Alterseffekt der zentralen und peripheren Autofluoreszenz am Augenhintergrund

Dissertation
zum Erwerb des Doktorgrades der Medizin
an der Medizinischen Fakultät der
Ludwig-Maximilians-Universität München

vorgelegt von
Martin Dreßler
aus Weimar

- 2016 -
Mit Genehmigung der Medizinischen Fakultät
der Universität München

Berichterstatter: Prof. Dr. Aljoscha Steffen Neubauer

Mitberichterstatter: Prof. Dr. Dr. Bernhard Lachenmayr

Mitbetreuung durch den promovierten Mitarbeiter: PD Dr. med. Lukas Reznicek

Dekan: Prof. Dr. med. dent. Reinhard Hickel

Tag der mündlichen Prüfung: 12.05.2016
Inhaltsverzeichnis

1. FRAGENSTELLUNG .. 1

2. GRUNDLAGEN .. 3
 2.1 AUFBAU UND FUNKTION DES AUGENHINTERGRUNDDES 3
 2.2 ALTERUNGSFÄNGE DES AUGENHINTERGRUND ... 5
 2.3 AUTOFLUORESZENZ ... 6
 2.4 AMD: ENTSTEHUNG, DIAGNOSTIK UND THERAPIE ... 8
 2.5 NEUE BEMÜHUNGEN ZUR FRÜHDIAGNOSTIK ... 11
 2.6 AUGENHINTERGRUND UND KARDIOVASKULÄRE RISIKOFÄKTOREN 12

3. MATERIAL UND METHODEN ... 15
 3.1 PROBANDEN .. 15
 3.1.1 Einschlusskriterien .. 15
 3.1.2 Ablauf .. 16
 3.1.3 Fragebogen .. 16
 3.2 OPTOMAP IMAGING .. 16
 3.2.1 Entwicklung und allgemeine Anwendung .. 17
 3.2.2 Prinzipien der Laseruntersuchung .. 17
 3.2.3 Prinzipien der Autofluoreszenzmessung ... 19
 3.3 OCT-UNTERSUCHUNG ... 20
 3.3.1 Entwicklung und allgemeine Anwendung .. 21
 3.3.2 Prinzipien der OCT ... 21
 3.4 AUSSERUNG ... 23
 3.4.1 Bildanalyse .. 24
 3.4.2 Auswertung Fragebogen .. 27
 3.4.3 Statistische Auswertung .. 27

4. ERGEBNISSE .. 28
 4.1 VERTREIBUNG DER AF AM FUNDUS .. 28
 4.1.1 Auswertung der Sektoren 1-8 ... 28
 4.1.2 Auswertung des Gesamtfeldes und der Papille ... 31
 4.2 KORRELATION DER AUTOFLUORESZENZ MIT DEM ALTER 32
 Lineare und quadratische Korrelation zwischen AF und Alter 32
 Vergleich der FAF für die Gruppe unter unter und über 66 Jahre 41
 Die Differenz aus zentraler und peripherer FAF und Korrelation der Papille 43
 4.3 DIE KORRELATION DER FAF MIT KARDIOVASKULÄREN RISIKOFÄKTOREN 45

5. DISKUSSION ... 48

6. ZUSAMMENFASSUNG ... 60

ABBILDUNGSPRÄZISCHNIS ... 64
Abkürzungsverzeichnis

AF Autofluoreszenz
AMD Altersbedingte Makuladegeneration
AS Aminosäure(n)
BMI Body-Mass-Index
Bzw. Beziehungsweise
CNV choroidale Neovaskularisationen
CV kardiovaskulär
CVE kardiovaskuläre Erkrankung
d.h. das heißt
DNS Desoxyribonukleinsäure
FAF Fundus-Autofluoreszenz
HNE Hydroxynonenenal
KHK koronare Herzkrankheit
LF Lipofuszin
LMU Ludwig-Maximilians-Universität
MDA Malondialdehyd
OCT Optische Kohärenz Tomographie
PDT Photodynamische Therapie
POS Photoreceptor Outer Segments (Photorezeptoraußensegmente)
RF Risikofaktor(en)
ROS Reactive Oxygen Species (reaktive Sauerstoffverbindungen)
SD Standard Deviation (Standardabweichung)
SD-OCT Spectral Domain OCT
SLO Scanning-Laser-Ophthalmoscope
u.a. unter anderem
v.a. vor allem
VEGF Vascular Endothelial Growth Factor (vaskulärer endothelialer Wachstumsfaktor)
Z.n. Zustand nach
1. Fragestellung

Die Messung der Fundusautofluoreszenz (FAF) kann in der Augenheilkunde ergänzend genutzt werden, um die altersbedingte Makuladegeneration (AMD) zu diagnostizieren, denn diese geht in der Regel mit Veränderungen des FAF-Signals einher\(^1,2\). Einige Studien liefern Hinweise dafür, dass eine Erhöhung der FAF der klinischen Manifestation einer AMD sogar vorausgehen kann\(^3\). Dies lässt die Erfassung der Fundusautofluoreszenz (AF) als wertvolle Ergänzung für die Beurteilung von Alterungsprozessen der Netzhaut erscheinen. Möglicherweise könnte die Früherkennung degenerativer Erkrankungen wie der AMD hierdurch in Zukunft noch verbessert werden. Dies wäre ein wichtiger Beitrag für den Erfolg neuer Therapieansätze, wie etwa dem Einsatz von VEGF-Hemmern.

Dies macht das „Optomap 200Tx“ geeignet, um Autofluoreszenzeigenschaften der Netzhautperipherie zu erfassen und mit denen der Makula zu vergleichen.

Bisher ist weitgehend ungeklärt, wie sehr Alterungsprozesse der Netzhaut nicht nur den zentralen Bereich der Makula, sondern auch die Netzhautperipherie betreffen und wie sich zentrale und periphere FAF zueinander verhalten. Es gibt jedoch erste Hinweise dafür, dass auch die periphere FAF bei AMD-Patienten erhöht sein kann. Dies könnte bedeuten, dass deren Erfassung für die retinale Diagnostik von Nutzen werden könnte.

2. Grundlagen

2.1 Aufbau und Funktion des Augenhintergrundes

Das Auge ist mechanistisch gesehen am ehesten mit einem Fotoapparat oder einer Kamera vergleichbar. Während die vorderen Abschnitte (Kornea und Linse) der Bündelung der Lichtstrahlen dienen, enthält der hintere Augenabschnitt mit der Netzhaut den eigentlichen Ort, wo Lichtreize aufgenommen, weiterverarbeitet und an die Sehrinde des Gehirns übermittelt werden. Somit kann die Netzhaut (Retina) in einem gewissen Sinne mit dem Fotofilm einer Kamera verglichen werden.

Die Retina ist Entwicklungsgeschichtlich ein vorgeschobener Teil des Gehirns und ist komplex aus mehreren Schichten aufgebaut. Sie enthält Ganglienzellen, bipolare Zellen, amakrine Zellen und Horizontalzellen, die der Signalverarbeitung dienen; Stäbchen und Zapfen, die als Fotorezeptoren der Lichtaufnahme dienen; Müllerzellen, die lichtleitende Funktion besitzen und als Gliazellen der Homöostase dienen, sowie Pigmentepithelzellen, die neben der Lichtabsorption vielfältige Aufgaben übernehmen, wie die Regenerierung von 11cis-Retinal (ein Aldehyd des Vitamin A) und die Entsorgung abgestoßener äußerer Scheibchen der Photorezeptoren. Die Axone der Ganglienzellen bilden den N. opticus.
Richtung Peripherie kontinuierlich abzunehmen. Die Netzhaut besitzt etwa 6 Millionen Zapfen und 120 Millionen Stäbchen11.

2.2 Alterungsprozesse am Augenhintergrund

Mit dem Älterwerden lässt auch das Sehvermögen natürlicherweise nach. Die Linse wird trüber und büßt an Elastizität ein, so dass die meisten Menschen über 50 Jahren eine Altersweitsehschärfe (Presbyopie) entwickeln13. Doch auch am Augenhintergrund selbst finden charakteristische Altersveränderungen statt. So konnte gezeigt werden, dass der N. opticus ca. 4000 bis 5400 Nervenfasern pro Jahr verliert14,15 und dass die peripapillären und perifovealen Gefäße ab einem Alter von 40 – 55 Jahren in ihrer Anzahl kontinuierlich abnehmen16,17. Ein wesentlicher Alterungsprozess betrifft das retinale Pigmentepithel (RPE). Dort Akkumulieren im Verlauf des Lebens intrazelluläre Lipofuszingranula18,19. Ansammlungen dieser Granula im RPE können als ein Kennzeichen des Alterns betrachtet werden20,21,22. Lipofuszin (LF) wird deshalb auch als Alterspigment bezeichnet. Es wird in vielen Zellen des Körpers gebildet, besonders aber in stoffwechselaktiven, postmitotischen Zellen, wie Kardiomyozyten, bestimmten Neuronen und dem RPE. Es ist ein gelbbrauner Komplex aus oxidierten Proteinen und Lipiden, die in der Zelle nicht mehr abgebaut werden können. In vielen Zellen entsteht LF als Endprodukt der Autolyse verbraucherter Zellorganellen. Für das RPE hingegen ist die Phagozytose der Photoreceptoraußensegmente (POS) die Hauptquelle für die intrazelluläre Ansammlung von Lipofuszin23,24.

Die lebenslange Licht-Exposition ist für die permanente Peroxidation von mehrfach ungesättigten Fettsäuren in den Membranen der Photorezeptoren verantwortlich. Die oxidierten Fettsäuren sind sehr reaktiv und führen zu intrazellulären Protein-Veränderungen25. Durch Peroxidationsreaktionsketten entstehen toxische Endprodukte wie Malondialdehyd (MDA) und Hydroxynonenal (HNE). Diese sind reaktive elektrophile Aldehyde und erzeugen wiederum oxidativen Stress für die Zelle. Sie sind leicht dazu fähig, kovalente Verbindungen mit Proteinen einzugehen, indem sie mit deren Cystein-, Lysin- und Histidinresten reagieren. Dadurch verändern sie die Proteinstruktur und können deren Funktion behindern26,27. Deshalb ist die Phagozytose der abgestoßenen POS, mit ihrem hohen Anteil an MDA und HNE, eine
Hauptquelle für Materialresistenz in den Lysosomen des RPE, die schließlich zur Bildung von Lipofuszingranula führt28.

Es gibt Hinweise dafür, dass LF die normalen Zell-Funktionen im RPE hemmt und selbst zu einer Quelle für oxidativen Stress im RPE wird29,30,31. So konnte von einer Arbeitsgruppe um Florian Schutt im Jahr 2003 gezeigt werden, dass ein Großteil der Proteine in Lipofuszingranula des RPE durch kovalente Verbindungen mit MDA oder HNA modifiziert war32. Weiterhin konnte auch gezeigt werden, dass in LF-Ansammlungen durch Photoinduktion Superoxidanionen und Wasserstoffperoxid generiert werden. Diese sind reaktive Sauerstoffspezies (ROS) und können ungesättigte Fettsäuren peroxidieren. Dadurch ändert sich die Fluidität biologischer Membranen und die Aktivität der membranständigen Transportproteine. ROS können zudem die Peptidketten in Proteinen aufbrechen und mit den AS-Seitenketten reagieren. Viele dieser Veränderungen können in der Zelle nicht mehr rückgängig gemacht werden und der Anteil der modifizierten Proteine steigt auf diese Weise mit dem Alter an33,34,35. Die Generierung der ROS in LF ist auch von der Wellenlänge des einfallenden Lichtes abhängig. Besonders der Einfall von blauem Licht in einer sauerstoffreichen Umgebung begünstigt unter Anwesenheit von LF die Entstehung von ROS und MDA36. Es wird vermutet, dass diese Prozesse eine wichtige Rolle bei der Entwicklung der RPE-Dysfunktion spielen und letztlich zu DNS-Schäden und dem Zelltod führen37,38. Lipofuszin akkumuliert im RPE im Laufe des Lebens intrazellulär und kann schließlich bis zu 19\% des Zytoplasmavolumens bei über 80-Jährigen ausmachen39.

2.3 Autofluoreszenz

wiederum als abgestrahltes Licht sichtbar wird. Dieses ist in der Regel langwelliger als das Licht, durch welches die Fluorophore angeregt werden\(^{40}\).

Auch der Fundus des Auges verhält sich autofluoreszent und re-emittiert Licht zwischen 500 – 750 nm mit einem Maximum bei 590 – 630 nm\(^{41}\). Für die Induktion der AF wurde von Delori et al zunächst Laserlicht einer Wellenlänge von 510 nm empfohlen, da kurzwelliges Licht in stärkerem Ausmaß vom Fundus absorbiert wird\(^{42}\). Die Autofluoreszenz zeigt ein charakteristisches Verteilungsmuster am Fundus. So ist sie innerhalb der Fovea minimal und 7° bis 15° entfernt von der Fovea im paravovealen Bereich am stärksten ausgeprägt, um dann Richtung Peripherie wieder abzunehmen. Somit entspricht die topografische Verteilung der Fundus-AF der Verteilung der Stäbchen auf der Netzhaut. Die in vivo AF-Spektra des Augenfundus sind in Übereinstimmung mit denen, die ex vivo im RPE gemessen werden konnten. Das Spektrum der FAF, seine Korrelation mit dem Alter und seine topografische Verteilung lässt den Rückschluss zu, dass Lipofuszin hauptverantwortlich für die FAF des Auges sein muss\(^{43,44,45}\). LF re-emittiert Licht im Bereich von 500 – 640 nm (Gelb-Orange), wenn es mit UV-Licht oder blauem Licht angeregt wird\(^{45,46,47}\).

Ein Bestandteil des LF im RPE ist das Di-Retinoid A2E\(^{48}\), welches als wichtigstes Fluorophore in den LF-Aggregaten gilt. Der Name A2E leitet sich davon ab, dass dieses Molekül aus 2 Vitamin-A-Aldehyden und 1 Ethanolamin synthetisiert werden kann. A2E besitzt 2 Pyridin-Ringe und entsteht ursprünglich in den Außensegmenten der Photorezeptoren\(^{49,50}\).

Spektrophotometrische Messungen haben gezeigt, dass die Autofluoreszenz im Alter von 65 Jahren 2,8x größer ist, als im Alter von 25 Jahren.\cite{55} Die Tatsache, dass die FAF ab einem Alter von 70 Jahren tendenziell wieder abnimmt, kann den progredienten Verlust an RPE durch Apoptosevorgänge widerspiegeln.\cite{56} Denn mit dem Verlust des RPE geht auch der Verlust des intrazellulären LF einher.

2.4 AMD: Entstehung, Diagnostik und Therapie

muss in Zukunft mit einer zunehmenden gesamtgesellschaftlichen Bedeutung der AMD gerechnet werden

später einen grauen Schatten im zentralen Gesichtsfeld wahr. Dadurch fällt das Erkennen von Gesichtern schwer. Die Sehschärfe ist deutlich reduziert, was u.a. das Lesen stark beeinträchtigt. Bei der feuchten AMD kann das Sehvermögen auch plötzlich durch eine zentrale Einblutung absinken, die einen ophthalmologischen Notfall darstellt.\(^{65}\)

Die Diagnose „AMD“ kann durch die Klinik und verschiedene Untersuchungen, wie den Amsler-Gitter-Test, die Ophthalmoskopie, die Fluoreszenzangiographie und die optische Kohärenztomographie gestellt werden. Ziel der Therapie ist es, Komplikationen zu vermeiden und das Fortschreiten der Erkrankung zu verhindern oder zu verlangsamen. Für die Behandlung der feuchten Makuladegeneration haben sich die therapeutischen Möglichkeiten seit der Einführung von VEGF-Inhibitoren deutlich verbessert. VEGF ist ein Botenstoff, dessen Freisetzung hauptverantwortlich für das Wachstum der choroidalen Neovaskularisationen ist. Zudem fördert VEGF die kapillare Membranpermeabilität und begünstigt so die Entstehung subretinaler Ödeme.\(^{66}\) VEGF-Inhibitoren sind monoklonale Antikörper, die extrazelluläres VEGF binden und dadurch die Ödembildung und Neoangiogenese stoppen können. Allerdings müssen sie in der akuten Phase der Neovaskularisation angewendet werden und in der Regel 8x intravitreal im Abstand von jeweils 4-6 Wochen injiziert werden. Dieses vorgehen kann für den Patienten sehr unangenehm sein, ist jedoch notwendig um eine hohe Konzentration an der Netzhaut zu erreichen und systemische Nebenwirkungen zu vermeiden. Ein derzeit eingesetzter VEGF-Inhibitor mit Zulassung für die Therapie der feuchten AMD ist Ranibizumab (Lucentis®). In einigen Fällen kann durch die Anti-VEGF-Therapie das Sehvermögen erhalten oder sogar verbessert werden. Andere Therapieoptionen wie die PDT, Laserkoagulation oder subretinale Chirurgie dienen der Verödung/Entfernung der CNV und sind teils speziellen Fragestellungen vorbehalten.\(^{65,67,68}\) Für die Behandlung der trockenen AMD sind bis heute keine effektiven Therapiemaßnahmen bekannt, da sich Altersveränderungen nicht umkehren lassen. Es gibt lediglich Empfehlungen, die ein Voranschreiten der trockenen AMD bremsen sollen. Dazu zählt das Rauchen aufzuhören, ein guter Sonnenschutz in Form von hochwertigen Sonnenbrillen und die Einnahme von Nahrungsergänzungsmitteln.
2.5 Neue Bemühungen zur Frühdagnostik

Die neuen Therapiemöglichkeiten tragen zu einer besseren Prognose für die feuchte Form der AMD bei. Dies bedeutet aber auch, dass erhöhte Ansprüche an eine gute Diagnostik gestellt werden müssen, denn zum einen ist der Therapieerfolg entscheidend davon abhängig, wie früh AMD-typische Veränderungen erkannt werden und zum anderen werden regelmäßige Therapiekontrollen im Verlauf der Behandlung notwendig. Dieser Bedarf hat zur kontinuierlichen Verbesserung vieler Diagnoseverfahren geführt. Ein neuer Ansatz in der Früherkennung der AMD könnte die Beurteilung der Fundusautofluoreszenz sein.

LF ist hauptverantwortlich für die AF des Augenfundus und akkumuliert im Verlauf des Älterwerdens innerhalb der Netzhaut (siehe Kapitel 2.3 „Autofluoreszenz“). Es konnte gezeigt werden, dass Patienten mit bekannter Makuladegeneration eine signifikant stärkere LF-Akkumulation zeigen, als gesunde Kontrollpersonen in der gleichen Altersgruppe. Von noch größerer Bedeutung kann jedoch sein, dass es Hinweise darauf gibt, dass erhöhte LF-Anreicherungen auch der Manifestation einer AMD vorangehen können. Dies würde bedeuten, dass die Messung der FAF nützlich sein könnte, Risikopatienten für die Entwicklung einer AMD zu identifizieren, noch bevor morphologische Korrelate der AMD, wie Drusen oder Pigmentverschiebungen auftreten.

In bisherigen Studien wurde der Focus der FAF-Messungen auf den hinteren Pol gelegt. Mit der Entwicklung des Weitwinkel-Scanning-Laser-Ophthalmoskop (SLO) durch die Firma Optos ergibt sich jetzt auch die Möglichkeit, die Autofluoreszenz der Netzhautperipherie in die Messungen mit einzubeziehen, wie es z.B. durch Reznicek et al. geschehen ist. Dies könnte die Aussagekraft der FAF in Zukunft noch verstärken, wenn man zeigen kann, dass sich degenerative Prozesse im Bereich der Makula zu einem gewissen Grad auch in Veränderungen der Peripherie widerspiegeln.

Zusätzlich können bei Patienten mit bereits bestehender AMD verschiedene Autofluoreszenzmuster identifiziert werden, die mit dem klinischen Stadium der AMD in Verbindung stehen und somit von prognostischem Nutzen sein können.
sind Gebiete der geographischen Atrophie häufig von Gebieten mit erhöhter AF umgeben, was wiederum deren bevorstehenden Zelltod ankündigen kann75,76.

2.6 Augenhintergrund und kardiovaskuläre Risikofaktoren

3. Material und Methoden

3.1 Probanden

3.1.1 Einschlusskriterien
Ziel dieser Studie ist es gewesen, Probanden ab einem Alter von 50 Jahren zu erfassen, die aus dem Normalkollektiv der Bevölkerung stammen und keine bekannte AMD aufweisen. Eine Katarakt führte hingegen nicht zwangsläufig zum Ausschluss aus der Studie, sofern sie nicht so stark ausgeprägt war, dass sie die Darstellbarkeit der Retina beeinträchtigte. Die Papille und die Makula mussten hierbei noch deutlich am Augenhintergrund zu erkennen sein. Pigmentierte Veränderungen, wie Aderhautnävi oder maligne Melanome, führten dann nicht zum Ausschluss aus der Studie, wenn sie nicht das Auswertungsgebiet berührten.

Die folgende Grafik zeigt die Altersverteilung in unserem Probandenkollektiv:

Abbildung 3: Anzahl und Altersverteilung der Probanden. Altersangabe in Jahren
3.1.2 Ablauf

3.1.3 Fragebogen

3.2 Optomap Imaging

In der Augenklinik der LMU wird ein Weitwinkel-Scanning-Laser-Ophthalmoskop der Firma Optos für die Aufnahme des Augenhintergrundes verwendet. Bei dem Modell handelt es sich um das Optomap 200Tx, mit welchem Farbbilder und Autofluoreszenzaufnahmen erstellt werden können. Das Optomap bildet ein größeres Gebiet der peripheren Netzhaut ab als andere Geräte für die retinale Bildgebung und
wird häufig für Screening-Zwecke eingesetzt84. Durch die Weitwinkelaufnahmethotechnik ist dieses Gerät besonders geeignet, um einen Vergleich der Peripherie mit dem Zentrum des Augenhintergrundes vorzunehmen.

3.2.1 Entwicklung und allgemeine Anwendung

Während mit der Untersuchung des Augenhintergrunds durch einen gewöhnlichen Augenspiegel nur ein Bereich von etwa 30° einsehbar ist, ist durch den Einsatz spezieller Spiegeltechniken im Optomap 200Tx ein Bereich von 200° und damit ca. 82% des Augenhintergrundes einsehbar4.

3.2.2 Prinzipien der Laseruntersuchung

Das Optomap 200Tx besitzt einen grünen Niedrigenergie laser der Wellenlänge 532 nm und einen roten Laser der Wellenlänge 633 nm. Während der grüne Laser an der Grenzfläche zwischen Retina und RPE reflektiert wird und somit v.a. die sensorische Retina darstellt, dringt der rote Laser tiefer in den Augenhintergrund ein
und wird erst an der Grenzfläche zwischen Choroidea und Sklera vollständig reflektiert. Er ist somit geeignet um RPE und Choroidea darzustellen85. Zusammen kann durch die Kombination des Grün- und Rot-Lasers der Augenhintergrund semirealistisch dargestellt werden (Zwei-Laser-Wellenlängen-Untersuchung).

Das Optomap 200Tx benötigt für die Erstellung eines Bildes weniger als 1 Sekunde, so dass die Bilder in der Regel verwackelungsfrei entstehen. Die Aufnahmen können in Myosis erfolgen, selbst durch enge Pupillen bis zu einem Durchmesser von 2mm hindurch. Die optische Auflösung liegt bei 14 µm4. Das Optomap 200Tx erzeugt hochauflösende Bilder mit 3900X3072 Pixeln/Scann und 17-21 Pixeln/Grad. Mit einer speziellen dazugehörigen Software (Vantage V2) kann der Benutzer tief in das Bild hineinzoomen um auch kleine Läsionen besser zu beurteilen86.
Abbildung 7: Bildgebung mit dem Optomap 200Tx, semirealistische Darstellung des Augenhintergrundes, aus eigener Aufnahme

3.2.3 Prinzipien der Autofluoreszenzmessung

Werden Lipofuszinablagerungen in der Retina durch Laserlicht angeregt, so fangen sie an zu fluoreszieren, d.h. sie emittieren ihrerseits wiederum Licht eines bestimmten Spektrums. Lipofuszin akkumuliert mit dem Alter in der Retina und ist u.a. mit der Entstehung der AMD assoziiert\(^87\). Es konnte gezeigt werden, dass die AF in Gebieten mit RPE-Dysfunktion erhöht ist, während sie in Gebieten mit bereits stattgefundem Verlust der Photorezeptoren deutlich erniedrigt ist\(^88\).

LF akkumuliert vor dem Untergang der Zellen, hat jedoch kein sichtbares Korrelat in der gewöhnlichen Fundusaufnahme. Durch die Messung der Autofluoreszenz gibt es hingegen die Möglichkeit, diese metabolischen Veränderungen der Netzhaut sichtbar zu machen. Während FAF-Veränderungen bereits für Frühformen der AMD gezeigt wurden, konnten sie nicht notwendigerweise in Zusammenhang mit dem Auftreten von Drusen gebracht werden\(^89\). Dennoch kann die FAF-Bildgebung detaillierte Informationen über die Verteilung von Lipofuszin im RPE liefern und erlaubt die Dokumentation von Bereichen mit RPE-Verlust bei Patienten die von degenerativen Netzhauterkrankungen betroffen sind\(^42,90,91\).
Für das Optomap 200Tx wird zur Anregung der Fundusautofluoreszenz grünes Laserlicht der Wellenlänge 532 nm verwendet. Es konnte gezeigt werden, dass dieses gegenüber dem in anderen Geräten verwendeten blauen Laserlicht (488 nm) den Vorteil hat, dass es eine höhere Spezifität für Lipofuszin besitzt und somit weniger Interferenz durch die Kollagen-induzierte-Autofluoreszenz entsteht. Auch wird der grüne Laser im Bereich der Makula nicht wie der blaue Laser vom Makulapigment absorbiert, was eine bessere Darstellung von zentralen Läsionen ermöglicht und vor einer ÜberbewERTung schützt. Durch den Breitband-Detektor des Optomap 200Tx wird das emittierte FAF-Signal zwischen 570 und 780 nm gemessen, was dem AF-Spektrum von Lipofuszin entspricht und seine Intensität in unterschiedlichen Graustufen dargestellt. Niedrige Grauwerte (dunkel) entsprechen niedrigen FAF-Intensitäten, hohe Grauwerte (hell) entsprechen hohen FAF-Intensitäten.

Abbildung 8: Bildgebung mit dem Optomap 200Tx, Autofluoreszenzaufnahme des gleichen Auges wie in Abb. 7

3.3 OCT-Untersuchung

Die Durchführung einer optischen Kohärenztomographie (OCT) ist für die Fragestellung nicht zwingend erforderlich gewesen. Dennoch wurde versucht bei möglichst vielen Probanden im Anschluss an die Bildgebung durch das SLO eine
zusätzliche OCT-Untersuchung beider Augen durchzuführen. Hierdurch sollte die Sicherheit erhöht werden, mit der Frühstadien von bereits bestehender AMD ausgeschlossen werden können. Trotz der hohen Auslastung des OCT-Scanners im klinischen Routine-Betrieb war es mir möglich bei 45% der Probanden zusätzlich eine OCT durchzuführen und so Netzhautpathologien sicher auszuschließen.

3.3.1 Entwicklung und allgemeine Anwendung

In der Augenklinik der LMU wird ein OCT-Scanner der Firma Heidelberg verwendet. Es handelt sich um das „Spectralis“-Modell.

3.3.2 Prinzipien der OCT

Das Grundprinzip in der OCT beruht auf der so genannten „Niedrigkohärenz-Interferenzmessung“. Durch extrem stark gepulste Laser im Femtosekunden-Bereich kann Licht mit Interferenzeigenschaften im µm-Bereich erzeugt werden, während Interferenz bei normalem Licht nur auf Strecken im Bereich von Metern auftritt. Das Messprinzip der OCT beruht darauf, dass dieses gepulste Laserlicht an Strukturen der Retina reflektiert wird und in Interferenz mit Licht tritt, dass an einem Referenzarm durch einen Spiegel reflektiert wurde. Die Stärke der Interferenz wird im Scanner registriert. Gebiete der Netzhaut, die viel Licht reflektieren erzeugen größere Interferenz als solche, die wenig Licht reflektieren. Auf diese Weise kann eine Schichtaufnahme der Netzhaut erstellt werden97,98. Durch die OCT wird der
Augenhintergrund am hinteren Pol durch einen Laser im Nah-Infrarot-Bereich abgetastet, was eine Schädigung der Retina durch das geringe Energieniveau verhindert.99 Die Auflösung der OCT-Bilder ist höher, als die von Ultraschallbildern, weil es auf Licht anstelle von Schallwellen basiert, und dieses durch deutlich niedrigere Wellenlängen gekennzeichnet ist. Mit der OCT ist gewissermaßen eine Art der „optischen in vivo Histologie“101 möglich. Mit keiner anderen nicht-invasiven Bildgebungstechnik können derzeit höhere Auflösungen erzielt werden100. Die Technik kann biologisches Gewebe aber nur bis zu einer Eindringtiefe von 1-2 mm unter der Oberfläche darstellen, da in größeren Tiefen das reflektierte Licht auf seinem Weg zurück zu stark gestreut wird, um es noch verrechnen zu können.

Das in dieser Studie benutzte Spectralis-OCT der Firma Heidelberg verwendet die so genannte Spektral-Domänen-Technik für die Untersuchung. Hierfür werden die verschiedenen Wellenlängen des reflektierten Lichtes durch lichtbrechende Elemente auf einen Detektorstreifen verteilt, wodurch die Informationen des gesamten vorhandenen Lichtspektrums genutzt werden können. Diese Technik macht die OCT-Aufnahme schneller.

Im Spectralis wird die optische Kohärenztomographie zusätzlich mit einer Fundusbildgebung durch ein konfokales SLO kombiniert. In einem Modus der

Abbildung 10: Optische Kohärenztomographie. Schnittbildgebung durch die Makula. (Spectralis-OCT, Heidelberg Engineering, Heidelberg, Deutschland). Eigene Aufnahme

Die OCT erlaubt eine detaillierte Beurteilung der retinalen Binnenstruktur am hinteren Pol, während das Weitwinkel-SLO „Optomap 200 Tx“ den größten Teil des Fundus bis weit in die Peripherie hinein darstellen kann. Derzeit wird bei Visusstörungen unklarer Genese der kombinierte Einsatz eines SLO und der OCT empfohlen¹.

3.4 Auswertung

Insgesamt haben 203 Probanden an dieser Studie teilgenommen. Ursprünglich konnten 358 Augen mit dem Optomap 200Tx untersucht werden (die Aufnahme beider Augen war nicht immer bei allen Probanden möglich). Von jedem Auge wurden Aufnahmen im Farbmodus und im AF-Modus durchgeführt, von denen jeweils die beste Aufnahme gespeichert wurde. Von insgesamt 161 Augen konnten zusätzliche OCT-Aufnahmen angefertigt werden, was einem Anteil von 45% entspricht. Nach dem Begutachten der Bilder wurden 33 Aufnahmen wegen schlechter Bildqualität verworfen, so dass noch 325 Fundusbilder (jeweils in Farb- und AF-Aufnahme) übrig blieben. Diese wurden eingehend auf Kennzeichen für eine
bestehende AMD untersucht, wie Pigmentverschiebungen und Drusen am hinteren Pol. Für die Einstufung wurde die semirealistische Farbaufnahme und das AF-Bild des Optomap 200Tx verwendet und sofern vorhanden zusätzlich die OCT-Bildgebung. Bei einfach zu beurteilenden Bildern (Aufnahmen ohne jegliche Pathologie oder mit ausgeprägter AMD) wurde die Zuordnung durch den Doktoranden übernommen, bei allen schwieriger zu beurteilenden Bildern erfolgte die Zuordnung durch Dr. med. Lukas Reznicek. Auf diese Weise konnten von den 325 Fundusaufnahmen 44 Augen mit einer Frühform der AMD diagnostiziert werden, so dass noch 281 Fundusbilder im AF-Modus übrig blieben, die der Auswertung zugeführt werden konnten.

3.4.1 Bildanalyse

Abbildung 11: Autofluoreszenz-Bildgebung am Augenhintergrund, Unterteilung in Felder durch ein Gitternetz (Grid), gleiches Auge wie in Abb. 7 und 8

Abbildung 12: Augenhintergrund, Autofluoreszenzaufnahme, Ausmessung eines großen ellipsoiden Feldes (Gesamtfeld)
3.4.2 Auswertung Fragebogen

\[\text{BMI} = \frac{\text{Körpergewicht [kg]}}{(\text{Größe [m]})^2} \]

3.4.3 Statistische Auswertung

Für die statistische Analyse der Rohdaten wurde das Programm SPSS 20.0 (SPSS Inc., Chicago, IL, USA) verwendet. Verglichen wurden die AF-Mittelwerte der zentralen und peripheren Felder miteinander. Die AF-Werte wurden weiterhin in Abhängigkeit von Alter und kardiovaskulären Risikofaktoren graphisch dargestellt und einer Regressionsanalyse unterzogen. Ein p-Wert von < 0,05 wurde als statistisch signifikant betrachtet.
4. Ergebnisse

4.1 Verteilung der AF am Fundus

4.1.1 Auswertung der Sektoren 1-8

<table>
<thead>
<tr>
<th>Bereich</th>
<th>Sektor</th>
<th>mittlere Intensität</th>
<th>Standard-Abweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>peripher, temporal, superior</td>
<td>1</td>
<td>136,4</td>
<td>26,1</td>
</tr>
<tr>
<td>peripher, temporal, inferior</td>
<td>2</td>
<td>139,8</td>
<td>20,3</td>
</tr>
<tr>
<td>peripher, nasal, superior</td>
<td>3</td>
<td>137,8</td>
<td>21,0</td>
</tr>
<tr>
<td>peripher, nasal, inferior</td>
<td>4</td>
<td>140,8</td>
<td>17,6</td>
</tr>
<tr>
<td>zentral, temporal, superior</td>
<td>5</td>
<td>161,3</td>
<td>16,6</td>
</tr>
<tr>
<td>zentral, temporal, inferior</td>
<td>6</td>
<td>161,3</td>
<td>21,3</td>
</tr>
<tr>
<td>zentral, nasal, superior</td>
<td>7</td>
<td>159,6</td>
<td>16,7</td>
</tr>
<tr>
<td>zentral, nasal, inferior</td>
<td>8</td>
<td>159,4</td>
<td>23,1</td>
</tr>
<tr>
<td>zentral</td>
<td>5-8</td>
<td>160,4</td>
<td>16,2</td>
</tr>
<tr>
<td>peripher</td>
<td>1-4</td>
<td>138,8</td>
<td>12,0</td>
</tr>
<tr>
<td>gemittelt</td>
<td>1-8</td>
<td>149,7</td>
<td>11,3</td>
</tr>
</tbody>
</table>

Tabelle 4: Mittlere Autofluoreszenzintensität am Augenhintergrund in verschiedenen Bereichen
Die Auswertung der Sektoren erfolgte in folgenden Feldern des Grid, je nachdem, ob es sich um ein rechtes oder um ein linkes Auge gehandelt hat (vgl. Abbildung 11, Seite 25):

<table>
<thead>
<tr>
<th>Feld, rechtes Auge</th>
<th>Sektor</th>
<th>Feld, linkes Auge</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>1</td>
<td>42</td>
</tr>
<tr>
<td>46</td>
<td>2</td>
<td>43</td>
</tr>
<tr>
<td>42</td>
<td>3</td>
<td>47</td>
</tr>
<tr>
<td>43</td>
<td>4</td>
<td>46</td>
</tr>
<tr>
<td>zentral, temporal, superior</td>
<td>5</td>
<td>zentral, temporal, superior</td>
</tr>
<tr>
<td>zentral, temporal, inferior</td>
<td>6</td>
<td>zentral, temporal, inferior</td>
</tr>
<tr>
<td>zentral, nasal, superior</td>
<td>7</td>
<td>zentral, nasal, superior</td>
</tr>
<tr>
<td>zentral, nasal, inferior</td>
<td>8</td>
<td>zentral, nasal, inferior</td>
</tr>
</tbody>
</table>

Tabelle 5: Zuordnung der Sektoren zu den Feldern im Gitternetz (Grid), aufgetrennt nach rechtem und linkem Auge

Der Mittelwert aller 8 Sektoren (1-8) zusammen beträgt im Probandenkollektiv 150 bei einer Standardabweichung (SD) von ± 11.

Die folgende Graphik stellt den Vergleich zwischen der AF der zentralen und peripheren Fundusabschnitte dar:
Abbildung 13: Box-Plot-Darstellung, Vergleich zwischen zentraler und peripherer Fundusautofluoreszenz (FAF)

Somit liegt die FAF-Intensität der peripheren Felder durchschnittlich unter derjenigen der zentralen Sektoren.

Die nasalen Felder (aus den Sektoren 3; 4; 7; 8) besitzen einen Mittelwert von 150 und eine SD ± 14. Der Maximalwert in diesem Bereich beträgt 189 bei einem Minimalwert von 104. Die temporalen Felder (aus den Sektoren 1; 2; 5; 6) streuen ebenfalls um einen Mittelwert von 150 bei einer SD von ± 16, einem Maximalwert von 193 und einem Minimalwert von 105.

Die folgende Graphik stellt die AF der nasalen und temporalen Fundusabschnitte im Vergleich miteinander dar:
Abbildung 14: Boxplot-Darstellung, Vergleich zwischen nasaler und temporaler Fundusautofluoreszenz (FAF)

Die FAF-Intensitäten der nasalen und temporalen Felder unterscheiden sich nicht signifikant voneinander.

4.1.2 Auswertung des Gesamtfeldes und der Papille

4.2 Korrelation der Autofluoreszenz mit dem Alter

Lineare und quadratische Korrelation zwischen AF und Alter

Die Auswertung zwischen FAF und Alter wurde für die periphere FAF aus den Sektoren 1-4, für die zentrale FAF aus den Sektoren 5-8 und für die gemittelte FAF aus den Sektoren 1-8 bestimmt. Außerdem wurde ein ellipsoides Gesamtfeld in den Grenzen von Abbildung 12 (Seite 26) vermessen. Auf diesen 4 Gebieten liegt der Schwerpunkt dieser Analyse, um das Verhalten der Autofluoreszenz von Netzhautperipherie und Netzhautzentrum zu erforschen. Die folgenden Grafiken zeigen jeweils eine lineare und eine quadratische Regression für jeden der 4 Bereiche:

Gemittelte Fundusautofluoreszenz

Die lineare Korrelation der gemittelten FAF (= Mittelwert der Sektoren 1-8) mit dem Alter zeigt Abbildung 15. Der Korrelationskoeffizient (r) wurde nach Pearson bestimmt:
Abbildung 15: gemittelte Fundusautofluoreszenz (FAF), lineare Korrelation mit dem Alter; \(r = -0.29; \) p-Wert < 0.01 (hochsignifikant)

Durch die Punktwolke lässt sich auch eine quadratische Funktion legen, die genauso gut mit der gemittelten FAF korreliert:
Abbildung 16: gemittelte Fundusautofluoreszenz (FAF), quadratische Korrelation mit dem Alter; $r = -0.29$; p-Wert < 0.01 (hochsignifikant)

Zentrale Fundusautofluoreszenz
Die Korrelation der AF mit dem Alter für die zentralen Areale am hinteren Pol wird in Abbildung 17 und 18 dargestellt:
Abbildung 17: zentrale Fundusautofluoreszenz (FAF), lineare Korrelation mit dem Alter; $r = -0,35$; p-Wert < 0,01 (hochsignifikant)

Die quadratische Funktion korreliert mit den zentralen FAF-Werten mit $R^2 = 0,13$ sogar noch etwas stärker. Sie wird im Folgenden gezeigt:
Abbildung 18: zentrale Fundusautofluoreszenz (FAF), quadratische Korrelation mit dem Alter; \(r = 0,36; \) p-Wert < 0,01 (hochsignifikant)

Periphere Fundusautofluoreszenz

Die peripheren Netzhautabschnitte lassen sich wie folgt darstellen:
Abbildung 19: periphere Fundusautofluoreszenz (FAF), lineare Korrelation mit dem Alter;
$r = -0,09; p$-Wert $= 0,125$ (nicht signifikant)

Die lineare Funktion korreliert auf dem 5%-Niveau nicht signifikant mit den Punktwerten, hier lässt sich nur ein Trend für die Abnahme der FAF mit dem Alter darstellen. Dafür korreliert die in Abbildung 20 dargestellte quadratische Funktion hochsignifikant mit der AF über der Netzhautperipherie:
Abbildung 20: periphere Fundusautofluoreszenz (FAF), quadratische Korrelation mit dem Alter; \(r = -0,19; \) p-Wert < 0,01 (hochsignifikant)

Die Annäherung durch eine quadratische Kurve korreliert stärker mit den Werten der peripheren FAF als die Annäherung durch eine Gerade, die Anpassungsgüte liegt hier bei \(R^2 = 0,035 \). Der Scheitelpunkt der Parabel liegt bei 66 Jahren.

Das ellipsoide Gesamtfeld
Die Korrelation zwischen FAF und Alter für das Gesamtfeld zeigt Abbildung 21 und 22:
Abbildung 21: Fundusaufloreszenz (FAF) des Gesamtfeldes, lineare Korrelation mit dem Alter, \(r = -0.14; p\)-Wert = 0.022 (signifikant)

Für die quadratische Annäherung gilt hier:
Abbildung 22: Fundusautofluoreszenz (FAF) des Gesamtfeldes, quadratische Korrelation mit dem Alter, r = -0,18; p-Wert = 0,016 (signifikant)

Somit korreliert die Parabel im Gesamtfeld ebenso stärker mit den Ergebnissen als die Gerade. Es ist ein Anstieg der FAF bis 66 Jahre zu verzeichnen und ein anschließender Abfall der FAF.

Generell ergeben sich in dieser Studie für alle Darstellungen eine negative lineare oder eine negative quadratische Funktion. Einzige Ausnahme ist die zentrale FAF, die sich durch eine positive quadratische Funktion in diesem Altersbereich beschreiben lässt. Die zentrale FAF korreliert in dieser Studie stärker mit dem Alter, als die periphere FAF. Letztere korreliert wenn sie als quadratische Funktion beschrieben wird stärker mit dem Alter, als wenn sie als lineare Funktion beschrieben wird (vgl. Abbildung 19, Abbildung 20 auf Seite 37/38).
Vergleich der FAF für die Gruppe unter und über 66 Jahren

Die Abbildung 15 – Abbildung 22 zeigen die Korrelation der FAF über das gesamte Altersspektrum der Studienteilnehmer. Wie man anhand der quadratischen Funktion in Abbildung 20 und Abbildung 22 sehen kann, liegt für die Peripherie jedoch der Trend nahe, dass die FAF zuerst mit dem Alter ansteigt und anschließend wieder abfällt. In seiner Arbeit aus dem Jahr 2001 beschreibt auch Delori et al einen linearen Anstieg der FAF bis etwa 70 Jahren mit einem anschließenden Absinken der Fundusautofluoreszenz55. In dieser Studie liegt der Scheitelpunkt der Parabeln bei 66 Jahren. Dies hat mich veranlasst, die Fundusautofluoreszenz der verschiedenen Netzhautabschnitte noch einmal getrennt für den Altersbereich unter 66 Jahre und ab 66 Jahre zu untersuchen:

Die gemittelte Autofluoreszenz (Mittelwerte der Sektoren 1-8)

Abbildung 23:

\begin{itemize}
 \item a) gemittelte Fundusautofluoreszenz
 \begin{itemize}
 \item Gruppe < 66 Jahren; \(r = -0,1; p = 0,298 \)
 \end{itemize}
 \item b) gemittelte Fundusautofluoreszenz
 \begin{itemize}
 \item Gruppe > 65 Jahren; \(r = -0,15; p = 0,046 \)
 \end{itemize}
\end{itemize}

Es gibt einen Trend unter 66 Jahren für eine schwach negative Korrelation zwischen FAF und Alter und eine signifikante und etwas stärker ausgeprägte negative Korrelation im Alter über 65 Jahre.
Die zentrale Autofluoreszenz

Abbildung 24: a) zentrale Fundusautofluoreszenz
Gruppe < 66 Jahren; \(r = -0.24; p = 0.014 \)

b) zentrale Fundusautofluoreszenz
Gruppe > 65 Jahren; \(r = -0.1; p = 0.217 \)

Die periphere Autofluoreszenz

Abbildung 25: a) periphere Fundusautofluoreszenz
Gruppe < 66 Jahren; \(r = +0.1; p = 0.321 \)

b) periphere Fundusautofluoreszenz
Gruppe > 65 Jahren; \(r = -0.19; p = 0.012 \)
In den peripheren Netzhautabschnitten ist ein Trend für einen Anstieg der FAF bis 65 Jahren und darüber hinaus ein signifikantes Absinken der FAF zu verzeichnen.

Die Autofluoreszenz des Gesamtfeldes

Abbildung 26: a) Fundusautofluoreszenz Gesamtfeld

<table>
<thead>
<tr>
<th>Gruppe < 66 Jahren; r = +0,1; p = 0,348</th>
</tr>
</thead>
</table>

Gruppe > 65 Jahren; r = -0,13; p = 0,104

Die Differenz aus zentraler und peripherer FAF und Korrelation der Papille

Die folgende Grafik zeigt die errechnete Differenz der FAF zwischen den zentralen und peripheren Fundusabschnitten. Dies kann wiedergeben, wie sich Netzhautzentrum und Peripherie im Laufe des Älterwerdens zueinander verhalten.
Abbildung 27: Differenz der Fundusautofluoreszenz (FAF) aus Netzhautzentrum und Peripherie, \(r = -0.26; \) \(p \)-Wert < 0,01 (hochsignifikant)

Auch die Differenz zwischen Zentrum und Peripherie korreliert mit dem Alter negativ. Unterschiede werden mit dem Alter tendenziell kleiner. Bei einigen wenigen Probanden liegt die periphere FAF sogar über der zentralen FAF, was sich in einem Wert unterhalb der 0 äußert.

Um einen möglichen Einfluss der Linse auf die Detektion der Fundusautofluoreszenz abschätzen zu können, wurde zusätzlich der gefäßfreie temporale Bereich der Sehnenvenapapille ausgemessen. Das Ergebnis zeigt Abbildung 28:
Abbildung 28: Fundusautofluoreszenz (FAF) der Papille, Korrelation mit dem Alter; \(r = 0,19; \)
p-Wert = 0,013 (signifikant)

Hier zeigt sich eine positive Korrelation mit dem Alter. Dieses Ergebnis können mit den Altersveränderungen über der Netzhaut verglichen werden.

4.3 Die Korrelation der FAF mit kardiovaskulären Risikofaktoren

Ich habe die Probanden nach dem Vorhandensein der Merkmale Bluthochdruck, Rauchen, Blutdruckmedikation, Größe, Gewicht, Diabetes, erhöhte Blutfette und kardiovaskulärer Ereignisse bei Ihnen oder bei ihren Blutsverwandten befragt. Aus der Größe und dem Gewicht wurde anschließend der BMI berechnet und zwar nach der Formel „BMI = Gewicht [kg] : (Größe [m])²“.

Durch statistische Analyse der Rohdaten mit SPSS wurden alle diese 10 Merkmale dahingehend untersucht, ob sie mit den FAF-Werten der Sektoren 1-8 im Grid korrelieren und wie sie sich auf die Autofluoreszenz in Netzhautzentrum und Peripherie auswirken.
Ab einem p-Wert < 0,05 wurde die Korrelation als statistisch signifikant betrachtet, ab einem p-Wert < 0,01 als hochsignifikant.

Die folgende Tabelle gibt eine Übersicht über die hier gefundenen Zusammenhänge. Dabei bedeutet n.s. = nicht signifikant für p-Werte > 0,05.

<table>
<thead>
<tr>
<th>Risikofaktor</th>
<th>Korrelation mit FAF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>zentral</td>
</tr>
<tr>
<td>Bluthochdruck</td>
<td>n.s.</td>
</tr>
<tr>
<td>Rauchen</td>
<td>n.s.</td>
</tr>
<tr>
<td>Blutdruckmedikation</td>
<td>n.s.</td>
</tr>
<tr>
<td>Größe</td>
<td>n.s.</td>
</tr>
<tr>
<td>Gewicht</td>
<td>p < 0,01</td>
</tr>
<tr>
<td>BMI</td>
<td>p < 0,01</td>
</tr>
<tr>
<td>Diabetes</td>
<td>n.s.</td>
</tr>
<tr>
<td>erhöhte Blutfette</td>
<td>n.s.</td>
</tr>
<tr>
<td>kardiovaskuläres Ereignis (CVE)</td>
<td>p < 0,01</td>
</tr>
<tr>
<td>Verwandter mit CVE</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

Tabelle 6: Signifikante Korrelationen zwischen kardiovaskulären Risikofaktoren und der Fundusautofluoreszenz (FAF), Übersicht mit Angabe der p-Werte, n.s. = nicht signifikant

Die folgenden 2 Tabellen zeigen den Korrelationskoeffizienten (r) für die Merkmale „BMI“ und „CVE“ aufgeschlüsselt für die einzelnen zentralen Sektoren:
<table>
<thead>
<tr>
<th>BMI: FAF-Intensität</th>
<th>Sektor 5</th>
<th>Sektor 6</th>
<th>Sektor 7</th>
<th>Sektor 8</th>
<th>zentral gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>-0,168</td>
<td>-0,268</td>
<td>-0,146</td>
<td>-0,143</td>
<td>-0,217</td>
</tr>
<tr>
<td>p-Wert</td>
<td><0,01</td>
<td><0,01</td>
<td><0,05</td>
<td><0,05</td>
<td><0,01</td>
</tr>
</tbody>
</table>

Tabelle 7: Korrelation aus der Fundusautofluoreszenz (FAF) der zentralen Sektoren (5-8) und dem Body-Mass-Index (BMI)

<table>
<thead>
<tr>
<th>CVE: FAF-Intensität</th>
<th>Sektor 5</th>
<th>Sektor 6</th>
<th>Sektor 7</th>
<th>Sektor 8</th>
<th>zentral gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>-0,127</td>
<td>-0,218</td>
<td>nicht</td>
<td>-0,134</td>
<td>-0,168</td>
</tr>
<tr>
<td>p-Wert</td>
<td><0,05</td>
<td><0,01</td>
<td>signifikant</td>
<td><0,05</td>
<td><0,01</td>
</tr>
</tbody>
</table>

Tabelle 8: Korrelation aus der Fundusautofluoreszenz (FAF) der zentralen Sektoren (5-8) und dem Merkmal ‘kardiovaskuläre Vorerkrankung’ (CVE)

Beide Merkmale wirken sich bei Ausprägung demnach negativ auf die zentrale Autofluoreszenz aus.
Für das Merkmal „Gewicht“ soll auf eine detaillierte Einzeldarstellung verzichtet werden, da es bereits in die Berechnung des BMI’s einfließt.
5. Diskussion

Im Folgenden möchte ich die Ergebnisse dieser Studie diskutieren, wobei insbesondere auf den Aspekt der Korrelation der FAF mit dem Alter eingegangen werden soll. Zunächst möchte ich jedoch, analog zu der Reihenfolge der Ergebnisse, mit dem Verteilungsmuster der FAF am Augenhintergrund beginnen:

Verteilung der Autofluoreszenz-Intensität am Fundus

Die zentralen Felder über der Makula lutea weisen im Mittel deutlich stärkere Autofluoreszenzintensitäten auf, als die peripheren Felder. So lag die mittlere zentrale FAF-Intensität bei 160 und somit um 21 Helligkeitsstufen höher, als in den peripheren Sektoren, wo sie im Mittel bei 139 lag (siehe Abbildung 13, Seite 30). Dies deckt sich mit den Ergebnissen anderer wissenschaftlicher Autoren, wie Francois C Delori\(^{42}\), Reznicek et al\(^{5}\) und Glenn L. Wing\(^{102}\).

Der Grund für dieses Verteilungsmuster der FAF-Intensitäten erschließt sich, wenn man davon ausgeht, dass die Autofluoreszenz Alterungsprozesse der Retina durch Lipofuszineinlagerungen widerspiegelt. Wie F. Schütt in seiner Arbeit zeigen konnte, werden diese Alterungsprozesse wiederum durch die metabolische Aktivität der Retina beeinflusst\(^{63}\). Da die Photorezeptoren durch ihre kontinuierliche POS-Abstoßung eine Hauptquelle für oxidativen Stress und die Entstehung von LF im RPE darstellen\(^{23}\), kann davon ausgegangen werden, dass das RPE in Gebieten mit erhöhter Photorezeptordichte auch eine erhöhte Autofluoreszenz zeigt. Die Makula lutea enthält in ihrem Bereich die größte Dichte an Photorezeptoren\(^{103}\) und somit entsteht hier auch die größte Belastung für das RPE. Diese Überladung des RPE mit Lipofuszin wird heute als Grund dafür angesehen, dass sich hier höhere AF-Werte finden und alterungsbedingte degenerative Veränderungen der Netzhaut sich häufig zuerst im Bereich der Makula manifestieren\(^{104}\). Die hier vorhandene hohe Dichte und metabolische Aktivität der Photorezeptoren kann die höheren AF-Werte in den zentralen Bereichen am hinteren Pol erklären.

Im direkten Vergleich der nasalen Sektoren mit den temporalen Gebieten konnte hingegen kein Unterschied der mittleren FAF-Werte bei den Probanden festgestellt
werden (vgl. Abbildung 14, Seite 31). Daraus kann man schließen, dass sich die Verteilung der Photorezeptoren auf beiden Seiten gleicht und der oxidative Stress für das RPE sich nasal und temporal ähnelt. Die Daten liefern keinen Hinweis darauf, dass eine der beiden Seiten besonders geschützt oder besonders gefährdet für Alterungsprozesse sein könnte.

Eine mögliche Einschränkung für diesen Interpretationsansatz ist, dass es nicht möglich ist andere Fluorophore mit ähnlichen AF-Eigenschaften wie Lipofuszin auszuschließen. Melanofuszin kann z.B. in FAF-Bildern nur schwierig von Lipofuszin zu unterscheiden sein. Allerdings wird das Melanofuszin ebenso durch Überladung der Zellen mit Lipofuszin gebildet und spiegelt damit auch den oxidativen Stress innerhalb des RPE wieder.53,54

Korrelation der Autofluoreszenz mit dem Alter

Durch die Früherkennung von Patienten mit einem erhöhten Risiko für die Entwicklung einer AMD könnten Therapieverfahren, wie der Einsatz von VEGF-Hemmern, noch zeitiger eingesetzt werden und Komplikationen der feuchten AMD noch häufiger verhindert werden. Auch durch die Entwicklung neuer Therapieansätze wird die Früherkennung in Zukunft voraussichtlich immer mehr an Bedeutung gewinnen. Wie im Grundlagenteil dieser Arbeit dargestellt ist, lassen sich durch die
Erfassung der FAF Alterungsprozesse der Retina darstellen, die sonst kein morphologisches Korrelat in der gewöhnlichen Augenspiegelung finden.

In dieser Querschnittstudie, befand sich die Mehrheit der Probanden in einem höheren Alter zwischen 60 – 80 Jahren (siehe Abbildung 3, Seite 15). Hier fand sich eine durchgehend negative lineare Korrelationen der FAF-Intensität mit dem weiteren Ansteigen des Alters. So korreliert die gemittelte Autofluoreszenz aus peripheren und zentralen Feldern (“FAF gemittelt“) um \(r = -0,29 \) mit dem Altersanstieg. Die FAF der zentralen Felder (5-8), im Bereich der Makula, korreliert stärker mit \(r = - 0,35 \) und die der peripheren Sektoren (1-4) korreliert schwächer, jedoch ebenfalls negativ mit \(r = -0,09 \) mit dem Alter (siehe Abbildung 15, Abbildung 17, Abbildung 19 / Seite 33, 35, 37). Da in letzterem Fall der p-Wert > 0,05 liegt, kann für die Peripherie allerdings nur von einem Trend gesprochen werden. Dieses Ergebnis scheint den Ergebnissen anderer Studiengruppen auf den ersten Blick zu widersprechen, die eine positive lineare Korrelation der FAF mit dem Alter ermitteln konnten. Die Ergebnisse dieser Studie legen hingegen eher ein Absinken der Autofluoreszenz mit dem Alter nahe, und zwar stärker ausgeprägt zentral als peripher.

Während in vorhergehenden Untersuchungen, die eine positive lineare Korrelation zwischen FAF und Alter feststellten, schwerpunktmäßig die FAF jüngerer Menschen untersucht wurde (z.B. in einem Altersspektrum ab 20 Jahren), lag der Altersbereich
in dieser Studie schwerpunktmäßig bei älteren Probanden zwischen 60 – 80 Jahren. Dies kann möglicherweise die negative lineare Korrelation in dieser Studie erklären.

Für einen natürlichen Prozess bei dem es zuerst zu einem Anstieg der FAF mit einem Scheitel in höherem Alter und einem anschließenden Absinken der FAF kommt, wäre für die Beschreibung eine quadratische Funktion denkbar. Tatsächlich korreliert die quadratische Parabel für die gemittelte, zentrale und periphere FAF und das Gesamtfeld gleich gut oder stärker mit den Punktwerten als die lineare Darstellung (vgl. Abbildung 15 – Abbildung 22, Seite 33 – 40). Für die Peripherie korreliert die quadratische Funktion sogar hochsignifikant mit den Punktwerten, während die lineare Funktion hier als nicht signifikant eingestuft wird. Da der Scheitel der Parabel in dieser Studie bei 66 Jahren liegt, ist es möglich, die Probanden in 2 Gruppen einzuteilen, und noch einmal die lineare Korrelation der FAF für die Altersgruppe unter 66 Jahren und für die Altersgruppe über 65 Jahren getrennt zu untersuchen (vgl. Abbildung 23 – Abbildung 26, Seite 41 – 43). Hierbei lässt sich feststellen, dass die Autofluoreszenz in beiden Gruppen unterschiedlich mit dem Alter korreliert ist. Je nach untersuchtem Netzhautabschnitt, kommt man nach den hier gewonnen Daten zu folgenden Ergebnissen:

Bei der Auswertung der gemittelten FAF hingegen liegt die Korrelation unter 66 Jahren bei r = -0,1 und ab 66 Jahren bei r= -0,15 (vgl. Abbildung 23, Seite 41). Hier liegt also bereits unter 66 Jahren ein negativer Trend vor, wobei man einschränkend hinzufügen muss, dass das Altersspektrum hier (abgesehen von einem Probanden) erst ab über 50 Jahren beginnt. Immerhin ist die negative Korrelation im Altersbereich ab 66 Jahren stärker ausgeprägt als unter 66 Jahren.

Wenn in hohem Alter tatsächlich Apoptoseeffekte überwiegen, so könnte das die negative Korrelation der FAF in dieser Studie (siehe Abschnitt 4.2 „Korrelation der Autofluoreszenz mit dem Alter“, Seite 32 ff) erklären. Da hier vorwiegend ältere Probanden untersucht wurden, von denen die Mehrheit zwischen 60 und 80 Jahre alt gewesen ist, muss das Ergebnis nicht notwendigerweise im Widerspruch zu den Ergebnissen anderer Arbeiten mit jüngeren Probanden und positiver Korrelation zwischen FAF und Alter stehen. Mein Vorschlag geht deshalb dahin, den Alterungsprozess des RPE als dynamischen Prozess zu verstehen, bei dem es
zu erst durch die Einlagerung von LF zu einer Zunahme der Autofluoreszenz kommt, während sie im hohen Alter durch vermehrte RPE-Atrophie wiederum absinken kann. Zu diesem Ergebnis ist auch F. C. Delori in einer seiner Studien gekommen, wo er für die Korrelation der FAF mit dem Alter zunächst eine positive lineare Regression beschreibt, die ab 70 Jahren dann einen Wendepunkt erfährt und darüber hinaus negativ linear korreliert55. Unsere Ergebnisse legen bei gleichem Trend keine lineare, sondern eine quadratische Beschreibung dieses Sachverhaltes nahe.

Im folgenden Abschnitt möchte ich auf eine mögliche Einschränkung der eben diskutierten Ergebnisse eingehen:

Linseneffekt und AF der Papille

Mit dem Alter wird die Linse zunehmend trüber, was im Extremfall bis zum Krankheitsbild des grauen Star führen kann13. Nun könnte man argumentieren, dass der Effekt der negativen Korrelation zwischen FAF und Alter, der in dieser Studie gezeigt werden konnte, auch durch eine zunehmende Trübung der Linse bedingt sein könnte. Dies wäre dann der Fall, wenn die progrediente Linsentrübung in einem wesentlichen Ausmaß die Detektion des FAF-Signals behindern würde. Um diesen Effekt abzuschätzen, wurde zusätzlich der gefäßfreie temporale Bereich der Papille einer AF-Analyse unterzogen (siehe Abbildung 28, Seite 45). Der Gedanke der dahinter steht ist, dass sich hier kein RPE und damit keine Lipofuszineinlagerungen befinden. Sollte die AF in diesem Bereich trotzdem negativ mit dem Alter korrelieren, so könnte dies ein Hinweis für einen vorhandenen Linseneffekt darstellen. Wie man auf der Abbildung 28 (Seite 45) erkennen kann, korreliert die AF über der temporalen Papille in unserer Gruppe aber schwach positiv ($r = +0,19$) mit dem Alter. Diese positive Korrelation könnte möglicherweise durch eigene Alterungsprozesse der Sehnervenpapille erklärbar sein. Wie in dem Kapitel „Grundlagen“ unter 2.3 erwähnt, können vor allem langlebige extrazelluläre Proteine wie Kollagen und Elastin glykiert werden und somit selbst AF-Eigenschaften erhalten51,52. Die Auswertung der temporalen Papille ist ein Indiz dafür, dass Linseneffekte keine wesentliche Rolle auf die Detektion der FAF mit dem Optomap 200Tx spielen. Auch das Verhalten der peripheren FAF mit einem Anstieg in der Gruppe unter 66 Jahren und einem Abfall in der Gruppe ab 66 Jahren lässt sich durch eine progredient zunehmende Linsentrübung nicht plausibel erklären. Wäre die Detektion des AF-Signals hierdurch
maßgeblich beeinflusst, so hätte man hier mit einem kontinuierlichen Abfall der FAF über die gesamte Altersspanne rechnen müssen. Somit kann man zu dem Schluss kommen, dass die negative Korrelation zwischen FAF und Alter nicht plausibel durch den Linseneffekt bedingt sein kann.

Einfluss kardiovaskulärer Risikofaktoren

In dieser Studie ergab sich eine signifikante Korrelation hierfür jedoch nur für die zentralen Felder. Über den peripheren Gebieten ergab sich keine signifikante Korrelation für diese beiden Merkmale. Auch die anderen hier erfassten Merkmale (Bluthochdruck, Rauchen, Blutdruckmedikation, Diabetes, erhöhte Blutfette, CVE bei Blutsverwandten) korrelierten nicht signifikant mit der zentralen oder peripheren Fundusautofluoreszenz.

Einzige Ausnahme stellt das Merkmal „Diabetes“ dar. Dieses korreliert bei Ausprägung signifikant positiv mit \(r = 0,15 \) mit der FAF über der Netzhautperipherie. Dies könnte vielleicht bedeuten, dass sich dort mehr LF-Einlagerungen gebildet haben als bei Probanden ohne Diabetes.

Eine gewisse Einschränkung der Qualität der internistischen Basisdaten muss jedoch eingestanden werden, da die Daten durch mündliche Befragung der älteren

Beitrag und Vorhersagewert der peripheren FAF

55

Ellipsoides Messfeld

In einer weiteren Analyse ist die FAF in einem ellipsoiden Gesamtfeldes (siehe Abbildung 12, Seite 26) untersucht worden, welches zentrale und periphere Netzhautabschnitte miteinander vereint. Der Vorteil einer Auswertung in diesem Bereich würde darin bestehen, dass nur ein einziges Feld analysiert werden muss und nicht 8 einzelne Sektoren in einem Grid. Dies würde in der Praxis wesentlich schneller gehen. Auch würden einzelne Pigmentstörungen in der Summe dieses größeren Feldes nicht so stark ins Gewicht fallen. Jedoch sollte sich eine generalisierte pathologische FAF-Erhöhung oder Erniedrigung hier genauso signifikant zeigen, wie bei der Vermessung der einzelnen Sektoren.

Die Ergebnisse der Studie zeigen, dass die Messwerte für die mittlere FAF hier in einem engeren Bereich liegen als bei der Analyse der Sektoren 1-8. So lagen der Maximalwert für das Gesamtfeld bei 169 und der Minimalwert bei 125. Die Standardabweichung betrug sogar nur 7 und lag somit mehr als doppelt so niedrig,

Mögliche Perspektiven für die Zukunft und Limitationen

Wie weiter oben Besprochen, wird der Erfolg eines praktikablen FAF-Screenings jedoch wesentlich davon abhängen, wie signifikant sich die FAF bei Frühformen der AMD von der physiologischen FAF für das jeweilige Alter unterscheidet. Dies könnte eine Fragestellung weiterer Studien sein.

Jedoch gibt es für die Interpretation des retinalen Autofluoreszenzverhaltens auch Einschränkungen, die in Betracht zu ziehen sind: So müssen bei der Ausmessung des Fundus sorgfältig größere Gefäße, Narben und Pigmentverschiebungen umgangen werden, um das Ergebnis nicht zu verfälschen70,89. Zudem muss bedacht werden, dass wie auf S. 55/56 diskutiert, die physiologische Bandbreite der FAF recht hoch ist, was im Einzelfall zuverlässige Aussagen über den pathologischen Wert einer Abweichung vom Mittelwert erschweren kann. Ein weiterer Punkt ist, dass bis jetzt verlässliche Methoden fehlen, um die absolute Quantifizierung von FAF-Intensitäten durchführen zu können105. Auch Einbock et al weist in ihrer Arbeit darauf hin, dass bis heute mit dem Detektor keine absolute Quantifizierung der FAF möglich ist und für das Erzielen korrekter Ergebnisse eine strenge Standardisierung des Auswertungsprotokolls notwendig ist70. Die geforderte Standardisierung wurde in dieser Studie durch die Anwendung eines Grid umgesetzt. Die Messwerte für die Fundusautofluoreszenz basieren hingegen auf der Auswertung von Graustufen im FAF-Bild durch das Programm ImageJ. Sie stellen somit ebenfalls keine direkte Quantifizierung der Autofluoreszenz dar (siehe Material und Methoden, Punkt 3.4.1 „Bildanalyse“). Für den Vergleich der FAF-Werte aus verschiedenen Studien ist es somit essentiell, dass die Aufnahmen mit dem gleichen SLO durchgeführt werden, da verschiedene SLO’s verschiedene Filter verwenden und somit unterschiedliche Graustufen erzeugen105.

Nach den ermittelten Daten eröffnen sich für die Interpretation der gefundenen FAF-Werte ebenso interessante Fragestellungen: „Ist z.B. ein Mensch mit 80 Jahren und erhöhter FAF in seiner Altersgruppe als besonders gesund zu betrachten, weil seine Netzhaut in geringerem Maß Zonen der RPE-Atrophie aufweist als der Durchschnitt; während ein Mensch mit 50 Jahren und erhöhter FAF in seiner Altersgruppe als besonders gefährdet einzustufen ist, weil dies auf vermehrte LF-Einlagerungen schließen lässt?“ Diese und andere Fragen könnten vielleicht am besten in einer länger angelegten Longitudinalstudie untersucht werden. Die potentiellen Möglichkeiten der FAF-Analyse erstrecken sich hingegen nicht nur auf die Darstellbarkeit von Alterungsprozessen der Retina, sie könnte in Zukunft einen entscheidenden Beitrag für die Früherkennung von kardiovaskulär gefährdeten Patienten und für die Frühdiagnose verschiedener Netzhauterkrankungen wie der AMD leisten. Für die Aussagekraft der FAF hat sich nach meiner Einschätzung durch die Entwicklung des Weitwinkel-SLO „Optomap 200Tx“ und die dadurch möglich gewordene Integration weiter Teile der Fundusperipherie eine potentielle Verbesserung ergeben.
6. Zusammenfassung

Für die Augenheilkunde ist es bedeutsam herauszufinden, ob die Intensität der FAF als ein Korrelat für Alterungsprozesse der Netzhaut betrachtet werden kann und wie der physiologische FAF-Verlauf mit dem Älterwerden aussehen könnte. So konnten verschiedene Gruppen zeigen, dass AMD-Patienten eine signifikant höhere FAF über der Makula aufweisen, als altersentsprechende Probanden ohne AMD\(^3,69,70\). Es konnte auch gezeigt werden, dass eine Erhöhung der zentralen FAF sogar der Manifestation einer AMD vorausgehen kann und deren Entwicklung begünstigt\(^71,72\). Es wäre somit vorstellbar, Risikopatienten für die Entwicklung einer AMD anhand ihrer FAF zu identifizieren, noch bevor die Krankheit auftritt. Die Herausforderung besteht jedoch darin, dass die individuellen Unterschiede erheblich sind und bis heute keine altersentsprechenden Normwerte für die FAF existieren. Außerdem haben wir derzeit nur ein sehr begrenztes Wissen über das Verhalten der peripheren FAF. Dies liegt auch daran, dass weite Teile der Netzhautperipherie nicht mit herkömmlichen Ophthalmoskopen einsehbar sind. Hingegen können mit dem Weitwinkel-SLO „Optomap 200Tx“ bis zu 82% der gesamten Netzhaut eingesehen werden und somit auch weite Teile der Peripherie dargestellt werden\(^4\). Reznicek et al konnte mit diesem Gerät zeigen, dass die periphere FAF von AMD-Patienten ebenfalls signifikant höher liegt, als die von gesunden Vergleichsprobanden\(^5\). Somit ist es denkbar auch die peripheren Netzhautareale für die Messung miteinzubeziehen, was die Aussagekraft der Autofluoreszenz in Zukunft noch verbessern könnte.

Die Ergebnisse zeigen, dass sich eine Alterung des retinalen Pigmentepithels anhand der FAF darstellen lässt. Generell liegen die Werte für die zentrale FAF höher als für die periphere FAF (vgl. Abbildung 13, Seite 30), was sich durch die höhere Dichte an Photorezeptoren und durch die höhere Stoffwechselaktivität in diesem Bereich erklärt werden kann. Jedoch zeigen die Ergebnisse dieser Studie nicht wie in anderen Studien, einen kontinuierlichen Anstieg der FAF mit dem Alter, sondern einen dynamischen Verlauf. Die FAF der Netzhautperipherie hat nach unserer Datenlage bis 66 Jahre positiv mit dem Alter korreliert und darüber hinaus
negativ mit dem Alter korreliert, und kann am besten durch eine negative quadratische Parabel mit ihrem Scheitelpunkt bei 66 Jahren beschrieben werden (Abbildung 20, Seite 38). Die zentrale FAF hingegen zeigt in dieser Studie eine negative Korrelation mit dem weiteren Altersanstieg über 50 Jahre, die hochsignifikant durch eine positive quadratische Funktion beschrieben werden kann (Abbildung 18, Seite 36). Dies könnte bedeuten, dass die Entwicklung der Fundusautofluoreszenz einem dynamischen Prozess unterliegt, bei dem es zuerst in jungen Jahren, durch Lipofuszineinlagerungen, zu einem Anstieg der FAF kommt, während es in höherem Lebensalter durch das Überwiegen retinaler Apoptosevorgänge hingegen wiederum zu einem Absinke der FAF kommt. Dies bedeutet, dass unsere Studie nicht im Widerspruch mit anderen Studien stehen muss, da in diesen bereits deutlich jüngere Patienten eingeschlossen wurden5,42. Auch Delori et al konnte in seiner Arbeit von 2001 einen zweigeteilten Verlauf der FAF mit einer positiven Korrelation zwischen FAF und Alter unter 70 Jahren und einer negativen Korrelation über 70 Jahren beschreiben55.

Des Weiteren ließe sich die stärker negative Korrelation der zentralen FAF, die in dieser Studie zudem über den gesamten Altersbereich zwischen 50 und 88 Jahren zu verzeichnen ist, mit einem „Vorauseilen“ zentraler Alterungsprozesse im Vergleich zur Netzhautperipherie deuten. Während die Korrelation der Netz hautperipherie mit 66 Jahren ihren Wendepunkt erfährt, wäre es denkbar, dass dieser für das Netzhautzentrum bereits zu einem früheren Zeitpunkt außerhalb unseres Probandenkollektivs gelegen haben könnte. Eine potente Erklärung für ein „Vorauseilen“ der zentralen FAF könnte sein, dass die zentralen Netzhautgebiete eine höhere Dichte an Photorezeptoren und damit einen stärkeren Stoffwechsel als die peripheren Gebiete aufweisen11. Somit sind die postmitotischen Pigmentepithelzellen hier einem höheren oxidativen Stress ausgesetzt und Alterungs- und Abbauprozesse könnten hier früher zum Tragen kommen als in der Netzhautperipherie103. Dafür spricht auch, dass die Differenz zwischen zentraler und peripherer FAF bei den Probanden mit ansteigendem Alter immer geringer wird.

Dieser dynamische Verlauf der FAF würde es trotzdem zulassen, jeder Altersgruppe Normwerte für die zentrale und die periphere FAF zuzuordnen. Es wäre damit denkbar retinale Erkrankungen, die mit einer FAF-Verschiebung einhergehen, durch
Abweichung von der physiologischen FAF zu erkennen. Hierfür könnte man prinzipiell die peripheren Netzhautbereiche als Ergänzung zu den zentralen Bereichen verwenden.

Die Daten ergaben weiterhin eine negative Korrelation der zentralen FAF mit den internistischen Risikomerkmalen „BMI“ und „CVE“. Je niedriger die FAF in der Altersgruppe lag, desto höher war die Wahrscheinlichkeit der Betroffenen von einem erhöhten BMI oder einem kardiovaskulären Ereignis betroffen zu sein. Somit könnte es sein, dass kardiovaskuläre Prozesse auch einen Einfluss auf die Autofluoreszenz der Netzhaut ausüben oder gemeinsame Risikofaktoren besitzen.

Eine Einschränkung für die Auswertung der FAF liegt in der größeren Streuung der Messwerte in dieser Studie. Diese nimmt physiologischer Weise mit dem Alter noch zu, wie es auch die Messungen in anderen Studien nahe legen. Eine gewisse Unschärfe der Daten könnte jedoch auch durch das Optomap 200Tx bedingt sein, da hier primär keine Messwerte für die AF erzeugt werden, sondern nur Graustufen in einem Bild, die dann wiederum in einem 2. Schritt durch ein Bildanalyseprogramm quantifiziert werden müssen.

Durch die Daten dieser Studie kann man schlussfolgern, dass sowohl die zentrale, als auch die periphere FAF mit dem Alter korreliert sind. Die Korrelation wird am besten durch eine quadratische Funktion anstelle einer Geraden wiedergegeben. Ich glaube anhand der gefundenen Ergebnisse, dass die FAF erst im Laufe des Lebens ansteigt, dann einen Scheitelpunkt erreicht und infolge von Apoptose- und Abbauvorgängen im höheren Alter wieder absinkt. Die Ergebnisse in dieser Studie legen nahe, dass der Scheitelpunkt für die zentrale FAF früher erreicht wird, als für die periphere FAF.

Prinzipiell scheint die periphere Autofluoreszenz die Aussagekraft der zentralen Autofluoreszenz ergänzen zu können, auch wenn letztere für sich allein genommen stärker mit dem Alter korreliert ist. Dafür kann die periphere FAF in einem größeren Gebiet am Fundus bestimmt werden und ist somit auch noch darstellbar, wenn einzelne Pigmentverschiebungen oder Läsionen die Auswertung der zentralen FAF erschweren.
Abbildungsverzeichnis

Abbildung 3: Anzahl und Altersverteilung der Probanden. Altersangabe in Jahren.. 15
Abbildung 7: Bildgebung mit dem Optomap 200Tx, semirealistische Darstellung des Augenhintergrundes, eigene Aufnahme .. 19
Abbildung 8: Bildgebung mit dem Optomap 200Tx, Autofluoreszenzaufnahme des gleichen Auges wie in Abb. 7 .. 20
Abbildung 11: Autofluoreszenz am Augenhintergrund, Unterteilung in Felder durch ein Gitternetz (Grid), gleiches Auge wie in Abb. 7 und 8 ... 25
Abbildung 12: Augenhintergrund, Autofluoreszenzaufnahme, Ausmessung eines großen ellipsoiden Feldes (Gesamtfeld) ... 26
Abbildung 13: Box-Plot-Darstellung, Vergleich zwischen zentraler und peripherer Fundusautofluoreszenz (FAF) .. 30
Abbildung 14: Boxplot-Darstellung, Vergleich zwischen nasaler und temporaler Fundusautofluoreszenz (FAF) 31
Abbildung 15: gemittelte Fundusautofluoreszenz (FAF), lineare Korrelation mit dem Alter; \(r = -0,29; \) p-Wert < 0,01 (hochsignifikant)................................. 33
Abbildung 16: gemittelte Fundusautofluoreszenz (FAF), quadratische Korrelation mit dem Alter; \(r = -0,29; \) p-Wert < 0,01 (hochsignifikant)................................. 34
Abbildung 17: zentrale Fundusautofluoreszenz (FAF), lineare Korrelation mit dem Alter; \(r = -0,35; \) p-Wert < 0,01 (hochsignifikant)................................. 35
Abbildung 18: zentrale Fundusautofluoreszenz (FAF), quadratische Korrelation mit dem Alter; \(r = 0,36; \) p-Wert < 0,01 (hochsignifikant)................................. 36
Abbildung 19: periphere Fundusautofluoreszenz (FAF), lineare Korrelation mit dem Alter; \(r = -0,09; \) p-Wert = 0,125 (nicht signifikant)................................. 37
Abbildung 20: periphere Fundusautofluoreszenz (FAF), quadratische Korrelation mit dem Alter; \(r = -0,19; \) p-Wert < 0,01 (hochsignifikant)................................. 38
Abbildung 21: Fundusautofluoreszenz (FAF) des Gesamtfeldes, lineare Korrelation mit dem Alter, \(r = -0,14; \) p-Wert = 0,022 (signifikant)................................. 39
Abbildung 22: Fundusautofluoreszenz (FAF) des Gesamtfeldes, quadratische Korrelation mit dem Alter, \(r = -0,18; \) p-Wert = 0,016 (signifikant)................................. 40
Abbildung 23: a) gemittelte Fundusautofluoreszenz; Gruppe < 66 Jahren; \(r = -0,1; \) p = 0,298 b) gemittelte Fundusautofluoreszenz; Gruppe > 65 Jahren; \(r = -0,15; \) p = 0,046................................. 41
Abbildung 24: a) zentrale Fundusautofluoreszenz; Gruppe < 66 Jahren; \(r = -0,24; \) p = 0,014 b) zentrale Fundusautofluoreszenz Gruppe > 65 Jahren; \(r = -0,1; \) p = 0,217... 42
Abbildung 25: a) periphere Fundusautofluoreszenz; Gruppe < 66 Jahren; \(r = +0,1; \) p = 0,321 b) periphere Fundusautofluoreszenz Gruppe > 65 Jahren; \(r = -0,19; \) p = 0,012................................. 42
Abbildung 26: a) Fundusautofluoreszenz Gesamtfeld; Gruppe < 66 Jahren; \(r = +0,1; \) p = 0,348 b) Fundusautofluoreszenz Gesamtfeld Gruppe > 65 Jahren; \(r = 0,13; \) p = 0,104................................. 43
Abbildung 27: Differenz der Fundusautofluoreszenz aus Netzhautzentrum und Peripherie, \(r = -0,26; \) p-Wert < 0,01 (hochsignifikant)................................. 44
Abbildung 28: Fundusautofluoreszenz (FAF) der Papille, Korrelation mit dem Alter, \(r = 0,19; \) p-Wert = 0,013 (signifikant)... 45
Tabellenverzeichnis

Tabelle 4: Mittlere Autofluoreszenzintensität am Augenhintergrund in verschiedenen Bereichen ... 28

Tabelle 5: Zuordnung der Sektoren zu den Feldern im Gitternetz (Grid), aufgetrennt nach rechtem und linkem Auge .. 29

Tabelle 6: Signifikante Korrelationen zwischen kardiovaskulären Risikofaktoren und der Fundusautofluoreszenz (FAF), Übersicht mit Angabe der p-Werte, n.s. = nicht signifikant ... 46

Tabelle 7: Korrelation aus der Fundusautofluoreszenz (FAF) der zentralen Sektoren (5-8) und dem Body-Mass-Index (BMI) .. 47

Tabelle 8: Korrelation aus der Fundusautofluoreszenz (FAF) der zentralen Sektoren (5-8) und dem Merkmal ‘kardiovaskuläre Vorerkrankung’ (CVE) 47
Literaturverzeichnis

71 Winkler BS, Boulton ME, Gottsch JD, Sternberg P. Oxidative damage and age-related macular degeneration. Molecular Vision. 1999;5:32

85 http://www.optos.com/en/Professionals/General-ophthalmology/Product-description;Stand: 07.12.15

Eidesstattliche Versicherung

Ich, Martin Dreßler, erkläre hiermit an Eides statt, dass ich die vorliegende Dissertation mit dem Thema

„Alterseffekt der zentralen und peripheren Autofluoreszenz am Augenhintergrund“

selbständig verfasst, mich außer der angegebenen keiner weiteren Hilfsmittel bedient und alle Erkenntnisse, die aus dem Schrifttum ganz oder annähernd übernommen sind, als solche kenntlich gemacht und nach ihrer Herkunft unter Bezeichnung der Fundstelle einzelnen nachgewiesen habe.
Ich erkläre des Weiteren, dass die hier vorgelegte Dissertation nicht in gleicher oder in ähnlicher Form bei einer anderen Stelle zur Erlangung eines akademischen Grades eingereicht wurde.

_________________________ _______________________________
Ort, Datum Unterschrift Doktorandin/Doktorand
Danksagung
