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Summary

In order to understand in more depth and on a genome wide scale the behavior of tran-
scription factors (TFs), novel quantitative experiments with high-throughput are needed.
Recently, HiTS-FLIP (High-Throughput Sequencing-Fluorescent Ligand Interaction Pro-
filing) was invented by the Burge lab at the MIT (Nutiu et al. (2011)). Based on an
Mumina GA-IIx machine for next-generation sequencing, HiTS-FLIP allows to measure
the affinity of fluorescent labeled proteins to millions of DNA clusters at equilibrium in
an unbiased and untargeted way examining the entire sequence space by determination
of dissociation constants (Kds) for all 12-mer DNA motifs. During my PhD I helped to
improve the experimental design of this method to allow measuring the protein-DNA
binding events at equilibrium omitting any washing step by utilizing the TIRF (Total
Internal Reflection Fluorescence) based optics of the GA-IIx. In addition, I developed
the first versions of XML based controlling software that automates the measurement
procedure. Meeting the needs for processing the vast amount of data produced by each
run, I developed a sophisticated, high performance software pipeline that locates DNA
clusters, normalizes and extracts the fluorescent signals. Moreover, cluster contained
k-mer motifs are ranked and their DNA binding affinities are quantified with high accu-
racy. My approach of applying phase-correlation to estimate the relative translative offset
between the observed tile images and the template images omits resequencing and thus
allows to reuse the flow cell for several HITS-FLIP experiments, which greatly reduces
cost and time. Instead of using information from the sequencing images like [Nutiu et al.
(2011) for normalizing the cluster intensities which introduces a nucleotide specific bias,
I estimate the cluster related normalization factors directly from the protein images
which captures the non-even illumination bias more accurately and leads to an improved
correction for each tile image. My analysis of the ranking algorithm by Nutiu et al.| (2011)
has revealed that it is unable to rank all measured k-mers. Discarding all the clusters
related to previously ranked k-mers has the side effect of eliminating any clusters on
which k-mers could be ranked that share submotifs with previously ranked k-mers. This

shortcoming affects even strong binding k-mers with only one mutation away from the
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top ranked k-mer. My findings show that omitting the cluster deletion step in the ranking
process overcomes this limitation and allows to rank the full spectrum of all possible
k-mers. In addition, the performance of the ranking algorithm is drastically reduced
by my insight from a quadratic to a linear run time. The experimental improvements
combined with the sophisticated processing of the data has led to a very high accuracy
of the HiTS-FLIP dissociation constants (Kds) comparable to the Kds measured by the
very sensitive HiP-FA assay (Jung et al.,| (2015)). However, experimentally HiTS-FLIP
is a very challenging assay. In total, eight HiTS-FLIP experiments were performed but
only one showed saturation, the others exhibited protein aggregation occurring at the
amplified DNA clusters. This biochemical issue could not be remedied. As example TF
for studying the details of HiITS-FLIP, GCN4 was chosen which is a dimeric, basic leucine
zipper TF and which acts as the master regulator of the amino acid starvation response
in Saccharomyces cerevisiae (Natarajan et al.| (2001)). The fluorescent dye was mOrange.
The HiTS-FLIP Kds for the TF GCN4 were validated by the HiP-FA assay and a Pearson
correlation coefficient of R = 0.99 and a relative error of § = 30.91% was achieved. Thus,
a unique and comprehensive data set of utmost quantitative precision was obtained that
allowed to study the complex binding behavior of GCN4 in a new way. My downstream
analyses reveal that the known 7-mer consensus motif of GCN4, which is TGACTCA, is
modulated by its 2-mer neighboring flanking regions spanning an affinity range over two
orders of magnitude from a Kd= 1.56 nM to Kd= 552.51 nM. These results suggest that
the common 9-mer PWM (Position Weight Matrix) for GCN4 is insufficient to describe
the binding behavior of GCN4. Rather, an additional left and right flanking nucleotide is
required to extend the 9-mer to an 11-mer. My analyses regarding mutations and related
AAG values suggest long-range interdependencies between nucleotides of the two dimeric
half-sites of GCN4. Consequently, models assuming positional independence, such as a
PWM, are insufficient to explain these interdependencies. Instead, the full spectrum of
affinity values for all k-mers of appropriate size should be measured and applied in further
analyses as proposed by Nutiu et al.| (2011). Another discovery were new binding motifs
of GCN4, which can only be detected with a method like HiTS-FLIP that examines
the entire sequence space and allows for unbiased, de-novo motif discovery. All these
new motifs contain GTGT as a submotif and the data collected suggests that GCN4
binds as monomer to these new motifs. Therefore, it might be even possible to detect
different binding modes with HiTS-FLIP. My results emphasize the binding complexity
of GCN4 and demonstrate the advantage of HiTS-FLIP for investigating the complexity

of regulative processes.
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1 Introduction

Gene regulation is a fundamental process in molecular biology and essential for all living
organisms since it enables cell differentiation, maintenance, division, and adaptability
to the environment. The regulation of genes, i.e. when and at what rate proteins are
expressed in a cell, occurs at a variety of different stages. The first step is termed
transcription in which a particular segment of DNA is converted into RNA by the enzyme
RNA polymerase. In this phase, transcription factors (TFs) play a crucial role and have
an important influence on cell fate through the interpretation of regulatory DNA within
the genome of an organism.

A defining feature of transcription factors is that they contain one or more DNA-binding
domains (DBDs), which attach to specific DNA sequences adjacent to the genes they
regulate. Despite intensive research, a comprehensive understanding of the underlying
mechanisms by which TF's select in vivo binding sites and alter gene expression remains
still unclear (Slattery et al.| (2014)).

One key question concerning the DNA-binding specificity is how TFs can very precisely
identify their functional binding sites (typically ~5-15 bp long) in a cellular environment at
the right location and time. A related question here is how the transcriptional behaviour
of various genes can be understood from their DNA sequence and how the bindings of
TFs to these sequences are determinants of prediction for gene expression. In order to
systematically tackle this question a full exploration of the entire sequence space is needed
which determines the binding affinity landscape of a TF, the range of affinities for every
possible sequence combination up to a certain length (Segal and Widom) (2009)). This
TF specific binding affinity landscape leads to a distinct distribution of molecule binding
configurations for a particular sequence, and consequently, to a distinct transcriptional
behaviour for any given combination of DNA sequence and binding concentrations (Segal
and Widom| (2009)).

The full in vitro measurement of the binding affinity landscape of a TF forms its in vitro
DNA binding profile (DBP) (Wang et al. (2011)). Stated in Wang et al. (2011) there are

several important insights related to the in vitro DBP of a TF such as follows:

e the generation of accurate DNA-binding models (such as position weight matrices,
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PWMs)
e identification of all DNA-binding sites and target genes of TFs in the whole genome
e construction of transcription regulatory networks

e biomedical applications, such as transcription therapy, which uses TFs as targets
for disease therapy (Li and Sethi| (2010)); |Stellrecht and Chen| (2011)); Yeh et al.
(2013))), or as another example, designing artificial TFs as means in human gene

therapy to turn off malfunctioning, disease causing genes (Asuka et al.| (2014))

Using in vivo instead of in vitro data has the limitations that the genomic regions
identified are typically hundreds of base pairs long and the derived binding specificities
might also reflect the specificities of other factors (Segal and Widom! (2009)).
Therefore, studying in vitro DBPs of TF's is an essential research field with far reaching
implications for understanding basic molecular mechanisms and finding cures for diseases.
The research focus of this thesis deals with a new experimental method for the in
vitro measurement of the binding affinity landscape of a TF, called HiTS-FLIP (High-
Throughput Sequencing-Fluorescent Ligand Interaction Profiling) (Nutiu et al.| (2011)),
which allows to measure binding affinities of all possible k-mers (DNA motifs of sequenced
reads) up to the length of 12 bp. So far high-throughput in vitro methods, such as
protein-binding microarrays (Bulyk et al. (1999); Mukherjee et al.|(2004))) and microfluidic
platforms (Maerkl and Quake| (2007))) only allowed to measure all possible ~8-10 bp
sequences.

Utilizing next-generation sequencing (NGS) technology for measuring DNA and RNA
binding proteins to explore the entire sequence space and to determine all relevant
thermodynamic properties for each DNA motif is required to move the understanding of
gene regulation forward and elucidate cellular mechanisms and regulatory networks on
a system wide level in ultimate depth. Methods like HiTS-FLIP (Nutiu et al.| (2011))),
HiTS-RAP (Tome et al. (2014)) and RNA-MaP (Buenrostro et al. (2014)) have given
already important examples how powerful the realization of such an approach is and
what novel biological insights can be reached. These experiments were carried out on
repurposed [llumina’s NGS platforms, which can be envisioned to be the basis for such
kind of studies. Besides the biochemical protocols, a crucial part in the analysis due to
the different requirements and the large data volumes being produced is a well crafted
software pipeline capable to handle all data processing needs for the arising scientific
use cases. To be of wide applicability such a software pipeline should be designed as a

general, modular set of user selectable algorithms and components as an open-source
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platform providing all processing steps from the image analysis up to the determination of
equilibrium constants. In addition, the pipeline should enable different analysis techniques
and automated tests for comparing different results leading to the most accurate biological
insights for the data at hand.

In the following sections, the biological background, main scientific questions involved,
details on the studied TF GCN4, related experimental methods, building blocks of HiTS-
FLIP, the performed experiments, the pipeline and its components, and the downstream

analyses and biological discoveries are described in depth.






2 TF-DNA recognition

2.1 Motivation

Gene regulation in vivo is a very complex and multi-layered process with numerous players
involved. This includes the nucleotide sequence, 3D structure and flexibility of TFs and
their binding sites, TF-DNA binding in the presence of cofactors, cooperative DNA-
binding of TFs, chromatin accessibility and nucleosome occupancy, indirect cooperativity
via competition with nucleosomes, pioneer TFs that bind to nucleosomal DNA, and DNA
methylation (Slattery et al|(2014)). In addition, interactions exist among all of these
factors, which might alter binding in a cell type-specific manner and in different modes
at different time points during development (Slattery et al.| (2014))). Up to now, the
mechanisms by which TFs select in vivo binding sites and alter gene expression remain
unclear (Slattery et al.| (2014))). There is still much to discover and learn about TF-DNA
interactions. Despite the artificial setting, in vitro experiments can greatly elucidate
various aspects how TFs bind DNA in a bottom-up approach, providing building blocks
for an improved and ever increasing understanding of the inner workings of transcriptional
gene regulation. A better understanding of TF-DNA binding requires the ability to
quantitatively model TF binding to accessible DNA as its first basic step, before additional
in vivo components can be considered.

As an example from |Zhao et al.| (2012), improved specificity models that are based on
in vitro binding data can be very useful for assessing how consistent in vivo location
data are with the expected binding sites. When predicted genomic binding sites are
not observed in ChIP-seq data, one can usually assume that those locations are not
accessible. But when binding is observed in locations without predicted binding sites,
or with only very low predicted affinity sites, that implies either indirect or cooperative
binding mediated through some other factor(s) that binds directly to the DNA (Gordan
et al| (2011))). Such indirect and cooperative binding events can lead to the discovery of
interacting TF's that coordinately control gene expression. But to be confident about
which ChIP-seq peaks are not due to direct binding one needs an accurate model for the
specificity of the TF.
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In the following, some of the most important research questions regarding TF-DNA
interaction mechanisms are described for which in vitro methods are valuable research
tools and thus amenable to HITS-FLIP.

2.2 Base readout

Base readout (also called “direct readout”) is the formation of hydrogen bonds or
hydrophobic contacts with functional groups of the DNA bases, primarily in the major
groove (Seeman et al.| (1976))). The preference for a given nucleotide at a specific position
is mainly determined by physical interactions between the amino acid side chains of the
TF and the accessible edges of the base pairs that are contacted. These contacts include
direct hydrogen bonds, water-mediated hydrogen bonds, and hydrophobic contacts. The
underlying question here is to what effect does the DNA sequence dictate and control
the TF binding behavior? Differently phrased, if we know a certain stretch of DNA
sequence to what extent can we accurately predict for a given TF its binding affinity
to this sequence? A prominent example for base readout is the formation of bidentate
hydrogen bonds between arginine residues and guanine bases in the major groove of DNA
(Honig and Shakked| (2012)). In vitro methods such as PBM and SELEX-seq have been
applied in many research projects to determine the sequence specificities and binding
profiles of various TFs from different TF families.

In (Wei et al.| (2010))) all human and mouse ETS (E26 transformation-specific or E-twenty-
six) factors were analysed which are characterized by an evolutionary conserved ETS
domain and play important roles in cell development, cell differentiation, cell proliferation,
apoptosis, tissue remodeling as well as cancer progression (Oikawa and Yamada/ (2003)).
ETS factor DNA-binding profiles were determined by microwell-based TF-DNA binding
specificity assays as well as PBMs. Both approaches revealed that the ETS-binding
profiles cluster into four distinct classes, and for a member of each class the specificities
were confirmed in vivo using ChIP-seq showing that enrichment of ETS class PWMs
matched well with ChIP-seq peak sequences.

Another study (Franco-Zorrilla et al.| (2014)) characterized sequence specificity of 63
plant TFs representing 25 families using PBM. Analyses of co-regulated genes and
transcriptomic data from TF mutants showed the functional significance of over 80% of all
identified sequences and of at least one target sequence per TF. Strong overrepresentation
of DNA motifs determined in vitro was obtained with sequences in the promoters of
deregulated genes in mutant or overexpressing genotypes.

Finally, (Orenstein and Shamir| (2014)) analysed 162 human and mouse TFs regarding
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their sequence specificity using in vitro methods HT-SELEX and PBM and good predictive
power was shown for in vivo binding applying ChIP-seq data (eight most informative
positions for DNA motifs, AUC of 0.732 and 0.719, p-value=0.18 Wilcoxon signed-rank
test).

2.3 Shape readout

Shape readout (also called “indirect readout”) is the recognition of the 3D structure
of the DNA double helix (Rohs et al.| (2009a)). Since DNA shape is a function of the
nucleotide sequence, an important question is if DNA shape is a direct determinant of
protein-DNA recognition. It has long been recognized that every base pair has a unique
hydrogen-bonding signature in the major groove, but that this is not the case in the minor
groove (Rohs et al.| (2009b))). Thus, the expectation has been that the recognition of
specific DNA sequences would take place primarily in the major groove by the formation
of a series of amino-acid- and base-specific hydrogen bonds (Garvie et al.| (2001)).

It was shown in (Rohs et al.| (2009b))) that the binding of arginine residues to narrow minor
grooves is a widely used mode for protein—-DNA recognition. This readout mechanism
exploits the phenomenon that narrow minor grooves strongly enhance the negative
electrostatic potential of the DNA. Thus, the marked enrichment of arginines in narrow
regions of the DNA minor groove provides the basis for a new DNA recognition mechanism
that is used by many families of DNA-binding proteins (Rohs et al. (2009b)). The minor-
groove geometry was analysed with the software Curves/4 (reference in Rohs et al.
(2009b)) using in vitro data, all 1031 crystal structures of protein-DNA complexes in
the PDB that have any amino acid contacting base atoms. According to (Rohs et al.
(2009Db))) protein side chains contact the minor groove in 69% of those structures that
have at least one helical turn of DNA.

Abe et al| (2015) teased base and shape readout apart in the context of Hox-DNA binding
by mutating residues that, in a co-crystal structure, only recognize DNA shape. Hox genes
(also known as homeotic genes) contain a DNA sequence known as the homeobox and are
organized on the chromosome in the same order as their expression along the anterior-
posterior axis of the developing animal (Pearson et al|(2005)), very different from many
other genes which are scattered randomly in the genome. Hox proteins are transcription
factors that control the body plan of an embryo along the anterior-posterior (head-tail)
axis and bind to enhancers where they either activate or repress genes (Pearson et al.
(2005)). Complexes made in (Abe et al. (2015)) with these mutants lost the preference to

bind sequences with specific DNA shape features. However, introducing shape-recognizing
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residues from one Hox protein to another swapped binding specificities in vitro, studied
with SELEX-seq, and affected gene regulation in vivo analysing embryos. Therefore, |Abe
et al|(2015) concluded that shape readout is a direct and independent component of
binding site selection by Hox proteins.

Zhou et al.|(2015) integrated 3D DNA shape information derived from SELEX-seq into the
modeling of TF binding specificities. Four distinct shape features were applied, namely
minor groove width, propeller twist, roll, and helix twist, which had been shown to be
important for protein-DNA recognition in specific cases (Zhou et al. (2015)), references
therein). Using support vector regression, quantitative models of TF binding specificity
based on PBM data were trained for 68 mammalian TFs. Their results showed that

shape-augmented PBM-trained models compared favorably to sequence-based models.

2.4 Interdependence of individual nucleotides

Currently, the most widely used mathematical representation of TF specificity is the
position weight matrix (PWM) model (Stormo (2000)). This model assumes the positions
within the binding site are independent, and the contribution at one position of the
binding site to the overall affinity does not depend on the identity of nucleotides in other
positions of the site.

According to (Siggers and Gordan| (2014a))), disagreement with a PWM model may be
due to:

(i) a protein having multiple binding modes, which will require multiple PWMs, or

(ii) poor or biased parameterization of the PWM model.

PWDMs can capture low-affinity binding sites but must be explicitly parameterized using
low-affinity binding data (Weirauch et al.| (2013)).

Quantitative analysis of high-throughput binding data has shown that PWMs are a
good quantitative model for most TFs (Zhao et al.| (2012)). In (Zhao et al|(2012)), the
results of a quantitative analysis were achieved using more than 400 TF specificity data
obtained by the universal PBM technology (Berger et al.| (2006)), which are available
in the UniPROBE database (Robasky and Bulyk| (2011))). Using the binding energy
estimate by maximum likelihood for PBM program, (BEEML-PBM, [Zhao et al. (2012)),
to parameterize specificity models of varying complexity it was found that improvements
from incorporating interactions between positions are usually small, although there were
some significant exceptions. The interactions between neighboring bases are stronger
than interactions between non-neighboring bases as found by (Zhao et al. (2012)). This

pattern of nearest-neighbor interactions holds true for the zinc finger class, which has 89
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members including C2H2, C4, C6, and GATA zinc finger domains. It also includes the
nuclear transcription factor Hnf4a. The 25 TFs of the zipper class, including the basic
leucine zipper (bZIP) and the basic helix-loop-helix (hHLH) domains, like Yapl, HLH-26,
Myf6, Jundm2, Cbfl, GCN4, appear to have benefited the most from the inclusion of
nearest-neighbor interactions, consistent with previous information (Berger et al. (2006);
Maerkl and Quake| (2007)); Nutiu et al.|(2011)). By contrast, none of the 24 high-mobility
group (HMG) TF's benefited substantially from including adjacent dinucleotide energy
contributions. While there are data showing nonindependence between positions for at
least some HMG proteins, those appear to be relatively minor contributions overall, as
found previously for several zinc finger proteins (Bulyk et al.| (2002))). In summary, the
finding of (Zhao et al.[(2012))) demonstrate that some TF families are more likely to require
interaction models than others and that GCN4 shows the pattern of nearest-neighbor
interactions.

GCN4 binds DNA as a homodimer where each monomer binds optimally to the half-site
sequence 5'-TGAC-3'(Ellenberger et al.| (1992a); [Sellers et al.| (1990al))). Using HiTS-FLIP,
Nutiu et al.| (2011) discovered that substitutions at positions T, Go and Ag in the GCN4
consensus 7-mer motif, T1GoA3C,T5CgA7 resulted in larger increases in Kd, i.e. greater
weakening of binding, than at the corresponding positions T', Gs'and Ag'of the right
half-site. This result confirmed the asymmetry in binding to the 7-mer consensus caused
by the preference for C at the 4th position, with stronger binding observed to the left than
to the right half-site (Sellers et al. (1990b)). By examining pairwise substitutions relative
to the consensus on the inferred change in Gibbs free energy, [Nutiu et al.| (2011) revealed
extensive interdependence. The incremental effect on binding of a second mismatch in
the same half-site was consistently lower than the effect of the corresponding mismatch
in the opposite half-site, that is, two mismatches in the same half-site disrupt binding
less than a single mismatch in each half-site (Nutiu et al.| (2011))). [Nutiu et al. (2011)
suggest a model in which a substitution at one position in a half-site tends to weaken the
interaction of the associated GCN4 monomer with other positions in the same half-site,
perhaps through a subtle protein conformational change, making interactions between the
other monomer and half-site more critical. Therefore, models that assume independence,
such as the commonly used PWM model, cannot accurately capture the complex DNA
binding affinity landscape of GCN4. Instead, Nutiu et al.| (2011)) advocate the use of the
full spectrum of Kd values estimated by HiTS-FLIP for all k-mers of appropriate size,
e.g. 8,9, 10, 11 or 12 bp, depending on the specific protein and depth of data.
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2.5 Effect of spacing and orientation

Combinatorial transcription factor binding is essential for cell-type-specific gene regu-
lation (Ng et al.| (2014])). One question here is to what extent constrained spacing and
orientation of multiple interacting TF's are critical for regulatory element activity, another
question how different spacing and orientation variations act as additional determinants
of specificity and allow the modulation of binding behaviour of a single TF.

As described in (Siggers and Gordan! (2014b)), GCN4 dimers can bind to biparte sites
with half-sites (TGAC/G) separated by variable-length spacers. For example, the two
half-sites can be bound by GCN4 overlapping or adjacent (Gordan et al.| (2011)); [Zhu
et al.| (2009)).

Jolma et al.| (2013) used HT-SELEX and observed formation of dimers for a large set of
TFs, with strong orientation and spacing preferences. These preferences were applied
by |Jolma et al.| (2013]) to further classify TF subfamilies that had identical primary
specificities. In addition, |Jolma et al. (2013) showed that models incorporating adjacent
dinucleotides, dimer spacing and orientation preferences improved modeling of TF binding
to DNA and that the dimer model can be generalized to analyze large heteromeric TF-
DNA complexes. Dimer orientation and spacing preferences could be used to further
classify some factors that showed similar monomer binding specificities. For example, the
ETS class I factors ERG, ETS1, and ELK1 preferred to bind to different homodimeric
sites (Jolma et al. (2010)). Similarly, both T box factors and forkhead proteins displayed
one type of monomer specificity but seven and three distinct dimeric spacing/orientation
preferences, respectively. Next, Jolma et al.| (2013) tested whether orientation and spacing
preference matrix could be used to improve prediction of sequences enriched by TBX20,
a factor that binds to a dimeric site where the same monomer is found in multiple
different orientation and spacing configurations. For this purpose, Jolma et al.| (2013)
generated expected-observed plots for all possible combinations of two 4-mers with gaps
of different length between them (gapped 8-mers). A model that incorporated spacing
and orientation preferences described enriched gapped 8-mers much better (R2 = 0.67
compared to 0.44) than a simple PWM. Many TF families could be further subclassified
by |Jolma et al.| (2013) based on more subtle differences in specificity within the families
or on a combination of monomer specificity and spacing and orientation preferences.
For example, nuclear receptors are known to bind to dimeric sites that vary in both
specificity and spacing of the half-sites (Pardee et al. (2011))). Clear classification of
nuclear receptors to different specificity groups has, however, not been accomplished
(Jolma et al. (2013])). The systematic analysis described in (Jolma et al.| (2013])) allowed
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classification of nuclear receptors to 12 classes based on a combination of half-site and
dimer orientation and spacing preferences. Similarly, although all T box proteins bound
to identical half-sites, seven different classes could be identified based on spacing and
orientation preferences (Jolma et al.| (2013))). ETS class I proteins also displayed three
distinct dimer orientations and spacings. A more complex classification of factors was
necessary for bZIP proteins, which are known to vary in both specificity and spacing of
the half-sites (Badis et al.| (2009); Kim and Struhl (1995)). |Jolma et al.| (2013]) found
that many bZIP proteins bind to two sites and that the specificities form a tiled pattern,
where in many cases, two factors shared one site and also each bound to another separate
site. Such a tiled organization of TF specificity allows a complex control of target genes
based on the expression and activity of the particular bZIP factors present in a given
cell. The binding of TFs to DNA is commonly modeled based on a PWM that assumes
independence of binding of protein to individual bases. Several alternative models that
do not make this independence assumption and instead use a larger set of parameters
to describe TF-DNA binding have been developed (for example, |Agius et al.| (2010);
Roulet et al.| (2002)). Based on their observation that adjacent bases commonly affect
each other, and that many TFs bind DNA as monomers or dimers, [Jolma et al. (2013
developed two models for TF binding that incorporate these features. The first model
was a simple replacement for a PWM that is based on a first-order Markov chain. This
model takes into account the effect of adjacent bases and models binding of factors that
bind to A or T stretches significantly better than a conventional PWM. The second
model developed by |Jolma et al. (2013)) takes into account the spacing and orientation
preferences of dimeric sites. This improved models for TFs that bind to DNA both as

monomers and dimers or as multiple different dimers.

2.6 Multiple DBDs

The DNA-binding domains of eukaryotic transcriptional activators play a key role in
selective promoter activation by tethering activation domains to the appropriate promoters
and by coordinating the assembly of specific sets of transcription factors on these
promoters (Herr and Cleary| (1995)).

One example for proteins with multiple DBDs are POU (for Pit, Oct, UNC) proteins,
which are eukaryotic transcription factors containing a bipartite DNA binding domain
referred to as the POU domain (Herr and Cleary| (1995)). The POU domain is the
conserved DNA binding domain of a family of gene regulatory proteins. It consists of a

POU-specific domain and a POU homeodomain, connected by a variable linker region.
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Oct-1 is a ubiquitously expressed POU domain transcription factor and can bind to
different DNA sites using different arrangements of its two DNA binding domains POUg
and POUp (Klemm and Pabo) (1996)); Verrijzer et al.| (1992)).

2.7 Influence of flanking nucleotides

Eukaryotic cells often express, at the same time, TFs with highly similar DNA binding
motifs but distinct in vivo targets. Currently, it is not well understood how TFs with
seemingly identical DNA motifs achieve unique specificities in vivo. What could be
possible influences?

Siggers et al| (2012) examined how the DNA bases flanking 10-bp kB sites affect the
binding to ten different dimers from mouse and human to a wide-ranging set of 3285
potential kB site sequences. In order to determine whether PBM-determined dimer-
specific differences correlated with dimer specific binding differences in vivo, [Siggers
et al.| (2012)) examined an NF-kB ChIP dataset in which ChIP-chip was performed on
LPS-stimulated human macrophages and a high correlation was found.

Gordan et al.| (2013) used custom PBMs to analyze TF specificity for putative binding
sites in their genomic sequence context. Examining yeast TFs Cbfl and Tye7, |Gordan
et al| (2013) found that binding sites of these bHLH TFs (i.e., E-boxes) are bound
differently in vitro and in vivo, depending on their genomic context. Cbfl and Tye7
have highly similar DNA binding specificities according to consensus sequences PWMs
from ChIP-chip data (Harbison et al.| (2004)), or PWMs from universal PBM data (Zhu
et al. (2009)). Computational analyses with regression-based models by |Gordan et al.
(2013) elucidated that sequence features not only in the proximal but also the distal
flanks contribute to different DNA binding specificity. Namely, the DNA shape features
in flanking regions are distinct for binding sites preferred by Cbfl versus Tye7, and the
genomic sequences flanking the E-Box motif contribute to explaining the differences in
in vivo DNA binding between Cbfl and Tye7 (Gordan et al. (2013)). This suggests
that nucleotides outside E-box binding sites contribute to specificity by influencing
the three-dimensional structure of DNA binding sites. Thus, the local shape of target
sites might play a widespread role in achieving regulatory specificity within TF families
(Gordan et al.| (2013)).

In (Levo et al|(2015a)), a new method named BunDLE-seq (Binding to Designed Library,
Extracting and Sequencing) was developed by the authors that provided quantitative
measurements of TF binding to thousands of fully designed sequences of 200 bp in length
within a single experiment. For the yeast TFs GCN4 and GAL4, Levo et al.| (2015a))
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demonstrated that sequences outside the core TF binding sites profoundly affected TF
binding, and that TF-specific models based on the sequence or DNA shape of the regions
flanking the core binding site are highly predictive of the measured differential TF binding
in vivo. These observations demonstrate the need for a more comprehensive understanding
of the various factors influencing TF binding to regulatory sequences, going beyond the
characterization of core binding sites (Levo et al. (2015a)). Notably, the selected TFs
are structurally distinct and are representatives of the two most abundant yeast TF
families (basic leucine zipper, bZIP, class and zinc cluster domain class, respectively,
Hahn and Young| (2011])). The conclusion Levo et al. (2015a)) arrived at was that whereas
sequences sharing the well characterized strong binding site for either GCN4 or GAL4
showed pronounced differences in binding, a simple TF-specific model accounting for
3-bp flanks successfully predicted these differences, and that DNA shape features provide

a mechanistic explanation for the effect of flanking sequences.

2.8 Different binding modes

Another phenomenon by which TFs can differentiate their DNA binding behavior is by
different binding modes.

Fordyce et al.| (2012a) investigated Hacl, a S. cerevisiae bZIP TF involved in the highly
conserved unfolded protein response (UPR). In S. cerevisiae, two main proteins are
responsible for enacting the UPR: Irel, a transmembrane kinase/endonuclease, and Hacl
(Fordyce et al. (2012a)). Unfolded proteins bind to the Irel domain facing the ER lumen,
triggering its oligomerization and activation of its cytoplasmic endonuclease domain.
Once activated, Irel cleaves Hacl mRNA at two sites and tRNA ligase rejoins the severed
exons via an unconventional spliceosome independent mechanism (Chapman et al.| (1998)).
This splicing removes an intron to produce a new transcript (denoted Hacli mRNA; “i”
for “induced”), thereby relieving translational inhibition exerted by the intron. Following
translation of the spliced mRNA, Hacli is translocated to the nucleus, where it regulates
a large set of UPR-responsive genes (Riiegsegger et al.| (2001))). Despite the central role
played by Hacli in activating the UPR, the rules by which Hacli recognizes UPR target
genes remain unclear. To obtain an unbiased assessment of Hacli binding preferences,
Fordyce et al. (2012a)) used a microfluidic platform, MITOMI (mechanically induced
trapping of molecular interactions, [Fordyce et al. (2010])), to measure relative binding
affinities (AAG) between Hacli and 70 bp double-stranded oligonucleotides containing
overlapping instances of all possible 8 bp combinations. In vivo studies of Hacli are

complicated by both the very short half-life of the Hacli isoform derived from the spliced
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mRNA and the tendency of bZIP transcription factors to homo- and heterodimerize
(Fordyce et al.|(2012a))). Therefore by necessity, in vitro approaches provide a particularly
valuable tool for accurately defining binding preferences (Fordyce et al.| (2012a))). In
addition, [Fordyce et al.| (2012a)) analyzed expression of reporter genes driven by a variety
of Hacli mutants to identify the protein residues required for target site recognition.
Fordyce et al.| (2012a) discovered that Hacli bind both long (11-13 bp), extended UPRE-
1-like motif called extended core UPRE-1 or xcUPRE-1, and compact (6-7 bp) UPRE-2
DNA target sites. The 12-bp sequence of xcUPRE-1 is 5'-GGACAGCGTGTC-3'and the
6-bp sequence of UPRE-2 is 5'-TACGTG-3'. [Fordyce et al. (2012al) suggest that changes
in the conformation of Hacl, from the N-terminal region of extended homology, leads
to recognition of one site or the other. To what purpose does Hacli recognize multiple
distinct sites? For the glucocorticoid receptor, DNA sequences can act as allosteric
ligands, inducing conformational changes to preferentially recruit specific cellular co-
factors with functional consequences for transcriptional activation (Meijsing et al.| (2009)).
A similar scenario may apply to Hacli, and perhaps to other bZIP family members,
although additional studies will be required to determine whether changes in protein
conformation within the DNA binding domain can propagate elsewhere within the protein
(Fordyce et al. (2012a))). Alternatively, dual site recognition could represent a snapshot
in evolutionary time of a transcriptional network rewiring event in progress. According
to this notion, it may have been advantageous to place an additional set of target genes
under Hacli control, perhaps as a handoff of some other transcriptional program (Fordyce
et al.| (2012a))). In this light, it is interesting to note that the Hacli-driven transcription
program in S. cerevisiae has been split into multiple transcriptional branches in metazoans,

indicating evolutionary network plasticity (Fordyce et al.| (2012a)).

2.9 Weak binding sites

TF's can specifically utilize low-affinity DNA-binding sites to regulate genes (Siggers and
Gordan| (2014al)). TF binding to low-affinity DNA sites can provide a mechanism for
interpreting both spatial (Cotnoir-White et al. (2011); Struhl (1987))), and temporal
(Rowan et al. (2010)) TF gradients that often arise during development to control where
and when genes are expressed. Analysis of genome-wide binding data has also provided
evidence that low-affinity sites are under wide-spread evolutionary selection (Jaeger et al.
(2010); Tanay| (2006)) and that their inclusion can greatly improve quantitative models
of TF binding and gene regulation used for predicting segmentation patterns during

early embryonic development in Drosophila (Segal et al.| (2008])). Utilization of sites
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selected to be lower affinity than an optimal sequence opens the door for functionally
relevant sites to deviate strongly from the consensus sequence and may not be well
represented by a particular binding model (Siggers and Gordan| (2014al)). For example,
a comprehensive analysis of DNA binding by NF-xB dimers identified numerous lower
affinity, non-traditional sites that differ significantly from the consensus sites and are not
captured by the widely used PWMs (Siggers and Gordan, (2014a)); Wong et al.| (2011)).
According to Tanay| (2006), transcription factors bind DNA stochastically and it is
therefore expected that they would be interacting with promoters at different levels of
specificity, depending on an affinity that is determined (at least partially) by the DNA
sequence. Tanay| (2006) developed an algorithm that predicts DNA-binding energies from
sequences and ChIP data across a wide dynamic range of affinities and used them to reveal
widespread functionality of low-affinity transcription factor binding in S.cerevisiae. Instead
of focusing on a set of a few dozens of high-specificity hits for each TF, ChIP experiments
are analyzed quantitatively in (Tanay| (2006)), using (possibly noisy) estimates on TF-
binding affinities for thousands of promoters. Applying PWMs for sequence-based
predictions of TF affinities and comparing these predictions to ChIP binding ratios |[Tanay
(2006) was able to test if low-specificity binding detected by ChIP provides quantitative
indication to variability in in vivo binding strengths, or is by and large a noisy indication
to biological cases of high-specificity targets. The results by (Tanay| (2006])) showed that
PWM predictions and ChIP binding ratios were highly correlated, thereby suggesting
that binding of TFs to low-affinity promoters occurs abundantly in vivo, is determined
by promoter sequences, and constitutes a substantial fraction of the interaction between
TFs and DNA. One way to test whether these abundant weak TF—gene interactions
carry functional relevance is to estimate their level of evolutionary conservation. Taking
evolution into account, the predicted TF binding energies of orthologous promoters from
different yeast species were shown to be more conserved than expected by neutrality
(Tanay| (2006)). Conservation analysis by (Tanay (2006])) suggested that selection due
to a single TF may affect significant parts of the S.cerevisiae genome (10%-20%), much
more than expected by purifying selection on strict binding sites. This finding was
supported by analysis of gene expression. In conditions that activate a TF, one may
associate the TF-binding affinity with a measurable change in gene expression for a large
part of the genome (10% and more). According to these results, low-affinity TF—gene
interactions are important features of genomic regulatory programs, with possible roles
in fine-tuning the transcriptional phenotype and in providing abundant evolutionary
raw material for its continuous modification. According to the results, conservation

of energy is detectable in a large number of promoters, greatly exceeding the top few
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affinity percentiles predicted to have significant binding sites. For example, Gen4 and
Cbfl are estimated to affect roughly 10% of the genome (Gend may affect more weakly
an additional 10%). The conservation of energies predicted for other TFs may be even
broader. Mbpl and Ume6 conservation peak at the top 5%, but remain significant on
up to half of the affinity spectrum. For several of the TF's, conservation is observed on
a significant fraction of the genome (10%-20%), reflecting widespread selection on the
binding energy of promoters lacking high-affinity binding sites. The study by (Tanay
(2006)) demonstrates that we can use ChIP experiments, so far considered to indicate
only high-affinity TF targets, to quantify weak transcriptional interactions and combine
them with promoter sequence analysis. One can therefore exploit comprehensive ChIP
experiments to outline an “analog” model for transcriptional networks, and to explore
the role of low-specificity, probabilistic TF-DNA interactions in genomic regulatory
programs. According to the evolutionary and gene expression analysis reported in (Tanay
(2006)), it is likely that many of the low-specificity transcriptional interactions in yeast
are weakly functional. According to (Tanay| (2006)) it is shown that for substantial parts
of the genome, the total binding energy (and not just the existence of a binding site) is
conserved and that on average, promoters with low predicted binding affinities can still
generate gene expression. Evolutionarily, transcriptional programs in which a discrete
logic is softened by a combination of low-affinity interactions may be more flexible. Such
programs can allow changes to be gradually accumulated, therefore alleviating selective
pressure on specific loci (e.g., classical binding sites) and increasing their ability to evolve.
If binding of a TF to low-affinity promoters is functionally important, one would expect
to observe selection operating not only on individual binding sites, but also on the total
affinity of each promoter to that TF. A gene weakly regulated by a TF may be pushed
to remain so in the course of evolution, but the pressure would not be focused on a
specific locus but would be dispersed over the entire promoter, selecting for the integrated
binding energy over many possible weak loci.

Raijman et al.| (2008) developed a probabilistic model for the evolution of promoter regions
in yeast, combining the effects of regulatory interactions of many different transcription
factors. The model expressed explicitly the selection forces acting on transcription factor
binding sites in the context of a dynamic evolutionary process. [Raijman et al.| (2008)
examined the evolutionary dynamics in Saccharomyces species promoters and revealed
relatively weak selection on most binding sites. Moreover, according to the estimates
of (Raijman et al.| (2008])), strong binding sites are constraining only a fraction of the
yeast promoter sequence that is under selection. Using their new techniques, Raijjman

et al. (2008) was able to express a substantial part of the current functional knowledge on
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gene regulation in evolutionary terms and evaluate observed patterns of divergence and
conservation based on this model. Specifically, [Raijman et al.| (2008]) used their models
to study the intensity of selection on TFBSs and to estimate the amount of promoter
region under selection due to high specificity TFBSs. Given their results, it is evident
that even on very short evolutionary time scales transcriptional regulation in yeast is
highly dynamic. Taken together, it can be hypothesized that much of the functionality
of transcriptional networks is encoded in ways other than strong TFBSs, and that due
to high levels of redundancy, binding sites are under continuous remodeling (Raijman
et al.| (2008]), references therein). Rather than being a deterministic and sparse network,
transcriptional programs may be shaped as dense, noisy networks that are continuously
changing during evolution.

Jaeger et al. (2010) used recently published universal PBM data on the in vitro DNA
binding preferences of these proteins for all possible 8-base-pair sequences, and examined
the evolutionary conservation and enrichment within putative regulatory regions of the
binding sequences of a diverse library of 104 non-redundant mouse TFs spanning 22
different DN A-binding domain structural classes. These 8-mers occur preferentially in
putative regulatory regions of the mouse genome, including CpG islands and non-exonic
ultraconserved elements (UCEs). |Jaeger et al. (2010) found that not only high affinity
binding sites, but also numerous moderate and low affinity binding sites, are under
negative selection in the mouse genome. The results of (Jaeger et al.| (2010)) indicate that
many of the sequences bound by these proteins in vitro, including lower affinity DNA
sequences, are likely to be functionally important in vivo. Taken together, |Jaeger et al.
(2010) provide evidence supporting that lower affinity TF binding sites, as determined
from PBMs, serve evolutionarily conserved, in vivo regulatory functions.

Segal et al.| (2008)) showed that in Drosophila embryonic development low affinity TF
binding sites are important in gene regulation.

Crocker et al.| (2015) demonstrated that the Hox protein Ultrabithorax (Ubx) in complex
with its cofactor Extradenticle (Exd) bound specifically to clusters of very low affinity sites
in enhancers of the shavenbaby (svb) gene of Drosophila. These low affinity sites conferred
specificity for Ubx binding in vivo, but multiple clustered sites were required for robust
expression when embryos developed in variable environments. Although most individual
Ubx binding sites are not evolutionarily conserved, the overall enhancer architecture -
clusters of low affinity binding sites - is maintained and required for enhancer function.
Natural selection therefore works at the level of the enhancer, requiring a particular
density of low affinity Ubx sites to confer both specific and robust expression. The

results by (Crocker et al.| (2015)) helped to explain previous difficulties with bioinformatic
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prediction of functional Hox binding sites, because low affinity sites are difficult to detect
reliably. Indeed, the low affinity sites that implement Hox regulation within svb enhancers
share little similarity with canonical Hox or Hox-Exd binding sites. Consequently, a
very large number of seemingly disparate DNA sequences can confer low affinity binding
for Hox proteins. If Hox-Exd sites are often clustered in the genome, then signals from
genome-wide ChIP-seq will reflect binding to the entire cluster and the signals associated
with individual low affinity sites may be difficult to discern from noise. Identification
of important low affinity sites will require a change in computational approaches to
analyzing genome-wide data. Currently, it is de rigueur to apply an arbitrary threshold to
genome-wide data and then to analyze only signals above this threshold. This approach
is likely to bias detection toward high affinity sites, whose functions may be distinct from
those of clusters of low affinity sites (Crocker et al.| (2015)).

Afek and Lukatsky| (2013) showed with an equilibrium biophysical model for protein-DNA
binding that non-consensus protein-DNA binding in yeast is statistically enhanced, on
average, around functional Rebl motifs that are bound as compared to nonfunctional
Rebl motifs that are unbound. The landscape of non-consensus protein-DNA binding
around functional CTCF motifs in human demonstrated a more complex behavior (Afek
and Lukatsky| (2013)). In particular, human genomic regions characterized by the highest
CTCF occupancy, showed statistically reduced level of nonconsensus protein-DNA binding.
The findings by |Afek and Lukatsky| (2013) suggest that non-consensus protein-DNA
binding is fine-tuned around functional binding sites using a variety of design strategies.
Two quite different design strategies for non-consensus protein-DNA binding are pointed
out by (Afek and Lukatsky (2013)) which might be operational in the genome:

1) The first design strategy (positive design) enhances the level of non-consensus protein-
DNA binding in the vicinity of binding sites. Such an enhancement might guide sequence-
specific TFs toward their specific binding sites, greatly speeding up their diffusion (Berg
et al.|(1981)). The existence of an optimal strength for nonspecific protein-DNA binding
has been demonstrated theoretically in the past (Slutsky and Mirny| (2004))), and once
such an optimal strength is exceeded, the diffusion of TF's slows down (Slutsky and Mirny
(2004)).

2) The second design strategy (negative design) is quite the opposite: it reduces the level
of non-consensus protein-DNA binding in the vicinity of binding sites. Such strategy
might statistically reduce the competition of CTCF with other, nonspecific TFs, near
specific CTCF binding sites, thus facilitating specific binding.

Afek and Lukatsky| (2013) suggested that such non-consensus binding landscape provides
a background surrounding specific DNA motifs, and possibly regulating the kinetics
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of transcription regulators in their search for such specific motifs (Afek and Lukatsky
(2013])), references therein). Therefore, the predicted non-consensus protein-DNA binding
mechanism could represent yet an additional layer of transcriptional regulation operating
in vivo, which influences genome-wide protein-DNA binding preferences in an eukaryotic

cell.

2.10 Off-target occurrences

Studying protein-DNA interactions in vitro not only spurs basic research investigating
underlying mechanisms and principles of TF binding behavior but also crucial biomedical
applications. Gene therapy is based on the principle of the genetic modification of living
cells for use in treating various disorders. The final goal of gene therapy is to cure patients
who suffer from genetic disorders, including cancer, congenital and infectious diseases
(Liu and Fan| (2014)). One approach is based on targeted genome editing using custom
made nucleases, such as zinc finger nucleases (ZFNs) (Urnov et al.| (2010)), transcription
activator effector nucleases (TALENs) (Joung and Sander| (2013)), and the clustered
regulatory interspaced short palindromic repeat Cas9 (CRISPR-Cas9) RNA-guided
nuclease system (RGNs) (Sander and Joung| (2014)). These customized nucleases have
enabled efficient and targeted genome editing in a wide variety of cell types and organisms,
including human induced pluripotent stem cells (iPSCs) (T'sai and Joung| (2014))). As
stated in (Tsai and Joung (2014)), DNA double-stranded breaks (DSBs) induced by
these customizable nucleases can be repaired by one of two competing pathways in the
cell: error-prone nonhomologous end-joining (NHEJ), which leads to variable length
insertion/deletion mutations (indels), or homology-directed repair (HDR), which can be
used to introduce precise alterations directed by a homologous DNA template.

There was recently a successful clinical trial regarding HIV patients that were treated
with ZFN-mediated CCR5-modified autologous CD4 T cells (Tebas et al.| (2014))). For
HIV to enter host cells, CD4 antigens and chemokine receptors, such as CCR5 or CXCR4,
are required to invade macrophages and T-helper lymphocytes (Stone et al.| (2013)). A 32
bp homozygous deletion between the transmembrane domains of CCR5 (the CCR5D32
mutation) results in a frameshift mutation in which affected individuals display high
resistance to HIV-1 infection (Samson et al.| (1996))). Functional knockout of CCR5 in
autologous CD4 T cells of a small cohort of patients revealed that in one out of four
enrolled subjects, the viral load remained undetectable at the time of treatment (Tebas
et al| (2014)). Similarly, TALEN and CRISPR-Cas9 have been tested experimentally for
efficient disruption of CCR5 and CXCR4 (Hu et al. (2014)), references therein) and taking
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them into consideration for clinical trials is anticipated. Whether or not the strategies
targeting HIV-1 entry can reach a sterile and permanent cure of AIDS remains to be
seen.

A key question here is if the engineered nuclease act at any genomic locations besides
its intended site, i.e. are there any off-targets? This is critically important because
unintended, off-target modifications in cell populations can lead to unexpected functional
consequences in both research and therapeutic contexts, where functional consequences
of even low frequency mutations can be of significant concern (T'sai and Joung (2014)).
Even though, there is active research and new studies conducted (Tsai and Joung| (2014]),
references therein), the full genome-wide spectrum of off-target mutations induced by
engineered nucleases remains as yet unclear. Whole-genome sequencing (WGS) with
fold-coverage tries to address this issue but suffers from two main hurdles, i.e. systematic
sequencing artifacts can make it difficult to discern nuclease-induced alterations, and
WGS is currently impractical for identifying lower frequency off-target mutations (Tsai
and Joungl (2014])). A method like HiTS-FLIP which allows to examine the entire
sequence space in an unbiased way is ideally suited to explore any off-target effects across

the entire genome.



3 Background of HiTS-FLIP

3.1 Introduction

The Illumina Genome Analyzer builds millions of distinct clusters on a flow cell, each
consisting of several hundred to around one thousand identical DNA molecules. Clusters
are sequenced by synthesis in situ, with individual fluorescently tagged nucleotides
visualized using a charge-coupled device camera to reconstruct the DNA sequence of each
cluster (Bentley et al.| (2008])).

Nutiu et al. (2011]) reasoned that fluorescently tagged proteins could be added to the flow
cell and their binding to each DNA cluster visualized in the same way as fluorophore-tagged
nucleotides. Protein bound clusters could subsequently be matched to the corresponding
DNA sequences based on their position in the flow cell, enabling direct observation of

the DNA binding preferences of the fluorescently tagged protein.

3.2 Protocol

The HiTS-FLIP protocol shown in Figure [3.1| consists of the following steps:

1) Ilumina-based NGS experiment, determining bases for ~100 million clusters of genomic
or random synthetic DNA. Most imaging systems have not been designed to detect single
fluorescent events, so amplified templates are required to increase the fluorescent signals,
for which Illumina uses solid-phase amplification (Fedurco et al.| (2006))).

2) Denaturation of the second DNA strand since it was build with modified, i.e. fluores-
cently labeled and 3’ blocking group attached nucleotides during DNA sequencing. The
modification itself or remaining inefficiently cleaved terminators during phasing can lead
to side-effects for the protein binding to the DNA clusters.

3) Washing step to remove denaturated nucleotides from the flow cell.

4) Resynthesis of second DNA strand with unmodified nucleotides to obtain double-
stranded DNA.

5) Adding fluorescent labeled proteins in different concentration steps to the flow cell

without any washing steps.
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6) Equilibration depending on the on-rate of the examined protein.

7) Laser excitation and imaging of the flow cell for each concentration step by the
TIRF-based optics system of the GA-IIx.

8) Registration for each concentration step of the fluorescent signals from each tiff image
onto tile-based DNA cluster reference positions in order to map intensities to the corre-
sponding DNA sequences.

9) Intensity extraction from the registered fluorescent signals.

10) Normalization of the extracted intensities.

11) Ranking of k-mers according to their intensities.

11) Fitting a sigmoidal function to the normalized intensities for each k-mer to obtain

Kds and thus a quantitative binding affinity landscape.
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Figure 3.1: Overview of the HiTS-FLIP protocol and its different steps.
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3.3 XML Encoding

The GA-IIx is operated by so called XML recipes that encode the biochemical steps of

the sequencing protocol as XML dialect containing different commands to control the
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hardware of the GA-IIx. These commands can be used for encoding the entire HiTS-FLIP

protocol. The following provides an example of a few XML encoded protocol steps.

XML HiTS-FLIP example

<TileSelection>
<Incorporation>
<Lane Index="1"><RowRange Max="60" Min="1" /></Lane>
<Lane Index="2"><RowRange Max="60" Min="1" /></Lane>
<Lane Index="3"><RowRange Max="60" Min="1" /></Lane>
</Incorporation>
<ReadPrep>
<Row Index="5" />
<Row Index="26" />
<Row Index="45" />
</ReadPrep>
</ TileSelection>

<Chemistry Name="Protein_conc_-625nM_2h">
<PumpToFlowcell Solution="13” AspirationRate="50” DispenseRate="2500” Volume="205" />
<Wait Duration="600000" />
<Temp Temperature="20" />
<PumpToFlowcell Solution="13" AspirationRate="50" DispenseRate="2500" Volume="10" />
<Wait Duration="600000" />
<PumpToFlowcell Solution="13" AspirationRate="50" DispenseRate="2500" Volume="10" />
<Wait Duration="600000" />
<PumpToFlowcell Solution="13” AspirationRate="50" DispenseRate="2500” Volume="10" />
<Wait Duration="5400000" />
<Temp Temperature="20" />
<TempOff />

</Chemistry>

3.4 Optics of GA-lIx

The GA-IIx has two excitation lasers and two filters. shown in Figure in order
to distinguish between four fluorescent signals (Bentley et al. (2008)). The excitation
wavelength of the red laser is 660 nm, and of the green laser is 532 nm (Bentley et al.
(2008)). Emission wavelengths are not published by Illumina. The fluorescent dyes
Illumina uses for DNA sequencing are probably related to Alexa dyes. Alexa Fluor
555 and Alexa Fluor 647 dyes provide higher confidence than Cy3 and Cy5 dyes in
determining significant differences in gene expression on microarrays (Staal et al.| (2005)).
The fluorescent dye used by Nutiu et al. (2011) is mOrange, a fluorescent protein monomer
with excitation wavelength of 548 nm and emission wavelength of 562 nm (Shaner et al.

(2005)). Because dimerization and specific DNA binding involves residues situated at the
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C terminus of the protein the N-terminal fusion of the GCN4-mOrange construct should
have minimal effect on DNA binding characteristics (Hope and Struhl (1986)).

CCD Camera 4ﬁ

Emission filter wheel

Autofocus laser -

Red laser

Microscope objective Green laser

Flow cell

Prism

Fibre

Figure 3.2: Figure adapted from (Bentley et al.,| (2008))). Overview of the GA-IIx optical
components for imaging the flow cell. Red and green lasers provide excitation
beams that are directed along an optical fibre and through a prism which is in
contact with the flow cell. Excitation of fluorescent nucleotides incorporated
into DNA clusters on the inner surface of the flow cell leads to a base-specific
emission that passes through an objective and a filter wheel and the signal is
collected by a CCD camera. Autofocus utilises a third laser (635 nm) that is
projected through the objective onto the flow cell (Bentley et al. (2008)).

The GA-IIx applies a TIRF based optics which creates an evanescent wave reaching only
~100-200 nm into the flow cell (Bentley et al.| (2008)). Therefore, only those proteins
which are bound to the DNA clusters on the inner surface of the flow cell, illustrated in

Figure [3.3] are excited making any washing during a HiTS-FLIP run unnecessary.
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Figure 3.3: Figure adapted from (Bentley et al. (2008)). Total internal reflection of the
incident excitation beam at the glass-buffer interface generates an evanescent
wave that excites the clusters on the surface. The fluorescence emission is
captured by a custom made microscope objective, passed through a filter
and is then projected onto a CCD. The evanescent wave excitation technique
maximises the sensitivity of signal detection while minimising background
noise (Bentley et al.| (2008)).

3.5 Imaging of the flow cell

In each cycle, the flow cell is imaged in a series of non-overlapping regions. The flow
cell is physically divided into eight separate lanes, each lane is virtually divided into two
columns, and each column is further virtually divided into 60 tiles (Bentley et al.| (2008)).
A tile is the area that gets imaged during a DNA sequencing or HiTS-FLIP run. An
illustration is provided by Figure [3.4

The CCD camera is stationary and the flow cell is moved under the camera in order to
image each tile in each cycle. Four images are taken per tile, one for each base. Each
GA-IIx image is a 1888 x 2048 pixel 16 bit gray-scale TIFF (though only 12 bits contain
data). The tile size is 0.5274 mm?, the tile is roughly square which gives an approximate
width and height of 0.7262 mm (personal communication with the Illumina tech support,
March 2014), each pixel covers ca. 0.14 ym? and on average ca. 3 X 3 pixels comprise one
cluster object. The time for imaging a single tile is ~ 2.7 sec (personal communication
with the Illumina tech support, March 2014).

Because of the finite accuracy of the movements of the motion stage, images taken at
different sequencing cycles have random translational offsets with respect to each other

(Bentley et al. (2008)). Furthermore, images taken in different frequency channels have
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Figure 3.4: Figure adapted from (Whiteford et al. (2009)). It shows the Illumina GA-TIx
flow cell with its eight lanes and a zoom-in on one tile and its DNA clusters.

different optical paths and wavelengths and experience further, albeit smaller, translations

and scale transformations (Bentley et al.| (2008)).

In order to correct for the image shifts and scalings, the cluster positions that were
extracted from the four images taken in the first five cycles are super-imposed to construct
a “reference image” for each tile containing all detected clusters. Transformations of the
image coordinates to later cycles are then obtained from a cross-correlation of the taken

images in later cycles to the reference images.



4 Biology of GCN4

4.1 Introduction

The eukaryotic transcriptional activator protein GCN4 is a transcription factor in
S.cerevisiae and belongs to the bZIP family of DNA-binding proteins, which has more
than 50 known members from yeast, mammalian and plant cells (Krylov| (2001))). The
name arose because leucines occur every seven amino acids in the dimerization domain
and are critical for dimerization and DNA binding (Krylov| (2001))). GCN4 binds specifi-
cally to HIS3 promoters of yeast amino acid biosynthetic genes, which code for enzymes
required to synthesize all 20 major amino acids (Hope and Struhl (1987)). In general,
transcription factors from the bZIP family recognize promoter and enhancer regions of
transcribed genes and, together with other protein factors, contribute to the efficiency by

which RNA polymerase binds and initiates transcription.

4.2 Composition

In total, GCN4 comprises 281 amino acids and is structured into two transcriptional
activation domains (ADs), the highly charged basic motif, which constitutes the DNA
binding domain, and the leucine-zipper as the dimerization domain. The leucine zipper is
located towards the C-terminus and its helical extensions that make up the basic region
towards the N-terminus (Krylov| (2001)).

The two transcriptional activation domains (residues 1-100 and 101-134) are unrelated
in sequence apart from their acidic character (Brzovic et al.| (2011)). These tandem acidic
ADs act in conjunction with the coactivators Mediator, SAGA, and SWI/SNF (Brzovic
et al.| (2011)), references therein).

Figure provides an overview of the composition of GCN4 and Figure shows the
parallel coiled-coil structure of GCN4 ZIP homodimer.
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Figure 4.1: Overview of the composition of GCN4. The positions of the two ADs, the
basic region and the leucine zipper are shown.
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Figure 4.2: Figure adapted from (Hakoshimal (2005)). Parallel coiled-coil structure of
GCN4 ZIP homodimer (PDB accession code 1gd2). The main chains of
the two peptide chains are represented as ribbons in gray. The side chains
participating in the dimer association are represented as stick models with
carbon atoms in brown, nitrogen atoms in blue and oxygen atoms in red. The
positions of the heptad repeat are labeled a—g. The d-positioned leucines are
boxed and highlighted in green with underline. The a-positioned residues are
highlighted in blue.

4.3 DNA binding

GCN4 forms a homodimeric complex with each monomer recognizing half of a symmetric
or nearly symmetric DNA site (Hollenbeck et al.| (2002)). GCN4 binds to two optimal
targets, i.e. asymmetric pseudo-palindrome AP-1 9-mer site 5’-ATGACTCAT-3’ and
the symmetric palindrome ATF/CREB 10-mer site 5~ ATGACGTCAT-3’, which has
one base pair inserted in the middle of the recognition site (Hill et al. (1986)). The
recognition site, ATGA(C/G)TCAT, is inherently asymmetric because it contains an

odd number of base pairs and because mutation of the central C-G base pair strongly
reduces specific DNA binding (Sellers et al.| (1990b)).

From this asymmetry, (Sellers et al. (1990b))) suggested that GCN4 interacts with
nonequivalent and possibly overlapping half-sites, ATGAC and ATGAG, that have
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different affinities. In vitro, GCN4 bound efficiently to the sequence ATGACGTCAT,
whereas it failed to bind to ATGAGCTCAT or ATGATCAT (Sellers et al.| (1990b))). The
authors of (Sellers et al.| (1990b)) concluded that:

1) GCN4 specifically recognizes the central base pair,

2) The optimal half-site for GCN4 binding is ATGAC, not ATGAG, and

3) GCN4 is a surprisingly flexible protein that can accommodate the insertion of a single
base pair in the center of its compact binding site.

The DNA binding domain of GCN4 is flexible and partially disordered in the absence
of DNA targets (Wobbe et al.| (1990)), however, the entire bZIP domain becomes fully
helical when bound to DNA (Ellenberger et al.| (1992b)); Konig and Richmond (1993)).
Each monomer of the GCN4 fragment forms a smoothly curved, continous alpha helix
(Brzovic et al| (2011))). The leucine zipper region of the monomers pack into a coiled coil,
essentially identical to the isolated leucine zipper (Brzovic et al. (2011)). The two alpha
helices diverge from the dimer axis in a segment comprising the junction between the
leucine zipper and the basic regions (Brzovic et al.| (2011))). This fork creates a smooth
bend in each alpha helix which displaces the basic regions away from the dimer interface
so that they can pass through the major groove of DNA, with one alpha helix on each
side of the DNA.

The flexibility of the bZIP motif is central to its binding to DNA (Harbury et al.| (1993))).
The GCN4 bZIP domain, like that of other bZIP proteins, is unfolded in the absence
of DNA and becomes structured only on binding to its target (Harbury et al.| (1993]),
references therein). The crystal structure of the bZIP-DNA complex provides clues about
the functions of this flexibility. Flexibility is required to dock and to dissociate the protein
and DNA. The protein encloses the binding site, forming a mutually complementary
interface (Ellenberger et al. (1992b)).

The ability of dimers to discriminate between related DNA sequences is independent of
the zipper region and is specified by amino acids both in the basic region and in the
linker region immediately N-terminal to the beginning of the leucine zipper (Agre et al.
(1989)); Metallo and Schepartz (1994)).

In the absence of DNA, the DNA-binding region is not structured, but upon DNA binding,
it becomes alpha helical, lying in the major groove of the DNA (Krylov| (2001))). Each
helical extension of the leucine zipper can bind up to 5 base pairs in a sequence-specific
manner and thus, the dimer can bind up to 10 base pairs without crossing the DNA
backbone (Krylov| (2001)). For the bZIP dimer to bind DNA, the leucine zipper has
to interact in parallel and in heptad register to place both basic regions in the major

groove Krylov (2001)). One structural feature of the leucine zipper that accomplishes
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this heptad register is a nearly invariant asparagine in the position of the leucine zipper
of bZIP proteins (Krylov| (2001)). Contacts with the DNA are mediated by residues
between positions 234 and 249, and contacts to the bases are made by only five residues:
Asn235, Ala238, Ala239, Ser242 and Arg243 (Harbury et al. (1993))). The core of the
DNA-binding interface contains Asn235, which forms hydrogen bonds to bases C2 and T3
in each DNA half-site (Ellenberger et al. (1992b)). This key role for Asn235 is consistent
with its absolute conservation in bZIP proteins that recognize the AP-1 sequence. Ala239,
Ala240 and Ser242 make van der Waals contact with bases T'1 and T3, and solvent is
excluded from the binding site by the side chains of residues 240-243. Lys231 makes
a water-mediated contact with base A4 in one half-site, perhaps accounting for the
preference for purines at this position in the binding site (Ellenberger et al. (1992b))).
Arg243 plays the special role of adapting the symmetric protein to the asymmetric
binding site. One Arg243 side chain ‘reads out’ the G base in the central base pair, and
the other contacts phosphates of CO and A1l on the opposite DNA strand.

McHarris and Barr (2014]) performed all-atom molecular dynamics simulations of the
full-length GCN4 protein as well as three truncated variants and observed consistent
sequence-specific protein-DNA contacts across all of their simulations, confirming the
critical role of Asn235, Ala239, and Arg243 as identified by mutation experiments (Suckow
et al.| (1993)). Overall, the GCN4 bZIP-DNA crystal structures show that only four
highly conserved amino acids in each basic region of the monomer make direct contacts to
bases in the DNA major groove: Asn235, Ala238, Ala239, and Arg243, which highlighted

by the Figure [4.3]
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Figure 4.3: Figure adapted from (Alberts et al.| (2007)). GCN4 binds to DNA with both
specific and nonspecific contacts. 4 amino acid side chains form sequence-
specific contacts. Asn235 is at the center of the interaction area and strictly
conserved in all bZIP family members.

Binding of bZIP proteins to DNA results in dynamic effects on both DNA and protein
structure (1992)). The helical transition that occurs in the basic region upon DNA
binding might result in changes in overall protein conformation, which could influence
interaction with other transcriptional components )

Several lines of evidence suggest that protein-DNA recognition involves non-identical
contacts between GCN4 monomers and half-sites in the target DNA (Hope and Struhl|
(1987)).

1) First, neither the native HIS3 site nor any of the presumptive regulatory sequences in
14 other promoters activated by GCN4 are perfectly symmetric (Hill et al.| (1986))).

2) Second, some symmetrical changes of the HIS3 regulatory site do not have equivalent
effects on DNA binding affinity or transcriptional activation (Hill et al.| (1986)).

3) Third, GCN4 binding is reduced significantly when the central C of the HIS3 site is
changed to any other base including G, its symmetric counterpart (Hill et al.| (1986)).

This suggests that the central base pair is part of a half-site recognized by a GCN4
monomer, and given the odd number of base pairs in the palindrome, it follows that
the protein-DNA interactions at the half-sites cannot possibly be identical, even for the

optimal sequence. These considerations also suggest that the half-sites overlap at the
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central base pair, and the overlap might conceivably be more extensive.

Hollenbeck and Oakley| (2000) have found that the bZIP protein GCN4 can also bind with
high affinity to DNA sites containing only a single GCN4 consensus half-site. Quantitative
DNA binding and affinity cleaving studies support a model in which GCN4 binds as a
dimer, with one monomer making specific contacts to the consensus half-site and the other
monomer forming nonspecific contacts that are nonetheless important for binding affinity
(Hollenbeck and Oakley| (2000)). Given that one of the two half-sites in the consensus
AP-1 site appears to be more important for GCN4 binding, multiple substitutions in
the second half-site may have only a modest effect on complex stability (Hollenbeck and
Oakley! (2000)).

Half-site recognition by bZIP proteins may be biologically significant. Several GCN4- and
AP-1-responsive promoters have binding sites that contain only one-half of the consensus
core sequence (Hollenbeck and Oakley| (2000), references therein). These results suggest
that half-site binding may play a role in the regulation of gene activation in vivo.
Presumably, one monomer of the GCN4 dimer contacts the left-half site and the central
base pair, whereas the monomer interacting with the right half-site does not contact
the central position (Sellers et al.| (1990b)). This view of the GCN4-DNA interaction
accounts for why alterations in the right half-site are tolerated better than symmetrically
equivalent alterations in the left half-site (Oliphant et al. (1989)).

The crystal structure of GCN4 complexed with its target AP-1 site (RCSB Protein Data
Bank, PDB code: 1YSA), which was solved by (Ellenberger et al. (1992b)), reveals that
while Arg243 of one GCN4 monomer specifically contacts the central guanine nucleotide,
Arg243 from the other monomer forms non-specific hydrogen bonds with the DNA
backbone (Selvaraj et al.| (2002)). This observation, along with mutational and DNA
binding studies, indicates GCN4-DNA binding to be inherently asymmetric, and suggests
that the specific recognition of a single half-site by one GCN4 monomer may be more
important than recognition by the other.

The importance of the central C-G base pair and the asymmetry of the GCN4 recognition
sequence strongly support the model that GCN4 dimers bind to nonequivalent half-sites
(Oliphant et al.| (1989))).

It seems likely that asymmetrical contacts made with the central C-G base pair cause the
GCN4 dimer to be shifted from the center of the site. In the 7-bp core, GCN4 probably
interacts more avidly with the left half-site (positions -1, -2, and -3) than with the right
half-site (positions +1, +2, and +3), because deviations generally occur to the right of
the central base (Oliphant et al. (1989)).

In contrast to the relative importance of the left side of the core, flanking positions
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in the right half-site (positions +4, +5, and +6) contribute more to GCN4 binding
than equivalent positions in the left half-site (positions -4, -5, and -6) do, perhaps to
compensate for the relative weakness of the right side of the core (Oliphant et al.| (1989)).
According to |Chan et al. (2007)), there are three different binding modes of GCN4.
Dimeric binding of basic regions on DNA full site, dimeric binding of basic regions on

DNA half site and monomeric binding of basic regions on DNA half site, as shown in

Figure 4.4]

A Basic B Basic C Basic
Region Region Region
Target Target Target
Target
Basic
Region Basic

Region

Figure 4.4: Figure adapted from (Chan et al. (2007)). (A) Dimeric binding of basic
regions on DNA full site. Both basic regions of the dimer bind to target
DNA half sites selectively. (B) Dimeric binding of basic regions on DNA
half site. Only one basic region of the dimer binds selectively to the target
DNA half site; the other basic region interacts nonspecifically with DNA. (C)
Monomeric binding of basic regions on DNA half site. No protein dimerization
occurs.
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4.4 3D structure

As shown by Figure GCN4 forms a “chopstick-like” homodimer of alpha helices at
the DNA-binding interface. In the crystal structure of bZIP-DNA complexes, the dimeric
protein binds to a DNA site with dyad symmetry, each monomer of the bZIP factor

recognizing one half-site.

Figure 4.5: DNA binding of GCN4 in dimeric oligomerization state as described in
[Ellenberger et al.| (1992a)). (a) The bZIP dimer binds in the major groove
of the DNA. Each bZIP protomer is a smoothly curved, continuous a-helix.
The carboxy-terminal residues of the monomers pack together as a coiled
coil, which gradually diverges to allow the basic region residues to follow the
major groove of either DNA half site. This divergence of the bZIP monomers
corresponds to an unwinding of the coiled-coil super helix, with a slight
righthanded rotation of basic region residues about the a-helical axis of each
chain and a lateral displacement of each monomer along the helical axis of
the DNA. The DNA in the complex is straight, and its conformation is in the
B form across the region contacted by the protein. (b) View down the DNA
axis. The basic region residues amino-terminal to the point of DNA contact
are in a straight, a-helical conformation. The amino-terminal residues of the
basic region do not wrap around the back side of the binding site.
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4.5 Dimer and monomer pathway

Dimerization of bZIP transcription factor GCN4 is linked to the folding of its C-terminal
leucine zipper domain. However, monomeric GCN4, lacking a folded leucine zipper,
also recognizes the DNA site with dimerization taking place on the DNA (Cranz et al.
(2004))). In|Cranz et al.|(2004) the kinetics of DNA recognition by unfolded monomeric
and folded dimeric derivatives of GCN4 were reported using a 19 bp dsDNA containing
a palindromic CRE site (5-ATGACGTCAT-3’). The rate of DNA binding of both
monomeric and dimeric GCN4 has a bimolecular rate constant of 3-5 x 108 M~! 71,
which is near the diffusion limit (10° M~! s~! according to [Alberty and Hammes| (1958));
Eigen and Hammes| (2006)). Because the rate of dimerization of GCN4 is slower (1.7 x
107 M~! s71) than the rate of DNA association, the formation of the dimeric GCN4-DNA
complex through consecutive binding of two monomers (monomer pathway) is faster
when starting from free monomers. Figure provides an illustration of the dimeric and
monomeric pathway with the related rate constants. The results presented by (Cranz et al.
(2004)) support facilitated and rapid target recognition by the monomeric transcription
factor. However, DNA binding of preformed folded dimeric GCN4 is as rapid as complex
formation through the monomer pathway. Therefore, the monomer and dimer pathways
are kinetically equivalent if monomeric and dimeric GCN4 are at equilibrium. Hence, the
dimer pathway may also have a role under in vivo conditions. However, the observed
rapid rates of DNA binding could not be accounted for if formation of a dimeric bZIP
peptide had to precede DNA binding (Cranz et al.| (2004)), references therein). Thus, it
has been proposed that monomeric transcription factors can recognize DNA and that
these monomers dimerize while bound to DNA (Kim and Little| (1992)). This has been
confirmed by experiment for several dimeric transcription factors (Cranz et al.| (2004)),
references therein). A monomer binding pathway may increase specificity and prevent
the transcription factor from becoming trapped at nonspecific DNA sites (Cranz et al.
(2004)), references therein).

The results of Cranz et al.| (2004) demonstrate that in the isolated system they studied,
which is composed of a 19-mer dsDNA target and the 62-residue C-terminal DNA-binding
domain of GCN4, both the monomeric and the dimeric transcription factor recognize
the palindromic CRE target site at the same rapid rate. The association rate of the
monomer is virtually the same as that of the dimer, 5 x 10% M~! s7! (Cranz et al.
(2004))), however the monomer pathway is more rapid than the dimer pathway when
starting from two monomeric GCN4 proteins and no dimer, but not when monomeric

and dimeric GCN4 are at equilibrium. In a cellular environment, an equilibrium mixture
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of monomeric and dimeric transcription factors may be competing for DNA sites
(2004)). Both monomeric and dimeric GCN4 can bind to DNA at a very rapid rate

and, therefore, the monomer-dimer equilibrium of the free bZIP factor does not affect

the overall rate of DNA recognition (Berger et al.| (1998)). The monomer and dimer

pathways are thermodynamically equivalent and preference for the monomer pathway is
kinetic (Berger et al.| (1998)). When the bZIP factor slides along the DNA, non-specific

binding should be weak. Because binding strength correlates with the number of possible

interactions between peptide and DNA (von Hippel and Berg| (1989)), the monomeric

basic region may slide along the DNA more easily than the dimer (Berger et al.| (1998)).

Unspecific DNA binding of the dimer could also be stronger because of more nonspecific

electrostatic interactions (Cranz et al.| (2004)). Less steric hindrance may also contribute

to a faster diffusion rate of the monomer (Berger et al. (1998)).

Finally, accessory proteins influence the strength of the transcription factor-DNA complex.
The rates of target finding and DNA binding through a monomer or dimer pathway could
differ, depending on whether such accessory proteins bind to the monomeric or dimeric
transcription factor, or both (Cranz et al. (2004)).
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Figure 4.6: Overview of the dimer and monomer pathway of GCN4 and its rate constants.
Figure based on (Cranz et al. (2004)); [Yang et al|(2007)), table adapted from
(Yang et al.| (2007)). (a) Dimer and monomer pathway. (b) Rate constants
involved in the dimer and monomer pathway.
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4.6 Gene regulation

It has been known for many years that GCN4 stimulates the transcription of more than
30 amino acid biosynthetic genes, representing 12 different pathways, in response to
starvation for any of several amino acids (Hinnebusch and Natarajan (2002)). This
regulatory response is known as general amino acid control (GAAC) (Hinnebusch and
Natarajan| (2002)), references therein). Figure shows the schematic representation
of functional categories of GCN4 target genes. In two publications (Jia et al.| (2000);
Natarajan et al. (2001)) in which cDNA microarrays were used to conduct a genome-wide
transcriptional profiling analysis of gene expression it was shown that GCN4 induces
(directly or indirectly) a much larger set of genes, encompassing 10% or more of the yeast
genome. Hence, GAAC is much broader with regard to the range of stimuli that elicit
the response and the ensemble of genes that are transcriptionally induced (Hinnebusch
and Natarajan (2002)). The broad transcriptional response controlled by GCN4 suggests
that GCN4 acts as a master regulator of gene expression.

Mascarenhas et al| (2008) showed that GCN4 is required for the response to peroxide
stress in S.cerevisiae. Hydrogen peroxide stress damages many intracellular targets and
affects diverse cellular processes. The response to oxidative stress requires extensive
reprogramming of transcription and translation. Translational control of GCN4 expression
and transcriptional control of GCN4 target genes are key components of this adaptive
response (Mascarenhas et al.| (2008])).

One important cofactor is GAL11 which has three conserved GCN4-binding domains that
bind GCN4 with micromolar affinity (Brzovic et al|(2011), references therein). These
multiple, weak GCN4-GAL11 interactions additively contribute to overall transcription
activation and illustrate an important principal of GAL11 recruitment by GCN4: GCN4
binds GAL11 not by a single high-affinity and high-specificity interaction but rather by

multiple low-affinity interactions (Brzovic et al.| (2011))).
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Figure 4.7: Figure adapted from (Hinnebusch and Natarajan (2002)). Schematic rep-
resentation of functional categories of GCN4 target genes. When GCN4 is
induced under conditions of histidine starvation, it elicits the transcriptional
activation of at least 539 genes, designated GCN4 targets (shown above GCN4
in the activation group).

4.7 Ribonuclease activity

Nikolaev et al. (2010) showed in vitro that c-Jun and GCN4 possessed weak but distinct
ribonuclease activity and could likely catalyze degradation of RNA in vivo. In a follow-up
study (Nikolaev| (2011)) delineated structural details of RNA binding by the GCN4 leucine
zipper motif by solution NMR experiments and elucidated that only the dimeric (coiled
coil) leucine zipper conformation is capable of binding RNA. The authors hypothesized
that catalytic activity of bZIP proteins in vivo will primarily be associated with the
DNA-bound form of the dimeric TFs. While in other cellular contexts bZIP motifs may

have little or no activity due to the prevalence of the monomer form.
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5.1 Overview of the HiTS-FLIP pipeline

Figure shows the main processing steps of the HiTS-FLIP pipeline. The Appendix

section [9.10] provides a summary of the parameters, input and output.

l.  image preprocessing

¥
Il. DNA cluster registration

!

1l region search

:

IV. intensity normalization

Y

V. intensity extraction
VL outlier filtering

h
VII. DNA sequence filtering

hj
VIIl. k-mer ranking

Y
IX. affinity quantification

Figure 5.1: Overview of the HiTS-FLIP pipeline and its components.
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5.2 Image preprocessing

Since the raw data produced by a HiTS-FLIP experiment are 16 bit tif images, the first
step in the image processing part of the pipeline is to enhance the bright spots in the
images which denote the DNA clusters bound with fluorescently tagged proteins for
registration with the template coordinates. This is achieved by convoluting the image
with a Laplacian of Gaussian (LoG) filter which combines a Gaussian low-pass filter
reducing noise and a Laplacian operator for emphasizing edges and thus better separation
of the DNA clusters (Parker| (2010)). The details regarding the underlying theory and

the implementation are explained in Appendix section [9.1

5.2.1 Results

In the HiTS-FLIP pipeline a LoG filter with the parameter o = 0.7644 (using FWHM= 1.8
pixels) and 5 x 5 pixel kernel (shown in Appendix section was applied. The processing
of the protein images by the LoG filter was only applied for the cluster registration step,
subsequent operations in the pipeline are carried out on the unfiltered protein images.
The following two figures exemplify the filtering result with respect to the tif image of
tile 6 of lane 2 at concentration 125 nM (cycle 96) from experiment 18.08.2014.
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Figure 5.2: Unfiltered image and LoG filtered image. (a) shows the unfiltered image and
(b) the image after filtering with the LoG filter (o = 0.7644, kernel: 5 x 5
pixel, shown in Appendix section .
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Figure 5.3: Intensity profile of unfiltered image and LoG filtered image. The intensity
profile of the centered 100 x 100 pixel subimage at y = 1052 pixel is shown for
(a) the unfiltered and (b) the LoG filtered image (o = 0.7644, kernel: 5 x 5
pixel, shown in Appendix section . The better separation of the intensity
peaks (denoting the DNA clusters) is clearly visible.
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5.3 DNA cluster registration

The flow cell is mounted on a sledge which is mechanically moved during the imaging
process. The CCD camera of the GA-IIx is stationary (personal communication with the
[lumina tech support, January 2014). During the process of moving the flow cell, there
is an z,y offset for each tile. Therefore, clusters are shifted across imaging cycles and
have to be aligned so that the observed intensities can be related to the correct DNA

sequences.

5.3.1 Template images

As a reference onto which all shifted clusters are aligned x,y coordinates are used that
represent cluster positions without any distortion by translation or other transformations
per tile. Images containing these reference coordinates are called templates and the
process of aligning shifted images to these templates is called registration. The cluster
positions of the template images are created at the beginning of the NGS sequencing
by a spot finding procedure in the Illumina RTA pipeline as described in (Inc.| (2011c))
which results in z,y coordinates for each single tile stored in the pos text files and .locs
files or in compressed form as .clocs files.

In order to register an observed image to its related template image, the template cluster
positions are used to create an artificial image which is then correlated with the observed
image. In the following sections, the theoretical framework underlying the implementation
in [lumina’s OLB (Off-line Basecaller) pipeline version 1.9.4 (Inc.| (2011a)), which has
been adapted here for the HiTS-FLIP pipeline, is explained.

5.3.2 PSF of DNA cluster

Each reference cluster position in the pos text file is convolved with a point spread
function (PSF). The PSF describes the response of an imaging system to a point source
(Shaw and Rawlins (1991)), i.e. the fluorescent signal of a DNA cluster in this case,
and is approximated by the 2d Gaussian function shown in equation An isotropic
Gaussian is a reasonable model of a circularly symmetric blob as demonstrated by (Zhang
et al. (2007)). A 5 x 5 mask of discrete pixel values (shown in was used to represent

equation [5.1]



5.3 DNA cluster registration 43

2,2
PSF yster = A X exp (—x 2;3; > (5.1)

A: amplitude of Gaussian (set to 1.0 here).
o: bandwidth of the filter kernel.

The FWHM (full width at half maximum) of a DNA cluster denotes the spread of
the PSF of a DNA cluster which is estimated to be 1.8 pixel. Figure [5.4]illustrates the
connection between FWHM, PSF and o.

max

Figure 5.4: The relationship between FWHM and ¢ is shown schematically. Adapted
from URL: https://wiki.uio.no/mn/safe/nukwik/index.php/KIJM-FYS_
5920_Lab_Exercise_2_-_Student_Report

If the filter is centered at the origin, the mean is 0 and the FWHM is the distance between
the —z,, and the +z,, that produces the half of the peak. For the normal distribution,

the mean is the same as the mode (i.e. peak) and x,, needs to be found that will result

Fww) = 5 feman) = (1) (52)
$2 1 o 2
exp (—%‘“’2) = 5 exp (—W) (5.3)
.’IJ2
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Ty = £4/2In(2)0 (5.6)

FWHM == 4xy — (—%y) = 2z = 21/21n(2)0 ~ 2.35480 (5.7)

Therefore, the value of ¢ used for generating the template clusters is

18
77 53548

~ (0.7644

Figure [5.5| gives an example of an observed image and the related template image from

one selected tile.

observed image template image

floweell

Figure 5.5: Overview of observed and template image from one selected tile. On the left
hand side a flow cell is displayed, where one lane is magnified and one tile
is zoomed-in. Magnified subareas are shown for the observed and related
template images which need to be correlated. Template images are created
as described in section [5.3.2]
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5.3.3 Phase correlation

How can the template and observed images be aligned without any landmarks? Due to the
phase correlation method (Kuglin and Hines (1975))) the translational x, y offsets can be
estimated. Kuglin and Hines (1975) observed that information about the displacement of
one image with respect to another is included in the phase component of the cross-power
spectrum, i.e. the Fourier transform of the cross-correlation function of the images that
measures the similarity as a function of the lag of one image relative to the other.

According to the Fourier shift property the following equations hold (Goshtasby] (2012)):

F{g(t — a)} :Z g(t — a) exp (~2mift) dt,a € R (5.8)
:_Z g(u) exp (=2mif(u+a)) du,u =t —a (5.9)
— exp (—2mi fa)_Z g(u) exp (—2i fu) du (5.10)
= exp (—2mifa)G(f) (5.11)

The original function ¢(t) is shifted in time (or in space) by a constant amount, therefore it
should have the same magnitude since the frequency content of G(f) remains unchanged.
A delay in time (or shift in space) only alters the phase of G(f) but not the magnitude.
Let the image g, be a shifted version of the image gy by (zo,y0) (Goshtasby| (2012])):

9a(,y) = go(* — 0,y — Yo) (5.12)

After taking the discrete Fourier transform (DFT) of both images,
F{9a} = Ga(u,v), F{gp} = Gp(u,v) (5.13)

the following relationship is obtained due to the shift property of the Fourier transform:

GG

R(u,v) = |G Gx|

(5.14)
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where * denotes the complex conjugate.

_ GoGyexp (—2mi(uxo + vyo))

_ 5.15
|G oG exp (—2mi(uxo + vyo))| ( )
GGy exp (—2mi(uzo + vyo))

_ A

Ga Gyl o

= exp (—2mi(uxo + vyo)) (5.17)

Equation [5.17]is obtained since the phase of the denominator is zero and its magnitude of
the imaginery exponential is one. The phase correlation function, which is the normalized

cross-correlation function, is obtained by applying the inverse Fourier transform to R(u, v):
r=2"YR} (5.18)

The translational shift can be determined as the location of the peak in r:

(Az, Ay) = argmax{r} (5.19)
(z,y)
a template image b observation image €  phase correlation 2D d phase correlation 3D

Figure 5.6: Phase correlation of template and observed image. Images created with the
FFT filter and 3D Surface Plot of ImageJ (Abramoff et al. (2004); |Schneider;
(2012)). From left to right: (a) template image containing the reference
positions, (b) image taken during protein cycle, (¢) 2d phase correlation image
with peak in the lower left corner, and (d) as 3d image to highlight the peak.

The pixel based shifts are refined by fitting a Gaussian to the 3 x 3 pixel area around
the detected shifts to subpixel resolution. The Levenberg-Marquardt (Levenberg (1944);
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Marquardt| (1963))) fit is used to interpolate a peak in order to determine its maximum
to sub-pixel accuracy.

The fast Fourier transform (FFT) (Cooley and Tukey| (1965a))) allows to compute the
DFT in O(nmlog(nm)) for an image with size n x m, similarly for the inverse Fourier
transform. The multiplication of transforms in the frequency domain has a negligible
cost of O(nm). The phase correlation method is insensitive to occlusions and brightness

change and it is remarkably robust against noise (Kuglin and Hines| (1975))).

5.3.4 Implementation

The implementation of the cluster registration using phase correlation as described above
has been based on modified code from Illumina’s OLB pipeline version 1.9.4 (Inc.| (2011a)).
The input are the pos files produced by the Illumina RTA (Real Time Analysis) pipeline
(Inc.| (2011c)) which contain the template cluster positions per tile, and the tif images of
the T channel for each protein cycle. The output are the x,y coordinates of the cluster

positions of the observed images for each protein cycle.
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5.3.5 Estimation of scaling

The following approach is based on modified code from Illumina’s OLB pipeline version
1.9.4 (Inc. (2011a))). In order to estimate scaling and its role in the cluster registration,
each image that contains the measured fluorescent signals and its related template image
is divided into four quadrants. For each quadrant a subregion is taken for which the

phase correlation is calculated. Figure provides an example.

a template image b observed image

i
{
i
i
|

Figure 5.7: Image regions used for calculating the x,y scaling factors. Division of template
(a) and observed image (b) into four quadrants (yellow) with subregions (red)
used for calculating the scaling factors.

For each pair of correlated subregions between template and observation, shifts in x
and y direction are obtained and then used for a linear regression by which x,y offset
(intercept) and x,y scaling parameters (slope) are calculated that encapsulate the affine
transformation.

Determining z offset and = scaling parameter by linear regression:

Yoy (i — @) (yi — §) _ D iy TilYi — % Doy Ti )iy Yi _Ty—zy
> iy (zi — @)? S xt— (O @)? z? — 72

B = (5.20)

- pz (5.21)

[oN
Il

where n = 4 for the four subregions, z;, y; are the coordinates of the Ax shift, & is the x
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offset, B is the x scaling, y offset and y scaling parameter are determined accordingly.

5.3.6 Assessment of transformation parameters

It was tested if further transformation parameters besides scaling like rotation and
shearing would be relevant. The Fourier-Mellin transformation (Derrode and Ghorbel
(2001)) allows to estimate rotation by utilizing the Mellin transformation and the ECC
algorithm (Evangelidis and Psarakis| (2008)) uses a nonlinear similarity measure for the
image alignment problem. Both methods showed that rotation is not occurring, whereas
scaling and shearing are negligible. As shown in Figure the translational offset in x

and y direction is the dominating factor.

01 0.002 =—— 0.002 =—— 0.0001=——-0.0001——

-6.7

pixel

T T T T T T
x-shift y-shift x-scale y-scale xy-shear yx-shear
transformation

Figure 5.8: Overview of the transformation parameters for the experiment 12.02.2015,
cycle 41 (concentration 135 nM) for tiles 1 to 120. Translational offsets were
determined by phase correlation, scaling parameters by linear regression, and
shearing parameters were estimated by the ECC algorithm (Evangelidis and
Psarakis (2008])).

5.3.7 Investigation of overlap with local maxima

In order to quantify the accuracy of the translation parameters for capturing the geometric
transformation, I crafted two tests. The first test investigates a necessary condition
for the correct mapping of the clusters into the images which is the overlap (or spatial
proximity) to local maxima in the image. The second test examines if the right local

maxima are matched by the cluster mapping.
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Firstly, the local maxima in the observed image are determined for a particular tile, i.e.

tile 21, cycle 95 (25 nM), lane 2 of experiment 18.08.2014. Two methods (Neubeck and
Van Gool (2006)); |Schmid| (2006))) have been compared which detected largely the same

local maxima for the observed image (74.4% of intersecting local maxima).

Neubeck et al.2006 Schmid.2006

Figure 5.9: Number of detected local maxima and overlap of the two compared methods
by (Neubeck and Van Gool| (2006); |Schmid| (2006)).

The parameter settings were as follows:
Algorithm by (2006)):

e Height tolerance: 2.0 pixel, maxima are accepted only if protruding more than this

value from the ridge to a higher maximum.

e Threshold: 10.0 pixel, minimum height of a maximum.

Algorithm by [Neubeck and Van Gool (2006):

e Minimum distance to other local maximum: 1.0 pixel.
e Threshold: 10.0 pixel, value below which a maximum will be rejected.

Procedure for measuring the overlap of mapped clusters with local maxima:

1) Retrieve all local maxima from the observed image by the methods of (Neubeck and
Van Gool (2006)); [Schmid| (2006])).

2) Map all clusters into the observed image by the translational transformation parameters
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determined by phase correlation.

3) Divide image into 32 x 32 grid cells, resulting in % X % =64 x 59 = 3776 cells.
4) Within each grid cell sort clusters and local maxima by brightness in descending order.
5) Measure Euclidean distance between mapped cluster positions and local maxima.
)

6) If distance < threshold, the mapping is regarded as correct, else incorrect.

As threshold the median cluster distance is taken per tile which varies between 2.2
and 3.1 pixels among different tiles. Figure [5.10| shows the error map for tile 21, cycle
95 (protein concentration 25 nM), lane 2 from experiment 18.08.2014 using as average
cluster distance 2.2 pixels. If the borders are included the percentage mapping error is
2.25%, if the borders are excluded it is only 0.96%.

Figure 5.10: Quantification of the cluster registration precision. Mapping errors are
displayed for the different 32 x 32 cells of tile 21, cycle 95, lane 2 from
experiment 18.08.2014. Red color denotes cells with mapping errors, blue
color cells with correct mapping.
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5.3.8 Investigation of motif occurrences

Another validation for the translational transformation is if the occurrences of binding
motifs adhere to the ranking that would be expected. Figure shows the median
intensities for different GCN4 motifs on tile 21, cycle 95 (protein concentration 25 nM),
lane 2 from experiment 18.08.2014. The median intensity and therefore the binding
affinity of GCN4 to DNA decreases the larger the Hamming distance becomes with
respect to the consensus motif. If the mapping of the clusters due to the estimated
transformation parameters would be biased and adulterated, such a decrease could not

be achieved.
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Figure 5.11: Median intensities for different GCN4 motifs after cluster registration. The
larger the Hamming distance from the consensus, the smaller the intensities
become providing evidence for a correct mapping.
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5.3.9 Results

It can be concluded that a translational offset in x and y direction is the dominant
transformation that affects observed images due to moving the sledge onto which the
flow cell is mounted during imaging. The values of the x and y offsets can be effectively
determined by phase correlation allowing to map reference cluster positions onto observed
image cluster positions and thus aligning consistently protein intensities at different
concentrations with the related DNA sequences.

Since protein images are quite different from sequencing images, the mapping accuracy
regarding protein images needs to be assessed. Estimating the mapping accuracy by
the spatial proximity of mapped cluster positions to local maxima in the observed
protein image, which is a necessary condition for the correctness of the cluster position
transformation, yields a mapping error of 2.25%, if borders are included, and of only
0.96%, if borders are excluded as displayed in Figure Approaching the mapping
accuracy for a protein image by the brightness of GCN4 motifs and their expected binding
affinity enables a ”semantic“ verification checking if clusters are mapped consistently onto
related local maxima in the images. As Figure demonstrates the median intensities
decrease with increasing Hamming distance as expected given that the binding affinity is
lowered by an increased number of mutations. The transformation therefore must provide
the right mapping otherwise the decrease of the intensities with increase in Hamming
distance could not be observed. In summary then protein images can be registered
with high accuracy even though they are different with respect to the fluorescent signals
compared to sequencing images. A significant advantage connected with this finding is
that resequencing is unnecessary and can be omitted thus allowing the reuse of the flow

cell for several HiTS-FLIP experiments, which greatly reduces cost and time.
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5.4 Local region search

Some of the cluster positions after being transformed do not overlap with the local
maxima positions (representing the DNA cluster positions) identified in the observed
images. This can be due to rounding to discrete pixel coordinates that shift cluster
positions (most often within an one pixel neighborhood) away from the related local
maxima positions. The search space consisting of all the image pixels can be divided
into separate, disjunct regions defining the local, non-overlapping neighborhood of the
clusters within which clusters can be shifted onto local maxima thereby increasing the
accuracy of the intensity extraction as described in section The technique that can
be utilized to achieve this is called “region labeling” ((Burger and Burge, 2009bl pp.
5-17)), described in the following subsection.

5.4.1 Region labeling

During the “region labeling” process connected components are uniquely labeled based
on a given heuristic. Here, the connected components are the cluster positions and their
local regions, and the “labeling” technique provides a way to demarcate the local cluster
regions from each other. The labeling procedure occurs in the following way:

1) Initialize a 2d matrix representing the imaged tile with 0 as initial values for each cell.
2) ITterate through all cluster positions and for each cluster add 1 to the cluster position

itself and its 8-connected neighborhood pixels.

After all clusters have been processed by the labeling procedure the outcome is that the
local, disjoint search region of each cluster are defined by the label “1”, and overlaps of
search regions are marked by the label “2”. Therefore, pixels with the label “1” can be
used to shift clusters onto local maxima.

Figure gives an example. The left side (a) shows a subarea of the image of tile 10,
cycle 96 (concentration 125 nM), lane 2 of experiment 18.08.2014. Pixels that represent
mapped cluster coordinates are framed in green and hatched, separate local maxima are
framed in red. There are five clusters of which two are displaced next to the related
local maxima. Figure (b) displays the local search regions A to E composed of the
8-connected neighborhoods for each of the five clusters where the label 71 denotes pixels
that are included in the search region and pixels labeled 72" are excluded. Since the
local maxima are included (labeled ”1) in the related search area, the positions of the

two clusters can be shifted.
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Figure 5.12: Search space of five mapped clusters. (a) Subarea of an imaged tile that
shows five clusters (outlined in green and hatched), and local maxima
(outlined in red). (b) Clusters with their local search regions A to E and
labels 71”7 denoting included pixel and labels 72 denoting excluded pixels.

5.4.2 Shifting clusters

The process of defining local cluster regions by region labeling and searching these
regions for local maxima onto which clusters can be shifted can be executed iteratively.
An overview of all iteratively one pixel shifted cluster positions from tile 10, cycle 96
(concentration 125 nM), lane 2 of experiment 18.08.2014 is provided in the Figure
In total, there are 205337 identified DNA clusters on the tile, in round-1 14.5% of these
clusters are shifted by one pixel, in round-2 0.7% of these clusters are shifted by one
pixel, in round-3 0.02% of these clusters are shifted by one pixel, and in round-4 0.001%
of these clusters are shifted by one pixel, after which all clusters overlap with the local

maxima.

5.4.3 Implementation

I developed the region search and cluster shifting using Java (Gosling| (2000)) and ImageJ
(Abramoff et al| (2004); [Schneider et al| (2012)). The input are the protein images and
the x,y coordinates of the mapped clusters. The output are the updated x,y coordinates

of the clusters.
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Figure 5.13: Shifting process with different iterations during which cluster positions are
overlaid onto local maxima.

5.4.4 Results

A certain portion (10% - 20%) of the mapped cluster positions do not overlap with the
local maxima positions (representing the DNA cluster positions) identified in the observed
protein images. “Region labeling” is an elegant and effective method for dividing the
search space (all image pixels) into separate, disjunct regions defining the local, non-
overlapping neighborhood of the clusters marking the area within clusters can be shifted
onto local maxima. This overlay process of mapped cluster positions onto local maxima
positions can be executed iteratively and within a small number of iterations all cluster

positions are adjustable.
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5.5 Image normalization

As the main bias which obfuscates intensities and impedes the quantification of the
fluorescent signals I identified uneven illumination occurring in the images taken during

the protein cycles depending on the spatial positions of the DNA clusters in the flow cell.

5.5.1 Possible causes for non-even illumination

There are various scientific publications that discuss this uneven illumination bias and
provide explanations for possible causes.

According to (Waters| (2009)) fluorescence emission is generally proportional to the
intensity of the illuminating light (except when fluorophore ground state depletion
occurs). Therefore, if an uniform fluorescent sample is unevenly illuminated, the resulting
fluorescence will usually be uneven as well (Waters (2009)). Uneven illumination can be
extremely detrimental to quantitative measurements because it may cause the intensity
of an object in one area of the field of view to measure differently than the intensity of
an object of equal fluorophore concentration in another area of the field of view (Waters
(2009)).

Because of the inherent imperfections of the image formation process, microscopical
images are often corrupted by intensity variations manifesting themselves as large area
intensity gradients not present in the original scene (Inoué (2013)). This phenomenon is
usually referred to as shading, or intensity non-uniformity, or intensity inhomogeneity
(Likar and Pernus| (2000])).

This phenomenon can also be named as vignetting, i.e. a brightness attenuation away
from the image center often resulting in the outer image edges being significantly darker
than the center (Marty et al.| (2007)); Zheng et al.| (2009))).

Uneven illumination may originate from inaccurate object preparation and mounting or
from imperfections in the image acquisition process. In the latter case, shading may arise
from nonuniform background illumination, departing from Kohler illumination, imperfect,
dirty, or dusty optics, uneven spatial sensitivity of the video camera, dark-level camera
response, or camera non-linearity (Likar and Pernus (2000)), references therein).
According to (Zheng et al.| (2009)) several mechanisms may be responsible for vignetting
effects. Some arise from the optical properties of camera lenses, the most prominent of
which is off-axis illumination falloff or the cos* law (Reiss (1945)). This contribution to
vignetting results from foreshortening of the lens when viewed from increasing angles from

the optical axis (Klein and Furtak (2013])). Other sources of vignetting are geometric in
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nature. For example, light arriving at oblique angles to the optical axis may be partially
obstructed by the field stop or lens rim (Zheng et al.| (2009)). Leong et al. (2003)) states
that vignetting may be attributed to multiple factors from the illumination filament, the
design of the light path between the camera and the microscope, or the behavior of the

imaging device.

5.5.2 lllustration of non-even illumination

Figure shows a thumbnail image (produced by the Illumina RTA pipeline (Inc.
(2011c))) of tile 1, cycle 46 (concentration 125 nM), T channel, lane 2 from experiment
18.08.2014 with nine selected areas and their magnified view. The uneven illumination is

clearly visible.

Figure 5.14: Thumbnail image of a tile showing uneven illumination. Image of tile 1,
cycle 46 (concentration 125 nM), T channel, lane 2 of experiment 18.08.2014
with magnified subareas.

Figure shows the image of tile 10, cycle 46 (concentration 25 nM), T channel, lane 4
from experiment 13.06.2013. Figure (a) has been processed using ImageJ (Abramoft
et al.| (2004); |Schneider et al.| (2012])) applying its rolling ball algorithm based on (Stern,
berg (1983))) with a radius of 40 pixels. This algorithm uses a ball as a structuring
element and performs the morphological operation top-hat transform (Dougherty et al.
(2003))). The result is an estimate of the local background in different regions of the image.
Here it is apparent that there are different patches of varying brightness. Figure (b)
shows the image of the same tile processed in the following way. The image was divided
into 32 x 32 pixel regions, and for each region the mean of the 20 dimmest pixels was

calculated representing the background of the region. These background values comprise
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the displayed intensities.

Figure shows on the left the gray level tif image of tile 10, cycle 46 (concentration
25 nM), lane 4 from experiment 13.06.2013, with three vertical selection lines (in yellow),
and on the right the related intensity profiles for these selections regarding the region
background. The regions and related backgrounds are calculated such that the image is
divided into 32 x 32 pixel regions and for each region the background is determined as
the mean of the 20 dimmest pixels. Difference in brightness as well as intensity drop off

at the borders is eminent.

Figure [5.17 correlates the intensity of spike-in clusters, i.e. DNA clusters with the
exact same insert sequence TGCAGGAATGACTCATTGAAGGTTAGATCGGAAGAG,
with the related local background, calculated as mean of the dimmest 10 pixel of a
17 x 17 pixel window around the spike-in cluster, for the different concentrations of ex-

periment 13.06.2013 on lane 4. During all protein cycles a strong correlation is observable.

Figure [5.18] correlates the local background, calculated as mean of the dimmest 10 pixel
of a 17 x 17 pixel window around the spike-in cluster, of the spike-in clusters across the
different protein cycles of experiment 13.06.2013 on lane 4. During all protein cycles
a very strong correlation is displayed showing that the non-even illumination effect is

stationary across imaging cycles.
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Figure 5.15:

Figure 5.16:
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Uneven illumination. (a) Image processed with the rolling ball algorithm
(Sternberg| (1983)) with a radius of 40 pixels. (b) Same imaged tile as in (a)
as heat map depicting the background intensities of 32 x 32 pixel regions. For
each region the mean of the 20 dimmest pixels was calculated representing
the background of the region.
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Intensity profile of region background for a representative image displaying
uneven illumination. (a) Gray level tif image of tile 10, cycle 46 (concentra-
tion 25 nM), lane 4 from experiment 13.06.2013 with three vertical selection
lines marked in yellow. The x coordinates are 40, 940 and 1840. (b) Intensity
profiles for the three selection lines regarding the region background. The
y axis shows the unnormalized intensity of the region background, the x
axis shows the different region (32 x 32 pixels) along the y direction of the
selection lines. For each region the mean of the 20 dimmest pixels was
calculated representing the background of the region.
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Figure 5.17: Correlation of spike-in cluster intensity with local background intensity of
experiment 13.06.2013 on lane 4. (a) to (e) denote the different concentra-
tions. The local background is calculated as the mean of the dimmest 10
pixel of a 17 x 17 pixel window around the spike-in cluster.
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Figure 5.18: Correlation of the local background intensity of the spike-in clusters across
the different protein cycles of experiment 13.06.2013 on lane 4. (a) 1 nM
compared to 5 nM. (b) 5 nM compared to 25 nM. (c) 25 nM compared to 125
nM. (d) 125 nM compared to 625 nM. The local background is calculated
as the mean of the dimmest 10 pixel of a 17 x 17 pixel window around the
spike-in cluster.
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5.5.3 Methods for non-even illumination correction

There are several different approaches to correct for non-even illumination. Correction
methods can be prospective when a calibration protocol and extra images are acquired,
or retrospective when the only data available is the image itself (Reyes-Aldasoro| (2009)).
Since a flat-field image which captures the background without any foreground objects
cannot be taken during a HiTS-FLIP run, retrospective correction is required.

There are different retrospective methods. Most existing bias correction methods assume
that the bias field is multiplicative, slowly varying, and tissue independent (Kubecka)
et al.| (2010)).

The first class of correction algorithms apply filtering with low pass, homomorphic or
morphological operators as it is a simple and intuitive way of removing low frequency
shading components (Reyes-Aldasoro| (2009)).

A second class of algorithms use surface fitting methods (Hou et al. (2006); Russ| (2011)))
requiring the selection of a number of points on the background, either manually or
automatically, and the background is obtained by the fitting of a parametric surface
(Kubecka et al.| (2010)). The polynomial fit method is based on the assumption that
the variation of the intensity of the background image can be obtained by the fitting
of a polynomial function to the intensity values of a number of points selected in the
background of the image (Tomazevic et al. (2002)). It approximates an image by a
polynomial and uses the orthogonality relation of the Legendre polynomials to expand
an image as a double sum of those functions. The sum is then evaluated to produce an
image that approximates a projection onto the space of polynomial images (Babaloukas
et al.| (2011))).

A third class of algorithms perform entropy minimisation (Likar et al. (2000)); Vovk et al.
(2006))) as it is assumed that the shading introduces extra information to the image, which
manifests itself as a higher entropy. For example, in (Likar et al. (2000))) a parametric

polynomial surface that minimises the entropy is assumed to be the shading component.

5.5.4 Linear model of the image formation

A widespread linear model of the image formation (Beckers et al.| (1994)); Leahy et al.
(2012)); Likar et al.| (2000)) which describes the relation between the true image U(x,y)
and the acquired image N (x,y) is the following:

N(z,y) = U(z,y)Sm(x,y) + Sa(x,y) (5.22)



64 Chapter 5: Pipeline

S =

(z,y): acquired, intensity non-uniform image.
y):

(z,

S (2, y): multiplicative shading component.

true image.
Sa(z,y): additive shading component.

Shading correction is concerned with finding the corrected image U (x,y) which optimally
estimates the true image U(x,y) from the acquired image N (z,y) (Likar et al. (2000)):

) shading correction .~

N(z,y Uz,y) =~ Ul(x,y) (5.23)

The shading corrected image U(m,y) can easily be calculated by inverting the image

formation model:

g _ N(l‘,y)—SA(ﬂZ,y)
Ulz,y) = Sur(e0)

(5.24)

where S(z,y) and Sy (x,y) are estimates of the additive and multiplicative shading
component. The problem of shading correction can thus be viewed as the problem of

estimating the additive and multiplicative shading components (Likar et al.| (2000)).

5.5.5 Estimation of the additive shading component

In order to estimate retrospectively the appropriate additive shading component S (z,y)
a pixel window around the cluster was taken and the local background was determined as
the mean of the dimmest 5% pixels of this pixel window. In the following analyses, the
pixel window size is scrutinized. The left side of Figure shows the local background
intensity for different pixel window sizes, calculated as the mean of the dimmest 5%
pixels within the pixel window, taken over all clusters from tile 10, cycles 93 to 97, lane 2
from experiment 18.08.2014. The distribution of the clusters is represented as density.
The right side of the Figure [5.19 shows the local background intensity distribution as
box plots for the different window sizes.

For the following analysis a 17 x 17 pixel window was chosen. A 17 x 17 pixel window
consists of 289 pixels, and given the experimental setup of ca. 200000 DNA clusters
per tile the average number of clusters in a 17 x 17 pixel region is 15. A DNA cluster
can be up to 9 pixels (sometimes even 10-12 pixels) in size and thus there are then 135
foreground and 154 background pixels in a 17 x 17 pixel region. The number of the

dimmest pixels within a 17 x 17 pixel window used for calculating the local background
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Figure 5.19: Different window sizes and related background intensities. (a) Local back-
ground intensity for different pixel window sizes, calculated as the mean
of the dimmest 5% pixels within the pixel window. (b) Local background
intensity distribution as box plots for the different window sizes.

was analyzed and the result is shown in the Figure [5.20 The local background was
processed over all clusters from tile 10, cycles 93 to 97, lane 2 from experiment 18.08.2014.
Taking 5, 10 or 20 dimmest pixels within the 17 x 17 pixel window does not lead to
significantly different values.

There are hundreds of occurrences of a particular 7-mer on a tile during a HiTS-FLIP
experiment. Figure shows on the left the occurrences (yellow dots) of the 7-mer
TGACTCA (reverse complement TGAGTCA) on the tile 10, cycle 95 (concentration 25
nM), T channel, lane 2 of experiment 18.08.2014. On the right the occurrences of all
the first 20 ranked (see section for details regarding the ranking method) 7-mers is
displayed.

Since the occurrences of k-mer motifs can be employed for analyzing the effects of the
normalization by subtraction of local background (mean of 5% dimmest pixels from
pixel window around cluster), the first 20 ranked 7-mers and their related unnormalized

and normalized intensities were used for measuring the variance and Kruskal Wallis

statistics. The Kruskal-Wallis one-way analysis of variance by ranks (Kruskal and Wallis|
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Figure 5.20: Different number of dimmest pixels and related background intensities, with
the addition of the cluster intensity. (a) Local background intensities for
different numbers of dimmest pixels of a 17 x 17 pixel window, with the
addition of the cluster intensity. (b) Same as (b) but visualized as a box
plot.

(1952)) was used as test statistics since the distribution of the intensities of a k-mer
is not normally distributed, and the variances and sample sizes among the k-mers are
different. Figure shows for different pixel window sizes the variance, the Kruskal
Wallis test statistics K and the related p-values for the first 20 ranked 7-mers on the tile
10, cycle 95 (concentration 25 nM), T channel, lane 2 of experiment 18.08.2014. Since the
p-values turn out to be nearly zero, at a 0.05 significance level the null hypothesis that
the different 7-mers with their intensities are identical can be rejected. Thus, the 7-mers
are different and the larger the Kruskal Wallis test statistics K is the more different the
7-mers are from one another. The largest value (513.86) occurs for the window size of 15
pixels.

Figure [5.23] shows the outcome when calculating the Kruskal Wallis test statistics K for
the first 20 ranked 7-mers using tiles 1 to 120, T channel, lane 2 of experiment 18.08.2014
for the concentration 5 nM, 25 nM, 125 nM, and 625 nM and selecting the size of the

window for which K is maximal. Since 15 pixel as window size is the distinguished value,
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Figure 5.21: Occurrence and distribution of 7-mers on the tile 10, cycle 95 (concentration
25 nM), T channel, lane 2 of experiment 18.08.2014, shown as yellow dots.
(a) Occurrences of 7-mer TGACTCA and its reverse complement TGAGTCA.
(b) Occurrences of all the first 20 ranked 7-mers and the related reverse
complements.

the window size for calculating the local background around a cluster was chosen to be
15 x 15 pixels and the local cluster background was calculated as the mean of the 5%

dimmest pixels from these 15 x 15 pixels.

5.5.5.1 Implementation

I developed the calculation of the local cluster background using Java (Gosling (2000))
and ImageJ (Abramoff et al.| (2004); Schneider et al.| (2012)). The input are the protein

images and the x,y coordinates of the clusters. The output are the local background

intensity values for each cluster, calculated as the 15 x 15 pixel window around the cluster

and the mean of the 5% dimmest pixels from this 15 x 15 pixel window.

5.5.5.2 Results

Since the largest Kruskal Wallis test statistics K value occurs for the window size of 15
pixels, the size of the pixel window around a cluster was chosen as 15 x 15 pixel window
and the local background intensity value as the mean of the 5% dimmest pixels from this

15 x 15 pixel window.
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Figure 5.22: Different measures for assessing the normalization by local background
subtraction using the first 20 ranked 7-mers on the tile 10, cycle 95 (concen-
tration 25 nM), T channel, lane 2 of experiment 18.08.2014. (a) Variance of
the different 7-mers and their intensities. (b) Kruskal Wallis test statistics
K values. (c¢) p-values for Kruskal-Wallis one-way analysis of variance by
ranks (Kruskal and Wallis| (1952)).
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Figure 5.23: Pixel size of windows at different concentrations for which the maximal
Kruskal Wallis test statistics K was used for all 120 tiles of lane 2 and the
first 20 ranked 7-mers.
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5.5.6 Estimation of the multiplicative shading component

For estimating retrospectively the multiplicative shading component Sy, (z,y) various
different techniques can be applied such as Gaussian filtering (Babaloukas et al.| (2011));
Leong et al. (2003))), homomorphic filtering (Delac et al.| (2006); [Etemadnia and Asharif
(2004); |Wen-Cheng and Xiao-Jun| (2013])), morphological operators (Babaloukas et al.
(2011)); Michalek et al. (2010); Wang et al.| (2014])), anisotropic diffusion (Black et al.
(1998); Hama and Al-Ani (2013); |Liu/ (2013)); Tschumperle and Deriche| (2005)), surface
fitting by higher-order polynomial for approximating the background (Zhang et al.| (2014)),
and entropy (as a measure of global intensity uniformity) minimization based methods
(Likar et al.| (2000)).

I used Gaussian filtering here as a linear, low pass filter based upon the assumption that
the uneven illumination is a low frequency signal. Therefore, low pass filtering can be
used to extract it from an image. The objects of interest, i.e. DNA clusters, are smaller
than the variation of the background and the background has a different intensity than
the clusters. Blurring the image with a Gaussian filter including background as well as
cluster pixels is based upon the known fact that all intensity measurements are a mixture
of signal and background (Waters and Swedlow! (2007)). The resulting smoothed image is
considered an estimate of the background of the image (Babaloukas et al.| (2011)); |Leong
et al. (2003)).

This filtering can be achieved by convolving the image I(z,y) with a Gaussian kernel.

The Gaussian function G(z,y) is defined by:

Go(z,y) = L exp <—x2 i y2> (5.25)

e
2mo? 202

where o defines the effective spread of the function. The effect of this function is to delimit
the spatial frequencies in an image, resulting in loss of edge definition and averaging of
intensity values. The larger the value of the parameter o, the greater the smoothing
effect. The aim is to smooth the image until it is devoid of cluster features but retains the
weighted average intensity across the image corresponding to the underlying illumination

pattern.
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5.5.6.1 Implementation

I developed the Gaussian filtering using Java (Gosling| (2000)) and ImageJ (Abramoft
et al. (2004)); |Schneider et al.| (2012))), using the GaussianBlur component of the ImageJ
framework. The input are the unnormalized protein images and the output are the

Gaussian based normalized protein images.

5.5.6.2 Assessment of different o values

Figure [5.24] shows for different o values the variance, the entropy of the background, the
Kruskal Wallis test statistics K and the related p-values for the first 20 ranked ((see
section for details regarding the ranking method)) 7-mers on the tile 10, cycle 95
(concentration 25 nM), T channel, lane 2 of experiment 18.08.2014. The background
pixels of the image were determined by dividing the image into 32 x 32 pixel regions
and taking the mean of the dimmest 20 pixels. The entropy H of the image is based on
Shannon’s entropy (Shannon| (2001))) and was calculated for these background pixels in

the following way:

M-—1
H=- Z i logs (pr) (5.26)
k=0

where
M: is the number of gray levels in the image.
n
Pr = ——* . is the probability associated with the gray level k with ny being the

M x N
number of pixels with grayscale k and M x N the size of the image.
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The various pixels in an image may be considered to be symbols produced by a discrete
information source with the gray level as its states and the entropy is a measure of their
information content. High entropy images have a great deal of contrast from one pixel to
the next whereas a uniform distribution of gray levels results in a low entropy. The lower
the entropy in Figure [5.24] the more uniform the intensity of the background pixels. The
Kruskal Wallis test statistics K value is maximal (566.21) for a o of 33 pixel which is
still linked to a low entropy value (3.021). The lowest entropy value is except for o = 1

occurring for o = 14 (2.953).

Variance

annormalized; 3145.6

o

bg entropy

26 annormalized: 5.36
570

0

560 —

w0l ¢ .
i

5401 ;

530 !

5201

5101;

Kruskal Wallis

500 1+
unnormalized: 456,68
430

Be-94 ! unnormalized: 6 6e-85
5e-94
Saend!
gaﬂ-ﬂq
004
to9d ]|
0e+00

Iy = = = = = = = = = = =
& S = & a 2 & ] 2 ] & g

1
2
3
4
5
6
7
80

Radius of Gaussian filter

Figure 5.24: Different measures for assessing the normalization by division of Gaussian
filtered image with different o (radius) using the first 20 ranked 7-mers on
the tile 10, cycle 95 (concentration 25 nM), T channel, lane 2 of experiment
18.08.2014. (a) Variance of the different 7-mers and their intensities. (b)
Entropy of background pixels. (c) Kruskal Wallis test statistics K values.
(d) p-values Kruskal-Wallis one-way analysis of variance by ranks (Kruskal
and Wallis (1952)).
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Figure shows the outcome when calculating the Kruskal Wallis test statistics K for
the first 20 ranked 7-mers using tiles 1 to 120, T channel, lane 2 of experiment 18.08.2014
for the concentration 5 nM, 25 nM, 125 nM, and 625 nM and selecting the radius of
the Gaussian filter kernel for which K is maximal. For the subsequent processing in
the pipeline a o value of 30 pixel was chosen since this is in the range of the values
determined by the maximal Kruskal Wallis test statistics K value, and it is around 10

times bigger than the size of a DNA cluster which is on average 3 pixels in width.
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Figure 5.25: Different Gaussian filter radius values (o) at different concentrations for
which the maximal Kruskal Wallis test statistics K was used for all 120 tiles
of lane 2 and the first 20 ranked 7-mers.
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Figure illustrates the outcome when both additive and multiplicative shading
correction is applied. The additive shading correction is the subtraction of the local
background intensity from the related cluster intensity calculated as a 15 x 15 pixel window
around the cluster and taking the mean of the dimmest 5% pixels. The multiplicative
shading correction is the division of a Gaussian filtered image with the different radius

values as shown in the Figure [5.26
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Figure 5.26: Different measures for assessing the normalization by subtraction of local
background and division of Gaussian filtered image with different o (radius)
using the first 20 ranked 7-mers on the tile 10, cycle 95 (concentration
25 nM), T channel, lane 2 of experiment 18.08.2014. (a) Variance of the
different 7-mers and their intensities. (b) Entropy of background pixels, only
for the multiplicative shading correction. (c) Kruskal Wallis test statistics K
values. (d) p-values Kruskal-Wallis one-way analysis of variance by ranks
(Kruskal and Wallis| (1952)).
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5.5.6.3 Weighting factors

In addition to the Gaussian filtering, a weighting factor has been applied such that for
increasing concentration levels the related cluster intensities increase as well. Using only
the Gaussian filtering for the normalization leads to intensities on the same intensity
level across the different concentrations. As an estimate for the increasing amount of
protein linked with each consecutive concentration level, the unbound proteins in the flow
cell have been used. The amount of unbound proteins can be determined by the global
background intensity across an entire protein image, calculated in the following way:

1) Divide each protein image into 32x 32 grid cells, resulting in 233 x 1588 = 64x 59 = 3776
cells.

2) For each cell, take the mean of the dimmest 20 pixels as the local background intensity
of the cell.

3) Take the median of all these cell backgrounds as the global background intensity of
the related protein image.

The global background intensity of a protein image at a higher concentration has been
put in relation to the global background intensity of this protein image at the lowest
concentration since the increase in protein amount relative to the starting concentration
is required. More formally, the normalization with weighting can be expressed in the

following way:

gﬂno’rm
norm __ [ —
Ieo™ = 7f6nult fori =1 (5.27)

unnorm global
1, B

G .
I = Tt X alobal fori =2..n (5.28)
C; 1

where

I2°™™: is the normalized cluster intensity at concentration ¢ for tile t.
C; y

I is the unnormalized cluster intensity at concentration ¢ for tile t.

Bfloml: is the global background intensity at concentration 7 for tile t.

BY'*!: is the global background intensity at the lowest concentration (i = 1) for tile t.

5.5.6.4 Results

o = 30 pixels was chosen as value for smoothing the Gaussian filtered image. The

weighting factors were determined as described above.
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5.5.7 Comparison of additive and multiplicative shading correction

Applying the Kruskal Wallis test statistics K values as the underlying measure the quality
of the different normalization approaches can be compared. Table summarizes the
findings. The first 20 ranked 7-mers on the tile 10, cycle 95 (concentration 25 nM), T

channel, lane 2 of experiment 18.08.2014 were used.

method max K value
subtraction of local background (15 x 15, 5% dimmest) 513.86
division by Gaussian filtered image (o = 30) 566.21

Table 5.1: Overview of the maximal Kruskal Wallis test statistics K values for the different
normalization methods.

Since the highest Kruskal Wallis test statistics K value was achieved by the division by
the Gaussian filtered image, this method was applied as normalization for the HiTS-FLIP
pipeline.

An explanation why this is suitable here is given by (Russ| (2011))). If the image acquisition
device is logarithmic (such as film), then subtraction of the background image point by
point from each acquired image is correct. If the camera or sensor is linear (CCD have
a linear photometric response, Mullikin et al.| (1994)), then the correct procedure is to
divide the acquired image by the background. The difference is easily understood because
in the linear case the corrected result is Image / Background, and when the signals are
logarithmic, the division is accomplished by subtraction: Log(Image) - Log(Background)
(Russ| (2011))).

Figure shows the result of applying the division of the Gaussian smoothed image
regarding the tif image of tile 10, cycle 46 (concentration 25 nM), lane 4 from experiment
13.06.2013. The left side shows the intensity profile for three representative vertical lines
at x = 40 pixel, x = 940 pixel, and x = 1840 pixel for the unnormalized intensities,
and the right side shows the intensity profile after normalization by the Gaussian fil-

ter. The difference in intensities coming from non-even illumination is drastically reduced.

The additive and the multiplicative shading correction can also be compared regarding
the Kd based correlation with the HiP-FA Kds (see section [5.9.1.7) and the associated
relative errors. The additive shading correction consists of the subtraction of the local

cluster background, which is calculated as the mean of the 5% dimmest pixels from a
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Figure 5.27: Intensity profile for three representative vertical lines at x = 40 pixel, z = 940
pixel, and x = 1840 pixel for the unnormalized and normalized intensities.
(a) Unnormalized intensities. (b) Normalized intensities.

15 x 15 pixel box around each DNA cluster. The multiplicative shading correction is
made up by the division of the original image by itself, smoothed by a Gaussian filter
with o = 30 pixels and the weighting factors . The intensity extraction method
was applied as described in section As ranking method the heuristic based ranking
was used as described in subsection but without discarding clusters that contained
ranked motifs. The fitting was done as described in section As shown in Table

the correction of the additive and the multiplicative shading component yield similar

results.
method R 4]
subtraction of local background (15 x 15, 5% dimmest) 0.99 50.48%
division by Gaussian filtered image (o = 30) 0.99 30.91%

Table 5.2: Comparison of the additive and the multiplicative shading correction with
respect to the correlation of Kds and relative errors as measured by HiP-FA
as described in section Normalization is carried out by the division of
the original image by itself, smoothed by a Gaussian filter with ¢ = 30 pixels.
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5.5.8 Comparison with sequencing image based normalization

The normalization of the DNA cluster intensities of the protein images by Nutiu et al.
(2011)) utilizes the fluorescent signals from the sequencing images for correcting the effect
of cluster size and of cluster tile position on the variability of the cluster intensities. The

normalization factor nf of a certain cluster has the following form:

1 n
nf=— max(A,C,G, T 5.29
= D max ) (529)
where
n: is the number of sequence cycles.
A,C,G,T: are the fluorescent signals from the four nucleotides that are incorporated

during each sequencing cycle.

For each sequencing cycle the brightest fluorescent signal from the four channels is
used. The normalization factor nf is then taken as divisor of the related cluster intensity

for all the measured protein cycles.

Normalizing for cluster size is unnecessary since a cluster would only be brighter if
the density of the DNA template strands during amplification would vary. However,
solid phase amplification is a very uniform process leading to clusters with very similar
density of DNA template strands in the center of a DNA colony (Mercier and Slater
(2005); Mercier et al. (2003)). Starting with the primers they form a very dense and
uniform carpet on the surfaces of the flow cell. Solid phase DNA amplification leads in
three distinct steps (annealing, extension, and denaturation) to the growth of a colony
of molecules attached to the surface and located in the same region. In (Mercier et al.
(2003)) a Monte Carlo lattice model was used to study solid phase amplification. In
a follow-up examination, (Mercier and Slater| (2005)) applied Brownian dynamics and
came to similar conclusions. According to (Mercier and Slater| (2005); Mercier et al.
(2003)) the density at the center of the colony can be expected to be somewhat higher
than at the fringe. When a molecule is completely surrounded by others, its free end
tends to move away from the surface (like in a dense polymer brush). Therefore, after a
few cycles, a molecule at the center of the colony (which is thus surrounded by others)
will have a smaller duplication probability (its free end is less likely to find a matching
primer on the surface). Because of this phenomenon, a DNA colony can be characterized

by a roughly constant density and grows outwards, i.e., from its perimeter. Since the



78 Chapter 5: Pipeline

intensity extraction methods described in section [5.6] make use of the central cluster
pixel, uniform DNA template density can be expected for the central cluster pixel across
different motif-containing clusters.

A particular issue concerning the use of the fluorescent signals from the four nucleotides
is that their brightness varies quite drastically as shown in Figure [5.28 For example,
the signal in the G channel is almost four times as bright as the signal in the C channel,
and the signal in the T channel is nearly twice as large as the signal in the C channel.
Therefore, the normalization using the four different channels is biased depending on the

nucleotide specific composition of the DNA cluster sequence.
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Figure 5.28: Difference of fluorescent intensity from the four nucleotides. The spike-in
clusters from experiment 13.06.2013 were used and the median intensity for
each channel during the sequence cycles is shown here.

In order to evaluate how efficient the sequence image based normalization by
is for correcting the non-even illumination bias depending on the cluster tile
position Kds have been calculated and compared with the Kds from an alternative assay.
For details on the HiP-FA assay see section The underlying data set for the
analyses in this section are the data from lane 2 of experiment 18.08.2014. Preprocessing
of the tif images was done as described in section the cluster position transformation
was carried out as described in section [5.3] and the shifting of mapped clusters was
performed as explained in section The normalization of the cluster intensities was

executed as described above using the averaged CIF intensities produced from the Illumina



5.5 Image normalization 79

pipeline during sequencing as done by Nutiu et al. (2011). Intensity extraction was
performed as stated in section [5.6] image outlier detection was carried out as described
in section and DNA cluster sequence filtering was applied as stated in section
The k-mer ranking was performed as described in section [5.9.1.5] The Hill based fitting
for determining the Kds was done as described in section [5.10]

There is an inferior agreement (R=0.86, 6=13.31%) between HiP-FA Kds and HiTS-FLIP
Kds using the sequence images for normalization as shown by Figure [5.29] compared
to using the protein images directly (R=0.99, §=30.91%) as shown by Figure In
conclusion, using a single protein image thus allows to estimate directly the non-even
illumination in a precise fashion without having to process all sequence images and

introducing a nucleotide specific bias.
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Figure 5.29: Validation of sequence image based normalized Kds leads to an inferior
agreement between HiP-FA Kds and HiTS-FLIP Kds compared to using the
protein images directly (see Figure [5.29)).
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5.6 Intensity extraction

After estimation of the transformation parameters that allows to localize the DNA clusters
in the tile images, and image normalization to correct for non-even illumination, the
intensities associated with the DNA clusters need to be extracted from the tif images.

The following sections investigate different methods for the intensity extraction.

5.6.1 Implementation

I implemented the following methods the nearest neighbor intensity extraction, the
Gaussian based intensity extraction, the intensity extraction based on the average of 2 x 2
pixel area, the intensity extraction based on the brightest 2 x 2 pixel area, the intensity
extraction based on the average of 3 x 3 pixel area, the bilinear intensity extraction,
and the bicubic intensity extraction using Java (Gosling (2000)) and ImageJ (Abramoft
et al.| (2004); Schneider et al.| (2012))). The intensity extraction based on the weighted
area coverage is based on modified code from Illumina’s OLB pipeline version 1.9.4 (Inc.
(2011a))). The input are the normalized protein images and the x,y coordinates of the

cluster positions. The output are the extracted cluster intensities.
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5.6.2 Nearest neighbor intensity extraction

Given the coordinates (x, o) of a point, where xg and yg are floating-point numbers,
and assuming u is the integer part of xy and v is the integer part of yg, the rectangular
neighborhood defined by pixels (u,v), (u,v+1), (u+1,v), and (u+ 1,v+ 1) contain the
point (z,yo), as shown in Figure m

More formally:

The pixel closest to a given continuous point (zg,yo) is found by rounding the zy and yo

coordinates independently to integral values:

Icluster = f([L‘(], yO) = I(“O» UO) (530)

with

ug = round(zg) = |xo + 0.5]

v = round(yo) = |yo + 0.5]

The computational complexity of nearest-neighbor resampling is on the order of n

comparisons if the image contains n pixels, thus O(n) Goshtasby]| (2012]).
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Figure 5.30: The nearest neighbor intensity for (xg, yo) is (u, v). Here, ug = v and vg = v.
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5.6.3 Gaussian based intensity extraction

One natural way to describe the intensity distribution of an amplified DNA cluster is by
a 2d Gaussian function which simulates the blurring effect and the variance of Gaussian
(o) changes linearly with the axial axis. It has been shown that a 2d Gaussian function is
suitable to represent the PSF of point sources in fluorescent microscopic images (Stallinga
and Rieger| (2010)); Zhang et al| (2007)). Thus the intensity at a subpixel location [
can be estimated from the intensities of a small number of pixels at discrete locations

surrounding [. The following formula has been used:

F(z,y) i D (_ ((35 — x)° T (y — yo)2>> +0 (5.31)

= ex
242 2 2
2mozoy 20Z 203

where (g, o) is the position of the peak (the center), o, and o, is the Gaussian width
in z and y direction, A is the amplitude and O is the offset.

For each cluster a pixel box of size w = 5 around its position has been used as a subset
of intensities for the fit. The initialization of the six parameters is carried out such as:
xo: = coordinate of peak amplitude.

yo: y coordinate of peak amplitude.

02: w/10 (heuristic for 0 = FWHM/V/8In2).

oy w/10 (heuristic for ¢ = FW HM/V/8In2).

A: intensity of (zo,yo) minus offset.

O: minimal intensity within w.

The cluster intensity is then:
Icluste’r = j($07 y(]) = f + O (532)

Figure depicts the intensities of a DNA cluster from tile 21, cycle 95 (25 nM), lane 2
of experiment 18.08.2014, which is suitable to be fitted by the Gaussian function.

However, there are clusters for which a Gaussian cannot be fitted. The following intensities
of Figure of a DNA cluster from tile 21, cycle 95 (25 nM), lane 2 of experiment
18.08.2014 emphasize this situation. It can be observed that there is only one distinguished

pixel that determines the cluster intensity.
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Figure 5.31: Cluster intensities with good Gaussian fit. (a) shows as 3d bar plot the
cluster intensities and the overlaid Gaussian fit. (b) shows the cluster

intensities, (c) shows the Gaussian fit.
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Figure 5.32: Cluster intensities for which no Gaussian fit is possible. (a) shows the
intensities as a 2d heat map, (b) shows the intensities as a 3d bar plot.
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5.6.4 Intensity extraction based on average of 2 x 2 pixel area

The cluster intensity for (xg,yo) can be defined as the averaged intensity over the closest
four pixel neighbors (n = 4), illustrated by Figure

. 1 n—3n—3 . .
Icluste’r:I('ranO) = EZZI(U‘FZ*G,U"‘]*Z’) (533)
7=0 =0
where
1, if g —ug >0
a =
—1, otherwise
b 1, if Yo — vo > 0
—1, otherwise
ug = round(xg) = |xo + 0.5]
vo = round(yo) = |yo + 0.5]
o *—0—9
Huy) Ay
¢ © & o »
Loy
® i
r . P(uy) (Ut vty ?
® o e o 9
*—o e & o

Figure 5.33: The intensity for (zg,yo) is the average intensity from the four neighboring
pixels (u,v), (u+ 1,v), (u,v+ 1), and (u+ 1,v + 1).

5.6.5 Intensity extraction based on brightest 2 x 2 pixel area
A variation of the previous intensity extraction method is to use the brightest 2 x 2 pixel

window which includes the cluster pixel, illustrated by Figure [5.34

Icluster = f(x(]? yO) = ma’x(IAl 9 IAQ) IA3) IA4) (534)

where

I, = %(I(u )+ Iy 0) + T+ 1) + T(u— 1,0+ 1)) (5.35)
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1
Iy, = n(](u,v)—i—I(u—l—l,v)—i—I(u—{—l,v—i—l)—{—I(u,v—f—l)) (5.36)
1
Ip, = 5(1(“’” — D+ I(u+Lv—1)4+I(u+1,v)+ I(u,v)) (5.37)
1
Iy, = n([(u —Lv=1)+I(u,v — 1)+ I(u,v) + I(u— 1,v)) (5.38)
with n = 4.
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Figure 5.34: Example of the four 2 x 2 pixel windows around (z, 39), the average intensity

of the brightest 2 x 2 pixel window is chosen to be the intensity of (xq, yo).
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5.6.6 Intensity extraction based on average of 3 x 3 pixel area

The neighboring pixels can be increased to a 3 x 3 pixel window, illustrated by Figure
0.9

vo+1  wuo+1

R 1 ..
Icluster = I(l'anO) = g Z Z I(Zyj)an =9 (539)

j=vo—1li=up—1

...............................

[
® ®
s o o o 9
. ®
®

Figure 5.35: The intensity for (zg,yo) is the average intensity from the nine neighboring
pixels.

5.6.7 Bilinear intensity extraction

Bilinear interpolation is used when values at random position on a regular 2d grid
(discrete pixel values) need to be determined. Existing values are interpolated at fixed
grid location to compute values anywhere else on the grid.

Interpolation takes place both in z- and y-direction, hence the name bilinear (Demant et al.
(2013)). The result of bilinear interpolation is independent of which axis is interpolated
first and which second. Bilinear interpolation uses the distance-weighted average of the
four nearest pixel values to estimate a new pixel value (Goshtasby| (2012))). The weight
on each of the four pixel values is based on the computed pixel’s distance (in 2d space)
from each of the known points.

First, the four closest (surrounding) pixels are determined. Then, two horizontal linear
interpolations are done, obtaining I(Au,v) and I(Au,v + 1). Finally, a third vertical
linear interpolation is carried out to obtain I(xg,yo). An illustration of this calculation
is provided by Figure |5.36

According to (Goshtasby| (2012))) bilinear interpolation can be defined as:



5.6 Intensity extraction

87

N

Liuster = 1(z0,y0) = wixI(u+1,v+1)FwoxI(u, v+1)Fws*I(u+1,v)+wsxI(u,v) (5.40)

Wherewl = AulAv = (zg — u)(yo — v) (5.41)
we = (1 — Au)Av = (u+1—x0)(yo — v) (5.42)
w3 = Au(l — Av) = (zg — u)(v + 1 — yp) (5.43)
wy = (1 — Au)(1 — Av) = (u+1—20)(v + 1 — o) (5.44)

Computationally, resampling by bilinear interpolation requires on the order of n mul-

tiplications if the reference image contains n pixels. Therefore, nearest-neighbor and

bilinear interpolation have the same computational complexity, although nearest-neighbor

is several times faster than bilinear interpolation (Goshtasby| (2012)).

‘u+1,v+1

u, v+ 1‘ Au,v+1
1-Av
W3 Wy
Au 1-Au
x0,y0
W W9
Av
’u, v Au,v

| u+1,v

Figure 5.36: Bilinear interpolation. For a given position (xg,yo), the interpolated value is
computed from the intensity values of the four closest pixels (u,v + 1), (u +
L,bv+1),(u+1,v),(u,v) in two steps. First the intermediate values (Au,v)
and (Au,v + 1) are computed by linear interpolation in the horizontal
direction between (u,v) and (u + 1,v), and (u,v + 1) and (u+ 1,v + 1),
respectively, where Awu is the distance to the nearest pixel to the left of xg.
Subsequently, the intermediate values (Aw, v) and (Au, v+1) are interpolated
in the vertical direction, where Aw is the distance to the nearest pixel below

Yo-
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5.6.8 Bicubic intensity extraction

Bicubic interpolation is an extension of cubic interpolation for interpolating data points
on a 2d regular grid. The interpolated surface is smoother than corresponding surfaces
obtained by bilinear interpolation or nearest-neighbor interpolation. Bicubic interpolation
can be accomplished using either Lagrange polynomials, cubic splines, or cubic convolution
algorithm (Burger et al. (2009))). In contrast to bilinear interpolation, which only takes
4 pixels (2 x 2) into account, bicubic interpolation considers 16 pixels (4 x 4). Images
resampled with bicubic interpolation are smoother and have fewer interpolation artifacts.
Bicubic interpolation occurs in two steps. According to (Burger et al. (2009))), at first, a
one-dimensional cubic interpolation is performed in the horizontal direction with weyp ()
over the four pixel intensities /(u;, v;) in four lines. Then, the result I (x0,Yo) is computed
by a one-dimensional cubic interpolation in the vertical direction over the intermediate

results pg...p3. An illustration of this calculation is provided by Figure [5.37]

3

3
Lojuster = I 1'07 yO Z [wcub Z uz> (% wcub( - Uz)ﬂ (545)

j=0 =0

with u; = |zo| — 144 and v; = |yo| — 1 + 4, and where

(a+2)z] = (a+3)|z?+1 for |z| <1

Weun(2) = 4 alz|® — 5alz|? + 8alx| —4a  for 1 < |z| < 2
0 otherwise
with a = —0.5 (another common value is —0.75).
3
The value p; = Z [I (s, 03 ) Weyp(T0 — ul)] denotes the intermediate result of the cubic
i=0

interpolation in the = direction in line j. The interpolation is based on a 4 x4 neighborhood
of pixels and requires a total of 16 + 4 = 20 additions and multiplications. This
computation of bicubic interpolation is on the order of n? multiplications, thus O(n?)
(Goshtasby (2012])).
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Figure 5.37: Bicubic interpolation in two steps. The discrete image I is to be interpolated
at some continuous position (zg,yp). (a) In step 1, a one-dimensional
interpolation is performed in the horizontal direction with we,p(z) over four
pixels I(u;,v;) in four lines. One intermediate result p; is computed for
each line j. (b) In step 2, the result I (x0,y0) is computed by a single cubic
interpolation in the vertical direction over the intermediate results pg...ps.
Adapted from |Burger et al.| (2009)).
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5.6.9 Intensity extraction based on weighted area coverage

Another variation of an intensity extraction method can be derived by adjusting weights
due to the area coverage around the central cluster pixel in the following way. This idea

is based on modified code from Illumina’s OLB pipeline version 1.9.4 (Inc. (2011a)).

) 1 n 1 n 4
Lepuster = I(‘TOa yO) = A Z wil(xh yl) = A Z Wy [wcl(mca yc) +wn Z I(xé'v» ygN)]
i=1 i=1 j=1
(5.46)
where
A = area of coverage
n = number of pixels p? overlapped by A
w; = weight based on overlap between A and the area of pixel plA
4
I(73,yi) = wel (e, ye) + wn Z[(mév,ij) (5.47)

j=1
where
I(x.,y.) = intensity of cluster pixel covered by A
I (xév , yJN ) = intensity of 4-connected neighbor pixels of p#
w, = weight of central pixel (z., y.)

wy = weight of neighboring pixel (xjv , yJN )

Figure depicts an example. The point p for which the intensity is extracted is
(2.1,2.4) which is formalized above by (z,y.). The area A around p is denoted by
the red square. Here n = 6, since 6 pixels are affected by the overlap of A. The
six pixels pf‘ of p affected by the overlap of A are marked by the blue frames. The
weights w; in Figure determined by the overlap between A and the area of pixel
pf, are wy = 0.15 x 0.85 = 0.1275, wy = 0.15 x 0.65 = 0.0975, w3 = 1.0 x 0.65 = 0.65,
wyq = 0.35 x 0.65 = 0.2275, ws = 0.35 x 0.85 = 0.2975, and wg = 1.0 x 0.85 = 0.85.

The parameter settings for the HiTS-FLIP pipeline are based on Illumina’s OLB pipeline
version 1.9.4 (Inc. (2011al)):

A = 1.5? pixels

we = 5.0

wy = 0.9
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Figure 5.38: Intensity extraction based on weighted area coverage. The point p for which
the intensity is extracted is (2.1,2.4). Area A is denoted by the red frame.
A has size 1.5? pixels. Affected neighboring pixels by the overlap with A are
denoted by the blue frames. Here n = 6, since 6 pixels are affected by the
overlap. The weights w; here are the weights w; to wg (red colored areas).

For example, w; = 0.15 x 0.85 = 0.1275.
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5.6.10 Comparison of different intensity extraction methods

The different intensity extraction methods were compared by the correlation to the Kds
measured by HiP-FA as described in section [5.9.1.7

The underlying data set for this comparison are the data from lane 2 of experiment
18.08.2014. Preprocessing of the tif images was done as described in section[5.2] the cluster
position transformation was performed as described in section [5.3] and normalization of
the cluster intensities was executed as detailed in section [5.5] Shifting of mapped clusters
was done as explained in section [5.4] image outlier detection was carried out as described
in section and DNA cluster sequence filtering was applied as stated in section
The k-mer ranking was carried out as stated in subsection but without any cluster
deletion. The Hill based fitting for determining the Kds was done as described in section
IO

The results of the comparison are shown in the Table[5.3] The Pearson’s product-moment
correlation coefficients show a high correlation for all methods except for the Gaussian
based intensity extraction method. However, the relative error ¢ is the smallest for the
intensity extraction method based on weighted area coverage. Therefore, this method
has been chosen for the HiTS-FLIP pipeline with the settings stated in subsection [5.6.9

method R 1)
Nearest neighbor intensity extraction 0.98 38.83%
Gaussian based intensity extraction 0.86 664.27%

Intensity extraction based on average of 2 x 2 pixel area  0.98 44.36%
Intensity extraction based on brightest of 2 x 2 pixel area 0.98 45.28%
Intensity extraction based on average of 3 x 3 pixel area  0.98 54.44%

Bilinear intensity extraction 0.98 50.47%
Bicubic intensity extraction 0.98 35.6%
Intensity extraction based on weighted area coverage 0.99 30.91%

Table 5.3: Comparison of the different intensity extraction methods with respect to the
correlation of Kds and relative errors as measured by HiP-FA as described in

section @
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5.7 Image outlier detection

Besides non-even illumination dust particles and air bubbles can also obfuscate cluster
intensities. The contamination by dust particles and air bubbles can vary quite drastically
from experiment to experiment. Dust particles are a contamination appearing as very
bright spots on the tile images as shown by Figure Air bubbles reach the flow cell by
the syringe pump system and can sometimes cover a large area of a tile as illustrated by
Figure Filtering out clusters affected by dust particles and air bubbles reduces false
positives since their bright appearance is only artificial and not due to a high amount of

bound protein.

Figure 5.39: Dust particles on imaged tiles. (a) and (b) show two images with dust
particles (bright spots) contaminating the imaged tile area.

Figure 5.40: Example of air bubbles covering the imaged tile area. (a) Image where more
than 80% of all the DNA clusters on the tile are affected by the bubble. (b)
Image where a portion of the tile is covered by an air bubble, and ca. 21%
of all the DNA clusters on the tile are affected.
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5.7.1 Detection approach for air bubbles

Since dust particles and air bubbles distinguish themselves drastically by their appearance
and size from DNA clusters and background, they can be easily detected and affected
DNA clusters can be filtered out. The following steps comprise the detection of an air
bubble as illustrated by Figure

In step 1, a sharpening filter is applied to the image using a 3 x 3 convolution kernel
increasing contrast and accentuating details. The implementation of the sharpening
filter is based on the method sharpen() from ImageJ’s component ImageProcessor, URL:
http://rsbweb.nih.gov/ij/docs/guide/146-29 .html. Then the image is binarized
using Otsu’s method (Otsu (1975))) using the ImageJ plugin implementation by C. Mei et
al., URL: http://rsb.info.nih.gov/ij/plugins/otsu-thresholding.html. Otsu’s
method is a threshold based binarization algorithm that aims to maximize the inter-class
variance and does no require any user defined parameters (Otsu (1975)).

In step 2, a blob detection for identifying particle objects is carried out by connected
component labeling (Chang et al.| (2004))), which is implemented in the ImageJ library
IJBlob (Wagner and Lipinski (2013)). The biggest blob is considered as an air bubble.

In step 3, the concave contour line, reaching into the image, is detected.

In step 4, a circle is fitted to the detected bubble that allows to differentiate between all
the pixels that belong to the air bubble and the pixels that lie outside.

Finally in step &, all pixels belonging to the air bubble (> 30000 pixels) are marked (here
in red) so that they can be distinguished and filtered out.

Figure 5.41: Overview of the different steps in the air bubble detection process.


http://rsbweb.nih.gov/ij/docs/guide/146-29.html
http://rsb.info.nih.gov/ij/plugins/otsu-thresholding.html
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5.7.2 Detection approach for dust particles

The following steps make up the detection of a dust particle as illustrated by Figure [5.42
In step 1, a sharpening filter is applied to the image using a 3 x 3 convolution kernel
increasing contrast and accentuating details. The implementation of the sharpening
filter is based on the method sharpen() from ImageJ’s component ImageProcessor, URL:
http://rsbweb.nih.gov/ij/docs/guide/146-29.html. Then the image is binarized
using Otsu’s method (Otsu| (1975))) using the ImageJ plugin implementation by C. Mei et
al., URL: http://rsb.info.nih.gov/ij/plugins/otsu-thresholding.html. Otsu’s
method is a threshold based binarization algorithm that aims to maximize the inter-class
variance and does no require any user defined parameters (Otsu, (1975)).

In step 2, a blob detection for identifying particle objects is carried out by connected
component labeling (Chang et al.|(2004)), which is implemented in the ImageJ library 1J
Blob (Wagner and Lipinski (2013)).

In step 3, blobs representing particles are identified by the size of their outer contour line

(between 30 and 30000 pixels) and marked (here in red) as regions to be filtered out.

Figure 5.42: Overview of the different steps in the dust particle detection process.


http://rsbweb.nih.gov/ij/docs/guide/146-29.html
http://rsb.info.nih.gov/ij/plugins/otsu-thresholding.html
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5.8 DNA sequence filtering

It is crucial to include only correctly identified bases in the analysis. Since base calling is
a probabilistic process, a certain threshold needs to be applied in order to confidently

determine a reliable base accuracy.

5.8.1 Per base sequence quality plot

Figure shows an overview of the range of quality values across all bases at each
position from the FASTQ file of lane 2 of experiment 18.08.2014. For each position a
BoxWhisker type plot is drawn. According to (Andrews| (2010-2015b))) the elements of

the plot are as follows:

e The central red line is the median value

The yellow box represents the inter-quartile range (25-75%)

The upper and lower whiskers represent the 10% and 90% points

The blue line represents the mean quality

The y-axis on the graph shows the quality scores. The higher the score the better
the base call.

The background of the graph divides the y-axis into very good quality calls (green), calls
of reasonable quality (orange), and calls of poor quality (red). The quality of calls on
most platforms will degrade as the run progresses, so it is common to see base calls falling

into the orange and red area towards the end of a read.
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Figure 5.43: Per base sequence quality plot for lane 2 of experiment 18.08.2014, produced
with the FastQC tool (Andrews| (2010-2015a)).
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5.8.2 Per sequence quality scores plot

The per sequence quality score report allows one to see if a subset of the sequences have
universally low quality values (Andrews (2010-2015b))). It is often the case that a subset
of sequences will have universally poor quality, often because they are poorly imaged (on
the edge of the field of view), however such low quality subsets should represent only a

small percentage of the total sequences.

Quality score distribution over all sequences
Average Quality perread

2000000
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3000000

2000000

1000000

\

2345678910 12 14 16 18 20 22 24 Z6 28 30 32 34 36 38
tMean Sequence Quality (Phred Score)

Figure 5.44: Per sequence quality scores plot for lane 2 of experiment 18.08.2014, produced
with the FastQC tool (Andrews| (2010-2015a))).
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5.8.3 Phred quality scores

A Phred quality score (Q-score) is a prediction of the probability of an error in base
calling and the most common metric used to assess the accuracy of a sequencing platform
(Inc.| (2011Dbl 2014)). During a sequencing run with the GA-IIx, a quality score is assigned
to each base call for every cluster, on every tile, for every sequencing cycle. The GA-IIx
generates per-cycle BCL basecall files which are then converted to per-read FASTQ files
where both the sequence letter and quality score are each encoded with a single ASCII
character. A high quality score implies that a base call is more reliable and less likely to
be incorrect. Q-scores are defined as a property that is logarithmically related to the

base calling error probabilities P (Ewing and Green| (1998)):

For base calls with a quality score of (230, one base call in 1000 is predicted to be incorrect
(error probability 0.001). This quality measure for the base call accuracy has been applied
in the HiTS-FLIP pipeline.

5.8.4 Implementation

I implemented the parser of the quality score in Java (Gosling (2000))). The input is a
FASTQ file and the output is the related quality score as integer.
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5.9 K-mer ranking

A crucial part besides the cluster position transformation, the normalization against the
uneven illumination bias and the intensity extraction is the ranking of the binding motifs

according to their affinity to the underlying DNA cluster sequence.

5.9.1 Heuristic ranking algorithm

To estimate Kd values for short k-mers contained in longer sequences, one must be able
to assign the binding intensity to the correct k-mer (Nutiu et al.| (2011))).

Because the oligonucleotides clustered on the flow cell are relatively short (25 variable
nucleotides insert, but 150 nucleotides in total), it is extremely rare for a specific k-mer
sequence to occur in a cluster more than once, for example roughly 0.1% of 7-mers occur
more than once in any of the clusters (Nutiu et al.| (2011))). Because of this fact, Nutiu
et al. employed an iterative algorithm to assign binding intensities to k-mers that works
in the following way:

For each sequence of size k, the median intensity at a GCN4 concentration of 125 nM
was calculated over all clusters containing a certain k-mer or its reverse complement. The
k-mer with the highest median intensity at 125 nM was selected, then its dissociation
constant was determined based on the median intensities, and finally all clusters containing
this k-mer or its reverse complement were removed from further calculations.

Nutiu et al. repeated this procedure iteratively until all remaining k-mers had Kd > 1uM,
selecting sequences with affinity that could not be explained by occasional overlap with
stronger binding sites. Due to computational limitations, Nutiu et al. only performed the
iterative removal of clusters for 9-mers containing 8-mers that had Kd < 1uM. Likewise,
Nutiu et al. only performed iterative removal of clusters for 10-mers containing 9-mers
that had Kd < 1uM and so on for longer k-mers.

Thus, Nutiu et al. made the assumption that all of the intensity of the clusters containing
the top k-mer comes from binding to that specific k-mer, and not to others. In the case
of 8-mers, for example, 95% of the time there will not be two 8-mers having Kd < 1uM
in the same cluster. After removing clusters containing this k-mer, Nutiu et al. make the
same assumption for the k-mer with the next highest median binding intensity in the

remaining clusters.
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The Nutiu et al. ranking algorithm has the following form.
L: number of k-mers k to be ranked.
N: number of DNA clusters ¢ on one lane.
C: number of different concentrations.
C’: number of concentrations without concentration level used for ranking.
i.: intensity of DNA cluster c.
ig-list: DNA cluster intensity list of k-mer k at selected ranking concentration.
mp-list: median intensity list of all k-mers at selected ranking concentration.
topy: top ranked k-mer k after each iteration.
topr-list: list of all ranked k-mers.
while L > 0 do
for all ¥ in L do
for all cin N do
if k € ¢ or revcomp(k) € ¢ then
ix-list[index.] = i,
my-list[indexy| = median(ig-list)
sort(mp-list)
topy = first(mp-list)
topr-list[indexy] = topy
for j in C' do
median(topy,)
L=L-1
N = N — {topy, € ¢ or revcomp(topy) € c}
The run time complexity for one iteration is given by:
N % O(lc + lg) + L x O(ng log(ng)) + O(Llog(L)) + C" * O(ntop-k 1og(niop-x)) + O(ne)
= Ol + 1) + Olng log(ny)) + O(L10g(L)) + Oniop 10g(nuoyei)) + O(nc)

—

5.49)

since for N remaining clusters O(l. + ;) operations have to be done with [. the length of

the cluster ¢ and 2 * [, the length of the k-mer k and its reverse complement to determine

if k or its reverse complement is contained in the cluster sequence, for L remaining k-mers

O(ng log(ny)) median values have to be calculated where each k-mer k has on

average

ny intensity values, L many k-mers have to be sorted in O(Llog(L)) to get the current

top k-mer and n. many clusters containing the current top k-mer have to be removed
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in O(n.). The time complexity of each loop through the remaining k-mers is mainly
dominated by O(l. + ) + O(ng log(ng)) which are the most expensive operations. Given
a k-mer of length 11, on average a particular 11-mer or its reverse complement occurs
with the following probability at least once at a certain DNA cluster:

_ Al —2
pocc - 1 - (W

)(n=let1) (5.50)
where

A: alphabet of 4 letters.

l: length of k-mer.

n: number of variable nucleotides per DNA cluster.

For a particular 11-mer and its reverse complement it results in p,.. = 0.000007152
or around 179 occurrences of that particular 11-mer per lane.

This shows that the number N of clusters increases fairly slowly since the longer a k-mer
k the fewer clusters can be removed per iteration. The total number L of all possible
k-mers is given by |A|". For 11-mers, this is 4194304.

In order to rank all k-mers L, the execution has to iterate at first through n many k-mers,
then through n — 1 many k-mers, and so on which amounts to a quadratic run time as

shown by equation [5.51

nx(n—1)

;) =0 (5.51)

On+(n—-1)+n—-2)+...+2+1)=0(
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5.9.1.1 Optimization of the heuristic ranking algorithm

Figure [5.45| gives an overview of the execution of the optimized ranking algorithm.
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Figure 5.45: Overview of the ranking procedure. Gray box: input file consisting of cluster

sequences and related intensities at the different concentration levels. Brown
boxes: Data structures for storing the information from the input file. Array
C stores the cluster sequences, arrays I store the cluster intensities, one array
for each concentration level. Array K contains all the embedded k-mers
from all the cluster sequences from the input file. Green box: Lookup maps
to speed up the processing. The K — C' map provides a lookup for a certain
k-mer k for all the clusters ¢ which contain k or its reverse complement.
The C — K map provides for a certain cluster ¢ a lookup for all the k-mers
k that are embedded in the sequence of ¢. Blue box: Main execution loop
for ranking the k-mers. Purple box: Median intensity calculation of the
k-mers in array K’ in a parallel fashion. Red box: Sequential part of the
ranking procedure, which includes sorting array M, getting top k-mer and
related median intensities, discarding clusters containing top ranked k-mer,
and updating K’ with k-mers for which the median intensities need to be
recalculated.
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At the beginning the DNA cluster sequences and the related cluster intensities at the
different concentration levels are read in from a file and stored in the related arrays C'
(for the cluster sequences) and I (for the cluster intensities, one array for each concentra-
tion level). In addition array K is created (for all the embedded k-mers in the cluster
sequences). There are several improvements that can be made to speed-up the execution
of the ranking algorithm.

1) Lookup maps

In an initial phase before the ranking starts, two important lookup maps are created
(green colored box in Figure .

The K — C map provides a lookup for a certain k-mer k for all the clusters ¢ which
contain k or its reverse complement. This lookup helps to calculate the median intensity
values for the k-mers to be ranked much quicker than by looping through k-mers and
clusters. In addition, it gives immediate access to all the clusters that need to be discarded
due to containing the current top ranked k-mer after each ranking iteration.

The C — K map provides for a certain cluster ¢ a lookup for all the k-mers k that are
embedded in the sequence of ¢. This lookup enables to determine quickly the set of
k-mers for which the median intensities need to be recalculated due to the discarding of
clusters which contained a previously top ranked k-mer.

2) Efficient calculation of median intensity values

The execution time can be reduced to a great extent if only those median intensity values
are recalculated for which the related k-mers have been affected by discarded clusters.
Only in such a situation do the intensity values change. The array K’ contains the k-mers
for which the intensities need to be recalculated.

3) Parallelization of k-mer intensity calculation

As illustrated by the purple box, the median intensity calculation of the k-mers in array
K’ can be parallelized for each k-mer &’. The array M which contains all the median
intensity values for the different k-mers k&’ can be accessed by index without any blocking

of the various threads.
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5.9.1.2 Execution time of the optimized heuristic ranking algorithm

Figure shows the execution time for one ranking iteration, i.e. determining the
current top k-mer, its median intensity values and discarding clusters, for k-mers of
length 11 nt using around 12 million DNA cluster sequences of length 25 nucleotides
from experiment 18.08.2014. The purple dots at 1 and 4 CPU cores display execution
times measured on an Intel Core i5-200K quad-core processor with 16 GB RAM. As
expected applying parallelization allows to gain roughly a factor of 4 in speed-up. The

blue triangles represent inferred execution times.
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Figure 5.46: Speedup of the ranking algorithm from single processor to multiple processors.
The purple dots are measured execution times, the blue triangles represent
inferred execution times.

There are 4! = 4194304 possible 11-mers. Ranking all possible 11-mers using a computing
cluster with 64 CPU cores would take around 27 hours, and with 256 CPU cores around

7 hours.
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5.9.1.3 Implementation

I implemented the optimized heuristic ranking algorithm in C++ (Stroustrup| (1986))
using OpenMP (Dagum and Enon| (1998))) for parallelization.

The input are

the length of the k-mer to be ranked

number of ranked k-mers

the concentration at which the ranking should be achieved
e the cluster sequences
o the different cluster intensities for the increasing concentrations

The output are the ranked k-mer motifs with their different intensities.

5.9.1.4 lIssues with discarding DNA clusters

The total number of all possible 7-mers is 47 = 16384. During the ranking, a k-mer
and its reverse complement is treated equivalent, therefore there would be 1%& = 8192
ranking iterations. However, only 4728 ranking iterations can be executed and determine
k-mers since 3464 k-mers cannot be ranked due to a lack of clusters in which they can
occur (47282 +3464-2 = 16384 = 47). Thus, in total 42% of all 7-mers cannot be ranked.
The Hamming distance between two strings of equal length is the number of positions
at which the corresponding symbols are different (Hamming (1950))). In other words it
measures the minimum number of substitutions required to change one string into the
other, or the minimum number of errors that could have transformed one string into
the other. In the example here, the top ranked 7-mer TGACTCA was used as reference.
The number of possible mutations mut of a DNA motif m with length [ is calculated as
follows:

z: number of nucleotide mutations.

[: length of DNA motif m.

n: sites in m to be mutated.

mut = z"<l> (5.52)
n
Figure displays the accumulated number of discarded clusters during ranking (a),
the loss of 7-mers during ranking which cannot be ranked (b), the total number of 7-mers
that cannot be ranked due to cluster deletion (c), and in percent how many 7-mers with a
certain Hamming distance from the top ranked 7-mer TGACTCA could be processed and
ranked (d). On average, between 15000 and 17000 clusters are discarded while ranking
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one 7-mer (total number of clusters is 10620667). The analysis is based on the data from
experiment 18.08.2014, lane 2. The cluster position transformation was performed as
described in section [5.3] normalization of the cluster intensities was executed as detailed

in section 5.5, and DNA cluster sequence filtering was applied as stated in section [5.8
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Figure 5.47: Accumulated loss of clusters and 7-mers during ranking, total number of
unrankable 7-mers and percentage of 7-mers that can be ranked grouped by
their Hamming distance from reference 7-mer TGACTCA. (a) Accumulated
number of discarded clusters during ranking. (b) Accumulated loss of 7-mers
during ranking which cannot be ranked anymore due to cluster deletion. (c)
All possible 7-mers and total number of unrankable 7-mers. (d) Percentage
of 7-mers with a certain Hamming distance from the top ranked 7-mer
TGACTCA that could be processed and ranked. Only less than half of all
the 7-mers for each Hamming distance category can be ranked.

Figure exemplifies very clearly the underlying issue in discarding DNA clusters. The
three columns represent the k-mer sequence, the reverse complement and the ranking
iteration. In the list of ranked k-mers shown in Figure there occurs the 6-mer
submotif AGTCAT, highlighted in yellow, which can be flanked to the left and right
side by other nucleotides. The brown and green boxes display the extensions of the
submotif to the left- and to the right-hand side respectively. The 7-mer motif AAGTCAT
(ATGACTT), emphasized in red, cannot be ranked anymore even though it is a high
affinity motif because there is no DNA cluster available anymore to provide an intensity
for it. The reason is that previously in the ranking process all possible right-hand
extensions by A, C, T and G of the submotif (large green box) were already ranked
(left-hand side is “context-averaged” over A-T) and thus any DNA cluster is eliminated
which could contain the submotif with an one nucleotide right-hand extension. It is the
7-mer motif AAGTCAT, with an extension of A to the left of the submotif AGTCAT,
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that cannot be ranked anymore since all other left-hand extensions of the submotif by G,
C and T (large brown box) occurred in the ranking (right-hand side is “context-averaged”
over A-T) before all the possible right-hand extensions of the submotif were ranked and
consumed all clusters containing AAGTCAT. As a result, the 7-mers:

GAGTCAT

CAGTCAT

TAGTCAT

occur in the ranking, but not

AAGTCAT

which makes it impossible to investigate systematically the effect of mutating the leftmost
nucleotide position. All these 7-mers are important since they share the 5-mer submotif
AGTCA with the top ranked 7-mer TGAGTCA.

rev. ranking

comp. iteration

TGAGTCA TGACTCA 1

TGACTAA TTAGTCA 2 .
ATGACTC 3 [ 1 submotif AGTCAT
[CAGTCAT JATGACTG 4

GAGTCAC GTGACTC 5 QAGTCAT[A-T] 3
ATGACTA[TAGTCAT |6 | CAGTCATAT] 4
TGACGCA TGCGTCA 7 TAGTCATIA-T] 6
TGTGTCA TGACACA 8
LAGTCATAJTATGACT 9 [MiaGTcaTA o | .
TGACTGA TCAGTCA 10 [A-TIAGTCATC 14 right extension
TGAGTAA TTACTCA 11 [ATIAGTCATT 20 | of AGTCAT
ATGACGT ACGTCAT 12 | (A TIAGTCATG 26
ATGAGTC GACTCAT 13
[AGTCATC] GATGACT 14
TGTCATA TATGACA 15 AAGTCAT[A-T] unrankable
GTGACTA TAGTCAC 16

GTGACTG CAGTCAC 17

GTGTCAT ATGACAC 18

TATGACG CGTCATA 19

AATGACT[ AGTCATT |20

TGACTCT AGAGTCA 21

TGAATCA TGATTCA 22

GATGACA TGTCATC 23

CGTCATC GATGACG 24

GTGACGT ACGTCAC 25

[(AGTCATG] CATGACT 26

ATGACTT AAGTCAT

k-mer

left extension
of AGTCAT

Figure 5.48: Discarding DNA clusters during the ranking process leads to unrankable
k-mers. The three columns represent the k-mer sequence, the reverse comple-
ment and the ranking iteration. The submotif AGTCAT is marked in yellow.
Possible right-hand extensions by A, C, T and G of the submotif are shown
in the green box on the right. Left-hand extensions by G, C and T of the
submotif are shown in the brown box on the right. The unrankable k-mer
AAGTCAT is enframed in red. AAGTCAT cannot be ranked anymore
because all clusters that contain this 7-mer are discarded due to previously
ranked 7-mers that occurred in these clusters as well.
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5.9.1.5 Heuristic ranking algorithm without cluster discharge

Since discarding clusters during the k-mer ranking process has the side effect of losing
important k-mers due to the lack of clusters in which they can occur, one approach is to
omit the deletion of clusters entirely. For their ranking algorithm, Nutiu et al.| (2011))
made the assumption that the entire intensity of a cluster containing the top k-mer
comes from binding to that specific k-mer, and not to other k-mers embedded in the
cluster. After removing clusters containing this k-mer, Nutiu et al.| (2011) make the
same assumption for the k-mer with the next highest median binding intensity in the
remaining clusters. Not deleting any clusters means that they can be reused for the
ranking of the following k-mers which could lead to falsely assigning intensities coming
from higher ranked k-mers. Figure illustrates this issue. Here, the two 11-mers
ATGAGTCATTG

and

TATATGAGTCA

share the submotif ATGAGTCA and occur in the same cluster sequence displayed in
Figure [5.49

ATGAGTCATTG
AAGCTTATATGAGTCATTGACCGGAGGATAGATCGG
TATATGAGTCA

Figure 5.49: Overlap of 11-mers occurring in the same cluster sequence.

However, this problem becomes only apparent if higher ranked k-mers exclusively co-occur
with lower ranked k-mers in the same cluster sequences. If a high ranked k-mer only
co-occurs in a small portion of all the cluster sequences in which a lower ranked k-mer is
found, then the influence of the high ranked k-mer is negligible. Using the median for
robust averaging over the collected cluster intensities aids in diminishing the influence
from high ranked k-mers. In addition, the longer the length of the ranked k-mers the
less like it becomes to find clusters in which they co-occur. The longest length of k-mers
which can be selected with a sufficient number of counts given our experiments is 11 nt
(average count number is 30). Since it is well known that flanking nucleotides have a
significant influence on the binding affinity of the TF, larger k-mers can more accurately
capture the binding behavior.

The analysis in Figure investigates for all ranked 11-mers with Kd < 1uM (in total
around 20000 11-mers), which share the 8 nt long submotif ATGAGTCA or its reverse
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complement TGACTCAT (resulting in 256 11-mers), how often they occur in the clusters
and how large the fraction of any other 11-mer is that co-occurs with them. In Figure
[.50] the total number of clusters in which the 11-mers sharing the submotif ATGAGTCA
or its reverse complement TGACTCAT occur are shown in light blue, and for each of
these 11-mers the highest fraction of the co-occurring 11-mer is displayed in dark blue.
For the 8 nt long overlapping submotif here the average number of clusters affected by
the highest fraction of co-occurring 11-mers is 33%. Even for a 10 nt long overlapping
submotif, the average number of clusters is only 35%. Therefore, there are always many
more clusters in which the 11-mers do not occur together, thus allowing the 11-mers to

differentiate their intensities.

Cluster occurrence of 11-mers with submotif ATGAGTCA
140 1 —= Highest fraction of co-occurring 11-mer
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11-mers with submotif ATGAGTCA

Figure 5.50: Co-occurrences of 11-mers in clusters.
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5.9.1.6 Run time reduction by omitting cluster deletion

As shown by equation the ranking procedure with cluster deletion is quadratic. Since
cluster discharge is unnecessary as demonstrated by the analysis in subsection [5.9.1.5
the run time of the ranking procedure can be significantly decreased from a quadratic to
a linear run time. With the K — C map as data structure, explained in section

a single iteration is sufficient to rank all k-mers.

5.9.1.7 Validation of ranking by Kds

The underlying data set for the analyses in this section are the data from lane 2 of
experiment 18.08.2014. Preprocessing of the tif images was done as described in section
the cluster position transformation was carried out as described in section the
shifting of mapped clusters was performed as explained in section [5.4] normalization of
the cluster intensities was executed as detailed in section [5.5] intensity extraction was
performed as stated in section [5.6], image outlier detection was carried out as described
in section and DNA cluster sequence filtering was applied as stated in section [5.8
The Hill based fitting for determining the Kds was done as described in section [5.10
One way to validate the correctness of the ranking algorithm is by comparing the related
Kds with the Kds measured by an alternative assay for a selection of k-mers covering the
sequence space. The Kds obtained by the heuristic ranking algorithm without cluster
discharge and subsequent affinity quantification were validated with a very sensitive,
medium throughput fluorescence anisotropy (HiP-FA) assay, developed by C.Jung in the
Gaul lab at the Gene Center (Jung et al.| (2015))).

Anisotropy can be measured when a fluorescent molecule is excited with polarized light.
The ratio of emission intensity in each polarization plane, parallel and perpendicular
relative to the excitation polarization plane, gives a measure of anisotropy, often referred
to as “fluorescence polarization” (FP) (Chen| (2009)). This anisotropy is proportional to
the Brownian rotational motion of the fluorophore and changes in anisotropy occur when
the fluorescent small molecule binds to a much larger molecule affecting its rotational
velocity (Chen| (2009)).

The HiP-FA assay utilizes 396 well plates and provides a measure of the rotational speed
of a fluorescently labeled species, which are DNA oligomers here. GCN4 fused with
mOrange was used just like for a HiTS-FLIP experiment and its binding to DNA increases
the molecular weight and thereby decreases the rotational speed of the fluorescently
labeled DNA oligomer, resulting in increased FA (Jung et al. (2015)). The HiP-FA

assay is competitive, in which TF and Cyb5-labeled reference DNA are mixed at fixed
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concentrations and embedded together into an agarose gel. In the titration wells of
the plate, the TF concentration is in molar excess over the labeled reference DNA,
thereby ensuring its complete binding to protein (Jung et al. (2015)). The reference
DNA is labeled with Cy5, a dye that proves well suited for FA measurements. Unlabeled
competitor DNA is added on top of the agarose and establishes a concentration gradient
throughout the gel, whose shape changes over time (Jung et al. (2015)). As the competitor
DNA diffuses through the matrix it competes with the Cy5-reference DNA for binding to
the TF, resulting in a dynamically changing FA signal of the Cy5-reference DNA. This
process allows to measure, over time, a continuous titration series within a single well
and results in hundreds of measurement points for fitting binding curves and determining
Kds. Figure provides an example for the measurement points and fitted binding
curve regarding ATGACTCA embedded in the oligomer GGTATGACTCATGGCC. The
detection of binding constants of the HiP-FA assay lies within the range of 1070 to 1073

molar.

1 | I 1
10 100 1000 1000
Concentrations /aM

Figure 5.51: Measurement of ATGACTCA embedded in the oligo GGTATGACTCATG-
GCC by the HiP-FA assay (Kd=21.66 nM). The white colored dots denote
measurement points and the red line is the fitted binding curve.

There is an excellent agreement between HiP-FA Kds and HiTS-FLIP Kds for the heuristic
ranking algorithm without cluster discharge with a Pearson product-moment correlation

coefficient R=0.99 and a relative error §=30.91% which is shown by the correlation plot
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of Figure for 25 11-mers with a Kd range from 3.49 nM to 875.36 nM. The Appendix
lists the details on the HiP-FA and HiTS-FLIP Kds (9.4)), and the fits and parameters of
the HITS-FLIP Kds (9.8).
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Figure 5.52: Validation of HiTS-FLIP Kds with HiP-FA Kds.
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5.9.2 Maximum likelihood based ranking
5.9.2.1 Notation

The following notation is introduced for describing the probabilistic model in this chapter.
n € {1, ..., N}: Cluster index over all N cluster. N can be here between 80.000 and 350.000
clusters per tile. That is between 120 % 80.000 = 9.600.000 and 120 x 350.000 = 42.000.000
per lane, and between 7 % 9.600.000 = 67.200.000 and 7 * 42.000.000 = 294.000.000 per
flow cell, i.e. N ~ 107 or 108.

K: Number of k-mers to rank. 4" where [ is the length of the k-mer, 4 denoting the four
nucleotides.

w € {1,...,4*}: k-mer word index for the different k-mers.

I;"P: Experimentally measured intensity of cluster n.

TP Predicted intensity of cluster n by probabilistic model.

Sn: Sequence S of cluster n.

¢w: Contribution of the word w to the intensity of a particular cluster containing w by
specific binding (proportional to the occupancy of the TF on this word). Each ¢,, is a
parameter whose value has to be learned from the measured data.

5: Vector of all parameters ¢,,, i.e. all embedded words w of a cluster n.

Oup: Single parameter capturing the contribution to cluster intensity by unspecific binding
of the TF.

W C {1,...,4"}: Set of words that are potentially contributing to the TF binding.

W, C W: Set of words from W that occur as substring in the sequence S,, of cluster n:
Wp={weW|wcCS,}

M = 2521 |Wp|: Number of words to consider when running through all N clusters.

5.9.2.2 Bayesian approach to ranking k-mers

In order to avoid deletion of clusters and thereby losing important k-mers in the ranking,
a probabilistic model based on Bayes’ theorem can be applied. A Bayesian based machine
learning scheme infers each contribution of the embedded k-mer to the related cluster
intensity and yields the highest, estimated likelihood for the k-mer intensity. Bayes’
theorem has the following general form (Weisstein| (2009)):

P(datajmodel) - P(model)

P(model|data) = P(data)

(5.53)

Regarding HiTS-FLIP experiments, the data consist of all the measured cluster intensities
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I7"P and the model is composed of all the ¢,,. Thus, the expression becomes:

p(I5"19) - p(¢w)
p(In"™)

p(BulI5P) = (5.54)
p(pw|In'"), i.e. the probability for the intensities of the embedded k-mers (words w) in
the cluster sequence given the measured intensity of cluster n, is calculated by Bayes’
rule:

p(I*P |q§) the probability of measuring the intensity I of a cluster n given its sequence
embedded set of k-mers (words w).

p(¢y): the probability of the k-mer (word w) to contribute to a certain cluster intensity.

p(I;*P): the probability of measuring the intensity I for a certain cluster n.

The parameters of the right-hand side of equation i.e. ¢y, can be approximated by
maximum-likelihood estimation (MLE). The principle of maximum likelihood yields a
choice for the values of all the ¢,, that makes the observed data, the measured cluster
intensities I;"?, most probable. The MLE can be obtained by maximizing the objective
function or by minimizing the negative objective function. For numerical stability the
logarithm is usually taken of the objective function. The objective function can be

simplified to posterior probability o likelihood - prior probability:

p(BIIP) o< p(I57716) - pdw) (5.55)

The objective function can be iteratively optimized by L-BFGS-B (Limited Memory
Boxed BFGS) (Byrd et al.| (1995)), an limited-memory extension of the BFGS (Broy-
den-Fletcher-Goldfarb—Shanno) algorithm (Broyden| (1970); [Fletcher| (1970); |Goldfarb
(1970); [Shanno| (1970)) with simple bound constraints of the form I; < x; < u; where [;
and u; are per-variable constant lower and upper bounds. The bounds were utilized here

for the ranking of the k-mers in order to enforce that the intensities cannot be negative.

5.9.2.3 Probabilistic model

The following equations make up the model.

= 3" byt dub (5.56)

wEWn

The underlying assumption is that the predicted intensity of a cluster n is the sum of all
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embedded k-mer intensities plus the contribution of some unspecific binding.

p(AIE™) o< p(IE™|6) - pduw) (5.57)
N . N

[1p(alrz?) o T p5™1) - T] p(dw) (5.58)
n=1 n=1 weW

L g gpred?

a\}ﬂe—202 ’ H Cas - H(¢w))) (5.59)
weW

N
NLP =—-log (]
n=1

N
=3 (—log(——) + % (I = 17N 4O Y (pu +00- I(d < 0)) (5.60)
weW

Q

9
3
)

N
)+ 1 S IEP — I £ C > (¢ + 00 I(gw < 0)) (5.61)

= _N1
Og(g ™ 202 n=1 weW
1 N
= —Nlog(—— 2—2 (I5P= 3" du—0w)*+C Y (putoo-I(¢w < 0)) (5.62)
n=1 weWn, weW

The likelihood, how the cluster intensity is generated by the embedded k-mers, is modeled

by a Gaussian distribution (Iﬁred

represents p as the expected value). The prior constrains
the k-mer intensities to be positive by the unit step function H and models the expected

distribution of the k-mer intensities in such a way that small values are predominantly
likely.

N
ONLP 1
o "o DI = D w—ouw) - I(weWy)) +C -1 (5.63)
w . n=1 weWn,
ONLP 1 & o
Ton =307 (L5 = D dw—dw) (-1)) (5.64)
ub n:1 wEW,

N
=Y Y duow) (5.65)
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ONLP Nv2r 1 <L .,
% = o — ; Z(In P Z ¢w - ¢ub>2 (566>
n=1 weWp
ONLP
i (5.67)

N
Nvam _ % STUEP = 3 b — duw)? =0 (5.68)

n=1 weWn,
1 N
2
o2\V2or = v (1e2r — Z bw — Dub) (5.69)
n=1 wEWn

N
o= | =S Y b0 bu)’ (5.70)

5.9.2.4 Implementation

Together with Armin Meier the ML based ranking procedure was implemented in C+-+
(Stroustrup) (1986))). As optimizer L-BFGS-B was applied using the Fortran library by
Zhu et al| (1997)) together with the included C wrapper. For parallelization OpenMP
(Dagum and Enon| (1998)) was used.
The input are

e the length of the k-mer to be ranked

e the concentration at which the ranking should be achieved

e the cluster sequences

o the different cluster intensities for the increasing concentrations

The output are the ranked k-mer motifs with their different intensities.

5.9.2.5 Run time complexity
The run time complexity for one iteration is given by:

O(K) + O(N) + O(K) + O(K - M)

(5.71)
= O(K + N + KM)
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since all k-mers K have to be updated after each iteration, o is evaluated for all clusters
N, the gradient for phi,, and for phi, is recalculated for all k-mers K, and finally the
run time complexity of L-BFGS-B for computing the direction py and x4 is O(K - M),
where M are the last input and gradient differences (usual values are 10 or 20). Since

M < K the run time complexity becomes:
O(K+N) (5.72)

Figure shows the execution time for ranking one 11-mer, using around 12 million
DNA cluster sequences of length 25 nucleotides. The purple dots at 1 and 4 CPU cores
display execution times measured on an Intel Core i5-200K quad-core processor with
16 GB RAM. The gained parallel speed up here is 1.79. The blue triangles represent

inferred execution times.
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Figure 5.53: Speedup of the probabilistic ranking algorithm from single processor to
multiple processors. The purple dots are measured execution times, the blue
triangles represent inferred execution times.

There are 4'! = 4194304 possible 11-mers. Ranking all possible 11-mers using a computing
cluster with 64 CPU cores would last around 3 hours and 37 minutes, and with 256 CPU

cores around 2 hours.
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5.9.3 Discussion

The two different ranking methods, the heuristic ranking algorithm without cluster
discharge and the maximum likelihood (ML) based ranking method, mainly differ in
their underlying assumptions. The heuristic ranking algorithm assumes only one binding
site per DNA cluster sequence to which a GCN4 molecule can bind and thus generate
the related cluster intensity. The ML based ranking method includes in its modeling that
the cluster intensity is produced by multiple k-mers embedded in the cluster sequence
to which GCN4 molecules can bind, thereby partitioning the cluster intensity among
its constituent k-mers in proportion to their binding affinity. In order to compare these
different ranking approaches, the related Kds were validated by the HiP-FA assay (Jung
et al.| (2015)).

The underlying data set for the analyses in this section are the data from lane 2 of
experiment 18.08.2014. Preprocessing of the tif images was done as described in section
the cluster position transformation was carried out as described in section the
shifting of mapped clusters was performed as explained in section [5.4] normalization of
the cluster intensities was executed as detailed in section [5.5] intensity extraction was
performed as stated in section [5.6], image outlier detection was carried out as described
in section and DNA cluster sequence filtering was applied as stated in section
Ranking was performed with respect to the heuristic ranking algorithm without cluster
discharge as described in subsection [5.9.1.5l The ML based ranking was carried out as
described in section The Hill based fitting for determining the Kds was done as
described in section [5.10

Kds were correlated in Figure The ML ranking was performed for all quadruple
mutations in relation to the top ranked 11-mer TATGACTCATA (TATGAGTCATA).
Matching this data set with the 25 sequences and HiP-FA validated Kds resulted in 25
11-mers with a Kd range from 3.0 nM to 1171.25 nM. Using these 25 11-mers the Kds
for the heuristic ranking without cluster deletion as well as for the ML based ranking
have an excellent agreement with the HiP-FA measured Kds. The Appendix section [9.7
lists the different Kds. The correlation is slightly higher regarding the heuristic ranking
without cluster deletion than the ML based ranking (R = 0.99 versus R = 0.97). Since
these two different ranking approaches lead to very similar rankings as demonstrated by
the Kd based correlation with an alternative, highly sensitive assay, it can be concluded
that the assumption of one binding site per cluster sequence of length 25 bp as given by
the experimental design is sufficient and the heuristic ranking without cluster deletion is

a good working solution for the k-mer ranking. This finding is in agreement with a recent
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publication by |Levo et al. (2015b), which examined the length of the binding site of
GCN4 and showed that the known 9 bp binding site (ATGACTCAT, (Hill et al. (1986)))
together with 3 bp flanks best captured the differential binding of GCN4 observed in
their measurements. Given the length of the GCN4 binding site (up to 15 bp as shown
by (Levo et al. (2015b))) and additional steric hindrance, it seems very likely that only
one GCN4 molecule can bind to a DNA cluster sequence of 25 bp length.
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Figure 5.54: Comparison of Kd correlation for heuristic ranking without cluster deletion
and ML based ranking. The ML ranking was performed for all quadruple
mutations in relation to the top ranked 11-mer TATGACTCATA (TAT-
GAGTCATA). Matching this data set with the 25 sequences and HiP-FA
validated Kds resulted in 25 11-mers with a Kd range from 3.0 nM to 1171.25
nM. (a) Correlation of Kds for heuristic ranking without cluster deletion with
HiP-FA Kds (R = 0.99,§ = 30.91%). (b) Correlation of Kds for ML based
ranking method with HiP-FA Kds (R = 0.97,0 = 21.16%). (c) Correlation
of Kds for heuristic ranking without cluster deletion with ML based ranking
(R =0.99,0 = 10.05%).




5.10 Affinity quantification 121

5.10 Affinity quantification

For determining the Kd of a certain k-mer the Hill equation (Hill (1910)) shown in
equation was used and fitted to the measured and median averaged fluorescent

intensities of the k-mer.

TF)"

Fps=sx —t -1
obs = 5 X IR Kdh

+o (5.73)
where

Fops: are the observed fluorescent intensities for a particular k-mer, averaged over all
clusters containing this k-mer, for the different TF concentrations used in the experiment.
s: is a scaling factor obtained from the top binding k-mer and applied for all weaker
binding k-mers.

o: is a global offset used for all k-mers.

[TF]: TF concentration used in the experiment.

Kd: is the dissociation constant of the TF to the DNA sequence.

h: is the Hill coefficient of binding.

The fitting procedure is as follows:

1) Intensities are transformed so that they are in the range [0 — 1], done by dividing all
intensities by the greatest intensity at the greatest concentration. For the experiment
performed at 18.08.2014 this is the greatest intensity at 625 nM.

2) All k-mers are sorted by their intensity at 125 nM in descending order.

3) A global offset o is subtracted from the intensities of each k-mer. This offset is an
estimate for the unspecific binding by using the median of the dimmest 0.1% of all the
ranked k-mers at the smallest concentration. Regarding the experiment 18.08.2014 the
value was o = 0.26793 using the ranked 11-mers for the concentration at 5 nM.

4) The scaling factor s is determined for the first ranked k-mer at 125 nM. This scaling
factor is then fixed and applied for all other k-mers in the same way as done by Nutiu
et al.|(2011).

5) The Hill equation with the fixed scaling factor s is applied for all k-mers for
getting the Kds.
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5.10.1 Implementation

I used the nls function (Bates and Chambers (1992)); Bates and Watts| (1988)) from the R
stats package for estimating the parameters of the Hill equation by nonlinear least-squares
(Fox and Weisberg| (2010))). As nls option the "port” algorithm was selected which allows
bounds constraints and uses a quasi-Newton method. The Kd was constrained to be > 1,
the Hill coefficient was constrained to be between [2 > h > 1] and the scaling factor s

was constrained to be > 0.1 for the top k-mer and fixed for all lower ranked k-mers.

5.10.2 Binding curves

Figure [5.55| shows binding curves for selected 11-mers, the Appendix lists the first 50
11-mers and their Kds (see , and the first 50 11-mers ranked by intensity at 125 nM
(see . The underlying data set for Figure are the data from lane 2 of experiment
18.08.2014. Preprocessing of the tif images was done as described in section the
cluster position transformation was carried out as described in section the shifting of
mapped clusters was performed as explained in section normalization of the cluster
intensities was executed as detailed in section [5.5] intensity extraction was performed as
stated in section [5.6, image outlier detection was carried out as described in section
and DNA cluster sequence filtering was applied as stated in section Ranking was
performed using the heuristic ranking algorithm without cluster discharge as described in
subsection [5.9.1.5] The Hill based fitting for determining the Kds was done as described
above with the offset 0 = 0.26793 as an estimate for the unspecific binding.

It can be noticed that the fluorescent intensities do not follow perfect saturation curves.
This aspect is a lesser issue since the intensities for the different 11-mers differentiate
themselves appropriately relative to one another leading to increasing Kds in proportion
to decreasing binding affinity as validated in subsection by the excellent correlation
with the HiP-FA assay (Jung et al. (2015))).

An additional validation is provided by Figure which shows a very high correlation
of motifs ranked by intensity and by Kd from experiment 18.08.2014.

This result demonstrates that the decrease in binding affinity, which is measured by the
decreasing fluorescent intensities from the DNA clusters, is well captured by the related
Kds. This even suggests that relative affinities based on intensities alone could describe

the binding behavior sufficiently.
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Figure 5.55: Binding curves for 11-mers from experiment 18.08.2014. The processing of
the data is described in section
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Figure 5.56: Correlation of motifs ranked by intensity and by Kd from experiment
18.08.2014 which results in a Spearman’s rank correlation coefficient of

p = 0.96. The processing of the data is described in section m
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5.10.3 Discussion

Using a global offset is based on the observation that at a low concentration level, all
clusters are predominantly bound unspecifically. At higher concentration levels, clusters
with high affinity binding sites are bound by a higher amount of protein at the high
affinity binding sites than clusters with low affinity binding sites where binding still
occurs largely unspecifically. Subtracting the median taken over all cluster intensities per
concentration level results in a decrease of intensities for the top ranked 11-mers at the
highest concentration 125 nM and 625 nM as shown in Appendix section
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Figure 5.57: Intensity as percentage for three selected 11-mers with Kd=2.8 nM,
Kd=172.9 nM and Kd=765.5 nM. The annotation shows the relative increase
in intensity from 5 nM to 25 nM, 25 nM to 125 nM, and 125 nm to 625 nM.

As shown in Figure the relative intensity increase for a strong binder (CGATGACT-
CAC, Kd=2.8 nM) is much lower then for a medium (ATTTGTCATAA, Kd=172.9 nM)
or weak binder (CGTCACCCCAT, Kd=765.5 nM). This outcome highlights that clusters
with high affinity binding sites cannot be normalized for unspecific binding in the same

way as clusters with medium or low affinity binding sites at higher concentrations.
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6.1 Protein expression and purification

The GCN4+mOrange plasmid from the Burge Lab at the MIT, described in (Nutiu et al.
(2011))), was received and used. According to (Nutiu et al. (2011)), a carrier vector was
used to build the GCN4 fused to mOrange sequence. The GFP-GCN4 sequence was
PCR amplified from the vector pME2126 provided by the G. H. Braus laboratory and
inserted in the carrier vector between the Bgl2 and Notl restriction sites, with a Spel
site between the GFP and GCN4 coding sequences. Consequently mOrange, missing
the stop codon (Clontech), was introduced in place of GFP. The whole mOrange-GCN4
sequence was then cloned into the pET151/D-TOPO vector (Invitrogen) according to
the manufacturer’s instructions. The final construct generated a 6xHis-mOrange-GCN4
fusion gene that was verified by sequencing and transformed into BL21Star bacteria
(Invitrogen). Protein production was induced by 1 mM IPTG for 4 h at 37°C. The
protein was purified using a Ni-NTA Fast Start kit (Qiagen) following the manufacturer’s
protocol. The purity of the protein was verified on a NuPAGE 10% Bis-Tris Urea gel

(Invitrogen).

6.2 Library design

The library design was performed as described in (Nutiu et al.| (2011))). pChip_bot_R and
pChip_top_R were annealed to form adaptor R, and pChip_bot_L. and pChip_top_R were
annealed to form adaptor L. The samples were heated up at 95°C in a heat block for
5 min, and then the heat block was left to cool down to 25°C. The library pChip_IN25
was ligated (25°C; 20 min) to the adaptors R and L. The library was PCR amplified (12
cycles). The PCR product was purified on a 6% TBE PAGE gel. The ~135 bp band was
eluted out from the gel, ethanol precipitated and quantified by Bioanalyzer.

Figure [6.1] shows the complete sequence of a DNA cluster in the flow cell which is 150
nucleotides long. The insert is 36 nucleotides long, with two adapter sequences at each
end (3 nucleotides: AAG, and 8 nucleotides: TAGATCGG) which leave 25 nucleotides



126 Chapter 6: Experiments

for the variable region.

adaptor bridge amplification sequencing primer reverse adaptor bridge amplification
5'—AATGATACGGC GACCACCGAGATCTACACTCTT TCCCTACACGACGCTCTTCCGATCT-Insert-AGATCGGAAGAGCACACG TCTGAACTCCAGTCAC({Barcode)ATCTCG TATGCCGTCTTCTGCTTG- 3 '
sequencing primer forward index
primer

for multiplexing
different samples

i
adapter adapter

AAGGATATTTGGTATTTTGTGTTCACAATAGATCGG
variable region (25 nt)

Figure 6.1: Complete DNA cluster sequence.

6.3 Cluster generation, linearization, blocking and primer

hybridization

The DNA cluster generation, linearization, blocking and primer hybridization was accom-
plished following (Nutiu et al.| (2011)). The DNA clusters were grown using the Illumina
standard protocol, starting from ~3-4 pM template to give a density of ~150000-200000
DNA clusters per tile. The DNA clusters were linearized and blocked using standard

protocol. The sequencing primer was hybridized using standard protocol.

6.4 DNA Sequencing

The DNA sequencing was performed in the following way. 36 cycles of sequencing were
performed using standard protocol. At the end of sequencing a final cleavage step was
added.

6.5 GA-lIx modifications

The GA-IIx was modified for allowing lane-by-lane control as described in (Gravina et al.
(2013)).
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6.6 XML recipe modifications

According to (Nutiu et al.| (2011))) to avoid the delivery of scan mix before protein imaging,
the ImageCyclePump.xml config file (C:\Illumina\SCS2.6\DataCollection\bin\Config)
was modified as follows:

“<ImageCyclePump On="true” AutoDispense = ”false” >”

was changed to

“<ImageCyclePump On="false” AutoDispense = "false” >".

The different HiTS-FLIP experiments were automatically carried out by special XML
recipes for delivering the varying protein amounts at different concentrations into the

flow cell, applying equilibration time and performing imaging.

6.7 Data processing

For the analyses of the following experiments the data was processed in the subsequent
manner. Preprocessing of the tif images was done as described in section the cluster
position transformation was performed as described in section the shifting of mapped
clusters was carried out as explained in section normalization of cluster intensities by
local background subtraction was executed as detailed in section intensity extraction
was performed as stated in section[5.6] image outlier detection was carried out as described
in section and DNA cluster sequence filtering was applied as stated in section
The ranking procedure was applied as explained in subsection CIF intensities
were produced by the Illumina pipeline (SCS version 2.10 and RTA vrsion 1.13).
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6.8 Listing of GCN4 HiTS-FLIP experiments

The following listing shows all the performed HiTS-FLIP experiments using GCN4 and

mOrange.

Experiment by Nutiu et al.: Details in Appendix section

Experiment 03.04.2013:
Experiment 13.06.2013:
Experiment 28.03.2014:
Experiment 11.08.2014:
Experiment 18.08.2014:
Experiment 12.02.2015:
Experiment 06.03.2015:

Experiment 14.04.2015:

Details in Appendix section [9.13]
Details in Appendix section [9.14]
Details in Appendix section [9.15]
Details in Appendix section [9.16]
Details in Appendix section [9.17]
Details in Appendix section [9.18
Details in Appendix section [9.19]

Details in Appendix section [9.20}
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6.9 Discussion

Reviewing all the experiments and the data of lane 2 from Nutiu et al.| (2011) makes
apparent that the experiment from 18.08.2014 has been overall the most successful result.
In the intensity course for this experiment I can observe a saturation occurring for the
best 8-mer binding motif ATGACTCA (TGAGTCAT) and a steep decline in intensities
over the first 20 ranks that flattens out into unspecific binding. The binding curve for the
top 8-mer demonstrates saturation as I would expect it since the binding sites should all
be eventually occupied fully - if no artificial aggregation happens. Weaker binding sites
that appear at lower rank order do not display any saturation. The half-sites TGA(C/G)
which are bound by dimeric GCN4 are strongly enriched and a first decrease is observable
towards the 200th rank. Similarly, the Hamming distance from the best 8-mer binder,
ATGACTCA (TGAGTCAT), increases in general towards the 200th rank since the more
dissimilar the motifs are compared to the best binder, the weaker the binding affinity and
the further down in the ranking they occur. The striking antagonistic peaks, correlating
with the motifs (GA)GTGT, are discussed in section in more detail.

The HiTS-FLIP experiment by Nutiu et al.| (2011)) can be regarded as the second best
result since it shows the attributes connected to a valid outcome as discussed for the
experiment from 18.08.2014 however with less specificity and with the application of a
washing step after each pump-in of protein concentration. At higher concentrations 125
nM and 625 nM the decline in intensity is much less steep, and the overall intensity is a
factor around 5-6 higher than in the experiment from 18.08.2014. The other diagnostic
plots reveal a similar trend to the experiment from 18.08.2014.

What is the reason for the successful experiment from 18.08.20147 Why did all the
other experiments fail? There are the following differences between the experiments from
03.04.2013, 13.06.2013, 28.03.2014 and the experiments from 11.08.2014 and 18.08.2014.
1) Use of different primer

A different primer, i.e. the Illumina read 1 sequencing primer, has been applied for a
more efficient resynthesis of the second DNA strand. An ineffective resynthesis leading
to a decreased amount of dsDNA after the sequencing step in the HiTS-FLIP protocol
is the likely cause for the massive unspecific binding, i.e. all DNA clusters and related
8-mer motifs are bound equally resulting in an uniform intensity as exemplified with
the intensity course of the experiment from 06.03.2013. If there is less dsDNA than the
specific binding of GCN4 must be drastically reduced. Therefore, much lower intensity
levels should be displayed in the intensity course plot. In contrast, much higher intensities

can be observed, for the concentrations at 125 nM and 625 nM by more than a factor of 10.
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Thus, there is not only a reduction in specific binding but a massive increase in unspecific
binding that affects various different DNA clusters. This could arise from the electrostatic
interaction between the negatively charged phosphate groups of the DNA backbone and
the positively charged GCN4 molecules. Another possibility is that single-stranded DNA
or at least only partially double stranded DNA exhibits a higher flexibility than fully
double stranded DNA, and thus the close proximity in the region of amplified DNA
clusters could lead to inter-chain base pairing forming a mesh which provokes unspecific
aggregation of GCN4 molecules. Moreover, intra-chain base pairing and base stacking
interactions of single stranded DNA could also form individual structures which decrease
specific binding.

2) Change of flow cell buffer

In order to avoid nonspecific interaction of proteins with the surface of the flow cell
reaction chamber, BSA (bovine serum albumin) is commonly used as blocking reagent
derived from the serum of cows. In addition, Tween-20 (Polysorbate-20) is a non-ionic
detergent and can help to prevent nonspecific binding. DNA-protein interactions is mostly
driven by interactions with phosphates and in order to avoid breaking these interactions
by too much salt 150 mM NaCl was used here. In the experiments from 11.08.2014 and
18.08.2014 additionally MgCI2 and KCl was added to the running buffer. Magnesium
ions prevent nonspecific electrostatic interactions between protein molecules and DNA
in solution and thus enhances sequence-specific DNA binding. An additional effect is
achieved by potassium chloride (KCl) ions. In Moll et al.| (2002), it was shown that
magnesium and potassium chloride ions prevent nonspecific electrostatic interactions
between CREB and DNA in solution.

3) Quality control for dsDNA resynthesis

In the experiments from 11.08.2014 and 18.08.2014, a new quality control was integrated
to test the resynthesis of the second DNA strand. A primer (0.01 xM) with an Alexa-like
dye (detectable in the C channel) was hybridised to the flow cell primer oligos before the
resynthesis. This primer should be displaced by Klenow polymerase if the resynthesis
occurs at the related DNA cluster.

4) Different fluidics setup

In (Gravina et al| (2013)), the authors describe how the GA-IIx can be modified to
enable lane-by-lane sequencing. For the experiment from 11.08.2014 (and the following

experiments) this modification was carried out.
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The differences between the experiments from 12.02.2015, 06.03.2015 and 14.04.2015
compared to the experiment from 18.08.2014 were the following:

1) Ten concentrations

For the experiments 12.02.2015, 06.03.2015 and 14.04.2015 ten concentrations instead
of five were used. In the experiments from 06.03.2015 and 14.04.2015 after the first five
concentrations the second DNA strand of the clusters was denatured and resynthesized.
2) Higher concentration of the fluorescent primer for dsDNA quality check

In the experiments from 11.08.2014 and 18.08.2014, only 0.01 M of the primer with the
Alexa-like dye was used. In the experiments from 12.02.2015, 06.03.2015 and 14.04.2015
0.1 M was used.

6.10 Comparison with experiment from 18.08.2014

In the following, the experiments from Nutiu et al.| (2011]), 13.06.2013, 12.02.2015,
06.03.2015 and 14.04.2015 are compared with the experiment from 18.08.2014 regarding
the behavior of unbound GCN4, the behavior of unspecific GCN4 binding, cluster density

per tile and the template density per cluster.
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Figure 6.2: Behavior of unbound GCN4 compared for different experiments.

The global background in Figure is calculated by dividing each tile image into 32 x
32 pixel regions, taking the mean of the dimmest 20 pixels and then taking the median

over all these region means. These tile medians are averaged over the entire lane and
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produce the global background for each concentration step. The strongest increase in
unbound GCN4 molecules occurs for the experiment from 13.06.2013. I have no expla-
nation for the drop in intensity at the highest concentration 625 nM. The experiment
from 18.08.2014 as well as the experiments from 2015 show only a slight increase in
unbound GCN4 molecules related to the starting amount of unbound GCN4 molecules.
One possible explanation for seeing the highest amount of unbound GCN4 molecule in
the experiment from 13.06.2013 could be that the unspecific binding is also the high-
est in the experiment from 13.06.2013 and due to dissociation from these unspecifically

bound DNA clusters the amount of unbound GCN4 molecule near the clusters is increased.
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Figure 6.3: Behavior of unspecific GCN4 binding compared for different experiments.

In Figure the T-channel median intensity calculated over all DNA clusters of the
entire lane is used here as an approximation of the unspecific binding of GCN4. The
largest increase can be seen for the experiment by [Nutiu et al.|(2011) and the experiment
from 13.06.2013. The experiment from 18.08.2014 shows no increase.

The cluster density per tile varies slightly among the experiments as shown by Figure [6.4]
but to an insignificant degree. Regarding the experiments from 2013, 2014 and 2015, the
sequencing protocol was the same and the slight increase could be due to differences in

sequencing kits.
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Figure 6.4: Cluster density per tile compared for different experiments.
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Figure 6.5: Template density per cluster compared for different experiments.

The assumption for Figure [6.5] is that the intensity of a DNA cluster of a sequencing
image would be all the brighter the higher the density of the templates in this cluster
is. As shown in Figure the A-channel median intensities of all the clusters from the
second sequencing cycle are compared across the different experiments. This seems to be

the greatest difference regarding the experiment from 12.02.2015.






7 Biological results

7.1 Data processing

For the insights and findings described in this chapter, the data from lane 2 of experiment
18.08.2014 is processed in the following manner. Preprocessing of the tif images was
done as described in section [5.2] the cluster position transformation was performed as
described in section the shifting of mapped clusters was carried out as explained in
section normalization of the cluster intensities was executed as detailed in section
intensity extraction was performed as stated in section , image outlier detection was
carried out as described in section and DNA cluster sequence filtering was applied
as stated in section The ranking procedure was applied as explained in subsection
The Hill based fitting for determining the Kds was done as described in section
See the Appendix section for a summary of the parameters, input and output.

7.2 Consistency of results from experiment 18.08.2014

Besides the excellent correlation of Kds shown in section ranking k-mers with
increasing length demonstrates the consistency of the experimental results with known
and well established scientific findings regarding the binding behavior of GCN4 as
highlighted by the Figure

The motif TGAC is the top ranked 4-mer. Biochemical and crystallographic analysis
of a complex containing GCN4 bound to the AP-1 site by (Ellenberger et al.| (1992al);
Sellers et al.| (1990a)) has indicated that the optimal half-site is TGAC.

The motif ATGAC is the top ranked 5-mer. (Sellers et al.| (1990b)) showed for the first
time that the optimal half-site is ATGAC, not ATGAG. In (Stanojevic and Verdine
(1995))), it was shown experimentally by a DNase I protection assay that GCN4 binds more
strongly to 5-ATGAC (the consensus half site) than to 5-ATGAG (the non-consensus
half site), 07, ca. 43°C, T, half-melting transition.

The known 6-mer consensus motif of GCN4, 5-TGACTC-3’ as discovered by (Arndt and
Fink (1986); Gartenberg et al.| (1990)) is the top ranked 6-mer.
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el ATGAC

| TGACTC

| TGACTCA
we|  ATGACTCA
we|  ATGACTCAT
w! TATGACTCAT
v TATGACTCATA

TGAC and extensions
Figure 7.1: Ranking k-mers with increasing length yields TGAC as strongest binding

4-mer, the preferred half-site by GCN4, optimal and subsequently extensions
of it.

The pseudosymmetric sequence 5-TGA(C/G)TCA-3’ has been identified from a com-
parison of enhancer sites in GCN4-dependent promoters (Hill et al.| (1986)) and from in
vitro selection experiments (MAVROTHALASSITIS et al|(1990); Oliphant et al.|(1989)).
The heptanucleotide consensus motif TGACTCA is the top ranked 7-mer here.

GCN4 recognizes the pseudo-symmetric 9 bp AP-1 (ATGACTCAT) site in vivo (Hill
(1986)) which is the top ranked 9-mer.

All these results are further evidence that the ranking yields biological accurate top

binders.

Figure shows the enrichment of TGAC, TGAG and TGAT among the first 100
8-mers ranked at 125 nM. Since TGAC is the preferred half-site by GCN4, it is strongly

overrepresented.
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Figure 7.2: Enrichment of GCN4 dimeric half-sites among the first 100 8-mers ranked at
25 nM.

In Figure [7.3] the sequence logo for the top 100 9-mers ranked at 125 nM is compared with
the PWM of GCN4 from the ScerTF database (Spivak and Stormo| (2012))), a comprehen-
sive database of 1226 motifs for Saccharomyces cerevisiae TFs from 11 different sources.
The creators of the ScerTF database identified a single matrix for each TF that best

predicts in vivo data by benchmarking matrices against chromatin immunoprecipitation

and TF deletion experiments. In addition, in vivo data were also used to optimize

thresholds for identifying regulatory sites with each matrix.
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Figure 7.3: Sequence logos for GCN4 9-mers. (a) Sequence logo for GCN4 from the
ScerTF database (Spivak and Stormo (2012)). (b) Sequence logo created

from the top 100 9-mers ranked at 125 nM.
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7.3 Single and double mutation analysis

Figure displays all single mutations as AAG values of the first ranked 11-mer
TATGACTCATA (reverse complement TATGAGTCATA). The AAG values to all other

three mutated nucleotides were averaged for each position. The AAG value, the change

in Gibbs free energy (or the binding affinity) is defined by:

AG = RTIn(Kd) (7.1)

Kd,, )
Kd,

AAG = AG(k) — AG(r) = RT In( (7.2)
where

R: ideal gas constant: 8.3144598 J/(molK)

T: temperature (here 293.15 K for 20°C)

AG(k): Gibbs free energy of a ranked k-mer k.

AG(r): Gibbs free energy of the top ranked k-mer r, used as reference.

Kd,: Kd of ranked k-mer k.

Kd,: Kd of top ranked k-mer r, used as reference.

It is clearly visible that the left half-site is more important for binding since mutating
nucleotides of this site disrupts the binding affinity more strongly than mutations occur-
ring in the right half-site. In Sellers et al.| (1990b)); Stanojevic and Verdine (1995) it was
demonstrated experimentally that the optimal half-site is 5-ATGAC and not 5-ATGAG.
The quantitative analysis of [Ellenberger et al. (1992b) elucidated that Arg243 in the
monomer bound to the cognate half site contributes more to the specific interaction than
the other monomer. According to Ellenberger et al.| (1992b]) the Arg243 side chain makes
markedly different contacts at the central base pair: in the specifically bound monomer,
Arg243 makes bidentate hydrogen bonds to N7 and O6 of the central guanine, whereas
Arg243 in the other monomer donates hydrogen bonds to the DNA phosphodiester

backbone.

Examining each single mutation individually shows large differences on the binding
affinity of GCN4. Figure lists each mutation of the top ranked 11-mer (a), and a
comparison is provided to the sequence logo (Schneider and Stephens| (1990)) of the PWM
of GCN4 from the ScerTF database (Spivak and Stormo| (2012))) regarding the nucleotide



140 Chapter 7: Biological results

18
16 -
14 - |
121 1156 1156

101 883 | 877

8 T
leﬁngollsi 6.06 Y

393 | ! ' 398

T‘ \I

Ty Ay T3 Gy As Cg L Cg Ag Tio A1

Figure 7.4: All single mutations of first ranked 11-mer TATGACTCATA (TATGAGT-
CATA) as AAG values averaged over all three mutated nucleotides.

probability for the different positions (b). A sequence logo displays the frequencies of
bases or amino acids at each position, as the relative heights of letters, along with the
degree of sequence conservation as the total height of a stack of letters, measured in
bits of information (Schneider and Stephens| (1990)). The bigger the letter appears at a
certain position in the sequence logo of Figure [7.3] and the higher the probability of the
nucleotide in Figure (b), the smaller the related AAG value in Figure (a). The
probabilities are listed in Appendix [0.11} Using the positions of the 11-mer:

Position 2: mutation A — G: lowest AAG value (1.53).

Position 3: mutation T — A,C,G: only high AAG values (9.83, 11.52, 13.29).

Position 4: mutation G — T: lowest AAG value (7.0).

Position 5: mutation A — C,G,T: only high AAG values (15.43, 12.64, 14.37).
Position 6: mutation C — G: lowest AAG value (0.0).

Position 7: mutation T — A,C,G: only high AAG values (7.22, 11.32, 7.96).

Position 8: mutation C — A: lowest AAG value (3.43).

Position 9: mutation A — T: lowest AAG value (6.44).

Position 10: mutation T — C: lowest AAG value (1.82).

This agreement is further evidence that the HiITS-FLIP Kds are valid and very accurate.
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All single mutations of first ranked 11-mer TATGACTCATA (TATGAGT-
CATA) as AAG values and comparison to the PWM of GCN4 from the
ScerTF database (Spivak and Stormo (2012)). (a) All single mutations of
first ranked 11-mer TATGACTCATA (TATGAGTCATA) as AAG values.
(b) Probabilities from the GCN4 PWM from the ScerTF database (Spivak
and Stormol (2012)).
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In the Figure [7.6] all single and double mutations of the first ranked 11-mer TATGACT-
CATA (TATGAGTCATA) with their related AAG values are displayed. The single
mutations occur on the antidiagonal, on which the double mutations in the lower and
upper triangular matrix are symmetrically mirrored. The heat map shows again the left
half-site is more important for binding than the right half-side. Double mutations have
the most detrimental effect on the binding if they mutate both half-sites. The finding
was pointed out by Nutiu et al. (2011) which suggested a model in which a substitution
at one position in a half-site tends to weaken the interaction of the associated GCN4
monomer with other positions in the same half-site, perhaps through a subtle protein
conformational change, making interactions between the other monomer and half-site
more critical.

To pick one example, an interesting aspect regarding compensation and long range
influence is visible for

mutating Ay — G and mutating Cg — A (AAG = 5.42 kJ/mol).

The other mutations at position 2

Ay — C (AAG = 7.51 kJ/mol), and

Ay — T (AAG = 10.44 kJ/mol)

have a more weakening effect on the binding energy.

Figure [7.7|shows a heat map where the values are calculated as AAG(k; ;) — (AAG(k;) +
AAG(kj)), where i and j are the positions in the first ranked 11-mer TATGACTCATA
which are mutated.

Having a higher AAG value here means that the double mutation has a stronger
detrimental effect on binding than the two single mutations would provoke. This effect
only occurs for the positions 6 and 7, or 6 and 8.

Cs — Gand T7 - Aor T7 — G.

Ceg — G and Cg — G.

Having a lower AAG value here means that the double mutation has a less detrimental
effect on binding than the two single mutations would provoke, and thus hints at a
synergistic effect linking two nucleotide positions.

Neighboring effects between dinucleotides are clearly apparent, more strongly in the left
half-site than the right half-site. The effect concerns most strongly the positions 3, 4
and 5 in the left half-site. There are long-range effects visible between the two GCN4
half-sites related to positions 3, 4 and 5 in the left half-site and positions 7, 8 and 9 in
the right half-site.
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Figure 7.7: Effect of double mutations in comparison to individual single mutations. The
values in the heat map are calculated as AAG(k; j) — (AAG(k;) + AAG(k;)),
where 7 and j are the positions in the first ranked 11-mer TATGACTCATA
which are mutated.
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7.4 Influence of flanking nucleotides on binding affinity

If the inner positions 3, 4 and 8, 9 of the top 11-mer TATGACTCATA is mutated, the
binding affinity is drastically changed (Figure (a)). If the mutations occur in the
flanking region (positions 1, 2 and 10, 11), the binding affinity is gradually modulated
from 1.56 Kd to 552.51 Kd (Figure[7.§| (b)), more than a 100-fold in total. Therefore, the
known 9-mer PWM (Spivak and Stormo (2012))) is insufficient for describing the binding
affinity of GCN4, and as the HiTS-FLIP data demonstrate the 11-mer TATGACTCATA
together with the mutations in the flanking regions provide the spectrum of binding
affinities of which GCN4 is capable of. This finding is related to (Levo et al.|(2015a))
where it was demonstrated that flanking sequences of core binding sites affect the binding
of GCN4 (flanking 3-mers besides the 9-bp core motif) using a novel experimental assay
termed BunDLE-seq.

Selecting a few mutated 11-mers highlights the influence of the nucleotides from the
flanking region as well as the sensitivity with which HiTS-FLIP is able to measure Kds.
In Figure (a) the nucleotide at position 1 (upper four 11-mers) is changed (T to G,
A, and C), and reveals subtle differences in Kds. The nucleotide at position 2 (lower four
11-mers) is changed (A to G, C, and T), provoking larger differences in Kds. Changing
T to C at position 1 of TTTGACTCATA (bottom 11-mer) has similar strength in Kd
change than the mutation occurring at position 2, emphasizing the importance of the
outer flanking position. In Figure (b) same scenario as (a) but with mutations taking
place in the right flank. Changing the nucleotide at position 11 (upper four 11-mers)
from A to C,G and T invokes a 2-fold change in Kds (Kd=1.56 nM to Kd=4.97 nM).
Mutating the nucleotide at position 10 (lower four 11-mers) from T to C, G and A
provokes larger differences in Kds. However, changing A to G at position 11 resulting
in TATGACTCAAG (bottom 11-mer) increases the Kd=17.04 nM to Kd=32.38 nM by
almost 2-fold, emphasizing again the importance of the outer flanking position for the

binding affinity.
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Figure 7.8: Effect of quadruple mutations. (a) Mutations occurring at positions 3, 4 and
8, 9 (TA-NN-ACT-NN-TA), and (b) in flanking positions 1, 2 and 10, 11
(NN-TGACTCA-NN) of top 11-mer.



7.4 Influence of flanking nucleotides on binding affinity

147

TA-TGACTCATA

GA-TGACTCATA
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TA-TGACTCATA

TG-TGACTCATA
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TT-TGACTCATA
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b

TATGACTCA-TA
TATGACTCA-TC
TATGACTCA-TG
TATGACTCA-TT
TATGACTCA-TA
TATGACTCA-CA
TATGACTCA-GA
TATGACTCA-AA

TATGACTCA-AG

Figure 7.9: Details regarding the effect of flanking nucleotides on binding affinity shown
by selected 11-mers. (a) Mutations occurring in the left flank, (b) Mutations

occurring in the right flank.
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7.5 Discovery of new GCN4 binding motifs

In the ranking conducted on the data from experiment 18.08.2014, very unique antagonistic

peaks could be observed as shown by Figure [7.10

200 1 |
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1 50 100 150 200 250
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Figure 7.10: 8-mers ranked at 25 nM of experiment 18.08.2014 with antagonistic peaks.

In Figure[7.11] the peaks are annotated and the corresponding 8-mer motifs are listed. The
submotif GTGT occurs in all of these peaks. The hypothesis is that at low concentrations
GCN4 occurs mainly as monomer and binds in this oligomerization state specifically
to the motif GTGT. At higher concentrations GCN4 has largely dimerized and occurs
predominantly as dimer binding specifically to motifs containing the half-site TGAC (or
a close derivative).

Correlating the occurrence of intensity down peaks at 625 nM with the occurrence of the
submotif GTGT yields a perfect agreement (Spearman rank correlation coefficient p = 1),
Figure[7.12] Wherever there is the submotif GTGT occurring, there is an intensity down
peak at 625 nM. Down peaks have been determined by fitting a cubic smoothing spline to
the ranked 8-mer intensities and classifying the intensity as a down peak if it lies below
the fitted spline line. There are five exceptions:

rank 36: TGACGTCA (TGACGTCA)
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|
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Figure 7.11: 8-mers ranked at 125 nM of experiment 18.08.2014 with annotations of the
peaks.

The 8-mer contains the optimal half-site TGAC and can be classified rather not as a
down peak (Figure first green dot).

rank 48: TGACGTGT (ACACGTCA)

Here the 8-mer contains GTGT but also the optimal half-site TGAC, and cannot really
be regarded as a down peak (Figure second green dot).

rank 103: AAAAAAAA (TTTTTTTT)

Here, clearly a down peak is realized (Figure third green dot) but GTGT does not
occur as submotif. The most likely explanation is that GCN4 binds to this stretch of
adenine (or thymine) nucleotides as a monomer as well.

rank 276: AAAAAAAT (ATTTTTTT)

Here, clearly a down peak is realized (Figure fourth green dot) but GTGT does not
occur as submotif. A possible explanation is that GCN4 binds to this stretch of adenine
(or thymine) nucleotides as a monomer as well.

rank 282: AGATTGTA (TACAATCT)

Here, the submotif GATTGT is a degenerated version of GAGTGT and seems to be
bound by GCN4 likewise.

Similarly, correlating the occurrence of intensity up peaks at 625 nM with the occurrence
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Figure 7.12: Rank correlation between intensity down peaks occurring at 625 nM and
the occurrence of the submotif GTGT. The yellow lines denote intensity
down peaks at 625 nM, green lines are the exceptions as discussed above.

of the submotif TGAC yields a perfect agreement (Spearman rank correlation coefficient
p=1), Figure Wherever there is the submotif TGAC occurring, there is an intensity
up peak at 625 nM.

Ranking k-mers of different length (4, 5 nt and so on) at concentration 5 nM and selecting
the top ranked k-mer for which an intensity down peak at 625 nM occurred leads to the
following result (Figure . For k-mers of length greater 8 nt, no intensity down peaks
at 625 nM or intensity up peaks at lower concentration could be observed anymore.
Selecting the first 100 occurrences of 8-mers containing the submotif GTGT and aligning
them on this submotif results in the sequence logo shown in Figure [7.15] Preferably, the
left flank is made up of GA or GT, and the right flank A or G and T or A.

The lower the concentration of GCN4 is, the more the ratio of monomers and dimers
should be shifted towards monomers. The more monomers occur in the flow cell, the
higher the amount of bound DNA clusters containing the motif GTGT in their sequence.
Therefore, a motif enrichment of GTGT should be visible in the ranking the lower the

concentration is at which the ranking takes place, which is displayed in Figure[7.16
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152 Chapter 7: Biological results

Figure 7.15: Sequence logo for the submotif GTGT.
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Figure 7.16: Enrichment of GTGT among the first 100 8-mers ranked at different con-
centrations.
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7.6 Literature based evidence for GTGT affinity and monomer

binding

When unfolded proteins accumulate in the endoplasmic reticulum (ER), a signal is sent
across the ER membrane into the nuclear and cytoplasmic compartments. There, effector
proteins respond by upregulating the transcription of a characteristic set of target genes
and slowing general translation, and the cell is enabled to tolerate and survive conditions
which compromise protein folding in the ER. This reaction to ER stress is known as
the unfolded protein response (UPR), a signal transduction pathway that communicates
between the ER and the nucleus (Patil and Walter| (2001))). In (Patil et al.| (2004))), the
authors analyzed the promoters of UPR target genes computationally, identifying as
candidate upstream activating sequences (UASs) short sequences that are statistically
overrepresented. They tested the most promising of these UASs for biological activity,
and identified two novel unfolded protein response elements (UPRES), which are necessary
and sufficient for UPR activation of promoters. (Patil et al.| (2004))) demonstrated that
Gcendp is required for normal induction of UPR transcription, both in the context of
artificial promoters containing any of the known UPREs and in the context of the native
promoters of most target genes. Both Haclp and Gendp bind target gene promoters to
stimulate transcriptional induction, and UPRE-2 can be activated by Gendp alone, and
it is bound by Gendp either as a homodimer or a monomer (Patil et al.| (2004))). Both
UPRE-1 and UPRE-2 contain GTGT as submotif as shown in Figure [7.17]

UPRE-1

5. cerevisiae (-167) GAACTGGACAGCGTGTCGAAAAAGT.. (135
S, paradoxus WGAACTGGACAGCGTGTCGAAAAAGT.,
8. mikatae wGAACTGGACAGCGTCTCGAAAATGT..
5. bayanus SAAACTGGACAGCGTGTCGAAAATAC,,

b UPRE-2
8. cerevisiae (-147)  LATACGGAGTACGTGTCATAAAAAC.. (-12)
S, kudriavevii ~ATACGGAGTACGTGTCATAAAAAC..
S. mikatae AATACGGAGTACGTGTCATAAAAAC..
S. bavanus SATACGGCGTACGTGT CA-AAAAAG..

TGASTCA

Figure 7.17: Multiple alignment of UPRE-1 and UPRE-2 from three budding yeasts.
(a) A segment of the KAR2/YJL034W promoter and homologs. The core
sequence of UPRE-1 is indicated. (b) A segment of the ERO1/YML130C
promoter and homologs. The core sequence of UPRE-2 is indicated. Figure
adapted from |Patil et al.| (2004).
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In (Fordyce et al.| (2012b)) it was shown by using MITOMI (mechanically induced
trapping of molecular interactions) that Hacl, a bZIP TF like GCN4, possesses two
distinct binding modes: (1) to short (6-7 bp) UPRE-2-like motifs (containing GTGT)
and (2) to significantly longer (11-13 bp) extended UPRE-1-like motifs.

a b
3 UPRE-2 2 xcUPRE-1
2
14
1 T AcS
= < -
3. & : [FCTAC <
2
3 2
12 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10 11 12 13
Position Position

Figure 7.18: Nucleotide binding preferences of Hacl as affinity logos (IFoat et al.| (I2006[))
derived from relative affinities. (a) Affinity logo for UPRE-2. (b) Affinity
logo for xctUPRE-1. Figure adapted from [Fordyce et al. (2012b).

\Cranz et al.| (2004) demonstrated experimentally that GCN4 can bind to DNA as unfolded
monomeric and folded dimeric derivatives of GCN4. The association rate of the monomer
is virtually the same as that of the dimer, 5 x 10® M~! s7! (Cranz et al. (2004)).
Because the rate of dimerization of GCN4 is slower (1.7 x 10" M~! s71) than the rate of
DNA association, the formation of the dimeric GCN4-DNA complex through consecutive

binding of two monomers (monomer pathway) is faster when starting from free monomers.
Thus, if GCN4 occurs largely as monomers, the monomer DNA binding pathway is
preferred. The following Figure, adapted from (Cranz et al.| (2004)), shows that a GCN4

monomer mutant can bind to DNA in a stable manner. CREfg is a double-stranded 19-

mer oligonucleotide containing the CRE site with the fluorescence marker NBD attached
one—leg

to a phosphorothioate bond preceding the recognition site. C62GCN4¢¢ is a monomer
derivative of the wild type GCN4 which makes contact with only one half-site.
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Figure 7.19: GCN4 monomer binding to DNA. Reaction of 35 nM one-legged derivative
CG2GCN4§7§6_Z'39 with 35 nM CREfQ. Figure adapted from 1

2004)).
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Repurposing an Illumina GA-IIx NGS sequencing machine, it is possible to measure in
parallel binding events to hundreds of millions of DNA clusters at equilibrium. This
enables the measurement of accurate dissociation constants for the entire sequence space
of all possible mutations up to a k-mer length of 12 nucleotides as shown by |[Nutiu et al.
(2011). My approach of applying phase-correlation to estimate the relative translative
offset between the observed tile images and the template images omits resequencing
and thus allows to reuse the flow cell for several HiTS-FLIP experiments, which greatly
reduces cost and time. Instead of using information from the sequencing images like Nutiu
et al. (2011) for the normalization of cluster intensities which introduces a nucleotide
specific bias, I estimate the cluster related normalization factors directly from the protein
images which captures the non-even illumination bias more accurately and leads to an
improved correction for each tile image. My analysis of the ranking algorithm by [Nutiu
et al.| (2011)) has revealed that it is unable to rank all measured k-mers. Discarding all
the clusters related to previously ranked k-mers has the side effect of eliminating any
clusters on which k-mers could be ranked that share submotifs with previously ranked
k-mers. This shortcoming affects even strong binding k-mers with only one mutation
away from the top ranked k-mers. My analysis shows that omitting the cluster deletion
step in the ranking process overcomes this limitation and can rank the full spectrum of
all possible k-mers. In addition, the performance of the ranking algorithm is drastically
reduced from a quadratic to a linear run time. The TIRF optics of the GA-IIx allows to
avoid any washing step, done by Nutiu et al.| (2011]), and to measure the binding events at
equilibrium. The experimental improvements combined with the sophisticated processing
of the data led to a very high accuracy of the HiTS-FLIP Kds comparable to the Kds
measured by the very sensitive HiP-FA assay (Jung et al.| (2015)). However, as evident
from all the performed experiments, HiTS-FLIP is so far not a robust assay for achieving
saturated binding curves, and how to setup optimal experimental conditions and to
handle best protein aggregation occurring at the amplified DNA clusters needs further
investigation. Nevertheless, we achieved a successful experiment (18.08.2014) resulting in

a unique, quantitative data set and utilizing the related Kds for investigating the binding
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behavior of GCN4 has shed more light on the complexity of its DNA association.
Given the obtained insights from the down stream analyses I could demonstrate that the
common 9-mer PWM for GCN4 is insufficient to describe the binding behavior of GCNA4.
Rather, an additional left and right flanking nucleotide is required to extend the 9-mer to
an 11-mer whereby the influence of the flanking nucleotides is taken into account which
modulates the binding affinity a 100-fold. My analyses regarding mutations and related
AAG values suggest long-range interdependencies between nucleotides of the two dimeric
half-sites of GCN4 and thus models assuming positional independence, like the PWM,
are not able to embody such effects. Instead, the full spectrum of affinity values for all
k-mers of appropriate size should be measured and applied as originally proposed by
Nutiu et al.|(2011). Another important discovery were completely new binding motifs of
GCN4, which can only be detected with a method like HITS-FLIP that examines the
entire sequence space and allows for de-novo motif discovery in an unbiased way. All
these new motifs contain the submotif GTGT and the evidence collected suggests that
GCN4 binds as monomer to these new motifs. Therefore, it might be even possible to
detect different binding modes with HiTS-FLIP.

Future steps are further experimental improvements to turn HiTS-FLIP into a robust
assay. This might even require to adapt the hardware of the GA-IIx to be better suited
for a DNA-protein binding experiment. Another possibility might be to use relative
affinities based on intensities alone which could describe the binding behavior sufficiently.
As a research topic, a very promising scenario would be to investigate simultaneously
multiple proteins in the flow cell to study their cooperativity or perhaps even their
antagonistic binding effects. If the DNA clusters in the flow cell could be methylated,
the effect of methylation marks on DNA binding of certain TFs could be studied in
depth, by measuring the binding behavior first on unmethylated and then on methylated
DNA. As it was demonstrated by (Buenrostro et al. (2014)); [Tome et al. (2014])) the
HiTS-FLIP assay can be used for measuring the affinity of RNA binding proteins. A
possible research direction along this line would be the study of transcriptomics where the
entire transcriptome of interest could be examined in the flow cell. Another important
application for future research is the design of custom agents like TALENSs for genome
editing in the field of personalized medicine where genome-wide off-target effects need to
be studied for which HiTS-FLIP is a very suitable tool. Finally, on the bioinformatics
level further investigation on a mathematical formalism is required to fully capture the
complexity of the binding behavior of a TF like GCN4.



9 Appendix

9.1 Details regarding the LoG filter

LoG filter computes the weighted difference between the center pixel and the surrounding
pixels and thus reacts most strongly to local intensity peaks. Other names of the LoG
filter are Marr-Hildreth-Operator or Mexican hat filter, since it has the shape of a positive
peak in a negative dish and is thus an ”inverted Mexican hat“ (Wu et al.| (2010)). The
parameter o controls the width of the peak, which is related to the amount of smoothing.
The edge positions can be determined by the zero-crossings in the LoG-filtered image,

Figure 9.1

Figure 9.1: LoG filter as continuous function and pixel kernel. Here the continuous
function as well as a 5 x 5 pixel kernel are shown for the LoG filter, adapted
from (Burger et al.| (2009)).

The definition of the Laplacian operator (Vinogradov and Hazewinkel (2001)):

Af_—v2_—v-w?_—§nﬁ (9.1)
2 )
i=1 g
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where f is a twice-differentiable real-valued function. As denoted by the definition, the
Laplacian of f is the sum of all the second partial derivatives in the Cartesian coordinates
x;. The definition of the Gaussian filter in two dimensions is the following (Vinogradov,
and Hazewinkel| (2001))):

Go(@,y) = —— exp (—xQ i yQ) (9.2)

2mo? 202

The Gaussian filter is separable in the x and y directions and can thus be written as the

product of two 1d Gauss functions:

1 z2 + 12 1 z? 1 y?
GJ(m,y) - 22 P 202 - 20 oXPp _@ 2mo0 oXp _g

2
(9.3)

Definition of the LoG filter, where f(x,vy) represents the image as a function R? — R:

AlGo(,y) * f(2,9)] = [AGo (2, y)] * f(2,y) = LoG * f(z,y) (9.4)

Since the convolution of two functions f and g, denoted by *, is defined as the integral

of the product of the two functions after one is reversed and shifted:

(f*a)t) ™ / f(r)g(t —7)dr (9.5)

The convolution operation is commutative: fxg=gx f

because, upon the substitution o =t — 7:

o0

(f*9)(t) = / 9(0)f(t — o) do = (g% F)(t) (9.6)

—00

Therefore

/ F(r)g(t — 7) dr = / f(t = 7)g(r) dr (9.7)
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which proofs

AlGo(z,y) * f(z,y)] = [AGs(z,y)] * f(z,y) (9-8)

It is therefore equal to firstly convolute the Gaussian filter with the image and then apply
the Laplacian operator on this modified image, or to apply the Laplacian operator on
the Gaussian filter and then use this modified filter to convolve it with the image. The
key aspect here is that the latter is computational more efficient since the modified filter
can be prepared in advance as a result of its image independence.

The derivation of the LoG filter is:

;;/ag(x,y) _ 27302 y? ;402 . <_x224;2y2> (9.10)
LoG = AGy(z,y) = ;;}Gg(x,y) + ;ZGU(:U,y) (9.11)
- 277102 x20402 P <_ x22;t2y2> " 27302 L 0402 P <_x22;y2> (942

In order to be applicable to images and their discrete pixel values, the LoG filter has to
be discretized by sampling the function in the above equation into a (2k + 1) x (2k + 1)
filter kernel (also called mask) for an appropriate value of k. It is proposed (Klette
(2014)) to use a window size of [6v/20] x [6v/20], i.e. the smallest integer equal to or
larger than the 61/20. The value of o, the amount of smoothing, needs to be estimated
for the given image data.

Similarly, the convolution regarding discrete values changes in the following manner. The
discrete convolution can be defined as a “shift and multiply” operation, where the kernel
is shifted over the image and its value is multiplied with the corresponding pixel values

of the image. For a square kernel with size M x M, the output image is calculated with
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the formula (Burger and Burge, (2009a))):

M M
2 2

g(i,j) = Z LoG(m,n)f(i —m,j —n) (9.14)

(0,0) = Hot Spot

Figure 9.2: Filtering process by mask. The filter matrix H is placed with its origin at
position (u,v) on the image I. Each filter coefficient H(i,7) is multiplied
with the corresponding image pixel I(u +4,v + j), the results are added, and
the final sum is inserted as the new pixel value I'(u,v). Figure adapted from
(Burger and Burge, (2009a))).

Applying the LoG filter in the spatial domain to an image is a simple process as illustrated
in Figure[9.2] According to (Burger and Burge| (2009a))), the following steps are performed

at each image position (u,v):

1) The filter matrix H is moved over the original image I such that its origin H(0,0)
coincides with the current image position (u,v).

2) All filter coefficients H (7, j) are multiplied with the corresponding image element
I(u+1i,v+j), and the results are added.

3) Finally, the resulting sum is stored at the current position in the new image I'(u, v)
An additional speedup can be achieved by applying the Fourier transform and turning
the LoG filter into a frequency filter. According to the convolution theorem (1990))

point-wise multiplication of the Fourier transformed kernel and Fourier transformed
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image in the frequency domain is equivalent to convolution in the spatial domain. The
Fourier transform of the convolution of two functions is the product of their Fourier

transforms:
Flh* f] = F[h]F[f] (9.15)

The inverse Fourier transform of the convolution of two functions is the product of their

Fourier transforms:

Ffh) = F7Y[f] %« F~'[h] (9.16)
Therefore:
g(z,y) = FH(F(h)F(f)) (9.17)

The discrete Fourier transformation (DFT) and its inverse are used and performed
by fast Fourier transformation (FFT) (Cooley and Tukey| (1965b)) which reduces the
computation time from O(n?m?) to the almost linear complexity of O(nmlog(nm)) for

an image with size n x m.

9.1.1 Padding

An important technical detail is padding (Rao et al. (2011)). When doing a DFT the
resulting frequency domain representation of the function is periodic, leading to circular
convolution. This means that without padding the image properly, results from one side
of the image will wrap around to the other side of the image. Padding allows space for
this wrap-around to occur without contaminating actual output pixels. According to
(Burger and Burge| (2009a); |Rao et al. (2011])) there are several different methods how
padding can be done:

1) Zero-padding:

Zero-padding completes the borders of the image with zero valued pixels.

2) Boundary reflection:

Padded pixels are computed by reflecting the input image pixels about the border.

3) Pixel replication:

Pixel replication is done by copying the nearest border pixel.

4) Linear extrapolation:
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Linear extrapolation seeks to extend the image as if it were continuing along a linear
ramp off the edge of the image. The ramp is made up of the border pixels, the computed
padded pixels and the input pixels that are a reflection of the padded pixel about the
border. For each line in x (or column for y) the padding elements added to the line
(or column) are a linear combination of the first and last element of that input line (or
column).

5) Weighted mean:

Dy Wik

S i, can be used in the following way:
i=1 Wi

forx =0, to W — O,

fory=0to Oy —1
(y+Oy+ 1) xIxxH+ Oy + (O —y)*I[xx H+ H— O, — 1]

A weighted mean,

flex il = 20y +1
Iz+H—y—1 = (Oy —y) ¥ Iz x H+ Oyl + (y+ Oy + 1) ¥ Iz + H+ H — Oy — 1]
2x0y+1
fory=0to H

for x =0 to O,

s H 4y = EFOe £V 5 100 x Hty] + (O = 2) + [[(W = Op = 1) + H + ]

2x 0, +1
I[(W—2—1)sH4y] = (Om—x)*I[Ox*Her]+(a;*+00$j11)*I[(W—Ow—l)*Her]

x,1y: control variables for running through the padding area.

I: image pixel values of 1d image array, accessed in column-major order.
W: image width.

H: image height.

O;: z offset of padding area.

Oy: y offset of padding area.

9.1.2 Implementation

The implementation of the LoG filter is based on the ImageJ (Abramoff et al.| (2004);
Schneider et al| (2012)) plugin by Dimiter Prodanov, URL: http://rsb.info.nih.gov/
ij/plugins/mexican-hat/index.htmll The input for the LoG filter are the tif images
taken during the protein cycles of a HiITS-FLIP experiment. The output of the LoG filter
are tif images which are LoG filtered and stored separately besides the unfiltered images.

These filtered images are only used during the cluster registration process.


http://rsb.info.nih.gov/ij/plugins/mexican-hat/index.html
http://rsb.info.nih.gov/ij/plugins/mexican-hat/index.html
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Figure 9.3: Pixel kernel of LoG filter used for filtering the protein images before cluster
registration as described in section
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9.3 Pixel mask for template

cluster generation
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Figure 9.4: Pixel mask for template cluster generation

described in section

used for cluster registration as
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9.4 HiP-FA Kds and HiTS-FLIP Kds

Oligo Sequence HiP-FA Kd 11-mer rev. complement  HiTS-FLIP Kd
GGTATGAGTCATGGCC 16.34 CATGACTCATA TATGAGTCATG 3.49
GGGTATGACTCATCCC 17.9 GATGAGTCATA TATGACTCATC 3.57
GGTATGACTCATGGCC 21.66 CATGAGTCATA TATGACTCATG 4.97
GGTGTGACTCATGGCC 24.49 TGTGACTCATG CATGAGTCACA 5.96
GGTGTGAGTCATGGCC 25.93 CATGACTCACA TGTGAGTCATG 6.82
GGGTATGACTGATCCC 49.0 TATGACTGATC GATCAGTCATA 29.36
GGTGTGACTAATGGCC 51.57 CATTAGTCACA TGTGACTAATG 25.47
GGTCTGACTCATGGCC 56.28 TCTGACTCATG CATGAGTCAGA 20.67
GGGTATGACACATCCC 72.9 GATGTGTCATA TATGACACATC 38.19
GGTATGACTCTTGGCC 90.69 CAAGAGTCATA TATGACTCTTG 55.08
GGTATGACACATGGCC 129.05 CATGTGTCATA TATGACACATG 75.13
GGTATGACGCATGGCC 138.35 TATGACGCATG CATGCGTCATA 73.82
GGTTGACTAATTGGCC 221.65 AATTAGTCAAC GTTGACTAATT 94.2
GGTATGACTCGTGGCC 244.16 TATGACTCGTG CACGAGTCATA 100.53
GGTTCAGTCATTGGCC 312.45 AATGACTGAAC GTTCAGTCATT 151.02
GGTTTAGTCATTGGCC 334.9 GTTTAGTCATT AATGACTAAAC 94.57
GGTATGACTAGTGGCC 371.13 TATGACTAGTG CACTAGTCATA 218.02
GGTATGACGTATGGCC 464.89 TATGACGTATG CATACGTCATA 222.8
GGTCTGACGCATGGCC 541.01 TCTGACGCATG CATGCGTCAGA 356.78
GGTGTGTGACATGGCC 633.51 CATGTCACACA TGTGTGACATG 485.0
GGTTGAGTAATTGGCC 654.88 GTTGAGTAATT AATTACTCAAC 389.87
GGTATGACGCGTGGCC 675.05 TATGACGCGTG CACGCGTCATA 343.61
GGTTTACGTCATGGCC 779.26 TTTACGTCATG CATGACGTAAA 484.6
GGTATCCGTCATGGCC 796.11 TATCCGTCATG CATGACGGATA 451.76
GGTTCACTCATTGGCC 1024.26 GTTCACTCATT AATGAGTGAAC 875.36

Table 9.1: Listing of HiP-FA Kds and HiTS-FLIP Kds as used in Figure [5.52]
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9.5 First 50 11-mers and Kds of experiment 18.08.2014

k-mer reverse complement 5 nM 10 nM 25 nM 125 nM 625 nM s h o Kd

TATGAGTCATA TATGACTCATA  0.5094 0.58539 0.54504 0.59656 0.65996 0.65345 1.0 0.26793 1.562
GTATGAGTCAT ATGACTCATAC  0.48893 0.59662 0.55888 0.59435 0.7001 0.65345 1.0 0.26793 1.639
GATGACTCATA TATGAGTCATC  0.52161 0.54095 0.56534 0.56021 0.70031 0.65345 1.0 0.26793 1.675
ATGACTCATCT AGATGAGTCAT 0.49438 0.53619 0.55156 0.58751 0.65243 0.65345 1.0 0.26793 2.002
ATGAGTCATTT AAATGACTCAT  0.48092 0.50015 0.57188 0.60437 0.67185 0.65345 1.0 0.26793 2.308
ATGACTCATAT ATATGAGTCAT  0.47886 0.5008 0.55385 0.59616 0.6987 0.65345 1.0 0.26793 2.397
TGTGACTCATC GATGAGTCACA 0.45742 0.52625 0.53085 0.60089 0.63088 0.65345 1.0 0.26793 2.533
CTATGAGTCAT ATGACTCATAG  0.46423 0.51583 0.53634 0.54436 0.6169 0.65345 1.0 0.26793 2.576
ATGAGTCATTG CAATGACTCAT  0.45821 0.50526 0.54544 0.59213 0.6612 0.65345 1.0 0.26793 2.634
ATGAGTCATCC GGATGACTCAT 0.4704 0.48661 0.55131 0.57627 0.64366 0.65345 1.0 0.26793 2.645
ATATGACTCAC GTGAGTCATAT  0.44357 0.52211 0.54127 0.61358 0.66862 0.65345 1.0 0.26793 2.655
TTATGACTCAT ATGAGTCATAA 0.45723 0.50757 0.5344 0.58649 0.64432 0.65345 1.0 0.26793 2.683
GATGAGTCATT AATGACTCATC 0.47392 0.47208 0.54077 0.56632 0.65326 0.65345 1.0 0.26793 2.784
GTGAGTCATCG CGATGACTCAC 0.45643 0.47417 0.55203 0.63203 0.69053 0.65345 1.0 0.26793 2.839
AATGAGTCATC GATGACTCATT 0.462  0.49839 0.51383 0.5503 0.60172 0.65345 1.0 0.26793 2.85
TGATGACTCAT ATGAGTCATCA 0.46976 0.4677 0.54736 0.5525 0.64873 0.65345 1.0 0.26793 2.858
TTATGAGTCAT ATGACTCATAA  0.45605 0.47486 0.55826 0.56793 0.67091 0.65345 1.0 0.26793 2.883
TAATGAGTCAT ATGACTCATTA  0.46094 0.47192 0.54076 0.58924 0.64198 0.65345 1.0 0.26793 2.917
TGTGACTCATA TATGAGTCACA  0.46651 0.47027 0.53736 0.55506 0.64264 0.65345 1.0 0.26793 2.921
AATGACTCATA TATGAGTCATT  0.45821 0.47303 0.54988 0.56019 0.63575 0.65345 1.0 0.26793 2.931
GGTGAGTCATA TATGACTCACC  0.44559 0.49564 0.52003 0.54077 0.62309 0.65345 1.0 0.26793 3.05
ATGACTCATCG CGATGAGTCAT 0.4766 0.45116 0.52399 0.53008 0.5873 0.65345 1.0 0.26793 3.089
ATGACTCACCT AGGTGAGTCAT 0.4249 0.49133 0.54957 0.61397 0.66863 0.65345 1.0 0.26793 3.093
CTATGACTCAT ATGAGTCATAG  0.47359 0.47573 0.48307 0.4886  0.59275 0.65345 1.0 0.26793 3.158
GGTGAGTCATC GATGACTCACC 0.45643 0.45047 0.54348 0.58211 0.64687 0.65345 1.0 0.26793 3.166
TGATGAGTCAT ATGACTCATCA  0.46278 0.46766 0.5051 0.54184 0.64795 0.65345 1.0 0.26793 3.174
ATATGACTCAT ATGAGTCATAT  0.45382 0.4757 0.50297 0.55118 0.61736 0.65345 1.0 0.26793 3.217
GATGACTCATC GATGAGTCATC 0.45853 0.44545 0.53345 0.57123 0.61337 0.65345 1.0 0.26793 3.266
TGTGAGTCATA TATGACTCACA  0.43687 0.46754 0.53154 0.59219 0.65074 0.65345 1.0 0.26793 3.295
ATGAGTCATAC GTATGACTCAT  0.43986 0.47635 0.51545 0.54151 0.56698 0.65345 1.0 0.26793 3.349
CATGACTCATC GATGAGTCATG 0.45836 0.45761 0.50302 0.53251 0.66041 0.65345 1.0 0.26793 3.355
GTGTGAGTCAT ATGACTCACAC 0.43544 0.46773 0.51057 0.58776 0.6457 0.65345 1.0 0.26793 3.435
ATGAGTCATCG CGATGACTCAT  0.44752 0.46422 0.50615 0.52511 0.59696 0.65345 1.0 0.26793 3.442
AGATGACTCAT ATGAGTCATCT 0.43984 0.4439 0.53489 0.57949 0.65917 0.65345 1.0 0.26793 3.491
CATGACTCATA TATGAGTCATG  0.43941 0.44418 0.53596 0.58288 0.62563 0.65345 1.0 0.26793 3.493
GATGAGTCATA TATGACTCATC  0.43202 0.47573 0.50357 0.51423 0.57922 0.65345 1.0 0.26793 3.565
ATGACTCATTG CAATGAGTCAT 0.41149 0.48292 0.52718 0.53538 0.63319 0.65345 1.0 0.26793 3.573
GTGAGTCATAC GTATGACTCAC 0.42419 0.46348 0.50789 0.52318 0.60191 0.65345 1.0 0.26793 3.759
AAATGAGTCAT ATGACTCATTT  0.42864 0.46674 0.47179 0.56492 0.57778 0.65345 1.0 0.26793 3.836
AGTGAGTCATC GATGACTCACT 0.41998 0.44252 0.51264 0.60542 0.68125 0.65345 1.0 0.26793 3.863
GTGTGACTCAT ATGAGTCACAC 0.43258 0.4532 0.48668 0.54466 0.59946 0.65345 1.0 0.26793 3.864
CTATGAGTCAC GTGACTCATAG 0.41806 0.44676 0.51245 0.58565 0.67234 0.65345 1.0 0.26793 3.878
AATGAGTCATA TATGACTCATT  0.42893 0.47635 0.46883 0.47887 0.54602 0.65345 1.0 0.26793 3.898
ATGTGACTCAT ATGAGTCACAT  0.41178 0.46572 0.49654 0.57378 0.60188 0.65345 1.0 0.26793 3.898
TGTGAGTCATT AATGACTCACA 0.40209 0.44162 0.5406 0.60928 0.6582 0.65345 1.0 0.26793 3.937
GGATGAGTCAT ATGACTCATCC  0.42637 0.45758 0.48481 0.52938 0.60988 0.65345 1.0 0.26793 3.937
GGTGACTCATA TATGAGTCACC  0.42592 0.44821 0.47313 0.55936 0.61677 0.65345 1.0 0.26793 4.084
TTATGACTAAT ATTAGTCATAA  0.36986 0.46365 0.53787 0.61997 0.71686 0.65345 1.0 0.26793 4.104
GTGAGTCATAG CTATGACTCAC 0.4078 0.45395 0.49708 0.54414 0.6328 0.65345 1.0 0.26793 4.129
CCTATGACTCA TGAGTCATAGG 0.40384 0.46154 0.48123 0.57557 0.64035 0.65345 1.0 0.26793 4.148

Table 9.2: First 50 11-mers and HiTS-FLIP Kds of experiment 18.08.2014 as used in

Figure
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4.06535
3.75553
3.98912
3.77089
3.79863
3.76518
3.88081
3.73115
3.8083

3.89855
3.68855
3.68804
3.76905
3.77569
3.74253
3.99939
3.67334
3.94763
3.83574
3.75787
3.79934
3.86426
3.82648
3.78482
3.90605
3.81104
3.82363
3.79223
3.76245

Table 9.3: First 50 11-mers ranked at 125 nM of experiment 18.08.2014.
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9.7 HiP-FA Kds and HiTS-FLIP Kds by heuristic and ML

ranking

11-mer rev.comp. HiP-FA Kd Heuristic ranking Kd ML ranking Kd
CATGACTCATA TATGAGTCATG 16.34 3.49 5.71
GATGAGTCATA TATGACTCATC 17.9 3.57 3.05
CATGAGTCATA TATGACTCATG 21.66 4.97 6.74
TGTGACTCATG CATGAGTCACA 24.49 5.96 10.2
CATGACTCACA TGTGAGTCATG 25.93 6.82 9.28
TATGACTGATC GATCAGTCATA 49.0 29.36 52.62
CATTAGTCACA TGTGACTAATG 51.57 25.47 31.34
TCTGACTCATG CATGAGTCAGA 56.28 20.67 31.3
GATGTGTCATA TATGACACATC 72.9 38.19 53.68
CAAGAGTCATA TATGACTCTTG 90.69 55.08 63.65
CATGTGTCATA TATGACACATG 129.05 75.13 126.77
TATGACGCATG CATGCGTCATA 138.35 73.82 91.39
AATTAGTCAAC GTTGACTAATT 221.65 94.2 134.35
TATGACTCGTG CACGAGTCATA 244.16 100.53 129.1
AATGACTGAAC GTTCAGTCATT 312.45 151.02 156.27
GTTTAGTCATT AATGACTAAAC 334.9 94.57 125.91
TATGACTAGTG CACTAGTCATA 371.13 218.02 229.43
TATGACGTATG CATACGTCATA 464.89 222.8 455.95
TCTGACGCATG CATGCGTCAGA 541.01 356.78 564.66
CATGTCACACA TGTGTGACATG 633.51 485.0 1171.25
GTTGAGTAATT AATTACTCAAC 654.88 389.87 396.29
TATGACGCGTG CACGCGTCATA 675.05 343.61 373.0
TTTACGTCATG CATGACGTAAA 779.26 484.6 697.52
TATCCGTCATG CATGACGGATA 796.11 451.76 522.22
GTTCACTCATT AATGAGTGAAC 1024.26 875.36 830.72

Table 9.4: Listing of HiP-FA Kds and HiTS-FLIP Kds by heuristic and ML ranking as
used in Figure [5.54]
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0.9 Fits of HiTS-FLIP Kds with subtraction of median of

cluster intensities per concentration
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Figure 9.6: Fits for HITS-FLIP Kds with subtraction of median of cluster intensities per
concentration.
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9.10 Summary of HiTS-FLIP methods, parameters, input and
output

LoG filter (Section
Goal:
Reducing noise and emphasizing edges to improve separation of DNA clusters for protein
images.
Parameters:
e o =0.764.

e 5 x b pixel kernel, see (9.3
Input:

tif image from protein cycle.
Output:
LoG filtered image.

Cluster registration (Section
Goal:
Aligning protein images to connect fluorescent cluster intensities with nucleotide sequences.
Parameters:
e template cluster: amplitude A = 1.0.
e template cluster: o = 0.7644.

e 5 x 5 pixel mask, see (9.4
Input:

o tif image from protein cycle.

e pos file containing the template cluster positions.
Output:

Translational offset Az, Ay for each protein image.

Local region search (Section

Goal:

Overlapping of mapped cluster positions with local maxima in a protein image.
Parameters:

e local neighborhood: distance 1 pixel from cluster position.
Input:

x,y coordinates of cluster positions.
Output:
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Shifted clusters (on average 10% - 20% of all clusters per tile) which overlap again with

local maxima.

Image normalization (Section

Goal:

Correction of uneven illumination in the protein images by Gaussian based filtering.
Parameters:

e Gaussian filter: o = 30 Pixels.
globa

for ¢ = 2..n. Details in section [5.5.6.3

o Weighting factor:
Input:

i
global
Bl

Tif image of protein cycle.
Output:

Normalized protein image with reduced uneven illumination.

Intensity extraction based on weighted area coverage (Section [5.6.9))

Goal:

Extraction of cluster intensities from protein images with the weighted area coverage
method.

Parameters:
o A =1.5? pixels.
o w.,=05.0.
o w, =0.9.
Input:

e protein image.

e x,y coordinates of cluster positions.
Output:

Cluster intensities.

Dust particle detection (Section |5.7.2])

Goal:

Reducing false positives by removing dust particles and affected clusters from protein
images.

Parameters:

e threshold: 30 — 30000 pixels for classifying dust particles.
Input:

Protein image.

Outcome:
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Set of pixels identifying dust particles.

Air bubble detection (Section |5.7.1)

Goal:

Reducing false positives by removing air bubbles and affected clusters from protein
images.

Parameters:

e threshold: > 30000 pixels for classifying air bubbles.
Input:

Protein image.
Outcome:

Set of pixels identifying air bubbles.

DNA sequence filtering (Section
Goal:

Removing clusters with erroneous bases.
Parameters:

e FASTA quality score: Q30.
Input:

FASTQ files.
Outcome:

Filtered cluster sequences with high quality base calls.

K-mer ranking (Section |5.9.1.5))
Goal:

Ranking k-mers of different length for DNA motif finding by heuristic ranking without
cluster deletion.
Parameters:

e heuristic ranking without cluster deletion.
Input:

e length of the k-mer to be ranked.

e number of ranked k-mers.

e concentration at which the ranking should be achieved.
e cluster sequences.

o different cluster intensities for the increasing concentrations.
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Outcome:

Ranked k-mer motifs with their different intensities.

Affinity quantification (Section
Goal:
Determining dissociation constants for each ranked k-mer.
Parameters:
e s: scaling factor obtained from the top binding k-mer and applied for all weaker

binding k-mers.

[T'F]: transcription factor concentration used in the experiment.
Kd: the dissociation constant of the TF to the DNA sequence.
h: the Hill coefficient of binding.

o: the global offset, an estimate for the unspecific binding by using the median of

the dimmest 0.1% of all the ranked k-mers at the smallest concentration. Regarding
the experiment 18.08.2014 the value was o = 0.26793 of the ranked 11-mers for the

concentration at bnM.
Input:

Intensities at each concentration for each k-mer.
Outcome:

Dissociation constants for each ranked k-mer.
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9.11 Position Frequency Matrix for Aligned Matrix GCN4

Nucleotide Prob.

0.547 0.012 0.011 0.964 0.009 0.015 0.073 0.915 0.038
0.059 0.010 0.026 0.012 0.657 0.010 0.891 0.022 0.352
0.363 0.011 0.889 0.013 0.323 0.014 0.024 0.016 0.060
0.031 0.968 0.075 0.012 0.010 0.962 0.013 0.046 0.550

HoQaoaw

Table 9.5: Position Frequency Matrix for Aligned Matrix GCN4 based on the ScerTF
database (Spivak and Stormo, (2012))). Probabilities are as used in Figure
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9.12 Experiment by Nutiu et al.

Figure shows the analysis plots for the HiTS-FLIP experiment lane 2 as performed

by (Nutiu et al.| (2011))).
The 8-mer ranking yields ATGACTCA (TGAGTCAT) and ATGAGTCA (TGACTCAT)

as the first two top placed motifs which are extension of the known pseudosymmetric
7-mer sequence 5-TGA(C/G)-TCA-3’ |Oliphant et al.| (1989)). Even though a washing
step of 2 min before each imaging cycle was applied to reduce unspecific binding, the

intensity course does not show saturation for the best binder.
There seems to be saturation occurring for the motif ATGACTCA (TGAGTCAT),

however not already at 625 nM.
The half-sites TGAC or TGAG of the dimer consensus motif 5-TGA(C/G)-TCA-3’

Oliphant et al.| (1989) are enriched and predominantly bound among the first 200 ranked
8-mers. As pointed out by Hollenbeck and Oakley| (2000) GCN4 can bind with high-
affinity and in a specific manner to DNA sites containing only the single consensus

half-site 5~ TGAC-3".
The Hamming distance of the ranked 8-mer motifs from the 8-mer consensus ATGACTCA

(TGAGTCAT) overall increases as the ranking proceeds deeper into the sequence space

resulting in weaker GCN4 binding motifs.
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Figure 9.7: Analyses of the experiment by (Nutiu et al|(2011)). (a) Intensity course
for the first 200 ranked 8-mers ranked at 125 nM on lane 2. (b) Binding
curves for selected 8-mers ranked at 125 nM on lane 2. (c¢) Enrichment of
half-sites (TGAC or TGAG) for the first 200 8-mers ranked at 125 nM on
lane 2. (d) Hamming distance from consensus ATGACTCA for the first 200
8-mers ranked at 125 nM on lane 2.
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9.13 Experiment 03.04.2013

In the following section the details regarding the experiment 03.04.2013 are described.

9.13.1 Sample

As sample GCN4 fused with mOrange was used as described previously.

9.13.2 Flow cell buffer
The flow cell buffer was composed of PBS + 0.3 mg/ml BSA + 0.1% Tween-20.

9.13.3 Protocol

The random DNA library N25 was used as described previously. Data from lane 4 were
employed. Five concentrations were applied, 1 nM, 5 nM, 25 nM, 125 nM, 625 nM.
Delivery rate of the protein solution was 50 pl/min. Equilibration time was 1 h at 20°C.
No washing was applied, the next concentration level was continuously titrated into the
flow cell. The protein cycles were: cycle 44: 1 nM, cycle 45: 5 nM, cycle 46: 25 nM,
cycle 47: 125 nM, cycle 48: 625 nM.

9.13.4 Data analysis

Figure shows the main analysis plots for the experiment 03.04.2013 lane 4.

The 8-mer ranking yields TTAGATAA (TTATCTAA) and TAGATAAG (CTTATCTA)
as the first two top placed motifs, which do not contain the half-sites TGAC or TGAG.
The 8-mer consensus ATGACTCA (TGAGTCAT) does not occur among the first 200
ranks. The intensity courses do not decline gradually and most DNA clusters seem to be

bound non-specifically.
No saturation is occurring here, GCN4 (or at least mOrange) molecules keep aggregating

at the DNA clusters. The first ranked 8-mer motif is similarly bound as the 200th ranked

8-mer motif.

The half-sites TGAC or TGAG of the dimer consensus motif 5-TGA(C/G)-TCA-3’ are

almost completely depleted at the first 20 ranked 8-mer motifs.
There is no increase in Hamming distance from the 8-mer consensus ATGACTCA

(TGAGTCAT) observable.
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Figure 9.8: Analyses of the experiment 03.04.2013 lane 4. (a) Intensity course for the first
200 ranked 8-mers ranked at 125 nM on lane 4. (b) Binding curves for selected
8-mers ranked at 125 nM on lane 4. (¢) Enrichment of half-sites (TGAC or
TGAG) for the first 200 8-mers ranked at 125 nM on lane 4. (d) Hamming
distance from consensus ATGACTCA for the first 200 8-mers ranked at 125

nM on lane 4.
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9.14 Experiment 13.06.2013

In the following section the details regarding the experiment 13.06.2013 are described.

9.14.1 Sample

As sample GCN4 fused with mOrange was used as described previously.

9.14.2 Flow cell buffer
The flow cell buffer was composed of PBS + 0.3 mg/ml BSA + 0.1% Tween-20.

9.14.3 Protocol

The random DNA library N25 was used as described previously. Data from lane 4
were employed. Five concentrations were applied, 1 nM, 5 nM, 25 nM, 125 nM, 625
nM. Delivery rate of the protein solution was 50 ul/min. Equilibration time was 1 h
at 20°C. No washing was applied during the protein cycles, the next concentration
level was titrated into the flow cell. Washing in between with PBS/TWEEN/BSA and
PBS/Tween. The protein cycles were: cycle 44: 1 nM, cycle 45: 5 nM, cycle 46: 25 nM,
cycle 47: 125 nM, cycle 48: 625 nM.

9.14.4 Data analysis

Figure shows the main analysis plots for the experiment 03.04.2013 lane 4.

The 8-mer ranking yields AAGAGTCA (TGACTCTT) and AGTCATGT (ACATGACT)
as the first two top placed motifs. The 8-mer consensus ATGACTCA (TGAGTCAT)
occurs at rank 4. The intensity courses do not decline and all DNA clusters seem to be

bound non-specifically.
No saturation is occurring here, GCN4 (or at least mOrange) molecules keep aggregating

at the DNA clusters in an equal fashion.
The half-sites TGAC or TGAG of the dimer consensus motif 5-TGA(C/G)-TCA-3’ are

enriched.
There is only a small increase in the Hamming distance observable from the 8-mer

consensus ATGACTCA (TGAGTCAT).
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Figure 9.9: Analyses of the experiment 13.06.2013 lane 4. (a) Intensity course for the first
200 ranked 8-mers ranked at 125 nM on lane 4. (b) Binding curves for selected
8-mers ranked at 125 nM on lane 4. (c¢) Enrichment of half-sites (TGAC or
TGAG) for the first 200 8-mers ranked at 125 nM on lane 4. (d) Hamming
distance from consensus ATGACTCA for the first 200 8-mers ranked at 125

nM on lane 4.
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9.15 Experiment 28.03.2014

In the following section the details regarding the experiment 28.03.2014 are described.

9.15.1 Sample

As sample GCN4 fused with mOrange was used as described previously.

9.15.2 Flow cell buffer

The following flow cell buffer compositions were applied.

Lane 1: PBS + 0.3 mg/ml BSA + 0.1% Tween-20.

Lane 2: PBS + 0.3 mg/ml BSA + 0.1% Tween-20 + 200 ng/ml poly(dI-dC).
Lane 3: PBS + 0.3 mg/ml BSA + 0.1% Tween-20.

9.15.3 Protocol

The random DNA library N25 was used. Five concentrations were applied, i.e. 1 nM, 5
nM, 25 nM, 125 nM, 625 nM.

Lane 1:

Equilibration time was 2 h at 20°C. No washing was applied during the protein cycles,
the next concentration level was titrated into the flow cell.

Lane 2:

Equilibration time was 1 h at 20°C. No washing was applied during the protein cycles,
the next concentration level was titrated into the flow cell.

During protein cycles 37-41, the following delivery was used:

150 pl protein solution

10 min wait

10 pl protein solution

10 min wait

10 pl protein solution

10 min wait

10 pl protein solution

1:30 h wait

Lane 3:

Same procedure as in (Nutiu et al. (2011)), i.e. 30 min equilibration time and 2 min
wash step.

The protein cycles on lane 1 were: cycle 37: 1 nM, cycle 38: 5 nM, cycle 39: 25 nM,
cycle 40: 125 nM, cycle 41: 625 nM.
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The protein cycles on lane 2 were: cycle 42: 1 nM, cycle 43: 5 nM, cycle 44: 25 nM,
cycle 45: 125 nM, cycle 46: 625 nM.

The protein cycles on lane 3 were: cycle 47: 1 nM, cycle 48: 5 nM, cycle 49: 25 nM,
cycle 50: 125 nM, cycle 51: 625 nM.

There was a problem with lane 2, cycles 42 and 43 were performed correctly. Cycles 44
to 46 occurred without protein solution pumped into the flow cell. XML protocol was
changed and restarted by cycle 44. Between cycle 42 and 43 there was a break of 3 h,

and after cycle 43 washing occurred.

9.15.4 Data analysis
The following sections describe the main analysis plots for the experiment 28.03.2014.

9.15.4.1 Lane 1

Analysis results for lane 1 illustrated by Figure [0.10]

The 8-mer ranking yields ATGAGTCA (TGACTCAT) and ATGACTCA (TGAGTCAT)
as the first two top placed motifs. The intensity courses do not decline and basically all

DNA clusters seem to be bound non-specifically.
No saturation is occurring here, GCN4 (or at least mOrange) molecules keep aggregating

at the DNA clusters in a similar way.
The half-sites TGAC or TGAG of the dimer consensus motif 5-TGA(C/G)-TCA-3’ are

less enriched here.
Overall there is an increase in Hamming distances from the 8-mer consensus ATGACTCA

(TGAGTCAT) for increasing ranking depth observable.
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Figure 9.10: Analyses of the experiment 28.03.2014 lane 1. (a) Intensity course for the
first 200 ranked 8-mers ranked at 125 nM on lane 1. (b) Binding curves for
selected 8-mers ranked at 125 nM on lane 1. (c) Enrichment of half-sites
(TGAC or TGAG) for the first 200 8-mers ranked at 125 nM on lane 1. (d)
Hamming distance from consensus ATGACTCA for the first 200 8-mers

ranked at 125 nM on lane 1.
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9.15.4.2 Lane 2

Analysis results for lane 2 illustrated by Figure[9.11
The 8-mer ranking yields ATGAGTCA (TGACTCAT) and ATGACTCA (TGAGTCAT)

as the first two top placed motifs. The intensity courses do not decline after the 10th

rank and basically all DNA clusters seem to be bound non-specifically.
No saturation is occurring here, GCN4 (or at least mOrange) molecules keep aggregating

at the DNA clusters in a similar way. In addition, the intensities at 1 nM are higher than
at 5 nM, and at 25 nM higher than at 125 nM which might point to a problem with the

syringe pumps of the GA-IIx.
The half-sites TGAC or TGAG of the dimer consensus motif 5-TGA(C/G)-TCA-3’

are enriched among the first ranked 8-mers and the occurrences decline among weaker

binding motifs.
Overall there is an increase in Hamming distances from the 8-mer consensus ATGACTCA

(TGAGTCAT) with increasing ranking depth observable.
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Figure 9.11: Analyses of the experiment 28.03.2014 lane 2. (a) Intensity course for the

first 200 ranked 8-mers ranked at 125 nM on lane 2. (b) Binding curves for
selected 8-mers ranked at 125 nM on lane 2. (c) Enrichment of half-sites
(TGAC or TGAG) for the first 200 8-mers ranked at 125 nM on lane 2. (d)
Hamming distance from consensus ATGACTCA for the first 200 8-mers
ranked at 125 nM on lane 2.
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9.15.4.3 Lane 3

Analysis results for lane 3 illustrated by Figure
The 8-mer ranking yields TTATATAA (TTATATAA) and TAGATAAG (CTTATCTA)

as the first two top placed motifs. The 8-mer consensus ATGAGTCA (TGACTCAT)
does not occur among the first 200 ranked 8-mers. The intensity courses do not decline
after the 30th rank and from rank 30 onwards all DNA clusters seem to be bound

non-specifically.
No saturation is occurring here, GCN4 (or at least mOrange) molecules keep aggregating

at the DNA clusters in an equal fashion.
The half-sites TGAC or TGAG of the dimer consensus motif 5-TGA(C/G)-TCA-3’ are

not enriched among the first 40 ranked 8-mer motifs.
There is no increase in Hamming distances from the 8-mer consensus ATGACTCA

(TGAGTCAT) with increasing ranking depth observable.



190 Chapter 9: Appendix

A 5000 b 1 4

5500 — paiy 0.9 o ot 4

5000 — —e— 25nM - —e= 10p-20 8—mer //, |
> 4500 125 nM > 0.8 - top-50 8-mer /, 4
= [ —e— 625nM - _J-*- top-1008-mer )
w 4000 — M"‘-‘-‘—-\U-v'«,.-".- g RPITSEA e [7}) 0? —e~ top-200 8-mer (,,’
C 3500 — S 06 7”
o @
+ 3000 — = 0.5 4,
£ 2500 £ 04 4 W7
L 2000 — L 03 - ’4'
O 1500 o -

1000 = . In Ay A 8? = ',

— A W, L' W 5"’ \'3 n ) - -
500 —f~——=—nfU o a.{‘l Jor !u‘,f\ ol Cﬂ‘ﬁ i 'w-\g"-r““ 0 - = -
rrrrrerrrrrrerrerrrirrel | |||||| ||||||| |||||| ||||||]
- -1 0 1 2 3
28%388288898%$°%E°8§ 10 10 10 10 10
ranked 8-mers [GCN4-mOrange] (nM)
c d
E 8
o 20 - 8 7 -
E i i € 5 - .
S 15 14 14 8
= 13 13 13 Q2 5
c 11 o 4
© 10 9 o
] = 3
= £
)
] 5 £ 2
= © 1
© ’ <
QRIS S e s e °
/rl’ /b‘ /‘-0 /‘b ’\0 '\q’ ’\b‘ '\Q) /’\Q) /‘],Q

N N N N s / 4 /
AR

ranked 8-mers

ranked 8-mers

Figure 9.12: Analyses of the experiment 28.03.2014 lane 3. (a) Intensity course for the
first 200 ranked 8-mers ranked at 125 nM on lane 3. (b) Binding curves for
selected 8-mers ranked at 125 nM on lane 3. (c) Enrichment of half-sites
(TGAC or TGAG) for the first 200 8-mers ranked at 125 nM on lane 3. (d)
Hamming distance from consensus ATGACTCA for the first 200 8-mers
ranked at 125 nM on lane 3.
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9.16 Experiment 11.08.2014

In the following section the details regarding the experiment 11.08.2014 are described.

9.16.1 Sample
As sample GCN4 fused with mOrange as described previously.

9.16.2 Flow cell buffer

The flow cell buffer was composed of PBS + 5 mM MgCl, + 60 mM KCI + 0.3 mg/ml
BSA + 0.1% Tween-20.

9.16.3 Protocol

The random DNA library N25 was used as described previously. Five concentrations
were applied, i.e. 1 nM, 5 nM, 25 nM, 125 nM, 625 nM. Imaging was also performed at 0
nM. A different primer, i.e. the Illumina read 1 sequencing primer, from the previous
experiments was used that enabled a more efficient resynthesis of the second DNA strand.
As a control check, a primer (0.01 pM) with an Alexa-like dye (detectable in the C
channel) was hybridised to the flow cell primer oligos before the resynthesis. This primer
should be displaced by Klenow polymerase if the resynthesis occurs at the related DNA
cluster. At cycle 52: Fluorescently labeled primer hybridisation, there should be an even
signal in the C channel. At cycle 53: After Klenow reaction, there should be a weaker
signal in the C channel where the DNA clusters are positioned (if dsDNA synthese has
happened). Every 10 min Klenow mix was pumped into the flow cell here.

Lane 1:

Equilibration time was 1 h at 20°C. No washing was applied during the protein cycles,
the next concentration level was titrated into the flow cell. Every ten minutes protein
solution was pumped into the flow cell during protein cycles 55 to 59. Protein cycles for
lane 1 were: cycle 54: 0 nM, cycle 55: 1 nM, cycle 56: 5 nM, cycle 57: 25 nM, cycle 58:
125 nM, cycle 59: 625 nM.

9.16.4 Data analysis

Figure shows the main analysis plots for the experiment 11.08.2014 lane 1.

The 8-mer ranking yields ATACACTC (GAGTGTAT) and ACACTCTT (AAGAGTGT)
as the first two top placed motifs. The 8-mer consensus ATGACTCA (TGAGTCAT)
occurs at rank 30. The intensities at the different concentrations are not increasing
properly. The intensity courses only decline very marginally. The peak at rank 30
occurs for the 8-mer consensus ATGACTCA (TGAGTCAT), averaging over 1106 DNA
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clusters, and the peak at rank 81 occurs for the 8-mer motif GTGACTCA (TGAGTCAC),
averaging over 990 DNA clusters. The half-site TGAC occurs at ranks 27, 30, 81 and
132, and the GCN4 7-mer consensus motif TGACTCA occurs at ranks 30 and 81. Nearly

all other ranked 8-mers contain the submotif GTGT (ACAC).
No saturation is occurring here and the concentration levels are not increasing properly.
The half-sites TGAC or TGAG of the dimer consensus motif 5’-TGA(C/G)-TCA-3’ are

not enriched. However, the submotif GTGT (ACAC) is enriched among the entire 200

ranked 8-mer as displayed in Figure
There is no increase in Hamming distance observable from the 8-mer consensus AT-

GACTCA (TGAGTCAT).

There is an decrease in cycle 53 regarding the fluorescent signal in the C-channel coming

from the primer with the Alexa-like dye as shown by Figure[9.15

An additional quality control concerning the dsDNA synthese could be applied here by

using a threshold, e.g. 10% quantile, in order to exclude clusters for which the resynthesis

was less efficient (Figure [9.16]).
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Figure 9.13: Analyses of the experiment 11.08.2014 lane 1. (a) Intensity course for the
first 200 ranked 8-mers ranked at 125 nM on lane 1. (b) Binding curves for
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9.17 Experiment 18.08.2014

In the following section the details regarding the experiment 18.08.2014 are described.

9.17.1 Sample

As sample GCN4 fused with mOrange was used as described previously.

0.17.2 Flow cell buffer

The flow cell buffer for the different lanes was composed as follows:

Lane 1: HiTS-FLIP buffer as described in |[Nutiu et al.| (2011).

Lane 2: PBS + 5 mM MgCl, + 60 mM KCI + 0.3 mg/ml BSA + 0.1% Tween-20.
Lane 3: PBS + 5 mM MgCl, + 60 mM KCI + 0.3 mg/ml BSA + 0.1% Tween-20.

9.17.3 Protocol

The flow cell from March 2014 (experiment 28.03.2014) was reused and no (re)sequencing
was done here. Five concentrations were applied, i.e. 1 nM, 5 nM, 25 nM, 125 nM, 625
nM. Imaging was also performed at 0 nM.

Lane 2:

Equilibration time was 1 h at 20°C. No washing was applied during the protein cycles,
the next concentration level was titrated into the flow cell. Cycle 90: Fluorescently
labeled primer hybridisation (0.01 pM). Cycle 91: dsDNA synthesis. The Protein cycles
were: cycle 92: 0 nM, cycle 93: 1 nM, cycle 94: 5 nM, cycle 95: 25 nM, cycle 96: 125
nM, cycle 97: 625 nM.

Lane 3:

Equilibration time was 30 min at 20°C. No washing was applied during the protein
cycles, the next concentration level was titrated into the flow cell. Cycle 96: Fluorescently
labeled primer hybridisation (0.01 nM). Cycle 97: dsDNA synthesis. The protein cycles
were: cycle 98: 0 nM, cycle 99: 1 nM, cycle 100: 5 nM, cycle 101: 25 nM, cycle 102: 125
nM, cycle 103: 625 nM.

9.17.4 Data analysis

The following sections show the main analysis plots for the experiment 18.08.2014.
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9.17.4.1 Lane 1

Regarding lane 1, there was a problem at the concentrations of 125 nM and 625 nM
as highlighted by Figure [0.17] and Figure [0.18] At concentration 125 nM, brightness is
uniform and clusters seem to be bound unspecifically. At concentration 625 nM, the
images at the G and T channel show a high brightness across the whole tile, and no
individual clusters can be identified. The brightness for the images at the A and C
channel is less pronounced but still very uniform so that individual clusters are hard to
identify. What could have caused this issue? It seems to be a problem with the clusters
on lane 1, perhaps poor primer annealing occurred. Therefore, clusters are only bound
by GCN4 unspecifically and the amount of unbound GCN4 molecules in the background

is increased, especially at the highest concentration.

125 nM, lane 1, tile 30, Achannel 125 nM, lane 1, tile 30, C-channel

125 nM, lane 1, tile 30, G-channel 125 nM, lane 1, tile 30, T-channel

Figure 9.17: Four images from lane 1, tile 30 from the different channels at 125 nM.
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625 nM, lane 1, tile 30, A-channel 625 nM, lane 1, tile 30, C-channel

I : F

625 nM, lane 1, tile 30, Gchannel 625 nM, lane 1, tile 30, T-channel

Figure 9.18: Four images from lane 1, tile 30 from the four different channels at 625 nM.



9.17 Experiment 18.08.2014 199

9.17.4.2 Lane 2

Figure [9.19| shows the main analysis plots for the experiment 18.08.2014 lane 2.

The 8-mer ranking yields ATGACTCA (TGAGTCAT) and ATGAGTCA (TGACTCAT)
as the first two top placed motifs. The preeminent, antagonistic peaks occur at the
following ranks:

rank 110: ATACACTC (GAGTGTAT)

rank 162: AGAGTGTG (CACACTCT)

rank 175: ACACTCTT (AAGAGTGT)

rank 188: CACACTCA (TGAGTGTG)

Those peaks occur at DNA clusters containing the motif (GA)GTGT, however only where
a half-site of the dimeric consensus motif, TGA(C/G), is not involved. Concentration at

1 nM is rather 10 nM (problem with the fluidics).

Saturation is occurring here. Concentration at 1 nM is rather 10 nM (problem with the
fluidics).

The half-sites TGAC or TGAG of the dimer consensus motif 5-TGA(C/G)-TCA-3’ are

enriched.
There is an increase in Hamming distance from the 8-mer consensus ATGACTCA

(TGAGTCAT) observable with increasing ranking depth.
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Figure 9.19: Analyses of the experiment 18.08.2014 lane 2. (a) Intensity course for the
first 200 ranked 8-mers ranked at 125 nM on lane 2. (b) Binding curves for
selected 8-mers ranked at 125 nM on lane 2. (c) Enrichment of half-sites
(TGAC or TGAG) for the first 200 8-mers ranked at 125 nM on lane 2. (d)
Hamming distance from consensus ATGACTCA for the first 200 8-mers

ranked at 125 nM on lane 2.
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9.17.4.3 Lane 3

Figure [9.20] shows the main analysis plots for the experiment 18.08.2014 lane 3.

The 8-mer ranking yields ATGACTCA (TGAGTCAT) and ATGAGTCA (TGACTCAT)
as the first two top placed motifs. The first four antagonistic peaks occur at the following
ranks:

rank 28: AGAGTGTT (AACACTCT)

rank 33: ATACACTC (GAGTGTAT)

rank 56: ACACTCTT (AAGAGTGT)

rank 57: CGAGTGTT (AACACTCG)

Again, as for lane 2, those peaks occur at DNA clusters containing the motif (GA)GTGT,
however only where a half-site of the dimeric consensus motif, TGA(C/G), is not involved.

Concentration at 1 nM is rather 10 nM (problem with the fluidics).
No saturation is occurring here, GCN4 (or at least mOrange) molecules keep aggregating

at the DNA clusters in an equal fashion.
The half-sites TGAC or TGAG of the dimer consensus motif 5-TGA(C/G)-TCA-3’ are

enriched among the first 40 ranked 8-mer motifs but not as strongly as on lane 2, and

(GA)GTGT containing 8-mer motifs are more dominant.
There is an increase in Hamming distances from the 8-mer consensus ATGACTCA

(TGAGTCAT) observable for increasing ranking depth.
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Figure 9.20: Analyses of the experiment 18.08.2014 lane 3. (a) Intensity course for the
first 200 ranked 8-mers ranked at 125 nM on lane 3. (b) Binding curves for
selected 8-mers ranked at 125 nM on lane 3. (c) Enrichment of half-sites
(TGAC or TGAG) for the first 200 8-mers ranked at 125 nM on lane 3. (d)
Hamming distance from consensus ATGACTCA for the first 200 8-mers
ranked at 125 nM on lane 3.
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9.18 Experiment 12.02.2015

In the following section the details regarding the experiment 12.02.2015 are described.

9.18.1 Sample

As sample GCN4 fused with mOrange was used as described previously.

9.18.2 Flow cell buffer

The flow cell buffer was composed of PBS + 5 mM MgCl, + 60 mM KCI + 0.3 mg/ml
BSA + 0.1% Tween-20.

9.18.3 Protocol

The random DNA library N25 was used as described previously. Ten concentrations
were applied, i.e. 0.1 nM, 0.3 nM, 0.8 nM, 2 nM, 6 nM, 17 nM, 50 nM, 135 nM, 375
nM, 1000 nM. Imaging was also performed at 0 nM. Lane 2 and 3 (replicate of lane 2)
were used. Equilibration time was 30 min at 20 °C. No washing was applied during the
protein cycles, the next concentration level was titrated continuously into the flow cell.
Lane 2:

Cycle 31: Fluorescently labeled primer hybridisation (0.1 uM).

Cycle 32: dsDNA synthesis.

The protein cycles were: cycle 33: 0 nM, cycle 34: 0.1 nM, cycle 35: 0.3 nM, cycle 36:
0.9 nM, cycle 37: 2 nM, cycle 38: 6 nM, cycle 39: 17 nM, cycle 40: 50 nM, cycle 41: 135
nM, cycle 42: 375 nM, cycle 43: 1000 nM.

9.18.4 Data analysis

Figure shows the main analysis plots for the experiment 12.02.2015 lane 2.

The 8-mer ranking yields ATGACTCA (TGAGTCAT) and ATGAGTCA (TGACTCAT)
as the first two top placed motifs. There is a steep increase visible in fluorescent intensity
for the top 8-mer motif ATGACTCA (TGAGTCAT) at the concentrations 375 nM and

1000 nM. The motifs (GA)GTGT are only bound unspecifically beyond the 200th rank.
There is no saturation occurring here. During the run there has been a problem with the

fluidics so that the accurate amount of GCN4 was not pumped into the flow cell (135

nM is lower than 50 nM).
The half-sites TGAC or TGAG of the dimer consensus motif 5-TGA(C/G)-TCA-3’ are

enriched.
There is an increase in Hamming distance observable from the 8-mer consensus AT-

GACTCA (TGAGTCAT).
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Figure 9.21: Analyses of the experiment 12.02.2015 lane 2. (a) Intensity course for the
first 200 ranked 8-mers ranked at 125 nM on lane 2. (b) Binding curves for
selected 8-mers ranked at 125 nM on lane 2. (c) Enrichment of half-sites
(TGAC or TGAG) for the first 200 8-mers ranked at 125 nM on lane 2. (d)
Hamming distance from consensus ATGACTCA for the first 200 8-mers
ranked at 125 nM on lane 2.

There is an decrease in cycle 32 regarding the fluorescent signal in the C-channel coming

from the primer with the Alexa-like dye as shown in Figure [9.22
An additional quality control concerning the dsDNA synthese could be applied here by

using a threshold, e.g. 10% quantile, in order to exclude clusters for which the resynthesis
was less efficient (Figure [9.23]).
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Figure 9.22: C-channel signals from cycle 31 and 32 before and after dsDNA synthesis
shown by bar plot of experiment 12.02.2015.
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Figure 9.23: Histogram of cluster intensity differences (cycle 31 minus cycle 32) of exper-
iment 12.02.2015.
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9.19 Experiment 06.03.2015

In the following section the details regarding the experiment 06.03.2015 are described.

9.19.1 Sample

As sample GCN4 fused with mOrange was used as described previously.

0.19.2 Flow cell buffer

The flow cell buffer was composed of PBS + 5 mM MgCl, + 60 mM KCI + 0.3 mg/ml
BSA + 0.1% Tween-20.

9.19.3 Protocol
The flow cell from February 2015 (experiment 12.02.2015) was reused and no (re)sequencing

was done here. Ten concentrations were applied, i.e. 0.1 nM, 0.3 nM, 0.8 nM, 2 nM, 6
nM, 17 nM, 50 nM, 135 nM, 375 nM, 1000 nM. Imaging was also performed at 0 nM.
After the first five concentration steps, denaturation and resynthesis of the second DNA
strand was performed. Equilibration time was 30 min at 20 °C. No washing was applied
during the protein cycles, the next concentration level was titrated into the flow cell.
Lane 2:

Cycle 44: Fluorescently labeled primer hybridisation (0.1 pM). Cycle 45: dsDNA syn-
thesis. The protein cycles were: cycle 46: 0 nM, cycle 47: 0.1 nM, cycle 48: 0.3 nM,
cycle 49: 0.9 nM, cycle 50: 2 nM, cycle 51: 6 nM, cycle 52: denaturation of second DNA
strand, cycle 53: resynthesis of second DNA strand, cycle 54: 17 nM, cycle 55: 50 nM,
cycle 56: 135 nM, cycle 57: 375 nM, cycle 58: 1000 nM.

9.19.4 Data analysis

Figure shows the main analysis plots for the experiment 06.03.2015 lane 2.

The 8-mer ranking yields ATGACTCA (TGAGTCAT) and ATGAGTCA (TGACTCAT)
as the first two top placed motifs. There is a steep increase visible in fluorescent intensity
for the top 8-mer motif ATGACTCA (TGAGTCAT) at the concentrations 375 nM and

1000 nM. The motifs (GA)GTGT are only bound unspecifically beyond the 200th rank.
There is no saturation occurring here.
The half-sites TGAC or TGAG of the dimer consensus motif 5-TGA(C/G)-TCA-3’ are

enriched.
There is an increase in Hamming distance observable from the 8-mer consensus AT-

GACTCA (TGAGTCAT).
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Figure 9.24: Analyses of the experiment 06.03.2015 lane 2. (a) Intensity course for the
first 200 ranked 8-mers ranked at 125 nM on lane 2. (b) Binding curves for
selected 8-mers ranked at 125 nM on lane 2. (c) Enrichment of half-sites
(TGAC or TGAG) for the first 200 8-mers ranked at 125 nM on lane 2. (d)
Hamming distance from consensus ATGACTCA for the first 200 8-mers

ranked at 125 nM on lane 2.
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9.20 Experiment 14.04.2015

In the following section the details regarding the experiment 14.04.2015 are described.

9.20.1 Sample

As sample GCN4 fused with mOrange was used as described previously.

9.20.2 Flow cell buffer

The flow cell buffer was composed of PBS + 5 mM MgCl, + 60 mM KCI + 0.3 mg/ml
BSA + 0.1% Tween-20.

9.20.3 Protocol
The flow cell from February 2015 (experiment 12.02.2015) was reused and no (re)sequencing

was done here. Ten concentrations were applied, i.e. 0.1 nM, 0.3 nM, 0.8 nM, 2 nM,
6 nM, 17 nM, 50 nM, 135 nM, 375 nM, 1000 nM. Imaging was also performed at 0
nM. After the first five concentration steps, denaturation and resynthesis of the second
DNA strand was performed. Lane 2 and 3 (replicate of lane 2) was used. Equilibration
time was 30 min at 20 °C. No washing was applied during the protein cycles, the next
concentration level was titrated into the flow cell.

Lane 2:

Cycle 59: Fluorescently labeled primer hybridisation (0.1 pM). Cycle 60: dsDNA syn-
thesis. The protein cycles were: cycle 61: 0 nM, cycle 62: 0.1 nM, cycle 63: 0.3 nM,
cycle 64: 0.9 nM, cycle 65: 2 nM, cycle 66: 6 nM, cycle 67: denaturation of second DNA
strand, Cycle 68: resynthesis of second DNA strand, cycle 69: 17 nM, cycle 70: 50 nM,
cycle 71: 135 nM, cycle 72: 375 nM, cycle 73: 1000 nM

9.20.4 Data analysis

Figure [9.25] shows the main analysis plots for the experiment 14.04.2015 lane 2.

The 8-mer ranking yields ATGACTCA (TGAGTCAT) and ATGAGTCA (TGACTCAT)
as the first two top placed motifs. There is again a steep increase visible in fluorescent
intensity for the top 8-mer motif ATGACTCA (TGAGTCAT) at the concentrations 375
nM and 1000 nM. In addition, there are spikes occurring at the highest concentrations
375 nM and 1000 nM:

rank 7: TATGAA

rank 9: TATGAA

rank 11: TGTGAA
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rank 13: TATGAA
rank 14: TGTGAA
rank 16: TGTGAA

The motifs (GA)GTGT are only bound unspecifically.
There is no saturation occurring here.
The half-sites TGAC or TGAG of the dimer consensus motif 5-TGA(C/G)-TCA-3’ are

enriched but to a lesser extent since there is the new motif T(A/G)TGAA ranked here.
There is an increase in Hamming distance observable from the 8-mer consensus AT-

GACTCA (TGAGTCAT).
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Figure 9.25: Analyses of the experiment 14.04.2015 lane 2. (a) Intensity course for the
first 200 ranked 8-mers ranked at 125 nM on lane 2. (b) Binding curves for
selected 8-mers ranked at 125 nM on lane 2. (c) Enrichment of half-sites
(TGAC or TGAG) for the first 200 8-mers ranked at 125 nM on lane 2. (d)
Hamming distance from consensus ATGACTCA for the first 200 8-mers
ranked at 125 nM on lane 2.
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