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 Zusammenfassung 1 

1 Zusammenfassung 

Seit ca. 30 Jahren ist das humane Immundefizienz-Virus als Auslöser einer 

schwerwiegenden Immunschwäche bekannt und trotz zahlreich existierender 

Medikamente ist die Inzidenz hoch. Ebenso waren sämtliche Bemühungen um die 

Entwicklung einer Impfung bisher vergeblich.  

Zum weiteren Verständnis der zellulären Immunabwehr gegenüber HIV lag der Fokus 

dieser Arbeit auf der Funktion und Epitoperkennung von CD8+ T-Lymphozyten. Um 

diesen Vorgang genauer untersuchen zu können, bedarf es neben der Bestimmung der 

HLA-Restriktion auch der Definition des optimalen Epitops. Dieses kann sowohl 

experimentell als auch bioinformatisch mittels Epitop-Vorhersage-Programmen 

(sogenannte „in-silico“ Programme) durchgeführt werden. Letztere finden zunehmend 

Verwendung, wurden bisher jedoch nicht auf die Zuverlässigkeit ihrer Vorhersagen von 

HIV-Epitopen untersucht.  

Die vorgelegte Arbeit zeigt, dass „in-silico“ Programme die experimentelle 

Epitopkartierung bisher nicht ersetzen können. Zu viele Faktoren beeinflussen die 

Validität der Ergebnisse und so können Epitop-Vorhersage-Programme die Laborarbeit 

zwar unterstützen, auf die experimentelle Epitopkartierung kann dennoch nicht verzichtet 

werden. 

Die zweite Fragestellung dieser Arbeit betraf die CD8+ T-Zellerkennung von Zellen, 

welche mit DRM (engl. für drug resistance mutations) -tragenden HI-Viren infiziert sind. 

Vor allem die Medikamentenresistenzmutationen M184V und Y181C sind für die 

Unwirksamkeit wichtiger und gerade in Entwicklungsländern unverzichtbarer 

Medikamente verantwortlich. Bei manchen Patienten konnte nachgewiesen werden, dass 

polyfunktionelle CD8+ T-Zellen DRM-tragende Viruspeptide gezielt erkennen können. 

Um diese Untersuchung auf virusinfizierte Zellen auszuweiten, wurden CD4+ T-Zellen 

mit mutierten Viren infiziert und die CD8+ T-Zellreaktion gemessen. Um die Entwicklung 

einer angestrebten, therapeutischen Impfung voranzutreiben bedarf es einer weiteren 

Optimierung der Teilversuche sowie deren Anwendung auf ein repräsentatives 

Patientenkollektiv. Dabei können die hier gewonnenen Erkenntnisse über 

Viruskultivierung, Titerbestimmung und Zellinfektion als Hilfestellung dienen.   
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2 Einleitung 

35 Millionen Menschen sind aktuell laut UNAIDS weltweit mit HIV-1 infiziert. 2,3 

Millionen Neuinfektionen wurden im Jahr 2012 verzeichnet und rund 1,6 Millionen 

Menschen starben im selben Jahr an den Folgen der Erkrankung [1]. Vor allem die Länder 

der Subsahara weisen eine hohe Infektionsrate auf, ebenso verschärft sich die HIV-

Problematik in Osteuropa und Asien zusehends. 

Entdeckt wurde die Krankheit in den frühen 1980er Jahren, als in den USA eine Gruppe 

junger homosexueller Männer durch das Auftreten seltener und schwerwiegender 

Erkrankungen wie Pneumocystis-Pneumonien, Kaposi-Sarkome und ausgeprägter 

Kandidosen der Schleimhäute auffällig wurde. Erstmals wurde daraufhin der englische 

Begriff Acquired Immune Deficiency Syndrome, kurz AIDS, beschrieben [2]. In den 

darauffolgenden Jahren entdeckten Françoise Barré-Sinoussi und Luc Montagnier das 

Humane Immundefizienz-Virus HIV als Auslöser dieses Syndroms. 

Trotz intensiver Bemühungen ist die Inzidenz weiterhin hoch. So ist HIV noch immer ein 

globales Gesundheitsproblem und stellt eine große soziale und ökonomische 

Herausforderung dar. Neben der Entwicklung eines Impfstoffes stehen auch die Bereiche 

Aufklärung, Prävention und Akzeptanz im Mittelpunkt des Interesses. 

2.1 Das humane Immundefizienz-Virus 

2.1.1 Virale Eigenschaften und daraus entstehende Therapiemöglichkeiten 

HIV ist ein behülltes Einzelstrang-RNA-Lentivirus und gehört zur Familie der 

Retroviren. Sein Genom besteht aus 9-10 kB und beinhaltet zum einen die 

Strukturproteine gag (group antigen), pol (polymerase) und env (envelope), zum anderen 

die akzessorisch-regulatorischen Gene vif, vpr, vpu, tat, rev und nef (vgl. Abb. 1). 

Zielzellen des Virus sind das Oberflächenmolekül CD4-tragende Zellen und damit vor 

allem die CD4⁺ T-Lymphozyten (T-Helferzellen). Nach Bindung an die Zielzelle und 

Verschmelzung der Membranen wird das virale Kapsid im Zytoplasma aufgelöst, die 

RNA in DNA umgeschrieben und in das Genom der Wirtszelle eingebaut [3], wofür die 

virale Reverse Transkriptase und Integrase benötigt werden. Teilt sich nun die Wirtszelle, 

wird automatisch auch das virale Genom transkribiert und translatiert, die viralen 

Bestandteile zusammengesetzt und schließlich neue Viren ausgeschleust [4]. 

http://de.wikipedia.org/wiki/Fran%C3%A7oise_Barr%C3%A9-Sinoussi
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Dieser virale Replikationszyklus bietet Ansatzstellen für therapeutische Interventionen 

und so wurde in den 1990er Jahren eine effektive Kombinationstherapie zur 

Unterdrückung der Viruslast möglich, die highly active antiretroviral therapy (HAART). 

Ihr stehen Medikamente verschiedener Wirkstoffklassen zur Verfügung (vgl. Abb. 1). 

 

Abbildung 1: Schematische Darstellung des HIV-Genoms (Abb. bearbeitet nach [5]). Der virale 

Replikationszyklus bietet therapeutische Interventionsmöglichkeiten, wovon hier diejenigen dargestellt 

sind, die die von pol kodierten Proteine betreffen. PI = Proteaseinhibitoren, NRTI = Nukleosidische 

Reverse-Transkriptase-Inhibitoren, NNRTI = Nicht-nukleosidische Reverse-Transkriptase-Inhibitoren. 

Nukleosidische Reverse-Transkriptase-Inhibitoren (NRTI) 

NRTIs ähneln in ihrer Struktur Nukleosiden und dienen bei der reversen Transkription 

der viralen RNA zu DNA als falsche Bausteine, welche dann für einen Kettenabbruch 

sorgen. Aufgrund häufig generierter Medikamentenresistenzmutationen gegen NRTIs ist 

diese Substanzklasse in der vorgelegten Arbeit von besonderer Bedeutung. Zu den NRTIs 

gehören die Substanzen Abacavir (ABC), Didanosin (ddi, obsolet), Emtricitabin (FTC), 

Lamivudin (3TC), Stavudin (d4T, obsolet), Tenofovir (TDF, wobei es sich hier um ein 

Nukleotidanalogon handelt) und Zidovudin (AZT).  

Nicht-nukleosidische Reverse-Transkriptase-Inhibitoren (NNRTI) 

Auch hier stellt die Reverse Transkriptase das Angriffsziel dar, allerdings binden diese 

Substanzen direkt an das aktive Zentrum des Enzyms und blockieren damit dessen 

katalytische Aktivität. Medikamentenresistenzmutationen gegen NNRTIs sind häufig. 

Die vier vorhandenen Medikamente sind Efavirenz (EFV), Etravirin (ETV), Nevirapin 

(NVP) und Rilpivirin (RPV). 
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NNRTIs sind genau wie NRTIs fester Bestandteil in first-line-Regimen, da sie 

nebenwirkungsarm und zudem kostengünstig sind, was sie vor allem in 

Entwicklungsländern unentbehrlich macht [6]. 

Weitere Wirkstoffe mit mehreren Vertretern sind Proteaseinhibitoren (PI), 

Fusionsinhibitoren, CCR5-Inhibitoren sowie Integrase-Inhibitoren. 

Da HI-Viren den Medikamenten durch Mutationen zu entkommen versuchen, werden in 

der antiretroviralen Therapie mindestens drei Wirkstoffe aus zwei unterschiedlichen 

Substanzklassen kombiniert. Dadurch wird das Auftreten von 

Medikamentenresistenzmutationen verhindert bzw. längstmöglich hinausgezögert.  

2.2 Virale Reaktion auf Immunantwort und Therapie 

Bei HIV handelt es sich um hochvariable Viren. Mit sog. Escape-Mutationen versuchen 

sie, dem Druck der Immunantwort durch CD8+ T-Zellen zu entkommen [7-10]. Neben 

diesen Flucht-Mutationen generieren die HI-Viren auch 

Medikamentenresistenzmutationen, womit sie der Kontrolle antiretroviraler Pharmaka 

entgehen. Zugrunde liegt diesen Mutationen u.a. die hohe Fehleranfälligkeit der Reversen 

Transkriptase, die das Umschreiben der viralen RNA in DNA katalysiert [11]. Dadurch 

trägt eine infizierte Person eine enorme Menge sog. Quasispezies in sich, also Viren, die 

sich durch Punktmutationen voneinander unterscheiden [12, 13]. Dies erfordert häufig 

eine Umstellung der Therapie, welche unter Umständen teurer und mit stärkeren 

Nebenwirkungen behaftet ist.  

Erwähnenswert sind hier die beiden NRTIs Lamivudin und Emtricitabin, die laut WHO-

Richtlinien in weltweit über 90% aller Therapieregime der HAART enthalten sind [6]. 

Um ihnen zu entgehen wird durch Mutation die Aminosäure Methionin an Position 184 

des viralen Genoms durch Valin ersetzt (M184V). Das Virus kann dann zwischen Cytidin 

und den Cytidin-Analoga unterscheiden und den Einbau der Medikamente verhindern, 

was letztendlich eine >100-fache Resistenz gegenüber Lamivudin/Emtricitabin bewirkt 

[14, 15]. 

Eine vergleichbare Mutation stellt die an Position 181 dar, welche Tyrosin durch Cystein 

ersetzt (Y181C) und eine Resistenz gegenüber den NNRTIs Nevirapin und Efavirenz, 

welche häufig in Drittweltländern eingesetzt werden, sowie eine Teilresistenz gegenüber 

Rilpivirin bewirkt.  
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Der Fokus dieser Arbeit wurde auf die zwei beschriebenen 

Medikamentenresistenzmutationen gelegt. Die M184V-Mutation ist die mit am 

häufigsten auftretende DRM des HI-Virus und spielt eine Schlüsselrolle beim Versagen 

der antiretroviralen Therapie. Ihr Auftreten konnte in virusinfizierten Zellen 

nachgewiesen werden und ihre Kontrolle wäre ein Meilenstein auf dem Weg zum 

Verhindern eines Therapieversagens, wie Arbeiten unserer Forschungsgruppe 

nachweisen konnten [16]. Die Y181C-Mutation tritt zwar seltener auf, ist jedoch nicht 

minder von Bedeutung [17, 18], bedenkt man die herausragende Rolle der beiden 

Therapeutika Nevirapin und Efavirenz. Da beide Mutationen zum einen benachbart 

liegen, zum anderen häufig in Kombination auftreten [19, 20], wäre es optimal, das 

Auftreten beider Mutationen mit demselben Verfahren verhindern zu können. Dies 

könnte mit der Entwicklung einer therapeutischen Impfung verwirklicht werden (siehe 

Abschnitt 2.5.4).  

2.3 Das HLA-System 

Die humane Version des MHC Systems (engl. für major histocompatibility complex) ist 

das sogenannte human leukocyte antigen system, kurz HLA, und ist mit über 40 Genen 

auf Chromosom 6 repräsentiert. Dabei existieren zwei in Funktion und Aufbau 

unterschiedliche Klassen, HLA I und II. Alle kernhaltigen menschlichen Körperzellen 

tragen HLA I-Moleküle auf ihrer Oberfläche, während HLA II-Gene nur von 

Immunzellen wie Makrophagen, dendritischen Zellen, Thymus-Epithelzellen, sowie B- 

und aktivierten T-Lymphozyten exprimiert werden. Die Aufgabe beider HLA-Klassen ist 

es, prozessierte Bruchstücke von Pathogenen an der Zelloberfläche zu binden und T-

Zellen zu präsentieren, um dadurch das adaptive Immunsystem zu aktivieren [21]. 

Bei einer HIV-Infektion werden CD4⁺ T-Lymphozyten infiziert und parallel zur Synthese 

neuer Viren virale Proteine im Proteasom prozessiert, auf HLA I-Moleküle geladen und 

an der Oberfläche der T-Zelle präsentiert. Dort wird der HLA-Peptid-Komplex von CD8⁺ 

T-Zellen über deren T-Zellrezeptor erkannt und die Zelle anschließend zerstört. Dies ist 

ein Grund für die abnehmende Zahl an CD4⁺ T-Helferzellen, das Immunsystem wird 

zunehmend geschwächt und ohne Therapie tritt letztendlich das erworbene 

Immundefektsyndrom AIDS auf.   



 Einleitung 6 

2.3.1 HLA-Restriktion und optimales Epitop 

Im Falle von HLA I, das zur Präsentation von Viruspartikeln unverzichtbar ist, existieren 

rund 20 verschiedene Gene, welche die drei Untergruppen HLA-A, B und C bestimmen. 

Diese Gene werden kodominant vererbt, sodass jede kernhaltige Zelle zwei HLA-A, 

HLA-B und HLA-C Merkmale trägt. Von diesen drei Klassen gibt es zahlreiche allelische 

Unterformen, welche durchnummeriert z.B. als HLA-A2 bezeichnet werden. In dieser 

Arbeit ist vor allem HLA-A*02:01 von Bedeutung. Es restringiert wichtige HIV-Epitope 

und ist ein häufiges Allel des A2-Supertyps. So tragen 23% der kaukasichen, 25% der 

afroamerikanischen und 26% der lateinamerikanischen Bevölkerung Allele des HLA-A2 

Supertyps [22]. 

Die an der Oberfläche zu präsentierenden Peptide sind bei HLA I zwischen 7-11 

Aminosäuren lang und werden immer von einem bestimmten HLA-Allel präsentiert. 

Dieses Phänomen wird als HLA-Restriktion bezeichnet. Daraus folgt, dass eine von HIV 

infizierte Zelle nur eine bestimmte Anzahl an HIV-Epitopen an CD8⁺ T-Zellen 

präsentieren kann. Ist die infizierte Person für HLA I heterozygot, kann eine größere 

Anzahl an viralen Peptiden präsentiert und folglich eine breitere Immunantwort ausgelöst 

werden [21, 23]. 

Betrachtet man die dreidimensionale Struktur des HLA I-Moleküls, so weist es an seiner 

Peptid-Bindungsstelle sechs Taschen auf durch die festgelegt wird, welches Epitop 

gebunden wird. Im Falle von HLA-A*02:01, das bevorzugt 8-10mer lange Epitope 

präsentiert, spielen die Aminosäuren an Position 2 sowie an der letzten Position vor dem 

C-Terminus (z.B. Position 9 eines 9mer langen Epitops) eine besondere Rolle (vgl. Abb. 

2).  

Ebenso müssen die anderen, nicht als Ankerpositionen bezeichneten Stellen des Epitops 

erwähnt werden, da die chemischen Eigenschaften der dort ansässigen Aminosäuren 

ebenfalls (wenn auch schwächeren) Einfluss auf die Bindungsstärke des Epitops an das 

HLA-Molekül [24, 25], aber auch auf die Bindung an den T-Zellrezeptor haben (siehe 

unten). All dieses Wissen machte man sich beim Generieren der Epitop-Vorhersage-

Programme zunutze. 



 Einleitung 7 

 

Abbildung 2: Bindungsstelle von Peptid und HLA-Molekül (Abb. bearbeitet nach [21]). Dargestellt ist 

ein 9mer langes Epitop, dessen Aminosäuren in den Bindungstaschen des HLA-Moleküls zu liegen 

kommen. Besondere Bedeutung kommt hierbei den Bausteinen der Positionen P2 und P9 zu, die das Peptid 

in den Bindungstaschen B und F verankern. 

2.4 Epitope prediction 

2.4.1 Experimentelle Definition des optimalen Epitops 

Um Länge und Sequenz des optimalen Epitops zu bestimmen, muss eine experimentelle 

Epitopkartierung durchgeführt werden (siehe Abschnitt 4.2.6). Hierbei wird die T-

Zellantwort auf einen bestimmten Ausschnitt des HIV-Genoms gemessen, wobei durch 

Hinzufügen oder Kürzen um einzelne Aminosäuren unterschiedlich lange Peptide 

entstehen. Zwar enthalten sie alle die Zielsequenz, durch Änderung der Aminosäuren in 

der Ankerposition und der gesamten Länge des Epitops werden jedoch nicht alle mit 

gleich hoher Affinität von den CD8+ T-Zellen gebunden, was anhand einer Messung der 

Zytokinproduktion eruiert werden kann. Durch Auffinden der stärksten T-Zellantwort 

kann also die Sequenz dieses experimentell definierten, optimalen Epitops ermittelt 

werden.   

2.4.2 Epitope prediction Programme 

Da die experimentelle Kartierung des optimalen Epitops ein zeitaufwendiges und teures 

Verfahren darstellt, wurden bioinformatische Modelle generiert, die diesem Problem 

Abhilfe verschaffen sollten. 

So wurden in den letzten 30 Jahren zahlreiche online Datenbanken entwickelt, die anfangs 

nur anhand der Ankerpositionen bekannter Epitope vorhersagen sollten, ob in einem 
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pathogenen Protein mögliche T-Zellepitope enthalten sind und wie deren Primärstruktur 

aussieht. Mittlerweile wurden diese Datenbanken durch verschiedenste Methoden 

verfeinert, was es den Programmen ermöglicht, präzisere Angaben auch zur 

Bindungsaffinität zwischen Epitop und HLA-Molekül zu machen [26, 27]. 

Im Folgenden werden drei Datenbanken vorgestellt, die im Rahmen dieser Arbeit zum 

Einsatz kamen: 

SYFPEITHI 

Wir wählten SYFPEITHI, da es sich bei der 1995 veröffentlichten Datenbank um das 

älteste Epitope prediction Programm handelt [28-30]. 

Die gesammelten Daten basieren auf Veröffentlichungen und sind mit den 

wissenschaftlichen Datenbanken EMBL und PubMed verlinkt. Durch SYFPEITHI ist es 

also möglich, nach MHC-Allelen und Motiven, natürlichen Liganden und T-Zellepitopen 

zu suchen [31]. Die Datenbank enthält nicht nur Proteine humaner Herkunft, sondern 

auch solche von Affen, Rindern, Hühnern und Mäusen. Dabei werden bei der Analyse 

von Peptiden nicht nur die Aminosäuren der Ankerpositionen berücksichtigt, sondern 

auch die Eigenschaften jeder einzelnen enthaltenen Aminosäure fließen mit in die 

Kalkulation ein. Ein Nachteil besteht darin, dass bei der Recherche zwar gezielt HLA-

Merkmale als restringierend ausgewählt werden können, dabei stehen jedoch nicht alle 

existierenden HLA-Allele zur Verfügung. Demzufolge werden Epitope häufig 

auftretender HLA-Allele besser vorhergesagt als solche seltenerer HLA-Typen. Die 

Ergebnisse werden nach Rängen geordnet, wobei eine hohe Bindungsaffinität mit einem 

hohen Rang assoziiert ist. 

CTLPred 

Die Idee dieser Datenbank besteht darin, verschiedene Algorithmen miteinander zu 

verbinden, um dadurch ein genaueres Ergebnis zu erzielen. Sie bedient sich dabei einer 

quantitativen Matrix sowie den Lernprogrammen ANN (engl. für Artificial Neural 

Network) und SVM (engl. für Support Vector Machine). Das Prinzip der quantitativen 

Matrix bezieht die Eigenschaften jeder Aminosäuren mit in die Berechnung ein und 

gleicht damit der Funktionsweise des Programms SYFPEITHI. Außerdem ermöglicht 

dieses Vorgehen, die HLA-Restriktion eines Epitops zu ermitteln [32]. 

Das künstliche neuronale Netz (ANN) ist ein Computermodell der 

Informationsverarbeitung, das die vielen Einflussfaktoren der einkommenden 

Informationen (hier eine spezielle Peptidsequenz) aufnimmt, analysiert und verknüpft 
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und daraus die MHC Bindungsaffinität ermittelt [33]. Dafür durchläuft das Modell eine 

Trainingsphase und lernt ständig dazu, um Vorhersagen hoher Spezifität und Sensitivität 

liefern zu können [34]. 

Eine Support Vector Machine teilt Informationen bestimmten Klassen zu, die vorher 

anhand bekannter Trainingsdaten konstruiert wurden [35]. Ziel ist es, die Klassen „T-

Zellepitop“ und „kein T-Zellepitop“ mit möglichst großem Abstand voneinander zu 

trennen, um ein Peptid eindeutig einer der beiden Gruppen zuordnen zu können [32]. Bei 

der Rangordnung der Ergebnisse ist eine hohe Bindungsaffinität daher mit einer hohen 

Fraktion assoziiert. Es sind vor allem die Möglichkeiten der Konsensermittlung sowie der 

kombinierten Suche mit ANN und SVM, welche Ergebnisse mit hoher Sensitivität und 

Spezifität liefern, wie Bhasin et al. zeigen konnten [36]. Limitiert wird die Suche 

allerdings dadurch, dass nur Nonamere als Epitope bestimmt werden. Außerdem kann 

bezüglich der restringierenden HLA-Moleküle keine Vorauswahl getroffen werden, um 

das Ergebnis zu spezifizieren. 

Wir wählten diese Datenbank, da sie ein neueres und weniger bekanntes Programm 

darstellt und auf unterschiedlichen Lernalgorithmen basiert. Im Febraur 2013 

veröffentlichten Abidi et al. eine Studie, in der unter anderem mit CTLPred gearbeitet 

wurde, um mutierte HIV-Peptidsequenzen zu analysieren [37]. Dieses Programm stellt 

also eine Alternative zu SYFPEITHI bei der Bestimmung HIV-Epitope dar. 

IEDB 

Eine recht junge Datenbank ist die 2005 gegründete Immune Epitope Database and 

Analysis Resource. Enthalten ist ein großes Register an Antikörpern und T-Zellepitopen, 

das von den vielen, bereits zuvor existierenden Datenbanken zusammengetragen wurde. 

Dabei liefert die Suche nach einem bestimmten Epitop auch Informationen über den 

ursprünglichen Versuchsablauf, über die Zytokinproduktion bei Zellstimulation sowie 

mögliche Applikationswege einer potenziellen Impfung. Sowohl intrinische als auch 

extrinsische Einflussfaktoren werden hierbei berücksichtigt [38]. Die Datenbank umfasst 

mehr als 180 000 Einträge über Epitope und rund 200 000 über T-Zellantworten und 

bezieht sich dabei auf Menschen, nichtmenschliche Primaten, Nagetiere und andere.  

Als Analysemethoden für die Voraussage der MHC-I Bindung stehen verschiedene 

maschinelle Lernprogramme zur Verfügung [39]. Das ANN wurde bereits beschrieben, 

weitere Modelle sind SMM (engl. für Stabilized Matrix Method), SMMPMBEC (engl. 

für SMM with a Peptide:MHC Binding Energy Covariance matrix), Comblib (engl. für 

Scoring Matrices derived from Combinatorial Peptide Libraries) und NetMHCpan. 
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Weitere Informationen zu den einzelnen Programmen liefert die IEDB-Webseite 

http://tools.immuneepitope.org/mhci/help/#Method. 

Bezüglich der Suchkriterien bietet IEDB variable Einstellungsmöglichkeiten. So kann die 

Analyse auf ein spezielles HLA-Allel bezogen werden. Ebenso können Epitope 

beliebiger oder festgesetzter Länge ermittelt werden. Dabei werden bei der Darstellung 

der Ergebnisse die Epitope an unterster Rangstufe angesiedelt, die die höchste 

Bindungsaffinität zum angegebenen HLA-Molekül aufweisen. Wir wählten IEDB als 

drittes Epitope prediction Programm, um eine möglichst repräsentative Auswahl an 

Programmen zu treffen. Das vergleichsweise junge bioinformatische Tool vereint dabei 

die Inhalte vieler Datenbanken und stellt eine große Menge an Informationen zu 

Verfügung [40]. 

2.5 Die CD8⁺ T-Zellfunktion bei HIV-Infektion 

2.5.1 Epitop-Erkennung durch CD8⁺ T-Zellen  

Schon früh nach der Entdeckung von HIV wurde die Schlüsselrolle der CD8+ T-Zellen 

(auch zytotoxische T-Lymphozyten, kurz: CTL) erkannt, welche das Wachstum HIV-

infizierter Zellen hemmen [41] und zum initialen Rückgang der Viruslast nach HIV-

Infektion führen [42]. CD8+ T-Zellen treffen im Körper ständig infizierte Zellen, welche 

pathogene Partikel präsentieren. Dabei ist ihr T-Zellrezeptor (TCR) entscheidend an der 

Erkennung des HLA-Peptid-Komplexes beteiligt, wobei ein TCR nur ein bestimmtes 

Antigen erkennen kann. CD8⁺ T-Zellen mit hoher Spezifität für das entsprechende 

Antigen erkennen HLA-Peptid-Komplexe auch dann, wenn diese nur in kleinen Mengen 

auf der Oberfläche infizierter Zellen vorhanden sind und können auch bei geringer 

Antigen-Präsentation ihre Effektorfunktionen ausüben. Dabei gilt auch, dass die CD8+ T-

Zellen umso mehr Funktionen aufweisen, je besser sie den HLA-Antigen-Komplex 

erkennen [43].  

Präsentiert eine HIV-infizierte Zelle ein wie oben beschrieben prozessiertes HIV-Epitop 

und erkennt eine virusspezifische CD8⁺ T-Zelle diesen HLA-Peptid-Komplex mit ihrem 

T-Zellrezeptor, kann sie die Zelle entweder über lösliche Faktoren abtöten [44] oder ihre 

Apoptose initiieren. 

http://tools.immuneepitope.org/mhci/help/#Method
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2.5.2 Erkennen DRM-tragender Viruspeptide 

Bezüglich medikamentenresistenter Viren wurde festgestellt, dass die CD8+ T-Zellen 

mancher Patienten gezielt DRM-tragende Virusepitope erkennen. 

Medikamentenresistenzmutationen treten in Abwesenheit einer antiretroviralen Therapie 

normalerweise nicht auf [45-47]. Der Selektionsdruck, der durch die medikamentöse 

Therapie ausgeübt wird, induziert demzufolge die Synthese naiver CD8+ T-Zellen [48], 

welche auf das Erkennen mutierter HI-Viren spezialisiert sind und diese sogar besser 

erkennen als das ehemalige Wildtyp-Virus. Diese Erkenntnis konnte in Vorarbeiten 

unserer Arbeitsgruppe ebenfalls bestätigt werden [16]. 

2.5.3 Die Polyfunktionalität der CD8+ T-Zellen 

CD8+ T-Zellen besitzen Granula, welche Perforin, Granzyme und Proteoglykane 

beinhalten und zur Bekämpfung der Zielzelle dienen. Bei Aktivierung schütten die CD8+ 

T-Zellen ihre Granula mittels Exozytose aus. Dabei kommen spezielle Glykoproteine auf 

der Zelloberfläche zu liegen [49]. Ein Beispiel ist CD107a, ein Marker für die 

Degranulation von lytischen Granula der CD8+ T-Zellen [50], welches mittels ICS (engl. 

für intracellular cytokine staining, s.u.) angefärbt werden kann.  

Außerdem wurde die Bedeutsamkeit sog. polyfunktioneller CD8+ T-Zellen festgestellt, 

welche mehrere Zellfunktionen gleichzeitig ausüben und mehr als das Zehnfache an 

Zytokinen produzieren, als es monofunktionelle Zellen tun [51]. Dabei ist es vielmehr die 

Qualität anstatt der Quantität, die eine effektive T-Zellantwort ausmacht und die 

Kontrolle der Viruslast beeinflusst [52]. So sezernieren die CD8⁺ T-Zellen neben den 

zytotoxischen Granula auch verschiedene Zytokine und Chemokine. Interferon-γ (IFN-γ) 

z.B. wird allgemein als Marker antigenspezifischer T-Zellaktivität herangezogen und 

zeichnet sich vor allem durch seine antivirale Wirkung aus. Weitere von CD8+ T-Zellen 

gebildete Zytokine sind Tumornekrosefaktor-α (TNF-α) sowie Interleukin-2 (IL-2) [53]. 

Mittels Fluoreszenzfärbung kann die Bildung von CD107a, IFN-γ, TNF-α und IL-2 

gleichzeitig gemessen und dargestellt werden, um das volle Ausmaß der HIV-

spezifischen CD8⁺ T-Zellantwort zu ermitteln. Diese Analyse belegte bei verschiedenen 

HIV-Patienten, dass die Menge der polyfunktionellen T-Zellen in inverser Korrelation 

zur Viruslast steht [51, 54]. 
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2.5.4 Prinzipien einer therapeutischen Impfung gegen DRM-tragende Viren 

Bezüglich DRM-tragender Viren wäre eine Vakzine denkbar, die CD8+ T-Zellantworten 

induziert, die speziell Viren mit DRM erkennen. Wenn dann 

Medikamentenresistenzmutationen auftreten, sorgen die CD8+ T-Zellantworten für eine 

fortdauernde Kontrolle der Virämie. So kann einerseits die medikamentöse Therapie 

Druck auf die Wildtyp-Viren ausüben, welchem sie durch Bilden von 

Medikamentenresistenzmutationen zu entgehen versuchen würden. Andererseits würden 

die durch die Impfung induzierten, DRM-spezifischen CD8+ T-Zellantworten Druck auf 

die DRM-tragenden Viren ausüben und Richtung Wildtyp-Virus drängen. Dies ist die 

grundsätzliche Idee für den zweiten Teil des hier vorgestellten Projekts. 
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3 Ziele der Arbeit 

3.1 Gegenüberstellung von Epitope prediction Programmen und 

experimenteller Epitopkartierung 

Die Identifizierung relevanter CD8⁺ T-Zellepitope ist nicht nur entscheidend, um die 

Funktion des Immunsystems zu verstehen, sondern auch ein grundlegender Schritt bei 

der Entwicklung T-Zell-basierter Impfstoffe. 

Da die experimentelle Epitopkartierung jedoch ein kompliziertes, zeitaufwendiges und 

teures Verfahren darstellt, wurden zahlreiche computergestützte Epitope prediction 

Programme entwickelt, die mögliche T-Zellepitope in einer Aminosäuresequenz von 

Interesse ermitteln sollen. Um einen Eindruck über die Vorhersagegenauigkeit dieser 

Programme zu gewinnen, wurden in der vorliegenden Arbeit neun HIV-Epitope 

experimentell bestimmt und mit der Vorhersage von drei Epitop-prediction-Programmen 

verglichen. 

3.2 Untersuchung der CD8⁺ T-Zellantwort gegen M184V und Y181C 

HIV-1 Mutanten 

Die Fähigkeit des extrem variablen HI-Virus, sowohl Immunsystem als auch 

medikamentöser Therapie durch Mutationen zu entkommen, ist ein entscheidender 

limitierender Faktor bei der Kontrolle dieser Infektionskrankheit. Im Hinblick auf die 

Entwicklung einer T-Zell-basierten, therapeutischen Impfung ist es deswegen von 

großem Interesse, das Erkennen medikamentenresistenter HI-Viren durch CD8+ T-Zellen 

näher zu untersuchen. 

Studien konnten zeigen, dass einige Patienten CD8+ T-Zellantworten gegen virale Peptide 

aufweisen, die Medikamentenresistenzmutationen beinhalten [16, 45, 55, 56]. Ziel dieser 

Arbeit war der Vergleich der Reaktionen auf die Mutationen M184V und Y181C, einzeln 

und in Kombination. Da sich die bisherige Kenntnis nur auf Peptide bezog, wurde mit 

Vollviren gearbeitet und die polyfunktionelle CD8+ T-Zellantwort verschiedener, HIV-

positiver Individuen untersucht und mittels Durchflusszytometrie gemessen.  
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4 Material und Methoden 

4.1 Material 

4.1.1 Verbrauchsmaterialien und Geräte 

Durchflusszytometer, FACSCalibur   BD, Heidelberg 

Durchflusszytometer, FACSCanto II   Eppendorf AG, Hamburg 

EDTA Monovette, KE/ 9ml    Sarstedt, Nümbrecht 

Elispot-Reader, ELR04    AID, Strassberg 

FACS-Röhrchen     Becton Dickinson, Heidelberg 

Freezing Container Mr. Frosty   Nalgene, Wiesbaden 

Heizwasserbad, Modell 1083    GFL, Burgwedel 

Inkubationsschrank, Heracell®   Heraeus, Hanau 

Kova-Objektträger     Hycor Biomedical, Kassel 

Mikroskop Dialux 20 EB    Leitz, Wetzlar 

Multiscreen IP – 96 Well Elispotplatte  Millipore, Schwalbach 

Nunc Kryo-Röhrchen 1,8 ml    Thermo Scientific, Langenselbold 

Safe-Lock Tubes 1,5 ml    Eppendorf AG, Hamburg  

Sterilwerkbank, Model Gelaire BSB 4A  Gruppo Flow s.p.a. OPERA, Italy 

Sterilwerkbank,     NuAire Biological Safety Cabinets, 

Model Labgard 437 Class II, Type A2  Plymouth, USA 

Serologische Einmalpipette, 5 und 10 ml  TTP, Ibbenbüren 

Vortexgerät, Vortex-Genie® 2   IKA® Werke, Staufen 

Zellkulturflasche, Filter, 25 und 75 cm²  TPP, Ibbenbüren 

Zellkulturplatte, 6- und 24-Loch   PAA, Cölbe 
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Zellzählsystem, CASY®1 Model TT  Schärfe System, Reutlingen 

Zentrifuge, Centrifuge 5810R   Eppendorf AG, Hamburg 

Zentrifuge, Rotanta 460R    Hettich Lab Technology, Tuttlingen 

Zentrifuge, Sorvall Super T21   Thermo Scientific, Schwerte 

Zentrifugenröhrchen     TPP, Ibbenbüren 

4.1.2 Chemikalien und Reagenzien 

Biocoll (Ficoll®)     Biochrom; Berlin 

Brefeldin A      Sigma Aldrich; Taufkirchen 

DMSO (Dimethylsulfoxid)    Merck KGaA; Darmstadt 

Dulbecco’s PBS (1x)     PAA; Cölbe 

FCS (fetal calf serum) Gold    PAA; Cölbe 

Fixation Medium – Medium A   Invitrogen; Karlsruhe 

Hank’s BSS (1x)     PAA; Cölbe 

HEPES Buffer Solution (1M)   PAA; Cölbe 

Interleukin-2 (IL-2)     Immuno Tools, Friesoythe 

L-Glutamin 200mM (100x)    PAA; Cölbe 

Monensin (BD Golgi StopTM)   Becton Dickinson; Heidelberg 

PHA (Phytohaemagglutinin)    Sigma Aldrich; Taufkirchen 

Penicillin/ Streptomycin (100x)   PAA; Cölbe 

Permeabilization Medium – Medium B  Invitrogen; Karlsruhe 

RPMI1640, ohne L-Glutamin   PAA; Cölbe 

Tween-Lösung     Sigma Aldrich; Taufkirchen 
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4.1.3 Medien 

Hanks: 

Hank’s Grundmedium ohne Glutamin (Hank’s Balanced Salt Solution (HBSS)) 

wurde supplementiert mit 5 ml L-Glutamin, 5 ml Penicillin/Streptomycin und 5 

ml HEPES Puffer. 

R10: 

RPMI1640 Grundmedium ohne Glutamin wurde supplementiert mit 5 ml L-

Glutamin, 5 ml Penicillin/Streptomycin, 5 ml HEPES Puffer und 50 ml FCS (1 

Stunde bei 56°C hitzeinaktiviert). 

R20: 

RPMI1640 Grundmedium ohne Glutamin wurde supplementiert mit 5 ml L-

Glutamin, 5 ml Penicillin/Streptomycin, 5 ml HEPES Puffer, und 100 ml FCS (1 

Stunde bei 56°C hitzeinaktiviert). 

R10/IL-2: 

RPMI1640 Grundmedium ohne Glutamin wurde supplementiert mit 5 ml L-

Glutamin, 5 ml Penicillin/Streptomycin, 5 ml HEPES Puffer und 50 ml FCS (1 

Stunde bei 56°C hitzeinaktiviert) und 1:1000 mit 20 mg/ml IL-2. 

4.1.4 Antikörper 

Antikörper   Markierung   Spezies   Hersteller 

CD3/CD8   -    Mouse  J. Wong, MGH, Boston, USA 

CD4  APC  Mouse  BioLegend, San Diego, USA 

CD8  Pacific blue  Mouse  BioLegend, San Diego, USA 

CD8  PerCP  Mouse  BioLegend, San Diego, USA 

CD107a  FITC  Mouse  BD, Heidelberg 

hIFN-γ mAb1-D1K   -   Mouse  Mabtech, Hamburg 

hIFN-γ mAb7-B6-

Biotin 
  -   Mouse  Mabtech, Hamburg 

IFN-γ  APC  Mouse  BioLegend, San Diego, USA 

IFN-γ  FITC  Mouse  BD, Heidelberg 

IL-2  Pe  Mouse  BD, Heidelberg 

KC57  FITC  Mouse  Beckman Coulter, Krefeld 

TNF-α  Pe/Cy7  Mouse  BD, Heidelberg 
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4.1.5 Peptide  

Peptid   Sequenz   Position 

IV12-M184V  IVIYQYVDDLYV  RT 178-189 

VY10-M184V  VIYQYVDDLY  RT 179-188 

VV11  VIYQYMDDLYV  RT 179-189 

VV11-M184V  VIYQYVDDLYV  RT 179-189 

VG12-M184V  VIYQYVDDLYVG  RT 179-190 

IV10-M184V  IYQYVDDLYV  RT 180-189 

YY8-M184V  YQYVDDLY   RT 181-188 

YV9  YQYMDDLYV  RT 181-189 

YV9-M184V  YQYVDDLYV  RT 181-189 

CV9-Y181C  CQYMDDLYV  RT 181-189 

CV9-Y181C, M184V  CQYVDDLYV  RT 181-189 

YG10-M184V  YQYVDDLYVG  RT 181-190 

QV8-M184V  QYVDDLYV  RT 182-189 

Verwendet wurden Peptide der Konsensussequenz des HIV-1 Subtyps B von 2001 [57] 

bzw. solche mit darin enthaltenen Mutationen. Alle Peptide wiesen eine Reinheit von 

>70% auf. 

4.1.6 Verwendete Viren 

Virus   Eigenschaften   Bezugsquelle 

EBV  
B-95 EBV-produzierende  

B-Zelllinie 
 

Prof. Wildner, Augenklinik, 

Klinikum Innenstadt, LMU 

NL4-3, WT  
HIV-1 Gruppe M Subtyp B, 

Wildtyp 
 

Dr. Schneidewind, Medizinische 

Klinik und Poliklinik I, UKB 

NL4-3, M184V  
HIV-1 Gruppe M Subtyp B, 

M184V-Mutation 
 

Dr. Schneidewind, Medizinische 

Klinik und Poliklinik I, UKB 

NL4-3, Y181C  
HIV-1 Gruppe M Subtyp B, 

Y181C-Mutation 
 

Dr. Schneidewind, Medizinische 

Klinik und Poliklinik I, UKB 

NL4-3, Y181C + M184V  
HIV-1 Gruppe M Subtyp B, 

Y181C- + M184V-Mutation 
 

Dr. Schneidewind, Medizinische 

Klinik und Poliklinik I, UKB 
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4.1.8 Lymphoblastoide B-Zelllinien und ihre HLA-Typen 

Zelllinie   HLA-A*   HLA-B*   HLA-C* 

AC 04  0201  2402  4102  5101  0702  1703 

ALR  24  31  14  57  07  08 

AN  0201  0202  3501  4901  0401  0701 

BL 30  0101  1101  0801  3901  0202  0701 

BN  0101  1101  0801  5501  0303  0701 

BS  0301  2402  0702  1501  0102  0702 

CR0050z  0202  29  07  49  07   -  

CR0059t  03  25  42  57  03   -  

DJS  0201  0301  35  37  0401  0601 

DP  0201  2402  1501  4402  0303  0501 

GK  0201  3002  0702  1801  05  0702 

GS  02  30  44  57  05  18 

JBB  01  03  07  57  05  07 

JW  23  68  35  44  04   -  

LC  0201  2902  4403  5001  0602  1601 

MDC  32   -   57   -   06   -  

MP  0201  0301  0702  4901  0701  0702 

NB  11  29  08  44  04   -  

OMW  0201  0201  4501  4501  1601  1601 

PRLS02  23  33  07   -   07   -  

PRLS08  33  68  15  53  03  04 

RLO  0301  2601  3801  4101  1203  1701 

SB  24  30  4001  13  06  07 

SS  02  29  14  58  07  08 

SWS  01  24  13  57  06   -  

4.1.9 Software 

CellQuest     BD; Heidelberg 

EliSpot Reader Version 5.0   AID, Strassberg 

FACSDiva Version 6.0   BD; Heidelberg 

FlowJo Version 9.5.2    Tree Star Inc., Ashland, USA 

GraphPad Prism Version 5.0   GraphPad Software, La Jolla, USA 
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4.2 Methoden 

4.2.1 Patienten 

Für das Projekt wurden HIV-1 positive Patienten der Infektionsambulanz der 

Medizinischen Klinik und Poliklinik IV der Ludwig-Maximilians-Universität München 

rekrutiert. Alle Teilnehmer wurden vor der Probenentnahme über Inhalt der 

Forschungsarbeit sowie über Freiwilligkeit, Rücktrittsrecht und mögliche Risiken der 

Blutentnahme aufgeklärt und gaben ihr schriftliches Einverständnis. Eine entsprechende 

Genehmigung der Ethikkommission der Ludwig-Maximilians-Universität lag vor. 

Patient 
HLA- 

Moleküle 

optimales 

Epitop 

HLA- 

Restriktion 
Therapie Mutation 

C1 
A*01:01; A*01:01  

B*44:02; B*37:01  

C*05:01; C*06:02 

LRPGGKKKY 

(LY9) 
C*06:02 nein Keine 

C1 
A*01:01; A*01:01  

B*44:02; B*37:01  

C*05:01; C*06:02 

LVSAGIRKVL 

(LL10) 
C*06:02 nein Keine 

C2 
A*02:01; A*32:01 

B*08:01; B*18:01 

C*07:01; C*07:01 

DVKDTKEAL 

(DL9) 
B*08:01 nein Keine 

C3 
A*24:02; A*31:01 

B*35:01; B*35:08 

C*04:01; C*04:01 

VPLRPMTY 

(VY8) 
B*35:01 nein Keine 

P1 
A*03:01; A*25:01 

B*35:01; B*39:01 

C*04:01; C*12:03  

SRLAFNHMA 

(SA9) 
B*39:01 nein Keine 

P2 
A*24:02; A*68:01 

B*18:01; B*35:01 

C*07:01; C*07:04 

RYPLTFGW 

(RW8) 
A*24:02 nein Keine 

P3 
A*02:01; A*02:01 

B*08:01; B*13:02 

C*06:02; C*07:01 

YQYMDDLYV 

(YV9) 
A*02:01 nein M184V 

T1 
A*02:01; A*02:02 

B*35:01; B*49:01 

C*04:01; C*07:01 

VIYQYMDDLYV 

(VV11) 
A*02:01 ja M184V 

T2 
A*02:01; A*25:01 

B*44:02; B*44:02 

C*05:01; C*07:04 

YQYMDDLYV 

(YV9) 
A*02:01 ja M184V 

T3 
A*01:01; A*30:04 

B*08:01; B*49:01 

C*07:01; C*07:01 

EKEGKISKI 

(EI9) 
B*49:01 ja M41L 

T4 
A*02:01; A*23:01 

B*27:05; B*44:03 

C*02:02; C*04:01 

YQYMDDLYV 

(YV9) 
A*02:01 ja M184V 

T5 
A*02:01; A*02:01 

B*15:01; B*15:01 

C*03:04; C*04:01 

VIYQYMDDLYV 

(VV11) 
A*02:01 ja M184V 
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Tabelle 1: Übersicht über die in der Arbeit vorkommenden Patienten. Aufgelistet sind die jeweiligen 

HLA-Moleküle, die experimentell bestimmten, optimalen Epitope mit der zugehörigen HLA-Restriktion 

sowie Angaben über Therapie und Medikamentenresistenzmutationen. C steht für Controller (Viruslast 

<5.000 Kopien/ml Plasma und >400 CD4+ Zellen/μl Blut), P für Progressoren (Viruslast >50.000 

Kopien/ml, <400 CD4+ Zellen/μl Blut) und T für Therapieresistente, deren Viruslast durch die abfallende 

Effizienz der Therapie zunehmend anstieg.  

4.2.2 Probengewinnung 

Durch eine venöse Punktion wurden zwischen drei und sechs EDTA-Röhrchen à 9 ml 

Patientenblut entnommen. Anschließend wurde durch Real-Time-PCR die Viruslast 

sowie mittels Durchflußzytometrie (BD Tritest) die CD4+ T-Zellzahl ermittelt.  

4.2.3 Zellisolierung und Bestimmung der Lebendzellzahl 

Bei den benötigten Zellen handelte es sich um peripheral blood mononuclear cells 

(PBMC), d.h. mononukleäre Zellen des peripheren Blutes. Für die Dichtegradien-

Methode wurde Ficoll®, ein Copolymer aus Saccharose und Epichlorhydrin, verwendet. 

Unter das Vollblut gelegt ermöglichte es die Separation der verschiedenen 

Blutbestandteile, wodurch die mononukleären Zellen nach halbstündigem Zentrifugieren 

bei 1500 U/min als Schicht zwischen Plasma und Ficoll® zu liegen kamen und 

anschließend abpipettiert werden konnten (vgl. Abb. 3).  

 

Abbildung 3: Dichtegradientenzentrifugation mittels Ficoll® [58]. Nach 30 Minuten Zentrifugation 

bildete sich eine Flüssigkeitssäule aus vier Schichten, die verschiedene Blutkomponenten enthielten. 
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Die entnommenen Zellen wurden in einem neuen Gefäß mit 40 ml Hanks vermischt und 

zehn Minuten zentrifugiert. Nach zweimaligem Wiederholen dieses Waschschritts 

wurden die Zellen in 10 ml R10 Medium resuspendiert und im elektrischen 

Zellzählsystem CASY® gezählt. Hierzu wurden 50 μl der Zellgemischs entnommen und 

in 10 ml CASY®Ton, einer isotonen Salzlösung physiologischen pH-Wertes, 

suspendiert. Zur Bestimmung der Viabilität wurden 10 μl des Zellgemischs mit 10 μl 

Trypanblau gemischt und die Zellen in einer KOVA®-Zählkammer gezählt. Der Quotient 

aus lebenden zu toten Zellen multipliziert mit dem von dem CASY® angegebenen Wert 

ergab die Zahl der lebenden Zellen.  

4.2.4 Einfrieren der Zellen  

Die verwendete Einfrierlösung bestand aus reinem FCS gemischt mit 10% 

Dimethylsulfoxid (DMSO). In jeweils 1ml dieser Lösung wurden 10x106 der zuvor 

abzentrifugierten Zellen (1500 U/min, 10 Min., 4°C) resuspendiert und mit Hilfe des 

Einfrierbehälters Mr. Frosty langsam um 1°C pro Minute bei -80°C eingefroren. Nach 24 

Stunden wurden die Proben dann zur Langzeitaufbewahrung in -196°C kalten 

Flüssigstickstoff überführt.  

4.2.5 Auftauen der Zellen 

Die aufzutauenden Proben wurden im 37°C warmen Wasserbad geschmolzen, mit 10 ml 

R10 gemischt und bei 1500 U/min für 10 Min. bei 4°C zentrifugiert. Anschließend wurde 

der Überstand verworfen, das Zellpellet in frischem R10 resuspendiert und dieser 

Waschschritt wiederholt. Am Ende wurden die Zellen in 10 ml R10-Medium 

resuspendiert und ein Volumen von 50 µl entnommen, um mittels automatischer 

Bestimmung der Zelldichte die endgültige Zellzahl zu erhalten.  

In einer Zellkulturflasche wurden 1,5x106 der Zellen pro ml R10 in einem 

Standardinkubator bei 37°C, 5% CO2 und einer Luftfeuchtigkeit von 100% bebrütet und 

aufbewahrt. 

4.2.6 IFN-γ Elispot 

Der Interferon-γ Elispot (engl. für Enzyme-linked immunospot assay) ist ein Test zum 

Nachweis spezifischer zellulärer Aktivität und erfasst die IFN-γ Produktion 

antigenstimulierter CD8+ T-Zellen. Zur Detektion des optimalen Epitops wurden 
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zunächst 5,5 μl des Primärantikörpers hIFN-γ mAb1-D1K der Konzentration 1 mg/ml in 

11 ml PBS gelöst und je 100 μl pro Well in die 96-Well Elispotplatte verteilt.  

Ein sechsmaliger Waschschritt mit PBS und 1% FCS entfernte am Tag darauf die nicht 

haftenden Antikörper. Anschließend wurden in jede Vertiefung 100.000 PBMC pipettiert 

und die entsprechenden Peptide (vgl. 4.1.5) der Konzentration 14 μg/ml in 

logarithmischen Verdünnungsschritten (von 200 mg/ml bis 2 ng/ml) zugegeben. Als 

Negativkontrolle galten Wells mit PBMC ohne Antigen, zur Positivkontrolle wurden 

PHA und FEC (ein Gemisch aus Grippe-, Epstein-Barr- und Zytomegalie-Virusepitopen) 

verwendet.  

In einem Standardinkubator folgte eine ca. 14 stündige Bebrütung der Platte, bevor diese 

mit PBS gewaschen wurde, um zelluläre Bestandteile zu entfernen. Daraufhin wurde ein 

biotinylierter Sekundärantikörper zugeführt, der ebenfalls gegen IFN-γ gerichtet war und 

den Komplex aus Primärantikörper und IFN-γ band (vgl. Abb. 4). Dies induzierte eine 

Farbreaktion, die die Zellaktivierung als bläuliche, sog. „spot forming cell“ (kurz SFC) 

sichtbar machte. 

 

Abbildung 4: Dargestellt ist das Prinzip des Enzyme-linked immunospot assays, das zelluläre Aktivität 

durch das Generieren von SFC sichtbar zu machen vermag (Abb. bearbeitet nach [59]). 

Die Elispotplatten wurden anschließend mit 200 μl einer 0,05%-iger Tween-Lösung 

desinfiziert und nach dem Trocknen mithilfe des AID Lesegerätes ausgewertet. Ein Well 

wurde nur dann als positiv gewertet, wenn die Anzahl an SFC die der Negativkontrollen 

mindestens um das Dreifache übertraf. Letztendlich wurde für jede Verdünnungsreihe der 

Mittelwert der einzelnen Vertiefungen berechnet und als SFC/106 Zellen dargestellt. 

Als optimales Epitop wurde das Peptid definiert, welches bei der geringsten Verdünnung 

die stärkste IFN-γ Immunantwort hervorrief.   
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4.2.7 Fluoreszenzbasierte Durchflusszytometrie  

Die Durchflusszytometrie dient der Färbung und Darstellung von Zellen und 

Zellbestandteilen wie z.B. Oberflächenmolekülen und Zytokinen. Für das Verfahren 

existiert eine Vielzahl an Antikörpern, die an extra- oder intrazelluläre Zellbestandteile 

binden und an einen Fluoreszenzfarbstoff gekoppelt sind. Somit kann das jeweilige 

Merkmal quantitativ und qualitativ dargestellt werden. In der Regel werden von einer 

Probe 100.000 Ereignisse gemessen, wobei das fluorescence-activated cell sorting (kurz 

FACS) Gerät FACSCalibur vier, das Gerät FACSCanto bis zu acht unterschiedliche 

Farbstoffe gleichzeitig messen kann. 

Der zu messenden Zellsuspension wurden 1 Mio. Zellen entnommen und dreimal in R10-

Medium bei 22°C und 1500 U/min für 10 Min. zentrifugiert, um das eventuell in der 

Kultur enthaltene IL-2 auszuwaschen. Anschließend wurden die Zellen in jeweils 1 ml 

R10 resuspendiert, auf eine 24-Well Platte gegeben und über Nacht bebrütet. Nach 24 

Stunden wurde die Stimulation mittels Peptid oder Virus vorgenommen. Nach einer 

Stunde wurden 10 µl Brefeldin A (1 mg/ml) untergemischt, welches am Golgi-Apparat 

interferiert und das Ausschleußen von im endoplasmatischen Retikulum gebildeten 

Proteinen verhindert. IFN-γ, das von den CD8+ T-Zellen als Antwort auf die Stimulation 

produziert wurde, verblieb somit in der Zelle und konnte anschließend nachgewiesen 

werden. Nach fünfstündiger Inkubation bei 37°C wurden beide Ansätze bei 4°C für 10 

Min. bei 1500U/min in 2 ml PBS+1% FCS zentrifugiert, um Brefeldin A zu entfernen. 

Der Überstand wurde verworfen, 50 µl PBS zugegeben und im Dunkeln Antikörper zur 

Färbung extrazellulärer Proteine untergemischt. Nach halbstündiger Inkubation bei 4 °C 

wurden die Proben in 2 ml PBS gewaschen und 100 µl Fix/Perm Solution A zur Fixierung 

der Oberflächenantikörper zugegeben. Nach erneutem Waschen in 2 ml PBS kamen 100 

µl Fix/Perm Solution B dazu, um die Zellen permeabel für die anschließende Färbung 

intrazellulärer Zytokine zu machen. Nach 15 Minuten Inkubation bei Raumtemperatur 

wurden die Antikörper gegen intrazelluläre Zellbestandteile untergemischt und wiederum 

eine halbe Stunde bei 4°C inkubiert. Nach zweimaligem Waschen in 2 ml PBS wurden 

die gefärbten Zellen in 200 µl PBS resuspendiert, am Durchflusszytometer gemessen und 

die Ergebnisse mit der Software FlowJo ausgewertet. Dabei konnte man die 

Lymphozyten selektieren, um daraus wiederum gezielt z.B. CD8+ T-Zellen zu betrachten. 

Das Verfahren der fluoreszenzbasierten Durchflusszytometrie kam in mehreren Schritten 

dieser Arbeit zur Anwendung und wird in den entsprechenden Unterpunkten näher 

erläutert. 
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4.2.8 Bestimmen der HLA-Restriktion 

Zur Bestimmung der HLA-Restriktion musste die HLA-Typisierung aus Patienten-DNA 

vorgenommen werden, was das Labor für Immunogenetik der Abteilung für 

Transfusionsmedizin im Klinikum Großhadern der Ludwig-Maximilians-Universität 

München übernahm. Um daraufhin zu ermitteln, mit welchem seiner HLA-Moleküle der 

entsprechende Patient ein bestimmtes Epitop präsentiert, wurden allogene B-Zelllinien 

(BCL) bekannten HLA-Typs mit Peptid beladen und den CD8+ T-Zellen des Patienten 

ausgesetzt. Hierbei wurde im Idealfall jeder HLA-Typ des Patienten von auschließlich 

einer BCL, die nur mit einem HLA-Typ des Patienten übereinstimmte, abgedeckt. Lagen 

die benötigten BCL nicht vor, wurde alternativ durch verschiedene Kombinationen der 

sechs HLA-Moleküle auf den restringierenden HLA-Typ rückgeschlossen. Abb. 5 

verdeutlicht das Vorgehen anhand eines beliebigen Patienten und Epitops. 

Die Konzentration des Peptids betrug 1μg/ml R10 pro 5x105 B-Zellen/ml. Nach 

einstündiger Inkubation in einem Standardinkubator wurden die B-Zellen dreimal mit 

R10 gewaschen, wodurch nicht gebundenes Peptid entfernt wurde. Daraufhin wurden die 

peptidbeladenen BCL im Verhältnis 1:5 mit CD8+ T-Zellen des Patienten 

zusammengegeben und sechs Stunden im Inkubator bebrütet, wobei nach einer Stunde 

10 μl Brefeldin A (1mg/ml) dazugegeben wurden. Anschließend fand die wie oben 

beschriebene Durchführung eines FACS-Ansatzes statt. Als intrazellulärer Antikörper 

dienten 15 μl IFN-γ-FITC, als extrazellulärer Antikörper 1 μl CD8-PerCP, die Messung 

erfolgte am Gerät FACSCalibur. 

Bei der anschließenden Auswertung (siehe Abb. 5) wurde dasjenige HLA-Allel des 

Patienten als restringierend bestimmt, das – enthalten in einer der B-Zelllinien – die 

stärkste IFN-γ Produktion der CD8+ T-Zellen hervorrufen konnte.  
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Abbildung 5: Bestimmen der HLA-Restriktion eines beliebigen Patienten mit den HLA-Merkmalen 

HLA-A*02:01, -A*03:01, -B*15:01, -B*57:03, -C*03:04, -C*07:01 [16]. Die Messung der IFN-γ 

Produktion nach Stimulation mittels B-Zelllinien der entsprechenden HLA-Moleküle ergibt in diesem Fall 

HLA-A*02:01 als restringierenden HLA-Typen. 

4.2.9 Zelllinien 

Herstellen von T-Zelllinien 

CD8⁺ T-Zelllinie 

Um gezielt Epitop-spezifische CD8⁺ T-Zellen zu gewinnen, wurden 4 Mio. PBMC des 

Patienten aufgetaut und mit einem Stimulus vermischt. Dieser bestand aus 4 Mio. B-

Zellen einer bereits vorhandenen BCL des restringierenden HLA-Typen. Die B-Zellen 

wurden mit 50 µl des gewünschten Peptids beladen und zwei Stunden inkubiert. 

Währenddessen wurden 20 Mio. frische PBMC eines HIV-negativen Spenders als 

Futterzellen isoliert. Stimulierte B-Zellen und PBMC wurden anschließend bei 3000 rad 

mit Hilfe einer Caesiumquelle bestrahlt und teilungsunfähig gemacht, um die 

Vermehrung lediglich der gewünschten CD8⁺ T-Zellen zu ermöglichen.  

Die B-Zellen wurden nach der Bestrahlung dreimal in je 10 ml R10-Medium bei 1500 

U/min 10 Min. gewaschen und in 1 ml R10 resuspendiert. Dann wurden die aufgetauten 

CD8+ T-Zellen, die PBMC-Futterzellen und die peptidstimulierten PBMC zusammen in 

eine 25 ml-Flask überführt, 10 µl IL-2 zugegeben und mit R10-Medium auf ein 

Gesamtvolumen von 20 ml aufgefüllt. Nach etwa einer Woche konnte die CD8+ T-

Zelllinie auf Spezifität (s.u.) überprüft werden. 
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Restimulation einer CD8⁺ T-Zelllinie 

Um eine CD8⁺ T-Zelllinie zu verwenden wurde sie aufgetaut und mit einem Stimulus 

vermischt. Dieser beinhaltete die gleichen Bestandteile wie beim Anlegen der T-Zelllinie. 

Die mit demselben Peptid beladenen B-Zellen wurden gemeinsam mit frischen PBMC-

Futterzellen bestrahlt und mit den aufgetauten CD8⁺ T-Zellen vermischt und inkubiert. 

Nach zehn Tagen wurde die Spezifität der Zelllinie überprüft.  

Spezifitätsüberprüfung einer CD8⁺ T-Zelllinie 

Um die Spezifität einer CD8+ T-Zelllinie gegenüber dem Peptid zu überprüfen, mit dem 

sie stimuliert wurde, wurde ebenfalls das durchflusszytometrische Verfahren 

angewendet. Dafür wurden der Kultur Zellen entnommen und 20 µl des entsprechenden 

Peptids in einer Konzentration von 200 µg/ml zugegeben. Eine Negativkontrolle blieb 

ohne Peptidstimulation.  

Als extrazelluläre Antikörper dienten bei der weiteren Zellfärbung 5 µl CD4-APC sowie 

1 µl CD8-PerCP. Intrazellulär wurde IFN-γ mittels 15 μl des IFN-γ-FITC Antikörpers 

gefärbt. Die Überprüfung der Spezifität anhand der IFN-γ Produktion der Zellen fand 

anschließend am FACSCalibur statt. Um die Linie verwenden zu können, wurde eine im 

Vergleich zur Negativkontrolle mindestens zweifach höhere IFN-γ Produktion gefordert. 

CD4⁺ T-Zelllinie 

Für die Herstellung einer CD4⁺ T-Zelllinie wurden 5 Mio. PBMC des entsprechenden 

HLA-Typs 10 Min. bei 1500 U/min zentrifugiert, der Überstand entnommen und das 

Zellpellet in 200 µl Restmedium resuspendiert. Anschließend wurden die Zellen gezählt 

und 1 µl eines bispezifischen anti-CD3/anti-CD8 Antikörpers pro Mio. viabler Zellen 

untergemischt. Dieser Antikörper sorgte dafür, dass CD3⁺ und CD8⁺ T-Zellen 

verklumpen und sich nicht weiter teilen konnten. Nach fünfminütiger Inkubation wurden 

1 ml/Mio. Zellen R10/IL-2 zugegeben und jeweils 1 ml des Zellgemischs pro Vertiefung 

in eine 24-Well-Platte gefüllt.  

Am nächsten Tag wurde pro Well 500 µl R10/IL2-Medium zugefüttert, nach drei 

weiteren Tage wurden die Zellen in eine gemeinsame 25 ml Kulturflasche überführt und 

5 ml Medium zugegeben. Zur weiteren Teilung wurden die Zellen ein Tag später durch 

Zugabe von 2 µl/ml Zellgemisch des Mitogens Phytohämagglutinin (PHA) angeregt. 

Nach weiteren zwei Tagen waren die Zellen gebrauchsbereit. Vor Verwendung wurde 

mittels FACS-Messung überprüft, ob ausschließlich CD4+ T-Zellen gewachsen sind. 
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4.2.10 Herstellen von HI-Viruskulturen 

Verwendet wurden HIV-1 Viren des Stammes NL4-3 Gruppe M, Subtyp B mit dem 

primären Co-Rezeptor CXCR4, die aus einer Kollaboration der Universitätsklinik Bonn 

stammten. Gearbeitet wurde sowohl mit dem Wildtypvirus als auch den Varianten mit 

den Medikamentenrestistenzmutationen Y181C; M184V; Y181C+M184V.   

Zur Kultivierung und Vermehrung der HI-Viren wurden 7 ml einer H9-Zellsuspension 

mit einem Zellanteil von 0,5 Mio. pro ml mit 700 µl des jeweiligen Virusstocks infiziert 

und in 25 ml-Zellkulturflaschen inkubiert. Nach 3 Tagen wurde 10 ml R10 zugegeben, 

am siebten Tag erfolgte eine Überführung in 75 ml-Zellkulturflaschen. Außerdem wurden 

3 Mio. frische H9-Zellen zugegeben und mit R10 auf 50 ml Volumen aufgefüllt. Nach 

frühestens drei weiteren Tagen wurden die H9-Zellen bei 3040 U/min bei 4°C für 10 Min. 

abzentrifugiert. Die Überstände wurden abpipettiert und in einem Volumen von je 1 ml 

in Nunc-Kryoröhrchen bei -80°C tiefgefroren. 

4.2.11 Titerbestimmung 

Zur Bestimmung der Menge infektiöser Viren der HIV-Kulturen wurde eine 

Endpunkttitration durchgeführt. Hierfür wurde nach mindestens 24-stündiger Lagerung 

bei -80°C ein Kryoröhrchen der Kulturüberstände aufgetaut und eine Verdünnungsreihe 

angelegt: 900 µl R10 wurden mit 100 µl der Viruskultur untermischt. Daraus wurden 

wiederum 100 µl in ein neues, ebenfalls 900 µl R10 enthaltenes Eppendorfgefäß gegeben. 

Dieser Prozess wurde mehrere Male wiederholt, sodass eine in logarithmischen Stufen 

titrierte Verdünnungsreihe bis zur Endpunktkonzentration 10-6 entstand (vgl. Abb. 6). 

 

Abbildung 6: Anlegen und Ausplattieren der Verdünnungsreihe eines HIV-Stocks. 
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Aus den verdünnten Viruslösungen wurden 100 µl aus dem jeweiligen Gefäß entnommen 

und in je vier untereinander liegende Vertiefungen einer 24-Well Platte gegeben. Die 

obersten zwei Wells der ersten Reihe wurden als Positivkontrolle mit 100 µl des 

Virusstocks befüllt, die beiden darunterliegenden dienten als Negativkontrolle.  

Anschließend wurde in jedes Well 900 µl einer H9-Zellsuspension (0,1 Mio./ml) 

zugegeben, sodass die aus den Eppendorfgefäßen entnommene Viruslösungen um eine 

weitere Zehnerpotenz verdünnt wurden. Abb. 7 zeigt die fertig befüllte 24-Well Platte: 

 

Abbildung 7: Virus-Endpunkttitration auf einer 24-Well Platte. 

Die Platten wurden für ca. 20 Tage in einem Standardinkubator bebrütet und zweimal pro 

Woche mit 350 µl R10-Medium pro Vertiefung zugefüttert. Da H9-Zellen bei Infektion 

Synzytien bilden, wurden die Lochplatten zweimal wöchentlich unter dem 

Lichtmikroskop inspiziert und nach Ablauf der 20 Tage die TCID50 anhand der Reed-

Muench-Methode [60] berechnet. Es handelt sich hierbei um die „Median tissue culture 

infective dose“, also die Menge an Viruspartikeln, die in 50% der Vertiefungen einer 

Verdünnungsreihe Synzytien hervorruft. Waren beispielsweise in den Verdünnungen 

10−2 und 10−3 in allen und bei 10−4 in zwei Wells Synzytien sichtbar, lag der Titer 

infektiöser Viren bei 104/ml.  

4.2.12 Infektion von CD4⁺ T-Zellen mit HIV 

Die Infektion der CD4⁺ T-Zellen sollte anhand einer bestimmten MOI (engl. für 

Multiplicity of Infection), also dem Verhältnis infektiöser Viruspartikel zu Zielzellen, 

erfolgen. In vorangegangenen Projekten unserer Forschungsgruppe stellte sich eine MOI 

von 0,01 als optimal heraus, sprich eine von 100 CD4+ T-Zellen wurde initial infiziert. 

Die Infektion wurde wie folgt vorgenommen: 
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Viermal 0,5 Mio. viable CD4⁺ T-Zellen wurden in 15 ml Tubes bei 21°C für 5 Min. bei 

1660 U/min abzentrifugiert und der Überstand abpipettiert. Anschließend wurde in jedes 

Tube eine der tiefgefrorenen HIV-Kulturen zugegeben:  

 NL4-3, WT 

 NL4-3, Y181C 

 NL4-3, M184V 

 NL4-3, Y181C+M184V 

Dabei wurden vom Wildtyp und der M184V-Mutation je 0,5 ml und von der Y181C-

Mutation sowie von dem beide Mutationen tragenden Virus je 1 ml verwendet.  

Nach vierstündiger Inkubation bei 37°C in einer 24-Lochplatte wurde je 1 ml R10/IL-2 

zupipettiert. Nach weiteren drei Tagen Inkubation wurden die Zellen mit 1 ml R10/IL-2 

gefüttert. Um das Ausmaß der Zellinfektion nachzuweisen wurde an Tag 4 nach Infektion 

eine Core-Färbung (s.u.) durchgeführt. 

4.2.13 Core-Färbung HIV-infizierter CD4+ T-Zellen 

Zur Quantifizierung der Virusaufnahme der CD4+ T-Zellen wurde jedem Virus-Zell-

Gemisch 500 µl entnommen, zweimal in R10-Medium gewaschen und ein FACS-Ansatz 

durchgeführt. Nicht infizierte CD4+ T-Zellen dienten als Negativkontrolle.  

Extrazelluläre Proteine wurden mit 5 µl des Antikörpers CD4-APC und 1 µl CD8-PerCP 

markiert. Zur Färbung der internalisierten, intrazellulären HI-Viren dienten 5 µl eines 

Core-Antikörpers gekoppelt an den Farbstoff FITC, der gegen das virale p24 Kapsid-

Protein gerichtet ist. Nach Messung der Proben am FACSCalibur wurden die Ergebnisse 

unter Berücksichtigung der Negativkontrolle mit der Software FlowJo ausgewertet.   

4.2.14 Untersuchung auf Polyfunktionalität 

Um die CD8+ T-Zellantwort auf eine Stimulation mit virusinfizierten Zellen zu 

untersuchen, wurde ebenfalls eine Färbung für die durchflusszytometrische Messung 

durchgeführt. Dafür wurden am Vortag Zellen einer restimulierten und auf Spezifität 

überprüften CD8+ T-Zelllinie zweimal in R10-Medium gewaschen. An Tag 5 nach 

Infektion wurden die CD8+ T-Zellen in einem Volumen von je 1 ml R10-Medium auf 

eine 24-Well-Platte gegeben und sowohl infizierte als auch nicht infizierte CD4+ T-Zellen 

gezählt. Der Ansatz mit nicht infizierten CD4+ T-Zellen diente als Negativkontrolle.  
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Da man Effektor- und Zielzellen in einem bestimmten Verhältnis mischen wollte 

(Effector Cell to Target Cell Ratio, E:T), wurde den Proben jeweils die entsprechende 

Menge an CD4+ T-Zellen entnommen, in R10-Medium bei 22 °C und 1500 U/min für 10 

Min. zentrifugiert, in 150 µl Restvolumen resuspendiert und zu den CD8+ T-Zellen 

gegeben. Gleichzeitig wurden 15 µl eines Antikörpers gegen CD107a-FITC zupipettiert. 

Nach einstündiger Inkubation wurden die Sekretionsinhibitoren Monensin (0,7 µl) und 

Brefeldin A (10 µl) zugegeben und der Versuch wie oben beschrieben fortgeführt.  

Das extrazelluläre CD8 wurde mit 5 µl des Antikörpers CD8-PacificBlue gefärbt. Zur 

Markierung intrazellulärer Zytokine wurden 5 µl IFN-γ-APC, 5 µl TNF-α-Pe/Cy7 und 15 

µl IL-2-PE pro Ansatz untermischt. Bei der Auswertung wurden die Lymphozyten 

ausgewählt, die CD8+ T-Zellen daraus selektiert und CD8 jeweils gegen CD107a, IFN-γ, 

IL-2 und TNF-α aufgetragen (siehe Abb. 8). So konnten gezielt CD8+ T-Zellen, die das 

jeweilige Zytokin bzw. Degranulationsmarker aufwiesen, quantifiziert werden. 

 

Abbildung 8: Bild A zeigt die Auswahl der Lymphozyten im Vorwärts- und Seitwärtsstreulicht, in Bild 

B ist die Selektion der CD8+ T-Zellen dargestellt. 

Zuerst wurde der Versuch mit einer Negativkontrolle vorgenommen, bei der CD4+ T-

Zellen, die nicht mit HIV infiziert wurden, als Stimulus dienten. Die gesetzten Grenzen 

wurden dann auf die anderen Proben übertragen, der Wert der Hintergrundfluoreszenz 

der Negativkontrolle subtrahiert und so der Anteil der gesuchten Zellen errechnet. 
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5 Ergebnisse 

5.1 Gegenüberstellung von Epitope prediction Programmen und 

experimenteller Epitopkartierung 

Insgesamt wurden neun in unserem Labor neu kartierte optimale HIV-Epitope von acht 

Individuen untersucht. Im Vorfeld waren bereits von anderen Mitgliedern unserer 

Arbeitsgruppe mittels IFN-γ Elispot die optimalen Epitope und die entsprechende HLA-

Restriktion ermittelt worden.  

5.1.1 Abweichende Resultate von Epitope prediction Programmen und 

experimenteller Epitopkartierung 

Die in Abschnitt 2.4.2 vorgestellten bioinformatischen Programme wurden verwendet, 

um aus langen Screening-Peptiden die optimalen Epitope der acht Patienten zu ermitteln. 

Damit sollte analysiert werden, wie zuverlässig die Vorhersagen dieser Programme sind 

und ob sie die zeitaufwendige und teure Laborarbeit zu ersetzen vermögen.  

Da die HLA-Restriktion zu Beginn der experimentellen Epitopkartierung für gewöhnlich 

nicht bekannt ist, wurden in einem ersten Schritt die jeweiligen Screening-Peptide mit 

den Programmen SYFPEITHI, CTLPred und IEDB analysiert, ohne die HLA-Restriktion 

zu berücksichtigen. Die ermittelten Aussagen bezogen sich auf alle HLA-Typen des 

Patienten. Außerdem wurden nur die vorausgesagten Epitope berücksichtigt, die der 

Länge des experimentell bestimmten Epitops entsprachen, da nicht alle Programme in der 

Lage waren, diesbezüglich eine Voreinstellung zu treffen und die Ergebnisse nur so 

vergleichbar blieben. 

Tabelle 2 (siehe Seite 33/34) listet die acht Patienten mit ihren HLA-Molekülen, den 

experimentell bestimmten, optimalen Epitopen und der zugehörigen HLA-Restriktion 

auf. Ebenso sind pro Patient die ersten drei Suchergebnisse der bioinformatischen 

Programme mit den zugehörigen Rängen sowie in Klammern das mit dem Suchergebnis 

verbundene HLA-Allel aufgeführt. Zur besseren Übersicht wurde die als optimales 

Epitop experimentell ermittelte Sequenz des Screening-Peptids grau hinterlegt. 

Befand sich das optimale Epitop nicht unter den ersten drei angegebenen Ergebnissen, 

wurde der entsprechende Rang bzw. „optimales Epitop nicht vorhergesagt“ notiert. 

Konnte von der Software keine Sequenz als Epitop ermittelt werden, wurde dies als „kein 

Ergebnis“ vermerkt. 
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Da in-silico Programme einer ständigen Aktualisierung unterliegen, ändern sich die 

Resultate der Suchanfragen unter Umständen bei späteren Analysen. Stand der hier 

aufgeführten Ergebnisse ist der 26.11.2013. 

Betrachtet man das Programm SYFPEITHI, wurde das optimale Epitop in sieben von 

neun Fällen richtig vorhergesagt (ungeachtet von HLA-Restriktion und Ranking). 

CTLPred hatte in drei von neun, IEDB in neun von neun Fällen Erfolg.  

Unter den ersten drei aufgelisteten Ergebnissen vorzufinden war das optimale Epitop in 

44% (4/9) bei SYFPEITHI, in 22% (2/9) bei CTLPred und in 78% (7/9) bei IEDB.  

Interessanterweise sagten die Programme oft dieselbe Aminosäuresequenz als Epitop 

voraus, verbanden das Suchergebnis jedoch mit unterschiedlicher HLA-Restriktion. 

Dies war zum Beispiel bei Patient C1 der Fall, dessen optimales Epitop LVSAGIRKVL 

HLA-C*06:02 restringiert ist. SYFPEITHI gab jedoch HLA-B*44:02 als restringierendes 

Molekül an und lieferte kein Ergebnis bezüglich HLA-C*06:02. 

Im Falle des Epitops DVKDTKEAL (Patient C2) ermittelte IEDB HLA-B*18:01 und 

HLA-B*08:01 als restringierende HLA-Moleküle, während SYFPEITHI HLA-A*02:01 

mit dem höchsten Ranking angab (Rang 14 versus Rang 0 für HLA-B*18:01 und 

B*08:01). Auch bei den Patienten P1, P2 und T2 passte das angegebene HLA-Allel nicht 

zum experimentell bestimmten. 
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Tabelle 2: Liste der acht analysierten Patienten. Aufgeführt sind optimales Epitop (grau hinterlegt), 

HLA-Moleküle und –Restriktion sowie die ersten drei Suchergebnisse der bioinformatischen Programme 

mit zugehörigem Rang und angegebenem HLA-Allel.  

5.1.2 Gezieltere Vorhersageergebnisse bei bekannter HLA-Restriktion und häufig 

vorkommendem HLA-Typ 

Um zu untersuchen, ob das Wissen über den das entsprechende Peptid restringierenden 

HLA-Typ die in-silico Vorhersageergebnisse verbesserte, wurden alle Sequenzen noch 

einmal analysiert und der experimentell bestimmte, restringierende HLA-Typ mit 

angegeben. Da das Programm CTLPred mögliche Epitope automatisch für alle HLA-

Typen angibt und bei SYFPEITHI nicht alle existierenden HLA-Moleküle gezielt 

ausgewählt werden können, wurde dieser Versuch nur mit IEDB durchgeführt. Anstatt 

wie in 5.1.1 alle sechs wurde nur der jeweils zuvor experimentell ermittelte, 

restringierende HLA-Typ angegeben. Tabelle 3 gibt die Ergebnisse wieder. 

ID kartiertes Epitop 
HLA- 

Restriktion 

alle  

HLA-Typen 

HLA-Restriktion  

bekannt 

C1 LVSAGIRKVL C*06:02 3. Rang 1. Rang 

P1 SRLAFNHMA B*39:01 7. Rang 2. Rang 

T1 VIYQYMDDLYV A*02:01 2. Rang 1. Rang 

T3 EKEGKISKI B*49:01 7. Rang 4. Rang 

 

Tabelle 3: Bekannte HLA-Restriktion führt zu einer verbesserten Rangfolge der Suchergebnisse. Die 

beiden letzten Spalten der Tabelle zeigen das Ranking des optimalen Epitops innerhalb der Suchergebnisse 

zum einen bei der Suche nach allen HLA-Typen des Patienten, zum anderen bei gezielter Suche des jeweils 

experimentell bestimmten, restringierenden HLA-Typen.   

Zwar konnte durch die gezielte Suche mittels experimentell bestimmten, restringierenden 

HLA-Typen keine größere Anzahl an optimalen Epitopen richtig vorhergesagt werden, 

die Rangfolge der Suchergebnisse verbesserte sich jedoch deutlich. Vier der neun mit 

IEDB richtig vorhergesagten Epitope erschienen durch die veränderte Suchbedingung an 

einer höheren Stelle des Rankings. Das Wissen über die HLA-Restriktion trägt also zu 

einer gezielteren Vorhersage des optimalen Epitops bei. 

Die untersuchten Computerprogramme werden regelmäßig mit experimentell 

gewonnenen Datensets trainiert und damit aktualisiert. Folglich sind die Inhalte über 

häufig vorkommende HLA-Typen aufgrund vermehrt vorhandener Informationen 

zahlreicher und aktueller.  
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Um der Frage nachzugehen, ob die Häufigkeit des HLA-Typs in der Population die 

Ergebnisse beeinflusste, wurde anhand der Kalkulationen von Frahm et al. geschätzt, 

welche HLA-Moleküle in der kaukasischen Bevölkerung bevorzugt auftreten [61]. 

Anhand des Ergebnisses wurden sechs untersuchte Peptide in eine Gruppe mit häufigen 

und eine mit seltenen restringierenden HLA-Typen unterteilt. Anschließend wurden die 

Resultate des Programms IEDB für beide Gruppen verglichen (siehe Tabelle 4). 

ID Screening-Peptid 
kartiertes 

Epitop 

HLA- 

Restriktion 

Allel- 

frequenz bei 

Kaukasiern 

IEDB Vorhersage 

C1 QVDKLVSAGIRKVLFL LVSAGIRKVL C*06:02 Hoch 
QVDKLVSAGI 

(C*05:01)(0.4) 

     
VSAGIRKVLF 

(A*01:01)(4.7)  

          
LVSAGIRKVL 
(C*06:02)(5.1)  

C3 EEEEVGFPVTPQVPLRPMTY VPLRPMTY B*35:01 Hoch 
VPLRPMTY 

(B*35:08/B*35:01)(0.9/3.3)  

          
VTPQVPLR 

(A*31:01)(4.3)  

          
FPVTPQVP 

(B*35:01)(4.4)  

P2 PDWQNYTPGPGVRYPLTFGW RYPLTFGW A*24:02 Hoch 
RYPLTFGW 
(A*24:02)(0.6)  

     
TPGPGVRY 
(B*35:01)(0.9)  

          
YTPGPGVR 

(A*68:01)(2)  

T2 RKQNPDIVIYQYMDDLYV YQYMDDLYV A*02:01 Hoch 
YQYMDDLYV 

(A*02:01/C*07:04)(0.5/2.5)  

          
VIYQYMDDL 

(A*02:01/A*25:01)(5.9/8.3)  

          
NPDIVIYQY 
(C*05:01)(9.1)  

P1 EWRFDSRLAFNHMARELHPE SRLAFNHMA B*39:01 Niedrig 
RLAFNHMAR 

(C*03:01)(0.45) 

     
WRFDSRLAF 

(B*39:01)(0.7)  

     
DSRLAFNHM 

(A*25:01)(2.95)  

          optimales Epitop 7. Rang 

T3 LVEICTEMEKEGKISKI EKEGKISKI B*49:01 Niedrig 
TEMEKEGKI 
(B*49:01)(1.2) 

          
CTEMEKEGK 

(A*01:01)(4.5)  

          
VEICTEMEK 

(B*49:01)(4.9) 

          optimales Epitop 7. Rang 

 

Tabelle 4: Häufig auftretende HLA- Typen sind mit besseren Vorhersageergebnissen verbunden. 

Aufgeführt sind anhand der Kalkulationen von Frahm et al. als häufig bzw. selten eingestufte HLA-

Moleküle und die jeweils zugehörigen, von IEDB generierten Vorhersagen des optimalen Epitops. 
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Es stellte sich also heraus, dass häufig vorkommende HLA-Typen wie HLA-A*02:01, 

HLA-A*24:02, HLA-B*35:01 und HLA-C*06:02 mit präziseren Angaben korrelierten 

als die selten vorkommenden Moleküle HLA-B*39:01 und HLA-B*49:01. 

Bioinformatische Programme vermögen präzisere Angaben zu Suchanfragen zu liefern, 

die sich auf häufig vorkommende HLA-Typen beziehen, während aufgrund geringerer 

Informationslage zu selten vorkommenden Molekülen weniger genaue Aussagen 

generiert werden können. 

5.1.3 Schlechtere Vorhersage von Epitopen ungewöhnlicher Länge 

Ein typisches CD8+ T-Zellepitop ist in den meisten Fällen neun Aminosäuren lang. Bei 

der computergestützten Suche der optimalen Epitope fiel auf, dass Epitope, die keine 

Nonamere waren, schlechter vorausgesagt wurden. So wurden z.B. die Patienten T1 und 

T2, die beide ihr Epitop mit HLA-A*02:01 restringierten, auf dasselbe Screening-Peptid 

hin untersucht (RKQNPDIVIYQYMDDLYV = HIV pol 327-344). Sowohl SYFPEITHI 

als auch CTLPred und IEDB ermittelten das Nonamer YQYMDDLV mit hohen 

Rangwerten als optimales Epitop. Verglichen mit der experimentellen Kartierung traf 

dies zwar auf Patient T2 zu, jedoch war das 11mer lange Peptid VIYQYMDDLYV für 

Patient T1 das optimale Epitop, was in Vorarbeiten unserer Arbeitsgruppe festgestellt 

wurde (siehe Abschnitt 2.5.2).  

Interessant ist hierbei, dass die für die Bindung an den HLA I-Rezeptor wichtig erachtete 

Ankerposition (Position 2 im Epitop) abweichend von dem Nonamer ist. Ebenso wurde 

das in der Literatur bereits beschriebene, HLA-A*24:02 restringierte Epitop RW8 

(RYPLTFGW) [62, 63] von SYFPEITHI erst an siebter Stelle als Epitop ermittelt und 

dabei noch einem abweichenden HLA-Allel zugeordnet (HLA-B*18). Das HLA-

B*35:01 restringierte Oktamer VY8 (VPLRPMTY) konnte SYFPEITHI überhaupt nicht 

als Epitop ermitteln. CTLPred hingegen bezieht ausschließlich Nonamere in seine 

Analysen ein und kann demzufolge die genannten, in der Länge abweichenden Epitope 

nicht vorhersagen. 

Demgegenüber steht das Programm IEDB, mit dem man anhand der Sucheinstellungen 

sowohl nach Epitopen bestimmter als auch beliebiger Länge suchen kann. Auf beiden 

Wegen wurden die Peptide RW8 und VY8 als Epitope erkannt, wobei sie bei der gezielten 

Suche nach Oktameren an höherer Stelle im Ranking erschienen. 
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Insgesamt betrachtet führen Epitope unüblicher Länge in Epitope prediction Programmen 

zu schlechteren Ergebnissen als gewöhnliche, neun Aminosäuren lange Peptide. 

5.2 Untersuchung der CD8⁺ T-Zellantwort gegen M184V und Y181C 

HIV-1 Mutanten  

Frühere Untersuchungen unserer Arbeitsgruppe zeigten, dass es CD8+ T-Zellantworten 

gibt, die spezifisch medikamentenresistentes Virus erkennen können [16]. Durch 

mangelnde Medikamentencompliance generierten die Viren verschiedener Patienten 

Medikamentenresistenzmutationen, was die Synthese neuer, auf die mutierten Sequenzen 

spezialisierter CD8+ T-Zellen induzierte. Diese Zellen erkannten in Peptiden die 

mutierten Epitope sogar besser als das ursprüngliche Wildtyp-Epitop [16]. Folgende 

Ergebnisse wurden bei der Untersuchung, ob auch mit ganzen, die Mutationen tragenden 

Viren eine solche Reaktion vorhanden ist und gemessen werden kann, erzielt. 

5.2.1 Unterschiedliches Erkennen der DRM M184V, Y181C und Y181C+M184V in 

Peptiden 

Da die Y181C-Mutation benachbart zur M184V-Mutation liegt und beide für ein 

Versagen der medikamentösen Therapie verantwortlich sind (siehe Abschnitt 2.2), wurde 

in diesem Schritt das Erkennen der Y181C-Mutation näher untersucht. Das spezifische 

Erkennen der Mutation M184V wurde bereits mehrfach nachgewiesen [16, 45, 55, 56]. 

Was die Reaktion auf Peptide angeht, welche die Mutation an der Stelle 181 tragen, liegen 

jedoch keine Daten vor. Auch das Erkennen von Peptiden, welche sowohl die Mutation 

M184V als auch Y181C enthalten, wurde bisher nicht untersucht. Daher wurde ein IFN-

γ Elispot mit Peptiden durchgeführt, die entweder der Wildtyp-Sequenz entsprachen oder 

die Mutationen M184V, Y181C oder beide trugen. 

 

Verwendet wurden folgende Peptide: 

 Wildtyp:   YQYMDDLYV  (YV9-WT) 

 M184V:   YQYVDDLYV  (YV9-M184V) 

 Y181C:   CQYMDDLYV  (CV9-Y181C) 

 Y181C+M184V:  CQYVDDLYV  (CV9-Y181C, M184V) 
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Beispielhaft sind in Abb. 9 die Antworten zweier therapieresistenter Patienten T2 und T4 

aufgeführt. 
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Abbildung 9: IFN-γ Elispot-Ergebnisse für zwei Patienten nach Peptidstimulation. Getestet wurde die 

Reaktion auf Peptide der Wildtyp-Sequenz sowie solche mit den Mutationen M184V, Y181C und 

Y181C+M184V. 

Beide Patienten sind Träger M184V-mutierter Viren und erkannten folglich das Peptid 

mit der M184V-Mutation am besten. Das Einführen der Mutation Y181C führte zu 

unterschiedlichen Ergebnissen: T2 erkannte das Peptid dennoch gut, allerdings schlechter 

als das Wildtyp- und das M184V-mutierte Peptid; bei T4 kam es durch Einführen der 

Y181C-Mutation jedoch zu einem kompletten Verlust der Antwort. 

Wurde daraufhin mit einem Peptid stimuliert, das sowohl die Mutation Y181C als auch 

M184V trug, wurde bei T2 eine höhere Antwort beobachtet als es bei dem allein Y181C-

mutierten Peptid der Fall war. Bei Patient T4 dagegen konnte auch das Peptid mit der 

Doppelmutation nicht zu einem Erkennen führen und keine Zellantwort hervorrufen. 

Die Mutation Y181C wird folglich nicht in allen Fällen erkannt. Das zusätzliche 

Einführen der M184V-Mutation hingegen kann die Immunantwort wieder verstärken, 

was die Idee einer therapeutischen Impfung verstärkt, die gegen beide 

Medikamentenresistenzmutationen gerichtet ist. 

5.2.2 Kultivieren und Austitrieren von HI-Viren 

Im nächsten Schritt sollte untersucht werden, ob die CD8+ T-Zelllinien auch komplette 

Viren, die die Mutationen M184V und/oder Y181C enthielten, erkennen können. Hierfür 

wurden Viren verwendet, in die eine oder mehr DRM hineinkloniert worden waren. 
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Die ersten Versuchsansätze mit Viruszucht und Titerbestimmung erbrachten nicht das 

gewünschte Ergebnis. Ziel war es, eine TCID50 zwischen 104 – 107/ml zu erreichen; ein 

niedrigerer Titer würde ein enormes Volumen an Virussuspension zur Infektion von 

CD4+ T-Zellen vonnöten machen.  

Da die erreichte TCID50 nicht hoch genug war, wurden im Folgenden die 

Versuchsbedingungen modifiziert. Tabelle 5 gibt einen Überblick über die acht 

verschiedenen Ansätze.  

Als erstes wurde die Zentrifugation verändert. Anstatt die H9-Zellen bei 21°C, 1660 

U/min 5 Min. zu zentrifugieren, wurde bei den anderen Ansätzen länger, mit höherer 

Umdrehungszahl und bei kälteren Temperaturen zentrifugiert (4°C, 3040 U/min, 10 

Min.). Dadurch sollte verhindert werden, dass die HI-Viren an den H9-Zellen haften 

blieben und dann nicht im Überstand vorhanden waren. Diese Veränderung ermöglichte 

es, höhere Virustiter zu erreichen. Da sie jedoch noch nicht hoch genug waren, wurden 

die Viren nach der Ernte versuchsweise bei verschiedenen Temperaturen 

weiterverarbeitet (Ansatz 4). Somit war es möglich, die anschließend ausgewerteten 

Rücktitrationen dahingehend zu vergleichen, ob die Art des Einfrierens bzw. der 

Lagerung einen Unterschied machte. Die TCID50 der Viren, die bei -80°C schockgefroren 

wurden, war dabei mit 104/ml am höchsten. Wurde zur langsamen Abkühlung der 

Kryoröhrchen der Einfrierbehälter Mr. Frosty verwendet, gelang es nicht, einen höheren 

Virustiter zu erreichen. Die bei -20°C gelagerten Proben wiesen eine etwas geringere 

TCID50  auf. Allerdings war der Titer bei Proben, die bei 7°C im Kühlschrank gelagert 

wurden, wider Erwarten nicht niedriger. Erst die Lagerung bei 37°C zeigte, dass weniger 

infektiöses Material bei der Virusernte gewonnen werden konnte. Diese Beobachtung ließ 

den Rückschluss zu, dass das Schock-Einfrieren der Viren bei -80°C keinen negativen 

Einfluss auf den Titer der Kulturen hatte und weiterhin durchgeführt werden konnte. 

Anschließend wurde untersucht, ob eine veränderte Kultivierungsdauer eine 

Verbesserung erzielte. Ansatz 7 und 8 sprechen gegen diese Idee. Kultur 7 wurde 32 Tage 

lang bebrütet, Kultur 8 nur 13. Die weiteren Versuchsbedingungen waren identisch und 

die Virustiter wichen kaum voneinander ab. Was die Bebrütungsdauer der 

Rücktitrationen anbelangt wurden die Platten jeweils so lange mikroskopiert, bis kein 

Neuauftreten von Synzytien in den Wells mehr zu beobachten war (durchschnittlich ca. 

20 Tage).  
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Trotz variierender Versuchsbedingungen konnte der angestrebte Virustiter nicht erreicht 

werden. 

Nr. Virus 

Viren 

geerntet  

an Tag 

zentrifugiert Tiefgekühlt 

TCID50  

berechnet  

an Tag 

TCID50/ml 

1 
WT 

M184V 
16 

21°C,  

1660 U/min,  

5 Min. 

-80°C Schock 25 
WT = 

M184V = 

101,75 

101,75 

2 

M184V 

Y181C 

Y181C+M184V 

21 

21°C,  

1660 U/min,  

5 Min. 

-80°C Schock 25 

M184V = 

Y181C = 

Y181C+M184V = 

101,5 

102 

101,75 

3 WT 22 

21°C,  

1660 U/min,  

5 Min. 

-80°C Schock 14 
zu niedrig, 

nicht bestimmt 

4 WT 15 

4°C,  

3040 U/min,  

10 Min. 

-80°C Schock 

-80°C Mr.Frosty 

-20°C 

7°C 

37°C 

19 

-80°C Schock = 

-80°C Mr.Frosty = 

-20°C = 

7°C = 

37°C = 

104 

103,75 

103,5 

103,75 

102,75 

5 

M184V 

Y181C 

Y181C+M184V 

21 

4°C,  

3040 U/min,  

10 Min. 

-80°C Schock 14 
zu niedrig, 

nicht bestimmt 

6 

WT 

M184V 

Y181C 

Y181C+M184V 

23 

4°C,  

3040 U/min,  

10 Min. 

-80°C Schock 20 

WT = 

M184V = 

Y181C = 

Y181C+M184V = 

103,5 

102,5 

103,25 

102,5 

7 

WT 

M184V 

Y181C 

Y181C+M184V 

32 

4°C,  

3040 U/min,  

10 Min. 

-80°C Schock 18 

WT = 

M184V = 

Y181C = 

Y181C+M184V = 

103,5 

103,5 

103,5 

103,75 

8 

WT 

M184V 

Y181C 

Y181C+M184V 

13 

4°C,  

3040 U/min,  

10 Min. 

-80°C Schock 18 

WT = 

M184V = 

Y181C = 

Y181C+M184V = 

103,25 

103,75 

103,75 

103,25 

 

Tabelle 5: Zusammenfassung der acht Ansätze von Viruszucht und Titerbestimmung. Zur 

Versuchsoptimierung wurden die Parameter Zentrifugation, Einfrieren und Dauer der Kultivierung variiert. 

Die letzte Spalte gibt einen Überblick über die erzielten TCID50 - Werte. 

Um nachzuweisen, ob die geernteten Kulturen überhaupt Viren enthielten, wurde ein p24 

ELISA mit allen vier HI-Virusstämmen durchgeführt. Für jede der Proben war die 

Viruskonzentration höher als das Maximum der Standardkurve. 

Bestätigt wurde dieses Ergebnis durch einen weiteren p24 ELISA der Virologie des Max 

von Pettenkofer Instituts München. 
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Damit war das Vorhandensein von Viren bei frustraner TCID50-Bestimmung bewiesen. 

Diese Beobachtung legt nahe, dass die Viren entweder extrem zytopathisch waren und 

zur Zerstörung ihrer Zielzellen führten, oder aber sie wurden trotz variierter 

Versuchsbedingungen bei Kultivierung, Zentrifugation oder Einfrieren so geschädigt, 

dass sie keine Synzytien mehr bilden konnten und damit bei der TCID50-Bestimmung 

nicht berücksichtigt wurden. 

5.2.3 CD4+ T-Zellinfektion mit HI-Viren 

Aufgrund der problematischen Virustitration, aber mit dem Wissen, dass viel Virus 

vorhanden war, beschlossen wir für die Infektion der CD4+ T-Zellen ein pragmatisches 

Vorgehen. Verwendet wurden Viruskulturen folgender Titer (siehe Tabelle 5, Ansatz 7):  

 NL4-3 Wildtyp mit   TCID50 = 103,5/ml,  

 NL4-3 M184V mit   TCID50 = 103,5/ml,  

 NL4-3 Y181C mit   TCID50 = 103,5/ml und  

 NL4-3 Y181C+M184V mit  TCID50 = 103,75/ml. 

Dabei wurden von den Kulturen des Wildtyps und der M184V-Mutation je 0,5 ml, von 

den anderen beiden Kulturen jeweils 1 ml Material verwendet, ungeachtet der 

ursprünglich angestrebten MOI. Um die Zahl an infizierten Zellen nachvollziehen und 

die Dynamik der Zellinfektion beobachten zu können, wurde jeweils nach  dem vierten, 

fünften, sechsten und siebten Tag nach Infektion eine Core-Färbung durchgeführt (vgl. 

4.2.13) und die Raten an infizierten Zellen bestimmt. Abb. 10 zeigt das Ergebnis: 
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Abbildung 10: Messung der Infektionsrate von CD4+ T-Zellen mittels Core-Färbung. Gemessen wurde 

jeweils an Tag vier, fünf, sechs und sieben. 
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Aus der Abbildung geht hervor, dass die Infektionsrate an Tag vier am höchsten war und 

dann an den späteren Tagen abnahm.  

Der optimale Zeitpunkt, CD4+ T-Zellen nach HIV-Infektion für weitere Versuche zu 

verwenden, war also am vierten Tag nach Infektion. 

In zehn wiederholten Ansätzen wurden CD4+ T-Zellen mit allen vier Viren infiziert. Die 

durchschnittliche Infektionsrate an Tag vier lag dabei bei  

 WT:    2,75% (range 0,21 – 13,06%) 

 M184V:   2,65% (range 0 – 12%) 

 Y181C:   2,85% (range 0 – 13,28%) 

 Y181C+M184V:  1,32% (range 0 – 6,45%). 

Zwar waren die Durchschnittswerte der verschiedenen Virustypen miteinander 

vergleichbar, die Spannweite der einzelnen Messungen war jedoch groß. Ebenso konnte 

mit keinem der Virustypen eine hohe Infektionsrate erzielt werden.  

5.2.4 Messung der CD8⁺ T-Zellantwort gegen HIV-1 Mutanten 

Das angestrebte Ziel der Arbeit war es, CD4+ T-Zellen mit den vier verschiedenen HI-

Viren zu infizieren, zu CD8+ T-Zellen zu geben und deren zelluläre Reaktion auf diesen 

Stimulus zu messen. Diese Untersuchung wurde mit CD8+ T-Zelllinien von drei Patienten 

durchgeführt. Es handelte sich dabei um einen Progressor (P3) und zwei 

Therapieresistente (T2 und T5), wobei P3 und T2 das Peptid YQYVDDLYV (YV9-

M184V), T5 das 11mer lange VIYQYVDDLYV (VV11-M184V) als optimales Epitop 

erkannten. 

Bei dem durchgeführten Versuch galt es, das Verhältnis von Effektor- zu Zielzellen, die 

sog. E:T Ratio (engl. für Effector Cell to Target Cell Ratio) zu beachten. Die ersten 

Versuchsreihen wurden in einem Verhältnis der CD8+ zu CD4+ T-Zellen von 10:1, 5:1, 

2:1 und schließlich 1:1 durchgeführt. Eine deutliche Reaktion der CD8+ T-Zellen konnte 

jedoch nicht detektiert werden. In den folgenden Ansätzen wurde daher das Verhältnis zu 

Gunsten der infizierten CD4+ T-Zellen zu 1:2 verändert.  

Die Ergebnisse fielen sehr unterschiedlich aus. Ein Ansatz mit Zellen von Patient P3 wird 

im Folgenden detailliert dargestellt: 
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Die verwendeten CD4+ T-Zellen zeigten an Tag 4 nach Infektion mit den vier HI-Viren 

folgende Core-Werte: 

 WT:    2,39% 

 M184V:   1,8% 

 Y181C:   3,22% 

 Y181C+M184V:  1,66%  

Die CD8+ T-Zelllinie zeigte nach Restimulation mit einer peptidbeladenen BCL des 

Spenders GK eine Spezifität von 39%, was einer sehr guten Spezifität entspricht.  

Abb. 11 veranschaulicht das Resultat, wobei die Zytokine IL-2 und TNF-α aufgrund ihrer 

geringen Reaktion nicht dargestellt sind.   
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Abbildung 11: Untersuchung der Effektorfunktionen einer CD8+ T-Zelllinie von Patient P3 auf HIV-

infizierte CD4+ T-Zellen. Abgebildet sind die ausgewerteten Dot blot-Bilder, die Zahl unter dem Kasten 

beschreibt die Menge an Zellen in Prozent. Nach Auswahl der CD8+ T-Zellen wurde jeweils der Anteil 

CD107a (linke Spalte) bzw. IFN-γ (rechte Spalte) positiver Zellen selektiert. Dabei wurde die Messung mit 

einer Negativkontrolle, nach Stimulation mit CD4+ T-Zellen plus Wildtyp-Virus, Virus mit M184V-

Mutation, Virus mit Y181C-Mutation sowie Virus mit Y181C+M184V-Mutation durchgeführt. 

Abb. 12 fasst das Ergebnis für CD107a und IFN-γ noch einmal zusammen. 
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Abbildung 12: CD8+ T-Zellantwort auf Stimulation mit HIV-infizierten CD4+ T-Zellen. Aufgeführt 

sind die Ergebnisse für die Merkmale CD107a und IFN-γ. Die x-Achse gibt an, mit welchem Virus 

gearbeitet wurde, auf der y-Achse befindet sich die Prozentangabe der CD8+ T-Zellen, die CD107a bzw. 

IFN-γ produzierten. 

Mittels IFN-γ Elispot wurde das mutierte Peptid YV9-M184V als optimales Epitop für 

Patient P3 ermittelt. Die CD8+ T-Zellantwort fällt auf das Virus mit der M184V Mutation 

stärker aus als auf das Wildtyp-Virus. Wurden die Zellen mit einem Virus infiziert, das 

nicht M184V sondern Y181C als Medikamentenresistenzmutation trug, fiel die Reaktion 

der CD8+ T-Zellen vergleichbar aus. Trug das Virus beide Mutationen, sank die 

Zellreaktion deutlich ab.   

Ebenso waren CD107a als Degranulationsmarker und IFN-γ als Zytokin unterschiedlich 

stark vorhanden. Während CD107a sowohl beim Wildtyp-Virus als auch den mutierten 

Varianten vorhanden war, wurde die IFN-γ Produktion vor allem durch Stimulation mit 

M184V- bzw. Y181C-mutierten Viren hervorgerufen. Demgegenüber wurden TNF-α 

und IL-2 bei Stimulation mit HIV-infizierten CD4+ T-Zellen nicht höher exprimiert als in 
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der Negativkontrolle und konnten in diesem Falle das Reaktionsmuster der CD8+ T-

Zellen nicht repräsentativ darstellen.  

Der Versuch zeigt trotz vieler Schwierigkeiten, dass eine CD8+ T-Zellantwort gegen mit 

Virus befallene Zellen sowohl bezüglich der M184V- als auch der Y181C-Mutation 

besteht und auch beide Mutationen in Kombination von manchen Patienten erkannt 

werden können.  
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6 Diskussion 

6.1 Gegenüberstellung von Epitope prediction Programmen und 

experimenteller Epitopkartierung 

Da die experimentelle Epitopkartierung ein aufwendiges, zeit- und kostenintensives 

Verfahren darstellt, wurden zahlreiche bioinformatische Programme entwickelt, die 

anhand einer vorgegebenen Sequenz optimale Epitope ermitteln und diese mit einer 

bestimmten Wahrscheinlichkeit vorhersagen sollen. Viele Arbeitsgruppen bedienen sich 

heutzutage dieser sogenannten „in-silico“ Programme, um Laborversuche ersetzen oder 

zumindest vereinfachen zu können. In der vorgelegten Arbeit wurden zur 

Validitätsüberprüfung solcher Prädiktionen die Programme SYFPEITHI, CTLPred und 

IEDB mit experimentell erzielten Ergebnissen verglichen. 

Wurden die Sequenzen ungeachtet des restringierenden HLA-Typen analysiert, konnte 

das optimale Epitop in 19 der 27 Suchanfragen unabhängig des Rangs richtig ermittelt 

werden (SYFPEITHI 7/9, CTLPred 3/9, IEDB 9/9). Sollte es sich unter den ersten drei 

angegebenen Epitopen befinden, sank die Zahl auf 13 von 27 (SYFPEITHI 4/9, CTLPred 

2/9, IEDB 7/9).  

Interessanterweise gaben die Programme in mehreren Fällen zwar das optimale Epitop 

richtig an, verbunden allerdings mit unterschiedlichen und nicht passend zum 

experimentell bestimmten HLA-Typen (vgl. Tabelle 2).  

Hier sollte auf das Bestehen von HLA-Supertypen hingewiesen werden, welche bei dieser 

Beurteilung berücksichtigt werden müssen. Zu HLA-Supertypen werden Allelvarianten 

zusammengefasst, welche dieselben Ankerpositionen in Epitopen erkennen. 

Beispielweise zählen zu Molekülen des A2-Supertypes A*02:01, A*02:02, A*02:03, 

A*68:02 u.v.m. und sie alle binden bevorzugt Peptide mit aliphatischen Aminosäuren an 

Position 2 und am C-Terminus [64].   

In dieser Arbeit wurde das Epitop DVKDTKEAL experimentell als HLA-B*08:01, von 

SYFPEITHI als HLA-A*02:01 restringiert befundet. Es besteht also eine Diskrepanz 

über den HLA-Supertypen hinaus (A*02:01 gehört zum Supertyp A02, B*08:01 zu B08). 

Dies ist möglich, da z.B. HLA-Moleküle der Gruppe B08 Epitope nicht abhängig der 

typischen Ankerposition 2 und des C-Terminus, sondern anhand Aminosäuren der 

Positionen 3 und 5 binden [65]. Ein entsprechendes Epitop kann somit mit mehr als nur 

einem HLA-Allel kompatibel sein [66].  
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Die weiteren Versuchsergebnise zeigten, dass die Suche nach von häufiger 

vorkommenden HLA-Allelen restringierten Epitope erfolgreicher war (siehe Tabelle 4) 

und auch das Wissen des HLA-Typs die Suche positiv beeinflusste. Grund hierfür sind 

die die Programme aktualisierenden Datensets, welche von der Auftretenshäufigkeit der 

verschiedenen HLA-Typen abhängig sind [67]. Da die HLA-Restriktion im Regelfall 

jedoch bei der Suche mit in-silico Programmen nicht bekannt ist, kann nicht 

ausgeschlossen werden, durch das Vorliegen einer seltenen HLA-Ausstattung ein falsch 

angegebenes Epitop zu übernehmen und das tatsächliche, optimale Epitop aufgrund 

seines – wenn überhaupt angegeben – niedrigen Ranges zu übersehen. Dies indiziert die 

Notwendigkeit, weiterhin mehr Daten in die existierenden Programme einzuschließen.  

 

Verschiedene in-silico Programme wurden anhand von Maus-Experimenten evaluiert 

[68, 69]. Die Studie von Moutaftsi et al. beschrieb dabei eine hohe Genaugikeit von 

Softwares bei der Prädiktion von CD8+ T-Zellepitopen von Vaccinia Viren [68], wobei 

lediglich zwei MHC-Moleküle in die Analyse einflossen. 

Demgegenüber steht die Studie von Bergmann-Leitner et al., in der die Vorhersagen von 

B- und T-Zellepitopen gegen ein zuvor experimentell bestätigtes Malaria Antigen 

evaluiert wurden. Auch sie schlussfolgern, dass verfügbare Epitope prediction 

Programme weiterentwickelt werden müssen und die experimentelle Epitopkartierung 

bislang nicht ersetzen können [69]. 

Ein direkter Vergleich von experimentell bestimmten Epitopen im Menschen und 

bioinformatisch vorhergesagten wurde bislang nicht vorgenommen. Es existiert lediglich 

eine Studie, die sich näher mit der HLA-Bindung von T-Zellepitopen von Respiratory-

Syncytial-Viren (RSV) und Humanen Metapneumoviren beschäftigt [70]. Auch hier hing 

das Ergebnis stark von der Häufigkeit des restringierenden HLA-Moleküls ab, was den 

Erkenntnissen der hier durchgeführten Arbeit entspricht. 

Im besten Fall konnte in der vorliegenden Arbeit eine Vorhersagegenauigkeit von 78% 

erreicht werden. Dieses Ergebnis ist vergleichbar mit anderen, kürzlich veröffentlichten 

Studien, die ebenfalls mit HIV arbeiteten. Buggert et al. verwendeten dabei den neuen 

Algorithmus PopCover, um HLA II-restringierte HIV-Epitope zu ermitteln. 73% der 

vorhergesagten Epitope riefen dabei tatsächlich CD4+ T-Zellantworten hervor [71]. Ein 

vergleichbares Ergebnis lieferten Pérez et al.. Mit den Programmen NetCTL und 

EpiSelect wurden 184 CD8+ HIV T-Zellepitope bestimmt, von denen ein Patient 114 
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(62%) tatsächlich erkennen konnte [72]. Beide Studien waren allerdings darauf 

ausgerichtet, aus einem großen Patientenkollektiv immunogene Epitope zu detektieren 

anstatt, wie in der hier vorgelegten Arbeit, das optimale Epitop eines spezifischen 

Studienobjektes zu ermitteln. 

Alle der hier untersuchten Peptide sind HIV-spezifische CD8+ T-Zellepitope. HI-Viren 

zeichnen sich durch ihre hohe Mutagenität aus, wodurch sie sich der Immunantwort 

entziehen (siehe 5.2). Oft befinden sich diese sog. Fluchtmutationen in den 

entsprechenden CD8+ T-Zelleptiopen. Dies führt zur Ausbildung komplexer HIV-

Populationen innerhalb eines infizierten Patienten, man spricht dabei von sog. 

Quasispezies.  

Die in dieser Arbeit analysierten HIV-Sequenzen entsprachen entweder der 

Konsensussequenz aus dem Jahr 2001 oder stammten von autologen Viren aus 

Blutproben der jeweiligen Patienten. Aufgrund möglicher Quasispezies kann nicht 

garantiert werden, dass die untersuchte Sequenz des autologen Virus mit der 

Konsensussequenz übereinstimmt, was eine valide Epitopvorhersage und die 

Vergleichbarkeit experimenteller und computergestützter Ergebnisse erschwert.  

Studien dagegen, in denen Epitope besser konservierter Pathogene (z.B. Vaccinia-Virus) 

untersucht wurden, wiesen eine höhere Vorhersagereabilität auf [68]. Die in dieser Arbeit 

getroffenen Stellungnahmen beziehen sich deshalb nur auf die Vorhersage HIV-

spezifischer CD8+ T-Zellepitope. 

Eine für Forscher große Schwierigkeit stellt die Abundanz an frei verfügbaren, 

bioinformatischen Epitope prediction Programmen dar. Sie alle beruhen auf 

unterschiedlichsten Lernalgorithmen und legen ihren Schwerpunkt auf verschiedene 

Fragestellungen. Die Analysen in dieser Arbeit sollen keinen Vergleich der drei 

repräsentativ gewählten Programme darstellen. Dennoch konnten in diesem Projekt mit 

der Software IEDB die besten Ergebnisse erzielt werden.  

Zusammenfassend lässt sich sagen, dass bioinformatische Programme zum Treffen einer 

Vorauswahl an zu untersuchenden Peptiden hilfreich sein und die Laborarbeit dadurch 

erheblich erleichtern können.  

Nichtsdestotrotz sprechen die gewonnenen Erkenntnisse für die Wichtigkeit 

labortechnischer Versuche und zeigen, dass in silico Epitope prediction Programme die 

experimentelle Epitopkartierung bislang nicht ersetzen können. 
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6.2 Untersuchung der CD8⁺ T-Zellantwort gegen M184V und Y181C 

HIV-1 Mutanten 

Seit Einführung der antiretroviralen Therapie ist die Mortalität durch eine HIV-Infektion 

drastisch gesunken. Ein zentrales Problem der medikamentösen Therapie ist die 

Entwicklung viraler Resistenzmutationen. Klinisch relevant ist hier neben der eine 

Lamivudin/Emtricitabin-Resistenz erzeugende M184V-Mutation auch die im HIV-

Genom benachbart liegende Mutation Y181C, welche eine Resistenz gegen die NNRTIs 

Efavirenz und Nevirapin bewirkt [14, 15, 17, 19, 20]. Fernziel des geplanten Projekts ist 

es, eine CD8+ T-Zell-basierte, therapeutische Impfung gegen M184V und Y181C zu 

entwickeln. Hierfür wurde in diesem Abschnitt des Promotionsvorhabens die CD8+ T-

Zellantwort gegen M184V und Y181C HIV-1 Mutanten untersucht. 

Bei der Umsetzung des Vorhabens traten mehrere Schwierigkeiten auf. So konnte trotz 

zahlreicher Bemühungen, die Versuchsbedingungen beim Kultivieren der Viren zu 

optimieren, keine für die Durchführung der Versuche zufriedenstellende TCID50 erreicht 

werden.  

Um festzustellen, ob überhaupt HI-Viren in den Kulturen vorhanden waren, wurde 

daraufhin ein p24 ELISA durchgeführt. Dieser bestätigte das Vorliegen großer Mengen 

viraler Partikel in den geernteten Kulturen, wobei dies keinen Rückschluss auf die Anzahl 

lebender Viren zulässt. Somit bleibt offen, ob die Viren der Stocks überhaupt replizierten, 

ob sie bei der Ernte verloren oder zugrunde gingen oder ob sie nicht in der Lage waren, 

Wirtszellen zu infizieren. Ebenso wäre das Vorliegen extrem pathogener Viren denkbar, 

welche die Zielzellen erfolgreich infizierten, diese jedoch schnell zerstörten. 

Berücksichtigung sollte hier die im Jahre 2004 veröffentlichte Studie von Marozsan et al. 

finden [73]. Da die TCID50 Bestimmung nach Reed und Muench wie oben beschrieben 

ein mühsames und zeitaufwendiges Prozedere darstellt, dessen Berechnung von den 

verwendeten Zellen und der Auswertungsmethode abhängt, verglichen sie weitere 

Methoden zur Bestimmung des HIV-Titers. Dabei war die Messung der Reversen 

Transkriptase-Aktivität allen anderen Messverfahren (p24-Messung, TCID50, virale 

RNA-Last) überlegen. Die Bestimmung des p24 Proteins sowohl durch ELISA als auch 

anti-p24 Western Blot stellte dabei zwar eine gutes Messverfahren für die totale 

Virusmenge dar, jedoch unterscheidet sie nicht zwischen infektiösen, nicht-infektiösen 

und zerfallenden Viren. So kann freies p24 auch von lysierten Zellen freigesetzt werden 
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und ebenso wie virale Partikel die p24-Menge erhöhen, ohne dass infektiöses Virus 

vorliegt.  

Die Bestimmung der Reversen Transkriptase-Aktivität könnte in nachfolgenden Arbeit 

ergänzt werden, um Sicherheit über das Vorhandensein infektiöser HI-Viren zu erhalten. 

Trotz niedriger Virustiter wurde eine Infektion von CD4+ T-Zellen versucht, ungeachtet 

der ursprünglich angestrebten MOI. Mehrere Versuche wurden durchgeführt und dabei 

stets Viren derselben Ernte und somit desselben Titers pro Virus verwendet, um die 

Ergebnise miteinander vergleichbar zu machen. Dennoch fiel die Infektionsrate der CD4+ 

T-Zellen unterschiedlich und teilweise niedrig aus. 

Bei der anschließenden Untersuchung der Effektorfunktionen der CD8+ T-Zellen im 

Beisein HIV-infizierter CD4+ T-Zellen konnte lediglich die Auswertung eines einzigen 

Ansatzes (Patient P3) Berücksichtigung finden, da aufgrund oben geschilderter 

Problematik die vorausgesetzten Bedingungen zur Versuchsdurchführung nicht in allen 

Fällen gegeben waren. Auch bei der Ergebnisbeurteilung von Patient P3 muss das 

pragmatische Vorgehen berücksichtigt werden. 

So waren zum Beispiel die Infektionsraten der CD4+ T-Zellen mit den verschiedenen 

Viren an Tag vier nach Infektion nicht identisch (WT 2,39%, M184V 1,8%, Y181C 

3,22%, Y181C+M184V 1,66%). Dennoch wurden die infizierten Zellen jeweils in einer 

E:T-Ratio von 1:2 zu den CD8+ T-Zellen gegeben, wodurch das Verhältnis von infizierten 

Zellen zu CD8+ T-Zellen in den vier Proben leicht verschieden war. Unterschiedlich stark 

ausgefallene Reaktionen der CD8+ T-Zellen könnten also auch darauf zurückzuführen 

sein, dass mehr oder weniger infizierte Zellen zur Stimulation vorlagen. 

Trotz dieser Einschränkung kann das Ergebnis dahingehend interpretiert werden, dass 

Patient P3 M184V-mutierte, virusinfizierte Zellen besser erkennt als Zellen, die mit dem 

Wildtyp oder Y181C-mutierten Virus infiziert sind. Trug das infizierende Virus beide 

Mutationen, wurde es schlechter erkannt und bekämpft. Diese Beobachtung stimmt mit 

der der Elispot-Ergebnisse überein (siehe Abschnitt 2.5.2) und spricht dafür, dass das 

Einführen der Y181C-Mutation zu einer Abnahme der spezifischen Immunantwort führt.  

Erklärt werden kann dies durch die in einem Patienten stattfindende Synthese von CD8+ 

T-Zellen, welche speziell gegen neu auftretende und zum Therapieversagen führende, 

DRM-tragende Viren gerichtet sind. Patient P3 hat M184V-tragende Viren, jedoch 

konnte keine Y181C-Mutation nachgewiesen werden, was das Fehlen einer Y181C-

gerichteten Immunantwort erkären könnte. Demgegenüber stehen andere Versuche 
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unserer Arbeitsgruppe (Daten nicht veröffentlicht), welche in drei Fällen therapienaiver 

Patienten eine starke CD8+ T-Zellantwort gegen Peptide mit der Y181C-Mutation 

nachweisen konnten, wobei Peptide der Wildtypsequenz, der M184V-Mutation und der 

kombinierten Y181C+M184V-Mutationen keine Immunantwort auslösten. Es handelte 

sich bei diesen Patienten um Controller, welche bislang keine Therapie erhalten haben.  

Ein Erklärungsansatz könnte die 2012 veröffentlichte Studie von Boltz et al. liefern [74]. 

Dabei wurden Makaken mit SIV infiziert, die die HIV-1 Reverse Transkriptase trugen. 

Mittels ultrasensitiver, allel-spezifischer PCR wiesen sie die Existenz DRM-tragender 

Viren vor Beginn einer antiretroviralen Therapie nach, deren Vorkommen bereits 

mehrfach vermutet wurde [13, 75-80]. Dabei konnte neben der Mutation M184V auch 

Y181C in geringen Mengen kurz nach der Infektion mit Wildtyp-Viren nachgewiesen 

werden. Dies lässt die Vermutung zu, dass auch ohne Druck durch die antiretrovirale 

Therapie Viren vorliegen, die die für ein Therapieversagen verantwortlichen Mutationen 

tragen, was wiederum das Erkennen dieser Viren durch CD8+ T-Zellen erklären könnte.  

Von welchen Kriterien dieses Auftreten abhängt, ob es zufällig stattfindet,  wie stark die 

Reaktion der CD8+ T-Zellen abhängig von der Menge mutierter Viren ist und wie diese 

Erkenntnis konkret zur Entwicklung einer therapeutischen Impfung beitragen kann, muss 

in weiteren Untersuchungen erforscht werden. Die Ergebnisse dieser Arbeit legen jedoch 

die Vermutung nahe, dass das Erkennen der Mutationen M184V und Y181C möglich ist 

und somit eine therapeutische Impfung denkbar wäre, welche das Auftreten beider 

Mutationen verhindern kann. 

Betts et al. betonten die herausragende Rolle polyfunktioneller CD8+ T-Zellen beim 

Bekämpfen HIV-infizierter Zellen [81], weshalb IFN-γ als alleiniger Messwert der 

Zellreaktion nicht ausreichend ist. Vielmehr sollte die Polyfunktionalität der CD8+ T-

Zellen dargestellt werden, da die HIV-Infektion umso besser kontrolliert wird, je 

polyfunktioneller diese Zellen sind [53, 82]. Nach Akinsiku et al. ist es besonders IL-2, 

dessen Expression eine effektive CD8+ T-Zellantwort abbildet [83] und daher bei 

erfolgreicher Virussuppression messbar wird [84, 85].  

In dem durchgeführten Versuch mit Zellen von Patient P3 fiel auf, dass die Reaktion nur 

für CD107a und IFN-γ messbar war; IL-2 dagegen wurde ebenso wie TNF-α bei der 

Inkubation mit virusinfizierten Zellen nicht stärker exprimiert als es in der 

Negativkontrolle der Fall war. Das geringe Maß an Polyfunktionalität und dabei 
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besonders das Fehlen von IL-2 lässt dementsprechend auf eine geringe Effektivität der 

CD8+ T-Zellreaktion rückschließen.  

Die Begründung könnte im Zeitpunkt der Blutentnahme liegen. Die Entwicklung neuer 

CD8+ T-Zellantworten nach Auftreten von Medikamentenresistenzmutationen wurde 

bereits mehrfach beschrieben [86-89]. Roider et al. untersuchten diese Zellrekation auf 

Polyfunktionalität und stellten fest, dass, im Vergleich zur ursprünglichen Reaktion auf 

das nicht mutierte Virus, die neue Reaktion weniger Effektorfunktionen aufwies [90]. 

Stammen die CD8+ T-Zellen von Patient P3 also von einem Zeitpunkt, an dem bereits 

DRM vorlagen, könnten auch sie eine neu generierte, schwächere Antwort repräsentieren 

und daher weniger Effektorfunktionen aufweisen.  

Zusammenfassend lässt sich sagen, dass die für die Erfassung der Polyfunktionalität von 

CD8+ T-Zellen bei der Inkubation mit HIV-infizierten CD4+ T-Zellen 

Optimierungsbedarf aller Teilversuche besteht. Anhand der hier durchgeführten 

Experimente können nur eingeschränkt Aussagen zur Reaktionsweise und –stärke der 

Zellen gemacht werden. Um dieser Fragestellung weiter auf den Grund zu gehen, wäre 

erneutes Kultivieren frisch hergestellter HI-Viren nötig mit dem Ziel, geeignet hohe 

Virustiter zu erreichen, um dann anhand einer in allen Ansätzen identischen MOI CD4+ 

T-Zellen infizieren zu können.  

Durch die Optimierung der genannten Punkte könnten die Ergebnisse reevaluiert werden 

und die dadurch gewonnene Erkenntnis zur Entwicklung einer therapeutischen Impfung 

beitragen. Die in dieser Arbeit präsentierten Ergebnisse können dabei als wertvolle 

Hilfestellung dienen. 
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8 Anhang 

8.1 Abkürzungsverzeichnis 

3TC   Lamivudin 

Abb.   Abbildung 

ABC   Abacavir 

AIDS   Acquired Immune Deficiency Syndrome 

ANN   Artificial Neural Network 

AZT   Zidovudin 

BCL   B-Zelllinie 

Comblib   Scoring Matrices derived from Combinatorial Peptide Libraries 

CTL   Zytotoxische T-Lymphozyten 

bzw.   beziehungsweise 

d4T   Stavudin 

ddi   Didanosin 

DMSO   Dimethylsulfoxid 

DRM   Drug restitance mutations 

EBV   Epstein-Barr-Virus 

EFV   Efavirenz 

Elispot   Enzyme-linked immunospot assay 

engl.   Englisch 

ETV   Etravirin 

FACS   Fluorescence-activated cell sorting 

FTC   Emtricitabin 

HAART  Highly active antiretroviral therapy 

HBSS   Hank’s Balanced Salt Solution 

HIV   Humanes Immundefizienz-Virus 

HLA   Human leukocyte antigen 

ICS   Intracellular cytokine staining 

IEDB   Immune Epitope Database and Analysis Resource 

IMTECH  Institute of Microbial Technology 

kBp   Kilo-Basenpaare 

MHC   Major histocompatibility complex 

MOI   Multiplicity of Infection 
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NNRTI  Nicht-Nukleosidische Reverse-Transkriptase-Inhibitoren 

NRTI   Nukleosidische Reverse-Transkriptase-Inhibitoren 

NVP   Nevirapin 

ORFs   Open Reading Frames 

PBMC   peripheral blood mononuclear cells 

PCR   Polymerasekettenreaktion 

PHA   Phytohämagglutinin 

PI   Proteaseinhibitoren 

RPV   Rilpivirin 

RSV   Respiratory-Syncytial-Virus 

SFC   Spot forming cells 

SIV   Simian Immunodeficiency Virus 

SMM   Stabilized Matrix Method 

SMMPMBEC  SMM with a Peptide:MHC Binding Energy Covariance matrix 

s.o.   siehe oben 

s.u.   siehe unten 

SVM   Support Vector Machine 

TAP   Transporter associated with antigen processing 

TCR   T-Zell-Rezeptor 

TDF   Tenofovir 

u.a.   unter anderem 

u.v.m.   und vieles mehr 

vgl.   vergleiche 

WHO   World Health Organization 

z.B.   zum Beispiel  
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