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Summary 

Since colorectal cancer is the second most common tumor entity in Europe there 

is a great need for research regarding the disease and its cure. The understanding 

of the origin and development of cancer has increased with the exploration of 

certain hallmarks of this disease over the last decades. The deregulation of 

signaling pathways such as the Wnt pathway and the epidermal growth factor 

receptor (EGFR) signaling pathways leads to properties that cause cancer and let 

it expand. Components of these pathways can be used in order to make 

predictions about the course of the disease. 

The presence of the transcription factors LEF-1 and TCF4 of the Wnt pathway was 

analyzed with immunohistochemical methods in tumor tissue from patients with 

colorectal cancers to correlate them with the overall survival of patients. Univariate 

analysis showed that the expression of TCF4 constitutes a negative prognostic 

factor with shorter overall survival. In contrast the expression of LEF-1 as well as a 

LEF-1/TCF4 ratio were positive prognostic factors and correlated with longer 

overall survival. This work takes a closer look on the in vitro characteristics of 

those two transcription factors to get an insight into the different roles and 

functionalities. Cell cultures with reduced and enhanced TCF4 or LEF-1 

expression were studied and analyzed. Several assays analyzing the cells 

characteristics like proliferation and migration showed no differences between the 

two transcription factors. 

There are also drugs that are being developed and used to interact with these 

signaling pathways to reduce the progression of the disease. A prediction of their 

efficacy is important since side effects often occur and not all patients respond to 

these drugs. For this purpose, suitable predictive biomarkers can be used to 

assign patients to groups and introduce them to the most suitable therapies. 

However, not all patients respond to the selected therapy because predictive 

biomarkers which would allow assigning the best therapy with 100 % certainty 

have not been found yet. In case of the therapy of metastatic colorectal 

carcinomas with the monoclonal antibody cetuximab there is already an 
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established predictive biomarker being used in diagnostics – the KRAS gene. 

When mutated, the KRAS gene leads to an exclusion of the therapy. Yet only 40 

% of patients with wild type KRAS respond to the treatment with cetuximab. Thus 

a more convincing predictive biomarker is needed. Another marker that is already 

known to indicate a good response to therapy is the development of skin toxicity. 

However this rash only occurs after patients have been treated with the antibody 

and it is therefore not a suitable predictive biomarker. 

To find a predictive biomarker for the response, a marker that correlates with the 

skin toxicity was being looked for. For this purpose the EGFR was analyzed further 

because it is the primary target for the antibody. For this work the coding region of 

the EGFR from samples of patients with and without skin toxicity was sequenced. 

Both groups were then correlated. In the analyzed samples there were no 

polymorphisms in the coding region of the EGFR gene that were associated with 

skin toxicity induced by the targeted anti-EGFR therapy in metastatic colorectal 

cancer using cetuximab. 
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Zusammenfassung 

Da Kolorektale Karzinome die zweithäufigste Tumorentität in Europa darstellen 

besteht ein großer Bedarf an Forschung in Bezug auf die Krankheit und ihre 

Heilung. Das Verständnis über die Entstehung und Entwicklung von Krebs hat in 

den letzten Jahrzehnten mit der Erforschung bestimmter Eigenschaften dieser 

Krankheit zugenommen. Die Deregulierung von Signalwegen wie dem Wnt-

Signalweg und den EGFR-Signalwegen führt zu den Eigenschaften, die Krebs 

entstehen und sich ausbreiten lassen. Komponenten dieser Signalwege lassen 

sich nutzen, um Prognosen über den Verlauf der Krankheit zu stellen. 

Das Vorliegen der Transkriptionsfaktoren LEF-1 und TCF4 des Wnt-Signalwegs 

wurde mittels immunhistochemischer Methoden in Tumorgewebe von Patienten 

mit Darmkrebs analysiert, um sie mit deren Überleben zu korrelieren. Univariate 

Analysen zeigten, dass die Expression von TCF4 als negativ prognostischer 

Faktor mit kürzerem Gesamtüberleben gesehen werden kann. Im Gegenteil hierzu 

ist die LEF-1-Expression und das LEF-1/TCF4-Verhältnis mit einem längeren 

Gesamtüberleben assoziiert und hat somit einen positiv prognostischen Wert. 

Diese Arbeit betrachtet die in-vitro-Eigenschaften der beiden 

Transkriptionsfaktoren, um einen genaueren Einblick in ihre verschiedenen Rollen 

und Funktionen zu erhalten. 

Es werden auch Medikamente entwickelt und genutzt, die in diese Signalwege 

eingreifen, um das Voranschreiten der Krankheit einzudämmen. Da häufig 

Nebenwirkungen auftreten und nicht alle Patienten auf diese Medikamente 

ansprechen ist eine Vorhersage über ihre Wirksamkeit wichtig. Hierfür eignen sich 

prädiktive Biomarker, die genutzt werden können, um Patienten im Vornherein in 

Gruppen einzuteilen und diese den optimalen Therapien zuzuführen. Dennoch 

reagieren meist nicht alle Patienten auf die für sie ausgewählte Therapie, da die 

optimalen prädiktiven Biomarker, die es zulassen, jeden Patienten der passenden 

Therapie zuzuführen, noch nicht gefunden wurden. Im Falle der Durchführung 

einer Behandlung von metastasierenden kolorektalen Karzinomen mit dem 

monoklonalen Antikörper Cetuximab wird in der Diagnostik bereits der prädiktive 
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Biomarker KRAS genutzt, welcher beim Vorliegen einer Mutation zum Ausschluss 

der Therapie mit Cetuximab führt. Dennoch reagieren nur 40 Prozent der 

Patienten mit dem wildtypischen KRAS auf die Therapie mit Cetuximab. Somit 

wird ein aussagekräftigerer prädiktiver Biomarker benötigt. Ein weiterer bereits 

bekannter Marker für ein gutes Ansprechen auf die Therapie ist die Entwicklung 

eines Hautauschlags. Dieser setzt allerdings erst nach Start der Behandlung mit 

dem Antikörper ein und eignet sich somit nicht als prädiktiver Biomarker. 

Um einen prädiktiven Biomarker für das Ansprechen zu identifizieren, wurde in 

dieser Arbeit nach einem Marker gesucht, der mit diesem Hautausschlag 

korreliert. Hierfür wurde der EGF-Rezeptor analysiert, da dieser den primären 

Angriffspunkt für den Antikörper darstellt. Der kodierende Bereich des EGFR von 

Proben von Patienten mit und ohne Hautausschlag wurde sequenziert und diese 

beiden Gruppen korreliert. Es wurden in den untersuchten Proben keine 

Polymorphismen gefunden, die mit einer der beiden Gruppen in Zusammenhang 

stehen. Somit korrelieren Polymorphismen in der kodierenden Region des EGFR 

nicht mit dem Hautauschlag, der durch die anti-EGFR Therapie mit dem 

monoklonalen Antikörper Cetuximab hervorgerufen wird. 
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1 Introduction 

1.1 Colorectal cancer 

Colorectal cancer (CRC) is the second most common cancer in Europe, and with 

more than 200,000 deaths per year in 2012 also the second most common cancer 

cause of death 28 (Figure 1). 

 

Most cases of CRC arise sporadically and there are many known risk factors 

favoring this disease: increasing age, male sex, previous colonic polyps, 

environmental factors and others 66. Inflammatory bowel disease (ulcerative colitis 

and Crohn’s disease) also accounts for about two-thirds of the cases 23, 106. It is 

assumed that colorectal carcinogenesis is a multistep process and takes years to 

decades to evolve. Vogelstein et al. postulated the development via a stepwise 

acquisition of changes in gatekeeper and caretaker molecular pathways during the 

adenoma-carcinoma sequence 105 (Figure 2). 

 

Figure 1. Estimated numbers of cancer cases and cancer deaths of the most common 

cancers in the 40 European countries (in thousands) (numbers from Ferlay J et al. 
28

) 
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In CRC some pathways like the Wnt/β-catenin pathway and pathways downstream 

of the epidermal growth factor receptor (EGFR) are often affected by mutations 19, 

22, 32. A deficiency of the DNA mismatch repair (MMR) also drives tumor 

manifestation 15. CRC can be classified into distinct subtypes based on those 

affected mechanisms. One postulated classification system is shown in Figure 3 

94. 

Figure 2. Basic outline of the transition from normal colon epithelium to adenoma and 

then to carcinoma with affected genes (top) and associated phenotypic changes (bottom) 

(from Kerr D 
50

) 
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Figure 3. Categorization of stage lll colon cancer into five subtypes based on MMR status 

and mutations in KRAS (exon2) and BRAF (V600E) (modified from Sinicrope FA et al. 
94

) 

Effects of those subtypes on prognosis and therapy are mentioned in the following 

chapters. 

Intensified screening for the disease has increased survival rates. Nevertheless 

the five year relative survival rate in most European countries is still less than 60% 

82, 104. A lot of research focuses on the understanding and treatment of CRC and 

cancer in general due to the high threat of this disease. 

1.2 Hallmarks of cancer 

Cancer is a disease during which several changes in the genome occur. Some 

mutations can result in a dominant gain of function in oncogenes or a recessive 

loss of function in tumor suppressor genes. Cancer needs to accumulate certain 

traits to evolve into the serious stages of the disease. It has been shown that 

tumorigenesis is a multistep process, each step reflecting genetic alterations that 

drive the progressive transformation. Normal cells evolve through several stages 

to become neoplastic and eventually tumorigenic and malignant. During that 

course they acquire certain universal hallmarks. Six hallmarks have been 

postulated by Weinberg et al. more than 10 years ago and two more have been 

added recently showing the still ongoing research and the complexity of this 

disease 39. These hallmarks include sustaining proliferative signaling, evading 
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growth suppressors, resisting cell death, enabling replicative immortality, inducing 

angiogenesis and activating invasion and metastasis. The recently added 

hallmarks are the reprogramming of energy metabolism and evading immune 

destruction 40 (Figure 4). 

 

 

 

 

 

 

 

 

 

 

 

Cancerous cells have acquired most, if not all of these hallmarks 40. Additionally 

tumors create their own supportive microenvironment which adds even more 

complexity. Underlying this development are changes in the cells signaling 

machineries. Two of the most prominent pathways that are deregulated in cancer 

will be discussed in the following chapters. 

 

Figure 4. Hallmarks and characteristics acquired by cancers during the multistep 

development of tumors (modified from Hanahan D et al. 
40

) 
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1.2.1 Self-sufficiency in growth signals in cancer 

One of the hallmarks of cancer is the ability of cells to generate their own 

mitogenic signals endogenously 109. Normal cells need mitogenic signals to 

proliferate. These are transduced into the cell via transmembrane receptors and 

conveyed via signaling pathways. Those principles are also being used by many 

cancers to mimic those proliferative mechanisms. One way is to produce their own 

growth factor ligands which enable an autocrine proliferative stimulation 27. Cancer 

cells can also send paracrine signals to surrounding cells and cause them to 

produce growth stimulating factors 11. To maintain high proliferative signaling, 

cancer cells can also elevate their receptor levels. This leads to a hyper 

responsiveness of the cells to growth factor levels that would normally not trigger 

proliferation 27. Examples are the epidermal growth factor receptor (EGFR/erbB) in 

stomach, brain and breast tumors and the HER2/neu receptor in stomach and 

mammary carcinomas 95. And finally, proliferative signaling can be maintained by 

ligand-independent pathway activation. For example, truncated versions of the 

EGFR lacking most of their cytoplasmic domain remain ubiquitously active 27. 

Independent activation can also result from activating changes downstream in the 

pathway of the receptor. The aforementioned growth factor activated receptors act 

via the important mitogenic SOS-Ras-Raf-MAP kinase pathway 67 (Figure 5). 
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In about 25 % of human tumors there are structurally altered Ras proteins that 

enable an ongoing flux of mitogenic signals without an external stimulation by the 

upstream regulators 71. In colon carcinomas about half of the tumors express 

mutant ras oncogenes 53. But there are many more effects in signaling pathways 

and networks that support the cancer promoting mitogenic signaling. 

 

 

Figure 5. The EGFR and its downstream pathways. The frequencies of mutations 

observed in CRC are depicted. Additionally the roles of these pathways are given. 

(modified from Lievre A et al. 
64

) 
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1.2.2 The Wnt/β-catenin pathway in cancer 

Another pathway that is regularly altered in human carcinomas is the Wnt/β-

catenin pathway (Figure 6). It influences several of the hallmarks mentioned 

above. This pathway which is normally active during embryogenesis can lead to 

effects on transcription and cell migration 85. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The spectrum of target genes of the activated pathway that are controlled by β-

catenin/TCF is seen to be the key for understanding the initial and following steps 

of transformation of intestinal and other cells. When β-catenin translocates to the 

nucleus it transactivates TCF/LEF target genes and promotes cellular growth and 

represses differentiation programs 43, 93, 98, 103, 108. The functional roles of LEF-1 

Figure 6. The Wnt/β-catenin signaling pathway. Left: β-catenin is marked for 

degradation in the absence of Wnt ligands. Right: in the presence of Wnt ligands the 

destruction complex is inhibited and β-catenin can accumulate and translocate to the 

nucleus where it can activate target genes (modified from Fodde R et al. 
30

) 
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and TCF4 are not so clear. Different roles have been described. In melanomas the 

differential expression of LEF-1 and TCF4 is involved in melanoma cell phenotype 

switching. Expression of LEF-1 is primarily found in differentiated / proliferative 

phenotype cells whereas TCF4 is expressed preferentially by dedifferentiated / 

invasive phenotype cells 24. In contrast experiments performed by Nguyen et al. 

showed that LEF-1 mediates lung adenocarcinoma metastasis 81. In an 

immunohistochemical analysis of colorectal carcinomas it was found that LEF-1 

and TCF4 expression are independent predictors of longer and shorter overall 

survival, respectively 57. 

Over 90 % of colorectal carcinomas show mutations that activate the Wnt/β-

catenin pathway leading to the stabilization and accumulation of β-catenin 32. After 

acquiring this growth advantage, mutations inactivating tumor suppressor genes 

are required for tumor progression. The additional mutations may be facilitated by 

mutations in the adenomatous polyposis coli (APC) gene which is also a member 

of the pathway. By this acquisition of mutations it can lose one of its roles: 

stabilizing microtubules. These mutations can therefore result in chromosomal 

instability 29, 48. Then changes in cell adhesion and migration that are influenced by 

the Wnt pathway further promote development of tumors 32, 38, 42, 77. Even invasion 

and inhibition of death receptor-mediated apoptosis are driven by the deregulation 

of this pathway 79, 110. 

In conclusion it can be said that the target genes of the deregulated Wnt pathway 

lead to tumor supporting traits including the hallmarks of cancer. Understanding its 

role in carcinogenesis is important, as some components have been shown to 

correlate with clinical stages of some tumors and may therefore be useful 

prognostic aids 22. 

1.3 Signaling pathway components as prognostic biomarkers in CRC 

Understanding the Wnt and EGFR pathways has clinical relevance because of 

their severe influence on the progression of cancer. Components of those 

pathways might serve as prognostic biomarkers (measurable indicators for how 

the disease develops regardless of the type of treatment). 
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The aberrant expression of Wnt pathway components correlates with advanced 

tumor stages, the probability of metastasis and the survival rate 22. So the analysis 

of the pathway components can offer important prognostic information and might 

help to direct an appropriate treatment. 

The protein β-catenin, one of the components of the pathway, has been well 

investigated. It has been shown that the β-catenin gene (CTNNB1) is an 

indispensable oncogene in some CRC cell lines 52. A reduced colorectal tumor 

growth can be observed when targeting β-catenin in mice 60. Another experiment 

showing its direct influence on cancer progression was the knockdown of β-

catenin mRNA leading to a dose-dependent inhibition of tumor growth rates in 

colon carcinoma xenografts 36. There is a reduction of the localization of β-catenin 

at the cell membrane in 70-84 % of established CRCs. The transcriptionally active 

nuclear and the cytoplasmic localization is increased in 66-79 % 41, 69. 

Immunohistochemical studies have shown that there is a progressive increase in 

nuclear β-catenin staining while the epithelium changes from normal to dysplastic 

to cancerous 41. Therefore, assessing the nuclear localization levels of β-catenin, 

could be used as a prognostic marker for CRCs. But not only β-catenin plays an 

important role in prognostic significance, also its target genes - the target genes of 

the Wnt pathway - are of interest. It is known, that the down-regulation of E-

cadherin which is important for epithelial cell-cell adhesion correlates with an 

invasive potential and a poor prognosis in CRC 74, 100. c-Myc, a prominent and 

important target gene is overexpressed in nearly half of all CRC while matrix 

metalloproteinase-7 (MMP7) is even overexpressed in 90 % 8, 84. 

As already mentioned above, the EGFR plays an important role in CRC 19. But the 

prognostic value of this prominent receptor is still under dispute. Several studies 

have looked into EGFR as a prognostic marker. These studies showed a 

correlation between its expression and advanced stage, worse histological grade 

and lymphovascular invasion 54, 56, 96. In contrast, other more recent studies have 

found no relationship between the EGFR expression and histological type, tumor 

grade, stage or survival 21, 33, 70, 83. Looking further downstream into the SOS-Ras-

Raf-MAP kinase pathway, there are the Ras proteins KRAS and NRAS which are 
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frequently mutated in CRC (especially in the large group of CRC with proficient 

DNA MMR). The prognostic relevance for KRAS is still under dispute. Some 

studies showed evidence for it being a prognostic marker 3, 4, while others found 

no association 91, 107. There is no convincing evidence that suggests that KRAS 

mutations are independent prognostic biomarkers. In contrast it has been shown 

that the BRAF V600E mutation in mCRC with proficient DNA MMR correlates with 

poor prognosis 86. But despite the lack of an association of EGFR with clinical 

outcome, there have been successful pharmacological approaches inhibiting the 

EGFR which have a beneficial effect on CRC patients 80. 

1.4 Signaling pathways as targets for therapy in CRC 

The single agent 5-fluorouracil (5FU) therapy had been the treatment for mCRC 

since the 1950s. During the last 15 years the therapy evolved into combination 

chemotherapy and more recently even to a targeted therapy with the arrival of 

monoclonal antibodies. Targeted therapeutics are substances or drugs interfering 

with specific molecules that are involved in cancer cell growth and survival 78. The 

promise of those therapies lies in the more specific inhibition of altered molecular 

pathways in cancer 17. The use of monoclonal antibodies like cetuximab and 

panitumumab for the treatment of mCRC is the most prominent example of 

specifically directed therapies 14, 101. They target the EGFR and therefore inhibit 

the downstream SOS-Ras-Raf-MAP kinase pathway which is known to promote 

tumor progression 14, 31, 35, 111. 

The therapy of interest for this work is the therapeutic use of the monoclonal 

antibody cetuximab. There is evidence that a first-line treatment with cetuximab 

plus FOLFIRI (5-fluorouracil, leucovorin and irinotecan) compared to FOLFIRI 

treatment alone reduces the risk of progression of metastatic CRC 102. Another 

study showed the same results for a treatment of cetuximab with FOLFOX-4 (5-

fluorouracil, leucovorin and oxaliplatin) 7. Although there have been advances 

using the combination of chemotherapy with EGFR inhibitors, the use of two 

antibodies has not proven to be successful. There have even been studies 

demonstrating a worse toxicity and efficacy when combining antibodies 44, 99. 
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The use of small EGFR-targeted tyrosine kinase inhibitors is another example for 

a targeted therapy. Gefitinib and erlotinib are small molecules that reversibly inhibit 

the EGFR tyrosine kinase 1, 76. There have been studies showing an increased 

overall survival time using those small molecules in combination with 

chemotherapy for treatment but the side effects were severe 58, 72. 

1.5 Predictive biomarkers in CRC 

Targeted therapies are typically only applicable to a smaller subset of CRC. 

Consequently, there is a demand for better biomarkers to predict the response. 

This is essential because otherwise patients might not benefit from the therapy or 

show side effects. The approval of new therapies is associated with the availability 

of biomarkers for that therapy. Once again the most prominent example and 

already existing biomarker is connected to the EGFR pathway. The receptor itself 

plays an important role in CRC and is being used as a target for therapeutic 

antibodies 14, 101. Important exceptions are CRC patients with mutated 

KRAS/NRAS genes which cause resistance to the therapy 16, 68. Lying downstream 

of the EGFR, activating mutations in KRAS/NRAS cause an activation of the 

pathway even when the receptor is blocked for example by cetuximab. This makes 

mutated KRAS/NRAS a very meaningful negative predictive marker for anti-EGFR 

treatment (predictive markers can identify patients who benefit most likely from a 

given therapy). It has been shown, that patients with mutated KRAS/NRAS do not 

benefit from anti-EGFR treatment. They do not respond to the therapy and do not 

show prolonged survival or quality of life benefits 2, 49. There are about 40 % of 

mCRC patients that have somatic activating mutations in KRAS. Far less patients 

have activating mutations in NRAS (~ 2 %) 46. All those patients are therefore 

excluded from a therapy with monoclonal antibodies targeting the EGFR 2, 49. 

1.6 Need for predictive biomarkers in CRC 

Despite the appealing character of KRAS being a potent predictive biomarker, only 

about 60 % of mCRC patients with wild type KRAS do respond to the therapy with 

cetuximab or panitumumab 7, 102. This lack of response can result from additional 

factors like absence of amphiregulin and epiregulin (EGFR ligands), activating 

mutations of BRAF or NRAS, loss of PTEN or PI3K activation 5. Looking closer at 
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those factors, none could be confirmed as a convincing predictive biomarker 15, 55. 

So there is still a need for further predictive biomarkers to be identified. One clue 

could lie in the fact that patients treated with anti-EGFR targeted drugs usually 

show a good response when they develop skin toxicity or acneiform rash 7, 14, 63, 

102. Thus, skin toxicity is a biomarker indicating response but unfortunately only 

after starting the treatment and therefore lacks predictive value. 
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1.7 Aims of this work 

Predictive biomarker for anti-EGFR treatment 

Skin toxicity is a biomarker that correlates with good response to anti-EGFR 

treatment. As this can only be seen after treatment of patients the aim of this work 

was to analyze whether skin toxicity and therefore good response are associated 

with a factor that can be measured before treatment. Therefore, the coding region 

of the EGFR gene was screened for the presence of genetic alterations: especially 

single nucleotide polymorphisms (SNPs) and mutations which might be associated 

with skin toxicity and thus indicate a response to anti-EGFR targeted therapy. So 

the 28 exons of the coding region of the EGFR gene of patients with metastatic 

colorectal cancer (mCRC) treated with cetuximab displaying either high grade 

(grade 3) or absence (grade 0) of skin toxicity that correlated with clinical response 

were analyzed with bidirectional Sanger sequencing. The aim was to find 

alterations that could therefore act as a new predictive biomarker for anti-EGFR 

treatment in mCRC. 

β-catenin/LEF-1 and β-catenin/TCF4-regulated programs in CRC 

Although some prognostic biomarkers for CRC have been established, there is still 

a need for further understanding the development of CRC to detect additional 

prognostic biomarkers. Therefore, the role of LEF-1 and TCF4 which are 

components of the Wnt pathway needs to be examined further. Consequently it 

was analyzed whether the change of β-catenin/TCF4 to β-catenin/LEF-1 mediated 

Wnt/β-catenin pathway activity induces migration, invasion and epithelial-

mesenchymal transition (EMT) in the context of the invasion front of human CRC 

and therefore causes the malignant progression. This theory was investigated 

further by characterizing and comparing the β-catenin/TCF4 and β-catenin/LEF-1 

regulated cellular processes. Knockdown and overexpression of the transcription 

factors LEF-1 and TCF4 and subsequent investigation of effects using assays for 

cell analysis were the main methods used. The aim was to find differences 

between the two transcription factors LEF-1 and TCF4 to therefore provide a new 

prognostic biomarker for CRC. 
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2 Material and methods 

2.1 Molecular methods 

Isolating genomic DNA from eukaryotic cells 

The isolation of genomic DNA from eukaryotic cell cultures was performed using 

QIAamp DNA Mini Kit (Qiagen, Hilden, Germany) following the manufacturer’s 

protocol. 

Isolating genomic DNA from CRC tissue (FFPE sections) 

FFPE (formalin-fixed paraffin-embedded) tissue from the primary site of CRC of 19 

patients with skin toxicity grade 0 and 26 patients with skin toxicity grade 3 was 

available from the CIOX study (AIO KRK-0104), a clinical study comparing the 

effects of capecitabine therapy with either irinotecan (CAPIRI) or oxaliplatin 

(CAPOX) in combination with cetuximab (Table 7) 75. Skin toxicity was scored 

according to the common terminology criteria for adverse events 12. The study 

protocol was approved by ethics committees of all participating centers. All 

patients provided written informed consent before entry into the study. Two whole 

FFPE sections (3 μm) of the tumors from each patient were used for DNA 

isolation. Tissue from tumor or normal tissue was not discriminated due to the low 

mutation rate in the EGFR gene in CRC 62 and the strict statistical conditions 

chosen (see 2.5 Statistical analysis page 31). DNA was isolated using QIAamp 

FFPE Tissue kits together with a QIAcube device (Qiagen, Hilden, Germany) 

following the manufacturer’s instructions. 

Isolating genomic RNA from eukaryotic cells 

RNeasy Mini Kits in combination with QIAshredder and the QIAcube device (all 

Qiagen, Hilden, Germany) were used for the purification of RNA from eukaryotic 

cell cultures following the manufacturer’s instructions. 
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Determining DNA and RNA concentration 

Concentrations of DNA and RNA were determined with the Nano Drop 

Spectrophotometer ND1000 (peqlab Biotechnologie GmbH, Erlangen, Germany). 

The nucleic acid solutions were diluted in water. Measurement was compared to a 

reference without nucleic acids. 

Restriction enzyme hydrolysis of DNA 

All restriction enzyme hydrolyses were performed with Fermentas FastDigest 

Enzymes strictly following the manufacturer’s manual (Fermentas, St.Leon-Rot, 

Germany). 

Polymerase chain reaction (PCR) 

Amplification of DNA fragments was performed by PCR. Primers were designed 

flanking the DNA of interest using Primer 3 software 89. All primers were obtained 

from biomers (Ulm, Germany). Primers were also used to add desired flanks to 3’ 

or 5’ ends of the DNA (e.g. tags, restriction sites). Standard PCR was performed 

using the HotStarTaq DNA Polymerase Kit (Qiagen, Hilden, Germany) using the 

following PCR set up (Table 1). 

Table 1. Set up for PCR 

Component Final concentration 

10x PCR Buffer 1x 

dNTP mix (10 mM of each) 200 µM of each dNTP 

Primer Mix 400 nM 

HotStarTaq DNA Polymerase 2.5 units/reaction 

Distilled water variable 

Template DNA ̴ 150 ng genomic DNA /  ̴50 ng cDNA 

 

The reaction was carried out in standard or gradient thermal cycler blocks (Thermo 

Hybaid, Ulm, Germany) following the protocol in Table 2. The annealing 

temperature was optimized with a gradient of temperatures before final PCR. 
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Table 2. PCR parameters 

PCR cycle Duration Temperature 

Stage 1 15 min 95 °C 

Stage 2 (35 cycles) 

Denaturation 30 s 94 °C 

Annealing 30 s Tested for each primer pair 

Elongation/kb 1 min 72 °C 

Stage 3  10 min 72 °C 

 

PCR of the DNA isolated from FFPE material for subsequent sequencing was 

performed differently. Due to the low quality and concentration of that DNA a 

nested PCR approach was chosen to reduce non-specific binding of primers and 

therefore DNA amplification. Nested PCR involved two sets of primers that were 

used in two successive runs of PCR. The second set amplified a secondary target 

within the product of the first run. The second run was also used for adding tails to 

the PCR product to simplify subsequent sequencing. Therefore, exon spanning 

primer pairs for the 28 exons of the EGFR gene (biomers, Ulm, Germany) were 

designed using the Primer 3 software 89. At the 5’ end of each of the nested 

primers a tail was added which represented either the M13 universal- 

(GTAAAACGACGGCCAGT) or T7 RNA polymerase binding site sequences 

(TAATACGACTCACTATAGG) (see 7.2, Primers used for sequencing of the 

EGFR gene, page 83). This approach resulted in tailed PCR products which could 

be uniformly sequenced by using either M13 universal- or T7 primers. PCR 

conditions were optimized using HotStarTaq polymerase (Qiagen, Hilden, 

Germany) in the presence of 400 nM of each of the respective primers, 200 μM 

dNTP (Fermentas, St.Leon-Rot, Germany), 1x PCR reaction buffer (Qiagen, 

Hilden, Germany) containing 1.5 mM MgCl2. Exon 1 to 27 were amplified using the 

protocol from Table 2 with slight adjustments: elongation for 30 seconds and 50 

cycles altogether. The PCR protocol for exon 28 differed only in that the extension 

step was 1 minute. As the template either 2 μl of the DNA isolate or 1 μl of the first 

PCR product were taken for the first or nested PCR respectively. 
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Proof-reading PCR was used for reactions whose products were used for cloning 

of plasmids. KOD Hot Start DNA Polymerase (Novagen, Merck, Darmstadt, 

Germany) was used according to the manufacturer’s protocol. 

Agarose gel electrophoresis 

Agarose gel electrophoresis was used for DNA separation and sizing. For a 1% 

agarose gel 1 g of agarose (Biozym, Hessisch Oldendorf, Germany) was dissolved 

in 100 ml 0.5xTBE (Thermo Fisher Scientific, Waltham, USA) and heated by 

microwave. The mixture was then cooled down to approximately 60 °C and 3 µl of 

ethidium bromide (Sigma Aldrich, St. Louis, USA) were added. Liquid gel was 

poured into gel sledges and cooled down at room temperature. For DNA analysis, 

gels were loaded with 5 µl of DNA standard (O’GeneRuler Ultra Low Range DNA 

Ladder, GeneRuler 100 bp DNA Ladder or GeneRuler 1 kb DNA Ladder, Thermo 

Fisher Scientific, Waltham, USA) and DNA samples that were mixed with loading 

dye (5 volumes of DNA sample and 1 volume of loading dye solution which is 

supplied with the DNA ladder). 

Purification of DNA from agarose gel 

The purification of DNA from agarose gels was performed using QIAquick Gel 

Extraction Kits (Qiagen, Hilden, Germany) following the manufacturer’s protocol. 

Cloning of plasmids 

The plasmid overexpressing LEF-1 (pLNCX2-Lef1_3xmyc) was obtained using the 

In-Fusion 2.0 Dry-Down PCR Cloning Kit. To obtain the pLNCX2 backbone a 

pLNCX2 plasmid (Clontech, Mountain View, USA) was digested with NotI and 

XhoI and purified applying DyeEx 2.0 Spin Kits (Qiagen, Hilden, Germany). 

Preparing the backbone for the In-Fusion reaction was performed by proof reading 

PCR (KOD Hot Start DNA Polymerase, primers: pLNCX2_bb_fw, pLNCX2_bb_rev 

see Table 3, 40 cycles, annealing at 60 °C, extension for 5 minutes) of the 

digested pLNCX2 plasmid. The product was verified using an agarose gel and the 

band was cut out and purified (QIAquick Gel Extraction Kits; Qiagen, Hilden, 

Germany). As PCR products are not methylated but the plasmid originating from 

bacteria was, the purified PCR product was digested with methylation-dependent 
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DpnI to eliminate remains of the original plasmid and purified again with the DyeEx 

2.0 Spin Kit (Qiagen, Hilden, Germany). The second component for the In-Fusion 

reaction (the LEF-1 insert) was also prepared by proof reading PCR (KOD Hot 

Start DNA Polymerase, primers: LEF1_fw, LEF1_rev see Table 3, 40 cycles, 

annealing at 60 °C, extension for 1 minute) of a pcDNA-LEF-1 plasmid introducing 

enzyme digestion sites and a triple myc-tag. The PCR product was purified with 

QIAquick PCR Purification Kit, digested with DpnI (FastDigest, Fermentas, 

St.Leon-Rot, Germany) to eliminate remains of the original plasmid and purified 

again with the DyeEx 2.0 Spin Kit (Qiagen, Hilden, Germany). Both of the 

prepared components as well as appropriate controls were introduced into the In-

Fusion reaction strictly following the manufacturer’s manual. Single clones were 

picked and screening PCRs flanking the insert (HotStarTaq DNA Polymerase 

(Qiagen, Hilden, Germany) primers: pLNCX2_screen_fw, pLNCX2_screen_rev 

see Table 3) were applied to identify positive clones. 

Plasmids overexpressing TCF4 (pLNCX2-TCF4_3xmyc), and EGFP (pLNCX2-

EGFP_3xmyc) were obtained by Gateway cloning 6, 51, 61, 73. attB-PCR products 

were obtained by proof reading PCR (KOD Hot Start DNA Polymerase, 40 cycles, 

annealing at 60 °C, extension for 1 minute): 

- TCF4 (template: pLNCX2-TCF4-HA (Clontech, Mountain View, USA, 

modified by Silvio Scheel), primers: TCF4_attB_fw, TCF4_attB_rev see 

Table 3) 

- EGFP (template: pEGFP-C1 (Clontech, Mountain View, USA), primers: 

EGFP_attB_fw, EGFP_attB_rev see Table 3) 

The BP reaction of the Gateway cloning was performed following the user’s 

manual (Invitrogen, Life Technololgies, Carlsbad, USA). For the BP reaction a 

PCR product with flanking attB sites is combined with a Donor Vector containing 

attP sites by BP Clonase Enzyme Mix to receive an Entry Clone containing attL 

sites that are flanking the gene of interest. In this case the Donor Vector (pDONR 

201, Invitrogen, Life Technololgies, Carlsbad, USA) was mixed with the respective 
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attB-PCR product (see above) and incubated with the BP Clonase Enzyme Mix 

according to the manufacturer’s instructions to receive the Entry Clones. 

The LR reaction of the Gateway cloning was performed following the user’s 

manual (Invitrogen, Life Technololgies, Carlsbad, USA). For the LR reaction the 

Entry Clone containing attL sites is combined with the Destination Vector 

containing attR sites, promotor and tags by BP Clonase Enzyme Mix to receive the 

Expression Clone containing attB sites that are flanking the gene of interest. The 

expression vector is ready for gene expression. In this case the respective Entry 

Clones and the Destination Vector (pDEST-LNCX2-3xMYC-pA, modified from 

pLNCX2-Lef1_3xmyc) were mixed and incubated with the LR Clonase Enzyme 

Mix according to the manufacturer’s instructions to receive the expression 

plasmids (pLNCX2-TCF4_3xmyc, pLNCX2-EGFP_3xmyc). 

 

Table 3. Primers used for cloning of plasmids 

Primer Sequence 5’  3’ 

pLNCX2_bb_fw TGAGTCCGGTAGCGCTAGC 

pLNCX2_bb_rev ATCATAATCAGCCATACCACATTTG 

LEF1_fw GCGCTACCGGACTCAGATCTGCCACCATGCCCCAACTCTC 

LEF1_3xmyc_rev 
ATGGCTGATTATGATCTACAGGTCCTCCTCGGAGATCAGCTTCTGCTCC
ATCAGGTCCTCCTCGGAGATCAGCTTCTGCTCCATCAGGTCCTCCTCG
GAGATCAGCTTCTGCTCCATGGATCCGATGTAGGCA 

pLNCX2_screen_fw ACCTACAGGTGGGGTCTTTCATTCCC 

pLNCX2_screen_rev CGTGTACGGTGGGAGGTCTA 

TCF4_attB_fw 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCTAGATCTGCCACCATGGA
GCAGAAGCTGATCAG 

TCF4_attB_rev 
GGGGACCACTTTGTACAAGAAAGCTGGGTATTCTAAAGACTTGGTGAC
GA 

EGFP_attB_fw 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCTAGATCTGCCACCATGGT
GAGCAAGGGCGAGGAGCTG 

EGFP_attB_rev 
GGGGACCACTTTGTACAAGAAAGCTGGGTATCTAGATCCGGTGGATCC
CGG 
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Sequencing of DNA 

Sequencing was performed using the Sanger sequencing approach. For the 

sequencing PCR BigDye Terminator v1.1 (for PCR products) or v.3.1 (for 

plasmids) Cycle Sequencing Kit (Applied Biosystems, Darmstadt, Germany) was 

used following the manufacturer’s instructions. PCR products of the sequencing 

reaction were purified applying DyeEx 2.0 Spin Kits (Qiagen, Hilden, Germany), 

denatured in the presence of highly deionized formamide (HiDi, Applied 

Biosystems, Darmstadt, Germany) and finally analyzed with the help of a 3130 

Genetic Analyzer (Applied Biosystems, Darmstadt, Germany) following the 

respective user’s instructions. 

The resulting sequences were analyzed by alignment to the respective known 

mRNA/cDNA sequence as the reference (i.e. NM_005228 for EGFR). Alignment of 

sequences and comparisons was done applying the software Geneious Pro 4.7.4 

(biomatters, Auckland, NZ). 

Isolation of RNA from eukaryotic cells 

Isolation of total RNA from eukaryotic cells was performed using RNeasy Mini Kits 

(Qiagen, Hilden, Germany) following the manufacturer’s instructions. 

Reverse transcription 

For the reverse transcription of RNA to cDNA the RevertAid Reverse 

Transcriptase Kit (Fermentas, St.Leon-Rot, Germany) was used according to the 

manufacturer’s instructions. 

Quantitative real time PCR (qPCR) 

qPCR was performed using the ready-to-use hot start reaction mix for probe-

based real-time PCR from Roche (LightCycler 480 Probes Master, Roche Applied 

Science Penzberg) in combination with Universal Probes using the Light-Cycler 

480 (Roche Applied Science, Penzberg, Germany). For each gene the online 

Universal ProbeLibrary Assay Design Center was used to design primer pairs and 

to find the corresponding Universal Probe. The following Table 4 shows the 

analyzed genes and associated primers and probes. 
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Table 4. Primers and probes (UPL) used for qPCR 

Gene Acc# forward primer reverse primer UPL Length [bp] 

HPRT NM_000194.2 
tgaccttgatttattttgc
atacc 

cgagcaagacgttca
gtcct 

73 102 

LEF-1 NM_016269.2 
cgacacttccatgtcc
aggt 

tcctgtttgacctgaggt
gtt 

42 108 

TCF4 NM_030756 
acgtacagcaatgaa
cacttcac 

ggcgatagtgggtaat
acgg 

10 128 

E-cadherin NM_004360 
cccgggacaacgttta
ttac 

gctggctcaagtcaaa
gtcc 

35 72 

vimentin NM_003380 
tacaggaagctgctg
gaagg 

accagagggagtga
atccag 

13 104 

fibronectin NM_005434 
ctttggtgcagcacaa
cttc 

tcctcctcgagtctgaa
cca 

15 90 

 

qPCRs were performed in triplicates and following the manufacturer’s instructions. 

Primer concentrations were optimized in test measurements before use in final 

measurements. To determine the absolute concentration of cDNA, standard series 

of known cDNA concentrations were analyzed in parallel. 

2.2 Proteinchemical methods 

Protein isolation 

Protein lysates were prepared with protein lysis buffer (triple-detergent lysis buffer: 

50 mM Tris-HCl, pH 8.0; 150 mM NaCl; 0.02 % (w/v) NaN3; 0.5 % (w/v) sodium 

deoxycholate; 0.1 % (w/v) SDS; 1 % (v/v) NonidetTM P-40) supplemented with 0.7 

mM PMSF and 1x Complete Protease Inhibitor (Roche Applied Science, 

Penzberg, Germany). Protein concentrations were determined using DCTM Protein 

Assay following the protocol (BioRad, Hercules, USA). 

Western blot 

20 µg of the protein were used for polyacrylamide gel electrophoresis (minigel 

system, BioRad, Hercules, USA). The size standard used was the PageRuler Plus 

Prestained Protein Ladder (Thermo Fisher Scientific, Waltham, USA). The 

denaturing gels were prepared as follows. 
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Table 5. Polyacrylamide gel composition for electrophoresis of proteins 

 separating gel (10 %) stacking gel (3.9 %) 

acrylamide rotiphoresis gel (Roth) 5 ml 650 µl 

4xTris-HCl, pH 8.8 3.75 ml - 

4xTris-HCl, pH 6.8 - 1.25 ml 

H2O 6.25 ml 3.05 ml 

APS 200 µl 100 µl 

TEMED 40 µl 20 µl 

 

After blotting onto PVDF membranes (Millipore, Merck, Darmstadt, Germany), 

primary antibodies were added. HRP conjugated secondary antibodies and 

subsequent incubation with ECL Western Blotting Detection Kit (Amersham, GE 

healthcare, UK) was used for the visualization of bands. The antibodies are 

summarized in Table 6. 

Table 6. Primary and secondary antibodies used in the studies 

Antibody Dilution Source Company Molecular weight 

Mouse anti-TCF4 1:2000 Mouse Upstate 66 kDa 

Rabbit anti-LEF-1 1:1000 Rabbit Cell signaling 25 – 58 kDa 

Mouse anti-myc-tag 1:1000 Mouse Upstate n.a. 

Mouse anti-β-actin 1:2000 Mouse Sigma-Aldrich 43 kDa 

Mouse anti-rabbit 1:10000 Mouse Pierce n.a. 

Rabbit anti-mouse 1:20000 Rabbit Pierce n.a. 

 

2.3 Microbiological methods 

Transformation 

Transformation of plasmids was performed using Subcloning Efficiency DH5α 

Competent Cells (Invitrogen, Life Technololgies, Carlsbad, USA) according to the 

manufacturer’s instructions. 
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Transformation of ligation reactions were performed using Library Efficiency DH5α 

Competent Cells (Invitrogen, Life Technololgies, Carlsbad, USA) according to the 

manufacturer’s instructions. 

Transformation of InFusion products were performed using Fusion-Blue 

Competent Cells (Clontech, Mountain View, USA) according to the manufacturer’s 

instructions. 

Isolation of single cell clones 

Single clones were picked with pipette tips, transferred to LB Medium with 

appropriate antibiotics and incubated at 37 °C overnight. 

Plasmid isolation from E. coli suspension cultures 

Isolation of plasmids was performed using either GeneJet Plasmid Miniprep Kits 

(Fermentas, St.Leon-Rot, Germany) or QIAfilter Plasmid Maxi kits (Qiagen, Hilden, 

Germany) following the respective manufacturer’s instructions. 

2.4 Cell culture methods 

Culturing of eukaryotic cells 

Cell lines used for experiments were: HEK293, HCT116, HT29, SW480, DLD1 

(ATCC, USA). The cells were cultivated in an incubator at 37 °C under an 

atmosphere with 100 % humidity and 5 % CO2. The cultures were checked for 

mycoplasma in regular intervals using the PCR Mycoplasma Test Kit (AppliChem, 

Darmstadt, Germany). All cell lines were maintained in DMEM/Ham’s F-12 (1:1) 

(Biochrom, Berlin, Germany) with 7.5 % fetal bovine serum (Biochrom, Berlin, 

Germany) and 50 µM 2-mercaptoethanol (Invitrogen, Life Technololgies, Carlsbad, 

USA). Cultivation of colorectal cancer stem cells (coCSCs) and spheroid derived 

adherent cells (SDACs) was performed by Achim J. Schäffauer as described in his 

PhD Thesis (Die Bedeutung von BMI1 beim Cancer-Stem-Cell-Phänotyp 

kolorektaler Krebszellen). coCSC were kept in StemPro® hESC SFM Medium 

(Life Technologies, Carlsbad, USA) supplemented with EGF (Life Technologies, 

Carlsbad, USA) and FGFb (Life Technologies, Carlsbad, USA) or also with 

Matrigel® (Corning Incorporated, Corning, USA). Differentiation of coCSCs to 
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SDACs was done with DMEM/F-12 (1:1) (1x) + GlutaMAX™ medium 

supplemented with FBS (Biochrom, Berlin, Germany) or also with collagen. 

Harvesting of coCSCs and SDACs for RNA isolation was done after 7 or 14 days 

after induction of differentiation. 

Passaging of cells 

Cells were passaged when reaching ~ 90 % confluence into larger culture volumes 

or proportionately kept in similar sized cultures. The medium was aspirated and 

the cells washed with PBS. Trypsin/EDTA (Biochrom, Berlin, Germany) was added 

and the cells were incubated at 37 °C for 5 minutes or until cell detachment could 

be seen under a microscope. The detached cells were then partly or in total 

transferred to the consecutive culture vessels filled with pre-warmed culture 

medium. 

Determining the cell count 

The cell count was determined using a hemocytometer. Counting of cells was 

necessary to determine defined cell seeding densities, e.g. for transfection. 

Transfection of eukaryotic cells 

Lipofection 

Transient transfections of plasmids were conducted in 6-well plates (Corning 

Incorporated, Corning, USA) with FuGene® 6 Transfection Reagent (Roche 

Applied Science, Penzberg, Germany) following the manufacturer’s instructions. 

3x105 cells were plated per well. FuGene® 6 : plasmid DNA ratio was 6 µl : 2 µg. 

Successful transfection was visualized by transfecting pEGFP-C1 (Clontech, 

Mountain View, USA). For RNA isolation or protein lysate preparation cells were 

harvested after 48 hours. 

Transfection of siRNA 

LipofectamineTM RNAiMAX (Invitrogen, Life Technololgies, Carlsbad, USA) was 

used for transfection of siRNA. The manufacturer’s protocol for forward 

transfection was used (cells are being plated before the transfection mix is added). 
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3x105 cells were plated per well of 6-well plates (Corning Incorporated, Corning, 

USA). LipofectamineTM concentrations and siRNA concentrations were tested for 

each cell line. The following concentrations were the optimum in both transfected 

cell lines (SW480 and DLD1): 

- si LEF-1 (Dharmacon OnTargetplus Smartpool): 33.3 nM + 7.5 µl Lipo-

fectamine per 6-well. 

- si TCF4 (Dharmacon OnTargetplus Smartpool): 50 nM + 7.5 µl 

Lipofectamine per 6-well. 

For RNA isolation or protein lysate preparation cells were harvested after 48 

hours. 

Electroporation 

Stable transfections of circular plasmids were conducted with the AmaxaTM 

NucleofectorTM (amaxa, lonza, Basel, Switzerland) and cell line specific 

Nucleofector Kits (HCT116: Cell Line NucleofectorTM Kit V, HT29: Cell Line 

NucleofectorTM Kit R) following the manufacturer’s instructions. For one 

nucleofection sample 1x106 cells and 2 µg plasmid DNA were used. Successful 

transfection was visualized by transfecting 2 µg pmaxGFPTM (amaxa, lonza, Basel, 

Switzerland). Selection of transfected cells was performed with 0.4 mg/ml G418 

(Calbiochem, Merck, Darmstadt, Germany). 

Transduction of eukaryotic cells 

Mission lentiviral particles (Sigma-Aldrich, St. Louis, USA) encoding shRNA 

specific for enhanced green fluorescent protein (SHC005V) as the control or the 

human LEF-1 (SHCLNV-NM_016269) or TCF4 (SHCLNV-NM_030756) were used 

for transduction of HCT116 or HT29 cells. Three different shRNAs against LEF-1 

(TRCN0000020163, TRCN0000020162, TRCN0000020161) and six different 

shRNAs against TCF4 (TRCN0000061897, TRCN0000061895, 

TRCN0000061893, TRCN0000174115, TRCN0000061896, TRCN0000061894) 

were used. Ahead of transduction Polybrene® (Sigma-Aldrich, St. Louis, USA) 

was added to the culture medium (8 µg/ml). Transduction was performed with a 

MOI (multiplicity of infection) of 5 and selection for stable transfection started two 



Material and methods  

30 

 

days later applying puromycin dihydrochloride (Calbiochem, Merck, Darmstadt, 

Germany) with the following concentrations: DLD1: 6 µg/ml, SW480: 2 µg/ml. 

Isolating single cell clones 

Single cell clones were picked with pipette tips from cell culture plates after 

seeding cells at low densitiy and visible colonies had grown. Picked colonies were 

transferred to new culture vessels. 

Luciferase assay 

Luciferase assays were performed using the Dual-Luciferase Reporter Assay 

System (Promega, Madison, USA). 

5x104 cells in 100 µl medium were seeded per well in 96-well culture plates 

(Corning Incorporated, Corning, USA). Three wells were seeded for each 

measurement so that triplicates could be analyzed. FuGene 6 Transfection 

Reagent (Roche Applied Science, Penzberg, Germany) was used in the following 

ratio: 0.4 µl FuGene : 0.1 µg DNA. Renilla Luciferase plasmid (see 7.5 Plasmids) 

level was constant at 10 % of the DNA amount for adjustment of wells. Reporter 

plasmids TopFlash firefly luciferase plasmid or FopFlash firefly luciferase plasmid 

level was 30 %. Some luciferase assays were performed with addition of a basic 

activator plasmid expressing β-catenin (pcI-neo-ßcatenin-D45, see 7.5 Plasmids). 

The plasmid that was to be tested in a luciferase assay was added in varying 

concentrations. The final amount of DNA was reached by addition of a fill up 

plasmid (pcDNA3-CAT, see 7.5 Plasmids). The addition of a fill up plasmid was 

performed to ensure the same final DNA concentration in each well and each 

experiment. The fill up plasmid was also used as the control. Preparation of cell 

lysates by passive lysis after 48 hours, preparation of Luciferase Assay Reagent ll 

and Stop & Glo Reagent as well as all following steps were performed following 

the manufacturer’s instructions.  

Proliferation assay 

Proliferation of cells was determined using the Cell Proliferation ELISA, BrdU 

(colorimetric) kit (Roche, Mannheim, Germany) following the manufacturer’s 
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instructions. Three wells of a 96-well culture plate (Greiner, Kremsmünster, 

Austria) were seeded with 4000 cells in 100 µl medium for each measurement so 

that triplicates could be analyzed. Cells were then transfected by lipofection. First 

measurements were taken after one day and then each following day. For this, 

BrdU labeling solution was added to the wells (final concentration: 10 µM BrdU) 

and cells were reincubated for another 20 hours. Then labeling medium was 

removed and 200 µl/well FixDenat were added and incubated for 30 minutes at 

room temperature. FixDenat was removed and 100 µl/well anti-BrdU-POD working 

solution were added and incubated for 90 minutes at room temperature. This 

solution was removed and the wells were rinsed three times with 200 µl Washing 

solution. The Washing solution was then removed and 100 µl/well Substrate 

solution were added. After an incubation of 30 minutes at room temperature and 

adding 25 µl stop solution (H2SO4) the absorbance was measured in an ELISA 

reader at a wavelength of 450 nm (reference wavelength: 690 nm). 

Migration assay 

The migration of cells was analyzed using ibidi chambers (ibidi, Planegg, 

Germany) following the manufacturer’s instructions. In short, 70 µl of a 4x105 

cells/ml suspension were seeded per ibidi chamber well. Two chambers were 

used per experiment. After 48 hours chambers were removed, the cells carefully 

washed with PBS to clean the gaps and the gaps were then photographed. 

Migration was detected after 24 hours by photographing and evaluated by 

measuring the gaps at 5 to 10 randomly predefined spots.  

2.5 Statistical analysis 

Skin toxicity was correlated with a variety of clinico-pathological data (Table 7) 

applying Fisher’s exact test. PFS and OS were compared between both groups 

using Kaplan-Meier estimation. For comparison of the differences the log-rank test 

was used. All statistical results were considered significant when the two-sided α-

error was less than 0.05.  
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3 Results 

3.1 Predictive biomarker for anti-EGFR treatment 

To identify genetic alterations in the EGFR gene which associated with skin 

toxicity and thus response under anti-EGFR targeted therapy with a high predictive 

value, a teaching / validation set approach was chosen, employing FFPE tissue 

from CRCs of the clinical CIOX study (AIO KRK-0104) 75. Only patients displaying 

the highest grade (3) versus lowest grade (0) skin toxicity were selected from the 

CIOX study as they represented the highest contrast which generally should ease 

the finding of genetic differences in those two groups. Importantly, skin toxicity and 

objective response rate (ORR) as well as disease control rate (DCR) correlated 

with high significance (Table 7) 7, 14, 63, 90, 102. 

3.1.1 Teaching set analysis 

When using boundaries of 5 and 95 % for the predictive values respectively, an 

effect size of 0.9 results (=0.95 – 0.05). Together with a two-sided error of α≤0.05 

and β≤0.05 (power=0.95) in the context of exact test statistics a minimum sample 

size of 6 patients is needed for the analysis. To improve the quality of the results 

more patient samples were analysed in the teaching and validation set. 

In a first step, the 28 exons of the EGFR gene from 20 patients of the teaching set 

with either grade 3 skin toxicity (10 patients) or absence of skin toxicity (grade 0, 

10 patients) were analyzed using Sanger sequencing. A variety of genetic 

alterations was found (Figure 7, and 7.3 Genetic alterations, page 85, 7.4 Allelic 

frequencies, page 87) which contained the already known polymorphisms 

c.474C>T: rs2072454, c.1562G>A: rs2227983 (p.R521K), c.2361G>A: rs1050171, 

c.2709C>T: rs1140475, and c.2982C>T: rs2293347 18. 

Of the 25 different genetic alterations in the EGFR gene, 14 were silent alterations 

not resulting in an amino acid change while the remaining different 11 genetic 

alterations resulted in an amino acid change (Figure 7, Table 8). 
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Table 7. Baseline characteristics, pathological data and treatment efficacy of the 45 

investigated patients. Reduced patient number for pathological data and treatment efficacy 

due to censored patients or missing data (e.g. follow up not possible, poor quality of 

tissue…). Significant differences are indicated by bold typing. CAPIRI: capecitabine and 

irinotecan; CAPOX: capecitabine and oxaliplatin; DCR: disease control rate (ORR plus 

stable disease); KRAS mut: mutations in codons 12 or 13 of the KRAS gene; NCI-CTCAE 

Grade: National Cancer Institute Adverse Event, version 3.0
12

; n.s.: not significant; ORR: 

objective response rate (complete remission plus partial remission); OS: overall survival; p: 

probability; PFS: progression free survival; yrs: years; 
ᵼ
: logrank test; *: Fisher´s exact test 

(two sided); 
♯
:2 patients censored; 

▲
: 3 patients censored.  

Baseline characteristics 

 
NCI-CTCAE 

acneiform rash 
 

 
grade 0 

(n=19) 

grade 3 

(n=26) 
p 

age (mean) yrs 

range 

63.2 

(49 – 74) 

61.4 

(48 – 75) 
n.s. 

age > 65 yrs % (n) 47.9 (9) 42.3 (11) 0.770* 

gender 

female % (n) 

male % (n) 

 

26.3 (5) 

73.7 (14) 

 

15.4 (4) 

84.6 (22) 

 

 

0.461* 

treatment arm 

CAPIRI + cetuximab % (n) 

CAPOX + cetuximab % (n) 

 

42.1 (8) 

57.9 (11) 

 

42.3 (11) 

57.7 (15) 

> 0.99* 

 

Pathological data 

KRAS mut % (n) 16.7 (3 of 18) 34.6 (9 of 26) 0.303* 

liver limited disease 50.0 (9 of 18) 36.0 (9 of 25) 0.532* 

Treatment efficacy 

ORR % (n) 0 (0 of 6) 58.3 (14 of 24) 0.019* 

DCR % (n) 50.0 (3 of 6) 100 (24 of 24) 0.005* 

PFS (months) 

(95 % CI) 

2.8♯ 

(0.4 – 5.1) 

8.2 

(6.9 – 9.5) 
0.305ᵼ 

OS (months) 

(95 % CI) 

17.0▲ 

(7.9 – 26.1) 

23.5▲ 

(11.7 – 35.4) 
0.255ᵼ 
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Figure 7. Schematic image of the 28 exons of the EGFR gene with its domains (column: 

domains) and all found alterations on the DNA level (column: genetic alteration). Genetic 

alterations in bold also result in amino acid changes (see also column: aa change). These 

were associated with the skin toxicity (column: patient ID, green: grade 0 (P1-P10); red: 

grade 3 (P11-P20)). Scheme is not drawn to scale. 
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Table 8. Amino acid (aa) exchanges in the EGFR of patients with skin toxicity grade 0 and 3. 

skin toxicity 

[grade] 

aa  teaching set validation set 

0 

WT P1, P2, P3, P6, P8 
P21, P23, P24, P26, P27, 

P29 

p.E97K P9  

p.E102K  P28 

p.E391K P10  

p.P644S  P28 

p.H773Y P4, P7  

p.C775Y  P28 

p.L788F P5  

p.V1147I  P25 

p.Q1174stop P4  

p.P1178S  P22 

p.Q1185R P5  

p.P1202S  P28 

3 

WT 
P11, P12, P13, P16, P17, 

P18, P20 

P30, P32, P34, P35, P36, 

P41, P42, P44, P45 

p.E391G  P38 

p.H507Y  P40 

p.G514D  P38 

p.V659M  P33 

p.R680Q P15  

p.L815F  P37 

p.W880stop  P43 

p.I886T  P40 

p.Q894R P15  

p.P1098S  P39 

p.T1145I P14  

p.W1157stop  P31 

p.Q1159stop P19  
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Of these 11 genetic alterations, 6 were associated with high grade skin toxicity and 

8 with the absence of skin toxicity. SNP rs1050171 was found twice in patients 

with absence of skin toxicity whereas SNP rs2227983 was found in the group 

without skin toxicity as well as in the group with high grade skin toxicity. 

3.1.2 Validation set analysis 

Next, the results were confirmed applying a validation set of 25 patients from the 

CIOX collection, again with either absence of, or high grade skin toxicity. Now only 

exons that had shown genetic alterations in the teaching set were analyzed. Again 

a variety of genetic alterations was found. Some had been described like SNPs 

c.1562G>A: rs2227983 or c.2361G>A: rs1050171 while others had not been 

identified before (Figure 8, Table 8, 7.3 Genetic alterations page 85, 7.4 Allelic 

frequencies page 87). 

Importantly, the pattern of genetic alterations in the EGFR gene was 

heterogeneous and did not result in genetic alterations which could discriminate 

between high grade and absence of skin toxicity with a high predictive value. 
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Figure 8. Scheme of the EGFR gene with allocated genetic alterations on DNA and protein 

level and their association with skin toxicity (validation set). Legend: see Figure 7, except 

skin toxicity (column patient ID, green grade 0 (P21-29); red grade 3 (P30-45)) 
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3.2 Investigation, characterization and comparison of the programs 

regulated through β-catenin/LEF-1 and β-catenin/TCF4 

3.2.1 Functional role of LEF-1 and TCF4 in CRC tissue 

An indication of the functional role of LEF-1 and TCF4 in patients was examined 

immunohistochemically in CRC tissue 57. The LEF-1 and TCF4 expression was 

analyzed with a tissue microarray of 214 colorectal carcinomas specimens. The 

expression patterns were compared with each other and the results were 

correlated with the clinico-pathological variables and overall survival in univariate 

and multivariate analysis 57. 

This resulted in the following outcome: LEF-1 expression was found in 26 % and 

TCF4 expression in 46 % of tumors. Both proteins were heterogeneously 

distributed throughout the tumors. A subsequent comparison of the LEF-1, TCF4 

and β-catenin expression showed no correlation. In contrast to that, a univariate 

analysis of the expression of TCF4 showed a correlation with a shorter overall 

survival. In addition, the correlation of LEF-1 as well as a LEF-1/TCF4 ratio was 

associated with a positive prognosis with longer overall survival. Summarized, the 

multivariate analysis with tumor stage, gender and age shows that LEF-1 and 

TCF4 expression are independent predictors of longer and shorter overall survival, 

respectively 57. 

3.2.2 Expression of LEF-1 and TCF4 in cell lines 

Several CRC cell lines were analyzed for their presence of the transcription factors 

LEF-1 and TCF4 and of the housekeeper β-actin (Figure 9). RNA of the shown cell 

lines was reverse transcribed (+RT) and PCR was performed. The lanes that are 

marked with –RT show the reverse transcription negative control where no reverse 

transcriptase was added to the reaction. The cell line HEK293 was used as a 

positive control for the PCR and water was used as a negative control. Of the cell 

lines used in this study, two didn’t express LEF-1 but all of them expressed TCF4 

(Figure 9). No cell line could be found that did not express TCF4. But the 

experimental setup of the analyses was chosen so that effects would still be seen. 

To examine, characterize and compare the programs regulated by β-catenin/LEF-
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1 and β-catenin/TCF4 the two cell lines HCT116 and HT29 were converted to cell 

lines expressing LEF-1. As no cell line without TCF4 expression was available, 

TCF4 overexpression was used in those two cell lines to enhance the effects of 

TCF4 and analyze them. 

 

Figure 9. Expression of LEF-1, TCF4 and beta-actin in cell lines used in this work 

PCR of LEF-1, TCF4 and β-actin on cDNA of the cell lines HEK293, HCT116, HT29, SW480 and 

DLD1, water (H2O) used as control, RT = reverse transcriptase, -RT = no reverse transcriptase 

added 

3.2.3 Plasmid preparation and testing 

All the appropriate overexpression plasmids (expression plasmids for LEF-1, TCF4 

and EGFP: pLNCX2-Lef1_3xmyc, pLNCX2-TCF4_3xmyc, pLNCX2-EGFP_3xmyc, 

see 7.5 Plasmids, page 88) were successfully cloned (see Material and Methods 

page, Cloning of plasmids, page 20) and tested as follows. Functionality of the 

plasmids (whether encoded protein is synthesized) was shown using Western blot 

(example see Figure 10) and functionality of the synthesized proteins was shown 

using luciferase assays (see Figure 11). 
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Protein presence in the transiently transfected HCT116 cells (by lipofection) was 

shown in a LEF-1, myc-tag and β-actin specific Western blot (Figure 10) after 

protein isolation. 

 

Figure 10. Western blot for testing of cloned LEF-1 plasmids 

Western Blot specific for LEF-1, myc tag and β-actin of transiently transfected HCT116 cells; lane 

1: HCT116; lane 2: HCT116 pCDNA LEF-1 (positive control for LEF-1), lane 3: HCT116 pLNCX2-

Lef1_3xmyc; lane 4: HCT116 pLNCX2-Lef1_1xmyc; lane 5: pLNCX2-bCateninER-myc (positive 

control for myc tag), lane 6: HCT116 pEGFP-C1  

The first lane shows the nontransfected HCT116 cell lysate with no detectable 

LEF-1 protein. The following lanes two to four show first of all a positive control 

lysate (HCT116 LEF-1 ctrl: HCT 116 transiently transfected with pcDNA-LEF-1) 

and next to that the lysates of the cells transfected with the cloned LEF-1 

expression plasmids (lane 3: HCT116 pLNCX2-Lef1_3xmyc, lane 4: HCT116 

pLNCX2-Lef1_1xmyc). Distinct bands can be seen in all three lanes in the blot 

showing the LEF-1 signals. The LEF-1 plasmid with a triple myc tag is slightly 

shifted towards a higher molecular weight. This is due to the prolonged length of 

the resulting protein as it carries three myc tags at its end. The blot showing the 

myc-tag signals only show bands in the lanes 3 and 4 where the myc-tagged LEF-

1 lysates were applied. Lane 5 contains a lysate of cells that were transfected with 
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a myc-tag expressing protein as a positive control for the myc-tag. The last lane 

displays the negative control expressing EGFP. Functionality of the control-

plasmid (expression of EGFP) was confirmed by checking for green fluorescence 

of the cells under the microscope. 

Luciferase assay was performed to test the cloned plasmids for the functionality of 

their encoded proteins (Figure 11). 

 

Figure 11. Luciferase assay for testing of LEF-1 and TCF4 plasmid functionality 

top: HCT116 with transient expression of pLNCX2-LEF1_3xmyc; bottom: HEK293 with transient 

expression of pLNCX2-TCF4_3xmyc (ctrl column: transient expression of fill up plasmid; β-catenin 

column: transient expression of basic activator plasmid; following columns: transient expression 

with increasing concentrations of the two plasmids to be analyzed); RLU: relative light units 



Results 

42 

 

The luciferase test construct consists of a LEF-1 / TCF4 activatable luciferase 

gene downstream of LEF-1 and TCF4 binding sites. Functional transcription 

factors enable transcription of the luciferase and the result is measured in light 

units that result from an enzymatic reaction triggered by the luciferase. Figure 11 

shows the luciferase assay of HCT116 cells with the transiently transfected LEF-1 

plasmid. A dose dependent increase in luciferase activity can be seen. When 

transcription factor concentrations rise higher the activity decreases. 

When the transcription factors bind (together with β-catenin) to specific binding 

sites (the β-catenin/Tcf/Lef-binding elements (TBE) in front of a luciferase gene), 

the transcription of the following gene starts. With increasing transcription factor 

concentrations, there is also an increase in the luciferase signal (relative light 

units). This increase in signal is a sign of functional transcription factors (Figure 

11). With higher concentrations the luciferase signal decreases. This is due to the 

saturation of the transcription factor binding site. Both, transcription factor and β-

catenin need to bind to the site to start transcription. When transcription factor 

concentrations rise too high, there is an oversupply in LEF-1 or TCF4 so they 

replace the β-catenin transcription factor pairs. Only LEF-1 or TCF4 without β-

catenin cannot successfully start transcription. So the decrease in luciferase 

activity that can be seen is not a sign for missing functionality of the transcription 

factors but a sign for too high transcription factor concentrations. 

Functionality of the overexpression constructs could be shown by luciferase assay. 

Thus the effects of the transcription factors on migration were analyzed next. 

3.2.4 Functional characterization of transcription factor effects in transiently 

transfected cells 

Migration assays were performed to check for altered behavior of the differently 

transfected cells (Figure 12). Migration was similar whether cells were transfected 

with LEF-1 or TCF4 or whether they were transfected with control plasmids (lacZ 

or EGFP) or no plasmids (transfection reagent (FuGene®) or untransfected). 
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Figure 12. Migration assay of transiently transfected HCT116 cells  

Migration of transiently with LEF-1 (pLNCX2-Lef1_3xmyc), TCF4 (pLNCX2-TCF4_3xmyc) and 

EGFP (pLNCX2-EGFP_3xmyc) transfected HCT116 cells after 24 hours; controls: untransfected 

HCT116 and HCT116 with transfection agent FuGene
®
 

3.2.5 Preparation and testing of stable cell lines 

Subsequently stable cell lines (HCT116 Figure 13, HT29 Figure 14) 

overexpressing LEF-1 or TCF4 were produced. Figure 13 shows the Western blot 

analysis of clones that have been stably transfected with the cloned LEF-1, TCF4 

and EGFP plasmids. The positive controls (HEK293 cell line, transiently 

transfected with LEF-1 or TCF4) in lane 1 and 2 show distinct bands for LEF-1 and 

TCF4 expression. Additionally, it can be seen that only HCT116 LEF-1 clone 2 and 

clone 4 show detectable signals for LEF-1. Only HCT116 TCF4 clone 2 shows a 

second slightly heavier band for TCF4. Nevertheless, the HCT116 clones were 

additionally analyzed with qPCR of transcription factor target genes (Figure 15) 

and a luciferase assay (Figure 16). 

On the other hand, the HT29 clones show no LEF-1 expression in Western blot 

analysis but TCF4 expression can be seen in the HT29 TCF4 clones (Figure 14). 

Those stable cell lines were then functionally characterized. 
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Figure 13. Western blot analysis of stably transfected HCT116 clones 

Western blot specific for LEF-1, TCF4 or β-actin of HCT116 cells stably transfected with LEF-1 

(pLNCX2-Lef1_3xmyc; lanes 4 - 7) or TCF4 (pLNCX2-TCF4_3xmyc; lanes 9 - 13). Lanes 1 and 2 

show the positive controls for LEF-1 and TCF4 (HEK293 transiently transfected with pLNCX2-

Lef1_3xmyc or pLNCX2-TCF4_3xmyc). The stable transfectants HCT116 empty plasmid (pLNCX2- 

3xmyc; lane 3), HCT116 lacZ (pLNCX2-lacZ_3xmyc; lane 8) and HCT116 EGFP (pLNCX2-

EGFP_3xmyc; lane 14) are controls for further experiments. 
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Figure 14. Western blot analysis of stably transfected HT29 clones 

Western blot specific for myc-tag or β-actin of HT29 cells stably transfected with LEF-1 (pLNCX2-

Lef1_3xmyc; lanes 4 - 6) or TCF4 (pLNCX2-TCF4_3xmyc; lanes 9 - 12). Lanes 1 and 2 show the 

positive controls for LEF-1 and TCF4 (HEK293 transiently transfected with pLNCX2-Lef1_3xmyc or 

pLNCX2-TCF4_3xmyc). The stable transfectants HT29 empty plasmid (pLNCX2-3xmyc; lane 3), 

HT29 lacZ (pLNCX2-lacZ_3xmyc; lane 7 - 8) and HT29 EGFP (pLNCX2-EGFP_3xmyc; lanes 13 - 

14) are controls for further experiments. 
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3.2.6 Functional characterization of stable cell lines 

A qPCR was performed to analyze the expression of target genes of the 

β-catenin/LEF-1 and β-catenin/TCF4 transcription factor complexes in the HCT116 

clones (Figure 15). More precisely, the expression of the EMT markers E-cadherin 

and fibronectin was measured. Clones expressing LEF-1 and TCF4 all show a 

reduced E-cadherin expression. But when comparing the expression with the 

control cells that express EGFP, the expression of E-cadherin is higher. Looking at 

fibronectin mRNA, the expression patterns do not correlate with either LEF-1 or 

TCF4 overexpression. They fluctuate between the controls and exceed and 

undercut them. When looking at the luciferase assay the activity varies as well 

(Figure 16). The expression clones show luciferase activities that fluctuate 

between the values of the controls. The clones overexpressing LEF-1 or TCF4 

cannot be distinguished from the controls. 

As the overexpression of LEF-1 and TCF4 did not show differences in the 

expression of their target genes, another approach was chosen to analyze LEF-1 

and TCF4: a siRNA knockdown of the two transcription factors. 
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Figure 15. qPCR analysis of E-cadherin and fibronectin of stable HCT116 clones 

pPCR analysis of E-cadherin and fibronectin on cDNA transcribed from RNA of stable HCT116 

transfectants (empty plasmid: pLNCX2-3xmyc, LEF-1: pLNCX2-LEF1_3xmyc, TCF4: pLNCX2-

TCF4_3xmyc, lacZ: pLNCX2-lacZ_3xmyc, EGFP: pLNCX2-EGFP_3xmyc). Relative expression is 

shown (compared to HCT116 stably transfected with pLNCX2-3xmyc). noRT = no reverse 

transcriptase added 

 

Figure 16. Luciferase assay of stably transfected HCT116 LEF-1 and HCT116 TCF4 clones 

Measurement of luciferase activity in stably transfected HCT116 cells (transfected with empty 

plasmid: pLNCX2-3xmyc, LEF-1: pLNCX2-LEF1_3xmyc, TCF4: pLNCX2-TCF4_3xmyc, lacZ: 

pLNCX2-lacZ_3xmyc, EGFP: pLNCX2-EGFP_3xmyc). RLU: relative light units 
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3.2.7 Transient knockdown of LEF-1 and TCF4 and its effects on EMT gene 

expression and proliferation 

Another way of investigating the characteristics of proteins is to knock down their 

expression and then analyze the effects. The two cell lines SW480 and DLD1 

expressing LEF-1 and TCF4 (Figure 9) were treated with siRNA against either 

transcription factor. Successful knockdown of LEF-1 and TCF4 in both cell lines 

was shown by qPCR (Figure 17). When looking at the target genes vimentin and 

E-cadherin the knockdown of LEF-1 and TCF4 shows different results in either cell 

line. Vimentin expression goes up when knocking down LEF-1 and TCF4 in 

SW480 and goes down in DLD1. E-cadherin expression stays the same when 

knocking down LEF-1 in both cell lines. When knocking down TCF4 E-cadherin 

goes down in SW480 and up in DLD1. There is also an up regulation of LEF-1 

when knocking down TCF4 in both cell lines. A trend for an up regulation of TCF4 

can be seen when knocking down LEF-1. 

Although no coherent effects could be seen with the knockdown of LEF-1 and 

TCF4, the siRNA treated cells were analyzed in a proliferation assay (Figure 18). 

In DLD1 cells transfected with siRNA against both transcription factors as well as 

controls there was no difference in the proliferation of cells. In SW480 cells a small 

effect showing slower proliferation can be seen after treatment with siTCF4. 

Then stable knockdown cell lines were produced to maximize the effects of the 

knockdown for further analysis. 
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Figure 17. qPCR of SW480 and DLD1 transfected with siRNA against LEF-1 or TCF4. 

qPCR of LEF-1, TCF4, vimentin and E-cadherin on cDNA transcribed from mRNA of the transiently 

with anti-LEF1 or anti-TCF4 siRNA transfected cell lines SW480 (top) and DLD1 (bottom). Relative 

expression is shown (compared to cDNA level of untransfected SW480 or DLD1 cells) 
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Figure 18. Proliferation assay of SW480 and DLD1 after LEF-1 or TCF4 knockdown 

Proliferation of SW480 and DLD1 cells transiently transfected with anti-LEF1, anti-TCF4 siRNA or 

control transfections (anti-GFP si RNA and transfection reagent without si RNA) was measured by 

BrdU incorporation after day 1, 2, 3 and 5 (absorption at 450 nm) 
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3.2.8 Stable knockdown of LEF-1 and TCF4 and its effects on EMT gene 

expression 

To analyze the effects further, stable knockdown clones were produced using 

lentiviral shRNA. Knockdown was once again tested by qPCR (Figure 19). 

Measuring the LEF-1 and TCF4 quantities after stable knockdown of each of the 

transcription factors in DLD1 cells shows an effective knockdown of LEF-1 (Figure 

19 top). LEF-1 levels of DLD1 cells with anti-LEF-1 shRNA 1 are reduced to below 

50 % compared to the controls. The anti-LEF-1 shRNA 2 did not result in a 

knockdown of LEF-1 (Figure 18 top: three furthermost columns to the right). The 

shEGFP controls and the clones with TCF4 knockdown (Figure 19 bottom) also 

show varying LEF-1 concentrations. Looking at TCF4 and its knockdown the 

expression goes down to a minimum of 75 %. Here the shEGFP controls show 

consistent TCF4 expression. Clones with LEF-1 knockdown show varying TCF4 

expression. 

Additionally to the analysis of the proteins LEF-1 and TCF4 that were directly 

affected by the knockdown, the clones were also analyzed for their expression of 

the EMT target genes E-cadherin and vimentin to measure the effects of the 

knockdown of LEF-1 and TCF4. qPCR was used to examine the mRNA 

expression of those two genes (Figure 20). 

The E-cadherin controls in themselves vary in a big interval. When then looking at 

the LEF-1 and TCF4 knockdown clones two of the shTCF4 and one of the shLEF-

1 clones show a reduced expression. The vimentin controls vary within an interval 

of a relative expression between one and five. Two of the TCF4 knockdown clones 

show a slightly higher vimentin expression. The shLEF-1 clones lie in the range of 

the controls. 
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Figure 19. qPCR of LEF-1 (top) and TCF4 (bottom) of stable DLD1 knockdown clones 

qPCR of LEF-1 and TCF4 on cDNA transcribed from mRNA of stably transfected DLD1 knockdown 

clones (shRNA against EGFP, TCF4 and LEF-1). Relative expression is shown (compared to 

cDNA level of a DLD1 clone transfected with shRNA against EGFP) 

 

 

 



Results 

53 

 

 

 

 

Figure 20. qPCR of E-cadherin (top) and vimentin (bottom) of stable DLD1 knockdown 

clones 

qPCR of E-cadherin and vimentin on cDNA transcribed from mRNA of stably transfected DLD1 

knockdown clones (shRNA against EGFP, TCF4 and LEF-1). Relative expression is shown 

(compared to cDNA level of a DLD1 clone transfected with shRNA against EGFP) 

No uniform effects could be seen that explain specific effects of either TCF4 or 

LEF-1 knockdown. 
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3.2.9 LEF-1 and TCF4 in tumor cells 

The observation of differences between LEF-1 and TCF4 in paraffin embedded 

tumor tissue was the basis for the following investigation of LEF-1 and TCF4 

expression in primary colorectal tumor tissue. Due to the successful establishment 

of colorectal cancer stem cell (coCSC) cultures and spheroid derived adherent 

cells (SDAC) from primary colorectal tumors by Achim Schäffauer in our group, a 

measurement of LEF-1 and TCF4 expression from these cells was conducted. The 

associated spheroids and SDACs of two tumors were analyzed by qPCR (Figure 

21). In both tumors the LEF-1 and TCF4 expression seem to be higher in the 

differentiated cell population (SDAC) compared to the coCSC populations. 
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Figure 21. qPCR for LEF-1 and TCF4 in primary CRC material 

qPCR of LEF-1 and TCF4 on cDNA transcribed from mRNA of coCSCs and SDACs of two tumors 

(coCSC: colorectal cancer stem cell; SDAC: spheroid derived adherent cell; MG: Matrigel
®
; Coll: 

collagen), mRNA was harvested 7 or 14 days after induction of differentiation 
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4 Discussion 

4.1 Predictive biomarker for anti-EGFR treatment 

Several approaches are being used to understand and treat colorectal cancers 

(CRC). This leads to a better knowledge of the molecular and cellular traits of 

cancer and can therefore help to further apprehend and embed the prognosis of 

this disease. Furthermore, more specific treatments are being investigated and 

introduced. This also leads to a need for better predictive biomarkers to ensure an 

appropriate therapy. 

Anti-EGFR targeted therapy employing cetuximab is a common treatment option 

for mCRC 7, 102. One adverse effect of this therapy is the development of skin 

toxicity in some patients. These patients tend to show a better response to anti-

EGFR treatment, turning the skin toxicity into a retrospect positive predictive value 

7, 14, 63, 102. The underlying mechanism of this correlation is not yet fully understood. 

However, EGFR is a central regulator of multiple epidermal functions 47. As it is 

also the primary target of the treatment, it was standing to reason that genetic 

alterations in the EGFR gene might play a role in this correlation. Therefore, this 

study searched the exon sequences of this gene for a suitable biomarker with high 

negative as well as positive predictive value for the occurrence of skin toxicity that 

can be evaluated before the treatment instead of in retrospect. 

The correlation between skin toxicity and response can clearly be seen in the 

disease control rate (DCR) and objective response rate (ORR) of analyzed 

patients (Table 7). Although differences of mean values in survival times between 

both cohorts (grade 0 and 3) were large, statistical significance was not reached 

due to large confidence intervals probably due to comparably small numbers of 

patients. As the overall survival (OS) was not a result that was concentrated on in 

this study it did not influence the analysis of the EGFR gene. In a further analysis 

of the CIOX study the OS was analyzed between two different groups: patients 

with skin toxicity grade 0-1 and patients with skin toxicity grade 2-3 97. Here a 
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strong trend for longer PFS and OS could also be seen in the group with high skin 

toxicity, but statistical significance was not reached 97. 

Finally, the objective of this analysis was to identify genetic alterations in the 

EGFR gene as a predictive biomarker that were superior to KRAS. KRAS has a 

very good negative predictive value implicating that CRC with mutant KRAS will 

not respond to the therapy. Here, the false negative rate predicting shrinkage of 

the tumor lesion is less than 5 % which is outstanding 2. However, the positive 

predictive value of KRAS is weak being only 61 % 2. This weakness can be seen 

especially when this value is compared to other predictive biomarkers like the 

EML4-ALK (echinoderm microtubule associated protein like 4 - anaplastic 

lymphoma kinase) inversion in lung cancer. Here, a compelling positive predictive 

rate of higher than 95 % was reached 59. Therefore, when using boundaries of 5 

and 95 % for the predictive values respectively, an effect size of 0.9 results 

(=0.95 – 0.05). The aim of this study was to find a biomarker that is as compelling 

as the two markers mentioned above. So together with a two-sided error of α≤0.05 

and β≤0.05 (power=0.95) in the context of exact test statistics a minimum sample 

size of 6 patients is needed for the analysis 25, 26. Therefore a setup with 20 patient 

samples for the teaching set and another 25 patient samples for the validation set 

(N=45) was chosen as an approach that would produce a clear result. This higher 

amount of sample sizes was used to improve the quality of the results. With the 

amount of patient samples used in this study it would be highly probable to identify 

genetic alterations in the EGFR gene as a predictive biomarker superior to the 

KRAS biomarker. 

In a first step, the 28 exons of the EGFR gene from 20 patients of the teaching set 

with either grade 3 skin toxicity (10 patients) or absence of skin toxicity (grade 0, 

10 patients) were analyzed by Sanger sequencing. A variety of genetic alterations 

was found (Figure 7, Table 8, 7.3 Genetic alterations in EGFR page 85) which 

contained already known polymorphisms, thereby validating the analysis system 

for the detection of genetic alterations. Together, the results indicated that the 

distribution of genetic alterations in the EGFR gene is frequent but quite 

heterogeneous and complex. 
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The analysis of the validation set also resulted in the finding of known and new 

genetic alterations (Figure 8, Table 8, 7.3 Genetic alterations in EGFR page 85). 

Again, the pattern of genetic alterations in the EGFR gene was heterogeneous 

and did not result in genetic alteration which could discriminate a biomarker with a 

high predictive value between high grade and absence of skin toxicity and thus a 

responsiveness of the patient to anti-EGFR targeted therapy. 

The aim of the study was to find a biomarker with a high positive predictive value 

for anti-EGFR therapy of CRC. The skin rash reaction of responsive patients is 

such a biomarker, however it can only be retrospectively assessed. 

As the amount of samples used for the study suffices to find frequently occurring 

genetic alterations correlating with skin rash there might be infrequent genetic 

alterations or alterations with a low minor allele frequency that correlate with skin 

rash. Those would be undetectable with the chosen approach but were also 

without interest in this study. 

As it turned out that no polymorphisms in the EGFR gene correlated with the 

extreme forms of skin toxicity (either high grade (grade 3) or absence of skin 

toxicity (grade 0)) more complex combinations of genetic alterations might be the 

basis for finding biomarkers. The situation might be more complex in the sense 

that combinations of genetic alterations might have an applicable predictive value. 

Large patient collections are needed for analyses like this especially when the 

results should also be validated. 

Moreover, other components of the EGFR signaling pathway might be further 

reasonable targets for investigations. Additionally, their regulatory regions like 

promoter/enhancers, introns, 5’ UTR (untranslated region) as well as 3’ UTR 

where mostly binding sites for miRNAs are located. A more complex analysis 

employing next generation sequencing seems to be a rational approach to solve 

the problem. Alternatively, post transcriptional or post translational modifications of 

the EGFR or its associated factors in the different signaling pathways might be 

altered (splicing variants / regulation via miRNAs / ubiquitination) 10, 13, 37, 88. New 

high throughput techniques can facilitate the search for better prognostic and 
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predictive biomarkers 34. Due to the complex signaling pathways that are 

connected with the EGFR, there are numerous other components that need to be 

analyzed to eventually find the optimal predictive biomarker or set of biomarkers 

for the response to the therapy. The markers already in use are just the tip of the 

iceberg and further research will help finding more specific and significant 

biomarkers. 
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4.2 β-catenin/LEF-1 and β-catenin/TCF4 regulated programs in CRC 

To further support the research on prognostic biomarkers the two transcription 

factors LEF-1 and TCF4 that are part of the Wnt pathway which plays a central 

role in the carcinogenesis of colorectal cancer were analyzed for their effect in 

CRC cells. 

To analyze their prognostic values, the expression in samples from patients with 

colorectal cancer were determined and the results were correlated with the overall 

survival of those patients 57. TCF4 was correlated with a shorter overall survival 

which identifies TCF4 as a negative prognostic marker. Contrary to TCF4 the 

expression of LEF-1 as well as a LEF-1/TCF4 ratio were found to correlate with a 

longer overall survival 57. This finding might suggest that TCF4 is the main binding 

partner for β-catenin during the development and progression of CRC. TCF4 

expression might indicate cells that show traits of cancer stem cells (CSC). 

Contrary, LEF-1 expression was more often found in central tumor areas and 

correlated with a better survival which might indicate differentiated tumor cells 

without invasive or metastatic potential 57. 

Due to the different prognostic values of these two transcription factors, a closer 

look was taken at the molecular background. CRC cell lines were used for this 

analysis. Of the cell lines used in this study, two didn’t express LEF-1 but all of 

them expressed TCF4 (Figure 9). No cell line could be found that did not express 

TCF4. But the experimental setup of the analyses was chosen so that effects 

would still be seen. To examine, characterize and compare the programs 

regulated by β-catenin/LEF-1 and β-catenin/TCF4 those two cell lines (HCT116, 

HT29) were converted to cell lines expressing LEF-1. As no cell line without TCF4 

expression was available, overexpression was used in those two cell lines to 

analyze the effects of TCF4. Overexpression of the transcription factors was used 

to make sure that the respective other transcription factor did not compete for the 

β-catenin binding site (LEF-1 with TCF4 overexpression and TCF4 with LEF-1 

overexpression). 

Several cells with varying LEF-1 and TCF4 expression patterns could then be 

analyzed for their characteristics. 
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First of all, the overexpression plasmids were prepared. They were then tested by 

Western blot to check for protein expression (shown for LEF-1 in Figure 10), and 

luciferase assay for checking the functionality of the expressed transcription 

factors (shown for LEF-1 and TCF4 in Figure 11). Importantly, it could be seen that 

there is a dose dependent rise in assay signal. But concentrations that are too 

high inhibit functionality due to binding site blocking. Therefor, for optimal 

transcription there needs to be an optimum of LEF-1/TCF4 and β-catenin 

concentration. Overall the functionality of the overexpression constructs could be 

shown on protein level and protein functionality. 

Consequently, the effects of the transcription factors could be analyzed next. 

It has been shown, that the Wnt/β-catenin pathway has an influence on 

migration 85. To analyze whether the expression of LEF-1 and TCF4 shows effects 

on the cells, a functional characterization was performed using a migration assay. 

The differences between the transiently transfected cells were marginal and the 

standard deviation was bigger than the differences in migration between the 

differently transfected cells. Therefore, no clear assertion about differences could 

be made. Reasons for this could be inherent in the setup of the experiment as only 

a subset of cells is transfected by transient transfection 45. Not all cells express the 

transcription factors and can show newly accomplished traits. So differences could 

be diluted in the background. 

To maximize effects that could be seen after transfection, stable cell lines were 

produced, tested and characterized. 

After transduction of cells and raising clones, they were tested and characterized. 

Protein expression was shown by Western blot and mRNA expression of target 

genes was analyzed using qPCR, as this was the suitable method to screen the 

large amount of clones obtained. The target gene mRNAs of the analyzed clones 

showed varying concentrations. No correlation could be found between LEF-1 or 

TCF4 and E-cadherin or vimentin mRNA levels. Reasons for this could be inherent 

in the system used to change the cells. Overexpression of a gene could saturate 

the cells with unnaturally high amounts of protein as physiological protein 
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concentrations are far exceeded (especially when using a CMV promoter) 87. The 

reaction of the cells could result in promoter silencing 9. In this particular setting, 

the overexpression of the transcription factors would also catch all free β-catenin 

and might, in higher concentrations, block the TBEs. So in a next step LEF-1 and 

TCF4 were down regulated to simulate and analyze more natural conditions. 

The transient knockdown of LEF-1 and TCF4 in SW480 and DLD1 cells worked, 

as shown in Figure 17. The resulting effects were measured by qPCR of the 

pathway target genes E-cadherin and vimentin. The results were not consistent 

between the two cell lines as well as with the knockdown of each transcription 

factor. The observed changes were not significant. A possibility for this can once 

again be incomplete transfections with the siRNA. But as the knockdown worked 

very well it was more likely, that the cells responded by trying to regain a pathway 

equilibrium through compensatory mechanisms. Knockdown of LEF-1 did not exert 

a marked effect whereas knockdown of TCF4 lead to an upregulation of LEF-1 

which could be a compensation for the missing transcription factor TCF4. 

Therefore, effects of a TCF4 knockdown on the cells characteristics might also be 

effects from an upregulation of LEF-1. Considering that the aim of this work was to 

find a difference between the two transcription factors on cellular behavior, this 

mutual regulation does not generally prevent an analysis of the results. If effects of 

a knockdown are not directly related with that knockdown but with the upregulation 

of the other transcription factor, this would also show that the transcription factors 

have different impacts on the cells. 

When looking at the Proliferation Assay (Figure 18), the knockdown only leads to a 

slight difference in SW480 cells with TCF4 knockdown. The amount of cells at day 

one had been below the amount of the other transfected cells and considering the 

standard deviation the final difference at the end of the experiment was not 

convincing. But a slight difference that was there indicates that knockdown of 

TCF4 in SW480 cells lead to reduced proliferation. 

To go into more detail and elevate the effects, the cell lines were transfected 

stably with shRNA. The two cell lines DLD1 and SW480 were stably transfected 

with shRNA against LEF-1 and TCF4 in order to rule out low transfection efficiency 
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and associated poorly visible effects. Looking at LEF-1, variable effects could be 

seen: The LEF-1 knockdown clones showed a LEF-1 reduction (LEF-1 shRNA 1). 

All other cells, including the shEGFP controls showed varying expression. The 

TCF4 expression was more consistent but the reduction of TCF4 expression in the 

knockdown clones was very small. The expression of the target genes E-cadherin 

and vimentin was also very variable. The expression patterns in the analyzed 

clones vary so much, that possible effects are lost in this variety of signals and are 

therefore not visible. Again the effects might be too small to be seen in the 

analysis system used in this work. Additionally, differences between the clones 

could result from single cell cloning. It has been shown that in one cell line there 

can be several subpopulations which complicate finding specific effects20. 

As the above mentioned assays showed inconclusive results, primary tumor cells 

were studied to gain a better understanding. The observation of differences 

between LEF-1 and TCF4 in paraffin embedded tumor material was the basis for 

the investigation of LEF-1 and TCF4 expression in primary tumor cells. From these 

samples, two contrasting cell populations were analyzed: tumor stem cells would 

resemble a more aggressive phenotype compared to their differentiated form, 

spheroid derived adherent cells (SDACs). 

The advantage of this system is the proximity to humans. The cells analyzed were 

derived from human colorectal carcinomas just weeks before the measurement of 

RNA levels. 

When comparing the tumor stem cells with corresponding SDACs the expression 

of the two transcription factors seemed higher in the differentiated cells. The 

difference to the measured expression in the cell culture experiments could lie in 

the small amount of stem cells that can be found in cell culture. The effects of 

LEF-1 or TCF4 knockdown may only affect a small subgroup of cells (the stem 

cells) in cell culture. This result could explain the small and varying effects seen in 

cell culture. 

Based on the slightly different LEF-1/TCF4 expression patterns in tumor stem cells 

and differentiated cells, other interesting questions arise. Do LEF-1 or TCF4 drive 
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differentiation or do they favor stemness? A method for testing this would be LEF-

1 or TCF4 overexpression. The transfected cells can then be further analyzed for 

the resulting characteristics. Effects of the absence of the transcription factors on 

stem cells could be measured by knockdown experiments.  

As no consistent or prominent differences could be seen between LEF-1 and 

TCF4 the question arises whether, in a complex setting like colorectal carcinomas 

the effects are similar in each analyzed cell line or carcinoma. 

Looking at other organs, varying effects of the transcription factors can be seen. In 

melanomas the differential expression of LEF-1 and TCF4 is involved in 

melanoma cell phenotype switching. Expression of LEF-1 is primarily found in 

differentiated / proliferative phenotype cells whereas TCF4 is expressed 

preferentially by dedifferentiated / invasive phenotype cells 24. In contrast, 

experiments performed by Nguyen et al. showed that LEF-1 mediates lung 

adenocarcinoma metastasis 81. So depending on the characteristics of the cells or 

the tumor, the transcription factors can show opposite effects on tumor features. 

Those results complicate the use of LEF-1 or TCF4 as biomarkers. Especially for 

colorectal carcinomas, analyses with contrasting results have been performed. 

Once again there have been analyses showing that TCF4 induces EMT and 

therefore tumor invasiveness 92. Additionally, analyses have shown that LEF-1 

could be identified as a prognostic biomarker for liver metastases from primary 

colorectal carcinomas 65. 

Further research is needed to examine the possible functional role and the 

prognostic and predictive capability of LEF-1 and TCF4. 
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7 Appendix 

7.1 Abbreviations 

 

5FU  5-fluorouracil 

A  adenine 

aa  aminoacid 

ACC#  accession number 

APC  adenomatous polyposis coli 

APS  ammonium persulfate 

attB  attachment site B  

bp  base pair  

BrdU  bromodeoxyuridine 

C  cytosine 

CAPIRI capecitabine, irinotecan 

CAPOX capecitabine, oxaliplatin 

CAT  chloramphenicol acetyltransferase 

cDNA  complementary DNA 

CMV  cytomegalovirus 

coCSC colorectal cancer stem cell 

coll  collagen 

CSC  cancer stem cell 
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CRC  colorectal cancer 

ctrl  control 

d  days 

DC  detergent compatible 

DCR  disease control rate 

DNA  deoxyribonucleic acid 

DMEM Dulbecco’s Modified Eagle Medium 

dNTP  deoxynucleotide 

ECL  enhanced chemiluminescence   

EDTA  ethylenediaminetetraacedic acid 

e.g.  exempli gratia (for example) 

EGFP  green fuorescent protein 

EGFR  epidermal growth factor receptor 

ELISA  enzyme-linked immunosorbent assay 

EML4-ALK echinoderm microtubule associated protein like 4 - anaplastic 

lymphoma kinase 

EMT  epithelial-mesenchymal transition 

FFPE  formalin-fixed, paraffin-embedded 

FOLFIRI 5-fluorouracil, leucovorin, irinotecan 

FOLFOX 5-fluorouracil, leucovorin, oxaliplatin 

fw  forward 

G  guanine 
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HA  human influenza hemagglutinin 

HER2  human epidermal growth factor receptor 2 

HPRT  hypoxanthine-guanine phosphoribosyltransferase 

HRP  horseradisch peroxidase 

JNK  c-Jun N-terminal kinase 

kb  kilobase 

kDa  kilodalton 

KOD  thermococcus kodakaraensis 

KRAS  Kirsten rat sarcoma viral oncogene homolog 

LB  lysogeny broth 

LEF-1  lymphoid enhancer-binding factor 1  

MAP  mitogen-activated protein 

mCRC metastatic colorectal cancer 

MG  Matrigel® 

MgCl2  magnesium chloride 

min  minute 

miRNA microRNA 

MLH1  MutL homolog 1 

MMP7  matrix metalloproteinase-7 

MMR  mismatch repair 

MOI  multiplicity of infection 

mRNA  messenger RNA 
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MOI  multiplicity of infection 

n.a.  not applicable 

NCI-CTCAE national cancer institute - common terminology criteria adverse 

events 

NRAS  neuroblastoma RAS viral oncogene homolog 

n.s.  not significant 

NSAIDs nonsteroidal anti-inflammatory drugs 

ORR  objective response rate 

OS  overall survival 

PBS  phosphate-buffered saline 

PCR  polymerase chain reaction 

PFS  progression free survival 

PI3K  phosphatidylinositol 3-kinase 

PMSF  phenylmethanesulfonyl fluoride 

PTEN  phosphatase and tensin homolog 

PVDF  polyvinylidene fluoride 

qPCR  quantitative PCR 

RAS  rat sarcoma 

Rev  reverse 

RL  Renilla luciferase 

RNA  ribonucleic acid 

RLU  relative light units 
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rs  Reference SNP cluster ID 

RT  reverse transcriptase 

SDAC  spheroid-derived adherent cell 

s  second 

shRNA small hairpin RNA 

siRNA  small interfering RNA 

SNP  single nucleotide polymorphism 

SOS  son of sevenless 

T  thymine 

TBE  β-catenin/Tcf/Lef-binding element 

TCF  T-cell factor 

TEMED tetramethylethylenediamine 

UPL  universal probe library 

UTR  untranslated region 

Wnt  int/wingless 

WT  wildtype 
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7.2 Primers used for sequencing of the EGFR gene 
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7.3 Genetic alterations in EGFR 
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7.4 Allelic frequencies EGFR 
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7.5 Plasmids 

 

- pLNCX2-Lef1_3xmyc 

 

 

- pLNCX2-EGFP_3xmyc 
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- pLNCX2-TCF4_3xmyc 

 

 

- Renilla Luciferase plasmid: phRL-tk TBE mut (modified by insertion of a 

mutation into a TBE from pRL-TK Luciferase Reporter Vector; Promega) 

- M50 Super 8x TOPFlash, M51 Super 8x FOPFlash (TOPFlash mutant) 

(addgene deposited by Randall Moon)  

- pEGFP-C1 (Clontech, Mountain View, USA) 

- pLNCX2-TCF4-HA (cloned by Silvio Scheel, original plasmid pLNCX2 from 

Clontech, Mountain View, USA)  

- pcDNA3-CAT (Chloramphenicol acetyltransferase; Invitrogen, Life 

Technololgies, Carlsbad, USA) 

- pcI-neo-ßcatenin-D45 (addgene deposited by Bert Vogelstein) 
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