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Summary

In order to understand in more depth and on a genome wide scale the behavior of tran-

scription factors (TFs), novel quantitative experiments with high-throughput are needed.

Recently, HiTS-FLIP (High-Throughput Sequencing-Fluorescent Ligand Interaction Pro-

filing) was invented by the Burge lab at the MIT (Nutiu et al. (2011)). Based on an

Illumina GA-IIx machine for next-generation sequencing, HiTS-FLIP allows to measure

the affinity of fluorescent labeled proteins to millions of DNA clusters at equilibrium in

an unbiased and untargeted way examining the entire sequence space by determination

of dissociation constants (Kds) for all 12-mer DNA motifs. During my PhD I helped to

improve the experimental design of this method to allow measuring the protein-DNA

binding events at equilibrium omitting any washing step by utilizing the TIRF (Total

Internal Reflection Fluorescence) based optics of the GA-IIx. In addition, I developed

the first versions of XML based controlling software that automates the measurement

procedure. Meeting the needs for processing the vast amount of data produced by each

run, I developed a sophisticated, high performance software pipeline that locates DNA

clusters, normalizes and extracts the fluorescent signals. Moreover, cluster contained

k-mer motifs are ranked and their DNA binding affinities are quantified with high accu-

racy. My approach of applying phase-correlation to estimate the relative translative offset

between the observed tile images and the template images omits resequencing and thus

allows to reuse the flow cell for several HiTS-FLIP experiments, which greatly reduces

cost and time. Instead of using information from the sequencing images like Nutiu et al.

(2011) for normalizing the cluster intensities which introduces a nucleotide specific bias,

I estimate the cluster related normalization factors directly from the protein images

which captures the non-even illumination bias more accurately and leads to an improved

correction for each tile image. My analysis of the ranking algorithm by Nutiu et al. (2011)

has revealed that it is unable to rank all measured k-mers. Discarding all the clusters

related to previously ranked k-mers has the side effect of eliminating any clusters on

which k-mers could be ranked that share submotifs with previously ranked k-mers. This

shortcoming affects even strong binding k-mers with only one mutation away from the
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top ranked k-mer. My findings show that omitting the cluster deletion step in the ranking

process overcomes this limitation and allows to rank the full spectrum of all possible

k-mers. In addition, the performance of the ranking algorithm is drastically reduced

by my insight from a quadratic to a linear run time. The experimental improvements

combined with the sophisticated processing of the data has led to a very high accuracy

of the HiTS-FLIP dissociation constants (Kds) comparable to the Kds measured by the

very sensitive HiP-FA assay (Jung et al. (2015)). However, experimentally HiTS-FLIP

is a very challenging assay. In total, eight HiTS-FLIP experiments were performed but

only one showed saturation, the others exhibited protein aggregation occurring at the

amplified DNA clusters. This biochemical issue could not be remedied. As example TF

for studying the details of HiTS-FLIP, GCN4 was chosen which is a dimeric, basic leucine

zipper TF and which acts as the master regulator of the amino acid starvation response

in Saccharomyces cerevisiae (Natarajan et al. (2001)). The fluorescent dye was mOrange.

The HiTS-FLIP Kds for the TF GCN4 were validated by the HiP-FA assay and a Pearson

correlation coefficient of R = 0.99 and a relative error of δ = 30.91% was achieved. Thus,

a unique and comprehensive data set of utmost quantitative precision was obtained that

allowed to study the complex binding behavior of GCN4 in a new way. My downstream

analyses reveal that the known 7-mer consensus motif of GCN4, which is TGACTCA, is

modulated by its 2-mer neighboring flanking regions spanning an affinity range over two

orders of magnitude from a Kd= 1.56 nM to Kd= 552.51 nM. These results suggest that

the common 9-mer PWM (Position Weight Matrix) for GCN4 is insufficient to describe

the binding behavior of GCN4. Rather, an additional left and right flanking nucleotide is

required to extend the 9-mer to an 11-mer. My analyses regarding mutations and related

∆∆G values suggest long-range interdependencies between nucleotides of the two dimeric

half-sites of GCN4. Consequently, models assuming positional independence, such as a

PWM, are insufficient to explain these interdependencies. Instead, the full spectrum of

affinity values for all k-mers of appropriate size should be measured and applied in further

analyses as proposed by Nutiu et al. (2011). Another discovery were new binding motifs

of GCN4, which can only be detected with a method like HiTS-FLIP that examines

the entire sequence space and allows for unbiased, de-novo motif discovery. All these

new motifs contain GTGT as a submotif and the data collected suggests that GCN4

binds as monomer to these new motifs. Therefore, it might be even possible to detect

different binding modes with HiTS-FLIP. My results emphasize the binding complexity

of GCN4 and demonstrate the advantage of HiTS-FLIP for investigating the complexity

of regulative processes.

x



Contents

Acknowledgments vii

Summary ix

1 Introduction 1

2 TF-DNA recognition 5

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Base readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Shape readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Interdependence of individual nucleotides . . . . . . . . . . . . . . . . . . 8

2.5 Effect of spacing and orientation . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Multiple DBDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.7 Influence of flanking nucleotides . . . . . . . . . . . . . . . . . . . . . . . . 12

2.8 Different binding modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.9 Weak binding sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.10 Off-target occurrences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Background of HiTS-FLIP 21

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 XML Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Optics of GA-IIx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Imaging of the flow cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Biology of GCN4 27

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 DNA binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

i



Contents

4.4 3D structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5 Dimer and monomer pathway . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.6 Gene regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.7 Ribonuclease activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Pipeline 39

5.1 Overview of the HiTS-FLIP pipeline . . . . . . . . . . . . . . . . . . . . . 39

5.2 Image preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 DNA cluster registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3.1 Template images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3.2 PSF of DNA cluster . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3.3 Phase correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3.5 Estimation of scaling . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3.6 Assessment of transformation parameters . . . . . . . . . . . . . . 49

5.3.7 Investigation of overlap with local maxima . . . . . . . . . . . . . 49

5.3.8 Investigation of motif occurrences . . . . . . . . . . . . . . . . . . . 52

5.3.9 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Local region search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4.1 Region labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4.2 Shifting clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5 Image normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.5.1 Possible causes for non-even illumination . . . . . . . . . . . . . . 57

5.5.2 Illustration of non-even illumination . . . . . . . . . . . . . . . . . 58

5.5.3 Methods for non-even illumination correction . . . . . . . . . . . . 63

5.5.4 Linear model of the image formation . . . . . . . . . . . . . . . . . 63

5.5.5 Estimation of the additive shading component . . . . . . . . . . . 64

5.5.5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . 67

5.5.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5.6 Estimation of the multiplicative shading component . . . . . . . . 69

5.5.6.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . 70

5.5.6.2 Assessment of different σ values . . . . . . . . . . . . . . 70

5.5.6.3 Weighting factors . . . . . . . . . . . . . . . . . . . . . . 74

ii



Contents

5.5.6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5.7 Comparison of additive and multiplicative shading correction . . . 75

5.5.8 Comparison with sequencing image based normalization . . . . . . 77

5.6 Intensity extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.6.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.6.2 Nearest neighbor intensity extraction . . . . . . . . . . . . . . . . . 81

5.6.3 Gaussian based intensity extraction . . . . . . . . . . . . . . . . . 82

5.6.4 Intensity extraction based on average of 2× 2 pixel area . . . . . . 84

5.6.5 Intensity extraction based on brightest 2× 2 pixel area . . . . . . . 84

5.6.6 Intensity extraction based on average of 3× 3 pixel area . . . . . . 86

5.6.7 Bilinear intensity extraction . . . . . . . . . . . . . . . . . . . . . . 86

5.6.8 Bicubic intensity extraction . . . . . . . . . . . . . . . . . . . . . . 88

5.6.9 Intensity extraction based on weighted area coverage . . . . . . . . 90

5.6.10 Comparison of different intensity extraction methods . . . . . . . . 92

5.7 Image outlier detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.7.1 Detection approach for air bubbles . . . . . . . . . . . . . . . . . . 94

5.7.2 Detection approach for dust particles . . . . . . . . . . . . . . . . . 95

5.8 DNA sequence filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.8.1 Per base sequence quality plot . . . . . . . . . . . . . . . . . . . . 96

5.8.2 Per sequence quality scores plot . . . . . . . . . . . . . . . . . . . . 98

5.8.3 Phred quality scores . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.8.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.9 K-mer ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.9.1 Heuristic ranking algorithm . . . . . . . . . . . . . . . . . . . . . . 100

5.9.1.1 Optimization of the heuristic ranking algorithm . . . . . 103

5.9.1.2 Execution time of the optimized heuristic ranking algorithm105

5.9.1.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . 106

5.9.1.4 Issues with discarding DNA clusters . . . . . . . . . . . . 106

5.9.1.5 Heuristic ranking algorithm without cluster discharge . . 109

5.9.1.6 Run time reduction by omitting cluster deletion . . . . . 111

5.9.1.7 Validation of ranking by Kds . . . . . . . . . . . . . . . . 111

5.9.2 Maximum likelihood based ranking . . . . . . . . . . . . . . . . . . 114

5.9.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.9.2.2 Bayesian approach to ranking k-mers . . . . . . . . . . . 114

5.9.2.3 Probabilistic model . . . . . . . . . . . . . . . . . . . . . 115

5.9.2.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . 117

iii



Contents

5.9.2.5 Run time complexity . . . . . . . . . . . . . . . . . . . . 117

5.9.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.10 Affinity quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.10.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.10.2 Binding curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.10.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6 Experiments 125

6.1 Protein expression and purification . . . . . . . . . . . . . . . . . . . . . . 125

6.2 Library design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3 Cluster generation, linearization, blocking and primer hybridization . . . . 126

6.4 DNA Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.5 GA-IIx modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.6 XML recipe modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.7 Data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.8 Listing of GCN4 HiTS-FLIP experiments . . . . . . . . . . . . . . . . . . 128

6.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.10 Comparison with experiment from 18.08.2014 . . . . . . . . . . . . . . . . 131

7 Biological results 135

7.1 Data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.2 Consistency of results from experiment 18.08.2014 . . . . . . . . . . . . . 135

7.3 Single and double mutation analysis . . . . . . . . . . . . . . . . . . . . . 139

7.4 Influence of flanking nucleotides on binding affinity . . . . . . . . . . . . . 145

7.5 Discovery of new GCN4 binding motifs . . . . . . . . . . . . . . . . . . . . 148

7.6 Literature based evidence for GTGT affinity and monomer binding . . . . 153

8 Conclusion and Outlook 157

9 Appendix 159

9.1 Details regarding the LoG filter . . . . . . . . . . . . . . . . . . . . . . . . 159

9.1.1 Padding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

9.1.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

9.2 Pixel kernel of LoG filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

9.3 Pixel mask for template cluster generation . . . . . . . . . . . . . . . . . . 166

9.4 HiP-FA Kds and HiTS-FLIP Kds . . . . . . . . . . . . . . . . . . . . . . . 167

9.5 First 50 11-mers and Kds of experiment 18.08.2014 . . . . . . . . . . . . . 168

iv



Contents

9.6 First 50 11-mers ranked at 125 nM of exp. 18.08.2014 . . . . . . . . . . . 169

9.7 HiP-FA Kds and HiTS-FLIP Kds by heuristic and ML ranking . . . . . . 170

9.8 Fits of HiTS-FLIP Kds with subtraction of global offset . . . . . . . . . . 171

9.9 Fits of HiTS-FLIP Kds with subtraction of median of cluster intensities

per concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

9.10 Summary of HiTS-FLIP methods, parameters, input and output . . . . . 173

9.11 Position Frequency Matrix for Aligned Matrix GCN4 . . . . . . . . . . . . 177

9.12 Experiment by Nutiu et al. . . . . . . . . . . . . . . . . . . . . . . . . . . 178

9.13 Experiment 03.04.2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

9.13.1 Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

9.13.2 Flow cell buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

9.13.3 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

9.13.4 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

9.14 Experiment 13.06.2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

9.14.1 Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

9.14.2 Flow cell buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

9.14.3 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

9.14.4 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

9.15 Experiment 28.03.2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

9.15.1 Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

9.15.2 Flow cell buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

9.15.3 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

9.15.4 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

9.15.4.1 Lane 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

9.15.4.2 Lane 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

9.15.4.3 Lane 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

9.16 Experiment 11.08.2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

9.16.1 Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

9.16.2 Flow cell buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

9.16.3 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

9.16.4 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

9.17 Experiment 18.08.2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

9.17.1 Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

9.17.2 Flow cell buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

9.17.3 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

9.17.4 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

v



Contents

9.17.4.1 Lane 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

9.17.4.2 Lane 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

9.17.4.3 Lane 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

9.18 Experiment 12.02.2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

9.18.1 Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

9.18.2 Flow cell buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

9.18.3 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

9.18.4 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

9.19 Experiment 06.03.2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

9.19.1 Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

9.19.2 Flow cell buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

9.19.3 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

9.19.4 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

9.20 Experiment 14.04.2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

9.20.1 Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

9.20.2 Flow cell buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

9.20.3 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

9.20.4 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Bibliography 211

vi



List of Figures

3.1 Overview of the HiTS-FLIP protocol and its different steps . . . . . . . . 22

3.2 Overview of the GA-IIx optical components for imaging the flow cell . . . 24

3.3 Total internal reflection mechanism of the GA-IIx . . . . . . . . . . . . . . 25

3.4 Flow cell with DNA clusters . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Overview of the composition of GCN4 . . . . . . . . . . . . . . . . . . . . 28

4.2 Parallel coiled-coil structure of GCN4 ZIP homodimer . . . . . . . . . . . 28

4.3 GCN4 binds to DNA with both specific and nonspecific contacts . . . . . 31

4.4 Binding modes of GCN4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 DNA binding of GCN4 in dimeric oligomerization state . . . . . . . . . . 34

4.6 Overview of the dimer and monomer pathway of GCN4 and its rate constants 36

4.7 Schematic representation of functional categories of GCN4 target genes . 38

5.1 Overview of the HiTS-FLIP processing pipeline and its components . . . 39

5.2 Unfiltered image and LoG filtered image . . . . . . . . . . . . . . . . . . . 40

5.3 Intensity profile of unfiltered image and LoG filtered image . . . . . . . . 41

5.4 The relationship between FWHM and σ . . . . . . . . . . . . . . . . . . . 43

5.5 Overview of observed and template image from one selected tile . . . . . . 44

5.6 Phase correlation of template and observed image . . . . . . . . . . . . . . 46

5.7 Image regions used for calculating the x, y scaling factors . . . . . . . . . 48

5.8 Overview of the transformation parameters . . . . . . . . . . . . . . . . . 49

5.9 Detected local maxima by Neubeck et al. and by Schmid . . . . . . . . . 50

5.10 Quantification of the cluster registration precision . . . . . . . . . . . . . . 51

5.11 Median intensities for different GCN4 motifs after cluster registration . . 52

5.12 Search space of five mapped clusters . . . . . . . . . . . . . . . . . . . . . 55

5.13 Shifting process with different iterations . . . . . . . . . . . . . . . . . . . 56

5.14 Thumbnail image of a tile showing uneven illumination . . . . . . . . . . . 58

5.15 Uneven illumination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

vii



List of Figures

5.16 Intensity profile of region background for a representative image displaying

uneven illumination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.17 Correlation of spike-in cluster intensity with local background intensity . 61

5.18 Correlation of local background intensities across protein cycles . . . . . . 62

5.19 Different window sizes and related background intensities . . . . . . . . . 65

5.20 Different number of dimmest pixels and related background intensities . . 66

5.21 Occurrence and distribution of 7-mers on a single tile . . . . . . . . . . . . 67

5.22 Different measures for assessing the normalization by local background

subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.23 Pixel size of windows at different concentrations . . . . . . . . . . . . . . 68

5.24 Different measures for assessing the normalization by division of Gaussian

filtered image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.25 Different Gaussian filter radius values at different concentrations . . . . . 72

5.26 Different measures for assessing the normalization by subtraction of local

background and division of Gaussian filtered image . . . . . . . . . . . . . 73

5.27 Intensity profile comparison of unnormalized and normalized intensities . 76

5.28 Difference of fluorescent intensity from the four nucleotides . . . . . . . . 78

5.29 Validation of sequence image based normalized Kds . . . . . . . . . . . . . 79

5.30 Nearest neighbor intensity extraction . . . . . . . . . . . . . . . . . . . . . 81

5.31 Cluster intensities with good Gaussian fit . . . . . . . . . . . . . . . . . . 83

5.32 Cluster intensities for which no Gaussian fit is possible . . . . . . . . . . . 83

5.33 Intensity extraction based on average of 2× 2 pixel area . . . . . . . . . . 84

5.34 Intensity extraction based on brightest 2× 2 pixel area . . . . . . . . . . . 85

5.35 Intensity extraction based on average of 3× 3 pixel area . . . . . . . . . . 86

5.36 Bilinear interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.37 Bicubic interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.38 Intensity extraction based on weighted area coverage . . . . . . . . . . . . 91

5.39 Dust particles on imaged tiles . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.40 Example of air bubbles covering the imaged tile area . . . . . . . . . . . . 93

5.41 Different steps in the air bubble detection process . . . . . . . . . . . . . . 94

5.42 Different steps in the dust particle detection process . . . . . . . . . . . . 95

5.43 Per base sequence quality plot for lane 2 of experiment 18.08.2014 . . . . 97

5.44 Per sequence quality scores plot for lane 2 of experiment 18.08.2014 . . . 98

5.45 Overview of the ranking procedure . . . . . . . . . . . . . . . . . . . . . . 103

5.46 Speedup of heuristic ranking algorithm from single processor to multiple

processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

viii



List of Figures

5.47 Effects of cluster deletion during ranking procedure . . . . . . . . . . . . . 107

5.48 Discarding DNA clusters during the ranking process leads to unrankable

k-mers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.49 Overlap of 11-mers occurring in the same cluster sequence . . . . . . . . . 109

5.50 Co-occurrences of 11-mers in clusters . . . . . . . . . . . . . . . . . . . . . 110

5.51 Measurement of ATGACTCA embedded in the oligo GGTATGACTCATG-

GCC by the HiP-FA assay . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.52 Validation of HiTS-FLIP Kds with HiP-FA Kds . . . . . . . . . . . . . . . 113

5.53 Speedup of the probabilistic ranking algorithm from single processor to

multiple processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.54 Comparison of Kd correlation for different ranking methods . . . . . . . . 120

5.55 Binding curves for 11-mers from experiment 18.08.2014 . . . . . . . . . . 123

5.56 Correlation of motifs ranked by intensity and by Kd . . . . . . . . . . . . 123

5.57 Intensities and increase as percentage . . . . . . . . . . . . . . . . . . . . . 124

6.1 Complete DNA cluster sequence . . . . . . . . . . . . . . . . . . . . . . . 126

6.2 Behavior of unbound GCN4 compared for different experiments . . . . . . 131

6.3 Behavior of unspecific GCN4 binding compared for different experiments . 132

6.4 Cluster density per tile compared for different experiments . . . . . . . . . 133

6.5 Template density per cluster compared for different experiments . . . . . 133

7.1 Ranking k-mers with increasing length . . . . . . . . . . . . . . . . . . . . 136

7.2 Enrichment of GCN4 dimeric half-sites among the first 100 ranked 8-mers 137

7.3 Sequence logos for GCN4 9-mers . . . . . . . . . . . . . . . . . . . . . . . 138

7.4 All single mutations of first ranked 11-mer . . . . . . . . . . . . . . . . . . 140

7.5 Single mutations of first ranked 11-mer . . . . . . . . . . . . . . . . . . . . 141

7.6 All single and double mutations of first ranked 11-mer TATGACTCATA

(TATGAGTCATA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.7 Effect of double mutations in comparison to individual single mutations . 144

7.8 Effect of quadruple mutations in inner and flanking positions of top 11-mer146

7.9 Details regarding flanking effect . . . . . . . . . . . . . . . . . . . . . . . . 147

7.10 8-mers ranked at 25 nM of experiment 18.08.2014 with antagonistic peaks 148

7.11 8-mers ranked at 125 nM of experiment 18.08.2014 with annotations . . . 149

7.12 Rank correlation between down peaks and submotif GTGT . . . . . . . . 150

7.13 Rank correlation between up peaks and submotif TGAC . . . . . . . . . . 151

7.14 Extension of submotif GTGT . . . . . . . . . . . . . . . . . . . . . . . . . 151

ix



List of Figures

7.15 Sequence logo for the submotif GTGT . . . . . . . . . . . . . . . . . . . . 152

7.16 Enrichment of GTGT among the first 100 8-mers ranked at different

concentrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.17 Enrichment of GTGT among the first 100 8-mers ranked at different

concentrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.18 Nucleotide binding preferences of Hac1 . . . . . . . . . . . . . . . . . . . . 154

7.19 GCN4 monomer binding to DNA . . . . . . . . . . . . . . . . . . . . . . . 155

9.1 LoG filter as continuous function and pixel kernel . . . . . . . . . . . . . . 159

9.2 Filtering process by mask . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

9.3 Pixel kernel of LoG filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

9.4 Pixel mask for template cluster generation . . . . . . . . . . . . . . . . . . 166

9.5 Fits for HiTS-FLIP Kds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

9.6 Fits for HiTS-FLIP Kds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

9.7 Analyses of the experiment by Nutiu et al. . . . . . . . . . . . . . . . . . . 179

9.8 Analyses of experiment 03.04.2013 lane 4 . . . . . . . . . . . . . . . . . . 181

9.9 Analyses of experiment 13.06.2013 lane 4 . . . . . . . . . . . . . . . . . . 183

9.10 Analyses of experiment 28.03.2014 lane 1 . . . . . . . . . . . . . . . . . . 186

9.11 Analyses of experiment 28.03.2014 lane 2 . . . . . . . . . . . . . . . . . . 188

9.12 Analyses of experiment 28.03.2014 lane 3 . . . . . . . . . . . . . . . . . . 190

9.13 Analyses of experiment 11.08.2014 lane 1 . . . . . . . . . . . . . . . . . . 193

9.14 Enrichment of GTGT (ACAC) for the first 200 8-mers ranked at 125 nM

of experiment 11.08.2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

9.15 C-channel signals from cycle 52 and 53 before and after dsDNA synthesis

of experiment 11.08.2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

9.16 Histogram of cluster intensity differences (cycle 52 minus cycle 53) of

experiment 11.08.2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

9.17 Four images from lane 1, tile 30 from the different channels at 125 nM of

experiment 18.08.2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

9.18 Four images from lane 1, tile 30 from the different channels at 625 nM of

experiment 18.08.2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

9.19 Analyses of experiment 18.08.2014 lane 2 . . . . . . . . . . . . . . . . . . 200

9.20 Analyses of experiment 18.08.2014 lane 3 . . . . . . . . . . . . . . . . . . 202

9.21 Analyses of experiment 12.02.2015 lane 2 . . . . . . . . . . . . . . . . . . 204

9.22 C-channel signals from cycle 31 and 32 before and after dsDNA synthesis

shown by bar plot of experiment 12.02.2015 . . . . . . . . . . . . . . . . . 205

x



Abbreviations

9.23 Histogram of cluster intensity differences (cycle 31 minus cycle 32) of

experiment 12.02.2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

9.24 Analyses of experiment 06.03.2015 lane 2 . . . . . . . . . . . . . . . . . . 207

9.25 Analyses of experiment 14.04.2015 lane 2 . . . . . . . . . . . . . . . . . . 209

xi





Abbreviations

AD . . . . . . . . . . . . . . Activation domain

BCL . . . . . . . . . . . . . Illumina base calls per cycle

BFGS . . . . . . . . . . . . Broyden-Fletcher-Goldfarb-Shannon

BSA . . . . . . . . . . . . . Bovine serum albumin

BunDLE-seq . . . . . . Binding to Designed Library, Extracting and Sequencing

bZIP . . . . . . . . . . . . . Basic Leucine Zipper Domain

Cas9 . . . . . . . . . . . . . CRISPR associated protein 9

ChIP-seq . . . . . . . . . Chromatin immunoprecipitation sequencing

CRE . . . . . . . . . . . . . Cyclic AMP response element

CRISPR . . . . . . . . . . Clustered Regularly Interspaced Short Palindromic Repeats

DBD . . . . . . . . . . . . . DNA binding domain

DBP . . . . . . . . . . . . . DNA binding profile

DFT . . . . . . . . . . . . . Discrete Fourier Transform

DNA . . . . . . . . . . . . . Deoxyribonucleic acid

DSB . . . . . . . . . . . . . Double Strand Break

dsDNA . . . . . . . . . . . Double-stranded DNA

ER . . . . . . . . . . . . . . Endoplasmic reticulum

ETS . . . . . . . . . . . . . E26 transformation-specific or E-twenty-six

Exd . . . . . . . . . . . . . . Extradenticle

xiii



Abbreviations

FA . . . . . . . . . . . . . . . Fluorescence anisotropy

FFT . . . . . . . . . . . . . Fast Fourier Transform

FP . . . . . . . . . . . . . . . Fluorescence polarization

FWHM . . . . . . . . . . . Full width half maximum

GA . . . . . . . . . . . . . . Genome Analyzer

GAAC . . . . . . . . . . . General amino acid control

HDR . . . . . . . . . . . . . Homology directed repair

HiP-FA assay . . . . . . High performance fluorescence anisotropy assay

HiTS-FLIP . . . . . . . . High-Throughput Sequencing-Fluorescent Ligand Interaction Profiling

Hox . . . . . . . . . . . . . . Homeobox

HT-SELEX . . . . . . . High throughput SELEX

iPSC . . . . . . . . . . . . . Induced pluripotent stem cell

L-BFGS-B . . . . . . . . Limited Memory Boxed BFGS

LoG . . . . . . . . . . . . . . Laplacian of Gaussian

LPS . . . . . . . . . . . . . . Lipopolysaccharide

MITOMI . . . . . . . . . Mechanically induced trapping of molecular interactions

MLE . . . . . . . . . . . . . Maximum-likelihood estimation

NGS . . . . . . . . . . . . . Next Generation Sequencing

NHEJ . . . . . . . . . . . . Non-homologous end joining

PBM . . . . . . . . . . . . . Protein Binding Microarray

PDB . . . . . . . . . . . . . Protein Data Bank

POU . . . . . . . . . . . . . Pituitary-specific Pit-1, Octamer transcription factor proteins Oct-1

and Oct-2, neural Unc-86 transcription factor

PSF . . . . . . . . . . . . . . Point spread function

xiv



PWM . . . . . . . . . . . . Position weight matrix

RGN . . . . . . . . . . . . . RNA-Guided Nucleases

RNA . . . . . . . . . . . . . Ribonucleic acid

SELEX . . . . . . . . . . . Systematic evolution of ligands by exponential enrichment

SELEX-seq . . . . . . . . Systematic evolution of ligands by exponential enrichment sequencing

svb . . . . . . . . . . . . . . Shavenbaby

TALEN . . . . . . . . . . . Transcription activator-like effector nuclease

TF . . . . . . . . . . . . . . . Transcription factor

TFBS . . . . . . . . . . . . Transcription Factor Binding Sites

TIRF . . . . . . . . . . . . Total Internal Reflection Fluorescence

UAS . . . . . . . . . . . . . Upstream activating sequences

Ubx . . . . . . . . . . . . . . Ultrabithorax

UCE . . . . . . . . . . . . . Ultraconserved elements

UPR . . . . . . . . . . . . . Unfolded protein response

UPRE . . . . . . . . . . . . Unfolded protein response element

WGS . . . . . . . . . . . . . Whole genome sequencing

ZFN . . . . . . . . . . . . . Zinc finger nuclease





1 Introduction

Gene regulation is a fundamental process in molecular biology and essential for all living

organisms since it enables cell differentiation, maintenance, division, and adaptability

to the environment. The regulation of genes, i.e. when and at what rate proteins are

expressed in a cell, occurs at a variety of different stages. The first step is termed

transcription in which a particular segment of DNA is converted into RNA by the enzyme

RNA polymerase. In this phase, transcription factors (TFs) play a crucial role and have

an important influence on cell fate through the interpretation of regulatory DNA within

the genome of an organism.

A defining feature of transcription factors is that they contain one or more DNA-binding

domains (DBDs), which attach to specific DNA sequences adjacent to the genes they

regulate. Despite intensive research, a comprehensive understanding of the underlying

mechanisms by which TFs select in vivo binding sites and alter gene expression remains

still unclear (Slattery et al. (2014)).

One key question concerning the DNA-binding specificity is how TFs can very precisely

identify their functional binding sites (typically ∼5-15 bp long) in a cellular environment at

the right location and time. A related question here is how the transcriptional behaviour

of various genes can be understood from their DNA sequence and how the bindings of

TFs to these sequences are determinants of prediction for gene expression. In order to

systematically tackle this question a full exploration of the entire sequence space is needed

which determines the binding affinity landscape of a TF, the range of affinities for every

possible sequence combination up to a certain length (Segal and Widom (2009)). This

TF specific binding affinity landscape leads to a distinct distribution of molecule binding

configurations for a particular sequence, and consequently, to a distinct transcriptional

behaviour for any given combination of DNA sequence and binding concentrations (Segal

and Widom (2009)).

The full in vitro measurement of the binding affinity landscape of a TF forms its in vitro

DNA binding profile (DBP) (Wang et al. (2011)). Stated in Wang et al. (2011) there are

several important insights related to the in vitro DBP of a TF such as follows:

� the generation of accurate DNA-binding models (such as position weight matrices,
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PWMs)

� identification of all DNA-binding sites and target genes of TFs in the whole genome

� construction of transcription regulatory networks

� biomedical applications, such as transcription therapy, which uses TFs as targets

for disease therapy (Li and Sethi (2010); Stellrecht and Chen (2011); Yeh et al.

(2013)), or as another example, designing artificial TFs as means in human gene

therapy to turn off malfunctioning, disease causing genes (Asuka et al. (2014))

Using in vivo instead of in vitro data has the limitations that the genomic regions

identified are typically hundreds of base pairs long and the derived binding specificities

might also reflect the specificities of other factors (Segal and Widom (2009)).

Therefore, studying in vitro DBPs of TFs is an essential research field with far reaching

implications for understanding basic molecular mechanisms and finding cures for diseases.

The research focus of this thesis deals with a new experimental method for the in

vitro measurement of the binding affinity landscape of a TF, called HiTS-FLIP (High-

Throughput Sequencing-Fluorescent Ligand Interaction Profiling) (Nutiu et al. (2011)),

which allows to measure binding affinities of all possible k-mers (DNA motifs of sequenced

reads) up to the length of 12 bp. So far high-throughput in vitro methods, such as

protein-binding microarrays (Bulyk et al. (1999); Mukherjee et al. (2004)) and microfluidic

platforms (Maerkl and Quake (2007)) only allowed to measure all possible ∼8-10 bp

sequences.

Utilizing next-generation sequencing (NGS) technology for measuring DNA and RNA

binding proteins to explore the entire sequence space and to determine all relevant

thermodynamic properties for each DNA motif is required to move the understanding of

gene regulation forward and elucidate cellular mechanisms and regulatory networks on

a system wide level in ultimate depth. Methods like HiTS-FLIP (Nutiu et al. (2011)),

HiTS-RAP (Tome et al. (2014)) and RNA-MaP (Buenrostro et al. (2014)) have given

already important examples how powerful the realization of such an approach is and

what novel biological insights can be reached. These experiments were carried out on

repurposed Illumina’s NGS platforms, which can be envisioned to be the basis for such

kind of studies. Besides the biochemical protocols, a crucial part in the analysis due to

the different requirements and the large data volumes being produced is a well crafted

software pipeline capable to handle all data processing needs for the arising scientific

use cases. To be of wide applicability such a software pipeline should be designed as a

general, modular set of user selectable algorithms and components as an open-source
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platform providing all processing steps from the image analysis up to the determination of

equilibrium constants. In addition, the pipeline should enable different analysis techniques

and automated tests for comparing different results leading to the most accurate biological

insights for the data at hand.

In the following sections, the biological background, main scientific questions involved,

details on the studied TF GCN4, related experimental methods, building blocks of HiTS-

FLIP, the performed experiments, the pipeline and its components, and the downstream

analyses and biological discoveries are described in depth.





2 TF-DNA recognition

2.1 Motivation

Gene regulation in vivo is a very complex and multi-layered process with numerous players

involved. This includes the nucleotide sequence, 3D structure and flexibility of TFs and

their binding sites, TF–DNA binding in the presence of cofactors, cooperative DNA-

binding of TFs, chromatin accessibility and nucleosome occupancy, indirect cooperativity

via competition with nucleosomes, pioneer TFs that bind to nucleosomal DNA, and DNA

methylation (Slattery et al. (2014)). In addition, interactions exist among all of these

factors, which might alter binding in a cell type-specific manner and in different modes

at different time points during development (Slattery et al. (2014)). Up to now, the

mechanisms by which TFs select in vivo binding sites and alter gene expression remain

unclear (Slattery et al. (2014)). There is still much to discover and learn about TF-DNA

interactions. Despite the artificial setting, in vitro experiments can greatly elucidate

various aspects how TFs bind DNA in a bottom-up approach, providing building blocks

for an improved and ever increasing understanding of the inner workings of transcriptional

gene regulation. A better understanding of TF-DNA binding requires the ability to

quantitatively model TF binding to accessible DNA as its first basic step, before additional

in vivo components can be considered.

As an example from Zhao et al. (2012), improved specificity models that are based on

in vitro binding data can be very useful for assessing how consistent in vivo location

data are with the expected binding sites. When predicted genomic binding sites are

not observed in ChIP-seq data, one can usually assume that those locations are not

accessible. But when binding is observed in locations without predicted binding sites,

or with only very low predicted affinity sites, that implies either indirect or cooperative

binding mediated through some other factor(s) that binds directly to the DNA (Gordân

et al. (2011)). Such indirect and cooperative binding events can lead to the discovery of

interacting TFs that coordinately control gene expression. But to be confident about

which ChIP-seq peaks are not due to direct binding one needs an accurate model for the

specificity of the TF.
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In the following, some of the most important research questions regarding TF-DNA

interaction mechanisms are described for which in vitro methods are valuable research

tools and thus amenable to HiTS-FLIP.

2.2 Base readout

Base readout (also called “direct readout”) is the formation of hydrogen bonds or

hydrophobic contacts with functional groups of the DNA bases, primarily in the major

groove (Seeman et al. (1976)). The preference for a given nucleotide at a specific position

is mainly determined by physical interactions between the amino acid side chains of the

TF and the accessible edges of the base pairs that are contacted. These contacts include

direct hydrogen bonds, water-mediated hydrogen bonds, and hydrophobic contacts. The

underlying question here is to what effect does the DNA sequence dictate and control

the TF binding behavior? Differently phrased, if we know a certain stretch of DNA

sequence to what extent can we accurately predict for a given TF its binding affinity

to this sequence? A prominent example for base readout is the formation of bidentate

hydrogen bonds between arginine residues and guanine bases in the major groove of DNA

(Honig and Shakked (2012)). In vitro methods such as PBM and SELEX-seq have been

applied in many research projects to determine the sequence specificities and binding

profiles of various TFs from different TF families.

In (Wei et al. (2010)) all human and mouse ETS (E26 transformation-specific or E-twenty-

six) factors were analysed which are characterized by an evolutionary conserved ETS

domain and play important roles in cell development, cell differentiation, cell proliferation,

apoptosis, tissue remodeling as well as cancer progression (Oikawa and Yamada (2003)).

ETS factor DNA-binding profiles were determined by microwell-based TF-DNA binding

specificity assays as well as PBMs. Both approaches revealed that the ETS-binding

profiles cluster into four distinct classes, and for a member of each class the specificities

were confirmed in vivo using ChIP-seq showing that enrichment of ETS class PWMs

matched well with ChIP-seq peak sequences.

Another study (Franco-Zorrilla et al. (2014)) characterized sequence specificity of 63

plant TFs representing 25 families using PBM. Analyses of co-regulated genes and

transcriptomic data from TF mutants showed the functional significance of over 80% of all

identified sequences and of at least one target sequence per TF. Strong overrepresentation

of DNA motifs determined in vitro was obtained with sequences in the promoters of

deregulated genes in mutant or overexpressing genotypes.

Finally, (Orenstein and Shamir (2014)) analysed 162 human and mouse TFs regarding
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their sequence specificity using in vitro methods HT-SELEX and PBM and good predictive

power was shown for in vivo binding applying ChIP-seq data (eight most informative

positions for DNA motifs, AUC of 0.732 and 0.719, p-value=0.18 Wilcoxon signed-rank

test).

2.3 Shape readout

Shape readout (also called “indirect readout”) is the recognition of the 3D structure

of the DNA double helix (Rohs et al. (2009a)). Since DNA shape is a function of the

nucleotide sequence, an important question is if DNA shape is a direct determinant of

protein-DNA recognition. It has long been recognized that every base pair has a unique

hydrogen-bonding signature in the major groove, but that this is not the case in the minor

groove (Rohs et al. (2009b)). Thus, the expectation has been that the recognition of

specific DNA sequences would take place primarily in the major groove by the formation

of a series of amino-acid- and base-specific hydrogen bonds (Garvie et al. (2001)).

It was shown in (Rohs et al. (2009b)) that the binding of arginine residues to narrow minor

grooves is a widely used mode for protein–DNA recognition. This readout mechanism

exploits the phenomenon that narrow minor grooves strongly enhance the negative

electrostatic potential of the DNA. Thus, the marked enrichment of arginines in narrow

regions of the DNA minor groove provides the basis for a new DNA recognition mechanism

that is used by many families of DNA-binding proteins (Rohs et al. (2009b)). The minor-

groove geometry was analysed with the software Curves44 (reference in Rohs et al.

(2009b)) using in vitro data, all 1031 crystal structures of protein–DNA complexes in

the PDB that have any amino acid contacting base atoms. According to (Rohs et al.

(2009b)) protein side chains contact the minor groove in 69% of those structures that

have at least one helical turn of DNA.

Abe et al. (2015) teased base and shape readout apart in the context of Hox-DNA binding

by mutating residues that, in a co-crystal structure, only recognize DNA shape. Hox genes

(also known as homeotic genes) contain a DNA sequence known as the homeobox and are

organized on the chromosome in the same order as their expression along the anterior-

posterior axis of the developing animal (Pearson et al. (2005)), very different from many

other genes which are scattered randomly in the genome. Hox proteins are transcription

factors that control the body plan of an embryo along the anterior-posterior (head-tail)

axis and bind to enhancers where they either activate or repress genes (Pearson et al.

(2005)). Complexes made in (Abe et al. (2015)) with these mutants lost the preference to

bind sequences with specific DNA shape features. However, introducing shape-recognizing
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residues from one Hox protein to another swapped binding specificities in vitro, studied

with SELEX-seq, and affected gene regulation in vivo analysing embryos. Therefore, Abe

et al. (2015) concluded that shape readout is a direct and independent component of

binding site selection by Hox proteins.

Zhou et al. (2015) integrated 3D DNA shape information derived from SELEX-seq into the

modeling of TF binding specificities. Four distinct shape features were applied, namely

minor groove width, propeller twist, roll, and helix twist, which had been shown to be

important for protein-DNA recognition in specific cases (Zhou et al. (2015), references

therein). Using support vector regression, quantitative models of TF binding specificity

based on PBM data were trained for 68 mammalian TFs. Their results showed that

shape-augmented PBM-trained models compared favorably to sequence-based models.

2.4 Interdependence of individual nucleotides

Currently, the most widely used mathematical representation of TF specificity is the

position weight matrix (PWM) model (Stormo (2000)). This model assumes the positions

within the binding site are independent, and the contribution at one position of the

binding site to the overall affinity does not depend on the identity of nucleotides in other

positions of the site.

According to (Siggers and Gordân (2014a)), disagreement with a PWM model may be

due to:

(i) a protein having multiple binding modes, which will require multiple PWMs, or

(ii) poor or biased parameterization of the PWM model.

PWMs can capture low-affinity binding sites but must be explicitly parameterized using

low-affinity binding data (Weirauch et al. (2013)).

Quantitative analysis of high-throughput binding data has shown that PWMs are a

good quantitative model for most TFs (Zhao et al. (2012)). In (Zhao et al. (2012)), the

results of a quantitative analysis were achieved using more than 400 TF specificity data

obtained by the universal PBM technology (Berger et al. (2006)), which are available

in the UniPROBE database (Robasky and Bulyk (2011)). Using the binding energy

estimate by maximum likelihood for PBM program, (BEEML-PBM, Zhao et al. (2012)),

to parameterize specificity models of varying complexity it was found that improvements

from incorporating interactions between positions are usually small, although there were

some significant exceptions. The interactions between neighboring bases are stronger

than interactions between non-neighboring bases as found by (Zhao et al. (2012)). This

pattern of nearest-neighbor interactions holds true for the zinc finger class, which has 89
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members including C2H2, C4, C6, and GATA zinc finger domains. It also includes the

nuclear transcription factor Hnf4a. The 25 TFs of the zipper class, including the basic

leucine zipper (bZIP) and the basic helix-loop-helix (bHLH) domains, like Yap1, HLH-26,

Myf6, Jundm2, Cbf1, GCN4, appear to have benefited the most from the inclusion of

nearest-neighbor interactions, consistent with previous information (Berger et al. (2006);

Maerkl and Quake (2007); Nutiu et al. (2011)). By contrast, none of the 24 high-mobility

group (HMG) TFs benefited substantially from including adjacent dinucleotide energy

contributions. While there are data showing nonindependence between positions for at

least some HMG proteins, those appear to be relatively minor contributions overall, as

found previously for several zinc finger proteins (Bulyk et al. (2002)). In summary, the

finding of (Zhao et al. (2012)) demonstrate that some TF families are more likely to require

interaction models than others and that GCN4 shows the pattern of nearest-neighbor

interactions.

GCN4 binds DNA as a homodimer where each monomer binds optimally to the half-site

sequence 5'-TGAC-3'(Ellenberger et al. (1992a); Sellers et al. (1990a)). Using HiTS-FLIP,

Nutiu et al. (2011) discovered that substitutions at positions T1, G2 and A3 in the GCN4

consensus 7-mer motif, T1G2A3C4T5C6A7 resulted in larger increases in Kd, i.e. greater

weakening of binding, than at the corresponding positions T1', G2'and A3'of the right

half-site. This result confirmed the asymmetry in binding to the 7-mer consensus caused

by the preference for C at the 4th position, with stronger binding observed to the left than

to the right half-site (Sellers et al. (1990b)). By examining pairwise substitutions relative

to the consensus on the inferred change in Gibbs free energy, Nutiu et al. (2011) revealed

extensive interdependence. The incremental effect on binding of a second mismatch in

the same half-site was consistently lower than the effect of the corresponding mismatch

in the opposite half-site, that is, two mismatches in the same half-site disrupt binding

less than a single mismatch in each half-site (Nutiu et al. (2011)). Nutiu et al. (2011)

suggest a model in which a substitution at one position in a half-site tends to weaken the

interaction of the associated GCN4 monomer with other positions in the same half-site,

perhaps through a subtle protein conformational change, making interactions between the

other monomer and half-site more critical. Therefore, models that assume independence,

such as the commonly used PWM model, cannot accurately capture the complex DNA

binding affinity landscape of GCN4. Instead, Nutiu et al. (2011) advocate the use of the

full spectrum of Kd values estimated by HiTS-FLIP for all k-mers of appropriate size,

e.g. 8, 9, 10, 11 or 12 bp, depending on the specific protein and depth of data.
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2.5 Effect of spacing and orientation

Combinatorial transcription factor binding is essential for cell-type-specific gene regu-

lation (Ng et al. (2014)). One question here is to what extent constrained spacing and

orientation of multiple interacting TFs are critical for regulatory element activity, another

question how different spacing and orientation variations act as additional determinants

of specificity and allow the modulation of binding behaviour of a single TF.

As described in (Siggers and Gordân (2014b)), GCN4 dimers can bind to biparte sites

with half-sites (TGAC/G) separated by variable-length spacers. For example, the two

half-sites can be bound by GCN4 overlapping or adjacent (Gordân et al. (2011); Zhu

et al. (2009)).

Jolma et al. (2013) used HT-SELEX and observed formation of dimers for a large set of

TFs, with strong orientation and spacing preferences. These preferences were applied

by Jolma et al. (2013) to further classify TF subfamilies that had identical primary

specificities. In addition, Jolma et al. (2013) showed that models incorporating adjacent

dinucleotides, dimer spacing and orientation preferences improved modeling of TF binding

to DNA and that the dimer model can be generalized to analyze large heteromeric TF-

DNA complexes. Dimer orientation and spacing preferences could be used to further

classify some factors that showed similar monomer binding specificities. For example, the

ETS class I factors ERG, ETS1, and ELK1 preferred to bind to different homodimeric

sites (Jolma et al. (2010)). Similarly, both T box factors and forkhead proteins displayed

one type of monomer specificity but seven and three distinct dimeric spacing/orientation

preferences, respectively. Next, Jolma et al. (2013) tested whether orientation and spacing

preference matrix could be used to improve prediction of sequences enriched by TBX20,

a factor that binds to a dimeric site where the same monomer is found in multiple

different orientation and spacing configurations. For this purpose, Jolma et al. (2013)

generated expected-observed plots for all possible combinations of two 4-mers with gaps

of different length between them (gapped 8-mers). A model that incorporated spacing

and orientation preferences described enriched gapped 8-mers much better (R2 = 0.67

compared to 0.44) than a simple PWM. Many TF families could be further subclassified

by Jolma et al. (2013) based on more subtle differences in specificity within the families

or on a combination of monomer specificity and spacing and orientation preferences.

For example, nuclear receptors are known to bind to dimeric sites that vary in both

specificity and spacing of the half-sites (Pardee et al. (2011)). Clear classification of

nuclear receptors to different specificity groups has, however, not been accomplished

(Jolma et al. (2013)). The systematic analysis described in (Jolma et al. (2013)) allowed
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classification of nuclear receptors to 12 classes based on a combination of half-site and

dimer orientation and spacing preferences. Similarly, although all T box proteins bound

to identical half-sites, seven different classes could be identified based on spacing and

orientation preferences (Jolma et al. (2013)). ETS class I proteins also displayed three

distinct dimer orientations and spacings. A more complex classification of factors was

necessary for bZIP proteins, which are known to vary in both specificity and spacing of

the half-sites (Badis et al. (2009); Kim and Struhl (1995)). Jolma et al. (2013) found

that many bZIP proteins bind to two sites and that the specificities form a tiled pattern,

where in many cases, two factors shared one site and also each bound to another separate

site. Such a tiled organization of TF specificity allows a complex control of target genes

based on the expression and activity of the particular bZIP factors present in a given

cell. The binding of TFs to DNA is commonly modeled based on a PWM that assumes

independence of binding of protein to individual bases. Several alternative models that

do not make this independence assumption and instead use a larger set of parameters

to describe TF-DNA binding have been developed (for example, Agius et al. (2010);

Roulet et al. (2002)). Based on their observation that adjacent bases commonly affect

each other, and that many TFs bind DNA as monomers or dimers, Jolma et al. (2013)

developed two models for TF binding that incorporate these features. The first model

was a simple replacement for a PWM that is based on a first-order Markov chain. This

model takes into account the effect of adjacent bases and models binding of factors that

bind to A or T stretches significantly better than a conventional PWM. The second

model developed by Jolma et al. (2013) takes into account the spacing and orientation

preferences of dimeric sites. This improved models for TFs that bind to DNA both as

monomers and dimers or as multiple different dimers.

2.6 Multiple DBDs

The DNA-binding domains of eukaryotic transcriptional activators play a key role in

selective promoter activation by tethering activation domains to the appropriate promoters

and by coordinating the assembly of specific sets of transcription factors on these

promoters (Herr and Cleary (1995)).

One example for proteins with multiple DBDs are POU (for Pit, Oct, UNC) proteins,

which are eukaryotic transcription factors containing a bipartite DNA binding domain

referred to as the POU domain (Herr and Cleary (1995)). The POU domain is the

conserved DNA binding domain of a family of gene regulatory proteins. It consists of a

POU-specific domain and a POU homeodomain, connected by a variable linker region.
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Oct-1 is a ubiquitously expressed POU domain transcription factor and can bind to

different DNA sites using different arrangements of its two DNA binding domains POUS

and POUH (Klemm and Pabo (1996); Verrijzer et al. (1992)).

2.7 Influence of flanking nucleotides

Eukaryotic cells often express, at the same time, TFs with highly similar DNA binding

motifs but distinct in vivo targets. Currently, it is not well understood how TFs with

seemingly identical DNA motifs achieve unique specificities in vivo. What could be

possible influences?

Siggers et al. (2012) examined how the DNA bases flanking 10-bp kB sites affect the

binding to ten different dimers from mouse and human to a wide-ranging set of 3285

potential kB site sequences. In order to determine whether PBM-determined dimer-

specific differences correlated with dimer specific binding differences in vivo, Siggers

et al. (2012) examined an NF-kB ChIP dataset in which ChIP-chip was performed on

LPS-stimulated human macrophages and a high correlation was found.

Gordân et al. (2013) used custom PBMs to analyze TF specificity for putative binding

sites in their genomic sequence context. Examining yeast TFs Cbf1 and Tye7, Gordân

et al. (2013) found that binding sites of these bHLH TFs (i.e., E-boxes) are bound

differently in vitro and in vivo, depending on their genomic context. Cbf1 and Tye7

have highly similar DNA binding specificities according to consensus sequences PWMs

from ChIP-chip data (Harbison et al. (2004)), or PWMs from universal PBM data (Zhu

et al. (2009)). Computational analyses with regression-based models by Gordân et al.

(2013) elucidated that sequence features not only in the proximal but also the distal

flanks contribute to different DNA binding specificity. Namely, the DNA shape features

in flanking regions are distinct for binding sites preferred by Cbf1 versus Tye7, and the

genomic sequences flanking the E-Box motif contribute to explaining the differences in

in vivo DNA binding between Cbf1 and Tye7 (Gordân et al. (2013)). This suggests

that nucleotides outside E-box binding sites contribute to specificity by influencing

the three-dimensional structure of DNA binding sites. Thus, the local shape of target

sites might play a widespread role in achieving regulatory specificity within TF families

(Gordân et al. (2013)).

In (Levo et al. (2015a)), a new method named BunDLE-seq (Binding to Designed Library,

Extracting and Sequencing) was developed by the authors that provided quantitative

measurements of TF binding to thousands of fully designed sequences of 200 bp in length

within a single experiment. For the yeast TFs GCN4 and GAL4, Levo et al. (2015a)
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demonstrated that sequences outside the core TF binding sites profoundly affected TF

binding, and that TF-specific models based on the sequence or DNA shape of the regions

flanking the core binding site are highly predictive of the measured differential TF binding

in vivo. These observations demonstrate the need for a more comprehensive understanding

of the various factors influencing TF binding to regulatory sequences, going beyond the

characterization of core binding sites (Levo et al. (2015a)). Notably, the selected TFs

are structurally distinct and are representatives of the two most abundant yeast TF

families (basic leucine zipper, bZIP, class and zinc cluster domain class, respectively,

Hahn and Young (2011)). The conclusion Levo et al. (2015a) arrived at was that whereas

sequences sharing the well characterized strong binding site for either GCN4 or GAL4

showed pronounced differences in binding, a simple TF-specific model accounting for

3-bp flanks successfully predicted these differences, and that DNA shape features provide

a mechanistic explanation for the effect of flanking sequences.

2.8 Different binding modes

Another phenomenon by which TFs can differentiate their DNA binding behavior is by

different binding modes.

Fordyce et al. (2012a) investigated Hac1, a S. cerevisiae bZIP TF involved in the highly

conserved unfolded protein response (UPR). In S. cerevisiae, two main proteins are

responsible for enacting the UPR: Ire1, a transmembrane kinase/endonuclease, and Hac1

(Fordyce et al. (2012a)). Unfolded proteins bind to the Ire1 domain facing the ER lumen,

triggering its oligomerization and activation of its cytoplasmic endonuclease domain.

Once activated, Ire1 cleaves Hac1 mRNA at two sites and tRNA ligase rejoins the severed

exons via an unconventional spliceosome independent mechanism (Chapman et al. (1998)).

This splicing removes an intron to produce a new transcript (denoted Hac1i mRNA; “i”

for “induced”), thereby relieving translational inhibition exerted by the intron. Following

translation of the spliced mRNA, Hac1i is translocated to the nucleus, where it regulates

a large set of UPR-responsive genes (Rüegsegger et al. (2001)). Despite the central role

played by Hac1i in activating the UPR, the rules by which Hac1i recognizes UPR target

genes remain unclear. To obtain an unbiased assessment of Hac1i binding preferences,

Fordyce et al. (2012a) used a microfluidic platform, MITOMI (mechanically induced

trapping of molecular interactions, Fordyce et al. (2010)), to measure relative binding

affinities (44G) between Hac1i and 70 bp double-stranded oligonucleotides containing

overlapping instances of all possible 8 bp combinations. In vivo studies of Hac1i are

complicated by both the very short half-life of the Hac1i isoform derived from the spliced
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mRNA and the tendency of bZIP transcription factors to homo- and heterodimerize

(Fordyce et al. (2012a)). Therefore by necessity, in vitro approaches provide a particularly

valuable tool for accurately defining binding preferences (Fordyce et al. (2012a)). In

addition, Fordyce et al. (2012a) analyzed expression of reporter genes driven by a variety

of Hac1i mutants to identify the protein residues required for target site recognition.

Fordyce et al. (2012a) discovered that Hac1i bind both long (11-13 bp), extended UPRE-

1-like motif called extended core UPRE-1 or xcUPRE-1, and compact (6-7 bp) UPRE-2

DNA target sites. The 12-bp sequence of xcUPRE-1 is 5'-GGACAGCGTGTC-3'and the

6-bp sequence of UPRE-2 is 5'-TACGTG-3'. Fordyce et al. (2012a) suggest that changes

in the conformation of Hac1, from the N-terminal region of extended homology, leads

to recognition of one site or the other. To what purpose does Hac1i recognize multiple

distinct sites? For the glucocorticoid receptor, DNA sequences can act as allosteric

ligands, inducing conformational changes to preferentially recruit specific cellular co-

factors with functional consequences for transcriptional activation (Meijsing et al. (2009)).

A similar scenario may apply to Hac1i, and perhaps to other bZIP family members,

although additional studies will be required to determine whether changes in protein

conformation within the DNA binding domain can propagate elsewhere within the protein

(Fordyce et al. (2012a)). Alternatively, dual site recognition could represent a snapshot

in evolutionary time of a transcriptional network rewiring event in progress. According

to this notion, it may have been advantageous to place an additional set of target genes

under Hac1i control, perhaps as a handoff of some other transcriptional program (Fordyce

et al. (2012a)). In this light, it is interesting to note that the Hac1i-driven transcription

program in S. cerevisiae has been split into multiple transcriptional branches in metazoans,

indicating evolutionary network plasticity (Fordyce et al. (2012a)).

2.9 Weak binding sites

TFs can specifically utilize low-affinity DNA-binding sites to regulate genes (Siggers and

Gordân (2014a)). TF binding to low-affinity DNA sites can provide a mechanism for

interpreting both spatial (Cotnoir-White et al. (2011); Struhl (1987)), and temporal

(Rowan et al. (2010)) TF gradients that often arise during development to control where

and when genes are expressed. Analysis of genome-wide binding data has also provided

evidence that low-affinity sites are under wide-spread evolutionary selection (Jaeger et al.

(2010); Tanay (2006)) and that their inclusion can greatly improve quantitative models

of TF binding and gene regulation used for predicting segmentation patterns during

early embryonic development in Drosophila (Segal et al. (2008)). Utilization of sites
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selected to be lower affinity than an optimal sequence opens the door for functionally

relevant sites to deviate strongly from the consensus sequence and may not be well

represented by a particular binding model (Siggers and Gordân (2014a)). For example,

a comprehensive analysis of DNA binding by NF-κB dimers identified numerous lower

affinity, non-traditional sites that differ significantly from the consensus sites and are not

captured by the widely used PWMs (Siggers and Gordân (2014a); Wong et al. (2011)).

According to Tanay (2006), transcription factors bind DNA stochastically and it is

therefore expected that they would be interacting with promoters at different levels of

specificity, depending on an affinity that is determined (at least partially) by the DNA

sequence. Tanay (2006) developed an algorithm that predicts DNA-binding energies from

sequences and ChIP data across a wide dynamic range of affinities and used them to reveal

widespread functionality of low-affinity transcription factor binding in S.cerevisiae. Instead

of focusing on a set of a few dozens of high-specificity hits for each TF, ChIP experiments

are analyzed quantitatively in (Tanay (2006)), using (possibly noisy) estimates on TF-

binding affinities for thousands of promoters. Applying PWMs for sequence-based

predictions of TF affinities and comparing these predictions to ChIP binding ratios Tanay

(2006) was able to test if low-specificity binding detected by ChIP provides quantitative

indication to variability in in vivo binding strengths, or is by and large a noisy indication

to biological cases of high-specificity targets. The results by (Tanay (2006)) showed that

PWM predictions and ChIP binding ratios were highly correlated, thereby suggesting

that binding of TFs to low-affinity promoters occurs abundantly in vivo, is determined

by promoter sequences, and constitutes a substantial fraction of the interaction between

TFs and DNA. One way to test whether these abundant weak TF–gene interactions

carry functional relevance is to estimate their level of evolutionary conservation. Taking

evolution into account, the predicted TF binding energies of orthologous promoters from

different yeast species were shown to be more conserved than expected by neutrality

(Tanay (2006)). Conservation analysis by (Tanay (2006)) suggested that selection due

to a single TF may affect significant parts of the S.cerevisiae genome (10%-20%), much

more than expected by purifying selection on strict binding sites. This finding was

supported by analysis of gene expression. In conditions that activate a TF, one may

associate the TF-binding affinity with a measurable change in gene expression for a large

part of the genome (10% and more). According to these results, low-affinity TF–gene

interactions are important features of genomic regulatory programs, with possible roles

in fine-tuning the transcriptional phenotype and in providing abundant evolutionary

raw material for its continuous modification. According to the results, conservation

of energy is detectable in a large number of promoters, greatly exceeding the top few
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affinity percentiles predicted to have significant binding sites. For example, Gcn4 and

Cbf1 are estimated to affect roughly 10% of the genome (Gcn4 may affect more weakly

an additional 10%). The conservation of energies predicted for other TFs may be even

broader. Mbp1 and Ume6 conservation peak at the top 5%, but remain significant on

up to half of the affinity spectrum. For several of the TFs, conservation is observed on

a significant fraction of the genome (10%–20%), reflecting widespread selection on the

binding energy of promoters lacking high-affinity binding sites. The study by (Tanay

(2006)) demonstrates that we can use ChIP experiments, so far considered to indicate

only high-affinity TF targets, to quantify weak transcriptional interactions and combine

them with promoter sequence analysis. One can therefore exploit comprehensive ChIP

experiments to outline an “analog” model for transcriptional networks, and to explore

the role of low-specificity, probabilistic TF–DNA interactions in genomic regulatory

programs. According to the evolutionary and gene expression analysis reported in (Tanay

(2006)), it is likely that many of the low-specificity transcriptional interactions in yeast

are weakly functional. According to (Tanay (2006)) it is shown that for substantial parts

of the genome, the total binding energy (and not just the existence of a binding site) is

conserved and that on average, promoters with low predicted binding affinities can still

generate gene expression. Evolutionarily, transcriptional programs in which a discrete

logic is softened by a combination of low-affinity interactions may be more flexible. Such

programs can allow changes to be gradually accumulated, therefore alleviating selective

pressure on specific loci (e.g., classical binding sites) and increasing their ability to evolve.

If binding of a TF to low-affinity promoters is functionally important, one would expect

to observe selection operating not only on individual binding sites, but also on the total

affinity of each promoter to that TF. A gene weakly regulated by a TF may be pushed

to remain so in the course of evolution, but the pressure would not be focused on a

specific locus but would be dispersed over the entire promoter, selecting for the integrated

binding energy over many possible weak loci.

Raijman et al. (2008) developed a probabilistic model for the evolution of promoter regions

in yeast, combining the effects of regulatory interactions of many different transcription

factors. The model expressed explicitly the selection forces acting on transcription factor

binding sites in the context of a dynamic evolutionary process. Raijman et al. (2008)

examined the evolutionary dynamics in Saccharomyces species promoters and revealed

relatively weak selection on most binding sites. Moreover, according to the estimates

of (Raijman et al. (2008)), strong binding sites are constraining only a fraction of the

yeast promoter sequence that is under selection. Using their new techniques, Raijman

et al. (2008) was able to express a substantial part of the current functional knowledge on
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gene regulation in evolutionary terms and evaluate observed patterns of divergence and

conservation based on this model. Specifically, Raijman et al. (2008) used their models

to study the intensity of selection on TFBSs and to estimate the amount of promoter

region under selection due to high specificity TFBSs. Given their results, it is evident

that even on very short evolutionary time scales transcriptional regulation in yeast is

highly dynamic. Taken together, it can be hypothesized that much of the functionality

of transcriptional networks is encoded in ways other than strong TFBSs, and that due

to high levels of redundancy, binding sites are under continuous remodeling (Raijman

et al. (2008), references therein). Rather than being a deterministic and sparse network,

transcriptional programs may be shaped as dense, noisy networks that are continuously

changing during evolution.

Jaeger et al. (2010) used recently published universal PBM data on the in vitro DNA

binding preferences of these proteins for all possible 8-base-pair sequences, and examined

the evolutionary conservation and enrichment within putative regulatory regions of the

binding sequences of a diverse library of 104 non-redundant mouse TFs spanning 22

different DNA-binding domain structural classes. These 8-mers occur preferentially in

putative regulatory regions of the mouse genome, including CpG islands and non-exonic

ultraconserved elements (UCEs). Jaeger et al. (2010) found that not only high affinity

binding sites, but also numerous moderate and low affinity binding sites, are under

negative selection in the mouse genome. The results of (Jaeger et al. (2010)) indicate that

many of the sequences bound by these proteins in vitro, including lower affinity DNA

sequences, are likely to be functionally important in vivo. Taken together, Jaeger et al.

(2010) provide evidence supporting that lower affinity TF binding sites, as determined

from PBMs, serve evolutionarily conserved, in vivo regulatory functions.

Segal et al. (2008) showed that in Drosophila embryonic development low affinity TF

binding sites are important in gene regulation.

Crocker et al. (2015) demonstrated that the Hox protein Ultrabithorax (Ubx) in complex

with its cofactor Extradenticle (Exd) bound specifically to clusters of very low affinity sites

in enhancers of the shavenbaby (svb) gene of Drosophila. These low affinity sites conferred

specificity for Ubx binding in vivo, but multiple clustered sites were required for robust

expression when embryos developed in variable environments. Although most individual

Ubx binding sites are not evolutionarily conserved, the overall enhancer architecture -

clusters of low affinity binding sites - is maintained and required for enhancer function.

Natural selection therefore works at the level of the enhancer, requiring a particular

density of low affinity Ubx sites to confer both specific and robust expression. The

results by (Crocker et al. (2015)) helped to explain previous difficulties with bioinformatic
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prediction of functional Hox binding sites, because low affinity sites are difficult to detect

reliably. Indeed, the low affinity sites that implement Hox regulation within svb enhancers

share little similarity with canonical Hox or Hox-Exd binding sites. Consequently, a

very large number of seemingly disparate DNA sequences can confer low affinity binding

for Hox proteins. If Hox-Exd sites are often clustered in the genome, then signals from

genome-wide ChIP-seq will reflect binding to the entire cluster and the signals associated

with individual low affinity sites may be difficult to discern from noise. Identification

of important low affinity sites will require a change in computational approaches to

analyzing genome-wide data. Currently, it is de rigueur to apply an arbitrary threshold to

genome-wide data and then to analyze only signals above this threshold. This approach

is likely to bias detection toward high affinity sites, whose functions may be distinct from

those of clusters of low affinity sites (Crocker et al. (2015)).

Afek and Lukatsky (2013) showed with an equilibrium biophysical model for protein-DNA

binding that non-consensus protein-DNA binding in yeast is statistically enhanced, on

average, around functional Reb1 motifs that are bound as compared to nonfunctional

Reb1 motifs that are unbound. The landscape of non-consensus protein-DNA binding

around functional CTCF motifs in human demonstrated a more complex behavior (Afek

and Lukatsky (2013)). In particular, human genomic regions characterized by the highest

CTCF occupancy, showed statistically reduced level of nonconsensus protein-DNA binding.

The findings by Afek and Lukatsky (2013) suggest that non-consensus protein-DNA

binding is fine-tuned around functional binding sites using a variety of design strategies.

Two quite different design strategies for non-consensus protein-DNA binding are pointed

out by (Afek and Lukatsky (2013)) which might be operational in the genome:

1) The first design strategy (positive design) enhances the level of non-consensus protein-

DNA binding in the vicinity of binding sites. Such an enhancement might guide sequence-

specific TFs toward their specific binding sites, greatly speeding up their diffusion (Berg

et al. (1981)). The existence of an optimal strength for nonspecific protein-DNA binding

has been demonstrated theoretically in the past (Slutsky and Mirny (2004)), and once

such an optimal strength is exceeded, the diffusion of TFs slows down (Slutsky and Mirny

(2004)).

2) The second design strategy (negative design) is quite the opposite: it reduces the level

of non-consensus protein-DNA binding in the vicinity of binding sites. Such strategy

might statistically reduce the competition of CTCF with other, nonspecific TFs, near

specific CTCF binding sites, thus facilitating specific binding.

Afek and Lukatsky (2013) suggested that such non-consensus binding landscape provides

a background surrounding specific DNA motifs, and possibly regulating the kinetics
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of transcription regulators in their search for such specific motifs (Afek and Lukatsky

(2013), references therein). Therefore, the predicted non-consensus protein-DNA binding

mechanism could represent yet an additional layer of transcriptional regulation operating

in vivo, which influences genome-wide protein-DNA binding preferences in an eukaryotic

cell.

2.10 Off-target occurrences

Studying protein-DNA interactions in vitro not only spurs basic research investigating

underlying mechanisms and principles of TF binding behavior but also crucial biomedical

applications. Gene therapy is based on the principle of the genetic modification of living

cells for use in treating various disorders. The final goal of gene therapy is to cure patients

who suffer from genetic disorders, including cancer, congenital and infectious diseases

(Liu and Fan (2014)). One approach is based on targeted genome editing using custom

made nucleases, such as zinc finger nucleases (ZFNs) (Urnov et al. (2010)), transcription

activator effector nucleases (TALENs) (Joung and Sander (2013)), and the clustered

regulatory interspaced short palindromic repeat Cas9 (CRISPR-Cas9) RNA-guided

nuclease system (RGNs) (Sander and Joung (2014)). These customized nucleases have

enabled efficient and targeted genome editing in a wide variety of cell types and organisms,

including human induced pluripotent stem cells (iPSCs) (Tsai and Joung (2014)). As

stated in (Tsai and Joung (2014)), DNA double-stranded breaks (DSBs) induced by

these customizable nucleases can be repaired by one of two competing pathways in the

cell: error-prone nonhomologous end-joining (NHEJ), which leads to variable length

insertion/deletion mutations (indels), or homology-directed repair (HDR), which can be

used to introduce precise alterations directed by a homologous DNA template.

There was recently a successful clinical trial regarding HIV patients that were treated

with ZFN-mediated CCR5-modified autologous CD4 T cells (Tebas et al. (2014)). For

HIV to enter host cells, CD4 antigens and chemokine receptors, such as CCR5 or CXCR4,

are required to invade macrophages and T-helper lymphocytes (Stone et al. (2013)). A 32

bp homozygous deletion between the transmembrane domains of CCR5 (the CCR5D32

mutation) results in a frameshift mutation in which affected individuals display high

resistance to HIV-1 infection (Samson et al. (1996)). Functional knockout of CCR5 in

autologous CD4 T cells of a small cohort of patients revealed that in one out of four

enrolled subjects, the viral load remained undetectable at the time of treatment (Tebas

et al. (2014)). Similarly, TALEN and CRISPR-Cas9 have been tested experimentally for

efficient disruption of CCR5 and CXCR4 (Hu et al. (2014), references therein) and taking
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them into consideration for clinical trials is anticipated. Whether or not the strategies

targeting HIV-1 entry can reach a sterile and permanent cure of AIDS remains to be

seen.

A key question here is if the engineered nuclease act at any genomic locations besides

its intended site, i.e. are there any off-targets? This is critically important because

unintended, off-target modifications in cell populations can lead to unexpected functional

consequences in both research and therapeutic contexts, where functional consequences

of even low frequency mutations can be of significant concern (Tsai and Joung (2014)).

Even though, there is active research and new studies conducted (Tsai and Joung (2014),

references therein), the full genome-wide spectrum of off-target mutations induced by

engineered nucleases remains as yet unclear. Whole-genome sequencing (WGS) with

fold-coverage tries to address this issue but suffers from two main hurdles, i.e. systematic

sequencing artifacts can make it difficult to discern nuclease-induced alterations, and

WGS is currently impractical for identifying lower frequency off-target mutations (Tsai

and Joung (2014)). A method like HiTS-FLIP which allows to examine the entire

sequence space in an unbiased way is ideally suited to explore any off-target effects across

the entire genome.
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3.1 Introduction

The Illumina Genome Analyzer builds millions of distinct clusters on a flow cell, each

consisting of several hundred to around one thousand identical DNA molecules. Clusters

are sequenced by synthesis in situ, with individual fluorescently tagged nucleotides

visualized using a charge-coupled device camera to reconstruct the DNA sequence of each

cluster (Bentley et al. (2008)).

Nutiu et al. (2011) reasoned that fluorescently tagged proteins could be added to the flow

cell and their binding to each DNA cluster visualized in the same way as fluorophore-tagged

nucleotides. Protein bound clusters could subsequently be matched to the corresponding

DNA sequences based on their position in the flow cell, enabling direct observation of

the DNA binding preferences of the fluorescently tagged protein.

3.2 Protocol

The HiTS-FLIP protocol shown in Figure 3.1 consists of the following steps:

1) Illumina-based NGS experiment, determining bases for ∼100 million clusters of genomic

or random synthetic DNA. Most imaging systems have not been designed to detect single

fluorescent events, so amplified templates are required to increase the fluorescent signals,

for which Illumina uses solid-phase amplification (Fedurco et al. (2006)).

2) Denaturation of the second DNA strand since it was build with modified, i.e. fluores-

cently labeled and 3’ blocking group attached nucleotides during DNA sequencing. The

modification itself or remaining inefficiently cleaved terminators during phasing can lead

to side-effects for the protein binding to the DNA clusters.

3) Washing step to remove denaturated nucleotides from the flow cell.

4) Resynthesis of second DNA strand with unmodified nucleotides to obtain double-

stranded DNA.

5) Adding fluorescent labeled proteins in different concentration steps to the flow cell

without any washing steps.
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6) Equilibration depending on the on-rate of the examined protein.

7) Laser excitation and imaging of the flow cell for each concentration step by the

TIRF-based optics system of the GA-IIx.

8) Registration for each concentration step of the fluorescent signals from each tiff image

onto tile-based DNA cluster reference positions in order to map intensities to the corre-

sponding DNA sequences.

9) Intensity extraction from the registered fluorescent signals.

10) Normalization of the extracted intensities.

11) Ranking of k-mers according to their intensities.

11) Fitting a sigmoidal function to the normalized intensities for each k-mer to obtain

Kds and thus a quantitative binding affinity landscape.

Figure 3.1: Overview of the HiTS-FLIP protocol and its different steps.

3.3 XML Encoding

The GA-IIx is operated by so called XML recipes that encode the biochemical steps of

the sequencing protocol as XML dialect containing different commands to control the
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hardware of the GA-IIx. These commands can be used for encoding the entire HiTS-FLIP

protocol. The following provides an example of a few XML encoded protocol steps.

XML HiTS-FLIP example

<T i l e S e l e c t i o n>

<Inco rpo ra t i on>

<Lane Index=”1”><RowRange Max=”60” Min=”1” /></Lane>

<Lane Index=”2”><RowRange Max=”60” Min=”1” /></Lane>

<Lane Index=”3”><RowRange Max=”60” Min=”1” /></Lane>

</ Inco rpo ra t i on>

<ReadPrep>

<Row Index=”5” />

<Row Index=”26” />

<Row Index=”45” />

</ReadPrep>

</ T i l e S e l e c t i o n>

<Chemistry Name=”Protein conc 625nM 2h”>

<PumpToFlowcell So lu t i on=”13” Aspirat ionRate=”50” DispenseRate=”2500” Volume=”205” />

<Wait Duration=”600000” />

<Temp Temperature=”20” />

<PumpToFlowcell So lu t i on=”13” Aspirat ionRate=”50” DispenseRate=”2500” Volume=”10” />

<Wait Duration=”600000” />

<PumpToFlowcell So lu t i on=”13” Aspirat ionRate=”50” DispenseRate=”2500” Volume=”10” />

<Wait Duration=”600000” />

<PumpToFlowcell So lu t i on=”13” Aspirat ionRate=”50” DispenseRate=”2500” Volume=”10” />

<Wait Duration=”5400000” />

<Temp Temperature=”20” />

<TempOff />

</Chemistry>

3.4 Optics of GA-IIx

The GA-IIx has two excitation lasers and two filters. shown in Figure 3.2, in order

to distinguish between four fluorescent signals (Bentley et al. (2008)). The excitation

wavelength of the red laser is 660 nm, and of the green laser is 532 nm (Bentley et al.

(2008)). Emission wavelengths are not published by Illumina. The fluorescent dyes

Illumina uses for DNA sequencing are probably related to Alexa dyes. Alexa Fluor

555 and Alexa Fluor 647 dyes provide higher confidence than Cy3 and Cy5 dyes in

determining significant differences in gene expression on microarrays (Staal et al. (2005)).

The fluorescent dye used by Nutiu et al. (2011) is mOrange, a fluorescent protein monomer

with excitation wavelength of 548 nm and emission wavelength of 562 nm (Shaner et al.

(2005)). Because dimerization and specific DNA binding involves residues situated at the
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C terminus of the protein the N-terminal fusion of the GCN4-mOrange construct should

have minimal effect on DNA binding characteristics (Hope and Struhl (1986)).

Figure 3.2: Figure adapted from (Bentley et al. (2008)). Overview of the GA-IIx optical
components for imaging the flow cell. Red and green lasers provide excitation
beams that are directed along an optical fibre and through a prism which is in
contact with the flow cell. Excitation of fluorescent nucleotides incorporated
into DNA clusters on the inner surface of the flow cell leads to a base-specific
emission that passes through an objective and a filter wheel and the signal is
collected by a CCD camera. Autofocus utilises a third laser (635 nm) that is
projected through the objective onto the flow cell (Bentley et al. (2008)).

The GA-IIx applies a TIRF based optics which creates an evanescent wave reaching only

∼100-200 nm into the flow cell (Bentley et al. (2008)). Therefore, only those proteins

which are bound to the DNA clusters on the inner surface of the flow cell, illustrated in

Figure 3.3, are excited making any washing during a HiTS-FLIP run unnecessary.
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Figure 3.3: Figure adapted from (Bentley et al. (2008)). Total internal reflection of the
incident excitation beam at the glass-buffer interface generates an evanescent
wave that excites the clusters on the surface. The fluorescence emission is
captured by a custom made microscope objective, passed through a filter
and is then projected onto a CCD. The evanescent wave excitation technique
maximises the sensitivity of signal detection while minimising background
noise (Bentley et al. (2008)).

3.5 Imaging of the flow cell

In each cycle, the flow cell is imaged in a series of non-overlapping regions. The flow

cell is physically divided into eight separate lanes, each lane is virtually divided into two

columns, and each column is further virtually divided into 60 tiles (Bentley et al. (2008)).

A tile is the area that gets imaged during a DNA sequencing or HiTS-FLIP run. An

illustration is provided by Figure 3.4.

The CCD camera is stationary and the flow cell is moved under the camera in order to

image each tile in each cycle. Four images are taken per tile, one for each base. Each

GA-IIx image is a 1888 x 2048 pixel 16 bit gray-scale TIFF (though only 12 bits contain

data). The tile size is 0.5274 mm2, the tile is roughly square which gives an approximate

width and height of 0.7262 mm (personal communication with the Illumina tech support,

March 2014), each pixel covers ca. 0.14 µm2 and on average ca. 3× 3 pixels comprise one

cluster object. The time for imaging a single tile is ∼ 2.7 sec (personal communication

with the Illumina tech support, March 2014).

Because of the finite accuracy of the movements of the motion stage, images taken at

different sequencing cycles have random translational offsets with respect to each other

(Bentley et al. (2008)). Furthermore, images taken in different frequency channels have
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Figure 3.4: Figure adapted from (Whiteford et al. (2009)). It shows the Illumina GA-IIx
flow cell with its eight lanes and a zoom-in on one tile and its DNA clusters.

different optical paths and wavelengths and experience further, albeit smaller, translations

and scale transformations (Bentley et al. (2008)).

In order to correct for the image shifts and scalings, the cluster positions that were

extracted from the four images taken in the first five cycles are super-imposed to construct

a “reference image” for each tile containing all detected clusters. Transformations of the

image coordinates to later cycles are then obtained from a cross-correlation of the taken

images in later cycles to the reference images.
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4.1 Introduction

The eukaryotic transcriptional activator protein GCN4 is a transcription factor in

S.cerevisiae and belongs to the bZIP family of DNA-binding proteins, which has more

than 50 known members from yeast, mammalian and plant cells (Krylov (2001)). The

name arose because leucines occur every seven amino acids in the dimerization domain

and are critical for dimerization and DNA binding (Krylov (2001)). GCN4 binds specifi-

cally to HIS3 promoters of yeast amino acid biosynthetic genes, which code for enzymes

required to synthesize all 20 major amino acids (Hope and Struhl (1987)). In general,

transcription factors from the bZIP family recognize promoter and enhancer regions of

transcribed genes and, together with other protein factors, contribute to the efficiency by

which RNA polymerase binds and initiates transcription.

4.2 Composition

In total, GCN4 comprises 281 amino acids and is structured into two transcriptional

activation domains (ADs), the highly charged basic motif, which constitutes the DNA

binding domain, and the leucine-zipper as the dimerization domain. The leucine zipper is

located towards the C-terminus and its helical extensions that make up the basic region

towards the N-terminus (Krylov (2001)).

The two transcriptional activation domains (residues 1–100 and 101–134) are unrelated

in sequence apart from their acidic character (Brzovic et al. (2011)). These tandem acidic

ADs act in conjunction with the coactivators Mediator, SAGA, and SWI/SNF (Brzovic

et al. (2011), references therein).

Figure 4.1 provides an overview of the composition of GCN4 and Figure 4.2 shows the

parallel coiled-coil structure of GCN4 ZIP homodimer.
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Figure 4.1: Overview of the composition of GCN4. The positions of the two ADs, the
basic region and the leucine zipper are shown.

Figure 4.2: Figure adapted from (Hakoshima (2005)). Parallel coiled-coil structure of
GCN4 ZIP homodimer (PDB accession code 1gd2). The main chains of
the two peptide chains are represented as ribbons in gray. The side chains
participating in the dimer association are represented as stick models with
carbon atoms in brown, nitrogen atoms in blue and oxygen atoms in red. The
positions of the heptad repeat are labeled a–g. The d-positioned leucines are
boxed and highlighted in green with underline. The a-positioned residues are
highlighted in blue.

4.3 DNA binding

GCN4 forms a homodimeric complex with each monomer recognizing half of a symmetric

or nearly symmetric DNA site (Hollenbeck et al. (2002)). GCN4 binds to two optimal

targets, i.e. asymmetric pseudo-palindrome AP-1 9-mer site 5’-ATGACTCAT-3’ and

the symmetric palindrome ATF/CREB 10-mer site 5’-ATGACGTCAT-3’, which has

one base pair inserted in the middle of the recognition site (Hill et al. (1986)). The

recognition site, ATGA(C/G)TCAT, is inherently asymmetric because it contains an

odd number of base pairs and because mutation of the central C-G base pair strongly

reduces specific DNA binding (Sellers et al. (1990b)).

From this asymmetry, (Sellers et al. (1990b)) suggested that GCN4 interacts with

nonequivalent and possibly overlapping half-sites, ATGAC and ATGAG, that have
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different affinities. In vitro, GCN4 bound efficiently to the sequence ATGACGTCAT,

whereas it failed to bind to ATGAGCTCAT or ATGATCAT (Sellers et al. (1990b)). The

authors of (Sellers et al. (1990b)) concluded that:

1) GCN4 specifically recognizes the central base pair,

2) The optimal half-site for GCN4 binding is ATGAC, not ATGAG, and

3) GCN4 is a surprisingly flexible protein that can accommodate the insertion of a single

base pair in the center of its compact binding site.

The DNA binding domain of GCN4 is flexible and partially disordered in the absence

of DNA targets (Wobbe et al. (1990)), however, the entire bZIP domain becomes fully

helical when bound to DNA (Ellenberger et al. (1992b); König and Richmond (1993)).

Each monomer of the GCN4 fragment forms a smoothly curved, continous alpha helix

(Brzovic et al. (2011)). The leucine zipper region of the monomers pack into a coiled coil,

essentially identical to the isolated leucine zipper (Brzovic et al. (2011)). The two alpha

helices diverge from the dimer axis in a segment comprising the junction between the

leucine zipper and the basic regions (Brzovic et al. (2011)). This fork creates a smooth

bend in each alpha helix which displaces the basic regions away from the dimer interface

so that they can pass through the major groove of DNA, with one alpha helix on each

side of the DNA.

The flexibility of the bZIP motif is central to its binding to DNA (Harbury et al. (1993)).

The GCN4 bZIP domain, like that of other bZIP proteins, is unfolded in the absence

of DNA and becomes structured only on binding to its target (Harbury et al. (1993),

references therein). The crystal structure of the bZIP-DNA complex provides clues about

the functions of this flexibility. Flexibility is required to dock and to dissociate the protein

and DNA. The protein encloses the binding site, forming a mutually complementary

interface (Ellenberger et al. (1992b)).

The ability of dimers to discriminate between related DNA sequences is independent of

the zipper region and is specified by amino acids both in the basic region and in the

linker region immediately N-terminal to the beginning of the leucine zipper (Agre et al.

(1989); Metallo and Schepartz (1994)).

In the absence of DNA, the DNA-binding region is not structured, but upon DNA binding,

it becomes alpha helical, lying in the major groove of the DNA (Krylov (2001)). Each

helical extension of the leucine zipper can bind up to 5 base pairs in a sequence-specific

manner and thus, the dimer can bind up to 10 base pairs without crossing the DNA

backbone (Krylov (2001)). For the bZIP dimer to bind DNA, the leucine zipper has

to interact in parallel and in heptad register to place both basic regions in the major

groove Krylov (2001). One structural feature of the leucine zipper that accomplishes
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this heptad register is a nearly invariant asparagine in the position of the leucine zipper

of bZIP proteins (Krylov (2001)). Contacts with the DNA are mediated by residues

between positions 234 and 249, and contacts to the bases are made by only five residues:

Asn235, Ala238, Ala239, Ser242 and Arg243 (Harbury et al. (1993)). The core of the

DNA-binding interface contains Asn235, which forms hydrogen bonds to bases C2 and T3

in each DNA half-site (Ellenberger et al. (1992b)). This key role for Asn235 is consistent

with its absolute conservation in bZIP proteins that recognize the AP-1 sequence. Ala239,

Ala240 and Ser242 make van der Waals contact with bases T1 and T3, and solvent is

excluded from the binding site by the side chains of residues 240-243. Lys231 makes

a water-mediated contact with base A4 in one half-site, perhaps accounting for the

preference for purines at this position in the binding site (Ellenberger et al. (1992b)).

Arg243 plays the special role of adapting the symmetric protein to the asymmetric

binding site. One Arg243 side chain ‘reads out’ the G base in the central base pair, and

the other contacts phosphates of C0 and A1 on the opposite DNA strand.

McHarris and Barr (2014) performed all-atom molecular dynamics simulations of the

full-length GCN4 protein as well as three truncated variants and observed consistent

sequence-specific protein-DNA contacts across all of their simulations, confirming the

critical role of Asn235, Ala239, and Arg243 as identified by mutation experiments (Suckow

et al. (1993)). Overall, the GCN4 bZIP-DNA crystal structures show that only four

highly conserved amino acids in each basic region of the monomer make direct contacts to

bases in the DNA major groove: Asn235, Ala238, Ala239, and Arg243, which highlighted

by the Figure 4.3.
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Figure 4.3: Figure adapted from (Alberts et al. (2007)). GCN4 binds to DNA with both
specific and nonspecific contacts. 4 amino acid side chains form sequence-
specific contacts. Asn235 is at the center of the interaction area and strictly
conserved in all bZIP family members.

Binding of bZIP proteins to DNA results in dynamic effects on both DNA and protein

structure (Lee (1992)). The helical transition that occurs in the basic region upon DNA

binding might result in changes in overall protein conformation, which could influence

interaction with other transcriptional components (Lee (1992)).

Several lines of evidence suggest that protein-DNA recognition involves non-identical

contacts between GCN4 monomers and half-sites in the target DNA (Hope and Struhl

(1987)).

1) First, neither the native HIS3 site nor any of the presumptive regulatory sequences in

14 other promoters activated by GCN4 are perfectly symmetric (Hill et al. (1986)).

2) Second, some symmetrical changes of the HIS3 regulatory site do not have equivalent

effects on DNA binding affinity or transcriptional activation (Hill et al. (1986)).

3) Third, GCN4 binding is reduced significantly when the central C of the HIS3 site is

changed to any other base including G, its symmetric counterpart (Hill et al. (1986)).

This suggests that the central base pair is part of a half-site recognized by a GCN4

monomer, and given the odd number of base pairs in the palindrome, it follows that

the protein-DNA interactions at the half-sites cannot possibly be identical, even for the

optimal sequence. These considerations also suggest that the half-sites overlap at the
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central base pair, and the overlap might conceivably be more extensive.

Hollenbeck and Oakley (2000) have found that the bZIP protein GCN4 can also bind with

high affinity to DNA sites containing only a single GCN4 consensus half-site. Quantitative

DNA binding and affinity cleaving studies support a model in which GCN4 binds as a

dimer, with one monomer making specific contacts to the consensus half-site and the other

monomer forming nonspecific contacts that are nonetheless important for binding affinity

(Hollenbeck and Oakley (2000)). Given that one of the two half-sites in the consensus

AP-1 site appears to be more important for GCN4 binding, multiple substitutions in

the second half-site may have only a modest effect on complex stability (Hollenbeck and

Oakley (2000)).

Half-site recognition by bZIP proteins may be biologically significant. Several GCN4- and

AP-1-responsive promoters have binding sites that contain only one-half of the consensus

core sequence (Hollenbeck and Oakley (2000), references therein). These results suggest

that half-site binding may play a role in the regulation of gene activation in vivo.

Presumably, one monomer of the GCN4 dimer contacts the left-half site and the central

base pair, whereas the monomer interacting with the right half-site does not contact

the central position (Sellers et al. (1990b)). This view of the GCN4-DNA interaction

accounts for why alterations in the right half-site are tolerated better than symmetrically

equivalent alterations in the left half-site (Oliphant et al. (1989)).

The crystal structure of GCN4 complexed with its target AP-1 site (RCSB Protein Data

Bank, PDB code: 1YSA), which was solved by (Ellenberger et al. (1992b)), reveals that

while Arg243 of one GCN4 monomer specifically contacts the central guanine nucleotide,

Arg243 from the other monomer forms non-specific hydrogen bonds with the DNA

backbone (Selvaraj et al. (2002)). This observation, along with mutational and DNA

binding studies, indicates GCN4–DNA binding to be inherently asymmetric, and suggests

that the specific recognition of a single half-site by one GCN4 monomer may be more

important than recognition by the other.

The importance of the central C-G base pair and the asymmetry of the GCN4 recognition

sequence strongly support the model that GCN4 dimers bind to nonequivalent half-sites

(Oliphant et al. (1989)).

It seems likely that asymmetrical contacts made with the central C-G base pair cause the

GCN4 dimer to be shifted from the center of the site. In the 7-bp core, GCN4 probably

interacts more avidly with the left half-site (positions -1, -2, and -3) than with the right

half-site (positions +1, +2, and +3), because deviations generally occur to the right of

the central base (Oliphant et al. (1989)).

In contrast to the relative importance of the left side of the core, flanking positions
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in the right half-site (positions +4, +5, and +6) contribute more to GCN4 binding

than equivalent positions in the left half-site (positions -4, -5, and -6) do, perhaps to

compensate for the relative weakness of the right side of the core (Oliphant et al. (1989)).

According to Chan et al. (2007), there are three different binding modes of GCN4.

Dimeric binding of basic regions on DNA full site, dimeric binding of basic regions on

DNA half site and monomeric binding of basic regions on DNA half site, as shown in

Figure 4.4.

Figure 4.4: Figure adapted from (Chan et al. (2007)). (A) Dimeric binding of basic
regions on DNA full site. Both basic regions of the dimer bind to target
DNA half sites selectively. (B) Dimeric binding of basic regions on DNA
half site. Only one basic region of the dimer binds selectively to the target
DNA half site; the other basic region interacts nonspecifically with DNA. (C)
Monomeric binding of basic regions on DNA half site. No protein dimerization
occurs.
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4.4 3D structure

As shown by Figure 4.5 GCN4 forms a “chopstick-like” homodimer of alpha helices at

the DNA-binding interface. In the crystal structure of bZIP-DNA complexes, the dimeric

protein binds to a DNA site with dyad symmetry, each monomer of the bZIP factor

recognizing one half-site.

Figure 4.5: DNA binding of GCN4 in dimeric oligomerization state as described in
Ellenberger et al. (1992a). (a) The bZIP dimer binds in the major groove
of the DNA. Each bZIP protomer is a smoothly curved, continuous α-helix.
The carboxy-terminal residues of the monomers pack together as a coiled
coil, which gradually diverges to allow the basic region residues to follow the
major groove of either DNA half site. This divergence of the bZIP monomers
corresponds to an unwinding of the coiled-coil super helix, with a slight
righthanded rotation of basic region residues about the α-helical axis of each
chain and a lateral displacement of each monomer along the helical axis of
the DNA. The DNA in the complex is straight, and its conformation is in the
B form across the region contacted by the protein. (b) View down the DNA
axis. The basic region residues amino-terminal to the point of DNA contact
are in a straight, α-helical conformation. The amino-terminal residues of the
basic region do not wrap around the back side of the binding site.
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4.5 Dimer and monomer pathway

Dimerization of bZIP transcription factor GCN4 is linked to the folding of its C-terminal

leucine zipper domain. However, monomeric GCN4, lacking a folded leucine zipper,

also recognizes the DNA site with dimerization taking place on the DNA (Cranz et al.

(2004)). In Cranz et al. (2004) the kinetics of DNA recognition by unfolded monomeric

and folded dimeric derivatives of GCN4 were reported using a 19 bp dsDNA containing

a palindromic CRE site (5’-ATGACGTCAT-3’). The rate of DNA binding of both

monomeric and dimeric GCN4 has a bimolecular rate constant of 3-5 × 108 M−1 s−1,

which is near the diffusion limit (109 M−1 s−1 according to Alberty and Hammes (1958);

Eigen and Hammes (2006)). Because the rate of dimerization of GCN4 is slower (1.7 ×
107 M−1 s−1) than the rate of DNA association, the formation of the dimeric GCN4-DNA

complex through consecutive binding of two monomers (monomer pathway) is faster

when starting from free monomers. Figure 4.6 provides an illustration of the dimeric and

monomeric pathway with the related rate constants. The results presented by (Cranz et al.

(2004)) support facilitated and rapid target recognition by the monomeric transcription

factor. However, DNA binding of preformed folded dimeric GCN4 is as rapid as complex

formation through the monomer pathway. Therefore, the monomer and dimer pathways

are kinetically equivalent if monomeric and dimeric GCN4 are at equilibrium. Hence, the

dimer pathway may also have a role under in vivo conditions. However, the observed

rapid rates of DNA binding could not be accounted for if formation of a dimeric bZIP

peptide had to precede DNA binding (Cranz et al. (2004), references therein). Thus, it

has been proposed that monomeric transcription factors can recognize DNA and that

these monomers dimerize while bound to DNA (Kim and Little (1992)). This has been

confirmed by experiment for several dimeric transcription factors (Cranz et al. (2004),

references therein). A monomer binding pathway may increase specificity and prevent

the transcription factor from becoming trapped at nonspecific DNA sites (Cranz et al.

(2004), references therein).

The results of Cranz et al. (2004) demonstrate that in the isolated system they studied,

which is composed of a 19-mer dsDNA target and the 62-residue C-terminal DNA-binding

domain of GCN4, both the monomeric and the dimeric transcription factor recognize

the palindromic CRE target site at the same rapid rate. The association rate of the

monomer is virtually the same as that of the dimer, 5 × 108 M−1 s−1 (Cranz et al.

(2004)), however the monomer pathway is more rapid than the dimer pathway when

starting from two monomeric GCN4 proteins and no dimer, but not when monomeric

and dimeric GCN4 are at equilibrium. In a cellular environment, an equilibrium mixture
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of monomeric and dimeric transcription factors may be competing for DNA sites (Cranz

et al. (2004)). Both monomeric and dimeric GCN4 can bind to DNA at a very rapid rate

and, therefore, the monomer-dimer equilibrium of the free bZIP factor does not affect

the overall rate of DNA recognition (Berger et al. (1998)). The monomer and dimer

pathways are thermodynamically equivalent and preference for the monomer pathway is

kinetic (Berger et al. (1998)). When the bZIP factor slides along the DNA, non-specific

binding should be weak. Because binding strength correlates with the number of possible

interactions between peptide and DNA (von Hippel and Berg (1989)), the monomeric

basic region may slide along the DNA more easily than the dimer (Berger et al. (1998)).

Unspecific DNA binding of the dimer could also be stronger because of more nonspecific

electrostatic interactions (Cranz et al. (2004)). Less steric hindrance may also contribute

to a faster diffusion rate of the monomer (Berger et al. (1998)).

Finally, accessory proteins influence the strength of the transcription factor-DNA complex.

The rates of target finding and DNA binding through a monomer or dimer pathway could

differ, depending on whether such accessory proteins bind to the monomeric or dimeric

transcription factor, or both (Cranz et al. (2004)).

Figure 4.6: Overview of the dimer and monomer pathway of GCN4 and its rate constants.
Figure based on (Cranz et al. (2004); Yang et al. (2007)), table adapted from
(Yang et al. (2007)). (a) Dimer and monomer pathway. (b) Rate constants
involved in the dimer and monomer pathway.
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4.6 Gene regulation

It has been known for many years that GCN4 stimulates the transcription of more than

30 amino acid biosynthetic genes, representing 12 different pathways, in response to

starvation for any of several amino acids (Hinnebusch and Natarajan (2002)). This

regulatory response is known as general amino acid control (GAAC) (Hinnebusch and

Natarajan (2002), references therein). Figure 4.7 shows the schematic representation

of functional categories of GCN4 target genes. In two publications (Jia et al. (2000);

Natarajan et al. (2001)) in which cDNA microarrays were used to conduct a genome-wide

transcriptional profiling analysis of gene expression it was shown that GCN4 induces

(directly or indirectly) a much larger set of genes, encompassing 10% or more of the yeast

genome. Hence, GAAC is much broader with regard to the range of stimuli that elicit

the response and the ensemble of genes that are transcriptionally induced (Hinnebusch

and Natarajan (2002)). The broad transcriptional response controlled by GCN4 suggests

that GCN4 acts as a master regulator of gene expression.

Mascarenhas et al. (2008) showed that GCN4 is required for the response to peroxide

stress in S.cerevisiae. Hydrogen peroxide stress damages many intracellular targets and

affects diverse cellular processes. The response to oxidative stress requires extensive

reprogramming of transcription and translation. Translational control of GCN4 expression

and transcriptional control of GCN4 target genes are key components of this adaptive

response (Mascarenhas et al. (2008)).

One important cofactor is GAL11 which has three conserved GCN4-binding domains that

bind GCN4 with micromolar affinity (Brzovic et al. (2011), references therein). These

multiple, weak GCN4-GAL11 interactions additively contribute to overall transcription

activation and illustrate an important principal of GAL11 recruitment by GCN4: GCN4

binds GAL11 not by a single high-affinity and high-specificity interaction but rather by

multiple low-affinity interactions (Brzovic et al. (2011)).
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Figure 4.7: Figure adapted from (Hinnebusch and Natarajan (2002)). Schematic rep-
resentation of functional categories of GCN4 target genes. When GCN4 is
induced under conditions of histidine starvation, it elicits the transcriptional
activation of at least 539 genes, designated GCN4 targets (shown above GCN4
in the activation group).

4.7 Ribonuclease activity

Nikolaev et al. (2010) showed in vitro that c-Jun and GCN4 possessed weak but distinct

ribonuclease activity and could likely catalyze degradation of RNA in vivo. In a follow-up

study (Nikolaev (2011)) delineated structural details of RNA binding by the GCN4 leucine

zipper motif by solution NMR experiments and elucidated that only the dimeric (coiled

coil) leucine zipper conformation is capable of binding RNA. The authors hypothesized

that catalytic activity of bZIP proteins in vivo will primarily be associated with the

DNA-bound form of the dimeric TFs. While in other cellular contexts bZIP motifs may

have little or no activity due to the prevalence of the monomer form.
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5.1 Overview of the HiTS-FLIP pipeline

Figure 5.1 shows the main processing steps of the HiTS-FLIP pipeline. The Appendix

section 9.10 provides a summary of the parameters, input and output.

Figure 5.1: Overview of the HiTS-FLIP pipeline and its components.
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5.2 Image preprocessing

Since the raw data produced by a HiTS-FLIP experiment are 16 bit tif images, the first

step in the image processing part of the pipeline is to enhance the bright spots in the

images which denote the DNA clusters bound with fluorescently tagged proteins for

registration with the template coordinates. This is achieved by convoluting the image

with a Laplacian of Gaussian (LoG) filter which combines a Gaussian low-pass filter

reducing noise and a Laplacian operator for emphasizing edges and thus better separation

of the DNA clusters (Parker (2010)). The details regarding the underlying theory and

the implementation are explained in Appendix section 9.1.

5.2.1 Results

In the HiTS-FLIP pipeline a LoG filter with the parameter σ = 0.7644 (using FWHM= 1.8

pixels) and 5×5 pixel kernel (shown in Appendix section 9.2) was applied. The processing

of the protein images by the LoG filter was only applied for the cluster registration step,

subsequent operations in the pipeline are carried out on the unfiltered protein images.

The following two figures exemplify the filtering result with respect to the tif image of

tile 6 of lane 2 at concentration 125 nM (cycle 96) from experiment 18.08.2014.

Figure 5.2: Unfiltered image and LoG filtered image. (a) shows the unfiltered image and
(b) the image after filtering with the LoG filter (σ = 0.7644, kernel: 5 × 5
pixel, shown in Appendix section 9.2).
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Figure 5.3: Intensity profile of unfiltered image and LoG filtered image. The intensity
profile of the centered 100× 100 pixel subimage at y = 1052 pixel is shown for
(a) the unfiltered and (b) the LoG filtered image (σ = 0.7644, kernel: 5× 5
pixel, shown in Appendix section 9.2). The better separation of the intensity
peaks (denoting the DNA clusters) is clearly visible.
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5.3 DNA cluster registration

The flow cell is mounted on a sledge which is mechanically moved during the imaging

process. The CCD camera of the GA-IIx is stationary (personal communication with the

Illumina tech support, January 2014). During the process of moving the flow cell, there

is an x, y offset for each tile. Therefore, clusters are shifted across imaging cycles and

have to be aligned so that the observed intensities can be related to the correct DNA

sequences.

5.3.1 Template images

As a reference onto which all shifted clusters are aligned x, y coordinates are used that

represent cluster positions without any distortion by translation or other transformations

per tile. Images containing these reference coordinates are called templates and the

process of aligning shifted images to these templates is called registration. The cluster

positions of the template images are created at the beginning of the NGS sequencing

by a spot finding procedure in the Illumina RTA pipeline as described in (Inc. (2011c))

which results in x, y coordinates for each single tile stored in the pos text files and .locs

files or in compressed form as .clocs files.

In order to register an observed image to its related template image, the template cluster

positions are used to create an artificial image which is then correlated with the observed

image. In the following sections, the theoretical framework underlying the implementation

in Illumina’s OLB (Off-line Basecaller) pipeline version 1.9.4 (Inc. (2011a)), which has

been adapted here for the HiTS-FLIP pipeline, is explained.

5.3.2 PSF of DNA cluster

Each reference cluster position in the pos text file is convolved with a point spread

function (PSF). The PSF describes the response of an imaging system to a point source

(Shaw and Rawlins (1991)), i.e. the fluorescent signal of a DNA cluster in this case,

and is approximated by the 2d Gaussian function shown in equation 5.1. An isotropic

Gaussian is a reasonable model of a circularly symmetric blob as demonstrated by (Zhang

et al. (2007)). A 5× 5 mask of discrete pixel values (shown in 9.4) was used to represent

equation 5.1.
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PSFcluster = A× exp

(
−x

2 + y2

2σ2

)
(5.1)

A: amplitude of Gaussian (set to 1.0 here).

σ: bandwidth of the filter kernel.

The FWHM (full width at half maximum) of a DNA cluster denotes the spread of

the PSF of a DNA cluster which is estimated to be 1.8 pixel. Figure 5.4 illustrates the

connection between FWHM, PSF and σ.

Figure 5.4: The relationship between FWHM and σ is shown schematically. Adapted
from URL: https://wiki.uio.no/mn/safe/nukwik/index.php/KJM-FYS_
5920_Lab_Exercise_2_-_Student_Report

If the filter is centered at the origin, the mean is 0 and the FWHM is the distance between

the −xw and the +xw that produces the half of the peak. For the normal distribution,

the mean is the same as the mode (i.e. peak) and xw needs to be found that will result

in:

f(xw) =
1

2
f(xmax) =

1

2
f(µ) (5.2)

exp

(
− x

2
w

2σ2

)
=

1

2
exp

(
−(µ− µ)2

2σ2

)
(5.3)

− x
2
w

2σ2
= − ln(2) (5.4)

x2w = 2σ2 ln(2) (5.5)

https://wiki.uio.no/mn/safe/nukwik/index.php/KJM-FYS_5920_Lab_Exercise_2_-_Student_Report
https://wiki.uio.no/mn/safe/nukwik/index.php/KJM-FYS_5920_Lab_Exercise_2_-_Student_Report
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xw = ±
√

2 ln(2)σ (5.6)

FWHM == +xw − (−xw) = 2xw = 2
√

2 ln(2)σ ≈ 2.3548σ (5.7)

Therefore, the value of σ used for generating the template clusters is

σ =
1.8

2.3548
≈ 0.7644

Figure 5.5 gives an example of an observed image and the related template image from

one selected tile.

Figure 5.5: Overview of observed and template image from one selected tile. On the left
hand side a flow cell is displayed, where one lane is magnified and one tile
is zoomed-in. Magnified subareas are shown for the observed and related
template images which need to be correlated. Template images are created
as described in section 5.3.2.
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5.3.3 Phase correlation

How can the template and observed images be aligned without any landmarks? Due to the

phase correlation method (Kuglin and Hines (1975)) the translational x, y offsets can be

estimated. Kuglin and Hines (1975) observed that information about the displacement of

one image with respect to another is included in the phase component of the cross-power

spectrum, i.e. the Fourier transform of the cross-correlation function of the images that

measures the similarity as a function of the lag of one image relative to the other.

According to the Fourier shift property the following equations hold (Goshtasby (2012)):

F{g(t− a)} =

∞∫
−∞

g(t− a) exp (−2πift) dt, a ∈ R (5.8)

=

∞∫
−∞

g(u) exp (−2πif(u+ a)) du, u = t− a (5.9)

= exp (−2πifa)

∞∫
−∞

g(u) exp (−2πifu) du (5.10)

= exp (−2πifa)G(f) (5.11)

The original function g(t) is shifted in time (or in space) by a constant amount, therefore it

should have the same magnitude since the frequency content of G(f) remains unchanged.

A delay in time (or shift in space) only alters the phase of G(f) but not the magnitude.

Let the image ga be a shifted version of the image gb by (x0, y0) (Goshtasby (2012)):

ga(x, y) = gb(x− x0, y − y0) (5.12)

After taking the discrete Fourier transform (DFT) of both images,

F{ga} = Ga(u, v),F{gb} = Gb(u, v) (5.13)

the following relationship is obtained due to the shift property of the Fourier transform:

R(u, v) =
GaG

∗
a

|GaG∗a|
(5.14)
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where ∗ denotes the complex conjugate.

=
GaG

∗
a exp (−2πi(ux0 + vy0))

|GaG∗a exp (−2πi(ux0 + vy0))|
(5.15)

=
GaG

∗
a exp (−2πi(ux0 + vy0))

|GaG∗a|
(5.16)

= exp (−2πi(ux0 + vy0)) (5.17)

Equation 5.17 is obtained since the phase of the denominator is zero and its magnitude of

the imaginery exponential is one. The phase correlation function, which is the normalized

cross-correlation function, is obtained by applying the inverse Fourier transform to R(u, v):

r = F−1{R} (5.18)

The translational shift can be determined as the location of the peak in r:

(∆x,∆y) = argmax
(x,y)

{r} (5.19)

Figure 5.6: Phase correlation of template and observed image. Images created with the
FFT filter and 3D Surface Plot of ImageJ (Abràmoff et al. (2004); Schneider
et al. (2012)). From left to right: (a) template image containing the reference
positions, (b) image taken during protein cycle, (c) 2d phase correlation image
with peak in the lower left corner, and (d) as 3d image to highlight the peak.

The pixel based shifts are refined by fitting a Gaussian to the 3× 3 pixel area around

the detected shifts to subpixel resolution. The Levenberg-Marquardt (Levenberg (1944);
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Marquardt (1963)) fit is used to interpolate a peak in order to determine its maximum

to sub-pixel accuracy.

The fast Fourier transform (FFT) (Cooley and Tukey (1965a)) allows to compute the

DFT in O(nm log(nm)) for an image with size n×m, similarly for the inverse Fourier

transform. The multiplication of transforms in the frequency domain has a negligible

cost of O(nm). The phase correlation method is insensitive to occlusions and brightness

change and it is remarkably robust against noise (Kuglin and Hines (1975)).

5.3.4 Implementation

The implementation of the cluster registration using phase correlation as described above

has been based on modified code from Illumina’s OLB pipeline version 1.9.4 (Inc. (2011a)).

The input are the pos files produced by the Illumina RTA (Real Time Analysis) pipeline

(Inc. (2011c)) which contain the template cluster positions per tile, and the tif images of

the T channel for each protein cycle. The output are the x,y coordinates of the cluster

positions of the observed images for each protein cycle.
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5.3.5 Estimation of scaling

The following approach is based on modified code from Illumina’s OLB pipeline version

1.9.4 (Inc. (2011a)). In order to estimate scaling and its role in the cluster registration,

each image that contains the measured fluorescent signals and its related template image

is divided into four quadrants. For each quadrant a subregion is taken for which the

phase correlation is calculated. Figure 5.7 provides an example.

Figure 5.7: Image regions used for calculating the x,y scaling factors. Division of template
(a) and observed image (b) into four quadrants (yellow) with subregions (red)
used for calculating the scaling factors.

For each pair of correlated subregions between template and observation, shifts in x

and y direction are obtained and then used for a linear regression by which x, y offset

(intercept) and x, y scaling parameters (slope) are calculated that encapsulate the affine

transformation.

Determining x offset and x scaling parameter by linear regression:

β̂ =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
=

∑n
i=1 xiyi −

1
n

∑n
i=1 xi

∑n
i=1 yi∑n

i=1 x
2
i −

1
n(
∑n

i=1 xi)
2

=
xy − x̄ȳ
x2 − x̄2

(5.20)

α̂ = ȳ − β̂x̄ (5.21)

where n = 4 for the four subregions, xi, yi are the coordinates of the ∆x shift, α̂ is the x
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offset, β̂ is the x scaling, y offset and y scaling parameter are determined accordingly.

5.3.6 Assessment of transformation parameters

It was tested if further transformation parameters besides scaling like rotation and

shearing would be relevant. The Fourier-Mellin transformation (Derrode and Ghorbel

(2001)) allows to estimate rotation by utilizing the Mellin transformation and the ECC

algorithm (Evangelidis and Psarakis (2008)) uses a nonlinear similarity measure for the

image alignment problem. Both methods showed that rotation is not occurring, whereas

scaling and shearing are negligible. As shown in Figure 5.8 the translational offset in x

and y direction is the dominating factor.

Figure 5.8: Overview of the transformation parameters for the experiment 12.02.2015,
cycle 41 (concentration 135 nM) for tiles 1 to 120. Translational offsets were
determined by phase correlation, scaling parameters by linear regression, and
shearing parameters were estimated by the ECC algorithm (Evangelidis and
Psarakis (2008)).

5.3.7 Investigation of overlap with local maxima

In order to quantify the accuracy of the translation parameters for capturing the geometric

transformation, I crafted two tests. The first test investigates a necessary condition

for the correct mapping of the clusters into the images which is the overlap (or spatial

proximity) to local maxima in the image. The second test examines if the right local

maxima are matched by the cluster mapping.
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Firstly, the local maxima in the observed image are determined for a particular tile, i.e.

tile 21, cycle 95 (25 nM), lane 2 of experiment 18.08.2014. Two methods (Neubeck and

Van Gool (2006); Schmid (2006)) have been compared which detected largely the same

local maxima for the observed image (74.4% of intersecting local maxima).

Figure 5.9: Number of detected local maxima and overlap of the two compared methods
by (Neubeck and Van Gool (2006); Schmid (2006)).

The parameter settings were as follows:

Algorithm by Schmid (2006):

� Height tolerance: 2.0 pixel, maxima are accepted only if protruding more than this

value from the ridge to a higher maximum.

� Threshold: 10.0 pixel, minimum height of a maximum.

Algorithm by Neubeck and Van Gool (2006):

� Minimum distance to other local maximum: 1.0 pixel.

� Threshold: 10.0 pixel, value below which a maximum will be rejected.

Procedure for measuring the overlap of mapped clusters with local maxima:

1) Retrieve all local maxima from the observed image by the methods of (Neubeck and

Van Gool (2006); Schmid (2006)).

2) Map all clusters into the observed image by the translational transformation parameters
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determined by phase correlation.

3) Divide image into 32× 32 grid cells, resulting in 2048
32 ×

1888
32 = 64× 59 = 3776 cells.

4) Within each grid cell sort clusters and local maxima by brightness in descending order.

5) Measure Euclidean distance between mapped cluster positions and local maxima.

6) If distance < threshold, the mapping is regarded as correct, else incorrect.

As threshold the median cluster distance is taken per tile which varies between 2.2

and 3.1 pixels among different tiles. Figure 5.10 shows the error map for tile 21, cycle

95 (protein concentration 25 nM), lane 2 from experiment 18.08.2014 using as average

cluster distance 2.2 pixels. If the borders are included the percentage mapping error is

2.25%, if the borders are excluded it is only 0.96%.

Figure 5.10: Quantification of the cluster registration precision. Mapping errors are
displayed for the different 32 × 32 cells of tile 21, cycle 95, lane 2 from
experiment 18.08.2014. Red color denotes cells with mapping errors, blue
color cells with correct mapping.
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5.3.8 Investigation of motif occurrences

Another validation for the translational transformation is if the occurrences of binding

motifs adhere to the ranking that would be expected. Figure 5.11 shows the median

intensities for different GCN4 motifs on tile 21, cycle 95 (protein concentration 25 nM),

lane 2 from experiment 18.08.2014. The median intensity and therefore the binding

affinity of GCN4 to DNA decreases the larger the Hamming distance becomes with

respect to the consensus motif. If the mapping of the clusters due to the estimated

transformation parameters would be biased and adulterated, such a decrease could not

be achieved.
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Figure 5.11: Median intensities for different GCN4 motifs after cluster registration. The
larger the Hamming distance from the consensus, the smaller the intensities
become providing evidence for a correct mapping.
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5.3.9 Results

It can be concluded that a translational offset in x and y direction is the dominant

transformation that affects observed images due to moving the sledge onto which the

flow cell is mounted during imaging. The values of the x and y offsets can be effectively

determined by phase correlation allowing to map reference cluster positions onto observed

image cluster positions and thus aligning consistently protein intensities at different

concentrations with the related DNA sequences.

Since protein images are quite different from sequencing images, the mapping accuracy

regarding protein images needs to be assessed. Estimating the mapping accuracy by

the spatial proximity of mapped cluster positions to local maxima in the observed

protein image, which is a necessary condition for the correctness of the cluster position

transformation, yields a mapping error of 2.25%, if borders are included, and of only

0.96%, if borders are excluded as displayed in Figure 5.10. Approaching the mapping

accuracy for a protein image by the brightness of GCN4 motifs and their expected binding

affinity enables a ”semantic“ verification checking if clusters are mapped consistently onto

related local maxima in the images. As Figure 5.11 demonstrates the median intensities

decrease with increasing Hamming distance as expected given that the binding affinity is

lowered by an increased number of mutations. The transformation therefore must provide

the right mapping otherwise the decrease of the intensities with increase in Hamming

distance could not be observed. In summary then protein images can be registered

with high accuracy even though they are different with respect to the fluorescent signals

compared to sequencing images. A significant advantage connected with this finding is

that resequencing is unnecessary and can be omitted thus allowing the reuse of the flow

cell for several HiTS-FLIP experiments, which greatly reduces cost and time.
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5.4 Local region search

Some of the cluster positions after being transformed do not overlap with the local

maxima positions (representing the DNA cluster positions) identified in the observed

images. This can be due to rounding to discrete pixel coordinates that shift cluster

positions (most often within an one pixel neighborhood) away from the related local

maxima positions. The search space consisting of all the image pixels can be divided

into separate, disjunct regions defining the local, non-overlapping neighborhood of the

clusters within which clusters can be shifted onto local maxima thereby increasing the

accuracy of the intensity extraction as described in section 5.6. The technique that can

be utilized to achieve this is called “region labeling” ((Burger and Burge, 2009b, pp.

5–17)), described in the following subsection.

5.4.1 Region labeling

During the “region labeling” process connected components are uniquely labeled based

on a given heuristic. Here, the connected components are the cluster positions and their

local regions, and the “labeling” technique provides a way to demarcate the local cluster

regions from each other. The labeling procedure occurs in the following way:

1) Initialize a 2d matrix representing the imaged tile with 0 as initial values for each cell.

2) Iterate through all cluster positions and for each cluster add 1 to the cluster position

itself and its 8-connected neighborhood pixels.

After all clusters have been processed by the labeling procedure the outcome is that the

local, disjoint search region of each cluster are defined by the label “1”, and overlaps of

search regions are marked by the label “2”. Therefore, pixels with the label “1” can be

used to shift clusters onto local maxima.

Figure 5.12 gives an example. The left side (a) shows a subarea of the image of tile 10,

cycle 96 (concentration 125 nM), lane 2 of experiment 18.08.2014. Pixels that represent

mapped cluster coordinates are framed in green and hatched, separate local maxima are

framed in red. There are five clusters of which two are displaced next to the related

local maxima. Figure 5.12 (b) displays the local search regions A to E composed of the

8-connected neighborhoods for each of the five clusters where the label ”1“ denotes pixels

that are included in the search region and pixels labeled ”2” are excluded. Since the

local maxima are included (labeled ”1“) in the related search area, the positions of the

two clusters can be shifted.
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Figure 5.12: Search space of five mapped clusters. (a) Subarea of an imaged tile that
shows five clusters (outlined in green and hatched), and local maxima
(outlined in red). (b) Clusters with their local search regions A to E and
labels ”1” denoting included pixel and labels ”2“ denoting excluded pixels.

5.4.2 Shifting clusters

The process of defining local cluster regions by region labeling and searching these

regions for local maxima onto which clusters can be shifted can be executed iteratively.

An overview of all iteratively one pixel shifted cluster positions from tile 10, cycle 96

(concentration 125 nM), lane 2 of experiment 18.08.2014 is provided in the Figure 5.13.

In total, there are 205337 identified DNA clusters on the tile, in round-1 14.5% of these

clusters are shifted by one pixel, in round-2 0.7% of these clusters are shifted by one

pixel, in round-3 0.02% of these clusters are shifted by one pixel, and in round-4 0.001%

of these clusters are shifted by one pixel, after which all clusters overlap with the local

maxima.

5.4.3 Implementation

I developed the region search and cluster shifting using Java (Gosling (2000)) and ImageJ

(Abràmoff et al. (2004); Schneider et al. (2012)). The input are the protein images and

the x,y coordinates of the mapped clusters. The output are the updated x,y coordinates

of the clusters.
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Figure 5.13: Shifting process with different iterations during which cluster positions are
overlaid onto local maxima.

5.4.4 Results

A certain portion (10% - 20%) of the mapped cluster positions do not overlap with the

local maxima positions (representing the DNA cluster positions) identified in the observed

protein images. “Region labeling” is an elegant and effective method for dividing the

search space (all image pixels) into separate, disjunct regions defining the local, non-

overlapping neighborhood of the clusters marking the area within clusters can be shifted

onto local maxima. This overlay process of mapped cluster positions onto local maxima

positions can be executed iteratively and within a small number of iterations all cluster

positions are adjustable.
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5.5 Image normalization

As the main bias which obfuscates intensities and impedes the quantification of the

fluorescent signals I identified uneven illumination occurring in the images taken during

the protein cycles depending on the spatial positions of the DNA clusters in the flow cell.

5.5.1 Possible causes for non-even illumination

There are various scientific publications that discuss this uneven illumination bias and

provide explanations for possible causes.

According to (Waters (2009)) fluorescence emission is generally proportional to the

intensity of the illuminating light (except when fluorophore ground state depletion

occurs). Therefore, if an uniform fluorescent sample is unevenly illuminated, the resulting

fluorescence will usually be uneven as well (Waters (2009)). Uneven illumination can be

extremely detrimental to quantitative measurements because it may cause the intensity

of an object in one area of the field of view to measure differently than the intensity of

an object of equal fluorophore concentration in another area of the field of view (Waters

(2009)).

Because of the inherent imperfections of the image formation process, microscopical

images are often corrupted by intensity variations manifesting themselves as large area

intensity gradients not present in the original scene (Inoué (2013)). This phenomenon is

usually referred to as shading, or intensity non-uniformity, or intensity inhomogeneity

(Likar and Pernuš (2000)).

This phenomenon can also be named as vignetting, i.e. a brightness attenuation away

from the image center often resulting in the outer image edges being significantly darker

than the center (Marty et al. (2007); Zheng et al. (2009)).

Uneven illumination may originate from inaccurate object preparation and mounting or

from imperfections in the image acquisition process. In the latter case, shading may arise

from nonuniform background illumination, departing from Köhler illumination, imperfect,

dirty, or dusty optics, uneven spatial sensitivity of the video camera, dark-level camera

response, or camera non-linearity (Likar and Pernuš (2000), references therein).

According to (Zheng et al. (2009)) several mechanisms may be responsible for vignetting

effects. Some arise from the optical properties of camera lenses, the most prominent of

which is off-axis illumination falloff or the cos4 law (Reiss (1945)). This contribution to

vignetting results from foreshortening of the lens when viewed from increasing angles from

the optical axis (Klein and Furtak (2013)). Other sources of vignetting are geometric in
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nature. For example, light arriving at oblique angles to the optical axis may be partially

obstructed by the field stop or lens rim (Zheng et al. (2009)). Leong et al. (2003) states

that vignetting may be attributed to multiple factors from the illumination filament, the

design of the light path between the camera and the microscope, or the behavior of the

imaging device.

5.5.2 Illustration of non-even illumination

Figure 5.14 shows a thumbnail image (produced by the Illumina RTA pipeline (Inc.

(2011c))) of tile 1, cycle 46 (concentration 125 nM), T channel, lane 2 from experiment

18.08.2014 with nine selected areas and their magnified view. The uneven illumination is

clearly visible.

Figure 5.14: Thumbnail image of a tile showing uneven illumination. Image of tile 1,
cycle 46 (concentration 125 nM), T channel, lane 2 of experiment 18.08.2014
with magnified subareas.

Figure 5.15 shows the image of tile 10, cycle 46 (concentration 25 nM), T channel, lane 4

from experiment 13.06.2013. Figure 5.15 (a) has been processed using ImageJ (Abràmoff

et al. (2004); Schneider et al. (2012)) applying its rolling ball algorithm based on (Stern-

berg (1983)) with a radius of 40 pixels. This algorithm uses a ball as a structuring

element and performs the morphological operation top-hat transform (Dougherty et al.

(2003)). The result is an estimate of the local background in different regions of the image.

Here it is apparent that there are different patches of varying brightness. Figure 5.15 (b)

shows the image of the same tile processed in the following way. The image was divided

into 32× 32 pixel regions, and for each region the mean of the 20 dimmest pixels was

calculated representing the background of the region. These background values comprise
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the displayed intensities.

Figure 5.16 shows on the left the gray level tif image of tile 10, cycle 46 (concentration

25 nM), lane 4 from experiment 13.06.2013, with three vertical selection lines (in yellow),

and on the right the related intensity profiles for these selections regarding the region

background. The regions and related backgrounds are calculated such that the image is

divided into 32× 32 pixel regions and for each region the background is determined as

the mean of the 20 dimmest pixels. Difference in brightness as well as intensity drop off

at the borders is eminent.

Figure 5.17 correlates the intensity of spike-in clusters, i.e. DNA clusters with the

exact same insert sequence TGCAGGAATGACTCATTGAAGGTTAGATCGGAAGAG,

with the related local background, calculated as mean of the dimmest 10 pixel of a

17× 17 pixel window around the spike-in cluster, for the different concentrations of ex-

periment 13.06.2013 on lane 4. During all protein cycles a strong correlation is observable.

Figure 5.18 correlates the local background, calculated as mean of the dimmest 10 pixel

of a 17× 17 pixel window around the spike-in cluster, of the spike-in clusters across the

different protein cycles of experiment 13.06.2013 on lane 4. During all protein cycles

a very strong correlation is displayed showing that the non-even illumination effect is

stationary across imaging cycles.
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Figure 5.15: Uneven illumination. (a) Image processed with the rolling ball algorithm
(Sternberg (1983)) with a radius of 40 pixels. (b) Same imaged tile as in (a)
as heat map depicting the background intensities of 32×32 pixel regions. For
each region the mean of the 20 dimmest pixels was calculated representing
the background of the region.

Figure 5.16: Intensity profile of region background for a representative image displaying
uneven illumination. (a) Gray level tif image of tile 10, cycle 46 (concentra-
tion 25 nM), lane 4 from experiment 13.06.2013 with three vertical selection
lines marked in yellow. The x coordinates are 40, 940 and 1840. (b) Intensity
profiles for the three selection lines regarding the region background. The
y axis shows the unnormalized intensity of the region background, the x
axis shows the different region (32× 32 pixels) along the y direction of the
selection lines. For each region the mean of the 20 dimmest pixels was
calculated representing the background of the region.
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Figure 5.17: Correlation of spike-in cluster intensity with local background intensity of
experiment 13.06.2013 on lane 4. (a) to (e) denote the different concentra-
tions. The local background is calculated as the mean of the dimmest 10
pixel of a 17× 17 pixel window around the spike-in cluster.
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Figure 5.18: Correlation of the local background intensity of the spike-in clusters across
the different protein cycles of experiment 13.06.2013 on lane 4. (a) 1 nM
compared to 5 nM. (b) 5 nM compared to 25 nM. (c) 25 nM compared to 125
nM. (d) 125 nM compared to 625 nM. The local background is calculated
as the mean of the dimmest 10 pixel of a 17× 17 pixel window around the
spike-in cluster.
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5.5.3 Methods for non-even illumination correction

There are several different approaches to correct for non-even illumination. Correction

methods can be prospective when a calibration protocol and extra images are acquired,

or retrospective when the only data available is the image itself (Reyes-Aldasoro (2009)).

Since a flat-field image which captures the background without any foreground objects

cannot be taken during a HiTS-FLIP run, retrospective correction is required.

There are different retrospective methods. Most existing bias correction methods assume

that the bias field is multiplicative, slowly varying, and tissue independent (Kubecka

et al. (2010)).

The first class of correction algorithms apply filtering with low pass, homomorphic or

morphological operators as it is a simple and intuitive way of removing low frequency

shading components (Reyes-Aldasoro (2009)).

A second class of algorithms use surface fitting methods (Hou et al. (2006); Russ (2011))

requiring the selection of a number of points on the background, either manually or

automatically, and the background is obtained by the fitting of a parametric surface

(Kubecka et al. (2010)). The polynomial fit method is based on the assumption that

the variation of the intensity of the background image can be obtained by the fitting

of a polynomial function to the intensity values of a number of points selected in the

background of the image (Tomazevic et al. (2002)). It approximates an image by a

polynomial and uses the orthogonality relation of the Legendre polynomials to expand

an image as a double sum of those functions. The sum is then evaluated to produce an

image that approximates a projection onto the space of polynomial images (Babaloukas

et al. (2011)).

A third class of algorithms perform entropy minimisation (Likar et al. (2000); Vovk et al.

(2006)) as it is assumed that the shading introduces extra information to the image, which

manifests itself as a higher entropy. For example, in (Likar et al. (2000)) a parametric

polynomial surface that minimises the entropy is assumed to be the shading component.

5.5.4 Linear model of the image formation

A widespread linear model of the image formation (Beckers et al. (1994); Leahy et al.

(2012); Likar et al. (2000)) which describes the relation between the true image U(x, y)

and the acquired image N(x, y) is the following:

N(x, y) = U(x, y)Sm(x, y) + Sa(x, y) (5.22)
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N(x, y): acquired, intensity non-uniform image.

U(x, y): true image.

Sm(x, y): multiplicative shading component.

Sa(x, y): additive shading component.

Shading correction is concerned with finding the corrected image Û(x, y) which optimally

estimates the true image U(x, y) from the acquired image N(x, y) (Likar et al. (2000)):

N(x, y)
shading correction−−−−−−−−−−−→ Û(x, y) ≈ U(x, y) (5.23)

The shading corrected image Û(x, y) can easily be calculated by inverting the image

formation model:

Û(x, y) =
N(x, y)− ŜA(x, y)

ŜM (x, y)
(5.24)

where ŜA(x, y) and ŜM (x, y) are estimates of the additive and multiplicative shading

component. The problem of shading correction can thus be viewed as the problem of

estimating the additive and multiplicative shading components (Likar et al. (2000)).

5.5.5 Estimation of the additive shading component

In order to estimate retrospectively the appropriate additive shading component Sa(x, y)

a pixel window around the cluster was taken and the local background was determined as

the mean of the dimmest 5% pixels of this pixel window. In the following analyses, the

pixel window size is scrutinized. The left side of Figure 5.19 shows the local background

intensity for different pixel window sizes, calculated as the mean of the dimmest 5%

pixels within the pixel window, taken over all clusters from tile 10, cycles 93 to 97, lane 2

from experiment 18.08.2014. The distribution of the clusters is represented as density.

The right side of the Figure 5.19 shows the local background intensity distribution as

box plots for the different window sizes.

For the following analysis a 17× 17 pixel window was chosen. A 17× 17 pixel window

consists of 289 pixels, and given the experimental setup of ca. 200000 DNA clusters

per tile the average number of clusters in a 17× 17 pixel region is 15. A DNA cluster

can be up to 9 pixels (sometimes even 10-12 pixels) in size and thus there are then 135

foreground and 154 background pixels in a 17 × 17 pixel region. The number of the

dimmest pixels within a 17× 17 pixel window used for calculating the local background
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Figure 5.19: Different window sizes and related background intensities. (a) Local back-
ground intensity for different pixel window sizes, calculated as the mean
of the dimmest 5% pixels within the pixel window. (b) Local background
intensity distribution as box plots for the different window sizes.

was analyzed and the result is shown in the Figure 5.20. The local background was

processed over all clusters from tile 10, cycles 93 to 97, lane 2 from experiment 18.08.2014.

Taking 5, 10 or 20 dimmest pixels within the 17 × 17 pixel window does not lead to

significantly different values.

There are hundreds of occurrences of a particular 7-mer on a tile during a HiTS-FLIP

experiment. Figure 5.21 shows on the left the occurrences (yellow dots) of the 7-mer

TGACTCA (reverse complement TGAGTCA) on the tile 10, cycle 95 (concentration 25

nM), T channel, lane 2 of experiment 18.08.2014. On the right the occurrences of all

the first 20 ranked (see section 5.9 for details regarding the ranking method) 7-mers is

displayed.

Since the occurrences of k-mer motifs can be employed for analyzing the effects of the

normalization by subtraction of local background (mean of 5% dimmest pixels from

pixel window around cluster), the first 20 ranked 7-mers and their related unnormalized

and normalized intensities were used for measuring the variance and Kruskal Wallis

statistics. The Kruskal–Wallis one-way analysis of variance by ranks (Kruskal and Wallis
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Figure 5.20: Different number of dimmest pixels and related background intensities, with
the addition of the cluster intensity. (a) Local background intensities for
different numbers of dimmest pixels of a 17 × 17 pixel window, with the
addition of the cluster intensity. (b) Same as (b) but visualized as a box
plot.

(1952)) was used as test statistics since the distribution of the intensities of a k-mer

is not normally distributed, and the variances and sample sizes among the k-mers are

different. Figure 5.22 shows for different pixel window sizes the variance, the Kruskal

Wallis test statistics K and the related p-values for the first 20 ranked 7-mers on the tile

10, cycle 95 (concentration 25 nM), T channel, lane 2 of experiment 18.08.2014. Since the

p-values turn out to be nearly zero, at a 0.05 significance level the null hypothesis that

the different 7-mers with their intensities are identical can be rejected. Thus, the 7-mers

are different and the larger the Kruskal Wallis test statistics K is the more different the

7-mers are from one another. The largest value (513.86) occurs for the window size of 15

pixels.

Figure 5.23 shows the outcome when calculating the Kruskal Wallis test statistics K for

the first 20 ranked 7-mers using tiles 1 to 120, T channel, lane 2 of experiment 18.08.2014

for the concentration 5 nM, 25 nM, 125 nM, and 625 nM and selecting the size of the

window for which K is maximal. Since 15 pixel as window size is the distinguished value,
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Figure 5.21: Occurrence and distribution of 7-mers on the tile 10, cycle 95 (concentration
25 nM), T channel, lane 2 of experiment 18.08.2014, shown as yellow dots.
(a) Occurrences of 7-mer TGACTCA and its reverse complement TGAGTCA.
(b) Occurrences of all the first 20 ranked 7-mers and the related reverse
complements.

the window size for calculating the local background around a cluster was chosen to be

15× 15 pixels and the local cluster background was calculated as the mean of the 5%

dimmest pixels from these 15× 15 pixels.

5.5.5.1 Implementation

I developed the calculation of the local cluster background using Java (Gosling (2000))

and ImageJ (Abràmoff et al. (2004); Schneider et al. (2012)). The input are the protein

images and the x,y coordinates of the clusters. The output are the local background

intensity values for each cluster, calculated as the 15×15 pixel window around the cluster

and the mean of the 5% dimmest pixels from this 15× 15 pixel window.

5.5.5.2 Results

Since the largest Kruskal Wallis test statistics K value occurs for the window size of 15

pixels, the size of the pixel window around a cluster was chosen as 15× 15 pixel window

and the local background intensity value as the mean of the 5% dimmest pixels from this

15× 15 pixel window.
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Figure 5.22: Different measures for assessing the normalization by local background
subtraction using the first 20 ranked 7-mers on the tile 10, cycle 95 (concen-
tration 25 nM), T channel, lane 2 of experiment 18.08.2014. (a) Variance of
the different 7-mers and their intensities. (b) Kruskal Wallis test statistics
K values. (c) p-values for Kruskal–Wallis one-way analysis of variance by
ranks (Kruskal and Wallis (1952)).

Figure 5.23: Pixel size of windows at different concentrations for which the maximal
Kruskal Wallis test statistics K was used for all 120 tiles of lane 2 and the
first 20 ranked 7-mers.
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5.5.6 Estimation of the multiplicative shading component

For estimating retrospectively the multiplicative shading component Sm(x, y) various

different techniques can be applied such as Gaussian filtering (Babaloukas et al. (2011);

Leong et al. (2003)), homomorphic filtering (Delac et al. (2006); Etemadnia and Asharif

(2004); Wen-Cheng and Xiao-Jun (2013)), morphological operators (Babaloukas et al.

(2011); Michálek et al. (2010); Wang et al. (2014)), anisotropic diffusion (Black et al.

(1998); Hama and Al-Ani (2013); Liu (2013); Tschumperle and Deriche (2005)), surface

fitting by higher-order polynomial for approximating the background (Zhang et al. (2014)),

and entropy (as a measure of global intensity uniformity) minimization based methods

(Likar et al. (2000)).

I used Gaussian filtering here as a linear, low pass filter based upon the assumption that

the uneven illumination is a low frequency signal. Therefore, low pass filtering can be

used to extract it from an image. The objects of interest, i.e. DNA clusters, are smaller

than the variation of the background and the background has a different intensity than

the clusters. Blurring the image with a Gaussian filter including background as well as

cluster pixels is based upon the known fact that all intensity measurements are a mixture

of signal and background (Waters and Swedlow (2007)). The resulting smoothed image is

considered an estimate of the background of the image (Babaloukas et al. (2011); Leong

et al. (2003)).

This filtering can be achieved by convolving the image I(x, y) with a Gaussian kernel.

The Gaussian function G(x, y) is defined by:

Gσ(x, y) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
(5.25)

where σ defines the effective spread of the function. The effect of this function is to delimit

the spatial frequencies in an image, resulting in loss of edge definition and averaging of

intensity values. The larger the value of the parameter σ, the greater the smoothing

effect. The aim is to smooth the image until it is devoid of cluster features but retains the

weighted average intensity across the image corresponding to the underlying illumination

pattern.
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5.5.6.1 Implementation

I developed the Gaussian filtering using Java (Gosling (2000)) and ImageJ (Abràmoff

et al. (2004); Schneider et al. (2012)), using the GaussianBlur component of the ImageJ

framework. The input are the unnormalized protein images and the output are the

Gaussian based normalized protein images.

5.5.6.2 Assessment of different σ values

Figure 5.24 shows for different σ values the variance, the entropy of the background, the

Kruskal Wallis test statistics K and the related p-values for the first 20 ranked ((see

section 5.9 for details regarding the ranking method)) 7-mers on the tile 10, cycle 95

(concentration 25 nM), T channel, lane 2 of experiment 18.08.2014. The background

pixels of the image were determined by dividing the image into 32 × 32 pixel regions

and taking the mean of the dimmest 20 pixels. The entropy H of the image is based on

Shannon’s entropy (Shannon (2001)) and was calculated for these background pixels in

the following way:

H = −
M−1∑
k=0

pk log2(pk) (5.26)

where

M : is the number of gray levels in the image.

pk =
nk

M ×N
: is the probability associated with the gray level k with nk being the

number of pixels with grayscale k and M ×N the size of the image.
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The various pixels in an image may be considered to be symbols produced by a discrete

information source with the gray level as its states and the entropy is a measure of their

information content. High entropy images have a great deal of contrast from one pixel to

the next whereas a uniform distribution of gray levels results in a low entropy. The lower

the entropy in Figure 5.24 the more uniform the intensity of the background pixels. The

Kruskal Wallis test statistics K value is maximal (566.21) for a σ of 33 pixel which is

still linked to a low entropy value (3.021). The lowest entropy value is except for σ = 1

occurring for σ = 14 (2.953).

Figure 5.24: Different measures for assessing the normalization by division of Gaussian
filtered image with different σ (radius) using the first 20 ranked 7-mers on
the tile 10, cycle 95 (concentration 25 nM), T channel, lane 2 of experiment
18.08.2014. (a) Variance of the different 7-mers and their intensities. (b)
Entropy of background pixels. (c) Kruskal Wallis test statistics K values.
(d) p-values Kruskal–Wallis one-way analysis of variance by ranks (Kruskal
and Wallis (1952)).



72 Chapter 5: Pipeline

Figure 5.25 shows the outcome when calculating the Kruskal Wallis test statistics K for

the first 20 ranked 7-mers using tiles 1 to 120, T channel, lane 2 of experiment 18.08.2014

for the concentration 5 nM, 25 nM, 125 nM, and 625 nM and selecting the radius of

the Gaussian filter kernel for which K is maximal. For the subsequent processing in

the pipeline a σ value of 30 pixel was chosen since this is in the range of the values

determined by the maximal Kruskal Wallis test statistics K value, and it is around 10

times bigger than the size of a DNA cluster which is on average 3 pixels in width.

Figure 5.25: Different Gaussian filter radius values (σ) at different concentrations for
which the maximal Kruskal Wallis test statistics K was used for all 120 tiles
of lane 2 and the first 20 ranked 7-mers.



5.5 Image normalization 73

Figure 5.26 illustrates the outcome when both additive and multiplicative shading

correction is applied. The additive shading correction is the subtraction of the local

background intensity from the related cluster intensity calculated as a 15×15 pixel window

around the cluster and taking the mean of the dimmest 5% pixels. The multiplicative

shading correction is the division of a Gaussian filtered image with the different radius

values as shown in the Figure 5.26.

Figure 5.26: Different measures for assessing the normalization by subtraction of local
background and division of Gaussian filtered image with different σ (radius)
using the first 20 ranked 7-mers on the tile 10, cycle 95 (concentration
25 nM), T channel, lane 2 of experiment 18.08.2014. (a) Variance of the
different 7-mers and their intensities. (b) Entropy of background pixels, only
for the multiplicative shading correction. (c) Kruskal Wallis test statistics K
values. (d) p-values Kruskal–Wallis one-way analysis of variance by ranks
(Kruskal and Wallis (1952)).
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5.5.6.3 Weighting factors

In addition to the Gaussian filtering, a weighting factor has been applied such that for

increasing concentration levels the related cluster intensities increase as well. Using only

the Gaussian filtering for the normalization leads to intensities on the same intensity

level across the different concentrations. As an estimate for the increasing amount of

protein linked with each consecutive concentration level, the unbound proteins in the flow

cell have been used. The amount of unbound proteins can be determined by the global

background intensity across an entire protein image, calculated in the following way:

1) Divide each protein image into 32×32 grid cells, resulting in 2048
32 ×

1888
32 = 64×59 = 3776

cells.

2) For each cell, take the mean of the dimmest 20 pixels as the local background intensity

of the cell.

3) Take the median of all these cell backgrounds as the global background intensity of

the related protein image.

The global background intensity of a protein image at a higher concentration has been

put in relation to the global background intensity of this protein image at the lowest

concentration since the increase in protein amount relative to the starting concentration

is required. More formally, the normalization with weighting can be expressed in the

following way:

InormCi =
IunnormCi

ÎmultCi

for i = 1 (5.27)

InormCi =
IunnormCi

ÎmultCi

×
Bglobal
i

Bglobal
1

for i = 2..n (5.28)

where

InormCi : is the normalized cluster intensity at concentration i for tile t.

IunnormCi : is the unnormalized cluster intensity at concentration i for tile t.

Bglobal
i : is the global background intensity at concentration i for tile t.

Bglobal
1 : is the global background intensity at the lowest concentration (i = 1) for tile t.

5.5.6.4 Results

σ = 30 pixels was chosen as value for smoothing the Gaussian filtered image. The

weighting factors were determined as described above.
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5.5.7 Comparison of additive and multiplicative shading correction

Applying the Kruskal Wallis test statistics K values as the underlying measure the quality

of the different normalization approaches can be compared. Table 5.1 summarizes the

findings. The first 20 ranked 7-mers on the tile 10, cycle 95 (concentration 25 nM), T

channel, lane 2 of experiment 18.08.2014 were used.

method max K value

subtraction of local background (15× 15, 5% dimmest) 513.86
division by Gaussian filtered image (σ = 30) 566.21

Table 5.1: Overview of the maximal Kruskal Wallis test statistics K values for the different
normalization methods.

Since the highest Kruskal Wallis test statistics K value was achieved by the division by

the Gaussian filtered image, this method was applied as normalization for the HiTS-FLIP

pipeline.

An explanation why this is suitable here is given by (Russ (2011)). If the image acquisition

device is logarithmic (such as film), then subtraction of the background image point by

point from each acquired image is correct. If the camera or sensor is linear (CCD have

a linear photometric response, Mullikin et al. (1994)), then the correct procedure is to

divide the acquired image by the background. The difference is easily understood because

in the linear case the corrected result is Image / Background, and when the signals are

logarithmic, the division is accomplished by subtraction: Log(Image) - Log(Background)

(Russ (2011)).

Figure 5.27 shows the result of applying the division of the Gaussian smoothed image

regarding the tif image of tile 10, cycle 46 (concentration 25 nM), lane 4 from experiment

13.06.2013. The left side shows the intensity profile for three representative vertical lines

at x = 40 pixel, x = 940 pixel, and x = 1840 pixel for the unnormalized intensities,

and the right side shows the intensity profile after normalization by the Gaussian fil-

ter. The difference in intensities coming from non-even illumination is drastically reduced.

The additive and the multiplicative shading correction can also be compared regarding

the Kd based correlation with the HiP-FA Kds (see section 5.9.1.7) and the associated

relative errors. The additive shading correction consists of the subtraction of the local

cluster background, which is calculated as the mean of the 5% dimmest pixels from a
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Figure 5.27: Intensity profile for three representative vertical lines at x = 40 pixel, x = 940
pixel, and x = 1840 pixel for the unnormalized and normalized intensities.
(a) Unnormalized intensities. (b) Normalized intensities.

15 × 15 pixel box around each DNA cluster. The multiplicative shading correction is

made up by the division of the original image by itself, smoothed by a Gaussian filter

with σ = 30 pixels and the weighting factors (5.5.6.3). The intensity extraction method

was applied as described in section 5.6. As ranking method the heuristic based ranking

was used as described in subsection 5.9.1 but without discarding clusters that contained

ranked motifs. The fitting was done as described in section 5.10. As shown in Table 5.2,

the correction of the additive and the multiplicative shading component yield similar

results.

method R δ

subtraction of local background (15× 15, 5% dimmest) 0.99 50.48%
division by Gaussian filtered image (σ = 30) 0.99 30.91%

Table 5.2: Comparison of the additive and the multiplicative shading correction with
respect to the correlation of Kds and relative errors as measured by HiP-FA
as described in section 5.9.1.7. Normalization is carried out by the division of
the original image by itself, smoothed by a Gaussian filter with σ = 30 pixels.
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5.5.8 Comparison with sequencing image based normalization

The normalization of the DNA cluster intensities of the protein images by Nutiu et al.

(2011) utilizes the fluorescent signals from the sequencing images for correcting the effect

of cluster size and of cluster tile position on the variability of the cluster intensities. The

normalization factor nf of a certain cluster has the following form:

nf =
1

n

n∑
i=1

max(A,C,G, T ) (5.29)

where

n: is the number of sequence cycles.

A,C,G, T : are the fluorescent signals from the four nucleotides that are incorporated

during each sequencing cycle.

For each sequencing cycle the brightest fluorescent signal from the four channels is

used. The normalization factor nf is then taken as divisor of the related cluster intensity

for all the measured protein cycles.

Normalizing for cluster size is unnecessary since a cluster would only be brighter if

the density of the DNA template strands during amplification would vary. However,

solid phase amplification is a very uniform process leading to clusters with very similar

density of DNA template strands in the center of a DNA colony (Mercier and Slater

(2005); Mercier et al. (2003)). Starting with the primers they form a very dense and

uniform carpet on the surfaces of the flow cell. Solid phase DNA amplification leads in

three distinct steps (annealing, extension, and denaturation) to the growth of a colony

of molecules attached to the surface and located in the same region. In (Mercier et al.

(2003)) a Monte Carlo lattice model was used to study solid phase amplification. In

a follow-up examination, (Mercier and Slater (2005)) applied Brownian dynamics and

came to similar conclusions. According to (Mercier and Slater (2005); Mercier et al.

(2003)) the density at the center of the colony can be expected to be somewhat higher

than at the fringe. When a molecule is completely surrounded by others, its free end

tends to move away from the surface (like in a dense polymer brush). Therefore, after a

few cycles, a molecule at the center of the colony (which is thus surrounded by others)

will have a smaller duplication probability (its free end is less likely to find a matching

primer on the surface). Because of this phenomenon, a DNA colony can be characterized

by a roughly constant density and grows outwards, i.e., from its perimeter. Since the
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intensity extraction methods described in section 5.6 make use of the central cluster

pixel, uniform DNA template density can be expected for the central cluster pixel across

different motif-containing clusters.

A particular issue concerning the use of the fluorescent signals from the four nucleotides

is that their brightness varies quite drastically as shown in Figure 5.28. For example,

the signal in the G channel is almost four times as bright as the signal in the C channel,

and the signal in the T channel is nearly twice as large as the signal in the C channel.

Therefore, the normalization using the four different channels is biased depending on the

nucleotide specific composition of the DNA cluster sequence.

Figure 5.28: Difference of fluorescent intensity from the four nucleotides. The spike-in
clusters from experiment 13.06.2013 were used and the median intensity for
each channel during the sequence cycles is shown here.

In order to evaluate how efficient the sequence image based normalization by Nutiu

et al. (2011) is for correcting the non-even illumination bias depending on the cluster tile

position Kds have been calculated and compared with the Kds from an alternative assay.

For details on the HiP-FA assay see section 5.9.1.7. The underlying data set for the

analyses in this section are the data from lane 2 of experiment 18.08.2014. Preprocessing

of the tif images was done as described in section 5.2, the cluster position transformation

was carried out as described in section 5.3, and the shifting of mapped clusters was

performed as explained in section 5.4. The normalization of the cluster intensities was

executed as described above using the averaged CIF intensities produced from the Illumina
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pipeline during sequencing as done by Nutiu et al. (2011). Intensity extraction was

performed as stated in section 5.6, image outlier detection was carried out as described

in section 5.7, and DNA cluster sequence filtering was applied as stated in section 5.8.

The k-mer ranking was performed as described in section 5.9.1.5. The Hill based fitting

for determining the Kds was done as described in section 5.10.

There is an inferior agreement (R=0.86, δ=13.31%) between HiP-FA Kds and HiTS-FLIP

Kds using the sequence images for normalization as shown by Figure 5.29, compared

to using the protein images directly (R=0.99, δ=30.91%) as shown by Figure 5.52. In

conclusion, using a single protein image thus allows to estimate directly the non-even

illumination in a precise fashion without having to process all sequence images and

introducing a nucleotide specific bias.

Figure 5.29: Validation of sequence image based normalized Kds leads to an inferior
agreement between HiP-FA Kds and HiTS-FLIP Kds compared to using the
protein images directly (see Figure 5.29).
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5.6 Intensity extraction

After estimation of the transformation parameters that allows to localize the DNA clusters

in the tile images, and image normalization to correct for non-even illumination, the

intensities associated with the DNA clusters need to be extracted from the tif images.

The following sections investigate different methods for the intensity extraction.

5.6.1 Implementation

I implemented the following methods the nearest neighbor intensity extraction, the

Gaussian based intensity extraction, the intensity extraction based on the average of 2×2

pixel area, the intensity extraction based on the brightest 2× 2 pixel area, the intensity

extraction based on the average of 3 × 3 pixel area, the bilinear intensity extraction,

and the bicubic intensity extraction using Java (Gosling (2000)) and ImageJ (Abràmoff

et al. (2004); Schneider et al. (2012)). The intensity extraction based on the weighted

area coverage is based on modified code from Illumina’s OLB pipeline version 1.9.4 (Inc.

(2011a)). The input are the normalized protein images and the x,y coordinates of the

cluster positions. The output are the extracted cluster intensities.
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5.6.2 Nearest neighbor intensity extraction

Given the coordinates (x0, y0) of a point, where x0 and y0 are floating-point numbers,

and assuming u is the integer part of x0 and v is the integer part of y0, the rectangular

neighborhood defined by pixels (u, v), (u, v + 1), (u+ 1, v), and (u+ 1, v + 1) contain the

point (x0, y0), as shown in Figure 5.30.

More formally:

The pixel closest to a given continuous point (x0, y0) is found by rounding the x0 and y0

coordinates independently to integral values:

Icluster = Î(x0, y0) = I(u0, v0) (5.30)

with

u0 = round(x0) = bx0 + 0.5c
v0 = round(y0) = by0 + 0.5c
The computational complexity of nearest-neighbor resampling is on the order of n

comparisons if the image contains n pixels, thus O(n) Goshtasby (2012).

Figure 5.30: The nearest neighbor intensity for (x0, y0) is (u, v). Here, u0 = u and v0 = v.
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5.6.3 Gaussian based intensity extraction

One natural way to describe the intensity distribution of an amplified DNA cluster is by

a 2d Gaussian function which simulates the blurring effect and the variance of Gaussian

(σ) changes linearly with the axial axis. It has been shown that a 2d Gaussian function is

suitable to represent the PSF of point sources in fluorescent microscopic images (Stallinga

and Rieger (2010); Zhang et al. (2007)). Thus the intensity at a subpixel location l

can be estimated from the intensities of a small number of pixels at discrete locations

surrounding l. The following formula has been used:

f(x, y) =
A

2πσ2xσ
2
y

exp

(
−
(

(x− x0)2

2σ2x
+

(y − y0)2

2σ2y

))
+O (5.31)

where (x0, y0) is the position of the peak (the center), σx and σy is the Gaussian width

in x and y direction, A is the amplitude and O is the offset.

For each cluster a pixel box of size w = 5 around its position has been used as a subset

of intensities for the fit. The initialization of the six parameters is carried out such as:

x0: x coordinate of peak amplitude.

y0: y coordinate of peak amplitude.

σx: w/10 (heuristic for σ = FWHM/
√

8ln2).

σy: w/10 (heuristic for σ = FWHM/
√

8ln2).

A: intensity of (x0, y0) minus offset.

O: minimal intensity within w.

The cluster intensity is then:

Icluster = Î(x0, y0) = Î + Ô (5.32)

Figure 5.31 depicts the intensities of a DNA cluster from tile 21, cycle 95 (25 nM), lane 2

of experiment 18.08.2014, which is suitable to be fitted by the Gaussian function.

However, there are clusters for which a Gaussian cannot be fitted. The following intensities

of Figure 5.32 of a DNA cluster from tile 21, cycle 95 (25 nM), lane 2 of experiment

18.08.2014 emphasize this situation. It can be observed that there is only one distinguished

pixel that determines the cluster intensity.
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Figure 5.31: Cluster intensities with good Gaussian fit. (a) shows as 3d bar plot the
cluster intensities and the overlaid Gaussian fit. (b) shows the cluster
intensities, (c) shows the Gaussian fit.

Figure 5.32: Cluster intensities for which no Gaussian fit is possible. (a) shows the
intensities as a 2d heat map, (b) shows the intensities as a 3d bar plot.
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5.6.4 Intensity extraction based on average of 2× 2 pixel area

The cluster intensity for (x0, y0) can be defined as the averaged intensity over the closest

four pixel neighbors (n = 4), illustrated by Figure 5.33.

Icluster = Î(x0, y0) =
1

n

n−3∑
j=0

n−3∑
i=0

I(u+ i ∗ a, v + j ∗ b) (5.33)

where

a =

1, if x0 − u0 > 0

−1, otherwise

b =

1, if y0 − v0 > 0

−1, otherwise

u0 = round(x0) = bx0 + 0.5c
v0 = round(y0) = by0 + 0.5c

Figure 5.33: The intensity for (x0, y0) is the average intensity from the four neighboring
pixels (u, v), (u+ 1, v), (u, v + 1), and (u+ 1, v + 1).

5.6.5 Intensity extraction based on brightest 2× 2 pixel area

A variation of the previous intensity extraction method is to use the brightest 2× 2 pixel

window which includes the cluster pixel, illustrated by Figure 5.34.

Icluster = Î(x0, y0) = max(IA1 , IA2 , IA3 , IA4) (5.34)

where

IA1 =
1

n
(I(u− 1, v) + I(u, v) + I(u, v + 1) + I(u− 1, v + 1)) (5.35)



5.6 Intensity extraction 85

IA2 =
1

n
(I(u, v) + I(u+ 1, v) + I(u+ 1, v + 1) + I(u, v + 1)) (5.36)

IA3 =
1

n
(I(u, v − 1) + I(u+ 1, v − 1) + I(u+ 1, v) + I(u, v)) (5.37)

IA4 =
1

n
(I(u− 1, v − 1) + I(u, v − 1) + I(u, v) + I(u− 1, v)) (5.38)

with n = 4.

Figure 5.34: Example of the four 2×2 pixel windows around (x0, y0), the average intensity
of the brightest 2× 2 pixel window is chosen to be the intensity of (x0, y0).
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5.6.6 Intensity extraction based on average of 3× 3 pixel area

The neighboring pixels can be increased to a 3× 3 pixel window, illustrated by Figure

5.35.

Icluster = Î(x0, y0) =
1

n

v0+1∑
j=v0−1

u0+1∑
i=u0−1

I(i, j), n = 9 (5.39)

Figure 5.35: The intensity for (x0, y0) is the average intensity from the nine neighboring
pixels.

5.6.7 Bilinear intensity extraction

Bilinear interpolation is used when values at random position on a regular 2d grid

(discrete pixel values) need to be determined. Existing values are interpolated at fixed

grid location to compute values anywhere else on the grid.

Interpolation takes place both in x- and y-direction, hence the name bilinear (Demant et al.

(2013)). The result of bilinear interpolation is independent of which axis is interpolated

first and which second. Bilinear interpolation uses the distance-weighted average of the

four nearest pixel values to estimate a new pixel value (Goshtasby (2012)). The weight

on each of the four pixel values is based on the computed pixel’s distance (in 2d space)

from each of the known points.

First, the four closest (surrounding) pixels are determined. Then, two horizontal linear

interpolations are done, obtaining I(∆u, v) and I(∆u, v + 1). Finally, a third vertical

linear interpolation is carried out to obtain I(x0, y0). An illustration of this calculation

is provided by Figure 5.36.

According to (Goshtasby (2012)) bilinear interpolation can be defined as:
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Icluster = Î(x0, y0) = w1∗I(u+1, v+1)+w2∗I(u, v+1)+w3∗I(u+1, v)+w4∗I(u, v) (5.40)

where

w1 = ∆u∆v = (x0 − u)(y0 − v) (5.41)

w2 = (1−∆u)∆v = (u+ 1− x0)(y0 − v) (5.42)

w3 = ∆u(1−∆v) = (x0 − u)(v + 1− y0) (5.43)

w4 = (1−∆u)(1−∆v) = (u+ 1− x0)(v + 1− y0) (5.44)

Computationally, resampling by bilinear interpolation requires on the order of n mul-

tiplications if the reference image contains n pixels. Therefore, nearest-neighbor and

bilinear interpolation have the same computational complexity, although nearest-neighbor

is several times faster than bilinear interpolation (Goshtasby (2012)).

Figure 5.36: Bilinear interpolation. For a given position (x0, y0), the interpolated value is
computed from the intensity values of the four closest pixels (u, v + 1), (u+
1, v + 1), (u+ 1, v), (u, v) in two steps. First the intermediate values (∆u, v)
and (∆u, v + 1) are computed by linear interpolation in the horizontal
direction between (u, v) and (u + 1, v), and (u, v + 1) and (u + 1, v + 1),
respectively, where ∆u is the distance to the nearest pixel to the left of x0.
Subsequently, the intermediate values (∆u, v) and (∆u, v+1) are interpolated
in the vertical direction, where ∆v is the distance to the nearest pixel below
y0.
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5.6.8 Bicubic intensity extraction

Bicubic interpolation is an extension of cubic interpolation for interpolating data points

on a 2d regular grid. The interpolated surface is smoother than corresponding surfaces

obtained by bilinear interpolation or nearest-neighbor interpolation. Bicubic interpolation

can be accomplished using either Lagrange polynomials, cubic splines, or cubic convolution

algorithm (Burger et al. (2009)). In contrast to bilinear interpolation, which only takes

4 pixels (2× 2) into account, bicubic interpolation considers 16 pixels (4× 4). Images

resampled with bicubic interpolation are smoother and have fewer interpolation artifacts.

Bicubic interpolation occurs in two steps. According to (Burger et al. (2009)), at first, a

one-dimensional cubic interpolation is performed in the horizontal direction with wcub(x)

over the four pixel intensities I(ui, vj) in four lines. Then, the result Î(x0, y0) is computed

by a one-dimensional cubic interpolation in the vertical direction over the intermediate

results p0...p3. An illustration of this calculation is provided by Figure 5.37.

Icluster = Î(x0, y0) =
3∑
j=0

[
wcub(y0 − vj)

3∑
i=0

[
I(ui, vi)wcub(x0 − ui)

]]
(5.45)

with ui = bx0c − 1 + i and vj = by0c − 1 + i, and where

wcub(x) =


(a+ 2)|x|3 − (a+ 3)|x|2 + 1 for |x| ≤ 1

a|x|3 − 5a|x|2 + 8a|x| − 4a for 1 < |x| < 2

0 otherwise

with a = −0.5 (another common value is −0.75).

The value pj =

3∑
i=0

[
I(ui, vi)wcub(x0 − ui)

]
denotes the intermediate result of the cubic

interpolation in the x direction in line j. The interpolation is based on a 4×4 neighborhood

of pixels and requires a total of 16 + 4 = 20 additions and multiplications. This

computation of bicubic interpolation is on the order of n2 multiplications, thus O(n2)

(Goshtasby (2012)).
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Figure 5.37: Bicubic interpolation in two steps. The discrete image I is to be interpolated
at some continuous position (x0, y0). (a) In step 1, a one-dimensional
interpolation is performed in the horizontal direction with wcub(x) over four
pixels I(ui, vj) in four lines. One intermediate result pj is computed for
each line j. (b) In step 2, the result Î(x0, y0) is computed by a single cubic
interpolation in the vertical direction over the intermediate results p0...p3.
Adapted from Burger et al. (2009).
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5.6.9 Intensity extraction based on weighted area coverage

Another variation of an intensity extraction method can be derived by adjusting weights

due to the area coverage around the central cluster pixel in the following way. This idea

is based on modified code from Illumina’s OLB pipeline version 1.9.4 (Inc. (2011a)).

Icluster = Î(x0, y0) =
1

A

n∑
i=1

wiI(xi, yi) =
1

A

n∑
i=1

wi
[
wcI(xc, yc) + wN

4∑
j=1

I(xNj , y
N
j )
]

(5.46)

where

A = area of coverage

n = number of pixels pA overlapped by A

wi = weight based on overlap between A and the area of pixel pAi

I(xi, yi) = wcI(xc, yc) + wN

4∑
j=1

I(xNj , y
N
j ) (5.47)

where

I(xc, yc) = intensity of cluster pixel covered by A

I(xNj , y
N
j ) = intensity of 4-connected neighbor pixels of pAi

wc = weight of central pixel (xc, yc)

wN = weight of neighboring pixel (xNj , y
N
j )

Figure 5.38 depicts an example. The point p for which the intensity is extracted is

(2.1, 2.4) which is formalized above by (xc, yc). The area A around p is denoted by

the red square. Here n = 6, since 6 pixels are affected by the overlap of A. The

six pixels pAi of p affected by the overlap of A are marked by the blue frames. The

weights wi in Figure 5.38, determined by the overlap between A and the area of pixel

pAi , are w1 = 0.15× 0.85 = 0.1275, w2 = 0.15× 0.65 = 0.0975, w3 = 1.0× 0.65 = 0.65,

w4 = 0.35× 0.65 = 0.2275, w5 = 0.35× 0.85 = 0.2975, and w6 = 1.0× 0.85 = 0.85.

The parameter settings for the HiTS-FLIP pipeline are based on Illumina’s OLB pipeline

version 1.9.4 (Inc. (2011a)):

A = 1.52 pixels

wc = 5.0

wN = 0.9
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Figure 5.38: Intensity extraction based on weighted area coverage. The point p for which
the intensity is extracted is (2.1, 2.4). Area A is denoted by the red frame.
A has size 1.52 pixels. Affected neighboring pixels by the overlap with A are
denoted by the blue frames. Here n = 6, since 6 pixels are affected by the
overlap. The weights wi here are the weights w1 to w6 (red colored areas).
For example, w1 = 0.15× 0.85 = 0.1275.
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5.6.10 Comparison of different intensity extraction methods

The different intensity extraction methods were compared by the correlation to the Kds

measured by HiP-FA as described in section 5.9.1.7.

The underlying data set for this comparison are the data from lane 2 of experiment

18.08.2014. Preprocessing of the tif images was done as described in section 5.2, the cluster

position transformation was performed as described in section 5.3, and normalization of

the cluster intensities was executed as detailed in section 5.5, Shifting of mapped clusters

was done as explained in section 5.4, image outlier detection was carried out as described

in section 5.7, and DNA cluster sequence filtering was applied as stated in section 5.8.

The k-mer ranking was carried out as stated in subsection 5.9.1 but without any cluster

deletion. The Hill based fitting for determining the Kds was done as described in section

5.10.

The results of the comparison are shown in the Table 5.3. The Pearson’s product-moment

correlation coefficients show a high correlation for all methods except for the Gaussian

based intensity extraction method. However, the relative error δ is the smallest for the

intensity extraction method based on weighted area coverage. Therefore, this method

has been chosen for the HiTS-FLIP pipeline with the settings stated in subsection 5.6.9.

method R δ

Nearest neighbor intensity extraction 0.98 38.83%
Gaussian based intensity extraction 0.86 664.27%
Intensity extraction based on average of 2× 2 pixel area 0.98 44.36%
Intensity extraction based on brightest of 2× 2 pixel area 0.98 45.28%
Intensity extraction based on average of 3× 3 pixel area 0.98 54.44%
Bilinear intensity extraction 0.98 50.47%
Bicubic intensity extraction 0.98 35.6%
Intensity extraction based on weighted area coverage 0.99 30.91%

Table 5.3: Comparison of the different intensity extraction methods with respect to the
correlation of Kds and relative errors as measured by HiP-FA as described in
section 5.9.1.7.
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5.7 Image outlier detection

Besides non-even illumination dust particles and air bubbles can also obfuscate cluster

intensities. The contamination by dust particles and air bubbles can vary quite drastically

from experiment to experiment. Dust particles are a contamination appearing as very

bright spots on the tile images as shown by Figure 5.39. Air bubbles reach the flow cell by

the syringe pump system and can sometimes cover a large area of a tile as illustrated by

Figure 5.40. Filtering out clusters affected by dust particles and air bubbles reduces false

positives since their bright appearance is only artificial and not due to a high amount of

bound protein.

Figure 5.39: Dust particles on imaged tiles. (a) and (b) show two images with dust
particles (bright spots) contaminating the imaged tile area.

Figure 5.40: Example of air bubbles covering the imaged tile area. (a) Image where more
than 80% of all the DNA clusters on the tile are affected by the bubble. (b)
Image where a portion of the tile is covered by an air bubble, and ca. 21%
of all the DNA clusters on the tile are affected.
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5.7.1 Detection approach for air bubbles

Since dust particles and air bubbles distinguish themselves drastically by their appearance

and size from DNA clusters and background, they can be easily detected and affected

DNA clusters can be filtered out. The following steps comprise the detection of an air

bubble as illustrated by Figure 5.41.

In step 1, a sharpening filter is applied to the image using a 3 × 3 convolution kernel

increasing contrast and accentuating details. The implementation of the sharpening

filter is based on the method sharpen() from ImageJ’s component ImageProcessor, URL:

http://rsbweb.nih.gov/ij/docs/guide/146-29.html. Then the image is binarized

using Otsu’s method (Otsu (1975)) using the ImageJ plugin implementation by C. Mei et

al., URL: http://rsb.info.nih.gov/ij/plugins/otsu-thresholding.html. Otsu’s

method is a threshold based binarization algorithm that aims to maximize the inter-class

variance and does no require any user defined parameters (Otsu (1975)).

In step 2, a blob detection for identifying particle objects is carried out by connected

component labeling (Chang et al. (2004)), which is implemented in the ImageJ library

IJBlob (Wagner and Lipinski (2013)). The biggest blob is considered as an air bubble.

In step 3, the concave contour line, reaching into the image, is detected.

In step 4, a circle is fitted to the detected bubble that allows to differentiate between all

the pixels that belong to the air bubble and the pixels that lie outside.

Finally in step 5, all pixels belonging to the air bubble (> 30000 pixels) are marked (here

in red) so that they can be distinguished and filtered out.

Figure 5.41: Overview of the different steps in the air bubble detection process.

http://rsbweb.nih.gov/ij/docs/guide/146-29.html
http://rsb.info.nih.gov/ij/plugins/otsu-thresholding.html
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5.7.2 Detection approach for dust particles

The following steps make up the detection of a dust particle as illustrated by Figure 5.42.

In step 1, a sharpening filter is applied to the image using a 3 × 3 convolution kernel

increasing contrast and accentuating details. The implementation of the sharpening

filter is based on the method sharpen() from ImageJ’s component ImageProcessor, URL:

http://rsbweb.nih.gov/ij/docs/guide/146-29.html. Then the image is binarized

using Otsu’s method (Otsu (1975)) using the ImageJ plugin implementation by C. Mei et

al., URL: http://rsb.info.nih.gov/ij/plugins/otsu-thresholding.html. Otsu’s

method is a threshold based binarization algorithm that aims to maximize the inter-class

variance and does no require any user defined parameters (Otsu (1975)).

In step 2, a blob detection for identifying particle objects is carried out by connected

component labeling (Chang et al. (2004)), which is implemented in the ImageJ library IJ

Blob (Wagner and Lipinski (2013)).

In step 3, blobs representing particles are identified by the size of their outer contour line

(between 30 and 30000 pixels) and marked (here in red) as regions to be filtered out.

Figure 5.42: Overview of the different steps in the dust particle detection process.

http://rsbweb.nih.gov/ij/docs/guide/146-29.html
http://rsb.info.nih.gov/ij/plugins/otsu-thresholding.html
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5.8 DNA sequence filtering

It is crucial to include only correctly identified bases in the analysis. Since base calling is

a probabilistic process, a certain threshold needs to be applied in order to confidently

determine a reliable base accuracy.

5.8.1 Per base sequence quality plot

Figure 5.43 shows an overview of the range of quality values across all bases at each

position from the FASTQ file of lane 2 of experiment 18.08.2014. For each position a

BoxWhisker type plot is drawn. According to (Andrews (2010–2015b)) the elements of

the plot are as follows:

� The central red line is the median value

� The yellow box represents the inter-quartile range (25-75%)

� The upper and lower whiskers represent the 10% and 90% points

� The blue line represents the mean quality

� The y-axis on the graph shows the quality scores. The higher the score the better

the base call.

The background of the graph divides the y-axis into very good quality calls (green), calls

of reasonable quality (orange), and calls of poor quality (red). The quality of calls on

most platforms will degrade as the run progresses, so it is common to see base calls falling

into the orange and red area towards the end of a read.
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Figure 5.43: Per base sequence quality plot for lane 2 of experiment 18.08.2014, produced
with the FastQC tool (Andrews (2010–2015a)).
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5.8.2 Per sequence quality scores plot

The per sequence quality score report allows one to see if a subset of the sequences have

universally low quality values (Andrews (2010–2015b)). It is often the case that a subset

of sequences will have universally poor quality, often because they are poorly imaged (on

the edge of the field of view), however such low quality subsets should represent only a

small percentage of the total sequences.

Figure 5.44: Per sequence quality scores plot for lane 2 of experiment 18.08.2014, produced
with the FastQC tool (Andrews (2010–2015a)).
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5.8.3 Phred quality scores

A Phred quality score (Q-score) is a prediction of the probability of an error in base

calling and the most common metric used to assess the accuracy of a sequencing platform

(Inc. (2011b, 2014)). During a sequencing run with the GA-IIx, a quality score is assigned

to each base call for every cluster, on every tile, for every sequencing cycle. The GA-IIx

generates per-cycle BCL basecall files which are then converted to per-read FASTQ files

where both the sequence letter and quality score are each encoded with a single ASCII

character. A high quality score implies that a base call is more reliable and less likely to

be incorrect. Q-scores are defined as a property that is logarithmically related to the

base calling error probabilities P (Ewing and Green (1998)):

Q = −10 log10 P (5.48)

For base calls with a quality score of Q30, one base call in 1000 is predicted to be incorrect

(error probability 0.001). This quality measure for the base call accuracy has been applied

in the HiTS-FLIP pipeline.

5.8.4 Implementation

I implemented the parser of the quality score in Java (Gosling (2000)). The input is a

FASTQ file and the output is the related quality score as integer.



100 Chapter 5: Pipeline

5.9 K-mer ranking

A crucial part besides the cluster position transformation, the normalization against the

uneven illumination bias and the intensity extraction is the ranking of the binding motifs

according to their affinity to the underlying DNA cluster sequence.

5.9.1 Heuristic ranking algorithm

To estimate Kd values for short k-mers contained in longer sequences, one must be able

to assign the binding intensity to the correct k-mer (Nutiu et al. (2011)).

Because the oligonucleotides clustered on the flow cell are relatively short (25 variable

nucleotides insert, but 150 nucleotides in total), it is extremely rare for a specific k-mer

sequence to occur in a cluster more than once, for example roughly 0.1% of 7-mers occur

more than once in any of the clusters (Nutiu et al. (2011)). Because of this fact, Nutiu

et al. employed an iterative algorithm to assign binding intensities to k-mers that works

in the following way:

For each sequence of size k, the median intensity at a GCN4 concentration of 125 nM

was calculated over all clusters containing a certain k-mer or its reverse complement. The

k-mer with the highest median intensity at 125 nM was selected, then its dissociation

constant was determined based on the median intensities, and finally all clusters containing

this k-mer or its reverse complement were removed from further calculations.

Nutiu et al. repeated this procedure iteratively until all remaining k-mers had Kd > 1µM ,

selecting sequences with affinity that could not be explained by occasional overlap with

stronger binding sites. Due to computational limitations, Nutiu et al. only performed the

iterative removal of clusters for 9-mers containing 8-mers that had Kd < 1µM . Likewise,

Nutiu et al. only performed iterative removal of clusters for 10-mers containing 9-mers

that had Kd < 1µM and so on for longer k-mers.

Thus, Nutiu et al. made the assumption that all of the intensity of the clusters containing

the top k-mer comes from binding to that specific k-mer, and not to others. In the case

of 8-mers, for example, 95% of the time there will not be two 8-mers having Kd < 1µM

in the same cluster. After removing clusters containing this k-mer, Nutiu et al. make the

same assumption for the k-mer with the next highest median binding intensity in the

remaining clusters.
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The Nutiu et al. ranking algorithm has the following form.

L: number of k-mers k to be ranked.

N : number of DNA clusters c on one lane.

C: number of different concentrations.

C ′: number of concentrations without concentration level used for ranking.

ic: intensity of DNA cluster c.

ik-list: DNA cluster intensity list of k-mer k at selected ranking concentration.

mL-list: median intensity list of all k-mers at selected ranking concentration.

topk: top ranked k-mer k after each iteration.

topL-list: list of all ranked k-mers.

while L > 0 do

for all k in L do

for all c in N do

if k ∈ c or revcomp(k) ∈ c then

ik-list[indexc] = ic

mL-list[indexk] = median(ik-list)

sort(mL-list)

topk = first(mL-list)

topL-list[indexk] = topk

for j in C ′ do

median(topk)

L = L− 1

N = N − {topk ∈ c or revcomp(topk) ∈ c}

The run time complexity for one iteration is given by:

N ∗ O(lc + lk) + L ∗ O(nk log(nk)) +O(L log(L)) + C ′ ∗ O(ntop-k log(ntop-k)) +O(nc)

= O(lc + lk) +O(nk log(nk)) +O(L log(L)) +O(ntop-k log(ntop-k)) +O(nc)

(5.49)

since for N remaining clusters O(lc + lk) operations have to be done with lc the length of

the cluster c and 2 ∗ lk the length of the k-mer k and its reverse complement to determine

if k or its reverse complement is contained in the cluster sequence, for L remaining k-mers

O(nk log(nk)) median values have to be calculated where each k-mer k has on average

nk intensity values, L many k-mers have to be sorted in O(L log(L)) to get the current

top k-mer and nc many clusters containing the current top k-mer have to be removed
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in O(nc). The time complexity of each loop through the remaining k-mers is mainly

dominated by O(lc + lk) +O(nk log(nk)) which are the most expensive operations. Given

a k-mer of length 11, on average a particular 11-mer or its reverse complement occurs

with the following probability at least once at a certain DNA cluster:

pocc = 1− (
|A|lk − 2

|A|lk
)(n−lk+1) (5.50)

where

A: alphabet of 4 letters.

lk: length of k-mer.

n: number of variable nucleotides per DNA cluster.

For a particular 11-mer and its reverse complement it results in pocc = 0.000007152

or around 179 occurrences of that particular 11-mer per lane.

This shows that the number N of clusters increases fairly slowly since the longer a k-mer

k the fewer clusters can be removed per iteration. The total number L of all possible

k-mers is given by |A|lk . For 11-mers, this is 4194304.

In order to rank all k-mers L, the execution has to iterate at first through n many k-mers,

then through n− 1 many k-mers, and so on which amounts to a quadratic run time as

shown by equation 5.51.

O(n+ (n− 1) + (n− 2) + ...+ 2 + 1) = O(
n× (n− 1)

2
) = O(n2) (5.51)
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5.9.1.1 Optimization of the heuristic ranking algorithm

Figure 5.45 gives an overview of the execution of the optimized ranking algorithm.

Figure 5.45: Overview of the ranking procedure. Gray box: input file consisting of cluster
sequences and related intensities at the different concentration levels. Brown
boxes: Data structures for storing the information from the input file. Array
C stores the cluster sequences, arrays I store the cluster intensities, one array
for each concentration level. Array K contains all the embedded k-mers
from all the cluster sequences from the input file. Green box: Lookup maps
to speed up the processing. The K → C map provides a lookup for a certain
k-mer k for all the clusters c which contain k or its reverse complement.
The C → K map provides for a certain cluster c a lookup for all the k-mers
k that are embedded in the sequence of c. Blue box: Main execution loop
for ranking the k-mers. Purple box: Median intensity calculation of the
k-mers in array K ′ in a parallel fashion. Red box: Sequential part of the
ranking procedure, which includes sorting array M , getting top k-mer and
related median intensities, discarding clusters containing top ranked k-mer,
and updating K ′ with k-mers for which the median intensities need to be
recalculated.
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At the beginning the DNA cluster sequences and the related cluster intensities at the

different concentration levels are read in from a file and stored in the related arrays C

(for the cluster sequences) and I (for the cluster intensities, one array for each concentra-

tion level). In addition array K is created (for all the embedded k-mers in the cluster

sequences). There are several improvements that can be made to speed-up the execution

of the ranking algorithm.

1) Lookup maps

In an initial phase before the ranking starts, two important lookup maps are created

(green colored box in Figure 5.45).

The K → C map provides a lookup for a certain k-mer k for all the clusters c which

contain k or its reverse complement. This lookup helps to calculate the median intensity

values for the k-mers to be ranked much quicker than by looping through k-mers and

clusters. In addition, it gives immediate access to all the clusters that need to be discarded

due to containing the current top ranked k-mer after each ranking iteration.

The C → K map provides for a certain cluster c a lookup for all the k-mers k that are

embedded in the sequence of c. This lookup enables to determine quickly the set of

k-mers for which the median intensities need to be recalculated due to the discarding of

clusters which contained a previously top ranked k-mer.

2) Efficient calculation of median intensity values

The execution time can be reduced to a great extent if only those median intensity values

are recalculated for which the related k-mers have been affected by discarded clusters.

Only in such a situation do the intensity values change. The array K ′ contains the k-mers

for which the intensities need to be recalculated.

3) Parallelization of k-mer intensity calculation

As illustrated by the purple box, the median intensity calculation of the k-mers in array

K ′ can be parallelized for each k-mer k′. The array M which contains all the median

intensity values for the different k-mers k′ can be accessed by index without any blocking

of the various threads.



5.9 K-mer ranking 105

5.9.1.2 Execution time of the optimized heuristic ranking algorithm

Figure 5.46 shows the execution time for one ranking iteration, i.e. determining the

current top k-mer, its median intensity values and discarding clusters, for k-mers of

length 11 nt using around 12 million DNA cluster sequences of length 25 nucleotides

from experiment 18.08.2014. The purple dots at 1 and 4 CPU cores display execution

times measured on an Intel Core i5-200K quad-core processor with 16 GB RAM. As

expected applying parallelization allows to gain roughly a factor of 4 in speed-up. The

blue triangles represent inferred execution times.

Figure 5.46: Speedup of the ranking algorithm from single processor to multiple processors.
The purple dots are measured execution times, the blue triangles represent
inferred execution times.

There are 411 = 4194304 possible 11-mers. Ranking all possible 11-mers using a computing

cluster with 64 CPU cores would take around 27 hours, and with 256 CPU cores around

7 hours.
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5.9.1.3 Implementation

I implemented the optimized heuristic ranking algorithm in C++ (Stroustrup (1986))

using OpenMP (Dagum and Enon (1998)) for parallelization.

The input are

� the length of the k-mer to be ranked

� number of ranked k-mers

� the concentration at which the ranking should be achieved

� the cluster sequences

� the different cluster intensities for the increasing concentrations

The output are the ranked k-mer motifs with their different intensities.

5.9.1.4 Issues with discarding DNA clusters

The total number of all possible 7-mers is 47 = 16384. During the ranking, a k-mer

and its reverse complement is treated equivalent, therefore there would be 16384
2 = 8192

ranking iterations. However, only 4728 ranking iterations can be executed and determine

k-mers since 3464 k-mers cannot be ranked due to a lack of clusters in which they can

occur (4728 ·2+3464 ·2 = 16384 = 47). Thus, in total 42% of all 7-mers cannot be ranked.

The Hamming distance between two strings of equal length is the number of positions

at which the corresponding symbols are different (Hamming (1950)). In other words it

measures the minimum number of substitutions required to change one string into the

other, or the minimum number of errors that could have transformed one string into

the other. In the example here, the top ranked 7-mer TGACTCA was used as reference.

The number of possible mutations mut of a DNA motif m with length l is calculated as

follows:

z: number of nucleotide mutations.

l: length of DNA motif m.

n: sites in m to be mutated.

mut = zn
(
l

n

)
(5.52)

Figure 5.47 displays the accumulated number of discarded clusters during ranking (a),

the loss of 7-mers during ranking which cannot be ranked (b), the total number of 7-mers

that cannot be ranked due to cluster deletion (c), and in percent how many 7-mers with a

certain Hamming distance from the top ranked 7-mer TGACTCA could be processed and

ranked (d). On average, between 15000 and 17000 clusters are discarded while ranking



5.9 K-mer ranking 107

one 7-mer (total number of clusters is 10620667). The analysis is based on the data from

experiment 18.08.2014, lane 2. The cluster position transformation was performed as

described in section 5.3, normalization of the cluster intensities was executed as detailed

in section 5.5, and DNA cluster sequence filtering was applied as stated in section 5.8.

Figure 5.47: Accumulated loss of clusters and 7-mers during ranking, total number of
unrankable 7-mers and percentage of 7-mers that can be ranked grouped by
their Hamming distance from reference 7-mer TGACTCA. (a) Accumulated
number of discarded clusters during ranking. (b) Accumulated loss of 7-mers
during ranking which cannot be ranked anymore due to cluster deletion. (c)
All possible 7-mers and total number of unrankable 7-mers. (d) Percentage
of 7-mers with a certain Hamming distance from the top ranked 7-mer
TGACTCA that could be processed and ranked. Only less than half of all
the 7-mers for each Hamming distance category can be ranked.

Figure 5.48 exemplifies very clearly the underlying issue in discarding DNA clusters. The

three columns represent the k-mer sequence, the reverse complement and the ranking

iteration. In the list of ranked k-mers shown in Figure 5.48 there occurs the 6-mer

submotif AGTCAT, highlighted in yellow, which can be flanked to the left and right

side by other nucleotides. The brown and green boxes display the extensions of the

submotif to the left- and to the right-hand side respectively. The 7-mer motif AAGTCAT

(ATGACTT), emphasized in red, cannot be ranked anymore even though it is a high

affinity motif because there is no DNA cluster available anymore to provide an intensity

for it. The reason is that previously in the ranking process all possible right-hand

extensions by A, C, T and G of the submotif (large green box) were already ranked

(left-hand side is “context-averaged” over A-T) and thus any DNA cluster is eliminated

which could contain the submotif with an one nucleotide right-hand extension. It is the

7-mer motif AAGTCAT, with an extension of A to the left of the submotif AGTCAT,
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that cannot be ranked anymore since all other left-hand extensions of the submotif by G,

C and T (large brown box) occurred in the ranking (right-hand side is “context-averaged”

over A-T) before all the possible right-hand extensions of the submotif were ranked and

consumed all clusters containing AAGTCAT. As a result, the 7-mers:

GAGTCAT

CAGTCAT

TAGTCAT

occur in the ranking, but not

AAGTCAT

which makes it impossible to investigate systematically the effect of mutating the leftmost

nucleotide position. All these 7-mers are important since they share the 5-mer submotif

AGTCA with the top ranked 7-mer TGAGTCA.

Figure 5.48: Discarding DNA clusters during the ranking process leads to unrankable
k-mers. The three columns represent the k-mer sequence, the reverse comple-
ment and the ranking iteration. The submotif AGTCAT is marked in yellow.
Possible right-hand extensions by A, C, T and G of the submotif are shown
in the green box on the right. Left-hand extensions by G, C and T of the
submotif are shown in the brown box on the right. The unrankable k-mer
AAGTCAT is enframed in red. AAGTCAT cannot be ranked anymore
because all clusters that contain this 7-mer are discarded due to previously
ranked 7-mers that occurred in these clusters as well.
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5.9.1.5 Heuristic ranking algorithm without cluster discharge

Since discarding clusters during the k-mer ranking process has the side effect of losing

important k-mers due to the lack of clusters in which they can occur, one approach is to

omit the deletion of clusters entirely. For their ranking algorithm, Nutiu et al. (2011)

made the assumption that the entire intensity of a cluster containing the top k-mer

comes from binding to that specific k-mer, and not to other k-mers embedded in the

cluster. After removing clusters containing this k-mer, Nutiu et al. (2011) make the

same assumption for the k-mer with the next highest median binding intensity in the

remaining clusters. Not deleting any clusters means that they can be reused for the

ranking of the following k-mers which could lead to falsely assigning intensities coming

from higher ranked k-mers. Figure 5.49 illustrates this issue. Here, the two 11-mers

ATGAGTCATTG

and

TATATGAGTCA

share the submotif ATGAGTCA and occur in the same cluster sequence displayed in

Figure 5.49.

Figure 5.49: Overlap of 11-mers occurring in the same cluster sequence.

However, this problem becomes only apparent if higher ranked k-mers exclusively co-occur

with lower ranked k-mers in the same cluster sequences. If a high ranked k-mer only

co-occurs in a small portion of all the cluster sequences in which a lower ranked k-mer is

found, then the influence of the high ranked k-mer is negligible. Using the median for

robust averaging over the collected cluster intensities aids in diminishing the influence

from high ranked k-mers. In addition, the longer the length of the ranked k-mers the

less like it becomes to find clusters in which they co-occur. The longest length of k-mers

which can be selected with a sufficient number of counts given our experiments is 11 nt

(average count number is 30). Since it is well known that flanking nucleotides have a

significant influence on the binding affinity of the TF, larger k-mers can more accurately

capture the binding behavior.

The analysis in Figure 5.50 investigates for all ranked 11-mers with Kd < 1µM (in total

around 20000 11-mers), which share the 8 nt long submotif ATGAGTCA or its reverse
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complement TGACTCAT (resulting in 256 11-mers), how often they occur in the clusters

and how large the fraction of any other 11-mer is that co-occurs with them. In Figure

5.50 the total number of clusters in which the 11-mers sharing the submotif ATGAGTCA

or its reverse complement TGACTCAT occur are shown in light blue, and for each of

these 11-mers the highest fraction of the co-occurring 11-mer is displayed in dark blue.

For the 8 nt long overlapping submotif here the average number of clusters affected by

the highest fraction of co-occurring 11-mers is 33%. Even for a 10 nt long overlapping

submotif, the average number of clusters is only 35%. Therefore, there are always many

more clusters in which the 11-mers do not occur together, thus allowing the 11-mers to

differentiate their intensities.

Figure 5.50: Co-occurrences of 11-mers in clusters.
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5.9.1.6 Run time reduction by omitting cluster deletion

As shown by equation 5.51 the ranking procedure with cluster deletion is quadratic. Since

cluster discharge is unnecessary as demonstrated by the analysis in subsection 5.9.1.5,

the run time of the ranking procedure can be significantly decreased from a quadratic to

a linear run time. With the K → C map as data structure, explained in section 5.9.1.1,

a single iteration is sufficient to rank all k-mers.

5.9.1.7 Validation of ranking by Kds

The underlying data set for the analyses in this section are the data from lane 2 of

experiment 18.08.2014. Preprocessing of the tif images was done as described in section

5.2, the cluster position transformation was carried out as described in section 5.3, the

shifting of mapped clusters was performed as explained in section 5.4, normalization of

the cluster intensities was executed as detailed in section 5.5, intensity extraction was

performed as stated in section 5.6 , image outlier detection was carried out as described

in section 5.7, and DNA cluster sequence filtering was applied as stated in section 5.8.

The Hill based fitting for determining the Kds was done as described in section 5.10.

One way to validate the correctness of the ranking algorithm is by comparing the related

Kds with the Kds measured by an alternative assay for a selection of k-mers covering the

sequence space. The Kds obtained by the heuristic ranking algorithm without cluster

discharge and subsequent affinity quantification were validated with a very sensitive,

medium throughput fluorescence anisotropy (HiP-FA) assay, developed by C.Jung in the

Gaul lab at the Gene Center (Jung et al. (2015)).

Anisotropy can be measured when a fluorescent molecule is excited with polarized light.

The ratio of emission intensity in each polarization plane, parallel and perpendicular

relative to the excitation polarization plane, gives a measure of anisotropy, often referred

to as “fluorescence polarization” (FP) (Chen (2009)). This anisotropy is proportional to

the Brownian rotational motion of the fluorophore and changes in anisotropy occur when

the fluorescent small molecule binds to a much larger molecule affecting its rotational

velocity (Chen (2009)).

The HiP-FA assay utilizes 396 well plates and provides a measure of the rotational speed

of a fluorescently labeled species, which are DNA oligomers here. GCN4 fused with

mOrange was used just like for a HiTS-FLIP experiment and its binding to DNA increases

the molecular weight and thereby decreases the rotational speed of the fluorescently

labeled DNA oligomer, resulting in increased FA (Jung et al. (2015)). The HiP-FA

assay is competitive, in which TF and Cy5-labeled reference DNA are mixed at fixed
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concentrations and embedded together into an agarose gel. In the titration wells of

the plate, the TF concentration is in molar excess over the labeled reference DNA,

thereby ensuring its complete binding to protein (Jung et al. (2015)). The reference

DNA is labeled with Cy5, a dye that proves well suited for FA measurements. Unlabeled

competitor DNA is added on top of the agarose and establishes a concentration gradient

throughout the gel, whose shape changes over time (Jung et al. (2015)). As the competitor

DNA diffuses through the matrix it competes with the Cy5-reference DNA for binding to

the TF, resulting in a dynamically changing FA signal of the Cy5-reference DNA. This

process allows to measure, over time, a continuous titration series within a single well

and results in hundreds of measurement points for fitting binding curves and determining

Kds. Figure 5.51 provides an example for the measurement points and fitted binding

curve regarding ATGACTCA embedded in the oligomer GGTATGACTCATGGCC. The

detection of binding constants of the HiP-FA assay lies within the range of 10−10 to 10−3

molar.

Figure 5.51: Measurement of ATGACTCA embedded in the oligo GGTATGACTCATG-
GCC by the HiP-FA assay (Kd=21.66 nM). The white colored dots denote
measurement points and the red line is the fitted binding curve.

There is an excellent agreement between HiP-FA Kds and HiTS-FLIP Kds for the heuristic

ranking algorithm without cluster discharge with a Pearson product-moment correlation

coefficient R=0.99 and a relative error δ=30.91% which is shown by the correlation plot
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of Figure 5.52 for 25 11-mers with a Kd range from 3.49 nM to 875.36 nM. The Appendix

lists the details on the HiP-FA and HiTS-FLIP Kds (9.4), and the fits and parameters of

the HiTS-FLIP Kds (9.8).

Figure 5.52: Validation of HiTS-FLIP Kds with HiP-FA Kds.
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5.9.2 Maximum likelihood based ranking

5.9.2.1 Notation

The following notation is introduced for describing the probabilistic model in this chapter.

n ∈ {1, ..., N}: Cluster index over all N cluster. N can be here between 80.000 and 350.000

clusters per tile. That is between 120 ∗ 80.000 = 9.600.000 and 120 ∗ 350.000 = 42.000.000

per lane, and between 7 ∗ 9.600.000 = 67.200.000 and 7 ∗ 42.000.000 = 294.000.000 per

flow cell, i.e. N ≈ 107 or 108.

K: Number of k-mers to rank. 4l where l is the length of the k-mer, 4 denoting the four

nucleotides.

w ∈ {1, ..., 4k}: k-mer word index for the different k-mers.

Iexpn : Experimentally measured intensity of cluster n.

Ipredn : Predicted intensity of cluster n by probabilistic model.

Sn: Sequence S of cluster n.

φw: Contribution of the word w to the intensity of a particular cluster containing w by

specific binding (proportional to the occupancy of the TF on this word). Each φw is a

parameter whose value has to be learned from the measured data.
~φ: Vector of all parameters φw, i.e. all embedded words w of a cluster n.

φub: Single parameter capturing the contribution to cluster intensity by unspecific binding

of the TF.

W ⊆ {1, ..., 4k}: Set of words that are potentially contributing to the TF binding.

Wn ⊆W : Set of words from W that occur as substring in the sequence Sn of cluster n:

Wn = {w ∈W | w ⊆ Sn}
M =

∑N
n=1 |Wn|: Number of words to consider when running through all N clusters.

5.9.2.2 Bayesian approach to ranking k-mers

In order to avoid deletion of clusters and thereby losing important k-mers in the ranking,

a probabilistic model based on Bayes’ theorem can be applied. A Bayesian based machine

learning scheme infers each contribution of the embedded k-mer to the related cluster

intensity and yields the highest, estimated likelihood for the k-mer intensity. Bayes’

theorem has the following general form (Weisstein (2009)):

P (model|data) =
P (data|model) · P (model)

P (data)
(5.53)

Regarding HiTS-FLIP experiments, the data consist of all the measured cluster intensities
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Iexpn and the model is composed of all the φw. Thus, the expression becomes:

p(φw|Iexpn ) =
p(Iexpn |~φ) · p(φw)

p(Iexpn )
(5.54)

p(φw|Iexpn ), i.e. the probability for the intensities of the embedded k-mers (words w) in

the cluster sequence given the measured intensity of cluster n, is calculated by Bayes’

rule:

p(Iexpn |~φ): the probability of measuring the intensity I of a cluster n given its sequence

embedded set of k-mers (words w).

p(φw): the probability of the k-mer (word w) to contribute to a certain cluster intensity.

p(Iexpn ): the probability of measuring the intensity I for a certain cluster n.

The parameters of the right-hand side of equation 5.54, i.e. φw, can be approximated by

maximum-likelihood estimation (MLE). The principle of maximum likelihood yields a

choice for the values of all the φw that makes the observed data, the measured cluster

intensities Iexpn , most probable. The MLE can be obtained by maximizing the objective

function or by minimizing the negative objective function. For numerical stability the

logarithm is usually taken of the objective function. The objective function can be

simplified to posterior probability ∝ likelihood · prior probability :

p(~φ|Iexpn ) ∝ p(Iexpn |~φ) · p(φw) (5.55)

The objective function can be iteratively optimized by L-BFGS-B (Limited Memory

Boxed BFGS) (Byrd et al. (1995)), an limited-memory extension of the BFGS (Broy-

den–Fletcher–Goldfarb–Shanno) algorithm (Broyden (1970); Fletcher (1970); Goldfarb

(1970); Shanno (1970)) with simple bound constraints of the form li ≤ xi ≤ ui where li

and ui are per-variable constant lower and upper bounds. The bounds were utilized here

for the ranking of the k-mers in order to enforce that the intensities cannot be negative.

5.9.2.3 Probabilistic model

The following equations make up the model.

Ipredn =
∑
w∈Wn

φw + φub (5.56)

The underlying assumption is that the predicted intensity of a cluster n is the sum of all
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embedded k-mer intensities plus the contribution of some unspecific binding.

p(~φ|Iexpn ) ∝ p(Iexpn |~φ) · p(φw) (5.57)

N∏
n=1

p(~φ|Iexpn ) ∝
N∏
n=1

p(Iexpn |~φ) ·
∏
w∈W

p(φw) (5.58)

NLP = − log
( N∏
n=1

1

σ
√

2π
e−

1
2

(I
exp
n −Ipredn )2

σ2 ·
∏
w∈W

(e−Cφw ·H(φw))
)

(5.59)

=

N∑
n=1

(
− log(

1

σ
√

2π
) +

1

2σ2
· (Iexpn − Ipredn )2

)
+C

∑
w∈W

(
φw +∞ · I(φw < 0)

)
(5.60)

= −N log(
1

σ
√

2π
) +

1

2σ2

N∑
n=1

(Iexpn − Ipredn )2 + C
∑
w∈W

(
φw +∞ · I(φw < 0)

)
(5.61)

= −N log(
1

σ
√

2π
)+

1

2σ2

N∑
n=1

(Iexpn −
∑
w∈Wn

φw−φub)2+C
∑
w∈W

(
φw+∞·I(φw < 0)

)
(5.62)

The likelihood, how the cluster intensity is generated by the embedded k-mers, is modeled

by a Gaussian distribution (Ipredn represents µ as the expected value). The prior constrains

the k-mer intensities to be positive by the unit step function H and models the expected

distribution of the k-mer intensities in such a way that small values are predominantly

likely.

∂NLP

∂φw
=

1

σ2

N∑
n=1

(
(Iexpn −

∑
w∈Wn

φw − φub) · I(w ∈Wn)
)

+ C · 1 (5.63)

∂NLP

∂φub
=

1

2σ2

N∑
n=1

(
2 · (Iexpn −

∑
w∈Wn

φw − φub) · (−1)
)

(5.64)

= − 1

σ2

N∑
n=1

(
Iexpn −

∑
w∈Wn

φw − φub
)

(5.65)
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∂NLP

∂σ
=
N
√

2π

σ
− 1

σ3

N∑
n=1

(Iexpn −
∑
w∈Wn

φw − φub)2 (5.66)

∂NLP

∂φσ
= 0 (5.67)

N
√

2π

σ
− 1

σ3

N∑
n=1

(
Iexpn −

∑
w∈Wn

φw − φub
)2

= 0 (5.68)

σ2
√

2π =
1

N

N∑
n=1

(
Iexpn −

∑
w∈Wn

φw − φub
)2

(5.69)

σ =

√√√√ 1

N
√

2π

N∑
n=1

(
Iexpn −

∑
w∈Wn

φw − φub
)2

(5.70)

5.9.2.4 Implementation

Together with Armin Meier the ML based ranking procedure was implemented in C++

(Stroustrup (1986)). As optimizer L-BFGS-B was applied using the Fortran library by

Zhu et al. (1997) together with the included C wrapper. For parallelization OpenMP

(Dagum and Enon (1998)) was used.

The input are

� the length of the k-mer to be ranked

� the concentration at which the ranking should be achieved

� the cluster sequences

� the different cluster intensities for the increasing concentrations

The output are the ranked k-mer motifs with their different intensities.

5.9.2.5 Run time complexity

The run time complexity for one iteration is given by:

O(K) +O(N) +O(K) +O(K ·M)

= O(K +N +KM)
(5.71)
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since all k-mers K have to be updated after each iteration, σ is evaluated for all clusters

N , the gradient for phiw and for phiub is recalculated for all k-mers K, and finally the

run time complexity of L-BFGS-B for computing the direction pk and xk+1 is O(K ·M),

where M are the last input and gradient differences (usual values are 10 or 20). Since

M � K the run time complexity becomes:

O(K +N) (5.72)

Figure 5.53 shows the execution time for ranking one 11-mer, using around 12 million

DNA cluster sequences of length 25 nucleotides. The purple dots at 1 and 4 CPU cores

display execution times measured on an Intel Core i5-200K quad-core processor with

16 GB RAM. The gained parallel speed up here is 1.79. The blue triangles represent

inferred execution times.

Figure 5.53: Speedup of the probabilistic ranking algorithm from single processor to
multiple processors. The purple dots are measured execution times, the blue
triangles represent inferred execution times.

There are 411 = 4194304 possible 11-mers. Ranking all possible 11-mers using a computing

cluster with 64 CPU cores would last around 3 hours and 37 minutes, and with 256 CPU

cores around 2 hours.
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5.9.3 Discussion

The two different ranking methods, the heuristic ranking algorithm without cluster

discharge and the maximum likelihood (ML) based ranking method, mainly differ in

their underlying assumptions. The heuristic ranking algorithm assumes only one binding

site per DNA cluster sequence to which a GCN4 molecule can bind and thus generate

the related cluster intensity. The ML based ranking method includes in its modeling that

the cluster intensity is produced by multiple k-mers embedded in the cluster sequence

to which GCN4 molecules can bind, thereby partitioning the cluster intensity among

its constituent k-mers in proportion to their binding affinity. In order to compare these

different ranking approaches, the related Kds were validated by the HiP-FA assay (Jung

et al. (2015)).

The underlying data set for the analyses in this section are the data from lane 2 of

experiment 18.08.2014. Preprocessing of the tif images was done as described in section

5.2, the cluster position transformation was carried out as described in section 5.3, the

shifting of mapped clusters was performed as explained in section 5.4, normalization of

the cluster intensities was executed as detailed in section 5.5, intensity extraction was

performed as stated in section 5.6 , image outlier detection was carried out as described

in section 5.7, and DNA cluster sequence filtering was applied as stated in section 5.8.

Ranking was performed with respect to the heuristic ranking algorithm without cluster

discharge as described in subsection 5.9.1.5. The ML based ranking was carried out as

described in section 5.9.2. The Hill based fitting for determining the Kds was done as

described in section 5.10.

Kds were correlated in Figure 5.54. The ML ranking was performed for all quadruple

mutations in relation to the top ranked 11-mer TATGACTCATA (TATGAGTCATA).

Matching this data set with the 25 sequences and HiP-FA validated Kds resulted in 25

11-mers with a Kd range from 3.0 nM to 1171.25 nM. Using these 25 11-mers the Kds

for the heuristic ranking without cluster deletion as well as for the ML based ranking

have an excellent agreement with the HiP-FA measured Kds. The Appendix section 9.7

lists the different Kds. The correlation is slightly higher regarding the heuristic ranking

without cluster deletion than the ML based ranking (R = 0.99 versus R = 0.97). Since

these two different ranking approaches lead to very similar rankings as demonstrated by

the Kd based correlation with an alternative, highly sensitive assay, it can be concluded

that the assumption of one binding site per cluster sequence of length 25 bp as given by

the experimental design is sufficient and the heuristic ranking without cluster deletion is

a good working solution for the k-mer ranking. This finding is in agreement with a recent
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publication by Levo et al. (2015b), which examined the length of the binding site of

GCN4 and showed that the known 9 bp binding site (ATGACTCAT, (Hill et al. (1986)))

together with 3 bp flanks best captured the differential binding of GCN4 observed in

their measurements. Given the length of the GCN4 binding site (up to 15 bp as shown

by (Levo et al. (2015b))) and additional steric hindrance, it seems very likely that only

one GCN4 molecule can bind to a DNA cluster sequence of 25 bp length.

Figure 5.54: Comparison of Kd correlation for heuristic ranking without cluster deletion
and ML based ranking. The ML ranking was performed for all quadruple
mutations in relation to the top ranked 11-mer TATGACTCATA (TAT-
GAGTCATA). Matching this data set with the 25 sequences and HiP-FA
validated Kds resulted in 25 11-mers with a Kd range from 3.0 nM to 1171.25
nM. (a) Correlation of Kds for heuristic ranking without cluster deletion with
HiP-FA Kds (R = 0.99,δ = 30.91%). (b) Correlation of Kds for ML based
ranking method with HiP-FA Kds (R = 0.97,δ = 21.16%). (c) Correlation
of Kds for heuristic ranking without cluster deletion with ML based ranking
(R = 0.99,δ = 10.05%).
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5.10 Affinity quantification

For determining the Kd of a certain k-mer the Hill equation (Hill (1910)) shown in

equation 5.73 was used and fitted to the measured and median averaged fluorescent

intensities of the k-mer.

Fobs = s× [TF ]h

[TF ]h +Kdh
+ o (5.73)

where

Fobs: are the observed fluorescent intensities for a particular k-mer, averaged over all

clusters containing this k-mer, for the different TF concentrations used in the experiment.

s: is a scaling factor obtained from the top binding k-mer and applied for all weaker

binding k-mers.

o: is a global offset used for all k-mers.

[TF ]: TF concentration used in the experiment.

Kd : is the dissociation constant of the TF to the DNA sequence.

h: is the Hill coefficient of binding.

The fitting procedure is as follows:

1) Intensities are transformed so that they are in the range [0− 1], done by dividing all

intensities by the greatest intensity at the greatest concentration. For the experiment

performed at 18.08.2014 this is the greatest intensity at 625 nM.

2) All k-mers are sorted by their intensity at 125 nM in descending order.

3) A global offset o is subtracted from the intensities of each k-mer. This offset is an

estimate for the unspecific binding by using the median of the dimmest 0.1% of all the

ranked k-mers at the smallest concentration. Regarding the experiment 18.08.2014 the

value was o = 0.26793 using the ranked 11-mers for the concentration at 5 nM.

4) The scaling factor s is determined for the first ranked k-mer at 125 nM. This scaling

factor is then fixed and applied for all other k-mers in the same way as done by Nutiu

et al. (2011).

5) The Hill equation 5.73 with the fixed scaling factor s is applied for all k-mers for

getting the Kds.
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5.10.1 Implementation

I used the nls function (Bates and Chambers (1992); Bates and Watts (1988)) from the R

stats package for estimating the parameters of the Hill equation by nonlinear least-squares

(Fox and Weisberg (2010)). As nls option the ”port” algorithm was selected which allows

bounds constraints and uses a quasi-Newton method. The Kd was constrained to be ≥ 1,

the Hill coefficient was constrained to be between [2 ≥ h ≥ 1] and the scaling factor s

was constrained to be ≥ 0.1 for the top k-mer and fixed for all lower ranked k-mers.

5.10.2 Binding curves

Figure 5.55 shows binding curves for selected 11-mers, the Appendix lists the first 50

11-mers and their Kds (see 9.5), and the first 50 11-mers ranked by intensity at 125 nM

(see 9.6). The underlying data set for Figure 5.55 are the data from lane 2 of experiment

18.08.2014. Preprocessing of the tif images was done as described in section 5.2, the

cluster position transformation was carried out as described in section 5.3, the shifting of

mapped clusters was performed as explained in section 5.4, normalization of the cluster

intensities was executed as detailed in section 5.5, intensity extraction was performed as

stated in section 5.6 , image outlier detection was carried out as described in section 5.7,

and DNA cluster sequence filtering was applied as stated in section 5.8. Ranking was

performed using the heuristic ranking algorithm without cluster discharge as described in

subsection 5.9.1.5. The Hill based fitting for determining the Kds was done as described

above with the offset o = 0.26793 as an estimate for the unspecific binding.

It can be noticed that the fluorescent intensities do not follow perfect saturation curves.

This aspect is a lesser issue since the intensities for the different 11-mers differentiate

themselves appropriately relative to one another leading to increasing Kds in proportion

to decreasing binding affinity as validated in subsection 5.9.3 by the excellent correlation

with the HiP-FA assay (Jung et al. (2015)).

An additional validation is provided by Figure 5.56 which shows a very high correlation

of motifs ranked by intensity and by Kd from experiment 18.08.2014.

This result demonstrates that the decrease in binding affinity, which is measured by the

decreasing fluorescent intensities from the DNA clusters, is well captured by the related

Kds. This even suggests that relative affinities based on intensities alone could describe

the binding behavior sufficiently.
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.

Figure 5.55: Binding curves for 11-mers from experiment 18.08.2014. The processing of
the data is described in section 5.10

.

Figure 5.56: Correlation of motifs ranked by intensity and by Kd from experiment
18.08.2014 which results in a Spearman’s rank correlation coefficient of
ρ = 0.96. The processing of the data is described in section 5.10
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5.10.3 Discussion

Using a global offset is based on the observation that at a low concentration level, all

clusters are predominantly bound unspecifically. At higher concentration levels, clusters

with high affinity binding sites are bound by a higher amount of protein at the high

affinity binding sites than clusters with low affinity binding sites where binding still

occurs largely unspecifically. Subtracting the median taken over all cluster intensities per

concentration level results in a decrease of intensities for the top ranked 11-mers at the

highest concentration 125 nM and 625 nM as shown in Appendix section 9.9.

Figure 5.57: Intensity as percentage for three selected 11-mers with Kd=2.8 nM,
Kd=172.9 nM and Kd=765.5 nM. The annotation shows the relative increase
in intensity from 5 nM to 25 nM, 25 nM to 125 nM, and 125 nm to 625 nM.

As shown in Figure 5.57 the relative intensity increase for a strong binder (CGATGACT-

CAC, Kd=2.8 nM) is much lower then for a medium (ATTTGTCATAA, Kd=172.9 nM)

or weak binder (CGTCACCCCAT, Kd=765.5 nM). This outcome highlights that clusters

with high affinity binding sites cannot be normalized for unspecific binding in the same

way as clusters with medium or low affinity binding sites at higher concentrations.
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6.1 Protein expression and purification

The GCN4+mOrange plasmid from the Burge Lab at the MIT, described in (Nutiu et al.

(2011)), was received and used. According to (Nutiu et al. (2011)), a carrier vector was

used to build the GCN4 fused to mOrange sequence. The GFP-GCN4 sequence was

PCR amplified from the vector pME2126 provided by the G. H. Braus laboratory and

inserted in the carrier vector between the Bgl2 and Not1 restriction sites, with a Spe1

site between the GFP and GCN4 coding sequences. Consequently mOrange, missing

the stop codon (Clontech), was introduced in place of GFP. The whole mOrange-GCN4

sequence was then cloned into the pET151/D-TOPO vector (Invitrogen) according to

the manufacturer’s instructions. The final construct generated a 6xHis-mOrange-GCN4

fusion gene that was verified by sequencing and transformed into BL21Star bacteria

(Invitrogen). Protein production was induced by 1 mM IPTG for 4 h at 37◦C. The

protein was purified using a Ni-NTA Fast Start kit (Qiagen) following the manufacturer’s

protocol. The purity of the protein was verified on a NuPAGE 10% Bis-Tris Urea gel

(Invitrogen).

6.2 Library design

The library design was performed as described in (Nutiu et al. (2011)). pChip bot R and

pChip top R were annealed to form adaptor R, and pChip bot L and pChip top R were

annealed to form adaptor L. The samples were heated up at 95◦C in a heat block for

5 min, and then the heat block was left to cool down to 25◦C. The library pChip N25

was ligated (25◦C; 20 min) to the adaptors R and L. The library was PCR amplified (12

cycles). The PCR product was purified on a 6% TBE PAGE gel. The ∼135 bp band was

eluted out from the gel, ethanol precipitated and quantified by Bioanalyzer.

Figure 6.1 shows the complete sequence of a DNA cluster in the flow cell which is 150

nucleotides long. The insert is 36 nucleotides long, with two adapter sequences at each

end (3 nucleotides: AAG, and 8 nucleotides: TAGATCGG) which leave 25 nucleotides
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for the variable region.

Figure 6.1: Complete DNA cluster sequence.

6.3 Cluster generation, linearization, blocking and primer

hybridization

The DNA cluster generation, linearization, blocking and primer hybridization was accom-

plished following (Nutiu et al. (2011)). The DNA clusters were grown using the Illumina

standard protocol, starting from ∼3–4 pM template to give a density of ∼150000-200000

DNA clusters per tile. The DNA clusters were linearized and blocked using standard

protocol. The sequencing primer was hybridized using standard protocol.

6.4 DNA Sequencing

The DNA sequencing was performed in the following way. 36 cycles of sequencing were

performed using standard protocol. At the end of sequencing a final cleavage step was

added.

6.5 GA-IIx modifications

The GA-IIx was modified for allowing lane-by-lane control as described in (Gravina et al.

(2013)).



6.6 XML recipe modifications 127

6.6 XML recipe modifications

According to (Nutiu et al. (2011)) to avoid the delivery of scan mix before protein imaging,

the ImageCyclePump.xml config file (C:\Illumina\SCS2.6\DataCollection\bin\Config)

was modified as follows:

“<ImageCyclePump On=”true” AutoDispense = ”false”>”

was changed to

“<ImageCyclePump On=”false” AutoDispense = ”false”>”.

The different HiTS-FLIP experiments were automatically carried out by special XML

recipes for delivering the varying protein amounts at different concentrations into the

flow cell, applying equilibration time and performing imaging.

6.7 Data processing

For the analyses of the following experiments the data was processed in the subsequent

manner. Preprocessing of the tif images was done as described in section 5.2, the cluster

position transformation was performed as described in section 5.3, the shifting of mapped

clusters was carried out as explained in section 5.4, normalization of cluster intensities by

local background subtraction was executed as detailed in section 5.5, intensity extraction

was performed as stated in section 5.6, image outlier detection was carried out as described

in section 5.7, and DNA cluster sequence filtering was applied as stated in section 5.8.

The ranking procedure was applied as explained in subsection 5.9.1.5. CIF intensities

were produced by the Illumina pipeline (SCS version 2.10 and RTA vrsion 1.13).
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6.8 Listing of GCN4 HiTS-FLIP experiments

The following listing shows all the performed HiTS-FLIP experiments using GCN4 and

mOrange.

� Experiment by Nutiu et al.: Details in Appendix section 9.12.

� Experiment 03.04.2013: Details in Appendix section 9.13.

� Experiment 13.06.2013: Details in Appendix section 9.14.

� Experiment 28.03.2014: Details in Appendix section 9.15.

� Experiment 11.08.2014: Details in Appendix section 9.16.

� Experiment 18.08.2014: Details in Appendix section 9.17.

� Experiment 12.02.2015: Details in Appendix section 9.18.

� Experiment 06.03.2015: Details in Appendix section 9.19.

� Experiment 14.04.2015: Details in Appendix section 9.20.
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6.9 Discussion

Reviewing all the experiments and the data of lane 2 from Nutiu et al. (2011) makes

apparent that the experiment from 18.08.2014 has been overall the most successful result.

In the intensity course for this experiment I can observe a saturation occurring for the

best 8-mer binding motif ATGACTCA (TGAGTCAT) and a steep decline in intensities

over the first 20 ranks that flattens out into unspecific binding. The binding curve for the

top 8-mer demonstrates saturation as I would expect it since the binding sites should all

be eventually occupied fully - if no artificial aggregation happens. Weaker binding sites

that appear at lower rank order do not display any saturation. The half-sites TGA(C/G)

which are bound by dimeric GCN4 are strongly enriched and a first decrease is observable

towards the 200th rank. Similarly, the Hamming distance from the best 8-mer binder,

ATGACTCA (TGAGTCAT), increases in general towards the 200th rank since the more

dissimilar the motifs are compared to the best binder, the weaker the binding affinity and

the further down in the ranking they occur. The striking antagonistic peaks, correlating

with the motifs (GA)GTGT, are discussed in section 7.5 in more detail.

The HiTS-FLIP experiment by Nutiu et al. (2011) can be regarded as the second best

result since it shows the attributes connected to a valid outcome as discussed for the

experiment from 18.08.2014 however with less specificity and with the application of a

washing step after each pump-in of protein concentration. At higher concentrations 125

nM and 625 nM the decline in intensity is much less steep, and the overall intensity is a

factor around 5-6 higher than in the experiment from 18.08.2014. The other diagnostic

plots reveal a similar trend to the experiment from 18.08.2014.

What is the reason for the successful experiment from 18.08.2014? Why did all the

other experiments fail? There are the following differences between the experiments from

03.04.2013, 13.06.2013, 28.03.2014 and the experiments from 11.08.2014 and 18.08.2014.

1) Use of different primer

A different primer, i.e. the Illumina read 1 sequencing primer, has been applied for a

more efficient resynthesis of the second DNA strand. An ineffective resynthesis leading

to a decreased amount of dsDNA after the sequencing step in the HiTS-FLIP protocol

is the likely cause for the massive unspecific binding, i.e. all DNA clusters and related

8-mer motifs are bound equally resulting in an uniform intensity as exemplified with

the intensity course of the experiment from 06.03.2013. If there is less dsDNA than the

specific binding of GCN4 must be drastically reduced. Therefore, much lower intensity

levels should be displayed in the intensity course plot. In contrast, much higher intensities

can be observed, for the concentrations at 125 nM and 625 nM by more than a factor of 10.
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Thus, there is not only a reduction in specific binding but a massive increase in unspecific

binding that affects various different DNA clusters. This could arise from the electrostatic

interaction between the negatively charged phosphate groups of the DNA backbone and

the positively charged GCN4 molecules. Another possibility is that single-stranded DNA

or at least only partially double stranded DNA exhibits a higher flexibility than fully

double stranded DNA, and thus the close proximity in the region of amplified DNA

clusters could lead to inter-chain base pairing forming a mesh which provokes unspecific

aggregation of GCN4 molecules. Moreover, intra-chain base pairing and base stacking

interactions of single stranded DNA could also form individual structures which decrease

specific binding.

2) Change of flow cell buffer

In order to avoid nonspecific interaction of proteins with the surface of the flow cell

reaction chamber, BSA (bovine serum albumin) is commonly used as blocking reagent

derived from the serum of cows. In addition, Tween-20 (Polysorbate-20) is a non-ionic

detergent and can help to prevent nonspecific binding. DNA-protein interactions is mostly

driven by interactions with phosphates and in order to avoid breaking these interactions

by too much salt 150 mM NaCl was used here. In the experiments from 11.08.2014 and

18.08.2014 additionally MgCl2 and KCl was added to the running buffer. Magnesium

ions prevent nonspecific electrostatic interactions between protein molecules and DNA

in solution and thus enhances sequence-specific DNA binding. An additional effect is

achieved by potassium chloride (KCl) ions. In Moll et al. (2002), it was shown that

magnesium and potassium chloride ions prevent nonspecific electrostatic interactions

between CREB and DNA in solution.

3) Quality control for dsDNA resynthesis

In the experiments from 11.08.2014 and 18.08.2014, a new quality control was integrated

to test the resynthesis of the second DNA strand. A primer (0.01 µM) with an Alexa-like

dye (detectable in the C channel) was hybridised to the flow cell primer oligos before the

resynthesis. This primer should be displaced by Klenow polymerase if the resynthesis

occurs at the related DNA cluster.

4) Different fluidics setup

In (Gravina et al. (2013)), the authors describe how the GA-IIx can be modified to

enable lane-by-lane sequencing. For the experiment from 11.08.2014 (and the following

experiments) this modification was carried out.
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The differences between the experiments from 12.02.2015, 06.03.2015 and 14.04.2015

compared to the experiment from 18.08.2014 were the following:

1) Ten concentrations

For the experiments 12.02.2015, 06.03.2015 and 14.04.2015 ten concentrations instead

of five were used. In the experiments from 06.03.2015 and 14.04.2015 after the first five

concentrations the second DNA strand of the clusters was denatured and resynthesized.

2) Higher concentration of the fluorescent primer for dsDNA quality check

In the experiments from 11.08.2014 and 18.08.2014, only 0.01 µM of the primer with the

Alexa-like dye was used. In the experiments from 12.02.2015, 06.03.2015 and 14.04.2015

0.1 µM was used.

6.10 Comparison with experiment from 18.08.2014

In the following, the experiments from Nutiu et al. (2011), 13.06.2013, 12.02.2015,

06.03.2015 and 14.04.2015 are compared with the experiment from 18.08.2014 regarding

the behavior of unbound GCN4, the behavior of unspecific GCN4 binding, cluster density

per tile and the template density per cluster.
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Figure 6.2: Behavior of unbound GCN4 compared for different experiments.

The global background in Figure 6.2 is calculated by dividing each tile image into 32 x

32 pixel regions, taking the mean of the dimmest 20 pixels and then taking the median

over all these region means. These tile medians are averaged over the entire lane and
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produce the global background for each concentration step. The strongest increase in

unbound GCN4 molecules occurs for the experiment from 13.06.2013. I have no expla-

nation for the drop in intensity at the highest concentration 625 nM. The experiment

from 18.08.2014 as well as the experiments from 2015 show only a slight increase in

unbound GCN4 molecules related to the starting amount of unbound GCN4 molecules.

One possible explanation for seeing the highest amount of unbound GCN4 molecule in

the experiment from 13.06.2013 could be that the unspecific binding is also the high-

est in the experiment from 13.06.2013 and due to dissociation from these unspecifically

bound DNA clusters the amount of unbound GCN4 molecule near the clusters is increased.

[GCN4−mOrange] (nM)

10−1 100 101 102 103

in
te

ns
ity

 −
 lo

ca
l b

g

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

●
●

●

●

●

● ● ● ● ●
● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ●

●

●

●
●

●

●

●

Exp.13.06.2013, lane 4
Exp.18.08.2014, lane 2
Exp.12.02.2015, lane 2
Exp.06.03.2015, lane 2
Exp.14.04.2015, lane 2
Exp.Nutiu et al., lane 2

Figure 6.3: Behavior of unspecific GCN4 binding compared for different experiments.

In Figure 6.3 the T-channel median intensity calculated over all DNA clusters of the

entire lane is used here as an approximation of the unspecific binding of GCN4. The

largest increase can be seen for the experiment by Nutiu et al. (2011) and the experiment

from 13.06.2013. The experiment from 18.08.2014 shows no increase.

The cluster density per tile varies slightly among the experiments as shown by Figure 6.4

but to an insignificant degree. Regarding the experiments from 2013, 2014 and 2015, the

sequencing protocol was the same and the slight increase could be due to differences in

sequencing kits.
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Figure 6.4: Cluster density per tile compared for different experiments.

13.06.2013 18.08.2014 12.02.2015 Nutiu et al.

0

500

1000

1500

2000

2500

1199
1100

1863.5

2250

experiment

un
no

rm
al

iz
ed

 in
te

ns
ity

Exp.13.06.2013, lane 4
Exp.18.08.2014, lane 2
Exp.12.02.2015, lane 2
Exp.Nutiu et al., lane 2

Figure 6.5: Template density per cluster compared for different experiments.

The assumption for Figure 6.5 is that the intensity of a DNA cluster of a sequencing

image would be all the brighter the higher the density of the templates in this cluster

is. As shown in Figure 6.5 the A-channel median intensities of all the clusters from the

second sequencing cycle are compared across the different experiments. This seems to be

the greatest difference regarding the experiment from 12.02.2015.





7 Biological results

7.1 Data processing

For the insights and findings described in this chapter, the data from lane 2 of experiment

18.08.2014 is processed in the following manner. Preprocessing of the tif images was

done as described in section 5.2, the cluster position transformation was performed as

described in section 5.3, the shifting of mapped clusters was carried out as explained in

section 5.4, normalization of the cluster intensities was executed as detailed in section 5.5,

intensity extraction was performed as stated in section 5.6 , image outlier detection was

carried out as described in section 5.7, and DNA cluster sequence filtering was applied

as stated in section 5.8. The ranking procedure was applied as explained in subsection

5.9.1.5. The Hill based fitting for determining the Kds was done as described in section

5.10. See the Appendix section 9.10 for a summary of the parameters, input and output.

7.2 Consistency of results from experiment 18.08.2014

Besides the excellent correlation of Kds shown in section 5.10, ranking k-mers with

increasing length demonstrates the consistency of the experimental results with known

and well established scientific findings regarding the binding behavior of GCN4 as

highlighted by the Figure 7.1.

The motif TGAC is the top ranked 4-mer. Biochemical and crystallographic analysis

of a complex containing GCN4 bound to the AP-1 site by (Ellenberger et al. (1992a);

Sellers et al. (1990a)) has indicated that the optimal half-site is TGAC.

The motif ATGAC is the top ranked 5-mer. (Sellers et al. (1990b)) showed for the first

time that the optimal half-site is ATGAC, not ATGAG. In (Stanojevic and Verdine

(1995)), it was shown experimentally by a DNase I protection assay that GCN4 binds more

strongly to 5’-ATGAC (the consensus half site) than to 5’-ATGAG (the non-consensus

half site), δTm ca. 43◦C, Tm half-melting transition.

The known 6-mer consensus motif of GCN4, 5’-TGACTC-3’ as discovered by (Arndt and

Fink (1986); Gartenberg et al. (1990)) is the top ranked 6-mer.
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Figure 7.1: Ranking k-mers with increasing length yields TGAC as strongest binding
4-mer, the preferred half-site by GCN4, optimal and subsequently extensions
of it.

The pseudosymmetric sequence 5’-TGA(C/G)TCA-3’ has been identified from a com-

parison of enhancer sites in GCN4-dependent promoters (Hill et al. (1986)) and from in

vitro selection experiments (MAVROTHALASSITIS et al. (1990); Oliphant et al. (1989)).

The heptanucleotide consensus motif TGACTCA is the top ranked 7-mer here.

GCN4 recognizes the pseudo-symmetric 9 bp AP-1 (ATGACTCAT) site in vivo (Hill

et al. (1986)) which is the top ranked 9-mer.

All these results are further evidence that the ranking yields biological accurate top

binders.

Figure 7.2 shows the enrichment of TGAC, TGAG and TGAT among the first 100

8-mers ranked at 125 nM. Since TGAC is the preferred half-site by GCN4, it is strongly

overrepresented.
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Figure 7.2: Enrichment of GCN4 dimeric half-sites among the first 100 8-mers ranked at
25 nM.

In Figure 7.3 the sequence logo for the top 100 9-mers ranked at 125 nM is compared with

the PWM of GCN4 from the ScerTF database (Spivak and Stormo (2012)), a comprehen-

sive database of 1226 motifs for Saccharomyces cerevisiae TFs from 11 different sources.

The creators of the ScerTF database identified a single matrix for each TF that best

predicts in vivo data by benchmarking matrices against chromatin immunoprecipitation

and TF deletion experiments. In addition, in vivo data were also used to optimize

thresholds for identifying regulatory sites with each matrix.
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Figure 7.3: Sequence logos for GCN4 9-mers. (a) Sequence logo for GCN4 from the
ScerTF database (Spivak and Stormo (2012)). (b) Sequence logo created
from the top 100 9-mers ranked at 125 nM.
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7.3 Single and double mutation analysis

Figure 7.4 displays all single mutations as ∆∆G values of the first ranked 11-mer

TATGACTCATA (reverse complement TATGAGTCATA). The ∆∆G values to all other

three mutated nucleotides were averaged for each position. The ∆∆G value, the change

in Gibbs free energy (or the binding affinity) is defined by:

∆G = RT ln(Kd) (7.1)

∆∆G = ∆G(k)−∆G(r) = RT ln(
Kdk
Kdr

) (7.2)

where

R: ideal gas constant: 8.3144598 J/(molK)

T : temperature (here 293.15 K for 20◦C)

∆G(k): Gibbs free energy of a ranked k-mer k.

∆G(r): Gibbs free energy of the top ranked k-mer r, used as reference.

Kdk: Kd of ranked k-mer k.

Kdr: Kd of top ranked k-mer r, used as reference.

It is clearly visible that the left half-site is more important for binding since mutating

nucleotides of this site disrupts the binding affinity more strongly than mutations occur-

ring in the right half-site. In Sellers et al. (1990b); Stanojevic and Verdine (1995) it was

demonstrated experimentally that the optimal half-site is 5’-ATGAC and not 5’-ATGAG.

The quantitative analysis of Ellenberger et al. (1992b) elucidated that Arg243 in the

monomer bound to the cognate half site contributes more to the specific interaction than

the other monomer. According to Ellenberger et al. (1992b) the Arg243 side chain makes

markedly different contacts at the central base pair: in the specifically bound monomer,

Arg243 makes bidentate hydrogen bonds to N7 and O6 of the central guanine, whereas

Arg243 in the other monomer donates hydrogen bonds to the DNA phosphodiester

backbone.

Examining each single mutation individually shows large differences on the binding

affinity of GCN4. Figure 7.5 lists each mutation of the top ranked 11-mer (a), and a

comparison is provided to the sequence logo (Schneider and Stephens (1990)) of the PWM

of GCN4 from the ScerTF database (Spivak and Stormo (2012)) regarding the nucleotide
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Figure 7.4: All single mutations of first ranked 11-mer TATGACTCATA (TATGAGT-
CATA) as ∆∆G values averaged over all three mutated nucleotides.

probability for the different positions (b). A sequence logo displays the frequencies of

bases or amino acids at each position, as the relative heights of letters, along with the

degree of sequence conservation as the total height of a stack of letters, measured in

bits of information (Schneider and Stephens (1990)). The bigger the letter appears at a

certain position in the sequence logo of Figure 7.3 and the higher the probability of the

nucleotide in Figure 7.5 (b), the smaller the related ∆∆G value in Figure 7.5 (a). The

probabilities are listed in Appendix 9.11. Using the positions of the 11-mer:

Position 2: mutation A → G: lowest ∆∆G value (1.53).

Position 3: mutation T → A,C,G: only high ∆∆G values (9.83, 11.52, 13.29).

Position 4: mutation G → T: lowest ∆∆G value (7.0).

Position 5: mutation A → C,G,T: only high ∆∆G values (15.43, 12.64, 14.37).

Position 6: mutation C → G: lowest ∆∆G value (0.0).

Position 7: mutation T → A,C,G: only high ∆∆G values (7.22, 11.32, 7.96).

Position 8: mutation C → A: lowest ∆∆G value (3.43).

Position 9: mutation A → T: lowest ∆∆G value (6.44).

Position 10: mutation T → C: lowest ∆∆G value (1.82).

This agreement is further evidence that the HiTS-FLIP Kds are valid and very accurate.
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Figure 7.5: All single mutations of first ranked 11-mer TATGACTCATA (TATGAGT-
CATA) as ∆∆G values and comparison to the PWM of GCN4 from the
ScerTF database (Spivak and Stormo (2012)). (a) All single mutations of
first ranked 11-mer TATGACTCATA (TATGAGTCATA) as ∆∆G values.
(b) Probabilities from the GCN4 PWM from the ScerTF database (Spivak
and Stormo (2012)).
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In the Figure 7.6 all single and double mutations of the first ranked 11-mer TATGACT-

CATA (TATGAGTCATA) with their related ∆∆G values are displayed. The single

mutations occur on the antidiagonal, on which the double mutations in the lower and

upper triangular matrix are symmetrically mirrored. The heat map shows again the left

half-site is more important for binding than the right half-side. Double mutations have

the most detrimental effect on the binding if they mutate both half-sites. The finding

was pointed out by Nutiu et al. (2011) which suggested a model in which a substitution

at one position in a half-site tends to weaken the interaction of the associated GCN4

monomer with other positions in the same half-site, perhaps through a subtle protein

conformational change, making interactions between the other monomer and half-site

more critical.

To pick one example, an interesting aspect regarding compensation and long range

influence is visible for

mutating A2 → G and mutating C8 → A (∆∆G = 5.42 kJ/mol).

The other mutations at position 2

A2 → C (∆∆G = 7.51 kJ/mol), and

A2 → T (∆∆G = 10.44 kJ/mol)

have a more weakening effect on the binding energy.

Figure 7.7 shows a heat map where the values are calculated as ∆∆G(ki,j)− (∆∆G(ki) +

∆∆G(kj)), where i and j are the positions in the first ranked 11-mer TATGACTCATA

which are mutated.

Having a higher ∆∆G value here means that the double mutation has a stronger

detrimental effect on binding than the two single mutations would provoke. This effect

only occurs for the positions 6 and 7, or 6 and 8.

C6 → G and T7 → A or T7 → G.

C6 → G and C8 → G.

Having a lower ∆∆G value here means that the double mutation has a less detrimental

effect on binding than the two single mutations would provoke, and thus hints at a

synergistic effect linking two nucleotide positions.

Neighboring effects between dinucleotides are clearly apparent, more strongly in the left

half-site than the right half-site. The effect concerns most strongly the positions 3, 4

and 5 in the left half-site. There are long-range effects visible between the two GCN4

half-sites related to positions 3, 4 and 5 in the left half-site and positions 7, 8 and 9 in

the right half-site.
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Figure 7.6: All single and double mutations of first ranked 11-mer TATGACTCATA
(TATGAGTCATA).
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Figure 7.7: Effect of double mutations in comparison to individual single mutations. The
values in the heat map are calculated as ∆∆G(ki,j)− (∆∆G(ki) + ∆∆G(kj)),
where i and j are the positions in the first ranked 11-mer TATGACTCATA
which are mutated.
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7.4 Influence of flanking nucleotides on binding affinity

If the inner positions 3, 4 and 8, 9 of the top 11-mer TATGACTCATA is mutated, the

binding affinity is drastically changed (Figure 7.8 (a)). If the mutations occur in the

flanking region (positions 1, 2 and 10, 11), the binding affinity is gradually modulated

from 1.56 Kd to 552.51 Kd (Figure 7.8 (b)), more than a 100-fold in total. Therefore, the

known 9-mer PWM (Spivak and Stormo (2012)) is insufficient for describing the binding

affinity of GCN4, and as the HiTS-FLIP data demonstrate the 11-mer TATGACTCATA

together with the mutations in the flanking regions provide the spectrum of binding

affinities of which GCN4 is capable of. This finding is related to (Levo et al. (2015a))

where it was demonstrated that flanking sequences of core binding sites affect the binding

of GCN4 (flanking 3-mers besides the 9-bp core motif) using a novel experimental assay

termed BunDLE-seq.

Selecting a few mutated 11-mers highlights the influence of the nucleotides from the

flanking region as well as the sensitivity with which HiTS-FLIP is able to measure Kds.

In Figure 7.9 (a) the nucleotide at position 1 (upper four 11-mers) is changed (T to G,

A, and C), and reveals subtle differences in Kds. The nucleotide at position 2 (lower four

11-mers) is changed (A to G, C, and T), provoking larger differences in Kds. Changing

T to C at position 1 of TTTGACTCATA (bottom 11-mer) has similar strength in Kd

change than the mutation occurring at position 2, emphasizing the importance of the

outer flanking position. In Figure 7.9 (b) same scenario as (a) but with mutations taking

place in the right flank. Changing the nucleotide at position 11 (upper four 11-mers)

from A to C,G and T invokes a 2-fold change in Kds (Kd=1.56 nM to Kd=4.97 nM).

Mutating the nucleotide at position 10 (lower four 11-mers) from T to C, G and A

provokes larger differences in Kds. However, changing A to G at position 11 resulting

in TATGACTCAAG (bottom 11-mer) increases the Kd=17.04 nM to Kd=32.38 nM by

almost 2-fold, emphasizing again the importance of the outer flanking position for the

binding affinity.
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Figure 7.8: Effect of quadruple mutations. (a) Mutations occurring at positions 3, 4 and
8, 9 (TA-NN-ACT-NN-TA), and (b) in flanking positions 1, 2 and 10, 11
(NN-TGACTCA-NN) of top 11-mer.
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Figure 7.9: Details regarding the effect of flanking nucleotides on binding affinity shown
by selected 11-mers. (a) Mutations occurring in the left flank, (b) Mutations
occurring in the right flank.
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7.5 Discovery of new GCN4 binding motifs

In the ranking conducted on the data from experiment 18.08.2014, very unique antagonistic

peaks could be observed as shown by Figure 7.10.

Figure 7.10: 8-mers ranked at 25 nM of experiment 18.08.2014 with antagonistic peaks.

In Figure 7.11, the peaks are annotated and the corresponding 8-mer motifs are listed. The

submotif GTGT occurs in all of these peaks. The hypothesis is that at low concentrations

GCN4 occurs mainly as monomer and binds in this oligomerization state specifically

to the motif GTGT. At higher concentrations GCN4 has largely dimerized and occurs

predominantly as dimer binding specifically to motifs containing the half-site TGAC (or

a close derivative).

Correlating the occurrence of intensity down peaks at 625 nM with the occurrence of the

submotif GTGT yields a perfect agreement (Spearman rank correlation coefficient ρ = 1),

Figure 7.12. Wherever there is the submotif GTGT occurring, there is an intensity down

peak at 625 nM. Down peaks have been determined by fitting a cubic smoothing spline to

the ranked 8-mer intensities and classifying the intensity as a down peak if it lies below

the fitted spline line. There are five exceptions:

rank 36: TGACGTCA (TGACGTCA)
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Figure 7.11: 8-mers ranked at 125 nM of experiment 18.08.2014 with annotations of the
peaks.

The 8-mer contains the optimal half-site TGAC and can be classified rather not as a

down peak (Figure 7.12, first green dot).

rank 48: TGACGTGT (ACACGTCA)

Here the 8-mer contains GTGT but also the optimal half-site TGAC, and cannot really

be regarded as a down peak (Figure 7.12, second green dot).

rank 103: AAAAAAAA (TTTTTTTT)

Here, clearly a down peak is realized (Figure 7.12, third green dot) but GTGT does not

occur as submotif. The most likely explanation is that GCN4 binds to this stretch of

adenine (or thymine) nucleotides as a monomer as well.

rank 276: AAAAAAAT (ATTTTTTT)

Here, clearly a down peak is realized (Figure 7.12, fourth green dot) but GTGT does not

occur as submotif. A possible explanation is that GCN4 binds to this stretch of adenine

(or thymine) nucleotides as a monomer as well.

rank 282: AGATTGTA (TACAATCT)

Here, the submotif GATTGT is a degenerated version of GAGTGT and seems to be

bound by GCN4 likewise.

Similarly, correlating the occurrence of intensity up peaks at 625 nM with the occurrence
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Figure 7.12: Rank correlation between intensity down peaks occurring at 625 nM and
the occurrence of the submotif GTGT. The yellow lines denote intensity
down peaks at 625 nM, green lines are the exceptions as discussed above.

of the submotif TGAC yields a perfect agreement (Spearman rank correlation coefficient

ρ = 1), Figure 7.13. Wherever there is the submotif TGAC occurring, there is an intensity

up peak at 625 nM.

Ranking k-mers of different length (4, 5 nt and so on) at concentration 5 nM and selecting

the top ranked k-mer for which an intensity down peak at 625 nM occurred leads to the

following result (Figure 7.14). For k-mers of length greater 8 nt, no intensity down peaks

at 625 nM or intensity up peaks at lower concentration could be observed anymore.

Selecting the first 100 occurrences of 8-mers containing the submotif GTGT and aligning

them on this submotif results in the sequence logo shown in Figure 7.15. Preferably, the

left flank is made up of GA or GT, and the right flank A or G and T or A.

The lower the concentration of GCN4 is, the more the ratio of monomers and dimers

should be shifted towards monomers. The more monomers occur in the flow cell, the

higher the amount of bound DNA clusters containing the motif GTGT in their sequence.

Therefore, a motif enrichment of GTGT should be visible in the ranking the lower the

concentration is at which the ranking takes place, which is displayed in Figure 7.16.
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Figure 7.13: Rank correlation between intensity up peaks occurring at 625 nM and the
occurrence of the submotif TGAC. The brown lines denote intensity up
peaks at 625 nM.

Figure 7.14: Extension of submotif GTGT.
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Figure 7.15: Sequence logo for the submotif GTGT.

Figure 7.16: Enrichment of GTGT among the first 100 8-mers ranked at different con-
centrations.
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7.6 Literature based evidence for GTGT affinity and monomer

binding

When unfolded proteins accumulate in the endoplasmic reticulum (ER), a signal is sent

across the ER membrane into the nuclear and cytoplasmic compartments. There, effector

proteins respond by upregulating the transcription of a characteristic set of target genes

and slowing general translation, and the cell is enabled to tolerate and survive conditions

which compromise protein folding in the ER. This reaction to ER stress is known as

the unfolded protein response (UPR), a signal transduction pathway that communicates

between the ER and the nucleus (Patil and Walter (2001)). In (Patil et al. (2004)), the

authors analyzed the promoters of UPR target genes computationally, identifying as

candidate upstream activating sequences (UASs) short sequences that are statistically

overrepresented. They tested the most promising of these UASs for biological activity,

and identified two novel unfolded protein response elements (UPREs), which are necessary

and sufficient for UPR activation of promoters. (Patil et al. (2004)) demonstrated that

Gcn4p is required for normal induction of UPR transcription, both in the context of

artificial promoters containing any of the known UPREs and in the context of the native

promoters of most target genes. Both Hac1p and Gcn4p bind target gene promoters to

stimulate transcriptional induction, and UPRE-2 can be activated by Gcn4p alone, and

it is bound by Gcn4p either as a homodimer or a monomer (Patil et al. (2004)). Both

UPRE-1 and UPRE-2 contain GTGT as submotif as shown in Figure 7.17.

Figure 7.17: Multiple alignment of UPRE-1 and UPRE-2 from three budding yeasts.
(a) A segment of the KAR2/YJL034W promoter and homologs. The core
sequence of UPRE-1 is indicated. (b) A segment of the ERO1/YML130C
promoter and homologs. The core sequence of UPRE-2 is indicated. Figure
adapted from Patil et al. (2004).
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In (Fordyce et al. (2012b)) it was shown by using MITOMI (mechanically induced

trapping of molecular interactions) that Hac1, a bZIP TF like GCN4, possesses two

distinct binding modes: (1) to short (6-7 bp) UPRE-2-like motifs (containing GTGT)

and (2) to significantly longer (11-13 bp) extended UPRE-1-like motifs.

Figure 7.18: Nucleotide binding preferences of Hac1 as affinity logos (Foat et al. (2006))
derived from relative affinities. (a) Affinity logo for UPRE-2. (b) Affinity
logo for xcUPRE-1. Figure adapted from Fordyce et al. (2012b).

Cranz et al. (2004) demonstrated experimentally that GCN4 can bind to DNA as unfolded

monomeric and folded dimeric derivatives of GCN4. The association rate of the monomer

is virtually the same as that of the dimer, 5 × 108 M−1 s−1 (Cranz et al. (2004)).

Because the rate of dimerization of GCN4 is slower (1.7 × 107 M−1 s−1) than the rate of

DNA association, the formation of the dimeric GCN4-DNA complex through consecutive

binding of two monomers (monomer pathway) is faster when starting from free monomers.

Thus, if GCN4 occurs largely as monomers, the monomer DNA binding pathway is

preferred. The following Figure, adapted from (Cranz et al. (2004)), shows that a GCN4

monomer mutant can bind to DNA in a stable manner. CREF19 is a double-stranded 19-

mer oligonucleotide containing the CRE site with the fluorescence marker NBD attached

to a phosphorothioate bond preceding the recognition site. C62GCN4one−legSS is a monomer

derivative of the wild type GCN4 which makes contact with only one half-site.
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Figure 7.19: GCN4 monomer binding to DNA. Reaction of 35 nM one-legged derivative
C62GCN4one−legSS with 35 nM CREF19. Figure adapted from (Cranz et al.
(2004)).
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Repurposing an Illumina GA-IIx NGS sequencing machine, it is possible to measure in

parallel binding events to hundreds of millions of DNA clusters at equilibrium. This

enables the measurement of accurate dissociation constants for the entire sequence space

of all possible mutations up to a k-mer length of 12 nucleotides as shown by Nutiu et al.

(2011). My approach of applying phase-correlation to estimate the relative translative

offset between the observed tile images and the template images omits resequencing

and thus allows to reuse the flow cell for several HiTS-FLIP experiments, which greatly

reduces cost and time. Instead of using information from the sequencing images like Nutiu

et al. (2011) for the normalization of cluster intensities which introduces a nucleotide

specific bias, I estimate the cluster related normalization factors directly from the protein

images which captures the non-even illumination bias more accurately and leads to an

improved correction for each tile image. My analysis of the ranking algorithm by Nutiu

et al. (2011) has revealed that it is unable to rank all measured k-mers. Discarding all

the clusters related to previously ranked k-mers has the side effect of eliminating any

clusters on which k-mers could be ranked that share submotifs with previously ranked

k-mers. This shortcoming affects even strong binding k-mers with only one mutation

away from the top ranked k-mers. My analysis shows that omitting the cluster deletion

step in the ranking process overcomes this limitation and can rank the full spectrum of

all possible k-mers. In addition, the performance of the ranking algorithm is drastically

reduced from a quadratic to a linear run time. The TIRF optics of the GA-IIx allows to

avoid any washing step, done by Nutiu et al. (2011), and to measure the binding events at

equilibrium. The experimental improvements combined with the sophisticated processing

of the data led to a very high accuracy of the HiTS-FLIP Kds comparable to the Kds

measured by the very sensitive HiP-FA assay (Jung et al. (2015)). However, as evident

from all the performed experiments, HiTS-FLIP is so far not a robust assay for achieving

saturated binding curves, and how to setup optimal experimental conditions and to

handle best protein aggregation occurring at the amplified DNA clusters needs further

investigation. Nevertheless, we achieved a successful experiment (18.08.2014) resulting in

a unique, quantitative data set and utilizing the related Kds for investigating the binding
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behavior of GCN4 has shed more light on the complexity of its DNA association.

Given the obtained insights from the down stream analyses I could demonstrate that the

common 9-mer PWM for GCN4 is insufficient to describe the binding behavior of GCN4.

Rather, an additional left and right flanking nucleotide is required to extend the 9-mer to

an 11-mer whereby the influence of the flanking nucleotides is taken into account which

modulates the binding affinity a 100-fold. My analyses regarding mutations and related

∆∆G values suggest long-range interdependencies between nucleotides of the two dimeric

half-sites of GCN4 and thus models assuming positional independence, like the PWM,

are not able to embody such effects. Instead, the full spectrum of affinity values for all

k-mers of appropriate size should be measured and applied as originally proposed by

Nutiu et al. (2011). Another important discovery were completely new binding motifs of

GCN4, which can only be detected with a method like HiTS-FLIP that examines the

entire sequence space and allows for de-novo motif discovery in an unbiased way. All

these new motifs contain the submotif GTGT and the evidence collected suggests that

GCN4 binds as monomer to these new motifs. Therefore, it might be even possible to

detect different binding modes with HiTS-FLIP.

Future steps are further experimental improvements to turn HiTS-FLIP into a robust

assay. This might even require to adapt the hardware of the GA-IIx to be better suited

for a DNA-protein binding experiment. Another possibility might be to use relative

affinities based on intensities alone which could describe the binding behavior sufficiently.

As a research topic, a very promising scenario would be to investigate simultaneously

multiple proteins in the flow cell to study their cooperativity or perhaps even their

antagonistic binding effects. If the DNA clusters in the flow cell could be methylated,

the effect of methylation marks on DNA binding of certain TFs could be studied in

depth, by measuring the binding behavior first on unmethylated and then on methylated

DNA. As it was demonstrated by (Buenrostro et al. (2014); Tome et al. (2014)) the

HiTS-FLIP assay can be used for measuring the affinity of RNA binding proteins. A

possible research direction along this line would be the study of transcriptomics where the

entire transcriptome of interest could be examined in the flow cell. Another important

application for future research is the design of custom agents like TALENs for genome

editing in the field of personalized medicine where genome-wide off-target effects need to

be studied for which HiTS-FLIP is a very suitable tool. Finally, on the bioinformatics

level further investigation on a mathematical formalism is required to fully capture the

complexity of the binding behavior of a TF like GCN4.
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9.1 Details regarding the LoG filter

LoG filter computes the weighted difference between the center pixel and the surrounding

pixels and thus reacts most strongly to local intensity peaks. Other names of the LoG

filter are Marr-Hildreth-Operator or Mexican hat filter, since it has the shape of a positive

peak in a negative dish and is thus an ”inverted Mexican hat“ (Wu et al. (2010)). The

parameter σ controls the width of the peak, which is related to the amount of smoothing.

The edge positions can be determined by the zero-crossings in the LoG-filtered image,

Figure 9.1.

Figure 9.1: LoG filter as continuous function and pixel kernel. Here the continuous
function as well as a 5× 5 pixel kernel are shown for the LoG filter, adapted
from (Burger et al. (2009)).

The definition of the Laplacian operator (Vinogradov and Hazewinkel (2001)):

4f = ∇2 = ∇ · ∇f =

n∑
i=1

∂2f

∂x2i
(9.1)
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where f is a twice-differentiable real-valued function. As denoted by the definition, the

Laplacian of f is the sum of all the second partial derivatives in the Cartesian coordinates

xi. The definition of the Gaussian filter in two dimensions is the following (Vinogradov

and Hazewinkel (2001)):

Gσ(x, y) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
(9.2)

The Gaussian filter is separable in the x and y directions and can thus be written as the

product of two 1d Gauss functions:

Gσ(x, y) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
=

(
1√
2πσ

exp

(
− x2

2σ2

))(
1√
2πσ

exp

(
− y2

2σ2

))
(9.3)

Definition of the LoG filter, where f(x, y) represents the image as a function R2 → R:

4[Gσ(x, y) ? f(x, y)] = [4Gσ(x, y)] ? f(x, y) = LoG ? f(x, y) (9.4)

Since the convolution of two functions f and g, denoted by ?, is defined as the integral

of the product of the two functions after one is reversed and shifted:

(f ? g)(t)
def
=

∞∫
−∞

f(τ)g(t− τ) dτ (9.5)

The convolution operation is commutative: f ? g = g ? f

because, upon the substitution σ = t− τ :

(f ? g)(t) =

∞∫
−∞

g(σ)f(t− σ) dσ = (g ? f)(t) (9.6)

Therefore

∞∫
−∞

f(τ)g(t− τ) dτ =

∞∫
−∞

f(t− τ)g(τ) dτ (9.7)
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which proofs

4[Gσ(x, y) ? f(x, y)] = [4Gσ(x, y)] ? f(x, y) (9.8)

It is therefore equal to firstly convolute the Gaussian filter with the image and then apply

the Laplacian operator on this modified image, or to apply the Laplacian operator on

the Gaussian filter and then use this modified filter to convolve it with the image. The

key aspect here is that the latter is computational more efficient since the modified filter

can be prepared in advance as a result of its image independence.

The derivation of the LoG filter is:

∂2

∂2x
Gσ(x, y) =

1

2πσ2
x2 − σ2

σ4
exp

(
−x

2 + y2

2σ2

)
(9.9)

∂2

∂2y
Gσ(x, y) =

1

2πσ2
y2 − σ2

σ4
exp

(
−x

2 + y2

2σ2

)
(9.10)

LoG = 4Gσ(x, y) =
∂2

∂2x
Gσ(x, y) +

∂2

∂2y
Gσ(x, y) (9.11)

=
1

2πσ2
x2 − σ2

σ4
exp

(
−x

2 + y2

2σ2

)
+

1

2πσ2
y2 − σ2

σ4
exp

(
−x

2 + y2

2σ2

)
(9.12)

=
1

πσ4

(
x2 + y2

2σ2
− 1

)
exp

(
−x

2 + y2

2σ2

)
(9.13)

In order to be applicable to images and their discrete pixel values, the LoG filter has to

be discretized by sampling the function in the above equation into a (2k + 1)× (2k + 1)

filter kernel (also called mask) for an appropriate value of k. It is proposed (Klette

(2014)) to use a window size of
⌈
6
√

2σ
⌉
×
⌈
6
√

2σ
⌉
, i.e. the smallest integer equal to or

larger than the 6
√

2σ. The value of σ, the amount of smoothing, needs to be estimated

for the given image data.

Similarly, the convolution regarding discrete values changes in the following manner. The

discrete convolution can be defined as a “shift and multiply” operation, where the kernel

is shifted over the image and its value is multiplied with the corresponding pixel values

of the image. For a square kernel with size M ×M , the output image is calculated with
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the formula (Burger and Burge (2009a)):

g(i, j) =

M
2∑

m=−M
2

M
2∑

n=−M
2

LoG(m,n)f(i−m, j − n) (9.14)

Figure 9.2: Filtering process by mask. The filter matrix H is placed with its origin at
position (u, v) on the image I. Each filter coefficient H(i, j) is multiplied
with the corresponding image pixel I(u+ i, v + j), the results are added, and
the final sum is inserted as the new pixel value I ′(u, v). Figure adapted from
(Burger and Burge (2009a)).

Applying the LoG filter in the spatial domain to an image is a simple process as illustrated

in Figure 9.2. According to (Burger and Burge (2009a)), the following steps are performed

at each image position (u, v):

1) The filter matrix H is moved over the original image I such that its origin H(0, 0)

coincides with the current image position (u, v).

2) All filter coefficients H(i, j) are multiplied with the corresponding image element

I(u+ i, v + j), and the results are added.

3) Finally, the resulting sum is stored at the current position in the new image I ′(u, v)

An additional speedup can be achieved by applying the Fourier transform and turning

the LoG filter into a frequency filter. According to the convolution theorem (Lim (1990))

point-wise multiplication of the Fourier transformed kernel and Fourier transformed
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image in the frequency domain is equivalent to convolution in the spatial domain. The

Fourier transform of the convolution of two functions is the product of their Fourier

transforms:

F [h ? f ] = F [h]F [f ] (9.15)

The inverse Fourier transform of the convolution of two functions is the product of their

Fourier transforms:

F−1[fh] = F−1[f ] ? F−1[h] (9.16)

Therefore:

g(x, y) = F−1(F (h)F (f)) (9.17)

The discrete Fourier transformation (DFT) and its inverse are used and performed

by fast Fourier transformation (FFT) (Cooley and Tukey (1965b)) which reduces the

computation time from O(n2m2) to the almost linear complexity of O(nm log(nm)) for

an image with size n×m.

9.1.1 Padding

An important technical detail is padding (Rao et al. (2011)). When doing a DFT the

resulting frequency domain representation of the function is periodic, leading to circular

convolution. This means that without padding the image properly, results from one side

of the image will wrap around to the other side of the image. Padding allows space for

this wrap-around to occur without contaminating actual output pixels. According to

(Burger and Burge (2009a); Rao et al. (2011)) there are several different methods how

padding can be done:

1) Zero-padding:

Zero-padding completes the borders of the image with zero valued pixels.

2) Boundary reflection:

Padded pixels are computed by reflecting the input image pixels about the border.

3) Pixel replication:

Pixel replication is done by copying the nearest border pixel.

4) Linear extrapolation:
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Linear extrapolation seeks to extend the image as if it were continuing along a linear

ramp off the edge of the image. The ramp is made up of the border pixels, the computed

padded pixels and the input pixels that are a reflection of the padded pixel about the

border. For each line in x (or column for y) the padding elements added to the line

(or column) are a linear combination of the first and last element of that input line (or

column).

5) Weighted mean:

A weighted mean,

∑n
i=1wixi∑n
i=1wi

, can be used in the following way:

for x = Ox to W −Ox
for y = 0 to Oy − 1

I[x ∗H + y] =
(y +Oy + 1) ∗ I[x ∗H +Oy] + (Oy − y) ∗ I[x ∗H +H −Oy − 1]

2 ∗Oy + 1

I[x ∗H − y − 1] =
(Oy − y) ∗ I[x ∗H +Oy] + (y +Oy + 1) ∗ I[x ∗H +H −Oy − 1]

2 ∗Oy + 1
for y = 0 to H

for x = 0 to Ox

I[x ∗H + y] =
(x+Ox + 1) ∗ I[Ox ∗H + y] + (Ox − x) ∗ I[(W −Ox − 1) ∗H + y]

2 ∗Ox + 1

I[(W−x−1)∗H+y] =
(Ox − x) ∗ I[Ox ∗H + y] + (x+Ox + 1) ∗ I[(W −Ox − 1) ∗H + y]

2 ∗Ox + 1

x, y: control variables for running through the padding area.

I: image pixel values of 1d image array, accessed in column-major order.

W : image width.

H: image height.

Ox: x offset of padding area.

Oy: y offset of padding area.

9.1.2 Implementation

The implementation of the LoG filter is based on the ImageJ (Abràmoff et al. (2004);

Schneider et al. (2012)) plugin by Dimiter Prodanov, URL: http://rsb.info.nih.gov/

ij/plugins/mexican-hat/index.html. The input for the LoG filter are the tif images

taken during the protein cycles of a HiTS-FLIP experiment. The output of the LoG filter

are tif images which are LoG filtered and stored separately besides the unfiltered images.

These filtered images are only used during the cluster registration process.

http://rsb.info.nih.gov/ij/plugins/mexican-hat/index.html
http://rsb.info.nih.gov/ij/plugins/mexican-hat/index.html
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9.2 Pixel kernel of LoG filter

Figure 9.3: Pixel kernel of LoG filter used for filtering the protein images before cluster
registration as described in section 5.2.
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9.3 Pixel mask for template cluster generation

Figure 9.4: Pixel mask for template cluster generation used for cluster registration as
described in section 5.3.
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9.4 HiP-FA Kds and HiTS-FLIP Kds

Oligo Sequence HiP-FA Kd 11-mer rev. complement HiTS-FLIP Kd

GGTATGAGTCATGGCC 16.34 CATGACTCATA TATGAGTCATG 3.49
GGGTATGACTCATCCC 17.9 GATGAGTCATA TATGACTCATC 3.57
GGTATGACTCATGGCC 21.66 CATGAGTCATA TATGACTCATG 4.97
GGTGTGACTCATGGCC 24.49 TGTGACTCATG CATGAGTCACA 5.96
GGTGTGAGTCATGGCC 25.93 CATGACTCACA TGTGAGTCATG 6.82
GGGTATGACTGATCCC 49.0 TATGACTGATC GATCAGTCATA 29.36
GGTGTGACTAATGGCC 51.57 CATTAGTCACA TGTGACTAATG 25.47
GGTCTGACTCATGGCC 56.28 TCTGACTCATG CATGAGTCAGA 20.67
GGGTATGACACATCCC 72.9 GATGTGTCATA TATGACACATC 38.19
GGTATGACTCTTGGCC 90.69 CAAGAGTCATA TATGACTCTTG 55.08
GGTATGACACATGGCC 129.05 CATGTGTCATA TATGACACATG 75.13
GGTATGACGCATGGCC 138.35 TATGACGCATG CATGCGTCATA 73.82
GGTTGACTAATTGGCC 221.65 AATTAGTCAAC GTTGACTAATT 94.2
GGTATGACTCGTGGCC 244.16 TATGACTCGTG CACGAGTCATA 100.53
GGTTCAGTCATTGGCC 312.45 AATGACTGAAC GTTCAGTCATT 151.02
GGTTTAGTCATTGGCC 334.9 GTTTAGTCATT AATGACTAAAC 94.57
GGTATGACTAGTGGCC 371.13 TATGACTAGTG CACTAGTCATA 218.02
GGTATGACGTATGGCC 464.89 TATGACGTATG CATACGTCATA 222.8
GGTCTGACGCATGGCC 541.01 TCTGACGCATG CATGCGTCAGA 356.78
GGTGTGTGACATGGCC 633.51 CATGTCACACA TGTGTGACATG 485.0
GGTTGAGTAATTGGCC 654.88 GTTGAGTAATT AATTACTCAAC 389.87
GGTATGACGCGTGGCC 675.05 TATGACGCGTG CACGCGTCATA 343.61
GGTTTACGTCATGGCC 779.26 TTTACGTCATG CATGACGTAAA 484.6
GGTATCCGTCATGGCC 796.11 TATCCGTCATG CATGACGGATA 451.76
GGTTCACTCATTGGCC 1024.26 GTTCACTCATT AATGAGTGAAC 875.36

Table 9.1: Listing of HiP-FA Kds and HiTS-FLIP Kds as used in Figure 5.52.
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9.5 First 50 11-mers and Kds of experiment 18.08.2014

k-mer reverse complement 5 nM 10 nM 25 nM 125 nM 625 nM s h o Kd

TATGAGTCATA TATGACTCATA 0.5094 0.58539 0.54504 0.59656 0.65996 0.65345 1.0 0.26793 1.562
GTATGAGTCAT ATGACTCATAC 0.48893 0.59662 0.55888 0.59435 0.7001 0.65345 1.0 0.26793 1.639
GATGACTCATA TATGAGTCATC 0.52161 0.54095 0.56534 0.56021 0.70031 0.65345 1.0 0.26793 1.675
ATGACTCATCT AGATGAGTCAT 0.49438 0.53619 0.55156 0.58751 0.65243 0.65345 1.0 0.26793 2.002
ATGAGTCATTT AAATGACTCAT 0.48092 0.50015 0.57188 0.60437 0.67185 0.65345 1.0 0.26793 2.308
ATGACTCATAT ATATGAGTCAT 0.47886 0.5008 0.55385 0.59616 0.6987 0.65345 1.0 0.26793 2.397
TGTGACTCATC GATGAGTCACA 0.45742 0.52625 0.53085 0.60089 0.63088 0.65345 1.0 0.26793 2.533
CTATGAGTCAT ATGACTCATAG 0.46423 0.51583 0.53634 0.54436 0.6169 0.65345 1.0 0.26793 2.576
ATGAGTCATTG CAATGACTCAT 0.45821 0.50526 0.54544 0.59213 0.6612 0.65345 1.0 0.26793 2.634
ATGAGTCATCC GGATGACTCAT 0.4704 0.48661 0.55131 0.57627 0.64366 0.65345 1.0 0.26793 2.645
ATATGACTCAC GTGAGTCATAT 0.44357 0.52211 0.54127 0.61358 0.66862 0.65345 1.0 0.26793 2.655
TTATGACTCAT ATGAGTCATAA 0.45723 0.50757 0.5344 0.58649 0.64432 0.65345 1.0 0.26793 2.683
GATGAGTCATT AATGACTCATC 0.47392 0.47208 0.54077 0.56632 0.65326 0.65345 1.0 0.26793 2.784
GTGAGTCATCG CGATGACTCAC 0.45643 0.47417 0.55203 0.63203 0.69053 0.65345 1.0 0.26793 2.839
AATGAGTCATC GATGACTCATT 0.462 0.49839 0.51383 0.5503 0.60172 0.65345 1.0 0.26793 2.85
TGATGACTCAT ATGAGTCATCA 0.46976 0.4677 0.54736 0.5525 0.64873 0.65345 1.0 0.26793 2.858
TTATGAGTCAT ATGACTCATAA 0.45605 0.47486 0.55826 0.56793 0.67091 0.65345 1.0 0.26793 2.883
TAATGAGTCAT ATGACTCATTA 0.46094 0.47192 0.54076 0.58924 0.64198 0.65345 1.0 0.26793 2.917
TGTGACTCATA TATGAGTCACA 0.46651 0.47027 0.53736 0.55506 0.64264 0.65345 1.0 0.26793 2.921
AATGACTCATA TATGAGTCATT 0.45821 0.47303 0.54988 0.56019 0.63575 0.65345 1.0 0.26793 2.931
GGTGAGTCATA TATGACTCACC 0.44559 0.49564 0.52003 0.54077 0.62309 0.65345 1.0 0.26793 3.05
ATGACTCATCG CGATGAGTCAT 0.4766 0.45116 0.52399 0.53008 0.5873 0.65345 1.0 0.26793 3.089
ATGACTCACCT AGGTGAGTCAT 0.4249 0.49133 0.54957 0.61397 0.66863 0.65345 1.0 0.26793 3.093
CTATGACTCAT ATGAGTCATAG 0.47359 0.47573 0.48307 0.4886 0.59275 0.65345 1.0 0.26793 3.158
GGTGAGTCATC GATGACTCACC 0.45643 0.45047 0.54348 0.58211 0.64687 0.65345 1.0 0.26793 3.166
TGATGAGTCAT ATGACTCATCA 0.46278 0.46766 0.5051 0.54184 0.64795 0.65345 1.0 0.26793 3.174
ATATGACTCAT ATGAGTCATAT 0.45382 0.4757 0.50297 0.55118 0.61736 0.65345 1.0 0.26793 3.217
GATGACTCATC GATGAGTCATC 0.45853 0.44545 0.53345 0.57123 0.61337 0.65345 1.0 0.26793 3.266
TGTGAGTCATA TATGACTCACA 0.43687 0.46754 0.53154 0.59219 0.65074 0.65345 1.0 0.26793 3.295
ATGAGTCATAC GTATGACTCAT 0.43986 0.47635 0.51545 0.54151 0.56698 0.65345 1.0 0.26793 3.349
CATGACTCATC GATGAGTCATG 0.45836 0.45761 0.50302 0.53251 0.66041 0.65345 1.0 0.26793 3.355
GTGTGAGTCAT ATGACTCACAC 0.43544 0.46773 0.51057 0.58776 0.6457 0.65345 1.0 0.26793 3.435
ATGAGTCATCG CGATGACTCAT 0.44752 0.46422 0.50615 0.52511 0.59696 0.65345 1.0 0.26793 3.442
AGATGACTCAT ATGAGTCATCT 0.43984 0.4439 0.53489 0.57949 0.65917 0.65345 1.0 0.26793 3.491
CATGACTCATA TATGAGTCATG 0.43941 0.44418 0.53596 0.58288 0.62563 0.65345 1.0 0.26793 3.493
GATGAGTCATA TATGACTCATC 0.43202 0.47573 0.50357 0.51423 0.57922 0.65345 1.0 0.26793 3.565
ATGACTCATTG CAATGAGTCAT 0.41149 0.48292 0.52718 0.53538 0.63319 0.65345 1.0 0.26793 3.573
GTGAGTCATAC GTATGACTCAC 0.42419 0.46348 0.50789 0.52318 0.60191 0.65345 1.0 0.26793 3.759
AAATGAGTCAT ATGACTCATTT 0.42864 0.46674 0.47179 0.56492 0.57778 0.65345 1.0 0.26793 3.836
AGTGAGTCATC GATGACTCACT 0.41998 0.44252 0.51264 0.60542 0.68125 0.65345 1.0 0.26793 3.863
GTGTGACTCAT ATGAGTCACAC 0.43258 0.4532 0.48668 0.54466 0.59946 0.65345 1.0 0.26793 3.864
CTATGAGTCAC GTGACTCATAG 0.41806 0.44676 0.51245 0.58565 0.67234 0.65345 1.0 0.26793 3.878
AATGAGTCATA TATGACTCATT 0.42893 0.47635 0.46883 0.47887 0.54602 0.65345 1.0 0.26793 3.898
ATGTGACTCAT ATGAGTCACAT 0.41178 0.46572 0.49654 0.57378 0.60188 0.65345 1.0 0.26793 3.898
TGTGAGTCATT AATGACTCACA 0.40209 0.44162 0.5406 0.60928 0.6582 0.65345 1.0 0.26793 3.937
GGATGAGTCAT ATGACTCATCC 0.42637 0.45758 0.48481 0.52938 0.60988 0.65345 1.0 0.26793 3.937
GGTGACTCATA TATGAGTCACC 0.42592 0.44821 0.47313 0.55936 0.61677 0.65345 1.0 0.26793 4.084
TTATGACTAAT ATTAGTCATAA 0.36986 0.46365 0.53787 0.61997 0.71686 0.65345 1.0 0.26793 4.104
GTGAGTCATAG CTATGACTCAC 0.4078 0.45395 0.49708 0.54414 0.6328 0.65345 1.0 0.26793 4.129
CCTATGACTCA TGAGTCATAGG 0.40384 0.46154 0.48123 0.57557 0.64035 0.65345 1.0 0.26793 4.148

Table 9.2: First 50 11-mers and HiTS-FLIP Kds of experiment 18.08.2014 as used in
Figure 5.55.
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9.6 First 50 11-mers ranked at 125 nM of exp. 18.08.2014

k-mer reverse complement 5 nM 10 nM 25 nM 125 nM 625 nM

GTGAGTCATCG CGATGACTCAC 2.9897 3.0629 3.38428 3.71443 3.9559
TTATGACTAAT ATTAGTCATAA 2.63238 3.01947 3.32583 3.66469 4.06457
ATGACTCACCT AGGTGAGTCAT 2.85954 3.13375 3.37411 3.63992 3.86551
ATATGACTCAC GTGAGTCATAT 2.93663 3.26076 3.33985 3.63832 3.86547
TGAGTCATCAA TTGATGACTCA 2.72001 2.86207 3.22004 3.62958 3.88587
TGTGAGTCATT AATGACTCACA 2.76539 2.92856 3.3371 3.62056 3.82245
GATATGACTCA TGAGTCATATC 2.68541 2.99135 3.05187 3.62009 3.84844
AGTGAGTCATC GATGACTCACT 2.83923 2.93227 3.2217 3.60462 3.9176
ATGAGTCATTT AAATGACTCAT 3.09078 3.17014 3.46621 3.60029 3.8788
ATGACTCACTG CAGTGAGTCAT 2.59429 2.72297 3.12548 3.5867 3.80671
TGTGACTCATC GATGAGTCACA 2.99377 3.27787 3.29683 3.58591 3.70971
GATTAGTCATA TATGACTAATC 2.52781 2.76174 3.0561 3.58234 3.86143
TTCATGACTCA TGAGTCATGAA 2.136 2.23907 2.7688 3.57634 4.10505
AAAATGAGTCA TGACTCATTTT 2.39901 2.66312 2.93668 3.56961 3.63804
TATGAGTCATA TATGACTCATA 3.20831 3.52195 3.35543 3.56806 3.82972
ATGACTCATAT ATATGAGTCAT 3.08227 3.1728 3.39177 3.56639 3.98963
ATTATGACTCA TGAGTCATAAT 2.56942 2.72326 3.17365 3.56601 3.82771
GTATGAGTCAT ATGACTCATAC 3.12382 3.56829 3.41254 3.55893 3.99539
TCTGACTCATT AATGAGTCAGA 2.49694 2.5861 2.98953 3.55822 3.87298
TGTGAGTCATA TATGACTCACA 2.90896 3.03554 3.29971 3.55 3.79166
ATGAGTCATTG CAATGACTCAT 2.99703 3.19123 3.35706 3.54978 3.83484
AGTGAGTCATG CATGACTCACT 2.50189 2.66709 3.04382 3.53849 4.06535
TAATGAGTCAT ATGACTCATTA 3.00832 3.05363 3.33776 3.53783 3.75553
TGACTCATATC GATATGAGTCA 2.4091 2.61786 3.08495 3.53375 3.98912
GTGTGAGTCAT ATGACTCACAC 2.90306 3.03631 3.21316 3.53172 3.77089
ATGACTCATCT AGATGAGTCAT 3.14633 3.31889 3.38232 3.53068 3.79863
TTATGACTCAT ATGAGTCATAA 2.99299 3.20074 3.31149 3.52651 3.76518
CTATGAGTCAC GTGACTCATAG 2.83133 2.94977 3.22092 3.52304 3.88081
ATGAGTCACAG CTGTGACTCAT 2.74099 2.92125 3.12247 3.51667 3.73115
ATGACTCACTT AAGTGAGTCAT 2.62523 2.83754 3.09863 3.51389 3.8083
CATATGACTCA TGAGTCATATG 2.25206 2.32113 2.82388 3.51208 3.89855
ATGACTCATGA TCATGAGTCAT 2.62321 2.78808 3.17572 3.51175 3.68855
CATGACTCATA TATGAGTCATG 2.91945 2.93911 3.31792 3.51159 3.68804
ACATGAGTCAC GTGACTCATGT 2.44077 2.6947 3.01403 3.51065 3.76905
GGTGAGTCATC GATGACTCACC 2.9897 2.96507 3.34899 3.50843 3.77569
TCGATGACTCA TGAGTCATCGA 2.49706 2.63466 2.98263 3.50798 3.74253
GTATTAGTCAT ATGACTAATAC 2.54593 2.66158 3.02763 3.50788 3.99939
ATGACTCACAG CTGTGAGTCAT 2.67608 2.84112 3.22176 3.50674 3.67334
TCAATGACTCA TGAGTCATTGA 2.45188 2.4456 3.12649 3.5061 3.94763
CATGACTCATT AATGAGTCATG 2.75076 2.8929 3.20336 3.50602 3.83574
ATGTGAGTCAT ATGACTCACAT 2.60487 2.77032 3.17036 3.50439 3.75787
TTGTGAGTCAT ATGACTCACAA 2.72186 2.90006 3.11572 3.50072 3.79934
TGAGTCATCAC GTGATGACTCA 2.34131 2.53457 2.93627 3.49943 3.86426
AGATGACTCAT ATGAGTCATCT 2.92122 2.93799 3.3135 3.49758 3.82648
GTGAGTCATTT AAATGACTCAC 2.6112 2.80436 3.13299 3.49503 3.78482
ACTATGACTCA TGAGTCATAGT 2.44169 2.66124 2.97468 3.49396 3.90605
TGTGACTCATG CATGAGTCACA 2.59835 2.69527 3.06662 3.49033 3.81104
ATGAGTCACGC GCGTGACTCAT 2.56056 2.63998 2.9431 3.48928 3.82363
GTGACTCATAT ATATGAGTCAC 2.67399 2.98078 3.25098 3.489 3.79223
ATGAGTCATCC GGATGACTCAT 3.04733 3.11424 3.38131 3.48431 3.76245

Table 9.3: First 50 11-mers ranked at 125 nM of experiment 18.08.2014.
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9.7 HiP-FA Kds and HiTS-FLIP Kds by heuristic and ML

ranking

11-mer rev.comp. HiP-FA Kd Heuristic ranking Kd ML ranking Kd

CATGACTCATA TATGAGTCATG 16.34 3.49 5.71
GATGAGTCATA TATGACTCATC 17.9 3.57 3.05
CATGAGTCATA TATGACTCATG 21.66 4.97 6.74
TGTGACTCATG CATGAGTCACA 24.49 5.96 10.2
CATGACTCACA TGTGAGTCATG 25.93 6.82 9.28
TATGACTGATC GATCAGTCATA 49.0 29.36 52.62
CATTAGTCACA TGTGACTAATG 51.57 25.47 31.34
TCTGACTCATG CATGAGTCAGA 56.28 20.67 31.3
GATGTGTCATA TATGACACATC 72.9 38.19 53.68
CAAGAGTCATA TATGACTCTTG 90.69 55.08 63.65
CATGTGTCATA TATGACACATG 129.05 75.13 126.77
TATGACGCATG CATGCGTCATA 138.35 73.82 91.39
AATTAGTCAAC GTTGACTAATT 221.65 94.2 134.35
TATGACTCGTG CACGAGTCATA 244.16 100.53 129.1
AATGACTGAAC GTTCAGTCATT 312.45 151.02 156.27
GTTTAGTCATT AATGACTAAAC 334.9 94.57 125.91
TATGACTAGTG CACTAGTCATA 371.13 218.02 229.43
TATGACGTATG CATACGTCATA 464.89 222.8 455.95
TCTGACGCATG CATGCGTCAGA 541.01 356.78 564.66
CATGTCACACA TGTGTGACATG 633.51 485.0 1171.25
GTTGAGTAATT AATTACTCAAC 654.88 389.87 396.29
TATGACGCGTG CACGCGTCATA 675.05 343.61 373.0
TTTACGTCATG CATGACGTAAA 779.26 484.6 697.52
TATCCGTCATG CATGACGGATA 796.11 451.76 522.22
GTTCACTCATT AATGAGTGAAC 1024.26 875.36 830.72

Table 9.4: Listing of HiP-FA Kds and HiTS-FLIP Kds by heuristic and ML ranking as
used in Figure 5.54.
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9.8 Fits of HiTS-FLIP Kds with subtraction of global offset

Figure 9.5: Fits for HiTS-FLIP Kds with parameters as used in Figure 5.52.
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9.9 Fits of HiTS-FLIP Kds with subtraction of median of

cluster intensities per concentration

Figure 9.6: Fits for HiTS-FLIP Kds with subtraction of median of cluster intensities per
concentration.
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9.10 Summary of HiTS-FLIP methods, parameters, input and

output

LoG filter (Section 5.2)

Goal:

Reducing noise and emphasizing edges to improve separation of DNA clusters for protein

images.

Parameters:

� σ = 0.764.

� 5× 5 pixel kernel, see 9.3.
Input:

tif image from protein cycle.

Output:

LoG filtered image.

Cluster registration (Section 5.3)

Goal:

Aligning protein images to connect fluorescent cluster intensities with nucleotide sequences.

Parameters:

� template cluster: amplitude A = 1.0.

� template cluster: σ = 0.7644.

� 5× 5 pixel mask, see 9.4.
Input:

� tif image from protein cycle.

� pos file containing the template cluster positions.
Output:

Translational offset ∆x,∆y for each protein image.

Local region search (Section 5.4)

Goal:

Overlapping of mapped cluster positions with local maxima in a protein image.

Parameters:

� local neighborhood: distance 1 pixel from cluster position.
Input:

x,y coordinates of cluster positions.

Output:



174 Chapter 9: Appendix

Shifted clusters (on average 10% - 20% of all clusters per tile) which overlap again with

local maxima.

Image normalization (Section 5.5)

Goal:

Correction of uneven illumination in the protein images by Gaussian based filtering.

Parameters:

� Gaussian filter: σ = 30 pixels.

� Weighting factor:
Bglobali

Bglobal1

for i = 2..n. Details in section 5.5.6.3.
Input:

Tif image of protein cycle.

Output:

Normalized protein image with reduced uneven illumination.

Intensity extraction based on weighted area coverage (Section 5.6.9)

Goal:

Extraction of cluster intensities from protein images with the weighted area coverage

method.

Parameters:

� A = 1.52 pixels.

� wc = 5.0.

� wn = 0.9.
Input:

� protein image.

� x,y coordinates of cluster positions.
Output:

Cluster intensities.

Dust particle detection (Section 5.7.2)

Goal:

Reducing false positives by removing dust particles and affected clusters from protein

images.

Parameters:

� threshold: 30− 30000 pixels for classifying dust particles.
Input:

Protein image.

Outcome:
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Set of pixels identifying dust particles.

Air bubble detection (Section 5.7.1)

Goal:

Reducing false positives by removing air bubbles and affected clusters from protein

images.

Parameters:

� threshold: > 30000 pixels for classifying air bubbles.
Input:

Protein image.

Outcome:

Set of pixels identifying air bubbles.

DNA sequence filtering (Section 5.8)

Goal:

Removing clusters with erroneous bases.

Parameters:

� FASTA quality score: Q30.
Input:

FASTQ files.

Outcome:

Filtered cluster sequences with high quality base calls.

K-mer ranking (Section 5.9.1.5)

Goal:

Ranking k-mers of different length for DNA motif finding by heuristic ranking without

cluster deletion.

Parameters:

� heuristic ranking without cluster deletion.
Input:

� length of the k-mer to be ranked.

� number of ranked k-mers.

� concentration at which the ranking should be achieved.

� cluster sequences.

� different cluster intensities for the increasing concentrations.
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Outcome:

Ranked k-mer motifs with their different intensities.

Affinity quantification (Section 5.10)

Goal:

Determining dissociation constants for each ranked k-mer.

Parameters:

� s: scaling factor obtained from the top binding k-mer and applied for all weaker

binding k-mers.

� [TF ]: transcription factor concentration used in the experiment.

� Kd : the dissociation constant of the TF to the DNA sequence.

� h: the Hill coefficient of binding.

� o: the global offset, an estimate for the unspecific binding by using the median of

the dimmest 0.1% of all the ranked k-mers at the smallest concentration. Regarding

the experiment 18.08.2014 the value was o = 0.26793 of the ranked 11-mers for the

concentration at 5nM.
Input:

Intensities at each concentration for each k-mer.

Outcome:

Dissociation constants for each ranked k-mer.
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9.11 Position Frequency Matrix for Aligned Matrix GCN4

Nucleotide Prob.

A 0.547 0.012 0.011 0.964 0.009 0.015 0.073 0.915 0.038
C 0.059 0.010 0.026 0.012 0.657 0.010 0.891 0.022 0.352
G 0.363 0.011 0.889 0.013 0.323 0.014 0.024 0.016 0.060
T 0.031 0.968 0.075 0.012 0.010 0.962 0.013 0.046 0.550

Table 9.5: Position Frequency Matrix for Aligned Matrix GCN4 based on the ScerTF
database (Spivak and Stormo (2012)). Probabilities are as used in Figure 7.5.
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9.12 Experiment by Nutiu et al.

Figure 9.7 shows the analysis plots for the HiTS-FLIP experiment lane 2 as performed

by (Nutiu et al. (2011)).
The 8-mer ranking yields ATGACTCA (TGAGTCAT) and ATGAGTCA (TGACTCAT)

as the first two top placed motifs which are extension of the known pseudosymmetric

7-mer sequence 5’-TGA(C/G)-TCA-3’ Oliphant et al. (1989). Even though a washing

step of 2 min before each imaging cycle was applied to reduce unspecific binding, the

intensity course does not show saturation for the best binder.
There seems to be saturation occurring for the motif ATGACTCA (TGAGTCAT),

however not already at 625 nM.
The half-sites TGAC or TGAG of the dimer consensus motif 5’-TGA(C/G)-TCA-3’

Oliphant et al. (1989) are enriched and predominantly bound among the first 200 ranked

8-mers. As pointed out by Hollenbeck and Oakley (2000) GCN4 can bind with high-

affinity and in a specific manner to DNA sites containing only the single consensus

half-site 5’-TGAC-3’.
The Hamming distance of the ranked 8-mer motifs from the 8-mer consensus ATGACTCA

(TGAGTCAT) overall increases as the ranking proceeds deeper into the sequence space

resulting in weaker GCN4 binding motifs.
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Figure 9.7: Analyses of the experiment by (Nutiu et al. (2011)). (a) Intensity course
for the first 200 ranked 8-mers ranked at 125 nM on lane 2. (b) Binding
curves for selected 8-mers ranked at 125 nM on lane 2. (c) Enrichment of
half-sites (TGAC or TGAG) for the first 200 8-mers ranked at 125 nM on
lane 2. (d) Hamming distance from consensus ATGACTCA for the first 200
8-mers ranked at 125 nM on lane 2.
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9.13 Experiment 03.04.2013

In the following section the details regarding the experiment 03.04.2013 are described.

9.13.1 Sample

As sample GCN4 fused with mOrange was used as described previously.

9.13.2 Flow cell buffer

The flow cell buffer was composed of PBS + 0.3 mg/ml BSA + 0.1% Tween-20.

9.13.3 Protocol

The random DNA library N25 was used as described previously. Data from lane 4 were

employed. Five concentrations were applied, 1 nM, 5 nM, 25 nM, 125 nM, 625 nM.

Delivery rate of the protein solution was 50 µl/min. Equilibration time was 1 h at 20 ◦C.

No washing was applied, the next concentration level was continuously titrated into the

flow cell. The protein cycles were: cycle 44: 1 nM, cycle 45: 5 nM, cycle 46: 25 nM,

cycle 47: 125 nM, cycle 48: 625 nM.

9.13.4 Data analysis

Figure 9.8 shows the main analysis plots for the experiment 03.04.2013 lane 4.
The 8-mer ranking yields TTAGATAA (TTATCTAA) and TAGATAAG (CTTATCTA)

as the first two top placed motifs, which do not contain the half-sites TGAC or TGAG.

The 8-mer consensus ATGACTCA (TGAGTCAT) does not occur among the first 200

ranks. The intensity courses do not decline gradually and most DNA clusters seem to be

bound non-specifically.
No saturation is occurring here, GCN4 (or at least mOrange) molecules keep aggregating

at the DNA clusters. The first ranked 8-mer motif is similarly bound as the 200th ranked

8-mer motif.
The half-sites TGAC or TGAG of the dimer consensus motif 5’-TGA(C/G)-TCA-3’ are

almost completely depleted at the first 20 ranked 8-mer motifs.
There is no increase in Hamming distance from the 8-mer consensus ATGACTCA

(TGAGTCAT) observable.
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Figure 9.8: Analyses of the experiment 03.04.2013 lane 4. (a) Intensity course for the first
200 ranked 8-mers ranked at 125 nM on lane 4. (b) Binding curves for selected
8-mers ranked at 125 nM on lane 4. (c) Enrichment of half-sites (TGAC or
TGAG) for the first 200 8-mers ranked at 125 nM on lane 4. (d) Hamming
distance from consensus ATGACTCA for the first 200 8-mers ranked at 125
nM on lane 4.
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9.14 Experiment 13.06.2013

In the following section the details regarding the experiment 13.06.2013 are described.

9.14.1 Sample

As sample GCN4 fused with mOrange was used as described previously.

9.14.2 Flow cell buffer

The flow cell buffer was composed of PBS + 0.3 mg/ml BSA + 0.1% Tween-20.

9.14.3 Protocol

The random DNA library N25 was used as described previously. Data from lane 4

were employed. Five concentrations were applied, 1 nM, 5 nM, 25 nM, 125 nM, 625

nM. Delivery rate of the protein solution was 50 µl/min. Equilibration time was 1 h

at 20 ◦C. No washing was applied during the protein cycles, the next concentration

level was titrated into the flow cell. Washing in between with PBS/TWEEN/BSA and

PBS/Tween. The protein cycles were: cycle 44: 1 nM, cycle 45: 5 nM, cycle 46: 25 nM,

cycle 47: 125 nM, cycle 48: 625 nM.

9.14.4 Data analysis

Figure 9.9 shows the main analysis plots for the experiment 03.04.2013 lane 4.
The 8-mer ranking yields AAGAGTCA (TGACTCTT) and AGTCATGT (ACATGACT)

as the first two top placed motifs. The 8-mer consensus ATGACTCA (TGAGTCAT)

occurs at rank 4. The intensity courses do not decline and all DNA clusters seem to be

bound non-specifically.
No saturation is occurring here, GCN4 (or at least mOrange) molecules keep aggregating

at the DNA clusters in an equal fashion.
The half-sites TGAC or TGAG of the dimer consensus motif 5’-TGA(C/G)-TCA-3’ are

enriched.
There is only a small increase in the Hamming distance observable from the 8-mer

consensus ATGACTCA (TGAGTCAT).
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Figure 9.9: Analyses of the experiment 13.06.2013 lane 4. (a) Intensity course for the first
200 ranked 8-mers ranked at 125 nM on lane 4. (b) Binding curves for selected
8-mers ranked at 125 nM on lane 4. (c) Enrichment of half-sites (TGAC or
TGAG) for the first 200 8-mers ranked at 125 nM on lane 4. (d) Hamming
distance from consensus ATGACTCA for the first 200 8-mers ranked at 125
nM on lane 4.
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9.15 Experiment 28.03.2014

In the following section the details regarding the experiment 28.03.2014 are described.

9.15.1 Sample

As sample GCN4 fused with mOrange was used as described previously.

9.15.2 Flow cell buffer

The following flow cell buffer compositions were applied.

Lane 1: PBS + 0.3 mg/ml BSA + 0.1% Tween-20.

Lane 2: PBS + 0.3 mg/ml BSA + 0.1% Tween-20 + 200 ng/ml poly(dI-dC).

Lane 3: PBS + 0.3 mg/ml BSA + 0.1% Tween-20.

9.15.3 Protocol

The random DNA library N25 was used. Five concentrations were applied, i.e. 1 nM, 5

nM, 25 nM, 125 nM, 625 nM.

Lane 1:

Equilibration time was 2 h at 20 ◦C. No washing was applied during the protein cycles,

the next concentration level was titrated into the flow cell.

Lane 2:

Equilibration time was 1 h at 20 ◦C. No washing was applied during the protein cycles,

the next concentration level was titrated into the flow cell.

During protein cycles 37-41, the following delivery was used:

150 µl protein solution

10 min wait

10 µl protein solution

10 min wait

10 µl protein solution

10 min wait

10 µl protein solution

1:30 h wait

Lane 3:

Same procedure as in (Nutiu et al. (2011)), i.e. 30 min equilibration time and 2 min

wash step.

The protein cycles on lane 1 were: cycle 37: 1 nM, cycle 38: 5 nM, cycle 39: 25 nM,

cycle 40: 125 nM, cycle 41: 625 nM.
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The protein cycles on lane 2 were: cycle 42: 1 nM, cycle 43: 5 nM, cycle 44: 25 nM,

cycle 45: 125 nM, cycle 46: 625 nM.

The protein cycles on lane 3 were: cycle 47: 1 nM, cycle 48: 5 nM, cycle 49: 25 nM,

cycle 50: 125 nM, cycle 51: 625 nM.

There was a problem with lane 2, cycles 42 and 43 were performed correctly. Cycles 44

to 46 occurred without protein solution pumped into the flow cell. XML protocol was

changed and restarted by cycle 44. Between cycle 42 and 43 there was a break of 3 h,

and after cycle 43 washing occurred.

9.15.4 Data analysis

The following sections describe the main analysis plots for the experiment 28.03.2014.

9.15.4.1 Lane 1

Analysis results for lane 1 illustrated by Figure 9.10.
The 8-mer ranking yields ATGAGTCA (TGACTCAT) and ATGACTCA (TGAGTCAT)

as the first two top placed motifs. The intensity courses do not decline and basically all

DNA clusters seem to be bound non-specifically.
No saturation is occurring here, GCN4 (or at least mOrange) molecules keep aggregating

at the DNA clusters in a similar way.
The half-sites TGAC or TGAG of the dimer consensus motif 5’-TGA(C/G)-TCA-3’ are

less enriched here.
Overall there is an increase in Hamming distances from the 8-mer consensus ATGACTCA

(TGAGTCAT) for increasing ranking depth observable.
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Figure 9.10: Analyses of the experiment 28.03.2014 lane 1. (a) Intensity course for the
first 200 ranked 8-mers ranked at 125 nM on lane 1. (b) Binding curves for
selected 8-mers ranked at 125 nM on lane 1. (c) Enrichment of half-sites
(TGAC or TGAG) for the first 200 8-mers ranked at 125 nM on lane 1. (d)
Hamming distance from consensus ATGACTCA for the first 200 8-mers
ranked at 125 nM on lane 1.
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9.15.4.2 Lane 2

Analysis results for lane 2 illustrated by Figure 9.11.
The 8-mer ranking yields ATGAGTCA (TGACTCAT) and ATGACTCA (TGAGTCAT)

as the first two top placed motifs. The intensity courses do not decline after the 10th

rank and basically all DNA clusters seem to be bound non-specifically.
No saturation is occurring here, GCN4 (or at least mOrange) molecules keep aggregating

at the DNA clusters in a similar way. In addition, the intensities at 1 nM are higher than

at 5 nM, and at 25 nM higher than at 125 nM which might point to a problem with the

syringe pumps of the GA-IIx.
The half-sites TGAC or TGAG of the dimer consensus motif 5’-TGA(C/G)-TCA-3’

are enriched among the first ranked 8-mers and the occurrences decline among weaker

binding motifs.
Overall there is an increase in Hamming distances from the 8-mer consensus ATGACTCA

(TGAGTCAT) with increasing ranking depth observable.
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Figure 9.11: Analyses of the experiment 28.03.2014 lane 2. (a) Intensity course for the
first 200 ranked 8-mers ranked at 125 nM on lane 2. (b) Binding curves for
selected 8-mers ranked at 125 nM on lane 2. (c) Enrichment of half-sites
(TGAC or TGAG) for the first 200 8-mers ranked at 125 nM on lane 2. (d)
Hamming distance from consensus ATGACTCA for the first 200 8-mers
ranked at 125 nM on lane 2.
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9.15.4.3 Lane 3

Analysis results for lane 3 illustrated by Figure 9.12.
The 8-mer ranking yields TTATATAA (TTATATAA) and TAGATAAG (CTTATCTA)

as the first two top placed motifs. The 8-mer consensus ATGAGTCA (TGACTCAT)

does not occur among the first 200 ranked 8-mers. The intensity courses do not decline

after the 30th rank and from rank 30 onwards all DNA clusters seem to be bound

non-specifically.
No saturation is occurring here, GCN4 (or at least mOrange) molecules keep aggregating

at the DNA clusters in an equal fashion.
The half-sites TGAC or TGAG of the dimer consensus motif 5’-TGA(C/G)-TCA-3’ are

not enriched among the first 40 ranked 8-mer motifs.
There is no increase in Hamming distances from the 8-mer consensus ATGACTCA

(TGAGTCAT) with increasing ranking depth observable.
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Figure 9.12: Analyses of the experiment 28.03.2014 lane 3. (a) Intensity course for the
first 200 ranked 8-mers ranked at 125 nM on lane 3. (b) Binding curves for
selected 8-mers ranked at 125 nM on lane 3. (c) Enrichment of half-sites
(TGAC or TGAG) for the first 200 8-mers ranked at 125 nM on lane 3. (d)
Hamming distance from consensus ATGACTCA for the first 200 8-mers
ranked at 125 nM on lane 3.
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9.16 Experiment 11.08.2014

In the following section the details regarding the experiment 11.08.2014 are described.

9.16.1 Sample

As sample GCN4 fused with mOrange as described previously.

9.16.2 Flow cell buffer

The flow cell buffer was composed of PBS + 5 mM MgCl2 + 60 mM KCl + 0.3 mg/ml

BSA + 0.1% Tween-20.

9.16.3 Protocol

The random DNA library N25 was used as described previously. Five concentrations

were applied, i.e. 1 nM, 5 nM, 25 nM, 125 nM, 625 nM. Imaging was also performed at 0

nM. A different primer, i.e. the Illumina read 1 sequencing primer, from the previous

experiments was used that enabled a more efficient resynthesis of the second DNA strand.

As a control check, a primer (0.01 µM) with an Alexa-like dye (detectable in the C

channel) was hybridised to the flow cell primer oligos before the resynthesis. This primer

should be displaced by Klenow polymerase if the resynthesis occurs at the related DNA

cluster. At cycle 52: Fluorescently labeled primer hybridisation, there should be an even

signal in the C channel. At cycle 53: After Klenow reaction, there should be a weaker

signal in the C channel where the DNA clusters are positioned (if dsDNA synthese has

happened). Every 10 min Klenow mix was pumped into the flow cell here.

Lane 1:

Equilibration time was 1 h at 20 ◦C. No washing was applied during the protein cycles,

the next concentration level was titrated into the flow cell. Every ten minutes protein

solution was pumped into the flow cell during protein cycles 55 to 59. Protein cycles for

lane 1 were: cycle 54: 0 nM, cycle 55: 1 nM, cycle 56: 5 nM, cycle 57: 25 nM, cycle 58:

125 nM, cycle 59: 625 nM.

9.16.4 Data analysis

Figure 9.13 shows the main analysis plots for the experiment 11.08.2014 lane 1.
The 8-mer ranking yields ATACACTC (GAGTGTAT) and ACACTCTT (AAGAGTGT)

as the first two top placed motifs. The 8-mer consensus ATGACTCA (TGAGTCAT)

occurs at rank 30. The intensities at the different concentrations are not increasing

properly. The intensity courses only decline very marginally. The peak at rank 30

occurs for the 8-mer consensus ATGACTCA (TGAGTCAT), averaging over 1106 DNA
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clusters, and the peak at rank 81 occurs for the 8-mer motif GTGACTCA (TGAGTCAC),

averaging over 990 DNA clusters. The half-site TGAC occurs at ranks 27, 30, 81 and

132, and the GCN4 7-mer consensus motif TGACTCA occurs at ranks 30 and 81. Nearly

all other ranked 8-mers contain the submotif GTGT (ACAC).
No saturation is occurring here and the concentration levels are not increasing properly.
The half-sites TGAC or TGAG of the dimer consensus motif 5’-TGA(C/G)-TCA-3’ are

not enriched. However, the submotif GTGT (ACAC) is enriched among the entire 200

ranked 8-mer as displayed in Figure 9.14.
There is no increase in Hamming distance observable from the 8-mer consensus AT-

GACTCA (TGAGTCAT).

There is an decrease in cycle 53 regarding the fluorescent signal in the C-channel coming

from the primer with the Alexa-like dye as shown by Figure 9.15.

An additional quality control concerning the dsDNA synthese could be applied here by

using a threshold, e.g. 10% quantile, in order to exclude clusters for which the resynthesis

was less efficient (Figure 9.16).
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Figure 9.13: Analyses of the experiment 11.08.2014 lane 1. (a) Intensity course for the
first 200 ranked 8-mers ranked at 125 nM on lane 1. (b) Binding curves for
selected 8-mers ranked at 125 nM on lane 1. (c) Enrichment of half-sites
(TGAC or TGAG) for the first 200 8-mers ranked at 125 nM on lane 1. (d)
Hamming distance from consensus ATGACTCA for the first 200 8-mers
ranked at 125 nM on lane 1.
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Figure 9.14: Enrichment of GTGT (ACAC) for the first 200 8-mers ranked at 125 nM.
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Figure 9.15: C-channel signals from cycle 52 and 53 before and after dsDNA synthesis.
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Figure 9.16: Histogram of cluster intensity differences (cycle 52 minus cycle 53).
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9.17 Experiment 18.08.2014

In the following section the details regarding the experiment 18.08.2014 are described.

9.17.1 Sample

As sample GCN4 fused with mOrange was used as described previously.

9.17.2 Flow cell buffer

The flow cell buffer for the different lanes was composed as follows:

Lane 1: HiTS-FLIP buffer as described in Nutiu et al. (2011).

Lane 2: PBS + 5 mM MgCl2 + 60 mM KCl + 0.3 mg/ml BSA + 0.1% Tween-20.

Lane 3: PBS + 5 mM MgCl2 + 60 mM KCl + 0.3 mg/ml BSA + 0.1% Tween-20.

9.17.3 Protocol

The flow cell from March 2014 (experiment 28.03.2014) was reused and no (re)sequencing

was done here. Five concentrations were applied, i.e. 1 nM, 5 nM, 25 nM, 125 nM, 625

nM. Imaging was also performed at 0 nM.

Lane 2:

Equilibration time was 1 h at 20 ◦C. No washing was applied during the protein cycles,

the next concentration level was titrated into the flow cell. Cycle 90: Fluorescently

labeled primer hybridisation (0.01 µM). Cycle 91: dsDNA synthesis. The Protein cycles

were: cycle 92: 0 nM, cycle 93: 1 nM, cycle 94: 5 nM, cycle 95: 25 nM, cycle 96: 125

nM, cycle 97: 625 nM.

Lane 3:

Equilibration time was 30 min at 20 ◦C. No washing was applied during the protein

cycles, the next concentration level was titrated into the flow cell. Cycle 96: Fluorescently

labeled primer hybridisation (0.01 µM). Cycle 97: dsDNA synthesis. The protein cycles

were: cycle 98: 0 nM, cycle 99: 1 nM, cycle 100: 5 nM, cycle 101: 25 nM, cycle 102: 125

nM, cycle 103: 625 nM.

9.17.4 Data analysis

The following sections show the main analysis plots for the experiment 18.08.2014.
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9.17.4.1 Lane 1

Regarding lane 1, there was a problem at the concentrations of 125 nM and 625 nM

as highlighted by Figure 9.17 and Figure 9.18. At concentration 125 nM, brightness is

uniform and clusters seem to be bound unspecifically. At concentration 625 nM, the

images at the G and T channel show a high brightness across the whole tile, and no

individual clusters can be identified. The brightness for the images at the A and C

channel is less pronounced but still very uniform so that individual clusters are hard to

identify. What could have caused this issue? It seems to be a problem with the clusters

on lane 1, perhaps poor primer annealing occurred. Therefore, clusters are only bound

by GCN4 unspecifically and the amount of unbound GCN4 molecules in the background

is increased, especially at the highest concentration.

Figure 9.17: Four images from lane 1, tile 30 from the different channels at 125 nM.
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Figure 9.18: Four images from lane 1, tile 30 from the four different channels at 625 nM.
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9.17.4.2 Lane 2

Figure 9.19 shows the main analysis plots for the experiment 18.08.2014 lane 2.
The 8-mer ranking yields ATGACTCA (TGAGTCAT) and ATGAGTCA (TGACTCAT)

as the first two top placed motifs. The preeminent, antagonistic peaks occur at the

following ranks:

rank 110: ATACACTC (GAGTGTAT)

rank 162: AGAGTGTG (CACACTCT)

rank 175: ACACTCTT (AAGAGTGT)

rank 188: CACACTCA (TGAGTGTG)

Those peaks occur at DNA clusters containing the motif (GA)GTGT, however only where

a half-site of the dimeric consensus motif, TGA(C/G), is not involved. Concentration at

1 nM is rather 10 nM (problem with the fluidics).
Saturation is occurring here. Concentration at 1 nM is rather 10 nM (problem with the

fluidics).
The half-sites TGAC or TGAG of the dimer consensus motif 5’-TGA(C/G)-TCA-3’ are

enriched.
There is an increase in Hamming distance from the 8-mer consensus ATGACTCA

(TGAGTCAT) observable with increasing ranking depth.
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Figure 9.19: Analyses of the experiment 18.08.2014 lane 2. (a) Intensity course for the
first 200 ranked 8-mers ranked at 125 nM on lane 2. (b) Binding curves for
selected 8-mers ranked at 125 nM on lane 2. (c) Enrichment of half-sites
(TGAC or TGAG) for the first 200 8-mers ranked at 125 nM on lane 2. (d)
Hamming distance from consensus ATGACTCA for the first 200 8-mers
ranked at 125 nM on lane 2.
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9.17.4.3 Lane 3

Figure 9.20 shows the main analysis plots for the experiment 18.08.2014 lane 3.
The 8-mer ranking yields ATGACTCA (TGAGTCAT) and ATGAGTCA (TGACTCAT)

as the first two top placed motifs. The first four antagonistic peaks occur at the following

ranks:

rank 28: AGAGTGTT (AACACTCT)

rank 33: ATACACTC (GAGTGTAT)

rank 56: ACACTCTT (AAGAGTGT)

rank 57: CGAGTGTT (AACACTCG)

Again, as for lane 2, those peaks occur at DNA clusters containing the motif (GA)GTGT,

however only where a half-site of the dimeric consensus motif, TGA(C/G), is not involved.

Concentration at 1 nM is rather 10 nM (problem with the fluidics).
No saturation is occurring here, GCN4 (or at least mOrange) molecules keep aggregating

at the DNA clusters in an equal fashion.
The half-sites TGAC or TGAG of the dimer consensus motif 5’-TGA(C/G)-TCA-3’ are

enriched among the first 40 ranked 8-mer motifs but not as strongly as on lane 2, and

(GA)GTGT containing 8-mer motifs are more dominant.
There is an increase in Hamming distances from the 8-mer consensus ATGACTCA

(TGAGTCAT) observable for increasing ranking depth.
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Figure 9.20: Analyses of the experiment 18.08.2014 lane 3. (a) Intensity course for the
first 200 ranked 8-mers ranked at 125 nM on lane 3. (b) Binding curves for
selected 8-mers ranked at 125 nM on lane 3. (c) Enrichment of half-sites
(TGAC or TGAG) for the first 200 8-mers ranked at 125 nM on lane 3. (d)
Hamming distance from consensus ATGACTCA for the first 200 8-mers
ranked at 125 nM on lane 3.
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9.18 Experiment 12.02.2015

In the following section the details regarding the experiment 12.02.2015 are described.

9.18.1 Sample

As sample GCN4 fused with mOrange was used as described previously.

9.18.2 Flow cell buffer

The flow cell buffer was composed of PBS + 5 mM MgCl2 + 60 mM KCl + 0.3 mg/ml

BSA + 0.1% Tween-20.

9.18.3 Protocol

The random DNA library N25 was used as described previously. Ten concentrations

were applied, i.e. 0.1 nM, 0.3 nM, 0.8 nM, 2 nM, 6 nM, 17 nM, 50 nM, 135 nM, 375

nM, 1000 nM. Imaging was also performed at 0 nM. Lane 2 and 3 (replicate of lane 2)

were used. Equilibration time was 30 min at 20 ◦C. No washing was applied during the

protein cycles, the next concentration level was titrated continuously into the flow cell.

Lane 2:

Cycle 31: Fluorescently labeled primer hybridisation (0.1 µM).

Cycle 32: dsDNA synthesis.

The protein cycles were: cycle 33: 0 nM, cycle 34: 0.1 nM, cycle 35: 0.3 nM, cycle 36:

0.9 nM, cycle 37: 2 nM, cycle 38: 6 nM, cycle 39: 17 nM, cycle 40: 50 nM, cycle 41: 135

nM, cycle 42: 375 nM, cycle 43: 1000 nM.

9.18.4 Data analysis

Figure 9.21 shows the main analysis plots for the experiment 12.02.2015 lane 2.
The 8-mer ranking yields ATGACTCA (TGAGTCAT) and ATGAGTCA (TGACTCAT)

as the first two top placed motifs. There is a steep increase visible in fluorescent intensity

for the top 8-mer motif ATGACTCA (TGAGTCAT) at the concentrations 375 nM and

1000 nM. The motifs (GA)GTGT are only bound unspecifically beyond the 200th rank.
There is no saturation occurring here. During the run there has been a problem with the

fluidics so that the accurate amount of GCN4 was not pumped into the flow cell (135

nM is lower than 50 nM).
The half-sites TGAC or TGAG of the dimer consensus motif 5’-TGA(C/G)-TCA-3’ are

enriched.
There is an increase in Hamming distance observable from the 8-mer consensus AT-

GACTCA (TGAGTCAT).
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Figure 9.21: Analyses of the experiment 12.02.2015 lane 2. (a) Intensity course for the
first 200 ranked 8-mers ranked at 125 nM on lane 2. (b) Binding curves for
selected 8-mers ranked at 125 nM on lane 2. (c) Enrichment of half-sites
(TGAC or TGAG) for the first 200 8-mers ranked at 125 nM on lane 2. (d)
Hamming distance from consensus ATGACTCA for the first 200 8-mers
ranked at 125 nM on lane 2.

There is an decrease in cycle 32 regarding the fluorescent signal in the C-channel coming

from the primer with the Alexa-like dye as shown in Figure 9.22.
An additional quality control concerning the dsDNA synthese could be applied here by

using a threshold, e.g. 10% quantile, in order to exclude clusters for which the resynthesis

was less efficient (Figure 9.23).
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Figure 9.22: C-channel signals from cycle 31 and 32 before and after dsDNA synthesis
shown by bar plot of experiment 12.02.2015.
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Figure 9.23: Histogram of cluster intensity differences (cycle 31 minus cycle 32) of exper-
iment 12.02.2015.
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9.19 Experiment 06.03.2015

In the following section the details regarding the experiment 06.03.2015 are described.

9.19.1 Sample

As sample GCN4 fused with mOrange was used as described previously.

9.19.2 Flow cell buffer

The flow cell buffer was composed of PBS + 5 mM MgCl2 + 60 mM KCl + 0.3 mg/ml

BSA + 0.1% Tween-20.

9.19.3 Protocol

The flow cell from February 2015 (experiment 12.02.2015) was reused and no (re)sequencing

was done here. Ten concentrations were applied, i.e. 0.1 nM, 0.3 nM, 0.8 nM, 2 nM, 6

nM, 17 nM, 50 nM, 135 nM, 375 nM, 1000 nM. Imaging was also performed at 0 nM.

After the first five concentration steps, denaturation and resynthesis of the second DNA

strand was performed. Equilibration time was 30 min at 20 ◦C. No washing was applied

during the protein cycles, the next concentration level was titrated into the flow cell.

Lane 2:

Cycle 44: Fluorescently labeled primer hybridisation (0.1 µM). Cycle 45: dsDNA syn-

thesis. The protein cycles were: cycle 46: 0 nM, cycle 47: 0.1 nM, cycle 48: 0.3 nM,

cycle 49: 0.9 nM, cycle 50: 2 nM, cycle 51: 6 nM, cycle 52: denaturation of second DNA

strand, cycle 53: resynthesis of second DNA strand, cycle 54: 17 nM, cycle 55: 50 nM,

cycle 56: 135 nM, cycle 57: 375 nM, cycle 58: 1000 nM.

9.19.4 Data analysis

Figure 9.24 shows the main analysis plots for the experiment 06.03.2015 lane 2.
The 8-mer ranking yields ATGACTCA (TGAGTCAT) and ATGAGTCA (TGACTCAT)

as the first two top placed motifs. There is a steep increase visible in fluorescent intensity

for the top 8-mer motif ATGACTCA (TGAGTCAT) at the concentrations 375 nM and

1000 nM. The motifs (GA)GTGT are only bound unspecifically beyond the 200th rank.
There is no saturation occurring here.
The half-sites TGAC or TGAG of the dimer consensus motif 5’-TGA(C/G)-TCA-3’ are

enriched.
There is an increase in Hamming distance observable from the 8-mer consensus AT-

GACTCA (TGAGTCAT).
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Figure 9.24: Analyses of the experiment 06.03.2015 lane 2. (a) Intensity course for the
first 200 ranked 8-mers ranked at 125 nM on lane 2. (b) Binding curves for
selected 8-mers ranked at 125 nM on lane 2. (c) Enrichment of half-sites
(TGAC or TGAG) for the first 200 8-mers ranked at 125 nM on lane 2. (d)
Hamming distance from consensus ATGACTCA for the first 200 8-mers
ranked at 125 nM on lane 2.
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9.20 Experiment 14.04.2015

In the following section the details regarding the experiment 14.04.2015 are described.

9.20.1 Sample

As sample GCN4 fused with mOrange was used as described previously.

9.20.2 Flow cell buffer

The flow cell buffer was composed of PBS + 5 mM MgCl2 + 60 mM KCl + 0.3 mg/ml

BSA + 0.1% Tween-20.

9.20.3 Protocol

The flow cell from February 2015 (experiment 12.02.2015) was reused and no (re)sequencing

was done here. Ten concentrations were applied, i.e. 0.1 nM, 0.3 nM, 0.8 nM, 2 nM,

6 nM, 17 nM, 50 nM, 135 nM, 375 nM, 1000 nM. Imaging was also performed at 0

nM. After the first five concentration steps, denaturation and resynthesis of the second

DNA strand was performed. Lane 2 and 3 (replicate of lane 2) was used. Equilibration

time was 30 min at 20 ◦C. No washing was applied during the protein cycles, the next

concentration level was titrated into the flow cell.

Lane 2:

Cycle 59: Fluorescently labeled primer hybridisation (0.1 µM). Cycle 60: dsDNA syn-

thesis. The protein cycles were: cycle 61: 0 nM, cycle 62: 0.1 nM, cycle 63: 0.3 nM,

cycle 64: 0.9 nM, cycle 65: 2 nM, cycle 66: 6 nM, cycle 67: denaturation of second DNA

strand, Cycle 68: resynthesis of second DNA strand, cycle 69: 17 nM, cycle 70: 50 nM,

cycle 71: 135 nM, cycle 72: 375 nM, cycle 73: 1000 nM

9.20.4 Data analysis

Figure 9.25 shows the main analysis plots for the experiment 14.04.2015 lane 2.
The 8-mer ranking yields ATGACTCA (TGAGTCAT) and ATGAGTCA (TGACTCAT)

as the first two top placed motifs. There is again a steep increase visible in fluorescent

intensity for the top 8-mer motif ATGACTCA (TGAGTCAT) at the concentrations 375

nM and 1000 nM. In addition, there are spikes occurring at the highest concentrations

375 nM and 1000 nM:

rank 7: TATGAA

rank 9: TATGAA

rank 11: TGTGAA
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rank 13: TATGAA

rank 14: TGTGAA

rank 16: TGTGAA

The motifs (GA)GTGT are only bound unspecifically.
There is no saturation occurring here.
The half-sites TGAC or TGAG of the dimer consensus motif 5’-TGA(C/G)-TCA-3’ are

enriched but to a lesser extent since there is the new motif T(A/G)TGAA ranked here.
There is an increase in Hamming distance observable from the 8-mer consensus AT-

GACTCA (TGAGTCAT).

Figure 9.25: Analyses of the experiment 14.04.2015 lane 2. (a) Intensity course for the
first 200 ranked 8-mers ranked at 125 nM on lane 2. (b) Binding curves for
selected 8-mers ranked at 125 nM on lane 2. (c) Enrichment of half-sites
(TGAC or TGAG) for the first 200 8-mers ranked at 125 nM on lane 2. (d)
Hamming distance from consensus ATGACTCA for the first 200 8-mers
ranked at 125 nM on lane 2.
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