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Kurzfassung

Eine aussagekriiftige theoretische Beschreibung des Infrarot (IR) -Schwingungsspektrums
eines Biomolekiils in seiner nativen Umgebung durch Molekulardynamik (MD) -Simula-
tionen benétigt hinreichend genaue Modelle sowohl fiir das Biomolekiil, als auch fiir
das umgebende Losungsmittel. Die quantenmechanische Dichtefunktionaltheorie (DFT)
stellt solche genauen Modelle zur Verfiigung, zieht aber hohen Rechenaufwand nach
sich. Daher ist dieser Ansatz nicht zur Simulation der MD ausgedehnter Biomolekiil-Lo-
sungsmittel-Komplexe einsetzbar. Solche Systeme konnen effizient mit polarisierbaren
molekiilmechanischen (PMM) Kraftfeldern behandelt werden, die jedoch nicht die zur
Berechnung von IR-Spektren notige Genauigkeit liefern.

Einen Ausweg aus dem skizzierten Dilemma bieten Hybridverfahren, die einen rele-
vanten Teil eines Simulationssystems mit DFT, und die ausgedehnte Losungsmitte-
lumgebung mit einem (P)MM-Kraftfeld beschreiben. Im Rahmen dieser Arbeit wird,
ausgehend von einer DFT/MM-Hybridmethode [Eichinger etal., J. Chem. Phys. 110,
10452-10467 (1999)], ein genaues und hocheffizientes DFT/PMM-Rechenverfahren ent-
wickelt /2,4,6,7/, das der wissenschaftlichen Offentlichkeit nun in Form des auf Grof-
rechnern einsetzbaren Programmpakets IPHIGENIE/CPMD zur Verfiigung steht.

Die neue DFT/PMM-Methode fufit auf der optimalen Integration des DFT-Fragments
in die ,schnelle strukturadaptierte Multipolmethode” (SAMM) zur effizienten appro-
ximativen Berechnung der Wechselwirkungen zwischen den mit gitterbasierter DFT
bzw. mit PMM beschriebenen Subsystemen. Dies erlaubt stabile Hamilton’sche MD-
Simulationen /2/ sowie die Steigerung der Performanz (d.h. dem Produkt aus Ge-
nauigkeit und Recheneffizienz) um mehr als eine GréBenordnung /4/. Die eingefiihrte
explizite Modellierung der elektronischen Polarisierbarkeit im PMM-Subsystem durch
induzierbare Gauf3’sche Dipole ermdglicht die Verwendung wesentlich genauerer PMM-
Losungsmittelmodelle /2/. Ein effizientes Abtastens von Peptidkonformationen mit DFT/
PMM-MD kann mit einer generalisierten Ensemblemethode erfolgen /7/.

Durch die Entwicklung eines Gaufl’schen polarisierbaren Sechspunktmodells (GP6P) fiir
Wasser und die Parametrisierung der Modellpotentiale fiir van der Waals-Wechselwir-
kungen zwischen GP6P-Molekiilen und der Amidgruppe (AG) von N-Methyl-Acetamid
(NMA) wird ein DFT/PMM-Modell fiir (Poly-)Peptide und Proteine in wissriger Lo-
sung konstruiert /6/. Das neue GP6P-Modell kann die Eigenschaften von fliissigem Was-
ser mit guter Qualitit beschreiben. Ferner konnen die mit DFT/PMM-MD berechneten
IR-Spektren eines in GP6P gelosten DFT-Modells von NMA die experimentelle Evidenz
mit hervorragender Genauigkeit reproduzieren /6/. Somit ist nun ein hocheffizientes und
ausgereiftes DFT/PMM-MD-Verfahren zur genauen Berechnung der Konformations-
landschaften und IR-Schwingungsspektren von in Wasser gelosten Proteinen verfiigbar.
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Abstract

A meaningful theoretical description of the infrared (IR) spectrum of a biomolecule in
its native environment by molecular dynamics (MD) simulations requires adequately
accurate models both for the biomolecule and for its solvent environment. The quantum
mechanical density functional theory (DFT) provides such accurate models, but entails
high computational effort. Therefore, this approach is not suited for the simulation of the
MD of extended biomolecule-solvent-complexes. Such systems can be handled efficiently
by polarizable molecular mechanics (PMM) force fields, which, however, do not provide
the accuracy required for the computation of IR spectra.

The sketched dilemma is resolved by hybrid approaches, which describe a relevant part
of a simulation system by DFT, and the extended solvent environment by a (P)MM
force field. Based on a DFT/MM hybrid method [Eichinger et al., J. Chem. Phys. 110,
10452-10467 (1999)], an accurate and highly efficient DFT /PMM approach is developed
in this thesis /2,4,6,7/. Its implementation in the program package IPHIGENIE/CPMD
is suitable for high-performance computing applications and available to the scientific
community.

The new DET/PMM method is based on the optimal integration of the DFT fragment
into the “structure-adapted fast multipole method” (SAMM) for the efficient approxi-
mative computation of interactions between the subsystems described by grid-based
DFT and PMM, respectively. It enables stable, Hamiltonian MD simulations /2/, and
increases the performance (i.e. accuracy times efficiency) by more than one order of
magnitude /4/. The explicit modeling of electronic polarizability in the PMM subsys-
tem by induced Gaussian dipoles allows the use of much more accurate PMM solvent
models /2/. The efficiency of peptide conformational sampling with DFT/PMM-MD is
increased by applying a generalized ensemble method /7/.

By constructing a Gaussian polarizable six-point (GP6P) model for water and by para-
metrizing the model potentials for van der Waals interactions between GP6P molecules
and the amide group (AG) of N-Methyl-Acetamide (NMA), a DFT/PMM model for
(poly-)peptides and proteins in aqueous solution is developed /6/. The new GP6P model
can describe the properties of liquid water with good quality. Furthermore, the IR spec-
tra of a DF'T model of NMA solvated in GP6P, which were calculated by DFT/PMM-
MD, can reproduce the experimental evidence with excellent quality /6/. Thus, a highly
efficient and mature DFT/PMM-MD approach for the accurate computation of confor-
mational landscapes and IR spectra of proteins in aqueous solution is now available.
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1 Einleitung

Proteine stellen, neben der die Erbinformation kodierenden Desoxyribonukleinsédure
(engl. deoxyribonucleic acid, DNA) und dem Wasser, in dem sich biochemische Pro-
zesse abspielen, die wichtigste Klasse von Biomolekiilen dar [1]. So katalysieren Enzyme
biochemische Prozesse wie die Vervielfiltigung der DNA, Kanal- und Pumpproteine
steuern die Chemikalienkonzentration im wéssrigen Zellinneren, Sinneswahrnehmungen
und Photosyntheseprozesse werden durch Proteine organisiert. Auch die Proteinsynthese
selbst wird durch Proteine bewerkstelligt [1].

Die Funktion eines Proteins beruht auf seiner spezifischen dreidimensionalen Form [1]
und seiner Konformationsdynamik [2, 3]. Kleinste strukturelle Fehler oder Schéden kon-
nen bereits die Proteinfunktion storen oder zerstoren [4, 5], neurodegenerative Krankhei-
ten wie Alzheimer oder Parkinson werden durch fehlgefaltete Proteine ausgelost [6-8].
Eine genaue Kenntnis der Struktur und Funktionsdynamik von Proteinen ist daher eine
wichtige Grundlage fiir das Verstehen von biologischen Prozessen und fiir die Diagnose
und Behandlung einer Vielzahl von Krankheiten.

Die strukturellen und dynamischen Eigenschaften eines Proteins werden durch komplexe
intramolekulare Wechselwirkungen zwischen seinen Grundbausteinen, den Aminosau-
ren, und durch seine Umgebung festgelegt [2]. Im Allgemeinen kann ein Protein seine
native Form nur im physiologischen Milieu der Zelle, das durch eine komplex struktu-
rierte wéssrige Losung von Biomolekiilen und Ionen charakterisiert ist, annehmen und
behalten. Hier liefern insbesondere die polaren Wassermolekiile einen grofien entropi-
schen Beitrag zur Stabilitdt von Proteinen [2], und tragen weiterhin durch spezifische
elektrostatische Wechselwirkungen zur lokalen Strukturbildung bei [9]. Ferner beein-
flussen die durch die Wassermolekiile erzeugten elektrischen Felder die elektronischen
Eigenschaften und die molekularen Schwingungsmuster von Peptiden und Proteinen [10].

Eine Vielzahl experimenteller biophysikalischer Techniken steht fiir die Aufklarung der
Struktur und Funktionsdynamik von Proteinen zur Verfiigung [11]. Theoretische biophy-
sikalische Methoden, wie die Molekulardynamik (MD) - Simulationen [12-15] helfen, die
experimentellen Befunde zu interpretieren und zu ergénzen [16-22]. So kénnen z.B. mo-
lekulare Strukturdaten aus Rontgenbeugungs-, Neutronenstrahlungs- oder Kernspinre-
sonanzexperimenten durch MD-Techniken verifiziert und verfeinert werden [16, 17]. Das
komplexe Schwingungsspektrum eines (Bio-)Molekiils im Infrarot (IR) - Bereich, das dy-
namische Informationen u.a. iiber dessen chemischen Zustand [23-25] und iiber die Na-
tur und Struktur seiner Umgebung [10, 26| liefert, kann mit Hilfe von MD-Simulationen
interpretiert werden [19, 21, 27].

Anhand vereinfachter biophysikalischer Modelle konnen die fiir eine Beobachtung verant-
wortlichen mikroskopischen physikalischen Effekte identifiziert werden, oder, bei hinrei-
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chender Modellqualitét, Vorhersagen fiir experimentell nicht oder nur schwer zugéngliche
Observablen gemacht werden [13]. Neben den fiir die Untersuchung von Proteinen rele-
vanten Lingen- und Zeitskalen, die sich iiber mehrere Grofienordnungen erstrecken [3],
stellt bei MD-Simulationen vor allem die hinreichend genaue, aber trotzdem effiziente
Beschreibung der physikalischen Eigenschaften von Protein-Wassergemischen eine grofie
Herausforderung dar [27-30].

Ein ausgezeichneter Kompromiss aus Genauigkeit und Recheneffizienz kann durch die
erstmals von Arieh Warshel und Michael Levitt im Jahre 1976 vorgeschlagenen hybri-
den Simulationsmodelle erreicht werden [31], die fiir die Behandlung eines ausgedehnten
Biomolekiil-Losungsmittel-Komplexes eine genaue, aber rechenaufwindige quantenme-
chanische (QM) Beschreibung eines — z.B. chemisch reaktiven oder spektroskopisch
interessanten — molekularen Subsystems mit einer ungenaueren, aber sehr effizienten
Behandlung des umgebenden Losungsmittelsystems durch ein sog. molekiilmechanisches
(MM) Kraftfeld kombinieren. Dafiir wurden die beiden genannten Autoren, zusammen
mit Martin Karplus, mit dem Chemie-Nobelpreis des Jahres 2013 ausgezeichnet [32].

Aufbauend auf dieser Idee entwickelten Eichinger et al. eine theoretische Methode [33],
die eine Beschreibung des QM-Subsystems mittels Dichtefunktionaltheorie (DFT) er-
moglichte, so die zur Berechnung von IR-Spektren erforderliche Genauigkeit lieferte und
speziell auf Biomolekiile in deren nativer Umgebung zugeschnitten war. Eine Vielzahl
von Anwendungen (sieche z.B. Literaturzitate [21], [25], oder [34]) zeigte, dass dieses
DFT/MM-Verfahren eine zufriedenstellend genaue Berechnung solcher Schwingungs-
spektren ermdglichte. Die Vernachlissigung von elektronischen Polarisationseffekten im
MM-Fragment stellte sich allerdings als zu grobe Vereinfachung bei der Beschreibung
der Losungsmitteleffekte auf das DFT-Fragment heraus [35-37]. Des Weiteren waren
ausgedehnte, stabile MD-Simulationen mit DFT/MM-Modellen aufgrund weiterer ver-
wendeter Naherungen nur eingeschrankt moglich.

Das Ziel der vorliegenden Arbeit war daher die Weiterentwicklung dieser DFT/MM-
Technik [33] hinsichtlich ihrer Eignung fiir stabile MD-Simulationen und der Genauig-
keit der verwendbaren Losungsmittelmodelle. Besondere Aufmerksamkeit sollte dabei
einer physikalisch korrekten, genauen und hocheffizienten Behandlung der Wechselwir-
kungen zwischen den Subsystemen gewidmet werden. Die Einfithrung polarisierbarer
Freiheitsgrade im MM-Fragment sollte es erlauben, Polarisationseffekte auch dort zu
beriicksichtigen.

Zur Beschreibung einer wéssrigen Losungsmittelumgebung wurde ein polarisierbares
MM (PMM) Wassermodell speziell fir DET/PMM-Anwendungen entwickelt, das die
Solvatstruktur um das DFT-Subsystem, und die durch das Wasser hervorgerufenen Sol-
vatisierungseffekte korrekt beschreiben kann. Die neue DFT/PMM-Methode soll so eine
wesentlich genauere und effizientere Berechnung der IR-Spektren von in Wasser gelosten
Molekiilen erlauben.

Bevor die eben angesprochenen theoretischen Methoden jedoch genauer erklart wer-
den, werden im Folgenden zunéchst einige grundlegende biochemische und physikalische
Eigenschaften von Wasser und von Proteinen skizziert.
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1.1 Proteine in wassriger Losung

Die Grundbausteine der den Proteinen zugrundeliegenden Polypeptidketten sind die
zwanzig a-Aminoséduren, die bei der Translation im Ribosom in einer fiir jedes Pro-
tein wohldefinierten Reihenfolge, der in der DNA kodierten Primdrstruktur, als zu-
sammenhéngender Riickgratstrang polymerisiert werden [1]. AnschlieBend bilden sich
lokale geordnete Muster (Sekunddrstrukturen), die dann zusammen mit ungeordneten,
flexiblen Bereichen (engl. random coils) die dreidimensionale Tertidrstruktur eines Pro-
teins, bzw. einer Untereinheit eines Proteinkomplexes, formen [1]. Die nicht-kovalente
Verbindung mehrerer Untereinheiten zu einem Proteinkomplex bezeichnet man auch
als Quartdarstruktur [1]. Der Faltungsprozess héngt wesentlich von der Umgebung des
Proteins ab [38, 39], die in situ hauptséichlich durch wéssrige Losung gegeben ist.

1.1.1 Grundlegende Eigenschaften von Wasser

a)

@ron Ho

IOH

Abbildung 1.1: a) Geometrie eines HoO-Molekiils in der Gasphase, dessen statisches Dipolmoment g
zeigt in Pfeilrichtung. b) Beispiel fiir ein Wasserstoffbriickennetzwerk in fliissiger Phase: das zentrale
Wassermolekiil bildet vier Wasserstoffbriicken (gestrichelt) zu umgebenden Wassermolekiilen aus.

Wasser, die Grundlage organischen Lebens [40], spielt eine besondere Rolle fiir biologi-
sche Prozesse [9]. Der Grund sind seine besonderen mikroskopischen und makroskopi-
schen Eigenschaften [9, 41, 42|. Zum Beispiel weist fliissiges Wasser bei Raumtemperatur
eine hohe Dielektrizititskonstante von ey,o ~ 78 auf [43], d.h. die effektive Reichweite
elektrostatischer Wechselwirkungen ist im Wasser gegeniiber dem Vakuum auf 1/ey,0
verringert. Weiterhin zeigt fliissiges Wasser, neben vieler anderer ungewohnlicher Eigen-
schaften, eine Anomalie der Dichte, die bei 4° C ein Maximum aufweist [44].

Wie in Abbildung 1.1a gezeigt ist, sind die zwei Wasserstoffatome (H) und das Sau-
erstoffatom (O) in der Gasphase mit einer O-H-Bindungslinge I£5 = 0,9572 A und
unter einem H-O-H Bindungswinkel @5y = 104,52° angeordnet [45, 46]. Durch die
unterschiedlichen atomaren Elektronegativitiaten ergibt sich ein relativ starkes statisches
Dipolmoment von |p,| = 1,855D [46] in a-Richtung (roter Pfeil). Ferner hat das Was-
sermolekiil ein grofes Quadrupolmoment [47]. Diese elektrostatische Signatur generiert
spezifisch strukturierte elektrische Felder.
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Ein auf ein Molekiil wirkendes dufleres elektrisches Feld hat eine Verschiebung der Elek-
tronenverteilung relativ zu den Atomkernen zur Folge. Diese elektronische Polarisie-
rung bewirkt u.a. eine Anderung von Geometrie und Dipolmoment. In wéssriger Lo-
sung wichst die mittlere Bindungslinge auf {9 = 0, 968 A und der Bindungswinkel auf
Vb = 105,3° [48, 49]. DFT-Rechnung ergeben dass der Nettoeffekt dieser Geometrie-
dnderung auf den statischen Dipol klein ist (siche Abb. 2A in Ref. [50]).

Der durch ein dufleres elektrisches Feld in einem isolierten Wassermolekiil induzierte
Dipol p' ist in erster Ndherung linear von diesem Feld abhingig; die entsprechenden
linearen Koeffizienten oy, = 1,47 A3 ayy = 1,53 A3 und ., = 1,42 A3 sind anniihernd
isotrop [51] und &ndern sich beim Ubergang in die fliissige Phase nur unwesentlich [50].
In fliissigem Wasser wirken die elektrischen Felder im Mittel parallel zur x-Achse des
in Abbildung 1.1a definierten molekiilfesten Koordinatensystems, sodass der Gesamt-
dipol des einzelnen Wassermolekiils in Losung grofer ist als |py|. Der experimentell
geschétzte Mittelwert von (2,9 £ 0,6) D [52] hat allerdings einen grofien Fehler, und ist
nicht mit der experimentell gut bestimmten [43] Dielektrizitéitskonstante ey,o kompati-
bel [53]. QM/MM-Computersimulationen sagen um etwa 10% kleinere Mittelwerte des
Gesamtdipols voraus [33, 50, 54, 55].

Durch Dipol-Dipol-Wechselwirkungen bildet sich in kondensierter Phase ein dynami-
sches Netzwerk intermolekularer Wasserstoffbriicken [9], dessen typische tetraedrische
Struktur in Abbildung 1.1b fiir einen kleinen Wassercluster durch die gestrichelten Lini-
en skizziert ist. Da die Stédrke einer Wasserstoftbriicke bei Raumtemperatur etwa beim
zehnfachen der thermischen Energie liegt, ist Wasser unter physiologischen Bedingungen
fliissig [42]. Viele Anomalien des Wasser kénnen durch die mikroskopischen Eigenschaf-
ten des Wasserstoffbriickennetzwerks erkliart werden [42, 56].

1.1.2 Solvatisierungseffekte auf Amidgruppen

Wie im einleitenden Text dieses Abschnitts bereits erwahnt wurde, bildet sich das Prote-
inriickgrat durch die Synthese von Aminoséuren. Der linke Teil von Abbildung 1.2 zeigt
zwei Aminosduren AS1 und AS2, deren chemische Struktur bis auf die sog. Restgruppen
(R1 bzw. R2) identisch ist: eine Aminogruppe (NHj), eine Carboxygruppe (COO™),
und ein einzelnes H-Atom sind an ein zentrales Kohlenstoffatom (C,) gebunden. Die
Restgruppe definiert die Aminoséure sowie deren chemische und elektrostatische Eigen-
schaften [2], sowie deren Loslichkeit in Wasser [57].

Abbildung 1.2 illustriert weiterhin den Vorgang der Peptidsynthese, bei der die Carboxy-
gruppe von AS1 und die Aminogruppe von AS2 unter Abspaltung eines HoO-Molekiils
eine sog. Peptidbindung eingehen. Das rechts gezeigte resultierende Motiv, das sich durch
die hervorgehobene Amidgruppe (AG) auszeichnet, kann nun mit weiteren Aminoséuren
reagieren, was schliellich zur Ausbildung des Proteinriickgrats fithrt. Die AG ist planar
und weist ein grofies statisches Dipolmoment (Pfeil) auf.

Der Grund fiir diese charakteristischen Eigenschaften der AG liegt im {iber deren Ato-
me delokalisierten m-Elektronensystem, das, wie in Abbildung 1.3a am Beispiel des
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R1 o R2 H (6] R2 o
I, T, 1 |,
*H3N—ca—c\ + +H3N—cu—c\ — *H3N—(ZITC II\I—(i—C\ + H,0
o o o
H H R1 H H
AS1 AS2 AG

Abbildung 1.2: Zwei Aminosiuren AS1 und AS2 gehen unter Wasserabspaltung eine Peptidbindung
ein, die resultierende planare AG (grau gestrichelt), deren starkes Dipolmoment durch den roten Pfeil
symbolisiert ist, ist die dem Proteinriickgrat zugrundeliegende Struktur. In Wasser liegen die Amino-
und Carboxygruppen {iberwiegend in der zwitterionischen Struktur vor.

molekularen Minimalmodells einer AG, dem N-Methyl-Acetamid (NMA), skizziert ist,
zwel Resonanzstrukturen aufweist [2]. In der neutralen Resonanzstruktur A liegt die
C’-N-Bindung als Einfachbindung und die C’=0-Bindung als Doppelbindung vor, in
der zwitterionischen dipolaren Resonanzstruktur B hat hingegen die C’=0-Bindung
Einfachbindungs- und die C’-N-Bindung Doppelbindungscharakter. Diese dort vorlie-
gende torsionsstabile C’=N-Doppelbindung hilt die AG planar, weswegen diese auch als
Peptidplattchen bezeichnet wird. Durch duflere Felder kann die Auftretenswahrschein-
lichkeit der dipolaren Resonanzstruktur B, und damit das Nettodipolmoment der AG
erhoht werden: AGn sind also, ebenso wie Wassermolekiile, stark polarisierbar.

Abbildung 1.3b zeigt eine typische molekulare Konfiguration von in Wasser gelostem
NMA. In wéssriger Losung sind im Mittel am O-Atom der AG etwas mehr als zwei
Wassermolekiile, und am H-Atom der AG ein Wassermolekiil iiber Wasserstoftbriicken
gebunden, wie eine Analyse der mit DF'T-MD berechneten radialen Verteilung von fliis-
sigem Wasser um ein NMA-Molekiil ergab [58]. Die resultierende strukturierte Wasser-
umgebung generiert starke lokale elektrische Felder, die die AG polarisieren. Die aus
Abbildung 1.3a qualitativ abgeleitete Polarisierbarkeit der AG wird durch QM-Rech-
nungen bestétigt: diese sagen beim Transfer von NMA aus dem Vakuum in wéssrige
Losung eine Erhohung des Dipolmoments um bis zu 75% voraus [59, 60]. Das mittlere
Dipolmoment eines Wassermolekiils wéchst dagegen beim Transfer in die fliissige Phase
nur um etwa 40% (vgl. Abschnitt 1.1.1) [33, 50, 54, 55].

a) A b)
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Abbildung 1.3: a) Neutrale (A) und dipolare (B) elektronische Resonanzstruktur der durch grau gestri-
chelte Linien angedeuteten AG von NMA. b) Das NMA und drei iiber Wasserstoffbriicken gebundene
Wassermolekiile. Kohlenstoffatome (C) sind in cyan, Sauerstoffatome (O) in rot, Stickstoffatome (N)
in blau und Wasserstoffatome (H) in weifl dargestellt.
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Abbildung 1.4: a) Fiir die Amidmoden AI-ATIIT von NMA charakteristische relative Atombewegungen
innerhalb der AG. b) Experimentell beobachtete [10] solvatochrome Verschiebungen der Moden AI-ATIT
beim Transfer von NMA aus der Gasphase in Losungsmittel zunehmender Polaritét.

Die Polarisation einer AG durch duflere Felder hat, neben der Erhéhung ihres Dipol-
moments, auch erheblichen Einflu} auf die intramolekularen Kréfte und damit auf ih-
re spektroskopischen Eigenschaften. Abbildung 1.4a illustriert am Beispiel von NMA
drei charakteristische IR-aktive Normalmoden [61] einer AG, die als die Amidmoden
AI, AIl und AIII bezeichnet werden. Hierbei skizzieren die Pfeile die einer Normal-
mode zugrundeliegenden Atombewegungen, so besteht z.B. die AI-Mode hauptséchlich
aus einer C'=0-Streckschwingung. Abbildung 1.4b zeigt die fir NMA in Umgebun-
gen unterschiedlicher Polaritdt experimentell beobachteten Frequenzen dieser Moden
AI-AIIT [10]. Beim Transfer des NMA von der Gasphase in das polare Losungsmittel
Acetonitril (CH3CN, Dielektrizitétskonstante ecp,on ~ 36 [62]) und in das stirker po-
lare HoO (€en,0 = 2 €cpyon) verschieben sich die Moden AT bzw. AIT und AIIT stark und
in unterschiedliche Richtungen.

Auch dieser solvatochrome FEffekt kann anhand des Resonanzstrukturmodells der AG
(siehe Abb. 1.3a) erkldrt werden [63]. Mit steigender Losungsmittelpolaritét erhoht sich
die Wahrscheinlichkeit fiir das Auftreten der polaren Resonanzstruktur B gegeniiber
der neutralen Struktur A. Die C’=0-Bindung hat also vermehrt Einfachbindungs-, die
C’-N-Bindung vermehrt Doppelbindungscharakter. Damit nimmt die Stérke der C'=0-
Kraftkonstante im Mittel ab, was eine Absenkung der Frequenz der AI-Mode zur Folge
hat. Gleichzeitig nimmt die Stéarke der C'-N-Bindung zu, und die Frequenzen der AII-
und AlIl-Moden, an denen die C’-N-Streckschwingung grofien Anteil hat (vgl. Abb.
1.4a), steigen.

Das Schwingungsspektrum einer AG kann also Riickschliisse auf deren Umgebung lie-
fern, die in einem Polypeptid einerseits durch die jeweilige Losungsmittelumgebung,
andererseits durch die anderen AGn (und deren Restgruppen) gegeben ist.
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Abbildung 1.5: a) Alanindipeptid in der C5-Konformation, die durch die Diederwinkel (¢,v) =
(—150°,+180°) definiert ist. b) Ramachandranplots der freien Energie F(¢,%) von Alanindipep-
tid im Vakuum (vac.) und in wissriger Losung (sol.) bei einer Temperatur von 300K. Wei-
Be Bereiche kennzeichnen Regionen mit F >4,2kcal/mol (Simulationsmodelle: CHARMM?22 bzw.
CHARMM22+CMAP/TIP3P [66-68]).

1.1.3 Solvatisierung von Di- und Polypeptiden

Die eben diskutierten AGn treten nicht nur mit dem umgebenden Losungsmittel, son-
dern auch untereinander iiber ihre Dipolmomente in Wechselwirkung, was die fiir die
Ausbildung der Sekundérstrukturen grundlegende Wechselwirkung ist [64, 65].

Abbildung 1.5a zeigt ein einfaches Modellbeispiel fiir den Aufbau der Riickgratstruktur
eines Polypeptids durch Verkettung von Aminoséiuren (vgl. Abb. 1.2) iiber ein zentrales
Cq-Atom: das Molekiil Alanindipeptid (Ace-Ala-NHMe). Hier sind zwei AGn iiber ein
Ca-Atom verbunden, an das auflerdem eine Methyl-Restgruppe und ein H-Atom gebun-
den ist. Jeweils eine Methylgruppe séittigt den N- bzw. den C-Terminus ab. Im Gegensatz
zu den torsionsstabilen Doppelbindungen innerhalb der AGn sind Rotationen um die
N-C,- bzw. C,~C’-Einfachbindungen relativ leicht moglich, die Riickgratstruktur lasst
sich daher durch die skizzierten Diederwinkel ¢ und 1) charakterisieren [2]. Der hochdi-
mensionale Konfigurationsraum von Alanindipeptid wird so auf einen zweidimensionalen
Konformationsraum reduziert.

Abbildung 1.5b zeigt exemplarisch zwei mittels MM-MD-Simulationen im Vakuum (vac.)
und in wissriger Losung (sol.) fiir Alanindipeptid bei Raumtemperatur generierte sog.
Ramachandranplots [69] der freien Energie F'(¢,¢) ~ —In[p(¢, )], die aus der Vertei-
lung p(¢, 1)) der Diederwinkel berechnet werden kann. Die mit in der Literatur iiblichen
Bezeichnungen [70] markierten lokalen Minima von F sind somit die wahrscheinlichsten
Zustande im Konformationsraum.

Ein Vergleich der beiden Ramachandranplots zeigt den Einflufl wéssriger Losung auf
die Konformationslandschaft von Alanindipeptid. Im Vakuum herrschen die in Abbil-
dung 1.5a gezeigte C5- und die C7.-Konformation vor, in denen die Dipolmomente der
beiden AGn energetisch giinstig antiparallel zueinander angeordnet sind. Parallele An-
ordnungen der Dipole, wie z.B. im a-Bereich, kommen im Vakuum &uflerst selten vor.
In Wasser wechselwirken die Dipolmomente der AGn zusétzlich mit den umgebenden
Wassermolekiilen, auf diese Weise wird die freie Energie einiger im Vakuum ungiinstiger
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Motive abgesenkt. Wasserstoftbriickenbindungen innerhalb des Dipeptids, die teilwei-
se durch Wassermolekiile unterstiitzt werden, fithren zur Ausdifferenzierung weiterer
Strukturen wie ppll, die zusammen mit C5 den sog. S-Bereich bilden.

Die lokalen Minima von F'(¢, 1)) sind durch teilweise hohe Energiebarrieren voneinander
getrennt [71], so sind z.B. spontane Ubergéinge von Regionen mit ¢ < 0° zu Regionen mit
¢ > 0° bei Raumtemperatur sehr selten. Viele (¢,1)-Kombinationen sind durch sterische
Hinderungen, d.h. Pauli-AbstoBungen der atomaren Elektronendichten, verboten [2].
Sterische Hinderungen sind auch der Grund, warum die Restgruppen der AGn Einflufl
auf die Beweglichkeit des Riickgrats und auf die Konformationslandschaft haben [70].

In groBeren Polypeptiden interagieren nicht nur benachbarte AGn, sondern, ermoglicht
durch Kriimmungen des Riickgrats, auch weiter entfernte [2]. Die wichtigsten Sekundér-
strukturmotive in Proteinen sind die a-Helix, bei der die parallel angeordneten Dipole
der AGn einen Makrodipol bilden, sowie das g-Faltblatt, das kein Nettodipolmoment
aufweist [64, 65]. Zur Strukturbildung koénnen auflerdem Wechselwirkungen zwischen
Restgruppen beitragen [2].

Die strukturtypischen, von anderen AGn bzw. Wassermolekiilen erzeugten lokalen elek-
trischen Felder fithren zu spezifischen Polarisationen der einzelnen AGn, die sich, wie
oben diskutiert, auf deren Schwingungsmuster auswirken [10]. So sind die verschiedenen
Sekundérstrukturen durch (IR-)Spektroskopie [11] der Amidmoden (siche Abb. 1.4a)
unterscheidbar [26, 72, 73|, mit zeitaufgelosten Messungen kann die Konformationsdy-
namik untersucht werden [19, 21, 74-76]. Die Interpretation der experimentellen Be-
obachtungen, z.B. der Schluss von einem gemessenen Schwingungsspektrum auf eine
bestimmte Proteinstruktur, kann durch theoretische Methoden unterstiitzt werden, die
nun im Folgenden vorgestellt werden.

1.2 Molekulardynamik-Simulationen

Einen wichtigen theoretischen Zugang zu Biomolekiilen stellen die im Jahre 1957 durch
Alder und Wainwright [12] erstmals angewendeten MD-Simulationen dar [13-15]. Mittels
einer solchen Simulation wird eine zeitdiskrete Trajektorie R(t) = [ri(t),...,rn(t)]T
eines Systems aus N Atomen generiert, die zu jedem Zeitpunkt ¢ alle Atomkoordinaten
r; € R® (i = 1,..., N) speichert, und die dann der jeweiligen Fragestellung entsprechend
analysiert werden kann [14].

Die sog. Born-Oppenheimer-MD [77] stiitzt sich auf die gleichnamige adiabatische N&-
herung [78], die eine Trennung der Zeitskalen, auf denen die Bewegungen der Atomkerne
und der viel leichteren Elektronen stattfinden, ermoglicht. Die Atome ¢ werden dann als
Punkte der Masse m; beschrieben, die sich gemé&fl der klassischen Newton’schen Mecha-
nik bewegen [79], d.h. es gilt

m;t; = —V,U(R). (1.1)

Die auf die Atome i wirkenden Kriifte auf der rechten Seite von Gleichung (1.1) werden
dabei als Gradienten einer noch zu spezifizierenden potentiellen Energie U(R) berechnet.
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Bei einer numerischen Integration von Gleichung (1.1), z.B. mittels des Verlet-Algorith-
mus [80, 81], muss der verwendete Zeitschritt At klein genug gewihlt werden, um auch
die schnellsten Freiheitsgrade im System glatt abzutasten [14]. Da dieser typischerweise
in der GroBenordnung von Femtosekunden (1071°s) liegt, sind zur Berechnung einer
Trajektorie mit einer Dauer von einer Mikrosekunde bereits etwa eine Milliarde Inte-
grationsschritte [und damit Auswertungen der rechten Seite von Glg. (1.1)] notig. Fiir
ein gegebenes N-Teilchensystem héngt die Realisierbarkeit einer solchen Trajektorie
entscheidend vom fir die Auswertung von U(R) benétigten Rechenaufwand ab.

Das fiir MD-Simulationen notige Potential U(R) steht nun im Fokus der weiteren Arbeit.
Da eine analytische quantenmechanische Formulierung dieses Potentials fiir mehratomi-
ge Systeme meist unmoglich ist [82], muss man fiir seine Beschreibung auf geeignete
Approximationen zuriickgreifen.

1.2.1 Molekiilmechanische Kraftfelder

Eine vergleichsweise grobe Nédherung der physikalischen Realitéit stellen die MM-Kraft-
felder dar [83, 84]. Deren Grundidee ist es, das in (1.1) eingehende Potential

UMM(R) = Up(R) + Unp(R) (1.2)

in lokale Wechselwirkungen Uy, naher chemisch gebundener Atome und in langreich-
weitige Wechselwirkungen Uy, weiter entfernter bzw. chemisch nicht gebundener Ato-
me aufzuteilen und die einzelnen Beitrdge mit einfachen analytischen Formeln auszu-
driicken. Die erforderlichen Parameter werden, z.B. durch QM-Referenzrechnungen oder
Vergleich mit experimentellen Daten empirisch bestimmt [83], und definieren dann ein
(Protein-)Kraftfeld wie z.B. CHARMM22 [67]. Fiir Wasser existiert eine Vielzahl von
speziellen MM-Kraftfeldern [66, 85, 86].

In Uy, werden kovalente Bindungen und Winkelpotentiale z.B. durch harmonische Po-
tentiale, und Torsionsbarrieren durch periodische Diederpotentiale approximiert. Die
jeweiligen Parameter sind in konventionellen MM-Kraftfeldern konstant. Der langreich-
weitige Anteil

Unb(R) = Uvdw(R) + Uele(:(R) (13)

setzt sich zusammen aus den van der Waals-Wechselwirkungen U,qw und den elektro-
statischen Wechselwirkungen Ugec.

Zur Beschreibung der van der Waals-Wechselwirkungen U, qw zwischen sich im Abstand
rij = |r;—r;| befindenden Atomen 7 und j werden haufig empirische 12-6 Lennard-Jones-
Potentiale [87] ULy(R) = Y,_; [Ay/ri} — Bij/rS], in selteneren Féllen Buckingham-
Potentiale [88] Upy(R) = Y-, _; [A}; exp(—AFri;) — By/r;] gewihlt. Die Parameter Ay
bzw. (Aj;, A};) beschreiben hier die Pauli-Abstoflung zwischen den Atomen i und j, wih-
rend die interatomare Dispersionsattraktion durch die Parameter B;; modelliert wird.
Alle Summationen iiber Atompaare schlieen iiblicherweise langreichweitige Wechsel-
wirkungen zwischen gebundenen Atomen innerhalb etwa zwei kovalenter Bindungen aus

(sog. 1-M-exclusion, M = 2,3,...) [67].
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Die elektrostatischen Wechselwirkungen Uy werden in géngigen MM-Kraftfeldern durch
punktformige Partialladungen ¢; an den Atomorten r; modelliert [67, 83, 86]. Deren
Energiebeitrag ist durch die Coulombsumme

1
Usee (R) = 3 > qid(ri| gj.r5) (1.4)
i j#i
gegeben, in der
4
O(r| gy, 1)) = (1.5)
P e -y

das durch die sich an der Position r; befindende Punktladung ¢; am Ort r erzeugte elek-
trostatische Potential bezeichnet [89]. Punktladungen sind recheneffizient behandelbar,
stellen aber eine grobe Approximation fiir die ausgedehnten atomaren Ladungsvertei-
lungen dar. Einige spezielle Kraftfelder, vor allem fiir Wasser [90, 91|, verwenden daher
gauBformig verbreiterte Ladungen, fiir die ein analoger Ausdruck gilt [92].

Die Modellierung der elektrostatischen Wechselwirkungen ausschlieflich durch stati-
sche Ladungen kann Polarisationseffekte auf die Ladungsverteilung allerdings nur im
Mittel, d.h. im Rahmen einer Molekularfeld-Ndaherung (engl. mean-field) beriicksich-
tigen [93]. Dies gilt gleichermafien fiir die Verwendung feldunabhéngiger Potentialpa-
rameter in gebundenen Wechselwirkungen. So konnen die elektrostatischen und spek-
troskopischen Eigenschaften vor allem stark polarisierbarer Verbindungen wie Wasser
(siche Abschnitt 1.1.1) oder AGn (siche Abschnitt 1.1.2) nur unzureichend beschrieben
werden [29, 55, 63, 94].

Im speziellen Fall von nicht-polarisierbaren Wassermodellen schrinkt die mean-field-
Néherung deren Transferierbarkeit, z.B. in die Umgebung lokal stark polarer oder ge-
ladener Proteine, und damit deren Verwendbarkeit als akkurate Losungsmittelmodelle
ein. Fiir die Beschreibung von Wasser gibt bereits einige polarisierbare Ansétze [55,
85, 90, 91, 95, 96]. Auch fiir die Modellierung von Polarisationseffekten auf gebundene
Wechselwirkungen existieren Vorschlidge [63, 94, 97-100]. Die Weiterentwicklung eines
solchen spektroskopischen Kraftfelds [63, 94] ist Thema der laufenden Dissertation mei-
nes Kollegen Christoph Wichmann.

Polarisierbare Molekiilmechanische Kraftfelder

Elektronische Polarisationseffekte auf eine molekulare Ladungsverteilung kénnen mittels
verschiedener Ansétze explizit in einem Kraftfeld beriicksichtigt werden [93, 101-103],
z.B. durch Einfiihren von Ladungen variabler Starke (fluctuating-charge-Modelle [104]),
variabler Position (Drude-Oszillatoren [105]) oder von induzierbaren Dipolen [31, 106].
Die potentielle Energie

U™MM(R) = UM™(R) + Ufe.(R) (1.6)
eines solchen PMM-Kraftfelds beinhaltet dann die zusétzlichen elektrostatischen Wech-
selwirkungen U2°! [93, 101].

elec
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Durch die Einfiihrung induzierbarer Dipole [106] an den Atomorten r;, deren Starken
pi = a; E"P(r;) (1.7)

mit den skalaren atomaren Polarisierbarkeiten «; aus der linearen Antwortnéherung
folgen, ergibt sich der zusétzliche Energiebeitrag [31]

U;)IZi Z% rz |p]7r] Zp Eqp Zp?/az (18)

zy;éz

Hier bezeichnet ®(r|p;,r;) das vom Dipol p; am Ort r generierte Potential [89], und
der Ausdruck
E*P(r;) = ) [E(ri|g;1;) + E(r; | py.xy)] (1.9)
J#i
fasst die von den statischen Ladungen ¢; und den induzierbaren Dipolen p; (j # i) am

Ort r; erzeugten elektrischen Felder E(r; | gj,r;) bzw. E(r; | p;,r;) zusammen. Der letzte
Term in Gleichung (1.8) ist die zur Erzeugung der Dipole p; notige sog. Selbstenergie.

Da das nach Gleichung (1.7) einen Dipol p; induzierende Feld E?P(r;) von allen anderen
Dipolen p; (j # %) erzeugt wird, muss zur Berechnung der atomaren Kriifte eine selbst-
konsistente Losung gefunden werden (z.B. durch Iteration) [107, 108]. Dieser Umstand,
sowie die zusétzlichen elektrostatischen Quellen sind fiir den erhohten Rechenaufwand
von PMM-Kraftfeldern gegeniiber MM-Kraftfeldern verantwortlich [109]. Eine unphysi-
kalische Uberpolarisation wird durch die Verwendung im Nahfeld abgeschirmter indu-
zierbarer Dipole vermieden [110]. Eine solche Abschirmung kann effektiv auch durch die
Verwendung gauférmig verbreiterter Dipole [55, 90, 111] erreicht werden, entsprechend
gelten statt (1.8) und (1.9) modifizierte Formeln [112].

Im Fall von Wasser ist die explizite Beriicksichtigung der Polarisierbarkeit alleine aber
nicht ausreichend, um die wesentlichen Eigenschaften dieses Losungsmittels zu beschrei-
ben. Auch die hoheren elektrostatischen Momente wie das Quadrupolmoment miissen,
z.B. durch die Stdarken und Positionen von Partialladungen, die nicht notwendigerwei-
se an den Atomorten lokalisiert sind [66], korrekt modelliert werden [56, 113]. Sog.
Vierpunktmodelle verschieben die negative Partialladung vom O-Atom auf die ¢uon-
Winkelhalbierende, Fiinfpunktemodelle verteilen sie auf zwei senkrecht zur Molekiile-
bene stehenden lone-pair-Positionen. Die mittels einer eleganten Strategie entwickelten
polarisierbaren Vier- bzw. Fiinfpunktemodelle TL4P und TL5P [55], nach der durch
das Einbeziehen moglichst vieler experimentell gesicherter bzw. mit DF'T berechneter
mikroskopischer Eigenschaften des Wassermolekiils nur etwa ein Drittel der benttigten
Parameter iiber empirische Optimierung makroskopischer Fliissigphaseneigenschaften
bestimmt wurden, waren aber nicht in der Lage, die Dichteanomalie vorherzusagen [114].
Dieses Ergebnis ist ein Symptom fiir das von Wassermodellen solcher Geometrie nur un-
zureichend beschriebene Quadrupolmoment [56, 113], fiir dessen korrekte Modellierung
mindestens die durch eine Kombination aus Vier- und Fiinfpunktemodellgeometrie (also
ein Sechspunktmodell) zur Verfiigung stehenden fiinf Partialladungen benétigt werden.

11
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Effiziente Behandlung Langreichweitiger Wechselwirkungen

Neben der Entwicklung einer geeigneten Strategie zur Festlegung der zahlreichen freien
Parameter in einem (P)MM-Kraftfeld stellen vor allem die langreichweitigen Wechselwir-
kungen (1.3) eine Herausforderung fiir theoretische Beschreibungen dar [14, 84, 115]. Der
Rechenaufwand fiir die exakte Auswertung von Paarwechselwirkungen [z.B. (1.4), (1.8),
oder der Modellpotentiale fiir van der Waals-Wechselwirkungen| skaliert mit O(N?), was
die Verwendung von Nédherungsmethoden notig macht.

Ein einfaches Abschneiden dieser Wechselwirkungen fithrt im Falle der Elektrostatik zu
groflen systematischen Fehlern, da das durch das Losungsmittel ausgeiibte Reaktions-
feld dann nicht vollstdndig beschrieben ist [116]. Das Abschneiden der van der Waals-
Wechselwirkungen zieht algorithmische Heiz- oder Abkiihl-Artefakte nach sich [109].
Ansitze wie die Ewald-Summation [117-119] oder schnelle Multipolmethoden [120-122]
(engl. fast multipole method, FMM) vermeiden solche Artefakte und ermdoglichen eine
mit O(N log N) bzw. mit O(N) skalierende approximative Berechnung von Paarwech-
selwirkungen.

Die in dieser Arbeit verwendete schnelle strukturadaptierte Multipolmethode (SAMM)
[109, 116, 123-127] erlaubt eine strikt linear skalierende Berechnung [109] aller in den
oben beschriebenen (P)MM-Kraftfeldern auftretenden Paarwechselwirkungen. Durch
die Verwendung zweiseitiger Taylorentwicklungen der Ordnungen p, ¢, bzw. r fiir
Elektrostatik-, Dispersions- und Lennard-Jones-Repulsionswechselwirkungen kénnen die
auftretenden Kréfte approximativ mit kontrollierter Genauigkeit als exakte Gradienten
der entsprechenden Energien berechnet werden [127] (Standardwerte: p = 4, ¢ = 3,
r =1). SAMM erlaubt in nicht-periodischen Systemen eine Energie- und drehimpulser-
haltende Dynamik [127].

Da der SAMM-Algorithmus in dieser Arbeit zur effizienten Berechnung von DFT /PMM-
Wechselwirkungen eingesetzt wird, werden im Folgenden dessen Grundkonzepte anhand
der in einem MM-Kraftfeld auftretenden elektrostatischen Paarwechselwirkungen (1.4)
skizziert.

Der SAMM-Algorithmus

Abbildung 1.6 zeigt einen Ausschnitt aus einer Gruppe von MM-Wassermolekiilen, deren
gegebene Ladungsverteilung (Punkte) durch SAMM in ein hierarchisches geschachtel-

tes Netzwerk aus Ladungsclustern (gestrichelte Kreise, ¢§-c2, cj-c}) zerlegt wurde. Die
Ausdehnung dieser Cluster wichst mit zunehmender Hierarchiestufe [ = 0,1,...,[%*P

bis zu einer vordefinierten Maximalstufe {*°P. Moglichst kompakte Cluster werden durch
den Einsatz neuronaler Verfahren [128] und durch die periodische Aktualisierung der
Clusterstruktur erreicht [109]. Auf der untersten Hierarchiestufe [ = 0 befinden sich in
SAMM vordefinierte chemische Gruppen [123], die sog. strukturellen Einheiten, die im
betrachteten Fall durch die einzelnen Wassermolekiile gegeben sind.

12
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Abbildung 1.6: Approximative Berechnung des durch die atomaren Ladungen (schwarze Punkte) von
umgebenden Wassermolekiilen erzeugten Potentials am Ort des Atoms ¢ (grauer Punkt) mit SAMM.
Gestrichelte Kreise definieren Ladungscluster clI7 die gepunkteten Kreissegmente (Radien ro bzw. r1)
markieren die durch das IAC gegebene Grenzen zwischen den SAMM-Hierarchiestufen. Pfeile skizzie-
ren die Berechnung eines exakten Coulombpotentials (griin), bzw. von Multipolmomenten (blau), von
Taylorentwicklungskoeffizienten (rot), sowie die Auswertung einer lokalen Taylorentwicklung (lila).

Die Entscheidung, ob die Wechselwirkung zweier Cluster ¢; und ¢}, auf einer bestimmten
Hierarchiestufe [ erlaubt ist, erfolgt durch Priifung des Akzeptanzkriteriums [109]

% [19[75(7‘) —f— ’19[/75(7‘)] S @X, (110)

dem sog. IAC (fir interaction acceptance criterion). Dazu werden die genauigkeitsge-
wichteten apparenten Ausdehnungen 97,(r) = 2Ry, /(rar;) der Cluster ¢4 und ¢}, die
aus deren Gyradionsradien Ry, deren Abstand r, und Gewichtsparametern a; berech-
net werden, mit einer vordefinierten Schwelle ©, (y € {f,m,a}, s.u.) verglichen [109].
In die Gewichtsparameter a;; geht die elektrostatische Signatur und die Geometrie des
jeweiligen Clusters ein, was die Genauigkeit der Berechnung nahezu unabhéngig von
der chemischen Zusammensetzung des Systems macht [109]. Das Priifen des IAC (1.10)
beginnt auf der hochsten Stufe (*P. Ist eine Wechselwirkung auf einer Stufe [ nicht er-
laubt, werden die Cluster in ihre Bestandteile zerlegt, und das TAC dafiir auf Stufe [ — 1
gepriift. Die in Abbildung 1.6 grau gepunkteten Radien r; und ry illustrieren die durch
das TAC gegebenen Minimalabsténde fiir Wechselwirkungen des Clusters i auf Stufe
[ =1 bzw. des Clusters ¢ auf Stufe [ = 0.

Die Berechnung des durch die Ladungsverteilung am Ort des grau hervorgehobenen
Atoms i generierten Potentials (und den zur Kraftberechnung nétigen Potentialgradien-
ten) erfolgt dann auf allen Stufen [ > 0 approximativ iiber Multipolentwicklungen (blaue
Pfeile) und Taylorentwicklungen (rote und lila Pfeile) um die geometrischen Zentren
,x" der Cluster. Die gestrichelten blauen und roten Pfeile bezeichnen das Verschieben
von Multipolmomenten bzw. Taylorentwicklungskoeffizienten zwischen den Hierarchie-
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1 Einleitung

stufen. Nur wenn eine approximative Cluster-Cluster-Wechselwirkung auch auf Stufe
[ = 0 durch das TAC (1.10) verboten ist, muss die exakte Auswertung des Coulombaus-
drucks (1.5) erfolgen (der griine Pfeil illustriert eine solche Auswertung). Die genauen
mathematischen Details finden sich in Ref. [126].

Im von Lorenzen et al. [109, 126, 127] weiterentwickelten SAMMX-Algorithmus wird die
Taylorentwicklung eines von einem Multipolmoment m’ter Ordnung generierten Poten-
tials bis zur Ordnung n = 4 —m ausgefiihrt, da die so berechneten Kréifte dann das New-
ton’sche Reaktionsprinzip erfiillen [126]. Im Gegensatz zu fixen Distanzklassen [116, 125]
ermoglicht das IAC (1.10) eine genaue Kontrolle der durch die FMM-Approximationen
verursachten Fehler. Es stehen die drei Kompromisse O (hohe Effizienz), ©,, (mitt-
lere Effizienz, mittlere Genauigkeit) und ©, (hohe Genauigkeit) aus Genauigkeit und
Recheneffizienz zur Verfiigung [109]. Zum Beispiel erlaubt das IAC fiir fliissiges Was-
ser einen Ubergang von exakten Ausdriicken zu den FMM-Approximationen bereits bei
kleinen Atomabstinden um ~ 5 A was einen deutlichen Effizienzgewinn gegeniiber frii-
heren SAMM-Algorithmen [116, 123-125] bietet und so z.B. die effiziente Behandlung
lokal sehr komplexer PMM-Mehrpunktmodelle fiir Wasser [55, 129] ermdglicht [109].

Die in Simulationssystemen endlicher Grofle auftretenden Oberflécheneffekte werden
bei der Verwendung von SAMM durch die Annahme toroidaler Randbedingungen aus-
geschlossen [14]. Um Periodizitéitsartefakte zu vermeiden, treten geméf der Minimal-
bild-Konvention (engl. minimum image convention, MIC) nur Atome innerhalb eines
Abstands 7\, der gerade der Halfte des Durchmessers der verwendeten Einheitszel-
le entspricht, in Wechselwirkung [14]. Ein hartes Abschneiden der Wechselwirkungen
wird durch die Einfiithrung eines dielektrisches Kontinuum auflerhalb von ryyc vermie-
den [116], was z.B. im Falle von Wasser ab einer Entfernung von 15A in sehr guter
Ni#herung moglich ist [130].

Da in (P)MM-MD Simulationen von Molekiilen in explizitem Losungsmittel der Grofiteil
der Rechenzeit trotzdem in die — oft uninteressante — Losungsmitteldynamik inves-
tiert werden muss, kann die Recheneffizienz durch das Ersetzen der Losungsmittelmole-
kiile durch ein Kontinuum erheblich gesteigert werden [92, 131]. Ein solches implizites
Losungsmittel, wie die kiirzlich im Rahmen der Dissertation von Sebastian Bauer entwi-
ckelte energieerhaltende HADES-Methode (fiiv Hamiltonian dielectric solvent), erwei-
tert somit die durch Simulation zugénglichen Langen- und Zeitskalen, und erleichtert
so z.B. Studien zu Faltungsprozessen [132]. Zur genauen Berechnung von Schwingungs-
spektren miissen allerdings explizite Losungsmittelmodelle verwendet werden, da neben
der Beschreibung der nicht-lokalen dielektrischen Eigenschaften auch lokale spezifische
mikroskopische Effekte wie Wasserstoffbriickenbindungen erfassst werden miissen [133].

Anwendungsbereiche von (P)MM-Kraftfeldern

Die skizzierten einfachen (P)MM-Kraftfelder erlauben eine sehr effiziente Auswertung
des die Dynamik (1.1) bestimmenden Potentials U(R), und erméglichen so die Be-
schreibung grofler Biomolekiile in ausgedehnten Losungsmittelumgebungen. So konnte
z.B. mittels MM-MD-Simulation ein virtuelles Kraftmikroskopie-Experiment [11] an ei-
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nem Komplex aus dem aus 159 Aminosduren bestehenden Protein Streptavidin und
dem Vitamin Biotin durchgefiihrt werden [18]. Die Simulation des in wissriger Losung
eingebettete Komplexes (ca. 11.000 Atome insgesamt) ermoglichte einen detaillierten
Einblick in die Wechselwirkung der beiden Molekiile wihrend des Auseinanderreifiens.
Eine &hnliche Studie wurde auch am grofiten bekannten im menschlichen Kérper vor-
kommenden Protein, dem Titin, durchgefiihrt [134]. Auch eine komplette, wenn auch
primitive, Lebensform, das Tabakmosaikvirus konnte bereits simuliert werden [135]. Die
zuganglichen Systemgroflen und Zeitskalen werden durch algorithmische Fortschritte
und wachsende Rechnerleistung weiter steigen [136].

Angesichts dieser Erfolge der MM-MD darf aber nicht auler Acht gelassen werden, dass
die Qualitdt der Beschreibung entscheidend von der Wahl der Modellklasse (z.B. MM
oder PMM) und -parameter abhéngt [29, 83, 137]. Ferner kénnen die harmonischen Bin-
dungspotentiale chemische Reaktionen wie das Bilden oder Losen kovalenter Bindungen
nicht beschreiben. Wie schon erwéhnt, sind Kraftfelder, die die Polarisationseffekte auf
Bindungspotentiale vernachléssigen, fiir die Berechnung von Proteinschwingungsspek-
tren ungeeignet [63, 94]. Die Verbesserung der MM-Kraftfelder ist daher immer noch
ein aktives Forschungsgebiet [138], das sich dabei auf genaue quantenmechanische Be-
schreibungen stiitzen kann.

1.2.2 Dichtefunktionaltheorie

Eine quantenmechanische Berechnung des Potentials U(R) in Gleichung (1.1) fiir eine
gegebene atomare Kernkonfiguration R beruht im Rahmen der Born-Oppenheimer-Né-
herung [78] auf der (approximativen) Losung der nicht-relativistischen zeitunabhéngigen
Schrédingergleichung

HU = EV, (1.11)

in der E = E(R) die elektronische Energie und ¥ die elektronische Wellenfunktion
darstellt [139]. Der elektronische Hamiltonoperator H = H(R) = T + Vie(R) + Ve
setzt sich aus der kinetischen Energie T der Elektronen, sowie den Kern-Elektron- und
Elektron-Elektron-Wechselwirkungen Vie bzw. V.. zusammen. Das effektive Potential
UMR) = E(R) + Vi (R), aus dem dann in (1.1) die Krifte auf die Atomkerne abgelei-
tet werden konnen, erhélt man durch Addition der elektronischen Energie und der Kern-
Kern-Wechselwirkung Vi. Die elektronische Wellenfunktion ¥ = ¥(xy,...,x,) eines n-
Elektronensystems héngt fiir ein gegebenes R von n elektronischen Orts- und Spinko-
ordinaten xj = (ry, sx), k = (1,...,n), ab und muss Eigenschaften wie Antisymmetrie
und Normierbarkeit aufweisen sowie die jeweiligen Randbedingungen des Systems erfiil-
len [139]. Es existieren eine Reihe von ab initio Verfahren [77, 140] zur approximativen
Losung der Schrodingergleichung (1.11).

Die Hohenberg-Kohn-Theoreme

Ist man nur an molekularen Eigenschaften im elektronischen Grundzustand interessiert,
liefert die DFT einen guten Kompromiss aus Genauigkeit und Recheneffizienz. Das erste
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der entsprechenden von Hohenberg und Kohn aufgestellten Theoreme besagt, dass die
Elektronendichte p(r) alle Grundzustandseigenschaften eines Molekiils definiert [141].
So konnen Observablen wie die kinetische Energie T'[p] der Elektronen, die Elektron-
Elektron-Wechselwirkung V..[p] oder die elektronische Gesamtenergie

Elp] = [ ple)olw)dr + Fucls (1.12)

als Funktionale der dreidimensionalen Grofle p ausgedriickt werden, ohne eine hochdi-
mensionale komplexe Wellenfunktion ¥ als Losung von (1.11) bestimmen zu miissen.
Das elektrostatische Potential v(r) im ersten Term von Gleichung (1.12) wird durch
die atomaren Kernladungen erzeugt, und kann auflerdem weitere Beitrage ®(r) durch
dufere Potentiale beinhalten (liegen keine dufleren Felder an, entspricht dieser Term der
Kern-Elektron-Wechselwirkung Vie[p]). Fiir die beiden Beitrége zum Hohenberg-Kohn-
Funktional Fuk|p] = T[p] + Vee|p], sind allerdings keine exakten analytische Formen be-
kannt. Dieses unbekannte Funktional, das Becke in einem sehr lesenswerten Ubersichts-
artikel [142] als ,heiligen Gral der Elektronenstrukturtheorie” bezeichnet, ist universell,
enthélt also keine molekiilspezifischen Annahmen.

Das zweite Hohenberg-Kohn-Theorem besagt [141], dass jede nicht-negative, normierte
(J p(r)dr = n) Elektronendichte p das Variationsprinzip

E, < Ep] (1.13)

erfiillt. Die Grundzustandselektronendichte py ist also diejenige, die die minimale (Grund-
zustands-)Energie Ey = E[po| liefert. Eine detaillierte Einfithrung in die hier nur knapp
skizzierten Grundideen der DFT findet sich in Ref. [139].

Das Kohn-Sham-Verfahren

Aufbauend auf den Hohenberg-Kohn-Theoremen entwickelten Kohn und Sham ein prak-
tisch anwendbares Rechenverfahren [143]. Die Dichte p der Elektronen und eine Nahe-
rung T[p| fir deren kinetische Energie wird hier unter der Annahme nicht-wechselwir-
kender Elektronen iiber Einelektron-Spinorbitale 1, berechnet. Entsprechend formulier-
ten sie das Hohenberg-Kohn-Funktional als

Fuk[p] = Tslp] + Jp] + Exc[p], (1.14)

mit der klassischen Wechselwirkungsenergie J[p| der Elektronen und dem Austausch-
Korrelations-Funktional Ey.[p] = T[p] —Ts[p]+ Veelp| — J[p], das die Fehler der gemachten
Approximationen sammelt.

Ist ein Ausdruck fiir Ey. gegeben (s.u.), so ergeben sich die Einelektron-Orbitale 1 aus
der Losung der n gekoppelten Eigenwertprobleme

(=3 V2 + verr(r)] i, = e, (1.15)
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in denen ¢ die Energieeigenwerte und veg(r) = v(r)+0.J[p]/dp+0Exc[p]/dp das effektive
Kohn-Sham-Potential bezeichnen. Ausgehend von einer initialen Annahme p) fiir die
Elektronendichte wird veg berechnet und dann die vy als Losung des Gleichungssys-
tems (1.15) bestimmt. Aus den 1, kann dann eine neue Elektronendichte p(®) und mit
(1.12) und (1.14) die Gesamtenergie E[p®] berechnet werden. Dieser Prozess wird solan-
ge iteriert, bis die Anderung der Gesamtenergie einen kleinen Schwellwert unterschreitet
und somit eine selbstkonsistente Losung gefunden ist.

Zur vollstéandigen Spezifizierung des Kohn-Sham-Verfahrens fehlt noch ein Ausdruck
fiir Ey. (siehe z.B. Ref. [142] fiir einen Uberblick). Kohn und Sham approxmierten E.
iiber die Annahme eines lokal homogenen Elektronengases [143]. Eine genauere Beschrei-
bung der Austauschwechselwirkung erhélt man durch Beriicksichtung von Gradienten
des inhomogenen Elektronengases [139]. Durch explizites Berechnen der Hartree-Fock-
Austauschwechselwirkung [144] kann die Genauigkeit weiter erhoht werden, allerdings
zum Preis eines noch groferen Rechenaufwands. In dieser Arbeit werden die Kombina-
tionen BP, BLYP und B3LYP aus dem gradienten-korrigierten Austauschfunktional von
Becke (B) [145], bzw. dessen um Hartree-Fock-Austausch erweiterte Weiterentwicklung
B3 [146, 147] und den Korrelationsfunktionalen von Perdew (P) [148] bzw. Lee, Yang
und Parr (LYP) [149] verwendet, und u.a. deren Effekt auf die Qualitit molekularer
Schwingungsspektren untersucht.

Konkrete Implementierungen des Kohn-Sham-Verfahrens stellen die Einelektron-Orbi-
tale durch Basissdtze dar, deren endliche Grofle ebenfalls einen Kompromiss aus Ge-
nauigkeit und Effizienz darstellt [77]. Neben an den Kernorten lokalisierten Gaufl’schen
Basisfunktionen [150, 151] werden auch ebene Wellen (z.B. im gitterbasierten DFT-
Programm CPMD [152]) oder Mischformen [153-155] als Basis verwendet. Um die Zahl
der explizit zu behandelnden Elektronen zu reduzieren, ist es in auf ebenen Wellen
basierenden Verfahren iiblich, kernnahe Elektronen durch Pseudopotentiale zu model-
lieren [77]. In dieser Arbeit werden hauptséchlich die normerhaltenden Pseudopotentiale
von Troullier und Martins (MT) verwendet [156].

Die im Falle der Born-Oppenheimer-MD (vgl. Abschnitt 1.2) bei Verwendung eines
DFT-Modells in jedem Integrationsschritt notige aufwindige Selbstkonsistenziteration
der Elektronendichte wird durch eine von Car und Parrinello vorgeschlagene Alternative,
der CP-MD, vermieden [77, 157]. Durch Einfithrung einer fiktiven Elektronenmasse und
einer damit ermdglichten adiabatischen Elektronendynamik kénnen die Elektronen bei
Bewegung der Kerne nahe am Grundzustand gehalten werden.

Eignung der DFT zur Berechnung von Schwingungsspektren

Die Bedeutung der DF'T zeigt sich unter anderem in der Verleihung des Chemie-Nobel-
preises 1998 fiir Walter Kohn fiir die Entwicklung der DF'T, und an John Pople fiir seine
Beitrage zur Entwicklung und Verbreitung von Quantenchemie-Software [158].

Fiir die Behandlung IR-spektroskopischer Probleme bietet die DFT schon bei der Ver-
wendung von Funktionalen mit moderatem Rechenaufwand (wie z.B. BP) die fiir einen
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Vergleich mit experimentellen Daten erforderliche Genauigkeit, wie durch Normalmo-
denanalysen am Beispiel von p-Benzochinon [159], und einer Reihe anderer organischer
und anorganischer kleiner, isolierter Molekiile [160, 161] bzw. kleinen Molekiilkomple-
xen [24] gezeigt wurde. Aufgrund der in Abschnitt 1.1.2 beschriebenen solvatochromen
Frequenzverschiebungen kann das fiir isolierte Molekiile berechnete Schwingungsspek-
trum aber nur schwer mit in Losung gemessenen Spektren verglichen werden [27].

Trotz der durch CP-MD [157] erméglichten Effizienzsteigerung ist eine Beschreibung der
Dynamik von Molekiil-Losungsmittelkomplexen mit DFT aufgrund des weiterhin hohen
Rechenaufwands auch mit heutigen Supercomputern auf kleine Léngen- und Zeitskalen
begrenzt. Entsprechend beschréanken sich solche Anwendungen auf kurze Referenzsimu-
lationen von einigen Dutzend Pikosekunden Dauer, und auf kleine Modellmolekiile wie
NMA [59, 162], Alanindipeptid [163] oder Phosphationen [164] in nur wenig ausgedehn-
ten periodischen Losungsmittelumgebungen oder auf pures Wasser [165-169].

1.2.3 QM/(P)MM-Hybridverfahren

Damit kann das in dieser Arbeit behandelte grundlegende Problem der Berechnung von
Schwingungsspektren aus MD-Simulationen folgendermafien formuliert werden: Die im
Abschnitt 1.2.2 vorgestellte DFT liefert die erforderliche Genauigkeit, der hohe Rechen-
aufwand macht aber die Behandlung groflerer Molekiile in einer ausgedehnten Losungs-
mittelumgebung unmoglich. Einfache (P)MM-Kraftfelder, wie sie im Abschnitt 1.2.1
skizziert sind, erlauben zwar die effiziente Behandlung von Systemen solcher Grofe,
kénnen aber die spektroskopischen Eigenschaften nur unzureichend beschreiben.

Abbildung 1.7: Beispiel fiir ein QM/MM-Hybridmodell: Alanindipeptid (DFT) in Wasser (MM). Die
Elektronenverteilung des durch DFT beschriebenen Molekiils wird explizit berechnet und ist hier durch
eine Isofliche angedeutet.

Einen Weg zur Losung dieses Problems lieferten die anfangs erwéhnten Hybridmodelle
von Warshel und Levitt. In deren wegweisenden Arbeit [31] untersuchten sie eine chemi-
sche Reaktion im Enzym Lysozym, die eine quantenmechanische Beschreibung des re-
aktiven Zentrums erforderte. Erstmalig wurde aber dessen chemisch trage Protein- und
Wasserumgebung nicht einfach ignoriert, sondern mittels einer PMM-Beschreibung, in
der sowohl die Proteinatome als auch die Wasserumgebung explizit polarisierbar waren,
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beriicksichtigt. Mit Hilfe dieses hybriden QM/PMM-Modells konnten alle fiir die un-
tersuchte enzymatische Reaktion wichtigen physikalischen Effekte, wenn auch teilweise
grob gendhert, beriicksichtigt werden.

In dieser Studie [31] wurden viele wesentliche Konzepte entwickelt, die auch heute noch
bei der Konstruktion und Anwendung solcher QM /(P)MM-Hybridmodelle, fiir die Ab-
bildung 1.7 ein typisches Beispiel zeigt, von Bedeutung sind. So verwendeten die Auto-
ren erstmalig ein polarisierbares Kraftfeld [101] zur Modellierung der Proteinumgebung
durch induzierbare Punktdipole an den Atomorten. Die weiter vom reaktiven Zentrum
entfernte Wasserumgebung wurde mit einem vereinfachten Polarisationsmodell vergro-
bert behandelt. Dieser dreistufige Multiskalenansatz (QM-Region, Protein, Wasser) er-
weiterte die erreichbare Systemgrofie entscheidend, sodass auch langreichweitige dielek-
trische Effekte auf das reaktive Zentrum erfasst werden konnten. Des Weiteren wurde
eine erste einfache Technik fiir das Schneiden von kovalenten Bindungen zwischen dem
QM- und dem PMM-Fragment verwendet, und die van der Waals-Wechselwirkungen
zwischen QM- und PMM-Atomen durch empirische Lennard-Jones-Potentiale model-
liert (vgl. Abschnitt 1.2.1). Die verwendete Form der QM /PMM-Energiefunktion [31]

[QM/PMM _ 7QM | yPMM Ugel\C/I/PMM i U\%l\\;[\//PMM + U,?M/PMM, (1.16)

in der UM und UPMM [vgl. Glg. (1.6)] die potentielle Energie des QM- bzw. PMM-

Fragments bezeichnet, und die zusitzlich die elektrostatischen (Ugelf/ PMM), van der

Waals (U%WPMM) und die gebundenen Wechselwirkungen (U]?M/ PMMY wischen QM-
und PMM-Fragment beinhaltet, liegt im wesentlichen auch den modernen QM /(P)MM-
Methoden zugrunde.

Wie in zahlreichen Ubersichtsartikeln dargestellt ist [170-174], wurde Gleichung (1.16)
seitdem auf diverse Arten implementiert. Die resultierenden QM /(P)MM-Verfahren un-
terscheiden sich u.a. in der Wahl der QM-Methode, der Beschreibung der nicht-gebun-
denen QM/(P)MM-Wechselwirkungen, oder der Behandlung kovalenter Bindungen zwi-
schen den QM und (P)MM-Fragmenten. Das von Warshel und Levitt urspriinglich ver-
wendete PMM-Kraftfeld wurde allerdings haufig durch ein einfacheres, unpolarisierbares
MM-Kraftfeld ersetzt. Allen diesen Implementierungen liegt die Suche nach einem auf
eine bestimmte Fragestellung hin optimierten Kompromiss aus Genauigkeit und Re-
cheneffizienz zugrunde. Da der Untersuchungsgegenstand der vorliegenden Arbeit die
theoretische Beschreibung von IR-Schwingungsspektren ist, beschranken wir uns im fol-
genden auf ein DFT-basiertes Hybridverfahren (vgl. Abschnitt 1.2.2).

Das DFT/MM-Verfahren von Eichinger et al.

Eichinger et al. stellten 1999 eine DFT/MM-Hybridmethode vor, die speziell fiir die
DFT-Berechnung der IR-Schwingungsspektren von Molekiilen in ausgedehnten MM-
Losungsmittelumgebungen konzipiert wurde [33]. Die Implementierung verwendete das
gitterbasierte DFT-Programm CPMD [152], das mit dem MM-MD Program EGO [175]
iiber das Dateisystem kommunizierte [176]. Die in jedem Integrationsschritt fir die Aus-
wertung von Gleichung (1.12) nétige Berechnung des durch die Partialladungen ¢; des
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MM-Fragments auf dem ausgedehnten DFT-Gitter (= 10° Gitterpunkte) erzeugten du-
Beren Potentials ®(r|¢;,r;) [Glg. (1.5)] wurde durch eine Erweiterung des SAMM-AI-
gorithmus [123-125] effizient ermoglicht — wie bei Warshel und Levitt [31] wurde also
ein echter Multiskalenansatz verwendet. Um artifizielle Storungen der DFT-Elektro-
nendichte durch die bei kleinen Abstdnden divergierenden Coulombpotentiale (1.5) zu
vermeiden, mussten die Punktladungen des umgebenden MM-Fragments gaufiférmig
verschmiert werden. Fiir die Berechnung der vom DFT-Fragment auf die MM-Atome
ausgeiibten Krafte wurde eine Partialladungsnéherung fiir die DF'T-Atome verwendet,
und die resultierende Verletzung des Newton’schen Reaktionsprinzips durch eine Kraft-
korrektur ausgeglichen. Ein SPLAM (fiir scaled position link atom method) genanntes
Verfahren erlaubte die akkurate Behandlung von kovalenten Bindungen zwischen DFT-
und MM-Fragmenten durch Einfiihrung eines zusétzlichen sog. Link-Atoms. Testrech-
nungen zeigten, dass die neue Methode erstmals offenbar stabile DFT/MM-MD-Simu-
lationen in relativ groen MM-Umgebungen sowie die Berechnung der IR-Spektren von
kovalent an das MM-Fragment gebundenen DFT-Fragmenten erméglichte [33].

Es folgte eine Vielzahl von Anwendungen zu unterschiedlichen Fragestellungen [21, 25,
34-37, 50, 63, 137, 177-183]. So wurden mit DFT/MM die IR-Spektren von im pho-
tosynthetischen Reaktionszentrum des Purpurbakteriums Rhodobacter Sphaeroides ein-
gebetten Chinon-Farbstoffen berechnet und Fehler in der aus Kristallographie abge-
leiteten Proteinstruktur aufgedeckt [34]. Ferner wurden die Schwingungsspektren von
p-Benzochinon [177], eines lichtschaltbaren S-Hairpin-Molekiils [21], von AGn [63] und
von Phosphationen [35] — jeweils in wéssriger Losung — untersucht. Studien der IR-
Spektren von Triphosphatgruppen im Enzym RAS p21 [178, 179] sowie des Retinalchro-
mophors [36, 137] in der Bindungstasche der lichtgetriebenen Protonenpumpe Bacterior-
hodopsin umgaben das jeweilige DFT-Fragment mit komplexeren MM-Umgebungen.
Weiterhin wurden die IR-Spektren von Flavin-Farbstoffen in unterschiedlichen chemi-
schen Zusténden in Wasser [25, 182] und in deren nativer Umgebung, den sog. BLUF-
Doménen [37], berechnet und ermoglichten so die Zuordnung experimentell gemessener
IR-Absorptionsbanden zu molekularen Schwingungsmoden sowie die Identifizierung feh-
lerhafter Protein-Kristallstrukturen. Auch grundlegende elektrostatische Eigenschaften
von Wassermolekiilen in fliissiger Phase waren Ziel von DFT/MM-Studien [50, 183].

In den eben zitierten DFT/MM-Studien wurden Schwingungsspektren fast ausnahmslos
iber die instantane Normalmodenanalyse (INMA) des DFT-Fragments in eingefrore-
nen MM-Solvatstrukturen berechnet [177, 180, 181]. Ein alternatives Verfahren beruht
auf der Fouriertransformation der Zeit-Autokorrelation des molekularen Dipolmoments
(FTTCF, fur Fourier transformation of the time correlation function) [181], beriick-
sichtigt Quantenkorrekturen [184] zu den klassisch behandelten Kernbewegungen, und
gewinnt das Spektrum direkt aus einer ausgedehnten MD-Trajektorie. Im Gegensatz zu
INMA kann FTTCF daher dynamische Effekte erfassen, und so z.B. die Form von Ab-
sorptionsmaxima wesentlich besser beschreiben [27, 181]. Zusammen mit der Analyse der
Trajektorie iiber generalisierte Normalkoordinaten (engl. generalized normal coordinates,
GNC) [185, 186] kann, bei ausreichend grofier Datenbasis, das Schwingungsspektrum in
die zugrundeliegenden Normalmoden (vgl. Abschnitt 1.1.2) zerlegt werden. FTTCF und
GNC sind daher die Methoden, mit denen Spektren von DFT/MM-Modellen vorzugs-
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weise berechnet werden sollten. Die dafiir erforderlichen ausgedehnten DFT/MM-MD
Trajektorien stellen aber hohe Anforderungen an die Stabilitdt und die Recheneffizienz
der DFT/MM-Methode.

Notwendige Erweiterungen des DFT/MM-Verfahrens

Die bereits erwahnte Verletzung des Reaktionsprinzips durch die von Eichinger et al.
verwendete Partialladungsniherung fiir die DET-Atome [33] verursachte in einigen MD-
Simulationen groflere Dynamikartefakte als urspriinglich erwartet [21, 187]. Alternative
DFT/MM-Kopplungsschemata zeigten, dass diese durch eine Hamilton’sche Formulie-
rung der DFT/MM-Wechselwirkungen, in der alle atomaren Kréfte als Ableitungen
einer einzigen DFT/MM-Energiefunktion UPFT/MM [ye]. Glg. (1.16)] berechnet werden,
vermieden werden kénnen [188, 189].

Ein weiteres Manko von FEichingers Methode deckten die Studien der in Wasser ge-
losten Phosphationen [35] sowie der in Proteinumgebungen eingebetteten Chromopho-
re [36, 37] auf: die DFT/MM-Methode vernachléssigte, wie viele andere QM /MM-Ver-
fahren [170, 172] (und im Gegensatz zum urspriinglichen Vorschlag von Warshel und
Levitt [31]) die expliziten elektronischen Polarisationseffekte im MM-Fragment des Hy-
bridsystems. Im Falle der in Proteine eingebetteten Farbstoffe mussten diese Effekte
durch eine aufwéndige, aus DFT/MM-Rechnungen abgeleitete und spezifisch auf die
Umgebung des jeweiligen Chromophors angepasste iterative Reparametrisierung der
Partialladungen des MM-Kraftfelds beriicksichtigt werden [36, 37]. Fiir einfach und dop-
pelt geladene Phosphationen in Wasser wurde eine Unterschitzung der solvatochromen
Verschiebungen festgestellt [35], fiir die als Ursachen eine fehlerhafte Nahordnung der
MM-Wassermolekiile um das DFT-Fragment [164], und dariiber hinaus die fehlende
Polarisierbarkeit des verwendeten MM-Wassermodells [66] in Frage kommen.

Auflerdem stellten sich die bei Verwendung von punktféormigen MM-Partialladungen
fiir die elektrostatische Wechselwirkung mit dem DFT Fragment notwendigen atomaren
Gléattungsskalen als fiir die Nahstruktur der Verteilung der MM-Molekiile um das DFT-
Fragment kritische Parameter heraus [188]. Dieser Befund stellte die Verwendung von
MM-Punktladungen in DFT/MM-Modellen grundsétzlich in Frage.

Die Erweiterung der DFT/MM-Hybridmethode von Eichinger etal. [33] zu einem Ha-
milton’schen DFT/PMM-Verfahren, das die vom DFT-Fragment auf die PMM-Atome
ausgeiibten Kréfte als Hellmann-Feynman-Kréfte [190] berechnet und so stabile MD
Simulationen von in PMM-Umgebungen eingebetteten DFT-Fragmenten ermoglichen
sollte, war daher der logische néchste Schritt in der Methodenentwicklung. Erste Grund-
lagen wurden hier in der Diplomarbeit von Benedikt Breitenfeld gelegt [187]. Die resul-
tierende frithe Version des induzierbare Dipole einsetzenden DFT/PMM-Verfahrens war
aber auf die Simulation kleiner Systeme wie hybride Wasserdimere beschrankt, da die
effiziente Hamilton’sche Einbettung [188] des DFT-Fragments in den SAMM-Algorith-
mus noch ausstand. Im Rahmen meiner Masterarbeit [191] wurde dann die dafiir notige
Erweiterung des zur damaligen Zeit aktuellen SAMM,-Algorithmus [126] entwickelt.
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1 Einleitung

1.3 Zielsetzung und Aufbau der Arbeit

Die Entwicklung einer hocheffizienten Hamilton’schen DFT/PMM-Methode, sowie die
Beantwortung wichtiger methodischer Fragen zur physikalisch korrekten und genau-
en Beschreibung der MD von (Poly-)Peptiden speziell fiir die Berechnung deren IR-
Schwingungsspektren war das Ziel dieser Dissertation, die ich in der Arbeitsgruppe fiir
theoretische molekulare Biophysik am Lehrstuhl fiir BioMolekulare Optik der Ludwigs-
Maximilians-Universitdt Miinchen angefertigt habe. Die Finanzierung des Projekts er-
folgte einerseits im Rahmen des Sonderforschungsbereich 749/C4 der Deutschen For-
schungsgemeinschaft, der die Weiterentwicklung und prototypische Erprobung von Si-
mulationsmethoden zur Beschreibung der Dynamik (bio)chemischer Grundzustandspro-
zesse in kondensierter Phase zum Ziel hatte, sowie andererseits durch das Kompetenz-
netzwerk fiir Wissenschaftliches Hochstleistungsrechnen in Bayern (KONWIHR-IIT) des
Bayerischen Staatsministerium fiir Wissenschaft, Forschung und Kunst. Alle im Rahmen
dieser Arbeit entwickelten Simulationstechniken sind im PMM-MD Programm IPHIGE-
NIE [192], dem Nachfolger von EGO, implementiert, das unter der Leitung von Gerald
Mathias der wissenschaftlichen Offentlichkeit zuginglich gemacht worden ist. Die vier
dieser kumulativen Dissertation zugrundeliegenden Artikel sind im Kapitel 2 in den
Abschnitten 2.1 bis 2.4 nachgedruckt.

Aufbauend auf den oben beschrieben Vorarbeiten [187, 191] konnte die Hamilton’sche
DFT/PMM-Hybridmethode erfolgreich zur Publikationsreife gebracht werden. Die ent-
sprechende Verdffentlichung [112], die in Abschnitt 2.1 abgedruckt ist, stellt im Detail
die Integration des DFT-Fragments in den FMM-Algorithmus SAMM,, [126] vor. Zur
Ermoglichung Hamilton’scher Dynamik war einerseits die symmetrische Behandlung der
Auswertung des durch das PMM-Fragment generierten Potentials auf dem DFT-Gitter
und der Berechnung der von der DFT-Ladungsdichte auf die PMM-Atome ausgeiibten
Hellmann-Feynman-Kréfte [190] notig. Ferner musste der Algorithmus zur Nachfithrung
des DFT-Gitters an Translationen des DFT-Fragments iiberarbeitet werden. Um den
zusitzlichen Rechenaufwand gegeniiber DFT/MM-Rechnungen gering zu halten, wurde
ein mehrstufiges DFT-Konvergenzkriterium sowie die Extrapolation der PMM-Dipole
eingefiihrt.

Erste Testanwendungen an grofleren DFT-Fragmenten wie Alanindipeptid zeigten aller-
dings, dass die Genauigkeit des auf den fixen SAMM,-Distanzklassen [126] basierenden
DFT/PMM-Verfahrens [112] kritisch und molekiilspezifisch von der Wahl dieser Klassen
abhing. Entsprechend wurden im Rahmen der in Abschnitt 2.2 abgedruckten Veroffent-
lichung [193] die mittlerweile zur Verfiigung stehende SAMMX-Methode [109], die die
tatséchlichen Grofle der den FMM-Entwicklungen zugrundeliegenden Ladungsclustern
beriicksichtigt [vgl. Glg. (1.10)] und so massive Genauigkeits- und Effizienzgewinne ver-
sprach, auf die DFT/PMM-Kopplung angewendet.

Ferner limitierte die Tatsache, dass das MPI-parallelisierte PMM-MD Programms IPHI-
GENIE [192] in DFT/PMM-Hybridrechnungen noch auf einen Rechenkern beschrankt
war, die Anwendbarkeit der neuen DFT /PMM-Methode erheblich. Ein weiteres im Rah-
men von Ref. [193] verfolgtes Ziel war daher die vollstandige MPI/OpenMP-Paralle-
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lisierung der DFT/PMM-Implementierung sowie die Integration von CPMD [152] in
IPHIGENIE [192], um den Einsatz von IPHIGENIE/CPMD auf Grofirechnern zu er-
moglichen.

Bevor das dann mit dem Abschlufl der technischen Entwicklungen verfiigbare, hoch leis-
tungsfihige Programmpaket IPHIGENIE/CPMD allerdings zur Berechnung der Schwin-
gungsspektren von (Poly-)Peptiden eingesetzt werden konnte, waren noch einige weitere
Vorarbeiten nétig. So waren zwar mithilfe der DFT /PMM-Technologie inzwischen po-
larisierbare Wassermodelle entwickelt worden [55, 129], da diese jedoch die elektrosta-
tische Signatur eines Wassermolekiils durch Punktladungen modellierten, waren sie fiir
die Anwendung als Losungsmittel in DFT/PMM-MD Simulationen ungeeignet.

Diese offenen Fragen wurden in der Veroffentlichung [58], die in Abschnitt 2.3 zu finden
ist, beantwortet. Das dort nach der in Ref. [55] und Ref. [129] entwickelten Strategie kon-
struierte Gauj$’sche polarisierbare Sechspunktmodell (GP6P) fiir Wasser sollte sich durch
die ausschlieflliche Verwendung gaufiférmig verschmierter Quellen des elektrostatischen
Potentials speziell als Losungsmittel in DFT/PMM-Anwendungen eignen. Es wurde
untersucht, mit welcher Qualitét dieses Wassermodell wichtige Eigenschaften fliissigen
Wassers beschreiben kann. AnschlieSfend mussten die bisher unbekannten Parameter
der Lennard-Jones-Wechselwirkung zwischen AGn und GP6P-Molekiilen optimiert wer-
den. Da diese Parameter die Nahordnung der PMM-Wassermolekiile um die AGn, und
damit deren Polarisation steuern, hat ihre Wahl auch Einfluss auf die Qualitat der Be-
schreibung solvatochromer Effekte in den Schwingungsspektren der AGn (vgl. Abschnitt
1.1.2). Die Parameteroptimierung erfolgte iiber eine Anpassung der radialen Nahstruk-
tur des PMM-Wassers um ein durch DFT beschriebenes NMA-Molekiil an eigens mit-
tels DFT-MD generierte Referenzdaten. Zur Verringerung des Rechenaufwands wurde
fiir diesen Zweck eine effiziente DF'T/PMM-mean-field-Methode entwickelt. Schlie8lich
wurden die solvatochromen Verschiebungen durch wéssrige Losung (vgl. Abb. 1.4) sowie
Isotopeneffekte durch DFT-MD und DET/PMM-MD Rechnungen am isolierten bzw. in
GP6P gelosten NMA untersucht und mit experimentellen Daten verglichen [10].

Um ein effizientes Abtasten von Peptidkonformationen auch fiir DET/PMM-Modelle zu
ermoglichen, untersucht die in Abschnitt 2.4 abgedruckte Veroffentlichung [194] schlief3-
lich, wie die von Denschlag et al. [195] entwickelte SST-Methode (fiir simulated solute
tempering) auch auf polarisierbare Simulationssysteme wie PMM oder DFT/PMM an-
gewendet werden kann. Es wird eine einfache Vorschrift entwickelt, mit der die fiir
DFT/PMM-SST-MD Simulationen notwendigen SST-Gewichtsparameter aus deutlich
weniger aufwindigen PMM-SST-Rechnungen abgeleitet werden konnen. Das Verfahren
wird dann erfolgreich zur Berechnung der Konformationslandschaft eines DFT-Modells
von Alanindipeptid in wéssriger PMM-Losung angewendet.

Kapitel 3 fasst die Ergebnisse der Arbeit kurz zusammen und liefert einen Ausblick auf
zukiinftige algorithmische Weiterentwicklungen und Anwendungen.
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2 Entwicklung einer hocheffizienten
Hamilton’schen DFT /PMM-Methode

Die vier in diesem Kapitel abgedruckten und im Journal of Chemical Physics bzw.
im Journal of Chemical Theory and Computation veroffentlichten Artikel stellen die
grundlegende Hamilton’sche Kopplung des DFT-Fragments mit der PMM-Umgebung
dar (Abschnitt 2.1), und erkldren die effiziente Einbettung in die SAMM-Hierarchie
(Abschnitt 2.2). Ferner dokumentieren sie die Entwicklung des GP6P-Wassermodells
und die Berechnung der IR-Spektren von NMA in wissriger Losung mit DFT/PMM-
MD (Abschnitt 2.3). Schlieflich stellen sie die zur effizienten Abtastung von Konforma-
tionsrdumen hilfreiche DFT/PMM-SST-Methode vor (Abschnitt 2.4).

2.1 Eine Hamilton’sche DFT/PMM-Kopplung

In der nachfolgend abgedruckten Publikation

Coupling DFT to polarizable force fields for efficient and accurate
Hamiltonian molecular dynamics simulations

Magnus Schwarer, Benedikt Breitenfeld, Philipp Troster, Sebastian Bauer,
Konstantin Lorenzen, Paul Tavan und Gerald Mathias
J. Chem. Phys. 138, 244103 (2013),

die ich zusammen mit Benedikt Breitenfeld, Philipp Troster, Sebastian Bauer, Konstan-
tin Lorenzen, Paul Tavan und Gerald Mathias verfasst habe, wird die Erweiterung von
[PHIGENIE um induzierbare Gauf3’sche Dipole, die Hamilton’sche Einbettung des DFT-
Fragments in den damals zur Verfiigung stehenden SAMM,,-Algorithmus [126], und eine
effiziente Strategie zum Erreichen der gleichzeitigen Selbstkonsistenz von PMM- und
DFT-Fragment beschrieben.
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Coupling density functional theory to polarizable force fields for efficient
and accurate Hamiltonian molecular dynamics simulations
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Hybrid molecular dynamics (MD) simulations, in which the forces acting on the atoms are cal-
culated by grid-based density functional theory (DFT) for a solute molecule and by a polariz-
able molecular mechanics (PMM) force field for a large solvent environment composed of several
10°-10° molecules, pose a challenge. A corresponding computational approach should guarantee
energy conservation, exclude artificial distortions of the electron density at the interface between the
DFT and PMM fragments, and should treat the long-range electrostatic interactions within the hy-
brid simulation system in a linearly scaling fashion. Here we describe a corresponding Hamiltonian
DFT/(P)MM implementation, which accounts for inducible atomic dipoles of a PMM environment
in a joint DFT/PMM self-consistency iteration. The long-range parts of the electrostatics are treated
by hierarchically nested fast multipole expansions up to a maximum distance dictated by the mini-
mum image convention of toroidal boundary conditions and, beyond that distance, by a reaction field
approach such that the computation scales linearly with the number of PMM atoms. Short-range
over-polarization artifacts are excluded by using Gaussian inducible dipoles throughout the system
and Gaussian partial charges in the PMM region close to the DFT fragment. The Hamiltonian char-
acter, the stability, and efficiency of the implementation are investigated by hybrid DFT/PMM-MD
simulations treating one molecule of the water dimer and of bulk water by DFT and the respective

remainder by PMM. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4811292]

. INTRODUCTION

In a seminal paper devoted to the study of enzymatic re-
actions, Warshel and Levitt! introduced in 1976 a quantum-
classical coupling scheme for a molecule, which is described
by quantum mechanics (QM) and is embedded in a condensed
phase environment modeled by a polarizable molecular me-
chanics (PMM) force field. In their abstract, these authors em-
phasized that the “solvation energy resulting from this polar-
ization is considerable and must be included in any realistic
calculation” of molecules in condensed phase.

However, as documented in a recent review on QM/MM
methods for biomolecular systems,2 this advice was subse-
quently ignored in most applications. Instead so-called stan-
dard MM force fields like AMBER,> CHARMM,* OPLS-
AA,> or GROMOS® were generally applied to the MM part
of hybrid simulation systems. These force fields model the
electrostatic signatures of molecules or of molecular frag-
ments by static partial charges localized at the atoms and,
therefore, can account for the effects of electronic polariza-
tion only by the mean field approximation, which is highly
questionable for inhomogeneous and non-isotropic biomolec-
ular systems.” There are notable exceptions which combined
a polarizable force field for the MM fragment with semi-
empirical quantum chemistry for the QM fragment.®~'> Com-
binations of higher-level QM treatments (density functional
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0021-9606/2013/138(24)/244103/13/$30.00

138, 244103-1

theory'® !4 (DFT) or ab initio quantum chemistry) with PMM
force fields were either restricted to the energetics of static
systems,'>23 to small molecular clusters,>*?° or describe the
dynamics only in parts of the simulation system.3®3! Other
approaches augment DFT atoms with self-consistent polariza-
tion terms (SCP-DFT) to correct the deficiencies of the long-
range electrostatics and dispersion description within certain
exchange-correlation functionals.?>33

The development of hybrid methods combining grid-
based DFT with non-polarizable MM force fields started with
the work of Eichinger et al.,>* which particularly aimed at
accurate computations of vibrational spectra of molecules
in condensed phase environments from hybrid MD simu-
lations. Since then corresponding applications have demon-
strated the power of this approach.>>*7 Subsequently, two
further DFT/MM implementations®3° took up the challenge
posed by the requirement to combine DFT treatments of a
molecule in an efficient and accurate way with large scale
MM environments. Here, Laio et al.® emphasized the need
of a fully Hamiltonian description, which was violated by cer-
tain approximations applied by Eichinger et al.,* while Laino
et al.* additionally provided a clever suggestion for the effi-
cient computation of the electrostatic interaction between the
DFT and MM fragments.

However, applications of the above DFT/MM setting to
the computation of infrared (IR) spectra of biological chro-
mophores like retinal in bacteriorhodopsin®*' or flavin in
blue light sensing domains*? through instantaneous normal

© 2013 AIP Publishing LLC
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mode analyses®**3 also revealed those limitations, which are

due to the neglected polarizability of the MM protein environ-
ments surrounding the DFT chromophores. The correspond-
ing errors in the computed vibrational spectra could be largely
removed by iterative DFT/MM calculations of polarized force
fields in the respective chromophore binding pockets, thus,
uniquely proving that the neglected polarizabilities were the
main cause of the earlier ill-descriptions.

A similar attempt to compute the vibrational spec-
tra of phosphate ions in aqueous solution** showed that
the DFT/MM calculations largely underestimate the solva-
tochromic shifts in the IR spectra. Here, these underesti-
mates were erroneously attributed to the neglected polariz-
ability of the solvating water, which had been modeled by
Jorgensen’s “transferable three point interaction potential”
(TIP3P).* By contrast, recent “first principles” DFT-MD sim-
ulations of phosphates in small periodic water boxes have
clearly shown*® that the use of the TIP3P model entailed
highly erroneous structures for the first solvation shell, which
are mainly due to its simplified structure and to a lesser degree
due to the neglected polarizability. Hence, it remains to be
seen whether improved (and polarizable) MM water models
combined with a DFT description of the phosphate solutes can
predict the solvatochromic shifts in the phosphate IR spectra
at a quality comparable to that of the very expensive “first
principles” DFT-MD simulations.

To enable rapid and nevertheless accurate computations
of solvatochromic effects in chromophore IR spectra, the con-
struction of a new and efficient DFT/PMM implementation
therefore seemed necessary.

In this paper, we address two issues. First, we thor-
oughly revise the DFT/MM suggestion made by Eichinger
et al.>* and develop an efficient, accurate, and fully Hamil-
tonian electrostatic DFT/MM coupling scheme whose com-
putational effort scales logarithmically with the number of
condensed phase atoms surrounding the DFT fragment. Pre-
serving the thereby achieved levels of accuracy and efficiency,
we next extend this scheme by including dynamic polariza-
tion effects through inducible atomic dipoles. We give an-
alytical expressions for the calculation of the forces and,
therefore, are able to employ the new DFT/PMM scheme for
molecular dynamics simulations. For the implementation, the
program packages of choice are the parallelized PMM-MD
program IPHIGENIE*’ and the parallelized grid-based plane
wave DFT program CPMD.*

Il. THEORY

The Hamiltonian of a DFT/PMM hybrid system can be
decomposed into the following four contributions:

H = Hvwm + Hpmm + Hprr + Hprr/(ppmMum- ()

Here, Hypv represents one of the standard MM force fields*©
including the kinetic energy of the atoms, and

1 ~ 1
Hos = 5 D ¢ D1, 67) = 5 D b - (E7P())s,
i j#i i

1
+3 Z p;/ai )
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accounts"#*-! for the energy contribution of polarizable
Gaussian dipoles

p(r|r;, 5) =pi gr|r:, &)
of strengths p; and widths &;, which are located at the atomic
positions r; and have the shape functions

3

gr|r,6;) =

(r—r;)?
——exp|——|.
@re2)” L 257
Note that in PMM force fields, the use of Gaussian dipoles
yields an enhanced algorithmic stability,’>>3 if the widths &;
are chosen sufficiently large, i.e., typically 6; ~ 0.1 nm.

The symbol ®(r; | p;, r;, 5;) in Eq. (2) denotes the elec-
trostatic potential generated at the position r; of an atom i # j
by a Gaussian dipole p?(r |r;, ;). Furthermore, the bracket
expression

(fr))s E/f(l‘)g(rlriﬁi)dr )

denotes the average of a function f(r) over the vol-
ume occupied by g(r|r;, 6;). If E(r|g;,r;) = —V(q;/Ir —
r;|) is the field of a point charge g; and E(r|p;,r;,5;)
= —V®(r|p,,rj, ;) is the field of a Gaussian dipole at r;,
then

(ETP(r)s, = ) (B(ri g, v) + E(r; [ pj, 1), 5)), (5
J#
is the field polarizing atom i. Assuming linear response, the
dipole strengths p; are calculated by

pi = o (E"P(r))5, (6)

from the scalar atomic polarizabilities «; and from the po-
larizing fields (5) in a self-consistent field iteration (PMM-
SCF).>*3 The last term in Eq. (2) is the self-energy required
to create the dipoles p;. If Eq. (6) is self-consistently fulfilled,
this self-energy cancels the second term in Eq. (2) and the
first term remains as the polarization contribution to the total
energy.

In Eq. (1), Hppr is the energy function of the isolated
quantum system. The DFT/(P)MM interaction energy

Hbonded

AW 1
Hprryeymm = Hpprvm + Hpopr v + Horryepm (7

has a contribution from van der Waals interactions HS%%MM
between MM and DFT atoms, which is calculated with the
applied MM force field. If chemical bonds between the DFT
and (P)MM fragments exist, a term HSOF’}“‘/?%)MM has to be in-
cluded, for which several suggestions exist.”>

We will, however, focus here on chemically non-bonded
PMM and DFT fragments, for which the electrostatic interac-
tion energy

HBIIS%/(P)MM = f drp(r)Dex(r) (8)

is given by the classical expression for the energy of the
DFT fragment’s charge density p in the external potential
d,,; generated by the partial charges and induced Gaussian
dipoles in the PMM fragment. The DFT charge density p(r)
= pe(r) + p.(r) comprises contributions p.(r) of the valence
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electrons and p.(r) of the nuclear cores. Correspondingly,
the interaction Hamiltonian

HSIIS%/(P)MM = H.+ H. 9)

decomposes into energies

Hc = /dl‘px(l‘) Dexi(T), Kk € {e,c}, (10)
associated to the electrons (e) and nuclear cores (c) of the DFT
fragment.

In the computation of those atomic forces, which are
caused by an external potential @ (r), the employed DFT
program CPMD™® treats the effective core charges as Gaus-
sian distributions g, g(r|r,, o,) centered with widths o,
around the positions r,, of the DFT atoms w. Thus, with defi-
nition (4) of Gaussian averages one obtains from Eq. (10) for
the core Hamiltonian:

He =" qu(Pex(ry))o, an
"

The Gaussian averages (Pex(r,,))s, are readily calculated for
external potentials generated by Gaussian charge or dipole
distributions of widths o ;, because one solely has to replace
the o; by the widths 0y, = (07 4 0;;)!/? in the respective ex-
pressions for the potentials. Note that these expressions re-
duce for distances r;, = |r;,| = |r; — r,| > 0;, to the poten-
tials of point charges and dipoles.

As a result, the Gaussian approximation g, g(r|r,, 0,,)
of the nuclear pseudo-potentials enables a speedy evaluation
of H.. By contrast, the computation of H. requires the eval-
uation of ®.,(r) at all N, points y of the grid, on which p,
is represented in real space by CPMD.*® Introducing the elec-
tronic grid charges

9y = (Voox/Ny)pe(ry), 12)

whose sum over all grid points y in the DFT box volume Vyox
is the total charge of all valence electrons in the DFT frag-
ment, one can numerically evaluate the integral from Eq. (10)
for the electronic contribution to the DFT/(P)MM interaction
Hamiltonian (9) by the expression

He =" g, Pex(ry). (13)
Y

This approximation is valid because our way of constructing
d. guarantees, as will be explained in more detail below, that
the external potential is smooth on the spatial scale defined by
the DFT grid.

A. Computational issues

The forces required for MD simulations are obtained
from the Hamiltonian (1) by taking negative gradients with
respect to the atomic coordinates at every time step of the nu-
merical integration of the classical equations of motion. In a
DFT/MM setting, only the Kohn-Sham wave functions have
to be determined in a SCF iteration (DFT-SCF) at every time
step, whereas DFT/PMM simulations additionally require a
PMM-SCF procedure, which has to be properly interfaced
with the DFT-SCF calculations.

J. Chem. Phys. 138, 244103 (2013)

The computational effort required for the four compo-
nents of the Hamiltonian (1) depends on the respective sizes
of the DFT and PMM fragments, on the spatial resolution of
the DFT grid, and on the choice of the SCF convergence crite-
ria. Nevertheless, for a system composed of about 10* PMM
solvent atoms and a rather small DFT solute molecule com-
prising about 10 DFT atoms, one may estimate that all four
components of H will pose comparable numerical tasks.

Treating, for instance, a water molecule by DFT with a 70
Ry plane wave cutoff requires N, &~ 10° grid points. Within
a brute force computational approach, the evaluation of
Eq. (13), which is the most expensive contribution to
Hprripymm, would lead for the PMM fragment characterized
above to about 10'° distance calculations. The associated ef-
fort would then definitely represent the computational bottle-
neck. For the reduction of this effort three different sugges-
tions exist,>*3%3 which all utilize multi-scale concepts. Here,
we will adopt and extend the suggestion by Eichinger et al.>*
ensuring, however, the Hamiltonian character of the resulting
dynamics (cf. Laio et al.?®).

Accordingly, we will treat the DFT fragment as a com-
ponent of the nested hierarchy into which a simulation sys-
tem with toroidal boundary conditions®’ is decomposed, if the
electrostatic interactions are calculated by the combination
of the pth-order “structure adapted fast multipole method”
with a reaction field approach (SAMM,/RF) developed in
Refs. 47 and 58-60. In pure MM- or PMM-MD simulations
of large systems, this fast multipole method (FMM)®'~%* en-
ables an efficient and accurate calculation of the electrostat-
ics, which scales linearly with the number of atoms. Due
to a balanced combination of mth order multipole moments
with nth order local Taylor expansions, which is expressed by
the equation p = n + m, the electrostatic forces calculated
with SAMM,, exactly obey Newton’s reaction principle.*’-%*
Furthermore, this choice additionally guarantees a minimal
computational effort for a predefined level p of accuracy
(p = 4 is the standard of the current implementation avail-
able in IPHIGENIE). A predecessor version called SAMM
had been used in Eichinger’s DFT/MM approach,** whose
fully Hamiltonian DFT/(P)MM extension will be explained
below.

B. DFT/PMM with SAMM,,

According to Eq. (13), the external potential ®cy is im-
ported into the DFT Hamiltonian through its evaluation at the
points y of the DFT grid. For an efficient solution of this
computational task, Eichinger et al.’* applied and extended
(cf. Figs. 4 and 5 in Ref. 34) the distance class scheme of
SAMM.3¥:5%.65 The extended scheme partitions the PMM en-
vironment of each DFT atom p into disjoint distance classes
C ,i, I =0, ..., Ihx- For periodic systems, a RF continuum
starts beyond the outermost distance class (/nax) at a distance
dictated by the minimum image convention.®’ Figure 1 illus-
trates the three innermost distance classes C [L, [=0,1,?2 for
an atom p of a DFT water molecule embedded in liquid PMM
water.

Figure 1 shows one PMM water molecule in each of
the three classes and indicates the distances d used for their



244103-4 Schworer et al.

FIG. 1. Scheme of inner distance classes for the FMM evaluation of the
DFT/PMM electrostatics: A water molecule (left) representing a structural
unit u (dotted circle) of the SAMM,, hierarchy is embedded in a rectangular
DFT box, which is discretized by a grid (dots). Only those points y € G,
are shown which belong to a selected DFT atom u (large black dot) through
the Voronoi tessellation of the box. This tessellation defines the index sets G,
and is indicated by the dashed gray lines. Two dashed gray segments of circles
[radii d(CB), dC ;14)] around p and the reference point “x” of the structural
unit u indicate the outer limits of the distance classes Cg and C/i, respec-
tively. Representative atoms i € Cﬂ and j € C ,ﬂ of PMM water molecules

belonging to these two classes and of a structural unit u’ € Cﬁ are drawn as
black dots.

definition. Typical values are d(Cg)%6 A and d(C,i)

~ 8 A. The electrostatics of the PMM atoms i € Cg is rep-
resented by Gaussian partial charges of widths o; and by
Gaussian induced dipoles of widths &;, which all are typi-
cally smaller than 1 A but much larger than the spacing of the
DFT grid. The parameters (o;, 6;) steer the strengths of
the near-field electrostatic interactions between the DFT and
the PMM atoms. In the case of an aqueous PMM environ-
ment, for instance, the strength of the DFT/PMM hydrogen
bonding interactions can be tuned by proper choices of these
Gaussian widths.® Because they are about one order of
magnitude smaller than the typical distances r,; > d(Cg) of
atoms j € C ;14 from the given DFT atom p, the Gaussian char-
acter of the PMM charges and dipoles can safely be neglected
for the class C}L and beyond. In Cg, the use of smoothed
charge and dipole distributions is mandatory3*3%3%3% to avoid
artificial distortions of the DFT electron density p.(r,) and to
guarantee that ® is sufficiently smooth on the scale of the
DFT grid spacing.

The Voronoi tessellation of the DFT box characterized
by the gray dashed lines in Fig. 1 decomposes the whole DFT
grid into disjoint subsets G, associated to the various DFT
atoms . Correspondingly, the sum ), in Eq. (13) can be
expressed as the double sum

He=7 Y q,Peu(ry), (14)

n yeGy

which partitions H, into a sum over contributions associated
to the DFT atoms p. The proximity of the grid points y € G,
to the positions r, of the DFT atoms can now be exploited
for the rapid evaluation of Eq. (14) by taking advantage of the
SAMM,, algorithm.*’

C. Efficient computation of ®¢y;

According to the SAMM scheme,> the electrostatic po-
tential at points r,, in the vicinity of a given atom p is calcu-
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FIG. 2. Evaluation of ®c at a grid point y € G,,: Contributions from Gaus-
sian charges and induced dipoles of a PMM atom i € Cﬂ are evaluated di-
rectly (solid gray arrow), whereas the contributions from more distant atoms,
like the one indicated by the dashed black arrow for a PMM atom j € C ;lu
are calculated by a Taylor expansion around the position of the DFT atom p.
The dotted gray arrow marks the connection ), of the points 1 and y used

in the Taylor expansion.

lated as a sum

Imax

Dexi(ry) = Z CD(I‘V | Cli)a

1=0

yeG, (5

over contributions ®(r, | C ;i) from sources located in the dis-
tance classes C /ﬂ’ [ =0, ..., Ihx, to which for periodic sys-
tems a reaction field contribution ®(r, | RF) is added® (for
notational simplicity it will be omitted in the subsequent
discussion).

Figure 2 illustrates how the external potential ®cy(r,)
is calculated using SAMM,, for two PMM water molecules
belonging to the distance classes C2 and C ,L of a DFT atom
. Here, the solid gray arrow marks the computation of the
potential generated by the electrostatic moments of the PMM
atoms i € Cg through

o(r, | Ch) = Y [®(r, |gi 1i,01) + B(ry | pi. 17, 67)]
ieCy
(16)
with the potentials

_ gierflr,i/(v/20))]

®(ry, | gi,x;, 07)
ryi

)

of Gaussian partial charges ¢; and
O(ry |pi,¥i, 6i) = —pi - 0y ®(ry | i, i, 6:)/qi (18)

of Gaussian dipoles p?. In Eq. (18), the gradient is written as
8( 1)-

For electrostatic PMM moments in all higher (I > 1)
distance classes C ;i the potentials

P
o, [ =Y o [cl) (9
n=0 "

are calculated through pth order Taylor expansions around the
position r,, of the DFT atom . The symbol r% is the n-fold
outer product of r,,, with itself. This vector r,,, connects the
reference point p with the grid point y € G,, (dotted gray ar-
row in Fig. 2). The symbol © denotes the inner contraction
product of two tensors (Ref. 47 thoroughly explains the em-
ployed tensorial notation). Finally, the class specific expan-

sion coefficients
T"7(r, | C)) = 9@ (r| CL)| (20)

Ty
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2 Rty

FIG. 3. Computation of Taylor expansion coefficients: The charges and
induced dipoles of the PMM atoms j € C}l generate the coefficients

T P(r, |C ,L) (lower dashed arrow). The PMM atoms in C? are collected into
structural units, whose electrostatic signatures are represented by multipole
expansions.*” For the PMM unit «/, for instance, such an expansion is sym-
bolized by three black dotted arrows pointing toward its reference point “x”.
The multipole potentials originating from u’ are expanded into a Taylor series
at the reference point of the DFT unit u (upper dashed arrow), from which the
additional contributions T™”(r,, | Ci) to the atom-centered expansion coef-
ficients are inherited (dotted arrow) by a simple shifting procedure.*’

are nth rank tensors generated by the nth order partial deriva-
tives of the potentials ®T(r | C }i) at r,,, which originate from
point-like electrostatic moments (cf. the discussion of Fig. 1
above) occupying the distance class C }i

Here, the nature of the electrostatic moments, which gen-
erate the potential appearing in Eq. (20), differs for the dis-
tance classes at level / = 1 and at levels [ > 2, respectively.
As is schematically indicated by the lower dashed arrow in
Figure 3, at [ = 1 the point charges ¢; and induced point
dipoles p; of the individual atoms j are considered to be the
sources of the potential. The associated expansion coefficients

1
T (r, | C)) = 0y »_[g; — (1= 8,))p; - dy]—  (21)

r
. nj
jeC}

are essentially given by the nth rank tensors*’ 9,,(1/r). Here,
the prefactor 1 — §,,, in which § is the Kronecker symbol,
ensures that the expansion is of comparable accuracy for the
atomic charges and dipoles.

For distance class levels [ > 2, by contrast, mth order
multipole moments (m = O, ..., p) of nested and increas-
ingly larger charge and dipole distributions are considered as
the sources of the potential in Eq. (20). Within the SAMM,,
algorithm®*’ the Taylor expansion coefficients

p—n
T (r, | Cl) = 8w Z ®"(r, | C}).
m=0
(22)
n=0,...,p, [>2

are then the partial derivatives of the mth order multipole po-
tentials ®"'(r, | C /L). As documented in the Appendix, the
SAMM,, algorithm, which has been originally developed for
distributions of static charges,47 can meanwhile also account
for induced dipoles.

Figure 3 indicates for three atoms k € C Z collected into
a unit «’ the computation of multipole moments by dotted ar-
rows and the calculation of the Taylor coefficients (22) by a
two-step process (upper dashed and left dotted arrows) as is
common in FMM methods.*’

J. Chem. Phys. 138, 244103 (2013)

D. Forces on the DFT atoms u

Equations (16) and (19) specify the two basically dif-
ferent procedures by which the external potential is im-
ported onto the DFT grid. This import enables the DFT pro-
gram CPMD to compute a polarized electron density pc(r, ).
Using the updated grid charges ¢, [cf. Eq. (12)] and the
Gaussian core charge g, centered at r,,, CPMD then calcu-
lates the electrostatic interaction energies

Imax

He=2 .2 H(C)

=0

Kk € {e,c}, (23)

because of Eqgs. (11) and (13)—(15) as sums of electronic

H(Cl)= )" a,®(r, | C}) @4
v€Gy
and nuclear
Hc(CﬁlL) = qM(CD(rM | Cllb)>"u (25)

contributions associated to the DFT atoms u and distance
class levels I. According to Eq. (9) an update of the interaction
Hamiltonian HS symm has thus been determined. By taking

gradients of Hppr + HSE seymm With respect to the coordi-
nates r,,, CPMD can now compute the electrostatic forces on
the DFT atoms .

The electrostatic Hellmann-Feynman reaction forces
exerted by the charges ¢, and g,, on the PMM atoms i follow
from the gradients of Hﬁlﬁ% symm With respect to the coordi-
nates r;. However, in the current form, the contributions (24)
and (25) to the electrostatic interaction energy do not imme-
diately reveal how HSE semm depends on the PMM coordi-
nates r; and, therefore, how these forces should be calculated.
To uncover this dependence, the electronic and nuclear inter-
action energies H,(C /i) will now be separately analyzed for
the distance classes [ =0, 1, and [ > 2.

66

E. Reaction forces on the PMM atoms i e C,‘z

The electronic near-field interaction Hamiltonian

He(Cp) = D q, ) [, |gi, 11, 0) + O(ry | pi, i, 5)]
veG, ieCy
(26)
is obtained by inserting the external potential (16) originating
from class C 2 into Eq. (24). It is the energy of the point-like
grid charges g, in the potentials of the Gaussian charges g; of
widths o; and Gaussian induced dipoles p; of widths &; col-
lected in Cg. Equations (17) and (18), respectively, specify
these potentials in terms of the connection vectors r,,; point-
ing from PMM atom i to the grid point y.
Replacing these vectors by their inverses r;;,, = —r,,; and
interchanging in Eq. (26), the sums over y and i lead to the
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strictly equivalent expression

H(Ch) =Y |a > oilgy.r,.00)

ieCy v€Gy
—pi- Y _E@milg,.r,.6)|. @7
reGy

which is the energy of point charges ¢; and dipoles p;
at positions r; in the potentials ®(r; |g,,r,,0;) and fields
Ex;|q,,r,,6;) = —01)®(r; | gy, 1,,6;) of Gaussian grid
charges ¢, of widths o; and &;, respectively. The negative gra-
dients of H.(C 0) with respect to the posmom r; are then the
electrostatic Hellmann -Feynman forces®® exerted by the grid
charges g,, ¥ € G, onthe PMM atoms i € C 2. If one inverts
the solid gray arrow in Fig. 2, the inverted arrow can serve to
symbolize such a reverse action of one of the grid charges on
a nearby PMM atom.
The core contribution

He(Cp) = [P | g ¥y o) — Pi - B | gy, T, 6]
ieCy

(28)
is analogously obtained by inserting the potential ®(r, | Cg)
as defined by Eq. (16) into Eq. (25), by executing the Gaussian
averages (4) through an increase of the Gaussian widths (as
explained in connection with Eq. (11)), and by repeating the
arguments, which lead from Eq. (26) to Eq. (27).

F. Reaction forces on the PMM atoms j C,‘L

Inserting the Taylor expansion (19) with the coefficients
(21) into (24) yields the electronic interaction energy

ZCIVZ,“ g/n/)i

veG,
1
©dm »_lg; — (1 —8,)p; - dnl - 29)
jec}, J

for DFT atom p and class C,ll- Interchanging the sums
over j and y and employing the identity 9, (1/7,;)
= (— 1)"d(w(1/rj,), one finds

14
Ho(Cly= " lg;+(—

jeC}‘ n=0

Sup)Pj - 0] ®"(x; | Qp, 1)

(30)
with the potentials

1 n
d:)n(rj | Q/u ru) = ( ) (a(n)> O} Z CIyr(n) (31)

s yeG,

generated at the positions r; of the PMM atoms by the nth
order multipole moments of the electronic grid charges Q,,
= {q, | y € G, } of the DFT atom p. According to Lorenzen
1.,%7 the potentials (31) can be equivalently written as

etal.,
=2"

<I)n(rj | Q/u ru) (2 )'

1
<a(’l) ) © Mn(ru | Q;4)~ (32)
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Here,

1
M"(r, [ Q) =Y gt (amr) (33)

y€G, Yy

are the reduced totally symmetric multipole tensors, which
have only 2n + 1 independent components, because they are
traceless with respect to every pair of tensor components.®”-8

A slight rearrangement of Eq. (30) and the introduction
of the multipole fields

E'(r; | Qu rp) = —00)®"(r; | Qpu. 1) (34
finally leads to
P
H(C)) =) [q,- > 0" Qi)
jeC‘L n=0

p—1
—p;- ) E'1; 10, m)} , (35)

n=0

which explicitly reveals the desired dependence on the PMM
coordinates r; and, therefore, enables the derivation of like-
wise simple expressions for the Hellmann-Feynman forces on
the PMM atoms j € C,,.

In the contributions (25) to the core Hamiltonian, the
Gaussian average can be neglected at all levels [/ > 1. At the
reference pointr,,, i.e., forr,, = 0, the Taylor expansion (19)
reduces to the zeroth order term T%”(r,, | C,,). Inserting this

result into Eq. (25) yields the general form
H(C,) = q,T%"(r,|C)) for 1>1. (36)

Inserting for / = 1 the coefficients (21) into (36) and repeating
the steps, which lead from (29) to (35), one gets

> g0 14 1) — pj - By g, )l (37)
ject

H(c}) =

which is the energy of the PMM atoms j € C IL in the poten-
tial and field of the point-like core charge g, . Instead of sep-
arately evaluating Eq. (37), one may equivalently include the
core charge g, into the grid charge distribution Q,, of DFT
atom j, which then becomes Q,, = Q,, U g,,. Because g, is
located by construction at the reference point of the multipole
expansion of Q - 1ts inclusion solely modifies the monopole
moment to M(r,, | 0,)) = M°(r,, | Q) + q,..

G. Reaction forces on the PMM atoms k e C,{, 1>2

Starting at level / = 2, the computation of the electrostatic
interactions becomes identical to the SAMM,, treatment of a
purely classical system, which has been described in detail
elsewhere.*’ Therefore, it suffices here to sketch how at level /
=2 a DFT fragment is integrated into the SAMM,, algorithm.

For a most simple presentation, we assume that the DFT
fragment is composed of a single structural unit « like in the
example depicted in the above figures. All its atoms p share a
common distance class C; (Yu € u : C;, = C;,), which con-
tains the distant PMM atoms interacting on level / = 2 with u.
Equations (19) and (22)—(24) yield the associated electronic
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interaction energy

P p—n
H(CH)=>">"4q,> ;r;",{ O Y " (r. | C2).
neu yeG, n=0 " m=0

(38)
In this formulation, the potentials ®"(r, | C2) generated by
mth order multipole moments of the PMM structural units
u' € C? are considered as sources and the grid charges of the
DFT unit u as targets of the electrostatic interactions. These
targets are addressed through Taylor expansions around the
atomic positions r,.

SAMM, does not evaluate the nth order expansion co-
efficients 9,y Y 0 _) ®™(r, | C2) at each r, € u, but only at
the reference point r, (left “x” in Fig. 3) of unit u. Using
a Taylor expansion around r,, they are then simply shifted
to the atomic positions r,.*’ By the very construction of
SAMM,, this shifting is exactly the inverse operation to the
combination*” of all atomic nth order multipole moments
M"(r, | Q.), n € u, which are known as soon as the ener-
gies H.(C :L) have been calculated through Eq. (35), into cor-
responding moments M"(r, | Q,) of the charge distribution
Q.= UM cu Qu of the DFT unit u. Note that this symme-
try of Taylor and multipole expansions is the reason why in
(P)MM simulations the reaction principle holds exactly for
the SAMM,, forces. In the given DFT/(P)MM case, however,
the grid discretization of p. weakly interferes with this prin-
ciple through an artifact, which we will address further below.

Due to the quoted symmetry one can equivalently repre-
sent the interaction energy (38) in a form in which the mul-
tipole moments M"(r, | Q,) of the grid charge distribution
Q, are the sources of multipole potentials " (r| Q,) acting
on distant PMM atoms k € C? through local Taylor expan-
sions. The Hellmann-Feynman forces on these PMM atoms
immediately follow from the corresponding SAMM,, expres-
sion (for details and explanations, see Ref. 47). We note that
the interaction H.(C 3) of the atomic cores in unit # with the
PMM atoms k € C? is included, if one employs the extended
atomic multipole moments M"(r,, | Q,,) instead of the elec-
tronic moments M"(r,, | Q) for computing the moments of
unit u.

The analysis given above for the case of a single DFT
unit # interacting with PMM atoms in the distance classes
C? is readily generalized to higher cluster levels and larger
DFT fragments. In our implementation, the electrostatic
DFT/(P)MM interactions are calculated at levels / > 2 by
transferring the atomic multipole moments M"(r,, | 0 1) com-
puted by CPMD to the (P)MM-MD program IPHIGENIE,
which then calculates the multipole moments M"(r,, | Qu) of
unit . From now on the moments of DFT units are treated at
all SAMM,, levels [ > 2 just like (P)MM moments. The hier-
archically nested FMM scheme then renders the total electro-
static forces on the PMM atoms k € C/, [ > 2.

H. Remarks

The evaluation of ), He(C }i) is computationally about
as expensive as the evaluation of He(Cg) for a single PMM
atom i [cf. Eq. (27)]. Therefore, the computational effort
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spent on H, is essentially determined by the average number
No = (1/Npgr) ZM |C2| of PMM atoms found in the inner-
most distance classes Cg of the Nppr DFT atoms p. Typi-
cally one finds Ny =~ 100 and, therefore, the computational
advantage of the above calculation scheme over a brute force
method is Ny/N, if N is the number of PMM atoms in the sys-
tem. Thus, for a typical simulation system with N = 10%, the
speedup is about 102,

The computational scheme described in Sec. II F for the
interactions of the DFT grid charges with the PMM atoms in
distance class C ;14 resembles the DFT/MM suggestion of Laio
et al.,*® which also applies Taylor and multipole expansions
on the DFT grid to compute interactions with distant MM
atoms. These expansions are centered for the whole DFT grid
around a single reference point, are truncated at the order p
= 2, and treat all distant MM atoms as individual sources and
targets of electrostatic interactions. Our approach, by contrast,
partitions the DFT grid by Npgr reference points, extends the
local expansions up to order p = 4, and considers for each
DFT atom only the comparably few PMM atoms, which are
in the small distance range from about 6 A to about 8 A, as
individual sources and targets of these expansions while col-
lecting all more distant atoms into a hierarchy of increasingly
large clusters. Thus, our approach should be much more ac-
curate and efficient even for relatively small DFT/MM sys-
tems. Like the scheme of Laio et al.,® our approach also
does not correct the small force discontinuities occurring
whenever atoms change distance classes. However, in our
case the effects of these transitions are smaller, because the
forces are calculated with higher level multipole and Taylor
expansions.

lll. KEY POINTS OF THE IMPLEMENTATION

Section II completely covers the basic theory of our
DFT/PMM approach. However, for an energy conserving and
computationally efficient implementation two important is-
sues must be additionally considered.

A. Movements of the DFT box

In DFT/(P)MM dynamics simulations, the grid-based
representation of p. by CPMD interferes with energy con-
servation. In CPMD, the energy E of a DFT atom p de-
pends on its relative position within the grid. Shifting, e.g.,
its position r,, along the line connecting a grid point y with
one of its nearest neighbors entails a sinusoidal modulation
E(|r, —r,|) ~ —AE cos2r|r, —r,|/a), where a is the as-
sociated grid constant. In the DFT setting applied by us (see
Sec. IV), the relative modulation AE/E(0) is about 107>%.
Thus, the atom prefers to sit at grid points and experiences
artificial grid forces at other positions. As long as the grid re-
mains fixed in space, this small grid artifact solely represents
arough background potential, whose contributions to the total
energy on average vanish during a dynamics simulation.

However, if the DFT fragment moves during a
DFT/(P)MM dynamics simulation, the DFT box has to fol-
low. Such a movement of the discretized box may lead to
random forces on the DFT atoms adding heat to the system.
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This serious artifact can be avoided, if the DFT grid is con-
sidered as an infinite object, on which the DFT box is shifted
in units of the lattice constants whenever the movement of the
DFT fragment (as measured, e.g., by its center of geometry)
exceeds the lattice constant in one of the three spatial direc-
tions. Thus, only those box translations are allowed, which
would leave a fully periodic DFT system invariant.

B. DFT/PMM-SCF iteration

The polarizable degrees of freedom of a DFT/PMM sys-
tem, i.e., the PMM dipole strengths p; and the DFT elec-
tron density p., have to be calculated in coupled SCF pro-
cedures, which can be rapidly brought to convergence by dili-
gent choices of the initial conditions. Assuming that the p;
and the Kohn-Sham orbitals determining p. are temporally
continuous during the integration of the dynamics, these en-
tities can be extrapolated from a history of M" ~ 4 previ-
ous integration steps using Lagrangian polynomials.® During
the PMM-SCEF iteration, the “direct inversion of the iterative
subspace” (DIIS) algorithm’ with a history length M™P = 3
is used to speed up convergence. Similarly, CPMD*® applies
DIIS”' during DFT-SCF with M"? = 10.

After the integration of the nuclear motion, the potential
@, polarizing the DFT fragment is computed from the static
partial charges and from the extrapolated dipole strengths
p(j). = pl} in the PMM fragment. Next, the DFT-SCF iteration
is executed with a loose initial convergence criterion xni.
= 10 xppr, which limits the largest element of the gradient of
the wave function.*® Keeping the resulting first guess p. fixed,
the p; are iterated until in the nth step |p;f_l — P}l < Xpmm
for all j, where xpmwm is a certain threshold. The resulting p;
modify the external potential, to which the DFT fragment is
exposed. In subsequent DFT-SCF calculations, the tight DFT-
SCEF criterion xper is used if the preceding PMM-SCEF iter-
ation converged within one iteration step or if a predefined
number k of DFT-SCF calculations is exceeded. Thus, in the
default case k = 1, only the first DFT-SCF calculation after an
integration step is performed with o

We will show that this strategy avoids extended and
costly DFT-SCF iterations as long as the p; are far from
convergence. It partially resembles a scheme proposed by
Thompson and Schenter®* in the context of QM/PMM, where
QM stands for semi-empirical quantum chemistry.

IV. METHODS

For the examination of our new DFT/PMM method,
we employed two different simulation systems, a water
dimer and a periodic box of liquid PMM water containing
one DFT water molecule. The dynamics was integrated by
the Verlet algorithm’? with a time step At = 0.25 fs for the
dimer and At = 0.5 fs for the DFT/PMM liquid. The geome-
tries of the respective PMM water models were fixed using
MSHAKE?? and the electrostatics was treated at the SAMM,
level.” The respective DFT water molecule was described
by the gradient-corrected exchange functional of Becke’*
together with the correlation functional of Perdew (BP),”
and the norm-conserving pseudo-potentials of Troullier and
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Martins (MT).”6 It was centered into a cubic box of edge
length 9 A containing the grid of the plane wave basis set,
which was cutoff at 70 Ry. We denote this particular DFT
approach by MT/BP.

A. Water dimer

The energy conservation was checked by 2 ps MD simu-
lations of water dimers. Here the initial velocities indicated a
temperature of about 80 K. We adopted the SCF convergence
criteria xpypy = 107* D and xpep = 1077, In the DFT/PMM
hybrid setting, the H-bond donor was described by MT/BP
and the acceptor by the initial version TL4P;,; of a recently
developed PMM water model (Troster et al.’?). To provide
references, we simulated a MT/BP dimer using a (15 A)* DFT
box and a TL4P;,; dimer.

TLAP;,; features the experimental liquid phase
geometry’”” (loy = 0.968 A, ¢uon = 105.3°), the
experimental gas phase dipole moment’”” (1.85 D) and
polarizability®® (1.47 A3), a massless negative charge gy
= —1.172 e on the bisectrix 0.258 A distant from the oxygen,
and positive charges at the hydrogens as well as a Gaussian
inducible dipole of width &; = 0.912 A at the oxygen. The
van der Waals interactions were treated identically for all
components of the hybrid systems, i.e., by Buckingham
potentials®' Eg(r) = Ajexp( — rA;) — B/r® centered at the
oxygen atoms (A; = 78700 A'? kcal/mol, A, = 3.50 A~!,
B = 1062 AS kcal/mol). For the Gaussian distributions, which
represent the static partial charges of the PMM atoms as long
as they are close to the DFT atoms, we chose identical widths
oi =0.57 A as suggested in Ref. 34.

In the unrestrained hybrid dimer, the PMM fragment
moves close to the DFT fragment thus probing the innermost
distance classes at the level / = 0. To check the electrostat-
ics treatment also for outer distance classes (levels [ = 1, 2),
we softly restrained the distance dpo of the two oxygens by
a harmonic potential with a spring constant of 1 kcal/mol A2
todoo,1 =7 A and doo,2 =10 A, respectively, thereby guar-
anteeing that the interactions were calculated within the dis-
tance class level [ € {1, 2} of interest. This probing of outer
distance classes was also used in reference simulations of the
PMM dimer.

B. Liquid water

The stability and performance of the DFT/PMM al-
gorithm were investigated with a periodic cubic box
[volume V = (46.6 A)*] filled with N = 3374 TLAPy,
water molecules. Thus, the experimental density®> n
= 0.9965 g/cm® of water at the temperature 7 = 300 K
and the pressure p = 1 atm was prepared. Extending the
SAMM;, treatment of the electrostatics by a moving boundary
reaction field correction®® and modeling the surrounding di-
electric continuum by a dielectric constant of 80, the sys-
tem was equilibrated for 1 ns in the NV T ensemble. Here, T
was kept at 300 K with a Bussi thermostat®? (relaxation time
0.1 ps).

To check the long-time stability, ten snapshots were
drawn from the last 100 ps of this trajectory. Each snapshot
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served as a starting point for a 14 ps DFT/PMM-MD sim-
ulation, in which one of the water molecules was described
by MT/BP and the thermostat was restricted to the PMM
environment.

Starting a series of 250 fs DFT/PMM-MD simulations
at identical initial conditions, we studied how the efficiency
and accuracy of the algorithm are affected by the SCF con-
vergence criteria xpyp and xppp. The accuracy was assessed
by comparing the temporal evolutions of the DFT fragment’s
energy E(f) and dipole moment p(¢). Replacing the polariz-
able TL4P;,; water models by non-polarizable TIP4P/2005
potentials® and equilibrating this MM system like its PMM
counterpart enabled a DFT/MM reference simulation.

V. TEST SIMULATIONS

Numerical integrations of the Hamiltonian dynamics em-
ploy time steps At of finite size. Therefore, the total energy
E(#) shows small fluctuations AE(¢| Af) around an average
value (E)(A1).% In the limit Ar — 0, the fluctuations vanish
to leading order with A7?. Similarly the average converges to
E,, which is the conserved value of the true Hamiltonian.

Thus, one expects small fluctuations AE(¢ | Af) of the to-
tal energy E(f) around its constant average (E)(Af) also for
the reference dynamics simulation of a PMM water dimer,
in which all forces are calculated as exact negative gradients
of the potential energy. Figure 4(a) demonstrates that this is
actually the case for the unrestrained PMM water dimer at
close contact. Here the standard deviation o og of AE(t| Af)
is 20 x 1079 kcal/mol. According to Fig. 4(b), the energy is
likewise well-conserved for the PMM dimer softly restrained
to distances, which are large enough to enable the approxi-
mate treatment of the electrostatics by the SAMMy algorithm.
Here, the standard deviation o ag is only 0.4 x 1070 kcal/mol,
because the forces are smaller by more than one order of mag-
nitude. As expected,85 for both distance classes the standard
deviations o 5 vanish and the averages (E)(Af) converge with

a) PMM, /=0
5| @

(b) PMM, / = 2
5 L

E [10-3 kcal/mol]

(c) DFT

SW Mwmwwwmwmmmum

t [pS]

FIG. 4. Energy conservation in reference simulations of the water dimer. (a)
PMM dynamics at close contact (exact electrostatics, [ = 0) and (b) softly
restrained to a distance dpo ~ 10 A (SAMMy4 electrostatics, [ = 2). (¢c) DFT
Born-Oppenheimer dynamics at close contact.
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A#. Section S1 of the supplementary material®®
idence for these claims.

Figure 4(c) shows for the reference Born-Oppenheimer
(BO) dynamics of the unrestrained DFT dimer the deviation
AE(t| Af) of the total energy E(7) from its average (E)(Af). It
exhibits much larger fluctuations AE(z | Af) than its PMM rel-
ative in Fig. 4(a) as quantified by the standard deviation o 5g
= 1.6 x 1073 kcal/mol. Also these fluctuations vanish with
A#? and their enhanced magnitude can be largely attributed to
the high frequency O-H stretching modes in the DFT dimer,
which are absent in the constrained PMM dimer. Fluctuations
of a comparable size have been previously reported for the
DFT simulation of a water trimer® with the related grid code
CP2K.Y

provides ev-

A. Energy conservation in DFT/PMM-MD

Figure 5(a) shows the energy fluctuations observed for
the unrestrained DFT/PMM hybrid dimer at close contact. A
visual comparison with Fig. 4(c) immediately demonstrates
that the average DFT/PMM energy is as well conserved as for
the DFT reference and that the DFT/PMM energy fluctuations
are of comparable size.

The conservation of the average energy is also observed
in Figs. 5(b) and 5(c), which pertain to the DFT/PMM dimers
restrained at distances dpoo ~ 7 A and doo =~ 10 A. Here the
standard deviation o Ag of the energy fluctuations is a little
larger than at close contact. The similarity of the DFT/PMM
fluctuations AE(t | Af) to those of the DFT reference becomes
even more striking, if one studies the graphs in Figs. 4(c) and
5 at a higher time resolution. A corresponding graphical il-
lustration is provided by Figure S11 in Sec. S2 of the supple-
mentary material.%

The above data lead to the conclusion that our DFT/PMM
interaction scheme conserves the energy of a hybrid system at
all distance classes, because the sample dimers were studied

(a)/=0

e ——

(b) /=1

A

©)/=2

b

0 0.5

o u

a

o

E [10-3 kcal/mol]
(6)] (¢)]

o »

[6)]

N

t [PS]

FIG. 5. Energy conservation in DFT/PMM hybrid simulations of the water
dimer with the electrostatics treated at different distance class levels /. (a)
Close contact (I = 0), (b) softy restrained to doo ~ 7 Al =1),and (c) to
doo ~10A (1=2).
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FIG. 6. Influence of the algorithm for DFT box movement on the energy con-
servation as exemplified by the DFT/PMM water dimer at close contact. The
black and gray lines show the trajectories of the total energy in a simulation
using a naive and our refined algorithm, respectively (see the text for expla-
nation). The gray line represents the data of Fig. 5(a) on a different energy
scale.

at the interaction levels / = 0, 1, and 2, which cover all rele-
vant algorithmic features discussed above. Note here that the
energy was equally well conserved in DFT/MM simulations
of a water dimer, in which the TIP3P potential®® was applied
to the MM fragment (data not shown).

Using the DFT/PMM water dimer at close contact as an
example, we now additionally demonstrate with Figure 6 how
the box movement algorithm described in Sec. III A supports
energy conservation. The algorithm adapts the position of the
DFT box to the motion of the DFT fragment only occasionally
by using discrete displacements, which leave the (infinitely
extended) DFT grid invariant.

The gray line in Fig. 6 shows the trajectory E(¢) of the to-
tal dimer energy for our grid-commensurate algorithm of box
movement. The black line is an alternative trajectory, which
was obtained by naively moving the DFT box at every MD
time step with the center of geometry of the DFT fragment.
In this case serious algorithmic artifacts apparently hamper
energy conservation.

B. Smoothness and stability of DFT/PMM-MD

The ten 14 ps DFT/PMM-MD simulations of the peri-
odic liquid water box described in Sec. IV clearly revealed
the long-time stability of the algorithm. The calculated trajec-
tories turned out to be smooth and did not show any artifacts.

Figure 7 exemplifies this smoothness at an elevated time
resolution for the absolute value |p| of the dipole moment,
which was calculated for the DFT fragment. The depicted 100
fs section represents an arbitrary choice from one of the 14
ps trajectories. The observed fluctuations of |p(7)| are caused
by the thermal motions of the DFT molecule and of its sur-
rounding TL4P;,; counterparts. Because of their smoothness,
one can calculate condensed phase IR spectra of DFT solute
molecules from such DFT/PMM trajectories using Fourier
transform methods.>% 88

C. Performance of DFT/PMM-MD

Taking the DFT/PMM liquid water system as an exam-
ple, Figure 8 gives an overview over the performance of our

J. Chem. Phys. 138, 244103 (2013)

|pl [D]
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FIG. 7. The absolute value |p(¢#)| of the DFT fragment’s dipole moment dur-
ing a MD simulation of the aqueous DFT/PMM system described in Sec. IV.
A short (100 fs) section of a trajectory was chosen to visualize the fluctuations
of |p(¢)| at a high time resolution.

DFT/PMM algorithm for the choices xpyp = 107 D and
Xprr = 107% of the SCF convergence parameters. For this
check, CPMD was run in an MPI (message passing interface)
parallel version®® using eight 1.86 GHz cores distributed on
two Intel Xeon E5320 processors while IPHIGENIE was ex-
ecuted in sequential mode on one of these cores.

As shown by a sample simulation, the integration of a pe-
riodic PMM system of the given size, which exclusively con-
sists of TL4P;,; water models, is only by a factor of 4.2 slower
than that of a MM system made up of TIP4P/2005 models.?*
For hybrid settings, the comparison of the first two bars in
Fig. 8 reveals that Tpyy is a factor of six larger than Typv.
This increase of Tpypy is caused by the additional polarizing
action of the DFT fragment on the induced PMM dipoles,
which costs on average one additional PMM-SCEF iteration
step.

For our DFT/PMM water box, Tpmym is about as large
as the average time Tppr spent with eight processors on the
DFT part (cf. Fig. 8). Tppr is composed of the times TSE%: s
T and T spent for the DFT-SCF iterations, for the
import of the electrostatics onto and for its export from the
DFT grid, respectively. Figure 8 shows that 7,55k is the main
contribution to Tpgr.

---------- DFT/MM -
. e —— DFT/PMM |
I . |

SCF import export
TMM TPMM TDFT TDFT TDFT 7I-Z)FT

N w [62Ne>]

FIG. 8. Average computing times (walltimes) spent for our liquid water sam-
ple system per MD integration step on the various parts of a DFT/PMM
(black) or DFT/MM (gray) calculation. Here, the DFT part was executed in
parallel on eight core and the (P)MM part sequentially on one core. The time
Twvm spent on the MM part in the DFT/MM setting is taken as the reference.
For explanation see the text.



244103-11 Schworer et al.

If xppr is multiplied by ten, the number of DFT-SCF it-
erations and, hence, T35 are reduced by a factor of about
1/2. Fortunately, this increase of xppr does not change the
trajectories of the DFT fragment’s energy E(f) and dipole mo-
ment p(¢) within the chosen 250 fs time window (Figure S12
in Sec. S3 in the supplementary material®® provides a rele-
vant example). Therefore, a criterion xprr = 107> could be
already sufficient for future DFT/(P)MM simulations.

Figure 8 indicates that T3t is by 15% smaller for
DFT/PMM than for DFT/MM. This advantage of a PMM
over a MM environment is apparently caused by our choice
of an initially loose DFT-SCF convergence criterion yjmi.
= 10 xppr in the joint DFT/PMM-SCEF iteration. If one ap-
plies only a single criterion (i = ypp) instead, the time
TSSE of DFT/PMM is by 20% larger than that of DFT/MM
(data not shown).

Despite the computational benefit caused by our two-
stage DFT-SCF convergence criterion in the DFT/PMM set-
ting, TDFT is larger than in the DFT/MM case, because the
times Tpre " and Ty used for the import and the export
of the electrostatics are larger by factors 2.7 and 3.0, respec-
tively. These factors mainly reflect the fact that for DFT/MM
the DFT module is called only once per integration step,
whereas in the DFT/PMM case it is called several times (in
the given example: 2.0 DFT calls/integration step). Note that
each such call requires the import and export of the electro-
statics, which are more expensive, if induced dipoles are ad-
ditionally present.

Finally, we examined the effect of varying the PMM con-
vergence criterion. Tightening xpy by one order of magni-
tude entails a slight increase of the numbers of PMM-SCF
iteration steps, of DFT calls per integration step, and of DFT-
SCF iteration steps. By contrast, loosening xpy by one
order of magnitude leads to a costly increase of the num-
ber of DFT-SCF iteration steps. Apparently, a correspond-
ingly noisier PMM dipole environment hampers the DFT-SCF
convergence.

In the DFT/PMM water box example discussed above,
which features a small DFT fragment in a large PMM en-
vironment, the parallel DFT computation with eight cores
requires about as much time as the single core PMM com-
putation. This finding points to a technical deficiency of our
current implementation, according to which the MPI-parallel
version of the PMM-MD program IPHIGENIE is not yet
compatible with the MPI-parallel version of the DFT program
CPMD. This remaining deficiency will be removed in the near
future.

VI. SUMMARY AND OUTLOOK

By suitably combining the (P)MM-MD program
IPHIGENIEY with the DFT program CPMD,*® we have
developed and implemented a Hamiltonian DFT/(P)MM-
MD approach, which conserves the energy as good as the
well-established DFT-Born-Oppenheimer MD approach
implemented in CPMD. Here, we took advantage of the fast
multipole method SAMM, implemented in IPHIGENIE, by
which one can treat the long-range electrostatic interactions

J. Chem. Phys. 138, 244103 (2013)

within a (P)MM simulation system in a linearly scaling
and Hamiltonian fashion. Artificial distortions of the DFT
electron density are excluded by the use of Gaussian charges
and induced dipoles in the boundary region between the
DFT and PMM fragments. The accuracy and efficiency of
the new DFT/PMM interface are supported by algorithmic
improvements concerning the adaptive repositioning of the
DFT box and the fine-tuning of the joint DFT- and PMM-
SCF cycles. All these aspects were illustrated by relevant
test simulations, which demonstrate that the new interface
opens the way toward temporally extended DFT/PMM-MD
simulations of large condensed phase systems at well-defined
thermodynamic conditions.

Beyond the ongoing efforts of extending the implemen-
tation toward a jointly parallelized treatment of the DFT and
(P)MM fragments, only one important issue remains to be ad-
dressed before applications can be tackled. It concerns the
widths o;, which have to be chosen for the Gaussian distri-
butions representing the (P)MM partial charges in the vicinity
of the DFT fragment. As explained already by Laio et al.,’®
these widths are decisive parameters of the interface model
and must be carefully determined for the various (P)MM atom
types by sample simulations. Here, the value o; = 0.57 A
most likely is a sub-optimal choice.

Concerning the future development, we plan to reorga-
nize the interface in such a way that also other grid-based DFT
programs like CP2K® can be employed. Here, the integra-
tion of the multigrid DFT/MM electrostatic coupling of Laino
et al.* into our near-field electrostatics computation should
yield further efficiency gains. Furthermore, a combination of
our DFT/PMM approach with the SCP-DFT method*>33 im-
plemented in CP2K may pave the way toward an improved
modeling of polarization and dispersion interactions between
the fragments.

ACKNOWLEDGMENTS

This work was supported by the Deutsche Forschungsge-
meinschaft (SFB749/C4) and by the Kompetenznetzwerk fiir
wissenschaftliches Hochstleistungsrechnen in Bayern of the
Bayerische Staatsministerium fiir Wissenschaft, Forschung
und Kunst (KONWIHR-III).

APPENDIX: MULTIPOLE MOMENTS 1™° OF DIPOLE
DISTRIBUTIONS

Compact formulas, by which the totally symmetric and
traceless mth order multipole tensors M- 0 can be calculated
form =0, 1, 2, ..., if the origin 0 of the Cartesian coordinate
system is chosen as the reference point, have been given in
Sec. 3 of the supporting information of Ref. 47 for distribu-
tions B of partial charges.

Choosing the same setting, the corresponding tensors

M=% "M (Al)

jeB
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of rank m = 2, ... can be calculated for a distribution B of
point dipoles p; at positions r; from the recursion

2
M7°:§h[<”"'”>@j®ww‘”)

—m(r; oM7) ®Ii|, (A2)
where S, is the symmetrization operator given in Eq. (22) of
Ref. 47, where also the applied tensorial notation is explained
in detail. For dipole distributions, the monopole moment
(m = 0) vanishes, of course, and the recursion (A2) is ini-

tialized with the point dipole
M} =p,. (A3)

For m = 2, 3, 4, the Cartesian components of the tensors M0
are explicitly given by

Mazﬁo = ZBr/‘al’jﬂ +3rjgpja — 28ap(r; - P;)1.

(A4
jeB

3,0
M.z, =3 Z[S(ijrj,grjy + PjgriyTia + Pjyrjaljp)
jeB

- rjz(pja(sﬂy + Pjﬂaya + p.f)/‘s“lg)

— Z(I'j . pj)(rjaéﬂy + rjﬁfsya + rjyaaﬁ)]s (AS)

~r4,0
Mz, =3 § {35(pjarjpriyric + PjpljyTjel ja
jeB

+ PiyTierjalip + Pjeljal i jy)

=52 [(Pjarje+Pjerja)Spy +(PigTjc+Pjer jp)Sya
+(PjyTie + Pjerjy)dap + (PjpTjy + PjyTjp)duc
+(Pjaljy + PjyTja)dpe + (Pjaljp + PjpTja)dye]
—10(r; - pj)(rjarjedpy +1jprjedya +TjyTjedap
+7ipTjyOuc + TjaljySpe + T jal jpdye)

A P Bucdpy + Spebya + 8yedap)}.  (A6)

The SAMM,, algorithm treats these PMM multipole mo-
ments M0 exactly like in the MM case, i.e., they are shifted
to a different reference point using Eq. (19) of Ref. 47, and po-
tentials and Taylor expansion coefficients are calculated from
Egs. (9) and (10) of Ref. 47, respectively. In IPHIGENIE, the
electrostatics of static partial charges is calculated only once
for each integration step and is reused during the PMM-SCF
iteration.
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2.1 Eine Hamilton'sche DFT/PMM-Kopplung

Der folgende Abdruck

Supplementary Material to
Coupling DFT to polarizable force fields for efficient and accurate
Hamiltonian molecular dynamics simulations

Magnus Schwarer, Benedikt Breitenfeld, Philipp Troster, Sebastian Bauer,
Konstantin Lorenzen, Paul Tavan und Gerald Mathias
J. Chem. Phys. 138, 244103 (2013)

liefert zusétzliche Informationen zum vorangestellten Haupttext. Abschnitt S1 doku-
mentiert die Energieerhaltung der PMM-Implementierung in IPHIGENIE, Abschnitt
S2 zeigt dass die Energiefluktuationen in DFT/PMM-MD vergleichbar mit denen in
DFT-MD sind, und in Abschnitt S3 wird der Einflul der Wahl des DFT-Selbstkonsis-
tenzkriteriums auf das Dipolmoment des DFT-Fragments untersucht.
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S1. PMM ENERGY CONSERVATION

A numerical integration of a Hamiltonian dynamics with the Verlet algorithm® does not
exactly conserve the energy. Instead, for any given size of the time step At the energy is
given by?

E(t|At) = (E(t| At)), + f(t) AL + O(At?) (S39)

where (E(t|At)), is the temporal average of the energy over a reasonably large time span
7, which converges in the analytical limit At — 0 to the exact energy Fj, and where the
corresponding average of the shape function f(¢) vanishes, i.e. lim, . (f(¢)); = 0. Then

the energy fluctuations AE(t | At) = E(t| At) — (E(t| At)), are given by
AE(t| At) = f(t) At + O(AtY) (S40)
with the standard deviation

oar = APV (f2(1)) + O(AL), (S41)

which vanishes in the analytical limit At — 0.
Equations (S40) and (S41) should apply to the numerically integrated Hamiltonian dy-
namics of the PMM water dimer. For a check whether our implementation is correct, we

consider two TL4P;,; water models (Troster et al., in preparation). These stiff models are

(@) PMM, /=0 — At=0.25fs (b) PMM, /=2 — At=025fs |
e At=0.125fs cee At=0.125fs

AE(t |At)(Aty /A2 [10** keal/mol]
AE(t |At)(Aty /At)? [10-6 kcal/mol]

0 0.25 0.75 1 0 0.25 0.75 1

0.5
t [ps]

0.5
t [ps]

FIG. S9. Fluctuations of the energy of a PMM water dimer for different time steps At = 0.25 fs
(red) and At = 0.125 fs (dotted green); (a) dimer at close contact (I = 0), (b) dimer softy restrained
to dpo =~ 10 A (1=2).
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either positioned at close contact, such that the electrostatics is calculated from the usual
Coulomb expressions (and the extensions to Gaussian dipoles) and the van der Waals inter-
actions from Buckingham potentials® centered at the oxygen atoms, or are softly restrained
to distances of about 10 A, at which the electrostatics is treated by the SAMM, algorithm?*
and the van der Waals interaction is neglected.

If one integrates the Hamiltonian dynamics by the Verlet algorithm for the two dimer-
setups starting at identical initial conditions but using different time steps (e.g. At = At
and At = Aty/2), then the scaled energy fluctuations AE(t | At)(Aty/At)? should have ac-
cording to Eq. (S40) identical shapes f(t)At2. Figure S9 shows the scaled energy fluctuations
AE(t] At)(Atg/At)? observed in the dimer simulations for a basic time step Aty = 0.25 fs.
The fluctuations AE(t| At) observed for At = Aty are drawn by a red solid line, the scaled
observations 4AE(t | At) observed for At = Aty/2 by a green dotted line. After scaling
the fluctuations are seen to match almost perfectly for the two dimer setups characterized

further above as documented by Figs. S9(a) and S9(b).

. . . -
— s /=0 i'
S 03} R
£ * /=2 (datascaled by 40) * |
S RAGE
< 02} O
™ o
S RGNS
~ AR
[a— O 1 ”f \\\\\
& et
‘:‘:"‘ ““““
o lemam®™™ . .
02 04 06 0.8
At [fs]

FIG. S10. Standard deviations oap of the energy fluctuations AE(t | At) for different time steps
At € {0.125,0.250,0.500, 1.000}. Results for the dimer settings | = 0 and | = 2 are depicted by
squares and diamonds, respectively. The gray dashed lines show fitted parabolas. For [ = 2 scaled

values 400 are drawn for purposes of improved visibility.

According to Eq. (S41) the standard deviation oag of the energy fluctuations AE(t| At)
should vanish quadratically with the time step size At. Figure S10 shows that this is actually
the case as demonstrated by MD simulations with the time steps At € {0.125,0.25,0.50, 1.00}

of the PMM dimer at close contact (I = 0) and softly restrained to an average distance

doo =10 A (1 =2).
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S2. DFT/PMM ENERGY CONSERVATION FOR THE DIMER

The main text compares for the dimer at close contact the energy fluctuations of the DF'T
reference simulation in Fig. 4(c) with the fluctuations of the corresponding DFT/PMM sim-
ulations in Fig. 5(a). A part of these data is repeated at a much higher time resolution
(80 fs instead of 2 ps) in Figures S11(a) and S11(b). The comparison at the enhanced time
resolution demonstrates that the DFT and DFT/PMM fluctuations have similar amplitudes
and frequencies. In addition the Figures S11(c) and S11(d) show part of the data presented

(@) DFT, /=0

5| () DFT/PMM, /=0

5 |(€) DET/IPMM, /=1
0
5

| (@) DET/PMIM, /=2
0
5

960 980 1000 1020 1040
t [fs]

g o O,
T

o o

E [10-3 kcal/mol]

FIG. S11. Temporally resolved energy conservation in the DFT reference and DFT/PMM hybrid
dimer simulations. (a) Close contact DFT, (b) Close contact DFT/PMM (I = 0), (¢) DFT/PMM
softly restrained to doo ~ 7 A (I =1), and (d) to doo ~ 10 A (I = 2).

at a lower time resolution in Figs. 5(b) and 5(c), respectively, at the enhanced time resolu-
tion. The depicted fluctuations refer to the DFT/PMM dimer softly restrained to average
distances doo ~ 7 A and doo ~ 10 A, respectively. As compared to close contact they have

slightly larger amplitudes but similar frequencies.
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S3. DFT CONVERGENCE CRITERION FOR DFT/PMM-MD

— Xpgr =107
- -« Xppr=10°

25

200 . 2.25 . 250
t[fs]

FIG. S12. Invariance of two 250 fs DFT/PMM-MD liquid water trajectories (started at identical

initial conditions) with respect to increasing yppr from 10~7 (red curve) to 107> (green dotted

curve). The sample observable is the absolute value |p(¢)| of the DFT fragment’s dipole moment.

Figure S12 illustrates for the absolute value of the dipole moment |p(t)| of a DFT water
molecule embedded in a PMM water environment that the DFT convergence criterion xppr
can be safely loosened from 1077 to 10~ without changing DFT/PMM trajectories. Similar
identities result for the components of p(¢) and for the DFT fragment’s energy E(t). The
identities of these trajectories (and the reduced computational effort) motivate the choice
xprr = 1077 as default for DFT/(P)MM-MD simulations. Note that yppr = 107° is also
the default in CPMD.?
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2.2 Steigerung der Effizienz von DFT/PMM

2.2 Steigerung der Effizienz von DFT/PMM

Die nachfolgend abgedruckte Publikation

Utilizing Fast Multipole Expansions for Efficient and Accurate
Quantum-Classical Molecular Dynamics Simulations

Magnus Schwarer, Konstantin Lorenzen, Gerald Mathias und Paul Tavan
J. Chem. Phys. 142, 104108 (2015),

die ich zusammen mit Konstantin Lorenzen, Gerald Mathias und Paul Tavan verfasst
habe, zeigt, wie sich die Performanz der DFT/PMM-Kopplung durch Anwendung des
mittlerweile entwickelten neuen SAMMX-Algorithmus [109, 127] um eine Grofienord-
nung erhohen lasst. Dazu wird einer neuen Ebene von Subvolumina des DFT-Fragments
(Voxel) eingefiihrt, und die tatsdchliche Ausdehnung der DFT-Ladungsverteilung bei
der Berechnung der fiir SAMM nétigen Gyrationsradien beriicksichtigt. Ferner wird die
Integration des DFT-Programms CPMD [152] in das PMM-MD-Programm IPHIGE-
NIE beschrieben und das Skalierungsverhalten des neuen Hybridprogramms IPHIGE-
NIE/CPMD auf Grofirechnern untersucht.
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Utilizing fast multipole expansions for efficient and accurate
quantum-classical molecular dynamics simulations

Magnus Schwérer, Konstantin Lorenzen, Gerald Mathias, and Paul Tavan®
Lehrstuhl fiir BioMolekulare Optik, Ludwig—Maximilians Universitdt Miinchen,
Oettingenstr. 67, 80538 Miinchen, Germany

(Received 16 January 2015; accepted 25 February 2015; published online 12 March 2015)

Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular
dynamics (MD) simulations has been suggested [Schworer et al., J. Chem. Phys. 138, 244103
(2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional
theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force
field for a large solvent environment composed of several 103-10° molecules as negative gradi-
ents of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described
by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM tech-
nique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly en-
tails a strictly linear scaling of the computational effort with the system size, and adapting
this revised FMM approach to the computation of the interactions between the DFT and PMM
fragments of a simulation system, here, we show how one can further enhance the efficiency
and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as
measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in
efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the
jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables
the efficient use of high-performance computing systems. The associated software is available

@ CrossMark
¢

online. © 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4914329]

I. INTRODUCTION

We have recently presented a novel quantum-classical'—
approach for molecular dynamics (MD) simulations, which
combines density functional theory*> (DFT) for a subsystem
with (polarizable) molecular mechanics [(P)MM] force fields
atomistically modeling its condensed phase environment.®
Like other schemes, which combine high-level quantum
mechanical (QM) methods with PMM force fields for hybrid
MD simulations,’””'* our DFT/PMM approach also provides
the required analytical gradients. Our hybrid method, in
particular, accomplishes for sizeable DFT fragments an effi-
cient treatment of large condensed-phase PMM environments
by applying a fast multipole method!4! (FMM) to the
electrostatic interactions.®??

More specifically, our DFT/PMM scheme combines
the grid-based and parallelized plane-wave DFT program
CPMD?* with the parallelized PMM-MD program
IPHIGENIE®2!24-26 and enables efficient and accurate Hamil-
tonian MD simulations of such hybrid DFT/PMM systems.
Applying toroidal boundary conditions,?’ the long-range
electrostatics is treated by the fourth order structure-adapted
fast multipole method,”! SAMMy, within interaction spheres
of radius dyyc surrounding the atoms. For distances beyond
dyic, which is given by the minimum image convention®’ and
is about half the size of the periodic unit cell, the electrostatics
is described by a reaction field (RF) approach.?’

®Electronic mail: paul.tavan @physik.uni-muenchen.de

0021-9606/2015/142(10)/104108/12/$30.00

142, 104108-1

As discussed in detail by Lorenzen et al.,** the resulting
SAMM,/RF algorithm is a non-periodic alternative to the lat-
tice summations (LS) of the Ewald type?®-3° for the treatment
of the long-range electrostatics in MM?' and QM/MM?3>%
MD simulations. Replacing the RF model, SAMM, could
alternatively be combined with a LS approach, treating the
interactions among the Cartesian point multipoles*® of the top-
level clusters and all their periodic images with a real-space
cutoff as large as dyyc. Because both alternatives exclusively
deal with the multipole moments of the few top-level clusters,
they can be equally well applied to (P)MM and DFT/(P)MM
systems.

Like its predecessors,'””' SAMM,/RF also maps the
atoms of a simulation system onto a quaternary tree of
nested atomic clusters, whose lowest level consists of fixed
chemical motifs, the so-called structural units (SUs), whereas
its higher levels are adaptively formed by self-organizing
clustering algorithms.>* Furthermore, also SAMM, applies
fixed distance classes to the decisions, whether large clusters
of atoms should be decomposed into the enclosed sub-clusters
for the hierarchical computation of the electrostatics, which
characterizes FMM.!41¢ Here, particularly the innermost
class boundary, which is marked by SU distances smaller
than a limiting distance dy, signifies the transition from the
approximate FMM treatment of the electrostatic interactions
among SUs to exact descriptions for their constituent atoms.
In SAMM,4, this distance dj concurrently represents the cutoff
distance for the van der Waals interactions, for which values
in the range of about 10-15 A are common choices in force

©2015 AIP Publishing LLC



104108-2 Schworer et al.

fields*” ! for bio-molecular simulation. Correspondingly,
SAMMy also employs values for dy from this range.?!

However, the use of fixed distance classes does not
take full advantage of the FMM concept, whose expansion
parameter is the apparent size ©» = 2R/r at which a cluster of
atoms of diameter 2R appears at a distance r. If one wants
to concurrently optimize the computational accuracy and
efficiency, i.e., the performance, then the so-called interaction
acceptance criterion (IAC), upon which the algorithm decides
whether a pair of clusters is small and distant enough for a
sufficiently accurate FMM description, should be based on
their apparent sizes .

By extending the FMM scheme toward ¢’th order
expansions (¢ = 1,2,3) of the dispersion attraction (~ — 1/r%)
and subsequently, also to first order expansions for the
Lennard-Jones model (~1/r'?) of the Pauli repulsion, SAMM,
has been recently revised toward the use of an IAC, which
now actually employs the apparent size ¢ for decisions.>**?
Additionally, the SAMM algorithms were augmented by
representing the FMM forces as exact derivatives of the
FMM energy expressions.*” A corresponding algorithm is
marked by an additional superscript “E”. Three variants y €
{f.m, a} of the thus obtained SAMM;" £ .1/ RF algorithm were
defined, where the label y characterlzes the performances
ranging from “fast and still reasonably accurate” (y = f) over
“intermediate” (y = m) to “very accurate but comparatively
slow” (y = a). Because the apparent size ¢ is calculated from
accuracy weighted cluster radii R = R/a, where R is a cluster’s
radius of gyration and a > 1 an accuracy correction factor,
these performances are almost independent of the chemical
composition of the respective simulation system.?*

As demonstrated for MM and PMM sample simula-
tion systems,’**? the accuracy and efficiency of these new
SAMMff’ ’; ,/RF algorithms for the computation of the electro-
static and van der Waals interactions clearly outperforms the
preceding distance class algorithm SAMM,/RF. Furthermore,
a strict linear scaling of the computational effort has been
demonstrated®* for N-atomic systems with N up to 10°. In the
case of liquid water, the treatment of the complex PMM model
potential, which features five point charges and an inducible
Gaussian dipole and is called TL6P,* turned out to be only by
a factor five more expensive than the simulation of the simple
three-point MM model, TIP3P.*

The strongly improved performance of the revised and
extended SAMMffj’1 algorithms immediately suggests that
their integration into the hybrid DFT/PMM scheme® men-
tioned above should also lead to a likewise enhanced perfor-
mance here. It is the purpose of this contribution to show that
this aim can be actually reached, if the previous computational
strategy of the DFT/PMM interface is thoroughly revised
toward an IAC, which is based on apparent sizes .

For distant atomic clusters, this revision will turn out to
be almost trivial, if one assigns suitable sizes to clusters con-
taining DFT atoms. Then, one simply can replace the SAMM4
distance class scheme?! by the novel IAC of SAMM4q "
which considers apparent sizes 1.4 For the lower interaction
levels, however, which treat the electrostatic interactions of
individual PMM atoms with the charge density distributed on
the DFT grid,® the new IAC offers the possibility to extend the

J. Chem. Phys. 142, 104108 (2015)

FMM concepts toward hierarchically nested sub-volumes of
the DFT grid.

Following this route, one should be able to achieve large
performance gains, because it entails the chance to strongly
reduce the number of PMM atoms, for which one has to
compute the electrostatic interactions with the huge number
' > 10° of DFT grid charges ¢, (y = 1,...,T') by means of
costly exact pair expressions. Combining atomic sized sub-
volumes of the DFT grid with an IAC based on their apparent
size will leave only very few PMM atoms at distances too small
for the much more efficient calculation of the interactions by
FMM expressions.

In our following presentation of the revised interface
between the DFT program CPMD?* and the PMM-MD pro-
gram IPHIGENIE,%?!>*25 we first rehash the basic concepts
leading to a symmetric and essentially energy conserving
FMM treatment of the electrostatics in a DFT/PMM setting.°
Subsequently, we sketch the new hierarchical partitioning of
the DFT grid, which favorably exploits the new IAC offered
by SAMMY qE 24 Next, we introduce as a sample simulation
system, a DFT dipeptide (Ac-Ala-NHMe) embedded in
liquid PMM water as modeled by the TL6P potential** and
describe the observables employed for checks of efficiency
and accuracy. For this sample system, we study issues of
algorithmic performance in MD simulations. After a few
remarks on the jointly parallel implementation of IPHIGENIE
and CPMD and on its scaling properties on high-performance
computing (HPC) systems, we summarize the achievements
resulting from the revision of the interface.

Il. THEORY

An optimally performing and Hamiltonian computation
of the electrostatic interactions between the DFT and PMM
fragments is a key task in corresponding hybrid methods.® We
start with a short introduction into the algorithmic concepts
employed in FMM combinations of grid-based DFT with
PMM force fields and subsequently turn to the revisions
aiming at an enhanced performance.

A. Basics of DFT/PMM electrostatic interactions

DFT/PMM
elec

The electrostatic DFT/PMM interaction energy H
can be decomposed by

DFT/PMM

FDFT/AMM / dr [p(r) + pe(r)] O(r) ()

into the energies of the DFT fragment’s electron (p,) and core
(pc) charge densities in the external potential @ generated
by the PMM fragment. Here, solely the computation of the
electronic contribution poses a challenge.®

In grid-based programs like CPMD,?* p.(r) is represented
by point charges ¢, residing at the locations r, of all I' grid
points . For a given DFT box, which we initially assume
to be cubic, the spatial resolution of the grid, and thus, the
number I' are determined by the plane-wave cutoff energy
Eey. Typically, one has T' ~ 10°. The electronic contribution
to Eq. (1) is then the extended sum 3, ¢, ®(r,).
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Thus, in a DFT/PMM computation, the external potential
® has to be evaluated at all points r,. To avoid singularities
of @ within the volume V of the DFT box, which would
arise from enclosed PMM point charges or dipoles, smooth
models®?>*7 have to be used for generating static partial
charges ¢; and induced dipoles p; of the PMM atoms i. For
point-like objects at r;, a possible choice is the smoothing by
a Gaussian shape function®?24

@)

—r.)2
g(r|ri,oy) = (r-r) ]

(ro?)3/? exp [_ 2072

2

Here, different widths o; < 0.8 A may be employed for the
various PMM charges and induced dipoles.*® The Gaussian
character can be approximately neglected as soon as the scaled
distance |r —r;|/o; exceeds a certain threshold n, which we
will determine by an analysis of the Gaussian truncation errors.

Once all values ®(r,) have been calculated for a given
static configuration of the system, the iterative computation
of the Kohn-Sham (KS) orbitals® can be initiated. In a joint
iteration, which involves the repeated computation of the
mutual polarization of the grid charges and of the induced
PMM dipoles, the KS orbitals and the induced dipoles have
to be brought to self-consistency.® Finally, the converged DFT
charge distribution yields the forces on the M DFT atoms
u(u=1,..., M) and the electrostatic reaction forces on the
PMM atoms i as the negative gradients of the Hamiltonian (1)
with respect to the atomic positions.

Without further provisions the above tasks would involve
as many as 10'? distance calculations already for small DFT
and PMM fragments. Integrating the DFT fragment into a
FMM scheme can substantially reduce this computational
effort by more than two orders of magnitude.?>*> Here, we
will now show that another large performance gain can be
achieved, if the DFT/PMM electrostatics is systematically
adapted to the most recent FMM approach provided by

E 2442
SAMMZ( ST

X:E
B. SAMMY,

SAMM{ P collects atoms into hierarchically nested
clusters of increasing size and calculates their electrostatic
interactions by balanced m’th order multipole and n’th order
local Taylor expansions up to order m + n = 4 around their
centers of geometry. Similarly, the dispersion attraction is
treated by FMM expansions up to order ¢ < 3,** whereas
the expansions of the Pauli repulsion are restricted to order
1.2 The resulting forces obey Newton’s reaction principle?®!
and conserve the FMM energy.*? The removed 10 A cutoff of
the van der Waals interactions leads to a strongly enhanced
accuracy and enables a decrease of the minimum distance
do, at which two clusters of a PMM simulation system are
allowed to interact at the lowest level of the FMM cluster
hierarchy, to about 5.5-7.5 A. Because the computational
effort is dominated by the costly atomic pair interactions,
which have to be evaluated for distances smaller than d, the
reduced d leads for SAMMff lE , to much smaller numbers of
such interactions and, thus, to speedup factors in the range
fromS (y =f)to2 (y = a).

J. Chem. Phys. 142, 104108 (2015)

The quality of the SAMM)‘ e approximations for the
interaction of two clusters A and B whose geometric centers
are a distance r apart, is controlled by the IAC formula®*

1
3 [a,1(r) + Op1(r)] < Oy, 3)
where @, is a certain threshold and

R 2Ra

r

Ba(r) =

“4)

is the accuracy weighted apparent size of a cluster A on FMM
cluster level /, whose radius of gyration is denoted by Ry4 ;.
The accuracy correction 1 < a4 ; < 1.8 depends, for (P)MM
clusters, on their geometry and electrostatic signature.’* For
DFT clusters A, which occupy a SAMM cluster level / < 0,
we choose a4 ; = 1. Note that here we employ the SAMM
numbering'®?! of clustering levels according to which the
level [ = 0 is composed of predefined SUs comprising 3 to
16 atoms (for most recent definitions, see Ref. 24). Levels
[ > 0 contain compact clusters comprising on average four
clusters collected from level [ — 1, whereas the level [ = —1
consists of individual atoms.?*

Having chosen a certain threshold ®,, y € {f, m, a}, the
interaction between two clusters A and B is calculated on
hierarchy level [, if the IAC (3) holds. Otherwise, the two
clusters are decomposed into their children and (3) is checked
again for the children interactions on level [ — 1. SAMMX g
offers the accuracy thresholds ®¢ = 0.25, ®, = 0.20, and
®, = 0.17, which represent different and quantitatively well-
defined compromises between efficiency and accuracy.?*

C. Exploiting SAMMM1 for DFT/PMM interactions

According to the IAC (3) and the definition (4) of the
apparent size ¢4 (r) of a cluster A, the interaction of two
clusters on level / can be efficiently calculated by FMM down
to very small cluster-cluster distances r, if the radii of gyration
are correspondingly small. Consider now the electrostatic
interaction of a PMM atom i with a nearby DFT atom u
and assume that the enclosing SUs fail to pass the IAC (3) at
level I = 0. In a pure PMM setting, this interaction would then
have to be treated at the SAMM level / = —1 using exact pair
expressions.

In a DFT/PMM setting, however, we have to compute
the electrostatic potential ®(r) generated by the PMM atoms
i not only at the positions r, of the few DFT atoms u, but
additionally at all points r, of the whole DFT grid. Given a
predefined accuracy level y, this task is executed at maximal
computational efficiency, if FMM expansions are used for as
many grid points y as possible.

For an IAC based on apparent sizes 1J, the elementary
FMM interaction partners of the PMM atoms i should thus be
small and equally sized portions of the spatially quite extended
distribution of grid charges ¢,. We define these portions by
commensurably partitioning the DFT grid into sub-volumes
Vi(h=1, ..., A) of atomic size, which we call voxels. For a
cubic DFT grid, the voxels are then also cubic. Measuring the
common size of the voxels by their radius of gyration R, and
noting that the radius of gyration R; of a PMM atom i vanishes,
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Egs. (4) and (3) demonstrate that i does not contribute to the
IAC.

For this case, the general FMM IAC (3) should be
modified to the so-called FMM voxel IAC,

2RA/1i < Oy, &)

where we have set the accuracy weight in (4) to one and have
replaced the average radius of gyration by Rx. Because Ry is
small, the distances 7); between the centers of geometry of the
volumes V3, which enclose the grid portions A, and the PMM
atoms i can become correspondingly small and the above
objective is reached. On the other hand, the computational
effort will eventually increase again with decreasing Ry,
because the number of FMM expansions grows with A
~ (1/Rp). As a result, there will be an optimal value for
Rp.

In summary, it is advantageous to hierarchically parti-
tion the grid charge distribution into a nested set of sub-
distributions of decreasing size until the optimal size is
reached. From a series of preliminary DFT/PMM test calcu-
lations, we found that not more than two new hierarchy
levels/ = —2 and [ = -3 beyond the SAMM levels'”!3 [ = —1,
0,1, ... (cf. Sec. I B), are required (data not shown). The
optimal voxel size Rp will be determined below in Sec. IV C.

1. Definition of a new lowest DFT/PMM cluster level

Figure 1 sketches the volume V of a DFT box by a black
square, an enclosed DFT grid by I' = 64 light gray dots, and
a disjoint decomposition of V into A = 16 voxels A with
volumes V; = V) = V/A by gray-dashed squares. The DFT
box is centered around a water molecule (black) representing
asample DFT fragment. Two light gray water molecules depict
a part of the PMM fragment.

The radius Ry = V[i/ 3 /2 of the dotted circle inscribed into
the bottom right voxel A (gray background) is the radius of
gyration of this cubic voxel. A is surrounded by a sphere
of radius da,_» = 2R5/0, (dashed black lines), which is the
smallest distance still acceptable by the FMM voxel IAC (5)
for reasonably accurate FMM descriptions of ®(r,) on the
grid points y € L. For PMM atoms i closer to the geometrical
center 1, (cross) of the voxel A, the costly electrostatic pair
interactions of their Gaussian charges and dipoles with the
grid charges g, located within A have to be evaluated (at level
[=-3).

FIG. 1. Visualization of the FMM voxel IAC (5) separating the SAMM
levels I =—-3 and [ =-2 of the DFT/PMM electrostatics computation. For
explanation, see the text.
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FIG. 2. Schematic illustration of the Gaussian truncation IAC (6) concentrat-
ing on the bottom right voxel A (gray background) discussed in Fig. 1. Also
here, the FMM IAC (5) is indicated by the dashed black lines. Additionally,
the Gaussian IAC is depicted for an O atom by dot-dashed and for a H atom
by dotted lines. The O atom apparently fails the Gaussian IAC, because it is
too close to the center of geometry (cross) of A.

If one solely considered the FMM voxel IAC (5), then
the interaction of more distant PMM atoms i with the grid
charges ¢, enclosed by the voxel A would be calculated by
FMM expansions, which neglect the finite Gaussian widths
o; of the atomic charge and dipole distributions. However,
at distances r,; shorter than n,,,0;, the representation of
Gaussian charges and dipoles by point objects starts to entail
numerical errors [n,,m = 8.7 at double precision; cf. also the
discussion of Eq. (2)]. If the FMM voxel IAC (5) allows such
distances, these Gaussian truncation errors add up to the FMM
errors.

In Sec. IV A below, we will require that the Gaussian
truncation errors should be much smaller than the FMM errors.
This requirement will then determine a standard value ng for
the Gaussian cutoff parameter n appearing in the additional
voxel IAC,

i >nog, with 1< nagm, (6)

according to which a Gaussian PMM source i of width o-; can
be replaced by a point-like source, if its distance r;; from a
voxel A exceeds n o;. Thus, the FMM IAC (5) and the Gaussian
truncation IAC (6) have to be simultaneously fulfilled for a
sufficiently accurate FMM computation (at level / = —2) of
the electrostatic interactions between a Gaussian PMM source
i and the grid charges ¢, enclosed by the voxel A.

Figure 2 illustrates the additional voxel IAC (6) for a
PMM water molecule featuring Gaussian charge distributions
of widths o at the oxygen and oy < 0o at the hydrogen
atoms, respectively. In the depicted configuration, the FMM
IAC (5) allows FMM for the two rightmost atoms H and O,
whereas the Gaussian truncation IAC (6) enables FMM solely
for the H atom at the right. It thus enforces, in particular,
the exact evaluation of the potential generated by a Gaussian
charge or induced dipole of the O atom at all points vy of the
voxel A (which is the computational mode at level [ = =3).

2. The next higher DFT/PMM cluster level

With increasing distances ry;, the SAMMX i expansions
within a voxel A become rapidly much more accurate. At
distances r); > 2RA/0®,, a comparably accurate description
can therefore be achieved by merging several portions A of the
distribution of grid charges into larger clusters.
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FIG. 3. Visualization of the atomic IAC (7) separating the SAMM levels [
=-2 and [ = -1 of the DFT/PMM electrostatics computation. For explana-
tion, see the text.

Figure 3 illustrates our choice for combining voxels A into
larger atomic portions V,, of the DFT grid. For this purpose,
we employ a Voronoi tessellation of the DFT box (cf. Refs. 6
and 22), which is based on the locations r,, of the DFT atoms
and assigns each voxel A to the DFT atom u of least distance
|r,, — ry| from its geometrical center r;. Thus, each sub-volume
V1, which belongs to a DFT atom g, is the union UV}, of all
associated voxels A(u). The gray shading of five voxels in the
figure exemplifies this merging of voxels for a specific DFT
atom u (black dot).

Furthermore, the figure also depicts the radius of gyration
R, (dotted circle), which belongs to the charge distribution
C, enclosed by V,,, and a limiting distance d,, _; = 2R,/0,
(dashed black lines). This distance follows from the properly
adjusted “atomic” TIAC,

2R,y < O, )

which is analogous to the FMM voxel IAC (5). At distances
rui = dy, -1, FMM expansions around the position r, of
the DFT atom u are employed to compute the electrostatic
interactions of a PMM atom i with all grid charges ¢, in the
cluster C,,. At the given FMM level [ = —1, the distances d,,
are always large enough that the Gaussian character of the
PMM charge and dipole distributions can safely be neglected.

For an atom y at the surface of the DFT fragment, the
atomic part V,, of the DFT grid is quite large, because it extends
up to the boundary of the DFT box, where the electron density
vanishes by construction.”> Then, the size of V, is a poor
measure for the size R, of the atomic charge distribution C,.
A more appropriate measure is obtained by accounting for the
electron density through the positive weights

1 for g, > Q./T
w, = ,
7 | gy/(Qe/T) else

which enter, after atomic normalization,

®)

e
b
Z'y’EV,, Wy

the computation of the radii of gyration,

Py

(€))

1/2

AT (10)
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FIG. 4. An alanine dipeptide molecule in a cubic DFT box of side length
14 A harboring the DFT grid. The gray surface encloses all those grid
points, which contribute with maximal weights w, =1 [cf. Eq. (8)] to the
computation Eq. (10) of the radii of gyration R, of the DFT atoms.

of the atomic charge distributions Cy,. In Eq. (8), Qe = ¥, g,
is the total electron charge of the DFT fragment.

For the sample molecule alanine dipeptide, Figure 4
illustrates how the weights w, describe the shape and extension
of an electron density. The depicted gray surface encloses all
those grid points, whose grid charges g, exceed the threshold
Q./T defined by the uniformly distributed electron density.
Because of Eq. (8), these grid points carry the maximal weights
w, = 1. According to Eqgs. (9) and (10), these grid points
provide the dominant contributions to the radii of gyration
R, of the DFT atoms . Grid points outside the gray surface
contribute only little. As a result, the R, actually provide
estimates for the extensions of the atomic electron densities
C, as desired for the FMM description of its electrostatic
interactions with surrounding PMM atoms. In the depicted
example the R,, are distributed around the average value of
1.19 A with a standard deviation of only 0.15 A. This average
value is clearly in the range expected for sizes of such atoms.

The choice of the weights w, through Eq. (8) and
the resulting radii of gyration R, are, of course, somewhat
arbitrary. Therefore, we have studied alternative definitions
entailing larger R,. As documented in Sec. S1 of the
supplementary material,*” we found that the above choice
happens to be quite favorable.

At the highest FMM level [ = —1 discussed so far, the
atomic radii R, and the distances r,; enter, as we have
seen above, the atomic IAC (7), which decides whether the
interaction of a PMM atom i with the charge density C,
can be treated by FMM expansions around r,. At the next
higher level = 0 of the SAMM cluster hierarchy,'”-'%?* atoms
are combined into the predefined SUs (cf. Sec. II B). As
reference points for the SAMM expansions within atomic
clusters atlevels / > 0 we choose the geometrical centers of the
constituent atoms. If such clusters contain voluminous DFT
atoms, then the computation of cluster sizes should inherit the
extensions of the constituent atoms. For this purpose, Sec. S2
of the supplementary material*® introduces for all upper cluster
levels [ > 0 a computationally efficient bottom-up strategy,
by which one can calculate the radii of gyration of large
clusters from tensorial moments of gyration characterizing
the contained sub-clusters. This strategy resembles that of
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computing electrostatic moments bottom-up toward the top of
a FMM tree.

D. Discussion of the revised DFT/PMM cluster scheme

The above introduction of the two new cluster levels
covers the central ideas underlying our adaptation of the
DFT/PMM interface to the novel IAC decision strategy
realized by SAMMY qE The concepts and details of the
import of the external potential ®(r,) onto points y of the
grid as well as the export of the electrostatic potential and
its derivatives generated by the various portions of the DFT
charge distribution at the positions r; of the PMM atoms have
been previously specified.® For completeness, these issues are
presented for the revised cluster scheme in Sec. S3 of the
supplementary material.*

At levels higher than [ = —1, which are omitted in
Fig. 3 but are indicated in the corresponding Figure 1
of the predecessor paper® (with the slightly different level
numbering scheme /[, = [ + 2), the SAMMX El computation
of the electrostatic interactions is identical to that in pure PMM
systems, which has been recently described in great detail.>*

As mentioned above in Sec. I, we have adopted with
SAMMY ;1 another most recent*? algorithmic improvement.
Accordmgly, the FMM forces are now exact negative gradients
of the FMM energy** and thus enable energy conserving MD
simulations also for clusters moving relative to each other.
Section S4 in the supplementary material*” illustrates this fact
by a sample DFT/PMM-MD simulation.

The remainder of this contribution will serve to illustrate
the performance gains entailed by the consequent integration
of a grid-based DFT method into the up-to-date FMM scheme
SAMM{ ’;l, which had been originally developed®**? for the
treatment of long-range interactions in PMM-MD simulations.

lll. METHODS

As our condensed-phase DFT/PMM test system we chose
an alanine dipeptide molecule (Ac-Ala-NHMe) representing
the DFT fragment, which is embedded in a system of PMM
water models described by the recent TL6P potential.*>3

A. DFT/PMM simulation setup

The DFT fragment Ac-Ala-NHMe was centered in a cubic
DFT box of size (14A)3. It was described by the gradient-
corrected exchange functional of Becke,” by the corre-
lation functional of Lee, Yang, and Parr,’? and by the norm-
conserving pseudo-potentials of Troullier and Martins.>* The
chosen plane-wave cutoff of 100 Ry led to I' = 180° grid
points. The DFT convergence criterion was ypgr = 1078 in
accuracy checks and 107 in DFT/PMM-MD simulations.

The polarizable six-point potential TL6P* for water
features a rigid liquid phase geometry, two positive charges
at the H atoms, three massless negative charges M, L;, and
L, in the vicinity of the O atom, and a Gaussian induced
dipole distribution of width oo = 0.806 A at O. Van der Waals
interactions among TLOP water molecules are represented by
Buckingham potentials, whereas those with the atoms of the

J. Chem. Phys. 142, 104108 (2015)

DFT fragment are expressed through an almost equivalent
12-6 Lennard-Jones potential.** Lennard-Jones parameters for
alanine dipeptide were taken from the CHARMM?22 force
field.* The dielectric constant of the RF was € = 78 and the
PMM convergence threshold was ypyy = 1074 D.°

According to Sec. II A, static partial charges of PMM
atoms are represented by Gaussian distributions, if they are in
the immediate neighborhood of the DFT fragment. Following
Ref. 54, we chose the widths o = o, = 0.46 A for the in-
plane (M) and out-of-plane (L;, L;) massless charges and
o = 0.24 A for the partial charges at the H atoms.

Simulation systems were constructed in a PMM setting.
A periodic cubic box with the volume V =(51.29 A)3
was filled with N = 4487 TL6P water molecules and one
CHARMM22 model** of alanine dipeptide such that the
system’s density corresponds to the experimental density of
water at standard conditions. The system was equilibrated
by SAMM4 ..1/RE-MD for 1.5 ns with a Bussi thermostat™
(target temperature Ty = 300 K, relaxation time 1 ps) using a
1 fs time step for the dynamics integration with the velocity
Verlet algorithm>® and keeping all bond lengths involving H
atoms fixed by the MSHAKE®” and RATTLE’® algorithms
(relative tolerance 107!9). From the end of this simulation,
16 statistically independent snapshots were drawn at 20 ps
temporal delays.

Accuracy and efficiency of the revised DFT/PMM inter-
face were checked for the three SAMMX R algorithms?*
defined by y € {f,m,a} and were compared with the perfor-
mance of the previousé'21 interface, which had been based on
the SAMM, distance class scheme. The DFT/PMM accuracy
parameter® d(C f) of SAMM, was chosen as 8 A. The original
suggestion® of 6 A turned out to yield too poor approximations
of the external potential near the edges of the DFT box,
occasionally causing convergence problems of the KS orbitals.
The revised choice d(C/?) = 8 A removed these instabilities.

For accuracy checks, the 16 snapshots were employed
to generate an ensemble S of static solvation structures.
Taking advantage of the periodicity, the DFT fragment was
shifted to the center of the PMM simulation box. The sources
generating the external potential ®(r,) at the points of the
DFT grid were restricted to the TL6P water molecules in the
central simulation box, thus neglecting the periodic copies.
This restriction served to avoid possible artifacts connected
with the boundary at dyic, at which the explicit electrostatics
treatment is smoothly changed into a RF description, but does
not hamper the transferability of the accuracy measurements
to fully periodic systems described by SAMM{ ’;1/ RF.

B. Accuracy measures

To assess the accuracies of the four SAMM algorithms,
which were mentioned above and offer different FMM
approximations for the computation of the DFT/PMM electro-
statics, we compare, on the whole DFT grid, the deviations
of the approximate external potentials @ from associated
exact references @™, For a most compact notation of our
basic accuracy measure, we introduce the average (f)r
= (1/T) %, f(r)) of aquantity f(r,) defined atall I" points y of
the DFT grid. Next, we consider for a given structural snapshot
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the dimensionless root mean square deviation (RMSD)

<((D _ Q)ref)2>
(D, (I)I‘ef - I 11
éj( ) \/(((Dref)2>r _ <(Dref>12_ ( )

of an approximate potential @ from the respective exact
reference @, whose variance provides an intrinsic scale.
Then, our basic accuracy measure (£(®, ®™")) ¢ is the average
(...)s=(1/16) Y s . .. over the snapshot ensemble S.

The accuracy of the external SAMM411 potential @,
which acts on the DFT fragment, is steered by the parameters
® and n [cf. the FMM IACs (3), (5), (7), and the Gaussian
truncation IAC (6)], that is,

d(ry) = O(ry | O, n). (12)

For the computation of the exact references @', the following
parameters were chosen:

O™ (r,) = O(ry | 0, npum). (13)

Because the threshold ® of the FMM IACs (3), (5), and (7) is
set to zero, the minimal distance between finite size clusters,
which is just compatible with a FMM description, diverges.
Therefore, all DFT/PMM interactions are calculated on level
| = -3, 1i.e., the potential generated by the charges and dipoles
of all PMM atoms is evaluated by exact pair expressions at all
grid points y. The choice n = np,y, in the Gaussian truncation
TIAC (6) dictates that the action of the Gaussian sources is
computed on the whole grid at numerical accuracy.

The FMM accuracy can be separately analyzed by consid-
ering the ensemble average deviation Dgypy of potentials @p
and (I)iff, which are generated by point-like sources (o7; = 0).
With the arbitrary choice n = 0 in the Gaussian IAC (6), this
deviation,

Drnm(®,) = (£[@p(©,,0), D5'(0,0)]) ¢, (14)

solely depends on the parameter ®,, which tunes the FMM
IACs (3), (5), and (7) used for the computation of the ap-
proximate potential ®p(r, | O,,0).

Similarly, one can single out the size of the Gaussian
truncation error by considering the deviation

Dgauss(n) = (£[D(0,n), ™0, nyum)]) - (15)

Here, the approximation ®(r,, | 0,n) differs from <I)“"f(ry | 0,
Naum) Solely by using in the IAC (6) a Gaussian truncation
parameter n < nyymy.

Finally, the total error is measured by the ensemble
average deviation

Do(®y,n) = (£[D(O,n), D™ (0, 7num)]) ¢ (16)

of the approximate SAMMX , potential ®(r,), which depends
on the joint action of all IACS 3), (5), (6), (7), from the exact
reference @™/(r,).

We furthermore measure the SAMMX 4.1 errors of the total
forces f,, acting on the DFT atoms u by the average RMSD,

Di(©,,n) = < 3MZZ Fua@yan) = fichy > (17)

S
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measured in units of the average standard force deviation

o= 3MZZ ) (18)

S
where p counts the M DFT atoms and «a the Cartesian compo-
nents x, y, and z. The force components fffl are calculated by
CPMD from the reference potential ®™', whereas the forces
fu.a(®,,n) are calculated from the approximate potential
D(O,,n).

Note that the force errors (17) are calculated, just as
those of the potential [Eq. (16)], in a “realistic” setting, i.e.,
they include the FMM and the Gaussian truncation errors.
Here, one cannot separately address the FMM errors, because
replacing the Gaussian PMM charges and dipoles by point
sources, which would be required for this error measurement
[cf. Eq. (14)], almost surely prevents a convergence of the KS
orbitals.

With the aim of demonstratmg the progress achieved by
the transition to SAMMf{ 1. through the revised interface, we
computed also with the previous SAMM, interface corre-
sponding average deviations D,(SAMM,), x € {FMM, ®,f}.

For x € {®,f}, these SAMM, data serve then as refer-
ences for the accuracy gains

1

A = 5 (6, ) DL (SAMM) 1

of the SAMMX 41,1 algorithms relative to their predecessor.

C. Efficiency measures

For estimates of the computational efficiency, we mea-
sured the total computer time 7y consumed per integration step
in 100 fs DFT/PMM-MD simulations of the dipeptide solvated
in TL6P water, which were executed in the NVE ensemble
with a time step of 0.5 fs. During such a DFT/PMM-MD
simulation, the KS orbitals and the induced PMM dipoles
have to be simultaneously brought to self-consistence. The
DFT computations executed for this task usually take much
longer than the time Ty spent for the FMM-based import and
export of the electrostatics onto and from the DFT grid, which
we also measured.

The sketched timings T, x € {®, f}, were used to
compute efficiency gains

1

Ex(x) = (20)
T(SAMMY""))/T(SAMM,)

of the SAMMX 411 algorithms relative to SAMM,.

The tlmlngs for efficiency checks were obtained using
C = 16 cores making up one node of the SuperMUC Petascale
System at the Leibniz Supercomputing Centre (LRZ) of the
Bavarian Academy of Sciences and Humanities in Munich.
This system was additionally used for scalability checks of the
parallel IPHIGEN IE/CPMD implementation. Here, timings
T¢(C | SAMM 4l l) were measured as a function of the number
Cof employed cores and the parallel speedup is then given by

1

U(C) = )
§1D/T(1 | SAMMET )

2n
T:(C | SAMM
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Analogously, one may define such a speedup Uppr(C) for the
DFT part of the calculation.

IV. RESULTS

The new DFT/PMM interface, which was adjusted to the
SAMMff’ IE , family of algorithms, features two free parameters,
for which suitable values remain to be chosen. One is the size
R of the voxels, which disjointly partition the DFT grid into
small sub-volumes as described in Sec. II C, and the other
the parameter n defined by the Gaussian truncation IAC (6).
Here, the Gaussian cutoff parameter n can affect the accuracy,
by which the external potential ®(r,) is computed. After a
choice ng for n which guarantees that the Gaussian truncation
error Dg,uss(ng) [cf. Eq. (15)] is always much smaller than the
FMM errors Devm(®,) [cf. Eq. (14)], this accuracy should
not depend on R, because, by construction of the FMM IACs
(3), (5), and (7), the FMM errors Drpmm(®,) are generally
independent of cluster sizes and, thus, particularly of the voxel
size Rj.

Figure S20 in Sec. S5 of the supplementary materia
demonstrates that the FMM errors Devm(®,) are actually
independent of R, also in our implementation. With the choice
RA ~ 0.35 A, which is arbitrary at this stage of the discussion,
we will now study the effects of the parameter n on the
Gaussian truncation errors Dgaugs(71).

149

A. Acceptable Gaussian truncation errors

Using the alanine dipeptide molecule solvated in TL6P
water as a typical sample system, we will now choose
a default value ng for n from the requirement that the
Gaussian truncation error Dg,yss(72G) should be at least by two
orders of magnitude smaller than the FMM errors Devm(© ).
This choice seems to be reasonable, because it most likely
guarantees that the accuracy of the DFT/PMM forces, which
act on the DFT atoms, almost exclusively depends on the
accuracy of the FMM approximation.

Figure 5 enables such a choice, because it compares
the FMM errors Devm(®,) of ®(r,) resulting for the three

----------------- Devm(Oy)
-1 L
e Deyvim(®nm)

10—2 -

D Gauss(n)
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FIG. 5. Error Dgauss(n1) as a function of the Gaussian truncation parameter
n defined by the IAC (6) (solid line). For comparison, the dashed horizontal
lines give the FMM errors Dpvm(®,) for the algorithmic variants y €
{f,ma} (green, blue, red; cf. also Fig. S20 in the supplementary material*®).
The dotted line indicates our choice ng=4 for n and the corresponding
DGauss(nG)-
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algorithmic variants y with the n-dependence of the Gaussian
truncation error Dgayss(n) for n € [2.0,5.7]. The Gaussian
truncation IAC (6) implies for smaller values of n that
Gaussian sources (charge/dipole) are substituted by point-
like objects at correspondingly smaller distances and, thus,
render larger truncation errors Dguus(n). Taking the FMM
error Dpym(®,) (red dashed line) of the most accurate
variant SAMMZ’E1 as a guideline, the default ng = 4 for n
immediately follows from the accuracy requirement voiced
above.

B. Optimization of voxel sizes

The choice n = ng has fixed one of the two parameters,
which specify the revised DFT/PMM interface. The remaining
parameter is the voxel size Rj, which does not affect the
accuracy but should influence the computational efficiency as
we have argued in the discussion of the FMM voxel IAC (5).

Equation (20) defines the efficiencies Eg(y), which
are gained, as compared to SAMM,, in the DFT/PMM
electrostatics computation with SAMMff”f |- Figure 6 shows
how the various efficiency gains E¢(x) depend on the voxel
size Rj. According to the displayed data, the gains So(x)
become, independent of the chosen accuracy level y, maximal
for voxel sizes R ~ 0.35 A. The existence of an optimal size
is readily understood by the following consideration:

According to the FMM voxel IAC (5), an increase of Rp
reduces the number of PMM atoms, whose interactions with
the grid charges in a voxel can be efficiently treated by FMM
expansions at level [ = —2. On the other hand, a decrease
of R cubically increases the number of voxels partitioning
the DFT grid, and hence, a likewise increasing number of
FMM expansions has to be handled. These conflicting effects
are balanced at an optimal size Rzpt, which happens to be
~0.35 A. Note that our program automatically partitions a
given grid by voxels, whose size is close to R,™". Section S6
of the supplementary material*® generalizes this partitioning
to rectangular DFT boxes.

With the choices ng=4 and R\” ~0.35 A for the
Gaussian truncation parameter and for the target voxel size,
respectively, the adaptation of the DFT/PMM interface to
the SAMM{ ’1]?1 family of FMM algorithms is complete. The
benefits of this transition can now be judged by considering
the performance gains,

Pe(x) = Ex(x)Ax(x), (22)
8 [
6 5 f
S
W, o
/N
2k a
0.2 03 0.4 05 06
R, /A

FIG. 6. Efficiency gains &g of the import and export of the electrostatic in-
teractions onto and from the DFT grid [cf. Eq. (20)] measured for SAMMff ’]El
(x €{f,m,a}, green, blue, red) relative to SAMMy4 as a function of the voxel
size Rx.



104108-9 Schworer et al.
10 A L4F)
7.5 | k 3r E
g g13 o PY .
5?5.0- | | - 03-12' b
- = 1} .
e

FIG. 7. SAMMX 41,1 efficiency gains Ex(x) relative to SAMMy measured for
the computation ‘of (a) the electrostatic interactions between the DFT and
PMM fragments per integration step (x = @) and (b) an entire DFT/PMM-MD
integration step (x =f).

relative to the previous SAMMy-based interface with respect
to two tasks x, i.e., the computation of the electrostatic
interactions between the two fragments (x = @) and the
computation of the forces acting on the DFT atoms (x = f).
Equation (22) defines the performance gains for these tasks
simply as the product of the efficiency and accuracy gains
Ex(x) [Eq. (20)] and A,(x) [Eq. (19)], respectively. Note that,
in general, accuracy and efficiency are mutually contradicting
aspects of algorithmic performance. We start the discussion
of the achieved progress by considering the efficiency gains

Ex(x).

C. Efficiency gains

The fact that the revised DFT/PMM interface handles the
subtask x = @ more efficiently than its predecessor becomes
immediately apparent, if one looks once again at Figure 6
discussed above. The figure shows for the optimal voxel size
R™ the maximal efficiency gains E¢(x) = 7.5, 5.1, and 3.7
for y =f, m, and a, respectively.

These maximal gains Eq( y) are once more displayed by
Figure 7(a) to enable a visual comparison with the efficiency
gains E¢( y) of the complete force calculation per DFT/PMM-
MD integration step, which are shown in Figure 7(b). The total
efficiency gains E¢( y) additionally cover the times consumed
by the self-consistent computations of the KS orbitals and
of the induced PMM dipoles. They are in the range between
30% (f), 27% (m), and 22% (a) and, thus, are much smaller
than the gains S¢( y) of the DFT/PMM electrostatics subtask.
The latter gains do not transfer into correspondingly large
total gains E¢( y), because the electrostatics subtask consumes
only 3% (f) up to 5% (a) of the total time. Nevertheless,
all SAMMZ IE , algorithms are noticeably more efficient than
SAMM,.

D. Accuracy gains

Now, the general contradiction between efficiency and
accuracy raises the question, whether the noted efficiency
gains are accompanied by accuracy losses. In contrast to this
simple conjecture, Figure 8 demonstrates that the rev151on
of the DFT/PMM interface leads, for all three SAMM41 .
variants, to sizable accuracy gains A,(y) as defined by
Eq. (19) for the computations of (a) the external potential
®(r,) and of (b) the forces acting on the DFT atoms.
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FIG. 8. SAMMff 1,1 accuracy gains A (x) relative to SAMMy resulting for

(a) the potential ®(r,) on the DFT grid (x = ®) and (b) the forces f,, acting
on the DFT atoms (x =f).

The comparison of Figures 8(a) and 8(b) demonstrates
that the accuracy gains Aq(y) achieved for the computation
of the external potential ®(r,) are for all variants y by about
a factor of 1.5 larger than the gains Ag(y) for the force
computation. Thus, the enhanced accuracy of the external
potential is not completely transferred through the self-
consistent computation of the KS orbitals and of the induced
PMM dipoles to the forces on the DFT atoms. Nevertheless, all
SAMMff 1E , forces f,, are more accurate than those calculated
with SAMM, and thls advantage amounts to about one order
of magnitude for the most accurate variant y = a (Fig. 8(b)).

Within the new class of DFT/PMM algorithms, however,
accuracy gains of a variant y should be measured with respect
to the most inaccurate variant y = f. For y € {m, a}, the data
in Figure 8 then yield almost identical relative accuracy gains
concerning the potential ®(r,) and the atomic forces f,,, i.e.,
one finds

Ao x) . Ar(x)
Ag(f)  Ag(f)

Thus, more accurate potentlals which are obtained within
the new class of SAMM* . interface algorithms by using
tighter FMM thresholds (~) < Oy in the IACs (3), (5), and (7),
directly translate into more accurate forces. The relative gains
A x)/ Ag(f) amount to a factor of about 3 for y = m and
about 7.5 for y = a.

The direct translation of the more accurate potentials
®(r,) into more accurate forces f,, which is expressed by
Eq. (23), additionally demonstrates that the accuracy gains
of the forces shown in Figure 8(b) are almost exclusively
due to the revised DFT/PMM electrostatics scheme presented
in Sec. II. The added FMM expansions for the Lennard-
Jones interactions and the newly introduced energy corrections
for the forces,*> in contrast, are of negligible importance
for the shown DFT/PMM accuracy gains Ag(y) (data of
corresponding test calculations not shown).

for y € {m,a}. (23)

E. Total performance gains

Because the adaptation of the DFT/PMM interface to the
new class of SAMMZ’E , algorithms®*** has rendered sizable
gains of accuracy and efficiency, it leads, by Eq. (22), to a
considerably improved performance.

A comparison of Figures 9(a) and 9(b) shows that the
performance gains Pg(x) reached for the subtask of the
DFT/PMM electrostatics computation are by factors 8 (y = f)
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FIG. 9. Total SAMMff’IEI performance gains Px(x)= Ex(x)Ax(x) com-
pared to SAMM] calculated by Eq. (22) from the efficiency and accuracy
gains depicted in Figures 7 and 8.

to 5 (x = a) larger than the total gains P¢( y). All SAMMZ IE |
algorithms outperform their predecessor SAMM, in both
respects. The performance figures resemble the corresponding
accuracy graphs, 8(a) and 8(b), indicating that our algorithmic
revision of the DFT/PMM interface was focused on enhanced
accuracy rather than efficiency.

Figure 9(b), in particular, demonstrates that the total
DFT/PMM performance of SAMMZ’E] beats that of SAMM,
by about one order of magnitude, whereas the gains of total
performance are smaller for the other variants y € {f, m}.
Hence, SAMMZ’,I;:’1 is apparently the best choice for DFT/
PMM-MD simulations with the IPHIGENIE/CPMD program
package, because its accuracy is better by factors 7.5 and
2.4, respectively, than that of the other variants y € {f,m},
whereas its efficiency is only by 7% and 3% smaller
(cf. Figs. 8(b) and 7(b)). Note that these conclusions equally
well apply to the SAMMi’E’1 algorithm, which applies a more
accurate FMM expansion to the dispersion attraction, because
the associated increase of computational effort is negligible in
a DFT/PMM setting.

F. Scalability of the MPI/OpenMP-parallel
implementation

Despite the considerable progress achieved by the inte-
gration of the electrostatic interactions between the DFT
and PMM fragments of a simulation system into a multiple-
scale FMM setting, DFT/PMM-MD simulations of large DFT
fragments embedded in extended PMM condensed phase
environments still pose huge computational tasks. Taking
advantage of parallel processing on many-core computers is
mandatory, if one wants to make such tasks manageable.

Therefore, we have spent some effort to jointly parallelize
the combination of the program packages IPHIGENIE (PMM-
MD) and CPMD (DFT) in such a way that it becomes suitable
for HPC systems. For this purpose, we have thoroughly revised
the technical aspects of the implementation.

Here, the FORTRAN code of CPMD is compiled as a
library and linked to the C program IPHIGENIE into one
executable, which allows a smooth and robust startup. During
the startup phase, the MD program IPHIGENIE calls the
FORTRAN routines of CPMD to set up the DFT calculation.
In the course of a simulation, CPMD is invoked at each
integration step through subroutine calls and manages the
exchange of the necessary data with IPHIGENIE by calling C
routines. Different numbers of MPI processes and/or OpenMP
threads can be assigned to the PMM and DFT calculations,
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FIG. 10. Speedups Ui(C) of a DFT/PMM-MD integration step (red) using
C cores are compared with corresponding speedups Uppr(C) of the DFT
subtask (black). Circles refer to a pure MPI setup, whereas squares refer to
a hybrid parallelization employing four OpenMP threads (OMP 4) per MPI
process, whose number then is C /4. The gray dashed line marks the ideal
linear scaling.

respectively, allowing one to independently tune optimal
parallel setups for each of the two cooperating programs.

Although our sample DFT/PMM system is relatively
small for HPC applications, which are feasible with a
machine like the SuperMUC addressed in Sec. III C, we have
nevertheless employed it to measure the total speedup Ue(C)
of parallel processing gained with SAMMZ”?’ , by using C CPU
cores. This speedup is defined by Eq. (21) and is compared in
Figure 10 with the corresponding speedup Uppr(C) achieved
by the well-scaling program CPMD for the DFT subtask.

It is the most important message of Figure 10 that the total
speedups Us(C) of IPHIGENIE/CPMD are almost identical to
the DFT speedups Uppr(C) of CPMD for all core numbers
C in the considered range. This is a consequence of the
fact that IPHIGENIE and the DFT/PMM interface parallelize
sufficiently well such that the computational effort required
for the DFT subtask still dominates the total effort at large
C. As a result, one can execute, e.g., a 30 ps DFT/PMM
trajectory of our sample simulation system within one day,
such that three independent trajectories suffice’” to obtain a
well-resolved infrared spectrum of alanine dipeptide solvated
in water by Fourier transforming the trajectory u(t) of its DFT
dipole moment.

V. SUMMARY

We have adjusted the DFT/PMM interface,® which inte-
grates the grid-based DFT program CPMD into the PMM-MD
simulation program IPHIGENIE, to the recently suggested®*+?
class of hierarchical FMM algorithms called SAMMff, ’;1,
which represents the FMM forces as negative gradients of
the FMM energy and replaces the previous cutoff of the 12-
6 Lennard-Jones interactions by FMM expansions of g’th
order for the dispersive and of first order for the repulsive
contributions.

For the purpose of this adjustment, we have partitioned
the electron density of the DFT fragment, which is represented
within the DFT box of volume V by the grid charges g,, into
hierarchically nested charge clusters. The clusters at the lowest
level of this hierarchy (I = —3) are simply the grid charges g, .
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One level above (I = —2) these charges are the contents of
equally sized voxels V;, ¢ V, whose radius of gyration is about
0.35 A. At the next higher level (I = —1) of the DFT charge
cluster hierarchy, the voxels V, are associated to the DFT
atoms u by the minimum distance criterion and are merged
into atomic portions V,, of the box volume V. These partial
volumes V,, harbor the atomic charge distributions C,, with
radii of gyration [Eq. (10)] of about 1.2 A. The characterized
DFT atoms are combined into predefined SUs, adaptively
formed clusters of SUs etc. making up the SAMM object
hierarchy®* on levels / > 0. The DFT atoms hand their sizes
up to these higher levels by the procedures described in Sec.
S2 of the supplementary material.*’

Given the hierarchically nested levels of (DFT) charge
distributions sketched above, the revised interface simply ap-
plies the top-down FMM approximation strategy characteristic
for SAMM{ ’;1. Starting at the highest level of the object
hierarchy, which harbors the largest clusters, the (average)
apparent cluster sizes ¢ are compared with the threshold
size ©, to decide whether the non-bonded interactions can
be approximated at the given hierarchy level / by FMM
expansions. The corresponding FMM IACs employed for
these decisions are given by Egs. (3), (5), and (7).

At the lowest level (I = =3), the DFT grid charges ¢,
interact with charges and induced dipoles of PMM atoms i,
which are represented as Gaussian distributions of widths o; to
avoid artificial perturbations of the electron density. Already at
the next higher level (I = —2), these distributions are replaced
by point objects, and the external potential ®(r,) generated by
the point charges and induced point dipoles within the voxel
Vi is computed by FMM. To keep the associated Gaussian
truncation error by two orders of magnitude smaller than the
FMM errors, the additional IAC r;; > 4 o; has to hold at level
[ = -2 [cf. Eq. (6)].

For the most accurate SAMMff’ IE , variant defined by y = a
(i.e., by the FMM threshold ®, = 0.17), we obtained for the
revised DFT/PMM interface a performance which beats that
of its predecessor by one order of magnitude as measured for
a sample DFT/PMM simulation system comprising 22435
charges and 4487 induced dipoles in the aqueous PMM
environment and 22 atoms in the DFT model of the solute
alanine dipeptide. Here, the forces on the DFT atoms are by
about the same factor more accurate than previously, although
also the overall computational speed has been enhanced by
22%. This speedup is close to the limit, because the revised
DFT/PMM interface and the PMM part of the computation
meanwhile consume less than 8% of the total computation
time even for the given quite large PMM fragment, whereas
the much smaller DFT part takes all the rest.

As long as the Born-Oppenheimer MD simulation of the
DFT fragment is manageable with CPMD on a HPC machine,
also a DFT/PMM-MD simulation of a hybrid system remains
manageable with IPHIGENIE/CPMD, because both programs
are now integrated into a single parallelized program, in which
CPMD is the bottleneck. The previous DFT/PMM interface,
in contrast, had none of the technical features required for
the parallel use of many cores on a HPC system. Thus,
IPHIGENIE/CPMD is now ready for large-scale and stable
MD applications.
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IPHIGENIE will be published in the near future (Mathias
et al., in preparation). But already, now the program is
available for download®® together with a preliminary docu-
mentation and several sample simulation systems. Those
parts of the DFT/PMM interface, which are integrated in
CPMD, are available online as a patch to the current>> CPMD
version 3.17.1 and will be contained in the next forthcoming
distribution of CPMD.

We would like to note that the presented interface
between the PMM-MD driver IPHIGENIE?® and the grid-
based DFT program CPMD? should be transferable to other
grid-based DFT programs at a manageable programming effort
and without posing conceptual difficulties. Moreover, such
a transfer, specifically to the DFT program QUICKSTEP,*
offered by the program suite CP2K®' would be highly
desirable, because it treats hybrid functionals like B3LYPS%63
much more efficiently®*® than CPMD.
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enthélt zusétzliche Informationen zum vorangestellen Haupttext. In Abschnitt S1 wird
eine konservativere Wahl der bei der Berechnung der Gyrationsradien eingesetzten Ge-
wichtsparameter untersucht, Abschnitt S2 beschreibt detailliert die effiziente hierarchi-
sche Berechnung von Gyrationsradien. In Abschnitt S3 wird die Behandlung der elektro-
statischen DFT /PMM-Wechselwirkungen fiir das neue Voxel-basierte Kopplungsschema
dokumentiert, und in Abschnitt S4 die durch Anwendung des nochmals iiberarbeiteten
SAMMX-Algorithmus [127] verbesserte Energieerhaltung bewiesen. Abschnitt S5 zeigt,
dass der FMM-Fehler durch die Konstruktion des Verfahrens unabhéngig von der Gro-
Be der Voxel ist. In Abschnitt S6 wird schlieBllich der allgemeine Fall nicht-kubischer
quaderformiger Voxel diskutiert.
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S1. ALTERNATIVE WEIGHTS

In Section IT C 2 of the main text we have introduced weights w., for the grid points v by
comparing the grid charges g,, which represent the electron density of the given molecule,
with the constant reference grid charge @Q./I" representing the total electronic charge Q.
uniformly distributed on the I' grid points. According to Eq. (8) all grid points with ¢, >
Qe/I" get the weight w, = 1 defining the interior region of the electron charge distribution
pe(r). The remaining grid points get the weights w., = ¢,/(Qe/I'), which rapidly decay with
increasing distance from the surface surrounding the interior region of p(r).

The specific choice of the surface separating the interior and exterior regions of pe(r)
accomplished by Eq. (8) is somewhat arbitrary, of course. Hence, the radii of gyration
(10) of the DFT atoms, which depend through the normalized atomic weights ply defined
by Eq. (9) on the weights w.,, inherit this arbitrariness. Consequently also the algorithmic
properties mediated by the atomic IAC (7) are affected.

With the aim of checking the algorithmic consequences of our choice (8) we additionally
considered other definitions of the separating surface, which are defined as an one-parameter

manifold by the modified weights

. 1 for ¢, > cQ./T
W (c) = .
¢,/ (cQe/T) else

Obviously, one has w,(1) = w,. Choices ¢ < 1 for the scaling parameter ¢ lead to a larger

(S24)

volume of the interior space until it eventually, in the limit ¢ — 0, fills the whole DFT box.
As a result also the atomic radii of gyration R, should increase with decreasing c.

To provide an example, a comparison of Figure S11, which employs the value ¢ = 1/5000
to define the interior space of alanine dipeptide by w, = 1, with Fig. 4 in the main text,
which is based on ¢ = 1, demonstrates that the volume of the interior space actually increases
with decreasing c. Next, Figure S12 illustrates the effects of this increase for choices ¢ from
the range [107%, 1] on the radii of gyration R, of the three DFT atoms C, Hy, and Hy, which
are labeled in Fig. S11 .

Atom C is surrounded by other covalently linked atoms. Therefore its tessellation volume
Vi is completely inside the gray surface shown in Fig. S11. Because the electron density in
Ve is large, this volume will carry relatively large weights w, (c) for all choices ¢ < 1 and

the associated radius of gyration R¢ is independent of ¢. In contrast, the atoms H; and Hs
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FIG. S11. An alanine dipeptide molecule in a cubic DFT box of side length 14 A harboring the
DFT grid. The gray surface encloses all those grid points, which contribute with maximal weights
w,(1/5000) = 1 to the computation [Egs. (9) and (10)] of the radii of gyration R, of the DFT
atoms. As compared to Fig. 4 in the main text, which shows the corresponding surface for @, (1),
the interior region of pe(r) has become larger.

are localized near the molecular surface such that their tessellation volumes contain many
grid points outside the gray surface. Thus, changing this surface by variation of ¢ will alter
many of the weights associated to H; and H, and, therefore, the respective radii of gyration.
According to Figure S12 these radii monotonously decrease with increasing ¢ < 1 starting
from maximal values at ¢ = ¢y = 107®, which lead to w,(cp) = 1 for all ~.

For increasing ¢ and correspondingly decreasing radii of gyration R, the limiting distance
d,, 1 dictated by the atomic IAC (7) becomes smaller and the potential generated by more
and more nearby PMM atoms ¢ can be efficiently covered by the FMM expansions at the
atomic level | = —1. Thus, the accuracy of ®(r.) should conversely decrease with growing c.
Using the error Dg (O, ) defined by Eq. (16) as a measure, Figure S13 demonstrates that this
is actually the case for all three SAMMZ’E , variants (x € {f,m,a}). The figure additionally

shows that the errors Dg (0, ) of the fastest variant x = f are almost everywhere by a factor
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FIG. S12. Radii of gyration R, for three DF'T atoms C, H;, and Hy as a function of the scaling
parameter c.
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FIG. S13. The potential errors Dg(©,) as functions of ¢ for the three SAMM}:E | variants
(x € {f,m,a}, green, blue, red). The dashed black line indicates Dy (SAMMy4) of the predecessor
algorithm. Error bars represent standard deviations.

of about 3.5 larger than those for y = m and about 10 times larger than those for y = a .

The potential error Dg(SAMMy) of the previous SAMM, interface (cf. Sec. 1ITA) is
represented in Figure S13 by a black dashed line. For all xy and almost all choices of the
scaling parameter ¢ this error is much larger than the errors Dg(©,). Even at ¢ = 1 it
is still slightly larger than the error Dg(©f) of the most inaccurate and supposedly most
efficient variant SAMMZ’E’I. Because the previous SAMM, based DFT/PMM interface had
been accurate enough for stable DFT/PMM-MD simulations, the choice ¢ = 1 seems to
be reasonable. It implies quite small radii of gyration R, for the DFT atoms, which are

favorable for an enhanced efficiency.

SAMM, T
64 i
? .
= :
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<) H
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FIG. S14. The errors D(0O,) of the forces on the DFT atoms, as functions of ¢ for x € {f,m,a}
(green, blue, red) and the corresponding error for the predecessor algorithm (black).
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According to Figure S14 also the errors Df(©,) of the forces on the DFT atoms, which
are defined by Eq. (17), increase with the scaling parameter ¢. Varying ¢ from ¢ to one, the
increases of the force errors amount at most to a factor of about 1.7. Thus, these increases
are by a factor of about six smaller than those of the errors Dg(0, ) in Fig. S13.

Summarizing we may state that the choice (8) for the sizes of the DFT atoms, which cor-
responds to ¢ = 1 in Eq. (524), guarantees that forces on the DFT atoms are for SAMMZE 1
at least as accurate as those obtained with SAMM,. The correspondingly small R, render,

without significant loss of accuracy (cf. Fig. S14), more efficient algorithms than the larger

R, following from ¢ < 1 (data on the efficiency & as a function of ¢ not shown).

S2. HIERARCHICAL CALCULATION OF RADII OF GYRATION

As explained in Sections I and II of the main text, the SAMMZ"’E , algorithms hierarchically
check in a top-down fashion by the IAC (3), whether the average aspect ratio (94, +9Y5,)/2
of a pair of clusters A and B is small enough to allow a computation of interactions on a
given cluster level [. According to Eq. (4) the aspect ratio J4,(r) of a cluster A linearly
depends on its radius of gyration R4;.

Here we now will show that R4 is determined by gyration tensors G(ﬂ, of order n = 2,
which can be efficiently calculated in a bottom-up fashion, just like electrostatic or dispersion

multipole moments,? from the gyration moments G((:(), of its children a € A.

FIG. S15. Cluster geometry and vector notation.

Consider, as shown in Figure S15, a cluster A consisting of N4 objects ¢ at the positions
r;, an arbitrary reference point u, and the local position vectors a; = r; — u. Furthermore
assume that the points r; carry statistical weights 1 > p; > 0 with ). p; = 1, which derive

from certain unnormalized weights w; > 0 by p; = w; /W4 with the norm

Wa=) w. (S25)
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In Section ITC 2 of the main text we have employed analogous weights w., and their normal-
ized counterparts p! for the points v of the DFT grid within the atomic volume V), to define
by Egs. (8)-(10) the radius of gyration for a DFT atom p. The following general discussion
contains this special case for ¢ =~ and p; = pl.

For the hierarchical bottom-up computation of the radii of gyration we introduce the

local gyration moments

Gy =D pial, (S26)

where the symbol a(n) is the n-fold outer tensor product of a; with itself (Ref. 1 thoroughly

explains the employed tensorial notation). Then the radius of gyration

(S27)

with respect to u of the objects i € A can be expressed in terms of the second order gyration

moment as

R, = y/trace (Gf}u). (528)

Just like the multipole moments! also the gyration moments (S26) can be easily shifted
to another reference point, e.g. from the origin 0 to a local reference point u. Choosing

u = 0 yields the gyration moments

G4 = sz 2 (529)

with respect to the origin. Trivially, the zero’th order moments are independent of the
reference point, i.e. G(O) = GE4)0 = 1. Inserting a; = r; — u into the definition (S26) of the

local gyration moments one finds for the first moment
(1) =-—u+ Zp, r;. (S30)

According to the definition (S29), the second term is the first order gyration moment ij’)o

with respect to the origin and is identical to the center of geometry of cluster A as calculated

in the global coordinate system, i.e. GE41,)u = —u—i—GS’)O. Analogously one finds for the second
moment
G(/i)u =u®u-—-u® Gfi)o - GS,)O ®u+ G(jfo. (S31)
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Thus, if one calculates gyration moments G(ﬂ, in a global coordinate system, then the local
moments G%}u are easily obtained from the vector u marking the local reference point.
Now consider a second cluster B with the gyration moments ng,)o and with AN B = (.
The radius of gyration of the super-cluster A U B with respect to the reference point u can
now be conveniently computed from the second moments GE427)H and Gg?u, obtained through

Eq. (S31) as

Ry = \/ trace (WAGX{I + WBGEBQ}U) J(Wa+Wg), (S32)
where W, and Wy are the norms defined by (S25). This argument is readily generalized to
more than two clusters forming a super-cluster.

For charge distributions representing atomic clusters at the SAMM levels [ > 1, which
may contain also mixtures of PMM and DFT structural units, weights w, = 1 are attached
to all atoms a such that the norm W, belonging to a cluster A is simply the number N4 of
its atoms.

As compared to the analogous calculations® for constructing and shifting the multipole
tensors M(™ | the computational effort for the gyration moments G is almost negligible,

because the corresponding expressions are simpler and are only required up to second order,

whereas the M are computed up to order n = 4.

S3. DFT/PMM ELECTROSTATICS: ENERGY CONSERVING FMM

It is a key feature of the SAMMZ& , family? of FMM algorithms that the calculated
forces do not only obey Newton’s reaction principle,! but can also conserve the energy.® For
grid-based DFT/PMM combinations a violation of energy conservation can be caused by
so-called grid forces, which arise whenever a DFT atom moves relative to the DFT grid.
These violations can be avoided, if the grid within the DF'T box represents a cut-out part
of an infinite and spatially fixed grid.* We adopt this procedure together with the most
recent energy conserving algorithms® SAMMZ’;:’ , for the computation of the electrostatic
interactions between the DFT and PMM fragments.

As is explained in Section II C of the main text, in the DFT fragment the lowest cluster
level | = —3 consists of small voxels A, which disjointly partition the DFT grid and contain

corresponding parts of the fragment’s electron density. Utilizing a Voronoi tessellation,

atomic sub-volumes V), of the grid are assigned to the DFT atoms p by the unification of

S7



Supplemental Material Schworer et al.

all nearest neighbor voxels A(x). The unification of all atomic volumes V,,, which belong to
a structural unit®> u, i.e. to a predefined cluster of atoms p(u), then define the grid portion
V,, assigned to this unit and so forth.

The algorithms employed for the FMM computation of the electrostatic interactions be-
tween DF'T and PMM units or between larger atomic clusters have been previously described
in great detail.>* Thus it solely remains to be specified, how the electrostatic interactions
of DFT voxels A(u) at levels | = —3, —2 and of DFT atoms p at level [ = —1 with PMM

atoms are calculated.

1. Import of the PMM Potential ¢

FIG. S16. Evaluation of ® at a grid point . The construction of the level boundaries (dashed
circle segments) is sketched in Section II C of the main text. See the text for further explanations.

Figure S16 explains how the external PMM potential ® is computed at the highlighted
grid point 7, which belongs to the voxel A in the lower right corner of the DFT box. This
voxel is part of the volume V, (gray shaded), which contains the charge distribution C,
associated to the DFT atom p (large cross). Three PMM atoms i, j, and k (large gray dots)
illustrate increasingly distant sources of ®(r.).

The PMM atom i is too close to the center ry (small cross) of the voxel A to pass the FMM
voxel IAC (5). Therefore its contribution to ®(r,) is exactly calculated at level [ = —3 from
the potentials of its Gaussian charge and/or induced dipole distributions (dotted arrow).

The PMM atom j is sufficiently distant to pass this IAC [and additionally the Gaussian
truncation IAC (6), which is not illustrated by Fig. S16 but by Fig. 2], but not distant enough
from r,, to pass also the atomic IAC (7). Consequently, coefficients of a fourth order Taylor

expansion at the center of the voxel A are calculated at level | = —2 from the potentials
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of the charge and/or induced dipole at the PMM atom j (dashed arrow), which are now
treated as point objects. This expansion is evaluated at r., to approximate the contribution
of j to ®(r,) (short solid arrow).

Because the most distant PMM atom k passes the atomic IAC (7), fourth order Taylor
expansion coefficients are calculated at level [ = —1 from its charge and induced dipole at
r,, (dashed-dotted arrow). By a shifting procedure! (long solid arrow) these coefficients are
transferred to the voxel center ry, where they are added to the Taylor expansion coefficients
generated by j. Hence the evaluation of the thus complemented Taylor expansion around r)
at r., properly accounts also for the electrostatic action of the PMM atom k. In FMM the top-
down inheriting of Taylor expansion coefficients from higher to lower levels is hierarchically

repeated.!*

2. Electrostatic Action of the DFT FElectron Density

Once ® has been calculated at all grid points and the KS orbitals are converged, the
DFT electron density p. is available through the grid charges ¢,. The associated Hellmann-
Feynman forces on the charges and induced dipoles of the PMM atoms are calculated by
operations, which represent exact inversions of the above import procedure.* Thus, these
operations can be visualized by simply inverting all arrows in Fig. S16, which then acquire
a different but complementary meaning.

The action of the charge ¢, located on the highlighted grid point 7 in Fig. S16 on the PMM
atom i is obtained by calculating at level [ = —3 the potential (and its derivates) generated
by it (inverted dotted arrow) at the atomic position r; after shifting? the Gaussian shapes
of the ¢; and/or p; to ¢,.

For interactions with the PMM atom j on level [ = —2, a multipole expansion up to order
p = 4 of all grid charges ¢, enclosed by the voxel X is performed around r, (inverted solid
arrow from r, to ry). From these voxel multipole moments the potential (and derivatives)
are computed at the PMM atom j (inverted dashed arrow), which render contributions of
the g, € A to the energy of and forces on atom j.

The multipole moments of all voxels A € V), are subsequently shifted (inverted long solid
arrow) from the original reference points ry to the position r, of the DFT atom p, where

they are summed up to yield the multipole moments of the atomic charge distribution C,,.
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Then, the potential (and derivatives), which are generated by these multipole moments,
are calculated at the PMM atom £ (inverted dashed-dotted arrow; level [ = —1) to obtain
the atomic energy and force. This procedure is hierarchically repeated at all higher levels
[ >0.54,

The apparent symmetry of Taylor and multipole expansions leads, in combination with
the recent extensions,® to a Hamiltonian DFT/PMM electrostatics coupling scheme based

on SAMMYP

,q,1

1,4

expansions, ** as will be verified below.

S4. CONSERVATION OF ENERGY

Our DFT/PMM approach guarantees energy conservation as long as the association of
atoms or clusters to hierarchy levels is unchanged, because it employs the most recent
algorithms SAMMZ{? 1, in which the forces are calculated as exact negative gradients of
the energy.® Violations solely occur, whenever the dynamics causes a migration of atoms
within the hierarchical tree of atomic clusters, because then the correspondingly altered
approximation entails small temporal discontinuities of the calculated forces, which generate
a certain amount of algorithmic noise.?

In earlier versions of SAMM?"? the forces obeyed Newton’s third law but represented
only approximate derivatives of the energy. Here, relative motions of clusters as measured
by derivatives of the vector connecting their centers were neglected. This approximation
entailed small violations of energy conservation. In a DFT/PMM-MD simulation, in which
the cluster hierarchy and the connecting vector were kept fixed, these violations were shown
to be absent.? In the following we employ a DFT/PMM simulation system, which features
sizable relative motions of atomic clusters and concurrently an invariant association of atoms
to FMM interaction levels. The combination of our revised interface with the most recent

SAMM version® should conserve the energy for such a system.

A. Methods

Figure S17 depicts a DFT/PMM sample simulation system specifically designed to check
the above claim. It comprises one alanine dipeptide molecule making up the DFT fragment

and three polarizable TL6P water molecules® representing the PMM fragment. The motions
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) . ﬂl \‘{

FIG. S17. DFT/PMM simulation system for a check of energy conservation in which the alanine-
dipeptide molecule represented the DFT fragment and three TL6P water molecules® the PMM
fragment.

of the molecules were constrained by spatially fixed harmonic potentials (of spring constant
1.0 keal/mol A?), which were attached to the C, atom of the alanine dipeptide and to the
O atoms of the TL6P water molecules. The intermolecular distances were chosen such that
interactions between the DFT fragment and the various PMM atoms were always calculated
at the same FMM levels [ = —3, ..., 0, respectively, during the whole 250 fs simulation. As
a result, all associated algorithmic features were probed. The average temperature was 414
K, and the convergence criteria were tightened to xyppr = 107® and ypum = 107° D. The
remaining aspects of the simulations are described in Section IITA.

Energy conservation was checked using the so-called shadow Hamiltonian technique,’
which derives from the fact that a numerical integration of a Hamiltonian dynamics with
the Verlet algorithm® does not conserve the energy E but a different temporal average
quantity (E(t|At)),, which depends on the integration time step At and on the width 7 of
the employed time window. In the limits At — 0 and 7 — oo one has [(E(t|At)), — E] ~
(At)? — 0.

For a MD simulation yielding the energy trajectory E(t|At) this modified conservation

law can be verified by checking whether the following equation”
E(t|At) = (E(t| At), + f(H)At* + O(At?) (S33)

holds with a shape function f(¢), which is independent of At. Then the scaled energy

fluctuations

AE(t|At)/AL = [B(t| At) — (B(t]| Ab),] /AL
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are given by
AE(t|At)/AY = f(t) + O(At?) (S34)

with the standard deviation

oar = V(f2(1)) A + O(AtY), (S35)

which vanishes in the analytical limit At — 0.

If our implementation is correct and, hence, yields energy conservation within the above
simulation setup, then the DF'T/PMM energy trajectories obey Eqs. (S34) and (S35). If two
simulations use different time steps (e.g. Aty and Aty/2) and otherwise start at identical
conditions, then by Eq. (S34) the calculated shape functions f(¢) should be identical and
by Eq. (S35) the standard deviation oap should decrease quadratically with At.

B. Results

Figures S18a and S18b show the scaled energy fluctuations AE(t | At)/(At/Aty)? ob-
served in the sample simulations for the time steps Aty = 0.5 fs and Aty/2 with the
previous uncorrected SAMMZ”?1 and the energy-gradient-corrected SAMMZ’E1 algorithm,
respectively. The fluctuations observed for At = Aty are drawn by a red solid line, the

scaled fluctuations 4AE(t | At) observed for At = Aty/2 by a green dotted line.

— Al " ' ' '—At:'O.Sf
At=0.51s b) S

i a) cee At=0.251s ]

AE(1 |AD)/(At /A1) [10°% keal/mol]
AE(t |A)/(At /Aty)* [107% keal/mol]

0 50 100 150 200 250 0 50 100 150 200 250
¢ [fs] t [fs]

FIG. S18. Fluctuations of the total DFT/PMM energy during a 250 fs MD simulation of alanine-
dipeptide (DFT fragment) surrounded by three PMM water molecules for different time steps
At = 0.5 fs (red) and At = 0.25 fs (dotted green): a) previous uncorrected SAl\/Il\/Ifl’ﬁ)’1 version,? b)

energy-gradient-corrected® SAMMZ’EJ.
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After scaling the red and green fluctuations shown in Fig. S18a quickly deviate from
each other indicating the violation of energy conservation by SAMMZ’SJ. In contrast, the
fluctuations depicted by Fig. S18b exhibit the expected almost perfect match. Hence, for the
given sample system the energy is conserved by the energy-gradient-corrected SAMMZ’EJ.
The energy-corrected versions SAMMZ:{S 1, therefore, have become our algorithms of choice
for DFT/PMM simulations with the most accurate variant SAl\/ﬂ\/IZ:?EJ | representing our new
default. Furthermore the comparison additionally demonstrates that the relative motions of
cluster centers is the only cause for the violation of energy conservation with the previous

SAMM, based DFT/PMM interface, which is apparent in Fig. S18a.

0.04

o,g [kcal/mol]
o
N

0.2 O.l4 0.l6 d.8
At [fs]

FIG. S19. Standard deviations oap of the energy fluctuations AFE(t|At) for different time steps
At € {0.125,0.250,0.500,1.000}. The gray dashed lines shows a fitted parabola.

According to Eq. (S35) the standard deviation oap of the energy fluctuations AE(t | At)
should vanish quadratically with the time step size At. Figure S19 shows that this is
actually the case already for the least accurate variant SAMMZ’E’1 as demonstrated by MD
simulations with the time steps At € {0.125,0.25,0.50,1.00} of alanine-dipeptide (DFT
fragment) surrounded by three PMM water molecules. Small deviations from the fitted

parabola are most likely due to the limited statistics of the sample trajectories (250 fs).
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S5. THE SAMM)}, ERROR Dgyvu IS INDEPENDENT OF R,

Section IV C of the main text starts with the claim that the accuracy, at which the revised
DFT/PMM interface computes the grid potential ®(r,), does not depend on the voxel size
R,. For a check of this claim consider Figure S20, which demonstrates that the FMM errors
Dpavini(©y) [cf. Eq. (14)] of the three SAMMZ’E , variants are actually independent of the

voxel size R,.

s | I LT Jo |

210

= 1 11 I fe I
IT II I e, |

FIG. S20. Errors Dpvm(©y) defined by Eq. (14) of the SAI\/IMZf:E1 algorithms (y € {f, m, a},
green, blue, red) are independent of the voxel size Ry .

S6. RECTANGULAR VOXELS

The main text is restricted to the discussion of cubic DFT boxes and cubic voxels. For
non-cubic but still rectangular DFT boxes, also the voxels, which commensurably partition
the DFT grid, are rectangular (cf. Sec. IIC1).

To estimate the sizes of the rectangular voxels, we disregard the enclosed charge densities,
just like we did already in the cubic case. Thus, we choose all voxels of identical shape and
size as prototypically represented by a rectangular volume element V = [,[,[, centered at
the origin. Here, the side lengths [, of the voxels are chosen such that they are as close as
possible to Rf\pt ~ 0.35 A and that they are integer divisors of the associated length L, of
the DFT box. The geometric radius of gyration Ry = \/W of a voxel is the standard

deviation of the position vector r within V', where (...),, denotes the average over V. Note

that Eq. (S27) is, with p; = 1 and u = 0, a discretized version of this expression. For a
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rectangular volume element one gets

1
R=\/(B+5+12)/3, ($36)

which reduces for a cubic voxel with I, =1, =1, =1to R =1/2.
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2.3 Beschreibung der IR-Spektren von Amidgruppen mit DFT/PMM-MD

2.3 Beschreibung der IR-Spektren von Amidgruppen
mit DFT/PMM-MD

Die nachfolgende abgedruckte Publikation

A Polarizable QM/MM Approach to the Molecular Dynamics of
Amide Groups Solvated in Water

Magnus Schwérer, Christoph Wichmann und Paul Tavan
J. Chem. Phys. 144, 114504 (2016),

die ich zusammen mit Christoph Wichmann und Paul Tavan verfasst habe, beschreibt
die Entwicklung und Evaluierung des GP6P-Wassermodells, die Optimierung der Lennard-
Jones-Wechselwirkungen zwischen DFT- und PMM-Fragment, und die Berechnung der
IR-Spektren von isolierten bzw. von in GP6P gelosten NMA-Molekiilen aus ausgedehn-
ten DFT-MD bzw. DFT/PMM-MD Trajektorien.
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A polarizable QM/MM approach to the molecular dynamics of amide groups

solvated in water

Magnus Schwérer,® Christoph Wichmann,? and Paul Tavan®
Lehrstuhl fiir BioMolekulare Optik, Ludwig-Maximilians Universitit Miinchen, Oettingenstr. 67,
80538 Miinchen, Germany

(Received 29 January 2016; accepted 26 February 2016; published online 21 March 2016)

The infrared (IR) spectra of polypeptides are dominated by the so-called amide bands. Because they
originate from the strongly polar and polarizable amide groups (AGs) making up the backbone, their
spectral positions sensitively depend on the local electric fields. Aiming at accurate computations of
these IR spectra by molecular dynamics (MD) simulations, which derive atomic forces from a hybrid
quantum and molecular mechanics (QM/MM) Hamiltonian, here we consider the effects of solvation
in bulk liquid water on the amide bands of the AG model compound N-methyl-acetamide (NMA). As
QM approach to NMA we choose grid-based density functional theory (DFT). For the surrounding
MM water, we develop, largely based on computations, a polarizable molecular mechanics (PMM)
model potential called GP6P, which features six Gaussian electrostatic sources (one induced dipole,
five static partial charge distributions) and, therefore, avoids spurious distortions of the DFT electron
density in hybrid DFT/PMM simulations. Bulk liquid GP6P is shown to have favorable properties at
the thermodynamic conditions of the parameterization and beyond. Lennard-Jones (LJ) parameters of
the DFT fragment NMA are optimized by comparing radial distribution functions in the surrounding
GP6P liquid with reference data obtained from a “first-principles” DFT-MD simulation. Finally, IR
spectra of NMA in GP6P water are calculated from extended DFT/PMM-MD trajectories, in which
the NMA is treated by three different DFT functionals (BP, BLYP, B3LYP). Method-specific fre-
quency scaling factors are derived from DFT-MD simulations of isolated NMA. The DFT/PMM-MD
simulations with GP6P and with the optimized LJ parameters then excellently predict the effects
of aqueous solvation and deuteration observed in the IR spectra of NMA. As a result, the methods
required to accurately compute such spectra by DFT/PMM-MD also for larger peptides in aqueous

solution are now at hand. © 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4943972]

. INTRODUCTION

Hybrid approaches combining a quantum mechanical
(QM) description of a solute molecule with a molecular
mechanics (MM) force field for its solvent environment'
have become a popular and powerful tool for the theoretical
investigation of (bio)molecular properties.”* As compared
to pure QM molecular dynamics (MD) simulations>~ such
hybrid QM/MM techniques allow to extend the sizes of the
simulated systems and the accuracy of the statistical sampling
by orders of magnitude.

Building upon and substantially revising earlier meth-
ods®’ a Hamiltonian hybrid approach for MD simulations
has been recently presented,'®!" which combines a density
functional theory'>!3 (DFT) treatment of a solute molecule
with a polarizable molecular mechanics (PMM) force field
for its solvent environment by coupling the parallelized grid-
based plane-wave DFT code CPMD'* to the parallelized
PMM-MD program IPHIGENIE.!> This method computes
the interaction forces between the DFT and PMM fragments
efficiently from the DFT/PMM interaction Hamiltonian by
employing an energy conserving fast multipole method called

M. Schwérer and C. Wichmann contributed equally to this work.
b)Electronic mail: tavan @physik.uni-muenchen.de

0021-9606/2016/144(11)/114504/16/$30.00

144, 114504-1

the structure adapted multipole method (SAMM).!®1® Its
present implementation enables stable hybrid MD simulations
on multi-core high-performance computing systems.

Just like its early DFT/MM predecessor,® which had been
restricted to common non-polarizable MM force fields, also
the new DFT/PMM approach has been particularly designed
to calculate the infrared (IR) spectra of biomolecules in
condensed phase environments (for reviews over previous
DFT/MM studies addressing such IR spectra see Refs. 19-21).
In this contribution, we will focus on the IR spectrum of N-
methyl-acetamide (NMA) in aqueous solution (the chemical
structure of NMA is depicted in Figure 1), which has been
extensively studied by QM/MM methods embedding NMA
either in the bulk liquid®>* or in water clusters®® and by
pure QM approaches toward NMA in the liquid®?*?” and in
clusters?83! (for a recent review of available literature see
Ref. 31). NMA in water is important, because it represents
a minimal model for the amide groups (AGs) making up
the backbones of the polypeptides and because the native
environment of these biopolymers predominantly consists of
water. AGs are highly polar and polarizable. Correspondingly,
the spectral locations of the IR amide bands, which arise
from vibrational transitions within the AGs, are steered by
the polarizing electric fields generated by their respective
condensed phase environments. 24232

©2016 AIP Publishing LLC
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FIG. 1. Chemical structure of NMA. Gray dashed lines indicate the planar
amide group (AG).

The electric forces acting between NMA and the
surrounding water mainly arise from hydrogen bonding
interactions of the water with the AG core of NMA
(cf. Figure 1), which has one acceptor (C'=0O group) and
one donor (N—H group) of hydrogen bonds. The strengths of
these hydrogen bonding interactions shape the distribution of
the water molecules in the vicinity of the AG and, thus, the
strength of the polarizing electric reaction field. They depend
on both the electrostatic and the van der Waals interactions
between the atoms C’, O, N, and H of the AG and the
surrounding water molecules.

For a DFT description of NMA in an aqueous PMM
environment, one has to choose a DFT setup for the NMA,
a PMM force field for the water molecules, and, as is
common in QM/MM methods,” two-parameter Lennard-Jones
(LJ) potentials Uy y(r | A, B) = A/r'> — B/r®, which model the
van der Waals interactions between the DFT and PMM
fragments. If, in the chosen PMM force field, all sources
of the electrostatic potential are represented by Gaussian
distributions (see further below), then solely the LJ parameters
of the four AG atoms remain for a tuning of the hydrogen
bonding strengths. In contrast, the LJ parameters of the
remaining atoms of NMA, e.g., in the methyl groups, should
have only a minor effect on these strengths. They can be safely
adopted from a standard MM force field like CHARMM22.3

Here we will address the important question as to how one
can optimize the LJ parameters of the four AG atoms for an
adequate modeling of the hydrogen bonding strengths between
AGs and an aqueous PMM environment. Such a question
arises in all QM/MM applications,** % because the van der
Waals interactions between the MM and QM fragments are
generally described by empirical energy functions,'> whose
parameters have to be separately optimized for a physically
realistic description of the forces acting between the MM and
QM fragments.

The intended optimization of the enumerated LJ potentials
requires a reference observable for the hydrogen bonding
strengths. We will choose the radial distribution functions
(RDFs) gon,, () of the water hydrogens Hy, around the O atom
and gpo, () of the water oxygens O,, around the H atom of
the AG, respectively, at inter-atomic distances r. Because
corresponding experimental data are unknown to us, we
will compute reference RDFs by an empirically dispersion-
corrected®® “first-principles” DFT-MD simulation,”** which
should yield reasonably reliable information about their first
peaks. It will then be interesting to see to what extent
the optimization of the AG’s LJ parameters can bring the
DFT/PMM-MD results close to the reference RDFs and how
it affects the DFT/PMM predictions on the IR spectra of NMA
in water.

J. Chem. Phys. 144, 114504 (2016)

It is well known that suitably scaled DFT treatments of
isolated organic molecules can accurately describe their gas
phase IR spectra.*'*> Therefore one may expect that also IR
spectra calculated for NMA in water from DFT/PMM-MD
simulations can match corresponding spectroscopic data?
quite well, if the RDFs from DFT/PMM-MD are close to the
references and if the employed PMM model of water describes
the bulk phase properties of liquid water with a reasonable
accuracy.

The use of non-polarizable MM water models such as
TIP3P or TIP4P,** which provide poor descriptions** of the
bulk liquid properties, can diminish the quality of IR spectra
computed by DFT/MM techniques.’”-*** The reason is that
the IR spectra of strongly polar and polarizable molecules in
likewise polar and polarizable condensed phase environments
represent extremely sensitive probes for the details of the
interactions between the molecule and its environment.’!
Here, for instance, the mutual polarization of solute and
solvent has been demonstrated to have large effects on the IR
spectra calculated by DFT/MM hybrid methods.***’ In this
respect, the new DFT/PMM technology!®!! sketched above
represents an important progress, because it does not only
account for the electronic polarization of the DFT fragment
but also for that of the PMM solvent.

For a high-quality match of DFT/PMM predictions on
the IR spectra of polar and polarizable molecules in liquid
water with corresponding spectroscopic data, one should
thus choose a PMM force field, which models the physical
properties of the bulk liquid quite well and, concurrently,
is specifically adapted to DFT/PMM settings. Technically,
the new DFT/PMM approach has enabled the computational
derivation and efficient handling of relatively complex PMM
water models featuring many points of force action,*s*
which properly account® for important properties of the bulk
liquid. This is fortunate for our present purpose of describing
the IR spectrum of NMA in water, because we now can
apply this technology for the construction of a PMM water
model potential specifically designed for DFT/PMM hybrid
descriptions.

Whenever one applies a grid-based DFT approach, as
implemented, e.g., in CPMD,'* for hybrid calculations one
should avoid force fields, which model the electrostatic
signatures of the molecular structures in the (P)MM fragment
by point charges or point dipoles. The reason is that condensed
phase biomolecular systems always feature (P)MM atoms
inside the DFT box harboring the grid-discretized electron
density of the DFT fragment. If these (P)MM atoms carry
point sources of the electrostatic potential, they can spuriously
distort this electron density.’'~>® This unphysical distortion
can be avoided by artificially smoothing the potentials of
these point sources, whenever one computes interactions
between the DFT and (P)MM fragments.®'%3455 Such a
smoothing generally introduces additional scale parameters,
which strongly modify the near-field interactions between the
two fragments, as one can observe, for instance, by their
effects on RDFs of (P)MM solvent molecules surrounding a
DFT solute.’

The generic way for effecting a smoothing on a length
scale o is the replacement of an electrostatic point source by
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a Gaussian distribution of width . Therefore, DFT/(P)MM
calculations should preferentially employ a (P)MM force field,
in which all charges and dipoles are represented by Gaussian
distributions.

At least two such PMM water models have been
previously suggested, a three-point so-called ‘“‘charge-on-
spring” model®® and an earlier four-point model exhibiting
three static Gaussian partial charges and an induced Gaussian
dipole.”’ Both feature planar charge distributions. However,
an adequate modeling of the water molecule’s quadrupole
moment, which shapes the short-range interactions and,
hence, the local order structures in the liquid phase,
requires additional static partial charges, the so-called “lone-
pair” charges, symmetrically situated above and below
the molecular plane.’® Correspondingly we will apply the
DFT/PMM technique to parameterize a “Gaussian Polarizable
6-Point” (GP6P) model exhibiting five static Gaussian partial
charges and one Gaussian induced dipole.

Note here that the difference between the electrostatic
potentials of point and Gaussian sources becomes numerically
irrelevant (single precision) at distances /o > 6. For typical
smoothing scales of o < 0.8 A this distance becomes as small
as 4.8 A. If one exploits the numerical equivalence between
the two types of potentials at larger distances, one should
be able to keep the additional cost of computing potentials
of Gaussian sources quite limited. Moreover, by applying
the linearly scaling fast multipole method SAMM!¢!8 to
the approximate computation of the long-range electrostatic
and van der Waals interactions, also locally very complex
PMM water models can be efficiently treated,’® because the
costly exact evaluation of pair interactions can be replaced
by fast multipole descriptions already at distances as small
as 5.4 A. Therefore we expect that the corresponding MD
program IPHIGENIE'"> will be capable to treat also the new
GP6P model with a reasonable efficiency despite the sizable
complexity of GP6P.

This contribution is organized as follows. First we
will shortly sketch some of the new aspects entering
the construction of the GP6P water model. Because key
concepts of the employed parameterization strategy have
been explained previously,*®*° the detailed description of
the applied methods has been moved to Section S1 of the
supplementary material.®

Subsequently we describe the first-principles DFT-MD
simulations of NMA in a small periodic box additionally
containing 64 water molecules, which served us to estimate the
shape of the RDFs gon,,(r) and gno,,(r) for hydrogen-bonding
distances r € [1.5,2.5] A. The corresponding results will then
provide reference data for a computational optimization of the
LJ parameters associated with the AG atoms in the DFT model
of NMA. For reasons of computational manageability, we will
apply a DFT/PMM mean-field approach in this optimization.
Then we will describe the DFT/PMM-MD simulations, from
which we compute the IR spectra of NMA in liquid water by
Fourier-transform techniques.?’

As our first result, we sketch the structure and liquid
phase properties of the new GP6P water model. Next we show
how the RDFs obtained from DFT/PMM-MD change upon
the optimization of the LJ potentials and how these changes
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are reflected in the IR spectra of solvated NMA derived
from DFT/PMM-MD. Using the optimized LJ parameters,
we finally compare IR spectra from DFT/PMM-MD with
corresponding experimental spectra and with results of
previous DFT/MM-MD simulations.?* For these comparisons,
method-specific scaling factors are required, which we derive
from DFT-MD simulations of NMA isolated in the vacuum
for three different DFT functionals.

Il. METHODS

The (P)MM- and DFT/PMM-MD simulations of NMA in
periodic boxes filled with (P)MM water were carried out with
the hybrid program IPHIGENIE/CPMD, which integrates the
parallel grid-based plane-wave DFT code CPMD'* into the
parallel PMM-MD code IPHIGENIE, ' 0-11.15-18.61 whereas the
first-principles DFT-MD simulation of NMA solvated in a
much smaller box of liquid water was performed with the
CP2K software package.®>%?

A. General MM-, PMM-, and DFT/PMM-MD settings

In all (P)MM- and DFT/PMM-MD simulations the
geometries of the water molecules were constrained using
the M-SHAKE®* and RATTLE® algorithms with relative
tolerances of 107'°. The equations of motion were integrated
with the velocity Verlet algorithm® employing a time step of
1 fs in the (P)MM or of 0.5 fs in the DFT/PMM settings,
respectively. In these MD simulations the pressure was
calculated from the virial expression.®”-68

Long-range forces were treated by the most recent energy-
conserving version of the SAMM!'¢"'® employing 4th and
3rd order symmetric Taylor expansions for the electrostatic
and van der Waals dispersion interactions, respectively. The
transition from the exact evaluation of the associated pair
expressions to the approximate SAMM descriptions is steered
by the parameter ® entering the SAMM interaction acceptance
criterion,'” for which we chose @, = 0.20 (intermediate
accuracy) in the (P)MM settings and ®,=0.17 (high
accuracy) in the DFT/PMM settings.

The SAMM expansions were applied up to a maximum
distance dyc dictated by the minimum image convention
(MIC) of the employed toroidal boundary conditions.®® To
cover the electrostatics also at distances beyond dyic, a
moving-boundary reaction field approach’® was used, which
describes a surrounding dielectric continuum with a dielectric
constant of 78. For the corresponding long-range parts of the
dispersion attraction a continuum correction was applied.”! In
the PMM and DFT/PMM settings the self-consistency of the
induced dipoles was defined by the convergence threshold'’
XPMM = 5 X 107> D.

B. Parameterization and evaluation of GP6P

Employing these general simulation settings the new
DFT/PMM hybrid technology was applied to the parame-
terization of the new GP6P model for water. Due to most
recent advances'!”!8 this technology has meanwhile come
to maturity, such that the associated PMM-MD program
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package IPHIGENIE" is now available to the public (the
current distribution of the DFT program CPMD'4 contains
additionally required code).

This availability is important, because it guarantees
that all simulations presented in this work have become
reproducible and extendable for the interested scientific
community. Moreover, particularly concerning the GP6P
water model, for which the download!® contains sample
simulation systems, the computations can be extended to the
study of further properties of the bulk liquid (or the solid and
gas phases) beyond the limited set of observables investigated
here for a first quality assessment.

Because most procedures and physical concepts applied
to the parameterization of GP6P are adopted from previous
work,*8:49-7273 these issues have been transferred to Section S1
of the supplementary material.®® Driven by the aim to
support future parameterizations of complex PMM models
for other liquids, this section presents a thorough and detailed
description of the applied methods and, in passing, corrects
previous*®*’ ambiguities and errors.

The parameters of the GP6P model were obtained by
three different approaches, i.e., by

(1) the direct adoption of well-established experimental
values (molecular geometry in the liquid phase,’*”3
gas phase dipole moment,’® and polarizability,”’ cf.
Section S1 A 199),

(ii) DFT/PMM-based derivations of almost all electrostatic
parameters (Gaussian width of the induced dipole
distribution; magnitudes, Gaussian widths, and positions
of the static partial charge distributions, cf. Sections
S1C1-S1C5%), and

(ili) PMM-MD-based empirical optimization’ of one
Gaussian charge width and of the three parameters Aj,
Ay, and B of the Buckingham potential79 [Eq. (S1)%7,
which models the GP6P van der Waals interactions (cf.
Sections S1 C 6 and S1 C 7).

8

The PMM-MD simulations were conducted in a periodic box
containing Ny, = 1500 GP6P models (cf. Section S1B 1°0)
at the experimental density®® n®P(py,Tp) = 0.9965 g/cm?
assumed by liquid water at the temperature Ty = 300 K and
the pressure py = 1 atm. As experimental target values for the
empirical optimization of the four parameters enumerated in
(iii) we chose the mean potential energy ES’XP = —9.92 kcal/mol
per molecule,’! the position®? rge =276 A of the
first peak of the oxygen-oxygen RDF goo(r), the pressure
po. and the isobaric thermal expansion coefficient®”
a,’=28x10* K.

Note that Section S1 D of the supplementary material®
contains, mainly through references to previous work, a sketch
of the methods applied in the computation of several GP6P
predictions on important liquid phase properties.

C. Simulation systems for NMA in water

All MD simulations of NMA in water employed cubic
periodic simulation boxes. For MM/(P)MM-MD simulations
large boxes were filled with 4494 TIP3P** or GP6P water
models and one CHARMM?22 model>®> of NMA. These
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MM/(P)MM simulation systems were equilibrated by 1 ns MD
simulations in the NpyTy ensemble employing a Berendsen
barostat®® (coupling time 10 ps) and a Bussi thermostat®*
(coupling time 0.1 ps), respectively. The resulting simulation
box volumes were Vi = (51.5 A)? and Vo = (51.3 A)?
corresponding to the densities of 0.983 g/cm?® and 0.998 g/cm?,
respectively.

For the first-principles DFT-MD simulation a small box
containing — beyond NMA — also 64 water molecules was
constructed from a subsequent 1 ns MD simulation of the
MM simulation system (CHARMM22/TIP3P) in the N VismTo
ensemble. In 1000 snapshots of this NWmmTp ensemble a
small cubic box of varying volume was centered around
the NMA in such a way that it contained 64 water oxygen
atoms.” The resulting average volume Vppr = (12.7 A)3 , which
corresponds to a density of 0.994 g/cm?, was then chosen for
the DFT-MD simulation. From one of the snapshots the
CHARMM22-NMA and 64 surrounding TIP3P water models
were taken after MM minimization of the associated cluster
as initial conditions for DFT-MD.

To obtain the initial conditions for DFT/PMM-MD
simulations, we performed a 1 ns MD simulation of the
MM/PMM system (CHARMM?22/GP6P) in the NVemmTp
ensemble and drew 24 phase-space snapshots from the tail of
the trajectory at temporal distances of 5 ps, which we collected
into the set Spym.

D. First-principles MD simulation

For our 100 ps first-principles Born-Oppenheimer MD
simulation of NMA surrounded by 64 water molecules
we adopted the methods described in Ref. 7. Thus, the
MD simulation was performed with the CP2K program
package®>% using the exchange functional of Becke,®® the
correlation functional of Lee, Yang and Parr®® (BLYP) and the
norm-conserving pseudopotentials proposed by Goedecker,
Teter, and Hutter.8-%°

The Kohn-Sham orbitals were expanded in a triple-¢
valence basis set including double polarization functions.®?
Electrostatic interactions were treated using the Gaussian and
plane waves scheme”” implemented in the Quickstep®> module
of CP2K® at a density cutoff of 400 Ry. The self-consistent
field procedure employed the orbital transformation method
suggested in Ref. 91 and a convergence criterion of 1077,

In contrast to a similar calculation on solvated NMA
performed by Gaigeot et al.,® we used an empirical dispersion
correction scheme. Here, we adopted the suggestion by
Grimme,* which introduces an inter-atomic attraction ~r°.
This DFT-MD simulation model has been shown to yield a
reasonable structure and the proper density of liquid water.”>%?

Taking the configuration obtained from MM-MD (cf.
Section II C) as the starting structure the system was simulated
for 100 ps (of which the first 15 ps were excluded from the
subsequent computation of RDFs) in the NVpprTy ensemble
with an integration time step of 0.5 fs. Here the temperature
T was controlled by a massive Nose-Hoover chain thermostat
(chain length 3, time constant of 1 ps).°* The average
pressure in this small fixed-volume system turned out to be
44 + 250 atm. With the help of the program VMD?’ the desired
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reference RDFs g(r)elflw(r) and glr_f(fjw(r) of the water molecules

around the C’=0 and the N—H groups of NMA, respectively,
were eventually calculated in the range [1.4 A,3.0 A] with a
bin size of 0.05 A from the last 85 ps of the trajectory.

E. DFT-MD and DFT/PMM-MD simulations of NMA

With the aim to optimize the LJ parameters of AG
atoms in the DFT fragment NMA we performed DFT/PMM
simulations in the NVpymTp ensemble. The quality of the
thus established description was checked by computing the
IR spectrum of NMA in aqueous solution from extended
DFT/PMM-MD simulations. Because comparisons of DFT-
based predictions with experimentally observed vibrational
frequencies require a method-specific scaling factor fpgr, we
calculated the gas phase IR spectrum of NMA from DFT-MD
simulations at Ty in vacuo and compared the results with
gas phase IR data.?” These simulations cover comparable
amounts of anharmonic frequency shifts as DFT/PMM-MD
simulations of NMA in GP6P water.

1. DFT setups for NMA in vacuo and in PMM water

We employed three different DFT setups for the descrip-
tion of the NMA molecule, namely, (i) the BLYP®8¢ (ii)
B3LYP3¢%% functionals combined with norm-conserving
Martins-Troullier” (MT) pseudopotentials and a plane-wave
cutoff at 70 Ry, and (iii) the exchange functional of Becke®
in connection with the correlation functional of Perdew!®
(BP), the MT pseudopotentials, and a 80 Ry cutoff. We
denote these DFT setups as MT/BLYP, MT/B3LYP, and
MT/BP, respectively. The latter setup was selected to enable
comparisons with the IR spectra of NMA in TIP4P water®
calculated by Schultheis et al® from DFT/MM simulations,
which also applied MT/BP to NMA.

For all three functionals, the MT pseudopotentials model
the core-valence interaction by s and p potentials for C, O,
and N atoms with the respective radii for s and p chosen
equal as 1.23 a.u.,, 1.05 a.u.,, and 1.12 a.u., while H atoms
are treated as a single s potential with a radius of 0.5 a.u.
The MT pseudopotentials for B3LYP were chosen identical to
those for BLYP. In all DFT- and DFT/PMM-MD simulations
the NMA molecule was centered in a cubic DFT box with
a volume of (11 A)?. The DFT self-consistency convergence
criterion'® was ypgr = 107°.

2. DFT dynamics simulations of isolated NMA

For the isolated NMA molecule we first conducted
12 Langevin dynamics simulations for each of the three
DFT functionals spanning 10 ps each. These simulations
employed a second-order integration algorithm'®! controlling
the target temperature 7p with a decay time of 1 ps. The
12 initial structures of NMA were adopted from the set
Spym (cf. Section II C). The resulting phase space structures
of isolated NMA were subsequently taken for each of
the three functionals as the initial conditions for 12 MD
simulations, each of 50 ps duration, in which translations
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and rotations of the molecule were suppressed. The rotation
correction is necessary, because the DFT grid of CPMD
destroys the isotropy of the simulated system and, therefore,
prevents the conservation of the total angular momentum.
From these trajectories we subsequently calculated gas phase
IR spectra of NMA by a Fourier transform technique (see
Section II F 3).

For the MT/BLYP setup additional simulations of this
kind (12 x 10 ps Langevin, 12 x 50 ps MD) were carried out
for the target temperatures 20 K, 75 K, 150 K, and 433 K. The
gas phase IR spectra derived from these simulations served to
estimate the sizes of the anharmonic frequency shifts at 7j.

3. DFT/PMM-MD of NMA in water

All 24 members of the snapshot set Spyvy (see Section
II C) were equilibrated for 10 ps in the N VppmTp ensemble for
each of the three DFT/PMM hybrid setups, in which NMA
was described either by MT/BLYP, MT/BP, or by MT/B3LYP.
Here, Ty was tightly controlled (coupling time 0.1 ps) by a
Bussi thermostat,?* which was, like in all DFT/PMM-MD
simulations, exclusively coupled to the solvent degrees of
freedom.!%> The end points of these equilibrations served as
initial conditions for 50 ps DFT/PMM-MD simulations in the
NVemmTp ensemble. Here, the thermostat coupling time was
increased to 1 ps.

In all three DFT/PMM descriptions the LJ potentials of
AG atoms in NMA were specified by an optimized parameter
set Lo (cf. Section II F). Employing the LJ parameters
Lo, given by CHARMM?22? and the MT/BLYP setup, we
additionally computed a fourth set of 24 x 50 ps DFT/PMM-
MD trajectories.

F. Optimizing van der Waals parameters for DFT/PMM

Given reference RDFs g, (r) and gjf{, (r) for the
solvation of NMA’s AG by liquid water, which we obtained
by first-principles DFT-MD as described in Section II D, the
iterative DFT/PMM-MD search for optimal LJ parameters
at the AG atoms of the DFT fragment is, in principle,
straightforward.

1. Optimization scheme

For the optimization of LJ potentials at the AG atoms we
assume that only the three heavy atoms y € {C’,0,N} carry
such potentials, whereas initially we adopt the CHARMM?22
potentials®® of the four AG atoms. This CHARMM?22
parameter set is denoted Lcp;. For the other atoms of
the DFT fragment we always stick to the CHARMM?22
potentials. Denoting the steps of the iterative search by
n=1,2,..., we thus probe in step n the LJ parameter set
L, ={A},B)|y =C',O,N} for the LJ interaction of the
GP6P oxygen atoms O,, and the AG atoms y in the DFT
fragment. Here, A} is the repulsion and B} the dispersion
parameter of atom vy.

At each iteration step n one has to execute now, in
principle, a sufficiently extended DFT/PMM-MD simulation,
from which one can compute reliable estimates for the two
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RDFs. Then the root D(L,) of the summed mean square
deviations between the reference and the DFT/PMM RDFs
in the range r € [1.5,2.5] A, which covers the first peaks of
these functions, can be used to measure the deviation of the
hydrogen bonding structures in the water surrounding the AG
computed by DFT/PMM from the reference. The parameters
L+ for the next step in the minimization of D(L) can then
be chosen, e.g., by a simplex algorithm,'*®> which eventually
yields an optimized parameter set Lo after sufficiently many
iterations.

2. Mean-field approach employed for the optimization

The just described minimization of D(L) poses a
huge computational task, whose most expensive part is
the DFT/PMM-MD simulations. In the spirit of the LJ
parameter optimization presented by Martin et al.'** we have,
therefore, simplified these MD simulations by a mean-field
method, which is similar to the so-called “averaged solvent
electrostatic potential” approach!%3-1%7 and which we denote as
MFMD.

In our DFT/PMM-MFMD based optimization of the LJ
parameters £ we chose the MT/BLYP setup for the descrip-
tion of the NMA. As initial conditions of the 15 ps MFMD
simulations executed at each iteration step n we chose the
24 phase space snapshots Spyy introduced in Section II C.

In the MFMD simulations, the charge density p of the
NMA surrounded by the GP6P water was self-consistently
calculated for the initial snapshot, which requires the
computation of the external potential ®y(r,) generated by the
PMM fragment at the points y of the DFT grid.'” This density
and the positions of the NMA atoms were subsequently kept
fixed in a 100 fs MD simulation, which solely involved the
GP6P water molecules exposed to the potential generated by
po- For the thus reached snapshot of the system, the external
potential ®@(r,) was recalculated and the average potential
®(r,) was formed from this and the preceding snapshot
®y(r,) of the potential.

(1) Then NMA’s charge density p; was self-consistently
computed for the average external potential ®;(r,) and
the MD of the GP6P molecules exposed to the potential
generated by p; was simulated for another 100 fs.

(ii) At this configuration the external potential ®x(r,) and a
running average potential ®,(r,) were calculated from
®(r,) and the preceding average potential ®;(ry).

Repeating the procedures (i) and (ii) a running average ®(r,)
of the external potential was sequentially accumulated for the
15 ps of MFMD simulation. RDFs gopu, () and gno, () were
extracted from the last 12 ps of all 24 MFMD simulations
executed for the PMM liquid surrounding the NMA and
the deviation D(ZL,) of the current minimization step was
calculated.

The just sketched DFT/PMM-MFMD approach saves
about 99% of the computational effort associated with the
import of the external potential on the DFT grid and with the
computation of the Kohn-Sham orbitals, which are required
at each time step of an ordinary DFT/PMM-MD simulation.
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3. Calculation of vibrational spectra

From each 50 ps MD trajectory obtained in the DFT
and DFT/PMM settings, respectively (cf. Sections II E 2
and II E 3) we calculated a corresponding IR spectrum of
NMA by Fourier transforming the autocorrelation function of
its dipole moment (FTTCF)?° and by subsequently applying
the so-called harmonic approximation quantum correction
factor, 2198109 A Gaussian kernel of width 3 cm™' was
employed to smoothen the spectrum.?* A final IR spectrum
was obtained by averaging over the 12 (gas phase) or 24
(solution) trajectories associated to each setting. The bands
in the IR spectra were assigned to vibrational modes by the
generalized normal coordinate (GNC) analysis proposed by
Mathias ef al.,''%!'!'! which enables the decomposition of the
vibrational spectrum into local modes directly from the MD
trajectories.

lll. RESULTS

As is indicated in Section II B and thoroughly explained
in Section S1 of the supplementary material,® we have
parameterized a new polarizable six-point model for water
called GP6P specifically for the use as an aqueous solvent
in DFT/PMM-MD simulations of solute molecules described
by grid-based DFT. Before turning to the first applications,
which are the parameterization of the LJ potentials steering the
hydrogen bonding of NMA in GP6P water, and the subsequent
calculation of NMA’s IR spectrum in aqueous solution,
we shortly sketch important microscopic and macroscopic
properties of the GP6P water model.

A. The GP6P model

Table I lists the parameters of the GP6P model poten-
tial resulting from the DFT/PMM-based parameterization
described in Section S1 of the supplementary material.®
Figure 2 illustrates the thus determined electrostatic properties
of GP6P.

1. Microscopic properties

Figure 2(a) explains the internal coordinates [ oy, ¢ HoH,
lom, oL, and @1 oL, which define the rigid arrangement of the
six points of force action. Here, the radii of the five colored

TABLE I. Parameters of the GP6P model.

lou/A 0.968 @ Hon/deg 105.3
Ho/D 1.855 apym/A3 1.47
loL/A 0595528  @roL/deg 177.360
lom/A 0.558801  gm/e -0.401742
qule 0512662  qi/e -0.311791
oulA 0.739 ovlon 142793
ou/A 0457547  or/A=om/A 0.653 345
A1/(103 kcal /mol) 11.2416 Ay/A! 2.87596
B /(A% kcal/mol) 966 A /(103 A®keal /mol) 518.941
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a)

FIG. 2. (a) The geometry of the GP6P model is given by the parameters
L on, ¢ nou, Lom, L oL, and ¢ 101, which define the HOH triangle of the water
atoms and a perpendicular triangle LML of massless sites carrying charges
qi <0 (red), i € {M,L}. The H atoms harbor charges gy > 0 (blue), the gray
O atom is uncharged and carries an induced dipole y{,MM. (b) All charges
¢ and the induced dipole yi,MM form Gaussian distributions, whose widths
oi, i € {H,M,L, u} are coded by the radii of the glassy spheres. Made with
VMD.%

spheres code the sizes |g;| of the charges ¢;, i € {H,M,L},
while the uncharged oxygen is depicted in gray. Figure 2(b)
illustrates the widths o, i € {HM,L,u}, of the Gaussian
charge (red, blue) and induced dipole (gray) distributions
by the radii of the glassy spheres. The strength [.li,MM of
the induced dipole distribution centered at the oxygen atom
follows by linear response from the polarizing electric field
through the isotropic polarizability apymm.

As is indicated in Section II B, the polarizability apymm,
the molecular geometry parameters (/op, ¢@non), and the
magnitude yo of the vacuum dipole moment of GP6P have
been adopted from experimental data. The associated values
are listed in the first part of Table I. The central part
of this table displays those parameters (including the ratio
o /oy of Gaussian charge widths), which were determined
by DFT/PMM calculations. Finally, the bottom part of Table I
specifies the parameters, which were determined by empirical
PMM-MD optimizations. These are the Gaussian width oy
and the Buckingham parameters (Aj, A, B), which describe
the van der Waals interactions among the GP6P water
molecules. Furthermore it provides the parameter A of a
LJ potential [Eq. (S2) in the supplementary material®’], which
enables the description of van der Waals interactions between
GP6P water and molecular models, whose atoms carry LJ
potentials.

Note that Section S1F 4 of the supplementary materia
characterizes the dipole and quadrupole moments of a GP6P
water model in the gas and liquid phases.

160
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2. Macroscopic properties of GP6P at po and Ty

Experimental values of the four macroscopic observables
Eo, rg‘g", po, and «a, served as targets for the empirical
optimization of the four GP6P parameters oy, Aj, Ay, and B
(cf. Section II B). The resulting parameter values lead to
an excellent reproduction of the experimental target data.
This claim is proven by Table S4 in the supplementary
material,® which documents that the values computed from
3 ns PMM-MD simulations for the targeted observables
numerically agree with their respective target values within the
narrow limits of statistical accuracy. The oxygen-oxygen RDF
goo(r), which is shown by Figure S16 in the supplementary
material®® over the distance range r € [2,8] A, furthermore
reveals that the local ordering of water molecules predicted
by GP6P resembles corresponding experimental data,®? up to
a slight over-structuring, quite well. Note that such a slight
over-structuring is typical for RDFs derived from dynamics
simulations, which neglect nuclear quantum effects.''?

Table II lists GP6P predictions for several observables
of liquid water, which were measured by PMM-MD
simulations at the thermodynamic conditions (pg,Tp) of the
parameterization (our subsequent DFT/PMM-MD simulations
of NMA in GP6P water will also be executed at these
conditions). The predictions cover the density #n, the isothermal
compressibility 7, the heat capacity C,, the self-diffusion
constant Dy, the viscosity 77, and the dielectric constant €,
which were calculated as explained in Section S1D of the
supplementary material.®

The density n(po,To) = 0.9966 + 0.0001 g/cm? resulting
from a Nppolp simulation matches the experimental value
n®*P(po,Ty) within the narrow limits of statistical accuracy.
This excellent match is not particularly surprising, because
po was one of the targets of the empirical optimization by
NmViTp simulations, in which the density had been set to
nP(po, To)-

The isothermal compressibility x7(po, To) determined for
GP6P overestimates 5" (po,To) by only 2.6%, whereas the
heat-capacity C,(po,To) overestimates C,,"(po,Tp) by 5.3%.
The diffusion constant Dy is by 25% larger than Dj®
and the viscosity 7 happens to match 7**P. Finally the
dielectric constant is by 10% smaller than the experimental
reference. All these deviations of the GP6P predictions from
the corresponding experimental values are comparable to
those observed for standard MM water models** or for PMM

TABLE II. Observables for liquid water at 300 K: GP6P predictions and
experimental data. Statistical errors of n, kr, and C, were estimated by block
averaging!'3 from 3 ns trajectories, those of Dy, 77, and € from multiple and
extended MD trajectories (see Sections S1 D and S1F 2 of the supplementary
material®’).

Quantity Unit GP6P value Expt. Ref.
n g/cm3 0.9966 + 0.0001 0.9965 80
KT 106/atm 46.8 + 0.1 45.6 80
Cp cal/(mol K) 18.96 + 0.06 18.0 114
Do nm?/ns 3.01 +0.02 2.4 115
n mPa s 0.81 £0.15 0.81 116
€ 69.9 + 0.1 78 117
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water models like TL4P*® and BK3.°® Thus, our aim of
developing a PMM model potential for water, which describes
the bulk properties of liquid water with a reasonable accuracy
and, concurrently, solely exhibits Gaussian sources of the
electrostatic potential, has certainly been reached.

3. The temperature-density profile of GP6P

The temperature dependence n(py,T) of the density
of liquid water has long been known at a very high
accuracy. Kell® employed a ratio of fifth and first order
polynomials [cf. Eq. (4) in Ref. 80] to fit his experimental
data and thus determined the temperature 7 = 277.134 K
of maximum density and the maximal density n***(po, T,
=0.99997 g/cm? of liquid water at the standard pressure.

Figure 3 compares Kell’s®® experimental fit function
n®*P(py,T) (gray) with the GP6P density profile n(po,{T%))
(dots) extracted from a 20 ns replica exchange''8-'2° MD
simulation in the NypoTx ensembles (cf. Section S1D).
Here, the temperatures (T ) are averages over the trajectories
of the various temperature rungs ;. Moreover, the black line
represents a fit to the simulation results n(po,(Ty)) using the
same Ansatz for the fit function as Kell.%

Statistical errors of the calculated average densities
n(po,(Ty)) were determined by block averaging.''*> The
maximal error of 0.00018 g/cm’® was found for the most
slowly converging ensemble at the lowest temperature rung
To = 250 K.

The fit to the GP6P data predicts the temperature 7;g of
maximum density at 277.469 + 0.404 K and the maximum
density n(po, Tng) at 1.000 03 + 0.000 04 g/cm?. The statistical
uncertainties of these numbers were estimated as the standard
errors of the means, which were obtained by dividing the
trajectories into four equal parts. Thus, the slight GP6P
overestimate (0.335 K) of the experimental temperature®” T;’;p
of maximum density is within the statistical error, whereas
the overestimate (0.00006 g/cm?) of the maximum density
n(po, T')) is marginally larger.

The GP6P temperature-density profile in Figure 3 matches
the experimental data®® almost perfectly for temperatures

1.000

0.996

n(T)/gcm™

0.992

260 280 300 320
T/K

FIG. 3. Temperature-density profile of GP6P (dots) and a polynomial fit

(black line). The experimental curve® is drawn in dashed gray.
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(Ty) > Tia, whereas it slightly overestimates the experimental
densities for lower temperatures (Tj) < Tyg. The overall
agreement is, however, excellent. This is pleasing particularly
in the light of the fact that the empirical parameterization has
targeted only observables at the standard conditions (pg,Tp).
Thus, the accurate prediction of n(py,T) indicates that the
GP6P model will most likely be quite well transferable to other
conditions. Because the simulation software IPHIGENIE and
sample GP6P simulation systems are available for download,
the scientific community is invited to carry out further studies
on other issues of transferability.

When looking at Figure 3 the diligent reader may be
reminded of Figure 3 in Ref. 121, which compares a density
profile calculated by exactly the same replica exchange setup
for a smaller box of TL6P models.'?! In fact, the deviations
of the TL6P density profile!?! from the experimental data
are only slightly larger than those obtained here with GP6P.
However, because all TLOP simulations consistently employed
an invalid barometer (cf. a corresponding remark in Section
S1B 1) these results are seriously and consistently flawed,
whereas the GP6P results are technically correct. On the other
hand, the arrangement of the static partial charges in GP6P is
similar to that of TL6P, because both models feature, beyond
the negative charge at the M-site, two lone-pair charges
at an angle ¢rop, close to 180° (cf. Fig. 2). It may well
be that this arrangement®® favors a density profile close to
the experimental one, if the calculated thermal expansion
coeflicient a,(po, Tp) is close to the experimental value.

This interpretation is supported by failed attempts (data
not shown) to parameterize polarizable Gaussian four-
and five-point models with the same strategy, which we
successfully applied in the construction of GP6P. These
attempts failed because no positive value for the dispersion
parameter B could be found such that the isobaric thermal
expansion coefficient a,, was close to the experimental target
value. In this respect the Gaussian four- and five-point models
resembled the polarizable TL4P and TL5P models, which
feature point-like partial charges (and were parameterized and
evaluated with a correct barometer) and both overestimate
@, by more than a factor of two.*® Correspondingly their
temperature-density profiles'?! show no maximum in the
temperature range covered by Figure 3.

B. LJ parameters for a DFT model of NMA

The optimization of the LJ parameters £ (see Section
Il F), which steer the interactions of NMA’s AG with the
surrounding GP6P water, was conducted with the MT/BLYP
setup for several hundred iteration steps. It reduced the
observable D(L£) measuring the deviation of the DFT/PMM-
MFMD RDFs gon,(r) and guyo,(r) from their DFT-MD
references by a factor of seven. Here, the initial deviation
D(Lc2) =0.63 A, which resulted for the CHARMM?22
parameter set Loy, was reduced to D(Lop) = 0.09 A. Note
that Figure S18 in the supplementary material®® shows that the
much cheaper DFT/PMM-MFMD calculations actually yield
RDFs, which are almost identical to those obtained by costly
DFT/PMM-MD simulations. The optimized set L resulting
from DFT/PMM-MFMD is listed and compared with the
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TABLE III. Optimized parameters Loy for the LJ interaction of the AG
atoms y with the GP6P water model.

Y Ay opt" AAy (%) By, opt” ABy (%)
c’ 1747.34 -5 839.816 =7
(6] 451.865 +58 235.813 -36
N 924.673 =30 1306.43 +27
H 0.0 -100 0.0 -100

4103 A!2 kcal /mol.
bA6 kcal /mol.

initial set Lcy; in Table III. Here, the quantities AA, and AB,,
measure the optimization-induced parameter changes relative
to Leoo.

According to the listed data, the LJ potential at the central
carbon atom C’ of NMA’s AG remains almost invariant,
whereas those at the O and N atoms experience sizable
changes. Here, the O atom becomes much more repulsive
and less attractive. Oppositely directed and somewhat weaker
changes result for the N atom. The changes at the H atom
follow from our deliberate removal of this very weak LJ
potential.

Hence, one expects that the first peak of the RDF gon, (7),
which is generated by water molecules hydrogen bonded to
the C'=0 group of NMA, substantially moves toward larger
distances r upon the optimization. In contrast the peak of
the RDF gno,(r), which describes the hydrogen bonding
to the N—H group and, therefore, is mainly influenced by
the parameters (Ay,By), should shift a little less toward
smaller distances. The inspection of the black RDFs gon, (7)
and gpo,(r) shown in Figures 4(a) and 4(b), respectively,
demonstrates that this is actually the case.

The dotted lines in Figure 4 mark the RDFs resulting
from DFT/PMM-MD with the CHARMM?22 parameter set
L2, whereas the solid black lines mark the RDFs obtained
with L. In fact, the peak of the solid black curve gop,,(r) in
Figure 4(a) is found at a 7% larger distance than that of the
associated dotted curve, whereas in Figure 4(b) the solid black
peak of guo,(r) is found at a 3% smaller distance than the
dotted peak. These shifts move the black curves much closer to
the reference RDFs (solid gray), which were obtained by 85 ps
first-principles DFT-MD. Note that these reference data carry

3ta) &, DFT-MD
=t § A DFT/PMM-MD opt — 1
= 2 DFT/PMM-MD C22 sween :
o
> 1} o

24 2.8

1.6 2.0

' o
r/A
FIG. 4. RDFs (a) gon,(r) and (b) gno,(r) obtained from first-principles

DFT-MD (solid gray), and from DFT/PMM-MD for the LJ parameter sets
L2 (dotted) and Lo (solid black).
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non-negligible statistical uncertainties, which we estimated to
be <1% for the locations and $6% for the heights of the peaks
by partitioning the DFT-MD trajectory into four equal parts.

The RDFs calculated with L, (solid black) match the
DFT references (solid gray) very well. In Figure 4(a) the
DFT/PMM peak position deviates from that of the reference
by only 1.4%, whereas in Figure 4(b) the corresponding peak
positions show a perfect match. In the latter case DFT/PMM
overestimates the height of the reference peak by 9%, whereas
in the former case the heights are almost identical.

Now the interesting question arises as to whether the
LJ parameter set Loy, which resulted from a DFT/PMM-
MFMD optimization employing the MT/BLYP setup, can
be generalized to other DFT setups. Figure S19 in the
supplementary material®® demonstrates that this is actually
the case by comparing RDFs resulting from DFT/PMM-MD
simulations with the MT/BLYP, MT/B3LYP, and MT/BP DFT
setups, respectively. Thus, the L] parameter set Ly appears
to be transferable to other DFT settings.

C. IR spectra of NMA from DFT-MD and DFT/PMM-MD
simulations

IR frequencies calculated from DFT models usually
require a scaling to achieve a match with experimental
data.*'*> Because we will derive the IR spectra of NMA in
aqueous solution by the FTTCF technique”’ from DFT/PMM-
MD simulations at the elevated temperature 7y = 300 K, the
NMA will dynamically sample also regions of the potential
energy surface, which are shaped by anharmonicities. Our
scaling factor should include these effects.

We will now first illustrate the effects of anharmonicities
on the spectra of isolated NMA calculated by FTTCF
from DFT-MD simulations at varying temperatures 7.
Subsequently we will compute scaling factors for three
different DFT functionals by comparing experimental gas
phase IR frequencies with results of DFT-MD simulations at
To.

1. Anharmonicities in NMA’s IR spectra obtained
from DFT-MD

Because we wanted to gain insights, to what extent the IR
spectra calculated from DFT-MD trajectories of isolated NMA
at different temperatures are modified by anharmonicities, we
have carried out 600 ps DFT-MD simulations at each of the
target temperatures 7/K = 20, 75, 150, 300, and 433 with the
MT/BLYP approach (for details see Sections [ E 1 and IT E 2).
Applying the FTTCF technique introduced in Section II F 3 to
the trajectories u(¢) of the molecular dipole moment yielded
temperature dependent IR spectra, from which the spectral
position vo(T) of the dominant so-called amide-I (AI) band,
which mainly belongs to the C’=0 stretching vibration,'?
was deduced. Statistical errors o,(T') of the frequencies vay(T)
were estimated as standard errors of the mean from the first
and the second halves of the sets of DFT-MD trajectories.

Figure 5 shows the thus obtained frequencies va[({T"))
as a function of the actual average simulation temperatures
(T) together with error bars o,((T)) and a tentative linear



114504-10 Schworer, Wichmann, and Tavan
1658 " e
7 i { ]
€ 1654}
o
~ - ] 1
= 1650 J
1646fF E
0 100 200 300 400
<D /K

FIG. 5. Temperature dependence of the Al frequency vy derived for iso-
lated NMA by FTTCF (Ref. 20) from extended DFT-MD trajectories (setup:
MT/BLYP). Error bars denote the standard errors o, of the mean, the gray
dashed line represents a linear regression.

regression line. One expects that less anharmonicities are
sampled at low temperatures (7). Correspondingly the
frequencies v51((T)) are seen to increase almost linearly over
a wide temperature range with decreasing (7") until they
non-linearly level off for (T') < 75 K. If one wants to choose a
method-specific frequency scaling factor fppgr, then one must
be aware of this temperature dependence of va; and should
apply fprr only to simulations at the corresponding reference
temperature, in our case 7.

2. Scaling factors from DFT-MD at 300 K

For a more simple visual comparison with experimental
spectra we choose a global frequency scaling, which moves
the calculated gas phase frequency va; exactly to the
experimentally observed spectral position. The determination
of the IR spectroscopic reference value encounters the
difficulty that the AI band of NMA in the gas phase shows
a distinct double peak,”®!?3 which is caused by the coupling
of the vibrations to the rotational degrees of freedom, while
our computational setup excludes such a coupling. From
the available gas phase IR data,” we estimate the value
VZXIP =1722.5 cm™!. From our MT/BLYP-MD simulation
result var = 1651.8 cm™!, which belongs to the average
simulation temperature (T') = 287 K, we get the scaling factor
fMT/BLYP = 1.0428.

A priori it is uncertain, whether gas phase scaling factors
Sforr (like fumr/BLYP) are applicable also to liquid phase IR
spectra derived from DFT/PMM-MD simulations of NMA in
GP6P water at Ty = 300 K. While the temperature dependence
of the calculated anharmonic frequencies should be well-
accounted for by fppr, the transition to a hybrid setting
implies a change of the computational method. Therefore it
may well be that the liquid phase IR spectra require a slightly
modified scaling factor fii. for a perfect match of v with
the associated v} "*”. This factor should then be applicable to
IR spectra calculated by DFT/PMM-MD for other peptides in
GP6P water.

For the MT/BP setup, an analogous DFT-MD simulation
of NMA in the vacuum at the average temperature (7T') = 272K
yielded the smaller scaling factor fyr/p = 1.03345. This
factor is very close the value of 1.0354, which had been
determined in an earlier MT/BP study on NMAZ?* by
comparing the results of a normal mode analysis with the
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frequency vﬁf = 1728 cm™~' measured by resonance Raman
spectroscopy. 4

Interestingly, the much more costly (cf. Section III D)
MT/B3LYP-MD simulations, which were carried out at an
average temperature (T') of 327 K, yielded a scaling factor
JSwmr/BsLyp = 0.9988 very close to one. Thus, the inclusion of
Hartree-Fock exchange!? substantially improves and stiffens
the BLYP force field of NMA in the region of the energy
surface sampled by our DFT-MD. Therefore we will now
discuss the IR spectra of NMA in the gas phase and in
aqueous solution on the basis of the MT/B3LYP simulation
results and will consider the effects of the chosen DFT
setup on the quality of the predicted IR spectra further
below.

3. The IR spectrum of NMA in the gas phase

Applying the just determined scaling factor fy/3Lyp to
the gas phase IR spectrum of NMA calculated by FTTCF from
the 600 ps MT/B3LYP-MD trajectories (cf. Section II E 2)
we obtained the spectrum depicted in Figure 6(a) as a solid
black line. The thus calculated IR bands were assigned to
the various amide modes (cf. Figure 7 in Ref. 24) by a GNC
analysis.''%!!! The gray spectrum in the background has been
measured by IR spectroscopy.?’

The spectral locations of the calculated amide peaks
match the positions of the corresponding observed bands very
well. For the AI band this frequency match is, of course,
a result of the scaling. In contrast, the spectral positions
of the AIL, AIIl, and AIV bands calculated at 1492 cm™!,
1248 cm™!, and 1071 cm™', respectively, represent predictions.
Here, the excellent match of the calculated AIl and AIII
peak frequencies with their experimental counterparts (AIL:
1499 cm™', AIIl: 1255 cm™!), which can be quantified by

' exp. -

a)ga's phas'e
10r Al MT/B3LYP — ]
y
‘»
c
]
£
2
0.0

b) solution exp. —
1.0 Al (MT/B3LYP)/PMM —
> n .
a All
270 m; i
g | ]
o
o | Alll me ANV

|
0.0 . - N A
1700 1500 1300 1100

frequency / cm™

FIG. 6. The IR spectrum of NMA in (a) the gas phase and (b) aqueous
solution as found by IR spectroscopy? (gray) and by FTTCF (black) from
DFT-MD and DFT/PMM-MD trajectories employing the MT/B3LYP setup;
frequencies were scaled with fyvr/B3Lyp; the heights of the Al peaks were
normalized to one; band assignments were obtained by a GNC analysis.! 10111
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deviations of at most 7 cm™!, demonstrates the quality of
the marginally scaled MT/B3LYP-MD description. Because
there are no IR data in the frequency range below 1150 cm™!
available to us, we cannot judge the accuracy of the predicted
AIV frequency.

Figure S20(a) in the supplementary material® further-
more demonstrates that, for the amide bands, the quality of
the results depends (after proper scaling) hardly on the chosen
DFT setup. This figure shows that MT/BLYP-MD and MT/BP-
MD simulations lead to likewise excellent description of these
bands as the MT/B3LYP-MD simulations. Interestingly, the
marginally scaled MT/B3LYP-MD describes the methyl bands
at about 1428 cm™! and 1375 cm™! distinctly better than scaled
MT/BLYP-MD and at a quality comparable to that of scaled
MT/BP-MD.

The above analysis in terms of band frequencies solely
confirms the visual comparison of the calculated with the
underlying experimental IR spectrum, which clearly indicates
an almost perfect frequency match. The comparison of
peak heights is not likewise perfect. This is partially due
to the fact that the applied normalization of the AI peak
heights represents a poor intensity measure. Intensities are
actually integrals over bands, which are poorly measured by
the peak heights. Furthermore, the artificial suppression of
the molecular rotations in the DFT-MD simulations, which
is enforced by the lacking conservation of the angular
momentum with a grid-based DFT implementation like in
CPMD,'* entails an artificial narrowing of the various bands.
Particularly in the case of the AI band, this suppression
transforms the observed vibrational-rotational double peak
into a single one. Therefore, the relative intensity of the Al
band is strongly overestimated by the applied peak height
normalization. Despite the resulting difficulty of intensity
comparisons, the computational results enable together with
the GNC analysis a clear-cut assignment of observed bands to
molecular modes.

4. The IR spectrum of NMA in aqueous solution

Now it will be interesting to see as to whether IR
spectra, which are calculated from our 1.2 ns DFT/PMM-MD
trajectories of NMA in GP6P water at 300 K (cf. Section ITE 3)
using the optimized LJ parameter set Loy for the AG
atoms of NMA, provide a similarly excellent description
of spectroscopic IR data on NMA in liquid water at room
temperature. Figure 6(b) compares the slightly scaled FTTCF
results obtained with the MT/B3LYP setup (black) with a
corresponding experimental IR spectrum? (gray).

Already the first glance at this figure shows that the
FTTCF approach predicts the three amide bands also in the
solvent case at spectral locations, which are very close to
those determined by IR spectroscopy.”’ For the shown six
prominent IR peaks the root mean square deviation (RMSD)
amounts to 9 cm~!. The dominant contributions to this RMSD
are delivered by the methyl bands (denoted as m;, my, and mj),
which are on average blue-shifted by 12 cm™' with respect
to the spectroscopic band positions. The three amide bands
AI-AIl, for which experimental reference data are available,
contribute only a RMSD of 5 cm™!.
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Overall the calculated spectrum reproduces observed
spectral features very well although it cannot account,'
because of the use of a rigid PMM water model, for the likely
coupling'?%127 of the Al vibration with the bending mode of
H,0 at 1644 cm™!,'8 which may induce a broadening and an
additional shift of the Al band. In combination with the GNC
analysis'!®!!! the calculations therefore enable a clear-cut
assignment of the observed bands to local modes. The AIV
band is predicted, e.g., at 1085 cm™!,

Combining the results in Figures 6(a) and 6(b) on the
amide bands of NMA in the gas phase and in solution we
conclude that the experimentally determined? solvatochromic
shifts of the AI, AIl, and AIIl bands, which are —98 cm™,
+83 cm™!, and +62 cm™!, respectively, are reproduced
by our DFT/PMM-MD approach in the marginally scaled
MT/B3LYP setup with a RMSD of only 6 cm™". For the gas and
liquid phases the bottom of Figure S21 in the supplementary
material®® provides further MT/B3LYP predictions on the
frequencies of the AIV, AV, and AVI bands, which appear
below 1100 cm™!. Here its is shown that these amide bands are
blue-shifted by 14 cm™!, 41 cm™!, and 20 cm™!, respectively,
upon transfer of NMA from the vacuum into GP6P water.

As a first physical result we note that the above DFT-
MD and DFT/PMM-MD descriptions of the IR spectra of
NMA in the gas phase and in aqueous solution predict
the solvatochromic IR band shifts at a high accuracy.
Concerning the methodology we furthermore note, that our
initial assumption on the transferability of frequency scaling
factors from a pure DFT to a hybrid DFT/PMM setting seems
to be approximately valid, at least for the MT/B3LYP setup.

5. Effect of DFT functional on the IR spectra
of NMA in GP6P water

Due to the much larger computational cost (cf.
Section III D) of the B3LYP functional one might prefer
the simpler gradient-corrected BLYP or BP functionals for the
computation of IR spectra by MD-based FTTCF techniques.
Further above in Section III C 3, we have noted that DFT-MD
yields for NMA in the gas phase scaled MT/BLYP and MT/BP
amide band frequencies, which are of a comparable quality to
those obtained by the marginally scaled MT/B3LYP-MD. Here
the question arises, whether this favorable result remains valid
in DFT/PMM-MD calculations of liquid phase IR spectra.

Figure 7 now demonstrates that this is actually the case for
NMA in aqueous solution. Here, the visual comparison of the
amide frequency terms in the last two columns illustrates the
small 5 cm™! RMSD between the experimental frequencies
and the DFT/PMM-MD predictions obtained through the
marginally scaled MT/B3LYP setup [cf. the discussion of
Figure 6(b) above]. Following the corresponding predictions
toward the first two columns of the figure, which belong to the
scaled MT/BP and MT/BLYP setups, one recognizes that the
qualities of the amide band predictions deteriorate only a little
as signified by RMSDs of 8 cm™! and 9 cm™!, respectively. For
the three methyl bands the situation is different. While their
frequencies are blue-shifted with respect to the experimental
data on the average by only 14 cm™' for the scaled MT/BP
setup, which is very close to the MT/B3LYP blueshift of
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FIG. 7. NMA in aqueous solution: frequencies of amide (AI-AIIl) and
methyl (m;-m3) IR bands predicted by DFT/PMM-MD with the scaled
MT/BLYP, MT/BP, and MT/B3LYP setups are compared with experimental
data.?®

12 cm™!, a much larger average blueshift of 34 cm™! results
for the scaled MT/BLYP setup.

The residual 25 cm™! and 11 cm™! blueshifts remaining for
the six IR bands in the scaled MT/BLYP and MT/BP setups,
respectively, indicate that the transfer of scaling factors from
vacuum DFT-MD to hybrid DFT/PMM-MD simulations of
solute molecules may be suboptimal for these DFT setups.
Thus, our tentative conclusion at the bottom of Section III C 4
on the transferability of the scaling factor seems to be restricted
to the MT/B3LYP case. Note that Sections S3 A and S3 B of
the supplementary material®® present the IR spectra of NMA
in the gas and aqueous phases computed for the MT/BLYP
and MT/BP settings in the ranges [1800,1000] cm™! and
[1380,580] cm™!, respectively.

The MT/BLYP and MT/BP band frequencies shown in
Figure 7 for NMA in GP6P water suggest that one should
choose for IR spectra of organic solute molecules derived
from such DFT/PMM-MD simulations the scaling factors

wt/sLyp = 1:0371 and fygl pp = 1.0273, which shift the
calculated Al frequencies vf{}l to the experimental value*

v:’ll’e"p = 1625 cm™'. With these scaling factors the RMSD of
the five remaining IR frequencies shown in Figure 7 reduces
from 27 em™ to 21 cm™! (MT/BLYP) and from 12 cm™'
to 7 cm™' (MT/BP), respectively. The latter RMSD is even
smaller than the 9 cm~! RMSD resulting for the six main IR
peaks in the marginally scaled MT/B3LYP case.

Thus, a properly scaled MT/BP setup can predict the
IR spectra of NMA at a quality comparable to that of the
physically more accurate and much more costly MT/B3LYP
setup. This finding reminds of earlier observations derived
from normal mode analyses*!*? of isolated organic molecules,
according to which unscaled harmonic BP frequencies match
for many organic molecules the frequencies of anharmonic
fundamentals surprisingly well. The associated accidental
cancellation of errors*'*? thus appears to transfer to the
DFT/PMM-MD setting. Note in this context that MD
simulations at about 300 K still leave a molecule in regions
of the potential energy surface, which are quite close to the
quadratic minimum.
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6. Effects of NMA’s LJ parameters on calculated
IR spectra

In Section III B, we have shown that the solvation
of NMA’s C'=0 group by GP6P water is substantially
overestimated, if the LJ parameter set L5, which is provided
by the CHARMM22 force field for NMA, is used for the AG
atoms in DFT/PMM simulations. In this respect the optimized
set Lop Was seen to perform much better (cf. Figure 4).

Because the Al and AIl bands of NMA are very sensitive
to the strength of hydrogen bonding particularly at the C’=0
group of the AG,?*?*32 one expects that the Al band is shifted
toward higher and the AII band toward lower frequencies if
L2 is replaced by Lo, in DFT/PMM-MD simulations.

The top part of Figure 8 confirms the expectation voiced
above: Due to the exchange of the initial L] parameter set
Lo by Lo the Al band gets blue-shifted by 8 cm™! and the
Al band red-shifted by 7 cm™' thus widening the spectral gap
between the two bands from 32 cm™! to 47 cm™!. Here the
experimental value?® is 43 cm™!.

Turning now to the AIII frequency shown in the bottom
part of Figure 8 one recognizes a shifting pattern, which
is quite similar to that of the AIl frequency. Also here the
transition from the Lco, to the L,y parameters induces a
redshift and, thus, diminishes the frequency overestimate
resulting for the scaled DFT/PMM-MD description with the
MT/BLYP setup (we have discussed the remaining frequency
overestimates above already in connection with Figure 7).
Note that the methyl bands are unaffected by the change of L.

As a further methodological result it has thus become
clear that a more accurate description of NMA’s solvation by
optimized LJ parameters at the two molecular groups, which
are targeted by hydrogen bonding, leads to an improved
prediction on the IR spectrum of NMA in aqueous solution.
Therefore we suggest to adopt for those QM atoms, which are
involved in hydrogen bonding interactions, an RDF-based LJ
parameter optimization as a standard technique for the setup
of QM/MM descriptions.

An alternative and less costly approach to the optimization
of QM/MM van der Waals interaction potentials applies

microsolvation models,>*38 i.e., small isolated solute-solvent
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FIG. 8. Frequencies of the AI, All, and AIIl bands from DFT/PMM-MD
in the scaled MT/BLYP setup either using the CHARMM?22 ( Lc2;) or the
optimized (Lopr) LJ parameters for the AG of NMA. As an experimental
reference also data from IR spectroscopy? are given.
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clusters, for which accurate QM reference calculations are
feasible. However, the transfer of LJ parameters to the bulk
failed in certain cases.'?’

7. Basic vs. advanced MD simulation technology
and modeling

About eight years ago, Schultheis et al.?* have already
calculated the IR spectrum of NMA in water from DFT/MM-
MD simulations. For the DFT fragment NMA they had
chosen the MT/BP setup and for the MM description of the
surrounding water Jorgensen’s so-called TIP4P* potential.
Beyond exchanging the non-polarizable and less polar TIP4P
water model (dipole moment 2.18 D) by the polarizable and
more polar GP6P description (average dipole moment in bulk
water 2.54 D, cf. Table S5 in the supplementary material®), we
have replaced the DFT/MM interface originally developed by
Eichinger et al.® by improved algorithms, which substantially
enhance the performance (i.e., accuracy times efficiency) of
the calculations.!%!'"-17 In this work, we furthermore have
optimized the LJ parameters of NMA for an improved
description of the hydrogen bonding structures at the C'=0
and N—H groups of the AG.

Figure 9 compares the IR spectra calculated in the MT/BP
setup from hybrid MD simulations with the advanced (a) and
basic (b) modeling technologies, respectively. Whereas the
description of the methyl bands is of a comparable quality in
both cases, the amide bands resulting from the basic modeling
are blue-shifted with respect to the advanced modeling by
18 cm™! (AID), 15 cm™! (AID), and 5 cm™" (AIIl). Whereas
the blueshift of the AI band could be attributed to the use
of the less polar TIP4P water model, a reduced polarity of
the solvent should correspondingly lead to a redshift of the
AII and AIII bands (these are the well-known effects exerted
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FIG. 9. The IR spectrum of NMA computed by FTTCF (black) from (a)
DFT/PMM-MD with the GP6P water model and the LJ parameter set Lop,
or from (b) DFT/MM-MD with the TIP4P** water model and L3, (both
employing the MT/BP setup). The Al intensities have been normalized to
one and the frequencies were scaled by fyr/p. As a guide to the eye the
experimental spectrum® is drawn in gray.
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FIG. 10. IR spectra (black) of (a) NMA and (b) deuterated NMA computed
by FTTCF from MT/BP DFT/PMM-MD and scaled by fgﬂ /Bp Ar€ compared

with available spectroscopic reference data?® (gray). Band assignments were
obtained by a GNC analysis. 10111

by solvents of reduced polarity**?*32). Thus, the observed
blueshift of the AIl and AIIl bands cannot be attributed
to the smaller polarity of the TIP4P solvent. As a result, the
improved description of the experimental data by the advanced
DFT/PMM-MD simulations signifies the meanwhile achieved
progress of technology,!®!! methodology, and modeling.

8. Isotope effects: Deuteration of amide hydrogen

As a first application of the thus established DFT/PMM-
MBD approach to the IR spectra of AG-containing compounds
in solution we consider the effect of replacing the amide
hydrogen of NMA by a deuterium, because this is the only
isotopomer of NMA, for which a solution spectrum” is known
to us.

Figure 10 compares our DFT/PMM-MD predictions
(black) for the IR spectra of NMA (a) and of its deuterated
counterpart (b) with spectroscopic data.”” Here, the MT/BP
setting was employed and the associated solution frequency
scaling factor f;,j’} ,gp Was applied (cf. Section III C 5).
Unfortunately the experimental spectrum covers only a limited
spectral range, because the deuterated aqueous solvent exhibits
strong IR absorptions in the lower frequency spectral region.'?
Nevertheless the shown spectroscopic data®® suffice to estimate
the isotopic frequency shifts of NMA’s Al and AIl bands in the
transition to deuterated NMA, where they are labeled as Al
and AII’, respectively. The two bands are red-shifted by 2 cm™!
(AD) and 79 cm™! (AII). In excellent agreement with these
spectroscopic data our DFT/PMM-MD calculations predict
redshifts of 1 cm™! and 81 cm™!, respectively, underlining the
quality of the description.

D. Computational issues

The simulations were carried out on the SuperMUC Phase
2 Petascale System at the Leibniz Supercomputing Centre
(LRZ) of the Bavarian Academy of Sciences and Humanities
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in Munich employing up to 840 cores per simulation. The
DFT fragment was handled by the MPI/OpenMP-parallelized
DFT program CPMD'# and the PMM fragment by the MPI-
parallelized dynamics driver IPHIGENIE."> Here, CPMD
works as a library loaded by IPHIGENIE.'!

For MT/BP and MT/BLYP, the fastest parallel setup
yielded about 70 ps of DFT/PMM-MD trajectory of NMA
in GP6P solution per day, which is only by a factor of
two slower than the corresponding DFT-MD simulations
of isolated NMA. For DFT-MD simulations of isolated
NMA, the MT/B3LYP setup was by about a factor of eight
slower than the MT/BLYP setup, whereas in the DFT/PMM
case this factor reduced to five. Nevertheless, applications
employing the B3LYP functional with the current DFT/PMM
implementation'! are likely too expensive in many cases.
Alleviation could provide a DFT/PMM interface to a more
efficient B3LYP implementation as it is, e.g., available in
CP2K.% The programming of such an extension should be
straightforward.

With IPHIGENIE single-core test simulations of a box
of liquid water containing 1500 molecules revealed that the
new GP6P potential is only by 7.5% slower than TL6P,*
whose model complexity differs from that of GP6P solely
by the use of point instead of Gaussian partial charges.”
Thus, the additional cost of handling Gaussian partial
charge distributions is very small already in pure PMM-
MD simulations and becomes essentially negligible in a
DFT/PMM-MD setting.

IV. SUMMARY

A physically adequate and quantitatively reliable treat-
ment of the quantum-classical interface in MD simulations
of QM/MM hybrid systems still poses technical challenges,
even if only non-covalently bound QM and MM fragments
are in the focus, as it is the case in our present contribution.
One of these challenges is the question, as to how one should
describe the van der Waals interactions between the atoms of
charged or polar fragments.

Driven by our interest in the IR spectra of peptides in their
native aqueous environment, we have selected the standard
molecular model NMA of a peptide bond and, here, the
effects of solvation on its IR spectrum as the target of our
study. Because the IR spectra of NMA, in particular, and of
peptides, in general, sensitively depend”*?**? on the details
of the electrostatic interactions of these strongly polar and
polarizable molecules with their likewise polar and polarizable
(native) environments, these environments should be modeled
by PMM potential functions, which accurately capture their
electrostatic properties.

Applying a DFT/PMM hybrid method'®!" we have
correspondingly developed with GP6P a polarizable model
potential for water, which should be specifically well-suited for
DFT/PMM-MD simulations of peptides in aqueous solution,
if the peptidic DFT fragment is described by a grid-based
DFT approach such as provided by CPMD'* or CP2K.%
Here, the Gaussian charge and dipole distributions of GP6P
guarantee that spurious distortions of the DFT fragment’s
electron density, which may arise from point sources of the

J. Chem. Phys. 144, 114504 (2016)

electrostatic potential, are avoided. Point charge MM models,
in contrast, require additional efforts of selecting suitable
charge smoothing scales.” The thus obtained GP6P model
turned out to have favorable bulk liquid properties not only at
the thermodynamic conditions (pg, Tp) of its parameterization
but also seems to be very well transferable to other liquid
phase conditions.

Subsequently we have addressed the issue of the inter-
fragment van der Waals interactions specifically for the two
hydrogen bonding interaction sites of DFT-described NMA in
GP6P water. We have derived for these sites an optimized set
Lope of LI parameters by consideration of RDFs measuring the
hydrogen bonding structure in the surrounding GP6P water.
Reference RDFs were calculated by a first-principles DFT-MD
simulation of NMA in a small box of water. The computational
effort of the DFT/PMM-MD parameter optimization was
reduced by applying a mean field approach.

We have evaluated the successes of these modeling efforts,
i.e., the computational constructions of GP6P and of L, by
computing the IR spectrum of NMA in aqueous solution
through FTTCF from extended DFT/PMM-MD simulations
using several DFT setups. The results turned out to represent
excellent descriptions of the corresponding spectroscopic
evidence® particularly for the marginally scaled MT/B3LYP
and the scaled MT/BP setups. Here, the required scaling
factors had been derived by comparing experimental gas phase
IR data with results of DFT-MD simulations. The quality of
the thus achieved DFT/PMM-MD description was underlined
by the fact that the observed effects® of aqueous solvation
and of deuteration on the IR bands of NMA were closely
reproduced by the simulations.

The contents of this contribution are admittedly quite
technical. An exception is, of course, the substantially
improved description of the IR spectra of protonated and
deuterated NMA in water. However, the achieved technical
progress now provides solid grounds for DFT/PMM-MD
studies of larger peptides in aqueous solution. Of particular
interest for us will be the conformational landscapes and the IR
spectra of dipeptides in aqueous solution. An enhanced sampl-
ing method, which makes DFT/PMM-MD simulations aiming
at conformational landscapes computationally feasible, has
been recently developed.'3’

The improved methodology of DFT/PMM simulations
presented in this and previous works'®!! is, up to now,
restricted to chemically separated DFT and PMM fragments.
An extension toward covalently connected fragments should
pose no serious conceptual difficulties, if one follows the lines
of reasoning underlying the so-called “scaled position link
atom” method.®
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2.3 Beschreibung der IR-Spektren von Amidgruppen mit DFT/PMM-MD

Der folgende Abdruck

Supplementary Information for
A Polarizable QM /MM Approach to the Molecular Dynamics of
Amide Groups Solvated in Water

Magnus Schwarer, Christoph Wichmann und Paul Tavan
J. Chem. Phys. 144, 114504 (2016)

enthélt zusétzliche Informationen zum oben abgedruckten Haupttext. Im Abschnitt S1
werden hier die im Haupttext nur grob skizzierte Konstruktion des PMM-Wassermodells
GP6P sowie die Details der Evaluierung dokumentiert. Abschnitt S2 zeigt, dass der
effiziente DFT/PMM mean-field-Ansatz sehr gute Vorhersagen fiir die radialen Vertei-
lungsfunktionen in DFT/PMM-Systemen liefert, und dass diese unabhéngig von der
gewihlten DFT-Methode sind. In Abschnitt S3 werden schliefflich alle berechneten IR-
Spektren im Spektralbereich von 1800 cm™! bis 580 cm ™! zusammen mit GNC-Analysen
gezeigt.
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S1. PARAMETERIZATION AND EVALUATION OF THE GP6P WATER
MODEL

For the predominantly computational construction of our new Gaussian polarizable six-
point (GP6P) potential, which should be particularly suited for hybrid DET/PMM-MD sim-
ulations (cf. Section I), we adopted the general concepts underlying the parameterization®?
of the polarizable v-point (v = 4,5,6) point charge water models called TLvP.! Because
four- and five-point models, which feature three and four static partials charges, respec-
tively, did not show® a density maximum near 277 K and because out-of-plane “lone-pair”
charges are required for a proper modeling of the quadrupole moment, which steers the local
order structures in the liquid phase,* we decided to choose a six-point geometry with five
static Gaussian charge distributions for our new water model potential.

Figure 2 illustrates the geometry of the resulting GP6P model together with the distribu-
tions of the induced dipole, of the charges and of the mass-points. Procedural modifications
of the TLvP parameterization strategy!? became necessary, mainly because GP6P features
with the widths o; of the Gaussian charge distributions at most three additional parameters
(compared to TL6P).

A. Physical Corner Stones of GP6P

The construction of GP6P follows the general strategy? (i) to directly adopt experimen-
tally well-measured properties of the water molecule in the gas and liquid phases wherever
possible, (ii) to take advantage of the new DFT/PMM technology®® (which includes the
most recent version of the SAMM algorithm™®) to compute most of the remaining electro-
static parameters, and (iii) to resort to empirical optimizations for as few parameters as

possible.

1. Parameters Directly Adopted from Experiments

1.2 also our new Gaussian polarizable six-point

Like the point-charge TLvP potentials,
model GP6P of HyO is chosen rigid with the experimental liquid phase geometry®!? G,
which is defined by the O-H distance log = 0.968 A and the H-O-H angle ¢pon = 105.3°.
Following the suggestion in Ref. 11 its distribution of static partial charges is constrained
to yield the experimental gas phase dipole moment'? |ug | = 1.855D. The electronic po-
larizability is represented by an induced Gaussian dipole distribution of width o,, which
is centered at the oxygen. The strength phyn, of this induced dipole depends linearly and

isotropically through the polarizability apyy, for which we choose!! the experimental gas
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phase value'® a8 = = 1.47 A3 on the polarizing electric field, i.e. phypy = a8, (E(ro))s,-
This field is an average over a Gaussian volume of width o, centered at the position ro of
the oxygen [cf. Egs. (3) and (4) in Ref. 5].

2. [Electrostatic Geometry of GP6P

The new DFT/PMM technology®® is employed to compute almost all further features of
the electrostatic signature of GP6P. According to Figure 2, this signature is characterized by
two identical static Gaussian charge distributions of strengths gy > 0 and widths oy centered
at the two hydrogen atoms. A negative static Gaussian charge distribution (strength g,
width oyy) sits at a massless site (M), which is located within the molecular triangle on
the bisectrix of the bond angle ppon at the distance loy from the oxygen. Furthermore,
two massless so-called “lone-pair” sites (L) are found in the plane, which is defined by the
bisectrix and the normal of the molecular plane. They are located symmetrically above and
below that plane. The O-L distance is denoted as lor,. The L-O-L angle @101, is measured
as indicated in Figure 2. The L-sites carry identical negative Gaussian charge distributions

(strengths ¢, < 0, widths oy,).

With the model’s predefined vacuum dipole pfy\n; = |8,,| €., where the unit vector e,
is oriented parallel to the H-O-H bisectrix in the O-M direction (cf. Figure 2), and with the
charge neutrality 2qyg + qm + 2qr, = 0 of the water molecule the electrostatic geometry G, of
GP6P is uniquely determined by the four parameters {lowm, lor, YLoL, qu} = Ge.

In the absence of a polarizing field, the electrostatic signature of the GP6P model is
defined by G, and by the three Gaussian widths oy, oy and op,. To reduce the number
of parameters we choose oy = o,. and, thus, the remaining widths are determined by the
ratio Xpy = or,/on and the value of oy. In the presence of a polarizing field also the width

o, of the induced Gaussian dipole at the oxygen contributes to the electrostatic signature.

As mentioned at the beginning of this section, almost all electrostatic parameters (i.e.
Ge, Xru, and o,,) will be determined computationally from DFT/PMM calculations. Here,
only oy will be determined empirically from comparisons of PMM-MD simulations with
experimental data on liquid water. This is a key difference to the optimization'? of the
TLvP point charge models, which determined all electrostatic parameters from DFT/PMM

calculations.
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3. Modeling the van der Waals Interactions

Beyond the Gaussian width oy, the empirical parameter optimization will also cover the

parameters A;, A;, and B of the Buckingham!* potential
Upu(r | Ay, Ay, B) = Ajexp(—rAy) — B/r°, (S1)

which is centered at the oxygen atom and models the van der Waals interactions between
the GP6P water molecules at O-O distances 7.

As targets of this empirical optimization, which will be carried out in the NV'Tj ensemble
at the temperature Ty = 300 K and at the density'® n®P(py, Ty) = 0.9965 g/cm? of liquid
water at the standard pressure pg = 1 atm, we chose the pressure py, and the experimental
values for the mean potential energy E;® = 9.92 kcal /mol per molecule,'® for the position'”
roeeP — 276 A of the first peak of the O-O RDF goo(r), and for the thermal expansion
coefficient™ o = 2.8 x 107*/K.

To enable the later use of GP6P for solute-solvent systems, in which the van der Waals
interactions of the solute atoms are modeled by LJ potentials, we will additionally determine

from Ugy,(r | A1, As, B) a related two-parameter LJ potential
ULJ(T|AaB):A/T12_B/T67 (82)

which features the same dispersion parameter B as Ug,. Its repulsive parameter A is ob-
tained by fitting Upy(r| A, B) to Upy(r| A1, Aa, B) in the range r € [2.4,6] A.!

B. Computational Methods

The iterative parameterization of GP6P followed the general scenario suggested in Ref. 1.
It involved PMM-MD simulations and DFT/PMM calculations, which were carried out
with the parallelized MD program package IPHIGENIE!® and its parallelized DFT module
CPMD."

1. Setup of PMM-MD Simulations

All PMM-MD simulations, which were carried out during the iterative optimization!
of the new GP6P model, employed the same (so-called medium size) simulation system,
i.e. a periodic cubic box containing N, = 1500 water molecules. In N, V,,T simulations
its volume V;, was generally (unless stated otherwise) chosen as Vi, = (35.58 A)? to yield
the experimental'® density n®P(py, Tpy) at our standard conditions. In such simulations the

temperature T was controlled by a tightly coupled Bussi thermostat?® (coupling time 0.1 ps).
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In all NpoT simulations the pressure was steered by a Berendsen barostat?! characterized by
a coupling time of 10 ps and by the isothermal compressibility k7 = 46 x 107%/atm, which
is the experimental value® for liquid water at py and Ty. All other simulation settings were
chosen as described in Section IT A of the main text.

As is also stated in Section IT A, the pressure was calculated in all MD simulations from
the virial expression.?>?3 This barometer was also applied during the parameterization of
the predecessor models TL4P and TL5P.! In the course of the present study it turned out,
however, that a simpler barometer expression,?® which is solely applicable to additive force
fields, was apparently employed during the parametrization? and sample application® of the
TL6P model. Therefore, the TL6P model is flawed.

2. DFT Setup of Choice: MT/BP

Beyond PMM-MD simulations, the GP6P parameterization also covered DFT/PMM
single-point calculations of selected water molecules embedded in solvation environments,
which had been generated by PMM-MD. With the aim of staying compatible with previous
DFT/(P)MM studies of the water molecule’"*'?* we chose as DFT method the gradient-
corrected exchange functional of Becke (B),?® the correlation functional of Perdew (P),%
combined with the norm-conserving pseudopotentials of Martins and Troullier (MT),?” and
a plane-wave cutoff of 80 Ry. This DFT method is denoted MT/BP. The selected DFT
water molecule was always centered in a cubic box of volume (9 A)? and the self-consistency

convergence threshold® of the Kohn-Sham orbitals was set to yppr = 1077.

C. Procedures Executed at Each Parameterization Step

Each step n = 1,2,... of the iterative parametrization comprised a set of sequentially
executed procedures, which transformed the previous model GP6P"~! into its successor
GP6P™. The iterations were repeated until a convergence of the model parameters was

apparently reached.

1. Snapshot Set for DFT/PMM Single-Point Calculations

First a 400 ps PMM-MD simulation was performed in the N, VT ensemble for the model
GP6P"! (GP6P° = TL6P). Five snapshots were drawn from the end of this trajectory at
temporal distances of 10 ps. These snapshots are defined by the positions of all atoms and

by the strengths uilgl&M of the induced dipoles of the PMM water models k. From each
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snapshot, 300 water molecules were randomly selected as DFT fragments for subsequent
DFT/PMM single-point calculations.

In this way we obtained, for each iteration step n, a supposedly representative set S"
of 1500 solvation structures s. The DFT/PMM calculations served to determine for each
s € 8™ the dipole moment pppr(s) and the charge density p(s) of the DFT fragment, whose

structure was kept fixed at the experimental liquid phase geometry Gy,.

2. DFT/PMM Optimization of the Induced Dipole’s Width o,

For each solvation structure s € S, first the dipole moment

torr(s) = tppr(s) — [her ex, (S3)
which is induced in the DFT fragment by the PMM environment, is calculated. Here,
pppr(s) is the total dipole moment of the DFT fragment calculated by DFT/PMM and
|uEprl = 1.7920 D is the vacuum DFT dipole moment calculated! with MT/BP at Gy,.

For comparison also the PMM analogues

fipyiv (s10,,) = agDFT<E(rO>>aM (54)

are computed for all s € 8™ by multiplying the local Gaussian average field (E(ro)>%
introduced above in Section S1 A 1 with the DFT polarizability afpr = 1.6025 A% obtained!!
by MT/BP for a water molecule, which was exposed to homogeneous external fields and kept
fixed at G,,.%®

The induced PMM dipoles by (s|o,) depend on the Gaussian width o, assumed for the
local field average (E(ro)),, . Therefore a variation of o, can be employed to optimize the
correlation between the induced DFT dipole moments phpr(s) and their PMM analogues

Py (s|oy). For this purpose one can minimize the mean square deviation

¥¥(0,) = ‘gﬂz (b2 (5) — fibana (51 9,)]° (55)

s€S
between the z-components of the induced dipole moments plypr(s) obtained by DFT and
their PMM analogues /liPMM(s|UM) over the set 8" of solvation structures s.?* Technically

the minimization of x?(o,) was effected by scanning o,, from 0 to 1 A in steps of 0.0005 A.

opt

The resulting optimal width is denoted o "

3. DFT/PMM Optimization of the Electrostatic Geometry

The next target of the parameter optimization is a DFT estimate GQ of the electrostatic

geometry.
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First, for each solvation structure s € 8™ the electrostatic potential ®ppr [r,|p(s)], which
is generated by the charge density p(s) of the DFT water molecule, is evaluated at the
positions r, of 500 points p, which are uniformly distributed on a sphere P of radius R =
2.76 A surrounding the molecule’s center of geometry. These points are given in a frame of
reference, which is fixed with respect to the molecular geometry. The radius of the sphere
coincides with the location of the first maximum of the oxygen-oxygen radial distribution
function (RDF) of water at standard conditions.*”

Next, the DFT fragment is replaced by a PMM water model, whose Gaussian induced
dipole fipyp(s |opP') [Eq. S4] has the above determined width opP* and is located at ro.
The potential ®,, [t} | fpy(s | oP')] generated by [ (5| ofP') is then calculated at all
points r, of the spherical surface.

For each solvation structure s these two surface potentials are subtracted at all points r),

yielding the difference potentials
Adppr (rpls) = ®oer [1p]p(5)] = Py [1p | Apai (s 077)] (S6)

If one assumes that the fluctuations of the electrostatic field, which acts on the selected DFT
water molecule in a liquid phase environment, mainly change its induced dipole moment,
which should be very well approximated by its PMM analogue, then the values of the differ-
ence potential A®ppr (r,]s) should be similar in all solvation structures s € S”. Thus, the
difference potential should only slightly fluctuate! around the static contribution ®§&.(r,)
to the surface potential ®ppr [r,|p(s)], which is generated by the average higher moments
of the DFT charge density.

Averaging A®ppr (r,|s) over all solvation structures yields the mean difference potential

<A®DFT(rp S = ZA(I)DFT I'p| ) (S?)

sES

at all points p € P, whose surface average variance

Z{ Z A®ppr (rpls) — <A<1>DFT(rp)>s]2} (S8)

should be small. Denoting the mean difference potential as

c,;w

P (rp) = (A®ppr(ry))s, (S9)

the variation of this static part of the potential ®ppr [r,|p(s)] on the spherical surface P is

sta sta; 2
|7>| Z [ 2D (rp) — (PDEr(rp))e] (S10)

peP
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Then the ratio os/op measures the size of the fluctuations of the difference potential
A®ppr (rp|s) in the snapshot set 8" around its mean ®3&.(r,) on the scale op, which
is defined by the variations of ®32.(r,) on the spherical surface. According to the above
conjecture, this ratio should be small.

The DFT estimate GQ = {lom, low, row, Gu}" of the electrostatic geometry G, which
approximates the average higher moments of the DFT fragment (at the predefined value
|uf ey of the static dipole moment) within the chosen model class as accurately as possible,

is finally found by minimizing over all surface points the functional
.72
e |7D| Z [(I)%%tT I"p q)gf/}M(rp’Ge)} (Sll)

of the four-parameter electrostatic geometry Ge. This functional is the mean square devia-
tion between the static contribution ®§2%.(r,) [Eq. (S9)] to the DFT potential ®ppr [r,]p(s)]
and the potential @%ﬁM(rMGe), which is generated by the static Gaussian charges of an un-
polarized (fihypy = 0) PMM water model with the electrostatic geometry G.. These charges
have the Gaussian widths oy ' and o~ " of the model GP6P" . The four-parameter space

29,30

spanned by G, is searched by the Levenberg-Marquardt algorithm, which yields robust

results.

4. DFT/PMM Computation of the Gaussian Width Ratio ¥g

At the thus obtained electrostatic geometry G’Q, first estimates of the Gaussian charge

widths of; and 67 are computed by minimizing the functional

“ 2
§2(0m,01) = oo D | P (1) — P (|G, o, 1) (812)

l
\P Z

with respect to the widths. This functional is analogous to Eq. (S11) but is based on a smaller
sphere P’ of radius R’ = 1.70 A, which roughly corresponds to the distance, at which the
first peak of the oxygen-hydrogen RDF is found in liquid water at standard conditions.”
Because the thus obtained Gaussian widths o1 and &f; will turn out to be smaller than about
0.7 A, the potential at the surface of the large sphere P is quite insensitive to changes of &,
and &y, whereas the surface potential of the small sphere P’ is much more sensitive.
Consequently, the computation of the widths by minimizing ¢(6y,61,) mainly serves
to bring the radial decay of the PMM model potential ®3f,,(r) close to that of its DFT
antetype ®5i24.(r) by optimizing their mean square difference on two concentric spherical
surfaces P’ and P, which surround the center of geometry of the water molecule with the

radii 1.70 A and 2.76 A, respectively. The resulting widths 6 and 61, eventually define the
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ratio X}y = o' /o, which is kept constant during the further refinement in the current
iteration n. Thus, only one Gaussian width (o) of a charge distribution remains as a free

parameter to be computed by empirical optimization.

5.  Transforming the DFT- into an Experiment-Adapted Model

DFT descriptions of molecules generally differ from their real antetypes. Because the
desired PMM model should approximate a real water molecule, but not its DFT description,
as accurately as possible, the above DFT-based computation of the electrostatic geometry

Gl requires a corresponding correction. For this purpose the strengths {qu, ¢m, ¢r} of the

static PMM partial charge distributions are scaled by the factor
7 = [ |/ 1| = 1.03515625 (513)

to yield the experiment-adapted parameter set {qm,qum,qL}. This scaling transforms the
DFT estimate G, featuring the static DFT dipole moment!! |uppr] = 1.7920D into the
electrostatic geometry G. = {lom, loL, ¥roL, qgu} of an “experimental” PMM model, which
then has the static dipole moment || = [18,,| = 1.855D.

Furthermore, the polarizability of the PMM model, for which the DFT value' of . =
1.6025 A3 has been assumed in Section S1C2 in the computation of the induced dipole’s

width o7}, is now set to the experimental value,’ i.e. apyy = a8, = 1.47 A3,

exp

6. Empirical PMM-MD Optimization of oy, Ay, and A;

The Gaussian width oy and, through the constant Gaussian width ratio ¥}y (c.f. Sec-
tion S1C4), also the width o1, = opX]y are next refined in an empirical optimization by a
subsequent weak-coupling (WC) PMM-MD simulation.®" This simulation additionally serves
to determine the parameters A; and A, of the Buckingham potential Ug,, whereas its dis-
persion parameter B is kept fixed at the value B™ of the previous iteration. The initial value
B® = 663 A%kcal/mol is adopted from the TL6P model.? Thus, the three parameters oy,
Ay, and A, are optimized by WC PMM-MD simulations in the N, V;,T; ensemble at our
standard conditions employing an integration time step of At =1 fs.

As we have indicated in Section S1 A 3, the targets of the WC simulations are the mean

max,exp

potential energy E¢* per molecule, the pressure pg, and the position 730 of the first peak

exp

of the RDF goo(r). Here, oy is negatively coupled to E — E;* with the effective coupling
time?! 7,/C, = 20 pskcal/(mol A), i.e.

ou(t + At) = oy(t) — (O, /7,)[E(t) — ES®|At (S14)
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(t denotes the current time step) and Aj is coupled to p with 7,/C, = 0.1ps A atm, i.e.
Asft+ At = Axlt) + (C/1)lp(E) — po] At (515)

A; is indirectly coupled to the position'” raa“™® = 2.76 A of the first peak of goo(r) by

negatively coupling the value

U'(t) = Ugu(ral Ai(t), As(t), B") (S16)
of the current Buckingham potential at 7, = 2.3 A to rge“® = 2.76 A. As effective coupling

time for U’(t) we chose 7y /Cyyr = 0.125 ps A /(keal/mol). An estimate of the associated RDF
goo(r) and thus of ri&¢ is recalculated every 250 fs from the last 7, = 250 fs of WC PMM-
MD. Denoting the time of this recalculation by t, = n7, with n = 1,2,... the difference
AP (t,) = rg&(t,) — raes yields the target value

Ultny1) = U'(tn) — (Cur /700 ) ArEE (t0) Ta- (S17)

A linear interpolation between the values of U’, which are defined with respect to the coarse

time scale 7,, yields after a few lines of algebra the WC dynamics
Ut + At) =U'(t) — (Cyr /10 ) Argd(t,) At (S18)

for each time point ¢ with ¢,, <t <t,,;. Thus one gets at each time point ¢ with Eqs. (516)
and (S1) the prediction

Ai(t+ At) = {U'(t + At) + B"/r°} exp[As(t + At)r,] (S19)

of the last missing parameter. After 400 ps of WC simulation, temporal averages (oy(t)),
(A1(t))r, and (As(t)),, are collected for the next 7 = 200 ps of WCMD, which are subse-
quently identified with the parameters of the model GP6P™. For the very last WC simula-
tion, which eventually yielded the final model parameters, all WC coupling constants were

increased by a factor of 5.

7. Tuning of the Dispersion Parameter B

The empirical optimization of the dispersion parameter B requires a further target observ-
able. We chose the thermal expansion coefficient «,, which has at our standard conditions
the experimental value'® o = 2.8 x 10~*/K. For its optimal choice we conduct a series of
further WC simulations (as described just above) targeting oy, Ay, and Ay, for 12 B values
in the range [399, 1125] A% kcal /mol, which were chosen as B = B° +iAB with AB = 66 A®
kcal/mol and ¢ € {—4,-3,...,7}. For each of these 12 models, the associated thermal
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expansion coefficient a,(B) is computed following Section S1D below. The value for B"
is selected by linear interpolation of a,(B) to the targeted experimental value a5®. With
this value B™ another WC simulation yields the final model parameters oy, A;, and A, of
GP6P™. This model defines the initial conditions of the next cycle.

8. A Shortcut of the Optimization Cycle

Obviously the determination of B™ described above is computationally quite demanding.
Therefore, the dispersion parameter B was kept at its initial value B® during the first four
optimization cycles, which solely comprised all steps described in the paragraphs S1C1-
S1C6. At the end of the fourth cycle B was optimized as described in Section S1C7
yielding B* and a two more optimization cycles (excluding a further optimization of B)

served to check whether the remaining parameters showed an apparent convergence.

D. Methods for the Evaluation of GP6P

For a characterization of the GP6P model of liquid water at py and T; we almost exactly
copied the computational setups explained in Section 3.2 of Ref. 1. Here, the only difference
is that we generally chose the simulation box of intermediate size containing N, = 1500
water molecules instead of a smaller box containing only Ny = 728 molecules. In some cases,
in which the size dependence of calculated observables had to be studied, we also considered
a large box with N} = 3374 GP6P models. The general PMM-MD simulation settings,
including the thermostat and barostat settings, were chosen as described in Sections IT A
and S1B1.

To asses the targeted properties of GP6P at our standard conditions (py = 1 atm, Ty =
300 K) we calculated the potential energy Ej per molecule, the pressure p, and the RDF
goo(r) as averages from a 3ns MD trajectory simulated in the NV, Ty ensemble. The
density n(po, Tp) was averaged over a 3ns Ny,poTp simulation.

The thermal expansion coefficient o, which had been the fourth target of the parametriza-
tion, was determined from two 3 ns N,poTL simulations, with temperatures T, = Ty + 10 K.
Numerical differentation of the logarithm of the density with respect to the temperature
according to Eq. (13) in Ref. 1 then yielded ;. From the same trajectories, also GP6P
predictions for the heat capacity C, at constant pressure was extracted by numerical dif-
ferentiation of the average total energy per molecule with respect to the temperature using
Eq. (12) in Ref. 1.

The isothermal compressibility xr was obtained from two 3ns N, VT, simulations, in

which the volumes V. were chosen such that the densities were ny = 1.047 g/cm?® or n_ =
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0.947 g/cm?, by numerical differentation of the logarithm of the density with respect to the
average pressure according to Eq. (11) in Ref. 1.

Applying Eq. (9) in Ref. 1, finite size self-diffusion constants Dy(1V;) were calculated for
all three box sizes V; (i € {s,m,1}) from N;V;Ty simulations at n®P(pg, Ty) using a weak-
coupling Berendsen®? thermostat with the very large coupling time of 5 ps for temperature
control. At such a large coupling time the perturbation of the dynamics by this thermostat
becomes negligible.?® One has, however, to choose target temperatures TBQ(NZ-) < Ty, which
guarantee the average simulation temperatures (T') are close to Ty. For each of the three
box sizes N;, the values Dy(N;) were calculated from ten independent V;V;T, simulations of
250 ps duration.

Because D, strongly increases with the temperature, we corrected the errors intro-
duced by the deviations of the actual average temperature (T') from the target temper-
134 function D§P(T) in the
temperature range 7' € [283.2,323.2] K by a second-order polynomial fo(7'). Assuming
that the temperature-dependence of Dy(N;, (T')) is well approximated by Dg™(T'), the cor-
rected quantity Do(N;, To) = [f2(To)/f2((T))]Do(N;, (T)) was obtained by scaling. The

self-diffusion constant Dy in the infinite system and the viscosity 1 were then determined by

ature Ty. For this purpose, we interpolated the experimenta

extrapolation from the finite size values Do(N;, Ty) employing Eq. (10) in Ref. 1.

Also the dielectric constant e of the infinite system was derived by extrapolation from the
finite size values €(NN;), which were self-consistently obtained from the fluctuations of the
total dipole moment through the corrected version® of Eq. (8) in Ref. 1 using perturbation
theory.?® Here, for each box size N; a total of 10 zero’th order N;V;T, simulations were
executed for 5ns assuming a dielectric constant egp = 78 for the surrounding dielectric
continuum.?7

The only observable, which we computed as a check on the transferability of the GP6P
model to other thermodynamic conditions than the one (pg,Tp) used during the parameteriza-
tion, was the temperature-density profile n(pg, T') in the temperature range 7' € [250, 320] K.

38-40 i) the generalized NypoT)

For its determination we carried a replica exchange simulation
ensemble, with a temperature ladder comprising 15 rungs k£ = 0, ..., 14 with temperatures
T, = (250 + 5k) K. Employing the deterministic even-odd scheme®!' temperature exchanges

were attempted every 10 ps. The total simulation time was 20 ns per rung.

E. Results of the GP6P Parametrization

During the iterative parameterization described in Section S1 C several target quantities
were optimized. For a few of these quantities we now document the final stage of the

optimization. Here we focus on the observables x*(o,) [Eq. (S5)] and a,(B) (cf. Section
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S1CT7), which were employed to determine the Gaussian width o, of the induced PMM
dipole phyp and the dispersion attraction parameter B entering the Buckingham potential
Usu(r) [Eq. (S1)], respectively.

1. Dipole Correlations and Distributions

0.3 T . .
b) ,
2.8
o 02 e
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’SL L:”24
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FIG. S11. a) Root mean square deviation |x(o,)| of the induced Gaussian PMM dipoles from their
DFT antetypes as a function of the Gaussian width o, for the snapshot sets S" in the steps n = 5
(blue) and n = 6 (red) of the iterative parametrization. b) Correlations between the z-components
of the total dipole moments gppr, and ﬂpMM,Z(UZpt) for the snapshot set S. As a guide to the

eye the light blue line shows the hypothetical exact correlation.

Figure S11(a) shows the root of the mean square deviation x?(c,) defined by Eq. (S5)
as a function of the PMM dipole’s Gaussian width o,. The observable x*(o,) measures
the quality, at which the PMM dipoles fiby;, determined by the linear response Eq. (S4)
reproduce their DFT/PMM counterparts phpp defined by Eq. (S3). Its minimum marks
the optimal choice oP* for which the fifth and sixth iteration both yield the value 0.739 A
indicating that the optimization of o, is converged.

Figure S11(b) depicts the correlations between the z-components of the total dipole

moments
Kppr = Bppr(S) + Mhpr

of the DFT fragment and of the total dipoles moments

ﬂPMM(UZpt) = lliPMM(3|Uzpt) + 1Hpr

of the DFT-adjusted PMM model for the solvation structures s € 8% Here, the induced

opt

" and

PMM dipoles were computed by linear response using the optimal Gaussian width o
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the DFT vacuum polarizability afpp. Furthermore recall that the DFT-adjusted PMM
model is defined by the rigid electrostatic geometry G, which generates the DF'T vacuum
dipole moment pf o (cf. also Section S1C5). Figure S11(b) demonstrates that the DET
dipole moments pppp correlate very well with their PMM models fipyp in the PMM snap-
shot set SS.

3.0 N .
| ﬁ }MM,x(fT/?p[)
—ﬂbFT,x
20}
=
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0.0 06
0.2 ©,/D 1.0

FIG. S12. Normalized histograms p(u) and associated normal distributions (lines) for the induced
dipole moments MBFT@ of the respective DFT fragments (red) and ﬂiPMM@ of their DFT-adjusted
PMM models (green) in the snapshot set S°.

Figure S12 provides an alternative statistical representation of the data shown already in
Figure S11(b). The figure compares for the respective z-components the distributions of the
induced dipole moments calculated for the 1500 solvation structures s € S® by DFT/PMM
and by PMM. The averages (pupprp ,)s = 0.756 D and (fipyy ,)s = 0.753 D are almost equal.
The standard deviation o(pppy,) = 0.155D is a little smaller than o (fpyp,) = 0.167D.
Thus, the fluctuations of the induced DFT dipole moments around their average value
amount within the set 8¢ to 20 %. The similarity of the two distributions in the snapshot
set S® confirms once again that the induced Gaussian PMM dipoles approximate their DFT

antetypes very well.

2. ot is Actually Almost Stationary

The optimization of the rigid model G, for the electrostatic geometry of the GP6P model
and of the Gaussian width ratio Xy [cf. Egs. (S11) and (S12)], rests on the assumption that
the potential ®5t2f. defined by Eq. (S9) is essentially stationary on the spherical surfaces P
and P’ in a snapshot set S". In Section S1 C3 we have introduced the ratio os/op as a
stationarity measure [this ratio is determined by Eqs. (S8) and (S10)]. Here, small values
indicate stationarity.

For the large spherical surface surrounding the selected water molecule we found a ratio of

3.5 % i.e. the fluctuations os of P, on the surface P amount only to this small percentage
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of its total variation op on P. On the smaller sphere P’ the corresponding ratio is 4.0 %
and, thus, is also quite small. As a result, the DFT/PMM calculations demonstrate that
the stationarity assumption underlying the optimization of G. and Sy is valid to a very

good approximation.

3. Radial Decay of the Electrostatic Potential: PMM vs. DFT

The electrostatic geometry Ge and the ratio Xy = or, /oy of the Gaussian widths of
the negative (or,) and positive (o) charge distributions were optimized by considering the
electrostatic potential on the surfaces of the two differently sized spheres P and P’ (see
Sections S1 C3 and S1C4). The use of two different radii was supposed to guarantee that
the radial decay of ®5t2f. and of its model P, resemble each other at short distances from
the center of geometry of a water molecule in a PMM environment.

For a verification of this resemblance it suffices to consider the total electrostatic potentials
®ppr and Ppypy generated by the DFT fragment and its DFT-adjusted PMM model, because
these potentials both differ from the associated stationary potential by the potential ®,,,
which is caused by the induced Gaussian PMM dipole. Furthermore, this resemblance should
become apparent, if one considers the radial variations of the potentials along lines directed
from the O atom to the charges at the H and L sites. We denote the associated radial
distances as rog and ror, respectively. In the liquid phase these directions are important,
because they roughly point toward the nearest atoms of hydrogen bonded neighbors. Values
ron € [2.2,3.2] A and ror, € [1.3,2.3] A cover the first peaks of the O-O and O-H RDFs."”
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FIG. S13. Radial changes of the average electrostatic potentials (®(r))s along the coordinates rog
(a) and ror, (b) in the snapshot set S%. (®ppr(r))s (gray solid) is compared to (®pywm(7))s (black
dashed) and the potential (®P3,(r))s of an associated point charge PMM model (black dotted).

Figure S13 shows for the two coordinates ron (a) and rop, (b) the radial decay charac-

teristics of the average electrostatic potentials (®(r))s, which are generated either by the
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DFT fragments (gray solid), or by DFT-adjusted PMM models replacing these fragments
(black dashed), and by equivalent PMM models with point-like partial charges (black dot-
ted). In the liquid phase one expects!” the nearest neighbor molecules at rog ~ 2.8 A and
roL &~ 1.7 A, respectively. These distances are marked by vertical gray dashed lines.

The variations with rop are fairly similar for all three potentials depicted in Figure S13(a).
In contrast, such a similarity is found in Figure S13(b) solely at large distances rop, 2 24,
whereas at distances 7or, < 2A, the point charge potential (®55,,(7or))s is much steeper
than the other two potentials, which are quite similar also here. Hence, partial point charges
exert much stronger forces on neighboring molecules than Gaussian charge models or the
quantum mechanical charge distributions of DFT fragments. As a result, for a close modeling

of quantum mechanical antetypes the use of Gaussian partial charges seems to be mandatory.

4. Determining the Dispersion Parameter B

3.0} 3 I
2.8 3
25 11
¥ I I
1 $
82.0- I
S~
@ 1.5} ! {
S
1.0
i 966
400 600 800 1000

B/ (kcal mol™ A®)

FIG. S14. The thermal expansion coefficient ay,(B) calculated for GP6P* models with different
values for the dispersion parameter B. and the linear interpolation (solid gray) which predicts

B = 966 A% keal/mol to yield the target experimental value!® o, = 2.8 x 1074 /K (horizontal line).

As is explained in Section S1 C 7, the van der Waals dispersion parameter B [cf. Egs. (S1)

exXp _
P

2.8 x 107* /K of the isobaric thermal expansion coefficient a,,. For this purpose, during step

and (S2)] of GP6P was empirically determined by targeting the experimental value'® «

n = 4 of the iterative optimization, 12 GP6P* models with different B parameters in the

range [399,1125] A® kcal /mol were constructed by WC simulations (i.e. they differ also in

Ay, As, om, and oy), and o, (B) was calculated by the methods described in Section S1D.
Figure S14 shows a,(B) (dots) together with error bars calculated by block averaging*?

and a linear regression line (solid gray), which approximates the data well over a wide range
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of B values. The horizontal dashed line marks a;**, and the vertical dashed line points at
the value B = 966 A® kcal/mol, which is thus predicted to yield ap*P. This prediction then
remains to be checked for the final model GP6P (cf. Table S4 below).

F. Additional Observables Computed for GP6P

In addition to the predictions calculated with GP6P for various important observables
of liquid water at (po,Ty) and for the density profile n(py, T') in the temperature range
T € [250,320] K (see Sections IIT A 2 and IIT A 3), we here document the results obtained for
the four target observables of the empirical parameter optimization, for extrapolations of
size-dependent observables, for the water-water RDF, and for the microscopic electrostatic
properties of the GP6P model.

1. Targeted Observables

Table S4 lists for the four target observables of the empirical optimization (cf. Sections
S1C6 and S1C7) the experimental target values and the GP6P values obtained from 3 ns
PMM-MD simulations by the methods described in Section S1D. These observables are
the average potential energy per molecule Ejy, the position rg&* of the first peak of the

oxygen-oxygen RDF, the average pressure (p) and the thermal expansion coefficient .

TABLE S4. Observables of the GP6P Model and the experimental values targeted by the

parametrization. Errors were calculated by block averaging?? from 3ns PMM-MD trajectories.

quantity — unit GP6P value exp. [Ref]
Ey kcal/mol ~ —9.920 + 0.001 —9.92 [16]
e A 2.757 £ 0.0005 2.76  [17]
(p) atm 1.8+2.6 1

ap 10-4/K 2.85+0.1 28  [15]

Within the limits of statistical accuracy the calculated values exactly agree with their
targets. This agreement indicates that the empirical optimization, which comprised the
WC protocol described in Section S1 C6 and the tuning of the dispersion parameter B (cf.

Section S1 C7) was actually successful.
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2. Size-Dependent Observables

Three of the macroscopic observables, i.e. the self-diffusion constant Dy, the viscosity 7,
and the dielectric constant ¢, relate to the infinite system and have to be extrapolated from
N,;V;Ty simulations on the three finite-size systems NN; considered by us (see Ref. 1 for further
explanations and references). These simulations and the methods for their evaluation are
described in Section S1D.
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FIG. S15. Extrapolation graphs employed to determine (a) the diffusion constant Dy and viscosity
n and (b) the dielectric constant e of the infinite system from PMM-MD simulations of finite size

GP6P systems. The error bars represent standard errors of the mean.

Figures S15(a) and S15(b) show for the properly corrected self-diffusion constants
Do(N;,Ty) and for the iteratively calculated dielectric constants e(Nj, Tp) linear extrap-
olation graphs as functions of the inverse system size 1/V/? (cf. Figures 8 and 9 in Ref. 1
and the associated discussion). At 1/V'/3 = 0 they yield the values D, and € of the infinite
system, which are listed in Table II. The slope of the extrapolation line in Figure S15(a) is
inversely proportional to the viscosity 1 (see the explanations in Ref. 1).

The error bars represent standard errors of the mean extracted from the sets of ten MD
simulations underlying each data point. Error estimates for the extrapolated values and for
n were obtained by dividing the 3 x 10 MD trajectories, which were employed to generate
each of the two extrapolation graphs, into two halves, by executing for each of these halves
an extrapolation, and by computing for the resulting small data sets the standard errors of

the mean. These error estimates are also listed in Table II.

3. Water- Water Radial Distributions Function

Figure S16 compares the oxygen-oxygen RDF goo(r) computed for GP6P (black) with

the experimental results of Soper'” (gray). As explained in Section S1C6, the position
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max,exp

700 = 2.76 A of the first peak was one of the targets of the empirical optimization and,
in this respect, the very close match of the GP6P RDF with the experimental finding was
already documented by Table S4 above.

The height of the first peak, in contrast, and the overall shape of goo(r), are predictions
of the GP6P model. This height is slightly underestimated and the remaining extrema are
a little too pronounced. The positions of these extrema, however, agree quite well with the

experimental data.

2t
=
3
>
1t
0 \
3 4 5 6 7
r/ A

FIG. S16. Radial distribution function goo(r) in liquid water at (po,Tp) calculated for GP6P
(black) and the experimental reference data of Soper (gray),'” whose peak position at r = 2.76 A

was one of the targets of the parameterization.

4. Microscopic Electrostatic Properties of GP6P

The dipole and quadrupole moments of the water molecule are experimentally known
only for the gas phase.!>43 These data are given in the first line of Table S5 (because of
Que + Quy + Q.. = 0, the quadrupole moment has only two non-trivial components). The
second line characterizes the MT /BP description of the water molecule at the experimental
gas-phase geometry'>* G& = {rog = 0.9572 A, oo = 104.52°} and indicates that this
DFT approach underestimates the polarity of the water molecule by about 3 %.

The DET/PMM description of a solvated water molecule is provided by the fourth line
of the table. Assuming that the static contributions to these moments suffer from the same
3 % underestimate as the MT/BP gas phase description one approximately arrives at the
average electrostatic moments listed for GP6P in the last line of the table. Here we remark
that also the induced dipole moment distribution centered around the oxygen atom provides

a small contribution to the average GP6P quadrupole moments, because these moments are
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TABLE S5. Components j, (in D) and Qyy, Q.. (in DA) of the total dipole and quadrupole
moments, respectively, observed and calculated for an isolated water molecule in the gas phase
geometry. Furthermore computational results are given for an isolated or solvated (averages)

water molecule in the liquid phase geometry. The reference point is the center of mass.

geometry phase Lo Qyy Q2
exp!?43 gas gas 1.86 2.63 —2.50
MT/BP  gas gas 1.80 2.56 —2.41
MT/BP  liq. gas 1.79 2.64 —2.44
MT/BP  liq. liq. 2.55 3.00 —2.83
GP6P liq. gas 1.86 3.02 -2.95
GP6P liq. lig. 2.54 3.07  —-2.90

defined with respect to the center of mass of the water molecule. Thus, the GP6P quadrupole

moments represent best estimates of the unknown liquid phase values.

The average liquid phase dipole moment (pgpep ) = 2.544 D of GP6P appearing in the
last line of Table S5 refers to the dipole distribution p(u) depicted in Figure S17 as a green
histogram and normal distribution, respectively. The standard deviation of this distribution
is o(pgpep.) = 0.151D. For comparison the figure additionally shows the normal distribu-
tion (red) of the z-components of the total dipole moments pppp, which were calculated
for the DFT fragments in the final ensemble S® of the parameterization cycle. The associ-
ated distribution of induced DFT dipole moments was shown already in Figure S12 above.

The two distributions are almost identical, because GPG6P is constructed (cf. Section S1C5)

3.0
| = UGP6Px
=== UDFTx
20}
=
Q
10
0.0 f . A ‘
2.0 24 2.8 3.2

u/D

FIG. S17. The normalized histogram p(u) and the associated normal distribution resulting for the
components papep,z of the GP6P dipole moments in the liquid phase (green) are compared with
the normal distribution (red) of the component puppr . of the DFT dipole moments in the snapshot

ensemble S6.
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from a DFT-adapted model by replacing the DFT values (4% pp, afpr) by their experimen-
tal counterparts (ugxp,agxp), which enhances the static polarity by 3.5% and reduces the
polarizability by 8.3%. Because the induced dipole moment amounts to only 30 % of the

total dipole moment the two effects roughly compensate each other.

S2. ADDITIONAL RDFS FOR NMA IN GP6P SOLUTION

Here, we provide evidence that the cost-effective mean field (MFMD) approach yields
the same RDFs of GP6P water in the surroundings of NMA as straight DF'T/PMM-MD
simulations. Subsequently we show that the optimal LJ parameter set £°P', which has been
determined for the core atoms of NMA’s AG with the MT/BLYP setup, is equally well
applicable to the MT/BP and MT/B3LYP setups.

A. RDFs from MD and MFMD are Equivalent
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FIG. S18. RDFs gon, (r) (a) and ggo(r) (b) obtained from DFT/PMM-MFMD (dotted), and
DFT/PMM-MD (solid).

Figure S18 shows RDF's a) gomn, () and b) gno,, () of GP6P water around the C'=0 and
N—H groups, respectively, of the DFT fragment NMA. Here, solid and dotted lines depict
results of differently expensive DF'T/PMM simulations carried out with the MT /BLYP setup
and the LJ parameter set £°P*. The solid lines mark the RDFs from usual DFT/PMM-
MD simulations (cf. Section II E 3), whereas the dotted curves represent the results of the
inexpensive MFMD approach introduced in Section ITF 2.

For both hydrogen bonding sites the agreement between the RDF's from usual MD sim-
ulations and from the cost-effective MFMD approach is very good. Therefore MFMD is
well-suited for the computationally demanding iterative optimization of LJ parameters for

DFT atoms in a hybrid simulation system.
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B. RDFs for Different DFT Setups
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FIG. S19. RDFs gomn, (r) (a) and guo(r) (b) obtained from DFT/PMM-MD employing the
MT/BLYP (solid), MT/BP (dashed), and MT/B3LYP (dotted) setups for the parameter set £°P*.

We have claimed in Section III B that RDFs of GP6P water around the AG of the DFT
fragment NMA do hardly depend on the chosen DFT setup. Figure S19 proves for the
three alternative setups MT/BLYP (solid), MT/BP (dashed), and MT/B3LYP (dotted)
that this is actually the case. The deviations of the associated RDFs depicted in a) and b),
which belong to the two NMA-water hydrogen bonding sites, are very small. Thus, the LJ
parameter sets of the DFT fragments, which can strongly influence such RDFs, are quite

well transferable between different DFT setups.

S3. ADDITIONAL IR SPECTRA OF NMA

In addition to the gas and aqueous phase IR spectra in the spectral range [1800,
1000] em ™!, which are displayed by Figure 6 for the MT/B3LYP setup, we here present
the corresponding spectra also for the MT/BLYP and MT/BP setups. As far as the po-
sitions of the six main peaks in the aqueous phase spectra are concerned, the added data
solely repeat the contents of Figure 7. Furthermore, we show and discuss the low-frequency
IR spectra covering the range [1380, 580] cm™! for all three DFT setups. Note that Table S6
at the bottom of this section gathers all calculated AI-AVT frequencies.

A. IR Spectra of NMA between 1800 cm™' and 1000 cm™!

Figures S20(a) and S20(b) compare the DFT-MD and DFT/PMM-MD predictions of
NMA'’s gas and aqueous phase IR spectra, respectively, derived with the three different
DFT setups MT/BLYP, MT/BP, and MT/B3LYP. All frequencies have been scaled by the
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FIG. S20. The IR spectrum of NMA in a) the gas phase and b) aqueous solution as determined by
IR spectroscopy®® (gray) and by FTTCF (black) from DFT-MD and DFT/PMM-MD trajectories
employing the MT/BLYP, MT/BP, and MT/B3LYP setups. Frequencies were scaled with the
respective gas phase scaling factors (fyrr/sryp = 1.0428, fyr/sp = 1.0335, fur/ssiyp = 0.9988);
the heights of the AI peaks were normalized to one. Band assignments were obtained by a GNC

analysis.26:47

setup-specific gas phase scaling factors fprr. The corresponding experimental data* are

shown in gray. The MT/B3LYP results at the bottom were already presented in Sections

IITC3 and IIT C4 of the main text and are repeated here for visual comparison.

1. Gas Phase: MT/BLYP vs. MT/BP

We have claimed in Section 111 C 3 that the scaled MT /BLYP and MT/BP setups provide
a likewise excellent description of the three amide bands as the MT/B3LYP setup and
that solely MT/BLYP shows a substantially poorer performance on the methyl bands. An
inspection of Figure S20(a) immediately verifies these claims.

While marginally scaled B3LYP predicts the AIl and AIIT bands at 1492cm™! and
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1248 cm™!, respectively, scaled MT/BLYP yields 1505cm™" and 1255cm™", and scaled
MT/BP 1497 cm™! and 1255cm™!. For each of the two amide bands these frequencies are
close to each other and to the experimental data. Looking at the methyl bands one imme-
diately recognizes the large blue-shifts in the BLYP prediction at the top of Figure S20(a).
Here, the predicted peaks at 1450 cm™! and 1399 cm ™! overestimate the spectroscopic data
by about 25cm~!. MT/BP-MD, in contrast, predicts bands at 1423 cm™! and 1376 cm™!,
which, just like the MT/B3LYP results, closely agree with the experimental findings.

2. Aqueous Solution: MT/BLYP vs. MT/BP

Figure S20(b) provides a visual support for the comparison of peak frequencies presented
by Figure 7. This comparison has shown that the scaled MT/BP and MT/BLYP setups
describe the amide band frequencies of NMA in water almost as well as the marginally
scaled MT/B3LYP setup. For the methyl bands, however, the MT/BLYP setup predicted
much larger frequency overestimates than the other two setups. Thus, particularly MT/BP
outperforms MT/BLYP also for the aqueous phase.

But despite these details, all calculated spectra reproduce the observed spectral features
quite well. In combination with the GNC analysis the calculations therefore enable a clear-

cut assignment of the observed bands to local modes.*6:47

B. Low-Frequency IR Spectra

In addition to the IR spectrum of NMA in the range [1800, 1000] cm™!, which we have
discussed for the gas and aqueous phases (cf. Sections II1 C 3, III C 4, and S3 A), here we show
the corresponding data for the low-frequency range down to 580 cm™!. Figure S21 presents
for the three considered DFT setups the GNC*647 decompositions of the IR spectra (black)
calculated for NMA in the gas (a) and aqueous (b) phases by DFT-MD and DFT/PMM-MD,
respectively. The frequencies were scaled with the setup-specific gas phase scaling factors
forr. Four amide bands were identified by the GNC analysis in the depicted spectral range,
namely AIII (red), AIV (green), AV (blue), and AVI (orange). Graphical representations of
these AG normal modes are provided by Figure 7 in Ref. 48. The frequencies calculated for
these bands are listed in Table S6.

All three DFT setups predict for the low-frequency amide bands solvatochromic blue-
shifts upon transfer of NMA from the gas into the aqueous phase. For the AIV, AV and
AVI bands these blue-shifts amount on average to 14cm™!, 45cm™!, and 21 cm™!, respec-
tively. Among the DFT setups the calculated frequencies slightly differ with scaled MT/BP
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FIG. S21. Decomposition of the IR spectra (black) of NMA in the frequency region below 1380
cm™! by the GNC*647 analysis for a) gas phase DFT-MD and b) condensed phase DFT/PMM-MD
using the MT/BLYP, MT/BP, or MT/B3LYP setups. Local contributions by the AIII, ATV, AV,

and AVI modes are drawn as thick lines in red, green, blue, and orange, respectively. Frequencies

were scaled with the respective gas phase scaling factors fppr; the heights of the AIIl peaks were

normalized to one.

generally predicting the highest and scaled MT/B3LYP the lowest frequency values.
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TABLE S6. Amide band frequencies of NMA in vacuum and aqueous solution (units: cm~1). All

DFT values were scaled with the respective setup-specifc gas phase scaling factor (fyrr/ryp =

10428, fl\/[T/BP - 10335, fMT/B?)LYP = 09988)

Schworer et al.

exp.® MT/BLYP MT/BP MT/B3LYP

vac. sol. vac. sol. vac. sol. vac. sol.
Al 1723 1625 1723 1634 1723 1635 1723 1628
AIl 1499 1582 1505 1587 1497 1581 1492 1574
AIITI 1255 1317 1255 1328 1255 1326 1248 1319
ATV - — 1079 1093 1093 1107 1071 1085
AV - - 842 892 849 893 847 888
AVI - - 618 640 623 645 612 632
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2.4 Effizientes Abtasten von Konformationsraumen mit
DFT/PMM-MD

Fiir die Untersuchung langsamer Prozesse sind konventionelle MD-Simulationen auf-
grund der relativ kurzen maximal erreichbaren Zeitskalen nur von limitiertem Nutzen.
Zur Erhohung der Effizienz sind daher sog. generalisierte Ensemblemethoden [196, 197]
entwickelt worden, die z.B. das Abtasten der in Abschnitt 1.1.3 beschriebenen Konfor-
mationsraume von Polypeptiden erheblich beschleunigen kénnen.

Ein generalisiertes Ensemble wird dabei von K Kopien k (k = 0,1,..., K — 1) eines
Simulationssystems aufgespannt, die sich z.B. durch die mittlere Temperatur T} oder
eine modifizierte Energiefunktion U, systematisch so voneinander unterscheiden, dass
die Abtastrate der jeweiligen relevanten Koordinaten erhoht wird. So konnen z.B. durch
Temperaturerhohung freie Energiebarrieren effektiv erniedrigt und die Rate an Konfor-
mationsiibergéngen erhtht werden, was die Grundlage von Algorithmen wie simulated
tempering (ST) [198, 199] oder replica exzchange (RE) [200, 201] bildet.

Da die Effizienz von Verfahren wie ST oder RE von der Zahl der behandelten Frei-
heitsgrade abhéngt, wurden Ansétze wie solute tempering [202, 203] vorgeschlagen, die
die Abtastrate effektiv nur fiir einen Ausschnitt des Simulationssystems (z.B. ein Poly-
peptid) erhéhen, und die Zahl der behandelten Freiheitsgrade damit reduzieren. Den-
schlag et al. entwickelten durch geschicktes Zusammenfiihren von simulated tempering
und solute tempering die generalisierte Ensemblemethode SST [195], die einen weiteren
Effizienzgewinn verspricht.

Die nachfolgende abgedruckte Publikation

Simulated Solute Tempering in Fully Polarizable
Hybrid QM /MM Molecular Dynamics Simulations

Magnus Schworer, Christoph Wichmann, Erik Gawehn und Gerald Mathias
J. Chem. Theory Comput. 12, 992-999 (2016),

die ich zusammen mit Christoph Wichmann, Erik Gawehn, und Gerald Mathias verfasst
habe, zeigt, dass das fiir unpolarisierbare MM-Kraftfelder entwickelte SST-Verfahren [195]
auf PMM- und DFT/PMM-Systeme anwendbar ist. Hierbei kénnen die fiir DF'T /PMM-
SST bendtigten Gewichtsparameter wy mittels einer einfachen Rechenvorschrift aus effi-
zienten PMM-SST-Rechnungen vorhergesagt werden. Als Anwendungsbeispiel wird die
freie Energielandschaft eines DFT-Modells von Alanindipeptid in PMM-Wasser berech-
net.
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ABSTRACT: We successfully apply a solute tempering

approach, which substantially reduces the large number of

temperature rungs required in conventional tempering
methods by solvent charge scaling, to hybrid molecular
dynamics simulations combining quantum mechanics with
molecular mechanics (QM/MM). Specifically, we integrate a
combination of density functional theory (DFT) and polar-
izable MM (PMM) force fields into the simulated solute
tempering (SST) concept. We show that the required DFT/
PMM-SST weight parameters can be obtained from

kcal/mol 4.2

high

0 180

inexpensive calculations and that for alanine dipeptide (DFT) in PMM water three rungs suffice to cover the temperature

range from 300 to 550 K.

1. INTRODUCTION

The sampling of the conformational space of (bio)molecules by
plain molecular dynamics (MD) simulations is computationally
inefficient. If one aims at an unbiased structural ensemble or
has no prior knowledge of the free energy landscape, so-called
generalized ensemble’ methods can alleviate the sampling
problem. Many variants have been proposed over the past
years, among which simulated tempering (ST)>* and temper-
ature replica exchange (RE)™’ are most popular examples.

In ST, a single copy (replica) of the system is simulated at a
temperature T, which belongs to the rung i € {0,1,.., R—1} of a
ladder covering the temperatures 7 = {Ty, T, .., Ty_;} in
increasing order. Periodically, the replica tries to switch from
the rung i to a new rung j # i at T; € 7 with a probability p; =
min[l,exp(Aij)] , which is given by a Metropolis criterion®
serving to preserve the statistical ensemble at each rung.
Typically, the target rung j = i & 1 is chosen by a stochastic or

deterministic scheme.” The general ST form”? of the exponent

Ay = [AE®) = w] = [BE®R) - w] -
in the Metropolis criterion depends on the inverse temper-
atures 3, = (kyTi)™' (kg is the Boltzmann constant), on rung-
dependent potential energies E(R) of the current system
configuration R = (r, .., ry) " of the N atoms at the positions r,
(1 £ n £ N) of the simulation system, and on dimensionless
weights wy, which may be freely chosen, e.g., to sample all rungs
uniformly. Upon changing a replica’s rung from i to j, the
momenta of all N atoms are scaled by ,/T;/T; to correspond to

the new target temperature T]g Note that in conventional ST,
E(R) = E(R) is independent of the rung k.
The number R of required temperature rungs grows with the

number of degrees of freedom (DOF) of the tempered system.

W ACS Publications © 2016 American Chemical Society
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Larger ladders require longer simulations or more replicas that
are run in parallel® to acquire the same amount of sampling
statistics at a given rung. In this respect ST is advantageous
because it generally needs about 30% less rungs than RE” but at
the expense of requiring the a priori unknown weight
parameters w,. In most cases, however, the w; can be
determined with a reasonably limited effort,*°
schemes have been proposed for the a priori determination
and/or on-the-fly update of optimal weights.”'*~"

Particularly, if one simulates multiple independent ST
replicas in parallel, their data can be combined to quickly
converge the w1

If one is interested only in the ensemble at a particular
temperature, e.g, at ambient conditions, the solute tempering
approach'® can drastically decrease the ladder size for both RE
(RE with solute tempering, REST)"® and ST (simulated solute
tempering, SST)'’ generalized ensemble simulations. Solute
tempering splits the potential energy

and several

E.(R) = APEPP(R) + AP°EP(R) + A°E¥(R) (2)
of the system at rung k into a linear combination of the solute—
solute interaction energy EP?, solute—solvent energy EF%, and
solvent—solvent energy E*. Choosing the linear coefficients'”'

AP =1, AP =y,and A8 = 3)
with y = \/f,/, and inserting eqs 2 and 3 in eq 1 yields the

SST exponent '’
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— (= w) @)
Because of the chosen prefactor Af = yi = fBy/f for the
solvent—solvent energy E* in eq 2, its contribution cancels in
the derivation of eq 4. Consequently, the solvent’s DOF no
longer enter the exchange probability p;, and the number of
temperature rungs can be largely reduced, which is the key idea
of solute tempering.'”'® Note that for REST and SST, one can
formulate an equivalent Hamiltonian RE'”'® or ST scheme by
using the modified factors A5 = y; 245, x € {pp, ps, ss} for E; (2).
In such a so-called solute scaling scheme,'” one simulates at the
reference temperature T, on all rungs k and does not have to
scale momenta or to modify thermostats upon rung
changes."” ™'

For k = 0, all linear coefficients (eq 3) become unity. At this
lowest rung, eq 2 thus represents the unmodified potential
energy Eo(R) = E(R), and the canonical ensemble at T is
sampled. At higher rungs, k > 0, E,(R) is modified, and the
sampled ensembles have no relevant physical interpretation.
For plain molecular mechanics (MM) force fields, which
exclusively employ pairwise additive long-range interactions,
the linear coefficients (eq 3) needed for E; simply follow from
scaling all solvent charges by ¥, as suggested in ref 10. This
scaling considerably simplifies the implementation of SST
because the long-range electrostatic contributions can be
calculated all at once by Ewald or fast multipole type routines
and do not have to be split into solute—solute, solute—solvent,
and solvent—solvent contributions in order to scale these
separately. For van der Waals interactions, one can simply scale
the parameters of the pair potentials."’

A high sampling efficiency is particularly important if one
employs hybrid methods combininZ% quantum mechanical
(QM) methods and MM force fields”* >* because QM/MM-
MD simulations require a much larger computational effort
than plain MM-MD. This effort is particularly large if a higher-
level method such as density functional theory”*® (DFT) is
applied to the QM subsystem.””** Correspondingly, only a
few combinations of QM/MM and generalized ensemble
techniques like RE have been reported,” ~* which had to cope
with the large number of rungs required for condensed phase
systems.

Using solute tempering approaches like REST'® or SST'° for
QM/MM simulations to reduce the number of rungs is an
obvious and favorable alternative because the required
partitioning into solute and solvent subsystems is naturally
given by selecting the QM and MM subsystems as the solute
and solvent, respectively. Unfortunately, however, combining
solute tempering with QM/MM is not straightforward because
in contrast to a MM setup the QM/MM Hamiltonian is not
pairwise additive but contains many-body interactions. They
prevent the potential energy function E from being easily
separated into the contributions EFP, EP, and E* required to
write E; in the form of eq 2. The issue of the lacking
separability is exacerbated if instead of a plain MM solvent
model a polarizable MM (PMM) solvent force field is
employed, since here many-body contributions are additionally
contained in the solvent—solvent interactions.

In this article, we will demonstrate that solute tempering with
charge scaling can nevertheless be readily extended to systems
with many-body interactions. Here, we will specifically consider
a recently presented DFT/PMM hybrid method, which has
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been shown to describe solute—solvent interactions at a high
accuracy.’®®® The method enables a rapid and accurate
computation of the DFT/PMM electrostatic interaction
Hamiltonian

Hppr/pmm = /d’Sp(l')q)(l‘i QP) )
which represents the energy of the DFT solute’s charge density
p(r) in the external PMM potential @ (r; Q,P). The sources of
® are static partial charges Q = (g, -, qy)" and induced
Gaussian dipoles P = (p;, .., pu)’, which reside at the M
solvent atoms s = 1,..,M and polarize p(r) = p(r; QP). The
strengths

p, = aE(r; QP, p) (6)
of the induced atomic dipole distributions depend via a scalar
polarizability a, linearly on the polarizing electric field E(r,)
generated at their centers r, by all other electrostatic sources in
the system. Therefore, P and p have to be iteratively
determined until a joint self-consistency is reached in each
MD integration step.30

2. THEORY

For the use of solute tempering in polarizable simulation
settings like DFT/PMM, it is a seemingly reasonable idea to
apply the same scaling concept as in plain MM force field
simulations. This is obvious for the van der Waals interactions
between QM and MM fragments because they are usually
treated by the additive pair-expressions of a MM force field,
which is why we will omit these contributions in the
subsequent discussion. The effect of the solvent charge scaling
Q — 7/Q in DFT/PMM-SST simulations is, however, not
likewise obvious.

Because of the mutual polarization between the solute and
the solvent, their interaction energy E}* = E, — Eff — Ef at a
rung k has to be computed from the difference of the potential
energy E; of the whole system and the solute—solute and
solvent—solvent interaction energies Ef? and Ef’, respectively. If
polarizable DOF are present, these latter two energies must be
calculated for the isolated solute subsystem and the isolated
solvent subsystem, respectively, to exclude the polarization
between the fragments. Ef® then collects all those contributions
to E;, which arise from solute—solvent interactions (eq S), and
the additional solute—solute and solvent—solvent interaction
energies, which are due to mutual solute—solvent polarization
effects.

For the isolated PMM solvent subsystem containing partial
charges Q and induced dipoles P, it is straightforward to verify
that for scaled charges Q — y,Q_the linear response eq 6 yields
the scaled dipoles y,P as the self-consistent solution. Because all
associated electrostatic energy contributions are proportiona13()
to products gy, g.py, Or p,py, the solvent charge scaling yields
the desired prefactor A = y; for the potential energy E} = y;E§
= y;E* of the isolated solvent subsystem (cf. eq 3). Trivially,
the potential energy of the isolated solute subsystem is
independent of y,, and the prefactor Aff is unity, ie., Eff =
ERP = EFP.

The remaining SST prefactor Af* of E§* = EP® is
undetermined for polarizable setups like DFT/PMM because
it depends on the mutual polarization between the two
subsystems, which is nonlinear in ;. In analogy to eq 2, we
therefore express the potential energy of the whole system as

DOI: 10.1021/acs.jctc.5b00951
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E(R) = EP(R) + [ + e,(R)JE"(R) + E°(R)  (7)
Here, the prefactor Af° of EP* is split into the MM-SST prefactor

7t and a configuration-dependent quantity
€(R) = E®R) - pE°R)
' E"(R) (®)

which is nonzero for k > 0.

The additional term ¢,(R) covers two effects. First, the solute
contributions to the polarizing field entering eq 6 is in leading
order independent of the solvent scale factors y;, whereas the
polarizing field generated by the solvent charges scales linearly
with y,. Therefore, induced solvent dipoles, which are located in
the vicinity of the solute, will scale with yf, where a < 1.
Second, solvent charge scaling also changes the polarization of
the solute. This extra polarization also contributes nonlinearly
in 7, to the solute—solvent interaction energy. Note that ¢,(R)
vanishes if neither the solute nor the solvent are polarizable. If
the added terms €,(R) are small compared to the respective y,,
their presence in the prefactor of E* (cf. eq 7) should have only
a minor effect on the efficiency of DFT/PMM-SST.

Inserting eq 7 into eq 1 yields the exponent

8, = (- HE®) + | BA - B

AR~ B PR — =)
which, like eq 4, does not depend on E¥. Thus, the key idea of
solute tempering,'® which is the removal of the solvent—solvent
energy E* from A, is preserved by solvent charge scaling'? also
in polarizable simulation systems. Like in eq 7, also in eq 9, the
prefactor of EP° is modified by configuration-dependent
contributions B, (R).

Note that one does not have to evaluate the Metropolis
exponent A; through eq 9 if one wants to execute an exchange
step in a SST simulation. Instead one computes the potential
energies E,(R) and Ej(R) of the current configuration R simply
by scaling the solvent charges with y; and y; respectively. With
these energies, A; is easily obtained from the much simpler eq
1. This particularly implies that no calculations on the isolated
solute and/or solvent subsystems are necessary during a DFT/
PMM-SST simulation in order to obtain EPP, EP’, and E*
separately. Further below, we will conduct such separate
calculations only to investigate the quantity ¢ in detail.

Because EFP and EP* are not readily separated in DFT/PMM
settings, the solute scaling approachlg_21 mentioned above
would also have to resort to the charge scaling method. Using
on rung k scaled charges y,Q, and concurrently scaling down
the resulting total forces and energies of all atoms by ¥i? yields
the desired scaling factors AP = ¥, A& ~ y;', and 4 = 1, and
thus renders an implementation of solute scaling also for DFT/
PMM Hamiltonians.

The above considerations on DFT solutes equally apply to
any other polarizable solute model, e.g, QM or PMM, and any
other implementation of solvent polarizability, which depends
linearly on the Folarizing field (cf. eq 6). Furthermore, the
scaling approach'® can be equally used to combine REST with
QM/(P)MM hybrid simulations.

3. METHODS

The sample systems, by means of which we examine the
properties of DFT/PMM-SST, are DFT and MM models of
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alanine dipeptide (Ac-Ala-NHMe) in PMM water. For the
latter, we chose a six-point water model featuring five Gaussian
static charges and a single Gaussian induced dipole. This PMM
water potential has been specifically developed for accurate
DFT/PMM-MD simulations®® of molecules in aqueous
solution. The details of the simulations (including the
parameters of the water model) are thoroughly described in
Sections S1—S3 of the Supporting Information (SI).

All simulations were performed with the IPHIGENIE/
CPMD program package, which combines the parallel PMM-
MD code IPHIGENIE*****"~*" with the parallel grid-based
plane-wave DFT code CPMD.* Reasonable initial conditions
for the DFT/PMM simulations were prepared by executing
much less costly MM/PMM-SST-MD simulations, in which the
alanine dipeptide solute was described by its CHARMM22/
CMAP**** model. Here, a first SST ensemble & was generated
by distributing C = 32 replicas on the four-rung temperature
ladder 7~ = {300 K, 367 K, 449 K, 550 K}. The initial weights
were guessed by the SST trapezoid rule'’ (cf. Section S1, SI).
An occupancy-driven weight update scheme, which is explained
in ref 15 and in Section S3 of the SI, was employed to generate
a uniform distribution of the replicas over the rungs during
SST-MD. For each replica, the MM/PMM-SST simulation
lasted 500 ps, ie., the converged MM/PMM weights w; were
determined from 32 X 500 ps of MD trajectory.

These weights served as initial guesses for the subsequent
DFT/PMM-SST-MD simulations, in which the MM model of
alanine dipeptide was substituted by a DFT model. Here, we
employed the BLYP** functional and the norm-conserving
pseudopotentials of Troullier and Martins*’ at a plane-wave
cutoff energy of 70 Ry. Note that we have shifted the energy of
the DFT/PMM Hamiltonian by subtracting the energy Epgr =
—58252 kcal/mol of the isolated DFT solute alanine dipeptide
in its minimum energy conformation. Thereby, MM/PMM and
DFT/PMM potential energies are about the same, which is a
prerequisite that MM/PMM weights are reasonable initial
guesses for the DFT/PMM simulation. For each replica, we
extended these costly hybrid MD simulations over 55 ps.

4. RESULTS AND DISCUSSION

Simulations were run on the SuperMUC Phase 2 Petascale
System at the Leibniz Supercomputing Centre (LRZ) of the
Bavarian Academy of Sciences and Humanities in Munich,
employing up to 32,256 cores in a hybrid MPI/OpenMP
parallel setup, which yielded about 30 ps DFT/PMM-MD
trajectory per day for each of the 32 replicas. Thus, using
multiple replicas in a single run makes the method highly
scalable and complements the excellent scaling properties of the
IPHIGENIE/CPMD interface.”

4.1. SST with Polarizable DOF. First, we address the size
of the configurational dependence ¢;(R) (defined by eq 8)
contributing to the SST scaling prefactor of the solute—solvent
energy EP* in eq 7. We computed the averages (...) of €,(R) for
different solvent charge scaling factors y, over a snapshot
ensemble S, of configurations R € §;, which comprised 60
statistically independent snapshots drawn from rung k = 0 of
the MM/PMM-SST ensemble.

Figure 1 shows the sizes (€)/y, of the configuration
dependent contributions in units of the dimensionless scaling

factors y, = \/ T,/ T, for temperatures T} € [300 K, 1000 K]. In

the MM/PMM setting (gray) the ratios {€,)/y; decrease about
linearly with y,, as shown by the depicted regression line. Thus,
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Figure 1. Relative magnitudes (¢;)/y, for MM-SST (light gray), MM/
PMM-SST (gray), and DFT/PMM-SST (black) for the temperature
range T, € [300 K, 1000 K] and linear regressions (solid lines). Error
bars denote standard deviations.
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Figure 2. Evolution of the dimensionless weight w; of the highest rung
of & for the MM/PMM (gray) and DFT/PMM (black) SST

simulations. Note the two different scales of the time axis separated by
the dashed horizontal line.

eq 8 demonstrates for MM/PMM that the absolute values of
the solute—solvent interaction energies I{E}*)| do not increase
linearly with y, because they are always smaller than the
interaction energy [(EP*)| at the lowest rung after linear scaling,
ie., KER) < 7, I(EP®)I. The two expressions would be equivalent
for charge scaling in a pure MM setting (cf. eqs 2 and 3), in
which €, (R) exactly vanishes as is indicated by the gray dashed
line. For MM/PMM, the reduced effective scaling factor 7,[1+
(ex)/7:] < 7 of (EP) in eq 7 results from the sublinear scaling
~ ¢ (a < 1) of the induced PMM solvent dipoles, which is
caused by the contributions of the unscaled MM solute charges
to the field polarizing the solvent.

We computed (€;)/7; also for the DFT/PMM setting (black
dots and regression line, Figure 1), in which, apparently, the
ratio (€;)/y; linearly increases with ;. Thus, in this case, the
average solute—solvent energy [(Ef*)| is always larger than the
linearly scaled interaction energy y/(EP)| because the polar-
ization of the DFT solute is additionally enhanced by the
upscaled charges of the surrounding PMM solvent.

Note, however, that the overall configurational dependence
(ex)/yi is small over the whole range of ;. At the highest
temperature Ty = 550 K (y;& 1.35) in 7, it is below 4% and
even at 1000 K (y 1.83) below 10%. No significant
differences are observed, if the above analysis is repeated for a
snapshot ensemble S; picked from rung 3 of the PMM-SST
simulation or for a ensemble S; drawn from rung O of the
DFT/PMM-SST simulation (data not shown). Because the
many solvent DOF contributing to ¢,(R) thus render only a
small correction to the prefactor of EP* in eq 7, the energies
entering the exponents obtained from charge scaling in
nonpolarizable and polarizable settings (eqs 4 and 9,
respectively) are very similar. Therefore, we expect that the
MM-SST concept'® of charge scaling should yield a highly
efficient sampling also for partially (MM/PMM) or fully
(DFT/PMM) polarizable settings.

4.2. MM/PMM-SST and DFT/PMM-SST. Figure 2 shows
the evolution of the weight w; resulting from the applied
update scheme (cf. Section S3, SI) during MM/PMM-SST
(gray) and subsequent DFT/PMM-SST (black) MD simu-
lations. The weight w;, which represents the free energy
difference between rungs k = 3 and k = 0 (in units of k;T5),
converges in MM/PMM-SST-MD quickly and reaches the
value w3 = 17.9 after 0.5 ns.

At the end of the MM/PMM-SST simulation, we switched to
the DFT/PMM setup and equilibrated each replica on its
current rung for 2 ps to dissipate excess energy due to the
change of the solute description. Using the weights of the
preparatory MM/PMM-SST simulation, we then continued

~
~

995

with 55 ps DFT/PMM-SST-MD. The black line in Figure 2
reveals that w; is strongly diminished by about 50% to the final
value w; = 9.6. This decrease is almost complete after the first
20 ps. A similar convergence behavior is observed also for w,
and w, as documented by Figure S1A and B in Section SS of
the SI.

The initial overestimates of the DFT/PMM-SST weights are
also witnessed in the distribution of the replicas over the rungs.
For DFT/PMM-SST-MD, Figure 3A monitors the running

(A) Al : ensemble £ |
— \/\ A E ﬁ:()
g 2 o A
0 i : :
0 20 ;/ps 40 60
(B)
14} 1
Z10} Pmm—mmmmcgmromeoma- } --------- 1
06} 1
0 " rungk 2 8

Figure 3. DFT/PMM-SST ensemble &. (A) Running averages
(window size 2.5 ps) of the uniformity measures ;. Only data from
the time interval 7 to the right of the dotted line are used for further
analysis. (B) Temporal averages (), for all (black dots) and (y{), for
selected replicas ¢ (gray lines). The error bars denote standard
deviations of y;.

averages of the uniformity measures'’y,(t) = n(t)R/C, which
compare the number of replicas n,(t) at time f on rung k with
the uniform distribution C/R characterized by y(t) = 1 V k.
Initially, most replicas occupy the rungs k = 2,3, as is witnessed
by the initial values y, & y; & 2.0, whereas the lower rungs k =
0,1 are almost empty (y, & y;& 0). During the first 20 ps
(dotted line) of weight update, the occupancies become almost
uniform. In the subsequent time interval 7 = [20 ps, S5 ps], all
X fluctuate around the mean value of 1.0 marking the uniform
distribution.

Figure 3B) shows for all four rungs k the mean values (), of
the uniformity measures (black dots) together with their
standard deviations (error bars) averaged over the time interval
7. All mean occupancies (y;), are very close to 1.0 indicating a
uniform sampling of the overall ensemble &. For individual
replicas ¢, this is, however, not the case during the short 35 ps
trajectories as illustrated by the occupancies (yf), of selected
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replicas ¢ (gray lines). These values notably differ from 1.0
explaining the sizable standard deviation of the (y;),. Because
of the uniform sampling during the time span 7, we consider
the wy to be sufficiently converged.

With the converged weights w; of the MM/PMM and DFT_'/

PMM settings, the average SST exchange probabilities p;
between neighboring rungs can be evaluated. Table 1 reports

Table 1. Average Exchange Probabilities p;; (in %) of MM/
PMM and DFT/PMM-SST Simulations of Ensembles & and

& and respective REST Simulations in &7

Por Pr2 P Por 1:7 12
MM/PMM-SST 489 50.3 S1.6 30.1 32.2
DFT/PMM-SST 484 47.8 50.4 27.8 30.2
MM/PMM-REST 344 37.7 35.2 132 18.3
DFT/PMM-REST 33.5 30.6 34.8 12.3 16.9

these probabilities as averages 1_7,7 = (pj + py)/2 over the
probabilities for the upward and downward exchange direction.
We have checked that within a SST simulation setting the
single probabilities satisfy p; & p;; (data now shown), which is
expected because our SST algorithm fulfills detailed balance
and because all y;, =~ 1.

The first three SST data columns of Table 1 show that the 1_7,7
are all close to 50%, which is slightly above the optimal range
extending from 20% to 45%.” The p; of DFT/PMM are only a
little smaller than those of MM/PMM. Therefore, the
temperature ladder employed in the costly DFT/PMM
simulations can be optimized by using the much cheaper
MM/PMM approach.

The efficiency of SST is determined by the so-called round-
trip rate, which is the inverse of the average time required for
one replica to go from the lowest to the highest and back to the
lowest rung. In the MM/PMM and DFT/PMM-SST
ensembles, we observed 1223 and 82 round trips, respectively,
representing similar rates of 77 and 72 ns™.

4.2.1. DFT/PMM-REST. For efficiency comparison, we
additionally performed REST simulations with the charge
scaling approachm in the MM/PMM and DFT/PMM settings.
The REST ensemble employs the same temperature ladder 7~
as SST. However, it features only four replicas always
occupying all four rungs. Here, 940 and 180 ps of REST-MD
were performed in the MM/PMM and DFT/PMM settings,
respectively. The exchange probabilities p?i}- (Table 1) show the
expected result.'’ The REST values are on average about a
factor of one-third smaller than those of SST. Furthermore,
with REST the MM/PMM and DFT/PMM round trip rates
are with 43 and 49 ns™’, respectively, by 49% and 37% smaller
than those of SST underlining that SST is the more efficient
tempering variant.

4.3. Improved Weight Guess. Although the update
dynamics quickly adapted the weights to the DFT/PMM
setting, a considerable amount of computer time had to be
spent on this adaptation requiring about 32 X 20 ps of DFT/
PMM-MD simulation. We therefore designed a scheme to
improve the initial guess for the DFT/PMM-SST weights.

Starting from weights w; determined for a Hamiltonian H
(e.g, MM/PMM), we want to estimate weights w;’ for a new
Hamiltonian H’ (e.g, DFT/PMM). Because the optimal
weights wy are the dimensionless free energies S{Ei(R)), we
need to estimate their shifts ow, = w',—w; resulting from
changing the potential energies E; to E’; on rung k, respectively.
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Assuming that the configurational space of H'can be reasonably
well approximated by that of H, we calculate the required
energy ensemble averages for all rungs from configurations
R € S of a snapshot ensemble S drawn from the MM/PMM-
SST simulation, leading to the weight shifts

dw, = B(EL(R) — E(R))ges (10)
All corrections Owy, are then shifted by — dw, such that wy’ = 0.
Equation 10 approximates the free energy perturbation (FEP)

% in leading order (see Section S4 of the SI for a

formula
discussion). The FEP should, in principle, give more accurate
results. For the setups considered here, however, it converges
much slower than eq 10. Because a useful correction scheme
should require only limited computational effort, we therefore

restrict the weight correction to the leading term.

A) o~
( )_4_ owy
~
% _GW o

-8

Sws

(B) |

-4
- 5,
2 -of

_8WW5V~VZ

50 100 150 200

number of snapshots

Figure 4. Convergence of the dimensionless weight corrections dw;
computed from eq 10 for increasing size of the corresponding

snapshot ensemble for A) & and B) & (6w, = 0 always).

Figure 4A demonstrates that the weight corrections sw. (eq
10) for & quickly converge with the size of the snapshot
ensemble S. About 50 snapshots yield converged dwy, and only
about 10 snapshots suffice for a reasonable estimate.

Note that the snapshot ensemble S comprises snapshots
from all rungs k. Instead, one could also estimate the shifts Sw,
from rung-specific ensembles S, which would be physically
more appropriate. The small number of snapshots, however,
suffices to determine the energy averages only with a large
error. These large energy fluctuations introduced by using
different snapshot ensembles S, were found to strongly hamper
the convergence of the éw, and thus the required number of
snapshots would be impractically large.

Table 2 compares the guesses w,’ = w; + Ow, with the
converged DFT/PMM-SST weights revealing overestimates of
less than 0.5. Thus, taken as initial values of a DFT/PMM-SST
simulation, these guesses should lead to a much faster weight
convergence.

4.4, Improved Setup &. The high SST exchange
probabilities of about 50% revealed by Table 1 suggest that
the number of rungs can be reduced. Therefore, we set up a

second SST ensemble & with only three temperature rungs

7 = {300 K, 406 K, 550 K}. Here, however, we employed the
weight correction scheme suggested above to compute the
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Table 2. Weights w;, Obtained by Weight Update Dynamics
in MM/PMM and DFT/PMM Settings for Ensembles & and

& (wy = 0 always) and MM/PMM Weights Corrected by
Eq 10

wy wy w3 W) Wy
MM/PMM 8.17 14.00 17.87 11.41 17.90
wy + owy 5.17 8.44 10.12 7.13 10.25
DFT/PMM 4.92 8.02 9.64 6.85 9.84

initial DFT/PMM-SST weights. The converged weights i,
belonging to the three-rung ensemble are given in the last two
columns of Table 2.

Figure 5 shows the evolution of the weight #, during the
associated SST simulations. Here, the weight correction 6w, is
indicated by the light gray vertical bar, and i, is seen to be
almost converged already at the start of the DFT/PMM-SST
simulation. A similar convergence behavior is observed also for
w, (cf. Figure S1C in Section S5 of the SI). Because the
maximal temperatures T = 550 K of both ensembles & and &
are equal, also the weights at the top rung of the respective
ladders (w; and #,) should converge to the same value. Table 2
shows that this is actually the case.

20 DFT/PMM 4

]
MM/PMM .
]

weight w,

1 1 1 1 1 1

8 " L
0 100 200 300 400 10
t/ps

Figure S. Evolution of the dimensionless weight i, of the highest rung
of & for MM/PMM (gray) and DFT/PMM (black).

Besides the weights, we have monitored the temporal
evolution of the four-rung ensemble & by the uniformity
measures y;(t), which exhibit uniformity only after 20 ps
(Figure 3A) because of strong adaption of weights in the
beginning of the simulations. For the three-rung ensemble &
one finds a uniform distribution right from the start of the
DFT/PMM-SST simulation (see Figure S2A in Section S6 of
the SI). Therefore, our new educated guess for the initial SST
weights (cf. eq 10) guarantees that the replica acquire data on
the target rung r = O straight away in the DFT/PMM-SST
simulation.

The reduced number of rungs in & lowers the exchange
probabilities fjij (cf. the last two columns of Table 1) to about
30%, which now lie in the optimal range.” Here, the lowered by
are compensated by the fewer steps needed to complete a
round trip on the ladder of 8, and concurrently, the MM/
PMM- and DFT/PMM-SST round trip rates increase by about
9% to 84 and 79 ns™", respectively, indicating for the three-rung

ensemble & an improved sampling efficiency at T,

REST simulations SREST with three rungs in the MM/PMM
and DFT/PMM settings of 920 and 160 ps duration,
respectively, revealed that the exchange probabilities are
about only half as large as in the three-rung SST setups (cf.
Table 1). Correspondingly, the respective round trip rates of 41
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and 36 ns™' and the associated sampling efficiencies are
drastically smaller.

4.5. Free Energy Landscape of Alanine Dipeptide
Computed by DFT/PMM-SST. Figure 6 shows the free
energy landscape spanned by the two dihedral angles®® ® and
Y of alanine dipeptide as predicted by our DFT model in
aqueous PMM solvent. Here, we have combined data from the

ensembles & and & at T, = 300 K resulting from about 760 ps
that have been spent on rung 0 out of a total of 2.56 ns of
DFT/PMM-SST-MD trajectory accumulated by the 32
replicas. The main features of the free energy landscape are
the two minima around the structural motifs “polyproline II” at
(®,¥) ~ (—80,150)° and “a-helical” at (®,¥) ~ (—90,—20)°,
which are of similar depth. Conformations characterized by
@ > 0° generally have a higher free energy and are separated
from regions @ < 0° by high barriers but have already been
visited during the SST simulations.

180

free energy [kcal/mol]

rn I I i

80 ki L
-180 -120 -60 O

180

Figure 6. Current state of the free energy landscape of alanine
dipeptide. DFT/PMM-SST simulation data from ensembles & (32 X
35 ps) and & (32 X 45 ps) have been merged; the bin size is 10° X
10°.

The overall shape of the free energy landscape has been
similarly found for other QM/MM settings that employ
plain®>* or RE*> MD simulations using semiempirical QM
Hamiltonians or a multicanonical®> MD simulation with
Hartree—Fock as the QM method. Therefore, we are confident
that the two minimum energy regions are already well
described by the simulations presented here. However, the
relative free energies of the ® > 0° structures and the barriers
connecting the various minima still carry a large error, which
can be reduced only by extended simulations that are on the
way. Furthermore, reweighting schemes based on the “weighted
histogram analysis method” (WHAM)>**° or the “multistate
Bennett acceptance ratio estimator” (MBAR) method™® could
be used to improve the statistics by including data from rungs
r # 0. For these, however, at each trajectory sampling step the
energies E;(R) have to be computed for all rungs k, which will
be implemented to a future release of IPHIGENIE.

5. SUMMARY AND OUTLOOK

The conformational space of flexible molecules in polar
solvents can be efliciently sampled by solute tempering
methods such as REST'® or SST.'” This enhanced sampling
concept can be transferred to simulation setups, in which the
electronic polarizabilities of the solvent and, possibly, also of
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the solute are explicitly included. Here, the keg trick has been
the adoption of the charge scaling method'” to polarizable
systems.

As sample systems, we have considered MM and DFT
models of alanine dipeptide solvated in PMM water. The MM/
PMM- and DFT/PMM-SST simulations showed rapid
convergences of the required weights. The convergence of
the DFT/PMM weights was significantly enhanced by deriving
accurate initial weights from a preceding MM/PMM-SST
simulation and very few DFT/PMM calculations. Interestingl?r,
the enhanced sampling power of SST as compared to REST°
fully transfers to polarizable systems. Both for SST and REST,
the sampling properties of the MM/PMM and DFT/PMM
setups turned out to be highly similar. Therefore, the costly
DFT/PMM simulations can be optimally tuned by the much
cheaper MM/PMM approach. For our DFT/PMM model of
alanine dipeptide in aqueous solution and the chosen
temperature range from 300 to 550 K, a three-rung ladder is
sufficient for an efficient SST dynamics to sample its free
energy landscape at 300 K. In contrast, conventional RE or ST
simulations would require a much larger number of rungs,
which would be unfeasible for the chosen level of theory
(DFT). Extended simulations applying the thus developed
DFT/PMM-SST-MD simulation technique and aiming at an
accurate description of this landscape are under way. A highly
efficient, massively parallel, and scalable DFT/PMM-SST
implementation is available throu§h the interface®*® of the
PMM-MD program IPHIGENIE®' with the DFT program
CPMD.*
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2.4 Effizientes Abtasten von Konformationsrdumen mit DFT/PMM-MD

Der folgende Abdruck

Supporting Information for:
Simulated Solute Tempering in Fully Polarizable
Hybrid QM /MM Molecular Dynamics Simulations

Magnus Schworer, Christoph Wichmann, Erik Gawehn und Gerald Mathias
J. Chem. Theory Comput. 12, 992-999 (2016)

enthélt zusétzliche Informationen zum oben abgedruckten Haupttext. In Abschnitt S1
werden die Details der durchgefiihrten Simulationen préasentiert, Abschnitt S2 doku-
mentiert die verwendete Variante des GP6P-Modells (die sich leicht von der in Ref. [58]
entwickelten finalen Version unterscheidet). In Abschnitt S3 wird der zur Anpassung
der SST-Gewichte verwendete Algorithmus diskutiert, in Abschnitt S4 werden einige
zusitzliche Uberlegungen zum Transfer der Gewichtsparameter w;, zwischen PMM- und
DFT/PMM-SST angestellt. In den beiden letzten Abschnitten S5 und S6 werden schlief3-
lich der Vollstandigkeit halber die Zeitentwicklungen von Gewichtsparametern bzw. die
Gleichverteilung der Kopien k auf der Temperaturleiter T}, gezeigt.
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S1 Simulation Methods

All calculations of alanine dipeptide (Ace-Ala-NHMe) in PMM water were performed with
the IPHIGENIE/CPMD program package, which combines the parallel PMM-MD code
IPHIGENIES! 57 with the parallel grid-based plane-wave DFT code CPMD. 58

In the MM/PMM setting, the dipeptide was modeled by CHARMM?22/CMAP.5%510
In DFT/PMM it was described by the BLYPS!S!2 functional and the norm-conserving
pseudo-potentials of Troullier and Martins®!? at a plane-wave cutoff energy of 70 Ry. It was

centered in a cubic DFT box with a volume of (14 A)3. The DFT self-consistency convergence

S1



S4

criterion® was yppr = 107%. Solute energies, which are required for the computation of the

SI4,S15 were calculated with respect to the

Metropolis exponents in solute tempering methods,
energy Eppr of the isolated molecule at its relaxed geometry obtained from a single separate
calculation. This energy offset Eppro = —58252 kcal mol~! shifts the DFT solute energies to
the same level as the MM solute energies. Otherwise, a weight shift of dw? = (8, — Bo) Eprr.,o
— up to 44130 for w3 — would have to be included when using the MM /PMM weights in the
DFT/PMM simulation. Although this increase would be captured by the weight correction
(10), the comparison of MM/PMM and DFT/PMM weights of similar magnitude is more
instructive.

As PMM water model we used the Gaussian Polarizable Six-Point (GP6P) potential,
which was specifically developed for DET/PMM settings and will be presented elsewhere. 516
Here we solely note that this PMM energy function for water was parametrized by following,
extending, and partially correcting the prescriptions in Refs. [S17] and [S18]. Its parameters
are documented and explained in Section S2 of this SI. The just quoted unpublished work
additionally provides optimized parameters for selected Lennard-Jones (LJ) potentials of the
alanine dipeptide DFT fragment embedded in GP6P water. These parameter were designed
to describe the hydrogen bonding of the dipeptide’s amide groups with the surrounding
GP6P water in such a way that available knowledge about radial distribution functions is
reproduced. The thus revised LJ parameters refer to the amide carbon (C’), oxygen (O),
nitrogen (N), and hydrogen (H) atoms. They are given in Table S1. All other LJ parameters,
which are required for the alanine dipeptide DFT fragment in a DFT/(P)MM setting, 5

were adopted from the CHARMM22%? force field.

Table S1: LJ Parameters for amide group atoms a embedded in GP6P water.
a A, /(10> A kealmol™') B, / (A® kealmol )

C’ 1585.97 962.649
O 426.926 252.844
N 788.889 1357.18
H 0.0 0.0

S2



The geometries of the water molecules were constrained with the M-SHAKES? and
RATTLES? algorithms with relative tolerances of 107!°. The equations of motion were
integrated with the velocity Verlet algorithm52? with time steps 6t of 1 fs in the MM /PMM
and 0.5 fs in the DFT/PMM setting, respectively. The electrostatic and van der Waals
dispersion interactions were treated by the most recent energy conserving version of the
fast structure-adapted multipole method (SAMM).5'53 The SAMM description of these
interactions employed 4’th and 3’rd order symmetric Taylor expansions, respectively, which
were extended up to a maximum distance dictated by the minimum image convention (MIC)
of the applied toroidal boundary conditions.?® Beyond the MIC distance, a moving boundary
electrostatic reaction field correction,>** which models a surrounding dielectric continuum
with a dielectric constant of 78, and a continuum correction for the dispersion attraction
were applied. The SAMM accuracy parameter © was set to medium (0, = 0.20) in the
MM/PMM and high (0, = 0.17) accuracy in the DFT/PMM setting, respectively. The

54 was set to ypvm = 1074 D.

PMM dipole convergence criterion

A condensed phase simulation box was prepared in the MM /PMM setting by filling a
periodic cubic box with one MM alanine dipeptide model (CHARMM?22) and 4487 PMM
water models (GP6P), comprising a total of N = 26944 particles (i.e. atoms and massless
charge sites). The MM/PMM system was equilibrated in the NpT ensemble by a 1 ns MD
simulation to the standard conditions of T = 300 K and p = 1 bar employing a Bussi
thermostatS? (coupling time 0.1ps) and Berendsen barostatS? (coupling time 10 ps), re-
spectively. It yielded a simulation box volume of V' = (51.3 A)3 corresponding to a density
of 0.996 g¢/cm3. From the tail of a subsequent 1ns MD simulation in the NVT ensemble we
collected 32 snapshots at temporal distances of 5 ps.

These snapshots served as starting points for a MM /PMM-SST generalized ensemble £
with C' = 32 replicas and four temperature rungs 7, € 7 = {300K, 367K, 449 K, 550 K}.
All subsequent SST simulations were executed in the NVT} settings. Exchanges between

rungs were attempted every At = 250 fs obeying the deterministic even-odd scheme. 527528
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Initial guesses for the MM/PMM SST weights wj, were obtained by the following pro-
cedure. Short (10ps) MD simulations were carried out at each temperature rung k. The
resulting trajectories served to collect temporal averages (E;") and (E}°) of the solute-solute
and solute-solvent interaction energies, respectively. From these averages the weights wy, were
calculated with the SST trapezoid rule {Eq. (13) in Ref. [S15]}. A subsequent MM-SST-MD
simulation with a duration of 300 ps then yielded through the update rule, which will be
described in Section S3, converged weights wy™. In these preparatory simulations the water
model was TIP3P.5%

In SST simulations, the just mentioned update rule for the weights serves to achieve a
uniform distribution of replicas over the temperature rungs [cf. Eq. (S1) in Section S3|. In
our applications, the initial learning parameter a(0) = 0.5 was increased at each update step
by increments Aa = 0.005 until o, = 0.98 was reached. The weights w, were updated
with a period of nAt, where At is the time span between subsequent exchange attempts.
The factor n was increased at each weight update by 1% or at least 1 from its initial value
n = 2 thus implementing a rather slow learning process. Table S2 lists the converged weights
for all settings.

The MM/PMM-SST ensemble £ was initiated with the weights wj™ and simulated for
500 ps yielding converged weights wy. After substituting the MM solute with the DFT model
a 2ps DFT/PMM equilibration of the 32 replicas on their respective rungs was performed.
Here, like in all DFT/PMM simulations, the Bussi thermostat was exclusively coupled to the
solvent. Finally, the DFT/PMM-SST simulation of the four-rung ensemble £ was started
with the weights wy.

To compute the weight corrections dwy, by Eq. (10), we drew 60 statistically independent
snapshots Sy, for each rung & from the MM /PMM trajectory and thus obtained the snapshot
ensemble § = U Sy comprising all 240 snapshots.

To test the robustness of the approach (10), which allows to accurately estimate DF'T/PMM-

SST weights from a few DFT/PMM calculations on MM/PMM-SST snapshots, we set
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up a second generalized ensemble & featuring only three temperature rungs 7 = {300 K,
406 K,550K}. It was prepared by the same procedures as £. The key difference of this
second DFT/PMM-SST simulation was the choice of the initial weights, which was wy, + 010y,
with corrections dwy, specified by Eq. (10). The dwy, were obtained from a snapshot ensemble
S (|S] = 180) prepared just like S.

For a comparison of the efficiency of DFT/PMM solute tempering methods, we also set
up a REST®™ ensemble ERFST. Tt employs the same temperature ladder 7 as the SST
ensemble £. However, it features only four replicas each exclusively occupying one rung.

EREST omploying the ladder 7. Like

Furthermore, we set up a three-rung REST ensemble
in SST also in the REST simulations, the solute tempering was accomplished by charge
scaling.®1® We performed 940 ps (920 ps) of REST simulation in the MM/PMM and 180 ps

(160 ps) in the DFT/PMM settings for ensemble ERFST (EREST) " regpectively.

Table S2: Weights wy obtained by the SST trapezoid rule for an MM setting, and by the
weight update dynamics (S1) in MM, MM /PMM and DFT/PMM settings for ensembles £
and €. Note that wy = dwy = 0 always. The last line shows the MM/PMM weights wy,
corrected towards DFT/PMM by Eq. (10).

wy Wy w3 wy Wy
MM, SST trapezoid rule 6.40 10.44 13.14 8.45 11.84
MM-MD 6.13 10.15 12.45 852 12.75
MM /PMM-MD 8.17 14.00 17.87 11.41 17.90
DFT/PMM-MD 4.92 8.02 9.64 6.85 9.84
Wy + dwy, 5.17 8.44 10.12 7.13 10.25

S2 A Gaussian Polarizable Six-Point Water Model

In our MD simulations of alanine dipetide in PMM water we employed the Gaussian Po-
larizable Six-Point (GP6P) model potential, which features five Gaussian charges and one
induced Gaussian dipole. It was developed specifically for DFT/PMM simulations. The
details of the parametrization procedure and a thorough evaluation of bulk liquid phase

properties will be presented elsewhere. 56
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The GP6P water model intrinsically provides the smooth electrostatic sources required for
the combination of plane-wave DFT with (P)MM force fields. 54519530831 The parametriza-
tion followed the DFT /PMM-based procedure recently applied to construct polarizable wa-
ter models of increasing complexity, which however employed point charges.5!"518 The rigid

GP6P model features the experimental liquid phase geometry 332533 (

oxygen-hydrogen [O-H]
distance log = 0.968 A, HOH angle pyong = 105.3°) and the experimental vacuum dipole
moment 3 | u,,| = 1.855 D. The polarizability is modeled by an induced Gaussian dipole
distribution of strength p' and Gaussian width o, centered at the oxygen, which isotropi-
cally and linearly depends through the experimental gas phase polarizability S o = 1.47 A3
on the polarizing electric field. Thus, this field is the average over a Gaussian volume of
width o, around the oxygen.>* The width o, is specified in Table S3 together with all other
parameters characterizing the employed version of the GP6P model.

Gaussian charge distributions of identical strengths gy and widths oy are centered at
the two hydrogen atoms. A third Gaussian charge distribution (strength gy, width oyp) sits
at one massless site (M) located the bisectrix of ppon at a distance lpy from the oxygen
towards the hydrogens. Finally, two massless lone pair sites (L) lie in the plane spanned
by the bisectrix of ppon and by the normal of the molecular plane (O-L distance lop,, LOL
angle ¢ror, where L-sites with ¢ror, > 180° would exhibit perpendicular projections to

positions inside the molecular triangle). Also the L-sites carry Gaussian charge distributions

(strengths ¢r,, widths o1, = oy).

Table S3: Parameters of the GP6P Model.

o/ A3 147  lou /A 0.968
0. A 0.740  lom / A 0.555433
on /A 04588152 o /A 0.581108
omm /[ A 0.6605822  pyomn / deg 105.3
qu /| e 0.524872 1oL / deg 173.645
qu /e -0.449410  A; / (10%kcalmol™)  12.38527
q. /e -0.300167 Ay / A~! 2.923912

B/ (Aﬁ kcal mol ™) 912

A/ (10* ASkcalmol™') 598.0948
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The van der Waals interactions between water molecules are modeled by a single Buck-
ingham®% potential Ug,(r) = Ajexp(—rAy) — B/r® centered at the oxygen. To be capable
of treating also interactions of GP6P water models with molecular models, whose van der
Waals interactions are described by LJ potentials Up;(r) = A/r'? — B/r® a LJ approxima-
tion to the GP6P Buckingham potential has been derived by requiring that, in the distance
range r € [2.5,6] A, the mean square deviation between Up,(r) and Upj(r) becomes minimal
upon variation of A. In the current context, the approximate LJ potential has been used for
the description of the van der Waals interactions between the GP6P water molecules and
the MM and DF'T models of alanine dipeptide. Note that the GP6P parameter list of Table

S3 includes those of the approximate LJ potential.

S3 Adaptation of Weights in SST

The weights wy, entering the Metropolis exponents (1), (4) or (9) remain to be specified.
We want to optimize them in such a way that all R temperature rungs k£ are uniformly
sampled, i.e. that the probability py of finding the replica on rung k approaches p = 1/R
during a simulation. The deviation of py/p from unity measures the non-uniformity of the
distribution of the replica over the rungs.5?

Increasingly accurate estimates py(t) = Ni(t)At/t of the probabilities py are determined
by the numbers N(t) of exchange attempts starting from the rungs k& and the total number
t/At of attempts after a SST simulation time ¢. Denoting the weight of a rung k at time ¢

by wy(t), the weight update rule5%7

wi(t + nAt) = wi(t) — In[(1 — a)xx(t) + o] (S1)

employs a learning parameter 0 < a < 1 to adapt the weights w; according to the deviation
of the current sampling of rung & from uniform sampling as quantified by xx(t) = pr(t)/p.

The adaptation is performed every n exchange steps, i.e. with a frequency of 1/(nAt). We
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use the time-dependent learning parameter o = «(t) = min[a(0) + Aat/(nAt), amax] and
additionally scale n by a factor 2 1 at each update step to gradually slow down the learning
process. If a rung k is uniformly sampled at time t', i.e. x(f) = 1, then Eq. (S1) yields
wi(t' + At) = wi(t'). In all other cases, the wy are adjusted towards uniform sampling.
Note that all numerical values for weights are given with respect to wg, because only
weight differences enter the SST exponent (9). The scheme (S1) is easy to implement and

requires only negligible computational effort.

S4 Free Energy Perturbation and Weight Correction

The free energy perturbation (FEP) equation 538539

ﬂAHH’ = — ln(ef’B(ELE)>s (82)

estimates the free energy change App entailed by switching from Hamiltonian H to a
slightly ‘perturbed” Hamiltonian H’ with associated energies £ = F(R) and E' = E'(R),
respectively, where (...)s denotes the average over the configurations R in the ensemble S
sampled by H; we have dropped the rung index k here. Introducing the mean values (E’)s
and (F)s into Eq. (S2) yields

BAHH' e _ln<efﬂ[El7<El>Sf(E7<E>S)+<E,>$7<E>S]>$

= B(E' — E)s — In(e PIE—ENs—(E=(E)s)]y o (S3)

The first term on the r.h.s. in Eq. (S3) is our approximate weight shift dJw given by the
correction formula (10) and captures the estimated shift of the mean values of the potential
energies. The second term, which the weight correction neglects, compares the deviations
ER) — (E(R))s of the energy E(R) of configuration R from the mean value (E(R))s for

the Hamiltonians H and H' over all configurations R € S.
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For our MM/PMM and DFT/PMM Hamiltonians H and H’' we have calculated the
exponents contributing to the ensemble average of the second term that lie in the range
[—20, 20]kcalmol™!, i.e. the deviations of the potential energies calculated using the two
solute Hamiltonians (MM or DFT) for single configurations R from their respective ensemble
averages differ sizable. Concomitantly, we observe a very slow convergence of this second
term, particularly because the exponential averaging is very sensitive to outliers. Thus,
its convergence would require snapshot sets much larger than acceptable for a weight shift
estimate. Here, computer time is better spent on the actual SST simulation employing H’
since it allows a direct determination of the weights and one does not rely on the validity of

the Zwanzig FEP formula.

S5 Time Evolution of Weights w, wy, and w; in PMM-

and DFT/PMM-SST

Figures 2 and 5 in the main text show the evolution of the weights w3 and ws of the respective
highest rungs of the ensembles € and € during the PMM- and DFT/PMM-SST simulations.
Figures S1A), S1B) and S1C) document the evolution of the remaining weights wy, ws, and

wy, respectively.

S6 Uniformity of the Three-Rung Sampling

Figures S2A) and S2B) show the running averages X (¢) and the average uniformity measures
(Xx)7 of the distribution x§ of replicas, respectively, for the three-rung ensemble €.

In contrast to the four-rung ensemble &, for which these quantities are shown in the
corresponding Figures 3A) and 3B) in the main text, the improved initial weight guesses
Wy, + 01 [cf. Eq. (10)] employed in & yield uniformity right from the start of the simulation.

Accordingly, the (xx)7 in S2B) are averages over the whole DF'T/PMM simulation time 7 of
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Figure S1: Evolution of the dimensionless weights A) w, and B) w; of ensemble £ and C)
w; of £ during the MM/PMM (gray) and DFT/PMM (black) SST simulations. In panel
C), w; has been corrected by Eq. (10) before the DFT/PMM-SST simulation. Note the two

different scales of the time axis separated by the dashed horizontal line.
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Figure S2: DFT/PMM-SST ensemble £. A) Running average of the uniformity measure xj.
B) x§ for selected replicas ¢ (gray) and the ensemble average xj (black). Error bars denote

standard deviations.

ensemble & , because no initial adaptation phase had to be discarded.
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3 Resiimee und Ausblick

Das Ziel dieser Arbeit war die Entwicklung einer DFT/PMM-Hybridmethode zur ak-
kuraten und effizienten Berechnung der MD und der IR-Spektren von Biomolekiilen in
ausgedehnter kondensierter Phase. Ausgangspunkt war dabei die von Eichinger et al.
vorgeschlagene DFT/MM-Technik [33]. Es sollte sowohl die Stabilitéit und Effizienz
des Verfahrens verbessert werden, als auch die Genauigkeit der Beschreibung des MM-
Fragments durch die explizite Modellierung polarisierbarer elektronischer Freiheitsgrade
erhoht werden.

Die durch die von Eichinger et al. verwendete Partialladungsniherung [33] verursachte
Asymmetrie in der Berechnung der DFT/MM-Wechselwirkungen und die damit ver-
bundenen Dynamikartefakte wurden erfolgreich beseitigt, indem das DFT-Fragment
vollsténdig symmetrisch in den SAMM-Algorithmus [126] eingebettet wurde. Zusam-
men mit dem zusétzlich entwickelten, die Gittersymmetrie beriicksichtigenden Algorith-
mus zur Nachfithrung der DF'T-Box bei Translationen des DFT-Fragments, konnen nun
Hamilton’sche DF'T/PMM-MD-Simulationen von ausgedehnten Systemen durchgefiihrt
werden [112].

Weiterhin koénnen nun auch in Hybridrechnungen induzierbare Gaufi’sche Dipole zur
Modellierung der polarisierbaren Freiheitsgrade des PMM-Fragments eingesetzt wer-
den [112]. Durch die effiziente Verzahnung der nétigen DFT- und PMM-Selbstkonsis-
tenziterationen ist der damit verbundene Mehraufwand gegeniiber DFT/MM-MD nur
gering, was eine wichtige Voraussetzung fiir die Durchfiihrbarkeit solcher Hybridsimula-
tionen ist.

Die Anpassung der aktuellsten Version von SAMM [109, 126, 127] auf DFT/PMM brach-
te auflerdem massive Steigerungen von Genauigkeit und Effizienz bei der Beschreibung
der DFT/PMM-Wechselwirkungen mit sich [112, 193]. Die FMM-Entwicklungen fiir
elektrostatische Wechselwirkungen, die in der Eichinger et al. zur Verfiigung stehenden
SAMM-Version [125] nur bis zur Ordnung p = 2 méglich waren, werden in der neuen
SAMM-Generation bis zur Ordnung p = 4 ausgefiihrt [126]. Durch die Generalisierung
des SAMM-IAC [Glg. (1.10)] [109] auf DFT/PMM, die Einfithrung einer neuen SAMM-
Hierarchieebene im DFT-Fragment und die gewichtete Berechnung von Gyrationsradien
der DFT-Ladungsverteilung konnte die Performanz (d.h. das Produkt aus Genauigkeit
und Effizienz) der Auswertung von elektrostatischen DFT /PMM-Wechselwirkungen bei
gegebener Ordnung p = 4 nochmal um etwa einen Faktor 55 gesteigert werden, was zu
einer Erhohung der Gesamtperformanz der atomaren Kraftberechnung um mehr als eine
Grofenordnung fithrte [193].

Die Implementierung von DF'T/PMM wurde grundlegend technisch iiberarbeitet, sodass
mit IPHIGENIE/CPMD nun vollstindig parallelisierte, stabile Simulationen auf Hochst-
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3 Restimee und Ausblick

leistungsrechnern wie dem SuperMUC des Leibniz-Rechenzentrums (LRZ) moglich sind.
Das Hybridprogramm IPHIGENIE/CPMD erhilt dabei weitgehend die hervorragenden
Skalierungseigenschaften von CPMD [152]. Die entsprechende Implementierung ist der
wissenschaftlichen Offentlichkeit zuginglich gemacht worden [193]: IPHIGENIE ist frei
im Internet erhéltlich [192]; die in CPMD integrierten Teile des DF'T/PMM-Quellcodes
sind als Patch zur Version 3.17.1 verfiigbar [152] und seit Version 4.1 fester Bestandteil
der CPMD-Distribution. Die Verwendung von CPMD 4.1 erforderte eine Umstellung
der in CPMD integrierten Teile des DF'T/PMM-Quellcodes von der Programmierspra-
che FORTRAN77 auf FORTRAN90 und deren Anpassung an die neuen Strukturen im
Rumpfquellcode von CPMD.

Die neue DFT/PMM-Technologie wurde dann erfolgreich dazu eingesetzt, das PMM-
Wassermodell GP6P zu entwickeln, das sich durch die Verwendung gauiférmiger Quellen
des elektrostatischen Potentials speziell fiir DFT /PMM-Anwendungen eignet. Dazu wur-
de eine zur Parametrisierung von PMM-Punktladungsmodellen entwickelte DFT /PMM-
basierte Strategie [55, 129] korrigiert und ergénzt [58].

Dieser erhebliche Zusatzaufwand war nétig, da sich das in Ref. [129] entwickelte Sechs-
punktmodell TL6P als fehlerhaft herausstellte: bei dessen Parametrisierung und Eva-
luierung [114, 129] war eine Methode zur Druckberechnung eingesetzt worden, die fiir
die verwendete Modellklasse (polarisierbares Mehrpunktmodell) ungeeignet ist und ent-
sprechend einige tausend Bar Miflweisung aufwies. Die zur praktischen Durchfithrung
der DFT/PMM-gestiitzten Parametrisierung von Wassermodellen nétige Zusatzsoftware
musste ich zusammen mit Christoph Wichmann groitenteils komplett neu entwickeln.
Es stellte sich aulerdem heraus, dass sich mit der verwendeten Parametrisierungsmetho-
de [55, 129] bei Verwendung eines korrekten Barometers [14] keine hinreichend genauen
Punktladungs-Sechspunktmodelle konstruieren lieflen, da die von den punktférmigen
lone-pair-Ladungen generierten starken elektrischen Felder eine verniinftige Parametri-
sierung der van der Waals-Wechselwirkungen unmoglich machten. Diese Tatsache und
die geplante Verwendung in DFT/PMM-Hybridmodellen begriindete die Einfiihrung
von GauBladungen fiir GP6P.

Das GP6P-Modell stellte sich dann aber als Erfolg heraus. Der Vergleich der in fliissiger
Phase unter Normalbedingungen (Temperatur 300 K, Druck 1atm) berechneten Obser-
vablen (radiale Verteilungsfunktion, Dichte, isobarischer thermischer Ausdehnungskoef-
fizient, isothermale Kompressibilitat, Warmekapazitit, Diffusionskonstante, Viskositét
und Dielektrizitdtskonstante) mit experimentellen Daten zeigte, dass das GP6P-Modell
wichtige Eigenschaften fliissigen Wassers hinreichend genau beschreiben kann [58]. Fer-
ner war es in der Lage, das experimentell beobachtete Temperatur-Dichte-Profil [44]
mit bemerkenswerter Genauigkeit vorherzusagen [58]. Es hatte damit im Wesentlichen
ahnlich giinstige Eigenschaften wie das mit dem falschen Barometer fehlerhaft konstru-
ierte und evaluierte TL6P-Modell [114, 129]. Somit steht mit GP6P nun erstmalig ein
speziell fiir DFT/PMM-Hybridsimulationen entwickeltes, genaues polarisierbares Sechs-
punktmodell fiir Wasser zur Verfiigung.

Die letzte zur Berechnung der Schwingungsspektren von (Poly-)Peptiden nétige Vor-
arbeit war schliellich die Bestimmung der Lennard-Jones-Potentiale zur Modellierung
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der van der Waals-Wechselwirkungen zwischen den DFT-Atomen einer AG und den
GP6P-Molekiilen. Durch die Entwicklung eines effizienten DFT/PMM-mean-field-An-
satzes konnte die Parametersuche weitgehend automatisiert werden. Die gefundenen
Parameter resultierten in einer sehr guten Beschreibung der radialen Nahstruktur der
PMM-Molekiile um das DFT-Fragment. Die Verwendung der CHARM?22-Parameter [66]
filhrte hingegen zu einer signifikanten Uberstrukturierung der Wasserumgebung von
NMA.

Schlieflich wurden fiir drei verschiedene DFT-Modelle (MT/BP, MT/BLYP und
MT/B3LYP) von NMA dessen Schwingungsspektrum in der Gasphase und in durch
GP6P beschriebener wassriger Losung mittels FTTCF aus ausgedehnten DET-MD- bzw.
DFT/PMM-MD-Trajektorien berechnet. Nach einer globalen Frequenzskalierung stimm-
ten die MT /BLYP- und besonders die MT/BP-Gasphasenspektren sehr gut mit der ex-
perimentellen Referenz [10] tiberein. Fiir das erheblich rechenaufwéndigere MT /B3LYP-
Modell war diese Ubereinstimmung bereits ohne Frequenzskalierung sehr gut [58]. Auch
in wéssriger Losung lieferte das mittels (MT/B3LYP)/PMM-MD berechnete Spektrum
eine sehr gute Vorhersage fiir die experimentelle Beobachtung. Das weniger rechenauf-
windige (MT/BP)/PMM-Modell war nach Frequenzskalierung ebenfalls sehr gut mit
dem Experiment vergleichbar und konnte auch Isotopeneffekte mit hoher Genauigkeit
vorhersagen [58].

Das DFT/PMM-Hybridmodell kann also die Solvatisierungseffekte der wéssrigen PMM-
Umgebung auf das DFT-Fragment mit hoher Genauigkeit beschreiben. Die Fehler des
mit einem einfacheren (MT/BP)/MM-Modell berechneten Spektrums von NMA [63]
treten beim elaborierteren (MT/BP)/PMM-Modell nicht mehr auf [58]. Eine einzelne
70 ps lange (MT/BP)/PMM-MD Trajektorie von NMA in GP6P Wasser konnte inner-
halb eines Tages berechnet werden, eine Aufgabe, die in fritheren Arbeiten [63] noch
ein halbes Jahr in Anspruch genommen hat. Dieser Fortschritt ist zum einen auf die in
dieser Arbeit erreichten Effizienzsteigerungen zuriickzufithren, zum anderen auf die er-
moglichte Nutzbarmachung von Hochstleistungsrechnern wie dem vom LRZ betriebenen
SuperMUC (und natiirlich auf die Verfiighbarkeit entsprechender Rechenzeitressourcen).

Die Kombination von DFT/PMM-MD mit dem generalisierten Ensembleverfahren
SST [195] erlaubt nun auflerdem die effiziente Abtastung der Konformationslandschaf-
ten von Polypeptiden (vgl. Abschnitt 1.1.3), wie am Beispiel von Alanindipeptid gezeigt
wurde [194]. Diese Effizienzsteigerung ist eine wichtige Voraussetzung fiir das Generieren
von geeigneten Startensembles fiir die anschlieSende Untersuchung der konformationss-
pezifischen Schwingungsspektren von Polypeptiden.

Durch die im Rahmen dieser Dissertation erreichten algorithmischen und technischen
Fortschritte ist so ein 6ffentlich zugéngliches, hoch leistungsfihiges Programmpaket ent-
standen. Zusammen mit dem entwickelten DF'T/PMM-Modell fiir AGn in wéssriger Lo-
sung steht nun ein genauer und effizienter theoretischer Zugang zu den IR-Spektren und
Konformationslandschaften groflerer Polypeptide und Proteine zur Verfiigung.

Im Rest dieses Kapitels wird nun ein Ausblick auf zukiinftige Weiterentwicklungen und
Anwendungen der DFT/PMM-Methode gegeben.
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3 Restimee und Ausblick

Anpassung von SPLAM an DFT/PMM

Bei der Entwicklung der DFT/PMM-Methode standen chemisch ungebundene DFT-
und PMM-Fragmente im Vordergrund. Zur Anwendung des Verfahrens auf Systeme, in
denen chemische Bindungen zwischen den Fragmenten existieren (wie z.B. im Falle des
kovalent an das Protein Bacteriorhodopsin gebundenen Farbstoffs Retinal [36]), muss
eine Link-Atom-Methode wie das von Eichinger et al. im Rahmen von DFT/MM ent-
wickelte SPLAM-Verfahren verwendet werden [33, 176]. Bei dieser Link-Atom-Methode
wird in eine C,~C,,-Einfachbindung zwischen zwei Kohlenstoffen C, und C,, des DFT-
bzw. PMM-Fragments ein zusétzliches H-Atom — das Link-Atom L — ins DFT-Frag-
ment gesetzt, das die Valenz von C, abséttigt. Der Einflufl dieses zusétzlichen Atoms
wird dann durch verschiedene Korrekturverfahren so weit wie moglich wieder entfernt.

Das SPLAM-Konzept umfasst vier wesentliche Punkte, deren Ubertragbarkeit ins neue
Hamilton’sche DFT/PMM-Schema im Folgenden diskutiert wird:

(i) Setzen des Atoms L auf die C,~C,,,-Verbindungslinie in einem Abstand rcy vom
C,-Atom, der aus den Gleichgewichtslagen und Kraftkonstanten von harmonisch
gendherten C-C- und C-H-Bindungen bestimmt wird [Glg. (10) in Ref. [33]],

(ii) Umverteilung der auf Atom L wirkenden Krifte auf C, und C,,, Einfithrung ent-
sprechender Energiekorrekturen AFEgyetcn bzw. AEnge [Glgn. (11) und (12) in
Ref. [33]] sowie Berticksichtigen von MM-Winkel- und MM-Diederpotentialen zwi-
schen den Fragmenten [Glg. (13) in Ref. [33]],

(iii) Generalisieren des Konzeptes der 1-M-exclusion (d.h. des Abschaltens langreich-
weitiger Wechselwirkungen fiir nahe chemisch gebundene Atome, vgl. Abschnitt
1.2.1) durch Skalieren des von C,, und dessen nahen PMM-Bindungspartnern auf
dem DFT-Gitter erzeugten elektrostatischen Potentials mittels einer glatten ab-
standsabhéngigen Schaltfunktion é(r) [siehe S. 10459 in Ref. [33]] und

(iv) Korrektur der elektrostatischen Stérung, die durch das Ersetzen der unpolaren C,—
C,,-Bindung mit der polaren C,~H-Bindung eingefiihrt wurde, sowie Korrektur der
mit L eingefiihrten zusétzlichen van der Waals-Wechselwirkungen innerhalb des
DFT-Fragments.

Die Punkte (i) und (ii) sind unverdndert auf DFT/PMM iibertragbar. Die mit dem
Setzen des Link-Atoms und der Kraftumverteilung verbundenen Energiekorrekturen
AEgyeten bzW. AE,pge erfordern allerdings eine Naherung der durch DFT beschriebe-
nen C-H-Bindung durch ein harmonisches Potential, die die Hamilton’sche DFT /PMM-
Dynamik stort. Diese Storung sollte jedoch klein sein.

Das Ausblenden von Wechselwirkungen (iii) kann ebenfalls leicht in die neue DFT /PMM-
Methode iibernommen werden. Die von Eichinger et al. vorgeschlagene Schaltfunktion
é(r) blendet das von C,, und dessen nahen PMM-Bindungspartnern erzeugte elektro-
statische Potential unterhalb einer Entfernung von 3 A zwischen PMM-Atom und DFT-
Gitterpunkt iiber eine Linge von 2,5 A glatt aus [33]. Da das Voxel-IAC [Glg. (5) in

Ref. [193]] bei typischen Voxelgréfien von Ry ~ 0,35 A eine FMM-Approximation erst

158



ab einem Atom-Gitterpunkt-Abstand von etwa 4A erlaubt, wirkt die Potentialskalie-
rung also ausschliefSlich auf der Ebene der direkten Wechselwirkungen zwischen PMM-
Atomen und Gitterpunkten [193]. Damit kann die Skalierung ohne grofien Aufwand
in die Potentialberechnung implementiert werden. Auch die symmetrische Behandlung
der Skalierung bei der Berechnung der Riickwirkung der DFT-Atome auf das PMM-
Fragment stellt keine Schwierigkeit dar; der Hamilon’sche Charakter der DFT /PMM-
Kopplung wird also nicht gestort.

Die grofite Schwierigkeit stellt Punkt (iv) dar, d.h. die Beseitigung des durch das Link-
Atom eingefithrten Dipolmoments p; der C,~H-Bindung. Eichinger et al. greifen hier,
wie schon bei der Berechnung der Riickwechselwirkung des DFT-Fragments auf die
MM-Atome, auf die Partialladungsnidherung zuriick, und verschieben die Ladung g¢r,
des Atoms L einfach an den Ort von C, [33]. So kann die Energie von p; im #uBeren
Feld durch einen einfach Term AFEgi, ext [Glg. (14) in Ref. [33]] korrigiert und die Riick-
wechselwirkung aus den korrigierten Partialladungen berechnet werden. Analog wird
die Korrektur AEqgipint [Glg. (15) in Ref. [33]] der Energie der iibrigen DFT-Atome im
Potential des Dipols p; behandelt. Die entsprechenden Kraftkorrekturen sind durch
einfache Gradientenbildung zugénglich [33].

Ein exaktes Eliminieren von g, ist auch im neuen DFT/PMM-Verfahren unmoglich.
Eine erste Naherung wére, die von Eichinger et al. vorgeschlagene partialladungsbasier-
te Korrekturmethode auch auf DFT/PMM anzuwenden. Eine energicerhaltende Berech-
nung der Partialladungen [204] kénnte dabei die Stérung des Hamilton’schen Charakters
von DFT/PMM klein halten.

Die Verschiebung der mit L assoziierten Ladungsverteilung p; (im Falle von Eichin-
ger et al. die Partialladung ¢ ) kann im DFT/PMM-Verfahren auch iiber die dem Atom
L zugeordneten Voxel V; erfolgen. Dabei wiirden, nach Berechnung der DFT-Elektro-
nendichte, alle Gitterpunkte der Voxel V; (und damit p;) an einer senkrecht zum Ver-
bindungsvektor ryc, zwischen L und C, stehenden Schnittebene gespiegelt werden. Da
die Spiegelungsoperation im Allgemeinen nicht die Gittersymmetrie erhélt, miissen die
Ladungen der gespiegelten Gitterpunkte anschlieend auf die Punkte des reguldren Git-
ters verteilt werden. Der Korrekturterm AFEgipext kann dann z.B. als die Energie der
Multipolmomente von p; im vom PMM-Fragment erzeugten elektrostatischen Poten-
tial ® gendhert werden. Die Riickwechselwirkung auf die PMM-Atome wird aus der
gespiegelten Ladungsdichte p;, berechnet. Eine Korrektur A Eyip in innerhalb des DFT-
Fragments kann durch explizite Berechnung der Energie der iibrigen DFT-Atome im
von pr vor bzw. nach der Spiegelung erzeugten Potential erfolgen.

Beide skizzierten Alternativen zur Eliminierung von p; sind mit erh6htem Rechenauf-
wand verbunden. Auflerdem ist die Stérung der Hamilton’schen DFT/PMM-Dynamik
bzw. das eventuelle Auftreten weiterer Artefakte in beiden Féllen nur schwer abschétz-
bar. Weiterhin beruht die Zuordnung der Voxel V; zum Atom L auf rein geometrischen
Uberlegungen und ist daher nicht notwendigerweise physikalisch sinnvoll.

Die Korrektur der mit Atom L zusétzlich eingefithrten van der Waals-Wechselwirkungen
mit den {ibrigen DFT-Atomen kann, wie die Punkte (i) und (ii), ebenfalls problemlos
aus Ref. [33] in DFT/PMM iibernommen werden. Die Approximation der DFT-Wech-
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3 Restimee und Ausblick

selwirkungen durch ein Lennard-Jones-Potential ist allerdings suboptimal. Zum Beispiel
sollte der Dispersionsanteil nur dann korrigiert werden, wenn die verwendete DFT-Me-
thode die Dispersionswechselwirkung tatséchlich erfassen kann [205], z.B. indem eine
entsprechende empirische Korrektur angewendet wird [206].

Kopplung mit einem Spektroskopischen Kraftfeld

Wie die DFT/MM-Studien der IR-Spektren von Flavin- und Retinalchromophoren in
ihrer nativen Proteinumgebung gezeigt haben, ist fiir eine akkurate Berechnung die-
ser Spektren eine korrekte Beschreibung der Polarisationseffekte im Protein notwen-
dig [36, 37]. Das im Rahmen der laufenden Dissertation von Christoph Wichmann wei-
terentwickelte spektroskopische polarisierbare sPMM-Kraftfeld [63, 94] fiir AGn kann
diese Effekte, im Gegensatz zu einem herkommlichen MM-Proteinkraftfeld, erfassen.

Durch eine Kombination aus polarisierbaren Kraftkonstanten, einem Dipolflussmodell
und einem fluctuating-charge-Modell kénnen die Polarisationseffekte auf die Schwin-
gungsspektren und auf die Ladungsverteilung der AGn modelliert, und eine Hamil-
ton’sche Dynamik berechnet werden. So kann eine genauere Beschreibung der Protei-
numgebung eines DFT-Fragments erfolgen. Eine solche DFT/(s)PMM-Kopplung wiirde
weiterhin die Verwendung eines um polarisierbare Kraftkonstanten erweiterten flexiblen
PMM-Wassermodells in Hybridsystemen erlauben.

Um das sPMM-Kraftfeld zur Beschreibung der Umgebung eines DFT-Fragments einzu-
setzen, sind noch einige, weitgehend technische Vorarbeiten nétig. Diese umfassen die
Berticksichtigung der in sSPMM zusétzlich eingefithrten elektrostatischen Quellen bei der
Berechnung der Wechselwirkungen mit dem DFT-Fragment, sowie die Entwicklung eines
effizienten Schemas zum schnellen Erreichen der gleichzeitigen Selbstkonsistenz zwischen
DFT-Fragment und den polarisierbaren sSPMM-Freiheitsgraden. Da das sPMM-Kraftfeld
teilweise Punktladungen verwendet miisste aulerdem die fiir die Glattung des Potentials
notwendigen Skalenparameter festgelegt werden. Auch die Potentialparameter der Len-
nard-Jones-Wechselwirkung zwischen DFT- und sPMM-Fragment sind noch unbekannt.

Anbindung alternativer DFT-Programme

Die aktuelle Implementierung der DFT/PMM-Methode verwendet das gitterbasierte
DFT-Programm CPMD [152], das ebene Wellen als Basisfunktionen zur Darstellung
der Kohn-Sham-Orbitale benutzt (siche Abschnitt 1.2.2). Die Berechnung des Hartree-
Fock-Austauschs im B3LYP-Hybridfunktional [146, 147] ist in solchen Implementierun-
gen allerdings sehr rechenaufwindig. Die in Ref. [58] gezeigte hohe Qualitéit der mit
(MT/B3LYP)/PMM-MD berechneten Spektren, die eine Frequenzskalierung unnotig
macht, ist daher nur fiir kleine DFT-Fragmente wie dem NMA zugénglich. Fiir groflere
Molekiile muss auf ein einfacheres Funktional wie BP zuriickgegriffen werden.

Abhilfe wiirde hier eine Kopplung zu einer effizienteren DF T-Implementierung wie dem
QUICKSTEP-Modul [154] im Programmpaket CP2K [155] schaffen. Da die fiir ent-
wickelten DFT/PMM-Algorithmen keinerlei CPMD-spezifischen Annahmen enthalten,
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ist die Methode grundsétzlich mit jedem gitterbasierten DFT-Programm kompatibel.
Fiir eine konkrete Implementierung miissten entweder die CPMD-seitigen Codeteile der
DFT/PMM-Kopplung in den Quellcode von QUICKSTEP iiberfiihrt werden. Alternativ
konnte die Potentialberechnung auf dem Gitter vollstéandig auf IPHIGENIE iibertragen
werden, was die notigen Anderungen am DFT-Quellcode minimieren und damit die
Anbindung weiterer gitterbasierter DFT-Programme erheblich erleichtern wiirde.

Vollstandige Evaluierung von GP6P

Das GP6P-Wassermodell wurde speziell als Losungsmittel fiir DFT-Fragmente unter
Normalbedingungen entwickelt; entsprechend wurde auch nur eine begrenzte Anzahl
von Observablen in der fliissigen Phase bestimmt. Die Tatsache, dass das berechnete
Temperatur-Dichte-Profil die experimentelle Evidenz hervorragend vorhersagt, weckt
die Vermutung, dass das GP6P-Modell auch weitere Eigenschaften von Wasser in an-
deren Phasen und/oder unter anderen thermodynamischen Bedingungen, wie z.B. die
Schmelztemperatur oder das Verhalten an Gas-Wasser-Grenzflichen mit hoher Quali-
tat beschreiben kann. Eine solche vollstéandige Evaluierung eines Wassermodells ist eine
Routineaufgabe [86], und konnte die Frage beantworten, in welchem MaBie GP6P zur
theoretischen Untersuchung der Eigenschaften reinen Wassers geeignet ist.

Erweiterung der durch DFT/PMM beschreibbaren Molekiilklassen

Fiir die Anwendung von DFT/PMM-MD auf andere Molekiilklassen als (Poly-)Peptiden
kann die in Ref. [58] (Abschnitt 2.3) am Beispiel von AGn beschriebene Parametrisierung
der Lennard-Jones-Potentiale zwischen dem DFT- und dem PMM-Fragment als Blau-
pause dienen. Die zur Optimierung der Lennard-Jones-Parameter notigen DFT-MD-
Referenzsimulationen kleiner, repriasentativer molekularer Strukturmotive sind mittler-
weile mit vertretbarem Rechenaufwand mdoglich. Die DFT/PMM-mean-field-Methode
erlaubt dann eine effiziente Optimierung von Parametern.

Vor allem die Phosphationen, deren IR-Spektren durch DFT/MM nur ungeniigend be-
schrieben wurden [35], bieten sich fiir die Entwicklung weiterer DFT/PMM-Model-
le an. Erstens wurde die entsprechende DFT-MD-Referenzrechnung bereits durchge-
fithrt [164], zweitens stellt die korrekte Beschreibung der Schwingungsspektren der ge-
ladenen Phosphate offenbar ein herausforderndes Testszenario fiir eine Hybridmethode
dar [35]. Schliefllich wére ein solches Modell fiir Phosphationen ein erster Schritt zur
DFT/PMM-Beschreibung der Schwingungsspektren der Bausteine der DNA, der Nu-
kleinsduren.

Die in Ref. [58] ausfiihrlich dokumentierte und korrigierte Parametrisierung [55, 129] des
GP6P-Modells fiir Wasser kann aulerdem als Leitfaden fiir die DF'T /PMM-basierte Ent-
wicklung weiterer komplexer PMM-Losungsmittelmodelle zur Verwendung in DET /PMM-
Simulationen dienen.
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3 Restimee und Ausblick

Anwendungen

Mit neuen DFT/PMM-Technologie zur Beschreibung von Losungsmitteleffekten auf die
IR-Spektren von Biomolekiilen und dem zur Verfiigung stehenden DFT/PMM-Modell
fiir AGn in Wasser konnen nun weiterfithrende Untersuchungen an grofleren Polypepti-
den in Angriff genommen werden.

Das DFT/PMM-SST-Verfahren [194] ermoglicht den Zugang zu Konformationsland-
schaften von Molekiilen wie z.B. Alanindipeptid. Anschliefend kénnen konformationss-
pezifische IR-Spektren berechnet werden. Durch die hohe Effizienz der Methode kann
die fiir statistisch fundierte Aussagen bzw. GNC-Analysen [185, 186] nétige grofie Da-
tenbasis generiert werden. Eine entsprechende Veroffentlichung ist in Vorbereitung.

Das grofite im Rahmen dieser Arbeit untersuchte DFT-Fragment, Alanindipeptid, stellt
mit 22 Atomen noch keine besondere Herausforderung fiir die Stabilitdt und Skalier-
barkeit der DFT/PMM-Methode dar. Erste Testrechnungen an einem grofileren System,
einem in Wasser gelosten Tryptophan zipper-Motiv [207] (220 DFT-Atome, 14503 GP6P-
Wassermolekiile) wurden bereits erfolgreich von Gerald Mathias auf dem SuperMUC
durchgefithrt. Nach einigen notwendigen programmiertechnischen Anderungen, die u.a.
der Verringerung des Speicherbedarfs dienten, waren stabile DE'T /PMM-MD-Simulatio-
nen auch fiir dieses vergleichsweise grofie Hybridsystem ohne algorithmische Probleme
moglich.
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