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Kurzfassung

Eine aussagekräftige theoretische Beschreibung des Infrarot (IR) -Schwingungsspektrums
eines Biomoleküls in seiner nativen Umgebung durch Molekulardynamik (MD) -Simula-
tionen benötigt hinreichend genaue Modelle sowohl für das Biomolekül, als auch für
das umgebende Lösungsmittel. Die quantenmechanische Dichtefunktionaltheorie (DFT)
stellt solche genauen Modelle zur Verfügung, zieht aber hohen Rechenaufwand nach
sich. Daher ist dieser Ansatz nicht zur Simulation der MD ausgedehnter Biomolekül-Lö-
sungsmittel-Komplexe einsetzbar. Solche Systeme können effizient mit polarisierbaren
molekülmechanischen (PMM) Kraftfeldern behandelt werden, die jedoch nicht die zur
Berechnung von IR-Spektren nötige Genauigkeit liefern.

Einen Ausweg aus dem skizzierten Dilemma bieten Hybridverfahren, die einen rele-
vanten Teil eines Simulationssystems mit DFT, und die ausgedehnte Lösungsmitte-
lumgebung mit einem (P)MM-Kraftfeld beschreiben. Im Rahmen dieser Arbeit wird,
ausgehend von einer DFT/MM-Hybridmethode [Eichinger et al., J. Chem. Phys. 110,
10452-10467 (1999)], ein genaues und hocheffizientes DFT/PMM-Rechenverfahren ent-
wickelt /2,4,6,7/, das der wissenschaftlichen Öffentlichkeit nun in Form des auf Groß-
rechnern einsetzbaren Programmpakets IPHIGENIE/CPMD zur Verfügung steht.

Die neue DFT/PMM-Methode fußt auf der optimalen Integration des DFT-Fragments
in die

”
schnelle strukturadaptierte Multipolmethode” (SAMM) zur effizienten appro-

ximativen Berechnung der Wechselwirkungen zwischen den mit gitterbasierter DFT
bzw. mit PMM beschriebenen Subsystemen. Dies erlaubt stabile Hamilton’sche MD-
Simulationen /2/ sowie die Steigerung der Performanz (d.h. dem Produkt aus Ge-
nauigkeit und Recheneffizienz) um mehr als eine Größenordnung /4/. Die eingeführte
explizite Modellierung der elektronischen Polarisierbarkeit im PMM-Subsystem durch
induzierbare Gauß’sche Dipole ermöglicht die Verwendung wesentlich genauerer PMM-
Lösungsmittelmodelle /2/. Ein effizientes Abtastens von Peptidkonformationen mit DFT/
PMM-MD kann mit einer generalisierten Ensemblemethode erfolgen /7/.

Durch die Entwicklung eines Gauß’schen polarisierbaren Sechspunktmodells (GP6P) für
Wasser und die Parametrisierung der Modellpotentiale für van der Waals-Wechselwir-
kungen zwischen GP6P-Molekülen und der Amidgruppe (AG) von N-Methyl-Acetamid
(NMA) wird ein DFT/PMM-Modell für (Poly-)Peptide und Proteine in wässriger Lö-
sung konstruiert /6/. Das neue GP6P-Modell kann die Eigenschaften von flüssigem Was-
ser mit guter Qualität beschreiben. Ferner können die mit DFT/PMM-MD berechneten
IR-Spektren eines in GP6P gelösten DFT-Modells von NMA die experimentelle Evidenz
mit hervorragender Genauigkeit reproduzieren /6/. Somit ist nun ein hocheffizientes und
ausgereiftes DFT/PMM-MD-Verfahren zur genauen Berechnung der Konformations-
landschaften und IR-Schwingungsspektren von in Wasser gelösten Proteinen verfügbar.
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Abstract

A meaningful theoretical description of the infrared (IR) spectrum of a biomolecule in
its native environment by molecular dynamics (MD) simulations requires adequately
accurate models both for the biomolecule and for its solvent environment. The quantum
mechanical density functional theory (DFT) provides such accurate models, but entails
high computational effort. Therefore, this approach is not suited for the simulation of the
MD of extended biomolecule-solvent-complexes. Such systems can be handled efficiently
by polarizable molecular mechanics (PMM) force fields, which, however, do not provide
the accuracy required for the computation of IR spectra.

The sketched dilemma is resolved by hybrid approaches, which describe a relevant part
of a simulation system by DFT, and the extended solvent environment by a (P)MM
force field. Based on a DFT/MM hybrid method [Eichinger et al., J. Chem. Phys. 110,
10452-10467 (1999)], an accurate and highly efficient DFT/PMM approach is developed
in this thesis /2,4,6,7/. Its implementation in the program package IPHIGENIE/CPMD
is suitable for high-performance computing applications and available to the scientific
community.

The new DFT/PMM method is based on the optimal integration of the DFT fragment
into the “structure-adapted fast multipole method” (SAMM) for the efficient approxi-
mative computation of interactions between the subsystems described by grid-based
DFT and PMM, respectively. It enables stable, Hamiltonian MD simulations /2/, and
increases the performance (i.e. accuracy times efficiency) by more than one order of
magnitude /4/. The explicit modeling of electronic polarizability in the PMM subsys-
tem by induced Gaussian dipoles allows the use of much more accurate PMM solvent
models /2/. The efficiency of peptide conformational sampling with DFT/PMM-MD is
increased by applying a generalized ensemble method /7/.

By constructing a Gaussian polarizable six-point (GP6P) model for water and by para-
metrizing the model potentials for van der Waals interactions between GP6P molecules
and the amide group (AG) of N-Methyl-Acetamide (NMA), a DFT/PMM model for
(poly-)peptides and proteins in aqueous solution is developed /6/. The new GP6P model
can describe the properties of liquid water with good quality. Furthermore, the IR spec-
tra of a DFT model of NMA solvated in GP6P, which were calculated by DFT/PMM-
MD, can reproduce the experimental evidence with excellent quality /6/. Thus, a highly
efficient and mature DFT/PMM-MD approach for the accurate computation of confor-
mational landscapes and IR spectra of proteins in aqueous solution is now available.
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1 Einleitung

Proteine stellen, neben der die Erbinformation kodierenden Desoxyribonukleinsäure
(engl. deoxyribonucleic acid, DNA) und dem Wasser, in dem sich biochemische Pro-
zesse abspielen, die wichtigste Klasse von Biomolekülen dar [1]. So katalysieren Enzyme
biochemische Prozesse wie die Vervielfältigung der DNA, Kanal- und Pumpproteine
steuern die Chemikalienkonzentration im wässrigen Zellinneren, Sinneswahrnehmungen
und Photosyntheseprozesse werden durch Proteine organisiert. Auch die Proteinsynthese
selbst wird durch Proteine bewerkstelligt [1].

Die Funktion eines Proteins beruht auf seiner spezifischen dreidimensionalen Form [1]
und seiner Konformationsdynamik [2, 3]. Kleinste strukturelle Fehler oder Schäden kön-
nen bereits die Proteinfunktion stören oder zerstören [4, 5], neurodegenerative Krankhei-
ten wie Alzheimer oder Parkinson werden durch fehlgefaltete Proteine ausgelöst [6–8].
Eine genaue Kenntnis der Struktur und Funktionsdynamik von Proteinen ist daher eine
wichtige Grundlage für das Verstehen von biologischen Prozessen und für die Diagnose
und Behandlung einer Vielzahl von Krankheiten.

Die strukturellen und dynamischen Eigenschaften eines Proteins werden durch komplexe
intramolekulare Wechselwirkungen zwischen seinen Grundbausteinen, den Aminosäu-
ren, und durch seine Umgebung festgelegt [2]. Im Allgemeinen kann ein Protein seine
native Form nur im physiologischen Milieu der Zelle, das durch eine komplex struktu-
rierte wässrige Lösung von Biomolekülen und Ionen charakterisiert ist, annehmen und
behalten. Hier liefern insbesondere die polaren Wassermoleküle einen großen entropi-
schen Beitrag zur Stabilität von Proteinen [2], und tragen weiterhin durch spezifische
elektrostatische Wechselwirkungen zur lokalen Strukturbildung bei [9]. Ferner beein-
flussen die durch die Wassermoleküle erzeugten elektrischen Felder die elektronischen
Eigenschaften und die molekularen Schwingungsmuster von Peptiden und Proteinen [10].

Eine Vielzahl experimenteller biophysikalischer Techniken steht für die Aufklärung der
Struktur und Funktionsdynamik von Proteinen zur Verfügung [11]. Theoretische biophy-
sikalische Methoden, wie die Molekulardynamik (MD) - Simulationen [12–15] helfen, die
experimentellen Befunde zu interpretieren und zu ergänzen [16–22]. So können z.B. mo-
lekulare Strukturdaten aus Röntgenbeugungs-, Neutronenstrahlungs- oder Kernspinre-
sonanzexperimenten durch MD-Techniken verifiziert und verfeinert werden [16, 17]. Das
komplexe Schwingungsspektrum eines (Bio-)Moleküls im Infrarot (IR) - Bereich, das dy-
namische Informationen u.a. über dessen chemischen Zustand [23–25] und über die Na-
tur und Struktur seiner Umgebung [10, 26] liefert, kann mit Hilfe von MD-Simulationen
interpretiert werden [19, 21, 27].

Anhand vereinfachter biophysikalischer Modelle können die für eine Beobachtung verant-
wortlichen mikroskopischen physikalischen Effekte identifiziert werden, oder, bei hinrei-
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1 Einleitung

chender Modellqualität, Vorhersagen für experimentell nicht oder nur schwer zugängliche
Observablen gemacht werden [13]. Neben den für die Untersuchung von Proteinen rele-
vanten Längen- und Zeitskalen, die sich über mehrere Größenordnungen erstrecken [3],
stellt bei MD-Simulationen vor allem die hinreichend genaue, aber trotzdem effiziente
Beschreibung der physikalischen Eigenschaften von Protein-Wassergemischen eine große
Herausforderung dar [27–30].

Ein ausgezeichneter Kompromiss aus Genauigkeit und Recheneffizienz kann durch die
erstmals von Arieh Warshel und Michael Levitt im Jahre 1976 vorgeschlagenen hybri-
den Simulationsmodelle erreicht werden [31], die für die Behandlung eines ausgedehnten
Biomolekül-Lösungsmittel-Komplexes eine genaue, aber rechenaufwändige quantenme-
chanische (QM) Beschreibung eines — z.B. chemisch reaktiven oder spektroskopisch
interessanten — molekularen Subsystems mit einer ungenaueren, aber sehr effizienten
Behandlung des umgebenden Lösungsmittelsystems durch ein sog. molekülmechanisches
(MM) Kraftfeld kombinieren. Dafür wurden die beiden genannten Autoren, zusammen
mit Martin Karplus, mit dem Chemie-Nobelpreis des Jahres 2013 ausgezeichnet [32].

Aufbauend auf dieser Idee entwickelten Eichinger et al. eine theoretische Methode [33],
die eine Beschreibung des QM-Subsystems mittels Dichtefunktionaltheorie (DFT) er-
möglichte, so die zur Berechnung von IR-Spektren erforderliche Genauigkeit lieferte und
speziell auf Biomoleküle in deren nativer Umgebung zugeschnitten war. Eine Vielzahl
von Anwendungen (siehe z.B. Literaturzitate [21], [25], oder [34]) zeigte, dass dieses
DFT/MM-Verfahren eine zufriedenstellend genaue Berechnung solcher Schwingungs-
spektren ermöglichte. Die Vernachlässigung von elektronischen Polarisationseffekten im
MM-Fragment stellte sich allerdings als zu grobe Vereinfachung bei der Beschreibung
der Lösungsmitteleffekte auf das DFT-Fragment heraus [35–37]. Des Weiteren waren
ausgedehnte, stabile MD-Simulationen mit DFT/MM-Modellen aufgrund weiterer ver-
wendeter Näherungen nur eingeschränkt möglich.

Das Ziel der vorliegenden Arbeit war daher die Weiterentwicklung dieser DFT/MM-
Technik [33] hinsichtlich ihrer Eignung für stabile MD-Simulationen und der Genauig-
keit der verwendbaren Lösungsmittelmodelle. Besondere Aufmerksamkeit sollte dabei
einer physikalisch korrekten, genauen und hocheffizienten Behandlung der Wechselwir-
kungen zwischen den Subsystemen gewidmet werden. Die Einführung polarisierbarer
Freiheitsgrade im MM-Fragment sollte es erlauben, Polarisationseffekte auch dort zu
berücksichtigen.

Zur Beschreibung einer wässrigen Lösungsmittelumgebung wurde ein polarisierbares
MM (PMM) Wassermodell speziell für DFT/PMM-Anwendungen entwickelt, das die
Solvatstruktur um das DFT-Subsystem, und die durch das Wasser hervorgerufenen Sol-
vatisierungseffekte korrekt beschreiben kann. Die neue DFT/PMM-Methode soll so eine
wesentlich genauere und effizientere Berechnung der IR-Spektren von in Wasser gelösten
Molekülen erlauben.

Bevor die eben angesprochenen theoretischen Methoden jedoch genauer erklärt wer-
den, werden im Folgenden zunächst einige grundlegende biochemische und physikalische
Eigenschaften von Wasser und von Proteinen skizziert.
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1.1 Proteine in wässriger Lösung

1.1 Proteine in wässriger Lösung

Die Grundbausteine der den Proteinen zugrundeliegenden Polypeptidketten sind die
zwanzig α-Aminosäuren, die bei der Translation im Ribosom in einer für jedes Pro-
tein wohldefinierten Reihenfolge, der in der DNA kodierten Primärstruktur , als zu-
sammenhängender Rückgratstrang polymerisiert werden [1]. Anschließend bilden sich
lokale geordnete Muster (Sekundärstrukturen), die dann zusammen mit ungeordneten,
flexiblen Bereichen (engl. random coils) die dreidimensionale Tertiärstruktur eines Pro-
teins, bzw. einer Untereinheit eines Proteinkomplexes, formen [1]. Die nicht-kovalente
Verbindung mehrerer Untereinheiten zu einem Proteinkomplex bezeichnet man auch
als Quartärstruktur [1]. Der Faltungsprozess hängt wesentlich von der Umgebung des
Proteins ab [38, 39], die in situ hauptsächlich durch wässrige Lösung gegeben ist.

1.1.1 Grundlegende Eigenschaften von Wasser

Abbildung 1.1: a) Geometrie eines H2O-Moleküls in der Gasphase, dessen statisches Dipolmoment µ0

zeigt in Pfeilrichtung. b) Beispiel für ein Wasserstoffbrückennetzwerk in flüssiger Phase: das zentrale
Wassermolekül bildet vier Wasserstoffbrücken (gestrichelt) zu umgebenden Wassermolekülen aus.

Wasser, die Grundlage organischen Lebens [40], spielt eine besondere Rolle für biologi-
sche Prozesse [9]. Der Grund sind seine besonderen mikroskopischen und makroskopi-
schen Eigenschaften [9, 41, 42]. Zum Beispiel weist flüssiges Wasser bei Raumtemperatur
eine hohe Dielektrizitätskonstante von εH2O ≈ 78 auf [43], d.h. die effektive Reichweite
elektrostatischer Wechselwirkungen ist im Wasser gegenüber dem Vakuum auf 1/εH2O

verringert. Weiterhin zeigt flüssiges Wasser, neben vieler anderer ungewöhnlicher Eigen-
schaften, eine Anomalie der Dichte, die bei 4◦C ein Maximum aufweist [44].

Wie in Abbildung 1.1a gezeigt ist, sind die zwei Wasserstoffatome (H) und das Sau-
erstoffatom (O) in der Gasphase mit einer O–H-Bindungslänge lgas

OH = 0,9572 Å und
unter einem H–O–H Bindungswinkel ϕgas

HOH = 104,52◦ angeordnet [45, 46]. Durch die
unterschiedlichen atomaren Elektronegativitäten ergibt sich ein relativ starkes statisches
Dipolmoment von |µ0| = 1,855 D [46] in x-Richtung (roter Pfeil). Ferner hat das Was-
sermolekül ein großes Quadrupolmoment [47]. Diese elektrostatische Signatur generiert
spezifisch strukturierte elektrische Felder.
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1 Einleitung

Ein auf ein Molekül wirkendes äußeres elektrisches Feld hat eine Verschiebung der Elek-
tronenverteilung relativ zu den Atomkernen zur Folge. Diese elektronische Polarisie-
rung bewirkt u.a. eine Änderung von Geometrie und Dipolmoment. In wässriger Lö-
sung wächst die mittlere Bindungslänge auf lsol

OH = 0,968 Å und der Bindungswinkel auf
ϕsol

HOH = 105,3◦ [48, 49]. DFT-Rechnung ergeben, dass der Nettoeffekt dieser Geometrie-
änderung auf den statischen Dipol klein ist (siehe Abb. 2A in Ref. [50]).

Der durch ein äußeres elektrisches Feld in einem isolierten Wassermolekül induzierte
Dipol µi ist in erster Näherung linear von diesem Feld abhängig; die entsprechenden
linearen Koeffizienten αxx = 1,47 Å3, αyy = 1,53 Å3 und αzz = 1,42 Å3 sind annähernd
isotrop [51] und ändern sich beim Übergang in die flüssige Phase nur unwesentlich [50].
In flüssigem Wasser wirken die elektrischen Felder im Mittel parallel zur x-Achse des
in Abbildung 1.1a definierten molekülfesten Koordinatensystems, sodass der Gesamt-
dipol des einzelnen Wassermoleküls in Lösung größer ist als |µ0|. Der experimentell
geschätzte Mittelwert von (2,9± 0,6) D [52] hat allerdings einen großen Fehler, und ist
nicht mit der experimentell gut bestimmten [43] Dielektrizitätskonstante εH2O kompati-
bel [53]. QM/MM-Computersimulationen sagen um etwa 10% kleinere Mittelwerte des
Gesamtdipols voraus [33, 50, 54, 55].

Durch Dipol-Dipol-Wechselwirkungen bildet sich in kondensierter Phase ein dynami-
sches Netzwerk intermolekularer Wasserstoffbrücken [9], dessen typische tetraedrische
Struktur in Abbildung 1.1b für einen kleinen Wassercluster durch die gestrichelten Lini-
en skizziert ist. Da die Stärke einer Wasserstoffbrücke bei Raumtemperatur etwa beim
zehnfachen der thermischen Energie liegt, ist Wasser unter physiologischen Bedingungen
flüssig [42]. Viele Anomalien des Wasser können durch die mikroskopischen Eigenschaf-
ten des Wasserstoffbrückennetzwerks erklärt werden [42, 56].

1.1.2 Solvatisierungseffekte auf Amidgruppen

Wie im einleitenden Text dieses Abschnitts bereits erwähnt wurde, bildet sich das Prote-
inrückgrat durch die Synthese von Aminosäuren. Der linke Teil von Abbildung 1.2 zeigt
zwei Aminosäuren AS1 und AS2, deren chemische Struktur bis auf die sog. Restgruppen
(R1 bzw. R2) identisch ist: eine Aminogruppe (NH+

3 ), eine Carboxygruppe (COO−),
und ein einzelnes H-Atom sind an ein zentrales Kohlenstoffatom (Cα) gebunden. Die
Restgruppe definiert die Aminosäure sowie deren chemische und elektrostatische Eigen-
schaften [2], sowie deren Löslichkeit in Wasser [57].

Abbildung 1.2 illustriert weiterhin den Vorgang der Peptidsynthese, bei der die Carboxy-
gruppe von AS1 und die Aminogruppe von AS2 unter Abspaltung eines H2O-Moleküls
eine sog. Peptidbindung eingehen. Das rechts gezeigte resultierende Motiv, das sich durch
die hervorgehobene Amidgruppe (AG) auszeichnet, kann nun mit weiteren Aminosäuren
reagieren, was schließlich zur Ausbildung des Proteinrückgrats führt. Die AG ist planar
und weist ein großes statisches Dipolmoment (Pfeil) auf.

Der Grund für diese charakteristischen Eigenschaften der AG liegt im über deren Ato-
me delokalisierten π-Elektronensystem, das, wie in Abbildung 1.3a am Beispiel des
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1.1 Proteine in wässriger Lösung

Abbildung 1.2: Zwei Aminosäuren AS1 und AS2 gehen unter Wasserabspaltung eine Peptidbindung
ein, die resultierende planare AG (grau gestrichelt), deren starkes Dipolmoment durch den roten Pfeil
symbolisiert ist, ist die dem Proteinrückgrat zugrundeliegende Struktur. In Wasser liegen die Amino-
und Carboxygruppen überwiegend in der zwitterionischen Struktur vor.

molekularen Minimalmodells einer AG, dem N-Methyl-Acetamid (NMA), skizziert ist,
zwei Resonanzstrukturen aufweist [2]. In der neutralen Resonanzstruktur A liegt die
C ′–N-Bindung als Einfachbindung und die C ′=O-Bindung als Doppelbindung vor, in
der zwitterionischen dipolaren Resonanzstruktur B hat hingegen die C ′=O-Bindung
Einfachbindungs- und die C ′–N-Bindung Doppelbindungscharakter. Diese dort vorlie-
gende torsionsstabile C ′=N-Doppelbindung hält die AG planar, weswegen diese auch als
Peptidplättchen bezeichnet wird. Durch äußere Felder kann die Auftretenswahrschein-
lichkeit der dipolaren Resonanzstruktur B, und damit das Nettodipolmoment der AG
erhöht werden: AGn sind also, ebenso wie Wassermoleküle, stark polarisierbar.

Abbildung 1.3b zeigt eine typische molekulare Konfiguration von in Wasser gelöstem
NMA. In wässriger Lösung sind im Mittel am O-Atom der AG etwas mehr als zwei
Wassermoleküle, und am H-Atom der AG ein Wassermolekül über Wasserstoffbrücken
gebunden, wie eine Analyse der mit DFT-MD berechneten radialen Verteilung von flüs-
sigem Wasser um ein NMA-Molekül ergab [58]. Die resultierende strukturierte Wasser-
umgebung generiert starke lokale elektrische Felder, die die AG polarisieren. Die aus
Abbildung 1.3a qualitativ abgeleitete Polarisierbarkeit der AG wird durch QM-Rech-
nungen bestätigt: diese sagen beim Transfer von NMA aus dem Vakuum in wässrige
Lösung eine Erhöhung des Dipolmoments um bis zu 75% voraus [59, 60]. Das mittlere
Dipolmoment eines Wassermoleküls wächst dagegen beim Transfer in die flüssige Phase
nur um etwa 40% (vgl. Abschnitt 1.1.1) [33, 50, 54, 55].

Abbildung 1.3: a) Neutrale (A) und dipolare (B) elektronische Resonanzstruktur der durch grau gestri-
chelte Linien angedeuteten AG von NMA. b) Das NMA und drei über Wasserstoffbrücken gebundene
Wassermoleküle. Kohlenstoffatome (C) sind in cyan, Sauerstoffatome (O) in rot, Stickstoffatome (N)
in blau und Wasserstoffatome (H) in weiß dargestellt.
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1 Einleitung

Abbildung 1.4: a) Für die Amidmoden AI-AIII von NMA charakteristische relative Atombewegungen
innerhalb der AG. b) Experimentell beobachtete [10] solvatochrome Verschiebungen der Moden AI-AIII
beim Transfer von NMA aus der Gasphase in Lösungsmittel zunehmender Polarität.

Die Polarisation einer AG durch äußere Felder hat, neben der Erhöhung ihres Dipol-
moments, auch erheblichen Einfluß auf die intramolekularen Kräfte und damit auf ih-
re spektroskopischen Eigenschaften. Abbildung 1.4a illustriert am Beispiel von NMA
drei charakteristische IR-aktive Normalmoden [61] einer AG, die als die Amidmoden
AI, AII und AIII bezeichnet werden. Hierbei skizzieren die Pfeile die einer Normal-
mode zugrundeliegenden Atombewegungen, so besteht z.B. die AI-Mode hauptsächlich
aus einer C ′=O-Streckschwingung. Abbildung 1.4b zeigt die für NMA in Umgebun-
gen unterschiedlicher Polarität experimentell beobachteten Frequenzen dieser Moden
AI-AIII [10]. Beim Transfer des NMA von der Gasphase in das polare Lösungsmittel
Acetonitril (CH3CN, Dielektrizitätskonstante εCH3CN ≈ 36 [62]) und in das stärker po-
lare H2O (εH2O ≈ 2 εCH3CN) verschieben sich die Moden AI bzw. AII und AIII stark und
in unterschiedliche Richtungen.

Auch dieser solvatochrome Effekt kann anhand des Resonanzstrukturmodells der AG
(siehe Abb. 1.3a) erklärt werden [63]. Mit steigender Lösungsmittelpolarität erhöht sich
die Wahrscheinlichkeit für das Auftreten der polaren Resonanzstruktur B gegenüber
der neutralen Struktur A. Die C ′=O-Bindung hat also vermehrt Einfachbindungs-, die
C ′–N-Bindung vermehrt Doppelbindungscharakter. Damit nimmt die Stärke der C ′=O-
Kraftkonstante im Mittel ab, was eine Absenkung der Frequenz der AI-Mode zur Folge
hat. Gleichzeitig nimmt die Stärke der C ′–N-Bindung zu, und die Frequenzen der AII-
und AIII-Moden, an denen die C ′–N-Streckschwingung großen Anteil hat (vgl. Abb.
1.4a), steigen.

Das Schwingungsspektrum einer AG kann also Rückschlüsse auf deren Umgebung lie-
fern, die in einem Polypeptid einerseits durch die jeweilige Lösungsmittelumgebung,
andererseits durch die anderen AGn (und deren Restgruppen) gegeben ist.
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1.1 Proteine in wässriger Lösung

Abbildung 1.5: a) Alanindipeptid in der C5 -Konformation, die durch die Diederwinkel (φ, ψ) ≈
(−150◦,+180◦) definiert ist. b) Ramachandranplots der freien Energie F (φ, ψ) von Alanindipep-
tid im Vakuum (vac.) und in wässriger Lösung (sol.) bei einer Temperatur von 300 K. Wei-
ße Bereiche kennzeichnen Regionen mit F > 4,2 kcal/mol (Simulationsmodelle: CHARMM22 bzw.
CHARMM22+CMAP/TIP3P [66–68]).

1.1.3 Solvatisierung von Di- und Polypeptiden

Die eben diskutierten AGn treten nicht nur mit dem umgebenden Lösungsmittel, son-
dern auch untereinander über ihre Dipolmomente in Wechselwirkung, was die für die
Ausbildung der Sekundärstrukturen grundlegende Wechselwirkung ist [64, 65].

Abbildung 1.5a zeigt ein einfaches Modellbeispiel für den Aufbau der Rückgratstruktur
eines Polypeptids durch Verkettung von Aminosäuren (vgl. Abb. 1.2) über ein zentrales
Cα-Atom: das Molekül Alanindipeptid (Ace-Ala-NHMe). Hier sind zwei AGn über ein
Cα-Atom verbunden, an das außerdem eine Methyl-Restgruppe und ein H-Atom gebun-
den ist. Jeweils eine Methylgruppe sättigt den N- bzw. den C-Terminus ab. Im Gegensatz
zu den torsionsstabilen Doppelbindungen innerhalb der AGn sind Rotationen um die
N–Cα- bzw. Cα–C ′-Einfachbindungen relativ leicht möglich, die Rückgratstruktur lässt
sich daher durch die skizzierten Diederwinkel φ und ψ charakterisieren [2]. Der hochdi-
mensionale Konfigurationsraum von Alanindipeptid wird so auf einen zweidimensionalen
Konformationsraum reduziert.

Abbildung 1.5b zeigt exemplarisch zwei mittels MM-MD-Simulationen im Vakuum (vac.)
und in wässriger Lösung (sol.) für Alanindipeptid bei Raumtemperatur generierte sog.
Ramachandranplots [69] der freien Energie F (φ, ψ) ∼ − ln[ p(φ, ψ) ], die aus der Vertei-
lung p(φ, ψ) der Diederwinkel berechnet werden kann. Die mit in der Literatur üblichen
Bezeichnungen [70] markierten lokalen Minima von F sind somit die wahrscheinlichsten
Zustände im Konformationsraum.

Ein Vergleich der beiden Ramachandranplots zeigt den Einfluß wässriger Lösung auf
die Konformationslandschaft von Alanindipeptid. Im Vakuum herrschen die in Abbil-
dung 1.5a gezeigte C5 - und die C7eq-Konformation vor, in denen die Dipolmomente der
beiden AGn energetisch günstig antiparallel zueinander angeordnet sind. Parallele An-
ordnungen der Dipole, wie z.B. im α-Bereich, kommen im Vakuum äußerst selten vor.
In Wasser wechselwirken die Dipolmomente der AGn zusätzlich mit den umgebenden
Wassermolekülen, auf diese Weise wird die freie Energie einiger im Vakuum ungünstiger
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1 Einleitung

Motive abgesenkt. Wasserstoffbrückenbindungen innerhalb des Dipeptids, die teilwei-
se durch Wassermoleküle unterstützt werden, führen zur Ausdifferenzierung weiterer
Strukturen wie ppII, die zusammen mit C5 den sog. β-Bereich bilden.

Die lokalen Minima von F (φ, ψ) sind durch teilweise hohe Energiebarrieren voneinander
getrennt [71], so sind z.B. spontane Übergänge von Regionen mit φ < 0◦ zu Regionen mit
φ > 0◦ bei Raumtemperatur sehr selten. Viele (φ,ψ)-Kombinationen sind durch sterische
Hinderungen, d.h. Pauli-Abstoßungen der atomaren Elektronendichten, verboten [2].
Sterische Hinderungen sind auch der Grund, warum die Restgruppen der AGn Einfluß
auf die Beweglichkeit des Rückgrats und auf die Konformationslandschaft haben [70].

In größeren Polypeptiden interagieren nicht nur benachbarte AGn, sondern, ermöglicht
durch Krümmungen des Rückgrats, auch weiter entfernte [2]. Die wichtigsten Sekundär-
strukturmotive in Proteinen sind die α-Helix, bei der die parallel angeordneten Dipole
der AGn einen Makrodipol bilden, sowie das β-Faltblatt, das kein Nettodipolmoment
aufweist [64, 65]. Zur Strukturbildung können außerdem Wechselwirkungen zwischen
Restgruppen beitragen [2].

Die strukturtypischen, von anderen AGn bzw. Wassermolekülen erzeugten lokalen elek-
trischen Felder führen zu spezifischen Polarisationen der einzelnen AGn, die sich, wie
oben diskutiert, auf deren Schwingungsmuster auswirken [10]. So sind die verschiedenen
Sekundärstrukturen durch (IR-)Spektroskopie [11] der Amidmoden (siehe Abb. 1.4a)
unterscheidbar [26, 72, 73], mit zeitaufgelösten Messungen kann die Konformationsdy-
namik untersucht werden [19, 21, 74–76]. Die Interpretation der experimentellen Be-
obachtungen, z.B. der Schluss von einem gemessenen Schwingungsspektrum auf eine
bestimmte Proteinstruktur, kann durch theoretische Methoden unterstützt werden, die
nun im Folgenden vorgestellt werden.

1.2 Molekulardynamik-Simulationen

Einen wichtigen theoretischen Zugang zu Biomolekülen stellen die im Jahre 1957 durch
Alder und Wainwright [12] erstmals angewendeten MD-Simulationen dar [13–15]. Mittels
einer solchen Simulation wird eine zeitdiskrete Trajektorie R(t) = [r1(t), . . . , rN(t)]T

eines Systems aus N Atomen generiert, die zu jedem Zeitpunkt t alle Atomkoordinaten
ri ∈ R3 (i = 1, . . . , N) speichert, und die dann der jeweiligen Fragestellung entsprechend
analysiert werden kann [14].

Die sog. Born-Oppenheimer-MD [77] stützt sich auf die gleichnamige adiabatische Nä-
herung [78], die eine Trennung der Zeitskalen, auf denen die Bewegungen der Atomkerne
und der viel leichteren Elektronen stattfinden, ermöglicht. Die Atome i werden dann als
Punkte der Masse mi beschrieben, die sich gemäß der klassischen Newton’schen Mecha-
nik bewegen [79], d.h. es gilt

mir̈i = −∇iU(R). (1.1)

Die auf die Atome i wirkenden Kräfte auf der rechten Seite von Gleichung (1.1) werden
dabei als Gradienten einer noch zu spezifizierenden potentiellen Energie U(R) berechnet.

8



1.2 Molekulardynamik-Simulationen

Bei einer numerischen Integration von Gleichung (1.1), z.B. mittels des Verlet-Algorith-
mus [80, 81], muss der verwendete Zeitschritt ∆t klein genug gewählt werden, um auch
die schnellsten Freiheitsgrade im System glatt abzutasten [14]. Da dieser typischerweise
in der Größenordnung von Femtosekunden (10−15 s) liegt, sind zur Berechnung einer
Trajektorie mit einer Dauer von einer Mikrosekunde bereits etwa eine Milliarde Inte-
grationsschritte [und damit Auswertungen der rechten Seite von Glg. (1.1)] nötig. Für
ein gegebenes N -Teilchensystem hängt die Realisierbarkeit einer solchen Trajektorie
entscheidend vom für die Auswertung von U(R) benötigten Rechenaufwand ab.

Das für MD-Simulationen nötige Potential U(R) steht nun im Fokus der weiteren Arbeit.
Da eine analytische quantenmechanische Formulierung dieses Potentials für mehratomi-
ge Systeme meist unmöglich ist [82], muss man für seine Beschreibung auf geeignete
Approximationen zurückgreifen.

1.2.1 Molekülmechanische Kraftfelder

Eine vergleichsweise grobe Näherung der physikalischen Realität stellen die MM-Kraft-
felder dar [83, 84]. Deren Grundidee ist es, das in (1.1) eingehende Potential

UMM(R) = Ub(R) + Unb(R) (1.2)

in lokale Wechselwirkungen Ub naher chemisch gebundener Atome und in langreich-
weitige Wechselwirkungen Unb weiter entfernter bzw. chemisch nicht gebundener Ato-
me aufzuteilen und die einzelnen Beiträge mit einfachen analytischen Formeln auszu-
drücken. Die erforderlichen Parameter werden, z.B. durch QM-Referenzrechnungen oder
Vergleich mit experimentellen Daten empirisch bestimmt [83], und definieren dann ein
(Protein-)Kraftfeld wie z.B. CHARMM22 [67]. Für Wasser existiert eine Vielzahl von
speziellen MM-Kraftfeldern [66, 85, 86].

In Ub werden kovalente Bindungen und Winkelpotentiale z.B. durch harmonische Po-
tentiale, und Torsionsbarrieren durch periodische Diederpotentiale approximiert. Die
jeweiligen Parameter sind in konventionellen MM-Kraftfeldern konstant. Der langreich-
weitige Anteil

Unb(R) = UvdW(R) + Uelec(R) (1.3)

setzt sich zusammen aus den van der Waals-Wechselwirkungen UvdW und den elektro-
statischen Wechselwirkungen Uelec.

Zur Beschreibung der van der Waals-Wechselwirkungen UvdW zwischen sich im Abstand
rij ≡ |ri−rj| befindenden Atomen i und j werden häufig empirische 12-6 Lennard-Jones-
Potentiale [87] ULJ(R) =

∑
i<j

[
Aij/r

12
ij −Bij/r

6
ij

]
, in selteneren Fällen Buckingham-

Potentiale [88] UBu(R) =
∑

i<j

[
A1
ij exp(−A2

ijrij)−Bij/r
6
ij

]
gewählt. Die Parameter Aij

bzw. (A1
ij, A

2
ij) beschreiben hier die Pauli-Abstoßung zwischen den Atomen i und j, wäh-

rend die interatomare Dispersionsattraktion durch die Parameter Bij modelliert wird.
Alle Summationen über Atompaare schließen üblicherweise langreichweitige Wechsel-
wirkungen zwischen gebundenen Atomen innerhalb etwa zwei kovalenter Bindungen aus
(sog. 1-M -exclusion, M = 2, 3, . . .) [67].
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1 Einleitung

Die elektrostatischen Wechselwirkungen Uelec werden in gängigen MM-Kraftfeldern durch
punktförmige Partialladungen qi an den Atomorten ri modelliert [67, 83, 86]. Deren
Energiebeitrag ist durch die Coulombsumme

UMM
elec (R) =

1

2

∑

i,j 6=i
qiΦ(ri | qj, rj) (1.4)

gegeben, in der

Φ(r | qj, rj) =
qj

|r− rj|
(1.5)

das durch die sich an der Position rj befindende Punktladung qj am Ort r erzeugte elek-
trostatische Potential bezeichnet [89]. Punktladungen sind recheneffizient behandelbar,
stellen aber eine grobe Approximation für die ausgedehnten atomaren Ladungsvertei-
lungen dar. Einige spezielle Kraftfelder, vor allem für Wasser [90, 91], verwenden daher
gaußförmig verbreiterte Ladungen, für die ein analoger Ausdruck gilt [92].

Die Modellierung der elektrostatischen Wechselwirkungen ausschließlich durch stati-
sche Ladungen kann Polarisationseffekte auf die Ladungsverteilung allerdings nur im
Mittel, d.h. im Rahmen einer Molekularfeld-Näherung (engl. mean-field) berücksich-
tigen [93]. Dies gilt gleichermaßen für die Verwendung feldunabhängiger Potentialpa-
rameter in gebundenen Wechselwirkungen. So können die elektrostatischen und spek-
troskopischen Eigenschaften vor allem stark polarisierbarer Verbindungen wie Wasser
(siehe Abschnitt 1.1.1) oder AGn (siehe Abschnitt 1.1.2) nur unzureichend beschrieben
werden [29, 55, 63, 94].

Im speziellen Fall von nicht-polarisierbaren Wassermodellen schränkt die mean-field-
Näherung deren Transferierbarkeit, z.B. in die Umgebung lokal stark polarer oder ge-
ladener Proteine, und damit deren Verwendbarkeit als akkurate Lösungsmittelmodelle
ein. Für die Beschreibung von Wasser gibt bereits einige polarisierbare Ansätze [55,
85, 90, 91, 95, 96]. Auch für die Modellierung von Polarisationseffekten auf gebundene
Wechselwirkungen existieren Vorschläge [63, 94, 97–100]. Die Weiterentwicklung eines
solchen spektroskopischen Kraftfelds [63, 94] ist Thema der laufenden Dissertation mei-
nes Kollegen Christoph Wichmann.

Polarisierbare Molekülmechanische Kraftfelder

Elektronische Polarisationseffekte auf eine molekulare Ladungsverteilung können mittels
verschiedener Ansätze explizit in einem Kraftfeld berücksichtigt werden [93, 101–103],
z.B. durch Einführen von Ladungen variabler Stärke (fluctuating-charge-Modelle [104]),
variabler Position (Drude-Oszillatoren [105]) oder von induzierbaren Dipolen [31, 106].
Die potentielle Energie

UPMM(R) = UMM(R) + Upol
elec(R) (1.6)

eines solchen PMM-Kraftfelds beinhaltet dann die zusätzlichen elektrostatischen Wech-
selwirkungen Upol

elec [93, 101].
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Durch die Einführung induzierbarer Dipole [106] an den Atomorten ri, deren Stärken

pi = αi E
q,p(ri) (1.7)

mit den skalaren atomaren Polarisierbarkeiten αi aus der linearen Antwortnäherung
folgen, ergibt sich der zusätzliche Energiebeitrag [31]

Upol
elec(R) =

1

2

∑

i,j 6=i
qiΦ(ri |pj, rj)−

1

2

∑

i

pi · Eq,p(ri) +
1

2

∑

i

p2
i /αi. (1.8)

Hier bezeichnet Φ(r |pj, rj) das vom Dipol pj am Ort r generierte Potential [89], und
der Ausdruck

Eq,p(ri) =
∑

j 6=i
[E(ri | qj, rj) + E(ri |pj, rj)] (1.9)

fasst die von den statischen Ladungen qj und den induzierbaren Dipolen pj (j 6= i) am
Ort ri erzeugten elektrischen Felder E(ri | qj, rj) bzw. E(ri |pj, rj) zusammen. Der letzte
Term in Gleichung (1.8) ist die zur Erzeugung der Dipole pi nötige sog. Selbstenergie.

Da das nach Gleichung (1.7) einen Dipol pi induzierende Feld Eq,p(ri) von allen anderen
Dipolen pj (j 6= i) erzeugt wird, muss zur Berechnung der atomaren Kräfte eine selbst-
konsistente Lösung gefunden werden (z.B. durch Iteration) [107, 108]. Dieser Umstand,
sowie die zusätzlichen elektrostatischen Quellen sind für den erhöhten Rechenaufwand
von PMM-Kraftfeldern gegenüber MM-Kraftfeldern verantwortlich [109]. Eine unphysi-
kalische Überpolarisation wird durch die Verwendung im Nahfeld abgeschirmter indu-
zierbarer Dipole vermieden [110]. Eine solche Abschirmung kann effektiv auch durch die
Verwendung gaußförmig verbreiterter Dipole [55, 90, 111] erreicht werden, entsprechend
gelten statt (1.8) und (1.9) modifizierte Formeln [112].

Im Fall von Wasser ist die explizite Berücksichtigung der Polarisierbarkeit alleine aber
nicht ausreichend, um die wesentlichen Eigenschaften dieses Lösungsmittels zu beschrei-
ben. Auch die höheren elektrostatischen Momente wie das Quadrupolmoment müssen,
z.B. durch die Stärken und Positionen von Partialladungen, die nicht notwendigerwei-
se an den Atomorten lokalisiert sind [66], korrekt modelliert werden [56, 113]. Sog.
Vierpunktmodelle verschieben die negative Partialladung vom O-Atom auf die ϕHOH-
Winkelhalbierende, Fünfpunktemodelle verteilen sie auf zwei senkrecht zur Moleküle-
bene stehenden lone-pair -Positionen. Die mittels einer eleganten Strategie entwickelten
polarisierbaren Vier- bzw. Fünfpunktemodelle TL4P und TL5P [55], nach der durch
das Einbeziehen möglichst vieler experimentell gesicherter bzw. mit DFT berechneter
mikroskopischer Eigenschaften des Wassermoleküls nur etwa ein Drittel der benötigten
Parameter über empirische Optimierung makroskopischer Flüssigphaseneigenschaften
bestimmt wurden, waren aber nicht in der Lage, die Dichteanomalie vorherzusagen [114].
Dieses Ergebnis ist ein Symptom für das von Wassermodellen solcher Geometrie nur un-
zureichend beschriebene Quadrupolmoment [56, 113], für dessen korrekte Modellierung
mindestens die durch eine Kombination aus Vier- und Fünfpunktemodellgeometrie (also
ein Sechspunktmodell) zur Verfügung stehenden fünf Partialladungen benötigt werden.
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Effiziente Behandlung Langreichweitiger Wechselwirkungen

Neben der Entwicklung einer geeigneten Strategie zur Festlegung der zahlreichen freien
Parameter in einem (P)MM-Kraftfeld stellen vor allem die langreichweitigen Wechselwir-
kungen (1.3) eine Herausforderung für theoretische Beschreibungen dar [14, 84, 115]. Der
Rechenaufwand für die exakte Auswertung von Paarwechselwirkungen [z.B. (1.4), (1.8),
oder der Modellpotentiale für van der Waals-Wechselwirkungen] skaliert mit O(N2), was
die Verwendung von Näherungsmethoden nötig macht.

Ein einfaches Abschneiden dieser Wechselwirkungen führt im Falle der Elektrostatik zu
großen systematischen Fehlern, da das durch das Lösungsmittel ausgeübte Reaktions-
feld dann nicht vollständig beschrieben ist [116]. Das Abschneiden der van der Waals-
Wechselwirkungen zieht algorithmische Heiz- oder Abkühl-Artefakte nach sich [109].
Ansätze wie die Ewald-Summation [117–119] oder schnelle Multipolmethoden [120–122]
(engl. fast multipole method, FMM) vermeiden solche Artefakte und ermöglichen eine
mit O(N logN) bzw. mit O(N) skalierende approximative Berechnung von Paarwech-
selwirkungen.

Die in dieser Arbeit verwendete schnelle strukturadaptierte Multipolmethode (SAMM)
[109, 116, 123–127] erlaubt eine strikt linear skalierende Berechnung [109] aller in den
oben beschriebenen (P)MM-Kraftfeldern auftretenden Paarwechselwirkungen. Durch
die Verwendung zweiseitiger Taylorentwicklungen der Ordnungen p, q, bzw. r für
Elektrostatik-, Dispersions- und Lennard-Jones-Repulsionswechselwirkungen können die
auftretenden Kräfte approximativ mit kontrollierter Genauigkeit als exakte Gradienten
der entsprechenden Energien berechnet werden [127] (Standardwerte: p = 4, q = 3,
r = 1). SAMM erlaubt in nicht-periodischen Systemen eine Energie- und drehimpulser-
haltende Dynamik [127].

Da der SAMM-Algorithmus in dieser Arbeit zur effizienten Berechnung von DFT/PMM-
Wechselwirkungen eingesetzt wird, werden im Folgenden dessen Grundkonzepte anhand
der in einem MM-Kraftfeld auftretenden elektrostatischen Paarwechselwirkungen (1.4)
skizziert.

Der SAMM-Algorithmus

Abbildung 1.6 zeigt einen Ausschnitt aus einer Gruppe von MM-Wassermolekülen, deren
gegebene Ladungsverteilung (Punkte) durch SAMM in ein hierarchisches geschachtel-
tes Netzwerk aus Ladungsclustern (gestrichelte Kreise, c0

1-c0
6, c1

1-c1
3) zerlegt wurde. Die

Ausdehnung dieser Cluster wächst mit zunehmender Hierarchiestufe l = 0, 1, . . . , ltop

bis zu einer vordefinierten Maximalstufe ltop. Möglichst kompakte Cluster werden durch
den Einsatz neuronaler Verfahren [128] und durch die periodische Aktualisierung der
Clusterstruktur erreicht [109]. Auf der untersten Hierarchiestufe l = 0 befinden sich in
SAMM vordefinierte chemische Gruppen [123], die sog. strukturellen Einheiten, die im
betrachteten Fall durch die einzelnen Wassermoleküle gegeben sind.
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Abbildung 1.6: Approximative Berechnung des durch die atomaren Ladungen (schwarze Punkte) von
umgebenden Wassermolekülen erzeugten Potentials am Ort des Atoms i (grauer Punkt) mit SAMM.
Gestrichelte Kreise definieren Ladungscluster clI , die gepunkteten Kreissegmente (Radien r0 bzw. r1)
markieren die durch das IAC gegebene Grenzen zwischen den SAMM-Hierarchiestufen. Pfeile skizzie-
ren die Berechnung eines exakten Coulombpotentials (grün), bzw. von Multipolmomenten (blau), von
Taylorentwicklungskoeffizienten (rot), sowie die Auswertung einer lokalen Taylorentwicklung (lila).

Die Entscheidung, ob die Wechselwirkung zweier Cluster clI und clI′ auf einer bestimmten
Hierarchiestufe l erlaubt ist, erfolgt durch Prüfung des Akzeptanzkriteriums [109]

1

2
[ϑI,l(r) + ϑI′,l(r)] ≤ Θχ, (1.10)

dem sog. IAC (für interaction acceptance criterion). Dazu werden die genauigkeitsge-
wichteten apparenten Ausdehnungen ϑI,l(r) ≡ 2RI,l/(r aI,l) der Cluster clI und clI′ , die
aus deren Gyradionsradien RI,l, deren Abstand r, und Gewichtsparametern aI,l berech-
net werden, mit einer vordefinierten Schwelle Θχ (χ ∈ {f,m, a}, s.u.) verglichen [109].
In die Gewichtsparameter aI,l geht die elektrostatische Signatur und die Geometrie des
jeweiligen Clusters ein, was die Genauigkeit der Berechnung nahezu unabhängig von
der chemischen Zusammensetzung des Systems macht [109]. Das Prüfen des IAC (1.10)
beginnt auf der höchsten Stufe ltop. Ist eine Wechselwirkung auf einer Stufe l nicht er-
laubt, werden die Cluster in ihre Bestandteile zerlegt, und das IAC dafür auf Stufe l−1
geprüft. Die in Abbildung 1.6 grau gepunkteten Radien r1 und r0 illustrieren die durch
das IAC gegebenen Minimalabstände für Wechselwirkungen des Clusters c1

1 auf Stufe
l = 1 bzw. des Clusters c1

0 auf Stufe l = 0.

Die Berechnung des durch die Ladungsverteilung am Ort des grau hervorgehobenen
Atoms i generierten Potentials (und den zur Kraftberechnung nötigen Potentialgradien-
ten) erfolgt dann auf allen Stufen l ≥ 0 approximativ über Multipolentwicklungen (blaue
Pfeile) und Taylorentwicklungen (rote und lila Pfeile) um die geometrischen Zentren

”
×” der Cluster. Die gestrichelten blauen und roten Pfeile bezeichnen das Verschieben

von Multipolmomenten bzw. Taylorentwicklungskoeffizienten zwischen den Hierarchie-
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1 Einleitung

stufen. Nur wenn eine approximative Cluster-Cluster-Wechselwirkung auch auf Stufe
l = 0 durch das IAC (1.10) verboten ist, muss die exakte Auswertung des Coulombaus-
drucks (1.5) erfolgen (der grüne Pfeil illustriert eine solche Auswertung). Die genauen
mathematischen Details finden sich in Ref. [126].

Im von Lorenzen et al. [109, 126, 127] weiterentwickelten SAMMχ-Algorithmus wird die
Taylorentwicklung eines von einem Multipolmoment m’ter Ordnung generierten Poten-
tials bis zur Ordnung n = 4−m ausgeführt, da die so berechneten Kräfte dann das New-
ton’sche Reaktionsprinzip erfüllen [126]. Im Gegensatz zu fixen Distanzklassen [116, 125]
ermöglicht das IAC (1.10) eine genaue Kontrolle der durch die FMM-Approximationen
verursachten Fehler. Es stehen die drei Kompromisse Θf (hohe Effizienz), Θm (mitt-
lere Effizienz, mittlere Genauigkeit) und Θa (hohe Genauigkeit) aus Genauigkeit und
Recheneffizienz zur Verfügung [109]. Zum Beispiel erlaubt das IAC für flüssiges Was-
ser einen Übergang von exakten Ausdrücken zu den FMM-Approximationen bereits bei
kleinen Atomabständen um ≈ 5 Å was einen deutlichen Effizienzgewinn gegenüber frü-
heren SAMM-Algorithmen [116, 123–125] bietet und so z.B. die effiziente Behandlung
lokal sehr komplexer PMM-Mehrpunktmodelle für Wasser [55, 129] ermöglicht [109].

Die in Simulationssystemen endlicher Größe auftretenden Oberflächeneffekte werden
bei der Verwendung von SAMM durch die Annahme toroidaler Randbedingungen aus-
geschlossen [14]. Um Periodizitätsartefakte zu vermeiden, treten gemäß der Minimal-
bild-Konvention (engl. minimum image convention, MIC) nur Atome innerhalb eines
Abstands rMIC, der gerade der Hälfte des Durchmessers der verwendeten Einheitszel-
le entspricht, in Wechselwirkung [14]. Ein hartes Abschneiden der Wechselwirkungen
wird durch die Einführung eines dielektrisches Kontinuum außerhalb von rMIC vermie-
den [116], was z.B. im Falle von Wasser ab einer Entfernung von 15 Å in sehr guter
Näherung möglich ist [130].

Da in (P)MM-MD Simulationen von Molekülen in explizitem Lösungsmittel der Großteil
der Rechenzeit trotzdem in die — oft uninteressante — Lösungsmitteldynamik inves-
tiert werden muss, kann die Recheneffizienz durch das Ersetzen der Lösungsmittelmole-
küle durch ein Kontinuum erheblich gesteigert werden [92, 131]. Ein solches implizites
Lösungsmittel, wie die kürzlich im Rahmen der Dissertation von Sebastian Bauer entwi-
ckelte energieerhaltende HADES-Methode (für Hamiltonian dielectric solvent), erwei-
tert somit die durch Simulation zugänglichen Längen- und Zeitskalen, und erleichtert
so z.B. Studien zu Faltungsprozessen [132]. Zur genauen Berechnung von Schwingungs-
spektren müssen allerdings explizite Lösungsmittelmodelle verwendet werden, da neben
der Beschreibung der nicht-lokalen dielektrischen Eigenschaften auch lokale spezifische
mikroskopische Effekte wie Wasserstoffbrückenbindungen erfassst werden müssen [133].

Anwendungsbereiche von (P)MM-Kraftfeldern

Die skizzierten einfachen (P)MM-Kraftfelder erlauben eine sehr effiziente Auswertung
des die Dynamik (1.1) bestimmenden Potentials U(R), und ermöglichen so die Be-
schreibung großer Biomoleküle in ausgedehnten Lösungsmittelumgebungen. So konnte
z.B. mittels MM-MD-Simulation ein virtuelles Kraftmikroskopie-Experiment [11] an ei-
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nem Komplex aus dem aus 159 Aminosäuren bestehenden Protein Streptavidin und
dem Vitamin Biotin durchgeführt werden [18]. Die Simulation des in wässriger Lösung
eingebettete Komplexes (ca. 11.000 Atome insgesamt) ermöglichte einen detaillierten
Einblick in die Wechselwirkung der beiden Moleküle während des Auseinanderreißens.
Eine ähnliche Studie wurde auch am größten bekannten im menschlichen Körper vor-
kommenden Protein, dem Titin, durchgeführt [134]. Auch eine komplette, wenn auch
primitive, Lebensform, das Tabakmosaikvirus konnte bereits simuliert werden [135]. Die
zugänglichen Systemgrößen und Zeitskalen werden durch algorithmische Fortschritte
und wachsende Rechnerleistung weiter steigen [136].

Angesichts dieser Erfolge der MM-MD darf aber nicht außer Acht gelassen werden, dass
die Qualität der Beschreibung entscheidend von der Wahl der Modellklasse (z.B. MM
oder PMM) und -parameter abhängt [29, 83, 137]. Ferner können die harmonischen Bin-
dungspotentiale chemische Reaktionen wie das Bilden oder Lösen kovalenter Bindungen
nicht beschreiben. Wie schon erwähnt, sind Kraftfelder, die die Polarisationseffekte auf
Bindungspotentiale vernachlässigen, für die Berechnung von Proteinschwingungsspek-
tren ungeeignet [63, 94]. Die Verbesserung der MM-Kraftfelder ist daher immer noch
ein aktives Forschungsgebiet [138], das sich dabei auf genaue quantenmechanische Be-
schreibungen stützen kann.

1.2.2 Dichtefunktionaltheorie

Eine quantenmechanische Berechnung des Potentials U(R) in Gleichung (1.1) für eine
gegebene atomare Kernkonfiguration R beruht im Rahmen der Born-Oppenheimer-Nä-
herung [78] auf der (approximativen) Lösung der nicht-relativistischen zeitunabhängigen
Schrödingergleichung

ĤΨ = EΨ, (1.11)

in der E ≡ E(R) die elektronische Energie und Ψ die elektronische Wellenfunktion
darstellt [139]. Der elektronische Hamiltonoperator Ĥ ≡ Ĥ(R) = T̂ + V̂ke(R) + V̂ee

setzt sich aus der kinetischen Energie T̂ der Elektronen, sowie den Kern-Elektron- und
Elektron-Elektron-Wechselwirkungen V̂ke bzw. V̂ee zusammen. Das effektive Potential
UQM(R) = E(R)+Vkk(R), aus dem dann in (1.1) die Kräfte auf die Atomkerne abgelei-
tet werden können, erhält man durch Addition der elektronischen Energie und der Kern-
Kern-Wechselwirkung Vkk. Die elektronische Wellenfunktion Ψ ≡ Ψ(x1, . . . ,xn) eines n-
Elektronensystems hängt für ein gegebenes R von n elektronischen Orts- und Spinko-
ordinaten xk ≡ (rk, sk), k = (1, . . . , n), ab und muss Eigenschaften wie Antisymmetrie
und Normierbarkeit aufweisen sowie die jeweiligen Randbedingungen des Systems erfül-
len [139]. Es existieren eine Reihe von ab initio Verfahren [77, 140] zur approximativen
Lösung der Schrödingergleichung (1.11).

Die Hohenberg-Kohn-Theoreme

Ist man nur an molekularen Eigenschaften im elektronischen Grundzustand interessiert,
liefert die DFT einen guten Kompromiss aus Genauigkeit und Recheneffizienz. Das erste
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der entsprechenden von Hohenberg und Kohn aufgestellten Theoreme besagt, dass die
Elektronendichte ρ(r) alle Grundzustandseigenschaften eines Moleküls definiert [141].
So können Observablen wie die kinetische Energie T [ρ] der Elektronen, die Elektron-
Elektron-Wechselwirkung Vee[ρ] oder die elektronische Gesamtenergie

E[ρ] =

∫
ρ(r)v(r)dr + FHK[ρ] (1.12)

als Funktionale der dreidimensionalen Größe ρ ausgedrückt werden, ohne eine hochdi-
mensionale komplexe Wellenfunktion Ψ als Lösung von (1.11) bestimmen zu müssen.
Das elektrostatische Potential v(r) im ersten Term von Gleichung (1.12) wird durch
die atomaren Kernladungen erzeugt, und kann außerdem weitere Beiträge Φ(r) durch
äußere Potentiale beinhalten (liegen keine äußeren Felder an, entspricht dieser Term der
Kern-Elektron-Wechselwirkung Vke[ρ]). Für die beiden Beiträge zum Hohenberg-Kohn-
Funktional FHK[ρ] = T [ρ] + Vee[ρ], sind allerdings keine exakten analytische Formen be-
kannt. Dieses unbekannte Funktional, das Becke in einem sehr lesenswerten Übersichts-
artikel [142] als

”
heiligen Gral der Elektronenstrukturtheorie” bezeichnet, ist universell,

enthält also keine molekülspezifischen Annahmen.

Das zweite Hohenberg-Kohn-Theorem besagt [141], dass jede nicht-negative, normierte
(
∫
ρ̄(r)dr = n) Elektronendichte ρ̄ das Variationsprinzip

E0 ≤ E[ρ̄] (1.13)

erfüllt. Die Grundzustandselektronendichte ρ0 ist also diejenige, die die minimale (Grund-
zustands-)Energie E0 ≡ E[ρ0] liefert. Eine detaillierte Einführung in die hier nur knapp
skizzierten Grundideen der DFT findet sich in Ref. [139].

Das Kohn-Sham-Verfahren

Aufbauend auf den Hohenberg-Kohn-Theoremen entwickelten Kohn und Sham ein prak-
tisch anwendbares Rechenverfahren [143]. Die Dichte ρ der Elektronen und eine Nähe-
rung Ts[ρ] für deren kinetische Energie wird hier unter der Annahme nicht-wechselwir-
kender Elektronen über Einelektron-Spinorbitale ψk berechnet. Entsprechend formulier-
ten sie das Hohenberg-Kohn-Funktional als

FHK[ρ] = Ts[ρ] + J [ρ] + Exc[ρ], (1.14)

mit der klassischen Wechselwirkungsenergie J [ρ] der Elektronen und dem Austausch-
Korrelations-Funktional Exc[ρ] = T [ρ]−Ts[ρ]+Vee[ρ]−J [ρ], das die Fehler der gemachten
Approximationen sammelt.

Ist ein Ausdruck für Exc gegeben (s.u.), so ergeben sich die Einelektron-Orbitale ψk aus
der Lösung der n gekoppelten Eigenwertprobleme

[
−1

2
∇2 + veff(r)

]
ψk = εkψk, (1.15)
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in denen εk die Energieeigenwerte und veff(r) = v(r)+δJ [ρ]/δρ+δExc[ρ]/δρ das effektive
Kohn-Sham-Potential bezeichnen. Ausgehend von einer initialen Annahme ρ(1) für die
Elektronendichte wird veff berechnet und dann die ψk als Lösung des Gleichungssys-
tems (1.15) bestimmt. Aus den ψk kann dann eine neue Elektronendichte ρ(2) und mit
(1.12) und (1.14) die Gesamtenergie E[ρ(2)] berechnet werden. Dieser Prozess wird solan-
ge iteriert, bis die Änderung der Gesamtenergie einen kleinen Schwellwert unterschreitet
und somit eine selbstkonsistente Lösung gefunden ist.

Zur vollständigen Spezifizierung des Kohn-Sham-Verfahrens fehlt noch ein Ausdruck
für Exc (siehe z.B. Ref. [142] für einen Überblick). Kohn und Sham approxmierten Exc

über die Annahme eines lokal homogenen Elektronengases [143]. Eine genauere Beschrei-
bung der Austauschwechselwirkung erhält man durch Berücksichtung von Gradienten
des inhomogenen Elektronengases [139]. Durch explizites Berechnen der Hartree-Fock-
Austauschwechselwirkung [144] kann die Genauigkeit weiter erhöht werden, allerdings
zum Preis eines noch größeren Rechenaufwands. In dieser Arbeit werden die Kombina-
tionen BP, BLYP und B3LYP aus dem gradienten-korrigierten Austauschfunktional von
Becke (B) [145], bzw. dessen um Hartree-Fock-Austausch erweiterte Weiterentwicklung
B3 [146, 147] und den Korrelationsfunktionalen von Perdew (P) [148] bzw. Lee, Yang
und Parr (LYP) [149] verwendet, und u.a. deren Effekt auf die Qualität molekularer
Schwingungsspektren untersucht.

Konkrete Implementierungen des Kohn-Sham-Verfahrens stellen die Einelektron-Orbi-
tale durch Basissätze dar, deren endliche Größe ebenfalls einen Kompromiss aus Ge-
nauigkeit und Effizienz darstellt [77]. Neben an den Kernorten lokalisierten Gauß’schen
Basisfunktionen [150, 151] werden auch ebene Wellen (z.B. im gitterbasierten DFT-
Programm CPMD [152]) oder Mischformen [153–155] als Basis verwendet. Um die Zahl
der explizit zu behandelnden Elektronen zu reduzieren, ist es in auf ebenen Wellen
basierenden Verfahren üblich, kernnahe Elektronen durch Pseudopotentiale zu model-
lieren [77]. In dieser Arbeit werden hauptsächlich die normerhaltenden Pseudopotentiale
von Troullier und Martins (MT) verwendet [156].

Die im Falle der Born-Oppenheimer-MD (vgl. Abschnitt 1.2) bei Verwendung eines
DFT-Modells in jedem Integrationsschritt nötige aufwändige Selbstkonsistenziteration
der Elektronendichte wird durch eine von Car und Parrinello vorgeschlagene Alternative,
der CP-MD, vermieden [77, 157]. Durch Einführung einer fiktiven Elektronenmasse und
einer damit ermöglichten adiabatischen Elektronendynamik können die Elektronen bei
Bewegung der Kerne nahe am Grundzustand gehalten werden.

Eignung der DFT zur Berechnung von Schwingungsspektren

Die Bedeutung der DFT zeigt sich unter anderem in der Verleihung des Chemie-Nobel-
preises 1998 für Walter Kohn für die Entwicklung der DFT, und an John Pople für seine
Beiträge zur Entwicklung und Verbreitung von Quantenchemie-Software [158].

Für die Behandlung IR-spektroskopischer Probleme bietet die DFT schon bei der Ver-
wendung von Funktionalen mit moderatem Rechenaufwand (wie z.B. BP) die für einen
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Vergleich mit experimentellen Daten erforderliche Genauigkeit, wie durch Normalmo-
denanalysen am Beispiel von p-Benzochinon [159], und einer Reihe anderer organischer
und anorganischer kleiner, isolierter Moleküle [160, 161] bzw. kleinen Molekülkomple-
xen [24] gezeigt wurde. Aufgrund der in Abschnitt 1.1.2 beschriebenen solvatochromen
Frequenzverschiebungen kann das für isolierte Moleküle berechnete Schwingungsspek-
trum aber nur schwer mit in Lösung gemessenen Spektren verglichen werden [27].

Trotz der durch CP-MD [157] ermöglichten Effizienzsteigerung ist eine Beschreibung der
Dynamik von Molekül-Lösungsmittelkomplexen mit DFT aufgrund des weiterhin hohen
Rechenaufwands auch mit heutigen Supercomputern auf kleine Längen- und Zeitskalen
begrenzt. Entsprechend beschränken sich solche Anwendungen auf kurze Referenzsimu-
lationen von einigen Dutzend Pikosekunden Dauer, und auf kleine Modellmoleküle wie
NMA [59, 162], Alanindipeptid [163] oder Phosphationen [164] in nur wenig ausgedehn-
ten periodischen Lösungsmittelumgebungen oder auf pures Wasser [165–169].

1.2.3 QM/(P)MM-Hybridverfahren

Damit kann das in dieser Arbeit behandelte grundlegende Problem der Berechnung von
Schwingungsspektren aus MD-Simulationen folgendermaßen formuliert werden: Die im
Abschnitt 1.2.2 vorgestellte DFT liefert die erforderliche Genauigkeit, der hohe Rechen-
aufwand macht aber die Behandlung größerer Moleküle in einer ausgedehnten Lösungs-
mittelumgebung unmöglich. Einfache (P)MM-Kraftfelder, wie sie im Abschnitt 1.2.1
skizziert sind, erlauben zwar die effiziente Behandlung von Systemen solcher Größe,
können aber die spektroskopischen Eigenschaften nur unzureichend beschreiben.

Abbildung 1.7: Beispiel für ein QM/MM-Hybridmodell: Alanindipeptid (DFT) in Wasser (MM). Die
Elektronenverteilung des durch DFT beschriebenen Moleküls wird explizit berechnet und ist hier durch
eine Isofläche angedeutet.

Einen Weg zur Lösung dieses Problems lieferten die anfangs erwähnten Hybridmodelle
von Warshel und Levitt. In deren wegweisenden Arbeit [31] untersuchten sie eine chemi-
sche Reaktion im Enzym Lysozym, die eine quantenmechanische Beschreibung des re-
aktiven Zentrums erforderte. Erstmalig wurde aber dessen chemisch träge Protein- und
Wasserumgebung nicht einfach ignoriert, sondern mittels einer PMM-Beschreibung, in
der sowohl die Proteinatome als auch die Wasserumgebung explizit polarisierbar waren,
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berücksichtigt. Mit Hilfe dieses hybriden QM/PMM-Modells konnten alle für die un-
tersuchte enzymatische Reaktion wichtigen physikalischen Effekte, wenn auch teilweise
grob genähert, berücksichtigt werden.

In dieser Studie [31] wurden viele wesentliche Konzepte entwickelt, die auch heute noch
bei der Konstruktion und Anwendung solcher QM/(P)MM-Hybridmodelle, für die Ab-
bildung 1.7 ein typisches Beispiel zeigt, von Bedeutung sind. So verwendeten die Auto-
ren erstmalig ein polarisierbares Kraftfeld [101] zur Modellierung der Proteinumgebung
durch induzierbare Punktdipole an den Atomorten. Die weiter vom reaktiven Zentrum
entfernte Wasserumgebung wurde mit einem vereinfachten Polarisationsmodell vergrö-
bert behandelt. Dieser dreistufige Multiskalenansatz (QM-Region, Protein, Wasser) er-
weiterte die erreichbare Systemgröße entscheidend, sodass auch langreichweitige dielek-
trische Effekte auf das reaktive Zentrum erfasst werden konnten. Des Weiteren wurde
eine erste einfache Technik für das Schneiden von kovalenten Bindungen zwischen dem
QM- und dem PMM-Fragment verwendet, und die van der Waals-Wechselwirkungen
zwischen QM- und PMM-Atomen durch empirische Lennard-Jones-Potentiale model-
liert (vgl. Abschnitt 1.2.1). Die verwendete Form der QM/PMM-Energiefunktion [31]

UQM/PMM = UQM + UPMM + U
QM/PMM
elec + U

QM/PMM
vdW + U

QM/PMM
b , (1.16)

in der UQM und UPMM [vgl. Glg. (1.6)] die potentielle Energie des QM- bzw. PMM-

Fragments bezeichnet, und die zusätzlich die elektrostatischen (U
QM/PMM
elec ), van der

Waals (U
QM/PMM
vdW ) und die gebundenen Wechselwirkungen (U

QM/PMM
b ) zwischen QM-

und PMM-Fragment beinhaltet, liegt im wesentlichen auch den modernen QM/(P)MM-
Methoden zugrunde.

Wie in zahlreichen Übersichtsartikeln dargestellt ist [170–174], wurde Gleichung (1.16)
seitdem auf diverse Arten implementiert. Die resultierenden QM/(P)MM-Verfahren un-
terscheiden sich u.a. in der Wahl der QM-Methode, der Beschreibung der nicht-gebun-
denen QM/(P)MM-Wechselwirkungen, oder der Behandlung kovalenter Bindungen zwi-
schen den QM und (P)MM-Fragmenten. Das von Warshel und Levitt ursprünglich ver-
wendete PMM-Kraftfeld wurde allerdings häufig durch ein einfacheres, unpolarisierbares
MM-Kraftfeld ersetzt. Allen diesen Implementierungen liegt die Suche nach einem auf
eine bestimmte Fragestellung hin optimierten Kompromiss aus Genauigkeit und Re-
cheneffizienz zugrunde. Da der Untersuchungsgegenstand der vorliegenden Arbeit die
theoretische Beschreibung von IR-Schwingungsspektren ist, beschränken wir uns im fol-
genden auf ein DFT-basiertes Hybridverfahren (vgl. Abschnitt 1.2.2).

Das DFT/MM-Verfahren von Eichinger et al.

Eichinger et al. stellten 1999 eine DFT/MM-Hybridmethode vor, die speziell für die
DFT-Berechnung der IR-Schwingungsspektren von Molekülen in ausgedehnten MM-
Lösungsmittelumgebungen konzipiert wurde [33]. Die Implementierung verwendete das
gitterbasierte DFT-Programm CPMD [152], das mit dem MM-MD Program EGO [175]
über das Dateisystem kommunizierte [176]. Die in jedem Integrationsschritt für die Aus-
wertung von Gleichung (1.12) nötige Berechnung des durch die Partialladungen qi des
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MM-Fragments auf dem ausgedehnten DFT-Gitter (& 106 Gitterpunkte) erzeugten äu-
ßeren Potentials Φ(r | qi, ri) [Glg. (1.5)] wurde durch eine Erweiterung des SAMM-Al-
gorithmus [123–125] effizient ermöglicht — wie bei Warshel und Levitt [31] wurde also
ein echter Multiskalenansatz verwendet. Um artifizielle Störungen der DFT-Elektro-
nendichte durch die bei kleinen Abständen divergierenden Coulombpotentiale (1.5) zu
vermeiden, mussten die Punktladungen des umgebenden MM-Fragments gaußförmig
verschmiert werden. Für die Berechnung der vom DFT-Fragment auf die MM-Atome
ausgeübten Kräfte wurde eine Partialladungsnäherung für die DFT-Atome verwendet,
und die resultierende Verletzung des Newton’schen Reaktionsprinzips durch eine Kraft-
korrektur ausgeglichen. Ein SPLAM (für scaled position link atom method) genanntes
Verfahren erlaubte die akkurate Behandlung von kovalenten Bindungen zwischen DFT-
und MM-Fragmenten durch Einführung eines zusätzlichen sog. Link-Atoms. Testrech-
nungen zeigten, dass die neue Methode erstmals offenbar stabile DFT/MM-MD-Simu-
lationen in relativ großen MM-Umgebungen sowie die Berechnung der IR-Spektren von
kovalent an das MM-Fragment gebundenen DFT-Fragmenten ermöglichte [33].

Es folgte eine Vielzahl von Anwendungen zu unterschiedlichen Fragestellungen [21, 25,
34–37, 50, 63, 137, 177–183]. So wurden mit DFT/MM die IR-Spektren von im pho-
tosynthetischen Reaktionszentrum des Purpurbakteriums Rhodobacter Sphaeroides ein-
gebetten Chinon-Farbstoffen berechnet und Fehler in der aus Kristallographie abge-
leiteten Proteinstruktur aufgedeckt [34]. Ferner wurden die Schwingungsspektren von
p-Benzochinon [177], eines lichtschaltbaren β-Hairpin-Moleküls [21], von AGn [63] und
von Phosphationen [35] — jeweils in wässriger Lösung — untersucht. Studien der IR-
Spektren von Triphosphatgruppen im Enzym RAS p21 [178, 179] sowie des Retinalchro-
mophors [36, 137] in der Bindungstasche der lichtgetriebenen Protonenpumpe Bacterior-
hodopsin umgaben das jeweilige DFT-Fragment mit komplexeren MM-Umgebungen.
Weiterhin wurden die IR-Spektren von Flavin-Farbstoffen in unterschiedlichen chemi-
schen Zuständen in Wasser [25, 182] und in deren nativer Umgebung, den sog. BLUF-
Domänen [37], berechnet und ermöglichten so die Zuordnung experimentell gemessener
IR-Absorptionsbanden zu molekularen Schwingungsmoden sowie die Identifizierung feh-
lerhafter Protein-Kristallstrukturen. Auch grundlegende elektrostatische Eigenschaften
von Wassermolekülen in flüssiger Phase waren Ziel von DFT/MM-Studien [50, 183].

In den eben zitierten DFT/MM-Studien wurden Schwingungsspektren fast ausnahmslos
über die instantane Normalmodenanalyse (INMA) des DFT-Fragments in eingefrore-
nen MM-Solvatstrukturen berechnet [177, 180, 181]. Ein alternatives Verfahren beruht
auf der Fouriertransformation der Zeit-Autokorrelation des molekularen Dipolmoments
(FTTCF, für Fourier transformation of the time correlation function) [181], berück-
sichtigt Quantenkorrekturen [184] zu den klassisch behandelten Kernbewegungen, und
gewinnt das Spektrum direkt aus einer ausgedehnten MD-Trajektorie. Im Gegensatz zu
INMA kann FTTCF daher dynamische Effekte erfassen, und so z.B. die Form von Ab-
sorptionsmaxima wesentlich besser beschreiben [27, 181]. Zusammen mit der Analyse der
Trajektorie über generalisierte Normalkoordinaten (engl. generalized normal coordinates,
GNC) [185, 186] kann, bei ausreichend großer Datenbasis, das Schwingungsspektrum in
die zugrundeliegenden Normalmoden (vgl. Abschnitt 1.1.2) zerlegt werden. FTTCF und
GNC sind daher die Methoden, mit denen Spektren von DFT/MM-Modellen vorzugs-
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weise berechnet werden sollten. Die dafür erforderlichen ausgedehnten DFT/MM-MD
Trajektorien stellen aber hohe Anforderungen an die Stabilität und die Recheneffizienz
der DFT/MM-Methode.

Notwendige Erweiterungen des DFT/MM-Verfahrens

Die bereits erwähnte Verletzung des Reaktionsprinzips durch die von Eichinger et al.
verwendete Partialladungsnäherung für die DFT-Atome [33] verursachte in einigen MD-
Simulationen größere Dynamikartefakte als ursprünglich erwartet [21, 187]. Alternative
DFT/MM-Kopplungsschemata zeigten, dass diese durch eine Hamilton’sche Formulie-
rung der DFT/MM-Wechselwirkungen, in der alle atomaren Kräfte als Ableitungen
einer einzigen DFT/MM-Energiefunktion UDFT/MM [vgl. Glg. (1.16)] berechnet werden,
vermieden werden können [188, 189].

Ein weiteres Manko von Eichingers Methode deckten die Studien der in Wasser ge-
lösten Phosphationen [35] sowie der in Proteinumgebungen eingebetteten Chromopho-
re [36, 37] auf: die DFT/MM-Methode vernachlässigte, wie viele andere QM/MM-Ver-
fahren [170, 172] (und im Gegensatz zum ursprünglichen Vorschlag von Warshel und
Levitt [31]) die expliziten elektronischen Polarisationseffekte im MM-Fragment des Hy-
bridsystems. Im Falle der in Proteine eingebetteten Farbstoffe mussten diese Effekte
durch eine aufwändige, aus DFT/MM-Rechnungen abgeleitete und spezifisch auf die
Umgebung des jeweiligen Chromophors angepasste iterative Reparametrisierung der
Partialladungen des MM-Kraftfelds berücksichtigt werden [36, 37]. Für einfach und dop-
pelt geladene Phosphationen in Wasser wurde eine Unterschätzung der solvatochromen
Verschiebungen festgestellt [35], für die als Ursachen eine fehlerhafte Nahordnung der
MM-Wassermoleküle um das DFT-Fragment [164], und darüber hinaus die fehlende
Polarisierbarkeit des verwendeten MM-Wassermodells [66] in Frage kommen.

Außerdem stellten sich die bei Verwendung von punktförmigen MM-Partialladungen
für die elektrostatische Wechselwirkung mit dem DFT Fragment notwendigen atomaren
Glättungsskalen als für die Nahstruktur der Verteilung der MM-Moleküle um das DFT-
Fragment kritische Parameter heraus [188]. Dieser Befund stellte die Verwendung von
MM-Punktladungen in DFT/MM-Modellen grundsätzlich in Frage.

Die Erweiterung der DFT/MM-Hybridmethode von Eichinger et al. [33] zu einem Ha-
milton’schen DFT/PMM-Verfahren, das die vom DFT-Fragment auf die PMM-Atome
ausgeübten Kräfte als Hellmann-Feynman-Kräfte [190] berechnet und so stabile MD
Simulationen von in PMM-Umgebungen eingebetteten DFT-Fragmenten ermöglichen
sollte, war daher der logische nächste Schritt in der Methodenentwicklung. Erste Grund-
lagen wurden hier in der Diplomarbeit von Benedikt Breitenfeld gelegt [187]. Die resul-
tierende frühe Version des induzierbare Dipole einsetzenden DFT/PMM-Verfahrens war
aber auf die Simulation kleiner Systeme wie hybride Wasserdimere beschränkt, da die
effiziente Hamilton’sche Einbettung [188] des DFT-Fragments in den SAMM-Algorith-
mus noch ausstand. Im Rahmen meiner Masterarbeit [191] wurde dann die dafür nötige
Erweiterung des zur damaligen Zeit aktuellen SAMMp-Algorithmus [126] entwickelt.
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1 Einleitung

1.3 Zielsetzung und Aufbau der Arbeit

Die Entwicklung einer hocheffizienten Hamilton’schen DFT/PMM-Methode, sowie die
Beantwortung wichtiger methodischer Fragen zur physikalisch korrekten und genau-
en Beschreibung der MD von (Poly-)Peptiden speziell für die Berechnung deren IR-
Schwingungsspektren war das Ziel dieser Dissertation, die ich in der Arbeitsgruppe für
theoretische molekulare Biophysik am Lehrstuhl für BioMolekulare Optik der Ludwigs-
Maximilians-Universität München angefertigt habe. Die Finanzierung des Projekts er-
folgte einerseits im Rahmen des Sonderforschungsbereich 749/C4 der Deutschen For-
schungsgemeinschaft, der die Weiterentwicklung und prototypische Erprobung von Si-
mulationsmethoden zur Beschreibung der Dynamik (bio)chemischer Grundzustandspro-
zesse in kondensierter Phase zum Ziel hatte, sowie andererseits durch das Kompetenz-
netzwerk für Wissenschaftliches Höchstleistungsrechnen in Bayern (KONWIHR-III) des
Bayerischen Staatsministerium für Wissenschaft, Forschung und Kunst. Alle im Rahmen
dieser Arbeit entwickelten Simulationstechniken sind im PMM-MD Programm IPHIGE-
NIE [192], dem Nachfolger von EGO, implementiert, das unter der Leitung von Gerald
Mathias der wissenschaftlichen Öffentlichkeit zugänglich gemacht worden ist. Die vier
dieser kumulativen Dissertation zugrundeliegenden Artikel sind im Kapitel 2 in den
Abschnitten 2.1 bis 2.4 nachgedruckt.

Aufbauend auf den oben beschrieben Vorarbeiten [187, 191] konnte die Hamilton’sche
DFT/PMM-Hybridmethode erfolgreich zur Publikationsreife gebracht werden. Die ent-
sprechende Veröffentlichung [112], die in Abschnitt 2.1 abgedruckt ist, stellt im Detail
die Integration des DFT-Fragments in den FMM-Algorithmus SAMMp [126] vor. Zur
Ermöglichung Hamilton’scher Dynamik war einerseits die symmetrische Behandlung der
Auswertung des durch das PMM-Fragment generierten Potentials auf dem DFT-Gitter
und der Berechnung der von der DFT-Ladungsdichte auf die PMM-Atome ausgeübten
Hellmann-Feynman-Kräfte [190] nötig. Ferner musste der Algorithmus zur Nachführung
des DFT-Gitters an Translationen des DFT-Fragments überarbeitet werden. Um den
zusätzlichen Rechenaufwand gegenüber DFT/MM-Rechnungen gering zu halten, wurde
ein mehrstufiges DFT-Konvergenzkriterium sowie die Extrapolation der PMM-Dipole
eingeführt.

Erste Testanwendungen an größeren DFT-Fragmenten wie Alanindipeptid zeigten aller-
dings, dass die Genauigkeit des auf den fixen SAMMp-Distanzklassen [126] basierenden
DFT/PMM-Verfahrens [112] kritisch und molekülspezifisch von der Wahl dieser Klassen
abhing. Entsprechend wurden im Rahmen der in Abschnitt 2.2 abgedruckten Veröffent-
lichung [193] die mittlerweile zur Verfügung stehende SAMMχ-Methode [109], die die
tatsächlichen Größe der den FMM-Entwicklungen zugrundeliegenden Ladungsclustern
berücksichtigt [vgl. Glg. (1.10)] und so massive Genauigkeits- und Effizienzgewinne ver-
sprach, auf die DFT/PMM-Kopplung angewendet.

Ferner limitierte die Tatsache, dass das MPI-parallelisierte PMM-MD Programms IPHI-
GENIE [192] in DFT/PMM-Hybridrechnungen noch auf einen Rechenkern beschränkt
war, die Anwendbarkeit der neuen DFT/PMM-Methode erheblich. Ein weiteres im Rah-
men von Ref. [193] verfolgtes Ziel war daher die vollständige MPI/OpenMP-Paralle-
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lisierung der DFT/PMM-Implementierung sowie die Integration von CPMD [152] in
IPHIGENIE [192], um den Einsatz von IPHIGENIE/CPMD auf Großrechnern zu er-
möglichen.

Bevor das dann mit dem Abschluß der technischen Entwicklungen verfügbare, hoch leis-
tungsfähige Programmpaket IPHIGENIE/CPMD allerdings zur Berechnung der Schwin-
gungsspektren von (Poly-)Peptiden eingesetzt werden konnte, waren noch einige weitere
Vorarbeiten nötig. So waren zwar mithilfe der DFT/PMM-Technologie inzwischen po-
larisierbare Wassermodelle entwickelt worden [55, 129], da diese jedoch die elektrosta-
tische Signatur eines Wassermoleküls durch Punktladungen modellierten, waren sie für
die Anwendung als Lösungsmittel in DFT/PMM-MD Simulationen ungeeignet.

Diese offenen Fragen wurden in der Veröffentlichung [58], die in Abschnitt 2.3 zu finden
ist, beantwortet. Das dort nach der in Ref. [55] und Ref. [129] entwickelten Strategie kon-
struierte Gauß’sche polarisierbare Sechspunktmodell (GP6P) für Wasser sollte sich durch
die ausschließliche Verwendung gaußförmig verschmierter Quellen des elektrostatischen
Potentials speziell als Lösungsmittel in DFT/PMM-Anwendungen eignen. Es wurde
untersucht, mit welcher Qualität dieses Wassermodell wichtige Eigenschaften flüssigen
Wassers beschreiben kann. Anschließend mussten die bisher unbekannten Parameter
der Lennard-Jones-Wechselwirkung zwischen AGn und GP6P-Molekülen optimiert wer-
den. Da diese Parameter die Nahordnung der PMM-Wassermoleküle um die AGn, und
damit deren Polarisation steuern, hat ihre Wahl auch Einfluss auf die Qualität der Be-
schreibung solvatochromer Effekte in den Schwingungsspektren der AGn (vgl. Abschnitt
1.1.2). Die Parameteroptimierung erfolgte über eine Anpassung der radialen Nahstruk-
tur des PMM-Wassers um ein durch DFT beschriebenes NMA-Molekül an eigens mit-
tels DFT-MD generierte Referenzdaten. Zur Verringerung des Rechenaufwands wurde
für diesen Zweck eine effiziente DFT/PMM-mean-field-Methode entwickelt. Schließlich
wurden die solvatochromen Verschiebungen durch wässrige Lösung (vgl. Abb. 1.4) sowie
Isotopeneffekte durch DFT-MD und DFT/PMM-MD Rechnungen am isolierten bzw. in
GP6P gelösten NMA untersucht und mit experimentellen Daten verglichen [10].

Um ein effizientes Abtasten von Peptidkonformationen auch für DFT/PMM-Modelle zu
ermöglichen, untersucht die in Abschnitt 2.4 abgedruckte Veröffentlichung [194] schließ-
lich, wie die von Denschlag et al. [195] entwickelte SST-Methode (für simulated solute
tempering) auch auf polarisierbare Simulationssysteme wie PMM oder DFT/PMM an-
gewendet werden kann. Es wird eine einfache Vorschrift entwickelt, mit der die für
DFT/PMM-SST-MD Simulationen notwendigen SST-Gewichtsparameter aus deutlich
weniger aufwändigen PMM-SST-Rechnungen abgeleitet werden können. Das Verfahren
wird dann erfolgreich zur Berechnung der Konformationslandschaft eines DFT-Modells
von Alanindipeptid in wässriger PMM-Lösung angewendet.

Kapitel 3 fasst die Ergebnisse der Arbeit kurz zusammen und liefert einen Ausblick auf
zukünftige algorithmische Weiterentwicklungen und Anwendungen.
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2 Entwicklung einer hocheffizienten
Hamilton’schen DFT/PMM-Methode

Die vier in diesem Kapitel abgedruckten und im Journal of Chemical Physics bzw.
im Journal of Chemical Theory and Computation veröffentlichten Artikel stellen die
grundlegende Hamilton’sche Kopplung des DFT-Fragments mit der PMM-Umgebung
dar (Abschnitt 2.1), und erklären die effiziente Einbettung in die SAMM-Hierarchie
(Abschnitt 2.2). Ferner dokumentieren sie die Entwicklung des GP6P-Wassermodells
und die Berechnung der IR-Spektren von NMA in wässriger Lösung mit DFT/PMM-
MD (Abschnitt 2.3). Schließlich stellen sie die zur effizienten Abtastung von Konforma-
tionsräumen hilfreiche DFT/PMM-SST-Methode vor (Abschnitt 2.4).

2.1 Eine Hamilton’sche DFT/PMM-Kopplung

In der nachfolgend abgedruckten Publikation

Coupling DFT to polarizable force fields for efficient and accurate
Hamiltonian molecular dynamics simulations

Magnus Schwörer, Benedikt Breitenfeld, Philipp Tröster, Sebastian Bauer,
Konstantin Lorenzen, Paul Tavan und Gerald Mathias

J. Chem. Phys. 138, 244103 (2013),

die ich zusammen mit Benedikt Breitenfeld, Philipp Tröster, Sebastian Bauer, Konstan-
tin Lorenzen, Paul Tavan und Gerald Mathias verfasst habe, wird die Erweiterung von
IPHIGENIE um induzierbare Gauß’sche Dipole, die Hamilton’sche Einbettung des DFT-
Fragments in den damals zur Verfügung stehenden SAMMp-Algorithmus [126], und eine
effiziente Strategie zum Erreichen der gleichzeitigen Selbstkonsistenz von PMM- und
DFT-Fragment beschrieben.
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Coupling density functional theory to polarizable force fields for efficient
and accurate Hamiltonian molecular dynamics simulations

Magnus Schwörer, Benedikt Breitenfeld, Philipp Tröster, Sebastian Bauer,
Konstantin Lorenzen, Paul Tavan, and Gerald Mathiasa)

Lehrstuhl für BioMolekulare Optik, Ludwig–Maximilians Universität München, Oettingenstr. 67,
80538 München, Germany

(Received 5 April 2013; accepted 3 June 2013; published online 25 June 2013)

Hybrid molecular dynamics (MD) simulations, in which the forces acting on the atoms are cal-
culated by grid-based density functional theory (DFT) for a solute molecule and by a polariz-
able molecular mechanics (PMM) force field for a large solvent environment composed of several
103–105 molecules, pose a challenge. A corresponding computational approach should guarantee
energy conservation, exclude artificial distortions of the electron density at the interface between the
DFT and PMM fragments, and should treat the long-range electrostatic interactions within the hy-
brid simulation system in a linearly scaling fashion. Here we describe a corresponding Hamiltonian
DFT/(P)MM implementation, which accounts for inducible atomic dipoles of a PMM environment
in a joint DFT/PMM self-consistency iteration. The long-range parts of the electrostatics are treated
by hierarchically nested fast multipole expansions up to a maximum distance dictated by the mini-
mum image convention of toroidal boundary conditions and, beyond that distance, by a reaction field
approach such that the computation scales linearly with the number of PMM atoms. Short-range
over-polarization artifacts are excluded by using Gaussian inducible dipoles throughout the system
and Gaussian partial charges in the PMM region close to the DFT fragment. The Hamiltonian char-
acter, the stability, and efficiency of the implementation are investigated by hybrid DFT/PMM-MD
simulations treating one molecule of the water dimer and of bulk water by DFT and the respective
remainder by PMM. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4811292]

I. INTRODUCTION

In a seminal paper devoted to the study of enzymatic re-
actions, Warshel and Levitt1 introduced in 1976 a quantum-
classical coupling scheme for a molecule, which is described
by quantum mechanics (QM) and is embedded in a condensed
phase environment modeled by a polarizable molecular me-
chanics (PMM) force field. In their abstract, these authors em-
phasized that the “solvation energy resulting from this polar-
ization is considerable and must be included in any realistic
calculation” of molecules in condensed phase.

However, as documented in a recent review on QM/MM
methods for biomolecular systems,2 this advice was subse-
quently ignored in most applications. Instead so-called stan-
dard MM force fields like AMBER,3 CHARMM,4 OPLS-
AA,5 or GROMOS6 were generally applied to the MM part
of hybrid simulation systems. These force fields model the
electrostatic signatures of molecules or of molecular frag-
ments by static partial charges localized at the atoms and,
therefore, can account for the effects of electronic polariza-
tion only by the mean field approximation, which is highly
questionable for inhomogeneous and non-isotropic biomolec-
ular systems.7 There are notable exceptions which combined
a polarizable force field for the MM fragment with semi-
empirical quantum chemistry for the QM fragment.8–12 Com-
binations of higher-level QM treatments (density functional

a)Electronic mail: gerald.mathias@physik.uni-muenchen.de

theory13, 14 (DFT) or ab initio quantum chemistry) with PMM
force fields were either restricted to the energetics of static
systems,15–23 to small molecular clusters,24–29 or describe the
dynamics only in parts of the simulation system.30, 31 Other
approaches augment DFT atoms with self-consistent polariza-
tion terms (SCP-DFT) to correct the deficiencies of the long-
range electrostatics and dispersion description within certain
exchange-correlation functionals.32, 33

The development of hybrid methods combining grid-
based DFT with non-polarizable MM force fields started with
the work of Eichinger et al.,34 which particularly aimed at
accurate computations of vibrational spectra of molecules
in condensed phase environments from hybrid MD simu-
lations. Since then corresponding applications have demon-
strated the power of this approach.35–37 Subsequently, two
further DFT/MM implementations38, 39 took up the challenge
posed by the requirement to combine DFT treatments of a
molecule in an efficient and accurate way with large scale
MM environments. Here, Laio et al.38 emphasized the need
of a fully Hamiltonian description, which was violated by cer-
tain approximations applied by Eichinger et al.,34 while Laino
et al.39 additionally provided a clever suggestion for the effi-
cient computation of the electrostatic interaction between the
DFT and MM fragments.

However, applications of the above DFT/MM setting to
the computation of infrared (IR) spectra of biological chro-
mophores like retinal in bacteriorhodopsin40, 41 or flavin in
blue light sensing domains42 through instantaneous normal

0021-9606/2013/138(24)/244103/13/$30.00 © 2013 AIP Publishing LLC138, 244103-1
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mode analyses36, 43 also revealed those limitations, which are
due to the neglected polarizability of the MM protein environ-
ments surrounding the DFT chromophores. The correspond-
ing errors in the computed vibrational spectra could be largely
removed by iterative DFT/MM calculations of polarized force
fields in the respective chromophore binding pockets, thus,
uniquely proving that the neglected polarizabilities were the
main cause of the earlier ill-descriptions.

A similar attempt to compute the vibrational spec-
tra of phosphate ions in aqueous solution44 showed that
the DFT/MM calculations largely underestimate the solva-
tochromic shifts in the IR spectra. Here, these underesti-
mates were erroneously attributed to the neglected polariz-
ability of the solvating water, which had been modeled by
Jorgensen’s “transferable three point interaction potential”
(TIP3P).45 By contrast, recent “first principles” DFT-MD sim-
ulations of phosphates in small periodic water boxes have
clearly shown46 that the use of the TIP3P model entailed
highly erroneous structures for the first solvation shell, which
are mainly due to its simplified structure and to a lesser degree
due to the neglected polarizability. Hence, it remains to be
seen whether improved (and polarizable) MM water models
combined with a DFT description of the phosphate solutes can
predict the solvatochromic shifts in the phosphate IR spectra
at a quality comparable to that of the very expensive “first
principles” DFT-MD simulations.

To enable rapid and nevertheless accurate computations
of solvatochromic effects in chromophore IR spectra, the con-
struction of a new and efficient DFT/PMM implementation
therefore seemed necessary.

In this paper, we address two issues. First, we thor-
oughly revise the DFT/MM suggestion made by Eichinger
et al.34 and develop an efficient, accurate, and fully Hamil-
tonian electrostatic DFT/MM coupling scheme whose com-
putational effort scales logarithmically with the number of
condensed phase atoms surrounding the DFT fragment. Pre-
serving the thereby achieved levels of accuracy and efficiency,
we next extend this scheme by including dynamic polariza-
tion effects through inducible atomic dipoles. We give an-
alytical expressions for the calculation of the forces and,
therefore, are able to employ the new DFT/PMM scheme for
molecular dynamics simulations. For the implementation, the
program packages of choice are the parallelized PMM-MD
program IPHIGENIE47 and the parallelized grid-based plane
wave DFT program CPMD.48

II. THEORY

The Hamiltonian of a DFT/PMM hybrid system can be
decomposed into the following four contributions:

H = HMM + HPMM + HDFT + HDFT/(P)MM. (1)

Here, HMM represents one of the standard MM force fields3–6

including the kinetic energy of the atoms, and

HPMM = 1

2

∑
i,j �=i

qi�(ri | pj , rj , σ̃j ) − 1

2

∑
i

pi · 〈Eq,p(ri)〉σ̃i

+1

2

∑
i

p2
i /αi (2)

accounts1, 49–51 for the energy contribution of polarizable
Gaussian dipoles

pG
i (r | ri , σ̃i) = pi g(r | ri , σ̃i)

of strengths pi and widths σ̃i , which are located at the atomic
positions ri and have the shape functions

g(r | ri , σ̃i) = 1(
2πσ̃ 2

i

)3/2 exp

[
− (r − ri)2

2σ̃ 2
i

]
. (3)

Note that in PMM force fields, the use of Gaussian dipoles
yields an enhanced algorithmic stability,52, 53 if the widths σ̃i

are chosen sufficiently large, i.e., typically σ̃i ≈ 0.1 nm.
The symbol �(ri | pj , rj , σ̃j ) in Eq. (2) denotes the elec-

trostatic potential generated at the position ri of an atom i �= j
by a Gaussian dipole pG

j (r | rj , σ̃j ). Furthermore, the bracket
expression

〈f (ri)〉σ̃i
≡

∫
f (r)g(r | ri , σ̃i)dr (4)

denotes the average of a function f (r) over the vol-
ume occupied by g(r | ri , σ̃i). If E(r | qj , rj ) = −∇(qj/|r −
rj |) is the field of a point charge qj and E(r | pj , rj , σ̃j )
= −∇�(r | pj , rj , σ̃j ) is the field of a Gaussian dipole at rj ,
then

〈Eq,p(ri)〉σ̃i
≡

∑
j �=i

〈
E(ri | qj , rj ) + E(ri | pj , rj , σ̃j )

〉
σ̃i

(5)

is the field polarizing atom i. Assuming linear response, the
dipole strengths pi are calculated by

pi = αi〈Eq,p(ri)〉σ̃i
(6)

from the scalar atomic polarizabilities αi and from the po-
larizing fields (5) in a self-consistent field iteration (PMM-
SCF).54, 55 The last term in Eq. (2) is the self-energy required
to create the dipoles pi . If Eq. (6) is self-consistently fulfilled,
this self-energy cancels the second term in Eq. (2) and the
first term remains as the polarization contribution to the total
energy.

In Eq. (1), HDFT is the energy function of the isolated
quantum system. The DFT/(P)MM interaction energy

HDFT/(P)MM = H vdW
DFT/MM + H bonded

DFT/(P)MM + H elec
DFT/(P)MM (7)

has a contribution from van der Waals interactions H vdW
DFT/MM

between MM and DFT atoms, which is calculated with the
applied MM force field. If chemical bonds between the DFT
and (P)MM fragments exist, a term H bonded

DFT/(P)MM has to be in-
cluded, for which several suggestions exist.2, 34

We will, however, focus here on chemically non-bonded
PMM and DFT fragments, for which the electrostatic interac-
tion energy

H elec
DFT/(P)MM =

∫
drρ(r)�ext(r) (8)

is given by the classical expression for the energy of the
DFT fragment’s charge density ρ in the external potential
�ext generated by the partial charges and induced Gaussian
dipoles in the PMM fragment. The DFT charge density ρ(r)
= ρe(r) + ρc(r) comprises contributions ρe(r) of the valence
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electrons and ρc(r) of the nuclear cores. Correspondingly,
the interaction Hamiltonian

H elec
DFT/(P)MM = He + Hc (9)

decomposes into energies

Hκ =
∫

dr ρκ (r) �ext(r), κ ∈ {e, c}, (10)

associated to the electrons (e) and nuclear cores (c) of the DFT
fragment.

In the computation of those atomic forces, which are
caused by an external potential �ext(r), the employed DFT
program CPMD48 treats the effective core charges as Gaus-
sian distributions qμ g(r | rμ, σμ) centered with widths σμ

around the positions rμ of the DFT atoms μ. Thus, with defi-
nition (4) of Gaussian averages one obtains from Eq. (10) for
the core Hamiltonian:

Hc =
∑

μ

qμ〈�ext(rμ)〉σμ
. (11)

The Gaussian averages 〈�ext(rμ)〉σμ
are readily calculated for

external potentials generated by Gaussian charge or dipole
distributions of widths σ i, because one solely has to replace
the σ i by the widths σiμ = (σ 2

i + σ 2
μ)1/2 in the respective ex-

pressions for the potentials. Note that these expressions re-
duce for distances riμ ≡ |riμ| ≡ |ri − rμ| 	 σiμ to the poten-
tials of point charges and dipoles.

As a result, the Gaussian approximation qμ g(r | rμ, σμ)
of the nuclear pseudo-potentials enables a speedy evaluation
of Hc. By contrast, the computation of He requires the eval-
uation of �ext(r) at all Nγ points γ of the grid, on which ρe

is represented in real space by CPMD.48 Introducing the elec-
tronic grid charges

qγ = (Vbox/Nγ )ρe(rγ ), (12)

whose sum over all grid points γ in the DFT box volume Vbox

is the total charge of all valence electrons in the DFT frag-
ment, one can numerically evaluate the integral from Eq. (10)
for the electronic contribution to the DFT/(P)MM interaction
Hamiltonian (9) by the expression

He =
∑

γ

qγ �ext(rγ ). (13)

This approximation is valid because our way of constructing
�ext guarantees, as will be explained in more detail below, that
the external potential is smooth on the spatial scale defined by
the DFT grid.

A. Computational issues

The forces required for MD simulations are obtained
from the Hamiltonian (1) by taking negative gradients with
respect to the atomic coordinates at every time step of the nu-
merical integration of the classical equations of motion. In a
DFT/MM setting, only the Kohn-Sham wave functions have
to be determined in a SCF iteration (DFT-SCF) at every time
step, whereas DFT/PMM simulations additionally require a
PMM-SCF procedure, which has to be properly interfaced
with the DFT-SCF calculations.

The computational effort required for the four compo-
nents of the Hamiltonian (1) depends on the respective sizes
of the DFT and PMM fragments, on the spatial resolution of
the DFT grid, and on the choice of the SCF convergence crite-
ria. Nevertheless, for a system composed of about 104 PMM
solvent atoms and a rather small DFT solute molecule com-
prising about 10 DFT atoms, one may estimate that all four
components of H will pose comparable numerical tasks.

Treating, for instance, a water molecule by DFT with a 70
Ry plane wave cutoff requires Nγ ≈ 106 grid points. Within
a brute force computational approach, the evaluation of
Eq. (13), which is the most expensive contribution to
HDFT/(P)MM, would lead for the PMM fragment characterized
above to about 1010 distance calculations. The associated ef-
fort would then definitely represent the computational bottle-
neck. For the reduction of this effort three different sugges-
tions exist,34, 38, 39 which all utilize multi-scale concepts. Here,
we will adopt and extend the suggestion by Eichinger et al.34

ensuring, however, the Hamiltonian character of the resulting
dynamics (cf. Laio et al.38).

Accordingly, we will treat the DFT fragment as a com-
ponent of the nested hierarchy into which a simulation sys-
tem with toroidal boundary conditions57 is decomposed, if the
electrostatic interactions are calculated by the combination
of the pth-order “structure adapted fast multipole method”
with a reaction field approach (SAMMp/RF) developed in
Refs. 47 and 58–60. In pure MM- or PMM-MD simulations
of large systems, this fast multipole method (FMM)61–63 en-
ables an efficient and accurate calculation of the electrostat-
ics, which scales linearly with the number of atoms. Due
to a balanced combination of mth order multipole moments
with nth order local Taylor expansions, which is expressed by
the equation p = n + m, the electrostatic forces calculated
with SAMMp exactly obey Newton’s reaction principle.47, 64

Furthermore, this choice additionally guarantees a minimal
computational effort for a predefined level p of accuracy
(p = 4 is the standard of the current implementation avail-
able in IPHIGENIE). A predecessor version called SAMM
had been used in Eichinger’s DFT/MM approach,34 whose
fully Hamiltonian DFT/(P)MM extension will be explained
below.

B. DFT/PMM with SAMMp

According to Eq. (13), the external potential �ext is im-
ported into the DFT Hamiltonian through its evaluation at the
points γ of the DFT grid. For an efficient solution of this
computational task, Eichinger et al.34 applied and extended
(cf. Figs. 4 and 5 in Ref. 34) the distance class scheme of
SAMM.58, 59, 65 The extended scheme partitions the PMM en-
vironment of each DFT atom μ into disjoint distance classes
C l

μ, l = 0, . . . , lmax. For periodic systems, a RF continuum
starts beyond the outermost distance class (lmax) at a distance
dictated by the minimum image convention.60 Figure 1 illus-
trates the three innermost distance classes C l

μ, l = 0, 1, 2 for
an atom μ of a DFT water molecule embedded in liquid PMM
water.

Figure 1 shows one PMM water molecule in each of
the three classes and indicates the distances d used for their
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d(Cμ1)

FIG. 1. Scheme of inner distance classes for the FMM evaluation of the
DFT/PMM electrostatics: A water molecule (left) representing a structural
unit u (dotted circle) of the SAMMp hierarchy is embedded in a rectangular
DFT box, which is discretized by a grid (dots). Only those points γ ∈ Gμ

are shown which belong to a selected DFT atom μ (large black dot) through
the Voronoi tessellation of the box. This tessellation defines the index sets Gμ

and is indicated by the dashed gray lines. Two dashed gray segments of circles
[radii d(C0

μ), d(C1
μ)] around μ and the reference point “×” of the structural

unit u indicate the outer limits of the distance classes C0
μ and C1

μ, respec-

tively. Representative atoms i ∈ C0
μ and j ∈ C1

μ of PMM water molecules

belonging to these two classes and of a structural unit u′ ∈ C2
μ are drawn as

black dots.

definition. Typical values are d(C0
μ) ≈ 6 Å and d(C1

μ)

≈ 8 Å. The electrostatics of the PMM atoms i ∈ C0
μ is rep-

resented by Gaussian partial charges of widths σ i and by
Gaussian induced dipoles of widths σ̃i , which all are typi-
cally smaller than 1 Å but much larger than the spacing of the
DFT grid. The parameters (σi, σ̃i) steer the strengths of
the near-field electrostatic interactions between the DFT and
the PMM atoms. In the case of an aqueous PMM environ-
ment, for instance, the strength of the DFT/PMM hydrogen
bonding interactions can be tuned by proper choices of these
Gaussian widths.38 Because they are about one order of
magnitude smaller than the typical distances rμj > d(C0

μ) of
atoms j ∈ C1

μ from the given DFT atom μ, the Gaussian char-
acter of the PMM charges and dipoles can safely be neglected
for the class C1

μ and beyond. In C0
μ, the use of smoothed

charge and dipole distributions is mandatory34, 38, 39, 56 to avoid
artificial distortions of the DFT electron density ρe(rγ ) and to
guarantee that �ext is sufficiently smooth on the scale of the
DFT grid spacing.

The Voronoi tessellation of the DFT box characterized
by the gray dashed lines in Fig. 1 decomposes the whole DFT
grid into disjoint subsets Gμ associated to the various DFT
atoms μ. Correspondingly, the sum

∑
γ in Eq. (13) can be

expressed as the double sum

He =
∑

μ

∑
γ∈Gμ

qγ �ext(rγ ), (14)

which partitions He into a sum over contributions associated
to the DFT atoms μ. The proximity of the grid points γ ∈ Gμ

to the positions rμ of the DFT atoms can now be exploited
for the rapid evaluation of Eq. (14) by taking advantage of the
SAMMp algorithm.47

C. Efficient computation of �ext

According to the SAMM scheme,34 the electrostatic po-
tential at points rγ in the vicinity of a given atom μ is calcu-

FIG. 2. Evaluation of �ext at a grid point γ ∈ Gμ: Contributions from Gaus-
sian charges and induced dipoles of a PMM atom i ∈ C0

μ are evaluated di-
rectly (solid gray arrow), whereas the contributions from more distant atoms,
like the one indicated by the dashed black arrow for a PMM atom j ∈ C1

μ,
are calculated by a Taylor expansion around the position of the DFT atom μ.
The dotted gray arrow marks the connection rγμ of the points μ and γ used
in the Taylor expansion.

lated as a sum

�ext(rγ ) =
lmax∑
l=0

�
(
rγ

∣∣C l
μ

)
, γ ∈ Gμ (15)

over contributions �(rγ | C l
μ) from sources located in the dis-

tance classes C l
μ, l = 0, . . . , lmax, to which for periodic sys-

tems a reaction field contribution �(rγ | RF) is added60 (for
notational simplicity it will be omitted in the subsequent
discussion).

Figure 2 illustrates how the external potential �ext(rγ )
is calculated using SAMMp for two PMM water molecules
belonging to the distance classes C0

μ and C1
μ of a DFT atom

μ. Here, the solid gray arrow marks the computation of the
potential generated by the electrostatic moments of the PMM
atoms i ∈ C0

μ through

�
(
rγ

∣∣ C0
μ

) =
∑
i∈C0

μ

[�(rγ | qi, ri , σi) + �(rγ | pi , ri , σ̃i)]

(16)
with the potentials

�(rγ | qi, ri , σi) = qierf[rγ i/(
√

2 σi)]

rγ i

(17)

of Gaussian partial charges qi and

�(rγ | pi , ri , σ̃i) = −pi · ∂(1)�(rγ | qi, ri , σ̃i)/qi (18)

of Gaussian dipoles pG
i . In Eq. (18), the gradient is written as

∂ (1).
For electrostatic PMM moments in all higher (l ≥ 1)

distance classes C l
μ, the potentials

�
(
rγ

∣∣C l
μ

) =
p∑

n=0

1

n!
r(n)
γμ 
 T n,p

(
rμ

∣∣C l
μ

)
(19)

are calculated through pth order Taylor expansions around the
position rμ of the DFT atom μ. The symbol r(n)

γμ is the n-fold
outer product of rγμ with itself. This vector rγμ connects the
reference point μ with the grid point γ ∈ Gμ (dotted gray ar-
row in Fig. 2). The symbol 
 denotes the inner contraction
product of two tensors (Ref. 47 thoroughly explains the em-
ployed tensorial notation). Finally, the class specific expan-
sion coefficients

T n,p
(
rμ

∣∣C l
μ

) ≡ ∂(n)�
T(

r
∣∣ C l

μ

)∣∣
rμ

(20)
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FIG. 3. Computation of Taylor expansion coefficients: The charges and
induced dipoles of the PMM atoms j ∈ C1

μ generate the coefficients

Tn,p(rμ | C1
μ) (lower dashed arrow). The PMM atoms in C2

μ are collected into
structural units, whose electrostatic signatures are represented by multipole
expansions.47 For the PMM unit u′, for instance, such an expansion is sym-
bolized by three black dotted arrows pointing toward its reference point “×”.
The multipole potentials originating from u′ are expanded into a Taylor series
at the reference point of the DFT unit u (upper dashed arrow), from which the
additional contributions Tn,p(rμ | C2

μ) to the atom-centered expansion coef-
ficients are inherited (dotted arrow) by a simple shifting procedure.47

are nth rank tensors generated by the nth order partial deriva-
tives of the potentials �T(r | C l

μ) at rμ, which originate from
point-like electrostatic moments (cf. the discussion of Fig. 1
above) occupying the distance class C l

μ.
Here, the nature of the electrostatic moments, which gen-

erate the potential appearing in Eq. (20), differs for the dis-
tance classes at level l = 1 and at levels l ≥ 2, respectively.
As is schematically indicated by the lower dashed arrow in
Figure 3, at l = 1 the point charges qj and induced point
dipoles pj of the individual atoms j are considered to be the
sources of the potential. The associated expansion coefficients

Tn,p
(
rμ

∣∣C1
μ

) = ∂(n)

∑
j∈C1

μ

[qj − (1 − δnp) pj · ∂(1)]
1

rμj

(21)

are essentially given by the nth rank tensors47 ∂ (n)(1/r). Here,
the prefactor 1 − δnp, in which δ is the Kronecker symbol,
ensures that the expansion is of comparable accuracy for the
atomic charges and dipoles.

For distance class levels l ≥ 2, by contrast, mth order
multipole moments (m = 0, . . . , p) of nested and increas-
ingly larger charge and dipole distributions are considered as
the sources of the potential in Eq. (20). Within the SAMMp

algorithm47 the Taylor expansion coefficients

Tn,p
(
rμ

∣∣C l
μ

) = ∂(n)

p−n∑
m=0

�m
(
rμ

∣∣C l
μ

)
,

(22)
n = 0, . . . , p, l ≥ 2

are then the partial derivatives of the mth order multipole po-
tentials �m(rμ | C l

μ). As documented in the Appendix, the
SAMMp algorithm, which has been originally developed for
distributions of static charges,47 can meanwhile also account
for induced dipoles.

Figure 3 indicates for three atoms k ∈ C2
μ collected into

a unit u′ the computation of multipole moments by dotted ar-
rows and the calculation of the Taylor coefficients (22) by a
two-step process (upper dashed and left dotted arrows) as is
common in FMM methods.47

D. Forces on the DFT atoms μ

Equations (16) and (19) specify the two basically dif-
ferent procedures by which the external potential is im-
ported onto the DFT grid. This import enables the DFT pro-
gram CPMD to compute a polarized electron density ρe(rγ ).
Using the updated grid charges qγ [cf. Eq. (12)] and the
Gaussian core charge qμ centered at rμ, CPMD then calcu-
lates the electrostatic interaction energies

Hκ =
∑

μ

lmax∑
l=0

Hκ

(
C l

μ

)
, κ ∈ {e, c}, (23)

because of Eqs. (11) and (13)–(15) as sums of electronic

He
(
C l

μ

) =
∑
γ∈Gμ

qγ �
(
rγ

∣∣ C l
μ

)
(24)

and nuclear

Hc
(
C l

μ

) = qμ〈�(
rμ

∣∣C l
μ

)〉σμ
(25)

contributions associated to the DFT atoms μ and distance
class levels l. According to Eq. (9) an update of the interaction
Hamiltonian H elec

DFT/(P)MM has thus been determined. By taking
gradients of HDFT + H elec

DFT/(P)MM with respect to the coordi-
nates rμ, CPMD can now compute the electrostatic forces on
the DFT atoms μ.

The electrostatic Hellmann-Feynman reaction forces66

exerted by the charges qγ and qμ on the PMM atoms i follow
from the gradients of H elec

DFT/(P)MM with respect to the coordi-
nates ri . However, in the current form, the contributions (24)
and (25) to the electrostatic interaction energy do not imme-
diately reveal how H elec

DFT/(P)MM depends on the PMM coordi-
nates ri and, therefore, how these forces should be calculated.
To uncover this dependence, the electronic and nuclear inter-
action energies Hκ (C l

μ) will now be separately analyzed for
the distance classes l = 0, 1, and l ≥ 2.

E. Reaction forces on the PMM atoms i ∈ C0
μ

The electronic near-field interaction Hamiltonian

He
(
C0

μ

) =
∑
γ∈Gμ

qγ

∑
i∈C0

μ

[�(rγ | qi, ri , σi) + �(rγ | pi , ri , σ̃i)]

(26)
is obtained by inserting the external potential (16) originating
from class C0

μ into Eq. (24). It is the energy of the point-like
grid charges qγ in the potentials of the Gaussian charges qi of
widths σ i and Gaussian induced dipoles pi of widths σ̃i col-
lected in C0

μ. Equations (17) and (18), respectively, specify
these potentials in terms of the connection vectors rγ i point-
ing from PMM atom i to the grid point γ .

Replacing these vectors by their inverses riγ = −rγ i and
interchanging in Eq. (26), the sums over γ and i lead to the
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strictly equivalent expression

He
(
C0

μ

) =
∑
i∈C0

μ

⎡
⎣qi

∑
γ∈Gμ

�(ri | qγ , rγ , σi)

− pi ·
∑
γ∈Gμ

E(ri | qγ , rγ , σ̃i)

⎤
⎦ , (27)

which is the energy of point charges qi and dipoles pi

at positions ri in the potentials �(ri | qγ , rγ , σi) and fields
E(ri | qγ , rγ , σ̃i) = −∂(1)�(ri | qγ , rγ , σ̃i) of Gaussian grid
charges qγ of widths σ i and σ̃i , respectively. The negative gra-
dients of He(C0

μ) with respect to the positions ri are then the
electrostatic Hellmann-Feynman forces66 exerted by the grid
charges qγ , γ ∈ Gμ, on the PMM atoms i ∈ C0

μ. If one inverts
the solid gray arrow in Fig. 2, the inverted arrow can serve to
symbolize such a reverse action of one of the grid charges on
a nearby PMM atom.

The core contribution

Hc
(
C0

μ

)=
∑
i∈C0

μ

[qi�(ri | qμ, rμ, σμi) − pi · E(ri | qμ, rμ, σ̃μi)]

(28)
is analogously obtained by inserting the potential �(rμ | C0

μ)
as defined by Eq. (16) into Eq. (25), by executing the Gaussian
averages (4) through an increase of the Gaussian widths (as
explained in connection with Eq. (11)), and by repeating the
arguments, which lead from Eq. (26) to Eq. (27).

F. Reaction forces on the PMM atoms j ∈ C1
μ

Inserting the Taylor expansion (19) with the coefficients
(21) into (24) yields the electronic interaction energy

He
(
C1

μ

) =
∑
γ∈Gμ

qγ

p∑
n=0

1

n!
r(n)
γμ


 ∂(n)

∑
j∈C1

μ

[qj − (1 − δnp) pj · ∂(1)]
1

rμj

(29)

for DFT atom μ and class C1
μ. Interchanging the sums

over j and γ and employing the identity ∂ (n)(1/rμj)
= ( − 1)n∂ (n)(1/rjμ), one finds

He(C1
μ) =

∑
j∈C1

μ

p∑
n=0

[qj + (1 − δnp) pj · ∂(1)]�
n(rj | Qμ, rμ)

(30)
with the potentials

�n(rj | Qμ, rμ) = (−1)n

n!

(
∂(n)

1

rjμ

)



∑
γ∈Gμ

qγ r(n)
γμ (31)

generated at the positions rj of the PMM atoms by the nth
order multipole moments of the electronic grid charges Qμ

≡ {qγ | γ ∈ Gμ} of the DFT atom μ. According to Lorenzen
et al.,47 the potentials (31) can be equivalently written as

�n(rj | Qμ, rμ) = (−2)n

(2n)!

(
∂(n)

1

rjμ

)

 M n(rμ | Qμ). (32)

Here,

M n(rμ | Qμ) =
∑
γ∈Gμ

qγ r2n+1
μγ

(
∂(n)

1

rμγ

)
(33)

are the reduced totally symmetric multipole tensors, which
have only 2n + 1 independent components, because they are
traceless with respect to every pair of tensor components.67, 68

A slight rearrangement of Eq. (30) and the introduction
of the multipole fields

En(rj | Qμ, rμ) = −∂(1)�
n(rj | Qμ, rμ) (34)

finally leads to

He
(
C1

μ

) =
∑
j∈C1

μ

[
qj

p∑
n=0

�n(rj | Qμ, rμ)

−pj ·
p−1∑
n=0

En(rj | Qμ, rμ)

]
, (35)

which explicitly reveals the desired dependence on the PMM
coordinates rj and, therefore, enables the derivation of like-
wise simple expressions for the Hellmann-Feynman forces on
the PMM atoms j ∈ C1

μ.
In the contributions (25) to the core Hamiltonian, the

Gaussian average can be neglected at all levels l ≥ 1. At the
reference point rμ, i.e., for rγμ = 0, the Taylor expansion (19)
reduces to the zeroth order term T0,p(rμ | C l

μ). Inserting this
result into Eq. (25) yields the general form

Hc
(
C l

μ

) = qμT0,p
(
rμ

∣∣C l
μ

)
for l ≥ 1. (36)

Inserting for l = 1 the coefficients (21) into (36) and repeating
the steps, which lead from (29) to (35), one gets

Hc
(
C1

μ

) =
∑
j∈C1

μ

[qj�(rj | qμ, rμ) − pj · E(rj | qμ, rμ)], (37)

which is the energy of the PMM atoms j ∈ C1
μ in the poten-

tial and field of the point-like core charge qμ. Instead of sep-
arately evaluating Eq. (37), one may equivalently include the
core charge qμ into the grid charge distribution Qμ of DFT
atom μ, which then becomes Q̂μ = Qμ ∪ qμ. Because qμ is
located by construction at the reference point of the multipole
expansion of Q̂μ, its inclusion solely modifies the monopole
moment to M0(rμ | Q̂μ) = M0(rμ | Qμ) + qμ.

G. Reaction forces on the PMM atoms k ∈ C l
μ, l ≥ 2

Starting at level l = 2, the computation of the electrostatic
interactions becomes identical to the SAMMp treatment of a
purely classical system, which has been described in detail
elsewhere.47 Therefore, it suffices here to sketch how at level l
= 2 a DFT fragment is integrated into the SAMMp algorithm.

For a most simple presentation, we assume that the DFT
fragment is composed of a single structural unit u like in the
example depicted in the above figures. All its atoms μ share a
common distance class C2

u (∀μ ∈ u : C2
μ = C2

u), which con-
tains the distant PMM atoms interacting on level l = 2 with u.
Equations (19) and (22)–(24) yield the associated electronic
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interaction energy

He
(
C2

u

) =
∑
μ∈u

∑
γ∈Gμ

qγ

p∑
n=0

1

n!
r(n)
γμ 
 ∂(n)

p−n∑
m=0

�m
(
rμ

∣∣ C2
u

)
.

(38)
In this formulation, the potentials �m(rμ | C2

u) generated by
mth order multipole moments of the PMM structural units
u′ ∈ C2

u are considered as sources and the grid charges of the
DFT unit u as targets of the electrostatic interactions. These
targets are addressed through Taylor expansions around the
atomic positions rμ.

SAMMp does not evaluate the nth order expansion co-
efficients ∂(n)

∑p−n

m=0 �m(rμ | C2
u) at each rμ ∈ u, but only at

the reference point ru (left “×” in Fig. 3) of unit u. Using
a Taylor expansion around ru, they are then simply shifted
to the atomic positions rμ.47 By the very construction of
SAMMp, this shifting is exactly the inverse operation to the
combination47 of all atomic nth order multipole moments
M n(rμ | Qμ), μ ∈ u, which are known as soon as the ener-
gies He(C1

μ) have been calculated through Eq. (35), into cor-
responding moments M n(ru | Qu) of the charge distribution
Qu ≡ ⋃

μ∈u Qμ of the DFT unit u. Note that this symme-
try of Taylor and multipole expansions is the reason why in
(P)MM simulations the reaction principle holds exactly for
the SAMMp forces. In the given DFT/(P)MM case, however,
the grid discretization of ρe weakly interferes with this prin-
ciple through an artifact, which we will address further below.

Due to the quoted symmetry one can equivalently repre-
sent the interaction energy (38) in a form in which the mul-
tipole moments M n(ru | Qu) of the grid charge distribution
Qu are the sources of multipole potentials �m(r | Qu) acting
on distant PMM atoms k ∈ C2

u through local Taylor expan-
sions. The Hellmann-Feynman forces on these PMM atoms
immediately follow from the corresponding SAMMp expres-
sion (for details and explanations, see Ref. 47). We note that
the interaction Hc(C2

u) of the atomic cores in unit u with the
PMM atoms k ∈ C2

u is included, if one employs the extended
atomic multipole moments M n(rμ | Q̂μ) instead of the elec-
tronic moments M n(rμ | Qμ) for computing the moments of
unit u.

The analysis given above for the case of a single DFT
unit u interacting with PMM atoms in the distance classes
C2

u is readily generalized to higher cluster levels and larger
DFT fragments. In our implementation, the electrostatic
DFT/(P)MM interactions are calculated at levels l ≥ 2 by
transferring the atomic multipole moments M n(rμ | Q̂μ) com-
puted by CPMD to the (P)MM-MD program IPHIGENIE,
which then calculates the multipole moments M n(ru | Q̂u) of
unit u. From now on the moments of DFT units are treated at
all SAMMp levels l ≥ 2 just like (P)MM moments. The hier-
archically nested FMM scheme then renders the total electro-
static forces on the PMM atoms k ∈ C l, l ≥ 2.

H. Remarks

The evaluation of
∑

l≥1 He(C l
μ) is computationally about

as expensive as the evaluation of He(C0
μ) for a single PMM

atom i [cf. Eq. (27)]. Therefore, the computational effort

spent on He is essentially determined by the average number
N0 ≡ (1/NDFT)

∑
μ |C0

μ| of PMM atoms found in the inner-
most distance classes C0

μ of the NDFT DFT atoms μ. Typi-
cally one finds N0 ≈ 100 and, therefore, the computational
advantage of the above calculation scheme over a brute force
method is N0/N, if N is the number of PMM atoms in the sys-
tem. Thus, for a typical simulation system with N = 104, the
speedup is about 102.

The computational scheme described in Sec. II F for the
interactions of the DFT grid charges with the PMM atoms in
distance class C1

μ resembles the DFT/MM suggestion of Laio
et al.,38 which also applies Taylor and multipole expansions
on the DFT grid to compute interactions with distant MM
atoms. These expansions are centered for the whole DFT grid
around a single reference point, are truncated at the order p
= 2, and treat all distant MM atoms as individual sources and
targets of electrostatic interactions. Our approach, by contrast,
partitions the DFT grid by NDFT reference points, extends the
local expansions up to order p = 4, and considers for each
DFT atom only the comparably few PMM atoms, which are
in the small distance range from about 6 Å to about 8 Å, as
individual sources and targets of these expansions while col-
lecting all more distant atoms into a hierarchy of increasingly
large clusters. Thus, our approach should be much more ac-
curate and efficient even for relatively small DFT/MM sys-
tems. Like the scheme of Laio et al.,38 our approach also
does not correct the small force discontinuities occurring
whenever atoms change distance classes. However, in our
case the effects of these transitions are smaller, because the
forces are calculated with higher level multipole and Taylor
expansions.

III. KEY POINTS OF THE IMPLEMENTATION

Section II completely covers the basic theory of our
DFT/PMM approach. However, for an energy conserving and
computationally efficient implementation two important is-
sues must be additionally considered.

A. Movements of the DFT box

In DFT/(P)MM dynamics simulations, the grid-based
representation of ρe by CPMD interferes with energy con-
servation. In CPMD, the energy E of a DFT atom μ de-
pends on its relative position within the grid. Shifting, e.g.,
its position rμ along the line connecting a grid point γ with
one of its nearest neighbors entails a sinusoidal modulation
E(|rμ − rγ |) ∼ −�E cos(2π |rμ − rγ |/a), where a is the as-
sociated grid constant. In the DFT setting applied by us (see
Sec. IV), the relative modulation �E/E(0) is about 10−5%.
Thus, the atom prefers to sit at grid points and experiences
artificial grid forces at other positions. As long as the grid re-
mains fixed in space, this small grid artifact solely represents
a rough background potential, whose contributions to the total
energy on average vanish during a dynamics simulation.

However, if the DFT fragment moves during a
DFT/(P)MM dynamics simulation, the DFT box has to fol-
low. Such a movement of the discretized box may lead to
random forces on the DFT atoms adding heat to the system.
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This serious artifact can be avoided, if the DFT grid is con-
sidered as an infinite object, on which the DFT box is shifted
in units of the lattice constants whenever the movement of the
DFT fragment (as measured, e.g., by its center of geometry)
exceeds the lattice constant in one of the three spatial direc-
tions. Thus, only those box translations are allowed, which
would leave a fully periodic DFT system invariant.

B. DFT/PMM-SCF iteration

The polarizable degrees of freedom of a DFT/PMM sys-
tem, i.e., the PMM dipole strengths pj and the DFT elec-
tron density ρe, have to be calculated in coupled SCF pro-
cedures, which can be rapidly brought to convergence by dili-
gent choices of the initial conditions. Assuming that the pj

and the Kohn-Sham orbitals determining ρe are temporally
continuous during the integration of the dynamics, these en-
tities can be extrapolated from a history of Mh ≈ 4 previ-
ous integration steps using Lagrangian polynomials.69 During
the PMM-SCF iteration, the “direct inversion of the iterative
subspace” (DIIS) algorithm70 with a history length M̂h,p ≈ 3
is used to speed up convergence. Similarly, CPMD48 applies
DIIS71 during DFT-SCF with M̂h,ρ = 10.

After the integration of the nuclear motion, the potential
�ext polarizing the DFT fragment is computed from the static
partial charges and from the extrapolated dipole strengths
p0

j = ph
j in the PMM fragment. Next, the DFT-SCF iteration

is executed with a loose initial convergence criterion χ ini
DFT

= 10 χDFT, which limits the largest element of the gradient of
the wave function.48 Keeping the resulting first guess ρe fixed,
the pj are iterated until in the nth step |pn−1

j − pn
j | < χPMM

for all j, where χPMM is a certain threshold. The resulting pj

modify the external potential, to which the DFT fragment is
exposed. In subsequent DFT-SCF calculations, the tight DFT-
SCF criterion χDFT is used if the preceding PMM-SCF iter-
ation converged within one iteration step or if a predefined
number k of DFT-SCF calculations is exceeded. Thus, in the
default case k = 1, only the first DFT-SCF calculation after an
integration step is performed with χ ini

DFT.
We will show that this strategy avoids extended and

costly DFT-SCF iterations as long as the pj are far from
convergence. It partially resembles a scheme proposed by
Thompson and Schenter8, 9 in the context of QM/PMM, where
QM stands for semi-empirical quantum chemistry.

IV. METHODS

For the examination of our new DFT/PMM method,
we employed two different simulation systems, a water
dimer and a periodic box of liquid PMM water containing
one DFT water molecule. The dynamics was integrated by
the Verlet algorithm72 with a time step �t = 0.25 fs for the
dimer and �t = 0.5 fs for the DFT/PMM liquid. The geome-
tries of the respective PMM water models were fixed using
MSHAKE73 and the electrostatics was treated at the SAMM4

level.47 The respective DFT water molecule was described
by the gradient-corrected exchange functional of Becke74

together with the correlation functional of Perdew (BP),75

and the norm-conserving pseudo-potentials of Troullier and

Martins (MT).76 It was centered into a cubic box of edge
length 9 Å containing the grid of the plane wave basis set,
which was cutoff at 70 Ry. We denote this particular DFT
approach by MT/BP.

A. Water dimer

The energy conservation was checked by 2 ps MD simu-
lations of water dimers. Here the initial velocities indicated a
temperature of about 80 K. We adopted the SCF convergence
criteria χPMM = 10−4 D and χDFT = 10−7. In the DFT/PMM
hybrid setting, the H-bond donor was described by MT/BP
and the acceptor by the initial version TL4Pini of a recently
developed PMM water model (Tröster et al.90). To provide
references, we simulated a MT/BP dimer using a (15 Å)3 DFT
box and a TL4Pini dimer.

TL4Pini features the experimental liquid phase
geometry77, 78 (lOH = 0.968 Å, ϕHOH = 105.3◦), the
experimental gas phase dipole moment79 (1.85 D) and
polarizability80 (1.47 Å3), a massless negative charge qM

= −1.172 e on the bisectrix 0.258 Å distant from the oxygen,
and positive charges at the hydrogens as well as a Gaussian
inducible dipole of width σ̃i = 0.912 Å at the oxygen. The
van der Waals interactions were treated identically for all
components of the hybrid systems, i.e., by Buckingham
potentials81 EB(r) = A1exp ( − rA2) − B/r6 centered at the
oxygen atoms (A1 = 78700 Å12 kcal/mol, A2 = 3.50 Å−1,
B = 1062 Å6 kcal/mol). For the Gaussian distributions, which
represent the static partial charges of the PMM atoms as long
as they are close to the DFT atoms, we chose identical widths
σ i = 0.57 Å as suggested in Ref. 34.

In the unrestrained hybrid dimer, the PMM fragment
moves close to the DFT fragment thus probing the innermost
distance classes at the level l = 0. To check the electrostat-
ics treatment also for outer distance classes (levels l = 1, 2),
we softly restrained the distance dOO of the two oxygens by
a harmonic potential with a spring constant of 1 kcal/mol Å2

to dOO, 1 = 7 Å and dOO, 2 = 10 Å, respectively, thereby guar-
anteeing that the interactions were calculated within the dis-
tance class level l ∈ {1, 2} of interest. This probing of outer
distance classes was also used in reference simulations of the
PMM dimer.

B. Liquid water

The stability and performance of the DFT/PMM al-
gorithm were investigated with a periodic cubic box
[volume V = (46.6 Å)3] filled with N = 3374 TL4Pini

water molecules. Thus, the experimental density82 n
= 0.9965 g/cm3 of water at the temperature T = 300 K
and the pressure p = 1 atm was prepared. Extending the
SAMM4 treatment of the electrostatics by a moving boundary
reaction field correction60 and modeling the surrounding di-
electric continuum by a dielectric constant of 80, the sys-
tem was equilibrated for 1 ns in the NV T ensemble. Here, T
was kept at 300 K with a Bussi thermostat83 (relaxation time
0.1 ps).

To check the long-time stability, ten snapshots were
drawn from the last 100 ps of this trajectory. Each snapshot
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served as a starting point for a 14 ps DFT/PMM-MD sim-
ulation, in which one of the water molecules was described
by MT/BP and the thermostat was restricted to the PMM
environment.

Starting a series of 250 fs DFT/PMM-MD simulations
at identical initial conditions, we studied how the efficiency
and accuracy of the algorithm are affected by the SCF con-
vergence criteria χPMM and χDFT. The accuracy was assessed
by comparing the temporal evolutions of the DFT fragment’s
energy E(t) and dipole moment p(t). Replacing the polariz-
able TL4Pini water models by non-polarizable TIP4P/2005
potentials84 and equilibrating this MM system like its PMM
counterpart enabled a DFT/MM reference simulation.

V. TEST SIMULATIONS

Numerical integrations of the Hamiltonian dynamics em-
ploy time steps �t of finite size. Therefore, the total energy
E(t) shows small fluctuations �E(t | �t) around an average
value 〈E〉(�t).85 In the limit �t → 0, the fluctuations vanish
to leading order with �t2. Similarly the average converges to
E0, which is the conserved value of the true Hamiltonian.

Thus, one expects small fluctuations �E(t | �t) of the to-
tal energy E(t) around its constant average 〈E〉(�t) also for
the reference dynamics simulation of a PMM water dimer,
in which all forces are calculated as exact negative gradients
of the potential energy. Figure 4(a) demonstrates that this is
actually the case for the unrestrained PMM water dimer at
close contact. Here the standard deviation σ�E of �E(t | �t)
is 20 × 10−6 kcal/mol. According to Fig. 4(b), the energy is
likewise well-conserved for the PMM dimer softly restrained
to distances, which are large enough to enable the approxi-
mate treatment of the electrostatics by the SAMM4 algorithm.
Here, the standard deviation σ�E is only 0.4 × 10−6 kcal/mol,
because the forces are smaller by more than one order of mag-
nitude. As expected,85 for both distance classes the standard
deviations σ�E vanish and the averages 〈E〉(�t) converge with

FIG. 4. Energy conservation in reference simulations of the water dimer. (a)
PMM dynamics at close contact (exact electrostatics, l = 0) and (b) softly
restrained to a distance dOO ≈ 10 Å (SAMM4 electrostatics, l = 2). (c) DFT
Born-Oppenheimer dynamics at close contact.

�t2. Section S1 of the supplementary material86 provides ev-
idence for these claims.

Figure 4(c) shows for the reference Born-Oppenheimer
(BO) dynamics of the unrestrained DFT dimer the deviation
�E(t | �t) of the total energy E(t) from its average 〈E〉(�t). It
exhibits much larger fluctuations �E(t | �t) than its PMM rel-
ative in Fig. 4(a) as quantified by the standard deviation σ�E

= 1.6 × 10−3 kcal/mol. Also these fluctuations vanish with
�t2 and their enhanced magnitude can be largely attributed to
the high frequency O–H stretching modes in the DFT dimer,
which are absent in the constrained PMM dimer. Fluctuations
of a comparable size have been previously reported for the
DFT simulation of a water trimer39 with the related grid code
CP2K.87

A. Energy conservation in DFT/PMM-MD

Figure 5(a) shows the energy fluctuations observed for
the unrestrained DFT/PMM hybrid dimer at close contact. A
visual comparison with Fig. 4(c) immediately demonstrates
that the average DFT/PMM energy is as well conserved as for
the DFT reference and that the DFT/PMM energy fluctuations
are of comparable size.

The conservation of the average energy is also observed
in Figs. 5(b) and 5(c), which pertain to the DFT/PMM dimers
restrained at distances dOO ≈ 7 Å and dOO ≈ 10 Å. Here the
standard deviation σ�E of the energy fluctuations is a little
larger than at close contact. The similarity of the DFT/PMM
fluctuations �E(t | �t) to those of the DFT reference becomes
even more striking, if one studies the graphs in Figs. 4(c) and
5 at a higher time resolution. A corresponding graphical il-
lustration is provided by Figure S11 in Sec. S2 of the supple-
mentary material.86

The above data lead to the conclusion that our DFT/PMM
interaction scheme conserves the energy of a hybrid system at
all distance classes, because the sample dimers were studied

FIG. 5. Energy conservation in DFT/PMM hybrid simulations of the water
dimer with the electrostatics treated at different distance class levels l. (a)
Close contact (l = 0), (b) softy restrained to dOO ≈ 7 Å (l = 1), and (c) to
dOO ≈ 10 Å (l = 2).

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  129.187.254.47 On: Fri, 26 Feb 2016

14:28:06



244103-10 Schwörer et al. J. Chem. Phys. 138, 244103 (2013)

FIG. 6. Influence of the algorithm for DFT box movement on the energy con-
servation as exemplified by the DFT/PMM water dimer at close contact. The
black and gray lines show the trajectories of the total energy in a simulation
using a naive and our refined algorithm, respectively (see the text for expla-
nation). The gray line represents the data of Fig. 5(a) on a different energy
scale.

at the interaction levels l = 0, 1, and 2, which cover all rele-
vant algorithmic features discussed above. Note here that the
energy was equally well conserved in DFT/MM simulations
of a water dimer, in which the TIP3P potential45 was applied
to the MM fragment (data not shown).

Using the DFT/PMM water dimer at close contact as an
example, we now additionally demonstrate with Figure 6 how
the box movement algorithm described in Sec. III A supports
energy conservation. The algorithm adapts the position of the
DFT box to the motion of the DFT fragment only occasionally
by using discrete displacements, which leave the (infinitely
extended) DFT grid invariant.

The gray line in Fig. 6 shows the trajectory E(t) of the to-
tal dimer energy for our grid-commensurate algorithm of box
movement. The black line is an alternative trajectory, which
was obtained by naively moving the DFT box at every MD
time step with the center of geometry of the DFT fragment.
In this case serious algorithmic artifacts apparently hamper
energy conservation.

B. Smoothness and stability of DFT/PMM-MD

The ten 14 ps DFT/PMM-MD simulations of the peri-
odic liquid water box described in Sec. IV clearly revealed
the long-time stability of the algorithm. The calculated trajec-
tories turned out to be smooth and did not show any artifacts.

Figure 7 exemplifies this smoothness at an elevated time
resolution for the absolute value |p| of the dipole moment,
which was calculated for the DFT fragment. The depicted 100
fs section represents an arbitrary choice from one of the 14
ps trajectories. The observed fluctuations of |p(t)| are caused
by the thermal motions of the DFT molecule and of its sur-
rounding TL4Pini counterparts. Because of their smoothness,
one can calculate condensed phase IR spectra of DFT solute
molecules from such DFT/PMM trajectories using Fourier
transform methods.36, 88

C. Performance of DFT/PMM-MD

Taking the DFT/PMM liquid water system as an exam-
ple, Figure 8 gives an overview over the performance of our

FIG. 7. The absolute value |p(t)| of the DFT fragment’s dipole moment dur-
ing a MD simulation of the aqueous DFT/PMM system described in Sec. IV.
A short (100 fs) section of a trajectory was chosen to visualize the fluctuations
of |p(t)| at a high time resolution.

DFT/PMM algorithm for the choices χPMM = 10−4 D and
χDFT = 10−6 of the SCF convergence parameters. For this
check, CPMD was run in an MPI (message passing interface)
parallel version89 using eight 1.86 GHz cores distributed on
two Intel Xeon E5320 processors while IPHIGENIE was ex-
ecuted in sequential mode on one of these cores.

As shown by a sample simulation, the integration of a pe-
riodic PMM system of the given size, which exclusively con-
sists of TL4Pini water models, is only by a factor of 4.2 slower
than that of a MM system made up of TIP4P/2005 models.84

For hybrid settings, the comparison of the first two bars in
Fig. 8 reveals that TPMM is a factor of six larger than TMM.
This increase of TPMM is caused by the additional polarizing
action of the DFT fragment on the induced PMM dipoles,
which costs on average one additional PMM-SCF iteration
step.

For our DFT/PMM water box, TPMM is about as large
as the average time TDFT spent with eight processors on the
DFT part (cf. Fig. 8). TDFT is composed of the times T SCF

DFT ,
T

import
DFT , and T

export
DFT spent for the DFT-SCF iterations, for the

import of the electrostatics onto and for its export from the
DFT grid, respectively. Figure 8 shows that T SCF

DFT is the main
contribution to TDFT.

FIG. 8. Average computing times (walltimes) spent for our liquid water sam-
ple system per MD integration step on the various parts of a DFT/PMM
(black) or DFT/MM (gray) calculation. Here, the DFT part was executed in
parallel on eight core and the (P)MM part sequentially on one core. The time
TMM spent on the MM part in the DFT/MM setting is taken as the reference.
For explanation see the text.
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If χDFT is multiplied by ten, the number of DFT-SCF it-
erations and, hence, T SCF

DFT are reduced by a factor of about
1/2. Fortunately, this increase of χDFT does not change the
trajectories of the DFT fragment’s energy E(t) and dipole mo-
ment p(t) within the chosen 250 fs time window (Figure S12
in Sec. S3 in the supplementary material86 provides a rele-
vant example). Therefore, a criterion χDFT = 10−5 could be
already sufficient for future DFT/(P)MM simulations.

Figure 8 indicates that T SCF
DFT is by 15% smaller for

DFT/PMM than for DFT/MM. This advantage of a PMM
over a MM environment is apparently caused by our choice
of an initially loose DFT-SCF convergence criterion χ ini

DFT
= 10 χDFT in the joint DFT/PMM-SCF iteration. If one ap-
plies only a single criterion (χ ini

DFT = χDFT) instead, the time
T SCF

DFT of DFT/PMM is by 20% larger than that of DFT/MM
(data not shown).

Despite the computational benefit caused by our two-
stage DFT-SCF convergence criterion in the DFT/PMM set-
ting, TDFT is larger than in the DFT/MM case, because the
times T

import
DFT and T

export
DFT used for the import and the export

of the electrostatics are larger by factors 2.7 and 3.0, respec-
tively. These factors mainly reflect the fact that for DFT/MM
the DFT module is called only once per integration step,
whereas in the DFT/PMM case it is called several times (in
the given example: 2.0 DFT calls/integration step). Note that
each such call requires the import and export of the electro-
statics, which are more expensive, if induced dipoles are ad-
ditionally present.

Finally, we examined the effect of varying the PMM con-
vergence criterion. Tightening χPMM by one order of magni-
tude entails a slight increase of the numbers of PMM-SCF
iteration steps, of DFT calls per integration step, and of DFT-
SCF iteration steps. By contrast, loosening χPMM by one
order of magnitude leads to a costly increase of the num-
ber of DFT-SCF iteration steps. Apparently, a correspond-
ingly noisier PMM dipole environment hampers the DFT-SCF
convergence.

In the DFT/PMM water box example discussed above,
which features a small DFT fragment in a large PMM en-
vironment, the parallel DFT computation with eight cores
requires about as much time as the single core PMM com-
putation. This finding points to a technical deficiency of our
current implementation, according to which the MPI-parallel
version of the PMM-MD program IPHIGENIE is not yet
compatible with the MPI-parallel version of the DFT program
CPMD. This remaining deficiency will be removed in the near
future.

VI. SUMMARY AND OUTLOOK

By suitably combining the (P)MM-MD program
IPHIGENIE47 with the DFT program CPMD,48 we have
developed and implemented a Hamiltonian DFT/(P)MM-
MD approach, which conserves the energy as good as the
well-established DFT-Born-Oppenheimer MD approach
implemented in CPMD. Here, we took advantage of the fast
multipole method SAMM4 implemented in IPHIGENIE, by
which one can treat the long-range electrostatic interactions

within a (P)MM simulation system in a linearly scaling
and Hamiltonian fashion. Artificial distortions of the DFT
electron density are excluded by the use of Gaussian charges
and induced dipoles in the boundary region between the
DFT and PMM fragments. The accuracy and efficiency of
the new DFT/PMM interface are supported by algorithmic
improvements concerning the adaptive repositioning of the
DFT box and the fine-tuning of the joint DFT- and PMM-
SCF cycles. All these aspects were illustrated by relevant
test simulations, which demonstrate that the new interface
opens the way toward temporally extended DFT/PMM-MD
simulations of large condensed phase systems at well-defined
thermodynamic conditions.

Beyond the ongoing efforts of extending the implemen-
tation toward a jointly parallelized treatment of the DFT and
(P)MM fragments, only one important issue remains to be ad-
dressed before applications can be tackled. It concerns the
widths σ i, which have to be chosen for the Gaussian distri-
butions representing the (P)MM partial charges in the vicinity
of the DFT fragment. As explained already by Laio et al.,38

these widths are decisive parameters of the interface model
and must be carefully determined for the various (P)MM atom
types by sample simulations. Here, the value σ i = 0.57 Å
most likely is a sub-optimal choice.

Concerning the future development, we plan to reorga-
nize the interface in such a way that also other grid-based DFT
programs like CP2K87 can be employed. Here, the integra-
tion of the multigrid DFT/MM electrostatic coupling of Laino
et al.39 into our near-field electrostatics computation should
yield further efficiency gains. Furthermore, a combination of
our DFT/PMM approach with the SCP-DFT method32, 33 im-
plemented in CP2K may pave the way toward an improved
modeling of polarization and dispersion interactions between
the fragments.
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APPENDIX: MULTIPOLE MOMENTS M̃
m,0

OF DIPOLE
DISTRIBUTIONS

Compact formulas, by which the totally symmetric and
traceless mth order multipole tensors Mm, 0 can be calculated
for m = 0, 1, 2, . . . , if the origin 0 of the Cartesian coordinate
system is chosen as the reference point, have been given in
Sec. 3 of the supporting information of Ref. 47 for distribu-
tions B of partial charges.

Choosing the same setting, the corresponding tensors

M̃m,0 =
∑
j∈B̃

M̃m,0
j (A1)
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of rank m = 2, . . . can be calculated for a distribution B̃ of
point dipoles pj at positions rj from the recursion

M̃m,0
j = Ŝm

[(
2m2 − m

m − 1

) (
rj ⊗ M̃m−1,0

j

)

− m
(
rj 
 M̃m−1,0

j

) ⊗ I
]

, (A2)

where Ŝn is the symmetrization operator given in Eq. (22) of
Ref. 47, where also the applied tensorial notation is explained
in detail. For dipole distributions, the monopole moment
(m = 0) vanishes, of course, and the recursion (A2) is ini-
tialized with the point dipole

M̃1,0
j = pj . (A3)

For m = 2, 3, 4, the Cartesian components of the tensors M̃m,0

are explicitly given by

M̃
2,0
αβ =

∑
j∈B̃

[3rjαpjβ + 3rjβpjα − 2δαβ(rj · pj )], (A4)

M̃
3,0
αβγ = 3

∑
j∈B̃

[5(pjαrjβrjγ + pjβrjγ rjα + pjγ rjαrjβ)

− rj
2(pjαδβγ + pjβδγα + pjγ δαβ)

− 2(rj · pj )(rjαδβγ + rjβδγα + rjγ δαβ)], (A5)

M̃
4,0
αβγ ε = 3

∑
j∈B̃

{35(pjαrjβrjγ rjε + pjβrjγ rjεrjα

+pjγ rjεrjαrjβ + pjεrjαrjβrjγ )

− 5rj
2[(pjαrjε +pjεrjα)δβγ +(pjβrjε +pjεrjβ)δγα

+ (pjγ rjε + pjεrjγ )δαβ + (pjβrjγ + pjγ rjβ)δαε

+ (pjαrjγ + pjγ rjα)δβε + (pjαrjβ + pjβrjα)δγ ε]

− 10(rj · pj )(rjαrjεδβγ + rjβrjεδγα + rjγ rjεδαβ

+ rjβrjγ δαε + rjαrjγ δβε + rjαrjβδγ ε)

+ 4(rj · pj )rj
2(δαεδβγ + δβεδγα + δγ εδαβ)}. (A6)

The SAMMp algorithm treats these PMM multipole mo-
ments M̃m,0 exactly like in the MM case, i.e., they are shifted
to a different reference point using Eq. (19) of Ref. 47, and po-
tentials and Taylor expansion coefficients are calculated from
Eqs. (9) and (10) of Ref. 47, respectively. In IPHIGENIE, the
electrostatics of static partial charges is calculated only once
for each integration step and is reused during the PMM-SCF
iteration.
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2.1 Eine Hamilton’sche DFT/PMM-Kopplung

Der folgende Abdruck

Supplementary Material to
Coupling DFT to polarizable force fields for efficient and accurate

Hamiltonian molecular dynamics simulations

Magnus Schwörer, Benedikt Breitenfeld, Philipp Tröster, Sebastian Bauer,
Konstantin Lorenzen, Paul Tavan und Gerald Mathias

J. Chem. Phys. 138, 244103 (2013)

liefert zusätzliche Informationen zum vorangestellten Haupttext. Abschnitt S1 doku-
mentiert die Energieerhaltung der PMM-Implementierung in IPHIGENIE, Abschnitt
S2 zeigt dass die Energiefluktuationen in DFT/PMM-MD vergleichbar mit denen in
DFT-MD sind, und in Abschnitt S3 wird der Einfluß der Wahl des DFT-Selbstkonsis-
tenzkriteriums auf das Dipolmoment des DFT-Fragments untersucht.
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S1. PMM ENERGY CONSERVATION

A numerical integration of a Hamiltonian dynamics with the Verlet algorithm1 does not

exactly conserve the energy. Instead, for any given size of the time step ∆t the energy is

given by2

E(t |∆t) = 〈E(t |∆t)〉τ + f(t)∆t2 +O(∆t4) (S39)

where 〈E(t |∆t)〉τ is the temporal average of the energy over a reasonably large time span

τ , which converges in the analytical limit ∆t → 0 to the exact energy E0, and where the

corresponding average of the shape function f(t) vanishes, i.e. limτ→∞〈f(t)〉τ = 0. Then

the energy fluctuations ∆E(t |∆t) ≡ E(t |∆t)− 〈E(t |∆t)〉τ are given by

∆E(t |∆t) = f(t)∆t2 +O(∆t4) (S40)

with the standard deviation

σ∆E = ∆t2
√
〈f 2(t)〉τ +O(∆t4), (S41)

which vanishes in the analytical limit ∆t→ 0.

Equations (S40) and (S41) should apply to the numerically integrated Hamiltonian dy-

namics of the PMM water dimer. For a check whether our implementation is correct, we

consider two TL4Pini water models (Tröster et al., in preparation). These stiff models are

FIG. S9. Fluctuations of the energy of a PMM water dimer for different time steps ∆t = 0.25 fs

(red) and ∆t = 0.125 fs (dotted green); (a) dimer at close contact (l = 0), (b) dimer softy restrained

to dOO ≈ 10 Å (l = 2).
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either positioned at close contact, such that the electrostatics is calculated from the usual

Coulomb expressions (and the extensions to Gaussian dipoles) and the van der Waals inter-

actions from Buckingham potentials3 centered at the oxygen atoms, or are softly restrained

to distances of about 10 Å, at which the electrostatics is treated by the SAMM4 algorithm4

and the van der Waals interaction is neglected.

If one integrates the Hamiltonian dynamics by the Verlet algorithm for the two dimer-

setups starting at identical initial conditions but using different time steps (e.g. ∆t = ∆t0

and ∆t = ∆t0/2), then the scaled energy fluctuations ∆E(t |∆t)(∆t0/∆t)2 should have ac-

cording to Eq. (S40) identical shapes f(t)∆t20. Figure S9 shows the scaled energy fluctuations

∆E(t |∆t)(∆t0/∆t)2 observed in the dimer simulations for a basic time step ∆t0 = 0.25 fs.

The fluctuations ∆E(t |∆t) observed for ∆t = ∆t0 are drawn by a red solid line, the scaled

observations 4∆E(t |∆t) observed for ∆t = ∆t0/2 by a green dotted line. After scaling

the fluctuations are seen to match almost perfectly for the two dimer setups characterized

further above as documented by Figs. S9(a) and S9(b).

FIG. S10. Standard deviations σ∆E of the energy fluctuations ∆E(t |∆t) for different time steps

∆t ∈ {0.125, 0.250, 0.500, 1.000}. Results for the dimer settings l = 0 and l = 2 are depicted by

squares and diamonds, respectively. The gray dashed lines show fitted parabolas. For l = 2 scaled

values 40σ∆E are drawn for purposes of improved visibility.

According to Eq. (S41) the standard deviation σ∆E of the energy fluctuations ∆E(t |∆t)
should vanish quadratically with the time step size ∆t. Figure S10 shows that this is actually

the case as demonstrated by MD simulations with the time steps ∆t ∈ {0.125, 0.25, 0.50, 1.00}
of the PMM dimer at close contact (l = 0) and softly restrained to an average distance

dOO = 10 Å (l = 2).
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S2. DFT/PMM ENERGY CONSERVATION FOR THE DIMER

The main text compares for the dimer at close contact the energy fluctuations of the DFT

reference simulation in Fig. 4(c) with the fluctuations of the corresponding DFT/PMM sim-

ulations in Fig. 5(a). A part of these data is repeated at a much higher time resolution

(80 fs instead of 2 ps) in Figures S11(a) and S11(b). The comparison at the enhanced time

resolution demonstrates that the DFT and DFT/PMM fluctuations have similar amplitudes

and frequencies. In addition the Figures S11(c) and S11(d) show part of the data presented

FIG. S11. Temporally resolved energy conservation in the DFT reference and DFT/PMM hybrid

dimer simulations. (a) Close contact DFT, (b) Close contact DFT/PMM (l = 0), (c) DFT/PMM

softly restrained to dOO ≈ 7 Å (l = 1), and (d) to dOO ≈ 10 Å (l = 2).

at a lower time resolution in Figs. 5(b) and 5(c), respectively, at the enhanced time resolu-

tion. The depicted fluctuations refer to the DFT/PMM dimer softly restrained to average

distances dOO ≈ 7 Å and dOO ≈ 10 Å, respectively. As compared to close contact they have

slightly larger amplitudes but similar frequencies.
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S3. DFT CONVERGENCE CRITERION FOR DFT/PMM-MD

FIG. S12. Invariance of two 250 fs DFT/PMM-MD liquid water trajectories (started at identical

initial conditions) with respect to increasing χDFT from 10−7 (red curve) to 10−5 (green dotted

curve). The sample observable is the absolute value |p(t)| of the DFT fragment’s dipole moment.

Figure S12 illustrates for the absolute value of the dipole moment |p(t)| of a DFT water

molecule embedded in a PMM water environment that the DFT convergence criterion χDFT

can be safely loosened from 10−7 to 10−5 without changing DFT/PMM trajectories. Similar

identities result for the components of p(t) and for the DFT fragment’s energy E(t). The

identities of these trajectories (and the reduced computational effort) motivate the choice

χDFT = 10−5 as default for DFT/(P)MM-MD simulations. Note that χDFT = 10−5 is also

the default in CPMD.5
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4K. Lorenzen, M. Schwörer, P. Tröster, S. Mates, and P. Tavan, J. Chem. Theory Comput.

8, 3628 (2012).

5J. Hutter, A. Alavi, T. Deutsch, M. Bernasconi, S. Goedecker, D. Marx, M. Tuckerman,

and M. Parrinello, CPMD: Car–Parinello Molecular Dynamics, version 3.15.1, c© IBM

Corp 1990–2008 and MPI für Festkörperforschung Stuttgart 1997–2001, www.cpmd.org.

S5



48



2.2 Steigerung der Effizienz von DFT/PMM

2.2 Steigerung der Effizienz von DFT/PMM

Die nachfolgend abgedruckte Publikation

Utilizing Fast Multipole Expansions for Efficient and Accurate
Quantum-Classical Molecular Dynamics Simulations

Magnus Schwörer, Konstantin Lorenzen, Gerald Mathias und Paul Tavan
J. Chem. Phys. 142, 104108 (2015),

die ich zusammen mit Konstantin Lorenzen, Gerald Mathias und Paul Tavan verfasst
habe, zeigt, wie sich die Performanz der DFT/PMM-Kopplung durch Anwendung des
mittlerweile entwickelten neuen SAMMχ-Algorithmus [109, 127] um eine Größenord-
nung erhöhen lässt. Dazu wird einer neuen Ebene von Subvolumina des DFT-Fragments
(Voxel) eingeführt, und die tatsächliche Ausdehnung der DFT-Ladungsverteilung bei
der Berechnung der für SAMM nötigen Gyrationsradien berücksichtigt. Ferner wird die
Integration des DFT-Programms CPMD [152] in das PMM-MD-Programm IPHIGE-
NIE beschrieben und das Skalierungsverhalten des neuen Hybridprogramms IPHIGE-
NIE/CPMD auf Großrechnern untersucht.
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Utilizing fast multipole expansions for efficient and accurate
quantum-classical molecular dynamics simulations

Magnus Schwörer, Konstantin Lorenzen, Gerald Mathias, and Paul Tavana)

Lehrstuhl für BioMolekulare Optik, Ludwig–Maximilians Universität München,
Oettingenstr. 67, 80538 München, Germany

(Received 16 January 2015; accepted 25 February 2015; published online 12 March 2015)

Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular
dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103
(2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional
theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force
field for a large solvent environment composed of several 103-105 molecules as negative gradi-
ents of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described
by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM tech-
nique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly en-
tails a strictly linear scaling of the computational effort with the system size, and adapting
this revised FMM approach to the computation of the interactions between the DFT and PMM
fragments of a simulation system, here, we show how one can further enhance the efficiency
and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as
measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in
efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the
jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables
the efficient use of high-performance computing systems. The associated software is available
online. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4914329]

I. INTRODUCTION

We have recently presented a novel quantum-classical1–3

approach for molecular dynamics (MD) simulations, which
combines density functional theory4,5 (DFT) for a subsystem
with (polarizable) molecular mechanics [(P)MM] force fields
atomistically modeling its condensed phase environment.6

Like other schemes, which combine high-level quantum
mechanical (QM) methods with PMM force fields for hybrid
MD simulations,7–13 our DFT/PMM approach also provides
the required analytical gradients. Our hybrid method, in
particular, accomplishes for sizeable DFT fragments an effi-
cient treatment of large condensed-phase PMM environments
by applying a fast multipole method14–21 (FMM) to the
electrostatic interactions.6,22

More specifically, our DFT/PMM scheme combines
the grid-based and parallelized plane-wave DFT program
CPMD23 with the parallelized PMM-MD program
IPHIGENIE6,21,24–26 and enables efficient and accurate Hamil-
tonian MD simulations of such hybrid DFT/PMM systems.
Applying toroidal boundary conditions,27 the long-range
electrostatics is treated by the fourth order structure-adapted
fast multipole method,21 SAMM4, within interaction spheres
of radius dMIC surrounding the atoms. For distances beyond
dMIC, which is given by the minimum image convention27 and
is about half the size of the periodic unit cell, the electrostatics
is described by a reaction field (RF) approach.20

a)Electronic mail: paul.tavan@physik.uni-muenchen.de

As discussed in detail by Lorenzen et al.,24 the resulting
SAMM4/RF algorithm is a non-periodic alternative to the lat-
tice summations (LS) of the Ewald type28–30 for the treatment
of the long-range electrostatics in MM31 and QM/MM32–35

MD simulations. Replacing the RF model, SAMM4 could
alternatively be combined with a LS approach, treating the
interactions among the Cartesian point multipoles36 of the top-
level clusters and all their periodic images with a real-space
cutoff as large as dMIC. Because both alternatives exclusively
deal with the multipole moments of the few top-level clusters,
they can be equally well applied to (P)MM and DFT/(P)MM
systems.

Like its predecessors,17–19 SAMM4/RF also maps the
atoms of a simulation system onto a quaternary tree of
nested atomic clusters, whose lowest level consists of fixed
chemical motifs, the so-called structural units (SUs), whereas
its higher levels are adaptively formed by self-organizing
clustering algorithms.24 Furthermore, also SAMM4 applies
fixed distance classes to the decisions, whether large clusters
of atoms should be decomposed into the enclosed sub-clusters
for the hierarchical computation of the electrostatics, which
characterizes FMM.14–16 Here, particularly the innermost
class boundary, which is marked by SU distances smaller
than a limiting distance d0, signifies the transition from the
approximate FMM treatment of the electrostatic interactions
among SUs to exact descriptions for their constituent atoms.
In SAMM4, this distance d0 concurrently represents the cutoff
distance for the van der Waals interactions, for which values
in the range of about 10-15 Å are common choices in force

0021-9606/2015/142(10)/104108/12/$30.00 142, 104108-1 © 2015 AIP Publishing LLC
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fields37–41 for bio-molecular simulation. Correspondingly,
SAMM4 also employs values for d0 from this range.21

However, the use of fixed distance classes does not
take full advantage of the FMM concept, whose expansion
parameter is the apparent size ϑ ≡ 2R̃/r at which a cluster of
atoms of diameter 2R̃ appears at a distance r . If one wants
to concurrently optimize the computational accuracy and
efficiency, i.e., the performance, then the so-called interaction
acceptance criterion (IAC), upon which the algorithm decides
whether a pair of clusters is small and distant enough for a
sufficiently accurate FMM description, should be based on
their apparent sizes ϑ.

By extending the FMM scheme toward q’th order
expansions (q = 1,2,3) of the dispersion attraction (∼ − 1/r6)
and subsequently, also to first order expansions for the
Lennard-Jones model (∼1/r12) of the Pauli repulsion, SAMM4
has been recently revised toward the use of an IAC, which
now actually employs the apparent size ϑ for decisions.24,42

Additionally, the SAMM algorithms were augmented by
representing the FMM forces as exact derivatives of the
FMM energy expressions.42 A corresponding algorithm is
marked by an additional superscript “E”. Three variants χ ∈
{f,m, a} of the thus obtained SAMMχ,E

4,q,1/RF algorithm were
defined, where the label χ characterizes the performances
ranging from “fast and still reasonably accurate” (χ = f) over
“intermediate” (χ = m) to “very accurate but comparatively
slow” (χ = a). Because the apparent size ϑ is calculated from
accuracy weighted cluster radii R̃ ≡ R/a, where R is a cluster’s
radius of gyration and a ≥ 1 an accuracy correction factor,
these performances are almost independent of the chemical
composition of the respective simulation system.24

As demonstrated for MM and PMM sample simula-
tion systems,24,42 the accuracy and efficiency of these new
SAMMχ,E

4,q,1/RF algorithms for the computation of the electro-
static and van der Waals interactions clearly outperforms the
preceding distance class algorithm SAMM4/RF. Furthermore,
a strict linear scaling of the computational effort has been
demonstrated24 for N-atomic systems with N up to 105. In the
case of liquid water, the treatment of the complex PMM model
potential, which features five point charges and an inducible
Gaussian dipole and is called TL6P,43 turned out to be only by
a factor five more expensive than the simulation of the simple
three-point MM model, TIP3P.44

The strongly improved performance of the revised and
extended SAMMχ,E

4,q,1 algorithms immediately suggests that
their integration into the hybrid DFT/PMM scheme6 men-
tioned above should also lead to a likewise enhanced perfor-
mance here. It is the purpose of this contribution to show that
this aim can be actually reached, if the previous computational
strategy of the DFT/PMM interface is thoroughly revised
toward an IAC, which is based on apparent sizes ϑ.

For distant atomic clusters, this revision will turn out to
be almost trivial, if one assigns suitable sizes to clusters con-
taining DFT atoms. Then, one simply can replace the SAMM4
distance class scheme21 by the novel IAC of SAMMχ,E

4,q,1,
which considers apparent sizes ϑ.24 For the lower interaction
levels, however, which treat the electrostatic interactions of
individual PMM atoms with the charge density distributed on
the DFT grid,6 the new IAC offers the possibility to extend the

FMM concepts toward hierarchically nested sub-volumes of
the DFT grid.

Following this route, one should be able to achieve large
performance gains, because it entails the chance to strongly
reduce the number of PMM atoms, for which one has to
compute the electrostatic interactions with the huge number
Γ > 106 of DFT grid charges qγ (γ = 1, . . . ,Γ) by means of
costly exact pair expressions. Combining atomic sized sub-
volumes of the DFT grid with an IAC based on their apparent
size will leave only very few PMM atoms at distances too small
for the much more efficient calculation of the interactions by
FMM expressions.

In our following presentation of the revised interface
between the DFT program CPMD23 and the PMM-MD pro-
gram IPHIGENIE,6,21,24,25 we first rehash the basic concepts
leading to a symmetric and essentially energy conserving
FMM treatment of the electrostatics in a DFT/PMM setting.6

Subsequently, we sketch the new hierarchical partitioning of
the DFT grid, which favorably exploits the new IAC offered
by SAMMχ,E

4,q,1.
24 Next, we introduce as a sample simulation

system, a DFT dipeptide (Ac-Ala-NHMe) embedded in
liquid PMM water as modeled by the TL6P potential43 and
describe the observables employed for checks of efficiency
and accuracy. For this sample system, we study issues of
algorithmic performance in MD simulations. After a few
remarks on the jointly parallel implementation of IPHIGENIE
and CPMD and on its scaling properties on high-performance
computing (HPC) systems, we summarize the achievements
resulting from the revision of the interface.

II. THEORY

An optimally performing and Hamiltonian computation
of the electrostatic interactions between the DFT and PMM
fragments is a key task in corresponding hybrid methods.6 We
start with a short introduction into the algorithmic concepts
employed in FMM combinations of grid-based DFT with
PMM force fields and subsequently turn to the revisions
aiming at an enhanced performance.

A. Basics of DFT/PMM electrostatic interactions

The electrostatic DFT/PMM interaction energy HDFT/PMM
elec

can be decomposed by

HDFT/PMM
elec =


dr [ρe(r) + ρc(r)]Φ(r) (1)

into the energies of the DFT fragment’s electron (ρe) and core
(ρc) charge densities in the external potential Φ generated
by the PMM fragment. Here, solely the computation of the
electronic contribution poses a challenge.6

In grid-based programs like CPMD,23 ρe(r) is represented
by point charges qγ residing at the locations rγ of all Γ grid
points γ. For a given DFT box, which we initially assume
to be cubic, the spatial resolution of the grid, and thus, the
number Γ are determined by the plane-wave cutoff energy
Ecut. Typically, one has Γ ≈ 106. The electronic contribution
to Eq. (1) is then the extended sum


γ qγΦ(rγ).
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Thus, in a DFT/PMM computation, the external potential
Φ has to be evaluated at all points rγ. To avoid singularities
of Φ within the volume V of the DFT box, which would
arise from enclosed PMM point charges or dipoles, smooth
models6,22,45–47 have to be used for generating static partial
charges qi and induced dipoles pi of the PMM atoms i. For
point-like objects at ri, a possible choice is the smoothing by
a Gaussian shape function6,22,46

g(r | ri,σi) = 1
(2πσ2

i )3/2
exp


− (r − ri)2

2σ2
i


. (2)

Here, different widths σi . 0.8 Å may be employed for the
various PMM charges and induced dipoles.48 The Gaussian
character can be approximately neglected as soon as the scaled
distance |r − ri |/σi exceeds a certain threshold n, which we
will determine by an analysis of the Gaussian truncation errors.

Once all values Φ(rγ) have been calculated for a given
static configuration of the system, the iterative computation
of the Kohn-Sham (KS) orbitals5 can be initiated. In a joint
iteration, which involves the repeated computation of the
mutual polarization of the grid charges and of the induced
PMM dipoles, the KS orbitals and the induced dipoles have
to be brought to self-consistency.6 Finally, the converged DFT
charge distribution yields the forces on the M DFT atoms
µ (µ = 1, . . . , M) and the electrostatic reaction forces on the
PMM atoms i as the negative gradients of the Hamiltonian (1)
with respect to the atomic positions.

Without further provisions the above tasks would involve
as many as 1010 distance calculations already for small DFT
and PMM fragments. Integrating the DFT fragment into a
FMM scheme can substantially reduce this computational
effort by more than two orders of magnitude.6,22,45 Here, we
will now show that another large performance gain can be
achieved, if the DFT/PMM electrostatics is systematically
adapted to the most recent FMM approach provided by
SAMMχ,E

4,q,1.
24,42

B. SAMMχ,E
4,q,1

SAMMχ,E
4,q,1 collects atoms into hierarchically nested

clusters of increasing size and calculates their electrostatic
interactions by balanced m’th order multipole and n’th order
local Taylor expansions up to order m + n = 4 around their
centers of geometry. Similarly, the dispersion attraction is
treated by FMM expansions up to order q ≤ 3,24 whereas
the expansions of the Pauli repulsion are restricted to order
1.42 The resulting forces obey Newton’s reaction principle21

and conserve the FMM energy.42 The removed 10 Å cutoff of
the van der Waals interactions leads to a strongly enhanced
accuracy and enables a decrease of the minimum distance
d0, at which two clusters of a PMM simulation system are
allowed to interact at the lowest level of the FMM cluster
hierarchy, to about 5.5 - 7.5 Å. Because the computational
effort is dominated by the costly atomic pair interactions,
which have to be evaluated for distances smaller than d0, the
reduced d0 leads for SAMMχ,E

4,1,1 to much smaller numbers of
such interactions and, thus, to speedup factors in the range
from 5 (χ = f) to 2 (χ = a).

The quality of the SAMMχ,E
4,q,1 approximations for the

interaction of two clusters A and B, whose geometric centers
are a distance r apart, is controlled by the IAC formula24

1
2
�
ϑA,l(r) + ϑB,l(r)� ≤ Θχ, (3)

where Θχ is a certain threshold and

ϑA,l(r) ≡ 1
aA,l

2RA,l

r
(4)

is the accuracy weighted apparent size of a cluster A on FMM
cluster level l, whose radius of gyration is denoted by RA,l.
The accuracy correction 1 ≤ aA,l ≤ 1.8 depends, for (P)MM
clusters, on their geometry and electrostatic signature.24 For
DFT clusters A, which occupy a SAMM cluster level l ≤ 0,
we choose aA,l = 1. Note that here we employ the SAMM
numbering19,21 of clustering levels according to which the
level l = 0 is composed of predefined SUs comprising 3 to
16 atoms (for most recent definitions, see Ref. 24). Levels
l > 0 contain compact clusters comprising on average four
clusters collected from level l − 1, whereas the level l = −1
consists of individual atoms.24

Having chosen a certain threshold Θχ, χ ∈ {f, m, a}, the
interaction between two clusters A and B is calculated on
hierarchy level l, if the IAC (3) holds. Otherwise, the two
clusters are decomposed into their children and (3) is checked
again for the children interactions on level l − 1. SAMMχ,E

4,q,1
offers the accuracy thresholds Θf = 0.25, Θm = 0.20, and
Θa = 0.17, which represent different and quantitatively well-
defined compromises between efficiency and accuracy.24

C. Exploiting SAMMχ,E
4,q,1 for DFT/PMM interactions

According to the IAC (3) and the definition (4) of the
apparent size ϑA,l(r) of a cluster A, the interaction of two
clusters on level l can be efficiently calculated by FMM down
to very small cluster-cluster distances r , if the radii of gyration
are correspondingly small. Consider now the electrostatic
interaction of a PMM atom i with a nearby DFT atom µ
and assume that the enclosing SUs fail to pass the IAC (3) at
level l = 0. In a pure PMM setting, this interaction would then
have to be treated at the SAMM level l = −1 using exact pair
expressions.

In a DFT/PMM setting, however, we have to compute
the electrostatic potential Φ(r) generated by the PMM atoms
i not only at the positions rµ of the few DFT atoms µ, but
additionally at all points rγ of the whole DFT grid. Given a
predefined accuracy level χ, this task is executed at maximal
computational efficiency, if FMM expansions are used for as
many grid points γ as possible.

For an IAC based on apparent sizes ϑ, the elementary
FMM interaction partners of the PMM atoms i should thus be
small and equally sized portions of the spatially quite extended
distribution of grid charges qγ. We define these portions by
commensurably partitioning the DFT grid into sub-volumes
Vλ (λ = 1, . . . , Λ) of atomic size, which we call voxels. For a
cubic DFT grid, the voxels are then also cubic. Measuring the
common size of the voxels by their radius of gyration RΛ and
noting that the radius of gyration Ri of a PMM atom i vanishes,
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Eqs. (4) and (3) demonstrate that i does not contribute to the
IAC.

For this case, the general FMM IAC (3) should be
modified to the so-called FMM voxel IAC,

2RΛ/rλi ≤ Θχ, (5)

where we have set the accuracy weight in (4) to one and have
replaced the average radius of gyration by RΛ. Because RΛ is
small, the distances rλi between the centers of geometry of the
volumes Vλ, which enclose the grid portions λ, and the PMM
atoms i can become correspondingly small and the above
objective is reached. On the other hand, the computational
effort will eventually increase again with decreasing RΛ,
because the number of FMM expansions grows with Λ
∼ (1/RΛ)3. As a result, there will be an optimal value for
RΛ.

In summary, it is advantageous to hierarchically parti-
tion the grid charge distribution into a nested set of sub-
distributions of decreasing size until the optimal size is
reached. From a series of preliminary DFT/PMM test calcu-
lations, we found that not more than two new hierarchy
levels l = −2 and l = −3 beyond the SAMM levels17,18 l = −1,
0, 1, . . . (cf. Sec. II B), are required (data not shown). The
optimal voxel size RΛ will be determined below in Sec. IV C.

1. Definition of a new lowest DFT/PMM cluster level

Figure 1 sketches the volume V of a DFT box by a black
square, an enclosed DFT grid by Γ = 64 light gray dots, and
a disjoint decomposition of V into Λ = 16 voxels λ with
volumes Vλ = VΛ ≡ V/Λ by gray-dashed squares. The DFT
box is centered around a water molecule (black) representing
a sample DFT fragment. Two light gray water molecules depict
a part of the PMM fragment.

The radius RΛ = V 1/3
Λ
/2 of the dotted circle inscribed into

the bottom right voxel λ (gray background) is the radius of
gyration of this cubic voxel. λ is surrounded by a sphere
of radius dΛ,−2 ≡ 2RΛ/Θχ (dashed black lines), which is the
smallest distance still acceptable by the FMM voxel IAC (5)
for reasonably accurate FMM descriptions of Φ(rγ) on the
grid points γ ∈ λ. For PMM atoms i closer to the geometrical
center rλ (cross) of the voxel λ, the costly electrostatic pair
interactions of their Gaussian charges and dipoles with the
grid charges qγ located within λ have to be evaluated (at level
l = −3).

FIG. 1. Visualization of the FMM voxel IAC (5) separating the SAMM
levels l =−3 and l =−2 of the DFT/PMM electrostatics computation. For
explanation, see the text.

FIG. 2. Schematic illustration of the Gaussian truncation IAC (6) concentrat-
ing on the bottom right voxel λ (gray background) discussed in Fig. 1. Also
here, the FMM IAC (5) is indicated by the dashed black lines. Additionally,
the Gaussian IAC is depicted for an O atom by dot-dashed and for a H atom
by dotted lines. The O atom apparently fails the Gaussian IAC, because it is
too close to the center of geometry (cross) of λ.

If one solely considered the FMM voxel IAC (5), then
the interaction of more distant PMM atoms i with the grid
charges qγ enclosed by the voxel λ would be calculated by
FMM expansions, which neglect the finite Gaussian widths
σi of the atomic charge and dipole distributions. However,
at distances rγi shorter than nnumσi, the representation of
Gaussian charges and dipoles by point objects starts to entail
numerical errors [nnum = 8.7 at double precision; cf. also the
discussion of Eq. (2)]. If the FMM voxel IAC (5) allows such
distances, these Gaussian truncation errors add up to the FMM
errors.

In Sec. IV A below, we will require that the Gaussian
truncation errors should be much smaller than the FMM errors.
This requirement will then determine a standard value nG for
the Gaussian cutoff parameter n appearing in the additional
voxel IAC,

rλi > nσi, with n < nnum, (6)

according to which a Gaussian PMM source i of width σi can
be replaced by a point-like source, if its distance rλi from a
voxel λ exceeds nσi. Thus, the FMM IAC (5) and the Gaussian
truncation IAC (6) have to be simultaneously fulfilled for a
sufficiently accurate FMM computation (at level l = −2) of
the electrostatic interactions between a Gaussian PMM source
i and the grid charges qγ enclosed by the voxel λ.

Figure 2 illustrates the additional voxel IAC (6) for a
PMM water molecule featuring Gaussian charge distributions
of widths σO at the oxygen and σH < σO at the hydrogen
atoms, respectively. In the depicted configuration, the FMM
IAC (5) allows FMM for the two rightmost atoms H and O,
whereas the Gaussian truncation IAC (6) enables FMM solely
for the H atom at the right. It thus enforces, in particular,
the exact evaluation of the potential generated by a Gaussian
charge or induced dipole of the O atom at all points γ of the
voxel λ (which is the computational mode at level l = −3).

2. The next higher DFT/PMM cluster level

With increasing distances rλi, the SAMMχ,E
4,q,1 expansions

within a voxel λ become rapidly much more accurate. At
distances rλi ≫ 2RΛ/Θχ, a comparably accurate description
can therefore be achieved by merging several portions λ of the
distribution of grid charges into larger clusters.
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FIG. 3. Visualization of the atomic IAC (7) separating the SAMM levels l
=−2 and l =−1 of the DFT/PMM electrostatics computation. For explana-
tion, see the text.

Figure 3 illustrates our choice for combining voxels λ into
larger atomic portions Vµ of the DFT grid. For this purpose,
we employ a Voronoi tessellation of the DFT box (cf. Refs. 6
and 22), which is based on the locations rµ of the DFT atoms
and assigns each voxel λ to the DFT atom µ of least distance
|rµ − rλ| from its geometrical center rλ. Thus, each sub-volume
Vµ, which belongs to a DFT atom µ, is the union ∪Vλ(µ) of all
associated voxels λ(µ). The gray shading of five voxels in the
figure exemplifies this merging of voxels for a specific DFT
atom µ (black dot).

Furthermore, the figure also depicts the radius of gyration
Rµ (dotted circle), which belongs to the charge distribution
Cµ enclosed by Vµ, and a limiting distance dµ,−1 ≡ 2Rµ/Θχ

(dashed black lines). This distance follows from the properly
adjusted “atomic” IAC,

2Rµ/rµi ≤ Θχ, (7)

which is analogous to the FMM voxel IAC (5). At distances
rµi ≥ dµ,−1, FMM expansions around the position rµ of
the DFT atom µ are employed to compute the electrostatic
interactions of a PMM atom i with all grid charges qγ in the
cluster Cµ. At the given FMM level l = −1, the distances dµ,−1
are always large enough that the Gaussian character of the
PMM charge and dipole distributions can safely be neglected.

For an atom µ at the surface of the DFT fragment, the
atomic part Vµ of the DFT grid is quite large, because it extends
up to the boundary of the DFT box, where the electron density
vanishes by construction.23 Then, the size of Vµ is a poor
measure for the size Rµ of the atomic charge distribution Cµ.
A more appropriate measure is obtained by accounting for the
electron density through the positive weights

wγ =



1 for qγ > Qe/Γ

qγ/ (Qe/Γ) else
, (8)

which enter, after atomic normalization,

pµ
γ ≡

wγ
γ′∈Vµ

wγ′
, (9)

the computation of the radii of gyration,

Rµ =





γ∈Vµ

pµ
γ

�
rµ − rγ

�2


1/2

, (10)

FIG. 4. An alanine dipeptide molecule in a cubic DFT box of side length
14 Å harboring the DFT grid. The gray surface encloses all those grid
points, which contribute with maximal weights wγ = 1 [cf. Eq. (8)] to the
computation Eq. (10) of the radii of gyration Rµ of the DFT atoms.

of the atomic charge distributions Cµ. In Eq. (8), Qe =


γ qγ
is the total electron charge of the DFT fragment.

For the sample molecule alanine dipeptide, Figure 4
illustrates how the weights wγ describe the shape and extension
of an electron density. The depicted gray surface encloses all
those grid points, whose grid charges qγ exceed the threshold
Qe/Γ defined by the uniformly distributed electron density.
Because of Eq. (8), these grid points carry the maximal weights
wγ = 1. According to Eqs. (9) and (10), these grid points
provide the dominant contributions to the radii of gyration
Rµ of the DFT atoms µ. Grid points outside the gray surface
contribute only little. As a result, the Rµ actually provide
estimates for the extensions of the atomic electron densities
Cµ as desired for the FMM description of its electrostatic
interactions with surrounding PMM atoms. In the depicted
example, the Rµ are distributed around the average value of
1.19 Å with a standard deviation of only 0.15 Å. This average
value is clearly in the range expected for sizes of such atoms.

The choice of the weights wγ through Eq. (8) and
the resulting radii of gyration Rµ are, of course, somewhat
arbitrary. Therefore, we have studied alternative definitions
entailing larger Rµ. As documented in Sec. S1 of the
supplementary material,49 we found that the above choice
happens to be quite favorable.

At the highest FMM level l = −1 discussed so far, the
atomic radii Rµ and the distances rµi enter, as we have
seen above, the atomic IAC (7), which decides whether the
interaction of a PMM atom i with the charge density Cµ

can be treated by FMM expansions around rµ. At the next
higher level l = 0 of the SAMM cluster hierarchy,17,18,24 atoms
are combined into the predefined SUs (cf. Sec. II B). As
reference points for the SAMM expansions within atomic
clusters at levels l ≥ 0 we choose the geometrical centers of the
constituent atoms. If such clusters contain voluminous DFT
atoms, then the computation of cluster sizes should inherit the
extensions of the constituent atoms. For this purpose, Sec. S2
of the supplementary material49 introduces for all upper cluster
levels l ≥ 0 a computationally efficient bottom-up strategy,
by which one can calculate the radii of gyration of large
clusters from tensorial moments of gyration characterizing
the contained sub-clusters. This strategy resembles that of
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computing electrostatic moments bottom-up toward the top of
a FMM tree.

D. Discussion of the revised DFT/PMM cluster scheme

The above introduction of the two new cluster levels
covers the central ideas underlying our adaptation of the
DFT/PMM interface to the novel IAC decision strategy
realized by SAMMχ,E

4,q,1. The concepts and details of the
import of the external potential Φ(rγ) onto points γ of the
grid as well as the export of the electrostatic potential and
its derivatives generated by the various portions of the DFT
charge distribution at the positions ri of the PMM atoms have
been previously specified.6 For completeness, these issues are
presented for the revised cluster scheme in Sec. S3 of the
supplementary material.49

At levels higher than l = −1, which are omitted in
Fig. 3 but are indicated in the corresponding Figure 1
of the predecessor paper6 (with the slightly different level
numbering scheme lpre ≡ l + 2), the SAMMχ,E

4,q,1 computation
of the electrostatic interactions is identical to that in pure PMM
systems, which has been recently described in great detail.24

As mentioned above in Sec. I, we have adopted with
SAMMχ,E

4,q,1 another most recent42 algorithmic improvement.
Accordingly, the FMM forces are now exact negative gradients
of the FMM energy42 and thus enable energy conserving MD
simulations also for clusters moving relative to each other.
Section S4 in the supplementary material49 illustrates this fact
by a sample DFT/PMM-MD simulation.

The remainder of this contribution will serve to illustrate
the performance gains entailed by the consequent integration
of a grid-based DFT method into the up-to-date FMM scheme
SAMMχ,E

4,q,1, which had been originally developed24,42 for the
treatment of long-range interactions in PMM-MD simulations.

III. METHODS

As our condensed-phase DFT/PMM test system we chose
an alanine dipeptide molecule (Ac-Ala-NHMe) representing
the DFT fragment, which is embedded in a system of PMM
water models described by the recent TL6P potential.43,50

A. DFT/PMM simulation setup

The DFT fragment Ac-Ala-NHMe was centered in a cubic
DFT box of size (14 Å)3. It was described by the gradient-
corrected exchange functional of Becke,51 by the corre-
lation functional of Lee, Yang, and Parr,52 and by the norm-
conserving pseudo-potentials of Troullier and Martins.53 The
chosen plane-wave cutoff of 100 Ry led to Γ = 1803 grid
points. The DFT convergence criterion was χDFT = 10−8 in
accuracy checks and 10−6 in DFT/PMM-MD simulations.

The polarizable six-point potential TL6P43 for water
features a rigid liquid phase geometry, two positive charges
at the H atoms, three massless negative charges M, L1, and
L2 in the vicinity of the O atom, and a Gaussian induced
dipole distribution of width σO = 0.806 Å at O. Van der Waals
interactions among TL6P water molecules are represented by
Buckingham potentials, whereas those with the atoms of the

DFT fragment are expressed through an almost equivalent
12-6 Lennard-Jones potential.43 Lennard-Jones parameters for
alanine dipeptide were taken from the CHARMM22 force
field.39 The dielectric constant of the RF was ϵ = 78 and the
PMM convergence threshold was χPMM = 10−4 D.6

According to Sec. II A, static partial charges of PMM
atoms are represented by Gaussian distributions, if they are in
the immediate neighborhood of the DFT fragment. Following
Ref. 54, we chose the widths σM = σL = 0.46 Å for the in-
plane (M) and out-of-plane (L1, L2) massless charges and
σH = 0.24 Å for the partial charges at the H atoms.

Simulation systems were constructed in a PMM setting.
A periodic cubic box with the volume V = (51.29 Å)3
was filled with N = 4487 TL6P water molecules and one
CHARMM22 model39 of alanine dipeptide such that the
system’s density corresponds to the experimental density of
water at standard conditions. The system was equilibrated
by SAMMf, E

4,1,1/RF-MD for 1.5 ns with a Bussi thermostat55

(target temperature T0 = 300 K, relaxation time 1 ps) using a
1 fs time step for the dynamics integration with the velocity
Verlet algorithm56 and keeping all bond lengths involving H
atoms fixed by the MSHAKE57 and RATTLE58 algorithms
(relative tolerance 10−10). From the end of this simulation,
16 statistically independent snapshots were drawn at 20 ps
temporal delays.

Accuracy and efficiency of the revised DFT/PMM inter-
face were checked for the three SAMMχ,E

4,1,1 algorithms24

defined by χ ∈ {f,m,a} and were compared with the perfor-
mance of the previous6,21 interface, which had been based on
the SAMM4 distance class scheme. The DFT/PMM accuracy
parameter6 d(C 0

µ ) of SAMM4 was chosen as 8 Å. The original
suggestion6 of 6 Å turned out to yield too poor approximations
of the external potential near the edges of the DFT box,
occasionally causing convergence problems of the KS orbitals.
The revised choice d(C 0

µ ) = 8 Å removed these instabilities.
For accuracy checks, the 16 snapshots were employed

to generate an ensemble S of static solvation structures.
Taking advantage of the periodicity, the DFT fragment was
shifted to the center of the PMM simulation box. The sources
generating the external potential Φ(rγ) at the points of the
DFT grid were restricted to the TL6P water molecules in the
central simulation box, thus neglecting the periodic copies.
This restriction served to avoid possible artifacts connected
with the boundary at dMIC, at which the explicit electrostatics
treatment is smoothly changed into a RF description, but does
not hamper the transferability of the accuracy measurements
to fully periodic systems described by SAMMχ,E

4,q,1/RF.

B. Accuracy measures

To assess the accuracies of the four SAMM algorithms,
which were mentioned above and offer different FMM
approximations for the computation of the DFT/PMM electro-
statics, we compare, on the whole DFT grid, the deviations
of the approximate external potentials Φ from associated
exact references Φref. For a most compact notation of our
basic accuracy measure, we introduce the average ⟨ f ⟩Γ
≡ (1/Γ)γ f (rγ) of a quantity f (rγ) defined at all Γ points γ of
the DFT grid. Next, we consider for a given structural snapshot
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the dimensionless root mean square deviation (RMSD)

ξ(Φ,Φref) =
 
(Φ − Φref)2�

Γ
(Φref)2�Γ − 
Φref
�

2
Γ

(11)

of an approximate potential Φ from the respective exact
reference Φref, whose variance provides an intrinsic scale.
Then, our basic accuracy measure ⟨ξ(Φ,Φref)⟩S is the average
⟨. . . ⟩S ≡ (1/16)S . . . over the snapshot ensemble S.

The accuracy of the external SAMMχ,E
4,1,1 potential Φ,

which acts on the DFT fragment, is steered by the parameters
Θ and n [cf. the FMM IACs (3), (5), (7), and the Gaussian
truncation IAC (6)], that is,

Φ(rγ) ≡ Φ(rγ |Θ,n). (12)

For the computation of the exact referencesΦref, the following
parameters were chosen:

Φref(rγ) ≡ Φ(rγ | 0,nnum). (13)

Because the threshold Θ of the FMM IACs (3), (5), and (7) is
set to zero, the minimal distance between finite size clusters,
which is just compatible with a FMM description, diverges.
Therefore, all DFT/PMM interactions are calculated on level
l = −3, i.e., the potential generated by the charges and dipoles
of all PMM atoms is evaluated by exact pair expressions at all
grid points γ. The choice n = nnum in the Gaussian truncation
IAC (6) dictates that the action of the Gaussian sources is
computed on the whole grid at numerical accuracy.

The FMM accuracy can be separately analyzed by consid-
ering the ensemble average deviation DFMM of potentials ΦP
and Φref

P , which are generated by point-like sources (σi = 0).
With the arbitrary choice n = 0 in the Gaussian IAC (6), this
deviation,

DFMM(Θχ) ≡ 

ξ[ΦP(Θχ,0),Φref

P (0,0)]�S, (14)

solely depends on the parameter Θχ, which tunes the FMM
IACs (3), (5), and (7) used for the computation of the ap-
proximate potential ΦP(rγ | Θχ,0).

Similarly, one can single out the size of the Gaussian
truncation error by considering the deviation

DGauss(n) ≡ 

ξ[Φ(0,n),Φref(0,nnum)]�S. (15)

Here, the approximation Φ(rγ | 0,n) differs from Φref(rγ | 0,
nnum) solely by using in the IAC (6) a Gaussian truncation
parameter n < nnum.

Finally, the total error is measured by the ensemble
average deviation

DΦ(Θχ,n) ≡ 

ξ[Φ(Θχ,n),Φref(0,nnum)]�S (16)

of the approximate SAMMχ,E
4,1,1 potentialΦ(rγ), which depends

on the joint action of all IACs, (3), (5), (6), (7), from the exact
reference Φref(rγ).

We furthermore measure the SAMMχ,E
4,1,1 errors of the total

forces fµ acting on the DFT atoms µ by the average RMSD,

Df(Θχ,n) ≡ 1
σf


1

3M



µ



α

�
fµ,α(Θχ,n) − f ref

µ,α

�2


S
(17)

measured in units of the average standard force deviation

σf ≡


1
3M



µ



α

�
f ref
µ,α

�2


S
, (18)

where µ counts the M DFT atoms and α the Cartesian compo-
nents x, y , and z. The force components f ref

µ,α are calculated by
CPMD from the reference potential Φref, whereas the forces
fµ,α(Θχ,n) are calculated from the approximate potential
Φ(Θχ,n).

Note that the force errors (17) are calculated, just as
those of the potential [Eq. (16)], in a “realistic” setting, i.e.,
they include the FMM and the Gaussian truncation errors.
Here, one cannot separately address the FMM errors, because
replacing the Gaussian PMM charges and dipoles by point
sources, which would be required for this error measurement
[cf. Eq. (14)], almost surely prevents a convergence of the KS
orbitals.

With the aim of demonstrating the progress achieved by
the transition to SAMMχ,E

4,1,1 through the revised interface, we
computed also with the previous SAMM4 interface corre-
sponding average deviations Dx(SAMM4), x ∈ {FMM,Φ, f}.

For x ∈ {Φ, f}, these SAMM4 data serve then as refer-
ences for the accuracy gains

Ax(χ) ≡ 1
Dx(Θχ,n)/Dx(SAMM4) (19)

of the SAMMχ,E
4,1,1 algorithms relative to their predecessor.

C. Efficiency measures

For estimates of the computational efficiency, we mea-
sured the total computer time Tf consumed per integration step
in 100 fs DFT/PMM-MD simulations of the dipeptide solvated
in TL6P water, which were executed in the NV E ensemble
with a time step of 0.5 fs. During such a DFT/PMM-MD
simulation, the KS orbitals and the induced PMM dipoles
have to be simultaneously brought to self-consistence. The
DFT computations executed for this task usually take much
longer than the time TΦ spent for the FMM-based import and
export of the electrostatics onto and from the DFT grid, which
we also measured.

The sketched timings Tx, x ∈ {Φ, f}, were used to
compute efficiency gains

Ex(χ) ≡ 1

Tx(SAMMχ,E
4,1,1)/Tx(SAMM4)

(20)

of the SAMMχ,E
4,1,1 algorithms relative to SAMM4.

The timings for efficiency checks were obtained using
C = 16 cores making up one node of the SuperMUC Petascale
System at the Leibniz Supercomputing Centre (LRZ) of the
Bavarian Academy of Sciences and Humanities in Munich.
This system was additionally used for scalability checks of the
parallel IPHIGENIE/CPMD implementation. Here, timings
Tf(C | SAMMa,E

4,1,1) were measured as a function of the number
C of employed cores and the parallel speedup is then given by

Uf(C) ≡ 1

Tf(C | SAMMa,E
4,1,1)/Tf(1 | SAMMa,E

4,1,1)
. (21)
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Analogously, one may define such a speedupUDFT(C) for the
DFT part of the calculation.

IV. RESULTS

The new DFT/PMM interface, which was adjusted to the
SAMMχ,E

4,1,1 family of algorithms, features two free parameters,
for which suitable values remain to be chosen. One is the size
RΛ of the voxels, which disjointly partition the DFT grid into
small sub-volumes as described in Sec. II C, and the other
the parameter n defined by the Gaussian truncation IAC (6).
Here, the Gaussian cutoff parameter n can affect the accuracy,
by which the external potential Φ(rγ) is computed. After a
choice nG for n which guarantees that the Gaussian truncation
error DGauss(nG) [cf. Eq. (15)] is always much smaller than the
FMM errors DFMM(Θχ) [cf. Eq. (14)], this accuracy should
not depend on RΛ because, by construction of the FMM IACs
(3), (5), and (7), the FMM errors DFMM(Θχ) are generally
independent of cluster sizes and, thus, particularly of the voxel
size RΛ.

Figure S20 in Sec. S5 of the supplementary material49

demonstrates that the FMM errors DFMM(Θχ) are actually
independent of RΛ also in our implementation. With the choice
RΛ ≈ 0.35 Å, which is arbitrary at this stage of the discussion,
we will now study the effects of the parameter n on the
Gaussian truncation errors DGauss(n).

A. Acceptable Gaussian truncation errors

Using the alanine dipeptide molecule solvated in TL6P
water as a typical sample system, we will now choose
a default value nG for n from the requirement that the
Gaussian truncation error DGauss(nG) should be at least by two
orders of magnitude smaller than the FMM errors DFMM(Θχ).
This choice seems to be reasonable, because it most likely
guarantees that the accuracy of the DFT/PMM forces, which
act on the DFT atoms, almost exclusively depends on the
accuracy of the FMM approximation.

Figure 5 enables such a choice, because it compares
the FMM errors DFMM(Θχ) of Φ(rγ) resulting for the three

FIG. 5. Error DGauss(n) as a function of the Gaussian truncation parameter
n defined by the IAC (6) (solid line). For comparison, the dashed horizontal
lines give the FMM errors DFMM(Θχ) for the algorithmic variants χ ∈
{f, m a} (green, blue, red; cf. also Fig. S20 in the supplementary material49).
The dotted line indicates our choice nG≡ 4 for n and the corresponding
DGauss(nG).

algorithmic variants χ with the n-dependence of the Gaussian
truncation error DGauss(n) for n ∈ [2.0,5.7]. The Gaussian
truncation IAC (6) implies for smaller values of n that
Gaussian sources (charge/dipole) are substituted by point-
like objects at correspondingly smaller distances and, thus,
render larger truncation errors DGauss(n). Taking the FMM
error DFMM(Θa) (red dashed line) of the most accurate
variant SAMMa,E

4,1,1 as a guideline, the default nG ≡ 4 for n
immediately follows from the accuracy requirement voiced
above.

B. Optimization of voxel sizes

The choice n = nG has fixed one of the two parameters,
which specify the revised DFT/PMM interface. The remaining
parameter is the voxel size RΛ, which does not affect the
accuracy but should influence the computational efficiency as
we have argued in the discussion of the FMM voxel IAC (5).

Equation (20) defines the efficiencies EΦ(χ), which
are gained, as compared to SAMM4, in the DFT/PMM
electrostatics computation with SAMMχ,E

4,1,1. Figure 6 shows
how the various efficiency gains EΦ(χ) depend on the voxel
size RΛ. According to the displayed data, the gains EΦ(χ)
become, independent of the chosen accuracy level χ, maximal
for voxel sizes R opt

Λ
≈ 0.35 Å. The existence of an optimal size

is readily understood by the following consideration:
According to the FMM voxel IAC (5), an increase of RΛ

reduces the number of PMM atoms, whose interactions with
the grid charges in a voxel can be efficiently treated by FMM
expansions at level l = −2. On the other hand, a decrease
of RΛ cubically increases the number of voxels partitioning
the DFT grid, and hence, a likewise increasing number of
FMM expansions has to be handled. These conflicting effects
are balanced at an optimal size R opt

Λ
, which happens to be

≈0.35 Å. Note that our program automatically partitions a
given grid by voxels, whose size is close to R opt

Λ
. Section S6

of the supplementary material49 generalizes this partitioning
to rectangular DFT boxes.

With the choices nG = 4 and R opt
Λ
≈ 0.35 Å for the

Gaussian truncation parameter and for the target voxel size,
respectively, the adaptation of the DFT/PMM interface to
the SAMMχ,E

4,1,1 family of FMM algorithms is complete. The
benefits of this transition can now be judged by considering
the performance gains,

Px(χ) ≡ Ex(χ)Ax(χ), (22)

FIG. 6. Efficiency gains EΦ of the import and export of the electrostatic in-
teractions onto and from the DFT grid [cf. Eq. (20)] measured for SAMMχ,E

4,1,1
(χ ∈ {f,m, a}, green, blue, red) relative to SAMM4 as a function of the voxel
size RΛ.
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FIG. 7. SAMMχ,E
4,1,1 efficiency gains Ex(χ) relative to SAMM4 measured for

the computation of (a) the electrostatic interactions between the DFT and
PMM fragments per integration step (x =Φ) and (b) an entire DFT/PMM-MD
integration step (x = f).

relative to the previous SAMM4-based interface with respect
to two tasks x, i.e., the computation of the electrostatic
interactions between the two fragments (x = Φ) and the
computation of the forces acting on the DFT atoms (x = f).
Equation (22) defines the performance gains for these tasks
simply as the product of the efficiency and accuracy gains
Ex(χ) [Eq. (20)] andAx(χ) [Eq. (19)], respectively. Note that,
in general, accuracy and efficiency are mutually contradicting
aspects of algorithmic performance. We start the discussion
of the achieved progress by considering the efficiency gains
Ex(χ).

C. Efficiency gains

The fact that the revised DFT/PMM interface handles the
subtask x = Φ more efficiently than its predecessor becomes
immediately apparent, if one looks once again at Figure 6
discussed above. The figure shows for the optimal voxel size
R opt
Λ

the maximal efficiency gains EΦ(χ) = 7.5, 5.1, and 3.7
for χ = f, m, and a, respectively.

These maximal gains EΦ(χ) are once more displayed by
Figure 7(a) to enable a visual comparison with the efficiency
gains Ef(χ) of the complete force calculation per DFT/PMM-
MD integration step, which are shown in Figure 7(b). The total
efficiency gains Ef(χ) additionally cover the times consumed
by the self-consistent computations of the KS orbitals and
of the induced PMM dipoles. They are in the range between
30% (f), 27% (m), and 22% (a) and, thus, are much smaller
than the gains EΦ(χ) of the DFT/PMM electrostatics subtask.
The latter gains do not transfer into correspondingly large
total gains Ef(χ), because the electrostatics subtask consumes
only 3% (f) up to 5% (a) of the total time. Nevertheless,
all SAMMχ,E

4,1,1 algorithms are noticeably more efficient than
SAMM4.

D. Accuracy gains

Now, the general contradiction between efficiency and
accuracy raises the question, whether the noted efficiency
gains are accompanied by accuracy losses. In contrast to this
simple conjecture, Figure 8 demonstrates that the revision
of the DFT/PMM interface leads, for all three SAMMχ,E

4,1,1
variants, to sizable accuracy gains Ax(χ) as defined by
Eq. (19) for the computations of (a) the external potential
Φ(rγ) and of (b) the forces acting on the DFT atoms.

FIG. 8. SAMMχ,E
4,1,1 accuracy gains Ax(χ) relative to SAMM4 resulting for

(a) the potential Φ(rγ) on the DFT grid (x =Φ) and (b) the forces fµ acting
on the DFT atoms (x = f).

The comparison of Figures 8(a) and 8(b) demonstrates
that the accuracy gains AΦ(χ) achieved for the computation
of the external potential Φ(rγ) are for all variants χ by about
a factor of 1.5 larger than the gains Af(χ) for the force
computation. Thus, the enhanced accuracy of the external
potential is not completely transferred through the self-
consistent computation of the KS orbitals and of the induced
PMM dipoles to the forces on the DFT atoms. Nevertheless, all
SAMMχ,E

4,1,1 forces fµ are more accurate than those calculated
with SAMM4 and this advantage amounts to about one order
of magnitude for the most accurate variant χ = a (Fig. 8(b)).

Within the new class of DFT/PMM algorithms, however,
accuracy gains of a variant χ should be measured with respect
to the most inaccurate variant χ = f. For χ ∈ {m, a}, the data
in Figure 8 then yield almost identical relative accuracy gains
concerning the potential Φ(rγ) and the atomic forces fµ, i.e.,
one finds

AΦ(χ)
AΦ(f) ≈

Af(χ)
Af(f) for χ ∈ {m, a}. (23)

Thus, more accurate potentials, which are obtained within
the new class of SAMMχ,E

4,1,1 interface algorithms by using
tighter FMM thresholds Θχ < Θf in the IACs (3), (5), and (7),
directly translate into more accurate forces. The relative gains
Af(χ)/Af(f) amount to a factor of about 3 for χ = m and
about 7.5 for χ = a.

The direct translation of the more accurate potentials
Φ(rγ) into more accurate forces fµ, which is expressed by
Eq. (23), additionally demonstrates that the accuracy gains
of the forces shown in Figure 8(b) are almost exclusively
due to the revised DFT/PMM electrostatics scheme presented
in Sec. II. The added FMM expansions for the Lennard-
Jones interactions and the newly introduced energy corrections
for the forces,42 in contrast, are of negligible importance
for the shown DFT/PMM accuracy gains Af(χ) (data of
corresponding test calculations not shown).

E. Total performance gains

Because the adaptation of the DFT/PMM interface to the
new class of SAMMχ,E

4,1,1 algorithms24,42 has rendered sizable
gains of accuracy and efficiency, it leads, by Eq. (22), to a
considerably improved performance.

A comparison of Figures 9(a) and 9(b) shows that the
performance gains PΦ(χ) reached for the subtask of the
DFT/PMM electrostatics computation are by factors 8 (χ = f)
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FIG. 9. Total SAMMχ,E
4,1,1 performance gains Px(χ)≡ Ex(χ)Ax(χ) com-

pared to SAMM4 calculated by Eq. (22) from the efficiency and accuracy
gains depicted in Figures 7 and 8.

to 5 (χ = a) larger than the total gains Pf(χ). All SAMMχ,E
4,1,1

algorithms outperform their predecessor SAMM4 in both
respects. The performance figures resemble the corresponding
accuracy graphs, 8(a) and 8(b), indicating that our algorithmic
revision of the DFT/PMM interface was focused on enhanced
accuracy rather than efficiency.

Figure 9(b), in particular, demonstrates that the total
DFT/PMM performance of SAMMa,E

4,1,1 beats that of SAMM4
by about one order of magnitude, whereas the gains of total
performance are smaller for the other variants χ ∈ {f, m}.
Hence, SAMMa,E

4,1,1 is apparently the best choice for DFT/
PMM-MD simulations with the IPHIGENIE/CPMD program
package, because its accuracy is better by factors 7.5 and
2.4, respectively, than that of the other variants χ ∈ {f, m},
whereas its efficiency is only by 7% and 3% smaller
(cf. Figs. 8(b) and 7(b)). Note that these conclusions equally
well apply to the SAMMa,E

4,3,1 algorithm, which applies a more
accurate FMM expansion to the dispersion attraction, because
the associated increase of computational effort is negligible in
a DFT/PMM setting.

F. Scalability of the MPI/OpenMP-parallel
implementation

Despite the considerable progress achieved by the inte-
gration of the electrostatic interactions between the DFT
and PMM fragments of a simulation system into a multiple-
scale FMM setting, DFT/PMM-MD simulations of large DFT
fragments embedded in extended PMM condensed phase
environments still pose huge computational tasks. Taking
advantage of parallel processing on many-core computers is
mandatory, if one wants to make such tasks manageable.

Therefore, we have spent some effort to jointly parallelize
the combination of the program packages IPHIGENIE (PMM-
MD) and CPMD (DFT) in such a way that it becomes suitable
for HPC systems. For this purpose, we have thoroughly revised
the technical aspects of the implementation.

Here, the FORTRAN code of CPMD is compiled as a
library and linked to the C program IPHIGENIE into one
executable, which allows a smooth and robust startup. During
the startup phase, the MD program IPHIGENIE calls the
FORTRAN routines of CPMD to set up the DFT calculation.
In the course of a simulation, CPMD is invoked at each
integration step through subroutine calls and manages the
exchange of the necessary data with IPHIGENIE by calling C
routines. Different numbers of MPI processes and/or OpenMP
threads can be assigned to the PMM and DFT calculations,

FIG. 10. Speedups Uf(C) of a DFT/PMM-MD integration step (red) using
C cores are compared with corresponding speedups UDFT(C) of the DFT
subtask (black). Circles refer to a pure MPI setup, whereas squares refer to
a hybrid parallelization employing four OpenMP threads (OMP 4) per MPI
process, whose number then is C/4. The gray dashed line marks the ideal
linear scaling.

respectively, allowing one to independently tune optimal
parallel setups for each of the two cooperating programs.

Although our sample DFT/PMM system is relatively
small for HPC applications, which are feasible with a
machine like the SuperMUC addressed in Sec. III C, we have
nevertheless employed it to measure the total speedup Uf(C)
of parallel processing gained with SAMMa,E

4,1,1 by using C CPU
cores. This speedup is defined by Eq. (21) and is compared in
Figure 10 with the corresponding speedupUDFT(C) achieved
by the well-scaling program CPMD for the DFT subtask.

It is the most important message of Figure 10 that the total
speedupsUf(C) of IPHIGENIE/CPMD are almost identical to
the DFT speedups UDFT(C) of CPMD for all core numbers
C in the considered range. This is a consequence of the
fact that IPHIGENIE and the DFT/PMM interface parallelize
sufficiently well such that the computational effort required
for the DFT subtask still dominates the total effort at large
C. As a result, one can execute, e.g., a 30 ps DFT/PMM
trajectory of our sample simulation system within one day,
such that three independent trajectories suffice59 to obtain a
well-resolved infrared spectrum of alanine dipeptide solvated
in water by Fourier transforming the trajectory µ(t) of its DFT
dipole moment.

V. SUMMARY

We have adjusted the DFT/PMM interface,6 which inte-
grates the grid-based DFT program CPMD into the PMM-MD
simulation program IPHIGENIE, to the recently suggested24,42

class of hierarchical FMM algorithms called SAMMχ,E
4,q,1,

which represents the FMM forces as negative gradients of
the FMM energy and replaces the previous cutoff of the 12-
6 Lennard-Jones interactions by FMM expansions of q’th
order for the dispersive and of first order for the repulsive
contributions.

For the purpose of this adjustment, we have partitioned
the electron density of the DFT fragment, which is represented
within the DFT box of volume V by the grid charges qγ, into
hierarchically nested charge clusters. The clusters at the lowest
level of this hierarchy (l = −3) are simply the grid charges qγ.
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One level above (l = −2) these charges are the contents of
equally sized voxels Vλ ⊂ V , whose radius of gyration is about
0.35 Å. At the next higher level (l = −1) of the DFT charge
cluster hierarchy, the voxels Vλ are associated to the DFT
atoms µ by the minimum distance criterion and are merged
into atomic portions Vµ of the box volume V . These partial
volumes Vµ harbor the atomic charge distributions Cµ with
radii of gyration [Eq. (10)] of about 1.2 Å. The characterized
DFT atoms are combined into predefined SUs, adaptively
formed clusters of SUs etc. making up the SAMM object
hierarchy24 on levels l ≥ 0. The DFT atoms hand their sizes
up to these higher levels by the procedures described in Sec.
S2 of the supplementary material.49

Given the hierarchically nested levels of (DFT) charge
distributions sketched above, the revised interface simply ap-
plies the top-down FMM approximation strategy characteristic
for SAMMχ,E

4,q,1. Starting at the highest level of the object
hierarchy, which harbors the largest clusters, the (average)
apparent cluster sizes ϑ are compared with the threshold
size Θχ to decide whether the non-bonded interactions can
be approximated at the given hierarchy level l by FMM
expansions. The corresponding FMM IACs employed for
these decisions are given by Eqs. (3), (5), and (7).

At the lowest level (l = −3), the DFT grid charges qγ
interact with charges and induced dipoles of PMM atoms i,
which are represented as Gaussian distributions of widthsσi to
avoid artificial perturbations of the electron density. Already at
the next higher level (l = −2), these distributions are replaced
by point objects, and the external potentialΦ(rγ) generated by
the point charges and induced point dipoles within the voxel
Vλ is computed by FMM. To keep the associated Gaussian
truncation error by two orders of magnitude smaller than the
FMM errors, the additional IAC rλi > 4σi has to hold at level
l = −2 [cf. Eq. (6)].

For the most accurate SAMMχ,E
4,1,1 variant defined by χ = a

(i.e., by the FMM threshold Θa = 0.17), we obtained for the
revised DFT/PMM interface a performance which beats that
of its predecessor by one order of magnitude as measured for
a sample DFT/PMM simulation system comprising 22 435
charges and 4487 induced dipoles in the aqueous PMM
environment and 22 atoms in the DFT model of the solute
alanine dipeptide. Here, the forces on the DFT atoms are by
about the same factor more accurate than previously, although
also the overall computational speed has been enhanced by
22%. This speedup is close to the limit, because the revised
DFT/PMM interface and the PMM part of the computation
meanwhile consume less than 8% of the total computation
time even for the given quite large PMM fragment, whereas
the much smaller DFT part takes all the rest.

As long as the Born-Oppenheimer MD simulation of the
DFT fragment is manageable with CPMD on a HPC machine,
also a DFT/PMM-MD simulation of a hybrid system remains
manageable with IPHIGENIE/CPMD, because both programs
are now integrated into a single parallelized program, in which
CPMD is the bottleneck. The previous DFT/PMM interface,
in contrast, had none of the technical features required for
the parallel use of many cores on a HPC system. Thus,
IPHIGENIE/CPMD is now ready for large-scale and stable
MD applications.

IPHIGENIE will be published in the near future (Mathias
et al., in preparation). But already, now the program is
available for download26 together with a preliminary docu-
mentation and several sample simulation systems. Those
parts of the DFT/PMM interface, which are integrated in
CPMD, are available online as a patch to the current23 CPMD
version 3.17.1 and will be contained in the next forthcoming
distribution of CPMD.

We would like to note that the presented interface
between the PMM-MD driver IPHIGENIE26 and the grid-
based DFT program CPMD23 should be transferable to other
grid-based DFT programs at a manageable programming effort
and without posing conceptual difficulties. Moreover, such
a transfer, specifically to the DFT program QUICKSTEP,60

offered by the program suite CP2K61 would be highly
desirable, because it treats hybrid functionals like B3LYP62,63

much more efficiently64,65 than CPMD.
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2.2 Steigerung der Effizienz von DFT/PMM

Der folgende Abdruck
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enthält zusätzliche Informationen zum vorangestellen Haupttext. In Abschnitt S1 wird
eine konservativere Wahl der bei der Berechnung der Gyrationsradien eingesetzten Ge-
wichtsparameter untersucht, Abschnitt S2 beschreibt detailliert die effiziente hierarchi-
sche Berechnung von Gyrationsradien. In Abschnitt S3 wird die Behandlung der elektro-
statischen DFT/PMM-Wechselwirkungen für das neue Voxel-basierte Kopplungsschema
dokumentiert, und in Abschnitt S4 die durch Anwendung des nochmals überarbeiteten
SAMMχ-Algorithmus [127] verbesserte Energieerhaltung bewiesen. Abschnitt S5 zeigt,
dass der FMM-Fehler durch die Konstruktion des Verfahrens unabhängig von der Grö-
ße der Voxel ist. In Abschnitt S6 wird schließlich der allgemeine Fall nicht-kubischer
quaderförmiger Voxel diskutiert.
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S1. ALTERNATIVE WEIGHTS

In Section II C 2 of the main text we have introduced weights wγ for the grid points γ by

comparing the grid charges qγ, which represent the electron density of the given molecule,

with the constant reference grid charge Qe/Γ representing the total electronic charge Qe

uniformly distributed on the Γ grid points. According to Eq. (8) all grid points with qγ >

Qe/Γ get the weight wγ = 1 defining the interior region of the electron charge distribution

ρe(r). The remaining grid points get the weights wγ = qγ/(Qe/Γ), which rapidly decay with

increasing distance from the surface surrounding the interior region of ρe(r).

The specific choice of the surface separating the interior and exterior regions of ρe(r)

accomplished by Eq. (8) is somewhat arbitrary, of course. Hence, the radii of gyration

(10) of the DFT atoms, which depend through the normalized atomic weights pµγ defined

by Eq. (9) on the weights wγ, inherit this arbitrariness. Consequently also the algorithmic

properties mediated by the atomic IAC (7) are affected.

With the aim of checking the algorithmic consequences of our choice (8) we additionally

considered other definitions of the separating surface, which are defined as an one-parameter

manifold by the modified weights

w̃γ(c) =





1 for qγ > cQe/Γ

qγ/(cQe/Γ) else
. (S24)

Obviously, one has w̃γ(1) = wγ. Choices c < 1 for the scaling parameter c lead to a larger

volume of the interior space until it eventually, in the limit c→ 0, fills the whole DFT box.

As a result also the atomic radii of gyration Rµ should increase with decreasing c.

To provide an example, a comparison of Figure S11, which employs the value c = 1/5000

to define the interior space of alanine dipeptide by w̃γ = 1, with Fig. 4 in the main text,

which is based on c = 1, demonstrates that the volume of the interior space actually increases

with decreasing c. Next, Figure S12 illustrates the effects of this increase for choices c from

the range [10−8, 1] on the radii of gyration Rµ of the three DFT atoms C, H1, and H2, which

are labeled in Fig. S11 .

Atom C is surrounded by other covalently linked atoms. Therefore its tessellation volume

VC is completely inside the gray surface shown in Fig. S11. Because the electron density in

VC is large, this volume will carry relatively large weights wγ(c) for all choices c < 1 and

the associated radius of gyration RC is independent of c. In contrast, the atoms H1 and H2
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H1

H2

C

FIG. S11. An alanine dipeptide molecule in a cubic DFT box of side length 14 Å harboring the

DFT grid. The gray surface encloses all those grid points, which contribute with maximal weights

w̃γ(1/5000) = 1 to the computation [Eqs. (9) and (10)] of the radii of gyration Rµ of the DFT

atoms. As compared to Fig. 4 in the main text, which shows the corresponding surface for w̃γ(1),

the interior region of ρe(r) has become larger.

are localized near the molecular surface such that their tessellation volumes contain many

grid points outside the gray surface. Thus, changing this surface by variation of c will alter

many of the weights associated to H1 and H2 and, therefore, the respective radii of gyration.

According to Figure S12 these radii monotonously decrease with increasing c < 1 starting

from maximal values at c = c0 ≡ 10−8, which lead to wγ(c0) = 1 for all γ.

For increasing c and correspondingly decreasing radii of gyration Rµ the limiting distance

dµ,−1 dictated by the atomic IAC (7) becomes smaller and the potential generated by more

and more nearby PMM atoms i can be efficiently covered by the FMM expansions at the

atomic level l = −1. Thus, the accuracy of Φ(rγ) should conversely decrease with growing c.

Using the error DΦ(Θχ) defined by Eq. (16) as a measure, Figure S13 demonstrates that this

is actually the case for all three SAMMχ,E
4,1,1 variants (χ ∈ {f,m, a}). The figure additionally

shows that the errors DΦ(Θχ) of the fastest variant χ = f are almost everywhere by a factor

FIG. S12. Radii of gyration Rµ for three DFT atoms C, H1, and H2 as a function of the scaling

parameter c.
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FIG. S13. The potential errors DΦ(Θχ) as functions of c for the three SAMMχ,E
4,1,1 variants

(χ ∈ {f,m, a}, green, blue, red). The dashed black line indicates DΦ(SAMM4) of the predecessor

algorithm. Error bars represent standard deviations.

of about 3.5 larger than those for χ = m and about 10 times larger than those for χ = a .

The potential error DΦ(SAMM4) of the previous SAMM4 interface (cf. Sec. III A) is

represented in Figure S13 by a black dashed line. For all χ and almost all choices of the

scaling parameter c this error is much larger than the errors DΦ(Θχ). Even at c = 1 it

is still slightly larger than the error DΦ(Θf) of the most inaccurate and supposedly most

efficient variant SAMMf,E
4,1,1. Because the previous SAMM4 based DFT/PMM interface had

been accurate enough for stable DFT/PMM-MD simulations, the choice c = 1 seems to

be reasonable. It implies quite small radii of gyration Rµ for the DFT atoms, which are

favorable for an enhanced efficiency.

FIG. S14. The errors Df(Θχ) of the forces on the DFT atoms, as functions of c for χ ∈ {f,m, a}
(green, blue, red) and the corresponding error for the predecessor algorithm (black).
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According to Figure S14 also the errors Df (Θχ) of the forces on the DFT atoms, which

are defined by Eq. (17), increase with the scaling parameter c. Varying c from c0 to one, the

increases of the force errors amount at most to a factor of about 1.7. Thus, these increases

are by a factor of about six smaller than those of the errors DΦ(Θχ) in Fig. S13.

Summarizing we may state that the choice (8) for the sizes of the DFT atoms, which cor-

responds to c = 1 in Eq. (S24), guarantees that forces on the DFT atoms are for SAMMχ,E
4,1,1

at least as accurate as those obtained with SAMM4. The correspondingly small Rµ render,

without significant loss of accuracy (cf. Fig. S14), more efficient algorithms than the larger

Rµ following from c� 1 (data on the efficiency Ef as a function of c not shown).

S2. HIERARCHICAL CALCULATION OF RADII OF GYRATION

As explained in Sections I and II of the main text, the SAMMχ,E
4,1,1 algorithms hierarchically

check in a top-down fashion by the IAC (3), whether the average aspect ratio (ϑA,l +ϑB,l)/2

of a pair of clusters A and B is small enough to allow a computation of interactions on a

given cluster level l. According to Eq. (4) the aspect ratio ϑA,l(r) of a cluster A linearly

depends on its radius of gyration RA,l.

Here we now will show that RA,l is determined by gyration tensors G
(n)
A,0 of order n = 2,

which can be efficiently calculated in a bottom-up fashion, just like electrostatic or dispersion

multipole moments,1,2 from the gyration moments G
(n)
a,0 of its children a ∈ A.

FIG. S15. Cluster geometry and vector notation.

Consider, as shown in Figure S15, a cluster A consisting of NA objects i at the positions

ri, an arbitrary reference point u, and the local position vectors ai = ri − u. Furthermore

assume that the points ri carry statistical weights 1 ≥ pi ≥ 0 with
∑

i pi = 1, which derive

from certain unnormalized weights wi ≥ 0 by pi = wi/WA with the norm

WA =
∑

i

wi. (S25)
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In Section II C 2 of the main text we have employed analogous weights wγ and their normal-

ized counterparts pµγ for the points γ of the DFT grid within the atomic volume Vµ to define

by Eqs. (8)-(10) the radius of gyration for a DFT atom µ. The following general discussion

contains this special case for i ≡ γ and pi ≡ pµγ .

For the hierarchical bottom-up computation of the radii of gyration we introduce the

local gyration moments

G
(n)
A,u ≡

NA∑

i=1

pi a
(n)
i , (S26)

where the symbol a
(n)
i is the n-fold outer tensor product of ai with itself (Ref. 1 thoroughly

explains the employed tensorial notation). Then the radius of gyration

Ru =

√√√√
NA∑

i=1

pi ai � ai (S27)

with respect to u of the objects i ∈ A can be expressed in terms of the second order gyration

moment as

Ru =

√
trace

(
G

(2)
A,u

)
. (S28)

Just like the multipole moments1 also the gyration moments (S26) can be easily shifted

to another reference point, e.g. from the origin 0 to a local reference point u. Choosing

u = 0 yields the gyration moments

G
(n)
A,0 =

NA∑

i=1

pi r
(n)
i (S29)

with respect to the origin. Trivially, the zero’th order moments are independent of the

reference point, i.e. G
(0)
A,u = G

(0)
A,0 = 1. Inserting ai = ri − u into the definition (S26) of the

local gyration moments one finds for the first moment

G
(1)
A,u = −u +

NA∑

i=1

pi ri. (S30)

According to the definition (S29), the second term is the first order gyration moment G
(1)
A,0

with respect to the origin and is identical to the center of geometry of cluster A as calculated

in the global coordinate system, i.e. G
(1)
A,u = −u+G

(1)
A,0. Analogously one finds for the second

moment

G
(2)
A,u = u⊗ u− u⊗G

(1)
A,0 −G

(1)
A,0 ⊗ u + G

(2)
A,0. (S31)
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Thus, if one calculates gyration moments G
(n)
A,0 in a global coordinate system, then the local

moments G
(n)
A,u are easily obtained from the vector u marking the local reference point.

Now consider a second cluster B with the gyration moments G
(n)
B,0 and with A ∩ B = ∅.

The radius of gyration of the super-cluster A ∪B with respect to the reference point u can

now be conveniently computed from the second moments G
(2)
A,u and G

(2)
B,u, obtained through

Eq. (S31) as

Ru =

√
trace

(
WAG

(2)
A,u +WBG

(2)
B,u

)
/(WA +WB), (S32)

where WA and WB are the norms defined by (S25). This argument is readily generalized to

more than two clusters forming a super-cluster.

For charge distributions representing atomic clusters at the SAMM levels l ≥ 1, which

may contain also mixtures of PMM and DFT structural units, weights wa = 1 are attached

to all atoms a such that the norm WA belonging to a cluster A is simply the number NA of

its atoms.

As compared to the analogous calculations1 for constructing and shifting the multipole

tensors M(n), the computational effort for the gyration moments G(n) is almost negligible,

because the corresponding expressions are simpler and are only required up to second order,

whereas the M(n) are computed up to order n = 4.

S3. DFT/PMM ELECTROSTATICS: ENERGY CONSERVING FMM

It is a key feature of the SAMMχ,E
4,q,1 family2 of FMM algorithms that the calculated

forces do not only obey Newton’s reaction principle,1 but can also conserve the energy.3 For

grid-based DFT/PMM combinations a violation of energy conservation can be caused by

so-called grid forces, which arise whenever a DFT atom moves relative to the DFT grid.

These violations can be avoided, if the grid within the DFT box represents a cut-out part

of an infinite and spatially fixed grid.4 We adopt this procedure together with the most

recent energy conserving algorithms3 SAMMχ,E
4,q,1 for the computation of the electrostatic

interactions between the DFT and PMM fragments.

As is explained in Section II C of the main text, in the DFT fragment the lowest cluster

level l = −3 consists of small voxels λ, which disjointly partition the DFT grid and contain

corresponding parts of the fragment’s electron density. Utilizing a Voronoi tessellation,

atomic sub-volumes Vµ of the grid are assigned to the DFT atoms µ by the unification of
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all nearest neighbor voxels λ(µ). The unification of all atomic volumes Vµ, which belong to

a structural unit2,5 u, i.e. to a predefined cluster of atoms µ(u), then define the grid portion

Vu assigned to this unit and so forth.

The algorithms employed for the FMM computation of the electrostatic interactions be-

tween DFT and PMM units or between larger atomic clusters have been previously described

in great detail.2–4 Thus it solely remains to be specified, how the electrostatic interactions

of DFT voxels λ(µ) at levels l = −3, −2 and of DFT atoms µ at level l = −1 with PMM

atoms are calculated.

1. Import of the PMM Potential Φ

FIG. S16. Evaluation of Φ at a grid point γ. The construction of the level boundaries (dashed

circle segments) is sketched in Section II C of the main text. See the text for further explanations.

Figure S16 explains how the external PMM potential Φ is computed at the highlighted

grid point γ, which belongs to the voxel λ in the lower right corner of the DFT box. This

voxel is part of the volume Vµ (gray shaded), which contains the charge distribution Cµ

associated to the DFT atom µ (large cross). Three PMM atoms i, j, and k (large gray dots)

illustrate increasingly distant sources of Φ(rγ).

The PMM atom i is too close to the center rλ (small cross) of the voxel λ to pass the FMM

voxel IAC (5). Therefore its contribution to Φ(rγ) is exactly calculated at level l = −3 from

the potentials of its Gaussian charge and/or induced dipole distributions (dotted arrow).

The PMM atom j is sufficiently distant to pass this IAC [and additionally the Gaussian

truncation IAC (6), which is not illustrated by Fig. S16 but by Fig. 2], but not distant enough

from rµ to pass also the atomic IAC (7). Consequently, coefficients of a fourth order Taylor

expansion at the center of the voxel λ are calculated at level l = −2 from the potentials
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of the charge and/or induced dipole at the PMM atom j (dashed arrow), which are now

treated as point objects. This expansion is evaluated at rγ to approximate the contribution

of j to Φ(rγ) (short solid arrow).

Because the most distant PMM atom k passes the atomic IAC (7), fourth order Taylor

expansion coefficients are calculated at level l = −1 from its charge and induced dipole at

rµ (dashed-dotted arrow). By a shifting procedure1 (long solid arrow) these coefficients are

transferred to the voxel center rλ, where they are added to the Taylor expansion coefficients

generated by j. Hence the evaluation of the thus complemented Taylor expansion around rλ

at rγ properly accounts also for the electrostatic action of the PMM atom k. In FMM the top-

down inheriting of Taylor expansion coefficients from higher to lower levels is hierarchically

repeated.1,4

2. Electrostatic Action of the DFT Electron Density

Once Φ has been calculated at all grid points and the KS orbitals are converged, the

DFT electron density ρe is available through the grid charges qγ. The associated Hellmann-

Feynman forces on the charges and induced dipoles of the PMM atoms are calculated by

operations, which represent exact inversions of the above import procedure.4 Thus, these

operations can be visualized by simply inverting all arrows in Fig. S16, which then acquire

a different but complementary meaning.

The action of the charge qγ located on the highlighted grid point γ in Fig. S16 on the PMM

atom i is obtained by calculating at level l = −3 the potential (and its derivates) generated

by it (inverted dotted arrow) at the atomic position ri after shifting4 the Gaussian shapes

of the qi and/or pi to qγ.

For interactions with the PMM atom j on level l = −2, a multipole expansion up to order

p = 4 of all grid charges qγ enclosed by the voxel λ is performed around rλ (inverted solid

arrow from rγ to rλ). From these voxel multipole moments the potential (and derivatives)

are computed at the PMM atom j (inverted dashed arrow), which render contributions of

the qγ ∈ λ to the energy of and forces on atom j.

The multipole moments of all voxels λ ∈ Vµ are subsequently shifted (inverted long solid

arrow) from the original reference points rλ to the position rµ of the DFT atom µ, where

they are summed up to yield the multipole moments of the atomic charge distribution Cµ.
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Then, the potential (and derivatives), which are generated by these multipole moments,

are calculated at the PMM atom k (inverted dashed-dotted arrow; level l = −1) to obtain

the atomic energy and force. This procedure is hierarchically repeated at all higher levels

l ≥ 0.1,4.

The apparent symmetry of Taylor and multipole expansions leads, in combination with

the recent extensions,3 to a Hamiltonian DFT/PMM electrostatics coupling scheme based

on SAMMχ,E
4,q,1 expansions,1,4 as will be verified below.

S4. CONSERVATION OF ENERGY

Our DFT/PMM approach guarantees energy conservation as long as the association of

atoms or clusters to hierarchy levels is unchanged, because it employs the most recent

algorithms SAMMχ,E
4,q,1, in which the forces are calculated as exact negative gradients of

the energy.3 Violations solely occur, whenever the dynamics causes a migration of atoms

within the hierarchical tree of atomic clusters, because then the correspondingly altered

approximation entails small temporal discontinuities of the calculated forces, which generate

a certain amount of algorithmic noise.2

In earlier versions of SAMM1,2 the forces obeyed Newton’s third law but represented

only approximate derivatives of the energy. Here, relative motions of clusters as measured

by derivatives of the vector connecting their centers were neglected. This approximation

entailed small violations of energy conservation. In a DFT/PMM-MD simulation, in which

the cluster hierarchy and the connecting vector were kept fixed, these violations were shown

to be absent.4 In the following we employ a DFT/PMM simulation system, which features

sizable relative motions of atomic clusters and concurrently an invariant association of atoms

to FMM interaction levels. The combination of our revised interface with the most recent

SAMM version3 should conserve the energy for such a system.

A. Methods

Figure S17 depicts a DFT/PMM sample simulation system specifically designed to check

the above claim. It comprises one alanine dipeptide molecule making up the DFT fragment

and three polarizable TL6P water molecules6 representing the PMM fragment. The motions
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FIG. S17. DFT/PMM simulation system for a check of energy conservation in which the alanine-

dipeptide molecule represented the DFT fragment and three TL6P water molecules6 the PMM

fragment.

of the molecules were constrained by spatially fixed harmonic potentials (of spring constant

1.0 kcal/mol Å2), which were attached to the Cα atom of the alanine dipeptide and to the

O atoms of the TL6P water molecules. The intermolecular distances were chosen such that

interactions between the DFT fragment and the various PMM atoms were always calculated

at the same FMM levels l = −3, . . . , 0, respectively, during the whole 250 fs simulation. As

a result, all associated algorithmic features were probed. The average temperature was 414

K, and the convergence criteria were tightened to χDFT = 10−8 and χPMM = 10−5 D. The

remaining aspects of the simulations are described in Section III A.

Energy conservation was checked using the so-called shadow Hamiltonian technique,7

which derives from the fact that a numerical integration of a Hamiltonian dynamics with

the Verlet algorithm8 does not conserve the energy E but a different temporal average

quantity 〈E(t |∆t)〉τ , which depends on the integration time step ∆t and on the width τ of

the employed time window. In the limits ∆t→ 0 and τ →∞ one has [〈E(t |∆t)〉τ − E] ∼
(∆t)2 → 0.

For a MD simulation yielding the energy trajectory E(t |∆t) this modified conservation

law can be verified by checking whether the following equation7

E(t |∆t) = 〈E(t |∆t)〉τ + f(t)∆t2 +O(∆t4) (S33)

holds with a shape function f(t), which is independent of ∆t. Then the scaled energy

fluctuations

∆E(t |∆t)/∆t2 ≡ [E(t |∆t)− 〈E(t |∆t)〉τ ] /∆t2
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are given by

∆E(t |∆t)/∆t2 = f(t) +O(∆t2) (S34)

with the standard deviation

σ∆E =
√
〈f 2(t)〉τ∆t2 +O(∆t4), (S35)

which vanishes in the analytical limit ∆t→ 0.

If our implementation is correct and, hence, yields energy conservation within the above

simulation setup, then the DFT/PMM energy trajectories obey Eqs. (S34) and (S35). If two

simulations use different time steps (e.g. ∆t0 and ∆t0/2) and otherwise start at identical

conditions, then by Eq. (S34) the calculated shape functions f(t) should be identical and

by Eq. (S35) the standard deviation σ∆E should decrease quadratically with ∆t.

B. Results

Figures S18a and S18b show the scaled energy fluctuations ∆E(t |∆t)/(∆t/∆t0)2 ob-

served in the sample simulations for the time steps ∆t0 = 0.5 fs and ∆t0/2 with the

previous uncorrected SAMMf,O
4,1,1 and the energy-gradient-corrected SAMMf,E

4,1,1 algorithm,

respectively. The fluctuations observed for ∆t = ∆t0 are drawn by a red solid line, the

scaled fluctuations 4∆E(t |∆t) observed for ∆t = ∆t0/2 by a green dotted line.

FIG. S18. Fluctuations of the total DFT/PMM energy during a 250 fs MD simulation of alanine-

dipeptide (DFT fragment) surrounded by three PMM water molecules for different time steps

∆t = 0.5 fs (red) and ∆t = 0.25 fs (dotted green): a) previous uncorrected SAMMf,O
4,1,1 version,2 b)

energy-gradient-corrected3 SAMMf,E
4,1,1.
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After scaling the red and green fluctuations shown in Fig. S18a quickly deviate from

each other indicating the violation of energy conservation by SAMMf,O
4,1,1. In contrast, the

fluctuations depicted by Fig. S18b exhibit the expected almost perfect match. Hence, for the

given sample system the energy is conserved by the energy-gradient-corrected SAMMf,E
4,1,1.

The energy-corrected versions SAMMχ,E
4,q,1, therefore, have become our algorithms of choice

for DFT/PMM simulations with the most accurate variant SAMMa, E
4,3,1 representing our new

default. Furthermore the comparison additionally demonstrates that the relative motions of

cluster centers is the only cause for the violation of energy conservation with the previous

SAMM4 based DFT/PMM interface, which is apparent in Fig. S18a.

FIG. S19. Standard deviations σ∆E of the energy fluctuations ∆E(t |∆t) for different time steps

∆t ∈ {0.125, 0.250, 0.500, 1.000}. The gray dashed lines shows a fitted parabola.

According to Eq. (S35) the standard deviation σ∆E of the energy fluctuations ∆E(t |∆t)
should vanish quadratically with the time step size ∆t. Figure S19 shows that this is

actually the case already for the least accurate variant SAMMf,E
4,1,1 as demonstrated by MD

simulations with the time steps ∆t ∈ {0.125, 0.25, 0.50, 1.00} of alanine-dipeptide (DFT

fragment) surrounded by three PMM water molecules. Small deviations from the fitted

parabola are most likely due to the limited statistics of the sample trajectories (250 fs).
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S5. THE SAMMχ,E
4,1,1 ERROR DFMM IS INDEPENDENT OF RΛ

Section IV C of the main text starts with the claim that the accuracy, at which the revised

DFT/PMM interface computes the grid potential Φ(rγ), does not depend on the voxel size

RΛ. For a check of this claim consider Figure S20, which demonstrates that the FMM errors

DFMM(Θχ) [cf. Eq. (14)] of the three SAMMχ,E
4,1,1 variants are actually independent of the

voxel size RΛ.

FIG. S20. Errors DFMM(Θχ) defined by Eq. (14) of the SAMMχ,E
4,1,1 algorithms (χ ∈ {f, m, a},

green, blue, red) are independent of the voxel size RΛ.

S6. RECTANGULAR VOXELS

The main text is restricted to the discussion of cubic DFT boxes and cubic voxels. For

non-cubic but still rectangular DFT boxes, also the voxels, which commensurably partition

the DFT grid, are rectangular (cf. Sec. II C 1).

To estimate the sizes of the rectangular voxels, we disregard the enclosed charge densities,

just like we did already in the cubic case. Thus, we choose all voxels of identical shape and

size as prototypically represented by a rectangular volume element V = lxlylz centered at

the origin. Here, the side lengths lα of the voxels are chosen such that they are as close as

possible to Ropt
Λ ≈ 0.35 Å and that they are integer divisors of the associated length Lα of

the DFT box. The geometric radius of gyration RV =
√
〈r2〉V of a voxel is the standard

deviation of the position vector r within V , where 〈. . .〉V denotes the average over V . Note

that Eq. (S27) is, with pi = 1 and u = 0, a discretized version of this expression. For a
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rectangular volume element one gets

R =
1

2

√
(l2x + l2y + l2z)/3, (S36)

which reduces for a cubic voxel with lx = ly = lz = l to R = l/2.
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2.3 Beschreibung der IR-Spektren von Amidgruppen mit DFT/PMM-MD

2.3 Beschreibung der IR-Spektren von Amidgruppen
mit DFT/PMM-MD

Die nachfolgende abgedruckte Publikation

A Polarizable QM/MM Approach to the Molecular Dynamics of
Amide Groups Solvated in Water

Magnus Schwörer, Christoph Wichmann und Paul Tavan
J. Chem. Phys. 144, 114504 (2016),

die ich zusammen mit Christoph Wichmann und Paul Tavan verfasst habe, beschreibt
die Entwicklung und Evaluierung des GP6P-Wassermodells, die Optimierung der Lennard-
Jones-Wechselwirkungen zwischen DFT- und PMM-Fragment, und die Berechnung der
IR-Spektren von isolierten bzw. von in GP6P gelösten NMA-Molekülen aus ausgedehn-
ten DFT-MD bzw. DFT/PMM-MD Trajektorien.
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A polarizable QM/MM approach to the molecular dynamics of amide groups
solvated in water

Magnus Schwörer,a) Christoph Wichmann,a) and Paul Tavanb)

Lehrstuhl für BioMolekulare Optik, Ludwig-Maximilians Universität München, Oettingenstr. 67,
80538 München, Germany

(Received 29 January 2016; accepted 26 February 2016; published online 21 March 2016)

The infrared (IR) spectra of polypeptides are dominated by the so-called amide bands. Because they
originate from the strongly polar and polarizable amide groups (AGs) making up the backbone, their
spectral positions sensitively depend on the local electric fields. Aiming at accurate computations of
these IR spectra by molecular dynamics (MD) simulations, which derive atomic forces from a hybrid
quantum and molecular mechanics (QM/MM) Hamiltonian, here we consider the effects of solvation
in bulk liquid water on the amide bands of the AG model compound N-methyl-acetamide (NMA). As
QM approach to NMA we choose grid-based density functional theory (DFT). For the surrounding
MM water, we develop, largely based on computations, a polarizable molecular mechanics (PMM)
model potential called GP6P, which features six Gaussian electrostatic sources (one induced dipole,
five static partial charge distributions) and, therefore, avoids spurious distortions of the DFT electron
density in hybrid DFT/PMM simulations. Bulk liquid GP6P is shown to have favorable properties at
the thermodynamic conditions of the parameterization and beyond. Lennard-Jones (LJ) parameters of
the DFT fragment NMA are optimized by comparing radial distribution functions in the surrounding
GP6P liquid with reference data obtained from a “first-principles” DFT-MD simulation. Finally, IR
spectra of NMA in GP6P water are calculated from extended DFT/PMM-MD trajectories, in which
the NMA is treated by three different DFT functionals (BP, BLYP, B3LYP). Method-specific fre-
quency scaling factors are derived from DFT-MD simulations of isolated NMA. The DFT/PMM-MD
simulations with GP6P and with the optimized LJ parameters then excellently predict the effects
of aqueous solvation and deuteration observed in the IR spectra of NMA. As a result, the methods
required to accurately compute such spectra by DFT/PMM-MD also for larger peptides in aqueous
solution are now at hand. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4943972]

I. INTRODUCTION

Hybrid approaches combining a quantum mechanical
(QM) description of a solute molecule with a molecular
mechanics (MM) force field for its solvent environment1

have become a popular and powerful tool for the theoretical
investigation of (bio)molecular properties.2–4 As compared
to pure QM molecular dynamics (MD) simulations5–7 such
hybrid QM/MM techniques allow to extend the sizes of the
simulated systems and the accuracy of the statistical sampling
by orders of magnitude.

Building upon and substantially revising earlier meth-
ods8,9 a Hamiltonian hybrid approach for MD simulations
has been recently presented,10,11 which combines a density
functional theory12,13 (DFT) treatment of a solute molecule
with a polarizable molecular mechanics (PMM) force field
for its solvent environment by coupling the parallelized grid-
based plane-wave DFT code CPMD14 to the parallelized
PMM-MD program IPHIGENIE.15 This method computes
the interaction forces between the DFT and PMM fragments
efficiently from the DFT/PMM interaction Hamiltonian by
employing an energy conserving fast multipole method called

a)M. Schwörer and C. Wichmann contributed equally to this work.
b)Electronic mail: tavan@physik.uni-muenchen.de

the structure adapted multipole method (SAMM).16–18 Its
present implementation enables stable hybrid MD simulations
on multi-core high-performance computing systems.

Just like its early DFT/MM predecessor,8 which had been
restricted to common non-polarizable MM force fields, also
the new DFT/PMM approach has been particularly designed
to calculate the infrared (IR) spectra of biomolecules in
condensed phase environments (for reviews over previous
DFT/MM studies addressing such IR spectra see Refs. 19–21).
In this contribution, we will focus on the IR spectrum of N-
methyl-acetamide (NMA) in aqueous solution (the chemical
structure of NMA is depicted in Figure 1), which has been
extensively studied by QM/MM methods embedding NMA
either in the bulk liquid22–24 or in water clusters25 and by
pure QM approaches toward NMA in the liquid6,26,27 and in
clusters28–31 (for a recent review of available literature see
Ref. 31). NMA in water is important, because it represents
a minimal model for the amide groups (AGs) making up
the backbones of the polypeptides and because the native
environment of these biopolymers predominantly consists of
water. AGs are highly polar and polarizable. Correspondingly,
the spectral locations of the IR amide bands, which arise
from vibrational transitions within the AGs, are steered by
the polarizing electric fields generated by their respective
condensed phase environments.24,29,32

0021-9606/2016/144(11)/114504/16/$30.00 144, 114504-1 © 2016 AIP Publishing LLC

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  129.187.254.47 On: Mon, 21

Mar 2016 12:53:32



114504-2 Schwörer, Wichmann, and Tavan J. Chem. Phys. 144, 114504 (2016)

FIG. 1. Chemical structure of NMA. Gray dashed lines indicate the planar
amide group (AG).

The electric forces acting between NMA and the
surrounding water mainly arise from hydrogen bonding
interactions of the water with the AG core of NMA
(cf. Figure 1), which has one acceptor (C′==O group) and
one donor (N—H group) of hydrogen bonds. The strengths of
these hydrogen bonding interactions shape the distribution of
the water molecules in the vicinity of the AG and, thus, the
strength of the polarizing electric reaction field. They depend
on both the electrostatic and the van der Waals interactions
between the atoms C′, O, N, and H of the AG and the
surrounding water molecules.

For a DFT description of NMA in an aqueous PMM
environment, one has to choose a DFT setup for the NMA,
a PMM force field for the water molecules, and, as is
common in QM/MM methods,2 two-parameter Lennard-Jones
(LJ) potentials ULJ(r | A,B) = A/r12 − B/r6, which model the
van der Waals interactions between the DFT and PMM
fragments. If, in the chosen PMM force field, all sources
of the electrostatic potential are represented by Gaussian
distributions (see further below), then solely the LJ parameters
of the four AG atoms remain for a tuning of the hydrogen
bonding strengths. In contrast, the LJ parameters of the
remaining atoms of NMA, e.g., in the methyl groups, should
have only a minor effect on these strengths. They can be safely
adopted from a standard MM force field like CHARMM22.33

Here we will address the important question as to how one
can optimize the LJ parameters of the four AG atoms for an
adequate modeling of the hydrogen bonding strengths between
AGs and an aqueous PMM environment. Such a question
arises in all QM/MM applications,34–38 because the van der
Waals interactions between the MM and QM fragments are
generally described by empirical energy functions,1,2 whose
parameters have to be separately optimized for a physically
realistic description of the forces acting between the MM and
QM fragments.

The intended optimization of the enumerated LJ potentials
requires a reference observable for the hydrogen bonding
strengths. We will choose the radial distribution functions
(RDFs) gOHw(r) of the water hydrogens Hw around the O atom
and gHOw(r) of the water oxygens Ow around the H atom of
the AG, respectively, at inter-atomic distances r . Because
corresponding experimental data are unknown to us, we
will compute reference RDFs by an empirically dispersion-
corrected39 “first-principles” DFT-MD simulation,7,40 which
should yield reasonably reliable information about their first
peaks. It will then be interesting to see to what extent
the optimization of the AG’s LJ parameters can bring the
DFT/PMM-MD results close to the reference RDFs and how
it affects the DFT/PMM predictions on the IR spectra of NMA
in water.

It is well known that suitably scaled DFT treatments of
isolated organic molecules can accurately describe their gas
phase IR spectra.41,42 Therefore one may expect that also IR
spectra calculated for NMA in water from DFT/PMM-MD
simulations can match corresponding spectroscopic data29

quite well, if the RDFs from DFT/PMM-MD are close to the
references and if the employed PMM model of water describes
the bulk phase properties of liquid water with a reasonable
accuracy.

The use of non-polarizable MM water models such as
TIP3P or TIP4P,43 which provide poor descriptions44 of the
bulk liquid properties, can diminish the quality of IR spectra
computed by DFT/MM techniques.7,24,45 The reason is that
the IR spectra of strongly polar and polarizable molecules in
likewise polar and polarizable condensed phase environments
represent extremely sensitive probes for the details of the
interactions between the molecule and its environment.21

Here, for instance, the mutual polarization of solute and
solvent has been demonstrated to have large effects on the IR
spectra calculated by DFT/MM hybrid methods.46,47 In this
respect, the new DFT/PMM technology10,11 sketched above
represents an important progress, because it does not only
account for the electronic polarization of the DFT fragment
but also for that of the PMM solvent.

For a high-quality match of DFT/PMM predictions on
the IR spectra of polar and polarizable molecules in liquid
water with corresponding spectroscopic data, one should
thus choose a PMM force field, which models the physical
properties of the bulk liquid quite well and, concurrently,
is specifically adapted to DFT/PMM settings. Technically,
the new DFT/PMM approach has enabled the computational
derivation and efficient handling of relatively complex PMM
water models featuring many points of force action,48,49

which properly account50 for important properties of the bulk
liquid. This is fortunate for our present purpose of describing
the IR spectrum of NMA in water, because we now can
apply this technology for the construction of a PMM water
model potential specifically designed for DFT/PMM hybrid
descriptions.

Whenever one applies a grid-based DFT approach, as
implemented, e.g., in CPMD,14 for hybrid calculations one
should avoid force fields, which model the electrostatic
signatures of the molecular structures in the (P)MM fragment
by point charges or point dipoles. The reason is that condensed
phase biomolecular systems always feature (P)MM atoms
inside the DFT box harboring the grid-discretized electron
density of the DFT fragment. If these (P)MM atoms carry
point sources of the electrostatic potential, they can spuriously
distort this electron density.51–53 This unphysical distortion
can be avoided by artificially smoothing the potentials of
these point sources, whenever one computes interactions
between the DFT and (P)MM fragments.8–10,54,55 Such a
smoothing generally introduces additional scale parameters,
which strongly modify the near-field interactions between the
two fragments, as one can observe, for instance, by their
effects on RDFs of (P)MM solvent molecules surrounding a
DFT solute.9

The generic way for effecting a smoothing on a length
scale σ is the replacement of an electrostatic point source by
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a Gaussian distribution of width σ. Therefore, DFT/(P)MM
calculations should preferentially employ a (P)MM force field,
in which all charges and dipoles are represented by Gaussian
distributions.

At least two such PMM water models have been
previously suggested, a three-point so-called “charge-on-
spring” model56 and an earlier four-point model exhibiting
three static Gaussian partial charges and an induced Gaussian
dipole.57 Both feature planar charge distributions. However,
an adequate modeling of the water molecule’s quadrupole
moment, which shapes the short-range interactions and,
hence, the local order structures in the liquid phase,
requires additional static partial charges, the so-called “lone-
pair” charges, symmetrically situated above and below
the molecular plane.58 Correspondingly we will apply the
DFT/PMM technique to parameterize a “Gaussian Polarizable
6-Point” (GP6P) model exhibiting five static Gaussian partial
charges and one Gaussian induced dipole.

Note here that the difference between the electrostatic
potentials of point and Gaussian sources becomes numerically
irrelevant (single precision) at distances r/σ ≥ 6. For typical
smoothing scales of σ . 0.8 Å this distance becomes as small
as 4.8 Å. If one exploits the numerical equivalence between
the two types of potentials at larger distances, one should
be able to keep the additional cost of computing potentials
of Gaussian sources quite limited. Moreover, by applying
the linearly scaling fast multipole method SAMM16–18 to
the approximate computation of the long-range electrostatic
and van der Waals interactions, also locally very complex
PMM water models can be efficiently treated,59 because the
costly exact evaluation of pair interactions can be replaced
by fast multipole descriptions already at distances as small
as 5.4 Å. Therefore we expect that the corresponding MD
program IPHIGENIE15 will be capable to treat also the new
GP6P model with a reasonable efficiency despite the sizable
complexity of GP6P.

This contribution is organized as follows. First we
will shortly sketch some of the new aspects entering
the construction of the GP6P water model. Because key
concepts of the employed parameterization strategy have
been explained previously,48,49 the detailed description of
the applied methods has been moved to Section S1 of the
supplementary material.60

Subsequently we describe the first-principles DFT-MD
simulations of NMA in a small periodic box additionally
containing 64 water molecules, which served us to estimate the
shape of the RDFs gOHw(r) and gHOw(r) for hydrogen-bonding
distances r ∈ [1.5,2.5] Å. The corresponding results will then
provide reference data for a computational optimization of the
LJ parameters associated with the AG atoms in the DFT model
of NMA. For reasons of computational manageability, we will
apply a DFT/PMM mean-field approach in this optimization.
Then we will describe the DFT/PMM-MD simulations, from
which we compute the IR spectra of NMA in liquid water by
Fourier-transform techniques.20

As our first result, we sketch the structure and liquid
phase properties of the new GP6P water model. Next we show
how the RDFs obtained from DFT/PMM-MD change upon
the optimization of the LJ potentials and how these changes

are reflected in the IR spectra of solvated NMA derived
from DFT/PMM-MD. Using the optimized LJ parameters,
we finally compare IR spectra from DFT/PMM-MD with
corresponding experimental spectra and with results of
previous DFT/MM-MD simulations.24 For these comparisons,
method-specific scaling factors are required, which we derive
from DFT-MD simulations of NMA isolated in the vacuum
for three different DFT functionals.

II. METHODS

The (P)MM- and DFT/PMM-MD simulations of NMA in
periodic boxes filled with (P)MM water were carried out with
the hybrid program IPHIGENIE/CPMD, which integrates the
parallel grid-based plane-wave DFT code CPMD14 into the
parallel PMM-MD code IPHIGENIE,10,11,15–18,61 whereas the
first-principles DFT-MD simulation of NMA solvated in a
much smaller box of liquid water was performed with the
CP2K software package.62,63

A. General MM-, PMM-, and DFT/PMM-MD settings

In all (P)MM- and DFT/PMM-MD simulations the
geometries of the water molecules were constrained using
the M-SHAKE64 and RATTLE65 algorithms with relative
tolerances of 10−10. The equations of motion were integrated
with the velocity Verlet algorithm66 employing a time step of
1 fs in the (P)MM or of 0.5 fs in the DFT/PMM settings,
respectively. In these MD simulations the pressure was
calculated from the virial expression.67,68

Long-range forces were treated by the most recent energy-
conserving version of the SAMM16–18 employing 4th and
3rd order symmetric Taylor expansions for the electrostatic
and van der Waals dispersion interactions, respectively. The
transition from the exact evaluation of the associated pair
expressions to the approximate SAMM descriptions is steered
by the parameterΘ entering the SAMM interaction acceptance
criterion,17 for which we chose Θm = 0.20 (intermediate
accuracy) in the (P)MM settings and Θa = 0.17 (high
accuracy) in the DFT/PMM settings.

The SAMM expansions were applied up to a maximum
distance dMIC dictated by the minimum image convention
(MIC) of the employed toroidal boundary conditions.69 To
cover the electrostatics also at distances beyond dMIC, a
moving-boundary reaction field approach70 was used, which
describes a surrounding dielectric continuum with a dielectric
constant of 78. For the corresponding long-range parts of the
dispersion attraction a continuum correction was applied.71 In
the PMM and DFT/PMM settings the self-consistency of the
induced dipoles was defined by the convergence threshold10

χPMM = 5 × 10−5 D.

B. Parameterization and evaluation of GP6P

Employing these general simulation settings the new
DFT/PMM hybrid technology was applied to the parame-
terization of the new GP6P model for water. Due to most
recent advances11,17,18 this technology has meanwhile come
to maturity, such that the associated PMM-MD program
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package IPHIGENIE15 is now available to the public (the
current distribution of the DFT program CPMD14 contains
additionally required code).

This availability is important, because it guarantees
that all simulations presented in this work have become
reproducible and extendable for the interested scientific
community. Moreover, particularly concerning the GP6P
water model, for which the download15 contains sample
simulation systems, the computations can be extended to the
study of further properties of the bulk liquid (or the solid and
gas phases) beyond the limited set of observables investigated
here for a first quality assessment.

Because most procedures and physical concepts applied
to the parameterization of GP6P are adopted from previous
work,48,49,72,73 these issues have been transferred to Section S1
of the supplementary material.60 Driven by the aim to
support future parameterizations of complex PMM models
for other liquids, this section presents a thorough and detailed
description of the applied methods and, in passing, corrects
previous48,49 ambiguities and errors.

The parameters of the GP6P model were obtained by
three different approaches, i.e., by

(i) the direct adoption of well-established experimental
values (molecular geometry in the liquid phase,74,75

gas phase dipole moment,76 and polarizability,77 cf.
Section S1 A 160),

(ii) DFT/PMM-based derivations of almost all electrostatic
parameters (Gaussian width of the induced dipole
distribution; magnitudes, Gaussian widths, and positions
of the static partial charge distributions, cf. Sections
S1 C 1-S1 C 560), and

(iii) PMM-MD-based empirical optimization78 of one
Gaussian charge width and of the three parameters A1,
A2, and B of the Buckingham potential79 [Eq. (S1)60],
which models the GP6P van der Waals interactions (cf.
Sections S1 C 6 and S1 C 760).

The PMM-MD simulations were conducted in a periodic box
containing Nm ≡ 1500 GP6P models (cf. Section S1 B 160)
at the experimental density80 nexp(p0,T0) = 0.9965 g/cm3

assumed by liquid water at the temperature T0 ≡ 300 K and
the pressure p0 ≡ 1 atm. As experimental target values for the
empirical optimization of the four parameters enumerated in
(iii) we chose the mean potential energy Eexp

0 = −9.92 kcal/mol
per molecule,81 the position82 rmax,exp

OO = 2.76 Å of the
first peak of the oxygen-oxygen RDF gOO(r), the pressure
p0, and the isobaric thermal expansion coefficient80

α
exp
p = 2.8 × 10−4 K−1.

Note that Section S1 D of the supplementary material60

contains, mainly through references to previous work, a sketch
of the methods applied in the computation of several GP6P
predictions on important liquid phase properties.

C. Simulation systems for NMA in water

All MD simulations of NMA in water employed cubic
periodic simulation boxes. For MM/(P)MM-MD simulations
large boxes were filled with 4494 TIP3P43 or GP6P water
models and one CHARMM22 model33 of NMA. These

MM/(P)MM simulation systems were equilibrated by 1 ns MD
simulations in the N p0T0 ensemble employing a Berendsen
barostat83 (coupling time 10 ps) and a Bussi thermostat84

(coupling time 0.1 ps), respectively. The resulting simulation
box volumes were VMM = (51.5 Å)3 and VPMM = (51.3 Å)3
corresponding to the densities of 0.983 g/cm3 and 0.998 g/cm3,
respectively.

For the first-principles DFT-MD simulation a small box
containing — beyond NMA — also 64 water molecules was
constructed from a subsequent 1 ns MD simulation of the
MM simulation system (CHARMM22/TIP3P) in the NVMMT0
ensemble. In 1000 snapshots of this NVMMT0 ensemble a
small cubic box of varying volume was centered around
the NMA in such a way that it contained 64 water oxygen
atoms.7 The resulting average volume VDFT = (12.7 Å)3, which
corresponds to a density of 0.994 g/cm3, was then chosen for
the DFT-MD simulation. From one of the snapshots the
CHARMM22-NMA and 64 surrounding TIP3P water models
were taken after MM minimization of the associated cluster
as initial conditions for DFT-MD.

To obtain the initial conditions for DFT/PMM-MD
simulations, we performed a 1 ns MD simulation of the
MM/PMM system (CHARMM22/GP6P) in the NVPMMT0
ensemble and drew 24 phase-space snapshots from the tail of
the trajectory at temporal distances of 5 ps, which we collected
into the set SPMM.

D. First-principles MD simulation

For our 100 ps first-principles Born-Oppenheimer MD
simulation of NMA surrounded by 64 water molecules
we adopted the methods described in Ref. 7. Thus, the
MD simulation was performed with the CP2K program
package62,63 using the exchange functional of Becke,85 the
correlation functional of Lee, Yang and Parr86 (BLYP) and the
norm-conserving pseudopotentials proposed by Goedecker,
Teter, and Hutter.87–89

The Kohn-Sham orbitals were expanded in a triple-ζ
valence basis set including double polarization functions.62

Electrostatic interactions were treated using the Gaussian and
plane waves scheme90 implemented in the Quickstep62 module
of CP2K63 at a density cutoff of 400 Ry. The self-consistent
field procedure employed the orbital transformation method
suggested in Ref. 91 and a convergence criterion of 10−7.

In contrast to a similar calculation on solvated NMA
performed by Gaigeot et al.,6 we used an empirical dispersion
correction scheme. Here, we adopted the suggestion by
Grimme,39 which introduces an inter-atomic attraction ∼r−6.
This DFT-MD simulation model has been shown to yield a
reasonable structure and the proper density of liquid water.92,93

Taking the configuration obtained from MM-MD (cf.
Section II C) as the starting structure the system was simulated
for 100 ps (of which the first 15 ps were excluded from the
subsequent computation of RDFs) in the NVDFTT0 ensemble
with an integration time step of 0.5 fs. Here the temperature
T was controlled by a massive Nose-Hoover chain thermostat
(chain length 3, time constant of 1 ps).94 The average
pressure in this small fixed-volume system turned out to be
44 ± 250 atm. With the help of the program VMD95 the desired
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reference RDFs gref
OHw

(r) and gref
HOw

(r) of the water molecules
around the C′==O and the N—H groups of NMA, respectively,
were eventually calculated in the range [1.4 Å,3.0 Å] with a
bin size of 0.05 Å from the last 85 ps of the trajectory.

E. DFT-MD and DFT/PMM-MD simulations of NMA

With the aim to optimize the LJ parameters of AG
atoms in the DFT fragment NMA we performed DFT/PMM
simulations in the NVPMMT0 ensemble. The quality of the
thus established description was checked by computing the
IR spectrum of NMA in aqueous solution from extended
DFT/PMM-MD simulations. Because comparisons of DFT-
based predictions with experimentally observed vibrational
frequencies require a method-specific scaling factor fDFT, we
calculated the gas phase IR spectrum of NMA from DFT-MD
simulations at T0 in vacuo and compared the results with
gas phase IR data.29 These simulations cover comparable
amounts of anharmonic frequency shifts as DFT/PMM-MD
simulations of NMA in GP6P water.

1. DFT setups for NMA in vacuo and in PMM water

We employed three different DFT setups for the descrip-
tion of the NMA molecule, namely, (i) the BLYP,85,86 (ii)
B3LYP86,96–98 functionals combined with norm-conserving
Martins-Troullier99 (MT) pseudopotentials and a plane-wave
cutoff at 70 Ry, and (iii) the exchange functional of Becke85

in connection with the correlation functional of Perdew100

(BP), the MT pseudopotentials, and a 80 Ry cutoff. We
denote these DFT setups as MT/BLYP, MT/B3LYP, and
MT/BP, respectively. The latter setup was selected to enable
comparisons with the IR spectra of NMA in TIP4P water43

calculated by Schultheis et al.24 from DFT/MM simulations,
which also applied MT/BP to NMA.

For all three functionals, the MT pseudopotentials model
the core-valence interaction by s and p potentials for C, O,
and N atoms with the respective radii for s and p chosen
equal as 1.23 a.u., 1.05 a.u., and 1.12 a.u., while H atoms
are treated as a single s potential with a radius of 0.5 a.u.
The MT pseudopotentials for B3LYP were chosen identical to
those for BLYP. In all DFT- and DFT/PMM-MD simulations
the NMA molecule was centered in a cubic DFT box with
a volume of (11 Å)3. The DFT self-consistency convergence
criterion10 was χDFT = 10−6.

2. DFT dynamics simulations of isolated NMA

For the isolated NMA molecule we first conducted
12 Langevin dynamics simulations for each of the three
DFT functionals spanning 10 ps each. These simulations
employed a second-order integration algorithm101 controlling
the target temperature T0 with a decay time of 1 ps. The
12 initial structures of NMA were adopted from the set
SPMM (cf. Section II C). The resulting phase space structures
of isolated NMA were subsequently taken for each of
the three functionals as the initial conditions for 12 MD
simulations, each of 50 ps duration, in which translations

and rotations of the molecule were suppressed. The rotation
correction is necessary, because the DFT grid of CPMD
destroys the isotropy of the simulated system and, therefore,
prevents the conservation of the total angular momentum.
From these trajectories we subsequently calculated gas phase
IR spectra of NMA by a Fourier transform technique (see
Section II F 3).

For the MT/BLYP setup additional simulations of this
kind (12 × 10 ps Langevin, 12 × 50 ps MD) were carried out
for the target temperatures 20 K, 75 K, 150 K, and 433 K. The
gas phase IR spectra derived from these simulations served to
estimate the sizes of the anharmonic frequency shifts at T0.

3. DFT/PMM-MD of NMA in water

All 24 members of the snapshot set SPMM (see Section
II C) were equilibrated for 10 ps in the NVPMMT0 ensemble for
each of the three DFT/PMM hybrid setups, in which NMA
was described either by MT/BLYP, MT/BP, or by MT/B3LYP.
Here, T0 was tightly controlled (coupling time 0.1 ps) by a
Bussi thermostat,84 which was, like in all DFT/PMM-MD
simulations, exclusively coupled to the solvent degrees of
freedom.102 The end points of these equilibrations served as
initial conditions for 50 ps DFT/PMM-MD simulations in the
NVPMMT0 ensemble. Here, the thermostat coupling time was
increased to 1 ps.

In all three DFT/PMM descriptions the LJ potentials of
AG atoms in NMA were specified by an optimized parameter
set Lopt (cf. Section II F). Employing the LJ parameters
LC22 given by CHARMM2233 and the MT/BLYP setup, we
additionally computed a fourth set of 24 × 50 ps DFT/PMM-
MD trajectories.

F. Optimizing van der Waals parameters for DFT/PMM

Given reference RDFs gref
OHw

(r) and gref
HOw

(r) for the
solvation of NMA’s AG by liquid water, which we obtained
by first-principles DFT-MD as described in Section II D, the
iterative DFT/PMM-MD search for optimal LJ parameters
at the AG atoms of the DFT fragment is, in principle,
straightforward.

1. Optimization scheme

For the optimization of LJ potentials at the AG atoms we
assume that only the three heavy atoms γ ∈ {C′,O,N} carry
such potentials, whereas initially we adopt the CHARMM22
potentials33 of the four AG atoms. This CHARMM22
parameter set is denoted LC22. For the other atoms of
the DFT fragment we always stick to the CHARMM22
potentials. Denoting the steps of the iterative search by
n = 1,2, . . ., we thus probe in step n the LJ parameter set
Ln = {An

γ ,B
n
γ | γ = C′,O,N} for the LJ interaction of the

GP6P oxygen atoms Ow and the AG atoms γ in the DFT
fragment. Here, An

γ is the repulsion and Bn
γ the dispersion

parameter of atom γ.
At each iteration step n one has to execute now, in

principle, a sufficiently extended DFT/PMM-MD simulation,
from which one can compute reliable estimates for the two
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RDFs. Then the root D(Ln) of the summed mean square
deviations between the reference and the DFT/PMM RDFs
in the range r ∈ [1.5,2.5] Å, which covers the first peaks of
these functions, can be used to measure the deviation of the
hydrogen bonding structures in the water surrounding the AG
computed by DFT/PMM from the reference. The parameters
Ln+1 for the next step in the minimization of D(L) can then
be chosen, e.g., by a simplex algorithm,103 which eventually
yields an optimized parameter set Lopt after sufficiently many
iterations.

2. Mean-field approach employed for the optimization

The just described minimization of D(L) poses a
huge computational task, whose most expensive part is
the DFT/PMM-MD simulations. In the spirit of the LJ
parameter optimization presented by Martín et al.104 we have,
therefore, simplified these MD simulations by a mean-field
method, which is similar to the so-called “averaged solvent
electrostatic potential” approach105–107 and which we denote as
MFMD.

In our DFT/PMM-MFMD based optimization of the LJ
parameters L we chose the MT/BLYP setup for the descrip-
tion of the NMA. As initial conditions of the 15 ps MFMD
simulations executed at each iteration step n we chose the
24 phase space snapshots SPMM introduced in Section II C.

In the MFMD simulations, the charge density ρ of the
NMA surrounded by the GP6P water was self-consistently
calculated for the initial snapshot, which requires the
computation of the external potential Φ0(rγ) generated by the
PMM fragment at the points γ of the DFT grid.10 This density
and the positions of the NMA atoms were subsequently kept
fixed in a 100 fs MD simulation, which solely involved the
GP6P water molecules exposed to the potential generated by
ρ0. For the thus reached snapshot of the system, the external
potential Φ1(rγ) was recalculated and the average potential
Φ̄1(rγ) was formed from this and the preceding snapshot
Φ0(rγ) of the potential.

(i) Then NMA’s charge density ρ1 was self-consistently
computed for the average external potential Φ̄1(rγ) and
the MD of the GP6P molecules exposed to the potential
generated by ρ1 was simulated for another 100 fs.

(ii) At this configuration the external potential Φ2(rγ) and a
running average potential Φ̄2(rγ) were calculated from
Φ2(rγ) and the preceding average potential Φ̄1(rγ).

Repeating the procedures (i) and (ii) a running average Φ̄(rγ)
of the external potential was sequentially accumulated for the
15 ps of MFMD simulation. RDFs gOHw(r) and gHOw(r) were
extracted from the last 12 ps of all 24 MFMD simulations
executed for the PMM liquid surrounding the NMA and
the deviation D(Ln) of the current minimization step was
calculated.

The just sketched DFT/PMM-MFMD approach saves
about 99% of the computational effort associated with the
import of the external potential on the DFT grid and with the
computation of the Kohn-Sham orbitals, which are required
at each time step of an ordinary DFT/PMM-MD simulation.

3. Calculation of vibrational spectra

From each 50 ps MD trajectory obtained in the DFT
and DFT/PMM settings, respectively (cf. Sections II E 2
and II E 3) we calculated a corresponding IR spectrum of
NMA by Fourier transforming the autocorrelation function of
its dipole moment (FTTCF)20 and by subsequently applying
the so-called harmonic approximation quantum correction
factor.20,108,109 A Gaussian kernel of width 3 cm−1 was
employed to smoothen the spectrum.24 A final IR spectrum
was obtained by averaging over the 12 (gas phase) or 24
(solution) trajectories associated to each setting. The bands
in the IR spectra were assigned to vibrational modes by the
generalized normal coordinate (GNC) analysis proposed by
Mathias et al.,110,111 which enables the decomposition of the
vibrational spectrum into local modes directly from the MD
trajectories.

III. RESULTS

As is indicated in Section II B and thoroughly explained
in Section S1 of the supplementary material,60 we have
parameterized a new polarizable six-point model for water
called GP6P specifically for the use as an aqueous solvent
in DFT/PMM-MD simulations of solute molecules described
by grid-based DFT. Before turning to the first applications,
which are the parameterization of the LJ potentials steering the
hydrogen bonding of NMA in GP6P water, and the subsequent
calculation of NMA’s IR spectrum in aqueous solution,
we shortly sketch important microscopic and macroscopic
properties of the GP6P water model.

A. The GP6P model

Table I lists the parameters of the GP6P model poten-
tial resulting from the DFT/PMM-based parameterization
described in Section S1 of the supplementary material.60

Figure 2 illustrates the thus determined electrostatic properties
of GP6P.

1. Microscopic properties

Figure 2(a) explains the internal coordinates l OH, ϕHOH,
l OM, l OL, and ϕLOL, which define the rigid arrangement of the
six points of force action. Here, the radii of the five colored

TABLE I. Parameters of the GP6P model.

l OH/Å 0.968 ϕ HOH/deg 105.3
µ0/D 1.855 αPMM/Å3 1.47

l OL/Å 0.595 528 ϕ LOL/deg 177.360
l OM/Å 0.558 801 qM/e −0.401 742
qH/e 0.512 662 qL/e −0.311 791
σµ/Å 0.739 σL/σH 1.427 93

σH/Å 0.457 547 σL/Å=σM/Å 0.653 345
A1/(103 kcal/mol) 11.241 6 A2/Å−1 2.875 96
B/(Å6 kcal/mol) 966 A/(103 Å6 kcal/mol) 518.941
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FIG. 2. (a) The geometry of the GP6P model is given by the parameters
l OH, ϕ HOH, l OM, l OL, and ϕ LOL, which define the HOH triangle of the water
atoms and a perpendicular triangle LML of massless sites carrying charges
qi < 0 (red), i ∈ {M,L}. The H atoms harbor charges qH > 0 (blue), the gray
O atom is uncharged and carries an induced dipole µi

PMM. (b) All charges
qi and the induced dipole µi

PMM form Gaussian distributions, whose widths
σi, i ∈ {H,M,L, µ} are coded by the radii of the glassy spheres. Made with
VMD.95

spheres code the sizes |qi | of the charges qi, i ∈ {H,M,L},
while the uncharged oxygen is depicted in gray. Figure 2(b)
illustrates the widths σi, i ∈ {H,M,L,µ}, of the Gaussian
charge (red, blue) and induced dipole (gray) distributions
by the radii of the glassy spheres. The strength µi

PMM of
the induced dipole distribution centered at the oxygen atom
follows by linear response from the polarizing electric field
through the isotropic polarizability αPMM.

As is indicated in Section II B, the polarizability αPMM,
the molecular geometry parameters (l OH, ϕHOH), and the
magnitude µ0 of the vacuum dipole moment of GP6P have
been adopted from experimental data. The associated values
are listed in the first part of Table I. The central part
of this table displays those parameters (including the ratio
σL/σH of Gaussian charge widths), which were determined
by DFT/PMM calculations. Finally, the bottom part of Table I
specifies the parameters, which were determined by empirical
PMM-MD optimizations. These are the Gaussian width σH
and the Buckingham parameters (A1, A2,B), which describe
the van der Waals interactions among the GP6P water
molecules. Furthermore it provides the parameter A of a
LJ potential [Eq. (S2) in the supplementary material60], which
enables the description of van der Waals interactions between
GP6P water and molecular models, whose atoms carry LJ
potentials.

Note that Section S1 F 4 of the supplementary material60

characterizes the dipole and quadrupole moments of a GP6P
water model in the gas and liquid phases.

2. Macroscopic properties of GP6P at p0 and T0

Experimental values of the four macroscopic observables
E0, rmax

OO , p0, and αp served as targets for the empirical
optimization of the four GP6P parameters σH, A1, A2, and B
(cf. Section II B). The resulting parameter values lead to
an excellent reproduction of the experimental target data.
This claim is proven by Table S4 in the supplementary
material,60 which documents that the values computed from
3 ns PMM-MD simulations for the targeted observables
numerically agree with their respective target values within the
narrow limits of statistical accuracy. The oxygen-oxygen RDF
gOO(r), which is shown by Figure S16 in the supplementary
material60 over the distance range r ∈ [2,8] Å, furthermore
reveals that the local ordering of water molecules predicted
by GP6P resembles corresponding experimental data,82 up to
a slight over-structuring, quite well. Note that such a slight
over-structuring is typical for RDFs derived from dynamics
simulations, which neglect nuclear quantum effects.112

Table II lists GP6P predictions for several observables
of liquid water, which were measured by PMM-MD
simulations at the thermodynamic conditions (p0,T0) of the
parameterization (our subsequent DFT/PMM-MD simulations
of NMA in GP6P water will also be executed at these
conditions). The predictions cover the density n, the isothermal
compressibility κT , the heat capacity Cp, the self-diffusion
constant D0, the viscosity η, and the dielectric constant ϵ0,
which were calculated as explained in Section S1 D of the
supplementary material.60

The density n(p0,T0) = 0.9966 ± 0.0001 g/cm3 resulting
from a Nmp0T0 simulation matches the experimental value
nexp(p0,T0) within the narrow limits of statistical accuracy.
This excellent match is not particularly surprising, because
p0 was one of the targets of the empirical optimization by
NmVmT0 simulations, in which the density had been set to
nexp(p0,T0).

The isothermal compressibility κT(p0,T0) determined for
GP6P overestimates κexp

T (p0,T0) by only 2.6%, whereas the
heat-capacity Cp(p0,T0) overestimates Cexp

p (p0,T0) by 5.3%.
The diffusion constant D0 is by 25% larger than Dexp

0
and the viscosity η happens to match ηexp. Finally the
dielectric constant is by 10% smaller than the experimental
reference. All these deviations of the GP6P predictions from
the corresponding experimental values are comparable to
those observed for standard MM water models44 or for PMM

TABLE II. Observables for liquid water at 300 K: GP6P predictions and
experimental data. Statistical errors of n, κT , andCp were estimated by block
averaging113 from 3 ns trajectories, those of D0, η, and ϵ from multiple and
extended MD trajectories (see Sections S1 D and S1 F 2 of the supplementary
material60).

Quantity Unit GP6P value Expt. Ref.

n g/cm3 0.9966 ± 0.0001 0.9965 80
κT 10−6/atm 46.8 ± 0.1 45.6 80
Cp cal/(mol K) 18.96 ± 0.06 18.0 114
D0 nm2/ns 3.01 ± 0.02 2.4 115
η mPa s 0.81 ± 0.15 0.81 116
ϵ 69.9 ± 0.1 78 117
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water models like TL4P48 and BK3.56 Thus, our aim of
developing a PMM model potential for water, which describes
the bulk properties of liquid water with a reasonable accuracy
and, concurrently, solely exhibits Gaussian sources of the
electrostatic potential, has certainly been reached.

3. The temperature-density profile of GP6P

The temperature dependence n(p0,T) of the density
of liquid water has long been known at a very high
accuracy. Kell80 employed a ratio of fifth and first order
polynomials [cf. Eq. (4) in Ref. 80] to fit his experimental
data and thus determined the temperature T exp

md = 277.134 K
of maximum density and the maximal density nexp(p0,T

exp
md )

= 0.999 97 g/cm3 of liquid water at the standard pressure.
Figure 3 compares Kell’s80 experimental fit function

nexp(p0,T) (gray) with the GP6P density profile n(p0,⟨Tk⟩)
(dots) extracted from a 20 ns replica exchange118–120 MD
simulation in the Nmp0T̃k ensembles (cf. Section S1 D60).
Here, the temperatures ⟨Tk⟩ are averages over the trajectories
of the various temperature rungs T̃k. Moreover, the black line
represents a fit to the simulation results n(p0,⟨Tk⟩) using the
same Ansatz for the fit function as Kell.80

Statistical errors of the calculated average densities
n(p0,⟨Tk⟩) were determined by block averaging.113 The
maximal error of 0.000 18 g/cm3 was found for the most
slowly converging ensemble at the lowest temperature rung
T̃0 = 250 K.

The fit to the GP6P data predicts the temperature Tmd of
maximum density at 277.469 ± 0.404 K and the maximum
density n(p0,Tmd) at 1.000 03 ± 0.000 04 g/cm3. The statistical
uncertainties of these numbers were estimated as the standard
errors of the means, which were obtained by dividing the
trajectories into four equal parts. Thus, the slight GP6P
overestimate (0.335 K) of the experimental temperature80 T exp

md
of maximum density is within the statistical error, whereas
the overestimate (0.000 06 g/cm3) of the maximum density
nexp(p0,T

exp
md ) is marginally larger.

The GP6P temperature-density profile in Figure 3 matches
the experimental data80 almost perfectly for temperatures

FIG. 3. Temperature-density profile of GP6P (dots) and a polynomial fit
(black line). The experimental curve80 is drawn in dashed gray.

⟨Tk⟩ > Tmd, whereas it slightly overestimates the experimental
densities for lower temperatures ⟨Tk⟩ ≪ Tmd. The overall
agreement is, however, excellent. This is pleasing particularly
in the light of the fact that the empirical parameterization has
targeted only observables at the standard conditions (p0,T0).
Thus, the accurate prediction of n(p0,T) indicates that the
GP6P model will most likely be quite well transferable to other
conditions. Because the simulation software IPHIGENIE and
sample GP6P simulation systems are available for download,15

the scientific community is invited to carry out further studies
on other issues of transferability.

When looking at Figure 3 the diligent reader may be
reminded of Figure 3 in Ref. 121, which compares a density
profile calculated by exactly the same replica exchange setup
for a smaller box of TL6P models.121 In fact, the deviations
of the TL6P density profile121 from the experimental data
are only slightly larger than those obtained here with GP6P.
However, because all TL6P simulations consistently employed
an invalid barometer (cf. a corresponding remark in Section
S1 B 160) these results are seriously and consistently flawed,
whereas the GP6P results are technically correct. On the other
hand, the arrangement of the static partial charges in GP6P is
similar to that of TL6P, because both models feature, beyond
the negative charge at the M-site, two lone-pair charges
at an angle ϕLOL close to 180◦ (cf. Fig. 2). It may well
be that this arrangement58 favors a density profile close to
the experimental one, if the calculated thermal expansion
coefficient αp(p0,T0) is close to the experimental value.

This interpretation is supported by failed attempts (data
not shown) to parameterize polarizable Gaussian four-
and five-point models with the same strategy, which we
successfully applied in the construction of GP6P. These
attempts failed because no positive value for the dispersion
parameter B could be found such that the isobaric thermal
expansion coefficient αp was close to the experimental target
value. In this respect the Gaussian four- and five-point models
resembled the polarizable TL4P and TL5P models, which
feature point-like partial charges (and were parameterized and
evaluated with a correct barometer) and both overestimate
αp by more than a factor of two.48 Correspondingly their
temperature-density profiles121 show no maximum in the
temperature range covered by Figure 3.

B. LJ parameters for a DFT model of NMA

The optimization of the LJ parameters L (see Section
II F), which steer the interactions of NMA’s AG with the
surrounding GP6P water, was conducted with the MT/BLYP
setup for several hundred iteration steps. It reduced the
observable D(L) measuring the deviation of the DFT/PMM-
MFMD RDFs gOHw(r) and gHOw(r) from their DFT-MD
references by a factor of seven. Here, the initial deviation
D(LC22) = 0.63 Å, which resulted for the CHARMM22
parameter set LC22, was reduced to D(Lopt) = 0.09 Å. Note
that Figure S18 in the supplementary material60 shows that the
much cheaper DFT/PMM-MFMD calculations actually yield
RDFs, which are almost identical to those obtained by costly
DFT/PMM-MD simulations. The optimized set Lopt resulting
from DFT/PMM-MFMD is listed and compared with the
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TABLE III. Optimized parameters Lopt for the LJ interaction of the AG
atoms γ with the GP6P water model.

γ Aγ,opt
a ∆Aγ (%) Bγ,opt

b ∆Bγ (%)

C′ 1747.34 −5 839.816 −7
O 451.865 +58 235.813 −36
N 924.673 −30 1306.43 +27
H 0.0 −100 0.0 −100

a103 Å12 kcal/mol.
bÅ6 kcal/mol.

initial set LC22 in Table III. Here, the quantities ∆Aγ and ∆Bγ

measure the optimization-induced parameter changes relative
to LC22.

According to the listed data, the LJ potential at the central
carbon atom C′ of NMA’s AG remains almost invariant,
whereas those at the O and N atoms experience sizable
changes. Here, the O atom becomes much more repulsive
and less attractive. Oppositely directed and somewhat weaker
changes result for the N atom. The changes at the H atom
follow from our deliberate removal of this very weak LJ
potential.

Hence, one expects that the first peak of the RDF gOHw(r),
which is generated by water molecules hydrogen bonded to
the C′==O group of NMA, substantially moves toward larger
distances r upon the optimization. In contrast the peak of
the RDF gHOw(r), which describes the hydrogen bonding
to the N—H group and, therefore, is mainly influenced by
the parameters (AN,BN), should shift a little less toward
smaller distances. The inspection of the black RDFs gOHw(r)
and gHOw(r) shown in Figures 4(a) and 4(b), respectively,
demonstrates that this is actually the case.

The dotted lines in Figure 4 mark the RDFs resulting
from DFT/PMM-MD with the CHARMM22 parameter set
LC22, whereas the solid black lines mark the RDFs obtained
with Lopt. In fact, the peak of the solid black curve gOHw(r) in
Figure 4(a) is found at a 7% larger distance than that of the
associated dotted curve, whereas in Figure 4(b) the solid black
peak of gHOw(r) is found at a 3% smaller distance than the
dotted peak. These shifts move the black curves much closer to
the reference RDFs (solid gray), which were obtained by 85 ps
first-principles DFT-MD. Note that these reference data carry

FIG. 4. RDFs (a) gOHw(r ) and (b) gHOw(r ) obtained from first-principles
DFT-MD (solid gray), and from DFT/PMM-MD for the LJ parameter sets
LC22 (dotted) and Lopt (solid black).

non-negligible statistical uncertainties, which we estimated to
be <1% for the locations and .6% for the heights of the peaks
by partitioning the DFT-MD trajectory into four equal parts.

The RDFs calculated with Lopt (solid black) match the
DFT references (solid gray) very well. In Figure 4(a) the
DFT/PMM peak position deviates from that of the reference
by only 1.4%, whereas in Figure 4(b) the corresponding peak
positions show a perfect match. In the latter case DFT/PMM
overestimates the height of the reference peak by 9%, whereas
in the former case the heights are almost identical.

Now the interesting question arises as to whether the
LJ parameter set Lopt, which resulted from a DFT/PMM-
MFMD optimization employing the MT/BLYP setup, can
be generalized to other DFT setups. Figure S19 in the
supplementary material60 demonstrates that this is actually
the case by comparing RDFs resulting from DFT/PMM-MD
simulations with the MT/BLYP, MT/B3LYP, and MT/BP DFT
setups, respectively. Thus, the LJ parameter set Lopt appears
to be transferable to other DFT settings.

C. IR spectra of NMA from DFT-MD and DFT/PMM-MD
simulations

IR frequencies calculated from DFT models usually
require a scaling to achieve a match with experimental
data.41,42 Because we will derive the IR spectra of NMA in
aqueous solution by the FTTCF technique20 from DFT/PMM-
MD simulations at the elevated temperature T0 = 300 K, the
NMA will dynamically sample also regions of the potential
energy surface, which are shaped by anharmonicities. Our
scaling factor should include these effects.

We will now first illustrate the effects of anharmonicities
on the spectra of isolated NMA calculated by FTTCF
from DFT-MD simulations at varying temperatures T .
Subsequently we will compute scaling factors for three
different DFT functionals by comparing experimental gas
phase IR frequencies with results of DFT-MD simulations at
T0.

1. Anharmonicities in NMA’s IR spectra obtained
from DFT-MD

Because we wanted to gain insights, to what extent the IR
spectra calculated from DFT-MD trajectories of isolated NMA
at different temperatures are modified by anharmonicities, we
have carried out 600 ps DFT-MD simulations at each of the
target temperatures T/K = 20, 75, 150, 300, and 433 with the
MT/BLYP approach (for details see Sections II E 1 and II E 2).
Applying the FTTCF technique introduced in Section II F 3 to
the trajectories µ(t) of the molecular dipole moment yielded
temperature dependent IR spectra, from which the spectral
position νAI(T) of the dominant so-called amide-I (AI) band,
which mainly belongs to the C′==O stretching vibration,122

was deduced. Statistical errors σν(T) of the frequencies νAI(T)
were estimated as standard errors of the mean from the first
and the second halves of the sets of DFT-MD trajectories.

Figure 5 shows the thus obtained frequencies νAI(⟨T⟩)
as a function of the actual average simulation temperatures
⟨T⟩ together with error bars σν(⟨T⟩) and a tentative linear
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FIG. 5. Temperature dependence of the AI frequency νAI derived for iso-
lated NMA by FTTCF (Ref. 20) from extended DFT-MD trajectories (setup:
MT/BLYP). Error bars denote the standard errors σν of the mean, the gray
dashed line represents a linear regression.

regression line. One expects that less anharmonicities are
sampled at low temperatures ⟨T⟩. Correspondingly the
frequencies νAI(⟨T⟩) are seen to increase almost linearly over
a wide temperature range with decreasing ⟨T⟩ until they
non-linearly level off for ⟨T⟩ . 75 K. If one wants to choose a
method-specific frequency scaling factor fDFT, then one must
be aware of this temperature dependence of νAI and should
apply fDFT only to simulations at the corresponding reference
temperature, in our case T0.

2. Scaling factors from DFT-MD at 300 K

For a more simple visual comparison with experimental
spectra we choose a global frequency scaling, which moves
the calculated gas phase frequency νAI exactly to the
experimentally observed spectral position. The determination
of the IR spectroscopic reference value encounters the
difficulty that the AI band of NMA in the gas phase shows
a distinct double peak,29,123 which is caused by the coupling
of the vibrations to the rotational degrees of freedom, while
our computational setup excludes such a coupling. From
the available gas phase IR data,29 we estimate the value
ν

exp
AI = 1722.5 cm−1. From our MT/BLYP-MD simulation

result νAI = 1651.8 cm−1, which belongs to the average
simulation temperature ⟨T⟩ = 287 K, we get the scaling factor
fMT/BLYP = 1.0428.

A priori it is uncertain, whether gas phase scaling factors
fDFT (like fMT/BLYP) are applicable also to liquid phase IR
spectra derived from DFT/PMM-MD simulations of NMA in
GP6P water at T0 = 300 K. While the temperature dependence
of the calculated anharmonic frequencies should be well-
accounted for by fDFT, the transition to a hybrid setting
implies a change of the computational method. Therefore it
may well be that the liquid phase IR spectra require a slightly
modified scaling factor f sol

DFT for a perfect match of νsol
AI with

the associated νsol,exp
AI . This factor should then be applicable to

IR spectra calculated by DFT/PMM-MD for other peptides in
GP6P water.

For the MT/BP setup, an analogous DFT-MD simulation
of NMA in the vacuum at the average temperature ⟨T⟩ = 272 K
yielded the smaller scaling factor fMT/BP = 1.033 45. This
factor is very close the value of 1.0354, which had been
determined in an earlier MT/BP study on NMA24 by
comparing the results of a normal mode analysis with the

frequency νRR
AI = 1728 cm−1 measured by resonance Raman

spectroscopy.124

Interestingly, the much more costly (cf. Section III D)
MT/B3LYP-MD simulations, which were carried out at an
average temperature ⟨T⟩ of 327 K, yielded a scaling factor
fMT/B3LYP = 0.9988 very close to one. Thus, the inclusion of
Hartree-Fock exchange125 substantially improves and stiffens
the BLYP force field of NMA in the region of the energy
surface sampled by our DFT-MD. Therefore we will now
discuss the IR spectra of NMA in the gas phase and in
aqueous solution on the basis of the MT/B3LYP simulation
results and will consider the effects of the chosen DFT
setup on the quality of the predicted IR spectra further
below.

3. The IR spectrum of NMA in the gas phase

Applying the just determined scaling factor fMT/B3LYP to
the gas phase IR spectrum of NMA calculated by FTTCF from
the 600 ps MT/B3LYP-MD trajectories (cf. Section II E 2)
we obtained the spectrum depicted in Figure 6(a) as a solid
black line. The thus calculated IR bands were assigned to
the various amide modes (cf. Figure 7 in Ref. 24) by a GNC
analysis.110,111 The gray spectrum in the background has been
measured by IR spectroscopy.29

The spectral locations of the calculated amide peaks
match the positions of the corresponding observed bands very
well. For the AI band this frequency match is, of course,
a result of the scaling. In contrast, the spectral positions
of the AII, AIII, and AIV bands calculated at 1492 cm−1,
1248 cm−1, and 1071 cm−1, respectively, represent predictions.
Here, the excellent match of the calculated AII and AIII
peak frequencies with their experimental counterparts (AII:
1499 cm−1, AIII: 1255 cm−1), which can be quantified by

FIG. 6. The IR spectrum of NMA in (a) the gas phase and (b) aqueous
solution as found by IR spectroscopy29 (gray) and by FTTCF (black) from
DFT-MD and DFT/PMM-MD trajectories employing the MT/B3LYP setup;
frequencies were scaled with fMT/B3LYP; the heights of the AI peaks were
normalized to one; band assignments were obtained by a GNC analysis.110,111
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deviations of at most 7 cm−1, demonstrates the quality of
the marginally scaled MT/B3LYP-MD description. Because
there are no IR data in the frequency range below 1150 cm−1

available to us, we cannot judge the accuracy of the predicted
AIV frequency.

Figure S20(a) in the supplementary material60 further-
more demonstrates that, for the amide bands, the quality of
the results depends (after proper scaling) hardly on the chosen
DFT setup. This figure shows that MT/BLYP-MD and MT/BP-
MD simulations lead to likewise excellent description of these
bands as the MT/B3LYP-MD simulations. Interestingly, the
marginally scaled MT/B3LYP-MD describes the methyl bands
at about 1428 cm−1 and 1375 cm−1 distinctly better than scaled
MT/BLYP-MD and at a quality comparable to that of scaled
MT/BP-MD.

The above analysis in terms of band frequencies solely
confirms the visual comparison of the calculated with the
underlying experimental IR spectrum, which clearly indicates
an almost perfect frequency match. The comparison of
peak heights is not likewise perfect. This is partially due
to the fact that the applied normalization of the AI peak
heights represents a poor intensity measure. Intensities are
actually integrals over bands, which are poorly measured by
the peak heights. Furthermore, the artificial suppression of
the molecular rotations in the DFT-MD simulations, which
is enforced by the lacking conservation of the angular
momentum with a grid-based DFT implementation like in
CPMD,14 entails an artificial narrowing of the various bands.
Particularly in the case of the AI band, this suppression
transforms the observed vibrational-rotational double peak
into a single one. Therefore, the relative intensity of the AI
band is strongly overestimated by the applied peak height
normalization. Despite the resulting difficulty of intensity
comparisons, the computational results enable together with
the GNC analysis a clear-cut assignment of observed bands to
molecular modes.

4. The IR spectrum of NMA in aqueous solution

Now it will be interesting to see as to whether IR
spectra, which are calculated from our 1.2 ns DFT/PMM-MD
trajectories of NMA in GP6P water at 300 K (cf. Section II E 3)
using the optimized LJ parameter set Lopt for the AG
atoms of NMA, provide a similarly excellent description
of spectroscopic IR data on NMA in liquid water at room
temperature. Figure 6(b) compares the slightly scaled FTTCF
results obtained with the MT/B3LYP setup (black) with a
corresponding experimental IR spectrum29 (gray).

Already the first glance at this figure shows that the
FTTCF approach predicts the three amide bands also in the
solvent case at spectral locations, which are very close to
those determined by IR spectroscopy.29 For the shown six
prominent IR peaks the root mean square deviation (RMSD)
amounts to 9 cm−1. The dominant contributions to this RMSD
are delivered by the methyl bands (denoted as m1, m2, and m3),
which are on average blue-shifted by 12 cm−1 with respect
to the spectroscopic band positions. The three amide bands
AI-AIII, for which experimental reference data are available,
contribute only a RMSD of 5 cm−1.

Overall the calculated spectrum reproduces observed
spectral features very well although it cannot account,19

because of the use of a rigid PMM water model, for the likely
coupling126,127 of the AI vibration with the bending mode of
H2O at 1644 cm−1,128 which may induce a broadening and an
additional shift of the AI band. In combination with the GNC
analysis110,111 the calculations therefore enable a clear-cut
assignment of the observed bands to local modes. The AIV
band is predicted, e.g., at 1085 cm−1.

Combining the results in Figures 6(a) and 6(b) on the
amide bands of NMA in the gas phase and in solution we
conclude that the experimentally determined29 solvatochromic
shifts of the AI, AII, and AIII bands, which are −98 cm−1,
+83 cm−1, and +62 cm−1, respectively, are reproduced
by our DFT/PMM-MD approach in the marginally scaled
MT/B3LYP setup with a RMSD of only 6 cm−1. For the gas and
liquid phases the bottom of Figure S21 in the supplementary
material60 provides further MT/B3LYP predictions on the
frequencies of the AIV, AV, and AVI bands, which appear
below 1100 cm−1. Here its is shown that these amide bands are
blue-shifted by 14 cm−1, 41 cm−1, and 20 cm−1, respectively,
upon transfer of NMA from the vacuum into GP6P water.

As a first physical result we note that the above DFT-
MD and DFT/PMM-MD descriptions of the IR spectra of
NMA in the gas phase and in aqueous solution predict
the solvatochromic IR band shifts at a high accuracy.
Concerning the methodology we furthermore note, that our
initial assumption on the transferability of frequency scaling
factors from a pure DFT to a hybrid DFT/PMM setting seems
to be approximately valid, at least for the MT/B3LYP setup.

5. Effect of DFT functional on the IR spectra
of NMA in GP6P water

Due to the much larger computational cost (cf.
Section III D) of the B3LYP functional one might prefer
the simpler gradient-corrected BLYP or BP functionals for the
computation of IR spectra by MD-based FTTCF techniques.
Further above in Section III C 3, we have noted that DFT-MD
yields for NMA in the gas phase scaled MT/BLYP and MT/BP
amide band frequencies, which are of a comparable quality to
those obtained by the marginally scaled MT/B3LYP-MD. Here
the question arises, whether this favorable result remains valid
in DFT/PMM-MD calculations of liquid phase IR spectra.

Figure 7 now demonstrates that this is actually the case for
NMA in aqueous solution. Here, the visual comparison of the
amide frequency terms in the last two columns illustrates the
small 5 cm−1 RMSD between the experimental frequencies29

and the DFT/PMM-MD predictions obtained through the
marginally scaled MT/B3LYP setup [cf. the discussion of
Figure 6(b) above]. Following the corresponding predictions
toward the first two columns of the figure, which belong to the
scaled MT/BP and MT/BLYP setups, one recognizes that the
qualities of the amide band predictions deteriorate only a little
as signified by RMSDs of 8 cm−1 and 9 cm−1, respectively. For
the three methyl bands the situation is different. While their
frequencies are blue-shifted with respect to the experimental
data on the average by only 14 cm−1 for the scaled MT/BP
setup, which is very close to the MT/B3LYP blueshift of
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FIG. 7. NMA in aqueous solution: frequencies of amide (AI-AIII) and
methyl (m1-m3) IR bands predicted by DFT/PMM-MD with the scaled
MT/BLYP, MT/BP, and MT/B3LYP setups are compared with experimental
data.29

12 cm−1, a much larger average blueshift of 34 cm−1 results
for the scaled MT/BLYP setup.

The residual 25 cm−1 and 11 cm−1 blueshifts remaining for
the six IR bands in the scaled MT/BLYP and MT/BP setups,
respectively, indicate that the transfer of scaling factors from
vacuum DFT-MD to hybrid DFT/PMM-MD simulations of
solute molecules may be suboptimal for these DFT setups.
Thus, our tentative conclusion at the bottom of Section III C 4
on the transferability of the scaling factor seems to be restricted
to the MT/B3LYP case. Note that Sections S3 A and S3 B of
the supplementary material60 present the IR spectra of NMA
in the gas and aqueous phases computed for the MT/BLYP
and MT/BP settings in the ranges [1800,1000] cm−1 and
[1380,580] cm−1, respectively.

The MT/BLYP and MT/BP band frequencies shown in
Figure 7 for NMA in GP6P water suggest that one should
choose for IR spectra of organic solute molecules derived
from such DFT/PMM-MD simulations the scaling factors
f sol

MT/BLYP = 1.0371 and f sol
MT/BP = 1.0273, which shift the

calculated AI frequencies νsol
AI to the experimental value29

ν
sol,exp
AI = 1625 cm−1. With these scaling factors the RMSD of

the five remaining IR frequencies shown in Figure 7 reduces
from 27 cm−1 to 21 cm−1 (MT/BLYP) and from 12 cm−1

to 7 cm−1 (MT/BP), respectively. The latter RMSD is even
smaller than the 9 cm−1 RMSD resulting for the six main IR
peaks in the marginally scaled MT/B3LYP case.

Thus, a properly scaled MT/BP setup can predict the
IR spectra of NMA at a quality comparable to that of the
physically more accurate and much more costly MT/B3LYP
setup. This finding reminds of earlier observations derived
from normal mode analyses41,42 of isolated organic molecules,
according to which unscaled harmonic BP frequencies match
for many organic molecules the frequencies of anharmonic
fundamentals surprisingly well. The associated accidental
cancellation of errors41,42 thus appears to transfer to the
DFT/PMM-MD setting. Note in this context that MD
simulations at about 300 K still leave a molecule in regions
of the potential energy surface, which are quite close to the
quadratic minimum.

6. Effects of NMA’s LJ parameters on calculated
IR spectra

In Section III B, we have shown that the solvation
of NMA’s C′==O group by GP6P water is substantially
overestimated, if the LJ parameter set LC22, which is provided
by the CHARMM22 force field for NMA, is used for the AG
atoms in DFT/PMM simulations. In this respect the optimized
set Lopt was seen to perform much better (cf. Figure 4).

Because the AI and AII bands of NMA are very sensitive
to the strength of hydrogen bonding particularly at the C′==O
group of the AG,24,29,32 one expects that the AI band is shifted
toward higher and the AII band toward lower frequencies if
LC22 is replaced by Lopt in DFT/PMM-MD simulations.

The top part of Figure 8 confirms the expectation voiced
above: Due to the exchange of the initial LJ parameter set
LC22 by Lopt the AI band gets blue-shifted by 8 cm−1 and the
AI band red-shifted by 7 cm−1 thus widening the spectral gap
between the two bands from 32 cm−1 to 47 cm−1. Here the
experimental value29 is 43 cm−1.

Turning now to the AIII frequency shown in the bottom
part of Figure 8 one recognizes a shifting pattern, which
is quite similar to that of the AII frequency. Also here the
transition from the LC22 to the Lopt parameters induces a
redshift and, thus, diminishes the frequency overestimate
resulting for the scaled DFT/PMM-MD description with the
MT/BLYP setup (we have discussed the remaining frequency
overestimates above already in connection with Figure 7).
Note that the methyl bands are unaffected by the change of L.

As a further methodological result it has thus become
clear that a more accurate description of NMA’s solvation by
optimized LJ parameters at the two molecular groups, which
are targeted by hydrogen bonding, leads to an improved
prediction on the IR spectrum of NMA in aqueous solution.
Therefore we suggest to adopt for those QM atoms, which are
involved in hydrogen bonding interactions, an RDF-based LJ
parameter optimization as a standard technique for the setup
of QM/MM descriptions.

An alternative and less costly approach to the optimization
of QM/MM van der Waals interaction potentials applies
microsolvation models,34–38 i.e., small isolated solute-solvent

FIG. 8. Frequencies of the AI, AII, and AIII bands from DFT/PMM-MD
in the scaled MT/BLYP setup either using the CHARMM22 (LC22) or the
optimized (Lopt) LJ parameters for the AG of NMA. As an experimental
reference also data from IR spectroscopy29 are given.
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clusters, for which accurate QM reference calculations are
feasible. However, the transfer of LJ parameters to the bulk
failed in certain cases.129

7. Basic vs. advanced MD simulation technology
and modeling

About eight years ago, Schultheis et al.24 have already
calculated the IR spectrum of NMA in water from DFT/MM-
MD simulations. For the DFT fragment NMA they had
chosen the MT/BP setup and for the MM description of the
surrounding water Jorgensen’s so-called TIP4P43 potential.
Beyond exchanging the non-polarizable and less polar TIP4P
water model (dipole moment 2.18 D) by the polarizable and
more polar GP6P description (average dipole moment in bulk
water 2.54 D, cf. Table S5 in the supplementary material60), we
have replaced the DFT/MM interface originally developed by
Eichinger et al.8 by improved algorithms, which substantially
enhance the performance (i.e., accuracy times efficiency) of
the calculations.10,11,17 In this work, we furthermore have
optimized the LJ parameters of NMA for an improved
description of the hydrogen bonding structures at the C′==O
and N—H groups of the AG.

Figure 9 compares the IR spectra calculated in the MT/BP
setup from hybrid MD simulations with the advanced (a) and
basic (b) modeling technologies, respectively. Whereas the
description of the methyl bands is of a comparable quality in
both cases, the amide bands resulting from the basic modeling
are blue-shifted with respect to the advanced modeling by
18 cm−1 (AI), 15 cm−1 (AII), and 5 cm−1 (AIII). Whereas
the blueshift of the AI band could be attributed to the use
of the less polar TIP4P water model, a reduced polarity of
the solvent should correspondingly lead to a redshift of the
AII and AIII bands (these are the well-known effects exerted

FIG. 9. The IR spectrum of NMA computed by FTTCF (black) from (a)
DFT/PMM-MD with the GP6P water model and the LJ parameter set Lopt,
or from (b) DFT/MM-MD with the TIP4P43 water model and LC22 (both
employing the MT/BP setup). The AI intensities have been normalized to
one and the frequencies were scaled by fMT/BP. As a guide to the eye the
experimental spectrum29 is drawn in gray.

FIG. 10. IR spectra (black) of (a) NMA and (b) deuterated NMA computed
by FTTCF from MT/BP DFT/PMM-MD and scaled by f sol

MT/BP are compared
with available spectroscopic reference data29 (gray). Band assignments were
obtained by a GNC analysis.110,111

by solvents of reduced polarity24,29,32). Thus, the observed
blueshift of the AII and AIII bands cannot be attributed
to the smaller polarity of the TIP4P solvent. As a result, the
improved description of the experimental data by the advanced
DFT/PMM-MD simulations signifies the meanwhile achieved
progress of technology,10,11 methodology, and modeling.

8. Isotope effects: Deuteration of amide hydrogen

As a first application of the thus established DFT/PMM-
MD approach to the IR spectra of AG-containing compounds
in solution we consider the effect of replacing the amide
hydrogen of NMA by a deuterium, because this is the only
isotopomer of NMA, for which a solution spectrum29 is known
to us.

Figure 10 compares our DFT/PMM-MD predictions
(black) for the IR spectra of NMA (a) and of its deuterated
counterpart (b) with spectroscopic data.29 Here, the MT/BP
setting was employed and the associated solution frequency
scaling factor f sol

MT/BP was applied (cf. Section III C 5).
Unfortunately the experimental spectrum covers only a limited
spectral range, because the deuterated aqueous solvent exhibits
strong IR absorptions in the lower frequency spectral region.128

Nevertheless the shown spectroscopic data29 suffice to estimate
the isotopic frequency shifts of NMA’s AI and AII bands in the
transition to deuterated NMA, where they are labeled as AI′

and AII′, respectively. The two bands are red-shifted by 2 cm−1

(AI) and 79 cm−1 (AII). In excellent agreement with these
spectroscopic data our DFT/PMM-MD calculations predict
redshifts of 1 cm−1 and 81 cm−1, respectively, underlining the
quality of the description.

D. Computational issues

The simulations were carried out on the SuperMUC Phase
2 Petascale System at the Leibniz Supercomputing Centre
(LRZ) of the Bavarian Academy of Sciences and Humanities
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in Munich employing up to 840 cores per simulation. The
DFT fragment was handled by the MPI/OpenMP-parallelized
DFT program CPMD14 and the PMM fragment by the MPI-
parallelized dynamics driver IPHIGENIE.15 Here, CPMD
works as a library loaded by IPHIGENIE.11

For MT/BP and MT/BLYP, the fastest parallel setup
yielded about 70 ps of DFT/PMM-MD trajectory of NMA
in GP6P solution per day, which is only by a factor of
two slower than the corresponding DFT-MD simulations
of isolated NMA. For DFT-MD simulations of isolated
NMA, the MT/B3LYP setup was by about a factor of eight
slower than the MT/BLYP setup, whereas in the DFT/PMM
case this factor reduced to five. Nevertheless, applications
employing the B3LYP functional with the current DFT/PMM
implementation11 are likely too expensive in many cases.
Alleviation could provide a DFT/PMM interface to a more
efficient B3LYP implementation as it is, e.g., available in
CP2K.63 The programming of such an extension should be
straightforward.

With IPHIGENIE single-core test simulations of a box
of liquid water containing 1500 molecules revealed that the
new GP6P potential is only by 7.5% slower than TL6P,49

whose model complexity differs from that of GP6P solely
by the use of point instead of Gaussian partial charges.59

Thus, the additional cost of handling Gaussian partial
charge distributions is very small already in pure PMM-
MD simulations and becomes essentially negligible in a
DFT/PMM-MD setting.

IV. SUMMARY

A physically adequate and quantitatively reliable treat-
ment of the quantum-classical interface in MD simulations
of QM/MM hybrid systems still poses technical challenges,
even if only non-covalently bound QM and MM fragments
are in the focus, as it is the case in our present contribution.
One of these challenges is the question, as to how one should
describe the van der Waals interactions between the atoms of
charged or polar fragments.

Driven by our interest in the IR spectra of peptides in their
native aqueous environment, we have selected the standard
molecular model NMA of a peptide bond and, here, the
effects of solvation on its IR spectrum as the target of our
study. Because the IR spectra of NMA, in particular, and of
peptides, in general, sensitively depend24,29,32 on the details
of the electrostatic interactions of these strongly polar and
polarizable molecules with their likewise polar and polarizable
(native) environments, these environments should be modeled
by PMM potential functions, which accurately capture their
electrostatic properties.

Applying a DFT/PMM hybrid method10,11 we have
correspondingly developed with GP6P a polarizable model
potential for water, which should be specifically well-suited for
DFT/PMM-MD simulations of peptides in aqueous solution,
if the peptidic DFT fragment is described by a grid-based
DFT approach such as provided by CPMD14 or CP2K.63

Here, the Gaussian charge and dipole distributions of GP6P
guarantee that spurious distortions of the DFT fragment’s
electron density, which may arise from point sources of the

electrostatic potential, are avoided. Point charge MM models,
in contrast, require additional efforts of selecting suitable
charge smoothing scales.9 The thus obtained GP6P model
turned out to have favorable bulk liquid properties not only at
the thermodynamic conditions (p0, T0) of its parameterization
but also seems to be very well transferable to other liquid
phase conditions.

Subsequently we have addressed the issue of the inter-
fragment van der Waals interactions specifically for the two
hydrogen bonding interaction sites of DFT-described NMA in
GP6P water. We have derived for these sites an optimized set
Lopt of LJ parameters by consideration of RDFs measuring the
hydrogen bonding structure in the surrounding GP6P water.
Reference RDFs were calculated by a first-principles DFT-MD
simulation of NMA in a small box of water. The computational
effort of the DFT/PMM-MD parameter optimization was
reduced by applying a mean field approach.

We have evaluated the successes of these modeling efforts,
i.e., the computational constructions of GP6P and of Lopt, by
computing the IR spectrum of NMA in aqueous solution
through FTTCF from extended DFT/PMM-MD simulations
using several DFT setups. The results turned out to represent
excellent descriptions of the corresponding spectroscopic
evidence29 particularly for the marginally scaled MT/B3LYP
and the scaled MT/BP setups. Here, the required scaling
factors had been derived by comparing experimental gas phase
IR data with results of DFT-MD simulations. The quality of
the thus achieved DFT/PMM-MD description was underlined
by the fact that the observed effects29 of aqueous solvation
and of deuteration on the IR bands of NMA were closely
reproduced by the simulations.

The contents of this contribution are admittedly quite
technical. An exception is, of course, the substantially
improved description of the IR spectra of protonated and
deuterated NMA in water. However, the achieved technical
progress now provides solid grounds for DFT/PMM-MD
studies of larger peptides in aqueous solution. Of particular
interest for us will be the conformational landscapes and the IR
spectra of dipeptides in aqueous solution. An enhanced sampl-
ing method, which makes DFT/PMM-MD simulations aiming
at conformational landscapes computationally feasible, has
been recently developed.130

The improved methodology of DFT/PMM simulations
presented in this and previous works10,11 is, up to now,
restricted to chemically separated DFT and PMM fragments.
An extension toward covalently connected fragments should
pose no serious conceptual difficulties, if one follows the lines
of reasoning underlying the so-called “scaled position link
atom” method.8
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2.3 Beschreibung der IR-Spektren von Amidgruppen mit DFT/PMM-MD

Der folgende Abdruck

Supplementary Information for
A Polarizable QM/MM Approach to the Molecular Dynamics of

Amide Groups Solvated in Water

Magnus Schwörer, Christoph Wichmann und Paul Tavan
J. Chem. Phys. 144, 114504 (2016)

enthält zusätzliche Informationen zum oben abgedruckten Haupttext. Im Abschnitt S1
werden hier die im Haupttext nur grob skizzierte Konstruktion des PMM-Wassermodells
GP6P sowie die Details der Evaluierung dokumentiert. Abschnitt S2 zeigt, dass der
effiziente DFT/PMM mean-field-Ansatz sehr gute Vorhersagen für die radialen Vertei-
lungsfunktionen in DFT/PMM-Systemen liefert, und dass diese unabhängig von der
gewählten DFT-Methode sind. In Abschnitt S3 werden schließlich alle berechneten IR-
Spektren im Spektralbereich von 1800 cm−1 bis 580 cm−1 zusammen mit GNC-Analysen
gezeigt.
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S1. PARAMETERIZATION AND EVALUATION OF THE GP6P WATER

MODEL

For the predominantly computational construction of our new Gaussian polarizable six-

point (GP6P) potential, which should be particularly suited for hybrid DFT/PMM-MD sim-

ulations (cf. Section I), we adopted the general concepts underlying the parameterization1,2

of the polarizable ν-point (ν = 4, 5, 6) point charge water models called TLνP.1 Because

four- and five-point models, which feature three and four static partials charges, respec-

tively, did not show3 a density maximum near 277 K and because out-of-plane “lone-pair”

charges are required for a proper modeling of the quadrupole moment, which steers the local

order structures in the liquid phase,4 we decided to choose a six-point geometry with five

static Gaussian charge distributions for our new water model potential.

Figure 2 illustrates the geometry of the resulting GP6P model together with the distribu-

tions of the induced dipole, of the charges and of the mass-points. Procedural modifications

of the TLνP parameterization strategy1,2 became necessary, mainly because GP6P features

with the widths σi of the Gaussian charge distributions at most three additional parameters

(compared to TL6P).

A. Physical Corner Stones of GP6P

The construction of GP6P follows the general strategy1,2 (i) to directly adopt experimen-

tally well-measured properties of the water molecule in the gas and liquid phases wherever

possible, (ii) to take advantage of the new DFT/PMM technology5,6 (which includes the

most recent version of the SAMM algorithm7,8) to compute most of the remaining electro-

static parameters, and (iii) to resort to empirical optimizations for as few parameters as

possible.

1. Parameters Directly Adopted from Experiments

Like the point-charge TLνP potentials,1,2 also our new Gaussian polarizable six-point

model GP6P of H2O is chosen rigid with the experimental liquid phase geometry9,10 Gm,

which is defined by the O-H distance lOH = 0.968 Å and the H-O-H angle ϕHOH = 105.3◦.

Following the suggestion in Ref. 11 its distribution of static partial charges is constrained

to yield the experimental gas phase dipole moment12 |µg
exp| = 1.855 D. The electronic po-

larizability is represented by an induced Gaussian dipole distribution of width σµ, which

is centered at the oxygen. The strength µi
PMM of this induced dipole depends linearly and

isotropically through the polarizability αPMM, for which we choose11 the experimental gas
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phase value13 αg
exp = 1.47 Å3, on the polarizing electric field, i.e. µi

PMM = αg
exp〈E(rO)〉σµ .

This field is an average over a Gaussian volume of width σµ centered at the position rO of

the oxygen [cf. Eqs. (3) and (4) in Ref. 5].

2. Electrostatic Geometry of GP6P

The new DFT/PMM technology5,6 is employed to compute almost all further features of

the electrostatic signature of GP6P. According to Figure 2, this signature is characterized by

two identical static Gaussian charge distributions of strengths qH > 0 and widths σH centered

at the two hydrogen atoms. A negative static Gaussian charge distribution (strength qM,

width σM) sits at a massless site (M), which is located within the molecular triangle on

the bisectrix of the bond angle ϕHOH at the distance lOM from the oxygen. Furthermore,

two massless so-called “lone-pair” sites (L) are found in the plane, which is defined by the

bisectrix and the normal of the molecular plane. They are located symmetrically above and

below that plane. The O-L distance is denoted as lOL. The L-O-L angle ϕLOL is measured

as indicated in Figure 2. The L-sites carry identical negative Gaussian charge distributions

(strengths qL < 0, widths σL).

With the model’s predefined vacuum dipole µg
PMM = |µg

exp| ex, where the unit vector ex

is oriented parallel to the H–O–H bisectrix in the O-M direction (cf. Figure 2), and with the

charge neutrality 2qH + qM + 2qL = 0 of the water molecule the electrostatic geometry Ge of

GP6P is uniquely determined by the four parameters {lOM, lOL, ϕLOL, qH} ≡ Ge.

In the absence of a polarizing field, the electrostatic signature of the GP6P model is

defined by Ge and by the three Gaussian widths σH, σM and σL. To reduce the number

of parameters we choose σM = σL. and, thus, the remaining widths are determined by the

ratio ΣLH ≡ σL/σH and the value of σH. In the presence of a polarizing field also the width

σµ of the induced Gaussian dipole at the oxygen contributes to the electrostatic signature.

As mentioned at the beginning of this section, almost all electrostatic parameters (i.e.

Ge, ΣLH, and σµ) will be determined computationally from DFT/PMM calculations. Here,

only σH will be determined empirically from comparisons of PMM-MD simulations with

experimental data on liquid water. This is a key difference to the optimization1,2 of the

TLνP point charge models, which determined all electrostatic parameters from DFT/PMM

calculations.
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3. Modeling the van der Waals Interactions

Beyond the Gaussian width σH, the empirical parameter optimization will also cover the

parameters A1, A2, and B of the Buckingham14 potential

UBu(r |A1, A2, B) = A1exp(−rA2)−B/r6, (S1)

which is centered at the oxygen atom and models the van der Waals interactions between

the GP6P water molecules at O-O distances r.

As targets of this empirical optimization, which will be carried out in the NV T0 ensemble

at the temperature T0 ≡ 300K and at the density15 nexp(p0, T0) = 0.9965 g/cm3 of liquid

water at the standard pressure p0 ≡ 1 atm, we chose the pressure p0, and the experimental

values for the mean potential energy Eexp
0 = 9.92 kcal/mol per molecule,16 for the position17

rmax,exp
OO = 2.76 Å of the first peak of the O–O RDF gOO(r), and for the thermal expansion

coefficient15 αexp
p = 2.8× 10−4/K.

To enable the later use of GP6P for solute-solvent systems, in which the van der Waals

interactions of the solute atoms are modeled by LJ potentials, we will additionally determine

from UBu(r |A1, A2, B) a related two-parameter LJ potential

ULJ(r |A,B) = A/r12 −B/r6, (S2)

which features the same dispersion parameter B as UBu. Its repulsive parameter A is ob-

tained by fitting ULJ(r |A,B) to UBu(r |A1, A2, B) in the range r ∈ [2.4, 6] Å.1

B. Computational Methods

The iterative parameterization of GP6P followed the general scenario suggested in Ref. 1.

It involved PMM-MD simulations and DFT/PMM calculations, which were carried out

with the parallelized MD program package IPHIGENIE18 and its parallelized DFT module

CPMD.19

1. Setup of PMM-MD Simulations

All PMM-MD simulations, which were carried out during the iterative optimization1

of the new GP6P model, employed the same (so-called medium size) simulation system,

i.e. a periodic cubic box containing Nm = 1500 water molecules. In NmVmT simulations

its volume Vm was generally (unless stated otherwise) chosen as Vm ≡ (35.58 Å)3 to yield

the experimental15 density nexp(p0, T0) at our standard conditions. In such simulations the

temperature T was controlled by a tightly coupled Bussi thermostat20 (coupling time 0.1 ps).
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In all Np0T simulations the pressure was steered by a Berendsen barostat21 characterized by

a coupling time of 10 ps and by the isothermal compressibility κT = 46 × 10−6/atm, which

is the experimental value15 for liquid water at p0 and T0. All other simulation settings were

chosen as described in Section II A of the main text.

As is also stated in Section II A, the pressure was calculated in all MD simulations from

the virial expression.22,23 This barometer was also applied during the parameterization of

the predecessor models TL4P and TL5P.1 In the course of the present study it turned out,

however, that a simpler barometer expression,23 which is solely applicable to additive force

fields, was apparently employed during the parametrization2 and sample application3 of the

TL6P model. Therefore, the TL6P model is flawed.

2. DFT Setup of Choice: MT/BP

Beyond PMM-MD simulations, the GP6P parameterization also covered DFT/PMM

single-point calculations of selected water molecules embedded in solvation environments,

which had been generated by PMM-MD. With the aim of staying compatible with previous

DFT/(P)MM studies of the water molecule1,11,24 we chose as DFT method the gradient-

corrected exchange functional of Becke (B),25 the correlation functional of Perdew (P),26

combined with the norm-conserving pseudopotentials of Martins and Troullier (MT),27 and

a plane-wave cutoff of 80 Ry. This DFT method is denoted MT/BP. The selected DFT

water molecule was always centered in a cubic box of volume (9 Å)3 and the self-consistency

convergence threshold5 of the Kohn-Sham orbitals was set to χDFT = 10−7.

C. Procedures Executed at Each Parameterization Step

Each step n = 1, 2, . . . of the iterative parametrization comprised a set of sequentially

executed procedures, which transformed the previous model GP6Pn−1 into its successor

GP6Pn. The iterations were repeated until a convergence of the model parameters was

apparently reached.

1. Snapshot Set for DFT/PMM Single-Point Calculations

First a 400 ps PMM-MD simulation was performed in the NmVmT0 ensemble for the model

GP6Pn−1 (GP6P0 ≡ TL6P). Five snapshots were drawn from the end of this trajectory at

temporal distances of 10 ps. These snapshots are defined by the positions of all atoms and

by the strengths µi,k
PMM of the induced dipoles of the PMM water models k. From each
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snapshot, 300 water molecules were randomly selected as DFT fragments for subsequent

DFT/PMM single-point calculations.

In this way we obtained, for each iteration step n, a supposedly representative set Sn
of 1500 solvation structures s. The DFT/PMM calculations served to determine for each

s ∈ Sn the dipole moment µDFT(s) and the charge density ρ(s) of the DFT fragment, whose

structure was kept fixed at the experimental liquid phase geometry Gm.

2. DFT/PMM Optimization of the Induced Dipole’s Width σµ

For each solvation structure s ∈ Sn, first the dipole moment

µi
DFT(s) = µDFT(s)− |µg

DFT| ex, (S3)

which is induced in the DFT fragment by the PMM environment, is calculated. Here,

µDFT(s) is the total dipole moment of the DFT fragment calculated by DFT/PMM and

|µg
DFT| = 1.7920 D is the vacuum DFT dipole moment calculated11 with MT/BP at Gm.

For comparison also the PMM analogues

µ̂i
PMM(s|σµ) = αg

DFT〈E(rO)〉σµ (S4)

are computed for all s ∈ Sn by multiplying the local Gaussian average field 〈E(rO)〉σµ
introduced above in Section S1 A 1 with the DFT polarizability αg

DFT = 1.6025 Å3 obtained11

by MT/BP for a water molecule, which was exposed to homogeneous external fields and kept

fixed at Gm.28

The induced PMM dipoles µ̂i
PMM(s|σµ) depend on the Gaussian width σµ assumed for the

local field average 〈E(rO)〉σµ . Therefore a variation of σµ can be employed to optimize the

correlation between the induced DFT dipole moments µi
DFT(s) and their PMM analogues

µ̂i
PMM(s|σµ). For this purpose one can minimize the mean square deviation

χ2(σµ) =
1

|S|
∑

s∈S

[
µi
DFT,x(s)− µ̂i

PMM,x(s |σµ)
]2

(S5)

between the x-components of the induced dipole moments µi
DFT(s) obtained by DFT and

their PMM analogues µ̂i
PMM(s|σµ) over the set Sn of solvation structures s.1,24 Technically

the minimization of χ2(σµ) was effected by scanning σµ from 0 to 1 Å in steps of 0.0005 Å.

The resulting optimal width is denoted σopt
µ .

3. DFT/PMM Optimization of the Electrostatic Geometry

The next target of the parameter optimization is a DFT estimate Ĝn
e of the electrostatic

geometry.

S6



Supplementary Material Schwörer et al.

First, for each solvation structure s ∈ Sn the electrostatic potential ΦDFT [rp|ρ(s)], which

is generated by the charge density ρ(s) of the DFT water molecule, is evaluated at the

positions rp of 500 points p, which are uniformly distributed on a sphere P of radius R =

2.76 Å surrounding the molecule’s center of geometry. These points are given in a frame of

reference, which is fixed with respect to the molecular geometry. The radius of the sphere

coincides with the location of the first maximum of the oxygen-oxygen radial distribution

function (RDF) of water at standard conditions.17

Next, the DFT fragment is replaced by a PMM water model, whose Gaussian induced

dipole µ̂i
PMM(s |σopt

µ ) [Eq. S4] has the above determined width σopt
µ and is located at rO.

The potential Φµ

[
rp | µ̂i

PMM(s |σopt
µ )
]

generated by µ̂i
PMM(s |σopt

µ ) is then calculated at all

points rp of the spherical surface.

For each solvation structure s these two surface potentials are subtracted at all points rp

yielding the difference potentials

∆ΦDFT (rp|s) ≡ ΦDFT [rp|ρ(s)]− Φµ

[
rp | µ̂i

PMM(s |σopt
µ )
]
. (S6)

If one assumes that the fluctuations of the electrostatic field, which acts on the selected DFT

water molecule in a liquid phase environment, mainly change its induced dipole moment,

which should be very well approximated by its PMM analogue, then the values of the differ-

ence potential ∆ΦDFT (rp|s) should be similar in all solvation structures s ∈ Sn. Thus, the

difference potential should only slightly fluctuate1 around the static contribution Φstat
DFT(rp)

to the surface potential ΦDFT [rp|ρ(s)], which is generated by the average higher moments

of the DFT charge density.

Averaging ∆ΦDFT (rp|s) over all solvation structures yields the mean difference potential

〈∆ΦDFT(rp)〉S ≡
1

|S|
∑

s∈S
∆ΦDFT (rp|s) , (S7)

at all points p ∈ P , whose surface average variance

σ2
S ≡

1

|P|
∑

p∈P

{
1

|S|
∑

s∈S
[∆ΦDFT (rp|s)− 〈∆ΦDFT(rp)〉S ]2

}
(S8)

should be small. Denoting the mean difference potential as

Φstat
DFT(rp) ≡ 〈∆ΦDFT(rp)〉S , (S9)

the variation of this static part of the potential ΦDFT [rp|ρ(s)] on the spherical surface P is

σ2
P ≡

1

|P|
∑

p∈P

[
Φstat

DFT(rp)− 〈Φstat
DFT(rp)〉P

]2
. (S10)

S7



Supplementary Material Schwörer et al.

Then the ratio σS/σP measures the size of the fluctuations of the difference potential

∆ΦDFT (rp|s) in the snapshot set Sn around its mean Φstat
DFT(rp) on the scale σP , which

is defined by the variations of Φstat
DFT(rp) on the spherical surface. According to the above

conjecture, this ratio should be small.

The DFT estimate Ĝn
e = {lOM, lOL, ϕLOL, q̂H}n of the electrostatic geometry Ge, which

approximates the average higher moments of the DFT fragment (at the predefined value

|µg
DFT| of the static dipole moment) within the chosen model class as accurately as possible,

is finally found by minimizing over all surface points the functional

ξ2(Ĝe) =
1

|P|
∑

p∈P

[
Φstat

DFT(rp)− Φstat
PMM(rp|Ĝe)

]2
(S11)

of the four-parameter electrostatic geometry Ĝe. This functional is the mean square devia-

tion between the static contribution Φstat
DFT(rp) [Eq. (S9)] to the DFT potential ΦDFT [rp|ρ(s)]

and the potential Φstat
PMM(rp|Ĝe), which is generated by the static Gaussian charges of an un-

polarized (µ̂i
PMM = 0) PMM water model with the electrostatic geometry Ĝe. These charges

have the Gaussian widths σn−1H and σn−1L of the model GP6Pn−1. The four-parameter space

spanned by Ĝe is searched by the Levenberg-Marquardt algorithm,29,30 which yields robust

results.

4. DFT/PMM Computation of the Gaussian Width Ratio ΣLH

At the thus obtained electrostatic geometry Ĝn
e , first estimates of the Gaussian charge

widths σ̂nH and σ̂nL are computed by minimizing the functional

ξ′2(σ̂H, σ̂L) =
1

|P ′|
∑

p∈P ′

[
Φstat

DFT(rp)− Φstat
PMM(rp|Ĝn

e , σ̂H, σ̂L)
]2

(S12)

with respect to the widths. This functional is analogous to Eq. (S11) but is based on a smaller

sphere P ′ of radius R′ = 1.70 Å, which roughly corresponds to the distance, at which the

first peak of the oxygen-hydrogen RDF is found in liquid water at standard conditions.17

Because the thus obtained Gaussian widths σ̂nL and σ̂nH will turn out to be smaller than about

0.7 Å, the potential at the surface of the large sphere P is quite insensitive to changes of σ̂L

and σ̂H , whereas the surface potential of the small sphere P ′ is much more sensitive.

Consequently, the computation of the widths by minimizing ξ′2(σ̂H, σ̂L) mainly serves

to bring the radial decay of the PMM model potential Φstat
PMM(r) close to that of its DFT

antetype Φstat
DFT(r) by optimizing their mean square difference on two concentric spherical

surfaces P ′ and P , which surround the center of geometry of the water molecule with the

radii 1.70 Å and 2.76 Å, respectively. The resulting widths σ̂H and σ̂L eventually define the
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ratio Σn
LH = σ̂nL/σ̂

n
H, which is kept constant during the further refinement in the current

iteration n. Thus, only one Gaussian width (σH) of a charge distribution remains as a free

parameter to be computed by empirical optimization.

5. Transforming the DFT- into an Experiment-Adapted Model

DFT descriptions of molecules generally differ from their real antetypes. Because the

desired PMM model should approximate a real water molecule, but not its DFT description,

as accurately as possible, the above DFT-based computation of the electrostatic geometry

Ĝe requires a corresponding correction. For this purpose the strengths {q̂H, q̂M, q̂L} of the

static PMM partial charge distributions are scaled by the factor

γ ≡ |µg
exp|/|µg

DFT| = 1.03515625 (S13)

to yield the experiment-adapted parameter set {qH, qM, qL}. This scaling transforms the

DFT estimate Ĝe featuring the static DFT dipole moment11 |µg
DFT| = 1.7920 D into the

electrostatic geometry Ge = {lOM, lOL, ϕLOL, qH} of an “experimental” PMM model, which

then has the static dipole moment |µg
PMM| = |µg

exp| = 1.855 D.

Furthermore, the polarizability of the PMM model, for which the DFT value11 αg
DFT =

1.6025 Å3 has been assumed in Section S1 C 2 in the computation of the induced dipole’s

width σnµ, is now set to the experimental value,13 i.e. αPMM = αg
exp = 1.47 Å3.

6. Empirical PMM-MD Optimization of σH, A1, and A2

The Gaussian width σH and, through the constant Gaussian width ratio Σn
LH (c.f. Sec-

tion S1 C 4), also the width σL = σHΣn
LH are next refined in an empirical optimization by a

subsequent weak-coupling (WC) PMM-MD simulation.31 This simulation additionally serves

to determine the parameters A1 and A2 of the Buckingham potential UBu, whereas its dis-

persion parameter B is kept fixed at the value Bn of the previous iteration. The initial value

B0 ≡ 663 Å6 kcal/mol is adopted from the TL6P model.2 Thus, the three parameters σH,

A1, and A2 are optimized by WC PMM-MD simulations in the NmVmT0 ensemble at our

standard conditions employing an integration time step of ∆t = 1 fs.

As we have indicated in Section S1 A 3, the targets of the WC simulations are the mean

potential energy Eexp
0 per molecule, the pressure p0, and the position rmax,exp

OO of the first peak

of the RDF gOO(r). Here, σH is negatively coupled to E − Eexp
0 with the effective coupling

time31 τσ/Cσ = 20 ps kcal/(mol Å), i.e.

σH(t+ ∆t) = σH(t)− (Cσ/τσ)[E(t)− Eexp
0 ]∆t (S14)
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(t denotes the current time step) and A2 is coupled to p with τp/Cp = 0.1 ps Å atm, i.e.

A2(t+ ∆t) = A2(t) + (Cp/τp)[p(t)− p0]∆t. (S15)

A1 is indirectly coupled to the position17 rmax,exp
OO = 2.76 Å of the first peak of gOO(r) by

negatively coupling the value

U ′(t) ≡ UBu(ra|A1(t), A2(t), B
n) (S16)

of the current Buckingham potential at ra = 2.3 Å to rmax,exp
OO = 2.76 Å. As effective coupling

time for U ′(t) we chose τU ′/CU ′ = 0.125 ps Å /(kcal/mol). An estimate of the associated RDF

gOO(r) and thus of rmax
OO is recalculated every 250 fs from the last τa ≡ 250 fs of WC PMM-

MD. Denoting the time of this recalculation by tn ≡ nτa with n = 1, 2, . . . the difference

∆rmax(tn) ≡ rmax
OO (tn)− rmax

OO yields the target value

U ′(tn+1) = U ′(tn)− (CU ′/τU ′)∆rmax
OO (tn)τa. (S17)

A linear interpolation between the values of U ′, which are defined with respect to the coarse

time scale τa, yields after a few lines of algebra the WC dynamics

U ′(t+ ∆t) = U ′(t)− (CU ′/τU ′)∆rmax
OO (tn)∆t (S18)

for each time point t with tn < t ≤ tn+1. Thus one gets at each time point t with Eqs. (S16)

and (S1) the prediction

A1(t+ ∆t) =
{
U ′(t+ ∆t) +Bn/r6

}
exp[A2(t+ ∆t)ra] (S19)

of the last missing parameter. After 400 ps of WC simulation, temporal averages 〈σH(t)〉τ ,
〈A1(t)〉τ , and 〈A2(t)〉τ , are collected for the next τ ≡ 200 ps of WCMD, which are subse-

quently identified with the parameters of the model GP6Pn. For the very last WC simula-

tion, which eventually yielded the final model parameters, all WC coupling constants were

increased by a factor of 5.

7. Tuning of the Dispersion Parameter B

The empirical optimization of the dispersion parameter B requires a further target observ-

able. We chose the thermal expansion coefficient αp, which has at our standard conditions

the experimental value15 αexp
p = 2.8× 10−4/K. For its optimal choice we conduct a series of

further WC simulations (as described just above) targeting σH, A1, and A2, for 12 B values

in the range [399, 1125] Å6 kcal/mol, which were chosen as B = B0 + i∆B with ∆B = 66 Å6

kcal/mol and i ∈ {−4,−3, . . . , 7}. For each of these 12 models, the associated thermal

S10



Supplementary Material Schwörer et al.

expansion coefficient αp(B) is computed following Section S1 D below. The value for Bn

is selected by linear interpolation of αp(B) to the targeted experimental value αexp
p . With

this value Bn another WC simulation yields the final model parameters σH, A1, and A2 of

GP6Pn. This model defines the initial conditions of the next cycle.

8. A Shortcut of the Optimization Cycle

Obviously the determination of Bn described above is computationally quite demanding.

Therefore, the dispersion parameter B was kept at its initial value B0 during the first four

optimization cycles, which solely comprised all steps described in the paragraphs S1 C 1-

S1 C 6. At the end of the fourth cycle B was optimized as described in Section S1 C 7

yielding B4 and a two more optimization cycles (excluding a further optimization of B)

served to check whether the remaining parameters showed an apparent convergence.

D. Methods for the Evaluation of GP6P

For a characterization of the GP6P model of liquid water at p0 and T0 we almost exactly

copied the computational setups explained in Section 3.2 of Ref. 1. Here, the only difference

is that we generally chose the simulation box of intermediate size containing Nm = 1500

water molecules instead of a smaller box containing only Ns = 728 molecules. In some cases,

in which the size dependence of calculated observables had to be studied, we also considered

a large box with Nl = 3374 GP6P models. The general PMM-MD simulation settings,

including the thermostat and barostat settings, were chosen as described in Sections II A

and S1 B 1.

To asses the targeted properties of GP6P at our standard conditions (p0 = 1 atm, T0 =

300 K) we calculated the potential energy E0 per molecule, the pressure p, and the RDF

gOO(r) as averages from a 3 ns MD trajectory simulated in the NmVmT0 ensemble. The

density n(p0, T0) was averaged over a 3 ns Nmp0T0 simulation.

The thermal expansion coefficient αp, which had been the fourth target of the parametriza-

tion, was determined from two 3 ns Nmp0T± simulations, with temperatures T± = T0±10 K.

Numerical differentation of the logarithm of the density with respect to the temperature

according to Eq. (13) in Ref. 1 then yielded αp. From the same trajectories, also GP6P

predictions for the heat capacity Cp at constant pressure was extracted by numerical dif-

ferentiation of the average total energy per molecule with respect to the temperature using

Eq. (12) in Ref. 1.

The isothermal compressibility κT was obtained from two 3 ns NmV±T0 simulations, in

which the volumes V± were chosen such that the densities were n+ = 1.047 g/cm3 or n− =
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0.947 g/cm3, by numerical differentation of the logarithm of the density with respect to the

average pressure according to Eq. (11) in Ref. 1.

Applying Eq. (9) in Ref. 1, finite size self-diffusion constants D0(Ni) were calculated for

all three box sizes Vi (i ∈ {s,m, l}) from NiViT0 simulations at nexp(p0, T0) using a weak-

coupling Berendsen32 thermostat with the very large coupling time of 5 ps for temperature

control. At such a large coupling time the perturbation of the dynamics by this thermostat

becomes negligible.33 One has, however, to choose target temperatures T̃Be(Ni) < T0, which

guarantee the average simulation temperatures 〈T 〉 are close to T0. For each of the three

box sizes Ni, the values D0(Ni) were calculated from ten independent NiViT0 simulations of

250 ps duration.

Because D0 strongly increases with the temperature,34 we corrected the errors intro-

duced by the deviations of the actual average temperature 〈T 〉 from the target temper-

ature T0. For this purpose, we interpolated the experimental34 function Dexp
0 (T ) in the

temperature range T ∈ [283.2, 323.2] K by a second-order polynomial f2(T ). Assuming

that the temperature-dependence of D0(Ni, 〈T 〉) is well approximated by Dexp
0 (T ), the cor-

rected quantity D̃0(Ni, T0) ≡ [f2(T0)/f2(〈T 〉)]D0(Ni, 〈T 〉) was obtained by scaling. The

self-diffusion constant D0 in the infinite system and the viscosity η were then determined by

extrapolation from the finite size values D̃0(Ni, T0) employing Eq. (10) in Ref. 1.

Also the dielectric constant ε of the infinite system was derived by extrapolation from the

finite size values ε(Ni), which were self-consistently obtained from the fluctuations of the

total dipole moment through the corrected version35 of Eq. (8) in Ref. 1 using perturbation

theory.36 Here, for each box size Ni a total of 10 zero’th order NiViT0 simulations were

executed for 5 ns assuming a dielectric constant εRF = 78 for the surrounding dielectric

continuum.37

The only observable, which we computed as a check on the transferability of the GP6P

model to other thermodynamic conditions than the one (p0,T0) used during the parameteriza-

tion, was the temperature-density profile n(p0, T ) in the temperature range T ∈ [250, 320] K.

For its determination we carried a replica exchange simulation38–40 in the generalized Nmp0T̃k

ensemble, with a temperature ladder comprising 15 rungs k = 0, . . . , 14 with temperatures

T̃k = (250 + 5k) K. Employing the deterministic even-odd scheme41 temperature exchanges

were attempted every 10 ps. The total simulation time was 20 ns per rung.

E. Results of the GP6P Parametrization

During the iterative parameterization described in Section S1 C several target quantities

were optimized. For a few of these quantities we now document the final stage of the

optimization. Here we focus on the observables χ2(σµ) [Eq. (S5)] and αp(B) (cf. Section
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S1 C 7), which were employed to determine the Gaussian width σµ of the induced PMM

dipole µi
PMM and the dispersion attraction parameter B entering the Buckingham potential

UBu(r) [Eq. (S1)], respectively.

1. Dipole Correlations and Distributions

FIG. S11. a) Root mean square deviation |χ(σµ)| of the induced Gaussian PMM dipoles from their

DFT antetypes as a function of the Gaussian width σµ for the snapshot sets Sn in the steps n = 5

(blue) and n = 6 (red) of the iterative parametrization. b) Correlations between the x-components

of the total dipole moments µDFT,x and µ̂PMM,x(σoptµ ) for the snapshot set S6. As a guide to the

eye the light blue line shows the hypothetical exact correlation.

Figure S11(a) shows the root of the mean square deviation χ2(σµ) defined by Eq. (S5)

as a function of the PMM dipole’s Gaussian width σµ. The observable χ2(σµ) measures

the quality, at which the PMM dipoles µ̂i
PMM determined by the linear response Eq. (S4)

reproduce their DFT/PMM counterparts µi
DFT defined by Eq. (S3). Its minimum marks

the optimal choice σopt
µ for which the fifth and sixth iteration both yield the value 0.739 Å

indicating that the optimization of σµ is converged.

Figure S11(b) depicts the correlations between the x-components of the total dipole

moments

µDFT = µi
DFT(s) + µg

DFT

of the DFT fragment and of the total dipoles moments

µ̂PMM(σopt
µ ) = µ̂i

PMM(s|σopt
µ ) + µg

DFT

of the DFT-adjusted PMM model for the solvation structures s ∈ S6. Here, the induced

PMM dipoles were computed by linear response using the optimal Gaussian width σopt
µ and
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the DFT vacuum polarizability αg
DFT. Furthermore recall that the DFT-adjusted PMM

model is defined by the rigid electrostatic geometry Ĝe, which generates the DFT vacuum

dipole moment µg
DFT (cf. also Section S1 C 5). Figure S11(b) demonstrates that the DFT

dipole moments µDFT correlate very well with their PMM models µ̂PMM in the PMM snap-

shot set S6.

FIG. S12. Normalized histograms p(µ) and associated normal distributions (lines) for the induced

dipole moments µiDFT,x of the respective DFT fragments (red) and µ̂iPMM,x of their DFT-adjusted

PMM models (green) in the snapshot set S6.

Figure S12 provides an alternative statistical representation of the data shown already in

Figure S11(b). The figure compares for the respective x-components the distributions of the

induced dipole moments calculated for the 1500 solvation structures s ∈ S6 by DFT/PMM

and by PMM. The averages 〈µi
DFT,x〉S = 0.756 D and 〈µ̂i

PMM,x〉S = 0.753 D are almost equal.

The standard deviation σ(µi
DFT,x) = 0.155 D is a little smaller than σ(µ̂i

PMM,x) = 0.167 D.

Thus, the fluctuations of the induced DFT dipole moments around their average value

amount within the set S6 to 20 %. The similarity of the two distributions in the snapshot

set S6 confirms once again that the induced Gaussian PMM dipoles approximate their DFT

antetypes very well.

2. Φstat
DFT is Actually Almost Stationary

The optimization of the rigid model Ĝe for the electrostatic geometry of the GP6P model

and of the Gaussian width ratio ΣLH [cf. Eqs. (S11) and (S12)], rests on the assumption that

the potential Φstat
DFT defined by Eq. (S9) is essentially stationary on the spherical surfaces P

and P ′ in a snapshot set Sn. In Section S1 C 3 we have introduced the ratio σS/σP as a

stationarity measure [this ratio is determined by Eqs. (S8) and (S10)]. Here, small values

indicate stationarity.

For the large spherical surface surrounding the selected water molecule we found a ratio of

3.5 % i.e. the fluctuations σS of Φstat
DFT on the surface P amount only to this small percentage
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of its total variation σP on P . On the smaller sphere P ′ the corresponding ratio is 4.0 %

and, thus, is also quite small. As a result, the DFT/PMM calculations demonstrate that

the stationarity assumption underlying the optimization of Ĝe and ΣLH is valid to a very

good approximation.

3. Radial Decay of the Electrostatic Potential: PMM vs. DFT

The electrostatic geometry Ĝe and the ratio ΣLH = σL/σH of the Gaussian widths of

the negative (σL) and positive (σH) charge distributions were optimized by considering the

electrostatic potential on the surfaces of the two differently sized spheres P and P ′ (see

Sections S1 C 3 and S1 C 4). The use of two different radii was supposed to guarantee that

the radial decay of Φstat
DFT and of its model Φstat

PMM resemble each other at short distances from

the center of geometry of a water molecule in a PMM environment.

For a verification of this resemblance it suffices to consider the total electrostatic potentials

ΦDFT and ΦPMM generated by the DFT fragment and its DFT-adjusted PMM model, because

these potentials both differ from the associated stationary potential by the potential Φµ,

which is caused by the induced Gaussian PMM dipole. Furthermore, this resemblance should

become apparent, if one considers the radial variations of the potentials along lines directed

from the O atom to the charges at the H and L sites. We denote the associated radial

distances as rOH and rOL, respectively. In the liquid phase these directions are important,

because they roughly point toward the nearest atoms of hydrogen bonded neighbors. Values

rOH ∈ [2.2, 3.2] Å and rOL ∈ [1.3, 2.3] Å cover the first peaks of the O-O and O-H RDFs.17

FIG. S13. Radial changes of the average electrostatic potentials 〈Φ(r)〉S along the coordinates rOH

(a) and rOL (b) in the snapshot set S6. 〈ΦDFT(r)〉S (gray solid) is compared to 〈ΦPMM(r)〉S (black

dashed) and the potential 〈Φpc
PMM(r)〉S of an associated point charge PMM model (black dotted).

Figure S13 shows for the two coordinates rOH (a) and rOL (b) the radial decay charac-

teristics of the average electrostatic potentials 〈Φ(r)〉S , which are generated either by the
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DFT fragments (gray solid), or by DFT-adjusted PMM models replacing these fragments

(black dashed), and by equivalent PMM models with point-like partial charges (black dot-

ted). In the liquid phase one expects17 the nearest neighbor molecules at rOH ≈ 2.8 Å and

rOL ≈ 1.7 Å, respectively. These distances are marked by vertical gray dashed lines.

The variations with rOH are fairly similar for all three potentials depicted in Figure S13(a).

In contrast, such a similarity is found in Figure S13(b) solely at large distances rOL & 2 Å,

whereas at distances rOL . 2 Å, the point charge potential 〈Φpc
PMM(rOL)〉S is much steeper

than the other two potentials, which are quite similar also here. Hence, partial point charges

exert much stronger forces on neighboring molecules than Gaussian charge models or the

quantum mechanical charge distributions of DFT fragments. As a result, for a close modeling

of quantum mechanical antetypes the use of Gaussian partial charges seems to be mandatory.

4. Determining the Dispersion Parameter B

FIG. S14. The thermal expansion coefficient αp(B) calculated for GP6P4 models with different

values for the dispersion parameter B. and the linear interpolation (solid gray) which predicts

B = 966 Å6 kcal/mol to yield the target experimental value15 αp = 2.8× 10−4/K (horizontal line).

As is explained in Section S1 C 7, the van der Waals dispersion parameter B [cf. Eqs. (S1)

and (S2)] of GP6P was empirically determined by targeting the experimental value15 αexp
p =

2.8× 10−4/K of the isobaric thermal expansion coefficient αp. For this purpose, during step

n = 4 of the iterative optimization, 12 GP6P4 models with different B parameters in the

range [399, 1125] Å6 kcal/mol were constructed by WC simulations (i.e. they differ also in

A1, A2, σH, and σL), and αp(B) was calculated by the methods described in Section S1 D.

Figure S14 shows αp(B) (dots) together with error bars calculated by block averaging42

and a linear regression line (solid gray), which approximates the data well over a wide range
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of B values. The horizontal dashed line marks αexp
p , and the vertical dashed line points at

the value B = 966 Å6 kcal/mol, which is thus predicted to yield αexp
p . This prediction then

remains to be checked for the final model GP6P (cf. Table S4 below).

F. Additional Observables Computed for GP6P

In addition to the predictions calculated with GP6P for various important observables

of liquid water at (p0, T0) and for the density profile n(p0, T ) in the temperature range

T ∈ [250, 320] K (see Sections III A 2 and III A 3), we here document the results obtained for

the four target observables of the empirical parameter optimization, for extrapolations of

size-dependent observables, for the water-water RDF, and for the microscopic electrostatic

properties of the GP6P model.

1. Targeted Observables

Table S4 lists for the four target observables of the empirical optimization (cf. Sections

S1 C 6 and S1 C 7) the experimental target values and the GP6P values obtained from 3 ns

PMM-MD simulations by the methods described in Section S1 D. These observables are

the average potential energy per molecule E0, the position rmax
OO of the first peak of the

oxygen-oxygen RDF, the average pressure 〈p〉 and the thermal expansion coefficient αp.

TABLE S4. Observables of the GP6P Model and the experimental values targeted by the

parametrization. Errors were calculated by block averaging42 from 3 ns PMM-MD trajectories.

quantity unit GP6P value exp. [Ref.]

E0 kcal/mol −9.920± 0.001 −9.92 [16]

rmax
OO Å 2.757± 0.0005 2.76 [17]

〈p〉 atm 1.8± 2.6 1

αp 10−4/K 2.85± 0.1 2.8 [15]

Within the limits of statistical accuracy the calculated values exactly agree with their

targets. This agreement indicates that the empirical optimization, which comprised the

WC protocol described in Section S1 C 6 and the tuning of the dispersion parameter B (cf.

Section S1 C 7) was actually successful.
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2. Size-Dependent Observables

Three of the macroscopic observables, i.e. the self-diffusion constant D0, the viscosity η,

and the dielectric constant ε, relate to the infinite system and have to be extrapolated from

NiViT0 simulations on the three finite-size systems Ni considered by us (see Ref. 1 for further

explanations and references). These simulations and the methods for their evaluation are

described in Section S1 D.

FIG. S15. Extrapolation graphs employed to determine (a) the diffusion constant D0 and viscosity

η and (b) the dielectric constant ε of the infinite system from PMM-MD simulations of finite size

GP6P systems. The error bars represent standard errors of the mean.

Figures S15(a) and S15(b) show for the properly corrected self-diffusion constants

D̃0(Ni, T0) and for the iteratively calculated dielectric constants ε(Ni, T0) linear extrap-

olation graphs as functions of the inverse system size 1/V 1/3 (cf. Figures 8 and 9 in Ref. 1

and the associated discussion). At 1/V 1/3 = 0 they yield the values D0 and ε of the infinite

system, which are listed in Table II. The slope of the extrapolation line in Figure S15(a) is

inversely proportional to the viscosity η (see the explanations in Ref. 1).

The error bars represent standard errors of the mean extracted from the sets of ten MD

simulations underlying each data point. Error estimates for the extrapolated values and for

η were obtained by dividing the 3 × 10 MD trajectories, which were employed to generate

each of the two extrapolation graphs, into two halves, by executing for each of these halves

an extrapolation, and by computing for the resulting small data sets the standard errors of

the mean. These error estimates are also listed in Table II.

3. Water-Water Radial Distributions Function

Figure S16 compares the oxygen-oxygen RDF gOO(r) computed for GP6P (black) with

the experimental results of Soper17 (gray). As explained in Section S1 C 6, the position
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rmax,exp
OO = 2.76 Å of the first peak was one of the targets of the empirical optimization and,

in this respect, the very close match of the GP6P RDF with the experimental finding was

already documented by Table S4 above.

The height of the first peak, in contrast, and the overall shape of gOO(r), are predictions

of the GP6P model. This height is slightly underestimated and the remaining extrema are

a little too pronounced. The positions of these extrema, however, agree quite well with the

experimental data.

FIG. S16. Radial distribution function gOO(r) in liquid water at (p0, T0) calculated for GP6P

(black) and the experimental reference data of Soper (gray),17 whose peak position at r = 2.76 Å

was one of the targets of the parameterization.

4. Microscopic Electrostatic Properties of GP6P

The dipole and quadrupole moments of the water molecule are experimentally known

only for the gas phase.12,43 These data are given in the first line of Table S5 (because of

Qxx + Qyy + Qzz = 0, the quadrupole moment has only two non-trivial components). The

second line characterizes the MT/BP description of the water molecule at the experimental

gas-phase geometry12,44 Gg
m ≡ {rOH = 0.9572 Å, ϕHOH = 104.52◦} and indicates that this

DFT approach underestimates the polarity of the water molecule by about 3 %.

The DFT/PMM description of a solvated water molecule is provided by the fourth line

of the table. Assuming that the static contributions to these moments suffer from the same

3 % underestimate as the MT/BP gas phase description one approximately arrives at the

average electrostatic moments listed for GP6P in the last line of the table. Here we remark

that also the induced dipole moment distribution centered around the oxygen atom provides

a small contribution to the average GP6P quadrupole moments, because these moments are
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TABLE S5. Components µx (in D) and Qyy, Qzz (in DÅ) of the total dipole and quadrupole

moments, respectively, observed and calculated for an isolated water molecule in the gas phase

geometry. Furthermore computational results are given for an isolated or solvated (averages)

water molecule in the liquid phase geometry. The reference point is the center of mass.

geometry phase µx Qyy Qzz

exp12,43 gas gas 1.86 2.63 −2.50

MT/BP gas gas 1.80 2.56 −2.41

MT/BP liq. gas 1.79 2.64 −2.44

MT/BP liq. liq. 2.55 3.00 −2.83

GP6P liq. gas 1.86 3.02 −2.95

GP6P liq. liq. 2.54 3.07 −2.90

defined with respect to the center of mass of the water molecule. Thus, the GP6P quadrupole

moments represent best estimates of the unknown liquid phase values.

The average liquid phase dipole moment 〈µGP6P,x〉 = 2.544 D of GP6P appearing in the

last line of Table S5 refers to the dipole distribution p(µ) depicted in Figure S17 as a green

histogram and normal distribution, respectively. The standard deviation of this distribution

is σ(µi
GP6P,x) = 0.151 D. For comparison the figure additionally shows the normal distribu-

tion (red) of the x-components of the total dipole moments µDFT, which were calculated

for the DFT fragments in the final ensemble S6 of the parameterization cycle. The associ-

ated distribution of induced DFT dipole moments was shown already in Figure S12 above.

The two distributions are almost identical, because GP6P is constructed (cf. Section S1 C 5)

FIG. S17. The normalized histogram p(µ) and the associated normal distribution resulting for the

components µGP6P,x of the GP6P dipole moments in the liquid phase (green) are compared with

the normal distribution (red) of the component µDFT,x of the DFT dipole moments in the snapshot

ensemble S6.
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from a DFT-adapted model by replacing the DFT values (µg
DFT, α

g
DFT) by their experimen-

tal counterparts (µg
exp, α

g
exp), which enhances the static polarity by 3.5 % and reduces the

polarizability by 8.3 %. Because the induced dipole moment amounts to only 30 % of the

total dipole moment the two effects roughly compensate each other.

S2. ADDITIONAL RDFS FOR NMA IN GP6P SOLUTION

Here, we provide evidence that the cost-effective mean field (MFMD) approach yields

the same RDFs of GP6P water in the surroundings of NMA as straight DFT/PMM-MD

simulations. Subsequently we show that the optimal LJ parameter set Lopt, which has been

determined for the core atoms of NMA’s AG with the MT/BLYP setup, is equally well

applicable to the MT/BP and MT/B3LYP setups.

A. RDFs from MD and MFMD are Equivalent

FIG. S18. RDFs gOHw(r) (a) and gHO(r) (b) obtained from DFT/PMM-MFMD (dotted), and

DFT/PMM-MD (solid).

Figure S18 shows RDFs a) gOHw(r) and b) gHOw(r) of GP6P water around the C ′=O and

N–H groups, respectively, of the DFT fragment NMA. Here, solid and dotted lines depict

results of differently expensive DFT/PMM simulations carried out with the MT/BLYP setup

and the LJ parameter set Lopt. The solid lines mark the RDFs from usual DFT/PMM-

MD simulations (cf. Section II E 3), whereas the dotted curves represent the results of the

inexpensive MFMD approach introduced in Section II F 2.

For both hydrogen bonding sites the agreement between the RDFs from usual MD sim-

ulations and from the cost-effective MFMD approach is very good. Therefore MFMD is

well-suited for the computationally demanding iterative optimization of LJ parameters for

DFT atoms in a hybrid simulation system.
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B. RDFs for Different DFT Setups

FIG. S19. RDFs gOHw(r) (a) and gHO(r) (b) obtained from DFT/PMM-MD employing the

MT/BLYP (solid), MT/BP (dashed), and MT/B3LYP (dotted) setups for the parameter set Lopt.

We have claimed in Section III B that RDFs of GP6P water around the AG of the DFT

fragment NMA do hardly depend on the chosen DFT setup. Figure S19 proves for the

three alternative setups MT/BLYP (solid), MT/BP (dashed), and MT/B3LYP (dotted)

that this is actually the case. The deviations of the associated RDFs depicted in a) and b),

which belong to the two NMA–water hydrogen bonding sites, are very small. Thus, the LJ

parameter sets of the DFT fragments, which can strongly influence such RDFs, are quite

well transferable between different DFT setups.

S3. ADDITIONAL IR SPECTRA OF NMA

In addition to the gas and aqueous phase IR spectra in the spectral range [1800,

1000] cm−1, which are displayed by Figure 6 for the MT/B3LYP setup, we here present

the corresponding spectra also for the MT/BLYP and MT/BP setups. As far as the po-

sitions of the six main peaks in the aqueous phase spectra are concerned, the added data

solely repeat the contents of Figure 7. Furthermore, we show and discuss the low-frequency

IR spectra covering the range [1380, 580] cm−1 for all three DFT setups. Note that Table S6

at the bottom of this section gathers all calculated AI-AVI frequencies.

A. IR Spectra of NMA between 1800 cm−1 and 1000 cm−1

Figures S20(a) and S20(b) compare the DFT-MD and DFT/PMM-MD predictions of

NMA’s gas and aqueous phase IR spectra, respectively, derived with the three different

DFT setups MT/BLYP, MT/BP, and MT/B3LYP. All frequencies have been scaled by the
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FIG. S20. The IR spectrum of NMA in a) the gas phase and b) aqueous solution as determined by

IR spectroscopy45 (gray) and by FTTCF (black) from DFT-MD and DFT/PMM-MD trajectories

employing the MT/BLYP, MT/BP, and MT/B3LYP setups. Frequencies were scaled with the

respective gas phase scaling factors (fMT/BLYP = 1.0428, fMT/BP = 1.0335, fMT/B3LYP = 0.9988);

the heights of the AI peaks were normalized to one. Band assignments were obtained by a GNC

analysis.46,47

setup-specific gas phase scaling factors fDFT. The corresponding experimental data45 are

shown in gray. The MT/B3LYP results at the bottom were already presented in Sections

III C 3 and III C 4 of the main text and are repeated here for visual comparison.

1. Gas Phase: MT/BLYP vs. MT/BP

We have claimed in Section III C 3 that the scaled MT/BLYP and MT/BP setups provide

a likewise excellent description of the three amide bands as the MT/B3LYP setup and

that solely MT/BLYP shows a substantially poorer performance on the methyl bands. An

inspection of Figure S20(a) immediately verifies these claims.

While marginally scaled B3LYP predicts the AII and AIII bands at 1492 cm−1 and
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1248 cm−1, respectively, scaled MT/BLYP yields 1505 cm−1 and 1255 cm−1, and scaled

MT/BP 1497 cm−1 and 1255 cm−1. For each of the two amide bands these frequencies are

close to each other and to the experimental data. Looking at the methyl bands one imme-

diately recognizes the large blue-shifts in the BLYP prediction at the top of Figure S20(a).

Here, the predicted peaks at 1450 cm−1 and 1399 cm−1 overestimate the spectroscopic data

by about 25 cm−1. MT/BP-MD, in contrast, predicts bands at 1423 cm−1 and 1376 cm−1,

which, just like the MT/B3LYP results, closely agree with the experimental findings.

2. Aqueous Solution: MT/BLYP vs. MT/BP

Figure S20(b) provides a visual support for the comparison of peak frequencies presented

by Figure 7. This comparison has shown that the scaled MT/BP and MT/BLYP setups

describe the amide band frequencies of NMA in water almost as well as the marginally

scaled MT/B3LYP setup. For the methyl bands, however, the MT/BLYP setup predicted

much larger frequency overestimates than the other two setups. Thus, particularly MT/BP

outperforms MT/BLYP also for the aqueous phase.

But despite these details, all calculated spectra reproduce the observed spectral features

quite well. In combination with the GNC analysis the calculations therefore enable a clear-

cut assignment of the observed bands to local modes.46,47

B. Low-Frequency IR Spectra

In addition to the IR spectrum of NMA in the range [1800, 1000] cm−1, which we have

discussed for the gas and aqueous phases (cf. Sections III C 3, III C 4, and S3 A), here we show

the corresponding data for the low-frequency range down to 580 cm−1. Figure S21 presents

for the three considered DFT setups the GNC46,47 decompositions of the IR spectra (black)

calculated for NMA in the gas (a) and aqueous (b) phases by DFT-MD and DFT/PMM-MD,

respectively. The frequencies were scaled with the setup-specific gas phase scaling factors

fDFT. Four amide bands were identified by the GNC analysis in the depicted spectral range,

namely AIII (red), AIV (green), AV (blue), and AVI (orange). Graphical representations of

these AG normal modes are provided by Figure 7 in Ref. 48. The frequencies calculated for

these bands are listed in Table S6.

All three DFT setups predict for the low-frequency amide bands solvatochromic blue-

shifts upon transfer of NMA from the gas into the aqueous phase. For the AIV, AV and

AVI bands these blue-shifts amount on average to 14 cm−1, 45 cm−1, and 21 cm−1, respec-

tively. Among the DFT setups the calculated frequencies slightly differ with scaled MT/BP
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FIG. S21. Decomposition of the IR spectra (black) of NMA in the frequency region below 1380

cm−1 by the GNC46,47 analysis for a) gas phase DFT-MD and b) condensed phase DFT/PMM-MD

using the MT/BLYP, MT/BP, or MT/B3LYP setups. Local contributions by the AIII, AIV, AV,

and AVI modes are drawn as thick lines in red, green, blue, and orange, respectively. Frequencies

were scaled with the respective gas phase scaling factors fDFT; the heights of the AIII peaks were

normalized to one.

generally predicting the highest and scaled MT/B3LYP the lowest frequency values.
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TABLE S6. Amide band frequencies of NMA in vacuum and aqueous solution (units: cm−1). All

DFT values were scaled with the respective setup-specifc gas phase scaling factor (fMT/BLYP =

1.0428, fMT/BP = 1.0335, fMT/B3LYP = 0.9988).

exp.45 MT/BLYP MT/BP MT/B3LYP

vac. sol. vac. sol. vac. sol. vac. sol.

AI 1723 1625 1723 1634 1723 1635 1723 1628

AII 1499 1582 1505 1587 1497 1581 1492 1574

AIII 1255 1317 1255 1328 1255 1326 1248 1319

AIV – – 1079 1093 1093 1107 1071 1085

AV – – 842 892 849 893 847 888

AVI – – 618 640 623 645 612 632
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2.4 Effizientes Abtasten von Konformationsräumen mit DFT/PMM-MD

2.4 Effizientes Abtasten von Konformationsräumen mit
DFT/PMM-MD

Für die Untersuchung langsamer Prozesse sind konventionelle MD-Simulationen auf-
grund der relativ kurzen maximal erreichbaren Zeitskalen nur von limitiertem Nutzen.
Zur Erhöhung der Effizienz sind daher sog. generalisierte Ensemblemethoden [196, 197]
entwickelt worden, die z.B. das Abtasten der in Abschnitt 1.1.3 beschriebenen Konfor-
mationsräume von Polypeptiden erheblich beschleunigen können.

Ein generalisiertes Ensemble wird dabei von K Kopien k (k = 0, 1, . . . , K − 1) eines
Simulationssystems aufgespannt, die sich z.B. durch die mittlere Temperatur Tk oder
eine modifizierte Energiefunktion Uk systematisch so voneinander unterscheiden, dass
die Abtastrate der jeweiligen relevanten Koordinaten erhöht wird. So können z.B. durch
Temperaturerhöhung freie Energiebarrieren effektiv erniedrigt und die Rate an Konfor-
mationsübergängen erhöht werden, was die Grundlage von Algorithmen wie simulated
tempering (ST) [198, 199] oder replica exchange (RE) [200, 201] bildet.

Da die Effizienz von Verfahren wie ST oder RE von der Zahl der behandelten Frei-
heitsgrade abhängt, wurden Ansätze wie solute tempering [202, 203] vorgeschlagen, die
die Abtastrate effektiv nur für einen Ausschnitt des Simulationssystems (z.B. ein Poly-
peptid) erhöhen, und die Zahl der behandelten Freiheitsgrade damit reduzieren. Den-
schlag et al. entwickelten durch geschicktes Zusammenführen von simulated tempering
und solute tempering die generalisierte Ensemblemethode SST [195], die einen weiteren
Effizienzgewinn verspricht.

Die nachfolgende abgedruckte Publikation

Simulated Solute Tempering in Fully Polarizable
Hybrid QM/MM Molecular Dynamics Simulations

Magnus Schwörer, Christoph Wichmann, Erik Gawehn und Gerald Mathias
J. Chem. Theory Comput. 12, 992-999 (2016),

die ich zusammen mit Christoph Wichmann, Erik Gawehn, und Gerald Mathias verfasst
habe, zeigt, dass das für unpolarisierbare MM-Kraftfelder entwickelte SST-Verfahren [195]
auf PMM- und DFT/PMM-Systeme anwendbar ist. Hierbei können die für DFT/PMM-
SST benötigten Gewichtsparameter wk mittels einer einfachen Rechenvorschrift aus effi-
zienten PMM-SST-Rechnungen vorhergesagt werden. Als Anwendungsbeispiel wird die
freie Energielandschaft eines DFT-Modells von Alanindipeptid in PMM-Wasser berech-
net.
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ABSTRACT: We successfully apply a solute tempering
approach, which substantially reduces the large number of
temperature rungs required in conventional tempering
methods by solvent charge scaling, to hybrid molecular
dynamics simulations combining quantum mechanics with
molecular mechanics (QM/MM). Specifically, we integrate a
combination of density functional theory (DFT) and polar-
izable MM (PMM) force fields into the simulated solute
tempering (SST) concept. We show that the required DFT/
PMM-SST weight parameters can be obtained from
inexpensive calculations and that for alanine dipeptide (DFT) in PMM water three rungs suffice to cover the temperature
range from 300 to 550 K.

1. INTRODUCTION
The sampling of the conformational space of (bio)molecules by
plain molecular dynamics (MD) simulations is computationally
inefficient. If one aims at an unbiased structural ensemble or
has no prior knowledge of the free energy landscape, so-called
generalized ensemble1 methods can alleviate the sampling
problem. Many variants have been proposed over the past
years, among which simulated tempering (ST)2,3 and temper-
ature replica exchange (RE)4,5 are most popular examples.
In ST, a single copy (replica) of the system is simulated at a

temperature Ti, which belongs to the rung i ∈ {0,1,..., R−1} of a
ladder covering the temperatures = −T T T{ , , ..., }R0 1 1 in
increasing order. Periodically, the replica tries to switch from
the rung i to a new rung j ≠ i at ∈Tj with a probability pij =
min[1,exp(Δij)], which is given by a Metropolis criterion6

serving to preserve the statistical ensemble at each rung.
Typically, the target rung j = i ± 1 is chosen by a stochastic or
deterministic scheme.7 The general ST form2,3 of the exponent

β βΔ = − − −E w E wR R[ ( ) ] [ ( ) ]ij i i i j j j (1)

in the Metropolis criterion depends on the inverse temper-
atures βk = (kBTk)

−1 (kB is the Boltzmann constant), on rung-
dependent potential energies Ek(R) of the current system
configuration R = (r1, ..., rN)

T of the N atoms at the positions rn
(1 ≤ n ≤ N) of the simulation system, and on dimensionless
weights wk, which may be freely chosen, e.g., to sample all rungs
uniformly. Upon changing a replica’s rung from i to j, the
momenta of all N atoms are scaled by T T/j i to correspond to

the new target temperature Tj.
5 Note that in conventional ST,

Ek(R) ≡ E(R) is independent of the rung k.
The number R of required temperature rungs grows with the

number of degrees of freedom (DOF) of the tempered system.

Larger ladders require longer simulations or more replicas that
are run in parallel8 to acquire the same amount of sampling
statistics at a given rung. In this respect ST is advantageous
because it generally needs about 30% less rungs than RE9 but at
the expense of requiring the a priori unknown weight
parameters wk. In most cases, however, the wk can be
determined with a reasonably limited effort,8,10 and several
schemes have been proposed for the a priori determination
and/or on-the-fly update of optimal weights.8,10−15

Particularly, if one simulates multiple independent ST
replicas in parallel, their data can be combined to quickly
converge the wk.

8,15

If one is interested only in the ensemble at a particular
temperature, e.g., at ambient conditions, the solute tempering
approach16 can drastically decrease the ladder size for both RE
(RE with solute tempering, REST)16 and ST (simulated solute
tempering, SST)10 generalized ensemble simulations. Solute
tempering splits the potential energy

λ λ λ= + +E E E ER R R R( ) ( ) ( ) ( )k k k k
pp pp ps ps ss ss

(2)

of the system at rung k into a linear combination of the solute−
solute interaction energy Epp, solute−solvent energy Eps, and
solvent−solvent energy Ess. Choosing the linear coefficients10,16

λ λ γ λ γ= = =1, , andk k k k k
pp ps ss 2

(3)

with γ β β= /k k0 and inserting eqs 2 and 3 in eq 1 yields the

SST exponent10
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β β β β β βΔ = − + −

− −

E E

w w

R R( ) ( ) ( ) ( )

( )

ij i j i j

i j

pp
0 0

ps

(4)

Because of the chosen prefactor λk
ss = γk

2 = β0/βk for the
solvent−solvent energy Ess in eq 2, its contribution cancels in
the derivation of eq 4. Consequently, the solvent’s DOF no
longer enter the exchange probability pij, and the number of
temperature rungs can be largely reduced, which is the key idea
of solute tempering.10,16 Note that for REST and SST, one can
formulate an equivalent Hamiltonian RE17,18 or ST scheme by
using the modified factors λ ̃kx = γk

−2λk
x, x ∈ {pp, ps, ss} for Ek (2).

In such a so-called solute scaling scheme,19 one simulates at the
reference temperature T0 on all rungs k and does not have to
scale momenta or to modify thermostats upon rung
changes.19−21

For k = 0, all linear coefficients (eq 3) become unity. At this
lowest rung, eq 2 thus represents the unmodified potential
energy E0(R) ≡ E(R), and the canonical ensemble at T0 is
sampled. At higher rungs, k > 0, Ek(R) is modified, and the
sampled ensembles have no relevant physical interpretation.
For plain molecular mechanics (MM) force fields, which
exclusively employ pairwise additive long-range interactions,
the linear coefficients (eq 3) needed for Ek simply follow from
scaling all solvent charges by γk as suggested in ref 10. This
scaling considerably simplifies the implementation of SST
because the long-range electrostatic contributions can be
calculated all at once by Ewald or fast multipole type routines
and do not have to be split into solute−solute, solute−solvent,
and solvent−solvent contributions in order to scale these
separately. For van der Waals interactions, one can simply scale
the parameters of the pair potentials.10

A high sampling efficiency is particularly important if one
employs hybrid methods combining quantum mechanical
(QM) methods and MM force fields22−24 because QM/MM-
MD simulations require a much larger computational effort
than plain MM-MD. This effort is particularly large if a higher-
level method such as density functional theory25,26 (DFT) is
applied to the QM subsystem.27−30 Correspondingly, only a
few combinations of QM/MM and generalized ensemble
techniques like RE have been reported,31−34 which had to cope
with the large number of rungs required for condensed phase
systems.
Using solute tempering approaches like REST16 or SST10 for

QM/MM simulations to reduce the number of rungs is an
obvious and favorable alternative because the required
partitioning into solute and solvent subsystems is naturally
given by selecting the QM and MM subsystems as the solute
and solvent, respectively. Unfortunately, however, combining
solute tempering with QM/MM is not straightforward because
in contrast to a MM setup the QM/MM Hamiltonian is not
pairwise additive but contains many-body interactions. They
prevent the potential energy function E from being easily
separated into the contributions Epp, Eps, and Ess required to
write Ek in the form of eq 2. The issue of the lacking
separability is exacerbated if instead of a plain MM solvent
model a polarizable MM (PMM) solvent force field is
employed, since here many-body contributions are additionally
contained in the solvent−solvent interactions.
In this article, we will demonstrate that solute tempering with

charge scaling can nevertheless be readily extended to systems
with many-body interactions. Here, we will specifically consider
a recently presented DFT/PMM hybrid method, which has

been shown to describe solute−solvent interactions at a high
accuracy.30,35 The method enables a rapid and accurate
computation of the DFT/PMM electrostatic interaction
Hamiltonian

∫ ρ= ΦH r r r Q Pd ( ) ( ; , )DFT/PMM
3

(5)

which represents the energy of the DFT solute’s charge density
ρ(r) in the external PMM potential Φ(r; Q,P). The sources of
Φ are static partial charges Q = (q1, ..., qM)

T and induced
Gaussian dipoles P = (p1, ..., pM)

T, which reside at the M
solvent atoms s = 1,...,M and polarize ρ(r) ≡ ρ(r; Q,P). The
strengths

α ρ=p E r Q P( ; , , )s s s (6)

of the induced atomic dipole distributions depend via a scalar
polarizability αs linearly on the polarizing electric field E(rs)
generated at their centers rs by all other electrostatic sources in
the system. Therefore, P and ρ have to be iteratively
determined until a joint self-consistency is reached in each
MD integration step.30

2. THEORY
For the use of solute tempering in polarizable simulation
settings like DFT/PMM, it is a seemingly reasonable idea to
apply the same scaling concept as in plain MM force field
simulations. This is obvious for the van der Waals interactions
between QM and MM fragments because they are usually
treated by the additive pair-expressions of a MM force field,
which is why we will omit these contributions in the
subsequent discussion. The effect of the solvent charge scaling
Q → γkQ in DFT/PMM-SST simulations is, however, not
likewise obvious.
Because of the mutual polarization between the solute and

the solvent, their interaction energy Ek
ps = Ek − Ek

pp − Ek
ss at a

rung k has to be computed from the difference of the potential
energy Ek of the whole system and the solute−solute and
solvent−solvent interaction energies Ek

pp and Ek
ss, respectively. If

polarizable DOF are present, these latter two energies must be
calculated for the isolated solute subsystem and the isolated
solvent subsystem, respectively, to exclude the polarization
between the fragments. Ek

ps then collects all those contributions
to Ek, which arise from solute−solvent interactions (eq 5), and
the additional solute−solute and solvent−solvent interaction
energies, which are due to mutual solute−solvent polarization
effects.
For the isolated PMM solvent subsystem containing partial

charges Q and induced dipoles P, it is straightforward to verify
that for scaled charges Q → γkQ the linear response eq 6 yields
the scaled dipoles γkP as the self-consistent solution. Because all
associated electrostatic energy contributions are proportional30

to products qsqs′, qsps′, or psps′, the solvent charge scaling yields
the desired prefactor λk

ss = γk
2 for the potential energy Ek

ss = γk
2E0

ss

≡ γk
2Ess of the isolated solvent subsystem (cf. eq 3). Trivially,

the potential energy of the isolated solute subsystem is
independent of γk, and the prefactor λk

pp is unity, i.e., Ek
pp =

E0
pp ≡ Epp.
The remaining SST prefactor λk

ps of E0
ps ≡ Eps is

undetermined for polarizable setups like DFT/PMM because
it depends on the mutual polarization between the two
subsystems, which is nonlinear in γk. In analogy to eq 2, we
therefore express the potential energy of the whole system as
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γ γ= + + ϵ +E E E ER R R R R( ) ( ) [ ( )] ( ) ( )k k k k
pp ps 2 ss

(7)

Here, the prefactor λk
ps of Eps is split into the MM-SST prefactor

γk and a configuration-dependent quantity

γ
ϵ =

−E E

E
R

R R

R
( )

( ) ( )

( )k
k k
ps ps

ps (8)

which is nonzero for k > 0.
The additional term ϵk(R) covers two effects. First, the solute

contributions to the polarizing field entering eq 6 is in leading
order independent of the solvent scale factors γk, whereas the
polarizing field generated by the solvent charges scales linearly
with γk. Therefore, induced solvent dipoles, which are located in
the vicinity of the solute, will scale with γk

α, where α < 1.
Second, solvent charge scaling also changes the polarization of
the solute. This extra polarization also contributes nonlinearly
in γk to the solute−solvent interaction energy. Note that ϵk(R)
vanishes if neither the solute nor the solvent are polarizable. If
the added terms ϵk(R) are small compared to the respective γk,
their presence in the prefactor of Eps (cf. eq 7) should have only
a minor effect on the efficiency of DFT/PMM-SST.
Inserting eq 7 into eq 1 yields the exponent

β β β β β β

β β

Δ = − + −

+ ϵ − ϵ − −

⎡⎣
⎤⎦

E

E w w

R

R R R

( ) ( )

( ) ( ) ( ) ( )

ij i j i j

i i j j i j

pp
0 0

ps
(9)

which, like eq 4, does not depend on Ess. Thus, the key idea of
solute tempering,16 which is the removal of the solvent−solvent
energy Ess from Δij, is preserved by solvent charge scaling

10 also
in polarizable simulation systems. Like in eq 7, also in eq 9, the
prefactor of Eps is modified by configuration-dependent
contributions βkϵk(R).
Note that one does not have to evaluate the Metropolis

exponent Δij through eq 9 if one wants to execute an exchange
step in a SST simulation. Instead one computes the potential
energies Ei(R) and Ej(R) of the current configuration R simply
by scaling the solvent charges with γi and γj, respectively. With
these energies, Δij is easily obtained from the much simpler eq
1. This particularly implies that no calculations on the isolated
solute and/or solvent subsystems are necessary during a DFT/
PMM-SST simulation in order to obtain Epp, Eps, and Ess

separately. Further below, we will conduct such separate
calculations only to investigate the quantity ϵk in detail.
Because Epp and Eps are not readily separated in DFT/PMM

settings, the solute scaling approach19−21 mentioned above
would also have to resort to the charge scaling method. Using
on rung k scaled charges γkQ, and concurrently scaling down
the resulting total forces and energies of all atoms by γk

−2 yields
the desired scaling factors λ ̃kpp = γk

−2, λk̃
ps ≈ γk

−1, and λk̃
ss = 1, and

thus renders an implementation of solute scaling also for DFT/
PMM Hamiltonians.
The above considerations on DFT solutes equally apply to

any other polarizable solute model, e.g., QM or PMM, and any
other implementation of solvent polarizability, which depends
linearly on the polarizing field (cf. eq 6). Furthermore, the
scaling approach10 can be equally used to combine REST with
QM/(P)MM hybrid simulations.

3. METHODS
The sample systems, by means of which we examine the
properties of DFT/PMM-SST, are DFT and MM models of

alanine dipeptide (Ac-Ala-NHMe) in PMM water. For the
latter, we chose a six-point water model featuring five Gaussian
static charges and a single Gaussian induced dipole. This PMM
water potential has been specifically developed for accurate
DFT/PMM-MD simulations36 of molecules in aqueous
solution. The details of the simulations (including the
parameters of the water model) are thoroughly described in
Sections S1−S3 of the Supporting Information (SI).
All simulations were performed with the IPHIGENIE/

CPMD program package, which combines the parallel PMM-
MD code IPHIGENIE30,35,37−41 with the parallel grid-based
plane-wave DFT code CPMD.42 Reasonable initial conditions
for the DFT/PMM simulations were prepared by executing
much less costly MM/PMM-SST-MD simulations, in which the
alanine dipeptide solute was described by its CHARMM22/
CMAP43,44 model. Here, a first SST ensemble was generated
by distributing C = 32 replicas on the four-rung temperature
ladder = {300 K, 367 K, 449 K, 550 K}. The initial weights
were guessed by the SST trapezoid rule10 (cf. Section S1, SI).
An occupancy-driven weight update scheme, which is explained
in ref 15 and in Section S3 of the SI, was employed to generate
a uniform distribution of the replicas over the rungs during
SST-MD. For each replica, the MM/PMM-SST simulation
lasted 500 ps, i.e., the converged MM/PMM weights wk were
determined from 32 × 500 ps of MD trajectory.
These weights served as initial guesses for the subsequent

DFT/PMM-SST-MD simulations, in which the MM model of
alanine dipeptide was substituted by a DFT model. Here, we
employed the BLYP45,46 functional and the norm-conserving
pseudopotentials of Troullier and Martins47 at a plane-wave
cutoff energy of 70 Ry. Note that we have shifted the energy of
the DFT/PMM Hamiltonian by subtracting the energy EDFT,0 =
−58252 kcal/mol of the isolated DFT solute alanine dipeptide
in its minimum energy conformation. Thereby, MM/PMM and
DFT/PMM potential energies are about the same, which is a
prerequisite that MM/PMM weights are reasonable initial
guesses for the DFT/PMM simulation. For each replica, we
extended these costly hybrid MD simulations over 55 ps.

4. RESULTS AND DISCUSSION

Simulations were run on the SuperMUC Phase 2 Petascale
System at the Leibniz Supercomputing Centre (LRZ) of the
Bavarian Academy of Sciences and Humanities in Munich,
employing up to 32,256 cores in a hybrid MPI/OpenMP
parallel setup, which yielded about 30 ps DFT/PMM-MD
trajectory per day for each of the 32 replicas. Thus, using
multiple replicas in a single run makes the method highly
scalable and complements the excellent scaling properties of the
IPHIGENIE/CPMD interface.35

4.1. SST with Polarizable DOF. First, we address the size
of the configurational dependence ϵk(R) (defined by eq 8)
contributing to the SST scaling prefactor of the solute−solvent
energy Eps in eq 7. We computed the averages ⟨...⟩ of ϵk(R) for
different solvent charge scaling factors γk over a snapshot
ensemble 0 of configurations ∈R 0, which comprised 60
statistically independent snapshots drawn from rung k = 0 of
the MM/PMM-SST ensemble.
Figure 1 shows the sizes ⟨ϵk⟩/γk of the configuration

dependent contributions in units of the dimensionless scaling
factors γ = T T/k k 0 for temperatures Tk ∈ [300 K, 1000 K]. In
the MM/PMM setting (gray) the ratios ⟨ϵk⟩/γk decrease about
linearly with γk, as shown by the depicted regression line. Thus,
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eq 8 demonstrates for MM/PMM that the absolute values of
the solute−solvent interaction energies |⟨Ek

ps⟩| do not increase
linearly with γk because they are always smaller than the
interaction energy |⟨Eps⟩| at the lowest rung after linear scaling,
i.e., |⟨Ek

ps⟩| < γk |⟨E
ps⟩|. The two expressions would be equivalent

for charge scaling in a pure MM setting (cf. eqs 2 and 3), in
which ϵk (R) exactly vanishes as is indicated by the gray dashed
line. For MM/PMM, the reduced effective scaling factor γk[1+
⟨ϵk⟩/γk] < γk of ⟨E

ps⟩ in eq 7 results from the sublinear scaling
∼ γk

α (α < 1) of the induced PMM solvent dipoles, which is
caused by the contributions of the unscaled MM solute charges
to the field polarizing the solvent.
We computed ⟨ϵk⟩/γk also for the DFT/PMM setting (black

dots and regression line, Figure 1), in which, apparently, the
ratio ⟨ϵk⟩/γk linearly increases with γk. Thus, in this case, the
average solute−solvent energy |⟨Ek

ps⟩| is always larger than the
linearly scaled interaction energy γk|⟨E

ps⟩| because the polar-
ization of the DFT solute is additionally enhanced by the
upscaled charges of the surrounding PMM solvent.
Note, however, that the overall configurational dependence

⟨ϵk⟩/γk is small over the whole range of γk. At the highest
temperature T3 = 550 K (γ3≈ 1.35) in , it is below 4% and
even at 1000 K (γ ≈ 1.83) below 10%. No significant
differences are observed, if the above analysis is repeated for a
snapshot ensemble 3 picked from rung 3 of the PMM-SST
simulation or for a ensemble ′0 drawn from rung 0 of the
DFT/PMM-SST simulation (data not shown). Because the
many solvent DOF contributing to ϵk(R) thus render only a
small correction to the prefactor of Eps in eq 7, the energies
entering the exponents obtained from charge scaling in
nonpolarizable and polarizable settings (eqs 4 and 9,
respectively) are very similar. Therefore, we expect that the
MM-SST concept10 of charge scaling should yield a highly
efficient sampling also for partially (MM/PMM) or fully
(DFT/PMM) polarizable settings.
4.2. MM/PMM-SST and DFT/PMM-SST. Figure 2 shows

the evolution of the weight w3 resulting from the applied
update scheme (cf. Section S3, SI) during MM/PMM-SST
(gray) and subsequent DFT/PMM-SST (black) MD simu-
lations. The weight w3, which represents the free energy
difference between rungs k = 3 and k = 0 (in units of kBT3),
converges in MM/PMM-SST-MD quickly and reaches the
value w3 = 17.9 after 0.5 ns.
At the end of the MM/PMM-SST simulation, we switched to

the DFT/PMM setup and equilibrated each replica on its
current rung for 2 ps to dissipate excess energy due to the
change of the solute description. Using the weights of the
preparatory MM/PMM-SST simulation, we then continued

with 55 ps DFT/PMM-SST-MD. The black line in Figure 2
reveals that w3 is strongly diminished by about 50% to the final
value w3 = 9.6. This decrease is almost complete after the first
20 ps. A similar convergence behavior is observed also for w2
and w1 as documented by Figure S1A and B in Section S5 of
the SI.
The initial overestimates of the DFT/PMM-SST weights are

also witnessed in the distribution of the replicas over the rungs.
For DFT/PMM-SST-MD, Figure 3A monitors the running

averages of the uniformity measures10χk(t) = nk(t)R/C, which
compare the number of replicas nk(t) at time t on rung k with
the uniform distribution C/R characterized by χk(t) = 1 ∀ k.
Initially, most replicas occupy the rungs k = 2,3, as is witnessed
by the initial values χ2 ≈ χ3 ≈ 2.0, whereas the lower rungs k =
0,1 are almost empty (χ0 ≈ χ1≈ 0). During the first 20 ps
(dotted line) of weight update, the occupancies become almost
uniform. In the subsequent time interval τ = [20 ps, 55 ps], all
χk fluctuate around the mean value of 1.0 marking the uniform
distribution.
Figure 3B) shows for all four rungs k the mean values ⟨χk⟩τ of

the uniformity measures (black dots) together with their
standard deviations (error bars) averaged over the time interval
τ. All mean occupancies ⟨χk⟩τ are very close to 1.0 indicating a
uniform sampling of the overall ensemble . For individual
replicas c, this is, however, not the case during the short 35 ps
trajectories as illustrated by the occupancies ⟨χk

c⟩τ of selected

Figure 1. Relative magnitudes ⟨ϵk⟩/γk for MM-SST (light gray), MM/
PMM-SST (gray), and DFT/PMM-SST (black) for the temperature
range Tk ∈ [300 K, 1000 K] and linear regressions (solid lines). Error
bars denote standard deviations.

Figure 2. Evolution of the dimensionless weight w3 of the highest rung
of for the MM/PMM (gray) and DFT/PMM (black) SST
simulations. Note the two different scales of the time axis separated by
the dashed horizontal line.

Figure 3. DFT/PMM-SST ensemble . (A) Running averages
(window size 2.5 ps) of the uniformity measures χk. Only data from
the time interval τ to the right of the dotted line are used for further
analysis. (B) Temporal averages ⟨χk⟩τ for all (black dots) and ⟨χk

c⟩τ for
selected replicas c (gray lines). The error bars denote standard
deviations of χk.
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replicas c (gray lines). These values notably differ from 1.0
explaining the sizable standard deviation of the ⟨χk⟩τ. Because
of the uniform sampling during the time span τ, we consider
the wk to be sufficiently converged.
With the converged weights wk of the MM/PMM and DFT/

PMM settings, the average SST exchange probabilities pij
between neighboring rungs can be evaluated. Table 1 reports

these probabilities as averages pij = (pij + pji)/2 over the
probabilities for the upward and downward exchange direction.
We have checked that within a SST simulation setting the
single probabilities satisfy pij ≈ pji (data now shown), which is
expected because our SST algorithm fulfills detailed balance
and because all χk ≈ 1.
The first three SST data columns of Table 1 show that the pij

are all close to 50%, which is slightly above the optimal range
extending from 20% to 45%.7 The pij of DFT/PMM are only a
little smaller than those of MM/PMM. Therefore, the
temperature ladder employed in the costly DFT/PMM
simulations can be optimized by using the much cheaper
MM/PMM approach.
The efficiency of SST is determined by the so-called round-

trip rate, which is the inverse of the average time required for
one replica to go from the lowest to the highest and back to the
lowest rung. In the MM/PMM and DFT/PMM-SST
ensembles, we observed 1223 and 82 round trips, respectively,
representing similar rates of 77 and 72 ns−1.
4.2.1. DFT/PMM-REST. For efficiency comparison, we

additionally performed REST simulations with the charge
scaling approach10 in the MM/PMM and DFT/PMM settings.
The REST ensemble employs the same temperature ladder
as SST. However, it features only four replicas always
occupying all four rungs. Here, 940 and 180 ps of REST-MD
were performed in the MM/PMM and DFT/PMM settings,
respectively. The exchange probabilities pij (Table 1) show the
expected result.10 The REST values are on average about a
factor of one-third smaller than those of SST. Furthermore,
with REST the MM/PMM and DFT/PMM round trip rates
are with 43 and 49 ns−1, respectively, by 49% and 37% smaller
than those of SST underlining that SST is the more efficient
tempering variant.
4.3. Improved Weight Guess. Although the update

dynamics quickly adapted the weights to the DFT/PMM
setting, a considerable amount of computer time had to be
spent on this adaptation requiring about 32 × 20 ps of DFT/
PMM-MD simulation. We therefore designed a scheme to
improve the initial guess for the DFT/PMM-SST weights.
Starting from weights wk determined for a Hamiltonian H

(e.g., MM/PMM), we want to estimate weights wk′ for a new
Hamiltonian H′ (e.g., DFT/PMM). Because the optimal
weights wk are the dimensionless free energies βk⟨Ek(R)⟩, we
need to estimate their shifts δwk = w′k−wk resulting from
changing the potential energies Ek to E′k on rung k, respectively.

Assuming that the configurational space of H′can be reasonably
well approximated by that of H, we calculate the required
energy ensemble averages for all rungs from configurations

∈R of a snapshot ensemble drawn from the MM/PMM-
SST simulation, leading to the weight shifts

δ β= ⟨ ′ − ⟩ ∈w E ER R( ) ( )k k k k R (10)

All corrections δwk are then shifted by − δw0 such that w0′ = 0.
Equation 10 approximates the free energy perturbation (FEP)
formula48,49 in leading order (see Section S4 of the SI for a
discussion). The FEP should, in principle, give more accurate
results. For the setups considered here, however, it converges
much slower than eq 10. Because a useful correction scheme
should require only limited computational effort, we therefore
restrict the weight correction to the leading term.

Figure 4A demonstrates that the weight corrections δwk (eq
10) for quickly converge with the size of the snapshot
ensemble . About 50 snapshots yield converged δwk, and only
about 10 snapshots suffice for a reasonable estimate.
Note that the snapshot ensemble comprises snapshots

from all rungs k. Instead, one could also estimate the shifts δwk

from rung-specific ensembles k , which would be physically
more appropriate. The small number of snapshots, however,
suffices to determine the energy averages only with a large
error. These large energy fluctuations introduced by using
different snapshot ensembles k were found to strongly hamper
the convergence of the δwk and thus the required number of
snapshots would be impractically large.
Table 2 compares the guesses wk′ = wk + δwk with the

converged DFT/PMM-SST weights revealing overestimates of
less than 0.5. Thus, taken as initial values of a DFT/PMM-SST
simulation, these guesses should lead to a much faster weight
convergence.

4.4. Improved Setup ̃ . The high SST exchange
probabilities of about 50% revealed by Table 1 suggest that
the number of rungs can be reduced. Therefore, we set up a
second SST ensemble ̃ with only three temperature rungs

̃ = {300 K, 406 K, 550 K}. Here, however, we employed the
weight correction scheme suggested above to compute the

Table 1. Average Exchange Probabilities pij (in %) of MM/
PMM and DFT/PMM-SST Simulations of Ensembles and

̃ and respective REST Simulations in REST

p01 p12 p23 p̃01 p ̃12
MM/PMM-SST 48.9 50.3 51.6 30.1 32.2
DFT/PMM-SST 48.4 47.8 50.4 27.8 30.2
MM/PMM-REST 34.4 37.7 35.2 13.2 18.3
DFT/PMM-REST 33.5 30.6 34.8 12.3 16.9

Figure 4. Convergence of the dimensionless weight corrections δwk
computed from eq 10 for increasing size of the corresponding
snapshot ensemble for A) and B) ̃ (δw0 = 0 always).
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initial DFT/PMM-SST weights. The converged weights w̃k
belonging to the three-rung ensemble are given in the last two
columns of Table 2.
Figure 5 shows the evolution of the weight w̃2 during the

associated SST simulations. Here, the weight correction δw̃2 is
indicated by the light gray vertical bar, and w̃2 is seen to be
almost converged already at the start of the DFT/PMM-SST
simulation. A similar convergence behavior is observed also for
w̃1 (cf. Figure S1C in Section S5 of the SI). Because the
maximal temperatures T = 550 K of both ensembles and ̃
are equal, also the weights at the top rung of the respective
ladders (w3 and w̃2) should converge to the same value. Table 2
shows that this is actually the case.

Besides the weights, we have monitored the temporal
evolution of the four-rung ensemble by the uniformity
measures χk(t), which exhibit uniformity only after 20 ps
(Figure 3A) because of strong adaption of weights in the
beginning of the simulations. For the three-rung ensemble ̃
one finds a uniform distribution right from the start of the
DFT/PMM-SST simulation (see Figure S2A in Section S6 of
the SI). Therefore, our new educated guess for the initial SST
weights (cf. eq 10) guarantees that the replica acquire data on
the target rung r = 0 straight away in the DFT/PMM-SST
simulation.
The reduced number of rungs in ̃ lowers the exchange

probabilities p ̃ij (cf. the last two columns of Table 1) to about
30%, which now lie in the optimal range.7 Here, the lowered p ̃ij
are compensated by the fewer steps needed to complete a
round trip on the ladder of ̃ , and concurrently, the MM/
PMM- and DFT/PMM-SST round trip rates increase by about
9% to 84 and 79 ns−1, respectively, indicating for the three-rung
ensemble ̃ an improved sampling efficiency at T0.

REST simulations ̃ REST
with three rungs in the MM/PMM

and DFT/PMM settings of 920 and 160 ps duration,
respectively, revealed that the exchange probabilities are
about only half as large as in the three-rung SST setups (cf.
Table 1). Correspondingly, the respective round trip rates of 41

and 36 ns−1 and the associated sampling efficiencies are
drastically smaller.

4.5. Free Energy Landscape of Alanine Dipeptide
Computed by DFT/PMM-SST. Figure 6 shows the free
energy landscape spanned by the two dihedral angles50 Φ and
Ψ of alanine dipeptide as predicted by our DFT model in
aqueous PMM solvent. Here, we have combined data from the
ensembles and ̃ at T0 = 300 K resulting from about 760 ps
that have been spent on rung 0 out of a total of 2.56 ns of
DFT/PMM-SST-MD trajectory accumulated by the 32
replicas. The main features of the free energy landscape are
the two minima around the structural motifs “polyproline II” at
(Φ,Ψ) ≈ (−80,150)° and “α-helical” at (Φ,Ψ) ≈ (−90,−20)°,
which are of similar depth. Conformations characterized by
Φ > 0° generally have a higher free energy and are separated
from regions Φ < 0° by high barriers but have already been
visited during the SST simulations.

The overall shape of the free energy landscape has been
similarly found for other QM/MM settings that employ
plain51,52 or RE32 MD simulations using semiempirical QM
Hamiltonians or a multicanonical53 MD simulation with
Hartree−Fock as the QM method. Therefore, we are confident
that the two minimum energy regions are already well
described by the simulations presented here. However, the
relative free energies of the Φ > 0° structures and the barriers
connecting the various minima still carry a large error, which
can be reduced only by extended simulations that are on the
way. Furthermore, reweighting schemes based on the “weighted
histogram analysis method” (WHAM)54,55 or the “multistate
Bennett acceptance ratio estimator” (MBAR) method56 could
be used to improve the statistics by including data from rungs
r ≠ 0. For these, however, at each trajectory sampling step the
energies Ek(R) have to be computed for all rungs k, which will
be implemented to a future release of IPHIGENIE.

5. SUMMARY AND OUTLOOK
The conformational space of flexible molecules in polar
solvents can be efficiently sampled by solute tempering
methods such as REST16 or SST.10 This enhanced sampling
concept can be transferred to simulation setups, in which the
electronic polarizabilities of the solvent and, possibly, also of

Table 2. Weights wk Obtained by Weight Update Dynamics
in MM/PMM and DFT/PMM Settings for Ensembles and

̃ (w0 = 0 always) and MM/PMM Weights Corrected by
Eq 10

w1 w2 w3 w̃1 w̃2

MM/PMM 8.17 14.00 17.87 11.41 17.90
wk + δwk 5.17 8.44 10.12 7.13 10.25
DFT/PMM 4.92 8.02 9.64 6.85 9.84

Figure 5. Evolution of the dimensionless weight w̃2 of the highest rung
of ̃ for MM/PMM (gray) and DFT/PMM (black).

Figure 6. Current state of the free energy landscape of alanine
dipeptide. DFT/PMM-SST simulation data from ensembles (32 ×
35 ps) and ̃ (32 × 45 ps) have been merged; the bin size is 10° ×
10°.
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the solute are explicitly included. Here, the key trick has been
the adoption of the charge scaling method10 to polarizable
systems.
As sample systems, we have considered MM and DFT

models of alanine dipeptide solvated in PMM water. The MM/
PMM- and DFT/PMM-SST simulations showed rapid
convergences of the required weights. The convergence of
the DFT/PMM weights was significantly enhanced by deriving
accurate initial weights from a preceding MM/PMM-SST
simulation and very few DFT/PMM calculations. Interestingly,
the enhanced sampling power of SST as compared to REST10

fully transfers to polarizable systems. Both for SST and REST,
the sampling properties of the MM/PMM and DFT/PMM
setups turned out to be highly similar. Therefore, the costly
DFT/PMM simulations can be optimally tuned by the much
cheaper MM/PMM approach. For our DFT/PMM model of
alanine dipeptide in aqueous solution and the chosen
temperature range from 300 to 550 K, a three-rung ladder is
sufficient for an efficient SST dynamics to sample its free
energy landscape at 300 K. In contrast, conventional RE or ST
simulations would require a much larger number of rungs,
which would be unfeasible for the chosen level of theory
(DFT). Extended simulations applying the thus developed
DFT/PMM-SST-MD simulation technique and aiming at an
accurate description of this landscape are under way. A highly
efficient, massively parallel, and scalable DFT/PMM-SST
implementation is available through the interface30,35 of the
PMM-MD program IPHIGENIE41 with the DFT program
CPMD.42
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(36) Schwörer, M.; Wichmann, C.; Tavan, P. J. Chem. Phys.,
submitted for publication.
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2.4 Effizientes Abtasten von Konformationsräumen mit DFT/PMM-MD

Der folgende Abdruck

Supporting Information for:
Simulated Solute Tempering in Fully Polarizable

Hybrid QM/MM Molecular Dynamics Simulations

Magnus Schwörer, Christoph Wichmann, Erik Gawehn und Gerald Mathias
J. Chem. Theory Comput. 12, 992-999 (2016)

enthält zusätzliche Informationen zum oben abgedruckten Haupttext. In Abschnitt S1
werden die Details der durchgeführten Simulationen präsentiert, Abschnitt S2 doku-
mentiert die verwendete Variante des GP6P-Modells (die sich leicht von der in Ref. [58]
entwickelten finalen Version unterscheidet). In Abschnitt S3 wird der zur Anpassung
der SST-Gewichte verwendete Algorithmus diskutiert, in Abschnitt S4 werden einige
zusätzliche Überlegungen zum Transfer der Gewichtsparameter wk zwischen PMM- und
DFT/PMM-SST angestellt. In den beiden letzten Abschnitten S5 und S6 werden schließ-
lich der Vollständigkeit halber die Zeitentwicklungen von Gewichtsparametern bzw. die
Gleichverteilung der Kopien k auf der Temperaturleiter Tk gezeigt.
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S1 Simulation Methods

All calculations of alanine dipeptide (Ace-Ala-NHMe) in PMM water were performed with

the IPHIGENIE/CPMD program package, which combines the parallel PMM-MD code

IPHIGENIES1–S7 with the parallel grid-based plane-wave DFT code CPMD.S8

In the MM/PMM setting, the dipeptide was modeled by CHARMM22/CMAP.S9,S10

In DFT/PMM it was described by the BLYPS11,S12 functional and the norm-conserving

pseudo-potentials of Troullier and MartinsS13 at a plane-wave cutoff energy of 70 Ry. It was

centered in a cubic DFT box with a volume of (14 Å)3. The DFT self-consistency convergence
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criterionS4 was χDFT = 10−6. Solute energies, which are required for the computation of the

Metropolis exponents in solute tempering methods,S14,S15 were calculated with respect to the

energy EDFT,0 of the isolated molecule at its relaxed geometry obtained from a single separate

calculation. This energy offset EDFT,0 = −58252 kcal mol−1 shifts the DFT solute energies to

the same level as the MM solute energies. Otherwise, a weight shift of δw0
k = (βk−β0)EDFT,0

– up to 44130 for w3 – would have to be included when using the MM/PMM weights in the

DFT/PMM simulation. Although this increase would be captured by the weight correction

(10), the comparison of MM/PMM and DFT/PMM weights of similar magnitude is more

instructive.

As PMM water model we used the Gaussian Polarizable Six-Point (GP6P) potential,

which was specifically developed for DFT/PMM settings and will be presented elsewhere.S16

Here we solely note that this PMM energy function for water was parametrized by following,

extending, and partially correcting the prescriptions in Refs. [S17] and [S18]. Its parameters

are documented and explained in Section S2 of this SI. The just quoted unpublished work

additionally provides optimized parameters for selected Lennard-Jones (LJ) potentials of the

alanine dipeptide DFT fragment embedded in GP6P water. These parameter were designed

to describe the hydrogen bonding of the dipeptide’s amide groups with the surrounding

GP6P water in such a way that available knowledge about radial distribution functions is

reproduced. The thus revised LJ parameters refer to the amide carbon (C ′), oxygen (O),

nitrogen (N), and hydrogen (H) atoms. They are given in Table S1. All other LJ parameters,

which are required for the alanine dipeptide DFT fragment in a DFT/(P)MM setting,S19

were adopted from the CHARMM22S9 force field.

Table S1: LJ Parameters for amide group atoms α embedded in GP6P water.

α Aα / (103 Å12 kcal mol−1) Bα / (Å6 kcal mol−1)
C ′ 1585.97 962.649
O 426.926 252.844
N 788.889 1357.18
H 0.0 0.0
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The geometries of the water molecules were constrained with the M-SHAKES20 and

RATTLES21 algorithms with relative tolerances of 10−10. The equations of motion were

integrated with the velocity Verlet algorithmS22 with time steps δt of 1 fs in the MM/PMM

and 0.5 fs in the DFT/PMM setting, respectively. The electrostatic and van der Waals

dispersion interactions were treated by the most recent energy conserving version of the

fast structure-adapted multipole method (SAMM).S1–S3 The SAMM description of these

interactions employed 4’th and 3’rd order symmetric Taylor expansions, respectively, which

were extended up to a maximum distance dictated by the minimum image convention (MIC)

of the applied toroidal boundary conditions.S23 Beyond the MIC distance, a moving boundary

electrostatic reaction field correction,S24 which models a surrounding dielectric continuum

with a dielectric constant of 78, and a continuum correction for the dispersion attraction

were applied. The SAMM accuracy parameter Θ was set to medium (Θm = 0.20) in the

MM/PMM and high (Θa = 0.17) accuracy in the DFT/PMM setting, respectively. The

PMM dipole convergence criterionS4 was set to χPMM = 10−4 D.

A condensed phase simulation box was prepared in the MM/PMM setting by filling a

periodic cubic box with one MM alanine dipeptide model (CHARMM22) and 4487 PMM

water models (GP6P), comprising a total of N = 26944 particles (i.e. atoms and massless

charge sites). The MM/PMM system was equilibrated in the NpT ensemble by a 1 ns MD

simulation to the standard conditions of T = 300 K and p = 1 bar employing a Bussi

thermostatS25 (coupling time 0.1 ps) and Berendsen barostatS26 (coupling time 10 ps), re-

spectively. It yielded a simulation box volume of V = (51.3 Å)3 corresponding to a density

of 0.996 g/cm3. From the tail of a subsequent 1 ns MD simulation in the NV T ensemble we

collected 32 snapshots at temporal distances of 5 ps.

These snapshots served as starting points for a MM/PMM-SST generalized ensemble E

with C = 32 replicas and four temperature rungs Tk ∈ T = {300 K, 367 K, 449 K, 550 K}.

All subsequent SST simulations were executed in the NV Tk settings. Exchanges between

rungs were attempted every ∆t = 250 fs obeying the deterministic even-odd scheme.S27,S28
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Initial guesses for the MM/PMM SST weights wk were obtained by the following pro-

cedure. Short (10 ps) MD simulations were carried out at each temperature rung k. The

resulting trajectories served to collect temporal averages 〈Epp
k 〉 and 〈Eps

k 〉 of the solute-solute

and solute-solvent interaction energies, respectively. From these averages the weights wk were

calculated with the SST trapezoid rule {Eq. (13) in Ref. [S15]}. A subsequent MM-SST-MD

simulation with a duration of 300 ps then yielded through the update rule, which will be

described in Section S3, converged weights wMM
k . In these preparatory simulations the water

model was TIP3P.S29

In SST simulations, the just mentioned update rule for the weights serves to achieve a

uniform distribution of replicas over the temperature rungs [cf. Eq. (S1) in Section S3]. In

our applications, the initial learning parameter α(0) = 0.5 was increased at each update step

by increments ∆α = 0.005 until αmax = 0.98 was reached. The weights wk were updated

with a period of n∆t, where ∆t is the time span between subsequent exchange attempts.

The factor n was increased at each weight update by 1 % or at least 1 from its initial value

n = 2 thus implementing a rather slow learning process. Table S2 lists the converged weights

for all settings.

The MM/PMM-SST ensemble E was initiated with the weights wMM
k and simulated for

500 ps yielding converged weights wk. After substituting the MM solute with the DFT model

a 2 ps DFT/PMM equilibration of the 32 replicas on their respective rungs was performed.

Here, like in all DFT/PMM simulations, the Bussi thermostat was exclusively coupled to the

solvent. Finally, the DFT/PMM-SST simulation of the four-rung ensemble E was started

with the weights wk.

To compute the weight corrections δwk by Eq. (10), we drew 60 statistically independent

snapshots Sk for each rung k from the MM/PMM trajectory and thus obtained the snapshot

ensemble S = ∪kSk comprising all 240 snapshots.

To test the robustness of the approach (10), which allows to accurately estimate DFT/PMM-

SST weights from a few DFT/PMM calculations on MM/PMM-SST snapshots, we set
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up a second generalized ensemble Ẽ featuring only three temperature rungs T̃ = {300 K,

406 K, 550 K}. It was prepared by the same procedures as E . The key difference of this

second DFT/PMM-SST simulation was the choice of the initial weights, which was w̃k +δw̃k

with corrections δw̃k specified by Eq. (10). The δw̃k were obtained from a snapshot ensemble

S̃ (|S̃| = 180) prepared just like S.

For a comparison of the efficiency of DFT/PMM solute tempering methods, we also set

up a RESTS14 ensemble EREST. It employs the same temperature ladder T as the SST

ensemble E . However, it features only four replicas each exclusively occupying one rung.

Furthermore, we set up a three-rung REST ensemble ẼREST employing the ladder T̃ . Like

in SST also in the REST simulations, the solute tempering was accomplished by charge

scaling.S15 We performed 940 ps (920 ps) of REST simulation in the MM/PMM and 180 ps

(160 ps) in the DFT/PMM settings for ensemble EREST (ẼREST), respectively.

Table S2: Weights wk obtained by the SST trapezoid rule for an MM setting, and by the
weight update dynamics (S1) in MM, MM/PMM and DFT/PMM settings for ensembles E
and Ẽ . Note that w0 = δw0 = 0 always. The last line shows the MM/PMM weights wk
corrected towards DFT/PMM by Eq. (10).

w1 w2 w3 w̃1 w̃2

MM, SST trapezoid rule 6.40 10.44 13.14 8.45 11.84
MM-MD 6.13 10.15 12.45 8.52 12.75
MM/PMM-MD 8.17 14.00 17.87 11.41 17.90
DFT/PMM-MD 4.92 8.02 9.64 6.85 9.84
wk + δwk 5.17 8.44 10.12 7.13 10.25

S2 A Gaussian Polarizable Six-Point Water Model

In our MD simulations of alanine dipetide in PMM water we employed the Gaussian Po-

larizable Six-Point (GP6P) model potential, which features five Gaussian charges and one

induced Gaussian dipole. It was developed specifically for DFT/PMM simulations. The

details of the parametrization procedure and a thorough evaluation of bulk liquid phase

properties will be presented elsewhere.S16
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The GP6P water model intrinsically provides the smooth electrostatic sources required for

the combination of plane-wave DFT with (P)MM force fields.S4,S19,S30,S31 The parametriza-

tion followed the DFT/PMM-based procedure recently applied to construct polarizable wa-

ter models of increasing complexity, which however employed point charges.S17,S18 The rigid

GP6P model features the experimental liquid phase geometryS32,S33 (oxygen-hydrogen [O-H]

distance lOH = 0.968 Å, HOH angle ϕHOH = 105.3◦) and the experimental vacuum dipole

momentS34 |µg
exp| = 1.855 D. The polarizability is modeled by an induced Gaussian dipole

distribution of strength µi and Gaussian width σµ centered at the oxygen, which isotropi-

cally and linearly depends through the experimental gas phase polarizabilityS35 α = 1.47 Å3

on the polarizing electric field. Thus, this field is the average over a Gaussian volume of

width σµ around the oxygen.S4 The width σµ is specified in Table S3 together with all other

parameters characterizing the employed version of the GP6P model.

Gaussian charge distributions of identical strengths qH and widths σH are centered at

the two hydrogen atoms. A third Gaussian charge distribution (strength qM, width σM) sits

at one massless site (M) located the bisectrix of ϕHOH at a distance lOM from the oxygen

towards the hydrogens. Finally, two massless lone pair sites (L) lie in the plane spanned

by the bisectrix of ϕHOH and by the normal of the molecular plane (O-L distance lOL, LOL

angle ϕLOL, where L-sites with ϕLOL > 180◦ would exhibit perpendicular projections to

positions inside the molecular triangle). Also the L-sites carry Gaussian charge distributions

(strengths qL, widths σL = σM).

Table S3: Parameters of the GP6P Model.

α / Å3 1.47 lOH / Å 0.968
σµ/ Å 0.740 lOM / Å 0.555433
σH / Å 0.4588152 lOL / Å 0.581108
σM/L / Å 0.6605822 ϕHOH / deg 105.3
qH / e 0.524872 ϕLOL / deg 173.645
qM / e -0.449410 A1 / (103 kcal mol−1) 12.38527
qL / e -0.300167 A2 / Å−1 2.923912

B / (Å6 kcal mol−1) 912
A / (103 Å6 kcal mol−1) 598.0948
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The van der Waals interactions between water molecules are modeled by a single Buck-

inghamS36 potential UBu(r) = A1exp(−rA2) − B/r6 centered at the oxygen. To be capable

of treating also interactions of GP6P water models with molecular models, whose van der

Waals interactions are described by LJ potentials ULJ(r) = A/r12 − B/r6, a LJ approxima-

tion to the GP6P Buckingham potential has been derived by requiring that, in the distance

range r ∈ [2.5, 6] Å, the mean square deviation between UBu(r) and ULJ(r) becomes minimal

upon variation of A. In the current context, the approximate LJ potential has been used for

the description of the van der Waals interactions between the GP6P water molecules and

the MM and DFT models of alanine dipeptide. Note that the GP6P parameter list of Table

S3 includes those of the approximate LJ potential.

S3 Adaptation of Weights in SST

The weights wk entering the Metropolis exponents (1), (4) or (9) remain to be specified.

We want to optimize them in such a way that all R temperature rungs k are uniformly

sampled, i.e. that the probability pk of finding the replica on rung k approaches p̄ = 1/R

during a simulation. The deviation of pk/p̄ from unity measures the non-uniformity of the

distribution of the replica over the rungs.S15

Increasingly accurate estimates p̂k(t) = Nk(t)∆t/t of the probabilities pk are determined

by the numbers Nk(t) of exchange attempts starting from the rungs k and the total number

t/∆t of attempts after a SST simulation time t. Denoting the weight of a rung k at time t

by wk(t), the weight update ruleS37

wk(t+ n∆t) = wk(t)− ln[(1− α)χk(t) + α] (S1)

employs a learning parameter 0 < α < 1 to adapt the weights wk according to the deviation

of the current sampling of rung k from uniform sampling as quantified by χk(t) = p̂k(t)/p̄.

The adaptation is performed every n exchange steps, i.e. with a frequency of 1/(n∆t). We
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use the time-dependent learning parameter α ≡ α(t) = min[α(0) + ∆α t/(n∆t), αmax] and

additionally scale n by a factor & 1 at each update step to gradually slow down the learning

process. If a rung k is uniformly sampled at time t′, i.e. χk(t
′) = 1, then Eq. (S1) yields

wk(t
′ + ∆t) = wk(t

′). In all other cases, the wk are adjusted towards uniform sampling.

Note that all numerical values for weights are given with respect to w0, because only

weight differences enter the SST exponent (9). The scheme (S1) is easy to implement and

requires only negligible computational effort.

S4 Free Energy Perturbation and Weight Correction

The free energy perturbation (FEP) equationS38,S39

βAHH′ = − ln〈e−β(E′−E)〉S (S2)

estimates the free energy change AHH′ entailed by switching from Hamiltonian H to a

slightly ‘perturbed’ Hamiltonian H ′ with associated energies E ≡ E(R) and E ′ ≡ E ′(R),

respectively, where 〈. . . 〉S denotes the average over the configurations R in the ensemble S

sampled by H; we have dropped the rung index k here. Introducing the mean values 〈E ′〉S
and 〈E〉S into Eq. (S2) yields

βAHH′ = − ln〈e−β[E′−〈E′〉S−(E−〈E〉S)+〈E′〉S−〈E〉S ]〉S

= β〈E ′ − E〉S − ln〈e−β[E′−〈E′〉S−(E−〈E〉S)]〉S (S3)

The first term on the r.h.s. in Eq. (S3) is our approximate weight shift δw given by the

correction formula (10) and captures the estimated shift of the mean values of the potential

energies. The second term, which the weight correction neglects, compares the deviations

E(R) − 〈E(R)〉S of the energy E(R) of configuration R from the mean value 〈E(R)〉S for

the Hamiltonians H and H ′ over all configurations R ∈ S.
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For our MM/PMM and DFT/PMM Hamiltonians H and H ′ we have calculated the

exponents contributing to the ensemble average of the second term that lie in the range

[−20, 20] kcal mol−1, i.e. the deviations of the potential energies calculated using the two

solute Hamiltonians (MM or DFT) for single configurations R from their respective ensemble

averages differ sizable. Concomitantly, we observe a very slow convergence of this second

term, particularly because the exponential averaging is very sensitive to outliers. Thus,

its convergence would require snapshot sets much larger than acceptable for a weight shift

estimate. Here, computer time is better spent on the actual SST simulation employing H ′

since it allows a direct determination of the weights and one does not rely on the validity of

the Zwanzig FEP formula.

S5 Time Evolution of Weights w1, w2, and w̃1 in PMM-

and DFT/PMM-SST

Figures 2 and 5 in the main text show the evolution of the weights w3 and w̃2 of the respective

highest rungs of the ensembles E and Ẽ during the PMM- and DFT/PMM-SST simulations.

Figures S1A), S1B) and S1C) document the evolution of the remaining weights w1, w2, and

w̃1, respectively.

S6 Uniformity of the Three-Rung Sampling

Figures S2A) and S2B) show the running averages χ̃k(t) and the average uniformity measures

〈χ̃k〉τ̃ of the distribution χck of replicas, respectively, for the three-rung ensemble Ẽ .

In contrast to the four-rung ensemble E , for which these quantities are shown in the

corresponding Figures 3A) and 3B) in the main text, the improved initial weight guesses

w̃k + δw̃k [cf. Eq. (10)] employed in Ẽ yield uniformity right from the start of the simulation.

Accordingly, the 〈χ̃k〉τ̃ in S2B) are averages over the whole DFT/PMM simulation time τ̃ of
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Figure S1: Evolution of the dimensionless weights A) w2 and B) w1 of ensemble E and C)
w̃1 of Ẽ during the MM/PMM (gray) and DFT/PMM (black) SST simulations. In panel
C), w̃1 has been corrected by Eq. (10) before the DFT/PMM-SST simulation. Note the two
different scales of the time axis separated by the dashed horizontal line.

Figure S2: DFT/PMM-SST ensemble Ẽ . A) Running average of the uniformity measure χk.
B) χck for selected replicas c (gray) and the ensemble average χk (black). Error bars denote
standard deviations.

ensemble Ẽ , because no initial adaptation phase had to be discarded.
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3 Resümee und Ausblick

Das Ziel dieser Arbeit war die Entwicklung einer DFT/PMM-Hybridmethode zur ak-
kuraten und effizienten Berechnung der MD und der IR-Spektren von Biomolekülen in
ausgedehnter kondensierter Phase. Ausgangspunkt war dabei die von Eichinger et al.
vorgeschlagene DFT/MM-Technik [33]. Es sollte sowohl die Stabilität und Effizienz
des Verfahrens verbessert werden, als auch die Genauigkeit der Beschreibung des MM-
Fragments durch die explizite Modellierung polarisierbarer elektronischer Freiheitsgrade
erhöht werden.

Die durch die von Eichinger et al. verwendete Partialladungsnäherung [33] verursachte
Asymmetrie in der Berechnung der DFT/MM-Wechselwirkungen und die damit ver-
bundenen Dynamikartefakte wurden erfolgreich beseitigt, indem das DFT-Fragment
vollständig symmetrisch in den SAMM-Algorithmus [126] eingebettet wurde. Zusam-
men mit dem zusätzlich entwickelten, die Gittersymmetrie berücksichtigenden Algorith-
mus zur Nachführung der DFT-Box bei Translationen des DFT-Fragments, können nun
Hamilton’sche DFT/PMM-MD-Simulationen von ausgedehnten Systemen durchgeführt
werden [112].

Weiterhin können nun auch in Hybridrechnungen induzierbare Gauß’sche Dipole zur
Modellierung der polarisierbaren Freiheitsgrade des PMM-Fragments eingesetzt wer-
den [112]. Durch die effiziente Verzahnung der nötigen DFT- und PMM-Selbstkonsis-
tenziterationen ist der damit verbundene Mehraufwand gegenüber DFT/MM-MD nur
gering, was eine wichtige Voraussetzung für die Durchführbarkeit solcher Hybridsimula-
tionen ist.

Die Anpassung der aktuellsten Version von SAMM [109, 126, 127] auf DFT/PMM brach-
te außerdem massive Steigerungen von Genauigkeit und Effizienz bei der Beschreibung
der DFT/PMM-Wechselwirkungen mit sich [112, 193]. Die FMM-Entwicklungen für
elektrostatische Wechselwirkungen, die in der Eichinger et al. zur Verfügung stehenden
SAMM-Version [125] nur bis zur Ordnung p = 2 möglich waren, werden in der neuen
SAMM-Generation bis zur Ordnung p = 4 ausgeführt [126]. Durch die Generalisierung
des SAMM-IAC [Glg. (1.10)] [109] auf DFT/PMM, die Einführung einer neuen SAMM-
Hierarchieebene im DFT-Fragment und die gewichtete Berechnung von Gyrationsradien
der DFT-Ladungsverteilung konnte die Performanz (d.h. das Produkt aus Genauigkeit
und Effizienz) der Auswertung von elektrostatischen DFT/PMM-Wechselwirkungen bei
gegebener Ordnung p = 4 nochmal um etwa einen Faktor 55 gesteigert werden, was zu
einer Erhöhung der Gesamtperformanz der atomaren Kraftberechnung um mehr als eine
Größenordnung führte [193].

Die Implementierung von DFT/PMM wurde grundlegend technisch überarbeitet, sodass
mit IPHIGENIE/CPMD nun vollständig parallelisierte, stabile Simulationen auf Höchst-
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3 Resümee und Ausblick

leistungsrechnern wie dem SuperMUC des Leibniz-Rechenzentrums (LRZ) möglich sind.
Das Hybridprogramm IPHIGENIE/CPMD erhält dabei weitgehend die hervorragenden
Skalierungseigenschaften von CPMD [152]. Die entsprechende Implementierung ist der
wissenschaftlichen Öffentlichkeit zugänglich gemacht worden [193]: IPHIGENIE ist frei
im Internet erhältlich [192]; die in CPMD integrierten Teile des DFT/PMM-Quellcodes
sind als Patch zur Version 3.17.1 verfügbar [152] und seit Version 4.1 fester Bestandteil
der CPMD-Distribution. Die Verwendung von CPMD 4.1 erforderte eine Umstellung
der in CPMD integrierten Teile des DFT/PMM-Quellcodes von der Programmierspra-
che FORTRAN77 auf FORTRAN90 und deren Anpassung an die neuen Strukturen im
Rumpfquellcode von CPMD.

Die neue DFT/PMM-Technologie wurde dann erfolgreich dazu eingesetzt, das PMM-
Wassermodell GP6P zu entwickeln, das sich durch die Verwendung gaußförmiger Quellen
des elektrostatischen Potentials speziell für DFT/PMM-Anwendungen eignet. Dazu wur-
de eine zur Parametrisierung von PMM-Punktladungsmodellen entwickelte DFT/PMM-
basierte Strategie [55, 129] korrigiert und ergänzt [58].

Dieser erhebliche Zusatzaufwand war nötig, da sich das in Ref. [129] entwickelte Sechs-
punktmodell TL6P als fehlerhaft herausstellte: bei dessen Parametrisierung und Eva-
luierung [114, 129] war eine Methode zur Druckberechnung eingesetzt worden, die für
die verwendete Modellklasse (polarisierbares Mehrpunktmodell) ungeeignet ist und ent-
sprechend einige tausend Bar Mißweisung aufwies. Die zur praktischen Durchführung
der DFT/PMM-gestützten Parametrisierung von Wassermodellen nötige Zusatzsoftware
musste ich zusammen mit Christoph Wichmann größtenteils komplett neu entwickeln.
Es stellte sich außerdem heraus, dass sich mit der verwendeten Parametrisierungsmetho-
de [55, 129] bei Verwendung eines korrekten Barometers [14] keine hinreichend genauen
Punktladungs-Sechspunktmodelle konstruieren ließen, da die von den punktförmigen
lone-pair-Ladungen generierten starken elektrischen Felder eine vernünftige Parametri-
sierung der van der Waals-Wechselwirkungen unmöglich machten. Diese Tatsache und
die geplante Verwendung in DFT/PMM-Hybridmodellen begründete die Einführung
von Gaußladungen für GP6P.

Das GP6P-Modell stellte sich dann aber als Erfolg heraus. Der Vergleich der in flüssiger
Phase unter Normalbedingungen (Temperatur 300 K, Druck 1 atm) berechneten Obser-
vablen (radiale Verteilungsfunktion, Dichte, isobarischer thermischer Ausdehnungskoef-
fizient, isothermale Kompressibilität, Wärmekapazität, Diffusionskonstante, Viskosität
und Dielektrizitätskonstante) mit experimentellen Daten zeigte, dass das GP6P-Modell
wichtige Eigenschaften flüssigen Wassers hinreichend genau beschreiben kann [58]. Fer-
ner war es in der Lage, das experimentell beobachtete Temperatur-Dichte-Profil [44]
mit bemerkenswerter Genauigkeit vorherzusagen [58]. Es hatte damit im Wesentlichen
ähnlich günstige Eigenschaften wie das mit dem falschen Barometer fehlerhaft konstru-
ierte und evaluierte TL6P-Modell [114, 129]. Somit steht mit GP6P nun erstmalig ein
speziell für DFT/PMM-Hybridsimulationen entwickeltes, genaues polarisierbares Sechs-
punktmodell für Wasser zur Verfügung.

Die letzte zur Berechnung der Schwingungsspektren von (Poly-)Peptiden nötige Vor-
arbeit war schließlich die Bestimmung der Lennard-Jones-Potentiale zur Modellierung
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der van der Waals-Wechselwirkungen zwischen den DFT-Atomen einer AG und den
GP6P-Molekülen. Durch die Entwicklung eines effizienten DFT/PMM-mean-field-An-
satzes konnte die Parametersuche weitgehend automatisiert werden. Die gefundenen
Parameter resultierten in einer sehr guten Beschreibung der radialen Nahstruktur der
PMM-Moleküle um das DFT-Fragment. Die Verwendung der CHARM22-Parameter [66]
führte hingegen zu einer signifikanten Überstrukturierung der Wasserumgebung von
NMA.

Schließlich wurden für drei verschiedene DFT-Modelle (MT/BP, MT/BLYP und
MT/B3LYP) von NMA dessen Schwingungsspektrum in der Gasphase und in durch
GP6P beschriebener wässriger Lösung mittels FTTCF aus ausgedehnten DFT-MD- bzw.
DFT/PMM-MD-Trajektorien berechnet. Nach einer globalen Frequenzskalierung stimm-
ten die MT/BLYP- und besonders die MT/BP-Gasphasenspektren sehr gut mit der ex-
perimentellen Referenz [10] überein. Für das erheblich rechenaufwändigere MT/B3LYP-
Modell war diese Übereinstimmung bereits ohne Frequenzskalierung sehr gut [58]. Auch
in wässriger Lösung lieferte das mittels (MT/B3LYP)/PMM-MD berechnete Spektrum
eine sehr gute Vorhersage für die experimentelle Beobachtung. Das weniger rechenauf-
wändige (MT/BP)/PMM-Modell war nach Frequenzskalierung ebenfalls sehr gut mit
dem Experiment vergleichbar und konnte auch Isotopeneffekte mit hoher Genauigkeit
vorhersagen [58].

Das DFT/PMM-Hybridmodell kann also die Solvatisierungseffekte der wässrigen PMM-
Umgebung auf das DFT-Fragment mit hoher Genauigkeit beschreiben. Die Fehler des
mit einem einfacheren (MT/BP)/MM-Modell berechneten Spektrums von NMA [63]
treten beim elaborierteren (MT/BP)/PMM-Modell nicht mehr auf [58]. Eine einzelne
70 ps lange (MT/BP)/PMM-MD Trajektorie von NMA in GP6P Wasser konnte inner-
halb eines Tages berechnet werden, eine Aufgabe, die in früheren Arbeiten [63] noch
ein halbes Jahr in Anspruch genommen hat. Dieser Fortschritt ist zum einen auf die in
dieser Arbeit erreichten Effizienzsteigerungen zurückzuführen, zum anderen auf die er-
möglichte Nutzbarmachung von Höchstleistungsrechnern wie dem vom LRZ betriebenen
SuperMUC (und natürlich auf die Verfügbarkeit entsprechender Rechenzeitressourcen).

Die Kombination von DFT/PMM-MD mit dem generalisierten Ensembleverfahren
SST [195] erlaubt nun außerdem die effiziente Abtastung der Konformationslandschaf-
ten von Polypeptiden (vgl. Abschnitt 1.1.3), wie am Beispiel von Alanindipeptid gezeigt
wurde [194]. Diese Effizienzsteigerung ist eine wichtige Voraussetzung für das Generieren
von geeigneten Startensembles für die anschließende Untersuchung der konformationss-
pezifischen Schwingungsspektren von Polypeptiden.

Durch die im Rahmen dieser Dissertation erreichten algorithmischen und technischen
Fortschritte ist so ein öffentlich zugängliches, hoch leistungsfähiges Programmpaket ent-
standen. Zusammen mit dem entwickelten DFT/PMM-Modell für AGn in wässriger Lö-
sung steht nun ein genauer und effizienter theoretischer Zugang zu den IR-Spektren und
Konformationslandschaften größerer Polypeptide und Proteine zur Verfügung.

Im Rest dieses Kapitels wird nun ein Ausblick auf zukünftige Weiterentwicklungen und
Anwendungen der DFT/PMM-Methode gegeben.
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3 Resümee und Ausblick

Anpassung von SPLAM an DFT/PMM

Bei der Entwicklung der DFT/PMM-Methode standen chemisch ungebundene DFT-
und PMM-Fragmente im Vordergrund. Zur Anwendung des Verfahrens auf Systeme, in
denen chemische Bindungen zwischen den Fragmenten existieren (wie z.B. im Falle des
kovalent an das Protein Bacteriorhodopsin gebundenen Farbstoffs Retinal [36]), muss
eine Link-Atom-Methode wie das von Eichinger et al. im Rahmen von DFT/MM ent-
wickelte SPLAM-Verfahren verwendet werden [33, 176]. Bei dieser Link-Atom-Methode
wird in eine Cq–Cm-Einfachbindung zwischen zwei Kohlenstoffen Cq und Cm des DFT-
bzw. PMM-Fragments ein zusätzliches H-Atom — das Link-Atom L — ins DFT-Frag-
ment gesetzt, das die Valenz von Cq absättigt. Der Einfluß dieses zusätzlichen Atoms
wird dann durch verschiedene Korrekturverfahren so weit wie möglich wieder entfernt.

Das SPLAM-Konzept umfasst vier wesentliche Punkte, deren Übertragbarkeit ins neue
Hamilton’sche DFT/PMM-Schema im Folgenden diskutiert wird:

(i) Setzen des Atoms L auf die Cq–Cm-Verbindungslinie in einem Abstand rCH vom
Cq-Atom, der aus den Gleichgewichtslagen und Kraftkonstanten von harmonisch
genäherten C–C- und C–H-Bindungen bestimmt wird [Glg. (10) in Ref. [33]],

(ii) Umverteilung der auf Atom L wirkenden Kräfte auf Cq und Cm, Einführung ent-
sprechender Energiekorrekturen ∆Estretch bzw. ∆Eangle [Glgn. (11) und (12) in
Ref. [33]] sowie Berücksichtigen von MM-Winkel- und MM-Diederpotentialen zwi-
schen den Fragmenten [Glg. (13) in Ref. [33]],

(iii) Generalisieren des Konzeptes der 1-M -exclusion (d.h. des Abschaltens langreich-
weitiger Wechselwirkungen für nahe chemisch gebundene Atome, vgl. Abschnitt
1.2.1) durch Skalieren des von Cm und dessen nahen PMM-Bindungspartnern auf
dem DFT-Gitter erzeugten elektrostatischen Potentials mittels einer glatten ab-
standsabhängigen Schaltfunktion ε̃(r) [siehe S. 10459 in Ref. [33]] und

(iv) Korrektur der elektrostatischen Störung, die durch das Ersetzen der unpolaren Cq–
Cm-Bindung mit der polaren Cq–H-Bindung eingeführt wurde, sowie Korrektur der
mit L eingeführten zusätzlichen van der Waals-Wechselwirkungen innerhalb des
DFT-Fragments.

Die Punkte (i) und (ii) sind unverändert auf DFT/PMM übertragbar. Die mit dem
Setzen des Link-Atoms und der Kraftumverteilung verbundenen Energiekorrekturen
∆Estretch bzw. ∆Eangle erfordern allerdings eine Näherung der durch DFT beschriebe-
nen C–H-Bindung durch ein harmonisches Potential, die die Hamilton’sche DFT/PMM-
Dynamik stört. Diese Störung sollte jedoch klein sein.

Das Ausblenden von Wechselwirkungen (iii) kann ebenfalls leicht in die neue DFT/PMM-
Methode übernommen werden. Die von Eichinger et al. vorgeschlagene Schaltfunktion
ε̃(r) blendet das von Cm und dessen nahen PMM-Bindungspartnern erzeugte elektro-
statische Potential unterhalb einer Entfernung von 3 Å zwischen PMM-Atom und DFT-
Gitterpunkt über eine Länge von 2,5 Å glatt aus [33]. Da das Voxel-IAC [Glg. (5) in
Ref. [193]] bei typischen Voxelgrößen von RΛ ≈ 0,35 Å eine FMM-Approximation erst
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ab einem Atom-Gitterpunkt-Abstand von etwa 4 Å erlaubt, wirkt die Potentialskalie-
rung also ausschließlich auf der Ebene der direkten Wechselwirkungen zwischen PMM-
Atomen und Gitterpunkten [193]. Damit kann die Skalierung ohne großen Aufwand
in die Potentialberechnung implementiert werden. Auch die symmetrische Behandlung
der Skalierung bei der Berechnung der Rückwirkung der DFT-Atome auf das PMM-
Fragment stellt keine Schwierigkeit dar; der Hamilon’sche Charakter der DFT/PMM-
Kopplung wird also nicht gestört.

Die größte Schwierigkeit stellt Punkt (iv) dar, d.h. die Beseitigung des durch das Link-
Atom eingeführten Dipolmoments µL der Cq–H-Bindung. Eichinger et al. greifen hier,
wie schon bei der Berechnung der Rückwechselwirkung des DFT-Fragments auf die
MM-Atome, auf die Partialladungsnäherung zurück, und verschieben die Ladung qL
des Atoms L einfach an den Ort von Cq [33]. So kann die Energie von µL im äußeren
Feld durch einen einfach Term ∆Edip,ext [Glg. (14) in Ref. [33]] korrigiert und die Rück-
wechselwirkung aus den korrigierten Partialladungen berechnet werden. Analog wird
die Korrektur ∆Edip,int [Glg. (15) in Ref. [33]] der Energie der übrigen DFT-Atome im
Potential des Dipols µL behandelt. Die entsprechenden Kraftkorrekturen sind durch
einfache Gradientenbildung zugänglich [33].

Ein exaktes Eliminieren von µL ist auch im neuen DFT/PMM-Verfahren unmöglich.
Eine erste Näherung wäre, die von Eichinger et al. vorgeschlagene partialladungsbasier-
te Korrekturmethode auch auf DFT/PMM anzuwenden. Eine energieerhaltende Berech-
nung der Partialladungen [204] könnte dabei die Störung des Hamilton’schen Charakters
von DFT/PMM klein halten.

Die Verschiebung der mit L assoziierten Ladungsverteilung ρL (im Falle von Eichin-
ger et al. die Partialladung qL) kann im DFT/PMM-Verfahren auch über die dem Atom
L zugeordneten Voxel Vl erfolgen. Dabei würden, nach Berechnung der DFT-Elektro-
nendichte, alle Gitterpunkte der Voxel Vl (und damit ρL) an einer senkrecht zum Ver-
bindungsvektor rLCq zwischen L und Cq stehenden Schnittebene gespiegelt werden. Da
die Spiegelungsoperation im Allgemeinen nicht die Gittersymmetrie erhält, müssen die
Ladungen der gespiegelten Gitterpunkte anschließend auf die Punkte des regulären Git-
ters verteilt werden. Der Korrekturterm ∆Edip,ext kann dann z.B. als die Energie der
Multipolmomente von ρL im vom PMM-Fragment erzeugten elektrostatischen Poten-
tial Φ genähert werden. Die Rückwechselwirkung auf die PMM-Atome wird aus der
gespiegelten Ladungsdichte ρL berechnet. Eine Korrektur ∆Edip,int innerhalb des DFT-
Fragments kann durch explizite Berechnung der Energie der übrigen DFT-Atome im
von ρL vor bzw. nach der Spiegelung erzeugten Potential erfolgen.

Beide skizzierten Alternativen zur Eliminierung von µL sind mit erhöhtem Rechenauf-
wand verbunden. Außerdem ist die Störung der Hamilton’schen DFT/PMM-Dynamik
bzw. das eventuelle Auftreten weiterer Artefakte in beiden Fällen nur schwer abschätz-
bar. Weiterhin beruht die Zuordnung der Voxel Vl zum Atom L auf rein geometrischen
Überlegungen und ist daher nicht notwendigerweise physikalisch sinnvoll.

Die Korrektur der mit Atom L zusätzlich eingeführten van der Waals-Wechselwirkungen
mit den übrigen DFT-Atomen kann, wie die Punkte (i) und (ii), ebenfalls problemlos
aus Ref. [33] in DFT/PMM übernommen werden. Die Approximation der DFT-Wech-

159



3 Resümee und Ausblick

selwirkungen durch ein Lennard-Jones-Potential ist allerdings suboptimal. Zum Beispiel
sollte der Dispersionsanteil nur dann korrigiert werden, wenn die verwendete DFT-Me-
thode die Dispersionswechselwirkung tatsächlich erfassen kann [205], z.B. indem eine
entsprechende empirische Korrektur angewendet wird [206].

Kopplung mit einem Spektroskopischen Kraftfeld

Wie die DFT/MM-Studien der IR-Spektren von Flavin- und Retinalchromophoren in
ihrer nativen Proteinumgebung gezeigt haben, ist für eine akkurate Berechnung die-
ser Spektren eine korrekte Beschreibung der Polarisationseffekte im Protein notwen-
dig [36, 37]. Das im Rahmen der laufenden Dissertation von Christoph Wichmann wei-
terentwickelte spektroskopische polarisierbare sPMM -Kraftfeld [63, 94] für AGn kann
diese Effekte, im Gegensatz zu einem herkömmlichen MM-Proteinkraftfeld, erfassen.

Durch eine Kombination aus polarisierbaren Kraftkonstanten, einem Dipolflussmodell
und einem fluctuating-charge-Modell können die Polarisationseffekte auf die Schwin-
gungsspektren und auf die Ladungsverteilung der AGn modelliert, und eine Hamil-
ton’sche Dynamik berechnet werden. So kann eine genauere Beschreibung der Protei-
numgebung eines DFT-Fragments erfolgen. Eine solche DFT/(s)PMM-Kopplung würde
weiterhin die Verwendung eines um polarisierbare Kraftkonstanten erweiterten flexiblen
PMM-Wassermodells in Hybridsystemen erlauben.

Um das sPMM-Kraftfeld zur Beschreibung der Umgebung eines DFT-Fragments einzu-
setzen, sind noch einige, weitgehend technische Vorarbeiten nötig. Diese umfassen die
Berücksichtigung der in sPMM zusätzlich eingeführten elektrostatischen Quellen bei der
Berechnung der Wechselwirkungen mit dem DFT-Fragment, sowie die Entwicklung eines
effizienten Schemas zum schnellen Erreichen der gleichzeitigen Selbstkonsistenz zwischen
DFT-Fragment und den polarisierbaren sPMM-Freiheitsgraden. Da das sPMM-Kraftfeld
teilweise Punktladungen verwendet müsste außerdem die für die Glättung des Potentials
notwendigen Skalenparameter festgelegt werden. Auch die Potentialparameter der Len-
nard-Jones-Wechselwirkung zwischen DFT- und sPMM-Fragment sind noch unbekannt.

Anbindung alternativer DFT-Programme

Die aktuelle Implementierung der DFT/PMM-Methode verwendet das gitterbasierte
DFT-Programm CPMD [152], das ebene Wellen als Basisfunktionen zur Darstellung
der Kohn-Sham-Orbitale benutzt (siehe Abschnitt 1.2.2). Die Berechnung des Hartree-
Fock-Austauschs im B3LYP-Hybridfunktional [146, 147] ist in solchen Implementierun-
gen allerdings sehr rechenaufwändig. Die in Ref. [58] gezeigte hohe Qualität der mit
(MT/B3LYP)/PMM-MD berechneten Spektren, die eine Frequenzskalierung unnötig
macht, ist daher nur für kleine DFT-Fragmente wie dem NMA zugänglich. Für größere
Moleküle muss auf ein einfacheres Funktional wie BP zurückgegriffen werden.

Abhilfe würde hier eine Kopplung zu einer effizienteren DFT-Implementierung wie dem
QUICKSTEP-Modul [154] im Programmpaket CP2K [155] schaffen. Da die für ent-
wickelten DFT/PMM-Algorithmen keinerlei CPMD-spezifischen Annahmen enthalten,
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ist die Methode grundsätzlich mit jedem gitterbasierten DFT-Programm kompatibel.
Für eine konkrete Implementierung müssten entweder die CPMD-seitigen Codeteile der
DFT/PMM-Kopplung in den Quellcode von QUICKSTEP überführt werden. Alternativ
könnte die Potentialberechnung auf dem Gitter vollständig auf IPHIGENIE übertragen
werden, was die nötigen Änderungen am DFT-Quellcode minimieren und damit die
Anbindung weiterer gitterbasierter DFT-Programme erheblich erleichtern würde.

Vollständige Evaluierung von GP6P

Das GP6P-Wassermodell wurde speziell als Lösungsmittel für DFT-Fragmente unter
Normalbedingungen entwickelt; entsprechend wurde auch nur eine begrenzte Anzahl
von Observablen in der flüssigen Phase bestimmt. Die Tatsache, dass das berechnete
Temperatur-Dichte-Profil die experimentelle Evidenz hervorragend vorhersagt, weckt
die Vermutung, dass das GP6P-Modell auch weitere Eigenschaften von Wasser in an-
deren Phasen und/oder unter anderen thermodynamischen Bedingungen, wie z.B. die
Schmelztemperatur oder das Verhalten an Gas-Wasser-Grenzflächen mit hoher Quali-
tät beschreiben kann. Eine solche vollständige Evaluierung eines Wassermodells ist eine
Routineaufgabe [86], und könnte die Frage beantworten, in welchem Maße GP6P zur
theoretischen Untersuchung der Eigenschaften reinen Wassers geeignet ist.

Erweiterung der durch DFT/PMM beschreibbaren Molekülklassen

Für die Anwendung von DFT/PMM-MD auf andere Molekülklassen als (Poly-)Peptiden
kann die in Ref. [58] (Abschnitt 2.3) am Beispiel von AGn beschriebene Parametrisierung
der Lennard-Jones-Potentiale zwischen dem DFT- und dem PMM-Fragment als Blau-
pause dienen. Die zur Optimierung der Lennard-Jones-Parameter nötigen DFT-MD-
Referenzsimulationen kleiner, repräsentativer molekularer Strukturmotive sind mittler-
weile mit vertretbarem Rechenaufwand möglich. Die DFT/PMM-mean-field-Methode
erlaubt dann eine effiziente Optimierung von Parametern.

Vor allem die Phosphationen, deren IR-Spektren durch DFT/MM nur ungenügend be-
schrieben wurden [35], bieten sich für die Entwicklung weiterer DFT/PMM-Model-
le an. Erstens wurde die entsprechende DFT-MD-Referenzrechnung bereits durchge-
führt [164], zweitens stellt die korrekte Beschreibung der Schwingungsspektren der ge-
ladenen Phosphate offenbar ein herausforderndes Testszenario für eine Hybridmethode
dar [35]. Schließlich wäre ein solches Modell für Phosphationen ein erster Schritt zur
DFT/PMM-Beschreibung der Schwingungsspektren der Bausteine der DNA, der Nu-
kleinsäuren.

Die in Ref. [58] ausführlich dokumentierte und korrigierte Parametrisierung [55, 129] des
GP6P-Modells für Wasser kann außerdem als Leitfaden für die DFT/PMM-basierte Ent-
wicklung weiterer komplexer PMM-Lösungsmittelmodelle zur Verwendung in DFT/PMM-
Simulationen dienen.
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Anwendungen

Mit neuen DFT/PMM-Technologie zur Beschreibung von Lösungsmitteleffekten auf die
IR-Spektren von Biomolekülen und dem zur Verfügung stehenden DFT/PMM-Modell
für AGn in Wasser können nun weiterführende Untersuchungen an größeren Polypepti-
den in Angriff genommen werden.

Das DFT/PMM-SST-Verfahren [194] ermöglicht den Zugang zu Konformationsland-
schaften von Molekülen wie z.B. Alanindipeptid. Anschließend können konformationss-
pezifische IR-Spektren berechnet werden. Durch die hohe Effizienz der Methode kann
die für statistisch fundierte Aussagen bzw. GNC-Analysen [185, 186] nötige große Da-
tenbasis generiert werden. Eine entsprechende Veröffentlichung ist in Vorbereitung.

Das größte im Rahmen dieser Arbeit untersuchte DFT-Fragment, Alanindipeptid, stellt
mit 22 Atomen noch keine besondere Herausforderung für die Stabilität und Skalier-
barkeit der DFT/PMM-Methode dar. Erste Testrechnungen an einem größeren System,
einem in Wasser gelösten Tryptophan zipper -Motiv [207] (220 DFT-Atome, 14503 GP6P-
Wassermoleküle) wurden bereits erfolgreich von Gerald Mathias auf dem SuperMUC
durchgeführt. Nach einigen notwendigen programmiertechnischen Änderungen, die u.a.
der Verringerung des Speicherbedarfs dienten, waren stabile DFT/PMM-MD-Simulatio-
nen auch für dieses vergleichsweise große Hybridsystem ohne algorithmische Probleme
möglich.
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angefertigt worden ist.
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