like GAP, polyNIMMO.9 10 

A further substance class which provides favourable properties, are compounds based on 

tetrazoles. In fact, tetrazoles are investigated for application in every subfield of energetic 

materials, primary explosives12, secondary explosives13, propellants14 as well as 

pyrotechnics15, due to their high nitrogen content (up to >80 %), good thermal stability and 

their energetic character. 

Main demands for the optimal energetic plasticizer are a good or at least moderate energetic 

content, low glass transition temperature, low viscosity, absence of volatility, high oxygen 

balance and high stability towards thermal and physical stimuli.1 

Herein we report the synthesis and characterization of esters with varying carbon chain 

lengths on the basis of the three above mentioned energetic substance classes. On the one 

hand, the geminal dinitromethylene class on the basis of the 2,2-dinitropropane-1,3-diyl unit. 

Only few of these compounds are known in today’s literature in the research field of energetic 

plasticizers. Furthermore, they are interesting due to their increased oxygen content. On the 

other hand, the 2,2-bis(azidomethyl)propane-1,3-diyl unit, which should bring along all the 
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already mentioned advantages of organic azides for energetic plasticizers. As representative 

for the third substance class, the tetrazoles, compounds containing a 1,2-bis(tetrazolo)ethane 

fragment were chosen. 

As references for the synthesized compounds N-butyl-2-nitratoethylnitramine (BuNENA), in 

case of the dinitro compounds, and diethylene glycol bis(azidoacetate) ester (DEGBAA)10, in 

case of the azido compounds, were chosen (Figure 6.1). 

 

 

 

 

Figure 6.1. Molecular structures of BuNENA and DEGBAA. 

 

 

6.2 Results and Discussion 

6.2.1 Synthesis 

On the basis of 2,2-bis(azidomethyl)propane-1,3-diol (BAMP, 1), 2,2-dinitropropane-1,3-diol 

(DNPD, 2) and 1,2-bis(hydroxyethyl tetrazole-5-yl)ethane (BTEOH, 3), which are depicted in 

Figure 6.2, seven different carboxyl derivatives were synthesized. BAMP16, DNPD17 and 

BTHEOH18 were synthesized according to literature known procedures. The following 

reaction with acyl chlorides of different carbon chain lengths in their corresponding 

carboxylic anhydrides (as solvent) at room temperature gave the desired esters 1-7 (Scheme 

7.1). 

 

 

 

Figure 6.2 Used diols for the ester syntheses. 
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Scheme 6.1.  Synthesis of the BAMP, DNPD and BTEOH based esters 4-10 using different 

acyl chlorides. 

 

Compounds 4 and 7 have already been mentioned in literature, but neither in that context nor 

according to that method.19 20 The synthesized products were colorless to yellowish liquids (4-

8) or waxy solids (9, 10). Compounds 4, 5, 7 and 8 were obtained in good yields (82-76 %). 

Compounds 6, 9 and 10 could only be obtained in low yields with 23-14 %. 

 

 

6.2.2 Spectroscopic Analysis  

 

The synthesized compounds 4-10 were analyzed using 1H, 13C and 14N NMR spectroscopy in 

DMSO-d6. The 1H NMR spectra of the compounds show the expected chemical shifts and 

coupling patterns (Figures 6.3-6.5). The protons of the methylene groups belonging to the 

respective diol fragment (−CH2−R, with R = -O, -N3, -Ntetrazole or -Ctetrazole) are not affected by 

the carbon chain elongation of R’. They show constant values for the corresponding diol 

derivatives, with 5.13 ppm (CH2−O) for 7 and 8 (Figure 6.4), 3.98 and 3.48 ppm (CH2−O and 

CH2−N3) for 4-6 (Figure 6.3) or 4.88, 4.46 and 3.30 ppm (−CH2−O, -CH2−Ntetrazole, 

CH2−Ctetrazole) for 9 and 10 (Figure 6.5). 
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Figure 6.3 1H NMR spectra of the BAMP based esters AcBAMP (4), ProBAMP (5) and 

ButBAMP (6). 
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Figure 6.4 1H NMR spectra of the DNPD based esters AcDNPD (7) and ProDNPD (8).  
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Figure 6.5 1H NMR spectra of the BTEOH based esters BTEOAc (9) and BTEOPro (10). 

 

The 13C NMR spectra of 4-10 confirm the assumed structure from the 1H NMR results. The 

chain elongation of R’ is proven by the occurrence of the expected signals for the 

corresponding aliphatic groups. The chemical shifts of the signals of the carbon atoms of the 

respective diol fragment remain constant (Figure 6.6-6.8). The signals of the carboxyl 

carbons occur in the range of 173.2−168.9 ppm, the inner quaternary carbon atoms show 

signals at 164.8 ppm (9 and 10) (Figure 6.8), 115.1 ppm (7 and 8) (Figure 6.7) and 42.7 ppm 

(4-6) (Figure 6.6). The signal for the respective CH2−O fragment occurs in the range of 62.5-

60.6 ppm for all compounds. The signals for the other methylene carbons can be found either 

at 51.2 ppm (CH2−N3, 4-6) or at 51.5 and 23.1 ppm (CH2−Ntetrazole and CH2−Ctetrazole, 9 and 

10). 
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Figure 6.6 13C NMR spectra of the BAMP based esters AcBAMP (4), ProBAMP (5) and 

ButBAMP (6).  
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Figure 6.7 13C NMR spectra of the DNPD based esters AcDNPD (7) and ProDNPD (8). 
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Figure 6.8 13C NMR spectra of the BTEOH based esters BTEOAc (9) and BTEOPro (10).  

 

The 1H and 13C NMR spectra of the BTEOH based compounds 9 and 10 explain the low 

yields of these compounds, because obviously only the 2,2’-N-substituted isomers were 

obtained after the purification step (cf. 1H and 13C NMR spectra of 1,2’- and 2,2’-N-

bistetrazolo isomers in Chapter 5.3.2.1). 

The 14N NMR spectra of 4-6 show the expected signals for the azido function.21 A sharp 

signal for the Nβ (−133−134 ppm), a broader signal for the Nᵞ (−175−180 ppm) and a very 

broad signal for Nα (−301−342 ppm) are visible, too. 

The signal of the 14N NMR spectra of 7 and 8 appears at −16 ppm, which can be assigned to 

the NO2 groups.21 

For further characterization vibrational (IR) spectra were recorded. A comparison of the 

measured spectra makes obvious that with increasing carbon chain length the signal intensity 

of the CH2 valence vibration is also increasing (A) (Figure 6.9).22 The existence of the 

carboxyl groups is proven in all cases by the signals appearing at 1760−1730 cm−1 (C=O, B) 

and 1215−1150 cm−1 (C-O, C).22 Furthermore, the presence of the energetic functional groups 

is also proven by the signals either at 2100 cm−1 (D), representing the azido groups of 4-623 or 
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at 1570 cm−1 (E), representing the asymmetric valence vibration of the nitro groups of 7 and 

822. 
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Figure 6.9 IR spectra of AcBAMP (4), ProBAMP (5), ButBAMP (6), AcDNPD (7), 

ProDNPD (8), BTEOAc (9) and BTEOPro (10). 
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6.2.3 Thermodynamic Properties 

6.2.3.1 Thermal Stability 

 

The behavior at high temperatures was determined via differential scanning calorimetry with 

a heating rate of 5 °C min−1. The obtained plots are depicted in Figure 6.10. Due to their 

volatility, compounds 4-6 had to be measured in closed Al-pans, otherwise no results were 

obtained. As can be seen, the obtained plots of the DNPD based compounds 7 and 8 show a 

sharp drop of the DSC curve around the decomposition point, which indicates the opening of 

the Al-pan, because of a too high inner pressure. This necessitated a remeasurement of the 

decomposition temperatures of compounds 7 and 8 in high pressure Au-pans (F20). The 

obtained plots of the high pressure DSC measurements are depicted in Figure 6.11. 
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Figure 6.10 DSC plots of decompositon temperatures of 4-10. 
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Figure 6.11 Obtained plots of the high pressure DSC measurements of 7 and 8. 

 

All compounds possess good thermal stabilities at which the DNPD based esters are stable up 

to higher temperatures, with values around 240 °C (Figure 6.11). The azido based compounds 

4-6 show decomposition temperatures in the range of 230 °C. Whereas the decomposition 

temperatures of the tetrazole based compounds 9 and 10 diverge about 10 °C from each other, 

with 232 °C and 240 °C. They also show melting points at 43 °C and 82 °C. Due to the broad 

gap between Tmelt and Tdec with 150-200 °C, 9 and 10 may be of interest for further melt-

castable applications. 

In order to investigate the volatility behavior of the liquid compounds 4-8 thermogravimetric 

analysis (TGA) were carried out with ProBAMP (5) and ProDNPD (8) as example 

compounds (Figure 6.12). As reference TGA was also measured with BuNENA. The 

obtained curves illustrate, why no results were obtained durring the DSC measurements with 

perforated Al-pans. The compounds turned out to be volatile at lower temperatures.  
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Figure 6.12 TGA plots of 2 and 5 compared to BuNENA. 

 

ProDNPD (8) shows a beginning weight loss around 70 °C, which is about 10 °C lower than 

the value of BuNENA (around 80 °C), whereas ProBAMP (5) starts to volatilize at an about 

30 °C higher temperature (~ 100 °C). The complete weight loss of all compounds is 

accomplished around 130 °C (ProDNPD), 140 °C (BuNENA) and 160 °C (ProBAMP). 
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6.2.3.2 Low Temperature Behavior 

 

The glass transition temperatures of 4-8 were determined via differential scanning calorimetry 

(DSC) in a temperature range from −120 °C to +10 °C with a heating rate of 5 °C min−1. 

Compounds 4-8 show excellent values, with glass transition temperatures of −70 °C and 

below (Figure 6.13). As expected, the glass transition temperature drops with the elongation 

of the carbon chain. 

 

 

 

Figure 6.13  DSC plots of glass transition temperatures of 4-8. 

 

The DNPD based esters possess good glass transition temperatures with values of −70 °C 

(AcDNPD, 7) and −79 °C (ProDNPD, 8). Whereas the BAMP based derivatives show even 

lower values for Tg, starting with −78 °C (AcBAMP, 4), over −86 °C (ProBAMP, 5), down to 

−94 °C in case of ButBAMP (36). 
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6.2.4 Sensitivities and Energetic Properties 

 

The impact and friction sensitivities were explored by BAM methods.24 All compounds were 

tested as insensitive towards impact (>40 J) and friction (>360 N). 

For calculating the energetic properties of compounds 4-10 quantum chemical calculations 

had to be run. Initial structure optimizations were performed at the B3LYP/cc-pVDZ level of 

theory using the Gaussian 09 revision A.02 program package25. Heats of formation of 

compounds 4-10 were calculated with the atomization method (Equation 6.1) using CBS-4M 

enthalpies (at room temperature) given in Table 6.1.26 27 

 

∆fH°(g, M, 298) = H(molecule, 298) − ΣH°(atoms, 298) + Σ∆fH°(atoms, 298)  (6.1) 

 

Table 6.1. CBS-4M electronic enthalpies for atoms C, H, N, O and their literature values for 

atomic ΔH°f
298. 

 

 −H298
CBS-4M / a.u. NIST28 / kJ mol−1

H 0.500991 218.2 

C 37.786156 717.2 

N 54.522462 473.1 

O 74.991202 249.5 

 

The enthalpies (H) were calculated using the complete basis set (CBS) method of Petersson 

and coworkers in order to obtain very accurate energies. The CBS models use the known 

asymptotic convergence of pair natural orbital expressions to extrapolate from calculations 

using a finite basis set to the estimated complete basis set limit. CBS-4 begins with a HF/3-

21G(d) structures optimization, the zero point energy is computed at the same level. It then 

uses a large basis set SCF calculation as a base energy, and a MP2/6-31+G calculation with a 

CBS extrapolation to correct the energy through second order. A MP4(SDQ)/6-31+ (d,p) 

calculation is used to approximate higher order contributions. In this study we applied the 

modified CBS-4M method (M referring to the use of Minimal Population localization) which 

is a reparametrized version of the original CBS-4 method and also includes some additional 

empirical corrections.26 

In order to be able to convert the standard enthalpies of formation ΔfH°(g) for the gas-phase 
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into values for the condensed and solid phase, the enthalpy of vaporization ΔHvap. (for liquids) 

and ΔHsub. (for solids) is required additionally. These values can be estimated using the 

TROUTON’s rule.29 With the calculated enthalpy of vaporization the gas-phase enthalpy of 

formation can be converted into the corresponding condensed-phase enthalpy of formation. 

Table 6.2 shows the results of the calculations. 

 

Table 6.2. Calculation results. 

 

 −H298
 
a / a.u. −Δf H (g, M) b /kJ mol−1 Δf Hvap/sub 

c /kJ mol−1 

4 979.342825 196.8 45.28 

5 1057.817702 250.8 45.01 

6 1136.292346 304.1 44.92 

7 982.662516 825.8 46.45 

8 1061.138526 882.7 46.27 

9 1205.290540 273.7 66.96 

10 1283.765986 329.1 59.44 
a CBS-4M electronic enthalpy; b gas phase enthalpy of formation; c enthalpy of vaporization. 

 

Detonation parameters were calculated using the EXPLO5 V6.02 computer code30 with the 

CBS-4M calculated enthalpies of formation. The program is based on the steady-state model 

of equilibrium and uses the Becker-Kistiakowsky-Wilson equation of state (BKW EOS.) for 

gaseous detonation products and the Murnaghan EOS for both solid and liquid products. It is 

designed to enable the calculation of detonation parameters at the Chapman-Jouguet point 

(C-J point). The C-J point was found from the Hugoniot curve of the system by its first 

derivative.30 The calculations were performed using the densities obtained by pycnometric 

measurements at room temperature. 

The calculated detonation values, energetic properties and decomposition as well as glass 

transition points of compounds 4-10 are given in Table 6.3 and were compared to the 

literature known plasticizers DEGBAA (for azido plasticizer) and BuNENA (for gem-nitro 

plasticizer), respectively.  

Compared to DEGBAA all three BAMP based esters show overall better physical and 

energetic properties. They possess a higher detonation pressure pCJ (79 kbar (4), 72 kbar (5), 

62 kbar (6) versus 46 kbar (DEGBAA)) and velocity Vdet (5420 m s−1 (4), 5292 m s−1 (5), 

5048 m s−1 (6) versus 4363 m s−1 (DEGBAA)). Furthermore they are less sensitive towards 
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friction and impact, are stable up to higher temperatures and have a significantly lower glass 

transition temperature. All these values emphasize 4-6 as potentiel compounds for the use as 

energetic azido plasticizers. 

The DNPD based esters show lower values regarding Vdet (5683 m s−1 (7), 5111 m s−1 (8) 

versus 6275 m s−1 (BuNENA)) and specific impulse Is (181 s (7), 177 s (8) versus 216 s 

(BuNENA)) compared to BuNENA. However, since 7 and 8 are less sensitive towards 

friction (FS (BuNENA) 108 N) and more stable up to much higher temperatures, they possess 

a clear advantage in terms of safety. Compared to the BAMP based compounds their 

detonation values lie within the same range, which marks them as suitable energetic 

plasticizers as well. 

The bistetrazolo compounds 9 and 10 show the highest detonation velocities of the 

synthesized compounds, with 6750 m s−1 and 6326 m s−1, a detonation pressure in the range 

of BuNENA, with 111 kbar (10) or above with 133 kbar (9) but the lowest specific impulse, 

with values around 160 s. 

Besides this, all compounds show lower explosion temperatures TE compared to the reference 

compounds. This can be seen as an advantage, when used as plasticizing additives in 

formulations for propelling charges, since it diminishes the erosion of the gun barrel. 
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Table 6.3. Sensitivities and detonation parameters of 4-10 compared to DEGBAA and BuNENA. 
 

4 5 6 DEGBAAp 7 8 BuNENAq 9 10 

Formula C9H14N6O4 C11H18N6O4 C13H22N6O4 C8H12N6O4 C7H10N2O8 C9H14N2O8 C6H13N3O5 C12H18N8O4 C14H22N8O4 

FW [g mol−1] 270.25 298.30 326.17 256.22 250.04 278.22 207.18 338.32 366.38 

IS [J]a >40 >40 >40 >10 >40 >40 40r >40 >40 

FS [N]b >360 >360 >360 160 >360 >360 108r >360 >360 

N [%]c 31.10 28.17 25.75 32.80 11.20 10.07 20.28 33.12 30.58 

 [%]d −124 −145 −162 −112 −70 −98 −104 −137 −153 

Tdec [°C]e 230 227 226 215 241 243 165 232 240 

Tg [°C]f −80 −86 −95 −63 −70 −78 −84s - - 

ρ [g cm−3]g 1.21 1.16 1.09 1.00 1.33 1.22 1.21 1.51t 1.40t

−∆f Hm° [kJ mol−1]h 242 296 349 329 872 926 167 340 389 

−∆f U ° [kJ kg−1]i 785 876 948 1178 3387 3222 680 895 947 

Explo5 V6.02  values          

−∆E U° [kJ kg−1]j 3018 2795 22615 2639 3420 3267 5044 2381 2259 

TE [K]k 2123 1930 1795 2038 2528 2317 2961 1738 1649 

pCJ [kbar]l 79 72 62 46 100 75 117 133 111 

Vdet [m s−1]m 5420 5292 5048 4363 5683 5111 6275 6750 6326 

Gas vol. [L kg−1]n 793 799 807 806 772 786 914 740 749 

Is [s]o 175 171 167 169 181 177 216 161 159 
a BAM drop hammer (1 of 6); b BAM friction tester (1 of 6); c

 nitrogen content; d oxygen content; e temperature of decomposition by DSC (onset values); f glass transition temperature (TgMid), 
g 

derived from pycnometer measurements; h molar enthalpy of formation; i energy of formation; j energy of explosion; k explosion temperature; l detonation pressure; m detonation velocity ; n assuming 
only gaseous products; o specific impulse (isobaric combustion, chamber pressure 70 bar, equilibrium expansion); p values obtained from reference10, q values obtained from reference 1; r values 
obtained from reference31; s value obtained from reference6, t estimated from structure determination. 
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6.2.5 Applications 

 

In order to study the plasticizing effects, propionyl based ProBAMP (5) and ProDNPD (8) 

were chosen as example compounds. The esters 5 and 8 were mixed in ratios of 25, 35 and 

50 wt-% with the uncured energetic polymers glycidyl azide polymer (GAP) and poly(3-

nitratomethyl-3-methyloxetan) (polyNIMMO). For a better comparison of the plasticizing 

effect, mixtures of GAP and polyNIMMO in the same ratio were also prepared with 

BuNENA. To determine their plasticizing influence, values of Tg of the neat polymers were 

compared to the values of the mixtures (Table 6.4).  

 

Table 6.4 Glass transition temperatures of neat 5, 8, GAP and polyNIMMO and their 
corresponding mixtures (ratios). 
 

Substance Tg (neat) [°C] Tg (0.25) [°C] Tg (0.35) [°C] Tg (0.5) [°C] 

GAP −49 - - - 

ProBAMP (5) −86 −60 −64 −71 

ProDNPD(8) −78 −59 −61 −65 

BuNENA  −84 a  −63 −67 −72 

PolyNIMMO −32 - - - 

ProBAMP (5) −86 −53 −55 −69 

ProDNPD(8) −78 −54 −55 −66 

BuNENA  −84 a −63 −64 −75 
          a Value obtained from reference6. 

 

In case of the polyNIMMO mixtures, both compounds decrease the glass transition 

temperature by a similar value. Whereas, in case of GAP, 5 shows better decreasing effects on 

Tg than 8. The mixtures of 5 decrease the glass transition temperature by values in the range 

of the corresponding BuNENA mixtures. 

Furthermore, the ability of 5 and 8 to lower the viscosity of polyNIMMO and GAP was 

investigated considering the respective 50/50 mixtures at 20 °C and 50 °C (Table 6.5). The 

viscosity of the mixtures was independent from the shear rate. 
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Table 6.5. Viscosity of 50/50 mixtures of polyNIMMO and GAP with 5 and 8 at 20 and 
50 °C. 
 

Polymer Plasticizer Viscosity a [mPa s]

  20 °C 50 °C 

GAP - 5,550 628 

 ProBAMP (5) 269 62 

 ProDNPD (8) 289 62 

 BuNENA 281 60 

PolyNIMMO - 270,000 11,900 

 ProBAMP (5) 915 163 

 ProDNPD (8) 627 116 

 BuNENA 662 126 
    a Values obtained at a shear rate of 10 s−1. 

 

In case of the GAP mixtures, the performances of both compounds (5 and 8) in lowering the 

viscosity are very similar to the effectiveness of BuNENA, which is considered to be very 

efficient in this respect. For the polyNIMMO mixtures, ProDNPD (8) and BuNENA have 

comparable effects in lowering the viscosity. They are both more efficient than ProBAMP (5) 

in that case. 

 

 

6.3 Conclusion 

 

In this chapter, the one-step syntheses and characterizations of seven different carboxylic 

esters on the basis of 2,2-bis(azidomethyl)propane-1,3-diol, 2,2-dinitropropane-1,3-diol and 

1,2-bis(hydroxyethyl tetrazole-5-yl)ethane using acetyl, propionyl and butyryl chloride were 

described. The obtained products were liquids or waxy solids. The successful synthesis of the 

compounds was proven by 1H, 13C and 14N NMR, vibrational spectroscopy (IR) and EA. 

Furthermore, the compounds were investigated regarding their sensitivities towards impact 

and friction, as well as their thermal stabilities and low temperature behavior and volatility. 

The compounds turned out to be insensitive towards friction and impact. The liquid 

compounds possess relatively high decomposition temperatures with approximately 230 °C 

and 240 °C and very low glass transition temperatures between −70 °C and −95 °C, but are 

volatile at temperatures around 70-100 °C. The waxy, solid compounds based on 
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bistetrazoloethane show a broad gap of around 200 °C between their melting and 

decomposition temperature (~240 °C), which makes them interesting compounds for melt-

castable applications. Determination of the detonation parameters of the synthesized 

compounds was performed by the EXPLO5 (Version 6.02) computer code using calculated 

enthalpies of formation (CBS-4M) and densities determined via pycnometric measurements 

The compounds show moderate detonation values in the region of Vdet = 6750-5048 m s−1 and 

pCJ = 62-133 kbar. 

For estimating the plasticizing effect, the influence on the glass transition temperature and 

viscosity of polyNIMMO and GAP was investigated by measuring mixtures of those with the 

propionyl based liquid esters in different ratios. Both compounds reduce the glass transition 

temperature of the polymers roughly by the same value. Furthermore both compounds were 

also efficient in lowering the viscosity of polyNIMMO and GAP. All these properties mark 

the synthesized esters as promising energetic plasticizers for the use in energetic formulations. 

 

 

6.4 Experimental Part 

6.4.1 General Procedure (GP1) 

 

The respective diol (3-5 mmol) was dissolved in the acid anhydride (15-25 mL) and cooled to 

0 °C. The corresponding acyl chloride (4 equivalents) was added dropwise and the mixture 

was allowed to warm to room temperature while stirring overnight. The reaction mixture was 

cooled to 0 °C, a saturated aqueous solution of NaHCO3 (50-70 mL) was added in portions 

and stirred for 1 h. The solution was then extracted with EtOAc (3 x 30 mL) and the 

combined organic phases were washed again with saturated aqueous NaHCO3 (3 x 30 mL) 

and water (1 x 30 mL). The organic phase was then dried over MgSO4 and the volatiles were 

removed in vacuo. For 2, 3 and 5-7 the crude product was further purified by column 

chromatography. 
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6.4.2 2,2-Bis(azidomethyl)propane-1,3-diol Based Esters 

2,2-Bis(azidomethyl)propane-1,3-diyl diacetate (AcBAMP, 4) 

 

 

 

AcBAMP was synthesized from BAMP (1.0 g, 5.37 mmol) and acetyl chloride (1.53 mL, 

21.50 mmol) in acetic anhydride (20 mL) applying GP1. The reaction gave 1.19 g 

(4.41 mmol, 82 %) of 4 as colorless liquid. 

 

Density: ρ = 1.21 g cm−3. 

DSC (5 °C min−1): Tdec = 230 °C. 
1H NMR (400 MHz, DMSO-d6, ppm): δ = 3.97 (s, 4H, CH2−O), 3.48 (s, 4H, CH2−N3), 2.05 

(s, 6H, CH3). 
13C NMR (DMSO-d6, ppm): δ = 170.0 (C=O), 62.6 (CH2−O), 51.2 (CH2−N3), 42.6 (Cq), 20.4 

(CH3). 
14N NMR (DMSO-d6, ppm): δ = −134 (Nβ), −175 (Nγ), −342 (Nα). 

IR (ATR, cm−1): ߥ෤ = 2962 (w), 2097 (s), 1739 (s), 1452 (w), 1385 (w), 1367 (m), 1217 (s), 

1040 (s), 988 (w), 904 (m), 842 (w). 

EA (C9H14N6O4, 270.25 g mol−1): calculated: C 40.00, H 5.22, N 31.10 %; found: C 40.27, H 

4.93, N 31.06 %. 

Sensitivities: IS: 40 J; FS: > 360 N. 
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2,2-Bis(azidomethyl)propane-1,3-diyl dipropionate (ProBAMP, 5) 

 

 

 

ProBAMP was synthesized from BAMP (1.0 g, 5.37 mmol) and propionyl chloride (1.88 mL, 

21.48 mmol) in propionic anhydride (15 mL) applying GP1. After purification (n-

hexane:ethyl acetate = 8:2), 1.25 g (4,21 mmol, 78 %) of 5 were obtained as colorless liquid 

 

Density: ρ = 1.16 g cm−3. 

DSC (5 °C min−1): Tdec = 227 °C. 
1H NMR (400 MHz, DMSO-d6, ppm): δ = 3.99 (s, 4H, CH2−O) 3.48 (s, 4H, CH2−N3), 2.35 

(q, 3JHH = 7.5 Hz, 4H, CH2−CH3), 1.04 (t, 3JHH = 7.5 Hz, 6H, CH3). 
13C NMR (DMSO-d6, ppm): δ = 173.2 (C=O), 62.5 (CH2-O), 51.2 (CH2-N3), 42.8 (Cq), 26.7 

(CH2), 8.8 (CH3). 
14N NMR (DMSO-d6, ppm): δ = −133 (Nβ), −178 (Nγ), −301 (Nα). 

IR (ATR, cm−1): ߥ෤ = 2983 (w), 2945 (w), 2095 (s), 1738 (s), 1463 (m), 1424 (w), 1384 (w), 

1350 (m), 1272 (m), 1167 (s), 1083 (s), 1025 (s), 972 (w), 905 (w), 806 (m). 

EA (C11H18N6O4, 298.30 g mol−1): calculated: C 44.29, H 6.08, N 28.17 %; found: C 44.16, H 

6.01, N 28.46 %. 

Sensitivities: IS: 40 J; FS: > 360 N. 
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2,2-Bis(azidomethyl)propane-1,3-diyl dibutyrate (ButBAMP, 6) 

 

 

 

ButBAMP was synthesized from BAMP (1.0 g, 5.37 mmol) and butyryl chloride (2.22 mL, 

21.48 mmol) in butyric anhydride (25 mL) applying GP1. After purification (n-hexane:ethyl 

acetate = 8:2), 0.25 g (0.77 mmol, 14 %) of 6 were obtained as colorless liquid. 

 

Density: ρ = 1.09 g cm−3. 

DSC (5  °C min−1): Tdec = 226 °C. 
1H NMR (400 MHz, DMSO-d6, ppm): δ = 3.98 (s, 4H, CH2−O), 3.48 (s, 4H, CH2−N3), 2.31 

(t, 3JHH = 7.3 Hz, 4H, CH2−CH2), 1.55 (sextet, 3JHH = 7.3 Hz, 4H, CH2−CH3), 0.88 (t, 3JHH = 

7.3 Hz, 6H, CH3). 
13C NMR (DMSO-d6, ppm): δ = 172.4 (C=O), 62.5 (CH2−O), 51.2 (CH2−N3), 42.7 (Cq), 35.2 

(CH2) 17.8 (CH2), 13.4 (CH3). 
14N NMR (DMSO-d6, ppm): δ = −133 (Nβ), −180 (Nγ), −302 (Nα). 

IR (ATR, cm−1): ߥ෤ = 2966 (m), 2938 (w), 2877 (w), 2095 (s), 1737 (s), 1454 (m), 1418 (w), 

1386 (w), 1361 (w), 1284 (m), 1251 (s), 1165 (s), 1090 (m), 1049 (m), 1009 (w), 930 (w), 881 

(w), 751 (w). 

EA (C13H22N6O4, 326.25 g mol−1): calculated: C 47.84, H 6.79, N 25.75 %; found: C 47.99, H 

6.80, N 25.50 %. 

Sensitivities: IS: 40 J; FS: > 360 N. 
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6.4.3 2,2-Dinitropropane-1,3-diol Based Esters 

2,2-Dinitropropane-1,3-diol diacetate (AcDNPD, 7) 

 

 

 

AcDNPD was synthesized from DNPD (0.5 g, 3.01 mmol) and acetyl chloride (0.86 mL, 

12.04 mmol) in acetic anhydride (10 mL) applying GP1. The reaction gave 0.62 g 

(2.48 mmol, 82 %) of 7 as colorless liquid. 

 

Density: ρ = 1.33 g cm−3. 

DSC (5 °C min−1): Tdec = 241 °C. 
1H NMR (400 MHz, DMSO-d6, ppm): δ = 5.13 (s, 4H, CH2−O), 2.08 (s, 6H, CH3). 
13C NMR (DMSO-d6, ppm): δ = 168.9 (C=O), 115.0 (Cq), 60.7 (CH2−O), 20.1 (CH3). 
14N NMR (DMSO-d6, ppm): δ = −16 (NO2). 

IR (ATR, cm−1): ߥ෤ = 2970 (w), 1758 (s), 1572 (s), 1456 (w), 1392 (w), 1377 (m), 1321 (m), 

1198 (s), 1047 (s), 905 (w), 846 (m), 762 (w), 686 (w). 

EA (C7H10N2O8, 250.16 g mol−1): calculated: C 33.61, H 4.03, N 11.20 %; found: C 33.59, H 

3.98, N 11.69 %. 

Sensitivities: IS: 40 J; FS: > 360 N. 
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2,2-Dinitropropane-1,3-diol dipropionate (ProDNPD, 8) 

 

 

 

ProDNPD was synthesized from DNPD (0.5 g, 3.01 mmol) and propionyl chloride (1.05 mL, 

12.04 mmol) in propionic anhydride (10 mL) applying GP1. After purification (n-

hexane:acetone = 7:3), 0.64 g (2.29 mmol, 76 %) of 8 were obtained as colorless liquid. 

 

Density: ρ = 1.22 g cm−3. 

DSC (5 °C min−1): Tdec = 242 °C. 
1H NMR (400 MHz, DMSO-d6, ppm): δ = 5.14 (s, 4H, CH2−O), 2.38 (q, 3JHH = 7.5 Hz, 4H, 

CH2−CH3), 1.01 (t, 3JHH = 7.5 Hz, 6H, CH3). 
13C NMR (DMSO-d6, ppm): δ = 172.1 (C=O), 115.2 (Cq), 60.6 (CH2−O), 26.4 (CH2), 8.6 

(CH3). 
14N NMR (DMSO-d6, ppm): δ = −16 (NO2). 

IR (ATR, cm−1): ߥ෤ = 2988 (w), 2948 (w), 2890 (w), 1756 (s), 1570 (s), 1462 (m), 1422 (w), 

1391 (w), 1375 (w), 1344 (w), 1321 (m), 1270 (w), 1145 (s), 1086 (s), 1035 (m), 967 (w), 844 

(m), 806 (m), 765 (w), 684 (w). 

EA (C9H14N2O8, 278.22 g mol−1): calculated: C 38.85, H 5.07, N 10.07 %; found: C 39.07, H 

5.05, N 10.08 %. 

Sensitivities: IS: 40 J; FS: > 360 N. 
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6.4.4 1,2-Bis(hydroxyethyl tetrazol-5-yl)ethane Based Esters 

1,2-Bis(hydroxyethyl tetrazol-5-yl)ethane diacetate (BTEOAc, 9) 

 

 

 

BTEOAc was synthesized from BTEOH (1.0 g, 3.93 mmol) and acetyl chloride (1.12 mL, 

15.73 mmol) in acetic anhydride (20 mL) applying GP1. After purification (n-hexane:ethyl 

acetate = 3:7), 0.31 g (0.92 mmol, 23 %) of 9 were obtained as waxy solid. 

 

DSC (5 K min−1): Tmelt = 82 °C; Tdec = 232 °C. 
1H NMR (DMSO-d6, ppm): δ = 4.88 (t, 3JHH = 5.3 Hz, 4H, CH2-CH2−O), 4.46 (t, 3JHH = 5.3 

Hz, 4H, CH2-O), 3.31 (s, 4H, CH2-Ctetrazole), 1.93 (s, 6H, CH3). 
13C NMR (DMSO-d6, ppm): δ = 169.9 (C=O), 164.8 (Cq,tetrzole), 61.2 (CH2−O), 51.5 

(CH2−Ntetrazole), 23.1 (CH2−Ctetrazole), 20.4 (CH3). 

IR (ATR, cm−1):	ߥ෤ = 2971 (w), 2360 (w), 2337 (w), 2063 (w), 1877 (w), 1733 (s), 1696 (w), 

1658 (w), 1501 (m), 1460 (w), 1440 (m), 1426 (m), 1386 (m), 1368 (m), 1324 (w), 1225 (s), 

1194 (s), 1164 (m), 1073 (s), 1043 (s), 1029 (s), 1004 (m), 939 (s), 828 (m), 802 (m), 786 (m), 

748 (s), 696 (w), 661 (w). 

EA (C12H18N8O4, 338.32 g mol−1): calculated: C 42.60, H 5.36, N 33.12 %; found: C 42.94, H 

5.39, N 32.58 %. 

HRMS (ESI+): m/z calculated [M+H]+: 339.1524, found: 339.1525. 
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1,2-Bis(hydroxyethyl tetrazol-5-yl)ethane dipropionate (BTEOPro, 10) 

 

 

 

BTEOPro was synthesized from BTEOH (1.0 g, 3.93 mmol) and propionyl chloride 

(1.37 mL, 15.73 mmol) in propionic anhydride (15 mL) applying GP1. After purification (n-

hexane:ethyl acetate:DCM = 1.3:1.3:1), 0.25 g (0.69 mmol, 18 %) of 9 were obtained as waxy 

solid. 

 

DSC (5 K min−1): Tmelt = 43 °C; Tdec = 240 °C. 
1H NMR (DMSO-d6, ppm): δ = 4.88 (t, 3JHH = 5.5 Hz, 4H, CH2-CH2-O), 4.47 (t, 3JHH = 5.5 

Hz, 4H, CH2-O), 3.30 (s, 4H, CH2-Ctetrazole), 2.22 (q, 3JHH = 7.5 Hz, 4H, CH2-CH3), 0.94 (t, 
3JHH = 7.5 Hz, 6H, CH3). 
13C NMR (DMSO-d6, ppm): δ = 173.2 (C=O), 164.8 (Cq,tetrzole), 61.2 (CH2−O), 51.6 

(CH2−Ntetrazole), 26.6 (CH2−CH3), 23.1 (CH2−Ctetrazole), 8.8 (CH3). 

IR (ATR, cm−1): ߥ෤ = 3017 (w), 2978 (w), 2941 (w), 2881 (w), 1734 (s), 1699 (w), 1547 (w), 

1495 (m), 1458 (m), 1436 (m), 1408 (w), 1380 (m), 1359 (m), 1346 (m), 1316 (w), 1268 (w), 

1240 (m), 1167 (s), 1087 (s), 1074 (s), 1032 (s), 1013 (m), 994 (m), 897 (m), 837 (m), 810 

(m), 791 (m), 750 (m), 704 (w), 684 (w). 

EA (C14H22N8O4, 366.38 g mol−1): calculated: C 45.90, H 6.05, N 30.58 %; found: C 45.73, H 

6.06, N 29.74 %. 

HRMS (ESI+): m/z calculated [M+H]+: 367.1837, found: 367.1834. 
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7. Summary 

 

The general goal of this thesis was the synthesis and characterization of new energetic 

polymers and plasticizers based on organic azides, nitro groups and tetrazoles. Additionally, 

some other compounds containing triazoles and nitramino groups were investigated.  

The most intensively investigated topic was the synthesis and characterization of energetic 

polyurethanes (PUs). Here, several energetic diols were used for the polyaddition reactions of 

diisocyanates, varying in carbon chain length. The most promising compounds among the 

synthesized polyurethanes were based on 1,2-dinitropropane-1,3-diol (DNPD) and 1,2-

bis(azidomethyl)propane-1,3-diol (BAMP) and the diisocyanates hexamethylene diisocyanate 

(HMDI) or diisocyanate ethane (DIE). (Scheme 7.1). 

 

 

 

Scheme 7.1 Synthesis of the polyurethanes. 

 

Depending on their diol component, the obtained polymers had a honey-like liquid (BAMP) 

or an elastic to ductile solid (DNPD) character, which is favorable for the application as a 

binder. All compounds are insensitive towards friction and less sensitive towards impact. The 

decomposition temperatures of the polymers were again depending on the diol component and 

showed values around 170 °C (DNPD) or 210 °C (BAMP). The energetic performance of the 

substances are good, in the cases of the DNPD based PUs in the range or even better than the 

one of GAP (glycidyl azide polymer), one of the most promising energetic polymers. 

Whereas, the BAMP based PUs possess lower temperatures of explosion, compared to GAP. 

This can be seen as an advantage, if they are used as a binder in propelling charges, since the 

explosion temperature is directly responsible for the erosion of the gun barrel. Another 

positive feature of the synthesized polyurethanes is the presence of the carbamate moieties. If 

applied as binders in energetic formulations, the compounds are able to form hydrogen 

bridges to the energetic filler, which will lead to increased adhesion forces. 
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During the synthesis process towards the desired diols for the polyaddition reactions, 2,2-

bis(hydroxymethyl-1H-1,2,3-triazol-1-yl)methyl)propane-1,3-diol (4-ol) was prepared 

(Figure 7.1). The compound was obtained in a two-step reaction via a copper-catalyzed 

azide-alkyne cycloaddition with BAMP. Due to its tetravalent alcohol function the compound 

might represent a useful cross-linking agent for polymerization reactions. 

 

 

 

Figure 7.1 Molecular structure of 4-ol. 

 

Another successfully synthesized energetic polymer was based on the glycidyl backbone and 

introduced the nitramino group as new energetic functional group in context with that kind of 

polymer. The synthesis was carried out in four steps, applying GAP as the starting material 

(Scheme 7.2). 

 

 

 

Scheme 7.2 Synthesis of GNAP. 

 

All in all, the synthesized glycidyl nitramine polymer (GNAP) showed better energetic 

properties than the other glycidyl based energetic polymers, GAP and poly(glycidyl nitrate) 

(polyGLYN). Additionally, GNAP shows a better stability towards firction (> 360 N) and 

impact (40 J) compared to the other above mentioned energetic glycidyl polymers, which is a 

great advantage in terms of safety. Furthermore, GNAP possesses a sticky, solid character, 
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which makes the use of curing agents (required for the viscous GAP and polyGLYN) 

unnecessary. 

In the course of synthesizing energetic epoxy resins based on mono- and difunctionalized 

epoxy tetrazoles, two different constitutional isomers of divinyl (1,2-bis(2-vinyl-2H-tetrazol-

5-yl)ethane (2,2-DvBTE) (Figure 7.2), 1-vinyl-5-(2-(2-vinyl-2H-tetrazol-5-yl)ethyl)-1H-

tetrazole (1,2-DvBTE)) and bisallyl (1,2-bis(2-allyl-2H-tetrazol-5-yl)ethane (2,2-BaBTE), 1-

allyl-5-(2-(2-allyl-2H-tetrazol-5-yl)ethyl)-1H-tetrazole (1,2-BaBTE)) derivatives of 1,2-

bis(tetrazol-5-yl)ethane (BTE) could be isolated and characterized (Scheme 7.3). The 

compounds are insensitive toward impact and friction and possess moderate energetic 

properties. Moreover, they excel with their relatively high thermal stability, with values 

around 190 ° to 230 °C, and their high nitrogen content with 46 % and 51 %. Due to their 

twofold double bonds the substances are very well suited for further processing concerning 

polymerization or functionalization reactions. Unfortunately, the attempts in synthesizing the 

mono- and difunctional epoxy compounds maximally yielded traces of the desired compounds 

or the monoepoxidated molecule, in case of 2,2-BaBTE. Hence, no polymerization steps 

towards nitrogen-rich epoxy resins were carried out. 

 

 

 

Figure 7.2 Molecular structure of the 2,2’-N-substituted isomer of the divinyl derivative of 

1,2-bis(tetrazol-5-yl)ethane (2,2-DvBTE). 
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Scheme 7.3 Synthesis of the divinyl and bisallyl derivatives of BTE. 

 

The last topic focused on the investigation of energetic plasticizers based on BAMP, DNPD 

and 1,2-bis(hydroxyethyl tetrazol-5-yl)ethane (BTEOH). The synthesized compounds were 

altered in their carbon chain length (Scheme 7.4) 

 

 

 

Scheme 7.4 Synthesis of energetic plasticizers. 

 

The esters based on BAMP and DNPD turned out to be promising compounds for plasticizing 
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applications due to their liquid character. Measurements regarding their glass transition 

temperature revealed very good values within −70 to −95 °C, which correlate with the range 

of the known energetic plasticizer N-butyl nitratoethylnitramine (BuNENA) around −84 °C. 

The energetic properties of the plasticizers compete well or even exceed the values of their 

respective reference, diethylene glycol bis(azidoacetate) ester (DEGBAA, in case of BAMP 

based compounds) or BuNENA (in case of the DNPD based compounds). Furhermore, they 

outperform these compounds in terms of safety, since they are insensitive towards friction and 

impact and possess high decomposition temperatures (230-240 °C). 

Plasticizing tests regarding the ability of decreasing glass transition temperature and viscositiy 

of example mixtures with GAP and polyNIMMO, both used compounds (BAMP and DNPD 

based propionyl esters) revealed very promising plasticizing properties, comparable to the 

values of BuNENA. 
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8. Materials and Methods 

8.1 Chemicals 

 

All used chemical reagents and solvents of analytical grade were obtained either from the 

companies Sigma-Aldrich, Acros Organics, ABCR or comparable suppliers without any 

further purification. Hydroxyl-terminated GAP (Mn = 2000 g mol−1) was obtained from 

BAYERN-CHEMIE mbH. 

If necessary, purification of the compounds by column chromatography was performed using 

Merck silica gel 60 (Ø 40-60 µm). The particularly used solvent is given in the experimental 

section. 

 

 

8.2 General Methods 

Bomb Calorimetry 

Determinations of the bomb calorimetric values were carried out using an isoperibol oxygen 

bomb calorimeter of the type Parr 1356, later Parr 6200, equipped with a static bomb. 

The calibration of the calorimeter was accomplished by means of the combustion of benzoic 

acid in oxygen atmosphere at 30 bar. 

For the analysis of GNAP, 100 mg to 150 mg substance were mixed with 950 mg to 1100 mg 

of benzoic acid. The mixture was converted into a pellet which was used for the measurement. 

All other compounds were analyzed by covering 0.1 g of the substance with 0.5 to 0.6 g 

paraffin oil. 

 

Crystal Structures 

An Oxford Xcalibur3 diffractometer equipped with a Spellman generator (voltage 50 kV, 

current 40 mA) and a Kappa CCD area detector was employed for data collection using Mo-

Kα radiation (λ = 0.71073 Å). The data collection was realized by using CrysAlisPro 

software.1 The structures were solved by direct methods using SIR97,2 or SHELXS-973, 

refined with SHELXL-973, finally checked using the PLATON software4 and integrated in the 
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WinGX software suite.5 All non-hydrogen atoms were refined anisotropically. Diamond plots 

are showing thermal ellipsoids with 50 % probability level for the non-hydrogen atoms. The 

finalized CIF files were checked with checkCIF6 and deposited at the Cambridge 

Crystallographic Data Centre.7 

 

Differential Analysis 

DSC measurements for decomposition temperature determination were carried out at a 

heating rate of 5 °C min-1 in covered Al-containers with a hole (1 µm) on the top for gas 

release with a nitrogen flow of 5 mL min-1 on a Linseis PT 10. As reference sample a closed 

aluminum container was used. The device was calibrated by standard pure Indium and Zinc at 

a heating rate of 5 °C min-1. High pressure measurements were carried out at the Fraunhofer-

Institut für Chemische Technologie ICT, Pfinztal, Germany using F20 Au-pans on a TA 

Q2000 instrument, in a nitrogen atmosphere with a heating rate of 5 °C min−1. 

Low temperature DSC measurements were carried out with a Netzsch 204 Phoenix or a TA 

Q2000 instrument in closed Al-containers, using a heating rate of 10 °C min−1. 

 

Elemental Analysis 

Determinations of the carbon, hydrogen and nitrogen content were carried out by combustion 

analysis using an Elementar Vario EL or Vario Micro Analyzer. The determined nitrogen 

values are often lower than the calculated ones, which is common for nitrogen-rich 

compounds and cannot be avoided. 

 

Electro Static Discharge Sensitivity 

Sensitivities towards electrical discharge were determined using the Electric Spark Tester 

ESD 2010 EN.8 

 

Impact and Friction Sensitivity 

The impact and friction sensitivity was determined using a BAM drophammer and a BAM 

friction tester.9 10 The sensitivities of the compounds are indicated according to the UN 
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Recommendations on the Transport of Dangerous Goods (+): impact: insensitive > 40 J, less 

sensitive ≥ 35 J, sensitive ≥ 4 J, very sensitive ≤ 4 J; friction: insensitive > 360 N, less 

sensitive = 360 N, sensitive < 360 N and > 80 N, very sensitive ≤ 80 N, extreme sensitive ≤ 

10 N. 

 

Infrared Spectroscopy 

Infrared spectra were recorded from 600 to 4000 cm-1 at room temperature on a Perkin Elmer 

Spectrum BX FT-IR System. 

The samples were measured neat (ATR, Smith Detection DuraSampl IR II Diamond ATR). 

The absorption bands were reported in wave numbers (cm-1). The intensities are reported in 

parentheses, distinguishing between, weak (w), medium (m), strong (s) and very strong (vs). 

 

Mass spectrometry 

Mass spectra were recorded on a JEOL MS station JMS 700 instrument, with different 

ionization methods (DEI, DCI, FAB), which are specified in the experimental section. High 

resolution measurements were recorded on a Finnigan MAT 95 instrument. 

 

Melting Points 

Melting points were either determined using the DSC data or via a Büchi Melting point B-540. 

 

Molecular Weights 

The molecular weights were measured at the Fraunhofer-Institut für Chemische Technologie 

ICT, Pfinztal, Germany, using an Agilent Series 1100 HPLC System with a flow rate of 

1.0 mL min−1 and an injection volume of 100 µL of the polymer sample dissolved in THF 

(2 mg mL−1). THF containing 0.2 % trifluoroacidic acid was used as solvent and eluent. As 

detector an Agilent Series 1100 refractive index detector was used. The analysis was done 

using the PSS WinGPCUniChrom software. As column a SDV column set was used, 

comprising precolumn PSS SDV 5 µ, PSS SDV 5 µ 50 Å, PSS SDV 5 µ 100 Å, PSS SDV 5 µ 

1000 Å, PSS SDV 5 µ 105 Å, with 8.0 mm inner diameter and 300 mm length. The calibration 
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was done using a narrowly distributed polystyrene standard from Fa. PSS, Mainz, within the 

molar mass range 1.210.000 g mol−1 to 162 g mol−1. 

 

Nuclear Magnetic Resonance Spectroscopy 

All NMR spectra were recorded at ambient temperature with a JEOL 270, 400, ECX 400e, 

Bruker 400 or Bruker 400 TR instrument. The chemical shifts are reported with respect to the 

external standard Me4Si (1H, 13C), MeNO2 (
14N). 

 

Pycnometric Measurements 

Pycnometric measurements were carried out with a Quantachrome Ultrapyc 1200e helium 

pycnometer. 

 

Thermogravimetric Analysis 

Thermogravimetric analyses (TGA) were either measured in a platinum pan (100 µL) in a 

nitrogen atmosphere on a TA TGA Q5000 instrument, using a heating rate of 5 °C min−1, or on 

a Setaram 92-2400 TG-DTA 1600 in an argon atmosphere, using a heating rate of 5 °C min−1 

in a corundum crucible (80 μL). 

 

Viscosity Measurements 

Viscostity measurements were carried out on a MCR 501 (Anton Paar) rheometer at 20 °C 

and 50 °C. 
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8.3 Calculations 

 

Calculations of the Enthalpy of Formation 

 

The enthalpies (H) and free energies (G) were calculated using the complete basis set (CBS) 

method of Petersson and coworkers in order to obtain very accurate energies. The modified 

CBS-4M method (M referring to the use of Minimal Population localization) was applied in 

any case.11 If no crystal structure data was available for calculation, initial structure 

optimizations were performed at the B3LYP/cc-pVDZ level of theory using the Gaussian 09 

revision A.02 program package12. Further information regarding calculation details and 

obtained values can be found in the respective passages in the text.  

 

Energetic Calculations 

 

All calculations concerning detonation parameters were carried out using the EXPLO5 

(Version 6.02) software.13 Detailed information regarding theoretical details and used values 

can be found in the text. 

 

 

8.4 References 

 
1 a) CRYSALISPRO, Version 1.171.35.11 (release 16.05.2011 CrysAlis171.net), Agilent 

Technologies, 2011; b) L. J. Farrugia, J. Appl. Crystallogr. 1999, 32, 837-838. 

2 a) A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, M. 

C. Burla, G. Polidori, M. Camalli, R. Spagna, SIR97, 1997; b) A. Altomare, M. C. 

Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. 

Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr. 1999, 32, 115-119. 

3 G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122. 

4 A. L. Spek, PLATON, A Multipurpose Crystallographic Tool, Utrecht University, The 

Netherlands, 1999. 



Materials and Methods	
	

 
 

182 

5 L. J. Farrugia, J. Appl. Cryst. 1999, 32, 837-838. 

6 http://journals.iucr.org/services/cif/checkcif.html (accessed April, 2016). 

7 http://www.ccdc.cam.ac.uk (accessed April, 2016). 

8 a) NATO Standardisation Agreement (STANAG) on Explosives, Electrostatic 

Discharge Sensitivity Tests, No. 4490, 1st ed., Feb. 19th, 2001; b) D. Skinner, D. 

Olson, A. Block-Bolten, Propellants Explos. Pyrotech. 1998, 23, 34–42; c) S. Zeman, 

V. Pelikán, J. Majzlk, Cent. Eur. J. Energ. Mater. 2006, 3, 45–51; d) 

http://www.ozm.cz/en/sensitivity-tests/esd-2008a-small-scaleelectrostatic-spark-

sensitivity-test/ (accessed April, 2016). 

9 a) Bundesanstalt für Materialforschung (BAM), http://www.bam.de (accessed: 

26.04.2016); laying down the test methods pursuant to Regulation (EC) No. 

1907/2006 of the European Parliament and of the Council on the Evaluation, 

Authorisation and Restriction of Chemicals (REACH), ABl. L 142, 2008; b) NATO 

Standardisation Agreement (STANAG) on Explosives, Impact Tests, No. 4489, 1st 

ed., Sept. 17th, 1999; c) WIWEB-Standardarbeitsanweisung 4–5.1.02, Ermittlung der 

Explosionsgefährlichkeit, hier: der Schlagempfindlichkeit mit dem Fallhammer, Nov. 

8th, 2002; d) NATO Standardisation Agreement (STANAG) on Explosives, Friction 

Tests, No. 4487, 1st ed., Aug. 22nd, 2002; e) WIWEB-Standardarbeitsanweisung 4–

5.1.03, Ermittlung der Explosionsgefährlichkeit, hier: der Reibempfindlichkeit mit 

dem Reibeapparat, November 8th, 2002; f) T. M. Klapötke, B. Krumm, N. Mayr, F. X. 

Steemann, G. Steinhauser, Safety Science 2010, 48, 28–34. 

10 Test methods according to the UN Manual of Tests and Criteria, Recommendations on 

the Transport of Dangerous Goods, United Nations Publication, New York, Geneva, 

4th revised ed., 2003. 

11 a) J. W. Ochterski, G. A. Petersson, J. A. Montgomery Jr., A complete basis set model 

chemistry. V. Extensions to six or more heavy atoms, J. Chem. Phys. 1996, 104, 2598; 

b) J. A. Montgomery Jr., M. J. Frisch, J. W. Ochterski, G. A. Petersson, A complete 

basis set model chemistry. VII. Use of the minimum population localization method, J. 

Chem. Phys. 2000, 112, 6532. 



Materials and Methods	
	

 
 

183 

12 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. 

Cheeseman, V. B. Scalmani, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, 

X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. 

Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. 

Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. 

Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V.-N. Staroverov, R. Kobayashi, J. 

Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. 

Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. 

Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. 

Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, 

G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. 

Foresman, J. V. Ortiz, J., J. Cioslowski, D. J. Fox,. Gaussian 09. Rev. A.03 ed.; 

Gaussian, Inc.: Wallingford CT, 2009. 

13 a) M. Sućeska, Calculation of the detonation properties of C-H-N-O explosives, 

Propellants, Explos., Pyrotech. 1991, 16, 197-202; b) Sućeska, M. EXPLO5 V.6.02. 

Zagreb (Croatia), 2013. 

 



	

 

 

 



Appendix	
	

 
 

185 

 

9. Appendix 

9.1 Abbreviations and Formula Symbols 

Abbreviations 

 

AcBAMP  2,2-bis(azidomethyl)propane-1,3-diyl diacetate 

AcDNPD  2,2-dinitropropane-1,3-diyl diacetate 

ADAT   1-acetyl-3,5-diamino-1,2,4-triazole 

ANFO   ammonium nitrate fuel 

a.u.   atomic units 

BAMP   2,2-bis(azidomethyl)propane-1,3-diol 

BAM   Bundesanstalt für Materialforschung und –prüfung 

BTE   1,2-bis(terazol-5-yl)ethane 

BTEOH  1,2-bis(hydroxyethyl terazol-5-yl)ethane 

BTEOAc  1,2-bis(hydroxyethyl tetrazol-5-yl)ethane diacetate 

BTEOPro  1,2-bis(hydroxyethyl tetrazol-5-yl)ethane dipropionate 

br   broad (IR and NMR) 

BuNENA  N-butyl-2-nitratoethylnitramine 

ButBAMP  2,2-bis(azidomethyl)propane-1,3-diyl dibutyrate 

d   doublet (NMR) 

DAT   3,5-diamino-1,2,4-triazole 

DBX-1   copper(I) 5-nitrotetrazolate 

DCI   direct chemical ionization 

DEGBAA  diethylene glycol bis(azidoacetate) 

DEGDN  diethylene glycol dinitrate 

DEI   direct electron ionization 

DIE   diisocyanato ethane 

DIE-BAMP  poly[ethylene(2,2-bis(azidomethyl)propylene)carbamate] 

DIE-DNPD  poly[ethylene(2,2-dinitropropylene)carbamate] 

DIM   diisocyanato methane 

DIM-BAMP  poly[methylene(2,2-bis(azidomethyl)propylene)carbamate] 
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DIM-DNPD  poly[methylene(2,2-dinitropropylene)carbamate] 

DMF   dimethylformamide 

DMSO   dimethylsulfoxide 

DNPD   2,2-dinitropropane-1,3-diol 

DOA   dioctyl adipate 

DOP   dioctyl phtalate 

DSC   differential scanning calorimetry 

EA   elemental analysis 

ECH   epichlorohydrin 

EGBAA  ethylene glycol bis(azidoacetate) 

ESD   electrostatic discharge 

FAB   fast atom bombardment 

FS   friction sensitivity 

FW   formula weight 

GAP   glycidyl azide polymer 

GNAP   glycidyl nitramine polymer 

HMDI   hexamethylene diisocyanate 

HMDI-BAMP  poly[ethylene(2,2-bis(azidomethyl)propylene)carbamate] 

HMDI-DNPD  poly[hexamethylene(2,2-dinitropropylene)carbamate] 

HMX   high melting explosive (1,3,5,7-tetranitro-1,3,5,7-tetrazocane) 

HNS   hexanitrostilbene 

HR   high resolution 

HTPB   hydroxyl-terminated polybutadiene 

IR   infrared spectroscopy 

IS   impact sensitivity 

K2DNABT  potassium 1,1’-dinitramino-5,5’-bistetrazolate 

LOVA   low-vulnerability amminition 

[M]+   molecule peak (MS) 

M   molar (mol L−1) 

m   medium (IR), multiplet (NMR) 

MDI   dipehylmethane-4,4’-diisocyanate 

MS   mass spectrometry 

NC   nitrocellulose 
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NG   nitroglycerine 

NMR   nuclear magnetic resonance 

PBAN   polybutadiene acrylonitrile 

PBX   polymer-bonded explosive 

PETKAA  pentaerythritol tetrakis (acidoacetate) 

PNP   polynitropolyphenylene 

polyAMMO  poly(3-azidomethyl-3-methyl oxetane) 

polyBAMO  poly[3,3-(bisazidomethyl)oxetane] 

polyGYLN  poly(glycidyl nitrate) 

polyNIMMO  poly(3-nitratomethyl-3-methyl oxetane) 

ppm   parts per million 

PU   polyurethane 

PUA   polyurea 

PVN   polyvinyl nitrate 

PVT   polyvinyl tetrazole 

RDX   royal demolitions explosive (1,3,5-trinitro-1,3,5-triazinane) 

rt   room temperature 

s   strong (IR), singlet (NMR) 

t   triplet (NMR) 

TGA   thermogravimetric analysis 

THF   tetrahydrofuran 

TKX-50  dihydroxylammonium 5,5’-bistetrazol-1,1’-diolate 

TMETN  trimethylol ethane trinitrate 

TNT   trinitrotoluene 

UN   United Nations 

vs   very strong (IR) 

w   weak (IR) 
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Formula Symbols 

 

<   angle 

δ   isotropic chemical shift 

d   atom distance 

Is   specific impulse 
nJHH/CH   homo-/heteronuclear coupling constant over n nuclei 

M   molar mass 

Mn   number average molar mass 

m/z   mass per charge 

~N2   in N2 atmosphere 

N   nitrogen content 

 ෤   wave numberߥ

   oxygen balance 

pCJ   detonation pressure 

ρ   density 

Tdec   decomposition temperature 

TE   explosion temperature 

Tg   glass transition temperature 

Tmelt   melting temperature 

∆cU   energy of combustion 

∆EU   energy of explosion 

Vdet   detonation velocity 

wt%   weight percent 
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9.2 Crystallographic Data 

 

Table 9.1 Crystallographic data for 2,2-bis(acetoxymethyl-1H-1,2,3-triazol-1-yl)methyl)-

propane-1,3-diol (10). 

 

 10 
Measurement # hx001 
Chemical formula C15H22N6O6 
Molecular weight [g mol-1] 382.39 
Color, habit colorless block 
Size [mm] 0.25x0.20x0.15 
Crystal system triclinic 
Space group P-1 
a [Å] 7.5226(4) 
b [Å] 7.9108(4) 
c [Å] 15.6300(9) 
α [°] 89.247(4) 
β [°] 84.447(5) 
γ [°] 80.936(5) 
V [Å3] 914.21(9) 
Z 2 
ρcalc [g cm-3] 1.389 
μ [mm-1] 0.109 
Irradiation [Å] MoKα 0.71073 
F(000) 404 
-area [°] 4.20-26.00 
T [K] 173 
Dataset h -9 ≤ h ≤ 9 
Dataset k -9 ≤ k ≤ 9 
Dataset l -19 ≤ l ≤ 19 
Reflecions coll. 9271 
Independent refl. 3582 
Observed refl. 2746 
Parameters 332 
R (int) 0.0333 
GOOF 1.041 
R1, wR2 (I>I0) 0.0435, 0.1044 
R1, wR2 (all data) 0.0605, 0.1155 
Weighting schemea 0.0506, 0.2026 
Remaining density [e Å-3] -0.323, 0.480 
Device type Oxford XCalibur3
Adsorption corr. multi-scan 

a wR2 = [[w(F0
2-Fc

2)2]/  [w(F0)
2]]1/2 where w=[c

2(F0
2)+(xP)2+yP] and P=(F0

2+2Fc
2)/3 
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Table 9.2 Crystallographic data for 2,2-bis(hydroxymethyl-1H-1,2,3-triazol-1-yl)- 

methyl)propane-1,3-diol (4-ol, 12). 

 

 12 
Measurement # ix505 
Chemical formula C11H18N6O4 
Molecular weight [g mol-1] 298.30 
Color, habit colorless block 
Size [mm] 0.40x0.40x0.40 
Crystal system monoclinic 
Space group P21/c 
a [Å] 8.897(5) 
b [Å] 14.993(7) 
c [Å] 10.507(6) 
α [°] 90.00 
β [°] 108.260(6) 
γ [°] 90.00 
V [Å3] 1331.0(11) 
Z 4 
ρcalc [g cm-3] 1.489 
μ [mm-1] 0.116 
Irradiation [Å] MoKα 0.71073 
F(000) 632 
-area [°] 4.26-30.03 
T [K] 173 
Dataset h -12 ≤ h ≤ 12 
Dataset k -21 ≤ k ≤ 11 
Dataset l -14 ≤ l ≤ 14 
Reflecions coll. 9104 
Independent refl. 3866 
Observed refl. 2992 
Parameters 223 
R (int) 0.0248 
GOOF 1.025 
R1, wR2 (I>I0) 0.0448, 0.1141 
R1, wR2 (all data) 0.0612, 0.1264 
Weighting schemea 0.0602, 0.5354 
Remaining density [e Å-3] -0.471, 0.699 
Device type Oxford XCalibur3
Adsorption corr. multi-scan 

a wR2 = [[w(F0
2-Fc

2)2]/  [w(F0)
2]]1/2 where w=[c

2(F0
2)+(xP)2+yP] and P=(F0

2+2Fc
2)/ 
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Table 9.3 Crystallographic data for 2,2-bis(hydroxymethyl-1H-1,2,3-triazol-1-yl)- 

methyl)propane-1,3-diol (2,2-DvBTE, 14a). 

 

 14a 
Measurement # jx412 
Chemical formula C8H10N8 
Molecular weight [g mol-1] 218.22 
Color, habit colorless block 
Size [mm] 0.07x0.31x0.51 
Crystal system monoclinic 
Space group P21/c 
a [Å] 9.137(4) 
b [Å] 8.166(4) 
c [Å] 6.941(4) 
α [°] 90.00 
β [°] 98.164(5) 
γ [°] 90.00 
V [Å3] 512.61(4) 
Z 2 
ρcalc [g cm-3] 1.414 
μ [mm-1] 0.100 
Irradiation [Å] MoKα 0.71073 
F(000) 228 
-area [°] 4.27-26.35 
T [K] 173 
Dataset h -7 ≤ h ≤ 11 
Dataset k -10 ≤ k ≤ 10 
Dataset l -8 ≤ l ≤ 8 
Reflecions coll. 3803 
Independent refl. 1049 
Observed refl. 930 
Parameters 94 
R (int) 0.022 
GOOF 1.085 
R1, wR2 (I>I0) 0.0302, 0.0698 
R1, wR2 (all data) 0.0351, 0.0739 
Weighting schemea 0.0292, 0.1084 
Remaining density [e Å-3] -0.148, 0.191 
Device type Oxford XCalibur3
Adsorption corr. multi-scan 

a wR2 = [[w(F0
2-Fc

2)2]/  [w(F0)
2]]1/2 where w=[c

2(F0
2)+(xP)2+yP] and P=(F0

2+2Fc
2)/3 
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