
Aus dem Adolf-Butenandt-Institut der Ludwig-Maximilians-Universität München
Lehrstuhl: Stoffwechselbiochemie

Vorstand: Prof. Dr. rer. nat. Dr. h.c. Christian Haass

ALS and FTLD associated FUS in zebrafish -

investigating disease mechanisms in vivo

- Dissertation -
zum Erwerb des Doktorgrades der Naturwissenschaften (Dr. rer. nat.)
an der Medizinischen Fakultät der Ludwig-Maximilians-Universität zu

München

vorgelegt von
Laura-Carolin Hasenkamp

aus Düsseldorf
2015





Gedruckt mit Genehmigung der Medizinischen Fakultät
der Ludwig-Maximilians-Universität München

Betreuer: Prof. Dr. rer. nat. Dr. h. c. Christian Haass

Zweitgutachterin: Dr. rer. nat. Dorothee Dormann

Dekan: Prof. Dr. med. dent. Reinhard Hickel

Tag der mündlichen
Prüfung:

04.04.2016





Eidesstattliche Versicherung

Ich, Laura-Carolin Hasenkamp, erkläre hiermit an Eides statt, dass ich die vorliegende
Dissertation mit dem Thema

’ALS and FTLD associated FUS in zebrafish -
investigating disease mechanisms in vivo’

selbstständig verfasst, mich ausser der angegebenen keiner weiteren Hilfsmittel bedient
und alle Erkenntnisse, die aus dem Schrifttum ganz oder annähernd übernommen sind,
als solche kenntlich gemacht und nach ihrer Herkunft unter Bezeichnung der Fundstelle
einzeln nachgewiesen habe.

Ich erkläre des Weiteren, dass die hier vorgelegte Dissertation nicht in gleicher oder
ähnlicher Form bei einer anderen Stelle zur Erlangung eines akademischen Grades ein-
gereicht wurde.

München, den

(Laura-Carolin Hasenkamp)





However bad life may seem, there is always something you can do, and succeed at.
While there is life, there is hope. Stephen Hawking





Table of contents

List of figures XIV

List of abbreviations XV

1 Abstract 1

2 Zusammenfassung 3

3 Introduction 5
3.1 Neurodegenerative Diseases . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Frontotemporal lobar degeneration . . . . . . . . . . . . . . . . . . . . 6

3.2.1 Clinical classification & symptoms . . . . . . . . . . . . . . . . . 6
3.3 Amyotrophic lateral sclerosis . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3.1 Clinical classification & symptoms . . . . . . . . . . . . . . . . . 7
3.4 Overlap of ALS and FTLD . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.4.1 Molecular pathology and genetics in ALS and FTLD . . . . . . 10
3.5 Fused in sarcoma/Translocated in sarcoma . . . . . . . . . . . . . . . . 12

3.5.1 FUS’ pathogenicity . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5.2 FUS’ physiological function . . . . . . . . . . . . . . . . . . . . 14
3.5.3 FUS animal models . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.6 Zebrafish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6.1 Zebrafish as model organism . . . . . . . . . . . . . . . . . . . . 17
3.6.2 Mutagenesis in zebrafish . . . . . . . . . . . . . . . . . . . . . . 18

3.6.2.1 ZFNs . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.6.2.2 TALENs . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.6.2.3 CRISPR/Cas9 system . . . . . . . . . . . . . . . . . . 22

3.6.3 Modelling ALS/FTLD in zebrafish . . . . . . . . . . . . . . . . 22

4 Objectives 25

IX



Table of contents

5 Material and Methods 27
5.1 Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.1 Zebrafish lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.2 Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.3 ZFNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.4 gripNAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.5 Vectors and plasmids . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1.6 Oligonucleotides . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1.6.1 Cloning primers . . . . . . . . . . . . . . . . . . . . . . 29
5.1.6.2 Sequencing primers . . . . . . . . . . . . . . . . . . . . 29
5.1.6.3 Genotyping primers for RFLP . . . . . . . . . . . . . . 29
5.1.6.4 Genotyping primers for allele specific PCR . . . . . . . 29
5.1.6.5 Genotyping primers for HRM analysis . . . . . . . . . 30
5.1.6.6 Semiquantitative PCR primers . . . . . . . . . . . . . 30
5.1.6.7 Quantitative PCR primers . . . . . . . . . . . . . . . . 30

5.1.7 Bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.8 Antibodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.8.1 Primary antibodies . . . . . . . . . . . . . . . . . . . . 31
5.1.8.2 Secondary antibodies: . . . . . . . . . . . . . . . . . . 32

5.1.9 Chemicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.9.1 Chemicals and reagents . . . . . . . . . . . . . . . . . 32
5.1.9.2 Solutions and buffer . . . . . . . . . . . . . . . . . . . 37
5.1.9.3 Media . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1.10 Kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.11 Consumables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1.12 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.13 Microscopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.1.14 Hardware and software . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.1 Molecular biological methods . . . . . . . . . . . . . . . . . . . 47

5.2.1.1 Isolation of genomic DNA . . . . . . . . . . . . . . . . 47
5.2.1.2 Genotyping fus ZFN mediated mutations . . . . . . . . 47
5.2.1.3 Genotyping Fusmde1500 mutations . . . . . . . . . . . . 48
5.2.1.4 Large scale mutation screening using HRM analysis . . 48
5.2.1.5 RNA extraction . . . . . . . . . . . . . . . . . . . . . . 49
5.2.1.6 cDNA synthesis . . . . . . . . . . . . . . . . . . . . . . 49

X



Table of contents

5.2.1.7 Cloning of zebrafish fus contructs . . . . . . . . . . . . 49
5.2.1.8 TOPO cloning . . . . . . . . . . . . . . . . . . . . . . 50
5.2.1.9 Gateway cloning . . . . . . . . . . . . . . . . . . . . . 50
5.2.1.10 Chemical transformation of bacteria . . . . . . . . . . 51
5.2.1.11 Gradient PCR . . . . . . . . . . . . . . . . . . . . . . 51
5.2.1.12 Colony PCR . . . . . . . . . . . . . . . . . . . . . . . 51
5.2.1.13 Bacterial cultivation and DNA extraction . . . . . . . 52
5.2.1.14 ISH probe generation . . . . . . . . . . . . . . . . . . 52
5.2.1.15 Agarose gel electrophoresis . . . . . . . . . . . . . . . 53
5.2.1.16 Gel extraction and PCR clean-up . . . . . . . . . . . . 53
5.2.1.17 Quantitative PCR . . . . . . . . . . . . . . . . . . . . 53
5.2.1.18 Semiquantitative PCR . . . . . . . . . . . . . . . . . . 54
5.2.1.19 Determination of protein concentration . . . . . . . . . 54
5.2.1.20 SDS-polyacrylamide gel electrophoresis . . . . . . . . . 55
5.2.1.21 Western blotting . . . . . . . . . . . . . . . . . . . . . 55
5.2.1.22 Subcellular fractionation . . . . . . . . . . . . . . . . . 56
5.2.1.23 Solubility fractionation . . . . . . . . . . . . . . . . . . 57

5.2.2 Cellbiological methods . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.2.1 HeLa cell culture and transfection . . . . . . . . . . . . 57
5.2.2.2 Harvesting of HeLa cells and cell lysis . . . . . . . . . 58
5.2.2.3 Preparation and cultivation of primary neurons . . . . 58
5.2.2.4 Transfection of primary neurons . . . . . . . . . . . . . 58
5.2.2.5 Immunofluorescence stainings in primary neurons . . . 59

5.2.3 Zebrafish specific methods . . . . . . . . . . . . . . . . . . . . . 59
5.2.3.1 Zebrafish husbandry and handling of embryos . . . . . 59
5.2.3.2 Mating of adult zebrafish . . . . . . . . . . . . . . . . 59
5.2.3.3 Microinjection into zebrafish eggs . . . . . . . . . . . . 60
5.2.3.4 Knockdown of genes in zebrafish embryos using gripNAs 60
5.2.3.5 Bleaching of fertilized zebrafish eggs . . . . . . . . . . 60
5.2.3.6 Fin biopsies from adult zebrafish . . . . . . . . . . . . 60
5.2.3.7 Tissue harvesting from adult zebrafish . . . . . . . . . 61
5.2.3.8 Fixation and storage of zebrafish samples . . . . . . . 61
5.2.3.9 Whole mount in situ hybridizations . . . . . . . . . . . 61
5.2.3.10 Whole mount immunofluorescence stainings . . . . . . 62
5.2.3.11 Heat shock treatment . . . . . . . . . . . . . . . . . . 63
5.2.3.12 Pentylenetetrazole treatment . . . . . . . . . . . . . . 63

XI



Table of contents

5.2.3.13 TUNEL staining in zebrafish . . . . . . . . . . . . . . 63
5.2.3.14 Motor neuron analysis . . . . . . . . . . . . . . . . . . 64
5.2.3.15 Locomotion analysis . . . . . . . . . . . . . . . . . . . 64
5.2.3.16 Immunohistochemistry . . . . . . . . . . . . . . . . . . 64
5.2.3.17 Lysis of zebrafish samples . . . . . . . . . . . . . . . . 65
5.2.3.18 Generation of zebrafish Fus specific antibodies . . . . . 66

5.2.4 General methods . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2.4.1 Databases used for primer design and cloning strategy 66
5.2.4.2 Image acquisition and processing . . . . . . . . . . . . 66
5.2.4.3 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Results 68
6.1 Characterization of Fus in zebrafish . . . . . . . . . . . . . . . . . . . . 68

6.1.1 FUS orthologue in zebrafish . . . . . . . . . . . . . . . . . . . . 68
6.1.2 Expression profile of Fus . . . . . . . . . . . . . . . . . . . . . . 68
6.1.3 Transient fus knockdown . . . . . . . . . . . . . . . . . . . . . . 70

6.2 Generation of genetic fus mutants . . . . . . . . . . . . . . . . . . . . . 72
6.2.1 Editing the fus locus using ZFNs . . . . . . . . . . . . . . . . . 72
6.2.2 Screening for fus mutations . . . . . . . . . . . . . . . . . . . . 75

6.3 Basic characterization of genetic fus mutants . . . . . . . . . . . . . . . 77
6.3.1 Fusmde1500 allele characterization . . . . . . . . . . . . . . . . . . 77
6.3.2 Fusmde1500 protein characterization . . . . . . . . . . . . . . . . 79
6.3.3 Fusmde1500 allele expression profile . . . . . . . . . . . . . . . . . 80
6.3.4 Fusmde1500 protein localization . . . . . . . . . . . . . . . . . . . 81
6.3.5 Fusmde1500 protein solubility properties . . . . . . . . . . . . . . 83

6.4 Consequences of Fusmde1500 mutation on Fus’ function . . . . . . . . . . 84
6.4.1 Phenotypic analysis of Fusmde1500 mutant zebrafish . . . . . . . . 84
6.4.2 Motor function in Fusmde1500 mutant zebrafish . . . . . . . . . . 86
6.4.3 Stress response in Fusmde1500 mutant zebrafish . . . . . . . . . . 87
6.4.4 Fusmde1500 protein splicing function . . . . . . . . . . . . . . . . 90
6.4.5 Immunohistochemical examination in Fusmde1500 mutant zebrafish 91

7 Discussion 95
7.1 Evolutionary conservation of FUS function . . . . . . . . . . . . . . . . 95
7.2 Potential zebrafish fus functions during oogenesis . . . . . . . . . . . . 95
7.3 ZFN-mediated genomic targeting of fus . . . . . . . . . . . . . . . . . . 97

XII



Table of contents

7.4 Why do Fusmde1500 mutant zebrafish reveal no motor neuron phenotype? 98
7.5 One hit is not enough . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.6 Regulation of mutant Fusmde1500 allele expression . . . . . . . . . . . . . 101
7.7 Increased insolubility of the Fusmde1500 protein is not sufficient for inclu-

sion formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.8 Nuclear import regulation of the Fusmde1500 protein . . . . . . . . . . . 102
7.9 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8 References 106

9 Acknowledgements 135

XIII



List of figures

3.1 ALS and FTLD as a disease continuum . . . . . . . . . . . . . . . . . . 9
3.2 Fused in sarcoma/translocated in sarcoma (FUS/TLS) . . . . . . . . . 12
3.3 Genome editing strategies . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.1 Schematic overview of the FUS protein . . . . . . . . . . . . . . . . . . 68
6.2 fus expression in zebrafish . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.3 Fus expression in zebrafish . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.4 fus knockdown effects on motor neuron morphology . . . . . . . . . . . 71
6.5 ZFN targeting of the zebrafish fus locus . . . . . . . . . . . . . . . . . . 74
6.6 Identified alleles after fus locus targeting . . . . . . . . . . . . . . . . . 76
6.7 Fusmde1500 allele . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.8 Fusmde1500 protein expression . . . . . . . . . . . . . . . . . . . . . . . . 79
6.9 Fusmde1500 allele expression levels . . . . . . . . . . . . . . . . . . . . . 81
6.10 Fusmde1500 localization . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.11 Differential fractionation of Fusmde1500 mutants . . . . . . . . . . . . . . 84
6.12 Phenotypical analysis of Fusmde1500 mutants . . . . . . . . . . . . . . . 85
6.13 Photomotor response in Fusmde1500 mutants . . . . . . . . . . . . . . . . 87
6.14 Examination of stress responses in Fusmde1500 mutants . . . . . . . . . . 89
6.15 Splicing function of Fusmde1500 protein . . . . . . . . . . . . . . . . . . . 90
6.16 Identification of IHC suitable zebrafish Fus specific antibodies . . . . . 92
6.17 IHC in Fusmde1500 mutant zebrafish . . . . . . . . . . . . . . . . . . . . 93

XIV



List of abbreviations

+/+ wildtype
+/- heterozygous
-/- homozygous
aa amino acid
AD Alzheimer’s disease
AdOX adenosine-2,3-dialdehyde
aFTLD-U atypical FTLD with Tau-negative, ubiquitin-positive inclusions
ALS Amyotrophic lateral sclerosis
ALS-Ci/Bi ALS with cognitive and behavioral impairment
ALS-FTLD clinical presentation with similarly strong signs of ALS and FTLD
ALS-FUS ALS with FUS-positive inclusions
APS ammonium persulfate
bp base pair
bvFTD behavioural variant of Frontotemporal dementia
C. elegans Caenorhabditis elegans
CaCl2 calcium chloride
Cas9 CRISPR-associated 9
CHMP2B charged multivesicular body protein 2B
CLIP cross-linking and immunoprecipitation technology
CMV cytomegalovirus
CNS central nervous system
CO2 carbon dioxide
CRISPR clustered regularly interspaced short palindromic repeats
crRNA CRISPR RNA
CT computed tomography
CuSO4 copper sulfate
DAB 3,3’-diaminobenzidine
dATP deoxyadenosine triphosphate
dCTP deoxycytosine triphosphate
DEPC diethylpyrocarbonate

XV



List of abbreviations

dGTP deoxyguanosine triphosphate
DMEM Dulbecco’s Modified Eagel’s Medium
DMSO dimethyl sulfoxide
DNA deoxyribonucleic acid
dNTP deoxynucleoside triphosphates
DTT dithiothreitol
dTTP deoxytyrosine triphosphate
dpf days post fertilization
DPR dipeptide-repeat
DSB double-strand breaks
EDTA ethylenediaminetetraacetic acid
eGFP enhanced GFP
Eif2α eukaryotic translation initiation factor 2α
ELISA enzyme-linked immunosorbent assay
EMG electromyography
ENU N-ethyl-N-nitrosouresa
ER endoplasmic reticulum
EST expressed sequence tag
EWS Ewing’s sarcoma
FACS fluorescence-activated cell sorting
fALS familial ALS
FBS fetal bovine serum
FDA US Food and Drug Administration
FTD Frontotemporal dementia
FTLD Frontotemporal lobar degeneration
FTLD-FUS FTLD with FUS-positive inclusions
FTLD-MND FTLD with symptoms of motor neuron disease
FUS human fused in sarcoma gene
FUS human fused in sarcoma protein
fus zebrafish fused in sarcoma gene
Fus zebrafish fused in sarcoma protein
Gal4 yeast transcription activator protein Gal4
GFP green fluorescent protein
GRN progranulin
gRNA guide RNA
GSK-3β glycogen synthase kinase-3 β

GuHCl guanidine hydrochloride
H2O2 hydrogen peroxide

XVI



List of abbreviations

H2O water
H3 histone 3
HDR homology-directed repair
hnRNP heterogeneous nuclear ribonucleoprotein
hpf hours post fertilization
HRM high resolution melting
HRP horseradish peroxidase
HSP heat shock protein
IHC Immunohistochemistry
IMI Institute of Molecular Immunology
ISH in situ hybridisierung
ISV intersegmental blood vessels
KCl potassium chloride
kDa kilo-Dalton
KD knockdown
KH2PO4 monopotassium phosphate
KI knockin
KO knockout
liq. N2 liquid nitrogene
LC low complexity
LDH lactate dehydrogenase
LMN lower motor neuron
Luc luciferase
mAb monoclonal andibody
MAPK mitogen-activated protein kinase
MAPT microtubule associated protein tau gene
Met methionine
MgCl2 magnesium chloride
MgSO4 magnesium sulfate
MND motor neuron disease
MO morpholino
mpf months post fertilization
mRNA messenger RNA
MRI magnetic resonance imaging
MW molecular weight
MZT maternal to zygotic transition
NaCl sodium chloride
Na2HPO4 disodium hydrogen phosphate

XVII



List of abbreviations

NaN3 sodium acid
NaOAc sodium acetate
NCS newborn calf serum
ND neurodegenerative disease
NGS next generation sequencing
NHEJ non-homologous end joining
NMD nonsense-mediated mRNA decay
NLS nuclear localization signal
NTNG1 Netrin G1
o/n overnight
OPTN optineurin
ORF open reading frame
OVA ovalbumin
PAGE polyacrylamide gel electrophoresis
PAM protospacer-adjacent motif
PB phosphate buffer
PBP Progressive bulbar palsy
PBS phosphate buffered saline
PCR polymerase chain reactions
PD Parkinson disease
PET positron emission tomography
PFA paraformaldehyde
PI protease inhibitor
PI3K Phosphatidyl inositol-3 kinase
PLS Primary lateral sclerosis
PMA Progressive muscular atrophy
PNFA Progressive nonfluent aphasia
PPA Primary progressive aphasia
PTU phenylthiourea
PTZ pentylenetetrazole
qPCR quantitative PCR
RAN repeat-associated non-ATG
RE restriction endonucleases
RFLP restriction fragment length polymorphism
RGEN RNA-guided endonuclease
RGG arginine-glycine-glycine motif
RIPA radioimmunoprecipitation assay buffer
RNA ribonucleic acid

XVIII



List of abbreviations

ROS reactive oxygen species
RRM RNA recognition motif
RT room temperature
sALS sporadic ALS
SD Semantic dementia
SD standard deviation
SDS sodium dodecyl sulfate
S.E.M. standard error of the mean
SP signal peptide
spCas9 Streptococcus pyogenes-derived Cas9
SSRI selective serotonine reuptake inhibitor
STAT3 signal transducer and activator of transcription 3
TAF15 TATA-binding protein-associated factor
TALE transcription activator-like effector
TALEN transcription activator-like effector nuclease
TAR transactive response
TARDBP human TAR-DNA-binding protein gene encoding TDP-43
Tardbp zebrafish TAR-DNA-binding protein gene
Tardbpl zebrafish TAR-DNA-binding protein like gene
TBP TATA-binding protein
TDP-43 TAR-DNA-binding protein of 43kDa
TEMED tetramethylethylenediamine
TFEB transcription factor EB
TILLING targeted induced local lesions in genomes
TMEM106b transmembrane protein 106B
TNFα tumor necrosis factor α

TNFR TNF receptor
TPP1 tripeptidyl peptidase 1
tracrRNA trans-activating crRNA
TREM2 triggering receptor expressed on myeloid cells 2
TRN Transportin
TUNEL TdT mediated dUTP biotin nick end labeling
TX100 Triton X 100
UBQLN2 ubiquilin 2
UAS upstream activation sequence
ubi Ubiquitin
UMN upper motor neuron
VCP valosin-containing protein-1

XIX



List of abbreviations

wpf weeks post fertilization
wt wildtype / wildtypic
Xenopus Xenopus laevis
ZFN zinc-finger nuclease
ZnF zinc-finger

XX



1 Abstract

Amyotrophic lateral sclerosis (ALS) and Frontotemporal lobar degeneration (FTLD)
are neurodegenerative diseases, characterized by selective and progressive loss of neu-
rons. Several gene mutations were found to co-segregate with the diseases. Mutations
in the FUS gene were found to cause about 5% of all inherited forms of ALS and 1% of
sporadic cases with no family history. Moreover, FUS positive inclusions in the cytosol
of neurons and glial cells are another hallmark of ALS cases with FUS mutations be-
sides the specific degeneration of motor neurons. Additionally, FUS positive inclusion
were also found in a subset of FTLD cases, subsequently termed FTLD-FUS. However,
exact molecular pathomechanisms leading to insoluble FUS inclusions and death of
neurons are elusive.
To clarify the physiological function of FUS and to test whether loss of FUS is neces-
sary and sufficient to elicit ALS and/or FTLD related pathology, I studied FUS loss
of function consequences in an in vivo approach using the zebrafish as a small verte-
brate model. Additionally, ZFN mediated genomic editing the endogenous zebrafish
fus locus in a way that resembeled an ALS patients mutation allowed to recapitulate
pathomechanisms on molecular and cellular levels in vivo, devoid of unspecific toxic
side effects often generated by transgenic overexpression.
Interestingly, complete loss of function mutants were not identified with the ZFN set
used in this study, reflecting putative crucial functions of zebrafish fus during germ cell
development, whereas embryonic depletion of fus via knockdown has no obvious phe-
notypic consequences. However, I generated a zebrafish model carrying an ALS patient
like mutation, the Fusmde1500 premature stop allele, resulting in a C-terminally trun-
cated Fus protein lacking the entire nuclear localization signal (NLS) and parts of the
arginine rich (RGG3) domain. Strikingly, the Fusmde1500 mutant protein recapitulates
some features of the pathologic FUS protein in ALS and FTLD patients including
a tendency to become insoluble and partial cytosolic redistribution upon transgenic
expression in zebrafish and primary cortical neurons. Remarkably, Fusmde1500 mutant
zebrafish exhibit no obvious phenotypes, indicating that pathogenicity of the Fusmde1500

mutant protein is not sufficient to elicit ALS/FTLD reminiscent symptoms and pathol-
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1 Abstract

ogy in zebrafish. Thus, besides the Fusmde1500 mutation additional challenges such as
cellular and/or environmental stress are necessary to induce pathogenesis in zebrafish.
Taken together, I generated Fusmde1500 mutant zebrafish reflecting a biochemical and
cell biological model suitable to analyze influences of aging and other risk factors on
pathogenesis of FUSopathies in a preconditioned whole organisms approach.
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2 Zusammenfassung

Amyotrophe Lateralsklerose (ALS) und Frontotemporale Lobärdegeneration (FTLD)
sind neurodegenerative Erkrankungen, die durch den voranschreitenden und selektiven
Verlust von Neuronen gekennzeichnet sind. Verschiedene Gene wurden bisher mit den
Erkrankungen in Verbindung gebracht und bestimmte Mutationen in diesen Genen
segregieren mit der Manifestation der Symptome. Mutationen im FUS Gen treten in
ca. 5% aller erblich bedingten Formen von ALS auf, während ca. 1% in sporadischen
Fällen ohne familiären Kontext gefunden wurden. Darüber hinaus sind FUS positive
Einschlüsse im Zytosol von Neuronen und Glia Zellen neben dem spezifischen Abster-
ben von Motorneuronen ein Charakteristikum von ALS Fällen mit FUS Mutationen,
entsprechend ALS-FUS genannt. Zusätzlich dazu wurden FUS positive Einschlüsse
auch in einem Teil von FTLD Fällen gefunden, die daraufhin als FTLD-FUS Fälle
kategorisiert wurden. Allerdings sind die exakten molekularen Grundlagen und Patho-
mechanismen, die zu unlöslichen FUS Einschlüssen und dem Absterben von Neuronen
führen, unbekannt.
Um die physiologische Funktion von FUS zu klären und zu untersuchen, ob ein Verlust
dieser Funktion ausreicht um ALS und FTLD ähnliche Symptome auszulösen, wurden
embryonal FUS defiziente Zebrafische analysiert. Darüber hinaus sollte der endogene
genomische fus Lokus mit Hilfe der Zinkfinger Nuklease Technologie so editiert werden,
dass eine ALS ähnliche FUS Mutation entsteht, um potentielle Pathomechanismen auf
molekularer und zellulärer Ebene zu analysieren und dabei unspezifische Toxizitätsef-
fekte durch transgene Überexpression zu vermeiden.
Interessanterweise konnten keine Mutanten mit einem kompletten FUS Funktionsver-
lust identifiziert werden, was auf eine wichtige Rolle von FUS bereits in der Keimzellent-
wicklung hindeutet, wohingegen der embryonale Verlust von fus über knockdown keinen
phenotpyischen Effekt zeigt. Allerdings konnte das Fusmde1500 Allele generiert werden,
dass durch ein frühes Stopp Codon gekennzeichnet ist und zu einem C - terminal ver-
kürzten Fus Protein führt, dem das nukleäre Lokalisationssignal (NLS) und Teile der
Arginin reichen RGG3 Domäne fehlt. Das mutante Fusmde1500 Protein spiegelt einige
der Eigenschaften wider, die das pathologische humane FUS Protein in ALS und FTLD
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2 Zusammenfassung

Fällen besitzt, darunter die Tendenz zur Unlöslichkeit und die partielle Lokalisierung
in zytosolischen Kompartimenten bei transgener Expression in Fischen und primären
Neuronen. Dennoch zeigen mutante Fusmde1500 Zebrafische keinen ausgeprägten Phä-
notyp, was dafür spricht, dass die Pathogenizität des mutanten Fusmde1500 Proteins
gering ist und nicht ausreicht, um ALS oder FTLS ähnliche Symptome und Patholo-
gie in Zebrafischen auszulösen. Daher sind zusätzlich zur Fusmde1500 Mutation weitere
Faktoren z.B. zellulärer und Umwelt-bedingter Stress notwendig, um in Zebrafischen
eine ALS/FTLD-ähnliche Pathogenese zu induzieren.
Zusammengenommen habe ich im Rahmen dieser Doktorarbeit mutante Fusmde1500 Ze-
brafische generiert, die als biochemisches und zelluläres Model dienen können, um in
einen durch die Fusmde1500 Mutation prädispositionierten Kontext den Einfluss des Al-
terns und anderer Risikofaktoren auf die Pathogenese von FUSopathien zu untersuchen.
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3 Introduction

3.1 Neurodegenerative Diseases

The term ’Neurodegenerative Diseases’ comprises a group of fatal diseases characterized
by progressive degeneration of neurons in the central nervous system (CNS) leading
to impairments in cognitive function, motor function or to behavioral changes. So far,
only symptomatic therapy is possible to diminish patients’ suffering. With aging being
the major risk factor for most neurodegenerative diseases, they are an important public
health issue creating immense medical, social and financial burdens for aging societies.
Besides neuronal degeneration, formation of insoluble protein aggregates is a common
feature in neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson dis-
ease (PD), Polyglutamine diseases, Prion disorders, Frontotemporal dementia (FTD)
and Amyotrophic lateral sclerosis (ALS). Therefore, these diseases are often referred
to as proteinopathies. Despite a shift from rather descriptive to a more mechanistic re-
search in the field of human neurodegeneration and the identification of key components
of pathological protein aggregates, exact molecular mechanisms leading to neurotox-
icity and cell loss are still elusive. Moreover, it is yet unclear, whether oligomerized
and/or aggregated proteins are the toxic species [1] or rather act as a beneficial entity
by trapping harmful species [2] or whether protein aggregates are innocent bystanders
and toxicity is meditated by different components such as aberrant RNA molecules
[3]. The identification of pathogenic gene mutations sheds light on cellular processes
involved and thereby paves the way for effective therapeutic strategies.
In general, patients suffering from different neurodegenerative diseases present with
various clinical symptoms and harbor divers pathologies, except from the common
hallmarks of aggregation of proteins and neuronal degeneration. Despite the variety
of often overlapping clinical characteristics, single neurodegenerative diseases can be
differentiated pathologically. Unfortunately, this diagnosis is often only possible post
mortem via autopsy followed by immunohistochemistry.
The diversity of symptoms is of special interest in two neurodegenerative diseases,
Amyotrophic lateral sclerosis (ALS) and Frontotemporal lobar degeneration (FTLD),
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being discussed as a disease continuum with the individual diseases representing two
endpoints of the same syndrome [4].

3.2 Frontotemporal lobar degeneration

The term Frontotemporal lobar degeneration (FTLD) describes the neuropathological
feature of a group of disorders comprised as frontotemporal dementia (FTD). FTLD is
characterized by selective loss of neurons in the frontal and temporal lobe of the cortex,
leading to impaired social behavior and/or speech and language dysfunction [5].
FTLD was first described in 1892 by neurologist and psychiatrist Arnold Pick. Later,
Alois Alzheimer identified characteristic protein inclusions in these patients. After AD,
FTLD is the second most common dementia in patients under 65 years of age with a
estimated prevalence of 10-20 per 100,000 and an incidence of 3.5-4.1 per 100,000/year
[6].

3.2.1 Clinical classification & symptoms

According to the clinical symptoms, FTLD is classified into 3 different variants, namely
behavioral variant of FTD (bvFTD), being the most frequent variant with up to 50%,
Progressive non fluent aphasia (PNFA) and Semantic dementia (SD), together account-
ing for the other half of FTLD patients. Patients suffering from bvFTD present with
behavior and personality changes such as disinhibition, apathy, lack of emotional con-
cern, hyperorality, stereotypic behavior as well as decline in executive function, whereas
cognitive function is largely preserved [6]. Patients with SD show strong impairment in
language comprehension and anomia, whereas patients suffering from PFNA present
with loss of motor speech fluency and agrammatism, with relatively intact language
comprehension [6]. PNFA and SD are combined in the term ’Primary progressive
aphasia’ (PPA) and often further subdivided into nonfluent/agrammatic variant PPA,
semantic variant PPA and logopenic variant PPA, taking clinical presentation, pathol-
ogy and genetics into account [7].
Diagnosis of FTLD is based on clinical features and neuroimaging results using mag-
netic resonance imaging (MRI), computed tomography (CT) and/or positron emission
tomography (PET) [7]. This differential diagnosis excludes other potential symptoms-
underlying disorders and is substantiated by postmorten neuropathological examina-
tion.
Despite intensive research during the last decades, FTLD is still incurable and no
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mechanistic treatment strategy to decelerate or even prevent degeneration of cortical
neurons is available. The only chance to alleviate patients’ suffering is a symptomatic
treatment using psychotropic drugs e.g. selective serotonin reuptake inhibitors (SSRI)
or atypical antipsychotics for behavioral abnormalities.

3.3 Amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis is a rare neurodegenerative disease characterized by mus-
cle wasting (amyotrophic) due to the degeneration of upper and lower motor neurons
and their lateral corticospinal tracts and axons (lateral sclerosis), respectively [8]. Con-
sequently, voluntary muscle movements are impaired, eventually resulting in paralysis
and death due to respiratory failure.
ALS was first described by Jean Martin Charcot in 1869 and is also known as Lou
Gehrig’s disease. Epidemiological studies show an estimated incidence of 2.7 per
100,000/year and a prevalence ranging from 1.1 to 8.2 per 100,000 [9].

3.3.1 Clinical classification & symptoms

ALS is the most common form of motor neuron diseases (MNDs). Under this um-
brella term, several diseases are grouped, all characterized by progressive degeneration
of lower motor neurons (LMNs) and/or upper motor neurons (UMNs). Interestingly,
only ALS manifests with LMN and UMN dysfunction, whereas Primary lateral sclerosis
(PLS) and Pseudo bulbar palsy have only UMN involvement and Progressive muscular
atrophy (PMA) and Progressive bulbar palsy (PBP) show only LMN involvement.
Usually, early symptoms start focally resulting in a unilateral disease onset, whereas
during disease progression symptoms disseminate, creating a bilateral clinical sign pre-
sentation. The majority of patients (approximately 70%) present with so called limb-
onset, defined as degeneration of UMNs and LMNs in the limbs, resulting in weakness
of limb muscles and locomotion deficits [10]. Approximately 25% show a bulbar-onset
form with UMNs and LMNs dysfunction of cranial nerve nuclei, resulting in dysarthria
and dysphagia, while the remaining 5% have initial trunk or respiratory involvement
[10]. Regardless of the type of onset, symptoms progressively spread throughout the
body leading to inhibition of all voluntary muscle control including respiratory muscles
at late stages, resulting in respiratory failure in the majority of cases.
ALS is diagnosed according to the El Escorial World Federation of Neurology Criteria
of the Diagnosis of Amyotrophic Lateral Sclerosis, short: El Escorial criteria. These
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criteria demand the evidence of LMN and UMN degeneration as well as the absence
of any evidence for another underlying disease [11], [12]. Extensive muscle wasting,
muscle weakness, aberrant motor unit activity and spontaneous discharges of a single
denervated muscle fiber (fibrillations) in combination with spontaneous discharges of
motor units (fasciculations) are signs of LMN involvement, evident during anamnesis
and diagnosed by electromyography (EMG). UMN involvement displays in spasticity
and progressive degeneration of motor cortex, evidenced by neuroimaging using MRI
and PET. Other diseases such as myopathies, sensory nerve damages or dementias must
be excluded via electrophysiology, neuroimaging and cognitive testing [13]. Similar to
FTLD a more precise diagnosis can only be obtained after autopsy and neuropatho-
logical examination.
Regardless of several clinical studies to mechanistically treat ALS, no therapeutic ben-
efit was observed, except for the FDA approved drug Riluzole [13]. Riluzole (Rilutek,
Safoni-Aventis) is an inhibitor of glutamate release and modifies ALS in a neuropro-
tective manner by decreasing glutamate mediated excitotoxicity, thereby extending
survival of ALS patients by 3-6 months. Other than that, only symptomatical treat-
ment ist available [14].

3.4 Overlap of ALS and FTLD

In the traditional view, ALS and FTLD are two neurodegenerative diseases that repre-
sent two distinct disorders. Recent research suggests however, that these two diseases
rather represent one broad neurodegenerative disorder with ALS and FTLD being ex-
treme ends of a disease continuum with overlapping clinical symptoms, pathology and
genetics (see Figure 3.1).
Patients usually present with clinical symptoms, reflecting ALS or FTLD or mixed
forms e.g. ALS with slight cognitive or behavioral impairment (ALS-Ci/Bi), forms
with similarly strong symptoms of both, ALS and FTLD (ALS-FTLD), or FTLD with
symptoms of motor neuron dysfunction (FTLD-MND). Approximately 14% of ALS
patients develop symptoms that meet the clinical criteria of FTLD, whereas far more
(30-50%) show subtle cognitive or behavioral impairment [15], [16], [4]. On the other
hand, 12-16% of initially diagnosed FTLD patients present with symptoms of ALS,
whereas up to one third show signs of either upper or lower motor neuron dysfunction
[4], [17], [18]. These observations indicate an overlap of clinical symptoms in ALS and
FTLD (see Figure 3.1A). Additionally, ALS and FTLD share common neuropathology,
since many proteins that aggregate in ALS, e.g. dipeptide-repeat proteins (DPR), TAR
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Figure 3.1: ALS and FTLD as disease continuum with overlapping clinical symptoms, pathology
and genetics. A Clinical overlap. About 15% of ALS patients present with FTLD symptoms, whereas
more then 50% have subtle cognitive or behavioral impairment [15], [16], [4]. Vice versa, about 15%
of FTLD patients have classical ALS, whereas more show signs of non-classical ALS with mainly lower
motor neuron impairment [17], [18], [4] (also see section 3.4). B Pathological overlap. Disease subtypes
are classified according to the main deposited protein [19]. Note that TDP-43, DPR and FUS pathology
is observed in ALS and FTLD. *Rare cases of FTLD-DPR show mainly DPR and only minimal TDP-43
pathology [20] (also see subsection 3.4.1).C Genetic overlap. Selected disease causing genes are blotted
along the disease spectrum according to the percentage of mutations found in either ALS or FTLD [8]
(also see subsection 3.4.1).

DNA-binding protein 43 (TDP-43), and Fused in sarcoma (FUS), also are deposited
in FTLD. These finding have triggered a recent reclassification of ALS and FTLD
subtypes according to the main deposited protein [19] (see Figure 3.1B). Moreover,
genetic studies revealed ALS or FTLD causing mutations in the same genes, speaking
for a genetic overlap of the two diseases (see Figure 3.1C). Particularly, mutations in
the C9orf72 gene are equally likely to cause ALS, or FTLD, or ALS-FTLD, whereas
mutations in the GRN gene encoding progranulin or microtubule-associated protein tau
(MAPT) encoding the microtubules-associated protein Tau account for only FTLD and
mutations in SOD1 encoding the copper/zinc superoxide dismutase 1 cause pure forms
of ALS (see Figure 3.1C). Note that mutations in the FUS coding FUS gene and the
TDP-43 coding TARDBP gene usually cause ALS but were also found in rare cases of
FTLD, although a definite diagnosis by autopsy is missing in most cases [21], [22], [23].
Moreover, aggregated proteins in ALS and FTLD cases are often the gene products of
the same genes harboring the disease-associated mutations. Taken together, clinical,
pathological and genetical evidence point to a broad ALS-FTLD disease spectrum.
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3.4.1 Molecular pathology and genetics in ALS and FTLD

Intensive research in the ALS and FTLD field identified key components of protein
inclusions, thereby revealing first hints in the basics of the underlying molecular mech-
anisms of ALS and FTLD (see Figure 3.1). Moreover, genetic studies of familial ALS
and FTLD revealed distinct mutations in several genes to cause ALS or FTLD or both
in a mainly dominant manner. Approximately 10% of ALS cases are familial forms
(fALS), whereas the majority (90%) are sporadic ALS (sALS) cases [8]. In FTLD, up
to 40% are inherited cases (fFTLD), whereas the remaining 60% have no family history
(sFTLD) [24]. In contrast to familial forms of ALS and FTLD, sporadic cases show no
family history, but few cases habor mutations in the same genes as in fALS and fFTLD
and patients present with symptoms indistinguishable from familial forms. However,
the majority of sporadic ALS and FTLD cases have so far unknown genetic causes
[25]. Incomplete family history, de novo mutations, non paternity, and incomplete
penetrance are reasons for misclassification [4], though. Together with the constant
identification of new histological markers, genetic causes and risk factors, existing dis-
ease classifications need to be continually reevaluated and updated.
Despite the many connective features of molecular pathology and genetics in ALS and
FTLD, some pathogenic mutations and pathologic proteins are unique to either ALS or
FTLD. Mutations in MAPT for example cause pure forms of FTLD with Tau positive
inclusions [26], [27], [28], [29], [30], [31], consequently termed FTLD-Tau, that make up
to 45% of all FTLD cases. Similar to MAPT, mutations in GRN also cause pure forms
of FTLD, however patients show TDP-43 positive inclusions (FTLD-TDP) [30], [31]
instead of Tau pathology. Mutations in other genes known to cause FTLD also elicit
TDP-43 pathology, including valosin-containing protein (VCP), C9orf72, and in rare
cases ubiquilin 2 (UBQLN2), and TARDBP [37]. Tau pathology-negative FTLD cases
including FTLD-TDP were termed atypical FTLD with ubiquitin positive inclusions
(aFTLD-U). With emerging evidence from neuropathological studies, aFTLD-U has
been reclassified according to the predominantly deposited protein besides ubiquitin,
yielding new classes of FTLD, e.g. FTLD-TDP (45%) and FTLD-FUS (9%) [19], [32].
About 1% of all FTLD cases show inclusions positive for proteins of the ubiquitin-
proteasome pathway (UPS), with neither TDP-43, nor FUS, nor Tau co-staining and
are hence comprised as FTLD-UPS [19] (see Figure 3.1B).
Similar to the FTLD classification, pathological subtypes of ALS are defined by the
major aggregating protein. Interestingly, ubiquitin immunoreactive inclusions were also
found in ALS, characterizing pathogenic aggregates in all forms of ALS [33]. Apart
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from that, TDP-43 positive inclusions are found in 97% of ALS, thus representing the
most abundant aggregated protein after ubiquitin. In 2008, mutations in the TDP-
43 coding TARDBP gene were identified to be causative for ALS [48], [49], [50], [51]
with TDP-43 positive inclusions (ALS-TDP). Besides TARDBP, mutations in (VCP),
ataxin 2 (ATXN2), angiogenin (ANG), optineurin (OPTN), (UBQLN2) and profilin 1
(PFN1) also cause ALS-TDP with TDP-43 pathology [37].
One of the genes linked to FTLD and ALS-FTLD mixed forms as well as identified
as the most frequent genetic cause of ALS is the C9orf72 gene [52], [53], [54], [55].
Interestingly, hexanucleotide GGGGCC repeats are localized in the upstream C9orf72
region. The number of repeats ranges from 0-20 under healthy conditions to patho-
logical expansion of over thousand repeats in disease [52], [53]. Interestingly, repeat
associated non-ATG (RAN) translation of this locus yields several dipeptide repeat
proteins (DPRs), which are deposited in ALS and FTLD subtypes with C9orf72 mu-
tations [56], [57], [58]. Additionally, TDP-43 is found aggregated in most DPR-positive
inclusions carriers [20], [59].
In contrast, mutations in the copper/zinc superoxide dismutase 1 (SOD1) were found to
cause pure ALS with aggregates immunoreactive for SOD1 and ubiquitin (ALS-SOD1)
[34], but devoid of TDP-43 [35], [36].
In 2009 FUS, encoded by Fused in sarcoma (FUS) gene, was found to aggregate in
pathological inclusions in about 1% of ALS cases, hence called ALS-FUS [37], [8] and in
9% of FTLD subtypes, namely Tau and TDP-43-negative aFTLD-U cases, basophilic
inclusion body disease (BIBD) and neuronal intermediate filament inclusion disease
(NIFID), thus comprised as FTLD-FUS [38], [39], [40]. Besides ALS and FTLD, FUS
is also deposited in predominantly nuclear inclusions in other neurodegenerative dis-
ease such as Huntington’s disease and spinocerebellar ataxia types 1-3 [32], together
with ALS-FUS and FTLD-FUS referred to as FUSopathies, accordingly. Strikingly,
not only deposited FUS protein was found to play a role in pathogenesis of ALS and
FTLD, but also mutations in the FUS gene were identified to cause ALS-FUS [41],
[42]. FUS mutations were also found in rare cases of FTLD-FUS, but pathogenicity of
these mutations is yet unclear since no definite autopsy-based clinical FTLD diagnosis
of these cases is available [21]. Importantly, composition of FUS-positive inclusions in
ALS-FUS and FTLD-FUS is very distinct. FTLD-FUS is characterized by a selective
deposition of FUS and the two other members of the FET protein family (FUS, Ewing
sarcoma protein (EWS) and TATA-binding protein associated factor 15 (TAF15)) in
contrast to ALS-FUS inclusions that are immunoreactive for FUS but none of the other
FET family members [43], [37]. Moreover, Transportin (TRN), the FET family nuclear
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import factor, is co-deposited in FUS inclusions of FTLD-FUS cases, but not in ALS-
FUS [44]. Additionally, FUS, EWS and TAF15 proteins are hypomethylated when
aggregated in FTLD-FUS, whereas in ALS-FUS, FUS protein is highly methylated
[45]. These distinct features of FUS positive inclusions in ALS-FUS and FTLD-FUS
indicate different underlying mechanisms of inclusion formation.

3.5 Fused in sarcoma/Translocated in sarcoma

Fused in sarcoma/Translocated in sarcoma (FUS/TLS) was initially identified as part
of fusion oncogenes in several sarcomas [60], [61]. Later, mutations in FUS were found
to be a hallmark of ALS-FUS, together with FUS protein containing inclusions [41],
[42], also found in FTLD-FUS [38], [39], [40].
FUS is part of the FET (former TET) protein family, consisting of 3 similar DNA/RNA-
binding proteins, FUS, EWS and TAF15. Like FUS, EWS and TAF15 were first
identified as fusion oncogenes in various cancers [62]. Interestingly, recent findings
indicate that all 3 FET family members play a role in ALS and FTLD pathogenesis
since FET proteins co-deposit in FTLD-FUS [43]. Moreover, few case studies of ALS
patients even report mutations in EWS and TAF15 [63], [64].
FUS is an ubiquitously expressed 526 amino acid long multi domain nuclear protein
(Figure 3.2).

 FUS/TLS 5261 SYGQ G RGG1 RRM RGG2 RGG3ZF NLS

S57del* G507D

K510E/R

K510WfsX517

S513P*

R514G/S
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Figure 3.2: Fused in sarcoma/translocated in sarcoma (FUS/TLS). Graphic illustration of domain
structure of FUS with mutations identified in ALS (purple) and rare cases of FTLD (orange). Asterisks
indicate mutations reported in single cases without family history. del = deletion; ins = insertion; fs =
frameshift; X = stop; SYGQ = serine, tyrosine, glycine, glutamine; G = glycine; RGG = arginine glycine
glycine motif; RMM = RNA recognition motif; ZF = zinc finger; NLS = nuclear localization signal.

The N-terminal serine, tyrosine, glycine, and glutamine (SYGQ) rich domain has tran-
scriptional properties e.g. acts as a potent transcriptional activator [65]. Moreover, the
SYGQ domain is predicted to feature prion-like properties and is necessary and suffi-
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cient for in vitro aggregation of FUS protein [66], [67]. In addition, FUS exhibits DNA
and RNA-binding capacity, mediated by several arginine-glycine-glycine box (RGG)
rich domains, an RNA recognition motive (RRM) and a zinc finger (ZnF) domain [68],
[69]. Moreover the very C-terminal part of the protein harbors a non-classical nuclear
localization signal (NLS), comprising a proline-tyrosine motif (PY-NLS) and parts of
one of the RGG domains [70], [71]. This PY-NLS mediates nuclear import via direct
binding to the nuclear import receptor transportin (TRN), also known as Karyopherin
β2 [72].

3.5.1 FUS’ pathogenicity

Mutations in FUS were found to account for about 4% fALS and 1% sALS [32]. Im-
portantly, fALS mutations predominantly cluster in the very C-terminal part of FUS,
containing the non-classical NLS, whereas many sporadic mutations also localize to
the SYGQ and the first RGG domain (Figure 3.2). In vitro studies overexpressing
mutant FUS constructs show that fALS mutations disrupt the amino acid sequence of
the NLS, thereby affecting its binding properties towards TRN, resulting in impaired
nuclear import and cytosolic redistribution of the FUS protein [70]. Interestingly, the
degree of cytosolic redistribution of the different FUS mutation constructs reflects the
impact on TRN binding and correlates with the severeness of different ALS causing
mutations regarding age of onset and disease progression [70]. Many of the N-terminal
sALS mutations were found only in single cases, so it remains unclear, whether these
mutations are causative [73]. However, sALS mutation in FUS mostly cluster in the
prion like low complexity (LC) domain, potentially interfering with aggregation prop-
erties of the FUS protein.
In FTLD-FUS, usually no underlying mutations of FUS disrupt the NLS function and
nuclear import. Also general TRN-dependent nuclear import deficits can be excluded
since other TRN targets are unaffected [44]. Instead, cytosolic redistribution of FUS is
thought to be mediated by insufficient arginine methylation of RGG domains in FUS,
leading to an overly tight binding to TRN and an impaired nuclear import and accu-
mulation of FUS in the cytoplasm [37].
In addition to redistribution of FUS in ALS-FUS and FTLD-FUS, a so called ’2nd hit’
theory is being discussed, implying that besides mutation and mislocalization of the
FUS protein to the cytosol another event, e.g. environmental stress, has to take place
to generate insoluble cytosolic inclusions and elicit motor neuron toxicity. Work in cell
culture showed that upon cellular stress (heat shock, oxidative stress, endoplasmatic
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reticulum (ER) stress) mutant cytosolic FUS accumulates in stress granules (SG) [70],
[74]. SGs reversibly form upon stress conditions and serve as a storage entities for
mRNAs and RNA-binding proteins during stress response [75]. Interestingly, insoluble
inclusions in ALS-FUS and FTLD-FUS contain characteristic markers of SG, indicat-
ing that SGs might be a precursor to pathologic inclusions [73].
In general, two different potential FUS pathomechanisms are under debate, namely
gain-of-function and loss-of-function mechanisms. In a gain-of-function model, toxicity
is mediated by aberrant accumulation and aggregation of FUS in the cytosol, whereas
loss-of-function describes a toxicity mediated by loss of physiological FUS functions in
the nucleus due to mislocalisation. It is currently unclear whether gain or loss of func-
tion or a combination of both mechanisms are responsible for FUS induced pathology
(also see subsection 3.5.3).

3.5.2 FUS’ physiological function

FUS protein function is crucial for several nuclear and cytosolic processes that include
DNA/RNA metabolic steps like DNA repair, transcription, RNA splicing and trans-
port.
FUS was identified as POMp75 protein important for DNA homologous pairing and
DNA double strand break repair [76], [77]. Moreover, FUS knockout mice show en-
hanced radiation sensitivity, defects in spermatogenesis and B lymphocyte development
and genomic instability, strengthening its important role in DNA damage response and
maintenance of genomic integrity [78], [79].
FUS has been shown to associate with RNA polymerase II and its general transcription
factor TFIID [80] and is able to inhibit RNA polymerase III, potentially via direct in-
teraction with TATA binding protein (TBP) [81], speaking for a general role of FUS in
transcription regulation. Moreover, FUS might directly control transcription of specific
genes through its interaction with certain nuclear hormone receptors [82] and specific
FUS response elements in several target genes [83].
Mass spectrometry studies found FUS as P2 component of the heterogeneous nuclear
ribonucleoprotein (hnRNP) complex H [84], indicating a role of FUS not only in tran-
scription but also in heterogeneous nuclear RNA processing and maturation. The hn-
RNP complex, consisting of more than 30 different proteins, is involved in pre-mRNA
splicing and in transporting fully processed mRNA to the cytoplasm [69]. Additional
evidence for FUS’ function in splicing comes from proteomic analysis of the human
spliceosome that identified FUS as a component of the splicing machinery [85], [86].

14



3.5 Fused in sarcoma/Translocated in sarcoma

Also the association with several other spliceosomal small nuclear ribonulear proteins
[87] and the influence of FUS on selection of 5’ splice sites during alternative splicing
[88] identifies FUS as splice factor.
Consequently, FUS has been shown to directly bind RNA, preferentially along long
intronic regions, leading to a sawtooth like binding pattern that is thought to stabilize
nascent RNA during transcription and/or splicing [89]. Moreover several RNA bind-
ing motives for FUS have been described, ranging from G/C rich [90] or C/U rich [91]
regions to GGU [92], GGUG [87], or GUGGU motives [89]. Also RNA secondary struc-
ture has been found to affect binding to FUS since RNAs containing short stem loop
motives were identified to bind FUS with higher affinities than other or no secondary
structures containing RNAs [93], [90].
The role of FUS in RNA binding and alternative splicing has been extensively inves-
tigated in the recent years by analyzing RNA targets of FUS to gain insights into
potential physiological roles of FUS in the nervous system. Independent studies were
performed using several different systems (in vitro using stably transduced HEK cells
expressing human FUS [93] or FUS knockdown mouse embryonic stem cell derived
neurons [91], mouse embryonal FUS knockout brains [92], in vivo FUS kockdown us-
ing stereotactic injections, FUS knockout brain derived cultured mouse neurons [89]
or FUS knockdown in primary cortical mouse neurons [90] amongst others) combin-
ing cross-linking and immunoprecipitation (CLIP) technologies with next-generation
sequencing, thus yielding direct binding and splicing targets of FUS. Gene ontology
analysis of the identified targets revealed an impact of FUS in axonogenesis, axon guid-
ance, cell adhesion, neuron protection, vesicle transport and cytoskeletal organisation.
Interestingly, overlap of different studies was small and only few targets were found in-
dependently in more than one study [94]. Moreover, different exons were identified to
be alternatively spliced within the same target by different studies [94]. Some of these
targets were described previously, e.g. Nd1-L [95] or could be validated in independent
studies, e.g. MAPT [96]. The MAPT gene consists of 16 exons and is mainly expressed
in the nervous system. Tau shows a complex and tight regulation of alternative FUS
dependent splicing of an N-terminal cassette (exons 2 and 3) and exon 10 that leads
to six different isoforms (0N3R, 1N3R, 2N3R, 0N4R, 1N4R, 2N4R)[94]. Interestingly
enhanced expression of 4R Tau isoforms including exon 10 results in impaired axonal
growth and neurodegeneration both in the presence and absence of overt Tau aggrega-
tion [96], [97], [98], [99], [26].
FUS continuously shuttles between nucleus and cytoplasm and was also shown to play
important roles outside the nucleus [100]. In cultured hippocampal neurons, FUS is
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localized in dendritic granules and spines upon synaptic stimulation, together with
the accumulation of mRNAs [101], pointing to a role of FUS in mRNA transport.
Interestingly, FUS was also shown to interact with axonal transport factors kinesin
[102] and myosin-Va [103] and to transport the mRNA of the actin stabilizing protein
Nd1-L [95]. Additionally, depletion of FUS in cultured hippocampal neurons leads to
abnormal dendritic and spine morphology [104] and severely enlarged axonal growth
cones [96], indicating that FUS is important in maintaining neuronal morphology und
synaptic function.

3.5.3 FUS animal models

Several animal models of FUS have been generated to better understand physiological
functions of FUS and to thereby get insights of molecular mechanisms that turn dys-
functional in ALS-FUS and FTLD-FUS. To do so, two approaches are being applied.
Firstly, overexpression of wildtype FUS or ALS relevant mutations mimick a gain of
function situation, where cytotoxicity is thought to be mediated by additional aquired
function(s) in the cytosol due to mislocalization and aggregation of FUS in patients.
Secondly, elimination of endogenous FUS generates a loss of function situation, where
essential (nuclear) functions of FUS can no longer be maintained, hypothetically re-
sulting in neuronal dysfunction. Gain of function and loss of function are both being
discussed as potential pathomechanisms leading to FUS mediated pathology (also see
subsection 3.5.1).
In C. elegans overexpression of wildtype FUS and several ALS-associated mutations
results in cytoplasmic mislocalization of FUS mutations according to the severeness of
phenotype seen in humans [105]. Moreover, overexpression of mutant FUS is more toxic
than wildtype FUS, but results in progressive motor defects, paralysis and a shorter
live span in both cases [105].
In drosophila, knockdown of the human FUS orthologue cabeza (caz) results in de-
creased adult viability, diminished locomotor speed, and reduced life span [106] and
shortening of motor neuron terminal branches [107]. Interestingly, overexpression of
wildtype but not mutant human FUS could rescue this phenotype [106], indicating
that the ALS mutations convey loss of function. Overexpression of human wildtype
and ALS related FUS mutants showed that mutant FUS is partially localized to the
cytosol, whereas wildtype FUS is purely nuclear. Moreover mutant FUS is more toxic
than wildtype and results in degeneration of motor neurons and reduced life span [108],
[109].
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In zebrafish, both FUS overexpression and Morpholino (MO) mediated transient knock-
down studies have been performed. Knockdown of zebrafish fus results in motor neu-
ron axon outgrowth phenotype and motor deficits [110]. Strikingly, overepression of an
ALS-related mutation R521H resulted in very similar phenotypes [110]. Interestingly,
this mutation failed to rescue the knockdown phenotype when co-expressed [110].
In mice, two independend studies generated Fus knockout lines. Inbred stains of Fus -/-
mice show B-lymphocyte development defects, high incidence of chromosomal instabil-
ity, e.g. karyotypic abnormalities and fail to suckle, resulting in perinatal death [78].
In outbred Fus -/- strains reduced fertility in females, dysfunctional spermatogenesis
resulting in male sterility, increased sensitivity to ionizing irradiation and impaired
pairing of homologous DNA molecules during meiosis was reported [79]. In both lines,
no neurodegenerative phenotypes have been described, but overlapping phenotypes
point to a crucial function of FUS in maintenance of genomic stability. Primary neu-
rons derived from Fus -/- mice show low spine densitiy and abnormal spine morphology
[111]. Overexpression of wt human FUS in mice results in progressive limb paralysis,
synaptic denervation and motor neuron degeneration in spinal cord and focal muscle
atrophy [112].
In rats overexpression of wt FUS as well as the ALS mutation R521C lead to loss of
neurons in brain and spinal cord, accompanied by denervation of neuromuscular junc-
tions and paralysis [113]. Interestingly, mutant FUS causes severe phenotypes, whereas
overexpression of wildtype FUS results in moderate but significant neurodegeneration
[113].
Taken together, existing FUS animal models display conflicting results. To better re-
capitulate the disease situation in vivo, targeted genomic editing should be utilized to
generate models that harbor ALS mutations controlled by the endogenous FUS locus.
This genetic approach will shed light into putative gain or loss of function mechanisms
leading to FUS pathogenesis and disease.

3.6 Zebrafish

3.6.1 Zebrafish as model organism

Zebrafish (Danio rerio) as a small vertebrate model has long been the system of choice
for a wide spectrum of biological questions to be investigated in vivo at cellular and
subcellular resolution [114]. Zebrafish are small, easy to handle and grow, fertile within
three months of age and highly reproductive, providing more than two hundred embryos
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per week per healthy pair of adult fish. Another advantage is the rapid development
of the embryo, e.g. gastrulation is complete within ten hours after fertilization and
heart beating starts at the end of the first day of an embryo’s life. Moreover, most
organs are formed and functional within the first five days of development. Zebrafish
embryos develop ex utero and together with the characteristic transparency within the
first days of development, they are very well suited for cell biological studies. Addi-
tionally, minimal invasive experimental manipulations such as targeted mutagenesis,
introduction of exogenic DNA and RNA interference technology are feaasible due to
the easy accessibility of the embryo. Moreover, comparison of the zebrafish genome to
the human genome shows that approximately 70% of human genes have at least one
obvious zebrafish orthologue [115], indicating a broad conservation of gene function
between species.
Historically, zebrafish research started in 1930s with classical developmental and em-
bryological studies [116]. Since then the zebrafish has been extensively used to study
cell fate and migration during early development, organogenesis and regeneration mech-
anisms, amongst others and has become a valuable tool in biomedical research. Since
1990 large genetic screens identified several mutations in genes that are orthologues to
human genes, allowing to study gene function on a cellular level in vivo. Moreover,
several of these mutants serve as model for human monogenic diseases, elucidating
basic molecular mechanisms underlying these diseases. To date, zebrafish models for
a variety of human diseases exist, including cancer [117], cardiovascular diseases [118],
immunological diseases, inflammation, wound healing and regeneration [116], metabolic
disorders such as diabetes type I and II, obesity and artherosclerosis [119], [120], muscle
diseases [121] and neurodegeneration [122], [123].
Also, high throughput small molecule screening is possible in zebrafish due to its unique
features. Since 2000, chemical screens were successfully performed to identify the thera-
peutical relevance of known and novel compounds for certain indications as well as their
potential toxicity and teratogenicity [124]. These chemical screens yield not only new
lead compounds but also insights into conserved physiological processes in vertebrates
[125], [124], [126], [127], [128], further solidifying the role of zebrafish in pharmaceutical
drug discovery and biomedical research.

3.6.2 Mutagenesis in zebrafish

Genetic manipulations generating loss of function situation are employed to analyze
the resulting phenotype and conclude about physiological functions of the gene. In
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zebrafish genetic manipulation is feasible either by performing forward genetic screens
or by using the recently established reverse genetics techniques. The term forward
genetics describes the approach of random mutagenesis followed by screening for de-
sired phenotypes and identification of the underlying mutations and loci. In contrast,
reverse genetics is the targeted mutagenesis of desired genes and subsequent analysis
of resulting phenotypes.
Forward genetics mutagenesis of zebrafish made use of chemical mutagens like ethyl-
nitrosourea (ENU) [129], [130] or retroviral techniques [131]. Both approaches result
in mosaic P0 founder fish that are breed to generation F2 or F3 and then analyzed for
phenotypes, followed by identification of the underlying mutation. This time, cost and
labor-intensive approach of forward genetic screening was long time the only way to
generate heritable gene mutations in zebrafish.
The only alternative to forward genetic screening has long been to transiently ablate
protein function using targeted knockdown via antisense morpholinos (MO) or anti-
sense gripNAs. However, transient non-heritable knockdown approaches are susceptible
to off-side targets and can only temporarily either block translation or interfer with
splicing [132].
Classical reverse genetics using targeted mutagenesis was not possible in zebrafish due
to lack of embryonic stem cell cultures, unlike other model organisms such as mice
where targeted genomic editing has been successfully performed via homologous re-
combination. Instead, Targeting Induced Local Lesions in Genomes (TILLING) was
the reverse genetics strategy of choice in fish. TILLING allows to identify mutations
in specific genes of interest in chemically mutagenized populations [133] and was firstly
used in zebrafish in 2002 [134]. Similar to forward genetic screens, fish are mutagenized
using ENU or retroviral techniques and analyzed for mutations in genes of interest as
early as F1 generation, prior to being breed to homozygousity and analyzed for phe-
notypes. In 2008 engineered zinc finger nucleases (ZFNs) were found to be functional
in zebrafish, allowing targeted, heritable gene disruption in zebrafish for the first time
[135], [136]. This finding paved the way for the discovery of several other genome edit-
ing tools such as transcription activator like effector nucleases (TALENs) and clustered
regularly interspaced short palindromic repeats/CRISPR associated 9 (CRISPR/Cas9)
and their utilization in zebrafish to perform genomic editing via targeted mutagenesis
[137], [138], [139], [140], [141], [142], [143], [144]. ZFNs, TALENs and CRISPR/Cas9
all consist of a sequence-specific DNA-binding entity and a double strand cleaving DNA
nuclease [145] (see Figure 3.3A). Introduction of double strand breaks into the genome
elicits two repair mechanisms in the affected cell, namely non-homologous end joining
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Figure 3.3: Genome editing strategies. A Schematic illustration of genome editing via targeted mu-
tagenesis. DNA cleaving entity (green) is directed to a specific genomic locus via sequence specific DNA
binding elements (blue). When heterodimerized, nuclease introduces DNA double strand breaks that
elicit two DNA repair mechanisms: NHEJ and HDR. NHEJ is error prone and frequently generates small
deletions (red) or insertions (cyan), leading to frame shift or premature stop codons and loss of protein
function (knockout) due to nonsense mediated RNA decay. HDR utilizes a homologous template DNA
strand to repair double strand breaks, allowing to integrate exogenic DNA from a donor sequence with
flanging homology arms, yielding knockins. B Zinc finger nucleases (ZFNs). Left and right subunit het-
erodimerize, initiating DNA cleavage by FokI endonuclease (FokI). ZFN arrays are composed of three to
six zinc finger motives (ZFs), each binding three nucleosides. C TALENs. Like with ZFNs, DNA cleavage
only occurs upon heterodimerization of left and right subunit of FokI. Each of the 16 TALEs per subunit
recognizes 1 DNA nucleoside. D CRSIPR/Cas9. Cas9 nuclease (Cas9) is recruited to genomic target site
via binding of 20 nucleotide long targeting sequence containing guided RNA (gRNA). Arrowheads (red)
indicate approximate position of double strand break.

(NHEJ) and homology directed repair (HDR). The former ligates broken DNA strands
without template and is therefore error prone due to frequent insertions and deletions
(indels) of basepairs (bps), resulting in frameshifts or premature stop codons and sub-
sequent degradation of the transcripts via nonsense-mediated RNA decay (NMD) or
truncated proteins, respectively. This phenomenon can be utilized to generate knockout
(KO) animals and mutant alleles can be identified via sequence analysis. In contrast
to NHEJ, HDR needs homologous DNA template and can therefore be exploited to
introduce exogenic DNA into a desired locus, resulting in knock-in (KI) animals [141],
[146], [147], [145].
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3.6.2.1 ZFNs

ZFNs are engineered chimeric proteins, composed of the catalytic active nuclease do-
main of a FokI endonuclease fused to an array like arrangement of three to six Cys2His2
zinc finger modules, with each module recognizing three bps of the DNA target sequence
(see Figure 3.3B). The catalytic nuclaese moiety is composed as heterodimer, allowing
DNA cleavage only if both nuclease subunits are brought together in close proximity
via the sequence specific zinc finger arrays, thereby reducing off-target events. The
design, however, is complex since affinity of single zinc finger modules is context de-
pendent, thus difficult to predict in silico, therefore demanding initial in vitro testing
[148], [149].
Nevertheless, work flow is comparatively easy: DNA constructs encoding ZFNs are
transcribed in vitro and injected into zygotic zebrafish embryos, where they are trans-
lated in vivo and introduce DNA double strand breaks. Each affected cell within the
embryo repairs the DNA damage independently using either HDR or NHEJ, generat-
ing a mosaic P0 generation embryo harboring different mutantations within the same
genomic locus. Back-crossings with wildtype fish yield a non mosaic F1 generation,
being heterozygous for one specific allele. Genotyping of F1 generation fish allows to
analyze induced alleles prior to phenotyping, which usually starts in the F2 generation
when homozygosity is achieved.
So far, ZFNs have been successfully used in cell culture systems and in vivo to study
gene function in the model organism of interest, including targeted gene disruption,
gene correction (allele editing) and gene addition [149]. In zebrafish, only the disrup-
tion of native genes using ZFNs could successfully been shown since NHEJ seems to
be the favored repair mechanism and HDR is rare in this context. Interestingly, ef-
ficiencies of introduced loss of function mutations vary, depending on the zinc finger
selection strategy, in vitro validation assays for zinc finger affinities, target site and
model system [145].

3.6.2.2 TALENs

Transcription activator like effector nucleases (TALENs) are engineered chimeric pro-
teins similar to ZFNs with a FokI endonuclease subunit fused to a DNA binding entity,
which in case of TALENs is the plant pathogen Xanthomonas-derived transcription ac-
tivator like effector (TALE) (see Figure 3.3C). TALEs consist of four different repeats,
each being 33-35 amino acids long and containing two variable amino acids at position
12 and 13 that mediate specific binding to one of the four different DNA nucleosides.

21



3 Introduction

About 16 TALE repeats are fused to each of the two FokI nuclease subunits. Pairs of
TALEN are designed in a way that the two FokI subunits form a heterodimer when
aligning at the desired genomic locus, thereby introducing sequence specific DNA dou-
ble strand breaks and drastically reducing the chance of obtaining off-site targets. In
contrast to ZFNs, nucleoside binding of single TALE repeats is not context dependent,
making the design much easier. Generation of TALE repeats requires extensive cloning,
though [145], [150]. Mutagenesis, breeding, genotyping and phenotyping of zebrafish
is similar to the ZFN approach (see subsubsection 3.6.2.1).

3.6.2.3 CRISPR/Cas9 system

The CRISPR/Cas9 system differs from the other genomic editing tools due to the fact
that the DNA binding entity is a RNA, that guides the Streptococcus pyogenes derived
SpCas9 nuclease to the desired genomic locus, thus mediating sequence specificity.
This guiding RNA, (guide RNA, gRNA), binds DNA via Watson-Crick base pairing,
a highly specific and predictable mechanism (see Figure 3.3D). The archaea derived
CRISPR/Cas9 system is reminiscent of an innate immune system [151] and was suc-
cessfully modified for applications in eukaryotes [152], [145]. Generation of gRNAs and
Cas9 protein is simple and less cost and labor intensive than ZFNs and TALENs since
almost no sequence requirements limit the design, except for a two nucleotide SpCas9
specific NGG protospacer adjacent motif (PAM) next to the 20 nucleotide long target
sequence. Moreover, gRNA and Cas9 mRNA can easily be transcribed in vitro and
injected into zebrafish zygotes. Off-site events are likely to be more frequent than with
ZFNs and TALENs due to the comparatively short target region used with CRISPR/-
Cas9 system. However, due to outcrossing and elimination of undesired off-target
mutations in zebrafish, these are neglectible [145]. Moreover, efficiency is comparable
to TALENs [153]. The CRISPR/Cas9 system has recently been used in zebrafish to
introduce mutations in specific loci via NHEJ and for generation of KI animals, exploit-
ing the HDR DNA repair mechanism [140], [141], [142], [143], [144]. Again, workflow
of obtaining mutant zebrafish using the CRISPR/Cas9 is similar to the ZFN approach,
once gRNAs and Cas9 are injected into zebrafish zygotes (see subsubsection 3.6.2.1).

3.6.3 Modelling ALS/FTLD in zebrafish

Despite the intensive research and remarkable clinical and pathological characterization
of neurodegeneration associated genes, their physiological function is largely elusive.
Besides other animal models, zebrafish have been used to study function of neurode-
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generation associated proteins in vivo. Two main strategies have been employed to do
so. Firstly, overexpression of genes via RNA or DNA injection, where mimicking of
potential toxic effects due to overly expressed or mislocalized proteins generates a gain
of function situation. Secondly, a loss of function situation can be achieved by ablation
of gene expression via transient knockdown using morpholinos (MOs) or gripNAs (see
subsection 3.6.2) or stable knockout of genes using targeted mutagenesis (see subsec-
tion 3.6.2).
To recapitulate hallmarks of the ALS/FTLD disease contiuum, several studies were
performed in zebrafish. ALS causing mutant SOD1 protein has been overexpressed,
eliciting ALS like phenotypes including neuromuscular junction alterations, motor neu-
ron loss, muscle atrophy, paralysis and premature death [154], [155]. Furthermore,
zebrafish orthologues of the FTLD-associated granulin (GRN) grna and grnb have
been knocked out recently, resulting in neither spinal motor neuron axonopathies nor
a reduced number of myogenic progenitor cells, in spite of the previously reported
phenotypes for grna and grnb MO-mediated knockdown embryos, probably owing to
unspecific toxicity of MOs [156]. Similarly, ALS and FTLD related TDP-43 protein
has been studied in zebrafish. Two zebrafish orthologues, tardbp and tardbpl, exist
with tardbpl being alternatively spliced upon tardbp ablation, thus compensating for
tardbp gene function [145], [157], [158]. Consequently, only knockout of both tardbp and
tardbpl lead to severe dysfunction involving spinal motor neuron axon length, muscle
atrophy, vasculature mispatterning, blood circulation and eventual lethality [157]. In
addition, overexpression of human wildtype and mutant TDP-43 as well as transient
knockdown of zebrafish tardbp has been studied. Interestingly, MO-mediated knock-
down of zebrafish tardbp alone was reported to result in reduced length and aberrant
branching of primary spinal motor neuron axons [159]. Surprisingly, injection of hu-
man wildtype and mutant TDP-43 mRNA into zebrafish embryos elicit similar motor
neuron defects [159], [160], with mutant TDP-43 evoking more severe phenotpyes [159].
Also, ALS and FTLD related FUS protein has been studied in zebrafish. Transient
MO mediated knockdown of the only FUS homologue fus results in reduced but hy-
perbranched motor neuron axons and abnormal motor behaviour [110]. Remarkably,
also overexpression mutant FUS mRNA harboring the ALS causing mutation R521C
(see Figure 3.2) yields reduced, hyperbranched motor neuron axons and motor deficits
[110].
However, beforehand described transient knockdown or overexpression studies display
a major drawback which is unspecific toxicity, due to off-site target effects or global
degradation machinery breakdown or simply interfering with absolute protein levels.
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To circumvent these unwanted side effects, clean genetic approaches utilizing genome
editing (see subsection 3.6.2) will be the future strategy of choice to analyze disease
mechanism and progression.
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Identification of ALS causing mutations in the FUS gene and pathologically deposited
FUS protein in ALS and FTLD was a major breakthrough in the molecular under-
standing of these neurodegenerative diseases.
Currently, two potential mechanisms explaining FUS mediated pathology are under
debate. Firstly, FUS fulfills crucial nuclear functions for sustained neuronal homeosta-
sis and depletion from the nucleus is thought to result in a loss of function, leading
to cell death. Secondly, mutant and redistributed FUS might obtain toxic function in
the cytosol driving neuronal cell death, thus resembling gain of function [161]. How-
ever, the physiological role of FUS and the underlying cellular mechanisms linking
mislocalization of mutant FUS to pathologic inclusion formation and neuronal degen-
eration are still unknown. Therefore, the ultimate goal of this study was to elucidate
the physiological function of FUS and shed light on molecular mechanisms underlying
FUS-mediated pathology.
To investigate the physiological function of FUS and to test whether loss of this func-
tion is necessary and sufficient to elicit ALS and/or FTLD-related pathology, I aimed
to study FUS loss of function consequences in vivo using zebrafish as a small vertebrate
model. Besides transient embryonic silencing of fus via knockdown, loss of FUS should
be achieved via stable and heritable ablation of FUS using ZFNs, at that time the only
genome targeting technique established for applications in zebrafish.
Additionally, I aimed to generate a zebrafish fus allele resembeling an ALS patients
mutation to recapitulate pathomechanisms on cellular and molecular but levels devoid
of unspecific toxic side effects often generated by transgenic overexpression. Since clas-
sical knockin strategies were not established in zebrafish at that time, ZFN mediated
targeted mutagenesis should be performed and alleles should be screened for premature
stop codons yielding truncated proteins rather than frameshift mutations and RNA de-
cay as in the knockout approach.
Moreover, after generation of fus mutant zebrafish, resulting phenotypes were analyzed
to investigate the impact of the induced mutations on the physiological functions of fus
and Fus protein pathogenicity. Particularly, ALS relevant effects such as mutant Fus
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protein localization, aggregation potential, inclusion formation, spinal motor neuron
morphology, muscle, and vessel development were of special interest.
Since FUS positive inclusions are not only found in ALS and FTLD cases, but also in
a wide spectrum of polyglutamine diseases such as Huntington’s disease and spinocere-
bellar ataxia [32], results of this study will provide new profound insights in molecular
mechanism of FUS mediated pathology not only in ALS/FTLD but have an impact
on other FUSopathies, thereby allowing to eventually develop successful treatment
strategies for all these diseases.

26



5 Material and Methods

5.1 Material

5.1.1 Zebrafish lines

The following zebrafish lines were used:
Zebrafish line Origin (Reference)

wildtype-line AB G. Streisinger, Institute of Neuro-
science, University of Oregon, Eugene,
USA

wildtype-line TLF C. Nüsslein-Volhard, MPI for Develop-
mental Biology, Tübingen, Germany

5.1.2 Cells

Human cervical carcinoma cells (HeLa) were obtained from DSMZ, #ACC 57. Primary
rat cortical neurons were dissected and cultured from E18 Sprague-Dawley rat embryos,
supplied by Charles River Laboratories.

5.1.3 ZFNs
CompoZr Zinc finger nuclease plasmids containing coding sequences to specifically
target zebrafish fus gene at exon 14 were obtained from Sigma Aldrich.

fus ZFN set binding and cut site

PZFN1/PZFN2 GGCTTCGATCGAGGTGgtttccGTGGTCGTGGTGGTGATC

5.1.4 gripNAs
gripNAs were purchased from Gene Tools. Sequences are given in 5’-3’ orientation.
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Targeted site Sequence

fus ATG gripNA GCCCAAACATGGCGTCAA

fus intron13-exon14 splice gripNA GTGTAGGTGGTTTTGGTG

5.1.5 Vectors and plasmids
The following vectors and plasmids were used:

Vector Insert Origin

pCR8/GW/TOPO - Invitrogen

pCRII TOPO - Invitrogen

pCSeGFP-Dest n-terminal GFP tag Lawson Lab [162]

pTolDestR4-R2pA - Lawson Lab [162]

pENTR5’-ubi zebrafish ubiquitin promotor Zon lab [163]

pCR8-zfFuswt wildtype zebrafish fus cDNA L. Hasenkamp

pCR8-zfFusF500X mutant Fusmde1500 zebrafish
fus cDNA

L. Hasenkamp

pCS2eGFP-zfFuswt wildtype zebrafish fus cDNA,
n-terminal GFP-tag

L. Hasenkamp

pCS2eGFP-zfFusF500X mutant Fusmde1500 zebrafish
fus cDNA, n-terminal GFP-
tag

L. Hasenkamp

pCR8eGFP-zfFuswt wildtype zebrafish fus cDNA,
n-terminal GFP-tag

L. Hasenkamp

pCR8eGFP-zfFusF500X mutant Fusmde1500 zebrafish
fus cDNA, n-terminal GFP-
tag

L. Hasenkamp

pTol-ubi:eGFP-zfFuswt wildtype zebrafish fus cDNA,
n-terminal GFP-tag, zebrafish
ubiquitin promotor

L. Hasenkamp
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pTol-ubi:eGFP-zfFusF500X mutant Fusmde1500 zebrafish
fus cDNA, n-terminal GFP-
tag, zebrafish ubiquitin pro-
motor

L. Hasenkamp

5.1.6 Oligonucleotides

Oligonucleotides were synthesized by Thermo Scientific or Sigma-Aldrich. Sequences
are given in 5’-3’ orientation. Abbreviation and number in the oligonucleotide name
refer to the Schmid laboratory oligonucleotide database.

5.1.6.1 Cloning primers

oD45 zfFus ATG ATGGCGTCAAATGATTATGGC

oD34 zfFus Stop TTAGTAAGGGCGGTCTCTGC

oLH1 zFus_stop_F500X_rev CTAACCACCTCGATCGAAGC

GATC T7-981079 TAATACGACTCACTATAG

5.1.6.2 Sequencing primers

GATC M13-FP TGTAAAACGACGGCCAGT

GATC M13-RP CAGGAAACAGCTATGACC

GATC SP6 ATTTAGGTGACACTATAGAA

GATC T7-981079 TAATACGACTCACTATAG

oLH1_A2 FUS_ZFN1_f1 CATGTGGAAATTTGAACTTC

5.1.6.3 Genotyping primers for RFLP

oLH1-A2 FUS_ZFN1_f1 CATGTGGAAATTTGAACTTC

oLH1-B4 FUS_ZFN1_r3 AAGTGGATTGATTACTGGTC

5.1.6.4 Genotyping primers for allele specific PCR

To amplify either the Fuswildtype or the Fusmde1500 allele, two primers per PCR reaction
were used:
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Primer Sequence Amplified allele

oLH1-B5 FUS_ZFN1_f4 GGAAGTGGAGGAGGAATG Fuswildtype

oLH1-G3 zFus-F500X-/-_wtr1 GATCACCACCACGACCACGG Fuswildtype

oLH1-G5 zFus-F500X-/-_mutf1 CTTCGATCGAGGTGGTTAGG Fusmde1500

oD34 zfFus Stop TTAGTAAGGGCGGTCTCTGC Fusmde1500

5.1.6.5 Genotyping primers for HRM analysis

oLH2_A11 Fus-HRM-for2 GTGGTTTTGGTGGAGAGC

oLH2_A13 Fus-HRM-rev1 TTCCAGGTCCAAATCCTC

5.1.6.6 Semiquantitative PCR primers

Primer Sequence Amplified gene

oA03 β-actin F TGTTTTCCCCTCCATTGTTGG β-actin

oA04 β-actin R TTCTCCTTGATGTCACGGAC β-actin

oLH2_A18 ntng1-for2 CTGACTTGCGAGTGTGAGCA ntng1

oLH2_A19 ntng1-rev2 GGACACTGACAACGGACGTA ntng1

oLH2_A20 mapta-for1 ATGTGCAGGCTAGATGTGGC mapta

oLH2_A21 mapta-rev1 GAGCGATGCAGACACCTGG mapta

oLH2_A24 Mapt1of2-for1 GGGCAACAGGTGAAGAAGGT maptb

oLH2_A25 Mapt1of2-rev1 GGGACTTGCAGACGATGTCA maptb

5.1.6.7 Quantitative PCR primers

oLH2_A35 qPCR-zfFus-for3 TGGTGGTGGTAGTGGCAACGGC

oLH2_A36 qPCR-zfFus-rev3 TGCACTGATTGCACTCGTTTCGCC

oKS A13 elf1a2 F AGCAGCAGCTGAGGAGTGAT

oKS A14 elf1a2 R GTGGTGGACTTTCCGGAGT

BS-G74 actb1 ex12a F GATCTTCACTCCCCTTGTTCA

BS-G75 actb1 ex12a R AAAACCGGCTTTGCACATAC
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5.1.7 Bacteria

DH5α E. coli competent cells Hanahan

One Shot TOP10 Chemically
Competent E. coli, C4040

Invitrogen

5.1.8 Antibodies

5.1.8.1 Primary antibodies

The following antibodies were used for Western blotting (WB), immunohistochemistry
(IHC) or immunofluorescence stainings (IF).

Antibody (Species) Dilution Supplier

α-actinin, A7811 (mouse) IF: 1:500 Sigma-Aldrich

α-tubulin, T6199 (mouse) WB: 1:10000 Sigma-Aldrich

Calnexin, SPA-860 (rabbit) WB: 1:10000 Stressgen

eIF2α (mouse) WB 1:2000 Cell Signalling

peIF2α (mouse) WB 1:1000 Cell Signalling

F59-myosin (mouse) IF: 1:100 DSHB

FLAG M2-Peroxidase, A8592 WB: 1:1000 Sigma-Aldrich

FUS sc47711 (mouse) WB: 1:1000 Santa Cruz

FUS 3H2-11 (mouse) IHC: 1:100 Institute of Molecular Immunology
(IMI), Helmholtz Center Munich

FUS 2A10 (mouse) IHC: 1:100 Institute of Molecular Immunology
(IMI), Helmholtz Center Munich

FUS 2B6 (mouse) IHC: 1:100 Institute of Molecular Immunology
(IMI), Helmholtz Center Munich

GFP (mouse) IF: 1:500 Neuromab

GFP (rabbit) WB: 1:5000 Clonetech

Heat shock protein (HSP) 70
(rabbit)

WB: 1: 15000 Abcam

Heat shock protein (HSP) 40
(rabbit)

WB: 1: 5000 Enzo
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Histone H3 (rabbit) WB: 1:2000 Cell Signalling

LDH (rabbit) sc33781 WB: 1:1000 Santa Cruz

ZE-5 4D1 (rat IgG2c) IF: 1:10 Institute of Molecular Immunology
(IMI), Helmholtz Center Munich

zn1 (mouse) IF: 1:100 DSHB

znp1 (mouse) IF: 1:100 DSHB

Primary peptide antibodies generated by the IMI, Helmholtz Center Munich:

Antibody (Species) Dilution Epitope

Zebrafish Fus 3H2-11
(mouse IgG2b)

IHC: 1:100 GQSYSQPSAQNYSQQSYGG

Zebrafish Fus 2A10
(mouse IgG2a+b)

IHC: 1:100 GQSYSQPSAQNYSQQSYGG

Zebrafish Fus 2B6
(mouse IgG2a)

IHC: 1:100 AQSGGYSQQSSYSGYNQ

5.1.8.2 Secondary antibodies:

Antibody Dilution Company

Alexa Fluor 488 anti-mouse,
A-11029

1:500 Invitrogen

Alexa Fluor 488 anti-rabbit,
A-11034

1:500 Invitrogen

Alexa Fluor 555 anti-rat,
A-21434

1:500 Invitrogen

anti-rabbit-HRP, W401B 1:10000 Promega

anti-mouse-HRP, W402B 1:5000 Promega

5.1.9 Chemicals

5.1.9.1 Chemicals and reagents

Acetic acid, 100063.2511 Merck
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Acrylamide / bis solution, 10681.03 Serva

Agarose, 15510-027 Invitrogen

Ammonium persulfate (APS), 9592.2 Roth

Ampicillin, K029.2 Roth

Aqua Poly/Mount, 18606 Polysciences

β-Mercaptoethanol, 4227.1 Roth

Bacto agar, 214030 BD

Bacto trypton, 211699 BD

Boric acid, 100165.1000 Merck

Bovine serum albumin (BSA), A8022 Sigma-Aldrich

Bromophenol blue, 18030 Fluka

BseDI restriction enzyme Fermentas

Calcium chloride (CaCl2), 102382.0500 Merck

Chloroform/isoamylalcohol, X984.1 Roth

Citric acid monohydrate Sigma-Aldrich

Collagenase, C9891 Sigma-Aldrich

Copper(II) sulfate (CuSO4) 102790.0250 Merck

DanKlorix Colgate-Palmolive

Deoxynucleoside triphosphates (dNTPs) Thermo Scientific

dNTP mix, 11819362001 Roche

Dulbecco’s modified Eagle medium (DMEM) Glutamax,
61965

Gibco

Diethylpyrocarbonate (DEPC), D5758 Sigma-Aldrich

10x DIG RNA labelling mix, 14300621 Roche

Dimethyl sulfoxide (DMSO), 317275 Merck

Disodium hydrogen phosphate (Na2HPO4), 106580.5000 Merck

Dithiothreitol (DTT) (100mM), Y00147 Invitrogen

6x DNA loading dye, R0611 Thermo Scientific

Dry ice -
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EDTA free Protease inhibitor cocktail tablets, 05056489001 Roche

Endothelial Cell Basal Medium, C-22010 Promocell

Ethylenediaminetetraacetic acid (EDTA), 108418.1000 Merck

80% ethanol, UN1170 CLN

Ethanol p.a., 100989.1011 Merck

Ethidium bromide, 2218.2 Roth

FastRuler high range DNA ladder, 500-10000bp, SM1123 Thermo Scientific

FastRuler middle range DNA ladder, 100-5000bp, SM1113 Thermo Scientific

FastRuler low range DNA ladder, 50-1500bp, SM1103 Thermo Scientific

Fetal bovine serum (FBS), F7524 Sigma-Aldrich

Fetal calf serum (FCS) Life Technologies

Formic acid Sigma-Aldrich

Gelatin, 104080.0100 Merck

Gelatin, from bovine skin, G9391-100G Sigma

GeneRuler DNA ladder mix, SM0331 Thermo Scientific

GeneRuler express DNA ladder, SM1553 Thermo Scientific

Glycerol p.a., 3783.2 Roth

Glycine p.a., 04943 Biomol

5x GoTaq buffer, M791A or M792A Promega

GoTaq DNA polymerase, M830B Promega

Hydrochloric acid, 37% Sigma-Aldrich

Hydrogen peroxide solution 30% Sigma-Aldrich

Guanidine hydrochloride, G4505 Sigma-Aldrich

Immersol W 2010 Zeiss

Insect pins, 26002-10 Fine science tools

Isopropanol p.a., 109634.2511 Merck

Liberase TM, 05401119001 Roche

Lipofectamine 2000, 11668-019 Invitrogen

Liquid nitrogene (liq. N2) Linde
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Loeffler’s methylene blue solution, 101287 Merck

Low serum growth supplement kit, S-003-K Life technologies

Magnesium chloride (MgCl2), 105833.1000 Merck

Magnesium sulfate (MgSO4), 105886.1000 Merck

Medium 199, 31150-022 Life technologies

Medium 200, M-200-500 Life technologies

MercaptoEtOH, 805740 Merck

Methanol p.a., 106059.2511 Merck

Methionine [S35]-label Hartmann Analytik

Methyl cellulose, M0387 Sigma-Aldrich

Meyer’s haematoxylin stain e.g. Sigma-Aldrich

Milk powder, T145.2 Roth

Monopotassium phosphate (KH2PO4), 104877.1000 Merck

Neurobasal medium, 10888022 Life technologies

Newborn calf serum (NCS), N4762 Sigma-Aldrich

Non-essential amino acids (NEAA), 11140-035 Life Technologies

Nonidet P40 / NP40 / IGEPAL, 19628 USB

Normal goat serum XX

Opti-MEM, 51985-026 Gibco

Paraffin wax Sigma-Aldrich

Paraformaldehyde (PFA), P6148 Sigma-Aldrich

Penicillin-Streptomycin, 15140-122 Gibco

Pentylenetetrazole (PTZ), P6500 Sigma-Aldrich

Periodic acid e.g. Sigma-Aldrich

Phenylthiourea (PTU), P7629 Sigma-Aldrich

Phenol/chloroform/isoamylalcohol, A156.1 Roth

PhosSTOP, 04906837001 Roche

Potassium chloride (KCl), 104936.1000 Merck

Protease inhibitor (PI) mix, 05056489001 Roche
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Pronase, 11459643001 Roche

Proteinase K (PK), 03115852001 Roche

Precision plus protein all blue standard, 161-0373 Bio-Rad

Random hexamer primer, S0142 Thermo Scientific

Recombinant human VEGF165, 293-VE-010 R&D Systems

Restriction endonucleases NEB, Thermo Scientific

RiboLock RNase inhibitor (40U xx), EO0382 Thermo Scientific

Ribonucleic acid from torula yeast, Type VI, R6625 Sigma

RNase H, 18021071 Invitrogen

SeeBlue Plus2 pre-stained standard, LC5925 Invitrogen

SOC-Medium, 15544-034 Invitrogen

Sodium acid (NaN3), 106688.0100 Merck

Sodium acetate (NaOAc), 6779.1 Roth

Sodium chloride (NaCl), 3975.2 Roth

Sodium fluoride (NaF) Sigma-Aldrich

Sodium dodecyl sulfate (SDS), 20765.03 Serva

Sodium deoxycholate D6750 Sigma-Aldrich

SP6 polymerase, EP0131 Fermentas

Spectinomycin, 85555 Fluka

Sulforhodamin B, S1402 Sigma

Sucrose, S1888 Sigma-Aldrich

T7 polymerase, EP0111 Fermentas

Tetramethylethylenediamine (TEMED), 2367.3 Roth

TissueTek O.C.T., 25608-9300 VWR

5x Transcription buffer, EP0111 Fermentas

Tricaine, A5040 Sigma-Aldrich

Trichloracetic acid, 1.00807.1000 Merck

Tris, 08003 AppliChem

Trisodium citrate dihydrate Sigma-Aldrich
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Triton X-100, 108603.1000 Merck

Trypsin EDTA or 2.5%, 15090046 Life technologies

Tween 20, 822184.0500 Merck

Vannas-Tübingen Spring Scissors, 15008-08 Fine science tools

Vectahield H-1000 mounting medium Vectorlabs

Xylene, 108681.1000 Merck

Yeast extract, 212720 BD

5.1.9.2 Solutions and buffer

All solutions and buffers were prepared with H2O that was desalted and purified using
a Milli-Q system (electric resistance 18.2MΩcm at 25◦C).

1%-2% agarose 1%-2% agarose
1x TBE

Ampicillin stock 100 mg/ml dissolved in dH2O and sterile filtered

10% APS (stock) 10% APS in dH2O
stored at -20◦C

Bleaching solution 1 l tap water, 380μl DanKlorix

10x BSA stock 0.1 g/ml

Citrate buffer 11.5 ml 0.1M citric acid
88.5 ml 0.1M-trisodium citrate

DEPC-dH2O 200μl DEPC per 100 ml dH2O
incubate o/n at 37◦C and autoclave

DMEM Glutamax, 61965 Gibco

GuHCl-stripping buffer 6M guanidine hydrochloride
20 mM Tris
0.2% Triton X-100/NP40
adjust to pH7.5

High salt buffer 50 mM Tris, pH7.4
750 mM NaCl
10 mM NaF
5 mM EDTA
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High salt, 1% TX100 buffer 50 mM Tris, pH7.4
750 mM NaCl
10 mM NaF
5 mM EDTA
1% Tritonx100

HYB− 125 ml 50% formamide
31.25 ml 20x SSC
2.5 ml 10%Tween-20
ad 250 ml dH2O

HYB+ HYB-
5 mg/ml torula (yeast) RNA
50μg/ml heparin

4x Lämmli sample buffer 4 ml 20% SDS
4 ml glycerol
1 ml β-mercaptoethanol
1.25 ml 1M Tris, pH7.6
1 pinch bromophenol blue

Lysis buffer 10% PK stock in TE, pH8.0

6x Loading dye orange or blue 0.5% SDS
25% glycerol
25 mM EDTA
in dH2O pinch of Orange G or Bromophenol blue

Low salt buffer 10 mM Tris, pH7.4
5 mM EDTA

Low salt, 1% TX100 buffer 10 mM Tris, pH7.4
5 mM EDTA 1% TritonX100

NCST 10% NCS stock
0.1% Tween in 1xPBS

PBS 0.14 M NaCl
10 mM Na2HPO4
2.8 mM KH2PO4
2.7 mM KCl
pH 7.4

PBST 0.1% Tween in 1x PBS
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PBST/milk 3% milk powder
0.1% Tween in 1x PBS

4% PFA 4% PFA in 1x PBS
incubate approx. 5 min at 80◦C until PFA is dissolved
cool to 4◦C prior to usage or store at -20◦C

PK stock 17 mg/ml PK in dH2O

Pronase stock 30 mg/ml pronase in dH2O

10x PTU 0.3 mg/ml in E3

PTZ stock solution (150mM) 5.18mg PTZ
10% DMSO in 250ml E3

PTZ working solution (5mM) 1:30 dilution of PTZ stock solution (150mM) in E3

RIPA 50 mM Tris-HCl, pH 8.0
150 mM NaCl
5 mM EDTA 1% NP-40
0.5% Deoxycholat
0.1% SDS

RIPA, 2% SDS 50 mM Tris-HCl, pH 8.0
150 mM NaCl
5 mM EDTA 1% NP-40
0.5% Deoxycholat
2% SDS

Running gel buffer 1.5 M Tris-Glycine, pH8.8

10x running buffer 29 g Tris
144 g glycine
ad 1 l with dH2O
and autoclave

SDS running buffer 0.1% SDS in 1x running buffer

Spectinomycin stock 30mg/ml dissolved in dH2O and sterile filtered

20x SSC 175.3 g NaCl
88.2 g Na-citrate
ad 1000 ml dH2O
adjust to pH7 and autoclave

Stacking gel buffer 1 M Tris-Glycine, pH6.8
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Staining buffer (NTMT) 100 mM Tris pH9.5
50 mM MgCl2
100 mM NaCl
0.1%Tween-20
1 mM Levamisol (add fresh)

Stripping buffer 62.5 mM Tris
2% SDS
adjust to pH6.7
prior to use add 350μl MercaptoEtOH per 50 ml strip-
ping buffer

10x TBE 1080 g Tris
550 g Boric acid
400 ml 0.5 M EDTA, pH8.0
ad 10 ml dH2O

TE pH8.0 10 mM Tris
1 mM EDTA
adjust to pH8.0 and autoclave

10x transfer buffer 30.3 g Tris
144 g glycine
ad 1 l with dH2O
adjust to pH8.3 and autoclave

50x tricain 2g tricain
10.5 ml 1 M Tris pH9.0
ad 500 ml with dH2O
adjust to pH7.0

5.1.9.3 Media

Media used for the cultivation of bacteria were autoclaved to prevent the growth of
undesired organisms. After cooling sterile filtered antibiotics in the indicated concen-
trations were added.

E3 5 mM NaCl
0.17 mM KCl
0.33 mM CaCl2
0.33 mM MgSO4
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E3 Methylene blue 5 mM NaCl
0.17 mM KCl
0.33 mM CaCl2
0.33 mM MgSO4

0.002% Loeffler’s methylene blue solution)

LB-Agar 1.5% Bacto Agar
1% Bacto Trypton
0.5% Yeast extract
17.25 mM NaCl
in dH2O
Ampicillin 100μg/ml or Spectinomycin 100μg/ml

LB-Medium 1% Bacto Trypton
0.5% Yeast extract
17.25 mM NaCl
in dH2O
Ampicillin 100μg/ml or Spectinomycin 100μg/ml

5.1.10 Kits

BCA Assay Protein Quantitation Kit,
UP40840A

Uptima

DNA polymerase (Pfu) Agilent

Gateway LR Clonase II Enzyme Mix, 11791-020 Invitrogen

cytoTox 96 non-radioactive cytotoxicity assay,
G1780

Promega

GoTaq DNA Polymerase, M3175 Promega

iScript cDNA Synthesis Kit, 170-8891 BioRad

M-MLV Reverse Transcriptase, 28025-013 Invitrogen

MEGAClear Kit, AM1908 Ambion

mMESSAGE mMACHINE SP6 Kit, AM1340 Ambion

mMESSAGE mMACHINE T7 Kit, AM1344 Ambion

MessageMAX T7 mRNA transcription kit Epicentre

NucleoBond Xtra Midi, 740410 Macherey-Nagel
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NucleoSpin Gel and PCR Clean-up, 740609 Macherey-Nagel

NucleoSpin Plasmid, 740588 Macherey-Nagel

pCR8/GW/TOPO TA Cloning Kit, K250020 Invitrogen

Pierce ECL Plus Western Blotting Substrate,
32132

Thermo Scientific

RNAqueous-Micro Kit, AM1931 Ambion

RNase-free DNase Set, 79254 Qiagen

RNeasy Mini Kit, 74104 Qiagen

Supervision 2 DCS

SsoFast Eva Green Supermix, 172-5204 BioRad

5.1.11 Consumables

0.2 ml Strip tubes, AB-0266 Thermo Scientific

96-Well PCR Plate, AB-0600 Thermo Scientific

Blotting Paper, MN 218 B Macherey-Nagel

Borosilicate glass capillaries, 1B120F-4 World Precision Instruments

Centrifuge tubes 15 ml, 50 ml Sarstedt

Combitips Plus 0.5 ml, 5ml Eppendorf

Cover slip Thermo Scientific

Fluorodish Cell Culture Dish - 35 mm,
FD3510-100

World Precision Instruments

Hard-Shell 384-Well PCR Plates,
HSP-3805

BioRad

Microcentrifuge tubes 1.5 ml, 2.0 ml Sarstedt

Microscope slide Thermo Scientific

Microscope slide with wells Thermo Scientific

Microseal B Film, MSB1001 BioRad

Multi-well plates (6, 12, 24, 48, 96) Thermo Scientific

μ-slides, 80826 Ibidi

PCR Film, AB-0558 Thermo Scientific
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PES membrane filter (0.45μm) VWR International

Petri dishes 60 mm, 100 mm Sarstedt

Pipette tips
10μl, 10μl long, 200μl, 1000μl

Sarstedt

Pipette tips with filter
(10μl, 10μl long, 20μl, 100μl, 300μl, 1000μl)

Sarstedt

Phase Lock Tubes 1.5 ml Eppendorf

PVDF Membrane, Immobilon-P, IPVH00010 Millipore

sterile serological pipetts 5 ml, 10 ml, 25 ml Sarstedt

Superfrost Plus slides, J1800AMN3 Thermo Scientific

Transfer pipettes Sarstedt

X-ray films Kodak, BioMax MR Film,
Cat8701302

Sigma Aldrich

X-ray films Super RX, 47410 19236 Fujifilm

5.1.12 Equipment

Accu jet pro Brand

Agarose gel documentation device Intas

Agarose gel systems Peqlab

Benchtop centrifuge 5415D Eppendorf

Benchtop cool centrifuge Biofuge fresco Heraeus

Bio-ice cooling unit, 170-3934 Bio-Rad

C1000 Thermal Cycler Bio-Rad

Cassette for x-ray film exposure Radiographic Products

Casting stands Bio-Rad

Casting frames Bio-Rad

Celltram air microinjector, 5176 Eppendorf

Centrifuge multifuge 3 S-R Heraeus

CO2 Incubator Binder

Cold-light source KL 1500 LCD Zeiss
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Dumont Forceps # 5 Titanium Fine Science Tools

DMZ-Universal (needle) Puller Zeitz-Instrumente

Foam Pads Bio-Rad

Freezer -20◦C Liebherr

Freezer -80◦C Heraeus

Fridge Liebherr

Gel Releaser, 165-3320 Bio-Rad

Gel dryer, model583 Bio-Rad

Hood for cell culture Heraeus

iCycle-MyiQ BioRad

Incubator 28◦C, 37◦C, 55◦C Binder or B. Braun Biotech International

Kontes Pellet Pestle, 1.5 ml Fisher Scientific

Kontes Pellet Pestle Cordless Motor,
K749540-0000

Fisher Scientific

Micro forge, MF-900 Narishige

Microwave Sharp

Microinjector (Femto Jet) Eppendorf

Microinjection molds e.g. Eppendorf

Micro scales BP2215 Sartorius

MilliQ academics Millipore

Mini gel holder cassette, 170-3931 Bio-Rad

Mini-PROTEAN Comb, 10-well and 15-well Bio-Rad

Mini-PROTEAN 3 cell Bio-Rad

Mini-PROTEAN Tetra cell Bio-Rad

Mini trans-blot central core, 170-3812 Bio-Rad

Multipipette plus Eppendorf

Nano Photometer IMPLEN

Microtome xx

PCR Plate Sealer Eppendorf
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PCR Thermocycler Eppendorf, BioRad

pH Meter WTW

Pipette 10μl, 100μl, 200μl and 1000μl Eppendorf

Plate reader PowerWaveXS BioTek

PowerPac Basic Power Supply, 164-5050 Bio-Rad

PowerPac HC Power Supply, 164-5052 Bio-Rad

Preserving boiler EKO 620 Petra

Rotors (TLA-55, SW28) Beckmann Coulter

Scales BP3100S Sartorius

Schott bottles Schott

Sonifier (Cell Disruptor B15) Branson

Shaker Duomax 1030 Heidolph

Shaker cold room Bachofer

Short plates, 165-3308 Bio-Rad

Spacer plates 0.75 mm, 165-3310
and 1.5 mm, 165-3312

Bio-Rad

Spring Scissors, 3 mm Blades, Straight Fine Science Tools

Spring Scissors, 5 mm Blades Angled Fine Science Tools

Staining containers Roth

Staining racks Roth

Staining vials Roth

Stereo Microscope Stemi 2000 Zeiss

Tea nets -

Thermomixer comfort Eppendorf

Thermomixer compact Eppendorf

Ultracentrifuge Beckmann Coulter

UV Detectionsystem Intas

Vortexgenie2 Scientific Industries

Waterbath GLF
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5.1.13 Microscopes

Axiovert 135 (inverted) DIC Zeiss

Cell Observer CSU-X1 Yokogawa Spinning Disk
AxioCam MRm and Evolve 512

Zeiss

Confocal laser scanning microscope LSM 710 Zeiss

Fluorescence-Stereomicroscope MZ 16F Leica

Fluorescence-Stereomicroscope MZ 16FA Leica

Mikroskop Zeiss Axioplan 2 imaging
AxioCam HRc

Zeiss

Stereomicroscope Zeiss Stemi 2000-C Zeiss

ZebraBox Revolution,
high sensitivity digital camera (30 frames/s)

ViewPoint

5.1.14 Hardware and software

Adobe Illustrator CS5 Adobe Systems Software

Adobe Photoshop CS5 Adobe Systems Software

Axiovision 4.0 Zeiss

Bio-Rad CFX Manager 2.0 Bio-Rad

CLC Main Workbench 6 CLC bio

Gen5 BioTek

GraphPad Prism 6 GraphPad Software

Leica Application Suite Leica

Lightscanner HR 96,
HRM analysis software

Idaho Technology Inc.

MacBookPro Apple

Microsoft Office for Mac 2011 Microsoft

Papers2 Mekentosj

Zebralab tracking software 3,22,3,9 ViewPoint

Zen Black 2011 Carl Zeiss Microimaging

Zen Blue 2011 Carl Zeiss Microimaging
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5.2 Methods

5.2.1 Molecular biological methods

5.2.1.1 Isolation of genomic DNA

For the isolation of genomic DNA from methanol fixed zebrafish embryos, larval and
adult tissues, methanol was completely removed by pipetting and subsequent evapora-
tion at 55◦C. Then 50μl or 30μl of TE buffer containing 10% Proteinase K were added
to the adult or larval and embryonic tissue, respectively and the samples were lysed
at 55◦C for at least 1h. Inactivation of Proteinase K was achieved by incubation at
95◦C for 5-10min. Remaining debris was pelleted in a short centrifugation step. The
supernatant containing genomic DNA was stored at -20◦C or used for genotyping.

5.2.1.2 Genotyping fus ZFN mediated mutations

fus ZFN mediated mutations were identified via restriction fragment length polymor-
phism (RFLP). Genomic DNA was extracted from zebrafish embryos and fin biopsied
tissue and Polymerase chain reaction (PCR) was performed with genotyping primers
flanking fus target site containing DNA fragments. Per reaction 2μl of genomic DNA
lysate were amplified with 0.2μl of GoTaq polymerase (5 units per 1μl), 0.34μl of 10mM
dNTPs and 0.05μl of each forward and reverse primer (100mM) in 3.4μl 5×GoTaq
buffer diluted in dH2O were used. The following PCR programm was applied:

Cycle Step Temperature Time No. of cycles

Initial Denaturation 94◦C 2min 1

Denaturation
Annealing
Extension

94◦C
60◦C
73◦C

30s
30s
5min

35

Final Extension 73◦C 5min 1

Next, PCR amplicons were subjected to restriction digest with BseDI restriction en-
zyme. Per reaction, 5μl PCR product, 0.25μl BseDI restriction enzyme (10 units per
1μl), 0.25μl Tango restriction buffer diluted in dH2O were incubated at 55◦C for 3h.
PCR and restriction digest products were analyzed by agarose gel electrophoresis.
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5.2.1.3 Genotyping Fusmde1500 mutations

Fusmde1500 mutations were identified via PCR using allele specific primers. Per sam-
ple two consequent PCRs were performed and analyzed by gel electrophoresis. 1μl
of genomic DNA lysate was amplified with 0.2μl of GoTaq polymerase (5 units per
1μl), 0.34μl of 10mM dNTPs and 0.05μl of each forward and reverse primer (100mM)
specific for either the Fuswildtype allele or the Fusmde1500 allele in 3.4μl 5×GoTaq buffer
diluted in dH2O per PCR reaction. The following PCR program was used:

Cycle Step Temperature Time No. of cycles

Initial Denaturation 94◦C 2min 1

Denaturation
Annealing
Extension

94◦C
62◦C
73◦C

30s
30s
10s

45

Final Extension 73◦C 5min 1

5.2.1.4 Large scale mutation screening using HRM analysis

For genotyping using HRM analysis, a PCR followed by melting curve anaylsis was
performed using a PCR cycler and the Bioke Lightscanner device. Per reaction 2μl of
genomic DNA lysate were amplified with 0.1μl of GoTaq polymerase (5 units per 1μl),
0.2μl of 10mM dNTPs, 1μl of each forward and reverse primer (2.5μM) and 1μl of LC
Green reagent in 2μl 5×GoTaq buffer diluted in dH2O were used. Before subjecting
samples to PCR, wells were coated with 20μl of mineral oil to avoid evaporation. The
following PCR program was applied prior to generation of melting curves using the
Lightscanner:

Cycle Step Temperature Time No. of cycles

Initial Denaturation 94◦C 2min 1

Denaturation
Annealing
Extension

94◦C
65◦C
73◦C

30s
30s
10s

45

Final Extension 73◦C 5min 1

Lightscanner melting curve detection was set to start and stop temperatures of 75◦C
and 98◦C, respectively with a general hold temperature of 72◦C. Analysis of melting
curve shifts by the Lightscanner software allowed identification of the mutations.
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5.2.1.5 RNA extraction

RNA from zebrafish embryos, zebrafish larvae, and adult zebrafish tissues was extracted
according to the protocol of the RNeasy Mini Kit including DNase treatment (RNase-
free DNase Set). Microcentrifuge tubes containing shock frozen embryos, larvae, or
tissues were kept on dry ice until homogenization. For all steps RNase free consum-
ables and solutions were used. The tissue was disrupted with the tissue homogenizer in
350μl+ 350μl RLT buffer containing β-mercaptoethanol. After being extracted from
tissue using the RNeasy Mini Kit RNA was eluted in 30-50μl RNase-free H2O. RNA
quality was examined by agarose gel electrophoresis and the concentration was deter-
mined using a NanoDrop device. All RNA solutions were stored at -80◦C until further
usage.

5.2.1.6 cDNA synthesis

cDNA synthesis was performed as described in the M-MLV Reverse Transcriptase kit.
RiboLock RNase Inhibitor was utilized as RNase inhibitor. For cDNA used in qRT-
PCRs 0.1μg total RNA and 0.1μg Random Hexamer Primer Mix was used. For cDNA
used in semiquantitative RT-PCRs 2μg total RNA were used together with 0.5μg
Random Hexamer Primer Mix. cDNA used for cloning of fus constructs was synthesized
using up to 5μg of total RNA with 0.5μg of oligo (dT) primers selectively enriching for
mature mRNAs followed by RNase H digest to remove RNA-DNA hybrids. A β-actin
control PCR was used as a control for efficient cDNA synthesis.

5.2.1.7 Cloning of zebrafish fus contructs

Several zebrafish fus constructs were cloned using TOPO cloning (see subsubsec-
tion 5.2.1.8) and Gateway technology (see subsubsection 5.2.1.9). Fulllength Fuswildtype

and Fusmde1500 alleles were amplified via PCR from cDNA pools and cloned into
pCR8/GW/TOPO vectors, serving as entry vectors. From there, Gateway reaction
with pCS2+plasmids allowed to swap inserts and generate expression vectors with
Fuswildtype and Fusmde1500 constructs under the expression control of the pCS2+ CMV
promotor. Moreover, destination vectors with a GFP tag 5’ or 3’ of the Gateway sites
allow for N-terminal or C-terminal fusion of the gene of interest with GFP. 5’ GFP
containing pCS2+ vectors were utilized to tag Fuswildtype and Fusmde1500 constructs N-
terminally with GFP. These constructs were used to screen suitable antibodies detect-
ing wildtype Fus protein as well as truncated mutant Fusmde1500 protein. In addition,
the multiple gateway reaction was used to clone GFP tagged Fuswildtype and Fusmde1500
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constructs under the control of the ubiquitin promotor, derived from a different entry
vector. These plasmids were utilized to examine localization of Fus protein in zebrafish
embryos and rat primary cortical neurons.

5.2.1.8 TOPO cloning

For molecular cloning of entry clones the pCR8/GW/TOPO TA Cloning Kit or the
TOPO TA Cloning Kit, Dual Promoter were used. Proof-reading polymerases do
not generate sticky required for topoisomerase reaction in both kits. Therefore sticky
adenosine ends were added as described in the following reaction: 20μl purified PCR
product, 5μl 5×GoTaq Buffer, 0.5μl 10mM dATP and 0.3μl GoTaq DNA Polymerase
were incubated for 15min at 72◦C. Then 1-4μl PCR product were used in a TOPO
Cloning reaction following the manual of the respective Cloning Kit. The TOPO
cloning reaction was incubated for up to 30min before transformation in chemically
competent E. coli cells (see subsubsection 5.2.1.10).

5.2.1.9 Gateway cloning

To transfer DNA fragments from entry clones to expression clones the Gateway cloning
system was used. 100ng/μl pCR8/GW/TOPO vector containing the DNA fragment of
interest served as entry clone and 150ng/μl pCS2+ vector containing the Gateway cas-
sette as destination vector. The Gateway cloning reaction was conducted as described
in the user manual of the Gateway LR Clonase II Enzyme Mix. 1-5μl LR Clonase
reaction were subsequently used for transformation in chemically competent E. coli
cells (see subsubsection 5.2.1.10).
For multiple gateway cloning, a destination vector and several entry vectors are needed.
To generate GFP tagged zebrafish fus contructs under the control of the ubiquitin
promotor, pCS2eGFP-zfFuswt and pCS2eGFP-zfFusF500X vectros were used as tem-
plates to amplify GFP-Fus coding sequences via PCR and perform TOPO cloning to
generate pCR8eGFP-zfFuswt and pCR8eGFP-zfFusF500X plasmids. 100ng/μl pCR8
containing zebrafish fus coding sequences N-terminally fused to GFP and 100ng/μl
pENTR5’-ubi vector were used as entry vectors, while 200ng/μl pTolDestR4-R2pA
vector served as destination vector. Cloning reaction was performed according to the
manufacturers protocol.
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5.2.1.10 Chemical transformation of bacteria

To transform plasmid DNA in bacteria, chemically competent DH5α or TOP10 E. coli
cells were used. Cells were thawed on ice and 2-4μl of TOPO cloning reactions, 2μl of
LR Gateway cloning reactions or 10pg-100ng plasmid DNA were added and incubated
on ice for 30min followed by a heat-shock at 42◦C for 30s and a quick chill on ice
for 3min. To allow the bacteria to express resistance genes, 250μl SOC medium were
added and bacteria were incubated at 37◦C, 200rpm for 1h. Then 10-200μl of the
transformation were spread on pre-warmed LB agar plates containing the appropriate
antibiotic. When using the TOPO TA Cloning Kit Dual Promoter LB agar plates were
coated with 40μl IPTG stock and 40μl X-Gal stock beforehand to allow blue/white
selection. LB agar plates were incubated o/n at 37◦C. If bacteria colonies were present,
some were selected and analyzed for the integration of the correct plasmid by colony
PCR (see subsubsection 5.2.1.12).

5.2.1.11 Gradient PCR

Gradient PCRs were performed to determine the optimal annealing temperature of a
primer pair prior to using it for cloning or genotyping. A temperature gradient range
from 50-70◦C was tested as possible annealing temperatures, whereas temperature
during other PCR cycle steps were kept constant. The extension time was adjusted
to the expected size of the PCR product. PCR products were analyzed by agarose gel
electrophoresis.

5.2.1.12 Colony PCR

Prior to sequencing, single clones were analyzed for the correct insert via colony PCR.
Single clones were picked with pipette tips, 30μl LB medium with the appropriate an-
tibiotic was inoculated and colony resuspensions were incubated at RT on the bench for
30min. Primers suitable to determine whether the insert of interest was integrated into
the plasmid were selected. To analyze clones after integrating zebrafish fus constructs
into TOPO vectors 2μl colony resuspension and 0.05μl of each forward and reverse
M13 primers, together with 0.2μl of GoTaq polymerase (5 units per 1μl), 0.34μl of
10mM dNTPs and 3.4μl 5×GoTaq buffer diluted in dH2O were used for one reaction.
The following PCR programm was applied to amplify zebrafish fus coding sequences :

Cycle Step Temperature Time No. of cycles
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Initial Denaturation 94◦C 2min 1

Denaturation
Annealing
Extension

94◦C
60◦C
73◦C

30s
30s
2min

25

Final Extension 73◦C 5min 1

After PCR products were analyzed by agarose gel electrophoresis and clones containing
the correct insert were subjected to bacterial cultivation and DNA extraction (see
subsubsection 5.2.1.13).

5.2.1.13 Bacterial cultivation and DNA extraction

After colony PCR and identification of promissing clones 3-5ml of LB medium contain-
ing the appropriate antibiotics were inoculated with 10μl of a single clone resuspension
(see subsubsection 5.2.1.12) and incubated at 37◦C, 200rpm, o/n for miniprep isolation
of entry clone plasmids. Plasmid DNA was isolated as described in the NucleoSpin Plas-
mid protocol. The concentration was determined with a NanoDrop device and plasmids
were sequenced by GATC to determine the correct sequence of the integrated insert
of interest. Samples were stored at -20◦C until further usage. For midiprep isolation
of expression clone plasmids 200ml of LB medium containing the appropriate antibi-
otics were inoculated with 10μl of a single clone resuspension and incubated at 37◦C,
200rpm, o/n. Plasmid DNA was isolated as described in the NucleoBond Xtra Midi
protocol and dissolved in 200μl of sterile dH2O. The concentration was determined
with a NanoDrop device and plasmid solutions were stored at -20◦C. Plasmids were
sequenced by GATC and used for expression in zebrafish, HeLa cells or rat primary
cortical neurons.

5.2.1.14 ISH probe generation

Sense and antisense probes for in situ hybridisations were generated similarly to a stan-
dard in vitro RNA transcription protocol. First, pCS2+ zf FUS construct (F62) was
chosen as DNA template and linearized with BamHI or KnpI for generation of antisense
or sense probe, respectively. 10μg DNA template with 20 units of the respecting en-
zyme were incubated in 1×restriciton buffer diluted in dH2O at 37◦C for 2h. Linearized
template DNA was purified according to the NucleoSpin PCR Clean-up protocol and
eluted in 25μl DEPC-H2O prior to controling for efficient digest and measuring the
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concentration using a Nano photometer device. In the next step, digoxygenin (DIG)
labelled RNA was transcribed from the linearized DNA templates. 1μg linearized DNA
template with 40 units of T7 RNA polymerase for antisense or T3 RNA polymerase
for sense probes were incubated with 1×DIG labelling mix, 5mM DTT and 40 units
of Ribolock RNAse inhibitor in 1×reaction buffer diluted in DEPC-H2O at 37◦C for
2h. Probes were recovered via precipitation. 1

10vol 8M LiCl and 21
2vol of prechilled

100% ethanol were added and incubated for 1h at -20◦C. Samples were centrifuged for
30min at 4◦C at 13000rpm and the supernatant was discarded. 300μl 75% ethanol in
DEPC-H2O were added and samples were centrifuged for 5min at 4◦C at 13000rpm.
The supernatant was discarded and the pellet dried at RT, redissolved in 20μl DEPC
H2O and used for ISH (see subsubsection 5.2.3.9) after determination of concentration
and quality via nano photometer and agarose gel electrophoresis, respectively.

5.2.1.15 Agarose gel electrophoresis

Agarose gel electrophoresis was performed to analyze and separate PCR products, to
analyze restriction enzyme digests or to control RNA quality. Dependent on the size of
the expected product 1-2% agarose gels containing ethidium bromide (approx. 1:50000)
were used. Samples containing loading dye and a suitable DNA ladder were loaded
onto the gel. Electophoresis was performed in 1×TBE buffer until a clear separation
of the bands of interest was determined via UV detection and documented via image
acquisition.

5.2.1.16 Gel extraction and PCR clean-up

After agarose gel eletrophoresis, samples were purified from the gel according to the
NucleoSpin Gel Clean-up protocol. For direct purification of PCR amplicons after PCR
the NucleoSpin PCR Clean-up protocol was used. Purified DNA was eluted in 30-50μl
elution buffer NE and was either analyzed by sequencing or used for cloning.

5.2.1.17 Quantitative PCR

All primer pairs for quantitative PCR (qPCR) spanned an exon-exon junction with
an intron larger than 1kb to exclude amplification of genomic DNA. Specificity of the
primers was tested by qPCR on wildtype cDNA and verified by a single peak via melting
curve analysis and one single band of the predicted size in agarose gelelectrophoresis.
Additionally, the qPCR product was sequenced. qPCR was performed in 384-well
format on a C1000 Thermal Cycler. To generate cDNA, 0.1μg total RNA of each
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sample were transcribed with 0.1μg random hexamer primers and 20mM dNTPs. For
a standard curve total RNAs of all samples were combined and a dilution series of 1:1,
1:10, 1:100, 1:1000 was transcribed with 0.1μg random hexamer primers and 20mM
dNTPs. For the qPCR reaction on cDNA 1μl 1:25 diluted standard cDNAs and 1:100
diluted sample cDNAs plus 3μl mastermix, composed of 2.5μl SsoFast Eva Green
Supermix, 0.25μl 10μM forward primer and 0.25μl 10μM reverse primer were used.
Each reaction was performed in triplicates. The PCR program applied contained the
following steps: 30s at 95◦C, 55 cycles of 5s at 95◦C and 10s at 60◦C and a melting
curve from 60◦C to 95◦C with increases of 0.5◦C every 5s. The relative expression of
each gene was calculated using the ΔΔCT-method and the normalized fold expression
was calculated by normalization to the reference genes eF1α and actin1β.

5.2.1.18 Semiquantitative PCR

Semiquantitative PCR for mapta, maptb, ntng1 and β-actin as loading control were
performed. 1μl cDNA and 3.4μl 5×GoTaq Reaction Buffer, 0.34μl dNTPs (10mM),
0.05μl 100μM forward primer, 0.05μl 100μM reverse primer, 12.57μl dH2O and 0.1μl
GoTaq DNA Polymerase per reaction were subjected to the following PCR program:

Cycle Step Temperature Time No. of cycles

Initial Denaturation 94◦C 2min 1

Denaturation
Annealing
Extension

94◦C
65◦C
73◦C

30s
30s
5min

25

Final Extension 73◦C 5min 1

For all PCR products the same volume was analyzed via agarose gel electrophoresis.

5.2.1.19 Determination of protein concentration

For the determination of protein concentrations in zebrafish samples and cell culture
lysates BCA Assay was applied as described in the protocol of the BCA Assay Protein
Quantitation Kit. BSA was used for the standard curve and the colorimetric reduction
of copper(II) sulfate containing BCA reaction solution by peptide bonds was measured
with a plate reader at 562nm.
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5.2.1.20 SDS-polyacrylamide gel electrophoresis

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was performed to separate pro-
teins according to their molecular weight (MW). The percentage of the running gel was
chosen depending on the expected MW of the protein of interest (http://www.thermos-
cientificbio.com/uploadedFiles/Resources/general-recommendations-for-sds-page.pdf) .
Recipes for three separating gels (25ml) and three stacking gels (6ml):

7% 8% 12% 15% Stacking gel

40% acrylamide 4.43ml 5.03ml 7.58ml 9.45ml 563μl

Running gel buffer 12.5ml 12.5ml 12.5ml 12.5ml -

Stacking gel buffer - - - - 750μl

10% SDS 250μl 250μl 250μl 250μl 60μl

dH2O 7.57ml 6.97ml 4.42ml 3.15ml 4.913ml

10% APS 250μl 250μl 250μl 250μl 60μl

TEMED 5μl 5μl 5μl 5μl 6μl

The PAGE equipment including denaturing gels was assembled and SDS running buffer
was added. Wells were rinsed with SDS running buffer prior to loading of samples as
well as Precision Plus ProteinTM All Blue ladder. Electrophoresis was started with 80V,
increased to 120-150V after the protein standard began to separate and was stopped
when the region of interest showed sufficient separation. Gels were subsequently used
for Western Blotting.

5.2.1.21 Western blotting

Wet Western blotting was used to transfer and immobilize proteins on a PVDF-
membrane. Prior to blotting, pre-wetting (activation) of the PVDF-membrane in
methanol was performed. Afterwards, the membrane was washed in dH2O and in-
cubated in 1×transfer buffer. Membranes and gels were assembled between foam pads
and Whatman paper in a holder cassette. Next, proteins were transferred onto the
PVDF-membrane in 1×transfer buffer at 400mA for 70min. After Western blotting,
membranes were blocked by shaking incubation in PBST/milk for 1h at RT. Next, the
blocked membrane was incubated in primary antibody diluted in PBST/milk, 0.05%
NaN3 at 4◦C o/n. The next day the primary antibody was removed and kept for fur-
ther use at 4◦C, while the membrane was washed 4×15min in PBST. The secondary
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antibody was applied diluted in PBST/milk for 1h at RT. After removal of the sec-
ondary antibody the membrane was washed 8×for 15min prior to immunodetection.
For immunodetection ECL Plus was used as indicated in the manual. By catalyzing
chemiluminescent substrates the horse radish peroxidase (HRP) moiety of the sec-
ondary antibody produces chemiluminescence that can be detected upon exposure to
X-ray films. After immunodetection the membrane was washed three times for 5min in
PBST. Before a second immunodetection the membrane was stripped to resolve formed
antibody-antigen interactions
Stripping the membrane was achieved by horizontally shaking in 10ml GuHCl-stripping
buffer plus 70μl β-mercaptoethanol (0.1M) at RT for 10min. Then the membrane was
washed two times for 5min in PBST. A second round of 5min incubation in 10ml
GuHCl-stripping buffer plus 70μl β-mercaptoethanol followed. Afterwards, the mem-
brane was rinsed in PBST and washed five times for 5min in PBST. After being stripped
and reblocked in PBST/milk, the PVDF membrane was ready for immunodetection
with another antibody that serves as loading control, e.g. tubulin or actin.
For quantitative Western blotting HRP mediated luminescence directly correlating with
protein levels was detected using LAS 4000 image reader instead of exposure to X-ray
films and analyzed by Multi Gauge V3.0 software.

5.2.1.22 Subcellular fractionation

Frozen adult brain of zebrafish carrying homozygous, heterozygous Fusmde1500 muta-
tions or Fuswildtype alleles were homogenized using a tissue homogenizer device in 100μl
of low salt buffer containing 1×Proteinase and Phosphatase Inhibitor. A 25μl aliquot
of each sample was separated as total input. Samples were centrifuged at 5000×g
at 4◦C for 30min and supernatant was collected as low salt fraction. Two additional
washing steps with the same buffer (low salt buffer) followed before the pellet was re-
dissolved in 100μl low salt buffer containing 1% TritonX100 (TX100). Again samples
were centrifuged at 5000×g at 4◦C for 30min and supernatant was collected as low
salt/TX100 fraction followed by 2×washing in low salt buffer containing 1% TX100.
Lastly, pellets were redissolved in 100μl high salt buffer. All four fractions (total, low
salt buffer fraction, low salt buffer/TX100 fraction, high salt fraction) for all three
genotypes were subjected to the BCA assay to determine protein concentration. After
adding 4×Lämmli buffer and boiling for 5min, 750rpm at 95◦C 10μg of each sample
according to the determined protein concentrations was loaded to a SDS-PAGE gel
and subjected to Western blotting.
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5.2.1.23 Solubility fractionation

Frozen adult zebrafish brains deriving from homozygous, heterozygous Fusmde1500 mu-
tants or wildtype siblings were sequentially extracted using buffers with increasing
detergent concentrations. First, brains were homogenized in 200μl high salt buffer us-
ing tissue a homogenizing device. High salt buffer soluble proteins were extracted via
ultracentrifugation at 100000×g at 4◦C for 38min. Supernatant was collected as high
salt buffer fraction. 2×washing steps with 200μl high salt buffer followed to make sure
all proteins soluble in high salt buffer were extracted. Next, pellets were redissolved
in 100μl high salt buffer with 1% TritonX100 and subjected to ultracentrifugation at
100000×g at 4◦C for 38min. Supernatants were collected as high salt/TX100 buffer
fraction and pellets were washed twice with 100μl high salt buffer with 1% TritonX100
before next buffer was applied. Pellets were dissolved in 50μl RIPA buffer and subjected
to ultracentrifugation at 100000×g, 4◦C for 38min before supernatants were collected
as RIPA buffer fraction and 2×washing steps 50μl RIPA buffer were performed. Next,
25μl RIPA with 2% SDS was used to dissolve the RiPA pellets and samples were again
centrifuged at 100000×g for 38min at 4◦C. RIPA/2%SDS supernatant was collected
and 2×washing steps 25μl RIPA/2%SDS buffer were performed. Finally, RIPA/2%SDS
pellets were extracted in 70% formic acid, evaporated and dissolved in 25μl Tris buffer
pH9. To compare different genotypes, equal volumes of different fractions (10μl of
high salt and high salt/TX100 fractions, 20μl of RIPA and RIPA/SDS fractions, 25μl
of formic acid fraction) were used in SDS-PAGE and Western blotting after adding
4×Lämmli buffer and boiling for 5min, 750rpm at 95◦C.

5.2.2 Cellbiological methods

5.2.2.1 HeLa cell culture and transfection

Human cervical carcinoma cells (HeLa) were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) with Glutamax supplemented with 10% fetal calf serum (FCS) and
1% penicillin/streptomycin at 37◦C and 5% CO2. For transfections cells were seeded in
12 well cell culture dishes and transfected by inverse transfection. Per well, 2μl Lipo-
fectamin 2000 incubated with 125μl OptiMEM for 5min was combined with 0.8μg of
DNA mixed with 125μl OptiMEM. The DNA/lipofectamin transfection mix was placed
into wells of the 12 well plate prior to plating 150000 cell in 500μl per well. Cells were
incubated in transfection mix o/n and media was exchanged by DMEM/Glutamax/FC-
S/penicillin/streptomycin the next day. Cells were cultured until harvesting 48h after
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transfection.

5.2.2.2 Harvesting of HeLa cells and cell lysis

Cells were washed 2×in PBS and detached from the dish using a cell culture spatula and
ice cold PBS before centrifugation at 3500×g to pellet cells and lysis in 250μl ice-cold
RIPA lysis buffer containing 1×Proteinase and Phosphatase Inhibitor by incubating
on ice for 10min. Next, DNA was sheared by sonification and remaining debris were
pelleted by centrifugation of the samples for 15 min at 13000 rpm and 4◦C. Supernatant
were collected in new microcentrifuge tubes and subjected to BCA assay measurements
to determine protein concentrations. 4×Lämmli sample buffer was added to the cell
lysates, and samples were boiled at 95◦C, 750rpm for 5-10min and centrifuged for 1min
at 13000rpm. Until being used for immunoblotting, samples were stored at -20◦C.

5.2.2.3 Preparation and cultivation of primary neurons

Primary rat cortical neurons were obtained from Sprague-Dawly rat embryos at em-
bryonic day 18 or 19 (E18 or E19). Embryos were removed from the uterus, decapi-
tated and cortices dissected from the skull. Tissues were washed 4×in ice cold HBSS
buffer prior to dissociation of neurons via incubation in 5mm HBSS containing 300μl
2.5% trypsin and 500μl DNAse treatment (200 units per mg) for 20min and another
4×washing steps with warm HBSS buffer before pipetting up and down several times.
400000 dissociated cortical neurons were plated on cover slips, beforehand subjected to
65% nitric acid treatment, sterilization, coating in 0.1M borate buffer containing 1.5%
PDL and 0.625% laminin and equilibration in neurobasal media.
Primary rat cortical neurons were cultivated in neurobasal media supplemented with
2% B27, 1% Penicillin/Streptomycin and 0.25% glutamine.

5.2.2.4 Transfection of primary neurons

Primary rat cortical neurons were transfected with GFP-tagged Fusmde1500 or Fuswildtype

constructs under control of the CMV promotor on day in vitro (DIV) 6. 3.2μl Lipo-
fectamin 2000 incubated with 100μl OptiMEM for 5min was combined with 1.8μg of
DNA mixed with 100μl OptiMEM. DNA/Lipofectamin transfection mix was added to
in prewarmed neurobasal media rinsed coverslips in a dropwise manner. After 45min
transfection mix was removed by 2×rinsing of coverslips in neurobasal media and cover
slips were transferred back to original media and incubated until fixation 4 days after
transfection DIV6+4 in 4% PFA for 15min at RT after washing in PBS.
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5.2.2.5 Immunofluorescence stainings in primary neurons

After fixation cover slips were treated with 3ml 50mM Ammonium Chloride containing
0.2% TritonX100 for 5min at RT prior to being washed 3×in PBS. Next, coverslips were
blocked with 100μl of blocking solution (2%FCS, 2%BSA, 0.2% fish gelatin in 1×PBS)
for 1h in a wet chamber to avoid drying. Next, blocking solution was aspirated and
replaced by 100μl primary antibody diluted in 10% blocking solution (mouse α-GFP
antibody diluted 1:500). Coverslips were incubated in primary antibody solution for
1h before 4×washing steps in PBS were performed. Secondary antibody was diluted
in 10% blocking solution (Alexa α-mouse 488 diluted 1:500), added to coverslips and
incubated at RT for 45min in darkness. After 2×washing with PBS, DAPI staining
(dilution 1:5000 in PBS, incubation for 15min) was performed to visualize nuclei. After
2×washing steps in PBS, cover slips were mounted on glass slides using Vectashield
H-1000 mounting media and analyzed by confocal microscopy.

5.2.3 Zebrafish specific methods

5.2.3.1 Zebrafish husbandry and handling of embryos

Husbandry, breeding, and mating of wildtype and mutant zebrafish was performed
according to standard methods [164]. Embryos and larvae were kept at 28.5◦C in
E3 medium containing methylene blue until 5 dpf prior to being transferred to tanks.
Developmental stages were determined according to [165]. Zebrafish embryos and larvae
used for in vivo imaging or whole mount immunofluorescence (IF) stainings were treated
with 1×PTU starting at 1 dpf to avoid pigmentation [166]. For embryonic stages
analyzed earlier than 3 dpf, chorions were removed by adding 10μl pronase to embryos
containing petri-dishes starting at 1 dpf. For very early stages (before 1 dpf) chorions
were removed manually using forceps.

5.2.3.2 Mating of adult zebrafish

Pairs of adult zebrafish was transferred from tanks to mating boxes equiped with di-
viders to separate males and females o/n. Next morning, parallel removal of dividers
allowed simultaneous spawning of several pairs, yielding age matched zebrafish em-
bryos. Fertilized eggs were separated from unfertilized ones, transferred to petri-dishes
and kept at 28.5◦C in E3 medium containing methylene blue until further analysis or
raising.
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5.2.3.3 Microinjection into zebrafish eggs

Microinjections into zebrafish fertilized eggs were performed at one cell stage (zygotes).
Before injections, injection needles and injection agar plates were prepared. Injection
needles were generated with a needle puller device using the programme P(A)60. Mi-
croinjection molds were placed into a petri dish containing 1.5% agarose in E3 to
generate injection agar plates. Most of the freshly spawned eggs were sorted into the
cavities, created by the molds of the injection plates. The rest of spawned eggs was
held back and served as a control for proper development. 2-4 pl of 0.4μg/μl of the fus
ZFN mRNAs or 1 mM of fus targeting gripNAs (dissolved in DEPC H2O) were injected
into the yolk. Fertilized embryos were kept at 28◦C after eliminating unfertilized eggs.
Phenotypes were briefly checked at 1 dpf prior to fixation for further analysis or raising
to adulthood.

5.2.3.4 Knockdown of genes in zebrafish embryos using gripNAs

gripNAs targeting either the ATG start codon or the intron13-exon14 splice site of the
fus mRNA were obtained from Gene Tools. 1 mM stocks were prepared by solubiliz-
ing the lyophilized solid in sterile dH2O and 3μl aliquots stored at -20◦C until injec-
tion. 1 mM concentrations were injected into one-cell-stage AB or mutant Fusmde1500

embryos as described in subsubsection 5.2.3.3. The injected embryos were phenotyp-
ically analyzed, and knockdown efficiency of fus evaluated on Fus protein level by
immunoblotting.

5.2.3.5 Bleaching of fertilized zebrafish eggs

Fertilized zebrafish eggs were bleached prior to being raised to prevent contamination of
other fish with pathogens. This procedure is not harmful after epiboly is finished, until
approx. 1.5dpf. Fertilized eggs placed in a tea net were exposed to bleaching solution
for 5 min prior to being rinsed in tap water for 5 min. After repeating this procedure,
embryos were transferred to fresh petri dishes filled with E3 medium without methylene
blue containing 10μl of Pronase stock solution to facilitate hatching of embryos from
denaturated chorions at 3 dpf.

5.2.3.6 Fin biopsies from adult zebrafish

Determination of the genotype of a single zebrafish was performed with tail fin biopsies
derived genomic DNA. To do so, zebrafish were anesthetized in 5-10% Tricaine solution.
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Fin tissue from the periphery of the tail fin was cut on a cutting board and fixated
in 100% methanol. Immediately after biopsy fish were transferred to a single box
containing fresh fish water to recover.

5.2.3.7 Tissue harvesting from adult zebrafish

Tissues from adult zebrafish were isolated as described previously [167].

5.2.3.8 Fixation and storage of zebrafish samples

For protein analysis or mRNA isolation embryos, larvae and dissected tissue were snap
frozen in microcentrifuge tubes using liq. N2 after complete removal of all liquid. Snap
frozen samples were stored at -80◦C until usage.
Embryos and dissected brains for whole-mount IF stainings and immunohistochemistry
were transferred to microcentrifuge tubes containing 4% PFA and samples were fixated
o/n at 4◦C. PFA solution was removed and samples were rinsed once with PBST,
then washed three times for 5 min with PBST at room temperature (RT). Samples
for immunohistochemistry were subjected to a dehydration series and embedded in
paraffin (see subsubsection 5.2.3.16). Samples for whole mount immunofluorescence
stainings were subjected to a series of methanol washes (25% methanol in PBST, 50%
methanol in PBST, 75% methanol in PBST, 100% methanol) prior to being stored in
100% methanol at -20◦C until usage.
For genotyping of individual zebrafish, embryos, larvae and biopsied fin tissue were
stored in 100% methanol in individual microcentrifuge tubes until usage.

5.2.3.9 Whole mount in situ hybridizations

In 4% PFA fixed samples were rehydrated by a series of 5 min washing steps with de-
creasing methanol concentrations (75% methanol in PBST, 50% methanol in PBST,
25% methanol in PBST, 100% PBST) prior to a 3×5 min PBST washing cycle and
permeabilization using 10μg/ml PK in PBST as indicated below.
24hpf 7min

48hpf 20min

72hpf 30min

After 2 washing steps with PBST samples were re-fixated by 20 min treatment with
4% PFA prior to another round of washing in PBST (3×5 min). Next, samples were
incubated with hybridization buffer plus (HYB+) at 65◦C for 20 h prior to incubation
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with either 250 ng antisense probe or 250 ng sense probe containing HYB+ at 65◦C
o/n. Antisense and sense probe were generated in parallel to sample preparation (see
subsubsection 5.2.1.14).
Next day, probes were removed and samples washed in 2xSSCT/50% formamide at
65◦C 2×30 min, prior to 1×15 min washing in 2×SSCT followed by 2×30 min wash-
ing in 0.2×SSCT. Samples were then blocked with NCST for 2 h before being incu-
bated with the alkaline phosphatase conjugated α-digoxygenin fragment antigen bind-
ing (Fab) antibody in NCST (dilution 1:4000) o/n, thereby detecting Digoxygenin
labeled antisense and sense probes.
Next day, samples were washed 4×25 min in NCST to remove the antibody, before
being washed in NTMTL for 3×5 min. Next, samples were stained with staining buffer
containing the chromogenic substrates 5-bromo-4-chloro-3-indolyl phosphate (BCIP)
and nitro blue tetrazolium chloride (NBT) in 12 well microtiter plates, and colorimet-
ric detection of alkaline phosphatase activity due to catalysis of BCIP and NBT was
stopped with 2×5 min PBST washing steps. Samples were imaged and stored in 100%
glycerol at 4◦C.

5.2.3.10 Whole mount immunofluorescence stainings

For whole mount IF stainings PFA fixated, methanol stored embryos and larvae were
used. Samples were rehydrated in a stepwise manner using a methanol series (75%
methanol in PBST, 50% methanol in PBST, 25% methanol in PBST, 100% PBST).
After the 5 min lasting rehydration steps on a shaker at RT, the samples were washed
3×5 min in PBST at RT.
Depending on the age of examined embryos, different permeabilization strategies were
performed. 24 hpf embryos injected with GFP-Fuswildtype or GFP-Fusmde1500 constructs
were counter-stained with GFP antibodies. To permeabilize, these embryos were sub-
jected to a 10 min treatment with 10μg/ml Proteinase K in PBST. 28 hpf embryos for
CaP motor neuron staining using Zn1/Znp1 antibodies were treated for 10 min with
10μg/ml Proteinase K in PBST. 48 hpf embryos for staining of vessels using ZE-5 4D1
antibody were subjected to a 20 min treatment with 10μg/ml Proteinase K in PBST.
48 hpf embryos for staining of muscles using F59 myosin or α-actinin antibodies were
treated with 10μg/ml Proteinase K in PBST for 20 min.
After removal of Proteinase K by washing, the remaining proteases were inactivated
by re-fixating the embryos for 20 min in 4% PFA on a shaker at RT. After removing
the PFA, samples were washed for 3×5 min in PBST. Blocking was performed for 1h in
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NCST on a shaker at RT. Then primary antibodies were added in NCST, 0.05% NaN3

and samples were incubated on a shaker at 4◦C o/n. The next day primary antibodies
were removed and kept for further use at 4◦C. Afterwards, the samples were rinsed
with PBST and washed 3×15 min in PBST on a shaker at RT. Next, they were blocked
2×for 30 min in NCST. The secondary antibody was applied in NCST on a shaker at
4◦C o/n. After removal of the secondary antibody samples were rinsed with PBST and
washed 3×to 5×15 min in PBST depending on the strength of the fluorescence sig-
nal. After DAPI staining (diluted 1:1000 in PBST, incubation 30 min, remove DAPI
solution and wash 2×with PBST) to visualize nuclei, samples were imaged as soon as
possible.

5.2.3.11 Heat shock treatment

Zebrafish embryos were kept in petri dishes at until 3 dpf. Then larvae were transferred
to 38◦C for 20 h, whereas control larvae stayed at 28.5◦C prior to fixation at 4 dpf and
TUNEL staining (see subsubsection 5.2.3.13).

5.2.3.12 Pentylenetetrazole treatment

Pentylenetetrazole (PTZ) is an agent known to induce seizures in zebrafish [168]. Ze-
brafish embryos were treated in E3 containing 5 mM PTZ in 1%DMSO for 72h starting
at 1 dpf. Control embryos were incubated in E3 containing 1%DMSO for 72 h starting
at 1 dpf. Both groups were kept at 28.5◦C, fixated at 4 dpf and subjected to TUNEL
staining (see subsubsection 5.2.3.13).

5.2.3.13 TUNEL staining in zebrafish

Similar to whole mount immunofluorescence stainings, PFA fixated, methanol stored
larvae were used. After samples were rehydrated in a stepwise manner using a methanol
series (75% methanol in PBST, 50% methanol in PBST, 25% methanol in PBST, 100%
PBST) for 5 min each, 2×5 min washing in PBST followed. Samples were permeabi-
lized using 10μg/ml Proteinase K treatment in PBST for 45 min followed by 2×5 min
washing in PBST. TUNEL reagent was applied according to the manufacturer’s proto-
col. After 2×5 min washing in PBST, DAPI staining was performed (diluted 1:1000 in
PBST, incubation 30 min, remove DAPI solution and wash 2×with PBST) to visualize
nuclei and samples were imaged.
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5.2.3.14 Motor neuron analysis

Spinal motor neuron axons were analyzed after whole mount immunofluorescence stain-
ings with zn1/znp1 antibodies specifically staining caudal primary (CaP) motor neu-
rons (see subsubsection 5.2.3.10). After immunofluorecent staining of motor neurons in
28hpf old embryos, heads were biopsied, collected in individual microcentrifuge tubes
and lysed in TE/Proteinase K lysis buffer prior to being subjected to genotyping pro-
cedure using allele specific primers (see subsubsection 5.2.1.3). Immunostained tails of
the embryos were stored 24 well plates in PBST to be able to correlate the genotyped
sample with the respective tail until genotyping process was completed. 10 embryos per
genotype in 3 different clutches were imaged and motor neuron axons were analyzed
for morphology and length alterations.

5.2.3.15 Locomotion analysis

Locomotion analysis was performed at 4 dpf. Larvae were raised in petri dishes un-
til 4 dpf and then transferred to 24 well plates with one larvae per well in 1ml E3
medium. To test whether the swimming response is changed upon a stimulus (dark-
ness) in mutants compared to wildtype a high sensitivity digital camera (30 frames/s)
in combination with the ZebraLab tracking software was used. After an adaptation
phase of 60 min in 100% light, spontaneous movements were recorded during a 60 min
100% light baseline phase, before movement was traced during alternating cycles of
15 min 100% darkness, 15 min 100% light, 15 min 100% darkness, 15 min 100% light
and analyzed via Viewpoint ZebraLab software and MS Excel.

5.2.3.16 Immunohistochemistry

For immunohistochemical experiments, zebrafish embryos, larvae, adult brains and
whole adult truncs were fixated in 4% PFA for 48 h. Next, samples were dehydrated
via a series of increasing ethanol concentrations (70% ethanol for 1 h, 96% ethanol for
1 h, 4×absolute ethanol for 1 h) before being cleared in 2×100% Xylene steps for 1 h
each and infiltration of samples by paraffin for 2×1 h at 58◦C. While paraffin is liquid
at 58◦C, paraffin samples can be embedded in molds covered in paraffin, yielding solid
paraffin blocks once cooled down to RT. Molds were removed and sections of 2-5μm
are sliced off the paraffin block using a microtome before placing them on glass slides
and drying o/n at 65◦C.
Next day, glass slides with tissue sections were subjected to a 20 min 100% Xylene
washing step and a 100% Xylene rinsing step followed by a series of decreasing ethanol
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concentrations (2×absolute ethanol for 5 min each, 96% ethanol rinse, 2×70% ethanol
rinse, 100% dH2O for 5 min) to deparaffinate and rehydrate samples. To retrieve the
antigen, slides were boiled in citrate buffer containing 100 mM citric acid and 100 mM
sodium citrate for 4×5 min in a microwave at 750 W. After boiling, slides stayed in
citrate buffer and were incubated at RT for 30 min to allow a slow cool down. Next,
slides were rinsed in dH2O prior to blocking in inhibiting endogenous peroxidase by
incubating slides in 5% dH2O2 in 100% methanol for 20 min. Slides were rinsed in
tap water for 10 min prior to a quick rinse in dH2O followed by 2×5 min washing
steps in PBS/0.05% Brij. Blocking of unspecific antibody binding sites was achieved
with 2×5 min incubation steps in PBS/2% fetal calf serum (FCS). Per slide, 100μl of
antibody diluted in PBS/2% FCS was used. Slides were covered with cover slips and
incubated in 4◦C o/n.
Next day, primary antibodies were washed 2×5 min in PBS/0.05% Brij. 100μl of
DCS SuperVision 2 Polymer-Enhancer solution was applied, slices were covered with
coverslips and incubated at RT for 20 min. Enhancer solution was removed by 2×5 min
washing steps in PBS/0.05% Brij and 100μl DCS Supervision 2 Polymer-Reagent was
applied. Slides covered with coverslips were incubated at RT for 30 min. Polymer
reagent was removed in 2×5 min washing steps in PBS/0.05% Brij. DCS Supervision
2 DAB concentrate is diluted in DAB substrate buffer (37μl in 1 ml) and 100μl of
diluted DAB were applied on slides. Slides with different genotypes derived tissue
were treated in parallel and DAB reaction was stopped simultaneously by rinsing in
dH2O. To visualize nuclei, haematoxylin staining was performed after DAB reaction
was completed. Slides were incubated in haematoxylin for 30 s prior to rinsing with
tap water for 10 min. Next, slides were sequentially dehydrated in a series of increasing
ethanol concentrations (2×rinse in 70% ethanol, 1×rinse in 96% ethanol, 2×rinse in
absolute ethanol followed by 5 min incubation in absolute ethanol) followed by clearing
in 2×5 min incubations in Xylene and mounting using mounting media and coverslips.
Stained sections were analyzed by microscopy.

5.2.3.17 Lysis of zebrafish samples

For the isolation of proteins RIPA lysis was used. Microcentrifuge tubes containing
shock frozen embryos, larvae, or adult tissue were kept on dry ice. RIPA buffer contain-
ing 1×Proteinase and Phosphatase Inhibitor was added to samples and tissues were
immediately and completely homogenized using a tissue homogenizer. Next, DNA was
sheared by sonication and remaining debris pelleted by centrifugation of the samples
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for 15 min at 13000 rpm and 4◦C. The supernatant was used in BCA assays to de-
termine protein concentration prior to adding a third of sample volume of 4×Lämmli
buffer, boiling for 5 min, 750 rpm at 95◦C and centrifuging 15 min at 13000 rpm to
pellet debris. According to the BCA analysis, 5-20 mg of the samples were used for
SDS-PAGE. Samples were stored at -20◦C and reused after boiling for 5 min, 750 rpm
at 95◦C and centrifuging 1 min at 13000 rpm.

5.2.3.18 Generation of zebrafish Fus specific antibodies

Zebrafish specific peptide antibodies detecting Fus protein were generated by the ser-
vice unit monoclonal antibodies at the Core Facility Monoclonal Antibodies, Institute
for Molecular Immunology, Helmholtz Center Munich. Peptides for immunization of
mice were synthesized and conjugated N- or C-terminally with ovalbumin (OVA) by
Peptide Specialty Laboratories GmbH. After immunization of mice with the zebrafish
Fus peptides antibodies producing lymphocytes were isolated from immunized animals
to be fused with myeloma cells, yielding hybridomas. Hybridoma cells were cultured
and polyclonal supernatant was tested for epitope specificity, prior to isolating single
hybridoma cell clones, yielding monoclonal supernatants. Testing of polyclonal and
monoclonal supernatants for specificity is described in the results chapter.

5.2.4 General methods

5.2.4.1 Databases used for primer design and cloning strategy

Genomic and transcript sequences were downloaded from Ensembl Genome Browser
(http://www.ensembl.org/index.html) or NCBI (http://www.ncbi.nlm.nih.gov/). For
sequence alignements, assemblies, and analysis including restriction enzyme mapping
and construction of plasmid maps CLC Main Workbench was used. For design of
primers, Primer3 (http://primer3.ut.ee/) was employed and specificity of primer pairs
tested by Primer-BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/). Other
BLAST searches were performed on the Ensembl (http://www.ensembl.org/Multi/
blastview) and NCBI (http://blast.ncbi.nlm.nih.gov/Blast.cgi) web pages.

5.2.4.2 Image acquisition and processing

Images were acquired using Zeiss spinning disc cell observer microscope, Zeiss LSM 710
confocal microscope and Zeiss Axioplan 2 imaging microscope. Zebrafish embryos and
larvae were embedded in 1,5% low melting agarose in PBST and imaged on glass bottom
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microscope dishes. Rat primary neurons were imaged on cover slips. Histological
sections were imaged after mounting of cover slips.
Images were processed using ZEN blue, ZEN black, AxioVision, or Adobe Photoshop to
linearly adjust brightness and contrast as well as image size. For quantitative Western
blots, band intensities were detected using LAS 4000 image reader and evaluated by
Multi Gauge V3.0 software.

5.2.4.3 Statistics

Means and standard error of the mean (mean + SEM) were calculated using Graph Pad
Prism. Graphs shown in this thesis were generated with the Graph Pad Prism software.
The statistical analysis and tests used are indicated in the respective figure legend. In
the respective graphs, the level of significance is indicated by asterisks: ∗ p < 0.05;
∗∗ p < 0.01; ∗∗∗ p < 0.001. If there is no significant difference, the abbreviation ns is
used.
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6.1 Characterization of Fus in zebrafish

6.1.1 FUS orthologue in zebrafish

Despite a genome duplication in the teleost lineage, only one orthologue of the human
FUS gene exists in zebrafish. The zebrafish fus gene is located on chromosome 3 of the
zebrafish genome encoding the 541 amino acids long Fus protein, which is 60% identical
to the human FUS protein. Moreover, all amino acids altered in severe ALS causing
mutations clustered in the very C-teminus of the protein are evolutionary conserved
between human and zebrafish (see Figure 6.1).
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Figure 6.1: Schematic overview of the FUS protein. A Graphic illustration of the different protein
domains in human FUS (blue) and zebrafish Fus (turquoise). B Conservation of the RGG3 and the
PY-NLS domains. ALS relevant mutations are highlighted in bold.

6.1.2 Expression profile of Fus

To analyze expression profile of fus gene on transcript and protein level during zebrafish
development, I performed in situ hybridization (ISH) and Western blot analysis. ISH
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experiments showed fus expression in embryos already at 8 cell stage prior to zygotic
transcription, indicating maternal fus RNA deposition into the oocyte. Stages ana-
lyzed were 8 cell stage at 1.5 hours post fertilization (hpf), shield at 6 hpf, 14 somites,
24 hpf, 2 days post fertilization (dpf), 3 dpf, and 4 dpf. Interestingly, fus expression is
ubiquitous in early stages of development and gets restricted to the brain after 2 dpf.
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Figure 6.2: fus expression in zebrafish. A ISH. fus mRNA is detected via a digoxygenin labeled
antisense probe, a sense probe serves as negative control. Zebrafish were fixated, stained and analyzed at
different stages during development (8 cell, shield, 14 somites, 24 hpf, 2 dpf, 3 dpf, 4 dpf).

To determine Fus protein expression in zebrafish, Western blot using zebrafish Fus
specific antibodies was performed.
I tested the specificity of in total 44 commercially available and custom made anti-
bodies raised against different Fus antigens. To determine the antibody specificity I
included several controls. Firstly, I cloned the coding sequence of zebrafish wildtype
fus and fused it to the coding sequence of green fluorescent protein (GFP) and ex-
pressed it in HeLa cells as well as zebrafish embryos as positive control. Secondly, I
injected two different fus RNA targeting gripNAs into zebrafish embryos and sacri-
ficed them at 2 dpf together with buffer injected wildtype embryos as negative control.
To determine immunoreactivity of the antibodies in adult tissues, adult brain derived
samples were loaded additionally. Only one antibody, Santa Cruz human FUS anti-
body 4H11 (sc47711), detects the zebrafish Fus protein in embryonic, larval and adult
stages. Western blotting using this antibody showed immunoreactive bands at 75 kDa
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Figure 6.3: Fus expression in zebrafish. A Schematic depiction of human FUS and zebrafish Fus. The
estimated C-terminal epitope of the Santa Cruz human FUS antibody 4H11 (sc47711) is indicated in
light blue. B Antibody sc47711 was tested for cross-reactivity in zebrafish with samples generated from
GFP-tagged zebrafish Fus expressed in HeLa cells and in 24 hpf old zebrafish as well as in two different
gripNA mediated knockdown samples with wildtype controls derived from 2 dpf old fish and in adult brain
tissue. Red crosses display GFP-tagged Fus, whereas red asterisks depict endogenous Fus protein. C Fus
expression during embryonic and larval development. Nine developmental stages were analyzed, including
4 cell stage, 50% epiboly stage, 8 somites stage, 15 somites stage, 24 hpf, 2 dpf, 3 dpf, 4 dpf and 5 dpf.
Fus protein expression levels are below detection limit before 15 somites - 24 dpf. D Fus expression in
adult tissues. Fus is expressed in all tissues examined, except for testes tissue as visualized by the Fus
immunoreactive 75 kDa band. α-tubulin serves as loading control in all blots depicted here.

and approximately 100 kDa, reflecting the endogenous and the GFP-tagged Fus pro-
tein, respectively which were absent in the two independent knockdown samples and
enriched in transfected HeLa cells, indicating specificity (see Figure 6.3A-B).
After identification of a zebrafish Fus protein detecting antibody, Fus protein expres-
sion pattern was examined. I analyzed different embryonic and larval stages during
development (see Figure 6.3C) as well as different tissues within adult fish (see Fig-
ure 6.3D). Zebrafish Fus protein expression is first detectable around 5 somites - 24 hpf
and increases over the course of development. In adult fish, all tested tissues showed
Fus expression including brain, ovary, fin, heart and muscle tissue except for testes.

6.1.3 Transient fus knockdown

The analysis of primary spinal motor neuron morphology has been a popular tool to
study neuronal dysfunction. The caudal primary (CaP) spinal motor neuron is the first
neuron that projects laterally from the spinal cord to the muscles and is especially well
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Figure 6.4: fus knockdown effects on motor neuron morphology. A Confirmation of knockdown
efficiency via Western Blot. Fertilized eggs derived from one clutch were injected with either buffer, 1 mM
fus splice gripNA or 1 mM fus ATG gripNA. At 28 hpf some embryos were separated for Western blot
analysis, whereas most siblings were stained for primary motor neurons using zn1/znp1 antibodies. B
Schematic illustration of analyzed motor neurons. The five most caudal motor neuron axons above the
yolk sac extension were imaged and examined. C Representative images of analyzed motor neuron axons
in buffer control, fus splice gripNA and fus ATG gripNA injected embryos. No changes in morphology
were obtained upon fus knockdown. D Length of primary motor neuron axons was examined and plotted.
No significant change in length was observed upon fus knockdown. Triplicates of n = 10 fish per condition
were analyzed. Mean + SEM. Statistical test used: Kruskal-Wallis test followed by Dunn’s test to correct
for multiple comparisons. No statistical significance was obtained (ns).

suited for morphological examination due to its exposed position. Published data de-
scribe CaP axonal length and outgrowths deficits in motor neurons upon fus morpholino
(MO) mediated transient knockdown in zebrafish [110], indicating a crucial role of Fus
in motor neuron function. To study effects of Fus in motor neurons and to recapitu-
late published phenotypes, I silenced the fus gene using gripNAs transient knockdown
technology in zebrafish. gripNAs are commonly used as antisense nucleotide reagents
in zebrafish similar to MOs but consist of a negatively charged peptide based backbone
instead of the organic chemical compound morpholine containing backbone in MOs.
Two different gripNAs, fus ATG gripNA and fus splice gripNA were injected, directed
against the ATG codon and the intron 13/exon 14 splice site of fus, respectively. fus
ATG gripNA is intended to block transcription, whereas fus splice gripNA is designed
to block the splice site between intron 13 and exon 14, resulting in skipping of exon
14 and a frameshift mediated RNA degradation via nonsense mediated RNA decay.
After injection of gripNAs and confirming successful knockdown on protein level via
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Western blot, zebrafish were analyzed for motor neuron axon branching morphology
and outgrowth length (see Figure 6.4). Interestingly, no changes in axonal morphology
or length of CaP motor neuron axons was observed upon fus knockdown contradicting
published studies [110].

6.2 Generation of genetic fus mutants

In humans, neurodegeneration usually occurs during adulthood. To be able to analyze
fus function in adult and aged brains and to investigate whether loss of fus directly
contributes to ALS or FTLD pathology, stable knockout instead of transient knock-
down techniques were applied to generate fus loss of function zebrafish. In contrast to
transient knockdown of gene function, sequence specific editing of the genome allows
to generate heritable knockout alleles. Moreover, genome editing is less prone to off-
site target effects, that might lead to unspecific toxicity [169]. In addition, a genetic
approach can resolve the controversy of different phenotypes upon knockdown utilizing
either MO or gripNA mediated transient silencing of fus.
To mimic the patients situation in the best possible way and thereby recapitulate
molecular requirements of pathology I aimed at the generation of not only complete
loss of fus zebrafish but also zebrafish harboring ALS linked mutations. Hence, genome
edited fish were screened not only for frameshift mutations leading to RNA decay but
also for inframe premature stop mutations resulting in truncated Fus protein similar
to reported ALS causing stop mutations in the human FUS gene.

6.2.1 Editing the fus locus using ZFNs

I used the ZFN technology to target the zebrafish fus locus (see Figure 6.5A). One
set of CompoZr Custom ZFNs targeting exon 14, the second last exon of the fus gene
was designed and cloned by Sigma-Aldrich, St. Louis, MO, USA. fus’ exon 14 was
chosen since it encodes the RGG3 domain and parts of the PY-NLS domain of the Fus
protein. Hence, mutagenizing this region on genome level allows not only to induce
frameshift mutations leading to RNA decay resulting in complete loss of function but
also the occurrence of premature stop codons, resembling ALS patient mutations. I
injected the in vitro transcribed set of ZFN mRNA into zebrafish zygotes. A Flag-tag
on each of the two ZFNs allows to control in vivo translation of the ZFN proteins, each
being 50kDa. By Western blot analysis of two injected clutches, I confirmed that the
ZFN mRNAs were translated into proteins (see Figure 6.5B), the first prerequisite for
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successful genome editing.

The second prerequisite is the ability of the ZFN proteins to induce DNA double-
strand breaks (DSBs). To test this prior to raising injected P0 fish, I sacrificed injected
siblings and performed screening assays to detect mutations induced during the NHEJ
DNA repair process (see Figure 6.5C). Genomic DNA was extracted from zebrafish
embryos and the fus target site containing DNA fragment was amplified by PCR,
followed by a restriction digest with the BseDI restriction enzyme. This enzyme’s
recognition site is part of the ZFN target site and can be used to screen for lost
of this restriction site as indicator for a frameshift mutation. PCR and restriction
digest products were analyzed by agarose gel electrophoresis resulting polymorphic
restriction fragment length (Restriction fragment length polymorphism, RFLP). In
contrast to injected embryos, uninjected embryos show a complete digest of the PCR
product. Hence, incomplete digestion can be excluded and undigested bands indicate
successfully introduced mutations in the injected embryos.
After confirmation of the ZFNs functionality and mutagenesis in injected zebrafish,
P0 generation fish were raised to adulthood. P0 generation fish are mosaic, since
the mutagenesis events happen at a multicellular developmental stage and every af-
fected cell resolves the DNA double stand break in a different manner, resulting a
variety of different mutations within one fish. To identify germline borne mutations,
P0 generation fish need to be mated with wildtype fish, allowing the analysis of single
mutations in heterozygous F1 generation fish. Identification of desired mutations was
performed via fin biopsy and genotyping of adult F1 generation fish. Prior to raising
the F1 generation, some F1 generation embryos have been sacrificed and analyzed for
induced mutations by PCR and RFLP (see Figure 6.5D). Clutches with undigested
PCR fragments were selected to be raised. Once these promising F1 generation fish
reach adulthood, fin biopsy was performed. Next, genomic DNA was extracted and fus
target site containing DNA fragment were amplified by PCR, followed by restriction
digestion and gelelectrophoresis to separate the mutant allele from the wildtype allele.
The mutant DNA was extracted from the agarose gel and the mutation was identified
via Sanger sequencing. In case of a desired mutation, e.g. frameshift mutation or in-
frame premature stop codons, F1 generation fish were breed to homozygosity and F2
generation zebrafish were analyzed.
Besides RFLP, I established high resolution melting (HRM) analysis as an alternative
genotyping technique to cost and time efficiently screen for mutation carriers in the
F1 generation. HRM is based on identifying variations in nucleic acid sequences by
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Figure 6.5: ZFN targeting of the zebrafish fus locus. A Schematic overview of forward and reverse
ZFN arm targeting the fus locus. ZFN target site is localized in exon 14, which encodes the RGG3
domain and the PY-NLS of the Fus protein, where most of fALS mutations are clustered. Each ZFN arm
consists of a FokI nuclease subunit (green) and several Znf motifs (blue). In addition, ZFNs are fused
to a Flag-tag (orange). The restriction endonulease BseDI (red) binds and cuts within the ZFN binding
and restriction site, thereby allowing to screen for potential loss of restriction site via RFLP analysis. B
Confirmation of ZFN expression. Western blotting shows Flag-tagged ZFNs are being expressed in two
ZFN-mRNA injected clutches indicated by the Flag immunoreactive band at 50kDa. The unspecific band
serves as loading control. C Confirmation of ZFN mutagenicity. Amplification of fus ZFN target site
containing fragment by PCR followed by RFLP analysis using BseDI restriction enzyme was performed
to detect mosaic mutations in injected P0 generation embryos. D Genotyping of F1 generation embryos
using PCR reactions to obtain fus ZFN target site amplicons prior to RFLP analysis. After back-crossing
of mosaic P0 generation fish to wildtype fish approximately 50% heterozygous mutation carriers were
obtained in F1 generation, as expected. E HRM analysis as an alternative genotyping technique in the
F1 generation. Mutant alleles are distinguished from wildtype alleles via distinct melting curves. The
shift in melting curves generated by a HRM software is detected by loss of incorporation of a DNA
double-strand intercalating fluorescent dye by a real-time PCR device. F Mutation specific PCR analysis
as alternative genotyping technique in the F2 generation. To discriminate homozygous and heterozygous
carriers of a specific preselected mutation from wildtype fish, specific primers either recognizing the mutant
or wildtype allele were utilized. For each sample, two PCR reactions were performed and separated by
agarose gel electrophoresis. Only in heterozygous samples, both PCR reactions result in products, whereas
in homozygous mutation carriers or wildtypes only the mutation or wildtype specific PCR reaction yield
amplicons, respectively. Asterisks indicate undigested PCR products due to mutations.
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detecting small differences in PCR fragment melting curves. DNA fragments of fus
containing the ZFN target site were amplified from genomic DNA via PCR. A special
dye, LC Green Plus, that is fluorescent when intercalating in double-stranded DNA
molecules was added to the PCR reaction. Once the double-strand structure is grad-
ually melted into single strands upon increasing temperature, LC Green Plus can no
longer intercalate and fluorescence signal decreases. The dissociation temperature of
double-stranded DNA molecules depends on forces resulting from sequence specific hy-
drogen bonds and amplicon length. Hence, the shape of the resulting melting curve
varies between different DNA sequences, allowing to distinguish amplicons that differ
by as little as a single base pair. After PCR, a real-time PCR instrument measures
the decrease in fluorescence signal, and a HRM software plots fluorescence signal over
temperature, resulting in distinct high resolution melting curves for different genetic
variants analyzed (see Figure 6.5E).
Once desired mutations were identified and homozygosity was reached in the F2 gen-
eration, I further optimized genotyping procedures. Since HRM analysis is not well
suited to reliably distinguish homozygous mutation carriers from wildtype fish in F2
generation, I designed mutation and wildtype specific primers to perform genotyping
in two consecutive PCR reactions. With each genomic DNA containing embryo or
fin biopsy derived sample two PCRs were performed, one using the mutation specific
and one using the wildtype specific primers. PCR products were separated by agarose
electrophoresis and analyzed for mutant and/or wildtype alleles (see Figure 6.5F).

6.2.2 Screening for fus mutations

Once mosaic P0 generation fish were mated with wildtype fish, mutant alleles were
sequenced and analyzed in the heterozygous F1 generation. Strikingly, no frameshift
mutations were identified in F1 generation after targeting the fus locus, only inframe
substitutions or deletions of up to 16 codons, resulting in deletions of amino acids within
the RGG3 domain of the Fus protein (see Figure 6.6A) were identified. One of these
mutations is of particular interest, since deletions of three individual basepairs gener-
ates an inframe premature stop codon (Fusmde1500) while the original reading frame 5’
of the mutation is preserved. Assuming this new codon sequence is transcribed and
translated, it would result in a truncated Fus protein with a completely deleted PY-
NLS and a C-terminally shortened RGG3 domain. F1 generation fish carrying this
promising allele were raised and mated to wildtype fish to expand the line on the one
hand and in-crossed to siblings being heterozygous for the same allele to generate ho-
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Figure 6.6: Identified alleles after fus locus targeting. A Amino acid sequences of identified alleles in
F1 generation. Sequences are aligned to the wildtype Fus sequence and RGG3 (light grey) and PY-NLS
(dark grey) domains are depicted. Only inframe alleles were obtained. The Fusmde1500 allele harbors a
premature stop codon due to the deletion of three individual basepairs, maintaining the correct reading
frame upstream of the mutation. B Amino acid sequences of identified alleles in P0. In contrast to F1
generation alleles, fus frameshift mutations were identified in P0 generation fin biopsy derived genomic
DNA. C Table summarizing allele frequencies. Interestingly, less frameshift alleles than expected (2/3)
were identified in P0 and F1 generations. Deletion or substitution of codons is indicated by red hyphens or
letters, respectively. Premature stop codons are indicated by red asterisks, whereas black asterisks display
endogenous stop codons.
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mozygous carriers on the other hand.
Since no frameshift mutations were identified in the F1 generation, I analyzed the
mosaic P0 generation to determine whether frameshift alleles would not occur upon
DNA double-strand break within the fus locus at all or whether they fail to being
transmitted trough the germline. I fin-biopsied P0 generation fish and amplified the
fus ZFN targeting site from extracted genomic DNA prior to subcloning and sequenc-
ing of isloated alleles. Interestingly, besides inframe mutations frameshift mutations
resulting in addition of amino acids prior to the premature stop codon occurred in P0
generation fin tissue (see Figure 6.6B). Thus, frameshift mutations are induced in the
P0 generation but are not transmitted through the germline into the F1 generation.
In summary, the efficiency of the fus targeting ZFNs to induce germline transmittable
mutations was 22% (10/46 P0 fish). Of the 1514 F1 generation fish analyzed for mu-
tations, 400 were heterozygous mutation carriers (26.4 %). Similarly, of 87 analyzed
P0 generation fish, 25 carried mutations (28.7 %). Of these mutant alleles, 100 % were
inframe alleles in the F1 generation versus 77.8 % inframe mutations in the P0 gener-
ation. 0 % of frameshift alleles in F1 and only 22.2 % in P0 are surprisingly low rates,
considering an expected probability of 2/3 for a frameshift event to happen during indel
formation DNA repair, given that a codon consists of three basepairs with a probability
of only 1/3 to yield the correct reading frame. Interestingly, neither male nor female
P0 generation fish did transmit frameshift mutations through the germline, indicating
no gender bias.

6.3 Basic characterization of genetic fus mutants

6.3.1 Fusmde1500 allele characterization

No frameshift mutations allele were identified upon ZFN mediated genome editing,
suggesting that potential loss of function mutations are not germline transmittable.
The Fusmde1500 inframe allele is very interesting, since it is the only identified allele with
a premature stop codon within the RGG3 domain, hypothetically deleting the entire
PY-NLS of the Fus protein (see Figure 6.7A). Strikingly, the exact location of the stop
mutation in the zebrafish Fusmde1500 allele is very similar to two severe ALS causing
mutations in human FUS (see Figure 6.7B). Both mutations, G466Vfs497X and R495X,
lead to a premature stop codon within the RGG3 domain, thereby potentially deleting
the entire PY-NLS and parts of the RGG3 domain. Interestingly, these truncation
mutations show a more severe cause of disease than point mutations within the PY-
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NLS including earlier age of onset and faster progression of symptoms.

Figure 6.7: Fusmde1500 allele. A Schematic representation of the hypothetically truncated Fusmde1500

protein in comparison to the wildtype Fus protein. The entire PY-NLS and the C-terminal half of the RGG3
domain is deleted. B Amino acid sequences of human FUS and zebrafish Fus are aligned and positions
of two representative ALS causing mutations are depicted in blue and red, whereas green indicates the
position of the premature stop codon leading to the truncated Fusmde1500 protein.

Due to the genetic similarities between the zebrafish Fusmde1500 allele and the two
ALS patients mutation displayed here, the Fusmde1500 allele serves as perfect model to
investigate physiological and pathological functions of the PY-NLS domain of zebrafish
Fus and human FUS. Furthermore, this patient like Fus mutation allows to study
mechanisms of disease onset and pathology in vivo. Hence, heterozygous F1 generation
fish were breed to homozygousity to further examine the Fusmde1500 protein.
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6.3.2 Fusmde1500 protein characterization

To analyze Fusmde1500 protein in zebrafish, adequate antibodies had to be identified.
The previously used Santa Cruz human FUS 4H11 (sc47711) antibody recognizes a
non-specified C-terminal epitope, which might be deleted in Fusmde1500 protein. To
test the suitablility of sc47711 antibody to detect Fusmde1500 protein, I cloned two
reporter constructs fusing Fuswildtype or Fusmde1500 protein to a GFP tag under the
control of the cytomegalovirus (CMV) promotor (see Figure 6.8A). Next, HeLa cells
were transfected with these constructs and cells were harvested, blotted and probed
against either GFP or the sc47711 antibody. Both antibodies show similarly strong
immunoreactivities with both Fuswildtype or Fusmde1500 proteins, indicating that the an-
tibody is still capable to detect Fusmde1500 protein (see Figure 6.8B). Thus, the epitope
is not deleted due to the stop mutation and the antibody is suitable for detection of
the truncated Fusmde1500 protein.

Figure 6.8: Fusmde1500 protein expression. A Schematic depiction of transgenic Fus constructs.
Fuswildtype and Fusmde1500 coding sequences (dark green) were cloned from mRNA derived cDNA pools
of either wildtype or mutant fish and fused to GFP (light green). Expression in cell culture is driven
by cytomegalovirus (CMV) promotors (grey). B Expression of transgenic Fus constructs in HeLa cells.
Fuswildtype and Fusmde1500 transfected HeLa cells derived samples were probed with GFP antibody and the
zebrafish Fus specific sc47711 antibody. Both antibodies generate similar band intensities in Fuswildtype

and Fusmde1500 overexpressed samples. Due to the GFP-tag, Fus’ molecular weight shifts from 75 kDa to
approximately 100 kDa. C Fusmde1500 protein expression during development. Fusmde1500 protein is de-
tectable in homozygous mutation carriers starting between 3 dpf and 4 dpf, whereas wildtype fish express
Fus already from 2 dpf onwards. Note that Fusmde1500 protein runs below Fuswildtype protein in the gel, thus
is of smaller size. Moreover, wildtype bands appear much stronger than mutant bands, indicating different
expression levels. D Confirmation of the Fusmde1500 protein band specificity via knockdown. Fusmde1500

protein expression was silenced in two independent clutches using fus ATG gripNA to confirm identity of
the truncated immunoreactive band as the Fusmde1500 protein. Tubulin served as loading control in all
blots depicted here. +/+ = wildtype, -/- = homozygous mutation carrier.

I tested Fusmde1500 protein expression at several stages during development including
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1 dpf, 2 dpf, 3 dpf, 4 dpf, and 5 dpf in homozygous Fusmde1500 mutants. Fusmde1500 pro-
tein expression is detectable from 3 dpf on, whereas in wildtype siblings, Fus expression
is evident already at 2 dpf (see Figure 6.8C). Moreover, mutant Fusmde1500 protein is
expressed at lower levels compared to wildtype Fus protein. To confirm the identity of
the immunoreative band in Fusmde1500 carriers to be the truncated mutant Fus protein,
I further performed knockdown experiments using the previously established fus ATG
gripNA in homozygous Fusmde1500 mutants. I examined Fus expression in two individual
clutches of homozygous Fusmde1500 mutation carriers with and without fus knockdown
and blotted samples together with a non treated wildtype control. In knockdown sam-
ples but not in buffer injected control samples the Fusmde1500 protein band is absent
(see Figure 6.8D). Thus, in Fusmde1500 allele carriers mutant Fus protein is made and
truncated, lacking the PY-NLS and the C-terminal half of the RGG3 domain.

6.3.3 Fusmde1500 allele expression profile

Characterization of the mutant Fus protein in larval zebrafish revealed reduced ex-
pression levels of the mutant Fus protein in Fusmde1500 allele carriers compared to Fus
expression levels in wildtype siblings. To further investigate Fusmde1500 expression lev-
els in zebrafish larvae and adult stages, I performed quantitative Western blot analysis.
Homozygous and heterozygous Fusmde1500 allele carriers were analyzed together with
the equivalent wildtype siblings at 4 dpf larval stages and brains were dissected from
adult fish (see Figure 6.9A&C). Experiments were performed in six replicates of each
genotype containing either 4 dpf larvae pools of six different clutches or six individ-
ual fish derived adult brain samples. Quantitative results from Western blots show
a significant decrease in protein levels in homozygous Fusmde1500 allele carriers versus
heterozygous Fusmde1500 allele carriers and wildtype siblings in both 4 dpf larvae and
adult brain samples (see Figure 6.9B&D). Moreover, total Fus protein levels in het-
erozygous Fusmde1500 allele carriers are also decreased compared to wildtype siblings in
4 dpf larvae and adult brain samples, but not as severely as in homozygous Fusmde1500

carriers.
To test whether Fusmde1500 expression is already reduced at transcript levels, I further
conducted quantitative reverse transcription PCR (qRT-PCR) experiments with 4 dpf
larvae and adult brain samples (see Figure 6.9E&F). All experiments were performed
with six replicates of each genotype for every sample. Also on transcript level, mu-
tant fus is expressed at lower levels in homozygous carriers compared to heterozygous
carriers and wildtype fish. Again, heterozygous Fusmde1500 allele carriers show also re-
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duced amounts of mRNA, however the reduction is not as severe as in the homozygous
Fusmde1500 allele carriers.
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Figure 6.9: Fusmde1500allele expression levels. A Western blot analysis of Fusmde1500 protein in 4 dpf
larvae. sc47711 FUS antibody was used to analyze Fusmde1500 protein. Tubulin served as loading control.
B Quantitative analysis of Western blots performed in 4 dpf larvae. C Western blot analysis of Fusmde1500

protein in adult brain samples. sc47711 FUS antibody was used to analyze Fusmde1500 protein, while
tubulin served as loading control. D Quantitative analysis of Western blots performed with adult brain
samples. E mRNA expression levels of the Fusmde1500 allele in 4 dpf larvae. F mRNA expression levels of
the Fusmde1500 allele in adult brain samples. +/+ = wildtype, +/- = heterozygous mutation carrier, -/-
= homozygous mutation carrier. n = 6. Mean + SEM. Statistical test used: Kruskal-Wallis test followed
by Dunn’s test to correct for multiple comparisons. * = 0.0304 in B, ** = 0.001 in D, ** = 0.0052 in E,
* = 0.0491 in F. ns = not significant.

6.3.4 Fusmde1500 protein localization

To investigate whether lack of the PY-NLS and parts of the RGG3 domain influence
nuclear import of the Fus protein, resulting in Fus protein redistribution to the cytosol,
localization of the Fusmde1500 protein was analyzed in situ. Unfortunately, sc47711 anti-
body failed to specifically stain Fus protein in whole mount immunofluorescence experi-
ments. Therefore, I cloned reporter constructs to express either Fuswildtype or Fusmde1500

protein N-terminally fused to GFP under the control of the ubiquitin promotor. These
constructs were injected into zebrafisch zygotes and immunoflurence stainings were per-
formed at 1 dpf prior to analysis of protein expression and localization using confocal
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Figure 6.10: Fusmde1500 localization. A Schematic representation of Fus expression constructs. Fus
coding sequences (dark green) are fused to GFP (light green) under the control of the ubiquitin promotor
(grey). B Representative images of Fuswildtype or Fusmde1500 protein expression in zebrafish. Fus proteins
were re-stained using a GFP antibody against the N-terminal GFP-tag, DAPI staining allows visualization
of nuclei. Areas of interest are additionally shown enlarged (Zoom). Red asterisks indicate neurons, red
crosses indicate muscle cells. C Representative images of Fuswildtype or Fusmde1500 protein expression in rat
primary cortical neurons. Zebrafish Fus proteins were stained with a GFP antibody directed against the
N-terminal GFP tag, DAPI served as nuclear marker. D Subcellular fractionation. Low salt buffer and low
salt buffer with 1% TritonX100 (TX100) were used to extract cytoslic proteins, whereas high salt buffer
was used to open up nuclei and extract nuclear proteins. Cytosolic and nuclear fractions are indicated in
yellow and pink, respectively. LDH and H3 serves as reference markers for cytosolic and nuclear fractions,
respectively. +/+ = wildtype, +/- = heterozygous mutation carrier, -/- = homozygous mutation carrier.
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microscopy (see Figure 6.10A&B). Strikingly, mutant Fus protein is localized to nuclear
and cytoplasmic cell compartments in spinal cord neurons and muscle cells, whereas
wildtype Fus protein localization is restricted to nuclei (see Figure 6.10B). Similar ex-
periments were performed in primary rat cortical neurons, resulting in strictly nuclear
localization of wildtype zebrafish Fus protein, whereas mutant Fus protein is partially
redistributed to the cytosol, thereby also staining soma and neurites (see Figure 6.10C).
Thus, effects of the Fusmde1500 mutation on Fus protein transport and localization is
conserved between different species. To determine endogenous Fus protein localiza-
tion, I analyzed homozygous and heterozygous Fusmde1500 mutant zebrafish with the
adequate wildtype controls in subcellular fractionation experiments. Samples were ex-
posed to different salt concentrations and/or detergents containing buffers and proteins
were extracted via ultracentrifugation prior to Western blotting of the different frac-
tions. Fus protein distribution in the different fractions was examined using sc47711
antibody. Lactat dehydrogenase (LDH) and histone 3 (H3) were used to distinguish
between cytosolic and nuclear fractions, respectively. Although general expression lev-
els of the Fus protein in homozygous Fusmde1500 carriers is already reduced within the
total lysis sample prior to fractionation (total), more Fus protein is detected in cy-
tosolic fractions derived from homozygous Fusmde1500 carriers than in cytosolic fraction
derived from heterozygous Fusmde1500 carriers and wildtype fish. Vice versa, in nuclear
fractions, less Fus protein is detected in homozygous Fusmde1500 carriers derived sam-
ples compared to heterozygous Fusmde1500 carriers and wildtype fish.
Thus, endogenously expressed mutant Fusmde1500 protein as well as transgenic Fusmde1500

protein shift from pure nuclear localization as seen in case of wildtype Fus to a more
cytosolic localization.

6.3.5 Fusmde1500 protein solubility properties

Biochemical analysis of the aggregated human FUS protein extracted from FTLD-FUS
brain tissue revealed increased levels of insoluble FUS compared to healthy controls
[38]. To biochemically characterize Fusmde1500 protein in zebrafish, I performed se-
quential extraction from adult zebrafish brains, using buffers containing increasingly
strong detergents or acids followed by Western blot analysis (see Figure 6.10A). Wild-
type fish, homozygous and heterozygous Fusmde1500 mutation carriers were sacrificed
at 6, 9, 12, 15, and 24 months post fertilization (mpf) and Fus protein was sequentially
extracted with high salt buffer, high salt buffer containing 1% of TritonX100 (TX100),
radioimmunoprecipitation assay buffer (RIPA), RIPA containing 2% of sodiumdode-
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cylsulfate (SDS) and formic acid (fractionation protocol adapted from [38]). Western
blotting showed a strong mutant Fus protein band in the second fraction, containing
low salt buffer with 1% of TritonX100 (TX100), that is also apparent in the heterozy-
gous sample, although less intense. Remarkably, wildtype Fus is only detected in the
first fraction, containing only high salt buffer without TX100. Thus, Fusmde1500 protein
is less soluble than the wildtype Fus protein.

Figure 6.11: Differential fractionation of Fusmde1500 protein. A Representative blot of analyzed, 6 mpf
old fish derived brains. 6, 9, 12, 15, and 24 mpf old adult brains of all three genotypes were examined. Solu-
bility was determined via Western blotting of sequential fractionation with high salt buffer, high salt buffer
containing 1% of TritonX100 (TX100), radioimmunoprecipitation assay buffer (RIPA), RIPA containing
2% of sodiumdodecylsulfate (SDS) and formic acid using sc47711 Fus antibody, whereas tubulin served
as loading control. +/+ = wildtype, +/- = heterozygous mutation carrier, -/- = homozygous mutation
carrier.

6.4 Consequences of Fusmde1500 mutation on Fus’
function

6.4.1 Phenotypic analysis of Fusmde1500 mutant zebrafish

To analyze mutant Fusmde1500 zebrafish for ALS related deficits, I first examined mor-
phological changes in ALS affected tissues, e.g. motor neurons, muscles and vessels.
Due to the lateral projection of the caudal primary motor neuron axons from the spinal
cord to innervated muscles in zebrafish, the analysis of motor neuron axon outgrowth
and branching morphology has been used as readout for neuronal vulnerability [159],
[110], [160], [170], [157] (besides others). Also muscle and vessel developmental phe-
notypes have been described in zebrafish [157]. Moreover, motor neurons degenerate
in ALS and other motor neuron diseases leading to muscle atrophy [10]. Also dys-
functional circulation effects like hypoperfusion have been reported in some cases of
ALS [171], [172]. Hence I analyzed CaP motor neuron axon outgrowth and branching
morphology as well as muscle and vessel morphology in mutant Fusmde1500 embryos
compared to wildtype fish (see Figure 6.12).
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Figure 6.12: Phenotypical analysis of Fusmde1500 mutants. A Motor neuron axon outgrowth and
length. Schematic illustration of assayed region, representative images of zn1/znp1 stained motor neurons
and quantitative analysis of motor neuron axon length. The five most caudal motor neurons above the
yolk sac extension were analyzed in all three genotypes at 28 dpf. n = 30 fish were analyzed per genotype
derived from three different clutches. Mean + SEM. Statistical test used: Kruskal-Wallis test followed by
Dunn’s multiple comparisons test. No statistical significance was obtained (ns). B Schematic illustration
of examined region and representative images of stained muscle tissue. Two different muscle marker
were used: alpha actinin, staining Z-discs and myosin. C Schematic illustration of analyzed region and
representative images of intersegmental vessels stained with the antibody ZE-5 4D1. +/+ = wildtype,
+/- = heterozygous mutation carrier, -/- = homozygous mutation carrier.
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Phenotypically, mutant Fusmde1500 embryos are indistinguishable from their wildtype
siblings. Analysis of motor neuron axon outgrowth and morphology by immunofluores-
cent staining of primary spinal motor neurons using zn1/znp1 antibodies and measure-
ments of axonal length yield no significant difference in axonal outgrowth and branching
between homozygous and heterozygous Fusmde1500 mutant embryos and wildtype sib-
lings (see Figure 6.12A).
Next, I tested for correct muscle and vessel development via immunofluorecent staining
of specific muscle and vessel marker proteins and subsequent analysis of morphological
features in homozygous mutant Fusmde1500 embryos compared to age-matched wildtype
siblings. Interestingly, neither the complex development of muscle structures nor vessel
patterning is affected by the Fusmde1500 mutation (see Figure 6.12B&C).

6.4.2 Motor function in Fusmde1500 mutant zebrafish

In ALS patients muscle atrophy due to motor neuron degeneration leads to motor
dysfunction and paralysis or spasticity [10]. To test for potential motor deficits upon
Fusmde1500 mutation, I analyzed swimming behavior of mutant versus wildtype larvae.
Zebrafish embryos and larvae have been shown to respond to cycles of light/dark stimuli
with changes in locomotion behavior, i.e. speed, duration and directionality of swim-
ming [173], [174], [175]. Hence, I utilized the so called photo-motor response (PMR)
as a readout for motor function in zebrafish. Briefly, 4 dpf larvae in 24 well plates were
subjected to alternating light/dark cycles and motion was traced by a video tracking
device, and subsequently analyzed for parameters of swimming behavior, in particular
distance, duration and velocity (see Figure 6.13). To avoid inter-clutch variations in de-
velopment, that might influence swimming behavior, only siblings from the same clutch
were compared. 4 dpf larvae derived from incrossed heterozygous Fusmde1500 allele carri-
ers resulting three genotypes, homozygous Fusmde1500 mutants, heterozygous Fusmde1500

mutants and wildtype fish. In total, three clutches were analyzed with at least 10 larvae
per genotype per clutch. After a 60 min light adaptation phase, spontaneous movement
was traced during baseline recordings and during alternating cycles of 15 min of dark-
ness stimulus and 15 min of no stimulus light phase (see Figure 6.13A). Upon darkness
stimuli, zebrafish movement is strongly increased in all three genotypes, but no signif-
icant differences were observed when distance, duration and velocity parameters were
compared between homozygous Fusmde1500 mutants, heterozygous Fusmde1500 mutants
and wildtypes (see Figure 6.13B-E).
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Figure 6.13: Photomotor response in Fusmde1500 mutants. A Schematic illustration of the experi-
mental setup and alternating light/dark cycles. B Representative recordings of larval movement tracking.
Fast swimming (> 8mm/sec) is depicted in red traces, slow swimming (2 - 8mm/sec) in green, swimming
velocity of < 2 mm/sec is considered as resting. C Travelled distance per 60 sec plotted for all three geno-
types. D Time spend with travelling per 60 sec plotted for all three genotypes. E Calculated mean velocity
plotted for all three genotypes. +/+ = wildtype, +/- = heterozygous mutation carrier, -/- = homozygous
mutation carrier. n = 3 independent experiments with 48 embryos each were performed. Mean + SEM.
Statistical test used: 2way ANOVA test followed by Dunnett’s multiple comparisons test. No statistical
significance was obtained (ns).

6.4.3 Stress response in Fusmde1500 mutant zebrafish

Macroscopic analysis of Fusmde1500 mutant zebrafish revealed no obvious phenotype
that would imply a deficit in Fus’ function upon Fusmde1500 mutation. Potentially, the
mutation in the fus gene as one event is not enough to impair Fus’ function and to elicit
a phenotype, indicating that a functional defect due to the mutation is only detectible
upon additional challenges. This hypothesis is currently being discussed as potential
pathomechanisms in ALS patients, with the mutation being the ’1st hit’ and a chal-
lenging condition, e.g. environmental or cellular stress being the ’2nd hit’ [73], [37]. To
test whether stress can elicit ALS related phenotypes in Fusmde1500 mutant zebrafish, I
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analyzed Fusmde1500 mutant zebrafish under different stress conditions.
Heat shock has successfully been used as a stressor to elicit stress response in cell
culture, including stress granule formation as a potential requirement for pathologic
inclusion formation [176]. I tested several heat shock conditions in zebrafish and used
increased expression of heat shock protein (HSP) 70 and HSP 40 as a readout for suc-
cessful heat shock (see Figure 6.14A). Incubation of 4 dpf larvae in 38◦C for 20 h is the
maximum length of tolerated stress and was chosen as heat shock condition in further
experiments.

Glutamate mediated excitotoxicity caused by over-stimulation of the glutamate recep-
tors is one pathological feature of ALS and thought to play a role in ALS pathogenesis
[177]. To elicit excitotoxicity in zebrafish as an internal stressor I used pentylentetra-
zole (PTZ), shown in zebrafish to induce seizure-like convulsion behaviour, [168] caused
by neuronal hyperactivity due to dishinhibition of excitatory neurons. I tested several
concentrations and incubation periods of PTZ and established 5 mM PTZ treatment
for 72 h as condition to induce convulsions (see Figure 6.14B).
After having established heat shock and excitotoxicity as stressors, response to these
stressors was examined in Fusmde1500 mutation carriers. As a readout for increased sus-
ceptibility towards stress, apoptosis in the spinal cord was analyzed via TdT-mediated
dUTP-biotin nick end labeling (TUNEL) staining of treated and fixated fish. TUNEL
staining allows to identify apoptotic cells via labelling of fragmented DNA during apop-
tosis. TUNEL stained fish were imaged and apoptotic cells were counted in a defined
spinal cord region above the yolk sac extension (see Figure 6.14C). For responses to
heat shock 3 dpf larvae were treated with 38◦C for 20h and fixated at 4 dpf. PTZ
treated fish were incubated in 5 mM PTZ for 72h starting at 1 dpf and fixated at 4 dpf.
Absolute numbers of apoptotic cells were plotted in both stress conditions (see Fig-
ure 6.14D). Moreover, ratios of stress induced apoptosis to baseline apoptosis levels
were calculated for both stressors (see Figure 6.14E). In PTZ treated as well as in heat
shocked fish no significant differences in numbers of apoptotic neurons were detected
comparing Fusmde1500 mutation carriers to wildtype fish.
To explore the possibility that Fusmde1500 mutant zebrafish have an impaired stress
response or show elevated stress levels already under baseline conditions, I examined
molecular markers of stress response in Fusmde1500 mutant zebrafish. Eukaryotic trans-
lation initiation factor 2α (eiF2α) gets phosphorylated upon stress, thereby inhibiting
translation and triggering stress granule formation [178]. I analyzed phosphorylated
eiF2α levels in heat shocked Fusmde1500 mutant zebrafish and wildtype fish in compari-
son to non treated controls (see Figure 6.14E). Increased HSP70 and HSP90 expression
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Figure 6.14: Examination of stress responses in Fusmde1500 mutants. A Establishing heat shock
conditions. Several temperatures and incubation periods were tested in wildtypes and Fusmde1500 mutants.
Elevated HSP70 and HSP40 expression levels served as readout. The unspecific band (asterisk) serves
as internal loading control. B Establishing excitotoxicity conditions. With 5 mM PTZ for 72 h treated
Fusmde1500 mutants and wildtypes were screened for seizure-like convulsions. C Schematic illustration
of analyzed region. The four most caudal somites towards the yolk sac extension end were analyzed
for apoptotic cell in the spinal cord, visualized by the high density of DAPI stained nuclei. D Absolute
numbers of apoptotic cells for heat shock stress conditions. TUNEL positive nuclei were counted after
staining and image aquisition. E Absolute numbers of apoptotic cells for excitotoxicity stress conditions.
TUNEL positive nuclei were counted after staining and image aquisition. F Numbers of apoptotic cells
after heat shock relative to spontaneous apoptosis during baseline. Ratio of stressed to non stressed
number of apoptotic cells was calculated and plotted. G Numbers of apoptotic cells after excitotoxicity
stress relative to spontaneous apoptosis during baseline. Ratio of stressed to non stressed number of
apoptotic cells was calculated and plotted. H Molecular markers of stress response. Total eiF2α and
phosphorylated eiF2α levels were analyzed by Western blotting using antibodies against phosphorylated
eiF2α (p-eiF2α) in comparison to total eiF2α (eiF2α). Antibodies against HSP90 and HSP70 were used
to confirm heat shock response, calnexin served as loading control. +/+ = wildtype, -/- = homozygous
mutation carrier. n = 20 fish of each genotype and condition. Mean + SEM. Statistical test used: Kruskal-
Wallis test followed by Dunn’s multiple comparisons test in D and E, unpaired T-test in F and G. No
statistical significance was obtained (ns).
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levels upon heat shock indicate stress response in all samples examined. Also, increased
phosphorylation levels of eiF2α were obtained in all samples upon heat shock, indi-
cating that Fusmde1500 mutant and wildtype fish respond to stress in a similar manner.
Similarly, total eiF2α levels were comparable in all samples. Interestingly, no changes
in phosphorylated eiF2α levels were detectible under baseline conditions when com-
paring Fusmde1500 mutant and wildtype fish. Thus, Fusmde1500 mutant zebrafish show
neither altered stress response upon heat shock and excitotoxic stress nor elevated
stress levels under baseline conditions in comparison to wildtypes.

6.4.4 Fusmde1500 protein splicing function

To determine potential impacts of the Fusmde1500 mutation on Fus‘ function on a molec-
ular level, I analyzed whether mutant Fusmde1500 protein maintains its splicing function.
FUS protein is known to play a role in direct binding and splicing of various mRNA
transcripts in mammals [94]. I analyzed splicing effects of the mutant Fusmde1500 pro-

Figure 6.15: Splicing function of Fusmde1500 protein. A Splicing analysis of mapta transcript. B
Splicing analysis of maptb transcript. C Splicing analysis of ntng1 transcript. D Splicing analysis of
β-actin transcript. Grey bars represent exons, asterisks display alternatively spliced exons in mice, and
red arrows indicate position of PCR primers. con = buffer injected control for fus knockdowns, kd1 =
fus knockdown using ATG gripNA, kd2 = fus knockdown using splice site gripNA, +/+ = wildtype, -/-
= homozygous mutation carrier.

tein on MAPT and Netrin G1 (Ntng1), two Fus target mRNAs that were found to be
alternatively spliced upon silencing of murine Fus. Moreover, affected exons in these

90



6.4 Consequences of Fus
mde1500

mutation on Fus’ function

target RNAs are conserved in zebrafish. Murine Ntng1 has only one orthologue in
zebrafish, ntng1, whereas two orthologues for Mapt, mapta and maptb exist. I ana-
lyzed all three potential target RNAs together with β-actin as a control transcript. I
performed semi-quantitative reverse transcription PCR (RT-PCR) with homozygous
Fusmde1500 mutants and wildtype control fish in comparison to gripNA mediated tran-
sient fus knockdown at several stages of development and analyzed PCR products via
agarose gel electrophoresis (see Figure 6.15).
Interestingly, no alternatively spliced RNA molecules were detected in stable genetic
mutants or upon transient silencing of fus, indicated by the lack of alternative PCR
products after agarose gel electrophoresis in all candidate zebrafish Fus target mRNAs
examined here. Thus, zebrafish fus splicing targets might differ from those identified
in mouse or might be affected only in specific tissues or at specific time points.

6.4.5 Immunohistochemical examination in Fusmde1500 mutant
zebrafish

After phenotypic, functional and molecular analysis of Fusmde1500 mutant zebrafish no
defects indicating a compromised Fus function due to the Fusmde1500 mutation are ev-
ident. I next conducted immunhistochemistry (IHC) in Fusmde1500 mutant zebrafish
to investigate protein mislocalization and inclusion formation. First, IHC-suitable an-
tibodies had to be established. To test cross-reactivity and specificity of available
antibodies targeting human or murine FUS, I used gripNA mediated fus knockdown.
Briefly, I injected two different fus gripNAs, fus splice gripNA and fus ATG gripNA,
into zebrafish zygotes prior to fixation of embryos with paraformaldehyde and embed-
ding in paraffin at 2 dpf. 2-5μm thin sections were sliced off the paraffin blocks using
a microtome. Sections were then mounted on glass slides, dehydrated and cleared by
xylene treatment followed by antigen retrieval and incubation with first and secondary
antibodies. Antigen-antibody interaction is visualized by an indirect IHC reporter e.g.
the herein used 3,3’-diaminobenzidine (DAB).
Unfortunately, none of the commercially available antibodies, including sc47711, specif-
ically stained zebrafish Fus protein in IHC. Hence, zebrafish Fus specific antibodies were
generated with the selected peptide derived epitopes localized to the N-terminal part
of the Fus protein, thereby allowing the resulting antibody to detect both, wildtype
and truncated mutant Fus protein (see Figure 6.16A). Antibodies were generated by
immunization of mice with the zebrafish specific Fus peptides and antibodies produc-
ing lymphocytes were isolated from immunized animals and fused with myeloma cells,
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Figure 6.16: Identification of IHC suitable zebrafish Fus specific antibodies. A. Schematic illus-
tration of epitopes of zebrafish Fus peptide antibodies. B. Specificity of zebrafish Fus peptide antibodies
tested in IHC experiments. Reduction or lack of Fus immunoreactivity due to fus knockdown, indicated
by DAB staining (brown) served as readout for antibody specificity. Haematoxylin staining (blue) allows
for visualization of nuclei. Similar regions of the stained embryos including head and yolk were imaged
and orientated with the rostral end to the left, caudal end to the right.

yielding hybridomas. Hybridoma cells were cultured and polyclonal supernatant was
tested for epitope specificity, prior to isolating single hybridoma cell clones, yielding
monoclonal supernatants. Generation of antibodies was outsourced to the Core Fa-
cility Monoclonal Antibodies, Institute for Molecular Immunology, Helmholtz Center
Munich. I tested specificity of polyclonal pools and monoclonal supernatants in IHC
and identified two pools, 2A10 and 2B6, and one monoclonal supernatant, 3H2-11 to
show a positive IHC staining in buffer injected embryos but a reduced or no signal in
gripNA mediated fus knockdown embryos (see Figure 6.16B).
After successfully establishing IHC-suitable Fus antibodies, I conducted IHC exper-
iments to screen mutant Fusmde1500 zebrafish for pathological changes of Fus. Adult
homozygous and heterozygous Fusmde1500 mutation carriers together with wildtype con-
trol fish were sacrificed, brains were dissected and subjected to IHC. All analyzed in-
dividuals were age matched siblings and stained with the three zebrafish specific Fus
antibodies 3H2-11, 2B6 and 2A10 (see Figure 6.17A). To also include spinal cord tissue
in IHC experiments, whole truncs of adult homozygous and heterozygous Fusmde1500
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Figure 6.17: IHC in Fusmde1500 mutant zebrafish. A Immunohistochemical staining of adult brain
sections. Representative pictures taken from the optical tectum. B Immunohistochemical staining of adult
spinal cord sections. Neurons and glial cells were stained with all three zebrafish specific Fus antibodies,
yielding some cells with a cytosolic staining (asterisks) besides the nuclear signal seen in all tissues.
C Immunohistochemical staining of 4 dpf old larvae. Fus staining is strongly reduced in homozygous
Fusmde1500 mutants. +/+ = wildtype, +/- = heterozygous mutation carrier, -/- = homozygous mutation
carrier. Fus staining indicated by DAB reporter in brown, nuclear counterstaining with haematoxylin in
blue.
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mutation carriers together with wildtype control fish were fixated, embedded in paraf-
fin and sectioned prior to staining with 3H2-11, 2B6 and 2A10 antibodies (see Fig-
ure 6.17B). Again only siblings were compared in these experiments. Additionally,
4 dpf old embryos were examined for pathological changes with 3H2-11, 2B6 and 2A10
antibodies (see Figure 6.17C).
Strikingly, Fus staining is mainly nuclear in wildtype as well as in Fusmde1500 mutant
fish, although the staining intensity is weaker in homozygous than in heterozygous
Fusmde1500 mutants and wildtype fish. This effect is observed with all of the three
antibodies used and in all tissues (adult brains, adult spinal cords and whole larvae)
analyzed. Interestingly, some cells show a cytosolic Fus staining in spinal cord sec-
tions, however, the effect is stronger in wildtype than in mutant fish, where a general
reduction of Fus protein levels is more prominent than a shift of Fus protein to the
cytosol. However, neuropil stainings in homozygous Fusmde1500 mutants show slight Fus
positive signals, indicating a small fraction of Fusmde1500 protein in cytosolic compart-
ments. Similar to adult brains, mutant Fusmde1500 protein is strongly reduced in 4 dpf
old larvae, resulting in a weaker staining than in wildtype fish. Apart from this finding,
no differences, e.g. inclusion formation of mutant Fusmde1500 protein was observed in
all tissues examined. Thus, no complete redistribution of the Fusmde1500 protein was
detected, despite lack of the PY-NLS and the C-terminal part of the RGG3 domain.
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7.1 Evolutionary conservation of FUS function

Comprehensive blast searches revealed one orthologue of the FUS gene in members
of the vertebrate subphylum, including human FUS, rat Fus, mouse Fus, Xenopus fus
and zebrafish fus, despite a genome duplication within the teleostei infraclass, resulting
in approximately 2.28 zebrafish orthologues for each human gene [115]. Conservation
of the human FUS protein ranges from 90% in rats to remarkable 60% in zebrafish. In
contrast, the Drosophila orthologue Cabeza shows only 30% homology with the human
FUS protein. Thus, the FUS gene is highly conserved through evolution, especially
within the subphylum of vertebrates. Zebrafish Fus protein with 541 amino acids is
similar to the 526 amino acid long human FUS protein and shares the same protein do-
mains. Interestingly, the C-terminal half of the protein is highly homologous, harboring
RNA/DNA-binding properties and protein interaction domains, indicating conserved
functions. In particular the NLS and RGG3 domain show high levels of homology
and most of the amino acids affected by fALS associated mutations in the NLS and
RGG3 domain are conserved making the zebrafish an excellent model to study disease
pathogenesis and effects of ALS causing mutations on FUS ’ function in vivo.
Moreover, FET protein family members beside FUS, namely EWS and TAF15 are con-
served in vertebrates but not in invertebrates. In zebrafish human EWS and TAF15
orthologues are encoded by the zebrafish genes ewsr1a and ewsr1b and taf15, respec-
tively. Due to the similarities of FET family members regarding domain structure and
protein function, e.g. DNA damage response, transcriptional regulation, and mRNA
splicing [37], [179], potential redundant functions and compensation capacities cannot
be ruled out.

7.2 Potential zebrafish fus functions during oogenesis

in situ hybridization (see subsection 6.1.2) revealed that fus mRNA can be detected
as early as at 4 cell stage, indicating that fus mRNA is maternally deposited in the
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oocyte, since embryonic transcription is absent until completion of maternal to zygotic
transition (MZT). MZT is a phase in embryonic development during which develop-
mental control is successively shifted from the maternal to the zygotic transcriptome at
approximately 4.3 hpf prior to gastrulation [180]. Interestingly, spatiotemporal control
of mRNA localization during oogenesis and early embryogenesis are known to mediate
cell polarity and embryonic organization and patterning [181], [182], thus determining
cell fate [183]. Importantly, other polarized cell types like neurons also depend on
selective mRNA localization and translation [181], indicating that RNA localization
represents a fundamental mechanism for spatial regulation of gene expression in a va-
riety of tissues [181], [182].
Localization of RNAs is known to be mediated by RNA/protein structures comprised as
ribonuclearprotein complexes (RNPs). Heterogeneous nuclear ribonucleoprotein com-
plexes (hnRNPs) are predominantly nuclear RNP structures, consisting of heteroge-
neous nuclear RNAs and heterogeneous ribonuclear proteins [186] and important for
various steps during RNA metabolism and maturation besides RNA stability, storage,
and localization [185], [187]. FUS belongs to the family of hnRNP proteins and was
initially referred to as hnRNP P2 protein [84]. Moreover, FUS protein is known to
mediate local translation by transport of specific mRNAs to their site of action [190].
Together with FUS’ RNA-binding properties and hnRNP protein characteristics, this
suggest crucial functions of FUS in RNA metabolism [76], [60], [69], [100]. Interestingly,
several hnRNP proteins have been identified to be associated with ALS through the
identification of pathogenic mutations [188] and inclusion formation [189], indicating
that RNA localization and metabolism is a central component in neurons in general
and in motor neurons in particular.
Interestingly, hnRNP proteins in oocytes and spermatocytes mediate crucial functions
during germ cell development [?], [?], [?], [?], [?], [?], [?], indicating that RNA localiza-
tion in germ cells also depends on hnRNP complexes. Thus, the presence of zebrafish
fus mRNA in oocytes suggests important Fus protein function during germ cell devel-
opment.
Remarkably, fus’ functions are not required during early embryonic development, since
transient gripNA-mediated knockdown fus does not result in an obvious phenotype.
In line with this finding, Fus protein levels are only detectable from 15 somites - 24 hpf
on, although that does not rule out that Fus protein levels might be below detec-
tion level at earlier time points. Also in later stages of development, Fus protein is
widely expressed, implying important RNA binding functions in several cell types and
undermining the importance of an whole organism approach. In particular, high fus
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mRNA and Fus protein abundancy in brain and spinal cord evidenced by ISH, IHC,
and Western blot analysis indicate important functions in neuronal tissue. In line with
this finding, mutations in the human FUS gene cause the neurodegenerative disease
ALS.

7.3 ZFN-mediated genomic targeting of fus
To generate ALS reminiscent mutations within the fus locus, the second last exon
(exon 14) was chosen as ZFN target site since this region encodes the C-terminal NLS
and RGG3 domain, where most of the fALS mutations are clustered. Unfortunately,
ZFN directed against early exons (exon 2 and 3) turned out be non-functional. After
targeting the zebrafish fus locus with ZFNs and subsequent genotyping of induced al-
leles, only inframe and no frameshift mutations were identified in the F1 generation.
In contrast, reading frame disrupting frameshift mutations do occur in mosaic P0 gen-
eration fish (see Figure 6.6), demonstrating that genomic editing leading to frame shift
mutations is feasible at the zebrafish fus locus. However, frameshift mutations were not
transmitted through the germline, indicating a selection against frameshift mutations.
Identified inframe mutations result in loss of single amino acids or in case of Fusmde1500

in deletion of the complete C-terminal NLS and parts of the RGG3 domain but main-
tain the original reading frame, whereas frameshift mutations lead to a reading frame
shift, thereby generating additional amino acid sequences followed by a random stop
codon. Usually these frameshift mutations are thought to mediate loss of function due
to nonsense mediated RNA decay induced by the premature stop codon [191]. In case
of the zebrafish fus locus, also a stabilization of the random sequences is plausible due
to the location of the target site in the second last exon. After translation, the result-
ing aberrant amino acid sequence might act in a dominant-negativ manner and convey
toxicity by aberrant interaction with crucial factors during germ cell development on
RNA and/or protein level.
Potentially, depletion of fus via RNA decay or toxic gain of function might interfere
with crucial fus’ functions during DNA repair and genomic stability. Therefore fus
frameshift mutations might not be compatible with proper germ cell development, es-
pecially during haploid stages of germ cell development with no wildtype fus allele to
compensate. Thus, frameshift mutations in fus mediated by ZFN targeting of exon
14 are potentially toxic during germ cell development and only non-toxic mutations
were selected for after crossing P0 generation fish and analysis of mutant alleles in
the F1 generation. Interestingly, no gender specificity was observed when analyzing
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germline transmittability of frameshift mutations in fus, indicating that fus’ functions
are essential in both oocytes and sperm cells. In line with this finding, defects in
spermatogenesis have been reported upon depletion of murine FUS [79]. No zebrafish
Fus protein was detectible in testes, which possibly is due to limited sensitivity of the
antibody.
Disruption of the Fus gene in mice by gene entrapment has been reported to be feasible,
and mutant alleles are transmitted through the germline [78], [79], even though ZFN
induced mutagenesis targeting exon 14 of the fus locus yielded neither frameshift mu-
tations nor complete loss of fus function. The genomic target side seems to be crucial
for the efficiency of Fus depletion since targeting of exon 8 of the murine Fus yields a
complete knockout [79], whereas targeting of exon 12 of the murine Fus results in low
levels of truncated Fus RNA and FUS protein [78], similar to the RNA and protein
expression levels of the mutant Fusmde1500 allele. Potentially, a target site upstream
of exon 14 in the zebrafish fus might also result in a more efficient disruption of fus,
possibly resulting in germ line transmittable fus loss of function alleles.

7.4 Why do Fusmde1500 mutant zebrafish reveal no
motor neuron phenotype?

Fusmde1500 mutant zebrafish show no motor neuron axon outgrowth defects evidenced
by analysis of morphology and quantification of CaP motor neuron axon length (see
subsection 6.4.1). Although expression levels are reduced, nuclear amounts of the mu-
tant Fusmde1500 protein might be sufficient to maintain fus’ functions, thereby impeding
manifestation of a phenotype. Published phenotypes upon Morpholino (MO)-mediated
transient FUS knockdown in zebrafish describe motor neuron deficits, including short-
ened and hyperbranched primary spinal motor neuron axons [110]. However, in fus
gripNA-mediated knockdown embryos completely depleted of Fus, I detected no defects
in CaP motor neuron axon outgrowth abnormalities (see subsection 6.1.3), indicating
that reduced levels of Fus are not sufficient to cause developmental motor neuron axon
phenotypes. Moreover, assaying motility in Fusmde1500 mutants (see subsection 6.4.2)
revealed no compromised motor function concerning distance, duration and velocity of
swimming, reflecting no motor neuron dysfunction consistent with intact motor neuron
morphology. These findings indicate that fus’ function is not necessary during embry-
onic motor neuron development since neither complete nor partial depletion of Fus via
knockdown or Fusmde1500 mutation affects motor neuron outgrowth. Interestingly, also

98



7.5 One hit is not enough

for other neurodegeneration related genes, contradictory motor neuron axon outgrowth
phenotypes obtained from knockout and knockdown studies have been reported, e.g.
granulin (grn) a and grnb [201], [160], [156], tardbp [157], [159], and fragile X mental
retardation 1 (fmr1) [202], [203], indicating that MO-induced toxicity is possibly re-
sponsible for the phenotypic discrepancies.
Alternatively, discrepancies between knockdown and knockout studies might be ex-
plained by different consequences upon acute or chronic depletion of gene function
regarding alternative stable upregulation of compensatory factors upon knockout and
knockdown. Hence, FET family members might mediate putative compensation of loss
of fus’ function in gripNA-mediated fus knockdown and Fusmde1500 mutant zebrafish,
thereby explaining lack of obvious phenotypes. Interestingly, FET protein family mem-
bers EWS and TAF15 have been shown to coaggregate with FUS in inclusions found in
FTLD-FUS [204],[43]. Moreover, all FET family members share structural and func-
tional similarities, including DNA damage response, transcriptional regulation, and
mRNA splicing [37]. However, NGS experiments in Fusmde1500 mutant zebrafish brains
compared to wildtype controls revealed no upregulation of ewsr1a, ewsr1b or taf15 gene
expression (data not shown), indicating no compensatory mechanisms by FET family
members in Fusmde1500 mutant zebrafish on mRNA levels. Protein levels have to be
analyzed to exclude increased translation rates resulting in elevated Ewsr1a, Ewsr1b
and Taf15 protein levels.
In addition, putative subtle phenotypes resulting from the Fusmde1500 mutation might
be masked by the tremendous capacity of zebrafish to regenerate. However, neuronal
vulnerability can be induced [157], [159], [160], [201], [213], [214], [215], [216], [217],
[218], pointing to specific mechanisms of neuronal degeneration and regeneration in
zebrafish.

7.5 One hit is not enough

The ’multiple hit’ theory is currently being discussed as a potential pathomechanism
in ALS pathogenesis, with mutations in ALS associated genes and redistribution of
the encoded protein to the cytosol being the ’1st hit’ and challenging conditions, e.g.
environmental or cellular stress, mediating accumulation and subsequent inclusion for-
mation being the ’2nd hit’ [178], [37], [73]. Several stressors are currently being discussed
as potential 2nd hits.
Work in cell culture has shown that heat shock is a sufficient stressor to elicit a cellular
stress response, including the formation of stress granules (SGs) [176]. SG formation is
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thought to be a crucial prerequisite for pathological formation of insoluble inclusions
[178], [73], [37], possibly due to impaired disassembly of these dynamic structures. In
line with this, several ALS and FTLD associated proteins, including FUS, TDP-43,
and VCP, have been linked to altered assembly, disassembly, and clearance of SGs [?],
[?], [?], indicating that maintenance of SG dynamics is important for neuronal sur-
vival. Another potent 2nd hit stressor is glutamate mediated excitotoxicity caused by
over-stimulation of the glutamate receptors since it was found as a pathological feature
of ALS and is thought to play a role in ALS pathogenesis [177].
Both stressors, heat shock stress and glutamate mediated excitotoxicity, are not capable
to serve as ’2nd hit’ to induce neurodegeneration in Fusmde1500 mutants since Fusmde1500

mutant zebrafish show neither altered apoptosis levels upon heat shock and excito-
toxic stress nor elevated stress levels under baseline conditions (see subsection 6.4.3).
However, subtle pathological changes not detected by the methods used in this study,
cannot be ruled out. SG formation has been observed in vitro and in vivo upon treat-
ment with a variety of different stressors as well as overexpression of human ALS
causing FUS mutations [176], [195], [196], [197], [74]. Hence, it will be interesting to
determine whether SG formation can be triggered by heat shock stress and glutamate
mediated excitotoxicity in Fusmde1500 mutant zebrafish. Alternatively, other stress con-
ditions, combination of stressors, or even different stressors such as oxidative stress,
neuroinflammation or proteasomal dysfunction might be required to induce ALS-like
pathology.
In addition, aging might be a crucial regulator during manifestation of potential mor-
phological and functional consequences of the Fusmde1500 mutation. Usually, clinical
symptoms onset of ALS and FTLD ranges between 50 and 60 years of age [4], depend-
ing on the severity of the respective disease variant, reflecting the fact that aging is a
major risk factor for the development of neurodegenerative diseases [198]. Moreover,
lethality of Fus knockout mice differs depending on the genetic background [78], [79],
implying that additional genetic and/or environmental factors affect the severity of
phenotypical consequences upon genetic targeting. Thus, putative phenotypes might
manifest in Fusmde1500 mutant zebrafish upon further aging and breeding to different
backgrounds, increasing the probability of genetic and environmental factors [198] to
interact with the Fusmde1500 mutation and elicit disease pathology.
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7.6 Regulation of mutant Fusmde1500 allele expression

Gene expression levels can be controlled via regulation of transcription, at RNA level
via increased RNA stability or enhanced RNA decay, or at protein levels via increased
or reduced translation and degradation. In case of the mutant Fusmde1500 allele mRNA
as well as protein levels are reduced (see subsection 6.3.3), suggesting reduced tran-
scription or enhanced RNA decay.
Interestingly, interaction of FUS protein with several position specific affinity matrices
(PSAM) identified in promotor regions resulted in repressed expression of downstream
genes [83]. Most likely, this process is tightly controlled by other cis- and trans-acting
factors. Similar mechanisms could apply for the mutant Fusmde1500 allele with the
mutant Fus protein hypothetically mediating an impaired self-inhibition of transcrip-
tional repression compared to the wildtype protein, resulting in decreased transcription
of the mutant Fusmde1500 allele. Remarkably, FUS is known to bind its own mRNA [89],
[192], [193], indicating control of FUS protein levels by autoregulative mechanisms dur-
ing physiological conditions. Thus, impaired interaction of mutant Fusmde1500 protein
with its own mRNA, resulting in reduced stability and accelerated RNA decay would
be another explanation for decreased mutant Fusmde1500 levels. Moreover, FUS protein
can regulate RNA decay of its own mRNA via a feed forward loop of alternatively
splicing since skipping of exon 7 results in increased RNA decay [193]. Hypothetically,
mutant Fusmde1500 protein might actively induce RNA decay by alternative splicing of
certain exons or be incapable to sufficiently stabilize its own RNA compared to wild-
type Fus.
The degree of RNA stability remaining is still sufficient to generate detectible levels of
mutant Fusmde1500 protein, unlike in two lines of Fus knockout mice, where protein is
either completely depleted [79] or drastically reduced [78]. Interestingly, the target sites
and the resulting length of the potential transcript and/or protein inversely correlate
with the expression levels, indicating that location of the introduced gene disruption
affects transcript levels of the resulting mutant allele.
In summary, lack of 41 amino acids of the mutant Fusmde1500 protein C-terminal region
might affect either interaction with promotor regions or binding to its own mRNA in
a way that transcription or RNA stability is decreased, resulting in reduced expression
levels. Inhibition of RNA decay in combination with analysis of potential alterna-
tive fus splicing products affecting fus mRNA stability would determine whether RNA
stability or transcription repression mechanisms account for reduced levels of mutant
Fusmde1500 mRNA.
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7.7 Increased insolubility of the Fusmde1500 protein is
not sufficient for inclusion formation

Differential fractionation of 6 - 24 mpf old Fusmde1500 mutant zebrafish brains revealed
a tendency of the mutant Fusmde1500 protein to more insolubility than the Fuswildtype

protein (see subsection 6.3.5), indicating that the zebrafish Fus C-terminal domain
truncated in the mutant allele is required for mediating protein solubility. Interest-
ingly, human FUS’ low complexity (LC) domain localized in the N-terminal region of
the protein was reported to be necessary and sufficient for reversible polymer formation
[66]. However, also ALS causing FUS mutations clustered in the C-terminal part of the
FUS protein, e.g. H517Q mutation, confer flexibility loss detected by molecular dy-
namics simulation (MDS) resulting in elevated aggregation propensity [194], implying
crucial functions of the C-terminal NLS for maintenance of flexibility and solubility.
Partial shifting of the mutant Fusmde1500 protein from soluble to more insoluble frac-
tions in vitro suggests an increased potential to form aggregates also in vivo. Despite
an increased insolubility of the mutant Fusmde1500 protein, it is still distinct from the
insoluble FUS protein isolated from pathological inclusions of human FTLD-FUS cases
[38]. Moreover, the alterations in solubility are not sufficient to form pathological in-
soluble inclusions as evidenced by lack of Fus pathology in aged Fusmde1500 mutant
brains (see subsection 6.3.5). Insolubility might increase proportionally with age or
upon certain stimuli such as stress or seeding particles that would potentially initiate
oligomerization and aggregation of mutant Fusmde1500 protein. Biochemical analysis of
mutant Fusmde1500 protein solubility and immunohistochemistry in aged fish and after
stimulation with an adequate stressor or seeding impulse will reveal whether firstly
insolubility propensity increases and secondly oligomerization and aggregation of in-
soluble mutant Fusmde1500 protein can be induced.

7.8 Nuclear import regulation of the Fusmde1500 protein

Work in cell culture has shown that the C-terminal region of FUS, harboring the PY-
NLS and the RGG3 domain, is necessary and sufficient to mediate transportin (TRN)
dependent nuclear import [70]. Strikingly, fALS associated point mutations in the
C-terminal domain disrupt nuclear import of FUS leading to cytosolic redistribution
of FUS [70], [74]. Interestingly, the severity of the different fALS mutations regard-
ing disease onset and progression is reflected by the degree of cytosolic redistribution
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when expressed in vitro. Thus, severe mutations show a more pronounced cytosolic
redistribution than milder mutations [70]. Since the entire PY-NLS and C-terminal
parts of the RGG3 domain are lacking in the Fusmde1500 protein, this mutation is rem-
iniscent of severe ALS causing mutations, therefore predicted to prominently localize
to the cytosol. When transgenically expressed in embryonic zebrafish and primary
cortical neurons (see Figure 6.10), mutant Fusmde1500 protein redistributes to cytosolic
compartments, however, the main fraction is still localized to the nucleus. Subcellu-
lar fractionation analysis (see Figure 6.10) and immunohistochemistry of adult brains
endogenously expressing the mutant Fusmde1500 protein (see subsection 6.4.5) did not
yield severe cytosolic distribution of the mutant Fus rather showing only a slight ten-
dency to shift to a more cytosolic localization whereas the main fraction of Fus protein
is still nuclear. Interestingly, FUS localization can be modulated by arginine methy-
lation of the RGG domains. Impact of methylation status on wildtype and fALS mu-
tant FUS protein localization was analyzed by inhibiting protein arginine methylation
using chemical treatment with adenosine-2,3-dialdehylde (AdOX). AdOX inhibits all
S-adenosyl-methionine (SAM)-dependent enzymatic reactions, including protein argi-
nine methylation [45], thus leading to hypomethylation. Under normal conditions,
FUS is heavily methylated, whereas in FTLD-FUS cases, hypomethylation of FUS
is thought to mediate cytosolic redistribution due to overly tight binding of FUS to
TRN and impaired nuclear import [37]. In ALS-FUS, fALS mutations are known to
mediate cytosolic distribution of FUS under normal methylation conditions. How-
ever, hypomethylation can also enable FUS harboring fALS mutations to localize to
the nucleus [45], [37]. In addition, silencing of protein N-arginine methyltransferase 1
(PRMT1) causes nuclear localization of fALS associated FUS mutations [45] through
reduction of FUS methylation levels. Thus, degree of methylation in synergy with
other determinants of localization, e.g. NLS disrupting mutations regulate localization
of FUS protein, extending the nuclear import signal to the PY-NLS and the RGG3
domain. Hypothetically, the tight regulation of arginine methylation is imbalanced in
Fusmde1500 mutants due to truncation of the entire NLS and parts of the RGG3 domain
leading to reduced methylation of the remaining RGG3 domain. This might lead to the
unexpected nuclear localization of the truncated Fusmde1500 protein. Also, truncation
of the NLS and parts of the RGG3 might reduce binding to TRN in general to a degree
that is sufficient for nuclear import but not enough for a re-export and cytoplasmic
accumulation of Fus protein as predicted in FTLD-FUS. In line with this hypothesis,
RNA expression levels of the zebrafish protein N-arginine methyltransferase 1 (prmt1 )
are mildly reduced in Fusmde1500 mutant zebrafish compared to wildtype siblings, as ev-
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idenced by an unbiased next generation sequencing (NGS) approach (data not shown).
Methylation levels of Fus in Fusmde1500 mutants might be reduced and together with
the truncated RGG3 domain possibly modulate the affinity of the mutant Fusmde1500

protein to the import factor TRN to a level that it is still sufficiently transported to
the nucleus despite the lack of the PY-NLS.
Beside methylation, other post translational modifications are known to also modify
localization of FUS under certain conditions. Upon calicheamicin γ1 (CLM) induced
DNA damage, FUS is phosphorylated leading to cytosolic FUS localization in cell cul-
ture [199]. Moreover, increased DNA damage levels were found in FTLD-FUS patients
[199]. Cellular stress might be a common disease mechanisms in all FUSopathies [37],
thus distinct stressors including genomic stress potentially initiate specific FUS post-
translational modification events leading to redistribution mechanisms and eventually
to cytosolic accumulation and aggregation of FUS in sporadic ALS-FUS and FTLD-
FUS. General cellular stress due to overexpression of different Fus constructs might
already be sufficient to elicit translocation of the mutant Fusmde1500 protein, poten-
tially being more susceptible to dysregulated posttranslational modifications than the
wildtype Fus protein due to the truncation of parts of the RGG3 domain and the entire
NLS.
Moreover, initial localization of endogenous mutant Fusmde1500 protein might be equally
distributed between nucleus and cytosol but the steady state of nuclear import and cy-
tosolic redistribution might be disturbed due to rapid proteasomal degradation of the
cytosolic Fusmde1500 protein fraction, thus resulting in a relative nuclear accumulation
of the mutant Fusmde1500 protein.
Analysis of posttranslational modifications, in particular methylation status and phos-
phorylation of mutant Fusmde1500 protein together with examination of human FUS’
endogenous localization in ALS-FUS and FTLD-FUS cases via immunohistochemistry
will provide insights into affected import mechanisms. Moreover, analysis of mutant
Fusmde1500 protein distribution upon inhibition of the protein degradation machinery
will determine whether proteasomal degradation regulation accounts for the nuclear
localization of the mutant Fusmde1500 protein.

7.9 Concluding remarks

So far, Fusmde1500 mutant zebrafish have not developed any obvious phenotype, that
would reveal major dysfunctions upon truncating the Fus protein, indicating that the
Fusmde1500 mutation alone confers no pathogenicity sufficient to elicit ALS reminis-
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cent symptoms in zebrafish. Since most neurodegenerative disease are age-related,
Fusmde1500 mutant zebrafish possibly will develop phenotypes and manifest symptoms
upon aging and influence of additional parameters, e.g. chronic stress, environmental
circumstances, and genetic risk factors.
However, mutant Fusmde1500 protein exhibits pathological features similar to insoluble
FUS protein found in pathologic inclusions in ALS-FUS and FTLD-FUS cases, i.e.
the tendency to become insoluble and partial localization to the cytosol upon trans-
genic expression. Thus, Fusmde1500 mutant zebrafish serves as animal model suitable for
studying localization of Fusmde1500 mutant protein, SG and inclusion formation, as well
as identification of disease modifying factors in an aged whole organisms approach.
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