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Summary   

Summary 

Life on earth is almost exclusively dependent on the ability of photosynthetic organisms to 

sequester inorganic carbon dioxide (CO2) of the atmosphere into organic carbon of the 

biosphere via the Calvin-Benson-Bassham (CBB) pathway. The primary photosynthetic CO2 

fixation reaction, the binding of CO2 to the acceptor-molecule ribulose-1,5-bisphosphate 

(RuBP) to form two molecules of 3-phosphoglycerate, is catalyzed by the enzyme RuBP 

carboxylase/oxygenase (Rubisco). It is the major enzyme assimilating CO2 into the biosphere 

and thought to be the most abundant protein in nature. At the same time Rubisco is an 

inefficient catalyst, and it also catalyzes a wasteful side-reaction with atmospheric oxygen. 

Downstream processing of the oxygenation product necessitates an energetically costly 

pathway, called photorespiration, during which CO2 is released. As a consequence of its short-

comings the enzyme is often the rate-limiting step of photosynthesis. These inadequacies 

make Rubisco a prime target for increasing agricultural productivity.  

An enzyme becomes only active when it reaches its final tertiary or quaternary structure. Cells 

have evolved a complex machinery called molecular chaperones that prevent protein 

aggregation and promote the proper folding/assembly of a polypeptide chain. The correct 

folding of Rubisco is dependent on molecular chaperones called chaperonins. Form I Rubisco 

is a hexadecameric protein complex consisting of an octameric core of large subunits that is 

capped on both sides by four small subunits. For some cyanobacterial Rubiscos this folding is 

sufficient to allow productive assembly of the holoenzyme. Nevertheless, recent findings show 

that additional factors are involved in Rubisco assembly. One of these factors is called RbcX 

and was found to be an assembly chaperone for cyanobacterial Rubisco. Furthermore, a 

potential new Rubisco assembly factor was found in maize, called Rubisco accumulation factor 

1 (Raf1). Raf1 knock-out plants were seedling lethal and exhibited greatly reduced Rubisco 

levels. However, the potential role of Raf1 in Rubisco assembly and the pathway of folding and 

assembly of Rubisco in general is still not fully understood, in particular for higher plant 

Rubisco. 

In the present study, the structure and mechanism of two assembly chaperones of Rubisco, 

Raf1 and RbcX, were investigated. The role of Raf1 in Rubisco assembly was elucidated by 

analyzing cyanobacterial and plant Raf1 with a vast array of biochemical and biophysical 

techniques. Raf1 is a dimeric protein. The subunits have a two-domain structure. The crystal 

structures of two separate domains of Arabidopsis thaliana (At) Raf1 were solved at resolutions 

of 1.95 Å and 2.6–2.8 Å, respectively. The oligomeric state of Raf1 proteins was investigated 

by size exclusion chromatography connected to multi angle light scattering (SEC-MALS) and 

native mass spectrometry (MS). Both cyanobacterial and plant Raf1 are dimeric with an N-
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terminal domain that is connected via a flexible linker to the C-terminal dimerization domain. 

Both Raf1 poteins were able to promote assembly of cyanobacterial Rubisco in an in vitro 

reconstitution system. The homologous cyanobacterial system resulted in very high yields of 

active Rubisco (>90%), showing the great efficiency of Raf1 mediated Rubisco assembly. Two 

distinct oligomeric complex assemblies in the assembly reaction could be identified via native 

PAGE immunoblot analyses as well as SEC-MALS and native MS. Furthermore, a structure-

guided mutational analysis of Raf1 conserved residues in both domains was performed and 

residues crucial for Raf1 function were identified. A new model of Raf1 mediated Rubisco 

assembly could be proposed by analyzing the Raf1-Rubisco oligomeric complex with negative 

stain electron microscopy. The final model was validated by determining Raf1-Rubisco 

interaction sites using chemical crosslinking in combination with mass spectrometry. Taken 

together, Raf1 acts downstream of chaperonin-assisted Rubisco large subunit (RbcL) folding 

by stabilizing RbcL antiparallel dimers for assembly into RbcL8 complexes with four Raf1 

dimers bound. Raf1 displacement by Rubisco small subunit (RbcS) results in holoenzyme 

formation.  

In the second part of this thesis, the role of eukaryotic RbcX proteins in Rubisco assembly was 

investigated. Eukaryots have two distinct homologs of RbcX, RbcX-I and RbcX-II. Both, plant 

and algal RbcX proteins were found to promote cyanobacterial Rubisco assembly in an in vitro 

reconstitution system. Mutation of a conserved residue important for Rubisco assembly in 

cyanobacterial RbcX also abolished assembly by eukaryotic RbcX, underlining functional 

similarities among RbcX proteins from different species. The crystal structure of 

Chlamydomonas reinhardtii (Cr) RbcX was solved at a resolution of 2.0 Å. RbcX forms an arc-

shaped dimer with a central hydrophobic cleft for binding the C-terminal sequence of RbcL. 

Structural analysis of a fusion protein of CrRbcX and the C-terminal peptide of RbcL suggests 

that the peptide binding mode of CrRbcX may differ from that of cyanobacterial RbcX. RbcX 

homologs appear to have adapted to their cognate Rubisco clients as a result of co-evolution. 

Preliminary analysis of RbcX in Chlamydomonas indicated that the protein functions as a 

Rubisco assembly chaperone in vivo. Therefore, RbcX was silenced using RNAi in 

Chlamydomonas which resulted in a photosynthetic growth defect in several transformants 

when grown under light. RbcX mRNA levels were highly decreased in these transformants 

which resulted in a concomitant decrease of Rubisco large subunit levels. Biochemical and 

structural analysis from both independent studies in this thesis show that Raf1 and RbcX fulfill 

similar roles in Rubisco assembly, thus suggesting that functionally redundant factors ensure 

efficient Rubisco biogenesis.
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Introduction  

1. Introduction 

Proteins are abundant biological macromolecules consisting of amino acids linked together by 

peptide bonds. They are found ubiquitously in all domains of life and are essential for almost 

all biological functions including metabolism, signaling and transport. The function of a protein 

is determined by its three-dimensional structure, which ultimately is encoded in the primary 

sequence of the amino acids. 

1.1 Protein Folding 

Newly synthesized proteins must fold into a unique three-dimensional structure to perform their 

specific cellular functions. Based on refolding experiments with Ribonuclease A, Christian 

Anfinsen was the first to postulate that the information of the final folded structure of a protein 

is determined by the primary sequence of amino acids1-4. The main driving force of protein 

folding in solution is the burial of hydrophobic side chains in the interior of the protein and the 

entropy gain of solvent molecules (water) released during this process. Folding reactions are 

highly complex and heterogenous, relying on the cooperation of further multiple weak, 

noncovalent interactions. These include salt bridges between opposite charges, hydrogen 

bonds and van der Waals contacts between atoms. Thermodynamically, the native state of a 

protein represents the most stable state of the system being energetically lower than the 

unfolded state4. However, since proteins usually require some degree of flexibility for their 

biological function, most protein structures represent a compromise between thermodynamic 

stability and the conformational flexibility5. Consequently, proteins are often marginally stable 

in their physiological environment and thus susceptible to misfolding and aggregation. Protein 

folding occurs rapidly (microseconds to seconds) demonstrating the existence of directed and 

kinetically driven folding pathways, rather than sampling all possible conformations before 

reaching their native state in a biologically irrelevant timescale6. Polypeptide chains are thought 

to explore funnel-shaped potential energy surfaces as they progress toward the native 

structure along several downhill paths rather than a single defined pathway (Fig.1). At the 

beginning of folding events, local amino acid sequences initiate folding, followed by the rapid 

formation of transient, partially folded and more compact intermediates. Subsequently, higher 

structure elements are formed until the native state is accomplished. However, energy 

landscapes can be "rugged" and therefore have local energy minima that are associated with 

kinetically trapped intermediates. The "ruggedness" of the energy landscape determines the 

speed of folding, since more local minima lead to more kinetically trapped intermediates and 

therefore slower folding. Especially complex architectures often fold very slow (timescale of 

min to h) or even fail to reach their native state in vitro, resulting in partially folded 

intermediates. Furthermore, misfolded states can arise along the folding pathway. These are 
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characterized by the presence of nonnative interactions that must be resolved prior to correct 

folding. Partially folded or misfolded states typically expose hydrophobic amino acid residues 

and regions of unstructured polypeptide backbone to the solvent, the features that mediate 

aggregation in a concentration-dependent manner7. Although aggregation primarily leads to 

amorphous structures largely driven by hydrophobic forces, it may also lead to the formation 

of amyloid-like fibrils which are associated with protein folding diseases. 

 

 
Fig.1: Energy landscape in protein folding and aggregation. Left: energetically favorable 
intramolecular interactions (green) result in folding to the native state. Energetically favorable but 
nonnative conformations result in kinetically trapped states. Right: intermolecular interactions (red) 
leading to aggregation (amorphous aggregates, β-sheet-rich oligomers, and amyloid fibrils; reproduced 
from Kim et al.7). 
 

1.2 Molecular Chaperones 

1.2.1 The chaperone concept 

The native fold of a protein is encoded in its amino acid sequence8. To become fully active, 

newly synthesized proteins must fold to unique three-dimensional structures. Spontaneous 

refolding in vitro is generally efficient for small, single domain proteins that bury exposed 
4 
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hydrophobic amino acid residues rapidly upon initiation of folding. In contrast, larger proteins 

with more complex domains or composed of multiple domains often refold inefficiently, owing 

to the formation of partially folded intermediates, including misfolded states, that tend to 

aggregate. Furthermore, compared to the in vitro refolding experiments, the situation in cells 

is considerably more complex, as they are confronted with the task of folding thousands of 

different polypeptides into a wide range of conformations. Moreover, the cellular environment 

is extremely crowded with high concentrations of proteins, nucleic acids and other 

macromolecules up to 300-400 mg/ml9. The resulting excluded volume effect, or 

macromolecular crowding, has several consequences for the physical properties of the 

intracellular environment, and one of the most important is that intermolecular interactions 

become strongly favored. For an unfolded polypeptide, this means that non-productive 

aggregation with other unfolded species, which is mediated by exposed hydrophobic residues 

and unstructured chain segments, can compete effectively with its folding to the native state10. 

These exposed hydrophobic surfaces occur on nascent chains, on mature proteins unfolded 

by environmental stresses, and on folded proteins in near-native and native conformations11. 

The aggregation process irreversibly removes proteins from their productive folding pathways, 

and must be prevented in vivo by molecular chaperones, which assist proteins to fold on many 

stages along their pathway to their final active three-dimensional structure. In the cytosol of 

prokaryotic and eukaryotic cells, molecular chaperones of different structural classes form a 

network of pathways that can handle substrate polypeptides from the point of initial synthesis 

on ribosomes to the final stages of folding12,13. Molecular chaperones are defined as a large 

and diverse group of proteins that share the property of assisting the non-covalent folding and 

unfolding and the assembly and disassembly of other macromolecular structures, but are not 

permanent components of these structures when they are performing their normal biological 

functions14. Some, but not all, chaperones are also stress or heat shock proteins (Hsps), 

because the requirement for chaperone function increases under conditions of stress that 

cause proteins to unfold and to misassemble. Members of the various groups of chaperones 

were initially named according to their molecular weight in kilo Dalton (kDa): Hsp40s, Hsp60s, 

Hsp70s, Hsp90s, Hsp100s, and the small Hsps. The assistance of protein folding by molecular 

chaperones begins with the appearance of the newly-synthesized polypeptide at the ribosome 

exit tunnel. Because the formation of a stable tertiary structure is a cooperative process at the 

level of protein domains (50 to 300 amino acid residues), an average domain can completely 

fold only when it’s entire sequence has emerged from the ribosome. As a consequence, many 

nascent chains expose non-native features for a considerable length of time and are prone to 

aggregation. This tendency to aggregate is thought to be greatly increased by the close 

proximity of nascent chains of the same type in polyribosome complexes, thus leading to the 

requirement for chaperones to maintain nascent chains in a non-aggregated, folding-

5 
 



  Introduction 
 

competent conformation15. Contrary to the previous belief that polysomes enhance 

aggregation by increasing the local concentration of nascent chains, recent studies suggest 

that the three-dimensional organization of individual ribosomes in polysomes maximizes the 

distance between nascent chains, thus reducing the probability of unproductive 

interactions16,17. In the cytosol, chaperones generally recognize hydrophobic residues and/or 

unstructured backbone regions in their substrates, i.e., structural features typically exposed by 

non-native proteins but normally buried upon completion of folding. Interactions with 

chaperones may not only block intermolecular aggregation directly by shielding the sticky 

surfaces of non-native polypeptides, including unassembled protein subunits, but may also 

prevent or reverse intramolecular misfolding. Cytosolic chaperones participate in de novo 

folding mainly through two distinct mechanisms. Chaperones, such as trigger factor and the 

Hsp70s, act by holding nascent and newly synthesized chains in a state competent for folding 

upon release into the medium. In contrast, the large, cylindrical chaperonin complexes provide 

physically defined compartments inside which a complete protein or a protein domain can fold 

while being sequestered from the cytosol7. These two classes of chaperones are conserved in 

all three domains of life and can cooperate in a topologically and timely ordered manner18,19 

(Fig.2).  

Besides their fundamental role in de novo protein folding, chaperones are involved in various 

aspects of proteome maintenance, including assistance in macromolecular complex assembly, 

protein transport and degradation, aggregate dissociation and refolding of stress-denatured 

proteins. By maintaining nonnative proteins in a soluble, folding-competent state, chaperones 

are thought to buffer mutations in proteins that would otherwise preclude their folding, thus 

broadening the range of mutant proteins subject to Darwinian selection20,21. In the following 

sections the Hsp60/chaperonin system and the Hsp70 system are discussed as examples for 

the complex mechanisms of molecular chaperones. 
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Fig.2: Models for the chaperone-assisted folding of newly synthesized polypeptides in the 
cytosol. A: Eubacteria. Nascent chains probably interact generally with trigger factor (TF), and most 
small proteins (70% of total) fold rapidly upon synthesis without further assistance to their native state 
(N). Longer chains (30% of total) interact subsequently with DnaK and DnaJ and fold upon one or several 
cycles of ATP-dependent binding and release. About 10 to 15% of chains transit the chaperonin system, 
GroEL and GroES, for folding. B: Archaea. Only some archaeal species contain DnaK/DnaJ. The 
existence of a ribosome-bound nascent chain-associated complex (NAC) homolog, as well as the 
interaction of prefoldin (PFD) with nascent chains, has not yet been confirmed experimentally. C: 
Eukarya. Like TF, NAC probably interacts generally with nascent chains. The majority of small chains 
may fold upon ribosome release without further assistance. Other chains reach their native states in a 
reaction assisted by Hsp70 and Hsp40, and a fraction of these must be transferred to Hsp90 for folding. 
About 5-10% of chains are co- or posttranslationally passed on to the chaperonin TRiC in a reaction 
mediated by PFD. Insert: the ribosome-binding chaperone system, the ribosome-associated complex 
(RAC), in fungi. RAC consists of Ssz1 (a specialized Hsp70) and zuotin (Hsp40) and assists nascent 
chain folding together with another Hsp70 isoform, Ssb. (reproduced from Kim et al.7). 
 

1.2.2 The Hsp70 system 

The evolutionary conserved Hsp70s have a central role in the cytosolic chaperone network. 

They are involved in a wide range of protein quality control functions, including de novo protein 

folding, refolding of stress denatured proteins, protein transport, membrane translocation, and 

protein degradation. Hsp70 chaperones function with cochaperones of the Hsp40 family (also 

known as DnaJ proteins or J proteins) and nucleotide exchange factors (NEFs) to assist folding 

co- or posttranslationally through ATP-regulated cycles of substrate binding and release. 

Moreover, they mediate poplypeptide chain transfer to downstream chaperones. Hsp70 

consists of an N-terminal nucleotide-binding domain (NBD) and a C-terminal substrate-binding 

domain (SBD) connected by a highly conserved hydrophobic linker region (Fig.3a). The N-

terminal domain consists of two lobes, each containing two subdomains, with the nucleotide-

binding cleft situated in between22,23. The SBD consists of a β-sandwich subdomain and an α-

helical lid with the substrate binding site located in the β-sandwich subdomain22 (Fig.3a). The 
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SBD binds to 5-7-residue peptide segments enriched in hydrophobic amino acids and typically 

flanked by positively charged residues. Such segments occur on average every 50-100 amino 

acids in proteins, and the exposure of these fragments correlates with the aggregation 

propensity of the protein24. The α-helical lid and a conformational change in the β-sandwich 

domain regulate the affinity state for the peptide in an ATP-dependent manner. In the ATP-

bound state, the lid adopts an open conformation, resulting in high on and off rates for the 

peptide25,26. Hydrolysis of ATP to ADP is strongly accelerated by Hsp40 (>1000-fold), leading 

to lid closure and stable peptide binding (low on and off rates for the peptide substrate)5,27,28 

(Fig.3b). Hsp40 (J protein) and NEF cochaperones regulate the Hsp70 reaction cycle5,30. The 

Hsp40 proteins constitute a large family with more than 40 members in humans29. All of them 

contain a J domain, which binds to the N-terminal ATPase domain of Hsp70 and the adjacent 

linker region31,32. Canonical Hsp40s (class I and II) interact directly with unfolded polypeptides 

and can recruit Hsp70 to protein substrates18,30. OtherHsp40s (class III) are more diverse and 

combine the J domain with a variety of functional modules29,33,34. After ATP hydrolysis, a 

nucleotide-exchange factor binds to the Hsp70 ATPase domain, catalyzing ADP-ATP 

exchange, resulting in lid opening and substrate release. Substrate release allows 

folding (i.e., the burial of hydrophobic residues) to proceed. Proteins unable to fold rapidly upon 

dissociation from Hsp70 may rebind, transfer to downstream chaperones (the chaperonin 

system), or be targeted to the degradation machinery. 
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Fig.3: Structure and functional cycle of Hsp70. A, left: Closed state of E. coli DnaK (PDB 2KHO), 
illustrating the ADP-bound NBD separated by a linker from the SBD. The α-helical lid of the SBD is 
closed over the substrate peptide (NRLLLTG) bound in the pocket of the β-sandwich domain. Right, 
open state illustrated by the structure of ATP-bound Sse1 (PDB 2QXL). The β-sandwich domain 
contacts subdomain IA of the NBD, the α-helical lid contacts subdomains IA and IB. B: Hsp70 reaction 
cycle. ATP binding to the NBD stabilizes the open state of Hsp70, facilitating the binding of substrate 
protein recruited to Hsp70 by Hsp40 cochaperone. The open state has fast on and off rates for substrate 
peptide. Hsp40 stimulates ATP hydrolysis on Hsp70, resulting in the closing of the SBD α-helical lid over 
the bound substrate peptide. The closed state has slow on and off rates for substrate peptide. NEFs 
stimulate ADP release from the NBD, ATP binding causes substrate release (reproduced from Kim et 
al.7). 
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1.2.3 Chaperonins 

Chaperonins are a family of sequence-related proteins of ~60 kDa which form double-ring 

complexes of ~800-900 kDa that enclose a central cavity in each ring. They occur in two distinct 

subgroups. The eubacterial GroEL, mitochondrial Hsp60 and plant chaperonin from 

chloroplasts have seven-membered rings and constitute the group I chaperonins. They 

cooperate with cofactors of the GroES or Hsp10 (Cpn10) family. Most group II chaperonins 

have eight-membered rings and are represented by TRiC (TCP-1 containing ring complex; 

also called chaperonin containing TCP-1 or CCT), the cytosolic chaperonin of eukaryotes, and 

by the related archaeal chaperonin, known as the thermosome. They are GroES or Hsp10 

(Cpn10) independent, possibly because the function of GroES has been incorporated into the 

chaperonin itself through appropriate structural adaptations35-37. In both cases, non-native 

substrate protein is first captured via hydrophobic contacts with multiple subunits in a ring, and 

is then displaced into the central cavity where it can fold, while being protected from 

aggregation with other non-native proteins38. The best studied chaperonin is the group I 

chaperonin GroEL with its co-chaperonin GroES from E.coli. In GroEL, two heptameric rings 

of 57 kDa subunits are stacked back-to-back and form two cavities of 45 Å width39 .Each 

subunit consists of three domains: the equatorial domain harbors the ATP binding site and 

forms most of the inter-subunit contacts within and between heptameric rings. It is connected 

via an intermediate hinge-like domain to the apical domain, which is situated at the rim of the 

cylinder opening and exposes a number of hydrophobic residues towards the ring cavity for 

the binding of non-native polypeptide (Fig.4). 
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Fig.4: The asymmetric GroEL-GroES-(ADP)7 complex. The crystal structures of GroEL (PDB 1SS8, 
left) and the asymmetrical GroEL-(ADP)7-GroES complex (PDB 1PF9, right) are depicted with GroES  
shown in green and one subunit of GroEL colored to indicate its domain structure (equatorial nucleotide-
binding domain in red; intermediate hinge domain in blue; and the apical substrate and GroES-binding 
domain in yellow). The conformational differences between the GroEL subunits in the open state (GroEL 
and trans ring of GroEL-GroES complex) and in the closed state (cis ring of GroEL-GroES complex) are 
shown in ribbon representations of single subunits (middle). The green spheres represent hydrophobic 
residues on helices 8 and 9 of the apical domain that are involved in substrate binding in the open 
conformation and in GroES binding in the closed state (reproduced from Kim et al.7). 
 
GroES is a homoheptameric ring of ~10 kDa subunits that cycles on and off the ends of the 

GroEL cylinder, in a manner regulated by the GroEL ATPase40,41. Hydrophobic sequences of 

substrate proteins bind to a flexible groove between two amphiphilic helices in the apical 

domain. The GroES subunits have mobile sequence loops that contact the substrate-binding 

regions in the apical domains of GroEL and mediate substrate dissociation42,43. The folding 

cage defined by the GroEL central cavity and the dome-shaped GroES, also termed ‘Anfinsen 

cage’44 is characterized by rather hydrophilic walls (in contrast to the cavity of GroEL alone), 

and is able to enclose proteins up to 50-60 kDa44,45. The binding and release of GroES is 

regulated by the ATPase activity of GroEL in a ‘two-stroke’ mechanism. Binding of substrate 

polypeptide and of 7 ATP to GroEL sequentially (to the free site of GroEL, i.e. the trans site) 

precedes binding of GroES, which closes the folding cage and forms the so-called cis-cavity. 

This results in an enlargement of the cavity from ~85000 Å3 to ~175000 Å3 46. Folding in the 

cage can proceed for ~10 s, during which the 7 ATP in the cis-ring of GroEL are being 

hydrolyzed. This hydrolysis is followed by the binding of 7 ATP to the trans-ring of GroEL, 

which sends an allosteric signal to the cis-ring that results in the release of GroES. Upon 

opening of the folding cage, folded protein can exit, whereas folding intermediates that still 

expose a sufficient amount of hydrophobic surface may be recaptured in preparation for a 

subsequent round of folding in the GroEL-GroES cavity (Fig.5). 
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Fig.5: Protein folding in the GroEL-GroES cage. Substrate protein as a collapsed folding intermediate 
is bound by the open GroEL ring of the asymmetrical GroEL-GroES complex. Binding of ATP to each of 
the seven GroEL subunits causes a conformational change in the apical domains, which results in the 
exposure of the GroES binding residues, allowing substrate encapsulation in the cis complex. ADP and 
GroES dissociate from the opposite ring (trans ring) together with the previously bound substrate. The 
newly encapsulated substrate is free to fold in the GroEL cavity during the time needed to hydrolyze the 
seven ATP molecules bound to the cis ring (∼10 s). ATP binding followed by GroES binding to the trans 
ring triggers GroES dissociation from the cis ring, releasing the substrate protein (reproduced from Kim 
et al.7). 
 
About 250 GroEL interacting proteins have been indientified in the E. coli cytosol, and many 

of them contain two or more domains with α/β (TIM-barrel) folds47,48. Proteins with such 

complex topologies typically fold slowly and are aggregation prone, owing to the prolonged 

exposure of extensive hydrophobic surfaces in their non-native states. Stringent model 

substrates of GroEL, such as bacterial Rubisco, share this domain topology and fold efficiently 

only when in the GroEL-GroES cage49. There are currently three models for acceleration of 

folding by the GroEL/GroES system, which differ in whether GroEL/ES solely acts passively 

by preventing aggregation (passive cage) or additionally promotes the folding process by an 

active mechanism (active cage and interative annealing). Although mechanistically distinct, 

these three models are not mutually exclusive. The central element of the ‘iterative annealing’ 

hypothesis suggests that the GroES-mediated movement of the apical GroEL domains exerts 

a stretching force on bound substrate protein, thereby actively unfolding kinetically trapped, 

misfolded intermediates50. This effect, occurring in every chaperonin ATPase cycle, would 

speed up folding by reducing the half-life of slow folding species and allowing their 

repartitioning with kinetically more effective folding routes. However, the significance of 

iterative annealing is unclear considering that a single round of substrate binding and 

encapsulation (using a single-ring mutant of GroEL that binds GroES stably) results in 

substrate protein folding with equal efficiency and kinetics as achieved through multiple cycles 

of binding and release9,51,52. In contrast, ‘cage-mediated annealing’51 posits that the physical 

environment of the chaperonin cavity is critical in enhancing folding speed. Growing 

experimental and theoretical evidence suggests that the GroEL-GroES cage promotes folding 

by sterically confining folding intermediates9,51,53-58. This model assigns an active role to the 
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chaperonin cage, as opposed to the view that it functions solely as a passive aggregation 

prevention device59. In addition to steric confinement, mutational analysis demonstrated that 

the charged residues of the GroEL cavity wall are critical for the observed acceleration51,60,61. 

According to molecular dynamics simulations, these polar residues accumulate ordered water 

molecules in their vicinity, thereby generating a local environment in which a substrate protein 

may bury exposed hydrophobic residues more effectively56. 

1.2.4 Assembly chaperones 

The common perception that molecular chaperones are involved primarily with assisting the 

folding of newly synthesized and stress-denatured polypeptide chains ignores the fact that this 

term was coined to describe the function of a protein that was thought to assist the assembly 

of folded subunits into oligomeric structures and only later was extended to embrace protein 

folding62. There has been a continuing emphasis of chaperone research on the roles of these 

proteins in protein folding. There is a wealth of experimental data supporting their importance 

in preventing and reversing the misassembly of newly synthesized polypeptide chains that 

competes with correct folding (see 1.2.3). The folding of a given polypeptide chain is 

characterized by the formation of a stable fold specific to the sequence of that chain, whereas 

assembly is characterized by the association of two or more folded subunits into a biologically 

functional oligomer. Only recently, the possible role of molecular chaperones in the assembly 

of oligomeric protein complexes has been increasingly investigated. 

1.2.4.1 Nucleosome assembly 

The nucleosome is the elemental repeating unit in all eukaryotic chromatin, and consists of 2 

copies each of the 4 core histones H2A, H2B, H3, and H4. One tetramer of (H3/H4)2 and 2 

dimers of (H2A/H2B) form the histone octamer, around which 147 bp of DNA are wrapped in 

1.7 turns of a tight superhelix63. Thousands of nucleosomes are further compacted into multiple 

hierarchical levels. Despite the high degree of compaction, chromatin is dynamic and fluidic, 

and its histone components are exchanged at a relatively high rate64. By regulating access to 

the DNA substrate, the nucleosome is not only a structural unit of the chromosome, but is 

perhaps the most important regulator of gene expression. Histones are highly basic proteins 

and require molecular assembly chaperones that prevent them from making improper 

interactions (either with other proteins, or with DNA), and promote their proper interaction to 

form chromatin. A number of histone chaperones (e.g., nucleosome assembly protein 1 

(NAP1), nucleoplasmin, Asf1, HIR, Spt6, DF31, ACF, REF, Nucleoplasmin/B23, CAF-1, and 

N1/N2) are involved in chromatin assembly, in conjunction with ATP-dependent chromatin 

remodeling factors65. Many of these activities may also be implicated in modulating chromatin 

structure by promoting the dynamic exchange of histones in assembled chromatin. 
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1.2.4.2 Proteasome assembly 

In eukaryotes, short-lived proteins are degraded primarily by the ubiquitin-proteasome 

system66. Defects in the system are linked to a variety of human diseases, and proteasomal 

inhibitors are used to treat several cancers67. Most proteasome substrates are first modified 

by polyubiquitin chains, allowing recognition by the proteasome and degradation of the 

substrate. The 26S proteasome consists of a proteolytically active 20S proteasome core 

particle bound at one or both ends by a 19S regulatory particle68. Core particles are complexes 

of 14 different subunits arranged in four heptameric rings. Inside the central chamber, unfolded 

polypeptide chains are threaded for cleavage into small peptides. In mammals, the two outer 

rings consist of seven different but related α subunits, and the two inner rings comprise seven 

different but related β subunits. Eukaryotic core particle assembly initiates with formation of an 

α ring followed by ordered addition of β subunits to the α ring heteroheptamer69. Joining of two 

half-proteasomes triggers autocatalytic processing of active-subunit propeptides and core 

particle maturation70. Moreover, at least three phylogenetically conserved core particle-specific 

assembly chaperones (Ump1, PAC proteins) facilitate proteasome biogenesis, and one of 

these is known to control core particle composition as well71. The 19S regulatory particle is 

composed of six Rpt subunits and 13 Rpn and can be subdivided into two subcomplexes that 

assemble independently, the base and the lid72. Assembly of the regulatory particle base in 

yeast is orchestrated by at least four distinct assembly chaperones (Nas2, Hsm3, Nas6, and 

Rpn14). None of them associates detectably with the mature 26S proteasome. These factors 

are conserved from yeast to human. The regulatory particle base assembles from a set of 

discrete chaperone-associated base subunit complexes; once assembled, the base binds to 

the lid and all chaperones are released prior to or during regulatory particle and core particle 

association. The mechanism of lid assembly and lid-base joining are still poorly understood. 

1.2.4.3 Ribosome assembly 

In living cells, the ribosome is responsible for the final step of decoding genetic information into 

proteins. This universal ‘translation apparatus’ is comprised of two subunits, each of which is 

a complex assemblage of RNA and proteins. The small 40S subunit (30S in prokaryotes) is 

responsible for decoding, whereas the large 60S subunit (50S in prokaryotes) carries out 

polypeptide synthesis. Ribosome biogenesis begins with transcription of pre-rRNA, which 

undergoes co-transcriptional folding, modification and assembly with ribosomal proteins (r-

proteins) to form the two subunits. Assembly of ribosomal subunits in bacteria appears to 

require few (<25) trans-acting factors (including assembly chaperones). By contrast, assembly 

of eukaryotic ribosomes is a complicated process that requires the concerted efforts of all three 

RNA polymerases and >200 trans-acting factors (including assembly chaperones). These aid 

the assembly, maturation and intracellular transport of ribosomal subunits. The process begins 
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with the RNA polymerase I transcription of the 35S pre-rRNA which associates with many 

trans-acting factors and ribosomal proteins to a 90S pre-ribosome. Processing of the pre-rRNA 

involves a series of endo-and exonuclease events. Cleavage in the spacer region between the 

18S and the 5.8S rRNAs leads to the formation of pre-40S and pre-60S particles73,74. RNA 

polymerase III synthesizes the 5S rRNA, which is incorporated into the pre-60S subunit. After 

separation of the 90S intermediate into a pre-60S and a pre-40S particle, the two precursors 

follow primarily independent biogenesis and export pathways.Final maturation of the subunits 

occurs in the cytoplasm. Several trans-acting factors and export factors associated with pre-

60S and pre-40S particles are released before the subunits achieve translation competence. 

In addition, the final rRNA processing steps occur in the cytoplasm73-75. 

1.2.4.4 Pilus assembly 

Bacteria commonly express proteinaceous appendages on their outer surfaces. One class of 

extracellular polymers, known as pili, is used in attachment and invasion, biofilm formation, cell 

motility and transport of proteins and DNA across membranes. These non-flagellar 

appendages of Gram-negative bacteria can be categorized into five major classes on the basis 

of the biosynthetic pathway involved. Of these five classes, the chaperone-usher pili are the 

most extensively studied. Chaperone-usher pili are assembled at the outer membrane by two 

proteins, a periplasmic chaperone and an outer-membrane, pore-forming protein called the 

usher76. The chaperone facilitates folding of pilus subunits, prevents them from polymerizing 

in the periplasm and targets them to the usher77. The usher acts as an assembly platform, 

recruiting chaperone-subunit complexes from the periplasm, coordinating their assembly into 

a pilus and secreting that pilus through the usher pore. Pilus subunits are taken up by their 

cognate periplasmic chaperones as soon as they exit the Sec machinery (which mediates 

general secretion)78. In the absence of the chaperone, the subunits cannot fold properly and 

form aggregates that are targeted for degradation77,79. The periplasmic chaperones are 

boomerang-shaped, ~25 kDa proteins consisting of two immunoglobulin-like (Ig-like) 

domains80. Pilus subunits are characterized by an incomplete Ig-like fold that lacks the C-

terminal β-strand81. As a result, all subunits possess a large groove where the missing strand 

would normally be in a complete Ig fold. In chaperone-subunit complexes, the chaperone 

inserts a β-strand into the hydrophobic groove of a pilus subunit (donor strand 

complementation). During subunit polymerization, the complementing β-strand donated by the 

chaperone is replaced by the N-terminus on the subunit of the incoming chaperone-subunit 

complex (donor strand exchange). Because of their important role in bacterial virulence, 

chaperone–usher pili have received considerable attention in vaccine development 

programmes and in the search for new antibacterials. 
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1.3 Photosynthesis 

Photosynthesis is a fundamental process in biology. By this process, solar energy is being 

converted into chemical energy. The chemical energy is then used to fix CO2 and to synthesize 

the reduced carbon compounds upon which all life depends. Photosynthetic organisms occur 

in all domains of life (bacteria, archaea, eukaryotes). The compartmentalised process consists 

of the light-dependent reactions, providing the reducing equivalents and ATP, and the "light-

independent (dark) reactions that build up and reduce the carbohydrate chain. In eukaryotes, 

photosynthesis takes place in specialised organelles called chlororplasts, which are derived 

from an endosymbiotic event with a cyanobacterium. Most land plants use the C3 pathway of 

photosynthesis, also called the carbon reduction cycle. C3 plants have a single chloroplast 

type that performs all of the reactions (Fig.6). This organelle has a special double outer 

membrane that allows the diffusion of gases as CO2 and O2. The thylakoid membrane, located 

on the inside of chloroplasts, is highly folded and usually arranged as flattened-stacked 

vesicles called grana. The machinery necessary for the capture of solar energy and conversion 

to chemical energy (light-dependent reactions) is embedded in the thylakoid membrane 

including: photosystems I and II, electron carrier chains, chloroplast ATP-synthetase, light 

harvesting complexes, as well as other complexes82. The aqueous compartment inside the 

thylakoid membrane is called the lumen, while the aqueous phase outside the thylakoid 

membrane is the stroma. The stroma contains the soluble proteins and molecules necessary 

for the reduction of atmospheric carbon into organic carbon (light-independent reactions). 

Although chloroplasts are thought to originate from a unique primary endosymbiotic event, 

many algae contain photosynthetically active chloroplasts that are surrounded by three or four 

membranes. These chloroplasts are called complex plastids and they originated from a 

secondary endosymbiotic event in which a photosynthetic eukaryotic cell was taken up by a 

non-photosynthetic eukaryotic host cell82. 
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Fig.6: Outline of chloroplast ultrastructure. The chloroplast is composed of three membrane 
systems: the outer (OE) and inner envelope (IE), and the thylakoid membrane network that contains the 
protein complexes that are involved in photosynthesis. In addition, three soluble spaces can be 
distinguished: the inter-envelope space (IES), the stroma and the thylakoid lumen. An electron 
micrograph of an isolated Pisum sativum chloroplast is shown, and the enlargement on the far right 
shows the typical organization of thylakoids. Granal membranes are preferentially enriched in 
photosystem II (blue) and the cytochrome b6f complex (purple), whereas stromal membranes are 
enriched in photosystem I (red) and the ATP synthase (green). Also shown are the different 
compartments, a newly synthesized protein can be transported from and to in a cell (N, nucleus; M, 
mitochondria; P, peroxisomes; PM, plasma membrane; endoplasmatic reticulum not shown). Protein 
import into chloroplasts is achieved by two translocons called TOC and TIC that reside in the outer and 
inner envelope, respectively (reproduced from Soll and Schleiff82). 

1.3.1 Light-dependent reactions 

Photosynthesis can be divided into two processes: light-dependent reactions and light-

independent carbon-fixation/assimilation reactions. During the light-dependent reactions, solar 

energy is being converted into chemical energy in form of NADPH and ATP (Fig.7). 

Biochemical and biophysical studies showed that the chloroplast thylakoid membrane is 

capable of light-dependent water oxidation, NADP reduction and ATP formation83. These 

reactions are catalysed by two separate Photosystems, photosystem I (PSI) and photosystem 

II (PSII) and an ATP synthase (F-ATPase): the latter produces ATP at the expense of the 

proton motif force (pmf) that is formed by the light reaction84-88. The cytochrome-b6 f complex 

mediates electron transport between PSII and PSI and converts the redox energy into a high-

energy intermediate (pmf) for ATP formation89. PSI and PSII contain chlorophylls and other 

pigments that harvest light and funnel its energy to a reaction centre. The reaction center of 
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photosystem I absorbs light maximally at 700 nm, correspondingly this reactive center is 

named P700. Whereas, the reaction center of photosystem II absorbs light maximally at 680 

nm and is accordingly named P680. Energy that has been captured by the reaction centre 

induces the excitation of specialized reaction centre chlorophylls, which initiates the 

translocation of an electron across the membrane through a chain of cofactors. Water, the 

electron donor for this process, is oxidized to O2 and 4 protons by PSII. The electrons that 

have been extracted from water are shuttled through a quinone pool and the cytochrome-b6 f 

complex to plastocyanin, a small, soluble, copper-containing protein90. Solar energy that has 

been absorbed by PSI induces the translocation of an electron from plastocyanin at the inner 

face of the membrane (thylakoid lumen) to ferredoxin on the opposite side (stroma). The 

reduced ferredoxin is subsequently used in numerous regulatory cycles and reactions, which 

include nitrate assimilation, fatty-acid desaturation and NADPH production. The charge 

separation in PSI and PSII, together with the electron transfer through the cytochrome-b6 f 

complex, leads to the formation of an electrochemical-potential gradient (the pmf), which 

powers ATP synthesis by the fourth protein complex, F-ATPase91. In the dark, CO2 reduction 

to carbohydrates is fuelled by ATP and NADPH92. Cyclic photophosphorylation is an alternative 

electron-transfer pathway that, unlike the prevailing linear mode, does not involve PSII. In this 

process, a pmf is formed by electrons that flow from PSI through a quinone and the 

cytochrome-b6 f complex back to PSI. No NADPH is formed in this pathway and its molecular 

basis and regulation are ill-defined. Cyclic phosphorylation supplies the CBB cycle with extra 

ATP93. 
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Fig.7: Structures of the large membrane-protein complexes in thylakoid membranes that drive 
oxygenic photosynthesis. A: Transmembrane organisation of the major photosynthetic proteins in 
their native oligomerization state. B: Schematic representation of the pathway for photosynthetic linear 
electron flow and proton translocation through major protein complexes whose atomic structures are 
shown in a. Electrons are extracted from water on the lumenal side of membranes and transferred to 
NADP on the stromal side of membranes. Electron transfer is driven by the reaction center from two 
distinct photosystems, PSII and PSI, which are the site of a light-induced charge separation between a 
photosensitive chlorophyll and an acceptor molecule. The intersystem electron carriers consist of a pool 
of plastoquinone molecules soluble within the lipid bilayer, a transmembrane protein complex, the cyt 
b6f complex, comprising an Fe-S cluster and four hemes, a small copper-containing soluble protein in 
the thylakoid lumen, plastocyanin, which is replaced by a soluble cyt, c6, in some photosynthetic 
organisms. Protons translocated across the membrane during linear electron flow are used by the 
transmembrane ATP synthase to drive ATP synthesis (reproduced from Eberhard et al.94). 

1.3.2 Light-independent reactions / Calvin Benson Bassham cycle 

The Calvin Benson Bassham cycle (CBB) is the primary pathway of carbon fixation and is 

located in the chloroplast stroma of higher plants. It comprises 11 different enzymes, catalyzing 

13 reactions, and is divided into three phases: carbon fixation, reduction (carbohydrate 

synthesis), and regeneration of the CO2 acceptor ribulose-1,5-bisphosphate (RuBP). The 

carbon fixation reaction is catalyzed by the enzyme ribulose-1,5-bisphosphate 

carboxylase/oxygenase (Rubisco) which catalyzes the carboxylation of the CO2 acceptor 

molecule RuBP. The 3-phosphoglycerate (3PG) formed by this reaction is then utilized to form 

the triose phosphates, glyeraldehyde phosphate (G3P) and dihydroxyacetone phosphate 

(DHAP), via two reactions that consume ATP and NADPH generated in the light reactions. The 
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regenerative phase of the cycle involves a series of reactions that convert triose phosphates 

into the CO2 acceptor molecule RuBP (Fig.8).  

Fig.8: The CBB cycle. The CBB pathway can be divided into 3 different phases. In phase 1, Rubisco 
catalyzes the addition of CO2 to the acceptor molecule, RuBP. In Phase 2, the resulting 3PG is reduced 
to form G3P. This involves the consumption of ATP and NADPH that are created in the light-dependent 
reactions of photosynthesis. In Phase 3, the regeneration of the acceptor molecule RuBP takes place 
and involves a series of reactions, which include the enzymes transketolase and transaldose (not shown 
here). These reactions require ATP and involve intermediates of sugars with a different number of 
carbon atoms. 

This is accomplished in a series of isomerase, transaldolase and transketolase reactions. In 

the final step the precursor ribulose 5-phosphate is phosphorylated in an ATP-dependent 

reaction. Overall the CBB cycle generates one molecule of glyceraldehyde 3-phosphate from 

3 molecules of CO2 at the "metabolic cost" of 9 molecules of ATP and 6 molecules of NADPH. 

The majority of the triose phosphate produced in the CBB cycle remains within the cycle to 

regenerate RuBP. However, carbon compounds produced in this cycle are essential for growth 

and development of the plant and therefore triose phosphates exit from the cycle and are used 

to synthesize sucrose and starch (Fig.8). The CBB pathway also supplies intermediates to an 

array of other pathways in the chloroplast, including the shikimate pathway for the biosynthesis 
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of aromatic amino acids and lignin, isoprenoid biosynthesis and precursors for nucleotide 

metabolism and cell wall synthesis95.  

1.3.3 Photorespiration 

In the early 1970s it was discovered that Rubisco catalyzes an additional reaction involving 

molecular oxygen96,97. This enzymatic activity is referred to as ribulose bisphosphate 

oxygenase, and it catalyzes the first reaction in the process of photorespiration, which many 

plant physiologists regard as the most important metabolic constraint on plant productivity98. 

In this reaction atmospheric O2 reacts with the acceptor molecule RuBP. Instead of 2 molecules 

of 3PG (see CBB cycle Fig.8), this reaction results in the formation of one molecule of 3PG 

and one molecule of 2-phosphoglycolate, a molecule of not only limited use to most organisms 

but that is also CBB cycle inhibitory and has cellular toxicity character. Conversion of 2-

phosphoglycolate into 3PG requires the remainder of the photorespiration pathway, which 

consumes energy and leads to the release of CO2 and ammonia (Fig.9). Under today's 

atmospheric conditions (0.035% CO2, 21 % O2, and 78% N2), the CO2 concentration in the 

chloroplasts of C3 plants is approximately 1000 times lower than that of O2. This unfavorable 

CO2/O2 ratio leads to a significant amount of photorespiration, reducing the overall efficiency 

of net photosynthesis in C3 plants by approximately one third98. Both the carboxylase and the 

oxygenase reactions of Rubisco occur at the same active site and have the same initial steps, 

i.e. the binding of RuBP and the generation of an enzyme bound enediol intermediate99. CO2 

and O2 compete to react with this enediol intermediate and once the enediol has reacted with 

either CO2 or O2 the enzyme is committed to form products. 18O-labeling experiments showed 

that oxygenation is accompanied by the incorporation of one atom of molecular O2 into the 

carboxyl group of 2-phosphoglycolate. The other atom of molecular O2 is released into the 

medium97. The photorespiratory pathway is comprised of 8 enzymes in four different 

compartments: chloroplast, cytosol, peroxisome and mitochondrium.  

It has been suggested that photorespiration is important for energy dissipation to prevent 

photoinhibition100-103. In addition, photorespiration can generate metabolites, such as serine 

and glycine, which can be exported out of the leaf104 or used in other metabolic pathways, for 

example, provision of glycine for the synthesis of glutathione105,106. Since glutathione is a 

component of the antioxidative system in plants107, photorespiration may provide additional 

protection against oxidative damage in high light by supplying glycine. Thus, photorespiration, 

despite being energetically wasteful, may also be a useful process in plants108. 
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Fig.9: Photorespiratory pathway in plant cells. In photorespiration, RuBP reacts with oxygen to form 
one molecule of 2-phosphoglycolate that is beeing hydrolyzed to glycolate. After transport into the 
peroxysomes (glyoxysome), glycolate is oxidized to glyoxylate. Glyoxylate can be transaminated to 
glycine. Half of the glycine molecules are converted to N5, N10-methylene tetrahydrofolate (THF) in the 
mitochondria. In this reaction CO2 and NH3 are released. The other half of the glycine molecules can 
react with N5, N10-methylene THF to form serine. After transport from the mitochondria to the 
peroxysomes, serine is converted to hydroxypyruvate, which is reduced to glycerate. Glycerate is then 
phosphorylated and reduced in the chloroplasts to form 3PG. This reaction consumes ATP and NADPH. 

1.3.4 Carbon concentrating mechamisms 

Photosynthetic organisms have adapted to the limited availability of carbon dioxide in their 

environment by developing systems called the carbon dioxide concentrating mechanism 

(CCM). These include active inorganic carbon (Ci; CO2 and/or HCO3-) uptake that leads to the 

accumulation of Ci to levels significantly higher than in the cell exterior. Carbonic anhydrase 

activity converts much of the accumulated hydrogen carbonate to CO2, concentrating this 

substrate around Rubisco and thereby optimising photosynthetic efficiency even under low 

CO2 conditions. The efficiency of the process is further improved by the sequestration of 

Rubisco into specialized structures like the cyanobacterial carboxysome or the pyrenoid in 

eukaryotic algae. By converting bicarbonate into carbon dioxide in these structures, a local 

elevation of carbon dioxide concentration is achieved, favoring carboxylation over oxygenation. 

1.3.4.1 The Carboxysome 

In Cyanobacteria, Rubisco is localized in the carboxysome, a microcompartment enclosed by 

a proteinacous, icosahedral shell109. Carboxysomes can be divided into two types that differ in 

their component proteins and the organization of their respective genes110. Carboxysomes of 

the α-type are found in α-cyanobacteria (for example, Prochlorococcus species and certain 

Synechococcus species, such as Synechococcus sp. WH 8102), whereas carboxysomes of 

the β-type are found in β-cyanobacteria (for example, Synechococcus elongatus PCC7942 

and Synechocystis sp. PCC 6803). Not all of the genes that are present in one type of 

22 
 



Introduction 

carboxysome can be identified in the genomes of organisms that produce the other type, 

indicating that there could be functional differences between the two types. Organisms with α-

carboxysomes arrange their carboxysome genes in a single operon, whereas organisms with 

β-carboxysome genes are typically arranged in multiple gene clusters. Carboxysomes carry 

out the final stages of the CCM, through which autotrophic prokaryotes accumulate inorganic 

carbon to enhance CO2 fixation (Fig.10). The first part of the CCM involves transmembrane 

pumps, which actively concentrate bicarbonate inside the cell111, whereas the second part 

involves the carboxysome, in which bicarbonate is converted to CO2 in the vicinity of Rubisco. 

Models for how the carboxysome contributes to the CCM predict that a carbonic anhydrase 

needs to be sequestered with Rubisco in the carboxysome to convert bicarbonate, presumably 

as it enters the microcompartment from the cytosol, to the Rubisco substrate CO2. The outer 

shell could provide a barrier to the diffusion and leakage of CO2 and bicarbonate 

substrates112,113. 

Fig.10: Carbon concentration and the carboxysome. In the first part of the CCM, bicarbonate is 
concentrated inside the cell by transporters in the cell membrane. The carboxysome is involved in the 
second part of the CCM, and enhances CO2 fixation by co-localizing the two enzymes Rubisco and 
carbonic anhydrase (CA) inside a thin shell that is assembled from thousands of protein subunits. 
Bicarbonate is thought to enter the carboxysome through pores in the proteinaceous shell, where it is 
converted to CO2 for use by Rubisco. RuBP must also enter the carboxysome and the product 3PG 
must exit the carboxysome (reproduced from Yeates et al.114).  
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1.3.4.2 The pyrenoid 

In eukaryotic algae, the pyrenoid serves a function similar to the role of the carboxysome in 

cyanobacteria. Rubisco is localised to the pyrenoid in chloroplasts of green algae including 

Chlamydomonas reinhardtii115. Pyrenoids are composed largely of Rubisco and include the 

formation of a starch sheath around the enzyme instead of a proteinaceous shell. The 

chloroplast thylakoid carbonic anhydrase plays an essential role in the carbon dioxide 

concentrating mechanism of Chlamydomonas. It catalyzes the conversion of bicarbonate into 

carbon dioxide and results in a high local concentration of carbon dioxide in the vicinity of 

Rubisco. Due to the diversity of employed CCM and the difficulty of biochemically 

characterizing oligosaccharide enclosed microcompartments the mechanistic details of CCM 

in algae are mostly unknown. 

1.3.4.3 C4 and crassulacean acid metabolism (CAM) photosynthesis 

C4 and CAM photosynthesis are evolutionarily derived from C3 photosynthesis. The 

morphological and biochemical modifications necessary to achieve either C4 or CAM 

photosynthesis are thought to have independently arisen numerous times within different 

higher plant taxa. It is thought that C4 photosynthesis evolved in response to low atmospheric 

CO2 concentrations, which significantly increases photorespiration rates in C3 plants, thus 

reducing photosynthetic productivity; both C3-C4 intermediate and C4 plants exhibit reduced 

photorespiration rates. In contrast, it may be argued that CAM arose either in response to 

selection of increased water-use efficiency or for increased carbon gain. Globally, all three 

pathways are widely distributed today, with a tendency toward ecological adaptation of C4 

plants into warm, monsoonal climates and CAM plants into water-limited habitats. 

In C4 plants, a simple change in expression of the C3 cycle is used to overcome the reduced 

photosynthetic efficiency associated with photorespiration. Instead of allowing the C3 

photosynthesis cycle to occur in all photosynthetic cells, the C3 cycle is limited to selected 

interior cells, typically the bundle sheath cells. A layer of mesophyll cells surrounds these 

bundle sheath cells. Within the mesophyll cells is phosphoenolpyruvate (PEP) carboxylase, an 

enzyme that catalyzes the initial photosynthetic reaction. This reaction involves 

phosphenolpyruvate and atmospheric CO2 as substrates to produce oxaloacetate, a four-

carbon acid; hence the name C4 photosynthesis. The C4 acid diffuses from the mesophyll 

through plasmodesmata to the bundle sheath cells, where the C4 acid is decarboxylated. Since 

PEP carboxylase has a higher affinity for its substrate and a greater maximum velocity than 

Rubisco, the CO2 concentration in the bundle sheath cells ends up being significantly higher 

than that in either the mesophyll cells or the surrounding atmosphere. The consequence is that 

PEP carboxylase effectively serves as a CO2 pump, concentrating CO2 within the bundle 

sheath cells. This results in CO2 concentrations within the chloroplasts that are an order of 
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magnitude higher than in C3 plants. As a consequence, the Rubisco reactions in C4 plants 

take place in an atmosphere with a high CO2/O2 ratio, and photorespiration is effectively 

eliminated. Critical to the functioning of the C4 cycle is a distinct spatial separation of the 

activities of Rubisco and PEP carboxylase (Kranz anatomy)-such that with PEP carboxylase 

activity located between atmospheric CO2 and Rubisco, it provides a pump to raise the CO2 

concentrations internally116. 

CAM photosynthesis involves the same CO2 concentrating mechanism as in C4 

photosynthesis (PEP carboxylase). However, rather than a spatial separation of the two 

carboxylation enzymes such as exists in C4 photosynthesis, there is a temporal separation of 

the two carboxylases in CAM, and both reactions occur within the same cell. In contrast to C3 

and C4 plants, an inverted diurnal pattern of stomatal opening occurs in CAM plants. Stomata 

open during the evening, and atmospheric CO2 is fixed as a C4 acid (malate), which is then 

stored within the vacuole of the photosynthetic cell. During the following day, stomata remain 

closed, and malate is decarboxylated to release CO2, The CO2 concentration within the cell 

remains high as CO2 cannot diffuse out through the closed stomata. As a result, Rubisco once 

again operates within a high CO2/O2 environment, and photorespiration is eliminated. Thus, in 

CAM plants a temporal separation of the two carboxylase reactions occurs with Rubisco 

activity within the cell during the day and PEP carboxylase activity during the night117. 

1.4 Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) 

Much of the current diverse interest in D-ribulose-1,5-bisphosphate carboxylase/oxygenase 

can be attributed to its pivotal function in photosynthesis and photorespiration. It is clearly a 

rate-limiting factor in both processes as well as it is an inefficient catalyst. This is very surprising 

since this enzyme must have been subject to the most intense kind of selection for catalytic 

specificity and turnover rate118. This inefficiency is the reason that photosynthetic cells must 

invest one quarter or more of their precious nitrogen resources in this one enzyme, which is 

the world’s most abundant protein; it occurs in all photosynthetic leaves and makes up to 65% 

of the total soluble protein in leaf extracts. In the stromal compartment of chloroplasts it reaches 

a concentration of up to about 300 mg/ml119. Rubisco connects the inorganic and organic 

phases of the biosphere’s carbon cycle, catalyzing the only quantitatively significant reaction 

by which atmospheric CO2 may be acquired by living organisms. This distinguishes Rubisco 

from the many other carboxylases. The reactions these enzymes catalyze do not result in the 

net acquisition of carbon for gluconeogenetic purposes or are quantitatively unimportant to the 

biosphere120-122. 

1.4.1 Structure of Rubisco 

Due to the possibility of purifying relatively large amounts of the enzyme from plant material, 

Rubisco was an early candidate for structural studies by X-ray crystallography with the first 
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crystallization reported in 1971123. Nevertheless, the road to a successful structue 

determination has been littered with pitfalls linked to the fact that the enzyme is unusually large 

and complicated. That is a reason why it took another one and a half decades until the first X-

ray structure of Rubisco was determined to 2.9 Å resolution124 from the recombinant dimeric 

enzyme from Rhodospirillum rubrum125. The structures from spinach126,127, tobacco128,129 and 

Synechococcus followed suit130,131.Rubisco from higher plants, algae and cyanobacteria is a 

hexadecamer of molecular mass 550 kDa composed of eight large subunits (RbcL: 50-55 kDa) 

and eight small subunits (RbcS: 12-18 kDa). This type of Rubisco structure is called form I 

Rubisco. The molecule exhibits 422 symmetry and cosists of four RbcL2 dimers arranged 

around a four-fold axis, capped at both ends by four small subunits. Based on amino acid 

sequences of the form I enzyme, a distinction has been made between green-type enzymes 

(forms I A and B from cyanobacteria, eukaryotic algae and higher plants) and red-type 

enzymes (forms I C and D from non-green algae and phototrophic bacteria) 132,133. Rubiscos 

from some dinoflagellates and purple nonsulfur bacteria (e.g. Rhodospirillum rubrum) are 

homodimers of two such RbcL subunits related by a twofold rotational symmetry, lacking small 

subunits. They are called form II Rubiscos. More recently the structure of Rubisco from the 

thermophilic archaea Thermococcus kodakaraensis has been solved134, revealing a 

completely new pentameric quaternary structure, which has been assigned as form III Rubisco. 

However, in terms of quaternary structure the archaea are diverse and comprise RbcL2, RbcL8 

and RbcL10 enzymes. The newest member of the Rubisco super family, form IV Rubisco-like-

protein (RLP), is also dimeric and solely composed of large subunits. RLP occur in organisms 

that do not have a CBB cycle. This class is divided into six clades based on primary 

sequences135. The enzyme is termed RLP since it does not harbor any carboxylase activity 

due to critical substitutions in the active site136. The function of RLP is not known for all 

organisms in which it is found, but it is involved in sulfur metabolism137. In Geobacillus 

kaustophilus and Bacillus subtilis the RLP is implicated in the methionine salvage pathway and 

functions as an enolase, stabilizing the enol form of active site substrate138. Figure 11 displays 

the quaternary structures of forms I-III of Rubisco. Despite apparent differences in amino acid 

sequence between the various forms of Rubisco, the secondary structure is extremely well 

conserved throughout. 
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Fig.11: The different quaternary structures of Rubisco isoforms. A: The RbcL2RbcS2 unit of form I 
Rubisco from spinach viewed along the 2-fold symmetry axis. Large subunits are blue and green, small 
subunits are yellow, and the transition-state analog (CABP) is displayed as red spheres. B: The entire 
RbcL8RbcS8 hexadecamer viewed along the same 2-fold axis and C: along the 4-fold axis. D: The 
dimeric form II Rubisco from Rhodospirillum rubrum showing the 2-fold symmetry. E: and F: The RbcL10 
Rubisco from Thermococcus kodakaraensis viewed along the 2-fold and 5-fold axes, respectively. 
Sulphate ions bound in the active site are displayed as red spheres (reproduced from Andersson and 
Backlund143). 
 

The overall fold of the large (catalytic) subunit is similar in all forms of Rubisco (Fig.11): a 

smaller amino-terminal domain consisting of a four-to-five-stranded mixed β sheet with helices 

on one side of the sheet and a larger carboxyterminal domain139. The carboxyterminal domain 

consists of eight consecutive βα-units arranged as an eight-stranded parallel α/β barrel 

structure. The active site is located at the carboxyterminal end of the β-strands, with the loops 

connecting the βα-units contributing several residues involved in catalysis and substrate 

binding. Residues from the aminoterminal domain of the adjacent large subunit in the dimer 

complete the active site. Thus, the functional unit structure of Rubisco is an RbcL2 dimer of 

large subunits harboring two active sites (Fig.11). The secondary structure topology of the 

large subunit is well conserved (Fig.12). 
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Fig.12: Left: Comparison of the large subunit from spinach (PDB 8RUC, grey) with the large 
subunit of Rhodospirillum rubrum (PDB 5RUB, red). Features that differ are indicated in arrows. 
Helices 7 and 8 of the α/β barrel are displaced in the enzyme from Rhodospirillum rubrum (reproduced 
from Andersson and Backlund143). Right: Comparison of the Rubisco small-subunit X-ray crystal 
structures from Chlamydomonas (yellow), Spinacia (green), Synechococcus (blue) and Galdieria 
partita (red). Loops are labeled relative to their flanking b strands. Residues that are more than 95% 
conserved among all known small-subunit sequences are colored white (reproduced from Spreitzer141). 
 
Form II Rubisco from Rhodospirillum rubrum has an extra α-helix in the amino-terminal domain 

(helix αA, residues 14-19)140. In addition, certain loop regions differ in length (Fig.12)140. 

Whereas the large subunits display relatively little variation in the different forms, the small 

subunits are more diverse. The common core structure consists of a four-stranded anti-parallel 

β-sheet covered on one side by two helices (Fig.12)127. The most striking variations occur in 

two distinct locations, the loop between β strands A and B of the small subunit, the so-called 

βA-βB-loop, and the carboxyterminus141. The βA-βB loops of four small subunits line the 

openings of the solvent channel that traverses the holoenzyme along the 4-fold axis (Fig.12). 

Rubisco from prokaryotes and non-green algae have a loop length of only ten residues 

(Fig.13A) as illustrated by the structure of the cyanobacterial enzyme130, but Rubisco from 

higher plants have 22 (Fig.13B)107 and green algal Rubisco have 28 (Fig.13C)142. Judging by 

the arrangement of the small subunits covering a substantial area at two opposite ends of the 

RbcL-subunit octamer, it is reasonable to assume a structural function of the small subunit, 

namely to assemble and concentrate the large catalytic subunits. However, considering that 

some Rubisco enzymes lack small subunits and have the lowest specificity values144, it is 

tempting to speculate that the small subunits also contribute substantially to the differences in 

kinetic properties observed among different Rubisco enzymes, despite being spatially 

separated from the active sites. 
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Fig.13: Variation of the βA-βB loop of the small subunit in various Rubisco enzymes. Large 
subunits are coloured blue, small subunits are yellow, and the βA-βB loops are red. A: Synechococcus 
sp. PCC 6301 (PDB 1RBL). B: Spinacia (PDB 8RUC). C: Chlamydomonas reinhardtii (PDB 1GK8). D: 
Galdieria partita (PDB 1BWV, reproduced from Anderson and Backlund143). 
 

1.4.2 Catalytic mechanism and regulation of Rubisco activity 

The catalytically competent form of all Rubiscos, irrespective of their origin, is a ternary 

complex of enzyme-CO2-Mg2+ 145,146. The formation of the active ternary complex involves the 

slow, reversible reaction of a molecule of CO2 with the ε-amino group of Lysine 201 (K201) to 

form a carbamate (Fig.14)147,148. The activator CO2 is different from the molecule of substrate 

CO2149,150.  

29 
 



  Introduction 
 

 
Fig.14: Regulation of Rubisco activity by reversible carbamylation and inhibitor binding to 
carbamylated or non-carbamylated Rubisco. Rubisco activase and small molecule inhibitors control 
the activity of Rubisco. E and ECM signify non-activated and active Rubisco, respectively. ER and ECMI 
are inhibited forms (reproduced from Müller-Cajar et al.151). 

Formation of the carbamate is followed by the rapid addition of Mg2+ to create the active ternary 

complex. This complex does not require the presence of small subunits152. In place of Mg2+, 

Rubisco can accommodate Mn2+, Fe2+, Ca2+, or Cu2+ as activating metal ions153,154. The 

RbcL8RbcS8 Rubiscos contain eight catalytic sites. Both RuBP and various other effectors 

interact with the enzyme at a common site, the catalytic site. This results in the fact, that all of 

the compounds that influence the carbamylation state of the enzyme are competitive inhibitors 

of catalysis with respect to RuBP155. Hatch and Jensen156 classified effectors into two groups. 

Positive effectors, such as NADPH and 6-phosphogluconate, enhance carbamylation. 

Negative effectors, ribose-5-phosphate for example, favor the decarbamylated state. During 

Rubisco’s multistep catalytic reaction, protonation and oxygenation of the RuBP enediolate 

intermediate can result in the formation of isomeric pentulose bisphosphates, so-called misfire 

by-products157. These include xylulose-1,5-bisphosphate (XuBP), 2,3-pentodiulose-1,5-

bisphosphate (PDBP) and 3-ketoarabinitol-1,5-bisphosphate (KABP)157,158, whose formation 

results in an inactive, ‘closed’ enzyme that reactivates only slowly, limited by the spontaneous 

opening of the active site (Fig.14). The latter process is accelerated by the activity of another 

protein, Rubisco activase (Rca), a member of the AAA+ protein family, by an ATP-dependent 

mechanism (Fig.14)159,160. Interestingly, the activity of Rubisco activase is controlled by redox-

regulation in many plant species, which allows for indirect control of Rubisco activity in 

response to the redox status of the chloroplast stroma due to illumination. In many species in 

darkness and low light, carboxyarabinitol 1-phosphate (CA1P) is responsible for the low activity 
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of Rubisco by binding to its activated form161. Presumably in the plant, as photosynthesis slows 

in shade or dark conditions, this intermediate analog stabilizes the activated state of the 

enzyme. CA1P is released by Rubisco activase162 after which it is rendered non-inhibitory by 

a specific, redox-modulated phosphatase163,164. In the case of XuBP, a specific hydrolase, 

CbbY, cooperates with the action of Rca by degrading the released inhibitor, thereby 

preventing its rebinding165. In the inactivated state, the enzyme can be also inhibited by its 

natural substrate RuBP, which can accumulate to high levels. One positive consequence of 

these naturally occurring stable binary states might be the protection of flexible elements from 

proteolysis during periods of low photosynthetic activity. Once Rubisco is activated, the stage 

is set for catalysis. The reaction mechanism is ordered, with RuBP binding before addition of 

the gaseous substrates CO2 or O2166. The catalytic process of carboxylation and oxygenation 

involve a sequence of analogous intermediates except for a final protonation that is lacking in 

the case of oxygenation (Fig.15). 

 

Fig.15: Sequence of reactions catalyzed by Rubisco. RuBP: D-ribulose 1,5-bisphosphate, CKABP: 
2-carboxy-3-keto-D-arabinitol-1,5-bisphosphate, PKABP: 2-peroxo-3-keto-D-arabinitol-1,5-
bisphosphate, 3PGA: 3-phospho-D-glycerate, 2PG: 2-phosphoglycolate (reproduced from Kannappan 
and Gready167). 

The initial enolization of RuBP is common to both pathways. CO2 or O2 then compete for the 

resulting enediol producing either a carboxyketone (CKABP, Fig.15) or a peroxyketone 

(PKABP, Fig.15), respectively. These ketones are hydrated, either in concert with the addition 

of the gases or subsequently. The hydrated ketones (gem-diol in Fig.15) then split 
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heterolytically between C-2 and C-3. In the case of oxygenation, this completes the reaction. 

Carboxylation involves one further step: a proton must be added to the Si face of C-2 of the 

aci-acid (carbanion intermediate in Fig.15) produced from C-1 and C-2 of RuBP and the 

incoming CO2 molecule in order to produce the second molecule of 3PGA. The active site of 

Rubisco catalyzes all five reactions, i.e. enolization, gas molecule addition, hydration, C-C 

cleavage and protonation, without reopening at intermediate steps. The active site is formed 

from elements of the C-terminal barrel domain of one RbcL-subunit and the N-terminal domain 

of the second RbcL-subunit in the dimer. In the inactive enzyme, the site is open and 

accessible to activating cofactors and bisphosphate substrate128. After formation of the 

essential carbamate and coordination of the Mg2+, RuBP binds and a series of loops close over 

the site to enfold and capture the bisphosphate127,131. Closure of the loops brings together 

amino acids that are critical for catalysis and determine the fate of the substrate (Fig.16). The 

region of the barrel that comprises the active site is at the C-terminal end of the eight β-strands 

that form the core of this domain. The loops that connect the strand and helical elements of 

the barrel extend above and over the surface of the domain, contributing the amino acids that 

form the 1- and 5-phosphate binding sites and an extensive hydrogen bonding network with 

the sugar backbone of RuBP.  

 
 
Fig.16:  Cross-sectional view through the active site of tobacco Rubisco. Left: residues that contact 
the transition-state analoge CABP (silver) are shown in stick representation. Oxygen, nitrogen and 
phosphorus atoms are coloured red, blue and orange, respectively. The catalytic Mg2+ ion is shown as 
a green sphere. One of its ligands is the carbamylated lysine residue 201 (cyan). The active site is at 
the interface between two large Rubisco subunits (coloured brown and blue). Loop 6 (on the right) seals 
the binding pocket from the solvent. Right: open and closed conformations of Rubisco. The 
superposition of the crystal structures for the open (PDB 1EJ7) and closed (PDB 4RUB) states of 
Rubisco reveals conformational changes around the active site. In the closed conformation (brown and 
blue ribbons), the C-terminal peptide highlighted in cyan locks down loop 6 (from the right) on top of the 
active site indicated by CABP (stick representation), whereas in the open conformation (green and 
yellow ribbons) the C-terminal peptide is oriented away from the active site in a flexible conformation 
and loop 6 is detached (reproduced from Müller-Cajar et al.151). 
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As mentioned above, in C3 plants, a number of serious limitations to the efficiency of 

photosynthesis are caused by the catalytic properties and regulation of Rubisco. There are two 

major factors affecting the carboxylase vs. oxygenase reaction catalyzed by Rubisco: the 

relative concentration of CO2 and O2 at the active site and the ability of the enzyme to 

discriminate between the two gaseous substrates. The latter one is expressed by the specificity 

factor SC/O = (kCcat/Kc)/(kOcat/KO), where kCcat, kOcat are the maximum velocities and KC, KO the 

Michaelis constants for CO2 and O2, respectively145. Rubisco has very low substrate turnover 

rates of only ~3-10 CO2 molecules per second. The specificity factors vary among different 

Rubiscos, the lowest for Rhodospirillum rubrum (12). Moderate values are found in culture 

plants (e.g. Nicotiana tabacum with 82), but the highest are found in marine red algae (e.g. 

Griffithsia monilis with 167). Calculations of a “perfect” Rubisco with an optimal catalysis rate 

and fixing exclusively CO2, suggest that this enzyme could maintain photosynthesis with 86% 

less water loss, 35% less light, and 99% less protein investment in Rubisco168. Therefore, one 

strategy to increase photosynthetic carbon fixation would be to generate C3 crop plants 

expressing Rubisco with high specificity factor and catalytic rate169-171. Attempts to introduce 

rbcL and rbcS operons for the high specificity factor red-type Rubiscos of Galdieria sulphuraria 

and Phaeodactylum tricornutum into the plastid genome of tobacco have only partially 

succeeded172. Whilst the transgenes directed the synthesis of transcripts in abundance, the 

subunits of these foreign Rubiscos were insoluble, indicating that one or more processes 

associated with the folding and/or assembly of the red-type Rubisco will need to be understood 

much better and perhaps translated into chloroplasts if this type of Rubisco transplantation is 

to be successful. 

1.4.3 Rubisco: synthesis, folding and assembly 

In green algae and higher plants, Rubisco occurs in the chloroplast and the RbcL subunit is 

encoded in the chloroplast genome. A family of nuclear genes encodes the RbcS subunit, 

which is synthesized as a precursor polypeptide on cytosolic ribosomes and imported into the 

chloroplast in an ATP-dependent reaction173. The N-terminal signal peptide of the RbcS 

subunit is proteolyzed prior to assembly with the RbcL subunits174,175. The RbcL gene in higher 

plants is present as a single copy per chloroplast genome, but because many copies of the 

genome are present in each plastid, the actual RbcL copy number per chloroplast can be high. 

Assembly of both RbcL2 and RbcL8RbcS8 Rubisco from photosynthetic prokaryotes and 

rhodophytic algae is apparently simpler, given that the genes encoding their subunits are found 

within the same operon and that synthesis and assembly are cytosolic/stromal events176,177. 

After import into chloroplasts and processing, the mature RbcS subunits are assembled with 

plastid synthesized RbcL subunits into the RbcL8RbcS8 holoenzyme174,178. Before assembly, 

they might be associated with cpn60179,180. Although Rubisco RbcL subunits synthesized in 
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isolated chloroplasts can assemble into holoenzyme, a significant proportion of RbcL subunits 

are also stably associated with cpn60183. As newly synthesized RbcL subunits assemble into 

Rubisco, the pool of RbcL subunits bound to cpn60 declines. This raises the possibility that 

nascent Rubisco RbcL subunits are specifically associated with cpn60 before assembly of 

Rubisco180,181.  In addition to interacting with Rubisco subunits, chloroplast cpn60 can bind to 

many different imported proteins, and it clearly plays a general role in chloroplast 

biogenesis182,183. There have been no reports of imported or stromal synthesized Rubisco 

subunits binding to the chloroplast heat shock protein 70 chaperone in vivo, but this is clearly 

a possibility, given that other imported proteins can interact with heat shock protein 70184,185. 

Furthermore, it has been reported that the 70 kDa heat shock protein/DnaK chaperone system 

is required for the productive folding of cyanobacterial Rubisco subunits in E.coli186. As shown 

in cyanobacteria, assembly of the RbcL8RbcS8 complex is thought to involve the formation of 

RbcL8 core particles, followed by the docking of unassembled small subunits187. Experiments 

designed to examine the assembly of Rubisco in isolated chloroplasts show that an initial 

binding step between cpn60 and newly synthesized or imported Rubisco subunits is 

detectable179-181,188,189. Like chloroplast cpn60, the GroEL oligomer binds to newly synthesized 

RbcL subunits. When prokaryotic RbcL2 and RbcL8RbcS8 forms of Rubisco are synthesized in 

E. coli, successful assembly requires GroEL and GroES proteins190. To understand the 

mechanism of action of the GroE proteins on Rubisco folding, an in vitro refolding assay was 

developed that consists of purified GroEL and GroES proteins, Mg2+ATP, K+ ions, and 

chemically denatured and unfolded Rhodospirillum rubrum form II Rubisco191. Spontaneous 

chaperonin-independent reconstitution of Rubisco at lower temperatures is inhibited by GroEL 

binding, which leads to the formation of a stable binary complex192. Discharge of the GroEL-

RbcL complex, which then results in active Rubisco dimers, requires the GroES 

cochaperonin191. Chloroplast cpn21 effectively substitutes for GroES in the chaperonin 

facilitated refolding of denatured Rhodospirillum rubrum Rubisco, indicating functional 

similarity193. Higher plant Rubisco subunits expressed in E.coli do not form active enzyme194. 

Although large subunits from higher plants bind to GroEL, they fail to assemble properly. Even 

when the genes for higher plant Rubisco are co-expressed in E.coli with the chloroplast cpn60 

genes, no assembly of Rubisco occurs195,196. An attempt to address this issue with anti-sense 

RNA in tobacco plants showed that the synthesis of a β subunit of cpn60 could be inhibited 

and the plants showed a variety of defects, which nonetheless did not prevent Rubisco 

activity183. However, Rubisco protein levels and/or assembly states were not analyzed in this 

study183. Therefore, other cpn60 β genes might have substituted in folding Rubisco RbcL 

subunits.  

Formation of the holoenzyme Rubisco complex seems furthermore dependent on specific 

assembly chaperones. It was reported that the product of the rbcX gene, present in the 
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intergenic space between the rbcL and rbcS genes in several cyanobacteria197, enhances the 

production of enzymatically active Rubisco upon coexpression with rbcL and rbcS in E.coli198-

200. Partial inactivation of rbcX in Synechococcus sp. PCC7002 resulted in a substantial 

reduction in Rubisco solubility and activity200. In contrast, the rbcX gene was reported to be 

nonessential in Synechococcus sp. PCC7942, where the rbcX gene is located remote of the 

rbcLS operon198.  

The first crystal structure of RbcX was solved for Synechococcus sp. PCC7002. RbcX was 

shown to be dimeric of 30 kDa molecular weight and consists of four α helices per monomer 

that form an unusual helix bundle (Fig.17A). The core of the helical bundle is composed of 

conserved hydrophobic residues without authentic coiled-coil sidechain packing. The long α4 

helices of the protomers align in an almost antiparallel fashion such that the helical bundles 

are located at opposite ends (Fig.17B). The α1 helices form additional symmetrical contacts 

and together with the α2 helices delineate a narrow diagonal groove in the arc-shaped 

complex. The dimer interface is predominantly uncharged and hydrophobic201. By means of a 

multiple sequence alignment of cyanobacterial RbcX sequences, two highly conserved regions 

were identified, representing potential protein-protein interaction sites: the central groove of 

the dimer and a surface region around the corners of the molecule (Fig.17C). The groove in 

the centre of the molecule is lined by a hydrophobic area comprising the conserved residues 

Y17, Y20 and I50 of each monomer. Central access into the crevice is constricted by the 

conserved Q51 residue to a 5.4 Å wide opening that is just large enough to accommodate a 

polypeptide chain in an extended conformation. The groove binds to the C-terminus of RbcL 

that contains the recognition motif EIKFEFD and is located on the surface of RbcL subunits201. 

The peptide is bound in an extended conformation with the side chains F462 and F464 

occupying hydrophobic pockets of the RbcX cleft. The C-terminal recognition motif is highly 

conserved among all form I Rubisco homologs. Archaeal and form II Rubisco lack the 

consensus sequence as they also do not encode for RbcX in their genome. The other 

conserved region has predominantly polar character and is located at the corners of the RbcX 

dimer, comprising residues Q29 and R70. Because of the 2-fold symmetry, this region occurs 

twice at opposing edges of the dimer. As mutation of these polar interaction areas results in 

formation of soluble but not properly assembled RbcL in E.coli, it was suggested that the polar 

surface regions are responsible for proper subunit assembly, whereas the central groove is 

essential for the initial recognition and binding for the production of soluble RbcL201. Only the 

combination of both interactions results in the formation of RbcL8 core complexes. It was 

suggested that the initial binding to the RbcL C-terminus helps to maintain RbcL subunits in a 

soluble state and keeps RbcL in an orientation relative to RbcX that favors interaction with the 

peripheral binding surfaces201. 
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Fig.17: Crystal structure of Synechococcus sp. PCC 7002-RbcX. A: Ribbon representation of the 
RbcX monomer. The peptide backbone is depicted from N to C terminus using a color gradient from 
blue to red. Secondary structure elements, selected residue numbers, and chain termini are indicated. 
B: Structure of the RbcX dimer. Protomers are shown in yellow and blue. C: Surface conservation in 
RbcX. The similarity score from an alignment of 151 sequences of cyanobacterial RbcX in the PFAM 
database was plotted onto the accessible surface of the RbcX dimer. Sequence conservation is 
indicated by a color gradient, indicating highly conserved residues in magenta and variable regions in 
cyan. The positions of conserved surface residues are indicated. (reproduced from Saschenbrecker et 
al.201). 
 
It was shown, that disruption of the RbcL C-terminus abolished the formation of soluble, 

assembly competent RbcL protein. Thus, RbcX appears to protect this sequence from 

undergoing aberrant interactions. Interestingly, C-terminal truncation or mutation of RbcL also 

disrupted the RbcX-independent assembly of Synechococcus sp. PCC6301-RbcL, indicating 

a direct role of the C-terminus in forming or stabilizing the RbcL8 core complex201. The 

interaction between cognate RbcX and RbcL8 has a sufficiently fast off rate to allow for efficient 

displacement of RbcX by RbcS, which binds stably to RbcL8201,202. The binding constant of 
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RbcX for the C-terminal RbcL peptide alone are in the 100 µM range, but the overall affinity of 

RbcX for the RbcL8 core complex appears to be close to 1 µM. This could be attributed to the 

polar corner surface of RbcX, which apparently contributes to the overall binding181. Recently, 

cyanobacterial Rubisco was reconstituted in vitro with the assistance of a heterologous high-

affinity RbcX from Anabeana sp. CA203. Furthermore it could be shown, that binding of RbcX 

to RbcL8 is inhibiting Rubisco activity by disordering an N-terminal loop of the RbcL subunit. 

RbcS binding displaces RbcX by ordering this loop region rendering Rubisco catalytically 

competent204. The C-terminal RbcX recognition sequence is conserved in higher plant RbcL, 

and two homologs to RbcX genes are present in plant genomes exhibiting ~20-30% sequence 

homology to the cyanobacterial RbcX sequences. Thus, it could be possible that RbcX has an 

important role in the assembly process of plant Rubisco, too. Taken together, structural and 

functional analysis of cyanobacterial RbcX revealed that the protein acts as a homodimer by 

binding and stabilizing RbcL subunits subsequent to their interaction with chaperonin and 

assist in the efficient formation of RbcL8 core complexes. The RbcL-RbcX interaction is 

dynamic, facilitating displacement of RbcX from RbcL8 by RbcS subunits to produce the active 

holoenzyme (Fig.18)201,204. 

 
Fig.18: Model of RbcX function in cyanobacterial Rubisco assembly. 1: RbcX functions to increase 
the efficiency of Rubisco assembly by acting on folded RbcL subunits subsequent to their GroEL/GroES 
mediated folding. 2: and 3: Folded RbcL monomers may spontaneously form dimers or interact with 
RbcX immediately upon release from GroEL, resulting in stabilization of assembly intermediates 
competent for efficient progression to RbcL8 core particles. 4: The complex between RbcL and RbcX is 
dynamic, facilitating the eventual displacement of RbcX by RbcS subunits to form the functional 
holoenzyme (reproduced from Bracher et al.204). 
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1.4.4 Role of auxiliary proteins in Rubisco biogenesis and function 

In the following review by Hauser et al.212, most recent findings about factors involved in 

Rubisco folding/assembly and maintenance are described. 
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Photosynthesis is a fundamental process in biology as it con-
verts solar energy into chemical energy and thus, directly or 
indirectly, fuels nearly all life on earth. The chemical energy 

generated during the light reaction of photosynthesis is used to 
fix atmospheric CO2 and produce reduced carbon compounds in 
the Calvin–Benson–Bassham cycle, the second step of the process 
(Fig. 1). The key enzyme responsible for carbon fixation in all pho-
tosynthetic organisms is Rubisco1, which catalyses the conversion of 
an estimated ~1011 tons of CO2 per annum into organic material2.

Rubisco catalyses the often rate-limiting step of photosynthetic 
carbon fixation in the Calvin–Benson–Bassham cycle: the carboxy-
lation of the 5-carbon sugar substrate ribulose-1,5-bisphosphate 
(RuBP; Fig.  1). The resulting 6-carbon intermediate is unstable 
and is converted into two molecules of 3-phosphoglycerate (3PG), 

Role of auxiliary proteins in Rubisco biogenesis 
and function
Thomas Hauser†, Leonhard Popilka†, F. Ulrich Hartl and Manajit Hayer-Hartl*

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyses the conversion of atmospheric CO2 into organic com-
pounds during photosynthesis. Despite its pivotal role in plant metabolism, Rubisco is an inefficient enzyme and has therefore 
been a key target in bioengineering efforts to improve crop yields. Much has been learnt about the complex cellular machinery 
involved in Rubisco assembly and metabolic repair over recent years. The simple form of Rubisco found in certain bacteria and 
dinoflagellates comprises two large subunits, and generally requires the chaperonin system for folding. However, the evolu-
tion of hexadecameric Rubisco, which comprises eight large and eight small subunits, from its dimeric precursor has rendered 
Rubisco in most plants, algae, cyanobacteria and proteobacteria dependent on an array of additional factors. These auxiliary 
factors include several chaperones for assembly as well as ATPases of the AAA+ family for functional maintenance. An inte-
grated view of the pathways underlying Rubisco biogenesis and repair will pave the way for efforts to improve the enzyme with 
the goal of increasing crop yields.

which then produces glyceraldehyde-3-phosphate (G3P) via a series 
of steps requiring ATP and NADPH from the light reaction of pho-
tosynthesis. G3P gives rise to the synthesis of sugar molecules, fatty 
acids and amino acids, and is also used to regenerate RuBP (ref. 3).

Rubisco, however, is an inefficient enzyme: its catalytic rate is 
only ~3–10 CO2 molecules per second (refs 4,5). Moreover, oxygen 
can compete with CO2 during catalysis6, resulting in the production 
of only one molecule of 3PG and one molecule of 2-phosphoglyco-
late7,8 (Fig. 1). In plants, 2-phosphoglycolate is recycled back to 3PG 
via photorespiration, an energy-consuming pathway that liberates 
previously fixed carbon as CO2 (ref. 9). These shortcomings may be 
due to Rubisco being an ancient enzyme that evolved more than 
3.5 billion years ago, when the atmosphere was high in CO2 and 
free of oxygen10. Additional complexity comes from the fact that the 

Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
†These authors contributed equally to this work. *e-mail: mhartl@biochem.mpg.de
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multistep catalytic reaction is prone to occasional processing errors 
that produce ‘misfire’ products, some of which can remain bound to 
Rubisco, inhibiting catalysis11.

Recent forecasts suggest that global food production will need to 
rise by more than 25% by 2050 to meet the ever increasing demand12. 
Engineering a catalytically more-efficient Rubisco enzyme could 

contribute to reaching that goal, but the complex nature of Rubisco’s 
folding and assembly has made these efforts exceedingly challeng-
ing10,13–15. Here we review recent progress in understanding the 
complex cellular chaperone machineries that ensure the efficient 
biogenesis of this most abundant enzyme and maintain it in a func-
tionally active state.
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Figure 2 | Comparison of green-type and red-type Rubisco. a, Structure of hexadecameric Rubisco from the cyanobacterial species S. elongatus PCC6301 
(Protein data bank (PDB) accession: 1RBL), shown in surface representation. One antiparallel dimer of RbcL and the adjacent RbcS are highlighted in 
ribbon representation. The transition state analogue carboxyarabinitol-1,5-bisphosphate (CABP) is bound in the active sites. b, Structure of a single RbcL 
subunit in ribbon representation, showing the N-terminal α+β domain and the C-terminal TIM-barrel domain. c, Molecular phylogenetic tree of selected 
Rubisco RbcL sequences (modified from ref. 16, Oxford Journals). The green-type enzymes encompass form IA and IB and the red-type form IC and ID. 
Components associated in Rubisco folding, assembly and activation identified in the different clades are indicated. The phylogenetic tree was calculated 
with T-coffee (ref. 99) by multi sequence alignment and the diagram created using the software Dendroscope (ref. 100).
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Rubisco structure and catalytic function
Several structural forms of Rubisco are found in nature16. The most 
common — form I — in plants, algae, cyanobacteria and proteobac-
teria has a hexadecameric structure consisting of eight large (RbcL, 
~50  kDa) and eight small (RbcS, ~15  kDa) subunits1. The RbcL 
subunits arrange as a tetramer of antiparallel dimers (the RbcL8 core 
complex), capped by four RbcS subunits at the top and four at the 
bottom. The ~520 kDa holoenzyme has a cylindrical shape with a 
diameter of ~110 Å and a height of ~100 Å (Fig. 2a). The simpler 
form II Rubisco found in certain bacteria and dinoflagellates con-
sists only of a dimer of RbcL subunits with no RbcS.

The overall structure of the RbcL subunits is similar in all forms 
of Rubisco, and consists of a N-terminal α+β domain of ~150 amino 
acids and a C-terminal β8α8 triosephosphate isomerase (TIM)-
barrel domain of ~320 amino acids1 (Fig.  2b). Each antiparallel 
RbcL dimer has two active sites formed by residues in the N-domain 
of one subunit and the C-domain of the adjacent subunit (Fig. 2a). 
Although their RbcL sequences are highly conserved (~80% amino 
acid identity17), form I Rubiscos are phylogenetically classified into 
green-type enzymes (forms IA and IB of cyanobacteria, green algae 
and plants) and red-type enzymes (forms IC and ID of non-green 
algae and phototrophic bacteria)16 (Fig. 2c). The RbcS subunits are 
more diverse in sequence, generally with only 30–40% homology 
between different species. Their common core structure consists of 
a four-stranded antiparallel β-sheet covered on one side by two heli-
ces18 (Fig. 2a). The most significant variation occurs in two distinct 
locations, the loop between β-strands A and B, and the C-terminal 
region which is elongated in the enzymes of red-type organisms 
(Supplementary Fig.  1). The diversity in small subunit structure 
appears to significantly contribute to functional differences between 
Rubisco enzymes18,19. In eukaryotes the RbcL subunits are always 
plastid encoded, whereas the RbcS subunits are plastid encoded only 
in non-green algae and nuclear encoded in plants and green algae20. 
The nuclear-encoded RbcS subunits carry cleavable N-terminal 
targeting sequences for import into chloroplasts21. Notably, some 
Rubiscos of red algae and diatoms are catalytically more efficient 
than the green-type enzymes22, making them attractive targets for 
plant biotechnology10,15.

To acquire catalytic competence, Rubisco must first undergo an 
activation process. In this reaction, the ε-amino group of a highly 
conserved lysine (K201 in spinach RbcL) in the active site is car-
bamylated by a non-substrate CO2 molecule, followed by the bind-
ing of Mg2+ to the carbamate moiety6. This initial carbamylation of 
the active site pocket is essential to position the RuBP for efficient 
electrophilic attack by the substrate CO2 molecule. Upon binding 
of RuBP, the so-called loop 6 of the TIM-barrel domain covers the 
active site and finally the flexible C-terminal strand of the RbcL 
subunit fixes loop 6 in position via multiple polar interactions23. As 
a result, there is no solvent access to the active centre and catalysis 
can proceed. As will be discussed below, the activation and catalytic 
reaction are error prone, generating inactive enzyme complexes that 
must be repaired by the chaperone Rubisco activase.

Folding of the Rubisco large subunit by chaperonin
More than 30 years ago, experiments in chloroplasts showed that 
newly synthesized RbcL subunits interact with a large protein com-
plex prior to forming the holoenzyme, suggesting that this ‘Rubisco 
large subunit binding protein’ was involved in the assembly pro-
cess24. The Rubisco subunit binding protein was later identified to 
be the chloroplast homologue of bacterial GroEL and mitochon-
drial Hsp60, a class of molecular chaperones referred to as chaper-
onins25,26. These ATP-regulated macromolecular machines function 
as nano-compartments for single protein molecules to fold in 
isolation, unimpaired by aggregation. Indeed, it was shown more 
recently that the chaperonin system mediates the folding of the 
RbcL subunits, not their assembly27,28.

The chaperonins are large cylindrical complexes consisting of 
two heptameric rings of ~60 kDa subunits stacked back to back26. 
Whereas bacterial GroEL and mitochondrial Hsp60 are homo-
oligomeric, the chloroplast chaperonin Cpn60 is composed of 
homologous α and β subunits29. These chaperonins cooperate func-
tionally with single ring cofactors that bind transiently to the ends 
of the cylinder: GroES in bacteria; Hsp10 in mitochondria; Cpn10 
and Cpn20 in chloroplasts30. While GroES, Hsp10 and Cpn10 
are heptamers of ~10 kDa subunits, Cpn20 is a tandem repeat of 
Cpn10 units that may function alone or as a hetero-oligomer with 
Cpn10 (refs 31,32). The special features of the chloroplast chap-
eronin system may represent an adaptation to chloroplast specific 
substrate proteins.

The best studied chaperonin system is the bacterial GroEL and 
its cofactor GroES (Fig. 3a). Each subunit of GroEL is composed of 
an apical domain, an intermediate hinge domain and an equatorial 
ATPase domain (Fig. 3b). The apical domains form the flexible ring 
opening and expose hydrophobic amino acids for the binding of 
non-native substrate protein and GroES. The ATP-regulated bind-
ing of GroES results in the displacement of the substrate protein into 
an enclosed cage, large enough to accommodate proteins up to ~60 
kDa (refs 26,33; Fig. 3c). Concomitant with GroES binding to the 
GroEL ring that holds the substrate, the GroEL subunits undergo 
conformational changes that render the lining of the central cavity 
hydrophilic and thus permissive for substrate protein folding. The 
enclosed protein is free to fold for ~2–7 seconds (dependent on tem-
perature), the time needed for ATP hydrolysis. Subsequent binding 
of ATP to the opposite GroEL ring causes GroES dissociation and 
substrate release. Proteins that are not yet stably folded are rapidly 
recaptured for another folding attempt (Fig. 3c). The GroEL–GroES 
system of bacteria and the chloroplast chaperonin appear to func-
tion by essentially the same mechanism31,32,34.

Many of the obligate substrates of Escherichia coli GroEL–GroES 
have structural similarity to RbcL in that they also contain the TIM-
barrel domain35. These proteins are generally highly aggregation 
prone due to their tendency to populate kinetically trapped folding 
intermediates with exposed hydrophobic amino acids. They must 
fold inside the GroEL–GroES cage to avoid aggregation and reach 
the native state efficiently. The RbcL subunits of bacterial form II 
Rubisco are also highly aggregation prone but it was found that 
active enzyme could be obtained in the presence of GroEL, GroES 
and ATP in vitro36. It was later shown that the RbcL subunit requires 
encapsulation in the GroEL–GroES cavity for folding and then 
assembles spontaneously to the active dimer27. Renaturation experi-
ments under conditions avoiding aggregation (low RbcL concen-
tration and temperature) revealed that the spontaneous folding of 
RbcL is slow but is accelerated ~3-fold by the chaperonin27. Similar 
observations were made with other TIM-barrel substrate proteins, 
where the rate of folding in the presence of GroEL–GroES is acceler-
ated between 30- and 100-fold37. Recent efforts to reconstitute form 
I Rubisco in  vitro showed that the form I RbcL also requires the 
chaperonin for folding, but fails to assemble and remains chaper-
onin associated28. The failure of the folded RbcL subunit to assemble 
under in vitro conditions suggests that it retains substantial struc-
tural flexibility upon transient release from the chaperonin28.

RbcX, an assembly chaperone for some green-type Rubiscos
Assembly of the RbcL8S8 holoenzyme is generally thought to 
involve the formation of the RbcL8 core complex followed by the 
docking of unassembled RbcS subunits, which can fold spon-
taneously in  vitro. Various form I cyanobacterial Rubiscos have 
been expressed in E.  coli, generally with low yields of 0.1–10%38, 
although coexpression of GroEL–GroES improves the yield in the 
case of Synechococcus elongatus PCC6301 (Syn6301)36,39. Notably, 
the Rubiscos from Syn6301 and Thermosynchococcus elongatus 
BP-1 are the only cyanobacterial proteins so far for which a stable 
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RbcL8 complex could be produced in the absence of RbcS (refs 
40–42). These findings suggested that additional factors, besides 
the chaperonin, are necessary to ensure the efficient formation of 
the structurally more complex form I Rubisco. One possible can-
didate was the protein encoded by the rbcX gene, which is located 
in the intergenic space between the rbcL and rbcS genes of several 
cyanobacterial species38 and is conserved in all organisms with 
form IB Rubisco, including plants43 (Fig. 2c). Coexpression of RbcX 
with RbcL and RbcS in E.  coli enhanced the production of enzy-
matically active Rubisco39,41,44,45. Partial inactivation of the rbcX gene 
in Synechococcus sp. PCC7002 (Syn7002) resulted in a substantial 
reduction in Rubisco solubility and activity45, while in S.  elonga-
tus PCC7942 (Syn7942) the rbcX gene was shown to be nonessen-
tial39. Alhough the RbcX from Arabidopsis thaliana is functional 
when substituted into E.  coli expressing cyanobacterial Rubisco46, 
a requirement of RbcX in Rubisco biogenesis in plants remains to 
be established.

RbcX functions as a homodimer of ~15  kDa subunits41,47–49. 
Recent biochemical and structural analyses demonstrated its role as 
a specific assembly chaperone. Coexpression of RbcX in E. coli was 
essential for the soluble expression of Syn7002-RbcL and complexes 
between RbcL and RbcX assembly intermediates were detected by 
co-immunoprecipitation41. A direct interaction between RbcL and 
RbcX was also detected in chloroplasts46,49. The crystal structure of 
Syn7002-RbcX revealed that each subunit consists of four α-helices 
that form a helical bundle at one end. The two long α4 helices of 
each protomer align in an almost antiparallel fashion, with a ~60o 
kink midway, resulting in the helix bundles being located at oppo-
site ends of the boomerang-shaped dimer (Fig. 4a). A highly con-
served diagonal groove in the centre of the dimer is large enough 
to accommodate a peptide in an extended conformation (Fig. 4b). 
Similar structures were shown for the RbcX proteins of the ther-
mophilic cyanobacterium T.  elongatus BP-1 and for both RbcX 
homologues of A.  thaliana48,49. The central groove is hydrophobic 
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and binds the sequence motif EIKFEFD present at the C-terminus 
of RbcL subunits of all form IB Rubiscos (Fig. 4c). Polar residues 
at the four corners of the RbcX dimer are also highly conserved 
(Fig. 4b), and mutations in these regions as well as in the peptide 
binding cleft abolished function41. While the interaction between 
RbcL and RbcX is normally dynamic, the use of a heterologous sys-
tem (Syn6301-RbcL and RbcX from Anabaena sp. CA) allowed the 
formation of a stable complex consisting of RbcL8 and eight RbcX 
dimers50 (Fig. 4d). In the crystal structure of this ~670-kDa com-
plex, each antiparallel RbcL dimer has two RbcX dimers bound, one 
on top and one at the bottom. The C-terminal tail of the RbcL chain 
is bound within the central cleft of RbcX, in an extended confor-
mation, while conserved polar residues from the corner regions of 
RbcX form critical hydrogen bonds and salt bridges with residues 
in the N-terminal domain of the adjacent RbcL chain50 (Fig.  4d). 
Thus, the two RbcX dimers act as ‘molecular clamps’ that stabi-
lize the RbcL dimer. Interestingly, the N-terminal 18-amino-acid 
residues and residues 64–70 of the so-called 60s-loop of RbcL are 
disordered in the RbcL8RbcX8 complex. In contrast, theses residues 
are structured in the holoenzyme by interactions within the RbcL 
dimer and with RbcS. However, the position of the 60s-loop in the 
holoenzyme would be sterically incompatible with RbcX binding, 
and structure formation induced by RbcS would cause the displace-
ment of RbcX (ref. 50). This conformational change in RbcL upon 
RbcS binding provides an explanation for why RbcS is required for 
catalytic activity50,51.

The cyanobacterial form I Rubisco could be reconstituted 
in  vitro using GroEL–GroES and RbcX (ref. 28). These experi-
ments revealed the requirement of RbcX for stabilization of RbcL 
in a form that no longer rebinds to GroEL, consistent with findings 
that RbcX can mediate RbcL2 and RbcL8 formation41,52. Together, 
these data suggest the following model for RbcX function (Fig. 5a): 
after folding and release by GroEL/ES, the flexible C-terminus of 
folded RbcL binds within the central cleft of RbcX; charge pairs in 
the RbcL dimer interface and between RbcL and RbcX then medi-
ate the proper antiparallel alignment of the RbcL subunits with 
RbcX functioning as a molecular clamp; stabilization of the RbcL 
dimer then shifts the equilibrium towards the formation of the 
RbcL8RbcX8 assembly intermediate; finally, RbcS binding between 
the RbcL dimers triggers conformational changes in the RbcL subu-
nits, resulting in the displacement of RbcX and formation of the 
hexadecameric Rubisco.

Other factors involved in green-type Rubisco biogenesis
Newly-synthesized polypeptides generally interact first with chap-
erones that bind to the nascent chain on the ribosome, preventing 
misfolding and aggregation53. These chaperones include the Hsp70 
system, which assists in the folding of a subset of proteins through 
cycles of binding and release. Proteins that are unable to reach their 
native state by this mechanism may be transferred to chaperonin 
for final folding26. The bacterial cytosol and the chloroplast stroma 
contain homologous Hsp70 machineries that are likely to act on 
RbcL upstream of the chaperonin54. Likewise, the RbcS subunit uti-
lizes these chaperones for folding after import into the chloroplast55. 
Another component with a putative role in the initial stages of 
Rubisco biogenesis is the chloroplast-specific bundle sheath defec-
tive2 protein (Bsd2), present in both bundle sheath and mesophyll 
chloroplasts56. The bsd2 gene is required for Rubisco accumulation 
in maize and Bsd2 was found to cofractionate with polyribosomes 
synthesizing RbcL (refs 57,58). Bsd2 contains the zinc-finger motif 
present in several Hsp40 proteins, a family of Hsp70 cofactors57,59, 
suggesting a functional cooperation with Hsp70.

A recent screen of a photosynthetic mutant library in maize 
identified several mutants with reduced Rubisco content but near 
normal levels of other photosynthetic enzyme complexes60. The 
genes responsible were proposed to encode so-called Rubisco 

accumulation factors (Raf). Two of these, Raf1 (~50  kDa) and 
Raf2 (~10–18 kDa), have been biochemically and structurally stud-
ied42,60–63. Raf1 appears to function as a dimer42,63 and is conserved in 
plants and cyanobacteria that express form IB Rubisco (Fig. 2c). In 
the absence of Raf1, the amount of Rubisco holoenzyme was found 
to be substantially reduced, although transcription and translation 
of RbcL and RbcS was normal60,63. Instead, RbcL subunits were asso-
ciated with the chaperonin, suggesting that Raf1 acts downstream 
of chaperonin-assisted RbcL folding60. Coexpression in E.  coli of 
Rubisco and Raf1 from T. elongatus was shown to promote Rubisco 
assembly, apparently involving the formation of a RbcL–Raf1 
assembly intermediate42. Moreover, coexpression of A. thaliana Raf1 
improved the biogenesis of a hybrid Rubisco in tobacco plants63. 
These findings classify Raf1 as a Rubisco assembly chaperone that 
may either act in concert with, or possibly in place of, RbcX.

Raf2 has been identified in some organisms containing form 
IB Rubisco and also in organisms containing form IA Rubisco in 
α-carboxysomes61,62 (Fig.  2c). The crystal structure of Raf2 from 
the chemoautotrophic bacterium Thiomonas intermedia K12 
showed that the protein forms a homodimer of ~10-kDa subunits 
with homology to pterin-4α-carbinolamine dehydratase (PCD) 
enzymes61. The overall PCD fold is preserved in Raf2 but the active 
site cleft present in PCD enzymes is disrupted61. Loss of Raf2 func-
tion in maize resulted in a weaker phenotype than disruption of the 
raf1 gene62. Chemical crosslinking followed by immunoprecipita-
tion suggested that Raf2 interacts with imported RbcS subunits and 
to a lesser extent with RbcL in the chloroplast stroma62. It has been 
proposed that Raf1, Raf2 and Bsd2 form transient complexes with 
RbcS that maintain RbcS competence for assembly with RbcL62. It 
may be relevant to note that the plant Raf2 contains an additional 
domain, not present in cyanobacterial Raf2, which may be involved 
in mediating these interactions. Further biochemical analysis is 
needed to elucidate the exact role of Raf1, Raf2 and Bsd2 in Rubisco 
assembly and their possible functional relationship, if any, with 
RbcX and other Raf proteins yet to be analysed.

Assembly of red-type Rubiscos
The Rubiscos of red-type organisms comprise the enzymes with the 
highest CO2:O2 specificity found in nature15 and thus are of con-
siderable biotechnological importance. Interestingly, the genomes 
of red-type organisms do not contain sequence homologues of the 
assembly factors RbcX, Bsd2, Raf1 or Raf2, pointing to an alterna-
tive mechanism of Rubisco assembly. Indeed, upon coexpression in 
E. coli, the RbcL and RbcS subunits from the red-type proteobacte-
rium Rhodobacter sphaeroides assembled to the holoenzyme with 
very high efficiency64. RbcL subunits, when expressed alone, failed 
to form RbcL8, instead populating mostly lower oligomeric states. 
Addition of purified RbcS to cell lysates gave rise to holoenzyme 
formation, suggesting a specific role of RbcS in the assembly pro-
cess. In vitro reconstitution experiments showed that the red-type 
RbcL subunits also require the GroEL–GroES chaperonin system 
for folding. However, unlike green-type RbcL, the R.  sphaeroides 
RbcL assembled efficiently in an RbcS-mediated mechanism64. 
This function of RbcS to mediate assembly critically depends on 
the C-terminal β-hairpin sequence found exclusively in red-type 
RbcS proteins (Supplementary Fig. 1). The β-hairpins form β-barrel 
structures at the top and bottom of the holoenzyme solvent chan-
nel, serving as an assembly platform for RbcL subunits (Fig.  5b). 
Moreover, the red-type RbcS was able to assemble with green-
type Syn6301-RbcL in  vitro, replacing the requirement for RbcX, 
although the resulting heterologous complex was essentially inac-
tive64. Why the green-type enzymes have evolved a dependence 
on extrinsic assembly factors rather than using this simpler RbcS-
mediated mechanism of assembly is unclear. The fact that in red-
type organisms both the RbcL and RbcS subunits are expressed from 
the same operon (either in the bacterial cytosol or the chloroplast 
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Figure 5 | Models of Rubisco assembly. a, Role of GroEL–GroES chaperonin and RbcX in green-type Rubisco assembly based on in vitro reconstitution 
and available structural information. Upon folding and release from the chaperonin complex, the cyanobacterial RbcL subunit is recognized by RbcX, 
which binds the flexible C-terminal RbcL peptide. Formation of the antiparallel RbcL dimer occurs mediated by two RbcX acting as molecular staples. The 
stable RbcL2RbcX2 units subsequently assemble to the RbcL8RbcX8 complex, in which a large portion of the RbcS binding interface is pre-formed. RbcS 
binding structures the RbcL N-terminus and the 60s loop, causing displacement of RbcX and formation of the functional Rubisco holoenzyme. Note that 
additional assembly factors, such as Raf1, are also involved in assembly but their mechanism of action remains to be determined. Figure modified from 
ref. 50, NPG. b, Role of RbcS in red-type Rubisco assembly based on mutational analyses and in vitro reconstitution64. The RbcS subunit arrangement in 
the crystal structure of the red-type Rubisco from Alcaligenes eutrophus (PDB: 1BXN) is shown with the RbcS subunits in ribbon representation (red) and 
the RbcL octameric core in surface representation. The side view is a cross-section along the four-fold axis through the complex showing the central 
barrel formed by the β-hairpin extensions (see Supplementary Fig. 1) of the RbcS subunits which mediate assembly. SC, solvent channel. Figure modified 
from ref. 64, ASBMB.
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stroma), and are thus always present simultaneously, may be impor-
tant in this respect20.

Maintenance of enzyme function by Rubisco activase
Once assembled, the Rubisco holoenzyme in leaves can be stable 
for weeks to months65, but its activity may become compromised, 
necessitating Rubisco activase (Rca) as an additional chaperone 
for functional maintenance66,67. During Rubisco’s multistep cata-
lytic reaction, protonation and oxygenation of the RuBP enediolate 
intermediate can result in the formation of isomeric pentulose bis-
phosphates, so-called misfire by-products68. These include xylu-
lose-1,5-bisphosphate (XuBP), 2,3-pentodiulose-1,5-bisphosphate 
(PDBP) and 3-ketoarabinitol-1,5-bisphosphate (KABP)11,68, whose 
formation results in an inactive, ‘closed’ enzyme that reactivates 
only slowly, limited by the spontaneous opening of the active 
site (Fig.  6a). Some plants also produce a night-time inhibitor of 
Rubisco, 2-carboxy-d-arabinitol 1-phosphate (CA1P). Moreover, 
inactive Rubisco can also be generated during the error-prone acti-
vation of the catalytic centre when the substrate RuBP binds before 
carbamylation of lysine 201 has occurred6 (Fig.  6a). In all these 
cases, Rubisco must be conformationally remodelled by Rca in 
order to release inhibitory sugar molecules (Fig. 6a).

Rca belongs to a subgroup of ATPases, AAA, associated with var-
ious cellular activities, referred to as AAA+. Many of these proteins 
form hexameric complexes with a central pore69–71. They can act as 
‘unfoldases’ by using the energy of ATP to exert mechanical force 
on their target proteins, typically by pulling extended sequences 
or loop segments into the central pore. Recent crystal structures 
showed that Rca from green- and red-type organisms share the 
AAA+ domain architecture consisting of an N-terminal α/β nucleo-
tide binding subdomain and a C-terminal α-helical subdomain72–74 
(Fig.  6b,d). In the case of red-type Rca from R.  sphaeroides (also 
known as CbbX), formation of the active hexamer requires ATP and 
allosteric regulation by the binding of RuBP to a conserved pocket 
in the C-terminal α-helical subdomain72 (Fig.  6b). Regulation by 
RuBP, the substrate of Rubisco, ensures that Rca forms the hexamer 
complex when photosynthesis is active. The disc-shaped hexamer 
docks onto Rubisco with its highly-conserved top surface. This posi-
tions Rca to engage the extended, flexible C-terminus of an RbcL 
subunit with its narrow (~25 Å) (Fig. 6c) central pore, resulting in a 
~4-fold stimulation of the Rca ATPase activity72. Reversible thread-
ing of the C-terminus of RbcL into the central pore is mediated by 
a classical pore-loop sequence (aromatic–hydrophobic–glycine) 
present in many AAA+ proteins69 and facilitates the opening of the 
Rubisco active site, allowing release of the inhibitory sugar72. In the 
case of XuBP, a specific hydrolase, CbbY, cooperates with the action 
of Rca by degrading the released inhibitor, thereby preventing its 
rebinding75, an interesting example of metabolite damage repair76. 
The genomes of photosynthetic organisms from bacteria to plants 
all contain CbbY homologues75.

The mechanism of Rca in plants and other green-type organisms 
is less well understood. Oligomeric complexes varying in size have 
been observed77–82, although the hexamer is the likely functional 
state73. The central pore of tobacco Rca is wider (~36 Å) than that 
of R. sphaeroides Rca and lacks the classical pore-loop residues72,73, 
suggesting that it might act in remodelling Rubisco by a different 
mechanism. In support of this possibility, green-type RbcL lacks 
the extended C-terminus of the red-type. Moreover, green-type Rca 
is constitutively ATPase active66 and has no binding site for RuBP. 
It is instead regulated by the intracellular ATP/ADP-ratio and by 
reversible disulphide-bond formation in the C-terminal extensions 
of larger isoforms found in some plants66. Substrate recognition by 
green-type Rca seems to be more complex, involving an additional 
N-domain not present in red-type Rca as well as regions in the 
α-helical subdomain (helix 9). In tobacco, these regions interact with 
residues 89 and 94 (spinach numbering) of RbcL subunits located 

in the equatorial region of RbcL8S8 and confer the ability of Rca to 
discriminate between solanaceous and non-solanaceous Rubisco66,83 
(Fig.  6d,e). Accordingly, green-type Rca only activates green-type 
Rubisco and red-type Rca is specific for red-type Rubisco. In fact, 
the low sequence similarity and the different regulation of the two 
groups of activase suggests that these enzymes have emerged inde-
pendently by convergent evolution. With regard to plant bioengi-
neering, overcoming the inherent thermal lability of green-type Rca 
is considered a possible strategy for improving crop plant viability 
under the higher temperatures predicted15,84.

Evolutionary considerations and perspectives
Considering the dependence of photosynthetic organisms on func-
tional Rubisco for growth and survival, and the significant energetic 
investment required to produce large quantities of the enzyme, it is 
surprising that evolution has failed to further enhance Rubisco cata-
lytic efficiency. It has been suggested that Rubisco is residing in an 
evolutionary trap, having initially evolved in an oxygen-free atmos-
phere10,85,86. A further consideration is that the extensive dependence 
of Rubisco on auxiliary factors for folding, assembly and mainte-
nance may have impacted its ability to escape from its evolution-
ary trapped state15. Molecular chaperones that assist the folding of 
a range of client proteins, such as the chaperonins, are generally 
thought to promote the structural evolution of proteins by buffering 
deleterious effects of mutations on foldability and stability87–91. In the 
bacterial system, overexpression of GroEL–GroES allowed mono-
meric proteins to accumulate an increasing number of destabilizing 
mutations92,93. A similar effect of GroEL/ES, albeit less significant, 
was observed in recent studies of Rubisco evolvability94–96. The more 
limited buffering effect of the chaperonin in this case was attributed 
to the fact that the wild-type RbcL subunit is already chaperonin-
dependent96, consistent with the notion that adaptation to obligatory 
chaperone dependence may slow evolvability90. Interestingly, the 
specific assembly chaperone RbcX restricted the range of mutations 
compatible with functionality and prevented a subset of mutants 
from forming the holoenzyme96. Thus, RbcX appears to reinforce 
the evolutionary trapped state of Rubisco, with other assembly chap-
erones presumably having a similar effect. Nevertheless, using the 
Syn6301-Rubisco, which can assemble without RbcX, it proved pos-
sible to select a mutation in RbcL with improved catalytic proper-
ties96. However, this approach allows one to sample only a minute 
fraction of the available mutational space, particularly when con-
sidering that auxiliary factors may have to be co-evolved in order 
to express functionally improved Rubisco variants. Indeed, recent 
evidence showed Rubisco biogenesis in leaves is dependent on the 
evolutionary compatibility between Raf1 and RbcL (ref. 63).

Given these challenges, other options to improve Rubisco per-
formance in crop plants include the engineering of cyanobacte-
rial CO2-concentrating mechanisms97,98 and the expression of a 
catalytically superior red-type Rubisco in chloroplasts15. The latter 
approach, although not successful so far22, seems promising in light 
of the finding that red-type Rubiscos may be less dependent on aux-
iliary factors for assembly. However, in this case, the introduction 
of a compatible Rca with the red-type Rubisco may be necessary for 
optimal activity.

A better mechanistic understanding of Rubisco biogenesis, 
activity regulation and the chaperone machineries involved may 
hold promise for new bioengineering strategies based on a rational 
design. Importantly, despite considerable efforts, it has not yet been 
possible to recombinantly produce plant Rubisco in E.  coli or to 
reconstitute the holoenzyme in  vitro. The re-invigorated interest 
in Rubisco has discovered, and will continue to unearth, exciting 
new features of the enzyme that will aid our capacity to modify its 
biogenesis and activity in a range of photosynthetic organisms — 
especially those tailored for addressing the challenges of improving 
food and fuel production.
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Figure 6 | Rubisco inactivation and reactivation. a, Regulation of Rubisco activity and inhibition by sugar phosphates (modified from ref. 68, Oxford 
Univ. Press). (E), the non-carbamylated enzyme; (ECM), the carbamylated and Mg-bound enzyme; (EI), the inhibited (E) form; (ECMI), the inhibited 
(ECM) form; PDBP, 2,3-pentodiulose-1,5-bisphosphate. b, Crystal structure of the subunit of red-type Rca from the proteobacteria R. sphaeroides in ribbon 
representation (PDB: 3SYK). The α/β and the α-helical subdomains are indicated in blue and teal, respectively, and a N-terminal extension in dark pink. The 
Walker A and B motifs are shown in dark blue and magenta, the sensor I and II regions in yellow and green, respectively. The pore loop is indicated. Bound 
sulphates are shown in ball-and-stick. The domain structure is schematically shown as a bar at the bottom. Figure modified from ref. 72, NPG. c, Model of 
the mechanism of red-type Rca. The Rca hexamer docks onto inactive Rubisco and transiently pulls the extended C-terminal sequence of red-type RbcL 
into the central pore of the hexamer. This action is mediated by the stimulated Rca ATPase and destabilizes the Rubisco active site, releasing the inhibitory 
sugar. Rca is shown in ribbon representation within the envelope obtained from electron microscopy (EM) reconstruction72. The positions of the C-terminal 
RbcL tails (orange), the Rca pore loops (orange) and the RuBP allosteric sites (magenta) on Rca are indicated. Figure modified from ref. 72, NPG. d, 
Crystal structure of the subunit of green-type Rca from tobacco, lacking the N-domain, in ribbon representation (PDB: 3T15). The α/β and the α-helical 
subdomains are indicated in blue and teal, respectively. The canonical AAA+ structural motifs are indicated as in b. The specificity helix (H9) is shown in 
red. The domain structure is schematically shown as a bar at the bottom. Figure modified from ref. 73, NPG. e, Model of the mechanism of green-type Rca. 
The interaction of Rca hexamer with inactive Rubisco requires the additional N-domain and the H9 specificity helix (red). Residues in RbcL that are critical 
for recognition by Rca (ref. 66) are indicated in red. Whether green-type Rca engages with the C-terminal tail of RbcL (orange) is unclear. Rca is shown in 
ribbon representation within the envelope obtained from EM reconstruction of full-length Rca hexamer73.
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  Aim of the study 
 

1.5 Aim of the study 

Rubisco research has drawn much attention recently due to new findings regarding factors that 

are involved in the assembly process of the enzyme. Until today, no plant Rubisco could be 

expressed in a functional form in a non-plant host or reconstituted in vitro. Recent forecasts 

suggest that global food production will need to rise by more than 25% by 2050 to meet the 

ever increasing demand212. Engineering a catalytically more efficient Rubisco enzyme could 

contribute to reaching that goal, but the complex nature of Rubisco’s folding and assembly has 

made these efforts exceedingly challenging. The aim of this study is to structurally and 

functionally characterize key factors that are involved in the biogenesis of Rubisco. Therefore, 

the recently discovered putative Rubisco assembly chaperone Raf1 from plant and 

cyanobacteria was investigated biochemically in its potential role as a Rubisco assembly 

factor. The role of Raf1 in Rubisco assembly was determined using an in vitro reconstitution 

system. Moreover, the crystal structure of Arbadiopsis thaliana Raf1 could be solved. Negative 

stain electron microscopy in combination with chemical cross-linking and mass spectrometric 

analysis was performed to gain structural insight into the interaction of Raf1 with Rubisco. A 

comprehensive mutational analysis identified conserved residues of Raf1 that are critical in the 

assembly process. Finally, native mass spectromy was used to assess oligomeric states of 

Raf1 mediated assembly products. 

Moreover, eukaryotic RbcX proteins from Arabidopsis thaliana and Chlamydomonas reinhardtii 

were biochemically investigated in their ability to assemble form I Rubisco. Furthermore, the 

crystal structure of Chlamydomonas reinhardtii RbcX was solved. Additional mutational 

analysis revealed a function of eukaryotic RbcX in Rubisco assembly similar to cyanobacterial 

RbcX. Differences in binding to the C-terminus of the Rubisco large subunit by eukaryotic RbcX 

compared to cyanobacterial RbcX were observed. Furthermore, first in vivo experiments by 

silencing RbcX in Chlamydomonas reinhardtii indicate its potential role in Rubisco assembly. 
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Life on earth depends on the ability of photosynthetic organisms 
to convert atmospheric CO2 into organic carbon. The key enzyme 
responsible for this process is ribulose-1,5-bisphosphate carboxylase- 
oxygenase (Rubisco). Rubisco catalyzes the rate-limiting step of 
carbon fixation by carboxylating the five-carbon sugar substrate  
ribulose-1,5-bisphosphate (RuBP). In plants, algae, cyanobacteria 
and some proteobacteria, Rubisco (form I) is an oligomeric com-
plex of eight large (RbcL, ~50 kDa) and eight small (RbcS, ~15 kDa) 
subunits1. The RbcL subunits are arranged as a tetramer of antipar-
allel dimers (RbcL8 core) capped by four RbcS subunits at the top 
and four at the bottom (RbcL8S8 holoenzyme). Remarkably, Rubisco 
is a rather inefficient enzyme, fixing only around three to ten car-
bon atoms per second2,3. Moreover, certain Rubiscos confuse CO2 
with molecular oxygen as often as once in four catalytic cycles4, 
thus resulting in wasteful photorespiration5–7. Hence, engineering a 
more efficient Rubisco enzyme is central to efforts to increase global  
food production8–11.

Although the structure and mechanism of Rubisco are well under-
stood12,13, knowledge of the chaperone machinery required for 
Rubisco biogenesis remains limited. As recently demonstrated by  
in vitro reconstitution14, folding of cyanobacterial RbcL requires the 
chaperonin GroEL and its cofactor GroES (Cpn60, Cpn10 and Cpn20 
in chloroplasts15). The spontaneous assembly of folded RbcL is inef-
ficient and has been shown to be facilitated by a specific assembly 
chaperone, RbcX14,16. In several cyanobacteria, RbcX is encoded in 
an operon between the rbcL and rbcS genes, and coexpression with 
RbcX has been shown to enhance the production of active form I 
Rubisco in Escherichia coli16–21. RbcX, a homodimer of ~15-kDa 
subunits, functions as a molecular clamp in stabilizing the antiparal-
lel RbcL dimer and promotes formation of an RbcL8–RbcX8 assembly  

intermediate14,22 from which RbcX is displaced by RbcS14. However, 
RbcX is not essential in S. elongatus PCC7942 (Syn7942)23, thus sug-
gesting functional redundancy with other factors. Indeed, a recent 
screen of photosynthetic mutants in maize identified a nuclear-
encoded chloroplast protein, Raf1 (Rubisco accumulation factor 1), 
that is required for efficient Rubisco biogenesis24. Raf1 is conserved 
in all photosynthetic organisms containing RbcX and functions in 
Rubisco assembly in vitro and in vivo25,26.

Here we set out to functionally and structurally characterize the 
plant and cyanobacterial Raf1 proteins. We solved the crystal struc-
tures of the A. thaliana Raf1 domains and analyzed the interaction of 
Raf1 with RbcL by multiple biochemical and biophysical approaches. 
Our results show that Raf1 brackets the antiparallel RbcL dimer and 
stabilizes it in a state competent for assembly of higher oligomers up 
to RbcL8. Displacement of Raf1 by RbcS leads to formation of the 
functional holoenzyme. Thus, Raf1 fulfills a role similar to that of 
RbcX but uses a different structural scaffold and mechanism.

RESULTS
Reconstitution of Raf� function in Rubisco assembly
A. thaliana (At) contains two Raf1 homologs encoded by the AT3G04550 
(Atraf1.2) and AT5G28500 (Atraf1.1) genes, whereas cyanobacteria 
have only one raf1 gene. The respective Raf1 proteins share ~38% 
sequence similarity, and their cyanobacterial homologs are ~55%  
similar (Supplementary Fig. 1). We recombinantly expressed AtRaf1.1 
(42.6 kDa) and AtRaf1.2 (43.5 kDa) without their predicted transit 
peptides, as well as Raf1 from S. elongatus PCC7942 (Syn7942-Raf1; 
40.2 kDa) and Synechococcus sp. PCC7002 (Syn7002-Raf1; 39.9 kDa).  
The purified Raf1 proteins (Supplementary Fig. 2a) formed 
homodimers, as determined by size-exclusion chromatography  
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Structure and mechanism of the Rubisco-assembly 
chaperone Raf1
Thomas Hauser1, Javaid Y Bhat1, Goran Milič ić1, Petra Wendler2, F Ulrich Hartl1, Andreas Bracher1  
& Manajit Hayer-Hartl1

Biogenesis of the photosynthetic enzyme Rubisco, a complex of eight large (RbcL) and eight small (RbcS) subunits, requires 
assembly chaperones. Here we analyzed the role of Rubisco accumulation factor� (Raf�), a dimer of ~40-kDa subunits. We find 
that Raf� from Synechococcus elongatus acts downstream of chaperonin-assisted RbcL folding by stabilizing RbcL antiparallel 
dimers for assembly into RbcL8 complexes with four Raf� dimers bound. Raf� displacement by RbcS results in holoenzyme 
formation. Crystal structures show that Raf� from Arabidopsis thaliana consists of a b-sheet dimerization domain and a flexibly 
linked a-helical domain. Chemical cross-linking and EM reconstruction indicate that the b-domains bind along the equator of 
each RbcL2 unit, and the a-helical domains embrace the top and bottom edges of RbcL2. Raf� fulfills a role similar to that of the 
assembly chaperone RbcX, thus suggesting that functionally redundant factors ensure efficient Rubisco biogenesis.
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combined with static light scattering (SEC-MALS) (Fig. 1a). 
Henceforth, concentrations of Raf1 refer to the dimer.

To analyze the function of Raf1, we performed reconstitution 
experiments with RbcL, RbcS and Raf1 from S. elongatus PCC7942 
(Syn7942). Upon folding of denatured RbcL with GroEL–GroES 
(GroEL–ES) in the presence of ATP, most RbcL remained associated 
with GroEL, as analyzed by native PAGE (Fig. 1b, lanes 1 and 2).  
Only a small amount of RbcL was released from GroEL, and it 
migrated as a diffuse band (Fig. 1b, lane 2). This species failed to 
assemble into holoenzyme with RbcS (Fig. 1b, lane 4). Addition 
of Raf1 at equimolar concentration to RbcL resulted in efficient 
release of RbcL from GroEL–ES and in formation of a well-defined 
RbcL species (denoted RbcL*) (Fig. 1b, lane 5). In addition, we 
detected small amounts of high-molecular-weight (HMW) com-
plexes migrating above the holoenzyme standard (RbcL8S8) (Fig. 1b,  
lane 5). Both RbcL* and the HMW forms represented complexes 
of RbcL with Raf1, as detected by immunoblotting with anti-Raf1 
(in which antibody reactivity with Raf1 was reduced in the HMW 
complexes) (Fig. 1c, lane 5). The RbcL–Raf1 complexes formed 
only in the presence of GroEL and GroES (Fig. 1b, lanes 3 and 5), 
thus indicating that Raf1 acts on folded RbcL. Efficient formation 
of enzymatically active RbcL8S8 occurred in the presence of Raf1 
and RbcS (Fig. 1b, lane 6, and Fig. 1d, lane 5). We also observed 
holoenzyme assembly when RbcS was added after treatment with  
apyrase, which hydrolyzes ATP to AMP and stops RbcL folding by 
GroEL–ES (Fig. 1b, lane 7, and Fig. 1d, lane 6). Thus, Raf1 main-
tained folded RbcL in an assembly-competent state. RbcL folding 
occurred with an apparent half-time of ~3 min (Fig. 1e), a result 
consistent with previous measurements14.

Assembly-competent RbcL* also formed during reconstitution with 
the heterologous Syn7002-Raf1 or AtRaf1.2 but not with AtRaf1.1 
(Supplementary Fig. 2b). Reconstitution was ~70% efficient with 
Syn7002-Raf1 and only ~10% efficient with AtRaf1.2. We obtained 
no active enzyme with AtRaf1.1 or a heterodimer of AtRaf1.1 and 

AtRaf1.2 (Supplementary Fig. 2c). Thus, Raf1 proteins appear to be 
adapted to their cognate RbcL proteins, results consistent with those 
in a recent report26.

RbcL–Raf� assembly intermediates
The results described above showed that Raf1 assists in the formation of 
RbcL assembly intermediates that are competent to form holoenzyme 
with RbcS. Next we tested whether Raf1 could also bind to preformed 
RbcL8. Recombinantly produced RbcL8 migrated as a stable complex 
in native PAGE16 (Fig. 2a, lane 1). Addition of Raf1 resulted in an 
upshift of RbcL8 indicative of the formation of RbcL8–Raf1 complexes 
(Fig. 2a, lane 3), which are similar to the HMW complexes obtained 
during reconstitution (Fig. 2a, lane 2). RbcS displaced Raf1, thus 
resulting in holoenzyme formation (Supplementary Fig. 2d). Binding 
of Raf1 to RbcL8 also produced a small amount of RbcL–Raf1 com-
plex that migrated indistinguishably from RbcL* (Fig. 2a,b, lanes 3).  
Raf1 did not interact with RbcL8S8 (Fig. 2a,b, lanes 6), and RbcL8 
remained stable in the presence of GroEL (Fig. 2a,b, lanes 7).

To determine the relative stoichiometry of RbcL and Raf1 in the 
RbcL* complex, we excised RbcL* from native PAGE gels and reana-
lyzed it by SDS-PAGE, which was followed by Coomassie staining and 
densitometry. Taking into account that RbcL stains approximately 
two-fold more intensely than Raf1, this analysis suggests that RbcL* is 
a complex of one Raf1 dimer and two RbcL subunits (Supplementary  
Fig. 2e), consistently with the antiparallel RbcL dimer being the  
building block of RbcL8.

Next we characterized the HMW complex consisting of RbcL and 
Raf1 by SEC-MALS and native mass spectrometry (native MS). The 
molar mass of RbcL8 was ~390 kDa by SEC-MALS and ~420 kDa  
by native MS, values close to the theoretical mass of 420.4 kDa  
(Fig. 2c,d). Addition of Raf1 to RbcL8 resulted in a complex of ~764 kDa  
by SEC-MALS and ~741 kDa by native MS (Fig. 2c,d), consist-
ently with four Raf1 dimers being bound to RbcL8 (theoretical mass  
740.9 kDa). SEC-MALS also detected a species of ~159 kDa,  
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Figure 1 Raf1-mediated assembly of S. elongatus Rubisco. (a) SEC-MALS analysis of purified Raf1 proteins  
from Syn7942, Syn7002 and A. thaliana. Horizontal lines across the peaks indicate molar mass and homogeneity  
of the sample. Calculated molar masses and hydrodynamic radii are indicated. (b,c) Analysis of Rubisco  
reconstitution reactions with homologous components, by native PAGE and immunoblotting with anti-RbcL (b)  
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GroEL–ES before addition of RbcS. White dashed rectangles mark the positions of the RbcL–Raf1 complex RbcL*  
and of HMW RbcL–Raf1 complexes. Arrowheads in b point to a minor contaminant present in some Raf1 preparations  
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been absent during reconstitution. Activities are expressed as a percentage of purified RbcL8 standard supplemented with RbcS (control). (e) Time 
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among Raf1 homologs; it forms a rather flat surface with hydro-
phobic and positively charged regions (Fig. 3c and Supplementary 
Fig. 5c). Particularly conspicuous is the hydrophobic face of helix 
4 (Asn130, Ile133, Val134 and Ser141) and the conserved charged 
residues (Arg167, Arg174, Arg196, Lys199, Arg228 and Glu232) of 
the adjacent helices 8 and 9.

We obtained two crystal forms for AtRaf1.2β of space groups C2 (2.8-
Å resolution) and P212121 (2.6-Å resolution) (Table 1). In both crystal 
forms, Raf1β exhibited mostly β-structured dimers with pseudo-two-
fold symmetry (Fig. 3d). The three independent copies were closely 
similar (r.m.s. deviation 0.469–1.139 Å), except for the domain swap-
ping of a loop in the P212121 crystal form (Supplementary Fig. 5d,e). 
The overall appearance of the dimer was again rod shaped, with dimen-
sions of 30 × 35 × 80 Å, and with the monomer core forming a curved, 
mixed β-sheet composed of strands A–J–G–F–B (Fig. 3d, side view). 
Satellite β-sheets (strands I–H–J and B and E) branch off the elongated 
β-strands B and J and curl back onto the central sheet on both sides. 
Three short α-helices are interspersed between the strands. The two-
fold symmetry is broken where the connectors between the first and sec-
ond β-strand meet, close to the dyad axis (Fig. 3d and Supplementary 
Fig. 5f). The dimer interface is formed by the β-hairpin protrusions 
(strands C and D) from one subunit and β-strands B and E from the 
other. The interface is highly hydrophobic, and it buries 1,400 Å2  
in each subunit (Supplementary Fig. 5g). Only the face of the dimer 
from which the linkers to the α-domains extend is conserved among 
Raf1 homologs (Fig. 3e). This surface is rather flat, and it contains 
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Figure 2 Interaction of Raf1 with preformed RbcL8 complexes.  
(a,b) Complex formation of RbcL8 with Raf1, analyzed by native PAGE 
and immunoblotting with anti-RbcL (a) and anti-Raf1 (b). Samples are 
purified RbcL8 or RbcL8S8, incubated with Raf1 or GroEL as indicated for 
15 min at 25 °C. Reconstitution reactions (as in Fig. 1b) in the presence 
of Raf1 or Raf1 and RbcS were analyzed in parallel. (c) SEC-MALS 
analysis of RbcL8–Raf1 complex in solution. Samples are purified RbcL8 
incubated with Raf1 for 15 min at 25 °C; RbcL8 alone; and Raf1 alone. 
Horizontal lines across the peaks indicate molar mass and homogeneity. 
Calculated molar masses are indicated. (d) Nano-ESI native MS spectra 
of Raf1, RbcL8 and RbcL8–Raf14 complex generated by incubation of 
RbcL8 with Raf1 for 15 min at 25 °C. Symbols indicate charge-state 
distributions; charge states are shown for some peaks. The calculated 
mass around the m/z values of the respective protein complexes and  
the accuracy of mass values calculated from the different m/z peaks  
are indicated. 

which is close to the theoretical mass of one Raf1 dimer bound to 
RbcL2 (RbcL*; theoretical mass 185.6 kDa) (Fig. 2c). We detected an 
~200-kDa complex by native MS, but it could not be assigned with 
confidence (Fig. 2d).

These results support a model in which the RbcL2–Raf1 complex is 
the first assembly intermediate, and the RbcL8–Raf14 complex is the 
end state of Raf1-mediated assembly. However, the latter was only a 
minor species during reconstitution in the absence of RbcS, and the 
equilibrium was shifted to the RbcL2–Raf1 complex (Fig. 2a,b, lane 2). 
Notably, the yield of active Rubisco decreased when Raf1 was present 
in excess over RbcL (Supplementary Fig. 2f).

Crystal structures of Raf� domains
Secondary-structure prediction suggested that Raf1 proteins consist 
of an α-helical N-terminal domain of ~185 residues and a C-terminal  
β-sheet domain of ~150 residues, connected by a linker of ~10–27 resi-
dues (Fig. 3a). Although Syn7942-Raf1 failed to crystallize, we obtained 
crystals of AtRaf1.2 containing either residues 62–275 (Raf1α) or  
281–449 (Raf1β), as determined by MS analysis, thus indicating pro-
tease sensitivity of the interdomain linker. We cloned and recom-
binantly expressed the respective α- and β-domains of the different 
Raf1 homologs for further analysis (Supplementary Fig. 2a). The Raf1α 
domains were monomeric, and the Raf1β domains behaved as dimers 
(Supplementary Fig. 3a). The domains on their own were essentially 
inactive in the Rubisco reconstitution assay (Supplementary Fig. 4).

We solved the crystal structures of AtRaf1.2α and AtRaf1.2β by 
single isomorphous replacement with anomalous scattering (SIRAS) 
at resolutions of 1.95 Å and 2.6–2.8 Å, respectively (Table 1 and 
Supplementary Fig. 5a,b). Raf1α is a slightly curved rod with dimen-
sions of 30 × 30 × 70 Å, composed of 11 stacked α-helices, the last 
three of which form a regular three-helix bundle (Fig. 3b). Only one 
face of the domain exhibits substantial surface-residue conservation 
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conserved hydrophobic (Pro348 and Trp350) 
and charged (Arg292, Glu297 and Arg432) 
residues in adjacent β-strands A and J. The 
C-terminal 12 residues were disordered in all 
crystal lattices.

Small-angle X-ray scattering (SAXS) 
measurements indicated maximum dimen-
sions (Dmax) of the isolated domains similar 
to those derived from the crystal structures 
(Supplementary Fig. 3b–d). The Dmax of 
the full-length AtRaf1.2 dimer was ~208 Å,  
and the radius of gyration (Rg) was 52 Å;  
we obtained similar values for Syn7942-
Raf1. This suggested that the highly charged, 
flexible linker allows dynamic move-
ments of the Raf1α domains relative to the  
β-domain dimer, as supported by an ensemble model of the AtRaf1.2 
structure (Supplementary Fig. 3e).

Mutational analysis of Raf�
Next we performed a mutational analysis to determine the  
relevance of specific Raf1 residues for interaction with RbcL. Relative 
to wild-type Raf1, all mutants of the α-domain, except E159A,  
displayed enhanced formation of HMW RbcL8–Raf1 complexes  
at the expense of the RbcL2–Raf1 intermediate (Fig. 4a). In contrast, 
the β-domain mutants almost exclusively populated the RbcL2–Raf1 
complex, similarly to wild-type (Fig. 4a). Although most of the  
Raf1 mutants supported holoenzyme assembly upon addition  
of RbcS, two mutants with conserved positive charges in the  
α-domain (R104Q and K126A K129A, equivalent to Arg174, Arg196 and  
Lys199 in AtRaf1.2), resulted in a 45–70% reduced yield of activ-
ity (Fig. 4b,c). Mutant R104Q showed lower amounts of HMW  
RbcL–Raf1 complex and an increase in diffusely migrating, low- 
molecular-weight RbcL, presumably representing unassembled  
protein (Fig. 4b). This suggested that decreased binding affinity  
of Raf1 R104Q for RbcL generated unstable assembly intermedi-
ates. We also noted that several of the β-domain mutants resulted in 
incomplete conversion of RbcL2–Raf1 to RbcL8S8 (Fig. 4b), which 
correlated with a milder reduction in the yield of active enzyme by 
10–20% (Fig. 4c).

When taken together, our results suggest that mutations in the  
α-domain have a more pronounced effect on the binding properties 
of Raf1 than mutations in the β-domain, consistently with the larger 
conserved surface of the α-domains. The strength of the RbcL-Raf1 
interaction appears to be carefully tuned to allow efficient holoen-
zyme formation.

Analysis of RbcL-Raf� interaction by chemical cross-linking
To identify the contact regions between Raf1 and RbcL, we next  
performed cross-linking coupled to mass spectrometry (CXMS). 
We added Raf1 to S. elongatus RbcL8 to form the RbcL8–Raf14 com-
plex and then incubated the complex with a 1:1 H12 and D12 isotopic 
mixture of the lysine-specific cross-linker disuccinimidylsuberate 
(DSS) (Supplementary Fig. 6). We performed these experiments 
either with the homologous Syn7942-Raf1 or with the function-
ally active heterologous Syn7002-Raf1 (Supplementary Fig. 2b,c),  
which differ considerably in the number and distribution of lysine 
residues (Supplementary Fig. 1). We separated cross-linked products 
by SDS-PAGE and analyzed bands >170 kDa, which were likely to 
contain both Raf1 and RbcL (Supplementary Fig. 6d). The median 
Cα-Cα distance spanned by DSS is ~16.4 Å, with an upper boundary 
of ~36 Å for the structurally most dynamic regions27.

In total, we identified 39 cross-linked peptide pairs in the pres-
ence of Syn7942-Raf1 and 45 in the presence of Syn7002-Raf1 

a A. thaliana Raf1.2 ss Raf1α Raf1β
1 61 75 264 288 434

Syn7942 Raf1 Raf1α Raf1β
1 12 192 202 342

Syn7002 Raf1 Raf1α Raf1β
1 15 195 205 345
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Figure 3 Crystal structures of Raf1 domains. 
(a) Schematic representation of the domain 
structures of Raf1 from A. thaliana (isoform 2; 
AtRaf1.2), S. elongatus PCC7942 (Syn7942) 
and Synechococcus sp. PCC7002 (Syn7002). 
The predicted chloroplast signal sequence (SS) 
of AtRaf1.2 is shown in gray. The α-helical 
and β-sheet domains are shown purple and 
orange, respectively. Variable linker regions 
are indicated in white. The domain boundaries 
for the cyanobacterial Raf1 proteins are based 
on the sequence alignment in Supplementary 
Figure 1. (b) Crystal structure of AtRaf1.2α. 
Views related by 90° rotation are shown. Helices 
are represented as cylinders. (c) Surface 
conservation in AtRaf1.2α. AtRaf1.2α is 
oriented as in b. (d) Structure of the AtRaf1.2β 
dimer. The two subunits are shown in orange 
and yellow. Secondary-structure elements are 
indicated by numbers for α-helices and by 
letters for β-strands. The position of the pseudo-
two-fold axis is shown. (e) Surface conservation 
in the AtRaf1.2β dimer, analyzed as in c.
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(Supplementary Data Set 1a–d and Supplementary Note). We were 
able to assign plausible intra- or intermolecular distances of 7 to 20 Å  
for 12 out of the 29 RbcL-RbcL cross-links, on the basis of the 

RbcL8S8 crystal structure28. The remaining 17 RbcL-RbcL cross-links  
could not be assigned distances because one or both of the cross-linked 
residues are located at the flexible N or C terminus. We identified  

Table 1 Data collection and refinement statistics
AtRaf1.2α native AtRaf1.2α K2[PtCl4] AtRaf1.2β native I AtRaf1.2β HMBA-I AtRaf1.2β native II

Data collection

Space group P41212 P41212 C2 C2 P212121

Cell dimensions

 a, b, c (Å) 29.77, 29.77, 457.09 29.36, 29.36, 454.86 157.54, 34.36, 106.89 155.72, 34.70, 115.86 39.68, 60.79, 143.27

 α, β, γ (°) 90, 90, 90 90, 90, 90 90, 93.67, 90 90, 97.84, 90 90, 90, 90

Peak Peak

Wavelength 1.072 1.009

Resolution (Å)a 45.71–1.95 (2.06–1.95)a 45.49–2.9 (3.05–2.9) 45.51–2.8 (2.96–2.8) 49.38–3.4 (3.58–3.4) 47.76–2.57 (2.71–2.57)

Rmerge 0.068 (1.067) 0.158 (0.706) 0.044 (0.697) 0.102 (0.941) 0.097 (0.909)

I / σ I 20.2 (2.1) 10.9 (2.9) 20.0 (1.9) 19.4 (2.6) 11.9 (2.1)

Completeness (%) 100 (99.8) 99.7 (98.2) 99.2 (96.5) 99.7 (98.3) 96.7 (81.8)

Redundancy 13.3 (12.6) 14.4 (12.9) 3.6 (3.5) 11.0 (11.2) 4.3 (4.2)

Refinement

Resolution (Å) 30–1.95 – 30–2.8 – 30–2.57

No. reflections 16,514 – 13,676 – 10,713

Rwork / Rfree 0.211 / 0.246 – 0.240 / 0.289 – 0.210 / 0.279

No. atoms

 Protein 1,630 – 4,443 – 2,282

 Phosphatesb – – 15 – –

 Water 60 – – – 9

B factors

 Protein 64.52 – 94.61 – 60.44

 Phosphates – – 138.06 – –

 Water 51.42 – – – 45.77

r.m.s. deviations

 Bond lengths (Å) 0.011 – 0.004 – 0.008

 Bond angles (°) 1.210 – 1.063 – 1.272
aValues in parentheses are for highest-resolution shell. bFrom precipitant.
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Figure 4 Structure-based mutational analysis of Raf1. (a,b) Native  
PAGE and anti-RbcL immunoblot analysis of S. elongatus Rubisco 
reconstitution reactions without (a) or with (b) addition of RbcS. Single 
and multiple point mutations in the α-domain (purple) or β-domain 
(orange) of Syn7942-Raf1 were analyzed as in Figure 1b for their 
ability to generate the RbcL2–Raf1 intermediate and HMW RbcL8–Raf1 
complexes (a) and RbcL8S8 upon addition of RbcS (b). (c) Rubisco 
activity in reconstitution reactions. Error bars, s.d. (n = 3 independent 
experiments). The equivalent residue numbering for Syn7942-Raf1 and 
AtRaf1.2 is shown.
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31 cross-links between RbcL and Raf1, 19 involving the α-domain, 
6 involving the β-domain, 4 involving the flexible N terminus and 2 
involving the interdomain linker of Raf1 (Supplementary Data Set 
1b,d and Supplementary Note).

According to homology models for the Syn7942-Raf1 and Syn7002-
Raf1 domains, most of the α-domain cross-links originated from the 
periphery of the conserved surface, and we found them multiple 
times (Fig. 3c, Supplementary Data Set 1b,d and Supplementary 
Note). They connected to the N domain of RbcL, including the flex-
ible N terminus and residues Lys11, Lys15, Lys29, Lys78 and Lys143, 
as well as to the TIM-barrel domain (Lys161, Lys172, Lys174, Lys224, 
Lys331 and Lys336) and the C-terminal domain (Lys447 and Lys471)  
(Fig. 5a–c, Supplementary Data Set 1b,d and Supplementary Note). 
The cross-links from the β-domain also involved lysines near its con-
served top surface (Figs. 3e and 5d,e). The Syn7942-Raf1β domain 
has only one lysine (Lys340), which cross-linked repeatedly to Lys336 
on RbcL (Fig. 5d,f, Supplementary Data Set 1b and Supplementary 
Note). The β-domain of Syn7002-Raf1 has six lysines, and of these 
Lys343 cross-linked exclusively to Lys336 on RbcL, whereas Lys344 
cross-linked to either Lys331 or Lys336 on RbcL (Fig. 5e,f and 
Supplementary Data Set 1d and Supplementary Note). Both the  
α- and β-domains cross-linked to residues Lys331 and Lys336 of 
RbcL (Supplementary Data Set 1b,d and Supplementary Note), thus  
suggesting that the Raf1 domains are in proximity, in accordance with 
the limited linker length of ten residues.

Structural model of the RbcL-Raf� interaction
We obtained plausible distances for the cross-links between the  
β-domain and RbcL (19–21 Å) by positioning the β-domain dimer 
coaxially at the equatorial front face of each RbcL antiparallel dimer  
(Fig. 5g,h, Supplementary Data Set 1b,d and Supplementary Note).  
In contrast, positioning the β-domain dimer on the two-fold axis 
between RbcL dimers resulted in substantially increased cross-link  
distances (43–67 Å; data not shown), and thus such a topology seems 
less plausible. Indeed, we found similar cross-links during folding and 
assembly (Supplementary Data Set 1e,f and Supplementary Note), 
where mostly the RbcL2–Raf1 intermediate was populated (Fig. 2a,b). 
From the equatorial positioning of the β-domains, and taking the length 
of the α-β domain linker into account, we obtained optimal distances 
for the cross-links between the α-domain and RbcL (Supplementary 
Data Set 1b,d and Supplementary Note) by placing the α-domains 
so that they embraced the top and bottom edges of each RbcL2 unit. 
The shallow groove in the conserved surface of the α-domain (Fig. 3c) 
would cradle the back of the C-terminal domain of RbcL, consistently 
with mutations in this region weakening the interaction with RbcL 
(Fig. 5g and Fig. 4). In addition, the α-domains are also within cross-
linking distance to the adjacent RbcL2 unit in the RbcL8–Raf14 complex 
(Fig. 5h). The resulting tentative model for the RbcL8–Raf14 complex 
(Fig. 5g,h) is consistent with a role of Raf1 in stabilizing RbcL2 and 
allowing its assembly into the RbcL8 core complex. In the structure of 
RbcL8 determined by cryo-EM, the ~60 C-terminal residues of RbcL 

Figure 5 Probing the RbcL–Raf1 complex by chemical cross-linking. (a,b) Cross-linking sites in the Raf1 α-domains of Syn7942-Raf1 and Syn7002-Raf1. Cross-
linked lysine residues and the N-terminal amino group are shown in space-filling representation. The backbone is shown in ribbon representation underneath a 
translucent molecular surface. Disordered residues are indicated by dots. The orientation corresponds to Figure 3b, left. (c) Cross-linking sites from Raf1α on 
the surface of the RbcL dimer. The model is based on the crystal structure of Rubisco28. The RbcL subunits are shown in white and gray. Residues Lys172 and 
Lys174 of RbcL cross-linked to Raf1α are not indicated because they are partially buried in the RbcL dimer interface, and Lys161 is pointing inwards.  
(d,e) Cross-linking sites in the Raf1β domains of Syn7942-Raf1 and Syn7002-Raf1, displayed in the same style as in a and b. Top views are shown. (f) Cross- 
linking sites from Raf1β on the surface of the RbcL dimer. (g) Tentative model of the RbcL2–Raf1 protomer of the RbcL8–Raf14 complex, based on the cross-
linking data. The RbcL dimer is depicted as above; Raf1 is in ribbon representation. Functionally critical Raf1 residues are shown in space-filling representation. 
(h) Cross-links mapped onto the RbcL8–Raf14 complex. Dotted red lines indicate plausible cross-links between lysine residues of RbcL subunits and Raf1.
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are disordered but are ordered in the complex with the assembly chap-
erone RbcX14,22. Thus, it seems plausible that the C-terminal residues 
of RbcL are also ordered in the complex with Raf1.

To obtain additional structural information, we next per-
formed negative-stain EM and single-particle image analysis of the  
S. elongatus RbcL8–Raf14 complex. Our reference-free analysis of 
two-dimensional class averages (7,602 particles) revealed four-
fold symmetry in top views (Fig. 6a–c) and eigenimages from end 
views of the complex (Fig. 6d). Further analysis of a final data set of 
~6,200 particles resulted in a 25-Å density map when dihedral four-
fold symmetry was imposed (Fig. 6e and Supplementary Fig. 7a).  
When rendered at a threshold of 740-kDa mass, the particle dimen-
sions were 110 × 180 Å. Compared to RbcL8 in the holoenzyme  
crystal structure28, the RbcL8–Raf14 complex was ~10 Å taller 
and ~70 Å wider. However, it was ~35 Å taller than the cryo-EM 
structure of RbcL8 alone, in which the C-terminal ~60 residues of  
RbcL are disordered14.

To determine the position of Raf1 in the complex, we first fitted 
the RbcL8 core from the holoenzyme structure into the density with 
Chimera29 (Fig. 6e). The Raf1β dimer was docked into the protruding 
densities at the equatorial rim, and the α-domains were placed into 
additional densities at the top and bottom edges of RbcL2 units (Fig. 6f).  
The cross-links mapped on this model with plausible distances 
(Supplementary Data Set 1b and Supplementary Note). Overall 
the EM– and CXMS-derived structural models are in reasonable 
agreement (Supplementary Fig. 7b) with the differences in domain 
orientations, thus possibly reflecting the dynamic nature of the inter-
action. We note that we were able to obtain a somewhat improved 
fit into the density when assuming that the ~60 C-terminal residues 
in RbcL are disordered (Supplementary Fig. 7c, Supplementary  
Data Set 1b and Supplementary Note). However, in this model 
the conserved surface of Raf1α faced the solvent, and the distance 

between the Raf1 α- and β-domains would be beyond the contour 
length of the linker residues.

To potentially stabilize the RbcL8–Raf14 complex, we per-
formed the EM analysis after DSS cross-linking (Supplementary  
Fig. 7a,d). The three-dimensional (3D) reconstruction obtained 
from 5,183 particles resembled the non-cross-linked complex, with 
a cross-correlation coefficient of 0.9834 (Fig. 6g). Although the cross-
linked complex was slightly smaller (95 × 170 Å), and the Raf1β dimer 
was stabilized (Fig. 6h), cross-linking did not reduce heterogene-
ity in the EM data set (Supplementary Fig. 7d), thus suggesting  
that structural dynamics is an intrinsic functional property of the 
RbcL8-Raf1 interaction.

To further validate the EM structural model, we analyzed 
the RbcL–Raf1 complex of the thermophilic cyanobacterium 
Thermosynechococcus elongatus (Supplementary Fig. 7a,e). The 
purified complex, obtained upon coexpression of T. elongatus 
RbcL and Raf1 in E. coli, again contained four Raf1 dimers bound 
to RbcL8 (Supplementary Fig. 8). The EM density of the T. elonga-
tus RbcL8–Raf14 complex was closely similar to that of S. elongatus  
(cross-correlation coefficient of 0.9742) (Fig. 6i), although its central 
pore was slightly wider (Fig. 6j).

Together the cross-linking data and the EM reconstructions sup-
port a model in which Raf1 brackets the RbcL antiparallel dimer, thus 
stabilizing it in a state competent for assembly to higher oligomers 
up to RbcL8–Raf14.

DISCUSSION
Assembly of oligomeric protein complexes is widely considered to 
be a spontaneous process, and relatively little is known about the 
machineries that support the formation of specific multiprotein com-
plexes. The biogenesis of hexadecameric Rubisco has emerged as a 
paradigm of assisted assembly30,31. Here we analyzed the structure 

Figure 6 Negative-stain EM and 3D reconstructions of RbcL8–Raf14 complex. (a) Micrograph of negatively stained complexes of S. elongatus RbcL8 
and Syn7942-Raf1 complex. (b) Class averages of the complexes derived from multivariate statistical analysis (MSA) in IMAGIC (upper row) and 
corresponding reprojections (bottom rows) of the initial 3D reconstruction. Each class average contains ~30 particles. (c) Class averages of the 
complexes from two-dimensional classification in RELION-1.3. (d) Eigenimages derived from MSA of top views in IMAGIC. (e) Rigid-body domain fitting 
of S. elongatus RbcL8 into the final 3D reconstruction of RbcL8–Raf14. Side and top views are shown. RbcL subunits are in gray and black. (f) Rigid-
body domain fitting of S. elongatus RbcL8 and the Syn7942-Raf1 α- and β-domains into the final 3D reconstruction of RbcL8–Raf14. Side and top 
views are shown in stereo views. Gray and black, RbcL subunits; purple, Raf1α; orange, Raf1β. (g) Negative-stain EM density of S. elongatus RbcL8–
Raf14 (dark mesh) overlaid on EM density of the same cross-linked complex (dark gray surface) in top view; the contour level is set to enclose 740 kDa. 
(h) Structural model of RbcL8 and the Syn7942-Raf1 α- and β-domains docked into the cross-linked S. elongatus RbcL8–Raf14 EM map shown as in f. 
(i) Negative-stain EM density of S. elongatus RbcL8–Raf14 (dark mesh) overlaid on EM density of the T. elongatus RbcL8–Raf14 complex (white surface) 
in top view. (j) Structural model of RbcL8 and the Syn7942-Raf1 α- and β-domains docked into the T. elongatus RbcL8–Raf14 EM map shown as in f.
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and mechanism of the Rubisco-assembly chaperone Raf1 (ref. 24).  
Our results demonstrate that the dimeric Raf1 functions down-
stream of RbcL-subunit folding by the GroEL–ES chaperonin system.  
The major intermediate populated during assembly is a complex 
in which Raf1 brackets the antiparallel RbcL dimer (Fig. 7), thus 
preventing rebinding of the structurally labile RbcL to GroEL. It is 
also possible that Raf1 brings RbcL subunits into proximity, thereby  
promoting dimer formation. The RbcL2–Raf1 complex is competent 
for assembly into higher oligomeric states, with the RbcL8–Raf14  
complex as the endpoint (Fig. 7). Finally, binding of RbcS displaces 
Raf1 and completes assembly of the holoenzyme.

Like the structurally unrelated Rubisco-assembly chaperone 
RbcX16,32,33, Raf1 is dimeric and engages in bivalent interactions 
with RbcL, a principle that probably relates to the antiparallel RbcL 
dimer being the building block of the RbcL8 complex. As shown 
by X-ray crystallographic analysis, Raf1 consists of an N-terminal  
α-domain, a flexible linker segment and a C-terminal β-sheet domain 
that mediates dimerization. Both domains expose conserved interac-
tion surfaces. From crystal structures, biochemical analysis, chemical 
cross-linking and negative-stain EM reconstruction, we propose a 
model of the RbcL8–Raf14 assembly intermediate. In this model, the 
α-domains mediate the majority of functionally important contacts 
with RbcL by bracketing each RbcL dimer at the top and bottom, and 
the β-domain dimers are positioned coaxially in front of the RbcL2 
units. Because the α-domain alone is essentially inactive, dimeriza-
tion is critical for Raf1 to achieve the necessary avidity for complex 
formation with RbcL assembly intermediates. At the same time, the 
interaction must remain dynamic in order to allow RbcS binding, 
because the Raf1 α-domain and RbcS have overlapping binding sites 
on RbcL.

Interestingly, the structurally distinct Raf1 and RbcX assembly pro-
teins perform the same function, but they do so by using different 
interaction sites on RbcL. The boomerang-shaped RbcX dimer binds 
the C-terminal peptide tail of one RbcL subunit in a central cleft and 
contacts the N-terminal domain of the adjacent RbcL subunit via a 
peripheral region16,22. In contrast, the Raf1-RbcL interaction sur-
face appears to be more extensive. An interesting question therefore 
concerns whether Raf1 and RbcX act in parallel assembly pathways 
or functionally cooperate in vivo to achieve efficient assembly at a 
biologically relevant timescale. Taking into consideration that the 
binding sites for RbcX and RbcS have little if any overlap22, the pre-
viously described RbcL8–RbcX8 complex14,22 may be an additional 
assembly intermediate, especially when insufficient RbcS is present.  
A cooperation of Raf1 and RbcX, rather than mere functional redun-
dancy, would be consistent with the strict co-occurrence of the two 
factors in photosynthetic organisms. Given that the RbcL subunits 

of all form I Rubiscos are highly homologous, it is surprising that the 
Rubisco of higher plants has so far been refractory to reconstitution 
in E. coli or in vitro. Perhaps additional factors are required for the 
assembly of the plant enzyme24,34,35.

The chaperone requirement for the folding and assembly of hexa-
decameric (form I) Rubisco is remarkably complex, thus raising the 
question of why such an important and abundant enzyme has failed 
to evolve a more robust biogenesis pathway. Form I Rubisco evolved 
from the simpler dimeric form II enzyme about 2.5 billion years  
ago to adapt to the increasing levels of oxygen36. Both the form I 
and form II RbcL subunits require the GroEL–ES chaperonin for 
folding, like many other TIM-barrel proteins37,38. However, only the 
RbcL of form I Rubisco remains structurally labile after folding and 
tends to rebind to chaperonin rather than to spontaneously assemble. 
The dependence on assembly chaperones, in turn, is likely to have 
slowed the evolution of form I Rubisco. Recent attempts to improve 
the enzymatic properties of the enzyme by directed evolution have 
shown that although the chaperonin tends to increase the number  
of permissible mutations, the assembly chaperone RbcX retards  
evolvability11. It remains to be seen whether Raf1 confers similar  
evolutionary constraints.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Coordinates for the structural domains of the pro-
tein Raf1.2 from A. thaliana have been deposited in the Protein Data 
Bank under accession codes 4WT3, 4WT4 and 4WT5. Negative-stain 
EM maps of the S. elongatus and T. elongatus RbcL8–Raf14 complexes 
have been deposited in the Electron Microscopy Data Bank under 
accession codes EMD-3051 (T. elongatus RbcL8–Raf14), EMD-3052 
(cross-linked S. elongatus RbcL8–Raf14) and EMD-3053 (S. elongatus 
RbcL8–Raf14).

Note: Any Supplementary Information and Source Data files are available in the online 
version of the paper.
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ONLINE METHODS
Cloning and plasmids. Open reading frames for Syn7942-Raf1, Syn7002-
Raf1, AtRaf1.1 and AtRaf1.2 were amplified by PCR from genomic DNA of  
S. elongatus PCC7942, Synechococcus sp. PCC7002 (ATCC no. 27264) and  
A. thaliana cDNA, respectively, and cloned between the SacII and SacI restriction 
sites of the pHue plasmid39, thus resulting in the following constructs: pHueSyn-
7942raf1, pHueSyn7002raf1, pHueAtraf1.1 and pHueAtraf1.2. The chloroplast 
transit peptides of AtRaf1.1 and AtRaf1.2 were predicted with TargetP (http://
www.cbs.dtu.dk/services/TargetP/) or adopted from the plant proteome database 
(http://ppdb.tc.cornell.edu/). The bicistronic plasmid pHueAtraf1.1raf1.2 was  
created by amplifying Atraf1.2 from pHueAtraf1.2 and inserting it into pHueAt-
raf1.1 with SacI and NotI restriction sites. The respective primer sequences are 
listed in Supplementary Table 1. SacII and SacI sites in the protein-coding regions 
were removed with whole-plasmid site-directed mutagenesis. The sequences for 
the N-terminal (Raf1α) and C-terminal (Raf1β) Raf1 domains were analogously 
cloned into pHue. T. elongatus BP-1 genes encoding RbcL and Raf1, and were 
synthesized (Life Technologies) and cloned between the NcoI and NotI and NdeI 
and XhoI restriction sites of the bicistronic pCDF-Duet-1 plasmid, respectively 
(Novagen). Raf1 was synthesized to contain a TEV protease–cleavable N-terminal 
His-tag (MGSSHHHHHHENLYFQG). For FLAG-tagged constructs, the sequence 
encoding the FLAG tag (MDYKDDDDKAG) was inserted upstream of the  
respective start codon (as described above). Point mutants were produced by  
PCR-based mutagenesis. All plasmid inserts were verified by DNA sequencing.

Protein expression and purification. All purification steps were performed at  
4 °C, and protein concentrations were determined spectrophotometrically at  
280 nm. Raf1 proteins were expressed as N-terminal His6-ubiquitin fusion  
proteins in E. coli BL21(DE3) cells containing the given pHue expression plasmid. 
Cells were grown to an OD600 of 0.5 at 37 °C in Luria-Bertani medium; this was 
followed by induction for 16 h with 0.5 mM isopropyl β-d-thiogalactoside at  
23 °C. Cells were lysed in 50 mM Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA, 
0.5 mg mL−1 lysozyme and 5 mM phenylmethylsulfonyl fluoride for 30 min 
on ice, and this was followed by ultrasonication (Misonix Sonicator 3000). The 
supernatant obtained after high-speed centrifugation (48,000g, 40 min, 4 °C) was 
applied to an Ni-IMAC column (GE Biotech) to capture the His6-ubiquitin-Raf1 
fusion protein. This was followed by overnight cleavage of the His6-ubiquitin 
moiety at 23 °C with the deubiquitinating enzyme Usp2 (ref. 40). The protein-
containing fraction was dialyzed against buffer A (20 mM Tris-HCl, pH 8.0, and 
50 mM NaCl) and applied to a MonoQ (GE Biotech) column equilibrated with 
buffer A. Proteins were eluted with a linear salt gradient to 1 M NaCl. Fractions 
containing Raf1 were combined and concentrated, 5% glycerol was added,  
and fractions were flash frozen in liquid nitrogen and stored at −80 °C. Raf1 for 
X-ray crystallographic studies was purified further by Superdex200 (GE Biotech) 
size-exclusion chromatography in buffer A.

T. elongatus RbcL–Raf1 complex was expressed and purified essentially as 
described for Raf1 proteins. After purification with an Ni-IMAC column, the 
complex was dialyzed against buffer A. This was followed by purification with 
an ion-exchange column (MonoQ) and a final size-exclusion-chromatography 
step in buffer A (Superdex200). Fractions containing the HMW T. elongatus 
RbcL–Raf1 complex were combined and concentrated, 5% glycerol was added, 
and fractions were flash frozen in liquid nitrogen and stored at −80 °C.

S. elongatus 6301 (Syn6301) RbcL8S8, RbcL8 and RbcS, as well as unassembled 
RbcL, were purified as previously described14,16. The Rubisco proteins of Syn6301 
and Syn7942 are 100% identical in sequence (UniProt P00880, Q31NB3, P04716 
and Q31NB2). Rabbit antibodies against S. elongatus RbcL (ref. 14), Syn7942-Raf1 
and AtRaf1.2 were produced with standard procedures (Supplementary Data 
Set 2). The E. coli chaperonins GroEL and GroES were purified as described 
previously41.

Rubisco reconstitution. GroEL–ES–mediated RbcL folding was performed as 
in ref. 14, with modifications. Denatured S. elongatus RbcL was diluted 200-fold 
from 6 M GuHCl (final concentration 0.5 µM) into ice-cold buffer B (20 mM 
MOPS-KOH, pH 7.5, 100 mM KCl, and 5 mM MgOAc2) containing 5 mM DTT,  
1 mg mL−1 BSA and 1 µM GroEL, and was incubated on ice and then centrifuged to 
remove any aggregated protein. GroES (2 µM), S. elongatus RbcS (5 µM) and Raf1 
were added to the supernatant containing GroEL-bound RbcL when indicated in 
figure legends. Folding and assembly was initiated by addition of 4 mM ATP and 

incubation at 25 °C. Reactions were stopped at the indicated times by addition of 
apyrase (Sigma) to a final concentration of 0.25 U µl−1 to inhibit GroEL–ES activity.  
(Apyrase hydrolyzes ATP and ADP to AMP.) Formation of assembled complexes 
was analyzed by continuous Tris-acetate native-PAGE gradient gels (5–15%  
acrylamide) and immunoblotting with anti-RbcL and anti-Raf1 antibodies.

For measurement of Rubisco enzymatic activity, aliquots of the folding assay 
were supplemented with 5 µM S. elongatus RbcS when it had not previously been 
present in the reaction, and RbcL8S8 assembly was allowed to proceed for 15 min 
at 25 °C. Rubisco carboxylation activity was determined after incubation at 25 °C 
for 10 min in 50 mM Tris-HCl, pH 8.0, 10 mM MgCl2, and 30 mM NaH14CO3 
(25 Bq/nmol), and the amount of fixed carbon was quantified as described previ-
ously41. Activities are expressed as a percentage of purified S. elongatus RbcL8 
standard supplemented with S. elongatus RbcS (control).

Interaction of Raf1 with preformed RbcL8 complexes. Purified RbcL8 and 
RbcL8S8 complexes were incubated with Raf1 for 15 min at 25 °C in buffer B 
containing 5 mM DTT. Formation of assembled complexes was analyzed by con-
tinuous Tris-acetate native PAGE (5–15% acrylamide) and immunoblotting with 
anti-RbcL and anti-Raf1 antibodies and by SEC-MALS and native MS.

Size-exclusion chromatography coupled to multi-angle static light scattering  
(SEC-MALS). Protein samples (~30 to 60 µg) were analyzed with static and 
dynamic light scattering by autoinjection of the sample onto a SEC column  
(5 µm, 7.8 × 300 mm column, Wyatt Technology WTC-030N5) at a flow rate of 
0.2 mL min−1 in buffer C (25 mM Tris-HCl, pH 8.0, and 50 mM NaCl) at 25 °C  
or at a flow rate of 0.15 mL min−1 in buffer B for analysis of the RbcL8–Raf1 
complexes in solution. The column is inline with the following detectors: a vari-
able UV-absorbance detector set at 280 nm (Agilent 1100 series), a DAWN EOS 
MALS detector (Wyatt Technology, 690-nm laser) and an Optilab rEX refractive-
index detector (Wyatt Technology, 690-nm laser)42. Masses were calculated with 
ASTRA (Wyatt Technology) with the dn/dc value set to 0.185 mL g−1. Bovine 
serum albumin (Thermo) was used as the calibration standard.

Native mass spectrometry. The purified S. elongatus RbcL8 (1.25 µM oligomer), 
Syn7942-Raf1 (5 µM dimer) and the binding reaction (15 min at 25 °C) of 
Syn7942-Raf1 (5 µM dimer) to RbcL8 (1.25 µM oligomer) in buffer D (20 mM 
MOPS-KOH, pH 7.5, 50 mM KCl, and 5 mM MgOAc2) containing 5 mM DTT 
were buffer-exchanged into 100 mM ammonium acetate, pH 7.5–8.0 (Fluka, 
Sigma) with Micro Bio-Spin 6 chromatography columns (Bio-Rad). The puri-
fied T. elongatus RbcL–Raf1 complex (~8 µM) was buffer-exchanged as above.  
Native-MS analyses were performed in positive-ion mode on an electrospray ioni-
zation quadrupole time-of-flight (ESI-TOF) hybrid mass spectrometer (Synapt 
G2-Si, Waters) equipped with a Z-spray nano-ESI source. Gold-plated 10-µm 
nano-ESI pipettes (Mascom) were used as capillaries. Optimized capillary and 
sample cone voltages were 1–1.6 kV and 100–150 V, respectively. Spectra were 
calibrated with 30 mg mL−1 cesium iodide dissolved in 1:1 acetonitrile/water.

Electron microscopy (EM) and 3D reconstruction. RbcL8–Raf14 complex  
(~50 µg mL−1) in buffer B containing 5 mM DTT was applied to freshly plasma-
cleaned, carbon-coated grids (Quantifoil) and was negative stained with 2% (w/v) 
uranyl acetate. Images were digitally recorded on a Philips CM200 FEG electron 
microscope equipped with a TemCam F415MP 4k at a nominal magnification of 
50,000×, with a pixel size of 2.16 Å/pixel at specimen level and defocus ranging 
from 300 to 1,500 nm. The microscope was operated under low-dose condi-
tions at 160 kV. The defocus and astigmatism of the images were determined 
with CTFFIND4 (ref. 43) in RELION-1.3 (ref. 44). A total of 62, 49 and 90  
micrographs were selected for image processing of the S. elongatus RbcL8–Raf14, 
the cross-linked S. elongatus RbcL8–Raf14 and the T. elongatus RbcL8–Raf14  
complexes, respectively. Manual particle selection with RELION-1.3 yielded a 
final data set of 5,183 particles for the cross-linked S. elongatus RbcL8–Raf14 
complex and 5,471 particles for the T. elongatus RbcL8–Raf14 complex. For 
the native S. elongatus RbcL8–Raf14 complex, a total of 1,057 particles from 13 
micrographs were manually selected with RELION-1.3 to generate references 
for automatic particle picking. After automatic particle selection in RELION-1.3 
and manual cleaning of the data set on the basis of z-score characteristics, a stack 
of 7,602 particles was obtained. The extracted particle data set was subjected to  
2D classification in RELION-1.3, and classes showing erroneously picked features 

http://www.cbs.dtu.dk/services/TargetP/
http://www.cbs.dtu.dk/services/TargetP/
http://ppdb.tc.cornell.edu/
http://www.uniprot.org/uniprot/P00880
http://www.uniprot.org/uniprot/Q31NB3
http://www.uniprot.org/uniprot/P04716
http://www.uniprot.org/uniprot/Q31NB2
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and aggregates were discarded, thus resulting in 6,191 particles in the final data 
set. Initial 3D reconstruction of the S. elongatus RbcL8–Raf14 complex and the  
T. elongatus RbcL8–Raf14 complex were generated with IMAGIC-5 (ref. 45). 
Particle images were band-pass-filtered between 250 and 10 Å, normalized and 
centered by iterative alignment to their rotationally averaged sum. Initial class 
averages containing ~30 particles were obtained by two rounds of classification on 
the basis of multivariate statistical analysis (MSA) and subsequent multireference 
alignment with homogenous classes as new references. For symmetry analysis, 
top views of the complexes were extracted, randomly rotated and subjected to 
MSA. A density map with imposed dihedral four-fold symmetry was created 
by angular reconstitution. 3D refinement of the initial model was carried out in 
RELION-1.3 with application of four-fold symmetry and no mask. The resolution 
of the final refinement by gold-standard Fourier shell correlation (FSC) at cutoffs 
of 0.143 and 0.5 is shown in Supplementary Figure 7a. The PDB structures of 
RbcL8 (from the Rubisco crystal structure28) and Raf1 domains were fitted manu-
ally as rigid bodies with UCSF Chimera29.

Cross-linking coupled to mass spectrometry (CXMS). Purified RbcL8 (1.25 µM  
oligomer) was incubated with Raf1 (10 µM) in buffer D for 15 min at 25 °C. 
This was followed by addition of 2 mM of a 1:1 isotopic mixture of H12 and D12  
disuccinimidylsuberate, H12/D12-DSS (Creative Molecules) for 30 min 
(Supplementary Fig. 6). Reactions were quenched by addition of 150 mM 
NH4HCO3. (CXMS) with the bifunctional lysine-specific cross-linker  
disuccinimidylsuberate (DSS). Cross-linking during reconstitution was  
performed with N-terminally FLAG-tagged Raf1; this was followed by isola-
tion of cross-linked Raf1 by anti-FLAG immunoprecipitation (anti-FLAG beads, 
Sigma). Cross-linked complexes were separated on 4–12% Bis-Tris SDS-PAGE 
(Life Technologies) and visualized by Coomassie staining. Excision of gel bands, 
reduction, alkylation, in-gel digestion and desalting were performed as previ-
ously described46,47. Desalted peptides were dissolved in 5% formic acid and  
analyzed on an Easy-nLC 1000 UPLC system (Thermo) connected to a Q-Exactive 
Orbitrap mass spectrometer (Thermo). Peptides were separated on nanospray 
columns (ID 75 µm, 20 cm long with 8-µm tip opening, New Objective) contain-
ing 1.9-µm C18 beads (Reprosil-Pur C18-AQ, Dr. Maisch) on a 60-min gradient 
with buffers (0.2% formic acid in water and 0.2% formic acid in acetonitrile). 
Sample loading to the column was performed by the Thermo Easy-nLC 1000 
autosampler without a trap column, at a flow rate of 0.5 µl per min. The UPLC 
flow rate during sample analysis was set to 0.2 µl/min. MS2 analysis was per-
formed with standard data-dependent mode settings, with alternation between 
one high-resolution (resolution 70,000) MS1 scan (m/z of 400–1,750) and ten 
MS2 scans (resolution 17,500) of the ten most intense ions with charge states of 
three or more, as run on Thermo Xcalibur software.

For data analysis, Thermo Xcalibur .raw files were converted to .mgf (Mascot 
generic file) format, with Proteome Discoverer 1.4 (Thermo). To identify cross-
linked peptides, the .mgf files were analyzed on StavroX 3.1.19 (ref. 48) with the 
following parameters: MS1 tolerance of 3 p.p.m.; MS2 tolerance of 0.8 Da; missed 
cleavages for lysine and arginine of 3 and 1, respectively; signal-to-noise ratio ≥2;  
and fixed and variable modifications of cysteine carbamidomethylation and 
methionine oxidation, respectively. The potential cross-linking sites for DSS are 
lysine residues and the free amino group at the N terminus. All the identified 
linked peptides were validated manually for b- and y-ion assignment and were 
included in the final list only if precursors of the respective peptides contained 
doublets with mass difference of 12.0753 Da (mass difference between H12-DSS 
and D12-DSS). The cross-linked peptides were identified from two independent 
experiments for each Raf1 protein.

Small-angle X-ray scattering (SAXS). SAXS measurements were performed at 
beamline BM29 of the European Synchrotron Radiation Source (ESRF), Grenoble, 
France. Protein samples at three different concentrations in 50 mM Tris-HCl, pH 8.0,  
50 mM NaCl and 5% (v/v) glycerol were exposed for 1 s. Scattering data from ten 
repeats were averaged. Buffer background was subtracted. The protein scattering 
data were processed with Primus49,50. Radii of gyration were determined with the 
Guinier approximation. Scattering curves were fitted with GNOM51. An ensemble  
model of the AtRaf1.2 structure was generated with EOM 2.0 (refs. 52,53).

Crystallization. Initial crystals of AtRaf1.2α were obtained by the sitting-drop 
vapor-diffusion method at 18 °C, with mixture of equal volumes of AtRaf1.2(62–449)  

(18 mg mL−1 in buffer C) with a precipitant containing 0.1 M MES-NaOH,  
pH 6.0, and 20% (w/v) PEG 6000 (Qiagen pHClear Suite condition D3. 
Crystals of AtRaf1.2α(62–274) were obtained at 20 °C with 0.1 M MES-NaOH,  
pH 6.0, and 26% (w/v) PEG-6000 as a precipitant. For cryoprotection, crystals 
were transferred stepwise into 0.1 M MES-NaOH, pH 6.0, 26% (w/v) PEG 6000 
and 15% (v/v) glycerol before being flash frozen in liquid nitrogen.

Orthorhombic crystals of AtRaf1.2β were obtained by the sitting-drop vapor-
diffusion method at 4 °C, with mixture of equal volumes of AtRaf1.2(62–449) 
(17 mg mL−1 in buffer C) with a precipitant containing 20% PEG 6000, 50 mM 
K2HPO4 and 200 mM KH2PO4. Monoclinic crystals of AtRaf1.2β(281–449)  
were obtained with 10% PEG3350 as a precipitant.

Structure determination. Diffraction data were collected at beamlines X10SA 
and X06DA of the Swiss Light Source (SLS) in Villigen, Switzerland. The data 
were processed with XDS54 and transferred into the CCP4 format with Pointless55, 
Scala56 and Truncate57. The structures of AtRaf1.2α and monoclinic AtRaf1.2β 
were solved by SIRAS with crystals soaked with 1 mM K2[PtCl4] and sodium p-
(hydroxymercuri)benzoate (HMBA), respectively. Two platinum and six mercury 
sites were found with SHELXD58, as implemented in HKL2MAP59, for AtRaf1.2α 
and AtRaf1.2β, respectively. These solutions were further refined with Sharp60. 
Density modification was subsequently carried out with Resolve61. A prelimi-
nary model for AtRaf1.2α was manually built in the resulting map with Coot62. 
For final model building and refinement, a nearly isomorphous native data of 
AtRaf1.2α(62–274) was used. Buccaneer63 built a partial model of AtRaf1.2β, 
which was completed manually with Coot. Orthorhombic AtRaf1.2β was solved 
by molecular replacement with Molrep64. The models were improved by iterative 
cycles of refinement with Refmac65, as implemented in the CCP4 interface66, and 
this was followed by manual model building. The final refinement of AtRaf1.2α 
was carried out with phenix.refine67. Nonglycine residues facing solvent channels 
without discernible side chain density were modeled as alanines.

Structure analysis. Coordinates were aligned with Lsqman68. The sequence 
alignment was prepared with ClustalW69,70 and ESPript71. Secondary-structure 
prediction was performed with Jpred-3 (ref. 72). Figures were generated with 
PyMOL (http://www.pymol.org/).
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Supplementary Figure 1

Alignment of Raf1 sequences.

Amino acid sequences of a representative set of Raf1 homologs were aligned using the EBI Clustal-Ω server. Secondary structure 
elements for Raf1.2 from Arabidopsis thaliana are indicated above the sequences. The Raf1 domain structure is indicated by purple 
and orange coloring of secondary structure elements in the Raf1 and Raf1 domains, respectively. The sequences from plants (1), 
green algae (2) and cyanobacteria (3) are grouped separately. Similar residues are shown in red and identical residues in white on a 
red background. Blue frames indicate homologous regions. The consensus sequence is shown at the bottom. The chloroplast signal 
sequences are not shown. Asterisks below the sequence indicate mutations in Syn7942-Raf1 analyzed in this study (Fig. 4). The 
Uniprot accession codes for the sequences are: Q9SR19, Arabidopsis thaliana Raf1.2; Q9LKR8, Arabidopsis thaliana Raf1.1; B4FR29, 
Zea mays; I0YJW5, Coccomyxa subellipsoidea C-169; E1ZGR5, Chlorella variabilis; Cre06.g308450.t1.2, Chlamydomonas reinhardtii;
Q00S02, Ostreococcus tauri; C1FI81, Micromonas sp. (strain RCC299 / NOUM17); B4VSU9, Coleofasciculus chthonoplastes
PCC7420; Q31Q05, Synechococcus elongatus PCC7942; Q5N472, Synechococcus elongatus PCC6301; B1XK11, Synechococcus sp. 
PCC7002.



Supplementary Figure 2

Functional analysis of Raf1 homologs.

(a) Purified full-length Raf1 proteins and the respective - and -domains of Syn7942, Syn7002 and A. thaliana. AtRaf1.1/1.2 is a 
complex of AtRaf1.1 and AtRaf1.2 produced from a biscistronic plasmid. (b) Native-PAGE analysis of Rubisco reconstitution reactions 
as in Fig. 1b, containing the Raf1 proteins indicated. (c) Rubisco activities in reactions shown in (b) after supplementation with RbcS as 
described in Fig. 1d. Error bars, s.d. (n = 3 independent experiments). (d) Displacement of Raf1 from RbcL8 by RbcS. Purified S. 
elongatus RbcL8 was incubated with Syn7942-Raf1 as in Fig. 2a, followed by addition of RbcS (5 M) and analysis by native-PAGE and 
immunoblotting with anti-RbcL (left) and anti-Raf1 (right). S. elongatus RbcL8 and RbcL8S8 were used as standards. (e) Stoichiometry 
of RbcL and Raf1 in RbcL* complexes. RbcL* was excised from native-PAGE and separated by SDS-PAGE followed by Coomassie 
staining and quantitation by densitometry. Top, molar ratios of RbcL and Raf1 standards as quantified by extinction coefficients.
Bottom, ratios of RbcL to Raf1 stain intensities are indicated as averages ±S.D from four measurements. The molar ratio of RbcL to 
Raf1 in RbcL* is close 1:1. Shown is a representative Coomassie stained gel. (f) Dependence of Rubisco assembly on Raf1 
concentration. Reconstitution reactions were performed as in Fig. 1e at increasing concentrations of Raf1 and the Rubisco activities 
obtained after 60 min are indicated as percentage of control. Error bars, s.d. (n = 3 independent experiments).
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Supplementary Figure 3

SEC-MALS and SAXS analysis of Raf1 proteins.

(a) SEC-MALS analysis of purified Raf1 domains from Syn7942, Syn7002 and A. thaliana. Data showing measurements for ~30 g of 
the respective proteins. Horizontal lines across the peaks indicate molar mass and homogeneity of the sample. Calculated molar
masses and hydrodynamic radii are indicated. (b) Representative X-ray scattering curves of AtRaf1.2 (red), AtRaf1.2 (blue) and 
AtRaf1.2 (green) and Syn7942-Raf1 (black). The curves represent background-corrected averages of ten measurements. The GNOM-
fitted51 curves are overlaid. (c) Density distributions for AtRaf1.2 (red), AtRaf1.2 (blue), AtRaf1.2 (green) and Syn7942-Raf1 (black) 
calculated with GNOM. AtRaf1.2 and AtRaf1.2 appear rod-shaped and globular, respectively. The curves for AtRaf1.2 and Syn7942-
Raf1 suggests flexibly linked domains.(d) Parameters from SAXS data analysis. Radii of gyration were determined using the Guinier 
approximation. Scattering curves were fitted with GNOM. (e) Ensemble model for the AtRaf1.2 dimer. Two perpendicular views are 
shown. The backbones are represented as coils. A subset of five models matching the experimental scattering curve (Chi value 3.978) 
was picked from a library of 10,000 conformations by a genetic algorithm implemented in the program EOM 2.052,53. The position of the 
dimeric -domain (orange) was fixed at the dyad symmetry axis. The -domains are represented in purple; the flexible termini and inter-
domain linkers are shown in gray.
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Supplementary Figure 4

Functional analysis of Raf1 homologs.

(a) Native-PAGE analysis of Rubisco reconstitution reactions as in Fig. 1b, containing purified full-length Raf1 and the - and -
domains from Syn7942 and A. thaliana. RbcS was present when indicated. (b) Rubisco activities in reactions shown in (a) after 
supplementation with RbcS when absent, as described in Fig. 1d. Error bars, s.d. (n = 3 independent experiments).
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Supplementary Figure 5

Crystal structures of AtRaf1.2 domains.

(a,b) Experimental electron density maps for AtRaf1.2 and AtRaf1.2 . Representative regions are shown. The meshwork represents 
the isocontour surface at 1.0 level. The nominal resolutions of the AtRaf1.2 Pt-SIRAS and AtRaf1.2 Hg-SIRAS maps are 2.75 and 
3.0 Å, respectively. Panel B shows a contact between two AtRaf1.2 dimers. (c) Surface properties of AtRaf1.2 The same views as in 
Fig. 3c are shown. Positively and negatively charged groups are shown in blue and red, respectively. Yellow color signifies hydrophobic 
sidechains. (d) Superposition of three crystallographically independent copies of the AtRaf1.2 dimer. The models are represented as 
C traces. The orientation corresponds to the top-view in Fig. 3d.(e) Domain swapping in the P212121 crystal lattice of AtRaf1.2 . In this 
lattice the long F- G connecting loops reach across between adjacent dimers, making contacts to a hydrophobic pit. In the C2 crystal 
form, the hydrophobic residues at the loop apex fold back onto the respective hydrophobic area of the same chain, realizing an 
analogous intramolecular contact. Outside of the crystal lattice the conformation observed in the C2 crystal form should be strongly 
favored. (f) Topology of the secondary structure in the AtRaf1.2 dimer. -Helices and -strands are represented by cylinders and 
arrows, using the same color scheme as in the main text. The monomer shown in orange differs from the second by insertion of helix 
12. (g) Features of the AtRaf1.2 dimer interface. On the left, the surface properties of the area facing the RbcL dimer are show using 
the same representation as in in panel c. On the right, one monomer is shown as backbone ribbon, the other in surface representation
to reveal the AtRaf1.2 dimer interface. Yellow color signifies hydrophobic sidechains.
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Supplementary Figure 6

Cross-linking coupled to mass spectrometry (CXMS).

(a) Structure of the bifunctional crosslinker disuccinimidylsuberate (DSS). The crosslinker is a 1:1 mixture of unlabeled (light; H12) and 
deuterium labeled (heavy; D12) compounds with a mass difference of 12.0753 Da. (b) Workflow for analysis of crosslinked protein 
bands marked and numbered in (c) by in-gel trypsin digestion, followed by LC–MS. (c) Crosslinking products of individual proteins S.
elongatus RbcL8, Syn7942-Raf1 and Syn7002-Raf1. The purified proteins (1.25 M RbcL8 and 10 M of the respective Raf1 proteins) 
were incubated with H12:D12–DSS (2 mM) for 30 min at 25oC, followed by quenching of the crosslinking reaction with NH4HCO3 (150 
mM) and analysis by SDS-PAGE. (d) Crosslinking products of RbcL8 (1.25 M) with Syn7942-Raf1 or Syn7002-Raf1 (10 M each). 
Boxed areas were analyzed as in (b). (e) Representative MS/MS spectra for the crosslinks RbcL–RbcL (Lys15–Lys460), Raf1 –RbcL 
(Lys344–Lys336) and Raf1 –Raf1 (Lys344–Lys188).
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Supplementary Figure 7

Negative-stain EM analysis.

(a) Fourier Shell Correlation (FSC) curves of S. elongatus (Se) RbcL8–Raf14, crosslinked SeRbcL8–Raf14, and T. elongatus (Te)
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RbcL8–Raf14 as determined by gold standard FSC procedure in RELION-1.3. The resolution of the maps estimated by FSC with 0.5 
and 0.143 correlation cut-off and no masking are given. (b) Comparison of the RbcL8–Raf14 models derived from CXMS distance 
restraints (Fig. 5g,h) and EM reconstruction (Fig. 6f,h,j) (assuming the C-terminal 65 residues of RbcL are structured). The backbones 
are represented by C traces. Raf1 and RbcL in the CXMS model are shown in magenta and white, respectively. Raf1 and RbcL in the 
EM reconstruction are shown in cyan and gray, respectively. (c) Rigid body domain fitting of SeRaf1 - and -domains and RbcL8
missing the C-terminal 65 amino acids into the 3D reconstruction of SeRbcL8–Raf14. RbcL subunits in gray and black; Raf1 in purple 
and Raf1 in orange. Side- and top-views are shown. (d,e) Negative stain electron micrograph of crosslinked SeRbcL8–Raf14 (d) and of 
TeRbcL8–Raf14 (e). Exemplary class averages of the respective complexes obtained from 2D classification in RELION-1.3 are shown in 
the insets.
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Supplementary Figure 8

Characterization of the RbcL–Raf1 complex of the thermophilic cyanobacterium T. elongatus.

T. elongatus RbcL and Raf1 proteins were coexpressed in E. coli and purified as a high molecular weight complex. (a) SEC-MALS 
analysis of RbcL-Raf1 complex in solution (~40 g). The horizontal line across the peak indicates the calculated molar mass. Note that 
the sample contained a small amount of aggregated protein which leads to a higher average molar mass (~828 kDa) than expected for 
the RbcL8–Raf14 complex (~740 kDa). (b) nano-ESI native MS spectra of RbcL–Raf1 complex (~8 M), Symbols indicate the charge 
state distributions with the charge states shown for some peaks; the calculated mass around the m/z values of the respective protein 
complexes is indicated. S.D. refers to the accuracy of mass values calculated from the different m/z peaks. The theoretical masses for 
RbcL8–Raf14 and RbcL2 are 741628.8 Da and 106265.4 Da, respectively.
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Supplementary Table 1.

Plasmid   Oligos

Syn7942raf1
ATG

Syn7002raf1
ATG

Atraf1.1 CAA

Atraf1.2 CAA

Atraf1.1/1.2
ATG

Syn7942raf1 ATG

Syn7942raf1 CCG

Syn7002raf1 ATG

Syn7002raf1 CCG

Atraf1.2 CAA

Atraf1.2
GAG
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Abstract
The most prevalent form of the Rubisco enzyme is a complex of eight catalytic large sub-

units (RbcL) and eight regulatory small subunits (RbcS). Rubisco biogenesis depends on

the assistance by specific molecular chaperones. The assembly chaperone RbcX stabilizes

the RbcL subunits after folding by chaperonin and mediates their assembly to the RbcL8
core complex, from which RbcX is displaced by RbcS to form active holoenzyme. Two iso-

forms of RbcX are found in eukaryotes, RbcX-I, which is more closely related to cyanobac-

terial RbcX, and the more distant RbcX-II. The green algae Chlamydomonas reinhardtii
contains only RbcX-II isoforms, CrRbcX-IIa and CrRbcX-IIb. Here we solved the crystal

structure of CrRbcX-IIa and show that it forms an arc-shaped dimer with a central hydropho-

bic cleft for binding the C-terminal sequence of RbcL. Like other RbcX proteins, CrRbcX-IIa

supports the assembly of cyanobacterial Rubisco in vitro, albeit with reduced activity rela-

tive to cyanobacterial RbcX-I. Structural analysis of a fusion protein of CrRbcX-IIa and the

C-terminal peptide of RbcL suggests that the peptide binding mode of RbcX-II may differ

from that of cyanobacterial RbcX. RbcX homologs appear to have adapted to their cognate

Rubisco clients as a result of co-evolution.

Introduction
Life on earth depends on fixation of atmospheric CO2 into organic compounds by bacteria,
algae and plants. The key enzyme for this process ribulose-1,5-bisphosphate carboxylase/oxy-
genase (Rubisco) catalyzes the carboxylation of the five-carbon sugar ribulose-1,5-bispho-
sphate (RuBP) which is converted into two molecules of 3-phosphoglycerate. The other
enzymes of the Calvin–Benson–Bassham cycle subsequently use reduction equivalents and
ATP produced in the light reaction of photosynthesis to regenerate RuBP and produce triose
phosphate to fuel anabolic pathways. The most prevalent form of Rubisco (form I) consists of
a complex of eight catalytic large subunits (RbcL), forming a D4-symmetric core, and eight
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regulatory small subunits (RbcS), capping the RbcL8 complex at both ends [1]. RbcL sequences
exhibit remarkable conservation across phyla. Nevertheless, based on sequence diversity of the
RbcL subunits, four subgroups of form I Rubisco, IA-ID, can be distinguished [2, 3]. The eco-
nomically most important form IB is found in so-called green organisms: cyanobacteria, green
algae and plants.

While there is a plethora of data on Rubisco structure, function and catalysis [1, 4], the path-
ways of subunit folding and oligomeric assembly are only beginning to emerge [5]. In green
algae and plants, the RbcL subunits are chloroplast encoded and synthesized in the chloroplast
stroma, the site of carbon fixation. In contrast, the RbcS subunits are nuclear-encoded, trans-
lated in the cytosol and imported into chloroplasts [6]. Newly-synthesized RbcL subunits asso-
ciate with the chloroplast chaperonin Cpn60 [7], the homolog of bacterial GroEL, initially
suggesting that the chaperonin mediates Rubisco assembly [8].

Recent reconstitution of cyanobacterial form I Rubisco in vitro demonstrated that the cha-
peronin mediates RbcL folding, while assembly of the RbcL8 core complex requires the addi-
tional factor RbcX [9, 10]. Co-expression of RbcX was also required for the recombinant
production of the Rubisco from the cyanobacterial species Synechococcus sp. PCC7002
(Syn7002) and increased the efficiency of functional expression of Synechococcus elongatus
PCC6301 (Syn6301) Rubisco [11, 12]. In most cyanobacteria, the gene for RbcX is located
between the rbcL and rbcS genes within a single operon [13]. Mutation or deletion of rbcX was
found to reduce the level of functional Rubisco in PCC7002 and Synechococcus elongatus
PCC7942 [11, 14]. RbcX is highly conserved in all prokaryotes and eukaryotes containing form
1B Rubisco [15]. Structural analysis showed that RbcX is a dimeric, α-helical protein of*15
kDa subunits [12, 16–18]. The dimer structure has a central hydrophobic cleft which serves as
binding site for the C-terminal sequence motif EIKFEF(E/D) in RbcL sequences [12, 15]. The
peptide binds in an extended conformation with the Phe sidechains reaching into hydrophobic
pockets [10, 12]. In addition, the boomerang-shaped RbcX dimer has conserved residues at the
corners that mediate interactions with the adjacent RbcL subunit [10, 12]. Thus, RbcX binding
clamps the RbcL anti-parallel dimer together and facilitates the assembly of the RbcL8 core
complex. The RbcL-RbcX interaction is dynamic, allowing the displacement of RbcX from
RbcL8 complexes by RbcS to form the holoenzyme. RbcX therefore functions as a Rubisco
assembly chaperone.

Many eukaryotes have two RbcX homologs, one that closely resembles the cyanobacterial
ortholog, RbcX-I, and a more distantly related homolog, RbcX-II [12]. The RbcX-I and
RbcX-II from Arabidopsis thaliana have been characterized and crystallized, named AtRbcX2
and AtRbcX1, respectively, in these studies [18, 19]. The green algae Chlamydomonas reinhard-
tii contains two RbcX-II sequences (CrRbcX-IIa and CrRbcX-IIb, orthologs of AtRbcX-II) and
no RbcX-I ortholog. Here we biochemically and structurally characterize CrRbcX-IIa. The
crystal structures of CrRbcX-IIa alone and in complex with the C-terminal peptide of RbcL
show that CrRbcX-IIa shares the structural topology with cyanobacterial and plant RbcX
homologs. However, the RbcL peptide bound to CrRbcX-IIa only occupies part of the central
hydrophobic cleft of the RbcX dimer, in contrast to the structure of the cyanobacterial RbcX-
peptide complex. Nevertheless, we find that CrRbcX-IIa supports the assembly of cyanobacter-
ial Rubisco, although with reduced efficiency compared to cyanobacterial RbcX-I.

Materials and Methods

Plasmids and Proteins
Open reading frames for CrRbcX-IIa were amplified by PCR from Chlamydomonas reinhardtii
cDNA [20], and cloned between the SacII and SacI restriction sites of the pHue plasmid [21],
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resulting in the following constructs: pHueCrRbcX-IIa(33–189); pHueCrRbcX-IIa(34–156);
pHueCrRbcX-IIa(34–189); pHueCrRbcL(462–474)-RbcX-IIa(37–156). The cleavage site for the
chloroplast transit peptide of CrRbcX-IIa was predicted based on homology with AtRbcX-II
(see Fig 1). The Quik-Change protocol (Stratagene) was used to produce the mutant
pHueCrRbcX-IIa(33–189)(R118A). All plasmid inserts were verified by DNA sequencing.

S. elongatus PCC6301 RbcL8S8, RbcL8, RbcS, RbcL, GroEL and GroES were purified as pre-
viously described [9, 12, 22]. Rabbit antibody against S. elongatus PCC6301 RbcL was produced
using standard procedures.

Expression and Purification of CrRbcX-IIa
RbcX proteins were expressed as N-terminal His6-ubiquitin (His6-Ub) fusion proteins in E.
coli BL21 (DE3) cells from pHue expression plasmids. Cells were grown to an OD600 of 0.5 at
37°C in LB medium followed by induction for 16 h with 0.5 mM isopropyl-D-thiogalactoside
(IPTG) at 23°C. Cells were lysed in 50 mM Tris-HCl pH 8.0, 20 mM NaCl, 1 mM EDTA, 0.5
mg/ml lysozyme and 5 mM phenylmethylsulfonyl fluoride (PMSF) for 30 min on ice, followed
by ultrasonication (Misonix Sonicator 3000). The supernatant obtained after high-speed cen-
trifugation (48 000 x g, 40 min, 4°C) was applied to a Ni-IMAC column (GE Biotech) to cap-
ture the His6-Ub protein, followed by overnight cleavage of the His6-Ub moiety at 23°C using
the deubiquitinating enzyme Usp2 [21]. All subsequent steps were performed at 4°C. The
supernatant was dialyzed against buffer A (20 mM Tris-HCl pH 8.0, 50 mM NaCl) and applied
to a pre-equilibrated MonoQ column (GE Biotech). Proteins were eluted with a linear salt gra-
dient from 50 mM to 1 M NaCl. Fractions containing RbcX were combined and concentrated,
5% glycerol was added, followed by flash-freezing in liquid nitrogen and storage at –80°C.

RbcX for crystallographic studies was purified further by Superdex200 (GE Biotech) size
exclusion chromatography in buffer A. Protein concentration was determined spectrophoto-
metrically at 280 nm using calculated extinction coefficients.

For selenomethionine (SeMet) labeling by the catabolite repression method [23], the bacte-
ria were grown to mid-log phase at 37°C in M9 medium containing 100 mg L-1 ampicillin.
Methionine biosynthesis repression was induced by addition of amino acids as follows: 125 mg
L-1 L-Lys, 100 mg L-1 L-Phe, 100 mg L-1 L-Tyr, 50 mg L-1 L-Ile, 50 mg L-1 L-Leu, 50 mg L-1 L-
Val and 60 mg L-1 L-Se-Met. 15 min later the temperature was reduced to 23°C and protein
synthesis was induced with 0.5 mM IPTG for 20 h. Cells were harvested and re-suspended in
lysis buffer (50 mM Na-phosphate pH 9.0, 300 mMNaCl, 10 mM imidazole and 1 mM β-mer-
captoethanol) containing Complete protease (Roche Biotech) inhibitor cocktail. The cells were
disrupted by ultrasonication and SeMet-labeled His6-Ub RbcX was purified essentially as
described above. The protein solution was dialyzed against buffer A containing 1 mM β-mer-
captoethanol (β-ME) and applied to a pre-equilibrated MonoQ column. Proteins were eluted
with a linear salt gradient from 50 to 400 mMNaCl. Fractions containing SeMet-labeled
CrRbcX-IIa(34–156) were subsequently dialyzed against buffer A/β-ME and concentrated.
After flash-freezing in liquid N2, the protein was stored at -80°C.

Native Mass Spectrometry (Native-MS)
Purified CrRbcX-IIa(33–189); CrRbcX-IIa(34–156) and CrRbcX-IIa(34–189) (15 μMmono-
mer each) were buffer-exchanged into 100 mM ammonium acetate pH 8.5 (Fluka, Sigma),
using Micro Bio-Spin 6 chromatography columns (BioRad). Native-MS analyses were per-
formed in positive ion mode on an electrospray ionization quadrupole time-of-flight (ESI--
TOF) hybrid mass spectrometer (Synapt G2-Si, Waters Corp., Manchester, UK) equipped with
a Z-spray nano-ESI source. The instrument was mass calibrated using a solution of 30 mg ml-1
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Fig 1. Sequence alignment of RbcX-II from green algae. Amino acid sequences of selected RbcX-II homologs from green algae, mosses and plants were
aligned using Clustal-Ω. Note that for the green algaeCoccomyxa subellipsoidea, Chlorella variabilis, Volvox carteri,Ostreococcus tauri andMicromonas
pusilla only one RbcX-II sequence is shown. For comparison, RbcX-I from A. thaliana, Synechococcus sp. PCC7002 and Anabaena sp. CA are also aligned.
All sequence numbering is based on the open reading frames. Secondary structure elements are indicated above the sequences. In the alignment, similar
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cesium iodide dissolved in 1:1 acetonitrile:water. Gold-plated 10 μm nano-ESI pipettes (Mas-
com, Bremen) were used as capillaries. Optimized capillary and sample cone voltages were
1–1.3 kV and 100–150 V, respectively.

Rubisco Reconstitution
GroEL/ES-mediated RbcL folding was performed as in Liu et al. (2010) with modifications.
Denatured S. elongatus PCC6301 RbcL was diluted 200-fold from 6 M GuHCl (final RbcL con-
centration 0.5 μM) into ice-cold buffer B (20 mMMOPS-KOH pH 7.5, 100 mM KCl, 5 mM
MgOAc2) containing GroEL (1 μM oligomer), 1 mg/ml BSA and 5 mMDTT. The reaction was
incubated on ice for 60 min, followed by centrifugation to remove any aggregated RbcL. GroES
(2 μM oligomer), RbcX (2 μMAnaCa-RbcX or 30 μMCrRbcX dimer) and S. elongatus
PCC6301 RbcS (5 μM) were added to the supernatant containing GroEL bound Syn6301-RbcL
as indicated in Figure legend. Reconstitution was initiated by addition of 4 mM ATP at 25°C.
Reactions were stopped by addition of apyrase (Sigma) to a final concentration of 0.25 U/μl to
inhibit GroEL/ES activity.

For measurement of Rubisco enzymatic activity at 25°C, the reaction was supplemented
with Syn6301-RbcS (5 μM) and C-terminal RbcL peptide (KEIKFEFETMD) of S. elongatus
PCC6301 (200 μM) when indicated, and assembly of RbcL8S8 allowed to proceed for 15 min
before enzymatic assay. Rubisco carboxylation activity was determined after incubation for
10 min in 50 mM Tris-HCl pH 8.0, 10 mMMgCl2, 30 mM NaH14CO3 (25 Bq/nmol) and the
amount of carbon fixed was quantified [24]. Activities are expressed as percent of purified
Syn6301-RbcL8 (~0.06 μM oligomer) standard supplemented with RbcS (5 μM).

Crystallization
Crystals of CrRbcX-IIa(34–156) were grown using the hanging drop vapor diffusion method at
20°C by mixing 1 μl protein sample at 6 g L-1 and 1 μl reservoir solution. Crystals of SeMet-
labeled CrRbcX-IIa(34–156) resembling shields were obtained with a reservoir solution con-
taining 5% PEG-3350/0.2 MMgCl2/50 mM Tris-HCl pH 8.0. For cryo-protection, the crystals
were transferred into mother liquor containing 15% PEG-3350/0.2 MMgCl2/50 mM Tris-HCl
pH 8.0, followed by stepwise increase to 20% glycerol content and flash-freezing in liquid
nitrogen.

Crystals of the CrRbcL(462–473)-RbcX-IIa(37–156) fusion protein were grown by the
hanging drop vapor diffusion method at 20°C using 0.1M Tris-HCl pH 8.5, 25% PEG2000
monomethyl ether as precipitant.

Structure Solution and Refinement
The diffraction data were collected at beamline X10SA of the Swiss Light Source (SLS) in Villi-
gen, Switzerland. Diffraction data were integrated and scaled with XDS [25]. Pointless [26],
Scala [27] and Truncate [28] were used to convert the data to CCP4 format, as implemented in
the CCP4i interface [29].

The structure of CrRbcX-IIa(34–156) was solved by Se-SAD using crystals from SeMet-
labeled protein at 2.0 Å resolution. 36 selenium sites were found by direct methods using

residues are shown in red and identical residues in white using bold lettering on red background. Blue frames indicate homologous regions. The consensus
sequence is shown at the bottom. The forward arrow designates the beginning of the mature RbcX-II proteins. The diamond symbol at the end of the
CrRbcX-IIb sequence indicates that the sequence continues with 130 amino acids not displayed. Asterisks denote residues known to be essential for RbcX
function.

doi:10.1371/journal.pone.0135448.g001
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SHELXD as implemented in HKL2MAP [30, 31]. SHELXE was used for density modification
and auto-building of a poly-alanine model. The resulting map was readily interpretable and the
sequence was docked using Coot [32]. The final model was created by iterative Coot model
building and Refmac5 refinement cycles [33]. The structure of the fusion protein CrRbcL(462–
474)-RbcX-IIa(37–156) was solved by molecular replacement using Molrep [34], and the mod-
els modified and refined as above. Residues facing solvent channels with disordered side chains
were modeled as alanines. Coordinates were aligned with Lsqkab and Lsqman [35]. Figures
were generated with the program PyMOL [36] and ESPript [37]. Coordinates and structure
factor amplitudes were deposited to Protein Data Bank under accession codes 5BS1 and 5BS2.

Results

Structural Analysis of Chlamydononas reinhardtii RbcX
The genome of C. reinhardtii contains no RbcX-I, but instead has two RbcX-II genes, g688.t1
(locus Cre01.g030350) and g7885.t1 (locus Cre07.g339000). We refer to the gene products as
CrRbcX-IIa and CrRbcX-IIb, respectively. Note that in the most recent genome annotation
CrRbcX-IIa would start at amino-acid residue 34 and lacks the sequence encoding the transit
peptide. CrRbcX-IIb, on the other hand, has a putative transit peptide but the annotated gene
codes for a protein twice the length of other RbcX homologs (~290 residues) with only the first
~160 amino acids displaying homology to RbcX proteins (Fig 1). The additional sequence in
CrRbcX-IIb probably represents an intron, and thus the sequence for CrRbcX-IIb is apparently
incorrectly annotated. We focused our analysis on CrRbcX-IIa, which was previously anno-
tated with a putative transit peptide. Based on sequence alignment with the mature form of A.
thaliana RbcX-II (also known as AtRbcX1), which begins with Lys46 [19], we cloned
CrRbcX-IIa starting at Arg33 (Fig 1), generating a protein of ~17 kDa. CrRbcX-IIa(33–189)
was recombinantly expressed and purified from the soluble fraction. Analysis by native-MS
showed that CrRbcX-IIa is a dimer in solution, as expected (Fig 2A).

Full-length CrRbcX-IIa failed to crystallize. A stable fragment comprising residues 34–156
lacking the flexible C-terminal 33 residues was produced by subtilisin treatment, as determined
by mass spectrometry (MS). An unstructured C-terminus was also found to be present in the
cyanobacterial Syn7002-RbcX and was not required for function in Rubisco assembly [12]. We
recombinantly expressed and purified the truncated CrRbcX-IIa(34–156) protein for further
structural analysis. The structure of the selenomethionine (SeMet)-labeled CrRbcX-IIa(34–
156) protein was solved by selenium-single-wavelength anomalous dispersion (Se-SAD) at
2.0 Å resolution. The experimental electron density was readily interpretable (Fig 3A). The
structural model was built against data to 1.6 Å resolution and refined to final R and Rfree val-
ues of 0.177 and 0.206, respectively (see Table 1 for data collection and refinement statistics).
The asymmetric unit of the monoclinic unit cell contains four copies of CrRbcX-IIa(34–156) in
a two-fold symmetric topology (Fig 3B). Each chain consists of a succession of five α-helices.
In three of the subunits the insertion after helix α1, residues 73–77, is disordered. This inser-
tion is typical for RbcX-II sequences from green algae (Fig 1). Apart from the N-terminal 10
residues (see below), the backbones of the CrRbcX-IIa(34–156) subunits are closely similar (r.
m.s.d. of Cα positions of 0.267 to 0.577 Å). The subunits form arch-shaped, two-fold symmet-
ric dimers with a hydrophobic cleft in the center (Fig 4A), similar to other known RbcX struc-
tures [12, 17, 18]. In each subunit helices α1-α4 form a four-helix bundle, which associates
with helix α5 of the opposing subunit in the dimer (Fig 4A). The N-terminal sequence of one
subunit binds into the central cleft, with residues Met34 and Ile36 reaching into hydrophobic
pockets located between the anti-parallel helices α1 and α1’ at the bottom of the cleft (Fig 4B).
The N-terminal ammonium group of Met34 engages in a tight salt bridge (lengths 2.53 and
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2.58 Å) with Asp90 from the opposing dimer, which presumably stabilizes the tetramer
arrangement. The other N-terminal peptide inserts into a cleft between neighboring tetramers
in the crystal lattice. The dimers in the asymmetric unit interact substantially (1370 Å2 accessi-
ble surface area buried on each dimer). Indeed, CrRbcX-IIa(34–156) formed mainly tetramers
in solution as detected by native-MS (Fig 2B). However, this interaction is unlikely to be func-
tionally relevant since full-length CrRbcX-IIa behaved as a dimer in solution (Fig 2A).

Comparison with Other RbcX Structures
The crystal structure of the dimer of CrRbcX-IIa(34–156) is closely similar to that of the plant
ortholog AtRbcX-II (AtRbcX1) [18] (Fig 5A). 175 Cα positions could be superposed with a r.
m.s.d. of 1.239 Å. In contrast, the structure of CrRbcX-IIa(34–156) differs more substantially
from the structures of cyanobacterial RbcX and AtRbcX-I. For example, while one four-helix
bundle and the associated C-terminal helix from the other subunit of the dimer of AtRbcX-I
are reasonably well superimposable with CrRbcX-IIa(34–156) (r.m.s.d. 1.414 Å for 120 match-
ing Cα atom positions), the other helical bundle is markedly shifted (Fig 5B). The situation is
closely similar when comparing with the cyanobacterial Anabaena sp. CA RbcX (Ana-
CA-RbcX) with an r.m.s.d. 1.453 Å for 134 matching Cα atom positions (Fig 5C). The rear-
rangement displaces helices α1 and α1’ in the protomers longitudinally, which moves the
symmetry-related pairs of hydrophobic pockets apart by ~5 Å. This becomes apparent from
comparing the positions of residues Leu57 and Phe62, which line the hydrophobic pockets
(spheres in Fig 5). Consequently, a pseudo-symmetrical binding of the FEF motif in the RbcL
C-terminal peptide across the dyad axis is not possible in CrRbcX, in contrast to the binding
mode of the FEF motif to cyanobacterial RbcX [10, 12]. The helices α2 of CrRbcX-IIa(34–156),

Fig 2. Oligomeric state of CrRbcX-IIa analyzed by native-MS. Nano-ESI native-MS spectra of CrRbcX-IIa
(33–189) (A) and CrRbcX-IIa(34–156) (B). Symbols indicate the charge state distributions with the charge
states shown for some peaks; the calculated mass around them/z values of the respective protein
complexes is reported. The accuracy of mass values calculated from the differentm/z peaks is indicated.

doi:10.1371/journal.pone.0135448.g002
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which form the “walls” of the hydrophobic cleft, are rotated outwards in comparison to cyano-
bacterial RbcX (Fig 5C), widening the cleft.

Structural Basis of RbcL Peptide Recognition
Attempts to obtain a co-crystal between CrRbcXIIa(34–159) and the C-terminal RbcL peptide
failed, presumably due to low peptide binding affinity. Taking advantage of the finding that the
N-terminus of RbcX binds into the central cleft (Fig 4), we therefore generated a fusion con-
struct between CrRbcX-IIa and the C-terminal recognition motif in CrRbcL. In this construct,
residues 462–473 of CrRbcL (sequence WKEIKFEFDTID) are directly linked to residue Pro37
at the N-terminus of CrRbcX-IIa(37–156), with the new N-terminus of the fusion protein start-
ing with Trp462 of the RbcL sequence. This fusion protein readily crystallized and the structure

Fig 3. Asymmetric unit of the CrRbcX-IIa(34–156) crystal. (A) Stereoview of a representative portion of the experimental density map at 1.0 σ. The final
model is superposed in stick representation. (B) Tetrameric complex of the SeMet-labeled oligomer in the asymmetric unit of the crystal lattice. Two
perpendicular views are shown. On the left, a view along the two-fold molecular axis is shown. CrRbcX-IIa(34–156) is shown in ribbon representation. In each
dimer, one of the chains is colored blue and the other gold or silver, respectively. Chain termini and secondary structure elements are indicated. The N-
termini of the golden/silver subunits reach into the clefts (roughly horizontal); the N-termini of the blue subunits towards crystallographic symmetry mates.

doi:10.1371/journal.pone.0135448.g003
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was solved at 1.97 Å resolution (Table 1). The structural core of CrRbcX-IIa(37–156) in the
fusion protein is virtually identical to that obtained for CrRbcX-IIa(34–156) (r.m.s.d. 0.425 Å
for 211 matching Cα positions). Thus it is unlikely that the contact area with the RbcL peptide
is distorted by crystal packing. Difference electron density along the hydrophobic cleft could be
assigned to the RbcL residues 462–467 (WKEIKF). Residues 468–473 (EFDTID) of RbcL as
well as residues 37–43 of CrRbcX-IIa were disordered (Fig 6A). Notably, Phe469 was among
the disordered residues, consistent with the finding that the corresponding Phe464 in
Syn7002-RbcL is functionally less important for RbcX binding than Phe462 (Phe467 in
CrRbcL) [12]. The sidechains of Ile465 and Phe467 point into hydrophobic pockets sur-
rounded by Phe60/Arg64/Leu67/Leu92 and Leu57/Phe60/Met96, respectively (Fig 6B). The
sidechain of Lys463 points towards the C-terminal end of helix α2 and Asp90. The indole moi-
ety of Trp462 interacts with Tyr85 and Met89, but also with a neighboring CrRbcX-IIa mole-
cule (not shown), and thus these interactions seem to be influenced by crystal packing.

Superposition with the structure of the heterologous cyanobacterial Syn6301-RbcL8/Ana-
CA-RbcX8 assembly intermediate [10] shows that Ile465 and Phe467 of CrRbcL are recognized
by similar sites on CrRbcX-IIa (Fig 6C). The peptide is oriented more towards helix α2 in
the cyanobacterial structure, whereas it assumes a deeper and more central position in the

Table 1. Crystallographic data collection andmodel refinement statistics.

Dataset CrRbcX-IIa(34–156) (SeMet) CrRbcL(462–474)-CrRbcX-IIa(37–156)

Data collection

Wavelength (Å) 0.9790 0.9999

Space group P1 P1

Cell dimensions

a, b, c (Å); 36.13, 52.99, 61.56; 34.22, 38.53, 50.36;

α, β, γ (°) 76.49, 81.10, 70.10 88.47, 81.53, 67.92

Resolution limits (Å)* 59.66–1.6 (1.69–1.6) 35.68–1.97 (2.07–1.97)

Rmerge * 0.059 (0.332) 0.081 (0.494)

I/sigma * 18.3 (4.6) 10.4 (2.0)

Multiplicity * 7.1 (6.7) 2.4 (2.2)

Completeness (%) * 94.1 (77.2) 94.2 (87.9)

Wilson B-factor (Å2) 15.3 22.8

Refinement

Resolution range 30–1.6 30–1.97

Reflections ** 49112 (2585) 15009 (1887)

Rwork / Rfree 0.177 / 0.206 0.200 / 0.222

Number of atoms 4185 1887

Average B-factor (Å2) 19.0 31.0

r.m.s. deviations

Bond length (Å) 0.011 0.013

Bond angle (°) 1.509 1.423

Ramachandran plot ***

Favoured (%) 97.7 97.3

Allowed (%) 2.1 2.2

Outliers (%) 0.2 0.4

* Values in parenthesis for outer shell.

** Values in parenthesis for test set.

*** Values from Molprobity 4.02.

doi:10.1371/journal.pone.0135448.t001
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hydrophobic cleft of CrRbcX-IIa (Fig 6C). The indole ring of Trp462 is at roughly the same
place in the superposition, but the backbone conformations differ strongly at this segment. We
note that in the context of the RbcL subunit this residue would be connected, whereas it forms
the N-terminal residue in the fusion construct. This difference in sequence topology may influ-
ence the binding mode.

The superposed CrRbcX-IIa is compatible with the surface of the RbcL anti-parallel dimer
in the context of the RbcL8 core complex (Fig 6D), in a topology similar to that observed for
the cyanobacterial RbcX [10]. The C-terminal sequence of one RbcL subunit reaches into the
central cleft of CrRbcX-IIa and the functionally critical, conserved residues Gln69 and Arg118

Fig 4. Crystal structure of the CrRbcX-IIa(34–156) dimer. (A) Ribbon representation of the CrRbcX-IIa(34–156) dimer. Two perpendicular views are
shown, the first along the molecular two-fold axis. (B) Interactions of the N-terminal tail with the hydrophobic cleft in CrRbcX-IIa(34–156). A zoom-in on the
boxed area in panel (A) is shown. The N-terminal tail is shown as a coil with prominent sidechains in stick representation. The bulk of the CrRbcX-IIa(34–156)
is represented as a molecular surface.

doi:10.1371/journal.pone.0135448.g004
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Fig 5. Comparison of the CrRbcX-IIa(34–156) structure with RbcX-II and RbcX-I homologs. (A)
Comparison with the A. thaliana homolog AtRbcX-II. The backbones of the subunits of CrRbcX-IIa(34–156)
are represented as a Cα trace in the same views as in Fig 4A. Spheres designate the Cα atoms of Leu57 and
Phe60 in CrRbcX-IIa, or the respective sequence positions in the homologous proteins. CrRbcX-IIa and

RbcX from Chlamydomonas reinhardtii
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AtRbcX-II are shown in blue and dark grey, respectively. (B) Comparison with the A. thaliana homolog
AtRbcX-I, which is shown in light grey. (C) Comparison with cyanobacterial AnaCA-RbcX which is shown in
red. Arrows indicate the direction of displacement of the second 4-helix bundle of CrRbcX-IIa(34–156).

doi:10.1371/journal.pone.0135448.g005

Fig 6. Crystal structure of a fusion protein revealing the interactions between CrRbcX-IIa and the C-terminal tail of CrRbcL. (A) Unbiased omit
difference electron density for the RbcL tail residues of the CrRbcL(462–474)-RbcX-IIa(37–156) fusion protein. The C-terminal sequence of CrRbcL is shown
as a coil and the sidechains in stick representation. The difference electron density at 1.5 σ level is shown as orange meshwork. CrRbcX-IIa(37–156) is
represented as a molecular surface. (B) Detailed view of the RbcL-RbcX interactions. The area boxed in panel (A) is shown. (C) Superposition of the
CrRbcX-IIa(37–156) onto the Syn6301-RbcL8/AnaCA-RbcX8 crystal structure [10]. The structures are shown in ribbon representation. The RbcL subunits
are shown in brown and siena; the AnaCA-RbcX dimer in red; CrRbcX-IIa dimer in blue. (D) Putative contacts of CrRbcX-IIa(37–156) with the surface of the
Syn6301-RbcL8 complex. The same view as in panel (C) is shown.

doi:10.1371/journal.pone.0135448.g006
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(Fig 1) are positioned correctly for interaction with the second RbcL subunit (Fig 6D). The
loop insertion between helices α1 and α2 of CrRbcX-IIa, which is ordered in the structure of
the CrRbcL(462–474)-RbcX-IIa(37–156) fusion protein, would extend into a shallow groove of
the RbcL dimer surface (Fig 6D). We speculate that this loop insertion found in RbcX
sequences of green algae might modulate the interaction with RbcL.

Functional Characterization of CrRbcX
We used the previously reconstituted Rubisco from S. elongatus PCC6301 [9] and the bacterial
chaperonin system GroEL/ES to assess the functionality of CrRbcX-IIa in Rubisco assembly.
Unfolded RbcL was bound to GroEL upon dilution from denaturant. Assembly was initiated
by adding GroES, ATP and RbcX for 60 min at 25°C, followed by addition of RbcS for Rubisco
activity assay. The formation of holoenzyme was dependent on RbcX as shown previously [9],
reaching a yield of ~20% with AnaCA-RbcX (Fig 7A). Addition of the C-terminal RbcL peptide
prior to RbcS doubled the yield to ~40% by facilitating the displacement of RbcX from the
RbcL8RbcX8 assembly intermediate by RbcS [9, 10]. A lower yield of enzyme activity of ~7%
was obtained with full-length CrRbcX-IIa(33–189) protein, but only when present at a high
molar excess (30 μM dimer) over RbcL. Again the activity doubled in the presence of the C-ter-
minal RbcL peptide (Fig 7A). The mutant CrRbcX-IIa(R118A) did not support assembly, con-
sistent with this conserved residue being involved in the stabilization of the RbcL dimer [9, 10,
12]. Notably, CrRbcX-IIa(34–189), lacking the N-terminal residue Arg33 of the full-length
protein was inactive (Fig 7A). Arg or Lys is conserved at this position among most RbcX-II
homologs (Fig 1). Arg33 is also missing in the C-terminally truncated, crystallized CrRbcX-IIa
(34–156) protein. In the crystal structure, the amino group of the N-terminal Met34 forms a
short salt bridge (2.53–2.58 Å) with Asp90 from the other RbcX dimer, which appears to stabi-
lize the tetramer. In addition, Arg33 would clash with the other dimer, consistent with the MS
data showing that deletion of Arg33 favors tetramer formation in solution (Fig 2). We suggest
that in the absence of Arg33, the N-terminus of RbcX may bind into the central cleft, rendering
the protein non-functional in Rubisco assembly (Fig 7A), consistent with the formation of
non-functional tetramers (Fig 7B).

Discussion
Our data demonstrate that RbcX-II from the green algae C. reinhardtii functions as a bona fide
Rubisco assembly chaperone, despite its considerable evolutionary distance from cyanobacter-
ial and eukaryotic RbcX-I proteins. Like all other known RbcX proteins, CrRbcX-IIa is an arc-
shaped dimer with a central hydrophobic cleft that binds the C-terminal sequence of the RbcL
subunit. Conserved polar residues at the corners of RbcX make critical contacts to the N-
domain of an adjacent RbcL, thereby stabilizing the RbcL anti-parallel dimer in a state compe-
tent for assembly to the RbcL8 core complex of Rubisco.

The crystal structure of CrRbcX-IIa differs from the structures of cyanobacterial RbcX
homologs in several aspects. The adjacent helices α1, which form the floor of the hydrophobic
cleft, are shifted with respect to each other, moving the binding pockets for the two Phe side-
chains in the C-terminal RbcL binding motif apart. Consistently, density for the bound peptide
sequence is only discernible until the first Phe residue (Phe467) in the complex structure.
There are additional hydrophobic cavities between the helices close to the symmetry axis,
resulting from the conserved substitution of Thr10 in cyanobacterial RbcX by Ala in RbcX-II
(residue 50 in CrRbcX-IIa sequence numbering), but these volumes are not occupied in the
complex with peptide. In the apo-structure, the sidechains of the conserved residues Met34
and Ile36 point into these pockets, but the functional significance of this interaction, if any, is
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Fig 7. Rubisco reconstitution of CrRbcX-IIa and oligomeric state of CrRbcX-IIa(34–189) analyzed by native-MS. (A) Rubisco reconstitution.
Chemically denatured RbcL from S. elongatus PCC6301 (at 100 μM) was diluted 200-fold into ice-cold buffer containing GroEL (1.0 μM). The components
(2 μMGroES oligomer; 2 μMAnaCa-RbcX or 30 μMCrRbcX dimer) were added as indicated and refolding/assembly initiated by addition of 4 mM ATP at
25°C (see Materials and Methods). After incubation for 60 min, RbcS (5 μM) was added with or without C-terminal RbcL peptide (200 μM) for 15 min, followed
by Rubisco enzyme assay. The activity of RbcL8 core complex (~0.06 μM oligomer) incubated with RbcS (5 μM) was set to 100%. Error bars s.d. (n = 3
independent experiments). (B) Nano-ESI native-MS spectra of CrRbcX-IIa(34–189). Symbols indicate the charge state distributions with the charge states
shown for some peaks; the calculated mass around them/z values of the respective protein complexes is reported. The accuracy of mass values calculated
from the differentm/z peaks is indicated.

doi:10.1371/journal.pone.0135448.g007
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unclear. Interestingly, in the structure of the A. thaliana ortholog, which has essentially the
same backbone conformation, the pockets are smaller and intra-molecular binding of the N-
terminus into the central cleft is not observed.

Besides the RbcX homologs, a recent screen of a Maize mutant library identified several
additional Rubisco accumulation factors, including Bsd2, Raf1 and Raf2 [38–42]. RbcX and
Raf1 are generally conserved in photosynthetic organisms containing form IB Rubisco [2, 3],
but mediate assembly by different mechanisms [43]. Whether RbcX and Raf1 cooperate in a
coherent assembly pathway or act in parallel pathways is still unknown.
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Additional unpublished results 

3. Additional unpublished results 

3.1 Analysis of Raf1-RbcL interaction by RbcL peptide membrane 

The binding of Raf1 to the Rubisco large subunit was investigated by an array of techniques 

in Hauser et al.205. Most importantly, chemical cross-linking in combination with mass 

spectrometry provided detailed insight into the interaction of Raf1 with RbcL. To identify such 

sequence element(s) in RbcL, an array of 13-amino-acid-long, acetylated peptides covering 

the entire sequence of RbcL with an eleven residue overlap was C-terminally attached to a 

cellulose-PEG membrane. Incubation with Raf1, followed by detection with anti-Raf1 antibody, 

resulted in strong binding signals to specific peptides of the interaction partner. Such binding 

regions should normally show several spots next to each other since adjacent peptide 

sequences of RbcL overlap by 10 residues and binding should involve less then 11 residues. 

Therefore, cyanobacterial and plant Raf1 as well as their respective α+β domains were 

incubated with their homologous RbcL peptide sequence membranes, i.e. Syn6301-RbcL and 

At-RbcL, respectively (Fig.19, 21, 22 and 24). Membranes were washed after incubation 

several times, and binding was analyzed by western blotting against the respective Raf1 

protein. As a control, the background signal of primary and secondary antibody binding to the 

membrane in absence of Raf1 was tested beforehand and no staining was observed for either 

anti 7942-Raf1/anti AtRaf1.2 or anti rabbit IgG (data not shown). Before each binding 

experiment, membranes were stripped and regenerated and background binding was tested 

to ensure that no signal from the previous incubation remained (data not shown). After 

incubation of the Syn6301-RbcL peptide membrane with Syn7942-Raf1, six discrete binding 

regions with at least 3 adjacent peptide spots were detected (Fig.19, left). Corresponding 

peptide motifs in overlapping binding regions are shown in red (Fig.19, right) and are 

highlighted in the Syn6301-RbcL antiparallel dimer (Fig.19). Interestingly, 3 peptide regions 

harbored Lysine residues that were found in Raf1-RbcL X-links before (Fig.20, purple)205. 

These peptides were located at the horizontal edges of the anti-parallel RbcL dimer, close to 

the region where Raf1 likely brackets the dimer. Thus, this result fits well with the proposed 

Raf1 mechanism in stabilizing RbcL antiparallel dimers. The other 3 peptide regions (Fig.20, 

sand), where no Raf1-RbcL X-links were found, all lie at the back of the dimer and are not in 

accordance with the model. These regions are in the dimer-dimer interaction side and would 

be masked when the RbcL8 core is assembled. Raf1 stays bound to the RbcL8 core and would 

not be able to bind to these regions simultaneously. Hence, these binding regions most likely 

do not play a role in Raf1 mediated Rubisco assembly. Since only short peptides are spotted 
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on the membrane it is very likely that additional false posititve binding regions are detected 

and it is important to validate binding results with additional methods. 

 

Fig.19: Syn7942-Raf1 binding to Syn6301-RbcL peptide membrane. A cellulose membrane 
containing an array of overlapping tridecamer peptides covering the sequence of Syn6301-RbcL was 
probed with Syn7942-Raf1. Peptide-bound Raf1 was visualized by chemiluminescent immunodetection 
with anti-Syn7942-Raf1 antibody. (left). Peptides where Syn7942-Raf1 was bound are indicated and 
overlapping binding sites of different peptides are highlighted in red (right). Lysine residues that were 
found in Raf1-RbcL X-links (Hauser et al.205) are underlined.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.20: Syn7942-Raf1 binding to Syn6301-RbcL. Binding regions from Fig.19, left are mapped on the 
antiparallel Syn6301-RbcL dimer (white). Peptide regions that were found in Raf1-RbcL X-links are 
highlighted in purple, other peptides in sand. Left, front view of the Syn6301-RbcL antiparallel dimer, 
right, back view. 
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In contrast to full-length Syn7942-Raf1, both the respective α- and β-domain did show no 

significant binding to the Syn6301-RbcL peptide membrane, underlining the inability of the 

respective domains to interact with RbcL on their own (Fig.21)205. 

 

Fig.21: Syn7942-Raf1 domain binding to Syn6301-RbcL peptide membrane. Syn7942-Raf1α (left) 
-and β (right) domains were incubated on a membrane consisting of spotted peptides of the Syn6301-
RbcL sequence and analyzed by anti-Syn7942-Raf1 immunoblot. 

To identify potential chaperonin binding sites, the Syn6301-RbcL peptide membrane was 

incubated with GroEL. Interestingly, GroEL showed distinct binding to a peptide motif on the 

Syn6301 Rubisco large sunbunit membrane (Fig.22, left). Moreover, the GroEL binding region 

lies in close proximity to one of the binding patches of Raf1 which was also found in cross-

linking experiments which might explain their mutually exclusive binding ability (Fig.22, right). 

 

Fig.22: GroEL binding to Syn6301-RbcL peptide membrane. Left: GroEL was incubated on a 
membrane consisting of spotted peptides of the Syn6301-RbcL sequence and analyzed by anti-GroEL 
immunoblot. Peptides where GroEL was bound are indicated and overlapping binding sites of different 
peptides are highlighted in red. Right: GroEL binding regions are mapped on the antiparallel Syn6301-
RbcL dimer (white) and are highlighted in pale yellow. Binding regions from Syn7942-Raf1 are shown 
in purple. Left, back view, right, side view. Note that binding region A2, B2 and C2 derive from anti 
GroEL antibody and are not specific to GroEL binding (data not shown). 
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When AtRaf1.2 was incubated on the At-RbcL peptide membrane eight discrete binding 

regions with at least 3 adjacent peptide spots were found, amongst them 3 strong regions 

where Raf1 signal intenisty was considerably higher compared to the 6 weak binding regions 

(Fig.23, left). Corresponding binding motifs in overlapping binding regions are shown in red 

(Fig.23, right) and are highlighted in the Spinacia oleracea-RbcL antiparallel dimer in purple 

for the three identified strong binding regions (Fig.24). 

Fig.23: AtRaf1.2 binding to At-RbcL peptide 
membrane. A cellulose membrane containing an array 
of overlapping tridecamer peptides covering the 
sequence of At-RbcL was probed with At-Raf1.2. 
Peptide-bound Raf1 was visualized by 
chemiluminescent immunodetection with anti-AtRaf1.2 
antibody. (left). Peptides where AtRaf1.2 was bound are 
indicated and overlapping binding sites of different 
peptides are highlighted in red (right). 

Fig.24: AtRaf1.2 binding to At-RbcL. Binding regions from Fig.22, left are mapped on the antiparallel 
Spinach-RbcL dimer (white) and highlited in purple. Left, front view of the Spinach-RbcL antiparallel 
dimer, right, back view. 
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The three major binding regions of AtRaf1.2 on the At-RbcL peptide membrane are similar to 

the ones found for Syn7942-Raf1 on the Syn6301-RbcL peptide membrane. Binding occurs at 

the sides of the anti-parallel RbcL dimer which, is in accordance with the Raf1 mechanism in 

bracketing and stabilizing dimers. In contrast to full-length, similar to the Syn7942-Raf1 

domains, both the AtRaf1.2 α -and β-domain did show no significant binding to the AtRaf1.2-

RbcL peptide membrane, underlining the inability to interact with RbcL on their own (Fig.25)205. 

Taken together, binding of Raf1 to RbcL peptide membranes shows results consistent with 

other, more detailed and sensitive biophysical methods205. Therefore, it is important to validate 

binding to certain peptide regions by other techniques, as false positive results make 

convincing conclusions impossible. 

Fig.25: At-Raf1.2 domain binding to At-RbcL peptide membrane. At-Raf1.2α (left) -and β (right) 
domains were incubated on a membrane consisting of spotted peptides of the At-RbcL sequence and 
analyzed by anti-AtRaf1.2 immunoblot. 

3.2 Raf1-RbcL binding is not affected by Mg2+, ATP and RuBP 

Rubisco requires the binding of Mg2+ at its active site after carbamylation of Lysine 201 for its 

proper catalytic function. To test whether the binding of Mg2+ to purified RbcL8 cores changes 

the stability of RbcL8 in the presence and/or absence of GroEL/ATP and thus the binding of 

Raf1 to L8 cores, RbcL8 was incubated as before with different components (Fig.26)205. Overall, 

the combination of Mg2+/ATP alone or in combination with GroEL did not change the stability 

of the RbcL8 core complex (Fig.26, lanes 3 and 5). Furthermore, Raf1 binding to RbcL8 was 

not altered in these conditions and two distinct species (RbcL* and a HMW complex) were 

observed as before. Thus, the RbcL8 core is stable under Mg2+/ATP conditions and does not 

bind to GroEL. As described before, RuBP binding to the Mg2+-bound active site of Rubisco 

results in the closure of a series of loops (most importantly loop 6) over the site to enfold and 

capture the bisphosphate substrate. Closure of the loops brings together amino acids that are 

critical for catalysis and determine the fate of the substrate. Furthermore the very C-terminus 

of Rubisco closes the active site and renders it catalytically competent. Substrate binding has 

been reported to stabilize the RbcL antiparallel dimer and there are two binding sites formed 

at the subunit interface143,206,207,208.  
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Fig.26: Interaction of Syn7942-Raf1 with pre-formed RbcL8 complexes. Complex formation of 
RbcL8 with Syn7942-Raf1, analyzed by native PAGE and immunoblotting with anti-RbcL. Samples are 
purified RbcL8, incubated with Raf1, Mg2+, ATP or GroEL as indicated. 

Therefore, the potential effect of additional RuBP Rubisco stabilization was tested in the in 

vitro reconstitution reaction as well as in the binding to RbcL8 (Fig.27). In the presence of RuBP 

and RbcS (Fig.27, lane 1), no additional complex formation, e.g RbcL dimers or RbcL8S8 were 

observed as compared to the reaction w/o RuBP (Fig.27, lane 2). Moreover, no further 

stabilization of assembly complexes was observed in the presence of Raf1 and presence or 

absence of RbcS (Fig.27, lanes 2-6). Likewise, RuBP did not influence Raf1 binding to RbcL8 

and subsequent complex formation (Fig.27, lanes 7,8). Thus, RuBP does not have a chemical 

chaperone effect on cyanobacterial Rubisco dimer formation as observed for red-type bacterial 

form ID Rubisco206. Raf1 is essential and sufficient for binding and stabilization of folded RbcL 

against re-binding to GroEL as observed before205. 
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Fig.27: Effect of RuBP on Rubisco assembly and RbcL8 stability. Analysis of Rubisco reconstitution 
reactions with homologous components as indicated by native PAGE and immunoblotting with anti-RbcL 
(lanes 1-6). Complex formation of RbcL8 with Syn7942-Raf1 and RuBP, analyzed by native PAGE and 
immunoblotting with anti-RbcL (lanes 7, 8). 

3.3 RbcS displaces Raf1 from RbcL8 at equimolar concentrations 

RbcS could efficiently displace Raf1 in Rubisco in vitro reconstitution reactions, resulting in 

RbcL8RbcS8 formation and active Rubisco205. However, RbcS was present at tenfold molar 

excess. To find out at which molar ratio RbcS is able to efficiently displace Raf1 from RbcL8, 

pre-formed RbcL8-Raf1 complexes were incubated with increasing concentrations of RbcS. 

When Raf1 was added at equimolar concentrations to RbcL8, RbcL* formation and a HMW 

species were observed as before (Fig.28, lane 2)205. At equimolar RbcS to RbcL8-Raf1 

complex ratio (Fig.28, left, lane 4,), RbcS already displaced Raf1 quantitatively, indicated by 

the disappearance of both high HMW RbcL8-Raf1 and RbcL* complexes. At this ratio, Raf1 

was fully released of RbcL8 and migrated as free Raf1 (Fig.28, right, lane 4). Therefore, Raf1 

displacement from RbcL8 by RbcS binding is highly efficient and essentially irreversible. This 

might be a result of overlapping binding sites of Raf1 and RbcS on the RbcL8 core. Higher 

RbcS binding affinities combined with slower on and off rates would then result in effective 
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displacement of Raf1 which is a prerequisite for RbcL8RbcS8 formation and enzymatic 

functionality. 

Fig.28: Interaction of RbcS with pre-formed RbcL8-Syn7942-Raf1 complexes. RbcL8RbcS8 
formation followed by incubation of RbcL8-Syn7942-Raf1 (at equimolar concentrations of RbcL to Raf1) 
with increasing RbcS concentrations as indicated by molar ratios of RbcS to the RbcL8-Syn7942-Raf1 
complex , analyzed by native PAGE and immunoblotting with anti-RbcL (left) and anti-Raf1 (right) 
antibodies.  

3.4 Interaction of Raf1 with RbcS 

RbcS displaced Raf1 from RbcL8 very efficiently in the in vitro Rubisco reconstitution as well 

as when Raf1 was bound to purified RbcL8. To test whether RbcS binds to Raf1 directly and if 

Raf1 also plays a direct role in the coordination of RbcS to RbcL8, N-terminally FLAG tagged 

cyanobacterial and plant Raf1 were incubated with their cognate RbcS species. In plants, RbcS 

is imported in an unfolded state into the chloroplast and presumably interacts with chaperones 

in the stroma212. Therefore, RbcS was added to FLAG-Raf1 in folded and Gdn-HCl denatured 

unfolded condition. Subsequently an anti-FLAG pull-down was performed and the bound 

material was analyzed on SDS-PAGE (Fig.29, Fig.30). To rule out background binding of RbcS 

to FLAG beads, RbcS species were incubated in the absence of FLAG-Raf1 in a separate 

reaction (Fig.29, Fig.30, lanes 7-12, respectively). BSA was present in the AtRaf1.2 pull-down 

to minimize potential aggregation of the plant small subunit. BSA is inert and does not bind to 

the beads. Both FLAG-tagged Syn7942-Raf1 and AtRaf1.2 were effectively pulled down by 

anti-FLAG beads (Fig.29, Fig.30, lanes 3+6, respectively). RbcS did not bind to either 

cyanobacterial or plant Raf1 irrespective whether it was denatured or not and eluted in the 

unbound fractions (Fig.29, Fig.30, lanes 2+5, respectively). AtRbcS was found not to bind to 

the beads in absence of FLAG-Raf1 regardless if folded or denatured (Fig.29, lanes 9+12). 

Syn6301-RbcS was found to a small extent in the Syn7942-Raf1 IP fraction when incubated 
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in denatured state (Fig.29, lane 6), however this was also observed in the absence of FLAG-

Raf1, suggesting direct binding to the anti-FLAG beads as observed in the control reaction 

(Fig.29, lane 12). Therefore, a direct interaction of Raf1 with either native or unfolded RbcS 

can be ruled out. Importantly, Raf1 was shown to pull-down Rubisco large subunit in a similar 

co-immunoprecipitation experiment205,209. 

 
 

Fig.29: Interaction of Syn6301-RbcS with Syn7942-Raf1. FLAG tagged Syn7942-Raf1 was incubated 
with either native or denatured Syn6301-RbcS and subsequently an anti-FLAG pull down was performed 
with anti-FLAG beads and input, unbound (flow-through) and immunoprecipitated (IP) fractions were 
analyzed on SDS-PAGE followed by Coomassie staining. AB = antibody light chain. 
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Fig.30: Interaction of At-RbcS with AtRaf1.2. FLAG tagged AtRaf1.2 was incubated with either native 
or denatured At-RbcS and subsequently an anti-FLAG pull down was performed with anti-FLAG beads 
and input, unbound (flow-through) and immunoprecipitated (IP) fractions were analyzed on SDS-PAGE 
followed by Coomassie staining. AB = antibody light chain.  

3.5 Interaction of Raf1, Raf2 and RbcS 

Raf2 has been identified in some organisms containing form IB Rubisco210 and also in 

organisms containing form IA Rubisco in α-carboxysomes229. The crystal structure of Raf2 from 

the chemoautotrophic bacterium Thiomonas intermedia K12 showed that the protein forms a 

homodimer of ~10-kDa subunits with homology to pterin-4α-carbinolamine dehydratase (PCD) 

enzymes229. The overall PCD fold is preserved in Raf2 but the active site cleft present in PCD 

enzymes is disrupted. Loss of Raf2 function in maize resulted in a phenotype similar to 

disruption of the raf1 gene, however the phenotype was less pronounced than in the raf1 

knock-out. Chemical crosslinking followed by immunoprecipitation suggested that Raf2 

interacts with imported RbcS subunits and to a lesser extent with RbcL in the chloroplast 

stroma210. It has been proposed that Raf1, Raf2 and Bsd2 form transient complexes with RbcS 

that maintain RbcS competence for assembly with RbcL210. Plant Raf2 contains an additional 

domain, not present in cyanobacterial Raf2, which may be involved in mediating these 

interactions. To investigate the potential mechanism of Raf2 action and its putative role in RbcS 

and/or RbcL binding, pull-down experiments with FLAG-tagged Syn7002-Raf1, Syn7002-Raf2 

and Syn7002-RbcS have been performed (Fig.31). FLAG tagged Syn7002-Raf1 was 

immunoprecipitated effectively by anti FLAG beads (Fig.31, lanes 3+6). Syn7002-Raf2 did not 
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interact with Syn7002-Raf1 and eluted excusively in the unbound fraction (Fig.31, lane 2). 

Furthermore, when Syn7002-Raf1 was incubated with Syn7002-Raf2 and Syn7002-RbcS, 

neither Syn7002-Raf2 nor Syn7002-RbcS co-immunoprecipitated with Syn7002-Raf1 and 

eluted in the unbound fraction (Fig.31, lane 5). Therefore, Syn7002-Raf2 does not directly 

interact with Syn7002-Raf1 and does not mediate RbcS binding to Raf1 to form a ternary 

complex. Both Syn7002-Raf2 and Syn7002-RbcS did not bind to the anti FLAG beads in the 

control reactions (Fig.31, lanes 9+12).  

 

Fig.31: Interaction of Raf1 with Raf2 and RbcS. FLAG tagged Syn7002-Raf1 (top) was incubated 
with either Syn7002-Raf2 or with Syn7002-Raf2 together with Syn7002-RbcS and subsequently an anti-
FLAG pull down was performed with anti-FLAG beads and input, unbound (flow-through) and 
immunoprecipitated (IP) fractions were analyzed on SDS-PAGE followed by coomassie staining. AB = 
antibody light chain.  

It is important to note that Raf2 homologs from cyanobacterial species containing form IB 

Rubisco share very low sequence identity with plant Raf2 (below 20% sequence identity) and 

cyanobacterial form IA Raf2 (20% sequence identity). Furthermore, both Syn7002-Raf2 and 

Syn6301-Raf2 share the canonical pterin-4a-carbinolamine dehydratase (PCD) catalytic motif 

[DE]-x(3)-H-H-P-x(5)-[YW]-x(9)-H-x(8)-D211. These Raf2 verions are the only homologs found 

in form IB cyanobacteria, suggesting that these proteins rather function as real dehydratases 

than having a Rubisco assembly associated function in these organisms. In contrast, the acRaf 

Thiomonas homolog of plant Raf2 as well as plant Raf2 show alterations to the canonical 
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enzyme motif and plants have additional genes of real PCD function211. Syn7002-Raf2 was 

chosen over Syn6301-Raf2 since Syn6301-Raf2 is annotated having an additional N-terminal 

part which renders the enzyme insoluble in E.coli (data not shown). To test whether Syn7002-

Raf2 could bin to RbcL8 cores or is able to prevent Raf1 binding, Syn7002-Raf2 was incubated 

with RbcL8 in the presence or absence of Syn7002-Raf1 (Fig.32). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.32: Interaction of Syn7002-Raf2 with pre-formed RbcL8 complexes. Complex formation of 
RbcL8 with Syn7002-Raf1-and Raf2, analyzed by native PAGE and immunoblotting with anti-RbcL. 
Samples are purified Syn6301-RbcL8, incubated with Syn7002-Raf1 and Syn7002-Raf2 as indicated. 

Syn7002-Raf2 does neither seem to bind to RbcL8 cores (Fig.32, lane 2) nor inhibit Syn7002-

Raf1 binding to RbcL8 (Fig.32, lanes 3-5) underlining that form IB cyanobacteria most probably 

do not possess Raf2 homologs that function in Rubisco assembly. 
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3.6 In vitro reconstitution of plant Rubisco 

The first indication that Raf1 is involved in Rubisco assembly was found in Zea mays209. It is 

now clear that Raf1 mediates cyanobacterial form IB Rubisco assembly and its mode of action 

was described in detail in this study205. In vitro reconstitution of plant Rubisco has turned out 

to be an exceedingly challenging task and any attempts have failed so far. In light of the recent 

identification of Raf1 as a new factor in plant Rubisco assembly, reconstitution of Arabidopsis 

thaliana Rubisco was attempted. Therefore, the cyanobacterial Rubisco in vitro reconstitution 

system was extended to mimic conditions in plant chloroplasts. Plant factors described to be 

involved in Rubisco folding and assembly212 have been incorporated into the system. Notably, 

plant chaperonin and co-chaperonin were used for Rubisco folding additionally to the 

established GroEL/ES system. Furthermore, all factors involved in Rubisco assembly known 

today were tested in a plant homologous system, specifically Raf1, Raf2, RbcX and RbcS. As 

described for cyanobacterial Rubisco reconstitution, Gdn-HCl denatured Arabidopsis thaliana 

Rubisco large subunit was diluted in a buffer resembling chloroplast folding conditions (330mM 

Sorbitol, 50mM Tricine pH 8.3, 100mM KCl, 5mM MgAcetate)181 containing either chloroplast 

chaperonin 60 with mixed subunits (Cpn60αβ) or Cpn60 with beta subunits only (Cpn60β). A 

mixture of chaperonin 20 (Cpn20) and chaperonin 10 (Cpn10) as co-chaperonin was used. 

Unfolded proteins like MDH and Rhodospirillum rubrum Rubisco have been shown to fold in 

vitro with these components193 (Saschenbrecker, unpublished). First, the function of AtRaf1.2 

and the heterodimeric AtRaf1.1/2 were tested for their ability to assemble Arabidopsis Rubisco 

(Fig.33). Arabidopsis Rubisco large subunit was bound to both AtCpn60αβ and AtCpn60β in 

the absence of any other factors (Fig.33, left and right, lane 1, respectively). Rubisco 

reconstitution was unsuccessfull under all conditions tested, and no assembly intermediates 

were observed in any reaction. Even in the presence of Raf1 and RbcS, the large subunit was 

exclusively detected bound to chaperonin (Fig.33, left and righ, lanes 4+8, respectively). 

Importantly, cyanobacterial Syn6301 Rubisco could be reconstituted with both AtCpn60αβ and 

AtCpn60β in presence of AtCpn20/10 and Syn7942-Raf1 under these refolding conditions as 

well as under the standard refolding buffer condition used for GroEL/ES (data not shown). 

Thus, plant chaperonins are generally able to fold form IB Rubisco as shown before (Windhof, 

unpublished data).   
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Fig.33: In vitro reconstitution attempts of Arabidopsis thaliana Rubisco. Analysis of Rubisco 
reconstitution reactions with homologous components for AtCpn60αβ (left) and AtCpn60β (right), by 
native PAGE and immunoblotting with anti plant-RbcL. NtRbcL8S8 was purified by L. Popilka. 

As discussed above, other factors have been described to play a role in Rubisco assembly, 

e.g. RbcX has been shown to play an essential role in cyanobacterial form IB Rubisco 

assembly201,204  and Arabidopsis thaliana RbcX has been implicated to interact with the Rubisco 

large subunit in co-immunoprecipitation experiments214. More recently, Raf2 was identified to 

interact with the Rubisco small subunit in maize210. Therefore, the in vitro reconstitution system 

was extended with Arabidopsis RbcXI and RbcXII as well as Raf2 (Fig.33). Standard GroEL/ES 

buffer conditions were used205 and different combinations of assembly factors were tested. 

Again, Arabidopsis Rubisco large subunit was bound to both GroEL and AtCpn60αβ when only 

Raf2 was present (Fig.34, left and right, lane 1, respectively). Rubisco reconstitution was 

unsuccessfull in all conditions, and no assembly intermediates were observed. Even in the 

presence of Raf1/Raf2/RbcXI/RcXII and RbcS, the large subunit was exclusively detected 

bound to chaperonin (Fig.34, left and right, lanes 5+9, respectively). RuBP was present in the 

refolding reactions but had no effect on the stabilization on any Rubisco assembly 

intermediates. Detected bands in the AtCpn60αβ reactions (Fig.34, right, lanes 6-10) are due 

to cross-reactivity of the anti Syn6301-RbcL antibody which also detects AtCpn20/10 (data not 

shown). 
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Fig.34: In vitro reconstitution of Arabidopsis thaliana Rubisco. Analysis of Rubisco reconstitution 
reactions with homologous components for GroEL/ES (left) and AtCpn60αβ/AtCpn20 (right), by native 
PAGE and immunoblotting with anti Syn6301-RbcL. NtRbcL8S8 was purified by L. Popilka. 

3.7 Analysis of eukaryotic RbcX-RbcL interaction  

As discussed in Hauser et al.212, RbcX has been shown to play a role in Rubisco assembly in 

E.coli and is functional in the cyanobacterial Rubisco in vitro reconstitution. The potential role 

of eukaryotic RbcX in the assembly of plant Rubisco, however, is no yet understood. 

Arabidopsis thaliana RbcX was shown to interact with the Rubisco large subunit to some extent 

in the chloroplast214, however a direct role of plant RbcX in Rubisco assembly has not been 

shown yet. Many eukaryotic photoautotrophs have two RbcX homologs, one that closely 

resembles the cyanobacterial ortholog, RbcXI, and a more distantly related homolog, 

RbcXII201. The RbcXI and RbcXII from Arabidopsis thaliana have been characterized and 

crystallized, named AtRbcX2 and AtRbcX1, respectively, in these studies214,215. The green 

algae Chlamydomonas reinhardtii contains two RbcXII sequences (CrRbcX-IIa and CrRbcX-

IIb, orthologs of AtRbcXII) and no RbcXI ortholog. Although the RbcX from Arabidopsis thaliana 

is functional when co-expressed with cyanobacterial Rubisco in E. coli214, a requirement for 

RbcX in plant Rubisco biogenesis remains to be established. The crystal structures of 

eukaryotic Arabidopsis215 and Chlamydomonas RbcX216 revealed the same structural topology 

as cyanobacterial RbcX. Each subunit of the dimeric protein consists of four α-helices that form 

a helical bundle at one end and with a conserved diagonal groove in the center of the dimer. 
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Structural similarity suggests functional analogy, consequently RbcX-IIa from Chlamydomonas 

reinhardtii and RbcXI and RbcXII from Arabidopsis thaliana were tested for their ability to 

recognize the conserved C-termminal RbcL binding motif of diverse Rubiscos as shown for 

cyanobacterial RbcX before. RbcX proteins were incubated with a membrane consisting of a 

peptide array of the last 40 amino acids of RbcL from 20 different species (Fig.35a-c). 

Corresponding RbcX binding motifs of overlapping binding sites are highlighted in red, as 

exemplified for CrRbcX-IIa (Fig.35d). Both, Chlamydomonas RbcX (Fig.35a) and the two 

Arabidopsis RbcX proteins (Fig.35b, c) bound to the RbcL consensus motif of form IB Rubisco, 

previously identified for cyanobacterial RbcX, EIKFEF (Fig.35c). The phenylalanine residues 

in this motif have been shown to play a central role in binding to the RbcX hydrophobic cleft, 

and large subunit binding was abolished when these residues were mutated201. The RbcXII 

proteins exhibited a very similar binding pattern and were found to bind to more Rubisco 

species than the RbcXI protein, which might be the result of increased affinity to the RbcL 

peptides. Intriguingly, while the overall binding pattern between AtRbcXI and AtRbcXII was 

similar, AtRbcXII displayed seemingly improved recognition of this motif compared to AtRbcXI 

(Fig.35b, c). Both bound the C-terminal recognition motif of cyanobacterial species, however 

AtRbcXI did not bind the C-terminal recognition motif of the majority of eukaryotic species, 

while AtRbcXII did. Specifically, AtRbcXII bound the C-terminal recognition motif of A. thaliana 

while there was no detectable binding to this portion by AtRbcXI (Fig.35b, c, row 13, 

respectively). Again, this could suggest functional divergence of the two A. thaliana RbcX 

proteins. CrRbcX-IIa binding to eukaryotic form ID peptides might arise from unspecific 

binding, since these binding patterns include residues FNY which resemble a part of the central 

form IB binding motif EIKFEF (Fig.35d). Generally, RbcX is not found in species with form ID 

Rubisco and their respective Rubisco C-termini do not contain the RbcX consensus binding 

motif212. Overall, all three tested eukaryotic RbcX proteins bind to the conserved RbcX binding 

motif, underlining their functional similarity to cyanobacterial RbcX. 
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Fig.35: Eukaryotic RbcX binding to RbcL C-terminal peptide membrane. CrRbcX-IIa (a), FLAG-
AtRbcXI (b) and FLAG-AtRbcXII (c) were incubated on a membrane consisting of spotted 
dodecapeptides, with a 10 residue overlap, covering the sequence of the last 40 amino acids of various 
Rubisco large subunits as listed and analyzed by anti-CrRbcX-IIa and anti-FLAG immunoblot, 
respectively. Peptides where RbcX was bound are indicated and overlapping binding sites of different 
peptides for CrRbcX-IIa are highlighted in red (d). 
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3.8 Functional analysis of eukaryotic RbcX 

To investigate the function of eukaryotic RbcX in Rubisco assembly, in vitro reconstitution of 

cyanobacterial Rubisco was performed as described before204. Specifically, CrRbcX-IIa, 

AtRbcXI, AtRbcXII and functional mutants of these were assessed for their potential to 

assemble cyanobacterial Syn6301 Rubisco (Fig.36). As observed before, AnaCA-RbcX is able 

to promote Syn6301 Rubisco assembly204 and due to its high affinity to the Rubisco large 

subunit stays bound and migrates as an RbcL8RbcX8 complex on native PAGE (Fig.36, lane 

9)204. Remarkably, all eukaryotic RbcX proteins were able to promote cyanobacterial Rubisco 

assembly and behaved similarly to AnaCA-RbcX (Fig.36, lanes 3, 5, 7). In all cases, RbcX was 

bound to the RbcL8 core and the complexes migrated as HMW RbcL8RbcX8 assembly. 

Mutation of the conserved Arginine residue at position 70 in cyanobacterial RbcX abolished 

Rubisco assembly and this residue was shown to be important for the formation of a salt bridge 

with the other Rubisco large subunit in the dimer, promoting antiparallel Rubisco dimer 

assembly201,204. Interestingly, mutation of the homologous residues in eukaryotic RbcX 

abolished Rubisco assembly as well (Fig.36, lanes 4, 6, 8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.36: RbcX-mediated assembly of S. elongatus Rubisco. Analysis of Rubisco reconstitution 
reactions in the absence of RbcS as indicated with different RbcX species by native PAGE and 
immunoblotting with anti-RbcL. 
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The complexes assembled in the presence of eukaryotic RbcX and were carboxylation active 

after addition of Syn6301-RbcS to the refolding reactions (Fig.37). In addition CrRbcX-IIb was 

tested in the refolding reaction, however no Rubisco assembly was observed and no 

carboxylation activity was detected (Fig.37). Predicted protein sequence shares high homology 

with CrRbcX-IIa in the core region, however has an elongated C-terminus rich in Alanine and 

Serine, indicating that it might be wrongly annotated and the real stop codon occurs earlier in 

the sequence. In the present version, CrRbcX-IIb is unable to promote Rubisco assembly. All 

eukaryotic RbcX proteins were tested for their ability to promote Arabidopsis thaliana Rubisco 

assembly as tested for Raf1, but none of the RbcX were able to assist in plant Rubisco 

assembly and neither any assembly products nor carboxylation activity were observed (data 

not shown). 

 

 

 

 

 

 

 

 

 

 

Fig.37: RbcX-mediated assembly of S. elongatus Rubisco. Rubisco activity in reactions from Fig.35 
after addition of Syn6301-RbcS, which had been absent during reconstitution. Activities are expressed 
as a percentage of purified RbcL8 standard supplemented with RbcS (control). Error bars are s.d. (n = 
3 independent experiments). 

3.9 A potential role for RbcX in Rubisco assembly in 
Chlamydomonas reinhardtii 

Chlamydomonas reinhardtii is a model organism for studying the effects of genes invoved in 

photosynthesis. It is a single cell organism and compared to plants grows much faster and can 

be readily genetically modified. It is possible to study the effect of genes involved in 

photosynthesis even if their function is crucial for cell survival. Chlamydomonas reinhardtii can 

grow on acetate heterotrophically when genetically modified and can be switched to 

photosynthetic growth under light conditions to assess the functional effect of specific genes 

on photosynthetic growth. To investigate the effect of RbcX in Rubisco assembly, an RNAi 
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approach in Chlamydomonas was performed. Therefore, a plasmid vector was created with 

the full sequence of CrRbcX-IIa. The 5’-3’ gene was connected via a linker with the 3’-5’ 

reverse sequence of the gene to induce the formation of double stranded hairpin RNA which 

will be targeted by the cellular RNAi machinery and silence the expression of the respective 

gene. CrRbcX-IIa was chosen since it was the functional form of the two RbcX copies in 

Chlamydomonas (Fig.36, Fig.37). Nonetheless, CrRbcX-IIa-and IIb are more than 50% 

identical in the core region of the gene, when the C-terminal extension of CrRbcX-IIb is omitted. 

Hence, it is very likely that short siRNA fragments created from CrRbcX-IIa will also target 

CrRbcX-IIb mRNA, since short regions of the gene have even higher genetic identity than the 

full sequence. Chlamydomonas cells were transformed with the silencing vector that also 

includes a gene for aminoglycoside 3’-phosphotransferase, conferring resistance to 

paromomycin for antibiotic selection217. Chlamydomonas transformants were selected on 

paromomycin containing medium, supplemented with acetate as a carbon source, and then 

tested for their ability to grow and survive on minimal medium under light (Fig.38a). 

 
Fig.38: Silencing of RbcX by expression of RbcX inverted repeat transgenes in Chlamydomonas 
transformants. (a) After antibiotic selection on acetate plates, Chlamydomonas transformants were 
grown under light on minimal medium for phenotypic analyses. Transformants that displayed a 
photosynthetic growth defect, characterized by pale cells, were selected for biochemical analysis (red 
dots). (b) mRNA levels of selected transformants measured by PCR of CrRbcX-IIa and GAPDH as 
control, ev = empty vector control. (c) Analysis of RbcL protein level in transformants by SDS-PAGE 
and immunoblot against RbcL and Histone H3 as control (35 µg loaded each lane). The bar diagram 
depicts the level of Rubisco large subunit normalized to the internal Histone H3 expression level, ev 
control was set as 100%. 
 
Most transformants did not show any photosynthetic growth defect, most probably due to 

inefficient silencing of RbcX. However, several transformants displayed a severe 

photosynthetic growth defect characterized by a pale appearance of cells (Fig.38a, red dots). 

These cells were selected for further biochemical analysis (transformants #1, 2, 19, 64, 86) 

and grown in liquid medium under photosynthetic growth conditions. To assess the efficiency 

of RbcX silencing, total mRNA was extracted and PCR reactions with primers specific for 
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CrRbcX-IIa and GAPDH as control were conducted. Intriguingly, all transformants showed 

reduced CrRbcX-IIA mRNA levels, especially in transformants #1, 2, 19 and 64 CrRbcX-IIa 

mRNA was barely detectable (Fig.38b). Transformant #86 had a somewhat reduced CrRbcX-

IIa mRNA level compared to the empty vector control, where the RbcX inverted repeat was 

missing. GAPDH mRNA levels were not affected by CrRbcX-IIA silencing. A decrease in 

mRNA level does not necessarily result in the same reduction of protein expression. Therefore, 

RbcX protein levels were analyzed by SDS-PAGE and anti-RbcX immunoblot analyses, 

however no RbcX protein could be detected in either the transformants nor the empty vector 

control or wild type Chlamydomonas cells. It is possible that RbcX is generally only expressed 

at low levels or was not highly expressed in cells at the point of analysis. A photosynthetic 

growth defect can result from many different deficiencies of genes involved in photosynthesis. 

Nonetheless, since silencing of RbcX should have a direct effect on Rubisco assembly, RbcL 

levels were analyzed in the transformants by SDS-PAGE and anti-RbcL immunoblot analysis 

(Fig.38c). As normalization control, Histone H3 levels were analyzed which are not expected 

to change due to CrRbcX-IIa silencing. Remarkably, all transformants showed reduced RbcL 

levels compared to the empty vector control, with the most drastic reduction in transformants 

#1 and 2 where RbcL levels were reduced by ~80% (Fig.38c). In other tranformants, RbcL 

levels were reduced between 40% and 60%. Interestingly, transformant #86 displayed lower 

RbcL levels than #19 and 64, although the CrRbcX-IIa mRNA level was the highest amongst 

the transformants, highlighting that reduction in mRNA does not completely correspond to 

reduced protein levels. Overall, there is strong evidence that RbcX plays a role in Rubisco 

assembly in Chlamydomonas and silencing of RbcX resulted in photosynthetic growth defect 

and directly influenced RbcL levels in vivo. Together with the results of the in vitro reconstitution 

and the biochemical analysis of eukaryotic RbcX it is very clear that eukaryotic RbcX also plays 

an important role in Rubisco assembly as shown before for cyanobacterial RbcX. 

3.10 Interplay of Raf1 and RbcX in Rubisco assembly 

Both Raf1 and RbcX were structurally and mechanistically studied in this thesis and shown to 

play an important role in Rubisco assembly. Raf1 promotes Rubisco assembly by bracketing 

and stabilizing RbcL antiparallel dimers for assembly into RbcL8 complexes with four Raf1 

dimers bound205. RbcX was shown to bind to the conserved Rubisco C-terminus hence also 

stabilizing the large subunit and promoting dimerization201,204. Considering their different 

binding mode, it is possible that both Rubisco assembly chaperones act in the same pathway. 

To test whether Raf1 and RbcX can cooperate in Rubisco assembly, reconstitution 

experiments with Syn7002-Rubisco, and the E. coli GroEL/ES chaperonin were performed 

testing different combinations of the Syn7002-Rubisco assembly factors (Fig.39).  
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Fig.39: Cooperation of Raf1 and RbcX in Syn7002-Rubisco assembly. A, B: Native-PAGE analysis 
of Syn7002-Rubisco reconstitution reactions. Denatured Syn7002-RbcL was diluted to a final 
concentration of 0.5 µM monomer into buffer containing GroEL (1 µM), followed by addition of GroES 
(2 µM), Syn7002-Raf1-FLAG (0.5 µM) and Syn7002-RbcX (2 µM) and Syn7002-RbcS (5 µM) in the 
combinations indicated. Refolding was initiated by addition of ATP and reactions were analyzed after 
incubation for 60 min. at 25 oC. Anti-RbcL and Anti-FLAG immunoblots are shown. Raf1* is a higher 
molecular weight oligomer of Syn7002-Raf1. C: Dependence of Rubisco assembly on RbcX 
concentration in the presence of Raf1. Reconstitution reactions were performed as in lane 8 in (A) at 
increasing concentrations of Syn7002-RbcX. Rubisco activities obtained after 60 min. are shown. The 
activity in the absence of Syn7002-RbcX is set to 100%. Error bars represent s.d. values from three 
independent experiments. 

Syn7002 Rubisco fails to reconstitute with chaperonin and RbcX alone, suggesting that an 

additional factor may be required. Interestingly, when Syn7002-Raf1 was present during 

refolding of Syn7002-RbcL, very little RbcL* complexes were detectable (Fig.39a, b). This 

suggested that the interaction of Raf1 with its cognate RbcL is highly dynamic, in contrast to 

the heterologous interaction between Syn7002-Raf1 and Syn6301-RbcL205. Nevertheless, 

addition of RbcS gave rise to the formation of Syn7002-RbcL8S8 (Fig.39a, b), whereas no 
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holoenzyme formed with RbcX and RbcS in the absence of Raf1. However, the combination 

of Raf1 and RbcX resulted in up to ~40% higher enzyme activities, with RbcX showing a dose 

dependent, saturable effect (Fig.39c). Thus, both assembly factors may cooperate in the same 

pathway. To further investigate a possible sequential interplay between Raf1 and RbcX, both 

proteins were added to purified Syn6301-RbcL8 cores (Fig.40). 

Fig.40: Interaction of Syn7942-Raf1 and AnaCA-RbcX with pre-formed RbcL8 complexes. 
Complex formation of RbcL8 with Syn7942-Raf1 and AnaCA-RbcX, analyzed by native PAGE and 
immunoblotting with anti-RbcL. Samples are purified RbcL8, incubated with Syn7942-Raf1 and AnaCA-
RbcX as indicated. 

Both Syn7942-Raf1 and AnaCA-RbcX were able to bind to RbcL8 and form HMW complexes, 

migrating slower than RbcL8, as observed before (Fig.40, left, lanes 1+2, respectively)204,205. 

Remarkably, when AnaCA-RbcX was first incubated with RbcL8 and then Syn7942-Raf1 was 

added sequentially (Fig.40, left, lane 3), Raf1 was able to shift the HMW complex to a slightly 

lower HMW form and was detected bound to the RbcL8 complex migrating slower in native 

PAGE than when Raf1 was bound alone to RbcL8 (Fig.40, right, lanes 3+1, respectively). 

Furthermore, when AnaCA-RbcX was added to pre-formed Syn7942-Raf1-RbcL8 complexes, 

again mixed HMW complexes were observed that migrated slower than Raf1 bound to RbcL8 

but faster than RbcX bound to RbcL8 and Raf1 was detected in these species (Fig.40, left and 

right, lane 4, respectively). Therefore, it is likely that Raf1 and RbcX can bind simultaneously 

to RbcL8 and might act together in Rubisco assembly. 
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4. Discussion 

The mechanism and requirements for the folding and assembly of Rubisco have been studied 

intensly over the past decades190,194,199,201,203,204. This is a direct consequence of its economic 

importance. Rubisco has become a paradigm for the study of chaperones and complex 

assembly in general. Type two Rubisco was used as a GroEL dependent model substrate to 

study the mechanism of chaperonin action49. This simple form of Rubisco found in certain 

bacteria and dinoflagellates comprises two large subunits, and generally requires only the 

chaperonin system for folding. However, the evolution of hexadecameric Rubisco, which 

comprises eight large and eight small subunits, from its dimeric ancestor has rendered Rubisco 

in most plants, algae, cyanobacteria and proteobacteria dependent on an array of additional 

factors. These auxiliary factors include several chaperones for assembly as well as ATPases 

of the AAA+ family for functional maintenance. 

Assembly of the RbcL8RbcS8 holoenzyme is generally thought to involve the formation of the 

RbcL8 core complex followed by the docking of unassembled RbcS subunits, which can fold 

spontaneously in vitro. Various form I cyanobacterial Rubiscos have been expressed in E. coli, 

generally with low yields of 0.1-10%197, and coexpression of additional GroEL-GroES improves 

the yield in the case of Synechococcus elongatus sp. PCC6301 (Syn6301)190,198. Notably, the 

Rubiscos from Syn6301 and Thermosynchococcus elongatus BP-1 are the only cyanobacterial 

proteins so far for which a stable RbcL8 complex could be produced in the absence of 

RbcS200,201,218. These findings suggested that additional factors, besides the chaperonin, are 

necessary to ensure the efficient formation of the structurally more complex form I Rubisco.  

The cyanobacterial form I Rubisco could be reconstituted in vitro using GroEL-GroES and 

RbcX204. These experiments revealed the requirement of RbcX for stabilization of RbcL in a 

form that no longer rebinds to GroEL, consistent with findings that RbcX can mediate RbcL2 

and RbcL8 formation201,219. However, the yield of Rubisco assembly was only 40% owing to the 

high affinity of the AnabaenaCA-RbcX to RbcL, which was crucial for the release of large 

subunits from GroEL, but inhibited RbcS binding to RbcL8 cores in the heterologous system, 

suggesting further that an additional factor might be required for Rubisco assembly. 

A recent screen of a photosynthetic mutant library in maize identified several mutants with 

reduced Rubisco content, an important gene found responsible for this phenotype was named 

Raf1209. In the absence of Raf1, the amount of Rubisco holoenzyme was found to be 

substantially reduced, although transcription and translation of RbcL and RbcS was normal. 

Instead, RbcL subunits were associated with the chaperonin, suggesting that Raf1 acts 

downstream of chaperonin-assisted RbcL folding. Other studies classified Raf1 as a Rubisco 
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assembly chaperone that may either act in concert with, or possibly in place of, RbcX, however 

detailed mechanistic insight into Raf1 action in Rubisco assembly was missing218,220. 

The present mechanistic and structural study on the recently discovered Rubisco assembly 

chaperone Raf1, including crystal structures, biochemical analysis, chemical cross-linking and 

negative-stain EM reconstruction, lead to a new model of chaperone-mediated form I Rubisco 

assembly that differs significantly from the action of RbcX, the first described Rubisco 

assembly chaperone. Furthermore, eukaryotic RbcX was investigated to further elucidate its 

role in Rubisco assembly. 

4.1 A new model for Raf1-mediated Rubisco assembly 

Assembly of oligomeric protein complexes is widely considered a spontaneous process, and 

relatively little is known about the machineries that support the formation of specific multiprotein 

complexes. The biogenesis of hexadecameric Rubisco has emerged as a paradigm of assisted 

assembly221,222. In this study, plant and cyanobacterial Raf1 proteins were characterized 

functionally and structurally. The crystal structures of the A. thaliana Raf1 domains were solved 

and the interaction of Raf1 with RbcL was analyzed by multiple biochemical and biophysical 

approaches. The major intermediate populated during assembly is a complex in which dimeric 

Raf1 brackets the antiparallel RbcL dimer, thus preventing rebinding of the structurally labile 

RbcL to GroEL. It is also possible that Raf1 brings RbcL subunits into proximity, thereby 

promoting dimer formation. The RbcL2-Raf1 complex is competent for assembly into higher 

oligomeric states, with the RbcL8-Raf14 complex as the endpoint in absence of RbcS. Finally, 

binding of RbcS displaces Raf1 and completes assembly of the holoenzyme205. Like the 

structurally unrelated Rubisco-assembly chaperone RbcX217,223, Raf1 is dimeric and engages 

in bivalent interactions with RbcL, a principle that probably relates to the antiparallel RbcL 

dimer being the building block of the RbcL8 complex. Raf1 consists of an N-terminal α-domain, 

a flexible linker segment and a C-terminal β-sheet domain that mediates dimerization. Both 

domains expose conserved interaction surfaces. The α-domains mediate the majority of 

functionally important contacts with RbcL by bracketing each RbcL dimer at the top and bottom, 

and the β-domain dimers are positioned coaxially in front of the RbcL2 units. Because the α-

domain alone is essentially inactive, dimerization is critical for Raf1 to achieve the necessary 

avidity for complex formation with RbcL assembly intermediates. At the same time, the 

interaction must remain dynamic in order to allow RbcS binding, because the Raf1 α-domain 

and RbcS have overlapping binding sites on RbcL. 

4.2 The role of eukaryotic RbcX in Rubisco assembly 

The function of RbcX in cyanobacterial Rubisco assembly has been established and RbcX 

was the first discovered form I Rubisco assembly chaperone. Coexpression of RbcX with RbcL 
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and RbcS in E. coli enhanced the production of enzymatically active Rubisco201. Partial 

inactivation of the rbcX gene in Synechococcus sp. PCC7002 resulted in a substantial 

reduction in Rubisco solubility and activity200, while in S. elongatus sp. PCC7942 the rbcX gene 

was shown to be nonessential198. RbcX is highly conserved in all prokaryotes and eukaryotes 

containing form IB Rubisco. Structural analysis showed that RbcX is a dimeric, α-helical protein 

of ∼15 kDa subunits201,215. Although the RbcX from Arabidopsis thaliana is functional when 

substituted into E. coli expressing cyanobacterial Rubisco, a requirement of RbcX in Rubisco 

biogenesis in plants remains to be established, although a direct interaction between RbcL and 

RbcX was detected in chloroplasts214. The function of RbcX in cyanobacterial Rubisco 

assembly was studied in detail and a model has been proposed on the action of RbcX 

mediated Rubisco assembly203: after folding and release by GroEL/ES, the flexible C-terminus 

of folded RbcL binds within the central cleft of RbcX; charge pairs in the RbcL dimer interface 

and between RbcL and RbcX then mediate the proper antiparallel alignment of the RbcL 

subunits with RbcX functioning as a molecular clamp; stabilization of the RbcL dimer then shifts 

the equilibrium towards the formation of the RbcL8RbcX8 assembly intermediate; finally, RbcS 

binding between the RbcL dimers triggers conformational changes in the RbcL subunits, 

resulting in the displacement of RbcX and formation of the hexadecameric Rubisco204. In this 

study, Chlamydomonas reinhardtii CrRbcX-IIa was characterized biochemically and 

structurally216. The crystal structures of CrRbcX-IIa alone and in complex with the C-terminal 

peptide of RbcL showed that CrRbcX-IIa shares the structural topology with cyanobacterial 

and plant RbcX homologs. However, the RbcL peptide bound to CrRbcX-IIa only occupies part 

of the central hydrophobic cleft of the RbcX dimer, in contrast to the structure of the 

cyanobacterial RbcX-peptide complex. Nevertheless, CrRbcX-IIa supports the assembly of 

cyanobacterial Rubisco, although with reduced efficiency compared to cyanobacterial RbcX. 

Therefore, RbcXII from the green algae C. reinhardtii functions as a bona fide Rubisco 

assembly chaperone, despite its considerable evolutionary distance from cyanobacterial and 

eukaryotic RbcXI proteins. CrRbcX-IIb was not active in Rubisco assembly, however as 

discussed in (3.8.) this is presumably owed to incorrect annotation of the coding sequence, 

since the two CrRbcX homologs display great homology in the core region of the protein. 

Therefore, it is possible that Chlamydomonas has two functional RbcXII homologs that might 

have arisen from a gene duplication event. 

RbcX homologs from Arabidopsis thaliana were shown to exhibit similar activity to CrRbcX-IIa 

in reconstituting cyanobacterial Rubisco in vitro. Therefore, all eukaryotic RbcX homologs 

investigated in this study assist in Rubisco assembly in a similar way to their evolutionary 

distant cyanobacterial homologs. Interestingly, all eukaryotic RbcX were observed to bind to 

the conserved RbcL C-terminal motif as shown for cyanobacterial RbcX. Importantly, when the 

conserved Arginine on the peripheral site was mutated, Rubisco assembly was abolished, 
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strengthening functional similarity between these RbcX homologs. Furthermore, the effect of 

RbcX mediated Rubisco assembly in vivo was investigated by silencing the RbcX genes in 

Chlamydomonas. Remarkably, in transformants showing a photosynthetic growth defect, 

RbcX mRNA levels were strongly decreased. In addition, RbcL protein levels were diminished 

as well in these transformants when compared to control cells. This is the first indication that 

RbcX plays a functional role in Rubisco assembly in eukaryotes, similarly to the effect of 

deleting Raf1 in maize. However, the finding that RbcX could not be detected in wild-type cells 

warrants further analysis of this photosynthetic growth defect. It would now be important to 

show a direct interaction of RbcX with Rubisco in wild-type cells. Furthermore, microscopic 

studies on the pyrenoid formation in RbcX-deficient transformants could underline the role of 

RbcX in Rubisco assembly, since Rubisco defect strains have been shown to lack pyrenoids224. 

4.3 Functional interplay between Raf1 and RbcX in Rubisco assembly 

Interestingly, the structurally distinct Raf1 and RbcX assembly proteins perform the same 

function, but they do so by using different interaction sites on RbcL, that only partially overlap 

(Fig.41). The boomerang-shaped RbcX dimer binds the C-terminal peptide tail of one RbcL 

subunit in a central cleft and contacts the N-terminal domain of the adjacent RbcL subunit via 

a peripheral region201,204. In contrast, the Raf1-RbcL interaction surface appears to be more 

extensive (Fig.41). An interesting question therefore concerns whether Raf1 and RbcX act in 

parallel assembly pathways or functionally cooperate in vivo to achieve efficient assembly at a 

biologically relevant timescale. Taking into consideration that the binding sites for RbcX and 

RbcS have little if any overlap (Fig.41), the previously described RbcL8-RbcX8 complex203,204 

may be an additional assembly intermediate, especially when insufficient RbcS is present. A 

cooperation of Raf1 and RbcX, rather than mere functional redundancy, would be consistent 

with the strict co-occurrence of the two factors in photosynthetic organisms. 
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Fig.41: Interaction regions of RbcS, RbcX and Raf1 on RbcL2. Top, left: RbcL2RbcS2 complex 
extracted from the Rubisco holoenzyme structure (PDB 1RBL) and magnified. Left, side-view; right, top-
view. The RbcL subunits are shown in surface representation; RbcS in ribbon representation (purple). 
Top, right: RbcL2RbcX2 complex extracted from the RbcL8RbcX8 structure (PDB 3RG6). The RbcX 
dimers are shown in dark green. The conspicuous protrusion in RbcL is the extended C-terminal peptide 
which binds into the central cleft of RbcX. Bottom: RbcL2Raf1 protomer of the RbcL8Raf14 complex205, 
based on the cross-linking data (cross-linked residues are indicated). Functionally critical Raf1 residues 
are shown in space-filling representation. Raf1α-domain is depicted in purple, Raf1β-domain in orange. 
The inter-domain linker region is indicated as a dotted line. 

The chaperone requirement for the folding and assembly of hexadecameric (form I) Rubisco 

is remarkably complex, thus raising the question of why such an important and abundant 

enzyme has failed to evolve a more robust biogenesis pathway. Form I Rubisco evolved from 

the simpler dimeric form II enzyme about 2.5 billion years ago to adapt to the increasing levels 

of oxygen225. Both the form I and form II RbcL subunits require the GroEL-ES chaperonin for 

folding, like many other TIM-barrel proteins48,226. However, only the RbcL of form I Rubisco 

remains structurally labile after folding and tends to rebind to chaperonin rather than to 

spontaneously assemble. Therefore, it is possible that Rubisco assembly chaperones function 

firstly in stabilizing the large subunit and preventing it from rebinding to GroEL. Interestingly, 

GroEL has overlapping binding sites with Raf1 on RbcL when tested on the Syn6301-RbcL 

peptide membrane (see 3.1). Substrate binding to GroEL was shown to involve specific peptide 

regions with high hydrophobicity as found for the model GroEL binding protein GroES 
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(GGIVLTG)227. Intriguingly, the GroES peptide region that binds to GroEL is part of a mobile 

loop and it was observed that GroES mobile loop-like hydrophobic patches in GroEL substrates 

are present in the unstructured region of proteins, specifically in loop or β-sheeted regions227. 

Remarkably, the Syn6301-RbcL peptide recognized by GroEL is part of a loop region in the 

TIM barrel domain between a β-sheet and α-helix (Fig.42). The detected binding motif is rather 

hydrophobic (LGSTIKPKLGL) and shows physico-chemical similarity to a peptide motif in α-

lactalbumin which was predicted to be responsible for GroEL binding (KILDIKGI)227. 

Interestingly, the GroEL binding region is in close proximity to one of the binding patches of 

Raf1 which was also found in cross-linking experiments (Fig.42)205. The observed GroEL 

binding region on the folded Syn6301-RbcL (Fig.42, left) is solvent accessible and might be 

the reason for facile re-association of the folded large subunit with GroEL as observed in the 

absence of assembly chaperones204,205. This region becomes protected in the RbcL dimer and 

Raf1 or RbcX binding most likely further restrict accessibility of this loop region. Therefore, 

Raf1 and RbcX mediated dimerization potentially prevents this region from binding back to 

GroEL. 

 
Fig.42: GroEL binding to Syn6301-RbcL. Left: GroEL binding region based on the Syn6301-RbcL 
monomer (white) highlighted in pale yellow. Adjacent Syn7942-Raf1 binding region is shown in purple 
(based on binding to peptide membrane (Fig.22, left; Fig.19, left)). Right: Same orientation as in left, 
depicted for the Syn6301-RbcL dimer, similar color coding. 

In the absence of assembly factors in the in vitro system the kinetics of dimerization might be 

too slow and thus RbcL does not assemble spontaneously and rather is detected bound to 

GroEL. Interestingly, when Syn6301 RbcL is expressed in E.coli, limited amounts of RbcL8 are 

formed. Other chaperones like Hsp70/40 might bind to the large subunit and high expression 

of large subunits might allow spontaneous dimerization to a certain extent. However, most of 

the protein still aggregates, indicating that Raf1 and RbcX play further active and essential 

roles in the assembly of Rubisco rather than simply preventing binding of folded RbcL to 
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GroEL. Remarkably, in case of Syn7002 Rubisco, assembly was completely dependent on 

Raf1. However, when the influence of the RbcX level present was tested, up to 40% higher 

yields of assembled Rubisco were observed. Syn7002 Rubisco could not be reconstituted with 

RbcX alone and does not form RbcL8 cores when expressed in E.coli, but assembles when 

co-expressed with RbcX201. This represents a model system to study the potential interplay 

between Raf1 and RbcX. Coexpression experiments of Syn7002 Rubisco alone and with 

different combinations of the assembly chaperones in E.coli should be undertaken to unravel 

this fundamental question in Rubisco assembly.  

4.4 In vitro reconstitution of plant Rubisco 

Given that the RbcL subunits of all form I Rubiscos are highly homologous, it is surprising that 

the Rubisco of higher plants has so far been refractory to reconstitution in E. coli or in vitro. In 

the past it was suggested that maybe additional factors are required for the assembly of the 

plant enzyme212. The attempt to in vitro reconstitute Arabidopsis thaliana Rubisco in this study 

is perhaps the most comprehensive effort that has been undertaken until today (see section 

3.6). In this system, almost all previously and recently described Rubisco assembly 

chaperones were present. Furthermore, the proteins used in the assembly reaction are all from 

Arabidopsis, thus representing a purely homologous system. Both chaperonins used, 

GroEL/ES and AtCpn60αβ/AtCpn60β/Cpn20/Cpn10, were shown to be active in folding 

cyanobacterial form I Rubisco large subunits. However, neither Rubisco assembly nor any 

assembly intermediates were observed when reactions were analyzed on native PAGE 

immunoblot experiments. Instead, plant Rubisco large subunit was exclusively detected bound 

to the chaperonin systems. One possible explanation for this could be insufficient folding of the 

large subunit. The bacterial chaperonin may not be able to fold the large subunit to its native 

state rather than forming a compact intermediate that might be not recognized by the assembly 

chaperones. However, this would not explain why the Arabidopsis chaperonin system should 

be unable to fold its cognate Rubisco large subunit. In this study, both an established 

GroEL/ES refolding buffer system was used and a buffer system, in which isolated pea 

chloroplasts were able to translate and assemble Rubisco de novo181. It is still conceivable that 

factors were present in the isolated chloroplast that were missing in the pure in vitro system, 

i.e. sugar substrates or uncharacterized assembly chaperones. Clearly, the large subunit was 

able to bind to AtCpn60, however it was not determined if it was properly folded. The presence 

of its substrate RuBP did not show an effect in stabilizing any assembly intermediates (see 3.2 

and 3.6). Moreover, recently it was shown that for red-type prokaryotic Rubisco, the small 

subunit was sufficient for Rubisco assembly205. These subunits have an additional C-terminal 

loop that was required for Rubisco assembly. In contrast to green-type bacterial form I RbcL 

however, the large subunits were not bound to GroEL after folding in the absence of RbcS, 
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indicating that these are less prone to rebind to GroEL and probably dimerize more readily. 

Furthermore, any described green-type Rubisco assembly chaperone is not found by 

homology search in red-type prokaryotic or eukaryotic photosynthetic organisms, suggesting 

that Rubisco assembly might have evolved in different ways in these organisms. Nevertheless, 

eukaryotic red-type Rubisco was resistant to in vitro reconstitution in the presence of cognate 

RbcS, and these subunits again were solely detected bound to GroEL (Jidnyasa Joshi, 

unpublished). Possibly, similar to plant Rubisco, other eukaryotic Rubiscos might require their 

specific chaperonin environment. Plant RbcS does not comprise the C-terminal extension and 

was not able to assemble red-type eukaryotic Rubisco. In plants, RbcS is located in the nucleus 

and importet into the chloroplast82. Therefore, in chloroplasts Rubisco assembly might be 

timely and spatially regulated in a way that Rubisco assembly is achieved at the RbcS import 

sites next to the chloroplast membrane. Indeed, recent findings suggest such a coupled 

mechanism for Chlamydomonas228. In such a situation, RbcX might be crucial to stabilize 

RbcL8 cores until RbcS is available for holoenzyme assembly. Raf1 might readily bind to newly 

synthesized and folded large subunits but might not be able to stabilize RbcL8 until the small 

subunits become available. In order to test RbcS import conditions, in some of the plant 

reconstitution experiments presented in this study, denatured RbcS was added to fold 

spontaneously as would occur after import into the chloroplast to rule out the possibility that 

RbcS must fold in the presence of assembled RbcL. However, Rubisco assembly was still 

unsuccessful even in additional presence of assembly chaperones (as in 3.6, data not shown). 

The most recently described potential Rubisco assembly factor Raf2 was also tested for its 

effect on in vitro Rubisco assembly. Chemical crosslinking followed by immunoprecipitation 

suggested that Raf2 interacts with imported RbcS subunits and to a lesser extent with RbcL in 

the chloroplast stroma210, but Raf2 was not able to bind to the large subunit in the in vitro 

reconstitution system and in combination with other chaperones did not promote Rubisco 

assembly. Furthermore, cyanobacterial Syn7002-Raf2 did neither exhibit stable interactions 

with Syn7002-RbcS nor with Syn7002-Raf1 (see 3.4). To clearly rule out that 7002-Raf2 does 

not bind to Syn7002-RbcS, a similar pull-down experiment would have to be performed with 

FLAG tagged Syn7002-Raf2. Moreover, Syn7002-Raf2 did not bind to pre-formed RbcL8, while 

bacterial and plant Raf1 or RbcX did. The only Raf2 homolog found in cyanobacteria displays 

the catalytic motif of the pterin-4α-carbinolamine dehydratase enzyme, while in plants and form 

IA Rubisco organisms Raf2 sequences deviate from this motif. The protein would have to be 

tested for its enzymatic activity to conclusively rule out that it plays a role in cyanobacterial 

Rubisco assembly. It has been proposed that Raf1, Raf2 and Bsd2 form transient complexes 

with RbcS that maintain RbcS competent for assembly with RbcL210. Plant Raf2 contains an 

additional domain, not present in cyanobacterial Raf2, which may be involved in mediating 

these interactions. Bsd2 was the single described factor not present in the in vitro reconstitution 
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experiment (see 3.6). It was reported to be important in initial stages of Rubisco biogenesis 

and is present in both bundle sheath and mesophyll chloroplasts230. The bsd2 gene is required 

for Rubisco accumulation in maize and Bsd2 was found to co-fractionate with polyribosomes 

synthesizing RbcL230,231. Bsd2 contains the zinc-finger motif present in several Hsp40 proteins, 

a family of Hsp70 cofactors29,230, suggesting a functional cooperation with Hsp70. As denatured 

large subunits are directly diluted to bind to chaperonin in the described in vitro system this 

factor was omitted since it is supposed to act upstream of chaperonin. Nonetheless, it cannot 

be ruled out that it plays a role in delivering unfolded RbcL in a partly folded and compacted 

state to chaperonin that might be important for proper folding. Further biochemical analysis is 

needed to elucidate the exact role of Raf2 and Bsd2 in Rubisco assembly and their possible 

functional relationship, if any, with Raf1, RbcX and other Raf proteins is yet to be analysed. 
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5. Outlook 

Among the challenges posed by human population increase and climate change is finding 

ways to maximize carbon assimilation and improve crop yields. Increasing photosynthetic 

activity has the potential, at least in principle171,232. Of the possible strategies to improve crop 

yield, namely, increasing the efficiency of light capture, increasing the harvest index or 

optimizing photosynthesis (i.e. conversion of intercepted radiation into biomass), the latter has 

the greater potential in the major C3 crops171 since the other approaches have already been 

exhausted and approach their theoretical limit. Rubisco is the key limiting factor regarding 

photosynthetic efficiency and a prime target for improving photosynthesis.  

The major obstacle towards manipulation of Rubisco is the inability to express eukaryotic 

Rubisco in functional form in any foreign host. There is a critical lack of knowledge regarding 

Rubisco assembly in higher plants. Therefore, it is essential to learn more about the 

chaperones involved in Rubisco folding and to characterize the intermediates leading to the 

holoenzyme. The biochemical and structural data presented in this thesis lead to a new model 

of Raf1-mediated Rubisco assembly. The next steps in characterizing important intermediates 

along the assembly pathway may be reached by structure-guided mutations of Raf1 and the 

use of heterologous components (e.g. AtRaf1.2 and Syn6301-RbcL) to produce “trapped” 

complexes that can be analyzed structurally.  

The analysis of eukaryotic RbcX in this thesis suggests a role in Rubisco assembly similar to 

cyanobacterial RbcX. An important goal for the future will be the characterization of the 

interplay of Raf1 and RbcX in Rubisco assembly and Synechococcus sp. PCC7002 seems to 

be an excellent model system in this regard. The ultimate goal of Rubisco research will be the 

in vitro reconstitution of plant Rubisco. Consequently, detailed structural and biochemical 

studies regarding the role of other uncharacterized putative Rubisco assembly chaperones, 

e.g. Raf2 and BSD2, need to be carried out.
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6. Material and Methods 

6.1 Materials 

6.1.1 Chemicals 

Reagents used in this study had pro analysis quality and were delivered by Sigma-Aldrich 

(Steinheim, Germany) or Merck (Darmstadt, Germany) unless stated otherwise. 

Amersham Biosciences (Freiburg, Germany): NaH14CO3 

BioMol (Hamburg, Germany): IPTG 

BioRad (Munich, Germany): Bradford protein assay dye reagent 

Biozym (Hessisch Oldendorf, Germany): Biozym LE Agarose 

Difco (Heidelberg, Germany): Bacto agar, Bacto tryptone, Bacto yeast extract 

Fermentas (St. Leon-Rot, Germany): GeneRuler 1 kb DNA Ladder 

Fluka (Deisenhofen, Germany): acetic acid, acetone, Bis-Tris, PEG 

Invitrogen (Karlsruhe, Germany): dNTP set, protein marker for SDS-PAGE, SYBR Safe DNA 

gel stain, NuPAGE SDS and native PAGE gradient gels 

J.M. Gabler Saliter GmbH & Co. KG (Obergünzburg, Germany): skim milk powder 

MPI of Biochemistry (Martinsried, Germany), Peptide Synthesis Service: oligopeptides 

Qiagen (Hilden, Germany): Ni-NTA Agarose 

Roche (Basel, Switzerland): Complete protease inhibitor cocktail, DTT 

Roth (Karlsruhe, Germany): ampicillin, glycin, Rotiszint 

Serva (Heidelberg, Germany): Acrylamide-Bis, Coomassie blue G/R, PMSF, SDS 

USB (Cleveland, USA): ammoniumsulfate, chloramphenicol, EDTA 

6.1.2 Reagent and purification kits 

Hampton Research (Aliso Viejo / CA, USA): Crystallization screens 

Promega (Mannheim, Germany): Wizard SV Gel and PCR Clean-Up System, Wizard Plus SV 

Miniprep DNA Purification System, PureYield Plasmid Midiprep System, pGemTeasy vector 

system 
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Qiagen (Hilden, Germany): QIAquick PCR Purification Kit, QIAprep Spin Miniprep Kit, 

QIAGEN Plasmid Midi Kit 

6.1.3 Enzymes, proteins and antibodies 

Agrisera (Vännäs, Sweden): anti-Histone H3 antibody 

Amersham Bioscienses (Freiburg, Germany): porcine RNAguard ribonuclease inhibitor 

Jackson Immuno Research (Newmarket, UK): HRP-coupled secondary antibodies 

JPT Peptide Technologies GmbH (Berlin, Germany): PepSpot Peptides Epitope mapping 

Merck (Darmstadt, Germany): Benzonase 

MPI of Biochemistry (Martinsried, Germany): antisera (produced in rabbits) against purified 

Syn7942-Raf1, AtRaf1.2, Syn6301-RbcL and CrRbcX-IIa, Department of Cellular 

Biochemistry: purified protein stocks of GroEL, GroES, Anabaena CA-RbcX 

New England Biolabs (NEB, Frankfurt/Main, Germany): restriction endonucleases, T4 DNA 

ligase, calf intestinal phosphatase 

Promega (Mannheim, Germany): Pfu DNA polymerase 

Sigma-Aldrich (Steinheim, Germany): BSA, lysozyme, mouse monoclonal anti-FLAG M2 

antibody, EZview Red ANTI-FLAG M2 Affinity Gel 

Stratagene (La Jolla, USA): Herculase polymerase 

6.1.4 Instruments 

Amersham Biosciences (Freiburg, Germany): FPLC systems, prepacked chromatography 

columns, Protran nitrocellulose blotting membrane 

Bachofer (Reutlingen, Germany): Hybridization Oven 

Beckmann Coulter GmbH (Krefeld, Germany): centrifuges (J6-MI, GS-6R, Avanti 30, Avanti 

J-25I, Optima LE-80K ultracentrifuge), spectrophotometers (DU640, DU800), LS 6500 mulit-

purpose scintillation counter 

Biometra (Göttingen, Germany): PCR thermocycler 

Bio-Rad (Munich, Germany): Gene Pulser Xcell electroporation system, electroporation 

cuvettes, Mini-Protean electrophoresis chambers, Power Pac 300, Chemidoc 

Branson (Connecticut, USA): Sonifier cell disruptor B15 

Drummond Scientific (Broomall, USA): Pipet-aid 
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Eppendorf (Hamburg, Germany): centrifuges (5415D, 5417R), Thermomixer comfort, Pipettes 

Fisher Scientific (Schwerte, Germany): Accumet Basic pH meter 

Forma Scientific (Marietta / OH, USA): Orbital Shaker 4581 

Fuji/Raytest (Straubenhardt, Germany): Fuji-LAS3000 luminescence and densitometry 

system 

GE Healthcare (Munich, Germany): Äkta Explorer, Äkta Purifier, prepacked chromatography 

columns 

Hampton Research (Aliso Viejo / CA, USA): Crystallization supplies and tools 

Hoefer Scientific Instruments (San Francisco, USA): SEMI-PHOR blotting system 

Invitrogen (Karlsruhe, Germany): XCell SureLock Mini-Cell, NuPAGE 4-12% Bis-Tris Gel 1.0 

mm, 10 well, NuPAGE 3-8% Tris-Acetate Gel 1.0mm, 10 well, NuPAGE buffers 

Mettler Toledo (Giessen, Germany): Balances (AG285, PB602) 

Millipore (Bedford / MA, USA): Amicon Ultra centrifugal filters, Steritop vacuum filters 

Misonix (Farmingdale / NY, USA): Sonicator 3000 

MPI of Biochemistry (Martinsried, Germany): Western blot system (semi-dry) 

MWG Biotech AG (Ebersberg, Germany): gel documentation system 

New Brunswick Scientific (Nürtingen, Germany): Innova 4430 incubator 

PEQLAB (Erlangen, Germany): Nanodrop 1000 

Roth (Karlsruhe, Germany): ZelluTrans dialysis membrane 

Scientific Industries, Inc. (Bohemia / NY, USA): Vortex-Genie 2 

Whatman GmbH (Dassel, Germany): Whatman Klari-flex 

WTW (Weilheim, Germany): pH meter 

Wyatt Technology (Santa Barbara / CA, USA): FFF-MALS system, software ASTRA 

6.1.5 Strains 

Stratagene (Heidelberg, Germany): E. coli BL21 (DE3) 

Novagen (Darmstadt, Germany): E. coli DH5α 
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6.1.6 Media 

Media were prepared with deionised, double-distilled water and subsequently autoclaved. 

LB medium:   10 g/l tryptone, 5 g/l yeast extract, 10 g/l NaCl, 

(15 g/l agar for solid medium) 

 

6.1.7 Plasmids and oligonucleotides 

Following plasmids were constructed by S. Saschenbrecker and used in this study: 
 
Tab.1: Plasmids used in this study from the laboratory plasmid database 

Plasmid name genes 

pET11a-At-Cpn60αβ Arabidopsis thaliana Chaperonin 60α (aa 

47-586, at2g28000) 

Arabidopsis thaliana Chaperonin 60β (aa 

56-600, at1g55490) 

pET11a-At-Cpn60β Arabidopsis thaliana Chaperonin 60β (aa 

56-600, at1g55490) 

pET11a-AtCpn20 Arabidopsis thaliana Chaperonin 20 (aa 52-

253, at5g20720) 

pET11a-AtCpn10 Arabidopsis thaliana Chaperonin 10 (aa 44-

139, at2g44650) 

pET11a-At-RbcL Arabidopsis thaliana RbcL 

pET11a-AnaCA-RbcX Anabeana CA RbcX 

pET11a-Syn7002-RbcS Synechococcus sp. PCC 7002 RbcS 

pET11a-AtRbcS Arabidopsis thaliana RbcS (aa 56-180, 

at1g67090) 

 

Plasmids generated in this study which are not described in Hauser et al.205 and Bracher and 

Hauser et al.216 are listed in appendices (Tab.A2). 

Novagen (Darmstadt, Germany): pET11a, pET30b     

Metabion (Martinsried, Germany): oligonucleotides (primers) 
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6.2 Molecular biological methods 

6.2.1 DNA analytical methods 

DNA concentrations were determined by UV spectroscopy. At a wavelength of 260 nm, one 

absorption unit corresponds to 50 ng/μl double stranded DNA in water. The absorbance ratio 

260/280 nm for pure DNA should be approximately 1.85. Deviations from this value are 

indicating quality deficiencies caused by impurities, such as RNA or protein233. Agarose gel 

electrophoresis was performed in 1 % TAE-agarose gels at 7-10 V/cm (TAE: 40 mM Tris-

acetate, pH 8.5, 2 mM EDTA, supplemented with ethidiumbromide). Prior to loading samples 

on the gel, they were mixed with 5 X DNA loading dye (10mM Tris-HCl, pH 7.6, 50 mM EDTA, 

0.1 % (w/v) SDS, 0.025 % (w/v) bromphenol blue, 50 % (v/v) glycerol). Authenticity of cloned 

constructs was confirmed by sequencing by the MPI of Biochemistry sequencing service. 

6.2.2 Preparation and transformation of E.coli cells 

Chemically competent DH5α and BL21 cells were prepared by the CaCl2-method. Therefore, 

cells were grown to mid log phase (OD600 = 0.5) at 37 °C in one litre of LB medium. After chilling 

the cells on ice for 10 minutes (min.), the culture was centrifuged in GSA bottles for 30 min. at 

4000 rpm at 4 °C. The supernatant was removed and the cells were resuspended gently in 20 

ml ice-cold 0.1 M CaCl2, 15 % glycerol. After incubating for 20 min., the cells were aliquoted 

into chilled sterile eppendorf tubes, frozen in liquid nitrogen and stored at -80 °C. For 

transformation, 50 μl of chemically competent cells were thawed on ice and mixed with 100 ng 

plasmid DNA. After incubation on ice for 30 min., cells were heat shocked at 42 oC for 90 

seconds (s) and put back on ice for 1 min. Next, they were diluted in 500 μl LB medium and 

shaken for 1 hour (h) at 37 oC. The reaction was plated out on selective LB plates and 

incubated overnight (o/n) at 37 oC. 

6.2.3 Purification of plasmid DNA and DNA-fragments 

Amplification of plasmid DNA was performed in E. coli DH5α, which were grown for 8-16 h in 

LB medium containing the appropriate antibiotics233. Subsequently, plasmids were purified via 

anion exchange chromatography using the QIAprep Spin Miniprep Kit, Wizard Plus SV 

Miniprep DNA Purification System, QIAGEN Plasmid Midi Kit or PureYield Plasmid Midiprep 

system according to the manufacturer’s instructions. In order to purify or isolate DNA-

fragments after agarose gel electrophoresis or enzymatic reactions, either the Wizard SV Gel 

and PCR Clean-Up system or the QIAquick PCR Purification Kit was used for anion exchange 

chromatography following the manufacturer’s recommendations. 
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6.2.4 PCR (polymerase chain reaction) 

Amplification of DNA fragments was generally performed according to protocol 1 (Table 2). 

Only if mutations were introduced via whole plasmid PCR234, reactions were designed with 

mutation-site-specific primers as listed in protocol 2 (Table 2). The applied cycling conditions 

are summarized in Table 3 and 4. 

Tab.2: Standard protocols for PCR 

 Protocol 1 Protocol 2 

template DNA 7 µl plasmid (10 ng/µl) 0.3 µl plasmid (100 ng/µl) 

buffer 2 µl 10 X herculase buffer 2 µl 10 X Pfu buffer 

dNTPs 2 µl 2 mM dNTP 2 µl 2 mM dNTP 

primers 0.5 µl 10 µM each 0,72 µl 10 µM each 

polymerase 0,2 µl herculase DNA polymerase  

(5 U/µl) 

0,38 µl Pfu DNA polymerase 

(2-3 U/µl) 

total volume 20 µl 20 µl 

 

Tab.3: Thermal cycling conditions for PCR amplification after protocol 1 

Temperature in °C Time in minutes Cycles 

95 2 1 

95 0.3  

35 50 0.5 

72 1 min./kb 

4 ∞ 1 

 

For protocol 1, after the PCR, for some fragments (see 5.2.5), a poly A-tail was introduced by 

adding 2 µl 2 mM dATP after the reaction, followed by incubation at 72 °C for 30 min. 
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Tab.4: Thermal cycling conditions for PCR amplification after protocol 2 

Temperature in °C Time in minutes Cycles 

95 2 1 

95 0.5  

18 55 1 

68 10 

68 15 1 

4 ∞ 1 

 

6.2.5 Restriction digest and ligation 

5-20 μg DNA (PCR-product or plasmid DNA) was incubated in reactions of 20-30 μl with 20-

60 units of the respective restriction enzyme/s in the absence or presence of BSA. Digests 

were performed in the recommended reaction buffer and at the optimal temperature for 3 h. 

Digested plasmid DNA was dephosphorylated with calf intestinal phosphatase according to 

the manufacturer’s instructions prior to further use. Products of restriction digests were 

analyzed and isolated by agarose gel electrophoresis. For ligations, ~100 ng of digested and 

dephosphorylated plasmid DNA and excess of respectively digested DNA inserts were 

incubated with T4 DNA ligase reaction buffer and 400 U of T4 DNA ligase in a final volume of 

10 μl for at least 1 h at room temperature or o/n at 16 oC. Afterwards, the ligation reactions 

were transformed into chemically competent E. coli DH5α cells. For processing of constructs 

resulting from whole plasmid PCR, the methylated parental DNA was digested prior to 

transformation. Therefore, 0,5 µl DpnI (20000 U/ml) was added to 10 µl reaction for 1 h at 37 
oC234. The whole reaction was then transformed into chemically competent E.coli DH5α cells. 

PCR fragments that were obtained after protocol 1 and finally ligated into pET11a vectors, 

were ligated first into pGem-T easy vector. The reaction was set up as followed: 5 µl pGem-T 

easy ligation buffer, 3 µl PCR fragment, 1 µl pGem-T easy vector, 1 µl T4 DNA Ligase. The 

mixture was incubated at RT for 1 h and finally transformed into chemically competent E.coli 

DH5α cells. After sequencing of these plasmids, the PCR fragment was cut out again and 

ligated into pET11a vector like described above. 

6.2.6 Cloning strategies 

Open reading frames for AtRbcXI, AtRbcXII, Syn7002Raf2 and AtRaf2 were amplified by PCR 

from genomic DNA of Synechococcus sp. PCC7002 (ATCC no. 27264) and A. thaliana cDNA, 
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respectively, and cloned between the SacII and SacI restriction sites of the pHue plasmid235, 

thus resulting in the following constructs: pHue-AtRbcXI, pHue-AtRbcXII, pHue-Syn7002Raf2 

and pHueAtRaf2. The chloroplast transit peptides for AtRbcXI (1-78), AtRbcXII (1-45) and 

AtRaf2 (1-50) were predicted with TargetP (http://www.cbs.dtu.dk/services/TargetP/) or 

adopted from the plant proteome database (http://ppdb.tc.cornell.edu/). The respective primer 

sequences are listed in appendices (Tab.A1). For FLAG-tagged constructs, the sequence 

encoding the FLAG tag (MDYKDDDDKAG) was inserted upstream of the respective start 

codon (as described above). Point mutants were produced by whole-plasmid site-directed 

mutagenesis234 as described in 5.2.4 and 5.2.5. All plasmids that were generated in this study 

were confirmed by control digests and sequencing by the MPI of Biochemistry sequencing 

service. The RNAi CrrbcX-IIa silencing plasmid was constructed as described217. The CrrbcX-

IIa gene was amplified from genomic DNA of Chlamydomonas reinhardtii (gift from 

J.Nickelsen) including the transit peptide region (nucleotides 1-570) and cloned into pGem T 

vector easy between the EcoRI and BamHI restriction sites. The gene was cloned in a shorter 

version (nucleotides 1-370) behind the BamHI restriction site using EcoRI and BglII restriction 

sites. The final construct (nucleotides 1-570 in sense orientation followed by antisense 

nucleotides 1-370) was cloned between EcoRI restriction sites of plasmid NE537. The CrrbcX-

IIb gene was amplified from genomic DNA and cloned between the SacII and SacI restriction 

sites of the pHue plasmid, resulting in the construct pHue-CrRbcX-IIb. 

6.3 Protein biochemical and biophysical methods 

6.3.1 Protein quantification 

Protein concentrations were determined spectrophotometrically using the theoretical extinction 

coefficient of proteins at a wavelength of 280 nm236. Extinction coefficients were calculated by 

the Vector NTI program from Invitrogen. Alternatively, protein concentrations were measured 

colorimetrically (595 nm) by Bradford assay using the Bio-Rad protein assay reagent according 

to the manufacturer`s recommendations237,238. For proteins present as complexes in their 

native state (e.g. chaperones or Rubisco), molar concentrations will be expressed for 

oligomers, unless stated otherwise. As far as denatured substrates are concerned, 

concentrations will be expressed for the monomers, since this is the assumed state of 

substrate binding to chaperones. 

6.3.2 SDS-PAGE 

Proteins were analyzed under denaturing, reducing conditions by SDS-PAGE 

(sodiumdodecylsulfate polyacrylamide gel electrophoresis). This method allows the separation 

of proteins primarily according to their molecular weight and the resulting electrophoretic 

mobility239. Gels were cast according to Table 5. Protein samples were mixed with 5 X SDS-
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loading dye (225 mM Tris-HCl, pH 6.8, 5 % SDS, 50 % (v/v) glycerol, 0.01 % (w/v) 

bromophenolblue, 5 % (v/v) β-mercaptoethanol) and boiled for 5 min. at 95 °C before loading 

onto the gels. Electrophoresis was performed in Mini-Protean electrophoresis chambers in 

SDS-electrophoresis buffer (12.14 mM Tris, 134.2 mM glycine, 0.1 % (w/v) SDS, 1 mM EDTA) 

at a constant voltage of 150 V. 
 
Tab.5: Preparation of SDS-PAGE gels 

ingredients 

(amount for 4 gels) 

resolution gel stacking gel 

10 % 11 % 12.5 % 15 % 4 % 

30 % AA/ 0.8 % BisAA 6.8 ml 7.33 ml 8.4 ml 10 ml 1.3 ml 

1.5 M Tris-HCl, pH 8.8 5 ml 5 ml 5 ml 5 ml - 

0.5 M Tris-HCl, pH 6.8 - - - - 2.5 ml 

ddH2O 8 ml 7.47 ml 6.4 ml 4.8 ml 6.1 ml 

10 % (w/v) SDS 200 µl 200 µl 200 µl 200 µl 100 µl 

10 % (w/v) APS 100 µl 100 µl 100 µl 100 µl 50 µl 

TEMED 6 µl 6 µl 6 µl 6 µl 10 µl 

 

6.3.3 Gradient Native PAGE 

In Native PAGE the mobility of a protein depends on both its charge and its hydrodynamic size. 

Gels were cast according to Table 6 and samples were taken up in 5 X native loading dye (50 

% (v/v) glycerol, 0.25 % (w/v) bromophenolblue, 500mM Tris pH8.6). Electrophoresis was 

performed in Mini-Protean electrophoresis chambers in native electrophoresis buffer (50 mM 

Tris, 38 mM glycin, pH not adjusted) at 4 °C, employing a constant voltage of 120 V for the first 

30 min. and 150 V throughout the end of the run. 
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Tab.6: Preparation of native PAGE gels 

Ingredients 4 % (3ml per gradient gel) 13 % (3ml per gradient gel) 

30 % AA/ 0.8 % BisAA 5,33 ml 17,4 ml 

4X Tris Acetate gel buffer  

(0.8M Tris-Acetate pH 8) 
10 ml 10 ml 

glycerol 1,5 ml 7 ml 

dd H2O 23,17 ml 5,6 ml 

10 % (w/v) APS 15 µl 15 µl 

TEMED 1,5 µl 1,5 µl 

 

6.3.4 Coomassie blue staining of polyacrylamide gels 

In order to detect protein amounts of ≥ 0.5 μg on SDS-PAGE, Coomassie blue staining was 

carried out. To fix and stain the proteins, gels were incubated in staining solution (0.16 % (w/v) 

Coomassie brilliant blue R-250, 40 % (v/v) ethanol, 8 % (v/v) acetic acid) followed by several 

washes in destaining solution (20 % (v/v) ethanol, 7 % (v/v) acetic acid) to remove background 

staining. 

6.3.5 Western blotting and immunodetection 

Immunoblotting was performed following a modified described method240. Proteins were 

transferred from gels (SDS-PAGE or native-PAGE) to a nitrocellulose membrane in a semi-dry 

Western blotting unit (SEMI-PHOR). The transfer was performed in Western blot buffer (20 % 

(v/v) methanol, 50 mM Tris, 192 mM glycine, 0.1% SDS (w/v)) at a constant current of 150 mA 

for 60 min. Membranes were subsequently blocked for 1 h with 10 % (w/v) milk powder in TBS 

buffer (20 mM Tris-HCl, pH 7.5, 137 mM NaCl) and afterwards incubated with the primary 

antibodies in 1 % milk TBS buffer for 1 h. Thereafter, blots were washed three times for 10 

min. in TBS buffer supplemented with Tween-20 (1:1000). Then, they were incubated with the 

horseradish peroxidase (HRP)-conjugated secondary antibodies in 1 % milk TBS buffer for 1 

h. After that, blots were washed three times for 10 min. in TBS buffer supplemented with 

Tween-20. For immunodetection, ECL chemiluminescence solution was freshly prepared by 

mixing equal amounts of ECL solution I (100 mM Tris- HCl, pH 8.5, 2.5 mM luminol 

(3−aminophtalhydrazide), 400 µM p-coumaric acid) and ECL solution II (100 mM Tris-HCl, pH 

8.5, 5.4 mM H2O2). Membranes were incubated in the resulting solution and protein bands 
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were detected and documented with the Fuji-LAS3000 chemiluminescence and densitometry 

system. 

6.3.6 Protein expression and purification 

Protein purification was performed at 4 °C unless stated otherwise. All purification steps were 

monitored by SDS-PAGE and protein concentration measured by A280. 

6.3.6.1 AtCpn10 

E. coli BL21 (DE3) cells, transformed with pET11a-AtCpn10, were grown in LB supplemented 

with Ampicillin and used for expression upon induction with 1 mM IPTG (at OD600 ~ 0.8) for 16 

h at 23 °C. Harvested cells (centrifugation at 4200 rpm for 25 min.) were incubated for 45 min. 

in lysis buffer (50 mM Tris-HCl, pH 8.0, 1 mM EDTA, 0.5 mM DTT, 0.5 mg/ml lysozyme, 10 

U/ml Benzonase, complete protease inhibitor cocktail). Cells were disrupted by ultrasonication 

(10 x 30 s on ice, 2 min. pause). After removal of cell debris by centrifugation (40000 rpm, 40 

min.), the supernatant was applied to a DEAE Sepharose fast flow column, equilibrated with 

30 mM Tris-HCl, pH 7.5, 10 mM NaCl, 1mM EDTA, and eluted with a linear gradient from 10 

mM to 1 M NaCl. Fractions containing AtCpn10 were desalted on a HiPrep 26/10 desalting 

column with 30 mM Tris-HCl pH 8.0 and applied to a MonoQ 16/10 column equilibrated with 

30 mM Tris-HCl pH 8.0 and eluted with a linear gradient from 0 to 1 M NaCl. Fractions 

containing AtCpn10 were concentrated (MWCO 30kDa) and desalted on a HiPrep 26/10 

desalting column with 30 mM Tris-HCl pH 8.0, 20 mM NaCl. The sample was then subjected 

to a HiPrep Sepharose fast flow 16/10 column equilibrated with 30 mM Tris-HCl pH 8.0, 20 

mM NaCl and eluted with a linear gradient from 20 mM to 1 M NaCl. Fractions containing 

AtCpn10 were concentrated (MWCO 30 kDa) and loaded on a Superdex 200 16/10 

equilibrated with 30 mM Tris-HCl pH 8.0, 20 mM NaCl. AtCpn10 containing fractions were 

concentrated (MWCO 30kDa), supplemented with 10 % glycerol, flash-frozen in liquid nitrogen 

and stored at -80 ºC.  

6.3.6.2 AtCpn20 

Expression, cell lysis and removel of cell debris was performed as described for AtCpn10. The 

supernatant was subjected to a DEAE Sepharose fast flow column equilibrated with 30 mM 

Tris-HCl pH 7.5, 30 mM NaCl, 1 mM EDTA and eluted with a linear gradient from 10 mM to 

1M NaCl. Fractions containing AtCpn20 were dialyzed against 30 mM Tris-HCl pH 7.5, 10 mM 

NaCl, 1mM EDTA, 1mM DTT o/n. The sample was applied to a MonoQ 16/10 column with 30 

mM Tris-HCl pH 7.5, 30 mM NaCl, 1 mM EDTA, 1 mM DTT and eluted with a linear gradient 

from 10 mM to 1 M NaCl. The protein eluted in the flow through, was concentrated (MWCO 30 

kDa) and loaded on a HiPrep Sephacryl 16/60 S-200 column equilibrated with 30 mM Tris-HCl 
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pH 7.5, 30 mM NaCl, 1 mM EDTA. AtCpn20 containing fractions were concentrated (MWCO 

30 kDa), supplemented with 10 % glycerol, flash-frozen in liquid nitrogen and stored at -80 ºC.  

6.3.6.3 AtCpn60α7β7 / AtCpn60β7 

Expression, cell lysis and removel of cell debris was performed as described for AtCpn10. The 

supernatant was loaded on a DEAE Sepharose fast flow column equilibrated with 20 mM Tris-

HCl, pH 7.5 and eluted with a linear gradient from 0 to 1 M NaCl. Fractions containing 

AtCpn60α7β7 / AtCpn60β7 were desalted on a HiPrep 26/10 desalting column with 20 mM Tris-

HCl pH 7.5. The sample was then subjected to a MonoQ 16/10 column equilibrated with 20 

mM Tris-HCl pH 7.5 and eluted with a linear gradient from 0 to 1 M NaCl. AtCpn60α7β7 / 

AtCpn60β7 containing fractions were again desalted as before and applied on a HiPrep Heparin 

Sepharose fast flow 16/10 column equilibrated with 20 mM Tris-HCl pH 7.5 and eluted with a 

linear gradient from 0 to 1 M NaCl. Fractions containing the protein of interest were 

concentrated (MWCO 100kDa) and loaded on a Superdex 200 26/60 column equilibrated with 

20 mM Tris-HCl pH 7.5, 50 mM NaCl and 5 % glycerol. Fractions containing AtCpn60α7β7 / 

AtCpn60β7 were concentrated (MWCO 100kDa), supplemented with 10 % glycerol, flash-

frozen in liquid nitrogen and stored at -80 ºC.  

6.3.6.4 AtRaf2 / Syn7002Raf2 / FLAG-AtRbcXI / FLAG-AtRbcXII / CrRbcX-IIb 

Expression, cell lysis and removal of cell debris was performed as described for AtCpn10. All 

proteins were expressed with an N-terminal 6XHis-Ubiquitin fusion in the pHue plasmid235. The 

supernatant was loaded on a Ni-NTA agarose column equilibrated with 50 mM Tris-HCl, pH 

8.0, 300 mM NaCl, 10 mM imidazole. The bound protein was washed with 50 mM Tris-HCl pH 

8.0, 300 mM NaCl, 25 mM imidazole and eluted with the same buffer containing 200 mM 

imdazole. The 6XHis-Ubiquitin fusion tag was cleaved over night by the addition of Usp2 

protease at 1:100 (mg protease: mg soluble protein) ratio in the presence of 20% (v/v) glycerol 

at 16 °C. The sample was desalted by a HiPrep 26/10 desalting column with 50 mM Tris-HCl 

pH 8.0, 50 mM NaCl and loaded on a MonoQ 16/10 equilibrated with 50 mM Tris-HCl pH 8.0, 

50 mM NaCl. The protein was eluted with a linear gradient from 50 mM to 1 M NaCl. Fractions 

containing protein of interest were concentrated, supplemented with 10 % glycerol, flash-

frozen in liquid nitrogen and stored at -80 ºC.  

6.3.6.5 AnaCA-RbcX 

E. coli BL21 (DE3) cells, transformed with pET11a-AnaCA-rbcX, were used for expression of 

RbcX upon induction with 1 mM IPTG (at OD
600 

~ 0.8) for 16 h at 23 °C. Harvested cells 

(centrifugation at 4200 rpm for 25 min.) were incubated for 45 min. in 20 ml lysis buffer (50 mM 

Tris-HCl, pH 8.0, 1 mM EDTA, 0.5 mM DTT, 0.5 mg/ml lysozyme, 10 U/ml Benzonase, 

complete protease inhibitor cocktail). Cells were disrupted by ultrasonication (10 x 30 s on ice, 
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2 min. pause). After removal of cell debris by centrifugation (40000 rpm, 40 min.), the 

supernatant was applied to a SourceQ column, equilibrated with 50 mM Tris-HCl, pH 8.0, 0.5 

mM DTT, and eluted with a linear gradient from 0 to 1 M NaCl. Fractions containing RbcX were 

dialyzed against 20 mM imidazole, pH 6.4, 20 mM NaCl, applied to an equilibrated MonoQ 

column, and eluted with a linear salt gradient up to 0.7 M NaCl. Fractions containing RbcX 

were dialyzed against 20 mM Tris-HCl, pH 7.5, 50 mM NaCl, 10 mM MgCl
2
. RbcX was then 

concentrated (MWCO 10 kDa) and subjected to Superdex 200 gel filtration chromatography. 

Fractions containing RbcX were concentrated (MWCO 10 kDa), supplemented with 10 % 

glycerol, flash-frozen in liquid nitrogen and stored at -80 ºC.  

6.3.6.6 Prokaryotic and Eukaryotic RbcL 

Syn6301-RbcL and At-RbcL were purified in denatured form from inclusion bodies  after 

expression in E. coli BL21 (DE3) cells transformed with plasmid pET11a encoding the 

respective rbcL gene. Cells were grown in LB amp at 37 °C to an OD600 of 0.8 and protein 

expression was induced by adding 1mM IPTG for 5 hr at 30 °C. Harvested cells (30 min., 4200 

rpm) were resuspended in 40 mM Tris-HCl, pH 8.0, 0.25 M sucrose, 1% (v/v) Triton X-100, 

supplemented with Complete protease inhibitor cocktail and 0.5 mg/ml lysozyme and 

incubated on ice for 30 min., whereupon 0.5 M EDTA was added. Cells were disrupted by 

ultrasonication (10 x 30 s on ice, 2 min. pause) and inclusion bodies pelleted by centrifugation 

(1 hr, 22,000 g). Inclusion bodies were transferred to a homogenizer and resuspended in 40 

mM Tris-HCl, pH 8.0, 0.25 M sucrose, 10 mM EDTA, 1% Triton X-100, 2 M Urea. Washed 

inclusion bodies were centrifuged (45 min, 40000 rpm) and again homogenized with 40 mM 

Tris-HCl, pH 8.0, 0.25 M sucrose, 10 mM EDTA followed by centrifugation (45 min., 

40000rpm). In the final step, the purified denatured protein was resuspended in 40 mM Tris-

HCl, pH 8.0, 6 M GdnHCl, 1 mM EDTA, 5 mM DTT. The protein was flash frozen in liquid 

nitrogen and stored at -80 °C. 

6.3.6.7 Prokaryotic and Eukaryotic RbcS 

Expression, disruption, and purification of RbcS from E. coli BL21 (DE3) cells was performed 

essentially as described for the purification of RbcL from inclusion bodies241,242. However, after 

the final resuspension, denatured purified protein was diluted in 40 mM Tris-HCl, pH 8.0, 6 M 

GdnHCl, 1 mM EDTA, 5 mM DTT to a final protein concentration of 0.5 mg/ml and dialyzed 

against 50 mM Tris-HCl, pH 8.0, 50 mM NaCl, 10 mM MgCl2, where the protein could 

spontaneously refold into its native state. Aggregated protein was removed by 

ultracentrifugation (30 min., 40,000 rpm), refolded purified protein was further concentrated 

(MWCO 10kDa), supplemented with 10 % glycerol, flash-frozen in liquid nitrogen and stored 

at -80 ºC.  
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6.3.7 Co-immunoprecipitation 

All centrifugation steps with FLAG beads were performed for 30 s at 8,200 g and 4 °C, beads 

were kept at 4 °C, and all incubation steps were performed with gentle rotation. Before use, 

gel beads were washed twice with 1XTBS-T (50 mM Tris-HCl, pH 8.0, 137 mM NaCl, 2.7 mM 

KCl, 0.1% Tween-20) buffer and vortexing. Proteins that were tested for interaction with each 

other (2.5 µM RbcS, 1µM Raf1 and 1µM Raf2 for respective experiments) were incubated with 

40 μl anti-FLAG M2 Affinity Gel beads for 3 hr at 4 °C under rotation in 300µl 20 mM MOPS-

KOH, pH 7.5, 100 mM KCl, 5 mM Mg-acetate, 5 mM DTT in the absence or presence of BSA 

(0.8 mg/ml). The beads were washed 3 times 10 min. with 1XTBS-T and bound protein was 

eluted by incubating the beads for 5 min at 95 °C in non-reducing SDS-sample buffer (no β-

mercapthoethanol) and analyzed on 12.5 % SDS-PAGE gels, followed by coomassie staining. 

6.3.8 Peptide binding screen 

Analysis of Raf1 binding to RbcL and RbcX binding to the C-terminal peptide region of RbcL 

was performed using a peptide array membrane prepared by JPT Peptide Technologies 

GmbH; the epitope map is prepared by SPOT-synthesis. The tri- or dodecapeptides, with 10 

amino acid overlap covering the sequence of RbcL or the last 40 amino acids in various RbcL 

species, respectively, are covalently bound to Whatman 50 cellulose support by the C-terminus 

end and have an acetylated N-terminus that is not bound. Each spot contains approximately 5 

nmol of peptide. Before protein was bound to the membrane, and after each membrane 

regeneration, the membrane was tested for background binding of primary or secondary 

antibody to the spots or if residual protein was still bound after regeneration. Blank detection 

was begun by washing the membrane for 5 min. with 100% methanol. The methanol wash is 

performed to avoid hydrophobic peptide precipitation in the following TBS washing steps. The 

membrane was then washed 3 times 5 min. with 1xTBS-T and blocked in 10X milk in TBS for 

3h. The membrane was again washed 3 times 5 min. with 1xTBS-T and incubated for 45 min. 

with 1:2,000-5,000 dilutions of primary antibody in 1X milk in TBS. Excess antibody was 

removed by washing the membrane 3 times 5 min. with 1xTBS-T. Then, the membrane was 

incubated with 1:5,000 dilutions of HRP-conjugated secondary antibody in 1X milk with TBS 

for 45 min. Excess antibody was removed by washing 3 times 5 min. with 1xTBS-T and 

chemiluminescent detection performed as described in 5.3.5. Incubation of the membrane with 

respective proteins was performed as described above, by overnight incubation of 10 μg/ml 

protein in 1X milk in TBS. After protein incubation and ECL detection, the protein bound to the 

membrane was removed by regenerating the membrane. The membrane was incubated at 50 

°C 4 times 30 min. in 62.5 mM Tris-HCl pH 6.7, 2% (w/v) SDS, 100 mM β-mercaptoethanol. 

The membrane was washed 3 times for 20 min. with 10xPBS, followed by washing 3 times 20 

min. with 1xTBS-T. The membrane could then be blank detected to determine the extent of 

145 
 



  Materials and Methods 
 

protein removal. Regeneration of the membrane was repeated until all protein was removed 

or only minimal amounts of protein remained bound. 

6.3.9 Transformation and selection of Chlamydomonas reinhardtii 

C. reinhardtii cells were grown in Trisacetate-phosphate (TAP) medium243. The strain UVM4244 

was transformed by the glass beads procedure245 and allowed to recover for 2 days, to permit 

induction of RNAi, before plating under selective conditions. Tranformants were selected on 

TAP medium containing 5 g/ml paromomycin. Plates were incubated under dim lights 

(approximately 50 mol / m2s (photosynthetically active radiation) covered with one layer of 

paper towels246. Isolated transgenic strains were kept under constant selective pressure to 

circumvent any silencing of integrated IR transgenes. 

6.3.10 Chlamydomonas total RNA isolation 

All steps were performed in an RNase free environment at 4 °C. Total cell RNA was purified 

with TRI Reagent (Sigma Aldrich), according to the manufacturer’s instructions. Reverse 

transcriptase reactions were performed using 500 ng of isolated RNA with the following PCR 

protocol : 5 min. at 25 °C, 30 min. at 42 °C, 5 min. at 85 °C and stored at 4 °C. Synthesized 

cDNA was then used as a template in standard PCR reactions (28 cycles, 5.2.4). 15 µl aliquots 

of each RT-PCR reaction were resolved on 1.5 % agarose gels and visualized by sybre safe 

staining (primers see appendix Tab.A1). 

6.3.11 Chlamydomonas total protein analysis 

100 ml of transformant cells were grown to mid log phase. Pelleted cells (15 min., 20000 g) 

were resuspended in 2 ml 50 mM bicine pH 8.0, 100 mM NaHCO3, 10 mM MgCl2. After 

incubating pellets on ice for 30 min., cells were lysed by ultrasonication (3 times 30s, pause 

on ice inbetween) and cell debris was removed by centrifugation (30 min., 13200 rpm). Potein 

concentration was measured by Bradford. Samples were taken for SDS-PAGE analysis by 

mixing with SDS loading dye at ech step.
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8. Appendices 

8.1 Oligonucleotides 

Tab.A1: Sequences of oligonucleotides used in this study 

name Sequence (5’-3’) 

AtRbcXI_FW CTCCGCGGTGGAGAGGATGTTGCTGGTAATTACGACGAT

ACC 

AtRbcXI_RV GTCAAGCTTTTACCTTGAGTTTGTGTCATCGG 

AtRbcXII_FW CTCCGCGGTGGAAAGATGTATGTTCCCGGCTTTGGAGAA

GC 

AtRbcXII_RV GTCAAGCTTTCACTTATCAGAATCGGTTTCGACATGG 

AtRbcXI_R151A+ GGAGCTTGCAGAAGCAGTGATGATCACG 

AtRbcXI_R151A- CGTGATCATCACTGCTTCTGCAAGCTCC 

AtRbcXII_R123A+ GAACTTAGCCCTTGCAATTTTAGAGGTACG 

AtRbcXII_R123A- CGTACCTCTAAAATTGCAAGGGCTAAGTTC 

CrRbcX570EcoRI TTCGAATTCATGAGCCTCAGCGCAAGAGC 

CrRbcX570BamHI TTCGGATCCTCACGCGGCACCCTTGCCGG 

CrRbcX370BamHIEcoRI TTCGGATCCGAATTCATGAGCCTCAGCGCAAGAGC 

CrRbcX370BglII TTCAGATCTCGCGCACCTCCATCAGGCGC 

CRrbcXRNAiFW CCTGGACGAGTTTGAGTGGGGAAAG 

CrRbcXRNAiRV CTTGCCGGGGCCGTCCAGGTCCTCC 

CrGAPDHFW GGCAAGATTAAGATCGGCATCAAC 

CrGAPDHRV GTGGTCATCAGGCCCTCCTTG 

CrRbcX-IIbFW CTCCGCGGTGGTATGTACGTCCCATCGGACAGCTTC 

CrRbcX-IIbRV CGTGAGCTCTCATGCCTTCTCCCCATCCGTCG 

CrRbcX-IIb(-SacII)+ GAGCCTACGACTCACAGGCTGCAGGTGACCTGCACCACT

TCCTC 
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CrRbcX-IIb(-SacII)- GAGGAAGTGGTGCAGGTCACCTGCAGCCTGTGAGTCGTA

GGCTC 

AtRaf2FW CTCCGCGGTGGTTCAATCCTTAAAGATTTTCTTGGTGACT

TCGGTG 

AtRaf2RV CGTGAGCTCTCACGCCCAAGCTCTTTTCCTAG 

Syn7002Raf2FW CTCCGCGGTGGTATGGCAACCCGATTGACCGAC 

Syn7002Raf2RV CGTGAGCTCTTACAGTTGATCGAAAGTTC 

8.2 Plasmids 

Tab.A2: List of plasmids constructed in this study 

name genes 

pHue-AtRbcXI RbcXI from Arabidopsis thaliana  

pHue-AtRbcXIR151A RbcXI from Arabidopsis thaliana harbouring R151A mutation  

pHue-AtRbcXII RbcXII from Arabidopsis thaliana 

pHue-AtRbcXIIR123A RbcXII from Arabidopsis thaliana harbouring R123A mutation 

NE537-CrRbcXRNAi RbcX-IIa from Chlamydomonas reinhardtii 

pHue-CrRbcX-IIb RbcX-IIb from Chlamydomonas reinhardtii 

pHue-AtRaf2 Raf2 from Arabidopsis thaliana (aa 51-220, at5g51110) 

pHue-Syn7002Raf2 Raf2 from Synechococcus sp. PCC7002 
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8.3 Abbreviations 

Å   Angström 

AA   acrylamide 

aa   amino acid 

ADP    adenosine 5'-diphosphate 

AnaCA   AnabaenaCA 

APS    ammonium peroxodisulfate 

At   Arabidopsis thaliana 

ATP   adenosine 5'-triphosphate 

BSA   bovine serum albumin 
oC    degree Celsius 

CABP   2-carboxyarabinitol bisphosphate 

CA1P   carboxyarabibitol 1-phosphate 

CAM   Crassulacean Acid Metabolism 

CBB   Calvin-Benson-Bassham 

CO2   carbondioxide 

Cpn    chaperonin  

Cr   Chlamydomonas reinhardtii 

DNA   deoxyribonucleic acid 

DnaJ    bacterial Hsp40 chaperone 

DnaK    bacterial Hsp70 chaperone 

dNTP    2`-desoxyribonucleotide-triphosphate 

DTT    dithiothreitol 

E. coli   Escherichia coli 

EDTA   ethylenediaminetetraacetic acid 

g    acceleration of gravity, 9.81 m/s2 

GroEL    bacterial Hsp60 chaperonin 

GroES   bacterial Hsp10 co-chaperonin 

G3P   glyceraldehyde phosphate 

h    hour 

HMW   high molecular weight 

HRP   horseradish peroxidase 

Hsp    heat shock protein 

IP   immunoprecipitation 
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IPTG   isopropyl-β-D-1-thiogalactopyranoside 

KABP   3-ketoarabinitol-1,5-bisphosphate 

kCcat   CO2-saturated carboxylase velocity 

kOcat   O2-saturated oxygenase velocity 

KC   Michaelis-Menten constant for carboxylation 

KO   Michaelis-Menten constant for oxygenation 

kDa    kilodalton 

LB    Luria Bertani 

Mg2+   magnesium 

min.   minutes 

MS   Mass Spectromertry 

MW    molecular weight 

NAC   nascent chain-associated complex 

NADPH   β-nicotinamide adenine dinucleotide 2'-phosphate 

NBD   nucleotide-binding domain 

NEF   nucleotide-exchange factor 

O2   oxygen 

OD    optical density 

o/n   overnight 

PAGE    polyacrylamide gel electrophoresis 

PCR    polymerase chain reaction 

PDB   protein data bank 

PFD   prefoldin 

Pfu    Pyrococcus furiosus 

3PG   3-phosphoglycerate 

PEP   phosphoenolpyruvate 

PDBP   2,3-pentodiulose-1,5-bisphosphate 

pmf   proton motif force 

PMSF   phenyl-methyl-sulfonyl fluoride 

RAC   ribosome-associated complex 

Raf1   Rubisco accumulation factor 1 

Raf2   Rubisco accumulation factor 2 

RbcL    Rubisco large subunit 

RbcS    Rubisco small subunit 
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Rca   Rubisco activase 

RLP   Rubisco-like protein 

Rubisco   Ribulose-1,5-bisphosphate carboxylase/oxygenase 

RuBP   Ribulose-1,5-bisphosphate 

RNA    ribonucleic acid 

rpm    revolutions per minute 

SBD   substrate-binding domain 

SEC-MALS  size-exclusion chromatography – multi-angle light scattering 

SDS    sodiumdodecylsulfate 

sp.    species 

Syn    Synechococcus 

TEMED   N,N,N',N'-tetramethylethylenediamine 

TF   trigger factor 

THF   tetrahydrofolate 

TRiC   TCP-1 containing ring complex 

Tris    trishydroxymethylaminomethan 

v/v   volume per volume 

w/v    weight per volume 

XuBP   xylulose-1,5-bisphosphate 
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