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v

Formular 3.2

Name, Vorname

Eidesstattliche Versicherung
(Siehe Promotionsordnung vom 12.07.11, § 8, Abs. 2 Pkt. .5.)

Hiermit erkläre ich an Eidesstatt, dass die Dissertation von mir

selbstständig, ohne unerlaubte Beihilfe angefertigt ist.

Ort, Datum Unterschrift Doktorand/in

Geistlinger, Ludwig

München,



vi



Contents

Abstract xiii

Zusammenfassung xv

1 Introduction: Analyzing gene expression with networks 1

2 Construction of regulatory networks 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Compilation from scientific articles . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Material and Methods . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Inference from experimental data . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.2 Material and Methods . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Detection of significant subnetworks 37
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Gene Graph Enrichment Analysis (GGEA) . . . . . . . . . . . . . . . . . . 39

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Improvements of GGEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.1 Significance approximation . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.2 Edge selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Interpretation of detected subnetworks 63
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



viii Contents

4.2 Combination and exploration of results . . . . . . . . . . . . . . . . . . . . 65
4.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.5 Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Composition analysis, reduction and integration . . . . . . . . . . . . . . . 82
4.3.1 Overlap and crosstalk between subnetworks . . . . . . . . . . . . . 82
4.3.2 Subnetwork reduction and integration . . . . . . . . . . . . . . . . . 86

5 Conclusion and Outlook 91

A Methods of molecular biology 95
A.1 Quantitative measurement of gene expression . . . . . . . . . . . . . . . . . 95

A.1.1 Microarrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.1.2 Next-generation sequencing (RNA-seq) . . . . . . . . . . . . . . . . 95

A.2 Detection of protein-DNA interactions . . . . . . . . . . . . . . . . . . . . 96
A.2.1 Chromatin immunoprecipitation (ChIP) . . . . . . . . . . . . . . . 96
A.2.2 DNA footprinting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

B Statistical methods 97
B.1 Hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

B.1.1 Student’s t-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
B.1.2 Fisher’s exact test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
B.1.3 Permutation testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
B.1.4 Wilcoxon’s rank-sum test . . . . . . . . . . . . . . . . . . . . . . . . 99
B.1.5 Kolmogorov-Smirnov test . . . . . . . . . . . . . . . . . . . . . . . 99
B.1.6 Multiple testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

C Databases 101
C.1 Genome databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
C.2 Gene expression databases . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
C.3 Gene set and pathway databases . . . . . . . . . . . . . . . . . . . . . . . . 101

C.3.1 Gene Ontology (GO) . . . . . . . . . . . . . . . . . . . . . . . . . . 102
C.3.2 Kyoto Encyclopedia of Genes and Genomes (KEGG) . . . . . . . . 102

C.4 Regulatory network databases . . . . . . . . . . . . . . . . . . . . . . . . . 102
C.4.1 Cross-species resources . . . . . . . . . . . . . . . . . . . . . . . . . 103
C.4.2 Species-specific resources . . . . . . . . . . . . . . . . . . . . . . . . 103

Acknowledgements 126



List of Figures

1.1 Regulatory interactions between proteins, RNA and DNA . . . . . . . . . . 2
1.2 Schematic illustration of a gene regulatory network . . . . . . . . . . . . . 3
1.3 Workflow of gene expression data analysis . . . . . . . . . . . . . . . . . . 4

2.1 Approaches to construct a gene regulatory network . . . . . . . . . . . . . 6
2.2 Overlaps of predicted, direct & indirect regulatory interactions in yeast . . 10
2.3 Curation approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 From pure text to semi-quantitative models of regulatory interactions . . . 15
2.5 The diauxic shift and its subprocesses . . . . . . . . . . . . . . . . . . . . . 17
2.6 Pathway map of fatty acid metabolism . . . . . . . . . . . . . . . . . . . . 18
2.7 Current representations of PCK1 regulation . . . . . . . . . . . . . . . . . 21
2.8 Outline of the recalibration approach . . . . . . . . . . . . . . . . . . . . . 26
2.9 Score recalibration in network predictions . . . . . . . . . . . . . . . . . . . 28
2.10 Assessment of predicted interactions . . . . . . . . . . . . . . . . . . . . . 32
2.11 Interactions and expression profiles . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Detection of significant subnetworks . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Key steps of GGEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 Fuzzyfication of p-value and fold change . . . . . . . . . . . . . . . . . . . 43
3.4 Modeling regulatory interactions using PNFL . . . . . . . . . . . . . . . . 44
3.5 Consistency of regulatory interactions . . . . . . . . . . . . . . . . . . . . . 49
3.6 Explainability of expression changes . . . . . . . . . . . . . . . . . . . . . . 50
3.7 Edge consistency distribution . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.8 Significance approximation: Goodness of fit . . . . . . . . . . . . . . . . . 59
3.9 Consistency threshold evaluation on the KEGGdzGEO benchmark set . . . 61

4.1 Overview: Biological interpretation . . . . . . . . . . . . . . . . . . . . . . 64
4.2 EnrichmentBrowser: Workflow . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 EnrichmentBrowser: Visualization and exploration . . . . . . . . . . . . . . 72
4.4 TCGA RNA-seq data: Method combination . . . . . . . . . . . . . . . . . 75
4.5 Runtime of enrichment methods . . . . . . . . . . . . . . . . . . . . . . . . 77
4.6 GEO2KEGG evaluation: Individual methods . . . . . . . . . . . . . . . . . 78
4.7 GEO2KEGG evaluation: Method combination . . . . . . . . . . . . . . . . 80



x List of Figures

4.8 Overlap and crosstalk in GO and KEGG . . . . . . . . . . . . . . . . . . . 83
4.9 Overlap between KEGG signaling pathways . . . . . . . . . . . . . . . . . 85
4.10 Reduction and integration of enriched subnetworks . . . . . . . . . . . . . 87
4.11 Outline of the Sub-GGEA reduction approach . . . . . . . . . . . . . . . . 88



List of Tables

2.1 Annotation summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 ORA contingency table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Fuzzy rule set for activation and inhibition . . . . . . . . . . . . . . . . . . 44
3.3 Glioma dataset: Comparison of GGEA and FiDePa . . . . . . . . . . . . . 52
3.4 Neuroblastoma dataset: GGEA application . . . . . . . . . . . . . . . . . . 53
3.5 KEGGdzGEO benchmark set . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 ALL microarray data: Method combination . . . . . . . . . . . . . . . . . 74



xii List of Tables



Abstract

The methods of molecular biology for the quantitative measurement of gene expression
have undergone a rapid development in the past two decades. High-throughput assays
with the microarray and RNA-seq technology now enable whole-genome studies in which
several thousands of genes can be measured at a time. However, this has also imposed se-
rious challenges on data storage and analysis, which are subject of the young, but rapidly
developing field of computational biology.
To explain observations made on such a large scale requires suitable and accordingly scaled
models of gene regulation. Detailed models, as available for single genes, need to be ex-
tended and assembled in larger networks of regulatory interactions between genes and gene
products. Incorporation of such networks into methods for data analysis is crucial to iden-
tify molecular mechanisms that are drivers of the observed expression. As methods for this
purpose emerge in parallel to each other and without knowing the standard of truth, results
need to be critically checked in a competitive setup and in the context of the available rich
literature corpus.
This work is centered on and contributes to the following subjects, each of which represents
important and distinct research topics in the field of computational biology: (i) construc-
tion of realistic gene regulatory network models; (ii) detection of subnetworks that are
significantly altered in the data under investigation; and (iii) systematic biological inter-
pretation of detected subnetworks.
For the construction of regulatory networks, I review existing methods with a focus on
curation and inference approaches. I first describe how literature curation can be used to
construct a regulatory network for a specific process, using the well-studied diauxic shift in
yeast as an example. In particular, I address the question how a detailed understanding, as
available for the regulation of single genes, can be scaled-up to the level of larger systems.
I subsequently inspect methods for large-scale network inference showing that they are
significantly skewed towards master regulators. A recalibration strategy is introduced and
applied, yielding an improved genome-wide regulatory network for yeast.
To detect significantly altered subnetworks, I introduce GGEA as a method for network-
based enrichment analysis. The key idea is to score regulatory interactions within func-
tional gene sets for consistency with the observed expression. Compared to other recently
published methods, GGEA yields results that consistently and coherently align expression
changes with known regulation types and that are thus easier to explain. I also suggest
and discuss several significant enhancements to the original method that are improving its
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applicability, outcome and runtime.
For the systematic detection and interpretation of subnetworks, I have developed the
EnrichmentBrowser software package. It implements several state-of-the-art methods be-
sides GGEA, and allows to combine and explore results across methods. As part of the
Bioconductor repository, the package provides a unified access to the different methods
and, thus, greatly simplifies the usage for biologists. Extensions to this framework, that
support automating of biological interpretation routines, are also presented.
In conclusion, this work contributes substantially to the research field of network-based
analysis of gene expression data with respect to regulatory network construction, subnet-
work detection, and their biological interpretation. This also includes recent developments
as well as areas of ongoing research, which are discussed in the context of current and
future questions arising from the new generation of genomic data.



Zusammenfassung

Die quantitativen Methoden der Molekularbiologie zur Erhebung von Genexpressionsdaten
wurden in den letzten beiden Jahrzehnten technisch enorm weiterentwickelt. Hochdurch-
satzverfahren mit der Microarray- und RNAseq-Technologie ermöglichen nunmehr Studien
ganzer Genome und erlauben damit mehrere tausend Gene gleichzeitig zu erfassen. Dies
stellt jedoch auch enorme Herausforderungen an die Speicherung und Analyse der Daten,
welche Gegenstand der noch jungen, sich aber schnell entwickelnden Wissenschaft der
Bioinformatik sind.
Um derart großskalige experimentelle Beobachtungen erklären zu können, bedarf es geeig-
net skalierender genregulatorischer Modelle. Dies macht die Integration bestehender Mo-
delle, die detailliert die Regulation einzelner Gene beschreiben, in größeren Netzwerken
regulatorischer Interaktionen zwischen Genen und Genprodukten erforderlich.
Resultierende Netzwerke sind ein wichtiges Hilfsmittel für die Datenanalyse, um die moleku-
laren Mechanismen, welche die beobachteten Daten hervorrufen, identifizieren zu können.
Jedoch lassen sich die Ergebnisse verschiedener Ansätze, mit denen Netzwerke in die Daten-
analyse integriert werden, nur schwierig überprüfen und miteinander vergleichen, da die
tatsächlichen Mechanismen zumeist nicht, oder nur unvollständig, bekannt sind. Erschwe-
rend kommt hinzu, dass für eine Interpretation der Ergebnisse der typischerweise große
Umfang zugehöriger Fachliteratur erfasst werden muss.
Die vorliegende Arbeit beschäftigt sich mit den folgenden Themen, welche jeweils wichtige
und eigenständige Forschungsfelder der Bioinformatik darstellen: (i) der Konstruktion rea-
listischer Modelle genregulatorischer Netzwerke, (ii) der Identifikation von Teilnetzwerken,
welche eine signifikante Änderung in den gemessenen Daten zeigen, und (iii) der systema-
tischen biologischen Interpretation der gefundenen Teilnetzwerke.
Für die Konstruktion genregulatorischer Netzwerke wird ein Überlick der typischen Vorge-
hensweisen gegeben, wobei Verfahren, die auf Kuration der Literatur bzw. Inferenz aus
experimentellen Daten basieren, vertieft behandelt werden. Zunächst wird am Beispiel
der Diauxie in Hefe beschrieben, wie manuelle Kuration eingesetzt werden kann, um ein
regulatorisches Netzwerk für einen spezifischen Prozess zu konstruieren. Hierbei wird ins-
besondere die Frage behandelt, wie ein detailliertes Verständnis, wie es für die Regula-
tion einzelner Gene existiert, auf größere Systeme übertragen werden kann. Anschließend
werden Methoden zur Netzwerk-Inferenz untersucht und demonstriert, dass diese un-
verhältnismäßig in Richtung von Regulatoren vieler Gene verschoben sind. Zur Auflösung
wird eine Kalibrierungsstrategie vorgestellt, deren Anwendung ein diesbezüglich verbessertes,



xvi Zusammenfassung

genomweites regulatorisches Netzwerk für Hefe liefert.
Um Teilnetzwerke zu identifizieren, die signifikante Änderungen in den Daten zeigen, wird
GGEA als eine Methode zur netzwerkbasierten Anreicherungsanalyse eingeführt. Die
grundlegende Idee der Methode ist, regulatorische Interaktionen innerhalb funktionaler
Gruppen von Genen bezüglich der Konsistenz mit den beobachteten Expressionsdaten
zu bewerten. Verglichen mit anderen Anreicherungsmethoden, liefert GGEA Ergebnisse,
welche Veränderungen in der Expression mit bekannten regulatorischen Interaktionen in
Übereinstimmung bringen, wodurch sich die Ergebnisse leichter erklären lassen. Deswei-
teren werden verschiedene Modifikationen von GGEA diskutiert, welche Anwendbarkeit,
Ergebnisse und Laufzeit der Methode signifikant verbessern.
Für die systematische Identifikation und Interpretation der gefundenen Teilnetzwerke wurde
das EnrichmentBrowser Software-Paket entwickelt. Es implementiert verschiedene An-
reicherungsmethoden, zusätzlich zu GGEA, und erlaubt die Ergebnisse über Methoden
hinweg zu kombinieren und zu untersuchen. Als Bestandteil der Bioconductor Software-
Bibliothek erlaubt das Paket einen einheitlichen Zugriff auf die verschiedenen Methoden,
wodurch die Nutzung für Anwender stark vereinfacht wird. Erweiterungen des Pakets,
welche die Automatisierung typischer Vorgehensweisen bei der biologischen Interpretation
unterstützen, werden ebenfalls diskutiert.
Die vorliegende Arbeit trägt somit wesentlich zum Forschungsgebiet der netzwerkbasierten
Analyse von Genexpressionsdaten bei, insbesondere bezüglich der Konstruktion regula-
torischer Netzwerke, der Identifizierung signifikanter Teilnetzwerke und deren biologischer
Interpretation. Dies beinhaltet auch neuere Entwicklungen und aktuelle Forschungsthe-
men, welche im Zusammenhang gegenwärtiger als auch zukünftiger Fragen, die sich aus
den neuartigen genomischen Daten ergeben, diskutiert werden.



Chapter 1

Introduction: Analyzing gene
expression with networks

Understanding the biology of living organisms, and especially disease-causing malfunctions
occurring within them, requires a detailed understanding of how the underlying genotype
is expressed into the observed phenotype. The building blocks of this translation are pro-
teins, biochemical polymers that perform numerous fundamental cellular functions. This
includes the catalysis of metabolic reactions as enzymes, the regulation of behavior and
development as hormones, and their aggregation in groups to form tissue, muscles and
hair [1, 2].
According to the central dogma of molecular biology, blueprints of proteins are encoded in
the genome: the stable inheritance information in the DNA is first transcribed to messenger
RNA (mRNA), which is then translated to functional proteins [3, 4]. Both, transcription
and translation, are tightly regulated by different mechanisms assembled in networks of
regulatory interactions between proteins, RNA, and the DNA (Figure 1.1).
Transcription is activated in response to extra-cellular signals that are perceived at the cell
surface by specific membrane proteins. Amplified by a signaling cascade of interacting ki-
nase proteins, signals are transduced to transcription factor proteins. Once activated, these
factors enter the nucleus where they bind to regulatory DNA elements denoted as promot-
ers, hereby activating or repressing the transcription of associated target genes (Figure 1.2).
Transcriptional control is thus exerted through the complex interplay of protein-protein
interactions (PPIs) between signaling proteins and transcription factors as well as gene
regulatory interactions (GRIs) between transcription factors and target genes [5].
Cellular processes typically display different levels of activity in healthy and pathogenic
tissue. For example, cancer cells execute processes leading to cell proliferation in higher,
but processes leading to cell death in lower activity levels than their unaffected counter-
parts [6,7]. This is also reflected by different quantities of disease-relevant transcripts in the
transcriptome denoting all mRNA transcripts in the cell. In contrast to the biochemically
diverse and experimentally instable proteins, mRNA has nearly uniform experimental be-
havior and is thus preferentially used for quantitative measurements of gene activity. This
is based on the assumption that the total cellular amount of a particular mRNA reason-
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Figure 1.1: Regulatory interactions between proteins, RNA and DNA. PPI: protein-
protein interaction. GRI: gene regulatory interaction. ChrI: chromatin interaction. RNAi: RNA
interference.

ably approximates the amount of the corresponding protein [8,9]. However, processes like
post-transcriptional mRNA degradation can interfere with this assumption [10].
Supported by the rapid development of high-throughput devices in molecular biology, it has
recently become possible to efficiently measure the transcriptome at moderate costs [11,12].
This has enabled many comparative studies designed to detect significant differences in gene
expression between two groups of samples representing two different experimental condi-
tions. In the clinical case, these are groups of healthy and diseased patients. The standard
way, in which these studies are carried out, is depicted in Figure 1.3. Although all ex-
perimental steps are performed under stringent conditions, technical variation is inherent
to large-scale experiments such as microarray or RNA-seq assays (see Appendix A.1 for a
description of both assays). Preprocessing of the data is thus required to exclude outliers
and normalize gene expression values within and between measurements [13, 14, for an
overview].
Subsequently, the analysis is centered on single genes, which are significantly different in
expression between the two different conditions [15, 16]. These genes indicate putative
disease-causing mechanisms and are thus hotspots for medical attention. They can be also
used to predict the disease status of new patients [17,18].
However, restricting the analysis to such marker genes ignores important information. For
instance, master regulators are known to affect many target genes while changing expres-
sion only slightly themselves [19]. On the other hand, minor but coherent changes of a
functional group of genes are typically more meaningful than strong signals without con-
text.
Capturing such changes is the goal of subsequent analysis of predefined gene sets represent-
ing functional categories or biochemical pathways [20, 21]. Established databases defining
such gene sets (Appendix C.3) are the Gene Ontology [22,23, GO] and the Kyoto Encyclo-
pedia of Genes and Genomes [24,25, KEGG]. As rarely all genes in a set show substantial
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Figure 1.2: Schematic illustration of a gene regulatory network. Extra-cellular signals
perceived at the cell surface are transduced to specific transcription factors (TFs) that either
individually or in combination regulate the transcription of target genes by RNA polymerase.
The expressed protein products execute the cell functions required to react to the perceived
signal.

change in expression, the investigation is consequently centered on whether such changes
are statistically overrepresented in certain gene sets [26, 27].
The detected altered gene sets are incorporated in various ways in the actual biological
interpretation of the observed results. This includes a literature search for reported asso-
ciations between these gene sets and the investigated phenotype as well as exploration of
known interactions of genes within and between gene sets. Results can then be divided
into observations that are supported by previous findings and novel hypotheses about the
underlying disease-causing mechanisms.
Although network knowledge is incorporated ad hoc in the biological interpretation, it can
be beneficial to already systematically integrate it into the gene set analysis to enhance the
discovery of coherently altered functional modules of genes [28,29]. For example, the con-
cordant up-regulation of two proteins known to be associated in a functional complex, such
as the two transcription factors in Figure 1.2, is often considered more meaningful than
expression changes of two unrelated proteins. Such protein-protein interactions (PPIs)
that are in agreement with the observed expression are accordingly weighted higher, and
gene sets with disproportional many of these interactions are preferred.
As experimental high-throughput techniques for PPI-detection were developed early and re-
sulting large PPI-networks became easily available, they were frequently used for network-



4 1. Introduction: Analyzing gene expression with networks

Figure 1.3: The typical workflow of gene expression data analysis.

based gene set analysis [30, 31]. However, PPIs take place post-translational and are thus
not necessarily reflected by detectable quantitative changes in mRNA transcription of the
interacting proteins. In contrast, such changes in mRNA transcript abundance result
directly from gene regulatory interactions (GRIs) between proteins and the DNA (see Ap-
pendix A.2 for experimental procedures to detect GRIs). GRIs are thus well-suited for the
analysis of transcriptomic data, as they yield straightforward explanations for observed
expression changes.
In the following, I describe in detail how networks of regulatory interactions can be con-
structed on a large scale and used for the analysis and interpretation of gene expression
data. Chapter 2 describes the construction of regulatory network models with a focus on
curation and inference approaches. Chapter 3 introduces methods for the detection of sub-
networks that are significantly altered in a comparative setup. The systematic biological
interpretation of the detected subnetworks is subject of Chapter 4.



Chapter 2

Construction of regulatory networks

2.1 Introduction

There are well-studied model organisms for which comprehensive and well-annotated reg-
ulatory networks are available, e.g. the RegulonDB for E. coli [32] and YEASTRACT for
S. cerevisiae [33]. However, for non-model and more complex organisms such a network
is often missing or at least incomplete. To complement the required information, several
approaches can be applied to construct a gene regulatory network (Figure 2.1). This can
be done using either extrinsic or intrinsic interactions of existing gene set catalogs.
Extrinsic approaches require external resources apart from the gene set definition. Fre-
quently used approaches are

1. Literature curation / mining,

2. Inference from experimental data, and

3. Cross-species transfer.

Literature curation is used to manually compile specific regulatory networks from relevant
scientific articles. It is the method of choice of major regulatory network databases to
derive reliable networks of suitable granularity. However, this typically comes at the price
of many man hours of curation and rarely guarantees completeness. Thus, it is subject of
ongoing research how the curation can be automated or at least supported by text-mining
methods [34].
Inference from experimental data reconstructs the GRN from genome-wide expression and
transcription factor binding data [35, for a comprehensive assessment of existing methods].
In case such data is available, it is an easy and fast alternative to the time-consuming
curation approach. Nevertheless, it requires to deal with indirect and false-positive effects
that usually accompany high-throughput data.
Cross-species transfer of regulatory networks [36,37] is not as frequently used, but is espe-
cially suited whenever a well-annotated network of an organism related to the one investi-
gated exists. A good example are the model organisms S. cerevisiae (budding yeast) and
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Figure 2.1: Overview of approaches to construct a gene regulatory network.

S. pombe (fission yeast). Unlike budding yeast, no large-scale regulatory network has been
constructed for fission yeast [38]. This suggests to transfer and incorporate the GRN in
studies comprising nearly identical experimental conditions, such as the two environmental
stress studies in both yeasts [39,40]. Transferring the regulatory interactions is particularly
suited in this case, as stress-induced expression changes in many genes are evolutionarily
conserved between these two rather distantly related yeasts [40].
An extrinsically defined network enables the incorporation of important prior knowledge.
However, this requires additional input which is not always easily available. This is the
reason that analysis methods relying only on expression data and gene set definition are
preferably used in practice. It is thus, in this regard, advantageous to exploit intrinsic
regulatory interactions of the gene sets. Although this is not applicable for set definitions
without annotated interactions like GO [22], pathway-based gene sets defined according to
databases like KEGG [41] and Reactome [42] contain usually a considerable number of such
interactions.
In the following, I discuss literature curation and data inference in more detail based on
recent publications in the field (Section 2.2 and 2.3). For further reading on network
transfer across species, the reader is referred to the PhD thesis of Robert Pesch [43]. The
integration of gene set intrinsic interactions is subject of Chapter 3.
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2.2 Compilation from scientific articles

This section describes how literature curation can be used to construct a regulatory network
for a specific biological process. In particular, it addresses the question how a detailed un-
derstanding, as available for the regulation of single genes, can be scaled-up to the level of
larger systems. The work has been presented on August 30th, 2013, at the 26th Interna-
tional Conference on Yeast Genetics and Molecular Biology. The following is based on its
original publication in the journal Nucleic Acids Research, 41(18):8452-63, October 2013.

Authors: Ludwig Geistlinger, Gergely Csaba, Simon Dirmeier, Robert Küffner, and Ralf
Zimmer

Title: A comprehensive gene regulatory network for the diauxic shift in S. cerevisiae

Abstract: Existing machine-readable resources for large-scale gene regulatory networks
usually do not provide context information characterizing the activating conditions for a
regulation and how targeted genes are affected. Although this information is essentially
required for data interpretation, available networks are often restricted to not condition-
dependent, non-quantitative, plain binary interactions as derived from high-throughput
screens. In this article, we present a comprehensive Petri net based regulatory network
that controls the diauxic shift in S. cerevisiae. For 100 specific enzymatic genes, we col-
lected regulations from public databases as well as identified and manually curated >400
relevant scientific articles. The resulting network consists of >300 multi-input regulatory
interactions providing: (i) activating conditions for the regulators; (ii) semi-quantitative
effects on their targets; and (iii) classification of the experimental evidence. The diauxic
shift network compiles widespread distributed regulatory information and is available in
an easy-to-use machine-readable form. Additionally, we developed a browsable system or-
ganizing the network into pathway maps, which allows to inspect and trace the evidence
for each annotated regulation in the model.

Author contributions: LG, SD and RK curated and annotated the regulatory network
from the literature and databases. GC implemented the annotation framework and created
the front-end based on the pathway maps designed by LG. LG and RK wrote the main
paper with suggestions from RZ. RK and RZ supervised the project.
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2.2.1 Introduction

Gene regulatory networks (GRNs) model the effects of transcription factors (TFs) on
the expression of their target genes (TGs). As large networks are collected in existing
databases, such as RegulonDB [44], YEASTRACT [45], and REDfly [46], it is tempting to use
them for the interpretation of large-scale gene and protein expression data.
However, to perform meaningful interpretation of such high-throughput transcriptomic and
proteomic data, GRNs need to be modeled at least by (i) defining the conditions under
which a regulation takes place or does not take place, and (ii) characterizing the effect on
the expression of the regulated TG.
The first requirement results from the fact that, to adapt to changing environmental condi-
tions, the cell usually responds with altered gene expression. For example, gene regulation
in baker’s yeast S. cerevisiae changes in response to different nutrients in the growth
medium [47]. Hence, the interpretation of gene expression measured under certain condi-
tions requires a dynamic condition-dependent definition of the enabled regulations – the
active subnetwork of all possible regulations.
The second requirement is due to the fact that genes, qualitatively and quantitatively, are
not regulated in a uniform way. On the one hand, again depending on the environmental
conditions, relevant genes are activated or repressed to a different extent. On the other
hand, combinatorial control of a TG by several TFs can have a non-trivial synergistic effect
[48,49]. Thus, to understand the observed expression in the data, that is to assign observed
expression changes to certain regulators, a detailed characterization of the regulatory ef-
fect on the TG expression is necessary. This includes the determination of the ’effect type’
(activation or inhibition) and the ’effect strength’ (weak or strong activation/inhibition)
as well as an appropriate combination of multi-input effects.
While both requirements are therefore essential, such context information characterizing
a regulation is often unknown or not annotated. Derived from high-throughput protein-
protein interaction or TF-binding experiments [50,51], the majority of available large-scale
regulatory networks consists of plain binary interactions, for example stating for a certain
TF F and its TG G that F interacts with G. The effect of these interactions on gene
expression is usually not further characterized. It is also unclear whether the interactions
take place under conditions different from the setup used in the respective experiments.
In this article, we propose a model for large-scale regulatory networks satisfying both
requirements and present a comprehensive realization of the model for transcriptional reg-
ulation of the diauxic shift in yeast.
S. cerevisiae is a facultative anaerobic organism preferably fermentating glucose to pro-
duce energy for fast growth. Subsequent to the depletion of glucose, fermenting yeasts
switch to slower respiratory growth on a non-fermentable carbon source like ethanol, lac-
tate, glycerol, or fatty acids. This involves a major reprogramming of gene regulation
that includes the deactiviation and activation of specific TFs, which in turn activate or
repress specific metabolic genes [47,52,53]. Many of the differentially regulated genes code
for enzymes, which metabolize the non-fermentable carbon source available in the growth
medium, and use the resulting products for the recreation of glucose via gluconeogenesis
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and the production of energy via the tricarboxylic acid (TCA) cycle.

2.2.2 Material and Methods

The yeast GRN

Experimental techniques

TFs activate or repress the expression of TGs in response to extra- and intracellular signals.
Such gene regulatory interactions (GRIs) between TFs and TGs can be experimentally de-
termined either by directly confirming the TF binding to the regulatory region of the TG,
or indirectly inferred from TG expression changes following a TF perturbation.

Direct evidence (TF binding): Physical binding of a TF to the promoter of its TG can be
determined using several techniques such as wild type versus TG promoter mutant analysis
via a lacZ -fusion assay [54] or northern blot [55], DNA footprinting [56], electrophoretic
mobility shift assay [57], and chromatin immunoprecipitation [58, ChIP].
The combination of ChIP with the microarray technology [59, ChIP-chip] allows the
genome-wide identification of TF-binding sites. ChIP-chip experiments have been com-
prehensively performed for all yeast TFs [60,61].
Putative TGs of a TF can be predicted based on high sequence similarity to its binding
sites at the promoter of known TGs. Consensus sequences of TF-binding sites, represented
as position weight matrices (PWMs), have been computed for many known yeast TFs and
stored in databases like TRANSFAC [62] and JASPAR [63]. However, PWM-based GRIs are
hypothetical, and only a fraction of them can be experimentally validated (Figure 2.2).
It is frequently observed that the binding of a certain TF to the promoter of its TG is
ineffective, i.e. does not result in a observable quantitative expression change of the TG.
This has several reasons, either other TFs might be required to bind or post-translational
modifications (for example phosphorylation of the TF) or other signals might be needed to
activate the regulatory function of the TF [64]. Indeed, as depicted in Figure 2.2, <10% of
known direct physical bindings are associated with a subsequent quantitative fold change
of the corresponding TG.

Indirect evidence (TG expression): In contrast to binding studies, regulatory effects (acti-
vation or inhibition of TG) can be derived and quantified (fold change) from gene expression
studies, where certain TFs have been either knocked out, over-expressed or in other ways
functionally modified. Frequently used experimental techniques include lacZ -fusion assays,
northern blot, real-time PCR [65], and microarrays [66]. The most comprehensive series
of yeast TF knockout microarrays has been performed by Hu et al. [67], where significant
expression changes of putative TGs have been assigned to the individual deletion of almost
every single yeast TF.
A large fraction of effects observed exclusively in such TF perturbation studies are assumed
to be indirect, i.e. the expression change of a TG is a secondary effect, which is due to
the deregulation of the TF caused by another knockout. Indeed, <12% of known indirect
effects are associated with direct physical binding (Figure 2.2).
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Figure 2.2: Overlaps between predicted, direct and indirect gene regulatory interac-
tions (GRIs) in S. cerevisiae. GRIs with experimental evidence were taken from YEASTRACT

(microarray and binding studies). Predictions were performed for all 160 yeast TF PWMs in JAS-
PAR for the promoter regions of all yeast genes (using the R package cureos, default settings).
The percentage of predictions, which have an experimental evidence for binding is 5.2% (5,025 of
96,097). On the other hand, 9.3% (2,336 of 25,101) bindings are associated with a change of TG
expression.

Confidence classes of experimental evidence: Whether the confidence in reported GRIs is
’low’ or ’high’ depends on the available experimental evidence. Usually, combined evidence
of TF binding and TG expression, i.e. the TF binds to the promoter of the TG and a per-
turbation of the TF results in an expression change of the TG, increases the confidence.
In contrast, GRIs with evidence for either binding or expression are not highly reliable per
se (see again Figure 2.2). The same holds for additional evidence from consensus analyses
and author statements for which the experimental evidence cannot be traced. We thus dis-
criminate in the following between ’high’ confidence regulations having combined evidence
for binding and expression, and ’low’ confidence regulations in all other cases.

Resources

We exploited three representative resources for yeast GRIs: The Saccharomyces Genome
Database [68, SGD] is the source for a variety of genomic and biological information on
S. cerevisiae and contains regulatory information for many yeast genes (as quantified in
Figure 2.3b). Besides other widespread biological facts, including post-transcriptional reg-
ulation, metabolic function and orthology to genes in other organisms, the SGD summary
paragraph on a specific yeast gene often contains different aspects of transcriptional regu-
lation (upstream signals, putative binding sites, validated TF binding, expression effects).
However, this valuable information is not easy accessible: the gene summaries are written
in free-text and the aspects described differ considerably between genes. Manual curation
is thus required to extract this information.



2.2 Compilation from scientific articles 11

Compared with SGD, YEASTRACT [45] is a specific database for transcriptional regulation
in S. cerevisiae, in which GRIs are uniformly represented as binary TF-TG associations
in a machine-readable format (obtainable as tabular flat file). Mainly derived from recent
genome-wide TF binding and TF perturbation experiments, YEASTRACT aims to collect
all TFs either binding to a particular TG, or show expression changes of the TG when
perturbed. Although YEASTRACT stores a large number of GRIs (Figure 2.2), it does not
provide context information characterizing under which conditions the GRIs take place
and how targeted genes are affected.
In contrast to YEASTRACT, Herrgard et al. [69] have curated the nutrient-controlled regula-
tion of yeast genes involved in metabolic pathways. Mainly derived from detailed studies
with a focus on one or a few specific genes, it presumably contains significantly less false
positive GRIs as compared with untargeted genome-wide experiments. Each GRI is clas-
sified (activation/inhibition), frequently assigned to a nutrient-based context (extra- and
intracellular signals), and described by a boolean rule (e.g. if SIGNAL and TF then TG).
Although enriched with required context information, the GRN is sparse: only a small
fraction of the vast amount of articles existing on the regulation of metabolic yeast genes
has been taken into account.

The diauxic shift GRN

Curation

We curated a GRN that controls the diauxic shift in three steps (our approach is illustrated
in Figure 2.3a and the information collected in each step is detailed in Figure 2.3b):

(1) TG set determination: We collected current reviews on transcriptional regulation of
the diauxic shift to define the set of involved TGs. We concentrated on Zaman et al. [47],
an extensive description of how Saccharomyces responds to different nutrients, Hiltunen
et al. [70] and Gurvitz and Rottensteiner [71] for transcriptional regulation of fatty acid
metabolism and oleate induction, and especially on Schüller [52] and Turcotte et al. [53],
who comprehensively reviewed the transcriptional control of non-fermentative metabolism
in S. cerevisiae. Based on this literature, we determined the involved metabolic processes
and the associated enzymatic TGs.

(2) GRI collection: We systematically queried existing resources, i.e. SGD, YEASTRACT and
Herrgard et al. [69], for information on the transcriptional regulation of the identified TGs.
The representation of the information available in each of the three resources is described
in more detail in the previous section.
In SGD, we used the summary site for each TG and manually screened the Description

slot and the Summary Paragraph (if existing) for regulatory information. Additionally, we
collected all references to the primary literature listed on that page.
In YEASTRACT, we retrieved for each TG all regulating TFs using the Search for TFs

functionality. From the resulting list of binary TF-TG associations grouped by experi-
mental evidence (direct or indirect, see previous section Experimental techniques), we also
collected all references assigned to the associations for experimental support.
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(a) (b)

Figure 2.3: Curation approach. (a) Protocol: Based on a set of selected reviews, we defined
the set of diauxic shift TGs. Each gene was queried for regulatory information in SGD, YEASTRACT,
and Herrgard et al. [69]. The GRN was compiled from information directly retrieved from the
resources and from the curation of all extracted references. The information collected in each step
of our approach is detailed in (b). Slots on the x-axis from left to right: (1) Number of diauxic
shift TGs for which regulatory information could be annotated; (2)-(6) Number of regulations
with (2) either Signal or TF annotated; (3) Signal and TF; (4) regulation type: activation or
inhibition; (5) effect strength: weak, medium, strong; (6) High confidence, see Material and
Methods; (7) Number of articles in which regulations could be annotated.

Eventually, we restricted the curation of Herrgard et al. for all metabolic yeast genes on the
information available for the diauxic shift TGs. That yielded a list of regulatory TF-TG
relationships (classified as activating or repressing) that are enabled under certain condi-
tions, i.e. triggered by a particular extra- or intracellular signal. Again, we collected all
cited references.

(3) GRN compilation: We compiled the GRN via combination of the regulatory informa-
tion that was directly retrieved from the resources or curated from the references collected
in Step 2.
The combination of the directly retrieved information initially required the identification
of GRIs contained in two or all three resources. For such well-studied GRIs, the resources
often complemented each other. For example, a binary TF-TG association from YEASTRACT

could be characterized in more detail with features retrieved from SGD or Herrgard et al.
such as regulation sign (+/-), effect strength and the enabling context. In addition, GRIs
with low confidence in one resource alone frequently gained high confidence when evidence
was combined from several resources (see previous section Confidence classes of experi-
mental evidence).
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On the other hand, curation of the collected references often allowed the annotation of ad-
ditional features and a more detailed characterization, especially for poorly studied GRIs
contained in only one resource. Curation was performed down to the actual experimen-
tal evidence for a GRI under investigation, i.e. references were traced iteratively until the
experimental confirmation of the regulation was found. In general, we aimed at the most
detailed GRI characterization possible from literature curation, for which we propose a
general representation in the next section.

Representation

We integrate the curated GRIs into discrete regulation models, i.e. models in which discrete
states of the regulators (TFs and signals) result in discrete quantity states of the regulated
gene (for instance a low, medium, or high expression) depending on the regulation type.
We use Petri net models to efficiently represent the information typically available in the
literature. Petri nets are well-established graphical and mathematical models [72] and have
been extensively applied to biochemical processes, like signal transduction pathways [73,74]
and gene regulatory networks [75, 76]. The extension of Petri net models with fuzzy logic
[77] in the PNFL approach [78] allows a more detailed semi-quantitative representation of
in- and output of the Petri net transitions, which are defined by simple rule sets according
to the regulation type [79,80]. Thus, we replace the frequently used representation of GRIs
as binary TF-TG interactions by multi-input Petri net transitions, in which the required
context knowledge (activating conditions, combinatorial control, and effects on TG expres-
sion) can be integrated by accurate parametrization of in- and output and definition of the
transition type. The parametrization of such transcriptional transitions is based on a dif-
ferential regulation setting, where the presence or absence of a signal induces an enhanced
or reduced activity of specific TFs, which in turn regulate their TGs differentially (up or
down, as compared to the corresponding opposite signal state).

Input: The input of a transcriptional transition is composed on the one hand by the context
signals, which trigger the regulation, and, on the other hand, by the TFs, which perform
the actual regulation of the TG under investigation. For example, the depletion of glucose
and the availability of a non-fermentable carbon source (the signals) trigger the derepres-
sion of enzymes involved in non-fermentative metabolism (the TGs) by specific TFs.
Signals can be extra- or intracellular messenger molecules (such as cAMP), nutritional
compositions (for instance, growth media lacking glucose), environmental and experimen-
tal conditions (such as high pH or heat stress) and even cellular states (such as retrograde
regulation depending on the functional state of the mitochondria).
Based on the absence or presence of given signal(s), the TFs are classified as up- or
down-regulated in discrete states ’weak’, ’medium’ or ’strong’. The special states ’over-
expression’ (for up) and ’knockout’ (for down) were annotated as well (see Figure 2.4 for
an example).
In general, the signal and TF assignments define the conditions under which the transition
is enabled.

Output: Analogously, TGs are classified as up- or down-regulated by a given transition
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with a ’weak’, ’medium’ or ’strong’ effect strength. Intuitively, this models the fold change
in the transcription of the TG. Although the effect strength might differ considerably be-
tween datasets in range and distribution, the literature often explicitly states whether a
regulation has a weak or strong effect on TG expression. In cases where an exact fold
change is reported, we discretize the fold change according to empiric standards: ’weak’
regulation refers to expression changes below 2-fold, ’medium’ between 2- and 5-fold, and
’strong’ above 5-fold. The transition type results immediately from a given in- and output
configuration, e.g. a TF knockout, resulting in a weak upregulation of the TG, indicates a
weak inhibition.

Annotation framework

In order to collect regulatory knowledge effectively from publications, we performed the
curation using our in-house annotation software RelAnn (Csaba et al., unpublished). The
web-based tool was developed for general text-based annotations of different kinds of rela-
tions within a systematic framework.
The main design principles of RelAnn are:

• pre-indexing of defined biological entities (genes, proteins, etc.) in the literature;

• simple, click-based annotations to relate the entities to each other; and

• representation of relations as Petri net transitions.

As illustrated in Figure 2.4, we use RelAnn for the transformation of literature knowledge
to the representation of GRIs as semi-quantitative Petri net transitions (as described in
the previous section Representation).
Subsequent to the pre-indexing of the relevant text using a named entity search, occurrences
of defined entities are used for the definition of input (regulators, i.e. TFs and signals),
output (regulatees, i.e. TGs) and experimental evidence for a regulatory transition. Thus,
every part of the transition (regulatory, regulatees, evidence) is linked to some phrase in
a scientific article of the PUBMED database, thereby making the source of the knowledge
traceable. In addition, in- and output specification allow the assignment of the semi-
quantitative type of needed (input) or induced (output) change associated to the regulation,
to wit ’up’ or ’down’, with ’weak’, ’medium’, or ’strong’ effect strength (bottom right of
Figure 2.4b).
A special feature of RelAnn is the organization of all components (gene, signal, evidence,
regulation and parameter types) in ontologies enabling powerful queries and specifications
using generalization and specialization. For example, the regulation annotated in Figure 2.4
can be not only captured by searching for all regulations having ’ethanol’ as input, but
also by searching for all regulations having a ’non-fermentable carbon source’ as input.
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Figure 2.4: From pure text to semi-quantitative models of gene regulatory interac-
tions. Within our annotation framework, the pre-indexed regulatory entities in (a) can be easily
selected and used for the parametrization in (b) of input and output of the Petri net model of
the gene regulatory interaction in (c). In the same manner, experimental evidence can easily
assigned to the model.

2.2.3 Results

Descriptive analysis

We have curated a gene regulatory network for the diauxic shift in S. cerevisiae. As il-
lustrated in Table 2.1, the curation yielded 1,133 text-based annotations of regulatory
interactions in 410 scientific articles. The resulting 322 gene regulatory interactions cover
the core processes taking place during the switch from fermentation to respiration. This
includes the regeneration of fermentable glucose (gluconeogenesis), oxidation of glycolytic
products (TCA cycle), and catabolism of non-fermentable carbon sources (ethanol, glyc-
erol, lactate, acetate and fatty acids). In addition, we characterized the upstream regu-
lation events of glucose signaling and the corresponding transcriptional regulation of the
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Table 2.1: Annotation summary. Shown are the numbers for the total annotation
outcome and for the corresponding subprocesses of the diauxic shift. TF: Transcription
Factor.

Genes TFs Interactions Annotations Articles
high1 all

Total 100 68 212 322 1133 410

Gluconeogenesis 18 37 56 77 252 117
Fatty acid metabolism 19 20 34 57 203 79
TCA Cycle 23 24 29 52 146 64
Glyoxylate cycle 5 27 16 26 102 67
Ethanol metabolism 5 17 13 16 108 76
Glycerol metabolism 3 19 9 18 36 24
Lactate metabolism 3 10 11 11 38 21

Glucose signaling 11 22 25 35 147 71
TF-TF 14 24 19 31 101 69
1 High-confidence gene regulatory interactions have experimental evidence for binding and

expression (Material and Methods). All interactions include low - and high-confidence
interactions.

key signal proteins that act once glucose is depleted. In total, our network connects 100
TGs with 72 regulating TFs driving the transcriptional response to >50 different extra-
and intracellular signal classes. The transcriptional regulation of the regulators themselves
has been investigated and integrated into the network.
To estimate the completeness of our network, we extrapolated the expected number of
interactions contained in an infinite number of articles relevant for the diauxic shift. Using
a first order Hill equation, we estimated that our network is 71% complete (Supplementary
Figure S1). The curation of further articles is expected to increase the network size only
slightly. For instance, doubling the number of articles by curating 410 additional articles
would increase the completeness by just 11 percentage points.

Visualization

The systematic Petri net representation of GRIs in our annotation framework is visualized
in schematic flowcharts of the subprocesses of the diauxic shift (Figure 2.5), which we
created using the CellDesigner software [81].
As exemplarily illustrated for the metabolism of fatty acids in Figure 2.6, the pathway maps
are structured by a regulation, transcription and metabolic layer assigned to different cell
compartments (cytoplasm, nucleus, peroxisome, and mitochondrium). Thus, the maps are
not restricted to the pure illustration of the signals and TFs (regulation layer) regulating
the transcription of the mostly enzymatic genes to the corresponding mRNA transcripts
(transcription layer), but also visualize the metabolic reactions that are subject to the
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Figure 2.5: The diauxic shift and its subprocesses. On depletion of glucose, yeast switches
from fermentation to respiratory growth on non-fermentable carbon sources such as glycerol,
lactate, ethanol, and fatty acids. Resulting pyruvate and acetyl-CoA is used to restore glucose
and produce energy via gluconeogenesis and the TCA cycle, respectively. As described in the
main text, we created pathway maps for each involved subprocess using CellDesigner [81].
The maps are organized as exemplarily depicted in Figure 2.6 and each regulation is clickable
and connected to the corresponding annotations designed in our annotation system (Figure 2.4),
enabling a seamless tracing of the evidence from the schematic representation of a regulation in
one of the maps down to the exact place in the curated literature.

transcriptional control.
Each transcriptional transition in the CellDesigner maps is clickable and connected to the
corresponding annotations, enabling a seamless tracing of the evidence from the schematic
representation of a regulation in one of the maps down to the exact place in the curated
literature.
The interactive network can be accessed under http://services.bio.ifi.lmu.de/diauxicGRN.

http://services.bio.ifi.lmu.de/diauxicGRN
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Figure 2.6: Pathway map of fatty acid metabolism. The map is compartmentalized
(cytoplasm, peroxisome, mitochondrium, and nucleus) and composed from three layers: the reg-
ulation layer on the right, which contains the TFs (light green rectangles) and the signals (green
and purple ellipses for metabolites and conditions, respectively) that govern the transcription
of genes (yellow rectangles) to their corresponding transcripts (green rhomboids) in the middle.
The metabolic layer on the left depicts the translated enzymes (light green rectangles) that cat-
alyze the interconversion of substrates and products (green ellipses), some of which are needed
or produced from other subprocesses (blue hexagons) of the diauxic shift.
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Comparison to existing resources

General comparison

Existing resources on the transcriptional regulation in S. cerevisiae differ considerably
in the way how gene regulatory interactions are represented (see Material and Methods
for an overview). Concentrating on the diauxic shift, we combined and extended the
representations in SGD [68], YEASTRACT [45], and Herrgard et al. [69], especially improving
on three major aspects:

1. Context, determination of the conditions under which a regulation is enabled

2. Effect, characterization of regulation type and strength

3. Evidence, collection and classification of experimental support

Considering these aspects, the amount of information that the respective resources pro-
vided in each step of our curation approach is illustrated in Figure 2.3.
Of the 100 genes classified beforehand as relevant for the diauxic shift (see Material and
Methods), SGD provides regulatory information on 59 genes, Herrgard et al. on 80 genes,
and YEASTRACT on all 100 genes. A resource is defined to provide regulatory information
on a gene, if it either has a regulating signal or TF assigned.
In YEASTRACT, each diauxic shift gene has a number of regulating TFs annotated, yielding
in total 1,567 binary interactions (i.e. one-to-one TF-TG associations). Context informa-
tion, such as extra- or intracellular signals, which turn the regulating TFs active, is not
available. However, this is an essential aspect as the transcriptional response of yeast to
different environmental conditions varies drastically [39], and most yeast TFs are known
to change their activity in dependence on the environmental conditions [61]. In SGD and
Herrgard et al. the fraction of regulations with thorough context definition (signal and TF)
out of all regulations with signal or TF is small (44% and 29%, respectively). In contrast,
the regulations in our network have a context annotation in >96% of the cases.
Second, we characterized the regulatory effect in more detail via annotation of the effect
type and strength. That means we determined whether a regulation results in a weak,
medium or strong activation or inhibition of the affected gene. This feature enables a more
fine-grained interpretation and prediction of the expression change of a TG in dependence
on the TF activity. Herrgard et al. and SGD typically provide regulations with an anno-
tated effect type (activation/inhibition), whereas YEASTRACT does not distinguish between
different interaction types. The semi-quantitative characterization of the effect strength is
a novel feature of our network, and little is annotated here in other resources.
Third, we designed a classification to judge how reliable the experimental evidence of a
regulatory interaction is. As defined in Material and Methods, a regulation with ’high’
confidence is given if the corresponding TF has been experimentally determined to bind to
the promoter of its TG and the TG is expressed differentially when the TF is perturbed.
Our network contains 66% interactions with high confidence, compared with <10% in the
other resources.
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Concentrating on the diauxic shift genes, our work is based on by far the largest number of
articles in which regulations of these genes could be annotated (410 articles, compared with
242, 126, and 85 articles by YEASTRACT, SGD, and Herrgard et al., respectively). Although
this implies that the quantity of curated articles is crucial for a comprehensive character-
ization, it is also important which articles are considered. Interestingly, we observed that
the five review articles on transcriptional regulation of the diauxic shift (see Material and
Methods) provide more regulatory information than SGD (see again Figure 2.3).

PCK1 example

Considering the example of PCK1 regulation, a key enzyme of gluconeogenesis, the differ-
ences in the three existing resources – with respect of the three aspects context, effect, and
evidence elucidated in the previous section – are illustrated in Figure 2.7.
SGD notes, besides a variety of biological information on PCK1, putative binding sites for
the TFs MIG1, CAT8, MCM1, and the HAP complex. Furthermore, it is stated that
glucose represses PCK1 expression, which seems to be mediated by Ras/cAMP signaling.
YEASTRACT yields a relatively large number of additional TFs experimentally determined
to bind to the PCK1 promoter, and TFs for which PCK1 shows a differential expression in
TF mutant versus wild type analyses. Herrgard et al. lists that CAT8 and SIP4 activate
PCK1. As explained earlier in the text, we extended the current representations of PCK1
regulation as follows.
First, we performed an accurate context assignment. In the PCK1 example, SGD, YEASTRACT,
and Herrgard et al. indicate that CAT8 regulates PCK1. However, this regulation takes
place only during growth on non-fermentable carbon sources, in particular on ethanol [53] –
a crucial context information only included in our work (Figure 2.7c). As CAT8 is inactive
under standard conditions (glucose medium), a CAT8 knockout would not influence PCK1
expression at all [64].
Second, we discriminate for all regulations in our network between weak, medium or strong
activation and inhibition (correspondingly depicted as +/++/+++ and -/--/--- in Fig-
ure 2.7c).
Third, we classified the experimental evidence for a regulation to have low or high con-
fidence in order to distinguish biological regulation in vivo from ineffective or indirect
regulation. In the PCK1 example, all regulatory interactions from SGD, YEASTRACT, and
Herrgard et al. have low confidence per se. The four putative TF-binding sites in the PCK1
promoter mentioned by SGD are not experimentally confirmed by a binding technique like
ChIP (see Material and Methods). In YEASTRACT, one subset of TFs is shown to bind
PCK1, but a regulatory effect on expression of PCK1 is not annotated. Vice versa, the
subset of TFs annotated to have an expression effect lacks information on binding. Sim-
ilarly, Herrgard et al. cites an expression study for the regulation of PCK1 by CAT8; for
regulation by SIP4 no evidence is annotated.
In part, we increased the confidence in these regulations by collecting additional evidence
(for CAT8, SIP4, and RDS2). We also identified new regulations with high confidence
(ERT1 and GSM1) by directly querying PUBMED for regulation of PCK1. On the other
hand, we determined regulations that are indirect. For example, the HAP2/3/4/5 activa-
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Figure 2.7: Current representations of PCK1 regulation. (a) SGD states that the PCK1
upstream region contains consensus binding sites for MIG1, the HAP complex, CAT8 and MCM1.
Further, that PCK1 is glucose-repressed, which seems to be mediated by Ras/cAMP; (b) Her-
rgard et al. [69] state that PCK1 is CAT8/SIP4 activated, with expression evidence for the activa-
tion by CAT8, however, no annotated evidence for the activation by SIP4; (c) Our work extends
current views by accurate context assignment and effect characterization (+/-) and quantification
(weak, medium, strong) for each regulation; (d) YEASTRACT lists a variety of direct and indirect
effects, which are not further detailed. In addition, combined evidence is collected for strong
confidence regulations (binding & expression; continuous lines) and weak confidence regulations
(binding or expression only; dashed lines).

tor complex and the MIG1 glucose repressor act indirectly via regulation of CAT8, rather
than by direct regulation of PCK1 [53]. Lastly, we discarded putative regulators not
biologically plausible to regulate PCK1, i.e. TFs known to exclusively regulate TGs func-
tionally unrelated to PCK1. These are presumably false positives from high-throughput
experiments (e.g. ASH1, GCN4 and STE12).

2.2.4 Discussion

The gene regulatory network of baker’s yeast S. cerevisiae has been comprehensively stud-
ied during the past decades. To provide a machine-readable review of the current diauxic
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shift knowledge and to investigate how it could be represented to model the regulation of
important molecular processes, we addressed the following questions:

1. Do the existing resources already fully characterize the regulation of a given process?

2. If not, how can such a comprehensive characterization be achieved?

3. Which level of granularity is best suited to represent the volume and detail of the
available heterogeneous information?

For these questions, we considered different representative resources such as the SGD [68]
that provides, for one gene at a time, a brief summary of major regulatory impacts such
as extra- and intracellular signals. YEASTRACT [45], on the other hand, is a repository for
binary GRIs (i.e. one-to-one TF-TG associations), mainly derived from published high-
throughput TF binding [61] and perturbation experiments [67]. In contrast, Herrgard et
al. [69] have manually curated the transcriptional regulation of metabolic yeast genes in
more detail from the literature, annotating additional features such as the interaction type
(activation or inhibition).
As all three resources have a different focus, they thus provide characteristic information on
different aspects of gene regulation that we combined to obtain a more complete picture.
Thus, we first evaluated to which extent the integration of the heterogeneous resources
yields a comprehensive, yet detailed characterization of a process-scale gene regulatory
network. As a showcase, we chose the particularly well-studied transcriptional regulation
of switching from fermentation to respiration, the diauxic shift in yeast.
Based on current reviews on transcriptional regulation of the diauxic shift, we defined
the set of 100 TGs whose gene products perform relevant steps of the shift such as the
enzymatic conversion of metabolites. For this gene set, we aimed to retrieve details on
their regulation from the three resources. That involves not only the regulators affect-
ing a given TG, but also the conditions under which the TG is affected and whether the
gene is activated or inhibited by this relationship. Although a large number of raw bi-
nary TF-TG regulatory interactions can be obtained from YEASTRACT, their corresponding
context information necessary for a detailed understanding of the interaction could only
partially annotated using information from SGD and Herrgard et al. Although each of the
three resources cited a large part of the relevant literature as evidence for the regulations,
they did not fully exploit the regulatory context information described in the literature.
Consequently, thorough manual re-curation of the cited scientific articles, i.e. the full text
including tables and figures, was necessary to obtain the activation context of the regula-
tor(s), potential interplay between regulators, the regulation type (activation or inhibition),
and the experimental evidence.
We thus dealt with the first two questions by performing a hierarchical curation approach
whereby we compiled a comprehensive set of process-relevant genes, extracted and inte-
grated the regulatory information available for these genes from current databases and
resources, and finally complemented the obtained regulatory interactions by a thorough
manual literature curation.
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We estimate that our network, result of an exhaustive databases and literature search,
captures >70% of the complete regulatory network affecting genes involved in the diauxic
shift. Covering each interaction more than three times on average, we reached a satura-
tion degree that it would, by extrapolation, need twice the number of currently considered
articles to achieve 80% completeness.
Efficiently scaling-up from process-specific to organism-wide regulatory networks requires
authors and data resources to accurately and uniformly annotate context information when
reporting gene regulatory information. Using established machine-readable formats like
SBML [82] would then allow a semi-automated processing in which expert intervention
and curation is only necessary when compiling regulatory information from conflicting
studies.
Addressing the third question, we compiled information on the activation context of TFs
and their effect strength on their targets. The latter is often stated in terms of fold changes
or discrete quantity changes of the TGs (e.g. ”In a yeast strain deleted for ADR1, expres-
sion of ADH2 was found to be strongly decreased.”). Although such semi-quantitative
information was abundantly found in the literature, kinetic parameters as required for
quantitative modeling with ordinary differential equations (ODEs) were only rarely re-
ported.
We therefore suggested an intermediate representation of GRIs that is beyond current
coarse-grained, purely qualitative characterization; on the other hand, of course, it does
not match the fine-grained quantitative ODE models.
In such a representation, an interaction between one or more TFs and a TG is character-
ized in dependence on the activation context of the TFs and by the semi-quantitative effect
on corresponding TGs. This seems to strike the balance between striving for a detailed
model granularity, and optimally and comprehensively exploiting the available knowledge
on the other hand. This also enables a model-based data view, i.e. the model can be tested
whether the annotated, and thus expected, behavior of regulations agrees with the observed
behavior in a particular dataset of gene expression measurements under investigation.
The suggested representation is exploited in our resulting diauxic shift network, compris-
ing >300 multi-input regulations that also account for combinatorial control by more than
one regulator. Available in a machine-readable flat format, it is readily usable in network-
based approaches for the interpretation of gene expression data. As a front end, we further
provide interactive pathways maps, enabling intuitive exploration of the network modules
integrated into our annotation system, where the evidence for each regulation can be en-
tered or retrieved down to the exact reference position in the primary literature. Our
system can serve as a starting point to similarly annotate and incorporate additional pro-
cesses, e.g. all processes subject to glucose control, as the addition of new annotations to
existing transitions and pathway maps is straightforward and can be interconnected to the
already existing maps.

The system and all accompanying resources are available under
http://services.bio.ifi.lmu.de/diauxicGRN.
Supplementary Figure S1 is available at NAR online.

http://services.bio.ifi.lmu.de/diauxicGRN
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2.3 Inference from experimental data

This section reviews existing methods for regulatory network inference and shows that they
are significantly skewed towards master regulators. A recalibration strategy is introduced
and applied, yielding an accurate regulatory network for yeast. The following is based on
its original publication in the journal Bioinformatics, 31(17):2836-43, September 2015.

Authors: Tobias Petri, Stefan Altmann, Ludwig Geistlinger, Ralf Zimmer, and Robert
Küffner

Title: Addressing false discoveries in network inference

Abstract: Experimentally determined gene regulatory networks can be enriched by com-
putational inference from high-throughput expression profiles. However, the prediction of
regulatory interactions is severely impaired by indirect and spurious effects, particularly
for eukaryotes. Recently published methods report improved predictions by exploiting the
a priori known targets of a regulator (its local topology) in addition to expression profiles.
We find that methods exploiting known targets show an unexpectedly high rate of false
discoveries. This leads to inflated performance estimates and the prediction of an exces-
sive number of new interactions for regulators with many known targets. These issues are
hidden from common evaluation and cross-validation setups, which is due to Simpson’s
paradox. We suggest a confidence score recalibration method (CoRe) that reduces the
false discovery rate and enables a reliable performance estimation. CoRe considerably im-
proves the results of network inference methods that exploit known targets. Predictions
then display the biological process specificity of regulators more correctly and enable the
inference of accurate genome-wide regulatory networks in eukaryotes. For yeast, we pro-
pose a network with more than 22,000 confident interactions. We point out that machine
learning approaches outside of the area of network inference may be affected as well.

Author contributions: TP, SA, LG and RK compiled the data and conducted exper-
iments. TP and RK developed the correction method and modular visualization of the
yeast network. Result network properties were analyzed and evaluated by RK and TP. LG
provided a functional interpretation and analysis of the network. TP, LG and RK wrote
the paper with suggestions from RZ. RK and RZ supervised the project.
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2.3.1 Introduction

Gene regulatory networks (GRNs) consist of interactions of regulators such as transcription
factors (TFs) that physically bind to specific nucleotide sequences to regulate the expres-
sion of target genes. GRNs can be experimentally derived from TF-binding studies [83]
such as Chromatin Immuno-Precipitation (ChIP, [84]) or DNase footprinting [85]. A large
fraction of the interactions reported by these approaches are not associated with changes in
target expression [86]. On the other hand, expression changes in potential TF targets can
be detected from TF-knockout profiles [64]. This approach, however, is prone to indirect
or spurious effects [67].
Although the number of conducted TF-binding and TF-knockout studies is growing [87]
the discovery of novel regulations detected with each additional study decreases. Thus, a
combination of experimental results and computational inference approaches is likely to
provide more comprehensive networks.
Many inference methods use expression data exclusively. An interaction is predicted if a TF
and its putative target are coexpressed. Such expression-based approaches infer prokary-
otic networks successfully [88–91]. However, they perform hardly better than random for
inference of eukaryotic networks [35,67,90,92–95], although they can achieve useful results
in special cases (e.g. for respiratory genes, [90]). Interactions in eukaryotes are difficult to
infer as observable dependencies between the expression of regulator and target are weaker
and context-dependent. One reason is the increased level of complexity and the combina-
torial nature of the eukaryotic regulation of transcription [85].
The prediction of novel interactions can be improved for prokaryotic and in-silico data by
exploiting a priori known interactions (local topology priors, [91]). This allows to deter-
mine whether a given TF is active based on the expression of its known targets [96, 97]
enabling a more reliable prediction of novel targets [98–100].
Here, we investigate whether eukaryotic networks are accurately inferred by methods ex-
ploiting topology priors. First, we demonstrate that many existing performance evaluations
are misleading. They are not adequate for local topology methods and overestimate net-
work quality substantially. This effect is due to Simpson’s Paradox, well-known in causal
theory [101, 102]. Second, this also strongly influences the quality and composition of in-
ferred networks. We develop a simple recalibration strategy and demonstrate how it can
be applied for the inference of a confident genome-scale regulatory network in yeast.

2.3.2 Material and Methods

Network inference methods score all pairs of regulators and putative target genes to quan-
tify the confidence that a given pair represents a true interaction. For both types of
inference methods discussed here, namely expression-based methods and local topology
methods, confident predictions are selected by applying a unified cutoff. Expression-based
methods are based exclusively on expression data and ignore known interactions. Local
topology methods use expression data and known interactions (topology priors) to train a
so-called local model per regulator (Figure 2.8).
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Figure 2.8: Outline of the recalibration approach. Based on the known network (a), a
regulator-specific model (b) is trained to predict potential targets for this regulator. This results
in a confidence score distribution for each regulator (c). Additionally, we generate random
networks (d) maintaining in- and out-degrees from the original network and train models (e)
for each random topology in the same way as for the original network. For each TF out-degree,
we combine resulting random confidence scores into a joint distribution (f). Finally, we compare
the two distributions c and f based on their respective medians (med) and maxima (max). We
minimize false discoveries by selecting regulations (shaded area in (g)) that exceed values observed
for random networks.

Data

We obtained five yeast expression compendia from (1) the 5th DREAM Challenge (challenge
4, [35]), (2) the Many Microbe Microarray Database (M3D, [103]), (3) the study of Hu et
al. [67], (4) the study of Chua et al. [64] and (5) the Gene Expression Omnibus (GEO, [104]).
Case-control pairs were selected from 2442 yeast microarrays as described by Küffner et
al. [93] to compute log2 fold-changes. Thereby, we obtained a matrix M ∈ Rp×n with
p = 1829 microarray pairs and n = 5402 genes. We normalize M by two successive z-score
transformations of rows and columns, respectively.
We then collected experimentally supported interactions from the YEASTRACT database [45],
augmented by a study of MacIsaac et al. [105]. We filtered genes that were not contained
in the expression data. We excluded TFs regulating less than 6 known targets to enable
training and cross-validation. The resulting reference standard contains 153 TFs, 4870
target genes and 24, 462 interactions derived from 356 TF-target binding assays.

Training and assessment of local topologies

A regulatory interaction network of n genes G is a directed graph N = (G, I), G = R ∪ T
where R is the set of regulators, T is the set of targets and I ⊆ R × T are regulatory
interactions. Each instance of I is a regulator-target pair (r, t) ∈ R × T that is labeled
with a weight wrt denoting the number of TF-binding studies that support interaction
(r, t).
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Machine learning models are trained to predict novel regulations (r, t) ∈ R× T . Based on
the known interactions, each putative regulation is labeled by lrt, where lrt is 1 if wrt ≥ 1
and 0 otherwise. The matrix of fold-changes M = (mij) ∈ Rp×n represents the feature
vectors. The value mij is the fold-change for gene j ∈ G in array pair i and we denote row
i by Mi· and column j by M·j. Then, the feature vector for (r, t) is given by M.t.
We train |R| local models, each predicting confidence estimates ĉrt specific for a single
regulator r of putative regulations (r, t):

sr : Rp → R, sr(M.t) = ĉrt. (2.1)

Alternatively, a single global model is trained for all regulators using combined feature
vectors, i.e. feature vectors of regulator and target are concatenated to represent an inter-
action

s : Rp+p → R, s(M.r ⊕M.t) = ĉrt. (2.2)

From all regulations, we build k splits for each model stratified with respect to their label
distribution. Cross-validation (here: 3-CV) is performed by retaining one split at a time
and training a model on the remaining k − 1 splits, so that interactions are either used
in evaluation or training, but not both. Every split results in |R| ∗ |T | confidence values
ĉrt that score all regulations (r, t) ∈ R × T . For regulator r we denote the distribution of
these confidence values as Dr (Figure 2.8b and c).
The quality of inferred networks is assessed after integrating the predictions across all
regulators. Assessment compares predictions to a reference standard of a priori known
interactions, for instance by the area under the receiver operator characteristics curve
(AUC). An AUC of 1.0 indicates that the confidence scores for the true interactions are
higher than those for false positives, while an AUC of 0.5 would indicate random predic-
tions. Such a cross-validated AUC analysis is a standard approach for the assessment of
inference methods [99].

Confidence recalibration (CoRe)

Randomized topologies are generated to share key statistics with the reference standard
of known interactions (Figure 2.8a and d). We remove all regulations from the network
and randomly introduce new regulations until each node k has regained its original in- and
out-degree (compare [106], p.12). Further, the association of expression data and genes is
shuffled by gene label permutation. For each of the q randomized networks N (1), . . . , N (q)

we perform a CV prediction to obtain confidence values ĉ
(i)
rt as described above (Figure 2.8).

Let D
(i)
r the distribution of confidence values specific to a regulator r computed using

the random prior N (i). We then compute a joint distribution D′r that encompasses all
confidence values derived from random networks that are associated to regulators of the
same out-degree (Figure 2.8f).
D′r denotes the randomized complement of Dr. By comparing these two distributions we
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Figure 2.9: Score recalibration in network predictions. (a) We trained SVMs for each TF.
Putative target genes were selected by a threshold (horizontal line) on the resulting TF-specific
scores (boxplots marked by asterisks). Additional SVMs were trained on random networks (light
gray) and FDRs were computed for all regulators but those such as xbp1 where no predictions
were made. (b) The density map displays whether predicted and known targets of the same
TF overlap in their biological function. Positive z-scores (abscissa) indicate significant function
overlaps for corresponding scores (ordinate). (c) Score distributions (marked by asterisks) were
recalibrated via randomized distributions (light gray): for each TF, the median med (dotted
line) and maximum max (dashed line) are mapped to 0.0 and 1.0, respectively. (d) and (e)
show boxplots, threshold, and a density map of function overlap after recalibration. (f) plots
the FDR as a function of the number of predicted interactions. Arrows indicate the number of
interactions achieving a precision of at least 50% (P50). In (g), the ratio of predicted to gold
standard targets (ordinate) is depicted across the range of TF out-degrees (=number of gold
standard targets, abscissa) before and after recalibration.

select interactions with scores higher than those observed in the randomized case. Each
regulation’s confidence ĉrt is replaced by its complement κrt (Figure 2.8c and g):

κrt =
ĉrt −med(D′r)

max(D′r)−med(D′r)
. (2.3)

Scores are thus recalibrated based on the median confidence med(D′r) and the distribution
scale (max(D′r) − med(D′r)). A κ value above 1.0 corresponds to a false discovery rate
(FDR) of 0, i.e. to confidence estimates not achieved in random topologies.
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2.3.3 Results

Simpson’s paradox

We followed the SIRENE approach [99] and trained local models based on Support Vector
Machines (SVMs) to predict confidence values for potential regulations. On a large expres-
sion data set of 2,442 yeast microarrays and a regulatory network of 24,462 interactions
(Section 2.3.2) the cross-validated predictions achieved a network-wide AUC of 0.784.
However, we found this standard, cross-validated AUC analysis misleading in case of meth-
ods integrating topology priors. We demonstrated this by training the methods on ran-
domized networks (random re-assignment of targets to regulators). The confidence scores
for individual regulators are random, resulting in regulator-specific AUC values of 0.5.
Strikingly, an evaluation across all regulators yielded an AUC of 0.798, a score above the
AUC achieved by SIRENE.
These two results seem to be in conflict: a method that performs randomly for each reg-
ulator induced subnetwork should yield random overall performance as well. This effect
resembles the Simpson’s or “amalgamation” paradox [101, 102]: each of the regulator-
specific distributions achieves an AUC of 0.5, while the AUC of the joint distribution
suggests non-random performance.
Here, the paradox results from the fact that predicted confidence score distributions are
heterogeneous across regulators and are characterized by different scale and location pa-
rameters (Figure 2.9a, light gray boxes). In particular, score distributions for regulators
with many known targets (high out-degree) such as ste12 are wider and systematically
above average. We refer to this effect as High Degree Preference (HDP). These regulators
contribute many true positives, i.e. after the integration higher scores become enriched
for true positives. This in turn leads to non-random AUC values. Selected high-scoring
predictions thus remain unspecific while biologically more specific signals are likely being
missed [107]. Following this line of argument, the regulator out-degree confounds the inte-
gration of confidence values. This is consistent with results demonstrated for the prediction
of genes involved in biological processes [108].
To examine whether the paradox is an artifact of SVMs we trained further model classes
(e.g. decision trees and logistic regression). We observed similar effects across all examined
techniques, suggesting that regulator-specific methods using topology priors are generally
affected by an HDP.
Besides the confounding of network quality measures, the composition of predicted net-
works is also affected. We predicted networks by selecting high-scoring interactions using a
threshold determined from the estimated size of the complete yeast network, which should
be twice as large as the known network. A score threshold was chosen so that selected
regulations contain 50% previously confirmed ones (the Precision-50, or P50 network).
For a regulator with out-degree d we obtained two types of score distributions: (i) from
the model trained on its known targets and (ii) from models trained on the targets of
randomized regulators with out-degree d (Figure 2.9a). A unified cutoff selects an ex-
cessive number of predictions for high-degree TFs that overlap with random scores. To
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quantify this, we computed the false-discovery rate (FDR) based on the number of inter-
actions scored above the P50 threshold in distribution (ii) divided by the total number
of interactions above that threshold in (i) and (ii). For example, the FDR is 44.4% for
high-degree ste12 and 22% across all TFs (Figure 2.9f), which is unacceptably high. In
contrast to ste12, all predictions are rejected in case of low-degree TFs such as cat8, even if
they substantially exceed random scores (Figure 2.9a). Only 81 of 153 TFs (53%) receive
predictions. We concluded that neither cross-validation nor AUC analysis are sufficient to
ensure the overall quality of networks inferred using structural priors.
We also assessed whether TFs frequently regulate the expression of targets that share sim-
ilar biological functions [109]. We therefore tested whether known and predicted targets of
the same TF exhibit substantial functional overlaps. We observed that the high proportion
of random scores (e.g. for ste12 ) concealed most of the signal as interactions with higher
scores hardly showed an increased functional coherence (Figure 2.9b).

Correction through score recalibration

We introduce a confidence recalibration (CoRe) as a wrapper for existing methods (Sec-
tion 2.3.2). Based on the random networks, we derived expected location (median score)
and scale (maximum score) properties for each out-degree d and used them to transform the
predicted confidences into topology-corrected scores. Scores for each regulator are recali-
brated by scaling the median and maximum scores to 0 and 1, respectively (Figure 2.9c).
This renders score distributions comparable so that they can be integrated across TFs.
The FDR is then 0 for predictions with scores above 1 as they appear only for the true
but not for the randomized networks. Thus, interactions for each regulator selected after
CoRe are scored above the random level.
To obtain a P50 network, we select interactions that achieve a corrected score of >0.92.
The FDR for this network was reduced to 1.4% (as compared to 22.0% without recalibra-
tion). We observed that predictions are now balanced across TF degrees (Figure 2.9g),
predicting interactions for 138 TFs vs. 81 without recalibration.
To gain further insight in the nature of the corrected network, we estimated the functional
relationship between known and novel predicted targets. Regulatory patterns were more
coherent for the corrected network (compare Figure 2.9b and e).

Application of CoRe to network inference

For all subsequent methods and analyses we report corrected results. To evaluate the yeast
regulatory network obtained, we conducted a comparative assessment of frequently used
inference approaches and a consensus approach. The approaches are roughly classified by
five attributes (Figure 2.10a):

1. method: unsupervised expression-based [89] vs. supervised using a structure prior;

2. formulation: one-class [110] vs. two-class that treat unknown interactions as infor-
mative;
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3. strategy: lazy vs. parameterized models;

4. data handling: non-integrative vs. integrative e.g. using TF binding site preferences
[111];

5. models: global [112] vs. local (regulator-specific)

SIRENE [99] is a supervised, two-class, parameterized, non-integrative, local approach.
For all methods, we predicted confidence scores in a 3-CV scheme and recalibrated them
as described above.
Subsequently, we analyzed network motifs to capture method- and topology-specific pref-
erences (Figure 2.10b). Unsupervised, expression-based approaches do not use topology
priors but infer interactions if expression profiles of TFs and putative targets are mutually
dependent. An example is CLR [89]. These methods are unable to detect auto-regulation
as in this case both expression profiles would be identical. Confirming previous findings
[35], expression-based approaches could hardly detect feed-forward motifs or the correct
direction of interactions. In contrast, regulator-specific approaches were less affected by
such difficult cases and exhibited a consistently higher performance. For cascades and low
in-degree targets, a slight decrease in performance was observed. Potentially, the latter
indicated the prediction of novel regulators for genes that were less well studied previously.
Next, we evaluated the performance of approaches across all interactions. Expression-
based, one-class, and lazy learners performed substantially worse than the remaining meth-
ods (Figure 2.10c). We observed that integrative methods like Serend [111] suffered from
false positive predictions. This is likely due to the low specificity of positional weight ma-
trices (PWMs, [113]) predicting targets only for 6.5% of all TFs. These methods were not
further analyzed. Of the remaining five methods (methods 5-12 in Figure 2.10), the best
results were obtained from regulator-specific SVMs and decision trees trained on bootstrap
samples (bagging).

A comprehensive yeast network

Our final yeast network includes 22, 231 interactions with 153 TFs and 3, 747 target genes.
Of all predicted regulations, 12, 869 are contained in the reference standard while 9, 362
are novel predictions. The remaining 24, 462− 12, 869 = 11, 593 reference standard inter-
actions lacked an observable effect on expression and were thus not included.
The visualization and interpretation of organism-wide networks is challenging due to their
size and complexity. Instead of fully depicting each regulator, target and their interactions,
we employed a modular visualization. We derived regulatory modules by grouping TFs
with overlapping target sets and, vice versa, target modules by grouping genes regulated by
overlapping sets of TFs. We connected regulator and target modules via meta-interactions
if more than 40% of all induced regulator-target pairs were connected. This reduced repre-
sentation featured 13 meta-interactions among 9 target and 9 regulatory modules, captur-
ing half of the final interactions (11, 232 interactions, 50.5% of all predicted). See Figure
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Figure 2.10: Assessment of predicted interactions. We analyzed the predictions of 11
different inference methods across five yeast gene expression compendia. (a) The dendrogram
groups methods according to the similarity of their predictions. Properties that discriminate
between different classes of methods are indicated by the check boxes. In (b) shows if interactions
in particular network motifs are easier (dark) or harder (light) to detect in comparison to all
interactions. (c) assesses method performance (AUC) and the number of interactions predicted
at a precision of 50% or better (P50) (bars with dotted borders). Furthermore, we encoded
experimentally determined targets of TFs into additional features (bars with solid borders) and
integrated methods 6-10 into a consensus approach (method 11). (d) illustrates mean results
from integrating all subsets of c = 1..5 compendia and m = 1..5 methods. All results are based
on recalibrated scores.

2.11 for an excerpt (full details can be found in the supplement, available online and ac-
cessible through clickable maps).
This modular view enables an integrated display of the network as well as module-associated
expression profiles. Given current data and knowledge, the respective TF-modules likely
control the forming of transcriptional response patterns in the regulated target modules.
Some key aspects of module-associated expression profiles are summarized below (for a
comprehensive literature review on all network modules see online supplement). A repre-
sentative gene was selected manually for each module.
The hxt2 module features the most versatile regulation in our network, regulated by three
different TF clusters comprising the highest total number of TFs (Figure 2.11). According
to GO [114], most of the 190 genes of the hxt2 cluster belong either to sugar transport (hxt
genes) or glycogen metabolic process (e.g. gac1 ). Consequently, we observe differential
expression of these genes under low vs. high-glucose growth conditions. When glucose is
available, the sugar transporters are abundantly expressed [115], whereas under glucose
starvation glycogen storage is catabolized to produce glucose preferably for fermentation
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Figure 2.11: Interactions and expression profiles. We partitioned our network of 22,231
gene regulatory interactions for visualization and identification of network modules. We derived
(a) 9 clusters of 61 TFs that, via (b) 13 interactions between clusters (arrows), regulate (c) 9
clusters of 1758 target genes (excerpt of 5 TF and 5 target clusters connected by 9 interactions
shown here, see online supplement for full figure). A representative gene is displayed for each TF
and target cluster. Cluster interaction maps (black=interaction, white=no interaction) comprise
a total of 11,232 (50.5%) interactions. (d) Thus, depicted TF-modules are likely to trigger
expression responses (heatmaps: red=up-, blue=down-regulation, see online document for colors)
in respective target modules and associated processes (top part of heatmap). The heatmaps
display the differential expression of these target modules under the indicated knockout (KO)
and other experimental conditions (bottom part).

[116].
The pdr1 (pleiotropic drug response) cluster comprised the largest number of hxt2 regu-
lators. It consisted of 16 TFs, all tightly connected to the cellular response to drug and
nutrition stress such as differing glucose concentrations. Despite this general response
mediated by the pdr TFs (stb5 and msn1 ), much of the regulation was performed by
pseudohyphal growth TFs (nrg1, mga1, and ash1 ) in conditions of nitrogen limitation and
abundant fermentable carbon sources like glucose [117].
Interestingly, a strong regulatory impact on the hxt2 module was also observed for reg-
ulators of the oxidative stress response - on the one hand from the cad1 cluster (5 TFs,
also responding to resulting DNA damage), and, on the other hand, from the tec1 cluster
(11 TFs, also driving pseudohyphal growth). Oxidative stress results in cellular protection
mechanisms, e.g. DNA repair and targeted protein degradation, which is associated with
increased energy consumption [118], initiated by the hxt2 cluster via increased glucose
uptake.
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2.3.4 Discussion

Gene regulatory networks are crucial to understand how regulators like transcription fac-
tors affect their target genes on the expression level. Experimentally derived networks are
typically incomplete as the number of available experiments is limited. To complement
them, computational inference of networks has been introduced. We revealed critical as-
pects but also demonstrated that inference is necessary and feasible in eukaryotes.
Even in well-studied eukaryotes such as yeast, where ∼900 publications on experimental
TF-binding studies are available, current networks are far from complete and benefit from
computational predictions. We found that only about half of all regulations that induce
detectable expression changes (“active” interactions) are currently known. In addition,
experimental techniques are prone to discover regulations without effect on the expression
level. We applied computational inference both for the detection of novel active and the
pruning of inactive regulations.
We reported three crucial findings based on the analysis of a wide spectrum of data-driven
inference methods (for reviews see [100,119]). First, we demonstrated that methods incor-
porating experimentally derived interactions as topology priors possess sufficient predictive
power for the inference of eukaryotic networks. Methods using expression data alone fail
here [35, 95]. We also showed that topology priors lead to Simpson’s paradox [101, 102]
distorting prediction and assessment of regulatory interactions. Finally, we showed how to
avoid the occurrence of the paradox.
Generally, network inference methods that exploit the local topology assign an excessive
number of predictions to TFs with many known targets [100,120], and it has been doubted
whether a correction is possible or sensible [108,119]. Our analysis revealed that the num-
ber of known targets for a regulator is a confounder of regulator-target predictions. This
effect is not detected by common cross-validation routines: surprisingly, the same perfor-
mance reported for published network inference approaches can be achieved by guessing
random regulations. We developed a confidence recalibration approach (CoRe) wrapping
existing methods and showed that it corrected for both the over-estimation of performance
and the distortion of the topology towards TFs with many known targets (High Degree
Preference, HDP).
We conducted a comprehensive assessment of methods integrating topology priors and
identified methods suitable to derive a corrected, accurate yeast regulatory network of ac-
tive regulations. We describe disadvantages of several methods, which we excluded due to
prediction performance, or the inadequate scale-up for large expression datasets. Our eval-
uation suggested that the selected methods detect several types of interactions successfully
that are difficult to predict. For instance, auto-regulatory interactions and the assignment
of directions are handled accurately, and immediate and indirect interactions could be dis-
tinguished. We then integrated the predictions from the selected methods to construct
a network consisting of half novel and half experimentally-determined regulations. This
choice was based on our extrapolation of the size of the complete yeast network.
Our final yeast network contains 153 TFs that regulate 3,747 target genes via 22,231 inter-
actions. These include many novel and confident hypotheses of regulatory relationships,
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while we expect less than 150 false positives in total. At the same time, we reject more
than half of the experimentally-determined interactions as they appear to be without ob-
servable regulatory effect.
To gain an overview of the network, we derived modules of target genes that were jointly
regulated by sets of TFs. The resulting modular structure was strikingly simple featur-
ing 13 meta-regulations that represent an index for inspecting the expression effects of
interactions. A thorough literature review confirmed that the modules and their expres-
sion patterns correspond well to biological processes such as respiration, sulfate/energy
metabolism, transport, stress response and cell division.
We conclude that methods integrating local topology can extend known networks substan-
tially and at a high reliability, even in well-studied model organisms. These methods, in
contrast to those using expression data alone, are well-suited for the prediction of inter-
actions in yeast and presumably other eukaryotes. Due to Simpson’s paradox however,
their application was more difficult than previously acknowledged and required a correc-
tion approach. We emphasize that topology, structural priors and parameterized models
are widely applied beyond network inference and encourage a review of fields that may
benefit from confidence recalibration strategies such as CoRe.
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Chapter 3

Detection of significant subnetworks

3.1 Overview

The previous chapter describes several approaches to construct a regulatory network. When
using such a network for the analysis of gene expression data, the primary research ques-
tion is whether certain parts of the network are significantly altered for the investigated
phenotype (Figure 3.1). Such subnetworks typically correspond to functional modules that
represent known or novel interplay between genes, which in turn allows conclusions about
molecular mechanisms underlying e.g. a certain disease [29].
As introduced in Chapter 1, the standard approach to detect such subnetworks is to test
predefined functional gene sets for overrepresentation of differentially expressed genes [26,
27]. The method assumes that all measured genes have been classified as differentially
expressed or not, and is based on a simple and intuitive principle. For each predefined
gene set G that represents a known functional module:

1. count how many of its genes mG are differentially expressed (yielding mGD genes, see
contingency table 3.1),

2. estimate the statistical significance of observing mGD genes based on the hypergeo-
metric distribution (Fisher’s exact test, Appendix B.1.2).

This yields for each gene set a p-value expressing the probability of observing at least mGD

genes.

Table 3.1: The 2 × 2 contingency table for assessing overrepresentation of differentially ex-
pressed (DE) genes in a gene set G.

DE not DE Total

In gene set G mGD mGD mG

Not in G mGD mGD mG

Total mD mD m
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Figure 3.1: Detection of subnetworks that are significantly altered in expression and
enriched for specific functional gene sets.

Although the overrepresentation test is fast and effective, it has two major drawbacks.
On the one hand, the classification of genes as differentially expressed or not is usually the
result of a threshold applied to the chosen statistic for differential expression. The often
much smaller subset of differentially expressed genes is thus artificially separated from the
remaining large number of genes not satisfying the threshold and which are therefore not
further analyzed.
On the other hand, the actual search for sub-networks is reduced to a search for sub-sets,
i.e. genes are treated as independently expressed and interactions between genes are not
taken into account.
In the following, I discuss both issues in more detail and introduce, based on recent publica-
tions in the field, Gene Set Enrichment Analysis to resolve the restriction to differentially
expressed genes, and Gene Graph Enrichment Analysis to also properly account for the
network topology (Section 3.2 and 3.3). The interpretation of the resulting subnetworks is
subject of Chapter 4.
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3.2 Gene Graph Enrichment Analysis (GGEA)

This section describes a method for network-based enrichment analysis. The key idea is
to score regulatory interactions within functional gene sets for consistency with the ob-
served expression. The work has been presented on July 18th, 2011, at the 19th Annual
International Conference on Intelligent Systems for Molecular Biology and 10th European
Conference on Computational Biology. The following is based on its original publication
in the journal Bioinformatics, 27(13):i366-73, July 2011.

Authors: Ludwig Geistlinger, Gergely Csaba, Robert Küffner, Nicola Mulder and Ralf
Zimmer

Title: From sets to graphs: towards a realistic enrichment analysis of transcriptomic sys-
tems

Abstract: Current gene set enrichment approaches do not take interactions and associ-
ations between set members into account. Mutual activation and inhibition causing pos-
itive and negative correlation among set members are thus neglected. As a consequence,
inconsistent regulations and contextless expression changes are reported and, thus, the
biological interpretation of the result is impeded. We analyzed established gene set en-
richment methods and their result sets in a large-scale investigation of 1,000 expression
datasets. The reported statistically significant gene sets exhibit only average consistency
between the observed patterns of differential expression and known regulatory interactions.
We present Gene Graph Enrichment Analysis (GGEA) to detect consistently and coher-
ently enriched gene sets, based on prior knowledge derived from directed gene regulatory
networks. Firstly, GGEA improves the concordance of pairwise regulation with individual
expression changes in respective pairs of regulating and regulated genes, compared with set
enrichment methods. Secondly, GGEA yields result sets where a large fraction of relevant
expression changes can be explained by nearby regulators, such as transcription factors,
again improving on set-based methods. Thirdly, we demonstrate in additional case studies
that GGEA can be applied to human regulatory pathways, where it sensitively detects
very specific regulation processes, which are altered in tumors of the central nervous sys-
tem. GGEA significantly increases the detection of gene sets where measured positively
or negatively correlated expression patterns coincide with directed inducing or repressing
relationships, thus facilitating further interpretation of gene expression data. The method
and accompanying visualization capabilities have been bundled into an R package and tied
to a graphical user interface, the Galaxy workflow environment, that is running as a web
server.

Author contributions: LG developed and implemented the method based on several
suggestions from RZ. LG and GC validated the method, LG carried out the consistency
study, GC suggested the explainability study. LG, RK and RZ wrote the manuscript. NM
and RZ reviewed the manuscript and jointly supervised the project.
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3.2.1 Introduction

Transcriptomic studies measure gene expression in different conditions. Striking genes,
which are differentially regulated between the conditions, are of primary interest and in-
vestigated for common features and membership in group of genes, which have the same
function or belong to the same biochemical pathway.
A first impression of similar behavior of genes can be achieved via clustering of genes
[121]. The usually more effective overrepresentation analysis (ORA) tests the overlap of
a predefined group of genes and the set of differentially expressed genes assuming the
hypergeometrical distribution under the null hypothesis [26]. The method is widely ac-
cepted and has been subject to modifications of diverse visual and model related features
[122], though the basic statistical principle remained unchanged. However, Goeman and
Bühlmann [27] criticize that the sampling procedure of ORA is statistically invalid and
leads to a hazardous interpretation of the resulting p-value. Furthermore, the concentra-
tion on the usually small group of significantly differentially expressed genes, compared to
the set of all the other, usually thousands of genes analysed in the study that are ignored,
is not suitable for an investigation on a global scale.
Both points of criticism are resolved in Gene Set Enrichment Analysis (GSEA) as it uses a
valid sampling procedure and computes over the whole scope of genes [123]. A Kolmogorov-
Smirnov test statistic is applied to test whether the ranks of the p-values of the genes in
the gene set can be a sample from a uniform distribution. Several modifications of GSEA
have been published [124].
Though ORA and GSEA are convenient in the analysis of genes that are independently
expressed, a serious problem arises when these methods are applied to gene set definitions
extracted from regulatory networks and metabolic pathways. The assumption of indepen-
dence among set members does not hold anymore; genes are found to be correlated due
to mechanisms of co-regulation and co-expression. Initial steps to deal with that problem
include implicit accounting for the correlation structure [125] and integration of network
topology of undirected interaction networks [126]. Based on these first efforts, Liu et
al. [127] have proposed Gene Network Enrichment Analysis (GNEA) that uses ORA to
test for overrepresentation of gene sets in transcriptionally affected subnetworks of a global
interaction network.
As the sign of gene expression changes and the direction of regulatory interactions are
so far not taken into account, substantial features of the data are still ignored and the
dynamics of the transcriptomic system are not realistically reflected. Activation and inhi-
bition are essential regulatory mechanisms in the transcriptional machinery of the cell and
are causes for up- and down-regulation of particular genes. Although processes like post-
translational modification and combinatorial effects between regulatory proteins impair a
straightforward causal relationship between regulation and gene expression, it was shown
that coexpression is correlated with functional relationships between genes [128]. Addi-
tionally, integrative analysis of transcriptome, proteome and interactome data revealed
significant correlations between expression profiles and regulatory interaction on the pro-
tein level [30,31]. Hence, we explain positive correlation in gene expression with activating
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edges of the transcriptional network. Vice versa, we assume inhibition to cause observed
negative correlation in gene expression patterns. In our following definition of Gene Graph
Enrichment Analysis (GGEA), we exploit both fundamental regulation types in a novel
enrichment framework for signed and directed gene regulatory networks, to judge whether
the topology of the network is well fitted by the expression data.

3.2.2 Methods

GGEA

Given gene regulatory information, for example extracted from biochemical pathways or
a global transcriptional network, a gene set under investigation and gene expression data
sampling different conditions, GGEA performs three essential steps (Figure 3.2): first,
the gene set is mapped onto the underlying regulatory network, yielding an induced sub-
network. That is the affected part of the network, which consists of edges that involve
members of the gene set. Second, each edge of the induced network is scored for consis-
tency with the expression data, i.e. the signs of the expression changes of two interaction
partners are evaluated for agreement with the regulation type (activation/inhibition) of
the link that connects both genes. Third, the edge consistencies are summed up over the
induced network, normalized and estimated for significance using a permutation procedure.

Experimental Setup

In the following, we consider the classical setup of a transcriptomic study. This incorporates
a set G of usually several thousand genes gi (i = 1, . . . , n) measured for differential expres-
sion between two conditions, each represented by a group of samples S1 = {s1, . . . , sk} and
S2 = {sk+1, . . . , sm}, respectively. The function

expr : G× (S1 ∪ S2)→ R (3.1)

returns the expression value for a gene and a sample at a time.

Measures of Differential Expression

The most intuitive measure for expression changes of a single gene between two conditions
is the fold change

fc : G→ R, (3.2)

defined as the ratio of the estimated expression values of a particular gene in both sample
groups

fc(gi) =
expr(gi, S1)

expr(gi, S2)
, (3.3)

where expr(g, S) computes the mean expression level of gene g in condition S. We compute
t-test derived p-values to assess the statistical significance of the expression changes [15]
and correct them for multiple testing. Both measures are log-transformed

f̃c := log2(fc), p̃ := −log10(p), (3.4)
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and the significance thresholds α = −log(0.05) and β = 1 (two-fold) are used as defaults for
p̃ and f̃c, respectively. Such sharp thresholds are of course quite artificial and discriminate
drastically between genes just over and just below α or β. In addition, noise in the
data, such as imprecise and erroneous measurements of gene expression values, has to be
expected and to be dealt with. Hence, we divide the range of both measures into two main
categories and smooth the borders via introduction of a degree of uncertainty, according
to the mathematical concept of fuzzyfication [77, 78]. For the fold change, we map

(f̃c < 0, f̃c > 0) 7→ (down, up), (3.5)

and compute membership values for both categories via the weighting functions w : f̃c 7→
[0, 1] (displayed in Figure 3.3b), resulting in a pair

〈fc〉 := fuzzy(f̃c) = 〈 wdown(f̃c), wup(f̃c) 〉. (3.6)

Analogously, we map p̃, using Figure 3.3a, to areas of low and high significance in the fuzzy
concept

〈sig〉 := fuzzy(p̃) = 〈 wlow(p̃), whigh(p̃) 〉. (3.7)

For both measures, a third category can optionally be introduced to account for unspecific
signals in case of very noisy data. The fold change and p-value categories are combined to

Figure 3.2: Key steps of GGEA. Subsequent to differential expression analysis dea of expres-
sion data Expr, yielding fuzzified measures de of differential expression, target gene sets are first
mapped onto the gene regulatory network (GRN). The de-values are assigned to corresponding
places in resulting induced nets (de-nets). Second, consistency scores are computed for each de-
net and third, significance of the scores is estimated via re-sampling, and exploited to rank the
gene sets.
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(a) p-value (b) fold change

Figure 3.3: Fuzzyfication of p-value and fold change. Both measures are mapped onto two
main categories, each having a membership function to express the uncertainty of the mapping.
Additional categories, e.g. a third category medium and neutral, respectively, can be introduced
for a more detailed representation.

a single measure of differential expression

de := 〈fc, sig〉, (3.8)

in order to simultaneously summarize and express whether the transcriptional activity of
a particular gene is reduced or enhanced in one sample group, compared to the other.

Induced Gene Regulatory Networks

Enrichment analysis is the determination of significant gene sets out of a predefined universe
of gene sets U , s.t. result sets accumulate differentially expressed features of the gene
expression data. GGEA uses an a priori defined gene regulatory network (GRN), typically
extracted from respective databases or compiled from the relevant literature, to introduce
and exploit the interdependencies between gene set members. We model a regulatory
interaction of the GRN as a transition t (see Figure 3.4) with an input place for the
regulator and an output place for its target, as well as an associated effect (activation,
inhibition) and the direction of the interaction. For a gene set u ∈ U , we construct the
induced subnetwork

GRN(u) := {t ∈ GRN | u ∩ (in(t) ∪ out(t)) 6= ∅}, (3.9)

s.t. for each gene g of the gene set u all transitions are extracted, where g is either the
regulating or the regulated gene.

Gene Regulatory Networks as Petri Nets

Petri net models are well established in information theory [75, for a review] and have
been extensively applied to biochemical processes, like metabolic pathways [129] and gene
regulatory networks [76]. Given a GRN under investigation, we construct a corresponding
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Figure 3.4: Modeling regulatory interactions using PNFL. Shown is a KEGG style repre-
sentation of an activation and its transformation into a PNFL transition f+. Tokens of combined
fuzzy measures de of differential expression assigned to Petri net (PN) places, represent the regu-
lator and its target. The regulatory effect is defined via a specific fuzzy rule for every effect type
of the GRN.

Petri net (PN) having features of fuzzy logic (FL), as it is introduced as PNFL in [79],
and illustrated in Figure 3.4. The regulations of the GRN are required to be specified with
direction and effect. In our model, regulator (R) and regulated target (RT) are represented
via PN places holding tokens of fuzzy values for both fold change (fc) and significance of
fc (sig). The variety of regulatory effects occurring in the GRN are defined by specific
fuzzy rules reg ∈ {f+, f−, f+−, f?, ...} (Table 3.2), meaning activation f+, inhibition f−
and dual effects f+−. The concept is extendable, e.g. to other effects like interactions of
unknown type f?. The fuzzy rules compute output tokens from given input tokens. Thus,
consistency between expected (i.e. modeled) behavior and the measured values can be
evaluated. Consistency takes the direction of the effect, the amount (fc) and its significance
into account and is a straightforward extension of the discrete notion of consistency (e.g. R
up and f+ =⇒ RT up). Moreover, it appropriately models noise in the actual experimental
measurements.

Table 3.2: Fuzzy rule set for activation and inhibition

〈fc〉 〈sig〉
down up low high

f+ down up low high
f− up down low high

Consistency of Regulatory Interactions

The major problem of set enrichment strategies, when applied to GRN-based gene sets,
is that they accumulate evidence for differential expression of single genes to estimate
the enrichment of the whole set. Interfering and potentially contrary constraints of the
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underlying GRN are ignored. For example, two significantly up-regulated genes increase
the enrichment of the set, even if one gene inhibits the other. For that reason, we introduce
the concept of consistency.

Definition (consistency): a transition of a PNFL is consistent with given
expression data, if the measured and the modeled expression of the regulated
gene is in agreement. The modeled expression is estimated from the regulatory
effect and the expression of the regulator.

Intuitively, consistency for the special case of a simple activating or inhibiting edge requires
fold changes for regulator and target of the same or opposite directions, respectively. It
is implied for the above example that an up-regulated inhibitor should result in reduced
expression of the affected gene.
For the PN constructed above, a consistent transition t with fuzzy regulation function ft
between an input place i and an output place o satisfies

deo ≈ ft(dei), (3.10)

i.e. the modeled predicted expression behavior agrees with the actual observed behavior.

Scoring

To determine if and to which extent t is consistent with the given expression data, we
calculate the consistency

C(t) := cons (deo, ft(dei)) , (3.11)

where the function cons estimates the (fuzzy) similarity between the predicted and mea-
sured token on the output place of transition t. Consistency computation is generic, an
example implementation of cons incorporates defuzzyfication of the fuzzy values back into
real numerical values [79] and taking their reciprocal absolute difference. We compute
the raw GGEA consistency score S for the subnetwork GRN(u), induced by the gene set
u ∈ U , via summation over the consistencies of all transitions Tu of GRN(u)

S :=
∑
t∈Tu

C(t), (3.12)

and normalize it by the number of transitions |Tu|

S̄ :=
S

|Tu|
, (3.13)

to adjust for the size of GRN(u).

Significance and Ranking

According to the recommendations of [27] and [130], statistical significance of the consis-
tency score is estimated via a permutation approach based on subject sampling, which is
defined in a self-contained way:
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1. Permute group assignment of samples N times.

2. Recalculate differential expression measures for each permutation.

3. Recalculate consistency score for each permutation.

4. Find the consistency p-value as the proportion of permutation scores that are larger
than the observed score.

We compute the consistency p-value for each gene set u ∈ U and rank the gene sets by
the adjusted p-values, i.e. p-values corrected for multiple testing (see again Figure 3.2).
Gene sets below the chosen significance level are classified as significantly and consistently
enriched.

Extensions

To apply to regulation processes involving multiple regulators and transcription complexes
composed of several genes, we allow a transition t to have an arbitrary number of inputs
It = {i1t , . . . , ikt } and outputs Ot = {o1t , . . . , olt}. This is accomplished via generalization of
equation (3.10) to (

de(o1t ), . . . , de(olt)
)
≈ ft

[(
de(i1t ), . . . , de(ikt )

)]
. (3.14)

We model the combined effect via computation of the average behavior of all effects, or
optionally, by the effect of highest statistical significance (the effect could, of course, also
be modeled as a full-blown k-dimensional fuzzy function).
Missing data, i.e. genes of the GRN, which are not measured in the study, is resolved using
transitivity. By going up and down, respectively, the regulation path until a non-empty
place is reached, an empty origin is filled with the found token, which is adjusted to path
length of the transitive relation. The adjustment is due to the fact that the evidence for
regulation weakens, as the path length increases.

Implementation and Availability

GGEA is implemented in the statistical language R [131] and makes use of the Bioconductor
software suite [132]. The GGEA method and accompanying visualization capabilities have
been bundled into an R package and tied to a graphical user interface, the Galaxy workflow
environment [133], that is running as a web server.

Consistency and Explainability Study Setup

Data Sampling and Network Construction

Gene expression data of E. coli was collected and sampled from the M3D database [103,
Many Microbe Microarrays Database]. The 1,000 datasets were designed in a two-class
fashion, s.t. each class contained 15 samples. It was assured that real-world distributions
of fold changes and differential expression p-values were matched. A global gene regu-
latory network for E. coli was constructed using the regulatory interactions provided in
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the RegulonDB database [44]. From the union of all stored TF/gene, TF/operon, TF/TF,
σ/gene and σ/TU regulatory interactions (TF stands for transcription factor, TU for tran-
scriptional unit and σ for the RNA polymerase σ-factor), we removed duplicated and
ambiguous edges. The final network connected 2097 unique nodes by 5784 edges, which
were clearly annotated as either activating or inhibiting.

Methods Collection and Gene Set Definitions

For each dataset, we applied the standard hypergeometrical overrepresentation test ORA1,
and a collection of array resampling methods that correctly control false positive rates and
gene correlation patterns [130]. These are the modified resampling overrepresentation test
ORA2 [27], SAFE [125], GSEA [123] and SAM-GS [124]. The gene set catalog for analysis
was defined on the one hand according to the KEGG pathway annotation [24] for E. coli,
and, on the other hand, according to the GO classifications [22] of E. coli. We restricted
both catalogs to gene sets having at minimum five and at maximum 500 set members.
This yielded 83 and 446 gene sets for KEGG and GO, respectively.

Consistency Benchmark

For each method, we collected for all datasets with statistical significant outcome (p < 0.05)
the top ranked gene sets. As not all datasets produced significant outcome for all methods,
we uniformly chose 700 sets at random from these top ranked gene sets and computed the
percentage of consistent relations in the corresponding induced regulatory networks. We
took regulation direction, type and strength into account and distinguished respective cat-
egories. Activating relations required both interaction partners to be expressed in the same
direction to be consistent, while inhibiting relations required them to be expressed in the
opposite direction. Regulation strength was categorized as weak and strong, depending on
the differential expression p-value of the regulator. We chose 0.5 and 0.05 as the thresholds
for the weak and the strong category, respectively. To estimate the null distribution in
each category, we computed the consistency of all gene sets in all datasets.

Explainability Benchmark

The selected 700 top ranked sets were restricted to differentially expressed genes of high
statistical significance. The significance level was set to 0.1. Minimum spanning trees
(MST) were computed for each of the reduced gene sets according to the underlying global
GRN, s.t. each significant gene of a top ranked set could be reached by all other signifi-
cant members of that set. Moreover, the corresponding MST for such a set minimized the
number of genes not contained in the set. The direction of the regulatory link between
two genes in the network (activation/inhibition) as well as the direction of the expression
change of individual genes (down-/up-regulation) was ignored. We classified a restricted
result set as fully explainable if all members were directly connected to another member in
the corresponding MST. Otherwise, we counted the number x of genes in the MST, which
were not a member of the set, and classified the set as explainable with x additional genes.
As a measure of explainability achieved by a method in all its 700 top ranked sets, we
calculated, for a chosen number x, the percentage of sets that were explainable with at
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most x additional genes.

Case Study Setup

FiDePa and Local GGEA

We applied GGEA to the glioma dataset that has been investigated before with the method
FiDePa [134]. The method exploits GSEA first to determine differentially regulated paths
of a particular length and uses the resulting paths for the construction of a consensus
network, which is subsequently tested for overrepresentation of gene sets. In a similar
approach, we computed consistency scores of regulatory links in all human non-metabolic
KEGG pathways (gene regulatory and signaling pathways) and the ten edges with the highest
consistency score were extracted from each of them. Duplicated edges were removed and
the consensus graph was further reduced via application of a high pass consistency filter
using the mean consistency score as threshold. That yielded a total of 378 edges connecting
342 unique nodes, which were tested, as in FiDePa, for overrepresentation.

3.2.3 Results

Consistency Study

We conducted a meta-analysis of 1,000 E. coli datasets and evaluated the consistency
within results of gene set enrichment methods, based on the regulatory interactions found
in the transcriptional network of E. coli. Details of the study setup, the consistency bench-
mark and the classification of interaction strength as weak and strong are described in
Section 3.2.2. The results for KEGG gene sets are shown in Figure 3.5(a–d) and for GO gene
sets in Figure 3.5(e–h).
We observe that the set enrichment methods systematically neglect mutual regulation
among set members. For KEGG gene sets, weak regulations (Figure 3.5a and Figure 3.5b)
are only slightly more consistent than average (the null consistency) and the gene set
with maximal consistency is frequently not reported by the set enrichment methods, re-
gardless of activating or inhibiting links. Strong activators, with an expression change of
high statistical significance, and the effects on their targets are more consistently aligned
(Figure 3.5c). However, the consistency gained in strong activations is lost for strong in-
hibitions (Figure 3.5d). The results for KEGG sets are nearly replicated in GO gene sets
(Figure 3.5e-h). In contrast, GGEA, which takes consistency into account for selecting
relevant gene sets in the first place, yields the most consistent gene sets in all categories for
both, KEGG and GO gene set definitions. Activations and inhibitions are similarly consistent,
if adjusted to background distributions of both regulation types, and stronger signals are
properly weighted in order to preserve the regulation kinetics. Although stronger signals
have an higher impact on the GGEA score, weak regulations are also highly consistent
in the sets found by GGEA. In general, these findings are more pronounced for GO sets,
compared to KEGG gene set definitions. This is due to the fact that the GO catalog (446
gene sets) is nearly six times larger and contains more diverse composed gene sets than
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(a) weak act, KEGG (b) weak inh, KEGG (c) strong act, KEGG

(d) strong inh, KEGG (e) weak act, GO (f) weak inh, GO

(g) strong act, GO (h) strong inh, GO

Figure 3.5: Consistency of regulatory interactions in top ranked rets. Plots (a)-(h)
are explained in the main text. Each of the set enrichment methods was applied to 1,000 E. coli
datasets using KEGG and GO gene set definitions, respectively. From datasets with statistical
significant outcome, the top ranked gene sets were collected and investigated for consistency
of weak and strong activation and inhibition (as described in Section 3.2.2). GGEA results
are displayed in red. The plots show which fraction (x-axis) of the identified gene sets had at
most a consistency of y%. The y-axis shows the consistency of sets as the fraction of consistent
regulatory interactions in the respective gene set. The null consistencies were estimated via the
overall consistency of all gene sets in all datasets and are displayed in dark blue.
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(a) GO (b) KEGG

Figure 3.6: Explainability of expression changes in top ranked sets. The 700 top ranked
gene sets (introduced in the consistency study above) of each method were restricted to genes with
expression changes of statistical significance. For each restricted set, we computed the minimal
number of genes not in the set, but needed to connect the significantly regulated genes of that set,
to a regulation network. Displayed is the percentage of gene sets, for which x or less additional
genes are needed. E.g. for GO sets, a single additional gene makes 73% of GGEA’s top ranked
sets explainable, while in case of ORA1 or SAMGS a single gene makes only 42% or 29% of the
top ranked sets, corresponding to each method, explainable.

the KEGG catalog (83 gene sets), which emphasizes differences between the set and graph
enrichment methods.

Explainability Study

As the consistency is substantially incorporated in the GGEA score, we performed a sec-
ond evaluation using the more independent benchmark of explainability, as described in
Section 3.2.2. The main target of this investigation was to determine to which extent statis-
tical significant expression changes of single genes can be explained by other set members.
Considering that a statistical significant finding for a gene set indicates differential regula-
tion of the corresponding biological process, it is in turn implied that a part of the global
regulatory network (here a subgraph of RegulonDB) exists, which connects the differentially
expressed genes in this set. However, it is frequently observed that important regulators
or mediators are missing in a particular gene set, leaving its differentially expressed genes
not connected with each other. As a result, the biological interpretation of the observed
effect is impeded. Based on these considerations, we have introduced above the terms fully
explainable and explainable with x additional genes, to assess how easily a result set can
be interpreted. Intuitively, the less additional genes needed, the easier the interpretation:
a single additional gene could possibly be a regulator or mediator not contained in the set,
while the need of several additional genes requires more complex assumptions to make the
outcome interpretable. For the explainabilty study, we explicitly made the input regula-
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tory network undirected, generalizing the edges, s.t. possibly unknown inverse regulations
are allowed. We enhanced this feature by additionally removing the sign of the fold change
and only judged whether a gene was differentially expressed or not. The results are shown
in Figure 3.6.
GGEA systematically reports more easily explainable sets than all other methods for both,
KEGG and GO gene set definitions. Similar to the results of the consistency study, the gap is
much bigger between the performance of GGEA and the other methods when using GO sets
definitions, as also observed in the consistency study. For example, GGEA needs in 73% of
its top ranked gene sets a single additional gene to make the differentially expressed genes
in a particular set connected, whereas the best set enrichment method, ORA1, can explain
only 42% of the sets with a single addition gene (SAFE: 35%, GSEA: 34%, ORA2: 32%,
SAMGS: 29%). Allowing two additional genes, GGEA can explain >90% of all reported
gene sets, while all other methods produce results ≤60%.

Case Study

In a final case study, we investigated two expression datasets of human neuronal tumors and
compared results of GGEA and set enrichment strategies. Though a comparative bench-
mark is hard to find, due to a missing gold standard that classifies detected pathways as
right or wrong in the context of the investigated expression data, we approached this matter
via collection of biological evidence in the scientific literature and focused on the speci-
ficity of the findings and the sensitivity of the method used. For consistency evaluation, we
used the regulatory interactions occurring in human non-metabolic KEGG pathways (gene
regulatory and signaling pathways). In the first analysis, we applied GGEA to the glioma
dataset that was investigated before by [134] with the method FiDePa (see Section 3.2.2
for details). We observe large agreement in the result lists of both methods (Table 3.3);
17 pathways listed in the FiDePa result also occur in the top 25 of the GGEA ranking.
The positive control Glioma is better ranked (and has higher significance) by GGEA. Fur-
ther, several unspecific and disease unrelated pathways detected by FiDePa (e.g. Type I/II
diabetes mellitus, Cell cycle) are discarded by GGEA and replaced by specific, cancer re-
lated pathways (e.g. Renal cell carcinoma, Endometrial cancer). For the top rank, GGEA
(Pathways in Cancer; not detected by FiDePa) gives a clear disease related hint, while
FiDePa (MAPK signaling pathway) reports a general signaling process. The Neurotrophin
signaling pathway, which promotes neuronal tumors via modulation of neuronal apoptosis
[135], is not identified by FiDePa, but listed by GGEA on rank 4.
In the second evaluation study, we used neuroblastoma expression data that was investi-
gated for enrichment of metabolic pathways before [136]. The application of GGEA to the
neuroblastoma dataset identified 17 significantly and consistently enriched pathways (Ta-
ble 3.4). Best ranked is the Neurotrophin signaling pathway, which was already detected in
the glioma study to play an essential role in the development of neuronal tumors. As this
pathway seemed to be particularly striking for both tumors, we determined regulations
with highest consistency in that pathway, in order to get a deeper insight into the disease
causing dynamics: we found that the high affinity nerve growth factor receptor, which in
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Table 3.3: Result comparison of GGEA and FiDePa application to the glioma
dataset. Arrows in the first column denote whether a pathway is ranked higher or lower by
GGEA, compared to FiDePa.

Pathway ORA p ORA p Rank
(GGEA) (FiDePa) (FiDePa)

↑ Pathways in cancer 1.8e-24 – –
↑ Focal adhesion 1.4e-18 2.5e-06 5
↑ T cell receptor signaling 1.2e-17 1.5e-05 7
↑ Neurotrophin signaling 5.5e-15 – –
↑ Colorectal cancer 1.1e-14 9.4e-05 11
↑ Pancreatic cancer 3.8e-14 0.0001 12
↑ Renal cell carcinoma 1.3e-13 – –
↑ VEGF signaling 1.5e-13 0.006 22
↔ Fc epsilon RI signaling 4.1e-13 1.9e-05 9
↓ Chronic myeloid leukemia 6.3e-13 1.65e-05 8
↑ ErbB signaling 8.9e-13 – –
↑ B cell receptor signaling 4.2e-12 0.001 17
↑ Glioma 5.1e-12 0.003 20
↑ Insulin signaling 3.2e-11 0.001 18
↑ Leukocyte trans. migration 3.9e-11 0.01 24
↓ Adherens junction 4.9e-11 1.4e-05 6
↓ GnRH signaling 6.5e-11 0.0003 16
↓ Nat. killer cell med. cytotox. 6.5e-11 1.4e-11 2
↑ Wnt signaling 1.2e-10 – –
↓ Toll-like receptor signal. 1.2e-09 5.5e-05 10
↑ Endometrial Cancer 1.6e-07 – –
↑ Non-small cell lung cancer 3.4e-07 – –
↑ Acute myeloid leukemia 3.9e-07 – –
↓ mTOR signaling 1.2e-06 0.0002 15
↓ MAPK signaling 4.4e-06 1.6e-25 1
. . . . . . . . . . . .
↓ Apoptosis 0.04 9.3e-11 3
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Table 3.4: Result of GGEA application to the neuroblastoma dataset.

Pathway p-value

Neurotrophin signaling 7.5e-06
Chemokine signaling 0.0004
Cell adhesion molecules (CAMs) 0.0021
Regulation of actin cytoskeleton 0.0068
Focal adhesion 0.0091
Nat. killer cell med. cytotox. 0.0092
Leukocyte trans. migration 0.0099
Pathways in cancer 0.01
T cell receptor signaling 0.016
Fc epsilon RI signaling 0.019
Long-term depression 0.023
Axon guidance 0.033
Vasc. smooth muscle contraction 0.035
p53 signaling pathway 0.035
Melanogenesis 0.039
MAPK signaling 0.043
Thyroid cancer 0.05

humans is encoded by the NTRK1 gene, is up-regulated in neuroblastoma cells and acti-
vates the adaptor protein SH2B3, the growth factor receptor-bound protein 2 (GRB2), the
Abelson murine leukemia viral oncogene homolog 1 (ABL1), the phospholipase gamma 2
(PLCG2) and the SHC-transforming protein 1 (SHC1). A literature search revealed that all
of the activated and associated proteins are proliferating, oncogenic and/or apoptosis influ-
encing and thus, of cancer promoting importance [137,138]. In addition, the up-regulation
of the whole NTRK1 proliferation module in neuroblastoma was experimentally validated
[139] some years ago. This sensitive finding motivated a similar investigation for the other
pathways in Table 3.4, which we identified to be throughout substantially involved in neu-
roblastoma formation. As an example: GGEA detects the Chemokine signaling pathway.
We found that neuroblastoma impairs chemokine-mediated dendritic cell migration [140]
and chemokines strongly promote neuroblastoma primary tumor and metastatic growth
[141].
Moreover, we wanted to know whether the findings of GGEA are in concordance with the
results for metabolic pathways. As a showcase, we demonstrate this via the detected Fc
epsilon RI signaling pathway. In [136], only moderate attention (discussed in their sup-
plement) is paid to the extremely significant findings for Phosphatidylinositol metabolism
(p = 9e-12) and for several pathways concerning the metabolism of lipids and fatty acids,
e.g. Fatty acid metabolism (p = 1.7e-9) and Glycerophospholipid metabolism (p = 3.9e-
7), which are listed in Table 1 of that publication. As it can be verified in the corre-
sponding KEGG pathway maps, Fc epsilon RI signaling has a regulatory impact on both -
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the Phosphatidylinositol metabolism via modulation of the phospholipase (affected by the
Neurotrophin pathway); and the metabolism of lipids in general via stimulation of arachi-
donic acid synthesis. Arachidonic acid is a polyunsaturated fatty acid that is required for
membrane phospholipid synthesis. It is also involved in cellular signaling and known to ac-
tivate syntaxin-3, which causes cell membrane expansion of neuronal cells [142]. Schramm
et al. [136] explain the several revealed signals in lipid related metabolisms with TCA
based energy production; the GGEA results, explaining stimulation of arachidonic acid
synthesis, imply that the observed activated production of fatty acids and lipids (which
is based on the latter) is rather due to the increased requirement of neuronal membrane
material (i.e. specific lipids) in the fast growing and dividing neuroblastoma cells.

3.2.4 Discussion

In this work, we presented Gene Graph Enrichment Analysis (GGEA), a novel algorith-
mic framework to detect increased agreement between positively and negatively correlated
expression patterns of genes, connected by activating and inhibiting edges in signed and
directed transcriptional networks. The method exploits directed regulatory relations rep-
resented as fuzzy logic rules to assess and identify graphs, which maximize the consistency
between the regulatory network and the expression data. GGEA is a major improvement
to current gene set enrichment strategies, as we found experimentally validated regula-
tory interactions not to be consistent per se with the expression data in top ranked and
statistically significant result sets of these methods. That was validated in a large-scale
consistency study of 1,000 E. coli chips using the E. coli RegulonDB, currently the best cu-
rated regulatory network, for the investigation of consistency. As set enrichment strategies
ignore mutual regulation among set members, we observed that activations and inhibitions
are only average consistent with the gene expression in these result sets. Even strong
causal signals, i.e. a regulator with differential expression of high statistical significance,
in pairwise directed regulations were frequently not properly reflected. Inhibitions were
more seriously neglected than activations. This is partly due to a data bias, as there
are more activations than inhibitions in the database. Hence, more genes, and thus also
more significant genes, are involved in activations just by chance. As gene set enrichment
analysis mainly computes upon the leading edge of the ranked p-value vector of genewise
differential expression [123], gene sets with a majority of activating genes are more likely to
be reported. On the other hand, we found activations clearly better conserved than inhi-
bitions across all experiments stored in the M3D database. For GGEA, we observed, under
consideration of this bias, that activations were nearly optimally consistent and inhibitions
were preserved in a large fraction of regulations. GGEA achieved the highest concordance
between the regulation direction and the expression behavior of the incorporated regula-
tor and regulated target gene. It should be emphasized that GGEA consistently aligned
weak (only moderately differentially expressed) signals, which are usually not taken into
account by set enrichment methods. That improved sensitivity enables preference of weak,
but coherent regulations over strong, but contextless signals. This is expected to better
reflect the nature of key cellular regulators.
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As GGEA exploits the consistency for the computation of its score, we additionally car-
ried out a more independent benchmark to investigate how well statistically significant
expression changes of single genes can be explained by other set members. As a measure
of explainability, we used the number of additional genes, which were needed to connect
significant members of a set to a regulatory network. We found this evaluation of particular
interest, as it tries to approximate the process of the human interpretation. For all set en-
richment methods, only a small amount of genes could be explained by other set members
in a significant result and we observed frequently that several additional genes were needed.
Implied is that set enrichment indeed indicates that there is something striking happening
in a certain result set, however, conclusions whether observed expression changes are co-
herent and in context with the surrounding regulators cannot be drawn. This is resolved
by GGEA. It systematically reports more easily explainable sets than all other methods,
and the fraction of explainable sets with a single additional gene is increased by >30% in
comparison with the best set enrichment method.
Furthermore, we applied GGEA in two pilot case studies of human neuronal tumors using
regulatory interactions of signaling pathways, though incorporated protein-protein regula-
tions cannot be measured at the transcriptional level. Nonetheless, we again hypothesize
that genes, annotated to be associated in a pathway, should show higher correlation pat-
terns than arbitrary genes, which are not. On the other hand, we argue that signal cascades
normally target altered gene regulation.
On the glioma dataset, GGEA discovered throughout specific and disease related path-
ways. Induced by increasing specificity, the fraction of false positives decreases. Unspecific
and inconsistent pathways are replaced by more appropriate pathways. An example is
the detection of the Neurotrophin signaling pathway that modulates neuronal apoptosis (a
very specific finding), while general apoptosis is downgraded.
The Neurotrophin signaling pathway also has a major influence on the development of
neuroblastoma, another neuronal tumor type. The experimentally verified connection was
detected by GGEA with high significance, while GSEA failed to detect it. The discovery
of such false negatives of the set enrichment analysis is due to improved sensitivity already
observed in the consistency study. However, it is surprising that only GGEA is sensitive
enough to detect the Neurotrophin signaling pathway, the Chemokine signaling pathway
and the Fc epsilon RI signaling pathway - all of which have been shown to be of crucial im-
portance in neuroblastoma formation - while standard GSEA does not detect them. Best
ranked pathways of GSEA are: Cell cycle, Ribosome and Olfactory transduction. The
connection to the disease is incomprehensible and explanations are almost arbitrary.

3.2.5 Conclusion

We showed in three independent and differently designed studies that GGEA consistently
aligns regulation and expression and yields result sets where statistically significant expres-
sion changes can be explained by regulators within the set. Moreover, GGEA eases the
biological interpretation of reported gene sets, as they are more coherent than sets reported
by set enrichment methods. This means many more of their relevant genes are connected
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or can be connected by a minimum number of additional factors. In summary, GGEA is
an intuitive enrichment method, which uses gene regulatory information to improve con-
sistency and coherence of detected enriched gene sets and, thus, substantially reduces the
fraction of false positive and false negative classifications of relevant gene sets. GGEA
significantly improves the detection of gene sets where measured positively or negatively
correlated expression patterns coincide with directed inducing or repressing relationships
between the respective pairs of genes. Hence, gene set regulators, such as transcription
factors, can explain a significant portion of the observed expression changes. As GGEA is
as fast and easy to apply to experimental data as state-of-the-art set enrichment analysis
methods, it provides an alternative for interpreting gene expression measurements and for
deriving first insights into the relevant processes. The advantages of GGEA will increase in
the future with the availability of better GRNs and better models for regulatory relations
in these GRNs.
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3.3 Improvements of GGEA

Gene Graph Enrichment Analysis (GGEA) has been defined in the previous section as
a method for the detection of functional gene sets that are consistently regulated. This
section introduces several significant enhancements to the original method improving its
applicability, outcome and runtime.

3.3.1 Significance approximation

As described in Section 3.2.2, the statistical significance of GGEA’s consistency score for
a gene set under investigation is estimated via a permutation approach that is based on
resampling of the subjects. Given a sufficiently large number of permutations, typically
between 1,000 and 10,000, it allows for an accurate estimation of the underlying score
distribution. However, according to Larson and Owen [143], such a permutation approach
also has the following disadvantages:

• Cost : computationally expensive, as typically several statistics have to be recom-
puted,

• Randomness : random shuffling of the same setting can result in different p-values,

• Granularity : the smallest possible p-value is 1
M

for M permutations.

Randomness and granularity are theoretical issues, becoming less pronounced with an
increasing number of permutations. Cost is a practical issue as computing many per-
mutations are time-consuming also for GGEA. In the following, I demonstrate how the
significance of resulting gene sets can be estimated by adapting a statistical model that
avoids permutation testing of high computational cost. Depending on the data, this can
speed up the runtime of GGEA from minutes to seconds.
The raw GGEA score of a gene set is computed as the sum of edge consistencies C(t) ∈
[−1, 1] (see again Equation 3.12 in Section 3.2.2). Assuming that the edge consistencies
are normally distributed

C(t) ∼ N (0, σ2) (3.15)

with mean µ = 0 and variance σ2, the sum score S for a gene set with n edges

S =
n∑

i=1

C(ti) ∼
n∑

i=1

N (0, σ2) ∼ N

(
n∑

i=1

0,
n∑

i=1

σ2

)
∼ N (0, nσ2) (3.16)

is also normally distributed with mean µ = 0 and variance nσ2.
Thus, the statistical significance of an observed score s can be estimated as

Pr(S > s) = 1− Pr(S ≤ s) = 1− F
(
s, 0, nσ2

)
(3.17)

where F denotes the normal cumulative distribution function.
These considerations are based on the assumption of normality in Equation 3.15.
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(a) H. sapiens (Leukemia, KEGG) (b) E. coli (pH shift, RegulonDB)

(c) S. cerevisae (Gentamicin, YEASTRACT)

Figure 3.7: Edge consistency distribution of different data sets and regulatory net-
works. The histograms in the background depict the observed edge consistencies of (a) 23,858
regulatory interactions annotated in human KEGG pathways [41] that were evaluated on acute lym-
phoblastic leukemia (ALL) expression data [144], (b) 5,784 interactions in the RegulonDB [32] on
pH alteration data [145], and (c) 11,186 interactions in YEASTRACT [33] on gentamicin treatment
data [146]. The green and the red curve show the respective fitted mixtures of two normal dis-
tributions with indicated mean and standard deviation.

The expression data was downloaded from GEO [147] for E. coli (GDS1827) and S. cerevisae (GDS2999).
ALL data for H. sapiens was used as preprocessed in Bioconductor’s ALL package [148].
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(a) H. sapiens (Leukemia, KEGG) (b) E. coli (pH shift, RegulonDB)

(c) S. cerevisae (Gentamicin, Yeastract)

Figure 3.8: Goodness of fit for the mixtures fitted in Figure 3.7. The quantile-quantile
plots show for each fitted mixture (violet) how well its distribution (theoretical quantiles, x-axis)
agrees with the observed edge consistency distribution (sample quantiles, y-axis). The black
diagonal indicates a perfect fit, i.e. complete agreement between fitted and observed distribution.
For comparison, the cyan distribution depicts how well a fit of a single normal distribution –
instead of a mixture – agrees with the observed consistency distribution. The Akaike information
criterion (AIC), indicating the relative quality of both models, is shown in the respective legend.
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However, inspection of different data sets and regulatory networks shows that the edge
consistency distribution rather follows a mixture of two normal distributions (Figure 3.7
and 3.8). Equation 3.15 thus becomes

C(t) ∼ λ1N (µ1, σ
2
1) + λ2N (µ2, σ

2
2) (3.18)

where λ1 and λ2 denote the weights by which the two normal distributions are mixed. Both
are roughly equal to 0.5 for the mixtures depicted in Figure 3.7.
Revisiting Equations 3.16 and 3.17 yields

S =
n∑

i=1

C(ti)

∼
n∑

i=1

[
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2
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2
2)
]

∼ λ1

n∑
i=1

N (µ1, σ
2
1) + λ2

n∑
i=1

N (µ2, σ
2
2)

∼ λ1N

(
n∑

i=1

µ1,
n∑

i=1

σ2
1

)
+ λ2N

(
n∑

i=1

µ2,
n∑

i=1

σ2
2

)
∼ λ1N

(
nµ1, nσ

2
1

)
+ λ2N

(
nµ2, nσ

2
2

)

(3.19)

and
Pr(S > s) = 1− λ1F

(
s, nµ1, nσ

2
1

)
− λ2F

(
s, nµ2, nσ

2
2

)
. (3.20)

The statistical significance of an observed consistency score for a gene set under investiga-
tion can thus be approximated by a mixture of two normal distributions with means nµ1,
nµ2 and variances nσ2

1, nσ2
2. These parameters result from multiplying the number of edges

in the set with corresponding means and variances from the underlying edge consistency
mixture.
Figure 3.8 shows the goodness of fit for the mixtures fitted in Figure 3.7. Visual inspection
of the quantile-quantile plots indicates that the mixtures closely approximate the observed
edge consistency distributions. Comparing the resulting AIC, given at the bottom right of
each plot, also demonstrates that the approximation is significantly better than it would
be achieved by fitting a single normal distribution. Thus, in case the distribution assump-
tion in Equation 3.18 holds, the analytical approximation represents a fast and accurate
alternative to the permutation approach. However, if the observed edge consistency dis-
tribution significantly deviates from a normal mixture, the permutation approach remains
the method of choice for estimating the significance of the gene set consistency score.

3.3.2 Edge selection

Edge types

The GGEA score for a gene set is originally calculated over all edges involving a gene set
member, i.e. including edges that are coming from or pointing to a gene outside of the
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Figure 3.9: Consistency threshold evaluation on the KEGGdzGEO benchmark set.
The boxplots show resulting ranks (left panel) and p-values (right panel) of the predefined target
pathways, assigned to the 24 datasets listed in Table 3.5, when applying GGEA and including
all edges (consistency threshold of −1, blue) or only edges above a consistency threshold of 0.3
(red).

set. Depending on the investigation scope, this is not always desired as most enrichment
methods only take gene set members and edges between them into account. A similar
option is thus required for GGEA to decide which edges of the GRN are considered for a
gene set.
Hence, the induced subnetwork for a gene set u ∈ U (see again Equation 3.9) is constructed
in dependence on an option o ∈ {∧,∨} (logical AND and OR) by

GRN(u) := {t ∈ GRN | o(in(t) ∈ u, out(t) ∈ u)}. (3.21)

This accordingly includes edges for which regulator AND / OR target gene are members
of the investigated gene set.

Consistency threshold

Originally, GGEA detects sets where consistent regulation excels inconsistent regulation.
A side effect is that many inconsistencies of small effect can dilute strong consistent effects.
The application of a consistency threshold can thus be a reasonable alternative to filter
out negligible effects.
To demonstrate the effect of a suitably chosen threshold, I apply GGEA to a benchmark
set of 24 disease expression datasets from GEO (Appendix C.2). The datasets were collected
by Tarca et al. [149] and a corresponding target pathway from KEGG has been assigned to
each of them (Table 3.5). These pathways are expected to be significantly perturbed as
each of them represents the disease investigated in the respective dataset.
Figure 3.9 shows how well GGEA discovers the target pathways in dependence of the
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Table 3.5: The 24 datasets provided by Tarca et al. [149] as a benchmark set for gene
set enrichment analysis. Adapted from Table 1 of the cited publication. Datasets were used as

preprocessed in Bioconductor’s KEGGdzPathwaysGEO package [150].

Target pathway KEGG.ID GEO.ID

1 Alzheimer’s disease hsa05010 GSE1297
2 GSE5281 (EC)
3 GSE5281 (HIP)
4 GSE5281 (VCX)
5 Parkinson’s disease hsa05012 GSE20153
6 GSE20291
7 Huntington’s disease hsa05016 GSE8762
8 Colorectal cancer hsa05210 GSE4107
9 GSE8671
10 GSE9348
11 Renal cancer hsa05211 GSE14762
12 GSE781
13 Pancreatic cancer hsa05212 GSE15471
14 GSE16515
15 Glioma hsa05214 GSE19728
16 GSE21354
17 Prostate cancer hsa05215 GSE6956 (AA)
18 GSE6956 (C)
19 Thyroid cancer hsa05216 GSE3467
20 GSE3678
21 Acute myeloid leukemia hsa05221 GSE9476
22 Non-small cell lung cancer hsa05223 GSE18842
23 GSE19188
24 Dilated cardiomyopathy hsa05414 GSE3585

chosen consistency threshold. Compared to using no threshold, which is equivalent to a
threshold of −1, a threshold of 0.3 enables a significantly better detection of the target
pathways. They are ranked significantly higher (t-test p-value = 0.0006; ks-test p-value =
0.017) and are found frequently with high statistical significance.



Chapter 4

Interpretation of detected
subnetworks

4.1 Background

The previous chapter introduces GGEA as a method for network-based gene set enrich-
ment analysis. Resulting gene sets, and interactions within and between them, correspond
to significantly enriched subnetworks of the global gene regulatory network. These sub-
networks typically represent functional modules of interplay between genes from which
conclusions about molecular mechanisms underlying the investigated phenotype can be
drawn. Subsequent basic interpretation steps typically include (1) manual inspection of
these subnetworks, and (2) biological reasoning based on known associations of contained
genes with the phenotype under study (see e.g. Section 3.2.3, subsection Case Study).
Manual inspection of the detected subnetworks is facilitated by specific tools for a network-
based data view [151, for a review]. This includes general visualization and exploration
tools for networks such as Cytoscape [152]. On the other hand, there are also tools specif-
ically designed for particular databases such as pathview [153], which allows visualization
of differential expression in KEGG pathway maps, and GOrilla [154], which incorporates the
GO tree structure in the visualization. Using these tools enables an immediate identification
of genes, interactions and larger modules that are affected in the expression data under
investigation.
Biological reasoning with the identified network components requires sufficient expertise
with respect to the investigated phenotype and comprehensive knowledge of the relevant
literature [155]. Results can then be divided into observations that are supported by
previous findings and novel hypotheses about the underlying mechanisms and drivers of
the observed expression. However, for common diseases like cancer and diabetes there is
typically a large literature corpus. Thus, reasoning with previous findings often remains
incomplete and also biased towards a priori established investigation goals. This can be
improved by using automated components of the interpretation procedure such as text
mining for the selection of relevant articles [34].
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Figure 4.1: Overview.

Although the described basic interpretation is valuable for deriving first insights and select-
ing candidates for further targeted investigations, two major issues have to be considered
(Figure 4.1):

• Numerous methods are available to identify significantly altered subnetworks [21,28].
The choice for a particular method is not straightforward and can have a great impact
on the result and conclusions drawn from it.

• Predefined gene set and network definitions overlap considerably [149,156]. In addi-
tion, it is frequently observed that only parts of the predefined gene sets and networks
are altered. This can lead to confusingly large and redundant result networks, which
are typically not easily reduced to the non-redundant and active part.

In the following, I address both of these issues and describe existing solutions based on
recent publications in the field. In Section 4.2, I introduce the EnrichmentBrowser as a
software package that allows to combine and explore results across methods. By accumu-
lating evidence from multiple methods, the confidence in detected subnetworks is increased
and biological conclusions can be drawn more robustly. Subsequently, in Section 4.3, I re-
view methods for the composition analysis of resulting gene sets and networks. I focus on
reduction and integration approaches and discuss how they can be exploited as extensions
for the EnrichmentBrowser.



4.2 Combination and exploration of results 65

4.2 Combination and exploration of results

This section describes a software package for enrichment analysis. It implements several
state-of-the-art methods and allows to combine and explore results across methods. The
work has been included in the recognized Bioconductor repository on October 15th, 2014,
and presented on January 13th, 2015, at the European Bioconductor Developers Meeting.
The following is based on its original publication in the journal BMC Bioinformatics, 17:45,
January 2016.

Authors: Ludwig Geistlinger, Gergely Csaba, and Ralf Zimmer

Title: Bioconductor’s EnrichmentBrowser: seamless navigation through combined results
of set- & network-based enrichment analysis

Abstract: Enrichment analysis of gene expression data is essential to find functional
groups of genes whose interplay can explain experimental observations. Numerous meth-
ods have been published that either ignore (set-based) or incorporate (network-based)
known interactions between genes. However, the often subtle benefits and disadvantages
of the individual methods are confusing for most biological end users and there is currently
no convenient way to combine methods for an enhanced result interpretation. We present
the EnrichmentBrowser package as an easily applicable software that enables: (i) the ap-
plication of the most frequently used set-based and network-based enrichment methods;
(ii) their straightforward combination; and (iii) a detailed and interactive visualization
and exploration of the results. The package is available from the Bioconductor repository
and implements additional support for standardized expression data preprocessing, differ-
ential expression analysis, and definition of suitable input gene sets and networks. The
EnrichmentBrowser package implements essential functionality for the enrichment anal-
ysis of gene expression data. It combines the advantages of set-based and network-based
enrichment analysis in order to derive high-confidence gene sets and biological pathways
that are differentially regulated in the expression data under investigation. Besides, the
package facilitates the visualization and exploration of such sets and pathways.

Author contributions LG implemented the package and wrote the manuscript. GC
tested and evaluated the package and suggested several modifications. RZ reviewed the
manuscript and supervised the project.
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4.2.1 Background

Genome-wide gene expression studies with microarrays or RNA-seq typically measure sev-
eral thousand genes at a time [11]. This makes biological interpretation challenging. To
approach this task several statistical filters can be applied to obtain an easier tractable
number of genes and to concentrate further investigation effort on genes that are differ-
entially expressed. Subsequently, analysis focuses on whether disproportionately many of
the remaining genes belong to known functional sets of genes. Such an enrichment for cer-
tain gene functions, sets or pathways immediately generates important hypotheses about
underlying mechanisms of e.g. an investigated clinical phenotype.
A recent review divides existing enrichment methods into three generations [21]. The first
generation of methods is centered around the traditionally used overrepresentation analy-
sis, which tests based on the hypergeometric distribution whether genes above a predefined
significance threshold are overrepresented in functional gene sets [27]. The second genera-
tion of methods resolves the restriction to the subset of significant genes, and instead scores
the tendency of gene set members to appear rather at the top or bottom of the ranked list
of all measured genes [123].
First and second generation methods have in common that they ignore known interactions
between genes. Those methods are thus denoted as set-based in this manuscript. Methods
that do incorporate known interactions belong to the third generation of methods and are
denoted as network-based in the following (reviewed in [28]).
While each generation is represented by numerous published methods with individual ben-
efits and disadvantages, there is currently no gold standard enrichment method agreed
upon. This makes the decision for a particular method intricate. It also leads users, actu-
ally intending a better biological understanding of their data, to decide based on criteria
not necessarily relating to biological insight such as frequency of usage and ease of appli-
cation.
Combination of methods has been proven superior to individual methods in different areas
of computational biology, as it increases performance [35] and statistical power [157] and
biological insights often complement each other [11,158].
In this article, we propose and implement the straightforward combination of major set-
and network-based enrichment methods. We demonstrate that this filters out spurious hits
of individual methods and reduces the outcome to candidates accumulating evidence from
different methods. This increases the confidence in resulting enriched gene sets, and, thus,
substantially enhances the biological interpretation of large-scale gene expression data.

4.2.2 Implementation

The EnrichmentBrowser is implemented in the statistical programming language R [159]
and the package is included in the open-source Bioconductor project [132].
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Overview

Given gene expression data sampling different conditions, specific functional gene sets, and
optionally a gene regulatory network, the EnrichmentBrowser performs three essential
steps: (1) chosen set- and network-based enrichment methods are executed individually,
(2) enriched gene sets are combined by selected ranking criteria, and (3) resulting gene set
rankings are displayed as HTML pages for detailed inspection (Figure 4.2).

Data preprocessing

The typical starting point for the EnrichmentBrowser is normalized gene expression data.
The data are usually microarray intensity measurements or RNA-seq read counts for sev-
eral thousand genes between two conditions, each represented by a group of samples.
Two inputs are required: (1) the expression matrix, in which each row corresponds to
a gene and each column to a sample, and (2) a binary classification vector dividing the
samples in cases and controls. In case of paired samples or sample blocks, e.g. indicating
different treatments of cases and controls, a vector defining the blocks can optionally be
supplied.
While each dataset typically shows individual characteristics that need to be specifically
normalized for, the EnrichmentBrowser provides several well-established standard rou-
tines for that purpose. This includes within-array/-lane and between-array/-lane normal-
ization for microarray and RNA-seq data based on functionality from the limma [160] and
EDASeq [161] package, respectively.
In case of microarray data, once it has been read in, the data is transformed from probe to
gene level. This incorporates a mapping from probe to gene identifiers, which is automati-
cally done for recognized platforms (i.e. a corresponding Bioconductor annotation package
such as hgu95av2.db [162] exists) or required as a user input otherwise. An important pa-
rameter is the summarization method determining, in case of multiple probes for one gene,
whether an average value is computed or the probe that discriminates the most between
the two sample groups is kept.

Differential expression

Differences in gene expression between the two sample groups are computed using estab-
lished functionality from the limma package [160], involving the voom transformation [163]
when applied to RNA-seq data. Alternatively, differential expression analysis for RNA-seq
data can also be carried out based on the negative binomial distribution with edgeR [164]
and DESeq2 [165]. Resulting log2 fold changes and derived p-values for each gene can be
inspected in several ways (Figure 4.3). This includes a gene report that lists the respective
measures of differential expression for each gene, and several overview graphics such as:

• Heatmap: clustered overview of gene expression between the two groups for all genes,
and separately, only for significant genes satisfying predefined thresholds of fold
change and p-value.
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Figure 4.2: Workflow. Expression data as measured with microarrays or RNA-seq is tested
for enrichment of specific functional gene sets e.g. as defined in the Gene Ontology or the KEGG

pathway annotation. Additional information from regulatory networks annotated in specific
databases such as the RegulonDB or Yeastract can be exploited. Implemented methods can be
carried out individually and combined by selected ranking criteria. Resulting gene set rankings
can be browsed as HTML pages allowing detailed inspection (as illustrated in Figure 4.3).

• Volcano plot: fold change versus p-value plot that illustrates the correspondence of
amount, direction and statistical significance of expression changes (supporting im-
mediate identification and exploration of significant genes by mouse-over and linking
to the corresponding gene entries).

• P -value distributions: histogram of raw and adjusted p-values.
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Multiple testing correction is performed using the p.adjust function from the stats pack-
age, which implements several frequently used corrections from which the user can choose
(reviewed in [166]). This includes the stringent Bonferroni correction and the less conser-
vative method of Benjamini and Hochberg.

Enrichment analysis

Set-based enrichment analysis

The EnrichmentBrowser implements several ways to assemble the gene sets that should
be tested for enrichment. User-defined gene sets can be parsed from suitable formats such
as GMT [167] or extracted from pathway XML format [168]. Frequently used organism-
specific gene sets from GO [22] and KEGG [41] can be downloaded exploiting functionality
from the topGO [169] and KEGGREST [170] package, respectively.
Currently supported are the following major set-based enrichment methods:

• ORA: Overrepresentation Analysis, simple and frequently used test based on the
hypergeometric distribution (reviewed in [27]),

• SAFE: Significance Analysis of Function and Expression, implements a resampling
version of ORA, includes other test statistics such as Wilcoxon’s rank sum, and allows
to estimate the significance of gene sets by sample permutation [125],

• GSEA: Gene Set Enrichment Analysis, frequently used and widely accepted, uses a
Kolmogorov-Smirnov statistic to test whether the ranks of the p-values of genes in a
gene set resemble a uniform distribution [123],

• SAMGS: Significance Analysis of Microarrays on Gene Sets, extending the SAM
method for single genes to gene set analysis [171].

ORA is a first generation method, whereas SAFE, GSEA, and SAMGS belong to the second
generation of enrichment methods. The EnrichmentBrowser uses its own implementation
of ORA, while it integrates SAFE as implemented in the safe package. Implementations
of GSEA and SAMGS are adapted from [172,173], respectively.
SAFE, GSEA, and SAMGS use sample permutation for estimating the gene set significance,
which involves recomputation of their individual local t-like statistics for each gene. As
this is not per se suitable for RNA-seq read count data, the EnrichmentBrowser provides
specific local statistics based on the limma/voom-transformed t-statistic, the LR-statistic
from edgeR, and the Wald-statistic from DESeq. Global statistics for each gene set are
accordingly chosen as the KS-statistic (for GSEA), Wilcoxon’s rank sum (for SAFE), and
Hotelling’s T 2 (for SAMGS). Permutation testing with selected local and global statistics
is carried out using the general framework implemented in the safe package.

Network-based enrichment analysis

Gene regulatory networks represent known interactions between genes as derived from spe-
cific experiments or compiled from the literature [174]. There are well-studied processes



70 4. Interpretation of detected subnetworks

and organisms for which comprehensive and well-annotated regulatory networks are avail-
able, e.g. the RegulonDB for E. coli [32] and Yeastract for S. cerevisiae [33]. While it is
recommended to use these specific networks, and the EnrichmentBrowser supports their
download and formatting, there are also cases where such a network is not easily available.
For these cases the EnrichmentBrowser implements the possibility to compile a network
from regulatory interactions annotated in the KEGG database. This incorporates download-
ing and parsing of the pathways for a selected organism making use of the KEGGREST and
KEGGgraph package [175], respectively.
Currently integrated network-based enrichment analysis methods are

• GGEA: Gene Graph Enrichment Analysis, evaluates consistency of known regulatory
interactions with the observed expression data [80],

• SPIA: Signaling Pathway Impact Analysis, combines ORA with the probability that
expression changes are propagated across the pathway topology [176],

• NEA: Network Enrichment Analysis, applies ORA on interactions instead of genes [177],

• PathNet: Pathway analysis using Network information, applies ORA on combined
evidences of the observed signal and the signal implied by connected neighbors in the
network [178].

GGEA is the default network-based enrichment method of the EnrichmentBrowser and is
also incorporated in the network-based visualization of gene sets. SPIA, NEA, and PathNet
are integrated as implemented in the SPIA, neaGUI, and PathNet package, respectively.

Generic plug-in of additional methods

The goal of the EnrichmentBrowser is to provide the most frequently used enrichment
methods. However, it is also possible to exploit its functionality with additional methods
not among the currently implemented ones. This requires to implement a function that
takes the characteristic arguments eset (expression data), gs (gene sets), alpha (signifi-
cance level), and in case of network-based enrichment also grn (gene regulatory network).
In addition, it must return a vector storing the resulting p-value for each gene set in gs.

Combining results

Different enrichment analysis methods usually result in different gene set rankings for
the same dataset. To compare results and detect gene sets that are supported by different
methods, the EnrichmentBrowser package allows to combine results from the different set-
and network-based enrichment methods. The combination of results yields a new ranking of
the gene sets under investigation according to a defined ranking and combination function.
The ranking function determines by which statistic the individual gene set rankings are
sorted and which type of ranks are computed. The ranking statistic is typically chosen to
be the gene set p-value or score (sorted in ascending and descending order, respectively).
Predefined rank types include:
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• Absolute ranks rA are assigned from 1 to n according to the sorting of the ranking
statistic. Intuitively, n is identical to the number of gene sets NGS if the ranking
statistic takes a different value for each gene set. As ties can occur, which yields the
same rank for gene sets with equal value, n corresponds to the number of distinct
values of the ranking statistic (denoted as ND).

• To account for a differing number of gene sets in the individual rankings, relative
ranks rR can be derived from absolute ranks via rA/n · 100.

• Although frequently used to rank gene sets, absolute and relative ranks can be mis-
leading in case of extensive presence of ties. Especially, when comparing a coarse-
grained (ND � NGS) and a fine-grained ranking (ND ≈ NGS). Here, similar ab-
solute/relative ranks imply a very different meaning. To resolve this, we introduce
competitive ranks rC calculated as the percentage of gene sets with a value of the
ranking statistic at least as extreme as observed for the gene set to be ranked.

The default ranking function returns competitive ranks based on gene set p-values.
The combination function determines how ranks are combined across methods and can
be chosen from predefined functions such as mean, median, min, and sum (default). User-
defined ranking and combination functions can also be plugged in.

Visualization and exploration

The standard output of existing enrichment tools is a ranking of the gene sets by the corre-
sponding p-value. The EnrichmentBrowser package provides additional visualization and
interactive exploration of resulting gene sets far beyond that point. Based on functionality
from the ReportingTools package [179], the resulting flat ranking can be accompanied by
a HTML report from which each gene set can be inspected in detail (Figure 4.3).
Instead of providing visualization capabilities for each method, the EnrichmentBrowser

implements general set- and network-based visualizations (SBEA and NBEA page). They
represent results of methods of the corresponding class, but can also be incorporated inde-
pendent of the enrichment method executed. It is thus possible to carry out e.g. set-based
methods, while including a network-based visualization of significant gene sets in the result
report.
The SBEA page is composed as described for the global differential expression report (the
set of all measured genes). Thus, a gene set under study is visualized with an interactive
volcano plot alongside 2 heatmaps for all and only differentially expressed set members.
The composition of the NBEA page depends on the gene set source and whether a regula-
tory network is available. For KEGG gene sets, differential expression is visualized directly
on the pathways by overplotting the original pathway maps with pathview [153]. In addi-
tion, connected subgraphs within a pathway are displayed separately and can be inspected
by mouse-over (involves the imageMap function from biocGraph [180]).
In case a regulatory network has been provided, gene sets can also be viewed as GGEA
graphs. Such a graph displays for a gene set of interest the consistency of each interaction
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Figure 4.3: Navigation. Structured access to enrichment analysis results is provided by an
index page that links overview graphics, a gene report that includes measures of differential
expression for each gene under investigation, and the full flat gene set rankings for each executed
method (and, optionally, their combination). In addition, a top table for each method is linked
containing detailed set-based (SBEA page) and network-based (NBEA page) views of significant
gene sets. The SBEA page for a gene set is composed of (1) an interactive volcano plot (fold
change vs. DE p-value) allowing immediate identification of significant genes by mouse-over, and
(2) two heatmaps displaying the expression of all set genes and the subset of significant genes.
The NBEA page illustrates interactions within a gene set by projecting it onto the underlying
regulatory network, and for KEGG gene sets by additionally highlighting corresponding pathway
maps. Results of method combination are linked in a combined page that displays the combined
ranking alongside the individual rankings, and which can be interactively sorted and filtered
according to user-selected criteria. See Additional file 2-4 for several application examples and
the vignette of the EnrichmentBrowser package for details of the various options.

in the network that involves a gene set member. Nodes (genes) are colored according to
expression (up-/down-regulated) and edges (interactions) are colored according to consis-
tency, i.e. how well the interaction type (activation/inhibition) is reflected in the correlation
of the observed expression of both interaction partners (see the legend in Additional file 1,
Figure S1). Although GGEA graphs have been originally implemented for illustrating gene
sets according to GGEA, they are apparently useful for depicting mechanisms exploited
by network-based methods in general.
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The combined result view additionally enables an interactive ranking either based on the
combined ranks across methods, or with respect to one of the chosen methods.

4.2.3 Results and Discussion

In the following, we demonstrate the application of the EnrichmentBrowser to microar-
ray and RNA-seq data. Subsequently, we systematically evaluate the individual methods
integrated in the package and the effect of combining methods. See Additional file 1 for
supplementary material and methods. A comparative evaluation to existing Bioconductor

packages and stand-alone tools such as SegMine [181] and graphite web [182] can also be
found in Additional file 1.

Application example 1: ALL microarray data

To demonstrate the functionality of the package for microarray data, we consider expression
values of patients suffering from acute lymphoblastic leukemia [144]. A frequent chromoso-
mal defect found among these patients is a translocation, in which parts of chromosome 9
and 22 swap places. This results in the oncogenic fusion gene BCR/ABL created by posi-
tioning the ABL1 gene on chromosome 9 to a part of the BCR gene on chromosome 22.
The data is available from Bioconductor in the ALL data package [148] and contains nor-
malized intensity measurements on a log-scale for 12,625 probes across 79 patients. Case
and control group were defined according to presence or absence of the BCR-ABL gene
fusion. We use functionality of the EnrichmentBrowser for transformation from probe to
gene level and differential expression analysis (see Implementation, section Data prepro-
cessing and Differential expression). Human KEGG pathways were downloaded as gene sets,
i.e. ignoring interactions between genes.
We apply ORA to detect overrepresented KEGG pathways using the default significance level
α of 0.05 (Table 4.1; and Additional file 2 for the detailed HTML summary). Resulting
pathways can be divided in three categories: (1) clearly linked to the phenotype such as
transcriptional misregulation in cancer, apoptosis and basal cell carcinoma, (2) unknown
and secondary effects of phenotype or treatment like myocarditis, which can be caused by
cancer radiation therapy, and (3) clearly irrelevant such as legionellosis (drinking water
contamination) and shigellosis (foodborne illness).
We investigate next whether these findings can be explained by known regulatory interac-
tions. This means, whether regulators such as transcription factors and their target genes
are expressed in accordance to the connecting regulations. Therefore, we apply GGEA us-
ing a network of regulations compiled from the KEGG database. For comparison, we select
the same number of gene sets as for ORA from the top of the GGEA ranking (Table 4.1;
and Additional file 2 for the detailed HTML summary).
To identify relevant pathways reported by both methods, we combine the rankings of ORA
and GGEA by rank sum, including only gene sets in the intersection of both rankings.
This yields a new ranking in which irrelevant pathways such as legionellosis and shigellosis
are filtered out (Table 4.1; and Additional file 2 for the detailed HTML summary). Thus,
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Table 4.1: Combination of top ranked gene sets of ORA and GGEA by rank sum
(ALL microarray data). Shown are the absolute ranks returned by ORA and GGEA and the
resulting rank sum in the last column (see Implementation, section Combining results).

ID Title ORA GGEA
∑

hsa05416 Viral myocarditis 1 1 2
hsa04520 Adherens junction 4 2 6
hsa05217 Basal cell carcinoma 9 3 12
hsa04622 RIG-I-like receptor 2 12 14
hsa04210 Apoptosis 6 10 16
hsa05202 Transcript. misreg. in cancer 7 13 20
hsa05130 Pathogenic E. coli infection 3 - -
hsa05134 Legionellosis 5 - -
hsa05131 Shigellosis 8 - -
hsa05412 Arrhytm. cardiomyopathy 10 - -
hsa05100 Invasion of epithelial cells 11 - -
hsa04670 Leukocyte trans. migration 12 - -
hsa05206 MicroRNAs in cancer 13 - -
hsa04350 TGF-β signaling - 4 -
hsa04550 Pluripotency of stem cells - 5 -
hsa05211 Renal cell carcinoma - 6 -
hsa04310 Wnt signaling - 7 -
hsa04660 T cell receptor - 8 -
hsa05144 Malaria - 9 -
hsa04514 Cell adhesion - 11 -

combining ORA with GGEA yields a ranking reduced to the most plausible pathways,
which are supported by several mechanistic explanations in the GGEA graphs.

Application example 2: TCGA RNA-seq data

The EnrichmentBrowser integrates specific methods for preprocessing and differential ex-
pression analysis of RNA-seq data. Accordingly, enrichment methods that rely on sample
permutation are adapted to incorporate specific local statistics for recomputation of per-
gene differential expression (see Implementation, section Set-based enrichment analysis).
To demonstrate the functionality, we apply the package for the analysis of RNA-seq data
from The Cancer Genome Atlas (TCGA, [183]). We consider here uterine corpus en-
dometrial carcinoma (UCEC), which is one of the most common cancers of the female
reproductive system [184].
The data is available from GEO under accession GSE62944 [185] and contains integer se-
quencing read counts for 554 UCEC tumor and 35 adjacent normal samples. We apply
the limma/voom-based differential expression analysis and make use of the KEGG gene set
catalogue and regulatory network described in the previous section.
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(a) cancer (b) unspecific

Figure 4.4: Method combination consolidates cancer-specfic pathways and down-
grades unspecific pathways (TCGA RNA-seq data). (a) Competitive rank distributions
of selected cancer-specific pathways (listed top right) for GSEA, NEA, and PathNet when applied
to the UCEC RNA-seq data from TCGA. The orange rightmost boxplot depicts the correspond-
ing rank distribution when combining the individual rankings by rank sum. Analogously, (b)
depicts the rank distributions of selected unspecific pathways (listed at the top of the respective
panel) that were top ranked by the 3 individual methods.

For set-based enrichment analysis, we choose GSEA as it is among the methods specifi-
cally adapted in the EnrichmentBrowser for the analysis of RNA-seq data. In addition,
we apply PathNet and NEA for network-based enrichment analysis (full rankings can be
found in Additional file 3). To investigate the effect of method combination, we combine
the 3 individual gene set rankings by rank sum as for the ALL example.
We find cancer-specific pathways such as p53 signaling pathway and Pathways in cancer
clearly consolidated in the combined ranking (Figure 4.4a). On the other hand, unspecific
pathways such as Olfactory transduction and Morphine addiction, which were top ranked
by the individual methods, are distinguishably downgraded in the combined ranking (Fig-
ure 4.4b).
Thus, independent of the expression data type under study (microarray/RNA-seq) and the
enrichment methods combined (previously: ORA/GGEA, here: GSEA/NEA/PathNet),
the combination has shown to improve individual rankings by increasing confidence in
specific target pathways and removing irrelevant pathways from the top of the ranking.

Systematic evaluation: GEO2KEGG benchmark set

We have observed beneficial effects of combining enrichment methods at the example of
specific microarray and RNA-seq datasets. We investigate next whether these effects can
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be observed systematically when applied to many datasets.
For that purpose, we use a compendium of 27 GEO datasets derived from the KEGGdzPath-
waysGEO and the KEGGandMetacoreDzPathwaysGEO benchmark sets [149,186]. See Ad-
ditional file 1 for details. These datasets have been specifically selected as they investigate
a certain human disease for which a corresponding KEGG pathway exists (e.g. Alzheimer’s
disease). These pathways are thus denoted as the target pathways in the following.
We investigate first how well the individual set- and network-based methods detect the
target pathways and, subsequently, whether the detection can be improved by combining
methods.

Individual methods

When applying the 8 methods to the 27 datasets of the GEO2KEGG benchmark set, an is-
sue of practical relevance is runtime (Figure 4.5). As expected, runtime of the methods
depends mainly on whether permutation testing is used to estimate gene set significance,
and whether this is efficiently implemented.
ORA, applying the hypergeometric test without permutation, can thus be performed with
almost no effort, displaying a constant runtime of around half a second per dataset. GSEA,
applied with a default of 1,000 permutations, is slower by two orders of magnitude taking
around 1 min 40 sec per dataset. It should be mentioned that the original GSEA R-
script [172], which has been straightforward translated from Java, is considerably slower.
The version integrated in the EnrichmentBrowser has been substantially optimized by
making use of vectorized calculations. SAFE and SAMGS, taking typically 5-10 sec de-
pending on the dataset, although methodically similar to GSEA are much faster as they
do not rely on the computationally intensive cumulative KS-statistic. However, using the
npGSEA permutation approximation [143] reduces the runtime of GSEA to ≈2 sec per
dataset.
Concerning the network-based methods, SPIA and PathNet display similar runtime as
observed for permutation-based GSEA. NEA seems to be inefficiently implemented, re-
quiring already for 10 permutations ≈13 min on average and up to 2 1/2 days for 1,000
permutations (Additional file 1, Figure S2). On the other hand, the code of GGEA has
been highly optimized and yields short computation times. The permutation-based ver-
sion takes ≈4 sec per dataset. Using a similar permutation approximation as for GSEA,
reduces the runtime of GGEA to ≈2 sec per dataset.
Resulting gene sets returned by the enrichment methods are typically ranked by gene set p-
value. However, given that a method can return the same p-value for more than one gene
set impairs a straightforward ranking. This applies especially to permutation p-values,
which typically lack a suitable granularity [143]. We have thus introduced competitive
ranks, defined as the percentage of gene sets with a p-value at least as extreme as observed
for the gene set to be ranked (see Implementation, section Combining results).
Competitive rank distributions of the target pathways when applying the 8 methods to the
27 datasets of the GEO2KEGG benchmark set are shown in Figure 4.6a. With the exception
of SAMGS and, to a lesser extent, NEA, p-value based rankings of the remaining 6 methods
appear to well discover the relevance of the target pathways. Their rank distributions are
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Figure 4.5: Runtime. Shown are the distributions of the elapsed processing times (y-axis, log-
scale) when applying the enrichment methods indicated on the bottom x-axis to the 27 datasets of
the GEO2KEGG benchmark set. The x-axis on top of the plot indicates the number of permutations
that have been used to estimate gene set significance. Elapsed runtime of NEA when using 100
and 1,000 permutations, respectively, are shown in Additional file 1, Figure S2.

clearly shifted towards the top of the ranking (median ranging from 19% for SPIA to 30%
for GSEA). This can be interpreted as a clear sign for relevance of the target pathways
for the corresponding datasets. However, this also shows that there is no clearcut relation
between target pathway and dataset as it would be indicated by throughout top rankings
of the target pathways. This is presumably due to interfering issues inherent to KEGG

such as incompleteness of the pathway definition as well as overlap and crosstalk between
pathways [149,156]. Nevertheless, there are several notable observations that can be made
here:
(1) GSEA, typically assumed superior to ORA by incorporating all measured genes, does
not display an increased potential for discovering the target pathways. This indicates that
most of the variance observed for these sets is explained by genes that are significantly dif-
ferentially expressed. (2) Similarly, rank distributions of the network-based methods do not
deviate significantly from the set-based methods, although they are typically assumed to
better reflect the regulatory mechanisms within sets. This indicates that the KEGG network
used here is of limited suitability. As it predominantly contains protein-protein interactions
and only a small fraction of transcriptional regulatory interactions, quantitative changes
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(a) p-value (b) score

Figure 4.6: Evaluation of individual methods on the GEO2KEGG benchmark set.
Depicted are competitive rank distributions of the KEGG target pathways according to (a) gene
set p-value and (b) gene set score of the individual methods when applied to the 27 GEO datasets.
The x-axis on top of both plots indicates the number of datasets for which the corresponding
method resulted in the best ranking (among methods) of the target pathway. As an example,
the leftmost blue boxplot in (a) shows for ORA a median rank of ≈20%, i.e. ORA returned for
half of the datasets a competitive rank below 20%. Depicted on top, #best = 7 means that
ORA returned for 7 datasets the best ranking (among methods) for the target. Detailed rank
distributions for each dataset can be found in Additional file 1, Figure S3 and S4.

in transcriptomic data reflecting effects of interactions are presumably rare.
(3) Detailed inspection of the rank distributions shown in Figure 4.6a reveals that none
of the methods is best suited for all datasets (Additional file 1, Figure S3). There are
≥2 datasets for each method yielding the best ranking (among methods) of the target
pathway. (4) SAMGS returns typically a p-value of zero for 70-80% of the gene sets tested,
rendering this p-value a measure not suitable for ranking. As permutation p-values should
never be zero [187], usage of this p-value is also not recommended for expressing statis-
tical significance. Similarly, permutation p-values reported by NEA, although obtained
with large computational effort (see runtime discussed earlier), appear also not suitable for
ranking.
Given the observed issues for NEA and SAMGS when ranking results by gene set p-value,
we also ranked the target pathways by gene set score (Figure 4.6b). While ranking of
the other 6 methods remained almost invariant (GGEA slightly better, SAFE and SPIA
slightly worse), this substantially improved rankings returned by SAMGS and NEA. How-



4.2 Combination and exploration of results 79

ever, inspecting the rank distributions for each dataset in more detail (Additional file 1,
Figure S4) showed again that no single method consistently returned best rankings. We
observed at least one dataset for each method with the best ranking (among methods) of
the corresponding target pathway.

Method combination

Motivated by the results observed for individual methods in the previous section, we in-
vestigated next the effect of combining results of methodically similar methods. Therefore,
we computed combined ranks by rank sum for the 4 set- (SBEA) and the 4 network-based
(NBEA) methods (Figure 4.7a).
The NBEA-combination yielded for 6 of the 27 datasets (SBEA: 3 datasets) a ranking of
the corresponding target pathway, which was at least as good as obtained for all 4 indi-
vidual methods. Importantly, the combination returned for almost all datasets (SBEA:
26, NBEA: all 27 datasets) a ranking of the corresponding target pathway, which was at
least as good as obtained for 1 of the 4 methods. This indicates that combining methods is
typically safe, i.e. is rarely worse than the worst individual ranking. On the other hand, the
combination resulted in many cases in improved rankings of relevant target pathways. In
addition, re-ranking by rank sum yielded significantly better ranks of the target pathways
as obtained by simply averaging individual ranks across methods (compare dashed and
solid lines in Figure 4.7a).
As observed for the microarray and RNA-seq application example, combination allowed to
filter out, i.e. downgrade irrelevant pathways reported by individual methods. Therefore,
we counted for all pairwise combinations of the 4 network-based methods the total number
of unspecific pathways ranked at least as good as the target pathway (Figure 4.7b).
A pathway was denoted as unspecific, if it did not share any genes with the target path-
ways, and the pathway title suggested no relevance for the diseases studied in the GEO2KEGG
benchmark set (such as Synaptic vesicle cycle and Vitamin digestion; see Additional file 1,
Table S1). We found that all 6 pairwise combinations considerably reduced the num-
ber of unspecific pathways ranked as good or better than the target. Considering the
GGEA/NEA-combination the number of unspecific pathways was reduced by >50% for
both methods. On the other hand, combination with PathNet that displayed the least
unspecific pathways, allowed to downgrade up to 70% unspecific pathways for NEA (while
decreasing the number for PathNet even further). We also computed all pairwise combi-
nations of the 4 set-based methods, the effect was however not as pronounced as observed
for the network-based methods (Additional file 1, Figure S5).
In summary, given the heterogeneous individual rankings observed for the GEO2KEGG bench-
mark set, combining methods can, of course, not in all situations be expected to be superior
to applying individual methods. However, we observed that the combination rarely results
in loss of crucial information, but rather yielded in many cases a gain in confidence of
relevant pathways while reducing the fraction of unspecific pathways.
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(a) (b)

Figure 4.7: Combination of methods improves individual rankings on the
GEO2KEGG benchmark set. (a) Combined ranks by rank sum (solid lines) were computed
for the SBEA-combination of the 4 set-based methods (blue) and the NBEA-combination of the
4 network-based methods (green). Depicted is the number of GEO datasets (y-axis) for which the
combination yielded a ranking of the corresponding target pathway, which was at least as good as
obtained from x of the individual methods. As an example, the green point at x = 3 and y = 15
indicates that the NBEA-combination returned for 15 of the 27 datasets (55.6%) a ranking of
the target as good or better as obtained for 3 of the 4 individual methods (i.e. only one method
yielded a ranking better than the combination). For comparison, the dashed lines depict corre-
sponding results when, instead of re-ranking by rank sum (solid lines), ranks are averaged across
methods. (b) shows the total number of unspecific pathways ranked at least as good as the target
pathway (y-axis) for the 4 network-based methods and each pairwise combination. Unspecific
pathways are defined in the main text and listed in Additional file 1, Table S1. Corresponding
values for the NBEA-combination of the 4 network-based methods and the ALL-combination of
all 8 methods (4 set- and 4 network-based) are indicated with the green and the brown dotted
line, respectively.

4.2.4 Conclusion

The ongoing development of individual enrichment methods impairs a straightforward de-
cision for the method of choice. The EnrichmentBrowser offers a pragmatic solution by
enabling the execution and combination of several major set- and network-based enrich-
ment methods. Whereas no single method is best suited for all application scenarios, this
allows to use them all at the same time facilitating a simple direct comparison of the re-
sults. It seamlessly displays inconsistencies reported by the applied methods, which makes
the user aware that interpretation is needed and has to be done with care in order to
derive valid conclusions. The combination can help to avoid misleading results of individ-
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ual methods by removal of irrelevant gene sets, thus, reducing the outcome to candidates
accumulating evidence from different methods. Of course, such consensus combinations
come at the cost of less sensitivity but the EnrichmentBrowser does not prohibit that
the user accepts non-consensus results from individual methods after careful assessment
nevertheless. Detailed investigation of obtained gene sets and pathways is supported by
accompanying comprehensive visualization and exploration capabilities. This exceeds con-
siderably the functionality of available tools and we expect users and developers to likewise
benefit from it.

4.2.5 Availability

• Project name: EnrichmentBrowser

• Project home page:
http://www.bioconductor.org/packages/release/bioc/html/EnrichmentBrowser.html

• Operating system(s): Platform independent

• Programming language: R

• Other requirements: Bioconductor

• License: Artistic-2.0

• Any restrictions to use by non-academics: none
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4.3 Composition analysis, reduction and integration

The previous section introduces the EnrichmentBrowser as a general framework for com-
bining and exploring results of different enrichment methods. In this section, I analyze the
composition of predefined gene set and network definitions that are frequently used for the
enrichment analysis. I discuss several aspects such as overlap and crosstalk between subnet-
works, which impair a straightforward biological interpretation. I review recently published
approaches to deal with these aspects and describe how they can be utilized as extensions
for the EnrichmentBrowser.

4.3.1 Overlap and crosstalk between subnetworks

The goal of the enrichment methods described in the previous section is to transform infor-
mation for several thousand measured genes into information for a much smaller number
of well-defined gene sets. This reduction is carried out to make biological interpretation
feasible and to translate the observed expression changes into known biological functions
and processes. However, the enriched processes are then typically interpreted in isolation
(Section 4.1), which neglects that they are subnetworks of a global network. Crosstalk and
overlap between them can thus lead to correlated and redundant findings. Incorporation
of the relationships between subnetworks in analysis and visualization is therefore crucial
for an accurate and comprehensive biological interpretation [188].
GO and KEGG annotations are most frequently used for the enrichment analysis of func-
tional gene sets. Despite an increasing number of gene set and pathway databases, they
are typically the first choice due to their long-standing curation and availability for a large
range of species (Appendix C.3). However, overlap and crosstalk is well documented for
GO terms [189, 190] and KEGG pathways [149, 156], which can substantially bias the results
of the enrichment analysis when naively applied. In the following, I discuss at the example
of the 2 major databases how overlap and crosstalk can be taken into account, resulting
in a substantially improved biological interpretation (Figure 4.8). Similar adjustments are
recommended for other gene set and pathway databases, typically of comparable structure
as GO and KEGG, as these issues are likely to arise for them as well.

GO

Originally constructed in 1998, GO has been a popular target for enrichment tests from
early on [22]. In particular, the overrepresentation test (Section 3.1) is routinely applied
with GO in gene expression studies and a plethora of enrichment tools have been specifically
designed for that purpose [20,122].
However, frequently overlooked aspects of GO can result in an undesired misuse of GO [189].
For instance, treating GO terms as independent gene sets in the enrichment analysis ignores
the parent-child structure of GO (Appendix C.3.1). As all genes annotated to a term are
per definition also annotated to its parent(s), enrichment of the child inevitably results in
an increased chance for enrichment of the parent term(s). Extensive redundancy in the
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Figure 4.8: Overlap and crosstalk in enriched GO terms and KEGG pathways: so-
lutions for the EnrichmentBrowser. Shown on the left in blue are two overlapping GO terms
DNA recombination and Regulation of DNA recombination, which are connected by a parent-
child relation (is a). The main text describes how existing approaches implemented in packages
such as topGO [169] and mgsa [194] can be exploited to resolve the overlap. Analogously, shown
on the right in red is the overlap between a general and a specific KEGG pathway, namely MAPK
signaling and Pancreatic cancer, respectively. Approaches to deal with such overlaps by down-
weighting overlapping genes (implemented in the PADOG package [149]) or by taking contextual
association into account (PathNet package [178]) are described in the main text. The result is, in
both cases, decreased redundancy in the list of enriched gene sets and pathways, which simplifies
the biological interpretation.

enriched GO terms is the consequence, which impairs a concise functional description of the
results.
Several approaches have been suggested to remove this redundancy by incorporating the hi-
erarchical structure of GO in the enrichment analysis [190–193]. In the following, approaches
available in Bioconductor are described in more detail as they can be straightforward in-
tegrated into the EnrichmentBrowser.
The topGO package implements several algorithms to integrate the GO graph structure [169].
Among them are the elim and weight algorithms [195] as well as the parentchild al-
gorithm [196]. The basic idea of the elim algorithm is to analyze terms by removing
genes of significant child terms. The goal is to report the most specific terms and exclude
general terms, which are predominantly reported due to the enrichment of their children.
However, a side effect is that a parent term of originally higher significance than its child
might be missed due to the gene removal. The weight algorithm addresses this by com-
paring significance of parent and child, and downweights genes in the less significant of
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both terms. Similarly, the parentchild algorithm not only considers the overlap of the
differentially expressed genes with the genes annotated to a specific term, but also with
the genes annotated to its parent(s). A combination of elim and weight has been shown
to work best in practice and is used as the default algorithm of topGO. These algorithms
can be combined with frequently used enrichment tests, including the hypergeometric test
and the Kolmogorov-Smirnov test (Appendix B.1).
A different approach is implemented in the mgsa package [194]. Noteworthy, it differs from
the typical sequential set-by-set analysis by incorporating a multiset statistic, thus working
on all sets simultaneously. Using a Bayesian approach, it assumes that differential expres-
sion of a gene results from the activation of a particular gene set it belongs to. It thereby
aims for gene sets that are explaining the largest number of differentially expressed genes,
and takes overlaps into account by penalizing the report of more than one gene set per
differentially expressed gene.
Two recent studies compare the approaches of topGO and mgsa and find that both have ben-
efits and disadvantages [190,193]. The topGO approach detects highly enriched and specific
terms that protrude from their parental background. Although it thus resolves overlaps
between parent and child terms, overlaps between non-related terms are not taken into
account. It is also exclusively applicable to GO. In contrast, mgsa can be applied to arbi-
trary gene set definitions. It typically detects a small number of sets with minimal overlap,
which jointly best explain the observed differential expression. This produces parsimonious
results, but has been observed to miss joint sets of non-additive nature, i.e. with distin-
guishably more information than implied by the individual sets. The weight algorithm of
topGO is superior in this regard, as it allows to prefer parent terms of higher significance
than their children.

KEGG

Initiated by the Japanese Human Genome Program in 1995, KEGG has originally been recog-
nized as a comprehensive collection of manually curated maps of metabolic pathways [24].
Complementary to the biological process (BP) ontology of GO, these pathways were fre-
quently incorporated in the enrichment analysis as gene sets of specific enzymes, which
catalyze the interconversion of biochemical metabolites (Appendix C.3.2).
The inclusion of signaling pathways, illustrating molecular interactions between genes and
gene products in specific small-scale gene regulatory networks, considerably added to that.
Such interactions between genes are absent from GO. This gave rise to methods specifically
designed for incorporating the topology of KEGG signaling pathways such as SPIA, but also
general network-based methods such as GGEA.
Although KEGG is not organized in an ontology as GO, and thus does not display overlaps
caused by inheritance, similar issues arise due to shared processes and crosstalk between
pathways. For example, the general signaling cascade from RAS to ERK shown in Fig-
ure 4.8 is part of 40 out of 160 signaling pathways currently contained in KEGG. When
analyzing all edges contained in KEGG signaling pathways, the edges between RAS, RAF,
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(a) (b)

Figure 4.9: Overlap between KEGG signaling pathways. (a) shows the number of KEGG
edges (x-axis) that occur in y pathways. For example, there are two edges that occur in 46
out of 160 investigated pathways. This includes the edge from MEK to ERK, which is part of
the signaling cascade shown in Figure 4.8. (b) shows for each KEGG signaling pathway the total
number of edges (x-axis) and the corresponding fraction of edges that are shared with at least one
additional pathway (y-axis). For example, the Jak-STAT signaling pathway has in total ≈3000
edges from which ≈500 are shared with other pathways (i.e. the pathway contains 2500 unique
edges).

MEK, and ERK are among the edges with maximal number of pathways per edge (shown
at the bottom left of Figure 4.9a). A different perspective on that matter is shown in
Figure 4.9b, demonstrating that many signaling pathways share a considerable fraction of
their edges with other pathways.
As for GO, several approaches have been suggested to incorporate overlap between pathways
in the enrichment analysis [149,156,178,197]. Two similar approaches are GSEA with inte-
gration of gene Appearance Frequency, GSEA-AF [197], and Pathway Analysis with Down-
weighting of Overlapping Genes, PADOG [149]. Both strengthen the impact of genes that
are unique to a pathway by downweighting genes that appear in several pathways. There-
fore, GSEA-AF integrates the absolute appearance frequency f(g) ∈ {1, . . . , NGS}, for a
gene g and the total number of investigated gene sets NGS, in the weighted KS-statistic of
the original GSEA enrichment score. Similarly, PADOG multiplies the differential expres-
sion t-score for each gene with a weight w ∈ [1, 2]. This weight decreases monotonically
from w = 2, for genes that are specific for a gene set, to w = 1 for genes with maximal f(g).
While an implementation of GSEA-AF is not availabe at present, PADOG is implemented
in Bioconductor’s PADOG package.
In addition to static overlap, pathways have also been shown to influence each other depend-
ing on the expression data under investigation; a phenomenon denoted as crosstalk [156] or
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contextual association [178]. Donato et al. [156] again attribute this to overlapping genes,
with the strength of the crosstalk effect depending on whether these genes are differen-
tially expressed. To correct for this effect, overlapping genes are similarly resolved as for
mgsa by selecting the pathway which is maximally impacted by differential expression of
those genes. On the other hand, Dutta et al. [178] also consider crosstalk to be caused by
regulatory interactions between genes of non-overlapping pathways. Such an interaction
of the global network, e.g. derived from pooling all pathways together, is assumed to be
active if both interaction partners are differentially expressed. While Donato et al. do not
provide an implementation of their crosstalk correction, Dutta et al. have integrated the
contextual association analysis in Bioconductor’s PathNet package.

4.3.2 Subnetwork reduction and integration

The previous section describes how to resolve overlap between subnetworks at the time of
the enrichment analysis. This typically results in a rearranged and non-redundant collec-
tion of subnetworks, thereby alleviating the biological interpretation. This section deals
with the actual interpretation by reducing subnetworks to active modules and integrating
findings across them (Figure 4.10). In analogy to Section 4.2.1, there are set-based and
network -based reduction approaches.

Set-based reduction

It has been early observed that rarely all genes of an enriched gene set show significant
expression changes [66, 198]. In fact, denoting a gene set as overrepresented or enriched
already indicates by the name that not all, but rather disproportionately many set genes
are differentially expressed. Thus, to understand which part of an enriched functional
category drives the observed expression, it is necessary to reduce the findings to the active
subsets within them.
Already the original GSEA publication [123] suggests an approach to reduce an enriched
gene set s to the subset that accounts for the enrichment signal. In what the authors denote
as leading edge analysis, this subset corresponds to the part of the ranked genes in s that
appear before the running sum statistic reaches its maximum. The leading edge analysis is
implemented in the GSEA R-script [172] that has been adapted for the EnrichmentBrowser
(Section 4.2.2, subsection Set-based enrichment analysis).
Two similar approaches for determining the leading edge of s are Sub-GSE [199] and
SAM-GSR [124]. Sub-GSE tests subsets of s based on a seed of highly significant genes
in s. This seed is gradually extended by additional genes of s, sorted by significance
of differential expression, as long as a subset significance threshold is satisfied. SAM-
GSR [124], a reduction approach based on SAMGS [171], differs from Sub-GSE only in
the choice of the local (gene) and global (gene set) statistic. By gradually partitioning
s, SAM-GSR selects the core subset of genes in s with largest SAM t-like statistic for
which testing of the SAMGS set statistic satisfies a predefined significance threshold. As
for GSEA, the implementation of SAM-GSR is part of the SAMGS R-script [173] that has



4.3 Composition analysis, reduction and integration 87

Figure 4.10: Reduction and integration of enriched subnetworks. The goal of the
reduction is to remove inactive parts (genes in gray) from the enriched subnetworks to obtain
active modules (genes in green). Subsequently, integration across active modules, yielding the
union of the observed effects, is applied to obtain an overall picture.

been adapted for the EnrichmentBrowser (see again Section 4.2.2, subsection Set-based
enrichment analysis). Thus, leading edge analysis is also easily derived for other set-based
enrichment methods via application of the reduction procedure described for GSEA and
SAMGS, and substitution with the respective local and global statistics.

Network-based reduction

Network-based reduction approaches also take the interactions between genes into account.
A recent review [29] divides existing approaches for finding active network-modules in three
broad categories:

• Significant area search methods such as MATISSE [126] typically involve three steps:
(1) activity scoring for genes and interactions between them, e.g. based on differential
expression, (2) aggregation of activity scores across network regions, (3) detection of
high-scoring regions corresponding to active modules.

• Network propagation methods such as HotNet [200] and PARADIGM [201] represent
a particularly relevant subclass of significant area search methods. These methods
employ the hierarchical structure of regulatory networks and test whether signals
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Figure 4.11: Outline of the Sub-GGEA reduction approach. Shown on the left is the
edge list of an enriched subnetwork, sorted by consistency (arrow labels). Black and blue arrows
depict consistent and inconsistent edges, whereas green and red boxes correspond to up- and
down-regulated genes, respectively. Gray color is used to indicate neutral effects on genes and
interactions. Application of a consistency threshold γ = 0.3 yields the leading edge set of highly
consistent edges. By incorporation of the known network topology, these high-consistency effects
can be arranged along the propagation chain, thereby yielding the active module of the enriched
subnetwork.

are propagated along that hierarchy, e.g. by transmitting differential expression from
general regulators to specific target genes. Propagation often incorporates concepts
related to the consistency concept of GGEA (Section 3.2.2, subsection Consistency of
regulatory interactions), i.e. whether expression changes are transmitted in agreement
with the regulation type (activation/inhibition).

• Biclustering methods such as SANDY [202] and cMonkey [203] invoke simultaneous
clustering of network interactions and the conditions under which these interactions
are active.

Given these considerations, a network-based reduction approach for GGEA is straight-
forward derived by combining aspects of leading edge and network propagation analysis
(Sub-GGEA, Figure 4.11):

1. Sort edges of the induced subnetwork GRN(u) by consistency in decreasing order
(Equation 3.9 and 3.21),

2. Reduce the sorted edge list to the leading edge set by cutting the list at a defined con-
sistency threshold γ (suitable choices for γ are discussed in Section 3.3.2, subsection
Consistency threshold),
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3. Arrange the remaining edges in the leading edge set along the propagation chain as
implied by the network topology.

Integration

Once the enriched subnetworks have been reduced to active modules, the next step is to
integrate findings across them to obtain an overall picture (Figure 4.10). Basic integration
is typically carried out by simply taking the union across active modules, thereby removing
any remaining redundancy between modules. This is especially beneficial if overlap and
crosstalk between enriched subnetworks have not been resolved beforehand as described in
Section 4.3.1.
On the other hand, advanced integration approaches also combine findings across different
gene set and pathway databases as well as across multiple experiments and omic-platforms
in order to identify functionally related themes among them [183,192,204,205]. Depending
on the scale of the results, this can, however, substantially increase the size and complexity
of the integrated active network. Interpretation is then typically eased by a priori grouping
of modules into biological functions, e.g. according to gene set categories provided by
most databases such as KEGG and MSigDb (Appendix C.3). For example, KEGG divides
cellular processes into transport and catabolism, cell motility, cell growth and death, and
cellular community. Using these categories to functionally group active modules enables
partitioning of the integrated network and immediate identification of significantly altered
cell functions.
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Chapter 5

Conclusion and Outlook

Studying a phenotypic trait of interest traditionally involves the reduction of a complex sys-
tem to single genes. Conclusions about what causes the trait under study are then drawn
from the detailed analysis of these genes in isolation. However, when analyzed in interac-
tion with the system, additional effects on these genes need to be integrated. Nowadays,
genes are measured by the thousands, as analysis capacities have experienced a boost by
an unprecedented order of magnitude with the advent of genomic high-throughput assays.
Nevertheless, integrating from genome-wide data to understand the system as a whole is
inevitably accompanied by a loss in resolution, which can result in an inappropriate simpli-
fication of the overall picture. Hence, an important unresolved question in systems biology
can be formulated as follows: when scaling up from single genes to systems, how can a
detailed understanding of the driving mechanisms be preserved?
Although a suitable trade-off between the reductionistic and the integrative approach is not
easily achieved, I have presented several steps towards this goal for the analysis of large-
scale gene expression data. Major contributions are the definition of a gene regulatory
network model that allows to incorporate additional details on a larger scale (Chapter 2),
the development of a method to incorporate such networks in the functional analysis of
high-throughput expression data (Chapter 3), and the implementation of a software pack-
age that allows the execution of this method in combination with other state-of-the-art
methods as well as the in-depth interpretation of the results (Chapter 4).
As I have focused on transcriptomic data measured with microarrays or RNA-seq, future
challenges will include to adapt these concepts also for novel platforms and additional
sources of genome-wide data. For instance, micro-fluidic lab-on-a-chip devices enable the
integration of various small-scale assays such as qPCR on a single chip [206, 207]. Most
promisingly, this technology can be applied for gene expression profiling at the resolution
of individual cells [208, 209]. On the other hand, recent advances in mass spectrometry
have also considerably improved the quality of proteomic data [210, 211]. As proteins are
the actual determinants of cellular function, and transcriptomic studies are assumed to
only roughly approximate the proteomic landscape, this will eventually result in a more
appropriate functional readout of the cell. A comprehensive quantitative characterization
of regulatory and metabolic processes can then be achieved by coupling proteomic mea-
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surements with complementary information from high-throughput metabolomics [212,213].
Quantifying metabolic reactions catalyzed by enzymatic proteins in conjunction with quan-
tification of the enzymes themselves bridges the gap between genetic potential and func-
tional metabolism [214, 215]. Given these benefits, multi-platform analysis is expected to
become routine in the future. As a recent example, The Cancer Genome Atlas project,
TCGA [183], has launched a molecular investigation of various cancer types on an unprece-
dented scale including genotyping as well as transcriptomic and proteomic measurements.
However, the issue of losing resolution already observed when analyzing data from single
high-throughput platforms becomes even more pronounced for such cross-platform studies.
Network-based analysis of such data requires to rewire existing networks across platforms
and to define appropriate models of interconnections between the different genomic and
metabolic entities [216].
In Chapter 2, I have identified minimum requirements for modeling gene regulatory net-
works and have outlined, at the example of the diauxic shift, how networks satisfying
these requirements can be constructed. Although absent from many existing regulatory
networks, I have shown that it is necessary to characterize the conditions under which
regulations take place (context) and how regulated genes are affected (effect). Regulatory
entities of key importance in the model are transcription factors. A major limitation arises
from the fact that the heterogeneous regulation of these factors themselves is only insuf-
ficiently understood. While the expression level is typically taken as an approximation of
the activity, there are many examples where transcription factors are activated by other
mechanisms such as post-translational phosphorylation [217–219]. Hence, as already slight
expression changes on the transcriptional level can have a crucial impact, it is necessary to
resolve the dynamics of transcription factor expression over time as accurately as possible,
e.g. from the aforementioned single-cell snapshot data [220,221]. On the other hand, inte-
gration of an additional proteomic layer in the model for quantification of phosphorylated
transcription factors is essentially required. Although resolving the behavior of transcrip-
tion factors is already sufficiently complex, future models will also need to incorporate
additional layers of transcriptional control. This includes epigenetic control mechanisms
which, by modifying the DNA and the histones it is wrapped around, regulate whether pro-
moters of target genes become accessible for transcription factors [222–224]. In addition,
important contributions are expected to come from studying the interplay of transcription
factors with distal enhancers via 3D chromatin interactions [225–228]. A recent effort into
this direction has been carried out in the ENCODE project [83,229]. Integrating these ad-
ditional aspects of transcriptional regulation is straightforward, considering the structure
of the model suggested for the diauxic shift, composed by a regulatory, a transcriptional,
and a metabolic layer (see again Figure 2.6). This also holds for future complementation of
transcriptional regulatory networks with post-transcriptional and translational regulatory
networks [230–232].
In Chapter 3, I have demonstrated how regulatory networks can be integrated in the enrich-
ment analysis by scoring interactions in functional gene sets with the observed expression
data. I have shown that this consistently aligns regulation and expression and allows
to explain significant expression changes by regulators within the set, thereby consider-
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ably easing interpretation. The concept of consistency is central for GGEA. However, the
gap between experimental annotation and observed behavior of regulatory interactions in
large-scale assays impairs a precise consistency evaluation. For example, an interaction an-
notated as activating might never show up as such in transcriptomic data. Reasons for that
are plentiful, including erroneous annotation, context dependency, and non-transcriptional
features of regulatory networks [233]. Therefore, learning direction and strength of regula-
tory interactions across experiments is essential to appropriately parameterize interactions
of the network, thereby establishing suitable null models the observed behavior can be
tested against [234]. On the other hand, future extension of the consistency concept to
non-transcriptional features such as the aforementioned metabolic and proteomic layer
will allow to build longer chains of causality. For instance, quantification of intra- and
extra-cellular metabolites as well as the activity of receptor and kinase proteins can be
incorporated in the consistency evaluation of interactions between signal molecules and
their cellular perception. Promising initial efforts towards this goal are the recent inte-
gration of multi-level omics data into set-based [192, 235] and network-based enrichment
analysis [200,201,236].
In Chapter 4, I have presented the EnrichmentBrowser software package for the combined
evaluation of set- and network-based enrichment as well as the detailed exploration of the
results. I have demonstrated that this allows to filter out spurious hits of individual meth-
ods and increases the confidence in gene sets and pathways accumulating evidence from
different methods. Although this is a first important step towards achieving a consensus
among the various existing methods, a consistent and objective comparison of the methods
is still required [21, 28]. There is broad agreement that gold standards for the evaluation
of enrichment methods are needed, yet a conclusive idea how to design such standards
is currently missing. Existing solutions of simulating certain scenarios are often biased
towards the strengths of individual methods. On the other hand, biological reasoning on
real datasets is a fraught procedure, rarely allowing precise conclusions about benefits and
disadvantages of the methods. Therefore, construction of suitable benchmark datasets will
be a decisive factor for future developments in the area of enrichment analysis [149, 186].
Subsequent biological interpretation of enrichment analysis results is currently centered on
GO and KEGG. However, there are many more existing and presumably upcoming gene set
and pathway databases, each of them with unique characteristics (Appendix C.3). Compre-
hensive integration of these additional resources in the biological interpretation is expected
to complement findings obtained with the established resources. On the other hand, using
knowledge from pathway databases tends to restrict the interpretation to known mecha-
nisms within pathways. As a consequence, novel hypotheses for hits outside pathways are
often under-represented [237]. Leveraging strategies to target those findings will thus con-
siderably add to the understanding of the biological mechanisms resulting in the observed
data.
In conclusion, this work has substantially contributed to the field of network-based anal-
ysis of gene expression data with respect to regulatory network construction, subnetwork
detection, and their biological interpretation. As systems biology in general is a young
and rapidly developing research discipline, much remains to be explored and we are just
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beginning to resolve issues related to model scaling, network annotation, and method eval-
uation. Nevertheless, ambitious large-scale projects such as ENCODE, TCGA, and the
1000 Genomes Project [238] will continue to release big data waves in increasingly shorter
intervals. This will further challenge our analysis capacities and change the way how we
are approaching and analyzing the data. On the other hand, this opens new perspectives
for genomic research and holds great promise for the future.
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Methods of molecular biology

A.1 Quantitative measurement of gene expression

The two major methods for large-scale quantification of transcript abundance in cellular
mRNA extracts are based on hybridization (microarrays) or sequencing (RNA-seq). Al-
though microarrays have been established earlier for high-throughput gene expression anal-
ysis, RNA-seq is considered superior with respect to reproducibility and data range [11,12].
However, both have in common that they require specific normalization procedures to ac-
curately separate biological from technical effects [13, 14].

A.1.1 Microarrays

A microarray consists, in accordance to the definition of ArrayExpress [239], of an ar-
rayed series of thousands of microscopic spots of DNA oligonucleotides (features), each
containing picomoles of a specific DNA sequence (probes). This is a short section of a
gene, which is used to hybridize a reverse transcribed mRNA sample (target) via comple-
mentary base pairing between the probe and the target. The target is usually labeled with
a fluorophore, which makes the detection and quantification of the hybridization possible.
The hybridization degree itself is then taken as an approximation of the expression level
of the target.

A.1.2 Next-generation sequencing (RNA-seq)

DNA sequencing, i.e. determination of the precise order of nucleotides of a DNA sequence,
has been traditionally carried out using the chain-termination method developed by Sanger
et al., 1977 [240]. However, massive parallelization of the sequencing process in next-
generation sequencing methods has largely replaced Sanger sequencing [241, 242]. RNA-
seq exploits next-generation DNA sequencing for the quantification of cDNA that has
been reverse transcribed from mRNA samples [243]. This results typically in millions of
short reads, i.e. DNA sequences of ≈100 nucleotides. When mapping these reads to the
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reference genome, the number of reads aligned with a gene (read count) is then taken as
an approximation of its expression level.

A.2 Detection of protein-DNA interactions

Protein-DNA interactions of major importance for the construction of gene regulatory
networks are transcription factors binding physically to the promoter of their target genes.
Determination of such interactions can be carried out targeting a DNA-binding protein
of interest via a specific antibody (ChIP) or untargeted by cleaving the DNA and tracing
sections that are protected due to the binding of a protein (DNA footprinting).

A.2.1 Chromatin immunoprecipitation (ChIP)

Chromatin immunoprecipitation [58, ChIP] identifies physical interactions between the
DNA and a DNA-binding protein of interest. The experimental procedure is composed
of protein-DNA crosslinking, sonication of the DNA to obtain protein-DNA complexes,
and immunoprecipitation of the protein of interest using a specific antibody. Subsequent
quantification of the bound DNA can then be applied to detect enriched sequences cor-
responding to specific DNA-binding sites of the protein. The combination of ChIP with
the microarray technology [59, ChIP-chip] or next-generation sequencing [244, ChIP-seq]
allows the genome-wide identification of the binding sites of a transcription factor under
study.

A.2.2 DNA footprinting

DNA footprinting detects regions of the DNA that are protected from enzymatic cleavage
by proteins bound to the DNA [56, 245]. The deoxyribonuclease DNase I is typically
applied to cut the DNA, and the areas protected by protein can then be sequenced or
quantified using various protocols. DNA footprinting can also be combined with ChIP to
extract footprints of a specific DNA-binding protein. Recent coupling of DNA footprinting
with next-generation sequencing [246, DNase-seq] and subsequent computational motif
discovery by digital genomic footprinting [247] has enabled the application of the assay on
a genome-wide scale.
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Statistical methods

B.1 Hypothesis testing

Hypothesis testing is an essential part of the statistical analysis of gene expression data [248,
for an introduction]. For example, it applies to testing of differential expression between
sample groups as well as testing the distribution of gene set scores. The basic principle of
hypothesis testing is to test a null hypothesis H0 against an alternative hypothesis H1. This
involves the computation of a test statistic and if the test statistic exceeds a certain value
the null hypothesis becomes unlikely and is rejected in favor of the alternative hypothesis.
A concept of fundamental importance in hypothesis testing is the p-value. Under the null
hypothesis, the p-value corresponds to the probability of observing a value of the test
statistic at least as extreme as computed for the data under investigation. Accordingly, a
p-value close to zero indicates that it is rather unlikely that the data is in agreement with
the null hypothesis. The null hypothesis is rejected if p < α, with α being a predefined
significance level, typically chosen as 0.05. This is equivalent to the statement that a p-value
below α can be considered statistically significant, which is often found in the literature.

B.1.1 Student’s t-test

Assuming two sample groups to be normally distributed with equal variance σ2, the two-
sample t-test tests whether the means µ1 and µ2 of both groups are equal, i.e.

H0 : µ1 = µ2 (B.1)

against
H1 : µ1 6= µ2. (B.2)

As the mean of a normal distribution is known to follow Student’s t-distribution, the test
statistic is chosen accordingly as

t =
(x̄1 − x̄2)

√
n1n2

s
√
n1 + n2

(B.3)
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with n1 and n2 being the number of samples in both groups, and x̄1 and x̄2 the sample
means. The assumed equal, but unknown variance σ2 is estimated via

s2 =

∑n1

i=1(x1i − x̄1)2 +
∑n2

i=1(x2i − x̄2)2

n1 + n2 − 2
. (B.4)

As the assumption of equal variance might not hold in practice, the extension of Welch [249]
allows to also apply the t-test with different variances in both sample groups.
With the advent of microarrays, the t-test has become one of the most frequently ap-
plied tests for assessing differential gene expression between two sample groups. Notably,
Smyth [160] has introduced the moderated t-statistic for microarray data, which prevents
large t-scores to occur only due to small gene variances. Although the t-test is suitable
for microarray data, where the data distribution is typically roughly normal, this is not
the case for RNA-seq data per se. Due to the dynamic range of RNA-seq data, often pro-
ducing extremely large read counts for a number of genes, the variance is typically much
larger than the mean, an effect termed overdispersion. Overdispersion can be appropriately
modeled based on the negative binomial distribution [164, 165]. Recently, Law et al. [163]
have proposed the voom-transformation for RNA-seq data resulting in a mean-variance
relationship similar to microarray data, thus enabling the application of the t-test also on
voom-transformed RNA-seq data.

B.1.2 Fisher’s exact test

Fisher’s exact test [250, 251] is a test for independence of two categorical variables, each
of them having exactly two categories. Observations categorized into one of the categories
for both variables are described by a 2 × 2 contingency table as exemplarily depicted
in Table 3.1. Here, genes are categorized as differentially expressed or not differentially
expressed as well as being in gene set or not in gene set.
The corresponding null hypothesis

H0 : Differential expression is independent of gene set membership (B.5)

is tested against

H1 : Differential expression is associated with gene set membership. (B.6)

The test statistic is the size of the overlap mGD, leading under the null hypothesis to the
hypergeometric distribution, i.e. the probability of observing mGD differentially expressed
genes in the gene set under investigation corresponds to

P (X = mGD) =

(
mG

mGD

)(
mḠ
mḠD

)(
m

mGD+mḠD

) . (B.7)

Accordingly, the p-value is computed as the probability of observing an overlap of at least
mGD genes as

p = 1− P (X ≤ mGD) = 1− F (mGD) (B.8)

with F being the hypergeometric cumulative distribution function.
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B.1.3 Permutation testing

Student’s t-test and Fisher’s exact test are parametric, or distribution-dependent, tests.
This means that the distribution of the test statistic under the null hypothesis is obtained
from a theoretical probability distribution such as the t-distribution and the hypergeometric
distribution. However, in many cases the underlying null distribution is not known or can
not be assigned to a known distribution.
Permutation testing is a non-parametric, or distribution-free, alternative procedure. It
relies on repeated calculation of the test statistic on randomized data to obtain the null
distribution [187]. The p-value for an observed value of the test statistic can then be
estimated based on the empirical null distribution. An example of permutation testing is
given in Section 3.2.2, subsection Significance and Ranking, which assesses the significance
of the GGEA score. Although permutation testing is advantageous as it does not depend
on a known distribution, it is computationally expensive to obtain a null distribution of
suitable granularity, requiring typically ≥1,000 permutations [143].

B.1.4 Wilcoxon’s rank-sum test

Wilcoxon’s rank-sum test [252,253] is a non-parametric alternative to the t-test that does
not require the data to be normally distributed. The test is used to assess whether two
samples have been drawn from the same distribution, or from two different distributions
X and Y , one being stochastically greater than the other.
The corresponding null hypothesis

H0 : P (X > Y ) = P (Y > X) (B.9)

is tested against

H1 : P (X > Y ) 6= P (Y > X). (B.10)

The test statistic is not computed on the observed values themselves, but on the ranks
obtained from ordering the observed values. As the name of the test indicates, the test
statistic corresponds to the sum of the ranks of either the first or the second sample.
For large samples, the null distribution of the rank-sum statistic can be approximated
by a normal distribution. However, Wilcoxon’s rank-sum test can also be combined with
permutation testing, i.e. the observed rank sum is evaluated against values obtained from
recomputing the rank-sum statistic in many random permutations. This permutation
procedure is e.g. used for estimating the significance of the global gene set statistic from
SAFE, which sums up the ranks of the local statistic for each gene [125].

B.1.5 Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test [253] is another non-parametric test for equality of two sam-
ple distributions. Compared to the t-test (testing whether the means of two distributions
are equal) and Wilcoxon’s rank-sum test (testing whether one distribution is stochastically
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greater), the Kolmogorov-Smirnov test also takes location and shape of the distributions
into account, and is therefore a more general test of whether two sample distributions are
equal.
The corresponding null hypothesis

H0 : The two sample distributions are equal (B.11)

is tested against

H1 : The two sample distributions are different. (B.12)

The test statistic is the maximal distance of the empirical cumulative distribution functions
of the two distributions to be tested. The Kolmogorov-Smirnov test can also be used to
test whether a sample distribution resembles a known distribution. For example, this is
used in GSEA to test whether the ranks of the differential expression p-values of a gene
set under study represent a sample from a uniform distribution [123].

B.1.6 Multiple testing

As introduced in Section B.1, testing of a hypothesis is done in accordance to a predefined
significance level α. The significance level corresponds to the probability of rejecting the
null hypothesis although it is true. Hence, when carrying out a test 100 times using the
typical significance level α = 0.05, one has to expect 5 cases of erroneous rejection of the
null hypothesis. In turn, this means that the p-values of the 100 tests have to be expected
to false positively indicate statistical significance for 5 of the tests. Thus, multiple testing,
i.e. repeatedly carrying out the same test, bears the danger of inflating statistical signifi-
cance. This is especially important for genomic research, where often thousands of genomic
entities are tested simultaneously.
To correct for multiple testing, several procedures have been suggested [166, for an overview].
This includes the stringent Bonferroni correction, multiplying resulting p-values with the
number of tests. However, this is only necessary if the tests are independent. This is
rarely the case for genomic research where genes are known to influence each other which
leads to dependent tests. A less conservative procedure is thus typically preferred, which
is frequently chosen to be the correction of Benjamini and Hochberg [254].



Appendix C

Databases

C.1 Genome databases

Genome databases store sequences and functional annotation of complete genomes. For
model organisms, there are individual databases such as SGD for S. cerevisiae [68] or
FlyBase for D. melanogaster [255]. On the other hand, collection of genomes including
non-model organisms are available from Ensembl [256] or the UCSC Genome Browser [257].

C.2 Gene expression databases

Gene expression databases are archives for large collections of experimental high-throughput
data. This includes the Gene Expression Omnibus, GEO [147,258], and ArrayExpress [239]
for microarray data as well as the Sequence Read Archive, SRA [259], for RNA-seq data.

C.3 Gene set and pathway databases

Gene sets are simple lists of usually functionally related genes without further specifica-
tion of relationships between genes. They are frequently used for gene set enrichment
analysis, but also as signatures for disease classification [17, 18]. Comprehensive gene set
collections are available in the Molecular Signatures Database, MSigDb [260,261]. Recently,
Enrichr [262] has considerably added to this by integrating 35 gene set libraries covering 6
broad categories: transcription, pathways, ontologies, diseases/drugs, cell types, and mis-
cellaneous.
Pathways are specific gene sets, typically representing a group of genes that work together
in a biological process. Pathways are commonly divided in metabolic and signaling path-
ways. Metabolic pathways such as glycolysis represent biochemical substrate conversions
by specific enzymes. On the other hand, signaling pathways such as the MAPK signaling
pathway describe signal transduction cascades from receptor proteins to transcription fac-
tors. Signaling pathways are frequently used for network-based gene set enrichment anal-
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ysis. A variety of biomolecular pathway databases is available [263,264]. Pathguide [265]
lists 547 pathway databases as of November 2015.

C.3.1 Gene Ontology (GO)

The Gene Ontology, GO [22, 23], consists of three major sub-ontologies that classify gene
products according to molecular function (MF), biological process (BP) and cellular com-
ponent (CC). Each ontology consists of GO terms that define MFs, BPs or CCs to which
specific genes are annotated. The terms are organized in a directed acyclic graph (DAG),
where edges between the terms represent relationships of different types. They relate the
terms according to a parent-child scheme, i.e. parent terms denote more general entities,
whereas child terms represent more specific entities. Multiple inheritance is possible, a
child term can thus have more than one parent term. Annotation of a gene to a specific
term results in the implicit annotation to all of its parents. Annotations are classified with
evidence codes of 4 broad categories: experimental, computational, indirect, or unknown.

C.3.2 Kyoto Encyclopedia of Genes and Genomes (KEGG)

The Kyoto Encyclopedia of Genes and Genomes, KEGG [24, 25], is a collection of manually
drawn pathway maps representing molecular interaction and reaction networks. These
pathways cover a wide range of biochemical processes that can be divided in 7 broad cate-
gories: metabolism, genetic and environmental information processing, cellular processes,
organismal systems, human diseases, and drug development. Metabolism and drug devel-
opment pathways differ from pathways of the other 5 categories by illustrating reactions
between chemical compounds. While drug pathways depict in vitro transformations of the
chemical structure of related drug components, metabolic pathways display the in vivo
interconversion of biochemical substrates catalyzed by specific enzymes in defined reaction
chains. On the other hand, pathways of the other 5 categories illustrate molecular inter-
actions between genes and gene products. A large fraction of these pathways are signaling
pathways displaying the transduction of extra-cellular signals by the interplay of specific
receptors, kinases, transcription factors, and target genes (Figure 1.2).

C.4 Regulatory network databases

Identifying appropriate databases for regulatory network information is not trivial. De-
spite ongoing efforts to establish comprehensive collections of regulatory networks such
as the Network Portal [266], regulatory knowledge remains widespread distributed over
the literature, compendia of experiments and specific databases. Thus, compilation of
regulatory networks for specific research questions is cumbersome and typically involves
assembling of information across various resources for protein-protein interactions [267]
and transcriptional regulatory networks [268]. Although several resources listed in the fol-
lowing attempt to collect regulatory information across species, they often lack the quality
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of the well-curated networks for individual organisms. Thus, if available, specific resources
for the organism under study are typically the better choice.

C.4.1 Cross-species resources

The iRefIndex [269] database compiles protein-protein interactions from 13 major databases
including BioGRID [270] and IntAct [271]. Promising initial efforts for establishing a sim-
ilar database for gene regulatory networks are the RegTransBase [272] for transcriptional
regulation in prokaryotes and ORegAnno [273] for regulatory information from ChIP exper-
iments of 19 species.

C.4.2 Species-specific resources

The availability of species-specific regulatory information is typically restricted to certain
model organisms and tightly linked to the complexity of the organism under study. Re-
sources for simple organisms such as the RegulonDB [32, 44] for E. coli, the MTB Network

Portal [274] for M. tuberculosis, and Yeastract [33, 45] for S. cerevisiae are among the
most comprehensive and detailed resources available for transcriptional regulatory inter-
actions. On the other hand, databases for more complex organisms such as AGRIS [275]
for A. thaliana and REDFly [46] for D. melanogaster also store more complex regulatory
information, e.g. including information on developmental stages, but concentrate predom-
inantly on transcription factor binding sites determined from ChIP experiments. Most
importantly, for H. sapiens this includes the large series of experiments on tissue-specific
transcriptional regulation carried out by ENCODE [229], but also recent computer-assisted
curation of the human regulatory network from the literature [276,277].
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set enrichment tests. Bioinformatics, 28:1480–6, 2012.

[97] Ciofani M, Madar A, Galan C, Sellars M, Mace K, et al. A validated regulatory
network for Th17 cell specification. Cell, 151(2):289–303, 2012.

[98] Qian J, Lin J, Luscombe NM, Yu H, and Gerstein M. Prediction of regulatory
networks: genome-wide identification of transcription factor targets from gene ex-
pression data. Bioinformatics, 19:1917–26, 2003.

[99] Mordelet F and Vert JP. SIRENE: supervised inference of regulatory networks.
Bioinformatics, 24:i76–82, 2008.

[100] De Smet R and Marchal K. Advantages and limitations of current network inference
methods. Nat Rev Microbiol, 8:717–29, 2010.

[101] Simpson EH. The interpretation of interaction in contingency tables. J R Stat Soc
(Series B), 13:238–41, 1951.

[102] Pearl J. Causality. Cambridge University Press, 2nd edition, 2009.

[103] Faith JJ, Driscoll ME, Fusaro VA, Cosgrove EJ, Hayete B, et al. Many Microbe
Microarrays Database: uniformly normalized Affymetrix compendia with structured
experimental metadata. Nucleic Acids Res, 36:D866–70, 2008.

[104] Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, et al. NCBI GEO:
archive for functional genomics data sets–10 years on. Nucleic Acids Res, 39:D1005–
10, 2011.

[105] MacIsaac KD, Wang T, Gordon DB, Gifford DK, Stormo GD, and Fraenkel E. An
improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC
Bioinformatics, 7:113, 2006.



BIBLIOGRAPHY 113

[106] Dorogovtsev SN and Mendes JF. Evolution of networks: from biological nets to the
internet and WWW. Oxford University Press, 2003.

[107] Pavlidis P and Gillis J. Progress and challenges in the computational prediction of
gene function using networks: 2012-2013 update. F1000Res, 2:230, 2013.

[108] Gillis J and Pavlidis P. The impact of multifunctional genes on ”guilt by association”
analysis. PLoS One, 6:e17258, 2011.

[109] Segal E, Shapira M, Regev A, Pe’er D, Botstein D, et al. Module networks: identify-
ing regulatory modules and their condition-specific regulators from gene expression
data. Nat Genet, 34:166–76, 2003.

[110] Mordelet F and Vert JP. A bagging SVM to learn from positive and unlabeled
examples. Technical report, 2010.

[111] Jason Ernst, Beg QK, Kay KA, Balazsi G, Oltvai ZN, and Bar-Joseph Z. A semi-
supervised method for predicting transcription factor-gene interactions in Escherichia
coli. PLoS Comput Biol, 4:e1000044, 2008.

[112] Yip KY, Kim PM, McDermott D, and Gerstein M. Multi-level learning: improving
the prediction of protein, domain and residue interactions by allowing information
flow between levels. BMC Bioinformatics, 10:241, 2009.

[113] Holloway DT, Kon M, and DeLisi C. Classifying transcription factor targets and
discovering relevant biological features. Biol Direct, 3:22, 2008.

[114] The Gene Ontology Consortium. The Gene Ontology in 2010: extensions and refine-
ments. Nucleic Acids Res, 38:D331–5, 2010.

[115] Ozcan S and Johnston M. Three different regulatory mechanisms enable yeast hexose
transporter (HXT) genes to be induced by different levels of glucose. Mol Cell Biol,
15:1564–72, 1995.

[116] François J and Parrou JL. Reserve carbohydrates metabolism in the yeast Saccha-
romyces cerevisiae. FEMS Microbiol Rev, 25:125–45, 2001.

[117] Lorenz MC and Heitman J. Regulators of pseudohyphal differentiation in Saccha-
romyces cerevisiae identified through multicopy suppressor analysis in ammonium
permease mutant strains. Genetics, 150:1443–57, 1998.

[118] Morano KA, Grant CM, and Moye-Rowley WS. The response to heat shock and
oxidative stress in Saccharomyces cerevisiae. Genetics, 190:1157–95, 2012.

[119] Myers CL, Barrett DR, Hibbs MA, Huttenhower C, and Troyanskaya OG. Finding
function: evaluation methods for functional genomic data. BMC Genomics, 7:187,
2006.



114 BIBLIOGRAPHY

[120] Ambroise J, Robert A, Macq B, and Gala JL. Transcriptional network inference from
functional similarity and expression data: a global supervised approach. Stat Appl
Genet Mol Biol, 11(1):Article 2, 2012.

[121] Eisen MB, Spellman PT, Brown PO, and Botstein D. Cluster analysis and display
of genome-wide expression patterns. Proc Natl Acad Sci USA, 95:14863–8, 1998.

[122] Khatri P and Draghici S. Ontological analysis of gene expression data: current tools,
limitations, and open problems. Bioinformatics, 21:3587–3595, 2005.

[123] Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. Gene set
enrichment analysis: A knowledge-based approach for interpreting genome-wide ex-
pression profiles. Proc Natl Acad Sci USA, 102:15545–15550, 2005.

[124] Dinu I, Potter JD, Mueller T, Liu Q, Adewale AJ, et al. Gene-set analysis and
reduction. Brief Bioinform, 10:24–34, 2009.

[125] Barry WT, Nobel AB, and Wright FA. Significance analysis of functional categories
in gene expression studies: a structured permutation approach. Bioinformatics,
21:1943–9, 2005.

[126] Ulitsky I and Shamir R. Identification of functional modules using network topology
and high-throughput data. BMC Syst Biol, 1:8, 2007.

[127] Liu M, Liberzon A, Kong SW, Lai WR, Park PJ, et al. Network-based analysis of
affected biological processes in type 2 diabetes models. PLoS Genet, 3:e96, 2007.

[128] Lee HK, Hsu AK, Sajdak J, Qin J, and Pavlidis P. Coexpression analysis of human
genes across many microarray data sets. Genome Res, 14:1085–94, 2004.
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network inference. Bioinformatics. 31(17):2836-43, 2015.
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