
Efficient Data Mining Algorithms
For Time Series and Complex

Medical Data

Andrew Zherdin

München 2015

Efficient Data Mining Algorithms
For Time Series and Complex

Medical Data

Andrew Zherdin

Dissertation

an der Fakultät für Mathematik, Informatik und

Statistik

der Ludwig–Maximilians–Universität

München

vorgelegt von

Andrew Zherdin

aus Kiew

München, den 30.07.2015

Erstgutachter: Christian Böhm

Zweitgutachter: Stefan Conrad

Tag der mündlichen Prüfung: 29.02.2016

Formular 3.2

Name, Vorname

Eidesstattliche Versicherung
(Siehe Promotionsordnung vom 12.07.11, § 8, Abs. 2 Pkt. .5.)

Hiermit erkläre ich an Eidesstatt, dass die Dissertation von mir
selbstständig, ohne unerlaubte Beihilfe angefertigt ist.

Ort, Datum Unterschrift Doktorand/in

Zherdin, Andriy

München, 30.07.2015

vi

Contents

Acknowledgements xix

Abstract xxi

Zusammenfassung xxiii

I Preliminaries 1

1 Introduction 3
1.1 Knowledge Discovery in Databases 3
1.2 Data Mining . 5
1.3 Outline of the Thesis . 6

2 Main Concepts and Algorithms in Data Mining 9
2.1 Introduction . 9
2.2 Similarity-Join, Time Series and Stepwise Selection 9

2.2.1 Similarity Join . 9
2.2.2 Time Series . 10
2.2.3 Attribute Selection Algorithms 11

2.3 Classification . 12
2.3.1 Next Neighbor Classificator 13
2.3.2 Support vector Machines (SVM) 13

2.4 Clustering . 14
2.4.1 k-means . 14
2.4.2 DBSCAN . 16

2.5 Hierarchical Clustering . 17
2.5.1 Single- and Average-Link 17

viii CONTENTS

2.5.2 Hierarchical Subspace-Clustering 18

2.6 Conclusion . 19

3 Imaging Modalities and Applications 21

3.1 Functional Magnetic Resonance Imaging (fMRI) 21

3.2 Electroencephalography (EEG) 24

3.3 Alzheimer’s disease . 25

3.4 Pain disorder . 27

3.5 Schizophrenia . 28

II Data Mining Using Graphics Processing Units 31

4 Parallel Computing using GPU 33

4.1 Introduction . 33

4.2 Related Work . 35

4.3 Architecture of the GPU . 36

4.3.1 The Memory Model . 37

4.3.2 The Programming Model 38

4.3.3 Atomic Operations . 39

4.4 Conclusions . 40

5 Similarity Join Based Methods using GPU 41

5.1 Introduction . 41

5.2 Related Work . 44

5.3 An Index Structure for Similarity Queries on GPU 45

5.4 The Similarity Join . 47

5.4.1 Similarity Join Without Index Support 48

5.4.2 An Indexed Parallel Similarity Join Algorithm on GPU 50

5.5 Similarity Join to Support Density-based Clustering 52

5.5.1 Basic Definitions and Sequential DBSCAN 52

5.5.2 GPU-supported DBSCAN 55

5.6 Experimental Evaluation . 58

5.6.1 Evaluation of Similarity Join on the GPU 58

5.6.2 Evaluation of GPU-supported DBSCAN 63

5.7 Conclusions . 63

CONTENTS ix

6 K-means Clustering using GPU 65
6.1 Introduction . 65
6.2 Related Work . 66
6.3 K-means Clustering on GPU 67

6.3.1 The Algorithm K-means 67
6.3.2 CUDA-K-means . 68

6.4 Evaluation of CUDA-K-means 69
6.5 Conclusions . 72

III Models-based Data Mining 75

7 Compact Model-Based Descriptions 77
7.1 Introduction . 78
7.2 Related Work . 81
7.3 Mathematical Models for Time Series Data 82

7.3.1 Mathematical Model 82
7.3.2 Representation of Time Series Based on Mathematical

Models . 85
7.3.3 Model-Based Similarity of Time Series 86
7.3.4 The Choice of the Reference Time Series 89
7.3.5 Efficient Approximative Clustering 90

7.4 Evaluation . 90
7.5 Conclusions . 96

8 Model-based Classification of Data 97
8.1 Introduction . 98
8.2 Related Work . 99
8.3 Model-Based Classifier . 100
8.4 Evaluation . 104
8.5 Conclusion . 108

9 Mining Interaction Patterns among Brain Regions 111
9.1 Introduction . 112
9.2 Related Work . 115
9.3 Interaction-Based Cluster Notion 117
9.4 Nonlinear Models . 120
9.5 Interaction K-means Clustering 122

x CONTENTS

9.6 Interpretation of the Clustering Result 125

9.7 Comparison to State-of-the-Art 126

9.7.1 Methodology . 126

9.7.2 Effectiveness . 128

9.7.3 Efficiency . 138

9.8 Interaction among Brain Regions 141

9.8.1 Functional Magnetic Resonance Imaging 141

9.8.2 Somatoform Pain Disorder 141

9.8.3 Schizophrenia . 142

9.9 Conclusion . 144

IV Medical Applications 147

10 Hierarchical Model-based Clustering 149

10.1 Introduction . 150

10.2 Related Work . 151

10.3 Model-Based Hierarchical Clustering 155

10.3.1 AV-Link-Approach for Model-Based Hierarchical Clus-
tering . 155

10.3.2 Subspace Clustering over Length of Models 157

10.3.3 Subspace Clustering over Number of Models 157

10.4 Evaluation . 165

10.4.1 Analysis of Medical Data with Model-Based Hierarchi-
cal Clustering . 165

10.4.2 Hierarchical Subspace Clustering 170

10.5 Conclusion . 173

11 Decoding an Individual’s Sensitivity to Pain 177

11.1 Introduction . 178

11.2 Methods . 179

11.2.1 Paradigm . 179

11.2.2 EEG Recordings and Analysis 180

11.2.3 Multivariate Pattern Analysis (MVPA) 180

11.3 Results . 182

11.4 Interpretation of the Results 187

11.5 Conclusion . 191

Contents xi

V Conclusion 193

12 Summary and Outlook 195
12.1 Summary . 195
12.2 Outlook . 198

13 Appendix 201

Bibliography 207

xii Contents

List of Figures

1.1 The KDD process. 4

2.1 Decomposition of an observed time series into four compo-
nents: Trend, Cyclic, Seasonal and Random. 11

2.2 Clustering using k-means approach. 15

2.3 Clustering using DBSCAN approach. 16

2.4 Clustering using hierarchical approach. 17

3.1 One of the frames of fMRI measurements 23

3.2 Irreversible degenerative changes in the brain of an Alzheimer’s
disease patient . 26

4.1 Architecture of a GPU [25]. 36

5.1 Example for Clustering. 42

5.2 The Feature Transformation. 43

5.3 Index Structure for GPU. 47

5.4 Sequential Algorithm for the Nested Loop Join. 49

5.5 Parallel Algorithm for the Nested Loop Join on the GPU. . . . 50

5.6 Algorithm for Similarity Join on GPU with Index Support. . . 51

5.7 Sequential Density-based Clustering. 55

5.8 Parallel Algorithm for the Nested Loop Join to Support DB-
SCAN on GPU. 56

5.9 Illustration of the data sets DS2 and DS3. 59

5.10 Evaluation of the NLJ on CPU and GPU with and without
Index Support w.r.t. the Size of Different Data Sets. 60

5.11 Impact of the Join Selectivity on the NLJ on GPU with Index
Support. 61

xiv LIST OF FIGURES

5.12 Impact of the Dimensionality on the NLJ on GPU with Index
Support. 62

5.13 Evaluation of two versions for the self-join on GPU w.r.t. the
join selectivity. 63

6.1 Sequential Partitioning Clustering by the K-means Algorithm. 68

6.2 Parallel Algorithm for K-means on the GPU. 70

6.3 Evaluation of CUDA-K-means w.r.t. the Size of the Data Set. 71

6.4 Evaluation of CUDA-K-means w.r.t. the number of clusters K. 72

6.5 Impact of the Dimensionality of the Data Set on CUDA-K-
means. 73

7.1 Model-based time series representation 80

7.2 An example for relationship between a dependent variable
(DV) and four exploratory variables (EV1-4) 84

7.3 Motivation for the use of the Mahalanobis-distance 87

7.4 Approximations for sample time series 91

7.5 Cluster quality for varying number of clusters (DS1) 92

7.6 Cluster quality for varying number of clusters (DS2) 93

7.7 Cluster quality for varying number of clusters (DS3) 94

7.8 Cluster quality for varying time series length (DS4) 94

7.9 Performance of our model-based approach vs. Euclidean dis-
tance . 95

8.1 Algorithm for Model Finding. 103

8.2 Algorithm for Model Refinement. 105

8.3 Illustration of Best Class-separating Models on UCI EEG Data.109

9.1 Example of an Interaction Pattern. 118

9.2 Algorithm Interaction K-means. 123

9.3 Algorithm for Interpretation of the Results. 127

9.4 Impact of Noise Objects on Cluster Quality: Noise with Ran-
dom Labels . 131

9.5 Impact of Noise Objects on Cluster Quality: Accuracy With-
out Noisy Objects . 132

9.6 Impact of Noise Dimensions on Cluster Quality 133

9.7 Scalability w.r.t. Dimensionality, Time Series Length and
Number of Objects . 135

List of Figures xv

9.8 The average error of objects in their own cluster / Number of
clusters in clustering (A) DS1, (B) DS5 and (C) reduced DS11. 139

9.9 The average error of objects in their own cluster / Number of
clusters in clustering (A) DS6, (B) DS7 and (C) DS11 140

9.10 Graphic representation of the models for the right amygdala. . 143
9.11 Spatial map of the intrinsic basal ganglia network including

the striatum. 145

10.1 Meta-Model for hierarchical clustering over length of models. . 158
10.2 Subspace Clustering over length of models 159
10.3 Meta-Model for hierarchical clustering over number of models. 160
10.4 Ranking Best Models . 161
10.5 Subspace Clustering over number of Dimensions. Comparing

models of child Clusters . 163
10.6 Subspace Clustering over number of Dimensions. Comparing

models between child and parent 164
10.7 Spatial maps of intrinsic networks. 166
10.8 Inter-subject-synchronicity similarity for intrinsic regional ac-

tivity. 167
10.9 Inter-subject-synchronicity similarity for intrinsic network ac-

tivity. 168
10.10Functional connectivity similarity for intrinsic regional activity. 169
10.11Functional connectivity similarity for intrinsic network activity. 171
10.12The result of Subspace Clustering w.r.t the model lengths.

The original clusters from DS6 are depicted in grey color. . . . 172
10.13The result of Hierarchical Subspace Clustering over the length

of models. Robustness to noise-objects in data set. 174
10.14Result of Hierarchical Subspace Clustering over length of models.175

11.1 Behavioral data. 183
11.2 Neuronal responses to painful stimuli and decoding an indi-

vidual’s sensitivity to pain . 185
11.3 Decoding an individual’s sensitivity to pain based on the av-

eraged TFR, the single trial raw EEG and the single trial raw
EEG. 188

xvi List of Figures

List of Tables

5.1 Data Sets for the Evaluation of the Similarity Join on the GPU. 59

7.1 Real and Artificial Data Sets with. 91

8.1 Multivariate Time Series Data Sets. 106
8.2 Results of Classification. 108

9.1 Characteristics of Experimental Data Sets. 129
9.2 Results on Benchmark Data. 130
9.3 Results on fMRI Data. 144

11.1 Classification accuracy, sensitivity and specificity of different
approaches to decode an individual’s sensitivity to pain. 186

11.2 Statistical comparisons of different approaches to decode an
individual’s sensitivity to pain. 187

13.1 Peak voxels, coordinates, anatomical labeling and cluster size
of the identified 22 intrinsic networks. 202

13.2 Peak voxels, coordinates, anatomical labeling and cluster size
of the 55 selected peak voxels from the previously identified
22 intrinsic networks. 205

xviii List of Tables

Acknowledgements

Last years I spent writing my PhD Thesis in the Ludwig Maximilian Uni-
versity of Munich was a very important and unforgettable time in my life.
Undoubtedly, this work would not have been possible without the support
and encouragement of many people. I would like to address my grateful
acknowledgement to all of them, even if I unfortunately cannot mention ev-
eryone here.

First and foremost, I would specially like to express my sincerest grati-
tude to my supervisor and first referee on this thesis, Prof. Dr. Christian
Böhm, who initiated and supported this work, giving me an opportunity to
research on this highly interesting and challenging domain. His outstand-
ing experience, excellent supervision and valuable advices was a subject of
inspiration during my research.

Many dearest thanks to Dr. Claudia Plant for her great guidance, fruit-
ful and pleasant cooperation, and friendly encouragement. Furthermore, I
warmly thank Prof. Dr. Stefan Conrad and Prof. Dr. Rolf Hennicker for
their interest in my work and their willingness to act as the second referee
and the Chairman of the Commission on this thesis.

My warmest thanks also go to all my current and past colleagues in the
data mining group. In particular, I want to thank Junming Shao, Annika
Tonch, Bianca Wackersreuther, Annahita Oswald, Can Altinigneli, Sebastian
Goebl, Jing Feng, Xiao He, Nikola Müller, Katrin Haegler, Bettina Konte,
Frank Fiedler, Peter Wackersreuther, Michael Plavinski and Son Mai Thai for
many inspiring and encouraging discussions and friendly help and support
for all these years. In this group I found a very positive and supportive
environment giving me much inspiration and freedom for my research.

I am also very grateful to the scientists in the group of Neuroscience of
Technical University of Munich, especially to Prof. Dr. Claus Zimmer, Dr.
Afra Wohlschläger, Dr. Christian Sorg, Dr. Enrico Schulz, Dr. Christian

xx Acknowledgements

Dresel, Dr. Susanne Neufang, Dr. Leonhard Läer, Dr. Velentin Riedl, Dr.
Michael Valet, Dr. Andrei Manoliu, Lorenzo Pasquini and Nickolas Myers.
Thanks a lot for the pleasant and interesting discussion, cooperation and
friendship. I really enjoy working in their enthusiastic and attentive team.

I do not want to miss all the students I had pleasure to supervise during
my thesis, who supported my work and who have been beneficial for this
thesis. I would like to mention here, Max Liebkies, Robert Noll and Manauel
Mesters.

I also would like to sincerely thank the colleagues, who shared their data
and source code with me for comparison and analysis. Among them, Xiaozhe
Wang, Anthony Wirth, Liang Wang, Mohammed W. Kadous and Ashok
Veeraraghavan.

I thank Oleg Sypchenko for comments and critic that greatly improved
the thesis.

Finally, special thanks to my parents, my wife Yuliya and my daughters,
who are always my powerful backing with their endless love, understanding
and support. Without their patience and support, this thesis would not have
seen its conclusion.

Abstract

Recently, by means of modern measure approaches and highly developed sen-
sors enormous volumes of data are produced. The data amount is not only
huge, but also the data structure is getting more and more complicated. The
data originate from the variety of fields such as medicine, research, manu-
facturing and economy. Together with increasing of data flow, the require-
ments to algorithms which process these data are increasing too. Queries to
databases become more complicated, they concern more and more entities,
tolerate less processing time and demand more precise results. The goal of
modern Data Mining methods is to manage these challenges.

In this work we are engaged with improvements of algorithms to make
them faster and more effective. We introduce algorithms, which solve clas-
sical data mining tasks by means of GPUs essentially faster than ordinary
one-thread algorithms. This work describes multidimensional index struc-
ture that suits very good for graphics processors. We propose an efficient
computing of Similarity Join and optimize k-means and DBSCAN for usage
on vector processors.

Many modern measure approaches produce time series which are com-
bined into multivariate time series. In such a way, big data volumes are
produced, which need very efficient processing. We present in this work
algorithms for approximation, classification and clustering, adapted for mul-
tidimensional time series and providing precise results without loss of infor-
mation. Here, the temporal interaction of the time series is used, which has
been ignored for other methods. For these purposes we defined a mathemat-
ical model based on the set of multidimensional time series. The model takes
into account the temporal interaction of individual time series and produces
a value, which describes how good an object fits into the model. We intro-

xxii Abstract

duce methods for aggregating over the length of time series. In such a way,
we can search for interesting dependencies and the computing time is inde-
pendent of the time series length. Classification and clustering decisions can
be justified by means of the models, which gives us a powerful tool for data
analysis. Especially interesting results were achieved on medical data, since
our algorithms are good in treating the fuzziness in complex data. Thus,
patterns at interaction between brain regions were found, which are jointly
responsible for Alzheimer’s, Schizophrenia and Pain-Disorder diseases.

We extend model-based clustering also for hierarchical cluster structure.
By means of these extensions, the dependencies between various groups
of healthy controls and patients were analyzed and the hypothesis about
Alzheimer’s disease as aging effect was confirmed. The information concern-
ing the group similarities can be derived from the resulting dendrogram. In
this thesis, a workflow for evaluation of pain sensitivity among the healthy
persons was proposed. The standard Data Mining methods were here fitted
and composed, which allows to forecast the individual pain sensitivity of a
certain person based on EEG measurements during laser stimulation.

Zusammenfassung

Mittels moderner Messungsverfahren und hochentwickelter Sensoren werden
in der heutigen Zeit riesige Datenmengen produziert. Die Datenmenge ist
nicht nur nach dem Volumen groß, sondern auch die Struktur der Daten wird
immer komplexer. Die Daten stammen aus verschiedensten Anwendungs-
bereichen wie z.B. Medizin, Forschung, Produktion und Wirtschaft. Zusam-
men mit den wachsenden Datenströmen wachsen auch die Anforderungen
an die Algorithmen, die diese Daten verarbeiten. Anfragen an Datenbanken
werden komplexer, betreffen immer mehr unterschiedliche Datensätze, lassen
geringere Antwortzeiten zu und verlangen genauere Ergebnisse. Ein wichtiges
Ziel moderner Data-Mining-Methoden ist es, genau diese Herausforderungen
zu bewältigen.

In dieser Arbeit befassen wir uns mit verschiedenen Verbesserungen von
Algorithmen, um diese schneller und effizienter zu machen. Wir stellen Algo-
rithmen vor, die klassische Data-Miningaufgaben mit Hilfe von Grafikprozes-
soren wesentlich schneller als klassische Ein-Thread-Algorithmen lösen. In
der Arbeit wird eine multidimensionale Indexstruktur beschrieben, die gut
für Grafikprozessoren geeignet ist. Wir bieten die effiziente Berechnung des
Similarity Join an und optimieren die Clustering-Verfahren k-Means und DB-
SCAN für den Einsatz auf Grafikprozessoren.

Viele moderne Messverfahren produzieren Daten, die in multivariaten
Zeitreihen zusammengefasst werden. So werden große Datenmengen pro-
duziert, die eine besonders effiziente Bearbeitung benötigen. Wir stellen in
dieser Arbeit Algorithmen für Approximation, Klassifikation und Cluster-
ing vor, die auf multidimensionale Zeitreihen angepasst und effizient sind
und präzise Ergebnisse liefern, ohne Information aus den Zeitreihen zu ver-
lieren. Dabei wird insbesondere das zeitliche Zusammenspiel der verschiede-

xxiv Zusammenfassung

nen Zeitreihen genutzt, das bei früheren Methoden ignoriert wurde. Für
dieses Ziel definierten wir ein mathematisches Modell auf der Menge der
multidimensionalen Zeitreihen. Das Modell quantifiziert das zeitliche Zusam-
menspiel der einzelnen Zeitreihen und liefert einen Wert, der beschreibt, wie
gut ein Objekt in das Modell passt. Wir stellen Methoden zum Aggregieren
über die Länge der Zeitreihen vor, um interessante Abhängigkeiten zu suchen.
Dabei ist die Berechnungszeit von der Länge der Sequenzen unabhängig. Die
Entscheidungen bei der Klassifikation und beim Clustering lassen sich anhand
der Modelle begründen, wodurch ein leistungsfähiges Instrument zur Date-
nanalyse entsteht. Besonders interessante Ergebnisse wurden auf medizinis-
chen Daten erreicht, weil unsere Algorithmen gut mit der Ungenauigkeiten
in komplexen Daten umgehen können. So wurden Muster bei der Inter-
aktion zwischen Gehirnregionen gefunden, die für Alzheimer, Schizophre-
nie und eine chronische Schmerz-Krankheit (die somatoforme Schmerzwahr-
nehmungsstörung) mitverantwortlich sind.

Wir haben das modellbasierte Clustering auch für hierarchische Cluster-
Strukturen genutzt. Mit Hilfe dieser Erweiterung wurden Abhängigkeiten
zwischen verschiedenen Gruppen von Gesunden und Patienten analysiert
und neue Hypothesen über die Alzheimerkrankheit als Alterungserschein-
ung bestätigt. Die Information zur Gruppenähnlichkeit ist aus dem Den-
drogramm abzulesen. Im Rahmen dieser Dissertation wurde auch ein neuer
Workflow zur Bewertung der Schmerzempfindlichkeit bei gesunden Perso-
nen entwickelt. Hier wurden Standardmethoden der Data-Mining-Forschung
angepasst und zusammengesetzt, um aufgrund von EEG-Messungen bei der
Laser-Stimulation das Schmerzempfinden einer Person vorherzusagen.

Part I

Preliminaries

Chapter 1

Introduction

We are living in a world, where we have to deal with so large volumes of
data, that it is far beyond of our ability to process them manually. New high-
capacity storage devices available nowadays, allowing accumulate more and
more data, as well as dissemination of digital devices, producing huge amount
of raw information (e.g. such as sensors), does not only open new possibilities,
but also represent a challenge. This data explosion requires efficient solutions
for automated data analysis and information gaining. Knowledge Discovery
in Databases (KDD) represents an interdisciplinary research field that focuses
on such automatic solutions, laying emphasis on very large data sets.

Section 1.1 in this chapter gives an introduction to the main concepts
of the Knowledge Discovery in Databases. The core part of KDD - Data
Mining - is presented separately in detail in Section (1.2). Finally, Section
1.3 provides the outline of the thesis, describing how it is organized.

1.1 Knowledge Discovery in Databases

Systematization and unification of the notion of Knowledge Discovery in
Databases and the terms related to it go back to 1996. In the paper [48],
which can be now considered as a canonical work in KDD and Data Mining
field, the authors tried to unify and bring order to a lot of very similar no-
tions for ”finding useful patterns in data” existed before, such as information
discovery, data pattern processing, knowledge extraction, data mining etc.
The result is two basic notions - KDD (Process) and Data Mining, with a
clear explanation of distinction between them.

4 1. Introduction

Original Data Target Data Preprocessed Data Transformed Datay Patterns / Rulesy Knoweledge

Selectiony Preprosessing Transformationy Data Mining Inpretation / Evalution

y← x + 3z
y← 2x - z

y← x - z
y← x + z

!!
!

Figure 1.1: The KDD process.

When we speak about Knowledge Discovery in Databases, we lay an
emphasis on ”knowledge”, meaning the whole process of ”discovering” new
useful ”knowledge”, starting from preparation of given raw data and up to
interpretation of extracted patterns. In comparison, Data Mining represents
a separate intermediate step in this process, namely the application of specific
algorithms for extracting patterns from data. In the following we concentrate
us on KDD, whereas the material related to Data Mining we leave for the
next Section.

Strictly speaking, Knowledge Discovery in Databases (KDD) is defined
as ”the non-trivial process of identifying valid novel, potentially useful, and
ultimately understandable patterns in data” [48]. The individual steps of the
process are depicted in the Figure 1.1.

Selection: This first step is supposed to create a target set by selecting a
data set based on such criteria as type, size, the set of variables etc. Thereby
it is focused on data that promise the best performance.

Preprocessing: The purpose of this step is performing cleaning and
preparation operations such as noise removal, handling missing data fields as
well as accounting additional implicit factors influencing the data.

Transformation: Depending on the task goal, the preprocessed data are
reduced at this step by means of projection (dimensionality reduction) and
invariant transformation operations. This enables focusing on the particu-
lar features of interest, reducing at the same time the effective number of
variables.

1.2 Data Mining 5

Data mining: This core step of KDD process is responsible for selecting a
data mining method (classification, regression, clustering, etc.), data analyz-
ing and discovery of efficient algorithms, including concrete models and the
corresponding parameters, to extract useful patterns in transformed data.

Interpretation and Evaluation: In the last step the extracted patterns
are at first supposed to be interpreted and then visualized in a clear under-
standable form. Finally, the discovered knowledge is incorporated into the
existing knowledge system, including reporting the results if needed.

1.2 Data Mining

As already mentioned, Data Mining is a central and in some sense the most
interesting part of its big brother KDD. It is not surprising, that these two
notions are in certain situations interchangeable and sometimes even used as
synonyms. Referred to the formal definition, Data Mining is ”a step in the
KDD process consisting of applying data analysis and discovery algorithms
that, under acceptable computational efficiency limitations, produce a par-
ticular enumeration of patterns over the data” [48]. That is, Data Mining is
an algorithmic component, focusing on extraction of the patterns from data.

There are two main goals in Data Mining - Verification (checking user’s
assumption) and Discovery (finding out new patterns). The latter - Discovery
- is presented in its turn by predictive tasks, which try to forecast the future
behavior based on the current data, and descriptive tasks, presenting the
data properties to user in a human-understandable form.

Data Mining methods can be classified as follows:

Classification: Finding a function or developing a model, which is able
to assign data to one of several already existing predefined classes. In con-
trast with clustering, where the clusters (accumulations) need to be identified
fist, classification deals with a predefined set of classes. The model can be
expressed via mathematical formulae, classification rules, decision trees or
neural networks.

Clustering: Detecting a finite set of clusters / categories, similar objects
are grouped into. Every such a cluster include data, the most related to
each other (w.r.t. a certain similarity measure), whereas data from different

6 1. Introduction

clusters are vice versa distinct from each other. At the beginning of the task
there is no known class labels.

Outlier Detection: Correct identifying of unconventional objects, so
called outliers, which can not be assigned to any of derived clusters or cor-
respondingly to any of predefined classes. Considered by the most of Data
Mining methods as noise, detecting outliers can be of great interest in cer-
tain tasks, where it is important to discover anomalies in comparison with
other objects. Statistical tests, distance measures as well as deviation-based
methods can be applied to detect such objects.

Association Analysis: Discovering frequently occurring patterns in data
in form of itemsets, sequences or other structures like trees or graphs. Such
type of analysis helps to find out important, sometimes not directly visible
correlations and associations in data.

Evolution Analysis: Modeling trends and periodicities in objects behav-
ior in the course of time. Beside the other Data Mining methods, also time-
series and similarity-based analysis as well as pattern matching approaches
find their application here.

Characterization and Discrimination: Associating Data with classes
or concepts, which represent a compact summarization of data properties,
can be done by means of two approaches - via data characterization, which
describes the common properties within a so called target class, or via data
discrimination, which compares the general features of the given target class
with such from different ones, so called contrasting classes. So, searching for
similarities is contrasted here with searching for distinctions.

1.3 Outline of the Thesis

In this thesis, novel algorithms in the areas of clustering, classification and
their application in medicine are proposed. Additionally, Data Mining ap-
proaches using Graphics Processing Units are presented. The major contri-
butions of this thesis can be summarized as follows:

1.3 Outline of the Thesis 7

� optimization of classical Data Mining clustering algorithms for usage
in the highly parallel environment of GPU;

� introduction of notion of a mathematical model and its application for
solving the tasks of approximation, classification and clustering;

� novel approaches based on attribute selection and classification for con-
firming hypothesis about different levels of individual sensitivity to
pain.

To give a better overview of the work and to ease access to a particular
topic let us explain how the further chapters are organized. So, the outline
of the thesis looks as follows:

Part I (Chapters 1 to 3) is dedicated to introduction to Data Mining.

Chapter 1 gives a general introduction to KDD and Data Mining.
Next, in Chapter 2 a brief overview of essential concepts and algorithms,

this work refers to, is given.
Chapter 3 presents in a short form the applications of Data Mining in

medicine. More detailed information on this subject a reader can find in
Chapters 10 and 11.

Part II (Chapters 4 to 6) is dedicated to application of highly parallel
algorithms in Data Mining using Graphics Processing Units. Most of these
ideas have been published recently ([25, 26]).

Chapter 4 starts with a general introduction to GPU architecture and
its programming model. Advantages of using GPU’s extreme parallelism
compared to CPU are explained.

Chapter 5 is completely devoted to Similarity Join. After introducing
the notion of similarity join, the benefits of applying this primitive in Data
Mining Algorithms are discussed. Also, a multidimensional index structure
optimized for GPU is proposed here. Finally, a GPU-accelerated version of
DBSCAN clustering algorithm using Similarity Join is presented [25] and
[26].

Further, in Chapter 6 k-means clustering algorithm specially designed
to run on GPU is introduced. The superiority of the approach over its CPU
analog [25] is shown.

8 1. Introduction

Part III (Chapters 7 to 9) is dedicated to model-based approaches in Data
Mining. Recent publications were used thereby ([106], [24], [155]).

Chapter 7 proposes an intelligent mathematical model-based compres-
sion approach to Approximate Clustering of time series. Its experimental
evaluation shows very good results compared to existing state-of-the-art ap-
proximation methods in terms of clustering accuracy [106].

In Chapter 8, a novel model-based classifier is suggested, based on class-
specific interaction patterns among time-series. During the evaluation, the
approach demonstrates that interaction patterns characterized by linear mod-
els are very useful for classification, especially of EEG and fMRI data [24].

Chapter 9 presents an approach for extracting interaction patterns among
brain regions. Based on a novel clustering notion, an effective algorithm IKM
(interaction K-Means) for partitioning clustering is proposed [155]). The ex-
periments with IKM show especially excellent results on EEG and fMRI data.
Moreover, the interaction patterns detected by IKM are easy to interpret and
can be visualized. The algorithm is scalable and robust against noise. The
paper is extended with an algorithm for searching the number of clusters
9.7.2.

Part IV (Chapters 10 and 11) is dedicated to Data Mining applications
in medicine. This part is inspired by the lately published medical papers
[169, 149] as well as by some yet unpublished material.

Chapter 10 proposes carrying over the idea of hierarchical subspace clus-
tering to model-based clustering approach applied on the groups of Alzheimer’s
disease patients and healthy controls. Algorithms show not only interesting
results on real-world data, but also a good noise-robustness [149].

Chapter 11 is dedicated to classification of individual sensitivity to pain
from the multivariate analysis of Electroencephalography data. An objective
neuronal marker of pain sensitivity plays a great role in prevention, diagnosis
and treatment of painful conditions [169].

Part V (Chapter 12) concludes the thesis.

Chapter 12 gives a summary of the contributions of this thesis and
shows possible directions for future research.

Chapter 2

Main Concepts and Algorithms
in Data Mining

2.1 Introduction

In this chapter we briefly consider the principal Data Mining algorithms, this
work is based on. In Section 2.2, we shortly describe the fundamental algo-
rithms and data structures, which are used to construct new methods from
the following Chapters. Section 2.3 is dedicated to the main classification
algorithms. Next, in Section 2.4 an overview of clustering algorithms used in
this work are given. In Section 2.5 we consider the fundamental algorithms,
which are applied and extended in Chapter 10. The chapter ends with a
short conclusion in Section 2.6.

2.2 Similarity-Join, Time Series and Stepwise

Selection

2.2.1 Similarity Join

The similarity join represents one of the basic operations of many Data Min-
ing algorithms. As it is clear from the name, its application goal is similarity
search which finds its application in Data Mining on feature vectors. An
typical initial point in such tasks is a large object set D which one associates
with a vector from a multidimensional space, called feature space. The sim-
ilarity join determines pairs of objects which are similar to each other with

10 2. Main Concepts and Algorithms in Data Mining

respect to a certain criterion. Choosing a Euclidean distance as such cri-
terion of proximity we have maybe the most well-known kind of similarity
join which is the ε-join. ε-join describes those pairs from D ×D which have
a Euclidean distance of no more than a user-defined radius ε. If the both
points from such a pair are elements of the same set, the join is a similarity
self-join. Most algorithms can also be generalized to the more general case
of non-self-joins in a straightforward way.
As we claim in [26], it has been shown that the similarity join can be a base
for important Data Mining methods such as clustering and classification.
Besides, applying a similarity join instead of single similarity queries can
accelerate Data Mining algorithms by a high factor. An efficient Similarity-
Join on very big volumes of data is described in detail in paper [113].

2.2.2 Time Series

One of the core objects, we work in this thesis with, is a time-series. A time-
series represents a sequence of values or events, observed at certain time
points, usually with a constant delta between them [72]. A database, deal-
ing with such sequences, are called in the turn time-series database. Time
series databases we can meet almost in every application field, whether it be
a weather forecasting, science experiment, stock market research or medical
diagnostics. Sensors and other intensive data collection tools used nowadays
produce a huge amount of time series to be processed. Very often it is desired
to process them very fast or even real-time.
Time series analysis has two main goals: modelling and forecasting. The first
deals with rules describing the time-series, whereas the latter tries to predict
its values in the future.
Time-series modelling consists in its decomposition into so called trend,
cyclic, seasonal and random (irregular) components. The original time-series
is modelled then as either a sum or a product of these four components. An
example of the decomposition of an observed time series into such four parts
is depicted in Figure 2.1. The first - trend - represents the main course of the
time-series over a long time interval and is typically extracted via moving
average (MA) or least squares method. The next one - cycles - determine
long-term oscillations (not necessarily periodic) about the trend. The third -
seasonal component - refers to very similar to each other deviations system-
atically happening during some period of the year. Autocorrelation analysis

2.2 Similarity-Join, Time Series and Stepwise Selection 11

Figure 2.1: Decomposition of an observed time series into four components:
Trend, Cyclic, Seasonal and Random.

or seasonal index numbers can be used to detect seasonal patterns. The
last part of a time series represents an irregular or random behaviour intro-
duced by the indeterminacy in our world. A detailed introduction to time
series analysis and its fundamental methods can be also found in book [29].
ARIMA [29], one more method in Time series analysis, is used for forecasting
of its values in the future.
In real-world applications we normally have to deal with multivariate time
series, representing multidimensional vector, each component of which is in
the turn a one-dimensional time series. That is, for each time point t we have
Yt = (yit , ..., ynt)

′, where each yit represents a usual time series. Multivariate
time series are very useful when it is needed to describe the interactions be-
tween time series variables. For more information on multivariate time-series
methods a reader can refer to book [15].

2.2.3 Attribute Selection Algorithms

Before starting processing data it is very important to understand which at-
tributes are not relevant for the given Data Mining task. Often, some of them
are also redundant, meaning that they do not contain any useful information
any more, since this information is already contained in other attributes.

12 2. Main Concepts and Algorithms in Data Mining

Not doing this or erroneously dropping the relevant attributes can lead to
incorrect results.
The simplest way to choose optimal attributes, under the assumption that
they are independent of each other, is to use InfoGain [70] approach. Info-
Gain is based on the entropy of an attribute.
In the common case, so called attribute subset selection is carried out over
the data. Redundant and irrelevant attributes are removed thereby, reducing
the original size of data set. As result, a minimal set of arguments is left,
with a very similar probability distribution of the data classes compared to
such of the original data classes.
Since the brute search over the attributes leads to search among 2n subsets,
heuristic methods are used for finding the appropriate subset. The main such
approaches can be classified [72] as:

1. Stepwise forward selection: starting with an empty set of attributes, at
each step the best of the not yet chosen attributes is determined and added
to the set.

2. Stepwise backward elimination: starting with the full set, at each iteration
the worst of the remaining attributes is determined and removed from the set.

3. Combination selection and elimination: alternating application of the
both methods above. One starts with two sets - an empty and a full one,
chooses the best attribute from the second set and move it to the first set.
Then, the worst attribute in the second set is determined and removed. After
that, the best attribute in the second is chosen again and moved to the fist
one. And so on.

2.3 Classification

The aim of classification is to determine the class of a new object, taking
into account the information about known classes, given by the object sets,
whose classes we already know. To validate the classification algorithms, x-
folds cross-validation method is used. This method consists of the following
steps. In the first step, we randomly split the data into x folds, preserving at
the same time the proportions of labels in each fold w.r.t their proportions in

2.3 Classification 13

the full data set. In the second step, the algorithm under test is trained on
the data set consisting of x−1 folds. The last (not participated for training)
fold is used to estimate the accuracy of the algorithm being tested. The
second step is then repeated for each fold as test set exactly once. In other
words, each object as well as each fold is used once as test set and x−1 times
as training set.

2.3.1 Next Neighbor Classificator

Despite of the fact, that Next Neighbor Classificator described in[11] is rel-
ative simple, it gives often good results on different data. Because of this,
1NN -Classificator is frequently used as base-line to estimate the quality of
new algorithms.
The principle of the classificator is as follows. For the object under test, the
closest neighbor from the training set is determined. The class of this neigh-
bor is returned as classification result of the object being tested. There is a
simple extension of this method. Instead of searching for one next neighbor,
k next neighbors are found. The class of the object under test is in this case
the most frequently encountered class label.

2.3.2 Support vector Machines (SVM)

SVM is an interesting technique in classification, suiting for both linear and
nonlinear data. The method was originally proposed by Vladimir Naumovich
Vapnik in paper [192]. The approach can be described as follows. We try
to find an appropriate nonlinear mapping for initial data which maps them
into a higher dimensional space. Then it will be searched for an optimal
linear hyperplane, separating the data of one class from the data of another.
It is known that selecting a sufficient high dimension and suitable nonlinear
mapping, it is always possible to find such a hyperplane [72].

The term SVM comes from ”support vectors”, representing the main
training tuples using these support vectors and margins defined by them.
The advantage of this method, excluding the benefit that it can be applied
on nonlinear data, is that it is very accurate, the trade off however is that it
could be very slow. Besides the classification, this method can be used for
prediction.

14 2. Main Concepts and Algorithms in Data Mining

In the case when the data are linear separable, classification test for new
tuples can be done by considering such an equation:

d(XT) =
k∑
i=1

yiαiXiX
T + b0 (2.1)

where XT is a test tuple, Xi is the i-th support vector (of total number k),
yi is its (support vector’s) class label, αi and b0 are parameters, determined
by SVM algorithms.

Using a given test tuple XT we can find the resulting sign of the expression
above and determine therewith on which side from the hyperplane the test
tuple falls. This allows to make a decision concerning the question which
class the test tuple belongs to. It is to be noted that the complexity of
the classifier here is determined primarily by the number of support vectors
rather than by the data dimensionality.

There is an extension of the algorithm for the nonlinear case, i.e. when
no hyperplane can be found which separates the data. This extension finds
a nonlinear decision for boundaries which allow to classify the test tuples.
The algorithm works in two steps: in the first step, the data are transformed
(by means of a nonlinear mapping) into a higher dimensional space; in the
second step, it is searched for a hyperplane which linearly separates the
data in the new higher dimensional space obtained in the first step. The
detailed information about nonlinear mapping which can be used for the
transformation can be found, for example, in book [72].

2.4 Clustering

The clustering problem consists in partitioning a set of objects into clusters.
The objects from the same cluster shall be as similar as possible, whereas
the objects from the different ones shall on the contrary be characterized by
high dissimilarity.

2.4.1 k-means

One of the most essential clustering methods is the method of k-means,
originally proposed by [122]. Assuming the problem of partitioning a set into
k clusters, one introduces the proximity to the mean value of the objects

2.4 Clustering 15

Figure 2.2: Clustering using k-means approach.

as a measure for cluster similarity correspondingly dissimilarity [72]. The
problem of finding such centers of gravity is solved iteratively. One starts
with a random set of k objects, chosen randomly and which are assumed
to be the centroids (means) of the clusters. Having the mean values it is
possible to calculate the distance to these k centroids from the other objects
to determine the nearest centroid. In such a way, each object is assigned in
the turn to its cluster mean, building a cluster. Having k clusters, we act
in an opposite way and recalculate the means of each cluster. At second
iteration step one repeats the procedure above. And so on. At every step
an error of the current partitioning is computed. Usually, the square-error
function is taken as such:

E =
k∑
i=1

∑
p∈Ci

|p−mi|2 (2.2)

In other word, in each cluster Ci one calculates the squared distances of every
object p to its mean mi and sums them. Minimizing such an error leads to
the optimal solution. As a condition to stop the iteration it is sufficient to
see that the sequence of errors converges in the limit and the situation that
clusters do not change any more is reached.
The complexity of the method is O(nkt), where t is the number of iterations,

k is the number of clusters and n is the total number of objects. Under
typical conditions, when k and t are significantly less than n, this approach
can be considered as effective for large data sets. Usually, t is bounded in our
algorithms and therefore the complexity above is simplified to just O(nk).
This method has also some disadvantages. First of all, it is needed that the
notion of the mean shall be well-defined for the object, which is although
very often, but not always the case. Another restriction is that the number

16 2. Main Concepts and Algorithms in Data Mining

Figure 2.3: Clustering using DBSCAN approach.

of clusters k shall be given in advance. Finally, the method is vulnerable to
outliers and noise data.

2.4.2 DBSCAN

Another family of clustering algorithms are density based algorithms. Their
main benefit is that they can find clusters of arbitrary shape. The underlying
idea is that regions with high object density determine the clusters, whereas
the regions with low object density represent the boundaries between them.
The base representative of such methods is Density-Based Spatial Cluster-
ing of Applications with Noise (DBSCAN)[46]. In this method, a cluster is
understood as a maximal set of density-connected objects. A basis for the
density-connectivity are so-called core objects, the objects containing in their
ε-neighbourhood a sufficient (defined in advance) number of objects from a
data set D. An object is called directly density-reachable with respect to
ε from some core object, if the object lies in the ε-neighbourhood of this
core object. Two points p and q are considered to be density-reachable if it
is possible to find a sequence of pairwise directly density-reachable objects
p = p1, ..., pn = q from D, i.e. such that pi is directly density-reachable from
pi+1 for each 1 ≤ i ≤ n− 1. Finally, an object p is called density-connected
to object q in a set D of objects if there exists an further object r, so that
both objects p and q are reachable from this object r. All the definitions here
are given with respect to threshold ε and some minimal number MinPts of
points, starting with which an object is considered to be a core one. As result
one get a density-based cluster, a maximal set of density-connected objects.
The other objects, not belonging to any cluster are viewed as noise.

Assuming n as the number of objects in the set, the complexity of DB-

2.5 Hierarchical Clustering 17

Figure 2.4: Clustering using hierarchical approach.

SCAN algorithm is O(n2) in general case, and O(n log(n)) in the case of
spatial index usage. With reasonable selection of ε and the minimal number
of objects for core object property, the method can be considered as effective
when finding clusters of arbitrary shape.

2.5 Hierarchical Clustering

In comparison to usual clustering, where we just try to determine to which
cluster this or that object can be assigned, hierarchical clustering tries to con-
struct a hierarchical decomposition of objects. The latter is done by means
of a dendrogram, whose levels partition the datasets into nested clusters.
Hierarchical clustering approaches are presented by agglomerative and divi-

sive methods. The former are characterized by bottom-up approach, starting
with its own cluster per each object and iteratively merging these clusters,
whereas the latter begins with solely one cluster which is iteratively parti-
tioned into smaller ones.

The steps of an agglomerative method can be described as follows. We
start with the set of clusters, which correspond to each object. Then, we
merge the two closest clusters to one, which correspond in the turn to a new
parent inner node in the dendrogram. Repeating finding closest clusters and
merging them, we end finally with only one cluster, forming the dendrogram
root. The methods distinguish in the way how the distance between clusters
is chosen.

2.5.1 Single- and Average-Link

One of the most basic agglomerative methods is Single-Link [174, 90]. As-
sumed we are given a distance function between objects, the distance between

18 2. Main Concepts and Algorithms in Data Mining

two disjunct clusters is defined as minimum distance between them, i.e. the
smallest distance between all objects pairs, where the first object is taken
from one cluster, and the second one respectively from another one.

dMIN(Ci, Cj) = min
x∈Ci,y∈Cj

d(x, y)

The side effect of Single-Link is a chaining effect, i.e. sometimes the decision
to merge the clusters are made only based on individual points which are
close to each other and not the whole clusters.

Average-Link [197, 90] uses the average distance between all pairs from
two clusters.

dAV G(Ci, Cj) =
1

|Ci| · |Cj|
∑

x∈Ci,y∈Cj

d(x, y)

The advantage thereby is that all points are taken into account. This strategy
does not lead to chaining effect and besides is not affected by outliers.

2.5.2 Hierarchical Subspace-Clustering

Due of curse of dimensionality, applying traditional clustering algorithms in
the case of high-dimensional feature spaces is seriously limited. This happens
because different sets of features are relevant for different (subspace) clusters.
That is why an extension of traditional clustering called subspace (or some-
times projected) clustering has been developed recently [8, 95, 23, 5]. The
aim of subspace clustering is an automatic identifying lower dimensional axis-
parallel subspaces of the feature space in which clusters exist. An axis parallel
subspace cluster associated with a λ-dimensional projection/subspace, that
is a subspace generated by a span of λ attributes, is called a λ-dimensional
subspace cluster. In the turn, the dimensionality of a subspace, associated to
a subspace cluster, is called subspace dimensionality. There are two classes
of subspace clustering algorithms, depending on the resulting types produced
by them. The first class represents approaches that allow overlapping clus-
ters, i.e. a point in different projections is permitted to belong to different
clusters. The second type, on the contrary, is characterized by the fact that
resulting clusters do not overlap, i.e. each point, if it does not represent a
noise, may belong exclusively to only one cluster. The algorithms from the
first class (allowing overlapping) usually produce a huge number of clusters,

2.6 Conclusion 19

which makes interpretation a hard task.

2.6 Conclusion

In this Chapter, a brief overview of main algorithms of classification and
clustering was given, which are used in future in this thesis. Also we shortly
considered such fundamental concepts as similarity join, dimension selection
and time series. In Part III and Part IV, time series are actively applied.
Part II proposes a highly parallel algorithm for similarity join. The essential
element of the workflow suggested in Part IV is dimension reduction.

20 2. Main Concepts and Algorithms in Data Mining

Chapter 3

Imaging Modalities and
Applications

One of the directions in this thesis is the application of Data-Mining methods
in medicine. In this chapter, we consider at first some fundamental tools,
being applied in medical diagnostics, such as fMRI and EEG. Applying these
methods we research such diseases as Alzheimer’s disease, Schizophrenia and
Pain Disorder, described in the further sections.

3.1 Functional Magnetic Resonance Imaging

(fMRI)

In this section, we take under consideration fMRI, one of the fundamental
imaging modalities for researching brain.
Functional magnetic resonance imaging (fMRI) is a non-invasive approach,
which indirectly measures the activity of the brain. The local changes in a
strong magnetic field, caused by properties of hydrogen nuclear spins, result
in capturing of signal changes. How strong these changes are, according to
the paper [186], depends on how high the oxygen concentration in blood is.
The visualization method using this fact is called blood oxygenation level
dependent (BOLD) contrast imaging. Here it is assumed with exceptions as
in paper [176], that the brain regions consume at activity more oxygen which
can be visualized.
For measuring, a strong magnetic field is needed. The latter (a strong mag-
netic field) requires much energy and expensive devices. The proband is

22 3. Imaging Modalities and Applications

placed into a strong magnetic field and the scanner continuously measures
the brain activities. The scanning happens in slices, which in 1-3 seconds
results in one complete brain image. In accordance with the book [83], the
image consists of voxels (3D-pixels). An example for that is presented in the
Figure 3.1. The proband should not move during the scanning procedure.
The measurements are often accompanied by external stimulations. If no
stimulation occurs, one speaks about so called resting state fMRI. Stimula-
tions can be of visual, tactile or pain nature. It is also possible to request a
reaction on certain events, for example, pressing a button, hand moving etc.
As raw data one gets a series of 3D-images of brain, with voxel sizes of ap-
proximately 2-6 mm3. The first two images should be ignored, since they
are not sharp enough. Before the images are evaluated by means of standard
methods, they need to be preprocessed. Movement artifacts, such as mov-
ing or rotating the head, should be computed and minimized. The images
must be zoomed to standard size. The series of images can be also smoothed
(both spatially and temporally) and detrended. The preprocessing steps are
standard proceedings and are used for noise elimination, whereas they can
slightly reduce the sharpness and spatial resolution.
After the measuring and preprocessing one gets a couple of hundreds of 3D-
images, approximately 64x64x64 voxels each. Each such a voxel represents
a time series. Since the nearby voxels provide very similar information, usu-
ally only one time series per region is extracted. For this, the atlases with
predefined regions are used. For instance, the authors of [190] divide a brain
into 90 regions. Each region is represented by the value, which is the average
value of all voxels from the region. In such a way, the data set to process
is drastically reduced. For different disorders are different brain regions re-
sponsible. So, to keep the data set controllable, the analysis can be focused
only on relevant regions. Alternatively, from time series of all voxels only
relatively small number of independent components, as in paper [84], can be
extracted. In this way, the data set becomes not utopianly huge and needs
no additional information in form of an anatomical brain atlas.
In such a way mined data have very good spatial resolution. Since the BOLD

signal becomes noticeable only in approximately five seconds and since it is
not possible to capture more than one image per second, the temporal reso-
lution is in contrast bad. By means of this method, it is not distinguishable
whether a fast happening series of events or a single event takes place. Also
high frequency information, according to the authors of [83], is due to its low
resolution not contained in the signal.

3.1 Functional Magnetic Resonance Imaging (fMRI) 23

Figure 3.1: In the figure it is depicted one of the frames of fMRI measure-
ments, which consist of many such frames. The light spots in the image
mirror the changes in a magnetic field, which correspond to the brain activ-
ity in this spot. Although the method allows to scan the whole brain, the
scanner is focused here on the given region. In the figure above, the scanner
is focused on the part of brain containing the region Hippocampus, which
is known to be responsible for AD. In the case of Alzheimer’s disease, the
changes in this region can be especially clearly seen compared to the images
of healthy controls. Due to the decreasing of scanning realm via focusing on
only one part of the brain, the spatial scan resolution is essentially increased
here.

24 3. Imaging Modalities and Applications

3.2 Electroencephalography (EEG)

In this section, we give an introduction to relatively simple but very powerful
medical diagnostics method.
Electroencephalography (EEG) is a method of medical diagnostics and re-
search, which measures the electrical voltage on the scalp. The potential
difference appears as a result of voltage fluctuation in individual brain cells,
changing their state on brain activities. Thus, one gets an indirect look at
brain activities at different times in the various regions. The method is not
invasive.
Electrodes are stuck down in a certain sequence with a special conducting
paste on the skin of a proband. The sticking is realized in accordance with
standard methods (for example, a 10-20-system, as in book [125], or a uni-
form distribution over the entire scalp surface), which take into account the
various head sizes and forms. Specially prepared flexible headcaps with elec-
trode holders are used here, that adjust themselves to the head size. The
electrode measures the potential of nearby neurons (in the range 5-100 µV).
For research, as it is stated in [125], 64 electrodes are usually used. The elec-
trode takes spatial information from several square centimeters of the scalp
surface. The temporal resolution is essentially better than the spatial one.
The signals are recorded with frequencies up to 1 kHz and more as proposed
by the authors of [12]. In comparison with fMRI in Section 3.1, according
to [74], the method provides more temporal information and less the spa-
tial one. There are also no delays such as BOLD-effect when using fMRI.
The reaction on certain stimulation can be seen immediately. The method is
relatively simple. No PC-support is needed for recording, since the voltage
changes can be recorded on the continuous form paper.
As raw data, one gets per electrode a very long time series with many ten
thousands of values. As a rule, only small pieces (intervals) of the time series
are taken. More precisely: we are interested only in information, right before
and right after the event, e.g. right before and right after a stimulation.
There exist several preprocessing methods for raw data. The intervals w.r.t.
event can be synchronized and averaged. In such a way, one gets a good tem-
poral resolution, whereas the frequency resolution remains bad. By means of
fast Fourier transform (FFT), it is possible to get a very good frequency res-
olution, however the temporal one tuns out to be bad. With time-frequency
analysis it succeeds to get the both resolutions in a good quality. In the
latter case, the volumes of data to process increases drastically. Thereby it

3.3 Alzheimer’s disease 25

can be also observed the increase of redundancy in data.
Different brain activities appear at different frequencies. The authors of [74]
distinguish between delta(0-4 Hz), theta (4-7 Hz), alpha(8-12 Hz), beta(13-
30Hz) and gamma(30-100 Hz) frequency ranges. The amplitudes in lower fre-
quency ranges are higher, however they tend to be more noised. In the higher
frequency ranges, the amplitudes are on the contrary much more smaller but
so are also the noise and artifact levels, in accordance with [166]. In different
diseases and different kinds of stimulations, these various frequency ranges
play an important role.

3.3 Alzheimer’s disease

In this section, we shortly describe Alzheimer’s disease, for diagnosis of which
we apply fMRI method described above.
Alzheimer’s disease is a nervous system disease accompanied by large dam-
ages of the nerve cells in the brain. The disease happens more likely with
age, when one becomes older.
It is characterized by increasing degradation of cognitive performance to-
gether with the decrease of daily living activity. Before the first symptoms
are noticed, senile plaques as depicted in Figure 3.2 are being formed in the
brain of the patient. Senile plaques are microscopic beta-amyloid deposits,
which accumulate in the extracellular space of the gray matter [159]. The
changes in the brain are incurable.

Alzheimer’s disease mostly occurs with increasing of the age. Among 65
year old persons, about two percent show the symptoms of the disease, among
the 70 year old it is already three percent and at the age of 75 years it doubles
up to six percent. At the age of 85 years, impressive 20 percent are affected
according to [19]. Further, the percentage of patients is decreasing, which is
explained by the shorter average life expectation of Alzheimer’s-diseased pa-
tients. After the Alzheimer’s diagnosis is established, the remaining average
life expectation is about 7 to 10 years in accordance with [132], whereat also
large deviations in the both directions are possible. After the beginning of
the disease, it can be diagnosed definitely only in several years after that.
The disease passes in four stages. Pre-dementia stage is approximately 8
years before the disease diagnosis can be made for sure. At this stage, the
patient has minor short-term memory losses and some difficulties to assim-

26 3. Imaging Modalities and Applications

Figure 3.2: Irreversible degenerative changes in the brain of an Alzheimer’s
disease patient. The protein beta-amyloid deposits of the senile plaques
can be observed between the neurons. Illustration from American Health
Assistance Foundation [1].

ilate new information according to [165]. Sometimes, slight disturbances in
speech comprehension and in trains of thought may be observed. In the early
stage the speech disturbances are becoming more distinct in accordance with
[164]. Also short-term memory losses are getting noticible. Long-term mem-
ory remains however mainly undisturbed, the patients can still continue doing
simple daily living activities for their own. In the middle stage, the patient
are getting increasing problems with the daily living tasks according to [54].
Also performing fine motor tasks is getting more and more harder for the
afflicted person. Coherent speech is becoming for the patient a serious task.
At the late stage, the patients do not recognize even long-known persons any
more. They can get aggressive or depressive without any essential reason.
The patients become often apathetic to their environment. The muscle mass
is decreasing, which leads to the other physiological complications, as noted
by the authors of [180]. In such a way, the organism is so weakened, that the
patients usually die of diseases like pneumonia or heart attack.
The diagnosis of the disease can be made by means of different neurophys-
iological tests, in accordance with [91, 198]. The last stages of the disease
can be observed in the MRT-scanner, since the brain mass decreases, which
is clearly seen in the images. The diagnosis at the earlier stages is much
more complicated. The essential part of the modern research is an attempt of
computer-controlled diagnosis of the Alzheimer’s disease using MRT-scanner.

3.4 Pain disorder 27

Here it is supposed to use the fact, that also at the earlier disease stages the
thinking processes run in the brain in the different way compared to healthy
persons. The focus is made on the brain regions, which are affected by the
disease.

3.4 Pain disorder

In this section, we give a brief characterization of pain disorder, for diagnosis
of which we apply both fMRI and EEG approaches.
Pain is one of the oldest reactions of a living being. Thanks to pain, an or-
ganism gets a very clear signal, that it gets hurt and it should response with
an escape reflex [82]. Pain is a reaction on a thermal, mechanical or chemi-
cal stimulation. When a tissue is damaged, there start running biochemical
processes, which stimulate the pain receptors. A quite strong stimulation is
needed for excitation of the receptors. A continuing stimulation does not lead
to weakening of the excitation. The pain signal is forwarded via nerve fibers.
Here, two kind of nerve fibers play an important role. The Fast Aδ−fibers
conduct the signal at speed approximately 5-30m/s, the slow C−fibers at
speed 0.5-2m/s. Following the authors of [152] the conducting speed de-
pends upon the stimulated tissue. Pain sensitivity is very subjective among
the different people. It is dependent on the environment, duration of the
stimulation and pain expectation of a person. In certain situations, such as
competition, it could be that people do not feel pain at all. Pain feeling is
also possible without any physiological reason for that.
If a person feels for a along time pain without any understandable reason, it
is called pain disorder. According to [18], the disease can have one or several
following reasons. It can develop after certain pain accompanied diseases as
skeletal injuries or some internal organ pathology. A traumatic pain experi-
ence, such as car incident or rape can also lead to pain disorder in accordance
with [140]. Disturbances in social and job-related fields can accelerate the
disease. Emotional pressure as depression and fear accompanies and inten-
sifies it as well. As it is stated in research [50], women are especially prone
to pain disorder. Also people in years are more pain sensible than the young
ones, as it is observed by the authors of [194]. The pain threshold among the
pain disorder patients is considerably reduced. Such people feel pain much
more stronger and more disturbing than healthy individuals under similar
conditions.

28 3. Imaging Modalities and Applications

Pain is a very striking event in the brain. It can be easily recognized on
EEG and fMRI records. Several pain processed regions of brain are thereby
activated. Different persons can evaluate the same stimulation as painful or
not. Also the pain intensity and strength is very subjective distinguishable
and depends on many environment factors. It is very difficult to determine,
if a person indeed has pain disorder or if he or she attempts to cheat. The
disease leads to insomnia, depression and work incapacity.
Pain disorder can be treated to help the patients to live their life in a usual
way in accordance with the study [18]. Psychosomatic, psychological and
psychiatric therapy approaches should be combined thereby, since the disor-
der can have several reasons simultaneously.

3.5 Schizophrenia

In this section, we give a brief characterization of Schizophrenia, for diagnosis
of which we apply fMRI method.
Schizophrenia is a serious mental illness, showing itself via disorders of thought
processes, cognition and affectivity. The most prevailing manifestation forms
are fundamental disorders in thinking and cognition as well as inadequate or
lowered affect.
The symptoms of the disease are divided into positive and negative symptoms
[175]. Personality disorders as well as mental delusions up to hallucinations
belong to positive symptoms, whereas reducing of facial expression and ges-
ture, affect tailing and short-term thinking belong to the negative ones. The
clinical picture is in general very variable, but for a certain person the set
of appeared symptoms remains for a long period unchanged. In the case of
majoritarian positive symptoms, the patient has a better chance for healing,
than in the case when the negative symptoms prevail. The illness can pro-
ceed episodically or chronically. After an episode, i.e. after the acute disease
phase, the symptoms are abating. Acute phase can last from a couple of
weeks up to several months. The next episode can occur in several months
or even years. Both adults and children are affected by the disease.
The reasons for schizophrenia consist of many factors. The disease has par-
tially genetic reasons. Certain genes increase the probability of the illness.
But genes on their own are not the only reason of schizophrenia. The authors
of [124] have shown this with twin research. Less than a half of all pairs of
siblings with the same DNA was either simultaneously healthy or simulta-

3.5 Schizophrenia 29

neously sick. According to the authors of [170], narcotic drugs increase the
risk of schizophrenia diagnosis. The life in country decrease the probability
to fall ill. Complications during the pregnancy increase the disease risk in
accordance with the paper [30].
Schizophrenia is nowadays not really curable. It is however completely possi-
ble, to eliminate the disturbing effects of the disease and to supply a normal
life for the patients. Primarily, medicamentous treatment is thereby applied.
It helps mainly in the acute phase of disease against the positive symptoms.
Some medicaments can however enforce the negative symptoms. Social bind-
ing correspondingly social therapy together with occupational therapy are
also very helpful and give a positive perspective. Sport activities are helping
as well and show a positive effect.
According to the paper [43], among schizophrenia patients it is usually ob-
served less functional difference between brain hemispheres than among healthy
persons. Such a difference should be clearly seen with fMRT. The dependen-
cies here are not trivial and show themselves only time-delayed. This kind of
dependencies with time delays are called Granger causality. The objective of
the modern research is finding method, allowing automatically to determine
the diagnosis (as early and exactly as possible) based on results of imaging
approaches such as fMRT.

In this chapter, we considered such diagnostics tools as fMRI and EEG,
which we applied to diagnose such illnesses as Schizophrenia, Alzheimer’s
disease and pain disorder. However, very often in medical application we deal
with huge amount of data which can represent a challenge even for modern
computers equipped with newest CPUs. Using alternative computing power
in form of Graphical Processing Units, which are able to highly parallelize the
calculations, is very effective, efficient and promising direction. For example,
to accelerate the computations of SVM in paper [169], we successfully used
the power of graphic processors. More about GPU computing can be found
in the next Chapters.

30 3. Imaging Modalities and Applications

Part II

Data Mining Using Graphics
Processing Units

Chapter 4

Parallel Computing using GPU

Within the last several years, Graphics Processing Units (GPU) have evolved
from special-purpose devices for the display signal preparation, supporting
typical computer graphics tasks such as rendering of 3D scenarios, into pow-
erful coprocessors that can just as well be used for general numeric and
symbolic computation tasks like simulation and optimization. As chief ben-
efit, GPUs supply extreme parallelism (with hundreds simple programmable
processors) coupled with a high memory bandwidth at comparably low cost.
In this chapter, we give a brief characterization of GPU programming model
and its features.
Parts of the material presented in this chapter have been published in Paper
[25]. In this paper, Andrew Zherdin has codesigned the main concepts for
parallelization as well as implemented and carried out a part of experiments.
Robert Noll has implemented and optimized the most of source code. His
task was also the choice and installation of the used hardware. Bianca Wack-
ersreuther has taken an important part in the development and optimization
of the algorithms and experiments. Christian Böhm and Claudia Plant have
supervised this work and essentially improved its results.

4.1 Introduction

In recent years, Graphics Processing Units (GPUs) have evolved from special-
purpose devices for the display signal preparation into powerful coprocessors
supporting the CPU in different ways. Graphics applications such as mod-
ern realistic 3D games are extremely computationally demanding and require

34 4. Parallel Computing using GPU

a huge number of sophisticated algebraic operations to update the display
image (called frame). For supplying such applications with an appropriate
computing power, modern graphics hardware includes a large number of pro-
grammable processors which are optimized to cope with this high workload
of vector, matrix, and symbolic computations in a highly parallel way. Al-
though GPU and CPU are not directly comparable due to their different
architectures, speaking in terms of peak performance, the GPUs have sur-
passed state-of-the-art multi-core CPUs by a large margin.

To neutralize the exponential data growth (according to researches, the
amount of scientific data is roughly doubling every year [184].), in many
research communities such as mechanical simulation [185], cryptographic
computing [20], life sciences [119, 126], or machine learning [37] there
is a great aspiration to apply the outstanding computational capabilities of
GPUs also for another purposes not at all related to computer graphics. The
corresponding research area is called therefore General Purpose Computation
on Graphics Processing Units (GP-GPU).

The actively developing research area of Data Mining proposes methods
providing the transformation of the raw data into profitable knowledge. The
main Data Mining tasks involve classification, clustering, regression, outlier
identification, as well as frequent itemset and association rule mining, which
find scientific and commercial application in neuroscience, astronomy, biol-
ogy, marketing, and fraud detection. Data Mining tasks are divided into
supervised and unsupervised ones. Classification and regression are super-
vised Data Mining tasks, since their goal is to examine a model for predicting
a predefined variable. The other tasks are unsupervised, because the user
does not identify a priori any of the variables to be learned. Instead, the algo-
rithms themselves have to pick out any interesting patterns and regularities
in the data.

We concentrate in this thesis on NVIDIA’s technology Compute Unified
Device Architecture (CUDA) [2]. Recently, anticipating the interest towards
general purpose computing on GPU, graphics hardware vendors developed
libraries, pre-compilers and application programming interfaces to support
GP-GPU applications. CUDA offers an API for the C programming lan-
guage, by which both the host program, being the main program, as well as
the so-called kernel functions are assembled in a single program [2]. The host
program is executed on the CPU, whereas kernel functions are executed in
a highly parallel art on the (hundreds of) GPU processors. ATI (now subdi-

4.2 Related Work 35

vision of AMD), the only real NVIDIA’s rival now, offers a similar technique
using the brand names Close-to-Metal, Stream SDK, and Brook-GP.

The remainder of this chapter is organized as follows: Section 4.2 repre-
sents a general review of the related work. Section 4.3 gives an introduction
to the graphics hardware and explains the CUDA programming model. Sec-
tion 4.4 summarizes the chapter.

4.2 Related Work

In this section, we provide a review of the related work in GPU processing.
General Processing-Graphics Processing Units. Beside its primary

task in form of graphics processing, theoretically, GPU is capable of perform-
ing any computation. Important is, that this computation can be derived
to the model of parallelism and is suitable for the specific architecture of
the GPU. In many research areas, this opportunity has been examined and
very promising results have been achieved. In the field of life sciences, a new
technique for high performance molecular dynamics simulations on GPUs,
designed and implemented using CUDA, was introduced in [119] by Liu et
al. Their results show a significant performance gain on an NVIDIA GeForce
8800 GTX graphics card compared to sequential processing on CPU. In an-
other paper, Manavski and Valle [126] suggest an extremely fast realization
of the Smith-Waterman algorithm, a procedure for similarities search in pro-
tein and DNA databases, running on GPU and implemented using the CUDA
platform. Significant speedups are achieved on a workstation running two
GeForce 8800 GTX.

Mechanical simulation is one more widespread application area that take
advantage from the high processing power of the GPU. For example, Tascora
et al. [185], propose a novel approach to solve large cone complementarity
problems by means of a fixed-point iteration algorithm, in the context of
simulating the frictional contact dynamics of large systems of rigid bodies.
Same as the above-mentioned methods in the area of life sciences, the algo-
rithm is also implemented using CUDA for a GeForce 8800 GTX to simulate
the dynamics of complex systems.

We can continue for a long time to give examples concerning the possi-
bilities of performing computations on the GPU. It is clear, that there are
nearly boundless such applications. So, we just mention one more example
from another popular field, where parallel computations on a GPU can be in

36 4. Parallel Computing using GPU

Figure 4.1: Architecture of a GPU [25].

a great demand. We speak about cryptographic computing. In paper [20],
the authors present realization of the elliptic curve method (ECM) of inte-
ger factorization, showing an outstanding performance. The record-breaking
speeding-up profits from two NVIDIA GTX 295 graphics cards, using a new
ECM implementation relying on CUDA’s new parallel addition formulas and
functions.

4.3 Architecture of the GPU

Today’s Graphics Processing Units (GPUs) are powerful computing copro-
cessors, capable of supporting the Central Processing Unit in many different
ways, not only in typical for them tasks like interactive games, CAD and 3D-
modeling applications, but also for general-purpose computing (in this case,
we call them GP-GPUs). From the hardware point of view, a GPU represents
a chip including a number of multiprocessors. Each of these multiprocessors
consists in its turn of a set of simple SIMD processors, i.e. all processors
of one multiprocessor execute in a synchronized way the same arithmetic or
logic operation simultaneously, potentially operating on different data. For
instance, the GPU of the newest generation GT200 (e.g. on the graphics
card Geforce GTX280) has 30 multiprocessors, each consisting of 8 SIMD-
processors, summarizing to a total amount of 240 processors inside one GPU.
The computational power sums up to a peak performance of 933 GFLOP/s.

4.3 Architecture of the GPU 37

4.3.1 The Memory Model

As it is shown in Figure 4.1, besides special purpose memory in the con-
text of graphics processing (e.g. texture memory), there are three significant
types of memory, relevant for GPU: shared memory (SM), device memory
(DM) and main memory. The shared memory (SM) is the fastest but at the
same time the most expensive one, and as consequence, is very limited in
size (about 16 KBytes per multiprocessor). Physically, it is situated inside
of a multiprocessor. This memory is shared among all processors within one
multiprocessor and can be accessed at the speed of register, i.e. has no delay.
Typically, this kind of memory is used for local variables and for communica-
tion between the threads of the processors of the same multiprocessor. Each
multiprocessor has its own SM, so the data exchange between the threads of
the processors from different multiprocessors is impossible.

The device memory (DM), the second type of memory GPU works with,
is the actual video RAM of the graphics card (as well used for frame buffers
etc.). Physically, DM is located on the graphics card, but not inside the GPU
itself. Compared to SM, it is much larger (up to some hundreds MBytes or
even a few Gbytes), but also significantly slower. In particular, memory
accesses to DM yield a typical latency delay of 400-600 clock cycles (on
G200-GPU, corresponding to 300-500ns). The bandwidth for transferring
data between DM and GPU (141.7 GB/s on G200) is however essentially
higher than that of CPU and main memory (about 10 GB/s on current
CPUs). DM can be used to share information between threads on different
multiprocessors. If some threads schedule memory accesses from contiguous
addresses, these accesses can be coalesced, i.e. taken together to improve the
access speed. A typical cooperation pattern for DM and SM is to copy the
required information from DM to SM simultaneously from different threads
(if possible, considering coalesced accesses), then to let each thread compute
the result on SM, and finally, to copy the result back to DM.

The third and the last type of memory considered here is the main mem-
ory. It is located on the mainboard, outside of the graphics card. Whereas
the GPU has no access to the address space of the CPU, the CPU can write
to or read from DM only by means of specialized API functions. The dis-
advantage in this case is however, that the data have to be transferred via
the Front Side Bus and the PCI-Express Bus. The bandwidth of these bus
systems is strictly limited, and therefore, these special transfer operations

38 4. Parallel Computing using GPU

are considerably more expensive than direct accesses of the GPU to DM or
direct accesses of the CPU to main memory.

4.3.2 The Programming Model

The central concept in the GPU programming model are threads, which can
be considered as lightweight processes, well suited for creating and synchro-
nizing. Unlike CPU processes, generation and termination of GPU threads
as well as context switches between them do not lead to any significant over-
head. In GPU-based applications, we are dealing with thousands or even
millions of threads. In 3D games, for example, one thread per pixel can
be created. To avoid the latency delay of memory accesses and increase by
that the efficiency, it makes sense to create even much more threads than
the number of physical SIMD-processors in GPU. In particular, as already
mentioned, accessing the DM can cause a latency delay up to 400-600 clock
cycles, during which the context switch to another threads can help feeding
the multiprocessor with new portions of work, preventing it thereby from idle
running. Threads on GPU, each of which executes so-called kernel function,
can be created via API calls provided by the CUDA programming library.
The host program, which is executed sequentially on the CPU, together with
the kernel functions, which are executed concurrently on the GPU, are de-
fined in a superset of the C programming language. Certain functionalities
are however restricted when using the kernel functions (e.g., no recursion).

Another important notion in the GPU programming model are so-called
warps. GPU threads do not have an individual instruction pointer, an in-
struction pointer is instead shared by several threads, grouped into a warp
(usually 32 threads per warp). Each warp is processed simultaneously on the
8 processors of a single multiprocessor (SIMD) using 4-fold pipelining (as re-
sult, 32 threads are executed fully synchronously). It can be, that not all the
threads follow the same execution path. In this case, the different execution
paths are executed in a serialized way. The number of SIMD-processors per
multiprocessor (8) and 4-fold pipelining concept are constant on all current
CUDA-capable GPUs.

Multiple warps are grouped in turn into thread groups (TG). It is recom-
mended [2] that the total number of threads in a TG is a multiple of 64. The
different warps (both in the same and in different TGs) are executed inde-
pendently. Unlike the threads from different TGs, the threads in one TG use
the same shared memory, which allows them to communicate and share the

4.3 Architecture of the GPU 39

data via SM. The threads in the same thread group can be synchronized (let
all threads wait until all warps of the same group have reached that point of
execution). The latency delay caused by DM access initiated by some warp
can be minimized by switching to another warp of the same or a different
thread group. To avoid overhead from switching between warps of different
TGs on a multiprocessor, NVIDIA recommends that each thread uses only
a small fraction of SM and registers of the multiprocessor [2].

4.3.3 Atomic Operations

To synchronize parallel processes and to assure the correctness of parallel al-
gorithms, CUDA offers a large number of various atomic operations, among
which are also increment, decrement and exchange. The latter ones we will
need for our algorithms. Most of the atomic operations are applied on inte-
ger data types in Device Memory. The newest version of CUDA (Compute
Capability 1.3 of the GPU GT200) supports also atomic operations in SM.

For example, if there is a list as a common resource with concurrent read-
ing and writing from/to it, shared by some parallel processes, it may be
necessary to (atomically) increment a counter for the number of list entries
(which is in most cases also used as the pointer to the first free element of
the list). The fact, that operation is atomic, implies in this case the fol-
lowing two requirements: If two or more threads increment the list counter,
then (1) the value counter after all parallel increments must be equivalent
to the value before plus the number of these parallel increment operations.
And, (2), each of the concurrent threads must obtain a separate result of the
increment operation which indicates the index of the empty list element to
which the thread can write its information. Therefore, most atomic opera-
tions return a result after their execution. Let us consider as example the
atomicInc operation. It has two parameters, one of which is address of the
counter to be incremented, and another (optional) one is a threshold value
which must not be exceeded (as result of the operation). When applying the
operation, the following occurs: The counter value at the indicated address
is read and incremented (ensuring that the threshold is not exceeded). The
kernel method, invoked the atomicInc, gets the old value of the counter
(before incrementing) as return value. If it happens, that several threads (of
the same or different thread groups) call some atomic operations simultane-
ously, the result of these operations is that of an arbitrary sequential applying
of the concurrent operations. The atomicDec operation works analogously.

40 4. Parallel Computing using GPU

The atomicCAS, performing a Compare-and-Swap operation, has three pa-
rameters, an address, a compare value and a swap value. If the value at the
address equals the compare value, the value at the address is replaced by the
swap value. Independently of the case, the invoking kernel method receives
as return value the old value at the address (before swapping).

4.4 Conclusions

In this chapter, we demonstrated how Graphics processing Units (GPU) can
effectively support highly complex computational tasks. Algorithms, cus-
tomized to the special environment of the GPU are characterized by extreme
parallelism at low cost. Going beyond the primary scope of this Chapter,
these building blocks are applicable to support a wide range of Data Mining
tasks, including outlier detection, association rule mining and classification.

Chapter 5

Similarity Join Based Methods
using GPU

In this chapter we proceed to the application of GPU-based computing and
propose several algorithms for such computationally expensive Data Mining
tasks as similarity search and clustering, specially designed for the highly
parallel GPU environment. We define a multidimensional index structure
specifically suited to support similarity queries under the restrictions of GPU
programming model, and define a similarity join method. Additionally, we
introduce a highly parallel algorithm for density-based clustering.
The concepts described in this chapter have been published in Papers [25, 26].
The paper [25] is an extended version of the paper [26]. In this paper, An-
drew Zherdin has codesigned the main concepts for parallelization as well as
implemented and carried out a part of experiments. Robert Noll has imple-
mented and optimized the most of source code. His task was also the choice
and installation of the used hardware. Bianca Wackersreuther has taken an
important part in the development and optimization of the algorithms and
experiments. Christian Böhm and Claudia Plant have supervised this work
and essentially improved its results.

5.1 Introduction

As we already noted in the last Chapter, Graphics Processing Units (GPUs)
have evolved recently from special-purpose devices to powerful coprocessors
allowing to improve dramatically the computation of many tasks.

42 5. Similarity Join Based Methods using GPU

In this chapter, we concentrate on application possibilities of using the
computational power of GPUs for Data Mining tasks. Data Mining consists
of ”applying data analysis algorithms, which, under acceptable efficiency
limitations, produce a particular enumeration of patterns over the data”
[48]. It is important to note, that the exponential increase in data is not
necessarily accompanied by a correspondingly large gain in knowledge.

Figure 5.1: Example for Clustering.

Clustering is probably the most common unsupervised Data Mining task.
The aim of clustering is to find a natural grouping of a data set. With other
words, data objects assigned to a common group (called cluster) are supposed
to be as similar as possible, whereas objects assigned to different clusters are
expected to differ as much as possible. For instance, consider the set of
objects shown in Figure 5.1. A natural grouping would divide the objects
into two different clusters. Two objects not fitting well to any of the clusters
are considered as outliers and should be left unassigned. To introduce the
definition of clustering, we need to specify the notion of similarity among
objects. In most cases, the similarity is expressed in a vector space, called
the feature space. In Figure 5.1, we indicate the similarity among objects by
representing each object by a vector in two dimensional feature space.

In general case, the objects are characterized by a certain number d of
numerical properties (from a continuous space) which are extracted from the
objects and put together to a vector x ∈ Rd. Thus, the number of properties
d which have been extracted defines the dimensionality of the feature space.
Let us consider a concrete case, where as objects we take a set of orchids.
The phenotype of orchids can be characterized by means of the lengths and
the widths of the two petal and the three sepal leaves, of the form (curva-
ture) of the labellum, and of the colors of the different compartments. In
the example shown in Figure 5.2, 5 features are measured, and each object

5.1 Introduction 43

Figure 5.2: The Feature Transformation.

is thus transformed into a 5-dimensional vector space. Usually, to measure
if one feature vector is similar to another, a distance function like the Eu-
clidean metric is used. In real-life applications, where the objects are kept in
a large database, for typical similarity searching tasks (like to find a number
k of nearest neighbors, or objects having a distance that does not exceed a
threshold ε) normally multidimensional index structures are used. The search
efficiency is achieved in this case by means of a hierarchical organization of
the data set. The well-known indexing methods (e.g. the R-tree [66]) are
designed and optimized for secondary storage (hard disks) or for main mem-
ory. The usage of GPU, due to its highly parallel but restricted programming
environment, supposes developing specialized indexing approaches. In this
chapter, we propose such an indexing method.

As it has been shown, in clustering and many other Data Mining algo-
rithms, a powerful database primitive can be very useful: The similarity
join [22]. The result of applying this operator are all pairs of objects in
the database, the distance between which is less than a certain predefined
threshold ε. For the similarity join we propose two specially GPU-based al-
gorithms, one being a nested block loop join, and one being an indexed loop
join, using the indexing structure mentioned above.

Finally, to demonstrate that also highly complex Data Mining tasks can
be efficiently implemented using novel parallel algorithms, we propose a par-
allel version of the widespread clustering algorithm: the density-based clus-
tering algorithm. We show how the density-based clustering algorithm DB-
SCAN can effectively profit from the parallel similarity join. In the next

44 5. Similarity Join Based Methods using GPU

chapter, we present a parallel version K-means clustering, which follows an
algorithmic paradigm that is very different from density-based clustering.

When implementing algorithms for GPU, we used NVIDIA’s technology
Compute Unified Device Architecture (CUDA) [2].

The remainder of this chapter is organized as follows: Section 5.2 rep-
resents a general review of the related work in GPU processing with focus
on database management and Data Mining. Section 5.3 proposes a multi-
dimensional index structure for similarity queries on the GPU. Section 5.4
presents the GPU-based implementations of non-indexed and indexed join.
Section 5.5 is dedicated to GPU-capable algorithm for density-based cluster-
ing. Section 5.6 presents the results of an extensive experimental evaluation
of our approaches, and Section 5.7 summarizes the chapter and suggests di-
rections for future research.

5.2 Related Work

In this section, we provide a review of the related work in GPU processing
with focus on database management and Data Mining.

Acceleration of relational database operations on GPU is also an impor-
tant research area and the one which we interest in. Various techniques in
this field are proposed by some papers.

For instance, paper [78] introduces some algorithms for the relational join
on an NVIDIA G80 GPU by means of CUDA. Two recent papers [115, 26]
are dedicated to the topic of similarity join in feature space. Similarity join
yields all pairs of objects from two different sets R and S fulfilling a certain
join predicate. Usually, the role of join predicate plays the ε-join which
determines all pairs of objects having a distance of less than a predefined
threshold ε.

An algorithm based on the concept of space filling curves, e.g. the z-order,
for pruning of the search space, is proposed by the authors of [115]. It uses
the CUDA platform and runs on an NVIDIA GeForce 8800 GTX graphics
card. Due to highly parallelized sorting, the z-order of a set of objects suits
very good to be computed on GPU. For efficient pruning, their algorithm
operates on a set of z-lists of different granularity. On the other hand, the
algorithm has its disadvantages. First of all, in higher dimensions one has
degrading of performance, since all dimensions are treated equally. Further-
more, because of uniform space partitioning in all data space areas, space

5.3 An Index Structure for Similarity Queries on GPU 45

filling curves can not be applied for clustered data. In the second paper [26],
we propose a method that overcomes that kind of problem. Their solution is
parallelizing the baseline technique, which underlies any join operation with
an arbitrary join predicate. More precisely, the authors used the parallel
version of the nested loop join (NLJ), a powerful database primitive that can
find many applications, including Data Mining. The experiments of their
CUDA-based implementation are carried out on NVIDIA 8500GT graphics
card.

Govindaraju et al. [59, 60] show that operations, significant for query
processing in databases, like sorting, aggregations, conjunctive selections,
and semi-linear queries can be essentially accelerated when using GPUs.

5.3 An Index Structure for Similarity Queries

on GPU

Similarity queries are frequently used as an important building block by
many algorithms, solving typical Data Mining problems like classification,
clustering, outlier detection and regression. Being often the major part of
computation in the corresponding Data Mining tasks, it is very significant
thus to treat similarity queries with highest efficiency. We define similarity
queries as follows: Given is a database D = {x1, ...xn} ⊆ Rd of a number
n of vectors from a d-dimensional space, and a query object q ∈ Rd. The
following two types of similarity queries are distinguished, the range queries
and the nearest neighbor-queries:

Definition 1 (Range Query) Let ε ∈ R+
0 be a threshold value. The result

of the range query is the set of the following objects:

Nε(q) = {x ∈ D : ||x− q|| ≤ ε}.

where ||x − q|| is an arbitrary distance function between two feature vectors
x and q, e.g. the Euclidean distance.

Definition 2 (Nearest Neighbor Query) The result of a nearest neigh-
bor query is the set:

NN(q) = {x ∈ D : ∀x′ ∈ D : ||x− q|| ≤ ||x′ − q||}.

46 5. Similarity Join Based Methods using GPU

Definition 2 is as well generalizable for the case of the k-nearest neighbor
query (NNk(q)), where a number k of nearest neighbors of the query object
q is retrieved.

The availability of multidimensional index structure supporting the simi-
larity search can dramatically improve the performance of similarity queries.
For this purpose, kernel functions can be used, which make possible to tra-
verse our index structure for many search objects concurrently. As we re-
member, kernel functions have some restrictions when using them, among
which the absence of recursion, requirement of a small storage overhead by
local variables etc. For this, we must keep the index structure as simple as
possible. To provide a good compromise between selectivity of the index
and its simplicity, we propose a data partitioning method using a constant
number of directory levels. Each level is supposed to partition the data set
D in accordance with its dimension. We start with the first level, which
divides the data set according to the first dimension of the data space, the
second level according to the second dimension, and so on. To achieve good
results using this approach, the assumption about a high selectivity in the
first dimensions is needed. This implies, that certain transformations should
be applied before starting the actual Data Mining method (e.g. Principal
Component Analysis, Fast Fourier Transform, Discrete Wavelet Transform,
etc.). Parallelization of these transformations by means of GPU is possible,
but it was not considered as a part of this work.

A simple example of a 2-level directory (corresponds to 2-dimensional
case) is given in Figure 5.3, which is similar to [103, 112]. The root node
in the figure is considered as level-0. In our experiments in Section 5.6, we
used an advanced 3-level directory with fanout 16.

The thing we need to do before starting the Data Mining task itself, is to
construct our simple index. It is done in a bottom-up way by fractionated
sorting of the data: At first, we sort the data set according to the first
dimension and partition it into the specified number of quantile partitions.
After that, we sort separately each of the partitions according to the second
dimension, and so on. As data type to store the boundaries we take simple
arrays, allowing easy access in the subsequent kernel functions.

As we can see, our index construction can already be done on the GPU,
because it is based on sorting, for which efficient GPU-based sorting methods
have been proposed [59]. Since bottom up index construction is usually
not very expensive compared to the Data Mining algorithm, our approach
performs this preprocessing step on CPU.

5.4 The Similarity Join 47

Figure 5.3: Index Structure for GPU.

In the initialization phase of the Data Mining method, we need to transfer
the data set from the main memory into the device memory of graphics
card. Besides this action, also the directory (in other words, the arrays
containing the coordinates of the page boundaries as described above) must
be transferred. The directory size is always small compared to the complete
data set, thus its overhead can be practically ignored.

The major modification, we make in the kernel functions in our Data
Mining methods, concerns the determination of the ε-neighborhood of some
given seed object q. This determination is efficiently done by means of SIMD-
parallelism inside a multiprocessor but in a slightly different ways, depending
if we are dealing with index or non-indexed version. In the latter case (non-
indexed version), the determination is done by a set of threads (within a
thread group). Thereby, each of these threads makes iteration over a differ-
ent part of the (complete) data set. In the former case (indexed version), one
of the threads iterates in a set of nested loops (each level of the directory cor-
responds to one loop) over those nodes of the index structure which represent
regions of the data space which are intersected by the neighborhood-sphere
of Nε(q). In the innermost loop, it remains one set of points (corresponding
to a data page of the index structure). This set is then processed by means
of the SIMD-parallelism, in a similar manner to the non-indexed version.

5.4 The Similarity Join

The similarity join represents a basic operation of a database system. It
is designed for such tasks as similarity search and Data Mining on feature
vectors. In such applications we are dealing with a database D of objects,

48 5. Similarity Join Based Methods using GPU

for each of which a vector from a multidimensional space can be assigned.
This multidimensional space is accordingly called the feature space. The
similarity join determines the pairs of objects which are similar to each other,
with respect to the metrics chosen in the feature space. The most known and
widespread form of the similarity join is the ε-join yielding those pairs from
D×D, a Euclidean distance between which is no more than a user-predefined
threshold ε:

Definition 3 (Similarity Join) Let D ⊆ Rd be a set of feature vectors of
a d-dimensional vector space and ε ∈ R+

0 be a threshold. Then the similarity
join is the following set of pairs:

SimJoin(D, ε) = {(x, x′) ∈ (D ×D) : ||x− x′|| ≤ ε} ,

If x and x′ are elements of the same set, we are dealing with a similarity
self-join. The method proposed in this chapter (as well as most algorithms)
can also be extended to the more general case of non-self-joins in a straight-
forward way. For this moment, also algorithms for a similarity join with
nearest neighbor predicates have been proposed.

To summarize, we note that the similarity join represents a powerful
building block for similarity search and Data Mining tasks. It has been shown
that important Data Mining methods such as clustering and classification can
be based on the similarity join. Proposing effective algorithms for similarity
join we propose effective solutions for the mentioned problems. Using a
similarity join instead of single similarity queries can lead to speeding up
Data Mining algorithms by a high factor [22].

5.4.1 Similarity Join Without Index Support

When processing a join operation with an arbitrary join predicate, the base-
line approach is to consider the nested loop join (NLJ), involving two nested
loops. Each of these two loops enumerates all points of the data set, produc-
ing by that the pairs of points, the distance between which is then computed
and compared to threshold ε. In Figure 5.4 we show the pseudocode of the
typical sequential version of NLJ running on CPU.

The NLJ algorithm above can be easily adapted to run in parallel on
GPU, for example as follows. We create a separate thread for each iteration
of the outer loop. The remained inner loop we put in the kernel function, as
well as the distance computation and the comparison to the threshold.

5.4 The Similarity Join 49

algorithm sequentialNLJ(data set D)
for each q ∈ D do // outer loop

for each x ∈ D do // inner loop: search all points x which are similar to q
if dist(x, q) ≤ ε then

report (x, q) as a result pair or do some further processing on (x, q)
end

Figure 5.4: Sequential Algorithm for the Nested Loop Join.

During the complete run of the kernel function, which corresponds to the
inner loop, the value in the outer loop (the current point) is fixed. This
value is called the query point q of the thread, since the thread works like a
similarity query, finding all those points from database, distance from q to
which does not exceed ε. To optimize the access time, the query point q is
always kept in a register of the processor.

Using GPU, it is possible to realize a truly parallel execution of a number
m of incarnations of the outer loop, where m is the total number of ALUs
of all multiprocessors, i.e. the number of multiprocessors times 32 (the warp
size). The processing of the different warps happens in a quasi-parallel man-
ner, allowing to operate on another warp of threads (which is ready-to-run)
while some warp is blocked due to the latency delay of a DM access of one
of its threads.

As we already told, threads are grouped (after being aggregating into
warps) into thread groups, using the same the shared memory. Concretely
in our case, the SM is responsible for storing the current point x of the
inner loop for each thread group. Thereby, the current point x is copied
by a kernel function from the DM into the SM, calculating after that the
distance from x to the query point q. The threads, belonging to the same
warp, are copying the same point from DM to SM, thus running perfectly
simultaneously. The copy operation is to be done only once, however under
the restriction that all threads of the warp have to wait until this relatively
expensive operation is done. As a thread group typically consists of multiple
warps, we need to make sure that the copy operation is performed only once
per thread group. The latter can be done by synchronizing the threads of the
thread group before and after the copy operation by using the API function
synchronizeThreadGroup(). This API call yields blocking all threads of
the thread group until the same point of execution is reached by all other
threads in this TG (also from other warps). In the Figure 5.5 we present
the pseudocode for this algorithm.

50 5. Similarity Join Based Methods using GPU

algorithm GPUsimpleNLJ(data set D) // host program executed on CPU
deviceMem float D′[][] := D[][]; // allocate memory in DM for the data set D
#threads := n; // number of points in D
#threadsPerGroup := 64;
startThreads (simpleNLJKernel, #threads, #threadsPerGroup); // one thread per point
waitForThreadsToFinish();

end.

kernel simpleNLJKernel (int threadID)
register float q[] := D′[threadID][]; // copy the point from DM into the register

// and use it as query point q
// index is determined by the threadID

for i := 0 ... n− 1 do // this used to be the inner loop in Figure 5.4
synchronizeThreadGroup();
shared float x[] := D′[i][]; // copy the current point x from DM to SM
synchronizeThreadGroup(); // Now all threads of the thread group can work with x
if dist(x, q) ≤ ε then

report (x, q) as a result pair using synchronized writing
or do some further processing on (x, q) directly in kernel

end.

Figure 5.5: Parallel Algorithm for the Nested Loop Join on the GPU.

It can happen, that all the data does not fit into the DM. In this case,
a simple partitioning approach can be applied. When partitioning, it is
important to ensure, that potential participators of join fall into the same
partition. As consequence, we have overlapping partitions of size 2 · ε, which
means that some objects may be present in many partitions.

5.4.2 An Indexed Parallel Similarity Join Algorithm
on GPU

The performance of the NLJ can significantly be improved when having an
index structure as proposed in Section 5.3. In the case of architectures
with sequential processing, the outer loop in the index version of NLJ is the
same, whereas the inner loop is exchanged by an index-based search looking
for candidates suitable as join partners of the current object of the outer
loop. To find such candidates and refine them is usually essentially (orders
of magnitude) cheaper in terms of related costs compared to the non-indexed
version of NLJ. When adapting the indexed NLJ for parallel architecture of
the GPU, we use the same idea as in the last section, namely to create a
separate thread for each point of the outer loop. If we collect the points, the
distance between which is small, to the same warp and TG, this has a positive

5.4 The Similarity Join 51

influence on the performance, since similar paths in the index structure for
those points are of importance.

After constructing an index, we can profit from two things at once.
Firstly, we have a directory with such organization of points that facilitates
the search. And secondly, we have additionally a clusterization of points in
form of an array. The latter means that the points with neighboring addresses
in the array are also supposed to be close to each other in the data space, at
least when projecting on the first few dimensions. Our join algorithm, using
the two effects, is shown in Figure 5.6

algorithm GPUindexedJoin(data set D)
deviceMem index idx := makeIndexAndSortData(D); // changes ordering of data points
int #threads := |D|, #threadsPerGroup := 64;
for i = 1 ... (#threads/#threadsPerGroup) do

// find the boundaries of the data page
deviceMem float blockbounds[i][] := calcBlockBounds(D, blockindex);

deviceMem float D′[][] := D[][];
startThreads (indexedJoinKernel, #threads, #threadsPerGroup); // one thread per data point
waitForThreadsToFinish ();

end.

algorithm indexedJoinKernel (int threadID, int blockID)
register float q[] := D′[threadID][]; // copy the point from DM into the register
shared float myblockbounds[] := blockbounds[blockID][];
for xi := 0 ... indexsize.x do

if IndexPageIntersectsBoundsDim1(idx,myblockbounds,xi) then
for yi := 0 ... indexsize.y do

if IndexPageIntersectsBoundsDim2(idx,myblockbounds,xi, yi) then
for zi := 0 ... indexsize.z do

if IndexPageIntersectsBoundsDim3(idx,myblockbounds,xi, yi, zi) then
for w := 0 ... IndexPageSize do

synchronizeThreadGroup();
shared float p[] :=GetPointFromIndexPage(idx,D′, xi, yi, zi, w);
synchronizeThreadGroup();
if dist(p, q) ≤ ε then

report (p, q) as a result pair using synchronized writing
end.

Figure 5.6: Algorithm for Similarity Join on GPU with Index Support.

Unlike a sequential indexed version of NLJ, where we perform outer loop,
in our algorithm we create many threads at once, one thread in place of each
iteration of the outer loop (in other words, one thread per query point q).
Since the points in the array are clustered, the respective query points are
close to each other, and the join partners of all query points in a thread
group are likely to reside in the same branches of the index as well. Our
kernel method performs now iteration over three loops (one loop per index

52 5. Similarity Join Based Methods using GPU

level) and determines for each partition if the point is inside the partition or,
at least its distance to the boundary of the partition does not exceed ε. The
corresponding subnode is accessed if the corresponding partition is able to
contain join partners of the current point of the thread. When considering
the warps which operate fully synchronously, a node is accessed if at least one
of the query points of the warps is close enough to (or inside) the respective
partition.

When dealing with both indexed and non-indexed nested loop join on
GPU, the important question is how the pairs we get as result are processed.
For example, to provide density-based clustering (cf. Section 5.5), it is usually
sufficient to return a counter with the number of join partners. Reporting
the pairs themselves can also be easily done via copying of DM buffer to
the CPU after terminating of all kernel threads. To avoid that many threads
simultaneously write to the same buffer, it must be ensured that the resulting
pairs are written into this buffer synchronously. The CUDA API is a good
assistant in this case. Certain atomic operations (such as atomic increment
of a buffer pointer), provided by CUDA API ensure this kind of synchronized
writing. Our similarity join methods also provide buffer overflow protection.
If the buffer gets full, all threads terminate and continue only after the buffer
is emptied by the CPU.

5.5 Similarity Join to Support Density-based

Clustering

As we already mentioned in Section 5.4, the similarity join represents an im-
portant building block allowing to facilitate a wide spectrum of Data Mining
tasks such as classification [153], clustering [46], [64], association rule mining
[104] and outlier detection [28]. In this section, we show how the GPU-
based similarity join can be applied for effective support of the density-based
clustering algorithm DBSCAN [46].

5.5.1 Basic Definitions and Sequential DBSCAN

As a basis of density-based clustering, the idea is taken that clusters are
supposed to be areas of high point density, separated by areas of significantly
lower point density. We can formalize the notion of point density using two
parameters, called ε ∈ R+ and MinPts ∈ N+. The central concept is the

5.5 Similarity Join to Support Density-based Clustering 53

core object of a cluster. The latter is defined as a data object x, for which
at least MinPts objects (including x itself) are in its ε-neighborhood Nε(x),
which corresponds to a sphere of radius ε. Formally:

Definition 4 (Core Object)
Let D be a set of n objects from Rd, ε ∈ R+ and MinPts ∈ N+. An object
x ∈ D is a core object, if and only if

|Nε(x)| ≥MinPts, where Nε(x) = {x′ ∈ D : ||x′ − x|| ≤ ε}.

It should be noted, that this definition is related to Definition 1. Be-
longing of two points to the same cluster is characterized in density-based
clustering by the notions direct density reachability, and density connected-
ness. Direct density reachability is formally defined as follows:

Definition 5 (Direct Density Reachability)
Let x, x′ ∈ D. x′ is called directly density reachable from x (in symbols:
x� x′) if and only if

1. x is a core object in D, and

2. x′ ∈ Nε(x).

If both x and x′ are core objects, then x� x′ is equivalent to x� x′. The
density connectedness is the transitive and represents a symmetric closure of
the direct density reachability:

Definition 6 (Density Connectedness)
Two objects x and x′ are called density connected (in symbols: x ./ x′) if and
only if there is a sequence of core objects (x1, ..., xm) of arbitrary length m
such that

x� x1 � ...� xm � x′.

It is to be noted, that the reachability direction in the definition above 6
is essential only for the first object x and the last object x′. All directions in-
between are interchangable for core objects due to the note after Definition
5.

Finally, we can give in case of density-based clustering a formal definition
of a cluster as a maximal set of density connected objects:

54 5. Similarity Join Based Methods using GPU

Definition 7 (Density-based Clustering)
A disjunct set C1 ⊆ D, . . . , CN ⊆ D is called a clustering of D (each Ci is
correspondingly called a cluster) if and only if the following two conditions
hold:

1. Density connectedness: ∀i = 1, N, ∀x, x′ ∈ Ci : x ./ x′.

2. Maximality: ∀i = 1, N, ∀x ∈ Ci,∀x′ ∈ D \
⋃N
j=1Cj : ¬(x ./ x′).

An implementation of the cluster notion according to Definition 7 rep-
resents the algorithm DBSCAN [46]. This algorithm uses a data structure
called seed list S consisting of seed objects for cluster expansion. More pre-
cisely, the algorithm proceeds as follows:

1. Mark all objects as unprocessed.

2. Consider an arbitrary unprocessed object x ∈ D.

3. If x is a core object, assign a new cluster ID C, and do step (4) for all
elements x′ ∈ Nε(x) which do not yet have a cluster ID:

4. (a) mark the element x′ with the cluster ID C and
(b) insert the object x′ into the seed list S.

5. While S is not empty repeat step 6 for all elements s ∈ S:

6. If s is a core object, do step (7) for all elements x′ ∈ Nε(s) which do
not yet have any cluster ID:

7. (a) mark the element x′ with the cluster ID C and
(b) insert the object x′ into the seed list S.

8. If there are still unprocessed objects in the database, continue with
step (2).

A snapshot of DBSCAN during cluster expansion, illustrating the algo-
rithmic paradigm, is shown in Figure 5.7. The light grey cluster on the
left side depicts a cluster that has been already processed. The algorithm
currently proceeds with expansion of the dark grey cluster we can see on
the right side. The seed list S at this moment contains one object, namely

5.5 Similarity Join to Support Density-based Clustering 55

the object x. As it can be counted more than MinPts = 3 objects in ε-
neighborhood of x (|Nε(x)| = 6, including x itself), it can be concluded that
x is a core object. Two of these objects, x′ and x′′ have not been processed
yet and are therefore inserted into S. Continuing this way, the cluster is
iteratively expanded until the seed list becomes empty. After that, the algo-
rithm proceeds with an arbitrary unprocessed object until all objects have
been finally processed.

Speaking about the complexity of the algorithm, it can be noted that
every object of the database is considered only once either in Step 2 or in Step
6 (exclusively), which yields a complexity equal to n times the complexity of
Nε(x). The latter is linear (in n) if there is no index structure, and sublinear
or even O(log(n)) in the presence of a multidimensional index structure. The
resulting clustering is deterministic for core objects. For objects, which could
belong to many clusters, the belonging to a certain cluster is defined by the
order of object processing.

5.5.2 GPU-supported DBSCAN

To effectively speed up DBSCAN via supporting it by GPU, we need at
first to recognize the algorithm phases requiring most of the processing time.
These are the following two stages:

1. Determination of the core object property.

2. Cluster expansion by computing the transitive closure of the direct
density reachability relation.

Figure 5.7: Sequential Density-based Clustering.

56 5. Similarity Join Based Methods using GPU

algorithm GPUdbscanNLJ(data set D) // host program executed on CPU
deviceMem float D′[][] := D[][]; // allocate memory in DM for the data set D
deviceMem int counter [n]; // allocate memory in DM for counter
#threads := n; // number of points in D
#threadsPerGroup := 64;
startThreads (GPUdbscanKernel, #threads, #threadsPerGroup); // one thread per point
waitForThreadsToFinish();
copy counter from DM to main memory ;

end.

kernel GPUdbscanKernel (int threadID)
register float q[] := D′[threadID][]; // copy the point from DM into the register

// and use it as query point q
// index is determined by the threadID

for i := 0 ... threadID do // option 1 OR
for i := 0 ... n− 1 do // option 2

synchronizeThreadGroup();
shared float x[] := D′[i][]; // copy the current point x from DM to SM
synchronizeThreadGroup(); // Now all threads of the thread group can work with x
if dist(x, q) ≤ ε then

atomicInc (counter[i]); atomicInc (counter[threadID]); // option 1 OR
inc counter[threadID]; // option 2

end.

Figure 5.8: Parallel Algorithm for the Nested Loop Join to Support DBSCAN
on GPU.

The performance of the first stage can be effectively improved by means
of GPU-based similarity join. For checking the core object property, for each
point we need to count the number of objects falling into its ε-neighborhood.
Basically, this can be implemented by a self join. However, we need to
adjust the algorithm for self-join described in Section 5.4 to make it suitable
to support this task. The classical self-join only counts the total number
of pairs of data objects, the distance between which is not more than a
given threshold ε. To test an object if it a core one, we need a self-join
with a counter assigned to each object. Each time when detecting a new pair
satisfying the join condition, the counter of both objects is to be incremented.

We propose here two different variants how to implement the self-join
to support DBSCAN on GPU. The two versions are shown in Figure 5.8 in
form of a pseudocode. Adjustments over the basic algorithm for nested loop
join (cf. Figure 5.5) are given in darker color. Like in case of the simple
algorithm for nested loop join, for each point q of the outer loop a dedicated
thread with a unique threadID is created. In both variants of the self-join
for DBSCAN proposed here, we use an array counter to store the number of
neighbors for each object. When the join condition on a pair of objects (x, q)

5.5 Similarity Join to Support Density-based Clustering 57

is fulfilled, we have a choice of two options how to increment the counters
of the objects. Option 1 is at first to add the counter of x and then the
counter of q using the atomic operation atomicInc() (cf. Section 4.3). This
yields the synchronization of all participating threads. As already mentioned
before, the atomic operations serve to assure the correctness of the result,
when various threads simultaneously try to increment the counters of objects.

In clustering, we typically have many core objects which causes a large
number of synchronized operations limiting the parallelism. Therefore, we
also implemented option 2 which ensures correctness without synchronized
operations. As soon as a pair of objects (x, q) satisfies the join condi-
tion, we only increment the counter of point q. Point q corresponds to
the point of the outer loop for which the separate thread has been created,
which means q is exclusively associated with the threadID. Therefore, the
cell counter[threadID] can be safely incremented with the ordinary, non-
synchronized operation inc(). Since no other point is associated with the
same threadID as q no collision can happen. However, note that unlike op-
tion 1, for each point of the outer loop, the inner loop needs to consider all
other points. Otherwise results are missed. Recall that for the conventional
sequential nested loop join (cf. Figure 5.4) it suffices to consider in the in-
ner loop only those points which have not been processed so far. Already
processed points can be excluded because if they are join partners of the
current point, this has already been detected. The same holds for option
1. Because of parallelism, we can not state which objects have been already
processed. However, it is still sufficient when each object searches in the
inner loop for join partners among those objects which would appear later
in the sequential processing order. This is because all other object are ad-
dressed by different threads. Option 2 requires checking all objects since only
one counter is incremented. With sequential processing, option 2 would thus
duplicate the workload. However, as our results in Section 5.6 demonstrate,
option 2 can pay-off under certain conditions since parallelism is not limited
by synchronization.

After detecting the core objects, we can begin to expand clusters starting
from these core objects. GPU can effectively support as well this second
stage of DBSCAN. For cluster expansion, it is required to calculate the tran-
sitive closure of the direct density reachability relation. Recall that this is
closely connected to the core object property since all objects within the ε
neighborhood of a core object x are directly density reachable from x. The
calculation of the transitive closure can be done using standard algorithms,

58 5. Similarity Join Based Methods using GPU

the most well-known among which is the algorithm of Floyd-Warshall. A
highly parallel version of the Floyd-Warshall algorithm on GPU has been
recently proposed [96], but this is beyond the scope of this paper.

5.6 Experimental Evaluation

To evaluate the performance of Data Mining on the GPU, we performed var-
ious experiments on synthetic data sets. The implementation for all variants
is written in C and all experiments are performed on a workstation with Intel
Core 2 Duo CPU E4500 2.2 GHz and 2 GB RAM which is supplied with a
Gainward NVIDIA GeForce GTX280 GPU (240 SIMD-processors) with 1GB
GDDR3 SDRAM.

5.6.1 Evaluation of Similarity Join on the GPU

The performance of similarity join on the GPU, is validated by the compar-
ison of four different variants for executing similarity join:

1. Nested loop join (NLJ) on the CPU

2. NLJ on the CPU with index support (as described in Section 5.3)

3. NLJ on the GPU

4. NLJ on the GPU with index support (as described in Section 5.3)

For each version we determine the speedup factor by the ratio of CPU run-
time and GPU runtime. For this purpose we generated three 8-dimensional
synthetic data sets of various sizes (up to 10 million (m) points) with differ-
ent data distributions, as summarized in Table 5.1. Data set DS1 contains
uniformly distributed data. DS2 consists of five Gaussian clusters which are
randomly distributed in feature space (see Figure 5.9(a)). Similar to DS2,
DS3 is also composed of five Gaussian clusters, but the clusters are correlated.
An illustration of data set DS3 is given in Figure 5.9(b). The threshold ε
was selected to obtain a join result where each point was combined with one
or two join partners on average.

Evaluation of the Size of the Data Sets. Figure 5.10 displays the
runtime in seconds and the corresponding speedup factors of NLJ on the

5.6 Experimental Evaluation 59

(a) Random
Clusters.

(b) Linear
Clusters.

Figure 5.9: Illustration of the
data sets DS2 and DS3.

Name Size Distribution

DS1 3m - 10m points uniform distribution

DS2 250k - 1m points normal distribution,
gaussian clusters

DS3 250k - 1m points normal distribution,
gaussian clusters

Table 5.1: Data Sets for the Evaluation of the
Similarity Join on the GPU.

CPU with/without index support and NLJ on the GPU with/without index
support in logarithmic scale for all three data sets DS1, DS2 and DS3. The
time needed for data transfer from CPU to the GPU and back as well as the
(negligible) index construction time has been included. The tests on data set
DS1 were performed with a join selectivity of ε = 0.125, and ε = 0.588 on
DS2 and DS3 respectively.

NLJ on the GPU with index support performs best in all experiments,
independent of the data distribution or size of the data set. Note that, due
to massive parallelization, NLJ on the GPU without index support outper-
forms CPU without index by a large factor (e.g. 120 on 1m points of normal
distributed data with gaussian clusters). The GPU algorithm with index
support outperforms the corresponding CPU algorithm (with index) by a
factor of 25 on data set DS2. Remark that for example the overall improve-
ment of the indexed GPU algorithm on data set DS2 over the non-indexed
CPU version is more than 6,000. This results demonstrate the potential of
boosting performance of database operations with designing specialized in-
dex structures and algorithms for the GPU.

Evaluation of the Join Selectivity. In these experiments we test
the impact of the parameter ε on the performance of NLJ on GPU with
index support and use the indexed implementation of NLJ on the CPU as
benchmark. All experiments are performed on data set DS2 with a fixed size
of 500k data points. The parameter ε is evaluated in a range from 0.125 to
0.333.

60 5. Similarity Join Based Methods using GPU

10000000.0

100000.0
1000000.0

10000.0
100000.0

(s
ec
)

CPU
CPU indexed

100.0
1000.0

m
e
(CPU indexed

GPU

10.0
100.0

Ti
m

GPU indexed

1.0

2 4 6 8 10 122 4 6 8 10 12
Size (m)

(a) Runtime on Data Set DS1.

130 0
150.0

or

110.0
130.0

Fa
ct
o

70.0
90.0

up
 F

Without index
50.0
70.0

pe
ed

Without index
With index

10.0
30.0Sp

10.0

2 4 6 8 10 12

Size (m)

(b) Speedup on Data Set DS1.

100000.0

10000.0

1000.0

se
c) CPU

CPU i d d100.0

m
e
(s CPU indexed

GPU

1 0

10.0Ti
m

GPU indexed

0 1

1.0

100 400 700 10000.1 100 400 700 1000

Size (k)

(c) Runtime on Data Set DS2.

70.0
90.0
110.0
130.0
150.0

du
p
Fa
ct
or

Without index

10.0
30.0
50.0
70.0

100 400 700 1000

Sp
ee
d

Size (k)

Without index
With index

(d) Speedup on Data Set DS2.

1000.0

10000.0

100000.0

se
c) CPU

CPU indexed

0.1

1.0

10.0

100.0

100 400 700 1000

Ti
m
e
(

Size (k)

CPU indexed
GPU
GPU indexed

(e) Runtime on Data Set DS3.

70.0
90.0
110.0
130.0
150.0

du
p
Fa
ct
or

Without index

10.0
30.0
50.0
70.0

100 400 700 1000

Sp
ee
d

Size (k)

Without index
With index

(f) Speedup on Data Set DS3.

Figure 5.10: Evaluation of the NLJ on CPU and GPU with and without
Index Support w.r.t. the Size of Different Data Sets.

5.6 Experimental Evaluation 61

1000.0

100.0ec
)

100.0

m
e
(s
e

CPU10.0

Ti
m CPU

GPU

1.0

0.10 0.15 0.20 0.25 0.30 0.35

epsilon

(a) Runtime on Data Set DS2.

30.0
40.0
50.0
60.0
70.0

du
p
Fa
ct
or

0.0
10.0
20.0
30.0

0.10 0.15 0.20 0.25 0.30 0.35

Sp
ee
d

epsilon

(b) Speedup on Data Set DS2.

Figure 5.11: Impact of the Join Selectivity on the NLJ on GPU with Index
Support.

Figure 5.11(a) shows that the runtime of NLJ on GPU with index sup-
port increases for larger ε values. However, the GPU version outperforms the
CPU implementation by a large factor (cf. Figure 5.11(b)), that is propor-
tional to the value of ε. In this evaluation the speedup ranges from 20 for a
join selectivity of 0.125 to almost 60 for ε = 0.333.

Evaluation of the Dimensionality. These experiments provide an
evaluation with respect to the dimensionality of the data. As in the exper-
iments for the evaluation of the join selectivity, we use again the indexed
implementations both on CPU and GPU and perform all tests on data set
DS2 with a fixed number of 500k data objects. The dimensionality is evalu-
ated in a range from 8 to 32. We also performed these experiments with two
different settings for the join selectivity, namely ε = 0.588 and ε = 1.429.

Figure 5.12 illustrates that NLJ on GPU outperforms the benchmark
method on CPU by factors of about 20 for ε = 0.588 to approximately 70
for ε = 1.429. This order of magnitude is relatively independent of the
data dimensionality. As in our implementation the dimensionality is already
known at compile time, optimization techniques of the compiler have an
impact on the performance of the CPU version as can be seen especially in
Figure 5.12(c). The sharp bend of the curve in Figure 5.12(d) is explained
by the same. However the dimensionality also affects the implementation on
GPU, because higher dimensional data come along with a higher demand of
shared memory. This overhead affects the number of threads that can be
executed in parallel on the GPU.

62 5. Similarity Join Based Methods using GPU

1000.0

100 0ec
)

100.0

e
(s
e

CPU10.0

Ti
m CPU

GPU

1.0

2 6 10 14 18 22 26 30

Dimensionality

(a) Runtime on Data Set D2 (ε = 0.588).

40 0

60.0

80.0

100.0

du
p
Fa
ct
or

0.0

20.0

40.0

2 6 10 14 18 22 26 30

Sp
ee
d

Dimensionality

(b) Speedup on Data Set D2 (ε = 0.588).

10.0

100.0

e
(s
ec
)

CPU

1.0

2 6 10 14 18 22 26 30

Ti
m

Dimensionality

CPU
GPU

(c) Speedup on Data Set D2 (ε = 1.429).

40 0

60.0

80.0

100.0

du
p
Fa
ct
or

0.0

20.0

40.0

2 6 10 14 18 22 26 30

Sp
ee
d

Dimensionality

(d) Speedup on Data Set D2 (ε = 1.429).

Figure 5.12: Impact of the Dimensionality on the NLJ on GPU with Index
Support.

5.7 Conclusions 63

5.6.2 Evaluation of GPU-supported DBSCAN

As described in Section 5.5.2, we suggest two different variants to implement
the self-join to support DBSCAN on GPU, whose characteristics are briefly
reviewed in the following:

1. Increment of the counters regarding a pair of objects (x, q) that ful-
fills the join condition is done by the use of an atomic operation that
involves synchronization of all threads.

2. Increment of the counters can be performed without synchronization
but with duplicated workload instead.

We evaluate both options on a synthetic data set with 500k points gen-
erated as specified as DS1 in Table 5.1. Figure 5.13 displays the runtime of
both options. For ε ≤ 0.6, the runtime is in the same order of magnitude,
the synchronized variant 1 being slightly more efficient. From this point on,
the non-synchronized variant 2 is clearly outperforming variant 1 since paral-
lelism is not limited by synchronization. When the number of similar objects
is big enough (ε ≈ 0.6), an additional synchronization is too expensive.

1000.0

100.0ec
)

m
e
(s
e

Synchronization

10.0

Ti
m

no

1.0
Synchronization

0.10 0.35 0.60 0.85 1.10

epsilon

Figure 5.13: Evaluation of two versions for the self-join on GPU w.r.t. the
join selectivity.

5.7 Conclusions

In this chapter, we demonstrated how Graphics processing Units (GPU) can
effectively support highly complex Data Mining tasks. In particular, we

64 5. Similarity Join Based Methods using GPU

focused on clustering. With the aim of finding a natural grouping of an un-
known data set, clustering certainly is among the most widely spread Data
Mining tasks with countless applications in various domains. We selected a
well-known clustering algorithm, the density-based algorithm DBSCAN and
proposed a new algorithm illustrating how to effectively support clustering
on GPU. Our proposed algorithms are customized to the special environment
of the GPU which is most importantly characterized by extreme parallelism
at low cost. A single GPU consists of a large number of processors. As build-
ing blocks for effective support of DBSCAN, we proposed a parallel version
of the similarity join and an index structure for efficient similarity search.
Going beyond the primary scope of this chapter, these building blocks are
applicable to support a wide range of Data Mining tasks, including outlier
detection, association rule mining and classification. Our extensive experi-
mental evaluation emphasizes the potential of the GPU for high-performance
Data Mining. In our ongoing work, we develop further algorithms to support
more specialized Data Mining tasks on GPU.

Chapter 6

K-means Clustering using GPU

In this chapter we continue applying GPU-based computing and introduce
a highly parallel algorithm for k-means-based clustering specially designed
for execution in GPU environment. By means of an extensive experimental
evaluation, we demonstrate the superiority of our algorithm running on GPU
compared to their competitors running on CPU.
Parts of the material presented in this chapter have been published in Paper
[25]. In this paper, Andrew Zherdin has codesigned the main concepts for
parallelization as well as implemented and carried out a part of experiments.
Robert Noll has implemented and optimized the most of source code. His
task was also the choice and installation of the used hardware. Bianca Wack-
ersreuther has taken an important part in the development and optimization
of the algorithms and experiments. Christian Böhm and Claudia Plant have
supervised this work and essentially improved its results.

6.1 Introduction

In this chapter, we concentrate on application possibilities of using the com-
putational power of GPUs for such important Data Mining task as clustering.

As already noticed in the introduction of the previous Chapter, the aim
of clustering is to find a natural grouping of a data set. To be able to do this,
a specification of the notion of similarity among objects is needed. Thereby,
objects not fitting well to any of the clusters are counted as outliers and
should be left unassigned. A reader can refer to introduction of the previous
Chapter, where we have already considered in detail the notion of clustering.

66 6. K-means Clustering using GPU

To demonstrate that also highly complex Data Mining tasks can be ef-
ficiently implemented using novel parallel algorithms, we propose a parallel
version of K-means clustering [122] algorithm, which follows an algorithmic
paradigm that is very different from density-based clustering, considered in
the previous chapter.

When implementing algorithms for GPU, we used NVIDIA’s technology
Compute Unified Device Architecture (CUDA) [2].

The remainder of this chapter is organized as follows: Section 6.2 repre-
sents a general review of the related work in GPU processing with particular
focus on clustering. Section 6.3 is dedicated to GPU-capable algorithms for
density-based and partitioning clustering. Section 6.4 presents the results
of an extensive experimental evaluation of our approach, and Section 6.5
summarizes the chapter and suggests directions for future research.

6.2 Related Work

In this section, we provide a review of the related work in GPU processing
with particular focus on clustering.

Considering recent research in the field of Data Mining with focus on
clustering, we should to notice two papers, that pass on the use of CUDA.
Using NVIDIA GeForce 6800 GT, the authors of [36] introduce a clustering
approach that extends the basic idea of K-means via simultaneous computa-
tion on GPU of all the distances from a single input centroid to all objects
at one time. By that, the authors succeeded to demonstrate the capability
of GPUs of the high computational power and pipeline, especially for core
operations, like comparisons and distance calculations. A yet another ap-
proach that is designed to execute clustering on data streams exemplifies a
wide practical field of GPU-based clustering.

In paper [172], the authors exploit the multi-pass rendering and multi
shader program constants to parallelize the K-means algorithm. Applying
this realization on NVIDIA 5900 and NVIDIA 8500 graphics processors, the
authors obtain significant performance gain for both various data sizes and
cluster sizes.

Despite of good results, the algorithms of the two papers are GPU-
specific and unfortunately not portable to different GPU models, like CUDA-
approaches are.

6.3 K-means Clustering on GPU 67

6.3 K-means Clustering on GPU

6.3.1 The Algorithm K-means

A well-established partitioning clustering method is the K-means clustering
algorithm [122]. K-means requires a metric distance function in vector space.
In addition, the user has to specify the number of desired clusters k as an
input parameter. Usually K-means starts with a certain partitioning of the
objects into k clusters. After this initialization, the algorithm iteratively
performs the following two steps until convergence: (1) Update centers: For
each cluster, compute the mean vector of its assigned objects. (2). Re-assign
objects: Assign each object to its closest center. The algorithm converges
as soon as no object changes its cluster assignment during two subsequent
iterations.

Figure 6.1 illustrates an example run of K-means for k = 3 clusters.
Figure 6.1(a) shows the situation after random initialization. In the next
step, every data point is associated with the closest cluster center (cf. Fig-
ure 6.1(b)). The resulting partitions represent the Voronoi cells generated
by the centers. In the following step of the algorithm, the center of each of
the k clusters is updated, as shown in Figure 6.1(c). Finally, assignment and
update steps are repeated until convergence.

In most cases, fast convergence can be observed. The optimization func-
tion of K-means is well defined. The algorithm minimizes the sum of squared
distances of the objects to their cluster centers. However, K-means is only
guaranteed to converge towards a local minimum of the objective function.
The quality of the result strongly depends on the initialization. Finding
that clustering with k clusters minimizing the objective function actually is
a NP-hard problem, for details see e.g. [130]. In practice, it is therefore
recommended to run the algorithm several times with different random ini-
tializations and keep the best result. For large data sets, however, often only
a very limited number of trials is feasible. Parallelizing K-means in GPU
allows for a more comprehensive exploration of the search space of all poten-
tial clusterings and thus provides the potential to obtain a good and reliable
clustering even for very large data sets.

68 6. K-means Clustering using GPU

(a) Initialization. (b) Assignment. (c) Recalculation. (d) Termination.

Figure 6.1: Sequential Partitioning Clustering by the K-means Algorithm.

6.3.2 CUDA-K-means

In K-means, most computing power is spent in step (2) of the algorithm, i.e.
re-assignment which involves distance computation and comparison. The
number of distance computations and comparisons in K-means is O(k · i ·n),
where i denotes the number of iterations and n is the number of data points.

The CUDA-K-meansKernel. In K-means clustering, the cluster as-
signment of each data point is determined by comparing the distances be-
tween that point and each cluster center. This work is performed in parallel
by the CUDA-K-meansKernel. The idea is, instead of (sequentially) perform-
ing cluster assignment of one single data point, we start many different cluster
assignments at the same time for different data points. In detail, one single
thread per data point is generated, all executing the CUDA-K-meansKernel.
Every thread which is generated from the CUDA-K-meansKernel (cf. Fig-
ure 6.2) starts with the ID of a data point x which is going to be processed.
Its main tasks are, to determine the distance to the next center and the ID
of the corresponding cluster.

A thread starts by reading the coordinates of the data point x into the
register. The distance of x to its closest center is initialized by∞ and the as-
signed cluster is therefore set to null. Then a loop encounters all c1, c2, . . . , ck
centers and considers them as potential clusters for x. This is done by all
threads in the thread group allowing a maximum degree of intra-group par-
allelism. Finally, the cluster whose center has the minimum distance to the
data point x is reported together with the corresponding distance value using
synchronized writing.

6.4 Evaluation of CUDA-K-means 69

The Main Program for CPU. Apart from initialization and data
transfer from main memory (MM) to DM, the main program consists of
a loop starting the CUDA-K-meansKernel on the GPU until the clustering
converges. After the parallel operations are completed by all threads of the
group, the following steps are executed in each cycle of the loop:

1. Copy distance of processed point x to the nearest center from DM into
MM.

2. Copy cluster, x is assigned to, from DM into MM.

3. Update centers.

4. Copy updated centers to DM.

A pseudocode of these procedures is illustrated in Figure 6.2.

6.4 Evaluation of CUDA-K-means

To analyze the efficiency of K-means clustering on the GPU, we present ex-
periments with respect to different data set sizes, number of clusters and
dimensionality of the data. As benchmark we apply a single-threaded imple-
mentation of K-means on the CPU to determine the speedup of the imple-
mentation of K-means on the GPU. As the number of iterations may vary
in each run of the experiments, all results are normalized by a number of 50
iterations both on the GPU and the CPU implementation of K-means. All
experiments are performed on synthetic data sets as described in detail in
each of the following settings.

Evaluation of the Size of the Data Set. For these experiments we
created 8-dimensional synthetic data sets of different size, ranging from 32k
to 2m data points. The data sets consist of different numbers of random
clusters, generated as as specified as DS1 in Table 5.1.

Figure 6.3 displays the runtime in seconds in logarithmic scale and the cor-
responding speedup factors of CUDA-K-means and the benchmark method
on the CPU for different numbers of clusters. The experiments were car-
ried out multiple times with random initializations. The time needed for
data transfer from CPU to GPU and back has been included. The corre-
sponding speedup factors are given in Figure 6.3(d). Once again, these

70 6. K-means Clustering using GPU

algorithm CUDA-K-means(data set D, int k) // host program executed on CPU
deviceMem float D′[][] := D[][]; // allocate memory in DM for the data set D
#threads := |D|; // number of points in D
#threadsPerGroup := 64;
deviceMem float Centroids[][] := initCentroids(); // allocate memory in DM for the

// initial centroids
double actCosts :=∞; // initial costs of the clustering

repeat
prevCost := actCost;
startThreads (CUDA-K-meansKernel, #threads, #threadsPerGroup); // one thread per point
waitForThreadsToFinish();
float minDist := minDistances[threadID]; // copy the distance to the nearest

// centroid from DM into MM
float cluster := clusters[threadID]; // copy the assigned cluster from DM into MM
double actCosts := calculateCosts(); // update costs of the clustering
deviceMem float Centroids[][] := calculateCentroids(); // copy updated centroids to DM

until |actCost− prevCost| < threshold // convergence
end.

kernel CUDA-K-meansKernel (int threadID)
register float x[] := D′[threadID][]; // copy the point from DM into the register
float minDist :=∞; // distance of x to the next centroid
int cluster := null; // ID of the next centroid (cluster)
for i := 1 ... k do // process each cluster

register float c[] := Centroids[i][] // copy the actual centroid from DM into the register
double dist := distance(x,c);
if dist < minDist then
minDist := dist;
cluster := i;

report(minDist, cluster); // report assigned cluster and distance using synchronized writing
end.

Figure 6.2: Parallel Algorithm for K-means on the GPU.

experiments support the evidence that the performance of Data Mining ap-
proaches on GPU outperform classic CPU versions by significant factors.
Whereas a speedup of approximately 10 to 100 can be achieved for relatively
small number of clusters, we obtain a speedup of about 1000 for 256 clusters,
that is even increasing with the number of data objects.

Evaluation of the Impact of the Number of Clusters. We per-
formed several experiments to validate CUDA-K-means with respect to the
number of clusters K. Figure 6.4 shows the runtime in seconds of CUDA-
K-means compared with the implementation of K-means on the CPU on
8-dimensional synthetic data sets that contain different numbers of clusters,

6.4 Evaluation of CUDA-K-means 71

10 0

100.0

1000.0

(s
ec
)

CPU

0.1

1.0

10.0

0 1000 2000

Ti
m
e

Size (k)

CPU
GPU

(a) Runtime for 32 clusters.

10 0

100.0

1000.0

(s
ec
)

CPU

0.1

1.0

10.0

0 1000 2000

Ti
m
e

Size (k)

CPU
GPU

(b) Runtime for 64 clusters.

100 0

1000.0

10000.0

100000.0

(s
ec
)

CPU

0.1

1.0

10.0

100.0

0 1000 2000

Ti
m
e

Size (k)

CPU
GPU

(c) Runtime for 256 clusters.

1000 0

1200.0

or

800.0

1000.0

Fa
ct
o

600.0up
 F

k = 256

200 0

400.0
pe

ed k = 64
k 32

0.0

200.0Sp k = 32

0.0

0 1000 2000

Size (k)

(d) Speedup for 32, 64 and 256 clusters.

Figure 6.3: Evaluation of CUDA-K-means w.r.t. the Size of the Data Set.

ranging from 32 to 256, again together with the corresponding speedup fac-
tors in Figure 6.4(d).

The experimental evaluation of K on a data set that consists of 32k points
results in a maximum performance benefit of more than 800 compared to the
benchmark implementation. For 2m points the speedup ranges from nearly
100 up to even more than 1,000 for a data set that comprises 256 clusters.
In this case the calculation on the GPU takes approximately 5 seconds, com-
pared to almost 3 hours on the CPU. Therefore, we determine that due to
massive parallelization, CUDA-K-means outperforms CPU by large factors,
that are even growing with K and the number of data objects n.

Evaluation of the Dimensionality. These experiments provide an
evaluation with respect to the dimensionality of the data. We perform all
tests on synthetic data consisting of 16k data objects. The dimensionality of
the test data sets vary in a range from 4 to 256. Figure 6.5(b) illustrates that

72 6. K-means Clustering using GPU

10 0

100.0

1000.0

(s
ec
)

CPU

0.1

1.0

10.0

0 64 128 192 256

Ti
m
e

k

CPU
GPU

(a) Runtime for 32k points.

100.0

1000.0

10000.0

m
e
(s
ec
)

CPU

1.0

10.0

0 64 128 192 256

Ti
m

k

CPU
GPU

(b) Runtime for 500k points.

100.0

1000.0

10000.0

m
e
(s
ec
)

CPU

1.0

10.0

0 64 128 192 256

Ti
m

k

CPU
GPU

(c) Runtime for 2m points.

600.0

800.0

1000.0

1200.0

du
p
Fa
ct
or

2m points

0.0

200.0

400.0

0 64 128 192 256
Sp
ee
d

k

500k points
32k points

(d) Speedup for 32k, 500k and 2m points.

Figure 6.4: Evaluation of CUDA-K-means w.r.t. the number of clusters K.

CUDA-K-means outperforms the benchmark method K-means on the CPU
by factors of 230 for 128-dimensional data to almost 500 for 8-dimensional
data. On the GPU and the CPU, the dimensionality affects possible com-
piler optimization techniques, like loop unrolling as already shown in the
experiments for the evaluation of the similarity join on the GPU.

In summary, the results of this section demonstrate the high potential
of boosting performance of complex Data Mining techniques by designing
specialized index structures and algorithms for the GPU.

6.5 Conclusions

In this chapter, we demonstrated how Graphics processing Units (GPU) can
effectively support such highly complex Data Mining task as clustering. With
the aim of finding a natural grouping of an unknown data set, clustering cer-
tainly is among the most widely spread Data Mining tasks with countless ap-

6.5 Conclusions 73

10000.0

1000.0

)

100.0(s
ec
)

CPU
10.0im

e CPU
GPU

1.0

Ti

0 1
0 64 128 192 256

0.1
Dimensionality

(a) Runtime.

700.0

or

500 0

600.0

Fa
ct
o

400 0

500.0

up
 F

300 0

400.0

pe
ed

200.0

300.0

Sp

200.0

0 64 128 192 256

Dimensionality

(b) Speedup.

Figure 6.5: Impact of the Dimensionality of the Data Set on CUDA-K-means.

plications in various domains. We selected the iterative algorithm K-means
and proposed an algorithm illustrating how to effectively support clustering
on GPU. Our proposed algorithms are customized to the special environment
of the GPU which is most importantly characterized by extreme parallelism
at low cost. To illustrate that not only local density-based clustering can
be efficiently performed on GPU, we proposed in this chapter a parallelized
version of K-means clustering. Our extensive experimental evaluation em-
phasizes the potential of the GPU for high-performance Data Mining. In
our ongoing work, we develop further algorithms to support more specialized
clustering tasks on GPU, including for example subspace and correlation
clustering and medical image processing.

74 6. K-means Clustering using GPU

Part III

Models-based Data Mining

Chapter 7

Compact Model-Based
Descriptions in Approximate
Clustering of Time Series

Clustering time series is related to time-accuracy trade-off one has to con-
front with. Dealing with full-length time series trends to high runtime and
storage costs on one hand, whereas compressing time series (for instance, via
dimensionality reduction) and having to do with this compressed represen-
tation trends to low accuracy. An intelligent method of reducing the length
of time series is therefore essential. We propose a mathematical model-based
compression approach for time series which examines dependencies between
different time series. The resulting time series represents a combination of
a set of characteristic time series. Thereby we have only dependency upon
the number of reference time series instead of the full length, which brings
us considerable gain in runtime and storage costs. We show experimentally
that even a not big number of reference time series can be used to achieve
high accurate results at simultaneously sank runtime.
The basic ideas contained in this chapter have been published in Paper [106].
In this paper, Andrew Zherdin’s part was developing the idea of the mathe-
matical model for the approximation. Here, Andrew Zherdin has also shown
the applicability of Mahalanobis-Distance. Besides that, Andrew Zherdin has
carried out the experiments. The application of the approximation for clus-
tering and needed experiments were proposed by Alexey Pryakhin, Matthias
Renz and Peer Kröger. Hans-Peter Kriegel has supervised this work.

78 7. Compact Model-Based Descriptions

7.1 Introduction

Clustering time series data is a very significant task in Data Mining, ap-
pearing very often in a large number of diverse application areas including
stock marketing, environmental analysis, astronomy, molecular biology and
medical analysis. It is not a secret, that the length of time series in such
application fields is usually enormous, which of course has a huge negative
influence on the runtime of the clustering process. A lot of recent research
work has focused therefore on efficient methods for similarity search in clus-
tering of time series.

Time series are sequences of discrete quantitative data assigned to specific
moments in time, i.e. a time series a is a sequence of values a = 〈t1, . . . , tm〉,
where ti is the value at time slot i. This sequence is often also taken as a
m−dimensional feature vector, i.e. a ∈ Rm.

The performance of clustering algorithms for time series data is basically
restricted by the cost needed for comparing pairs of time series (i.e. the
processing cost of the used distance function). As already mentioned above,
time series are usually very large counting several thousands of values per
sequence. Hence, the comparison of two time series can be very expensive,
in particular when considering the entire sequence of values of the compared
objects. The best known approaches to measure the similarity of time series
are the Euclidean distance and Dynamic Time Warping (DTW). In some
applications, the Euclidean distance produce better results whereas in other
applications, DTW is superior. Thus, the distance function choice mainly
depends on the application. Comparing performance of these two approaches,
it is important to notice, that DTW has higher computational costs, namely
O(m2), while the Euclidean distance can be computed in O(m). Since we
consider large databases and long time series (i.e. large values of m) in this
chapter, we focus on the Euclidean distance as similarity function in the
following.

Applying the Euclidean distance to the whole sequences is also only jus-
tified for short time series. Having a long time series, we face in this case
two problems. The first is that the distance computation takes rather high
runtimes. The second is that if the time series are indexed by a standard
spatial indexing method like the R-Tree [66] or one of its variations, this in-
dex will perform rather bad because of the well-known dimensionality curse.
Therefore, it is common to consider appropriate but considerably shorter
approximations of the data retaining characteristic features of interest. In

7.1 Introduction 79

accordance with this schema there exist a lot of methods for dimensionality
reduction leading to suitable time series representations for efficient compu-
tation of similarity distance. However, since the distances computed on the
approximations do not reflect the exact similarity, they can either be used
as a filter step of the Data Mining task or, if the results satisfactorily agree
with the exact query response, the preliminary results can be directly taken
for approximate solving the problem. In the first case, the lower bounding
property should hold in the approximations to assure complete results. The
second solution does not have this limitation, i.e. the approximations do not
need to fulfill this lower bounding property, which makes it easier to find a
proper approximation technique. More than that, since no refinements are re-
quired, the second approach will bring noticeably lower response times. The
second method has, however, also a challenge: in order to achieve suitable
results, the distances calculated on the approximations should accurately es-
timate the distances on the exact time series (i.e. approximate results of high
accuracy).

After all, the question is which approximation we should use. Adequate
time series approximations can be constructed by means of mathematical
models. Most approaches use models based on approximations in time, i.e.
models that describe how a time series depends on the time attribute (cf.
Section 7.2). These techniques are characterized by the decreasing of ap-
proximation quality with increasing length of the time series (supposed a
constant approximation size). We propose a method for the approximation
of time series based on mathematical models that examine dependencies be-
tween various time series. Each time series is represented by an appropriate
combination of a set of characteristic reference time series (normally these ref-
erence time series can be easily determined e.g. by a domain expert). This
compressed representation consists of some low-dimensional feature vector
that we can easily index using any Euclidean index structure. The similarity
distance used for the clustering is calculated by applying the parameters that
determine the combination. As a result, the costs of the clustering process
depend only on the number of reference time series rather than on the length
of the entire time series. As our experiment will show, even a small number
of reference time series can be used to obtain rather accurate results.

Our approach is depicted in Figure 7.1. An original time series Torig(shown
on the upper right hand side of Figure 7.1) is approximated by an arbitrary
complex combination Tapprox of reference time series (marked as “T1” , “T2”
, and “T3” on the left hand side of Figure 7.1) In case of Figure 7.1 this is

80 7. Compact Model-Based Descriptions

Figure 7.1: Model-based time series representation

a combination of the coefficients p1, . . . , p3 representing the three input time
series using a function f . The resulting approximated time series (marked as
”output” in the middle of the right hand side of Figure 7.1) is similar to the
original one. For clustering, the approximation is represented by a feature
vector of the coefficients of the combination (cf. lower right hand side of
Figure 7.1).

Before continuing with next sections, let us give a short outline how the
rest of the chapter is organized. In Section 7.2, a survey of related work
is presented. In Section 7.3, after introducing the notion of mathematical
models, we describe our powerful model-based method for constructing a
compact representation for time series. Section 7.4 presents versatile experi-
mental results. Finally, we conclude the chapter in Section 7.5 with a short
summary and show further research directions.

7.2 Related Work 81

7.2 Related Work

A time series of length d can generally be considered as a feature vector
in a d−dimensional space. As mentioned above, we are to concentrate on
similarity in time, in other words we suppose that the similarity of time series
is expressed by the Euclidean distance of the corresponding feature vector.

As for long time series d is usually big, the efficiency and the produc-
tiveness of data analysis approaches is quite limited through the curse of
dimensionality. Therefore, several more appropriate representations of time
series data, for example by reducing the dimensionality, have been suggested.
The majority of them are based on the GEMINI indexing method [47]: ex-
tract a few key features for each time series and map each time sequence a
to a point f(a) in a lower dimensional feature space, such that the distance
between a and any other time series b is always lower-bounded by the Eu-
clidean distance between the two points f(a) and f(b). To reach an efficient
access, any well known spatial access method can be used for feature space
indexing. The suggested approaches differ primarily in the representation of
the time series. The latter can be classified into non data adaptive methods,
including DFT [7] and extensions [201], DWT [38], PAA [205], and Cheby-
shev Polynomials [35], as well as data adaptive approaches, including SVD
[105, 10], APCA [101] and cubic splines [16]. DFT converts a time series from
a time space into a frequency space. In comparison with DFT, DWT uses
not a sine function, but a so called wavelet functions. Approximation qual-
ity of DWT is a little bit better than of DFT. In PAA approach, the time
series is divided into pieces of the same length whereas each piece is then
approximated by one point. APCA method is similar to PAA, but uses an
adaptive choice of time piece length. Chebyshev Polynomials approximation
uses a linear combination of orthogonal Chebyshev polynomials. Smoothing
time series with polynomials of the 3rd grade (so called splines) is the idea
of cubic spline approach.

As an opposite to our approach, all these approximation techniques sup-
pose that time series is represented by a set of attributes describing the
dependency of the time series upon time. As a result, these methods are
characterized by decreasing their the approximation quality with increasing
length of the time series (supposing a constant number of approximation
attributes).

In [162] the authors apply a clipped time series representation rather than
using a dimensionality reduction technique. Each time series is represented

82 7. Compact Model-Based Descriptions

by a bit string indicating the intervals where the value of the time series is
above the mean value of the time series. By means of this representation
an approximate clustering of the time series can be calculated. To speed-up
the clustering task as well as to reduce the I/O cost, the bit level representa-
tions are compressed using standard compression algorithms. Unfortunately,
the authors did not propose in the paper any index structure for the ap-
proximation data. Each similarity search task implies a full scan over the
approximated data.

Most of the different clustering approaches for clustering time series data
proposed in the past decades have been successfully applied. A common
overview over clustering methods can be found in [72].

In this chapter, we claim the following contribution. We propose a novel
compact approximation method for time series data that is independent of
the length of the time series. The resulting representation can be indexed us-
ing any Euclidean index structure and is rather accurate for an approximate
clustering of the database.

7.3 Mathematical Models for Time Series Data

Mathematical modeling is a very powerful technique for describing real-word
processes by means of a compact mathematical representation (e.g., math-
ematical models of physical or chemical processes). In this section, after
introducing a formal definition of mathematical models, we present in de-
tails our method for the description of large time series data with the help
of a compact representation based on the mathematical models.

7.3.1 Mathematical Model

We begin with an informal discussion of the notion of a mathematical model.
A mathematical model is an approximate description of a class of certain ob-
jects and relationships between them. This approximate description is given
by mathematical formulas. Considering the notion in the context of time
series data, a mathematical model describes dependencies between recorded
time series data called inputs (or exploratory variables) and time series data
called outputs (or dependent variables) of a process under observation. For
example, we can model the relationship between the air pressure in an en-
closed container w.r.t. the temperature of the surrounding environment. The

7.3 Mathematical Models for Time Series Data 83

monitoring of both pressure and temperature values is given in the form of
time series. The values of pressure are used as values of the dependent vari-
able (i.e. as outputs), whereas the values of temperature are used as values
of the exploratory variable (i.e. as inputs). To be formal, the definition of a
mathematical model can be introduced as follows.

Definition 8 (Mathematical Model) A mathematical model M = (V, P, f)
for a dependent variable A (output) consists of a set of exploratory vari-
ables a1, . . . , ak(V = [a1, . . . , ak]) (called inputs) and a mathematical func-
tion f(V, P) that is used to describe the dependency between the variable
A and the variables a1, . . . , ak, where P denotes the model parameters also
called coefficients of the model. The general form of the model is given by
A = f(V, P) + ε, where ε denotes the random error.

In this definition, the exploratory variables a1, . . . , ak are inputs of the
model. The model parameters P represent the quantities estimated in the
course of the modeling process. The random error ε characterizes the ac-
curacy of ”statistical” relationship between the dependent variable and the
exploratory ones. In contrast to deterministic relationship, statistical means
that the functional relationship holds only in average (i.e., not for each data
point).

Generally, to construct a mathematical model for a time series A of mea-
sured values as a dependent variable, we need a mathematical function f
and a set V = a1, . . . , ak of input time series also called reference time series.
f and V can usually be given by a domain expert or can alternatively be
chosen by exploring a small sample of the time series in the database. Our
purpose is to find the ”best fitting” model, i.e. the model for which the ran-
dom error ε is minimal. This minimization can be obtained by calculating
appropriate model parameters P . In the recent decades, a few methods were
proposed allowing us to fit the model to the real time series data (i.e. to
calculate the model parameters P so that the random error ε is minimized).
The most popular method is Least- Squares Estimation which we will use in
the following.

At first, consider some examples of mathematical functions that are com-
monly used in mathematical modeling. For a time series A that fits a
straight line with an unknown intercept and slope, there are two parameters
P = (p1, p2), and one exploratory variable V such that f(V, P) = p2 ·V + p1.

84 7. Compact Model-Based Descriptions

Figure 7.2: An example for relationship between a dependent variable (DV)
and four exploratory variables (EV1-4)

In Figure 7.2 we have an illustration for the approximation of a more
complex time series A = DV by means of a mathematical model with a
combination of four reference time series a1 = EV 1, a2 = EV 2, a3 = EV 3,
and a4 = EV 4 expressed by DV = EV 1 + 2 · EV 2− 4 · EV 3− EV 4.

So, the mathematical model describing A = DV is composed of the
set of reference time series V = {a1, a2, a3, a4} and a function f(V, P) =
a1 + 2 · a2 − 4 · a3 − a4 and p1 = 1, p2 = 2, p3 = −4, p4 = −1.

Summarizing all this, a mathematical model gives an elegant technique
of describing the relationship between a dependent variable (output time se-
ries) and a set of exploratory variables (reference time series). Any complex
mathematical function, like a combination of quadratic and logarithmic func-
tions, can be used to approximate this relationship. Of course, if we want
to express the relationship formally, we need to fit the parameters of a given
mathematical function.

7.3 Mathematical Models for Time Series Data 85

7.3.2 Representation of Time Series Based on Mathe-
matical Models

This section is dedicated to presenting the intuition behind our compact
time series representation and to the introduction a novel technique which
can translate even a very long time series into a compact representation.

Let us consider a given set of reference time series V and a given mathe-
matical model M = (V, P, f). We can now consider each time series Ti ∈ D in
the database as a dependent variable ai. The values of outputs ai can be ap-
proximated by values of the mathematical model Mi = (V, P i, f) containing
the model parameters P i that are fitted in order to approximate the values of
the dependent variable ai as close as possible. Thus, by means of the model
parameters Pi, the given mathematical model Mi expresses relationships be-
tween the reference time series V and the approximated time series Ti (that
is it describes how strong is dependency of ai upon each of the reference time
series). Evidently, dependent variables ai and aj with similar dependencies
should have also similar mathematical models Mi and Mj, i.e. rather similar
will be the parameters P i and P j. In other words, if the underlying phys-
ical processes represented by measured values in the database have similar
character, their mathematical models look very similar. The justification of
this relation between original processes and mathematical models is caused
by the fact, that dependencies we examine are based on the same form of the
mathematical function and the same reference time series. That is, all our
models Mi use the same function f and the same set of reference time series
V , distinguishing only in the parameters P i.

This intuition can be expressed more formally as follows:

Definition 9 (Model-based Representation) Let V = a1, . . . , ak ⊆ D
be a given set of reference time series with aj = 〈aj,1, . . . , aj,N〉 and let f(V, P)
be a given mathematical function. A model-based representation of a database
time series Ti = 〈ti,1, . . . , ti,N〉 ∈ D is given by a vector of model parameters
P i if P i minimizes the random error ε of the mathematical model M =
(V, P, f) having the general form Ti = f(V, P i) + ε

In the example shown in Figure 7.2, the model-based representation of the
time series DV w.r.t. the reference time series ρ = EV 1, EV 2, EV 3, EV 4
is expressed by a vector α = (1, 2,−4,−1). It should be noted, that in this
case the description of a time series of length 1,000 is reduced to a compact
model-based representation with four coefficients.

86 7. Compact Model-Based Descriptions

To summarize, we describe each time series by a small set of model pa-
rameters of a mathematical model the form of which is the same for all time
series in the database. The size of our model-based representation does not
depend on the length of the time series in the underlying database but de-
pends only on the number of reference time series. Particularly, how exact
the approximation of our model-based representation is, solely depends on
the applied model function and the reference time series. This provides us
a possibility to achieve the desired level of exactness of the approximation.
This can be realized by choosing a model function and a set of reference time
series which are most suitable for the given application area.

7.3.3 Model-Based Similarity of Time Series

The determining factor in time series clustering is the distance (or similar-
ity) measure used to make a decision about the similarity of time series. As
already mentioned above, we concentrate on similarity in time. Thus, for our
method we use the best known time-based distance measure for time series,
the Euclidean distance. This distance is commonly used for the dimension-
ality reduction techniques noticed in Section 7.2.

For long time series, to calculate the Euclidean distance is very expensive.
More than that, the efficiency of indexing methods, used to speed-up simi-
larity queries, is restricted by the the well-known curse of dimensionality. To
avoid this, we propose to calculate the similarity using the representations
based on mathematical models consisting of only a few coefficients (model
parameters). Similarity distance based on the model parameters, as we can
show, accurately approximates the Euclidean distance between the original
time series. The approximation accuracy chiefly depends on how good the
model fits to the original time series, i.e. how exact the model approximates
the original time series. While determining the similarity of time series based
on the model parameters, we need to take into account that the pairwise sim-
ilarities between our reference time series are not necessarily be identical. An
illustration for this is shown in Figure 7.3. A model M based on the three
reference time series presented at the top of Figure 7.3 represents the de-
picted below three time series T1, T2, and T3. T1 equals the first reference
time series, that is why the coefficients of its model-based representation are
given by P 1 = (1.0, 0.0, 0.0). Similarly, since T2 is equal to the second refer-
ence time series, the coefficients of the model-based representation of T2 are
expressed by P 2 = (0.0, 1.0, 0.0). Almost the same picture is finally with T3

7.3 Mathematical Models for Time Series Data 87

Figure 7.3: Motivation for the use of the Mahalanobis-distance

and its model-based representation. T3 is nearly equal to the third reference
time series, so the coefficients of its model-based representation are given by
P 3 = (0.0, 0.0, 0.9). Comparing the Euclidean distance between T1 and T2 (in
the Figure it is denoted by λIdM(T1, T2)) with the Euclidean distance between
T1 and T3 (denoted by λIdM(T1, T3)) we notice that λIdM(T1, T2) > λIdM(T1, T3).

This is quite unintuitive since there are much more similarities between
the original time series T1 and T2 than between T1 and T3. The reason for
this is the fact that, when we working with reference time series, we do not
take into account that the first reference time series is more similar to the
second than to the third one. Thus, when calculating the similarity between
the model parameters P i and P j of two time series Ti, Tj inD, it is needed to
consider these different pair-wise similarities of the reference time series. We
can do this by means of the well-known Mahalanobis-distance [123] between
the vectors P i and P j, formally

Definition 10 (Model-based Similarity Distance) Let Ti, Tj ∈ D be two
time series and let M = (V, P, f) be a mathematical model where P i and P j

88 7. Compact Model-Based Descriptions

are the representations of Ti and Tj based on M , respectively. The model-
based similarity distance λIdM(Ti, Tj) between Ti and Tj is defined by

λIdM(Ti, Tj) =
√

(P i − P j) · S · (P i − P j)T

The key role in the Mahalanobis-distance plays the matrix S which is used to
rank the pair-wise combinations of the reference time series. So, to determine
an appropriate matrix S for distance computation is a significant task. The
following lemma assists in this choice.

Lemma 11 Let M = (V, P, f) be a mathematical model and P i and P j be
the representations of time series Ti and Tj based on M , respectively. Then,
the values of the model-based similarity distances are approximately equal
(except for a small random error ∆) to the values of Euclidean distance on
the original time series Ti and Tj , i.e. DistEuclidean(Ti, Tj) ≈ λV ·V

T

M (Ti, Tj)

or DistEuclidean(Ti, Tj) = λV ·V
T

M (Ti, Tj) + ∆.
Proof. Without loss of generality, we suppose that the function f is linear

or can be transformed to a linear form, i.e. Ti = P i · V + εi for any Ti ∈ D.

DistEuclidean(Ti, Tj) =
√

(Ti − Tj) · (Ti − Tj)T =√
((P i · V + εi)− (P j · V + εj)) · ((P i · V + εi)− (P j · V + εj))T =√

((P i − P j) · V) · ((P i − P j) · V)T + ∆′ =√
((P i − P j) · V) · (V T · (P i − P j)T) + ∆′ =√
((P i − P j) · (V · V T) · (P i − P j)T) + ∆′ =

λV ·V
T

M (Ti, Tj) + ∆

The lemma claims that the model-based similarity distance approximates
the Euclidean distance on the original time series1 by an error of ∆, if S =
V ·V T where V is a matrix composed of the reference time series. Obviously,
∆ depends on the random errors εi and εj of the model-based approximation
of Ti and Tj . Thus, if the errors of the approximation are small (which

1Please recall that we consider similarity in time instead of similarity in shape, and,
thus the Euclidean distance is used as a baseline.

7.3 Mathematical Models for Time Series Data 89

is a design goal of the approximation and is realized by the Least-Squared
Error method), then ∆ will also be small. Hence, setting S = V · V T , the
model-based similarity distance gives us a quite accurate approximation.

It is significant, that if we have the unity matrix as S, i.e. S = V ·V T = Id,
the Mahalanobis-distance is identical to the Euclidean distance. In Figure
7.3, we compare the model-based similarity distance (between T1 and T2

as well as between T1 and T3 using S = V · V T denoted by λSM(T1, T2)
and λSM(T1, T3), respectively) with the corresponding Euclidean distance on
the model-based representations. As it can be observed, the model-based
similarity distance in the form of the Mahalanobis-distance more accurately
reflects the intuitive similarity of the original time series than the Euclidean
distance on the model-based representations.

More than that, it is important to note that our approach may have a
slight rise of the CPU cost due to use of the Mahalanobis-distance instead of
the Euclidean distance used by the existing methods. However, since we are
dealing not with the original time series but with its compact representation,
the size of which is independent of the length of the original data items, this
minor loss of CPU performance does not play any significant role because
we get a great benefit in terms of I/O-cost especially when dealing with long
time series.

7.3.4 The Choice of the Reference Time Series

The choice of the reference time series is, of course, an important aspect
of our model-based representation of time series. As already outlined, this
selection can usually be done by a domain expert, assumed that we have one
at hand. For the case, when we have no such domain expert at hand, we
need a procedure for the choice of the reference time series.

Generally, there should be a high correlation between the reference time
series and a subset of the remaining time series in the database. Inspired by
this insight, our suggestion is to use the following procedure to derive a set
of reference time series. Supposed we want to choose k reference time series,
we simply cluster the time series using a k−medoid clustering algorithm, e.g.
PAM [72]. As a result we have a set of k cluster medoids (time series), each
of which represents its corresponding cluster. All time series of a cluster
strongly correlate with the corresponding cluster medoid. Thus, it must be
a good choice to take these medoids for the derivation of the reference time
series. Additionally, in order to reduce computational costs, we suggest to

90 7. Compact Model-Based Descriptions

apply the PAM clustering only on a small sample of the database. A sample
rate of about 1%, as shows practice, provides a sufficient high clustering
accuracy.

7.3.5 Efficient Approximative Clustering

Now, using the similarity distance measure defined above, it is possible to
apply any analysis task to time series data. Our chief goal is to get an effi-
cient clustering of the database D of time series based on the approximative
representations, at the same time keeping the quality of generated clusters at
sufficient level. Thus, approximative clustering enables obtaining very fast
response times while accepting a considerable accuracy reduce. This appears
to be reasonable in many applications domains. Although we used in our
experiments the most known clustering method k-means, our approximate
representation can be easily integrated into any other clustering algorithm
the user is most comfortable to work with. The main issue for approximate
clustering is without doubt to generate finally accurate results, i.e. the used
approximations should describe the original time series appreciably well. As
we will show experimentally, even a very small set of parameters for the time
series approximations suffices to achieve high quality clustering results. This
is still true if the original time series that should be clustered are very long.
An illustration indicating the potentials of our approximation is presented by
an example in Figure 4. Here we compare two quite complex time series T1

and T2 of length 1,024 with a few sample approximations using just 44 coeffi-
cients. The approximation of the real time series given by the compressions,
as we can see, is quite accurate.

7.4 Evaluation

To provide insight into the performance of our method compared to existing
ones, we implemented our approach and comparison partners in Java 5. We
carried out our experiments on a workstation featuring 2x3GHz Xeon CPUs
and 32GB RAM. We used four datasets, three of which are artificial (DS1,
DS2 and DS4) and one real world dataset (DS3). These are shown in Table
7.1.

For the first two artificial datasets - DS1 and DS2, we used random walk
to generate the reference time series. The corresponding datasets represent a

7.4 Evaluation 91

Figure 7.4: Approximations for sample time series

Name Type Length

DS1 artificial 2,560
DS2 artificial 6,000
DS3 real world 1,024
DS4 artificial 2,000 - 14,000

Table 7.1: Real and Artificial Data Sets with.

linear combination of the reference time series compounded by the identity,
square, cube and first and second derivatives.

In order to demonstrate that our approach can handle versatile data,
the third artificial dataset DS3 we composed as follows. It consists of real-
world time series from the following application areas: (1) wing flutter2, (2)
cutaneous potential recordings of a pregnant woman3, (3) data from a test
setup of an industrial winding process4, (4) continuous stirred tank reac-
tor5. In this dataset (DS3), the reference time series we get from domain
experts. To generate the forth dataset DS4, we use Cylinder-Bell-Funnel
method6. Here we are dealing with an artificial dataset that covers the entire

2http://homes.esat.kuleuven.be/~smc/daisy/daisydata.html
3http://www.tsi.enst.fr/icacentral/base_single.html
4http://homes.esat.kuleuven.be/~smc/daisy/daisydata.html
5http://www.fceia.unr.edu.ar/isis/cstr.txt
6http://waleed.web.cse.unsw.edu.au/phd/html/node119.html

http://homes.esat.kuleuven.be/~smc/daisy/daisydata.html
http://www.tsi.enst.fr/icacentral/base_single.html
http://homes.esat.kuleuven.be/~smc/daisy/daisydata.html
http://www.fceia.unr.edu.ar/isis/cstr.txt
http://waleed.web.cse.unsw.edu.au/phd/html/node119.html

92 7. Compact Model-Based Descriptions

(a) (b)

Figure 7.5: Cluster quality for varying number of clusters (DS1)

spectrum of stationary/nonstationary, symmetric/asymmetric, cyclical/non-
cyclical, noisy/smooth, etc. data characteristics. To get the reference time
series, we used a PAM clustering (k = 4) of a random sample as described
before. To determine the k parameter we use standard methods.

Now we make comparison between our mathematical model based time
series approximation (MB) and existing approximation techniques. As com-
petitors we consider the following approaches: Bit Level using clipped time
series representations as proposed in [162], Discrete Fourier Transformation
(DFT) [7] and representations by means of Chebyshev polynomials (Cheby-
shev) [35]. The evaluation of the competing techniques is made using the
approximation quality of k-means clusterings.

Model description of the test datasets. For the mathematical function
of the model we used a linear combination of the original set of reference time
series, the quadrature and cubature of the reference time series, as well as
the first and second derivation of the reference time series in time. In fact,
using n model parameters we finally required only n/5 reference time series.

Measuring clustering quality. To carry out the experimental evaluation
of our method, we constructed reference clusterings based on the Euclidean
distance between the original time series and measured the clustering quality

7.4 Evaluation 93

(a) (b)

Figure 7.6: Cluster quality for varying number of clusters (DS2)

w.r.t. this reference clustering. To measure clustering quality, we used the
two most known (for the year 2008) clustering evaluation methods, namely
the Rand Index and the Jacard Distance [68]. These methods are intuitive,
at that Rand Index is especially good for a small number of clusters whereas
Jacard is good for a big number of clusters.

Experiments on clustering quality. In our first experiment, we look
closer at the quality of our approximation method for a varying number of
clusters based on the three datasets DS1 (cf. Figure 7.5), DS2 (cf. Figure 7.6)
and DS3 (cf. Figure 7.7). Over all competitors, the Bit Level approach shows
the lowest clustering quality for all experiments and experimental settings.
The quality we obtain with our method is at least two times higher than that
of the Bit level approach. In our experiments, our approach outperforms the
method based on DFT coefficients and is even gives better results than the
approach using the Chebyshev polynomials when increasing the number of
searched clusters.

In comparison with the competitors, our approach achieves optimal clus-
tering quality, also on the real world dataset. The explanation for this is the
fact that our model based similarity distance reflects the Euclidean distance
on the original time series very exactly.

94 7. Compact Model-Based Descriptions

(a) (b)

Figure 7.7: Cluster quality for varying number of clusters (DS3)

(a) (b)

Figure 7.8: Cluster quality for varying time series length (DS4)

7.4 Evaluation 95

(a) (b)

Figure 7.9: Performance of our model-based approach vs. Euclidean distance

Dependency on time series length. In the next experiment, we answer
the question how the cluster quality depends on the size of the time series.
Figure 7.8(a) and Figure 7.8(b) illustrate the results. As it can be seen,
the characteristic of both approaches DFT and Chebyshev, both based on
dimensionality reduction, is that the clustering quality decreases drastically
with increasing time series length. In contrast, using our model-based ap-
proximations we achieve high quality over all investigated time series lengths.
Similar to our method, the Bit Level approach keeps nearly constant quality
even for long time series, having however low performance.

Runtime comparison. In our last experiment, we compare the speed-up
of our approach with respect to the original Euclidean distance in terms
of CPU time. For that purpose, we varied the length of the time series of
DS4. The results are depicted in Figure 7.9(a). As it can be expected, our
model-based method (marked with “MB”in the figure) scales constant, while
the Euclidean distance (marked with “ED” in the figure) scales linear w.r.t.
the length of the time series. It can also be seen, for long time series our
model-based approach clearly outperforms the Euclidean distance. Figure
7.9(b) illustrates the speed-up factor, which gains our model-based approach
over the Euclidean distance based one. We can observe, this speed-up grows
linearly when increasing the length of the time series. As result, our approach
yields feature vectors of a constant and considerably lower dimensionality and

96 7. Compact Model-Based Descriptions

(beside more efficient indexing) yields better CPU performance than using
the original time series.

7.5 Conclusions

The performance of important Data Mining task like clustering time series
is primarily limited by the length of the given time series. Recent research
has proposed several dimensionality reduction approaches to derive a com-
pact approximation of time series. Approximative clustering using existing
compressed representations based on dimensionality reduction, usually tends
to low accuracy. Especially, this concerns large time series.

In this chapter, we propose an approximation technique for time series
based on the idea of mathematical models. According to this approach, each
time series is described by the coefficients of a mathematical model involving
a given set of reference time series. The great advantage thereby is that the
size of our approximation depends only upon the number of coefficients of
the model (in other words, upon the number of reference time series). This
means that our method is independent of the length of the original time series
and in particular can be applied also for very long time series. The resulting
compressed representation using a feature vector of coefficients of the model
allows efficient indexing of the time series approximations for fast similarity
search and clustering. We further show how our proposed approximations
can be used for approximate clustering. As we evaluated experimentally, our
novel approach outperforms existing state-of-the-art approximation methods
in terms of clustering accuracy, i.e. our approximations are considerably
better than existing schemata.

In the future work, we are going to extend our ideas of approximating
time series by means of mathematical models to stream data.

Chapter 8

Model-based Classification of
Data with Time Series-valued
Attributes

Similarity search and Data Mining on time series databases has recently at-
tracted much attention. In this chapter, we represent a data object by several
time series-valued attributes. Although this kind of object representation is
very natural and straightforward in many applications, there has not been
much research on Data Mining methods for objects of this special type. In
this chapter, we propose a novel model-based classifier exploiting the bene-
fits of representing objects by several time series. Classification decisions are
based on class-specific interaction patterns among the time series of an ob-
ject. Experimental results on benchmark data and real-world medical data
demonstrate the performance of our classifier.
Parts of the material presented in this chapter have been published in Pa-
per [24]. In this paper, Andrew Zherdin has developed the application of
the mathematical models for classification. Andrew Zherdin’s part was also
the model optimization and carrying out the experiments. Claudia Plant
has proposed the interpretability of the models and optimized the experi-
ments. She has also proposed to take BIC for the dimension choice. Afra
Wohlschläger and Leonhard Läer have done the medical part of the work.

98 8. Model-based Classification of Data

8.1 Introduction

In the last chapter, we used mathematical models for approximation task
when dealing with univariate time series. The choice of reference time series
is a non-trivial and data dependent step. Many real-word objects are repre-
sented however as multivariate time series. In this chapter, we will have to
do with multivariate time series and apply mathematical models to classify
them. The models building algorithm proposed here does not need searching
for reference time series.

There is a huge volume of papers on classification of time series, e.g.
[93, 99, 127]. However, most existing approaches consider a single time series
as the data object to be classified. In this chapter, we focus on the represen-
tation of a data object by several time series-valued attributes and propose
a novel algorithm for classification of such objects. Representing an object
by a set of time series appears very natural and straightforward in many
applications.

Consider for example a meteorological database storing measured data
from different meteorological stations. Each station can be regarded as an
object which is represented by several time series-valued attributes, including
temperature, rainfall and air pressure. Based on the measured data over a
certain period, stations can be automatically classified e.g. into stations with
normal weather conditions and stations with exceptional conditions which are
presented to a human expert.

In many medical applications, it is natural to represent a data object by
a system of time series. Consider for example EEG data: Electroencephalog-
raphy measures the electric activity in the brain by an array of usually 64
electrodes which are distributed over the scalp [145]. It is very natural to
consider the EEG of one person as a data object, where the 64 time series-
valued attributes represent the 64 electrodes. Another example is functional
magnetic resonance imaging (fMRI) [65]. This imaging modality yields time
series of 3-dimensional images of the brain. Also in this case, it is reason-
able to regard each subject as a data object which is represented by time
series-valued attributes. Each 3-d pixel called voxel of the fMRI image is an
attribute of time series type.

Increasing amounts of captured motion stream data are collected in mul-
timedia applications [34]. Gesture sensing devices, such as a CyberGlove
usually contain multiple sensors to capture human movements. Motion clas-
sification is the task to automatically assign movements, usually performed

8.2 Related Work 99

by different people, into predefined motion classes and has important appli-
cations in gait analysis and virtual reality. Again, it is reasonable to regard
each movement as a data object which is represented by the time series ob-
tained from the different sensors of the gesture sensing device.

Although representing an object by a system of time series is very nat-
ural in many applications, there has not been much research on Data Min-
ing methods for objects of this special type. We propose a classifier which
exploits the benefits of this kind of object representation by focusing on in-
teraction patterns between the time series within a data object. We derive
a description of each class in terms of a system of linear models character-
izing class-specific interaction patterns. Our experiments demonstrate that
the information on interactions substantially improves the classification accu-
racy. In addition, the models provide interesting insights for understanding
class-specific differences.

The remainder of this chapter is organized as follows. After a brief survey
of related work in the next section, we introduce our classifier in Section 8.3.
Section 8.4 presents an experimental evaluation and Section 8.5 concludes
the chapter.

8.2 Related Work

To describe the interaction patterns within the time series of an object, we
follow a model-based approach first introduced in the Chapter 7 and the
paper [106] for the purpose of efficient compression of time series. To derive
an approximation to speed up similarity search, in this approach each time
series is represented by a combination of a set of specific reference time series.
We use equivalent linear models to represent interactions of time series and
a similar algorithm for model finding, but with a very different objective.

In comparison to general time series classification, only relatively few pa-
pers focus on classification of multivariate time series. In [204] a decision
tree for data with time-series attributes is proposed. At the internal nodes
of this tree, time series are stored and splits are performed based on dissim-
ilarity between pairs of time series. The method selects upon split a time
series which exists in data by exhaustive search based on class and shape
information.

In [94] the authors present tClass, an algorithm for classifying multivari-
ate time series data based on so-called meta-features. These meta-features

100 8. Model-based Classification of Data

model some kind of recurring substructure in the instances, such as strokes
in handwriting recognition, or local maxima in time series data. The types
of substructures are defined by the user, but the substructures are extracted
automatically and are used to construct attributes. The parameter space
defined by the meta-features is segmented into regions beneficial for classifi-
cation using a heuristic technique. After feature construction, classification
is performed with conventional propositional learning algorithms, such as
decision trees.

For EEG data, some specialized classifiers have been proposed, e.g. in
[145] to use EEG as a biometric for person identification. To identify persons
with high accuracy based on EEG data with visual stimuli, after selection
of the best discriminative channels classification is performed by a neural
network.

Also in [146] a classification method especially designed for EEG with
visual stimuli is proposed. This method extracts the visual evoked potential
(VEP) which is embedded in the ongoing EEG and blurred by noise. The
VEP contained in the gamma band is extracted by digital filters. Similar to
[145], classification is performed by a neural network.

In [206] a distance-coupled Hidden Markov model (HMM) is introduced
for classification of EEG data. The distance-coupled HMM applies several
HMMs to model multivariate time series. The link between the different
HMMs is established by the fact that the state of one model at some partic-
ular time stamp t depends on the states of the other models at time stamp
t− 1. In their experiments the authors demonstrate the usability of coupled
HMMs for EEG classification. In contrast to [206], our models capture de-
pendencies not between time points but between the dimensions. Our models
are applicable to classes and not to single objects. So our models have a very
different structure compared to HMMs.

8.3 Model-Based Classifier

Our method for model-based classification involves 3 steps:

1. model finding,

2. model refinement,

3. classification.

8.3 Model-Based Classifier 101

In the training phase of the classifier, in the first step the interaction patterns
of the time series within each class are characterized by a system of linear
models. In the second step, these models need to be refined to be suitable
for classification. The final step is the classification of test objects.

Notations and Definitions. We represent each class as a system of linear
models. Following [106], a single model can be defined as follows.

Definition 12 (Model) A mathematical model M = (V, P, f) for a depen-
dent variable A (output) consists of the following parts:

� a set of exploratory variables a1, . . . , am (inputs),

� a mathematical function
f(V, P)

that is used to describe the dependency between A and a1, . . . , am. P
denotes the model parameters also called coefficients of the model.

The general form of the model is given by A = f(V, P) + ε, where ε denotes
the random error.

Note, that Definition 12 is the same as Definition 8 in Chapter 7. For
better readability we repeat it here again.

In this chapter, we focus on linear models, i.e. f is a linear combination
of the inputs.

Further, we consider a data setDS with n objects, i.e. DS = {O1, ..., On}.
Each object Oi is represented by d time-series valued attributes aj, each con-
sisting of a real-valued time series with m time points, i.e. Oi = {a1, ...ad}
and aj = {t1, ..., tm}. For the training data, a categorical class label is known.
To facilitate our argument, we focus on a 2-class problem with class labels
class1 and class2. However, our method can be straightforwardly applied in
a multi-class setting.

Model Finding. To capture the interaction patterns of time series within
a class, e.g. class1 we first have to generate a summarization of the time
series attributes of the objects of the class. For each of the d dimensions, we
concatenate the time series of all objects of the class. As a result we have
a novel object Os with d time series-valued attributes with |class1| ·m time
points. Now, we can derive a system of linear models as specified in Defi-
nition 12 for Os. All d attributes of Os are applied as output A once. The

102 8. Model-based Classification of Data

idea is to try to explain each individual attribute by a linear combination
of (potentially all) other attributes. To avoid over fitting, models with few
inputs are preferable. In addition, an exhaustive search for all combinations
of inputs is not feasible for large d. To cope with these problems, stepwise
algorithms are often a good choice [110, 57].

We propose an iterative stepwise algorithm for model finding which is
displayed in pseudocode in Figure 8.1. The algorithm has two parameters:
the time series being modelled (output) and a set of time series (inputs)
modelling the output time series. Our algorithm computes a model M for
the given output A and inputs V time series and returns this model as result.
Our purpose is to find a subset of V containing only those inputs which are
most relevant to explain A. To achieve a balance between model complex-
ity and goodness of fit, we apply the Bayesian Information Criterion (BIC)
[57]. Theoretically well founded in Bayesian statistics and information the-
ory, this criterion penalizes overly complex models and allows us to select
the most relevant inputs in a parameter-free way. Our algorithm starts with
an empty set relevantInputs. It then iteratively either adds a new input to
relevantInputs or removes an already existing element depending on which
of these two actions leads to a greater improvement of BIC (1). Based on
these relevantInputs the model is constructed by least-squares fitting. The
algorithm terminates if no further improvement of BIC can be achieved (2).
The algorithm finally returns the model based on relevantInputs (3).

Model Refinement. After application of the model finding algorithm using
each attribute of Os as an output, we obtain a set of models SM consisting
of d models per class. However, these models can not be directly applied
for classification. SM may contain models with large error and models rep-
resenting general trends in the data which are not class-specific. Therefore
the set of models needs to be refined to build a classifier with good discrim-
inatory power. As depicted in pseudocode in Figure 8.2, the algorithm for
model refinement involves two steps: First, we exclude models with large
error since they do not capture any distinct interaction information. This is
implemented by removing all models having an error larger than three times
the median of the error on training data (1). From the remaining models
we select those which discriminate between classes. For all classes and mod-
els, we compute the cumulative error on the training data. Models having
a smaller cumulative error for the correct class than for the wrong class are

8.3 Model-Based Classifier 103

algorithm findModel(Output A, Inputs V): Model M
relevantInputs := ∅;
oldMIN := +∞;
do {

//(1) find a relevant input
[minP lus, x+] := min

x∈(V \relevantInputs)
(BIC(relevantInputs ∪ {x}, A));

[minMinus, x−] := min
x∈relevantInputs

(BIC(relevantInputs \ {x}, A));

if(min(minP lus,minMinus) > oldMIN) then

// (2) no more relevant inputs
break;

end if
if(minP lus < minMinus) then
relevantInputs.add(x+);
oldMIN := minP lus;

else
relevantInputs.remove(x−);
oldMIN := minMinus;

end if
} while()

// (3) build the Model with inputs

M := new Model(relevantInputs,A);
return M ;

Figure 8.1: Algorithm for Model Finding. A and V are parameters of
findModel. The model M is the result of the method.

104 8. Model-based Classification of Data

included in the classifier (2).

A and V are parameters of findModel. The model M is the result of the
method.

Classification. The classification of the test objects is now simple. To
classify an object, we sum up the mean square error for all relevant models
for all classes. We assign the object to the class with the smallest mean
square error.

Runtime Complexity. The worst-case runtime complexity of the step-
wise model finding algorithm is quadratic in d. Usually, the number of time
points m is much larger than the number of dimensions d. Due to matrix
inversion required for least square model fitting, we then have cubic com-
plexity in m. The model refinement step, as well as the classification of an
object are quadratic in d and linear in m.

8.4 Evaluation

Data Sets. Table 8.1 provides a summary on the data sets used for eval-
uation. Data sets 1 to 8 are different EEG data sets available at the UCI
machine learning repository1. These data sets are derived from a study on
alternations of brain activity in alcoholic subjects in comparison to a con-
trol group. Each subject was exposed to either a single visual stimulus (S1)
or to two visual stimuli (S1 and S2). When two stimuli were shown, they
were presented in either a matched condition where S1 was identical to S2
or in a non-matched condition where S1 differed from S2. Data sets 1 to 4
correspond to the so-called Large Data Set at UCI where training and test
data are available. The task is to classify the subjects into the classes alco-
holic and control based on 10 time series-valued attributes. To generate a
representation of the objects of a class, we concatenated the time series of
all objects and all runs resulting in a time series of 2,560 time points. Data
sets 5 to 8 are derived from the so-called Small Data Set which contains
data of 2 subjects, one alcoholic and one of class control. For each of the 3
experimental paradigms, 10 runs of EEG have been recorded. The task here
is to classify the EEG runs to the classes alcoholic and control.

1http://archive.ics.uci.edu/ml/databases/eeg/eeg.data.html

8.4 Evaluation 105

algorithm refineModels(set of models SM , training objects O): refined set of
models RSM
// (1) remove corrupt models

median := median error of SM ;
for each i ∈ {1 . . . SM.size()} do

if(SM [i].error > 3 ·median) then
SM.remove(i);

end if
end for

// (2) find class separating models

for each m ∈ {1 . . . SM class1.size} do
for each o ∈ {1 . . . obj class1.size} do
difference[i]+ = mean square error(m, o);

end for
for each o ∈ {1 . . . obj class2.size} do
difference[i]− = mean square error(m, o);

end for
end for
for each m ∈ {1 . . . SM class2.size} do

for each o ∈ {1 . . . obj class1.size} do
difference[i]− = mean square error(m, o);

end for
for each o ∈ {1 . . . obj class2.size} do
difference[i]+ = mean square error(m, o);

end for
end for

// result

for each i ∈ {1 . . . difference.size} do
if(difference[i] < 0) then
RSM.add(i);

end if
end for

return RSM ;

Figure 8.2: Algorithm for Model Refinement.

106 8. Model-based Classification of Data

Name Description Data Objects #Objs #Cls #Dims Length

DS1 EEG single stimulus subjects 40 2 64 ≈2560
DS2 EEG matched stimulus subjects 40 2 64 ≈2560
DS3 EEG non-matched stimulus subjects 40 2 64 ≈2560
DS4 EEG combined subjects 40 2 64 ≈7680
DS5 EEG single stimulus runs 20 2 64 256
DS6 EEG matched stimulus runs 20 2 64 256
DS7 EEG non-matched stimulus runs 20 2 64 256
DS8 EEG combined runs 20 2 64 768
DS9 fMRI subjects 26 2 90 325
DS10 motion stream signs 2565 95 22 ≈57

Table 8.1: Multivariate Time Series Data Sets.

DS9 [65] consists of 26 functional MRI images. This data set has been
obtained from a study on somatoform pain disorder and consists of images
of 13 diseased subjects and 13 healthy controls. For classification we selected
90 regions of interest as proposed in [190].

DS10, also from UCI, 2 contains motion stream data of Australian sign
language. For each of the 95 Australian language signs, 27 examples were
captured from a native signer using high-quality position trackers and instru-
mented gloves.

Comparison Methods and Validation. For comparison, we imple-
mented two basic classifiers: Nearest neighbor (1NN) and classification to
the nearest class centroid (centroid). Both basic classifiers do not consider
interaction patterns among time series. To classify a test object, for all
training objects and all attributes the nearest neighbor classifier sums up the
Euclidean distance and assigns the object to the class of that training object
with the smallest overall distance. The centroid classifier computes for each
class the centroid by averaging all time series-valued attributes of all training
instances. A test object is assigned to the label of the closest centroid.

We obtained the code of TClass from the authors [94]. The parametriza-
tion of this method is very difficult, since the type of meta-features as well as
the base learner need to be selected by the user. As recommended in [94], we
use a universal set of meta-features for temporal domains. In addition, we
use following aggregate global attributes: mean, min, max and mode. Mean,

2http://kdd.ics.uci.edu/databases/auslan2/auslan.data.html

8.4 Evaluation 107

max and min were recommended by authors for DS10. Mode improved re-
sults on DS1-DS8. In all experiments, we use AdaBoost with J48 decision
tree as learner. According to the experiments in [94], this is the third-best
base learner for TClass. Two slightly better learners are Naive Segmentation
and voting. Although Naive Segmentation is implemented, we could not re-
peat the very good results. We do not use voting since it is not implemented
and it is unclear, which voting algorithm was used in [94]. Because TClass is
not deterministic, unless otherwise specified, we report the mean of accuracy
of 10 runs.

In addition we compare our method to [145, 206, 146], 3 classifiers es-
pecially designed for EEG data (cf. Section 8.2). For DS1-DS4 train and
test data are given. Classification results are therefore directly comparable.
For DS5-DS8 we implement 5-fold cross-validation as in [206]. We do not
provide a comparison to [204] since the authors arbitrarily selected runs from
the full EEG data set. We validate DS9 with leave-one-out, since there are
only few instances. For DS10 we implement 10-fold cross-validation as in [94].

Results. Our model-based classifier demonstrates an excellent accuracy
of 100% on 6 out of 10 data sets and strongly outperforms the two basic
classifiers. Table 8.2 summarizes the results. On EEG data, our classi-
fier even outperforms the classifiers especially designed for this type of data
[145, 206, 146]. These results demonstrate that the information on interac-
tion patterns is highly relevant for the classification of EEG and fMRI data.
On data set DS9 (fMRI) our model-based classifier shows very good results.
Only one object is incorrectly classified. The most important models for
classification decision, are judged as reasonable by domain experts.

Only on DS10, TClass performs significantly better than all comparison
methods. But notice that DS10 has been originally published by the au-
thors of [94] and TClass has been designed for motion stream data. With
75% in accuracy, our model-based classifier performs much better than the
basic methods centroid and 1-NN. This indicates that attribute interactions
are also useful for the classification of motion stream data. However, ev-
idently, the interactions in this data set can not perfectly be captured by
linear models. We could not reproduce the accuracy of TClass reported in
the publication (98%) which was obtained using voting, since it is not clear
which voting strategy has been applied. In addition, TClass with voting

108 8. Model-based Classification of Data

Data Set Centroid 1-NN Models TClass Others

DS1 50% 50% 100% 70% n.a.
DS2 55% 55% 90% 74% n.a.
DS3 80% 55% 100% 72% n.a.
DS4 60% 50% 100% 72% 96% [146]/ 98% [145]
DS5 65% 90% 98% 89% n.a.
DS6 40% 80% 100% 86% n.a.
DS7 90% 90% 100% 89% n.a.
DS8 85% 90% 100% 91% 90% [206]
DS9 85% 77% 96% 58% n.a.
DS10 11% 46% 75% 96% 98% [94]

Table 8.2: Results of Classification.

is very inefficient. The run3 without voting for DS10 lasts approximately
24 hours. For 11 voters, as recommended in [94] a naive voting algorithm
would take 11 days. The model-based classifier run needs less than 40 min-
utes under equal conditions. Moreover, our algorithm is parameter-free and
deterministic, whereas TClass exhibits a very high variation of results. E.g.
for DS1 accuracies between 20% and 85% are obtained.

As an additional advantage, the interaction models generated by our clas-
sifier provide interesting information for interpretation. Figure 8.3 displays
the 3 most relevant models for separating the classes on DS1. For both
classes, the layout of the 64 electrodes on the scalp is displayed together with
the best separating interaction patterns. The models of the alcoholic sub-
jects involve different brain regions than those of the healthy control group.
The subtle differences of interactions need to be systematically evaluated in
future work.

8.5 Conclusion

In this chapter, we proposed a novel model-based classifier for data with
time series-valued attributes. Classification decisions are supported by class-
specific interaction patterns within the time series of a data object. The
experimental evaluation demonstrates that interaction patterns characterized

310-fold cross-validation; 33 runs; Intel Core 2 Quadro(2,66 GHz), 8 GB RAM

8.5 Conclusion 109

(a) Alcoholic. (b) Control.

Figure 8.3: Illustration of Best Class-separating Models on UCI EEG Data.

by linear models are very useful for classification, especially of EEG and fMRI
data.

In ongoing work we focus on interpretation of the identified models. We
will interpret the models of fMRI for somatoform pain disorder patients to
find the most important regions. In addition, we will evaluate the classifier
on EEG data from our cooperation partners for the identification of subjects
in different stages of anesthesia. It would also be interesting to design model-
based classifiers for fMRI data and combined fMRI-EEG data sets which is
very challenging because of the large number of time series in fMRI data. We
also plan to evaluate the classifier on time series data from other domains.

Furthermore, we want to extend our model notion to more general models.
Among building blocks to be investigated are differential equations and kernel
functions.

110 8. Model-based Classification of Data

Chapter 9

Mining Interaction Patterns
among Brain Regions by
Clustering

Functional magnetic resonance imaging (fMRI) provides the potential to
study brain function in a non-invasive way. Massive in volume and com-
plex in terms of the information content, fMRI data requires effective and
efficient Data Mining techniques. Recent results from neuroscience suggest
a modular organization of the brain. To understand the complex interac-
tion patterns among brain regions we propose a novel clustering technique.
We model each subject as multivariate time series, where the single dimen-
sions represent the fMRI signal at different anatomical regions. In contrast
to previous approaches, we base our cluster notion on the interactions be-
tween the univariate time series within a data object. Our objective is to
assign objects exhibiting a similar intrinsic interaction pattern to a common
cluster. To formalize this idea, we define a cluster by a set of mathemati-
cal models describing the cluster-specific interaction patterns. Based on this
novel cluster notion, we propose interaction K-means (IKM), an efficient al-
gorithm for partitioning clustering. An extensive experimental evaluation
on benchmark data demonstrates the effectiveness and efficiency of our ap-
proach. The results on two real fMRI studies demonstrate the potential of
IKM to contribute to a better understanding of normal brain function and
the alternations characteristic for psychiatric disorders.
The concepts described in this chapter have been published in Papers [154,
155] and extended with subsection 9.7.2. The paper [155] is an extended

112 9. Mining Interaction Patterns among Brain Regions

version of the paper [154]. In this paper, Andrew Zherdin has proposed
and optimized the application of the models for clustering. Besides, Andrew
Zherdin has planned and carried out the experiments. Claudia Plant con-
tributed the idea to apply the interaction-based model as a cluster notion
and supervised the algorithm development. Anke Meyer-Baese has helped
in the idea improvement. The medical part of the paper has been done by
Christian Sorg and Afra Wohlschläger.

9.1 Introduction

Human brain activity is very complex and far from being fully understood.
Many psychiatric disorders like Schizophrenia and Somatoform Pain Disorder
can so far neither be identified by biomarkers, nor by physiological or histo-
logical abnormalities of the brain. Aberrant brain activity often is the only
resource to understand psychiatric disorders. Functional magnetic resonance
imaging (fMRI) opens up the opportunity to study human brain function in a
non-invasive way. The basic signal of fMRI relies on the blood-oxygen-level-
dependent (BOLD) effect, which allows indirectly imaging brain activity by
changes in the blood flow related to the energy consumption of brain cells. In
a typical fMRI experiment, the subject performs some cognitive task while in
the scanner. Recently, resting-state fMRI has attracted considerable atten-
tion in the neuroscience community [53]. Surprisingly, only about 5% of the
energy consumption of the human brain can be explained by the task-related
activity. Many essential brain functions, e.g. long-term memory are largely
happening during rest, most of them without consciousness of the subject
and many of them are still not well understood. Therefore recent findings
support the potential of resting-state fMRI to explore the brain function in
healthy subjects and reveal alternations characteristic for psychiatric disor-
ders (e.g. [179]) . In resting state fMRI, subjects are instructed to just close
their eyes and relax while in the scanner. fMRI data are time series of 3-
dimensional volume images of the brain. The data is traditionally analyzed
within a mass-univariate framework essentially relying on classical inferential
statistics, e.g. contained in the software package SPM [150]. A typical statis-
tical analysis involves comparing groups of subjects or different experimental
conditions based on univariate statistical tests on the level of the single 3-d
pixels called voxels. Data from fMRI experiments are massive in volume with
more than hundred thousands of voxels and hundreds of time points. Since

9.1 Introduction 113

these data represent complex brain activity, also the information content can
be expected to be highly complex. Only a small part of this information is
accessible by univariate statistics. To make more of the potentially avail-
able information accessible, we need effective and efficient multivariate Data
Mining methods.

Recent findings suggest a modular organization of the brain into different
functional modules [177]. To obtain a better understanding of complex brain
activity, it is essential to understand the complex interplay among brain re-
gions during task and at rest. Inspired by this idea, we propose a novel
technique for mining the different interaction patterns in healthy and dis-
eased subjects by clustering. At the core of our method is a novel cluster
notion: A cluster is defined as a set of subjects sharing a similar interaction
pattern among their brain regions. After standard pre-processing including
parcellation into anatomical regions, we model each subject as a data object
which is represented by a multivariate time series. Each of the dimensions is
a time series corresponding to the fMRI signal of a specific anatomical brain
region. Our approach Interaction K-means (IKM) simultaneously clusters
the data and discovers the relevant cluster-specific interaction patterns. The
algorithm IKM is a general technique for clustering multivariate time series
and not limited to fMRI data. Besides fMRI, multivariate time series are
prevalent in many other applications. Increasing amounts of motion stream
data are collected in multimedia applications [34]. Gesture sensing devices,
such as a CyberGlove usually contain multiple sensors to capture human
movements. Human motion stream data can also be extracted from video
streams. In this application, it makes sense to regard each movement as a
data object. A cluster analysis of motion stream data potentially identifies
clusters with similar movements, usually performed by different persons.

Clustering time series has already reached high maturity with multiple
books and book chapters [147], surveys [114, 100] and a huge volume of
research papers, e.g., [117, 196, 143, 142, 118, 162, 56, 199]. Defining a
meaningful similarity measure is probably the most important challenge in
clustering time series. In [116] Lin and Keogh illustrate some pitfalls asso-
ciated with clustering based on subsequences with Euclidean distance and
propose an alternative similarity measure based on characteristic recurrent
motifs.

Considering the practical relevance of clustering multivariate time series,
only disproportionately few papers address this issue [199, 202, 144, 200].
Many of the univariate methods mentioned so far can be straightforwardly

114 9. Mining Interaction Patterns among Brain Regions

extended to the multivariate case. However, by doing so, information is lost:
Data which is inherently multivariate often contains interactions between
the different time series. We demonstrate that this information can be very
useful for clustering. In our examples, this aspect is intuitively reasonable:
A motion is characterized by a specific pattern of dependencies among the
recording sensors. A diseased person has a characteristic interaction pattern
of brain regions which differs from the healthy controls. In [154] we first
introduced this novel cluster notion. In this chapter, we extend this basic
idea to support nonlinear models and demonstrate its potential to discover
interaction patterns among brain regions from fMRI data.

The major contributions of this chapter can be summarized as follows:

1. We introduce a novel cluster notion for clustering multivariate time
series based on attribute interactions.

2. We propose Interaction K-means (IKM), a partitioning clustering al-
gorithm suitable to detect clusters of objects with similar interaction
patterns.

3. We demonstrate that the information on interaction patters provides
valuable insights for interpretation.

4. Motivated by a real challenge from a neuroscience application, IKM
outperforms state-of-the art techniques for clustering multivariate time
series on synthetic data as well as on benchmark data sets from different
applications.

5. On fMRI data from studies on Somatoform Pain Disorder and Schizophre-
nia our algorithm detects very interesting and meaningful interaction
patterns.

Notations. We consider a data set DS with n objects. Each object O ∈ DS
is a d-dimensional multivariate time series. Each dimension or attribute
ai ∈ A is a time series with m time points, i.e. ai = {t1,i, ..., tm,i}. We also
use ~ai to denote the m time points of dimension ai as a column vector. We
use italics to denote sets, e.g. A denotes the set of attributes of DS and O a
set of objects. Capital letters denote matrices composed by column vectors
of dimensions. We further denote by m∗ the overall number of time points
considering one distinct dimension of some fixed set of objects. We consider
a clustering C as a non-overlapping partitioning of DS into K clusters, i.e.

9.2 Related Work 115

DS =
⋃

1≤j≤K Cj and drop the indices whenever non ambiguous.
The remainder of this chapter is organized as follows. In the next section, we
briefly survey related work. In Section 9.3 we introduce the interaction-based
cluster notion. Section 9.4 extends the cluster model to support nonlinear in-
teractions. In Section 9.5 we propose the corresponding clustering algorithm
Interaction K-means (IKM). Section 9.7 contains an extensive experimental
evaluation with diverse datasets and Section 9.8 shows solutions for neuro-
logical questions. Section 9.9 concludes the chapter.

9.2 Related Work

Time series clustering is nowadays an important and quickly developing field
with application in medicine, astronomy and economics. In spite of impor-
tance of multivariate time series, only a few algorithms ([199, 202, 144]; [200])
have been especially designed for their clustering. However, most methods
for clustering univariate time series can be applied to multivariate time series
as well. Therefore we provide a brief survey on these techniques.

The most difficult task in clustering time series is to find an appropri-
ate similarity measure. Many approaches rely on feature transformation and
dimensionality reduction. Features derived by Discrete Wavelet Transform
and the Discrete Fourier Transform [134], as well as obtained by Principle
Component Analysis [182, 189] have been successfully applied for cluster-
ing. Alternative approaches to feature extraction include e.g. the method of
multi-resolution piecewise aggregate approximation presented in [118]. This
approach extends the idea of piecewise aggregate approximation to multiple
resolutions. Recently, compression-based similarity measures have been pro-
posed, e.g. [162]. A special representation of time series in a form of a bit
string is used in this approach. These bit strings indicate the intervals where
the value of the time series is above its mean value. To reduce the I/O cost
and to speed-up the clustering task, these bit level representations are then
compressed. A compression-based similarity measure (also proposed in [102])
is applied to compare long time series structure using co-compressibility as
a dissimilarity measure. In spite of requiring certain statistical conditions
from data, this is a good-working approach.

Many approaches use Hidden Markov Models (HMM) for clustering time
series, e.g. [144, 161, 56], to mention a few. The concept of HMM is partic-
ularly useful to model temporal correlations among the measurements. The

116 9. Mining Interaction Patterns among Brain Regions

approach [56] for example uses segmental semi-Markov models. First, the
time series are modeled by k distinct segments and then a Viterbi-like al-
gorithm is applied to compute the similarity measure. In the experimental
section, we compare to the Sequence Cluster Refinement Algorithm (SCRA)
[202]. Like IKM, this approach is an iterative partitioning K-means-style
clustering method but it uses HMMs to represent the cluster centers. In the
assignment step, each time series object O is assigned to that cluster with
the HMM model that most likely generated the sequence of O. In the update
step, the HMM of each cluster is recomputed maximizing the probability of
producing all time series currently assigned to the cluster. In contrast to
HMMs, our models capture dependencies not between time points but be-
tween the dimensions. Our models are applicable to groups of objects and
not to single objects. HMMs are also a good approach to features extraction
from each dimensions of multivariate time series. So our models have a very
different structure compared to HMMs. To describe the interaction patterns
within the time series of an object, we apply linear models as recently pro-
posed in [106, 24] for the purpose of efficient compression and classification
of time series, respectively.

Some approaches especially focus on clustering multivariate time series. Au-
thors of [200] suggest merging all dimensions of multivariate time series into
a long univariate time and supplying it to the Autoclass algorithm [39]. This
technique is not applicable if the number of time points varies among the
objects, a case frequently occurring in fMRI data. In [202] authors apply
Independent Component Analysis to transform multivariate time series data
into statistically independent components, and then propose a clustering al-
gorithm called ICACLUS to group underlying data series according to the ICs
found. This approaches is based on the assumption that the observed mul-
tivariate time series are mixtures of statistically independent sources which
need to be de-mixed in order to find the clusters. In the experimental sec-
tion, we compare to ICACLUS, since Independent Component Analysis and
related blind signal source separation techniques have been successfully ap-
plied for analyzing neuroimaging data, see e.g, [129]. We further compare our
method to structure-based statistical features clustering (SF) [199] which has
been especially designed for clustering multivariate time series. SF represents
each attribute of the multivariate time series by a fixed-length vector whose
components are statistical features of the time series which capture the global
structure. Statistical features include e.g. hurst, kurtosis and nonlinearity.

9.3 Interaction-Based Cluster Notion 117

These descriptive vectors, one for each component of the multivariate time
series, are concatenated, before being clustered using a standard clustering
algorithm such as K-means. Extensive experiments demonstrate that SF
is suitable to identify activity patterns from motion stream data with high
accuracy.

9.3 Interaction-Based Cluster Notion

In this section, we elaborate our cluster notion based on characteristic inter-
action patterns. We want to find clusters of objects which are represented by
multivariate time series sharing a common cluster-specific interaction pat-
tern among the dimensions. For an example consider Figure 9.1 displaying
a data object represented by a multivariate time series. The dimensions of
this object exhibit a simple interaction pattern: The time series of dimension
dim12 can be expressed by a linear combination of some other dimensions:
dim12 := 2 · dim4 + dim5 + dim6. Typically, not all dimensions of an object
are interacting. For simplicity, only the dimensions involved in the inter-
action pattern are displayed Figure 9.1. Note that this is an overly simple
example, but more complex patterns are prevalent in real-world data, and
to the best of our knowledge, have not been exploited for clustering so far.
Often, dependencies among dimensions are rather regarded as non-necessary
redundant information which should be removed before clustering, e.g. by
the application of PCA for linear dependencies. In this work, we want to pre-
serve the information on attribute dependencies and demonstrate that it can
indeed be very valuable for clustering. The resulting clusters are composed
of objects exhibiting similar dependencies among their attributes which can
therefore be interpreted as cluster-specific interaction patterns.

To formally represent this idea, we define each cluster by a system of
mathematical models. We first focus on linear models. Linear models have
been successfully applied in a wide range of applications because they are
interpretable and computationally efficient. In Section 9.4, we consider non-
linear dependencies, which can often be expressed by linearizable functions.

Definition 13 (Linear Model) A linear model Ma for a dimension a and
a set of objects O is provided by:

A = V · P + E, where

118 9. Mining Interaction Patterns among Brain Regions

Figure 9.1: Example of an Interaction Pattern.

� A ∈ Rm∗ results from horizontally concatenating the time series of
dimension a of all objects in O,

� V ∈ Rm∗×|V| contains the explanatory variables,

� P ∈ R|V| contains the parameters or coefficients of the model.

� and E =
√
||A− V P ||2 ∈ Rm∗ contains the error.

We further denote sum of errors of the set of objects O with respect to Ma

by EMa =
∑m∗

i=1Ei. We can also determine the error of an arbitrary object

P /∈ O as EP,Ma =
√
||AP − VPP ||2. AP denotes the matrix obtained by

projecting object P to dimension a. Analogously, VP is the matrix containing
the set of explanatory variables to model object P .

To obtain a single model for each dimension of a set of objects, we concatenate
the time series of all objects. Note that our method does not require that
all time series of all objects are of equal length. To illustrate this definition,
consider the model for dimension dim12 in Figure 9.1 as an example : Assume
we have 100 objects in a cluster. In this case, A is of size 333, 300, since the
time series of each object consists of 3333 time points. The explanatory
variables for dim12 are dim4, dim5 and dim6. Therefore, matrix V is of size
333, 300× 3. Now, we are ready to define an interaction-based cluster.

Definition 14 (Interaction-Based Cluster) An interaction-based cluster
C is defined by:

� A set of models MC = {MC,1 , ...,MC,d} representing the dependencies
of each single dimension with respect to the other dimensions. We

9.3 Interaction-Based Cluster Notion 119

denote the model of dimension ai of cluster C by MC,i. For model MC,i

we apply Vi j {A\ai} as set of explanatory variables in Definition 13.
We will address the question how to find a suitable set of explanatory
variables below.

� A set of data objects OC associated to C.

� We denote the error of cluster C by EC which is provided by EC =∑d
i=1 EMi

.

� The error of object O with respect to cluster C, denoted by EO,C is

provided by EO,C =
∑d

i=1 EO,Mi
.

The aim of interaction-based clustering is to obtain a non-overlapping par-
titioning of DS into K clusters. Finally, each cluster should represent a
specific interaction pattern which is characteristic for the assigned objects.
More precisely, the optimization goal can be specified as follows:

Definition 15 (Clustering Objective Function) The optimization goal
for interaction-based clustering is to minimize the total sum of errors of all
K clusters.

min
∑
C∈C

1

m∗C
EC .

To take into account that clusters consisting of objects with longer time series
naturally tend to have a larger error, we normalize EC by the total number
of time points of the objects in cluster C , which we denote by m∗C .

Model Finding. Before addressing the problem of how to find the clus-
ters, we need to describe how the set of models MC can be computed from
the set of objects OC which are associated to a cluster C. Since we focus
on linear models, this involves solving d regression problems. Multiple least
square regression can be applied to derive the models. However, a common
problem is overfitting. The more dimensions are included into the model, the
more variance is explained and thus the smaller is the error term. Models
involving a large part or even all dimensions are not generalizable and hard
to interpret. Therefore, the set of explanatory variables of each model needs
to be carefully selected.

120 9. Mining Interaction Patterns among Brain Regions

To determine the really relevant dimensions, we apply a greedy-stepwise
algorithm for model finding [110] in combination with the Bayesian Informa-
tion Criterion (BIC) [57] as evaluation criterion. The greedy-stepwise algo-
rithm is an established technique for variable selection in regression problems.
This algorithm starts with an empty set of relevant dimensions. In each step,
either one dimension is added or removed, depending on which of these two
actions is judged superior by the evaluation criterion. The algorithm termi-
nates if none of the two actions leads to a further improvement. As evaluation
criterion, we apply BIC which determines a balance between goodness-of-fit
and complexity of the model and is defined by:

BIC(Ma) = −2 · LL(a,Ma) + log(m∗)(|V|+ 1).

The first term represents the goodness-of-fit, where LL(a,Ma) denotes the
log-likelihood of dimension a given the model. The second term punishes
overly complex models.

9.4 Nonlinear Models

Interaction processes in nature are not limited to be linear. Therefore we
extend our approach to also support nonlinear models.

Definition 16 (Nonlinear Model) A nonlinear model Ma for a dimen-
sion a and a set of objects O is provided by:

A = f(V, P) + E, where

� A, V, P specified as in Definition 13,

� E =
√
||A− f(V, P)||2 ∈ Rm∗ contains the error;

� Π is the number of parameters for the function f(·, ·)

� and f(·, ·) is an explanatory function: f : Rm∗×|V| × RΠ → Rm∗.

The definition is analog to Definition 13 but extends it for nonlinear cases.
If f(·, ·) is a classical multiplication of the matrix and a vector and Π = |V |,
Definition 14 coincides with Definition 13.

9.4 Nonlinear Models 121

Not every nonlinear model can be computed efficiently. We therefore con-
sider only the sub-class of linearizable models. In linearizable models, each
coefficient can be pre-computed and inserted as a new explanatory variable.

Definition 17 (Linearizable models) A nonlinear model Ma for a di-
mension a and a set of objects O is provided by:

A =
m
′∑

i=1

fi(vi, pi) + E, where

� A, V, P,E are specified analogously to Definition 13,

� m
′

is a number of summands,

� and fi(·, ·) are a explanatory functions: fi : Rm∗ × R→ Rm∗

A large class of nonlinear models can be specified by linearizable models. To
give a simple example, consider the following:

A(t) = 3v2
1(t) + 2 sin(v2(t))− log(v3(t))

We can rewrite this model as:

A(t) = 3ṽ1(t) + 2ṽ2(t)− ṽ3(t)

with ṽ1(t) = v2
1(t); ṽ2(t) = sin(v2(t)); ṽ3(t) = log(v3(t)).

Due to the special properties of fMRI data, models with time-delay are espe-
cially useful. An event in a specific brain region measured by BOLD signal
activity induces BOLD activity in another region by some time delay [52].
Particularly Granger causality between time series of BOLD activity is well
suitable for modeling causal (i.e. time delayed) influences of activity across
remote brain areas, see e.g., [71]. To support integrating this aspect into our
approach, we need a linearizable model with time delay.

Definition 18 (Model with time delay) A model with time delay Ma is
nonlinear model with the explanatory function f provided by:

f : Rm∗×|V| × R|V| → Rm∗−|O|

f(V, P) := TimeShift1(V) · P where

122 9. Mining Interaction Patterns among Brain Regions

� V, P are specified analogously to Definition 13

� and TimeShift1(V (t)) := V (t−1) i.e. we cut off the last time point of
each object from matrix V . The length of output time series is m∗−|O|,
where m is the length of input time series (here |O| is the number of
objects in the model).

We can describe time-delay model for one object with a following equation:

TimeShift−1(A) = TimeShift1(V)P + E or

A(t) = V (t− 1)P + E(t) for ∀t ∈ [2 . . .m∗].

Our experiments in Section 9.8.3 demonstrate that models with time delay
can improve the clustering accuracy on fMRI data. Depending on the appli-
cation domain, other model classes like e.g. threshold autoregressive models
for financial applications could also be integrated.

9.5 Interaction K-means Clustering

In this section, we introduce the algorithm interaction-K-means (IKM) which
minimizes the clustering objective function provided in Definition 15. Simi-
lar to classical K-means [122], IKM is an iterative algorithm which efficiently
converges towards a local minimum of the optimization space.

Algorithm IKM. Analogously to K-means, the first step of IKM is the
initialization. As K-means, the result of IKM strongly depends on a suitable
initialization. As a common strategy for K-means, we propose to run IKM
several times with different random initializations and keep the best overall
result. For initialization, we randomly partition DS into K clusters. For IKM
it is favorable to assure that the initial clusters are balanced in size to avoid
overfitting. Therefore, we partition the data set into K equally sized random
clusters and find a set of models for each cluster as described in the previous
section. After initialization, IKM iteratively performs the following two steps
until convergence: In the assignment step, each object O is assigned to the
cluster w.r.t. which the error is minimal, i.e. O.cid = minC∈C EO,C . It is
easy to see that this minimizes the objective function in Definition 15. After

9.5 Interaction K-means Clustering 123

algorithm IKM (data set DS, integer K): Clustering C
Clustering bestClustering;

//initialization
for init := 1 . . .maxInit do
C := randomInit(DS,K);
for each C ∈ C do
MC := findModel(C);

while not converged or iter < maxIter do
//assignment

for each O ∈ DS do
O.cid = minC∈C EO,C

//update
for each C ∈ C do
MC := findModel(C);

if improvement of objective function
bestClustering := C;

end while

end for
return bestClustering;

Figure 9.2: Algorithm Interaction K-means.

124 9. Mining Interaction Patterns among Brain Regions

assignment, in the update step, the models of all clusters are reformulated.
Pseudocode of IKM is provided in Figure 9.2.

As an iterative partitioning clustering algorithm, IKM follows a similar
algorithmic paradigm as K-means. However, note that there are significant
differences: Our cluster notion requires a similarity measure, which is very
different to LP metric distances. The similarity measure applied in IKM are
the errors with respect to the set models of a cluster. This similarity measure
is always evaluated between an object and a cluster, and not between two ob-
jects. In contrast to K-means or K-medoid algorithms, we can not state that
a data object is the representative of a cluster. The cluster representative
in IKM is a set of models describing a characteristic pattern of interaction
among the dimensions.

Convergence. IKM converges as soon as no object changes its cluster as-
signment during two consecutive iterations. Usually, a fast convergence can
be observed (less than 50 iterations on our experimental data), but there are
some rare cases in which IKM does not converge. Analogously to standard
K-means, it can be straightforwardly proven that the assignment and the
update step strictly decrease the objective function provided in Definition
15. However, due to the greedy stepwise algorithm applied for model find-
ing, cf. Section 9.3, the strictly monotonic property is lost. In particular,
in different iterations of IKM, BIC may select different numbers of explana-
tory variables to be included in the cluster models. We therefore propose
to terminate after maxIter iterations. Our experiments demonstrate that
this has no negative effects on the quality of the clustering result. Recently,
following the approach of smoothed analysis Arthur et al. [14] have proven
that K-means converges in polynomial time on an arbitrary input data set
subjected to random perturbations. This result theoretically supports our
approach, since the fact that slightly different explanatory variable selection
can happen in consecutive iterations is similar to minor perturbations of the
data.

Runtime Complexity. As for ordinary K-means, the runtime of IKM scales
linearly with the number of objects n, since the complexity of assignment step
is linear in n and usually only a few iterations are performed. Clearly, the
update step is the most computationally expensive step, since model finding
involves matrix inversion with complexity of O(d3) combined with the greedy
stepwise algorithm with complexity of O(d2). Aggregative pre-computing in-

9.6 Interpretation of the Clustering Result 125

spired by [40] allows us to become virtually independent of the length of
the time series. For model-finding we very frequently need to determine
the model parameters P and the error E, which involves matrix multipli-
cation of complexity O(m∗d2). Following [40], we pre-compute the matrix
Θ∗ with θ∗ij = θ∗ji :=

∑m∗

k=1 Zki · Zkj, Z := [V |A]. With Θ∗, multiplication

can be performed very efficiently: V TV =
(
θ∗ij

)
i = 1 . . . d− 1,
j = 1 . . . d− 1

and V TA =

(
θ∗ij

)
i = d,

j = 1 . . . d− 1

P = (V TV)(V TA) To determine the different models for

the dimensions a cluster, we can always apply Θ∗ and just need to apply an-
other dimension as A. In contrast [40], we also need E which is outside the
scope of [40]. But the computation of E can be supported by Θ∗ as follows:
We reduce E2 = ||A− V P || as follows:
E2 = ||A− V P || = (A− V P)T (A− V P) =
= ATA− ATV P − (V P)TA+ (V P)T (V P) =
= ATA− (V TA)TP − P T (V TA) + P T (V TV)P,

with (V TA) ∈ R(d−1) and (V TV) ∈ R(d−1)×(d−1), and R 3 (ATA) = θd,d,
cf. Definitions 13, 14. Calculation of Θ∗ needs O(m∗d2), but only once.

We calculate Θ∗ as Θ∗ =
∑|O|

i=1 Θi. And Θi is precalculated for object i.
(θi)kj =

∑m
l=1 Zlk · Zlj. |O| is the number of objects in the cluster. The

costs are amortized by each calculation of model coefficients and the error.
Multiple runs of IKM increase this effect (cf. Section 9.7.3).

9.6 Interpretation of the Clustering Result

A major advantage of IKM is possibility to interpret the detected interaction
patterns. To facilitate interpretation, we focus on a subset of the models
which best differentiates among the clusters. For each pair of clusters, the
best discriminating models are selected by leave-one-out validation using ob-
jects of the corresponding clusters. Figure 9.3 displays the algorithm for
interpretation in pseudocode. Considering a pair of clusters, we first gener-
ate the models of each individual cluster of from the training data. Then
we compute the error of the test objects w.r.t. all models and sum up all

126 9. Mining Interaction Patterns among Brain Regions

errors. To obtain a ranking of the models w.r.t. their ability to discriminate
among the clusters, we consider errors w.r.t. the correct cluster of the test
object with a positive sign (these errors should be small) and errors w.r.t the
other cluster with a negative sign, respectively. Finally, we sort all models
ascendingly according to the error. The top-ranked models best discriminate
among the clusters.

User Feedback. The clustering result together with the information
about which models best discriminate among clusters is a good basis for user
interaction. Expert users can easily select the most relevant dimensions of the
multivariate time series based on this information. Also, experts can easily
verify their hypotheses on which dimensions, in the neuroscience application
corresponding to anatomical brain regions are most relevant. After selecting
the relevant regions, IKM can be run again. Our experiments in Section 9.8
demonstrate that this strategy can greatly improve the clustering result and
thereby confirms hypotheses of the experts.

9.7 Comparison to State-of-the-Art

9.7.1 Methodology

Selection of Comparison Methods. Existing approaches to clustering
multivariate time series do not consider interaction information. Most ap-
proaches rather extract features from each dimension and cluster the result-
ing feature vector, cf. Section 9.2. To demonstrate that the information on
attribute interaction is valuable for clustering multivariate time series, we
compare IKM to two feature-based approaches. As a baseline, we consider
classical K-Means clustering with Euclidean distance, which we term Naive
in the following. The naive algorithm considers the concatenated dimensions
of an object as a feature vector. In addition, we compare to Statistical Fea-
ture Clustering (SF) [199] which is a state-of-the-art feature-based approach
to clustering multivariate time series, cf. Section 9.2. We compare to two
further approaches addressing the challenge of clustering multi-variate time
series in different non-feature-based ways: The Sequence Cluster Refinement
Algorithm (SCRA) [202] uses Hidden Markov Models (HMMs) to represent
clusters. The technique ICACLUS [144] relies on Independent Component
Analysis (ICA), see Section 9.2.

9.7 Comparison to State-of-the-Art 127

algorithm dimensionRanking
(Cluster Ci, Cluster Cj): ranking
error in models := new ARRAY [d];

//leave-one-out-validation
for each O ∈ OCi

∪ OCj
do

test := O
OCi

:= OCi
\ test; OCj

:= OCj
\ test;

findModel(Ci); findModel(Cj)
for each cluster ∈ {Ci, Cj} do

if O.cid = cluster.id then
sign := 1;

else
sign := −1;

end if
for i := 1 . . . d do
error in models[d]+ = sign∗

cluster.models[d].
calculateErrorFrom(O.

getT imeSeries(d));
end for

end for
end for
sort(error in models);

return error in models;

Figure 9.3: Algorithm for Interpretation of the Results.

128 9. Mining Interaction Patterns among Brain Regions

Implementation, Parametrization and Data Sets. We implemented
our method, the naive approach and ICACLUS in Java. We implemented
SCRA in Matlab and obtained the R-code of SF from the authors. For
ICACLUS, we used the FastIca algorithm [85] to perform ICA. For SCRA,
we built the cluster models as super-models from dimension-wise classical
HMMs1 since the paper lacks an exact specification and we could not obtain
the code from the authors.

All experiments were performed on a workstation equipped with a 2.66GHz
CPU and 8GB RAM. In all experiments, we set K to the number of classes
in the data set for all techniques except ICACLUS. ICACLUS does not re-
quire the number as clusters as input parameter but two other parameter k
specifying a number of relevant ICs and t specifying a similarity threshold.
In all experiments, these two parameters were set to 1. We tried a range
of different choices which all lead to worse results with excessive numbers of
clusters. In addition, we set the maximum number of iterations for IKM to
75 in all experiments. For the efficient K-means-style methods IKM and SF,
we used 100 random initializations and report the quality of the best result
according to the internal objective function of the algorithm. Experiments
with SCRA could only be performed with a single initialization due to ex-
cessive runtime, since the algorithm need hours to days to process a single
data set. Experiments have been performed on 6 synthetic and 4 real-world
data sets from various domains, for a summary see Table 9.1.

9.7.2 Effectiveness

To evaluate effectiveness, we report three established measures for clustering
quality: the Rand Index (RI) [68] which is based on counting pairs of objects
in the same class and in the same cluster and pairs of objects in different
classes and clusters, respectively. Cluster Purity (CP) as introduced in [199]
is the ratio of objects of the majority class of a cluster with respect to the
size of the majority class. This is averaged among all clusters. Since RI and
CP favor clusterings with imbalanced cluster sizes, we additionally report the
Information Criterion (IC) [44]. IC is defined as the empirical conditional
entropy between class- and cluster labels. Intuitively, IC corresponds to the
number of bit required to encode the class labels of all objects given the
cluster labels. For RI and CP, a good clustering obtains a high score. For

1http://www.cs.ubc.ca/˜murphyk/Software/HMM/hmm.html

9.7 Comparison to State-of-the-Art 129

name type domain #objects #cl. #dim length reference

DS1 syn. n.a. 600 6 13 3333 n.a.
DS2 syn. n.a. 600 6 12 2048 n.a.
DS3 syn. n.a. 120 - 640 6 12 2048 n.a.
DS4 syn. n.a. 120 6 12 - 29 2048 n.a.
DS5 real medical: EEG 20 2 64 256 [203]
DS6 real motion stream 100 10 25 70 [193]
DS7 real sp. recognition 640 9 12 7-29 [108]
DS8 syn. n.a. 120 6 4 - 80 2048 n.a.
DS9 syn. n.a. 120 6 12 100 - 4000 n.a.
DS10 syn. n.a. 60 - 4200 6 12 2048 n.a.
DS11 real medical: fMRI 26 2 90 216 or 325 [65]
DS12 real medical: fMRI 26 2 5 180, 240, 300 [178]

Table 9.1: Characteristics of Experimental Data Sets.

IC a small value indicates a good clustering.

Synthetic Data

Proof of concept. We generated a synthetic data set (DS1) with 600
objects and 13 dimensions where each dimension is a time series with 3,333
time points. This data set contains six clusters. Each cluster consists of 100
objects which share a common interaction pattern as illustrated in Figure
9.1. In this data set, for each cluster four dimensions are interacting. The
interacting dimensions are perfectly correlated with R2 = 1. The times series
of 12 dimensions (among them the four interacting ones) have been generated
according to the random walk model. The remaining dimension is uniformly
distributed. As expected, IKM perfectly clusters this data set, with optimal
scores of all quality measures)cf. Table 9.2) and outperforms all comparison
methods by a large margin. The second best result in terms of IC is obtained
by SF (1.48), however this result has a RI of only 0.41 and CP of only 18%.
The naive approach shows the worst IC of 2.38 but is somewhat better than
SF in RI and CP. SCRA performs worst in all quality measures.

To demonstrate that IKM is designed to exploit interaction patterns for
clustering, we created data set DS2 analogously to DS1 but without inter-

130 9. Mining Interaction Patterns among Brain Regions

data set method RI IC CP

DS1 IKM 0.99 0.09 99%
Synthetic SF 0.49 1.48 18%

ICACLUS 0.77 2.54 10%
SCRA 0.17 2.58 14%
Naive 0.72 2.38 30%

DS2 IKM 0.77 2.54 10%
Synthetic w/o SF 1 0 100%

Interaction ICACLUS 0.97 0.15 64%
SCRA 0.61 1.66 29%
Naive 1 0 100%

DS5 IKM 1 0 100%
EEG SF 0.61 0.69 75%

ICACLUS 0.51 0.3 10%
SCRA 0.47 1.0 50%
Naive 0.49 0.95 60%

DS6 IKM 0.91 0.91 67%
CAD SF 0.92 0.95 73%

ICACLUS 0.85 2.21 19%
SCRA 0.88 1.21 61%
Naive 0.98 0.2 90%

DS7 IKM 0.88 1.21 61%
Japanese SF 0.79 2.36 33%

vowels ICACLUS 0.79 2.88 15%
SCRA 0.11 3.13 10%
Naive 0.83 2.04 40%

Table 9.2: Results on Benchmark Data.

9.7 Comparison to State-of-the-Art 131

Figure 9.4: Impact of Noise Objects on Cluster Quality: Noise with Random
Labels

132 9. Mining Interaction Patterns among Brain Regions

Figure 9.5: Impact of Noise Objects on Cluster Quality: Accuracy Without
Noisy Objects

9.7 Comparison to State-of-the-Art 133

Figure 9.6: Impact of Noise Dimensions on Cluster Quality

134 9. Mining Interaction Patterns among Brain Regions

actions among the dimensions. Instead, following the assumption of blind
signal source separation, we created the data of each cluster as a unique lin-
ear mixture of independent sources including sine and sawtooth functions.
On this data set, IKM is outperformed by all comparison methods in terms
of CP and IC.

Robustness against noise objects. Real data often contain a large amount
of noise objects which often severely affect the result of clustering techniques.
In the cluster model of IKM, a noise object is an object without any inter-
action pattern. To systematically evaluate the performance of IKM in the
presence of noise objects, we created a synthetic data set (DS3) similar to
DS1 (six clusters, 12 dimensions, length of time series: 2,048) with various
amounts of noise. Starting with 120 objects in six clusters without noise we
successively added in each step 20 noise objects up to 520 noise objects. For
evaluation, we assigned random class labels to the noise objects and report
the clustering quality measures for the whole data set (cluster objects and
noise objects, cf. Figure 9.4)) and for the cluster objects only, cf. Figure 9.5.
As expected, all clustering quality measures worsen with increasing amount
of noise objects for IKM. For SF, Naive, ICACLUS and SCRA, the clustering
quality stays constant at a very poor level. It is natural that the clustering
quality for the overall data displayed in Figure 9.4 decreases when adding
randomly labeled noisy objects. However, as Figure 9.5 demonstrates, IKM
achieves a correct clustering of the cluster points even in the presence of large
amounts of noise and always performs superior than SF and Naive. With
80% of noise, IKM obtains more than 50% of CP (Figure 9.5) or RI ≥ 0.8
(Figure 9.5). At 82% of noise IKM is still better then the SF-method and
Naive without noise. For some experiments (Figures 9.5 and 9.4), we did not
launch the naive method on the very big noised datasets. On one hand this
would take a several weeks of calculation and on the other hand the weak
result was not going to improve with increase of noise.

Robustness against noise dimensions. To study the robustness against
noise dimensions, we successively added an increasing number of noise di-
mensions to our basic 12-dimensional data set (DS4). Noise dimensions have
random values at all time points. Figure 9.6 demonstrates that up to four
noise dimensions do not affect the clustering accuracy of IKM, which corre-
sponds to 25% of noise. More than 10 noise dimensions affect the result of
IKM, but this means a noise percentage of 40% and more. The accuracy of

9.7 Comparison to State-of-the-Art 135

Figure 9.7: Scalability w.r.t. Dimensionality, Time Series Length and Num-
ber of Objects

136 9. Mining Interaction Patterns among Brain Regions

the comparison methods remains constant, but at a pretty poor level. IKM
outperforms them by a large margin up to 40% of noise and still remain
better up to 60% of noise dimensions.

Real Benchmark Data

EEG data. Our first real-world data set DS5 is the EEG data set available
at the UCI machine learning repository2. This data set is derived from a
study on alternations of brain activity in alcoholic subjects in comparison to
a control group. Each subject was exposed to either a single visual stimulus
(S1) or to two visual stimuli (S1 and S2). When two stimuli were shown,
they were presented in either a matched condition where S1 was identical
to S2 or in a non-matched condition where S1 different from S2. Data set
DS5 is derived from the so-called Small Data Set which contains data of 2
subjects, one alcoholic and one of class control. For each of the 3 experi-
mental paradigms, 10 runs of EEG have been recorded. The task here is
to cluster the EEG runs into alcoholic and control. IKM yields a perfect
clustering with RI = 1, IC = 0 and CP of 100%. SF is the best performing
comparison method with RI = 0.61, IC = 0.69 and CP of 75%. Besides
the clustering, the result of IKM specifies the most important differences
among the interaction patterns of the electrodes of the alcoholic subject and
the healthy control. The most important electrodes for clustering are CZ
(ch. 15), F8 (ch. 3), FT7 (ch. 36) and C3 (ch.16). The lateral and medial
frontal brain areas under these electrodes can be associated with decision
making processes. Substance-dependent individuals show disadvantageous
decision-making, as well as altered frontocortical recruitment when perform-
ing experimental tasks [80, 49].

Common Activities data set. The data set DS6 from [193] consists of
motion stream data of ten different activities performed by one person, for
example pick up an object, wave or talk on a cell phone. There are ten
different instances collected for each activity, hence 100 sequences in total.
It is a non-trivial task to recognize the activities since they are typically
performed with different rates of motion execution. Each activity is been
represented by a multivariate times series with 25 dimensions and 70 time
points after Kernel PCA preprocessing with an RBF kernel [167]. On this

2http://archive.ics.uci.edu/ml/databases/eeg/eeg.data.html

9.7 Comparison to State-of-the-Art 137

data set, SF performs slightly better in Rand Index and Cluster Purity than
IKM (cf. Table 9.2). The results reported for SF in [199] are even superior
(only CP between 84% and 89%). We could not reproduce these results.
Probably, the authors applied a different RBF-kernel for kernel PCA, which
is unfortunately not exactly specified in [199]. However, the overall best
result is achieved by the naive algorithm which is with 90% cluster purity
even better than the results of SF reported in [199]. This demonstrates that
our kernel PCA successfully captures the cluster separating information. In
summary, we conclude, that interaction-based clustering is also successful
in the application of motion stream data, but does not outperform SF and
Naive.
Japanese Vowels. The real-world data set DS7 consists of two Japanese
vowels uttered by nine different male speakers and is available at the UCI
machine learning repository 3. The task is to recognize the speakers based
on 12-dimensional time series consisting of the Cepstrum coefficients of the
speech signals. Representing speech by Cepstrum coefficients is wide-spread
in language processing and speech recognition [108]. Cepstrum coefficients
model the time evolving signal as an ordered set of coefficients representing
the signal spectral envelope. The special characteristics of this data set are
that time series vary very much in length (between 7 and 29 time points).
We merge training set and test set for clustering. The results (cf. Table
9.2) demonstrate that IKM is the best choice to cluster the speakers since it
clearly outperforms all comparison methods.

Search for cluster number in datasets

One of the important k-means extensions is an ability to automatically deter-
mine the number of clusters in the dataset being analyzed. In the extensions
for the classical algorithm, the distance between the objects is used for this,
as for example Silhouette Coefficient in the paper [97]. Our method does
not allow to measure a ”distance” between two objects. We consider here
the average object error in its own cluster model. This value should decrease
very quickly until the optimal number of clusters k is reached. The further
decreasing of the average error should be inessential.
We analyze six datasets, five of which are real-word and one is synthetic.
Applied on some datasets, we get expected results, whereas k determination

3http://archive.ics.uci.edu/ml/datasets/Japanese+Vowels

138 9. Mining Interaction Patterns among Brain Regions

is impossible when applied on the others.
In the picture we see that the right cluster number labeled with a red X

coincides with the break of the curve. The error decreasing in this point decel-
erates essentially at further growing of the number of clusters k. Automatic
search for this point does not represent a challenge and is not considered
here. In the Figure 9.8(C) is presented a reduced DS11, as in Subsection
9.8.2 (after user interaction, see Table 9.3). Here it should be noted the ex-
cellent clustering quality of these datasets (see Tables 9.2 and 9.3).
In the Figure 9.9 it is almost not seen any slowing down in decreasing at the

point marked with X. For these datasets, such a method of cluster number
determination does not bring visible positive results. We think, that this
can have to do with the absolute clustering quality. For example, DS1, DS5
and the reduced DS11 are partitioned almost ideally. Clusterings for DS6,
DS7 and the original (full) DS11 does not entirely correspond to the object
labels. Their models probably include more noise and the average errors in
their own clusters dwindle the critical importance.

9.7.3 Efficiency

Table 9.1 provides a summary on the data sets DS8-DS10 used for evaluation
of scalability. These synthetic data sets are generated similar to DS1 varying
all important properties. DS8 has 120 objects with a dimensionality ranging
from 4 to 80. DS9 has 120 objects of the length from 100 to 4,000 with 100
as increment. DS10 consists of different number of objects.

Figure 9.7(a) shows scalability in the dimensionality of the time series.
For this example, the increase in runtime is approximately O(d3 · log(d)) for
IKM. ICACLUS, SF and Naive scale linearly in the dimensionality, where
ICACLUS is most efficient on all data sets. SCRA is the least efficient
method in comparison.

Figure 9.7(b) shows scalability for the length of the time series. Although
the complexity is in principle linear for IKM, it can be very good amortized
(we do not see time-growing). Similar to IKM, ICACLUS also scales very
well. SF needs O(d2) of CPU-time. Naive is linear, but slower on our test
data. Again, SCRA is least efficient. The high variation in runtime of SCRA
is due to the fact that the algorithm depends very much on the initialization.

The Figure 9.7(c) shows scalability in number of objects. The complexity
is linear for IKM, SF, Naive and SCRA. ICACLUS scales quadratic in the

9.7 Comparison to State-of-the-Art 139

(A)

(B)

(C)

Figure 9.8: The average error of objects in their own cluster / Number of
clusters in clustering (A) DS1, (B) DS5 and (C) reduced DS11.

140 9. Mining Interaction Patterns among Brain Regions

(A)

(B)

(C)

Figure 9.9: The average error of objects in their own cluster / Number of
clusters in clustering (A) DS6, (B) DS7 and (C) DS11

9.8 Interaction among Brain Regions 141

number of objects. Nevertheless, the naive algorithm and SCRA are the
slowest methods on all test data sets.

9.8 Interaction among Brain Regions

9.8.1 Functional Magnetic Resonance Imaging

We obtained data sets DS11 and DS12 from different functional MRI ex-
periments. Functional MRI generates a series of 3-D volume images of the
brain. Each image consists of about 60,000 voxels and the interval between
time points is about 2-3 seconds. Functional MRI indirectly measures the
strength of neuronal activity by the blood-oxygen-level-dependent (BOLD)
effect. Brain regions with high neuronal activity consume larger quantities
of oxygen-rich blood than inactive regions. Different physical properties of
oxygenated and deoxygenated blood allow for indirect signalling of neuronal
activity by MRI. We first applied standard pre-processing including realign-
ment, normalization to a standard template and smoothing. Our approach
is based of a set of time-series. Basically we can use each voxel time series
from the images. However, for neighboring voxels signal activity is very sim-
ilar. Moreover, medical experts often desire to obtain results at the level
of anatomical regions which facilitates interpretation. Therefore, in Section
9.8.2, we use a brain atlas from [190] with a predefined mask of regions.
As an alternative to anatomical regions, in Section 9.8.3 we use Independent
Component Analysis (ICA). From the ICA result, we selected physiologically
relevant components and rejected ICs reflecting motions-artifacts or noise.

9.8.2 Somatoform Pain Disorder

DS10 [65] has been obtained from a study on Somatoform Pain Disorder and
consists of images of 13 subjects with pain disorder and 13 healthy controls.
Somatoform Pain Disorder has severe impact on the quality of living of the
affected persons since the main symptom is severe and prolonged pain for
which there is no medical explanation. The causes of this psychiatric disor-
der are not fully understood but the hypothesis is that patients have altered
mechanisms of observing and processing pain. Therefore, in our experiment,
subjects underwent alternating blocks of pain- and non-painful stimulation
while in the scanner. After pre-processing we segmented the data of each

142 9. Mining Interaction Patterns among Brain Regions

subject into 90 anatomical regions of interest [190] (ROIs). The task is to
cluster persons based on the interaction patterns of the ROIs within the brain
during the experiment. Each person is represented by a multivariate time
series with 90 dimensions and 325 time points. There are four subjects with
216 time points only. Our technique IKM does not require the multivariate
time series subjected to a cluster analysis to be of equal length. For Naive
and ICACLUS we can only use 216 time points for clustering, which im-
plies a considerable information loss. A cluster analysis with IKM provides
valuable insights into disordered brain connectivity of patients with pain dis-
order. Table 9.3 shows the clustering results. The result of IKM is superior
to the results of all comparison methods: One cluster is composed of nine
subjects with somatoform pain disorder and four healthy controls. The sec-
ond cluster contains nine healthy controls and four subjects with somatoform
pain disorder. Based on previous studies [65, 181], it is known that the right
amygdala is strongly associated with somatoform pain disorder. The model
of this region is the best separating model among the clusters. Figure 9.10
presents a visualization of the model of right amygdala. The coefficients of
this model are represented by color coding.

User Interaction. Based on the model displayed Figure 9.10, our med-
ical experts refined the set of ROIs in our input data to four regions in
the orbitofrontal cortex: Inferior orbitofrontal(right and left) cortex, me-
dial orbitofrontal cortex (right and left). These regions are also known to
be involved in the representation of subjective feelings including pain [107].
After user interaction, IKM obtains a nearly perfect clustering: (cf. Table
9.3): Only one patient is put in a wrong cluster. The comparison meth-
ods do not profit much from the dimensionality reduction performed by our
experts. This demonstrates that the cluster model of IKM successfully rep-
resents interaction patterns among brain regions. Furthermore, IKM yields
interpretable results which can be improved by user interaction.

9.8.3 Schizophrenia

The dataset DS12 [178] is derived from 26 persons including 13 healthy con-
trols and 13 patients with schizophrenia, who all were assessed by 10-minutes
of resting-state functional MRI. Schizophrenia is characterized by the im-
paired interaction between distributed brain regions particularly the stria-
tum. Increased dopamin activity in the striatum is essential for schizophrenia

9.8 Interaction among Brain Regions 143

Figure 9.10: Graphic representation of the models for the right amygdala
(green) in patients and controls involving all 90 AAL-ROIs. While healthy
controls show functional connectivity of the amygdala to sensory areas (su-
perior temporal, auditory), patients show increased connectivity to frontal
control areas (superior frontal). Red to white: areas with a signal-time course
with positive linear coefficient in the model, Blue: negative linear coefficient,
respectively.

and antidopaminergic treatment the main therapy of the disorder. There-
fore we suggested that the causal influence among intrinsic brain networks
including the striatum is aberrant in patients. Intrinsic brain networks are
characterized by synchronous brain activity at rest. (see Figure 9.11 for an
example: spatial map of the intrinsic basal ganglia network including the
striatum). Independent component analysis of fMRI data resulted in 9 ICs
representing intrinsic brain networks by spatial maps of synchronous activity
and corresponding time series. These time series result in 26 multidimen-
sional time series objects of healthy controls and patients. Causal influence
from one area into another was modeled by Granger Causality between time
series of brain network activity.

Clustering based on nonlinear models reflecting Granger causality sepa-
rated patients from controls with high cluster purity (84.6%) consistently for
a model of the striatum. In each cluster of 13 persons were only 2 person
assigned to the wrong cluster. Changed influence on the striatum was found
for several intrinsic brain networks, indicating an aberrant regulation of stri-
atal activity. These data suggest that altered regulatory intrinsic network
activity contributes to increased striatal dopamin function.

144 9. Mining Interaction Patterns among Brain Regions

data set method RI IC CP

DS11 IKM 0.56 0.89 69%
Somatoform SF 0.48 1 50%

ICACLUS 0.53 0.18 9%
SCRA 0.48 1 50%
Naive 0.49 0.98 58%

DS11 IKM 0.92 0.20 96%
Somatoform SF 0.48 0.99 54%

after ICACLUS 0.54 0.18 35%
user SCRA 0.48 1.0 50%

interaction Naive 0.48 1.0 50%

DS12 IKM-linear 0.52 0.92 65.38%
Schizophrenia IKM-nonlinear 0.73 0.62 84.62%

SF 0.49 0.92 57.69%
Naiv 0.48 1.00 53.85%
ICACLUS 0.52 0.83 27.69%
SCRA 0.48 1 50%

Table 9.3: Results on fMRI Data.

Table 9.3 shows the results of nonlinear and linear model-based IKM and
the results of the comparison methods for DS12. The datasets consist of
two clusters of patients and healthy controls, which are unambiguously and
objectively determined. Nonlinear IKM clearly outperforms all comparison
methods.

9.9 Conclusion

In this chapter, we propose a novel cluster notion for multivariate time se-
ries. We define a cluster as a set of objects sharing a specific interaction
pattern among the dimensions. In addition, we propose interaction K-means
(IKM), an efficient algorithm for interaction-based clustering. Our experi-
mental evaluation demonstrates that the interaction-based cluster notion is
a valuable complement to existing methods for clustering multivariate time
series. IKM achieves good results on synthetic data and on real world data
from various domains, but especially excellent results on EEG and fMRI

9.9 Conclusion 145

Figure 9.11: Spatial map of the intrinsic basal ganglia network including the
striatum.

data. Our algorithm is scalable and robust against noise. Moreover, the
interaction patterns detected by IKM are easy to interpret and can be vi-
sualized. Nonlinear models show their superiority in the corresponding real
world data. In ongoing and future work, we plan to extend our ideas to dif-
ferential equations. We want to consider different models for different regions
of the time series. We intend to work on methods for suitable initialization
of IKM, since existing strategies for K-means can not be straightforwardly
transferred to IKM because of the special cluster notion. We are also inves-
tigating in feature selection for interaction-based clustering.

146 9. Mining Interaction Patterns among Brain Regions

Part IV

Medical Applications

Chapter 10

Hierarchical Model-based
Clustering of Neuroimaging
Data

In this chapter, we consider various hierarchical clustering algorithms defined
on mathematical models. Extensions of such classical approaches as Single-
and Average-Link for models are proposed here. Also, we present two hier-
archical subspace clustering algorithms for model-defined clusters.
These algorithms have shown excellent results on real fMRT measurements
taken from Alzheimer’s disease patients and healthy controls. Motion stream
data[193] and japanese vowels dataset[108] are another examples of a success-
ful usage of presented here approaches of hierarchical subspace clustering
based on mathematical models.
The concepts described in this chapter are based on Paper [149] as well as
on yet unpublished material. In this paper, Andrew Zherdin has proposed
to use models for hierarchical clustering and implemented the algorithm for
that. Besides, Andrew Zherdin has carried out the experiments. Claudia
Plant and Annika Tonch have optimized my algorithm and carried out a
part of the experiments. The other coauthors have developed the medical
part of the paper.

150 10. Hierarchical Model-based Clustering

10.1 Introduction

Many objects in the world around us are grouped not into a simple flat
system of groups, but build hierarchical group structures. Especially in the
medical applications, the relationships between objects and groups of objects
help to find the disease reasons and describe its circuit. Here we compare
the groups of patients with varying severity degrees and healthy controls of
different ages. We are looking for the group, which is the closest to aged
healthy controls. If the closest group is the initial disease stage of MCI, then
the disease is rather a result of aging process. If the group of aged healthy
controls is closer to the younger healthy controls, then the hypothesis about
Alzheimer’s disease is most likely false.

Having groups of younger (ca. 25y) and older healthy persons (ca. 70y),
patients with MCI and AD dementia (ca. 70y), we tested the hypothesis
that intrinsic activity of elder controls has more similarities with the intrin-
sic activity of patients than the same of younger persons. The assumption
is conditioned by potential impact of preclinical AD. To check this, we used
resting-state fMRI, various measures of intrinsic brain activity, and different
hierarchical clustering methods. All these approaches confirm our assump-
tion, that intrinsic activity among elder controls and patients are more alike
than that of the younger controls. The linkage between these two factors in
behavior of intrinsic activity, AD and age, may contribute critically to the
pathogenesis of AD.

An important kind of clustering search is subspace clustering. For com-
plex multidimensional objects, interesting dependencies often arise only in
some subset of dimensions. Not taking into account such a phenomenon,
it is very hard to find a reasonable clustering, since irrelevant dimensions
(which could be very many of) bring a lot of noise to the overall picture. It
can frequently be observed that with decreasing of dimensions subset, the
clusters merge to bigger ones. Such a clustering is called subspace cluster-
ing. We can select certain dimensions we are interested in. By this we get
a hyperplane projection. This approach we call Hierarchical Axis-Parallel
Subspace Clustering. If we transform data space to a new one having a
smaller number, then this method is called Hierarchical Subspace Clustering
in Arbitrarily Oriented Subspaces.

We carry over the idea of hierarchical subspace clustering to model-based
clustering approach. We consider two strategies of constructing hierarchical
clustering in the variable dimension spaces and explore benefits and disad-

10.2 Related Work 151

vantages of these methods. The results we get show the efficiency of the
models also in searching for hierarchical structures on the subsets of dimen-
sions.

10.2 Related Work

A classical example of the algorithms, searching for hierarchical dependencies
as in the case of hierarchical clustering, are single- and average-link from book
[90].

During initializing, each object is placed in a separate cluster. Further, it
is supposed to measure the distance between all cluster pairs and merge two
closest clusters in one. Essential is here the definition of distance between
two clusters. This could be either minimal or maximal distance between ob-
jects of corresponding clusters (single-link or complete-link from book [90]).
Alternatively, we can define the distance between two clusters as the average
distance of all pairs of objects. Each such a pair consists of objects from
both clusters (average link from the same book [90]).
The interpretation of the resulting hierarchical clustering provides us not only
with information about the relationships between objects, but also about the
relationships between groups of these objects. We try to find similar and dis-
tinct groups by means of hierarchical clustering.

Along with being the most spread cause of neurodegenerative disease,
Alzheimer’s disease (AD) is also the major reason of age-related demen-
tia [33, 21]. Almost 50% of 90-years old persons suffer from AD dementia
whereas at the age of 60 there are only 1-2% such people [79]. Among
some other factors influencing the appearance of sporadic AD like genetic
predispositions or lifestyle, the age is counted without doubt to the most
important one [81]. It is hypothesized (the amyloid hypothesis), that β
pathology (Aβ) is the critical initiating event in AD [171], which according
to researches [17, 88], can start much earlier (up to 30 years before) than the
first symptoms of AD appear. Linking aging, sporadic AD, Aβ-pathology
and increased neuronal activity, a recent hypothesis suggested that lifespan
intrinsic (i.e. ongoing) brain activity particularly in hetero-modal areas of
high levels of functional connectivity may trigger regional Aβ-pathology and
therefore the rise of AD[31, 89]. Given that AD may have a 20-30 years
long preclinical period, this model suggests that due to advanced age and

152 10. Hierarchical Model-based Clustering

therefore potential impact of preclinical AD, intrinsic activity of older per-
sons resembles more that of patients than of younger controls. While most
studies have investigated the impact of either aging or disease on brain’s
activity [62, 61, 58, 148], few studies have compared brain activity across
healthy young, healthy elderly and patients with AD [32, 67, 183]. In partic-
ular with respect to intrinsic brain activity, a systematic approach focusing
on the degree of similarity or dissimilarity across groups instead of simple
group differences is - to the best of our knowledge - missing.
For hierarchical clustering of big and complex objects it is reasonably to use
only a subset of dimensions. That is, to select only interesting for us dimen-
sions or to transform the data into a new space with a less number of dimen-
sions, without information loss about relations between objects and clusters.
When choosing only interesting dimensions one speaks about Hierarchical
Axis-Parallel Subspace Clustering. In the case of data transformation into a
new space, where a hierarchical clustering then applied, one calls such algo-
rithms Hierarchical Subspace Clustering in Arbitrarily Oriented Subspaces.

Axis-Parallel Subspace Clustering
CLIQUE (CLustering In QUEst) [8] represents a grid-based algorithm,

where possible subspaces are recursively selected in a bottom-up way. The
input parameter for the method are ξ and ρ, where ξ is the size of unit
(block, the data space is partitioned into) and ρ is the density threshold,
starting from which the concrete unit is considered as interesting. Following
bottom-up technique, units for each next step (dimension) are generated via
current step (dimension) units and self-join. Not dense candidates at each
step are dropped. Then, clusters are found as a maximal set of connected
dense units.

SUBCLU (density-connected SUBspace CLUstering) [95] is a bottom-
up greedy algorithm which uses DBSCAN [46] cluster model of density-
connected sets instead of grids. The input parameter for the method are ε and
µ from DBSCAN approach. The algorithm starts with finding 1-dimensional
clusters according to DBSCAN. Iteratively, we move from current dimension
to the next one by checking if the clusters, we have so far, are also existent
in one or more subspaces of higher dimension. DBSCAN is then applied
on these candidates to generate the clusters for the next dimension. The
algorithm stops when the set of subspaces containing clusters is empty. In

10.2 Related Work 153

comparison with grid based algorithms, SUBCLU gives a better clustering
quality, however at the price of longer runtime.

PROCLUS(PROjected CLUStering) [5] represents a greedy k-means
like algorithm. Its input parameters are the number k of clusters and the av-
erage subspace dimensionality l. Using greedy technique, potential medoids
(at least one medoid per cluster) are selected. Starting from a choice of a cer-
tain set of medoids as cluster representatives (one medoid per cluster), these
representatives are iteratively improved via replacing not suitable medoids
with randomly chosen new ones. The measure of clustering quality is the
mean distance between objects and their closest medoids. By means of spe-
cial statistics, the relevant dimensions of cluster subspace are determined,
after which so called Manhattan segmental distances are computed to assign
objects to the cluster. Final improvements are done via recalculation of new
subspaces and reassigning the objects to the clusters. PROCLUS method
is known to be very sensitive to input parameters, especially to the average
subspace dimensionality l.

Hierarchical Subspace Clustering in Arbitrarily Oriented Subspaces
ORCLUS (arbitrarily ORiented projected CLUSter generation) [6] rep-

resents an advanced version of PROCLUS method [5], finding correlation
clusters in arbitrarily oriented subspaces. Same as in the case of PROCLUS,
the number k of clusters and the average subspace dimensionality l are input
parameters. In the first step of the algorithm, every data point is assigned
to its nearest seed by means of the distance in the current subspace. This
action divides the dataset into a certain number of current clusters, whose
centroids become new seeds. In the next step, for each current cluster, by
means of covariance matrix and eigenvectors, the algorithm determines the
corresponding subspace. It is important that at each iteration, the current
subspace dimensionality is reduced by some coefficient β. The final step is
merging clusters being close to each other and having similar directions. The
number of clusters is thereby reduced by some factor α. The whole algorithm
consists in iterative applying these 3 steps (assignment of clusters, subspace
determination and merging clusters) and terminates as soon as the current
number of clusters equals the number k given as input parameter. This al-
gorithm is very sensitive to the choice of k. If the input k was wrong the
results worsen essentially. Besides, it is desirable that l is also quite near to
the dimensionality of resulting clusters.

154 10. Hierarchical Model-based Clustering

4C (Computing Correlation Connected Clusters) [23] represents an ap-
proach extending DBSCAN [46] with PCA. Input parameters for the ap-
proach are the dimensionality λ of computed correlation clusters, their jitter
δ as well as extra parameters µ and ε determining cluster’s minimum density.
More precisely, λ is the density of hyperplanes formed by the neighborhood
points of so called correlation core points, whereas the threshold δ deter-
mines the admissible deviation of these hyperplanes from the perfect ones.
In this algorithm, each object is checked if it is a correlation core object or
not. If the point is not a correlation core object, it is marked as noise and
dropped. Otherwise, the approach tries to build a cluster for this correlation
core object by adding to it all correlation-reachable objects. In such a way,
the algorithms goes through all the correlation core points. The correlation
clusters are sensitive to the choice of λ and correspondingly to δ.

HiCO(Hierarchical Correlation Ordering)[3] is a representative of corre-
lation clustering. The method consists in searching for correlation in various
features in high dimensional data and visualizing the built cluster hierarchy
by means of correlation diagrams. Taken the correlation distance as distance
function, one can recognize a high correlation between many attributes of
two points if this special distance is small. Such two points are put there-
fore into a common cluster. Handling in this way, a hierarchy of clusters is
constructed, where the clusters with short distances (small correlations) are
nested into the clusters with longer distances (higher correlations).

ERiC[4](Exploring complex hierarchical Relationships among Correla-
tion clusters) is a yet another technique searching for relationships between
correlation clusters which however visualizes the resulting hierarchy in form
of a graph-like structure. Unlike many hierarchical approaches, which use
tree representation for the hierarchy, ERiC succeeds to find out also multi-
ple inclusions. The method consists in generating all correlation clusters for
all thinkable correlation dimensions, after which a hierarchical structure is
built. There are 3 phases in the algorithm: partitioning w.r.t. correlation
dimensionality, correlation clusters computing (within each partition) and,
finally, aggregating the correlation clusters hierarchy.

10.3 Model-Based Hierarchical Clustering 155

10.3 Model-Based Hierarchical Clustering

10.3.1 AV-Link-Approach for Model-Based Hierarchi-
cal Clustering

To confirm our hypothesis that AD is an aging process, we want to com-
pare the groups of patients and healthy controls of different age. Group
comparison and relation analysis between groups is well studied by means
of hierarchical clustering. The model, constructed in such a way, gives an
idea how similar or distinct are the groups to each other. We want to see
how close and in which hierarchy the different groups are to each other. We
interested in how much the activity in the regions influenced by the disease
distinguishes among healthy and ill persons of different age. We expect that
the main differences in the activity of these regions gives the age, i.e. the
groups of elder and ill persons are near to each other, whereas the young
control group is far from them.

We adapt the classical AV-Link from book [90] for comparison the groups
of patients and of healthy controls. What we are interested in, is to clear how
close the group of aged healthy controls is to the group of the patients and to
the group of young healthy controls. For that, we initialize the classical AV-
Link with the given groups as initial clusters. It represents the distinction
from the classical AV-Link, where the initial clusters consist of single objects
from the dataset. Further, we calculate the distance between all pairs of
clusters and merge the two closest clusters into a new one, constructing thus
a dendrogram. This dendrogram differs from the classical one in the way
that its leaves are the given groups and not the single objects.
The main innovation of our method consists in definition of distance between
clusters. In this chapter we use our own model-based distance. To verify our
hypothesis about the relationship between AD and aging process we use the
classical euclidean distance. The persons in our research are represented by
multidimensional time series. For classical euclidean approach we linearize
the multidimensional time series in very long vectors. In the case when the
time series length is different, we add zero padding to the affected vectors
to align the length. Next, we calculate the distance between all the pairs of
objects from the both clusters and take the average distance as the distance

156 10. Hierarchical Model-based Clustering

between the clusters. Formally, the distance between C1 and C2 is defined
as follows:

dist(C1, C2) :=
1

|C1||C2|
∑

x∈C1;y∈C2

disteuclid(x, y)

where the euclidean distance between the vectors x and y is defined as:

disteuclid(x, y) :=

√√√√length(x)∑
i=1

(xi − yi)2

Intercluster model-based distance we define in the following way.
We calculate the model-based distance between the clusters C1 and C2 as
the average distance between the cluster and all the objects of the opposite
cluster:

D(C1, C2) :=
1

2

(
1

|C1|
∑
X∗∈C1

DC2(X∗) +
1

|C2|
∑
X∗∈C2

DC1(X∗)

)
where |C| is the number of objects in cluster. DC(X) is the distance from
object X to cluster C. More precisely, it is the error of object X in the model
of cluster C. In other words:

DC(X) :=
1

m

∑
1≤j≤m

||εj|| =
1

m

∑
1≤j≤m

∣∣∣∣∣∣∣∣X(j)
∗ −

∑
1≤i≤m;j 6=i

P i
jX

i
∗

∣∣∣∣∣∣∣∣
Here m is the number of dimensions in our multidimensional time series. εj
is the error in the model of the dimension j, Xj

∗ is the jth dimension of
multidimensional time series X, i.e. [X1

∗ . . . X
m
∗] := X. P i is the model for

ith dimension. P i
j is the jth coefficient of the linear combination of dimension

i. P is calculated for the multidimensional time series cluster by means of
the least squares method. The calculation of P and the optimization of these
computations is described in detail in Section 9.3 and in the paper [155]. In
this paragraph we are talking about model-based distance between clusters.
In fact, D(C1, C2) does nor represent a classical distance. E.g., for D(C1, C2)
does not hold the triangle inequality: D(C1, C3) ≤ D(C1, C2)+D(C2, C3), i.e.
this ”distance” is not transitive. This ”distance” is besides also not reflexive:
it is possible that D(C,C) > 0. In spite of these restrictions, the function
proposed by us reflects well the relationships between multidimensional time

10.3 Model-Based Hierarchical Clustering 157

series groups. In the following, we will call this relation distance, taking
into account that this definition does not meet the classical requirements to
the distance. To confirm our hypothesis we construct hierarchical clustering
based on several representations of our data. We also carry out a permutation
test, to show the relevance of our results.

10.3.2 Subspace Clustering over Length of Models

In the previous chapters we used heuristic methods (e.g. BIC) to select the
dimensions we include into the linear combinations of model. These methods
reached their limits when increasing the dimension number. In the approach
proposed in this Chapter, searching for dimension subset ends when we reach
the given length of the linear combination (what corresponds to model in this
context). In this subsection we propose a hierarchical clustering where the
linear combination length for each dimension (i.e. model) depends on the
splitting depth (level) in the dendrogram. We split the cluster in two parts.
For that, we use IKM with k = 2. Instead of BIC we choose a fixed number
of summands in the linear combination. The same way as in IKM we use
various random seed to find a good initialization.

To keep it simple: the summand number equals the level in the dendro-
gram as in Figure 10.1. We stop the hierarchy construction after a certain
depth or minimal number of objects in new clusters is reached. The formal
algorithm is presented in the Figure 10.2 in a form of pseudocode.
We proceed from the fact, that simple distinctions between clusters are seen
directly and these distinctions are expressed by simple dependencies only on
one dimension. The deeper the hierarchy we build is, the longer (more com-
plex) the dependency becomes. This complex model is applied however for
less number of objects, what makes the model more precise. We do not try
to find a universal model for the whole cluster, but only refine the model for
its subclusters.

10.3.3 Subspace Clustering over Number of Models

In comparison with the previous subsection, in this subsection we will search
for models of arbitrary length, similar as in the case of IKM from Chapter
9. But at the different hierarchy depth we take various number of dimension
models. That is, the dendrogram root representing our cluster is split by only
one model (which is in the turn a linear combination). At the second level,

158 10. Hierarchical Model-based Clustering

Figure 10.1: Meta-Model for hierarchical clustering over length of models.

10.3 Model-Based Hierarchical Clustering 159

[ClusteringOverLengt]

Input: data set DS
Output: Clustering C

Clustering bestClustering;
//The maximum depth of the dendrogram.
maxDepth = config.getMaxDepth;
//The maximum number of the iterations
// to find a optimal clustering.
maxIter = config.getMaxIterations;
currCl = 1;
Clustering Cl = DS;
//while desired number of splits not reached
while k < maxDepth do
dimNum = level of leaf
//It will be tried maxInit random initialization.
for i = 1→ maxInit do

//random split of cluster
Cl.add = randomSplit(Cl.get(currCl))
iter = 0;
while (not converged) and (iter++ < maxIter) do

for each object O ∈ Cl.get(currCl) do
assign O to the child cluster where error is minimal
for each leaf L ∈ C do

//recalculate model
ML = findModels(L, dimNum)

end for
end for
if improvement of object function then

//memorize best Clustering
bestClustering = Cl;

end if
end while

end for
currCl = currCl + 1;

end while
return C := bestClustering

Figure 10.2: Subspace Clustering over length of models

160 10. Hierarchical Model-based Clustering

Figure 10.3: Meta-Model for hierarchical clustering over number of models.

10.3 Model-Based Hierarchical Clustering 161

[RankingModel]

Input: List of all Models mods
Output: List of best Models MB
errors = new array[mods]
for each Object o ∈ Cluster do

for each Model m ∈ mods do
//summerize errors of o and m
errors[m] = errors[m] + erroro

end for
end for
sort errors in ascending order
for i = 0→ dimNum do

save corresponding model of errors[i] in MB
end for

Figure 10.4: Ranking Best Models

we choose two dimensions, using by that two models and so on. In other
words, the number of models in subclusters equals the depth, at which clus-
ter splitting occurs. The clustering model structure is shown in the Figure
10.3. We select the dimension for splitting according to the rule of the most
accurate model. That is, the less the error in the model is, the more precise
this model is and the better it should describe (and split) its subclusters. We
use a helper method RankingModel (see Figure 10.4) for choosing the most
accurate models. We calculate the average error thereby for all models.
Subspace clustering over number of models algorithm is similar to the previ-
ous one, but it gets complicated by the search for interesting models.
The problem is that the linear combination consists of several dimensions.

Because of imperfection of BIC, we cannot be sure, that in the linear combi-
nation together with all dependent dimensions we did not chose erroneously
also independent dimensions. When choosing the most precise models for
several dimensions we possibly find only one dependency between several
dimensions and choose these dimensions as the most precise. Our aim is
however to find a new dependency from another dimensions. To solve this
problem we need to find all dimensions taking part in a linear combination.

162 10. Hierarchical Model-based Clustering

To do that, we calculate the model Pi for each dimension Vi. Our linear
combination:

Vi = Pk1i Vk1i + Pk2i Vk2i + · · ·+ Pkdi Vkdi

can be rewritten as:

Pk1i Vk1i + Pk2i Vk2i + · · ·+ (−1)Vi · · ·+ Pkdi Vkdi = 0

Next, we normalize the coefficients of resulting equalities (i.e. linear combi-
nations). Now, we can calculate euclidean distance between the coefficients
of two equalities. If these equalities describe the same dependency, then they
should be very similar and the euclidean distance between them should be
very small. For the models, more precisely for their equalities from different
dependencies, the coefficients should differ essentially, what the euclidean
distance in essence reflects. We use a threshold T for filtering already used
dependencies. If a similar dependency (the one having euclidean distance
between equalities less than T) was already used, then we exclude this di-
mension from the list of dimensions we use in the future for splitting in this
dendrogram branch. For selecting the models we use two heuristics described
in the following subsections.

Distance between Child Clusters

We search for subclusters and models, that split these clusters in an optimal
way. The models found in each subcluster after each iteration are compared
to each other and the similar models are dropped. In such a way, we choose
the models with the least error, i.e. the most accurate ones. At the same
time, our models should be good in splitting cluster into subclusters. The
method is presented in the Figure 10.5.

Distance between Child Cluster and Parent Cluster

Here we compare the models of child cluster AM with the models of its parent
cluster P . We filter all dependencies, that have been already used in parent
cluster. The most distinct models we will use to split parent cluster into
child subclusters. Here we are going to find new not yet used dependencies,
which split thereby the cluster in the best way. The algorithm for that is
depicted in the Figure 10.6

10.3 Model-Based Hierarchical Clustering 163

[ClusteringOverNumofModV1]

Input: data set DS
Output: Clustering bestClustering
Clusterc = DS;
Clustering C = c
currCl = 1;
for seed = 1 · · ·MaxSeedNumber do
C.get(currCl).randomSplit(seed)
while not converged or iter < maxIter do

for each object O ∈ C.get(currCl) do
assign O to the cluster where error is minimal
for each leaf L ∈ C do
AM = findModels(L)
filteredModels = filterMostSimilarModels(AM)
ML = getBestModels(filteredModels, dimNum)

end for
end for
if improvement of object function then
bestClustering = C;

end if
end while

end for

Figure 10.5: Subspace Clustering over number of Dimensions. Comparing
models of child Clusters

164 10. Hierarchical Model-based Clustering

[ClusteringOverNumofModV2]

Input: data set DS
Output: Clustering bestClustering
Clusterc = DS;
Clustering C = c
currCl = 1;
for seed = 1 · · ·MaxSeedNumber do
C.get(currCl).randomSplit(seed)
while not converged or iter < maxIter do

for each object O ∈ C.get(currCl) do
assign O to the cluster where error is minimal
for each leaf L ∈ C do
AM = findModels(L)
ML = getMostDissimilarModels(P, AM, dimNum)

end for
end for
if improvement of object function then
bestClustering = C;

end if
end while

end for

Figure 10.6: Subspace Clustering over number of Dimensions. Comparing
models between child and parent

10.4 Evaluation 165

10.4 Evaluation

10.4.1 Analysis of Medical Data with Model-Based Hi-
erarchical Clustering

We use different representation of our subjects. For the chosen regions we
take the mean or IC which corresponds to the given region. Also we apply
our algorithm to different subsets of regions. Whereas each region is repre-
sented by time series, a subset of regions of a subject forms a multivariate
time series. To validate the results we perform multiple (10 000 times) per-
mutation test.
Using automated network selection based on network maps described above

[9], ICA of rs-fcMRI data through the subjects of model order 75 detected
totally 22 intrinsic networks of interest. Among these networks there are
four DMN, four attentional, three frontal, four visual, one auditory, five so-
matosensory and one basal ganglia sub-networks, accordant with previous
studies [9] (Figure 10.7, Table 13.2; Table 13.2 for 55 peak voxels of signifi-
cant clusters; p < 0.05, FWE cluster level corrected).

Similarity of Inter-Subject-Synchronicity Estimated by Average
Linkage Clustering

We applied Average Linkage clustering (with Euclidean distance) to different
ensembles of iRA (Figure 10.8) and respectively iNA (Figure 10.9) to estimate
the similarity of inter-subject-synchronicity (ISS) [191] across the groups. In
the case of iNA, older healthy controls were consistently more similar to pa-
tients than to young healthy persons, indicating increased similarity of ISS
between patients and older persons. Resulting output was independent from
chosen network ensembles (Figure 10.9 A-C). Average Linkage clustering of
iRA showed a similar situation, i.e. older healthy controls were more similar
to patients than to young healthy persons (Figure 10.9 A-C). At the same
time for primary networks’ iRA, older healthy participants were clustered
closer to younger healthy controls than to patients (Figure 10.9 C).

166 10. Hierarchical Model-based Clustering

Figure 10.7: Spatial maps of intrinsic networks. Here are presented the
patterns derived from spatial ICA of rs-fMRI data based on the following
groups: AD patients, mild cognitive impairment as well as older and younger
healthy controls. Using spatial regression with canonical network templates,
22 components were totally identified as intrinsic networks, including four
default mode networks, four attentional networks, three frontal networks,
four visual networks, one auditory network, five somatosensory networks and
one basal ganglia network. The results of one-sample t-test on the individual
back-reconstructed subject component patterns across patients and controls
(p < 0.05, cluster level family wise error corrected) is depicted above in the
form of color maps, which are superimposed on a single-subject T1 image.
t−values are represented by red to yellow scales.

10.4 Evaluation 167

Figure 10.8: Inter-subject-synchronicity similarity for intrinsic regional ac-
tivity, estimated by means of Average Linkage clustering based on Euclidean
distance. Different regional ensembles were used during clustering: A) en-
sembles that include regions of the DMN; B) ensembles that exclude regions
of the DMN; C) ensembles of primary and subcortical regions. Independent
of the ensemble, older healthy controls were grouped according to cluster-
ing closer to patients than to younger healthy controls (blue dendrograms).
Scale (in arbitrary units) reflects normalized distances among clusters. AD=
Alzheimer’s disease, AN= attentional networks, AU= auditory network, BG
= basal ganglia networks, DMN= default mode networks, FN= frontal net-
works, MCI = mild cognitive impairment, OHC= older healthy controls, SM
= somatomotor networks, VN= visual networks, YHC= younger healthy
controls.

168 10. Hierarchical Model-based Clustering

Figure 10.9: Inter-subject-synchronicity similarity for intrinsic network ac-
tivity, estimated by means of Average Linkage clustering based on Euclidean
distance. Different network ensembles were used during clustering: A) en-
sembles that include the DMN; B) ensembles that exclude the DMN; C)
ensembles of primary and subcortical networks. Independent of the ensem-
ble, older healthy controls were grouped according to clustering closer to
patients than to younger healthy controls (blue dendrograms). Scale (in ar-
bitrary units) reflects normalized distances among clusters. AD= Alzheimer’s
disease, AN= attentional networks, AU= auditory network, BG = basal gan-
glia networks, DMN= default mode networks, FN= frontal networks, MCI
= mild cognitive impairment, OHC= older healthy controls, SM = somato-
motor networks, VN= visual networks, YHC= younger healthy controls.

10.4 Evaluation 169

Figure 10.10: Functional connectivity similarity for intrinsic regional activ-
ity, estimated by model-based clustering based on linear combinations of time
courses. Different regional ensembles were used during clustering: A) ensem-
bles that include regions of the DMN; B) ensembles that exclude regions of
the DMN; C) ensembles of primary and subcortical regions. Independent
of the ensemble, older healthy controls were grouped according to cluster-
ing closer to patients than to younger healthy controls (blue dendrograms).
Scale (in arbitrary units) reflects normalized distances among clusters. AD=
Alzheimer’s disease, AN= attentional networks, AU= auditory network, BG
= basal ganglia networks, DMN= default mode networks, FN= frontal net-
works, MCI = mild cognitive impairment, OHC= older healthy controls, SM
= somatomotor networks, VN= visual networks, YHC= younger healthy
controls.

170 10. Hierarchical Model-based Clustering

Similarity of Functional Connectivity Estimated by Model-Based
Clustering

We applied model-based clustering of iRA and respectively iNA, to investi-
gate the similarity of intrinsic FC via linear combinations of activity time
courses. In the case of iNA, older healthy controls were rather similar to pa-
tients than to young healthy persons, suggesting increased similarity of FC
between patients and older persons. Resulting Clustering was independent
of the chosen network ensembles (Figure 10.11 A-C). Model-based clustering
of iRA detected a similar situation, where older healthy controls are more
similar to patients than to young healthy participants (Figure 10.10 A-C)
with only one exception for the DMN see Figure 10.10 A).
To estimate the similarity of intrinsic brain activity along aging and AD,
we applied rs-fMRI and hierarchical clustering for healthy younger and older
persons as well as patients with MCI and AD dementia. Independently of
measures or regional sources of intrinsic activity, intrinsic activity of 70-
years persons showed more similarities with that of patients with AD than of
younger controls, potentially because of a significant proportion of preclinical
AD cases in the group of healthy older persons.

10.4.2 Hierarchical Subspace Clustering

Here we make a proof of concept of proposed algorithms for Hierarchical
Subspace Clustering. For that, we generate synthetic objects, whose time
series fit perfectly to the models of methods we proposed. Besides, we show
noise-robustness of these methods. Finally we demonstrate our algorithm for
real world data. To estimate the quality of resulting clustering we apply to
the dendrogram leaves well-known methods as in AMI[195], NMI[195] and
Cluster Purity[199].
For Hierarchical Subspace Clustering over length of model, our objects have
the length of 3,333 time points and consist of 12 dimensions. We generate 8
clusters which correspond to dendrogram leaves. Each cluster includes 100
objects. The clusters are built in the way that they specify 4-level dendro-
gram. For synthetic data without noise, the method gives very good results.
The cluster purity is very close to 100%. AMI and NMI at the same time
are near to 1. With increasing of number of noise objects, the quality de-
creases and at 10% noise it falls down to 49% for cluster purity and to 0.56
correspondingly 0.55 for NMI and AMI. In the Figure 10.13, we can see very

10.4 Evaluation 171

Figure 10.11: Functional connectivity similarity for intrinsic network activ-
ity, estimated by model-based clustering based on linear combinations of
time courses. Different network ensembles were used during clustering:: A)
ensembles that include the DMN; B) ensembles that exclude the DMN; C)
ensembles of primary and subcortical networks. Independent of the ensem-
ble, older healthy controls were grouped according to clustering closer to
patients than to younger healthy controls (blue dendrograms). Scale (in ar-
bitrary units) reflects normalized distances among clusters. AD= Alzheimer’s
disease, AN= attentional networks, AU= auditory network, BG = basal gan-
glia networks, DMN= default mode networks, FN= frontal networks, MCI
= mild cognitive impairment, OHC= older healthy controls, SM = somato-
motor networks, VN= visual networks, YHC= younger healthy controls

172 10. Hierarchical Model-based Clustering

Figure 10.12: The result of Subspace Clustering w.r.t the model lengths. The
original clusters from DS6 are depicted in grey color.

10.5 Conclusion 173

good results of our algorithm even for essential noise level.
For Hierarchical Subspace Clustering over number of models, we generate

data of the same dimension as in the previous paragraph, but with models
that perfectly suit this method model. The result quality after three splits
is less than 30% cluster purity. This is noticeably worse than the algorithm
from the previous paragraph, but noticeably better than random distribu-
tion into 8 clusters. We think, that the reason for such big inaccuracy is
the choice problem of reasonable subset of dimensions at each step. This is
the problem of exponential complexity and the both of our heuristics are not
always able to choose the needed dependency. We did not test this approach
neither on data with noise nor on real-world data.

Real data
We took DS6 and DS7 from Section 9.7. Dataset are described in the Table
9.1. DS6 can be easily interpreted, since each object represents a short video
record of a certain motion. On DS6 we reached cluster purity 79%, NMI
0.78 and AMI 0.72. The resulting hierarchical clustering is presented in the
Figure 10.12. The inner clusters of dendrogram have very reasonable label.
Some leaves (one on the level 3 and one on the level 4) have cluster purity
100%. Two further leaves at the level 4 have a slightly worse but also very
good purity 90%, which corresponds to the situation when solely one object
in cluster is assigned to wrong cluster. The last leaf at level 4 has a purity
of 70%. The leaves at the levels 5 and one leaf at level 6 have the purity of
80% or 70%. One cluster at level 6 only has a purity of 50% which means
that only half of the objects are correctly classified.
For DS7 we got NMI/AMI 0.69/068. The mean cluster purity of the clus-
tering is 76%. The resulting dendrogram is given in the Figure 10.14. In
comparison with the DS6, the clusters with the highest purities are located
in the center of the clustering. The purities are between 93.24%, representing
the highest value of this clustering, and 73.73%. The cluster at level 3 only
has a purity of 65%. Finally, the clustering having the lowest purity is at
level 5 and has a purity of only 45.76%.

10.5 Conclusion

In this Chapter we showed, that model-based clustering can be also success-
fully applied for search of hierarchical clustering in different fields of science

174 10. Hierarchical Model-based Clustering

Figure 10.13: The result of Hierarchical Subspace Clustering over the length
of models. Robustness to noise-objects in data set.

10.5 Conclusion 175

Figure 10.14: Result of Hierarchical Subspace Clustering over length of
models. Grey color corresponds here to the original clusters from DS7.

and industry. We showed also that ideas of agglomerative and subspace hi-
erarchical clustering is extensible to the mathematical models proposed by
us. Because of opportunity to interpret the models we get a powerful tool for
medical data analysis. By means of this method we found the dependency
in motion video sequences and confirmed the hypothesis about a Alzheimer
reason. Intrinsic brain activity of healthy elder persons resembles more that
of patients with Alzheimer’s disease than that of healthy younger persons.
This finding suggests a significant proportion of preclinical AD cases in the
group of cognitively normal older people. The link of aging and AD with
intrinsic brain activity supports the view that lifespan intrinsic activity may
contribute critically to the pathogenesis of AD. Algorithms showed not only
interesting results on real-world data, but also a good noise-robustness.
We also saw some limits of our approaches. Agglomerative hierarchical clus-
tering requires predefined clusters for further dendrogram constructing. Also
the models, based on big number of subclusters will have a worse accuracy
and essentially worse describe large groups of objects. A decision is here
needed, how to improve the quality of models, describing a big number of
subclusters.

176 10. Hierarchical Model-based Clustering

We should note, that Subspace clustering over number of models did not
show the expected result. In this algorithm we need to improve dimensions
selection for further splitting. During model based classifying in Chapter
8 we also selected only interesting for us dimensions and reached excellent
results. Subspace clustering over length of models demonstrated very inter-
esting results. However, we want to find a better heuristics, which at noise
level over 10% would give us a better result. An improvement target is also
the distribution of noise objects within of inner clusters of hierarchy, if the
objects do not fit subcluster models. In the future we want to find automatic
methods for determination of reasonable depth of hierarchy and automatic
solution concerning the appropriateness of splitting for a given cluster.
We plan to refine our algorithms for medical researches, since our methods
take into account the requirements to inaccuracy in medical data and huge
data volumes generated during medical studies.

Chapter 11

Decoding an Individual’s
Sensitivity to Pain from the
Multivariate Analysis of EEG
Data

The perception of pain is described by its tremendous intra- and interindi-
vidual variability. The same painful event can be perceived by different
individuals largely differently. Our aim here is to predict the individual
pain sensitivity from brain activity. We repeatedly applied identical painful
stimuli to healthy human subjects and recorded brain activity by using elec-
troencephalography (EEG). We applied a multivariate pattern analysis to
the time-frequency transformed single-trial EEG responses. Our results show
that a classifier trained on a group of healthy individuals can predict another
individual’s pain sensitivity with an accuracy of 83%. Classification accu-
racy depended on pain-evoked responses at about 8 Hz and pain-induced
gamma oscillations at about 80 Hz. These results reveal that the temporal-
spectral pattern of pain-related neuronal responses provides valuable infor-
mation about the perception of pain. Beyond, our approach may be very
helpful for establishing an objective neuronal marker of pain sensitivity which
can potentially be recorded from a single EEG electrode.
Main parts of the material presented in this chapter have been published in
Paper [169]. In this paper, Andrew Zherdin has proposed and implemented
the workflow. Claudia Plant has optimized and improved the proposed pro-

178 11. Decoding an Individual’s Sensitivity to Pain

cesses. The other coauthors have prepared data and written the medical part
of the paper.

11.1 Introduction

Pain represents a complex sensory experience, which is perceived and de-
scribed by a person not only in terms of the sensory information but also
on the basis of the individual sensitivity to pain. In such a way, a certain
event can be interpreted by one person as moderately or even slightly painful
whereas for another individual the same event can cause a very strong pain
experience [42, 109, 139]. Deviations in the sensitivity to pain can affect
future pain experiences, responses to analgesic treatment [45, 139] as well as
lead to development of chronic pain syndromes. Thus, knowing an objective
neuronal marker of pain sensitivity could help in prevention, diagnosis and
treatment of painful conditions [27, 187].

In the brain, the complex perception of pain is subserved by an extended
network of brain areas [13, 188]. Recent neurophysiological studies disclosed
different partially overlapping pain-related neuronal responses within this
network. These pain-related neuronal responses include evoked responses
at theta frequencies (3 - 8 Hz) [55, 120] and induced responses at gamma
(∼ 80Hz) [63, 73] and alpha (∼ 10Hz) [136, 157] frequencies. A few studies
related differences in pain sensitivity to brain activity. A functional magnetic
resonance imaging (fMRI) study indicated that pain-related BOLD responses
in somatosensory, anterior cingulate, and prefrontal regions reflect the sub-
ject’s sensitivity to pain [42]. Neurophysiological studies showed that the
individual pain sensitivity correlates with amplitudes of evoked responses at
theta frequencies [87, 168]. It should, thus, in principle be possible to infer
an individual’s sensitivity to pain from pain-related brain responses.
Considering the multitude of pain-related neuronal responses, multivariate
approaches which analyze complex patterns of information appear partic-
ularly promising for decoding the sensitivity to pain from brain activity.
Such multivariate ’brain reading’ approaches have recently been used to
identify patterns of brain activity that differentiate between mental states
[77, 121, 141]. Researchers have successfully inferred visual percepts, speech
content or even hidden intentions from functional magnetic resonance imag-
ing (fMRI) data (e.g. [51, 75, 76, 98]). A recent study applied multivariate

11.2 Methods 179

pattern analysis (MVPA) to pain and showed that it is possible to distin-
guish different levels of painful and non-painful stimulation based on fMRI
data [128]. However, that study pursued an intraindividual approach, i.e.
a classifier was trained on and applied to data from the same subject. In
contrast, most practical applications require cross-subject approaches, i.e. a
classifier is trained on a group of subjects and then used to predict another
individual’s mental state. Moreover, it would be particularly desirable to
not only distinguish different stimuli but to infer how different individuals
perceive objectively identical stimuli from brain activity.
Here, we therefore applied identical painful stimuli to a group of healthy
human subjects. In a cross-subject ’brain reading’ approach we aimed to
decode an individual’s pain sensitivity from the temporal-spectral pattern
of neuronal responses as assessed by time-frequency transformed electroen-
cephalographic (EEG) data. To this end, a MVPA technique was trained on
the single trial EEG data of healthy human subjects to investigate whether it
is possible to predict another individual’s pain sensitivity from brain activity.

11.2 Methods

11.2.1 Paradigm

60 painful cutaneous laser stimuli of identical intensity were delivered to the
dorsum of the right hand. The laser device was a Nd:YAP laser (Electronical
Engineering, Florence, Italy) with a wavelength of 1340 nm, a pulse duration
of 3 ms and a spot diameter of 6 mm. Stimulus intensity was kept con-
stant at 2750 mJ, which evoked slightly to moderately painful pinprick-like
sensations. Stimulation site was slightly changed after each stimulus. Inter-
stimulus intervals (ISI) were randomly varied between 8 and 12 seconds. The
subjects passively perceived the stimuli with closed eyes. Three seconds after
stimulus application, the subjects were prompted by an auditory cue to ver-
bally rate the pain intensity on a numerical rating scale between 0 (no pain)
and 10 (maximum tolerable pain). Pain ratings were used to assign ’true’
labels of pain sensitivity to each individual. To this end, trials were split
around the mean of the 11-point numerical rating scale. Subjects who rated
> 5 (high pain) more often than ≤ 5 (low pain) were labeled pain sensitive
and subjects who rated≤ 5 more often than> 5 were labeled pain insensitive.

180 11. Decoding an Individual’s Sensitivity to Pain

11.2.2 EEG Recordings and Analysis

EEG data were recorded using an electrode cap (EASYCAP, Herrsching, Ger-
many). The electrode montage included 64 electrodes consisting of all 10-20
system electrodes and the additional electrodes Fpz, FCz, CPz, POz, Oz,
Iz, AF3/4, F5/6, FC1/2/3/4/5/6, FT7/8/9/10, C1/2/5/6, CP1/2/3/4/5,
TP7/8/9/10, P5/6, PO1/2/9/10, plus two electrodes below the outer can-
thus of each eye. The EEG was referenced to the FCz electrode, grounded at
AFz, sampled at 1 kHz (0.1µV resolution) and highpass-filtered at 0.1 Hz.
The impedance was kept below 20kΩ.
The raw EEG data were preprocessed in Vision Analyzer software (Brain
Products, Munich, Germany) including downsampling to 512 Hz for the pur-
pose of data reduction, correcting for horizontal and vertical eye movements
using an independent component analysis [92], and transforming to the av-
erage reference [111]. Trials with artifacts exceeding ±100µV in any channel
were automatically rejected. The remaining trials were epoched from -1100
ms to 1500 ms. Evoked potentials (EPs) were computed by averaging the
epochs. Single trial data as well as EPs were exported for subsequent pro-
cessing to Matlab (The Mathworks, Natick, USA).
Time-frequency analyses were performed in Matlab using custom program-
ming on the basis of standard mathematical and signal analysis functions.
To compute time-frequency representations (TFR) we applied a single trial
Hamming tapered, moving window short time Fast Fourier Transformation
(FFT). The window had a length of 100 data points, was padded with zeros
up to 512 data points and was shifted for 1 data point. Hence, frequency
resolution was 1 Hz and temporal resolution was 1/512 sec. For each trial
and electrode, the baseline corrected TFRs were computed and transformed
into percent signal change with respect to the respective baseline from -1000
ms to 0 ms.

11.2.3 Multivariate Pattern Analysis (MVPA)

To predict an individual’s sensitivity to pain from brain activity, we applied
MVPA to time-frequency transformed EEG responses to pain. To make use
of the full single trial information we applied a two-step approach. First, we
used MVPA to predict single trial labels (≤ 5, low pain; > 5, high pain) from
the single trial EEG responses. Second, we applied a voting-based approach

11.2 Methods 181

to predict an individual’s sensitivity to pain (pain sensitive or pain insen-
sitive) from the proportion of low pain and high pain trials. If more high
pain trials than low pain trials were predicted the individual was classified
as pain sensitive and vice versa. The MVPA was performed separately for
each electrode. Importantly, we pursued a cross-subject approach, i.e. the
classifier was trained on the data of 22 subjects and then applied to a 23rd
subject by using the leave-one-out cross validation method.
Specifically, we used a MVPA combining feature selection techniques with
a support vector machine (SVM). We applied the SVM implementation of
WEKA software [69]. The exceptional high data dimensionality of the data
was reduced by applying Information Gain feature selection [70]. This tech-
nique selects the most relevant features of the data by measuring the in-
formation gain with respect to the entropy (H) of a class before and after
observing the feature:

InfoGain(Class, Feature) = H(Class)−H(Class|Feature)

Within WEKA software, we applied the SVM algorithm by Platt [156] which
has the capacity to find the largest margin hyperplane separating the training
data. A larger margin allows for a better generalization of the object prop-
erties. Furthermore, we used a linear SVM kernel which permits a direct
interpretation of the weight vector as class separating information. Hence,
the support vector weights allow to directly visualize the predictive value of
each feature.
Significance of classification accuracy was assessed by computing 95% con-
fidence intervals of classification accuracy using the efficient-score method
[138]. In particular, we applied the Wilson procedure with continuity correc-
tion. According to this method, classification accuracy of single trial labels
(low pain vs. high pain) above 59% was considered significantly different
from chance (50%). With respect to classification of an individual’s pain
sensitivity, accuracy above 73% was considered significantly different from
chance (50%). In addition, permutation statistics were performed. To this
end, each trial was randomly labeled high pain or low pain. The classifier
was trained on the randomly labeled trials and the resulting classification
of the individual’s pain sensitivities was determined. This procedure was
repeated 1000 times and the distribution of classifications was compared to
the classification based on the real data. Permutation statistics were focused
on selected electrodes with high classification accuracy (Cz, FCz).

182 11. Decoding an Individual’s Sensitivity to Pain

Furthermore, we compared the predictive value of the single trial TFR ap-
proach with additional approaches which do not take into account the temporal-
spectral pattern of single trial responses. To this end, the SVM was also
trained with the averaged TFR, the averaged evoked potential and the sin-
gle trial raw data of 22 subjects. Again, the classifier was then applied to
the 23rd subject. This procedure was performed for each electrode sepa-
rately. Classification accuracy of these approaches to the initial approach
was compared by using the non-parametric Wilcoxon signed-rank test [151].
Specifically, accuracy of all electrodes for one approach represented one sam-
ple and was compared to accuracy of all electrodes for another approach as
another sample. Moreover, topographical maps were created which show the
classification accuracy of each electrode across the scalp. In addition, SVM
discrimination TFRs were calculated which show the support vector weights,
i.e. the predictive value as a function of time and frequency.

11.3 Results

23 healthy human subjects (9 male, 14 female) with a mean age of 26 years
(range 19 – 35 years) participated in the study. Informed consent was given
by all subjects. The study was approved by the local ethics committee and
conducted in conformity with the declaration of Helsinki.
Stimuli elicited moderately painful sensations with a group mean pain inten-
sity of 4.9. However, pain intensity elicited by the repeated application of
identical stimuli varied substantially across [42, 109] and within [160, 163]
individuals (Figure 11.1). We aimed to predict the interindividual differences
in the perception of identical stimuli from brain activity. We therefore la-
beled each subject as pain insensitive or pain sensitive based on their ratings
of the painful stimuli. Specifically, subjects who rated more often ≤ 5 than
> 5 were labeled pain insensitive and subjects who rated more often > 5 than
≤ 5 were labeled pain sensitive. In a next step, we aimed to predict these
’true’ labels from brain activity. During the experiment, brain activity was
recorded from 64 EEG electrodes. To assess the temporal-spectral pattern of
different neuronal responses to pain we computed time-frequency representa-
tions (TFR) of pain-related neuronal responses. TFRs show neuronal activity
as a function of time and frequency and include phase-locked and non-phase-
locked neuronal responses at different frequencies. The group mean TFR at
exemplary vertex electrode FCz confirms a pattern of three pain-related neu-

11.3 Results 183

(A)

(B)

Figure 11.1: Behavioral data. (A) Individual pain ratings (light grey, mean
± standard deviations) and the mean pain rating across all subjects (black,
mean ± standard deviation). Subjects with a mean pain rating of > 5 or ≤ 5
were labeled pain sensitive or pain insensitive, respectively. (B) Distribution
of single trial pain ratings.

184 11. Decoding an Individual’s Sensitivity to Pain

ronal responses (Figure 11.2A): evoked responses with a maximum at theta
frequencies below 10 Hz and at latencies between 150 and 350 ms [55, 120],
gamma responses around 80 Hz at latencies between 150 and 350 ms [63, 73],
and a decrease of alpha activity around 10 Hz starting at about 500 ms after
stimulus application [136, 157].
To predict an individual’s pain sensitivity from pain-related EEG responses,

we applied a MVPA using a support vector machine (SVM) classifier. To
make use of the information of all single trials, we pursued a two-step ap-
proach. First, the classifier was trained to predict the perception of single
trials. Second, we inferred an individual’s sensitivity to pain from the pre-
dicted perception of the single trials. For the first step, we assigned ’true’
labels to each single trial (low pain, rating ≤ 5; high pain, rating > 5) corre-
sponding to the ’true’ labels of the subjects (see above). The classifier was
trained on the single trial TFRs of 22 subjects and applied to predict the
single trial labels (low pain vs. high pain) of the 23rd subject. In a second
step we inferred an individual’s pain sensitivity from the individual propor-
tion of low pain and high pain trials. Prediction accuracy was assessed by
comparing the predicted pain sensitivity based on brain activity with the
individual’s ’true’ pain sensitivity based on the pain ratings. The proce-
dure was performed for each electrode. The results show that our approach
allows for decoding an individual’s sensitivity to pain with a maximum ac-
curacy of 83% (19 of 23 subjects). Maximum accuracy was accomplished
when using the EEG data of each of four electrodes mainly at central loca-
tions (Figure 11.2B, left; Table 11.1). Statistical testing confirmed that this
accuracy was higher than chance (50%) (permutation tests at electrodes Cz
and FCz, p < 0.001). Accuracy of classification of single trials (low pain vs.
high pain) across subjects was 62% which was also significantly higher than
chance (50%).

Next, we investigated which pain-related neuronal responses contribute
to the classification accuracy. We therefore calculated SVM discrimination
TFRs which do not show neuronal activity but the predictive value of neu-
ronal activity as a function of time and frequency. Results show that the
evoked theta and the gamma response but not the late alpha response con-
tribute to the classification of the individual sensitivity to pain (Figure 11.2B,
middle).
We finally compared our single trial TFR based analysis with approaches
which do not take single trials and/or the temporal-spectral pattern of re-
sponses at different frequencies into account. We therefore averaged the

11.3 Results 185

(A)

(B)

Figure 11.2: (A) Neuronal responses to painful stimuli. (left) Time-frequency
representation (TFR) of neuronal activity at electrode FCz coded as percent
signal change with respect to a prestimulus baseline. The group mean TFR
has been averaged across trials and subjects. (right) Group mean topography
of gamma and evoked responses coded as percent signal change with respect
to a prestimulus baseline. (B) Decoding an individual’s sensitivity to pain.
(left) Topography of classification accuracy for the single trial TFR data.
(middle) The SVM discrimination TFR at electrode FCz shows the classifi-
cation weight, i.e. the predictive value as a function of time and frequency.
(right) Topography of classification weights for the gamma response and the
evoked theta response.

186 11. Decoding an Individual’s Sensitivity to Pain

single trial
TFR

mean TFR single trial
raw EEG

averaged
evoked po-
tential

FC1 0.83/0.50/1.00 0.57/0.00/0.87 0.65/0.22/0.93 0.65/0.00/0.83
FC3 0.78/0.38/1.00 0.61/0.13/0.87 0.70/0.22/1.00 0.74/0.00/0.94
FCz 0.83/0.50/1.00 0.65/0.25/0.87 0.70/0.33/0.93 0.13/0.13/0.00
FC2 0.78/0.38/1.00 0.65/0.25/0.87 0.70/0.33/0.93 0.57/0.00/0.72
FC4 0.70/0.25/0.93 0.57/0.13/0.80 0.65/0.11/1.00 0.65/0.00/0.83
C1 0.78/0.50/0.93 0.61/0.25/0.80 0.78/0.44/1.00 0.65/0.00/0.83
C3 0.78/0.50/0.93 0.61/0.00/0.93 0.74/0.33/1.00 0.70/0.20/0.83
Cz 0.83/0.50/1.00 0.52/0.13/0.73 0.70/0.44/0.86 0.70/0.00/0.89
C2 0.74/0.38/0.93 0.61/0.38/0.73 0.74/0.44/0.93 0.57/0.00/0.72
C4 0.74/0.25/1.00 0.52/0.00/0.80 0.70/0.22/1.00 0.57/0.00/0.72
CP1 0.78/0.38/1.00 0.48/0.13/0.67 0.70/0.33/0.93 0.70/0.00/0.89
CP3 0.74/0.38/0.93 0.70/0.13/1.00 0.70/0.33/0.93 0.78/0.40/0.89
CPz 0.74/0.38/0.93 0.57/0.13/0.80 0.70/0.33/0.93 0.61/0.00/0.78
CP2 0.74/0.38/0.93 0.57/0.00/0.87 0.70/0.33/0.93 0.74/0.20/0.89
CP4 0.65/0.25/0.87 0.61/0.13/0.87 0.57/0.11/0.86 0.52/0.00/0.67

Table 11.1: Classification accuracy, sensitivity and specificity of different
approaches to decode an individual’s sensitivity to pain. For ease of read-
ability, results from a selection of 15 EEG electrodes from central locations
are shown.

TFRs across trials for each electrode and subject. These averaged TFRs as-
sess the temporal-spectral pattern of neuronal responses to pain but do not
include the single trial information. Classification of subjects based on this
approach shows a maximum accuracy of 78% at a single electrode (Figure
11.3A). Next, we based the classification on the single trial raw EEG data
which include the single trial information but do not assess the temporal-
spectral pattern of neuronal responses. The results show a maximum clas-
sification accuracy of 78% at one left hemispheric electrode (Figure 11.3B).
Finally, we calculated the evoked potential by averaging the EEG data across
trials for each electrode and subject. The averaged evoked potential does nei-
ther assess the temporal-spectral pattern of information nor the single trial
information. This approach resulted in a maximum classification accuracy of
78% at 3 left hemispheric electrodes (Figure 11.3C). Statistical comparisons

11.4 Interpretation of the Results 187

single trial
TFR

averaged
TFR

single trial
raw EEG
averaged

TFR
z = -6.53
p < 0.001

- -

single trial
raw EEG

z = -6.57
p < 0.001

z = -4.59
p < 0.001

-

averaged
evoked poten-
tial

z = -6.66
p < 0.001

z = -4.82
p < 0.001

z = -5.96
p < 0.001

Table 11.2: Statistical comparisons of different approaches to decode an indi-
vidual’s sensitivity to pain. Wilcoxon signed-rank tests were used to compare
accuracy of the different approaches. Specifically, accuracies of all electrodes
for one approach represented one sample and were compared to accuracies
of all electrodes for another approach as another sample.

confirmed that our initial approach had a significantly higher predictive value
than the other approaches (all p < 0.001, Wilcoxon signed-rank tests, Table
11.2).

In summary, our results show that the multivariate assessment of the
temporal-spectral pattern of single trial EEG responses to pain allows for
significant predictions of an individual’s sensitivity to pain from brain activ-
ity.

11.4 Interpretation of the Results

Here, we aimed to predict an individual’s sensitivity to pain from brain ac-
tivity. We repeatedly applied identical painful stimuli to healthy human
subjects and recorded neuronal responses to pain by using EEG. We applied
a multivariate analysis to the EEG data to predict an individual’s sensitivity
to pain from the temporal-spectral pattern of single trial neuronal responses
to pain. The results show that this approach allows for predicting an indi-
vidual’s pain sensitivity with an accuracy of 83%. Intriguingly, we pursued
a cross-subject approach in which the prediction was based on a classifier

188 11. Decoding an Individual’s Sensitivity to Pain

Figure 11.3: Decoding an individual’s sensitivity to pain based on (A) the
averaged TFR, (B) the single trial raw EEG data and (C) the averaged
evoked potential. Left panels show topographies of classification accuracy.
Right panels show SVM classification weights color coded as a function of
time and frequency (A) and as a function of time (B,C). (A) and (C) also
include time courses of signals at selected electrodes and root mean squares
(RMS) of all electrodes.

11.4 Interpretation of the Results 189

trained on independent data from other individuals. Our findings may thus
help to establish a much sought-after objective neuronal marker of an indi-
vidual’s sensitivity to pain [27, 187].
Our results corroborate a substantial interindividual variability in the per-
ception of identical painful stimuli. Differences in sensitivity are observed
in all sensory modalities but particularly apply to the perception of pain
[42, 109, 139] where the individual sensitivity influences future pain experi-
ences and responses to analgesic treatment [45, 139]. Variations in pain sen-
sitivity may be caused at any stage in pain processing from the skin to the
brain. Mechanisms contributing to interindividual differences in pain sen-
sitivity include genetic, environmental, psychological and cognitive factors
[41, 139]. However, regardless of its origin and the underlying mechanisms,
perceptual variation should be finally reflected in the neural activity of the
brain which ultimately determines the perception of pain. Correspondingly,
an fMRI study indicated that pain-related BOLD responses in somatosensory,
anterior cingulate and prefrontal cortices reflect differences in the sensitivity
to pain [42]. An EEG study showed that pain sensitivity correlates with
amplitudes of evoked responses [87]. Our study complements and extends
these studies by revealing that different neuronal responses do not only cor-
relate with the sensitivity to pain but that the multivariate assessment of
the temporal-spectral pattern of pain-related neuronal responses allows for
predicting an individual’s sensitivity to pain from brain activity.
Specifically, our results show that the prediction of an individual’s sensi-
tivity to pain depends on the pattern of pain-evoked responses at around
8 Hz and pain-induced gamma oscillations at about 80 Hz. This approach
yielded significantly higher classification accuracy than approaches which do
not take the temporal-spectral pattern of single trial responses into account.
We specifically compared our approach with an approach which is based on
an individual’s averaged evoked potential. As the latter approach includes
only a single time series it represents virtually a univariate analysis. More-
over, our approach was also more powerful than an approach based on an
individual’s averaged TFR which indicates that single trials contain infor-
mation which goes beyond the information of an average. Our results, thus,
reveal that the cerebral representation of pain is inherently multivariate and
that the temporal-spectral pattern of neuronal responses to pain provides
crucial information about the perception of pain. Consequently, multivariate
approaches which jointly assess temporal-spectral and/or spatial patterns of
neuronal responses appear particularly promising to further the understand-

190 11. Decoding an Individual’s Sensitivity to Pain

ing of the cerebral representation of pain.
Our approach builds upon recent MVPA of functional magnetic resonance
imaging (fMRI) [77, 141] and electrophysiological [121] data which are in-
tended to identify patterns of brain activity that differentiate between men-
tal states (e.g. [51, 75, 76, 98]). A recent fMRI study used MVPA to predict
three objectively different levels of thermal stimulation from the spatial pat-
tern of brain activity [128]. Here, we go beyond that study and most other
’brain reading’ applications (see [135, 158, 173] for exceptions) by applying a
cross-subject approach. To this end, the classifier was trained on a group of
subjects and then applied to another subject to predict the subject’s sensi-
tivity to pain. Moreover, we did not distinguish between objectively different
intensities of thermal stimuli but we predicted interindividual differences in
the perception of identical stimuli. In addition, we used EEG recordings to
assess the temporal-spectral rather than the spatial pattern of single trial
responses to pain. The cross-subject approach, the prediction of subjective
differences in the perception of identical stimuli and the use of rather cheap
and simple EEG recordings may represent a step further towards translation
of ’brain reading’ approaches into practical applications.
However, several limitations of the present approach should be noted. First,
we used a simplified dichotomous model of pain sensitivity. Such a simpli-
fied categorical model appears robust and reasonable as a first step towards
practical applications but does not necessarily generalize to all conditions
and subjects. Second, the relationship between pain perception and neuronal
responses is not fully stable. Specifically, short and constant interstimulus in-
tervals can disrupt the relationship between amplitudes of neuronal responses
and pain perception [86]). Our approach thus applies only to sufficiently long
and varied interstimulus intervals (8 - 12 sec). Third, our assessment refers
to the momentary sensitivity to pain which can be influenced by a broad
variety of internal and external factors including skin temperature. Future
studies should therefore define the experimental conditions as thoroughly as
possible including assessments of skin temperature. Fourth, we used a linear
support vector machine to decode pain sensitivity. This classifier is often
used in ’brain reading’ studies but other linear and non-linear classifiers may
be equally or even more powerful (see [137, 151] for a discussion of differ-
ent classifiers). Fifth, we only assessed the temporal-spectral but not the
spatial pattern of responses and, as most previous MVPA of brain activity,
we performed a binary classification. The integration of temporal-spectral
information with spatial information assessed by a source analysis of EEG or

11.5 Conclusion 191

even by fMRI could potentially further improve the multivariate assessment
of pain sensitivity. However, integration of spatial information and classifi-
cation of multiple classes would be computationally highly demanding. For
example, a source based approach to the EEG data even when using a large
voxel size of 7 mm would multiply the data by the factor 100 as compared
to the present electrode based approach.

11.5 Conclusion

In this chapter, we proposed an approach to predict an individual’s sensitiv-
ity to pain by applying a multivariate analysis to EEG data. The approach
is based on a very simple experiment where the data can potentially be
recorded within a few minutes from a single EEG electrode. The results of
the observations can be useful in determining a simple neuronal marker of
pain perception which in the turn could estimate an individual’s sensitiv-
ity to pain. This is especially helpful in the cases when verbal report from
a person is not possible or reliable, e.g. in situations with critically ill or
demented patients or patients suspected of malingering. For such patients
the characterization of an individual’s pain sensitivity could help to optimize
general care and analgesic treatment. Our approach could thereby help to
improve the prevention, diagnosis and treatment of pain with implications
for health care [27, 187] and the legal system [131]. The results show that
this approach allows for predicting an individual’s pain sensitivity with an
accuracy of 83%, which characterizes a good quality of the method.

For future work, we are going to improve the approach by using other lin-
ear and non-linear classifiers. Result improvements can be expected from the
additional analysis of skin temperature. Interesting results are also expected
from integration of temporal-spectral information with spatial information.

192 11. Decoding an Individual’s Sensitivity to Pain

Part V

Conclusion

Chapter 12

Summary and Outlook

In the parts II, III and IV, there were considered various Data Mining al-
gorithms, their optimization and their application in different medical re-
searches. This chapter consists of two sections. In the first of them 12.1
the main conclusions of this thesis are summarized. Section 12.2 consid-
ers the possible directions of improvements and further development of the
algorithms proposed in the thesis.

12.1 Summary

In this thesis a lot of various Data Mining methods have been taken under
consideration. New algorithms based on dependencies between time series
were proposed. Besides, optimization of already existing methods for spe-
cialized hardware was suggested here. Other directions of the thesis are new
approaches for multidimensional time series as well as the application of both
new and well-known methods in workflow describing complex medical data
processing.

Part II includes optimization of such classical algorithms as similarity
join, k-means and DBSCAN when applying them on GPU by means of CUDA
technique. It was achieved essential computing performance gain compared
to classical CPU-based algorithms. Recently, Moore’s Law [133] in terms of
processing speed does not hold any more for a usual CPU, but for a GPU
this empirical statement is still true. To use entirely the potential of graphics
cards, not only the part of time intensive computations must be done in par-

196 12. Summary and Outlook

allel, but also specific GPU memory architecture must taken into account,
which can effectively work only with big data blocks. The algorithms pro-
posed in this part use new techniques, which shows their ability to process
essentially bigger data volumes for future applications.

In Part III, propositions of mathematical models for a wide spectrum of
Data Mining tasks can be found. Time series based models let efficiently
aggregate information and effectively use it for approximation, classification
and clustering. Under consideration here were also linear and linearizable
models as well as methods for an effective calculation of models for very long
time series.

In Chapter 7 there are considered mathematical models for approxima-
tion of long time series. Time series are approximated by their own models,
which allow to estimate the classical euclidean distance between time series
themselves. The time series representation proposed in this chapter notice-
ably reduce the amount of data, which are to be read from the hard disk and
kept in memory, not loosing at the same time the accuracy when calculating
distance between the objects. By the example of k-means it was shown that
the clustering computed by the means of models is almost equivalent to the
clustering built by means of original non-reduced objects and significantly
better than other representations such as DFT, DWT and Chebyshev poly-
nomials based representations.

Chapter 8 includes classification algorithm based on the models. The
proposed method finds not the class objects which are similar to each other
in the euclidean sense but rather the objects which better fit to each other in
the context of a certain model. The latter distinguishes this method from the
most of concurrent approaches. Thereby, dependencies are found, splitting
the classes in the best way. Due to interpretability of the models, not only
the answer can be found about the most likely object class label, but also
this decision can be justified by pointing to models which influenced clas-
sification decision making. Model-based classification supplements already
existing methods very well, especially the ones which do not take into ac-
count the dependencies between the dimensions of a multidimensional time
series. The suggested algorithm showed very good results on different data
from medicine and industry. A good classification-accuracy was achieved. As
an example of application of interpretability in medicine, the regions of brain

12.1 Summary 197

were determined which were changed by Alzheimer’s and alcoholism diseases.

In Chapter 9, it was proposed a clustering algorithm based on models.
The algorithm showed very good results especially on medical data. The
model abstraction helped a lot to work effectively with huge data volumes.
Some extensions of k-means for IKM was adapted here. The ability to inter-
pret the clustering results gives a powerful tool for medical data analysis and
finding new interesting dependencies in these data. Here it was also extended
the notion of model by adding to linear ones also linearizable models. It was
searched not only for linear dependencies but also for linearized more com-
plex nonlinear dependencies. This allowed to find more accurate and closer
to real world clustering. The proposed algorithms are well-scalable and noise
robust. Using IKM it can be seen by means of fMRI images the brain regions
which are most affected among pain disorder persons. Besides, the regions
were found which are responsible for Alzheimer’s disease. The approach pro-
posed in this chapter in combination with nonlinear models also successfully
determined the part of brain regions, the functions of which were changed
by schizophrenia. The importance of regions, found by means of clustering,
is verified by numerous medical publications.

The Part IV presents the application of different Data Mining algorithms
for exploration of complex medical data. In Chapter 10 it was proposed var-
ious hierarchical cluster algorithms for diverse data analysis. By means of
model-based AV-Link, the dependency between aging and Alzheimer’s dis-
ease was researched. A new concept of distance between model-based clusters
was introduced here. This algorithms helped to confirm the hypothesis about
Alzheimer’s disease as aging process. The algorithm found on the most of
clinical data representations expected and interpretable hierarchies.

In Chapter 10 it was also proposed a hierarchical subspace model based
clustering to search of dependencies only within a subset of dimensions com-
posing a multidimensional (i.e. multivariate) time series. Subspace algo-
rithm using a different number of models did not show the expected results.
However, the subspace algorithm based on the different model length gave
very good results and found clear and interpretable hierarchies on real-world
datasets. Besides, the method showed noise robustness.

198 12. Summary and Outlook

Chapter 11 is dedicated to the application of the classical algorithms
such as dimension reduction, classification and voting to analyze the pain
reaction by healthy controls. A test for sensitivity to pain was proposed
here as well. By means of InfoGain and SVM techniques, an analysis of
EEG records of laser stimulation was carried out. New effective methods for
processing of big time-frequency representations were proposed here. The
obtained brain regions which are responsible for pain are approved by many
researches carried out in this field. The approach proposed here is simple
enough to be clinically applied and can be used to diagnose chronic phantom
pains or just hypersensitivity to pain.

12.2 Outlook

In the last section of this thesis, it will be considered the main directions of
development and improvement of the algorithms proposed above.

The algorithms proposed in the Part II are based on the NVIDIA’s pro-
prietary technology CUDA. Nowadays, also the platforms from competitors
are being developed. In the future, we plan to adapt our algorithms for open
cross-platform programming languages such as OpenCL. To achieve a good
scalability of modern computing systems it is necessary to adapt the algo-
rithms to graphic processors and graphic memory.

Model-based dependency analysis proposed in Part III gave very good
results in many Data Mining algorithms. The model search in these algo-
rithms represents a serious task. The main complexity here is finding of the
subset of dependent dimensions. The solution of this problem takes the most
of time. Getting approved and accelerated the model search, we obtain more
accurate and flexible Data Mining tool. The proposed heuristic BIC reaches
its limit when building dendrograms. Dealing with a large number of dimen-
sions, BIC does not achieve optimal results. Improving estimation quality
of selected dimensions is the major task for wide dissemination of these al-
gorithms. Model-based approach should show good results in outlier search.
Objects with a too big error in all models are certainly outliers. In the thesis
we touched on the question of building object hierarchies based on models.
These algorithms encounter problems caused by inaccuracy in found models
and, as consequence, by a strong inaccuracy in the resulting hierarchy. In

12.2 Outlook 199

the future we want to refine these algorithms by making the model search
more accurate, determining more flexible and general clustering models and
getting rid of data dependent parameters in the algorithms.

In this thesis in Part IV proposed algorithms for classification and clus-
tering of medical data showed very good results. We plan to optimize these
algorithms for dealing with large amount of data and in the future introduce
them into clinical diagnostics. For this, the usage of graphic processors with
solutions from Part II will be very helpful. We are going to create large data
bases with records of various diseases for machine-supported diagnostics. The
purpose of researches in this thesis is creation of accurate and fast system
for diagnostication of known diseases and searching for their new subtypes.

200 12. Summary and Outlook

Chapter 13

Appendix

IC peak voxel
x, y, z

Anatomy (AAL) Cluster
size
(voxel)

t peak
voxel

p FWE
cluster
level

DMN
1 3, -67, 31 right precuneus 5958 41.70 0.001
2 -3, -52, 22 left posterior cin-

gulum
2669 55.35 0.001

3 0, 50, 4 left anterior cin-
gulum

3572 44.69 0.001

4 18, -25, -17 right parahip-
pocampus

3274 34.54 0.001

Attentio-
nal
1 -45, -61, 40 left angular gyrus 1300 37.03 0.001
2 45, -58, 40 right angular

gyrus
4227 34.23 0.001

3 57, -46, 19 right superior
temporal cortex

6398 33.86 0.001

4 -36, 14, -11 left insula 980 35.43 0.001
1 -45, 20, -5 left inferior or-

bital frontal cor-
tex

7972 39.77 0.001

202 13. Appendix

2 -45, 20, 28 left inferior or-
bital fontal gyrus
(triangularis)

4493 36.52 0.001

3 -39, 47,13 left middle frontal
gyrus

12001 35.38 0.001

Visual
1 0, -79, 4 left lingual gyrus 2610 29.28 0.001
2 3, -73, 4 right lingual

gyrus
3286 41.96 0.001

3 9, -67, -5 right lingual
gyrus

2798 42.95 0.001

4 -27, -8, 22 left middle occip-
ital cortex

9354 30.70 0.001

Auditory
Network

-51, -25, 10 left temporal su-
perior cortex

2363 33.79 0.001

Sensory-
motor
1 -51, -10, 31 left postcentral

gyrus
1511 34.09 0.001

2 45, -34, 46 right parietal in-
ferior cortex

12525 29.11 0.001

3 -48, -34, 40 left parietal infe-
rior cortex

4382 30.73 0.001

4 0, 20, 43 left superior mo-
tor area

4248 38.01 0.001

5 6, -22, 55 right superior mo-
tor area

3920 41.86 0.001

Basal
Ganglia
Network

-24, 2, -8 left putamen 1982 34.87 0.001

Table 13.1: Peak voxels, coordinates, anatomical label-
ing and cluster size of the identified 22 intrinsic networks.
AAL= anatomical automatic labeling; DMN= default
mode network; FWE= family wise error corrected; ROI=
region of interest.

203

IC ROI coordi-
nates peak
voxel, x y , z

Anatomy (AAL) Cluster
size
(vox-
els)

t peak
voxel

p FWE
cluster
level

DMN
1 3 -67 31 right precuneus 5958 41.70 0.001
2 -3 -52 22 left posterior cin-

gulum
2669 55.35 0.001

48 -61 34 right angular gyrus 2669 12.28 0.001
-45 -64 34 left angular gyrus 178 14.71 0.001

3 0 50 4 left anterior cingu-
lum

3572 44.69 0.001

4 18 -25 -17 right parahip-
pocampus

3274 34.54 0.001

-24 -16 -14 left hippocampus 3274 30.97 0.001

Attentio-
nal
1 -45 -61 40 left angular gyrus 1300 37.03 0.001

-21 32 43 left superior frontal
gyrus

2865 28.42 0.001

54 -1 4 right rolandic oper-
culum

1488 18.67 0.001

51 -64 34 right angular gyrus 1488 13.10 0.001
-6 -61 37 left precuneus 828 18.00 0.001
39 -70 -41 right cerebellum 420 17.49 0.001
21 32 55 right superior

frontal gyrus
239 8.47 0.001

2 45 -58 40 right angular gyrus 4227 34.23 0.001
-45 -58 40 left angular gyrus 5854 26.06 0.001
42 20 49 right middle

frontal cortex
5854 23.14 0.001

-42 50 4 left middle frontal
cortex

547 17.71 0.001

0 -52 -35 vermis 9 (cerebel-
lum)

403 8.18 0.001

3 57 -46 19 right superior tem-
poral cortex

6398 33.86 0.001

204 13. Appendix

-3 -52 49 left precuneus 6398 25.89 0.001
-54 -49 13 left middle tempo-

ral
1830 27.03 0.001

-48 -10 31 left postcentral 500 8.49 0.001
4 -36 14 -11 left insula 980 35.43 0.001

39 17 -8 right insula 890 30.93 0.001
3 38 28 right anterior cin-

gulum
462 10.46 0.001

Frontal
1 -45 20 -5 left inferior orbital

frontal cortex
7972 39.77 0.001

51 23 -5 right inferior or-
bital frontal

1248 29.79 0.001

2 -45 20 28 left inferior orbital
fontal gyrus (trian-
gularis)

4493 36.52 0.001

42 11 31 right frontal infe-
rior operculum

2013 31.53 0.001

-33 -58 46 left inferior parietal
cortex

845 21.83 0.001

36 -61 49 right superior pari-
etal cortex

325 13.51 0.001

3 -39 47 13 left middle frontal
gyrus

12001 35.38 0.001

30 56 7 right superior
frontal

12001 26.19 0.001

Visual
1 0 -79 4 left lingual gyrus 2610 29.28 0.001

3 -55 40 right precuneus 854 10.37 0.001
2 3 -73 4 right lingual gyrus 3286 41.96 0.001
3 9 -67 -5 right lingual gyrus 2798 42.95 0.001
4 -27 -82 22 left middle occipi-

tal cortex
9354 30.70 0.001

30 -76 25 right middle occip-
ital

9354 29.35 0.001

Auditory -51 -25 10 left temporal supe-
rior cortex

2363 33.79 0.001

205

63 -25 13 right temporal su-
perior cortex

1829 32.60 0.001

Sensory-
motor
1 -51 -10 31 left postcentral

gyrus
1511 34.09 0.001

54 -7 31 right postcentral
gyrus

1624 33.83 0.001

15 -64 -20 right cerebellum 495 17.84 0.001
-18 -64 -23 left cerebellum 495 16.93 0.001

2 45 -34 46 right parietal infe-
rior cortex

12525 29.11 0.001

3 -48 -34 40 left parietal inferior
cortex

4382 30.73 0.001

51 -28 43 right postcentral
gyrus

1661 29.26 0.001

54 -58 -5 right inferior tem-
poral

1142 17.27 0.001

57 11 28 right frontal infe-
rior operculum

707 9.22 0.001

4 0 20 43 left superior motor
area

4248 38.01 0.001

5 6 -22 55 right superior mo-
tor area

3920 41.86 0.001

Basal
Ganglia

-24 2 8 left putamen 1982 34.87 0.001

21 8 4 right putamen 1660 32.62 0.001
Table 13.2: Peak voxels, coordinates, anatomical label-
ing and cluster size of the 55 selected peak voxels from
the previously identified 22 intrinsic networks. AAL=
anatomical automatic labeling; DMN= default mode net-
work; FWE= family wise error corrected; ROI= region
of interest.

206 13. Appendix

Bibliography

[1] Illustration from american health assistance foundation. http://www.
alzhyme.com/images/. Accessed: 2013-09-30.

[2] NVIDIA CUDA Compute Unified Device Architecture - Programming
Guide, 2007.

[3] E. Achtert, C. Böhm, P. Kröger, and A. Zimek. Mining hierarchies of
correlation clusters. In Scientific and Statistical Database Management,
2006. 18th International Conference on, pages 119–128. IEEE, 2006.

[4] E. Achtert, C. Böhm, H.-P. Kriegel, P. Kröger, and A. Zimek. On
exploring complex relationships of correlation clusters. In Scientific and
Statistical Database Management, 2007. SSBDM’07. 19th International
Conference on, pages 7–7. IEEE, 2007.

[5] C. C. Aggarwal, J. L. Wolf, P. S. Yu, C. Procopiuc, and J. S. Park. Fast
algorithms for projected clustering. In In Proc 1999 ACM-SIGMOD
Int. Conf. Management of Data (SIFMOND’99), volume 28, pages 61–
72. ACM, 1999.

[6] C. C. Aggarwal and P. S. Yu. Finding generalized projected clusters in
high dimensional spaces. In ACM SIGMOD Record, volume 29, pages
70–81. ACM, 2000.

[7] R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient similarity search
in sequence databases. In FODO, pages 69–84, 1993.

[8] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic
subspace clustering of high dimensional data for data mining applica-
tions, volume 27. In SIGMOND Record ACM Special Interest Group
on Management of Data, 1998.

http://www.alzhyme.com/images/
http://www.alzhyme.com/images/

208 BIBLIOGRAPHY

[9] E. A. Allen, E. B. Erhardt, E. Damaraju, W. Gruner, J. M. Segall,
R. F. Silva, M. Havlicek, S. Rachakonda, J. Fries, R. Kalyanam, et al.
A baseline for the multivariate comparison of resting-state networks.
Frontiers in systems neuroscience, 5, 2011.

[10] O. Alter, P. Brown, and D. Botstein. Generalized singular value decom-
position for comparative analysis of genome-scale expression data sets
of two different organisms. Proc Natl Acad Sci U S A, 100(6):3351–6,
2003.

[11] N. S. Altman. An introduction to kernel and nearest-neighbor nonpara-
metric regression. The American Statistician, 46(3):175–185, 1992.

[12] J. Anderson. Cognitive Psychology and its Implications, Ch. 6, Human
Memory: Encoding and Storage. Worth Publishers, 2004.

[13] A. V. Apkarian, M. C. Bushnell, R. D. Treede, and J. K. Zubieta.
Human brain mechanisms of pain perception and regulation in health
and disease. Eur J Pain, 2005.

[14] D. Arthur, B. Manthey, and H. Röglin. Smoothed analysis of the k-
means method. Journal of the ACM (JACM), 58(5):19:1–19:31, Oct.
2011.

[15] K. Backhaus, B. Erichson, W. Plinke, and R. Weiber. Multivari-
ate Analysemethoden–eine anwendungsorientierte Einführung, 10., neu
bearb. und erw (in German). Aufl., Berlin/Heidelberg/New York, 2003.

[16] Z. Bar-Joseph, G. K. Gerber, D. K. Gifford, T. S. Jaakkola, and I. Si-
mon. Continuous representations of time-series gene expression data.
Journal of Computational Biology, 10(3-4):341–356, 2003.

[17] R. J. Bateman, C. Xiong, T. L. Benzinger, A. M. Fagan, A. Goate,
N. C. Fox, D. S. Marcus, N. J. Cairns, X. Xie, T. M. Blazey, et al.
Clinical and biomarker changes in dominantly inherited alzheimer’s
disease. New England Journal of Medicine, 367(9):795–804, 2012.

[18] T. Bekhuis. Pain disorder. http://www.minddisorders.com/Ob-Ps/

Pain-disorder.html, 2013.

http://www.minddisorders.com/Ob-Ps/Pain-disorder.html
http://www.minddisorders.com/Ob-Ps/Pain-disorder.html

BIBLIOGRAPHY 209

[19] F. Bermejo-Pareja, J. Benito-León, S. Vega, M. Medrano, and
G. Román. Incidence and subtypes of dementia in three elderly popula-
tions of central spain. Journal of the Neurological Sciences, 264(1–2):63
– 72, 2008.

[20] D. J. Bernstein, T.-R. Chen, C.-M. Cheng, T. Lange, and B.-Y. Yang.
Ecm on graphics cards. In EUROCRYPT, pages 483–501, 2009.

[21] K. Blennow, M. de Leon, and H. Zetterberg. Alzheimer’s disease. The
Lancet, 368(9533), 2006.

[22] C. Böhm, B. Braunmüller, M. M. Breunig, and H.-P. Kriegel. High
performance clustering based on the similarity join. In CIKM, pages
298–305, 2000.

[23] C. Böhm, K. Kailing, P. Kröger, and A. Zimek. Computing clusters of
correlation connected objects. In Proceedings of the 2004 ACM SIG-
MOD international conference on Management of data, pages 455–466.
ACM, 2004.

[24] C. Böhm, L. Läer, C. Plant, and A. Zherdin. Model-based classification
of data with time series-valued attributes. In BTW, pages 287–296,
2009.

[25] C. Böhm, R. Noll, C. Plant, B. Wackersreuther, and A. Zherdin. Data
mining using graphics processing units. In Transactions on Large-Scale
Data-and Knowledge-Centered Systems I, pages 63–90. Springer, 2009.

[26] C. Böhm, R. Noll, C. Plant, and A. Zherdin. Indexsupported similarity
join on graphics processors. In BTW, pages 57–66, 2009.

[27] D. Borsook, S. Sava, and L. Becerra. The pain imaging revolution:
Advancing pain into the 21st century. The Neuroscientist, 16(2):171–
185, 2010.

[28] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: Identifying
density-based local outliers. In SIGMOD Conference, pages 93–104,
2000.

[29] P. Brockwell and R. Davis. Introduction to Time Series and Forecast-
ing. Number Bd. 1 in Introduction to Time Series and Forecasting.
Springer, 2002.

210 BIBLIOGRAPHY

[30] A. S. Brown. Prenatal infection as a risk factor for schizophrenia.
Schizophrenia Bulletin, 32(2):200–202, 2006.

[31] R. L. Buckner, J. Sepulcre, T. Talukdar, F. M. Krienen, H. Liu, T. Hed-
den, J. R. Andrews-Hanna, R. A. Sperling, and K. A. Johnson. Cortical
hubs revealed by intrinsic functional connectivity: mapping, assess-
ment of stability, and relation to alzheimer’s disease. The Journal of
Neuroscience, 29(6):1860–1873, 2009.

[32] R. L. Buckner, A. Z. Snyder, A. L. Sanders, M. E. Raichle, J. Morris,
et al. Functional brain imaging of young, nondemented, and demented
older adults. Journal of Cognitive Neuroscience, 12(Supplement 2):24–
34, 2000.

[33] R. L. Buckner, A. Z. Snyder, B. J. Shannon, G. LaRossa, R. Sachs,
A. F. Fotenos, Y. I. Sheline, W. E. Klunk, C. A. Mathis, J. C. Mor-
ris, et al. Molecular, structural, and functional characterization of
alzheimer’s disease: evidence for a relationship between default activ-
ity, amyloid, and memory. The Journal of Neuroscience, 25(34):7709–
7717, 2005.

[34] L. K. C. Li and B. Prabhakaran. Feature selection for classification
of variable length multiattribute motions. In V. A. Petrushin and
L. Khan, editors, Multimedia Data Mining and Knowledge Discovery.
Springer, 2007.

[35] Y. Cai and R. T. Ng. Indexing spatio-temporal trajectories with cheby-
shev polynomials. In SIGMOD Conference, pages 599–610, 2004.

[36] F. Cao, A. K. H. Tung, and A. Zhou. Scalable clustering using graphics
processors. In WAIM, pages 372–384, 2006.

[37] B. C. Catanzaro, N. Sundaram, and K. Keutzer. Fast support vector
machine training and classification on graphics processors. In ICML,
pages 104–111, 2008.

[38] K.-P. Chan and A. W.-C. Fu. Efficient time series matching by wavelets.
In ICDE, pages 126–133, 1999.

BIBLIOGRAPHY 211

[39] P. Cheeseman and J. Stutz. Bayesian classification (autoclass): Theory
and results. In Advances in Knowledge Discovery and Data Mining,
pages 153–180. 1996.

[40] Y. Chen, G. Dong, S. Member, J. Han, S. Member, B. W. Wah, and
J. Wang. Regression cubes with lossless compression and aggregation.
IEEE Trans. Knowledge and Data Engineering, 18:2006.

[41] R. C. Coghill. Individual differences in the subjective experience of
pain: New insights into mechanisms and models. Headache: The Jour-
nal of Head and Face Pain, 50(9):1531–1535, 2010.

[42] R. C. Coghill, J. G. McHaffie, and Y.-F. Yen. Neural correlates of in-
terindividual differences in the subjective experience of pain. Proceed-
ings of the National Academy of Sciences, 100(14):8538–8542, 2003.

[43] T. Crow. Schizophrenia as failure of hemispheric dominance for lan-
guage. Trends in Neurosciences, 20(8):339 – 343, 1997.

[44] B. Dom. An information-theoretic external cluster-validity measure.
Technical Report RJ 10219, IBM Research Division, May 2001.

[45] R. R. Edwards. Individual differences in endogenous pain modulation
as a risk factor for chronic pain. Neurology, 65(3):437–443, 2005.

[46] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algo-
rithm for discovering clusters in large spatial databases with noise. In
KDD, volume 96, pages 226–231, 1996.

[47] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subse-
quence matching in time-series databases. In SIGMOD Conference,
pages 419–429, 1994.

[48] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and P. Smyth. Knowl-
edge discovery and data mining: Towards a unifying framework. In
KDD, pages 82–88, 1996.

[49] G. Fein and M. Chang. Smaller feedback ern amplitudes during the
bart are associated with a greater family history density of alcohol
problems in treatment-naive alcoholics. Drug and alcohol dependence,
92(1-3):141–8, Jan 2008.

212 BIBLIOGRAPHY

[50] R. Fillingim. Sex, gender, and pain: Women and men really are differ-
ent. Current Review of Pain, 4(1):24–30, 2000.

[51] E. Formisano, F. De Martino, M. Bonte, and R. Goebel. ”who” is say-
ing ”what”? brain-based decoding of human voice and speech. Science,
322(5903):970–973, 2008.

[52] E. Formisano and R. Goebel. Tracking cognitive processes with func-
tional mri mental chronometry. Current Opinion in Neurobiology,
13(2):174–181, 2003.

[53] M. D. Fox and M. E. Raichle. Spontaneous fluctuations in brain ac-
tivity observed with functional magnetic resonance imaging. Nat Rev
Neurosci, 8(9):700–711, 2007.

[54] D. R. Galasko, F. A. Schmitt, S. Jin, J. Saxton, D. Bennett, M. Sano,
and S. H. Ferris. Detailed assessment of cognition and activities of
daily living in moderate to severe alzheimer’s disease. Neurobiology of
Aging, 21:168, 2000.

[55] L. Garcia-Larrea, M. Frot, and M. Valeriani. Brain generators of laser-
evoked potentials: from dipoles to functional significance. Neurophys-
iologie Clinique/Clinical Neurophysiology, 33(6):279 – 292, 2003.

[56] X. Ge and P. Smyth. Deformable markov model templates for time-
series pattern matching. In KDD, pages 81–90, 2000.

[57] E. I. George. The variable selection problem. J. Amer. Statist. Assoc,
95:1304–1308, 2000.

[58] J. O. Goh. Functional dedifferentiation and altered connectivity in
older adults: neural accounts of cognitive aging. Aging and disease,
2(1):30, 2011.

[59] N. K. Govindaraju, J. Gray, R. Kumar, and D. Manocha. Gputera-
sort: high performance graphics co-processor sorting for large database
management. In SIGMOD Conference, pages 325–336, 2006.

[60] N. K. Govindaraju, B. Lloyd, W. Wang, M. C. Lin, and D. Manocha.
Fast computation of database operations using graphics processors. In
SIGMOD Conference, pages 215–226, 2004.

BIBLIOGRAPHY 213

[61] C. L. Grady. Cognitive neuroscience of aging. Annals of the New York
Academy of Sciences, 1124(1):127–144, 2008.

[62] C. L. Grady, A. R. McIntosh, and F. I. Craik. Age-related differences
in the functional connectivity of the hippocampus during memory en-
coding. Hippocampus, 13(5):572–586, 2003.

[63] J. Gross, A. Schnitzler, L. Timmermann, and M. Ploner. Gamma oscil-
lations in human primary somatosensory cortex reflect pain perception.
PLoS Biol, 5(5):e133, 04 2007.

[64] S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering al-
gorithm for large databases. In SIGMOD Conference, pages 73–84,
1998.

[65] H. Gündel, M. Valet, C. Sorg, D. Huber, C. Zimmer, T. Sprenger,
and T. Tölle. Altered cerebral response to noxious heat stimulation
in patients with somatoform pain disorder. Pain., 137:413–421, Nov
2007.

[66] A. Guttman. R-trees: A dynamic index structure for spatial searching.
In SIGMOD Conference, pages 47–57, 1984.

[67] A. Hafkemeijer, J. van der Grond, and S. A. Rombouts. Imaging the
default mode network in aging and dementia. Biochimica et Biophysica
Acta (BBA) - Molecular Basis of Disease, 1822(3):431 – 441, 2012.

[68] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. On clustering valida-
tion techniques. Journal of Intelligent Information Systems, 17(2):107–
145, 2001.

[69] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten. The weka data mining software: An update. SIGKDD Explor.
Newsl., 11(1):10–18, Nov. 2009.

[70] M. A. Hall and G. Holmes. Benchmarking attribute selection tech-
niques for discrete class data mining. IEEE Trans. on Knowl. and
Data Eng., 15(6):1437–1447, Nov. 2003.

[71] J. Hamilton, G. Chen, M. Thomason, M. Schwartz, and I. Gotlib.
Investigating neural primacy in major depressive disorder: multivariate

214 BIBLIOGRAPHY

granger causality analysis of resting-state fmri time-series data. Mol
Psychiatry, 16(7):763–72, 2011.

[72] J. Han and M. Kamber. Data mining: concepts and techniques. The
Morgan Kaufmann Series In Data Management Systems. Morgan Kauf-
mann, 2000.

[73] M. Hauck, J. Lorenz, and A. K. Engel. Attention to painful stimulation
enhances γ-band activity and synchronization in human sensorimotor
cortex. The Journal of Neuroscience, 27(35):9270–9277, 2007.

[74] O. Hauk. Introduction to eeg and meg. http://imaging.mrc-cbu.

cam.ac.uk/meg/IntroEEGMEG, 2013.

[75] J. V. Haxby, M. I. Gobbini, M. L. Furey, A. Ishai, J. L. Schouten,
and P. Pietrini. Distributed and overlapping representations of faces
and objects in ventral temporal cortex. Science, 293(5539):2425–2430,
2001.

[76] J.-D. Haynes and G. Rees. Predicting the stream of consciousness from
activity in human visual cortex. Current Biology, 15(14):1301–1307,
2005.

[77] J.-D. Haynes and G. Rees. Decoding mental states from brain activity
in humans. Nature Reviews Neuroscience, 7(7):523–534, 2006.

[78] B. He, K. Yang, R. Fang, M. Lu, N. K. Govindaraju, Q. Luo, and P. V.
Sander. Relational joins on graphics processors. In SIGMOD, pages
511–524, 2008.

[79] L. E. Hebert, P. A. Scherr, J. L. Bienias, D. A. Bennett, and D. A.
Evans. Alzheimer disease in the us population: prevalence estimates
using the 2000 census. Archives of neurology, 60(8):1119, 2003.

[80] H. Heekeren, S. Marrett, and L. Ungerleider. The neural systems
that mediate human perceptual decision making. Nat. Rev. Neurosci.,
9(6):467–79, Jun 2008.

[81] K. Herrup. Reimagining alzheimer’s disease—an age-based hypothesis.
The Journal of Neuroscience, 30(50):16755–16762, 2010.

http://imaging.mrc-cbu.cam.ac.uk/meg/IntroEEGMEG
http://imaging.mrc-cbu.cam.ac.uk/meg/IntroEEGMEG

BIBLIOGRAPHY 215

[82] A. Holden and W. Winlow. The Neurobiology of Pain: Symposium
of the Northern Neurobiology Group, Held at Leeds on 18 April, 1983.
Studies in Neuroscience. Manchester University Press, 1984.

[83] S. A. Huettel, A. W. Song, and G. McCarthy. Functional Magnetic
Resonance Imaging. Sinauer Associates Inc., 2009.

[84] A. Hyvarinen, J. Karhunen, and E. Oja. Independent Component Anal-
ysis. Wiley, New York, 2001.

[85] A. Hyvärinen and E. Oja. Independent component analysis: algorithms
and applications. Neural Networks, 13(4-5):411–430, 2000.

[86] G. Iannetti, N. P. Hughes, M. C. Lee, and A. Mouraux. Determinants
of laser-evoked eeg responses: pain perception or stimulus saliency?
Journal of neurophysiology, 100(2):815–828, 2008.

[87] G. Iannetti, L. Zambreanu, G. Cruccu, and I. Tracey. Operculoinsular
cortex encodes pain intensity at the earliest stages of cortical process-
ing as indicated by amplitude of laser-evoked potentials in humans.
Neuroscience, 131(1):199–208, 2005.

[88] C. R. Jack Jr, D. S. Knopman, W. J. Jagust, R. C. Petersen, M. W.
Weiner, P. S. Aisen, L. M. Shaw, P. Vemuri, H. J. Wiste, S. D. Weigand,
et al. Tracking pathophysiological processes in alzheimer’s disease:
an updated hypothetical model of dynamic biomarkers. The Lancet
Neurology, 12(2):207–216, 2013.

[89] W. J. Jagust and E. C. Mormino. Lifespan brain activity, β-amyloid,
and alzheimer’s disease. Trends in cognitive sciences, 15(11):520–526,
2011.

[90] A. Jain and R. Dubes. Algorithms for Clustering Data. Prentice Hall,
1988.

[91] K. Jefferies and N. Agrawal. Early-onset dementia. Advances in Psy-
chiatric Treatment, 15(5):380–388, 2009.

[92] T.-P. Jung, S. Makeig, M. Westerfield, J. Townsend, E. Courchesne,
and T. J. Sejnowski. Removal of eye activity artifacts from visual
event-related potentials in normal and clinical subjects. Clinical Neu-
rophysiology, 111(10):1745–1758, 2000.

216 BIBLIOGRAPHY

[93] M. W. Kadous. Learning comprehensible descriptions of multivariate
time series. In ICML, pages 454–463, 1999.

[94] M. W. Kadous and C. Sammut. Classification of multivariate time
series and structured data using constructive induction. Mach. Learn.,
58(2-3):179–216, 2005.

[95] K. Kailing, H.-P. Kriegel, and P. Kröger. Density-connected subspace
clustering for high-dimensional data. In Proc. SDM, volume 4, 2004.

[96] G. J. Katz and J. T. Kider. All-pairs shortest-paths for large graphs
on the gpu. In Graphics Hardware, pages 47–55, 2008.

[97] L. Kaufman and P. J. Rousseeuw. Finding groups in data an introduc-
tion to cluster analysis, volume 344. John Wiley & Sons, 2009.

[98] K. N. Kay, T. Naselaris, R. J. Prenger, and J. L. Gallant. Identifying
natural images from human brain activity. Nature, 452(7185):352–355,
2008.

[99] A. Kehagias and V. Petridis. Predictive modular neural networks for
time series classification. Neural Networks, 10(1):31–49, 1997.

[100] E. Keogh and S. Kasetty. On the need for time series data mining
benchmarks: a survey and empirical demonstration. Data Mining and
knowledge discovery, 7(4):349–371, 2003.

[101] E. J. Keogh, K. Chakrabarti, S. Mehrotra, and M. J. Pazzani. Lo-
cally adaptive dimensionality reduction for indexing large time series
databases. In SIGMOD Conference, pages 151–162, 2001.

[102] E. J. Keogh, S. Lonardi, and C. A. Ratanamahatana. Towards
parameter-free data mining. In KDD, pages 206–215, 2004.

[103] M. Kitsuregawa, L. Harada, and M. Takagi. Join strategies on kd-tree
indexed relations. In ICDE, pages 85–93, 1989.

[104] K. Koperski and J. Han. Discovery of spatial association rules in geo-
graphic information databases. In SSD, pages 47–66, 1995.

BIBLIOGRAPHY 217

[105] F. Korn, H. V. Jagadish, and C. Faloutsos. Efficiently supporting ad
hoc queries in large datasets of time sequences. In SIGMOD Confer-
ence, pages 289–300, 1997.

[106] H.-P. Kriegel, P. Kröger, A. Pryakhin, M. Renz, and A. Zherdin. Ap-
proximate clustering of time series using compact model-based descrip-
tions. In DASFAA, pages 364–379, 2008.

[107] M. L. Kringelbach. The human orbitofrontal cortex: linking reward to
hedonic experience. Nature Reviews Neuroscience, 6:691–702, 2005.

[108] M. Kudo, J. Toyama, and M. Shimbo. Multidimensional curve classi-
fication using passing—through regions. Pattern Recogn. Lett., 20(11-
13):1103–1111, 1999.

[109] L. H. Lanier. Variability in the pain threshold. Science, 1943.

[110] D. T. Larose. Data Mining Methods and Models. John Wiley & Sons,
2006.

[111] D. Lehmann and W. Skrandies. Reference-free identification of compo-
nents of checkerboard-evoked multichannel potential fields. Electroen-
cephalography and clinical neurophysiology, 48(6):609–621, 1980.

[112] S. T. Leutenegger, J. M. Edgington, and M. A. Lopez. Str: A simple
and efficient algorithm for r-tree packing. In ICDE, pages 497–506,
1997.

[113] G. Li, D. Deng, J. Wang, and J. Feng. Pass-join: A partition-based
method for similarity joins. Proceedings of the VLDB Endowment,
5(3):253–264, 2011.

[114] T. W. Liao. Clustering of time series data - a survey. Pattern Recog-
nition, 38(11):1857–1874, 2005.

[115] M. D. Lieberman, J. Sankaranarayanan, and H. Samet. A fast similarity
join algorithm using graphics processing units. In ICDE, pages 1111–
1120, 2008.

[116] J. Lin and E. Keogh. Clustering of streaming time series is meaningless.
In In Proceedings of the 8th ACM SIGMOD workshop on Research
issues in, pages 56–65. ACM Press, 2003.

218 BIBLIOGRAPHY

[117] J. Lin, M. Vlachos, E. Keogh, and D. Gunopulos. Iterative incremental
clustering of time series. In In EDBT, pages 106–122, 2004.

[118] J. Lin, M. Vlachos, E. J. Keogh, D. Gunopulos, J.-W. Liu, S.-J. Yu,
and J.-J. Le. A mpaa-based iterative clustering algorithm augmented
by nearest neighbors search for time-series data streams. In PAKDD,
pages 333–342, 2005.

[119] W. Liu, B. Schmidt, G. Voss, and W. Müller-Wittig. Molecular dy-
namics simulations on commodity gpus with cuda. In HiPC, pages
185–196, 2007.

[120] J. Lorenz and L. Garcia-Larrea. Contribution of attentional and cog-
nitive factors to laser evoked brain potentials. Neurophysiologie Clin-
ique/Clinical Neurophysiology, 33(6):293–301, 2003.

[121] F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, B. Arnaldi, et al. A
review of classification algorithms for eeg-based brain–computer inter-
faces. Journal of neural engineering, 4, 2007.

[122] J. B. MacQueen. Some methods for classification and analysis of mul-
tivariate observations. In L. M. L. Cam and J. Neyman, editors, Proc.
of the fifth Berkeley Symposium on Mathematical Statistics and Prob-
ability, volume 1, pages 281–297. University of California Press, 1967.

[123] P. C. Mahalanobis. On the generalized distance in statistics. Proceed-
ings of the National Institute of Sciences (Calcutta), 2:49–55, 1936.

[124] W. Maier, D. Lichtermann, M. Rietschel, T. Held, P. Falkai, M. Wag-
ner, and S. Schwab. Genetik Schizophrener Störungen Neuere Konzepte
und Befunde. Der Nervenarzt, 70(11):955–969, 1999.

[125] J. Malmivuo and R. Plonsey. Bioelectromagnetism: Principles and
Applications of Bioelectric and Biomagnetic Fields. Oxford University
Press, 1995.

[126] S. Manavski and G. Valle. Cuda compatible gpu cards as efficient
hardware accelerators for smith-waterman sequence alignment. BMC
Bioinformatics, 9, 2008.

BIBLIOGRAPHY 219

[127] S. Manganaris. Learning to classify sensor data. Technical report,
Vanderbilt University, 1995.

[128] A. Marquand, M. Howard, M. Brammer, C. Chu, S. Coen, and
J. Mourão-Miranda. Quantitative prediction of subjective pain inten-
sity from whole-brain fmri data using gaussian processes. Neuroimage,
49(3):2178–2189, 2010.

[129] A. R. McIntosh and B. Misic. Multivariate statistical analyses for
neuroimaging data. Annual Review of Psychology, 64(1):499–525, 2013.
PMID: 22804773.

[130] M. Meila. The uniqueness of a good optimum for k-means. In ICML,
pages 625–632, 2006.

[131] G. Miller. Brain scans of pain raise questions for the law. Science,
323(5911):195–195, 2009.

[132] P. K. Mölsä, R. J. Marttila, and U. K. Rinne. Survival and cause of
death in alzheimer’s disease and multi-infarct dementia. Acta Neurol
Scand, 74(2):103–7, 1986.

[133] G. E. Moore. Cramming more components onto integrated circuits.
Electronics, 38(8):114–117, 1965.

[134] F. Mörchen. Time series feature extraction for data mining using dwt
and dft, 2003.

[135] J. Mourão-Miranda, A. L. Bokde, C. Born, H. Hampel, and M. Stetter.
Classifying brain states and determining the discriminating activation
patterns: support vector machine on functional mri data. Neuroimage,
28(4):980–995, 2005.

[136] A. Mouraux, J. Guerit, and L. Plaghki. Non-phase locked electroen-
cephalogram (eeg) responses to co2 laser skin stimulations may reflect
central interactions between a partial differential -and c-fibre afferent
volleys. Clinical neurophysiology, 114(4):710–722, 2003.

[137] M. Mur, P. A. Bandettini, and N. Kriegeskorte. Revealing representa-
tional content with pattern-information fmri—an introductory guide.
Social cognitive and affective neuroscience, 4(1):101–109, 2009.

220 BIBLIOGRAPHY

[138] R. G. Newcombe. Two-sided confidence intervals for the single propor-
tion: comparison of seven methods. Statistics in medicine, 17(8):857–
872, 1998.

[139] C. S. Nielsen, R. Staud, and D. D. Price. Individual differences in pain
sensitivity: measurement, causation, and consequences. The journal of
pain, 10(3):231–237, 2009.

[140] M. Noll-Hussong, A. Otti, L. Laeer, A. Wohlschlaeger, C. Zimmer,
C. Lahmann, P. Henningsen, T. Toelle, and H. Guendel. Aftermath
of sexual abuse history on adult patients suffering from chronic func-
tional pain syndromes: an fmri pilot study. Journal of psychosomatic
research, 68(5):483–487, 2010.

[141] K. A. Norman, S. M. Polyn, G. J. Detre, and J. V. Haxby. Beyond
mind-reading: multi-voxel pattern analysis of fmri data. Trends in
cognitive sciences, 10(9):424–430, 2006.

[142] T. Oates. Identifying distinctive subsequences in multivariate time
series by clustering. In Proc. ACM SIGKDD, pages 322–326, 1999.

[143] T. Oates, L. Firoiu, and P. R. Cohen. Clustering time series with hidden
markov models and dynamic time warping. In In Proceedings of the
IJCAI-99 Workshop on Neural, Symbolic and Reinforcement Learning
Methods for Sequence Learning, pages 17–21, 1999.

[144] L. Owsley, L. Atlas, and G. Bernard. Automatic clustering of vector
time-series for manufacturing machine monitoring. Acoustics, Speech,
and Signal Processing, IEEE International Conference on, 4:3393,
1997.

[145] R. Palaniappan and D. P. Mandic. Eeg based biometric framework for
automatic identity verification. VLSI Signal Processing, 49(2):243–250,
2007.

[146] R. Palaniappan and P. Raveendran. Single trial vep extraction using
digital filter. Statistical Signal Processing, 2001. Proceedings of the 11th
IEEE Signal Processing Workshop on, pages 249–252, 2001.

BIBLIOGRAPHY 221

[147] C. Pamminger. Bayesian Clustering of Categorical Time Series: An
Approach Using Finite Mixtures of Markov Chain Models. VDM-Verlag
Dr. Müller, 2008.

[148] C.-h. Park, M.-H. Boudrias, H. Rossiter, and N. S. Ward. Age-related
changes in the topological architecture of the brain during hand grip.
Neurobiology of aging, 33(4):833–e27, 2012.

[149] L. Pasquini, A. Tonch, C. Plant, A. Zherdin, M. Ortner, A. Kurz,
H. Förstl, C. Zimmer, T. Grimmer, A. M. Wohlschläger, V. Riedl, and
C. Sorg. Intrinsic brain activity of cognitively normal older persons re-
sembles more that of patients both with and at risk for alzheimer’s
disease than that of healthy younger persons. Brain Connectivity,
4(5):323–336, 2014.

[150] W. D. Penny, K. J. Friston, J. T. Ashburner, S. J. Kiebel, and T. E.
Nichols, editors. Statistical Parametric Mapping: The Analysis of
Functional Brain Images. 2007.

[151] F. Pereira, T. Mitchell, and M. Botvinick. Machine learning classifiers
and fmri: a tutorial overview. Neuroimage, 45(1):S199–S209, 2009.

[152] M. Pierre Beaulieu and I. A. for the Study of Pain. Pharmacology of
Pain. IASP Press, International Association for the Study of Pain,
2010.

[153] C. Plant, C. Böhm, B. Tilg, and C. Baumgartner. Enhancing instance-
based classification with local density: a new algorithm for classifying
unbalanced biomedical data. Bioinformatics, 22(8):981–988, 2006.

[154] C. Plant, A. M. Wohlschlager, and A. Zherdin. Interaction-based clus-
tering of multivariate time series. In Data Mining, 2009. ICDM’09.
Ninth IEEE International Conference on, pages 914–919. IEEE, 2009.

[155] C. Plant, A. Zherdin, C. Sorg, A. Meyer-Baese, and A. M.
Wohlschläger. Mining interaction patterns among brain regions by
clustering. Knowledge and Data Engineering, IEEE Transactions on,
26(9):2237–2249, 2014.

222 BIBLIOGRAPHY

[156] J. Platt et al. Fast training of support vector machines using sequen-
tial minimal optimization. Advances in kernel methods—support vector
learning, 3, 1999.

[157] M. Ploner, J. Gross, L. Timmermann, B. Pollok, and A. Schnit-
zler. Pain suppresses spontaneous brain rhythms. Cerebral cortex,
16(4):537–540, 2006.

[158] R. A. Poldrack, Y. O. Halchenko, and S. J. Hanson. Decoding the large-
scale structure of brain function by classifying mental states across
individuals. Psychological Science, 20(11):1364–1372, 2009.

[159] T. Polvikoski, R. Sulkava, M. Haltia, K. Kainulainen, A. Vuorio,
A. Verkkoniemi, L. Niinistö, P. Halonen, and K. Kontula. Apolipopro-
tein e, dementia, and cortical deposition of beta-amyloid protein.
New England Journal of Medicine, 333(19):1242–1248, 1995. PMID:
7566000.

[160] R. L. Quiton and J. D. Greenspan. Across-and within-session variabil-
ity of ratings of painful contact heat stimuli. Pain, 137(2):245–256,
2008.

[161] L. Rabiner and B.-H. Juang. Fundamentals of speech recognition.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[162] C. A. Ratanamahatana, E. J. Keogh, A. J. Bagnall, and S. Lonardi. A
novel bit level time series representation with implication of similarity
search and clustering. In PAKDD, pages 771–777, 2005.

[163] E. M. Rosier, M. J. Iadarola, and R. C. Coghill. Reproducibility of
pain measurement and pain perception. Pain, 98(1):205–216, 2002.

[164] S. R. Sabat. Implicit memory and people with alzheimer’s disease:
Implication for caregiving. American Journal of Alzheimer’s Disease
and Other Dementias, 21(1):11–14, 2006.

[165] D. P. Salmon. Neuropsychological features of mild cognitive impair-
ment and preclinical alzheimer’s disease. In M.-C. Pardon and M. W.
Bondi, editors, Behavioral Neurobiology of Aging, volume 10 of Current
Topics in Behavioral Neurosciences, pages 187–212. Springer Berlin
Heidelberg, 2012.

BIBLIOGRAPHY 223

[166] A. Schlögl, M. Slater, and G. Pfurtscheller. Presence research and eeg.
In Proceedings of the 5th International Workshop on Presence, pages
9–11, 2002.

[167] B. Schölkopf, A. J. Smola, and K.-R. Müller. Nonlinear compo-
nent analysis as a kernel eigenvalue problem. Neural Computation,
10(5):1299–1319, 1998.

[168] E. Schulz, L. Tiemann, T. Schuster, J. Gross, and M. Ploner. Neu-
rophysiological coding of traits and states in the perception of pain.
Cerebral Cortex, 21(10):2408–2414, 2011.

[169] E. Schulz, A. Zherdin, L. Tiemann, C. Plant, and M. Ploner. Decoding
an individual’s sensitivity to pain from the multivariate analysis of eeg
data. Cerebral Cortex, 22(5):1118–1123, 2012.

[170] P. Seeman, J. Schwarz, J.-F. Chen, H. Szechtman, M. Perreault,
G. S. McKnight, J. C. Roder, R. Quirion, P. Boksa, L. K. Srivastava,
K. Yanai, D. Weinshenker, and T. Sumiyoshi. Psychosis pathways con-
verge via d2high dopamine receptors. Synapse, 60(4):319–346, 2006.

[171] D. J. Selkoe. Alzheimer’s disease is a synaptic failure. Science,
298(5594):789–791, 2002.

[172] S. A. A. Shalom, M. Dash, and M. Tue. Efficient k-means clustering
using accelerated graphics processors. In DaWaK, pages 166–175, 2008.

[173] S. V. Shinkareva, R. A. Mason, V. L. Malave, W. Wang, T. M. Mitchell,
and M. A. Just. Using fmri brain activation to identify cognitive
states associated with perception of tools and dwellings. PLoS One,
3(1):e1394, 2008.

[174] R. Sibson. Slink: an optimally efficient algorithm for the single-link
cluster method. The Computer Journal, 16(1):30–34, 1973.

[175] A. Sims. Symptoms in the Mind: An Introduction to Descriptive Psy-
chopathology. W. B. Saunders, 2003.

[176] Y. B. Sirotin and A. Das. Anticipatory haemodynamic signals in
sensory cortex not predicted by local neuronal activity. Nature,
457(7228):475–479, Jan. 2009.

224 BIBLIOGRAPHY

[177] S. Smith, P. Fox, K. Miller, D. Glahn, P. Fox, C. Mackay, N. Filippini,
K. Watkins, R. Toro, A. Laird, et al. Correspondence of the brain’s
functional architecture during activation and rest. PNAS, 106:13040,
2009.

[178] C. Sorg, A. Manoliu, S. Neufang, N. Myers, H. Peters, D. Schwerthöffer,
M. Scherr, M. Mühlau, C. Zimmer, A. Drzezga, H. Förstl, J. Bäuml,
T. Eichele, A. M. Wohlschläger, and V. Riedl. Increased intrinsic brain
activity in the striatum reflects symptom dimensions in schizophrenia.
Schizophr Bull, 2012.

[179] C. Sorg, V. Riedl, M. Mühlau, V. D. Calhoun, T. Eichele, L. Läer,
A. Drzezga, H. Förstl, A. Kurz, C. Zimmer, and A. M. Wohlschläger.
Selective changes of resting-state networks in individuals at risk for
alzheimer’s disease. PNAS, 104(47):18760–18765, 2007.

[180] L. E. Souren, E. H. Franssen, and B. Reisberg. Contractures and loss
of function in patients with alzheimer’s disease. J Am Geriatr Soc,
43(6):650–5, 1995.

[181] I. Strigo, A. Simmons, S. Matthews, A. Craig, and M. Paulus. Associa-
tion of major depressive disorder with altered functional brain response
during anticipation and processing of heat pain. Arch Gen Psychiatry,
65(11):1275–84, Nov 2008.

[182] A. Sudjianto and G. S. Wasserman. A nonlinear extension of principal
component analysis for clustering and spatial differentiation. Institute
of Industrial Engineers, Inc. (IIE), v28(n12):p1023(6), 1996.

[183] J. Sun, S. Tong, and G.-Y. Yang. Reorganization of brain networks in
aging and age-related diseases. Aging and Disease, 3(2):181, 2012.

[184] A. Szalay and J. Gray. 2020 computing: Science in an exponential
world. Nature, 440:413–414, 2006.

[185] A. Tasora, D. Negrut, and M. Anitescu. Large-scale parallel multi-body
dynamics with frictional contact on the graphical processing unit. Proc.
of Inst. Mech. Eng. Journal of Multi-body Dynamics, 222(4):315–326.

[186] K. R. Thulborn, J. C. Waterton, P. M. Matthews, and G. K. Radda.
Oxygenation dependence of the transverse relaxation time of water

BIBLIOGRAPHY 225

protons in whole blood at high field. Biochimica et Biophysica Acta
(BBA) - General Subjects, 714(2):265 – 270, 1982.

[187] I. Tracey. Can neuroimaging studies identify pain endophenotypes in
humans? Nature Reviews Neurology, 7(3):173–181, 2011.

[188] I. Tracey and P. W. Mantyh. The cerebral signature for pain perception
and its modulation. Neuron, 55(3):377–391, 2007.

[189] A. Trouve and Y. Yu. Unsupervised clustering trees by nonlinear prin-
cipal component analysis. Pattern Recognition and Image Analysis,
2:108–112, 2001.

[190] N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello,
O. Etard, N. Delcroix, B. Mazoyer, and M. Joliot. Automated anatom-
ical labeling of activations in spm using a macroscopic anatomical par-
cellation of the mni mri single-subject brain. NeuroImageVolume 15,
pages 273–289, January 2002.

[191] M. T. van Kesteren, G. Fernández, D. G. Norris, and E. J. Her-
mans. Persistent schema-dependent hippocampal-neocortical connec-
tivity during memory encoding and postencoding rest in humans. Pro-
ceedings of the National Academy of Sciences, 107(16):7550–7555, 2010.

[192] V. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

[193] A. Veeraraghavan and A. K. R. Chowdhury. The function space of an
activity. In CVPR (1), pages 959–968, 2006.

[194] P. F. Verhaak, J. J. Kerssens, J. Dekker, M. J. Sorbi, and J. M. Bensing.
Prevalence of chronic benign pain disorder among adults: a review of
the literature. Pain, 77(3):231 – 239, 1998.

[195] N. X. Vinh, J. Epps, and J. Bailey. Information theoretic measures
for clusterings comparison: is a correction for chance necessary? In
Proceedings of the 26th Annual International Conference on Machine
Learning, pages 1073–1080. ACM, 2009.

[196] M. Vlachos, J. Lin, E. Keogh, and D. Gunopulos. A wavelet-based
anytime algorithm for k-means clustering of time series. In In Proc.
Workshop on Clustering High Dimensionality Data and Its Applica-
tions, pages 23–30, 2003.

226 BIBLIOGRAPHY

[197] E. M. Voorhees. Implementing agglomerative hierarchic clustering al-
gorithms for use in document retrieval. Information Processing & Man-
agement, 22(6):465–476, 1986.

[198] G. Waldemar, B. Dubois, M. Emre, J. Georges, I. G. McKeith,
M. Rossor, P. Scheltens, P. Tariska, and B. Winblad. Recommen-
dations for the diagnosis and management of alzheimer’s disease and
other disorders associated with dementia: Efns guideline. European
Journal of Neurology, 14(1):e1–e26, 2007.

[199] X. Wang, A. Wirth, and L. Wang. Structure-based statistical features
and multivariate time series clustering. In ICDM, pages 351–360, 2007.

[200] X. Z. Wang and C. McGreavy. Automatic classification for mining pro-
cess operational data. Industrial & Engineering Chemistry Research,
37(6):2215–2222, 1998.

[201] S. Wichert, K. Fokianos, and K. Strimmer. Identifying periodically
expressed transcripts in microarray time series data. Bioinformatics,
20(1):5–20, 2004.

[202] E. H. C. Wu and P. L. H. Yu. Independent component analysis for
clustering multivariate time series data. In ADMA, pages 474–482,
2005.

[203] L. Xiao, H. Begleiter, B. Porjesz, W. Wenyu, and A. Litke. Event
related potentials during object recognition tasks. Brain Research Bul-
letin, 38:531–538(8), 1995.

[204] Y. Yamada, E. Suzuki, H. Yokoi, and K. Takabayashi. Decision-tree
induction from time-series data based on a standard-example split test.
In ICML, pages 840–847, 2003.

[205] B.-K. Yi and C. Faloutsos. Fast time sequence indexing for arbitrary
lp norms. In VLDB, pages 385–394, 2000.

[206] S. Zhong and J. Ghosh. HMMs and coupled HMMs for multi-channel
EEG classification. In Proceedings of the IEEE International Joint
Conference on Neural Networks, volume 2, pages 1254–1159, 2002.

	Acknowledgements
	Abstract
	Zusammenfassung
	I Preliminaries
	1 Introduction
	1.1 Knowledge Discovery in Databases
	1.2 Data Mining
	1.3 Outline of the Thesis

	2 Main Concepts and Algorithms in Data Mining
	2.1 Introduction
	2.2 Similarity-Join, Time Series and Stepwise Selection
	2.2.1 Similarity Join
	2.2.2 Time Series
	2.2.3 Attribute Selection Algorithms

	2.3 Classification
	2.3.1 Next Neighbor Classificator
	2.3.2 Support vector Machines (SVM)

	2.4 Clustering
	2.4.1 k-means
	2.4.2 DBSCAN

	2.5 Hierarchical Clustering
	2.5.1 Single- and Average-Link
	2.5.2 Hierarchical Subspace-Clustering

	2.6 Conclusion

	3 Imaging Modalities and Applications
	3.1 Functional Magnetic Resonance Imaging (fMRI)
	3.2 Electroencephalography (EEG)
	3.3 Alzheimer's disease
	3.4 Pain disorder
	3.5 Schizophrenia

	II Data Mining Using Graphics Processing Units
	4 Parallel Computing using GPU
	4.1 Introduction
	4.2 Related Work
	4.3 Architecture of the GPU
	4.3.1 The Memory Model
	4.3.2 The Programming Model
	4.3.3 Atomic Operations

	4.4 Conclusions

	5 Similarity Join Based Methods using GPU
	5.1 Introduction
	5.2 Related Work
	5.3 An Index Structure for Similarity Queries on GPU
	5.4 The Similarity Join
	5.4.1 Similarity Join Without Index Support
	5.4.2 An Indexed Parallel Similarity Join Algorithm on GPU

	5.5 Similarity Join to Support Density-based Clustering
	5.5.1 Basic Definitions and Sequential DBSCAN
	5.5.2 GPU-supported DBSCAN

	5.6 Experimental Evaluation
	5.6.1 Evaluation of Similarity Join on the GPU
	5.6.2 Evaluation of GPU-supported DBSCAN

	5.7 Conclusions

	6 K-means Clustering using GPU
	6.1 Introduction
	6.2 Related Work
	6.3 K-means Clustering on GPU
	6.3.1 The Algorithm K-means
	6.3.2 CUDA-K-means

	6.4 Evaluation of CUDA-K-means
	6.5 Conclusions

	III Models-based Data Mining
	7 Compact Model-Based Descriptions
	7.1 Introduction
	7.2 Related Work
	7.3 Mathematical Models for Time Series Data
	7.3.1 Mathematical Model
	7.3.2 Representation of Time Series Based on Mathematical Models
	7.3.3 Model-Based Similarity of Time Series
	7.3.4 The Choice of the Reference Time Series
	7.3.5 Efficient Approximative Clustering

	7.4 Evaluation
	7.5 Conclusions

	8 Model-based Classification of Data
	8.1 Introduction
	8.2 Related Work
	8.3 Model-Based Classifier
	8.4 Evaluation
	8.5 Conclusion

	9 Mining Interaction Patterns among Brain Regions
	9.1 Introduction
	9.2 Related Work
	9.3 Interaction-Based Cluster Notion
	9.4 Nonlinear Models
	9.5 Interaction K-means Clustering
	9.6 Interpretation of the Clustering Result
	9.7 Comparison to State-of-the-Art
	9.7.1 Methodology
	9.7.2 Effectiveness
	9.7.3 Efficiency

	9.8 Interaction among Brain Regions
	9.8.1 Functional Magnetic Resonance Imaging
	9.8.2 Somatoform Pain Disorder
	9.8.3 Schizophrenia

	9.9 Conclusion

	IV Medical Applications
	10 Hierarchical Model-based Clustering
	10.1 Introduction
	10.2 Related Work
	10.3 Model-Based Hierarchical Clustering
	10.3.1 AV-Link-Approach for Model-Based Hierarchical Clustering
	10.3.2 Subspace Clustering over Length of Models
	10.3.3 Subspace Clustering over Number of Models

	10.4 Evaluation
	10.4.1 Analysis of Medical Data with Model-Based Hierarchical Clustering
	10.4.2 Hierarchical Subspace Clustering

	10.5 Conclusion

	11 Decoding an Individual's Sensitivity to Pain
	11.1 Introduction
	11.2 Methods
	11.2.1 Paradigm
	11.2.2 EEG Recordings and Analysis
	11.2.3 Multivariate Pattern Analysis (MVPA)

	11.3 Results
	11.4 Interpretation of the Results
	11.5 Conclusion

	V Conclusion
	12 Summary and Outlook
	12.1 Summary
	12.2 Outlook

	13 Appendix

	Bibliography

