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Zusammenfassung

Gewurzelte phylogenetische Bäume werden häufig in der Biologie dazu verwendet, um den
evolutionären Verlauf bestimmter Spezies zu repräsentieren. Gewöhnlich handelt es sich
dabei um einfache Binärbäume in denen jeder innere Knoten (außer der Wurzel) einen
Eingangsgrad von eins und einen Ausgangsgrad von zwei aufweist und somit lediglich
einfache Speciation Events repräsentieren. In der angewandten Phylogenie jedoch können
Bäume auch innere Knoten mit Ausgangsgrad größer als zwei beinhalten. Dies ist nämlich
genau dann der Fall, wenn in den zugrunde liegenden Daten nicht ausreichend Information
vorhanden ist, um die Reihenfolge bestimmter Speciation Events eindeutig aufzulösen. Die
gängige Art und Weise, um so eine Uneindeutigkeit zu modellieren, besteht darin, nicht-
binäre Knoten (d.h. Knoten mit Ausgangsgrad drei oder mehr) zu verwenden.

Zusätzlich zu solchen Speciation Events gibt es jedoch auch bestimmte biologische Er-
eignisse, die nicht durch einen Baum dargestellt werden können, sondern vielmehr das
generellere Konzept eines gewurzelten phylogenetischen Netzwerkes bzw. Hybridisierungs-
Netzwerkes benötigen. Solch ein verzweigendes Ereignis kann dann ein Hinweis auf hori-
zontalen Gentransfer, Hybridisierung oder Rekombination sein.

Um ein phylogenetisches Netzwerk zu konstruieren, lässt sich jedoch das etwas einfache-
re Konzept eines phylogenetischen Baumes als Grundbaustein wiederverwenden. Genauer
gesagt besteht häufig der erste Schritt darin, für eine bestimmte Menge an Spezies mehre-
re phylogenetische Bäume basierend auf verschiedenen orthologen Genen zu konstruieren.
In einem zweiten Schritt wird dann zunächst eine Menge von gemeinsamen Teilbäumen,
sog. maximum acyclic agreement forests, bestimmt, welche dann letztendlich zu einem
gemeinsamen Hybridisierungs-Netzwerk zusammen gefügt werden. In so einem Netzwerk
können dann sog. Hybridisierungs-Knoten (Knoten mit Eingangsgrad größer gleich zwei)
entstehen, welche potentielle Hybridisierungs-Ereignisse des zugrunde liegenden evoluti-
onären Verlaufs symbolisieren. Da solche Ereignisse jedoch sehr selten sind, sind aus einem
biologischen Blickwinkel besonders diejenigen Netzwerke von großer Bedeutung die eine
minimale Anzahl dieser verzweigenden Ereignisse aufweisen.

Daher kann man, aus mathematischer Sichtweise, das Problem zur Konstruktion solcher
Netzwerke folgendermaßen beschreiben. Für eine gegebene Menge T an gewurzelten phylo-
genetischen Bäume, berechne ein Hybridisierungs-Netzwerk, welches eine minimale Anzahl
an verzweigenden Ereignissen aufweist und jeden Baum aus T beinhaltet. In diesem Zu-
sammenhang sagt man, dass ein Netzwerk N einen Baum T genau dann beinhaltet, falls
man aus N den Baum T durch Löschen bestimmter Kanten und Unterdrücken bestimmter
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Knoten wiedergewinnen kann. Unglücklicherweise ist dies ein sehr schweres Problem (ge-
nauer gesagt liegt es in der Klasse NP-schwer), auch für den einfachsten Fall, falls nämlich
T nur aus zwei Binärbäumen besteht.

Diese Dissertation beschäftigt sich nun mit mehreren Methoden für dieses NP-schwere
Problem. Unser erster Ansatz beschreibt dabei, wie man eine repräsentative Menge mi-
nimaler Hybridisierungs-Netzwerke für zwei Binärbäume berechnen kann [6]. Zu diesem
Zweck, wurde der erste nicht-naive Algorithmus allMAAFs [57] entwickelt, der in der
Lage ist, alle maximum acyclic agreement forests zweier gewurzelter Binärbäume zu be-
rechnen. In einem weiteren Schritt, beschreiben wir mehrere Modifikationen des Algorith-
mus allMAAFs, welche jeweils die Anzahl an Berechnungsschritten deutlich reduziert
und somit die praktische Laufzeit signifikant verbessert [4].

Unser zweite Ansatz beschreibt eine Erweiterung unseres ersten Ansatzes, welcher den
zugrunde liegende Algorithmus nun für mehrere Binärbäume zugänglich macht [2]. Hierzu
verwenden wir den Algorithmus allHNetworks [1], welcher der erste Algorithmus ist
der alle relevanten Hybridisierungs-Netzwerke für mehrere Binärbäume berechnen kann.
Diese Eigenschaft ist daher wünschenswert, da hierdurch eine vernünftige Interpretation
der Netzwerke verbessert (bzw. erst ermöglicht) wird.

Abschließend haben wir wiederum unseren zweiten Ansatz dahingehend erweitert, so
dass dieser nun mit mehreren nicht-binären Bäumen umgehen kann. Um dies zu ermöglichen,
haben wir den Algorithmus allMulMAAFs [5] entwickelt, der nun in der Lage ist, ei-
ne relevante Menge an nonbinary maximum acyclic agreement foests zweier Bäume mit
nicht-binären Knoten zu berechnen.

Jeder unserer Algorithmen wurde des Weiteren in unser benutzerfreundliches Java-
basierende Programm Hybroscale [3] integriert, welches insbesondere frei erhältlich ist und
auf allen gängigen Plattformen funktioniert. Hybroscale besitzt eine graphische Benutze-
roberfläche um Bäume bzw. Netzwerke entsprechend zu visualisieren. Des Weiteren, er-
leichtert es die Interpretation der berechneten Netzwerke, indem es Methoden bereitstellt,
welche die jeweiligen Netzwerke mit zusätzlicher Information versorgen können. Darüber
hinaus, besitzt unser Programm eine auf SQL (Structured Query Language) basierende
Modellierungssprache, um die häufig große Menge an Netzwerke gezielt zu filtern.



Summary

Rooted phylogenetic trees are widely used in biology to represent the evolutionary history of
certain species. Usually, such a tree is a simple binary tree only containing internal nodes
of in-degree one and out-degree two representing specific speciation events. In applied
phylogenetics, however, trees can contain nodes of out-degree larger than two because,
often, in order to resolve some orderings of speciation events, there is only insufficient
information available and the common way to model this uncertainty is to use nonbinary
nodes (i.e., nodes of out-degree of at least three), also denoted as polytomies.

Moreover, in addition to such speciation events, there exist certain biological events
that cannot be modeled by a tree and, thus, require the more general concept of rooted
phylogenetic networks or, more specifically, of hybridization networks. Examples for such
reticulate events are horizontal gene transfer, hybridization, and recombination.

Nevertheless, in order to construct hybridization networks, the less general concept of
a phylogenetic tree can still be used as building block. More precisely, often, in a first
step, phylogenetic trees for a set of species, each based on a distinctive orthologous gene,
are constructed. In a second step, specific sets containing common subtrees of those trees,
known as maximum acyclic agreement forests, are calculated, which are then glued together
to a single hybridization network. In such a network, hybridization nodes (i.e., nodes of
in-degree larger than or equal to two) can exist representing potential reticulate events of
the underlying evolutionary history. As such events are considered as rare phenomena,
from a biological point of view, especially those networks representing a minimum number
of reticulate events, which is denoted as hybridization number, are of high interest.

Consequently, in a mathematical aspect, the problem of calculating hybridization net-
works can be briefly described as follows. Given a set T of rooted phylogenetic trees sharing
the same set of taxa, compute a hybridization network N displaying T with minimum hy-
bridization number. In this context, we say that such a network N displays a phylogenetic
tree T , if we can obtain T from N by removing as well as contracting some of its nodes
and edges. Unfortunately, this is a computational hard problem (i.e., it is NP-hard), even
for the simplest case given just two binary input trees.

In this thesis, we present several methods tackling this NP-hard problem. Our first
approach describes how to compute a representative set of minimum hybridization net-
works for two binary input trees [6]. For that purpose, our approach implements the first
non-naive algorithm — called allMAAFs — calculating all maximum acyclic agreement
forests for two rooted binary phylogenetic trees on the same set of taxa [57]. In a sub-



xx SUMMARY

sequent step, in order to maximize the efficiency of the algorithm allMAAFs, we have
developed additionally several modifications each reducing the number of computational
steps and, thus, significantly improving its practical runtime [4].

Our second approach is an extension of our first approach making the underlying algo-
rithm accessible to more than two binary input trees [1]. For this purpose, our approach
implements the algorithm allHNetworks [2] being the first algorithm calculating all
relevant hybridization networks displaying a set of rooted binary phylogenetic trees on the
same set of taxa, which is a preferable feature when studying hybridization events.

Lastly, we have developed a generalization of our second approach that can now deal
with multiple nonbinary input trees. For that purpose, our approach implements the first
non-naive algorithm — called allMulMAAFs — calculating a relevant set of nonbinary
maximum acyclic agreement forests for two rooted (nonbinary) phylogenetic trees on the
same set of taxa [5].

Each of the algorithms above is integrated into our user friendly Java-based software
package Hybroscale [3], which is freely available and platform independent, so that it
runs on all major operating systems. Our program provides a graphical user interface
for visualizing trees and networks. Moreover, it facilitates the interpretation of computed
hybridization networks by adding specific features to its graphical representation and, thus,
supports biologists in investigating reticulate evolution. In addition, we have implemented
a method using a user friendly SQL-style modeling language for filtering the usually large
amount of reported networks.



Chapter 1

Introduction

In this chapter, we first introduce the concept of phylogenetic trees and networks as well
as processes of reticulate evolution and then briefly describe all important related works
regarding the computation of hybridization networks. Next, we give all basic notations
that are used throughout this work. Finally, we give an outline of this thesis by giving
a short summary of each chapter. Additionally, we discuss the correlations of published
work and papers in preparation with the results of this thesis.

1.1 Phylogenetic trees and networks

Phylogenetic analysis aims at uncovering the evolutionary relationship between contempo-
rary species in order to shed light on how biological diversity has evolved on earth. The
principal tools that are used for this purpose are based on the concept of phylogenetic trees.
However, as we will discuss later, this concept has certain limitations and, thus, in order
to expand the scope of evolutionary thinking, the application of the more general concept
of phylogenetic networks has become more and more important in molecular evolution.

Charles Darwin is considered to be the first scientist that started to analyze evolu-
tionary history using phylogenetic trees and, thus, is seen as the founder of evolutionary
biology. His famous book On the Origin of Species by Means of Natural Selection (1859)
[22] contains a sketch of a bifurcating phylogenetic tree modeling the evolutionary rela-
tionship among certain species. From there on, the concept of phylogenetic trees has been
developed further so that now it has become widely accepted and dominates the recognition
and interpretation of patterns in genetic data [7].

Roughly speaking, such a tree is a directed acyclic graph, in which each node of out-
degree zero represents a set of contemporary species, each node of out-degree unequal to
zero a speciation event, and the root the lowest common ancestor of all species under
examination. Note that in Section 1.4 we give a formal definition of such trees.

Whereas, at the beginning, phylogenetic trees were calculated in respect to morpho-
logical characters, nowadays the inference of such trees is typically based on molecular
sequences, i.e., nucleotide or amino acid sequences. This is mainly due to the fact that
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sequencing technologies have become more and more efficient. Hence, more and more
scientist can afford to sequence their desired parts of a genome, which they consider as
being appropriate for investigating evolution. Moreover, today there exist several sequence
databases, e.g., Genebank [10] or UniProt [21], that are publicly available so that scien-
tist can simply download particular sequences avoiding the rather complex application of
sequence technology.

In the last decades, researchers have put a lot of time and effort in developing methods
calculating phylogenetic trees trying to reconstruct the past of a set of contemporary taxa,
which is just an umbrella term for species, individuals, genes or other taxonomic units.
Apart from the fact that those methods are either based on morphological characters or
molecular sequences, following the book of Huson et al. [33], one can distinguish between
four other types.

Distance-based methods. Those methods are based on pairwise evolutionary dis-
tances between the given set of taxa, which is often calculated under the assumption of
certain evolutionary models. Usually, those methods provide a good practical running
time. However, in order to apply such methods, the given data has to fulfill certain as-
sumptions, which is, however, not often the case. Nevertheless, those methods are widely
used in order to obtain a first approximation, which is then elaborated on by applying more
sophisticated methods. The most popular distance methods are Neighbor Joining (NJ) [53]
as well as the Unweighted Pair Group Method with Arithmetic mean (UPGMA) [58].

Maximum parsimony methods. A maximum parsimony method is characterized
by always looking for the simplest explanation. Thus, tree building methods that are based
on this concept try to construct those trees containing a minimum number of evolutionary
events necessary to explain the development of different taxa. Due to the large number
of possible trees [25], methods taking all possible trees into account are usually infeasible.
Thus, in practice heuristic methods are applied following a certain strategy for exploring
the underlying tree space. This, for example, can be done by adding the set of taxa step-
wise beginning with the simplest tree containing only two taxa [26] or by starting with
a precomputed tree already containing all taxa (e.g., a star), which is then modified by
certain tree operations like branch swapping methods [62] for instance .

Maximum likelihood methods. The goal of these methods is to find a tree with
edge lengths maximizing a certain likelihood. More precisely, this likelihood is determined
by taking the topology of a tree, its edge lengths, and a certain evolutionary model, e.g.,
the Jukes-Cantor model of evolution [36], into account. Such methods have the advantage
that through the evolutionary model one can include some previous knowledge of under-
lying processes that generated the given data. As in the case of parsimony, these methods
cannot afford it to consider all kinds of possible trees and, thus, again heuristic methods
are applied in practice. Two widely used maximum likelihood programs are for example
PhyML [29] and RAxML [60].
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Bayesian methods. In contrast to all so far introduced methods, Bayesian methods
are more sophisticated. These methods essentially aim at sampling a set of appropriate
trees, which are then processed further in a certain way. Therefor, the sampling of those
trees is usually done by the Markov Chain Monte Carlo approach constructing a sequence
of trees, in which each tree is slightly modified in terms of its predecessor. The decision
whether a tree Ti is accepted in terms of a previously selected tree T ′, is based on the ratio
of the two posterior probabilities corresponding to Ti and T ′. Again, this posterior prob-
ability takes the tree topology, its edge lengths, and an evolutionary model into account.
Moreover, the way the trees are modified in the Markov chain is usually done by applying
certain modified branch swapping methods. As example, MrBayes 3 [52] is a widely used
software using such a Bayesian approach.

Notice that, as it is the case for phylogenetic networks, such tree building methods
can construct either rooted or unrooted trees. Since for a phylogenetic analysis, one needs
an evolutionary direction, one has to turn unrooted trees into rooted trees, which can be
simply done by either declaring one of its inner nodes to be the root or by inserting a root
into one of its edges. Notice, however, that the placement of the root is not a trivial step
and, thus, in order to determine the right location there have been proposed several ways
[47]. Given a set of taxa (the so-called ingroup), a common strategy is to add a further
set of closely related taxa (the so-called outgroup) so that, if in the calculated unrooted
tree both groups are separated, one can place the root into the edge connecting those two
groups.

It turns out that the concept of phylogenetic trees is an inherent part of our research
culture and is actually still the preferred way for investigating evolution. This concept,
however, is often insufficient as a simple tree diagram cannot be used in order to represent
certain more complex signals of the underlying data. Following the book of Morrison [48],
those signals can be caused by two fundamental situations arising from estimation errors
as well as biological conflicts.

Estimation errors. Estimation errors include all kind of problems occurring dur-
ing the calculation of phylogenetic trees, which, for example, can be due to inaccurate
data, inappropriate sampling, or model mis-specification. More specifically, one can ob-
tain inaccurate data from poor laboratory techniques including sequence contamination
or PCR-mediated recombination. Moreover, inappropriate sampling affects the choice of
the data, which can be inappropriate if certain taxa are either too closely related or too
evolutionary distant. Lastly, based on the respective tree-building method, model mis-
specification can happen if the wrong evolutionary model has been chosen or at least some
of its parameters have been set to inappropriate values.

Biological conflicts. Biological conflicts can be due to two reasons dealing with anal-
ogy and homology. More specifically, analogy refers to the observation that two quite
similar taxa must not have evolved by simple evolutionary descent, which for example can
happen if there are two different origins for the evolution of certain characters (known as
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parallelism) or if two similar characters have evolved separately to acquire a certain func-
tionality (known as convergence). Furthermore, homology refers to certain processes pro-
voking reticulate evolution, e.g., hybridization, introgression, recombination, and horizontal
gene transfer (HGT). As those reticulation events are actually the motivation regarding
phylogenetic networks, we will describe each of them separately in Section 1.2.

Now, when constructing several trees for a set of taxa based on different molecular
sequences, e.g., different homologous genes, due to the problems above incongruent trees,
each describing a different evolutionary scenario, can arise. Thereby trees that are affected
from estimation errors as well as biological conflicts dealing with analogy are trees that
are obviously inappropriate for describing evolutionary processes and, thus, are of no in-
terest here. However, each tree affected by biological conflicts dealing with homology may
represent a piece of a puzzle of the true underlying evolutionary history and, thus, has to
be taken into account, which is, however, only possible using the more general concept of
phylogenetic networks [30]. Notice, however, that usually much time and effort has to be
spent in order to recognize those trees that are relevant for investigating evolution.

Phylogenetic networks are generalizations of phylogenetic trees that can be used to
analyze data whose evolution additionally contains reticulate processes. In contrast to
phylogenetic trees, however, investigating evolution under the concept of phylogenetic net-
works is not of widespread use even though there have been developed several methods
available for their computation [34]. An important reason therefor may be that, until now,
the research of phylogenetic networks is not well structured, which means there is a lot of
confusion in the literature regarding the classification of these networks or the respective
methods used for their computation. First of all, as it is the case for phylogenetic trees,
there exist rooted and unrooted networks. Moreover, depending on how networks have
been generated or should be interpreted, one can distinguish between implicit and explicit
networks [32]. Unfortunately, for these kind of networks two further terms have been in-
troduced; networks classified by these two categories are also called abstract or explicit
networks [46], and data-display or evolutionary networks [48].

Implicit networks. Mainly all implicit (or abstract or data-display) networks are
unrooted networks that are in general used to display incompatibilities of the underly-
ing data. In contrast to rooted networks, unrooted networks do not explicitly describe
evolutionary processes and, thus, are rather inappropriate regarding the investigation of
reticulate evolution. One of the most important unrooted phylogenetic networks are Split
networks that can be derived either from distances, trees, sequences, or quartets. More
information about these kinds of networks as well as a brief overview of other types of
unrooted phylogenetic networks can be found in the work of Huson and Scornavacca [34].
One may notice that the concept of unrooted phylogenetic networks has been developed
quite well so far, which means that there exist a lot of methods as well as user-friendly
software packages, e.g., SplitsTree [31], that are widely used in phylogenetic analysis [34].
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Explicit networks. Explicit (or evolutionary) networks are rooted phylogenetic net-
works directly outlining the evolution of certain taxa by explicitly indicating reticulation
events. There exist a lot of algorithms, as discussed in Section 1.3, dealing with the con-
cept of rooted phylogenetic networks. Most of those algorithms, however, are only so-called
proof-of-concept methods not having been integrated into user-friendly software packages
so far and, consequently, are not widely used in laboratories for investigating reticulate
evolution. Recently, this situation has slightly improved as now some appropriate software
packages integrating certain algorithms are available, e.g., Dendroscope [35] and Phy-
loNET [63]. It will, however, still take some time and effort to develop further appropriate
methods in order to encourage biologists to investigate evolution using rooted phylogenetic
networks.

1.2 Process of reticulate evolution

Calculating phylogenetic trees for a set of taxa based on different molecular sequences, e.g.,
genes, can lead to incongruent phylogenetic trees (henceforth denoted as gene trees). As
previously discussed, the reasons leading to different gene trees are estimation errors and
biological conflicts, which again can be due to reasons dealing with analogy and homology.
Whereas estimation errors and problems due to analogy can be simply avoided by carefully
creating and checking the underlying data, problems occurring due to homology have to
be taken into account when investigating evolutionary processes. More precisely, in this
case, incongruent gene trees can be taken as evidence that reticulation events may have
occurred during the underlying evolutionary history.

Following the work of Morrison [48], one can distinguish between two different types of
reticulation events; those in which horizontal gene flow has actually taken place and those
occurring due to other circumstances. Whereas for the first type, a network containing
reticulation events is the common way for displaying evolutionary history, the second sce-
nario is usually displayed by presenting different trees all being contained in a superior tree
— a so-called species tree. Thus, when computing rooted phylogenetic networks for a set
of incongruent gene trees, in a first step one has to check due to which reasons those trees
differ. This means, in particular, depending on the respective network-building method,
one should check carefully if the underlying genetic data fulfills the required assumptions.

In the following, we first introduce two scenarios — known as Deep Coalescence (resp.
Incomplete Lineage Sorting) or Duplication-loss — that can lead to incongruent gene trees
being part of an underlying species tree and, thus, should not be reconciled into phyloge-
netic networks. Notice that there exist specific methods, e.g., iGTP [16] or PhyloNET
[63], calculating species trees from discordant gene trees by taking the likelihood of these
two scenarios into account.

Deep coalescence (or incomplete lineage-sorting). Regarding a gene tree, each
node representing a speciation event is also called coalescent event as by going backward
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in time such an event coalesce different ancestral populations of certain contemporary
species. Now, regarding the corresponding species tree embedding such a gene tree, two
ancestral populations of certain contemporary species can pass certain speciation events,
which means that, by going backward in time, those populations coalescence deeper than
the actually nearest speciation event. This scenario, denoted as deep coalescence, can
happen due to mutations leading to alternative forms of the same gene (called alleles) in
ancestral populations, which is shortly denoted as ancestral polymorphism. If those alleles
are sorted incompletely into several descendant species, two alleles of two distant species
can be more similar compared to other parts of the genomes and, consequently, the re-
spective gene tree may differ from the species tree. Notice that the larger the branches of
a species tree (referring to the size of the respective ancestral population) and the shorter
the branches (referring to short divergent times) the more unlikely a gene tree calculated
for random genes matches the species tree [23].

Duplication-loss. The same scenario, as it is the case for deep-coalescence, can hap-
pen if genes are duplicated or lost. In this context, alternative forms of genes can arise if
duplicated genes diverge by time simply due to different mutation patterns. Moreover, by
loosing some of these alternative forms of a gene, these gene copies can be sorted incom-
pletely into descendant species, which again can lead to discordant gene trees.

Next, we will introduce some reticulation events in which horizontal gene flow actu-
ally takes place between certain unrelated organisms. Notice that this can happen either
between organisms that are closely related (introgression) or evolutionary more distant
(hybridization). Moreover, it can affect parts of a genome that are rather small (recombi-
nation) or large (genome fusion). Hence, each reticulation event displayed by a phylogenetic
network can be due to different reasons and it is the task of the respective scientists to
give a reasonable interpretation of these events.

Recombination. Recombination involves the rearrangement of genetic material, e.g.,
by producing new combinations of certain genes (or alleles). In eukaryotes, for example,
recombination automatically happens during meiosis as here, on the one hand, new com-
binations of the parental set of chromosomes are created and, on the other hand, genetic
materiel of different chromosomes is exchanged through crossing over. Recombination,
however, is not restricted to meiosis but can also happen during mitosis.

Horizontal gene transfer. The main mechanisms being responsible for horizontal
gene transfer are in general all those biological processes transporting small genetic material
from one organism to a different one including processes like transformation, transduction,
and conjugation. The technique is often used, for example, by bacteria cells to exchange
particular genes increasing the resistance against certain drugs, e.g., antibiotica [43]. Thus,
horizontal gene transfer is supposed to play an important role especially in the evolution
of bacteria.
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Genome fusion. Genome fusion is a phenomenon that is assumed to happen quite
rarely. However, it is considered to have played an important role in the origin of certain
eukaryotes (as, for instance, proposed by the endosymbiotic theory).

Introgression. Introgression takes place if two distinct populations produce common
offspring which then again reproduces with individuals from one of both parental popula-
tions (known as backcrossing). As a consequence, regarding the genetic material from those
populations, introgression takes place from the one into the other population by gradually
exchanging parts of their genomes.

Hybridization. In contrast to introgression, hybridization takes place between evo-
lutionary more distant individuals, i.e., individuals belonging to different species. More
precisely, recombinational or homoploid hybrid speciation is a mechanism affecting evo-
lution by merging a sizable percentage of genomes of different species [45]. It has been
discovered especially in plants [51, 59], but also in certain animals [56]. If two individuals
each belonging to different species hybridize, a new species, containing genes from both
parental individuals, can arise under the following certain circumstances. First of all, the
resulting hybrid has to produce viable gametes, which is often a problem due to the two
genetically different parental sets of chromosomes preventing a correct meiotic pairing.
Second, if these two sets are similar enough and, thus, the hybrid is able to produce any
progeny, its early recombinants have to find and successfully colonize its own unexploited
niche that is different from either of its parents, which ensures a reduction of the gene flow
between its parental genotypes. Due to these circumstances, homoploid hybrid speciation
is considered as a rare phenomenon. However, there exist studies indicating that still about
10% of animal species are involved in hybridization (or introgression) [44].

1.3 Related work

This thesis deals with the computation of explicit (or evolutionary) networks, i.e., rooted
phylogenetic networks outlining the evolution of certain taxa by explicitly indicating reticu-
lation events. Those networks can be derived from various kinds of data involving clusters,
characters, trees, and triplets or quartets [64]. In the following, however, we will only
briefly describe those related work dealing with one certain type of rooted phylogenetic
network, namely so-called minimum hybridization networks. A good overview of other
types can be found in the survey of Huson and Scornavacca [34] as well as in the book of
Morrison [48]. Moreover, a detailed description dealing with algorithms and applications
of all types of rooted (as well as unrooted) phylogenetic networks can be found in the book
of Huson et al. [33].
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1.3.1 Hybridization Networks

Hybridization networks have originally been developed with respect to hybridization events
merging genomes of different parental species. Its nomenclature, however, can be quite
misleading as those networks can also model other types of reticulation events, e.g., those
listed in Section 1.2. This means, in particular, when giving an interpretation of each
reticulation event within a hybridization network, one should not only take hybridization
events into account.

Hybridization networks are calculated for a set of rooted phylogenetic trees. More pre-
cisely, following the parsimonious principle, the objective of each mathematical method is
to compute a rooted phylogenetic network displaying the set of input trees by inferring a
minimum number of hybridization events (a formal definition will be given in Section 1.4).
Often, a method solving this task focuses on two parts including the computation of sets
of subtrees being contained in each of the input trees (so-called acyclic agreement forests)
and the reattaching of these subtrees back together so that the resulting network displays
each input tree. Consequently, there exist methods only dealing with the first part, the
computation of the minimum number of hybridization events, shortly denoted as mini-
mum hybridization number, necessary for reconciling the set of input trees into a rooted
phylogenetic network.

Moreover, given only two input trees, the so-called rooted subtree prune and regraft
distance, or rSPR-distance for short, describes a lower bound of the hybridization number.
More specifically, the rSPR-distance of two phylogenetic trees T1 and T2 on the same set
of taxa denotes how often one has to detach a subtree from one of those trees, say T1, and
reattach it to a different location in order to receive T2. As the set of subtrees that has to
be relocated fulfills most of the properties of an acyclic agreement forest, this problem is
closely related to the problem of calculating minimum hybridization networks [12].

1.3.2 Inferring hybridization networks

Unfortunately, the problem of inferring minimum hybridization networks is a computation-
ally hard task, even for the simplest case given only two rooted binary phylogenetic trees
as input [13]. Thus, depending on the number and the type (binary/nonbinary) of input
trees, the problem gets more and more complicated. Consequently, most of the related
work only deals with two binary input trees, whereas for other input types there so far
only exist none or at least only few works addressing these more complex problems. Notice
that, in this thesis, we close this gap by presenting several algorithms being able to deal
with all various kinds of input trees, especially those including more than two input trees
containing nonbinary nodes.

Two binary trees. Important theoretical work dealing with hybridization networks
for two rooted binary phylogenetic trees is the work of Baroni et al. [8, 9] and Bordewich et
al. [11, 12, 13]. Among other things, these works show that the problem is NP-hard but still
fixed-parameter tractable, which means that the problem is exponential in some parameter
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related to the problem itself, namely the hybridization number, and only polynomial in
the size of the input trees.

Moreover, based on two binary input trees, there have been developed several algorithms
calculating the rSPR-distance and the hybridization number [57, 69, 70, 71] as well as
minimum hybridization networks [6]. Tools exploiting these algorithms are rSPR [70, 71]
for the computation of the rSPR-distance as well as UltraNet [19] and Dendroscope
[35] for the computation of minimum hybridization networks as well as exact hybridization
numbers.

Furthermore, there exist heuristics for the computation of the exact hybridization num-
ber, e.g., the program CycleKiller [68] providing a 2-approximation algorithm, that can
handle computational more complex instances (however, not guaranteeing the most parsi-
monious solution).

Multiple binary trees. Given more than two binary input trees, the problem still
remains fixed-parameter tractable as recently shown by van Iersel and Linz [67]. So far,
however, there exists only one method, namely the program PIRN [72, 73], calculating min-
imum hybridization networks for more than two rooted binary phylogenetic trees. In most
cases, however, PIRN runs only reasonable efficient if the inferred number of hybridiza-
tion events is relatively small as indicated by an upcoming simulation study presented in
Section 3.5.

Two nonbinary trees. The only proper work dealing with the computation of min-
imum hybridization networks for two rooted nonbinary trees is the work describing the
concept of the program TerminusEst [49]. Moreover, there also exists an implementa-
tion in Dendroscope calculating several hybridization networks for two nonbinary trees.
So far, however, there does not exist a proper description of its underlying Autumn algo-
rithm.

Again, there exist heuristics for the computation of the exact hybridization number,
e.g., the program nonbinaryCycleKiller [68] providing a 2-approximation algorithm,
that can handle computational more complex instances (however, not guaranteeing the
most parsimonious solution).

Multiple nonbinary trees. To our knowledge, so far there does not exist any related
work addressing the computation of minimum hybridization networks for multiple rooted
nonbinary trees.

Notice that most of the presented methods, except Dendroscope [35], are only so-
called proof-of-concept methods, which have not yet been integrated into user-friendly soft-
ware packages providing a graphical user-interface. Moreover, each of the so far existing
methods calculating minimum hybridization networks are ignoring the fact that such a
network is typically not unique. This means, in particular, that those methods only report
one (or sometimes at least a couple) of hybridization networks. In order to investigate
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reticulate evolution, however, biologists are interested in all of those networks, since only
then it makes sense to apply filtering techniques for testing particular hypotheses.

In the upcoming part of this thesis we will present algorithms calculating minimum
hybridization networks for all various kinds of input trees. Moreover, in Chapter 5 we
will present a user-friendly software package, called Hybroscale [3], integrating these
algorithms as well as giving support in analyzing the set of reported networks.

1.4 Basic notations

In this section, the basic notation and terminology is given that is used throughout this
thesis. Notice that most of these definitions principally follow those given in the work of
Huson et al. [33].

Graphs. A graph G = (V,E) consists of a finite set of nodes V and a finite set of edges
E, in which each edge e of E is represented by a set {u, v} with u, v ∈ V . Given such an
edge e = {u, v}, both nodes u and v are called the endpoints of e and we say e connects u
and v. In general, one assumes that in a graph G two nodes are connected by at most one
edge and there is no edge connecting the same node. More specifically, this means that in
such a simple graph there does neither exist multi-edges nor self-loops.

Directed graphs. A directed graph (or digraph) G = (V,E) consists of a finite set of
nodes V and a finite set of edges E, in which each edge e of E is represented by a tuple
(u, v) with u, v ∈ V . Given such an edge e = (u, v), we say that e is directed from its
source u to its target v. Moreover, in such a case we say e is an out-going edge of u and an
in-going edge of v. Additionally, the in- and out-degree of a node v, denoted by δ−(v) and
δ+(v) for short, refers to the number of its in- and out-going edges, respectively.

Given a directed graph G = (V,E), a path (or undirected path) P of length k leading
from v0 to vk is a sequence of nodes and edges (v0, e0, v1, e1, . . . , ek−1, vk) in which the two
nodes vi and vi+1, with 0 ≤ i < k, are endpoints of the edge ei. If P is a directed path,
additionally each edge ei in P , with 0 ≤ i < k, has to be directed from vi to vi+1. In order
to ease reading, throughout this thesis we will omit the edges of such a path P so that
a path is simply denoted by a sequence of nodes. Now, given such a directed path P of
length k, we say that P is a directed cycle if v0 equals vk and we say a directed graph is
acyclic if it does not contain any directed cycles. Moreover, we say G is (weakly) connected
if, by replacing all of its directed edges by undirected edges, for each pair of nodes u and
v of the resulting undirected graph there exists a path leading from u to v.

Throughout this thesis, we will apply specific modifications to directed graphs which
is done basically by deleting nodes and edges. Whereas an edge can be removed from a
graph without applying further modifications, a node is deleted by first removing all of its
in- and out-going edges and then by removing the node itself. A further modification is
suppressing nodes of both in- and out-degree 1 which is done as follows. Let v be such a
node of in- and out-degree 1 where (u, v) and (v, w) refers to its in- and outgoing edge,
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respectively. Then, v is suppressed by first inserting a new edge (u,w) connecting the two
nodes u and w and then by deleting v (together with removing its in- and out-going edges).

Phylogenetic trees. A rooted phylogenetic X -tree (or a rooted phylogenetic tree on
X ) T is a directed acyclic connected graph whose edges are directed from the root to the
leaves as defined in the following. There is exactly one node of in-degree 0, denoted as the
root of T , and no nodes of both in- and out-degree 1. The set of nodes of out-degree 0 is
called the leaf set of T and is labeled one-to-one by the taxa set X , also denoted by L(T ).
Additionally, given a set F of rooted phylogenetic trees, by L(F) we refer to the union of
each taxa set L(F ) of each tree F in F . Here, the taxa set X usually consists of particular
species or genes whose evolution is outlined by T . The tree T is called binary if all of its
nodes, except the root, provide an in-degree of 1 and if all of its nodes, except all leaves
(the so-called inner or internal nodes) provide an out-degree of 2. Otherwise, in order to
emphasize that a tree T can contain inner nodes of out-degree larger than 2, we call T a
multifurcating or nonbinary tree.

Next, given a node v of a rooted phylogenetic X -tree T , by T (v) we refer to the subtree
rooted at v containing all nodes and edges that can be reached from v. Moreover, the label
set L(v) refers to the taxa set of T (v). We will also call this label set L(v) the cluster of v,
shortly denoted by CT (v) (or C(v)). In addition, the set of clusters of T , denoted by C(T ),
consists of all clusters represented by each node.

Given a rooted phylogenetic X -tree T , let u and v be two nodes such that there is a
directed path leading from u to v. Then, we say u is an ancestor of v and v is an descendant
of u. Moreover, the lowest common ancestor of T in terms of a taxa set X ′ ⊆ X , denoted
by LCAT (X ′) for short, is the node v in T with X ′ ⊆ L(v) such that there does not exist
another node v′ in T with X ′ ⊆ L(v′) and L(v′) ⊆ L(v). If there is an edge directed from a
node u to a node v, we say that u is a parent of v and v is a child of u. Consequently, the
children of a node u are those nodes being a target of an outgoing edge of u. Note that,
if T is a binary tree, each inner-node has precisely two children and each node except the
root precisely one parent.

Now, based on a rooted phylogenetic X -tree T , throughout the thesis we will make
use of the following specific kinds of subtrees each being contained in T in a certain way.
Let X ′ be a set of taxa with X ′ ⊆ X , then, by T (X ′) we refer to the minimal connected
subgraph of T only containing those leaves that are labeled by a taxon of X ′. A restriction
of T by X ′, shortly denoted by T |X ′ , is a rooted phylogenetic tree that is obtained from
T (X ′) by suppressing each node of both in- and out-degree 1. Moreover, we say that a
rooted binary phylogenetic X ′-tree T ′ is a pendant subtree of T if we can detach T ′ from
T by deleting exactly one of its edges. In addition, let P be a path in T and let e = (u, v)
be an edge with u ∈ V (P) and v 6∈ V (P). Then, we say the subtree T (v) rooted at v is a
pendant subtree lying on P .

Phylogenetic networks. A rooted phylogenetic network N on X is a rooted connected
digraph whose edges are directed from the root to the leaves as defined in the following.
There is exactly one node of in-degree 0, namely the root, and no nodes of both in- and
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out-degree 1. The set of nodes of out-degree 0 is called the leaf set of N and is labeled
one-to-one by the taxa set X , also denoted by L(N). In contrast to a phylogenetic tree,
such a network may contain undirected but not any directed cycles. Consequently, N can
contain nodes of in-degree larger than or equal to 2, which are called reticulation nodes.
Moreover, each edge that is directed into such a reticulation node is called reticulation edge.

Representation of trees and networks. In order to ease reading, throughout the
thesis we will draw each tree and network from top to bottom with the root being at the
top and the leaves at the bottom. Moreover, as in such a representation each edge is auto-
matically direct downwards, we will draw each edge by a simple line without an arrowhead
denoting its direction. Additionally, we will adopt a frequently used convention that each
reticulation node of a phylogenetic network with in-degree of at least 2 has out-degree 1.
Note that this is not a necessary property of a phylogenetic network but helps the reader
to distinguish between reticulation nodes and other nodes within the graph.

1.4.1 Further definitions for binary trees

In this section, we give further definitions referring to binary phylogenetic trees.

Hybridization Networks. A hybridization network N for a set T of rooted binary
phylogenetic X ′-trees, with X ′ ⊆ X , is a rooted phylogenetic network on X displaying
T (i.e., contains an embedding of each tree T in T ). More precisely, this means that for
each tree T in T there exists a set E ′ ⊆ E(N) of reticulation edges referring to T . More
specifically, this means that T can be derived from N by conducting the following steps.

(1) First, delete each reticulation edge from N that is not contained in E ′.

(2) Then, remove each node whose corresponding taxon is not contained in X ′.

(3) Next, remove each unlabeled node of out-degree 0 repeatedly.

(4) Finally, suppress each node of both in- and out-degree 1.

From a biological point of view, this means that N displays T (i.e., contains an embed-
ding of T ) if each speciation event of T is reflected by N . Moreover, each internal node
of in-degree 1 represents a speciation event and each internal node providing an in-degree
of at least 2 represents a reticulation event or, in terms of hybridization, a hybridization
event. This means, in particular, that such a latter node represents an individual whose
genome is a chimaera of several parents. Thus, such a node v of in-degree larger than or
equal to 2 is called hybridization node (or reticulation node) and each edge directed into
v is called hybridization edge (or reticulation edge). Moreover, each edge that is not a
hybridization edge is called tree edge.
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Now, based on those hybridization nodes, the reticulation number r(N) of a hybridiza-
tion network N is defined by

r(N) =
∑

v∈V :δ−(v)>0

(
δ−(v)− 1

)
= |E| − |V |+ 1, (1.1)

where V denotes the node set and E the edge set of N . Next, based on the definition
of the reticulation number, for a set T of phylogenetic X -trees the (minimum or exact)
hybridization number h(T ) is defined by

h(T ) = min{r(N) : N is a hybridization network displaying T }. (1.2)

Lastly, we call a hybridization network N for a set T of rooted binary phylogenetic X -trees
a minimum hybridization network, if r(N) = h(T ).

Notice that the computation of the hybridization number for just two rooted binary
phylogenetic X -trees is an NP-hard problem [14] which is, however, still fixed-parameter
tractable [13]. More specifically, this means that the problem is exponential in some param-
eter related to the problem itself, namely the hybridization number, but only polynomial
in the size of the input trees, which is an important feature facilitating the development of
practical algorithms.

Forests. Let T be a rooted nonbinary phylogenetic X -tree T . Then, we call any
set of rooted nonbinary phylogenetic trees F = {F1, . . . , Fk} with L(F) = X a forest on
X , if we have for each pair of trees Fi and Fj that L(Fi) ∩ L(Fj) = ∅. Moreover, if addi-
tionally for each component F in F the tree T |L(F ) equals F , we say that F is a forest for T .

Binary agreement forests. For technical purpose, the definition of agreement forests
is based on two rooted binary phylogenetic X -trees T1 and T2 whose roots are marked by
a unique taxon ρ 6∈ X , which can be done in two different ways as follows.

• Either, let ri be the root of the tree Ti with i ∈ {1, 2}. Then, we first create a new
node vi labeled by a new taxon ρ 6∈ X and then attach this node to ri by inserting
the edge (vi, ri).

• Or, again let ri be the root of the tree Ti with i ∈ {1, 2}. Then, we first create a new
node vi as well as a new leaf `i labeled by a new taxon ρ 6∈ X and then attach these
nodes to ri by inserting the two edges (vi, ri) and (vi, `i).

In both cases, v1 and v2 is the new root of T1 and T2, respectively. Moreover, since we
consider ρ as being a new taxon, the taxa set of both trees is X ∪ {ρ}.

Now, assuming we have given two trees T1 and T2 whose roots are marked by a
unique taxon ρ, then, a binary agreement forest for T1 and T2 is a set of components
F = {Fρ, F1, . . . , Fk−1} on X ∪ {ρ} satisfying the following properties.

(1) Each component Fi with taxa set Xi equals T1|Xi and T2|Xi .
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(2) There is exactly one component, denoted as Fρ, with ρ ∈ L(Fρ).

(3) Let Xρ,X1, . . . ,Xk−1 be the taxa sets of the components Fρ, F1, . . . , Fk−1. All trees
in {T1(Xi)|i ∈ {ρ, 1, . . . , k − 1}} and {T2(Xi)|i ∈ {ρ, 1, . . . , k − 1}} are node disjoint
subtrees of T1 and T2, respectively.

In order to ease reading, throughout the thesis we will call a binary agreement forest
simply an agreement forest. Moreover, we call an agreement forest a maximum agreement
forest, if this agreement forest is of minimal size. This means, in particular, that there
does not exist another set of components of smaller size satisfying the conditions of an
agreement forest listed above.

Lastly, there is another important property an agreement forest can satisfy. We call an
agreement forest F for two rooted binary phylogenetic X -trees T1 and T2 acyclic, if there
is no directed cycle in the underlying ancestor-descendant graph AG(T1, T2,F), which is
defined as follows. First, this graph consists of nodes each corresponding to precisely one
component of F . Moreover, two different nodes Fi and Fj of this graph are connected via
a directed edge (Fi, Fj), if,

(i) regarding T1, the root of T1(Xi) is an ancestor of the root of T1(Xj)

(ii) or, regarding T2, the root of T2(Xi) is an ancestor of the root of T2(Xj),

where Xi ⊆ X and Xj ⊆ X refers to the taxa set of the two components Fi and Fj, re-
spectively. Again, we call an acyclic agreement forest consisting of a minimum number
of components a maximum acyclic agreement forest. Notice that for a maximum acyclic
agreement forest containing k components there exists a hybridization network with hy-
bridization number k − 1 [8]. This means, in particular, if a maximum acyclic agreement
forest for two rooted binary phylogenetic X -trees T1 and T2 contains only one component,
T1 equals T2.

Acyclic orderings. Given an agreement forest for two rooted binary phylogenetic
X -trees T1 and T2, then, if F is acyclic and, thus, AG(T1, T2,F) does not contain any
directed cycles, one can compute an acyclic ordering as already described in the work of
Baroni et al. [9]. First, select the node vρ corresponding to Fρ of in-degree 0 and remove
vρ together with all its incident edges. Next, again choose a node v1 of in-degree 0 and
remove v1. By continuing this way, until finally all nodes have been removed, one receives
the ordering ΠV = (vρ, v1, . . . , vk) containing all nodes in AG(T1, T2,F). In the following,
we call the ordering (Fρ, F1, . . . , Fk) of components corresponding to each node in ΠV an
acyclic ordering of F . Notice that, as during each of those steps there can occur several
nodes of in-degree 0, especially if F contains components consisting only of isolated nodes,
such an acyclic ordering is in general not unique.
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Figure 1.1: (a) Two rooted binary phylogenetic X -trees T1 and T2 with taxa set X = {a, b, c, d, e, f, g, h, ρ}.
(b) An acyclic agreement forest F for T1 and T2 in acyclic ordering. (c) The directed graph AG(T1, T2,F)
not containing any directed cycles and, thus, F is acyclic.

1.4.2 Further definitions for nonbinary trees

In this section, we give further definitions referring to nonbinary phylogenetic trees.

Phylogenetic trees. A rooted nonbinary phylogenetic X -tree T can contain mulit-
furcating or nonbinary nodes, which are nodes of out-degree larger than or equal to 3. We
say a rooted phylogenetic X -tree T ′ is a refinement of T , if we can obtain T from T ′ by
contracting some of its edges. More precisely, an edge e = (u, v), with Cv being the set
of children of v, is contracted by first deleting v together with all of its adjacent edges
(including e) and then by reattaching each node ci in Cv back to u by inserting a new
edge (u, ci). Moreover, in this context we further say that T ′ is a binary refinement of T ,
if T ′ is binary.

Similarly, if T ′ is a refinement of T , we can obtain T ′ from T by resolving some of its
multifurcating nodes in the following way (cf. Fig. 1.2). Let v be a multifurcating node
and let Cv = {c1, . . . , cn} be its set of children, then, we can resolve v as follows. First, a
new node w is created, which is attached to v by inserting a new edge (v, w). Second, we
select a subset C ′v of Cv, with 1 < |C ′v| < |Cv|, and, finally, we prune each node ci of C ′v
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Figure 1.2: Resolving a multifurcating node v by reattaching c1 and c2 to a new inserted node w.

from v and reattach ci to w by inserting a new edge (w, ci).

Hybridization networks. A hybridization network N for a set of rooted nonbinary
phylogenetic X -trees T is a rooted phylogenetic network on X displaying a refinement T ′i
of each tree Ti in T . More precisely, this means that for each tree Ti in T there exists a set
E ′i ⊆ E(N) of reticulation edges referring to its refinement T ′i . This means, in particular,
that we can obtain the tree T ′i from N by first deleting all reticulation edges that are not
contained in E ′i and then suppress all nodes of both in- and out-degree 1. In this context,
a reticulation edge (or hybridization edge) is an edge that is directed into a node with
in-degree larger than or equal to 2, which is denoted as reticulation node (or hybridization
node).

Given a hybridization network for a set of rooted nonbinary phylogenetic X -trees T ,
the reticulation number r(N) is defined by

r(N) =
∑

v∈V :δ−(v)>0

(δ−(v)− 1) = |E| − |V |+ 1, (1.3)

where V refers to the set of nodes of N and δ−(v) denotes the in-degree of a node v in
V . Moreover, based on the definition of the reticulation number, the (minimum or exact)
hybridization number h(T ) for T is defined by

h(T ) = min{r(N) : N displays a refinement of each Ti ∈ T }. (1.4)

A hybridization network displaying a set of rooted nonbinary phylogenetic X -trees T with
minimum hybridization number h(T ) is called a minimum hybridization network. Notice
that even in the simplest case, if T consists only of two rooted binary phylogenetic X -
trees, the problem of computing the hybridization number is known to be NP-hard but
fixed-parameter tractable [11, 14], which means that the problem is exponential in some
parameter related to the problem itself, namely the hybridization number of T , but only
at most polynomial in its input size, which is, in this context, the number of nodes and
edges in T .

Forests. Let T be a rooted nonbinary phylogenetic X -tree T . Then, we call any set
of rooted nonbinary phylogenetic trees F = {F1, . . . , Fk} with L(F) = X a forest on X , if
we have for each pair of trees Fi and Fj that L(Fi) ∩ L(Fj) = ∅. Moreover, we say that F
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is a forest for T , if additionally for each component F in F the tree F is a refinement of
T |L(F ).

Lastly, given two forests F and F̂ for T , we say that F̂ is a binary resolution of F ,
if for each component F̂ in F̂ there exists a component F in F such that F̂ is a binary
refinement of F .

Nonbinary agreement forests. Given two rooted nonbinary phylogenetic X -trees
T1 and T2. For technical purpose, we consider the root of both trees T1 and T2 as being a
node that has been marked by new taxon ρ 6∈ X . More precisely, let ri be the root of the
tree Ti with i ∈ {1, 2}. Then, we first create a new node vi as well as a new leaf `i labeled
by a new taxon ρ 6∈ X and then attach these nodes to ri by inserting the two edges (vi, ri)
and (vi, `i) such that vi is the new root of the resulting tree. Now, an agreement forest for
two so marked trees T1 and T2 is a forest F = {Fρ, F1, . . . , Fk} on X ∪ {ρ} satisfying the
following three conditions.

(1) Each component Fi with taxa set Xi equals a refinement of T1|Xi and T2|Xi , respec-
tively.

(2) There is exactly one component, denoted as Fρ, containing ρ.

(3) Let Xρ,X1, . . . ,Xk be the taxa sets corresponding to Fρ, F1, . . . , Fk. All trees in
{T1(Xi)|i ∈ {ρ, 1, . . . , k}} and {T2(Xi)|i ∈ {ρ, 1, . . . , k}} are edge disjoint subtrees of
T1 and T2, respectively.

Moreover, a maximum agreement forest for two rooted nonbinary phylogenetic X -trees
T1 and T2 is an agreement forest of minimal size, which implies that there does not exist a
smaller set of components fulfilling the properties of an agreement forest for T1 and T2 listed
above. Additionally, we call an agreement forest F for T1 and T2 acyclic, if its underlying
ancestor-descendant graph AG(T1, T2,F) does not contain any directed cycles (cf. Fig. 1.3).
This directed graph contains one node corresponding to precisely one component of F and
an edge (Fi, Fj) for a pair of its nodes Fi and Fj, with i 6= j, if,

(i) regarding T1, there is a path leading from the root of T1(Xi) to the root of T1(Xj)
containing at least one edge of T1(Xi),

(ii) or, regarding T2, there is a path leading from the root of T2(Xi) to the root of T2(Xj)
containing at least one edge of T2(Xi).

In this context, Xi ⊆ X and Xj ⊆ X refers to the set of taxa that are contained in Fi
and Fj, respectively. Again, we call an acyclic agreement forest consisting of a minimum
number of components a maximum acyclic agreement forest.

Acyclic orderings. Now, if F is acyclic and, thus, AG(T1, T2,F) does not contain
any directed cycles, based on this graph one can compute an acyclic ordering for F in the
same way as already described in the binary case.
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Figure 1.3: (a) Two rooted nonbinary phylogenetic X -trees T1 and T2. (b) The ancestor-descendant graph
AG(T1, T2,F) with F = {Fρ, F1, F2}. Notice that the component corresponding to each node of the graph
is drawn inside.
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1.5 Organization of this thesis

The upcoming part of this thesis is organized as follows.

Chapter 2. In this chapter, we describe an approach calculating the rSPR-distance,
the hybridization number as well as a certain set of representative minimum hybridization
networks for two rooted binary phylogenetic X -trees T1 and T2. Our approach is based on
the concept of agreement forests whose elements can then be used in a subsequent step to
construct a minimum hybridization network displaying T1 and T2. Thus, the major step of
our approach is the computation of such agreement forests which is done by the algorithm
allMAAFs. A simulation study, conducted on our own synthetic dataset, indicates that,
at this particular time, an implementation of our approach was much faster than all so far
existing methods.

The algorithm allMAAFs is the first non-naive approach that enables the computa-
tion of all maximum acyclic agreement forests for two rooted binary phylogenetic X -trees,
which has been shown by a formal proof [57]. To further improve its efficiency, we applied
some algorithmic modifications reducing the number of computational steps. Again, by
conducting a simulation study on a synthetic dataset, we indicate that these modifications
significantly improve the practical runtime of the original algorithm. Additionally, we show
how the algorithm TerminusEst, an algorithm calculating the hybridization number for
two rooted (nonbinary) phylogenetic X -trees, can be used to further speed up the compu-
tation of all maximum acyclic agreement forests.

My contribution: The algorithm allMAAFs has been developed during my diploma
thesis that was supervised by Celine Scornavacca and Daniel Huson. This work excludes
its proof of correctness that has been established afterwards by Celine Scornavacca and Si-
mone Linz. Everything else of this chapter is continuing work, which has been elaborated
by myself subsequent to my diploma thesis. More specifically, this includes the development
(and implementation) of three modifications of the algorithm allMAAFs including the
respective proofs of correctness as well as the development and implementation of a modi-
fied version of the algorithm TerminusEST.

Publications: The following publications deal with the content of this chapter.

B. Albrecht, C. Scornavacca, A. Cenci, and D. H. Huson. Fast computation of minimum
hybridization networks. Bioinformatics, 28 (2): 191-197, 2011.

C. Scornavacca, S. Linz, and B. Albrecht. A First Step Toward Computing All Hy-
bridization Networks For Two Rooted Binary Phylogenetic Trees. Journal of Computa-
tional Biology, 19(11): 1227-1242, 2012.

B. Albrecht. Fast computation of all maximum acyclic agreement forests.
arXiv:1512.05656, 2015.
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Chapter 3. Here, we present the algorithm allHNetworks being an extension of
the approach of the previous chapter so that now minimum hybridization networks can
be calculated for a set T of rooted binary phylogenetic X -trees. This is done, principally,
by step-wise calculating maximum acyclic agreement forests for an input tree T and some
embedded tree of a so far computed network N . Those elements of such an agreement
forests are then inserted into N by creating further reticulation edges so that T is displayed
in the resulting network. Consequently, the algorithm allMAAFs of the previous chapter
is an important part of this extended approach.

Moreover, by comparing our approach to the software package PIRNv2.0, we demon-
strate that an implementation of the algorithm allHNetworks is much faster than all
so far existing methods. Additionally, we show how a set containing all representative
minimum hybridization networks can be used in order to calculate specific support values
indicating which hybridization events might played an important role during evolution.

My contribution: Everything in this chapter has been done by myself including the
development of the algorithm allHNetworks, the proof establishing its correctness, and
the simulation study comparing our approach to the software package PIRNv2.0 (as well
as integrating our approach into the program Hybroscale as mentioned below).

Publications: The following publications deal with the content of this chapter.

B. Albrecht. Computing all hybridization networks for multiple binary phylogenetic
input trees. BMC Bioinformatics, 16:236, 2015.

B. Albrecht. Computing hybridization networks for multiple rooted binary phyloge-
netic trees by maximum acyclic agreement forests. arXiv:1408.3044, 2015.

Chapter 4. In this chapter, we first present an algorithm — called allMulMAFs —
calculating all relevant maximum agreement forests for two rooted nonbinary phylogenetic
X -trees. Based on a proof showing the correctness of a modification of the algorithm all-
MAAFs presented in Chapter 2, we give a detailed formal proof showing the correctness
of the algorithm allMulMAFs. Next, by introducing the concept of an expanded cycle
graph, we extend this algorithm to the algorithm allMulMAAFs now calculating all
relevant maximum acyclic agreement forests for two nonbinary phylogenetic X -trees.

Moreover, based on the algorithm allMulMAAFs, we introduce the algorithm all-
MulHNetworks, which extends our algorithm of Chapter 3 so that now minimum hy-
bridization networks for a set T of rooted nonbinary phylogenetic X -trees can be calculated.

My contribution: Everything in this chapter has been done by myself including the
development of the three algorithms allMulMAFs, allMulMAAFs, and allMulH-
Networks as well as each proof dealing with the correctness of the first two algorithms.

Publications: The following publication deals with the content of this chapter.
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B. Albrecht. Computing a relevant set of nonbinary maximum acyclic agreement
forests. arXiv:1512.05703, 2015.

Chapter 5. Here, we first introduce particular network constraints that can be used to
filter a set of rooted phylogenetic networks under both mathematical and biological views.
In this connection, we want to point out that phylogenetic networks are not free of inter-
pretive challenges and, in order to improve the interpretation of hybridization networks, it
is now time to think about techniques facilitating this interpretation step.

Next, we introduce a naive method re-rooting a set of rooted phylogenetic X -trees in
respect of hybridization numbers.

Finally, we present our software package Hybroscale. More precisely, we show how
Hybroscale can be applied in order to first reconcile a set of input trees into minimum
hybridization networks and then how to classify the set of reported networks in respect of
specific constraints. Moreover, we give a short description of a layout algorithm assigning
coordinates to each node of a tree or network in order to visualize the respective graph on
the computer screen.

My contribution: Everything in this chapter has been done by myself including the
development and the application of all network constraints as well as of the method re-
rooting trees. The software package Hybroscale has been implemented by myself which
includes the implementation of all integrated algorithms as well as the implementation of
its graphical user-interface.

Publications: The following publication deals with the content of this chapter.

B. Albrecht. Hybroscale: a software for studying reticulate evolution. In preparation,
2015.
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Chapter 2

Hybridization networks for two
binary trees

In this chapter, we first present an approach calculating a representative set of minimal
hybridization networks for two rooted binary phylogenetic X -trees. Here, the determinant
step is based on the algorithm allMAAFs calculating all maximum acyclic agreement
forests for such two input trees. The workflow of this algorithm is briefly demonstrated
and the main ideas of its published proof of correctness are briefly motivated. Next, we
introduce three modifications of this algorithm by additionally discussing its correctness
as well as indicating its benefit regarding its practical runtime obtained from a synthetic
dataset. Finally, we present a modified version of the software package TerminusEst,
which is so far the fastest algorithm calculating minimum hybridization numbers for two
rooted (nonbinary) phylogenetic X -trees. Furthermore, we show how our approach calcu-
lating minimal hybridization networks can benefit from this method.

2.1 Reduction rules

Given two rooted binary phylogenetic X -trees T1 and T2, before applying a method cal-
culating hybridization networks for both trees one can apply two well-known reduction
rules, namely the subtree reduction and the cluster reduction. Through those two rules
the computational complexity of both input trees can be reduced which often significantly
improves the practical runtime of the respective method.

2.1.1 Subtree reduction

Let T1 and T2 be two rooted binary phylogenetic X -trees, then the subtree reduction trans-
forms both trees into two rooted binary phylogenetic X -trees T ′1 and T ′2 by removing all
maximal pendants subtrees T ′ of size ≥ 2 occurring in both trees T1 and T2 as follows. Let
v1 and v2 be the root of such a maximal pendant subtree T ′ in T1 and T2, respectively.
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Then, first all nodes that can be reached from v1 and v2 are deleted and then v1 and v2 is
labeled by a unique taxon a 6∈ X .

2.1.2 Cluster reduction

Let T1 and T2 be two rooted binary phylogenetic X -trees and let A ⊂ X be a cluster with
A ≥ 2 such that both trees T1 and T2 contain a specific node v1 and v2, respectively, with
L(v1) = L(v2) = A. Then, the cluster reduction generates two tree pairs (T1|A, T2|A) and
(T ′1, T

′
2) in which the latter tree pair is generated by detaching both subtrees rooted at

node v1 and v2, respectively. More precisely, the two trees T ′1 and T ′2 are obtained from T1

and T2, respectively, by first deleting each node that can be reached from v1 and v2 and
then by labeling v1 and v2 by a unique taxon a 6∈ X .

Theorem 1, which has been established in the work of Baroni et al. [9, Theorem 1],
shows that by applying the cluster reduction to both trees T1 and T2, the hybridization
number for those two trees can still be calculated by simply summing up the hybridization
number of the two resulting tree pairs (T1|A, T2|A) and (T ′1, T

′
2).

Theorem 1 ([9]). Given two rooted binary phylogenetic X -trees T1 and T2 containing a
common cluster A ⊂ X , then h({T1, T2}) = h({T1|A, T1|A}) + h({T ′1, T ′2}).

This means, in particular, whereas the subtree reduction simply reduces the size of
the problem instance, the cluster reduction separates the original problem into several
subproblems, which can then be solved on its own. As those subproblems are in general
less complex than the original problem itself, by applying a cluster reduction beforehand
the practical runtime of a method calculating the hybridization number can be significantly
improved even though this method has to be executed on multiple tree pairs instead of
just one.

Now, in order to maximize its efficiency, the cluster reduction is usually applied in
a way that ensures a maximal number of resulting tree pairs. More specifically, this is
done by recursively applying the reduction rule to a minimal cluster of both input trees
(cf. Fig 2.1).
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Figure 2.1: The cluster reduction dividing the tree pair (T1, T2) into its minimum common clusters resulting

in three tree pairs (T
(1)
1 , T

(1)
2 ), (T

(2)
1 , T

(2)
2 ), and (T

(3)
1 , T

(3)
2 ).
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2.2 A fast approach for computing minimum hybridiza-

tion networks

In this section, we focus on the following computational task. Given two rooted binary
phylogenetic trees T1 and T2 on the same set of taxa, compute a representative set of
hybridization networks each displaying both trees with minimum hybridization number.
In this context, such a representative set provides exactly one network each corresponding
to one of all maximum acyclic agreement forests for T1 and T2.

Our algorithm adopts some techniques presented in previous works of Baroni et al. [8]
and Bordewich et al. [14]. Moreover, it is an extension of the approach introduced in pre-
vious works of Whidden et al. [71, 70] that is now able to solve an extended computational
task as described above. We are aware of the fact that our work raises some important
theoretical questions regarding the correctness of the presented approach. However, in this
section we want to focus on the practical aspects of our algorithm and, thus, all theoretical
questions have been addressed in an extra paper of Scornavacca et al. [57] whose content
is briefly summarized in Section 2.3.

To apply the algorithm to biological data, we integrated our method as a plug-in into
Dendroscope 3 [35], which is an freely available1 interactive viewer for rooted phyloge-
netic networks. The software is platform independent and, thus, runs on all major operating
systems. Usually, in our experience, the set of representative hybridization networks can be
quite large. Thus, our implementation gives the user support in identifying the number of
networks containing certain kinds of hybridization events so that a user can quickly figure
out those hybridization events that are contained in most of the networks and, thus, might
have played an important role during evolution. In order to improve the interpretation of
hybridization events within computed networks, we additionally assign certain edge labels
that help to understand how both initial input trees are displayed in there. Moreover,
apart from computing minimum hybridization networks, we provide two further variants
of our algorithm that can be used for the computation of the rooted rSPR-distance and
the computation of the hybridization number for two binary rooted phylogenetic trees.

In order to indicate the efficiency of our developed algorithm, we have performed a
simulation study comparing its implementation to HybridNET [17, 18], which was at this
particular time the best available software for computing the exact hybridization number
for two rooted binary phylogenetic trees on the same set of taxa. As shown in Section 2.2.3,
this study indicates that our approach was, at this particular time, much faster than all so
far existing methods. Notice that, regarding the computation of the hybridization number,
in the meantime our program has been outperformed by the program TerminusEst [49]
(cf. Sec 2.5), which is currently the fastest available tool for this purpose. Due to this fact,
we decided to integrated this approach, which will be discussed separately in Section 2.5.

Finally, we end this section by giving a short illustration of how our method can be used
for the investigation of hybridization events that might had an impact on the evolution of
the Aegilops/Triticum genera.

1www.dendroscope.org

www.dendroscope.org
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2.2.1 Further definitions

In a first step, we give further definitions that are crucial for the description and the dis-
cussion of our approach calculating a representative set of hybridization networks for two
rooted binary phylogenetic trees. Again, these definitions follow those definitions given in
the work of Huson et al. [33].

Agreement forests. In this section, given an agreement forest for two rooted binary
phylogenetic X -trees, we assume that both roots of the two trees are nodes of out-degree 1
that are labeled by the taxon ρ.

rSPR-moves. Given a rooted phylogenetic tree T , a rooted Subtree Prune and Regraft
move, shortly denoted as rSPR-move, is a tree operation including two edges e1 = (v1, w1)
and e2 = (v2, w2) which is performed as follows. First, the subtree T ′ rooted at w1 is pruned
by removing e1 followed by suppressing v1 if its in- and out-degree equals 1. Second, the
subtree T ′ is re-grafted to e2, which is done as follows. In a first step, a new node z is
created. Next, e2 is replaced by two edges (v2, z) and (z, w2) and, finally, the root w1 of T ′

is connected to z. Notice that if T ′ is re-grafted to the root ρ of T , first a new root ρ′ has
to be created which is then connected to ρ and w1.

rSPR-distance. Given two rooted binary phylogenetic X -trees T1 and T2, then the
exact rSPR-distance of T1 and T2 is defined as the minimum number of rSPR-moves that
has to be performed to obtain T2 from T1. Notice that the problem of computing the
exact rSPR-distance of two rooted binary phylogenetic trees sharing the same set of taxa
is known to be NP-hard, but fixed-parameter tractable [12].

2.2.2 The algorithm

In this section, we give a high level description of our developed algorithm computing a
representative set of minimum hybridization networks for two rooted binary phylogenetic
trees T1 and T2 sharing the same set of taxa X . More precisely, this set of networks consists
of exactly one minimum hybridization network for each maximum acyclic agreement forest
of T1 and T2. As the computation of the hybridization number and the computation of the
rSPR-distance of T1 and T2 are two problems that are strongly connected to the problem
of computing minimum hybridization networks, our algorithms provides two additional
variants solving these two kinds of problems.

Our algorithm is divided into three consecutive phases, namely the reduction phase,
the exhaustive search phase, and the final phase. Whereas the first and the last phase
have a polynomial runtime, the exhaustive search phase solves an NP-hard problem, which
means that its theoretical worst-case runtime is exponential. As a direct consequence, the
most computational time during the execution of our algorithm, is spent on performing
the exhaustive search phase. Thus, before entering this phase, we have applied a reduction
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phase reducing the complexity of the input trees, which in general significantly decreases
the practical runtime of the exhaustive search phase and, consequently, also the practical
runtime of the entire algorithm. Notice that at the end of the algorithm, in the final phase,
one still has to undo each of those reduction steps. These steps, however, are of rather low
complexity and, thus, do not have an large impact on the practical runtime.

Reduction phase. The reductions phase tries to identify certain components of both
input trees that can be replaced in a specific way such that the result of the exhaustive
search phase can be used to restore the output corresponding to the unreduced input
trees. There are two well-known reduction steps of this kind that are performed by our
algorithm, namely the subtree reduction and the cluster reduction as previously described
in Section 2.1. A more detailed description of each single step can be looked up in the
work of Huson et al. [33].

Exhaustive search phase. The exhaustive search phase is the determinant step of
the algorithm as, compared to all other steps, it provides the highest complexity. Its
input consists of one tree pair or, due to the previously applied cluster reduction, of a
set of tree pairs each referring to a particular common cluster of both initial input trees.
Depending on whether the goal is to compute the rSPR-distance, the exact hybridization
number or the set of representative minimum hybridization networks, its output consists of
one maximum agreement forest, one maximum acyclic agreement forest, or all maximum
acyclic agreement forests.

For the computation of a maximum agreement forest, whose size minus one directly cor-
responds to the rSPR-distance of a tree pair [12], our algorithm refers to the one described
in the work of Whidden et al. [71]. Moreover, we use the 3-approximation algorithm, given
in Whidden and Zeh [70], calculating a lower bound of the rSPR-distance, for identifying
a starting point (k > 0) for the exhaustive search phase. This usually leads to a signifi-
cant speedup, especially, for those tree pairs providing a large rSPR-distance. The work
of Whidden et al. [71] additionally contains an algorithm computing a maximum acyclic
agreement forest for two rooted binary phylogenetic trees on the same set of taxa, which
is simply performed by running a subroutine checking if the given maximum agreement
forest contains any cycles. Unfortunately, at that time, this subroutine could only be used
to recognize cycles of length two and, thus, failed in identifying cycles involving more than
two components.

Consequently, we have worked out a modification of that algorithm, which, on the one
hand, contains a subroutine that is able to identify cycles of arbitrary size and, on the
other hand, can be used to calculate all maximum acyclic agreement forest for two rooted
binary phylogenetic trees on the same set of taxa. In this work, however, we just give a
high level description of this modified algorithm. A more detailed description can be found
in the work of Scornavacca et al. [57], which additionally addresses its correctness and its
runtime. Note that in Section 2.3 we give a brief overview of this paper.

Given two rooted binary phylogenetic trees T1 and T2 on the same set of taxa, our
algorithm is initialized by R = T1, F = {T2} as well as a specific parameter k ∈ N.
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Next, by running a bounded search-type fashion during each recursion, two leaves a and c
labeled by L(a) and L(c), respectively, sharing the same parent are chosen randomly from
R. Then, depending on the location of the corresponding two leaves a′ and c′ in F labeled
by L(a) and L(c), respectively, R and F are updated by either cutting or contracting
certain subtrees. More precisely, we distinguish between three different cases.

(i) The two leaves a′ and c′ are both contained in the same component Fi of F and share
the same parent. In this case we run three computational paths. One by recursively
calling the algorithm with a′ and c′ as well as a and c being contracted to a new leaf
labeled by {L(a),L(c)} and two by recursively calling the algorithm with a′ and c′,
respectively, being cut from Fi.

(ii) The two leaves a′ and c′ are both contained in two different components, say Fi and
Fj, of F . In this case we run two computational paths by recursively calling the
algorithm with a′ and c′ being cut from Fi and Fj, respectively.

(iii) The two leaves a′ and c′ are both contained in the same component Fi in F but do
not share the same parent. In this case, we run three computational paths. Two by
recursively calling the algorithm with a′ and c′, respectively, being cut from Fi and
a third one where one pendant subtree lying on the shortest path connecting a′ and
c′ in Fi is cut.

Whenever a tree F̂ in F only consisting of one specific taxon arises at the first time, F̂
refers to exactly one leaf labeled by taxon â in R. At the beginning of each recursive call,
each of those leaves labeled by such a taxon â is removed from R. Thus, after each recursive
call either the number of leaves in R decreases at least by one (either by contracting two
leaves or by deleting a certain leaf corresponding to a fully contracted tree F̂ in F), or the
size of F increases, or both. Finally, a computational path stops if the size of F exceeds k
or if R only consists of one single leaf. In the latter case, F forms an agreement forest of
size k of T1 and T2, which is then checked by a subsequent subroutine whether it contains
any cycles. If this is not the case, our algorithm has successfully computed an acyclic
agreement forest of size k. Otherwise, F is rejected.

Moreover, our algorithm is conducted by incrementing parameter k by one starting
with k = s where s denotes a lower bound of the rSPR-distance. Hence, by acting this
way, one can be sure that once an acyclic agreement forest F is reported by our algorithm
there cannot exist an acyclic agreement forest of smaller size and, thus, F has to be of
minimum size. If we are interested in the hybridization number, we can immediately stop
each existent computational path right after having computed the first maximum acyclic
agreement forest. Otherwise, if we are interested in all maximum acyclic agreement forest,
we still have to continue the execution of all other computational paths, since these path
can produce further results.

Final phase. If we are just interested in the rSPR-distance or the hybridization
number, we simply have to sum up the sizes of all maximum agreement forests or of all
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maximum acyclic agreement forests, respectively, that is reported by the exhaustive search
phase for each reduced tree pair.

Otherwise, in order to obtain a representative set of minimum hybridization networks,
we first have to generate a certain network for each maximum acyclic agreement forest
that has been reported for a reduced tree pair as described by the algorithm HybridPhy-
logeny given in the work of Baroni et al. [9]. Then, we have to undo the cluster reduction
by replacing repeatedly each taxon acting as replacement character for a certain minimum
common cluster C by all those networks that have been computed for a maximum acyclic
agreement forest corresponding to C. More precisely, assuming there are k reduced tree
pairs and each of those pairs has n maximum acyclic agreement forests, then, in this case,
this step that is undoing the cluster reduction produces exactly nk networks. Lastly, we
have to undo the subtree reduction, which is simply done by replacing each part of all so
far computed networks by its corresponding subtree of the initial tree pair.

Parallelization. As the exhaustive search phase has the largest impact on the practical
runtime, our implementation parallelizes this step on two different levels. First, each
exhaustive search that has to be performed for the whole set of reduced tree pairs, resulting
from the cluster reduction that is performed during the reduction phase at the beginning
of the algorithm, is run in parallel. For the computation of the hybridization number or
the set of representative minimum hybridization networks, the set of reduced tree pairs
forms a set of subproblems that can be run independently from each other. This means,
in particular, that the hybridization number can be computed by simply summing up each
single hybridization number referring to each reduced tree pair [9]. More precisely, the
execution is simply performed by placing each subproblem in a queue distributing each
subproblem to individual cores subject to availability.

For the computation of the rSPR-distance the execution of the subproblems has to
follow a specific cluster hierarchy H. This means, in particular, that the execution has to
respect H in a specific way. Moreover, the sum of each single rSPR-distance calculated
for each reduced tree pair does only provide an upper bound of the rSPR-distance for the
initial input trees. Thus, in order to receive the exact rSPR-distance for the initial tree
pair, one has to apply some additional steps. However, we omit a detailed description here,
and refer the interested reader to the work of Linz and Semple [41].

Independent from the three variants, an exhaustive search phase conducted for a re-
duced tree pair is parallelized in the following way. First, a thread is created for each
possible value of parameter k, denoting the size of the agreement forest the thread is
looking for. Second, each thread is placed in a priority queue distributing each thread
to individual cores subject to availability. This is done in way such that all threads are
executed in increasing order subject to its value k. Whenever a maximum agreement for-
est or a maximum acyclic agreement forest of size k′ could be computed successfully, all
other threads, belonging to the same reduced tree pair and are searching for agreement
forests of larger sizes, are aborted immediately. Consequently, our implementation exploits
a distributed system providing multiple cores even then when the initial tree pair does not
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share any common clusters.

Additional analysis. During the construction of a minimum hybridization network
for two phylogenetic X -trees T1 and T2, for each reticulation edge e we keep track to which
of both trees e belongs. More precisely, this is done by labeling each edge belonging to
T1 with 1 and each edge belonging to T2 with 2. Thus, for each minimum hybridization
network that is reported by our method the user is able to highlight the embedding of
the input trees, which is an important feature helping biologists to interpret hybridization
events of so computed networks.

As the resulting set of representative minimum hybridization networks N can be quite
large, we sort this set of networks in decreasing order by the sum of its support values,
which are computed for each hybridization event. More precisely, for each network Ni in N
and for each reticulation node rz in Ni, we determine a specific set of taxa L(rz) containing
each taxon that can be reached from rz through a directed path not crossing any other
reticulation nodes. Notice that each of those sets of a network Ni refers to exactly one
component of its underlying maximum acyclic agreement forest. Now, based on these sets of
taxa being computed for all reticulation nodes in N , for each reticulation node rz a certain
support value s(rz) is assigned denoting the percentage of networks containing L(rz). More
precisely, given a reticulation node rz of a network Ni, we say that a network Nj contains
L(rz), if it contains a reticulation node ry with L(rz) = L(ry). Moreover, s(rz) equals 1/t
if the set of taxa L(rz) is contained in exactly t networks of N . Now, given the support
values for each reticulation node, we sort the set of representative minimum hybridization
networks decreasingly in respect to the sum of its containing support values. Thus, the
first networks automatically provide those hybridization events occurring most frequently
in the entire set of computed networks. However, when interpreting those support values,
one should keep in mind that based on a maximum acyclic agreement forest one usually
can compute several networks. Notice that the upcoming network algorithms of this thesis
do not have this undesired feature as those algorithms are able to calculate all of these
networks.

2.2.3 Simulation study

In this section, we present the results of a simulation study, which we have undertaken to
measure the performance of our algorithm. For this purpose, we have first integrated our
algorithm as a plug-in into the freely available2 Java software package Dendroscope 3
[35]. Then, we generated a synthetic dataset consisting of several pairs of rooted binary
phylogenetic trees all sharing the same set of taxa. Each of those tree pairs is generated by
ranging over all different combinations of three different parameters, namely the number
of taxa n, the number of rooted rSPR-moves k (which has been used to obtain the one
tree from the other), and the tangling degree d (as defined below). Our synthetic dataset
contains tree-pairs with parameters n ∈ {20, 50, 100, 200}, k ∈ {5, 10, . . . , 50}, and d ∈

2www.dendroscope.org

www.dendroscope.org
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{3, 5, 10, 15, 20}. This means, in particular, for all 200 combinations we generated 10 tree-
pairs resulting in 2000 tree-pairs in total.

More specifically, we generated a tree-pair based on the three parameters n, k, and d as
follows. First, a rooted binary phylogenetic tree whose leaves are bijectively labeled by the
taxa set X = {x1, . . . , xn} is generated by repeatedly choosing randomly two elements of a
specific set of clusters C. At the beginning, each taxon in X is a cluster in C. After having
chosen two clusters c1 and c2, these two clusters are removed from C and a new cluster
c3 = c1 ∪ c2 is added. This is done until C contains only one element. In a second step,
the other tree is obtained by performing exactly k rSPR-moves within this first tree with
each of them respecting tangling degree d. More precisely, let R be a rooted rSPR-move
pruning the subtree rooted at the target node of an edge e1 = (v1, w1) and re-grafting it to
a specific edge e2 = (v2, w2). Then, we say that R respects tangling degree d, if the path
leading from the lowest common ancestor of v1 and v2 consists of at least d edges.

Based on the way a tree-pair is computed as described above, we want to add two
observations. First, the number of rooted rSPR-moves k, which is applied to obtain the
second tree from the first tree, is just an upper bound of the true underlying rSPR-distance
of both trees. This is the case because when performing a specific rSPR-move one can undo
or redo previous rSPR-moves. Second, the tangling degree d has a direct influence on the
number of minimum common cluster of both trees. This means, in particular, that tree-
pairs, which have been constructed in respect of a small tangling degree, usually provide
more minimum common clusters than those having been constructed in respect of larger
tangling degrees. We decided to introduce this concept here, since, in respect to our
approach, tree-pairs having a large number of minimum common clusters are in general of
smaller computational complexity than those having only less. Our simulation study will
indicate that this property does not hold for the software package HybridNET, which
implies that its approach does not include a cluster reduction.

As mentioned above, we compared the implementation of our algorithm (more precisely,
its variant computing the hybridization number) to the software package HybridNET,
which, at this particular time, has been the best available software for calculating the exact
hybridization number for two rooted binary phylogenetic trees on the same set of taxa.
For this purpose, we integrated our approach as a plugin into Dendroscope 3 [35] and
downloaded the freely available3 software package HybridNET [17, 18].

Next, we will discuss the result of our simulation study, in which our method is denoted
by Dendroscope 3 and the other one denoted by HybridNET. Both methods have been
run on a AMD Phenom X4 955 Processor containing 4 GB RAM. In order to run the whole
simulation study within an appropriate time, we decided to set the maximum time limit
for each tree-pair to 20 minutes. This means, in particular, that each tree-pair whose
hybridization number could not be computed within 20 minutes was aborted. Note that in
Figure 2.2 the runtime of each aborted tree-pair has been counted with 20 minutes whereas
in Figure 2.3 those aborted tree-pairs were not taken into account.

3http://www.cs.cityu.edu.hk/~lwang/software/Hn

http://www.cs.cityu.edu.hk/~lwang/software/Hn
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Figure 2.2 shows the average runtimes of both methods as a function of one of the three
parameters n, k, and d. More precisely, each plot was generated by first aggregating all
tree-pairs corresponding to a certain value of the parameter denoted at the x-axis. Second,
the average runtime of all tree-pairs, contained in each of those aggregated subsets, were
computed. Notice that, in this case, the runtime of each tree-pair that could not be
computed within the time limit was set to 20 minutes. The percentage, which is denoted
at each measurement in Figure 2.2, denotes the number of tree-pairs of each aggregated
subset whose runtime was less than 20 minutes and, thus, could successfully be computed
within the time limit.

The four plots given in Figure 2.2 (a)–(d) show that for both methods the average
runtimes of each aggregated subset increases with the number of taxa and the number of
rSPR-moves. Moreover, the average runtimes of each aggregated subset attained by our
method is less than those attained by the software package HybridNET. Moreover, the
percentages denoted at each measurement show that our method is able to compute more
tree-pairs within the time limit of 20 minutes and, in addition, HybridNET is not able
to compute any tree-pairs providing a rSPR-distance larger than or equal to 40, which is
a strong indication that the underlying approach does not perform a cluster reduction.

This conjecture is supported by the two plots given in Figure 2.2 (e),(d). These plots
clearly show that, in contrast to HybridNET, our method performs better the more
minimum common clusters a tree-pair contains. Notice that the plot given in Figure 2.2 (f)
is quite erratic which can be explained by the fact that by increasing the number of
minimum common clusters c the number of tree-pairs having exactly c minimum common
clusters decreases. This is due to the fact because during the generation of tree-pairs
rSPR-moves can take place within already existing minimum common clusters and, thus,
may not necessarily increase the total number of minimum common clusters of both trees.
As a direct consequence, tree pairs having a large number of minimum common clusters
are less likely to occur in our synthetic dataset.

Figure 2.3 shows the average runtimes of both methods as a function of the computed
hybridization number. More precisely, the plot was generated by first aggregating all tree-
pairs having the same hybridization number and then by computing the average runtimes
of all tree-pairs corresponding to the same aggregated subset. For each tree-pair that
could not be computed within the time limit, its hybridization number is unknown and,
consequently, for this analysis those tree-sets could not be taken into account. Figure 2.3
shows that the software package HybridNET was unable to compute hybridization num-
bers larger than 21 within the given time limit of 20 minutes, whereas our method could
compute hybridization numbers up to 40.

Finally, we computed both the hybridization number and the set of representative
hybridization networks for a grass (Poaceae) dataset provided by the Grass Phylogeny
Working Group [27]. Table 2.1 shows the result and a comparison of the runtimes attained
by both methods. Note that we decided to add this information because this dataset
has been frequently applied to evaluate other methods dealing with the computation of
hybridization networks.
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Figure 2.2: Comparison of the runtimes computed for all tree pairs of our synthetic dataset attained by our
method, which is implemented as plugin of Dendroscope 3, (left) and the software package HybridNET
(right). Each plot shows the average runtime based on one of three specific properties of each tree-pair;
namely, the number of leaves (a and b), its underlying number of rSPR-moves having been used for its
construction (c and d), and the number of minimum common clusters (e and f). Each percentage refers
to the amount of tree pairs that could be successfully computed within a time limit of 20 minutes.
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Figure 2.3: Average runtimes based on the hybridization number attained by our method, which is im-
plemented as a plugin of Dendroscope 3, (a) and the software package HybridNET (b). The numbers
for each measurement indicate the number of tree pairs that could be computed within a time limit of 20
minutes.

Based on the same synthetic dataset, we additionally studied the performance of our
method for the computation of the exact rSPR-distance for two rooted binary phylogenetic
trees on the same set of taxa. Therefor, we compared our method with the so far best
available software package rSPR. To some unknown reason, the software package rSPR
outperforms our approach for each single tree-pair within our synthetic dataset. Since both
methods are based on the same algorithm presented in the paper of Whidden and Zeh [71],
we assume that the speedup is more due to technical instead of algorithmic reasons. An
possible explanation, for instance, could be the fact that the software package rSPR, which
is written in C++, was implemented in a more efficient way than our Java based method.

2.2.4 Application to phylogeny of Aegilop/Triticum genera

The worldwide distributed Triticea tribe, which is part of the Poaceae family, consists of
diploid and polyploid grasses. There exist several works dealing with inconsistent phyloge-
nies calculated for certain sequence datasets [38, 54]. More specifically, these inconsistencies
occur in analysis that are based on sequences belonging to chloroplast and genomic data
[54]. Consequently, for the following application, we have used two datasets both corre-
sponding to sequences derived from diploid species belonging to the genera Triticum and
Aegilops. Whereas the first dataset refers to the matK sequence located on the chloroplast,
the second one refers to the PinA sequence, which is part of the Triticeae chromosome 5.
All sequences used in this application are obtained from the sequence database GenBank ;
the respective accession numbers are listed in Table 2.2.
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Table 2.1: Output produced by Dendroscope and HybridNET applied to two phylogenetic trees be-
longing to a grass (Poaceae) dataset provided by the Grass Phylogeny Working Group. Each runtime
given in this table is stated in seconds.

Computing HNumbers
Genes HNumber #HNets Runtime

Dendro-
scope

Runtime
Hybrid-
NET

ndhF phyB 14 2268 < 1 17
ndhF rbcL 13 48 < 1 4
ndhF rpoC2 12 27 < 1 2
ndhF waxy 9 396 < 1 < 1
ndhF ITS 19 81 < 1 1102
phyB rbcL 4 4 < 1 < 1
phyB rpoC2 7 1 < 1 < 1
phyB waxy 3 6 < 1 < 1
phyB ITS 8 9 < 1 < 1
rbcL rpoC2 13 9 < 1 1
rbcL waxy 7 35 < 1 < 1
rbcL ITS 14 156 1 11
rpoC2 waxy 1 1 < 1 < 1
rpoC2 ITS 15 246 < 1 6
waxy ITS 8 18 < 1 < 1

Table 2.2: GenBank accession numbers of the sequences used for inferring each phylogenetic tree given in
Figure 2.4.

PinA matK

Triticum urartu TU55 EU307589 FJ897889
Triticum monococcum DP57 EU307591 FJ897868

Aegilops tauschii DP16 FJ898213 FJ897861
Aegilops comosa DP13 FJ898210 FJ897858

Aegilops uniaristata DP56 FJ898218 FJ897867
Aegilops bicornis DP18 FJ898215 FJ897863

Aegilops longissima DP17 FJ898214 FJ897862
Aegilops sharonensis DP53 FJ898216 FJ897864

Aegilops speltoides SP6 FJ898222 FJ897884
Hordeum vulgare (Morex) AY643843 EF115541

Next, based on the two datasets corresponding to both different sequences matK and
PinA, two rooted phylogenetic trees T1 and T2 were computed by applying the software
packages JModeltest [50] and PhyML [28]. The inferred discordant trees, depicted
in Figure 2.4, give rise to several possible hybridization scenarios, which are illustrated
by four minimum hybridization networks shown in Figure 2.5. Each of those networks
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Figure 2.4: Two consensus trees derived from 100 bootstrap replicates for the matK (a) and PinA (b)
datasets.

indicates a hybridization event between Aegilops speltoides and an ancestor of Aegilops
bicornis, Aegilops longissima, as well as Aegilops sharonensis. Notice that this hypothe-
sis is additionally supported by the work of Escobar et al. [24]. All other hybridization
events, however, are rather unlikely and, thus, could be explained by other processes, e.g.,
incomplete lineage sorting or duplication-loss.

2.2.5 Discussion

Usually, evolutionary studies are based on incongruent gene trees. If the differences be-
tween those trees are significant enough and if hybridization may have an impact on the
evolutionary history of the involved species, one can try to reconcile those trees into phy-
logenetic networks giving rise to hypothesis of putative hybridization events.

There exist a lot of methods dealing with reconciling incongruent gene phylogenies in
terms of a network. A major problem, however, is the lack of software packages implement-
ing those methods. Throughout this article, we have shown how to come up with a fast
implementation of an algorithm that is able to compute a set of representative minimum
hybridization networks for two rooted binary phylogenetic trees on the same set of taxa.
Moreover, we have shown how to edit this set of resulting networks such that biologists
can quickly figure out the most promising hybridization events.

Furthermore, by presenting a simulation study, we have indicated that, at this particular
time, our implementation was faster than any so far existing software package. Moreover,
by presenting a workflow generating hybridization networks for a certain type of grass
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Figure 2.5: Three hybridization networks for the trees given in Figure 2.4 (a–c) computed by our algorithm
integrated as plug-in into Dendroscope 3.

genera, we have demonstrated how our method can be applied in practice to come up with
putative hybridization scenarios.
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2.3 The algorithm allMAAFs

In this section, we present the algorithm allMAAFs, which has been developed in respect
to the approach introduced in Section 2.2. At this particular time, this algorithm was the
first non-naive method calculating all maximum acyclic agreement forests for two binary
rooted phylogenetic X -trees. Before going into detail, however, we give an important
remark emphasizing the relation of this algorithm to related works and introduce further
definitions that are crucial for what follows.

2.3.1 Related work

The algorithm allMAAFs is based on two works of Whidden et al.; the first one [71]
describing the original algorithm and the second one [70] introducing further improvements.
In both works, however, a problematic description regarding the definition of an acyclic
agreement forest is used. More precisely, the two works denote an acyclic agreement
forest F for two rooted binary phylogenetic X -trees T1 and T2 as being acyclic, if its
underlying graph AG(T1, T2,F) (as defined later) contains a cycle of length 2. This means,
in particular, if each cycle within the graph AG(T1, T2,F) is of length larger than or equal
to 3, the agreement forest F is considered as being acyclic.

However, this makes no sense in a biological point of view, since hybridization networks
can only be obtained from those agreement forests not containing any cycles of arbitrary
length. Consequently, we fixed this issue, which means that our algorithm allMAAFs
takes cycles of arbitrary length into account. Moreover, as shown by a formal proof, the
algorithm allMAAFs is able to compute all maximum acyclic agreement forests for two
rooted binary phylogenetic X -trees, which is an important feature for the computation of
hybridization networks as demonstrated in the upcoming part of this thesis.

2.3.2 Further definitions

In this section, we first introduce some further definitions, which are crucial for the de-
scription of the algorithm allMAAFs.

Agreement forests. In this section, given an agreement forest for two rooted binary
phylogenetic X -trees, we assume that both roots of the two trees are nodes of out-degree 1
that are labeled by the taxon ρ.

Forests. Let F be a forest for a rooted binary phylogenetic X -tree T whose root is
marked by the taxon ρ as described above. Then, by F , we refer to the forest that is
obtained from F by deleting each element only consisting of an isolated node as well as
the element containing the node labeled by taxon ρ, if it contains at most one edge.

Cherries. Let R be a rooted binary phylogenetic X -tree and let a and c be two of
its leaves that are adjacent to the same node with label set L(a) and L(c), respectively.
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Then, we say the set consisting of the two taxa sets {L(a),L(c)} is a cherry in R. Now, let
{L(a),L(c)} be a cherry in R and let F be a forest on a taxa set X ′ such that F is a forest
for R. Then, we say {L(a),L(c)} is a contradicting cherry of R and F , if there does not
exist a component in F containing {L(a),L(c)}. Otherwise, if such a component exists
in F , the cherry {L(a),L(c)} is called a common cherry of R and F . Moreover, if there
exists a component in F containing two leaves labeled by L(a) and L(c), respectively, we
write a ∼F c. Otherwise, if such a component does not exist, we write a 6∼F c.

Pendant edges. Let F be a rooted binary phylogenetic X -tree and let a and c be
two of its leaves that are not adjacent to the same node with label set L(a) and L(c),
respectively. Moreover, let P = (a, v1, v2, . . . , vn, c) be the path of nodes connecting a and
c in F . Then, for each edge e = (v, w) with v ∈ {v1, v2, . . . , vn} and w 6∈ P we say e is a
pendant edge of a and c.

Reducing cherries. Let R be a rooted binary phylogenetic X -tree and let {L(a),L(c)}
be a cherry of R, in which a and c are the two leaves with label set L(a) and L(c),
respectively. Then, the operation reducing the cherry {L(a),L(c)}, shortly denoted by
R[{L(a),L(c)} → L(a)∪L(c)], involves the following steps. First the common parent of a
and c is labeled by L(a)∪L(c) and then both nodes a and c are deleted together with their
respective labels and in-edges. Moreover, given a forest F on a taxa set X ′ such that F is a
forest for R containing a tree F with cherry {L(a),L(c)}, by F [{L(a),L(c)} → L(a)∪L(c)]
we refer to the operation reducing the cherry {L(a),L(c)} in F .

Expanding cherries. Let R be a rooted binary phylogenetic X -tree and let F be a
forest on a taxa set X ′ such that F is a forest for R. Moreover, let F be a tree in F con-
taining a leaf ` labeled by L(a) ∪ L(c). Then, the operation expanding `, shortly denoted
by F [L(a) ∪ L(c) → {L(a),L(c)}], involves the following steps. First, two new leaves a
and c are added to F by inserting the two edges (`, a) and (`, c). Next, the label from `
is removed and the two leaves a and c are labeled by L(a) and L(c), respectively. Notice
that, for applying such insertion steps, one has to keep track of the preceding reduction
steps.

Cutting edges. Let R be a rooted binary phylogenetic X -tree and let F be a forest
on a taxa set X ′ such that F is a forest for R. Moreover, let E ′ be an edge set in F so that
each edge pair in E ′ is not adjacent. Then, the operation of cutting the edge set E ′ from
F , shortly denoted by F − E ′ involves the following two operations. First each edge e in
E ′ is deleted and then each node of both in- and out-degree 1 is suppressed. Note that,
after cutting E ′ from F , the size of the resulting forest is |F|+ |E ′|.

Labeled leaves. Let R be a rooted binary phylogenetic X -tree, then, `(R) denotes
the number of labeled leaves. Moreover, let F be a forest on a taxa set X ′ such that F is
a forest for R. Then, `(F) refers to the total number of labeled leaves being contained in
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F . Additionally, we write `(R) ≡ `(F), if `(R) equals `(F) and if for each labeled leaf `R
in R there exists a labeled leaf `F in F such that L(`R) = L(`F ).

2.3.3 Description of the algorithm

In the following, based on the definitions above, a description of the recursive algorithm
allMAAFs is given. We will assume that at the beginning R is initialized by T1, F by
{T2}, and M by ∅, where T1 and T2 are two rooted binary phylogenetic X -trees and M
denotes a map containing information for undoing each cherry reduction (as demonstrated
later). Moreover, a parameter k ∈ N is given denoting the maximal size of an calculated
agreement forest. Then, by calling the algorithm with those parameters, during each recur-
sive call, F is a forest for R such that `(R) ≡ `(F) holds and the output F of allMAAFs
contains all maximum acyclic agreement forests for T1 and T2 if and only if k ≥ h(T1, T2).
Now, depending on the size of F and the cherry that is selected from R, the algorithm acts
as follows.

Case 1a. If F contains more than k components, the computational path is aborted
and an empty set is returned.

Case 1b. If R consists of an isolated node only, the forest F ′ is obtained from
F by expanding each F in F as prescribed in M . More precisely, the agreement for-
est F is expanded by undoing each cherry reduction as follows. As long as a label
L(a) ∪ L(c) of a leaf ` in F is contained in M , ` is expanded by applying the operation
F [L(a) ∪ L(c) → {L(a),L(c)}]. Finally, after F has been expanded, the resulting agree-
ment forest F ′ is returned if AG(T1, T2,F ′) is acyclic. Otherwise, the empty set is returned.

Case 1c. If there exists a leaf ` in R such that there exists an isolated node `′ in F
with L(`′) = L(`), leaf ` is removed from R resulting in R′. Next, the algorithm branches
into a new computational path by calling the algorithm with R′, F , k, and M .

Otherwise, if such a leaf does not exist, the algorithms continues with Case 2.

Case 2. First from R an arbitrary cherry {L(a),L(c)} is chosen and then the algorithm
continues with Case 3a, Case 3b, and Case 3c.

Case 3a. If {L(a),L(c)} is a common cherry of R and F , the algorithm branches into
a new computational path by calling the algorithm with R[{L(a),L(c)} → L(a) ∪ L(c)],
F [{L(a),L(c)} → L(a) ∪ L(c)], k, and M ′, which is obtained from M by adding the taxa
set {L(a),L(c)}.

Case 3b. Let ea and ec be the in-edge of the two leaves a and c labeled by L(a) and
L(c), respectively, in F . Then, two new computational paths are initiated by calling the
algorithm with R, F − {ea}, k, and M , as well as with R, F − {ec}, k, and M .
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Case 3c. If there exists a component F in F such that a ∼F c holds, a new compu-
tational path is initiated by calling the algorithm with R, F − {eB}, k, and M , where eB
denotes some pendant edge of a and c in F .

We finish the description of the algorithm by noting that the algorithm allMAAFs
always terminates, which is due to the fact that during each recursive call either the size
of R decreases or the number of components in F increases. More precisely, the size of R
is decreased either by deleting a leaf ` referring to an isolated node in F or by contracting
a common cherry of R and F . If R is not decreased, an edge in F is cut and, thus, its size
increases by one. Consequently, as each computational path of the algorithm stops if R
only consists of an isolated node or if k edges have been cut, a recursive call does always
make progress towards one of both abort criteria.

2.3.4 Correctness of the algorithm allMAAFs

The algorithm allMAAFs calculates all maximum acyclic agreement forests for two
rooted binary phylogenetic X -trees, which is a consequence of the following theorem es-
tablished in the work of Scornavacca et al. [57, Theorem 2].

Theorem 2 ([57]). Let T1 and T2 be two rooted binary phylogenetic X -trees. Calling

allMAAFs(T1, T2, T1, {T2}, k, ∅)

returns all maximum acyclic agreement forests for T1 and T2 if and only if k ≥ h(t1, T2)
with k ∈ N.

In the proof of Theorem 2, the authors make use of the algorithm ProcessCherries
(cf. Alg. 1) mimicking a computational path of the algorithm allMAAFs. More precisely,
such a computational path can be described by a list

∧
of cherry actions that are defined

as follows. Let R be a rooted binary phylogenetic X -tree and let F be a forest on a taxa
set X ′ such that F is a forest for R and `(R) ≡ `(F). Moreover, let {L(a),L(c)} be a
cherry of R. Then, we say ∧i = ({L(a),L(c)}, e) is a cherry action of R and F , if one of
the two following properties is satisfied.

• Either, the cherry {L(a),L(c)} is a common cherry of R and F and e = ∅,

• or, the cherry {L(a),L(c)} is a contradicting cherry of R and F and e = ea (or
e = ec), in which ea (or ec) is the in-edge of the leaf in F labeled by L(a) (or L(c)),
or e = eB, in which eB is a pendant edge of a and c in F .

Now,
∧

= (∧1,∧2, . . . ,∧n) is called a cherry list for two rooted binary phylogenetic X -
trees T1 and T2, if during each iteration i of the algorithm ProcessCherries ∧i is a cherry
action forRi and Fi. Note that this is the case if and only if ProcessCherries(T1, {T2},

∧
)

does not return the empty set.
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Algorithm 1: ProcessCherries(R,F , (∧1,∧2, . . . ,∧n))
1 M ← ∅;
2 for i← 1, . . . , n do
3 ({L(a),L(c)}, ei)← ∧i;
4 ea ← in-edge of the node a labeled by L(a) in F ;
5 ec ← in-edge of the node c labeled by L(c) in F ;
6 EB ← set of pendant edges of a and c in F ;
7 if {L(a),L(c)} is a common cherry of R and F and ei = ∅ then
8 R← R[{L(a),L(c)} → L(a) ∪ L(c)];
9 F ← F [{L(a),L(c)} → L(a) ∪ L(c)];

10 M ←M ∪ {L(a),L(c)};

11 else if {L(a),L(c)} is a common or contradicting cherry and ei = ea or ei = ec then
12 F ← F − {ei};
13 else if {L(a),L(c)} is a contradicting cherry and ei ∈ EB then
14 F ← F − {ei};
15 else
16 return (∅);

17 R← from R remove each isolated node in F ;

18 F ← expand F as prescribed in M ;
19 return (F);

Now, based on the algorithm ProcessCherries mimicking a computational path via
a cherry list

∧
, the proof showing the correctness of allMAAFs is established as follows.

Let T1 and T2 be two rooted binary phylogenetic X -trees. Then, in a first step, the
authors prove that, if ProcessCherries(T1, T2, (∧1,∧2, . . . ,∧n)) returns a pre-stage F ′
of a maximum acyclic agreement forest F — a so-called super forest of F —, then, there
still has to exists a cherry in Rn, where Rn denotes the tree R resulting from iteration
n. This means, in particular, that a computational path of allMAAFs cannot get stuck
while computing a maximum acyclic agreement forest, which implies that the algorithm
allMAAFs does not return undesired forests of size smaller than h(T1, T2) not fulfilling
the properties of an agreement forest.

In a subsequent step, the authors show a stronger property of the algorithm, namely
that each forest that is returned by calling the algorithm allMAAFs for two rooted
binary phylogenetic X -trees T1 and T2 is an agreement forest for both input trees. Roughly
speaking, this is the case, since the operations that are conducted on T2 while executing
allMAAFs always produce a set of node-disjoint subtrees of T1 and T2.

Finally, based on those two sub-proofs, the main proof is established showing the cor-
rectness of Theorem 2, which is done as follows. Let F be a maximum acyclic agreement for-
est for two rooted binary phylogenetic X -trees T1 and T2. Then, the algorithm allMAAFs
applied to T1 and T2 contains a computational path containing for each l ∈ {1, . . . , |F|} a
reduced set of trees Gl of size l such that by expanding this graph as prescribed by Ml a set
of trees G ′l arises being a super forest of F . This property, which is sufficient to establish
Theorem 2, is proved by induction on l in which each case of the algorithm in respect of the
so far computed super forest G ′l and the maximum acyclic agreement forest F is discussed.
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2.3.5 Runtime of the algorithm allMAAFs

The following theorem indicates the theoretical worst-case runtime of the algorithm all-
MAAFs.

Theorem 3. Let T1 and T2 be two rooted phylogenetic X -trees and F be a maximum
agreement forest for T1 and T2 containing k ∈ N components. The theoretical worst-case
runtime of the algorithm allMAAFs applied to T1 and T2 is O(3|X |+k).

Proof. Let F = {Fρ, F1, F2, . . . , Fk−1} be an agreement forest for T1 and T2 of size k. Then,
in order to obtain F from T2 there are k − 1 edge cuttings necessary. Moreover, in order
to reduce the size of the leaf set X of R to 1, to each component Fi in F we have to apply
exactly |L(Fi)|−1 cherry contractions. Consequently, at most |X | cherry contractions have
to be performed in total. Thus, our algorithm has to perform at most k + |X | recursive
calls for the computation of F . Now, as one of these recursive calls can at least branch into
three further recursive calls, O(3|X |+k) is an upper bound for the total number of recursive
calls that are performed throughout the whole algorithm. Notice that each case that is
conducted during a recursive can be performed by iterating a constant number over all
nodes of R and F and, thus, its theoretical worst-case runtime can be neglected here.
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2.4 Speeding up allMAAFs

Phylogenetic studies are often joint works between biologists, mathematicians, and com-
puter scientists; usually biologists produce certain data, mathematicians develop a model
for analyzing this data and, based on such models, computer scientists create programs or
tools helping to investigate the data. Regarding the investigation of reticulate evolution,
the underlying problem is often highly combinatorial so that, due to its underlying com-
plexity, a naive implementation of a model is typically insufficient for analyzing biologically
relevant data.

In this work, we tackle this problem by focusing on the previously presented first non-
naive algorithm allMAAFs [57] calculating all maximum acyclic agreement forests for
two rooted binary phylogenetic trees, which can be considered, in a mathematical aspect,
as an intermediate step in computing all possible hybridization networks. More precisely,
this is the case, since those networks can be computed by gluing the components of a
maximum acyclic agreement forest back together in a specific way, which, for example, has
been already demonstrated by the algorithm HybridPhylogeny [9]. The computation
of a maximum acyclic agreement forest for two binary phylogenetic trees, however, is a
well-known NP-hard problem [14] and, thus, in order to apply this step to large input trees
and thereby making the algorithm accessible to a wider range of biological problems, we
have worked out three modifications that significantly improve the practical runtime of the
algorithm allMAAFs.

This section is organized as follows. In a first step, we give all further definitions
for describing and discussing those three modified algorithms of the original algorithm
allMAAFs, which are allMAAFs1, allMAAFs2, and allMAAFs3. Then, after a
detailed description of each modification, we establish the correctness of each of these mod-
ified algorithms, i.e., we show that each of those modifications still calculates all maximum
acyclic agreement forests. Moreover, in order to indicate the speedup of those modifica-
tions, we present the results of a simulation study, which is based on our own synthetic
dataset. Finally, we finish this section by discussion the theoretical as well as the practical
runtime of all three modified algorithms.

2.4.1 Further definitions

In this section, we give all further formal definitions that we use throughout this section for
describing and discussing the original algorithm allMAAFs as well as our three modified
algorithms allMAAFs1, allMAAFs2, and allMAAFs3.

Phylogenetic trees. Given a set F of rooted phylogenetic trees on different taxa sets,
by L(F) we refer to the union of each taxa set of all trees in F . Moreover, let T1 and T2

be two phylogenetic trees with L(T2) ⊆ L(T1) = X1. Then, we say T2 is contained in T1,
shortly denoted by T2 ⊆ T1, if T1|L(T2) equals T2. Lastly, given a set of phylogenetic trees F
as well as an edge set E ′ that is contained in F such that for each pair of edges e1, e2 ∈ E ′,
with e1 6= e2, e1 is not adjacent to e2. Then, by F −E ′ we refer to the set F ′ of trees that
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is obtained from F by first deleting each edge in E ′ and, second, by suppressing each node
of both in- and out-degree 1. Notice that by deleting an edge of a tree F in F , this tree is
separated into two parts Fa and Fb so that the resulting forest equals F \ {F} ∪ {Fa, Fb}.
Consequently, after deleting E ′ from F the resulting set F ′ contains precisely |F| + |E ′|
trees.

Agreement forests. In this section, given an agreement forest for two rooted binary
phylogenetic X -trees, we assume that both roots of the two trees are nodes of out-degree 1
that are labeled by the taxon ρ (cf. Fig. 2.6(a)).

Forests. Let F be a forest for a rooted binary phylogenetic X -tree T whose root is
marked by the taxon ρ as described above. Then, by F we refer to the forest that is
obtained from F by deleting each element only consisting of an isolated node as well as
the element containing the node labeled by taxon ρ if it contains at most one edge.

Modified ancestor descendant graphs. Given two rooted binary phylogenetic X -
trees T1 and T2 together with a forest F for T1 (or T2), the modified ancestor descen-
dant graph AG∗(T1, T2,F) is defined as follows. For each component in F the graph
AG∗(T1, T2,F) contains exactly one node. Moreover, an edge is directed from a node Fi
to a node Fj if

(1) the root of T1(L(Fi)) is an ancestor of the root of T1(L(Fj)), or

(2) the root of T2(L(Fi)) is an ancestor of the root of T2(L(Fj)).

An illustration of such a modified ancestor descendant graph is given in Figure 2.6(c).
Note that the definition of an ancestor descendant graph given in Section 1.4.1 is dif-

ferent to the one presented above. For the definition of an ancestor descendant graph, F
has to be an agreement forest for T1 and T2 and, thus, this definition is more strict than
the one given for AG∗(T1, T2,F) in which F just has to be a forest for T1 (or T2).

Cherries. For a rooted binary phylogenetic X -tree R, we call two of its leaves a and c
a cherry, denoted by {L(a),L(c)}, if both nodes have the same parent. Moreover, let F
be a forest on a taxa set X ′ such that F is a forest for R, then, a cherry {L(a),L(c)}
in R is called a common cherry of R and F , if there exists a cherry {L(a′),L(c′)} in F
with L(a′) = L(a) and L(c′) = L(c). Otherwise, the cherry {L(a),L(c)} in R is called
a contradicting cherry of R and F . Moreover, in order to ease reading, if there exists a
component in F containing two leaves labeled by L(a) and L(c), respectively, we write
a ∼F c. Otherwise, if such a component does not exist, we write a 6∼F c.

Now, let F be a forest on a taxa set X and let {L(a),L(c)} be a cherry in F , in which
e denotes the in-edge of the parent p of a (and c). Then, if e exists, by F÷{L(a),L(c)} we
simply refer to the forest F − {e} and, otherwise, if p has in-degree 0, to F . Furthermore,
let P be the path connecting a and c in F . Then, the set of pendant edges for {L(a),L(c)}
contains each edge (v, w) with v ∈ V (P) \ {a, c} and w 6∈ V (P), where V (P) denotes the
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set of nodes in P . Notice that in general there exist several, precisely |V (P)| − 3, edges
satisfying the condition of such an edge.

Cherry Reductions. Let F be a forest on a taxa set X and let {L(a),L(c)} be a
cherry of a component Fi in F . Then, a cherry reduction, according to a cherry {L(a),L(c)}
in one of its components Fi, implies the following two operations.

(1) The parent of the two nodes a and c is labeled by L(a) ∪ L(c).

(2) Both nodes a and c together with their adjacent edges are deleted from Fi.

Throughout the algorithm, such a reduction step of a cherry {L(a),L(c)} in F is
shortly denoted by F [{L(a),L(c)} → L(a) ∪ L(c)]. Furthermore, given a leaf ` labeled by
L(a)∪L(c), the reverse notation F [L(a)∪L(c)→ {L(a),L(c)}] describes the attachment
of two new leaves labeled by L(a) and L(c), respectively, to ` together with removing the
label L(a) ∪ L(c) from `. Notice that, for applying such insertion steps, one has to keep
track of the preceding reduction steps.

Equivalently, for a cherry {L(a),L(c)} in a rooted binary phylogenetic X -tree R, we
write R[{L(a),L(c)} → L(a) ∪ L(c)] to denote a cherry reduction of {L(a),L(c)} in R.

2.4.2 The Algorithm allMAAFs

In this section, we present the algorithm allMAAFs that was first published in the work
of Scornavacca et al. [57]. To increase its readability, we decided to split the original al-
gorithm allMAAFs into five parts (cf. Alg. 2–6). Note that, apart from its graphical
representation, our presentation of the algorithm allMAAFs together with its terminol-
ogy adheres to the original algorithm.

2.4.3 Modifications to allMAAFs

In this section, we present three modifications of the algorithm allMAAFs that, on the
one hand, do not improve its theoretical worst-case runtime but, one the other hand, sig-
nificantly improve its practical runtime, which is indicated by a simulation study reported
in Section 2.4.5.

The first modification improves the processing of a certain type of contradicting cherry
whereas for the other two modifications only the processing step of a common cherry is of
interest.

Given a contradicting cherry {L(a),L(c)} for R and F with a ∼F c, the original
algorithm conducts three recursive calls. One by recursively calling the algorithm with
F−{ea} and R|F−{ea}, one by recursively calling the algorithm with F−{ec} and R|F−{ec}
and one by recursively calling the algorithm with F −{eB} and R|F−{eB}, in which ea and
ec refers to the in-edge of leaf a and c, respectively, in F and eB refers to an in-edge of
a subtree lying on the path connecting a and c in F . Regarding the latter recursive call,
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Algorithm 2: allMAAFs(S, T , R, F , k, M)
Data: Two rooted binary phylogenetic X -trees S and T , a rooted binary phylogenetic tree R and a forest F such

that L(R) = L(F) and L(T ) = L(F), an integer k, and a list M that contains information of previously
reduced cherries.

Result: A set F of forests for F and an integer. In particular, if F = T , R = S, M = ∅, and k ≥ h(S, T ) is the
input to allMAAFs, the output precisely consists of all maximum-acyclic-agreement forests for S and T
and their respective hybridization number.

1 if k < 0 then
2 return (∅, k − 1);

3 if |L(R)| = 0 then
4 F ′ ← cherryExpansion(F , M);
5 if AG(S, T,F ′) is acyclic then
6 return (F ′, |F ′| − 1);

7 else
8 return (∅, k − 1);

9 else
10 let {L(a),L(c)} be a cherry of R;
11 if {L(a),L(c)} is a common cherry of R and F then
12 return (ProcessCommonCherry(S, T , R, F , k, M , {L(a),L(c)}));

13 if k 6= (|F| − 1) or {L(a),L(c)} is a contradicting cherry of R and F then
14 return (ProcessContradictingCherry(S, T , R, F , k, M , {L(a),L(c)}));

Algorithm 3: cherryExpansion(F ,M)
1 while M is not empty do
2 M ← remove last element of M, say{L(a),L(c)};
3 F ← F [L(a) ∪ L(c)→ {L(a),L(c)}];

4 return F

Algorithm 4: cherryReduction(R,F ,M, {L(a),L(c)})
1 M ′ ← Add {L(a),L(c)} as last element of M ;
2 R′ ← R[{L(a),L(c)} → L(a) ∪ L(c)];
3 F ′ ← F [{L(a),L(c)} → L(a) ∪ L(c)];
4 return (R′,F ′,M ′)
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Algorithm 5: ProcessCommonCherry(S, T , R, F , k, M , {L(a),L(c)})
1 (R′,F ′,M ′)← cherryReduction(R, F , M , {L(a),L(c)});
2 (Fr , kr) ← allMAAFs(S, T , R′|L(F′), F

′, k, M ′);

3 if Fr 6= ∅ then
4 k ← min(k, kr);

5 if (k = |F| − 1) then
6 return (Fr , k)

7 else
8 (Fa, ka) ← allMAAFs(S, T , R|L(F−{ea}), F − {ea}, k − 1, M);

9 if Fa 6= ∅ then k ← min(k, ka − 1) ;
10 if (ka − 1 = k) then F ← F ∪Fa ;
11 (Fc, kc) ← allMAAFs(S, T , R|L(F−{ec}), F − {ec}, k − 1, M);

12 if Fc 6= ∅ then k ← min(k, kc − 1) ;
13 F ← ∅;
14 if (ka − 1 = k) then F ← Fa ;
15 if (kc − 1 = k) then F ← F ∪Fc ;
16 if (kr = k) then F ← F ∪Fr ;
17 return (F , k);

Algorithm 6: ProcessContradictingCherry(S, T , R, F , k, M , {L(a),L(c)})
1 (Fa, ka) ← allMAAFs(S, T , R|L(F−{ea}), F − {ea}, k − 1, M);

2 if Fa 6= ∅ then
3 k ← min(k, ka − 1);

4 Fc, kc ← allMAAFs(S, T , R|L(F−{ec}), F − {ec}, k − 1, M);

5 if Fc 6= ∅ then
6 k ← min(k, kc − 1);

7 F ← ∅;
8 if a �F c then
9 if (ka − 1 = k) then F ← Fa ;

10 if (kc − 1 = k) then F ← F ∪Fc ;
11 return (F , k);

12 else
13 (FB , kB) ← allMAAFs(S, T , R|L(F−{eB}), F − {eB}, k − 1, M);

14 if FB 6= ∅ then
15 k ← min(k, kB − 1);

16 if (ka − 1 = k) then F ← Fa ;
17 if (kB − 1 = k) then F ← F ∪FB ;
18 if (kc − 1 = k) then F ← F ∪Fc ;
19 return (F , k);
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in the upcoming part of this work we will show that, in order to compute all maximum
acyclic agreement forests, instead of cutting just one in-edge eB one can cut all of those
in-edges all at once.

Moreover, given a common cherry {L(a),L(c)} for R and F , the original algorithm all-
MAAFs always branches into three new computational paths; one path corresponding to
the cherry reduction of {L(a),L(c)} and two corresponding to the deletion of both in-edges
of the two leaves a and c (cf. Alg. 5). To understand the sense of our two modifications,
one has to take the necessity of these two additional edge deletions into account.

Therefor, we demonstrate a specific scenario that is outlined in Figure 2.6 showing two
phylogenetic trees T1 and T2 on the same taxa set as well as a maximum acyclic agree-
ment F = {((a, b), ρ), (e, d), (g, h), c, f} for those two trees. By running the algorithm
allMAAFs for T1 and T2 without deleting in-edges of a common cherry, the given maxi-
mum acyclic agreement forest F is never computed. This is due to the fact that, once the
component Fi = ((g, h), f) occurs on any computational path, Fi will be part of the result-
ing agreement forest. Because of Fi and the component (e, d), such a resulting agreement
forest is never acyclic and, thus, does not satisfy the conditions of an acyclic agreement
forest. However, by cutting instead of contracting the common cherry {(g, h), f}, the
resulting agreement forest turns into the maximum acyclic agreement forest F . This ex-
ample implies that sometimes the deletion of in-edges corresponding to taxa of a common
cherry is necessary, which is, however, in practice not often the case, and, thus, the origi-
nal algorithm allMAAFs usually produces a lot of additional unnecessary computational
steps compared with two of our three modifications offering a different solution for such a
scenario.

2.4.3.1 The Algorithm allMAAFs1

Our first algorithm allMAAFs1 is a modification of the original algorithm allMAAFs
improving the processing of contradicting cherries. Let {L(a),L(c)} be a contradicting
cherry of R and F such that a ∼F c holds and let eB be an edge that is defined as follows.
Let P be the path connecting a and c in F . Then, the edge set EB contains each edge
eB = (v, w) with v ∈ V (P) \ {a, c} and w 6∈ V (P), where V (P) denotes the set of nodes of
P . Note that in this case there exist precisely |V (P) − 3| edges satisfying the conditions
of such an edge eB. Now, if such a cherry {L(a),L(c)} occurs, the original algorithm
allMAAFs branches into a computational path by cutting exactly one of those edges in
EB. We will show, however, that in this case the whole set EB can be cut from F all
at once without having an impact on the computation of all maximum acyclic agreement
forests for both input trees. In Algorithm 7, we give a pseudo code of allMAAFs1. Note
that, for the sake of clarity, we just present the modified part in respect of the original
algorithm dealing with the processing of contradicting cherries. The remaining parts are
unmodified and can be looked up in Section 2.4.2.
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Figure 2.6: (a) Two rooted binary phylogenetic X -trees T1 and T2 with taxa set X = {a, b, c, d, e, f, g, h, ρ}.
(b) An acyclic agreement forest F for T1 and T2. (c) The directed graph AG∗(T1, T2,F) not containing
any directed cycles and, thus, F is acyclic.

Algorithm 7: ProcessContradictingCherry1(S, T , R, F , k, M , {L(a),L(c)})
1 (Fa, ka) ← allMAAFs1(S, T ,R|L(F−{ea}), F − {ea}, k − 1, M);

2 if Fa 6= ∅ then
3 k ← min(k, ka − 1);

4 Fc, kc ← allMAAFs1(S, T ,R|L(F−{ec}), F − {ec}, k − 1, M);

5 if Fc 6= ∅ then
6 k ← min(k, kc − 1);

7 F ← ∅;
8 if a �F c then
9 if (ka − 1 = k) then F ← Fa ;

10 if (kc − 1 = k) then F ← F ∪Fc ;
11 return (F , k);

12 else

13 (FB , kB) ← allMAAFs1(S, T , R|L(F−EB), F − EB , k − |EB |, M);

14 if FB 6= ∅ then
15 k ← min(k, kB − 1);

16 if (ka − 1 = k) then F ← Fa ;

17 if (kB − 1 = k) then F ← F ∪FB ;
18 if (kc − 1 = k) then F ← F ∪Fc ;
19 return (F , k);
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2.4.3.2 The Algorithm allMAAFs2

The algorithm allMAAFs2 is a simple modification of our first modification allMAAFs1.
It is based on the observation that those cutting steps for processing a common cherry
{L(a),L(c)} often do not lead to a maximum acyclic agreement forest. In Section 2.4.4,
we give a formal proof showing that those cutting steps only make sense if the component
F of the agreement forest F ÷ {L(a),L(c)}, containing the common cherry {L(a),L(c)},
is part of a cycle of the underlying directed graph AG∗(T1, T2,F ÷ {L(a),L(c)}) in which
T1 and T2 denote the corresponding input trees. Thus, our second modification all-
MAAFs2 saves a lot of unnecessary recursive calls provoking a large speedup towards the
original algorithm allMAAFs as well as our first modified algorithm allMAAFs1 as
indicated by our simulation study given in Section 2.4.5. In Algorithm 8 we give a pseudo
code describing the algorithm allMAAFs2. For the sake of clarity, we restrict the pre-
sentation to only those parts that are modified in respect of the first modified algorithm
allMAAFs1.

Algorithm 8: ProcessCommonCherry2(S, T , R, F , k, M , {L(a),L(c)})
1 (R′,F ′,M ′)← cherryReduction(R, F , M , {L(a),L(c)});
2 (Fr , kr) ← allMAAFs2(S, T ,R′|L(F′), F

′, k, M ′);

3 if Fr 6= ∅ then
4 k ← min(k, kr);

5 if (kr = |F| − 1) then
6 return (Fr , k)

7 else
8 F ← ∅;
9 F ← component of F ÷ {L(a),L(c)} containing a and c;

10 if F is part of a directed cycle in AG∗(S, T,F ÷ {L(a),L(c)}) then
11 (Fa, ka) ← allMAAFs2(S, T , R|L(F−{ea}), F − {ea}, k − 1, M);

12 if Fa 6= ∅ then
13 k ← min(k, ka − 1);

14 Fc, kc ← allMAAFs2(S, T , R|L(F−{ec}), F − {ec}, k − 1, M);

15 if Fc 6= ∅ then
16 k ← min(k, kc − 1);

17 if (ka − 1 = k) then F ← Fa ;
18 if (kc − 1 = k) then F ← F ∪Fc ;

19 if (kr = k) then
20 F ← F ∪Fr ;

21 return (F , k);

2.4.3.3 The Algorithm allMAAFs3

Our third algorithm allMAAFs3 is again a modification of our first algorithm all-
MAAFs1 and is based on a tool turning agreement forests into acyclic agreement forests.
This tool, published by Whidden et al. [69], is based on the concept of an expanded cycle
graph refining cyclic agreement forest. Due to such additional refinement steps, which are
performed right after the computation of each maximum agreement forest, both cutting
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steps for processing a common cherry can be omitted. The simulation study in Section 2.4.5
indicates that this refinement step is efficient enough so that this modification in general
outperforms the original algorithm allMAAFs, our first modification allMAAFs1, as
well as our second modification allMAAFs2. In Algorithm 9 and 10, we present a pseudo
code describing the algorithm allMAAFs3. Again, for the sake of clarity, we restrict the
presentation to only those parts that are modified in respect of the modified algorithm
allMAAFs1. Moreover, we omit a description of the subroutine conducting the refine-
ment step, denoted by RefineForest, as it can be looked up in the work of Whidden et
al. [69]. Notice that, due to this refinement step, an implementation of this modification
is quite more expensive compared with our second modification allMAAFs2.

Algorithm 9: allMAAFs3(S, T , R, F , k, M)
1 if k < 0 then
2 return (∅, k − 1);

3 if |L(R)| = 0 then
4 F ′ ← cherryExpansion(F , M);

5 F ′′ ← RefineForest(F ′);
6 F ← ∅;
7 foreach F ′′ ∈ F ′′ do
8 if |F ′′| = k then

9 F ← F ∪ F ′′;

10 else if |F ′′| < k then

11 k ← |F ′′|;
12 F ← {F ′′};

13 return (F , k − 1);

14 else
15 let {L(a),L(c)} be a cherry of R;
16 if {L(a),L(c)} is a common cherry of R and F then

17 return (ProcessCommonCherry3(S, T , R, F , k, M , {L(a),L(c)}));

18 if k 6= (|F| − 1) or {L(a),L(c)} is a contradicting cherry of R and F then
19 return (ProcessContradictingCherry(S, T , R, F , k, M , {L(a),L(c)}));

Algorithm 10: ProcessCommonCherry3(S, T , R, F , k, M , {L(a),L(c)})
1 (R′,F ′,M ′)← cherryReduction(R, F , M , {L(a),L(c)});
2 (Fr , kr) ← allMAAFs3(S, T , R′|L(F′), F

′, k, M ′);

3 if (kr = k) then return (Fr , k);
4 ;
5 return (∅, k);



54 2. Hybridization networks for two binary trees

2.4.4 Proofs of Correctness

In this section, we give formal proofs showing the correctness of all three modified algo-
rithms presented in Section 2.4.3. In a first step, however, we give some further definitions
that are crucial for what follows.

2.4.4.1 The algorithm processCherries

In the following, we introduce the algorithm processCherries, which has already been
utilized in the work of Scornavacca et al. [57]. This algorithm is a simplified version of
the algorithm allMAAFs describing one of its computational paths by a list of cherry
actions. Notice that this algorithm is a major tool that will help us to establish the cor-
rectness of the three modified algorithms.

Cherry actions. Let R be a rooted binary phylogenetic X -tree and let F be a forest
on a taxa set X ′ such that F is a forest for R. Then, a cherry action ∧= ({L(a),L(c)}, e) is
a tuple containing a cherry {L(a),L(c)} of two taxa sets corresponding to two leaves a and
c in R as well as an edge e. We say that ∧ is a cherry action for R and F , if {L(a),L(c)}
is a cherry of R and if, additionally, one of the following three conditions is satisfied.

(1) Either {L(a),L(c)} is a common cherry of R and F and e ∈ {∅, ea, ec},

(2) or {L(a),L(c)} is a contradicting cherry of R and F with a 6∼F c and e ∈ {ea, ec},

(3) or {L(a),L(c)} is a contradicting cherry of R and F with a ∼F c and e ∈ {ea, eB, ec}.

In this context, ea and ec is an edge in F adjacent to both leaves a and c, respectively.
Moreover, eB is part of the set of pendant edges for {L(a),L(c)} in F .

Cherry lists. Now, given two rooted binary phylogenetic X -trees T1 and T2, we say
that

∧
is a cherry list for T1 and T2, if, while calling processCherries(T1, {T2},

∧
), in

the i-th iteration ∧i is a cherry action for Ri and Fi. Note that, if
∧

is not a cherry list
for T1 and T2, calling processCherries(T1, {T2},

∧
) (cf. Alg. 11) returns the empty set.

Further details as well as an example of processCherries can be found in the work
of Scornavacca et al. [57].

Next, we will introduce the algorithm processCherries1. This algorithm is a simpli-
fied version of the algorithm allMAAFs1 describing one of its computational paths by a
list of extended cherry actions. Notice that this algorithm is a major tool that will help us
to establish the correctness of our first modified algorithm allMAAFs1.

Extended cherry action. Let R be a rooted binary phylogenetic X -tree and let F
be a forest on a taxa set X ′ such that F is a forest for R. Then, an extended cherry action
∧= ({L(a),L(c)}, E ′) is a tuple containing a set {L(a),L(c)} of two taxa sets correspond-
ing to two leaves a and c in R as well as an edge set E ′. We say that ∧ is an extended cherry
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Algorithm 11: processCherries(R,F ,
∧

= (∧1, . . . ,∧n))
1 M ← ∅;
2 foreach i ∈ 1, . . . , n do
3 if ∧i is a cherry action for R and F then
4 ({L(a),L(c)}, ei)←∧i;
5 if ei = ∅ then
6 M ← Add {L(a),L(c)} as last element of M ;
7 R← R[{L(a),L(c)} → L(a) ∪ L(c)];
8 F ← F [{L(a),L(c)} → L(a) ∪ L(c)];

9 else
10 F ← F − {ei};
11 R← R|L(F);

12 else
13 return ∅;

14 while M is not empty do
15 M ← remove the last element, say {L(a),L(c)}, from M ;
16 F ← F [L(a) ∪ L(c)→ {L(a),L(c)}];

17 return R,F ,M

action for R and F , if {L(a),L(c)} is a contradicting cherry of R and F with a ∼F c and
E ′ = EB, where EB refers to the set of pendant edges for {L(a),L(c)} in F .

Extended cherry list. Now, given two rooted binary phylogenetic X -trees T1 and
T2, we say that

∧
is an extended cherry list for T1 and T2, if, while calling processCher-

ries1(T1, {T2},
∧

), in the i-th iteration ∧i is either a cherry action or an extended cherry
action for Ri and Fi. Note that, if

∧
is not an extended cherry list for T1 and T2, calling

processCherries1(T1, {T2},
∧

) (cf. Alg. 12) returns the empty set.

Lemma 4. Let
∧′ be an extended cherry list for two rooted binary phylogenetic X -trees

T1 and T2. Moreover, let F be a forest for T2 calculated by
∧′. Then, there also exists a

cherry list
∧

for T1 and T2 calculating F .

Proof. To prove this lemma, it suffices to show how to replace each extended cherry action
of
∧′ so that the resulting cherry list

∧
still computes F . Let ∧′i = ({L(a),L(c)}, EB)

be an extended cherry action with EB = {e1, e2, . . . , ek}. Then, we can replace ∧′i by the
sequence of cherry actions

({L(a),L(c)}, e1), ({L(a),L(c)}, e2), . . . , ({L(a),L(c)}, ek).

Since by these cherry actions the same edges are cut from T2 as by ∧′i, the topology of R′i+1

equals Ri+k, which directly implies that F is still computed.

2.4.4.2 Correctness of allMAAFs1

In this section, we will discuss the correctness of our first modified algorithm allMAAFs1 by
establishing the following theorem.
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Algorithm 12: processCherries1(R,F ,
∧

= (∧1, . . . ,∧n))
1 M ← ∅;
2 foreach i ∈ 1, . . . , n do
3 if ∧i is a cherry action for R and F then
4 ({L(a),L(c)}, ei)←∧i;
5 if ei = ∅ then
6 M ← Add {L(a),L(c)} as last element of M ;
7 R← R[{L(a),L(c)} → L(a) ∪ L(c)];
8 F ← F [{L(a),L(c)} → L(a) ∪ L(c)];

9 else
10 F ← F − {ei};
11 R← R|L(F);

12 else if ∧i is an extended cherry action for R and F then
13 ({L(a),L(c)}, Ei)←∧i;
14 F ← F − Ei;
15 R← R|L(F);

16 else
17 return ∅;

18 while M is not empty do
19 M ← remove the last element, say {L(a),L(c)}, from M ;
20 F ← F [L(a) ∪ L(c)→ {L(a),L(c)}];

21 return R,F ,M

Theorem 5. Let T1 and T2 be two rooted binary phylogenetic X -trees and k ∈ N. Calling

allMAAFs1(T1, T2, T1, {T2}, k, ∅)

returns all maximum acyclic agreement forests for T1 and T2 if and only if k ≥ h(T1, T2).

Proof. Let T1 and T2 be two rooted binary phylogenetic X -trees and let
∧

be a cherry
list for T1 and T2 mimicking a computational path of allMAAFs calculating a maximum
acyclic agreement forest F for T1 and T2. Then, in the following, we say a cherry action ∧i =
({L(a),L(c)}, ei) in

∧
is a special cherry action, if {L(a),L(c)} is a contradicting cherry

of Ri and Fi and if ei is contained in the set of pendant edges for {L(a),L(c)}. Note that,
whereas such special cherry actions may occur in a computational path of allMAAFs,
this is not the case for a computational path of allMAAFs1. In the following, however,
we will show that the algorithm allMAAFs calculates a maximum acyclic agreement
forest F for T1 and T2 if and only if F is calculated by allMAAFs1.

Lemma 6. Let T1 and T2 be two rooted binary phylogenetic X -trees and let F be a max-
imum acyclic agreement forest for T1 and T2 of size k. Then, the agreement forest F is
calculated by calling allMAAFs(T1, T2, T1, T2, k, ∅) if and only if F is calculated by calling
allMAAFs1(T1, T2, T1, {T2}, k, ∅).

Proof. ’=⇒’: From Lemma 4 we can directly deduce that if there exists a computational
path of allMAAFs1 calculating F , then, there also exists a computational path in all-
MAAFs calculating F .
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’⇐=’: Let ∧j = ({L(a),L(c)}, ej = ∅) be a cherry action of
∧

contracting both leaves a
and c. Then, we say a preceding special cherry action ∧i = ({L(x),L(y)}, ei) (i < j) refers
to ∧k if the following condition is satisfied. Let ai and ci be the lowest common ancestor
of L(a) and L(c) in Ri, respectively. Then, ei 6= ∅ has to be a pendant edge lying on the
path connecting both nodes ai and ci. In such a case, we say the special cherry action is
either of Type A or Type B (see definition below). Otherwise, if a special cherry action
does not refer to another cherry action, we say this cherry action is of Type C.

Now, based on the edge ei = (v, w), being part of the special action ∧i referring to
the cherry action ∧j, we further distinguish whether ∧i is either of Type A or of Type B.
Therefor, let T (w) be the subtree rooted at w and let L(T (w)) be the set of taxa being
contained in T (w). Now, we say ∧i is of Type A, if there exists a forest Fk and a tree Rk

with i < k < j so that both of the following two conditions are satisfied.

(i) Each taxon in L(T (w)) is part of a taxa set of an isolated node. Notice that, as a
direct consequence, there exists a leaf w′ in Rk with label L(w).

(ii) The sibling s′ of w′ in Rk is a leaf. Notice that, as a direct consequence, {L(s′),L(w′)}
is a cherry of Rk.

Otherwise, if there does not exist such a forest Fk and such a tree Rk satisfying these
two conditions, we say ∧i is of Type B. An illustration of these two types is given in
Figure 2.7.

Notice that, due to the so chosen definition, each special cherry action in
∧

has to be
either of Type A, of Type B, or of Type C. Moreover, as at the end of a cherry list each
component of the so calculated forest is an isolated node, for each special cherry action of
Type C there has to exist a cherry action ∧k satisfying both conditions listed for a cherry
action of Type B. Next, based on these observations, we will show in three steps how to
turn

∧
into another cherry list for T1 and T2 not containing any special cherry actions, but

still calculating F , which can be briefly summarized as follows.
In a first step, we will show how to modify

∧
by replacing each special cherry action

of Type A and of Type C through a non-special cherry action so that the result is still a
cherry list for T1 and T2 calculating F . Next, during a second and a third step, we will
show how to replace each set of special cherry actions of Type B all referring to the same
cherry action by a single extended cherry action so that the result is an extended cherry
list for T1 and T2 still calculating F .

Step 1. Let ∧i = ({L(x),L(y)}, ei = (v, w)) be a special cherry action of Type A or
of Type C, and let ∧k with i < k < j be the first cherry action of

∧
in which in Fk each

taxon in L(T (w)) is contained in a taxa set of an isolated node so that in Rk the sibling
s′ of the leaf labeled by L(w) is also leaf. Then, let

∧′ be a cherry list that is obtained
from

∧
by first removing ∧i = ({L(x),L(y)}, ei) and then by inserting the cherry action

({L(w′),L(s′)}, ew′) right after ∧k, so that
∧′ equals

(∧′1, . . . ,∧′n) = (∧1, . . . ,∧i−1,∧i+1, . . . ,∧k,∧′k, . . . ,∧′n),
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Figure 2.7: An illustration of the cherry list (({a, c}, e1), ({a, c}), e2), ({a, c}), e3), ({a, c}), ∅)) in which
({a, c}, e1) is a special cherry action of Type B and ({a, c}, e2) is a special cherry action of Type A.
Note that the expanded cherry list (({b, d}, e2), ({a, c}, {e1, e3}), ({a, c}), ∅)) applied to (i) yields the same
scenario as depicted in (v) without making use of any special cherry actions.
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Figure 2.8: An illustration of the scenario as described in Step 1. The figure shows a comparison between
two sequences of Ri-trees; one corresponding to the original cherry list and one corresponding to the
modified cherry list, in which a special cherry action of Type A is shifted from position i to k + 1.

where ∧′k = ({L(w′),L(s′)}, ew′) with ew′ being the in-edge of w′.
Now, for the following, remember that Rl (or R′l) refers to the input tree occurring

during iteration l while processing the cherry list
∧

(or
∧′). Moreover, we write Ri =∧ R

′
j

if both trees contain the same set of cherries. Then, based on the position of the cherry
action ∧l in

∧
, we can make the following five observations (cf. Fig. 2.8).

• If l < i, then R′l equals Rl: This is the case because R1 equals R′1 and through ∧l
and ∧′l the same tree operation is performed on Rl and R′l, respectively.

• If l = i, then R′l−1 =∧ Rl: This is the case because Ri−1 equals R′i−1, in Rl the node w
cannot be part of a cherry (due to the definition of a special cherry action of Type A)
and, thus, through ∧l (=∧i) the set of cherries in Ri−1 remains unchanged.

• If i < l < k + 1, then R′l−1 =∧ Rl: This is the case because Ri =∧ R
′
i−1 and again

in Rl node w cannot be part of a cherry. Thus, the two cherry actions ∧l and ∧′l−1

produce the same set of cherries in Rl and R′l−1.

• If l = k + 1, then R′k+1 equals Rk+1: This is the case because Rk =∧ R′k−1 and
through ∧′k first node w is cut and then removed from R′k−1. Consequently, through
the cherry actions ∧q and ∧′q, with 1 ≤ q < k + 1, the same tree operations are
applied to R1 and R′1 and, thus, Rk+1 equals R′k+1.

• If l > k+1, then R′l equals Rl: This is the case because Rk+1 equals R′k+1 and through
∧l and ∧′l the same tree operation is performed on Rl and R′l, respectively.

Due to these observations and since through
∧′ still the same edges are cut from T2 as

through the original cherry list
∧

,
∧′ is a cherry list for T1 and T2 still calculating F . Now,

by consecutively replacing all special cherry actions of Type A and Type C we can turn∧
into the cherry list

∧(1) for T1 and T2 only containing special cherry actions of Type B
and still computing F . Next, we will show how to remove each of those remaining special
cherry actions.
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(1)

Figure 2.9: An illustration of the scenario as described in Step 2. The figure shows a comparison of the two
sequences of Ri-trees; one corresponding to the original cherry list and one corresponding to the modified
cherry list, in which a sequence of k special cherry actions of Type B, beginning at position i, is shifted to
position j − k.

Step 2. Let
∧∗ ⊂ ∧

with |
∧∗ | = k be a set of special cherry actions of Type B all

referring to a cherry action ∧j = ({L(a),L(c)}, ∅), and let i = mini′{∧i′ :∧i′ ∈
∧∗} with

∧i = ({L(x),L(z)}, ei). Moreover, let
∧′ be the cherry list that is obtained from

∧(1) as
follows. First the cherry of each cherry action in

∧∗ is replaced by {L(a),L(c)} and then
all those cherry actions in

∧∗ are rearranged such that they are placed in sequential order
directly right before position j.

This means, in particular, that
∧′ contains a sequence of special cherry actions

...

∧j−k = ({L(a),L(c)}, ej−k = (vj−k, wj−k)),

∧j−k+1 = ({L(a),L(c)}, ej−k+1 = (vj−k+1, wj−k+1)),

...

∧j−1 = ({L(a),L(c)}, ej−1 = (vj−1, wj−1)),

∧j = ({L(a),L(c)}, ∅),
...

in which each edge of
∧∗ is contained in the set of pendant edges for {L(a),L(c)}. Now,

just for convenience, in the following we assume, without loss of generality, that all those
cherry actions in

∧∗ occur in sequential order beginning at position i. Moreover, for the
following, let W be the set of target nodes of each edge in

∧∗ and let Rl (or R′l) be the

input tree of iteration l while processing the cherry list
∧(1) (or

∧′). Additionally, again we
write Ri =∧ R

′
j if both trees contain the same set of cherries. Then, based on the position

of a cherry action ∧l in
∧

, we can make the following five observations (cf. Fig. 2.9).

• If l < i, then R′l equals Rl: This is the case because R1 equals R′1 and through ∧l
and ∧′l the same tree operation is performed on Rl and R′l, respectively.
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• If i− 1 < l < i+ k, then Rl =∧ R
′
i−1: This is the case because Ri−1 equals R′i−1 and,

since in Rl each wi in W cannot be part of a cherry, through ∧l the set of cherries in
Rl remains unchanged.

• If i + k − 1 < l < j, then R′l−k =∧ Rl: This is the case because Ri+k−1 =∧ R
′
i−1 and

again in Rl each wi in W cannot be part of a cherry. Thus, the two cherry actions
∧l and ∧′l−k produce the same set of cherries in Rl and R′l−k.

• If l = j, then R′l equals Rl: This is the case because Rj−1 =∧ R
′
j−k−1 and through

each cherry action in
∧∗ each subtree T (wi) is cut (and removed from R′j−k−1, if wi

is a leaf). Consequently, through the cherry actions ∧q and ∧′q, with 1 ≤ q < j, the
same tree operations are applied to R1 and R′1 and, thus, Rj equals R′j.

• If l > j, then R′l equals Rl: This is the case because Rj equals R′j and through ∧l
and ∧′l the same tree operation is performed on Rl and R′l, respectively.

Now, by consecutively rearranging all special cherry actions of Type B as described
above, we can turn

∧(1) into the cherry list
∧(2) for T1 and T2 in which all special cherry

actions referring to the same cherry action are located next to each other. Moreover, as
a direct consequence of these observations and since through

∧(2) still the same edges are

cut from T2 as through
∧(1),

∧(2) is still a cherry list for T1 and T2 calculating F .

Step 3. Let
∧(2) be the list that is obtained from applying Step 1 and Step 2 as

described above. Then, we can further modify the cherry list
∧(2) to

∧(3) by replacing
each sequence

(∧i = ({L(a),L(c)}, ei),∧i+1 = ({L(a),L(c)}, ei+1), . . . ,∧i+k−1 = ({L(a),L(c)}, ei+k−1))

of special cherry actions (i.e., cherry actions of Type B) through a single extended cherry
action ∧B = ({L(a),L(c)}, EB), where EB denotes the pendant edge set for {L(a),L(c)}.
As a consequence, since ∧B just summarizes all tree operations conducted by the replaced
sequence of special cherry actions, by

∧(3) the same edges are cut from T2 as it is the case

for the cherry list
∧(2). As a direct consequence, the maximum acyclic agreement forest F

is still calculated by the extended cherry list
∧(3).

In summary, as described by those three steps, we can consecutively replace all spe-
cial cherry actions of

∧
so that the resulting list

∧(3) satisfies all of the following three
conditions.

•
∧(3) is an extended cherry list for T1 and T2.

•
∧(3) does not contain any special cherry actions.

•
∧(3) calculates the maximum acyclic agreement forest F .



62 2. Hybridization networks for two binary trees

This directly implies that for each computational path in allMAAFs calculating a
maximum acyclic agreement forest F for both input trees there also exists a computational
path in allMAAFs1 calculating F .

Now, from Lemma 6 we can directly deduce the correctness of Theorem 5.

2.4.4.3 Correctness of allMAAFs2

In this section, we will discuss the correctness of our second modified algorithm all-
MAAFs2 by proving the following theorem.

Theorem 7. Let T1 and T2 be two rooted binary phylogenetic X -trees and k ∈ N. Calling

allMAAFs2(T1, T2, T1, {T2}, k, ∅)

returns all maximum acyclic agreement forests for T1 and T2 if and only if k ≥ h(T1, T2).

Proof. The proof of Theorem 7 is established by Lemma 8 and 9. Here, we first argument
that by contracting common cherries instead of cutting one of its edges, results in an
agreement forests containing less components. It might be the case, however, that these
agreement forests are not acyclic. In such a case, however, these common cherries have to
be part of a cycle in the underlying modified ancestor descendant graph. Consequently,
depending on the topology of this graph, one can decide whether it is worth to cut edges
of a common cherry or not.

Lemma 8. Let
∧

= (∧1,∧2, . . . ,∧n) be a cherry list for two rooted binary phylogenetic X -
trees T1 and T2 with ∧i = ({L(a),L(c)}, ec) ∈

∧
so that {L(a),L(c)} is a common cherry

of Ri and Fi and ec the in-edge of leaf c. Moreover, let F be the agreement forest for
T1 and T2 that is calculated by calling processCherries(R1,F1,

∧
) such that |F| = k.

Then, there exists an agreement forest F̂ with |F̂ | = k− 1 that can be computed by calling
processCherries(Ri,Fi, (∧′i, . . . ,∧′n)) in which ∧′i = ({L(a),L(c)}, ∅).

Proof. Let Fa and Fc be the two components in F that have been derived from expanding
both components containing a and c, respectively, and let Xa be the taxa set of the subtree
rooted at a, i.e., Xa = L(Fa(a)). Then, by attaching Fc back to Fa we can reduce the size
of the agreement forest F by one. Here, depending on whether LCAFa(Xa) is the root of
Fa or not, this reattachment step can be done in two different ways.

• If LCAFa(Xa) is not the root of Fa and, thus, has an in-going edge e = (u,w), first
e is split into two adjacent edges (u, v) and (v, w) and then Fc is reattached to v by
inserting a new edge (v, rc), where rc denotes the root of Fc.

• Otherwise, if LCAFa(Xa) is the root of Fa, first a new node v is created and then v
is connected to the two roots of Fa and Fc.
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Figure 2.10: The two forests F and F̂ as defined in Lemma 8. Note that, since Fc is attached to Fa, the
size of F̂ is |F| − 1.

In the following, we will denote the component that is obtained from attaching Fc
back to Fa by Fr and the resulting set of components by F̂ . In Figure 2.10, we give an
illustration of the two forests F and F̂ .

Notice that we can calculate the agreement forest F̂ by calling the algorithm process-
Cherries with a specific cherry list

∧′ that can be derived from the original cherry list∧
= (∧1,∧2, . . . ,∧i = ({L(a),L(c)}, ec), . . . ,∧n) as follows.

(1) Replace ∧i by ({L(a),L(c)}, ∅).

(2) In each subsequent cherry action ∧i+1, . . . ,∧n, replace L(a) by L(a) ∪ L(c).

Let Ri+1 and Fi+1 be computed by applying ({L(a),L(c)}, ec) to Ri and Fi and let R′i+1

and F ′i+1 be computed by applying ({L(a),L(c)}, ∅) to Ri and Fi. Since {L(a),L(c)} is a
common cherry of Ri and Fi, the only difference between the two topologies, disregarding
node labels, is that Fi+1 contains an additional component consisting of an isolated node
labeled by L(c). Notice, however, that, since this component is fully contracted, this com-
ponent cannot have an impact on the subsequent cherry actions ∧i+1, . . . ,∧n. Consequently,
the cherry list

∧′ calculates F̂ .
Up to now, we have shown that there exists a set of components F̂ of size |F|−1, which

can be computed by calling the algorithm processCherries with a slightly modified
cherry list

∧′. Now, to establish Lemma 8, we still have to show that F̂ is an agreement
forest for both input trees T1 and T2. First, note that each expanded forest to which
allMAAFs applies the acyclic check (cf. Alg. 2, line 5) has to satisfy each condition of an
agreement forest [57, Lemma 3]. As

∧′ is imitating a computational path corresponding
to the original algorithm allMAAFs calculating F̂ , this directly implies that F̂ is an
agreement forest for T1 and T2.
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Figure 2.11: An outline of Case (1) and Case (2) corresponding to the proof of Lemma 9.

Now, before entering Lemma 9, we first introduce a further notation. Let ∧i be a cherry
action of a cherry list (∧1, . . . ,∧n), with 1 ≤ i ≤ n, for two rooted binary phylogenetic
X -trees T1 and T2, and let F be a component of its corresponding forest Fi. Then, in
order to ease reading, we write F ex

i to denote the forest that is obtained from calling
processCherries(T1, {T2}, (∧1, . . . ,∧i)). Moreover, by F ex we refer to the corresponding
expanded component in F ex

i .

Lemma 9. Let F , Fi, F̂ , and {L(a),L(c)} be as defined in Lemma 8. Moreover, let F̃ be
the component in Fi ÷ {L(a),L(c)} containing both nodes a and c. Then, the agreement
forest F̂ is acyclic, if F is acyclic and the expanded component F̃ ex is not part of a directed
cycle in AG∗(T1, T2, F̃ ex

i ), where F̃i equals Fi ÷ {L(a),L(c)}.

Proof. Let Fa, Fc ∈ F , Fr be the reattached component in F̂ with taxa set L(Fa)∪L(Fc),
and F̃ ex ∈ F̃ ex

i . To prove Lemma 9, we first have to take all potentially different topologies
of the two graphs AG∗(T1, T2,F) and AG∗(T1, T2, F̂) into account. Since F is acyclic, as
defined in Lemma 9, each directed cycle that could arise in AG∗(T1, T2, F̂) has to contain
Fr. Thus, it suffices to consider only those edges of AG∗(T1, T2, F̂) that are adjacent to Fr.

Now, let Xa be the taxa set derived from expanding the contracted node a in Fa, i.e.,
Xa = L(F ex

a (a)). Depending on whether LCAFa(Xa) is the root of Fa or not, we can
distinguish between the following two cases (cf. Fig. 2.11).

Case (1). If LCAFa(Xa) is not the root of Fa, then the lowest common ancestor of L(Fa)
and L(Fr) in both input trees is preserved and, thus, the topology of AG∗(T1, T2, F̂) can
be derived from AG∗(T1, T2,F) by removing node Fc together with all its incident edges
and by renaming node Fa to Fr. In this case, we can observe the following properties for
each edge in AG∗(T1, T2, F̂).

(1.1) If (Fx, Fy) is an edge in AG∗(T1, T2, F̂) with Fx, Fy 6= Fr, then (Fx, Fy) is contained
in AG∗(T1, T2,F), too.
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(1.2) If (Fx, Fr) is an edge in AG∗(T1, T2, F̂), then both edges (Fx, Fa) and (Fx, Fc) also
exist in AG∗(T1, T2,F).

(1.3) If (Fr, Fx) is an edge inAG∗(T1, T2, F̂), then the edge (Fa, Fx) exists inAG∗(T1, T2,F).

This implies that, in this special case, the edge set of AG∗(T1, T2, F̂) is a subset of the edge
set of AG∗(T1, T2,F) (disregarding node labels) and, consequently, since AG∗(T1, T2,F)
does not contain any directed cycles, this also holds for the modified ancestor descendant
graph of F̂ . Consequently, AG∗(T1, T2, F̂) is acyclic.

Case (2). If LCAFa(Xa) is the root of Fa, due to the following scenario, there can arise a
different topology of AG∗(T1, T2, F̂) as the one discussed in Case (1). Let Fb be a component
whose lowest common ancestor is contained in a subtree lying on the path leading from
LCAT (Xa) to LCAT (L(Fr)) with T ∈ {T1, T2}. Because of this component Fb, as T (L(Fr))
is ancestor of T (L(Fb)) in T , there arises a new edge (Fr, Fb) in AG∗(T1, T2, F̂). Thus, we
can observe the following properties for each edge in AG∗(T1, T2, F̂).

(2.1) If (Fx, Fy) is an edge in AG∗(T1, T2, F̂) with Fx, Fy 6= Fr, then (Fx, Fy) has to be
contained in AG∗(T1, T2,F), too.

(2.2) If (Fx, Fr) is an edge in AG∗(T1, T2, F̂), then (Fx, Fa) and (Fx, Fc) does exist in
AG∗(T1, T2,F).

(2.3) If (Fr, Fx) is an edge in AG∗(T1, T2, F̂), there are three possible scenarios regarding
the edge set of AG∗(T1, T2,F).

(2.3.1) Either (Fa, Fx) or (Fc, Fx) exists in AG∗(T1, T2,F).

(2.3.2) (Fx, Fa) is an edge and (Fx, Fc) is not an edge in AG∗(T1, T2,F).

(2.3.3) (Fx, Fc) is an edge and (Fx, Fa) is not an edge in AG∗(T1, T2,F).

An illustration of Case (2.3.1), (2.3.2), and (2.3.3) is given in Figure 2.12.

Regarding Case (2.1), (2.2) and (2.3.1), again the edge set of AG∗(T1, T2, F̂) is a sub-
set of the edge set of AG∗(T1, T2,F) and, thus, as already discussed in Case (1), since
AG∗(T1, T2,F) is acyclic this has to hold for AG∗(T1, T2, F̂), too. In the following, we will
focus on the scenario given in Case (2.3.2). Notice that establishing the correctness of
Lemma 9 in respect to Case (2.3.3) can be done in the same way.

Regarding Case (2.3.2), we have that there is a component Fx in F such that (Fx, Fa)
is an edge and (Fx, Fc) is not an edge in AG∗(T1, T2,F). Consequently, after reattaching
Fc back to Fa there exists an edge (Fr, Fx) in AG∗(T1, T2, F̂). Moreover, we assume that
there exists a set Fc = {Fγ1 , . . . , Fγn} of components with Fc ⊂ F such that AG∗(T1, T2,F)
contains a directed path

P = (Fx, Fγ1 , Fγ2 , . . . , Fγn , Fc)

with n ≥ 0. Otherwise, if there does not exist such a directed path P connecting Fx and
Fc in AG∗(T1, T2,F), we can directly deduce that AG∗(T1, T2, F̂) is acyclic.
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Figure 2.12: The possible locations of Fa, Fc, and Fx in one of the input trees T1 or T2 discussed in
Case (2.3.1) (a,b), Case (2.3.2) (c), and Case (2.3.3) (d).

Figure 2.13: An illustration of the scenario as discussed in the proof regarding Case (2.3.2). Notice that,
due to location of Fx, after attaching Fc back to Fa the cycle (Fr, Fx, Fr) arises in the underlying modified
ancestor descendant graph.

Now, for simplicity, in the following we assume that P is of minimum length such that
P = (Fx, Fc). Now, due to the edge (Fr, Fx), this directly implies that AG∗(T1, T2, F̂)
contains a directed cycle Ĉ = (Fr, F̂x, Fr) with F̂x ∼= Fx. In this case, however, we will
show that there already has to exist a certain cycle in AG∗(T1, T2, F̃ ex

i ) containing the
expanded component of F̃ ex. For a better understanding we have illustrated the described
scenario in Figure 2.13.

Since a and c is a sibling in Ri, there has to exist a component F̃x in F̃ ex
i with Fx ⊆ F̃x

and F̃x 6= F̃ ex with, as denoted in Lemma 2.11, F̃ ex being the expanded component corre-
sponding to F̃ in F ex

i . This is, in particular, the case, since initially F̃x must have been part
of a pendant subtree lying on the path leading from LCAT (L(Fa)) to LCAT (L(Fr)) with
T ∈ {T1, T2} and, as {L(a),L(c)} now forms a common cherry, each pendant subtree lying
on this path must have been cut so far. Thus, due to F̃x, there is an edge in AG∗(T1, T2, F̃ ex

i )
leading from F̃ ex to F̃x. Moreover, due to the existence of P in AG∗(T1, T2,F), this di-
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rectly implies that there is also an edge leading from F̃x to F̃ ex and, as a direct consequence,
AG∗(T1, T2, F̃ ex

i ) contains the cycle C̃ = (F̃ ex, F̃x, F̃
ex).

Note that, if P is not of minimum size, similar to Fx, each component in Fc has to be
contained in a component in F ex

i unequal to F̃ ex. Moreover, because different components
in Fc can be contained in the same component in F̃ ex

i , the cycle C̃ can be shorter than Ĉ.
This scenario can occur due to subsequent cherry actions, that, when processing a contra-
dicting cherry, split components that are contained in C̃ which automatically increases the
size of the cycle.

In conclusion, by combining Case (1) and Case (2) we can deduce that if there exists
a directed cycle in AG∗(T1, T2, F̂) involving the component Fr, there has to exist a di-
rected cycle in AG∗(T1, T2, F̃ ex

i ) involving the expanded component of F̃ . Hence, regarding
Lemma 9, if F is acyclic and if there does not exist a cycle in AG∗(T1, T2, F̃ ex

i ) including
the expanded component of F̃ ex, then, AG∗(T1, T2, F̂) must be acyclic.

Now, based on Lemma 8 and 9, we can formulate the following observation.

Observation 1. Let processCherries(Ri,Fi,∧i = (({L(a),L(c)}, ∅), . . . ,∧k)) be a call
in which {L(a),L(c)} is a common cherry for Ri and Fi. If AG∗(S, T,Fi) does not con-
tain a directed cycle including the component of Fi ÷ {L(a),L(c)} containing the taxa set
L(a)∪L(c), both calls, in which ∧i is replaced by ({L(a),L(c)}, ea) and ({L(a),L(c)}, ec),
respectively, cannot result in a maximum acyclic agreement forests.

This means, in particular, when processing a common cherry {L(a),L(c)}, both recur-
sive calls resulting from a deletion of the in-edge of a and c, respectively, can only produce
a maximum acyclic agreement forest if AG∗(T1, T2,F) contains a directed cycle including
the component containing the taxa set {L(a)∪L(c)}. In return, if AG∗(T1, T2,F) does not
contain such a directed cycle, one can omit these additional recursive calls and still receives
all maximum acyclic agreement forests. Thus, by combining Lemma 8 and 9, Theorem 7
is established.

2.4.4.4 Correctness of allMAAFs3

The correctness of our third modified algorithm allMAAFs3 principally directly follows
from the correctness of the refinement step, which can be found in the work of Whidden et
al. [69]. We still have to show, however, that omitting both additional cutting steps when
processing a common cherry still computes all of those agreement forests from which all
maximum acyclic agreement forest can be obtained by cutting some of its edges.

Theorem 10. Let T1 and T2 be two rooted binary phylogenetic X -trees and k ∈ N. Calling

allMAAFs3(T1, T2, T1, {T2}, k, ∅)

returns all maximum acyclic agreement forests for T1 and T2 if and only if k ≥ h(T1, T2).

Proof. Given two rooted binary phylogenetic X -trees T1 and T2, assume that our first
modified algorithm allMAAFs1 contains a computational path calculating a maximum
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acyclic agreement forest F of size k by cutting instead of contracting a common cherry.
More precisely, let

∧
= (∧1, . . . ,∧i = ({L(a),L(c)}, ec), . . . ,∧n) be the cherry list mimicking

this computational path and, without loss of generality, let ∧i be the only cherry action
cutting instead of contracting a common cherry. Then, as already discussed in the proof of
Lemma 8, there additionally exists a cherry list

∧′ calculating a specific agreement forest
F̂ of size k−1 containing a component F̂ . More specifically, let Fa and Fc be the expanded
component in F which is derived from the contracted node a and c, respectively. Then,
F̂ is obtained from F by reattaching Fc back to Fa (cf. Fig. 2.10). Thus, as a direct
consequence, by cutting the in-edge corresponding to the root of F̂ (L(Fc)) the maximum
acyclic agreement forest F arises.

This implies that, if cutting instead of contracting a common cherry yields a maximum
acyclic agreement forest F , the algorithm allMAAFs3 guarantees the computation of
an agreement forest F̂ from which F can be obtained by cutting some of its edges. Note
that the refinement step is always able to identify the minimal number of such edges
and, thus, as the only difference between the first modified algorithm and the algorithm
allMAAFs3 consists in the way a common cherry is processed, Theorem 10 is established.

2.4.5 Simulation Study

Our simulation study has been conducted on the same synthetic dataset as the one used
for the simulation study reported in the work of Albrecht et al. [6], previously presented
in Section 2.2.3. It consists of binary phylogenetic tree pairs that have been generated
in respect to one combination of the following three parameters: the number of taxa n =
{20, 50, 100.200}, the executed number of rSPR-moves k = {5, 10, . . . , 50}, and the tangling
degree d = {3, 5, 10, 15, 20}. For each combination of those parameters 10 tree pairs have
been generated, resulting in 2000 tree pairs in total.

More precisely, a tree pair (T1, T2) is computed as follows. In a first step, the first tree
T1 with n leaves is computed which is done initially by randomly selecting two nodes u
and v of a specific set V consisting of n nodes of both in- and out-degree 0. Then, those
two selected nodes u and v are connected to a new node w and, finally, V is updated by
replacing u and v by its parent w. This process is repeated until V consists only of one
node corresponding to the root of T1. In a subsequent step, T2 is computed by applying k
rSPR-moves to T1 each respecting tangling degree d.

When performing a sequence of rSPR-moves, one can undo or redo some of those moves
and, thus, k is only an upper bound of the real underlying rSPR-distance corresponding to
both trees of a tree pair. The tangling degree, as already described in the work of Albrecht
et al. [6], is an ad hoc concept controlling the number of minimum common clusters during
the construction of a tree pair. Since, however, all the four implementations that are tested
on the synthetic dataset perform a cluster reduction and, thus, equally benefit from the
number of minimum common clusters, this number is irrelevant for our simulation study
and, consequently, we do not give any further details about this parameter. Instead, we
refer the interested reader to the work of Albrecht et al. [6].
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In this section, the practical runtimes produced by the respective implementations of
our three modifications are compared with the practical runtimes of an implementation
of the original algorithm. More precisely, by applying our synthetic dataset the practical
runtime was measured for an implementation of the original algorithm allMAAFs, the
algorithm allMAAFs1, the algorithm allMAAFs2, and the algorithm allMAAFs3.
Each of those algorithms has been integrated as a plug-in into the freely available Java
software Hybroscale4. The simulation study has been conducted on a grid computer
providing 16 cores and 40 GB RAM. In order to receive a reasonable set of completed
data sets within an appropriate time period, we decided to compute only the hybridization
number and omitted the computation of all maximum acyclic agreement forests. Moreover,
we set the maximum runtime of each tree pair to 20 minutes, which means that each
tree pair whose computation of the hybridization number could not be finished within
20 minutes was aborted. Notice that depending on the runtime analysis, which is shown
in the following, those aborted tree pairs were either not taken into account or counted as
being finished after 20 minutes.

The problem arising when computing all, instead of just one, maximum acyclic agree-
ment forests for certain tree sets is that, typically, there exists a large number of those
agreement forests all being distributed in a vast search space. Consequently, even if those
tree sets are of low computational complexity, one has to investigate far more than 20 min-
utes, which means that one could not conduct the simulation study within an appropriate
time period. Otherwise, if we would choose a relatively small maximum runtime, such as
20 minutes, we could only process those tree sets of low computational complexity, which
are not able to indicate the speedup obtained from applying our three modifications.

In both Figures 2.14 and 2.15, the mean average runtimes in terms of the computed
hybridization numbers are shown. More precisely, the plot was generated by first aggregat-
ing all tree pairs corresponding to the same hybridization number and then by computing
the mean average runtime of each of those aggregated subsets. Therefor, each aborted
tree pair whose computation would have taken longer than the given time limit of 20 min-
utes, was treated as follows. If the tree pair could not be computed by both considered
algorithms, this tree pair was not taken into account. However, if at least one algorithm
was able to compute the hybridization number for a tree pair, the runtime of the other
algorithm was set to 20 minutes if this algorithm was aborted in this case. Regarding both
Figures 2.14 and 2.15, the number assigned to each measurement denotes the number of
tree pairs whose hybridization number could be computed within the time limit by the
corresponding two algorithm.

Figure 2.14 indicates that each of our three modified algorithms outperforms the orig-
inal algorithm. Moreover, Figure 2.15 demonstrates that our second modified algorithm
allMAAFs2 is significantly more efficient than our first modified algorithm allMAAFs1,
which is also the case for our third modified algorithm allMAAFs3. Moreover, by com-
paring the mean average runtimes of the algorithm allMAAFs2 and allMAAFs3, it
turns out that allMAAFs3 is slightly more efficient. Due to the large difference between

4www.bio.ifi.lmu.de/softwareservices/hybroscale

www.bio.ifi.lmu.de/softwareservices/hybroscale
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Figure 2.14: Comparisons between the mean average runtimes in terms of the hybridization number of
(a) allMAAFs and allMAAFs1, (b) allMAAFs and allMAAFs2, and (c) allMAAFs and all-
MAAFs3. For each hybridization number the corresponding number of tree pairs is given that could be
computed within the time limit of 20 minutes by the two respective algorithms and, thus, contributed to
the mean average runtime denoted by the y-axis.
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Figure 2.15: Comparisons between the mean average runtimes in terms of the hybridization number
of (a) allMAAFs1 and allMAAFs3, (b) allMAAFs1 and allMAAFs2, and (c) allMAAFs2 and
allMAAFs3. For each hybridization number the corresponding number of tree pairs is given that could
be computed within the time limit of 20 minutes by the two respective algorithms and, thus, contributed
to the mean average runtime denoted by the y-axis.
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Figure 2.16: The distributions of the speedups, obtained from comparing algorithm A1 versus algorithm
A2, as denoted at the x-axis, via boxplots. A tree pair d from our synthetic dataset was only considered if
at least one of the two algorithms could process d within the time limit of 20 minutes and if at least one
algorithm took longer than 50 seconds for its computation. Notice that a base-10 log scale is used for the
y-axis.

the number of tree pairs that could be computed within the time limit of 20 minutes, we
expect that a higher time limit increases the gap between the runtimes of the first modified
algorithm and the other two modified algorithms even more.

Figure 2.16 shows the distributions of the speedups obtained from our three modified
algorithms via boxplots. Each of those boxplots was generated by first selecting a relevant
set D of tree pairs from our synthetic dataset and then by computing the speedup of each
of those tree pairs by taking the runtime obtained from the corresponding two algorithms
into account. More precisely, in a first step, we set the runtime of each tree pair whose
hybridization number could not be computed within the time limit to 20 minutes. Second,
we consider each tree pair d as relevant if at least one of both algorithms could process
d within the time limit of 20 minutes and if at least one computation referring to one of
both algorithms took longer than 50 seconds. Consequently, the relevant set D excludes
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those tree pairs whose computational complexity is, on the one hand, too low and, on the
other hand, too high to reveal a difference between the runtimes of both algorithms.

Figure 2.16 again indicates that all three modified algorithms are more efficient than
the original algorithm. More specifically, for the considered set of tree pairs, allMAAFs1,
allMAAFs2 and allMAAFs3 is on mean average about 3.9 times, 7.9 times, and 11.9
times (median 2.3, 4.9 and 6.6), respectively, faster than allMAAFs. Moreover, both
the second and the third modified algorithms can significantly improve the practical run-
time of the first modified algorithm. More specifically, for the considered set of tree pairs,
allMAAFs2 and allMAAFs3 is on mean average about 4.7 times and 8.15 times (me-
dian 2.19 and 3.18), respectively, faster than allMAAFs1. Lastly, the algorithm all-
MAAFs3 is usually slightly faster (mean average 1.88 and median 1.50) than the algorithm
allMAAFs2.

In order to give a reason of the speedup obtained by our three modified algorithms,
we measured the number of recursive calls that has been performed for calculating the
hybridization number of each tree pair. To draw comparisons, we only took those tree
pairs into account whose hybridization number could be processed by each corresponding
pair of algorithms within the time limit of 20 minutes. For the first pair, consisting of
allMAAFs1 and allMAAFs3, these are 1302, for the second pair, consisting of all-
MAAFs1 and allMAAFs2, these are also 1302, and for the third pair, consisting of
allMAAFs2 and allMAAFs3, these are 1407. Next, all these tree pairs were grouped
according to their hybridization number and, finally, the mean average number of recur-
sive calls for each group was computed. Regarding Figure 2.17 and 2.18, the numbers
that are attached to each measurement correspond to the number of tree pairs that have
contributed to the mean average denoted at the x-axis.

Figure 2.17 indicates that by applying our modified algorithms there are significantly
less recursive calls necessary for the computation of a maximum acyclic agreement forest
compared with the original algorithm. Moreover, Figure 2.18 (a) and (b) shows that both
the second and the third modified algorithms allMAAFs2 and allMAAFs3 have to
conduct significantly less recursive calls than our first modified algorithm for computing
hybridization numbers which, obviously, compensates the effort of preventing additional
recursive calls when processing a common cherry. Since the computation of the hybridiza-
tion number is just an intermediate step in computing all maximum acyclic agreement
forests, the difference between the number of recursive calls between the first and both the
second and the third modified algorithm is expected to be even larger in this case.

Figure 2.18 (c) shows that the difference between the mean average numbers of recursive
calls conducted by the second and the third modification is a rather small. This implies
that, regarding the original algorithm, there are only a few computational paths arising
from those additional cutting steps that are applied when processing common cherries
leading to maximum acyclic agreement forests. Consequently, this plot reveals that the
better practical runtime of our second modification allMAAFs3 compared with our first
modification allMAAFs2 is mainly due to the subroutine (cf. Alg. 8, Line 9,10) deciding
if two additional computational paths are necessary when processing common cherries.
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Figure 2.17: Comparisons between the mean average number of recursive calls in terms of the hybridization
number of (a) allMAAFs and allMAAFs1, (b) allMAAFs and allMAAFs2, and (c) allMAAFs and
allMAAFs3. For each hybridization number the corresponding number of tree pairs is given that could
be computed within the time limit of 20 minutes by the two respective algorithms and, thus, contributed
to the mean average number of recursive calls denoted by the y-axis.
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Figure 2.18: Comparisons between the mean average number of recursive calls in terms of the hybridiza-
tion number of (a) allMAAFs1 and allMAAFs3, (b) allMAAFs1 and allMAAFs2, and (c) all-
MAAFs2 and allMAAFs3. For each hybridization number the corresponding number of tree pairs is
given that could be computed within the time limit of 20 minutes by the two respective algorithms and,
thus, contributed to the mean average number of recursive calls denoted by the y-axis.
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Even though this subroutine is of rather low computational complexity, it typically has to
be performed to a certain extend having a significant impact on the practical runtime.

Finally, we finish this section by comparing the runtimes of the four algorithms via
scatter-plots (cf. Fig. 2.19). Again, all tree pairs whose hybridization number could not
be computed within the time limit was set to 20 minutes. The plots clearly show that our
modified algorithms outperform the original algorithm and that the modified algorithm
allMAAFs3 is most efficient followed by the modified algorithm allMAAFs2 and the
modified algorithm allMAAFs1. However, as mentioned at the beginning of this section,
one has to take into account that our third modification allMAAFs3 is much more
complex than our second modification allMAAFs2, which means that its implementation
is much more sophisticated. Thus, we think that allMAAFs2 is nevertheless a valuable
modification significantly improving the practical runtime of the original algorithm.

2.4.6 Runtime of allMAAFs1, allMAAFs2 and allMAAFs3

The theoretical worst-case runtime of allMAAFs1 and allMAAFs2 is still the same as
the one of the original algorithm allMAAFs, which is O(3|X ||X |) as stated in the work
of Scornavacca et al. [57, Theorem 3].

Theorem 11. Let T1 and T2 be two rooted phylogenetic X -trees and k ∈ N. The two
algorithms allMAAFs1(T1, T2, T1, {T2}, k) and allMAAFs2(T1, T2, T1, {T2}, k) have a
theoretical worst-case runtime of O(3|X ||X |).

Proof. Let F = {Fρ, F1, F2, . . . , Fk−1} be an agreement forest for T1 and T2 of size k. To
obtain F from T2, one obviously has to cut k − 1 edges. Moreover, in order to reduce
the size of leaf set X of R to 1, to each component Fi in F we have to contract exactly
|L(Fi)| − 1 cherries. Consequently, at most |X | cherry contractions have to be performed
in total. Thus, our algorithm has to perform at most k + |X | = O(|X |) recursive calls for
the computation of F . Now, as one of these recursive calls can at least branch into three
further recursive calls, O(3|X |) is an upper bound for the total number of recursive calls
that are performed throughout the whole algorithm. Moreover, as each operation that is
performed during a recursive call can be performed in O(|X |) time, the worst-case runtime
of both algorithms is O(3|X ||X |).

When considering the theoretical worst-case runtime of allMAAFs3, we have to take
the runtime of a refinement step into account.

Theorem 12. Let T1 and T2 be two rooted phylogenetic X -trees and k ∈ N. The theoretical
worst-case runtime of the algorithm allMAAFs3(T1, T2, T1, {T2}, k) is O(3|X |4k|X |).

Proof. As stated in Theorem 11, the algorithm has to conduct O(3|X |) recursive calls.
Potentially, for each of these recursive calls we have to apply a refinement step whose
theoretical worst-case runtime is stated with O(4k|X |) [69]. Moreover, as all other oper-
ations that are performed during a recursive call can be performed in constant time, the
theoretical worst-case runtime of the whole algorithm is O(3|X |4k|X |).
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Figure 2.19: Six scatter-plots comparing the runtimes produced by the four different algorithms when
applying our synthetic dataset. Each dot refers to a tree set of this data set whose corresponding x- and
y-value indicates the runtime attained by the respective two algorithms.
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Even though all three presented modifications do not improve the theoretical worst-
case runtime, our simulation study indicates that in practice these modifications are sig-
nificantly faster than the original algorithm allMAAFs. Regarding our first modification
allMAAFs1, this is simply due to the fact that the number of computational paths arising
from processing a contradicting cherry is reduced. More precisely, if there is a computa-
tional path calculating a maximum acyclic agreement forest in which the set of pendant
edges EB for a particular cherry is cut, the original algorithms produces |EB|−1 redundant
recursive calls.

Furthermore, our second modification allMAAFs2 additionally improves the way of
processing a common cherry. Whereas the original algorithm always starts two recursive
calls, each for cutting one of both adjacent edges of the chosen cherry, allMAAFs2 first
checks an extra constraint (cf. Alg. 5, line 10) that often prevents the algorithm from initi-
ating computational paths not resulting in the computation of maximum acyclic agreement
forests. More precisely, given a particular node v of the underlying modified ancestor de-
scendant graph AG∗, these two additional recursive calls are performed only if there is
a directed cycle in AG∗ containing v, which obviously can be solved in linear time. As
indicated by our simulation study, running this additional check is much more efficient in
practice than running all unnecessary recursive calls not leading to a maximum acyclic
agreement forest.

Due to the refinement steps that are performed at the end of each recursive call, our
third modification allMAAFs3 always has to start only one recursive call for processing
a common cherry. This refinement step, however, has to be conducted for each maximum
agreement forest F in order to transform F into all maximum acyclic agreement forests.
Nevertheless, as indicated by our simulation study, this post processing step is still more
efficient than always running two additional recursive calls when processing a common
cherry (as it is the case for the original algorithm allMAAFs) even if the number of
those recursive calls is limited by first checking the graph AG∗ (as it is the case for the
algorithm allMAAFs2).

In conclusion, due to the significant speedup that can be obtained from applying the
presented modifications, we feel certain that this work describes a noticeable improvement
to the original algorithm allMAAFs, which will make this algorithm accessible for a
wider range of biological real-world applications.
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2.4.7 Conclusion

An important approach to receive specfic hybridization scenarios is the reconciliation of
incongruent gene trees into certain kinds of phylogenetic networks, so-called hybridization
networks. As already mentioned, in this context, biologists are in general interested not
only in one but in all of those networks as, once calculated all of these networks, one can
then apply certain filtering techniques testing certain hypothesis. As already discussed in
Section 2.2, the recently published algorithm allMAAFs [57] calculating all maximum
acyclic agreement forests for two rooted binary phylogenetic trees, is considered to be an
important step to achieve this goal.

In this section, we have presented three modifications allMAAFs1, allMAAFs2 and
allMAAFs3 of the algorithm allMAAFs still calculating all maximum acyclic agree-
ment forests for both input trees as shown by several formal proofs. Moreover, as we have
additionally indicated by a simulation study that each of those modifications significantly
improves the practical runtime of the original algorithm, we feel certain that this work
will facilitate the computation of hybridization networks for larger input trees and, thus,
makes network algorithms accessible to a wider range of biological problems.
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2.5 TerminusEst

TerminusEst is, to our knowledge, so far the fastest algorithm calculating the hybridiza-
tion number for two rooted (nonbinary) phylogenetic X -trees [49]. In contrast to our
algorithm allMAAFs, it is not based on cherries but on other types of nodes — called
terminals (as defined later). This algorithm, however, can only be used to calculate one
minimum hybridization network instead of all. Nevertheless, for this simplified problem
this algorithm is in general much faster than our approach presented in Section 2.3 and,
thus, we can use this approach in order to speed up the computation of all hybridization
networks for two rooted binary phylogenetic X -trees.

For this purpose, we integrated an optimized version of the algorithm TerminusEst –
called TerminusEst?— into our existing approach (cf. Sec. 2.2) as follows. Before apply-
ing the algorithm allMAAFs returning all maximum acyclic agreement forests for two
rooted binary phylogenetic X -trees T1 and T2, we first calculate the minimum hybridization
number h for those two trees using TerminusEst?. Consequently, we can directly check
the first search space containing maximum acyclic agreement forests of size h + 1 such
that each search looking for forests of smaller sizes can be skipped. We have undertaken
a simulation study indicating that this technique is much faster than simply running the
algorithm allMAAFs by step-wise increasing parameter k (beginning with k = 0).

2.5.1 The algorithm TerminusEst

The algorithm presented in the work of Piovesan and Kelk [49] is a quite simple practical
bound-search algorithm being described on the concept of clusters. As in this thesis we
want to focus on graphs, we will introduce the algorithm TerminusEst by transferring
the respective definitions on rooted phylogenetic X -trees.

Terminals. Let T1 and T2 be two rooted phylogenetic X -trees and let p1 and p2 be the
parents of a leaf label by taxon x in T1 and T2, respectively. Then, taxon x is a terminal
for T1 and T2, if L(p1) \ {x} ∩ L(p2) \ {x} = ∅ (cf. Fig. 2.20). Moreover, by τ(T1, T2) we
will refer to the set containing all terminals of two rooted phylogenetic X -trees T1 and T2.

Minimum clusters. Let T be a rooted phylogenetic X -tree and let v be a node whose
children are all leaves. Then, L(v) is a minimum cluster of T (cf. Fig. 2.20).

Cutting taxa. Let T be a rooted phylogenetic X -tree and let a be a leaf in T . Then,
the operation of cutting a from T , shortly denoted by T ÷ L(a), is conducted by first
removing a from T together with its in-going edge and then by suppressing each node of
both in- and out-degree 1.

Collapsing maximal common pendant subtrees. Let T1 and T2 be two rooted
binary phylogenetic X -trees, then all maximal pendants subtrees T ′ of size ≥ 2 occurring
in T1 and T2 are collapsed as follows. Let v1 and v2 be the root of such a maximal pen-
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Figure 2.20: Two rooted (nonbinary) phylogenetic X -trees T1 and T2, with {b, c, d, e, g, h} being the set
of terminals for both trees. Note that f , for example, is not a terminal as {g, e} ∩ {e, d} = {e} is not the
empty set. Moreover, the minimal clusters of T1 are {h, i}, {c, b, d}, and {f, g, e}, whereas the minimal
clusters of T2 are {a, h, c}, {b, g}, and {d, e, f}.

dant subtree T ′ in T1 and T2, respectively. Then, all nodes that can be reached from v1

and v2 are deleted followed by relabeling v1 and v2 by a new taxon so far not contained in X .

Now, based on these definitions, we can briefly describe the recursive algorithm Termi-
nusEst. We will assume that, at the beginning, the algorithm is initialized by two rooted
binary phylogenetic X -trees T1 and T2 as well as a parameter k ∈ N. Then, by calling the
algorithm with those parameters the algorithm returns true if and only if h(T1, T2) ≤ k.

Step 1. First, collapse all maximal pendant subtrees of T1 and T2 resulting in two
rooted binary X ′-trees T ′1 and T ′2 with |X ′| < |X |. If T ′1 (and T ′2) only consists of one
node, the algorithm returns true and all other so far existing computational paths can be
aborted immediately. Otherwise, if k ≥ 1, continue with Step 2 (if k = 0, this computa-
tional path ends here).

Step 2. Based on T ′1 and T ′2, compute a set χ containing terminals from both trees as
follows. If |τ(T ′1, T

′
2)| > 2k, χ has to be a set of size 2k + 1 only containing terminals of

T ′1 and T ′2. Otherwise, if |τ(T ′1, T
′
2)| ≤ 2k, χ has to be a set containing from each minimal

cluster of T ′1 and T ′2 two elements such that at least one of both elements is a terminal for T ′1
and T ′2. Note that for each minimal cluster there has to exist at least one terminal because,
otherwise, there would exist a pendant subtree of T ′1 and T ′2 which is a contradiction to
Step 1. Continue with Step 3.

Step 3. For each taxon x in χ, start a new recursive call with T ′1÷{x}, T ′2÷{x}, and
k − 1.

Now, by running the algorithm for an increasing parameter k (beginning with k = 0),
the first k for which the algorithm TerminusEst returns true represents the hybridiza-
tion number for both input trees. Moreover, notice that by recording the sequence of taxa
that has been cut during a computational path returning true one can construct a hy-
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bridization network for both input trees with reticulation number k. However, as for our
purpose we are only interested in the hybridization number, this step is irrelevant and,
thus, we omit a detailed description of this procedure here. Instead we refer the interested
reader to the original literature [49].

2.5.2 Correctness of TerminusEst

To show the correctness of this algorithm it suffices to consider Step 2 dealing with the
selection of a set χ containing certain taxa that have to be removed from both trees T1

and T2. We refer the interested reader to the original literature in which the two different
ways of constructing χ are discussed in [49, Lemma 5] and [49, Theorem 1], respectively.

2.5.3 The algorithm TerminusEst?

The algorithm TerminusEst? is based on the original algorithm TerminusEst contain-
ing further algorithmic as well as technical modifications.

Terminals. If for both trees T1 and T2 there exist more than 3k terminals, each out-
going computational path will fail and, thus, the respective computational path can be
aborted.

Conflicting clusters. Regarding Step 2 of the algorithm as described above, if for
both trees T ′1 and T ′2 there exist two minimal clusters L(v1) and L(v2) of size two sharing
exactly one common taxon, χ can be simply set to L(v1) ∪ L(v2) .

Minimizing χ. Regarding Step 2 of the algorithm as described above, if |τ(T ′1, T
′
2)| ≤

2k, χ has to contain from each minimal cluster of T ′1 and T ′2 two elements such that at
least one of both elements is a terminal for T ′1 and T ′2. By maximizing the overlap of the
two sets of elements separately calculated for T ′1 and T ′2, one obviously is minimizing the
size of χ, which reduces the number of recursive calls. For example, regarding Figure 2.20,
a valid choice for χ would be either {i, h, c, d, f, g, a, b, e} or {h, i, c, b, g, e, d}, whereat the
first choice would result in 9 recursive calls and the second one only in 7.

Our applied method for maximizing the overlap between those two sets is quite simple.
When choosing elements from T1, we simply take all potential elements from T2 into ac-
count, which means that we predominantly choose those elements being elements that are
also contained in a minimal cluster of T2. Similarly, when choosing elements from T2, we
take the already chosen elements from T1 into account. Note that this strategy does not
guarantee the computation of a maximal overlap. Our simulation study, however, indicates
that this approach performs quite well at least compared with the naive method not taking
any potential taxa of the other tree into account.

In order to solve this problem in an optimal way, one could think of the following. First
solve a minimum edge covering problem in which the underlying graph contains a node for
each minimal cluster of both trees and an edge labeled with a terminal t, if t is contained
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in both corresponding clusters. Next, solve a minimum edge covering problem in which
the underlying graph again contains a node for each minimal cluster of both trees and an
edge labeled with taxon x, if x is contained in both corresponding clusters and has not
been selected so far during the first edge cover. Finally, if for a minimal cluster less than
two elements have been selected, choose arbitrary elements so that, however, at least one
of both selected elements is a terminal. As the underlying graph of those edge covering
problems are bipartite, we think that one could apply an efficient algorithm solving this
specific problem in polynomial time.

Hashing. In order to avoid the processing of unsuccessful computational paths, one
can set up a look-up table storing intermediate results. More precisely, let T ′1 and T ′2 be
two trees for which each out-going computational path has failed, i.e., could not find a
sequence of k′ taxa so that both trees could be collapsed into a single node. Then, for this
tree pair k′ is a lower bound, which means that the hybridization number for T ′1 and T ′2 is
at least k′ + 1.

Now, based on this look-up table, given a tree pair T1 and T2 together with a param-
eter k, at the beginning of each recursive call one can check if a lower bound for T1 and
T2 has already been calculated and, if this is the case, one can check, if k is larger than
the recorded lower bound. If this is not the case, based on previous experience, one can
be sure that each out-going computational path will fail and, thus, one can immediately
abort the processing of this computational path.

Note that the implementation of TerminusEst, which is open source5, only contains
the first, the second, and the fourth modification. Moreover, our technique for hashing
trees occurring on already visited computational paths to so far computed lower bounds is
realized in a more space efficient way. This means, in particular, that our implementation
needs less space for recording lower bounds, which is an important feature as the amount
of lower bounds that are stored in the look-up table is exponential in the size of the input
trees.

2.5.4 Correctness of TerminusEst?

Tho show the correctness of TerminusEst?, it obviously suffices to consider the first and
the second modification presented above. The correctness of the first one, aborting com-
putational paths whose corresponding trees contain more than 3k terminal, is established
in [49, Lemma 3]. Moreover, the correctness of the second modification can be found in
[49, Lemma 4], which is a subsequent work of the original literature.

5http://skelk.sdf-eu.org/terminusest

http://skelk.sdf-eu.org/terminusest
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2.5.5 Runtime of TerminusEst

The theoretical worst-case runtime of both algorithms TerminusEst and TerminusEst?,
respectively, applied to two phylogenetic X -trees and a parameter k ∈ N is stated with
O(6kk!poly(|X |)). This estimation is based on the observation that at the beginning χ
can contain at most 6k elements and during each recursion k is always decreased by one
[49, Theorem 1]. Moreover, the polynomial term covers all basic tree operations that are
conducted during a recursive call, i.e., finding and collapsing all maximal common subtrees,
computing the set of terminals for both trees followed by constructing χ, and pruning taxa
of χ from both trees.

2.5.6 Simulation study

We conducted a simulation study on the same dataset as already used for the previously pre-
sented simulation study dealing with different modifications of the algorithm allMAAFs
(cf. Sec. 2.4). For each tree set within this dataset, we calculated the minimum hybridiza-
tion number by three different implementations, each based on our approach presented in
Section 2.2. For technical purpose, we restricted the reductions rules on the subtree reduc-
tion, which means that before calculating the hybridization number for two rooted binary
phylogenetic X -trees by each of the following three different implementations, we did just
replace all of its common maximal pendant subtrees. Moreover, for each tree set we set
the maximal time limit to 20 minutes, which means that if the hybridization number could
not be calculated within 20 minutes the computation of the respective tree set was aborted.

Implementation allMAAFs3. This implementation conducts a search after the hy-
bridization number for two rooted binary phylogenetic X -trees by using the algorithm
allMAAFs3 presented in Section 2.4.3.3.

Implementation TerminusEst. This implementation conducts a search after the
hybridization number for two rooted binary phylogenetic X -trees by using the freely avail-
able6 implementation of the algorithm TerminusEst.

Implementation TerminusEst?. This implementation conducts a search after the
hybridization number for two rooted binary phylogenetic X -trees by using our implemen-
tation of the algorithm TerminusEst?.

In Figure 2.21 and 2.22, we compare the runtime for the respective tree sets yielded by
each of the three different implementations.

In Figure 2.21, the mean average runtimes in terms of the computed hybridization num-
bers are shown. More precisely, the plot was generated by first aggregating all tree pairs
corresponding to the same hybridization number and then by computing the mean average

6http://skelk.sdf-eu.org/terminusest

http://skelk.sdf-eu.org/terminusest
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runtime of each of those aggregated subsets. Therefor, each aborted tree pair whose com-
putation would have taken longer than the given time limit of 20 minutes, was treated as
follows. If the tree pair could not be computed by both considered implementations, this
tree pair was not taken into account. However, if at least one implementation was able
to compute the hybridization number for a tree pair, the runtime of the other implemen-
tation was set to 20 minutes, if this implementation was aborted in this case. Regarding
Figure 2.21, the number assigned to each measurement denotes the number of tree pairs
whose hybridization number could be computed within the time limit by the respective
two implementations.

Figure 2.21 indicates that for calculating hybridization numbers an approach that is
based on terminals is more efficient than an approach that is based on cherries. Whereas
the implementation allMAAFs3 just enables the computation of hybridization numbers
up to 22, the other two implementation yield hybridization numbers up to 30. Moreover,
the mean average runtime for calculating hybridization numbers larger than 17 attained
by those implementations that are based on terminals are significantly lower than those
corresponding to the implementation allMAAFs3. In addition, due to the same reasons,
Figure 2.21 demonstrates that our improved implementation TerminusEst? is signifi-
cantly faster than the implementation TerminusEst, which shows that our algorithmic
modifications can indeed improve the practical runtime.

Figure 2.22 compares the runtimes attained by the three implementations via scatter-
plots. Again, it turns out that both implementations that are based on terminals are in
general faster than those corresponding to the implementation of allMAAFs3. However,
there are still some outliers for which the implementation allMAAFs3 is still faster.
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Figure 2.21: Comparisons between the mean average runtimes in terms of the hybridization number of
(a) TerminusEst and allMAAFs3, (b) TerminusEst?and allMAAFs3, and (c) TerminusEst and
TerminusEst?. For each hybridization number the corresponding number of tree pairs is given that could
be computed within the time limit of 20 minutes by the two respective algorithms and, thus, contributed
to the mean average runtime denoted by the y-axis.
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Figure 2.22: Three scatter-plots comparing the runtimes produced by the three different implementations
when applying our synthetic dataset. Each dot refers to a tree set of this data set whose corresponding x-
and y-value indicates the runtime attained by the respective two implementations.
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2.5.7 Conclusion

In this section, we have presented the algorithm TerminusEst, which is so far the fastest
algorithm calculating hybridization numbers for two rooted (nonbinary) phylogenetic X -
trees. By presenting the result of a simulation study, we have indicated that this algorithm
is indeed faster than our approach presented in Section 2.2, which is based on the al-
gorithm allMAAFs. Notice, however, that, in contrast to the algorithm allMAAFs,
the algorithm TerminusEst calculates only one instead of all maximum acyclic agree-
ment forests. Nevertheless, this algorithm can still be valuable for an approach calculating
minimum hybridization networks as it can be used to improve its efficiency.

Moreover, as indicated by an implementation of the algorithm TerminusEst?, we have
shown that one can apply some simple modifications improving the practical runtime of
the original algorithm. As noted above, one of those speed-up techniques, dealing with the
maximization of an overlap between two node sets of minimal clusters (cf. Sec. 2.5.3), is
indeed an interesting algorithmic challenging problem.

To further improve the runtime, one could still think of recursively applying the cluster
reduction as follows. Right after collapsing all maximal common subtrees, one could first
check if both trees T1 and T2 contain a common cluster A and, if this is the case, start two
new recursive calls processing T1|A and T2|A as well as T ′1 and T ′2, where T ′1 and T ′2 are those
trees obtained from T1 and T2 by removing the subtree whose taxa set equals A. Notice,
however, that in order to maximize efficiency both recursive call have to communicate
which minimum hybridization number its complementary subproblems requires.



Chapter 3

Hybridization networks for multiple
binary trees

In this chapter, we first show that, regarding the computation of minimum hybridization
numbers, the concept of a cluster reduction can be also applied to more than just two
rooted binary phylogenetic X -trees. Next, we present the algorithm allHNetworks
calculating minimum hybridization networks for multiple rooted binary phylogenetic X -
trees and establish its correctness by a formal proof. Finally, for an approach, making
use of this algorithm, first its efficiency is indicated and then its practical application to a
biological dataset is demonstrated.

3.1 Further Definitions

In a first step, we give all further definitions that are crucial for this chapter.

Phylogenetic trees. Given a rooted binary phylogenetic X -tree T , throughout this
chapter by T we refer to the tree that is obtained from T by suppressing each node of both
in- and out-degree 1.

Agreement forests. In this section, given an agreement forest, we assume that both
roots of the two corresponding binary phylogenetic X -trees are nodes of out-degree 2 that
are connected by an edge to a leaf labeled by the taxon ρ.

Hybridization networks. Given a hybridization network N on X and an edge set E ′

referring to an embedded rooted phylogenetic X ′-tree T ′ of N with X ′ ⊆ X , the restricted
network N |E′,X ′ refers to the minimal connected subgraph T only containing leaves labeled
by X ′ and edges that are either tree edges or contained in E ′. Consequently, N |E′,X ′ is
a directed graph that corresponds to T ′|X ′ but still contains nodes of both in- and out-
degree 1, and, thus, each node in N |E′,X ′ can be mapped back to exactly one specific node
of the unrestricted network N (cf. Fig.3.1(c)).
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Figure 3.1: (a) A hybridization network N with taxa set X = {a, b, c, d, e} whose reticulation edges are
consecutively numbered. (b) A phylogenetic X -tree T that is displayed by N . Based on N , both edge
sets E′ = {3, 6, 1} and E′′ = {3, 6, 2} refer to T and, thus, N |E′,X as well as N |E′′,X equals T . (c) The
restricted network N |E′,X ′ with X ′ = {b, c, d, e} still containing nodes of both in- and out-degree 1.

Figure 3.2: An illustration of stacks of hybridization nodes. The hybridization node with in-degree 4 of
the left-hand tree T1 can be resolved (amongst others) into distinctive stacks of hybridization nodes, e.g.,
(x1, x2, x3) and (y1, y3), as demonstrated by T2 and T3, respectively. Notice that resolving a hybridization
node into a stack of hybridization nodes does not produce new embedded trees compared with those of
the unresolved network.

Stacks of hybridization nodes. Given a hybridization network displaying a set T of
rooted binary phylogenetic X -trees and containing a node v of in-degree of at least 3, one
can generate further networks still displaying T by dragging some of its reticulation edges
upwards resulting in so-called stack of hybridization nodes. More precisely, such a stack is
a path (v1, . . . , vn), with n > 1, of hybridization nodes in which each node vi is connected
through a reticulation edge to vi+1 (cf. Fig. 3.2).
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3.2 Reduction rules

Given a set T of rooted binary phylogenetic X -trees, before applying a method calculating
minimum hybridization networks for those trees one can apply two well-known reduction
rules, namely the subtree reduction and the cluster reduction. By applying those two rules
the computational complexity of the input trees can be reduced which often significantly
improves the practical runtime of the respective method.

Subtree reduction. Let T be a set of rooted binary phylogenetic X -trees, then the
subtree reduction transforms all of those trees into a set T ′ of rooted binary phylogenetic
X -trees by replacing each maximal pendant subtree T ′ of size ≥ 2 occurring in all trees
of T . More precisely, let v be the root of such a maximal pendant subtree T ′. Then, in
each tree of T , first all nodes that can be reached from v are deleted and afterwards v is
labeled by a new taxon a 6∈ X . Notice that, in order to undo the subtree reduction at a
given time, one has to keep track which of these new taxa belongs to which common subtree.

Cluster reduction. Let T be a set of rooted binary phylogenetic X -trees and let
A ⊂ X be a cluster with A ≥ 2 such that for each tree Ti in T there exists a specific node
vi with L(vi) = A. Then, the cluster reduction separates T into two tree sets T |A and Ta,
where T |A contains each tree Ti|A and Ta contains each tree Ti where T (vi) is replaced by
a new taxon a. More precisely, the tree set Ta is obtained from T by first deleting from
each tree Ti all nodes that can be reached from vi and then by labeling vi by a new taxon
a 6∈ X . Notice that, in order to reattach those clusters back together at a given time, one
has to keep track which of these new taxa belongs to which common cluster.

3.3 Correctness of the cluster reduction

In the following, we will give a formal proof showing that the cluster reduction is safe for
a set T of multiple rooted binary phylogenetic X -trees as noted in Theorem 13.

Theorem 13. Given a set of rooted binary phylogenetic X -trees T all containing a common
cluster A ⊂ X , then, h(T ) = h(T |A) + h(Ta).

3.3.1 Related work

In general, there are two important works dealing with the cluster reduction of rooted
binary phylogenetic X -trees.

Baroni, 2006. The well-known work of Baroni et al. [9] contains a proof showing
that the hybridization number of two rooted binary phylogenetic X -trees can be com-
puted by simply summing up the hybridization numbers of its common clusters. More
precisely, given two rooted binary phylogenetic X -trees T and T ′ containing a common
cluster A ⊂ X , then h(T, T ′) = h(T |A, T ′|A) + h(Ta, T

′
a), where Ta and T ′a refers to the
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respective input tree in which the common cluster has been replaced by a new taxon a.

Linz, 2008. A more general proof, showing that a similar fact also holds for more than
two rooted binary phylogenetic X -trees, is given in the PhD thesis of Linz [40, Theorem
2.5]. This proof, however, in contrast to our definition of the hybridization number h
(cf. Eq. 1.2), is based on a different definition, denoted by h′, only considering the total
number of hybridization nodes of a network. More precisely, given a set of rooted binary
phylogenetic X -trees T , then h′(T ) = h′(T |A) + h′(Ta) with

h′(T ) = min{h′(N) : N is a hybridization network displaying T },

where h′(N) just counts the number of hybridization nodes in N . This means, in particular,
that, in contrast to the reticulation number r(N) as defined here in this thesis (cf. Eq. 1.1),
h′(N) does not take the number of edges that are directed into a hybridization node into
account. Consequently, the two values r(N) and h′(N) differ, if the network N provides a
hybridization node with in-degree larger than two.

3.3.2 Further definitions

In the following, we will first give some further definitions that are crucial for establishing
Theorem 13.

Hybridization networks. Given a hybridization network N on X and a subset E ′ of
reticulation edges in N , then, by writing N − E ′ we denote the network that is obtained
from N by first deleting E ′ and then by suppressing each node of both in- and out-degree 1.

Restricted pendant subtrees. Let E ′ be an edge set referring to a rooted binary
phylogenetic X ′-tree T ′ that is displayed in a hybridization network N . Then for a path P
connecting two nodes both contained in N |E′,X ′ , we denote byRN(P,E ′,X ′) the set of non-
empty restricted pendant subtrees of each node lying on P . More precisely, each subtree
Ri in RN(P,E ′,X ′) refers to a non-empty subgraph of N |E′,X ′ with root v 6∈ P , which is

connected through an edge to a node w ∈ P , such that Ri equals N |E′,X ′(v) (cf. Fig. 3.3(b)).

3.3.3 Proof of Theorem 13

Proof. As defined in Theorem 13, we have that A ⊂ X . Now, in a first step, we show that

h(T ) ≤ h(T |A) + h(Ta) (3.1)

by contradiction. Let N be a hybridization network displaying T with minimum hy-
bridization number h(T ), and let NA and Na be a hybridization network displaying T |A
with minimum hybridization number h(T |A) and Ta with minimum hybridization number
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Figure 3.3: (a) A hybridization network N with taxa set X = {a, b, c, d, e} whose reticulation edges are
consecutively numbered. (b) The restricted network N |E′,X ′ with E′ = {3, 6, 1} and X ′ = {b, c, d, e}
still containing nodes of both in- and out-degree 1. Let P be the path connecting both nodes v and w
in N |E′,X ′ , then RN (P,E′,X ′) consists of the four non-empty restricted pendant subtrees (c), (e), (b),
and (d).

h(Ta), respectively. Moreover, let NA,a be the network that is obtained from Na by replac-
ing taxon a through NA. This is done, in particular, by first attaching each in-going edge
of the leaf va labeled by taxon a to the root of NA and then by removing label a from
va. Now, if h(T ) > h(T |A) + h(Ta) holds, then simultaneously r(N) > r(NA,a) must hold
which is a contradiction to the choice of N .  

Next, we will show that

h(T ) ≥ h(T |A) + h(Ta) (3.2)

by discussing several cases.
In a first step, however, we have to establish a new lemma that is crucial for proving

this inequation. Given a hybridization network N containing a reticulation edge e, we say
that e can be compensated if N − {e} still displays T . This is the case if and only if N
displays the scenario as described in Lemma 14 (cf. Fig. 3.4).

Lemma 14. Given a hybridization network N displaying a set T of rooted binary phy-
logenetic X -trees. Then, a reticulation edge e in N can be compensated if and only if
for each tree Ti in T , whose referring edge set Ei contains e, there exists another edge
set E ′i 6= Ei such that the following condition is satisfied. There exist two node-disjoint
paths P and P ′ both connecting two nodes u and w with e ∈ P and e 6∈ P ′ such that
RN(P,Ei,X ) = RN(P ′, E ′i,X ).

Proof. ’⇐=’: For each tree Ti, whose referring edge set Ei contains e, let Êi = Ei \
{e} ∪ EH(P ′), where EH(P ′) denotes the set of reticulation edges in P ′. Then, since
RN(P,Ei,X ) = RN(P ′, E ′i,X ), Êi refers to Ti and, thus, N − {e} still displays Ti.

’=⇒’: If e can be compensated, this implies that N −{e} still displays T . This means,
in particular, that for each edge set Ei containing e and referring to a tree Ti in T , there
has to exist a further edge set E ′i 6= Ei not containing e but still referring to Ti. Now, based
on the two restricted networks N |Ei,X and N |E′i,X , we can define two particular paths P
and P ′.
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4

X4

Figure 3.4: Illustration of a scenario compensating the reticulation edge e regarding the embedding of T
in N (see proof of Lemma 14). Note that e could not be compensated if R4 would be a pendant subtree
of P ′.

Let e′ be an edge of N satisfying the following two conditions. First the source node u
of e′ is part of N |Ei,X as well as of N |E′i,X and its target node is only part of N |E′i,X but not
of N |Ei,X . Second, there is no other edge in N fulfilling this property and is closer to the
root. Similarly, let e′′ be an edge of N satisfying the following two conditions. First, the
target node w of e′′ is part of N |Ei,X as well as of N |E′i,X and its source node is only part
of N |E′i,X but not of N |Ei,X . Second, there is no other edge in N fulfilling this property
and is closer to the root.

Then, there are two specific paths in N running from u to w; one being part of N |Ei,X
(and, thus, containing e), denoted by P = (u, a1, . . . , ak, w), and the other one being part
of N |E′i,X (and, thus, not containing e), denoted by P ′ = (u, b1, . . . , bk′ , w) (cf. Fig. 3.4).
Moreover, as both edges e′ and e′′ are chosen such there exist no other edges fulfilling the
respective properties and are closer to the root, ai 6= bj for each node ai ∈ {a1, . . . , ak} and
each node bj ∈ (b1, . . . , bk′). Additionally, since Ei and E ′i both refer to Ti, RN(P,Ei,X ) =
RN(P ′, E ′i,X ), which finally establishes Theorem 13.

Now, let each network N , NA, Na, and NA,a be as defined above. Moreover, let EA
and Ea be a specific subset of reticulation edges of those contained in the subnetwork cor-
responding to NA and Na, respectively, satisfying the following condition. For each edge e
in EA (resp. Ea), this edge can be reattached to a specific edge of the subnetwork corre-
sponding to Na (resp. NA), so that the resulting network N ′A,a still displays T (cf. Fig. 3.5).
Additionally, let N ′a and N ′A be the two subgraphs in N ′A,a consisting of each element in
Na and NA, respectively. Now, if h(T ) < h(T |A) + h(Ta) holds, based on EA and Ea, we
have to consider the following four cases (cf. Fig. 3.5).
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Figure 3.5: Illustration of the scenario referring to Case (ii) and Case (iii).

(i) Let EA = ∅ and Ea = ∅. There exists a set of reticulation edges E ′A,a 6= ∅ in NA or
Na that can be compensated.

(ii) Let EA 6= ∅ and Ea = ∅. There exists a set of reticulation edges E ′A,a 6= ∅ in N ′A,a
that can be compensated.

(iii) Let EA = ∅ and Ea 6= ∅. There exists a set of reticulation edges E ′A,a 6= ∅ in N ′A,a
that can be compensated.

(iv) Let EA 6= ∅ and Ea 6= ∅. There exists a set of reticulation edges E ′A,a 6= ∅ in N ′A,a
that can be compensated.

In the following, we will show that each scenario, which is described by one of the four
cases, cannot occur due to certain circumstances.

Case (i). In this case, either r(NA) 6= h(T |A) or r(Na) 6= h(Ta), which is a contradic-
tion to the choice of NA or Na, respectively.  

Case (ii). Let N ′A,a be the network that is obtained from NA,a by reattaching the
source nodes of each edge in EA to the subnetwork corresponding to Na such that N ′A,a
still displays T . Now, first notice that from those shifted edges there does not arise a new
path whose start- and end-node both lie in N ′a. As a consequence, due to Lemma 14, each
edge of N ′a that could be compensated, could be also compensated in the original network
NA,a, which is a contradiction to the choice of both networks Na and NA.  

The same argument holds for the subnetwork corresponding to NA and, thus, in this
case the network N ′A,a cannot contain any reticulation edges that can be compensated.

Case (iii). The argumentation regarding this case equals the one of Case (ii).
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Figure 3.6: Illustration of the scenario referring to Case (iv.i), Case (iv.ii), and Case (iv.iii).

Case (iv). Again, let E ′A and E ′a be the set of edges in N ′A,a whose source nodes have
been reattached to the subnetwork corresponding Na and NA, respectively. Now, there
additionally exist three out of four sub-cases that have to be considered here (cf. Fig. 3.6).

(iv.i) Neither a source node of an edge in E ′a is contained in a subnetwork rooted at a
target node of an edge in E ′A nor a source node of an edge in E ′A is contained in a
subnetwork rooted at a target node of an edge in E ′a.

(iv.ii) There exists a source node of an edge e′a in E ′a that is contained in a subnetwork
rooted at the target node of an edge e′A in E ′A.

(iv.iii) There exists a source node of an edge e′A in E ′A that is contained in a subnetwork
rooted at the target node of an edge e′a in E ′a.

(iv.iv) There exists a source node of an edge e′A in E ′A that is contained in a subnetwork
rooted at the target node of an edge e′a in E ′a and, simultaneously, there exists a
source node of an edge e′A in E ′A that is contained in a subnetwork rooted at the
target node of an edge e′a in E ′a. This directly implies that the graph contains a
directed cycle and, thus, does not apply to the definition of hybridization networks.
Consequently, this case has not to be considered here.

Case (iv.i). Again, similar to Case (ii), there does not arise a new path whose start-
and end-node both lie in the subnetwork corresponding to Na and NA, respectively. Thus,
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Figure 3.7: An illustration of the scenario concerning Case (iv.ii).

each edge that is contained in this part of the network and could be compensated, could
be also compensated in the original network NA,a which is a contradiction to the choice of
both networks Na and NA.  

Case (iv.ii). In this certain case there exists a path leading from a target node of e′A
in E ′A back to N ′a (cf. Fig. 3.7). Thus, potentially, there could exist a reticulation edge e
in N ′a such that N ′A,a − {e} still displays T . More precisely, this would be the case if e′A
and e′a could compensate a deletion of e.

Now, let Ei be an edge set referring to an input tree Ti and let P be the path of
N ′A,a|Ei,X leading from the source node of e′A to the target node e′a. Moreover, without loss
of generality, we assume that there does not exist a further edge set referring to another
input tree Tj with j 6= i containing e. Now, if there would exist an edge set E ′i with e 6∈ E ′i
referring to Ti, this would automatically imply that e could be compensated.

If e is not part of such a path P , e cannot be compensated by the two shifted edges
e′A and e′a. Otherwise, let RN ′A,a

(P,Ei,X ) = (R0, . . . , Rk) be the ordered set of non-empty
pendant subtrees of each node lying on P in which the first restricted subtree R0 corre-
sponds to N ′A|{Ei,X}. Now, only if there exists a path P ′ leading from the target node of
e′A to the target node of e′a such that RN ′A,a

(P,Ei,X ) equals RN ′A,a
(P ′, Ei,X ), e could be

compensated by using e′A and e′a. However, as A is a cluster of Ti, in this case R1 to Rk−1

may not exist, meaning that RN ′A,a
(P ′, Ei,X ) could only consist of the two elements R0

and Rk. Thus, if e could be compensated, this would directly imply that e could be also
compensated in Na by ea, which is a contradiction to the choice of Na.  

Case (iv.iii). The argumentation regarding this case equals the one of Case (iv.ii).

Finally, combining both Inequations 3.1 and 3.2 completes the proof of Theorem 13.
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3.4 The algorithm allHNetworks

As demonstrated in the previous chapter, a method computing minimum hybridization
networks for two rooted binary phylogenetic trees can be divided into the following two
major steps. First maximum acyclic agreement forests are calculated by cutting down
the input trees in a specific way and then the components of such an agreement forest
are again reattached by introducing further reticulation edges in a way that the resulting
network displays both input trees. In general, there exists not just one but a large number
of minimum hybridization networks. To recognize putative hybridization events, biologists
are interested in all of those networks, since given such set of networks one can then test
specific hypotheses. Thus, given two incongruent trees, there is a need for two types
of algorithms; one calculating all maximum acyclic agreement forests and another one
constructing all hybridization networks based on these agreement forests.

While there exist some software packages providing methods for computing minimum
hybridization networks for two rooted binary phylogenetic trees on the same set of taxa
[17, 35], in this section, we will present an algorithm computing all minimum hybridiza-
tion networks of a certain type, which we will denote later as relevant networks, for an
arbitrary number of rooted binary phylogenetic X -trees. The workflow of this algorithm
can be briefly summarized as follows. Starting with one input tree, all other input trees
are embedded in sequential ordering into a growing number of networks by adding further
reticulation edges each corresponding to a certain component of a maximum acyclic agree-
ment forest. In order to guarantee the computation of relevant networks, it is necessary
that each input tree is added to a so far computed network in all possible ways. This
implies, in particular, that at the beginning, when adding the second input, say T2, to the
first input tree, say T1, all relevant networks embedding T1 and T2 have to be calculated.
Missing one of those networks could mean that a computational path leading to a relevant
network embedding the whole set of input trees is lost, and, as a consequence, either not
all relevant networks are computed or the resulting output only consists of hybridization
networks not providing a minimum hybridization number. Note that, later in this section,
we will show that for this purpose it suffices to take only maximum acyclic agreement
forests into account.

At this particular time, the only other software that is able to compute minimum
hybridization networks for multiple rooted binary phylogenetic X -trees is PIRNv2.0 [72,
73]. A recently conducted simulation study, however, has indicated that an implementation
of our algorithm provides the clearly better practical runtime and, additionally, in general
PIRNv2.0 is able to output only a small subset of those networks we consider as being
relevant [1], which obviously complicates the testing of hypothesis on the reported networks.

This section is organized as follows. In a first step, further definitions are introduced,
which are crucial for describing and discussing our algorithm. Next, we give a detailed
description of our algorithm allHNetworks whose correctness is shown in a subsequent
section by a detailed formal proof. Finally, we end the presentation of our algorithm by
briefly discussing its theoretical worst-case runtime and by giving some concluding remarks.
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At the end of this section, we still discuss some techniques that can be applied to improve
the practical application of our algorithm.

3.4.1 Further definitions

Here, we give a definition of those networks that are constructed by our algorithm allH-
Networks.

Relevant networks. Given a set T of rooted phylogenetic X -trees and a phylogenetic
network N on X , then, we say N is a relevant network for T , if N is a hybridization
network displaying T with minimum hybridization number and if N does not contain any
stacks of hybridization nodes. Notice that such a network leaves the interpretation of the
ordering of the hybridization events adhering to a hybridization node of in-degree larger
than or equal to 3 open.

Furthermore, we demand that each relevant network is a binary network not contain-
ing any nodes of out-degree larger than 2. Notice that by allowing nonbinary nodes the
set of relevant networks usually shrinks, since a nonbinary network can contain multiple
binary networks. Moreover, in order to improve its readability, we further demand that
all hybridization nodes of a relevant network have out-degree one. Notice that, in order to
identify stacks of hybridization nodes, in such networks the out-edges of all hybridization
nodes have to be suppressed.

Lastly, just for clarity, given two relevant networks N1 and N2 for a set T of rooted
phylogenetic X -trees, we say that N1 equals N2 if their graph topologies (disregarding the
embedding of T ) are isomorphic.

3.4.2 The Algorithm allHNetworks

Given a set of rooted binary phylogenetic X -trees T = {T1, . . . , Tn} and a parameter
k ∈ N, our algorithm allHNetworks follows a branch-and-bound approach conducting
the following major steps. For each order of T , the trees are added sequentially to a set
of networks N . In the beginning, N consists only of one element, which is the first input
tree of the ordering. By sequentially adding the other input trees to each so far computed
network, the size of N growths rapidly, since in general an input tree Ti can be added to
each network in N in potential several ways. Each time the reticulation number of a so
far extended network exceeds k, the processing of this network can be aborted. This is
possible because by adding further input trees the reticulation number of the respective
network is never decreased.

Given a set T of rooted binary phylogenetic X -trees, based on two different objectives,
our algorithm provides two different abort criteria:

1. Objective: Computation of the hybridization number of T .
Abort criterion: As soon as one hybridization network with hybridization number
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k is computed and each search after hybridization networks providing a hybridization
number less than k has failed.

2. Objective: Computation of all relevant networks for T .
Abort criterion: As soon as all hybridization networks with hybridization number k
are computed and each search after hybridization networks providing a hybridization
number less than k has failed.

For the computation of a minimum hybridization network, parameter k is set to an
initial value and is increased by one if a network displaying T with hybridization number
smaller than or equal to k could not be computed so far. At the beginning, k can be either
simply set to 0 or to a lower bound, e.g.,

max{R(Ti, Tj) : i 6= j}.

A more sophisticated method for the computation of such a lower bound is described in
the work of Wu [72]. In practice, however, the lower bound does not significantly improve
the runtime, since the required steps for those k’s that can be skipped at the beginning
are usually of rather low computational complexity.

3.4.2.1 Inserting Trees into Networks

Given a hybridization network N , we say that a tree T is displayed in N , if there exists
a set of reticulation edges E such that N |E,X equals T (cf. Sec. 3.4.1). This implies, if
such a subset does not exist, we have to insert new reticulation edges for displaying T in
N . Given an edge set E ′ referring to an embedded tree T ′ that is already displayed in
N , those edges can be derived from each component of an agreement forest for T ′ and T .
The here presented algorithm is based on the observation, that, in order to compute all
relevant networks, it suffices to take only maximum acyclic agreement forests into account
(cf. Sec 3.4.4).

Hence, we can summarize the basic steps that are necessary for adding an input tree T
to a so far computed network N as follows.

1. Choose an edge set E ′ referring to an embedded tree T ′ of N by selecting precisely
one in-edge of each hybridization node.

2. First compute a maximum acyclic agreement forest F for the two trees T ′ and T and
then choose an acyclic ordering ΠF of F .

3. Based on ΠF , for each component of F , except Fρ, create a valid pair of source
and target nodes (as defined later) such that, by connecting each node pair, T is
embedded in the resulting network. Notice that this step will be discussed separately
in the upcoming section.
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It is easy to see, that the resulting network depends on the chosen edge set E ′ referring to
the embedded tree T ′, which is the case because different embedded trees lead to different
maximum acyclic agreement forests which consequently lead to different reticulation edges
that are necessary for the embedding of T . Thus, to guarantee the computation of all
relevant networks, all three steps have to be conducted for each edge set referring to an
embedded tree in N . Note that, given a network containing r hybridization nodes, this
network can contain up to 2r different embedded trees. Moreover, all maximum acyclic
agreement forests of the chosen embedded tree T ′ and the current input tree T have to
be taken into account, which can be done by applying the algorithm allMAAFs [57]
previously presented in Section 2.3 (or one of its modification presented in Section 2.4).

The insertion of components of a maximum acyclic agreement forest to a so far com-
puted network is not a trivial step, since, usually, depending on other so far existing
reticulation edges, there exist several potential ways of how T can be inserted with the
help of those components. Thus, this step will be discussed separately in the following
section.

3.4.2.2 Inserting Components into Networks

Given an ordering of rooted phylogenetic X -trees, say (T1, T2, . . . , Tn), and a network N
displaying each tree Tj with 1 ≤ j < i ≤ n together with an edge set E ′ referring to some
embedded tree T ′ of N , we can add Ti to N by inserting further reticulation edges each
corresponding to a specific component of a maximum acyclic agreement forest F for T ′

and Ti. Consequently, for each component a specific target and source node in N has to
be determined. Since different source and target nodes can lead to topologically different
networks containing different sets of embedded trees, in order to obtain all relevant net-
works, we have take all valid combinations of source and target nodes for each component
of F into account. More precisely, we consider a pair (s, t) of source and target nodes as
being valid, if s cannot be reached from t. Furthermore, we have to consider each possible
acyclic ordering of F .

Hence, we can summarize all important steps for inserting components of a maximum
acyclic agreement forest F into a network N as follows.

1. Choose an acyclic ordering (Fρ, F1, . . . , Fk) of F .

2. Add each component Fj of this ordering, except Fρ, sequentially to N by inserting a
new reticulation edge connecting a certain source and target node.

The output of these two steps is usually a large number of new networks, since, in general,
there exist several pairs of source and target nodes enabling an embedding of Ti. Whereas
all acyclic orderings of F can be simply computed with the help of the directed graph
AG(T ′, Ti,F) (cf. Sec. 1.4.1), the second step inserting its components is quite more so-
phisticated. We will describe the way of adding a component Fj of an acyclic ordering
to a so far computed network N by first describing the computation of source and target
nodes and then, based on these two nodes, by describing the way new reticulation edges
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are generated.

I Computation of target and source nodes. The set of source and target nodes
corresponding to a component Fj in F is described in Step I.I–I.III. Therefor, let

F ′ = {Fρ, F1, . . . , Fj−1} ⊂ F = {Fρ, F1, . . . , Fk}

be the set of components that has been added so far. Note that, since N is initialized with
Fρ, at the beginning L(F ′) equals L(Fρ) and the first component that is added is F1.

I.I Computation of target nodes. The set Vt of target nodes contains all nodes
v with N |E′,L(F ′)∪L(Fj)(v) isomorphic to Ti|L(Fj). Due to the restriction of the network to
L(F ′), this set usually contains more than one node. Moreover, since we are only inter-
ested in relevant networks, we omit those target nodes that are source nodes of reticulation
edges. This is a necessary step preventing the computation of networks containing stacks
of hybridization nodes (cf. Sec. 3.4.1).

I.II Computation of source nodes of Type A. For each edge set Ei referring to
the embedded tree Ti|L(F ′) in N , the set VAs of source nodes of Type A contains all nodes

v with N |Ei,L(F ′)(v) isomorphic to Ti|L(F ′)(vsib), where vsib denotes the sibling of the node
v′ with L(v′) = L(Fj) in Ti|L(F ′)∪L(Fj). Note that, due to the restriction of the network to
L(F ′), this set usually consists of more than one node. However, as we want to construct
networks in which each hybridization node has out-degree one, we disregard those nodes
having more than one in-edge.

I.III Computation of source nodes of Type B. The set VBs of source nodes of
Type B is computed such that it contains each node v of a subtree, whose root is a sibling
of a node in VAs not containing any leaves labeled by a taxon of L(F ′). Moreover, its
leaf set L(v) has to consist only of those subsets representing the total taxa set L(F ) of a
component F in F , which means that v must not be part of a subtree corresponding to a
component that is added afterwards. However, as we want to construct networks in which
each hybridization node has out-degree one, we disregard those nodes having more than
one in-edge.

For a better understanding, the definitions of source and target nodes are illustrated in
Figure 3.8.

Remark. Regarding two components Fp and Fq of an acyclic ordering of F with
p < q and F∗ = {Fρ, F1, . . . , Fq}, it might be the case that both roots of Ti|L(F∗)(vp)
and Ti|L(F∗)(vq) are siblings in Ti|L(F∗), where vp and vq denotes the lowest common an-
cestor of L(Fp) and L(Fq) in Ti|L(F∗). In this case, Fp could be either added before Fq or
vice versa as both variants are acyclic orderings of F . If Fp is inserted before Fq, a node
whose leaf set corresponds to L(Fp) in N |Ti,L(F∗) acts as source node when adding Fq to
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j

Figure 3.8: An illustration of the definitions of target (left) and source nodes (right) for a component Fj
(with j < p, q) in which red nodes correspond to target nodes, blue nodes to source nodes of Type A, and
green nodes to source nodes of Type B. Moreover, dashed edges and dotted edges are those edges that are
disregarded when considering the restricted network in terms of the chosen embedded tree and the taxa
set of the so far added components, respectively.

N . Similarly, by adding Fq before Fp this happens the other way round which leads to a
topologically different network. This implies that, in order to receive all relevant networks
displaying Ti, we have to consider different acyclic orderings of a maximum acyclic agree-
ment forest.

II Adding new reticulation edges. Now, given a valid pair (s, t) of source and
target nodes, a new reticulation edge is inserted as follows (cf. Fig. 3.9).

1. First, the in-edge e of s is split by inserting a new node s′, i.e., e = (p, s) is first
deleted and then two new edges (p, s′) ans (s′, s) are inserted. Second, if the parent
of t has in-degree one, the in-edge of t is split two times in the same way by inserting
two nodes t′ and t′′. Let t′ be the parent of t after splitting its in-edge. In this case,
notice that t′ is necessary to receive only hybridization nodes of out-degree one and t′′

is necessary to provide an attaching point for further reticulation edges as discussed
below. Otherwise, if t has an in-degree of at least two, t′ is set to t, which prevents
the computation of networks containing stacks of hybridization nodes.

2. Now, the two nodes, s′ and t′, are connected through a path P consisting of two edges.
As we do not allow nodes of in-degree larger than one as source nodes, this provides
an attaching point for further reticulation edges within already inserted reticulation
edges. Notice that, as direct consequence, in each completely processed network, in
which all input trees have been inserted so far, one still has to suppress the source
nodes of all reticulation edges as these nodes have both in- and out-degree one.

In order to compute all relevant networks, one has to generate for each valid pair (s, t)
of source and target nodes a new network N̂ . This is necessary, since each of those net-
works contains different sets of embedded trees which can then be used for the insertion
of further input trees and, thus, can initiate new computational paths leading to relevant
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Figure 3.9: Generating a source node (a) and a target node (b) for adding a new reticulation edge as
described in Step II.

networks.

For a better understanding, in Figure 3.10 we illustrate the insertion of an input tree
into a so far computed network.

3.4.2.3 Combinatorial complexity

We finish the description of the algorithm by giving an idea of its combinatorial complexity.
Given a set of rooted binary phylogenetic X -trees T , in order to guarantee the computation
of all relevant networks for T , one has to consider the following combinations.

(1) Take all possible orderings of T into account.

(2) When adding a tree Ti to a so far computed network N , each possible tree T ′ that is
displayed by N has to be considered.

(3) When processing a so far computed network N by adding a tree Ti based on an a
tree T ′ that is displayed by N , take all acyclic orderings of each maximum acyclic
agreement forest for Ti and T ′ into account.

(4) When adding a certain component of a maximum acyclic agreement forest for Ti and
T ′ to a so far computed network, consider all valid pairs of source and target nodes.

Missing one those combinatorial elements could imply that a computational path lead-
ing to a relevant network is not visited. As a direct consequence, possibly either not all
relevant networks are computed or the output consists only of those hybridization networks
not providing a minimum hybridization number.
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Figure 3.10: An illustration of how an input tree Ti is inserted into a network Ni−1. (a) The network
Ni−1 together with an embedded tree T ′. (b) The input tree Ti, which will be embedded into Ni−1 by
inserting the maximum acyclic agreement forest F of Ti and T ′ consisting of three components Fρ, F1, and
F2. (c,d) The important elements that have to be considered during the insertion of both components F1

and F2. Blue dots correspond to source nodes and red nodes to target nodes. Note that, regarding N
(1)
i ,

there is only one valid pair of source and target nodes. (e) The resulting network Ni, which is obtained

from N
(3)
i by suppressing each node of both in- and out-degree 1.



106 3. Hybridization networks for multiple binary trees

3.4.2.4 Pseudocode of allHNetworks

We end this section by giving a pseudocode summarizing all important steps of the algo-
rithm allHNetworks described in the previous section. Some of those steps are denoted
by a roman numeral that refers to the equally marked part of Section 3.4.2.2.

Algorithm 13: allHNetworks(T )
Input: Set T of rooted phylogenetic X -trees
Output: All topologically different hybridization networks N with minimum hybridization number

1 for k = 1, . . . do
2 N = ∅;
3 foreach ordering π of T do
4 T1 = π(1);
5 N = {T1};
6 for i = 2 to n do
7 Ti = π(i);
8 N ′ = ∅;
9 foreach N ∈ N do

10 foreach T ′ displayed in N do
11 foreach maximum acyclic agreement forest F for T ′ and Ti do
12 foreach acyclic ordering (Fρ, F1 . . . , Fm) of F do
13 N ′′ = {N};
14 for j = 1 to m do
15 N ′′′ = ∅;
16 foreach N ′′ ∈ N ′′ do
17 I.I Compute all target nodes Vt of Fj in N ′′;
18 I.II Compute all source nodes Va of Type A of Fj in N ′′;
19 I.III Compute all source nodes Vb of Type B of Fj in N ′′;
20 Vs = Va ∪ Vb;
21 foreach (s, t) ∈ Vs × Vt : s 6∈ N(t) do
22 N ′′′ = N ′′;
23 II Insert reticulation edge (s, t) in N ′′′;
24 N ′′′ = N ′′′ ∪ {N ′′′};

25 N ′′ = N ′′′

26 foreach N ′′ ∈ N ′′ do
27 if R(N ′′) < k then
28 N ′ = N ′ ∪ {N ′′};

29 N = N ′;

30 if N 6= ∅ then
31 return N ;
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3.4.3 Use case

In the following, we give a demonstration of the algorithm allHNetworks by presenting
a use case for three input trees with taxa set X = {rho, 1, 2, . . . , 10}. Each of the following
Figures 3.11–3.16 and Tables 3.1, 3.2 refers to a particular substep of the algorithm, which
is discussed in the corresponding captions.

T_0 T_1

T_2 N

Figure 3.11: The Figure shows the input set consisting of three rooted binary phylogenetic X -trees,
namely T0, T1, and T2, with X = {rho, 1, 2, . . . , 10}. The minimum hybridization network N is one out
five relevant networks for those input trees whose computation is now demonstrated step by step. The
network is computed by applying the algorithm to the ordering (T1, T2, T0). Consequently, in a first step,
T2 has to be inserted into T1.

Table 3.1: The computation of all pairs of source and target nodes based on T2 given T1 and the components
depicted in Figure 3.12. Notice that the notation refers to the one introduced in Section 3.4.2.2.

j Fj L(F ′) T1|L(Fj) Vt T1|L(F ′)(vsib) Va Vb
1 (7); X \ {7, 9, 1} (7); 7 (4); 4 -
2 (9); X \ {9, 1} (9); 9 (5,6); 16 -
3 (1); X \ {1} (1); 1 (10); 10 -
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F_1 F_2

F_3 F_4

Figure 3.12: At the beginning, the first network as well as its embedded tree both refer to T1. Hence,
in a first step, the maximum acyclic agreement forest {F1, F2, F3, F4} for T1 and T2 is computed whose
components are used in a subsequent step to receive N0 displaying both trees.

T_2 N_0

Figure 3.13: Network N0 is computed by adding the components F2, F3, and F4 (cf. Fig. 3.12) sequentially
in acyclic order to T2. This is done by first computing pairs of target and source nodes (cf. Step I.I–III
of the algorithm allHNetworks) and then by inserting new reticulation edges for each of those pairs
(cf. Step II of the algorithm allHNetworks). Table 3.1 indicates the computation of these source and
target nodes by referring to the notation used in Section 3.4.2.2.
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N_0 T_3

Figure 3.14: Next, all embedded binary phylogenetic X -trees are extracted from N0 each by selecting
one in-edge of each hybridization node. One of those trees is T3, which is received by selecting the edges
(12, 29), (18, 20), and (24, 27).

Table 3.2: The computation of all valid pairs of source and target nodes based on T2 given N0, the extracted
tree T3 and the components depicted in Figure 3.15. Note that the notation refers to the one introduced
in Section 3.4.2.2.

i Fj L(F ′) T0|L(Fj) Vt T0|L(F ′)(vsib) Va Vb
1 (4); X \ {4, 9} (4); 4, 25 (10); 10 -
2 (9); X \ {9} (9); 9 (2); 2 -
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F_5 F_6

F_7

Figure 3.15: Now, again a maximum acyclic agreement forest {F5, F6, F7} for the extracted tree T3 and
the input tree T0 is computed whose components are used in a subsequent step to receive the final network
N displaying all input trees.

N_0 N

Figure 3.16: The relevant network N is computed by adding the components F6 and F7 (cf. Fig. 3.15)
sequentially in acyclic order to N0. This is done by first computing target and source nodes (cf. Step I.I–III
of the algorithm allHNetworks) and then by inserting new reticulation edges for each pair of source
and target nodes (cf. Step II of the algorithm allHNetworks). Table 3.2 indicates the computation of
all pairs of source and target nodes by referring to the notation used in Section 3.4.2.2.
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3.4.4 Proof of correctness

Here, we prove the main result of this section, namely that for a set of rooted binary
phylogenetic X -trees the algorithm allHNetworks calculates all relevant networks as
defined in Section 3.4.1.

Theorem 15. Given a set of binary rooted phylogenetic X -trees T , by calling

allHNetworks(T )

all relevant networks for T are calculated.

For clarity, here we consider two relevant networks N1 and N2 as being different if both
graph topologies of N1 and N2 (disregarding the embedding of T ) differ.

Proof. The proof of Theorem 15 is based on the following three Lemmas 16–18. Here, we
first show that the concept of acyclic agreement forest suffices to generate all of the desired
networks. Next, we argue that for inserting acyclic agreement forests the algorithm takes
all necessary pairs of source and target nodes into account. Finally, we prove that by taking
all orderings of the input trees into account it suffices to focus only on acyclic agreement
forests of minimum size, i.e., maximum acyclic agreement forests. Before entering the first
lemma, however, we first have to introduce some further notations.

Let N and N ′ be two rooted phylogenetic networks on X . Then, we say that N ′

is displayed by N , shortly denoted by N ⊃ N ′, if N ′ can be obtained from N by first
deleting some of its reticulation edges and then by suppressing all nodes of both in- and
out-degree 1.

Similarly, let N be a hybridization network on X displaying two rooted phylogenetic
X -trees T1 and T2. Now, given an acyclic agreement forest F for those two trees, we say
that N displays F , shortly denoted by N ⊃ F , if we can obtain F from N as follows.
Regarding N , let E1 and E2 be two sets of reticulation edges referring to T1 and T2,
respectively. First in N all reticulation edges are deleted that are not contained in E1∩E2

and then all nodes of both in- and out-degree 1 are suppressed. Notice that, by deleting
those edges the network is disconnected into a set of disjoint trees each corresponding to
exactly one of the components in F .

Let T = {T1, T2, . . . , Tn} be a set of rooted binary phylogenetic X -trees and let N be
a hybridization network displaying T . Moreover, let Ei be an edge set in N referring to a
tree Ti ∈ T . Then, for a tree Tk ∈ T the edge set Ê(k) refers to the edge set

Ek \ E1 ∪ E2 · · · ∪ Ek−1 ∪ Ek+1 · · · ∪ En.

This means, in particular, that Ê(k) consists of those reticulation edges that are only
necessary for displaying Tk and none of the other trees in T .

Next, let N be a phylogenetic network and let E ′ be a subset of its reticulation edges.
Then, by writing N 	E ′ we refer to the network that is obtained from N by first deleting
each edge in E ′ and then by suppressing each node of both in- and out-degree 1.
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Lemma 16. Let T = {T1, T2, . . . , Tn} with n > 1 be a set of rooted binary phylogenetic
X -trees and let N be a hybridization network displaying T . Moreover, let Ei with i ∈ [1 : n]
be an edge set referring to the respective tree Ti ∈ T in N . Then, for each tree Tk in T the
network N 	 Ê(k) contains an embedded tree T ′ such that N contains an acyclic agreement
forest F for T ′ and Tk, i.e., N ⊃ F holds.

Proof. Let Ek be an edge set in N referring to Tk and, based on Ek, let Ê(k) be the edge
set in N as defined above. Moreover, let F be a set of subtrees that is derived from N as
follows. First, the network N ′ is computed by removing each edge e with e 6∈ Ek. Next,
each edge e in N ′ with e ∈ Ê(k) is removed and, finally, each node of both in- and out-
degree 1 is suppressed. As the tree that can be derived from N ′ by suppressing its nodes of
both in- and out-degree one corresponds to Tk, it is easy to see that F consists of common
subtrees of Tk. Furthermore, as F is obtained from N ′ by cutting some of its edges, this
implies that F is a set of node-disjoint subtrees in Tk.

Next, we will show how one can derive an edge set E ′ referring to a phylogenetic X -
tree T ′ displayed in N so that F is an agreement forest for T ′ and Tk. Therefor, we say a
reticulation edge e of N is of Type A, if e ∈ Ek \ Ê(k), and of Type B, if e 6∈ Ek. Now, let E ′

be a subset of reticulation edges that is obtained from N by visiting all of its reticulation
nodes as follows. If, for a reticulation node, there exists an in-edge e of Type A, this edge
is selected, otherwise, an arbitrary in-edge of Type B is selected. As each edge in E ′ is also
contained in N 	 Ê(k), it is easy to see that T ′ is also displayed by N 	 Ê(k).

Now, let Ê ′ be the set of reticulation edges that is removed from N by restricting N
on E ′ and let EF be the set of reticulation edges that has been removed from N in order
to obtain F . Then, the target of each reticulation edge in Ê ′ \ EF is a reticulation node
providing an in-edge of E(k), which has been removed from N ′ (and, thus, actually from Tk)
in order to obtain F . As a direct consequence, each component in F can be also obtained
from T ′ by cutting some of its edges, which directly implies that F is a set of node-disjoint
subtrees in T ′.

As a direct consequence, F is an agreement forest for both trees Tk and T ′. Moreover,
since N is a hybridization network and, consequently, does not contain any directed cycles,
F has to be an acyclic agreement forest for both trees.

This means that for inserting further rooted binary phylogenetic X -trees into so far
computed networks it is sufficient to focus only on acyclic agreement forests. Notice,
however, that the insertion of further reticulation edges based on such agreement forests
can be conducted in several ways. Thus, in order to calculate all relevant networks, our
algorithm has to guarantee that all of those possibilities are exploited, which is stated by
the following lemma.

Lemma 17. Let T = {T1, T2, . . . , Ti} be a set of rooted binary phylogenetic X -trees, Ni−1

be a network displaying each tree in T \{Ti}, E ′ be an edge set referring to some embedded
tree T ′ of Ni−1, and F be an acyclic agreement forest for T ′ and Ti. Then, the algorithm
allHNetworks inserts F into Ni−1 so that each hybridization network Ni displaying T
with Ni ⊃ F and Ni ⊃ Ni−1 is calculated.
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Proof. Given an acyclic ordering (Fρ, F1, . . . , Fk) of the maximum acyclic agreement forest
F for the two trees T ′ and Ti, then, when inserting each component Fj in ascending order,
beginning with F1, all possible target and source nodes in Ni−1 are taken into account.
More precisely, let X ′ = L(F ′) with F ′ = {Fρ, F1, . . . , Fj−1} and let vsib be the sibling of a
node v with L(v) = L(Fj) in Ti|L(F ′)∪L(Fj).

• Since for each target node w ∈ Vt the two trees Ni−1|E′,L(Fj)(w) and Ti|L(Fj), with E ′

referring to T ′, are isomorphic, each node w′ not in Vt automatically does not fulfill
this property and, consequently, by using such a node w′ as target node the resulting
network Ni would not display Fj, and, thus, Ni ⊃ F would not hold.

• For each source node u ∈ VAs ∪VBs either the two treesNi−1|E′,L(F ′)(u) and Ti|L(F ′)(vsib)
are isomorphic (if u ∈ VAs ) or, after the insertion of all components in F , there exists
a certain path leading to such a node whose edges can be used for displaying Ti (if
u ∈ VBs ). Choosing a node u′ 6∈ VAs ∪ VBs as source node, the reticulation edge e
inserted for u′ and some node w ∈ Vt, could not be used for displaying Ti in N , since
Ti|X ′∪L(Fj) does not contain a node v whose subtree Ti|X ′∪L(Fj)(v) is isomorphic to

Ni|Ei,X ′∪L(Fj)(u
′), with Ei referring to Ti.

Thus, following an acyclic ordering of F , the algorithm allHNetworks considers all
possible source and target nodes that can be used for inserting one of its components into
the so far computed network Ni−1.

However, as already discussed, for F there may exist different acyclic orderings and,
depending on these acyclic orderings, the set F ′ of so far added components varies. Con-
sequently, for different acyclic orderings the tree Ti|L(F ′)(vsib) can differ, which may lead
to different sets of source nodes. However, since for inserting an acyclic agreement forest
F the algorithm allHNetworks takes all of its acyclic orderings into account, all of
these different sets of target nodes are automatically considered and, thus, Lemma 17 is
established.

We have shown so far that, given an ordering of input trees Π∗ = (T1, T2, . . . , Tn), each
input tree Ti can be added sequentially to a so far computed network Ni−1 displaying
all previous trees {T1, T2, . . . , Ti−1} by inserting an acyclic agreement forest F for some
embedded tree T ′ and Ti in all possible ways such that there does not exist a network Ni

displaying {T1, T2, . . . , Ti} with Ni ⊃ F and Ni ⊃ Ni−1. Notice that, as for inserting Ti
all embedded trees are taken into account, if the algorithm would additionally consider
all acyclic agreement forests of arbitrary size, Lemma 16 and 17 would be sufficient to
establish Theorem 15.

However, in order to maximize efficiency, the algorithm allHNetworks only focuses
on maximum acyclic agreement forests and, thus, we still have to show why we only
have to consider acyclic agreement forests of minimum size. For instance, as depicted in
Figure 3.17, it can happen that for a specific ordering of the input trees more reticulation
edges have to be added when inserting leading input trees so that the resulting networks
contain embedded trees that are necessary to obtain so-called hidden relevant networks at
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the end. In the following, however, we will show that, if such a hidden relevant network
for a specific ordering of input trees exists, this network has to be contained in a set of
relevant networks calculated for another ordering of the input trees.

Now, before presenting the third lemma, we will first introduce a simple modification
of the algorithm allHNetworks. Let T be a set of rooted binary phylogenetic X -trees,
then, allHNetworks∗ denotes a modification of the algorithm allHNetworks that
considers for the insertion of an input tree Ti ∈ T to so far computed networks all acyclic
agreement forests of arbitrary size (instead of just those of minimum size).

Lemma 18. Let T be a set of rooted binary phylogenetic X -trees. A relevant network N
for T is calculated by calling allHNetworks∗(T ) if and only if it is calculated by calling
allHNetworks(T ).

Proof. ’⇐=’: As each computational path of the algorithm allHNetworks is also con-
ducted by the modified algorithm allHNetworks∗, each relevant network calculated by
calling allHNetworks(T ) is obviously also calculated by calling allHNetworks∗(T ).

’=⇒’: Here, we have to discuss why the algorithm allHNetworks has not to consider
non-maximum acyclic agreement forests leading to relevant networks. For this purpose,
we will first show by induction on n = |T | that, if for a specific ordering Π of the input
trees a relevant network N∗ can be only computed by applying a non-maximum acyclic
agreement forest F∗i , then, in this case, there exists a different ordering Π∗ computing N∗

by only taking components of maximum acyclic agreement forests into account.

Base case. The assumption, obviously, holds for n = 1. For n = 2 an agreement
forest that is not maximal cannot lead to relevant networks, since the insertion of a max-
imum acyclic agreement forest F directly leads to a network whose reticulation number
is smaller. This is, in particular, the case, since the algorithm inserts a reticulation edge
for all components of an agreement forest, except Fρ, and, thus, in this simple case, the
hybridization number simply equals |F| − 1. Note that, due to Lemma 16 and 17, in the
case of two input trees, all relevant networks are calculated.

Inductive step. Now, let Π∗ = (T1, . . . , Ti, . . . , Tn), with n > 2, be an ordering of
input trees for which the algorithm allHNetworks calculates the set Nn−1 consisting of
all relevant networks for T \ {Tn} and there exists a hidden relevant network N∗ for Π∗

that could only be computed by inserting reticulation edges for a non-maximum acyclic
agreement forest F∗i for an input tree Ti (1 ≤ i < n) and an embedded tree T ′i of the
network N∗i−1 displaying {T1, T2, . . . , Ti−1}. Notice that this directly implies that in N∗

there exist x > 0 reticulation edges only necessary for displaying both trees Ti and Tn,
where x denotes the difference between |F∗i | and the size of a maximum acyclic agreement
forest F̂∗i for Ti and T ′i , i.e., x = |F∗i | − |F̂∗i |. In this case, however, as we will show
in the following, N∗ can be also calculated by applying the algorithm to the ordering
Π = (T1, . . . , Ti−1, Ti+1, . . . , Tn, Ti), where Ti is inserted right after Tn.
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For this purpose, let Nn−2 be the relevant network displaying each tree except Ti and
Tn in the same topological way as it is the case for N∗. More precisely, Nn−2 equals
the network that is obtained from N∗ by first deleting a set of reticulation edges E∗i ,
containing each edge that is not necessary for displaying an input tree in T \ {Ti}, then
by deleting a set of reticulation edges E∗n, containing each remaining edge that is not
necessary for displaying an input tree in T \ {Tn}, and finally by suppressing all nodes of
both in- and out-degree 1. Notice that we can calculate Nn−2 by applying the algorithm
allHNetworks to T \ {Ti, Tn} since, by induction hypothesis, the algorithm is able to
calculate all relevant networks embedding T \ {Tn}.

Next, let Nn−1 be the relevant network displaying each tree except Ti in the same
topological way as it is the case for N∗. More precisely, Nn−1 equals the network that is
obtained from N∗ by first deleting each reticulation edge that is not necessary for displaying
an input tree in T \ {Ti} and then by suppressing all nodes of both in- and out-degree 1.
Notice that, based on Nn−2, due to both previous Lemmas 16 and 17, this network can be
calculated by inserting the components of an specific acyclic agreement forest Fn for Tn
and the embedded tree T ′i of Nn−2 with |Fn| = |E∗n|+ 1. Moreover, T ′i is still contained in
Nn−2, since for displaying this tree no reticulation edge is necessary that has been added
during the insertion of Ti and Tn and, thus, would not exist in Nn−2.

It still remains to show, however, why this acyclic agreement Fn is of minimum size.
For this purpose, we will establish a proof by contradiction showing that in this case we
could construct a hybridization network N ′ for T providing a smaller reticulation number
than N∗. In a first step, however, we have to recall each acyclic agreement forest that is
used in Π∗ as well as in Π in order to insert the two trees Ti and Tn. The reader should
keep in mind that by inserting a tree based on an acyclic agreement forest of size k, the
algorithm allHNetworks inserts precisely k − 1 reticulation edges.

• Regarding Π∗, first the tree Ti is inserted by a non-maximum acyclic agreement
forest F∗i of size k∗i and then the tree Tn is inserted by a maximum acyclic agreement
forest F∗n of size k∗n.

• Regarding Π, first the tree Tn is inserted by a maximum acyclic agreement forest F ′n
of size k′n and then the tree Ti is inserted by a maximum acyclic agreement forest Fi
of size k′i.

Now, in order to establish a contradiction, let us assume that k′n = |F ′n| < |Fn|.
Notice that through Fn the edge set E∗n is reinserted, which implies that Fn has to contain
precisely |E∗n| + 1 = k∗n + x components, where x, as already mentioned above, denotes
the difference between |F∗i | and the size of a maximum acyclic agreement forest F̂∗i for
Ti and T ′i , i.e., x = |F∗i | − |F̂∗i |. Regarding F ′n, this means that we could insert Ti and
Tn to Nn−2 by inserting precisely r1 = k′n − 1 + k∗i − x − 1 reticulations edges. Next, by
considering the number of reticulation edges that are added in Π∗ for Ti and Tn, which are
r2 = k∗i − 1 + k∗n − 1, we can establish the following inequation:

r1 = k′n − 1 + k∗i − x− 1 < k∗n + x− 1 + k∗i − x− 1 = k∗i − 1 + k∗n − 1 = r2.



116 3. Hybridization networks for multiple binary trees

In summary, this means that, if |F ′n| < |Fn| holds, we could construct a network N ′ with
r1 = r(N ′) < r(N∗) = r2 by inserting both trees Ti and Tn into Nn−2 in respect to F̂∗i and
F ′n, which implies that N∗ would not be a relevant network for T ; a contradiction to the
choice of N∗.

Lastly, based on Nn−1, again due to both previous Lemmas 16 and 17, the network
N∗ can be calculated by inserting the components of an specific acyclic agreement forest
for Ti and some embedded tree of Nn−1. Notice that this acyclic agreement forest has to
be of minimum size, since, otherwise, by simply taking only maximum acyclic agreement
forests into account we could directly construct networks providing a smaller reticulation
number than N∗. Again, this would directly imply that N∗ could not be a relevant net-
work for T ; a contradiction to the choice of N∗, which finally establishes the induction step.

Based on the induction above, we can make the following observation. If for a specific
ordering of the input trees there exists a tree Ti that has to be added by a non-maximum
acyclic agreement forest in order to enable an insertion of another input tree Tj (i < j),
which is necessary for the computation of a relevant network N , then, in this case, we can
compute N by applying the algorithm allHNetworks to an ordering where Ti is located
after Tj. Thus, for each relevant network N that could only be computed by our algorithm
by applying non-maximum acyclic agreement forests, there exists a certain ordering of the
input trees such that our algorithm is able to compute N by only taking maximum acyclic
agreement forests into account. Finally, as a direct consequence, since our algorithm takes
all possible orderings of input trees into account, our algorithm obviously guarantees the
computation of all relevant networks without considering non-maximum acyclic agreement
forests. Thus, the correctness of Lemma 18 is established.

Now, based on the fact that the algorithm allMAAFs returns all maximum acyclic
agreement forests for two binary phylogenetic X -trees [57, Theorem 2], by combining
Lemma 16–18 the correctness of Theorem 15 is established.

More precisely, this is the case, because due to Lemma 16 we can derive a network dis-
playing a further input tree Ti from an acyclic agreement forest F for Ti and an embedded
tree of a so far computed network. Moreover, due to Lemma 17, by taking all orderings
of the input trees into account, for this purpose it suffices to consider only acyclic agree-
ment forests of minimum size. Furthermore, by considering all possible ways of how such
a maximum acyclic agreement forest F can be inserted (cf. Lemma 17), the algorithm
allHNetworks calculates each network displaying F . Now, since Ti is added to all so
far computed networks by taking all maximum acyclic agreement forests for all embedded
trees into account, all networks embedding Ti are calculated. Consequently, by adding all
input trees sequentially for all orderings in this way all relevant networks for all input trees
are calculated.
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Figure 3.17: An example showing why the algorithm allHNetworks has to consider different orderings of
the input trees. By running the algorithm allHNetworks for the ordering Π1 = (Tree 0,Tree 1,Tree 2 )
only those networks with hybridization number two, as the one denoted by Hybridization Network 2, are
computed providing a hybridization node whose subtree consists of taxon 4. This is the case, since the
only maximum acyclic agreement forest for Tree 0 and Tree 1 is of size two containing the component
consisting of the single taxon 4. To compute the network denoted as Hybridization Network 4 at bottom
right, you have to apply the algorithm to the ordering Π2 = (Tree 0,Tree 2,Tree 1 ), since now, in a
first step, by adding Tree 2 to Tree 0 the network at bottom left, denoted by Hybridization Network 0,
is computed. Based on this network you can select an embedded tree T ′ by choosing its blue in-edge.
As a direct consequence, the only maximum acyclic agreement forest for T ′ and Tree 2 is of size two
containing the component consisting of the single taxon 3 and, thus, by adding this component to the
network Hybridization Network 0, finally, the network Hybridization Network 4 is computed. Regarding
the first mentioned ordering Π1, this network could only be computed by our algorithm by considering the
non-maximum acyclic agreement forest for Tree 0 and Tree 1 of size three containing the two components
consisting of the single taxa 3 and 6.
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3.4.5 Runtime of allHNetworks

In order to analyze the theoretical worst-case runtime of the presented algorithm allH-
Networks, we have to discuss the complexity of three major steps including the com-
putation of embedded trees, the computation of all maximum acyclic agreement forests of
size k, and the computation of all possible reticulation edges that can be added for a given
maximum acyclic agreement forest. Given an ordering of the input trees, each of those
major steps has to be applied sequentially to each input tree in order to insert this tree
into a set of so far computed networks. At the beginning, when adding the second input
tree, this set of networks only consists of the first tree of the ordering. However, as shown
in the upcoming part, this set grows exponentially in the number of input trees.

Theorem 19. The theoretical worst-case runtime of the algorithm allHNetworks for
computing all relevant networks for a set T of rooted binary phylogenetic X -trees with
minimum hybridization number k is

O

(
n!
(

2k
(|E|
k

)
k!
(|V |

2

)
k
)n−1 (

|V |+ 3|X |
))

,

where E denotes the edge set and V denotes the node set of a binary tree in T .

Proof. To show the correctness of Theorem 19, we divide the stated runtime estimation
into four parts A–D and discuss each of those parts separately:

O

 n!︸︷︷︸
A

 2k︸︷︷︸
B

(|E|
k

)
k!︸ ︷︷ ︸

C

(|V |
2

)
k︸ ︷︷ ︸

D

n−1 |V |︸︷︷︸
B

+ 3|X |︸︷︷︸
C



Part A. Since different orderings of the input trees can lead to different relevant net-
works, the insertion of the trees has to be performed for all n! possible orderings.

Part B. The number of embedded trees of a network is at most 2r where r denotes
its number of hybridization nodes. This upper bound, however, is achieved only if each
hybridization node has in-degree 2. Otherwise, if a hybridization node has more than two
in-edges, the number of embedded trees is smaller as only one of those edges can be part of
an embedded tree. Moreover, extracting a tree from a given network is a process of rather
low complexity, which can be solved by iterating a constant number of times over all nodes
of the network. Thus, the complexity of extracting one certain embedded tree is linear in
the number of nodes.

Part C. The number of all maximum acyclic agreement forests of size k for two input
trees T1 and T2 can be estimated by O(

(|E(T1)|
k

)
). In practice, however, this number is

clearly smaller since, in general, less than k hybridization events, say r, are necessary for
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the insertion of one of the input trees. Moreover, only a few number of all
(|E|
r

)
possible

sets of components fulfills the definition of an acyclic agreement forest.

Given an agreement forest of size k, there exist at most k! acyclic orderings. Note that,
similar to the number of all maximum acyclic agreement forests, there exist, in general,
clearly less orderings. This number, however, can be large if there are a lot of components
consisting of isolated nodes. The runtime for the computation of those maximum acyclic
agreement forests is stated in the work of Scornavacca et al. [57, Theorem 3] by O(3|X |),
where X denotes the taxa set of each input tree.

Part D. As mentioned during the presentation of the algorithm allHNetworks, a
component of a maximum acyclic agreement forest can potentially be added in several
ways to a so far computed network N . This number is, obviously, bounded by

(|V |
2

)
where

V denotes the set of nodes corresponding to N . In practice, however, this number is clearly
smaller, since only a small fraction of all possible node pairs enable a valid embedding of
an input tree. Lastly, given a source and a target node, a new reticulation edge can be
simply added by performing a constant number of basic tree operations.

3.4.6 Speeding Up the Algorithm allHNetworks

To handle the huge computational effort, which is indicated in Theorem 19, it is very
important to implement the algorithm in an efficient way. This can be done by parallelizing
its execution on distributed systems, by initially applying certain reductions to the input
trees, and by reducing the computation of isomorphic networks.

3.4.6.1 Parallelization

In order to improve the practical runtime of our algorithm, each exhaustive search looking
for relevant networks with minimum hybridization number k can be parallelized as follows.
As described in Section 3.4.2, the insertion of a tree Ti to a so far computed network results
in several new networks which are then processed by inserting the next input tree Ti+1 of
the chosen ordering (cf. Fig. 3.18).

Since the processing of networks runs independently from each other, these steps can be
parallelized in a simple manner. Notice, however, that, based on the reticulation number
of so far computed networks, each of those steps is more or less likely to result in relevant
networks. Thus, one can set up a priority queue to process the most promising networks
first, which depends, on the one hand, on the number of so far embedded input trees and,
on the other hand, on its current reticulation number. One should keep in mind, however,
that such a priority queue can only speed up the computation of the hybridization number,
since, only in this case, the search can be aborted immediately as soon as the first relevant
network has been calculated. Otherwise, if one is interested in all relevant networks, each
network has to be processed anyway until either it can be early aborted (which is the case
if the reticulation number exceeds k) or it results in relevant networks.
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X

XXX X

X

Figure 3.18: An illustration of how the insertion of the input trees is conducted by the algorithm allH-
Networks in respect of the parameter k bounding the maximal reticulation number of resulting networks.
Beginning with the first input tree T1, repeatedly, first, an embedded tree T ′ of a so far computed net-
work N is selected, and, second, the current input tree Ti is inserted into N by sequentially adding the
components of a maximum acyclic agreement forest for T ′ and Ti. As soon as the reticulation number of
a so far computed network exceeds k one can be sure that this network cannot lead to a network whose
reticulation number is smaller than or equal to k and, thus, the corresponding computational path can be
early aborted.

3.4.6.2 Reductions rules

In order to reduce the size of the input trees, before entering the exhaustive part of the
algorithm, one can apply the reduction rules previously presented in Section 3.2. This is,
on the one hand, the subtree reduction, following the work of Bordewich and Semple [12],
and, on the other hand, the cluster reduction, following the work of Baroni et al. [9] and
Linz [40]. The subtree reduction simply replaces all maximum common subtrees of all input
trees which, however, usually only affects a relatively small number of small subtrees.

The cluster reduction, in contrast, cuts down the set of input trees into all minimum
common clusters whose relevant networks can then be computed independently by run-
ning the presented algorithm for each of those clusters separately. Consequently, the cluster
reduction usually provokes a significant speedup, because often a problem of high computa-
tional complexity can be separated into several subproblems providing low computational
complexities, which can be solved efficiently on its own. Notice that, in Section 3.3, we give
a proof showing that the cluster reduction is save for multiple rooted binary phylogenetic
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Figure 3.19: An illustration of an edge in NA,a that is caught in a subgraph corresponding to NA and Na,
respectively. This means in particular that both relevant networks on the right hand side are missing in
NA,a.

X -trees T , which means that h(T ) corresponds to the sum of the minimum hybridization
numbers each calculated for a different common cluster.

However, when applying the cluster reduction to a set T of rooted binary phylogenetic
X -trees, in order to obtain a set consisting of all relevant hybridization networks N dis-
playing T , due to the following observation one still has conduct further combinatorial
steps. Let A ⊂ X be a common cluster of T and let Ta be the set of trees obtained from
T by replacing each cluster A through a leaf labeled by taxon a 6∈ X . Then, in a further
step, one still has to reattach the networks computed for T |A and Ta, shortly denoted by
NA and Na, respectively, as follows.

First, replace each taxon a of a network in NA by each network in Na resulting in a set
of networks NA,a. However, due to the following observation this set NA,a might be just a
subset of all relevant networks N . Since NA and Na are calculated separately, the source
node of a reticulation edge is caught in NA and Na, respectively. This means, in particular,
that, regarding the set of reattached networks NA,a, each network whose source node of
a specific edge e could be also located outside of its subgraph referring to NA or Na, is
missing (cf. Fig. 3.19). For example, regarding Figure 3.21, the network at the bottom left
would not be calculated, which is due to the fact that the blue in-edge referring to node 6
could not “leave” the common cluster {2, 3, 4, 9}. However, keep in mind, that, as already
proven in Section 3.3, this fact does not have an impact on the calculation of the minimum
hybridization number h(T ) and, as demonstrated in the following, we can still generate
the set N \NA,a of missing networks by applying further linking patterns.

Let Na and NA be a network of Na and NA, respectively. Then, this second step
generates each missing network by performing legal shifting steps reattaching reticulation
edges to subgraphs beyond the border of two joined networks being part of NA and Na,
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respectively. More precisely, we call a legal shifting step of a reticulation edge e that is
part of a subgraph corresponding to NA (resp. Na), if it is possible to reattach e = (x, y)
to a node s 6= x located in the subgraph corresponding Na (resp. NA), so that still all
input trees are displayed in the resulting network N ′A,a. Note that by saying reattaching
we mean that first e is deleted, then a new edge (s, y) is inserted, and finally all nodes of
both in- and out-degree one are suppressed. Now, in order to guarantee the computation
of all relevant networks, for each network in NA,a, one simply has to take all combinations
of legal shifting steps into account.

For a better illustration of this concept, we will describe some linking-patterns that can
be used to apply legal shifting steps in respect to a node v and a subset T ′ of all input trees
T . In general, those pattern can be separated into three different types. A linking-pattern
of Type A can be used to shift reticulation edges downwards in the given network, which
means that the new source will be a successor of the original source node being part of
a network separately calculated for a particular cluster of T . Similarly, a linking-pattern
of Type B can be used to shift reticulation edges upwards in the given network, which
means that the new source will be a predecessor of the original source node being part of a
network separately calculated for a particular cluster of T . Once an edge has been shifted
in terms of a pattern of Type A or Type B (or Type C), one can apply an additional
linking-pattern of Type C (as defined below).

Just for convenience, in the following we will assume that the set of input trees T only
consists of two trees, which means that each reticulation edge is only necessary for the
embedding of one of both trees and not for more than one tree (which obviously could
be the case if T contains more than two trees). Therefor, let N be a relevant network
displaying two rooted binary phylogenetic X -trees T1 and T2 and let Ei be an edge set
referring to Ti ∈ {T1, T2}.

Linking-pattern of Type A. Let e = (x, y) be a reticulation edge of Ei and let
P = (s0, s1, . . . , sk) be a path in N in which s0 = x, y 6∈ P , and v = si with 0 < i ≤ k.
Moreover, let the out-degree of each node si, with 0 < i ≤ k, in N |E1,X be 1. Then, we
can conduct a legal shifting step by first pruning e and then by reattaching it to any node
of P (except s0) (cf. Fig. 3.20).

Linking-pattern of Type B. Let e = (v, y) be a reticulation edge of Ei and let
P = (s0, s1, . . . , sk) be a path in N in which sk = v. Moreover, let the out-degree of each
node si, with 0 ≤ i < k, in N |E1,X be 1. Then, we can conduct a legal shifting step by first
pruning e and then by reattaching it to any node of P (except sk) (cf. Fig. 3.21).

Linking-pattern of Type C. Let x be the source node of a reticulation edge es
that has already been shifted by applying a pattern of Type A or Type B. Moreover, let
et = (x, y) be an out-going tree edge of x not necessary for displaying Ti. Then, we can
conduct a legal shifting step by first pruning e and then by reattaching it to y (cf. Fig. 3.20).
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Now, let N be a network of the set NA,a as defined above. Moreover, let v be the root
of the subgraph corresponding to Na. Then, by applying those three linking-patterns to
each network in NA,a and repeatedly to all resulting networks, one can produce the missing
set of relevant networks.

Note that, when applying a linking-pattern of Type B, the initial node v might gets
suppressed, if its in- and out-degree is 1. In such a case, v has to be redefined by the target
of its out-going edge. Moreover, once an edge has been shifted downwards, one has to take
care not shifting it back again upwards (and vice versa). This means, in particular, that
edges that have been shifted in terms of a linking-pattern of Type A or B must not be
shifted again by applying of one those two patterns.

Lastly, by applying those linking patterns, the resulting networks not necessarily have
to match the definition of a relevant network as given in Section 3.4.1. Thus, one addi-
tionally has to apply the following two modifications.

Modification of Type A. By the linking patterns from above one automatically gen-
erates multifurcating nodes. Consequently, in order to turn those nonbinary networks into
binary networks, one still has to resolve these nodes in all possible ways.

Modification of Type B. Moreover, by applying a linking-pattern of Type B, one
can attach an edge e to a hybridization node, which consequently means that a network is
generated containing hybridization nodes of out-degree larger than one. As a consequence,
one either has to reject those networks or, if such a hybridization node provides an in-edge
eh that can be used for displaying the same set of trees as for e, one can first split eh and
then attach e to the new inserted node (cf. Fig. 3.21).
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Figure 3.20: (Top) Two rooted binary phylogenetic X -trees sharing the common cluster {2, 3, 4, 5, 7, 8, 9}.
(Rest) Minimum hybridization networks displaying both trees from the top where red edges refer to the
left and blue edges to the right tree. Both networks, Networks 0 and Networks 2, can be obtained from
Network 1 by applying a linking-pattern of Type A, whereas Network 3 can be obtained from Network 0
by applying a linking-pattern of Type C.
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Figure 3.21: (Top) Two rooted binary phylogenetic X -trees sharing the common cluster {2, 3, 4, 6, 9}.
(Bottom) Two networks displaying both trees from the top where blue edges refer to the left and red
edges to the right tree. The left network can be obtained from the right one by first applying a linking-
pattern of Type B, attaching the blue in-edge referring to node 6 to the hybridization node labeled by
25%, and then by applying a modification of Type B.
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3.4.7 Conclusion

To analyze hybridization events, it is of high interest to compute all hybridization networks,
since the more frequently an event occurs in all those networks the more likely it may
be part of the true underlying evolutionary scenario. In this work, we first presented
the algorithm allHNetworks calculating all relevant networks for an input consisting
of multiple rooted binary phylogenetic X -trees and then established its correctness by a
detailed formal proof. Its theoretical worst-case runtime, however, reveals that the number
of those networks growths in a strong exponential manner in terms of the number and
the size of the input trees which obviously complicates its application to real biological
problems.

As a consequence, it is very important to technically implement the algorithm in an
efficient way (e.g., parallelizing particular substeps) what will be discussed in more detail
the upcoming section. Moreover, in an algorithmic point of view, in order to improve the
practical runtime, one can apply a cluster reduction to the input trees as already described
in Section 3.3. We have demonstrated, however, that when separating those input trees
into several clusters, in order to obtain all relevant networks, one still has to spend some
work in attaching back different networks separately computed for each of those clusters.
However, if one is only interested in the hybridization number, this post-processing step is
not necessary as already proven in Section 3.3.
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3.5 A fast approach for computing minimum hybridiza-

tion networks

In this section, we present the first approach that is able to compute the exact hybridization
number as well as a certain set containing all representative networks (as defined later)
for, not just only two, but an arbitrary number of rooted binary phylogenetic X -trees all
sharing the same set of taxa. Note that, until now, the software PIRNv2.0 [72, 73] is
the most efficient software that guarantees the computation of the exact hybridization
number for more than two input trees. In most cases, however, PIRN runs only reasonable
efficient if the number of hybridization events is relatively small and, moreover, PIRN does
usually output only a small subset of those networks that are computed by our method
which plays an important role for the interpretation of the networks as discussed later.
The algorithm, presented in this section, is based on previous work of Albrecht et al. [6]
describing an algorithm for just two input trees (cf. Sec 2.2), which itself is based on
several works including Baroni et al. [9], Bordewich and Semple [13], and Whidden et al.
[70]. Moreover, this previous approach could only compute a subset of all representative
networks and, thus, the motivation for this work was to extend this former algorithm such
that now all of those networks for an arbitrary number of input trees can be computed.

As we state that our algorithm guarantees the computation of the exact hybridization
number, we are aware of the fact that this algorithm raises some questions regarding its
correctness. However, since in this section we want to focus on the efficiency of the pre-
sented algorithm as well as on the practical aspects of our software Hybroscale regarding
the interpretation of hybridization networks, those rather complex theoretical issues have
already been discussed separately in the previous section.

Given a hybridization network displaying several input trees, it is often visually chal-
lenging for a user to figure out the embedding of those trees. Thus, we have developed the
software Hybroscale providing a function for highlighting each input tree by coloring
its corresponding edges within a resulting network, which makes it easier for a biologist to
analyze hybridization events. Moreover, Hybroscale sorts the set of computed networks
by support values indicating how often a particular hybridization event occurs in the set
of representative networks.

To demonstrate the efficiency of our implementation, we computed the hybridization
number for a specific synthetic dataset and compared the respective runtime with the best
currently available software PIRNv2.0 [72, 73]. Note that there are two main differences
between our approach and the one corresponding to PIRN. On the one hand, our software
provides the better practical runtime for computing hybridization numbers because of
parallelization, certain reduction steps, and other algorithmic issues as discussed in the
upcoming part of this section. On the other hand, our approach additionally enables
the computation of all representative networks allowing the assignment of meaningful
support values to each internal node representing a putative hybridization event which
helps biologists to figure out hybridization events that might played an important role.
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3.5.1 Further definitions

The upcoming definitions are crucial for describing and discussing our algorithm.

Hybridization networks. Given a hybridization network N with node v, the net-
work N(v) denotes a network rooted at v that is obtained from N by first removing each
node that cannot be reached from v and then by suppressing each node of both in- and
out-degree 1.

Representative networks. As mentioned above, our algorithm ensures the computa-
tion of all representative networks, which are those hybridization networks with minimum
hybridization number (cf. Eq. (1.2)) not containing any stacks of hybridization nodes leav-
ing the interpretation of the ordering of the hybridization events open. Moreover, just
for simplicity, we claim that each of those networks has to be binary not containing any
nodes of out-degree greater than 2. Notice that by introducing multifurcating nodes, which
are nodes having an out-degree of at least 3, the set of representative networks typically
shrinks because due to those nodes a network can display several binary networks.

Moreover, in order to improve its readability, we further demand that all hybridization
nodes of a representative network have out-degree one. Notice that, in order to identify
stacks of hybridization nodes, in such networks the out-edges of all hybridization nodes
have to be suppressed.

Lastly, given two representative networks N1 and N2, we say that N1 differs from N2

if either their graph topologies (disregarding edge labels) are not isomorphic or their edge
sets indicating the embedding of each input tree differ.

3.5.2 The algorithm

In this section, we give a high level description of our algorithm. More information, involv-
ing a more detailed description of the upcoming steps as well as some theoretical issues
have already been discussed in the previous section.

The input of the algorithm is a set T of rooted binary phylogenetic X -trees and its
output is either just the hybridization number or all representative networks showing the
embedding of all those input trees. Similar to the approach described in Section 2.2,
our algorithm is separated into three phases. The reduction phase (consisting of a subtree
reduction following the work of Bordewich and Semple [12] and a cluster reduction following
the work of Baroni et al. [9] and Linz [40]), the exhaustive search phase, and the output
phase (combining the result of all clusters and undoing each subtree reduction). Whereas
the reduction and the output phase can be conducted in polynomial time, the second phase
solves an NP-hard problem and, thus, its theoretical worst-case runtime is exponential [14].
However, as recently shown by van Iersel and Linz [67], specific parts of the problem still
remain fixed-parameter tractable, which is an important feature that is exploited by our
algorithm to maximize its efficiency.
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At this point, we have to give a remark regarding the correctness of the cluster reduc-
tion. The well-known work of Baroni et al. [9] contains a proof showing that the exact
hybridization number of two binary phylogenetic X -trees can also be computed by sum-
ming up the exact hybridization numbers of its minimum common clusters. A more general
proof, showing that this concept also holds for multiple binary phylogenetic X -trees, has
been previously discussed in Section 3.3.

In the upcoming part, we will briefly discuss the exhaustive search phase and its par-
allel execution. A description of the other two phases is omitted but can be looked up in
Section 2.2. The exhaustive search phase runs for an increasing parameter k bounding the
reticulation number of each computed network. If a hybridization network with reticula-
tion number less than or equal to k does not exist, the search is continued with k+ 1 until
a hybridization network displaying all input trees can be computed.

Exhaustive search phase. Given a set T of rooted binary phylogenetic X -trees and a
parameter k ∈ N, we first apply the algorithm allHNetworks (cf. Sec 3.4.2) calculating
the set N of all relevant networks each displaying T with minimum hybridization number.
Notice that in the output N only those networks are contained in respect to one single
embedding of the input trees. More precisely, this is the case because we consider two
relevant network as being different if their topology disregarding the embedding of T
differs. Consequently, since by comparing representative networks the embedding of each
input tree is now taken into account, we still have to compute for each network in N all
possible combinations of edge sets each referring to the embedding of one input tree.

3.5.3 Parallelization

In order to improve the practical runtime, our implementation runs the exhaustive search
phase in parallel as described in Section 3.4.6.1 including the application of a priority
queue.

Moreover, as the algorithm computes networks for all different orderings of input trees
and all different acyclic orderings of a maximum acyclic agreement forest, a representative
network can be computed several times. As a consequence, to ensure that the output
only consists of unique networks, one has to filter the set of networks obtained from the
exhaustive search step. For this purpose, we, first, group this set after the sum of support
values computed for each network (as defined later), and, second, check each of those sub-
groups for isomorphic networks in parallel. Due to the typically large number of computed
networks (cf. Tab. 3.3, 3.4), the restriction of the filtering step to small subgroups usually
provokes a large speedup. Note that, as already mentioned above, we consider two net-
works as being different if either their graph topologies (disregarding edge labels) are not
isomorphic or their sets of edges necessary for displaying each input tree differ.



130 3. Hybridization networks for multiple binary trees

Viewer 1 Viewer 2

Showing 'Hybrid_Network 14' 

Networks

Hybrid_Network 0
Hybrid_Network 1
Hybrid_Network 2
Hybrid_Network 3
Hybrid_Network 4
Hybrid_Network 5
Hybrid_Network 6
Hybrid_Network 7
Hybrid_Network 8
Hybrid_Network 9
Hybrid_Network 10
Hybrid_Network 11
Hybrid_Network 12
Hybrid_Network 13
Hybrid_Network 14
Hybrid_Network 15
Hybrid_Network 16
Hybrid_Network 17
Hybrid_Network 18
Hybrid_Network 19
Hybrid_Network 20
Hybrid_Network 21
Hybrid_Network 22
Hybrid_Network 23
Hybrid_Network 24
Hybrid_Network 25
Hybrid_Network 26
Hybrid_Network 27
Hybrid_Network 28
Hybrid_Network 29
Hybrid_Network 30
Hybrid_Network 31

Trees

Tree 0
Tree 1
Tree 2
Tree 3

HelpViewAlgorithmsEditFile

Figure 3.22: Our software Hybroscale showing a hybridization network displaying the embedding of
three input trees by the colors blue, red, and green.

3.5.4 Additional features

Given just the extended newick format [15] of a hybridization network, its topology is in
general hard to interpret. Although there exist software packages, which are able to display
rooted phylogenetic networks, e.g., the software Dendroscope [33], most of them are not
able to visualize the embedding of all input trees, which is a preferable feature for studying
hybridization events. In order to close this gap, we have developed the software Hy-
broscale, which is specifically designed for studying hybridization networks. Beside the
computation of a graphical layout of rooted trees and rooted networks, which is optimized
by minimizing the number of crossings between all hybridization edges, Hybroscale can
additionally highlight each hybridization edge that is necessary for displaying all embedded
input trees by assigning a specific color to each tree (cf. Fig 3.22). Thus, Hybroscale is
a tool that, on the one hand, enables an easy handling of our algorithm and, on the other
hand, ensures the readability of the so computed networks.

Furthermore, Hybroscale assigns each hybridization node a support value indicating
the fraction of networks containing this node and, additionally, sorts the reported networks
by the sum of those values in decreasing order. More specifically, the computation of sup-
port values is done as follows. Given a network N , each edge set Ei referring to one of
the input trees Ti, and a certain hybridization node v, we first compute the following or-
dering of taxa sets Π(v) = (L(N |E1,X (v)), . . . ,L(N |En,X (v))). More precisely, each element
L(N |Ei,X (v)) consists of those taxa adhering to each leaf that can be reached from v by
directed paths only crossing those hybridization edges in Ei indicating the embedding of
Ti. For example, regarding Figure 3.22, the set referring to the hybridization edges indi-
cating the embedding of Tree 2 and the node labeled by 22% is {austrodant, karoochloa}.
Second, we determine the fraction of networks containing Π(v). This step ensures that
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the user can instantly look at those networks containing the most promising hybridiza-
tion events, which is an important feature, because usually a large number of networks is
reported (cf. Tab. 3.3, 3.4).

3.5.5 Results and discussion

In this section, we first report a simulation study indicating that our approach is much
faster than the only so far existing competitive method PIRN and then illustrate how
Hybroscale can be used for studying hybridization networks by applying the software
to a well known grass (Poaceae) dataset.

3.5.5.1 Simulation study

To show the efficiency of our implementation, we have integrated our algorithm into the
Java software Hybroscale and conducted a simulation study comparing its runtime to
PIRNv2.0 [72, 73], which is so far the best available software for computing exact hy-
bridization numbers for multiple rooted binary phylogenetic X -trees.

Our synthetic dataset is freely available1 and consists of several tree sets each containing
multiple rooted phylogenetic X -trees. Each X -tree is generated by ranging over all different
combinations of four parameters, namely the number of input trees n, the number of leaves
`, an upper bound for the hybridization number k, and the cluster degree c. Each of the n
input trees is obtained from a bicombining network N , which means that N only contains
hybridization nodes of in-degree 2. This network N is computed with respect to these four
different parameters as follows. In a first step, a random binary tree T with ` leaves is
computed which is done in the following way. First, at the beginning two nodes u and v of
a specific set V , which is initialized by ` nodes of both in- and out-degree 0, are randomly
selected. Those two selected nodes u and v are then connected to a new node w and,
finally, V is updated by replacing u and v by its parent node w. This process is repeated
until V consists only of one node corresponding to the root of T . In a second step, k
hybridization edges are created in T with respect to parameter c such that the resulting
network N contains exactly k hybridization nodes of in-degree 2.

In this context, the cluster degree is an ad hoc concept influencing the computational
complexity of a tree set similar to the concept of the tangling degree introduced in the work
of Scornavacca et al. [57]. When adding a hybridization edge e with target node v2 and
source node v1, we say that e respects the cluster degree c if v1 cannot be reached from
v2 and there is a path of length less than or equal to c leading from v2 to a certain node
p such that v1 can be reached from p. Consequently, networks providing a small cluster
degree in general contain more minimum common clusters than networks of large cluster
degrees and, thus, typically can be processed quite fast when applying a cluster reduction
beforehand. For a better understanding, in Figure 3.23 an example of this concept is
depicted.

1www.bio.ifi.lmu.de/softwareservices/hybroscale

www.bio.ifi.lmu.de/softwareservices/hybroscale
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Figure 3.23: An illustration of the cluster degree parameter c = 1. When inserting an in-going edge e to
node v2 that is respecting c, each node that is marked green or is part of a green marked subnetwork forms
a potential source node.
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Figure 3.24: The figure shows the mean average runtime corresponding to Hybroscale and PIRNv2.0
grouped by parameter k denoting the hybridization number of the network that was used to obtain the
tree set T from. Thus, this parameter k acts as an upper bound of the hybridization number of T . Each
percentage indicates the proportion of tree sets that could be computed within the time limit of 20 minutes.
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Figure 3.25: The figure shows the mean average runtime of all tree sets grouped by the computed hy-
bridization numbers. The numbers inside the plot indicate how many tree sets could be computed for the
corresponding hybridization number within the time limit of 20 minutes. Note that for the hybridization
numbers 0 to 3 all corresponding tree sets could be computed by Hybroscale and PIRNv2.0 within
comparable runtimes.
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Figure 3.26: A scatterplot of the runtimes generated by PIRNv2.0 (x-axis) against the runtimes generated
by Hybroscale (y-axis) of all 810 data sets consisting of three input trees. Note that PIRNv2.0 is not
able to compute the result for 463 tree sets corresponding to each dot in the figure whose x-value is 1200.
From those tree sets just 4 according to the dots whose y-value is also 1200 could not be computed by
Hybroscale.
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Figure 3.27: The figure shows the number of tree sets that could be computed within the runtime given on
the x-axis by considering the real-runtime of PIRN and both real- and user-runtime of Hybroscale. The
plot reveals that the massive parallelization with 16 cores does not significantly improve the runtime of
Hybroscale in this case. This is the case because for three input trees the time limit of just 20 minutes
as well as the complexity of the considered tree sets is simply too low.
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Figure 3.28: Distribution of the speedups of Hybroscale versus PIRN2.0 computed for each relevant
tree set of our synthetic dataset. For three input trees Hybroscale is on mean average about 100 times
faster than PIRN, for four input trees on mean average about 80 times, and for five input trees on mean
average about 80 times.

To compare the efficiency, both programs have been run on a grid computer providing
16 cores and 40 GB RAM for our synthetic dataset containing tree sets with parameters
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n ∈ {3, 4, 5}, ` ∈ {10, 25, 50}, k ∈ {5, 10, 15}, and c ∈ {1, 3, 5}. More precisely, we have
generated for all 81 combinations of the four parameters 30 tree sets as described above
resulting in 2430 tree sets in total. The results for three input trees (n = 3) are presented
in Figure 3.24–3.27. Due to time limitations, if the hybridization number of a certain tree
set could not be computed within 20 minutes, the computation of this tree set was aborted.
In Figure 3.24, 3.26, 3.27, and 3.28 those unfinished tree sets were taken into account with
a runtime of 20 minutes whereas in Figure 3.25 these tree sets were omitted. The results
for four and five input trees (n = 4, 5) are given in Figure 3.29–3.36. Notice that we do
not give a discussion of these results because they are quite similar to those attained for
three input trees.

Each of the simulation results given in Figure 3.24–3.28, which are now discussed in
more detail, clearly demonstrates that our implementation is much faster than PIRN.

Figure 3.24 shows that, by increasing the upper bound of the hybridization number k,
the mean average runtime of the datasets computed by PIRN increases up to 1000 seconds
whereas the mean average runtime corresponding to Hybroscale is always below 100
seconds. Note that, as the runtime of each unfinished dataset was set to 1200 seconds,
if we would set the time limit to a higher value, the maximal mean average runtime
produced by PIRN is expected to be even higher — otherwise, to produce a reasonable
comparison between both programs, we would have to leave out each dataset, which could
not be computed by one of both programs, which means that we would end up with only
those non-representative datasets that are quite easy to compute. Figure 3.25 shows that
Hybroscale, in comparison to PIRN, can compute more datasets within the time limit
and datasets having a significant larger hybridization number. Whereas PIRN is just able
to compute hybridization numbers up to 5, Hybroscale is able to compute hybridization
numbers up to 13.

Thus, it is obvious that our implementation outperforms PIRN, which becomes even
clearer by looking at Figure 3.26 showing a scatterplot of the runtimes produced by both
programs. The figure shows that for each runtime of a specific data set produced by
PIRN the corresponding runtime of Hybroscale is smaller or equal. Moreover, looking
at the bottom right of the figure, there exist a lot of data sets that could be computed by
Hybroscale quite fast in less than 200 seconds, whereas PIRN is not able to come up
with a result in less than 1200 seconds.

By comparing real- with user-runtimes, Figure 3.27 demonstrates that the better per-
formance of Hybroscale is not only due to the applied massive parallelization. As the
user-runtime indicates the total CPU time, which means that the time spent on all avail-
able cores is simply added up, this time indication corresponds to the runtime produced
by a program that is executed on a system only providing a single core with no parallel
execution taking place. Figure 3.27 shows the number of tree sets that could be computed
within the runtime given at the x-axis. For example, the leftmost bar-group shows that
PIRN could only finish 360 of 810 tree sets consisting of three trees within 1200 seconds
whereas Hybroscale could finish 804 by taking parallelization into account and 793 by
not taking parallelization into account. Note that the difference between both bars corre-
sponding to the real- and user-runtime of Hybroscale would be even larger if, on the one
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hand, the dataset would contain tree sets of higher computational complexity and, on the
other hand, the time limit would be set to a higher value. A possible explanation for the
speedup without taking advantage of parallelization, apart from the reduction steps, is the
proven method allMAAFs [57] that is used for solving the NP-hard problem of computing
all maximum acyclic agreement forests. The efficiency of this method has been indicated
recently in the work of Albrecht et al. [6].

Finally, we have computed the speedup of Hybroscale versus PIRN by comparing its
runtimes produced for each relevant tree set within our synthetic dataset. More specifically,
we consider each tree set d as being relevant in this case if at least one of both programs
could process d within the time limit of 20 minutes and if at least one computation took
longer than 50 seconds. Now, for each of those relevant tree sets d we computed its speedup
s(d) = TP (d)/TH(d), in which TP and TH denotes the real-runtime produced by PIRN
and Hybroscale, respectively. Figure 3.28, showing the distribution of the speedups
corresponding to each of those tree sets, reveals that for three input trees Hybroscale is
on mean average about 100 times faster than PIRN, for four input trees on mean average
about 80 times, and for five input trees on mean average about 80 times.
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Figure 3.29: A scatterplot of the runtimes generated by PIRN (x-axis) against the runtimes generated by
Hybroscale (y-axis) of all 810 data sets consisting of four input trees. The plot is generated for the
real-time (a) and the user-time (b) of Hybroscale. Note that PIRN is not able to compute the result
for 565 tree sets corresponding to each dot in the figure whose x-value is 1200. From those tree sets just
87 could not be computed by Hybroscale.
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Figure 3.30: A scatterplot of the runtimes generated by PIRN (x-axis) against the runtimes generated
by Hybroscale (y-axis) of all 810 data sets consisting of five input trees. The plot is generated for the
real-time (a) and the user-time (b) of Hybroscale. Note that PIRN is not able to compute the result
for 624 tree sets corresponding to each dot in the figure whose x-value is 1200. From those tree sets just
201 could not be computed by Hybroscale.
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Figure 3.31: Figure (a) on the left hand side corresponds to Hybroscale and figure (b) on the right
hand side to PIRN. The two figures show the average runtime grouped by parameter k, the upper bound of
the hybridization number. Each percentage indicates the proportion of tree sets which could be computed
within the time limit of 20 minutes.
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Figure 3.32: Figure (a) on the left hand side corresponds to Hybroscale and figure (b) on the right
hand side to PIRN. The two figures show the average runtime grouped by parameter k, the upper bound of
the hybridization number. Each percentage indicates the proportion of tree sets which could be computed
within the time limit of 20 minutes.
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Figure 3.33: The figure shows the number of tree sets that could be computed within the runtime given at
the x-axis by considering the real-runtime of PIRN and Hybroscale and, additionally, the user-runtime
of Hybroscale.
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Figure 3.34: The figure shows the number of tree sets that could be computed within the runtime given at
the x-axis by considering the real-runtime of PIRN and Hybroscale and, additionally, the user-runtime
of Hybroscale.
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Figure 3.35: The figure shows the average runtime of all tree sets grouped by the computed hybridization
numbers. The numbers inside the plot indicate how many tree sets could be computed for the corresponding
hybridization number within the time limit. Note that for the hybridization numbers 0 to 3 this could be
achieved by both programs for all corresponding tree sets.
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Figure 3.36: The figure shows the average runtime of all tree sets grouped by the computed hybridization
numbers. The numbers inside the plot indicate how many tree sets could be computed for the corresponding
hybridization number within the time limit. Note that for the hybridization numbers 0 to 3 this could be
achieved by both programs for all corresponding tree sets.
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Table 3.3: Output produced by Hybroscale applied to two phylogenetic trees belonging to a well known
grass (Poaceae) dataset.

Genes Taxa HNumber #MAAFs #HNetworks

ndhf phyB 40 8 459 2079
ndhf rbcl 36 8 72 1488
ndhf rpoc 34 9 144 264
ndhf waxy 19 6 46 599
phyB its 30 8 21 195
phyB rbcl 21 4 4 6
phyB rpoc 21 4 5 9
phyB waxy 14 3 6 10
rbcl rpoc 26 7 18 111
rbcl waxy 12 4 10 84
rpoc its 31 12 12 3480
rpoc waxy 10 2 1 1
waxy its 15 5 6 15

3.5.5.2 Application to a grass dataset

As already mentioned above, our algorithm computes all representative networks for a set
of input trees. In particular, given only two input trees, this means that Hybroscale
in general outputs multiple networks for each maximum acyclic agreement forest instead
of only one as it is the case for the method described in the work of Albrecht et al. [6]
previously presented in Section 2.2. As a consequence, the output usually consists of a huge
number of different hybridization networks, which is demonstrated by Table 3.3 and 3.4
presenting the results of our software Hybroscale applied to a well known grass (Poaceae)
dataset2 consisting of three nuclear loci and three chloroplast genes. This dataset, which
is also used in the work of van Iersel et al. [66], was originally published by the Grass
Phylogeny Working Group [27] and reanalyzed by Schmidt [55].

Again, we ran Hybroscale on a grid computer providing 16 cores and 40 GB RAM
for each tree set within the grass dataset and summarized the results in Table 3.4. This
table shows that Hybroscale is able to calculate the hybridization number for 51 out of
57 tree sets. This means, in particular, that for 6 tree sets Hybroscale cannot produce
a result within a time limit of 80 minutes. Moreover, even though for 3 tree sets the
hybridization number could successfully be calculated, the respective set of representative
networks could not. Consequently, this biological example demonstrates that, although
our algorithm seems to be faster than all so far existing methods, calculating minimum
hybridization networks remains a computationally hard problem, which is still not solved
sufficiently.

In Figure 3.22, one out of 324 possible hybridization networks reconciling four different
binary phylogenetic trees corresponding to the sequences ndhf, rpoC, waxy, and ITS is

2www.sites.google.com/site/cassalgorithm/data-sets

www.sites.google.com/site/cassalgorithm/data-sets
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given. The embedding of the trees is demonstrated by four colors blue, red, green, and
orange. This means, for example, that we can simply determine the embedding of the
tree corresponding to rpoC, which is denoted as Tree 1 in this case, by taking the red
colored edges into account. Moreover, the support values assigned to each hybridization
node reveal that a hybridization event involving the two species oryza and lygeum occurs
in 97% of all 324 networks, which could be a strong signal that this event is also part
of the true underlying evolutionary history. However, the reader should be aware of the
fact that there still exist other mechanisms explaining such inconsistencies, as for example
incomplete lineage sorting. Hence, such networks just help to build hypothesis that still
have to be tested by applying further experiments.
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Table 3.4: Output produced by Hybroscale applied to phylogenetic trees belonging to a grass (Poaceae)
dataset. Each runtime given in this table is stated in seconds. A missing result for a certain tree set
means that our software Hybroscale could not compute the exact hybridization number (resp. set of
representative networks) within 80 minutes.

Computing HNumbers Computing HNetworks
Genes #Taxa HNumber Runtime #HNetworks Runtime

ndhf its 46 17 3.262 554736 836.678
ndhf phyB 40 8 0.199 2079 33.035
ndhf rbcl 36 8 0.175 1488 32.1
ndhf rpoc 34 9 0.197 264 5.353
ndhf waxy 19 6 0.179 599 5.693
phyB its 30 8 0.238 195 8.304
phyB rbcl 21 4 0.083 6 1.65
phyB rpoc 21 4 0.091 9 1.678
phyB waxy 14 3 0.071 10 1.615
rbcl its 29 12 4.41 - -
rbcl rpoc 26 7 0.147 111 3.836
rbcl waxy 12 4 0.126 84 4.338
rpoc its 31 12 4.5 3480 217.575
rpoc waxy 10 2 0.07 1 1.582
waxy its 15 5 0.118 15 2.712
ndhf phyB its 30 13 243.411 - -
ndhf phyB rbcl 21 9 7.226 10889 55.684
ndhf phyB rpoc 21 8 6.189 36948 206.114
ndhf phyB waxy 14 4 1.599 42 2.87
ndhf rbcl its 28 - - - -
ndhf rbcl rpoc 26 11 7.223 36600 444.027
ndhf rbcl waxy 12 5 4.198 114 5.577
ndhf rpoc its 31 17 1130.732 39016 4721.959
ndhf rpoc waxy 10 3 2.583 14 2.632
ndhf waxy its 15 8 4.213 5466 26.697
phyB rbcl its 17 8 9.437 8661 233.768
phyB rbcl rpoc 15 6 4.652 40 4.867
phyB rbcl waxy 7 2 2.568 11 2.592
phyB rpoc its 19 7 3.774 57 4.633
phyB rpoc waxy 5 0 0.045 1 0.075
phyB waxy its 10 4 3.122 146 3.844
rbcl rpoc its 24 - - - -
rbcl rpoc waxy 9 3 1.585 5 1.62
rbcl waxy its 11 6 6.224 63 7.49
rpoc waxy its 10 4 2.626 4 2.635
ndhf phyB rbcl its 17 - - - -
ndhf phyB rbcl rpoc 15 9 224.934 1079 360.922
ndhf phyB rbcl waxy 7 2 2.581 1 2.594
ndhf phyB rpoc its 19 9 984.937 - -
ndhf phyB rpoc waxy 5 0 0.056 1 0.071
ndhf phyB waxy its 10 5 4.159 4709 26.434
ndhf rbcl rpoc its 24 - - - -
ndhf rbcl rpoc waxy 9 4 3.165 396 14.864
ndhf rbcl waxy its 11 6 54.399 2 159.99
ndhf rpoc waxy its 10 5 4.213 324 16.663
phyB rbcl rpoc its 14 - - - -
phyB rbcl rpoc waxy 4 0 0.057 1 0.06
phyB rbcl waxy its 6 2 2.574 3 2.589
phyB rpoc waxy its 5 0 0.064 1 0.065
rbcl rpoc waxy its 9 5 7.205 335 38.471
ndhf phyB rbcl rpoc its 14 - - - -
ndhf phyB rbcl rpoc waxy 4 0 0.066 1 0.084
ndhf phyB rbcl waxy its 6 3 4.232 135 22.506
ndhf phyB rpoc waxy its 5 0 0.059 1 0.083
ndhf rbcl rpoc waxy its 9 5 35.899 235 587.54
phyB rbcl rpoc waxy its 4 0 0.066 1 0.076
ndhf phyB rbcl rpoc waxy its 4 0 0.062 1 0.083
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3.5.6 Conclusion

As already discussed in in Section 2.2, it makes sense to consider hybridization if there is a
significant difference between certain gene trees and if other effects, as for example incom-
plete lineage sorting, could be excluded. The number of genes affected by hybridization,
however, is of course not limited to a fixed value, e.g., two, and, thus, a method computing
hybridization networks for an arbitrary number of input trees is of high interest.

While some approaches only focus on reconciling two binary phylogenetic X -trees
[6, 17], in this section, we present an algorithm that is able to cope with multiple in-
put trees. Moreover, instead of reporting just the hybridization number or only a small
fraction of all possible hybridization networks, our approach contains the first algorithm
that is able to output all representative networks, which is an important feature enabling
the computation of meaningful support values indicating which of the computed hybridiza-
tion events might have played an important role during evolution. Additionally, in com-
bination with our software Hybroscale, we improve the interpretation of the reported
hybridization networks by assigning certain support values to each hybridization node and
by highlighting the embedding of all input trees.

Moreover, we a carried out a simulation study indicating that our algorithm is much
faster than the only so far existing software PIRNv2.0 [72, 73] calculating the exact
hybridization number for more than two rooted binary phylogenetic trees on the same set
of taxa. As shown in Figure 3.27, the better performance is not only due to parallelization
but consequently also due to algorithmic issues.



Chapter 4

Hybridization networks for
nonbinary trees

In this chapter, we first present the algorithm allMulMAFs calculating all relevant
maximum agreement forests for two rooted (nonbinary) phylogenetic X -trees. Next, we
present a tool that can be used to further modify the output of this approach such that
now all relevant maximum acyclic agreement forests can be calculated. Finally, we present
the algorithm allMulHNetworks that enables the computation of minimum hybridiza-
tion networks for a set of rooted (nonbinary) phylogenetic X -trees by making use of such
relevant maximum acyclic agreement forests.

4.1 Further definitions

In this section, we give a definition of those (nonbinary) agreement forests we consider as
being relevant as well as a definition of certain trees reflecting a given agreement forest.

Forests. Let F be a forest on a taxa set X . Then, by F , we refer to the forest that is
obtained from F by deleting each element only consisting of an isolated node.

Relevant agreement forests. Let F be an agreement forest for two rooted phyloge-
netic X -trees T1 and T2 and let E be a subset of edges in F . Then, by F 	 E we refer
to the forest F ′ that is obtained from F by contracting each edge in E. Furthermore, we
say that F is relevant, if there does not exist an edge e in F such that F 	 {e} is still
an agreement forest for T1 and T2. Otherwise, if such an edge e exists, we say that e is
contractible in F .

Trees reflecting agreement forests. Let F = {Fρ, F1, F2, . . . , Fk−1} be an agreement
forest for two rooted (nonbinary) phylogenetic X -trees T1 and T2, then, a tree Ti(F) for
i ∈ {1, 2} corresponds to the tree Ti reflecting each component in F (cf. Fig. 4.1). Generally
speaking, in such a tree some of its nodes are resolved such that the definition of an
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agreement forest can be applied in terms of the resulting tree and F . Technically speaking,
such a tree T̂i = Ti(F) satisfies the following two properties.

(1) Each component Fj in F refers to a restricted subtree of T̂i|L(Fj).

(2) All trees in {T̂i(L(Fj))|j ∈ {ρ, 1, . . . , k − 1}} are node disjoint subtrees in T̂i.

We can construct such a tree Ti(F) by reattaching the components of F back together
in a specific way as follows. Let ΠF = (F0, F1, . . . , Fk), with F0 = Fρ, be an acyclic ordering
that can be obtained from AG(Ti, Ti,F) as discussed above. Notice that, as this graph is
based only on one of both trees, this graph cannot contain any directed cycles and, thus,
ΠF always exists. Now, each of those components in ΠF , beginning with F1, is added
sequentially to a growing tree T ∗ (initialized with F0) as follows.

(i) Let X<m be the union of each taxa set corresponding to each component Fl in ΠF
with l < m, i.e., X<m =

⋃m−1
l L(Fl), and let Xm be the taxa set corresponding to Fm.

Moreover, let Pm = (vm0 , v
m
1 , . . . , v

m
n ) be those nodes lying on the path connecting the

node vm0 = LCATi(Xm) and the root vmn of Ti such that vmq , with q ∈ {1, . . . , n}, is
the parent of vmq−1. Then,

v′ = min
q
{vmq : vmq ∈ P ∧ L(vmq ) ∩ X<m 6= ∅}.

(ii) Let X ′ be the set of taxa corresponding to the leaf set of Ti(v
′) restricted to X<m.

Notice that, due to the definition of v′, this set X ′ is not empty. Moreover, based on
X ′, let v∗ be the node in T ∗ corresponding to LCAT ∗(X ′).

(iii) Now, given v∗, the component Fm is added to T ∗ by connecting its root node ρm to
the in-edge of v∗. More precisely, first a new node x is inserted into the in-edge of v∗

and then ρm is connected to x by inserting a new edge (x, ρm).

Notice that, since there can exist multiple acyclic orderings for an acyclic agreement
forest F , the tree Ti(F) is in general not unique.



4.1 Further definitions 147

Figure 4.1: (a) Two rooted nonbinary phylogenetic X -trees T1 and T2. (b) An agreement forest F for T1
and T2. (c) Two trees T1(F) and T2(F) both reflecting F and being calculated in terms of the acyclic
ordering (Fρ, F2, F1) and (Fρ, F1, F2), respectively.
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4.2 The algorithm allMulMAFs

In this section, we show how to modify the algorithm allMAAFs presented in Section 2.3
such that the output consists of all relevant maximum agreement forests for two rooted
nonbinary phylogenetic X -trees. Similar to the algorithm allMAAFs, this algorithm
is again based on processing common and contradicting cherries. In order to cope with
nonbinary nodes, however, now for an internal node one has to consider more than one
cherry and, before cutting a particular set of edges, one first has to resolve some nonbinary
nodes. Furthermore, in respect to the definition of relevant maximum agreement forests,
when expanding contracted nodes one has to take care on not generating any contractible
edges.

In the following, we will first introduce some further notations necessary for describing
the algorithm allMulMAFs. Moreover, we give a detailed formal proof establishing
the correctness of the algorithm, which means, in particular, that we will show that the
algorithm calculates all relevant maximum agreement forests for two rooted nonbinary
phylogenetic X -trees. Finally, we end this section by discussing its theoretical worst-case
runtime.

4.2.1 Notations

Before going into details, we have to give some further notations that are crucial for the
following description of the algorithm.

Removing leaves. Given a rooted (nonbinary) phylogenetic X -tree R, a leaf ` is
removed by first deleting its in-edge and then by suppressing its parent p, if, after ` has
been deleted, p has out-degree 1.

Cherries. Let R be a rooted (nonbinary) phylogenetic X -tree and let `a and `c be two
of its leaves that are adjacent to the same parent node p and labeled by taxon a and c,
respectively. Then, we call the set consisting of the two taxa {a, c} a cherry of R, if the
children of p are all leaves. Now, let {a, c} be a cherry of R and let F be a forest on a
taxa set X ′ such that F is a forest for R. Then, we say {a, c} is a contradicting cherry of
R and F , if F does not contain a tree containing {a, c}. Otherwise, if such a tree exists in
F , the cherry {a, c} is called a common cherry of R and F .

Remark 1. The definition of a cherry is equal to both previous definitions given Section 2.3.2
and 2.4.1. Again, a cherry is a set of two taxa a and c corresponding to two leaves `a and
`c, respectively. However, in contrast to those previous definitions, now for describing a
cherry we explicitly refer to these two taxa. This means, in particular, that in this chapter
instead of writing {L(`a),L(`c)} we will write {a, c}.

Contracting cherries. Given a rooted (nonbinary) phylogenetic X -tree R, a cherry
{a, c} of R can be contracted in two different ways (cf. Fig. 4.2). Either, if the two leaves



4.2 The algorithm allMulMAFs 149

Figure 4.2: Two different ways of contracting a cherry {a, c} depending on its number of siblings which is
one on the left hand side and zero on the right hand side and .

Figure 4.3: Two different ways of cutting an edge depending on the out-degree of its source node which is
2 at the top and 3 at the bottom.

`a and `c labeled by a and c, respectively, are the only children of its parent node p, first
the in-edge of both nodes is deleted and then the label of p is set to {a, c}. Otherwise, if
the two leaves `a and `c contain further siblings and, thus, its parent p has an out-degree
larger than 2, just the in-edge of `a is deleted and the label of `c is replaced by {a, c}.

Cutting edges. Given a rooted (nonbinary) phylogenetic X -tree F , the in-edge ev of
a node v is cut as follows (cf. Fig. 4.3). First ev is deleted and then its parent node p is
suppressed, if, after the deletion of ev, p has out-degree 1. Note that by cutting an edge in
F , two rooted (nonbinary) phylogenetic trees with taxa set X ′ and X ′′ are generated with
X ′ ∪ X ′′ = X and X ′ ∩ X ′′ = ∅.

Moreover, let F be a set of rooted (nonbinary) phylogenetic X -trees and let E be a
set of edges in which each edge e is part of a tree in F . Then, in order to ease reading,
we write F−E to denote the cutting of each edge e ∈ E within its corresponding tree in F .

Pendant edges. Given a rooted (nonbinary) phylogenetic X -tree F and two leaves
`a and `c labeled by taxon a and c, respectively, that are not adjacent to the same node.
Then, the set of pendant edges EB for a and c is based on a refinement of F , shortly
denoted by F [a ∼ c], which is obtained from F as follows. Let (`a, v1, v2, . . . , vn, `c) be the
path connecting the two leafs `a and `c in F . Then, each node v ∈ {v1, v2, . . . , vn} with
δ+(v) > 2 is turned into a node of out-degree 2 as follows. First a new node w is created
that is attached to v by inserting a new edge (v, w) and then each out-going edge (v, x)
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Figure 4.4: An illustration of Case 3b. First Fi is refined into F ′i = Fi[a ∼ c] and then each pendant
subtree of the path connecting both nodes labeled by a and c, respectively, are cut. Note that each dashed
edge of F ′i is part of the pendant edge set EB for a and c.

with x 6∈ {w, `a, v1, v2, . . . , vn, `c} is deleted followed by reattaching the node x to w by
inserting a new edge (w, x). Now, regarding F [a ∼ c], let (`′a, v

′
1, v
′
2, . . . , v

′
n, `
′
c) be the path

connecting the two nodes `′a and `′c labeled by a and c, respectively. Then, EB consists of
each edge (u′, v′) with u′ ∈ {v′1, v′2, . . . , v′n} and v′ 6∈ {`′a, v′1, v′2, . . . , v′n, `′c} (cf. Fig. 4.4).

Moreover, given a forest F on X containing a tree F with two leaves `a and `c labeled
by taxon a and c, respectively, that are not adjacent to the same node, then, by F [a ∼ c]
we refer to F in which F is replaced by F [a ∼ c].

Labeled nodes. Let R be a rooted (nonbinary) phylogenetic X -tree, then, by `(R) we
denote the number of its labeled nodes. Moreover, let F be a forest on X ′ such that F is a
forest for R. Then, `(F) refers to the number of labeled nodes that are contained in each
tree of F . Additionally, we write `(R) ≡ `(F), if `(R) equals `(F) and if for each labeled
node vR in R there exists a labeled node vF in F such that L(vR) = L(vF ). Moreover, if
`(R) ≡ `(F) holds, we say that a leaf ` in R refers to a leaf `′ in F , if L(`) equals L(`′).

4.2.2 The algorithm

In this section, we give a description of the algorithm allMulMAFs calculating a partic-
ular set of nonbinary maximum agreement forests for two rooted phylogenetic X -trees T1

and T2. More specifically, as shown by an upcoming formal proof, this set consists of all
relevant agreement forests for both trees. Before that, however, we want to give a remark
emphasizing that the algorithm is based on a previous published algorithm, also presented
here in Section 2.3, that solves a similar problem dealing with rooted binary phylogenetic
X -trees.

Remark 2. Our algorithm is an extension of the algorithm allMAAFs [57] computing
all maximum acyclic agreement forests for two rooted binary phylogenetic X -trees T1 and
T2. Notice that the work of Scornavacca et al. [57] also contains a formal proof showing
the correctness of the presented algorithm. The algorithm allMulMAFs presented here
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has a similar flavor and, thus, our notation basically follows the notation that has already
been used for the description of the algorithm allMAAFs.

Broadly speaking, given two rooted (nonbinary) phylogenetic X -trees T1 and T2 as well
as a parameter k ∈ N, our algorithm acts as follows. Based on the topology of the first
tree T1, the second tree T2 is cut into several components until either the number of those
components exceeds k or the set of components fulfills each property of an agreement forest
for T1 and T2. To ensure that there does not exist an agreement forest consisting of less
than k components, the following steps can be simply conducted by step-wise increasing
parameter k beginning with k = 0. Thus, as far as our algorithm reports an agreement
forest for T1 and T2 of size k, this agreement forest must be of minimum size and, hence,
must be a maximum agreement forest for both input trees. In order to speed up com-
putation, one can either set k to a lower bound calculated by particular approximation
algorithms as, for instance, given in van Iersel et al. [65], or directly to the hybridization
number calculated by applying less complex algorithms, e.g., the algorithm TerminusEst
(cf. Sec. 2.5).

The algorithm allMulMAFs takes as input two rooted (nonbinary) phylogenetic X -
trees T1 and T2 as well as a parameter k ∈ N. If k < h(T1, T2) holds, an empty set is
returned. Otherwise, as we will show later in Section 4.2.3, if k is larger than or equal
to h(T1, T2), the output F of allMulMAFs contains all relevant maximum agreement
forests for T1 and T2. Throughout the algorithm three specific tree operations are performed
on both input trees. Either a leaf is removed, subtrees are cut, or a common cherry is
contracted.

The algorithm allMulMAFs contains a recursive subroutine, in which the input of
each recursion consists of a rooted (nonbinary) phylogenetic X -tree R, a forest F on some
taxa set X ′ with F being a forest for R, a parameter k ∈ N, and a map M . This map M
is necessary for undoing each cherry reduction that has been applied to each component
of the resulting forest. For that purpose, M maps a set of taxa X̃ to a triplet (X1,X2, B)
with X1 ∪ X2 = X̃ , X1 ∩ X2 = ∅, and B ∈ {>,⊥}, where B denotes the way of how a
cherry is expanded (as discussed below). In order to ease reading, by M [X̃ ]← B we refer
to the operation on M mapping X̃ to B. This means, in particular, if M already contains
an element with taxa set X̃ this element is replaced. For instance, if M [X̃ ] = (X1,X2,>),
by M [X̃ ] ← ⊥ the taxa set X̃ is remapped to (X1,X2,⊥) so that after this operation
M [X̃ ] = (X1,X2,⊥).

Expanding agreement forests. The expansion of an agreement forest F is done
by applying the following steps to F . Choose a leaf v corresponding to a component Fi
in F whose taxon L(v) is contained in M . Let (X1,X2, B) be the triplet referring to
M [L(v)], then, depending on B ∈ {>,⊥}, one of the following two operations is performed
as illustrated in Figure 4.5.

• If B equals ⊥, replace v in Fi by first creating two new nodes w1 and w2 and then
by labeling w1 and w2 by X1 and X2, respectively. Finally, both nodes w1 and w2 are
attached to v by inserting a new edge (v, w1) and (v, w2)
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Figure 4.5: Expanding a cherry {a, c} in respect of ⊥ (left) and in respect of > (right).

• Otherwise, if B equals >, replace v in Fi by first creating a new node w and then by
labeling w and v by X1 and X2, respectively. Finally, w is attached to the parent p
of v by inserting a new edge (p, w).

These steps are repeated in an exhaustive way until each taxon of each leaf in F is not
contained in M . As a result, the expanded forest corresponds to a nonbinary agreement
forest for the two input trees T1 and T2. Notice that in the following, by saying a cherry is
expanded in respect of ⊥ or in respect of >, we refer to one of both ways as described above.

In the following, a description of the recursive algorithm allMulMAFs is given. Here
we assume that, at the beginning, R is initialized by T1, F by {T2} and M by ∅, with T1

and T2 being two rooted (nonbinary) phylogenetic X -trees. Then, during each recursive
call, F is a forest for R with `(R) ≡ `(F) and, depending on the size of F (cf. Case 1a–c)
and the choice of the next cherry that is selected from R (cf. Case 2 and 3), the following
steps are performed.

Case 1a. If F contains more than k components, the computational path is aborted
immediately and the empty set is returned.

Case 1b. If R only consists of a single leaf, each Fi in F is expanded as prescribed
in M , and, finally, returned.

Case 1c. If there exists a specific leaf ` in R that refers to an isolated node in F , this
leaf ` is removed from R resulting in R′. Next, the algorithm branches into a new path by
recursively calling the algorithm with R′, F , k, and M ′ corresponding to M where L(`) is
re-mapped to M [L(`)]← ⊥.

Otherwise, if such a leaf ` does not exist continue with Case 2.

Case 2. If there exists a common cherry {a, c} of R and F , the cherry {a, c} is
contracted in R and F resulting in R′ and F ′. Second, the algorithm branches into a new
path by recursively calling the algorithm with R′, F ′, k, and M ′, where M ′ corresponds
to M that has been updated as follows. If both parents of {a, c} in R and F have out-
degree ≥ 3, L(a)∪L(c) is mapped to (L(a),L(c),>), otherwise, L(a)∪L(c) is mapped to
(L(a),L(c),⊥).
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Otherwise, if such a common cherry does not exist, continue with Case 3.

Case 3. If there does not exist a common cherry of R and F , a node v in R whose
children are all leaves is selected. Now, for each cherry {a, c} of v, depending on the loca-
tion of the leaves referring to a and c in F , one of the following two cases is performed.

Case 3a. If a 6∼F c holds, and, thus, the leaves referring to a and c in F are lo-
cated in two different components, the algorithm branches into two computational paths
by recursively calling the algorithm by R, F − {ea}, k, and M ′ as well as R, F − {ec}, k,
and M ′, where ea and ec correspond to the in-edge of the leaf of F referring to a and c,
respectively, and M ′ is obtained from M as follows. Let p be the parent in F of the leaf
referring to a (resp. c). If p has out-degree larger than 2, nothing is done. Otherwise, if p
has out-degree 2, let ` be the sibling of the leaf labeled by a (resp. c). Then, if ` is a leaf
M is updated so that M ′ = M [L(`)]← ⊥.

Case 3b. If a ∼F c holds, and, thus, in F both leaves `a and `c referring to a and
c, respectively, are located in the same component Fi, the algorithm branches into the
following three computational paths. First, similar to Case 3a, the algorithm is called by
R, F − {ea}, k, and M ′ as well as R, F − {ec} k, and M ′. Second, a third computational
path is initiated by calling the algorithm with R, F [a ∼ c] − EB, k, and M ′′, where EB
refers to the set of pendant edges in F [a ∼ c] and M ′′ is obtained from M as follows.

Let (`a, v1, . . . , vn, `c) denote the path connecting `a and `c in F . Then, M ′′ is obtained
by updating M as follows. If v1 does not correspond to LCAFi({a, c}), L(`a) is remapped
to M [L(`a)]← ⊥. Similarly, if vn does not correspond to LCAFi({a, c}), L(`c) is remapped
M [L(`c)]← ⊥.

An illustration of this case is given in Figure 4.4

We end the description of the algorithm by noting that the algorithm allMulMAFs
always terminates, since during each recursive call either the size of R decreases or the
number of components in F increases. More precisely, the size of R is decreased by one
either by deleting one of its leaves ` referring to an isolated node in F (cf. Case 1c) or
by contracting a common cherry of R and F (cf. Case 2). If R is not decreased, at least
one edge in F is cut (cf. Case 3) and, thus, its size increases at least by one. As each
computational path of the algorithm stops if R only consists of an isolated node or if k
edges have been cut, each recursive call does always make progress towards one of both
abort criteria.

4.2.3 Correctness of allMulMAFs

In this section, we establish the correctness of the algorithm allMulMAFs. However,
before doing so, we want to give an important remark emphasizing the relation of our algo-
rithm allMulMAFs to the previously presented algorithm allMAAFs1(cf. Sec. 2.4.3.1),
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Figure 4.6: An illustration of Case 3a branching into two computational paths and Case 3b branching into
three computational paths. Regarding Case 3b, one additional computational path is created in which all
pendant subtrees lying on the path connecting the two nodes labeled by a and c, respectively, are cut.

which is a modification of the algorithm allMAAFs (cf. Sec. 2.3) improving the processing
of contradicting cherries.

Remark 3. Given two binary phylogenetic X -trees, the algorithm allMulMAFs processes
an ordered set of cherries in the same way as the algorithm allMAAFs1 omitting its
acyclic check (henceforth denoted as allMAFs1) testing an agreement forests for acyclic-
ity. This means, in particular, that our algorithm allMulMAFs is simply an extension
of the algorithm allMAFs1 that is now able to handle nonbinary trees, but for binary
trees still acts in the same way.

As a consequence of Remark 3, the upcoming proof showing the correctness of all-
MulMAFs refers to the correctness of allMAAFs1 calculating all maximum acyclic
agreement forests for two rooted binary phylogenetic X -trees [4, Theorem 2]. In a first
step, however, in order to ease the understanding of our proof, we will introduce a connec-
tive element between both algorithms, which is a modified version of our original algorithm
— called allMulMAFs* — processing types of cherries that are not considered by com-
putational paths corresponding to allMulMAFs.
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Figure 4.7: (left) An illustration of a pseudo cherry {a, c}. (right) The result of preparing the pseudo
cherry {a, c} given on the left hand side.

4.2.3.1 The algorithm allMulMAFs*

Before describing the algorithm, we have to add further definitions that are crucial for
what follows.

Proper leaves. Given a leaf ` of a rooted (nonbinary) phylogenetic X -tree R labeled
with taxon a as well as a forest F on some taxa set X ′ such that F is a forest for R, `
is called a proper leaf of R and F , if the corresponding leaf in F labeled by taxon a is a
child of some root.

Pseudo cherries. Given a rooted (nonbinary) phylogenetic X -tree R as well as a
forest F on some taxa set X ′ such that F is a forest for R, we call a set of two taxa {a, c}
a pseudo cherry for R and F , if the following two properties hold. First for each child v of
LCAR({a, c}) its leaf set L(T (v)) of size n contains at least n− 1 proper leaves. Second,
the path connecting the two leaves in R labeled by a and c contains at least one pendant
proper leaf.

Preparing cherries. Given a rooted (nonbinary) phylogenetic X -tree R, a forest F
on some taxa set X ′ such that F is a forest for R as well as a cherry {a, c}, then, {a, c}
is prepared as follows. If {a, c} is not a pseudo cherry for R and F , nothing is done.
Else, the following two steps are conducted. First, each pendant proper leaf {`1, . . . , `n}
in R lying on the path connecting the two leaves labeled by a and c is removed. Second,
the two nodes in F labeled by a and c are cut. Notice that, after preparing {a, c}, the
node LCAR({a, c}) in R is the parent of the two leaves labeled by taxon a and c and each
component in F referring to {`1, . . . , `n} only consists of a single isolated node (cf. Fig. 4.7).

Now, similar to the original algorithm, the algorithm allMulMAFs* is called by the
same four parameters R, F , M and k. Given two rooted phylogenetic X -trees T1 and T2,
R is initialized by T1, F by {T2} and M by ∅. Depending on the size of F (cf. Case 1a–c)
and the choice of the next cherry that is selected from R (cf. Case 2), the following steps
are performed.
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Case 1a. If F contains more than k components, the computational path is aborted
immediately and an empty set is returned.

Case 1b. If R only consists of a single leaf, each Fi in F is expanded with the help of
M , and, finally, returned.

Case 1c. If there exists a specific leaf ` in R that refers to an isolated node in F , this
leaf ` is removed from R resulting in R′. Next, the algorithm branches into a new path by
recursively calling the algorithm with R′, F , k, and M ′ corresponding to M updated by
M [L(`)]← ⊥.

Otherwise, if such a leaf ` does not exist continue with Case 2.

Case 2. Select a subtree in R in which each pair of taxa either represents a cherry or
a pseudo cherry. Now, for each (pseudo) cherry {a, c}, depending on the location of the
leaves referring to a and c in F , one of the following three cases is performed. In a first
step, however, the chosen cherry {a, c} is prepared as described above. Moreover, M is
updated by M [Xi] ← ⊥, where Xi denotes the taxa set of each proper leaf that has been
cut during the preceding preparation step.

Case 2a. If {a, c} is a common cherry, {a, c} is processed as described in Case 2 cor-
responding to the original algorithm allMulMAFs.

Case 2b. If a 6∼F c holds, and, thus, the leaves referring to a and c in F are located
in two different components, {a, c} is processed as described in Case 3a corresponding to
the original algorithm allMulMAFs.

Case 2c. If a ∼F c holds, and, thus, the leaves referring to a and c in F can be found
in the same component Fi, {a, c} is processed as described in Case 3b corresponding to
the original algorithm allMulMAFs.

Notice that there are two main differences between the algorithm allMulMAFs*
and the original algorithm allMulMAFs. First, a computational path corresponding to
allMulMAFs* can additionally process pseudo cherries. Second, if during a recursive call
R contains a common cherry {a, c} as well as a contradicting cherry {a, b}, allMulMAFs*
additionally branches into a computational path processing {a, b}. In the following, we will
call such a cherry {a, b} a needless cherry as we will show later that it can be neglected
for the computation of maximum agreement forests.

4.2.3.2 The algorithm ProcessCherries

Lastly, we present a simplified version of the algorithm allMulMAFs* — called Pro-
cessCherries — mimicking one of its computational by a cherry list

∧
= (∧1,∧2, . . . ,∧n),

in which each of its elements ∧i denotes a cherry action. Such a cherry action ∧i =
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Algorithm 14: ProcessCherries(R,F , (∧1, . . . ,∧n))
1 M ← ∅;
2 for i = 1, . . . , n do
3 ({a, c}, φi)← ∧i;
4 if {a, c} is a cherry of R or a pseudo cherry for R and F then
5 if {a, c} is a pseudo cherry for R and F then
6 (R,F ,M)← prepare pseudo cherry {a, c};

7 if {a, c} is a common cherry of R and F and φi == ∪ac then
8 (R,F ,M)← contract cherry {a, c};

9 else if {a, c} is a contradicting cherry of R and F and φi ==-a then
10 ea ← in-edge of node labeled by a in F ;
11 (R,F ,M)← cut edge ea in F ;

12 else if {a, c} is a contradicting cherry of R and F and φi ==-c then
13 ec ← in-edge of node labeled by c in F ;
14 (R,F ,M)← cut edge ec in F ;

15 else if {a, c} is a contradicting cherry of R and F then
16 F ← F [a ∼ c];
17 EB ← set of pendant edges for a and c in F ;
18 (R,F ,M)← cut each edge in EB ;

19 else
20 return (∅);

21 (R,F ,M)← from R remove each leaf referring to an isolated node in F ;

22 else
23 return (∅);

24 F ← expand F as prescribed in M ;
25 return (F);

({a, c}, φi) is a tuple that contains a (pseudo) cherry {a, c} of the corresponding rooted
phylogenetic X -tree Ri and the forest Fi as well as a variable φi ∈ {∪ac, -a, -c,∩ac} denoting
the way {a, c} is processed in iteration i. More precisely,

• ∪ac refers to contracting the cherry {a, c} following Case 2a of the algorithm all-
MulMAFs*.

• -a and -c refers to cutting taxon a and c, respectively, of the cherry {a, c} following
Case 2b of the algorithm allMulMAFs*.

• ∩ac refers to cutting each pendant subtree connecting taxon a and taxon c in Fi
following Case 2c of the algorithm allMulMAFs*.

Now, given a cherry list
∧

, we say that
∧

is a cherry list for T1 and T2, if in each
iteration i the cherry {a, c} of ∧i = ({a, c}, φi) is either contained in Ri or {a, c} is a
pseudo cherry for Ri and Fi. Moreover, after having prepared the cherry {a, c}, one of the
following two conditions has to be satisfied.

• Either {a, c} is a common cherry of Ri and Fi and φi = ∪ac,

• or {a, c} is a contradicting cherry of Ri and Fi.

Notice that this is the case, if and only if calling ProcessCherries(T1, {T2},
∧

) does not
return the empty set (cf. Alg. 14).
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Figure 4.8: Two examples of calling ProcessCherries for two binary and nonbinary trees according to
the cherry actions ({a, c},∩ac), ({a, c},∪ac), ({d, e},∩de), ({d, e},∪de), and ({ρ, {d, e}},∪ρde) conducted in
sequential order. Notice that, as the two binary trees are binary resolutions of the two nonbinary trees, the
resulting forest on the left hand side is a binary resolution of the resulting forest on the right hand side.
Moreover, regarding Step (iii) on the right hand side, notice that the chosen cherry {d, e} is a pseudo cherry
and, thus, in Step (iv) the two components consisting of the single nodes labeled by f and g, respectively,
arise from preparing {d, e}.
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4.2.3.3 Proof of Correctness

In this section, we will establish the correctness of the algorithm allMulMAFs by estab-
lishing the following theorem.

Theorem 20. Given two rooted (nonbinary) phylogenetic X -trees T1 and T2, by calling

allMulMAFs(T1, {T2}, ∅, k)

all relevant maximum agreement forests for T1 and T2 are calculated, if and only if k ≥
h(T1, T2).

Proof. The proof of Theorem 20 is established in several substeps. First, given two rooted
(nonbinary) phylogenetic X -trees T1 and T2, we will show that a binary resolution of each
maximum agreement forest for T1 and T2 can be computed by applying the algorithm all-
MAFs1 to a binary resolution of T1 and T2, where, as already mentioned, allMAFs1 de-
notes a modification of the algorithm allMAAFs1 omitting the acyclic check. Next, we
will show that for an agreement forest F calculated by allMulMAFs there does not exist
en edge e such that F	{e} is still an agreement forest for T1 and T2, which directly implies
that F is relevant. Moreover, we will show that, if a cherry list

∧
for two binary resolutions

T̂1 and T̂2 of T1 and T2, respectively, computes a maximum agreement forest F̂ for T̂1 and
T̂2,

∧
is mimicking a computational path of the algorithm allMulMAFs* calculating

an agreement forest F for T1 and T2 such that F̂ is a binary resolution of F . Lastly, we
will show that each maximum agreement forest F computed by allMulMAFs* is also
computed by allMulMAFs.

Lemma 21. Given two rooted (nonbinary) phylogenetic X -trees T1 and T2, for each rele-
vant maximum agreement forest F for T1 and T2 of size k there exists a binary resolution
F̂ of F that is calculated by

allMAFs1(T̂1, T̂2, T̂1, T̂2, k),

where T̂1 and T̂2 refers to binary resolutions of T1 and T2, respectively.

Proof. First notice that the algorithm allMAAFs1 without conducting the acyclic check
computes all maximum agreement forest for two rooted binary phylogenetic X -trees, which
is a direct consequence from Lemma 6. Moreover, given a relevant maximum agreement
forest F for T1 and T2, a binary resolution F̂ of F is automatically a maximum agreement
forest corresponding to T1(F̂) and T2(F̂). This is, in particular, the case, since just by
definition each component F̂ in F̂ is a subtree of T1(F̂) and T2(F̂) and, as in F all
components are edge disjoint subtrees in T1 and T2, this has to hold for each of its binary
resolution as well. Furthermore, F̂ has to be of minimum cardinality, since, otherwise, F
would not be a maximum agreement forest for T1 and T2. Consequently, by applying the
algorithm allMAFs1 to both trees T1(F̂) and T2(F̂) the maximum agreement forest F̂ is
calculated if k ≥ |F|, which, finally, establishes the proof of Lemma 21.
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Figure 4.9: An illustration of the scenario described in the proof of Lemma 22.

In the following, we will show that a cherry list
∧

for two binary resolutions of two
rooted phylogenetic X -trees T1 and T2 is also mimicking a computational path of all-
MulMAFs* applied to T1 and T2.

Lemma 22. Let T̂1 and T̂2 be two binary resolutions of two rooted (nonbinary) phylogenetic
X -trees T1 and T2, respectively. Moreover, let

∧
be a cherry list for T̂1 and T̂2. Then,

∧
is automatically a cherry list for T1 and T2.

Proof. Lemma 22 obviously holds, if the cherry list
∧

only exists of cherry actions ∧i =
({a, c}, φi) with φi ∈ {∪ac, -a, -c, }. This is, in particular, the case because these cherry
actions only affect those nodes whose corresponding subtree has been fully contracted so
far. When processing a cherry action ∧i = ({a, c}, φi) with φi = ∩ac, however, two slightly
different forests F̂i+1 and Fi+1 can arise. More precisely, this is the case, if there is a
multifurcating node x lying on the path Pac connecting taxon a and c in Fi providing a set
Vx = {v0, v1, v2, . . . , vn} of at least 3 children, where v0 denotes the node which is also part
of P and, if, additionally, Ri contains two nodes d and e whose path connecting d and e
contains a set of pendant subtrees each corresponding to Ri(vi), with i > 0 and vi ∈ Vx.

Now, for simplicity, we assume that there is only one such multifurcating node x of out-
degree three so that Vx = {v0, v1, v2}. In this case, as F̂i only consists of binary trees, by
processing ∧i = ({a, c},∩ac) two components F̂α and F̂β rooted at v1 and v2, respectively,

are added to F̂i+1 whereas to Fi+1 only one component Fγ is added whose root contains
two children corresponding to v1 and v2 (cf. Fig. 4.9).
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Now, let ∧j be a cherry action in
∧

with j > i in which both components F̂α and F̂β
have been fully contracted so far. As a consequence, since the components F̂α and F̂β only

consist of a single taxon, which has been removed from R̂j+1 (cf. Alg. 14, line 21), the two

taxa d and e are now cherries in R̂j+1 which is, however, not the case in Rj+1 because Fγ
still contains the two nodes v1 and v2 (cf. Fig. 4.9). Nevertheless, since in Fγ the node v1

and v2 are leaves directly attached to the root, the cherry {d, e} is a pseudo cherry in Rj+1

and, thus, an upcoming cherry action ∧k containing {d, e} represents a pseudo cherry for
Rk and Fk in this case.

As a consequence, each cherry of R̂i and F̂i corresponding to a cherry action ∧i in
∧

is either a cherry or a pseudo cherry of Ri and Fi and, thus, Lemma 22 is established.

Next, we will show that by expanding a forest F ′ on X as prescribed in M derived from
calling allMulMAFs, the resulting forest is automatically an agreement forest for both
input trees T1 and T2.

Lemma 23. Given two rooted (nonbinary) phylogenetic X -trees T1 and T2, let F be a forest
on X that has been expanded as prescribed in M after allMulMAFs*(T1, {T2}, ∅, k) has
been called. Then, F is an agreement forest for T1 and T2.

Proof. Since, obviously, F is a partition of X , it suffices to consider each of the following
cases describing a putative scenario leading to a forest that is not an agreement forest for
both input trees T1 and T2, because either the refinement property or the node disjoint
property in terms of T1 or T2 is not fulfilled. We will show, however, that during the
execution of our algorithm allMulMAFs* each of those scenarios can be excluded.

Case 1. Assume there exists a component Fi in F such that Fi is not a refinement
of T2|Xi , where Xi denotes the taxa set of Fi. As F ′ has been derived from T2 by cutting
and contracting its edges, this automatically implies that a cherry has been expanded as
prescribed in M in respect of > instead of ⊥. However, in M a cherry is only then mapped
to >, if and only if, during the i-th recursive call, it is a common cherry of Ri and Fi and if
both parents corresponding to the cherry in Ri and Fi are multifurcating nodes (cf. Case 2a
of allMulMAFs*). Moreover, such a cherry is immediately mapped back to ⊥, if either
the cherry itself or all its siblings have been cut (cf. Case 1c,2c of allMulMAFs*). Thus,
such a component Fi cannot exist in F .

Case 2. Assume there exists a component Fi in F such that Fi is not a refinement of
T1|Xi , where Xi denotes the taxa set of Fi. This automatically implies that either a cherry
has been expanded as prescribed in M in respect of > instead of ⊥ or, during the i-th
recursive call, a cherry was not a common cherry of Ri and Fi. Similar to Case 1, the first
scenario can be excluded. Moreover, the latter scenario cannot take place either, since, in
order to reduce Fi to a single node, this common cherry must have been contracted which
can only take place, if it was a common cherry of Ri and Fi. Thus, such a component Fi
cannot exist in F .
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Figure 4.10: An illustration of the scenario described in Case 4 corresponding to the proof of Lemma 23.
In order to obtain Fi from T , both dashed edges have to be cut whereas, in order to obtain Fj , these two
edges have to be contracted which is a contradiction.

Case 3. Assume there exist two components Fi and Fj in F , with taxa set Xi and Xj,
respectively, such that T2(Xi) and T2(Xj) are not edge disjoint in T2. As Fi and Fj must be
a refinement of T2|Xi and T2|Xj , respectively, (cf. Case 1) and both components have been
derived from T2 by cutting some of its edges, only one of both components can be part of
F . As a direct consequence, such two components cannot exist in F .

Case 4. Assume there exist two components Fi and Fj in F such that T1(Xi) and
T1(Xj) are not edge disjoint in T1. As shown in Case 2, Fi and Fj must be a refinement
of T1|Xi and T1|Xj , respectively, and, thus, in order to obtain Fi and Fj the following steps
must be performed during the execution of allMulMAFs*. Let Ei be an edge set that
is only contained in T1(Xi) and not in T1(Xj). In order to obtain Fi, some of those edges
in Ej must be cut, whereas, in order to obtain Fj, all of them must be contracted which
leads to a contradiction (cf. Fig. 4.10). Thus, such two components cannot exist in F .

Finally, by combining all four cases Lemma 23 is established.

Moreover, in the following, we will show that each agreement forest F that is reported
by allMulMAFs* is relevant which means that F does not contain an edge e such that
F 	 {e} is still an agreement forest for both input trees.

Lemma 24. Let T1 and T2 be two rooted (nonbinary) phylogenetic trees, then, each agree-
ment forest that is reported by applying allMulMAFs* to T1 and T2 is relevant.

Proof. Just by definition, given two rooted (nonbinary) phylogenetic trees T1 and T2, an
agreement forest F for T1 and T2 that is not relevant has to contain an edge e such that
F 	{e} is still an agreement forest for T1 and T2. Such an edge e, however, can only arise,
if a cherry of a multifurcating node is expanded in respect of ⊥ instead of >. Initially, such
a cherry must have been set to > because during the i-th recursive call both corresponding
parents in Ri and Fi, respectively, must have been multifurcating nodes. The only scenario
setting > to ⊥ would arise, if the cherry itself or all its siblings are cut during subsequent
recursive calls. In this case, however, this cherry has to be set to ⊥, since, otherwise the
resulting forest would not be an agreement forest for T1 and T2. Thus, such an edge e
cannot exist and, consequently, Lemma 24 is established.
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Since both algorithms allMulMAFs* and allMulMAFs process common cherries
and contradicting cherries in the same way, Lemma 24, obviously, has to hold for all-
MulMAFs as well.

Corollary 25. Let T1 and T2 be two rooted (nonbinary) phylogenetic trees, then, each
agreement forest that is reported by applying allMulMAFs to T1 and T2 is relevant.

Now, let T1 and T2 be two rooted (nonbinary) phylogenetic X -trees. By the following
Lemma 26, we will show that for each maximum binary agreement forest F̂ , which can be
computed by applying ProcessCherries to a cherry list

∧
for two binary resolutions of

T1 and T2, by calling ProcessCherries(T1, T2,
∧

) a forest F is computed such that F̂ is
a binary resolution of F .

Lemma 26. Given two rooted (nonbinary) phylogenetic X -trees T1 and T2, let T̂1 and T̂2

be two binary resolutions of T1 and T2, respectively. Moreover, let F̂ be an agreement forest
for T̂1 and T̂2 obtained from calling ProcessCherries(T̂1, {T̂2},

∧
), where

∧
denotes a

cherry list for T̂1 and T̂2. Then, a relevant agreement forest F is calculated by calling
ProcessCherries(T1, {T2},

∧
) such that F̂ is a binary resolution of F .

Proof. We will first show by induction a slightly modified version of Lemma 26.

Given two rooted (nonbinary) phylogenetic X -trees T1 and T2. Let T̂1 and T̂2 be two
binary resolutions of T1 and T2, respectively, and let F̂i and Fi be each forest corresponding
to iteration i while executing

ProcessCherries(T̂1, {T̂2},
∧

) and ProcessCherries(T1, {T2},
∧

),

respectively, where
∧

= (∧1,∧2, . . . ,∧n) is a cherry list for T̂1 and T̂2. Then, F̂i is a called
pseudo binary resolution of Fi, which is defined as follows. Given two forests F̂ and F
for a phylogenetic X -tree, we say that F̂ is a pseudo binary resolution of F , if for each
component F̂ in F̂ there exists a component F in F such that one of the two following
properties hold.

(i) F̂ is a binary resolution of F .

(ii) F̂ is a binary resolution of F (v), where v is a child of the root of F .

The following proof is established by an induction on i denoting the position of a cherry
action in

∧
= (∧1,∧2, . . . ,∧n).

Base case. At the beginning, F1 only consists of T̂2, which is a binary resolution of
T2. Thus, the assumption obviously holds for i = 1.

Inductive step. Depending on the cherry action ∧i = ({a, c}, E), the forest F̂i+1 can
be obtained from F̂i in the following ways.
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(i) If {a, c} is a pseudo cherry, a set of nodes V ′ that is attach to the root of a component
in Fi is cut. Since

∧
is a cherry list for T̂1 and T̂2 and, thus, {a, c} is a cherry in R̂i,

each of node in V ′ already refers to components in F̂i all consisting only of isolated
nodes. Thus, after cutting the in-edge of each node in V ′, F̂i is still a pseudo binary
resolution of Fi.

(ii) If {a, c} is a common cherry and, thus φi = ∪ac, in both forests F̂i and Fi the two
taxa a and c are contracted. Consequently, since F̂i is a pseudo binary resolution of
Fi, this directly implies that F̂i+1 is a pseudo binary resolution of Fi+1 as well.

(iii) If {a, c} is a contradicting cherry and φi =-a (or φi =-c), then, in both forests F̂i and
Fi the node labeled by taxon a (or taxon c) is cut. Again, no matter if a ∼ c or a 6∼ c
holds, since F̂i is a pseudo binary resolution of Fi, this directly implies that F̂i+1 is
a pseudo binary resolution of Fi+1 as well.

(iv) If {a, c} is a contradicting cherry and φi = ∩ac, in both forests F̂i and Fi[a ∼ c]
each pendant subtree lying on the path connecting both leaves labeled by a and c,
respectively, is cut. Let F̂ ′ and F ′ be those component arising from cutting F̂i and
Fi[a ∼ c], respectively. Since F̂i is a binary resolution of Fi, |F ′| ≥ |F̂ ′| holds which
means, in particular, that each F̂ ′i in F̂ ′ is either a binary resolution of F ′j or a binary
resolution of F ′j(v) in F ′, where v corresponds to a child whose parent is the root of

F ′j . Thus, since F̂i is a pseudo binary resolution of Fi, this directly implies that F̂i+1

is a pseudo binary resolution of Fi+1 as well.

Now, from the induction we can deduce that, independent from the cherry action ∧i, F̂i is
always a pseudo binary resolution of Fi. Moreover, let F̂n+1 and Fn+1 be the two forests
obtained from F̂n and Fn, respectively, by applying ∧n. Then, since F̂ is an agreement
forest for T̂1 and T̂2, all components in F̂n+1 only consist of single isolated nodes which
directly implies that Fn+1 does not contain any cherries. Furthermore, due to Lemma 23,
by expanding Fn+1 as prescribed in M a relevant agreement forest F arises such that F̂ is
a binary resolution of F which completes the proof of Lemma 26.

In the following, we will show that Lemma 26 also holds for the original algorithm
allMulMAFs.

Lemma 27. Given two rooted (nonbinary) phylogenetic X -trees T1 and T2, let F̂ be a
binary maximum agreement forest for T1 and T2. Then, by calling

allMulMAFs(T1, {T2}, ∅, k)

a relevant maximum agreement forests F for T1 and T2 is computed such that F̂ is a binary
resolution of F , if and only if k ≥ h(T1, T2).

Proof. Notice that, as proven in Lemma 26, Theorem 27 holds for the modified algorithm
allMulMAFs*. Thus, in order to establish Lemma 27, we just have to show that the
following two differences between both algorithms allMulMAFs* and allMulMAFs
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do not have an impact on the computation of maximum agreement forests.

Needless cherries. First of all, let
∧

be a cherry list for T1 and T2 mimicking a
computational path of allMulMAFs* resulting in an agreement forest F for T1 and T2.
Moreover, let

∧
contain a cherry action ∧i = ({a, b}, φi) in which {a, b} is a contradicting

cherry of Ri and Fi. Now, if Ri contains a taxon c such that {a, c} is a common cherry,
we call {a, b} a needless cherry. Notice that a computational path corresponding to the
original algorithm allMulMAFs does not consider needless cherries as it always prefers
common cherries to contradicting cherries. In the following, however, we will show that
for the computation of maximum agreement forests each computational path processing
needless cherries can be neglected.

Let F be an agreement forest resulting from a computational path of allMulMAFs*
in which, instead of processing a common cherry {a, c}, a needless cherry {a, b} is processed
by the cherry action ∧i = ({a, b}, -a). This implies that F contains a component Fa
corresponding to the expanded taxon a, which has been cut during the i-th iteration.
Moreover, let Fc be the component in F containing the node vc corresponding to taxon c in
Fi. Since {a, c} has been a common cherry in iteration i, by attaching Fa back to the in-edge
of vc an agreement forest of size k−1 arises and, thus, F cannot be a maximum agreement
forest. Consequently, from cutting instead of contracting common cherries a maximum
agreement forest cannot arise and, thus, for the computation of maximum agreement forests
each computational path of allMulMAFs* processing needless cherries can be neglected.

Notice that, in this case, the cherry action ∧i = ({a, b}, -b) would be also not be con-
sidered. However, after having contracted the common cherry {a, c}, b could still be cut
selecting a cherry action involving one of its siblings.

Pseudo cherries. Furthermore, in contrast to the modified algorithm allMul-
MAFs*, a computational path corresponding to the original algorithm allMulMAFs
does not consider pseudo cherries. In the following, however, we will show that for an
agreement forest F resulting from a computational path processing pseudo cherries, there
exists a different computational path calculating F without considering any pseudo cher-
ries.

Let
∧

be a cherry list for T1 and T2 mimicking a computational path of allMulMAFs*
resulting in an agreement forest F and let ∧i be a cherry action whose corresponding cherry
{a, c} is a pseudo cherry of Ri and Fi. Moreover, let be (b1, b2, . . . , bk) and (bk+1, b2, . . . , bn)
be those taxa corresponding to each pendant node lying on the path connecting a and
LCARi({a, c}) as well as c and LCARi({a, c}), respectively. Then, we can replace ∧i =
({a, c}, φi) through the sequence of cherry actions

({a, b1}, -b1), . . . , ({a, bk}, -bk), ({c, bk+1}, -bk+1
), . . . , ({c, bn}, -bn), ({a, c}, φi)

neither containing pseudo cherries nor needles cherries such that the agreement forest F
is still computed. This means, in particular, that each tree operation that is conducted
for preparing a pseudo cherry can be also realized by a sequence of cherry actions neither
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containing needless cherries nor pseudo cherries.

As shown above, for a relevant maximum agreement forest F our modified algorithm
allMulMAFs* always contains a computational path calculating F by neither taking
needless cherries nor pseudo cherries into account. Thus, each relevant maximum agree-
ment forest for T1 and T2 that is calculated by allMulMAFs* is also calculated by
allMulMAFs and, as a direct consequence, Lemma 27 is established.

Now, in a last step, we can finish the proof of Theorem 20. Let T̂1 and T̂2 be two binary
resolutions of two rooted (nonbinary) phylogenetic X -trees T1 and T2, respectively, and let
F̂ be an agreement forest for T̂1 and T̂2. Then, by combining Corollary 25 and Lemma 27 we
can deduce that the algorithm allMulMAFs computes a relevant maximum agreement
forest F for T1 and T2 such that F̂ is a binary resolution of F . This automatically implies,
that our algorithm calculates all relevant maximum agreement forests for T1 and T2 and,
thus, Theorem 20 is finally established.

4.2.4 Runtime of allMulMAFs

In this section, we discuss the theoretical worst-case runtime of the algorithm allMul-
MAFs in detail.

Theorem 28. Let T1 and T2 be two rooted phylogenetic X -trees and F be a relevant
maximum agreement forest for T1 and T2 containing k components. The theoretical worst-
case runtime of the algorithm allMulMAFs applied to T1 and T2 is O(3|X |+k|X |).

Proof. Let F = {Fρ, F1, F2, . . . , Fk−1} be an agreement forest for T1 and T2 of size k. To
obtain F from T2, obviously k−1 edge cuttings are necessary. Moreover, in order to reduce
the size of the leaf set X of R to 1, to each component Fi in F we have to apply exactly
|L(Fi)| − 1 cherry contractions. Consequently, at most |X | cherry contractions have to be
performed in total. Thus, our algorithm has to perform at most O(|X |+ k) recursive calls
for the computation of F . Now, as one of these recursive calls can at least branch into 3
further recursive calls, O(3|X |+k) is an upper bound for the total number of recursive calls
that are performed throughout the whole algorithm. Moreover, each case that is conducted
during a recursive (cf. Sec. 4.2.2) can be done in O(|X |) time and, thus, the theoretical
worst-case runtime of the algorithm can be estimated with O(3|X |+k|X |).

4.2.5 Conclusion

In this section, we have presented the algorithm allMulMAFs calculating all relevant
maximum agreement forests for two rooted (nonbinary) phylogenetic X -trees. Therefor,
we have established a detailed formal proof showing the correctness of the algorithm which
is based on both previously presented algorithms allMAAFs and allMAAFs1. In the
next section, we will show how to further modify the algorithm allMulMAFs so that
now all relevant maximum acyclic agreement forests are calculated.
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4.3 The algorithm allMulMAAFs

In this section, we show how to extend the algorithm allMulMAFs, presented in Sec-
tion 4.2.2, such that the reported agreement forests additional satisfy the acyclic con-
straint, which automatically implies that the extended algorithm will calculated all relevant
maximum acyclic agreement forests for two rooted nonbinary phylogenetic X -trees. As
mentioned previously, the acyclic constraint plays an important role for the construction
of hybridization networks as, for example, demonstrated by the algorithm HybridPhy-
logeny [9]. More specifically, this algorithms generates a hybridization network displaying
two rooted bifurcating phylogenetic X -trees from the components of an acyclic agreement
forest of those two trees. Thus, we consider the computation of nonbinary maximum
acyclic agreement forests as a first step to come up with minimum hybridization networks
displaying the refinements of two rooted nonbinary phylogenetic X -trees.

Broadly speaking, the algorithm allMulMAFs can be used to make progress towards
an agreement forest for two rooted (nonbinary) phylogenetic X -trees T1 and T2 as long as
the set of components F does not satisfy all properties of an agreement forest. Once our
algorithm has successfully computed a maximum agreement forest F for T1 and T2, we
can apply a specific tool that is able to check, if we can refine F to a maximum acyclic
agreement forest. Such a refinement of an agreement forest is done by cutting a minimum
number of edges within its components such that each directed cycle of the underlying
ancestor-descendant graph AG(T1, T2,F) is dissolved.

Notice that this problem is closely related to the directed feedback vertex set problem.
More specifically, given a directed graph G with node set V , a feedback vertex set V ′ is
a subset of V containing at least one node of each directed cycle of G. This implies, by
deleting each node of V ′ together with its adjacent edges, each directed cycle is automati-
cally removed. Now, based on a directed graph, the directed feedback vertex set problem
consists of minimizing the size of such a feedback vertex set.

4.3.1 Refining agreement forests

In this section we present a tool that enables the refinement of an agreement forest. We call
this tool an expanded ancestor-descendant graph. Notice that this tool has been previously
published under a different term as we state in the following.

Remark 4. The following concept of an expanded ancestor-descendant graph corresponds
to the concept of an expanded cycle graph given in the work of Whidden et al. [69]. The
latter concept, however, can be only applied to agreement forests corresponding to rooted
binary phylogenetic X -trees. Hence, we have adapted this concept such that it can be
also applied to agreement forests corresponding to rooted nonbinary phylogenetic X -trees.
Notice that, adapting the concept of an expanded cycle graph to nonbinary agreement
forests has been also examined in the master thesis of Li [39]. In this work, each step that
is necessary to compute the hybridization number for two rooted (nonbinary) phylogenetic
X -trees is presented in detail by, additionally, discussing its correctness.
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In the following, we give a short overview of how an expanded ancestor-descendant
graph is defined and how this graph can be used to transform agreement forests into
acyclic agreement forests.

Expanded ancestor-descendant graph. The tool that enables the refinement of
an agreement forest F for two rooted (nonbinary) phylogenetic X -trees T1 and T2 to an
acyclic agreement forest is an expanded ancestor-descendant graph AGex(T1(F), T2(F),F).
In contrast to the ancestor-descendant graph, each node of this graph corresponds to
exactly one particular node of a component in F . Thus, from such a graph one can
directly figure out those edges of a component that have to be cut in order to remove a
directed cycle (cf. Fig. 4.11).

Given two rooted phylogenetic X -trees T1 and T2 and a nonbinary maximum acyclic
agreement forest F for T1 and T2, the corresponding expanded ancestor-descendant graph
AGex(T1(F), T2(F),F) consists of the following nodes and edges. First of all, F is a sub-
set of AGex(T1(F), T2(F),F), which means that the graph contains all nodes and edges
corresponding to all components in F . Moreover, AGex(T1(F), T2(F),F) contains a set of
hybrid edges each connecting two specific nodes each being part of two different compo-
nents. More precisely, those edges are defined as follows.

Given a node v of a component Fj in F , the function φi(v) refers to the lowest common
ancestor in Ti(F), with i ∈ {1, 2}, of each leaf that is labeled by a taxon contained in
L(Fj(v)). Notice that the node φi(·) is well defined, which means there exists exactly one
node in Ti(F) to which φi(·) applies. Equivalently, the function φ−1

i (·) maps nodes from
Ti, with i ∈ {1, 2}, back to a component in F . More precisely, let Ei, with i ∈ {1, 2}, be
the set of edges consisting of all in-edges of all lowest common ancestors in Ti of the taxa
set of each Fj in F \{Fρ}. Then, the node v ∈ Ti maps back to the node in F representing
the lowest common ancestor of those taxa that can be reached from v by not using an edge
in Ei. Notice, however, that this function is only defined for those nodes that are either
labeled or are part of a path connecting two labeled nodes a and b such that φ−1

i (a) and
φ−1
i (b) are contained in the same component Fj in F . Similar to the binary case, since

the graph is built for the trees T1(F) and T2(F) reflecting F , the function φ−1
i (·) is well

defined, which means that, if defined, there exists exactly one node in F to which φ−1
i (·)

applies.
Now, based on the definitions of these two functions, AGex(T1(F), T2(F),F) contains

the following hybrid edges. Let w be a node in this graph corresponding to the root of a
component Fj not equal to Fρ. Moreover, for the tree Ti(F) with i ∈ {1, 2}, let v′ be the
lowest ancestor of φi(w) such that φ−1

i (v′) is defined. In more detail, let Pφ = (v1, . . . , vn)
be those nodes lying on the path connecting the parent v1 of v and the root vn of T1 such
that vj with j ∈ [2 : n] is the parent of vj−1. Then,

v′ = min
j
{vj : vj ∈ Pφ ∧ φ−1

i (vj) is defined}.

Based on v′ and w, AGex(T1(F), T2(F),F) contains a hybrid edge (φ−1
i (v′), w). Notice

that, if F contains k components, for each component except Fρ two hybrid edges corre-
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sponding to T1 and T2 are inserted which are 2k − 2 hybrid edges in total. Furthermore,
the target node of a hybrid edge does always refer to a root node of a component Fj in F
whereas the source node never does.

Exit nodes. Given two rooted phylogenetic X -trees T1 and T2 as well as a nonbinary
maximum acyclic forest F for T1 and T2, an exit node of AGex(T1(F), T2(F),F) is defined
as follows. Let Hi be the set of hybrid edges in AGex(T1(F), T2(F),F) resulting from Ti
with i ∈ {1, 2}. Now, given a directed cycle in AGex(T1(F), T2(F),F) running through
the hybrid edges EH = {h0, . . . , hn−1} in sequential order, then, the source node vi of a
hybrid edge hi = (vi, wi) in EH is called an exit node, if hi is contained in H1 and hj, with
j = (i− 1) mod n, is contained in H2 or vice versa.

Now, based on an expanded ancestor-descendant graph we can refine an agreement
forest by fixing its exit nodes. An exit node v belonging to the component Fj is fixed by
cutting each edge lying on the path connecting v with the node referring to the root node
of Fj. Notice that by cutting k of those edges, the resulting agreement forest F ′ consists
of |F|+ k components.

4.3.2 The algorithm

We can easily turn the algorithm allMulMAFs into the algorithm allMulMAAFs
by applying a post-processing step refining agreement forests. More precisely, given an
agreement forest F for two rooted phylogenetic X -trees T1 and T2, by applying the following
refinement procedure only those relevant acyclic agreement forests are returned whose size
is smaller than or equal to k.

(1) Compute two trees T1(F) and T2(F) reflecting F .

(2) Build the expanded ancestor-descendant graph AGex(T1(F), T2(F),F).

(3) Compute the set of exit nodes VH of AGex(T1(F), T2(F),F).

(4) For each exit node v in VH turn F into F ′ by fixing v.

(5) For each agreement forest F ′ with |F ′| ≤ k continue with step 5a or 5b.

(5a) If F ′i is acyclic, return F ′.
(5b) Otherwise, if F ′ is not acyclic, repeat step 2–5 with F ′.

Based on these steps, by modifying Case 1b as follows, we can easily turn the algorithm
allMulMAFs into an algorithm computing a set of maximum acyclic agreement forests.

Case 1b’. If R only consists of a single leaf, first each Fi in F is expanded as prescribed
in M and then F is refined with the help of AGex(T1(F), T2(F),F) into F ′. Finally, F ′ is
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Figure 4.11: (a) The same two trees T1(F) and T2(F) as depicted in Figure 4.1. Here, the set of dashed
edges and the set of dotted edges refers to the in-edges of the nodes corresponding to the lowest common
ancestors of L(F1) and L(F2). (b)The expanded ancestor-descendant graph AGex(T1(F), T2(F),F) with
F = {Fρ, F1, F2}. Dashed edges are hybrid edges resulting from T1(F) and dotted edges are hybrid edges
resulting from T2(F). Here, for a better overview, the directions of edges corresponding to components
of F are omitted. Notice that, by fixing the exit node corresponding to taxon j, all directed cycles are
removed and a maximum acyclic agreement forest for T1 and T2 with size 4 arises.

returned.

This means that, each time before reporting an agreement forest F , we first check, if
we can refine F to an acyclic agreement forest F ′ of size smaller than or equal to k. If this
is possible, we return F ′, else, we return the empty set.

4.3.3 Correctness of allMulMAAFs

In this section, we show that by applying the presented algorithm allMulMAAFs one
can calculate all relevant maximum acyclic agreement forests for two rooted (nonbinary)
phylogenetic X -trees.
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Theorem 29. Given two rooted (nonbinary) phylogenetic X -trees, by calling

allMulMAAFs(T1, {T2}, ∅, k)

all relevant maximum acyclic agreement forests for T1 and T2 are calculated, if and only if
k ≥ h(T1, T2).

Proof. The correctness of the algorithm as stated in Theorem 29 directly depends on the
following two Lemmas 30 and 31.

Lemma 30. Let T1 and T2 be two rooted (nonbinary) phylogenetic X -trees and let F be a
relevant maximum acyclic agreement forest T1 and T2. Then, a relevant agreement forest
F ′ by calling allMulMAFs(T1, T2, ∅, h(T1, T2)) is calculated that can be turned into F by
first resolving some of its multifurcating nodes and then by cutting some of its edges.

Proof. As the first point holds for the algorithm allMAAFs3 (cf. Theorem 10), from
Lemma 26 we can deduce that this has to hold for the algorithm allMulMAFs as well.
More precisely, let T1 and T2 be two rooted (nonbinary) phylogenetic X -trees and let F̂
be a binary agreement forest for T1(F) and T2(F) that can be turned into a maximum
acyclic agreement forest for T1(F) and T2(F) by cutting some of its edges. Then, due to
Lemma 26, by calling allMAAFs3(T1, T2, ∅, h(T1, T2)) a relevant acyclic agreement forest
F for T1 and T2 is calculated such that F̂ is a binary resolution of F . Moreover, as F̂ can
be turned into a maximum acyclic agreement forest by cutting some of its edges Ê, F can
be turned into a relevant maximum acyclic agreement forest as well by first resolving some
of its nodes and then by cutting a certain edge set E with |Ê| = |E|. More specifically,
for each edge ê in Ê there exists an edge e that can be obtained from F as follows. Let
ê = (v̂, ŵ) be an edge in Ê of a component F̂ in F̂ , then, as F̂ is a binary resolution
of F , F has to contain a component F with node w′ such that L(F̂ (ŵ)) ⊆ L(F (w′)).
Now, e is the in-edge of a node w that can be obtained from resolving node w′ such that
L(F (ŵ)) = L(F (w)).

Lemma 31. Given two rooted (nonbinary) phylogenetic X -trees T1 and T2 as well as a
relevant agreement forest F for T1 and T2, the refinement step resolves a minimum number
of nodes and cuts a minimum number of edges such that F is turned into all relevant acyclic
agreement forests of minimum size.

Proof. Due to the following two observations that are both discussed in the master thesis
of Li [39], the refinement procedure, which is based on fixing exit nodes as described above,
leads to the computation of acyclic agreement forests.

Observation 2. Let F be an agreement forest for two rooted phylogenetic X -trees T1 and T2

and let F ′ be an agreement forest that is produced by fixing an exit node of AGex(T1, T2,F).
Then, the set of exit nodes corresponding to AGex(T1, T2,F ′) is a subset of the set of exit
nodes corresponding to AGex(T1, T2,F).
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Observation 3. Given an agreement forest F for two rooted phylogenetic X -trees, there
exists an acyclic agreement forest F ′, if and only if there exists a set of exit nodes such
that fixing theses nodes leads to the computation of F ′.

A formal proof showing the correctness of these two observations can be looked up
in the master thesis of Li [39]. More precisely, Observation 2 is a consequence of [39,
Lemma 12 and 13], which ensures that by fixing an exit node one makes progress towards
an acyclic agreement forest, and Observation 3 is a consequence of [39, Lemma 10], which
ensures that it is possible to obtain all relevant maximum acyclic agreement forests from
applying the refinement procedure. Notice that, as by fixing exit nodes a minimum number
of nodes are resolved and a minimum number of edges are cut, each resulting maximum
acyclic agreement forest is automatically relevant.

Now, from those two separate proofs each regarding two successive parts, namely the
computation of specific relevant agreement forests followed by the refinement procedure
establishing the acyclicity of each those forests, we can finally finish the proof of Theo-
rem 29.

4.3.4 Runtime of allMulMAAFs

In this section, we discuss the runtime of the algorithm allMulMAAFs in detail.

Theorem 32. Let T1 and T2 be two rooted phylogenetic X -trees and F be a maximum
agreement forest for T1 and T2 containing k components. The theoretical worst-case run-
time of the algorithm allMulMAAFs applied to T1 and T2 is O(3|X |+k4k|X |).

Proof. As stated in Theorem 28, the algorithm has to conduct O(3|X |+k) recursive calls.
Potentially, for each of those recursive calls we have to apply a refinement step whose theo-
retical worst-case runtime can be estimated as follows. First notice that the order of fixing
exit nodes is irrelevant. Thus, in an expanded ancestor-descendant graph, corresponding
to an agreement forest of size k + 1 and, hence, containing 2k exit nodes, at most 22k

different sets of potential exit nodes have to be considered. As the processing of such a
set of potential exit nodes takes O(|X |) time, the theoretical worst-case runtime of the
algorithm is O(3|X |+k4k|X |).

In general, however, due to the following observation, the runtime of the refinement step
is not a problem when computing maximum acyclic agreement forests of size k. Either the
size k′ of an agreement forest F is close to k and, thus, fixing an exit node immediately
leads to an agreement forest of size larger than k (and, consequently, most of the sets of
potential exit nodes have not to be considered in full extend). Otherwise, if the size k′ of
F is small and, thus, the gap between k′ and k is large, the expanded ancestor-descendant
graph is expected to contain no or at least only less cycles (and, consequently, there exist
only few sets of potential exit nodes). Nevertheless, in the master thesis of Li [39] a method
is presented that allows to half the number of exit nodes that have to be taken into account
throughout the refinement of an agreement forest, so that by applying this modification
the algorithm yields a theoretical worst-case runtime of O(3|X |+k2kk).
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4.3.5 Robustness of our Implementation

In order to make the algorithm available for research, we added an implementation to
our Java based software package Hybroscale [3] providing a graphical user interface,
which enables a user friendly interactive handling (cf. Sec. 5.3). Next, we conducted two
specific test scenarios demonstrating the robustness of our implementation which means,
in particular, that Hybroscale guarantees the computation of all relevant nonbinary
acyclic agreement forests for two rooted (nonbinary) phylogenetic X -trees. Each of those
test scenarios was conducted on a particular synthetic dataset, which was generated as
described below.

4.3.5.1 Synthetic dataset

Our synthetic dataset consists of several tree sets each containing two rooted (nonbinary)
phylogenetic X -trees. Each X -tree is generated by ranging over all different combinations
of four parameters, namely the number of leaves `, an upper bound for the hybridization
number k, the cluster degree c, and an additional parameter p. Each of both trees of
a particular tree set corresponds to an embedded tree T of a particular network N only
containing hybridization nodes of in-degree 2. With respect to the four different parameters
such a tree T is computed as follows. First a random binary tree T̂ containing ` leaves
is computed. This is done, in particular, by randomly selecting two nodes u and v of a
specific set V , which is initialized by creating ` nodes of both in- and out-degree 0. The
two selected nodes u and v are then connected to a new node w. Finally, V is updated
by replacing u and v by its parent node w. This is done until V only consists of one node
corresponding to the root of T̂ . In a second step, k reticulation edges are inserted in T̂ with
respect to parameter c such that the resulting network N contains precisely k reticulation
nodes of in-degree 2. Finally, after extracting a binary T ′ from N , based on parameter p,
a certain percentage of its edges are contracted such that a nonbinary tree T is obtained
from T ′.

In this context, the cluster degree is an ad hoc concept influencing the computational
complexity of a tree set similar to the concept of the tangling degree first presented in
the work of Albrecht et al. [6] (cf. Fig. 4.12). When adding a reticulation edge e with
target node v2 and source node v1, we say that e respects the cluster degree c, if v1 cannot
be reached from v2 and there is a path of length less than or equal to c leading from v2

to a certain node p such that v1 can be reached from p. This means, in particular, that
networks respecting a small cluster degree, in general, contain more minimum common
clusters than networks respecting a large cluster degree and, thus, often provide a smaller
computational complexity when applying a cluster reduction beforehand.

4.3.5.2 Comparison with other software

First, we generated a synthetic dataset, as described above, containing tree pairs each
consisting of two rooted (nonbinary) phylogenetic X -trees with parameters ` ∈ {10, 25, 50},
k ∈ {5, 10, 15}, c ∈ {1, 3, 5}, and p ∈ {30}. More specifically, for all 81 combinations
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Figure 4.12: An illustration of the cluster degree parameter. Given a cluster degree c = 1. When inserting
an in-going edge e to node v2 that is respecting c, each node that is marked white or is part of a white
marked subnetwork forms a potential source node.

of the four parameters 30 tree sets were generated resulting in 810 tree sets in total.
Next, based on this dataset, we compared the result of our implementation to the two
software packages Dendroscope1 [33] and TerminusEst2 [49] so far being the only
known available software packages computing exact hybridization numbers for two rooted
(nonbinary) phylogenetic X -trees.

Our simulation study pointed out that our implementation could always reproduce the
hybridization numbers that were computed by both software packages Dendroscope and
TerminusEst. Moreover, the number of maximum acyclic agreement forests computed
by our algorithm was always larger than the number of networks that were reported by
Dendroscope and TerminusEst. Notice that, regarding TerminusEst, this is not
surprising as this program does only output one network. This fact, however, gives further
indication that our program is actually able to compute all relevant maximum acyclic
agreement forests. Nevertheless, we applied a further test scenario examining this fact in
more detail.

4.3.5.3 Permutation test

To check the robustness of our implementation in more detail, we generated a further
synthetic dataset containing thousands of tree pairs of low computational complexity, such
that each of those tree pairs could be processed by our implementation within less than a
minute. More precisely, the dataset contains tree pairs that have been generated in respect
to precisely one value for each of the four parameters `, k, c, and p, i.e., ` ∈ {10}, k ∈ {5},
c ∈ {1}, and p ∈ {30}. Next, for each of those tree pairs, we computed two sets of relevant
maximum acyclic agreement forests each corresponding to one of both orderings of the two
input trees and compared both results.

For each of those tree pairs, both sets of maximum acyclic agreement forests were iden-
tical, which means that each maximum acyclic agreement forest that could be computed
was always contained in both sets. Notice that by switching the order of the input trees
our algorithm runs through different recursive calls, which means that each computational

1ab.inf.uni-tuebingen.de/software/dendroscope/
2skelk.sdf-eu.org/terminusest/

ab.inf.uni-tuebingen.de/software/dendroscope/
skelk.sdf-eu.org/terminusest/
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path leading to a maximum acyclic agreement forest usually differs. Nevertheless, due to
the fact that the hybridization number is independent from the order of the input trees,
those two sets of maximum acyclic agreement forests have to be identical. As we applied
this permutation test to thousands of different tree pairs, this is a further strong indication
that Hybroscale is actually able to compute all relevant maximum acyclic agreement
forests for two rooted (nonbinary) phylogenetic X -trees.

4.3.6 Conclusion

In this section, we have presented the algorithm allMulMAAFs computing a set of rel-
evant maximum acyclic agreement forests for two rooted nonbinary phylogenetic X -trees.
allMulMAAFs was developed in respect to the algorithm allHNetworks computing
a particular set of minimum hybridization networks for two rooted binary phylogenetic
X -trees and is considered to be a first step for making this algorithm accessible to non-
binary phylogenetic X -trees. Additionally, we have established a formal proof showing
that the algorithm allMulMAAFs guarantees the computation of all relevant nonbinary
maximum acyclic agreement forests.

Moreover, we have integrated our algorithm into the freely available software pack-
age Hybroscale and, by conducting two specific test scenarios, we have demonstrated
the robustness of our implementation. In the next section, we will demonstrate how this
algorithm can be used to extend the algorithm allHNetworks so that now minimum hy-
bridization networks displaying the refinements of multiple rooted nonbinary phylogenetic
X -trees can be calculated.
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4.4 The algorithm allMulHNetworks

In this section, we will describe the algorithm allMulHNetworks calculating all rel-
evant hybridization networks for a set T of rooted nonbinary phylogenetic X -trees. As
defined later, we consider a network as being relevant, if it displays a refinement of each
tree in T with a minimum hybridization number and additionally neither contains stacks
of hybridization nodes nor contractible edges.

The algorithm is an extension of the algorithm allHNetworks using the algorithm
allMulMAAFs instead of the algorithm allMAAFs as well as some additional combi-
natorial steps in order to cope with nonbinary nodes. Due to its complexity, in contrast to
other algorithms of this thesis, we will only indicate its correctness by presenting a concept
of a proof similar to the one showing the correctness of the algorithm allHNetworks.
It will be future work to set up a detailed formal proof showing that this approach actu-
ally calculates all relevant minimum hybridization networks for several rooted (nonbinary)
phylogenetic X -trees.

4.4.1 Further definitions

In a first step, we give all further definitions that are crucial for describing the algorithm
allMulHNetworks.

Phylogenetic trees. Given a rooted binary phylogenetic X -tree T , throughout this
section by T we refer to the tree that is obtained from T by suppressing each node of both
in- and out-degree 1.

Hybridization networks. Given a hybridization network N on X and an edge set E ′

referring to an embedded rooted phylogenetic X ′-tree T ′ of N with X ′ ⊆ X , the restricted
network N |E′,X ′ refers to the minimal connected subgraph T only containing leaves labeled
by X ′ and edges that are either tree edges or contained in E ′. Consequently, N |E′,X ′ is
a directed graph that corresponds to T ′|X ′ but still contains nodes of both in- and out-
degree 1, and, thus, each node in N |E′,X ′ can be mapped back to exactly one specific node
of the unrestricted network N (cf. Fig.4.13(c)).

Relevant networks. Let N be a minimum hybridization network for a set T of
rooted (nonbinary) phylogenetic X -trees. Then, if N contains a node v of in-degree of
at least 3, one can generate further networks by dragging some of its reticulation edges
upwards resulting in a stack of hybridization nodes. More precisely, such a stack is a
path (v1, . . . , vn), with n > 1, in which each hybridization node vi is connected through
a reticulation edge to vi+1 (cf. Fig. 4.14). Moreover, if N contains a node of out-degree
of at least 3, by resolving this node one can generate further networks still displaying a
refinement of each tree in T .

Consequently, in order to keep the number of resulting networks small, which facilitates
the work of biologists analyzing these networks, we consider a minimum hybridization
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Figure 4.13: (a) A hybridization network N with taxa set X = {a, b, c, d, e} whose reticulation edges are
consecutively numbered. (b) A phylogenetic X -tree T that is displayed by N . Based on N , both edge
sets E′ = {3, 6, 1} and E′′ = {3, 6, 2} refer to T and, thus, N |E′,X as well as N |E′′,X equals T . (c) The
restricted network N |E′,X ′ with X ′ = {b, c, d, e} still containing nodes of both in- and out-degree 1.

Figure 4.14: An illustration of stacks of hybridization nodes. The hybridization node with in-degree 4 of
the left-hand tree T1 can be resolved (amongst others) into distinctive stacks of hybridization nodes, e.g.,
(x1, x2, x3) and (y1, y3), as demonstrated by T2 and T3, respectively. Notice that resolving a hybridization
node into a stack of hybridization nodes does not produce new embedded trees compared with those of
the unresolved network.

network N for a set T of rooted (nonbinary) phylogenetic X -trees as being relevant, if
N does not contain any stacks of hybridization nodes and if, by contracting an arbitrary
edge, a refinement of a tree in T is not displayed anymore. In the following, we will refer
to those networks as relevant networks. Notice that such networks leave the interpretation
of the ordering of hybridization events corresponding to a node of in-degree ≥ 3 as well
as the ordering of speciation events corresponding to a node of out-degree ≥ 3 open. This
obviously makes sense because the information for resolving these orderings is simply not
given in the input.

Again, in order to improve its readability, we further demand that all hybridization
nodes of a relevant network have out-degree one. Notice that in this case, in order to
identify stacks of hybridization nodes, in such networks the out-edges of all hybridization
nodes have to be suppressed.
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4.4.2 The algorithm

Our algorithm is based on the observation that, given two rooted nonbinary phylogenetic
X -trees T1 and T2, an acyclic agreement forest for T1 and T2 of size k can be turned into
a hybridization network N that displays both trees and provides a reticulation number of
k−1. Hence, in order to calculate a network with reticulation number k displaying a set T
of input trees, the algorithm allMulHNetworks follows a branch-and-bound approach
conducting the following major steps each being discussed in more detail in the upcoming
part of this section.

At the beginning, we choose an ordering ΠT = (T1, T2, . . . , Tn) of the input trees T
and initialize the set N of networks with T1. Next, we add each remaining input tree
Ti consecutively in increasing order to a so far calculated network N in N . This is done
by first extracting a phylogenetic X -tree T ′ that is displayed by N (but not necessarily
contained in T ) and then by calculating a maximum acyclic agreement forest F for T ′

and Ti. Next, based on F and both trees T ′ and Ti, we can add |F| − 1 edges to N such
that the resulting network displays each of the first i input trees of ΠT . As by adding an
input tree to a so far computed network its reticulation number never decreases, one can
terminate the processing of a network as soon as its reticulation number exceeds the upper
bound k.

Now, in order to guarantee the computation of all minimum hybridization networks
displaying T , all possible computational paths have to be taken into account. More specif-
ically, this means that we have to consider all possible orderings of the input trees, all
trees displayed by a so far computed network and all maximum acyclic agreement forests
F for a displayed tree T ′ and an input tree Ti. Moreover, as discussed later, there exist
several ways of how a component of F can be inserted into a so far computed network N .
Additionally, due to multifurcating nodes, such an insertion of a component can provoke
a cascade of rearrangement operations each representing different ways of how Ti can be
embedded in N .

The naive way of running our algorithm allMulHNetworks is to start the search
for minimum hybridization networks with k = 0 and step-wise increasing k until finally
networks are found displaying the entire set of input trees and having a reticulation number
of k. In order to improve the runtime of this process, one can first apply an approximation
algorithm calculating a lower bound for h(T ) and then setting the initial value of k to
h(T ). By doing so, one can skip the very first iterations which can improve the practical
runtime especially for computational complex instances.

4.4.2.1 Inserting trees into networks

Given a rooted phylogenetic network N , we say that N displays a rooted nonbinary phy-
logenetic X -tree Ti, if it contains a refinement T ′i of Ti. More precisely, this is the case, if
there exists a set E ′ consisting of reticulation edges such that N |E′,X equals T ′i . If such an
edge set E ′ does not exist, this directly implies that we have to insert further reticulation
edges to N , which can be done by conducting the following steps.
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1. Select a displayed tree T ′ from N referring to an edge set E ′ containing precisely one
in-edge of each reticulation node.

2. Calculate a relevant maximum acyclic agreement forest F for Ti and T ′.

3. Based on F , Ti, and T ′ insert a new reticulation edge in N such that Ti is displayed
by N . Note that this step will be discussed separately in Section 4.4.2.2.

The resulting network obviously depends on the choice of the embedded tree T ′. This
is the case, because different embedded trees yield different relevant maximum acyclic
agreement forests which, then, provoke an insertion of different reticulation edges. Thus,
in order to guarantee an output containing all relevant hybridization networks displaying
T , one has to consider all different edge sets E ′ each referring to an embedded tree T ′

and, additionally, all relevant maximum acyclic agreement forests for T ′ and Ti. Note
that, whereas the first step can be easily performed by considering different combinations
of reticulation edges, the latter step can be achieved by applying the previously presented
algorithm allMulMAAFs (cf. Sec. 4.3).

Finally, in order to obtain from N a network displaying a refinement of Ti, for each
component in F one has to take specific source and target nodes into account which can
then be used to add further reticulate edges. This can be done by taking both trees T ′

and Ti into account as demonstrated now in the upcoming section.

4.4.2.2 Preparing networks for tree insertion

Before inserting new reticulation edges, one has to do some preparation steps resolving
some parts of the network. More precisely, given a phylogenetic network N displaying a
set T of rooted (nonbinary) phylogenetic X -trees as well as an edge set E ′ referring to an
embedded tree T ′ of N , we can prepare N for the insertion of new reticulation edges that
are necessary for displaying a further rooted (nonbinary) phylogenetic X -tree T as follows.
Let F be a maximum acyclic agreement forest for T ′ and T , then, the following steps have
to be performed (cf. Fig4.15).

1. Calculate an acyclic ordering ΠF = (Fρ, F1, F2, . . . , Fk) of F .

2. Based on ΠF , calculate the two trees T ′(F) and T (F) representing F .

3. Based on N and T ′(F), calculate the network N ′ by resolving some nodes of N so
that the resulting network displays T ′(F). Note that, if T ′(F) is isomorphic to T ′,
one can skip this step.

4. Based on T ′(F) and T (F), for each component Fj in ΠF insert a new reticulation edge
into N ′, beginning with F1, consecutively in increasing order so that each resulting
network displays T (F)|X≤j , where X≤j = L(Fρ) ∪ L(F1) ∪ · · · ∪ L(Fj).
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More specifically, each of those steps can be conducted as follows.

Step 1. As previously described in Section 1.4.2, based on the graphGF = AG(T ′, T,F),
the first step can be conducted by gradually selecting and removing each node in GF that
has no in-going edge. Note that, as in each iteration there can occur multiple nodes of
in-degree zero, for an acyclic agreement forest there usually exist more than one acyclic
ordering. Moreover, due to the upcoming steps, different acyclic orderings of F can yield
different networks displaying T ∪ {T}. As a consequence, in order to calculate all of those
networks, for the upcoming steps one has to take all acyclic orderings of F into account.

Step 2. As previously described in Section 4.1, both trees T ′(F) and T (F) can be
calculated be iteratively reattaching all components of an acyclic ordering of F back to-
gether in a specific way. Note that, as there can exist different acyclic orderings of F , the
two trees T ′(F) and T (F) are not unique. Consequently, in order to calculate all of those
networks, for the upcoming steps one has to take all of those trees reflecting F into account.

Step 3. If T ′ is not isomorphic to T ′(F), some multifurcating nodes in N have to
be resolved so that N displays T ′(F). More precisely, this is the case if F contains two
different components Fp and Fq such that LCAT ′(L(Fp)) equals LCAT ′(L(Fq)). In this
case, due to the conditions T ′(F) has to satisfy, this lowest common ancestor has to be
resolved in T ′ which must then be transferred back to N .

Step 4. Finally, for each component of F , except Fρ, one has to insert a new reticulation
edge, which is a more complex step that will be discussed in the upcoming section on its
own.
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Figure 4.15: An example illustrating the preparation steps of a network N in terms of a tree T . (a) The
network N displaying the tree T ′. (b) The tree T together with a maximum (nonbinary) acyclic agreement
forest for T and T ′. (c) The two trees T ′(F) and T (F) both representing F . (d) The resolved network N ′

now displaying T ′(F) and, thus, ready for inserting T .
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4.4.2.3 Inserting components into networks

In the following, let ΠF = (Fρ, F1, F2, . . . , Fk) be an acyclic ordering of an agreement forest
F for two (nonbinary) phylogenetic X -trees T ′ and Ti with both trees reflecting F . More-
over, let N be a network that is obtained by applying Step 3 from above. This means, in
particular, that N displays T ′ such that that there exists an edge set E ′ referring to T ′,
which implies that T ′ can be extracted from N by first deleting some reticulation edges
and then by suppressing all nodes of both in- and out-degree 1 (and not by additionally
resolving some of its nodes). Then, similarly to the binary case, for each Fj (beginning
with F1) we can sequentially calculate a set of source and target nodes, which can then be
used for the insertion of those reticulation edges that are necessary for an embedding of Ti
in N .

I Computation of target and source nodes. Let F ′ = {Fρ, F1, . . . , Fj−1} ⊂
F = {Fρ, F1, . . . , Fk} be the set of components that has already been added to the network
so far and let Fj be the component that is added in the current step. Note that at the
beginning L(F ′) equals L(Fρ), since the first component being added is the second com-
ponent of the acyclic ordering which is F1. Then, the set of source and target nodes for Fj
is defined as follows.

I.I Computation of target nodes. The set Vt of target nodes contains each node v
with N |E′,L(F ′)∪L(Fj)(v) isomorphic to Ti|L(Fj). Due to the restriction of the network to
L(F ′) and due to other so far added reticulation edges, this set can contain more than one
node. Moreover, since we are only interested in relevant networks, we omit those target
nodes that are source nodes of reticulation edges. This is a necessary step preventing the
computation of networks containing stacks of hybridization nodes.

I.II Computation of source nodes of Type A. For each edge set Ei referring to
a refinement of the tree Ti|L(F ′) in N , the set VAs of source nodes of Type A contains all

nodes v with N |Ei,L(F ′)(v) being a refinement of Ti|L(F ′)(vsib), where vsib denotes the sibling
of the node v′ with L(v′) = L(Fj) in Ti|L(F ′)∪L(Fj). Note that, due to the restriction of
the network to L(F ′), this set can contain several source nodes. However, as we want
to construct networks in which each hybridization node has out-degree one, we disregard
those nodes having more than one in-edge.

I.III Computation of source nodes of Type B. The set VBs of source nodes of
Type B contains each node v of a subtree that, on the one hand, is attached to a node
in VAs and, on the other hand, does not contain any taxa of L(F ′). Moreover, either
L(F )∩L(v) = ∅ or L(F ) ⊆ L(v) must hold for each component F 6= Fρ in F . This means,
in particular, that v must not be part of a subtree rooted at a source node corresponding
to a component, which is added afterwards. Lastly, since we want to construct networks in
which each hybridization node has out-degree one, we disregard those nodes having more
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than one in-edge.

Moreover, we can classify each source node s ∈ VAs ∪ VBs by the three Types α, β, and
γ, which have to be taken into account in respect to the definitions of relevant networks
(cf Fig. 4.17).

Type α. We say that s is of Type α, if we can directly use this node as source node
for the insertion of a reticulation edge necessary for displaying Ti. More specifically, this
is the case if, on the one hand, based on the chosen edge set Ei referring to the embedded
tree Ti|L(F ′), the number of out-going edges of s that are necessary for displaying Ti|L(F ′) is

one. Or, on the other hand, if LCATi(L(F ′)) equals LCATi(L(F̃) ∪ L(Fj)) with F̃ ⊆ F ′,
which implies that the root of the subgraph Ti|L(F̃)∪L(Fj)

is a nonbinary node.

Type β. Let p be the parent of s. Notice that p is unique, since as source nodes
only those nodes of in-degree one have been selected. Now, if p is of Type α and s is not
of Type α, we say that s is of Type β. We will neglect source nodes of Type β, since
otherwise, by inserting reticulation edges in terms of such nodes, we would generate edges
that could be contracted and, thus, the resulting networks would not be relevant.

Type γ. If s is neither of Type α nor of Type β, we say that s is of Type γ.

II Inserting new reticulation edges. Now, for each pair (s, t) of source and target
nodes, we first check if (s, t) is valid, which is the case if s cannot be reach from t and s is
not of Type β. If this is the case, we can insert a new reticulation edge by first generating
two nodes s′ and t′ and then by connecting those two nodes, as described now in the
following.

1. If s is of Type γ, its in-edge is split by inserting a new node s′, i.e., e = (p, s) is
first deleted and then two new edges (p, s′) ans (s′, s) are inserted (cf. Fig. 4.16 (a)).
Otherwise, if s is of Type α, there is no need for inserting an extra node and, thus,
s directly acts as s′ (cf. Fig. 4.16 (b)).

2. If the parent of t has in-degree one, the in-edge of t is split two times in the same
way as described above by inserting two nodes t′ and t′′ (cf. Fig. 4.16 (c)). Let t′

be the parent of t after splitting its in-edge. In this case, notice that t′ is necessary
to receive only hybridization nodes of out-degree one and t′′ is necessary to provide
an attaching point for upcoming reticulation edges as discussed below. Otherwise, if
t has an in-degree of at least two, t′ is set to t, which prevents the computation of
networks containing stacks of hybridization nodes (cf. Fig. 4.16 (d)).

3. Finally, the two nodes s′ and t′ are connected through a path P consisting of two
edges. Since we do not allow nodes of in-degree larger than one as source nodes, this
creates an attaching point for upcoming reticulation edges within already inserted
reticulation edges. Consequently, in each final network, in which all input trees have
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Figure 4.16: An illustration of generating a source node s′ if s is of Type γ (a), a source node s′ if s is of
Type α (b), a target node t′ if t has in-degree one (c), and a target node t′ if t has in-degree two (d) for
adding new reticulation edges as described in Step II.

been inserted successfully, one still has to suppress all reticulation edges of both in-
and out-degree one (cf Fig. 4.18).
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Figure 4.17: An illustration of how a tree Ti is inserted into a network Ni−1. (a) The network Ni−1
displaying the tree T ′. (b) The tree Ti that is inserted into Ni−1 in respect of the maximum acyclic
agreement forest F of Ti and T ′ consisting of three components Fρ, F1, and F2. (c,d) All important
elements that have to be considered during the insertion of both components F1 and F2. Blue dots
correspond to source nodes and green, grey, and red nodes to target nodes of Type α, β, and γ, respectively.
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Figure 4.18: Continued example from Figure 4.17. (b) The resulting network Ni, which is obtained first

from N
(2)
i by inserting a reticulation edge in respect of the green and the blue node and then from N

(3)
i by

suppressing each node of both in- and out-degree 1. Notice that in Ni now Ti (and still T ′) is displayed.
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III Application of shifting-patterns of Type 1. In order to obtain all relevant
networks, based on a just inserted reticulation edge, one still has to apply specific shifting
operations, which are separately addressed in Section 4.4.2.4.

Now, in order to compute all relevant networks, one has to generate for each valid pair
(s, t) of source and target nodes and for each application of a shifting-pattern of Type 1
a new network N̂ . This is necessary, since each of those networks contains a different set
of embedded trees which can then be used for the insertion of further input trees and,
thus, can initiate new computational paths leading to relevant networks. Lastly, for each
network N̂ , now displaying a refinement of each so far added input tree (including Ti), one
still can apply further shifting-patterns producing additional relevant networks.

III Application of shifting-patterns of Type 2. In contrast to the algorithm all-
HNetworks, to each network N̂ one still has to apply further shifting operations. The
application of those shifting-patters are separately addressed in Section 4.4.2.5.

In the following, as these steps are quite sophisticated, we will only motivate the appli-
cation of those shifting-patterns of Type 1 and 2 which means that we will omit a detailed
description of how those patterns have to be applied in detail to a given network. Broadly
speaking, the challenge when applying those patterns in an exhaustive way in order to
obtain all relevant networks remains in taking care on the following.

1. After the application of a shifting-pattern still all so far inserted input trees have to
be displayed by the network.

2. By applying a shifting-pattern one possibly generates contractible edges that have to
be removed afterwards.

3. In order to prevent the algorithm from running into cycles, one has to reject those
shifting-patterns producing an already calculated network.

4.4.2.4 Application of shifting-patterns of Type 1

Let e be a reticulation edge that has just been inserted for a component of a maximum
acyclic agreement forest for Ti and a certain embedded tree by applying the steps from
above. Moreover, let T ′ ⊂ T be those input trees that have already been inserted into N
so far. Then, due to nonbinary nodes, one still has to apply particular shifting-patterns in
order to generate all relevant networks dealing with edges that have already existed before
the insertion of Ti. Before going into details, we have to introduce some further definitions
that are crucial for what follows.

Due to certain previously discussed circumstances, the source of a reticulation edge
e = (s, t) within a so far computed network is of both in- and out-degree one. Consequently,
in the following, we will refer to the highest ancestor of s that can be reached through edges
only necessary for displaying parts of Ti as the highest ancestor of e in respect to Ti, shortly
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Figure 4.19: An illustration of a network displaying the refinements of several trees, say T ∪ {Ti}. In this
context, in contrast to the dashed edges, the plain edges are only necessary for displaying Ti. Moreover,
the node colored dark grey refers to the highest ancestor of the edge marked with an arrow in respect to
Ti. Furthermore, each node colored light grey as well as the node colored dark grey, is a proper successor
of this highest ancestor.

denoted by HA(e, Ti). Moreover, we call those nodes of in-degree one that can be reached
from s (including s) by only visiting edges only necessary for displaying parts of Ti as the
proper set of successors of HA(e, Ti). Similarly, due to certain circumstances discussed
in the definition of a relevant network, the target t of a reticulation edge within a so far
computed network is one. Consequently, in the following, we will refer to the target of the
out-edge of t as the proper target of e. Lastly, given two nodes v and w of a hybridization
network N for a set T of rooted (nonbinary) phylogenetic X -trees, we call the reattaching
of an out-going edge of w to v a legal shifting operation from w to v, if the so modified
network still displays a refinement of each tree in T . Moreover, we demand that such a
shifting operation does not produce any contractible edges which implies that, if before
applying a shifting operation the network does match the definition of a relevant network,
this also holds afterwards.

In the following, we will present four patterns affecting those edges that have already
existed before all parts of Ti have been inserted. By applying the first three of these pat-
terns, edges are shifted upwards which means that an edge is reattached to a predecessor
of its original source, whereas by applying the fourth pattern edges are shifted downwards
which means that edges are reattached to a successor of its original source (cf. Fig. 4.20).

Shifting-pattern of Type 1a. Let e be a reticulation edge inserted for displaying Ti
so that HA(e, Ti) has exactly two out-going edges e1 and e2, where e1 is only necessary for
displaying Ti. Then, one possibly can apply legal shifting operations from the target of e2

to each proper successor of HA(e, Ti).

Shifting-pattern of Type 1b. Let e be a reticulation edge inserted for displaying
Ti so that HA(e, Ti) has at least three out-going edges. Moreover, let E ′ contain those
out-going edges that are not only necessary for displaying Ti. Then, one can generate new
relevant networks, if one can conduct a certain preparation step followed by certain legal
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a) b)

c) d)

Figure 4.20: An illustration of the scenario referring to the description of a shifting-pattern of Type 1a–d.
In this context, in contrast to the dashed edges, the plain edges are only necessary for displaying Ti.

shifting steps. During such a preparation step, one first inserts a node x into the in-edge of
HA(e, Ti) and, then, has to be able to apply exactly |E ′| − 1 legal shifting operations from
HA(e, Ti) to x so that in the resulting network HA(e, Ti) has only two out-going edges e1

and e2. If this is possible, one possibly can apply further legal shifting operations from
the target of e2 to each proper successor of HA(e, Ti), where e2 refers to the out-edge of
HA(e, Ti) that is not only necessary for displaying Ti.

Shifting-pattern of Type 1c. Let s be the source and t be the proper target of
a reticulation edge e2 being adjacent to a reticulation edge e1 that is only necessary for
displaying Ti. Then, by first inserting a new node x into the in-edge of s, one can possibly
apply legal shifting operations from t to x.

Shifting-pattern of Type 1d. Let e be a reticulation edge inserted for displaying
Ti and let v be the source of the in-edge of HA(e, Ti). Then, one possibly can apply legal
shifting operations from v to each proper successor of HA(e, Ti).
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4.4.2.5 Application of shifting-patterns of Type 2

Now, let N̂ be a network being the result from step-wise inserting all reticulation edges
necessary for embedding Ti each followed by potentially applying a shifting-pattern of
Type 1. Then, in order to receive all relevant networks, one still may have to apply some
further legal shifting operations as indicated in the following. Note that, in contrast to
the description of the shifting-patterns of Type 1, now the entire tree Ti is embedded in N̂
and those patterns of Type 2 have to be applied to all edges (not necessarily reticulation
edges) that have been inserted for its embedding.

Given a hybridization network N for a set T of rooted (nonbinary) phylogenetic X -
trees and a reticulation edge only necessary for displaying the lastly added input tree Ti,
we reuse those definitions from above, including the definition of a highest ancestor and
its set of proper successors as well as the definition of a legal shifting operation from one
node v to another node w.

Shifting-pattern of Type 2a. Let e be a reticulation edge inserted for displaying
Ti so that v = HA(e, Ti) provides a set E ′ of more than two out-going edges, where
e1 = (v, w1) ∈ E ′ is only necessary for displaying Ti and e2 = (v, w2) ∈ E ′ is a tree edge
not necessary for displaying Ti. Then, the reattaching of e1 to w2 by first deleting e1 and
then inserting a new edge e′1 = (w2, w1) might represents a legal shifting operation from
w1 to w2. Moreover, if in the so modified network w2 is a nonbinary node, one possibly
can apply further shifting operations from w2 to each proper successor of HA(e, Ti).

Shifting-pattern of Type 2b. Again, as described above, let e be a reticulation edge
inserted for displaying Ti so that v = HA(e, Ti) provides a set E ′ of more than two out-going
edges, where e1 = (v, w1) ∈ E ′ is only necessary for displaying Ti and e2 = (v, w2) ∈ E ′
is a tree edge not necessary for displaying Ti. Then, one can possibly generate new rele-
vant networks by applying two kinds of legal shifting operation. During the first shifting
operation, one first inserts a node x into e2 and then reattaches e1 to x by first deleting
e1 and then inserting a new edge e′1 = (x,w1). In a second step, one has to be able to
apply at least one legal shifting operation from w2 to x so that in the resulting network
x has more than two out-going edges. If this is possible, one possibly can apply further
legal shifting operations from x to each proper successor of HA(e, Ti). Note that therefor,
however, HA(e, Ti) has to provide at least two proper successors.

An illustration of these shifting-patterns can be found in Figure 4.21.

4.4.3 Runtime

Compared with our algorithm allHNetworks, in order to deal with nonbinary nodes, the
presented algorithm allMulHNetworks has to conduct some additional combinatorial
steps. Generally speaking, these steps include the calculation of all trees reflecting a given
maximum acyclic agreement forest as well as the execution of specific shifting-patterns
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a)

b)

Figure 4.21: An illustration of the scenario referring to the description of a shifting-pattern of Type 2a,b.
In this context, in contrast to the dashed edges, the plain edges are only necessary for displaying Ti.

rearranging edges of a so far calculated network. As those additional steps merely increase
the complexity of the algorithm allHNetworks, we omit here a detailed discussion of
the theoretical worst-case runtime and refer interested readers to Section 3.4.5, where the
theoretical worst-case runtime of its binary variant is given.

4.4.4 Correctness

Although we omit a formal proof here, we think that the basic idea dealing with the
correctness of the algorithm allHNetworks can be reused to show the correctness of
the algorithm allMulHNetworks, i.e., that, given a set T of several rooted (nonbinary)
phylogenetic X -trees, the algorithm allMulHNetworks calculates all relevant networks
for T .

More precisely, this proof should consider the following points. Let N ′ be a relevant
network displaying refinements of a subset T ′ of all input trees T and let N be a hybridiza-
tion network (not containing any stacks of hybridization nodes as well as any contractible
edges) that is based on N ′ and displays a further refinement of an input tree Ti 6∈ T .
Then, one can show that N can be obtained from N ′ as follows. First, by inserting a set
E ′ of reticulation edges whose source and target nodes can be derived from an (nonbinary)
acyclic agreement forest F for Ti and some tree that is displayed by N ′ and, additionally,
reflects F and, second, by exhaustively applying all possible sequences of shifting-patterns
as described above in Section 4.4.2.4 and 4.4.2.5. Moreover, one has to show that by
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constructing networks for all possible orderings of the input trees, it suffices to take only
(nonbinary) maximum acyclic agreement forests into account.

4.4.5 Speeding up the algorithm

Similar to the algorithm allHNetworks, in order to improve the practical runtime, one
can apply each technique presented in Section 3.4.6 including the application of the subtree
and the cluster reduction in its typical way (cf. Sec. 3.2).

Although we omit a proof here, we think that the proof given in Section 3.3, dealing with
the correctness of the cluster reduction for multiple binary trees, can be easily adapted to
multiple nonbinary trees. This means, in particular, that by summing up the hybridization
number calculated by the algorithm allMulHNetworks for each single cluster repre-
sents the hybridization number of the initial unreduced set of input trees. Moreover, due
to a permutation test that is described below, we think that the linking-patterns given in
Section 3.4.6.2, which can be applied to restore each missing network when reattaching
back the networks separately calculated for each cluster, can be also used in this context
in combination with the shifting-patterns presented in Section 4.4.2.4 and 4.4.2.5.

4.4.6 Robustness of our Implementation

In order to make the algorithm allMulHNetworks available for research, we added an
implementation to our Java based software package Hybroscale [3] providing a graphical
user interface, which enables a user friendly interactive handling (cf. Sec. 5.3). Notice that
we also applied the cluster reduction involving specific linking-patterns in order to obtain
all missing networks that could otherwise only be calculated by omitting this particular
reduction step.

Next, we conducted a permutation test indicating the robustness of our implementation
which means, in particular, that Hybroscale enables the computation of all relevant
networks for a set of rooted (nonbinary) phylogenetic X -trees.

4.4.6.1 Synthetic dataset

The synthetic dataset used for the permutation test was generated as already described in
Section 4.3.5.1. More specifically, the dataset contains thousands of tree pairs that have
been generated in respect to precisely one value for each of the four parameters `, k, c,
and p, i.e., ` ∈ {10}, k ∈ {5}, c ∈ {1}, and p ∈ {30}. Consequently, each of those tree
pairs is of relatively low computational complexity such that it can be processed by our
implementation in less than one minute.

4.4.6.2 Permutation test

For each tree pair {T1, T2} of the synthetic dataset, we calculated two sets of relevant
networks; one corresponding to (T1, T2) and the other one corresponding to (T2, T1). Notice
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that by switching the order of the input trees our algorithm runs through different recursive
calls, which means that each computational path leading to a relevant network usually
differs. Nevertheless, due to the fact that the set of relevant networks is independent from
the order of these input trees, those two calculated sets have to be identical.

This permutation test helped us to identify those shifting-patterns previously described
in Section 4.4.2.4 and 4.4.2.5. Moreover, by additionally calculating relevant networks with
and without applying a cluster reduction, we could recognize that the linking-patterns for
reattaching all cluster networks, previously presented in Section 3.4.6.2, can be also used in
this case. The reader, however, should keep in mind that the application of those shifting-
patterns (as well as of those linking-patterns) is a quite sophisticated combinatorial step
and, thus, for implementing the algorithm allMulHNetworks in an appropriate way
one has to spent much time and effort.

4.4.7 Conclusion

In this section, we have presented the algorithm allMulHNetworks, which is an ex-
tension of the algorithm allHNetworks that can now deal with nonbinary input trees.
Consequently, in contrast to its binary variant, one has to apply additional steps includ-
ing the computation of nonbinary agreement forests as well as the execution of certain
shifting-patterns. In this context, especially the latter step is what makes the algorithm
quite sophisticated and, thus, quite difficult to implement. Nevertheless, the correctness of
the algorithm directly depends on applying those shifting-patterns in an exhaustive way.
This means, in particular, omitting some of these shifting-patterns could mean that compu-
tational paths leading to minimum hybridization networks are not visited and, thus, either
some relevant networks are missing or only those hybridization networks are calculated not
providing a minimum hybridization number.
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Chapter 5

Studying phylogenetic networks

In this chapter, we first demonstrate that phylogenetic networks are not free of interpre-
tive challenges and present some network constraints that can be used for this purpose.
Moreover, we present our software package Hybroscale providing implementations of
each algorithm previously presented in this thesis. Additionally, we point out that the
graphical user interface of Hybroscale provides several important features that are of
high interest for studying reticulate evolution.

5.1 Filtering relevant networks

As already discussed in the previous part of this thesis, there often exist a huge number
of different ways of how trees can be reconciled into phylogenetic networks (or minimum
hybridization networks). Consequently, due to the vast network space, so far existing
network building methods are usually impractical for many biological problems. Moreover,
in contrast to phylogenetic trees, for phylogenetic networks there do not exist standard
techniques for calculating specific values supporting biologists in figuring out the most
promising networks. This means, in particular, even though if one has successfully applied
a network building method, one possibly still has to spent a lot of time and effort in
analyzing the output. Notice that, as until now there only exist few methods calculating
more than one hybridization network, in this context this is still a poorly understood
problem, which has not attracted much attention so far.

As a consequence, in order to overcome these problems, Kelk et. al [37] suggested that
biologists should be able to generate individual constraints describing the kind of networks
that are worth to be taken into account. On the one hand, such constraints could be used
a priori to prune the search space that is examined by network-building methods so that
the runtime of those methods gets improved. On the other hand, however, such constraints
could be also used a posteriori to filter a large set of reported networks so that, based on
previously made investigations, biologists have to study only those networks they consider
as being relevant under a particular evolutionary hypothesis. In the following, we give
some examples of how such constraints could look like in respect of minimum hybridization
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networks. Moreover, we demonstrate the benefit of such constraints by applying some of
them to a well-known grass (Poaceae) dataset.

5.1.1 Further definitions

Before going into details, we have to introduce further definitions that are crucial for de-
scribing some of the following network constraints.

Biconnected components. A biconnected component of a phylogenetic network N
is a maximal induced subgraph not containing any cut nodes (or articulation nodes), i.e.,
nodes whose removal would disconnect N .

Time-consistent networks. The definition of time-consistent networks is motivated
by the concept of real-time hybrids first introduced by previous work of Baroni et al. [9].
Given a network N , we say that N is time-consistent if it contains a time-consistent
labeling, which can be computed by using a particular digraph DN = ([V ], [E]) that is
defined in Baroni et al. [9] as follows.

Let N = (V,E) be a hybridization network, then, each v ∈ V is part of a node [v] in
DN with

[v] = {v} ∪ {u ∈ V : ∃ an undirected path of hybridization edges leading from u to v}.

Moreover, two nodes [v] and [w] in DN are connected via an edge if there exists a node
a ∈ [v] and a node b ∈ [w] so that (a, b) ∈ E. An example illustrating the concept of such
a digraph can be found in Figure 5.1.

Now, based on such a digraph, N has a time-consistent labeling, and thus is time-
consistent, if and only if DN is acyclic (cf. [9, Theorem 3]).

5.1.2 Network constraints

In general, one can distinguish between two different types of network constraints. Either
such a constraint refers to each hybridization event itself or takes the interaction of several
hybridization events into account. Consequently, constraints can be of rather low or high
complexity. In the following we will give an example for both of those types. Notice,
however, that one could also think of other types of network constraints. For instance, one
could be also interested in only those networks consisting of particular subtrees providing
a specific set of taxa.

Tree-child property. A network N fulfills the tree-child property, if from each inner
node there exists a directed path leading to a leaf not containing any hybridization nodes.
More precisely, for each inner node v0 there exists a directed path P = (v0, v1, . . . , vn) with
vn being a leaf such that δ−(vi) = 1 for each vi with i ≥ 1.
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Tree-sibling property. A network fulfills the tree-sibling property, if each hybridiza-
tion node has at least one non-hybridization node as sibling.

Minimum-level constraint. Let N be a bicombining rooted phylogenetic network.
Then, we say N is a level-k network, if any biconnected component of N properly contains
at most k hybridization nodes. This means, in particular, that a bicombining network
with only one hybridization node is a level-1 network. Consequently, given a set N of
hybridization networks, we say that a level-k network fulfills the minimum-level constraint
(henceforth ML-constraint), if N does not contain any networks whose level is smaller
than k.

Direct-hybridization constraint. The direct-hybridization constraint, henceforth
DH-constraint, defines a subset of taxa that have to be direct descendants of a hybridiza-
tion event. More precisely, given a set of phylogenetic X -trees, a network N fulfills a
DH-constraint for a subset X ′ of X , if N contains a hybridization node v with `(v) = X ′,
where `(v) denotes the set of taxa that can be reached from v disregarding hybridization
edges. An example is given in Figure 5.3

Min-time-consistency constraint. The min-time-consistency constraint, henceforth
MTC-constraint, filters all those networks providing a time-consistent labeling with minimal
costs. More precisely, let N = (V,E) be a hybridization network and let V ′ ⊆ V be those
nodes with δ−(v) = 1, which are all nodes except all hybridization nodes as well as the root.
Then, we say that N has a time-consistent labeling with costs k, henceforth shortly denoted
by τ(N) = k, if there exists a mapping f : V → N satisfying the following properties.

(i) Let v be a node with δ−(v) ≥ 2 and u be an immediate ancestor of v, then f(u) = f(v)
must hold.

(ii) Let v be a node with δ−(v) = 1 and u be an immediate ancestor of v, then f(u) 6= f(v)
must hold.

(iii) There exist exactly |V ′| − k nodes in V ′, such that for each of such a node v with
immediate ancestor u, f(u) < f(v) holds .

(iv) There exist exactly k nodes in V ′, such that for each of such a node v with immediate
ancestor u, f(u) ≥ f(v) holds. Notice that this is a direct consequence of property
(ii) and (iii).

Notice that, in respect to these properties, we assume that the out-degree of each
hybridization node in N is either 0 or at least 2, but not 1 as it is usually the case in order
to increase the readability of these graphs. An example of such a network can be found in
Figure 5.1.

Practically, we tackle this problem by solving a Directed Feedback Arc Set problem
on the underlying digraph DN . More specifically, we are looking for the smallest set of
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a) b)

Figure 5.1: (a) A hybridization network N with τ(N) = 1 and (b) its corresponding digraph DN . Note
that, in order to turn N into a time-consistent network, the edge (b, k) is mandatory which means that to
each tree that is displayed by using this edge a new taxon has to be added.

edges that has to be deleted from DN so that each cycle within the graph is removed. In
practice, this can be done by testing for each sequence of nodes Π([V ]) = ([v1], . . . , [vn]), if
w(Π([V ])) is minimal, where

w(Π([V ])) =
n∑
i=1

δ−([vi], DN − {[v1], . . . , [vi−1]}),

with δ−([vi], DN −{[v1], . . . , [vi−1]}) denoting the in-degree of [vi] in the digraph restricted
on each node [v] 6∈ {[v1], . . . , [vi−1]}. For this purpose, we use a branch-and-bound ap-
proach, stopping the processing of each sequence Π([V ′]), with [V ′] ⊆ [V ], as soon as
w(Π([V ′])) exceeds the minimum costs of all so far considered sequences.

Min-add-taxa constraint. The min-add-taxa constraint, henceforth MAT-constraint,
is based on the work of Linz et al. [42] introducing the AddTaxa problem for hybridization
networks (as well as for HGT networks). More precisely, given a hybridization network N
for a set T of phylogenetic trees, the problem remains in computing the minimum number
of new so far unsampled or extinct taxa that have to be added to T such that there exists
a time-consistent hybridization network N ′ displaying the so modified input trees T ′ (and
still providing the same hybridization number as N). Notice that this problem is equivalent
to finding the minimum number of taxa that have to be added to N so that the resulting
network N ′ is time-consistent. This means, in particular, that one can solve this problem
by finding the minimum number of hybridization edges of N in which a new node has to be
inserted such that the so modified network N ′ is time-consistent (cf. [42, Corollary 3.4]).

Practically, we tackle this problem in a quite naive way by simply inserting new nodes in
N in respect to each subset containing exactly k = 0, 1, 2, . . . hybridization edges and then
by checking for each of those subsets if the so modified network is time-consistent. Notice
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SELECT

all minimum hybridization networks

WHERE

[’Taxon_A’, ’Taxon_B’, must be direct descendants of an hybridization event.]

AND

(

[Network minimizes time-consistency constraint.]

OR

[Network minimizes add-taxa constraint.]

)

Figure 5.2: An example of an SQL-statement that could be used for filtering a set of networks or to prune
the underlying network space.

that one can speed up this approach by first identifying so-called mandatory hybridization
edges that have to be modified anyway. More specifically, let v be a hybridization node
of a minimum hybridization network and let V ′ be its set of immediate ancestors, then,
in this context we say a hybridization edge of v with source v1 ∈ V ′ is mandatory, if there
exists a different node v2 ∈ V ′ that is a descendant of v1 and if there does not exist a path
only consisting of hybridization nodes connecting v1 and v2. Notice that, as it is the case
for the MTC-constraint, we suppose that the out-degree of each hybridization node in N
is either 0 or at least 2, but not 1 (cf. Fig. 5.1).

So far, we have introduced five types of constraints, in which the first three types
are rather of mathematical interest and the latter two types have more relevance from a
biological point of view. Nevertheless, these constraints show that there already exist a
couple of concepts that can help to control the number of networks one has to take under
further examination. We are aware of the fact that there might exist some more appropriate
constraints and, by presenting these very first prototypes, we hope to encourage biologists
to develop their own individual constraints, which might get picked up by mathematicians
as well as computer scientists in order to develop more practical network methods. Notice
that Gambette provided a good overview1 of other so far existing subclasses of explicit
phylogenetic networks, which could potentially also be used for this purpose.

Once having built a set of network constraints, one can go one step further and use
those constraints as building blocks to come up with even more sophisticated compound
constraints. For example, those basic constraints could be combined by using an SQL-type
language consisting of SELECT, WHERE, AND, and OR statements as, for instance,
demonstrated in Figure 5.2. Notice that we have already integrated such an approach into
our software package Hybroscale.

1http://phylnet.univ-mlv.fr/isiphync/

http://phylnet.univ-mlv.fr/isiphync/
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5.1.3 Application to a grass data set

In this section, we demonstrate the practical benefit of some network constraints presented
above. Our example is based on the well-known grass (Poaceae) dataset containing phylo-
genetic trees based on six different genetic loci, namely ndhF, phyB, ropC2, waxy, rbcL, and
ITS. This freely available dataset2, which is also used in the work of van Iersel et al. [66],
was originally published by the Grass Phylogeny Working Group [27] and reanalyzed by
Schmidt [55].

DH-constraint. Table 5.1 demonstrates how the set of networks calculated for the
trees referring to the genes ndhf and waxy can be separated using the DH-constraint. For
example, whereas taxon merxmuel m is a direct result of a hybridization event in all of
the 599 computed networks, for the taxa set {meilicaa, triticum, eremitis, pariana} this
is only the case for 6 out of 599 networks. This means, in particular, if one would only
be interested in networks satisfying the latter constraint, one could exclude 593 networks
and, thus, for further examinations one would only have to take 6 instead of 599 networks
into account.

In the following we give an example of how the number of hybridization networks
can be filtered with the help of the MTC-constraint, the MAT-constraint as well as the
ML-constraint. For this purpose, we integrated two different kinds of filtering techniques
into our software package Hybroscale. The first technique can be used to filter a set
of already calculated networks. This means, in particular, that we have implemented a
method identifying among all reported networks those networks satisfying a particular
constraint. The result is shown in Table 5.2.

Our second technique has a direct influence on the way of how the hybridization net-
works are computed and, thus, can significantly improve the practical runtime. This is
mainly done by allowing a more aggressive bounding of computational paths of our under-
lying network method, which is based on the algorithm allMulHNetworks (cf. Sec. 4.4)
that can be briefly summarized as follows. Given a set of input trees, each tree is added
step-wise to a set of so far computed networks so that all resulting networks display all
trees that have been added so far. At the beginning, this set of networks contains only one
input tree. However, by adding further input trees, this set can grow rapidly as usually
there exist many ways of how a tree can be added to a so far calculated network. Notice
that, when running a search for networks with hybridization number k, one can immedi-
ately stop the processing of each network providing a hybridization larger than k, which
is simply due to the fact that by adding further trees the hybridization number can only
increase (but never decrease).

Now, regarding our network method, by using network constraints we can perform a
more aggressive bounding of computational paths as follows. First, the so far minimum
costs (depending on the respective constraint) of all so far calculated minimum hybridiza-
tion networks displaying all input trees is stored in a global variable k′. Second, let N ′ be

2www.sites.google.com/site/cassalgorithm/data-sets

www.sites.google.com/site/cassalgorithm/data-sets
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Table 5.1: An example showing numbers of minimum hybridization networks, calculated for two phylo-
genetic trees referring to the two sequences ndhf and waxy, fulfilling DH-constraints for different sets of
taxa.

DH-Constraint Frequency

{merxmuel m} 599/599 (100%)
{eremitis, pariana} 461/599 (77%)
{chusquea} 378/599 (63%)
{melicaa} 343/599 (57%)
{lygeum} 306/599 (51%)
{oryza} 305/599 (51%)
{glycerias} 289/599 (48%)
{triticum} 260/599 (43%)

{oryza, lygeum, trticum} 132/599 (22%)
{melicaa, glycerias} 117/599 (20%)
{lygeum, triticum} 72/599 (12%)

{oryza, eremitis, pariana} 54/599 (9%)
{trticum, glycerias} 38/599 (6%)

{melicaa, glycerias, eremitis, pariana} 36/599 (6%)
{oryza, melicaa, glycerias} 36/599 (6%)
{oryza, triticum, glycerias} 28/599 (5%)
{melicaa, triticum} 21/599 (4%)

{oryza, lygeum, glycerias} 20/599 (3%)
{lygeum, tritcum, eremitis, pariana} 18/599 (3%)

{lygeum, glycerias} 17/599 (3%)
{oryza, melicaa, lygeum} 12/599 (2%)

{tritcum, glycerias, eremitis, pariana} 12/599 (2%)
{oryza, melicaa, trticum, glycerias, eremitis, pariana} 12/599 (2%)

{melicaa, lygeum} 10/599 (2%)
{melicaa, lygeum, eremitis, pariana} 6/599 (1%)
{lygeum, glycerias, eremitis, pariana} 6/599 (1%)
{meilicaa, triticum, eremitis, pariana} 6/599 (1%)

a network of a computational path (displaying a subset of all input trees) and let k be an
upper bound of the hybridization number. Then, this path is aborted if the reticulation
number of N ′ is larger than k or, additionally, if its costs exceeds k′. Notice, however,
that the latter abort criterion can only be used for search spaces containing minimum
hybridization networks. This means, in particular, that in our case the MTC-constraint
(or the MAT-constraint) has only an effect on the search space in which k is equal to the
hybridization number of the respective input trees.

Moreover, regarding the MTC-constraint as well as the MAT-constraint, by acting this
way, some optimal solutions might get lost as by adding new reticulate edges the costs
of a so far computed network can still be decreased. This can be the case, for example,
if the source of a new reticulate edge is placed into an existing reticulate edge so that a
cycle within the underlying digraph is dissolved. The results achieved by applying this
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second filtering technique based on the MTC-constraint as well as the MAT-constraint are
summarized in Table 5.3.

ML-constraint. Table 5.2 shows that in general only a few biologically relevant net-
works satisfy the ML-constraint (denoted as ML-networks in this case).

MTC-constraint. Again, Table 5.2 indicates that through the MTC-constraint a large
set consisting of computed networks can usually be reduced to a small subset. For example,
this table reveals that only 2 out of 2079 networks, computed for the trees referring to the
genes ndhF and phyB, satisfy the MTC-constraint.

Moreover, as indicated in Table 5.3, by setting this constraint before running Hy-
broscale, due to the so restricted search space, sometimes the practical runtime can
be significantly improved. For example, the computation of all minimum hybridization
networks for the trees referring to the genes ndhF and its takes approximately 15 min-
utes whereas by restricting the search space to minimum-time-consistent networks (MTC-
networks) all 4400 networks are calculated within less than 4 minutes. Notice, however,
that by comparing the results of Table 5.2 and Table 5.3 it turns out that by applying our
second filtering technique not all MTC-networks can be calculated.

MAT-constraint. As indicated in Table 5.2 and 5.3, the same issues as discussed for
the MTC-constraint also holds for the MAT-constraint. Again, the better practical run-
times result from a more aggressive bounding of computational paths. Notice, however,
that, due to the same reasons as mentioned above, the computation of optimal solutions
is not guaranteed in this case. Consequently, usually either not all MAT-networks are
calculated or the reported networks do not provide minimum costs. For example, in our
case, this applies to the genes ndhF and rbcl.

Moreover, Table 5.2 indicates that the costs for a minimum time-consistent labeling is
a lower bound for the minimum number of taxa that have to be added to all input trees
in order to receive time-consistent networks. Usually, this lower bound matches or is at
least close to the minimum number of those edges. However, as indicated by the result
calculated for the sequences ndhf, rbcl, waxy, and its, this lower bound can be also quite
distant (2 vs. 5 in this case). This happens, for example, if there are many hybridization
nodes that are connected through hybridization edges in which some of those edges are
mandatory.
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Table 5.2: Constraints applied to an output produced by running Hybroscale on phylogenetic trees
belonging to a grass (Poaceae) dataset. A missing result for a certain tree set means that Hybroscale
could not compute all minimum hybridization networks within 2 hours.

Genes #Taxa HNumber #HNetworks #MTC-
Networks

#AT-
Networks

#ML-
Networks

ndhf its 46 17 554736 24500 (3) 28014 (7) -
ndhf phyB 40 8 2079 2 (0) 2 (0) 33 (2)
ndhf rbcl 36 8 1488 18 (1) 48 (3) 288 (3)
ndhf rpoc 34 9 264 9 (3) 6 (3) 165 (4)
ndhf waxy 19 6 599 47 (2) 1 (2) 20 (3)
phyB its 30 8 195 25 (3) 1 (3) 105 (4)
phyB rbcl 21 4 6 2 (1) 2 (1) 6 (2)
phyB rpoc 21 4 9 1 (0) 1 (0) 9 (3)
phyB waxy 14 3 10 8 (2) 3 (2) 10 (2)
rbcl its 29 12 - - - -
rbcl rpoc 26 7 111 23 (1) 19 (1) 91 (5)
rbcl waxy 12 4 84 26 (1) 4 (1) 3 (2)
rpoc its 31 12 3480 64 (3) 198 (5) 120 (9)
rpoc waxy 10 2 1 1 (1) 1 (1) 1 (2)
waxy its 15 5 15 5 (2) 5 (3) 3 (3)
ndhf phyB its 30 13 - - - -
ndhf phyB rbcl 21 9 10889 190 (2) 14 (3) 11 (3)
ndhf phyB rpoc 21 8 36978 180 (1) 72 (1) 30 (3)
ndhf phyB waxy 14 4 42 22 (2) 4 (2) 26 (2)
ndhf rbcl its 28 - - - - -
ndhf rbcl rpoc 26 11 36600 3421 (2) 8 (2) 162 (6)
ndhf rbcl waxy 12 5 116 16 (1) 1 (1) 2 (3)
ndhf rpoc its 31 17 39016 660 (4) - -
ndhf rpoc waxy 10 3 14 9 (1) 4 (1) 1 (2)
ndhf waxy its 15 8 5466 658 (2) 27 (2) 8 (4)
phyB rbcl its 17 8 8661 224 (1) 16 (1) 12 (5)
phyB rbcl rpoc 15 6 40 12 (2) 6 (2) 9 (3)
phyB rbcl waxy 7 2 11 7 (0) 7 (0) 11 (2)
phyB rpoc its 19 7 57 2 (1) 4 (3) 57 (6)
phyB rpoc waxy 5 0 1 1 (0) 1 (0) 1 (0)
phyB waxy its 10 4 146 6 (1) 3 (1) 109 (2)
rbcl rpoc its 24 - - - - -
rbcl rpoc waxy 9 3 5 2 (1) 1 (1) 1 (2)
rbcl waxy its 11 6 63 10 (1) 12 (3) 1 (4)
rpoc waxy its 10 4 4 2 (1) 4 (3) 2 (3)
ndhf phyB rbcl its 17 - - - - -
ndhf phyB rbcl rpoc 15 9 1079 231 (2) 222 (3) 258 (5)
ndhf phyB rbcl waxy 7 2 1 1 (1) 1 (1) 1 (2)
ndhf phyB rpoc its 19 9 - - - -
ndhf phyB rpoc waxy 5 0 1 1 (0) 1 (0) 1 (0)
ndhf phyB waxy its 10 5 4709 184 (1) 79 (1) 678 (2)
ndhf rbcl rpoc its 24 - - - - -
ndhf rbcl rpoc waxy 9 4 396 149 (1) 53 (1) 1 (2)
ndhf rbcl waxy its 11 6 2 2 (2) 2 (5) 2 (6)
ndhf rpoc waxy its 10 5 324 67 (1) 16 (1) 4 (3)
phyB rbcl rpoc its 14 - - - - -
phyB rbcl rpoc waxy 4 0 1 1 (0) 1 (0) 1 (0)
phyB rbcl waxy its 6 2 3 1 (0) 1 (0) 3 (2)
phyB rpoc waxy its 5 0 1 1 (0) 1 (0) 1 (0)
rbcl rpoc waxy its 9 5 335 87 (1) 2 (1) 2 (3)
ndhf phyB rbcl rpoc its 14 - - - - -
ndhf phyB rbcl rpoc waxy 4 0 1 1 (0) 1 (0) 1 (0)
ndhf phyB rbcl waxy its 6 3 135 18 (0) 18 (0) 38 (2)
ndhf phyB rpoc waxy its 5 0 1 1 (0) 1 (0) 1 (0)
ndhf rbcl rpoc waxy its 9 5 235 72 (1) 20 (1) 2 (3)
phyB rbcl rpoc waxy its 4 0 1 1 (0) 1 (0) 1 (0)
ndhf phyB rbcl rpoc waxy its 4 0 1 1 (0) 1 (0) 1 (0)
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Table 5.3: Output produced by Hybroscale applied to phylogenetic trees belonging to a grass (Poaceae)
dataset. Each runtime given in this table is stated in seconds. A missing result for a certain tree set means
that Hybroscale could not compute the resp. set of minimum hybridization networks within 2 hours.

HNetworks MTC-Networks MAT-Networks
Genes #Taxa HNumber #Nets Runtime #Nets Runtime #Nets Runtime

ndhf its 46 17 554736 836.678 4400 (3) 203.483 11340 (7) 288.596
ndhf phyB 40 8 2079 7.606 2 (0) 3.278 2 (0) 3.288
ndhf rbcl 36 8 1488 8.26 18 (1) 4.867 168 (4) 10.604
ndhf rpoc 34 9 264 5.353 3 (3) 2.344 3 (3) 2.34
ndhf waxy 19 6 599 5.693 11 (2) 2.821 1 (2) 3.1
phyB its 30 8 195 8.304 9 (3) 3.168 1 (3) 2.808
phyB rbcl 21 4 6 1.65 2 (1) 1.639 2 (1) 1.637
phyB rpoc 21 4 9 1.678 1 (0) 1.649 1 (0) 1.646
phyB waxy 14 3 10 1.615 8 (2) 1.648 3 (2) 1.618
rbcl its 29 12 - - - - - -
rbcl rpoc 26 7 111 3.836 18 (1) 3.019 15 (1) 3.064
rbcl waxy 12 4 84 4.338 26 (1) 5.641 4 (1) 4.259
rpoc its 31 12 3480 74.765 64 (3) 69.576 198 (5) 74.73
rpoc waxy 10 2 1 1.582 2 (1) 1.809 1 (1) 1.72
waxy its 15 5 15 2.712 5 (2) 3.858 5 (3) 6.271
ndhf phyB its 30 13 - - 16947 (2) 1826.908 24 (2) 1245.95
ndhf phyB rbcl 21 9 10889 17.191 114 (2) 9.105 10 (3) 7.453
ndhf phyB rpoc 21 8 36978 54.516 108 (1) 36.006 66 (1) 35.872
ndhf phyB waxy 14 4 42 2.87 22 (2) 2.777 4 (2) 2.659
ndhf rbcl its 28 - - - - - - -
ndhf rbcl rpoc 26 11 36600 35.407 2091 (2) 22.254 1428,(3) 28.299
ndhf rbcl waxy 12 5 114 5.577 16 (1) 5.295 1 (1) 5.246
ndhf rpoc its 31 17 39016 4721.959 690 (4) 4364.465 28 (5) 2539.037
ndhf rpoc waxy 10 3 14 2.632 9 (1) 2.651 4 (1) 2.622
ndhf waxy its 15 8 5466 10.661 613 (2) 12.754 27 (2) 6.495
phyB rbcl its 17 8 8661 111.506 210 (1) 57.572 16 (1) 70.702
phyB rbcl rpoc 15 6 40 4.867 6 (2) 4.715 3 (2) 4.689
phyB rbcl waxy 7 2 11 2.592 7 (0) 2.592 7 (0) 2.597
phyB rpoc its 19 7 57 4.633 2 (1) 4.294 4 (3) 4.318
phyB rpoc waxy 5 0 1 0.075 1 (0) 0.074 1 (0) 0.073
phyB waxy its 10 4 146 3.844 6 (1) 3.2 3 (1) 3.207
rbcl rpoc its 24 - - - - - - -
rbcl rpoc waxy 9 3 5 1.62 2 (1) 3.205 1 (1) 2.667
rbcl waxy its 11 6 63 7.49 10 (1) 10.481 12 (3) 10.514
rpoc waxy its 10 4 4 2.635 2 (1) 2.683 4 (3) 2.893
ndhf phyB rbcl its 17 - - - - - - -
ndhf phyB rbcl rpoc 15 9 1079 259.138 125 (2) 224.468 125 (3) 233.487
ndhf phyB rbcl waxy 7 2 1 2.594 1 (1) 2.596 1 (1) 2.592
ndhf phyB rpoc its 19 9 - - 10 (1) 1411.024 4 (2) 926.402
ndhf phyB rpoc waxy 5 0 1 0.071 1 (0) 0.084 1 (0) 0.086
ndhf phyB waxy its 10 5 4709 15.787 170 (1) 6.131 79 (1) 5.756
ndhf rbcl rpoc its 24 - - - - - - -
ndhf rbcl rpoc waxy 9 4 396 14.864 149 (1) 9.151 53 (1) 6.565
ndhf rbcl waxy its 11 6 2 138.462 2 (2) 90.395 2 (5) 105.409
ndhf rpoc waxy its 10 5 324 13.513 67 (1) 10.055 16 (1) 7.441
phyB rbcl rpoc its 14 8 - - 42 (1) 1528.832 4 (3) 1972.775
phyB rbcl rpoc waxy 4 0 1 0.06 1 (0) 0.079 1 (0) 0.086
phyB rbcl waxy its 6 2 3 2.589 1 (0) 2.595 1 (0) 2.601
phyB rpoc waxy its 5 0 1 0.065 1 (0) 0.083 1 (0) 0.092
rbcl rpoc waxy its 9 5 335 21.438 87 (1) 12.244 2 (1) 9.21
ndhf phyB rbcl rpoc its 14 - - - - - - -
ndhf phyB rbcl rpoc waxy 4 0 1 0.084 1 (0) 0.076 1 (0) 0.089
ndhf phyB rbcl waxy its 6 3 135 18.246 18 (0) 8.331 18 (0) 8.029
ndhf phyB rpoc waxy its 5 0 1 0.083 1 (0) 0.101 1 (0) 0.105
ndhf rbcl rpoc waxy its 9 5 235 257.34 72 (1) 78.044 20 (1) 27.446
phyB rbcl rpoc waxy its 4 0 1 0.076 1 (0) 0.089 1 (0) 0.095
ndhf phyB rbcl rpoc waxy its 4 0 1 0.083 1 (0) 0.088 1 (0) 0.093



206 5. Studying phylogenetic networks

5.2 Rerooting trees by hybridization number

As already discussed during the introduction (cf. Sec. 1.1), when inferring phylogenetic
trees the placement of the root is often a quite problematic step. Regarding the investi-
gation of reticulation events based on such trees, a wrongly chosen location for its roots
can produce misleading results. This is due to the fact that for different locations of those
roots there exist different hybridization numbers and, consequently, different hybridization
networks potentially outlining improper evolutionary scenarios.

In order to detect such wrongly chosen root locations, one can test whether other
locations provoke smaller hybridization numbers. If this is the case and, especially, if these
hybridization numbers are clearly smaller than the one calculated for the original chosen
location, one possibly should review the entire respective anterior tree building process.
We have integrated a quite naive method for rerooting trees in respect of hybridization
numbers, which runs as follows. In a first step, all maximal common subtrees of the
respective tree set are reduced. Then, each of those trees are rerooted in all possible ways
by first removing the original root and then placing the root into one of its edges. Lastly, for
all combinations of these rerooted trees, the respective hybridization number is calculated
and, finally, the minimum of those numbers is reported. Notice that this approach is
usually impractical as the computation of hybridization numbers, which is already a quite
time consuming step, has to be applied several times. Consequently, so far our approach
can only be applied to those trees providing low computational complexities, i.e., trees
containing only few taxa as well as a small hybridization numbers.

Nevertheless, we could successfully apply this rerooting process to some gene trees of
the Poaceae dataset. These results are given in Table 5.4.



5.2 Rerooting trees by hybridization number 207

Table 5.4: Results for rerooting the trees of a grass (Poaceae) dataset.

Genes #Taxa HNumber HNumber (re-rooted)

ndhf phyB 40 8 7
ndhf rbcl 36 8 8
ndhf rpoc 34 9 9
ndhf waxy 19 6 5
phyB its 30 8 8
phyB rbcl 21 4 4
phyB rpoc 21 4 4
phyB waxy 14 3 3
rbcl rpoc 26 7 7
rbcl waxy 12 4 3
rpoc waxy 10 2 2
waxy its 15 5 5
ndhf phyB its 30 13 -
ndhf phyB rbcl 21 9 -
ndhf phyB rpoc 21 8 -
ndhf phyB waxy 14 4 3
ndhf rbcl its 28 - -
ndhf rbcl rpoc 26 11 -
ndhf rbcl waxy 12 5 4
ndhf rpoc its 31 - -
ndhf rpoc waxy 10 3 -
ndhf waxy its 15 8 -
phyB rbcl its 17 8 -
phyB rbcl rpoc 15 6 -
phyB rbcl waxy 7 2 2
phyB rpoc its 19 7 -
phyB rpoc waxy 5 0 0
phyB waxy its 10 4 4
rbcl rpoc its 24 - -
rbcl rpoc waxy 9 3 3
rbcl waxy its 11 6 5
rpoc waxy its 10 4 4
ndhf phyB rbcl its 17 - -
ndhf phyB rbcl rpoc 15 9 -
ndhf phyB rbcl waxy 7 2 -
ndhf phyB rpoc its 19 9 -
ndhf phyB rpoc waxy 5 0 0
ndhf phyB waxy its 10 5 -
ndhf rbcl rpoc its 24 - -
ndhf rbcl rpoc waxy 9 4 -
ndhf rbcl waxy its 11 6 -
ndhf rpoc waxy its 10 5 -
phyB rbcl rpoc its 14 - -
phyB rbcl rpoc waxy 4 0 0
phyB rbcl waxy its 6 2 2
phyB rpoc waxy its 5 0 0
rbcl rpoc waxy its 9 5 -
ndhf phyB rbcl rpoc its 14 - -
ndhf phyB rbcl rpoc waxy 4 0 0
ndhf phyB rbcl waxy its 6 3 -
ndhf phyB rpoc waxy its 5 0 0
ndhf rbcl rpoc waxy its 9 5 -
phyB rbcl rpoc waxy its 4 0 0
ndhf phyB rbcl rpoc waxy its 4 0 0
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5.3 Hybroscale

There exist a lot of software packages calculating specific types of rooted phylogenetic net-
works. Most of those methods, however, are just so-called proof-of-concept methods being
not very user-friendly and, thus, are in general not used in practice in order to investigate
reticulate evolution. Thus, we decided to develop our own tool — called Hybroscale —
integrating the most important algorithms of this thesis.

Hybroscale [3] is a new Java-based software package that has been developed specif-
ically for the investigation of minimum hybridization networks. It is based on a slightly
extended version of the algorithm allMulHNetworks, previously presented in Sec-
tion 4.4, that is able to deal with various kinds of input trees, i.e, a set of nonbinary
phylogenetic trees sharing an overlapping set of taxa. Its graphical user interface is similar
to Dendroscope [35], a well known software for visualizing phylogenetic trees and rooted
networks. The software package Hybroscale is freely available from

www.bio.ifi.lmu.de/softwareservices/hybroscale

and runs on all major operating systems.

5.3.1 Distinctive features

There exist some programs for visualizing rooted trees or networks and a few programs
for both computing and analyzing minimum hybridization networks embedding two rooted
binary input trees sharing a common set of taxa (e.g., Dendroscope [35]). So far, how-
ever, there exists no program for both computing and visualizing minimum hybridization
networks for an arbitrary number of rooted nonbinary input trees sharing an overlapping
set of taxa. As Hybroscale can cope with this latter requirement, it is apparently of
high interest for the research of reticulate evolution.

The program contains a command-line interface for running several applications via
scripting as well as a graphical user interface (GUI) enabling an easy handling of each
implemented function. Therefor, the main window of our GUI consists of several tab
separated Viewer, in which each of them again consists of a data table and a grid window
for selecting and visualizing trees and networks (cf. Fig. 5.4).

5.3.2 Details on the algorithm

Studying hybridization events based on a set of orthologous genes belonging to a particular
set of species, can involve three major steps, namely the computation of well-supported
phylogenetic trees for all respective genes, the inferring of minimum hybridization networks
reconciling each of those gene trees, and the interpretation of the hybridization events be-
ing displayed by each of those networks. Hybroscale is specifically designed to perform
the latter two of those three steps, which can be done by making use of the following
subroutines.

www.bio.ifi.lmu.de/softwareservices/hybroscale
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Data import. Trees or networks, given in extended newick format [15], can be loaded
from a file or simply pasted into a graphical window directly highlighting incorrect parts
such that the user can easily fix those parts if necessary. Each inserted tree or network is
then automatically added to a particular table on the left hand side.

Visualizing data. The size of the grid that is located to the right of the data tables
can be divided into an arbitrary n×m matrix, in which each field contains a single panel
so that different trees or networks can be visualized simultaneously next to each other. By
selecting a panel of the grid followed by clicking on an entry contained in a data table,
the corresponding tree or network is visualized by computing a special hierarchical layout.
Such a layout follows the Sugiyama approach [61] and is specifically designed to guarantee
a good readability. More precisely, Hybroscale runs an optimization step looking for a
layout that, on the one hand, contains no crossings between tree edges and, on the other
hand, a minimal number of crossings between reticulation edges. A detailed description of
our layout algorithm is given in Section 5.3.3.

Moreover, in order to separate several analyses, based for example on different input
trees, the user can create several distinctive Viewers each consisting of its own data tables
and its own grid which ensures a clear separation between those analyses.

Computation of hybridization networks. Hybroscale contains a fast algorithm
computing either the hybridization number or, even more sophisticated, all minimum hy-
bridization networks for an arbitrary number of rooted nonbinary phylogenetic input trees
sharing an overlapping set of taxa. Since usually there exist a large number of mathematical
possible solutions, we added an option allowing to set specific constraints, as presented in
Section 5.1.2, describing particular biological meaningful network features before running
the algorithm. Moreover, the implementation of the algorithm is parallelized, which offers
the user the opportunity to speed up its computation by running complex instances on
distributed systems. After the computation, each hybridization network is automatically
loaded into the network table of the corresponding Viewer so that it can be visualized
easily as already described above. Moreover, the user can generate an extra window con-
taining networks of special interest.

Analyzing hybridization networks. For analyzing hybridization networks it is im-
portant to visualize the embedding of each input tree. For this purpose Hybroscale can
compute a special layout, where the user can select a color for each reticulation edge that
is necessary for displaying one of the input trees. To avoid multiple colors for reticulation
edges, each edge that is necessary for displaying k input trees is split into k single edges.
Note that Hybroscale additionally offers its own file format storing the content of a
Viewer by keeping track of the mapping of the input trees to those reticulate edges that
are necessary for its embedding.

Furthermore, Hybroscale assigns each hybridization node a support value indicating
the fraction of networks containing such a node and sorts all networks after the sum of
these values in descending order. Roughly spoken, the computation of this value is done as
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follows. Given a hybridization node v of a set of networks, we first compute each subtree
rooted at v restricted to one of the input trees and then just count in how many networks
such a set consisting of all restricted subtrees occurs. A more detailed description of the
computation of those support values is given in Section 3.5.4.

Exporting trees/networks. For subsequent work, the trees and networks of a Viewer
can be easily exported in three different file formats, PDF, JPG, and PNG, or simply
stored by its corresponding newick-string.

5.3.3 Drawing Rooted Phylogenetic Networks

Following the book “Phylogenetic Networks” [33], one can distinguish between two distinc-
tive types of diagrams visualizing phylogenetic networks. Whereas in a cladogram only the
topology of a network matters, in a phylogram each edge length provides additional infor-
mation by reflecting a particular distance or a particular number of mutations. Moreover,
a cladogram can be drawn either in a triangular, rectangular, or circular manner. For each
of those different layout types, the book “Phylogenetic Networks” [33] presents different
algorithms assigning coordinates to each node such that the resulting diagram satisfies con-
straints that are important to ensure an appropriate readability of the network. Note that
the readability of a graph in general depends on the respective user. Nevertheless, there
have been assessed particular aesthetic criteria for drawing abstract graphs [20], which ob-
viously also play an important role in terms of phylogenetic networks. For instance, some
of those criteria are the following.

• Minimize the number of bends.

• Minimize the number of edge crossings.

• Minimize the number of overlapping nodes and edges.

• Maximize the smallest angle between two edges incident to the same node.

Based on these criteria, we decided to implement our own method computing a rect-
angular diagram following the steps of the Sugiyama algorithm [61], which is a well-known
approach for computing hierarchical layouts in terms of directed graphs. Therefore, the
main goal of our algorithm is to compute a plain drawing of a network providing no edge
crossings if possible and, otherwise, to calculate a layout containing a minimum number
of crossings between all reticulation edges (and no crossings between tree edges). As this
optimization problem is quite complex, we decided to use a heuristic approach, which tries
to produce as little of those edge crossings as possible and, in return, provides a good
runtime so that the layout of a network can be computed instantly.

In the following, we will briefly describe the four major steps that are conducted by
our layout algorithm.
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Step 1: Layer Assignment. First, an arbitrary embedded tree T of the network is
chosen randomly. Second, each node of the network is assigned to a layer having a mini-
mum distance to the root so that simultaneously each ancestor is located in an upper layer.
In a third step, the nodes of each layer are sorted according to the ordering in which they
occur during a depth-first traversal through T . Note that for this initial ordering of the
layers, there do not exist any crossings between all edges in T (which are shortly denoted
by ET in the following).

Step 2: Crossing Minimization. In this step, the number of crossings between
those edges that are not contained in ET is minimized by changing the order of its target
nodes within the corresponding layers in respect to its neighboring nodes. This step is
done sequentially for all layers repeatedly iterating from the first to the last one and back
again until no significant progress, in terms of the so far best ordering, is obtained. Finally,
the best ordering for each layer, not providing any edge crossings between all edges in ET
and a minimum number of crossings between all edges not in ET , is reported.

Step 3: Computation of Vertical Coordinates. The y-coordinates are assigned
such that each node within a layer gets the same coordinate and the distance between two
neighboring layers is identical by simultaneously maximizing the distance between the first
and the last layer.

Step 4: Computation of Horizontal Coordinates. The x-coordinates are assigned
such that, on the one hand, the number of bends is minimized and, on the other hand, all
nodes keep a minimum horizontal distance.

Note that the first and the second step are repeated until, within a certain number of
iterations, there is no significant progress in terms of the number of edge crossings within
the best so far computed layout.
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Figure 5.4: The main window of the program Hybroscale containing 4 different tab separated Viewers.
The selected Viewer, which is denoted as Viewer 2, consists of the following graphical elements: (left)
The two tables showing its containing trees and networks. (right) The grid divided into 4 panels showing
two trees and two networks — the right network in basic layout and the left network in a specific layout
showing the embedding of each input tree by the three different colors blue, red, and green.
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5.4 Conclusion

In this chapter, we have first presented some network constraints that can be used to
speed up the execution of specific network algorithms as well as to filter resulting sets of
hybridization networks. Two of those constraints are the MTC- and MAT-constraint deal-
ing with time-consistency as well as the AddTaxa problem. By applying these constraints
to a biological dataset, we could demonstrate the need for such constraints regarding the
practical application of network building methods. Whereas the MTC-constraint selects all
networks providing a minimum number of edges violating the time consistency constraint,
the MAT-constraint selects all networks which have to be modified in a minimal biological
way in order to establish time-consistency. We are aware of the fact that, from a biological
as well as from a mathematical point of view, there might exist more appropriate network
constraints. Thus, by presenting these very first prototypes, we hope to encourage biol-
ogists as well as mathematicians to work out their own individual constraints, which can
then be used to further improve practical application of network building methods.

In a second part, we introduced a method rerooting trees by hybridization numbers.
However, as this approach acts in a rather naive way, it is only applicable to input trees of
rather low computational complexity. Nevertheless, it is the first approach enabling this
functionality to more than two input trees as well as to nonbinary input trees.

Lastly, we have presented our software package Hybroscale that can be used for com-
puting and studying a set of minimum hybridization networks displaying multiple rooted
nonbinary phylogenetic trees sharing an overlapping set of taxa. As this program provides
a graphical user interface, it guarantees an easy interactive handling including importing
trees as well as representing and filtering reported networks. More specifically, the user
can highlight the input trees that are embedded in each of those calculated networks and,
additionally, by applying particular network constraints via an SQL-type language, the
user can specifically select particular kinds of networks, which is an important feature for
testing particular hypotheses. Consequently, Hybroscale is more than just a so-called
proof-of-concept method ensuring the practical application of our developed algorithms
and, thus, makes them available for further investigations of reticulate evolution.
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Conclusion and outlook

In this thesis, we have presented several methods calculating particular types of rooted phy-
logenetic networks, namely so-called minimum hybridization networks, for a set consisting
of rooted phylogenetic trees. As those networks explicitly indicate reticulation events, e.g.,
horizontal gene transfer and hybridization, these kind of networks can be directly used for
studying reticulate evolution. So far most of our underlying algorithms are novel as, on
the one hand, they can be applied to several input trees containing nonbinary nodes and,
on the other hand, they guarantee the computation of all of those networks that are poten-
tially relevant from a biological point of view. More precisely, until now there neither exist
any methods aiming at calculating all minimum hybridization networks nor there exist any
methods calculating minimum hybridization networks for more than two nonbinary trees.

Calculating all minimum hybridization networks is of great importance as, once having
calculated all of these networks, one can then check which of those networks constitute
plausible biological hypotheses. Moreover, since so far there only exist few methods fo-
cusing on calculating more than one possible solution, with our work we hope to attract
interest in developing more sophisticated ways of describing specific topological network
constraints. This means, in particular, that with this work we want to point out that net-
works are not free of interpretive challenges and it is now time to think about techniques
facilitating this interpretation step (e.g., by using a specific SQL-type language).

As demonstrated here by several simulation studies, an approach computing minimum
hybridization networks is often impractical for complex biological problems, i.e., several
highly discordant trees providing a large number of taxa. Of course this limitation is
problematic even though complex trees usually provoke complex networks that are hard to
interpret (and, thus, are potentially meaningless). Nevertheless, a possible way of getting
such complex data under control is again the application of network constraints. This
is due to the fact that through well-defined constraints the space containing all poten-
tial solutions usually shrinks, which automatically facilitates the search after minimum
hybridization networks and, thus, can improve the practical runtime of network building
methods (especially of those providing branch-and-bound approaches).

Generally speaking, our methods for calculating minimum hybridization networks, can
be distinguished in the properties the respective input has to fulfill. More specifically,
we have developed methods for two binary input trees, for several binary input trees, as
well as for several nonbinary input trees. For each of those methods, however, we could
reuse the same approach, which means that we could extend our initial approach for two
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binary trees on the other more general inputs. This approach, beginning with one input
tree, inserts the other trees step-wise by using the concept of maximum acyclic agreement
forests. Notice that one reason why our methods working on more than two input trees are
novel is that until now it has not been clear that maximum acyclic agreement forests can
be used for that purpose. Moreover, as indicated in this thesis, by allowing trees providing
multifurcating nodes further complicates the problem, since now additionally refinements
of these nodes have to be taken into account requiring further sophisticated combinatorial
subroutines.

Since through our approach networks are constructed by step-wise inserting all input
trees, our methods are quite sensitive regarding the number of those trees. This means, in
particular, that for increasing numbers of input trees our methods tend to become more
and more impractical. Notice, however, that the computational complexity of an input
does not only depend on its number of trees, but additionally on the size of its taxa set as
well as on its underlying hybridization number. Nevertheless, there exist other methods for
two input trees, e.g., the method TerminusEst [49], which seem to have the potential to
be less sensitive in respect to the number of input trees. It still remains to show, however,
that these methods can be extended in a way enabling the computation of all minimum
hybridization networks for two and, especially, for more than two input trees.

Finally, we like to note that we have spent much time and effort in developing a user-
friendly tool — called Hybroscale — enabling an easy application of our developed
algorithms calculating minimum hybridization networks for a set of rooted (nonbinary)
phylogenetic trees. As so far there do not exist any comparable software packages providing
such a functionality, we are convinced that Hybroscale will make its contribution in
broadening network methodology so that in near future more and more biologists will
discover the advantages of modern network thinking.
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