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Zusammenfassung

In dieser Dissertation untersuchen wir die gravitativen Konsequenzen von Theorien, in
denen die vier Raumzeit Dimensionen unseres Universums um zwei räumliche Extradi-
mensionen erweitert werden. Insbesondere liegt der Fokus auf Branen-Konstruktionen,
die davon ausgehen, dass unsere Welt auf einer Hyperebene im höherdimensionalen
Bulk eingebettet ist, was große oder gar unendlich ausgedehnte Extradimensionen er-
möglicht. Unsere Motivation, solche Modelle zu studieren, rührt hauptsächlich von
deren prinzipieller Möglichkeit, das Kosmologische Konstanten (KK) Problem mittels
Degravitation zu lösen: Die KK krümmt nur die Extradimensionen und lässt die Bra-
nengeometrie flach.

Ein Hauptunterschied zum einfacheren Fall einer Kodimension eins Brane ist, dass
hier Gravitationswellen in den Bulk emittiert werden können—selbst für 3D homogene
und isotrope Geometrien, wie sie für Kosmologie Fragestellungen relevant sind. Daher
analysieren wir zunächst die Frage, wie eine Randbedingung für auslaufende Wellen im-
plementiert werden kann, was notwendig ist um ein geschlossenes System modifizierter
Friedmann Gleichungen zu erhalten, das die Branen-Evolution vorhersagt. Wir finden,
dass ein potenzielles Werkzeug aus der Literatur, das auf einer bestimmten Zerlegung
des Weyl-Tensors beruht—während es für ebene Gravitationswellen anwendbar ist—
für zylindrische Wellen versagt. Dieses Versagen steht im Zusammenhang mit der Tat-
sache, dass es bereits unmöglich ist, ein- und auslaufende lineare zylindrische Wellen
(auf einer flachen Raumzeit) lokal zu trennen; dies demonstrieren wir, indem wir die
entsprechende nichtreflektierende Randbedingung explizit herleiten, welche nichtlokal
in der Zeit ist.

Anschließend betrachten wir eine Verallgemeinerung des Dvali-Gabadadze-Porrati
(DGP) Modells, die zusätzlich zu der einen unendlichen Kodimension eine weitere,
kompakte Branen-Dimension enthält. Da die 3D maximal symmetrische Brane hier
ebene Wellen emittiert, können wir das Weyl-Tensor Kriterium verwenden um ein-
laufende Bulk-Wellen auszuschließen, und so die resultierenden Friedmann Gleichun-
gen herzuleiten. Wenn die kompakte Dimension stabilisiert wird, reproduzieren wir
DGP Kosmologie, finden jedoch Indikationen dafür, dass die Stabilisierung versagen
sollte wenn die KK dominiert, was zusätzliche, potenziell interessante Modifikationen
zu späten Zeiten zur Folge hätte. Wenn die kompakte Richtung hingegen frei ex-
pandieren kann, gibt es dynamisch degravitierende Lösungen—die allerdings kein 4D
Regime aufweisen und daher ausgeschlossen sind, was wir durch einen Fit an Supernova
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Daten demonstrieren.
Danach wenden wir uns der Kodimension zwei Version des DGP Modells zu. In-

dem wir das volle nichtlineare gekoppelte Bulk-Branen System für kosmologische Sym-
metrien auf der (regularisierten) Brane numerisch lösen, zeigen wir, dass in einer
Region des Parameterraums eine KK—aber auch jede andere Fluid Komponente—
dynamisch degravitiert wird, und eine statische Geometrie unter Aussendung von
Einstein-Rosen Wellen angenähert wird. Für andere Modellparameter beobachten wir
pathologische, super-beschleunigende Lösungen. Der Ursprung dieses instabilen Ver-
haltens lässt sich auf eine tachyonische Geist Mode zurückführen, die wir in diesem
Parameterbereich durch die Analyse linearer Metrik-Fluktuationen um einen nicht-
trivialen reinen Tensions-Hintergrund identifizieren. Während wir damit das Geist-
Resultat auf Minkowski aus der Literatur bestätigen, gewinnen wir die wichtige Ein-
sicht, dass der Geist verschwindet wenn die Branenspannung groß genug ist, wodurch
das Modell mit der physikalischen Erwartung einer gesunden effektiven Theorie bei
niedrigen Energien in Einklang gebracht wird. Leider ist der gesunde Bereich wieder
nicht mit einem adäquaten 4D Gravitationsregime kompatibel und daher phänomeno-
logisch ausgeschlossen.

Die vorhergehende Analyse beschränkte sich auf sub-kritische Branenspannungen,
für die der Defizitwinkel der konischen Außenraumgeometrie kleiner als 2π ist. Im da-
rauf folgenden Kapitel untersuchen wir super-kritische Spannungen (zunächst in 4D)
und finden, dass die (regularisierte) statische Lösung nicht mehr stabil ist. Stattdessen
dehnt sich die axiale Richtung mit einer asymptotisch konstanten Expansionsrate aus,
und die Außenraumgeometrie (die notwendigerweise kompakt ist) nimmt die Form
einer wachsenden Zigarre an. Es gelingt uns, eine analytische Relation zwischen Ex-
pansionsrate und Branenspannung herzuleiten, welche—auf das 6D Setup übertragen—
lediglich die KK um einen (kleinen) konstanten Betrag verschiebt, und daher für das
KK Problem nicht hilfreich ist.

Zuletzt analysieren wir den Fall von zwei endlichen Kodimensionen innerhalb des
“supersymmetric large extra dimensions” (SLED) Modells. Zuerst zeigen wir, dass—
entgegen Behauptungen in der jüngeren Literatur—ein Branen-lokalisierter Fluss nicht
helfen kann, die Feinabstimmung zu verhindern, die für 4D flache Lösungen nötig ist
(und hier durch die Flussquantisierung erzwungen wird); dies liegt im Wesentlichen
daran, dass nur skaleninvariante Branen-Kopplungen eine flache Brane garantieren.
Danach adressieren wir die Frage, ob ein realistischeres Modell mit einer endlichen
Branen-Dicke sowie Skaleninvarianz brechenden Kopplungen dennoch erfolgreich sein
könnte, indem es eine zwar nicht-verschwindende, aber hinreichend kleine 4D Krüm-
mung vorhersagt, finden jedoch eine negative Antwort: Falls das Volumen der Extradi-
mensionen innerhalb seiner derzeit erlaubten Grenzen liegt, liefern beide Effekte einen
viel zu großen Krümmungsbeitrag, es sei denn die Branen-Dicke wäre viele Größenord-
nungen kleiner als die Bulk Planck Länge, und eine Art von Feinabstimmung wäre
wieder im Spiel.



Abstract

In this thesis, we investigate the gravitational consequences of theories in which the four
spacetime dimensions of our universe are augmented by two spatial extra dimensions.
More specifically, the focus is on braneworld scenarios, where our world is confined on a
hypersurface in the higher-dimensional bulk, allowing the extra dimensions to be large
or even infinite. Our main motivation for studying such models is that they could in
principle be able to solve the cosmological constant (CC) problem via degravitation:
the CC only curves the extra space, leaving the brane geometry flat.

A major difference to the simpler case of a codimension-one brane is that here,
gravitational waves can be emitted into the bulk, even at the 3D homogeneous and
isotropic level, as is relevant for cosmology. Therefore, we first analyze the question
how an outgoing wave boundary condition can be implemented, which is necessary in
order to obtain a closed set of modified Friedmann equations predicting the cosmological
on-brane evolution. We find that a potential tool from the literature, provided by a
certain decomposition of the Weyl tensor—while being applicable to plane gravitational
waves—fails for cylindrical waves. This failure is related to the fact that it is already
impossible to locally separate incoming from outgoing linear cylindrical waves (on flat
spacetime), as we demonstrate by explicitly deriving the corresponding nonreflecting
boundary condition, which is nonlocal in time.

We then consider a generalization of the Dvali-Gabadadze-Porrati (DGP) model,
containing an additional compact on-brane dimension on top of the one infinite codi-
mension. Since here the 3D maximally symmetric brane emits plane waves, the Weyl
tensor criterion can be used to exclude incoming bulk waves, and we derive the result-
ing Friedmann equations. If the compact dimension is stabilized, DGP cosmology is
recovered, but we find indications that the stabilization should break down when the
CC starts to dominate, which would lead to additional, potentially interesting late time
modifications. If, on the other hand, the compact direction is allowed to expand freely,
there are dynamically degravitating solutions—which, however, lack a 4D regime and
are thus ruled out, as we demonstrate by fitting to supernova data.

Next, we turn to the codimension-two version of the DGP model. By numerically
solving the full nonlinear coupled bulk-brane system for cosmological symmetries on
the (regularized) brane, we show that in some region of parameter space, a CC—but
also any other fluid component—gets degravitated dynamically, and a static geometry
is approached via the emission of Einstein-Rosen waves. For other model parameters,
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pathological super-accelerating solutions are encountered. The origin of this unstable
behavior is traced back to a tachyonic ghost mode which is identified in this parameter
region by studying linear metric perturbations around a nontrivial pure tension back-
ground. While confirming the ghost result on Minkowski from the literature, we gain
the important insight that the ghost disappears if the brane tension is large enough,
thereby reconciling the model with the physical expectation of a healthy low energy
effective theory. Unfortunately, the healthy region is again incompatible with an ap-
propriate 4D gravity regime, and therefore ruled out phenomenologically.

The preceding analysis only covered sub-critical brane tensions, meaning that the
deficit angle of the exterior conical geometry is less than 2π. In the following chapter,
we investigate super-critical tensions (first in 4D), and find that the (regularized) static
solution is no longer stable. Instead, the axial direction expands at an asymptotically
constant rate, and the exterior geometry (which is necessarily compact) takes the form
of a growing cigar. We are able to derive an analytic relation between the expansion
rate and the tension, which—when adapted to the 6D setup—only yields a (small)
constant shift in the CC, and can therefore not help with the CC problem.

Finally, the case of two finite codimensions is analyzed within the model of supersym-
metric large extra dimensions (SLED). First, we show that—contrary to recent claims
in the literature—a brane-localized flux cannot help avoiding the fine-tuning (which
is here imposed by flux quantization) in order to obtain 4D flat solutions, basically
because only scale invariant brane couplings ensure a flat brane. Next, we ask if a
more realistic model with a finite brane width and scale invariance breaking couplings
could still be successful by predicting a small enough (albeit nonzero) 4D curvature,
but find a negative answer: If the extra-dimensional volume is within its currently al-
lowed range, both effects give way too large contributions to the curvature, unless the
brane width were many orders of magnitude below the bulk Planck length, and again
some sort of fine-tuning were invoked.



Conventions

The following conventions will be used throughout this thesis:

• We work in units in which ~ = c = 1. The reduced Planck mass MPl is thus
related to Newton’s constant GN via M2

Pl ≡ 1/(8πGN).

• Apart from Chap. 7, our sign conventions for the metric, Riemann and Einstein
tensor are “+++” as defined (and adopted) in [MTW73]; thus, in particular, the
metric is “mostly plus”. In Chap. 7, we use Weinberg’s convention “+−−”, where
the Riemann and Einstein tensor have the opposite signs as in “+++”.

• The total dimension of spacetime is denoted by d = 4 + n, with n being the
number of extra dimensions.

• Capital Latin indices M,N, . . . denote d-dimensional, Greek indices µ, ν, . . . four-
dimensional spacetime indices.

• Greek indices α, β, . . . refer to five-dimensional spacetime indices on the brane
with one compact extra dimension.

• Small Latin indices i, j, . . . label the three-dimensional spatial coordinates (except
for Chap. 2, where they denote the two perpendicular tetrad components).

• Tensor (or vector) fields, when suppressing their indices, are written in boldface,
e.g. g for the metric with components gµν .

• The Minkowski metric is denoted by η.

• The determinant of the metric g is abbreviated by g.

• The Riemann tensor is denoted by R, the Weyl tensor by C, the Ricci tensor by
R, the Ricci scalar by R, the Einstein tensor by G and the energy momentum
tensor by T .

• Mathematical constants are written in roman type to distinguish them from vari-
able names or indices, e.g. “e” and “i” for Euler’s number and the imaginary unit,
respectively.

• 6D is short for “6-dimensional”, etc; whether the dimensions are all spacelike or
contain time will be clear from the context.





Acronyms

Here is a list of the frequently used acronyms:

BIG Brane induced gravity
CC Cosmological constant
CDM Cold dark matter
CMB Cosmic microwave background
DGP Dvali-Gabadadze-Porrati
DOF Degree of freedom
EFT Effective field theory
EOS Equation of state
ER Einstein-Rosen
FRW Friedmann-Robertson-Walker
GGP Gibbons-Gueven-Pope
GR General relativity
LLR Lunar laser ranging
NEC Null energy condition
NO Nielsen-Olesen
ODE Ordinary differential equation
PDE Partial differential equation
SI Scale invariance
SN Supernova





Chapter 1

Introduction

The modern theory of cosmology is in a very paradoxical situation: On the one hand,
the current concordance model, called ΛCDM, which has emerged over the past few
decades, is in astonishing agreement with a plethora of high precision observations,
and draws a consistent picture of our universe from a minuscule fraction of a second
after the big bang until today. On the other hand, the perhaps simplest ingredient of
the model, which is completely characterized by one single number—the cosmological
constant Λ—presents the worst mismatch between theoretical expectation and actual
observation in the entire history of science. To be clear, this does not mean that the
model is inconsistent; after choosing a certain value for Λ, the model works perfectly
well and matches practically all observations. Furthermore, the precise value of Λ
cannot even be calculated from first principles, since we do not know the (hypothetical)
fundamental theory that would be valid up to arbitrarily high energy scales. Without
such a theory of everything, the best we can do is regard our quantum field theories
(like the Standard Model) as effective field theories (EFT), valid only up to some
energy cutoff M . Then, like any other parameter of a quantum field theory that
undergoes renormalization, the actual value of Λ can only be obtained by measuring
it at some renormalization scale; only the renormalization group flow1 of Λ then is a
robust theoretical prediction. Since there is only one true measurement2 of Λ—through
the observed accelerated expansion of our universe—there can be no inconsistency
between theoretical prediction and experiment. This is why, above, we deliberately
referred to the problem as a tension between observation and theoretical expectation,
not prediction. This expectation, as will be discussed in more detail in Sec. 1.2, comes
from our experience that the smallness of some parameter in a theory can usually be
understood in a natural way. On the contrary, when raising the cutoff M of our EFT,
the observed smallness of Λ can only be understood by a more and more severe fine-

1Here, we mean the change of Λ as the masses are varied, not a physical change with energy.
2In fact, radiative corrections do not even lead to a momentum dependent, physical running of Λ;

therefore, since we cannot change the masses of particles and repeat the measurement of Λ, its RG
flow is not testable even in principle.
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tuning of the bare parameter appearing in the resulting more fundamental theory. If
we take the Standard Model EFT to be valid up to the Planck scale (which is certainly
an upper bound), the required fine-tuning spans ∼ 118 decimal places.3 If, instead, the
cutoff is only just above the electroweak scale (that is the lower bound), still a fantastic
number of ∼ 54 decimal places have to be tuned. But even if we take only the electron
into account, there is a discrepancy of ∼ 32 orders of magnitude. This, in short, is the
cosmological constant (CC) problem.

In the Standard Model, there is a closely related problem, called the (gauge, or
electroweak) hierarchy problem. It asks why the observed Higgs mass is so much smaller
than the maximum Planckian cutoff (or than yet unobserved heavy particles between
the electroweak and the Planck scale). However, in that case new physics beyond the
Standard Model (like supersymmetry) provides a potential way out. This is not the
case for the CC problem because, as discussed above, it is already present at much
lower energies, up to which we have already tested the Standard Model. Therefore, the
CC problem cannot be addressed by UV physics—it is, instead, an IR problem.

Another fundamental difference between the hierarchy and CC problem is that the
latter only arises once gravity is included. In fact, without gravity, only energy differ-
ences are physically relevant, and so the zero point (or vacuum) energy is not observable.
However, according to general relativity (GR), every source of energy inevitably curves
spacetime, hence so does the vacuum energy. Consequently, the only way to measure
Λ is in fact by measuring the spacetime curvature of our universe and then inferring
the value of Λ using the Einstein equations.

In the same way as the hierarchy problem motivates going beyond the Standard
Model, and putting a lot of effort into finding signs of such new physics at particle
accelerators, the CC problem therefore naturally suggests to come up with IR modifi-
cations of GR and pin down their observational consequences. More specifically, one
would like to build a theory of gravity in which spacetime curvature is insensitive to
the vacuum energy,4 but which does not spoil the success of GR in the regime where it
has been tested so successfully. This rather ambitious goal turns out to be notoriously
difficult to achieve. As will be discussed in Sec. 1.3, a promising framework in this re-
gard is provided by the braneworld paradigm, in particular if our universe is assumed
to be embedded into a six-dimensional bulk. The main subject of this thesis is to study
particular models within this class (primarily codimension-two brane-induced gravity),
and to test them for theoretical consistency, their potential to address the CC problem,
as well as their phenomenological viability.

But before turning to these modifications of GR, it is worthwhile to briefly review
ΛCDM—the state of the art model for the cosmological evolution of our universe.
This is done in Sec. 1.1, where we also sketch the main observational probes that
give us great confidence in the correctness of this model. Then, in Sec. 1.2, we will
discuss the CC problem in more detail, and Sec. 1.3 explains why extra dimensions

3The numbers refer to the tuning of the corresponding vacuum energy density ρvac ≡ M2
PlΛ, cf.

Sec. 1.2.
4This idea goes under the name of “degravitation”, see Sec. 1.3.
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(and in particular two of them) could help. Since we will be especially interested in
the case of infinite extra dimensions, the 5D prototype—called the DGP model—will
be reviewed in Sec. 1.4, with emphasis on the geometrical aspects which are important
when deriving the cosmological brane evolution. This introductory chapter will be
concluded in Sec. 1.5 with an outline of the rest of this thesis, as well as a summary of
the main results.

1.1 Concordance cosmology

1.1.1 Theory

The ΛCDM model assumes that gravity is described by GR [Ein16a] on all relevant
scales. GR can be defined by a variational principle with the following action:

S = SEH + Sm =

∫
d4x
√
−g
(
M2

Pl

2
R+ Lm

)
. (1.1.1)

The first term is usually called the Einstein-Hilbert action [Hil15, Ein16b]. Here, g
is the determinant of the metric gµν , R is the Ricci scalar (i.e. the trace of the Ricci
tensor Rµν) constructed from gµν , and Lm denotes the Lagrangian density of all the
matter (i.e. non-gravitational) degrees of freedom. Varying this action with respect to
gµν gives Einstein’s field equations:5

M2
PlGµν = Tµν , (1.1.2)

where Gµν := Rµν − gµνR/2 is the Einstein tensor and

Tµν := − 2√
−g

∂ (
√
−gLm)

∂gµν
= gµνLm − 2

∂Lm

∂gµν
(1.1.3)

is the energy-momentum tensor. Note that we assume the cosmological constant Λ to
be included in Lm, i.e. Lm ⊃ −M2

PlΛ. Classically, it is equivalent to the minimum of
the potential energy of all the matter degrees of freedom. For non-gravitational physics,
this absolute value is irrelevant, because only energy differences matter. With gravity,
however, this is not the case because according to the Einstein equations (1.1.2), every
form of energy—including vacuum energy ρvac ≡M2

PlΛ—inevitably curves spacetime.

5If the spacetime has a boundary, on which variations of the first (orthogonal) derivatives of gµν are
not required to vanish, one has to add the York-Gibbons-Hawking boundary term [Yor72, GH77]
to the action (1.1.1) in order to arrive at the correct Einstein equations (see also [Wal84, Appendix
E]).
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Background evolution

The other main assumption, usually referred to as the cosmological principle, is that our
universe is spatially homogeneous and isotropic on large scales.6 As a consequence of
these symmetries, one can choose coordinates in which the metric takes the Friedmann-
Robertson-Walker (FRW) form:

ds2 ≡ gµνdx
µdxν = −dt2 + a(t)2

(
dr2

1− kr2
+ r2dΩ2

)
. (1.1.4)

Here, dΩ2 ≡ dθ2+sin2 θ dφ2 is the line element of the unit 2-sphere, and k ∈ {0,+1,−1}
corresponding to a (three-dimensional) spatially flat, closed and open geometry, re-
spectively. The entire dynamics of this metric is encoded in the single function of
time a(t), called the scale factor, the evolution of which is determined by the Einstein
equations (1.1.2). The energy-momentum tensor is also restricted by the assumed
symmetries and has to take the form

T µν = diag (−ρ, p, p, p) , (1.1.5)

corresponding to a perfect fluid with energy density ρ and pressure p.
Plugging (1.1.4) and (1.1.5) into (1.1.2) results in two independent equations of

motion for the scale factor, the Friedmann equations [Fri22, Fri24]:

3M2
Pl

[(
ȧ

a

)2

+
k

a2

]
= ρ , (1.1.6a)

−M2
Pl

[
2
ä

a
+

(
ȧ

a

)2

+
k

a2

]
= p , (1.1.6b)

where we introduced the short hand notation of a dot representing a derivative with
respect to t. Energy conservation∇µT

µ
ν = 0, which is implied by the Einstein equations

due to the Bianchi identity ∇µG
µ
ν ≡ 0, yields one further nontrivial equation:

ρ̇+ 3
ȧ

a
(ρ+ p) = 0 . (1.1.7)

This equation, together with the first (or constraint) Friedmann equation (1.1.6a) al-
ready implies the second Friedmann equation (1.1.6b). Therefore, the complete set
of dynamical equations is given by Eqs. (1.1.6a) and (1.1.7). Since there are three
unknown functions of time—a(t), ρ(t) and p(t)—this only constitutes a closed system,
determining the evolution, after one imposes an equation of state (EOS) p = p(ρ); this
is usually taken to be a linear relation p = wρ. In this case, Eq. (1.1.7) can immediately
be integrated, yielding

ρ ∝ a−3(1+w) . (1.1.8)

6Originally a philosophical assumption, the cosmological principal has now in fact been confirmed
observationally, cf. Sec. 1.1.2.
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In the ΛCDM model, one assumes the cosmic fluid to be composed of three different
components: radiation with EOS parameter w = 1/3, non-relativistic matter (or dust)
for which w = 0, and a cosmological constant Λ (or, equivalently, vacuum energy ρvac ≡
M2

PlΛ, cf. Sec. 1.2) corresponding to w = −1. In these cases the energy conservation
equation can easily be integrated giving ρrad ∝ a−4, ρm ∝ a−3 and ρvac ∝ a0 = const.

The only equation left is the first Friedmann equation (1.1.6a), which can now con-
veniently be rewritten in the form

ΩΛ + Ωk

(a0

a

)2

+ Ωm

(a0

a

)3

+ Ωrad

(a0

a

)4

=
H2

H2
0

. (1.1.9)

Here we introduced the Hubble parameter H := ȧ/a, the subscript “0” denotes evalu-
ation at t = t0 (today), and the dimensionless constants Ωi are defined as the density
ratios Ω := ρ0/(3M

2
PlH

2
0 ) for each fluid component, as well as the spatial curvature

term Ωk := −k/(H2
0a

2
0). Evaluating Eq. (1.1.9) today, it simply becomes∑

i

Ωi = 1 . (1.1.10)

1.1.2 Observations

Several independent observational probes show that our universe can very well be
described by the ΛCDM model with a spatially flat geometry (k = 0), and with the
cosmic fluid today made up of ΩΛ ≈ 0.7 and Ωm ≈ 0.3, with the matter part consisting
of only Ωb ≈ 0.05 baryons and ΩDM ≈ 0.25 non-baryonic, so-called (cold)“dark matter”.
Let us now summarize the main observational tests7 that lead to this well-established
picture.

Type Ia supernovae

For a given choice of parameters Ωi, Eq. (1.1.9) allows us to calculate the expansion
history of the universe. In fact, since H only enters quadratically, its sign is not fixed,
and so the theory does not tell us whether the universe is expanding or contract-
ing. Therefore, only observations can tell us which branch to choose, and it turns out
that we live in an expanding universe. This was famously first discovered by Hubble,
who observed that distant galaxies show a redshift that linearly grows with their dis-
tance [Hub29]. Interpreting this redshift as the Doppler-shift due to the recessional
velocity of the galaxies, one arrives at a linear distance-velocity relation, the constant
of proportionality—the Hubble constant—given by H0 > 0.

7Note that the list given here is not complete; for instance, we do not elaborate on weak lensing,
cluster counts, or galaxy rotation curves, just to name a few. Since this would be beyond the scope
of this thesis, we instead refer to the literature for more comprehensive and detailed discussions of
other observational probes [Wei08, A+06, BHS05].
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Extending this idea to higher redshifts, the primary tool of astronomers has for a
long time been to look for “standard candles”, i.e. objects of known absolute luminosity
L. Measuring their redshift z ≡ a0/a − 1 and apparent luminosity8 `—or, equiva-
lently, luminosity distance dL, defined by ` = L/(4πd2

L)—and fitting to the theoretical
prediction [Wei08]

dL(z) = a0 (1 + z) r(z) = (1 + z)

∫ z

0

dz′

H(z′)
(1.1.11a)

=
(1 + z)

H0Ω
1/2
k

sinh

[
Ω

1/2
k

∫ 1

1/(1+z)

dx

x2
√

ΩΛ + Ωkx−2 + Ωmx−3

]
, (1.1.11b)

one can determine the cosmological parameters. Note that in the second line, we
dropped Ωrad because the contribution of radiation is negligible9 in the relevant redshift
range. Furthermore, due to the constraint (1.1.10), only two of the remaining three Ωs
determining the shape of dL(z) are independent.

The most successful class of standard candles is provided by Type Ia supernovae
(SNe). They all have roughly the same absolute luminosity because the star explosion
is triggered by the universal Chandrasekhar limit. Furthermore, the intrinsic scatter in
luminosities can be corrected by an empirically established relation between the peak
brightness and width of the corresponding light curves. Finally, SNe are bright enough
to be observable up to relatively high redshifts, making them ideal candidates to directly
test the expansion history of our universe. The latest observations are compatible with
the flat ΛCDM model, require cosmic acceleration at 99.999% confidence [C+11], and
yield the best fit parameter Ωm = 0.295± 0.034 [B+14], implying ΩΛ = 0.705± 0.034.

Since the cosmological parameters Ωi only affect the shape of dL(z) (and not its
overall normalization), the relative magnitudes of SNe are enough to determine the
Ωi. The Hubble constant H0, on the other hand, only enters as an overall factor,
and is therefore sensitive to the absolute magnitudes. Consequently, H0 can only be
measured by building up a cosmic distance ladder, starting from standard candles
in our local universe,10 e.g. Cepheid variables. The most recent analysis along these
lines gives H0 = (73.8± 2.4) km s−1 Mpc−1 [R+11]. Since the systematic errors lead to
rather large uncertainties in H0, it is customary to quote results for other cosmological
parameters which are independent of H0, and indicate the dependence on H0 in terms
of the parameter h := H0/(100 km s−1 Mpc−1) ≈ 0.7.

8For historical reasons, astronomers use the apparent magnitude m instead of luminosity, related by
` ∝ 10−2m/5, and similarly for the absolute magnitude. The luminosity distance is then given by
dL = 101+(m−M)/5pc [Wei08].

9From the CMB temperature (see below), one finds Ωrad = 4.15 × 10−5h−2 (with h ≈ 0.7, see
below) [Wei08].

10Another intriguing possibility would be to calculate the absolute luminosity of SNe from first prin-
ciples. However, this is a rather ambitious goal, because the stellar explosions involve very compli-
cated, nonlinear physics; therefore, this method can so far not be used to replace primary distance
indicators [Wei08, HGLM03].
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Big bang nucleosynthesis

Following the universe’s expansion backwards in time, Eq. (1.1.9) usually11 implies
that there is an initial moment of time t = 0 at which the scale factor vanishes,
implying a diverging expansion rate and energy density. This singularity—known as
the big bang—signals a breakdown of classical GR, and it ultimately would have to be
resolved by some theory of quantum gravity, the effects of which become important at
Planckian energies ∼ 1019 GeV.

However, we can safely trust this backward extrapolation up to energies of order
10 TeV, up to which the Standard Model has been tested in accelerator experiments.
In particular, one can calculate the abundances of light elements that were formed
during big bang nucleosynthesis (BBN) at a temperature of order 0.1 MeV [Muk05].
Using the Standard Model to determine the various reaction rates, the light element
abundances after BBN can be calculated as a function of the baryon to photon ratio.
Therefore, astrophysical measurements of these abundances can be used to test the hot
big bang hypothesis, and to infer the baryon density Ωb. The predicted abundances
are in very good agreement with observations, thus giving very strong confidence in
the correctness of the hot big bang scenario, and imply a baryon density today of
Ωbh

2 = 0.021 ± 0.001 [Ste03, IMM+09]. With h ≈ 0.7, this gives Ωb ≈ 0.04; together
with the SNe measurement of Ωm = 0.27, this means that the main part of the matter
density must be non-baryonic, dark matter with ΩDM ≈ 0.23.

Cosmic microwave background

After BBN, the universe was filled with a hot dense plasma of electrons and baryons.
The temperature was so high that electrons could not be bound by nuclei to form atoms,
and the photons were in thermal equilibrium with the hot dense baryonic matter. When
the temperature became low enough to allow for neutral Hydrogen to form, the pho-
tons decoupled and started propagating freely, preserving their black body distribution.
This cosmic background radiation still pervades the universe today, with a temperature
that has decreased according to the expansion since recombination, resulting in a pho-
ton spectrum that is now peaked around microwave scales. This robust prediction of
the hot big bang scenario was first observed by Penzias and Wilson [PW65], which can
be viewed as the major turning point opening the door to today’s precision cosmology.
Since then, there were several ground based as well as space experiments refining the
measurement of the cosmic microwave background (CMB) over a large range of frequen-
cies to ever higher precision. They unambiguously show that the CMB radiation has
a perfect black body spectrum of temperature TCMB = (2.725 48± 0.000 57) K [Fix09],
which is (after subtracting the dipole due to the solar system’s peculiar motion) ex-
tremely isotropic, and only shows fluctuations of order 10−5. These anisotropies are an

11For a closed universe (k > 0) with ΩΛ large enough, there are parameter choices for which there is
no big bang singularity and the universe instead bounces and re-expands. However, this region of
parameter space is excluded at very high significance by basically all relevant observations.
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imprint of the density fluctuations at recombination and provide a unique opportunity
to constrain cosmological parameters. However, the mere existence of the CMB radi-
ation is already extremely valuable, as it gives unsurmountable empirical evidence for
the hot big bang paradigm, as well as the assumption of isotropy.

The oscillations in the baryon-photon fluid before recombination leave a character-
istic imprint of peaks and troughs in the angular power spectrum of the CMB temper-
ature anisotropies. The concrete positions and relative heights of these peaks are, in
particular, sensitive to the baryon and dark matter densities, and so these parameters
can be measured by fitting the ΛCDM predictions to the observed power spectrum. As-
suming a flat geometry, the best fit values of the Planck 2015 data [A+15a]—presenting
the latest and most accurate CMB measurements to date—are ΩΛ = 0.692±0.012 (and
thus Ωm = 0.308±0.012), Ωbh

2 = 0.02226±0.00023 and ΩDMh
2 = 0.1186±0.0020. The

Hubble constant can also be obtained from the CMB data alone, and was determined
from the Planck data as H0 = (67.81± 0.92) km s−1 Mpc−1. Furthermore, the base
ΛCDM model provided an excellent fit, and no extensions of this model were favored
by the data. The Planck results are in excellent agreement with the standard theory of
BBN, and in good agreement with observations of SNe and BAO12 (see next section).
The low value for H0, however, is in slight tension (∼ 2σ) with direct astrophysical
measurements. This might be a sign for new physics, but could as yet still turn out to
be caused by an underestimation of systematic errors.

Furthermore, the CMB data can be used to constrain the initial conditions of the
primordial fluctuations. The observations show that the scalar perturbations are given
by a Gaussian, nearly scale invariant, but slightly red-tilted spectrum. Since this is a
very generic prediction of inflationary models (see Sec. 1.1.3), the CMB temperature
anisotropies provide strong evidence in favor of cosmic inflation.

Large scale structure and baryon acoustic oscillations

The cosmological principle, assuming homogeneity and isotropy, is clearly violated on
small scales. After all, there are planets, stars, galaxies, galaxy clusters, etc. How-
ever, observations of the large scale structure in our universe show that when aver-
aged over the cosmic web—consisting of walls, filaments and voids—at ∼ 100 Mpc
scales [SYPB09, S+12], the universe does indeed become homogeneous.

Furthermore, the statistical distribution of galaxies is sensitive to the angular diam-
eter distance dA(z) = dL(z)(1 + z)−2 and thus to the history of the Hubble parameter,
i.e. H(z), which in turn depends on the Ωs. The regular, periodic features in the corre-
sponding power spectrum, caused by sound waves in the baryonic plasma in the early
universe, are referred to as baryon acoustic oscillations (BAO) and provide another
useful standard ruler for cosmology, see [BH10] for a review. A great advantage over
standard candles like SNe is that BAO are dominated on relatively large scales, on
which inhomogeneities can still be treated linearly today, and so they are only sub-

12There is, however, a slight tension (∼ 3σ) with recent high redshift BAO measurements [A+15a].
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ject to well understood, linear physics. They are particularly useful for constraining
cosmological parameters when combined with measurements of the CMB anisotropies.
In particular, allowing for spatial curvature, the combination of CMB and BAO mea-
surements yields Ωk = 0.000 ± 0.005 [A+15a], i.e. our universe is now observed to be
spatially flat to better than one percent accuracy. Furthermore, allowing the equation
of state of dark energy to differ from a pure CC, for instance parametrized in the form
w(a) = w0 + (1 − a)wa, the current observations give the constraints w0 = −1.04+0.72

−0.69

and wa < 1.32 [A+14], in very good agreement with a CC.

1.1.3 Inflation

It is now widely believed that the era of radiation domination was preceded by a period
of accelerated expansion, called cosmic inflation. The benefit of this scenario is twofold:
First, it solves three major puzzles of the standard big bang scenario: the flatness,
horizon and monopole problem; This was the original motivation to study inflationary
models [Gut81, Lin82, AS82]. Second, it provides a natural mechanism to generate the
primordial fluctuations in the CMB, from which all the structure in the present universe
originates—via quantum fluctuations in the inflaton field, which get magnified during
the inflationary expansion [MC81, Haw82, GP82, Sta82, BST83]. While the first reason
is more or less a philosophical one,13 the second one allows to make rather robust and
falsifiable predictions which can be tested by CMB measurements. This fact has given
inflation the status of a scientific theory, the test of which is now a major subject of
observational cosmology. Current state of the art measurements of the CMB are in
perfect agreement with the simplest slow-roll inflationary models [A+15b].

1.2 The cosmological constant problem

The wealth of observational evidence clearly shows that the energy budget our universe
is currently dominated by “dark” components: roughly 70% dark energy, and 25% dark
matter, whereas only an embarrassingly small amount of about 5% can be attributed
to known Standard Model (SM) particles. From a purely cosmological point of view,
there is no problem with the dark components: they are perfectly fine sources in the
Einstein equations, and the ability of the simple ΛCDM model to fit this huge amount
of different observations with just a few parameters is highly nontrivial and a great
success of cosmology. However, there is more to physics than cosmology, and one
would certainly like to understand the dark side of the universe from a microscopic

13Regarding the flatness and horizon problem, one could always argue that the initial conditions of
the universe were either fine-tuned, or controlled by the as yet unknown theory of quantum gravity,
whereas the monopole problem assumes a grand unified theory (GUT), for which there is no direct
experimental evidence yet. However, inflation is preferred by most physicists as it resolves these
puzzles in a natural way without relying on unknown quantum gravity, and prevents cosmology
from ruling out GUTs.
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point of view.
Regarding dark matter, there are several—in fact rather natural, or independently

supported—extensions of the SM that provide good candidates for dark matter par-
ticles, in particular:14 (i) weakly interacting massive particles (WIMPS) that arise
as lightest super-partners in supersymmetric extensions of the SM; (ii) axions, which
are inevitable if the strong CP problem is to be solved by a mechanism à la Peccei-
Quinn [PQ77b, PQ77a].

On the other hand, for dark energy there already exists an apparently ideal candidate,
even within the SM: vacuum energy, i.e. the energy of the vacuum state of quantum field
theory. Local Lorentz invariance implies that it has to take the form T

(vac)
µν = −ρvac gµν ,

and is hence equivalent to a cosmological constant Λ ≡ ρvac/M
2
Pl. So one might think

that there is no mystery with dark energy, it is simply vacuum energy. However, in
this case the opposite problem occurs: we would expect the contribution from vacuum
energy to be much larger than what is observed in cosmology.

To verify this statement, let us first estimate the cosmologically measured value of
ρvac ≡ 3ΩΛM

2
PlH

2
0 . Plugging in the numbers ΩΛ ≈ 0.7, H0 ≈ 70 km s−1 Mpc−1 ∼

10−33 eV and MPl ∼ 1027 eV, we arrive at ρvac ∼ 10−12 eV4.
Next, we should say something about the theoretical expectation for ρvac. Classically,

there would in fact be no expectation at all; it represents a single free parameter in
the theory, the value of which simply has to be inferred from experiment. Quantum
mechanically, however, things are quite different. The reason is that in quantum field
theory (QFT), there are loop Feynman diagrams that contribute to the vacuum en-
ergy.15 For instance, summing up all the zero modes of a single scalar field φ of mass
m would give a contribution

ρφ =

∫ ∞
0

4πk2dk

(2π)3

1

2

√
k2 +m2 . (1.2.1)

This integral is divergent, so to get a finite result one has to introduce a cutoff M � m,
yielding the leading contribution

ρφ ≈
M4

16π2
. (1.2.2)

Now the CC problem is often phrased in the following way [Wei89]: If we trust our
field theory up to the Planck scale, we should choose for the cutoff M ∼ MPl, giving
an estimate for the vacuum energy of ρφ ∼ 10106 eV4, which is 118 orders of magnitude
larger than the observed value. However, this argument is rather problematic, because
we used the cutoff dependent result (1.2.2) to make this estimate; but from QFT we
know very well that, while it is usually necessary to introduce a cutoff (or some other

14See [Wei08, Chapter 3.4], and [BHS05] for a more extensive review on DM candidates.
15They are usually taken to be bubble diagrams with no external legs. More accurately, they should

be thought of as coupling to external graviton lines, since gravity provides the probe by which they
are measured.
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sort of regulator) during a loop calculation, in the end no physical observable can
depend on this cutoff.

Thus, if we want to make any reasonable statement about the observable vacuum en-
ergy, it should better be independent of an arbitrarily chosen cutoff. This can indeed be
done in an effective field theory (EFT) framework [BvN13]: In the modern, Wilsonian
interpretation, any QFT should be regarded as an EFT that is only valid up to some
high energy scale M , that arises from a more fundamental (possibly unknown) UV
theory by integrating out all degrees of freedom above M . One can then systematically
investigate how the parameters in the EFT change as the cutoff M is raised or lowered.
But the crucial point is that, again, any physical observables that can be calculated
will be independent of the cutoff. After all, we can choose M completely arbitrarily,
thereby conveniently dividing the world into low energy degrees of freedom, which are
resolved dynamically, and high energy degrees of freedom, the complete effect of which
has been absorbed in the EFT parameters. The outcome of an experiment can clearly
not depend on this arbitrary choice.

Now imagine that we choose the cutoff just abovem, and calculate the vacuum energy
in this EFT. Since the φ field is included in the dynamical content of the theory, it
again adds a one-loop contribution

ρφ =

∫ M

0

4πk2dk

(2π)3

1

2

√
k2 +m2 (1.2.3a)

=
1

16π2

[
M4 +m2M2 +

m4

8
+
m4

2
ln
( m

2M

)
+m4O

(
m2

M2

)]
. (1.2.3b)

Note that this time we kept all the sub-leading terms that were neglected before in
Eq. (1.2.2). This is crucial because, as we said, the physical result can not depend on
M , and so all M -dependent contributions in (1.2.3b) have to be canceled by appropriate
counter-terms. But now we see that there is also an M -independent contribution ∝ m4,
which survives after renormalization and enters into the physically observable vacuum
energy.16 Therefore, we can conclude that

ρphys = ρbare +
m4

128π2
, (1.2.4)

where ρbare ≡ M2
PlΛbare is the bare value of the vacuum energy in our EFT. Applying

this line of reasoning for example to the electron, which has a mass me ≈ 0.5 MeV, we
see that the observed value of the vacuum energy in an EFT with cutoff just above me

implies a cancellation between ρbare and m4
e to a precision of about 32 decimal places!

Of course, as we raise the EFT cutoff just above the electroweak scale to include the
whole SM, the required fine-tuning becomes even worse; after including for instance
the Higgs boson with mass mH ≈ 125 GeV , the required cancellation already spans a
fantastic number of 54 orders of magnitude. This very unnatural “explanation” of the

16This could also have been anticipated by dimensional analysis.
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smallness of the vacuum energy constitutes the CC problem.17

The fact that the amount of fine-tuning increases as we raise the cutoff is particularly
worrisome, because standard EFT reasoning suggests that by doing so, the theory
becomes more and more fundamental. In particular, this means that the CC problem
cannot be solved by modifying the theory in the UV. For instance, supersymmetry
cannot help because it has to be broken at least up to the electroweak scale, so it
could at best dispose of a need for fine-tuning above this scale. But the 53 orders
of magnitude certainly remain. Instead, we are faced with a low energy problem,
indicating that it might be addressable by new physics in the IR. Furthermore, since
the empiric value of ρvac can only be inferred gravitationally, a promising route might
be to modify the theory of gravity in the IR. The hope would be to come up with some
sort of “degravitation” mechanism, i.e. a modification that renders the curvature of
spacetime (which is what we observe to be small) insensitive to vacuum energy (which
is what we expect to be large). We will now briefly review why the most straight-
forward implementation of this idea, only supplementing 4D GR by additional degrees
of freedom which should dynamically cancel the CC, is bound to fail. Afterwards, we
will explain what can be learned from this when seeking for successful degravitation
mechanisms, and in particular why extra dimensions could provide a promising window
of opportunity.

1.2.1 Weinberg’s no-go theorem

Before trying to come up with ways to tackle the CC problem, it is helpful to know
what has already been tried and failed. Perhaps the most powerful insight in this
regard was gained by Weinberg [Wei89],18 who proved a very general no-go theorem
which we shall briefly review. It rules out a broad class of potential solutions, namely
those in which gravity is a 4D covariant metric theory, and additional fields lead to
an automatic cancellation of the CC. This idea is usually called an adjustment or self-
tuning mechanism. The proof can be sketched as follows. (For simplicity, we focus
on the case with one additional scalar field φ, but it can in fact be generalized to an
arbitrary—but finite—field content [Wei89].) The goal is to obtain flat equilibrium
solutions, i.e. solutions for which both the metric and the scalar field are constant
throughout spacetime. The corresponding field equations thus simplify to19

∂L

∂φ
= 0 ,

∂L

∂gµν
= 0 . (1.2.5)

17For a slightly different modern perspective on the CC problem (and the suggestion of a poten-
tial solution) see [KP14]. There, it is pointed out that higher loop corrections also usually give
contributions of order m4, making the vacuum energy radiatively unstable.

18For more recent reviews, see e.g. [Wei96, Bur13, KP14]
19Here, L denotes the total Lagrangian density without the metric determinant factor, i.e. the action

is S =
∫

d4xL.
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Using the GL(4) symmetry which constant solutions inherit from general covariance,
one can show that they imply (on-shell)

L = c
√
−g , (1.2.6)

where c is independent of gµν . The trouble is that then there are only solutions to the
metric field equations if c is tuned to zero. Now the adjustment idea is to promote this
tuning to a self-tuning, thus allowing for natural solutions. This could in principle be
achieved by assuming the trace of the gravitational field equations to be proportional
to the scalar field equations,

gµν
∂L

∂gµν
∝ ∂L

∂φ
. (1.2.7)

In this case, flat spacetime solutions would be guaranteed by the existence of a solution
to the scalar field equations with constant φ. The problem is that—without fine-
tuning—no such solution exists. This can be seen by noticing that (1.2.7), after a
suitable scalar field redefinition, translates into the symmetry requirement

δgµν = 2εgµν , δφ = −ε , (1.2.8)

which is nothing but a scale invariance. It demands that the Lagrangian for constant
fields takes the form

L = c0

√
−g e4φ , (1.2.9)

with c0 independent of both φ and gµν (but it could depend on other degrees of freedom
which we are neglecting here). Hence, for c0 6= 0, there is no minimum for the scalar
potential and thus no constant solution. In other words, flat spacetime solutions are
again only achieved by fine-tuning c0 = 0 (which would ultimately again be spoiled by
quantum corrections due to massive loops). One might hope that the problem could
still be solved by allowing for the non-constant runaway solutions φ→ −∞. However,
while this would indeed dynamically adjust R → 0, it would also make all masses
vanish by approaching the scale invariant point [Bur13, KP14]. In this case we have
gained nothing because the CC problem would not exist without massive particles in
the first place, and—more importantly—this is obviously not the world we live in.

1.3 Braneworlds and Degravitation

The above no-go result is very useful because it applies to a very general class of models;
hence, when seeking for a solution to the CC problem, we should better relax at least
one of the assumptions that went into its derivation. One assumption was that gravity
is described by a 4D metric; to some extent, the problem can be phrased by saying
that the 4D vacuum energy inevitably curves 4D spacetime. But this rigid relation
can be relaxed if we consider a braneworld scenario, according to which our universe
is merely a 4D hypersurface (a brane) embedded in a higher-dimensional spacetime
(the bulk) [RS83, AHDD98, RS99a, RS99b, AHDKS00, KSS00]. In this case, it is
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possible that also the extra space gets curved by the vacuum energy on the brane,
thereby reducing the intrinsic 4D curvature R(4) which we observe—or, equivalently,
the corresponding effective 4D CC Λeff that we would ascribe to it—thus allowing for
degravitation [DGS03, DGS02, AHDDG02, DHK07, dRHKT08].

A particularly promising setup is provided by two extra bulk dimensions: In this
case, the brane-tension (i.e. 4D CC) of our codimension-two universe only curves the
extra space into a cone, leaving the 4D brane spacetime completely flat [Sun99, CLP00,
CG03], just like a usual cosmic string in 4D GR [Vil81, His85]. In other words, Λeff is
exactly zero, irrespective20 of the value of Λ, i.e. the 4D CC is completely degravitated.

Therefore, a codimension-two braneworld seems like the ideal candidate for address-
ing the CC problem. But this proposal also confronts us with an immediate problem:
in our universe gravity obeys the Newtonian 1/r2 force law, at least on all length
scales where we have tested it. But if gravitational field lines would spread out equally
through all six bulk dimensions, we would obtain a 1/r4 scaling instead. So any re-
alistic codimension-two model must be equipped with some mechanism which ensures
that the field lines cannot leak too far into the bulk, so that the inverse square law
is recovered (at least approximately) on all relevant scales. At the moment, there are
basically two known mechanisms that can achieve this:

(i) Compact extra dimensions : In this (more traditional) approach the extra space
has a finite extent, which prevents the field lines from spreading out too far
into the bulk. This effect only becomes negligible once a brane observer probes
distances small enough so that all directions start to look the same locally. Hence,
these models yield a UV modification, where gravity becomes higher dimensional
at distances smaller than the size of the extra space.

(ii) Brane induced gravity (BIG): The bulk volume is infinite, and the idea is to
add a brane-localized 4D Einstein-Hilbert term to the action. If its coefficient
is identified with the 4D Planck mass MPl, the correct Newtonian force law is
recovered for small enough distances. Pictorially speaking, the gravitational field
lines are pulled onto the brane by the additional induced gravity term. A certain
ratio of MPl to the corresponding bulk gravity scale defines a crossover length,
above which the field lines start leaking and gravity becomes six dimensional.
This model thus provides a genuine IR modification of gravity. Originally, it was
developed with one extra-dimension [DGP00] and dubbed the DGP model, which
will be reviewed in Sec. 1.4; but in principle, the mechanism can be generalized to
arbitrary higher codimensions [DG01, DGHS03], in particular to the auspicious
6D case.

One of the main goals of this thesis (achieved in Chap. 5) is to study proposal (ii),
i.e. codimension-two BIG, in great detail: to derive its (nonlinear) cosmological pre-

20This only holds for sub-critical tensions M2
PlΛ < 2πM4

6 , meaning that the deficit angle is less
than 2π. The super-critical case will also be studied in this thesis (Chap. 6), revealing inflating
backgrounds as the correct geometries.
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dictions in the presence of FRW matter on the brane, thereby in particular testing
its potential to dynamically degravitate, and to investigate its theoretical as well as
phenomenological consistency.

The virtue of infinite extra dimensions to address the CC problem has already been
pointed out in the literature [DG01, DGS02, DGS03, AHDDG02]. One crucial differ-
ence to compact scenarios is that one cannot write down a local effective low energy
theory with a finite number of degrees of freedom. Either, one has to work with
the full higher-dimensional theory, or one ends up with nonlocal effective interactions.
Hence, Weinberg’s no-go theorem is not applicable to the effective 4D theory. This
is in contrast to option (i) above, because there the theory always admits the usual
Kaluza-Klein reduction [Kal21, Kle26], leading to a local 4D EFT with finitely many
degrees of freedom. Therefore, Weinberg’s argument applies, and one expects that
perfect degravitation can only be achieved by some sort of fine-tuning. This was in-
deed confirmed explicitly since the earliest attempts [Sun99, CG03, NPT04, GP04].
Nonetheless, there have been claims in the recent literature that this problem could
be avoided in the concrete compact model of supersymmetric large extra dimensions
(SLED) [ABPQ04, BvN11, BvN13]. Another major part (Chap. 7) of this thesis is
thus devoted to the tuning issue within the SLED proposal.

1.3.1 Other reasons to modify gravity

Even though the idea to degravitate the CC is one of the major motivations to modify
general relativity, it is of course not the only one. For instance, in addition to the
“old” CC problem (why is Λeff so small?), the observational detection of a dark energy
component in our universe adds to this a “new” CC problem (why is Λeff not zero?).
This of course only becomes a problem if we were to come up with a solution to
the old problem that would predict Λeff to be exactly zero (as e.g. expected for the
codimension-two BIG scenario). But taking this point of view, one can start to think
about modifications of GR which could explain the accelerated expansion without the
need of a cosmological constant. In fact, this is one of the main reasons why the DGP
cosmology attracted a lot of attention in the literature: it contains a self-accelerating
branch, on which a de Sitter phase is realized despite Λ = 0, cf. the end of Sec. 1.4.2.

Another motivation is that even though the cosmological concordance model does a
very good job at fitting a large number of observations, it might still be that there is
an alternative theory that would provide a better fit.21 Or even if it does not, it would
be useful to see other models failing because this would give us even more confidence
in the concordance model. Of course, if dark matter particles will not be detected,
ΛCDM will face yet another problem that will motivate the search for alternatives.

21It should also be mentioned that there are indeed some shortcomings of the ΛCDM model on
small (i.e. galactic) scales, like the core-cusp problem [dB10], missing satellites [MGG+99], or a
lack of explaining the Tully-Fisher relation [MSBdB00] (for further problems, see [K+10] and the
discussion in [CFPS12]). However, some of them hinge on numerical studies and might still turn
out to be low-resolution artifacts.
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Finally, GR has at some point to be reconciled with the framework of quantum field
theory, which describes all non-gravitational physics so successfully. While this can
be done at low energies by treating perturbative quantum gravity as an EFT (which
is a predictive theory) [Don94b, Don94a, Bur04], problems arise at high energies due
to the non-renormalizability of GR. At present, the most prominent candidate for a
UV completion of quantum gravity is string theory (or M theory), which requires ten
(or eleven) dimensions for consistency, and thus motivates studying extra-dimensional
scenarios. Furthermore, branes are naturally incorporated in string theory as objects
on which open strings can end (D-branes), and so it is conceivable that some suc-
cessful braneworld modification of GR could ultimately be embedded within string
theory. In this work, however, we will not worry about this question but rather follow
a top-down approach by first investigating the gravitational consequences of certain
braneworld models treated as EFTs. If interesting models were found this way, one
could subsequently ask whether they can also arise as the low energy limits of certain
UV completions of quantum gravity.

1.4 DGP model

In this section, we give a short review of codimension-one BIG, better known as the
Dvali-Gabadadze-Porrati (DGP) model [DGP00]. After defining the theory, the main
focus will be on the derivation of the cosmological solutions, and why they can be de-
rived in such a straightforward manner—without assumptions about the bulk geometry
other than 4D FRW symmetries. These insights will be important in pinning down the
main obstacle when generalizing this procedure to the codimension-two setup, which
is one of the main objectives of this thesis.

1.4.1 Theory

In the DGP model, our 4D universe is a codimension-one brane in a five-dimensional
bulk. The corresponding action reads

S =
M3

5

2

∫
d5X

√
−g(5)R(5) +

∫
d4x
√
−g

(
Lm +

M2
Pl

2
R
)
, (1.4.1)

where M5 is the 5D Planck mass (i.e. bulk gravity scale), and R(5) denotes the Ricci
scalar that is constructed from the bulk metric g(5). In other words, the first term
is simply the 5D Einstein-Hilbert action describing pure gravity in the bulk. The
second term is the brane action, with Lm incorporating all matter degrees of freedom
(ultimately the Standard Model), which are localized on the codimension-one defect
and minimally coupled to gravity; and, crucially, there is also a brane-localized 4D
Einstein-Hilbert term, i.e. the 4D Ricci R built from the induced metric g. In fact,
this last term should in principle always be included from an EFT point of view,
because it arises naturally if heavy degrees of freedom on the brane are integrated out.
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It is therefore usually referred to as the brane induced gravity (BIG) term, and is the
vital ingredient to achieve a 4D gravity regime in the DGP setup, even though the
extra dimensions are neither compact nor warped (as in other braneworld scenarios
like [AHDD98, RS99a, ABPQ04]). In order for the model to be phenomenologically
viable, its coefficient MPl has to be identified with the 4D Planck mass.

By studying linear perturbations around Minkowski (brane and bulk), one can ex-
plicitly show that this 4D regime is indeed realized for small enough distances, where
the gravitational potential of a point source goes like ∼ 1/r, and turns to a 5D scaling
∼ 1/r2 at large distances. The transition occurs at the crossover scale22

rc :=
M2

Pl

2M3
5

. (1.4.2)

There is, however, a difference to 4D GR at the linear level: the tensor structure of
the on-brane graviton propagator differs from the GR form, and is instead that of (lin-
ear) 4D massive gravity, which would lead to light bending predictions incompatible
with observations. However, this vDVZ discontinuity [vDV70, Zak70] was shown to
be an artifact of the linear treatment, and is in fact absent in the full nonlinear the-
ory [DDGV02, Gru05, Por02]. This is the analogue of the Vainshtein mechanism [Vai72]
in massive gravity, saying that the linear perturbation theory breaks down close to
heavy sources, at the so-called Vainshtein radius, and the nonlinear corrections ensure
that the correct GR limit is recovered.

The vDVZ discontinuity and the Vainshtein mechanism in the DGP model can be
traced to a helicity-0 mode that exists in the effective 4D description of the theory,
but gets screened due to nonlinearities close to a source. However, this scalar mode
also leads to a strong coupling problem [LPR03, Rub03, Dva06]: for rc ∼ H0, quantum
fluctuations around Minkowski become strongly coupled at ∼ 1000 km. While it has
been argued that this scale can be reduced (to ∼ 1 cm on the surface of the earth) and
the observational effects sufficiently screened [NR04], there are also doubts whether
this would actually happen in a specific UV completion [KPSS15].

1.4.2 Cosmology

The cosmological solutions for a codimension-one brane, describing the evolution of
the on-brane scale factor in terms of a modified Friedmann equation, were first derived
in [BDL00, BDEL00], and later generalized to include BIG terms, i.e. to the case of
DGP cosmology, in [Def01]. Since one of the main goals in this thesis is to derive the
analogous equations in generalizations of the DGP model, it is worthwhile to review
the (rather simple) derivation in the DGP case here in this introduction.

22Throughout this chapter, rc refers to the 5D crossover scale. In later chapters, rc will be used for
the analogous 6D crossover scale, and the 5D one will be denoted by rDGP

c .
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Derivation

To this end, we assume the bulk to be empty, and the brane to be filled with a per-
fect fluid in a 3D homogeneous and isotropic way.23 The most general bulk metric
compatible with these symmetries can be written as

ds2 = − e2N(t,y) dt2 + f(t, y) dt dy + e2A(t,y) δij dxidxj + e2B(t,y) dy2 . (1.4.3)

This can further be simplified by adopting Gaussian normal coordinates24 in y direction.
They are constructed by using the proper distance along brane-orthogonal geodesics
as the new coordinate. As a consequence, the metric then takes the form25

ds2 = − e2N(t,y) dt2 + e2A(t,y) δij dxidxj + dy2 , (1.4.4)

and the brane is located at y = 0. Hence, the induced metric is simply (1.4.4) evaluated
at y = 0,

ds2
(4) = −dt2 + e2A0(t) δij dxidxj , (1.4.5)

where A0(t) := A(t, 0), and we used a global rescaling of time to set N(t, 0) = 0, so that
t measures proper (cosmological) time on the brane. From Eq. (1.4.5), the on-brane
scale factor, and the corresponding Hubble parameter can be identified as

a(t) ≡ eA0(t) and H(t) ≡ dA0(t)

dt
, (1.4.6)

respectively. Like in standard cosmology (at the homogeneous and isotropic level), the
entire cosmological dynamics that an on-brane observer can measure is encoded in this
single function, and the goal is to derive the modified Friedmann equation determining
its evolution.

The above construction of Gaussian normal coordinates is always possible, at least
in a neighborhood of the brane,26 which is sufficient for our purposes. In addition to
simplifying the metric, this choice of coordinates also simplifies the equations of motion:
Instead of needing to use Israel’s junction conditions [Isr66, Isr67], the equations of
motion can be written in a concise way with a delta function,

M3
5G

(5)
MN = δ(y)δµMδ

ν
N

(
Tµν −M2

Pl Gµν

)
⇔ G

(5)
MN = δ(y)δµMδ

ν
N T̃µν , (1.4.7)

where we defined the effective energy momentum tensor

T̃µν :=
1

M3
5

(
Tµν −M2

Pl Gµν

)
. (1.4.8)

23Furthermore, for simplicity, we restrict ourselves to 3D spatially flat geometries and set the bulk
CC to zero. For the general case of nonzero 3D curvature and bulk CC, the interested reader is
referred to the literature [Def01].

24See, e.g. [Car04, Appendix D].
25By a slight abuse of notation, we use the same names for the coordinates and metric functions as

before. This will not lead to any confusion, as the metric (1.4.3) will not be used anymore.
26The geodesics could cross at some finite distance, leading to a coordinate singularity.
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It represents the source (rescaled by M5 for convenience) which is “seen” from a 5D
GR point of view, i.e. which sources the 5D Einstein tensor, as is clear from the
field equations (1.4.7). Note, however, that the DGP model is not a mere source-
or potential modification, because the BIG terms Gµν contain time derivatives of the
metric, implying a kinetic modification of GR. This should always be kept in mind
when using the shorthand notation T̃µν .

For the cosmological setup, the energy momentum tensor has the form of a perfect
fluid,

T µν = diag (−ρ, p, p, p) , (1.4.9)

with the pressure being related to the energy density via an EOS, p = wρ. Using the
induced metric (1.4.5) to calculate Gµν , one finds that T̃ µν has the same form, but with
the effective fluid components

ρ̃ :=
1

M3
5

(
ρ− 3M2

PlH
2
)
, (1.4.10a)

p̃ :=
1

M3
5

[
p+M2

Pl

(
2Ḣ + 3H2

)]
. (1.4.10b)

Explicitly, the complete set of nontrivial components of the equations of motion (1.4.7)
then read

(tt) : e−2N
(

3Ȧ2
)
− 3

(
2A′

2
+ A′′

)
= δ(y) ρ̃ ,

(1.4.11a)

(xx) : − e−2N
(

3Ȧ2 − 2ȦṄ + 2Ä
)

+ 3A′
2

+ 2A′N ′ +N ′
2

+ 2A′′ +N ′′ = δ(y) p̃ ,

(1.4.11b)

(yy) : − e−2N
(

2Ȧ2 − ȦṄ + Ä
)

+ A′
2

+ A′N ′ = 0 , (1.4.11c)

(ty) : A′Ȧ−N ′Ȧ+ Ȧ′ = 0 , (1.4.11d)

where dot and prime were introduced as shorthand for ∂t and ∂y, respectively. The
junction conditions across the brane can now be obtained by integrating Eqs. (1.4.11a)
and (1.4.11b) over a small region around the brane, viz. y ∈ [−ε, ε], and taking the
limit ε→ 0+. Using the continuity of the metric functions and their first r-derivatives,
this yields27

[A′] = −1

3
ρ̃ and [N ′] =

2

3
ρ̃+ p̃ , (1.4.12)

where the square brackets denote the jump across the brane, i.e.

[f ] := lim
ε→0+

[f(y + ε)− f(y − ε)] , (1.4.13)

27Of course, the same equations would have been obtained by calculating the brane’s extrinsic curva-
ture and implementing Israel’s junction conditions.
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for some function f(y).

Note that ρ̃ = 0 and p̃ = 0 are nothing but the standard 4D Friedmann equations,
cf. Eqs. (1.1.6a) and (1.1.6b). Thus, the junction conditions (1.4.12) can formally
already be regarded as the modified Friedmann equations, with modification terms
proportional to28 M3

5 [A′] and M3
5 [N ′]. But a priori, these jumps are unknown func-

tions of t, which depend on the bulk geometry via (1.4.11)—a complicated system of
nonlinear, coupled partial differential equations (PDE). However, we are in fact not
interested in the full bulk solution. Everything that can be measured by an on-brane
observer is encoded in the induced metric (1.4.5), and so it would be desirable to obtain
a closed set of ordinary differential equations (ODE) for the two on-brane functions
a(t) and ρ(t), like in standard cosmology.

As it turns out, this is indeed possible in the DGP model. The idea [BDL00] is to
use the bulk equations (1.4.11) for y 6= 0, but in the limit y → 0±. Equivalently, one
can take the jump (1.4.13), as well as the mean

〈f〉 :=
1

2
lim
ε→0+

[f(y + ε) + f(y − ε)] (1.4.14)

of the bulk equations. From Eqs. (1.4.11a) and (1.4.11b), one thus obtains four equa-
tions that determine the jumps and means of the second y-derivatives A′′ and N ′′, which
are of no interest. But Eqs. (1.4.11c) and (1.4.11d) only contain first y-derivatives. Us-
ing the identities

[fg] = [f ] 〈g〉+ 〈f〉 [g] and 〈fg〉 = 〈f〉〈g〉+
1

4
[f ] [g] , (1.4.15)

as well as the continuity of the metric functions themselves, this yields four equations
for the four jumps and means of the first y-derivatives N ′ and A′. Explicitly, one
obtains

[yy] : [A′]
(

2〈A′〉+ 〈N ′〉
)

+ [N ′] 〈A′〉 = 0 , (1.4.16a)

〈yy〉 : 2H2 + Ḣ − 1

4
[A′]

(
[A′] + [N ′]

)
− 〈A′〉

(
〈A′〉+ 〈N ′〉

)
= 0 , (1.4.16b)

[ty] : H
(

[A′]− [N ′]
)

+ ˙[A′] = 0 , (1.4.16c)

〈ty〉 : H
(
〈A′〉 − 〈N ′〉

)
+ ˙〈A′〉 = 0 . (1.4.16d)

Equation (1.4.16c) only contains jumps, which can be replaced via the junction condi-
tions (1.4.12), giving

˙̃ρ+ 3H (ρ̃+ p̃) = 0 . (1.4.17)

28Incidentally, this shows that one recovers standard 4D cosmology in the limit M3
5 → 0. This is of

course how the DGP model was designed to work in the first place, and can already be anticipated
from the form of the action (1.4.1) or the equations of motion (1.4.7).
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Due to the 4D Bianchi identities, the tildes can be dropped, and one recovers the
standard 4D energy conservation equation (1.1.7).29

We will now restrict ourselves to Z2 symmetric configurations, i.e. the solution
is assumed to be invariant under y 7→ −y. This is usually30 done in the litera-
ture [BDEL00, Def01, DDG02], and is quite a natural assumption in the codimension-
one setup. In this case, 〈A′〉 = 〈N ′〉 = 0, and so (1.4.16a) as well as (1.4.16d) are
identically fulfilled.31 The only nontrivial remaining equation is (1.4.16b), which—
after using the junction conditions—becomes

2H2 + Ḣ +
1

36
ρ̃ (ρ̃+ 3p̃) = 0 . (1.4.18)

Now this equation only contains intrinsic on-brane functions, i.e. no information about
the bulk geometry is needed anymore. Hence, it constitutes the local modified Fried-
mann equation we were looking for. To be precise, since it contains second time
derivatives of the scale factor, it is the second modified Friedmann equation, analo-
gous to (1.1.6b). The corresponding first modified Friedmann equation can, however,
be obtained analytically as well. To this end, note that after using (1.4.17) to eliminate
p̃ it can easily be integrated,

d

dt

(
H2 − ρ̃2

36

)
= −4H

(
H2 − ρ̃2

36

)
⇒ ρ̃2

36
−H2 = Ca−4 , (1.4.19)

where C is a constant of integration. Plugging in the definition of ρ̃, the explicit form
of the (first) modified Friedmann equation finally reads

3M2
PlH

2 = ρ+ 6M3
5σ
√
H2 + Ca−4 , (1.4.20)

with σ = ±1. This is the equation derived in [Def01] (specialized to our choice of
zero 3D curvature and bulk CC). It is the standard Friedmann equation (1.1.6a) plus
a modification term, the size of which is controlled by the bulk gravity scale M5.

One can already see that for σ = +1, it admits solutions with ρ = 0—i.e. without
any source—but H 6= 0 (in particular H = rc = const for C = 0). Therefore, this is
usually called the self-accelerating branch, while σ = −1 is referred to as the normal
branch.

In turn, it is tempting to infer from (1.4.20) the existence of degravitating (p = −ρ
but H = 0) solutions in the normal branch with C > 0. However, this is not the case
because (1.4.18) shows that H ≡ 0 requires the EOS p = −ρ/3. (Note that for H = 0,
the second Friedmann equation cannot be replaced by the energy conservation equation,

29Alternatively, this follows (more abstractly) from the Gauss-Codazzi relation, which—together with
the vacuum field equations and the 4D Bianchi identity implies ∇µTµν = 0.

30See however [Pad05a, Pad05b, OGP09].
31Without assuming Z2 symmetry, these equations can be used to eliminate the means 〈A′〉 and 〈N ′〉,

and Eq. (1.4.16b) would also yield the modified Friedmann equation. It would modify the Z2

symmetric counterpart (1.4.18) by an additional term ∝ exp(−8a)(ρ̃+ 3p̃)/ρ̃3.
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as its derivation assumes H 6= 0.) However, there is indeed some degravitation—H is
smaller than in standard GR—although this effect is too small to help with the CC
problem, cf. the phenomenology discussion below.

Bulk geometry

Before reviewing the phenomenology of the DGP cosmology, let us discuss a crucial
physical property of the codimension-one setup, which allowed for this simple derivation
of a modified Friedmann equation, but which will not apply to higher dimensional
generalizations. It is quite remarkable that the entire dependence of the on-brane
evolution described by (1.4.20) on the bulk geometry is encoded in the single constant
C. In order to better understand how this is possible, let us investigate the complete
bulk solution.

Incidentally, it turns out that here in the codimension-one case, the full nonlinear
bulk field equations can even be solved exactly [BDEL00]. Indeed, Eq. (1.4.11d) can
immediately be integrated, giving

N(t, y) = A(t, y)− A0(t) + ln

(
Ȧ(t, y)

H(t)

)
, (1.4.21)

where the boundary condition N0 = 0 was already implemented, and we assumed
H 6= 0 in order to have a nontrivial cosmology. After plugging this into (1.4.11a), it
can be integrated as well, yielding32

A(t, y) = A0 +
1

2
ln
(

1± 2y
√
H2 + Ca−4 + y2H2

)
, (1.4.22)

where C is a constant of integration (which will turn out to be the same as the C in-
troduced above), and the sign of the square-root can be chosen freely. In order to have
a nonvanishing jump [A′] (and thus a nontrivial modification to the Friedmann equa-
tion), either the integration constant or the sign (or both) has to be chosen differently
in the half-spaces y > 0 and y < 0.

Assuming again Z2 symmetry across the brane, the constant C must be identical on
both sides, and the sign must be opposite. However, we can still choose whether it is
the plus (minus) sign for y > 0 (y < 0), or vice versa. The corresponding solution can
thus be written as

A(t, y) = A0 +
1

2
ln
(

1 + 2σ|y|
√
H2 + Ca−4 + y2H2

)
, (1.4.23)

where σ = ±1 chooses the branch. From this we can, as a consistency check, calculate
the jump

[A′] = 2σ
√
H2 + Ca−4 , (1.4.24)

32Strictly speaking, Eq. (1.4.11c) also needs to be used to eliminate one otherwise arbitrary function of
y, because it is only first order in ∂y. Equation (1.4.11b) is then already fulfilled, as is guaranteed
by the Bianchi identities.
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which, after using the junction condition (1.4.12) indeed reproduces the modified Fried-
mann equation (1.4.20).

Now we have learned that also the full bulk solution (1.4.21), (1.4.23), is completely
determined by one single constant C (and a choice of sign). This implies that there can
not be any propagating degrees of freedom in the bulk: those would require the freedom
to specify initial conditions, and hence arbitrary functions in the general solution.
In other words, even though the solution (1.4.21), (1.4.23) depends on t, this time-
dependence can in fact not be physical, but must be a mere coordinate artifact. This
can be seen more explicitly by transforming to new coordinates (t, y) 7→ (T, Y ) as
follows (for C 6= 0): Defining T (t, y) as the solution of the differential equations33

Ṫ = σ1

(
Ȧ2

C
e4A + e2N

)1/2

eA , T ′ = σ2

(
A′2

C
e4A−1

)1/2

eA , (1.4.25)

with the signs σ1,2 chosen such that σ1σ2 = sgn(ȦA′), and Y (t, y) as

Y :=
1

α

(
1− e2A

)
, α := ±2

√
C , (1.4.26)

the bulk metric takes the form

ds2 = − (1− αY )−1 dT 2 + (1− αY ) δij dxidxj + dY 2 . (1.4.27)

This is the 5D generalization of the 4D vacuum solution with 2D planar symmetry,
first found by Levi-Civita [Lev18] (see also Sec. 2.4.1), to a 3D hyperplane. From this
form it is obvious that the bulk geometry is indeed static. The entire dynamics on the
brane comes from the fact that it is not located at Y = const, but moves34 through
the static bulk geometry at a nonvanishing speed dY0/dt = 2Ha2/α.

The fact that the most general plane-symmetric vacuum solution is static means that
there exists a version of Birkhoff’s theorem for the case of planar symmetry. In 4D,
this was discovered by Taub [Tau51]:

“A space-time with plane symmetry with Rµν = 0 admits a coordinate
system where the line element is independent of x0, that is, is static.”

Here, “plane symmetry” refers to translational and rotational symmetry in the two
directions of the plane.35 Above, we have explicitly shown that Taub’s theorem also

33The integrability condition of those is fulfilled, as can be checked explicitly by plugging in the
solutions (1.4.21), (1.4.23) for N and A.

34Equivalently, from the brane point of view, the static bulk geometry is pulled towards (or pushed
away from) the brane.

35As an aside, note that the theorem does not rule out plane gravitational waves, i.e. waves propa-
gating in one direction through space. Indeed, exact vacuum solutions describing plane waves are
known [Bri25], see also Sec. 2.4.3. But those always dependent differently on the two plane direc-
tions, i.e. they are not plane symmetric. A similar statement also holds for spherical gravitational
waves, cf. Sec. 2.4.4.
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holds in the generalized case of a three-dimensional (spatially flat) homogeneous and
isotropic hyperplane in a 5D spacetime.

For positive 3D spatial curvature, the brane has the topology of a 3-sphere, and
the corresponding solution would be 5D Schwarzschild [Def01, GKMP07]. (This is
why the constant C is usually referred to as the Schwarzschild mass parameter in the
literature. For vanishing 3D spatial curvature, however, the name Levi-Civita mass
parameter is more adequate.) Hence, the statement that the symmetries imply a static
bulk geometry also holds in this case, where the appropriate generalization of the actual
Birkhoff theorem to a 3-sphere applies.

Note that the case C = 0 was actually excluded above, as the coordinate transfor-
mation (1.4.26), (1.4.25) would then be ill-defined. However, one can find another co-
ordinate transformation in that case, bringing the line element to canonical Minkowski
form [DD00].36 Thus, for C = 0 the solution is not only static, but in fact flat space-
time. This can also be checked in the original coordinates (1.4.4) by calculating the
Riemann tensor, which vanishes for C = 0.

For C 6= 0, spacetime is not flat, as can for instance be verified by calculating the
Kretschmann scalar, i.e. the square of the Riemann tensor, K := RMNPQR

MNPQ.
Explicitly, one finds

K =
9α4

2 (1− αY )4 = 72C2 e−8A . (1.4.28)

Furthermore, this shows that (for C 6= 0) there is a physical (curvature) singularity at
Y = 1/α. However, geodesic motion of massive particles cannot reach this point, and
photons undergo an infinite redshift along geodesics towards the singularity [AG83].
In this sense, the singularity lies “at infinity” and is thus not part of the physically
accessible spacetime.

The Z2 symmetric DGP cosmology solution is obtained by only keeping the part
Y > Y0(T ) of the bulk spacetime (1.4.27), and gluing it together with its mirror image
on the other side. One can easily check that the sign σ, which chooses the DGP
branch, cf. Eq. (1.4.20), is related to the sign of α via σ = − sgn(α). Hence, the normal
branch σ = −1 corresponds to keeping the part of the bulk geometry which contains
the boundary singularity at Y = 1/α, while for the self-accelerating branch σ = +1
the opposite, asymptotically flat half-space is kept, see Fig. 1.1. Moreover, the kink at
the brane is such as if it were created by a positive energy density for σ = −1, and
by a negative one for σ = +1. This can already be inferred from the DGP Friedmann
equation (1.4.20), which implies sgn(ρ̃) = −σ. Hence, the self-accelerating branch—
from the bulk point of view—corresponds to a negative energy density localized on the
brane, suggesting that this solution might not be stable [Def01]. This is indeed the

36One might therefore think that the coordinates (T, Y ) are still valid in that case (even though the
transformation (1.4.26), (1.4.25) are ill-defined), as the metric (1.4.27) also reduces to Minkowski
for α → 0. However, this not quite true: in the correct coordinates XA the brane is not located
at, say, X4 = X4(X0) like in (1.4.27), but rather given by some hyperplane defined by f(XA) = 0,
where the function f depends on all spatial coordinates [DD00]. Otherwise, the metric (1.4.27)
would immediately imply H = 0.
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case, as will be discussed below.

(a) For the normal branch σ = −1, the kink
at the brane corresponds to a positive effective
Levi-Civita mass, and there are singularities in
the bulk (which are, however, not part of the
spacetime, see text).

(b) For the self-accelerating branch σ = +1,
the bulk geometry is asymptotically flat, but
the brane carries a negative effective Levi-
Civita mass.

Figure 1.1: Visualization of the bulk geometry for the DGP cosmology with C ≡ α2/4 6= 0.
The plots show the 5D Kretschmann scalar K ≡ RMNPQR

MNPQ in the static coordi-
nates (1.4.27) at two different moments of (on-brane) time, with Y shifted such that the
brane stays at Y = 0. Larger K corresponds to a smaller scale factor a, cf. (1.4.28).

In summary, the main message of this section is that the cosmological symmetries
(3D homogeneity and isotropy) imply a static bulk geometry for a codimension-one
brane. This is the reason why it was possible at all to derive a local 4D (modified)
Friedmann equation, describing the on-brane evolution in a closed way, without making
any further assumptions. If the bulk geometry could contain propagating degrees of
freedom (i.e. gravitational waves), such a derivation would have been impossible: one
could always have prepared gravitational bulk waves propagating towards the brane,
by choosing appropriate initial conditions in the bulk. When they arrived at the brane,
they would have influenced its dynamics in some arbitrary way. But no such waves are
possible in the codimension-one setup, thanks to Taub’s theorem on plane symmetric
vacuum solutions, which generalizes to 3D (hyper-)planar symmetry in five spacetime
dimensions. Hence, one simply cannot freely choose initial conditions in the bulk which
would respect the symmetries, and so the only impact of the bulk geometry on the on-
brane evolution is encoded in one single constant C, corresponding to the Levi-Civita
mass of the bulk spacetime. In particular, the constant can be set to zero, corresponding
to the brane being embedded in a Minkowski bulk.

As it turns out, no generalization of Taub’s (or Birkhoff’s) theorem holds in the case
of a codimension-two brane, as will be discussed in more detail in Chap. 5. Conse-
quently, the on-brane evolution generally depends on gravitational waves coming from
the bulk, and it will be necessary to exclude such incoming waves in order to arrive at
a unique on-brane evolution. Therefore, a large part of this thesis (Chaps. 2 and 3) is
devoted to the question if (and how) such an outgoing wave condition can be realized.
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Phenomenology

Let us now briefly discuss the phenomenological status of the DGP cosmology; for more
details we refer to the review [MK10] and references therein. We will only consider the
case C = 0, where the brane is embedded into Minkowski space, as is usually done
in the literature. The modified Friedmann equation (1.4.20) can then conveniently be
written as

H2 =
ρ

3M2
Pl

+
σ

rc

|H| , (1.4.29)

where rc is the crossover scale (1.4.2). Obviously, the cosmological evolution is always
close to standard 4D GR at early times when H � rc, but will exhibit a late-time
modification at H ∼ rc.

The self-accelerating branch (σ = +1), with the vacuum solution H = rc, has at-
tracted quite some attention, because it could in principle have provided an alter-
native to dark energy as the origin of the observed accelerated expansion. (That
is, it was a candidate for addressing the new CC problem—of course without say-
ing anything about the old one.) However, it was soon realized that linear pertur-
bations around the self-accelerating branch contain a mode with a negative kinetic
term (“ghost”) [LPR03, NR04, Koy05, GKS06, CGKP06], rendering this branch patho-
logical. There were, however, arguments that the linear analysis is not conclusive,
due to the strong coupling [DGI06, Dva06], as well as arguments against these ar-
guments [Pad07, KS07]. In any case, the self-accelerating cosmology—without an
additional CC—has in the meantime also been ruled out at ∼ 5σ with respect to
ΛCDM [FWH+08].

In the (ghost free) normal branch (σ = −1), there is no self-acceleration, and so
one has to assume a nonzero brane CC in order to be compatible with observations.
In fact, there is even partial degravitation taking place, because the BIG terms shield
some of the CC’s gravitational impact, leaving an effective CC

Λeff = Λ− 3

rc

|H| . (1.4.30)

However, since rc & 1/H0 in order to achieve a viable cosmology, this can at most reduce
Λ by an amount ∼ H2

0 and is therefore irrelevant with respect to the CC problem.
Since the cosmological evolution always reduces to ΛCDM for rc large enough, this
model cannot be ruled out, and observations only place increasing lower bounds on rc.
But there is clearly no evidence in favor of the DGP modifications, and current data
(including Planck 2013) yields H0rc > 12 [Xu14].

1.5 Outline and Summary

We will now present an outline of the rest of this thesis, as well as a brief summary of
the main results that will be obtained.

First, we will investigate the question how an outgoing wave condition can be im-
plemented for gravitating codimension-two objects. A promising tool is provided by a



1.5 Outline and Summary 27

certain decomposition of the Weyl tensor into components with a clear physical inter-
pretation. In particular, it is sometimes claimed in the literature that incoming and
outgoing wave components of the gravitational field could be unambiguously identified
this way. This claim will be scrutinized in Chap. 2, where we will find that while this
identification does work in some cases (e.g. for plane waves), it fails in general—and
in particular in the case of cylindrical waves which we are interested in. Therefore,
this Weyl decomposition cannot be used to derive a local Friedmann equation for a
codimension-two brane.

Physically, the origin of this failure can be traced back to the impossibility of lo-
cally distinguishing incoming from outgoing cylindrical waves—even for a linear wave
equation on a flat background. This will be discussed in detail in Chap. 3, where
the actual nonreflecting boundary condition will be derived, and shown to take the
form of a convolution with a nontrivial retarded integral kernel. In other words, the
outgoing cylindrical wave condition at some fixed radial position is nonlocal in time.
As discovered by Einstein and Rosen, the exact vacuum solution describing cylindrical
waves in GR is—surprisingly—also determined by a function satisfying the exact same
linear wave equation as a scalar field on Minkowski. Therefore, this outgoing wave
kernel also yields the correct boundary condition for codimension-two branes, implying
that the corresponding Friedmann equation also has to be nonlocal. While making the
cosmology of a codimension-two braneworld much more difficult on a technical level,
this observation also shows that Weinberg’s 4D argument is not applicable here, sug-
gesting that these models could indeed be able to incorporate a dynamical adjustment
mechanism that cancels the CC.

But before turning to the actual codimension-two setup, an alternative generalization
of the DGP model will be studied in Chap. 4. In this theory, which we will refer to
as the “cosmic ring”, the DGP model is augmented by an additional compact on-
brane dimension. This setup is the simplest member of the class of hybrid models
containing both compact and infinite extra dimensions. It will be shown that in this
case the Weyl criterion of Chap. 2 is applicable, since instead of cylindrical, plane waves
are emitted. The corresponding (local) Friedmann equations only provide a closed
system once an equation of state for the angular pressure in the compact direction is
specified. We will consider two cases: If this pressure is used to stabilize the compact
dimension, DGP cosmology is reproduced. However, we find that when the brane
enters the CC dominated era, the stabilizing pressure violates the null energy condition,
suggesting that the stabilization should brake down, thus leading to additional late time
modifications. While potentially interesting, the consequences of an explicit UV model
are beyond the scope of this thesis. In the second case we set the pressure to zero.
Most interestingly, we will find degravitating attractor solutions, serving as a proof of
principle; however, this model does not allow for a 4D regime and is thus ruled out
phenomenologically, as will be demonstrated by fitting to SN data.

Chapter 5 finally turns to the actual codimension-two BIG model. To smooth out
the (generically) divergent bulk metric at the brane position, the pointlike defect will
be replaced by a ring of finite circumference, stabilized by a suitable angular pressure.
The cosmological evolution of the brane will then be obtained by numerically integrat-
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ing the full bulk-brane system forward in time.37 Depending on the model parameters
(on-brane energy density and crossover scale), two qualitatively different behaviors will
be found: In the first class of solutions, all brane sources are degravitated, and—by
emitting Einstein-Rosen waves into the bulk—the geometry quickly approaches the
corresponding static, 4D flat solution which is only curved in the transverse bulk di-
mension. This confirms the realization of a dynamical degravitation mechanism at
the fully nonlinear level. In the second class, the solutions behave pathological: the
on-brane geometry super-accelerates, i.e. the Hubble parameter grows unbounded; fur-
thermore, the effective brane energy (= energy + BIG term) which sources bulk gravi-
tons becomes negative, and even tends to −∞. In the subsequent section, by studying
linear fluctuations around the static deficit angle background, a tachyonic ghost mode
is identified as the origin of this unstable behavior. This confirms previous results on a
Minkowski background in the literature,38 but extends the analysis to nonzero values
of the brane tension. Most importantly, it reconciles the codimension-two BIG model
with the physical expectation of a healthy low energy EFT in the following way: The
ghost disappears if the tension is large enough, i.e. it is caused by assuming a large BIG
scale, but keeping the brane tension (unnaturally) small. Finally, the phenomenological
viability of the model is investigated: unfortunately, the healthy parameter regime is
in conflict with the requirement of a successful 4D behavior, and so the model is ruled
out.

The preceding analysis was restricted to sub-critical brane tensions, for which the
deficit angle of the static geometry is less than 2π. Chapter 6 addresses the super-
critical case, for simplicity first in 4D GR. Using the same regularization as before, we
find (numerically) that the corresponding static configuration—which here closes up in
a conical singularity—is unstable. Instead, the expansion rate in axial string direction
asymptotically approaches a constant nonzero value, and the exterior geometry (which
is necessarily compact) takes the form of a growing cigar. Furthermore, the conical
singularity can be avoided in these solutions, and a horizon is formed outside the string.
Moreover, we are able to derive an analytic relation between the string tension and the
axial expansion rate. When generalized to 6D BIG, this yields a Friedmann equation
whose only (leading) modification is a small constant shift in the CC. Therefore, this
model cannot help with the CC problem.

In the final part of this thesis, Chap. 7, we study the SLED model, in which 4D
gravity on the codimension-two brane (without BIG terms) is achieved by compactify-
ing the extra space into a rugby-ball. In the recent literature, this model was claimed
to solve the CC problem if a brane-localized flux (BLF) is included. We show that
(and why) this assertion was wrong, and that the BLF cannot help avoiding a fine-

37Unfortunately, the outgoing wave condition of Chap. 3 will not be helpful here, because the brane
with constant proper circumference has a nonvanishing coordinate-speed in the Einstein-Rosen
frame, cf. Sec. 5.3.1.

38Those were argued to be wrong in another recent publication [BHN12]; we will only briefly com-
ment on the errors that led to this wrong conclusion, for more details see the appendix of our
publication [ENS15].
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tuning that is necessary to obtain 4D flat solutions, in accordance with Weinberg’s
no-go result (which is applicable to compact extra dimensions). The model could still
be relevant if it naturally led to a nonzero, but small enough 4D curvature. The fact
that the observed vacuum energy scale is of the same order as the Kaluza-Klein scale
corresponding to the largest allowed size of the extra dimensions suggests that this
might indeed be possible. However, by constructing explicit bulk solutions (again us-
ing the ring regularization), we find that this is not the case: For a nonzero brane
width, there are contributions to the 4D Ricci scalar which are way too large to be
phenomenologically viable, unless the brane width were allowed to be much smaller
than the fundamental Planck length. Furthermore, even if this were tolerated, a scale
invariance breaking brane tension (as should be expected for a realistic setup contain-
ing the Standard Model on the brane), would make either the bulk volume or the brane
curvature (or both) much larger than phenomenologically allowed, unless again some
sort of fine-tuning is assumed. In summary, we thus find that the SLED model cannot
solve the CC problem either.





Chapter 2

Interpretation of the Weyl
tensor

Note: This chapter is to large extent a verbatim reproduction of the publica-
tion [HNS13], which arose in collaboration with Stefan Hofmann and Florian
Niedermann.

In braneworld scenarios it is in general1 necessary to impose boundary conditions at
the brane that exclude incoming gravitational bulk waves, in order to obtain a unique
time evolution for given on-brane initial data. This important point will be discussed in
more detail in Chaps. 4 and 5, where the cosmologies of explicit brane world models are
studied. Here, we focus on a tool known from the literature, which might be helpful
in formulating such an outgoing wave boundary condition. The idea is to identify
incoming and outgoing gravitational waves as certain components of the Weyl tensor.
It applies to standard GR in d spacetime dimensions.

In this chapter, the notational conventions are the following: Capital Latin indices
A,B, . . . denote d-dimensional spacetime indices (in the examples considered in this
chapter, d = 4), boldface symbols denote d-dimensional vector- (or tensor-)fields, and
small Latin indices a, b, . . . are tetrad indices. Small Latin indices i, j, . . . are those
tetrad indices which run only over the d − 2 spatial tetrad vectors orthogonal to the
privileged spatial direction (see below), whereas tetrad indices evaluated as 0 or 1
always correspond to the two null tetrad vectors, cf. Eq. (2.3.4). A dot is shorthand
for the scalar product with respect to the metric g, e.g. x · y ≡ gABx

AyB for vectors x
and y. Antisymmetrization of indices is denoted by square brackets, i.e.

T[AB] :=
1

2
(TAB − TBA) ,

1The codimension-one case is exceptional in this regard, at least when cosmological symmetries are
imposed, because they exclude bulk waves thanks to Taub’s (or Birkhoff’s) theorem, cf. Sec 1.4.2.
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and we also use the notation

T{ABCD} :=
1

2

(
T[AB][CD] + T[CD][AB]

)
.

For convenience, we work in units in which MPl = 1 in the present chapter.

2.1 Summary

According to folklore in general relativity, the Weyl tensor can be decomposed into
parts corresponding to Newton-like, incoming and outgoing wavelike field components.
It is shown here that this one-to-one correspondence does not hold for spacetime ge-
ometries with cylindrical isometries. This is done by investigating some well-known
exact solutions of Einstein’s field equations with whole-cylindrical symmetry, for which
the physical interpretation is very clear, but for which the standard Weyl interpretation
would give contradictory results. For planar or spherical geometries, however, the stan-
dard interpretation works for both, static and dynamical spacetimes. It is argued that
one reason for the failure in the cylindrical case is that for waves spreading in two spa-
tial dimensions there is no local criterion to distinguish incoming and outgoing waves
already at the linear level. It turns out that Thorne’s local energy notion, subject to
certain qualifications, provides an efficient diagnostic tool to extract the proper physical
interpretation of the spacetime geometry in the case of cylindrical configurations.

2.2 Introduction

Newton’s theory of a gravitational force is given by the pair (G,Φ), where G denotes
Galilean space and Φ is the gravitational potential. In Einstein’s theory of general
relativity, the pair (G,Φ) is superseded by (M, g), where M denotes spacetime, mod-
eled as a pseudo-Riemannian manifold with a local geometry represented by a metric
field g. While in the classical theory the interpretation of Φ is completely clear—its
gradient simply gives (minus) the acceleration that a test particle would undergo—an
analogous interpretation of g and its derivatives is far from obvious in the relativistic
theory. This is mainly due to the equivalence principle, saying that the affine con-
nection (which is basically the first derivative of the metric, and thus analogue to the
Newtonian force field) can be set to zero locally at any point p ∈M by an appropriate
choice of coordinates. A real gravitational effect is only present at p, if this cannot
be done in a whole neighborhood of p simultaneously, or equivalently if the Riemann
tensor at p does not vanish. Outside sources, the Riemann tensor reduces to the Weyl
tensor C. Thus, the physical content of the metric field in vacuum should be somehow
encoded in C. Moreover, instead of having only one static field component Φ, there
are new dynamical degrees of freedom, corresponding to gravitational waves. It would
thus be desirable to have a decomposition of the Weyl tensor into Newton-like parts
and wavelike parts.
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Since Einstein’s field equations are nonlinear and coupled, the possibility of a clear
separation between Newton-like and wavelike contributions might be doubtful. How-
ever, Szekeres [Sze65] showed that such a decomposition can in fact be found, by fol-
lowing Pirani’s approach [Pir56] and studying the geodesic deviation for nearby freely
falling test particles. More recently, this program has been generalized by Podolsky
and Svarc [PS12] to spacetimes of arbitrary dimensions.

The main result of these investigations is that C can be deconstructed into compo-
nents corresponding to Newton-like2 components and, in addition, to contributions
corresponding to transverse and longitudinal, outgoing and incoming gravitational
waves. We will refer to this result as the standard interpretation of the Weyl ten-
sor. The standard interpretation is frequently quoted and used in the literature, see
e. g. [SKM+03, Wan91, BB02, Nol04, NBBR06, NE08].

Here we show that, although the standard interpretation works very well in certain
cases, there are other cases where it fails. This is done by studying two explicit examples
of exact solutions of Einstein’s field equations, for which the true physical interpretation
is evident, but where the standard interpretation would give contradictory results. To
be more specific, we show that a nonzero component of the Weyl tensor does not imply
the corresponding physical effect to be present. The correct physical interpretation can,
however, still be deduced from the asymptotic falloff behavior of those components.

The rest of this chapter is organized as follows: In Sec. 2.3 we review the standard
interpretation of the Weyl tensor, introduced by Pirani [Pir56, Pir09] and Szekeres
[Sze65] using the concept of geodesic deviation. Section 2.4 is devoted to the dis-
cussion of planar and spherical geometries, both static and dynamical, for which the
interpretation works very well. Then, in Sec. 2.5 we turn to solutions of Einstein’s
equations with cylindrical isometries, again static as well as dynamical, and show that
the standard interpretation breaks down. In Sec. 2.6 we note that the static cylindri-
cally symmetric solution also invalidates Pirani’s wave criterion [Pir57], and in Sec. 2.7
we check that Thorne’s C-energy [Tho65] provides a good tool for cylindrical setups.
Finally, we conclude in Sec. 2.8.

2.3 Standard Interpretation of Weyl components

Let us first briefly review the technique originally used by Szekeres [Sze65] to extract
the physical meaning of the various components of the Weyl tensor, before we apply it
to some concrete solutions of Einstein’s field equations.

Consider a timelike geodesic with unit tangent vector t, and a neighboring timelike
geodesic separated by the vector y (parametrized such that t · y = 0). Then, the
geodesic deviation equation, governing the change of y at linear order, in vacuum

2We will use the more appropriate name “Newton-like”, instead of Szekeres’ “Coulomb-like” [Sze65],
which has become standard terminology. Some authors also choose the compromise “Newton-
Coulomb-like” [PS12].
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reads
D2yA

dτ 2
= CA

BCD t
BtCyD =: MA

D y
D , (2.3.1)

where D/dτ denotes covariant differentiation along the geodesic and CA
BCD is the Weyl

tensor, i.e. the traceless part of the Riemann tensor:

CABCD = RABCD−
2

d− 2

(
RA[CgB]D −RB[CgD]A

)
+

2

(d− 1)(d− 2)
RgA[CgD]B . (2.3.2)

Now complement t with d− 1 orthonormal spacelike vectors x1, . . .xd−1 to obtain an
orthonormal tetrad

ea = (t, x1, . . . ,xd−1) , ea · eb = ηab . (2.3.3)

This tetrad defines a frame which an observer along the geodesic would use to make
physical measurements. It is further convenient to define a null tetrad, but instead
of working with a complex null tetrad, as is usually done in d = 4, we will use the
conventions of Podolsky and Svarc [PS12] and take a real null tetrad, or mixed tetrad,
since this approach has the advantage of being applicable in any number of dimensions.
The complexification of the two remaining spatial dimensions is in fact of no importance
for the discussion, and the results will of course be completely equivalent. Therefore,
we define

ma = (m0, m1, mi) := (k, l, mi) (i = 2, . . . , d− 1) , (2.3.4)

by combining one of the spacelike vectors, say x1 =: x, with t to form two appropriately
normalized null vectors, and leaving the other vectors unchanged:

k :=
1√
2

(t+ x) , l :=
1√
2

(t− x) , (2.3.5a)

mi := xi (i = 2, . . . , d− 1) . (2.3.5b)

This frame now satisfies the quasi-orthonormality relations

k · k = l · l = 0 , k · l = −1 , (2.3.6a)

mi · k = mi · l = 0 , mi ·mj = δij , (2.3.6b)

or, in matrix notation

ma ·mb = η̃ab :=

 0 −1 0
−1 0 0
0 0 δij

 , (2.3.7)

and the metric can be written as

gAB = −kAlB − lAkB +m2
Am

2
B + . . .+md−1

A md−1
B . (2.3.8)



2.3 Standard Interpretation of Weyl components 35

Note that here, and in what follows, all evaluated indices (and indices i, j, . . .) are to
be understood as mixed tetrad indices, as defined in (2.3.4). Space-time indices will
always remain unevaluated and denoted by A,B, . . .. The mixed tetrad indices are
raised and lowered with η̃ab (and its inverse), in particular

ma =
(
m0, m1, mi

)
= (−l, −k, mi) . (2.3.9)

The Weyl tensor can now be expressed in terms of its mixed tetrad components

CABCD = Cabcdm
a
Am

b
Bm

c
Cm

d
D , (2.3.10)

which, using its symmetries CABCD = C{ABCD}, can be expanded as

CABCD = 4C0i0j l{Am
i
BlCm

j
D}

− 8C010i l{AkBlCm
i
D} − 4C0ijk l{Am

i
Bm

j
Cm

k
D}

+ 4C0101 l{AkBlCkD} + 4C01ij l{AkBm
i
Cm

j
D}

+ 8C0i1j l{Am
i
BkCm

j
D} + Cijklm

i
{Am

j
Bm

k
Cm

l
D}

− 8C101i k{AlBkCm
i
D} − 4C1ijk k{Am

i
Bm

j
Cm

k
D}

+ 4C1i1j k{Am
i
BkCm

j
D} .

(2.3.11)

Here, the terms have been ordered according to their boost weights [CMPP04], where
some quantity Q is said to have boost weight b, if it transforms under a Lorentz boost
with velocity v in direction x as

Q 7→ λbQ , λ :=

√
1 + v

1− v
> 1 . (2.3.12)

The physical interpretation of each term is then found by inserting (2.3.11) into (2.3.1)
and using the various orthogonality relations. The corresponding contributions to the
matrix MAD in (2.3.1) are (the notation follows [DPPR10]):

(i) boost weight +2 :

C0i0j =: Ωij −→ −
1

2
Ωijm

i
Am

j
D (2.3.13)

This gives rise to a deviation yD of the neighboring geodesic into the hyperplane3

spanned by the mi, i.e. orthogonal to x. Furthermore, since the matrix Ωij is
symmetric and traceless, a sphere of test particles in this hyperplane will be de-
formed into an ellipsoid. This is the characteristic effect of a gravitational wave,
and so Ωij is usually interpreted as (the modes of) a transverse gravitational wave
propagating in the direction −x. The direction of propagation can for instance be

3We use the terms “hyperplane”, “sphere” and “ellipsoid” in order to include higher-dimensional
spacetimes. In d = 4, these terms can be replaced by “plane”, “circle” and “ellipse”.
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inferred from the boost weight, which is +2 for Ωij. This means that a Lorentz
boost in the direction +x will enhance this term, in accordance with the inter-
pretation of a wave traveling in the opposite direction. Alternatively, inserting a
plane wave traveling in direction +x shows that this term actually vanishes, cf.
Sec. 2.4.3.

(ii) boost weight +1 :

C010i =: Ψi −→
1√
2

Ψi

(
xAm

i
D +mi

AxD
)

(2.3.14)

This term is similar to the first one, but this time the deflection occurs in the
x-mi hyperplane. Therefore, it is usually identified as a longitudinal gravitational
wave propagating in the direction −x.

(iii) boost weight 0 :

C0101 =: Φ , C0i1j =: Φij −→ −
(
ΦxAxD + Φ(ij)m

i
Am

j
D

)
(2.3.15)

Due to the traceless condition, Φ + Φi
i = 0, this term will stretch a sphere of test

particles in the x direction, while leading to contractions in the directionsmi ⊥ x
(or vice versa). Thus, it represents the (higher-dimensional) analogue of the tidal
forces caused by localized, static sources, and can, therefore, be interpreted as a
Newton-like part of the Weyl tensor.

(iv) boost weight −1 :

C101i =: Ψ′i −→
1√
2

Ψ′i
(
xAm

i
D +mi

AxD
)

(2.3.16)

In complete analogy to case (ii), this term is interpreted as a longitudinal gravi-
tational wave propagating in the direction +x.

(v) boost weight −2 :

C1i1j =: Ω′ij −→ −
1

2
Ω′ijm

i
Am

j
D (2.3.17)

In analogy to case (i), this term is interpreted as a transverse gravitational wave
propagating in the direction +x.

All other terms, i.e. those standing on the right in (2.3.11), only give vanishing con-
tributions to (2.3.1). This does by no means imply that these components of the Weyl
tensor have no physical effect, it only says that they give no linear order contribution
to the relative acceleration of freely falling nearby test particles.

The privileged spatial vector x, which is the direction of propagation of the gravita-
tional wave components, can be chosen arbitrarily. In the general case it is of course
possible to have superpositions of waves traveling in any direction. The geometries
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considered by us explicitly, however, have sufficient isometries to single out a unique
direction of propagation. This means that the two null vectors k and l are uniquely
determined, apart from Lorentz boosts in the direction of wave propagation, a point
which we will come back to later. There is also some freedom in choosing the remaining
orthogonal tetrad vectors mi, corresponding to rotations in the plane orthogonal to
the wave direction. This will however not affect any of our results.

2.4 Examples where the standard interpretation works

Let us first look at some exact vacuum solutions of Einstein’s field equations, which
support the standard interpretation of the Weyl components.

2.4.1 Static plane

The general plane-symmetric, static solution of Einstein’s field equations in vacuum
was first found by Levi-Civita [Lev18] (see also [AG83] for a more recent discussion),
and can be written in the form

ds2 = −a−2/3dt2 + dx2 + a4/3
(
dy2 + dz2

)
, (2.4.1a)

a(x) = 1− αx , (2.4.1b)

where α is some constant, and we used the gauge freedom to set a(x = 0) = 1. As a
source which gives rise to this geometry, we consider a thin layer of matter located at
x = 0, and so according to the symmetries of the set-up, the energy-momentum tensor
has the form

TAB = diag (−ρ, 0, p, p) δ(x) . (2.4.2a)

For x 6= 0, the metric is of the form (2.4.1). By choice, it is continuous across x = 0
and accommodates different constants α in the half-spaces x > 0 and x < 0, say α>
and α<. These constants are not arbitrary, however, and must be chosen such that
the discontinuity in the first derivative of the metric with respect to x implies, upon
taking one more x derivative, the correct δ-like contribution, as given by (2.4.2a). This
procedure corresponds to implementing Israel’s junction conditions [Isr66, Isr67]. We
will further assume the full metric to be symmetric across the plane, i.e. under x 7→ −x,
implying α> = −α< =: α. Then, the junction conditions yield

8α

3
= ρ ,

2α

3
= −p ⇒ p = −ρ

4
. (2.4.3)

The matter source has to fulfill this EOS (implying a negative pressure) in order to
allow for a static solution. Note that α > 0 for a physically reasonable source with
positive energy density.
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The symmetry of this geometry suggests that we choose x = ∂x as the privileged
direction, with respect to which we calculate the Weyl components. The corresponding
mixed tetrad is

k =
1√
2

(
a1/3∂t + ∂x

)
, l =

1√
2

(
a1/3∂t − ∂x

)
, (2.4.4a)

mi = a−2/3∂i , (i = y, z) . (2.4.4b)

However, there is a problem with this choice of tetrad: for the interpretation discussed
above to apply, the timelike vector must be tangent to a geodesic. But a1/3∂t is
in fact not parallel transported along its integral curves (except for the trivial case
α = 0), so the frame (2.4.4) can actually not be used. However, since the metric (2.4.1)
admits the Killing vectors mi, it is clear that geodesics exist with tangent vectors of
the form t = f∂t + g∂x with some functions f(x) and g(x). The corresponding null
vectors have the form h±1

(
a1/3∂t ± ∂x

)
with some function h(x), which can be seen by

requiring the various orthonormality relations among the vectors to hold. Therefore,
the Weyl components in the frame (2.4.4) only differ from the ones for which the
physical interpretation was derived by the overall factors h±b 6= 0, where b is the
corresponding boost weight. Hence, since it is sufficient for our purpose to identify the
vanishing components, we might as well use the frame (2.4.4).

Having established the frame, it is straightforward to compute the various Weyl
components. It turns out that all of the wave components vanish identically:

Ωij = Ψi = 0 = Ω′ij = Ψ′i , (2.4.5)

and the only nonzero components are the Newton-like terms

Φ =
4α2

9 (1− α|x|)2 , Φij = −1

2
Φ δij . (2.4.6)

This result is in perfect agreement with the standard interpretation of the various Weyl
components.

For completeness, it should be mentioned that there are also some nonvanishing Weyl
components in the non-observable sector of Sec. 2.3. They are again all of boost weight
0 and are given by

Cijkl = −1

2
Φ (δikδjl − δjkδil) , (2.4.7)

yielding no further independent components. Their appearance is implied by the
Newton-like terms (2.4.6) by the traceless condition Ci

jik = C0j1k + C1j0k = 2Φ(jk).
Similar comments will also apply in the following examples, but we will not explicitly
reiterate on this.

As an aside, note that there are spacetime singularities at x = ±1/α, as can be seen
by calculating the Kretschmann scalar RABCDRABCD = 12Φ2. However, as already
remarked in the 5D analog in Sec. 1.4.2, geodesic motion of massive particles cannot
reach them, and photons undergo an infinite redshift along geodesics towards the sin-
gularities [AG83]. As a consequence, the physically accessible spacetime only covers
the open interval x ∈ (−1/α, 1/α).
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2.4.2 Schwarzschild

In the static Schwarzschild geometry, we expect that again only the Newton-like field
components are present. Let us now verify that this is indeed the case. The metric
outside the Schwarzschild radius rs is given by

ds2 = −fdt2 + f−1dr2 + r2
[
dθ2 + sin(θ)2dφ2

]
, (2.4.8a)

f(r) = 1− rs

r
. (2.4.8b)

This time, the symmetry allows us to identify x ∝ ∂r as the privileged spatial direction,
and so the corresponding mixed tetrad reads

k =
1√
2

(
f−1/2∂t + f 1/2∂r

)
, (2.4.9a)

l =
1√
2

(
f−1/2∂t − f 1/2∂r

)
, (2.4.9b)

m1 =
1

r
∂θ , m2 =

1

r sin(θ)
∂φ . (2.4.9c)

As before, f−1/2∂t is not tangent to a geodesic, but a discussion completely analogous
to the corresponding situation in the example of a static plane applies, and so we can
in fact use this frame. And again, all of the wave components vanish, the only nonzero
components being the Newton-like terms

Φ = − rs

r3
, Φij = −1

2
Φ δij . (2.4.10)

As a result, also in the case of a spherically symmetric geometry, the standard inter-
pretation of the Weyl components works perfectly well.

2.4.3 Plane wave

Next, we consider the complementary case: instead of a static field configuration which
only has Newton-like components, we investigate a geometry that corresponds to pure
plane gravitational waves. In this case, only the wavelike components are expected to
be nonzero. Specifically, consider the well-known pp-wave vacuum solution [Bri25] (see
also [SKM+03, chap. 24.5])

ds2 = −2hdu2 − 2dudv + dy2 + dz2 , (2.4.11a)

with

h(u, y, z) = a(u)
(
y2 − z2

)
/2 + b(u)yz , (2.4.11b)
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where a(u) and b(u) are some arbitrary functions. The exact solution (2.4.11) represents
a plane gravitational wave with wave vector ∂v, and the corresponding mixed tetrad
frame reads

k = ∂v , l = ∂u − h∂v , (2.4.12a)

mi = ∂i , (i = y, z) . (2.4.12b)

Note that this time, the vector k is tangent to a null geodesic. However, this poses no
conceptual problem, since the standard interpretation of the Weyl tensor as discussed
in section 2.3 can analogously be applied to null geodesics instead of timelike geodesic,
cf. [Wan91].

And indeed, in the frame (2.4.12) the only nonvanishing Weyl components are

Ω′ij =

(
a(u) b(u)
b(u) −a(u)

)
, (2.4.13)

while, in particular, Ωij = 0. Hence, the standard interpretation of the Weyl tensor
correctly identifies the purely wavelike field character, as well as the direction of prop-
agation of the wave. Evidently, the two arbitrary functions a and b are precisely the
two modes of the gravitational wave.

2.4.4 Spherical wave

Let us finally investigate the Robinson-Trautman spacetime [RT60] (see also [SKM+03,
chap. 28]), which can be interpreted as describing spherical (but of course not spheri-
cally symmetric) gravitational waves. The metric has the form

ds2 = −2Hdu2 − 2dudr +
r2

p2

(
dξ2 + dη2

)
, (2.4.14)

where p is a function of (u, ξ, η) and

H(u, r, ξ, η) =
1

2
∆ ln p− r (ln p)′ − m(u)

r
, (2.4.15)

with ∆ := p2
(
∂2
ξ + ∂2

η

)
and the prime denoting differentiation with respect to u. With

this choice, the vacuum Einstein equations reduce to the single fourth order differential
equation

∆∆ ln(p) + 12m (ln p)′ − 4m′ = 0 . (2.4.16)

Here u is a retarded time coordinate and ∂r is tangent to a null geodesic. We can
therefore choose the mixed tetrad frame

k = ∂r , l = ∂u −H∂r , (2.4.17a)

mi =
p

r
∂i (i = ξ, η) , (2.4.17b)
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in which the nonzero, independent components of the Weyl tensor become

Φij =
m

r3
δij , (2.4.18a)

Ψ′i = − p

2r2
∂i∆ ln p , (2.4.18b)

Ω′ij =
1

2r

(
A11 − A22 A12 + A21

A21 + A12 −A11 + A22

)
, (2.4.18c)

with

Aij := ∂i

{
p2∂j

[
1

2
∆ ln p− r (ln p)′

]}
. (2.4.18d)

The main result is that indeed all the incoming (i.e. in the direction opposite to u)
components Ψi and Ωij vanish, and only Newton-like and outgoing wavelike components
are present in general. (Note that“pure wave”solutions without Newton-like admixture
can be constructed by setting m = 0 .) Therefore, this example is also in perfect
agreement with the standard interpretation.

The explicit form of the Weyl components depends on the particular solution of
(2.4.16), one example being [RT60]

m(u) = m0 = const , p(u, ξ, η) = ξ3/2 , (2.4.19)

for which

Φij =
m0

r3
δij , Ψ′ξ = −3ξ3/2

4r2
, Ω′ij =

9ξ2

8r2

(
−1 0
0 1

)
. (2.4.20)

These terms have the correct falloff behavior ∼ 1/r3 and ∼ 1/r2 for Newton-like and
wavelike components, respectively, expected in a spatially three-dimensional, spherical
setup.4 The scaling ∼ 1/r2 of the wave components is also in agreement with the
asymptotic criterion for outgoing waves put forward in [ADM61].

2.5 Examples where the standard interpretation fails

In this section we prove that the standard interpretation of the Weyl tensor is not
applicable to all spacetime geometries. The focus will be on geometries with whole-
cylinder symmetry, i.e. those with azimuthal φ symmetry and symmetry along a z
direction perpendicular to φ, for which the metric can most conveniently be written in
the form (see e.g. [Tho65] or [SKM+03, chap. 22])

ds2 = e2(η−α)
(
−dt2 + dr2

)
+ e2α dz2 + e−2αW 2dφ2 , (2.5.1)

4Note that the Weyl tensor is basically the second derivative of the metric, so the Newtonian ∼ 1/r
potential of a spherical symmetric source in three space dimensions would manifest itself as a
∼ 1/r3 contribution to the Weyl tensor.
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where η, α and W are functions of (t, r). Note that (2.5.1) only describes a cylindrical
geometry, if there is an axis (which we will assume to be located at r = 0), on which
the norm of the Killing vector associated with φ symmetry σ = ∂φ vanishes:

σ2 ≡ σAσ
A = W 2 e−2α r→0−−→ 0 . (2.5.2)

Furthermore, requiring the metric not to have a conical singularity at r = 0 leads to
the following regularity condition on the axis [MS93]:

∇A(σ2)∇A(σ2)

4σ2
= W 2 e−2η

−(Ẇ
W
− α̇

)2

+

(
W ′

W
− α′

)2
 r→0−−→ 1 . (2.5.3)

In these coordinates, the Einstein field equations read:

W ′′

W
− Ẅ

W
= T tt + T rr , (2.5.4a)

α′′ +
W ′

W
α′ − α̈− Ẇ

W
α̇ = 2

(
T tt + T rr − T zz + T φφ

)
, (2.5.4b)

α′
2

+ α̇2 − W ′

W
η′ − Ẇ

W
η̇ +

Ẅ

W
= −T rr , (2.5.4c)

α′
2 − α̇2 + η′′ − η̈ = T φφ , (2.5.4d)

2α′α̇− W ′

W
η̇ − Ẇ

W
η′ +

Ẇ ′

W
= T tr , (2.5.4e)

where we defined

T AB := e2(η−α) TAB , (2.5.5)

with TAB being the energy momentum tensor.

The symmetry of the metric (2.5.1) allows us to identify x ∝ ∂r as the direction of
wave propagation, and the corresponding mixed null tetrad is

k =
eα−η√

2
(∂t + ∂r) , l =

eα−η√
2

(∂t − ∂r) , (2.5.6a)

m1 = e−α ∂z , m2 =
eα

W
∂φ . (2.5.6b)

Again, the vector eα−η ∂t is in general not tangent to a geodesic, but due to the symme-
tries of the metric (2.5.1), the same argument as presented below equation (2.4.4) in the
static planar case applies here as well. Thus, according to the standard interpretation,
the primed components of the Weyl tensor (Ψ′ and Ω′) evaluated in the frame (2.5.6)
should correspond to outgoing waves, and the unprimed ones (Ψ and Ω) to incoming
waves.
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2.5.1 Static cylinder

Let us first discuss the static solution, i.e. all metric functions depend only on r, and
choose a cylindrical shell of matter located at r = r0 as a source:

TAB = diag (−ρ, 0, pz, pφ)
1

W
δ(r − r0) . (2.5.7a)

The metric outside such a static cylinder was first derived by Levi-Civita [Lev19] (see
also, e.g. [Tho65]). Like in the planar case, the full solution of Einstein’s field equations
can be obtained by first solving the homogeneous equations inside and outside the
cylinder, and then matching the solutions such that the metric is continuous across
the cylinder, but the first r derivatives are discontinuous in order for the second r
derivatives on the left-hand side to produce the correct δ-like contribution (2.5.7a) on
the right-hand side. By further implementing the regularity conditions (2.5.2) and
(2.5.3), we arrive at

W (r) =

{
r (r < r0)

r0 +W1(r − r0) (r > r0) ,
(2.5.8a)

α(r) =

{
0 (r < r0)

α1 ln [W (r)/r0] (r > r0) ,
(2.5.8b)

η(r) =

{
0 (r < r0)

α2
1 ln [W (r)/r0] (r > r0) ,

(2.5.8c)

where α1 and W1 are constants of integration. Inside the cylinder the metric is just
that of Minkowski space, and outside it has the form

ds2
> =

(
W (r)

r0

)2α1(α1−1) (
−dt2 + dr2

)
+

(
W (r)

r0

)2α1

dz2 +

(
W (r)

r0

)2(1−α1)

r2
0dφ2 .

(2.5.9)
The junction conditions across r = r0 imply that the constants α1 and W1 are related
to the source localized on the cylindrical shell by

W1 = 1− ρ , α1W1 = −1

2
(ρ+ pz − pφ) , (2.5.10)

as well as the following relation between the energy-momentum components,

4 (1− ρ) pφ = (ρ+ pz − pφ)2 . (2.5.11)

Physically, this EOS again originates from the requirement for the source to be in
hydrostatic equilibrium, since otherwise the solution would not be static. Note that
for pφ = 0 these relations imply the EOS pz = −ρ as well as α1 = 0, and the solution
becomes the geometry of a cosmic string [Vil81, His85], which only produces a deficit
angle in the outside geometry, and has a vanishing Weyl tensor for r > r0. If pφ 6=
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0, however, the parameter α1 can in principle take any value, leading to an outside
geometry that is not Riemann flat. The Weyl components for the solution (2.5.8)
become, for r > r0,

Φ = Φ0 e2(α−η) , Φij = −1

2
Φ0 e2(α−η) δij , (2.5.12a)

Ωij = Ω′ij = Ω e2(α−η)

(
1 0
0 −1

)
, (2.5.12b)

with

Ω :=
α1

2
(α1 − 1)(2α1 − 1)

(
W1

W (r)

)2

, (2.5.12c)

Φ0 := −α1(α1 − 1)

(
W1

W (r)

)2

. (2.5.12d)

Incidentally, this shows that the geometry is always asymptotically (locally) flat for
r →∞ because

e2(α−η) W (r)−2 = r2
0 W (r)−2(α2

1−α1+1) (2.5.13)

and

2
(
α2

1 − α1 + 1
)
>

3

2
∀α1 , (2.5.14)

and we assume W1 > 0 in order to avoid a second axis outside the cylinder, where
W (r) would be zero.5 Moreover, all Weyl components have the same falloff behavior
which is ∼ r−2 for Φ0 and Ω .

The problem with the standard interpretation is now manifest: if the standard inter-
pretation of the individual components were correct, we would conclude that (except
for the special cases α1 ∈ {0, 1, 1/2}) there are incoming and outgoing waves present
in this solution. The geometry, however, is in fact static, so we know for sure that
there are actually no waves at all. This shows that the Ω parts of the Weyl tensor are
not only due to gravitational wave components, but also due to static, i.e. Newton-like
field components. There is no contradiction to the discussion of the geodesic deviation
in Sec. 2.3, because the tidal forces in the z and φ directions, acting on a freely falling
observer in the cylindrical geometry (2.5.9), will in general not be equal, and, there-
fore, can produce an elliptical deformation of test particles precisely in the same way
as discussed in Sec. 2.3. As a result, the Ω parts of the Weyl tensor cannot be used to
extract the purely wavelike content of the spacetime geometry.

It should be noted that this also provides a counter-example for a more recent sug-
gestion of a “radiation scalar” [BB02], which was defined as the product of the complex
Weyl scalars Ψ0 and Ψ4, in a tetrad frame in which Ψ1 and Ψ3 are zero.6 Using our

5According to (2.5.10), this is equivalent to requiring ρ < 1. Larger energy densities would be super-
critical ; the special case of a super-critical cosmic string (pz = −ρ, pφ = 0) will be studied in
Chap. 6.

6The relation between the complex Weyl scalars, usually used in four spacetime dimensions, and the
real ones that we use, can be found in [PS12]
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variables, the latter requirement translates to Ψ = Ψ′ = 0, and is thus satisfied by our
static solution. Furthermore, in this solution the radiation scalar becomes Ω2, which
is in general nonvanishing. This shows that the following claim in [BB02],

“[the radiation scalar] vanishes in regions of space-time which can be said
unambiguously to contain no gravitational radiation”,

is not true.
However, one might still hope that even though the interpretation of the Ω terms fails

for static geometries, it could still be valid for pure wave solutions, and in particular
the distinction between incoming and outgoing waves could still be rigorously made for
those cases. Unfortunately, this is also not true, as we will show in the next section.

2.5.2 Einstein-Rosen waves

To this end, consider cylindrically symmetric gravitational waves, first discovered by
Einstein and Rosen [ER37] (see also, e.g. [Mar58]). The metric for this class of vacuum
solutions is obtained from (2.5.1) by setting W = r:

ds2 = e2(η−α)
(
−dt2 + dr2

)
+ e2α dz2 + e−2α r2dφ2 . (2.5.15)

We refrain from specifying the energy-momentum tensor that would give rise to the
cylindrical waves and simply assume that there is some time-dependent source dis-
tributed in accordance with the cylindrical symmetry over a bounded region around
the axis at r = 0. Thus, we only consider the vacuum Einstein equations outside this
region, which take the simple form

−α̈ + α′′ +
α′

r
= 0 , (2.5.16a)

η′ = r
(
α′

2
+ α̇2

)
, η̇ = 2rα′α̇ . (2.5.16b)

The first equation is nothing but the linear cylindrical wave equation in flat space, and
given any solution α of this equation, the other two—which are consistent on account
of the first one—can simply be integrated to obtain η.

Since this system is so simple, but still represents exact solutions of Einstein’s field
equations with a clear physical interpretation, it is a perfect candidate to test the
standard interpretation of the Weyl components. For the metric (2.5.15), the nonzero,
independent components of the Weyl tensor become, after some simplifications using
the vacuum equations (2.5.16),

Ωij = Ω(in) e2(α−η)

(
1 0
0 −1

)
, (2.5.17a)

Φ = Φ0 e2(α−η) , (2.5.17b)

Ω′ij = Ω(out) e2(α−η)

(
1 0
0 −1

)
, (2.5.17c)
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with

Ω(in) := −1

2

{
[3− 2r (α′ + α̇)] (α′ + α̇)

2
+ α′′ + 2α̇′ + α̈

}
, (2.5.17d)

Φ0 :=

(
1

r
− α′

)
α′ + α̇2 , (2.5.17e)

Ω(out) := −1

2

{
[3− 2r (α′ − α̇)] (α′ − α̇)

2
+ α′′ − 2α̇′ + α̈

}
. (2.5.17f)

Now consider, for example, a solution of (2.5.16a) corresponding to a purely outgoing7

wave with frequency ω:

α(t, r) = Re
[
e−iωtH

(1)
0 (ωr)

]
= cos(ωt)J0(ωr) + sin(ωt)Y0(ωr) ,

(2.5.18)

where H
(1)
0 denotes the Hankel function of the first kind, and J0 and Y0 are the Bessel

functions of the first and second kind, respectively. Plugging (2.5.18) into (2.5.17) yields
some complicated expressions for the three components, containing trigonometric and
Bessel functions, the explicit form of which is not of great interest. The main point
is that they are all nonvanishing, even though their magnitude and falloff behavior
with r is different, cf. Fig. 2.1. Furthermore, they all behave like outgoing waves,
in accordance with our choice (2.5.18), confirming that the geometry only contains
outgoing wave components.

The observation that the component Φ is nonzero is not too disturbing, because an
outgoing wave could also induce Newton-like contributions—even though the solution
(2.5.18) does not contain a static, Newton-like part ∝ ln(r). But the fact that Ω(in) is
nonzero, and furthermore also behaves like an outgoing wave, clearly shows that the
interpretation of Ω(in) as an incoming gravitational wave is not correct.

Even though the interpretation that Ω(in) corresponds to incoming gravitational
waves is wrong, there is still a difference between the different Weyl components: they
all have a distinct falloff behavior as r → ∞. Only Ω(out) falls asymptotically off like
a cylindrical wave, viz. ∼ r−1/2, whereas all other components fall off faster. So in the
case of pure cylindrical waves, the interpretation still works asymptotically far away
from the source. This can physically be understood because for r → ∞ cylindrical
waves look like plane waves, for which we saw that the decomposition into incoming
and outgoing wave components is successful.

This might be considered a window of opportunity, indicating that the standard
interpretation of the Weyl components might in general still hold asymptotically far
away from the source. However, for the static solution discussed in Sec. 2.5.1, all the

7That outgoing modes of cylindrical waves are indeed represented by exp(−iωt) times a Hankel
function of the first kind will be discussed in more detail in Chap. 3. Here, it can already be seen
in a qualitative way from the plots in Fig. 2.1.
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Figure 2.1: Plots of the metric function α and all the independent components of the Weyl
tensor for the outgoing Einstein-Rosen wave solution (2.5.18). The dark red lines correspond
to t = 0, whereas the orange and yellow lines are evaluated at times t = 1/ω and t = 2/ω,
respectively. Evidently, all functions behave like waves propagating outwards. All the Weyl
terms have different falloff behavior with r, Ω(out) being the only component with the same
behavior ∝ 1/

√
r as a linear cylindrical wave, but they are all nonvanishing.

components have exactly the same falloff behavior,8 cf. Eq. (2.5.12). Thus, it is not
true in general that the decomposition into Newton- and wavelike components gets
better and better in the limit r →∞. Physically, the key difference between the pure
wave and the static case is, of course, that while waves look like plane waves far away
from the source, the cylinder does not look like a plane from far away.

On the other hand, as shown in Sec. 2.5.1, the wave components that are due to
such a static field always fall off like Ω ∼ r−2, i.e. faster than ∼ r−1/2 which is the
characteristic falloff behavior of the actual gravitational waves. Therefore, the correct
statement is the following: in the case of a cylindrical geometry, those parts of the wave
components Ω(in) and Ω(out) that fall off like ∼ r−1/2 are due to incoming and outgoing
gravitational waves, respectively. Thus, the standard interpretation still applies to
cylindrically symmetric geometries in the weaker sense that the presence and distinction
of incoming and outgoing radiation can be inferred from the asymptotic falloff behavior

8As discussed below equation (2.4.4) the different Weyl components could get overall factors if one
took the true geodesic tetrad, which could change the falloff behavior. But these factors come with
powers of the boost weight of the corresponding components, and so it is not possible that both Ω
and Ω′ could both become suppressed relative to Φ for the static cylindrically symmetric solution.
If one of them is suppressed, the other one will always be enhanced.
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of the respective wave components of the Weyl tensor. But our result unambiguously
shows that these components cannot be used as a local criterion, i.e. by evaluating
them at some fixed value of r, for the presence or absence of gravitational waves.

2.6 Pirani’s criterion

In [Pir57], Pirani suggested a slightly different criterion for deciding whether a given
geometry contains gravitational waves or not, depending on its Petrov type:9

“At any event in empty spacetime, gravitational radiation is present if the
Riemann tensor is of Type II or Type III, but not if it is of Type I.”

(Note that here type D and N should be understood as subclasses included in type I
and II, respectively.) The difference to the Weyl component criterion is that a Petrov
type I spacetime can have nonvanishing components Ω and Ω′ [SKM+03, Chap. 4.2].
However, they must be equal, and so Pirani would correctly classify the static example
of Sec. 2.5.1 as one without waves, because it is of type I. However, it turns out that
the dynamical solution of Einstein-Rosen waves can in fact be of type I. Actually, this
example was also discussed by Pirani in [Pir57], claiming that it is of type II and thus
in accordance with his definition. But this statement is false: even though they can be
of type II, they can also be of type I [SKM+03, p. 352], as is for example the case for
our outgoing wave solution. Therefore, Pirani’s diagnostic tool also does not work in
general.

2.7 Thorne’s C-energy

For whole-cylindrically symmetric spacetime geometries, like the ones discussed in
Sec. 2.5, Thorne was able to define a physically well-motivated notion of local energy,
the so called “C-energy” [Tho65]. It is given by a covariantly conserved four-vector P ,
which can be viewed as the flux vector of gravitational energy. For an (accelerated)
observer localized at constant spatial coordinates, P t is thus the energy density, and
P r corresponds to the flux of energy in radial direction. Therefore, P r could be used
as a diagnostic tool, which should be nonzero only if gravitational waves are present,
and the sign of which should determine the direction of propagation.

Let us, for convenience, briefly recall the definition from [Tho65]. The C-energy flux
vector P is defined as

PA :=
εABCD√
−g

(∂BE)
ξ(z)C

|ξ(z)|2
ξ(φ)D

|ξ(φ)|2
, (2.7.1)

where εABCD = +1 when (ABCD) are even permutations of (trzφ), ξ(z) and ξ(φ)

are the two Killing vectors of the whole cylindrical geometry (normalized such that

9For a discussion of the Petrov classification, see [SKM+03, Chap. 4] and references therein.
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|ξ(z)| = 1 on the symmetry axis when there is no gravitational radiation present, and
|ξ(φ)| measures the proper circumference around the axis), and E denotes the“potential
function” for C-energy:

E := −π ln

[
∂A
(
|ξ(z)||ξ(φ)|

)
∂A
(
|ξ(z)||ξ(φ)|

)
4π2|ξ(φ)|2

]
. (2.7.2)

In the coordinates (2.5.1), the Killing vectors have the components

ξA(z) = hzδ
A
z , ξA(φ) = 2πδAφ , (2.7.3)

where hz is some positive constant (which is fixed by requiring the proper normalization
of ξ(z)). The potential function then becomes

E = 2π

[
η − 1

2
ln
(
W ′2 − Ẇ 2

)]
, (2.7.4)

and the nonvanishing components of the flux vector are

P t = +
1

2πhz

e2(α−η)

W
E ′ , (2.7.5a)

P r = − 1

2πhz

e2(α−η)

W
Ė . (2.7.5b)

Inserting (2.7.4) in (2.7.5), and using the Einstein field equations (2.5.4) in vacuum,
the flux vector can be written as

P t = κ
W ′(α̇2 + α′2)− 2Ẇ α̇α′

W ′2 − Ẇ 2
, (2.7.6a)

P r = κ
Ẇ (α̇2 + α′2)− 2W ′α̇α′

W ′2 − Ẇ 2
, (2.7.6b)

where κ denotes the manifestly positive—and thus for our purposes irrelevant—factor
κ := exp[2(α− η)]/hz.

From (2.7.5b) it follows immediately that the energy flux P r indeed vanishes for the
static solution (2.5.8), which has the only nonzero component

P t =
κα2

1W1

W (r)2
. (2.7.7)

So this time the static, Newton-like character of the spacetime is correctly reproduced.
Furthermore, P t is non-negative,10 which is of course necessary for it to be interpreted
as an energy density.

10Here, we are restricting ourselves to the sub-critical case ρ < 1, which according to (2.5.10) implies
W1 > 0. In the super-critical case, which will be considered in Chap. 6, positivity is still ensured
by the switch of radial orientation.
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For the Einstein-Rosen geometry (2.5.15), the flux vector in vacuum simplifies to

P t = κ
(
α̇2 + α′

2
)
, (2.7.8a)

P r = −2κα̇α′ , (2.7.8b)

which for the outgoing wave (2.5.18) gives

P t = κω2
[(
J1 cos +Y1 sin

)2
+
(
Y0 cos−J0 sin

)2
]
, (2.7.9a)

P r = 2κω2
(
Y0 cos−J0 sin

)(
J1 cos +Y1 sin

)
, (2.7.9b)

where the arguments ωr for the Bessel functions, and ωt for the trigonometric functions
should be understood. First of all, note that P t is again manifestly non-negative, as is
required for its interpretation as an energy density. Furthermore, the flux in r direction
does not vanish, in agreement with the presence of gravitational waves. As can be seen
from the plot in Fig. 2.2, it is not strictly positive, though; in the region close to the
axis at r = 0, it becomes negative. This effect, however, disappears if the flux averaged
over one period T ≡ 2π/ω is considered:

〈P r〉 :=
1

T

∫ T

0

dt P r =
2κω

πr
. (2.7.10)

This has exactly the form expected for a stationary flux of outgoing cylindrical waves.

Purely incoming Einstein-Rosen waves, for which α = Re
[
exp(−iωt)H

(2)
0 (ωr)

]
instead

of (2.5.18), yield the same result, but with opposite sign.
Let us emphasize that, on the other hand, 〈Ω(in)〉 6= 0 and so this averaging cannot

be used to circumvent the failure of the standard Weyl interpretation.
As a result, Thorne’s C-energy passes all tests in our two examples, where the stan-

dard interpretation of the Weyl tensor fails, apart from the subtlety that the radial flux
P r can locally (both in space and time) have the opposite sign than the actual direction
of wave propagation. This could be due the well-known fact [Had52] that waves in two
spatial dimensions do not obey the principle of Huygens and Fresnel, meaning that
signals do not propagate exclusively with the speed of light, but also slower. (This can
directly be seen from the fact that the retarded Green’s function for the wave operator
in 2 + 1 dimensions has support not only on the backward light cone, but also inside.)
A possible interpretation is based on backscattering processes taking place, because if
we still demand propagation to mean propagation with the fundamental velocity, then
an outgoing wave in two spatial dimensions must be viewed as the superposition of a
part propagating outwards and some (smaller) part that propagates inwards. Provided
the C-energy flux measures energy propagating with the speed of light, backscattering
processes could explain the unexpected behavior of P r. Only for large distances from
the axis, where the waves asymptotically become one-dimensional, the backscattering
effect becomes negligible. This would also explain why the “wrong” sign of P r is only
found close to the axis, where backscattering is still efficient.
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Figure 2.2: Plots of the nonvanishing components of the C-energy flux vector for the outgoing
Einstein-Rosen wave solution (2.5.18). The dark red lines correspond to t = 0, whereas the
orange and yellow lines are evaluated at times t = 1/(2ω) and t = 1/ω, respectively. The
dashed lines are the corresponding time-averaged quantities, which (asymptotically) fall off
like 1/r.

This observation suggests that the same effect might also be responsible for the
failure of the Weyl-criterion when applied to cylindrical waves. In this case there is
also a further, independent argument: if Ω really corresponded to the purely incoming
gravitational wave component, then this term, when set equal to zero, would constitute
a local outgoing-wave condition. However, no such local condition exists even for
linear cylindrical waves, as will be discussed in detail in Chap. 3. It would thus be
quite surprising if the much more complicated nonlinear wave phenomena of general
relativity would in general allow for such a local condition. Note that this argument
is also supported by the observation that the standard interpretation works for plane
and spherical waves, but fails for cylindrical waves.

2.8 Conclusion

The main scientific objective of this chapter was to prove that the standard interpre-
tation of the Weyl tensor [Sze65, SKM+03, PS12] does not hold in general. This has
been achieved by investigating explicitly two exact vacuum solutions of Einstein’s equa-
tions with whole-cylinder symmetry: first, a static solution has been shown to admit
nonvanishing wave components according to the standard interpretation, which does
not make sense. In addition, this example invalidates a more recent suggestion for a
local criterion indicating the presence of gravitational waves [BB02]. Second, purely
outgoing Einstein-Rosen waves were considered, and it was shown that according to
the standard interpretation, they have not only nonzero outgoing wave- and Newton-
components, but also incoming wave components. Moreover, they are of Petrov Type
I, which also shows that a further instrument to diagnose the presence of gravitational
waves put forward by Pirani [Pir57] does not work.

The only way in which the standard interpretation can still be used in the case of
cylindrical symmetry is by considering only those parts of the Weyl components which
have the correct asymptotic falloff behavior as r → ∞: ∼ r−2 for the Newton-like
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component Φ0, and ∼ r−1/2 for the transverse wave components Ω(in) and Ω(out). But
it can not be used as a spatially local criterion. This is the most relevant insight
with respect to the codimension-two braneworld model studied in Chap. 5. Otherwise,
such a local Weyl criterion (generalized to 6D) could have been used to obtain a local
modified Friedmann equation (like in the DGP model).

Furthermore, we showed that the standard interpretation does work for plane wave
and spherical wave geometries. This will be used to derive a local modified Friedmann
equation for the braneworld model in Chap. 4, which also has two extra dimensions,
but with a different topology which leads to plane instead of cylindrical waves.

Based on these findings, we argued that the failure of the wave interpretation might
be due to the more fundamental inability to locally distinguish between incoming and
outgoing wave components for cylindrical waves, which is even true for a linear scalar
field on Minkowski spacetime, as will be discussed in Chap. 3.

Therefore, the standard interpretation of the Weyl tensor is not applicable to space-
time geometries with whole-cylinder symmetry. Instead, for those systems, Thorne’s
local energy concept, called C-energy, is an appropriate tool to diagnose the presence
or absence of gravitational waves. It is, however, not possible to locally distinguish
between incoming and outgoing waves, for the very same reason stated before. At
least, Thorne’s concept works for periodic waves when the time-averaged C-energy flux
is considered. This gives a spatially local criterion11 with the correct interpretation.

Note that the above explanation actually addresses only the distinction between
incoming and outgoing wavelike components, but does not resolve the shortcoming
that a static solution can admit nonzero wavelike Weyl components. However, it was
also shown that the wave components in fact do vanish for static plane-symmetric and
spherically symmetric geometries. This gives prominence to the cylinder symmetry as
the cause for the standard interpretation to fail.

Finally, let us stress that our results do not invalidate the Gedankenexperiment to
measure components of the Weyl tensor by observing the relative acceleration of nearby
freely falling test particles. Our work rather shows that it is in general not possible
to classify these components as Newton-like, or as incoming or outgoing gravitational
waves.

11This criterion is that there are outgoing (incoming) gravitational waves if 〈P r〉 is positive (negative).
Hence, it has the form of an inequality, and could therefore not be used as a local boundary
condition to exclude incoming waves. This boundary condition will be the subject of Chap. 3.



Chapter 3

Nonreflecting boundary
condition for cylindrical waves

In the previous chapter we learned that the “standard” decomposition of the Weyl
tensor into static, and incoming- and outgoing wave components is in general not
applicable. The failure was explicitly demonstrated for vacuum spacetime geometries
with whole-cylinder symmetry, and it was argued that it is (at least partly) due to the
impossibility to separate incoming and outgoing cylindrical waves by means of a local
criterion. In this chapter, we will confirm this claim by explicitly deriving the outgoing
cylindrical wave boundary condition, which turns out to be manifestly nonlocal.1

3.1 Definition of the problem

Consider a scalar field α which is subject to the (flat spacetime) homogeneous wave
equation in D + 1 dimensions,

−∂2
t α + ∆Dα = 0 . (3.1.1)

We call the field “cylindrically symmetric”2 if it is independent of (D−2) of the spatial
coordinates x—the direction of the (generalized) cylinder axis—and depends on the
remaining two space-coordinates (y1, y2) only via their Euclidean distance r =

√
y2

1 + y2
2

from the axis. In this case, the Laplace operator reduces to ∆cyl = ∂2
r + (1/r)∂r, and

the wave equation becomes

−∂2
t α + ∂2

rα +
1

r
∂rα = 0 . (3.1.2)

1For discussions of nonreflecting boundary conditions in the literature see [KG89, Giv91, AGH00]
and references therein.

2Sometimes, in particular in a GR context, the name“whole cylinder symmetry” is used to emphasize
the symmetry in axial direction. We will drop the adjective “whole” for the sake of brevity.
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Next, assume that the field is sourced (in a cylindrically symmetric way), but only
inside some region bounded by r = r0, so that Eq. (3.1.2) holds for r > r0. We then
might want to restrict the computational domain for solving the initial value problem to
the inner region (r < r0). However, in order for the time evolution therein to be unique,
we must specify some boundary conditions for the field at r = r0. For instance, we could
simply impose the fixed boundary condition α|0 = 0. Physically, this would correspond
to a perfectly reflecting boundary; no waves could leave the domain r < r0, and the
exterior solution α>(t, r) would be the trivial one, α> = 0. We are now interested in
the opposite case, in which the boundary is perfectly transparent. In other words, the
boundary condition should lead to a time evolution in the interior which is the same
as if there was no boundary at all, and the exterior field only contains outgoing waves.
The purpose of this chapter is to find the corresponding “nonreflecting”, or “outgoing
wave” boundary condition for cylindrical waves.

Note that by “boundary condition” we mean a spatially local condition on α at r0: If
it were not local in r, we could as well just include the exterior domain into the initial
value problem, which is exactly what we would like to get rid of. However, we cannot
expect it to be a restriction on α|0 alone, because it should be possible to choose for α|0
a completely arbitrary function of t, but still only have outgoing waves in the exterior.
Therefore, the desired relation will not be ultra-local, but also involve r-derivatives of
α. The adjective “local” then means that it should only involve finitely many of them.

Remark:

Incidentally, the whole analysis also applies to exact cylindrically symmetric gravita-
tional waves (Einstein-Rosen waves). This is due to the miracle that the corresponding
metric function α fulfills exactly the linear wave equation (3.1.2), cf. Sec. 2.5.2. Fur-
thermore, Einstein-Rosen waves can trivially be generalized to an axis with an arbitrary
number of dimensions > 1, which is exactly the situation relevant for studying cosmol-
ogy in a codimension-two braneworld model, see Chap. 5.

Therefore, we are in fact not only addressing a scalar field model, but also deriving the
exact nonreflecting boundary condition for cylindrical gravitational waves (in arbitrary
spacetime dimensions d ≥ 4). Using the metric function α as the proper tool for
this purpose is in line with Thorne’s concept of C-energy [Tho65], which was already
observed to work very well in Chap. 2.

3.2 Prelude: Plane waves

Before turning to the actual case of cylindrical waves, let us start with the much
simpler example of plane waves. Those are waves which only depend on one of the
spatial coordinates y, for which the wave equation is simply

−∂2
t α + ∂2

yα = 0 . (3.2.1)



3.2 Prelude: Plane waves 55

The analogue problem here is to find a “right-moving” boundary condition at some
y = y0. As is well known, the general solution of Eq. (3.2.1) can be written as

α(t, y) = αR(t− y) + αL(t+ y) . (3.2.2)

The reason for that is the fact that the plane wave d’Alembert operator factorizes,

−∂2
t + ∂2

y = (∂t + ∂y) (−∂t + ∂y) =: OROL . (3.2.3)

The parts αR and αL are annihilated by OR and OL, and readily recognized as right-
and left-moving waves, respectively. Hence, the requirement that there only be right-
moving waves for y > y0 reads OR α> = 0, and taking the limit y → y+

0 yields the
desired boundary condition

∂yα|0(t) = −∂tα|0(t) . (3.2.4)

Note that it is local not only in space, but also in time.
Even though this derivation was quite simple, it turns out that the same trick does

not work for cylindrical waves. The reason is that the cylindrical wave d’Alembert
operator does not factorize. One could insist on a factorization by formally writing

−∂2
t + ∆cyl = (∂t +

√
∆cyl)(−∂t +

√
∆cyl) . (3.2.5)

But since
√

∆cyl is a nonlocal operator, the resulting criterion would not meet our
requirement of a spatial locality. (It would be local in time, though.)

Let us, therefore, give an alternative derivation of the nonreflecting boundary con-
dition (3.2.4), which seems like overkill in the case of plane waves, but will have the
great advantage of being applicable to cylindrical waves as well. The general solution
of (3.2.1) can, alternatively, be obtained by Fourier transformation. In terms of the
temporal Fourier transform of α,

α̂(ω, y) :=

∫
dt α(t, y) eiωt , (3.2.6)

the wave equation turns into
ω2α̂ + ∂2

y α̂ = 0 , (3.2.7)

the general solution of which reads

α̂(ω, y) = a(ω) eiωy +b(ω) e−iωy . (3.2.8)

Inverting the Fourier transform then gives the general solution

α(t, y) =

∫
dω

2π

[
a(ω) eiωy +b(ω) e−iωy

]
e−iωt (3.2.9a)

=

∫
dω

2π

[
a(ω) e−iω(t−y) +b(ω) e−iω(t+y)

]
. (3.2.9b)
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At this stage we see that we again arrived at a sum of a general right- and left-moving
wave, described by the Fourier coefficients a(ω) and b(ω), respectively. In fact, we could
just call them αR and αL and recover Eq. (3.2.2). But this is not the point. Instead,
we can now implement the right-moving wave condition by setting b(ω) = 0, giving

α>(t, y) =

∫
dω

2π
a(ω) e−iω(t−y) . (3.2.10)

We can evaluate this at the boundary by letting y → y0,

α|0(t) =

∫
dω

2π
a(ω) e−iω(t−y0) . (3.2.11)

But we can also first take the y-derivative, and then let y → y0, yielding

∂yα|0(t) =

∫
dω

2π
iω a(ω) e−iω(t−y0) . (3.2.12)

These last two equations can now be used do derive the desired relation between α|0
and ∂yα|0: Using the inverse Fourier transform of the former to eliminate a(ω) in the
latter leads to

∂yα|0(t) =

∫
dω

2π
iω

∫
dt′ α|0(t′) e−iω(t−t′) (3.2.13a)

=:

∫
dt′ K(t− t′)α|0(t′) . (3.2.13b)

At first sight, this looks like a nonlocal relation in time. But taking a closer look at
the outgoing plane wave kernel K, we find

K(t) ≡
∫

dω

2π
iω e−iωt = −∂t

∫
dω

2π
e−iωt = −δ′(t) . (3.2.14)

Using this in (3.2.13b) and integrating by parts, we finally recover the local nonre-
flecting boundary condition (3.2.4). Even though this seems like an unnecessarily
complicated way to derive this simple relation, we will now prove the power of this
method by applying it to cylindrical waves. The nontrivial part was of course to realize
that one of the fundamental solutions in Fourier space, see Eq. (3.2.8), corresponds to
purely right-moving, and the other to purely left-moving modes. Luckily, we will see
that such a clean separation is also possible in the cylindrically symmetric case.

Finally, it should be mentioned that the nonreflecting boundary condition excludes
the static solutions of (3.2.1), viz. α ∝ y. This is clear as, according to the sepa-
ration (3.2.2), those represent a sum of left- and right-moving waves. Accordingly,
the boundary condition (3.2.4) implies ∂yα0 = 0 for a static solution. In a concrete
application, it might be desirable not to exclude static fields in the exterior domain.
But this is of course no problem, because the general solution can be obtained by
linear superposition. To be specific, suppose that at the initial time of integration,
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the exterior field should not be the trivial solution α = 0, but the general static solu-
tion αstat = c1 + c2y with some constants c1, c2. Then, the correct exterior solution is
α> = αR(t−y)+αstat(y), and the boundary condition (3.2.4) simply has to be modified
into

∂yα|0(t) = −∂tα|0(t) + c2 . (3.2.15)

3.3 Cylindrical waves

Let us now come to the actual case of interest—cylindrical waves. Defining, as before,
the (temporal) Fourier transform

α̂(ω, r) :=

∫
dt α(t, r) eiωt , (3.3.1)

the cylindrical wave equation (3.1.2) takes the form

ω2α̂ + ∂2
r α̂ +

1

r
∂rα̂ = 0 . (3.3.2)

Its general solution is given by [AS65]

α̂(ω, r) = A(ω)J0(ωr) +B(ω)Y0(ωr) , (3.3.3)

where Jn and Yn denote the Bessel functions of the first and second kind, respectively.
They are real-valued, and (3.3.3) is analogous to writing the solution for plane waves,
cf. Eq. (3.2.7), in terms of cos and sin. However, in the derivation in Sec. 3.2 it
was crucial to write the fundamental solutions in the complexified form (3.2.8). Only
then did the corresponding Fourier coefficients correspond to left- and right-moving
waves, cf. Eq. (3.2.9). Guided by this analogy, we should now also use the complex

combinations H
(1)
n = Jn + iYn and H

(2)
n = Jn − iYn, known as the Hankel functions of

the first and second kind, respectively. Thus, we rewrite Eq. (3.3.3) as

α̂(ω, r) = a(ω)H
(1)
0 (ωr) + b(ω)H

(2)
0 (ωr) , (3.3.4)

without loss of generality, and so the solution for α is given by

α(t, r) =

∫
dω

2π

[
a(ω)H

(1)
0 (ωr) + b(ω)H

(2)
0 (ωr)

]
e−iωt . (3.3.5)

If the analogy to plane waves is to hold, then the first term should correspond to
outgoing, and the second term to incoming waves. That this is indeed the case, can
be checked by noting that, asymptotically far away, the asymptotic form of the Hankel
functions for large arguments is [AS65, p. 364]

H
(1)
0 (x) ∼

√
2

πx
ei(x−π/4) , H

(2)
0 (x) ∼

√
2

πx
e−i(x−π/4) (x→∞) . (3.3.6a)
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Now there is a slight subtlety here because the integral (3.3.5) requires integrating not
only over positive, but also over negative ω. However, the Hankel functions have a
branch cut along the negative real axis. Thus, in order for α to be well defined, we
must specify which branch is to be used. This can for instance be done by replacing
ω → ω± iε in the arguments of the Hankel functions, with the limit ε→ 0 (from above)
to be understood. Using the analytic properties of the Bessel functions [AS65, p. 361],
one can then easily check that the asymptotic formula (3.3.6) generalizes to (x→ −∞)

if and only if we choose the “+iε” prescription for H
(1)
0 , and the “−iε” prescription for

H
(2)
0 .
We will therefore adopt this prescription from now on. Consequently, the cylindrical

waves at asymptotically large radii take the form

α(t, r) ∼
∫

dω

2π

1√
ωr

[
a(ω) e−iω(t−r) +b(ω) e−iω(t+r)

]
(r →∞) , (3.3.7)

where we dropped some irrelevant constant factors. Evidently, these correspond to
outgoing and incoming waves, respectively. Thus, requiring α to contain only outgoing
waves is indeed equivalent to setting b(ω) equal to zero, leading to the exterior solution

α>(t, r) =

∫
dω

2π
a(ω)H

(1)
0 (ωr) e−iωt . (3.3.8)

We can now proceed exactly as in the case of plane waves to obtain the desired boundary
condition,

∂rα|0(t) =

∫
dω

2π
(−ω)

H
(1)
1 (ωr0)

H
(1)
0 (ωr0)

∫
dt′ α|0(t′) e−iω(t−t′) , (3.3.9)

where we used dH
(1)
0 (z)/dz = −H(1)

1 (z), and |0 denotes evaluation at r = r0. Changing
to the dimensionless variables x := ωr0 and y := (t− t′)/r0, this can be written as the
convolution

∂rα|0(t) =
1

r0

∫
dy H(y)α|0(t− yr0) , (3.3.10)

with the outgoing cylindrical wave kernel

H(y) := −
∫

dx

2π

xH
(1)
1 (x)

H
(1)
0 (x)

e−ixy . (3.3.11)

Note that here the +iε prescription, as discussed above, still has to be understood.
Without a prescription the integral would be ill-defined, and for the −iε prescription
this kernel would not produce solely outgoing waves.

Just like in the case of plane waves, the nonreflecting boundary condition (3.3.10)
excludes any static fields in the exterior. Therefore, a time independent boundary value
α|0 should imply ∂rα|0 = 0, which translates into the consistency requirement∫

dy H(y) = 0 . (3.3.12)
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This can readily be confirmed analytically, since after courageously interchanging the
order of integrations, we get∫

dy H(y) = −
∫

dx
xH

(1)
1 (x)

H
(1)
0 (x)

δ(x) = −xH
(1)
1 (x)

H
(1)
0 (x)

∣∣∣∣∣
x=0

= 0 . (3.3.13)

If needed, the most general static exterior field configuration α(r) = c1 + c2 ln(r) could
again be included by adding c2/r0 to the right hand side of Eq. (3.3.10).

3.4 Evaluating the kernel

Written in this formal way, Eq. (3.3.10) is not yet particularly useful—not only if we
would like to use it for actual calculations, but even to infer qualitative features; in
particular, we would like to know whether this boundary condition is local (in time),
like in the case of plane waves.

Therefore, we would now like to explicitly perform the integral in (3.3.11), i.e. cal-
culate the inverse Fourier transform of

Ĥ(x) := −xH
(1)
1 (x)

H
(1)
0 (x)

, (3.4.1)

keeping in mind the +iε prescription. This turns out to be quite a formidable task, and
we will in the end resort to a numerical integration for obtaining the final quantitative
result. But the integrand will only be amenable to a numerical investigation after
some preparatory work. This is because, as we will see below, the kernel is not a
smooth function, but contains distributional pieces, which are hard to obtain directly
by a numerical evaluation. One of these distributional parts can already be anticipated
from the knowledge that at large radii the plane wave criterion should be recovered,
which is only possible if H again contains the part −δ′(y). In fact, we can even be a
bit more precise. At asymptotically large argument, the integrand can be expanded in
a Laurent series around 1/x = 0 as

Ĥ(x) = ix− 1

2
+

i

8x
+

1

8x2
− 25i

128x3
+O

(
1

x4

)
. (3.4.2)

Performing the +iε inverse Fourier transform, this yields

H(y) = −δ′(y)− 1

2
δ(y)︸ ︷︷ ︸

=:H(dis)(y)

+ Θ(y)

[
1

8
− y

8
+

25

256
y2 +O

(
y3
)]
. (3.4.3)

In this way, we indeed recover the term corresponding to the plane wave criterion, but
also a second distributional part that will lead to another local contribution in the
boundary condition. As for the remainder, the overall Heaviside step function Θ(y)
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can be inferred from the +iε prescription and the fact that the integrand is analytic in
the upper complex half-plane, see Fig. 3.1. This means that H is a retarded kernel;3

it evaluates α in the boundary condition (3.3.10) only at times earlier than t. This is
physically reasonable and makes the kernel especially applicable to the integration of
initial value problems.

Figure 3.1: Analytic structure of the integrand Ĥ(x): It has a branch cut (thick red line)
on the negative real axis, and poles (black dots) in the lower left quadrant, whose imaginary
parts approach − ln(2)/2 (dashed line) as Re(x)→ −∞ [AS65, p. 373]. The +iε prescription
demands that the Fourier integration is to be performed right above the real axis.

It is tempting to try to determine the remaining function

H(reg)(y) := H(y)−H(dis)(y) (3.4.4)

by proceeding in a similar fashion term by term, extending the series in brackets
in (3.4.3) and hoping that it converges. However, its radius of convergence turns out
to be only 2, see Fig. 3.2. Nevertheless, the convergence for y < 2 already provides
some important information:

(i) There are no further local δ-contributions to the kernel other than −δ′(y)−δ(y)/2.

(ii) The kernel contains a nonlocalized (retarded) part and hence, the outgoing wave
boundary condition for cylindrical waves is nonlocal.

3One might have expected that there is some freedom of choice here, and that one could equally well
have defined an advanced outgoing wave kernel. But this is not the case, since the +iε prescription
was forced upon us in order to obtain purely outgoing waves, as discussed below Eq. (3.3.6). On the
other hand, imposing an incoming wave condition would have unambiguously led to an advanced
kernel; indeed, the corresponding kernel would simply be H(−y), as can be seen immediately by
reversing time.
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Figure 3.2: Testing convergence of the series expansion of H(reg) around y = 0, as obtained
by expanding Ĥ around x = ∞, see Eq. (3.4.3). The plot shows (the absolute value of) the
difference of two truncated series ending at orders yni and yni+1 , respectively. Evidently, the
series converges for y < 2, but diverges for y > 2.

It remains to determine the function H(reg)(y) for arguments y ≥ 2. Since it seems
impossible to derive it in a closed analytic form, we will content ourselves with evalu-
ating it numerically. To this end, it is useful to first rewrite Eq. (3.3.11) in a manifestly
real form. Using the analytic properties of the Bessel functions [AS65, pp. 360–361], it
is straightforward to obtain

H(y) = −
∫ ∞

0

dx

π

1

J2
0 + Y 2

0

[
x
(
J0J1 + Y0Y1

)
cos(xy)− 2

π
sin(xy)

]
, (3.4.5)

where, for brevity, the arguments x of all the Bessel functions were suppressed. The
great advantage of writing the kernel in this way is that, since the integration runs
only over positive x, the integrand is unambiguous, and so there is no need for an
iε prescription anymore. Next, we can get rid of the distributional parts of H(y) by
subtracting the first two terms in (3.4.2) from the integrand. In the real representation,
those are

H(dis)(y) = −
∫ ∞

0

dx

π

[
1

2
cos(xy)− x sin(xy)

]
. (3.4.6)

However, the remaining function H(reg) is still not continuous, but has a jump of size
1/8 at y = 0, see Eq. (3.4.3). When evaluating the integral numerically (with an
appropriate cutoff), this leads to oscillatory artifacts near y = 0, the size of which
increases with the cutoff. This can be avoided by further subtracting

Θ(y)
e−y

8
=

∫ ∞
0

dx

π

cos(xy) + x sin(xy)

8 (1 + x2)
. (3.4.7)
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From the series expansion (3.4.3), one can see that this subtracts not only the discon-
tinuity from the kernel, but also the discontinuity in its first derivative. Hence, the
residual part of the kernel, which we will call H(res), will be continuously differentiable
and go like O(y2). In the real cos-sin-representation, it is given by

H(res)(y) =

∫ ∞
0

dx

π

[
Ĥ(res)

c (x) cos(xy) + Ĥ(res)
s (x) sin(xy)

]
, (3.4.8a)

Ĥ(res)
c (x) := −x (J0J1 + Y0Y1)

J2
0 + Y 2

0

− 1

8 (1 + x2)
+

1

2
, (3.4.8b)

Ĥ(res)
s (x) :=

2

π (J2
0 + Y 2

0 )
− x

8 (1 + x2)
− x , (3.4.8c)

where the arguments x of the Bessel functions were again omitted. Before finally
evaluating this integral numerically, there is another simplification that can be made.
We already know that H(res) vanishes for y < 0. Since the two terms in the integrand
of (3.4.8a) are even and odd functions of y, respectively, we can use this information
to rewrite the residual kernel as4

H(res)(y) = Θ(y)
2

π

∫ ∞
0

dx Ĥ(res)
s (x) sin(xy) . (3.4.9)

At last, this integral is well suited for numerical evaluation. The resulting function
is plotted in Fig. 3.3. For asymptotically large arguments (y → ∞), it falls off like
H(res)(y) ∼ 1/

[
y ln2(y)

]
. Furthermore, Eq. (3.3.12), implies that the integral over

H(res) equals 3/8, which can also be confirmed numerically.

3.4.1 Summary and discussion

To summarize, the outgoing cylindrical wave kernel is given by

H(y) = −δ′(y)− 1

2
δ(y) + Θ(y)H(reg)(y) , (3.4.10)

with H(reg)(y) = Θ(y) exp(−y)/8 +H(res)(y), which is plotted in Fig. 3.4. As a result,
the nonreflecting boundary condition for cylindrical waves (3.3.10) finally becomes

∂rα|0(t) = −∂tα|0(t)− 1

2r0

α|0(t) +
1

r0

∫ ∞
0

dy H(reg)(y)α|0(t− yr0) . (3.4.11)

The difference to the corresponding boundary condition for plane waves, viz. (3.2.4), is
a second local non-derivative term and, more importantly, a (retarded) nonlocal term.
Both of them scale like 1/r0 and thus vanish in the limit r0 → ∞. This is intuitively

4One could just as well express it in terms of H(res)
c , but this would be more costly to evaluate

numerically because it involves more Bessel function terms.
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(a) H(res)(y) is a differentiable function that
goes to zero like y2 for y → 0 and has its max-
imum at y ≈ 2.4.

(b) For large arguments (y → ∞), it asymp-
totically goes like ∼ 1/(y ln2 y).

Figure 3.3: Numerical evaluation of the residual part (3.4.9) of the cylindrical outgoing wave
kernel.

reasonable, because cylindrical waves look locally more and more like plane waves as
they approach radial infinity.

The second local term α/(2r) simply accounts for the correct fall-off behavior∼ 1/
√
r

of the outgoing cylindrical wave. Indeed, the differential equation that is obtained by
dropping the nonlocal term from (3.4.11) has the general solution αout(t− r)/

√
r.

Let us finally discuss the physical origin of the nonlocality. It is well known [Had52]
that waves in two spatial dimensions do not obey the principle of Huygens and Fres-
nel,5 meaning that signals do not propagate exclusively with the speed of light, but
also slower. Mathematically, this can directly be seen from the fact that the retarded
Green’s function for the d’Alembert operator in 2 + 1 dimensions has support not
only on the backward light cone, but also inside. This is another manifestation of
the same nonlocality that enters the nonreflecting boundary condition (3.4.11). Phys-
ically, the failure of Huygens’ principle in two spatial dimensions can be understood
as a consequence of the fact that the principle holds in three dimensions:6 The wave
equation (3.1.2) can be thought of as describing waves in an intrinsically 2D world,7

in which Huygen’s principle fails. But it also describes cylindrical waves in 3D which
do not depend on the axial coordinate. From this point of view, a cylindrical wave
pulse is created by an infinitely long straight line source, located at the symmetry axis.
The 2D world is simply a plane perpendicular to the axis in 3D, where the 3D line
source becomes a 2D point source. Now, if Huygens’ principle holds in 3D, then a
short pulse sent out by the line source can be thought of as a collection of infinitely
many 3D point sources along the axis, each sending out a 3D spherical wave pulse.
As a consequence, the 2D observer at some distance r0 will first see the pulse coming

5In the following, we will call it “Huygens’ principle” for short.
6This illustrative explanation is due to John Baez [Bae06].
7In this section, “nD” refers to n spatial dimensions.
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Figure 3.4: The nonlocal part H(reg)(y) of the outgoing cylindrical wave kernel entering the
boundary condition (3.4.11) is the sum of Θ(y) exp(−y)/8 and H(res)(y). Asymptotically, it
falls off like 1/(y ln2 y), and its total integral equals 1/2.

from the closest point of the 3D axis, corresponding to propagation “on the light cone”.
But afterwards, she receives the spherical wave fronts from all the points lying further
and further away along the axis, getting dimmer and dimmer. From the 2D perspec-
tive, those correspond to a tail of the wave pulse, propagating “inside the light cone”,
which only asymptotically settles back to zero. This tail will be nicely visualized in the
numerical example below.

Incidentally, it turns out that this pattern generalizes to arbitrary even and odd
dimensions [Bro15]: Huygens’ principle fails (holds) in every even (odd) number of
spatial dimensions. Accordingly, we expect the corresponding outgoing wave criterion
to be nonlocal (local) in all even (odd) dimensions. For the case of 3D spherical waves,
this can easily be confirmed by noting that the d’Alembert operator again factorizes,

−∂2
t +

2

R
∂R + ∂2

R =

(
∂t +

1

R
+ ∂R

)(
−∂t +

1

R
+ ∂R

)
. (3.4.12)

Hence, the corresponding nonreflecting boundary condition is indeed local and reads

∂Rα|0(t) = −∂tα|0(t)− 1

R0

α|0(t) . (3.4.13)

3.5 Numerical example

In order to gain more confidence in the derived boundary condition, and to show how it
can actually be applied in a numerical calculation, let us consider a concrete example.
(This toy example also serves as a warm-up exercise for the more complicated case of
BIG cosmology, which will be studied numerically in Sec. 5.3.) Let the scalar field α
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at time t = 0 be subject to the initial data

α(t = 0, r) = Θ(r0 − 4r) exp

(
− 4r2

r2
0 − 4r2

)
, (3.5.1a)

∂tα(t = 0, r) = 0 , (3.5.1b)

i.e. it has nonzero field values for r < r0/4 which go to zero smoothly at r → r0/4,
and is initially at rest. The task is to determine the future evolution of α in the region
r ∈ [0, r0]. For this evolution to be unique, boundary conditions at r = 0 and r = r0

have to be given. Regularity at the axis r = 0 demands that ∂rα(t, r = 0) = 0; at
r = r0 the field should satisfy the nonreflecting boundary condition (3.4.11).

3.5.1 Discretization

To solve this problem numerically, we introduce an equidistant spacetime lattice, i.e.
we replace the continuous variables (t, r) by a finite number of points (t(i), r(n)) with
an equidistant spacing

∆t = ∆r =: ε . (3.5.2)

Note that this choice satisfies the “Courant condition” ∆t/∆r ≤ 1, and so the resulting
scheme will be numerically stable [PTVF92]. The spacetime grid is then given by

t(i) = iε (i = 0, 1, . . . , I) , r(n) = nε (n = 0, 1, . . . , N) , (3.5.3)

with its boundaries located at t(0) ≡ 0, r(0) ≡ 0 and r(N) ≡ r0. Away from the
boundaries, the derivatives of α can be approximated by the (symmetric) differences

∂tα(t, r)→ 1

2ε

(
αi+1
n − αi−1

n

)
, ∂2

t α(t, r)→ 1

ε2
(
αi+1
n − 2αin + αi−1

n

)
, (3.5.4a)

∂rα(t, r)→ 1

2ε

(
αin+1 − αin−1

)
, ∂2

rα(t, r)→ 1

ε2
(
αin+1 − 2αin + αin−1

)
. (3.5.4b)

where αin is shorthand for α(t(i), r(n)). The cylindrical wave differential equation (3.1.2)
then turns into the difference equation

αi+1
n = −αi−1

n + αin+1 + αin−1 +
1

2n

(
αin−1 − αin+1

)
, (3.5.5)

from which the scalar field (in the interior domain) at time ti+1 can be calculated given
its values at the two preceding time steps ti and ti−1. At the boundaries of the domain
of integration, i.e. at i = 0, n = 0 and n = N , this equation cannot be used, because
it would require values of the scalar field outside the domain. In these cases, we will
instead use the asymmetric differences

∂tα(t = 0, r)→ 1

ε

(
α1
n − α0

n

)
, (3.5.6a)

∂rα(t, r = 0)→ 1

ε

(
αi1 − αi0

)
, ∂rα(t, r = r0)→ 1

ε

(
αiN − αiN−1

)
, (3.5.6b)
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together with the corresponding initial and boundary conditions. With the initial
data (3.5.1), this implies that the discretized field at i = 0 and i = 1 is simply given
by (3.5.1a), evaluated at the grid points r(n). Regularity at r = 0 yields αi0 = αi1, and
the nonreflecting boundary condition at r = r0 turns, after some rearrangements, into8

(
1 +

ξ

2

)
αi+1
N = αiN−1 + ξ2

i∑
j=0

H(reg) [(i+ 1− j)ξ] αjN , (3.5.7)

where ξ := ε/r0, and the integral was replaced by the corresponding Riemann sum.
This nonlocal part requires the values of the kernel function H(reg)(y) in the range y ∈
[0, tmax/r0], sampled at I + 1 points. They can be obtained beforehand by numerically
evaluating (3.4.9) to the required precision. The system of equations is now complete,
and it is straightforward to implement the corresponding algorithm.

Before presenting the results, let us discuss how the numerical errors can be esti-
mated. One way is to check how much the calculated field values change when the
grid-spacing decreases. For instance, one can define an error estimate δα, for α calcu-
lated with grid-spacing ε, as δα(ε) := α(2ε)− α(ε). If α(ε) converged to its true value
linearly in ε as ε→ 0, this would give exactly the correct error, for a faster convergence
the true error would even be smaller. This requires running the numerics twice, to
obtain both α(ε) and α(2ε). On the other hand, we can also use this additional infor-
mation to obtain an even better estimate for α, by linearly extrapolating to ε→ 0, viz.
αext = 2α(ε)− α(2ε).

3.5.2 Result and discussion

The result of the numerical integration for t ∈ [0, 2r0] is shown in Fig. 3.5. One can
see that the wave packet indeed moves outward through the boundary r = r0, as it
should. Furthermore, unlike a plane wave, it leaves a tail behind and the field only
asymptotically settles back to zero. This tail is the physical origin of the nonlocal
part in the boundary condition (3.4.11), cf. the discussion at the end of the preceding
section.

Due to this tail, it is hard to see if there is still a small artificial reflection produced
at r0. Therefore, in order to get a more quantitative statement about how well the
nonreflecting boundary condition works, we have to subtract the “true” nonreflected
result. This can be obtained by doubling the spatial domain of integration, but keeping
tmax = 2r0, because then the initial wave packet will only reach the new boundary at
t = 2r0, and any reflections that occur there can not yet have propagated back to r0.

After this subtraction, we obtain αref , which is a direct measure of the reflection
that occurs at r0. It is plotted in Fig. 3.6 (blue) at time t = 2r0—when the reflected
part at r = 0 is maximal—and is indeed zero within the numerical uncertainties. For

8There is some arbitrariness in choosing whether the r-difference is evaluated at time i or i−1. Both
choices would work, but we use the latter because then two terms cancel, and so the number of
required calculations reduces.
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comparison, we also plotted (red) the same quantity for the case when only the two local
parts in the boundary condition (3.4.11) are used, i.e. the sum in (3.5.7) is dropped.
Then, about 0.01% of the initial amplitude are reflected back to the axis, confirming
the necessity of the nonlocal part in the correct nonreflecting boundary condition.

Figure 3.5: Radial profile of the cylindrically symmetric scalar field α, as obtained by numer-
ically integrating the initial data (3.5.1), using the outgoing wave boundary condition (3.4.11)
at r = r0. The field excitation, which is initially localized in a compact region near th axis,
propagates outward and passes through the boundary without reflection. It leaves a tail
behind, which is the origin of the nonlocal part in the boundary condition (3.4.11).
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Figure 3.6: The part of the field that gets reflected at r = r0, evaluated at t = 2r0 when
the maximum of the reflected wave packet has reached the axis at r = 0. The filled bands
indicate the numerical uncertainties. The red curve shows the result when only the local
terms in the nonreflecting boundary condition are used, leading to about 0.01% reflection.
This residual reflection is completely removed with the full nonlocal boundary condition, as
shown by the blue curve.



Chapter 4

The universe as a cosmic ring

Note: The results presented in this chapter arose in collaboration with Florian
Niedermann, and were published in [NS15a].

As discussed in the introduction, any theory with more than three spatial dimensions
has to address the question why we have not yet seen them. In order not to be ruled
out immediately, they must provide some sort of mechanism which hides the extra
dimensions, at least at the length (or energy) scales that we have been able to probe.
There are basically two known mechanisms which can achieve this: Either, following
Kaluza and Klein [Kal21, Kle26], the extra dimensions are assumed to be compact
with very small circumferences—so small that the energies required to probe them are
somewhere above the current collider limits. The other paradigm is the braneworld
scenario, claiming that all matter is confined to a (3 + 1)-dimensional brane. In that
case, only gravity is able to probe the bulk dimensions, and so one also has to rely on
an additional mechanism which provides a way of restoring 4D GR on the scales where
it has been tested. One possibility is to include BIG terms with appropriate coefficients
on the brane, as in the DGP model.

In this chapter, we will investigate an extension of the DGP model which, in addition
to the one infinite bulk extra dimension, has another compact brane dimension.1 This
represents the simplest prototype of the whole class of models which have both compact
and infinite extra dimensions, and the primary goal of this chapter is to derive its
modified Friedmann equations, describing the cosmological evolution on the brane.

The key new qualitative feature, which is also expected to occur in more elaborate
higher-dimensional extensions, is the possibility to emit gravitational waves into the
bulk, already at the 3D homogeneous and isotropic background level. Technically,
this confronts us with the problem that the on-brane evolution is only unique after
incoming waves have been excluded. We will see that the decomposition of the Weyl
tensor, as described in Chap. 2, provides a successful tool for doing so. Therefore, the

1We will always implicitly assume the compact dimension to be much larger than the fundamental
Planck length, so that it can be described by classical (higher-dimensional) GR.
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current model is still simple enough to investigate the cosmological consequences in an
analytic2 way.

Two (a posteriori) features make the model especially interesting: First, we find
degravitating attractor solutions at the full nonlinear level, i.e. 4D flat solutions despite
the presence of a 4D CC, where all curvature is deposited into the extra dimensions.
However, they turn out not to be phenomenologically viable, and thus mainly serve
as a proof of principle (or perhaps as a motivation to come up with similar but more
successful variants). Second, the model could provide phenomenologically interesting
late time modifications other than just the DGP ones. As we will see, they are expected
to occur because of a breakdown of the stabilization of the compact dimension’s size
modulus. Hence, the same effect might occur in other models of the Kaluza-Klein type,
which could open the window to a whole new category of late time modifications that
could be tested against GR. However, the details of this mechanism depend on the
concrete realization of the stabilization mechanism, which is beyond the scope of the
current work and is left for future research.

4.1 Setup

The model under consideration is defined by the action

S =
M4

6

2

∫
d6X

√
−g(6)R(6) +

∫
d5x

√
−g(5)

(
Lm +

M3
5

2
R(5)

)
. (4.1.1)

The first part is the six-dimensional (6D) Einstein-Hilbert action, describing standard
gravity in the bulk, with corresponding Planck scale M6. The bulk is assumed to be
source-free,3 and all matter sources, encoded in the Lagrangian Lm, are confined on
the five-dimensional (5D) brane with induced metric tensor g(5). The final ingredient is
the brane induced gravity (BIG) term, i.e. the five-dimensional Einstein-Hilbert term
derived from g(5), the size of which is controlled by the induced Planck scale M5. It
can be thought of as arising from integrating out heavy brane degrees of freedom, just
like in the DGP model.

The topology of the full 6D manifold is M5 × R, and that of the 5D brane is
M5 = M4 × S1, where M4 = R(1,3) denotes Minkowski spacetime and S1 is the
unit circle. Physically, the four infinite brane dimensions correspond to the familiar di-
mensions that we see at low energies, whereas the fifth compact dimension is assumed
to be microscopically small, and therefore unobservable at low energies. Its proper
circumference will be denoted by 2πc, cf. Eqs. (4.2.2) and (4.2.3). The sixth (bulk) di-
mension is again infinitely large, but also hidden from low energy observations because

2The Friedmann equations will, in some cases, be solved numerically; but since they are just a system
of ordinary differential equations, this is completely trivial, as opposed to the numerical treatment
of the full Einstein PDEs in Chap. 5.

3In particular, the bulk cosmological constant is set to zero for simplicity.
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all matter (in particular any observer) is confined toM5. The extra-dimensional topol-
ogy is visualized in Fig. 4.1a. The infinite extra dimension is labeled by y ∈ (−∞,∞),
and the compact one by φ ∈ [0, 2π).

Note that the action (4.1.1) could as well describe a codimension-two brane, regular-
ized by blowing the brane up to a circle of finite radius. However, the present setup is
topologically distinct from such a scenario, in which the 6D manifold would have topol-
ogyM4×R2. This topology is depicted in Fig. 4.1b, and the corresponding model will
be studied in Chap. 5. The correct topology will then be implemented by requiring the
azimuthal metric coefficient to vanish at the axis r = 0. We will refer to that model
as the “cosmic string”, due to its similarity to the geometry of a (regularized) cosmic
string in GR. Here, instead, there is no axis on the manifold, and it is natural to assume
Z2 symmetry around the brane (like in the DGP model), as will be done below. This
model will be named “cosmic ring”.

(a) “Cosmic ring”—cylindrical topology: the
symmetry axis does not lie on the manifold,
and it is natural to assume reflection symmetry
around y = 0.

(b) “Cosmic string”—radial topology: r = 0
is the symmetry axis and the brane can cre-
ate a defect angle in the exterior. There is no
reflection symmetry around r = r0 in this case.

Figure 4.1: Illustration of two possible bulk geometries that can locally be described by
the same metric ansatz, but are topologically different. Only the two extra dimensions are
depicted, embedded into a fictitious three-dimensional space. The 5D brane is drawn in
red, and is located at y = 0 and r = r0, respectively. In this chapter, we are considering the
cylindrical topology (a); the radial topology will be the subject of Chap. 5, where (regularized)
codimension-two BIG is studied.

4.2 Deriving modified Friedmann equations

4.2.1 Cosmological ansatz and field equations

The aim of the present section is to derive the modified Friedmann equations describing
the cosmological evolution of the brane in the model (4.1.1), similarly to the DGP
case discussed in Sec. 1.4.2. To this end, we assume the brane to be filled with a
perfect fluid in a φ-independent, as well as 3D homogeneous and isotropic way. The
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assumption of azimuthal symmetry is justified if we restrict ourselves to energies much
below the corresponding Kaluza-Klein scale ∼ 1/c, as we do when addressing (late
time) cosmological questions corresponding to energies of order today’s Hubble scale
H0. Furthermore, for simplicity, we restrict ourselves to 3D spatially flat geometries;
the generalization to nonvanishing 3D curvature would be straightforward. The most
general metric compatible with these symmetries can be written as

ds2 = − e2N(t,y) dt2 + e2A(t,y) δij dxidxj + dy2 + e2C(t,y) dφ2 , (4.2.1)

where we adopted Gaussian normal coordinates in y-direction, like in the DGP case,
cf. Sec. 1.4.2. In these coordinates, the brane is located at y = 0, and thus the 5D
induced metric is simply

ds2
(5) = −dt2 + e2A0(t) δij dxidxj + e2C0(t) dφ2 , (4.2.2)

where A0(t) := A(t, 0), C0(t) := C(t, 0), and we used a local rescaling of t at the brane
to set N(t, 0) = 0, so that proper (cosmological) time on the brane is measured by t.
Hence, the scale factors in x- and φ-direction are recognized as

a(t) := eA0(t) and c(t) := eC0(t) , (4.2.3)

respectively, and the corresponding expansion rates are measured by the “Hubble”
parameters

Ha(t) :=
ȧ(t)

a(t)
≡ Ȧ0(t) and Hc(t) :=

ċ(t)

c(t)
≡ Ċ0(t) , (4.2.4)

with the dot denoting d/dt. The entire cosmological dynamics that an on-brane ob-
server can measure is encoded in these two functions, and it is the main goal of this
section to derive the corresponding “Friedmann” equations, which determine their time
evolution for a given matter content.

As discussed in Sec. 1.4.2, the use of Gaussian normal coordinates allows to imple-
ment Israel’s junction conditions by simply inserting delta functions in Einstein’s field
equations. In complete analogy to (1.4.7), the equations of motion thus read

M4
6G

(6)
MN = δ(y)δαMδ

β
N

(
Tαβ −M3

5 G
(5)
αβ

)
. (4.2.5)

Here, Tαβ is the 5D energy momentum tensor that follows from Lm. It is not necessary
to specify this Lagrangian, since due to the symmetries of our cosmological ansatz the
energy momentum tensor must take the form of a perfect fluid,

Tαβ = diag (−ρ, p, p, p, pφ) . (4.2.6)

The azimuthal component pφ, measuring the pressure in direction of the compact extra
dimension, can be used to stabilize the brane circumference. We will come back to this
point later.
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Explicitly, the complete set of nontrivial components of the field equations (4.2.5)
then become

(tt) : e−2N
(
−3Ȧ2 − 3ȦĊ

)
+ 6A′

2
+ 3A′C ′ + C ′

2
+ 3A′′ + C ′′ = −δ(y) ρ̃ ,

(4.2.7a)

(xx) : e−2N
(
−3Ȧ2 − 2ȦĊ − Ċ2 + 2ȦṄ + ĊṄ − 2Ä− C̈

)
+ 3A′

2

+ 2A′C ′ + C ′
2

+ 2A′N ′ + C ′N ′ +N ′
2

+ 2A′′ + C ′′ +N ′′ = δ(y) p̃ ,
(4.2.7b)

(φφ)−(yy) : e−2N
(

3ȦĊ + Ċ2 − ĊṄ + C̈
)

+ 3A′
2 − 3A′C ′ − C ′N ′ +N ′

2
+ 3A′′ +N ′′ = δ(y) p̃φ ,

(4.2.7c)

(yy) : e−2N
(
−6Ȧ2 − 3ȦĊ − Ċ2 + 3ȦṄ + ĊṄ − 3Ä− C̈

)
+ 3A′

2
+ 3A′C ′ + 3A′N ′ + C ′N ′ = 0 ,

(4.2.7d)

(ty) : e−2N
(

3A′Ȧ− 3N ′Ȧ+ C ′Ċ −N ′Ċ + 3Ȧ′ + Ċ ′
)

= 0 , (4.2.7e)

where dot and prime are again shorthand for ∂t and ∂y, respectively. Furthermore,
for notational convenience, the BIG terms were again absorbed into the effective fluid
components

ρ̃ :=
1

M4
6

[
ρ− 3M3

5

(
H2
a +HaHc

)]
, (4.2.8a)

p̃ :=
1

M4
6

[
p+M3

5

(
2Ḣa + Ḣc + 3H2

a +H2
c + 2HaHc

)]
, (4.2.8b)

p̃φ :=
1

M4
6

[
pφ + 3M3

5

(
Ḣa + 2H2

a

)]
. (4.2.8c)

When set to zero, those would correspond to the Friedmann equations of 5D (spatially
flat) Kaluza-Klein cosmology [Fre82], which in the limit Hc � Ha reproduces the
standard 4D GR result. Due to the sixth dimension, those will here get modified by
extrinsic curvature contributions from the bulk geometry, like in the DGP model.

4.2.2 On-brane equations

In order to go from the PDEs (4.2.7) to a system of on-brane ODEs, we can now proceed
just like in the DGP case: First, perform a delta-matching of Eqs. (4.2.7a)–(4.2.7c),
giving (after solving for the jumps)

[A′] =
1

4
(p̃φ − p̃− ρ̃) , [C ′] =

1

4
(3p̃− 3p̃φ − ρ̃) , [N ′] =

1

4
(p̃φ + 3p̃+ 3ρ̃) . (4.2.9)
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And second, take the jump and mean of the other4 Eqs. (4.2.7d) and (4.2.7e), yielding

[yy] : 3 [A′]
(

2〈A′〉+ 〈C ′〉+ 〈N ′〉
)

+ [C ′]
(

3〈A′〉+ 〈N ′〉
)

+ [N ′]
(

3〈A′〉+ 〈C ′〉
)

= 0 ,

(4.2.10a)

〈yy〉 :
3

4
[A′]

(
[A′] + [C ′] + [N ′]

)
+

1

4
[C ′] [N ′] + 3〈A′〉

(
〈A′〉+ 〈C ′〉+ 〈N ′〉

)
+ 〈C ′〉〈N ′〉

− 6H2
a − 3HaHc −H2

c − 3Ḣa − Ḣc = 0 ,
(4.2.10b)

[ty] : 3Ha

(
[A′]− [N ′]

)
+Hc

(
[C ′]− [N ′]

)
+ 3 ˙[A′] + ˙[C ′] = 0 , (4.2.10c)

〈ty〉 : 3Ha

(
〈A′〉 − 〈N ′〉

)
+Hc

(
〈C ′〉 − 〈N ′〉

)
+ 3 ˙〈A′〉+ ˙〈C ′〉 = 0 . (4.2.10d)

In this way, we have again extracted all the local on-brane information from the bulk
equations of motion. As before, inserting the jumps (4.2.9) into the [ty] equation yields
the energy conservation equation. This time, however, it is not the 4D standard one,
but gets modified due to the dynamics of the compact extra dimension,5

ρ̇+ 3Ha (ρ+ p) +Hc (ρ+ pφ) = 0 . (4.2.11)

Let us now come to the crucial difference of this system of ODEs, as compared to the
DGP case. There, the corresponding system provided enough equations to solve for all
the means,6 thus ultimately leading to a closed evolution equation for the scale factor
a(t). But here, the counting does not add up: Energy conservation (4.2.11) determines
ρ(t) (while p and pφ are determined by some equations of state), leaving us—after
eliminating the jumps via (4.2.9)—with the three equations (4.2.10a), (4.2.10b) and
(4.2.10d) for five unknown functions 〈A′〉(t), 〈C ′〉(t), 〈N ′〉(t), a(t) and c(t). Hence, two
equations are missing for a closed system which would yield a unique time evolution
given initial conditions on the brane.

Assuming Z2 symmetry helps a bit, but is not enough: In this case 〈A′〉 = 〈C ′〉 =
〈N ′〉 = 0, so that Eqs. (4.2.10a) and (4.2.10d) are identically fulfilled, and we are left
with Eq. (4.2.10b), which simplifies to

3

4
[A′]

(
[A′] + [C ′] + [N ′]

)
+

1

4
[C ′] [N ′] = 6H2

a + 3HaHc +H2
c + 3Ḣa + Ḣc , (4.2.12)

4Again, taking the jump and mean of the first three equations (which contain second y-derivatives)
would give six additional equations, but also six additional variables—the jump and mean of the
second y-derivatives—and would thus not provide any additional information for the on-brane
system.

5This is readily recognized as (the only nontrivial component of) ∇(5)
m Tmn = 0, which follows (more

abstractly) from the Gauss-Codazzi relation, together with the vacuum field equations and the 5D
Bianchi identity.

6Or, after assuming Z2 symmetry, implying vanishing means, there was still one equation left deter-
mining a(t).
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and constitutes only one equation for the two functions a(t) and c(t). Therefore, the
on-brane system is still not closed, and consequently allows for completely arbitrary
cosmological evolutions on the brane. [One could, for instance, require c to have some
arbitrary time-dependence, and then use (4.2.10b) to infer the corresponding form of
a.]

In the DGP case this did not happen and, as discussed in Sec. 1.4.2, the reason was
that there Taub’s (or Birkhoff’s) theorem applied and enforced a static bulk geometry
due to the imposed symmetries. The reason for the failure in the present case should
thus be clear: There is no such theorem which would forbid gravitational bulk waves
in this six-dimensional setup. Accordingly, the arbitrariness in the on-brane solution is
inherited from the freedom to freely choose initial wave profiles in the bulk and let them
propagate towards the brane.7 In other words, instead of the one constant of integration
that appeared in the DGP Friedmann equation due to the one free parameter of the
static bulk solution, there are now infinitely many “constants of integration”, which
would be necessary to specify the initial wave data, rendering the on-brane system
undetermined.

The inapplicability of Taub’s theorem is due to the fact that the geometry under in-
vestigation is not (hyper-)plane-symmetric. As already mentioned, “planar symmetry”
in the theorem refers to translational and rotational symmetry in the plane directions.
The metric (4.2.1) shows that rotational symmetry between the x- and φ-directions is
broken, because the functions A and C are generally different. Indeed, requiring them
to be equal would restore planar symmetry, and the theorem would strike again: the
three equations (4.2.10a), (4.2.10b) and (4.2.10d) would again yield a closed system for
the remaining three functions 〈A′〉, 〈N ′〉 and a.8

4.2.3 Excluding incoming bulk waves

When gravitational waves are present in the bulk, the only way to obtain a closed
system of on-brane ODEs is by imposing outgoing wave boundary conditions on both
sides of the brane. Note that this is in accordance with the counting of equations
in the preceding section: Without Z2 symmetry across the brane, those would add
the two additional equations that are needed to close the system; with Z2 symmetry
there would only be one outgoing wave boundary condition, also matching the one
missing equation in that case. For simplicity, we will from now on restrict ourselves
to the Z2 symmetric case, which is a natural assumption in the current bulk topology,
cf. Fig. 4.1a.

Since those waves, according to the required symmetries, are plane waves, we expect
the standard interpretation of the components of the Weyl tensor to apply, as discussed

7This also explains why enforcing Z2 symmetry decreases the number of undetermined functions
by one: without the symmetry, one could prepare different bulk waves on the left and right bulk
half-spaces.

8Alternatively, in the Z2 symmetric case, Eq. (4.2.12) would be the one equation determining the
time evolution of the single function a.
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Comp. Name Identities Interpretation

C0p0q Ωpq
Ωpq = Ωqp Transverse gravitational wave propagating
Ωp

p = 0 in the direction −y

C010p Ψp
Longitudinal gravitational wave propagating
in the direction −y

C0101 Φ
Φ + Φp

p = 0 Newton-like part of the gravitational field
C0p1q Φpq

C101p Ψ′p
Longitudinal gravitational wave propagating
in the direction +y

C1p1q Ω′pq
Ω′pq = Ω′qp Transverse gravitational wave propagating
Ω′pp = 0 in the direction +y

Table 4.1: The standard interpretation of the components of the Weyl tensor, cf. Chap. 2.
The indices {0, 1, p} refer to the mixed tetrad components {k, l, (mi,mφ)}, respectively,
as defined in Eq. (4.2.13). The listed identities follow directly from the symmetries and
tracelessness of the Weyl tensor.

in Chap. 2. The desired outgoing wave condition can then be realized by setting to
zero the Weyl components corresponding to outgoing gravitational waves.

To calculate the Weyl components, we proceed as described in Chap. 2: First, we
set up the mixed orthonormal tetrad9 for the metric (4.2.1),

k =
1√
2

(
e−N ∂t + ∂y

)
, l =

1√
2

(
e−N ∂t − ∂y

)
, mi = e−A ∂i , mφ = e−C ∂φ .

(4.2.13)
The null vectors k and l were chosen such that the Weyl components will measure
gravitational wave propagation relative to the y-direction, i.e. perpendicular to the
brane, as required. In this frame, one can calculate the components of the Weyl tensor
C, as defined in Sec. 2.3.

For convenience, we list their definitions and interpretations here in Table 4.1. The
straight forward calculation then yields

Ωij = Ω−δij , Ωφφ = −3Ω− , Ωiφ = 0 , (4.2.14a)

Ψi = 0 , (4.2.14b)

Φij = Φ(x)δij , Φφφ = Φ(φ) , Φ = −3Φ(x) − Φ(φ) , (4.2.14c)

Ψ′i = 0 , (4.2.14d)

Ω′ij = Ω+δij , Ω′φφ = −3Ω+ , Ω′iφ = 0 , (4.2.14e)

9Note that, like in the examples of Chap. 2, the timelike vector e−n ∂t is in general not tangent to
a geodesic. However, the discussion below Eqs. (2.4.4) applies here analogously, so that this only
changes the Weyl components by some overall factors, which are irrelevant for our purposes.
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with

Ω− :=
e−2N

6

(
3ȦĊ + 2Ċ2 − 2ĊṄ + 2C̈

)
+

e−N

3

(
ĊC ′ − ĊN ′ + Ċ ′

)
− A′C ′

2
− C ′N ′

3
,

(4.2.15a)

Φ(x) :=
e−2N

2

(
2Ȧ2 + ȦĊ

)
− A′2 − A′C ′

2
, Φ(φ) :=

3

2

(
e−2N ȦĊ − A′C ′

)
,

(4.2.15b)

Ω+ :=
e−2N

6

(
3ȦĊ + 2Ċ2 − 2ĊṄ + 2C̈

)
− e−N

3

(
ĊC ′ − ĊN ′ + Ċ ′

)
− A′C ′

2
− C ′N ′

3
,

(4.2.15c)

These terms were simplified by using the vacuum field equations to eliminate all second
y-derivatives as well as Ä and Ȧ′. If the bulk were not empty, there would thus be
additional source terms in these expressions, like e.g. in the case of a nonvanishing bulk
CC.10

The bulk Weyl tensor is thus completely characterized by the four independent terms
given in (4.2.15). According to the standard interpretation—which, as discussed be-
fore, is expected to apply to the current planar setup—they correspond to transverse
gravitational waves Ω− propagating in direction −y, and Ω+ in direction +y, as well
as Newton-like field components Φ(x) and Φ(φ).

As an important consistency check, one can do the same calculation in the DGP
setup. There, it turns out that only the Newton-like components are nonzero, while all
the wave components vanish identically; moreover, the Newton-like terms contain only
one independent component, which vanishes if and only if the constant C in the DGP
cosmology solution is set to zero [NS15a]. Since we already know that this constant
corresponds to the Levi-Civita (or Schwarzschild) mass parameter, measuring the static
bulk curvature, this is an explicit confirmation that the standard interpretation of the
Weyl components indeed works correctly in this case.

Furthermore, one can check that when enforcing planar symmetry in the metric
ansatz (4.2.1) by setting A = C, again all the wave components Ω,Ω′ would vanish,11

in accordance with Taub’s theorem, which then guarantees a static bulk geometry.
Finally, note that Ω+ and Ω− interchange their roles upon time-reversal, as they

should, while the Newton-like terms are invariant. Thus, the identification of the wave
components via the standard Weyl decomposition passes all the nontrivial consistency
checks, and so we can be confident that it provides the correct tool to implement the

10For completeness, it should be mentioned that there are also some nonvanishing Weyl components
in the “non-observable” sector, cf. Sec. 2.3. They are all proportional to the Newton-like terms Φ(x)

and Φ(φ), and their appearance follows from the tracelessness condition, cf. also the discussion in
Sec. 2.4.1.

11This is not apparent from their form given in (4.2.15), because there the vacuum field equations
were used in an A-C-asymmetric way. But one can explicitly check that they indeed vanish after
the field equations are used again in the symmetric case A = C.
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outgoing wave condition in the present setup. To this end, we set Ω− = 0 for y > 0,
and Ω+ = 0 for y < 0. In order to translate this into appropriate on-brane conditions,
we can simply take the the respective limits y → 0±. Due to the Z2 symmetry, this
yields one nontrivial condition, namely

1

4
[C ′]

(
3 [A′] + 2 [N ′]

)
= Hc

(
[C ′]− [N ′]

)
+ ˙[C ′] + 3HaHc + 2H2

c + 2Ḣc . (4.2.16)

This provides the missing equation which, together with (4.2.12) [and the junction
conditions (4.2.9)], constitutes a closed system of ODEs determining the cosmological
evolution of the scale factors a(t) and c(t).

Note that those equations contain the time derivatives of both Hubble parameters
Ha and Hc (in linearly independent combinations), and are thus two second order dif-
ferential equations for the scale factors. Thus, we have only obtained the “second”
Friedmann equations, and no constraint equation. The same thing happened also in
the DGP case, cf. Eq. (1.4.18), where the analogous equation could be integrated once
analytically, to obtain the first Friedmann equation (1.4.20) containing the integra-
tion constant C, corresponding to the static bulk field. The subsequent analysis was
then simplified by setting this constant to zero. In the present case, Eqs. (4.2.12)
and (4.2.16) cannot be integrated analytically. Still, physically, we expect one of the
initial conditions to correspond to the static part of the bulk curvature, in analogy
to the DGP scenario. We could of course study the solutions of the system (4.2.12),
(4.2.16) for different initial conditions, treating them as free parameters. However, for,
simplicity, we prefer to reduce the parameter space by setting to zero the static part of
the bulk geometry, just like in the DGP case. Here, this can be achieved by setting to
zero the Newton-like Weyl components Φ(x) and Φ(φ). Due to Z2 symmetry, this adds
two further on-brane equations. One might thus worry that this assumption could be
too restrictive, leading to an overdetermined system (even if no assumptions about the
wave components are made). We shall see below that this is not the case: One of the
equations will be redundant, allowing for consistent, nontrivial cosmological solutions.
Furthermore, it turns out that one can, in addition, still require to have no incoming
waves, making those solutions consistent with our physical assumption of a source-free
bulk.

4.2.4 Excluding Newton-like bulk fields

Setting the Newton-like field components (4.2.15b) to zero in the bulk is equivalent to
the two conditions12

e−N Ȧ = σA′ , e−N Ċ = σC ′ , (4.2.17)

where σ = ±1. Interestingly, it turns out that then the wave components reduce to

Ω− = −(1 + σ)
(
A′′ + A′

2
)
, Ω+ = (1− σ)

(
A′′ + A′

2
)
, (4.2.18)

12Note that we divided by Ȧ to derive the second equation, so it would be absent for a static solution.
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where the vacuum field equations were again employed. Irrespective of the sign σ, one
of them will thus always vanish. In other words, we found that the absence of Newton-
like field components implies that the bulk contains either solely left-moving or solely
right-moving waves. In particular, we can choose σ = − sgn(y), so that there are only
bulk waves propagating away from the brane. Thus, the outgoing wave condition is
already fulfilled with this choice, as advertised above.

However, we still have to check whether the two on-brane conditions that follow from
Eqs. (4.2.17) in a Z2 symmetric setup lead to an overdetermined system. They read

[A′] = −2Ha , [C ′] = −2Hc , (4.2.19)

and one can check that after using them in (4.2.12), this equation becomes equivalent
to (4.2.10c), and thus to energy conservation (4.2.11). Therefore, the system is not
overdetermined, and the two equations (4.2.19) provide a closed, consistent system of
on-brane ODEs for the two scale factors a(t) and c(t). Explicitly, after plugging in the
junction conditions (4.2.9) and the definitions of the effective fluid components (4.2.8),
these modified Friedmann equations read

3Ha +Hc =
1

2M4
6

[
ρ− 3M3

5

(
H2
a +HaHc

)]
,

Hc =
1

8M4
6

[
ρ− 3p+ 3pφ

+ 3M3
5

(
Ḣa − Ḣc + 2H2

a − 3HaHc −H2
c

)]
.

(4.2.20a)

(4.2.20b)

The first equation was obtained by taking a suitable linear combination of the two
original equations, in such a way that all second time derivatives Ḣa and Ḣc dropped
out,13 which was possible because they entered only in the single combination Ḣa− Ḣc.
Hence, it represents a first order (or constraint) equation, like the first Friedmann
equation (1.4.20) in DGP cosmology. Accordingly, the system (4.2.20) requires one
less initial condition than the more general outgoing wave system (4.2.12), (4.2.16),
and its solutions form a subspace in the corresponding full parameter space. In this
sense, it is completely analogous to the DGP cosmology (1.4.20) with the constant C
set equal to zero.

However, there is also a qualitative difference: whereas setting C = 0 in the DGP
model implied a Minkowski bulk, here the bulk spacetime in general consists of purely
outgoing gravitational waves. They are measured by the Weyl component Ω± (for
y ≷ 0) which can, evaluated at the brane, be expressed solely in terms of the scale
factors as

Ω+(0+) = Ω−(0−) =
2 (ȧc̈− ċä)

3ȧc+ ċa
. (4.2.21)

13Not that, without the BIG terms ∝ M5, also the second equation would not contain any second
time derivatives, and one would thus have two constraint equations.
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This term vanishes only in the special case ċ ∝ ȧ (including ȧ = 0 or ċ = 0), then leading
to a Minkowski bulk. Even though this is not the generic case, we will see below that
the corresponding solutions represent attractors in a broader class of solutions.

In Appendix 4.A we will see that it is even possible to derive the full (nonlinear) bulk
solution in the case of vanishing Newton-like Weyl components, thereby confirming that
it indeed corresponds to outgoing gravitational bulk waves, as expected from the Weyl
analysis. The bulk geometry is completely determined once the on-brane evolution of
the scale factors a and c is known, and can be given in closed analytic form expressed in
terms of a and c. In the remaining main part of this chapter, we discuss the solutions of
the system of modified Friedmann equations (4.2.20), as well as their phenomenological
status.

4.3 Solutions and comparison to observations

Another difference to the DGP setup is that here, in addition to appropriate initial
conditions, one also needs to specify an EOS determining the pressure pφ in direction
of the compact extra dimension. Ultimately, this EOS should be determined by the
more fundamental microscopic theory that gave rise to the brane in the first place, like
e.g. string theory. As this is beyond the scope of the present work, we shall content
ourselves with an effective description in which the EOS is added by hand. We will
consider two cases:

(i) pφ = 0, corresponding to a freely expanding (or collapsing) compact extra di-
mension. This choice is not very well motivated on physical grounds, but rather
serves as an illustration of how the dynamics of the compact extra dimension can
influence the 4D behavior. Furthermore, we will see that it provides a concrete
example of a dynamical degravitation mechanism, making it conceptually inter-
esting. However, we will find—not surprisingly—that this choice does not lead to
phenomenologically viable solutions.

(ii) pφ is defined implicitly by requiring the proper size of the compact dimension
to be constant. Technically, this is simply achieved by setting Hc = 0, and
using the second Friedmann equation (4.2.20b) to read off the required form of
pφ a posteriori. Physically, this should be realizable in some concrete UV model
in which the size modulus of the φ-dimension is stabilized by some additional
degree of freedom, for instance by an wrapping a scalar field around the compact
dimension as in [KK07]. Setting Hc = 0 exactly, corresponds to the limit of
making this degree of freedom infinitely heavy.

Let us now discuss these two scenarios in turn. The EOS for p, i.e. the pressure in
x-direction, will always be assumed to be given by a linear EOS parametrized by w,
i.e. p = wρ (or a sum ρ =

∑
ρi of different fluid components with different wi) like in

standard cosmology.
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4.3.1 Vanishing azimuthal pressure

After setting pφ = 0, the energy conservation equation (4.2.11) can be integrated to
obtain

ρ ∝ a−3(1+w)c−1 . (4.3.1)

Since c measures the proper circumference of the compact φ-dimension, the dimension-
ally reduced 4D energy density is given by ρ(4) := (2πc) ρ, which consequently scales
like14

ρ(4) ∝ a−3(1+w) , (4.3.2)

i.e. exactly like in standard cosmology, cf. Eq. (1.1.8). In particular, ρ(4) = const for
w = −1, in accordance with the interpretation as a 4D cosmological constant.

The system of Friedmann equations (4.2.20) can now be integrated forward in time,
given appropriate initial conditions. Denoting evaluation at initial time by a subscript
i, those can be taken, for instance, as ρi, ai, ci and Hai, while Hci is then already deter-
mined by the constraint (4.2.20a). Without loss of generality,15 we can set ai = ci = 1
as well as ti = 0. The time evolution of a and c is then uniquely determined by the
initial conditions Hai and ρ̄ := ρi/M

4
6 , as well as the model parameter rc := M3

5/(2M
4
6 ).

We will first discuss pure dust (w = 0) and pure CC (w = −1) solutions, and finally
a general mixture of both fluid components, which will be fit to supernova data.

Pure dust

For p = 0 we are (since we are also considering pφ = 0 here) in a special case of the
more general class p = pφ. In this class, there are exact solutions of the Friedmann
equations (4.2.20) for which the scale factors a(t) and c(t) are equal. This is clear
because in this case of equal energy momentum components in x- and φ-direction it
is possible also to demand the corresponding symmetry of the metric components.
Hence, the setup is locally indistinguishable from a 5D/6D “DGP” model, i.e. a five-
dimensional, homogeneous codimension-one brane; only one of the spatial dimensions
is trivially compactified, but this has no geometrical impact because it induces no
curvature. Accordingly, the two Friedmann equations (4.2.20) become equivalent and
read

Ha =
1

8M4
6

(
ρ− 6M3

5H
2
a

)
, (4.3.3)

which is readily recognized as the generalization of the corresponding DGP equa-
tion (1.4.20) to a 5D/6D setup. Returning to the case p = pφ = 0, and using the
above definitions, this becomes

Ha =
ρ̄

8a4
− 3rc

2
H2
a , (4.3.4)

14For a general linear EOS pφ = wφρ, energy conservation (4.2.11) yields ρ ∝ e−3(1+w)a−(1+wφ)c.
Hence, the choice pφ = 0 is somewhat special in that it is the only choice which implies the
standard scaling (4.3.2) for ρ(4), apart from the stabilized scenario c = const, discussed below.

15The general solutions are obtained from those by simply rescaling a and c.
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where the scaling of ρ is that of dust in four spatial dimensions, but looks like radiation
from a 4D point of view. This already suggests that this solution will not give rise to
a viable 4D phenomenology: instead of heaving a 4D limit for M6 → 0, the model
instead approaches a 5D behavior. This will indeed be confirmed below.

Note that, as discussed below Eq. (4.2.21), for this solution the wave components of
the Weyl tensor vanish, and so the brane is embedded in a Minkowski bulk. The reason
is that setting a = c restored planar symmetry of the setup making Taub’s theorem
applicable again, cf. Sec. 1.4.2.

These “plane symmetric” solutions with a(t) = c(t) are only realized for initial con-
ditions satisfying Hai = Hci. Generically, if this condition is violated, the solutions will
be different; in particular, they will not be embedded in a Minkowski bulk, but will
emit plane gravitational waves into the bulk. However, it turns out that these generic
solutions always rapidly approach the a = c solution. This is shown in Fig. 4.2a, where
the numerically obtained solutions for different initial conditions Hai (but fixed ρ̄ and
rc) are plotted, together with the plane symmetric a = c solution. In other words, this
solution is an attractor for the most general solutions with p = pφ = 0. While the
attractor is approached, gravitational waves are emitted into the bulk, tending to zero
at late times, see Fig. 4.3a.

(a) Dust: the attractor is the symmetrical
Ha = Hc solution, so the blue and red solid
lines lie on top of each other.

(b) Cosmological constant: the attractor is the
4D degravitating solution with Ha = 0.

Figure 4.2: The Hubble parameters Ha (blue, dotted) and Hc (red, dashed) for different
initial conditions generically approach the attractor solutions (solid lines). Time and the
Hubble parameters are measured in the same fixed but arbitrary units, and the parameters
were set to ρ̄ = 2 and rc = 0.1, but the qualitative attractor behavior is the same for other
choices.
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(a) Dust (b) Cosmological constant

Figure 4.3: The Weyl component (4.2.21), measuring the emission of gravitational waves
into the bulk, for the same solutions as those shown in Fig. 4.2. The solid lines correspond
to the attractor solutions, for which the Weyl tensor vanishes.

Pure cosmological constant

For p = −ρ (and still pφ = 0), corresponding to a 4D CC, one can easily check that
the Friedmann equations (4.2.20) allow for the exact solutions

a(t) = 1 , c(t) = 1 +
ρ̄

2
t . (4.3.5)

Since ȧ(t) = 0, the Weyl components (4.2.21) are again zero, leaving us with a flat bulk
spacetime.

Again, these are not the generic solutions—they only correspond to the subclass
for which Hai = 0. But as in the case of pure dust, it turns out that they represent
attractor solutions, which are again rapidly approached for general initial conditions,
see Fig. 4.2b, thereby emitting gravitational bulk waves, cf. Fig. 4.3b.

This solution is conceptually interesting in that it represent an explicit realization of
the degravitation mechanism (see Sec. 1.3): The 4D CC—which in standard cosmol-
ogy inevitably results in a nonvanishing Hubble parameter—is completely absorbed
into extra-dimensional curvature, embodied by the expansion rate Hc of the compact
dimension, whereas the four large brane-dimensions are completely flat. (Note that,
unlike in GR, where the CC leads to a constant Hubble parameter, here Hc is not
constant but falls off like ∼ 1/(ρ̄ t) asymptotically.) Moreover, the attractor behavior
shows that this solution is dynamically approached, meaning that there is no need for
fine-tuning. This dynamical adjustment is achieved by the possibility to emit gravita-
tional waves into the bulk.

Just to be clear, this mechanism represents no degravitation from the 5D brane
point of view: the spacetime curvature that is caused by the 4D CC is given by the
expansion in φ-direction, so the 5D brane geometry is not flat. Only when restricted to
the four non-compact brane dimensions does it reduce to Minkowski spacetime. Thus,
the CC is not completely transformed into extrinsic curvature, but also intrinsic brane-
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curvature. This is to be contrasted with the situation in two codimensions (which will
be studied in Chap. 5), where there are degravitating solutions for which all curvature is
completely extrinsic, in the form of a conical deficit. This seems much more promising
with respect to the CC problem, because then an observer has no means of detecting
the impact of the CC by local on-brane observations. Here, instead, the expansion16

of the compact dimension would at some point cause it to be large enough to become
observable even at low energies. One could try to arrange this to happen late enough
not to cause immediate phenomenological problems, but this would likely reintroduce
another fine-tuning.

Furthermore, so far it is not clear whether the assumption pφ = 0—which was im-
posed here by hand—could be realized in some UV model in a natural way, or if it
would also correspond to an implicit fine-tuning. But apart from these potential pit-
falls, the model is in any case only phenomenologically viable if it allows for a 4D
regime in order not to spoil the success of standard GR. We will now show that this is
not the case, by fitting the model (with a fluid containing both dust and a cosmological
constant) to supernova (SN) data.

(a) rc ∈ {0.1, 1, 10, 100}, ρ̄dust = ρ̄cc = 1 (b) rc = 1, (ρ̄dust, ρ̄cc) ∈ {(0, 50), (5, 30),
(10, 10), (15, 0)}

Figure 4.4: Plots of the scale factors a (blue) and c (red) for various choices of parameters;
the dashed black lines correspond to a standard ΛCDM cosmology with ΩΛ = 0.72. The
lightest curves correspond to the first parameter in each list. All dimensionful quantities are
measured in units of Hai.

16One might have expected that one could avoid this problem by demanding the compact dimension
to collapse, instead of expand, by reversing the sign of Hc. However, this is not allowed, because
the sign of Hc is the same as that of ρ, which we assume to be positive. This is due to the fact
that time-reversal symmetry is broken in the Friedmann equations (4.2.20) by demanding to have
only outgoing bulk waves. Of course, one could argue that these are absent if one chooses to be
exactly on the attractor solution, but this would reintroduce another fine-tuning.
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Figure 4.5: Magnitudes of the Union 2.1 SNe as function of redshift, together with the
ΛCDM best fit (ΩΛ = 0.72). The dashed green line is the best fit obtained for the modified
Friedmann equations (4.2.20) with pφ = 0 and two fluid components (w = 0 and w = −1).

Dust and cosmological constant

The solutions for a general mixture of dust (w = 0) and a CC (w = −1) can easily be
obtained by numerically integrating the system of ODEs (4.2.20). At late times, since
the dust component dilutes faster, they approach the CC attractor (4.3.5), possibly with
an intermediate dust attractor regime, depending on the parameters. Some exemplary
solutions for certain parameter choices are shown in Fig. 4.4, and compared to the
evolution of the scale factor in standard ΛCDM with ΩΛ = 0.72, the best fit value from
the SN data. Clearly, the evolution of the 3D scale factor a (blue curves) is always
far away from the successful ΛCDM. This is also seen from a corresponding fit to the
SN magnitudes m taken from the Union 2.1 data set [P+12], which is performed as
explained in Sec. 1.1.2. The result17 is shown in Fig. 4.5, which clearly rules out the
pφ = 0 model.

Physically, the reason for this failure lies in the fact that the compact extra dimension
always has a nontrivial dynamics which is comparable to, or even dominant over, that
of the three large dimensions. Indeed, in the attractor solutions, either Hc = Ha for
dust, or even Hc 6= 0 and Ha = 0 for a CC. This suggests that stabilizing the compact
extra dimension could help avoiding this problem. We will see in the next section that
this is indeed the case.

17The fit does not yield a finite best-fit value for rc but tends towards rc → ∞, thereby becoming
insensitive to ρ̄dust and ρ̄cc, and approaching the dashed curve shown in Fig. 4.5.



86 4 The universe as a cosmic ring

4.3.2 Stabilized fifth dimension

We now turn to case (ii) mentioned at the beginning of Sec. 4.3: The azimuthal pressure
pφ is assumed to be such that the compact dimension is stabilized, i.e. that c = const.
We do not have a specific UV model at hand that would automatically achieve this in
a consistent way, but we can still check a posteriori whether pφ is physically reasonable
in the sense that it satisfies the null energy condition (NEC). This does not yield a
sufficient, but at least a necessary criterion for the existence of an actual stabilization
mechanism in terms of healthy high energy degrees of freedom.

First of all, setting Hc = 0 in the energy conservation equation (4.2.11) again implies
the standard scaling (4.3.2) for the energy density. Next, the first modified Friedmann
equation (4.2.20a) simplifies to

3Ha =
1

2M4
6

(
ρ− 3M3

5H
2
a

)
. (4.3.6)

After dimensionally reducing the energy density and Planck masses according to

ρ→ ρ(4)

2πc
, M3

5 →
M2

4

2πc
, M4

6 →
M3

5

2πc
, (4.3.7)

where 2πc is the (constant) physical circumference of the compact extra dimension,
this is exactly the DGP Friedmann equation (1.4.20) (for C = 0, which is consistent
with having set the Newton-like Weyl components to zero). To be more precise, it
corresponds to the normal branch of the DGP cosmology. The self-accelerating branch
would have been obtained for the choice σ = + sgn(y) in (4.2.17), corresponding to
incoming wave components. However, for ċ = 0 the wave components (4.2.21) are in
fact zero, so there are neither incoming nor outgoing waves, and the brane is instead
embedded in a Minkowski bulk. Thus, we could also allow for the other branch here,
because it (trivially) also fulfills the outgoing wave condition. But it is interesting to
note that as soon as c were not stabilized perfectly, but allowed to fluctuate (like in
a realistic UV model where the radion has a finite mass), the self-accelerating branch
has to be dismissed by means of the wave criterion.

One can easily check that the corresponding bulk solution has not only c(t) ≡ eC0 =
const, but even C(t, y) = const. In other words, the 6D model differs from the DGP
model only in the addition of a trivial compact dimension, which does not take part
in the geometrodynamics at all. Therefore, it is not surprising that we exactly recover
the DGP cosmology.

On the one hand, this is good news, because the DGP model does indeed allow for
a 4D regime, as was intended by the stabilization requirement. On the other hand, it
seems like the model is not very interesting because it is indistinguishable from DGP—
at least at the level of (homogeneous and isotropic) cosmology. However, this is not
necessarily the case: As already mentioned, we need some specific form of pφ which
stabilizes the compact extra dimension. It can be read off from Eq. (4.2.20b), leading
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to an effective EOS parameter

wφ :=
pφ
ρ

=
3w − 1

2
− 1 + w

2
√

1 + χ
+

4

3χ

(√
1 + χ− 1

)
, (4.3.8)

where χ := ρM3
5/3M

8
6 > 0. (Note that wφ is generically time dependent, due to the

BIG terms.) For dust (w = 0) or radiation (w = 1/3), wφ is bounded from below by
−1 and −2/3, respectively. Thus, the NEC is always satisfied for these sources. For
a CC (w = −1), however, one finds wφ ≤ −4/3, thus violating the NEC. This implies
that a CC-source could not be stabilized by healthy degrees of freedom in an actual
UV model and, on the other hand, suggests that a stabilization is possible for dust or
radiation.

This makes the model potentially interesting, because at early times, when the cos-
mological fluid is dominated by radiation or dust, it should behave like the DGP model,
thus allowing for a 4D regime when Ha � rc ≡M2

4/M
3
5 . At late times, one expects two

kinds of modifications: First, there is the usual DGP-like transition to a 5D regime;
but second, there should also be another transition when the CC starts to dominate
and the stabilization mechanism breaks down. This would lead to a time-evolution of
the compactification size c, which would generically have observable consequences for
the evolution of the scale factor a. But in order to quantify these consequences, we
would need an actual UV model that describes how exactly the stabilization breaks
down and thus how the time evolution of c would look like. This is beyond the scope
of the present work and requires further study.

4.4 Summary and outlook

In this chapter, we derived the modified Friedmann equations of the“cosmic ring”setup,
which generalizes the DGP model by adding a compact spatial dimension (of size 2πc)
to the spacetime. The brane thus becomes a five-dimensional object of codimension
one, and all brane matter was assumed to be distributed homogeneously over the fifth,
compact dimension.

This additional dimension has the important consequence that a brane with cosmo-
logical symmetries (i.e. 3D homogeneity and isotropy) can emit gravitational waves
into the bulk. The reason is that the fifth dimension breaks the planar symmetry
which protects the DGP scenario against bulk waves via Taub’s theorem. Regard-
ing the Friedmann equations, this implies that a closed system of on-brane equations
can only be obtained after imposing further restrictions upon the bulk geometry. For
a source-free bulk, the physically necessary assumption is the exclusion of incoming
waves.

It was shown here that this can successfully be done by means of the standard de-
composition of the Weyl tensor which—as discussed in Chap. 2—correctly disentangles
left- and right-moving plane gravitational waves. In addition, this method allowed to
set the Newton-like gravitational bulk fields to zero, thereby arriving at a minimal
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extension of the C = 0 DGP cosmology, in which the bulk spacetime only differs from
Minkowski in the presence of purely outgoing gravitational waves.

In order to explicitly solve the modified Friedmann equations, it was necessary to
specify an EOS for the pressure pφ in direction of the compact extra dimension. We
considered two scenarios:

(i) pφ = 0: Interestingly, this choice yields degravitating solutions, for which the
effect of a 4D CC is completely absorbed by Hc, i.e. the expansion rate of the
compact dimension, leaving the 4D on-brane geometry flat. Moreover, these so-
lutions were found to be attractors, thus constituting a dynamical adjustment
mechanism to Ha = 0 even for Hai 6= 0, which is realized via the emission of
gravitational bulk waves. The model hence provides an explicit dynamical de-
gravitation mechanism (at the full nonlinear level!), which sounds very promising
for addressing the CC problem. But unfortunately, we found that this is only
achieved at the expense of losing a 4D regime, making the model phenomenolog-
ically unviable, as was shown by performing a corresponding SN fit.

But there is still an important lesson to be learned here: As reviewed in Sec. 1.2.1,
Weinberg’s powerful no-go theorem [Wei89] tells us that there cannot be any
dynamical adjustment mechanism (without fine-tuning) in terms of a 4D theory
with any (finite) number of additional fields. Even though it is formulated in
4D, it also applies to theories with compact extra dimensions, since they can
(at low energies) be understood in terms of a 4D EFT with a finite number of
Kaluza-Klein fields (with masses below the cutoff). But the situation is quite
different for infinite extra dimensions [DGS03]: In that case, integrating out
the bulk leads to a nonlocal 4D EFT (or, equivalently, a continuum of Kaluza-
Klein modes), to which the no-go theorem is not applicable. To see how this
manifests itself in our model, note that dropping the sixth (infinite) dimension
can formally be achieved by simply taking M6 → 0. But in this limit, the first
Friedmann equation (4.2.20a) shows that ρ 6= 0 inevitably requires Ha 6= 0, and
so degravitation becomes impossible. This shows the crucial importance of the
infinite dimension for the dynamical adjustment mechanism,18 as expected from
EFT reasoning and Weinberg’s argument.

(ii) ċ = 0, determining pφ implicitly: In this case one exactly recovers DGP cosmol-
ogy. This is not surprising, after realizing that the compact extra dimension has
turned into a mere spectator, taking part in neither the brane nor the bulk dy-
namics. However, the stabilizing pressure violates the NEC when the CC starts
do dominate. Therefore, even though this model has nothing to say with respect
to the CC problem, it predicts a breakdown of the stabilization and thus a poten-
tially interesting late-time modification of 4D cosmology (on top of the DGP-like

18Note, however, that it is not clear whether the choice pφ = 0 corresponds to another implicit fine-
tuning, or if it could be achieved in a technically natural way. This would need to be further
studied in the case the model could be improved to become phenomenologically viable.
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modification). But quantitative statements can only be made in an actual UV
model which dynamically resolves the stabilization mechanism.

The most promising route for future research therefore consists in modeling such
a mechanism. One way would be to build an actual UV model, e.g. using a scalar
field that wraps around the compact dimension, as was for instance done (at the
static background level) in [KK07]. Another possibility would be to parametrize
our ignorance of the actual stabilization mechanism by imposing c(t) to have some
explicit form controlled by few parameters, and trying to learn something about
“good” mechanisms by fitting these parameters to observational data.

Alternatively, one could leave the realm of the homogeneous background evolution
and study perturbations, in order to get a grasp on CMB predictions, which might
already make the model distinguishable from standard DGP.





Appendix to Chapter 4

Note: This appendix is to large extend a verbatim reproduction of the one
in [NS15a].

4.A Full bulk solution

We will now show that under the assumption of vanishing Newton terms, the full bulk
solution can be derived explicitly. To this end, it is useful to choose new coordinates19

in which the metric takes the form

ds2 = e2(η−3α)
(
−dt2 + dy2

)
+ e2α δijdx

idxj + e−6αW 2dφ2 , (4.A.1)

where η, α and W are functions of (t, y). This is the generalization of the 4D cylindrical
coordinates (2.5.1), with the three x-directions taking the role of z and y substituting
the radial coordinate r. However, here we will not require W to vanish at some point,
since there is no symmetry axis in the manifold under investigation; instead, we assume
the brane to be again located at y = 0, and require the metric functions to be invariant
under reflections y 7→ −y according to Z2 symmetry, cf. Fig. 4.1. The numerical factors
in (4.A.1) were adapted such that the (modified) Einstein field equations, as in 4D,
cf. (2.5.4), take a rather simple form:

W ′′

W
− Ẅ

W
= T tt + T yy , (4.A.2a)

α′′ − α̈ +
W ′

W
α′ − Ẇ

W
α̇ =

1

4

(
T tt + T yy − T xx + T φφ

)
, (4.A.2b)

6
(
α′

2
+ α̇2

)
− W ′

W
η′ − Ẇ

W
η̇ +

Ẅ

W
= −T yy , (4.A.2c)

6
(
α′

2 − α̇2
)

+ η′′ − η̈ = T φφ , (4.A.2d)

12α′α̇− W ′

W
η̇ − Ẇ

W
η′ +

Ẇ ′

W
= T ty . (4.A.2e)

19For the sake of notation we will still denote them by xA = (t, y, xi, φ).
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Here, for convenience, we defined

T MN := e2(η−3α) T̃MN , (4.A.3)

with T̃MN denoting the effective 6D energy momentum tensor, including the brane
induced gravity terms,20

T̃MN =
1

M4
6

(
Tmn −M3

5G
(5)m

n

) δ(y)

eη−3α
δMm δ

n
N (4.A.4a)

≡ diag (−ρ̃, 0, p̃, p̃, p̃, p̃φ)
δ(y)

eη−3α
, (4.A.4b)

where the effective fluid components in the last line are the ones defined in (4.2.8).
The Newton terms (for y 6= 0) in these coordinates, after some simplifications us-

ing (4.A.2), become

Φ(x) = e2(3α−η) 1

2

[
α′′ − α̈ + α′

2 − α̇2
]
, (4.A.5a)

Φ(φ) = e2(3α−η) 3

2

[
α′′ − α̈ + 3

(
α′

2 − α̇2
)]
, (4.A.5b)

and so setting them equal to zero is equivalent to

α′
2

= α̇2 ⇔ α′ = ±α̇ . (4.A.6)

The bulk (y 6= 0) Einstein equations (4.A.2) then reduce to

W ′ = ±Ẇ , (4.A.7a)

η′′ − η̈ = 0 , (4.A.7b)

12α̇2 +
Ẅ

W
− Ẇ

W
(η̇ ± η′) = 0 , (4.A.7c)

where the choice of signs in (4.A.7a) and (4.A.7c) has to be the same as for α in
(4.A.6). So α and W are both functions of (t± y), i.e. they are both either left-moving
1D waves, or both right-moving 1D waves. η can in general be a superposition of left-
and right-moving 1D waves. In order to create the δ-sources on the right hand side of
(4.A.2), the following junction conditions have to be fulfilled:

[α′] = −eη0−3α0

4
(ρ̃+ p̃− p̃φ) , (4.A.8a)

[W ′]

W0

= − eη0−3α0 ρ̃ , (4.A.8b)

[η′] = eη0−3α0 p̃φ . (4.A.8c)

20Since the brane is located at a constant coordinate position, and its surrounding is covered by a
single coordinate patch, we can again use δ-functions to effectively implement Israel’s junction
conditions.
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Now the only way to satisfy these, in the nontrivial case of nonvanishing right hand
sides, is to choose α (and thus also W ) to be of opposite wave character (left-/right-
moving) on the left and right side of the brane at y = 0. Since we do not want waves
propagating towards the brane, we take them to be right-moving on the right, and
left-moving on the left; so we choose the plus sign for y < 0, and the minus sign for
y > 0. Requiring α and W to be continuous then yields:

α(t, y) = α0(t− |y|) , (4.A.9a)

W (t, y) = W0(t− |y|) , (4.A.9b)

η(t, y) =

{
ηL<(t+ y) + ηR<(t− y) (y < 0)

ηL>(t+ y) + ηR>(t− y) (y > 0) .
(4.A.9c)

The only remaining Einstein equation (4.A.7c) (for α̇0 6= 0), as well as continuity of η
further imply21

ηL< = ηR> + c1 , ηL> = ηR< + c1 , (4.A.10)

with some constant c1, allowing to eliminate two of the four functions appearing in
(4.A.9c), say ηL< and ηL>. The jumps of the first derivatives of the metric functions
can now be expressed directly in terms of on-brane functions, which—together with
equation (4.A.7c)—yields

[α′] = −2α̇0 , (4.A.11a)

[W ′] = −2Ẇ0 , (4.A.11b)

[η′] = −2 (η̇R> − η̇R<) , (4.A.11c)

12α̇2
0 +

Ẅ0

W0

− 2
Ẇ0

W0

η̇R> = 0 . (4.A.11d)

Since the three jumps can be expressed in terms of the on-brane sources using the
junction conditions (4.A.8), this constitutes a system of four ODEs for the five unknown
functions22 α0(t),W0(t), ηR>(t), ηR<(t) and ρ(t). But there is still a residual gauge
freedom which allows us to require

η0(t) = 3α0(t) (4.A.12)

by an appropriate redefinition of the t and y coordinates (see Appendix 4.B), so that
the five dimensional induced metric becomes

ds2
(5) = −dt2 + e2α0 δijdx

idxj + e−6α0 w2
0dφ2 . (4.A.13)

21Incidentally, now all the metric functions have a reflection symmetry around y = 0—which we
didn’t assume in this derivation. We thus found the curious result that this symmetry follows from
setting the Newton-like field components to zero (and assuming nonzero ρ̃, p̃).

22Note that η0 can be written as η0(t) = ηR<(t) +ηR>(t) + c1, and we assume some equations of state
to be given for the both pressure components p and pφ.
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This allows us to eliminate, say ηR<, thus leading to a closed system, which can be
brought into the form:

2α̇0 + [α′] = 0 , (4.A.14a)

2Ẇ0 + [W ′] = 0 , (4.A.14b)

˙[W ′] + 12W0α̇0 [α′]− Ẇ0 (3 [α′] + [η′]) = 0 , (4.A.14c)

4η̇R> + 3 [α′] + [η′] = 0 . (4.A.14d)

The gauge (4.A.12) is particularly useful, because it renders the induced 5D metric
independent of η0. Therefore, the brane induced gravity terms contributing to [α′] , [W ′]
and [η′] also become independent of η0, and so the first three equations of (4.A.14) form
a closed system for the three functions α0(t),W0(t) and ρ(t). After identifying the scale
factors

a = eα0 , c = W0 e−3α0 , (4.A.15)

from the induced metric (4.A.13), one can easily verify that they reproduce the modified
Friedmann equations (4.2.20) (and the energy conservation equation) derived earlier.

The time evolution of ηR>(t) decouples, and it is obtained by simply integrating the
last equation (4.A.14d). The full function η(t, y) can then be written as

η(t, y) = 3α0(t+ |y|)− ηR>(t+ |y|) + ηR>(t− |y|) . (4.A.16)

This completes the derivation of the complete bulk geometry, which will be known
explicitly once the on-brane system (4.A.14), or equivalently (4.2.20), is solved for
specific equations of state for the on-brane matter content.

Now that we know the whole bulk geometry, its interpretation becomes quite obvi-
ous: All the metric functions are purely 1D waves. In principle, these could be mere
coordinate artifacts, like the time dependence of the DGP bulk solution, cf. Sec. 1.4.2;
but here the wave components of the Weyl tensor are:

Ω+(t, y) =

{
0 (y < 0)

2 [α̈0(t− y) + 7α̇0(t− y)2 − 2α̇0(t− y)η̇out>(t− y)] (y > 0) ,
(4.A.17a)

Ω−(t, y) =

{
2 [α̈0(t+ y) + 7α̇0(t+ y)2 − 2α̇0(t+ y)η̇out>(t+ y)] (y < 0)

0 (y > 0) .
(4.A.17b)

These are generally nonzero, showing that there are in fact real physical waves: a
bulk observer would see test particles accelerated as described in Sec. 2.3. Moreover,
they are indeed propagating away from the brane on both sides, as was intended by
the choice (4.A.9a), (4.A.9b)—despite the fact that the solution (4.A.16) for η is a
superposition of incoming and outgoing waves, so this part of the metric indeed is a
pure coordinate artifact.
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4.B Fixing the residual gauge

In this section we show that the gauge choice (4.A.12) is always possible. To this end,
note that the form of the metric (4.A.1) is unchanged under a redefinition of the t and
y coordinates of the form (

t
y

)
7→
(
t̄
ȳ

)
=

(
f(t, y)
g(t, y)

)
, (4.B.1)

with (
ḟ
f ′

)
= ±

(
g′

ġ

)
and g′

2 6= ġ2 . (4.B.2)

After this transformation, the metric functions will take the form

ᾱ = α , W̄ = W , e−2η̄ = e−2η
(
g′

2 − ġ2
)
. (4.B.3)

If we now define the function

h(t) :=

∫ t

eη0(t′)−3α0(t′) dt′ , (4.B.4)

then a transformation of the form (4.B.1) with

f(t, y) =
1

2

[
h(t+ y) + h(t− y)

]
and g(t, r) =

1

2

[
h(t+ y)− h(t− y)

]
(4.B.5)

will lead to η̄0 = 3ᾱ0.





Chapter 5

The universe as a cosmic string

Let us now turn to another straightforward generalization of the DGP model: instead
of adding a compact dimension to the brane (and bulk) as in the previous chapter, now
only the bulk is augmented by another infinite dimension. This corresponds to the BIG
model in two codimensions.

As already discussed in Sec. 1.3, this setup is particularly interesting with respect
to the CC problem for the following reason: according to (higher dimensional) GR,
a codimension-two brane equipped with a 4D CC (and no other sources) leads to a
geometry in which only extra space gets curved, in the form of an angular deficit in
the bulk, while the four brane dimensions remain completely flat,1 see Sec. 5.1. It
thus provides an explicit example of the degravitation mechanism. This degravitating
solution is the straightforward generalization of a usual cosmic string in standard 4D
GR. Employing this analogy, we will refer to the model as the “cosmic string” setup;
similarly, for the 4D vacuum energy density the term “brane tension” will be used
interchangeably.

Furthermore, the BIG terms furnish the model with the possibility of a 4D regime,
which is crucial in order not to spoil the success of GR on the scales where it has been
tested, while still allowing for the degravitating solution (because the BIG terms vanish
for a flat brane). Therefore, codimension-two BIG seems like the ideal candidate for
solving the CC problem.

In fact, the idea that higher codimensional BIG could solve the CC problem was
already pointed out in [DG01, DGS02]. But this proposal suffered a major setback
as it was found to contain a ghost (i.e. a mode whose kinetic term comes with the
wrong sign, see Sec. 5.4) when linearized around a Minkowski background [DR03,
HHvS11], thus rendering the theory unstable. There has, however, recently been the
claim [BHN12] that these results were overhasty, and that the alleged ghost mode
would in fact be no dynamical (but a constrained) quantity, thereby not threatening
the stability of the theory. This appeared to reopen the window of opportunity for BIG

1Note that this is only true for sub-critical values of the CC (λ < 2πM4
6 ) for which the deficit angle

is less than 2π, cf. Sec. 5.1. Super-critical cosmic strings will be studied in Chap. 6.
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in two codimensions.
Further reasons for the rather slow progress towards a more detailed understanding

of the codimension two setup, like the derivation of its modified Friedmann equations,2

are more of a technical nature: First, for more realistic, non-static geometries, the bulk
curvature generically diverges at the position of the brane. This requires regularizing
the infinitely thin brane idealization before quantitative predictions can be made. Sec-
ond, the possibility of gravitational bulk waves even for 3D homogeneous and isotropic
sources makes it impossible to derive a closed set of on-brane Friedmann equations
without excluding incoming waves, just like in the cosmic ring model of Chap. 4.

Several things will be done in this chapter: First, in Sec. 5.3, we tackle the problem
of obtaining the fully consistent, dynamical cosmological evolution of the codimension-
two brane with induced gravity terms for an arbitrary (but sub-critical) homogeneous
and isotropic fluid—not just a pure tension which allows for the well known static
solution. To deal with the aforementioned technical difficulties, we first introduce a
very convenient regularization in Sec. 5.2, in which the infinitely thin (codimension-
two) brane is blown up to a small (codimension-one) ring of finite circumference [KK07,
BHdRT09]. Then, in Sec. 5.3 we solve the complete (nonlinear) system of coupled
bulk and brane field equations in its full glory, which can only be done numerically.
Incoming bulk waves are simply excluded by choosing trivial initial data in the bulk,
and extending the domain of integration to sufficiently large radii.3 The result will be
that the parameter space of the theory is divided into two regions:

(i) A degravitating regime, in which the Hubble parameter dynamically approaches
zero despite a nonvanishing on-brane energy density. This shows that the model
is indeed capable of providing an automatic adjustment mechanism that dynam-
ically degravitates a CC at the full nonlinear level.

(ii) A super-accelerating regime, where the Hubble parameter grows unbounded.
Since this growth is not caused by any matter source, it points towards some
pathological degree of freedom in the (modified) gravitational sector. Further-
more, the effective energy density ρ̂ which “sources”4 bulk gravity, becomes nega-
tive for these solutions. In analogy to the DGP case (cf. Sec. 1.4.2), this indicates
the presence of a ghost mode. In summary, this class of solutions seems to be
plagued by some instability.

Let us emphasize that, although these behaviors are inferred numerically, it turns out
that an exact expression determining the boundary between regions (i) and (ii) can be

2A modified Friedmann equation on a codimension-two brane (without BIG) was derived in [NS05]
by making several simplifying assumptions. However, we think that not all of them are justified;
moreover, we found that after including the BIG terms, this equation led to complex solutions,
questioning its validity.

3The outgoing wave boundary condition derived in Chap. 3 unfortunately turns out not to be very
helpful in this particular setup, as will be discussed below.

4As already discussed below Eq. (1.4.8), the BIG terms are really a kinetic modification, and not a
mere source-modification, which is why we use the quotation marks here.
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derived analytically.
The (numerical) detection of an instability, which in particular exists for a vanishing

energy density on the brane, i.e. around Minkowski, casts some doubt on the validity
of the results of Ref. [BHN12] claiming that the theory would be stable at linear order
on a flat background. Clarifying this issue presents the second major objective of this
chapter: In Sec. 5.4 we investigate the ghost issue very carefully, extending the analysis
to nonzero values of the brane tension. The calculation is performed by linearizing
around the nontrivial deficit angle solution, which allows for an analytic treatment and
thus provides a completely independent, nontrivial cross-check of the numerical (albeit
nonlinear) stability analysis. We will find that the two complementary approaches
give results which are in perfect agreement: The linear calculation reveals a tachyonic
ghost mode in a region of parameter space exactly matching the one derived in the
previous (nonlinear) analysis in the limit of vanishing Hubble parameter on the brane.5

Therefore, the pathological, super-accelerating behavior of the nonlinear cosmological
solutions is indeed a manifestation of this ghost instability, yielding an overall consistent
picture.

In the case of a vanishing brane tension, we find that the ghost is present for all
phenomenologically interesting values of the induced Planck scale. This agrees with
the older results in the literature [DR03, HHvS11], but is in clear contradiction to the
claims of Ref. [BHN12]. We were able to resolve this tension by explicitly tracking
down the (very subtle) errors made in [BHN12]. The interested reader is referred to
the appendix of our publication [ENS15].

However, the motivation of [BHN12] for questioning the ghost result in the first
place was based on a very physical EFT argument: If the BIG model can be thought
of as arising as the low energy EFT of a healthy, more fundamental theory, how can it
contain a ghost? The third central aim of this chapter is to resolve this EFT paradox.
To describe the problem in more detail, imagine we start with a purely six-dimensional
theory which allows for the spontaneous formation of a stable codimension-two, string-
like object, with some localized degrees of freedom. In this full theory with 6D GR,
there should be no instability. Then, we can ask what the corresponding EFT looks like
if we restrict ourselves to energies well below the scale at which the transverse width of
the defect, or the microscopic degrees of freedom that gave rise to it, can be resolved.
Following the usual EFT reasoning, we write down all operators compatible with the
required symmetries (i.e. bulk and brane diffeomorphism invariance) and arrive at the
following action (cf. [DGS03]),

S =

∫
d6X

√
−g(6)

(
M4

6

2
R(6)

)
︸ ︷︷ ︸

SB

+

∫
d4x
√
−g

(
M2

4

2
R− λ+ Lm

)
︸ ︷︷ ︸

Sb

. (5.0.1)

The first term SB is the bulk Einstein-Hilbert action,6 i.e. the Ricci scalar of the 6D

5Since the background geometry in the linear analysis is static, the Hubble dependence of the stability
bound corresponds to higher order corrections, which are not captured at the linear level.

6Note that we fine-tuned the bulk CC to zero, but it turns out that relaxing this simplifying assump-



100 5 The universe as a cosmic string

metric g(6), with corresponding fundamental Planck scale M6. The second, brane part
Sb consists of: the BIG action, i.e. the 4D Ricci scalar constructed from the 4D induced
metric g, controlled by the induced Planck mass M4; the brane tension λ (or 4D vacuum
energy, equivalently), related to the brane CC Λ via λ ≡M2

4 Λ; and finally Lm, encoding
all brane-localized degrees of freedom which are dynamically resolved (i.e. have masses
below the cutoff) and are minimally coupled to g. Note that Lm does not contain any
vacuum energy contribution, since it is by definition completely contained in λ. In
order to be of phenomenological relevance, M4 should be identified with the usual 4D
Planck mass MPl, and Lm should ultimately contain all Standard Model fields.

Now, the crucial point is that both M4 and λ should be included in any natural EFT,
since they are generically generated via quantum loops of the brane-localized degrees of
freedom. But all the previous ghost calculations in the literature were done around the
Minkowski background, for which the tension λ is tuned to zero, while M4 was taken to
be large (in order to have an appropriate 4D regime). Since our analysis also probes the
parameter space at λ > 0, we are able to resolve the aforementioned EFT paradox in
the following way: As soon as λ is large enough, the theory enters the stable, ghost-free
regime (or the super-critical regime, for which a stability analysis is still lacking). In
other words, the ghost pathology is only present if λ is tuned unnaturally small while
the induced gravity scale M4 is chosen large. In particular, it is sufficient to choose M4

and Λ in a natural way, i.e. of the same order, to be on the safe side. This will be
discussed in more detail in Sec. 5.5.1.

Having resolved all these puzzles, the final pressing question remains: Is the model
phenomenologically viable, and can it thereby solve the CC problem? After all, the fact
that the theory is unstable around a Minkowski background is not per se problematic,
because the necessary background curvature for λ > 0 is still purely extrinsic, i.e. the
4D background is in fact still Minkowski. This question will be answered in Sec. 5.5.2.

5.1 Static deficit angle solution

After choosing bulk coordinates y in which the brane is located at ym = (0, 0), the
brane part of the action (5.0.1) can be augmented to a 6D integral over the coordinates
XM = (xµ, ym) by inserting7 1 =

∫
d2y δ(2)(y). The gravitational equations of motion

are then obtained by varying the full action with respect to the metric g
(6)
MN , and read8

M4
6G

(6)
MN =

δ(2)(y)√
g(2)

δµMδ
ν
N

(
Tµν −M2

4 Gµν

)
, (5.1.1)

tion is not necessary for the point we want to make here. Furthermore, a vanishing value could be
obtained naturally by assuming unbroken bulk SUSY.

7Note that in our conventions the 2D delta function transforms like a density, so there is no metric
determinant factor in its normalization condition.

8Here we assumed the metric g(6) to be block-diagonal, otherwise the determinant factor on the
right-hand side would read

√
−g(4)/

√
−g(6).
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the 4D energy momentum tensor T contains both the vacuum energy λ and the con-
tributions from Lm.

Before turning to the ambitious task of finding the dynamical cosmological solutions
to these equations, let us first review the static solution for the case of a pure tension
brane, which is the main motivation for studying the codimension-two model in the
first place. The corresponding 4D energy momentum tensor has the form

T µν = −λδµν . (5.1.2)

This source is maximally symmetric in the brane directions, and so the induced metric
is either Minkowski or (anti-) de Sitter spacetime. We make the (educated) guess
and assume it to be Minkowski. (This could, of course, turn out to be too strong an
assumption, but in that case the equations of motion would tell us so.) Furthermore,
we take the brane to be embedded in the bulk in a straight way (like a straight,
infinitely long string), allowing to require O(2) symmetry in the y-directions. It is
therefore convenient to introduce polar coordinates (r, φ) in extra space, and so the
corresponding metric ansatz can be written (in Gaussian normal coordinates) as

ds2 = f(r)2 ηµνdx
µdxν + dr2 + c(r)2 dφ2 . (5.1.3)

We assume the axis (i.e. the brane) to be located at r = 0, so c(0) should vanish, and
the coordinates r and φ have the standard ranges [0,∞) and [0, 2π), respectively. A
straightforward calculation of the 6D Einstein tensor’s (φφ) component gives

G
(6)φ

φ = 4
f ′′

f
+ 6

f ′2

f 2
, (5.1.4)

which, by means of the corresponding component of the field equations (5.1.1), implies9

f = const, and we can set f ≡ 1 without loss of generality. Incidentally, this also
already solves the (rr)-component of (5.1.1), and so only the (µν)-components remain,
containing just one independent equation. Since the induced metric is flat, the 4D
induced Einstein tensor Gµν vanishes, and this remaining equation explicitly reads

c′′

c
= −δ(r)

2πc

λ

M4
6

, implying c(r) =

(
1− λ

λcrit

)
r , (5.1.5)

where we introduced the critical tension

λcrit := 2πM4
6 . (5.1.6)

Hence, the full solution is

ds2 = ηµνdx
µdxν + dr2 +

(
1− δ

2π

)2

r2 dφ2 , (5.1.7)

9There is also the nontrivial solution f ∝ (r+ r∗)
2/5, cf. Sec. 5.2 below, but this would not allow for

an axis.
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and is readily recognized as locally flat spacetime, with a wedge of angle

δ :=
λ

M4
6

(5.1.8)

removed from extra space. This solution is the trivial generalization of the well-known
cosmic string solution in standard 4D GR [Vil81, His85] to a “string” with a three-
dimensional axis, corresponding to the spatial brane dimensions [Sun99, CLP00]. Thus,
the assumption of 4D flatness was justified, and the only effect of the 4D vacuum energy
λ is to curve the extra dimensions into a conical shape of deficit angle δ, with the brane
residing at the tip of the cone, cf. Fig. 5.1a. As promised, the degravitation mechanism
is fully at work.

Of course, we do not know a priori whether this solution is stable (i.e. an attractor
solution) if the 3D Hubble parameter is allowed to have a nonvanishing value. In other
words, we can at this stage not tell if this setup provides an adjustment mechanism
which dynamically cancels a CC. In Sec. 5.3 we will find that it indeed does, at least
in some region of parameter space.

(a) Without regularization, the brane is a gen-
uine codimension-two object and sits at the tip
of the cone, correponding to a conical singular-
ity.

(b) In our regularization, the brane is blown
up to a ring and thus becomes a codimension-
one object. The conical singularity is replaced
by a flat cap.

Figure 5.1: Visualization of the static deficit angle solution, without and with regularization.
Only the two extra dimensions are depicted, embedded into a fictitious three-dimensional
space. The brane is drawn in red, and is located at r = 0 and r = r0, respectively. Locally,
spacetime is Riemann flat everywhere, apart from the extrinsic curvature localized at the
brane position.

5.2 Regularization

The static pure tension solution is very special in that the bulk geometry is locally flat
arbitrarily close to the brane, and all curvature is localized on an ultra-local, purely



5.2 Regularization 103

conical singularity. Generically, the situation is very different: For more general matter
sources, or for dynamical perturbations of the pure tension solution, the bulk spacetime
away from the brane gets curved as well. As a consequence, the gravitational field
typically diverges (logarithmically) as r → 0, just like the electric field of a charged
string. But r = 0 is the brane position, and this is exactly the place where we want to
evaluate the metric in order to infer the on-brane geometry. Therefore, it is necessary
for our purposes to introduce some kind of regularization.

In electrostatics, it is clear that the divergence is an artifact of the idealization in
which the line-charge is treated as infinitely thin. The same holds here, and so a natural
way of regularizing is to give the brane a finite thickness. In a more fundamental theory,
which dynamically resolves the degrees of freedom that give rise to the topologically
defect, this would be implemented automatically, like for instance in the case of a
Nielsen-Olesen vortex [NO73]. Instead of invoking such an elaborate mechanism, we
will instead make use of the powerful EFT paradigm, saying that: as long as we are
asking low energy questions, the microscopic details of the string are irrelevant. That
is, at energies well below the inverse brane width—which is in particular relevant when
studying late time cosmology—physical predictions should not depend on the concrete
details of the regularization, or of an actual UV model. Thus, we can make our lives
easier by choosing a regularization which is technically simple. To be concrete, we
will promote the codimension-two point in extra space to a ring of finite (proper)
circumference 2πR. On the level of the action, this amounts to replacing the brane
part by10

Sb −→
∫

d5x
√
−g(5)

(
M3

5

2
R(5) − λ(5) + L(5)

m

)
. (5.2.1)

Furthermore, we assume all brane matter to be distributed homogeneously across the
compact φ direction, so that the regularization respects the O(2) symmetry. Indeed,
any φ dependent configurations would correspond to higher Kaluza-Klein modes, which
can only be excited at energies of order 1/R and are thus beyond the realm of our low
energy EFT. This implies that the most general 5D induced metric can be written as

ds2
(5) ≡ g

(5)
αβdxαdxβ = gµνdx

µdxν +R2dφ2 , (5.2.2)

with all metric components being independent of φ. In general, however, R can be
a function of the 4D coordinates xµ (just like the gµν). From a 4D low energy EFT
point of view, this corresponds to an additional field, usually called radion,11 which
physically measures the regularized brane circumference 2πR. The properties of this
degree of freedom would again ultimately be dictated by the concrete UV model; in

10Note that the action is now formally identical to the action (4.1.1) of the cosmic ring model. But,
as already remarked there, we will here assume to have a (regular) axis in the interior of the ring,
and so the two models are topologically different, cf. Fig. 4.1.

11More precisely,“radion”refers to the fluctuations of R around some background value, as in Sec. 5.4.2
(where the radion is denoted by ϕ).



104 5 The universe as a cosmic string

our EFT regularization, we are instead free to impose them by hand. In most12 of our
studies, we will demand the brane width to be stabilized, i.e. R to be constant. The
(physically justified) assumption behind this choice is that there be some UV model
which would lead to a defect of stable size, the fluctuations of which are controlled
by some UV model parameter, corresponding to the radion mass in the EFT picture.
Setting R = const is thus equivalent to working in the limit where this mass is above
the cutoff. Technically, this is achieved by appropriately dialing the (φφ)-component

of the 5D energy momentum tensor, p
(5)
φ ≡ T

(5)φ
φ, as was already done in Chap. 4. To

probe whether this component is physically reasonable, we will again check a posteriori
if it satisfies the NEC.

The φ-symmetric form of the metric (5.2.2) allows us, by comparing the brane ac-
tions (5.2.1) and (5.0.1), to identify

M3
5 =

M2
4

2πR
and λ(5) =

λ

2πR
. (5.2.3)

Hence, the stabilization requirement also implies that the 4D Planck mass and tension
are constant.13

As a first simple example, let us verify that the proposed regularization is able to
correctly reproduce the static deficit angle solution. To this end, we consider the source

T
(5)α

β = −λ(5)δαµδ
µ
β + p

(5)
φ δαφδ

φ
β . (5.2.4)

Without stabilization, p
(5)
φ would also equal −λ(5) for a pure 5D tension brane. But we

will instead insist on radial stability and read off the required p
(5)
φ from the field equa-

tions. Since we are looking for a static solution, we can again make the ansatz (5.1.3),
and demand the brane to be located at the constant coordinate position r = r0. Hence,
the proper radius is R = r0, and the field equations can be written with delta functions
as

M4
6G

(6)
MN = δ(r − r0) δαMδ

β
N

(
T

(5)
αβ −M

3
5 G

(5)
αβ

)
. (5.2.5)

The stabilization R ≡ const (and 4D flatness of the ansatz) implies that the induced
Einstein tensor G(5) vanishes, and the Einstein equations explicitly read

c′′

c
+ 3

(
f ′′

f
+
f ′2

f 2
+
f ′c′

fc

)
= −δ(r − r0)λ(5) , (5.2.6a)

6
f ′2

f 2
+ 4

f ′c′

fc
= 0 , (5.2.6b)

4
f ′′

f
+ 6

f ′2

f 2
= δ(r − r0)p

(5)
φ . (5.2.6c)

12The non-stabilized case will only be investigated to prove that our main conclusions are largely
insensitive to this assumption.

13Furthermore, it makes no difference whether we choose to work in the Einstein- or Jordan-frame, a
technical subtlety (without physical consequences, though) which arises for a nonzero radion.
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The general solution of the last equation for r 6= r0 is either f ∝ (r + r∗)
2/5 with some

constant r∗, or f ≡ const. In the former case (5.2.6b) implies c ∝ (r + r∗)
−3/5 [which

also solves (5.2.6a)], and in the latter case (5.2.6a) yields c ∝ r [while (5.2.6b) is already
fulfilled].

In the interior (r < r0) we must take f<(r) = const (which we can again set = 1)
and c<(r) = r in order to have a regular axis. But in the exterior, we can still choose
between the two branches.

(i) f 6= const:14

In this case continuity of the metric across the brane implies that the exterior
(r > r0) solution is

f>(r) =

(
r + r∗
r0 + r∗

)2/5

, c>(r) = r0

(
r0 + r∗
r + r∗

)3/5

. (5.2.7)

The constant r∗ and the stabilizing pressure pφ are then obtained by performing
the delta-matching of Eqs. (5.2.6a) and (5.2.6c), just like in Sec. 4.2, which yields

r∗
r0

=
3

5(1− λ/λcrit)
− 1 ,

p
(5)
φ

M4
6

=
8

3r0

(
1− λ

λcrit

)
. (5.2.8)

Evidently, this solution has the peculiar property that the pressure which is re-
quired to stabilize the pure tension brane is nonzero even for λ = 0, i.e. if there
is no tension at all. For this reason, we discard this branch as unphysical, and
move on to the other alternative:

(ii) f = const:

In this case f ≡ 1 everywhere, and the full solution for the metric is

ds2 = ηµνdx
µdxν + dr2 + c(r)2dφ2 , (5.2.9a)

c(r) =

{
r (r < r0)

r0 +
(
1− δ

2π

)
(r − r0) (r > r0) ,

(5.2.9b)

with δ defined as before (5.1.8), and the pressure is simply

p
(5)
φ = 0 . (5.2.10)

In other words, a pure 5D tension brane has to be supplemented by an additional
(φφ)-component of the energy-momentum tensor which cancels λ(5).15 This pres-
sure component trivially satisfies the NEC, and in particular vanishes for λ = 0.

14The first case was excluded in the unregularized calculation above, because it does not allow c(0) = 0,
as required to have an axis there; furthermore, we now see that it requires a nonvanishing pφ
component. In the cosmic string literature, the corresponding solution is sometimes called the
“Melvin” or “Kasner” branch [LG89, CLV99].

15In Ref. [KK07], for instance, this was achieved explicitly by wrapping an additional scalar field
around the compact dimension.
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Therefore, this represents the physically reasonable solution we were looking for.
The spacetime is Minkowski in the interior, and locally flat space with a deficit an-
gle δ in the exterior region. Thus, it is indeed the regularized version of the cosmic
string solution discussed above, which is recovered in the limit R (= r0)→ 0. The
conical singularity is replaced by a flat disk, leading to a capped cone embedding
geometry, see Fig. 5.1b.

Note that, if the tension equals the critical value λcrit ≡ 2πM4
6 , the deficit angle

becomes 2π and the embedding geometry degenerates to a cylinder. For even
larger values, the exterior space compactifies, closing up in a conical singularity.
This super-critical regime will be the subject of Chap. 6. In the present chapter,
we restrict ourselves to sub-critical values of the tension, λ < λcrit.

After this warm up exercise, it is time to deal with the time dependent, cosmological
setup.

5.3 Cosmology

Note: The results presented in this section (and in the corresponding appendices
below) arose in collaboration with Stefan Hofmann, Justin Khoury and Florian
Niedermann and were published in [NSHK15].

We now consider a 3D homogeneously and isotropically sourced brane in a vacuum
bulk. Ultimately, we are only interested in the evolution of the on-brane geometry,
i.e. of the 3D scale factor (or Hubble parameter). To derive its modified Friedmann
equation, we could again try to proceed like in the DGP model in Sec. 1.4.2, and extract
all local information from the bulk field equations. However, this procedure is bound to
fail, because the field equations in the present regularized setup are locally identical16

to those of the cosmic ring model of Chap. 4, where we showed that it is impossible to
arrive at a closed system of on-brane equations without additional assumptions about
the bulk geometry. A physically necessary requirement for an empty bulk is the absence
of incoming gravitational waves. In the ring model it was possible to implement this
condition using the Weyl decomposition discussed in Chap. 2, because there one was
dealing with plane waves. But now, due to the different topology of the model, we will
encounter radial (or “cylindrical”) gravitational bulk waves, which is exactly the case
in which the Weyl decomposition was proven to fail in Chap. 2.

Furthermore, Chap. 3 showed that an outgoing wave condition for cylindrical waves
is necessarily nonlocal (in time), already in the case of a scalar field on Minkowski space.
Thus, one cannot expect to be able to find a local criterion in the case of gravitational
waves. In fact, by introducing (generalized) Einstein-Rosen coordinates, as we will do

16The model is still topologically distinct, cf. Fig. 4.1, and will thus also have a physically different
behavior. However, this can only be seen if the bulk geometry is taken into account, as will be
done below.
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below, the gravitational case can exactly be mapped onto the simple case of a scalar field
on flat spacetime, because in those coordinates the only dynamical degree of freedom
satisfies exactly the same wave equation. We can therefore already conclude that the
modified Friedmann equations of codimension-two BIG are necessarily nonlocal.

The only way to circumvent this nonlocality would be to also exclude outgoing waves
by embedding the brane in Minkowski spacetime17 like in the DGP model. Below, we
shall however see that this is too strong an assumption, not allowing for any nontriv-
ial cosmology on a codimension-two brane. In other words, bulk waves are not only
possible (due to the absence of Taub’s/Birkhoff’s theorem in a cylindrically symmetric
setup), but in fact necessary for a cosmologically evolving codimension-two brane.

5.3.1 Coordinates and field equations

Bulk geometry

Since we have to take into account the full bulk geometry, it is reasonable to choose
coordinates in which the bulk field equations are as simple as possible—instead of using
the Gaussian normal coordinates (like in the DGP case or the cosmic ring model) which
are engineered to bring the junction conditions into their simplest form.

The FRW symmetries in the spatial brane directions (3D homogeneity and isotropy)
and the radial O(2) symmetry in the perpendicular bulk directions imply that the setup
is the 6D version of what Throne [Tho65] calls “whole cylinder symmetry”. Hence, we
can adapt the corresponding most general metric ansatz (2.5.1) to the case of a three-
dimensional axis,18

ds2 = e2(η∗−3α∗)
(
−dt∗2 + dr∗2

)
+ e2α∗ δijdx

idxj + e−6α∗W 2dφ2 . (5.3.1)

Here, η∗, α∗ and W are all functions of the temporal and radial coordinates (t∗, r∗),
covering the whole manifold. The factors of 3—as compared to (2.5.1)—in the first
and last term, counting the dimensionality of the axis, were included to make the field
equations as simple as in the 4D case.

These coordinates were also used to derive the full bulk solution in the cosmic ring
scenario, see Appendix 4.A. This was possible because the two models are locally
indistinguishable. However, they are topologically different, cf. Fig. 4.1. The correct
radial topology can now be implemented by requiring to have a (regular) axis in the
interior of the ring. In particular, this implies that W vanishes at the axis and that
its gradient ∇W ≡ (∂t∗W,∂r∗W ) is spacelike and outward pointing (assuming that
the radial coordinate r∗ is defined such that it gets larger as one moves away from the

17More generally, one could also allow a nonzero but static bulk curvature, parametrized by some
mass parameter, like in the DGP setup. But this would, in particular, allow for a Minkowski bulk
by setting this parameter to zero.

18Note that we are restricting ourselves to 3D spatial flat geometries for simplicity; the case with
spatial curvature could trivially be achieved by using the appropriate spatial part of the line
element (1.1.4) instead.
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axis), at least in a neighborhood of the axis. However, as will be discussed in Chap. 6,
Appendix 6.A, this character of ∇W cannot change in a vacuum region, so it is true in
the whole interior. Furthermore, since we restrict ourselves to sub-critical brane energy
densities in this chapter, the character does not change across the brane (cf. Sec. 6.3.2),
and ∇W is also spatial and outward pointing in the exterior.

This requirement already excludes the cosmic ring solution derived in Sec. 4.A [be-
cause there W was a function of (t − |y|), i.e. its gradient was lightlike]. Moreover, it
allows a further simplification of the metric (5.3.1). To see how this works [Tho65],
note that (5.3.1) is invariant under the residual coordinate transformations

(t∗, r∗) 7→ (t, r) , (5.3.2a)

e2η∗ 7→ e2η = e2η∗
[
(∂r∗r)

2 − (∂t∗r)
2
]−1

, (5.3.2b)

with t and r being some functions of (t∗, r∗) such that (∂t∗r)
2 − (∂r∗r)

2 6= 0 and(
∂t∗r
∂r∗r

)
= ±

(
∂r∗t
∂t∗t

)
. (5.3.3)

In particular, this implies the following integrability condition for the function r,

−∂2
t∗r + ∂2

r∗r = 0 . (5.3.4)

Now, in vacuum, the sum of the (t
∗
t∗)- and (r

∗
r∗)-Einstein equations yield

−∂2
t∗W + ∂2

r∗W = 0 , (5.3.5)

and so we can use W as the new radial coordinate,

r = W (t∗, r∗) , (5.3.6)

[and a new t coordinate implicitly defined by (5.3.3)] without changing the remaining
form of the metric. Note that if ∇W had been timelike, the sign of e2η∗ would have
changed according to (5.3.2b), and so r would have been a temporal coordinate; for
a lightlike gradient the coordinate transformation would have been singular. Further-
more, if ∇W had been spatial but inward -pointing (as will be the case in the exterior
region of a super-critical brane, see Sec. 6.3.2), then the new radial coordinate r would
have decreased as one moves away from the axis. But in the present case, ∇W is spa-
tial and outward-pointing everywhere, and so r behaves like a usual radial coordinate.
The line element then simplifies to

ds2 = e2(η−3α)
(
−dt2 + dr2

)
+ e2α δijdx

idxj + e−6α r2dφ2 , (5.3.7)

and the vacuum field equations read

α̈ = α′′ +
1

r
α′ ,

η′ = 6r
(
α̇2 + α′

2
)
, η̇ = 12rα̇α′ ,

(5.3.8a)

(5.3.8b)
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where again dot and prime denote ∂t and ∂r, respectively. We have thus obtained the
6D generalization of the 4D Einstein-Rosen (ER) wave geometry discussed in Sec. 2.5.2.
The remarkable fact that the full dynamics in the vacuum region is again completely
captured by the single function α, obeying the linear, standard cylindrical wave equa-
tion (5.3.8a), makes this choice of coordinates particularly convenient for a numerical
implementation. (Below we will see, however, that the junction conditions also involve
η, making the coupled bulk-brane system nonlinear again.) In addition, it confirms the
aforementioned fact that the outgoing wave condition for cylindrical gravitational bulk
waves is exactly the one discussed in Chap. 3.

The only subtlety with this choice of coordinates is that Eq. (5.3.5) is only true in
vacuum; otherwise, the right hand side is proportional to T t

∗
t∗ + T r

∗
r∗ , which is non-

vanishing at the brane position. As a consequence, the integrability condition (5.3.4)
is violated for the choice (5.3.6) at the brane, and so the ER coordinates (5.3.7) can
only be used on separate patches in the interior and exterior, but are not continuously
connected across the brane. This is the price we have to pay for having the simple
vacuum field equations (5.3.8). In order to distinguish the interior from the exterior
coordinate patches, we will put tildes on all interior quantities in what follows.

At this point, we can also verify the claim made above, that it is not possible to embed
the brane in a Minkowski bulk (as could be done in the DGP model), if it is required
to have a nontrivial cosmological evolution: Setting the (ijij)- and (iφiφ)-components
of the Riemann tensor to zero turns out to be equivalent to

α′
2

= α̇2 and α′ = 0 , (5.3.9)

and therefore α ≡ const in a Minkowski bulk. But the on-brane scale factor is given
by exp{α[t, r0(t)]}, see Eq. (5.3.12) below, and would thus be constant as well. Hence,
the codimension-two bulk is necessarily curved for a cosmologically evolving brane.19

Furthermore, this curvature must be time-dependent—otherwise it would be charac-
terized by some constant parameters, which could in particular be set to zero, leading
back to a Riemann-flat bulk. In other words, a cosmological codimension-two brane
necessarily emits gravitational bulk waves.

Brane geometry and sources

Since we are not using Gaussian normal coordinates, the brane does not sit at a constant
radial bulk coordinate anymore. Instead, it follows a trajectory r0(t) in the exterior,
and r̃0(t̃) in the interior coordinates. Its form will be determined by the junction

conditions below, and thus in particular depends on the choice of p
(5)
φ , which in turn

19Note that in this derivation we assumed that we can choose the ER coordinates (5.3.7), which is
only allowed if the gradient of W is spacelike, as discussed above. This is no additional restriction,
because otherwise the geometry would not really be of codimension two. But if this assumption is
dropped, it is indeed possible to have a Minkowski bulk, as was explicitly found in the cosmic ring
setup in Chap. 4.
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is defined by the stabilization requirement R = const.20 Therefore, the 5D induced
metric on the brane is

ds2
(5) = −e−6α0

γ2
dt2 + e2α0 δijdx

idxj + e−6α0 r2
0dφ2 (5.3.10a)

= −e−6α̃0

γ̃2
dt̃2 + e2α̃0 δijdx

idxj + e−6α̃0 r̃2
0dφ2 , (5.3.10b)

where the subscript “0” denotes evaluation at the brane, e.g. α0(t) := α(t, r0(t)), and
the functions γ, γ̃ are defined as

γ :=
e−η0√
1− ṙ2

0

, γ̃ :=
e−η̃0√
1− ˙̃r2

0

. (5.3.11)

Note that a dot now means ∂t when acting on an exterior function, but ∂t̃ on interior
ones. From (5.3.10) we can read off the brane’s scale factor and proper circumference
2πR,

a ≡ eα0 = eα̃0 , R ≡ r0 e−3α0 = r̃0 e−3α̃0 . (5.3.12)

After introducing the proper time τ via

dτ :=
e−3α0

γ
dt =

e−3α̃0

γ̃
dt̃ , (5.3.13)

the induced metric (5.3.10) becomes

ds2
(5) ≡ g

(5)
αβdxαdxβ = −dτ 2 + a2δijdx

idxj +R2dφ2 . (5.3.14)

Hence, the 3D Hubble parameter is recognized as21

H ≡
◦
a

a
, (5.3.15)

where the circle ◦ was introduced as shorthand for d/dτ .
The symmetries of our system allow for a fluid ansatz of the localized 5D surface

energy-momentum tensor

T
(5)α

β = diag(−ρ(5), p(5), p(5), p(5), p
(5)
φ ) (5.3.16)

≡ 1

2πR
diag(−ρ, p, p, p, pφ) , (5.3.17)

20The general, non-stabilized case is discussed in Appendix 5.A.1.
21If R is not required to be constant, there is also a similar “Hubble” parameter for R, measuring the

expansion rate of the circumference, see Appendix 5.A.1.
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which is covariantly conserved (∇(5)
α T

(5)α
β = 0) with respect to the induced metric g

(5)
αβ .

The only nontrivial component of those is the zero component, yielding the 5D energy
conservation equation

◦
ρ(5) + 3H

(
ρ(5) + p(5)

)
= 0 . (5.3.18)

Here we already used R = const, implying that the 4D energy density ρ and pressure p
satisfy the standard conservation equation as in 4D GR. For a general linear equation
of state p = wρ, the energy density will thus have the usual scaling

ρ ∝ a−3(1+w) . (5.3.19)

For convenience, the BIG terms can again be absorbed into an effective energy-
momentum tensor22

T̂ (5) := T (5) −M3
5G

(5) . (5.3.20)

Due to the 5D Bianchi identities, it is also covariantly conserved and thus represents
a legitimate “source” for the 6D Einstein equations. In the stabilized case, the corre-
sponding 4D components are explicitly given by

ρ̂ = ρ− 3M2
4H

2 , p̂ = p+M2
4

(
2
◦
H + 3H2

)
, p̂φ = pφ + 3M2

4

( ◦
H + 2H2

)
. (5.3.21)

Junction conditions

Using different coordinate patches in the interior and exterior forbids a formulation
of the equations of motion in terms of delta functions as in Gaussian normal coor-
dinates. Thus, instead of performing a delta-matching, we have to use the covariant
version of the junction conditions, which was worked out by Israel [Isr66, Isr67]. First,
one requires the line element to be continuous across the shell, which was already
implemented in Eqs. (5.3.12) and (5.3.13). Note that they imply α0(t) = α̃0(t̃) and
r0(t) = r̃0(t̃), but η0(t) 6= η̃0(t̃) in general. Second, the surface energy momentum
tensor is related to the discontinuity of the extrinsic curvature via

[K]g
(5)
αβ − [Kαβ] =

1

M4
6

T̂
(5)
αβ . (5.3.22)

Here, [X] := X − X̃, and K is the trace of Kαβ, which is the pullback of the extrinsic
curvature tensor

K
(6)
MN = hMP∇PnN , (5.3.23)

where hMN ≡ gMN −nMnN is the 6D induced metric and nM is the outward-pointing23

normal vector, which for the exterior and interior is given by

nM = γ e3α0 (ṙ0, 1, 0, 0, 0, 0) and ñM = γ̃ e3α̃0
(

˙̃r0, 1, 0, 0, 0, 0
)
, (5.3.24)

22Note that here T̂ is defined without the factor 1/M4
6 , unlike T̃ in previous chapters.

23By “outward” we mean away from the axis (not away from the brane), which, as discussed above,
corresponds to the direction of increasing r or r̃ in the sub-critical case, justifying the choice of
signs in (5.3.24).
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respectively. Here the ordering of coordinates is the same as in (5.3.7).
The straightforward calculation of Kαβ yields the following nontrivial components

K0
0 =

γ

R

r0r̈0

1− ṙ2
0

+ nM∂M (η − 3α)|0 , (5.3.25a)

Ki
j = nM∂Mα|0 δij , (5.3.25b)

Kφ
φ =

γ

R
− 3nM∂Mα|0 . (5.3.25c)

The components of K̃αβ have the same form, but with tildes on all quantities. Before
plugging these into the junction conditions, it is useful to express everything in terms
of a minimal (but complete) set of on-brane quantities. Those can be taken to be H
and R, completely characterizing the intrinsic geometry, as well as η0 and ξ := r0α

′|0
(plus their interior counterparts η̃0, ξ̃ := r̃0α̃

′|0), which are sufficient to uniquely infer
the extrinsic embedding of the brane in the bulk. To verify this statement, note that
all terms appearing in (5.3.25) can be expressed in terms of these functions as

γ =
√

e−2η0 +9H2R2 , ṙ0 =
3HR

γ
,

r0r̈0

1− ṙ2
0

=
3R2

γ2

( ◦
H +H

◦
η0

)
, (5.3.26a)

nM∂Mα|0 =
γ

R
(ξ + ṙ0ψ) , nM∂Mη|0 =

6γ

R

(
ξ2 + ψ2 + 2ṙ0ξψ

)
, (5.3.26b)

with

ψ := r0α̇|0 =
HR

γ
(1− 3ξ) , (5.3.26c)

and similarly for the interior quantities (by adding tildes everywhere). These relations
can readily be derived by using the Einstein equations (5.3.8b) in the limit r → r0,
Eqs. (5.3.12) and (5.3.13), and the stability condition R = const.24

Plugging all this into the (0
0)- and (ij)-components of the junction conditions (5.3.22)

finally yields the modified Friedmann equations

H2 =
ρ

3M2
4

+
1

r2
c

(γ − γ̃) ,

◦
H = − 3

2f

[
p

3M2
4

+H2 − 1

r2
c

(
γ g1(ξ, χ)− γ̃ g1(ξ̃, χ̃)

)]
,

(5.3.27a)

(5.3.27b)

where we defined

f := 1− 9R2

2r2
c

(
1

γ
− 1

γ̃

)
, (5.3.28)

24For the non-stabilized case, see Appendix 5.A.1.
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and

g1(ξ, χ) := 1 + 2 (9χ− 1)
[
3χ+ ξ (3ξ − 2) (9χ− 1)

]
, χ :=

H2R2

γ2
. (5.3.29)

Furthermore, in analogy to the DGP model, we introduced the crossover scale

r2
c :=

3M2
4

2πM4
6

≡ 3RM3
5

M4
6

. (5.3.30)

Note, however, that rc is not yet the physically relevant crossover scale, which will be
derived in Sec. 5.5.2.

The function f will play a crucial role in the qualitative behavior of the model.
Equation (5.3.27b) already shows that the time evolution becomes singular as f → 0.25

Later, we will furthermore see that the sign of f decides on the stability of the theory.
As a consistency check, one can explicitly verify that—like in standard GR—the sec-

ond modified Friedmann equation (5.3.27b) already follows from (5.3.27a) and energy
conservation (5.3.18), as is guaranteed by the Gauss-Codazzi relations (and the 4D
Bianchi identities). In other words, Eq. (5.3.27b) is redundant and one only needs to
keep the stronger (constraint) equation (5.3.27a). Alternatively, one can use the dynam-
ical equation (5.3.27b) to calculate the time evolution and only impose the constraint
at the initial time. This procedure is better suited for our numerical implementation
below; at later times, the constraint can then be used as an important consistency
check for the solver.

It remains to consider the (φφ)-component of the junction conditions, which determines
the stabilizing pressure pφ. Simplifying as before, we find

pφ
3M2

4

= −
◦
H

[
1− 3R2

r2
c

(
1

γ
− 1

γ̃

)]
− 2H2 +

6

r2
c

(
γ g2(ξ, χ)− γ̃ g2(ξ̃, χ̃)

)
, (5.3.31)

with
g2(ξ, χ) := χ+

[
3χ− ξ(9χ− 1)

]2
. (5.3.32)

This can later be used to check whether pφ fulfills the NEC.26

The general form of the modified Friedmann equations (5.3.27) is similar to those in
the DGP model, cf. Sec. 1.4.2: They are just the standard 4D Friedmann equations,
modified by terms whose sizes are controlled by the crossover rc. In particular, the
standard 4D result is recovered in the limit rc → ∞, as it should be. We can thus
expect to have the required 4D regime whenever Hrc � 1 (as long as γ − γ̃ does not
get large).

25A singularity could in principle be avoided if the numerator also vanishes if f = 0, but this is
generically not the case, because the pressure p can be chosen independently from f . Moreover,
we will see below that this singularity is indeed approached dynamically, in a small regime in
parameter space close to f = 0.

26Without stabilization, this equation would instead provide a dynamical equation of motion for R(τ),
for some given pφ, see Appendix 5.A.1.
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But there is also a crucial difference: In the DGP model, the dynamics of the mod-
ification term was solely encoded in intrinsic brane quantities [Hubble and the scale
factor, cf. Eq. (1.4.20)], whereas here it inevitably depends on the extrinsic brane dy-
namics via η0, η̃0. In other words, we once again are struck by the fact that there is no
closed set of Friedmann equations on a codimension-two brane, if the bulk is not taken
into account. Of course, we already knew this from our preceding investigations, and
we also understand the physical origin of this failure (the presence of gravitational bulk
waves), so we did not expect the choice of ER coordinates to change anything about
this fact.

Instead, the main motivation for introducing these coordinates, was to reduce the
dynamical vacuum equation to the simple linear cylindrical wave equation (5.3.8a).
Therefore, we know from Chap. 3 what the required outgoing wave condition looks
like. Can we now make use of this, and at least derive a closed on-brane system that
is only nonlocal in time? Unfortunately, the answer is “no”. On the one hand, the
ER coordinates simplified the bulk equations, but on the other hand they complicated
the brane embedding in the sense that in these coordinates (in which we know how to
implement the wave condition) the brane follows some nontrivial trajectory r0(t). But
the kernel integral in the boundary condition (3.4.11) runs over t at fixed r0, so the
integral would not be a convolution over the on-brane time τ , cf. Fig. 5.2. This means
that in order to implement the outgoing wave boundary condition, it is not enough to
determine α on the brane, one also needs to solve for its bulk profile. (In addition,
one would also need to implement a “regular axis” boundary condition in the interior,
entailing the same problems.) Conversely, if we used Gaussian normal coordinates to
bring the brane back to a fixed bulk coordinate, the field equations would change and
we would lose knowledge of the outgoing wave condition.

Figure 5.2: A moving boundary makes the outgoing wave boundary condition (3.4.11) also
nonlocal in space: To evaluate the required convolution at some time t1, one needs the past
values of α along r = r0(t1) (red dashed line), which are different from the on-brane values
α0(t) ≡ α[t, r0(t)] (solid curve).
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In other words, the Friedmann equations (5.3.27) are, from the 4D point of view,
nonlocal both in space and time. But now that we have come so far, we will not let us
stop by this final obstacle. Instead, we will make use of the bulk equations’ simplicity
and accept the challenge to solve the complete nonlinear, coupled brane-bulk system
numerically.

5.3.2 Generalized static solution

Before approaching the full dynamical solutions, let us first reconsider the case of a
static solution, but now not sourced by a pure tension, but by FRW-symmetric brane
matter with an arbitrary (linear) EOS p = wρ. One might expect no static solution
to exist in this case, like in standard cosmology; let us now show that this is not true.
To this end, we assume the metric functions and the brane position r0, r̃0 to be time
independent. Consequently, the Hubble parameter H vanishes, and the intrinsic brane
geometry is Riemann flat, as in the pure tension case.

In the interior, the only regular solution is α̃(r̃) ≡ const and η̃(r̃) ≡ 0, i.e. Minkowski
space. In the exterior, the general solution of (5.3.8) is

α(r) = α1 ln

(
r

r0

)
+ α0 and η(r) = 6α2

1 ln

(
r

r0

)
+ η0 , (5.3.33)

with α0, α1 and η0 being constants of integration. α0 can be set to zero by a rigid
rescaling of t, r and xi, while the remaining two are determined by the junction condi-
tions (5.3.27), yielding

η0 = − ln

(
1− ρ

ρcrit

)
, (5.3.34a)

α1 =
1

3

(
1−

√
2ρcrit + (1 + 3w)ρ

2(ρcrit − ρ)

)
, (5.3.34b)

where the critical energy density ρcrit := 2πM4
6 is the same as the critical tension λcrit.

Note that the solution is ill-defined for ρ = ρcrit, and we will again restrict ourselves to
sub-critical energy densities ρ < ρcrit throughout this chapter. The remaining junction
condition (5.3.31) gives the effective EOS parameter for the stabilizing angular pressure

wφ :=
pφ
ρ

= 6α2
1

(
ρcrit

ρ
− 1

)
≥ 0 (for 0 < ρ < ρcrit) , (5.3.35)

satisfying the NEC. We have thus indeed obtained a consistent static solution for an
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arbitrary 4D perfect fluid, with line element27

ds2 = e2η0

(
r

r0

)6α1(2α1−1) (
−dt2+ dr2

)
+

(
r

r0

)2α1

δijdx
idxj +

(
r

r0

)−6α1

r2dφ2 .

(5.3.36)
For the pure tension case, Eq. (5.3.34b) implies α1 = 0, and we reproduce the Rie-
mann flat deficit angle solution of Sec. 5.1.28 For a general EOS, however, α1 6= 1
and the bulk is curved—while the brane stays completely flat. In other words, the
degravitation mechanism also applies to a general cosmological fluid, not only to a CC.
The impact of the matter source is again completely absorbed by extrinsic curvature,
with the only difference that the corresponding static bulk geometry is not locally flat
anymore. The only assumption was that there would be some underlying UV model
which stabilizes the brane width. The healthy EOS parameter (5.3.35) suggests that
this can be achieved by healthy degrees of freedom. The fact that this also stabilizes
the axial direction is rather surprising.

The fact that all FRW matter can be degravitated already casts some doubt on a
phenomenological success of the theory. But a priori, we do not know whether this
solution is stable. In fact, the analogy to the Einstein static universe suggests that it
is not. Furthermore, even if it is, the model is still designed to allow for a 4D regime
at early times. Whether the late-time modifications could make the model competitive
with (or even superior to) ΛCDM can only be decided once the dynamical solutions
are known.

We will therefore continue our quest for the general cosmological solutions. In the
end, we will find that (i) this generalized degravitating solution indeed is stable, in
some region of parameter space; (ii) the 4D mechanism would only work in the com-
plementary region, but (iii) the latter case is plagued by a ghost instability.

5.3.3 Boundary and initial conditions

Before the full bulk field equations can be integrated forward in time, one needs to
specify appropriate boundary and initial conditions. The boundary condition at the
axis (r̃ = 0) is dictated by demanding a smooth axis—otherwise we would not have
a proper regularization. The absence of both a curvature and a conical singularity
implies

α̃′|r̃=0(t̃) = 0 , (5.3.37a)

η̃|r̃=0(t̃) = 0 , (5.3.37b)

27This is the 6D generalization of the 4D static cylindrical solution discussed in Sec. 2.5.1. There,
the continuous coordinate patch analogous to (5.3.1) was used by leaving the metric function W
nontrivial, whereas here, the gauge W = r leaves us with two discontinuously connected coordinate
patches inside and outside the brane (0 = η̃0 6= η0).

28This can be checked explicitly by transforming back to continuous coordinates via t∗ = eη0 t, r∗ =
eη0(r − r0) + r0.
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respectively. For an actual infinite bulk the other boundary condition should be imple-
mented at radial infinity (r →∞) , and one would impose (local) asymptotic flatness
there. But solving the system numerically forces us to cut off the bulk at some finite
radius rmax, and we have to impose boundary conditions there. The appropriate one
is clearly the outgoing wave condition derived in Chap. 3. However, this criterion is
nonlocal and would require performing the convolution integral (3.4.11) at each time
step. To avoid this complication, we will instead use the following trick: Below, we will
choose trivial initial data at t = ti ≡ 0 in the bulk (apart from a small region δr ∼ σ
very close to the brane, as is required by continuity), and so the first gravitational wave
crest will only reach rmax after the time t = rmax − σ. [Note that radial gravitational
waves propagate at speed 1 in ER coordinates (5.3.7).] Therefore, by making the ex-
terior bulk domain large enough,29 i.e. choosing rmax = tmax + σ, we can make sure
that no wave excitation has reached the numerical boundary at the final time tmax of
integration, and we can simply use the trivial fixed boundary condition

α|r=rmax(t) = const . (5.3.38)

Let us now turn to the initial conditions, i.e. the Cauchy data that needs to be
prescribed at the initial time τi, t̃i, ti of the numerical integration. By a global rescaling
of coordinates, we can initially set the on-brane scale factor to unity,

α̃0|i = α0|i = 0 , (5.3.39)

where the subscript i denotes evaluation at initial time. This implies that the brane’s
initial coordinate position is

r̃0|i = r0|i = R , (5.3.40)

where R is a free parameter, just like the initial values Hi and ρi.
In the bulk, we need to specify the radial profiles

α̃i(r̃) , ˙̃α|i(r̃) , (r̃ < R) , (5.3.41a)

αi(r), α̇|i(r) , (r > R) , (5.3.41b)

which must be compatible with the boundary conditions (5.3.37) and (5.3.38).
In order not to prepare any unnecessary bulk waves, we will always choose the profile

of the static solution discussed in Sec. 5.3.2,

α̃i(r̃) = 0 , αi(r) = α1 ln
( r
R

)
, (5.3.42)

where the constant α1, for a given EOS parameter w and initial energy density ρi, is
obtained from (5.3.34b). In particular, for a CC (w = −1), we get α1 = 0 and thus
αi(r) = 0.

29Of course, this makes the exterior domain of integration (and thus the numerical cost) quadratically
sensitive to the time tmax we want to simulate. But we will never need so large tmax that this
becomes a problem; otherwise, it might have been worthwhile to use the nonlocal outgoing wave
condition.
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If we also chose trivial initial velocity profiles, the solutions would always remain
static. Instead, we demand a nonzero initial Hubble parameter Hi; continuity at the
brane then implies

˙̃α0|i =
Hi

γ̃i

, α̇0|i =
Hi

γi

(1− 3α1) . (5.3.43)

The initial time derivatives can thus be parametrized as

˙̃α|i(r̃) =
Hi

γ̃i

F̃ (r̃) , α̇|i(r) =
Hi

γi

(1− 3α1)F (r) , (5.3.44)

with some profile functions F, F̃ satisfying the boundary conditions

F̃ ′(0) = 0 , F̃ (R) = 1 = F (R) , F (rmax) = 0 . (5.3.45)

For definiteness, we will choose30

F̃ (r̃) = 1 , F (r) = exp

[
−(r −R)2

σ2

]
. (5.3.46)

The flat profile inside is motivated by the observation that for R small enough, the
regularity condition at the axis implies that α̃′ ≈ 0. In the exterior region, we choose
a sharply localized Gaussian profile (σ � R), in order not to put too much kinetic
energy into the gravitational field, which could have a large impact on the on-brane
evolution for long times. With those choices, we expect the on-brane evolution to
become insensitive to the initial conditions for late times.

The initial data is now completely specified, since η̃0i and η0i are determined31 by the
regularity condition (5.3.37b) together with the constraints (5.3.8b) and the junction
condition (5.3.27a) across the brane. Specifically, we find

η̃0i = 6

∫ R

0

dr̃ r̃
(
α̃′i

2
+ ˙̃α|i

2
)

=
6H2

i

γ2
i

∫ R

0

dr̃ r̃F̃ 2 =
3H2

i R
2

e−2η̃0i +9H2
i R

2
, (5.3.47)

an implicit equation for η̃0i which can be solved numerically, see Fig. 5.9. The first
expression suggests that η̃0i is the gravitational energy stored inside the cylinder ini-
tially; and indeed, it is (up to a constant factor) nothing but the Thorne’s C-energy
(cf. Sec. 2.7), generalized to 6 dimensions.

The exterior η0i is then obtained from (5.3.27a), which can be rewritten as

ρi

ρcrit

= r2
cH

2
i +

√
e−2η̃0i +9H2

i R
2 −

√
e−2η0i +9H2

i R
2 . (5.3.48)

30Strictly speaking, this choice of F does not exactly fulfill F (rmax) = 0. But for σ � R (as will
be chosen in our numerics), the deviation from 0 is below the numerical resolution and hence
consistent for our purposes.

31In fact, the full radial profiles of η̃, η can be calculated from (5.3.8b), but are not needed for the
evolution of α. Only η̃0, η0 enter in the junction conditions, which can be obtained by using (5.3.8b)
evaluated at the brane, see Eq. (5.3.54).
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However, this equation does not always have a (real) solution for η0i and thereby places
an upper bound on the energy density (not only initially, because the constraint is valid
at all times):

ρ

ρcrit

< r2
cH

2 +
√

e−2η̃0 +9H2R2 − 3 |H|R . (5.3.49)

Clearly, this criticality bound is the generalization of the static one (ρ < ρcrit) to
the dynamical case of an expanding (or collapsing) brane. The modifications can be
understood as follows: if η̃0 > 0, there is gravitational energy inside the ring, which
contributes to the total energy thus strengthening the bound, i.e. the system becomes
super-critical already for smaller ρ; likewise, the expansion rate contributes to the
energy density on the ring and therefore also makes the bound stronger. On the other
hand, the BIG term ∝ r2

c corresponds to intrinsic curvature which absorbs some of
the energy density, thereby weakening the bound. Geometrically, the reason for the
bound is again that its violation would imply a different (compact) exterior topology,
cf. Appendix 6.A. In this chapter, we restrict ourselves to the sub-critical regime, in
which the extra-space is topologically R2; this choice was already made by introducing
standard ER coordinates, as discussed in Sec. 5.3.1. In Chap. 6, these coordinates will
be adapted to the super-critical case.

In summary, for given model parameters R, rc and w, as well as initial conditions
parametrized by Hi, ρi and σ, the system can be integrated forward in time. In fact, the
three quantities Hi, R and rc only enter the equations of motion via two independent
dimensionless combinations, which can for instance be chosen as Hirc and HiR.

5.3.4 Numerical algorithm

Note: Parts of this section are verbatim reproductions of Appendix B of the
publication [NSHK15].

Since the dynamical bulk equation (5.3.8a) is the same as the linear wave equation
discussed in Chap. 3, we can use the same discretization scheme (cf. Sec. 3.5.1) here:
In the interior and exterior we replace the continuous coordinates (t̃, r̃) and (t, r) by
equidistant lattices of spacing

∆t̃ = ∆r̃ =: ε̃ and ∆t = ∆r =: ε , (5.3.50)

respectively. (Note that ε̃ and ε can be chosen differently.) Inside the domains of inte-
gration, the bulk initial data is then evolved forward in time as discussed in Sec. 3.5.1,
i.e. using

α
(i+1)
(n) = −α(i−1)

(n) + α
(i)
(n+1) + α

(i)
(n−1) +

ε

2r(n)

(
α

(i)
(n−1) − α

(i)
(n+1)

)
, (5.3.51)

(and similarly for α̃), where the discrete indices i and n label the lattice coordinates t(i)

and r(n), respectively. At r̃ = 0 (⇔ ñ = 0) and r = rmax (⇔ n = N), the appropriate
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boundary conditions (5.3.37a) and (5.3.38) translate to

α̃
(ĩ)
(0) = α̃

(ĩ)
(1) and α

(i)
(N) = α

(i−1)
(N) , (5.3.52)

respectively.
The only nontrivial part is how the interior and exterior regions are glued together.

The value at the brane, α̃0(t̃) = α0(t) is determined by the dynamical junction condi-
tion (5.3.27b). (More precisely, this equation yields the Hubble parameter H at time
t(i), which is in turn used to calculate α0 at t(i+1), and similarly for the interior.) How-
ever, there is a slight complication because the time steps ∆t and ∆t̃ do not correspond
to the same physical time steps: the discretized version of equation (5.3.13) is

∆t

γ
=

∆t̃

γ̃
, (5.3.53)

and γ 6= γ̃ whenever there is a modification to the 4D evolution, cf. (5.3.27a). Now
suppose we are given all relevant initial data at time t̃i, ti (which we can assume to
correspond to the same physical time, and set equal to zero, without loss of generality).
Then we use (5.3.27b) to determine α̃0 and α0 at the next time step, i.e. α̃0(∆t̃) and
α0(∆t). Those we use as the appropriate boundary conditions to solve the bulk equa-
tion (5.3.51), which in turn allows to calculate η̃0(∆t̃) and η0(∆t) with the discretized
version of

dη0

dt
= η̇0 + ṙ0η

′|0 (5.3.54a)

= 6r0

[
2α̇0α

′|0 + ṙ0

(
α̇0

2 + α′|02
)]
, (5.3.54b)

(and similarly for η̃0) where we used (5.3.8b) in the limit r → r+
0 (or r̃ → r̃−0 ). We

now want to iterate this process, but to use (5.3.27b) again, we need η̃0 and η0 at the
same physical time (i.e. both at ∆t̃, or both at ∆t). Assume that for instance ∆t is
“ahead in time”, i.e. t̃(∆t) > ∆t̃, cf. Fig. 5.3a. We then estimate η0[t(∆t̃)] by linearly
interpolating between η0(0) and η0(∆t). With this we can repeat the procedure to
obtain η̃0(2∆t̃), from which we get η̃0[t̃(∆t)]—again by linear interpolation. Then we
can calculate η0(2∆t) and continue the iteration.

A second complication stems from the fact that even though the physical brane
circumference 2πR is kept fixed, the brane’s coordinate position r̃0 = r0 will be time-
dependent for any nontrivial evolution of α, because R = r0 e−3α0 = r̃0 e−3α̃0 . But
since we use a fixed spatial grid, and the brane moves with a (coordinate) speed less
than 1, this implies that the brane position almost always lies in between two grid
points. We again solve this problem by linear interpolation: Suppose the brane (say,
in the exterior coordinate patch) is initially located at some grid point n, cf. Fig. 5.3b.
Equation (5.3.27b) (with the appropriate initial data) gives the new value of α0 at
the new brane position (which is also determined by α0). Assume that the brane
moved to smaller r, as in Fig. 5.3b. Then the new value of α at n cannot be obtained
using (5.3.51), because it would require initial data at the point n−1, which lies outside
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(a) Using two different coordinate
patches for the interior and exterior ge-
ometry implies that the temporal grid
points do not correspond to the same
physical time at the position of the brane.
The values of η̃0 and η0 at the red
points, which are needed in (5.3.27b), are
found by linearly interpolating between
the neighboring black points.

(b) Sketch of the spacetime grid. The white points
indicate the brane position, which in general does
not lie on a grid point, but on which the boundary
data for α is given. Black points are calculated using
the wave equation (5.3.51). For the red points, this
is not possible because of the lack of initial data, so
they are obtained by linearly interpolating between
the neighboring black and white points.

Figure 5.3: Visualization of the interpolations that occur in the numerical algorithm.

the domain of integration. In those cases, we estimate the new value of α(n) by linearly
interpolating between the brane value and the new value at the point n+ 1 [which can
be obtained from (5.3.51)]. Whenever the brane crosses one spatial grid point, then
there are two32 values of α which cannot be calculated from (5.3.51), in which case we
determine both of them by linear interpolation.

Finally, we checked that the numerically results are practically unchanged if instead
of linear interpolations we use quadratic interpolations everywhere. This shows that
the numerical errors are mainly not due to the interpolation, but to the discretization.
But those errors are very well under control, as will be discussed in Appendix 5.B.

5.3.5 Numerical solutions

The numerical solutions that we found can be classified into two categories, according
to their qualitative behavior:

(i) Degravitating solutions:

In this class, the geometry dynamically approaches the general static solution

32More than two interpolations are never necessary at one time step, because the brane’s coordinate
speed is less than 1.
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discussed in Sec. 5.3.2, while emitting ER waves into the bulk. In particular, the
Hubble parameter on the brane approaches zero at late times, in agreement with
the degravitation idea. This happens for any EOS parameter w, i.e. all matter is
degravitated, not just a CC.

(ii) Super-accelerating solutions:

Here, the Hubble parameter grows unbounded (in fact, it even accelerates), and
the bulk geometry expands accordingly. From the bulk perspective the reason
for this pathological, unstable behavior is the effective energy density ρ̂ turning
negative.

The delineating surface in parameter space between these two cases is found to coincide
with the surface f = 0, where f is the function defined in (5.3.28).33

Let us now present an exemplary solution from each class, before discussing the
corresponding regions of parameter space in Sec. 5.3.6. Let us emphasize that, while
we will only explicitly present the numerical results for a pure tension source (w = −1),
all results apply in complete analogy to other choices. [Explicitly, we checked the cases
of pure dust (w = 0), pure radiation (w = 1/3), and a mixture of dust and CC.]

Degravitating example

First, we consider the parameters

Hirc = 0.1 , HiR = 0.05 , ρ = 0.8ρcrit . (5.3.55)

(Furthermore, we choose σ = 0.02R and ε̃ = 10−3R, ε = 2 × 10−4R.) The numerical
results are plotted in Fig. 5.4. Initially, the metric functions α̃, α increase around the
brane, according to the initial velocities (5.3.44), (5.3.46). Subsequently, they settle
back to the static configuration by emitting ER waves into the bulk. Accordingly, the
Hubble parameter on the brane starts at the nonzero value Hi and dynamically relaxes
to zero. This shows that the general static solution with FRW symmetries, presented
in Sec. 5.3.2, is stable,34 and thus represents an explicit example of a dynamically
degravitation mechanism at the full nonlinear level. This is one of the main results of
this analysis.

Since our investigation relies on the assumption of having a constant brane circum-
ference, stabilized by an angular pressure pφ, it is worthwhile checking if the required pφ
satisfies the NEC. This is indeed the case, as can be seen from Fig. 5.4c, suggesting that
the stabilization could be achieved via healthy DOF in some UV model. Furthermore,
at late times pφ approaches 0, i.e. the value predicted by (5.3.35).

33To be precise, there is a third class of solutions, which run into a singularity at f = 0 in finite proper
time. They all live in a very small vicinity of the f = 0 surface in parameter space, cf. Sec. 5.3.6.

34Here, stability is only verified for perturbations respecting the FRW symmetries; in Sec. 5.4.2,
stability of the static pure tension will be shown for arbitrary (linear) perturbations. It is plausible
that the same also holds for the general static solution.
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(a) The radial profile α(r) at different values
of proper on-brane time τ shows how ER waves
are emitted into the bulk. The dots indicate the
brane, left of which the interior α̃(r̃) is plotted.

(b) Degravitation at work: the Hubble param-
eter dynamically settles to zero, despite the
nonzero brane tension.

(c) The EOS of the stabilizing angular pressure
satsisfies the NEC pφ ≥ −ρ, and asymptotes to
zero.

(d) The effective energy density is always pos-
itive, and approaches the static value chosen
in (5.3.55).

Figure 5.4: The degravitating solution for the parameters (5.3.55). The numerical error
bars, discussed in Appendix 5.B, are smaller than the line widths.

Finally, Fig. 5.4d shows the effective energy density ρ̂, as defined in (5.3.21). It is
always positive and thus corresponds to a healthy effective source from the bulk point
of view. A 4D regime would be characterized by ρ̂ ≈ 0, and so we are always deep in
the 6D regime, as expected from the choice Hirc = 0.1. At late times, since H → 0,
ρ̂→ ρ = 0.8ρcrit.

The small wiggles in α̃, α, and the corresponding small oscillations of H, pφ and ρ̂, are
caused by gravitational waves which are moving back and forth in the interior between
the axis and the brane, where they are partially transmitted into the bulk, leading to a
decrease in the amplitude of the fluctuations. This is in line with the observation that
their wavelength is of order R. They are thus sensitive to the microscopic details of
our specific regularization, and are clearly an artifact of the specific form of initial data
that we chose. Therefore, we do not consider them as physically relevant; the generic,
trustworthy, and (presumably) regularization independent predictions are the smooth
functions that are obtained by coarse-graining over these small oscillations.
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An efficient way of testing this regularization independence is by modifying Israel’s
junction conditions by hand, such that no waves can propagate into the interior. This
can be achieved by replacing the extrinsic curvature inside the brane by its static value,
leading to what was called the “static regularization” in [NSHK15]. Intuitively, this can
be thought of as gluing a perfectly reflecting boundary onto the inside of the brane.
Thereby, the brane- and exterior bulk evolution decouple from the interior, and so the
spacetime inside the ring can be discarded altogether. Of course, this is an ad hoc
assumption and not justified by the Einstein equations, or an actual physical model
of the reflecting boundary. One might even worry that it could correspond to some
additional, unwanted matter on the brane. Furthermore, since the interior spacetime is
lost, one can not ensure a regular axis, and so it is a priori not clear whether the topol-
ogy could be altered by this procedure. Therefore, the “static regularization” should
only not be viewed as an actual, consistent regularization, but rather as a test of the
robustness of our findings against the microscopic details of our specific (“dynamical”)
regularization. And this test is astonishingly successful: The corresponding evolution
of the Hubble parameter is shown as a dashed line in Fig. 5.4b, and perfectly follows
the smoothed version of the oscillating one in the “dynamical” regularization.35 This is
a very nice (and important) demonstration of the regularization independence of our
results.

Super-accelerating example

Next, we choose a slightly larger value for the crossover, but keep all other parameters
unchanged. Explicitly, we take

Hirc = 0.25 , HiR = 0.05 , ρ = 0.8ρcrit , (5.3.56)

(and set σ = 0.02R and ε̃ = 10−3R, ε = 5 × 10−4R). We still expect to be far away
from a 4D regime; but this time, the dynamics is completely different, as can be seen
from Fig. 5.5: The bulk geometry does not settle back to the static configuration,
but the initial expansion continues, and even accelerates. Accordingly, the Hubble
parameter does not approach zero, but instead even increases (at increasing rate!),
see Fig. 5.5b.36 This pathological, super-accelerating behavior is accompanied by a
subsequent violation of the NEC, by both the stabilizing pressure pφ, and the effective
energy density ρ̂. (Note that both start out positively.) In summary, the static solution
is no attractor for this choice of parameters, and the model instead behaves completely
unstable.

A priori, this instability could be caused by the pathological EOS for pφ which we en-
countered, and thus ultimately by the requirement to have a fixed brane circumference.

35A similar statement holds for α, but this is not depicted here; the interested reader is referred
to [NSHK15].

36Again, this qualitative behavior is the same in the “static regularization”, shown as a dashed line.
The rise is a bit faster, because the parameters are in that case closer to the (slightly modified)
stability bound, see the discussion in [NSHK15].
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(a) The unstable growth of volume starts close
to the brane, and causally propagates into the
whole bulk via ER waves.

(b) The Hubble parameter shows super-
acceleration: H, as a function of proper time
τ , grows at an increasing rate.

(c) The azimuthal EOS starts out healthy,
close to 0, but rapidly drops below −1 and
tends towards −∞, signaling a breakdown of
radial stabilizability.

(d) Likewise, the effective energy density which
sources 6D GR in the bulk, is initially positive,
but rapidly drops below 0, thus violating the
NEC.

Figure 5.5: The super-accelerating solution for the parameters (5.3.56). The numerical error
bars are again smaller than the line widths.

It would, of course, be rather surprising if a stabilization condition in the end leads to
an instability; moreover, the EOS is initially larger than −1, and only later violates
the NEC. But this signals the breakdown of stabilizability of the radial direction, and
one can still wonder if relaxing this assumption would cure the pathology. In order to
definitely rule out this possibility, it is shown in Appendix 5.A.1 that the instability
still persists if the assumption R = const is replaced by the (physically clearly admis-
sible) choice pφ = 0. In other words, the pathological behavior is not caused by the
stabilization requirement; rather, pφ’s violation of the NEC is caused by the unstable
behavior, the origin of which must lie somewhere else.

The fact that the solution for the parameters (5.3.55) was stable, and became instable
by only increasing the crossover rc, implies that the instability is caused by the BIG
terms. From the bulk perspective, they correspond to an additional on-brane source,
resulting in the total effective energy density ρ̂ ≡ ρ−3M2

4H
2. For large enough H, this

becomes negative, leading to a NEC-violating effective brane source. Since H grows
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unbounded, this happens necessarily at some point, as is also confirmed explicitly by
Fig. 5.5d. However, ρ̂ starts out positively, and only turns negative at some later
point, when the super-acceleration has already begun. Therefore, the negative ρ̂, even
though it is a clear manifestation of a pathology, can not be viewed as its cause. In
other words, the question whether a solution will belong to the degravitating or super-
accelerating regime, is not decided by the (initial) sign of ρ̂. It is then natural to
ask if there is some other function of the model parameters (and possibly also of the
initial conditions), from which the question of stability of the corresponding solution
can already be answered initially, without having to run the numerics. We will show
in Sec. 5.3.6 that such a function does indeed exist.

Volume stabilization

But before doing so, let us subject our regularization to yet another consistency check,
concerning the 2D extra space volume inside the regularized brane: By stabilizing R,
we ensure a fixed proper circumference 2πR of the thick brane, but a priori this says
nothing about its proper radius, which can be different from R in a curved space. It
is hence worthwhile to check if this radius is also sufficiently stabilized in our scheme,
and in particular if it vanishes in the limit R→ 0. If this were not the case, it would be
unclear if the spacetime geometry which we found actually corresponds to a properly
regularized codimension-two brane.

To this end, we can consider the interior 2D volume Vint in the ER time slicing, as a
function of proper on-brane time τ ,

Vint(τ) = 2π

∫ r̃0(τ)

0

dr̃ r̃ eη̃−6α̃ , (5.3.57)

which can easily be computed by numerical integration. The relative change of this
volume is depicted as the dashed lines in Fig. 5.6, for both the degravitating and super-
accelerating examples presented above. In order to quantify its change, we compare
it to the relative change of the 3D brane volume Vb ∝ e3α0 (solid lines). We see that
the time evolution of the latter is clearly dominant; in this sense, the interior volume
is sufficiently stabilized. Furthermore, the small oscillations in Vint with frequencies of
order R−1 are again caused by the bouncing waves in the interior region, and are thus
an artifact of the specific initial conditions. If these small fluctuations are ignored, Vint

basically stays at the flat-space value πR2, which is drawn as the gray line in Fig. 5.6a.
This confirms that the interior volume would indeed vanish in the limit R → 0, as
required. Finally, note that the super-accelerating case in Fig. 5.6b in particular shows
that the interior space does not collapse in radial direction, which might otherwise
have been a potential source of the accelerated expansion in x-direction. (This is also
confirmed by the “static regularization” [NSHK15], in which the brane-evolution is
completely decoupled from the interior, but still super-accelerates, see Fig. 5.5b.)
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(a) The degravitating solution. (b) The super-accelerating solution.

Figure 5.6: The 2D extra space volume inside the regularized brane Vint (5.3.57) is approx-
imately constant as compared to the 3D brane volume Vb ∝ e3α0 , confirming a successful
stabilization also of the transverse brane width in our regularization.

5.3.6 Scanning parameter space

From the second (dynamical) modified Friedmann equation (5.3.27b), we already know
that the time evolution becomes singular for f = 0, where f is defined in (5.3.28).
Furthermore, it turns out that in the degravitating and super-accelerating examples
presented above, f is negative and positive, respectively. This suggests that the stability
of the model might be decided upon by sign of f . To test this hypothesis, we performed
a numerical scan over the parameter space.

The result is shown in Fig. 5.7a. Each dot in this diagram corresponds to a run of
the numerics for different rc and ρi, while RHi = 0.05 was kept fixed. A green dot
(1) means that the solution was found to degravitate, i.e. settle down to the static
solution. A red dot (2) is used for solutions which showed the super-accelerating
behavior, with ρ̂ eventually turning negative. The gray region (3) corresponds to
super-critical energy densities for which the bound (5.3.49)—drawn as a dashed line—
is violated, and is thus not covered by our current analysis.37 The solid line is not a
fit to the numerically obtained boundary, but a plot of the analytic condition f = 0.
The perfect agreement leaves no doubt that it is indeed the sign of f which determines
the stability of the model. We can thus conclude that, at least for FRW symmetries,38

BIG in two codimensions is stable if and only if the function f is negative. Using f ’s
definition (5.3.28) and the constraint (5.3.27a), we can write the corresponding stability
bound as

ρ

ρcrit

> r2
c

(
H2 +

2γ̃2

9R2 + 2r2
c γ̃

)
. (5.3.58)

Even though the stability of each particular solution was only inferred from the nu-
merical late time behavior, we have thus obtained a completely analytic criterion. In

37The super-critical regime will be investigated in Chap. 6.
38This restriction will be dropped in Sec. 5.4.2.
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(a) Scan of parameter space for varying rc and ρi. The
numerics was run at each dot, the color of which indi-
cates the observed behavior. The solid line corresponds
to f = 0; above, f < 0, and the model is stable; below,
f > 0, and it is unstable. The dashed line marks the
end of the sub-critical region (5.3.49), and the dotted
line corresponds to ρ̂i = 0.

(b) Zoom into the small blue rectan-
gle in Fig. (a). Solutions in the yellow
(4) and orange (5) regions run into the
singularity at f = 0 (solid line) from be-
low and above, respectively, cf. Fig. (d).
The dashed lines were inferred from the
numerics.

(c) Exemplary evolution of f for Hirc =
0.2 and different values of ρi/ρcrit. The
black dashed line corresponds to the con-
stant value of f for the static solution.

(d) Zoom into the plot (c). The color
(number) code matches that of Fig. (b).
The yellow (4) and orange (5) lines hit the
singularity at f = 0 in finite proper time.

Figure 5.7: Results of the nonlinear, numerical stability analysis of the model. The param-
eters that are held fixed are w = −1, HiR = 0.05 and σ = 0.02R.
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Sec. 5.4.2 we will show how the stability can also be inferred analytically at the linear
level.

If the initial value of f is close to 0, the time evolution dynamically approaches the
singularity at f = 0, where H diverges. (The divergence is clear from the dynamical
junction condition (5.3.27b), but was also observed numerically.) This is depicted
for some representative solutions in Figs. 5.7c and 5.7d. If the initial distance of f
from 0 is large enough, the singularity is avoided, and f either approaches the value
predicted by the static solution (in the stable regime), or keeps growing (in the unstable
regime). This means that the the stable and unstable regions are separated by a
physical singularity, making it impossible to dynamically evolve from one to the other.

A similar scan over Hirc-ρi-space was performed for a different brane circumference
(RHi = 0.025), and for different matter sources—dust (w = 0) and radiation (w =
1/3)—with the same outcome: For f < 0, the solutions dynamically approach the
general static solution of Sec. 5.3.2, while for f > 0 they super-accelerate.

Bulk dependence

Since we now have analytic expressions for both the criticality bound (5.3.49) as well
as the stability bound (5.3.58), we can discuss the shape of the stable region in pa-
rameter space. The discussion of the phenomenological implications will be deferred
to Sec. 5.5.2.

The two bounds depend on the three intrinsic brane quantities ρ/ρcrit, Hrc and HR,
but also on the (interior) bulk geometry via the extrinsic curvature ingredient γ̃. To
find the physical interpretation of this parameter, recall that according to (5.3.26a) γ̃
can be written as

√
e−2η̃0 +9H2R2, and can therefore in principle take values in the

range

3 |H|R < γ̃ <
√

1 + 9H2R2 . (5.3.59)

The resulting parameter plots for the two limiting cases and one intermediate value (for
fixed HR) are shown in the upper row of Fig. 5.8. The actual value of γ̃ is determined
by η̃0, which is (proportional to) the C-energy inside the regularized brane, see the
discussion below Eq. (5.3.47). If η̃0 = 0, corresponding to the upper limit in (5.3.59),
there is no gravitational energy inside the ring; in this case the stable region is maximal.
As η̃0 increases, the criticality bound is pushed down due to the extra C-energy. Finally,
the lower limit in (5.3.59) corresponds to η̃0 → ∞, i.e. an infinite amount of interior
C-energy, where the green region completely disappears. This could only be achieved
by allowing α̃ to oscillate radially at arbitrarily short wavelengths, which is certainly
not the situation we are interested in: we would take our effective regularization serious
at length scales much below R, thus exceeding the range of validity of the EFT. We can
only hope to make regularization independent statements if such effects are ignored.
Therefore, the radial profile of α̃ should be taken as smooth as possible, leading to a
value of η̃0 close to zero.

More quantitatively, if the radial variation of α̃ is negligible, we can use (5.3.47)
to relate η̃0 to HR, as we already did for the initial conditions. This dependence is
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Figure 5.8: Stability portrait in full parameter space, with the same color coding as in
Fig. 5.7a. The solid curves are the stability bound (5.3.58), the dashed curves show the
criticality bound (5.3.49). In the upper row, the increasing C-energy ∝ η̃0 inside the brane
pushes the critical line down; the lower row shows that decreasing R pushes the stability
bound to the left, only leaving a very narrow stable window close to Hrc = 0 as HR → 0.
[The dotted curves mark the beginning of the super-critical region, investigated in Chap. 6;
the critical region between the dashed and dotted curves is not studied in this thesis.]

Figure 5.9: The value of η̃0 for a flat radial profile of α̃ is obtained by numerically solv-
ing (5.3.47). At small HR it goes like 3H2R2 (dashed line), and at large HR it approaches
1/3 (gray line).



5.3 Cosmology 131

plotted in Fig. 5.9; the maximum value of η̃0 has thus been reduced from ∞ to 1/3.
Furthermore, the criticality and stability bounds are now independent of the fourth
parameter γ̃. It still knows something about the interior geometry, but only via the
well-justified assumption of having a smooth radial profile of α̃.

In the physically relevant situation, in which the Hubble radius 1/H is much larger
than the regularization scale R, we are close to the origin in Fig. 5.9, where

η̃0 ∼ 3 (HR)2 (HR→ 0) . (5.3.60)

In this limit we are completely insensitive to any radial dependence of α̃, apart from
assuming a regular axis, Eq. (5.3.37). This assumption should clearly hold in any other
regularization as well, and so we can be confident that our corresponding results should
be regularization independent.

The corresponding parameter plots, for different values of HR, are shown in the
lower row of Fig. 5.8. As HR decreases, the green region approaches ρ = ρcrit from
below, and gets squeezed towards the Hrc = 0 axis from the right. This already looks
worrisome regarding phenomenology; the final verdict will be decided in Sec. 5.5.2.

Comparison to DGP

The stability portrait of parameter space, as discussed above, has some interesting
similarities with the DGP model. To see this, let us write the DGP Friedmann equa-
tion (1.4.29) as

ρ

ρDGP
crit

=
(
rDGP

c H
)2 − σ rDGP

c |H| , (5.3.61)

where the DGP crossover scale rDGP
c is the one defined in (1.4.2), and the DGP “critical

density” is39

ρDGP
crit :=

12M6
5

M2
4

. (5.3.62)

The corresponding parameter plot is depicted in Fig. 5.10. This time, the param-
eter space is only one-dimensional, because the value of ρ/ρDGP

crit is already uniquely
determined for a given HrDGP

c —up to the choice of sign σ. Thus, the parameter
plot only consists of two separate curves, corresponding to the normal (σ = −1)
and self-accelerating (σ = +1) branch. The effective energy density here simplifies
to ρ̂ = −σrDGP

c |H|, and is thus positive (negative) on the normal (self-accelerating)
branch. Furthermore, as reviewed in Sec. 1.4.2, the normal DGP branch is stable, while
the self-accelerated branch suffers from a ghost instability.

In these respects, our findings generalize the DGP behavior to two codimensions,
with the following alterations:

39There is some ambiguity in defining the analogue of the 6D critical density ρcrit ≡ 2πM4
6 : instead of

using M4 to get the right dimensionality, one could for instance use H, as was done in [NSHK15];
the qualitative discussion is, however, not affected by this.
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Figure 5.10: The analogue of the contour plots in Fig. 5.8 for the DGP model: Parameter
space consists of two separate curves, corresponding to the (stable) normal, and the (unstable)
self-accelerated branch. There is no criticality bound on ρ here, and thus no analogue of the
gray regions in Fig. 5.8.

• There is an additional free parameter (corresponding to the choice of deficit an-
gle), which makes the parameter plot two-dimensional.

• The stable and unstable regimes thereby become connected in parameter space,
but are now separated by a physical singularity.

• The effective energy density ρ̂ can initially be chosen positive in the unstable
regime, and only dynamically turns negative at some later time.

• Here, the unstable behavior is present already at the (nonlinear) background
level (indicated by a super-accelerating scale factor), whereas in the DGP case
it is only revealed at the level of (linear) perturbations (while the background
evolution is “only” self-accelerating40).

• There is the criticality bound (5.3.49) on ρ, which is absent in DGP.

5.4 Ghost or no ghost? Resolving the tension

Note: The results presented in this section (and in the corresponding appendix
below) arose in collaboration with Ludwig Eglseer and Florian Niedermann and
were published in [ENS15].

The preceding section revealed an unstable behavior of codimension-two BIG at the
nonlinear level. While it was possible to obtain an analytic criterion for (in)stability, the

40This acceleration without an energy source could of course already be used as an argument against
the physical relevance of the self-accelerating branch, even more so in combination with a negative
ρ̂.
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actual statement that the model is (un)stable in the corresponding regions in parameter
space was only inferred numerically. In this section, we will perform a linear stability
analysis of the model, by studying small metric fluctuations around the static deficit
angle solution discussed in Sec. 5.2.41 A priori, the instability could be intrinsically
nonlinear, and thus be invisible at the linear level.42 But we shall see that this is not
the case, and the instability already shows up linearly. Such instabilities are typically
associated with ghost and/or tachyon modes, as will be briefly reviewed in Sec. 5.4.1.
Then, in Sec. 5.4.2, we will use the vacuum persistence amplitude 〈0|0〉T in the presence
of an external source T as a technical tool to test for tachyon- and ghost modes around
the deficit angle background in codimension-two BIG.

This analysis will serve several purposes: First, by truncating the field equations at
linear order, it is possible to solve them analytically, and so the nonlinear but numerical
detection of the instability above is complemented by a linear but analytical calcula-
tion. In particular, this allows us to confirm the linearized version of the stability
bound (5.3.58). Furthermore, we will allow arbitrary fluctuations, and so the assump-
tion of FRW symmetries is relaxed. Finally, we can pin down the physical origin of the
instability: it is caused by a tachyonic ghost mode which exists in the corresponding
region of parameter space. This is the same ghost that was already found around a
Minkowski background in the literature [DR03, HHvS11]. We were able to track down
the errors43 made in [BHN12] which led to the wrong conclusion that the model would
be linearly stable around Minkowski, thereby resolving the tension that existed in the
literature. But the main new insight of our investigations is that, around the nontrivial
deficit angle background, the ghost disappears if the brane tension is not tuned unnat-
urally small. This reconciles the codimension-two BIG model with the expectations
from a natural EFT point of view, as will be discussed in more detail in Sec. 5.5.1.

It should be emphasized that the background geometry which is required to exorcise
the ghost is only curved in the extra dimensions, while the four brane-dimensions are
still completely flat. This means that in the stable region of parameter space, the model
allows for stable 4D Minkowski vacua which dynamically degravitate a CC. It is thus a
priori still a good candidate for addressing the CC problem. Section 5.5.2 is devoted
to the final pressing question whether this can be achieved in a phenomenologically
viable way. Unfortunately, it will be answered in the negative. The reason is that a
4D regime, which is a vital property of BIG with regard to observations, can only be
achieved in the unstable region. Ultimately, this rules out the theory for sub-critical
energy densities.

41 It should be mentioned that such a linear analysis was also performed in [KK07]. However, the
ghost/tachyon issue was not addressed, and the analysis differed from ours in that the brane width
was not assumed to be stabilized at the level of fluctuations. But we will find full agreement
whenever this difference is irrelevant.

42This was indeed the conclusion in [NSHK15], drawn under the (false) assumption that the claim
of [BHN12] was correct.

43This analysis is not presented here. The interested reader is referred to [ENS15].
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5.4.1 The problem with ghosts and tachyons

Let us first briefly recall the definitions of—as well as the problems associated with—
tachyon and ghost instabilities. For more detailed discussions, we refer to the literature,
e.g. [CHT03, Woo07, Sbi15].

A tachyon is a field whose mass term has the wrong sign. For example, consider a
scalar field φ in 4D Minkowski with the action

Ltach = −1

2
(∂µφ)2 +

m2

2
φ2 , (5.4.1)

corresponding to an inverted harmonic oscillator. Instead of oscillatory, this would
yield exponentially growing solutions, constituting the instability. However, such a
theory need not be pathological at a fundamental level. Indeed, it can easily be cured
by simply adding higher order potential terms like ∝ −φ4 to the Lagrangian, which
would make the Hamiltonian bounded from below. In this case, the tachyon would
merely be caused by expanding the theory around the unstable vacuum φ = 0; the true
vacuum at some φ0 > 0 would be stable, and the corresponding fluctuations would
have positive mass squared, just like in the Higgs model.

On the other hand, a ghost instability is due to a wrong sign kinetic term, such as

Lgh =
1

2
(∂µφ)2 +

m2

2
φ2 . (5.4.2)

Note that here the mass term still has the wrong absolute sign, but therefore the correct
(healthy) relative sign with respect to the kinetic term. Otherwise, there would again
be exponentially growing solutions, and the field would be a tachyonic ghost. But
either way, a theory with a ghost is unacceptable. This is not yet clear from the free
theory (5.4.2), because the overall sign is in fact irrelevant and could be absorbed by
a field redefinition. But as soon as it interacts with healthy degrees of freedom, like in
the toy model

Lgh,int =
1

2
(∂µφ)2 +

m2

2
φ2 − 1

2
(∂µψ)2 − M2

2
ψ2 − cφ2ψ2 , (5.4.3)

an instability emerges, because now more and more energy can (and will) be stored
in both fields without violating energy conservation. Classically, this would lead to
diverging field amplitudes, which quantum-mechanically corresponds to a catastrophic
production of ghost particles. This problem cannot be overcome as for a tachyon.
Adding higher order terms like (∂µφ)4 would not render the Hamiltonian positive defi-
nite; alternatively, if one tried to make the prefactor of the kinetic term field dependent
such that it changes sign for large enough field values, the theory would hit a strong
coupling (or a classical singularity) when this term reaches zero. (This behavior was
exactly encountered in the cosmological solutions close to the stability bound, studied
in Sec. 5.3.) Therefore, a ghost is much more severe than a tachyon, and cannot be
tolerated.
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Let us finally point out a slight subtlety regarding the quantization of ghost modes:
Canonical quantization of (5.4.2) leads to a Hamiltonian (neglecting vacuum energy)

Hgh =

∫
d3p

(2π)3
(−ω) a†pap , (5.4.4)

where ω :=
√
p2 +m2. The negative sign is caused by the ghost and correctly reflects

the unboundedness of Hgh. It might now seem like a clever idea to define b† := a as
the actual creation operator, because then—even though the operator (5.4.4) would
keep its negative sign—the corresponding n-particle states would carry positive energy
(with respect to the vacuum). Note that, in the path integral formulation, this would
correspond to choosing the standard Feynman iε prescription for the ghost field φ,
while the above quantization would require the opposite, −iε prescription.

But, not too surprisingly, this trick does not help at all: It results in a theory which
possesses no normalizable ground state (defined by b |0〉 = 0), and which contains neg-
ative norm states. In other words, this quantum theory is completely ill-defined. When
testing a theory for ghost modes, it does not matter which quantization procedure is
used—either an unbounded Hamiltonian, or an inconsistent quantum theory would in-
dicate the presence of a ghost. Below, we will use the standard Feynman prescription
and hence test for consistency via the vacuum persistence amplitude. The identifica-
tion of a tachyon is more straightforward, as it simply amounts to the wrong relative
sign of the kinetic and the effective mass term, resulting in imaginary poles of the
corresponding propagator, irrespective of the quantization procedure.

5.4.2 Linear stability analysis

Note: This section is to large extend a verbatim reproduction of the correspond-
ing section in [ENS15].

We will now consider small metric perturbations around the pure tension deficit
angle background (5.2.9),

gAB = γAB + hAB , (5.4.5)

with

γAB = diag
[
−1, 1, 1, 1, 1, c(r)2

]
, (5.4.6)

where c(r) is given in (5.2.9b). Note that we work in polar coordinates XA = (xµ, r, φ),
and the brane is located at r = r0 ≡ R. All indices on first order quantities will be
lowered and raised with the background metric γAB and its inverse γAB.

The question we want to answer is whether hAB contains—at the linear level—
instable modes (tachyons or ghosts, or both), which can be sourced by an additional
(small) on-brane source Uα

β, i.e.

T
(5)α

β = 0T
(5)α

β + 1T
(5)α

β , (5.4.7a)
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with

0T
(5)α

β = − λ

2πR
δαµδ

µ
β and 1T

(5)α
β =: −1

2
Uα

β . (5.4.7b)

Since the source is distributed in a φ-symmetric way, it is sufficient to consider metric
perturbations that also respect this symmetry, because only those are sourced. This
means that the hAB are φ-independent functions, and that hφµ = hφr = 0. Furthermore,
we can keep the brane at the fixed coordinate position r0 = const (= R) without loss
of generality, because a proper motion in radial direction (which is not ruled out by
stabilizing the φ-direction), as well as a dependence of the physical brane radius on
the spatial brane coordinates, can still be accomplished by allowing for nonzero hµr
components. The metric perturbations therefore take the form

hAB =

hµν hµr 0
hrν hrr 0
0 0 hφφ

 =:


−N h0j l′ 0
hi0 hij hir 0
l′ hrj hrr 0
0 0 0 hφφ

 . (5.4.8)

A prime is again shorthand for ∂r. It is convenient to decompose the 3D spatial
components of hAB as

h0i = Ni + ∂iL , (5.4.9a)

hij = Dij + ∂(iVj) + ∂i∂jB + δijS , (5.4.9b)

hir = G′i + ∂iF
′ , (5.4.9c)

where—from a 3D point of view—Dij is a transverse traceless tensor, and Ni, Vi, Gi

are transverse vectors, i.e.

Di
i = ∂iD

i
j = 0 , (5.4.10a)

∂iN
i = ∂iV

i = ∂iG
i = 0 , (5.4.10b)

while N, l, L,B, S, F are scalars. Even though this decomposition is not manifestly
Lorentz-covariant like the approach in [BHN12], it has the great advantage that it is
invertible on the space of bounded functions, and so it does not introduce any “split
ambiguity”(see Appendix A of [ENS15]). The reason is of course that the Laplace oper-
ator ∆3 has no nontrivial bounded solutions, unlike the d’Alembert operator �4. This
makes the identification of dynamical degrees of freedom much more straightforward.

The analogous decomposition of the (ab)-components is44

hab = ∇a∇bb+ γabs , (5.4.11)

44Note that in codimension two there is no tensor part, and the vector part is absent due to φ-
symmetry.
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with ∇a denoting the covariant derivative with respect to the background metric γab.
Explicitly, this gives

hrr = b′′ + s , hφφ =
c′

c
b′ + s . (5.4.12)

Again, the relation (5.4.11) is invertible, because the Laplace operator ∆2 has an empty
kernel.

Gauge-invariant variables

The linearized bulk theory is invariant under the gauge transformations

δhAB = ∇(AξB) . (5.4.13)

In order not to spoil the φ-symmetry, the ξA are subject to

ξφ = 0 , ∂φξµ = ∂φξr = 0 . (5.4.14)

Instead of choosing a particular gauge, we will work with a complete set of gauge-
invariant variables, which can chosen to be45

Dij , s , (5.4.15a)

J := 3S + s , O := B + b− 2F , (5.4.15b)

P := Ḃ − ḃ− 2(L− l) , Q := B̈ −N − 2L̇ , (5.4.15c)

Ci := Ni − Ġi , Wi := 2Gi − Vi , (5.4.15d)

where the dot is still shorthand for ∂t.
Since we use coordinates in which the brane is located at a fixed coordinate position

(r = r0), there is a further on-brane restriction on the gauge transformations,

ξr|0 = 0 , (5.4.16)

where the subscript“0”denotes evaluation at the brane. This implies that on the brane,
there exists an additional gauge invariant function, namely

ϕ := hφφ|0 , (5.4.17)

which will also appear explicitly in the junction conditions below. Physically, it corre-
sponds to the radion field, measuring fluctuations in the size-modulus of the regularized
brane.

45One might worry that, since the definitions of P,Q and Ci involve time derivatives of some metric
functions, one could be turning actual dynamical quantities into constrained ones “by hand”.
However, this is not the case, as can explicitly be seen by choosing the gauge B = b = L = Gi = 0
(in the bulk), which is always possible.
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Bulk equations of motion

The bulk vacuum Einstein equations at linear order in hAB read

�6hAB +∇A∇Bh
C
C − 2∇C∇(Ah

C
B) + γAB

(
∇C∇DhCD −�6h

C
C

)
= 0 , (5.4.18)

where �6 := ∇A∇A. These can now be projected onto the tensor, vector and scalar
components, according to the decomposition of the metric perturbations (5.4.9). Let us
emphasize that this projection only requires to divide by Laplace operators, which does
not introduce any homogeneous functions in the resulting equations. This is in contrast
to the 4D covariant split adopted in [BHN12], where one has to divide by d’Alembert
operators, making the analysis much more subtle and complicated (see Appendix A
of [ENS15]).

In the following, we omit all equations which are redundant due to the Bianchi
identities. However, since we are particularly interested in distinguishing dynamical
from constrained quantities, we only omit those components of (5.4.18) which appear
in the Bianchi identities without time-derivatives. In other words, we always keep the
stronger equations. Explicitly, we drop the (ij)(V ), (0i)(L), (ir)(F ) and (rr) equations,
where the superscripts refer to the projections according to (5.4.9).

The resulting complete set of bulk equations of motion, expressed in terms of the
gauge invariant variables (5.4.15) is:

• Tensor:

�6Dij = 0 (5.4.19)

This is simply the (ij)-component of (5.4.18), projected onto the tensor part. It
shows that Dij is dynamical, carrying two independent DOF.

• Vector:

∆3Wi + 2Ċi = 0

�6Ci = 0

(5.4.20a)

(5.4.20b)

The first one is the vector-projected (ir)-bulk equation, showing that Wi is con-
strained. The second one is the vector-projection of the (0i)-bulk equation, with
Wi eliminated by means of the constraint. Thus, Ci is dynamical, carrying two
DOF.

• Scalar:

(2∆3 + 3∆2) J + 4∆3s+ 3∆2∆3O = 0

2J̇ + ∆3

(
Ȯ + P

)
= 0

J − s−Q+ ∆3O + Ṗ = 0

�6J = 0 , �6s = 0

(5.4.21a)

(5.4.21b)

(5.4.21c)

(5.4.21d)

The first equation is the (00)-component of (5.4.18), the second one is its (0r)-
component (already integrated once in r, requiring fall-off conditions in the bulk)
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and the third one is the difference of the (φφ)- and the (rr)-equations (also
integrated in r). These three are constraint equations that can—for instance—be
solved for O,P and Q. Plugging these solutions into the two scalar-projected
(ij)-components of (5.4.18), and taking suitable linear combinations, yields the
two dynamical equations (5.4.21d) for J and s.

In summary, there are 6 dynamical DOF (2 vector, 2 tensor and 2 scalar), all of which
satisfy the 6D wave equation in the bulk. This is the correct number of propagating
DOF in six-dimensional GR with azimuthal symmetry. (Without this symmetry, there
would be 3 additional DOF.) Below, we will also see that all of these 6 DOF can indeed
be sourced.46

Junction conditions

It remains to derive the linearized junction conditions (5.3.22). To this end, it is
useful to perform a 3D tensor-vector-scalar decomposition of the (perturbation of the)
energy-momentum tensor, analogous to (5.4.9):

U0i = U
(N)
i + ∂iU

(L) , (5.4.22a)

Uij = U
(D)
ij + ∂(iU

(V )
j) + ∂i∂jU

(B) + δijU
(S) . (5.4.22b)

Linearized energy conservation then decomposes into

−U̇00 + ∆3U
(L) = − λ

2πR
ϕ̇ , (5.4.23a)

−U̇ (L) + ∆3U
(B) + U (S) = − λ

2πR
ϕ , (5.4.23b)

−2U̇
(N)
i + ∆3U

(V )
i = 0 , (5.4.23c)

while U
(D)
ij and Uφφ are unconstrained.

A straightforward calculation gives the following nonvanishing components of the ex-
trinsic curvature tensor Kα

β at linear order around the deficit angle background (5.4.6):

1Kµ
ν =

1

2
(∂rh

µ
ν − ∂µhνr − ∂νhµr)|0 , (5.4.24a)

1Kφ
φ =

1

2

(
∂rh

φ
φ −

c′

c
hrr

)∣∣∣∣
0

. (5.4.24b)

Plugging this (and the linearized 5D Einstein tensor) into (5.3.22), projecting onto the
desired components, and simplifying the BIG terms by means of the bulk equations in
the limit r → r0 (= R), yields the following junction conditions in the (µν)-sector:

46This contradicts the claim in [BHN12], where only 5 sourced DOF were found, allowing to argue
that the ghost mode (here s, see below) would not be dynamical. This wrong conclusion was
reached by employing a gauge transformation which is in fact not allowed by the requirement of
SO(2) symmetry, see Appendix A in [ENS15].
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• Tensor:

M4
6 [D′ij] +M3

5�4Dij|0 = U
(D)
ij (5.4.25)

• Vector:

M4
6 [C ′i] +M3

5�4Ci|0 = U
(N)
i (5.4.26)

• Scalar (recall that δ denotes the deficit angle):

M4
6

(
[J ′] +

δ

2πR
ϕ

)
+M3

5 �4J |0 = −Uµ
µ + 3U (S) (5.4.27a)

4M4
6

(
[s′] +

δ

2πR
ϕ

)
+M3

5 �4 (s|0 + 3ϕ) = −Uµ
µ + 3Uφ

φ (5.4.27b)

These last two equations are not yet sufficient to solve for J and s, because they con-
tain ϕ as a third unknown on-brane function. It is determined by the only remaining
(φφ)-junction condition. After using the jump of the r-derivative of the bulk equa-
tion (5.4.21c), it takes the simple form

M4
6�4[b′] +M3

5�4s|0 = Uφ
φ . (5.4.28)

Furthermore, the second equation in (5.4.12) shows that continuity of hφφ implies

[b′] =
[ c
c′

]
(ϕ− s|0) =

Rδ

2π − δ
(ϕ− s|0) . (5.4.29)

Using this in (5.4.28) yields the desired equation determining ϕ,

Rδ

2π − δ
M4

6�4 (ϕ− s|0) +M3
5�4s|0 = Uφ

φ , (5.4.30)

thereby closing the system of equations of motion for all gauge invariant variables.
[For completeness, let us note that the jump in the r-derivative of the constrained

scalar O is determined by the (ij)(B) component of Israel’s junction conditions. After
using again the bulk equations, as well as (5.4.29) and the fact that [H ′] = 0 (due to
continuity of the metric), it simplifies to

M4
6

{
[O′] +

Rδ

2π − δ
(s|0 − ϕ)

}
+M3

5

(
J − s

3
−Q+ ϕ

)∣∣∣∣
0

= U (B) , (5.4.31)

where an overall ∆3 was dropped. The jumps in the r-derivative of all the remaining
constrained gauge-invariant quantities (Wi, P and Q) can readily be obtained from the
r-derivatives of the corresponding bulk equations.]

As a consistency check, we explicitly verified that all the junction conditions, to-
gether with the bulk equations, imply the energy conservation equations (5.4.23), as is
guaranteed by the Gauss-Codazzi equations.
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As discussed in Sec. 5.2, we will now require the proper circumference of the regu-
larized brane to be constant, implying

ϕ = 0 . (5.4.32)

(The case without stabilization is considered in Appendix 5.A.) The appropriate Uφ
φ

which is needed to achieve this stabilization is then determined by Eq. (5.4.30), which
now simplifies to

Uφ
φ =

(
M3

5 − βRM4
6

)
�4s|0 , β :=

δ

2π − δ
. (5.4.33)

The junction conditions for the two dynamical scalars then become

M4
6 [J ′] +M3

5�4J |0 = −Uµ
µ + 3U (S) ,

4M4
6 [s′]− 2f0M

3
5�4s|0 = −Uµ

µ ,

(5.4.34a)

(5.4.34b)

where we defined the dimensionless constants

f0 := 1− 3β

4α
, α :=

M3
5

2RM4
6

≡ r2
c

6R2
. (5.4.35)

All the junction conditions, viz. (5.4.25), (5.4.26) and (5.4.34), now share the same,
DGP-like structure. The only (but crucial) difference is that the BIG term in the
junction condition for s comes with a negative sign if f0 > 0. Note that this f0

is nothing but the static (i.e. background) limit of the function f we found in the
nonlinear cosmology analysis in Sec. 5.3. Therefore, one might already suspect that
the scalar mode s will be a ghost in that parameter regime. We will now show that
this is indeed the case.

Tachyonic ghost

We will use the vacuum to vacuum transition probability (in presence of an external
source) as a diagnostic tool to probe for ghost modes. For the linear theory, it is given
by

|〈0|0〉T |2 = exp [− Im(A)] , (5.4.36)

with

A := R

∫
d4x dφ 1T

(5)
αβh

αβ|0 . (5.4.37)

Here, hαβ|0 should be evaluated at the classical solution in the presence of Tαβ, and
poles in the propagators should be treated with the standard Feynman prescription. If
the probability (5.4.36) is larger than one (or, equivalently, the imaginary part of A is
negative) then unitarity is violated,47 implying the existence of a ghost mode.

47As discussed in Sec. 5.4.1, this unitarity violation does not mean that the theory cannot be consis-
tently quantized. Unitarity can indeed be restored by choosing a non-standard iε prescription for
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Since the ghost lies within the scalar sector, we can limit ourselves to a source with
vanishing tensor- and vector components. Using the bulk equations to eliminate all
constrained quantities, the source coupling term can—using integration by parts and
energy conservation (5.4.23)—then be brought into the form

A =
πR

3

∫
d4x

[
2
(
Uµ

µ − 3U (S)
)
J |0 + Uµ

µs|0
]
. (5.4.38)

Furthermore, it will be sufficient to consider a source satisfying Uµ
µ = 3U (S), for which

only s gets excited (i.e. J can consistently be set to zero) and the coupling term (5.4.37)
simply reads

A(s) =
πR

3

∫
d4x Uµ

µs|0 . (5.4.39)

In the following, it will be convenient to work in 4D Fourier space, i.e. we introduce

ŝ(p, r) :=

∫
d4x e−ip·x s(x, r) (p · x := pµx

µ) . (5.4.40)

The bulk equation (5.4.21d) then becomes(
−p2 + ∆2

)
ŝ = 0 (p2 := pµp

µ) , (5.4.41)

where the covariant 2D Laplace operator with respect to the deficit angle background
geometry (5.4.6) reads (for φ-symmetric fields, as we are considering)

∆2 = ∂2
r +

c′

c
∂r =


∂2
r +

1

r
∂r (r < r0)

∂2
r +

1

r + βr0

∂r (r > r0) .
(5.4.42)

The most general solution of (5.4.41), which is continuous across the brane, regular
at the origin, and falls off at radial infinity,48 is given by

ŝ(p, r) =


I0(r

√
p2)

I0(r0

√
p2)

ŝ|0 (r < r0)

K0(r̄
√
p2)

K0(r̄0

√
p2)

ŝ|0 (r > r0) ,

(5.4.43)

the ghost mode, reversing the sign of the ghost-residue in the propagator. However, this leads to
a Hamiltonian which is not bounded from below, which—as soon as interactions are included—
causes a catastrophic instability. This instability is already present at the classical level, and has
nothing to do with quantizing the theory. In any case, a ghost shows that the theory is pathological
and thus useless.

48Furthermore, for p2 < 0, i.e. for modes which correspond to waves propagating in the bulk, one
can check that the solution (5.4.43) corresponds to solely outgoing radial waves, if the retarded
prescription Im(ω) = +ε is used, as would be appropriate for a classical calculation. This is an
important consistency requirement as the brane is the only source of gravitational waves in the
bulk. Note, however, that below we will use the Feynman prescription Im(ω2) = +ε, since we are
calculating the vacuum amplitude in the quantum theory.
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where In and Kn are the modified Bessel functions of the first and second kind, respec-
tively, and r̄ := r + βr0. A priori, the solution is only defined for p2 > 0. We find its
analytic continuation by choosing the branch cut of the square root in the standard
way, i.e. along the negative real axis.

Plugging (5.4.43) into the junction condition (5.4.34b) yields

4M4
6

R
Z(p) ŝ|0 = −Ûµ

µ , (5.4.44)

with the inverse s-propagator

Z(p) := αf0z
2 − zY (z) , (5.4.45a)

Y (z) :=
I1(z)

I0(z)
+
K1[(1 + β)z]

K0[(1 + β)z]
, (5.4.45b)

where we introduced the dimensionless variable

z := R
√
p2 ≡ R

√
p2 − ω2 . (5.4.46)

The source coupling term (5.4.39) finally becomes

A(s) = − R2

24M4
6

∫
d4p

(2π)3

∣∣∣Ûµ
µ(p)

∣∣∣2 1

Z(p)
, (5.4.47)

where the branch cuts and poles in the ω-integration are surrounded according to the
Feynman prescription, i.e. Im (ω2) = + ε along the integration contour. The analytic
structure of Z−1, for some fixed value |p| 6= 0 is shown in Fig. 5.11a. The branch
cuts along the real axis can be interpreted as a continuum of gapless Kaluza Klein
modes, like in the DGP model [DHK07]. They are also present in pure 6D GR with
a cylindrical source, and are thus not expected to cause any problems. Below, we will
confirm this expectation.

For f0 > 0, however, there are additional isolated poles at

ω = ±
√
p2 −m2

∗ =: ±ω∗ , (5.4.48)

where m∗ is given by m∗ = z∗/R > 0, with z∗ being the solution of

αf0z∗ =
I1(z∗)

I0(z∗)
+
K1[(1 + β)z∗]

K0[(1 + β)z∗]
. (5.4.49)

The right hand side of this equation, i.e. the function Y (z) is plotted in Fig. 5.12, and
shows that there is indeed a solution z∗ > 0 if and only if f0 > 0 (irrespective of the
value of β). The negative sign of the mass term in the dispersion relation (5.4.48)
shows that this pole in the propagator of the scalar mode s is a tachyon, implying
the existence of exponentially growing solutions for s|0(t). Below, we will show that
it is also a ghost, in agreement with the Minkowski result in [DR03, HHvS11], but
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(a) The contour C (dotted blue line) indicates
the Feynman-contour of integration.

(b) Decomposition of C into a closed path
around one of the poles (C1) and a branch cut
contribution (C2). The half circle, which closes
the contour at infinity, does not contribute to
A(s).

Figure 5.11: Analytic structure of the ω ≡ p0 dependence of the s-propagator 1/Z(p), see
Eq. (5.4.45), for some fixed value |p| 6= 0 and f0 > 0. The poles at ±ω∗ correspond to the
tachyonic ghost. For |p| > m∗ they lie on the real axis, between the origin and the branch
cuts starting at the poles at ± |p|; for |p| < m∗ they lie on the imaginary axis. For f0 < 0
these poles are absent.

generalizing it to a background with nonzero deficit angle in the parameter regime
where f0 > 0.

Even though (5.4.49) cannot be solved analytically, one can obtain the asymptotic
formula for m∗ in the physically relevant limit α→∞ (i.e. R�M3

5/M
4
6 ) by expanding

the Bessel function for small arguments, yielding

m2
∗ ∼

1− δ/2π
R2f0 α ln(α)

(α→∞) . (5.4.50)

Note that for δ = 0 (and neglecting the small logarithmic correction) this agrees with
the tachyon mass derived in [DR03, HHvS11], viz. m∗ ∼ M2

6/M4. However, the non-
trivial deficit angle background gives rise to an important modification: as δ increases,
f0 approaches zero and Fig. 5.12 shows that the tachyon then becomes infinitely heavy,
as the intersection moves to larger values of z. When the threshold f0 = 0 is crossed,
the pole finally disappears completely.

To disentangle the tachyon and branch cut contribution to A(s), we consider two
independent integration contours in the complex ω-plane: a closed path C1 encircling
one of the poles, and another open path C2 running along both sides of the branch cut
in opposite directions, see Fig. 5.11b. It can be shown that the half circle in C1 does
not contribute to the amplitude.49 It thus follows that the original integration along C
can be decomposed into the sum of C1 and C2.

49In Fig. 5.11b we only show the case when the contour has to be closed in the upper half-plane, in
which the pole and branch cut on the negative real axis contribute. But one can easily check that
the other case gives exactly the same result.
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Figure 5.12: Graph of the right-hand side of Eq. (5.4.49), which determines the ghost mass
m∗ ≡ z∗/R. For values of the deficit angle δ between 0 and 2π, the curve lies in the shaded
region. It always goes to 2 as z → ∞. The red line corresponds to the left-hand side of
the equation, for some positive value of f0. For f0 < 0 its slope is negative and there is no
solution z∗.

As for the branch cut contour C2, we checked numerically that—at least for an
ω-independent source—its contribution to the imaginary part of A(s) is positive, see
Fig. 5.13. Hence, the branch cut contains no ghost modes.

The contribution of C1 to the amplitude is proportional to the sum of the residues of
all enclosed poles. Therefore, to show that the tachyon—in the parameter region where
it exists—is also a ghost, let us investigate the residue of this pole for the case |p| > m∗,
i.e. when the poles lie on the real axis (as in Fig. 5.11a). [For momenta |p| < m∗, the
pole lies on the imaginary axis and only contributes to the real part of A(s), which does
not affect the vacuum transition probability (5.4.36). Physically speaking, the ghost
can only be excited for momenta larger than its mass.] A straightforward calculation
gives

Res

(
1

Z(p)
, ω = ±ω∗

)
= ∓ 1

ω∗R2

[
2αf0 + β +

(
I1

I0

)2

− (1 + β)

(
K1

K0

)2
]−1

. (5.4.51)

Here, the arguments of the Bessel I and K functions are z∗ and (1+β)z∗, respectively. It
turns out that the expression in square brackets, when evaluated numerically, is always
positive. However, we did not succeed in extracting this information analytically, and
therefore Fig. 5.14 shows the contour plot of the residue—leaving out the overall factor
∓1/ω∗R

2—as a function of the two independent model parameters δ/2π ≡ β/(1 + β)
and f0 ≡ 1 − 3β/4α. For a non-negative, sub-critical tension we have δ ∈ [0, 2π) and
f0 ≤ 1. Furthermore, as already discussed, the ghost pole only exists for f0 > 0. Thus,
the plot in Fig. 5.14 covers the whole relevant parameter space, and one can see that
the expression in square brackets is indeed always positive.
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Figure 5.13: Numerical evaluation of the branch-cut contribution,

viz. − Im
[
R
∫
C2dω Z−1(ω,p)

]
. The positive values imply that there are no ghost

modes, irrespective of the sign of f0. Here, the deficit angle was chosen as δ = π, but other
values do not change this result.

One can easily check that this result leads to a negative50 imaginary part of A(s),
corresponding to a ghost. This ghost mode can be excited for 3-momenta |p| larger
than the ghost mass m∗. However, since the ghost is also a tachyon, which can be
excited with arbitrarily low momenta, the linearized theory is completely unstable (for
all momenta), if f0 > 0.

If, on the other hand, f0 < 0, the pole (and thus the tachyonic ghost) is absent and
the model is stable. The stable and unstable regimes are visualized in a parameter plot
in Fig. 5.15. It also shows that the tachyon mass diverges as the borderline f0 = 0 is
approached. Thus, the tachyonic instability is more severe close to the stability bound.

5.5 Discussion

The main result of the two preceding sections can be summarized as follows: The
(radially stabilized, sub-critical) codimension-two BIG model is stable if and only if
the function

f ≡ 1− 9R2

2r2
c

(
1

γ
− 1

γ̃

)
is negative. In this case, the model dynamically degravitates all FRW matter and
approaches the general static solution presented in Sec. 5.3.2 via the emission of ER
waves into the bulk. If f is positive, the theory is unstable, leading to a pathological
super-acceleration with negative effective energy on the brane. The instability is caused

50The sign from the overall factor in (5.4.51) is compensated by the one from the negative/positive
orientation when encircling the pole at ±ω∗, cf. Fig. 5.11b. Then, there is one more minus sign
from the explicit overall factor in (5.4.47).
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Figure 5.14: Contour plot of the ghost residue (5.4.51) times ∓ω∗R2, as a function of the
deficit angle δ and f0 as defined in (5.4.35), showing that it is indeed positive in the whole
parameter space (in which the pole at ω∗ exists, i.e. for f0 > 0). The dotted lines are lines of
constant α, which → 0 on the left and →∞ on the right.

by a tachyonic ghost mode, which only exists for f > 0.51

Let us now discuss the physical implications of these findings. First, in Sec. 5.5.1, we
will discuss how our results reconcile codimension-two BIG with the expectation of a
healthy theory based on natural EFT arguments. Then, Sec. 5.5.2 finally answers the
question whether the model can pass phenomenological tests in the ghost-free regime
and thus offer a potential solution to the CC problem.

5.5.1 EFT perspective

As already discussed in the introduction to this chapter, the appearance of a ghost in-
stability is at first unexpected, because the model can be thought of as the low energy
EFT of some healthy underlying UV theory. Indeed, this was the main physical argu-
ment in [BHN12] for questioning the existence of the ghost altogether. The argument
is that the BIG terms should always be included from a natural EFT point of view; so
how can a healthy microscopic theory be pathological, only because it is reduced to an
EFT at low energies?

51Strictly speaking, the ghost analysis was only performed at the linear level around the static deficit
angle solution, where f reduces to f0 ≡ 1 − 3β/(4α). The difference to f corresponds to higher
order corrections ∝ H, which cannot be seen linearly. But there is no reason to doubt that the
numerically observed pathology for H 6= 0, and for other matter sources than a pure CC, is due
to the same ghost pathology.
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Figure 5.15: Stability of the linearized theory is determined by the two model parameters
α ≡ M3

5 /(2M
4
6R) and deficit angle δ. The tachyonic ghost only exists in the red region

(f > 0), where the contours indicate its mass (in units of 1/R). The dashed line corresponds
to the stability bound in the alternative regularization of [NSHK15].

Now we saw that the conclusion of [BHN12] was erroneous, and that the ghost is
present around a Minkowski background: f0 is always positive for δ = 0 (⇔ λ =
0), cf. Fig. 5.15. But since we extended the ghost analysis to nontrivial background
geometries (δ 6= 0), we are now able to present the resolution of the EFT puzzle:
Generically, for a truly natural EFT, not only the BIG terms should be included, but
also the brane tension λ, cf. Eq. (5.0.1). But if λ is large enough, the stability bound
is eventually crossed and the model is in the healthy regime, as can be seen from
Fig. 5.15. In other words, all previous ghost analyses on Minkowski worked under the
unnatural assumption that, while the induced gravity scale M4 was allowed to be large,
the tension λ was fine-tuned exactly to zero.

To be more quantitative, let us express the (linearized) stability bound f0 < 0 in
terms of the parameters M6, R,M4, λ, which define the EFT action (5.0.1):

1

λ
<

3R2

2M2
4

+
1

2πM4
6

. (5.5.1)

In this form, it is obvious that the model is always stable if the emergent quantities
R,M4, λ are all of the same order, as could be expected in a natural EFT. Note that
this statement holds for any value of the fundamental scale M6. No fine-tuning is
required to arrive at a healthy low energy theory. On the contrary, if the tension λ is
tuned towards zero, but M4 is kept constant, the bound gets violated, reproducing the
Minkowski ghost result.

It should be noted that the same also holds for the brane radius R: if solely R is
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decreased, the bound also gets violated at some point, because λ < 2πM4
6 in the sub-

critical regime. But again, naturally one would expect R not to be much smaller than
λ−1/4, because the zero-point fluctuations of the brane thickness (radion) should give
a contribution ∼ R−4 to the tension (or brane vacuum energy), driving the EFT back
into the stable region.

5.5.2 Phenomenology

Having completed the ghost exorcism in great detail, we can now turn to the crucial
question whether the model, in the ghost-free regime, can survive phenomenological
tests.

The key question is if the BIG mechanism can successfully be used to achieve an
approximate 4D regime, like in the DGP model. For instance, we can ask what the
(linearized) gravitational field of a point mass on the brane would look like. In this
case, the only nonvanishing energy momentum component is

1T
(5)
00 =

m

2πR
δ(3)(x) , (5.5.2)

with the factor 2πR included such that m is the 4D mass of the point source. This
source only excites static scalar modes,52 and gives rise to the on-brane Newtonian
potential

Φ ≡ −1

2
h00|0 ≡

1

2
N |0 = −1

6
(2J + s) |0 , (5.5.3)

where we used the (static) field equations (5.4.21) (in the on-brane limit). The solution
for J can be obtained just like the one for s before, ultimately yielding (x := |x|)

Φ(x) = − m

8πM2
4x
× µ(x) . (5.5.4)

The first factor is the standard 4D GR result scaling like ∝ 1/x, and the modification
is encoded in the (dimensionless) function

µ(x) :=
2

3π

∫ ∞
0

dz sin
(
z
x

R

)[ 4

z + Y (z)/2α
− 1

f0z − Y (z)/α

]
, (5.5.5)

with Y (z) as defined in (5.4.45b), and still f0 ≡ 1− 3β/4α.
As a first consistency check, we notice that for β = const and α → ∞ (i.e. M4 �

RM6) µ→ 1, and so we recover the correct 4D result. However, we already know from
the ghost analysis that in this limit one always ends up in the pathological regime,
cf. Fig. 5.15. But this is not yet the end of the story. To be compatible with current
experimental bounds, it is sufficient for the deviations from the 4D force law only to
kick in at large enough distances, such that the theory passes high precision solar sys-
tem measurements, like Lunar Laser Ranging (LLR) [AGK09, and references therein].

52Note that we are hereby effectively fixing a gauge, implying that N becomes observable.
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Therefore, in order to decide on the success of the theory we should determine the
length scale at which the deviations from the 1/x scaling first occur. The ultimate
question is whether this distance scale, for given model parameters, can be sufficiently
large within the stable region in parameter space.

To determine the physical crossover scale, note that for small (large) x, the integrand
in (5.5.5) mainly contributes at large (small) z. Using the asymptotic expansion of the
integrand in the relevant regime, and performing the integral53 then yields

µ(x) ∼ β − α
3β/4− α

(x→ 0) , (5.5.6a)

µ(x) ∼ 3α(1 + β)

(
R

x

)2

(x→∞) . (5.5.6b)

Thus, we indeed find a 4D Newtonian potential ∝ 1/x at small length scales,54 and a
6D scaling ∝ 1/x3 at large scales. There can also be an intermediate regime, where

µ(x) ∼ nα

3π

(
R

x

)
, n ∈ {1, 2, 8, 9, 16} , (5.5.7)

corresponding to a 5D scaling ∝ 1/x2 of Φ. The concrete value of n depends on the
parameters α, β, but it only takes values in the range 1 to 16.55 Physically, this 5D
regime can be caused by two different effects: One is due to our regularization, where
from a 6D perspective we are considering not a point, but a ring source of radius R.
From far away, it looks like a point, but from close enough it eventually becomes a
one-dimensional line source. This only happens for x . R, meaning that we become
sensitive to the (regularization-dependent) microscopic details, which we do not trust
anyway. Therefore, these cases are not relevant for our purposes. The other one is
realized for β →∞, and is due to the fact that in this limit the deficit angle approaches
2π, and so one of the exterior bulk dimensions effectively compactifies. (This was also
observed in [KK07].) Put differently, the field lines of the point source can not spread
into the sixth dimension, thus leading to a 5D scaling of the Newtonian force. At large
enough distances, this effect becomes less important, and eventually (for finite β) there

53Apart from the 4D case, these integrals are typically UV divergent; e.g. the 6D limit involves∫∞
0

dy sin(y)y ln y. This is only a technical problem caused by working in Fourier space and using
an infinitely small point source. (It occurs as well when deriving the Green’s function of the
Laplace operator in more than three dimensions in this way.) Technically, it can easily be solved by
regularizing the integrals like lim

ε→0

∫
dy (. . .) exp(−εy). This is equivalent to the physically justified

method of smearing the source over a region of size ε, and taking ε → 0 in the end for the point
source limit.

54The constant 6= 1 can be absorbed into a redefinition of the observed 4D Planck mass. However, this
will spoil the correct 4D limit of the (ij)-components of the metric, implying a vDVZ discontinuity,
cf. Footnote 56.

55There are six different cases, which can be obtained analytically by first taking the limit α→ 0 or
→ αstab ≡ 3β/4, then the limit β → 0, β = const or β →∞, and finally expanding the integrand
for large z. The corresponding values for n are 9, 8, 16 and 9, 1, 2, respectively.
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is always the transition to the 6D scaling (5.5.6b). This intermediate 5D regime can
also occur at distances x � R, and is hence potentially relevant. The corresponding
values of n are 2 (for α→ αstab ≡ 3β/4) and 16 (for α� β).

These asymptotic formulas can also be verified numerically, by computing the in-
tegral (5.5.5) for given α, β. Some examples (for which the deviations from the 4D
scaling occur at x� R) are shown in Fig. 5.16, confirming our analytic discussion.

Figure 5.16: Modification of the 4D Newtonian potential of a point source, obtained by
numerically evaluating the integral (5.5.5) (blue curves). At small x, µ approaches the
asymptotic form (5.5.6a) (solid lines), corresponding to a 4D scaling, and at large x the
6D scaling (5.5.6b) (dashed lines). The upper row shows examples for α→ αstab and α� β,
realizing the intermediate 5D regimes (5.5.7) with n = 2 and n = 16, respectively (dotted
lines). In the lower row, β takes the value that corresponds to a deficit angle δ in the middle
of its allowed range within the healthy region, i.e. in the (vertical) center of the green region
in Fig. 5.15. In this case, the 5D window is too small to be realized. The crossover always
occurs at the value predicted by (5.5.8), corresponding to the intersection of the solid and
dotted lines.

We can now give an analytic expression for the physical crossover length xc, i.e. the
length scale at which the deviations from the 4D scaling law first kick in. Since the
transition to the 5D scaling always occurs before the one to the 6D scaling, we have to
compare (5.5.6a) and (5.5.7), yielding

xc =
n

12π

(
3β − 4α

β − α

)
αR . (5.5.8)
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In the stable region of parameter space, the factor in brackets takes values within the
range (0, 3), with its maximum approached in the limit β → ∞ (at constant α), and
its minimum at the border to the unstable region. Therefore, in order for the physical
crossover xc to be much larger than the brane width R (as is clearly necessary for a
viable theory), we see that α has to be much larger than one. The stability bound
3β > 4α then also requires β � 1. In the parameter plot Fig. 5.15, this corresponds
to the narrow green stripe in the upper right corner, corresponding to the near critical
regime δ → 2π [recall that the deficit angle δ ≡ β/(1 + β)]. This near-critical window
was also observed in [KK07].

Since n ≤ 16, we can derive the following upper bound from (5.5.8),

xc <
4

π
αR ≡ 2

3π

(rc

R

)
rc , (5.5.9)

which is saturated for α� β →∞. In the second form (where we used α ≡ r2
c/6R

2),
we see that the actual physical crossover xc is enhanced relative to the naive crossover rc

by a factor of rc/R, which is� 1 for potentially interesting parameter choices (α� 1).
This analysis shows that by choosing α large enough, the physical crossover can

in principle be made arbitrarily large, meaning that the theory could always pass
solar system tests like LLR.56 But this is where cosmology enters the stage: So far,
the discussion only applied to the case H = 0, corresponding ot a 4D Minkowski
background. But the nonlinear analysis in Sec. 5.3 revealed that the stability bound gets
modified for H 6= 0. (Note that this Hubble-dependence cannot be seen at the linear
level around the deficit angle background, and was therefore not obtained in [KK07].)
This is visualized in Fig. 5.17, showing that the green (stable) region gets smaller as
Hrc is increased. In fact, there is an absolute maximum value Hrc|max ≈ 0.39, beyond
which there is no stable point in parameter space anymore.

In other words, a healthy theory is incompatible with Hrc being larger than unity.
But this is not necessarily a problem yet, since the linear analysis above showed that the
physical crossover xc can be much larger than rc. However, the stability and criticality
bounds (5.3.58) and (5.3.49) imply that stable sub-critical solutions only exist if

(Hrc)
2 <

3

2
HR

(
1− 3HR√

1 + 9H2R2

)
<

3

2
HR , (5.5.10)

with the second inequality asymptotically saturated in the physically relevant limit
HR� 1. Together with (5.5.9), this implies

Hxc <
1

π
, (5.5.11)

56There is, however, a vDVZ discontinuity [vDV70, Zak70], which can be seen be calculating also
the (ij)-components of the linearized metric, leading to light bending predictions incompatible
with observations. (It would only be absent in the limit β → 0 or α → ∞, which is always in
the ghost regime.) However, this could well be an artifact of the first order approximation, and
might disappear nonlinearly close enough to the source. This “Vainshtein mechanism” [Vai72], first
proposed for massive gravity, was also demonstrated to be at work in the DGP model [DDGV02].
However, this question would here only become relevant if the theory would pass cosmological
tests.



5.5 Discussion 153

Figure 5.17: The green areas depict the stable, sub-critical regions, for different values of
the Hubble parameter on the brane. They are delimited by the stability bound (5.3.58) from
below, and by the criticality bound (5.3.49) from above. For H = 0, Fig. 5.15 is reproduced
(with ρ 7→ λ). For H > 0, the stable region gets deformed: the lower bound rises and the
upper bound decreases; eventually, for Hrc > 0.387 . . ., there is no green region left. [Here,
the most optimistic case η̃0 = 0 was chosen, corresponding to the lower bound in (5.3.59) and
a vanishing C-energy inside the brane. For larger values, the green region would disappear
even faster.]

and so Hxc is also always smaller than one, meaning that there is no 4D regime in the
cosmology of the healthy, sub-critical theory.57 Of course, this only follows from (5.5.11)
if xc is also the correct crossover in the cosmological context.58 But this presumption
is compatible with the numerical analysis, because in the healthy region the solutions
were always found to immediately degravitate all matter, i.e. approach the static H = 0
solution without any resemblance of a 4D behavior. Furthermore, if instead rc were the
correct cosmological crossover scale (as was assumed in [NSHK15], and as would also
be compatible with the numerical observations), then things get even worse, because
Eq. (5.5.10) then implies Hrc � 1 for HR� 1.

In summary, neither Hrc nor Hxc can be larger than one in the sub-critical ghost-free
region, suggesting that the 6D BIG cosmology should never allow for a 4D regime, and
this is exactly what is found by our extensive, dynamical, nonlinear investigation of the

57Note that even a maximum value Hxc somewhat larger than one would not be sufficient: To have
a 4D behavior for the whole cosmic history down to early times, the theory would need to allow
for Hxc � 1.

58One might have hoped that the correct cosmological crossover could be read off from the modified
Friedmann equations (5.3.27), as in the DGP model. But here in 6D, this is complicated by the
fact that the modification terms all depend on the a priori unknown bulk geometry.
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Figure 5.18: Comparison of the 6D BIG cosmology with initial fluid components (5.5.12)
to standard ΛCDM (black curve), starting at matter-CC equality, i.e. ΩΛ = Ωm = 0.5 at
τ = 0. The degravitating solutions (green curves) are always far away from the 4D evolution.
For Hirc � 1, the BIG mechanism is at work, and the 4D cosmology is traced (red curves).
However, all these solutions eventually enter the pathological super-acceleration, caused by
the ghost instability. [Here, R = 0.05/Hi is kept constant, which for (5.5.12) puts the stability
bound to Hirc ≈ 0.21. The overall picture is the same for other choices of R.]

full brane bulk system. This is visualized by the green curves in Fig. 5.18, where the
resulting Hubble evolution is compared to standard ΛCDM (black curve), for different
values of Hirc (and fixed R = 0.05/Hi). The cosmological fluid here consists of dust
and a CC, with

ρdust
i = ρCC

i =
[
0.8 + (Hirc)

2] ρcrit

2
. (5.5.12)

For these parameters, the stability bound implies Hirc . 0.21. Evidently, these sta-
ble solutions are always far away from the 4D evolution. Unfortunately, this failure
already rules out the theory as a phenomenologically viable modification of GR. In
other words, the healthy near-critical window that remained as potentially viable in
the linear analysis, closes once the (nonlinear) cosmological brane evolution is taken
into account.

Alternatively (but equivalently), one can phrase the problem as follows: If we require
the theory to exhibit a 4D regime, then we must choose Hxc (or Hrc) larger than
one. In principle, this mechanism indeed works, as can be seen from the red curves
in Fig. 5.18, which—unlike the degravitating solutions—do trace the standard ΛCDM
evolution. But the problem is that in these cases, we are always deep inside the unstable
region of parameter space. Accordingly, the deviations from 4D do not correspond to
a healthy transition to a 6D regime,59 which should be attended by degravitation;

59Therefore, this analysis can also not help identifying the actual cosmological crossover scale; indeed,
both Hrc and Hxc are always still larger than 1 when the deviations from 4D occur.
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instead, they indicate the onset of the ghost instability, leading to super-acceleration.
Either way, the message is that the (sub-critical) ghost-free and phenomenologically

viable regions are mutually incompatible. The remaining window of opportunity for
the model lies within the super-critical regime, which was excluded so far. This will
be the subject of the next chapter; in particular, we will find that super-critical energy
densities necessarily lead to a compact extra space (thereby generalizing the static result
to dynamical geometries). Therefore, the system is qualitatively different from the
original BIG setup with two infinite extra-dimensions, and should thus be regarded as
a different theory. The main result of this chapter can therefore briefly be summarized
as follows: BIG with two infinite codimensions, albeit being a healthy theory for natural
EFT parameters, is phenomenologically not viable and therefore ruled out.





Appendix to Chapter 5

5.A Non-stabilized circumference

In this appendix, we investigate the case when the brane circumference 2πR is not
kept constant. The main motivation is to show that the instability of the model is
not an artifact of this assumption. Without the stabilization requirement, the (φφ)-
component of the brane energy-momentum tensor is not fixed anymore, and can a
priori be chosen arbitrarily. For definiteness, and to make sure that it corresponds to
a physically admissible source, we will choose T φφ = 0.

5.A.1 Nonlinear cosmology

First, let us consider the cosmological setup, and replace the requirement R = const by
pφ = 0. The extrinsic curvature is still given by (5.3.25), but now the relations (5.3.26a)
read

γ =
√

e−2η0 +H2
rR

2 , ṙ0 =
HrR

γ
,

r0r̈0

1− ṙ2
0

=
R2

γ2

[ ◦
Hr +Hr (HR +

◦
η0)
]
,

(5.A.1)
whereas (5.3.26b) still hold, but with

ψ ≡ r0α̇|0 =
R

γ
(H − ξHr) . (5.A.2)

(Recall that ξ ≡ r0α
′|0; furthermore, all interior relations are again obtained by putting

tildes on all quantities.) Here we introduced the azimuthal “Hubble” parameter

HR :=

◦
R

R
, and (for notational convenience) Hr :=

◦
r0

r0

≡ 3H +HR . (5.A.3)

Accordingly, the 5D BIG terms also receive contributions ∝ HR. Explicitly, we find

ρ̂(5) = ρ(5) −M3
5 3
(
H2 +HHR

)
, (5.A.4a)

p̂(5) = p(5) +M3
5

(
2
◦
H +

◦
HR + 3H2 +H2

R + 2HHR

)
, (5.A.4b)

p̂
(5)
φ = M3

5 3
( ◦
H + 2H2

)
, (5.A.4c)
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where we already used p
(5)
φ = 0 in the last term. As a consistency check, one can easily

verify that all expressions given here reduce to the ones in the main text for HR → 0.
Energy conservation now reads

◦
ρ(5) + 3H

(
ρ(5) + p(5)

)
+HR ρ

(5) = 0 , (5.A.5)

which for an EOS p(5) = wρ(5) implies

ρ(5) ∝ a−3(1+w)

R
. (5.A.6)

As a consequence, the dimensionally reduced 4D quantity ρ ≡ 2πR ρ(5) scales exactly
as before. We can still formally introduce the four dimensional Planck-scale and the
crossover-scale as in (5.2.3) and (5.3.30) respectively, but one has to keep in mind that
they are now functions of time as well. Specifically, they scale with R as M4(τ), rc(τ) ∝√
R(τ).
After some algebra, the junction conditions (5.3.22) finally become

H2 +HHR =
ρ

3M2
4

+
1

r2
c

(γ − γ̃) ,

◦
H =

ac + b

1− 4c
,

◦
HR =

a (1− 3c) + b

1− 4c
,

(5.A.7a)

(5.A.7b)

with the following definitions:

a := −wρ
M2

4

−HR (2H +HR) + 3H2 +
3

r2
c

{
γ [1− 4 (ξ + ṙ0ψ)]−“tilde”

}
, (5.A.8a)

b := cHR (3H +HR)− 2H2 +
6

r2
c

{
γ
[
4ṙ0ξψ +

(
1 + ṙ2

0

) (
ξ2 + ψ2

)]
−“tilde”

}
,

(5.A.8b)

c :=
R2

r2
c

(
1

γ
− 1

γ̃

)
. (5.A.8c)

This time there are two dynamical equations of motion, Eqs. (5.A.7b), which will be
used to numerically determine H and HR. The constraint (5.A.7a) again serves as a
nontrivial consistency check for the numerics.

The initial data will be chosen as before, but now we also have to specify an initial
value for HR, which we will (for simplicity) set to zero:

HR|i = 0 . (5.A.9)

Furthermore, the constant values for R and rc which were chosen in the case HR = 0,
will here be used as the initial values R|i and rc|i when comparing the corresponding
solutions.

The numerical algorithm is completely analogous to the stabilized case discussed in
the main text, and we can now reconsider the super-accelerating example of Sec. 5.3.5,



5.A Non-stabilized circumference 159

but for the non-stabilized case with pφ = 0. To this end, we choose the parame-
ters (5.3.56) (but with grid-spacings ε̃ = 10−3 ×Ri and ε = 2× 10−3Ri).

The results are shown in Fig. 5.A.1. The two Hubble parameters H and HR both
increase, implying a super-accelerated expansion. Fig. 5.A.1b shows the effective energy
density from a 6D perspective, which for HR 6= 0 is given by

ρ̂ ≡ ρ− 3M2
4

(
H2 +HHR

)
. (5.A.10)

Again, it becomes negative and tends towards −∞. This shows that the instability
is not due to the unphysical pressure pφ encountered in the HR = 0 scenario. On
the contrary, the unphysical behavior of pφ is a consequence of the instability, and
the requirement of stabilizing the brane width R despite this instability. This can
also be understood from Fig. 5.A.1a, which shows that without any stabilization the
super-acceleration is dominantly in φ-direction (HR grows faster than H).

(a) Both Hubble parameters show super-
acceleration.

(b) The effective energy density again becomes
negative, thus violating the NEC.

Figure 5.A.1: Plots of the numerical results for the super-accelerating solution in the case
pφ = 0. The unstable behavior encountered in the case HR = 0 is not cured by setting pφ = 0.
The estimated numerical error-bars are again smaller than the line widths.

5.A.2 Linear ghost analysis

Note: This section is to large extent a verbatim reproduction of the correspond-
ing appendix in [ENS15].

We will now show that the instability is still due to the ghost mode if the brane
circumference is not stabilized. At the linear level, this means that the radion ϕ is not
set to zero, and Uφ

φ is a priori arbitrary. For simplicity, we will again only consider the
case

Uφ
φ = 0 . (5.A.11)
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The two junction conditions (5.4.27b) and (5.4.30) can still be used to derive a closed
equation60 for s,

M4
6 [s′] +M3

5

[(
1− 3α

2β

)
�4 +

β − 2α

2α (1 + β)R2

]
s|0 = −1

4
Uµ

µ . (5.A.12)

After performing a 4D Fourier transform and using the general bulk solution (5.4.43)
for ŝ, we arrive at

4M4
6

R
Z̃(p)ŝ|0 = −Ûµ

µ , (5.A.13)

where now the inverse s-propagator is given by (in terms of z := r0

√
p2)

Z̃(p) := αf1z
2 + f2 − z

(
I1(z)

I0(z)
+
K1((1 + β)z)

K0((1 + β)z)

)
, (5.A.14)

with

f1 := 2

(
3α

2β
− 1

)
, f2 :=

β − 2α

1 + β
. (5.A.15)

This is very similar to the inverse s-propagator in the stabilized case, Eq. (5.4.45).
The only difference is that the coefficient f is slightly modified into f1 and—more
importantly, as we will see below—there is an additional constant (i.e. p-independent)
term f2.

As before, we can restrict ourselves to sources for which only the scalar mode s is
excited. This can be achieved by setting all tensor- and vector source terms to zero,
and requiring

3Û (S) =

(
1− f2

4Z̃

)
Ûµ

µ . (5.A.16)

In this case, the scalar mode J can again be set to zero, and the full source ver-
tex (5.4.37) takes the same form as before (5.4.47), with the replacement Z → Z̃.
Therefore, the stability analysis is completely analogous.

It can now easily be checked that the propagator Z̃−1 has a tachyonic pole (⇔ Z̃
is zero for some z∗ > 0) if and only if f1 > 0 or f2 > 0. The corresponding regions
in parameter space are depicted in Fig. 5.A.2. They are disjoint, and separated by a
narrow (but finite) stripe in which the tachyon is absent and the model is thus linearly
stable.

60Note that when comparing this equation to the one derived in Ref. [KK07], viz. Eq. (5.41) therein
(the corresponding scalar mode is called X in [KK07], and is related to ours via s = −3X), one
has to take into account that the energy momentum tensor τµν in [KK07] differs from our Uµν :
τµν is defined in the Einstein frame and thus satisfies standard energy conservation (∂µτ

µ
ν = 0),

whereas Uµν is defined in the Jordan frame, for which, on the deficit angle background, additional
terms ∝ λ have to be included, cf. our Eq. (5.4.23). We thank Nemanja Kaloper for clarifying this
point.
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Figure 5.A.2: Without stabilization (and Uφφ = 0), there are three regions in parameter
space: in the lower right region, where f1 > 0, there is a tachyonic ghost; the delimiting line
is almost the same as in the non-stabilized case, shown as a dashed line. In the dark green
region in the middle f1, f2 < 0, and the model is linearly stable. In the upper left region
f2 > 0 and there is a tachyon which is not a ghost. It shows that the static deficit angle
background is not stable if Uφφ is not used to fix the brane circumference, as expected.

The case f1 > 0 is very similar to the condition f > 0 in the stabilized case. Indeed,
the delimiting line f = 0 in parameter space, shown as a dashed line in Fig. 5.A.2, only
gets shifted by a small amount.

The case f2 > 0, however, implies that there is also a tachyon in the upper left
region in parameter space. At first, it might be surprising that this region is also
unstable, because it also includes the case α = 0, which is just pure 6D GR without
any induced terms and should be a healthy theory. The resolution to this puzzle is
rather simple: Evaluating the residue of Z̃−1 at the tachyon pole as we did in Sec. 5.4.2,
we find that, while it is again negative for f1 > 0, it is positive for f2 > 0. In other
words, the tachyon is only a ghost in the lower right region. In the upper left region,
the tachyon is not a pathology, but merely a reflection of the fact that, without fixing
the brane circumference, the static deficit angle background is not stable. Instead, the
brane wants to expand (or collapse) in radial direction, as should be expected.

To summarize, the ghost-criterion is basically independent of whether the circum-
ference is stabilized or not. In particular, the naturalness discussion from Sec. 5.5.1
still applies to the case of free radial expansion. On the other hand, the static deficit
angle solution is then not stable under angular size fluctuations. To overcome this
problem, we have to make additional assumptions about the underlying microscopic
model. In fact, from a fundamental perspective, the existence of some sort of stabiliza-
tion mechanism has to be expected as there are known stable vortex configurations in
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two codimensions [NO73]. Fixing the proper circumference with a suitable azimuthal
pressure turned out to be a convenient way of realizing such a mechanism in an effective
low energy description.

5.B Numerical errors and consistency checks

In this appendix, we present the numerical error estimates, as well as the consistency
checks which were used to test the trustability of our numerical solver.

One way to estimate the numerical uncertainties is to check how much the calculated
quantities change when the grid-spacing decreases. For instance, one can define an error
estimate δA for some quantity A calculated with grid-spacing ε as

δA(ε) := A(2ε)− A(ε) . (5.B.1)

If A(ε) converged to its true value linearly in ε as ε → 0, this would give exactly the
correct error, for a faster convergence the true error would even be smaller. The plots in
Fig. 5.B.1 show the corresponding error of the Hubble parameter for the degravitating
and pathological solutions presented in Sec. 5.3.5. In the Hubble plots, Figs. 5.4b and
5.5b, the corresponding error-bars would not exceed the line thickness. The dashed
curves depict the error estimates when the grid spacing is doubled; the scaling of the
errors is compatible with an (approximately linear) convergence as ε→ 0.

(a) The degravitating solution. (b) The super-accelerating solution.

Figure 5.B.1: Numerical error estimates, as defined in (5.B.1), of the Hubble parameter
for the solutions presented in Sec. 5.3.5. The dashed lines correspond to the doubled lattice
spacing, showing that the numerically obtained Hubble evolution converges (approximately
linearly) as ε→ 0.

There are several nontrivial consistency checks that can be performed. The most
important one is the constraint (5.3.27a), which is only imposed at the initial time,
and should be automatically fulfilled at all later times. Its violation,

δC := H2 − ρ

3M2
4

− 1

r2
c

(γ − γ̃) , (5.B.2)
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measured in units of H2
i , is plotted in Fig. 5.B.2; it is indeed compatible with being

zero within the numerical uncertainties. Another test comes from the fact that some
quantities (like Hubble) which should be continuous across the brane can be calculated
independently in the interior or exterior coordinate patch in our numerical scheme.
The difference between them (measured in units of Hi) is shown as the dotted line in
the same plots, and it is again compatible with zero.

(a) The degravitating solution. (b) The super-accelerating solution.

Figure 5.B.2: Numerical consistency checks for the solutions presented in Sec. 5.3.5. The
solid and dashed curves show the constraint violation (5.B.2) in the interior and exterior,
respectively. The dotted line is the difference between H in the interior and exterior. All
violations are compatible with being zero within the numerical uncertainties.





Chapter 6

Super-critical cosmic strings

Note: This chapter is to large extent a verbatim reproduction of the publica-
tion [NS15b], which arose in collaboration with Florian Niedermann.

The preceding results motivate an investigation of the codimension-two BIG setup
also for super-critical 4D energy densities on the brane. Indeed, the parameter plots in
Fig. 5.8 suggest that—if the stability bound can be extended above the lower criticality
bound—the theory should always be stable in the super-critical regime (the light gray
regions in Fig. 5.8), irrespective of the value of rc. In particular, it would thus be
possible to make rc (or xc) large enough to achieve the required 4D regime, the failure
of which was the crux that ruined the sub-critical model.

Since super-critical cosmic strings have not been very well studied even within stan-
dard GR, we will first focus on the pure 4D setup. This already enables us to understand
the crucial physics of the system. The straightforward generalization to 6D BIG will
be discussed at the end in Sec. 6.9.

6.1 Summary

In General Relativity, local cosmic strings are well known to produce a static, locally
flat spacetime with a wedge removed. If the tension exceeds a critical value, the deficit
angle becomes larger than 2π, leading to a compact exterior that ends in a conical
singularity. In this chapter, we investigate dynamical solutions for cosmic strings with
super-critical tensions. To this end, we model the string as a cylindrical shell of finite
and stabilized transverse width (like in Chap. 5) and show that there is a marginally
super-critical regime in which the stabilization can be achieved by physically reasonable
matter.

We show numerically that the static deficit angle solution is unstable for super-
critical string tensions. Instead, the geometry starts expanding in axial direction at an
asymptotically constant rate, and a horizon is formed in the exterior spacetime, which
has the shape of a growing cigar. We are able to find the analytic form of the attractor
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solution describing the interior of the cosmic string. In particular, this enables us
to analytically derive the relation between the string tension and the axial expansion
rate. Furthermore, we show that the exterior conical singularity can be avoided for
dynamical solutions. The fact that the exterior space closes up and becomes compact,
however, is unavoidable and still persists in the time-dependent case.

Since our main motivations comes from codimension-two braneworld models, we
finally derive the corresponding 4D Friedmann equation, relating the on-brane Hubble
parameter to the brane CC.

6.2 Introduction and outline

Local cosmic strings were first derived as topologically nontrivial solutions of the
Abelian Higgs Model by Nielsen and Olesen [NO73]. In GR, they give rise to a static
geometry which sufficiently far away from the string is locally flat and can be char-
acterized by a deficit angle δ corresponding to a wedge that has been removed from
spacetime. The value of δ is linearly related to the string tension λ (mass per unit
length): δ = λ/M2

Pl, with the reduced Planck mass M2
Pl ≡ 1/(8πGN). This spacetime

was first studied in [Vil81, Got85, His85].
Once the tension reaches the critical value 2πM2

Pl, the deficit angle becomes 2π, thus
implying the exterior topology of an infinite cylinder [Lin90]. Introducing the dimen-
sionless parameter λ̄ := λ/ (2πM2

Pl), this critical value corresponds to λ̄ = 1. For even
higher values of the string tension, the angular defect exceeds 2π; thus, the exterior
spacetime of the static solution closes up and ends in a conical singularity1 [Ort91].
However, the status of these so-called “super-critical” or “super-massive” solutions re-
mained unclear due to the occurrence of the singular axis away from the string. One
way to give a physical meaning to the singularity is to replace it with another (sub-
critical) tension string [BPRSU14].

In this chapter, we further explore the geometry of super-critical cosmic strings.
Instead of introducing additional strings, we relax the assumption of having a static
geometry. A first purely numerical attempt in that direction was made in [Cho98] by
considering a super-critical Nielsen-Olesen (NO) string. There it was found that once
the tension λ̄ exceeds ∼ 1.6, both the transverse and axial string directions begin to
expand at a comparable rate. In this work we will be able to analytically confirm
this bound. In contrast to [Cho98], we will be mostly interested in describing the
remaining parameter space: 1 < λ̄ . 1.6. We show that within this “marginally super-
critical” regime the transverse string dimensions can be stabilized, whereas the axial
dimension expands at an asymptotically constant rate. This fact makes these solutions
especially interesting for models with two extra-dimensions according to which the
string is promoted to a braneworld describing our universe. Then, the constant axial

1For both sub- and super-critical tensions, there is a second class of solutions, usually referred to
as the “Melvin” or “Kasner” branch [LG89, CLV99], which has even a curvature singularity in the
super-critical case. However, we discard this branch due to its unphysical properties, cf. Sec. 6.4.
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expansion rate corresponds to a de Sitter on-brane geometry, and having a stabilized
transverse dimension is a necessary requirement to obtain a 4D regime in those theories,
cf. Chap. 5.

Furthermore, the analysis of [Cho98] lacks a detailed discussion of the geometry
away from the string. In particular, it was not answered whether the second axis still
bears a conical singularity (which does not lead to asymptotically diverging curvature
invariants) as it is the case for the static solution. Our approach allows us to get
a complete understanding of both the geometry and the underlying dynamics of the
system in the marginally super-critical regime. For example, we show that the exterior
conical singularity can be completely avoided for a dynamical solution and should thus
be regarded as an artifact caused by assuming a static geometry. In addition, we find
(numerically) that a horizon emerges, which can (but need not) lie between the string
and the second (regular) axis.

In order to technically simplify the problem, we again use the ring regularization like
in Chap. 5, i.e. the string is modeled as cylindrical shell of fixed circumference 2πR.
Again, this simplified description should capture all essential physics as long as we are
interested in low energy questions which do not require to resolve the inner structure
of the defect. Since the only scale determining the dynamics of the system is the axial
expansion rate H, this condition should clearly be satisfied as long as HR� 1.2

In Sec. 6.3, we present the metric ansatz and field equations, and discuss the classi-
fication of sub- and super-critical strings, as well as the geometrical implications. As
a first consistency check of our description, we reproduce the well-known static deficit
angle solution in Sec. 6.4, which—in the super-critical case—leads to a second singular
axis in the exterior vacuum region. In order to see whether these are stable solutions,
we numerically study the time evolution of the system in Sec. 6.5. To that end, we
choose initial data close to the static configuration but include cylindrical symmetric
gravitational waves in the interior and exterior region close to the shell to provide the
system with a nonvanishing initial kinetic energy. We find that the sub-critical string,
after emitting the cylindrical waves, settles back to the static deficit angle solution. The
super-critical system, however, starts to approach a non-static solution instead. This
result proves that the static super-critical solution is not stable under perturbations.
Moreover, the numerical results allow to infer several properties of the new dynamical
attractor solution in the marginally super-critical regime defined by 1 < λ̄ . 1.6:

• The geometry expands in axial direction at a constant rate.

• There is a horizon in the exterior region.

• The exterior space is cigar-shaped and expands, whereas the interior space is
nearly flat and can be stabilized.

Let us emphasize that for λ̄ close to 1, the observed expansion rate satisfies HR� 1.
Therefore, in that regime we expect all the results to be completely insensitive to the

2We find a posteriori that this condition is indeed satisfied for the attractor solutions in the marginal
super-critical regime.
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microscopic inner structure of the string. They should thus equally hold for other
regularizations like a full cylinder for which the tension would be smeared out over the
interior region, or the original UV model described in [NO73].

For even larger values of the tension, λ̄ & 1.6, we find that the azimuthal pressure re-
quired to stabilize the shell’s circumference violates the Null Energy Condition (NEC).
Hence, in this regime a stabilization cannot be achieved by physical degrees of freedom.
Since at this point HR is already close to one, it is a priori not clear whether this result
would still hold for a more realistic NO-like string. However, it turns out that our NEC-
bound is in nice agreement with the one derived in [Cho98], where the full radial profile
was resolved. This is a strong indication that our simplified model can in fact be suc-
cessfully used in the whole stabilizable (i.e. marginally super-critical) regime to capture
the essential physics—instead of the more complicated microscopic NO-system. This
result is also in agreement with the idea of “topological inflation” [Vil94, Lin96, LL94].
In that context, it is argued that once HR ∼ 1, the interior space of the defect starts
to inflate in both axial and radial direction at the same rate, or in other words, there
is a de Sitter phase inside the cosmic string. This is plausible because at this point
its boundary lies outside the corresponding horizon and thus the interior is causally
disconnected from the exterior, which makes it locally equivalent to a pure de Sitter
universe.

We derive the analytic form of the attractor solution in the interior of the shell in
Sec. 6.6 by making an appropriate scaling ansatz for the metric. This in turn enables us
to derive the relation between the string tension λ and H analytically. In the marginally
super-critical regime, we find up to small corrections of order (HR)2:

HR ≈ λ̄− 1 . (6.2.1)

The analytic result for the interior geometry can be mapped by a coordinate transfor-
mation, described in Appendix 6.B, to a solution discussed earlier by Witten [Wit82]
and Gregory [Gre03]. To our knowledge, this is the first time that this solution is
matched to a specific matter model.

Furthermore, we are able to show that the conical singularity in the exterior is an
artifact caused by assuming a static geometry. More precisely, in Sec. 6.7 we demon-
strate that the singularity can be completely avoided by choosing the initial conditions
appropriately. In that case the exterior space ends radially in a smooth axis.3 More-
over, we argue that the value of H is completely independent of the choice of initial
conditions and solely depends on the string parameters R and λ, as expected for an at-
tractor solution. A corresponding parameter plot, summarizing our results, is discussed
in Sec. 6.8.

For a cosmic string formed during a phase transition in the early universe, say at
the GUT scale, we would generically expect a sub-critical tension of order λ̄ ∼ 10−6.
However, in [Ort91] it was argued that super-critical cosmic strings could also arise
at this scale when the coupling between scalar and gauge fields is very weak (in a

3The existence of a singularity-free inflating solution was already anticipated in [Vil94, KK07].
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NO-framework). In order to further clarify their phenomenological status for standard
cosmology, we review arguments previously given by Thorne [AT92]. In this context, it
is shown in Appendix 6.A that an open cylindrical geometry cannot evolve classically
into a closed one. This result implies that the formation of super-critical strings cannot
be described within classical GR. So far, it is not clear whether their formation through
a quantum-mechanical tunneling process would lead to phenomenologically relevant
effects.

However, these solutions might be interesting in the context of codimension-two
braneworld models, where the string is promoted to a 3-brane representing our uni-
verse. A corresponding generalization of Eq. (6.2.1) can be understood as a modified
Friedmann equation. The axial expansion rate H then plays the role of the ordinary
Hubble parameter describing the spatial expansion of our universe. In that context,
the regime HR � 1, corresponding to a marginally super-critical tension, is the most
interesting one as it is enforced by a huge separation between the cosmological length
scale H−1 and the microscopic scale R given by the thickness of the string. The six-
dimensional setup in the case of a pure tension brane is discussed in Sec. 6.9. We draw
our conclusions in Sec. 6.10.

Finally, in Appendix 6.C we show that the super-critical cosmic strings covered by
our analysis can indeed be described consistently within classical GR, as long as the
transverse string size R is much larger than the Planck length, since this ensures a
sub-Planckian 4D energy density.

6.3 Coordinates and geometry

Since the setup is the 4D analogue of the one discussed in Chap. 5, we can follow
Sec. 5.3.1 and make the general metric ansatz

ds2 = e2(η∗−α∗) (−dt∗2 + dr∗2
)

+ e2α∗ dz2 + e−2α∗W 2dφ2 , (6.3.1)

now with a one-dimensional axis, which is the original form used by Thorne [Tho65].
Here, φ ∈ [0, 2π) and z ∈ (−∞,∞) are coordinates in angular and axial direction,
respectively, and the functions α∗, η∗,W only depend on the temporal and radial co-
ordinates (t∗, r∗). One virtue of this ansatz is that radial light-rays correspond to
dt∗ = ±dr∗, thus making the causal structure evident in t∗-r∗-diagrams, a fact which
we will often use in our analysis.

As in Sec. 5.3.1, we can fix the residual gauge freedom of the metric (6.3.1) by
choosing the new radial coordinate4

r = W (t∗, r∗) (6.3.2)

in vacuum. Again, this choice is not admissible across the shell, and so the interior
and exterior coordinate patches are not continuously connected. To distinguish them,

4By using r as a spatial coordinate, we implicitly assume that the gradient of W is spacelike. We
will come back to this important subtlety in Sec. 6.3.2.
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we again put tildes on the interior coordinates and metric functions. The metric then
takes the standard Einstein-Rosen [ER37] form

ds̃2 = e2(η̃−α̃)
(
−dt̃2 + dr̃2

)
+ e2α̃ dz2 + e−2α̃ r̃2dφ2 , (6.3.3a)

ds2 = e2(η−α)
(
−dt2 + dr2

)
+ e2α dz2 + e−2α r2dφ2 , (6.3.3b)

in the interior and exterior, respectively. The corresponding vacuum equations in 4D
become

α̈ = α′′ +
1

r
α′ , (6.3.4a)

η′ = r
(
α̇2 + α′

2
)
, (6.3.4b)

η̇ = 2rα̇α′ , (6.3.4c)

and similarly for the interior (with tildes on all quantities).
The symmetry axis is located in the interior coordinate patch at r̃ = 0. Regularity

at this axis and elementary flatness, i.e. absence of a conical singularity, requires

α̃′|r̃=0(t̃) = 0 and (6.3.5a)

η̃|r̃=0(t̃) = 0 , (6.3.5b)

respectively.

6.3.1 Induced geometry

The induced metric on the cylindrical shell is

ds2
(ind) = −dτ 2 + e2α0 dz2 +R2dφ2 , (6.3.6)

where here and henceforth the subscript “0” denotes evaluation at the position of the
shell. The proper time τ on the surface is related to the interior and exterior time
coordinates via

dτ =
e−α0

γ
dt =

e−α̃0

γ̃
dt̃ , (6.3.7)

where

γ :=
e−η0√
1− ṙ2

0

and γ̃ :=
e−η̃0√
1− ˙̃r2

0

. (6.3.8)

The functions r̃0(t̃) and r0(t) describe the radial position of the shell in the two coor-
dinate patches, and ṙ0 := dr0/dt, ˙̃r0 := dr̃0/dt̃.

In order to have a well defined regularization of the infinitely thin cosmic string, we
again assume the proper circumference of the cylinder to be stabilized:

R := r0 e−α0 = r̃0 e−α̃0 = const. (6.3.9)
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As already mentioned, on a fundamental level this would be enforced by some underly-
ing UV physics that gave rise to the cosmic string. Effectively, working well below this
UV scale at which the inner structure of the string could be probed, it can be achieved
by assuming a suitable azimuthal pressure component pφ. We will check a posteriori
whether this pressure is physically reasonable, i.e. whether it satisfies the NEC.

The surface energy momentum tensor on the shell is given by

Tmn =
1

2πR
diag (−λ,−λ, pφ) , (6.3.10)

where the overall factor ensures that λ is the one-dimensional string tension. Through-
out this chapter we will assume that λ ≥ 0. Let us, for later convenience, also introduce
the dimensionless quantities

λ̄ :=
λ

2πM2
Pl

, p̄φ :=
pφ

2πM2
Pl

. (6.3.11)

Fixing R implies that the 3D energy conservation equation for this source simply be-
comes λ = constant. The pressure pφ will in general be time-dependent, and its value
will be inferred from one of the junction conditions, see below. Furthermore, the
entire dynamics of the induced metric (6.3.6) is now encoded in the single function
H := dα0/dτ = dα̃0/dτ , measuring the expansion rate of the string in axial direction.

For future reference, note that the stabilization condition implies

ṙ0 =
HR

γ
, ˙̃r0 =

HR

γ̃
, (6.3.12)

which allows us to rewrite (6.3.8) as

γ =
√

e−2η0 +H2R2 , γ̃ =
√

e−2η̃0 +H2R2 . (6.3.13)

6.3.2 Super-criticality

The interpretation of r and r̃ as radial coordinates implicitly assumes that the gradient
∇W := (∂t∗W,∂r∗W ) of the function W in the original metric (6.3.1) was spacelike. If
it had been timelike, the coordinate r defined by (6.3.2) would in fact be a temporal
coordinate, cf. the discussion in Sec. 5.3.1.

In order to have a smooth symmetry axis in the interior, and hence a well defined
regularization of the cosmic string, we have to assume that ∇W was spacelike in the
interior region. Furthermore, since r̃ should take positive values, ∇W had to be out-
ward pointing. As discussed in more detail in Appendix 6.A, the character of ∇W in
the exterior is then fixed by the amount of string tension λ that is localized on the
cylindrical shell. There are three cases:5

5The corresponding 6D bounds are obtained by replacing HR 7→ 3HR, and the BIG terms can be
included via λ̄ → λ̄ − r2

cH
2. This agrees with the criticality bound (5.3.49), and those shown in

Fig. 5.8.
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(i) For λ small enough, viz.
λ̄ < γ̃ − |H|R , (6.3.14)

the exterior gradient ∇W (ext) is also spacelike and outward pointing, leading to
a conical, but infinite exterior geometry with r ∈ (r0,∞).

(ii) In the intermediate regime

γ̃ − |H|R ≤ λ̄ ≤ γ̃ + |H|R , (6.3.15)

∇W (ext) is timelike6 and r is thus a temporal coordinate. We exclude this“critical”
case from our current analysis.

(iii) If the tension is large enough,

λ̄ > γ̃ + |H|R , (6.3.16)

then ∇W (ext) is again spacelike but inward pointing. Thus, r is again a spatial
coordinate; but now it decreases as one moves away from the cylinder surface.
In principle, there could be some rmin > 0, at which r starts increasing again.
However, this would imply that ∇W changed character from inward to outward
pointing at rmin, and one can show that this is not possible in vacuum, see Ap-
pendix 6.A. Thus, r has the finite range r ∈ (r0, 0) and at the point r = 0 there
will be a second axis, which can generically be singular.

We will refer to the first and third case as “sub-” and “super-critical”, respectively.
In the static case H → 0 and γ̃ → 1, and so the conditions take the form (i) λ̄ < 1
and (iii) λ̄ > 1, while the “critical” range (ii) degenerates to λ̄ = 1, cf. Sec. 6.4. In the
present chapter, we are mainly interested in the super-critical regime (iii).

6.3.3 Junction conditions

The vacuum Einstein field equations (6.3.4) have to be supplemented by Israel’s junc-
tion conditions [Isr66, Isr67], linking the interior and exterior geometries across the
cylinder surface:

Tmn = M2
Pl

(
[Kp

p]δ
m
n − [Km

n]
)
. (6.3.17)

Here, [X] := X − X̃, and Kmn is the (pullback of the) extrinsic curvature tensor. The
outward-pointing normal vectors in the interior and exterior are given by

ñµ = γ̃ eα̃0
(

˙̃r0, 1, 0, 0
)

and nµ = σγ eα0 (ṙ0, 1, 0, 0) , (6.3.18)

respectively, with σ = ±1. In order for the normal vector nµ to be outward-pointing, σ
has to be +1 in the sub-critical case. But for super-critical tensions, the exterior radial

6Or light-like, if one of the bounds is saturated. In that case the coordinate transformation would
be singular.
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coordinate decreases as one moves away from the cylinder, so in that case one has to
choose σ = −1.

Using these normal vectors, it is straightforward to show that the nonvanishing
components of Km

n are7

K0
0 =

σγ

R

r0r̈0

1− ṙ2
0

+ nµ∂µ (η0 − α0) , (6.3.19a)

Kz
z = nµ∂µα0 , (6.3.19b)

Kφ
φ =

σγ

R
− nµ∂µα0 . (6.3.19c)

The components of K̃m
n have the same form, but with tildes on all quantities and

σ → +1. Plugging this and (6.3.10) into (6.3.17), the (0
0)-component of the junction

conditions becomes8

λ̄ = γ̃ − σγ . (6.3.20)

The (zz)-component, after eliminating λ̄ using (6.3.20) as well as η by means of the
vacuum equations (6.3.4) in the limit r → r0, and expressing everything in terms of
the intrinsic cylinder quantities H and R, can be written as

dH

dτ
R2 = −

[
λ̄+ σγf(χ, ξ)− γ̃f(χ̃, ξ̃)

](σ
γ
− 1

γ̃

)−1

, (6.3.21)

where

f(χ, ξ) := χ+ (1− ξ)2 (1− χ)2 , (6.3.22a)

ξ := r0∂rα0 , χ :=

(
HR

γ

)2

. (6.3.22b)

The complete set of equations of motion consists of the vacuum field equations (6.3.4)
in the interior and exterior region, the dynamical (second order in time) junction con-
dition (6.3.21), and energy conservation (λ = const.), supplemented by the boundary
conditions (6.3.5) (as well as appropriate boundary conditions for the exterior domain
which will be discussed later). Equation (6.3.20) is a constraint, i.e. it only contains
first time derivatives, and only has to be imposed at the initial moment of time. Its con-
servation is guaranteed by the Gauss-Codazzi and vacuum field equations [Isr66, Isr67],
and will later serve as an important consistency check for the numerical implementa-
tion.

Finally, the (φφ)-junction condition determines the azimuthal pressure pφ that is
needed to keep the circumference of the cylinder constant. A similar calculation as
before yields

p̄φ = σγg(χ, ξ)− γ̃g(χ̃, ξ̃) , with g(χ, ξ) := 2 (χ− χξ + ξ) . (6.3.23)

7In these formulas, evaluation at the surface should of course be performed after taking all occurring
r-derivatives.

8Note that without choosing the correct sign σ = −1 in the super-critical case, this equation would
imply λ̄ < γ̃, in contradiction to the condition (6.3.16).



174 6 Super-critical cosmic strings

6.4 Static solution

Before investigating dynamical solutions, let us first briefly review the much simpler
and well-known case of static cosmic string geometries [Vil81, Got85, His85], i.e. the
original 4D versions of the solution discussed in Sec. 5.3.2 for a pure tension source.
After setting to zero all time-derivatives, the vacuum equations (6.3.4) can easily be
integrated, yielding

α(r) = α1 ln

(
r

r0

)
, η(r) = α2

1 ln

(
r

r0

)
+ η0 , (6.4.1)

where we already used a local rescaling of t and r to set α0 = 0. The same holds in the
interior, but here the regularity conditions (6.3.5) imply α̃1 = η̃0 = 0, so the geometry
inside the cylinder is Minkowski. The two constants α1, η0 and the azimuthal pressure
p̄φ are then determined by the junction conditions (6.3.20), (6.3.21) and (6.3.23):9

η0 = − ln
∣∣1− λ̄∣∣ , α1 = 0 = p̄φ . (6.4.2)

Hence, the metric functions in the exterior are also constant, and so the spacetime
around the string is locally flat as well. However, the nonzero value of η0 corresponds
to a nontrivial global geometrical effect. This can be seen explicitly after rescaling
coordinates according to (t∗, r∗) = (eη0 t, σ eη0(r − r0) + r0). Here, the sign was chosen
such that the new radial coordinate r∗ is again increasing for super-critical tensions as
well, and the shift makes the metric continuous across the shell. Hence, the spacetime
is again covered by a single coordinate patch, in which the metric reads:

ds2 = −dt∗2 + dr∗2 + dz2 +W (r∗)2dφ2 , (6.4.3)

with

W (r∗) =

{
r∗ (r∗ ≤ r0)(
1− λ̄

)
r∗ + λ̄r0 (r∗ > r0) .

(6.4.4)

While the ratio of physical circumference to radius equals 2π inside, it is smaller outside,
corresponding to a conical geometry with defect angle 2πλ̄ ≡ λ/M2

Pl.
For super-critical tensions λ̄ > 1, the physical circumference decreases as one moves

away from the string and vanishes for some r1 > r0. This means that there is a
second axis at this point in the exterior, and because the regularity condition (6.3.5b)
is violated,10 there is a conical singularity at r1.

Even though these static solutions do exist in the super-critical case, it is not a priori
clear whether they are stable (attractor) solutions. In order to answer this question, we
next investigate general time-dependent solutions. As discussed above, the fact that
the exterior space closes up in a second axis is unavoidable also in the dynamical case.
However, as we will see, the conical singularity can (at least in some cases) be avoided.

9Equation (6.3.21) is a quadratic equation in α1, which has the second solution α1 = 2, usually
referred to as the “Melvin” or “Kasner” branch [LG89, CLV99]. However, (6.3.23) would then
imply pφ 6= 0 for λ = 0, which is why we discard this branch.

10Unless λ̄ = 2; we discard this exceptional case in our discussion.
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6.5 Numerical results

The dynamical solutions can again be obtained numerically, just like for the 6D case in
Chap. 5, i.e. with the same discretization scheme and numerical algorithm as explained
in Sec. 5.3.3. The only difference—apart from the absence of the BIG terms, and the
slightly different 4D equations of motion—is that in the super-critical case the sign σ is
−1. In particular, this ensures that the constraint equation always has a real solution
for η0, unlike in Chap. 5, where this led to the criticality bound. Furthermore, the
exterior radial coordinate r decreases for super-critical tensions, ending in a second
axis r = 0. The adequate boundary condition is then α′|r=0 = 0 to avoid a curvature
singularity, while η|r=0 depends on the initial conditions; if it is nonzero, there is a
conical singularity, as for the static solution above. The boundary condition at the
interior axis remains unchanged, viz. α̃′|r̃=0 = η̃|r̃=0 = 0, corresponding to a smooth
axis.

Since our first main objective is to check whether the static solutions discussed in
Sec. 6.4 are stable, we choose the corresponding flat profile as initial data,

α̃i(r̃) = 0 = αi(r) , (6.5.1)

where the subscript i denotes evaluation at the initial time t̃i = ti = τi = 0 (without
loss of generality). For vanishing initial velocity profiles ˙̃αi(r̃) and α̇i(r), the solution
would remain static for all times. This is of course not what we are interested in, so we
will choose some nonzero profile functions. As in Sec. 5.3.3, we can parametrize them
as

˙̃αi(r̃) =
Hi

γ̃i

F̃

(
r̃

R

)
, and α̇i(r) =

Hi

γi

F
( r
R

)
, (6.5.2)

with some profile functions F̃ and F , satisfying the boundary conditions

F̃ ′(0) = 0 , F̃ (1) = 1 = F (1) . (6.5.3)

Note that in the sub-critical case the domain of definition of F is [1,∞), but for super-
critical string tensions it is the same as that of F̃ , viz. [0, 1], in which case it should
also satisfy F ′(0) = 0.

As discussed in Sec. 5.3.3, the initial data is now completely specified. It consists of
the two parameters λ̄, HiR and the two functions F̃ (x), F (x), which are all dimension-
less. Let us now present the numerical results.

6.5.1 Sub-critical tension

Before turning to the super-critical case in Sec. 6.5.2, let us first consider a dynamical
solution for a sub-critical tension. This will help us gain confidence in the numerical
solver and explicitly demonstrate that the deficit angle geometry reviewed in Sec. 6.4
is an attractor solution. As an example we choose the parameters

λ̄ = 0.5 , HiR = 0.1 , (6.5.4)
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Figure 6.1: The radial profile of α at different values of τ for a sub-critical tension. The
dots indicate the shell’s position, left of which the plotted function is α̃(r̃). After the initial
perturbation is carried away in form of outgoing gravitational waves, the metric settles back
to the static deficit angle geometry.

and the functions

F̃ (x) = 1 , F (x) = exp

[
−(x− 1)2

σ2

]
, (6.5.5)

with σ = 0.1, i.e. the initial velocity is localized around the regularized string.

Fig. 6.1 shows the combined radial profile of the metric function α̃ and α at var-
ious moments of time. The initial velocity profile leads to a rapid increase around
the position of the cosmic string. Subsequently, it falls back down, thereby emitting
cylindrically symmetric gravitational waves. Meanwhile, the coordinate position of the
cylinder (indicated as dots in the plots) stays approximately constant. The small oscil-
lations in the r-profile of α of frequency ∼ 1/R are due to waves in the interior of the
cylinder which are reflected at the axis and partially reflected at the cylinder’s surface.
At late times, α asymptotically settles back to a constant profile, i.e. back to the static
deficit angle solution we started with.

This can also be seen from Fig. 6.2a which shows the expansion rate H ≡ dα0/dτ
as a function of time. After starting with a positive value, it becomes negative, turns
around and asymptotically approaches zero. The oscillatory modulations are again due
to the gravitational waves which are moving back and forth in the interior. Finally,
Fig. 6.2b shows the effective EOS of the stabilizing pressure pφ. Again, the oscillatory
behavior is imprinted in the evolution; but more importantly, we see that it never
becomes smaller than −1, and therefore pφ is physically reasonable in the sense that
it satisfies the NEC. Furthermore, at late times it approaches zero, in agreement with
the prediction (6.4.2).

We checked that the qualitatively same behavior is found for other values of λ̄ and
HiR, as long as they satisfy the condition (6.3.14): the system always approaches the
static conical defect geometry at late times. Hence, this solution is indeed an attractor
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(a) (b)

Figure 6.2: For sub-critical tensions, both the axial expansion rate H and azimuthal pressure
pφ oscillate and approach zero at late times, in accordance with the analytic predictions for
the static solution. The numerical error estimates do not exceed the line thickness.

in the case of sub-critical string tensions.11

6.5.2 Super-critical tension

Next, let us turn to the actual case of interest: super-critical string tensions. As an
example, we consider the parameters

λ̄ = 1.5 , HiR = 0.35 , (6.5.6)

and a flat initial velocity profile for both12 α̃ and α:

F̃ (x) = 1 , F (x) = 1 . (6.5.7)

This time, the system shows a qualitatively completely different behavior. Fig-
ure 6.3a shows that the expansion rate H, instead of going to zero, approaches a
constant nonzero value. This is one of the main results of the present chapter: The
static defect angle geometry is no stable solution in the case of super-critical string
tensions. Instead, the attractor solutions are those in which the string expands in axial
direction at a constant rate.

The EOS of the azimuthal pressure is depicted in Fig. 6.3b. It also approaches
a constant value at late times; but more importantly, it is again always larger than
−1 and hence consistent with a radial stabilization by means of physically reasonable
matter. However, the asymptotic value of pφ/λ depends on the tension, as will be
discussed in Sec. 6.6, which will ultimately lead to a break down of stabilizability.

11These are of course just the 4D versions of the stable solutions found in Chap. 5 for vanishing BIG
terms (rc = 0).

12This choice can be justified a posteriori, because the attractor solutions at asymptotically late
times approach roughly constant r-profiles. But we checked that the same attractor solutions are
approached for other initial velocity profiles, like e.g. a Gaussian as before. Furthermore, they are
still approached if HiR is made smaller, i.e. if the system is perturbed with less energy.
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(a) (b)

Figure 6.3: For super-critical tensions, the axial expansion rate H and azimuthal pressure
pφ both tend to constant, nonzero values at late times. This shows that the static solution
is not an attractor anymore. The numerical error estimates are indicated by the gray bands.
The dashed lines correspond to the analytic predictions derived in Sec. 6.6.

The radial coordinate position of the cylinder is now no longer approximately con-
stant, but approaches a constant velocity, as can be seen in Fig. 6.4. Quite remark-
ably, it turns out that in the exterior coordinate patch, this asymptotic velocity is 1
(within the numerical uncertainties); this is just the speed of light, since in the coordi-
nates (6.3.3) radial light rays correspond to dr = ±dt. This means that no signal from
beyond the dashed line in Fig. 6.4b can ever reach the string, drawn as a solid (green)
line, or in other words: A horizon is formed outside the super-critical cosmic string.
This is the second main result of our analysis.

On the other hand, the asymptotic velocity in the interior coordinate patch is less
than 1, so no horizon is formed inside the regularized string. Note that, even though
the exterior speed asymptotically approaches unity, it always stays below 1. Otherwise,
there would also be contradictions because: (i) the shell represents a massive object,
which can not travel exactly at the speed of light; (ii) moving at the speed of light is
a coordinate invariant statement, so if it did hold in the exterior, it would also have to
hold in the interior coordinate patch.

In the example we showed in Fig. 6.4, the conical singularity at r = 0, from the
string’s point of view, is hidden behind the horizon. However, this is no generic feature
of the solutions, because the actual position of the horizon depends on the initial
condition HiR: smaller values move the dashed line in Fig. 6.4b to the left. By choosing
HiR small enough, the horizon can be pushed so far that it crosses the axis, implying
that the conical singularity is no longer hidden. But as will be shown in Sec. 6.7, for
time dependent geometries the conical singularity can be avoided altogether.

6.5.3 Radial geometry

As already mentioned, the intrinsic geometry on the cylindrical shell is fully character-
ized by the axial expansion rate H, because after fixing R this expansion is the only
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(a) interior (b) exterior

Figure 6.4: For super-critical string tensions, the shell’s position approaches a constant
velocity in the interior and in the exterior coordinate patch. In the interior, this asymptotic
velocity is < 1 and its actual value depends on λ̄. In the exterior, it is generically = 1,
implying a horizon. The coordinates in either patch only range from the axes to the shell, so
the gray regions are not part of the spacetime.

nontrivial feature of the induced metric (6.3.6). However, the full metric (6.3.3) con-
tains much more information, namely how space inside and outside the shell is curved
in the radial direction, and how it evolves in time. The interior is of particular interest
because we want to model a cosmic string with no strong dynamics inside, and so we
would like the interior cross-sectional area to be approximately constant in order to
have a successful regularization. Fixing R only keeps the shell’s circumference constant,
but does not a priori say anything about the area. The constant velocity of the shell
in the interior could even lead one to suspect that the area might actually be growing.
However, the constancy of the velocity is of course a coordinate dependent statement,
so one has to look at the invariant13 area. Furthermore, it would be nice to get some
intuition about what the exterior geometry actually “looks like”.

The radial warping of the full metric can be visualized by drawing embedding dia-
grams of the two-dimensional temporal and axial slices (i.e. t, z = const) in a fictitious
three-dimensional space. These diagrams are shown in Fig. 6.5, where the interior is
drawn red and the exterior green. The series of diagrams in each row corresponds to
snapshots taken at equidistant times τ , starting at τ = 0 on the left and increasing to
the right.

13It is still slicing dependent, but this does not affect the question whether the area is asymptotically
constant or growing.
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(a) Sub-critical (λ̄ = 0.5): After the Einstein-Rosen waves have been emitted, the geometry
asymptotically settles to the static defect angle solution. An animation is included in this thesis
as a flip-book in the bottom right corner.

(b) Super-critical (λ̄ = 1.5): The interior initially oscillates and settles to a constant profile at
late times. The exterior keeps growing, and the light ray stays at a finite distance away from
the shell, due to the horizon.

(c) Super-critical (λ̄ = 1.5), without a conical singularity. The qualitative behavior is the same
as before.

Figure 6.5: Embedding diagrams of the radial geometry at equidistant time steps ∆τ . The
interior of the regularized string is drawn red, the exterior green. In the super-critical cases,
a light ray emitted from the exterior axis towards the shell is drawn as a solid blue line,
visualizing the formation of a horizon.
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Fig. 6.5a corresponds to the sub-critical case λ̄ = 0.5. The exterior space is cut off
at some finite radius in the pictures, but actually extends to infinity. One can clearly
see how the shell creates a deficit angle, making the exterior space conical. As time
evolves, the disturbance induced by the initial conditions moves outwards in the form of
a cylindrical gravitational wave, and the geometry asymptotically settles to the static
defect angle solution.14

(a) (b)

(c) (d)

Figure 6.6: Interior (left column) and exterior (right column) area of the super-critical
cosmic string geometry with (upper row) and without (lower row) conical singularity at the
exterior axis. The interior area approaches a constant value in accordance with the analytic
prediction (6.6.10) (dashed lines), confirming a successful stabilization, whereas the exterior
area keeps growing.

The super-critical case λ̄ = 1.5 is shown in Fig. 6.5b. Here, the exterior space closes
up and ends in a conical singularity, making the space compact. The causal structure
is visualized by adding a radial light ray that is initially emitted from the exterior
axis (solid blue lines). Asymptotically, it stays at a finite distance away from the
shell, in accordance with the formation of a horizon. Furthermore, one can already
see from these diagrams that the interior area indeed stays approximately constant,
in accordance with a successful stabilization, whereas the exterior area increases. To
make these statements more quantitative, Fig. 6.6a shows the interior cross-sectional

14The initial defect angle is slightly larger than the final one, because the initial kinetic energy gives
an additional contribution.
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2D area

Ã(τ) := 2π

∫ r̃0(τ)

0

r̃ eη̃−2α̃ dr̃ . (6.5.8)

The gravitational waves moving back and forth inside the shell give rise to very small
oscillations of this area, but at late times it indeed approaches a constant value. In
Sec. 6.6 we will derive an analytic prediction for its value, which is shown as a dashed
line. Hence, our numerical solution can indeed be viewed as a successful regularization
of a stabilized cosmic string. On the other hand, the exterior area A(τ), plotted in
Fig. 6.6b, gets larger at an asymptotically constant rate.

Finally, Fig. 6.5c shows the embedding geometry for the same super-critical tension
λ̄ = 1.5, but with initial conditions which remove the conical singularity, as discussed
in Sec. 6.7. These nontrivial initial conditions lead to a much more rapid increase in
the exterior area for the first time steps. But apart from that, the qualitative behavior
is the same as in the case with conical singularity. In particular, the interior area
again approaches the constant value and the exterior size keeps growing, see Figs. 6.6c
and 6.6d. However, the asymptotic growth rate is smaller than in the conical case,
showing that the speed at which the exterior space gets larger is not only set by the
string tension, but also influenced by the amount of C-energy that is needed to smooth
out the conical singularity.

6.6 Analytic results

From the numerical investigations we learned that for super-critical string tensions, the
system asymptotically approaches a constant axial expansion rate H at late times. In
this section, we will derive the analytic relation between the tension λ̄ and HR. To
this end, we first of all make use of the fact that the numerical results reveal another
quite generic behavior: For different choices of initial conditions the shell generically
approaches a constant (coordinate) velocity

˙̃r0(t̃)→ ṽ < 1 and ṙ0(t)→ 1 . (6.6.1)

Plugging this into (6.3.12), we conclude that γ̃ and γ also approach constants:15

γ̃ → HR

ṽ
, γ → HR . (6.6.2)

Substituting this into the junction condition (6.3.20), we obtain

λ̄ = HR

(
1 +

1

ṽ

)
. (6.6.3)

15Using (6.6.2) to eliminate γ in (6.3.20) shows that the solution asymptotically approaches the critical
bound (6.3.15) from above.
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This is not yet the relation we are looking for, because it still contains the additional
unknown parameter ṽ. But the numerics show that the value of ṽ only depends on λ̄
(and not on the initial conditions). Hence, there should be a second relation between
the parameters lifting the degeneracy of (6.6.3). However, in order to derive this
relation analytically, one needs to know the complete interior geometry of the attractor
solution. Fortunately, it turns out that this solution can indeed be found.

We look for a solution α̃ which leads to a shell coordinate which is changing at a
constant rate ṽ, i.e. r̃0 = ṽt̃.16 Together with (6.3.9), this condition fixes the time
dependence of α̃0:

α̃0 = ln

(
ṽt̃

R

)
, (6.6.4)

In order to extend this function into the interior space of the shell, we look for scaling
solutions of (6.3.4a) which depend on r̃ only through the ratio x := r̃/t̃. The only
solution of this type, which is also compatible with (6.6.4), is17

α̃(t̃, r̃) = ln

[
t̃

Ω

(
1 +
√

1− x2
)]

with Ω :=
R

ṽ

(
1 +
√

1− ṽ2
)
. (6.6.5)

Integrating (6.3.4b) and (6.3.4c) then yields

η̃(t̃, r̃) = 2 ln

(
1 +
√

1− x2

2
√

1− x2

)
, (6.6.6)

where the elementary flatness condition η̃|r̃=0 = 0 was implemented. The complete
scaling solution for the interior region now reads

ds̃2 =
(

1 +
√

1− x2
)2
[

Ω2

4

(
−dt̃2 + dr̃2

t̃2 − r̃2

)
+
t̃2

Ω2
dz2

]
+

(
Ωx

1 +
√

1− x2

)2

dφ2 , (6.6.7)

which is an exact vacuum solution of the Einstein equations.
We can now evaluate (6.6.6) at the shell, use (6.3.13) and (6.6.2) to finally obtain

HR =
4ṽ
√

1− ṽ2(
1 +
√

1− ṽ2
)2 . (6.6.8)

This is the second relation we were looking for.18 The two equations (6.6.3) and (6.6.8),
which allow to determine the parameter combination HR as a function of the tension
λ̄, are the main analytical result of our work. For small velocities ṽ � 1 we find a
linear dependence

HR ≈ λ̄− 1 . (6.6.9)
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Figure 6.7: There are scaling solutions only for λ̄ < 27/16 ≈ 1.69. Above that value
the system (6.6.3) and (6.6.8) has no real solution. Below, there are two branches, one
corresponding to ṽ < 4/5 and the other to ṽ > 4/5. The red dots, showing the numerical
results, single out the former branch as being the attractor solution and thus physically
interesting.

The exact system does not possess solutions for arbitrarily large tensions. In fact,
there is the rather stringent bound λ̄ < 27/16 ≈ 1.69 corresponding to a velocity
ṽ = 4/5. Below that value there are two branches of solutions corresponding to ṽ < 4/5
and ṽ > 4/5. Only the former branch turns out to be an attractor. These results are
summarized in Figs. 6.7 and 6.8. The solid curves depict the analytical result for
the attractor branch, whereas the dashed curves show the other branch. Each dot
corresponds to one run of the numerics for different values of λ̄. The number of time
step was chosen such that the convergence of H and ṽ was sufficiently accurate. The
corresponding error bars, usually not exceeding the size of the dots, are also shown.
The dots lie almost perfectly on the solid line, confirming our analytical predictions.
Moreover, Fig. 6.8 nicely illustrates that the linear dependence of HR on λ̄ in (6.6.9),
drawn as a dotted line, is a very good approximation for almost the whole regime.

At first sight, the physical origin of the bound λ̄ < 27/16 is unclear because it looks
as if the system cannot be solved for larger tensions. This puzzle can be resolved by
calculating the pressure in φ-direction, which we implemented to stabilize the physical
circumference of the shell. This can be done by evaluating (6.3.23) for the scaling
solutions described above. The resulting relation between pφ and λ̄ is shown in Fig. 6.9.
We see that for λ̄ < 128/81 ≈ 1.58, the EOS of pφ satisfies the NEC, i.e. it is greater

16For simplicity, we assume that initially r̃0 = 0. The general case with an initial offset, which has to
be used when comparing to the numerical solutions, is simply obtained by letting t̃ 7→ t̃+ const.

17This solution was also obtained in [Ech93].
18Note that, even though it relates local shell parameters, it implicitly depends on the entire interior

geometry through the use of (6.6.6); for instance, it knows about the regularity at the axis.
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Figure 6.8: The axial expansion rate of the super-critical string as a function of the tension
λ̄. The linear relation (6.6.9) corresponds to a good approximation.

than −1. This means that the shell can be stabilized by means of physically reasonable
matter. However, for λ̄ > 128/81—which happens before the maximum value 27/16 is
reached—the EOS drops below −1, indicating that the shell can no longer be stabilized.
Consequently, we should not trust the scaling solutions in this regime because their
derivation relied explicitly on that assumption. In this regime a different approach that
allows for an angular expansion of the shell is needed. This would require to go beyond
the effective shell description of the transverse sector and could for instance be achieved
by studying the full Nielsen-Olesen (NO) setup, as done numerically in [Cho98]. This
work also allows for a nontrivial cross-check of our effective description: In [Cho98]
it was found that a string with unit winding number starts expanding in transverse
directions once λ̄ > 1.57 ± 0.06.19 This is in perfect agreement with our result. Note
that at this point HR is already close to one, and we are therefore no longer insensitive
to the microscopic details of the string. The perfect numerical agreement between both
approaches thus seems to be an accident, and indeed, for higher winding numbers, the
stability bound derived in the NO setup is slightly below the one derived in our setup.
This demonstrates that quantitative predictions get sensitive to the underlying UV
model once HR is of order one.

We also checked explicitly that the numerically determined radial profiles of α̃ and η̃
approach the analytic solutions (6.6.5) and (6.6.6), respectively. Within the numerical
error bars, we found perfect agreement after the system was evolved sufficiently far in
time.

Another consistency check of our analysis concerns the cross-sectional area of the
interior space. As argued before, the area should be constant for the regularization to

19The translation to our variables is achieved via the identification λ̄ = 8π|n|η2/m2
p, which holds in

the Bogomol’nyi limit.
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Figure 6.9: The string can be radially stabilized by physical matter as long as λ̄ < 128/81 ≈
1.58. For larger values of the tension the required azimuthal pressure violates the NEC,
indicating a breakdown of stabilizability.

work properly. After substituting the scaling solution in (6.5.8), we find

Ã = πR2

(
1 +
√

1− ṽ2
)2

4ṽ2

∣∣ln (1− ṽ2
)∣∣ , (6.6.10)

which reduces to the flat space result in the limit ṽ → 0, as expected. Most impor-
tantly, this expression is time independent (and finite for ṽ < 1) showing that our
regularization scheme is stable. The analytical value is depicted in Figure 6.6a as a
dashed line. It is approached by the numerical solution consistently.

The fact that the area inside the shell is exactly constant for the scaling solution
suggests that the radial movement of the shell is just a coordinate relict. Indeed, as
shown in Appendix 6.B, one can introduce new coordinates for which the shell sits at a
constant coordinate position and the whole time dependence of the metric is related to
the expansion in axial direction. Moreover, it will be show that the scaling solution is
equivalent to a solution discussed by Witten [Wit82] and Gregory [Gre03], describing a
“cigar” shaped universe. In both works the vacuum solution was discussed but without
matching it to an actual matter model. To our knowledge this has been achieved for
the first time within our super-critical string setup.

One might wonder whether the analytic scaling solution discussed above could also
describe the asymptotic form of the exterior spacetime by simply replacing ṽ by v = 1.
However, this cannot work because Eq. (6.6.8) could then also be derived from the
exterior20 and would thus give the contradictory result HR = 0. Thus, the actual
exterior solution cannot converge to the v = 1 scaling solution, at least not everywhere.
This can also be understood by realizing that in the scaling solution the shell moves

20It would only differ by the finite and constant overall factor exp(−η|r=0) corresponding to the
conical singularity at the exterior axis.
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at constant (coordinate) velocity; hence, for v = 1 it would always move exactly with
the speed of light, which is impossible for a massive shell (and would also contradict
ṽ < 1, as already mentioned earlier). In other words, the actual attractor solution in
the exterior would have to be one in which the shell’s speed is not constant but only
approaches 1 at late times, and can thus not be the simple scaling solution.

Nevertheless, we found that the numerical solution does indeed approach the v = 1
scaling solution for most r including the axis, but starts to deviate from it close to the
shell. Moreover, the concrete form of these deviations remains sensitive to the initial
conditions for all times, so it seems impossible to make any further generic statements
about the full exterior attractor solution.

The convergence towards the scaling solution sufficiently far away from the string
can also be seen qualitatively in the embedding diagrams in Figs. 6.5b and 6.5c, which
nicely agree with the cigar shape of the scaling solution. The cigar keeps growing and
presumably becomes infinitely long as τ →∞, cf. Figs. 6.6b and 6.6d.

Our results are also relevant for 6D braneworld models. In this case the string is
replaced by a 3-brane corresponding to our universe. A generalized version of Eq. (6.6.9)
then plays the role of a modified Friedmann equation. This higher dimensional picture
is discussed in Sec. 6.9.

Finally, let us emphasize that the relation we derived here relates the expansion
rate to the tension of the (regularized) super-critical string. The conical singularity
at the exterior axis can be interpreted as another (unregularized) sub-critical string.
This point of view was for instance taken in Ref. [Gre03], where only the sub-critical
brane was identified (in a 6D context). However, the corresponding deficit angle—and
thus the tension of this sub-critical string—is not generically related to the expansion
rate. Instead, it can be chosen independently, and in particular even be set to zero,
as we will show in the next section (see also Fig. 6.5c). What was missed in [Gre03]
is the second, super-critical brane, which is actually responsible for the inflationary
behavior. In summary, a sub-critical string only creates a deficit angle and does not
inflate, whereas a super-critical string inflates in axial direction at the rate determined
by the system (6.6.3) and (6.6.8).

6.7 Removing the conical singularity

In Sec. 6.4, we saw that for super-critical string tensions, the static solution necessarily
has a conical singularity at the exterior axis. This means that the vacuum Einstein
equations are actually not satisfied there; instead, there is a second (unregularized,
sub-critical) string sitting at the axis, the tension of which must be suitably dialed
according to the tension of the original (regularized, super-critical) string. This is of
course rather unsatisfactory, because we wanted to model a single super-critical cosmic
string. Physically, there is no reason why the second string should be necessary.

This suggests that the second string—or equivalently, exterior conical singularity—
is an artifact caused by the too strong assumption of having a static geometry. And
indeed, for time dependent solutions, this need not be the case. The absence of a
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conical singularity is equivalent to η|r=0 = 0. Using the vacuum field equation (6.3.4b),
we can rewrite this as

η|r=0 = η0 −
∫ r0

0

r
[
(∂tα)2 + (∂rα)2] dr

!
= 0 . (6.7.1)

For (regular) static solutions, α is constant and so η|r=0 = η0, which is nonzero. But
for time dependent solutions, the integral in (6.7.1) is positive. Hence, if η0 > 0, one
can always chose initial conditions for α, such that (6.7.1) is fulfilled at the initial time.
But then it will in fact be fulfilled for all times, since the constraint (6.3.4c) implies
that ∂tη|r=0 = 0 (if α is regular, which we assume). Whether η0 is positive, again
depends on the string tension and the initial conditions for α̃. Specifically, using the
junction condition (6.3.20), one can show that (for super-critical tensions) η0 > 0 is
equivalent to

λ̄ < γ̃ +
√

1 +H2R2 . (6.7.2)

Thus, if λ̄ lies inside the non-empty interval

γ̃ + |H|R < λ̄ < γ̃ +
√

1 +H2R2 , (6.7.3)

the conical singularity at the exterior axis can always be removed by a suitable choice
of initial data for α.

In the numerical examples that we studied, condition (6.7.2) was always satisfied.
Indeed, for the flat profile function F (x) = 1, the initial constraint (6.3.4b) implies
that the bound (6.7.2) is well above the bound λ̄ < 27/16, beyond which the solutions
discussed above are no attractors anyway, see Fig. 6.10.

However, the rather arbitrary choice of initial profiles (6.5.7) does not automatically
lead to a smooth axis. But we checked that the late time asymptotic behavior, as well
as the relation between string tension and expansion rate, still persist if the initial data
for α is deformed such that (6.7.1) is satisfied and the exterior geometry is perfectly
smooth.

In other words, the deficit angle at the exterior axis corresponds to a sub-critical
string that is put there in addition to the actual super-critical string of interest. Its
tension is a parameter that is completely controlled by the initial data; in particular, it
can be set to zero whenever (6.7.3) is satisfied. Furthermore, the asymptotic expansion
rate H of the attractor solutions is completely insensitive to this sub-critical string and
is instead set by the tension of the super-critical string. This can also be understood
from the formation of the horizon: an observer co-moving with the cylindrical shell
cannot even see the axis (at least for certain initial conditions), and hence cannot tell
whether there is a conical singularity or not. Therefore, intrinsic quantities like H
cannot depend on the exterior defect angle either.

The fact that the conical singularity can be removed in the dynamical case, while
being physically satisfactory, raises another question: How does the system know which
side of the shell is the interior and which the exterior? After all, both regions are
described by the same metric ansatz and share the same boundary conditions at the
axes. Still, the numerical results show that the shell’s velocity approaches unity only
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in the exterior, implying that the two regions do in fact evolve differently. Clearly,
this difference must already be incorporated in the initial conditions. If those were
completely symmetric as well, no difference between “inside” and “outside” could ever
emerge.

And indeed there is such a difference: the difference between η̃0i and η0i, measuring
the gravitational C-energy21 in the interior and exterior, respectively. In the case in
which the exterior conical defect was removed, this difference was caused by choosing
a nontrivial initial profile for α only in the exterior. In the case with conical sin-
gularity, both initial profiles were chosen identically, but the localized energy-density
corresponding to the conical defect also adds to the exterior C-energy, while there is
no such contribution in the interior. Thus, in both cases η0i was larger than η̃0i, or in
other words, there was more C-energy in the exterior than in the interior.

The symmetry of the setup then implies that the opposite also holds: If we inter-
change initial conditions, such that there is more C-energy in the “interior”, then the
velocity will approach 1 there, and a constant < 1 in the “exterior”. But in this situ-
ation, we would simply interchange the names “interior” and “exterior”, because there
should not be a horizon in the interior if we want to view it as a regularization of a thin
cosmic string. Hence, the initial conditions should always be chosen such that there
is less C-energy in the interior; or equivalently, the side with less C-energy should be
identified as the actual interior. Note that, in particular, this qualification of inside
and outside does not depend on whether there is a conical singularity at either axis.

As already remarked, in the completely symmetric case η̃0i = η0i there can be no
difference between inside and outside. In fact, we found that there is a finite region22

η̃0i ≈ η0i for which no difference emerges. In these cases both velocities approach unity,
and so one cannot identify an interior, and can thus not speak of a regularized cosmic
string. We therefore did not further investigate these cases.

6.8 Parameter plot

Our findings can nicely be summarized in the parameter plot shown in Fig. 6.10. It
assumes a trivial radial profile of α̃, which we chose as initial data for the numerics.
(If the radial profile is nontrivial, η̃0 is not rigidly related to HR, and so the parameter
space becomes three-dimensional. Hence, this plot is only valid at initial time.)

In the bottom region (purple), the string is sub-critical and the static defect angle
solution is an attractor. In the intermediate region between the solid purple and orange
curves, the system is critical; this region is not covered in the present work. Above
the orange curve, the string is super-critical, and in the shaded region (orange) it
approaches the axially expanding scaling solutions discussed in this chapter. The upper
bound of this region is λ̄ = 27/16 ≈ 1.69, beyond which there is no solution for ṽ(λ̄)
anymore and hence the geometry cannot approach the scaling solutions, cf. Sec. 6.6.

21Cf. Secs. 2.7 and 5.3.3.
22We did not investigate this more quantitatively.
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Figure 6.10: Region plot of parameter space at the initial time, when α̃(r̃) = 0. The purple
and orange curves are the borders between the sub-, critical, and super-critical regimes. In
the purple region the static solutions are stable, whereas in the orange region the inflating
scaling solutions are approached. Above the dotted line the radial stabilization breaks down;
above the dashed curve the conical singularity at the exterior axis would become unavoidable.

However, before this bound is reached, the required azimuthal pressure pφ violates
the NEC for λ̄ = 128/81 ≈ 1.58 (dotted black line), which should be interpreted as
the statement that the string thickness cannot be stabilized anymore, in accordance
with [Cho98]. Therefore, we did not further investigate the upper white region. Finally,
the dashed black curve corresponds to the bound (6.7.2), beyond which the conical
singularity at the exterior axis cannot be removed. It is well above the orange region,
implying that in the cases we studied, which dynamically approach the analytic scaling
solutions of Sec. 6.6, the conical singularity can always be removed.

6.9 Braneworld in 6D

The above results can easily be generalized to the case of a six-dimensional braneworld
model, in which the string is promoted to a 3-brane describing our universe. The
corresponding metric and field equations are those of Sec. 5.3, with the BIG terms set
to zero (they will be included again below). The system can then be solved numerically
in a similar fashion, and the results that we found are also analogous:23 The axial
expansion rate H, which in this case corresponds to the ordinary Hubble parameter,
approaches again a constant, nonzero value. Furthermore, the coordinate velocity of the

23After the publication of [NS15b], we also found a different class of attractor solutions in 6D, for
which both asymptotic coordinate velocities are less than 1, and both the interior as well as the
exterior metric is of the scaling form (6.9.3) at late times. These solutions will be discussed in
more detail elsewhere.
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brane exhibits the same asymptotic behavior (6.6.1) as in the 4D case, thus implying

γ̃ → 3HR

ṽ
, γ → 3HR . (6.9.1)

Using the 6D version of (6.3.20), we find

λ̄ = 3HR

(
1 +

1

ṽ

)
, (6.9.2)

where now λ̄ := λ/ (2πM4
6 ), with M6 denoting the six-dimensional Planck mass and λ

the energy per 3D string volume, corresponding to a 4D vacuum energy. The analytic
solutions in the interior can be derived in the same way as before, resulting in

α̃(t̃, r̃) =
1

3
ln

[
t̃

Ω

(
1 +
√

1− x2
)]

, η̃(t̃, r̃) =
4

3
ln

(
1 +
√

1− x2

2
√

1− x2

)
, (6.9.3)

still with x ≡ r̃/t̃ and Ω as defined in (6.6.5). This enables us to generalize (6.6.8) to

3HR = ṽ
(
1− ṽ2

) 1
6

(
2

1 +
√

1− ṽ2

) 4
3

. (6.9.4)

As before, in the physically relevant regime where HR� 1, we can analytically elimi-
nate ṽ from the system (6.9.2) and (6.9.4), yielding a modified Friedmann equation

3HR ≈ λ̄− 1 . (6.9.5)

It should be noted that for a realistic value of the regularization scale, say R ∼ TeV−1,
this equation would again require a tremendous amount of fine tuning between the two
terms on the right hand side in order to describe the observed accelerated expansion of
the universe. For generic values of the 4D vacuum energy λ̄ & O(1), Eq. 6.9.5 predicts
H ∼ R−1. Thus, these super-critical solutions within pure six dimensional GR cannot
help with the cosmological constant problem.

The inclusion of the BIG terms can be accomplished by simply replacing λ̄ by λ̄ −
3r2

cH
2. In the limit HR → 0, this leads to the corresponding modified Friedmann

equation

3M2
PlH

2 ≈ λ− λcrit . (6.9.6)

This is the standard 4D equation, with the vacuum energy shifted by an amount λcrit ≡
2πM4

6 . Since M6 ∼ 10−3eV (for a crossover of order of today’s Hubble radius), this
can again clearly not help with the CC problem. Moreover, since λcrit is constant—
i.e. fixed by the model parameter M6—it cannot readjust if λ changes (as during a phase
transition), and so this presents no dynamical degravitation mechanism, but rather a
small trivial shift in the 4D CC. This is in contrast to the sub-critical cosmology setup
discussed in Chap. 5, where the brane tension was absorbed by the deficit angle, which
can adjust dynamically.
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Furthermore, it is a priori not clear whether the super-critical region in 6D BIG is
ghost-free. Even though this is suggested by extrapolating the stability line found in
the sub-critical region in Chap. 5 above the criticality bound, this issue would have
to be investigated more rigorously. However, we did not further ascertain this matter,
since the model does not seem very promising anyway.

But it should be noted that since the extra space is necessarily compact for a super-
critical brane tension, we are not dealing with infinite extra dimensions anymore; ac-
cordingly, one expects ot find a 4D behavior of gravity at length scales well above the
corresponding Kaluza-Klein scale, i.e. the transverse bulk size, as in other related mod-
els like [AHDD98, ABPQ04]. Therefore, the BIG terms are not necessary anymore to
recover 4D GR, and could even be discarded altogether.

Even if this model cannot solve the CC problem, it might still provide an interest-
ing (and consistent!) late time modification of cosmology. Of course, so far we only
discussed the simplest case of a pure tension brane. If one were to model a more realis-
tic cosmological setup, the brane would also be equipped with other fluid components
like dust or radiation. However, a preliminary numerical analysis revealed that the
corresponding solutions are generically not stable; instead, the geometry undergoes a
gravitational collapse. In fact, this is not too surprising, since we are here dealing with
a compact bulk geometry, but did not include any stabilization of the extra dimensions.
But there might still be a stable window for small enough dust components; otherwise,
one could try to add some sort of bulk stabilization mechanism.24 All of these issues
are beyond the scope of this thesis, and are left for future research.

6.10 Conclusion and outlook

In this chapter, we studied the geometry of a single super-critical cosmic string. In a
marginally super-critical regime, 1 < λ̄ . 1.6, the string can consistently be modeled as
a cylindrical shell of fixed circumference 2πR. Within this parameter region, there are
well known static solutions for which the geometry is compact and closes in a second
singular axis away from the string. By numerically solving the full system of vacuum
and shell matching equations, the instability of the static solution was demonstrated.
It was shown that the system instead asymptotically approaches a time-dependent
attractor solution with the following properties:

• The string expands in axial direction at a constant rate.

• A horizon is formed away from the string.

• The bulk geometry remains compact but becomes cigar-shaped and expands.

• The exterior conical singularity can always be avoided in these dynamical solu-
tions.

24A related 6D model, compactified and stabilized via flux quantization, but with sub-critical brane
tensions, will be discussed in Chap. 7.
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Moreover, an analytic relation between the tension λ, the string thickness R and the
expansion rate H was derived.

Generalized to six-dimensional GR, these solutions correspond to a simple brane-
world model with a single super-critical, pure tension brane. Since the extra dimensions
are compact, the BIG terms are no longer a vital ingredient, and could even be dropped.
The corresponding modified Friedmann equation is given by Eq. (6.9.5). Unfortunately,
the parameters of the model have to be fine-tuned to be in accordance with the observed
accelerated expansion of the universe. Whether it could still provide an interesting late
time modification remains to be seen. One possible alternative idea would be to identify
our universe not with the super-critical, but with the sub-critical brane which can sit at
the opposite axis. This would have the advantage that the corresponding brane width is
not related to R, and could be much smaller; in turn, HR . 1 would not necessarily be
a problem. Furthermore, the new class of attractor solutions alluded to in Footnote 23
deserve further attention. In particular, it would be interesting to see whether there are
stable solutions for nonvanishing dust-components. If so, these super-critical solutions
might provide an interesting arena for a new spontaneous compactification mechanism,
as well as consistent IR modifications of GR and cosmology.





Appendix to Chapter 6

6.A Classification of exterior geometries

In this appendix, we give a complete classification of the character of a vacuum space-
time described by the metric (6.3.1), depending on the gradient ∇W ≡ (∂t∗W,∂r∗W ).
Furthermore, we discuss which changes of character are admissible in vacuum, as well
as across shells of matter and show how the change of character across such a shell
depends on the surface energy density. Even though we concentrate on the case of 4D
GR, the discussion applies similarly to 6D GR with the metric (5.3.1).

Character Orientation of ∇W W ′
+ W ′

−

D+ spacelike outward > 0 < 0
D− spacelike inward < 0 > 0
D↑ timelike future > 0 > 0
D↓ timelike past < 0 < 0
D+↑ light-like outward-future > 0 = 0
D+↓ light-like outward-past = 0 < 0
D−↑ light-like inward-future = 0 > 0
D−↓ light-like inward-past < 0 = 0
D× zero = 0 = 0

Table 6.A.1: Definition of spacetime character, depending on the gradient of W .

Following Thorne [AT92, Appendix A], we define the “character” of spacetime de-
pending on the orientation of ∇W as summarized in Table 6.A.1. Here and henceforth,
“outward”(resp. “inward”) means in direction of increasing (decreasing) r∗, and“future”
(“past”) refers to the direction of increasing (decreasing) t∗. In vacuum, W satisfies the
(1+1)D wave equation ∂2

t∗W = ∂2
r∗W , the general solution of which can be written as

W (t∗, r∗) = W+(t∗ + r∗) +W−(t∗ − r∗) . (6.A.1)

It easy to verify that each orientation of ∇W corresponds to a certain choice of signs
for the derivatives25 W ′

+ and W ′
−, as listed in Table 6.A.1.

25Here and henceforth, the primes acting on W± denote the derivative with respect to their argument
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6.A.1 Changes of character in vacuum

Let us now discuss which changes of character are allowed in vacuum regions. The above
discussion shows that a change of character is equivalent to a change of sign of W ′

+ or
W ′
−. Thus, on the boundary between two spacetime regions of different character, we

have W ′
+ = 0 or W ′

− = 0. But since these functions are constant along null-surfaces, it
follows that in vacuum, the character can only change across null-surfaces.

Furthermore, since W ′
+ is constant along an incoming light-ray (dt∗ + dr∗ = 0),

the only possible changes along incoming rays are those in which W ′
− changes sign,

i.e. changes within the following sets:

{D+, D↑, D+↑} , {D−, D↓, D−↓} , {D+↓, D−↑, D×} .

Similarly, along outgoing null-rays (dt∗−dr∗ = 0), the character can only change within

{D+, D↓, D+↓} , {D−, D↑, D−↑} , {D+↑, D−↓, D×} .

However, there is a further restriction on the directions of changes within all these
sets, coming from the focusing theorem for null geodesics [AT92, MTW73]: It says
that d2W/dσ2 ≤ 0, where σ is the affine parameter along the null geodesic. Hence, the
functions W ′

+ and W ′
− cannot get larger along any null rays. Thus, e.g. for the first

set, the only admissible changes are

D↑ → D+↑ → D+ , (6.A.2)

and similarly for the other sets. All changes that are finally possible, are summarized
schematically in Fig. 6.A.1a: they are exactly those changes which are encountered
along any incoming or outgoing null ray in this diagram. Note that in the gray shaded
regions the Jacobian of the transformation (6.3.2) vanishes, and so these coordinates
can only be adopted in any of the white regions separately. Furthermore, the new
coordinate r which is set equal to W will be a spatial coordinate for D+ and D−, but
a temporal coordinate for D↑ and D↓. In a D+ (resp. D−) region, r decreases as one
moves inward (outward); it cannot start increasing again, because this would require
a change to D− (D+), which is not admissible. Hence, it decreases until eventually
r = 0, implying an axis that delimits spacetime, as advertised in Sec. 6.3.2. (Similar
statements hold in the temporal case, but there the “axes” correspond to physical,
initial and final collapse singularities.)

There is actually a well-known example of a (vacuum) spacetime exhibiting all the
different characters: the Gowdy universe [Gow71], in which W = sin(t∗) sin(r∗). The
corresponding vector plot of ∇W is shown in Fig. 6.A.1b. The spacetime character
exactly matches that of Fig. 6.A.1a, with the gray regions degenerated to single lines.
The two axes are located at r∗ ∈ {0, π}, whereas t∗ ∈ {0, π} correspond to the Big

(not with respect to r∗), i.e. W ′±(x) := dW±(x)/dx.
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(a) All admissible changes of character in
vacuum regions can be read off from this
diagram, by following incoming or outgo-
ing null rays.

(b) The gradient of W for the Gowdy
universe, W = sin(t∗) sin(r∗). The cor-
responding spacetime character matches
that of Fig. 6.A.1a, with the gray regions
degenerated to single lines.

Bang / Big Crunch singularities.26

Coming back to our general discussion, we find another important result: It is not
possible for a vacuum region to dynamically evolve from D+ to D− or vice versa.
Therefore, a sub-critical cosmic string (for which the exterior geometry is D+, see
below) can never evolve to a super-critical string (D− exterior). In particular, super-
critical strings cannot be formed by cylindrical collapse within classical GR.

6.A.2 Changes of character across the shell

Next, let us derive the relations given in Sec. 6.3.2, relating the spacetime character
of the region outside the regularized cosmic string to its tension. In the interior, we
assume the character to be D+, in order to have a well-defined regularization. Thus,
we can safely adopt the Einstein-Rosen coordinates (6.3.3a) there. In the exterior,
however, we keep the coordinates (6.3.1) because there we do not know the character
yet. In these coordinates, the (0

0)-component of the junction conditions (6.3.17) reads

λ̄ = γ̃ − γ∗ (ṙ∗0∂t∗W + ∂r∗W ) |0 . (6.A.3)

Here, γ∗ is defined similarly to γ in (6.3.8), i.e. γ∗ := exp(−η∗0)/
√

1− ṙ∗20 and ṙ∗0 :=
dr∗0/dt

∗. Furthermore, continuity of the metric implies W0 = r̃0, which after differenti-

26By extending the range of t∗ to (0, 2π), one could construct an example where forbidden changes
like D↓ → D↑ were apparently allowed. However, they would be separated by the singularity at
t∗ = π, so they should be regarded as unphysical. More generally, the above argument using null
geodesics implicitly assumes that no singularities are present.
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ating with respect to τ yields

0 = γ̃ ˙̃r0 − γ∗ (∂t∗W + ṙ∗0∂r∗W ) |0 . (6.A.4)

Plugging the general solution (6.A.1) of W into (6.A.3) and (6.A.4), and solving for
W ′
±|0, we find

W ′
+|0 =

1

2γ∗ (1 + ṙ∗0)

(
γ̃ +HR− λ̄

)
, (6.A.5a)

W ′
−|0 =

1

2γ∗ (1− ṙ∗0)

(
λ̄− γ̃ +HR

)
. (6.A.5b)

Note that here we used the relation (6.3.12) to eliminate ˙̃r0. Since the prefactors on the
right hand side are manifestly positive, inspection of Table 6.A.1 immediately reveals
that the spacetime character at the exterior boundary of the shell is:

D+ ⇔ λ̄ < γ̃ − |H|R , (6.A.6a)

D↑ or D↓ ⇔ γ̃ − |H|R < λ̄ < γ̃ + |H|R , (6.A.6b)

D− ⇔ λ̄ > γ̃ + |H|R , (6.A.6c)

thus verifying the result stated in Sec. 6.3.2. The orientation in the timelike case
(6.A.6b) depends on the sign of H: it is D↑ for H > 0 and D↓ for H < 0. The light-like
cases correspond to the saturation of one of the inequalities, e.g. D+↑ ⇔ λ̄ = γ̃−|H|R
and H > 0, etc.

Since γ̃ =
√

exp(−2η̃0) +H2R2, the bounds on λ̄, delineating the sub-, critical and
super-critical regimes, depend on two parameters: η̃0, which measures the gravitational
C-energy inside the shell, and HR, i.e. the axial expansion rate measured in units
of inverse circumference R−1. For a flat profile ∂t̃α̃ = const. and ∂r̃α̃ = 0 (as for
the initial data in our numerics), η̃0 and HR are rigidly related via the (integrated)
constraint (6.3.4b), and so the bounds (6.A.6) can be plotted in a HR-λ̄-diagram. This
is shown in Fig. 6.10, where the region below the lower solid (purple) curve corresponds
to D+, the region in between the two solid lines is D↑ (or D↓), and everything above
the upper solid (orange) line is D−.

6.B Co-moving coordinates

It is straightforward to check that after introducing new coordinates (t̄, r̄) according to

t̄ = L ln

(
Lt̃

r2
+

√
1− x2

)
, r̄ =

r+

2

(
1 +

1√
1− x2

)
, (6.B.1)

with x ≡ r̃/t̃, the scaling solution (6.6.7) takes the form

ds̃2 =
r̄2

L2

(
−dt̄2 + e2t̄/L dz2

)
+
(

1− r+

r̄

)−1

dr̄2 + 4r2
+

(
1− r+

r̄

)
dφ2 . (6.B.2)
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Here, L is an arbitrary length scale which can be adjusted by rescaling (and shifting)
t̄. The constant r+ denotes the position of the (regular) axis in the new coordinates,
and the shell is now sitting at a constant coordinate position r̄0. The two parameters
r+ and r̄0, determining the range of r̄, are related to R and ṽ via

r+ = R

(
1 +
√

1− ṽ2
)

2ṽ
, r̄0 = R

(
1 +
√

1− ṽ2
)2

4ṽ
√

1− ṽ2
. (6.B.3)

The metric (6.B.2) is exactly the 4D version of the one discussed by Witten in
5D [Wit82] and by Gregory for general dimensionality [Gre96]. The benefit of these
coordinates lies in their simplicity which allows to read off the geometrical content
directly from the metric. The entire dynamics consists in a de Sitter-like expansion in
axial direction, whereas the radial profile—and hence in particular the interior area—is
completely static. Note that the scaling solution is only a true attractor for the interior
spacetime, i.e. the red surfaces in Figs. 6.5b and 6.5c. However, as discussed in the main
text, the exterior geometry also approaches the scaling solution with ṽ → 1 sufficiently
far away from the shell. Hence, we can use (6.B.2) also to picture the spacetime outside
the string, if we neglect a small region close to it. Then the axis at r+ corresponds
to the south pole in Figs. 6.5b and 6.5c. The case with a conical singularity is simply
obtained by appropriately adjusting the coefficient of dφ2 in (6.B.2). Moving away
from the axis towards the string, r̄ → ∞ (because in the limit ṽ → 1 Eq. (6.B.3)
implies r̄0 → ∞) and so the physical circumference approaches a constant value. The
resulting embedding picture corresponds to a cigar-shaped geometry. In the interior,
ṽ is bounded by 3/5 and so the ratio r̄0/r+ is always smaller than 9/8. At this point,
one has not yet reached the vertical part of the cigar, and so the interior embedding
geometry always corresponds to a nearly flat cap. These results nicely agree with what
was found in Figs. 6.5b and 6.5c.

6.C Validity of EFT

General Relativity viewed as an EFT is valid up to the Planck scale MP. Once the
curvature scale exceeds this value, higher order operators become important and we can
no longer trust its classical predictions. Generically, this happens once the 4D energy
density becomes of order M4

P. For a cosmic string this depends on both the tension λ
and the regularization scale R. A solid way to derive the regime of validity of the EFT
consists in considering the extrinsic curvature of the string. To be specific, let us focus
on the combination K := [Kc

c] − [K0
0] which is determined by the (0

0)-component of
the junction condition (6.3.17):

K
MP

=
λ̄

RMP

. (6.C.1)

Once K exceeds MP, we expect the EFT to break down, or equivalently, Quantum
Gravity effects to become important. The super-critical solutions we described are



200 6 Super-critical cosmic strings

valid for λ̄ ∼ O(1). Then (6.C.1) implies that classical GR is applicable if and only if
R is much larger than the Planck length LP ≡M−1

Pl . Alternatively, this result becomes
obvious when we naively estimate the 4D energy density as the ratio λ/R2 and require
it to be smaller than M4

P. In other words, even though the energy per string length
needs to be Planckian in order to enter the super-critical regime, the energy per string
volume is sub-Planckian if the string’s thickness is much larger than the Planck length.
Also note that the marginally super-critical solutions only cover the range HR < 3/4,
implying that the expansion energy M2

PlH
2 is always smaller than M2

Pl/R
2 and hence

also sub-Planckian if R� LP.



Chapter 7

The universe on a rugby ball

Note: The results presented in this chapter arose in collaboration with Florian
Niedermann and were published in [NS16a] and [NS16b].

7.1 Introduction and summary

Chapter 5 showed that the BIG mechanism is not able to achieve the phenomenolog-
ically required 4D gravity regime on a codimension-two brane with infinite extra di-
mensions, without introducing ghost instabilities. But, as already discussed in Sec. 1.3,
there is another well-known mechanism to recover a 4D gravity regime: compact extra
dimensions. The compactness implies that the low energy spectrum contains a nor-
malizable 4D graviton zero-mode which mediates the correct Newtonian 1/r2 force at
distances much larger than the size of the extra dimensions. At shorter distances, the
compact space becomes visible, resulting in a transition to the higher-dimensional scal-
ing 1/r2+n. Current torsion-balance experiments [KCA+07] set an upper limit ∼ 50µm
on the size of the extra dimensions.

While the gravitationally accessible extra dimensions could be that large, collider
experiments have currently tested non-gravitational physics up to the TeV scale. Hence,
in the large extra dimension scenario all Standard Model matter must still be confined
on a brane of size ∼ 1/TeV. Originally, this setup was proposed as a framework for
addressing the electroweak hierarchy problem [AHDD98], in which the huge difference
between the Planck and electroweak scale is due to the enormous ratio between the
bulk and brane size.1 But in the case of two large compact extra dimensions, the deficit
angle degravitation mechanism could work just like for two infinite extra dimensions,
and so one can hope to find a solution to the CC problem in this way as well.

An immediate consequence of the compactness is the need for some stabilization
mechanism that prevents the extra space from gravitational collapse. A concrete ex-

1Of course, it remains to be checked whether this hierarchy could arise in some UV theory in a
technically natural way.
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ample [Sun99] uses a U(1) gauge field with nontrivial magnetic flux through the extra
dimensions. A quantization condition fixes the total flux, so that the magnetic energy
rises if the 2D volume shrinks, thus providing a counterforce to the gravitational attrac-
tion and allowing for stable configurations in which the two effects balance each other.
This mechanism was used in [CG03]2 to construct explicit solutions of the Einstein-
Maxwell system with a bulk CC and two identical pure tension branes located at the
opposite poles of the compact space with spherical topology. Indeed, the on-brane ge-
ometry is flat in these solutions, and the sole effect of the brane tensions is to introduce
conical defects which deform the sphere into a rugby ball, see Fig. 7.1a. However, this
does not solve the CC problem because flux quantization ultimately leads to a tuning
relation between the brane tensions and the bulk CC. Violating this tuning would lead
to a nonvanishing 4D curvature of just the same size that we would have obtained
within standard GR, see [Nav03b, NPT04, GP04] (and [Bur13] for a recent review).3

(a) Without regularization, the brane is a gen-
uine codimension-two object and sits at the tip
of the rugby ball, correponding to a conical sin-
gularity.

(b) In the regularization used in Sec. 7.3, the
brane is again blown up to a codimension-one
ring, replacing the conical singularity by a flat
cap.

Figure 7.1: Embedding diagrams of the compact deficit angle—or “rugby ball”—geometry;
(ρ, θ) are the polar and azimuthal coordinates, and B measures the azimuthal circumference,
cf. Eq. (7.2.5a). The northern brane (ρ = ρ+) corresponds to our universe. The second brane
at the south pole (ρ = ρ−) will be assumed only to carry a tension and thus requires no
regularization.

In the next step [ABPQ04], the setup was supplemented with bulk supersymme-
try (SUSY), resulting in the model of supersymmetric large extra dimensions (SLED),
which will be the subject of this chapter. At the level of the classical equations of mo-

2See [CLP00, Nav03a] for similar approaches.
3Note that this failure is a crucial difference to the corresponding scenario with infinite extra dimen-

sions: there, no stabilization and hence no tuning is required to obtain 4D flat solutions. If the
brane tension changes, the bulk geometry would simply respond via adapting the deficit angle and
sending Einstein-Rosen waves out to infinity.
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tion, the only new ingredient is the dilaton φ—which renders the (classical) bulk theory
scale invariant (SI)—while all other fields can consistently be set to zero. Furthermore,
the bulk CC vanishes due to SUSY. The degravitating rugby ball solutions still exist
in this setup, provided the brane tension does not couple to the dilaton. Moreover, the
general 4D maximally symmetric solutions for two arbitrary (but dilaton-independent)
brane tensions were found analytically [GGP04], and always have Minkowski branes.
However, the situation with respect to the CC problem is not better than in the non-
SUSY case, because flux quantization still requires the brane tensions to be fine-tuned
against the flux quantum number. To overcome this problem, finally a brane-localized
flux (BLF) was added to the theory [BvN11, BvN13]. If this term is also dilaton-
independent (like the tension), it breaks the classical SI, which in turn allows the flux
quantization condition to fix the dilaton integration constant instead of enforcing a
tuning of model parameters. Since it was thought that, on the other hand, a dilaton-
independent BLF still implies 4D flat solutions, this looked very promising with regard
to the CC problem.

In the first part of this chapter, Sec. 7.2, we will show that the last proposal actually
fails: 4D flatness is only ensured by a BLF which does couple to the dilaton, in precisely
such a way that this term preserves SI. But in this case, the dilaton drops out of the
flux quantization condition, which thus presents a tuning relation for the brane tensions
as before. A subtlety of this derivation is that a nonvanishing BLF causes divergences
at the (idealized) delta branes. In Sec. 7.2.3 we will show how those can be handled by
adding an appropriate counter term to the action. This allows us to derive our main
result in Sec. 7.2.6 without the need for regularizing the delta branes (or introducing a
UV model as in [BDW15a, BDW15b]). We will find that 4D flatness is only guaranteed
by SI brane couplings. The resulting tuning issue, as well as its relation to Weinberg’s
no-go theorem (cf. Sec. 1.2.1), will be discussed in Sec. 7.2.8. Finally, Sec. 7.2.9 responds
to an objection [BDW16] to our derivation using delta branes.

In the second part, Sec. 7.3, we go one step further and ask how large the nonzero
4D curvature actually becomes for SI breaking dilaton-brane couplings, and a corre-
sponding violation of the tuning relation. This question is still relevant, because if the
answer were compatible with observational bounds, and the tuning violations would
correspond to natural changes in the brane tension, the SLED program could still solve
the CC problem. To avoid singularities (and potential ambiguities) which can occur
for SI breaking brane couplings, we introduce a finite brane width in Sec. 7.3.1, using
the same ring regularization as in previous chapters, cf. Fig. 7.1b. Again, a stabilizing
angular pressure has to be added to allow for static solutions; in Sec. 7.3.2, we show
that this gives rise to an additional contribution to the 4D Ricci R̂ as compared to
the delta result. Since a realistic brane always comes with some finite thickness, this
contribution—which is solely due to the brane width and independent of the form of
the dilaton-brane couplings—should always be taken into account. For a relevant class
of dilaton-brane couplings, we will derive a relation between the 4D curvature and the
2D extra space volume V in Sec. 7.3.3, and discuss its phenomenological implications
in Sec. 7.3.4. Furthermore, in Sec. 7.3.5 the complete bulk-brane system will be solved
numerically in a completely consistent way. This allows us to explicitly calculate the
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relevant observables for a given set of model parameters, thus confirming the assump-
tions and approximations that went into the preceding analytic derivation. Moreover,
it enables us to pin down the amount of tuning (imposed by flux quantization) that is
needed to obtain sufficiently small values of R̂.

Our conclusion, as summarized in Sec. 7.4, is that unless the brane width is allowed to
be much (∼ 18 orders of magnitude) smaller than the bulk Planck length, the model is
ruled out phenomenologically, because either R̂ or V are well above their observational
bounds. But even if this were allowed, the SI breaking brane tension would lead to the
same (actually worse) problem, unless some sort of fine-tuning is at work.

7.1.1 Conventions and notation

In this chapter, we use Weinberg’s sign conventions [Wei72], which are “+ − −” in
the nomenclature of [MTW73], meaning that the metric is still mostly plus, but the
Riemann and Einstein tensor have the opposite sign than for “+ + +” (which was used
in all other parts of this thesis). Six-dimensional spacetime coordinates are denoted by
XM (M = 0, . . . , 5), 4D ones by xµ (µ = 0, . . . , 3), and the two extra space dimensions
are labeled by ym (m = 1, 2). Furthermore, εmn is a tensor (not a density), i.e. its
components are ±1/

√
g2. The delta function transforms as a density, so there is no

metric determinant factor in its normalization condition
∫

d2y δ(2)(y) = 1.

7.2 Delta branes with BLF

Note: This section is to large extent a verbatim reproduction of the correspond-
ing sections in [NS16a].

The total action of the SLED model is given by [BvN11]

S = Sbulk + Sbranes , (7.2.1)

where the bulk part is

Sbulk = −
∫

d6X
√
−g

{
1

2κ2

[
R+ (∂Mφ)(∂Mφ)

]
+

1

4
e−φ FMNF

MN +
2e2

κ4
eφ
}
,

(7.2.2)
and the brane contributions are

Sbranes = −
∑
b

∫
d4x
√
−g4

{
Tb(φ)− 1

2
Ab(φ)εmnF

mn

}
. (7.2.3)

The field content consists of the 6D metric gMN with corresponding Ricci scalar R,
a Maxwell field AM with field strength F = dA, and the dilaton φ. κ and e denote
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the gravitational and U(1)4 coupling constants, respectively. The sum in Sbranes runs
over b ∈ {+,−}, corresponding to the two 3-branes at the north and south pole of the
compact extra space. One of them should ultimately be identified with our universe.
The first term Tb is the brane tension (or 4D vacuum energy density), and the second
term corresponds to the brane-localized flux (BLF). At this stage, we allow both of
them to have a priori arbitrary dilaton dependences. The central question we want to
answer is how these must be chosen in order to obtain 4D flat solutions.

Under a (constant) rescaling gMN 7→ ζ gMN , eφ 7→ ζ−1 eφ, the bulk action transforms
with a global scaling factor, Sbulk 7→ ζ2Sbulk. This implies that the classical bulk
equations of motion are SI. This SI is respected by the branes if

Tb(φ) = const and Ab(φ) ∝ e−φ , (7.2.4)

and is broken otherwise.

7.2.1 Ansatz

We assume the geometry to be maximally symmetric in the four on-brane dimensions,
as well as rotationally symmetric in extra space. This leads to the following most
general ansatz,

ds2 = W 2(ρ) ĝµνdx
µdxν + dρ2 +B2(ρ)dθ2 , (7.2.5a)

A = Aθ(ρ)dθ , (7.2.5b)

φ = φ(ρ) , (7.2.5c)

where the 4D metric ĝµν is maximally symmetric and thus completely characterized by

the (constant) 4D Ricci scalar R̂. The extra space is labeled by the azimuth angle5

θ ∈ [0, 2π) and the polar angle ρ ∈ [ρ+, ρ−], with ρb = ρ± denoting the brane positions
at the north- and south pole, respectively, where B|ρ=ρb = 0, cf. Fig. 7.1a.

7.2.2 Maxwell sector

After inserting the identity 1 =
∫

d2y δ(2)(y) into the brane part (7.2.3), the total
action (7.2.1) can be written as a single 6D integral S =

∫
d6X L. The Maxwell part

of the Lagrangian is

LF = −
√
−g 1

4
e−φ F 2 +

1

2

∑
b

√
−g4Ab(φ) εmnF

mn δ(2)(y − yb) , (7.2.6)

4This is not necessarily the U(1) gauged byA, which can in general have a different coupling [BvN11],
which we will denote by ẽ, and which appears in the flux quantization condition (7.2.9).

5Note that in this chapter, the azimuthal coordinate is denoted by θ, unlike in previous chapters,
because φ is here reserved for the dilaton.
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where F 2 ≡ FMNF
MN , and the corresponding field equations read

∂M

[
√
−g e−φ FMN −

√
−g4 δ

M
m δ

N
n

∑
b

Ab(φ)εmnδ(2)(y − yb)

]
= 0 . (7.2.7)

With the ansatz (7.2.5), this gives the field strength6

Fρθ = eφ

[
Q

B

W 4
+

1

2π

∑
b

Ab(φ)δ(ρ− ρb)

]
, (7.2.8)

where Q is a constant of integration. However, this constant cannot be chosen freely,
because it determines the total flux Φtot :=

∫
dρ dθ Fρθ, which has to fulfill the flux

quantization condition [RDSS83, BvN13]

Φtot = 2πQ

∫
dρ

eφB

W 4
+
∑
b

[
Ab(φ) eφ

]
ρ=ρb

!
=

2πn

ẽ
(n ∈ N) . (7.2.9)

We now encounter a peculiarity (which was missed in previous investigations [BvN11,
BvN13, Bur13]): the presence of a localized delta-contribution to the field strength
implies that the F 2 term in the action, which also enters the Einstein and dilaton
equations, contains a divergent part ∝ δ(0). It is obviously caused by the BLF term,
as it disappears for Ab = 0, but is also definitely a relict of treating the branes as
pointlike.

At this point, there are two routes one can follow: Either, one gives up the idealization
of infinitely thin branes and tries to come up with a UV model which microscopically
resolves the branes. A first step in this direction was currently taken in [BDW15a,
BDW15b]. Alternatively, one can ask if the divergence can be somehow removed,
rendering the delta description possible again. In this work, we pursue the latter
option. Physically speaking, it is motivated by the EFT expectation that all physical
predictions should be insensitive to the microscopic details of an underlying UV model,
as long as we ask low energy questions. In the case at hand, the CC problem manifests
itself in the IR, at energies well below a realistic (inverse) brane thickness. Indeed, if
it were necessary to understand the full UV physics in order to solve the CC problem,
it would actually not solve the problem in the realm in which it is posed in the first
place—as an IR problem in a low energy EFT.

There are several observations which give us further confidence that our approach
captures the correct physical picture:

• All divergences can be completely removed by adding a single counter term to
the action.

• In the special case of vanishing dilaton, where the concrete UV model [BDW15a]
applies, our results are in perfect agreement with [BDW15a], as will be discussed
in Appendix 7.A.

6Note that in our conventions, and for the ansatz (7.2.5), ερθ = 1/B, and δ(2)(y) = δ(ρ)/(2π).
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• In the end, it leads to the conclusion that R̂ = 0 is ensured for SI brane couplings
Tb and Ab, in line with Weinberg’s general arguments [Wei89].

7.2.3 Counter term

Plugging the solution (7.2.8) back into the action yields

SF |sol = −1

2

∫
d6X
√
−g eφ

Q2

W 8
+ Sdiv , (7.2.10)

where the last term is the divergent contribution

Sdiv =
1

2

∑
b

∫
d4x
√
−g4

δ(2)(0)
√
g2

eφAb(φ)2 . (7.2.11)

In order to obtain a finite action, it is necessary to introduce a counter term which
cancels Sdiv, leading to the action

S̃ := S − Sdiv . (7.2.12)

Below, we will see that this subtraction is also sufficient in order to arrive at a consistent
theory, because it removes all divergences from the Einstein and dilaton field equations.
In other words, the theory defined by the action S̃ provides an explicit realization of the
SLED model with a BLF term, which still allows for consistently treating the branes
as infinitely thin—unlike for the original action S.

Several further comments regarding the counter term Sdiv are in order:

• Since it does not contain A, the Maxwell equations (7.2.7) and the corresponding
solution (7.2.8) are not affected. (Otherwise, it could have been necessary to
reiterate the process and introduce further counter terms.)

• It has the correct symmetries to qualify as a legitimate 4D brane action because
the combination δ(2)(y)/

√
g2 is a scalar.

• For later reference, note that the term preserves the SI of the theory for the choice
A(φ) ∝ e−φ.

• It cannot be viewed as a renormalization of the brane tension because of the
factor 1/

√
g2. Due to this explicit dependence on the bulk metric, it will enter

the Einstein equations differently than Tb, see (7.2.18). But this factor is dic-
tated both by general covariance, and the requirement to successfully cancel all
divergences.

• The ill-defined quantity δ(2)(0) should better be thought of as a large but finite
constant, as would arise in some actual regularization, where the delta function
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is replaced by some smeared function7 which has support in a small region of
proper radius ε. In this case, δ(2)(0)/

√
g2 would be replaced by ∼ 1/ε2.

In the following, we present the dilaton and Einstein equations which are obtained
from the action S̃.

7.2.4 Dilaton sector

The dilaton equation is

1

κ2
�φ+

1

4
e−φ F 2 − 2e2

κ4
eφ

=
∑
b

δ
(2)
b√
g2

{
T ′b −

1

2
A′b εmnFmn +

δ(2)(0)
√
g2

eφAb
[

1

2
Ab +A′b

]}
, (7.2.13)

where the primes here denote d/dφ, and δ
(2)
b ≡ δ(2)(y−yb). The last term, proportional

to δ(2)(0), follows from the counter term in (7.2.12). Once we substitute the Maxwell
solution (7.2.8), all divergent contributions exactly cancel as advertised, and the dilaton
equation becomes, for the ansatz (7.2.5),

1

κ2
∆2φ+

1

2
eφ
(
Q2

W 8
− 4e2

κ4

)
=
∑
b

δ
(2)
b

B

{
T ′b −

Q

W 4
eφ (A′b +Ab)

}
, (7.2.14)

where the covariant 2D Laplace operator is8

∆2φ =
1

BW 4

(
BW 4φ′

)′
= φ′′ +

(
B′

B
+

4W ′

W

)
φ′ . (7.2.15)

We now integrate this equation over a small ε-disc covering either the north or the
south pole. By using Stokes’ theorem and taking the limit ε→ 0, we find the following
boundary condition

[Bφ′]ρ=ρb
=
κ2

2π
Cb , (7.2.16)

with

Cb :=

[
T ′b −

Q

W 4
eφ (A′b +Ab)

]
ρ=ρb

. (7.2.17)

In the SI case (7.2.4) Cb is zero, which in turn allows for a regular dilaton profile
with vanishing ρ-derivatives at the brane positions. On the other hand, if Cb 6= 0 (as

7For concreteness, in our coordinates one could consider Θ(ε−ρ)ρ/(πε2). However, it is not quite clear
how the BLF term could be modeled in such a regularization. A more consistent regularization
was recently proposed in [BDW15a, BDW15b], which gives results in full agreement with our
predictions, see Appendix 7.A.

8A prime denotes derivative with respect to the argument of the function: for a ρ-dependent function
(like φ) the prime is d/dρ, for the brane couplings (like Tb) it still denotes d/dφ.
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expected in the non SI case), the φ profile becomes singular (thereby also implying a
curvature singularity) since B → 0 at the branes. A more explicit study of this case
requires to regularize the setup, as will be done in Sec. 7.3, where the non SI case is
investigated in a thick brane model.

7.2.5 Gravitational sector

The Einstein equations read

1

κ2

[
GM

N +
(
∂Mφ

)
(∂Nφ)− 1

2
δMN (∂φ)2

]
+ e−φ FMPFNP − δMN

[
1

4
e−φ F 2 +

2e2

κ4
eφ
]

=
∑
b

δ
(2)
b√
g2

{
δMµ δ

µ
N Tb +

(
δMm δ

m
N − δMµ δ

µ
N

) Ab
2

[
εmnF

mn − eφAb
δ(2)(0)
√
g2

]}
, (7.2.18)

where (∂φ)2 ≡ (∂Mφ)
(
∂Mφ

)
. After plugging in the solution for the Maxwell field,

again all the δ(2)(0)-terms cancel. For the ansatz (7.2.5), there are three nontrivial
Einstein equations—the (µν), (ρρ) and (θθ) components—which explicitly read

− 1

κ2

(
R̂

4W 2
+ 3

W ′′

W
+
B′′

B
+ 3

W ′2

W 2
+ 3

W ′B′

WB
+

1

2
φ′2

)
=

eφ

2

(
Q2

W 8
+

4e2

κ4

)

+
∑
b

δ
(2)
b

B
Tb , (7.2.19a)

1

κ2

(
R̂

2W 2
+ 6

W ′2

W 2
+ 4

W ′B′

WB
− 1

2
φ′2

)
=

eφ

2

(
Q2

W 8
− 4e2

κ4

)
, (7.2.19b)

1

κ2

(
R̂

2W 2
+ 4

W ′′

W
+ 6

W ′2

W 2
+

1

2
φ′2

)
=

eφ

2

(
Q2

W 8
− 4e2

κ4

)
, (7.2.19c)

respectively. The difference of the (ρρ) and (θθ) equations is

W ′′

W
− W ′B′

WB
+

1

4
φ′2 = 0 , (7.2.20)

which shows that a nontrivial dilaton profile necessarily implies a warped geometry.
Thus, it was necessary to include the warping factor W in (7.2.5a) in order to allow
for generic statements about the 4D maximally symmetric setup.

The boundary conditions for the metric functions can be obtained just like for the
dilaton above, by integrating appropriate combinations of the Einstein equations over
a small disc covering one brane. Explicitly, this yields[

B(W 4)′
]
ρ=ρb

= 0 , (7.2.21a)

[B′]ρ=ρb = 1− κ2

2π
[Tb(φ)]ρ=ρb

. (7.2.21b)
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7.2.6 Condition for 4D flatness

We now want to answer the question how the brane couplings Tb(φ) and Ab(φ) must
be chosen in order to obtain 4D flat solutions. To this end, we consider the 2D trace
of the Einstein equations, i.e. the sum of (7.2.19b) and (7.2.19c), which gives

1

κ2

(
R̂
W 2

+ 4∆2 lnW

)
= eφ

(
Q2

W 8
− 4e2

κ4

)
, (7.2.22)

with ∆2 defined as in (7.2.15). Using the dilaton equation (7.2.13), we can rewrite this
as

1

2κ2

[
R̂
W 2

+ 2∆2 (φ+ 2 lnW )

]
=
∑
b

δ
(2)
b

B
Cb , (7.2.23)

Following [GGP04], we multiply this equation with BW 4 and integrate over the whole
extra space, yielding9

R̂ =
2κ2

V

∑
b

W 4
b Cb , (7.2.24)

with the extra space volume

V := 2π

∫
dρBW 2 =

∫
d2y
√
g2W

2 , (7.2.25)

and the subscript b denoting evaluation at ρ = ρb. Equation (7.2.24) is the central result
of the delta analysis, relating the on-brane curvature R̂ to the brane couplings encoded
in Cb via (7.2.17). The only assumption necessary for its derivation was to have a 4D
maximally symmetric geometry, allowing for the ansatz (7.2.5). Most importantly, it
shows that 4D flatness is guaranteed by SI dilaton-brane couplings (7.2.4), and not by
dilaton independent couplings (A′b = T ′b = 0) in the presence of a BLF term as was
previously claimed in the literature [BvN11, BvN13, Bur13]. If SI is broken, the right
hand side of (7.2.24) does not vanish identically; however, since it explicitly depends
on φb—which can generically diverge in this case—an actual evaluation requires to
regularize the setup, see Sec. 7.3. In this case, we will find that there are additional
contributions to R̂ caused by the finite brane width, which also breaks SI.

Alternatively, using the dilaton boundary condition (7.2.16), Eq. (7.2.24) can be
written as

R̂ =
4π

V

∑
b

[
BW 4φ′

]
ρ=ρb

, (7.2.26)

saying that a necessary and sufficient condition for 4D flatness is a regular dilaton profile
at the branes. This was already observed in [ABPQ04]. But in [BvN11, BvN13, Bur13],

9Here and henceforth, evaluation at ρ = ρb is denoted by the corresponding subscript, e.g. Wb ≡
W (ρb).
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the wrong conclusion was drawn that this would be equivalent to dilaton independent
brane couplings (A′b = T ′b = 0).10 This is not the correct condition, because the BLF
term leads to an additional, indirect dilaton coupling. This was explicitly shown in
Sec. 7.2.4: Due to the bulk F 2 term the dilaton equation (7.2.13) obtains an δ(2)-
contribution proportional to Ab (in addition to the A′b term). In other words, even
if there is no direct dilaton-brane coupling, φ still gets sourced indirectly by the BLF
term, because it couples to the bulk Maxwell field. Instead, we have proven that it is
SI which ensures the brane dimensions to remain flat despite the presence of a brane
vacuum energy.

7.2.7 Explicit 4D flat solutions

Let us now specialize to the case of 4D flat solutions, i.e. R̂ = 0, which are the relevant
candidates with respect to the CC problem. As shown above, this is guaranteed by
brane-dilaton couplings of the form

Tb(φ) = λb , Ab(φ) = Φb e−φ , (7.2.27)

with λb and Φb constant, which preserve the SI of the bulk theory. As we have seen, this
also implies a regular dilaton profile, see Eq. (7.2.16). Incidentally, the most general
solutions are explicitly known for this setup [GGP04]:11

ds2 = W 2(ξ)

[
ηµνdx

µdxν + e−φ0 r2
B

(
dξ2 +

α+α−
W 8(ξ)

sin2(ξ)dθ2

)]
, (7.2.28a)

φ(ξ) = φ0 − 2 lnW (ξ) , (7.2.28b)

with

W 4(ξ) = cosh(v)− sinh(v) cos(ξ) . (7.2.28c)

The constants rB, α± and v are fixed in terms of the model parameters via

rB =
κ

2e
, α± = 1− κ2

2π
λ± , v =

1

2
ln

(
α+

α−

)
, (7.2.29)

with ± labeling the two branes, located at the poles ξ+ = 0 and ξ− = π. The dilaton
constant φ0 is not determined by any of the field equations, as is guaranteed by SI.
Geometrically, the parameters 2π(1−α±) correspond to the deficit angles at the branes
that are created by their tensions. In the special case of equal tensions, the solution

10The error was caused by using the dilaton boundary condition from Ref. [BBvN10], which is only
applicable in the case without BLF.

11We use the coordinates introduced in [BvNW14a]. The metric could as well be brought into the
form (7.2.5a) by changing to the normal coordinate ρ ∝

∫
Wdξ, but this transformation yields

complicated expressions containing hypergeometric functions, which are not very useful.
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simplifies to the rugby ball geometry. Otherwise, the warping W is nontrivial and the
extra space looks like a deformed rugby ball. The extra space volume V is

V = 4πr2
B

√
α+α− e−φ0 . (7.2.30)

Furthermore, in these coordinates, the Maxwell field strength is given by

Fξθ =
rB
κ

√
α+α−

sin(ξ)

W 8(ξ)
+

1

2π

∑
b

Φb δ(ξ − ξb) . (7.2.31)

The flux quantization condition (7.2.9) then becomes

2π

e

√
α+α− +

∑
b

Φb =
2πn

ẽ
. (7.2.32)

7.2.8 Fine-tuning

Now the crucial point is that (7.2.32) does not contain any free integration constants,
and therefore constitutes a tuning relation on model parameters. For parameters which
do not fulfill this relation, there would be no static solution and we would expect some
sort of runaway behavior. In particular, the brane tension (i.e. the 4D CC) must be
fine-tuned in order to obtain this 4D flat solution. Therefore, the scale invariant SLED
model cannot help with the CC problem.

Alternatively, we can understand this in the following way: Since the extra dimen-
sions are compact, the low energy theory could also be studied from the Kaluza-Klein
reduced, effective 4D point of view. In this case, Weinberg’s general no-go theorem
(cf. Sec. 1.2.1) applies, showing that SI is indeed sufficient to guarantee flat solutions,
but only at the price of another fine-tuning; if the tuning were violated, there would
only be runaway solutions.

For the original model without BLF, this problem was indeed realized from the very
beginning [ABPQ04]. However, it was assumed that R̂ = 0 would be guaranteed by
the absence of dilaton-brane couplings, and not by SI. For pure tension branes, these
two options are in fact indistinguishable (T ′b = 0); furthermore, the expectation seemed
reasonable because we know from (7.2.26) that R̂ = 0 is ensured by a regular dilaton
profile, which should be obtained for dilaton-independent brane couplings. Therefore, it
was assumed [BvN11, BvN13] that a dilaton-independent BLF (A′b = 0)—which breaks
SI—would still imply R̂ = 0. In this case the flat dilaton potential would be lifted, and
so the fine-tuning could be avoided. More explicitly, the BLF term in (7.2.32) would
be dilaton dependent, and so flux quantization would simply fix the dilaton integration
constant, and would not imply a tuning on model parameters.

However, as we have shown, this line of reasoning is flawed by the fact that it is
not dilaton independence, but SI of the BLF term which guarantees 4D flat maximally
symmetric solutions. The reason is that the dilaton is sourced indirectly (via the
Maxwell sector), even if there is no direct BLF coupling, in precisely such a way that
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ultimately SI guarantees a regular dilaton profile, cf. Sec. 7.2.6. But for SI couplings,
the effective dilaton potential is flat again and we either have to fine-tune, or would be
left with runaway solutions, in complete agreement with Weinberg’s argument.

7.2.9 Constraint

Let us now turn to a peculiarity [BDW16] of the delta setup which was not discussed
in [NS16a]. Multiplying the constraint (7.2.19b) by B2 and taking the limit ρ → ρb
yields (assuming that B2 eφ → 0){

3

8W 8

[
B(W 4)′

]2
+

1

W 4

[
B(W 4)′

]
[B′]− 1

2
[Bφ′]

2

}
ρ=ρb

= 0 . (7.2.33)

The terms in square brackets are those appearing in the boundary conditions (7.2.16),
(7.2.21), and so we are led to (assuming that [Tb(φ)]ρ=ρb

is finite, as it should be for
physically relevant situations)

Cb = 0 . (7.2.34)

This is in clear contradiction to the SI breaking expectation Cb 6= 0. In [BDW16], it
was argued that this uncovers an inconsistency of the delta analysis. The conclusion
of [BDW16] was that one has to take into account an ad hoc metric dependence of the
delta function, designed such that it results in a localized contribution to the angular
Einstein equation (7.2.19c); in this case the constraint fixes the size of this term, and
non SI couplings are possible. Let us summarize our point of view on this issue:

(i) First of all, it should be emphasized that the SI case is completely insensitive
to this issue, because then (7.2.34) is identically fulfilled. Thus, the important
achievement of [NS16a], namely the first correct identification of those BLF cou-
plings which unambiguously lead to R̂ = 0 (and the resulting tuning relation),
remains unaffected.

(ii) Physically, the additional term proposed in [BDW16] corresponds to an angular
pressure component. Since a codimension-two brane contains no direction this
pressure could act in, such a construction seems ill-defined.

(iii) If one still accepts this term, none of the conclusions of Sec. 7.2 would change.
There would be an additional contribution to R̂ in (7.2.24) which also vanishes
in the SI case.

(iv) Alternatively, the impossibility to break SI consistently on a delta brane (in the
case of 4D maximal symmetry) could be regarded as a prediction of this analysis.
(Note that this does not preclude SI breaking couplings; SI could in principle also
be restored dynamically by a runaway behavior.)
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(v) The latter case, however, also implies that the actual (nonzero) value of R̂ for
broken SI cannot be inferred within the pure delta framework (which always12

predicts R̂ = 0), but requires studying a thick brane setup. This also has the
advantage that potential singularities are regularized.

(vi) By studying a regularized setup and properly taking the thin brane limit in
Sec. 7.3, we will show that the latter option is indeed realized for a relevant
class of couplings (of the form Cb ∝ eγφb). While this means that R̂ → 0 despite
these non SI couplings, it does not save the model because either one has to tune
certain parameters or phenomenological bounds are violated.

7.3 Breaking scale invariance on thick branes

In Sec. 7.2, we showed that in the SLED model (with delta branes) solutions with
vanishing 4D curvature R̂ are only guaranteed by SI and a fine-tuning of parameters
(including the brane tension). While rather discouraging, this observation does not
immediately rule out the SLED program as a candidate for addressing the CC problem.
The remaining window of opportunity consists in breaking SI. In this case, Weinberg’s
argument does not tell us how large R̂ has to be, and the hope is that there might be SI
breaking couplings for which it turns out to be small enough to be phenomenologically
viable in a technically natural way.

In this section we will investigate this remaining possibility. Since we again restrict
ourselves to 4D maximally symmetric solutions, we start with the effective theory that
is obtained after the Maxwell field has been solved for (and the BLF divergence is
removed by the appropriate counter term). The goal is to explicitly solve the resulting
Einstein-dilaton system for given SI breaking couplings and analyze the tuning question
and phenomenological bounds.

In fact, SI should be broken explicitly on the Standard Model brane (say, at the
north pole) in any case, because otherwise the theory would predict a fifth force of
gravitational strength [BvNW14b, BDW15c], which is clearly ruled out by solar system
experiments [Wil06]. We will therefore consider a SI breaking contribution to the brane
tension, but a SI BLF,13 parametrized as

T+(φ) = λ+ + τ eγφ , A+(φ) = Φ+ e−φ , (7.3.1)

with constant λ+, τ , γ and Φ+. For simplicity, the southern brane will be assumed
only to carry a SI tension T− = λ−. For τγ 6= 0 SI is broken explicitly; but one virtue

12In the proposal of [BDW16] R̂ 6= 0 would still be possible for delta branes, but only at the price of
allowing pθ 6= 0.

13We could as well allow for a non SI BLF in a similar way. However, the discussion and physical
implications would be completely analogous. Furthermore, such a term (unlike the tension) could
presumably taken to be arbitrarily small in a technically natural way, if the brane matter fields do
not couple directly to the Maxwell sector [BDW15c].
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of this class of couplings is that the contributions to R̂ which are ∝ τ (which receives
radiative corrections via SM loops) can be suppressed for φ+ sufficiently negative.

Due to potential singularities, and for the reasons discussed in Sec. 7.2.9, it is not
possible to solve the bulk equations and unambiguously predict the value of R̂ for
delta branes with broken SI. We will therefore consider a finite brane width `. Let us
emphasize, though, that this should not be regarded as a mere technicality, but rather
as another physical necessity: Any realistic brane would have a finite microscopic width,
ultimately set by the underlying UV model. If the hierarchy between the 2D brane
and bulk volume is large enough (if ε := `2/V is sufficiently small) the brane could
usually be treated as pointlike (ε → 0), as in Sec. 7.2. But in the present setup there
is a subtlety. As we shall see, the nonzero width of the brane leads to an additional
O(ε) contribution to R̂ as compared to the delta setup. Now, since we are interested in
situations in which all other contributions to R̂ are tremendously small (as compared
to the bulk gravity scale), these O(ε) can in fact become the dominant part and cannot
be neglected. This will have crucial implications for the phenomenological viability of
the model—even if the tension were SI.

7.3.1 Ring regularization

For simplicity, we will again (as in previous chapters) use the well-known ring regu-
larization, in which the point in extra space (the north pole) is blown up to a circle
of finite circumference `. We assume that the low energy questions which we ask to
be insensitive to this particular choice, and would expect to recover the same quali-
tative results in any other reasonable regularization (or UV model).14 The virtue of
this regularization is its technical simplicity; the northern brane is moved to ρ = ρ+

(> ρ0), leaving behind a regular axis at ρ = ρ0. (Without loss of generality, we
will set ρ0 = 0.) The corresponding extra space geometry is visualized in Fig. 7.1b
above. The equations of motion are formally obtained from those presented in Sec. 7.2,
viz. (7.2.14) and (7.2.19), by letting δ(2)(y) 7→ δ(ρ− ρb)/2π, and keeping in mind that
now B+ ≡ `/2π > 0 (whereas B0 = B− = 0). Furthermore, we will for convenience set
W+ = 1 by a (global) rescaling of the 4D coordinates.

However, as we already know from previous chapters, there is one further modifica-
tion that is required in order to obtain a consistent regularization: the (θθ)-component of
the Einstein equations, i.e. the right hand side of Eq. (7.2.19c), has to be supplemented
with a brane localized source of the form

δ(ρ− ρ+)

2πB+

pθ . (7.3.2)

Physically, it corresponds to the angular pressure that is needed to prevent the ring
from collapsing.15 Technically, it is required by and can be inferred from the con-
straint (7.2.19b), as will be explained in more detail below. Note that this is the same

14This could be checked explicitly by repeating our analysis e.g. in the UV model [BDW15a].
15A microscopic model that achieves this stabilization can be found e.g. in [BHdRT09].
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term that was argued to be necessary also for unregularized delta branes in [BDW16],
cf. Sec. 7.2.9. However, since a delta brane contains no direction this pressure could
act in, we expect it to vanish in the thin brane limit ε→ 0. This will later be verified
explicitly (for the dilaton-brane couplings we consider).

7.3.2 Angular pressure and 4D curvature

This additional term has an important consequence, as it yields an additional contri-
bution to R̂. This can be seen by repeating the calculation that led to (7.2.24), but
taking (7.3.2) into account. We thereby obtain the thick brane result

V R̂ = κ2 (2C+ + pθ) . (7.3.3)

We can gain further inside by also expressing pθ in terms of the brane couplings,
following [BHdRT09]. First, the junction conditions across the brane read

[Bφ′]disc =
κ2

2π
C+ , (7.3.4a)

4[B(lnW )′]disc =
κ2

2π
pθ , (7.3.4b)

[B′]disc = −κ
2

2π

(
T+ +

3

4
pθ

)
, (7.3.4c)

where the discontinuity of a function f across the brane is denoted by [f ]disc := f(ρ↘
ρ+)− f(ρ↗ ρ+). Next, for a sufficiently large hierarchy between the brane width and
bulk size, i.e. for ε→ 0, the interior derivatives are expected to approach the (regular)
values at the axis, viz.

φ′(ρ↗ ρ+) = O(ε) , W ′(ρ↗ ρ+) = O(ε) , B′(ρ↗ ρ+) = 1 +O(ε) . (7.3.5)

These expectations will also be verified explicitly by the numerical analysis in Sec. 7.3.5.
Using this, as well as ε ≡ (2πB+)2/V , the constraint (7.2.19b) evaluated at ρ ↘ ρ+

yields

3

4
p2
θ − 2

(
2π

κ2
− T+

)
pθ + C2

+ +
ε

κ4

[
κ2V eφ+

(
Q2 − 4e2

κ4

)
− V R̂

]
= O(ε) . (7.3.6)

The terms in square brackets are generically of the same order as the first terms in this
equation,16 and so the factor ε allows to absorb them into O(ε). Solving for pθ, and
choosing the branch that reproduces the GGP result pθ = 0 for a SI delta brane, we

16For V R̂ this follows from (7.3.3), for the first term from V ∼ e−φ+—which will be confirmed below.
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find

pθ =
4

3

(2π

κ2
− T+

)
−

√(
2π

κ2
− T+

)2

− 3

4
C2

+

+O(ε) (7.3.7a)

=
1

2

(
2π

κ2
− T+

)−1

C2
+ +O(ε) +O(C4

+) . (7.3.7b)

In the second line, we expanded around the SI case C+ = 0. Plugging this into the R̂
formula (7.3.3), we find that in the near SI limit (κ2C+ � 1) the leading contribution
is given by

V R̂ = 2κ2 C+ +O(ε) +O(C2
+) . (7.3.8)

Hence, the delta result (7.2.24) receives corrections that are suppressed in the near
SI limit compared to the leading contribution ∝ C+, and—more importantly—O(ε)
corrections which are caused by the finite brane width.

7.3.3 Volume dependence

Let us now focus on the dilaton coupling (7.3.1), for which

C+ = τγ eγφ+ . (7.3.9)

For the angular pressure this gives

pθ =
κ2

4πα+

(
τγ eγφ+

)2
+O(ε) +O(C3

+) , (7.3.10)

where still α+ ≡ 1 − κ2

2π
λ+. In the near SI case which we are interested in, we expect

the volume V to approach the GGP value (7.2.30), which can be written in terms of
φ+ as17

V → VGGP =
κ2

e2
πα+ e−φ+ . (7.3.11)

Again, this expectation will later be confirmed explicitly by our numerics. The useful-
ness of this relation is that it allows to express φ+ in terms of model parameters and V ,
which is constrained by observations. Crucially, it shows that if e2 is not tuned much
smaller than the bulk Planck scale κ, a phenomenologically necessary large volume
(V � κ) is achieved if and only if −φ+ � 1.

For pθ we thus obtain

pθ ∝

{
V −2γ (for 0 < γ < 1/2)

V −1 (for γ = 0 or γ > 1/2)
(7.3.12)

17This formula takes into account that we are now in the gauge W0 = 1, which yields an additional
factor (WGGP

+ )−2 = (α+/α−)1/4.
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in the relevant large volume regime. The two cases discriminate which of the two
leading terms in (7.3.10) dominates. As advertised, we see that within the class of
exponential dilaton couplings (with γ > 0)18 pθ → 0 in the thin brane limit ε → 0
(which can be realized via V →∞).

Finally, the leading contributions to the 4D curvature become

V R̂ = N1

(
V

κ

)−γ
+N2

(
V

κ

)−1

, (7.3.13)

where Ni are dimensionless coefficients, with

N1 = 2κ2τγ
(κπα+

e2

)γ
and N2 ∝

`2

κ
. (7.3.14)

The unknown constant of proportionality for N2 can be traced back to the unknown
numerical coefficients of the O(ε) terms in (7.3.5). Generically, we expect it to be ∼ 1,
which will be confirmed explicitly by the numerical examples studied in Sec. 7.3.5. Let
us point out that, while the N1 contribution to R̂ is only present for SI breaking dilaton
couplings (and depends on their details), the N2 term is solely due to the finite thickness
of the brane and thus insensitive to the dilaton-brane couplings. In particular, it is
even present for SI couplings.

7.3.4 Phenomenology

Let us now discuss the phenomenological implications of our findings. The key point
is that Eq. (7.3.13) provides a rigid relation between the 4D curvature and the size
of the extra dimensions, both of which are constrained by observations: First, R̂ is
measured by cosmography to be ∼ 120 orders of magnitude smaller than M2

Pl. As
usual in compact extra space models, the 4D Planck mass is related to the bulk gravity
scale by [BDW15c]

M2
Pl =

V

κ2
, (7.3.15)

so this implies19

κ2R̂
V
∼ 10−120 . (7.3.16)

18For γ < 0 the tension would become supercritical for large volumes; furthermore, the contribution
to R̂ could not become small without fine-tuning. Thus, these couplings are not interesting.

19Actually, observations also tell us that R̂ < 0, whereas we will find R̂ > 0 (corresponding to anti de
Sitter, in our present conventions) in the numerical solutions below, which might be regarded as an
additional problem. However, it is also conceivable that natural solutions with the wrong sign but
the correct magnitude of R̂ could become phenomenologically viable without spoiling naturalness,
if quantum corrections (which are not studied here) would give additional negative contributions
to R̂. In any case, we will find that the weaker requirement of demanding the correct magnitude
for R̂ is already problematic.
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And second, current upper bounds [KCA+07] on deviations from Newton’s inverse
square law exclude extra dimensions larger than ∼ 10µm, which—again via (7.3.15)—
requires

V

κ
. 1028 . (7.3.17)

Plugging these observational inputs into (7.3.13) then yields

N1 × 10−28γ +N2 × 10−28 . 10−64 . (7.3.18)

Unless there were an accidental cancellation between the two terms—which would
require a careful tuning of parameters and should thus be dismissed when looking for a
solution to the CC problem—they have to fulfill this bound separately. Let us discuss
them in turn.

The first term ∝ N1 vanishes identically for SI dilaton-brane couplings. But as
already mentioned, this would give rise to Brans-Dicke type 4D interactions which are
ruled out by solar system observations. If SI is broken, Eq. (7.3.14) shows that N1

will be of order unity for generic model parameters which are not tuned and do not
introduce huge hierarchies. In this case, the bound (7.3.18) can only be satisfied for
γ & 2.3. However, the numerical analysis in the next section will allow us to infer the
amount of tuning due to flux quantization, showing that this can be avoided only for
γ . 1/60.

The second term is even more problematic. It implies that N2 must be . 10−36.
From the discussion below Eq. (7.3.14), we know that this is only possible if the brane
width ` were at least 18 orders of magnitude smaller than the fundamental bulk Planck
length

√
κ. This would again correspond to the introduction of a huge hierarchy by

hand, and—more importantly—question the applicability of a (semi-)classical analysis.
On the other hand, for the natural (and classically accessible) scenario where the brane
width is not smaller than the bulk Planck length, N2 ∼ 1 and so either the the 4D
curvature or the size of the extra space volume would exceed their phenomenological
bounds by (at least) 36 or 12 orders of magnitude, respectively.20

7.3.5 Numerical results and fine-tuning

Note: This section is to large extent a verbatim reproduction of the correspond-
ing section in [NS16b].

In this section we present the results of our numerical studies of the regularized
model and discuss their physical implications for the SLED scenario. Since we derive
the solutions of the full brane-bulk system without relying on any approximations, we
will be able to explicitly test (and confirm) the analytical approximations and results
of the last section. Furthermore, we will learn how much tuning is required by flux

20More generally, R̂ and V exceed their bounds by m and n orders of magnitude, respectively, with
m+ 3n = 36.
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quantization in order to achieve a small enough 4D curvature (or large enough 2D
volume).

This section is divided into three parts: First, we will first briefly sketch the numerical
algorithm. Next, we will discuss the simple case of SI brane couplings. In this case
we know the exact analytic solutions for infinitely thin branes—the GGP solution,
reviewed in Sec. 7.2.7 above—and so this provides a useful consistency check for our
numerical solver. Finally, the last part addresses the actual case of interest: a SI
breaking tension.

Throughout this section, we will for convenience set κ = 1, i.e. all dimensionful
quantities are here measured in units of the bulk Planck scale.

Numerical algorithm and parameters

The goal is to determine the ρ-profiles of the dilaton φ and of the metric functions
B and W for given model parameters. This requires solving the bulk (ρ 6= ρb) equa-
tions (7.2.14), (7.2.19), supplemented by the junction conditions (7.3.4) across ρ = ρ+.
Furthermore, we have to impose appropriate boundary conditions at the axes, viz.

φ′0 = 0 , W ′
0 = 0 , B′0 = 1 , B0 = 0 , (7.3.19a)

φ′− = 0 , W ′
− = 0 , B′− = −α− , B− = 0 . (7.3.19b)

Our algorithm21 starts at the north pole (ρ = 0) and integrating outward using the
second order equations. Since the constraint (7.2.19b) is analytically conserved, it only
needs to be imposed initially at ρ = 0. For ρ > 0 it can then be used as a consistency
check (or error estimator) of the numerical solution. At ρ = ρ+, however, the constraint
must be used once again, because it determines the stabilizing pressure pθ. In other
words, when the integration reaches ρ↗ ρ+, the three junction conditions (7.3.4) must
be supplemented by the constraint (evaluated at ρ ↘ ρ+) in order to determine the
three exterior ρ-derivatives and pθ. Afterwards, the integration continues until B → 0,
defining the south pole ρ = ρ−.

Before the equations can actually be integrated in this way, we need to specify the
three a priori unknown integration constants φ0, Q and R̂. In general, however, all of
them are ultimately fixed via (the SI case is exceptional, see Sec. 7.3.5)

(i) flux quantization (7.2.9),

(ii) regularity at the south pole, i.e., φ′− = 0,22

(iii) the correct conical defect at the south pole, i.e., B′− = −α−.

Technically, this can be achieved by a standard shooting method: we choose some
initial guesses for φ0, Q and R̂; after integrating the ODEs, the violations of (i)–(iii)

21It was implemented in Mathematica, using its “NDSolve” method.
22The corresponding regularity condition forW is not independent thanks to the constraint, i.e.,W ′− =

0 automatically whenever φ′− = 0.
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can be computed, and finally be brought close to zero via an iterative root-finding
algorithm.

In this way, since there are no integration constants left (in the non SI case), we also
see that the full solution is uniquely determined for a given set of model parameters.
These consist of the bulk couplings κ = 1 (in our present units), e, the regularization
width ρ+, the brane couplings, parametrized by α±, τ , γ and the BLF parameter Φ+, as
well as the gauge coupling ẽ. Since the latter only enters via flux quantization (7.2.9),
it is convenient to introduce the abbreviation

N :=
2πn

ẽ
, (7.3.20)

so that flux quantization simply reads Φtot = N .
Note that the solution would not be determined uniquely if, for instance, the bound-

ary conditions ensuring regularity at the south pole were neglected. In this case, it
would not be possible to numerically predict the value of R̂, since it could be cho-
sen freely. Thus, in order to compute this quantity numerically, it is crucial to find
complete, regular bulk solutions. To our knowledge, this is done here for the first
time.23

The main question is whether it is possible to find solutions for which R̂ is small
enough and V is large enough to be phenomenological viable without fine-tuning, i.e. for
generic values of the model parameters. For definiteness, and in order not to introduce
any large hierarchies into the model by hand, we will choose the following parameters,

e = 1 , ρ+ = 1 , Φ+ = −0.6 , τ = 0.9× 2π , α+ = 0.9 , and α− = 0.5 . (7.3.21)

(Somewhat different values would not change the main results, though.) The parameter
N , determining the total flux, will be varied, and used as a dial to achieve different
values of R̂ and V .

An exemplary numerical solution is shown in Fig. 7.2, where the three functions
B,W, φ, as well as their ρ-derivatives are plotted, for γ = 0.2 and two different choices
of N , leading to two different values of V , as is evident from the profile of B. Since we
chose α+ 6= α−, the solutions are warped—both W and φ have nontrivial profiles.24

Furthermore, one can already see that the profiles inside the regularized brane
(ρ < ρ+) become more trivial as V increases, as expected. This trend continues,
and all functions and their derivatives at ρ ↗ ρ+ were always found to approach the
corresponding values at the regular axis (ρ = 0) like V −1 for V →∞, thereby confirm-
ing (7.3.5).

All of the ρ-derivatives are discontinuous at the regularized brane (ρ = ρ+), as
required by the junction conditions (7.3.4). B′ consistently approaches −α− = −0.5

23Analytically, the regularity condition also implicitly entered the derivation of (7.3.8) when integrat-
ing over the whole bulk. However, this equation for R̂ is not yet a prediction solely in terms of
model parameters, since it still contains V and φ+ (as well as the coefficient of O(ε)), which are a
priori unknown. We were only able to infer the explicit value of R̂ numerically.

24Note that here we chose the gauge W0 = 1 for convenience, instead of W+ = 1 as before. But this
will not be relevant because W+ →W0 in the thin brane limit.
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Figure 7.2: Complete numerical solutions of the coupled Einstein-dilaton system for the
parameters (7.3.21) and γ = 0.2. The axis at the north pole (ρ = 0) is regular (W ′ = φ′ = 0)
and elementary flat (B′ = 1), while the axis at the south pole is regular but has a defect angle
corresponding to the unregularized pure tension brane (B′ = −0.5); the regularized brane
sits at ρ+ = 1 (in units of the bulk gravity scale), and produces jumps in the ρ-derivatives.
The orange (light) and purple (dark) curves correspond to V = 8π and V = 16π, respectively
(which were obtained for N = −1.102 and N = −0.885). The required 4D curvature was
R̂ = 0.0571 and 0.0233, respectively. The constraint violation, i.e. the numerical deviation
of (7.2.19b) from zero, was always smaller than 10−10 in this example, and the numerical
error bars would not exceed the line widths in the plots.
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at the south pole and, most importantly, both W ′ and φ′ vanish there, as required by
regularity. By running the numerics similarly for different choices of γ and N , we can
now systematically learn how these model parameters determine R̂ and V .

Scale invariant couplings and thick branes

Let us first consider the case τ = 0 corresponding to a SI tension T+ = 2π(1 − α+).
Incidentally, in this case the dilaton profile is regular, and so the solution can even
be obtained for the idealized, infinitely thin brane, as already discussed in 7.2.7. It
is given by the GGP solution [GGP04], for which R̂ = 0. In that case, dilaton inte-
gration constant φ0 drops out of all equations due to SI, and thus the above counting
of constants does not add up. Instead, flux quantization results in the tuning rela-
tion (7.2.32) among model parameters. If we chose parameters which do not fulfill
this equation, there would not be a static solution, in accordance with the expected
runaway behavior à la Weinberg [Wei89]. In turn, the extra space volume V , which is
∝ e−φ0 , cf. Eq. (7.2.30), can be chosen freely. As a result, this model could have a phe-
nomenologically viable volume (although a vanishing 4D curvature is not compatible
with observations), but only at the price of a new fine-tuning.

If SI is broken, things will change: on the one hand, φ0 will be fixed, and thus
the tuning relation is expected to disappear. On the other hand, the volume V will
also be determined, and R̂ will be nonzero. The question then is if they can satisfy
the phenomenological bounds presented in Sec. 7.3.4, and if so, whether this can be
achieved without introducing yet another tuning.

Let us now present the numerical results for a regularized brane with SI couplings,
i.e. τ = 0 and all other parameters as in (7.3.21). One might expect that in this
case still R̂ = 0, because the brane coupling is SI. But this is in fact not the case,
since SI is already broken by introducing a regularization scale `. Thus, the above
discussion applies here as well: φ0 and V are fixed in terms of model parameters, and
R̂ is nonvanishing.25 However, if the thin brane limit is taken by letting V → ∞
(which can be achieved by adjusting N appropriately), these effects should become
suppressed, and we expect to recover the GGP solution with R̂ = 0. This is exactly
what happens, as can be seen from Fig. 7.3a. Specifically, we find that R̂ ∝ V −2 as
V → ∞. Furthermore, the angular pressure pθ (not shown) is also nonvanishing, but
goes to zero like V −1. These findings are in complete agreement with the analytic
predictions (7.3.13), (7.3.10) (with τ = 0).

At the same time, the tuning relation (7.2.32) is also violated, and the static solutions
exist for any choice of parameters. But again this violation,

δΦ := ΦGGP −N , with ΦGGP :=
2π

e

√
α+α− + Φ+ , (7.3.22)

25This is a qualitative difference to models with two infinite extra dimensions, where a regularized
pure tension brane still has R̂ = 0 [KK07, ENS15].
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(a) (b)

Figure 7.3: Numerical results for parameters (7.3.21) and τ = 0, corresponding to SI brane
couplings. For large volume V , the 4D curvature and the total flux both approach the
corresponding GGP values which are valid for delta branes. The dashed lines are numerically
inferred (and extrapolated) scaling laws.

vanishes (like V −1) as V →∞, see Fig. 7.3b.26

In summary, we explicitly confirmed that introducing a regularization (which breaks
SI) leads to O(ε) corrections of the GGP predictions (R̂ = 0, ΦGGP = N , pθ = 0),
as should have been expected. In particular, this agrees with the analytic result of
Sec. 7.2 that R̂ = 0 is only guaranteed in the SLED model via SI (which is restored
as ε → 0) and a tuning of model parameters (ΦGGP = N ). Furthermore, this simple
example already shows that a stabilizing pressure pθ is necessary for a thick brane, but
also that pθ → 0 as ε→ 0, allowing for a consistent delta description as in Sec. 7.2.

But now we can even make a precise statement about the required tuning beyond
the idealized delta brane limit. The phenomenological bound (7.3.16) requires (recall
that we are working in units in which κ = 1)

10−120 !∼ R̂
V
∼ δΦ3 , (7.3.23)

where the second estimate used (and extrapolated) our numerically inferred scaling
relations [neglecting the O(1) coefficients], cf. Fig. 7.3. Therefore, the parameter N ≡
2πn/ẽ must be tuned close to ΦGGP ≡ 2π

e

√
α+α− + Φ+ with a precision of ∼ 10−40.

This is clearly not better than the CC problem we started with. It is crucial to note

26Incidentally, it turns out that without warping, i.e. for α+ = α−, the scalings are somewhat different:
R̂ ∝ V −3, δΦ ∝ V −2 and pθ ∝ V −2. However, this does not help with the tuning problem discussed
below.
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that this can also directly be read as a tuning relation for the brane tension λ, since
α+ = 1− λ/2π.

But—as already anticipated in Sec. 7.3.4—there is also another problem regarding
phenomenology, even if we allow for such a tuning: For δΦ ∼ 10−40, the extra space
volume would be V ∼ 1040, grossly violating the bound (7.3.17). Thus, by tuning R̂
small enough, we have at the same time tuned the extra space volume 12 orders of mag-
nitude larger than allowed. Alternatively, if we require V to satisfy the observational
bound (7.3.17), R̂ would still be 36 orders of magnitude larger than what is observed.
Hence, as it stands, the model suffers not only from a tuning problem, but is not even
phenomenologically viable.

This nicely agrees with the analytic discussion in Sec. 7.3.4. Explicitly, we confirmed
the relation (7.3.13) (here for τ = 0), finding the coefficient N2 = 3.16 for this specific
set of parameters, i.e. e, ρ+, Φ+ and α± as given in (7.3.21). Now, since the resulting
failure to get both R̂ and V within their phenomenological bounds is the central result
of this work, it is worthwhile to discuss its robustness.

First, it should be noted that the main reason for this result can be traced back
to the O(ε) contributions to the 4D curvature R̂, cf. Eq. (7.3.8), which are caused by
endowing the brane with a finite width. Hence, they are unavoidable in a (realistic)
thick brane setup; of course, we did our explicit calculations only in one particular
regularization, but the standard EFT reasoning suggests that the qualitative answer
would be the same for any other reasonable regularization.27 While there are additional
contributions to R̂ if the dilaton couplings break SI, see Eq. (7.3.13), they can only
make things worse (unless there were a miraculous cancellation—a possibility that we
dismiss in the search of a natural solution to the CC problem). Again, this will be
explicitly confirmed in the following section. Next, we checked numerically that the
scaling relation, as well as the order of magnitude of the coefficient N2 do not change
if different tensions (i.e. other generic28 values for α±) are chosen. Furthermore, the
parameters Φ+ and e have no influence on the result at all; this is obvious for the BLF
Φ+, but also easily seen for the gauge coupling e as follows: For the SI couplings we are
considering here, the full (regularized) equations of motion enjoy the exact symmetry

e 7→ ae , Q 7→ aQ , eφ 7→ 1

a2
eφ , (7.3.24)

for any constant a. Hence, after changing e, the new solution is simply obtained from
the old one by rescaling Q and eφ appropriately. Since the metric is unaltered, this
leaves R̂ and V unchanged.29 Hence, the only parameter that could change things is
ρ+, determining the regularization scale ` ≈ 2πρ+, in accordance with the discussion
below Eq. (7.3.18).

27One could test this assumption by repeating our analysis e.g. in the UV model proposed
in [BDW15a].

28A counterexample is provided by unwarped solutions which are achieved by tuning both tensions
equal; in this case the contributions to R̂ would only be O(ε2).

29Note that the (bulk) flux transforms as Φ 7→ Φ/a, and so N has to be readjusted accordingly. This,
however, does not affect the relation between R̂ and V .
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Non scale invariant couplings

We now turn to the case τ 6= 0 (and γ > 0),30 where SI is broken explicitly via the
tension term. The hope is to find values of γ for which no tuning is required in order to
achieve a large volume and small curvature. As argued above, this suggests focusing on
γ > 0, because then V →∞ drives the model towards the SI case which in turn implies
R̂ → 0. While this case was already discussed in Sec. 7.3.4 under certain reasonable
assumptions, the numerical analysis independently confirms the previous results and
allows to quantify the amount of tuning necessary to get a viable 4D curvature.

Figure 7.4 shows the numerical results for different values of γ > 0. Again, small
R̂ and large V are generically realized for δΦ → 0, i.e. if ΦGGP is tuned close to N .
Evidently, both quantities again show a power law dependence on δΦ, with exponents
which now depend on γ. Empirically, we find the following laws,

R̂ ∝

{
δΦ1+1/γ

δΦ2
, V ∝

{
δΦ−1/γ (for 0 < γ < 1)

δΦ−1 (for 1 < γ)
, (7.3.25)

as δΦ → 0. These are plotted in Figs. 7.4a and 7.4b as dashed lines, and evidently
provide very good fits to the numerical data points. Note that the scalings for γ > 1
are the same as the ones obtained in the SI case τ = 0. The transition to this generic
scaling law occurs because for γ > 1 the finite width effects (which are independent
of γ) dominate, cf. Sec. 7.3.3. Also note that combining the scaling relations for R̂
and V exactly reproduces the analytic prediction (7.3.13). For completeness, let us
mention that the corresponding numerical coefficient N1 was found to agree with the
analytic prediction (7.3.14) within the numerical uncertainties. Likewise, the scaling
relations (7.3.12) for pθ, which are drawn as dashed lines in Fig. 7.4c, again agree very
well with the data. Finally, Fig. 7.4d shows the relation between the dilaton evaluated
at the brane and the volume, confirming (7.3.11).

With these results, we can now turn to the tuning question. For γ > 1, the discussion
is exactly the same as for the SI case (τ = 0) above, because the scaling relations are
the same. But for γ < 1 there is a modification: Using the scaling relations (7.3.25),
the phenomenological bound (7.3.16) now implies

10−120 ∼ δΦ1+2/γ . (7.3.26)

For γ . 1, δΦ still has to be tuned tremendously close to zero; but for γ � 1, this is
not the case anymore. Specifically, if we choose γ ≈ 1/60 (which is not hierarchically
small), this relation is already fulfilled if δΦ ∼ 0.1, i.e. without any fine-tuning of
model parameters. So we find the remarkable result that the near-SI tension is capable
of producing a small 4D curvature and a large volume (as compared to the fundamental
bulk scale) without fine-tuning, although this was not possible for a SI tension (τ = 0).
At first sight, this looks very promising. However, on closer inspection, there is an
even bigger problem with the volume bound (7.3.17) than before, since γ ∼ 1/60 and

30The case γ = 0 is still SI and identical to the discussion above after renaming λ+ τ → λ.
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(a) A small 4D curvature R̂ is realized for a
small violation δΦ of the GGP tuning relation.

(b) A large extra space volume V is achieved
for a small δΦ.

(c) The angular pressure pθ vanishes in the thin
brane limit in accordance with the EFT expec-
tation.

(d) The dilaton evaluated at the brane φ+ con-
trols the extra space volume V via (7.3.11).

Figure 7.4: Numerical results for the parameters (7.3.21) and different values of the SI
breaking parameter γ. Each dot corresponds to a separate run; the numerical uncertainties
were always smaller than the point sizes. The dashed lines show power law fits with exponents
as given in (7.3.25) and (7.3.12), as well as the exact analytic prediction (7.3.11), which are
always approached as V →∞. Whenever the scaling is γ independent, there are several data
points which lie on top of each other.
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δΦ ∼ 0.1 now yields V ∼ 1060, exceeding the bound by 32 orders of magnitude. In
turn, if we chose γ ∼ 1/28, so that the volume satisfies the bound for δΦ ∼ 0.1, then
R̂ ∼ 10−57M2

Pl, which is 63 orders of magnitude larger than its observational bound.

In summary, while it is possible to get small R̂ and large V without tuning ΦGGP ex-
tremely close to N , it is not possible for both of them to satisfy their phenomenological
bounds, in accordance with the general discussion in Sec. 7.3.4.

Let us note that this possibility of getting a large volume without large parameter
hierarchies was also recently observed in [BDW15c], where the same model was studied
in a dimensionally reduced, effective 4D theory. However, there it was also assumed
that it would at the same time be possible to have R̂ within its bounds (possibly via
some independent fine-tuning), so that the model could in this way at least address
the electroweak hierarchy problem (albeit not the CC problem). Here we found that
this is not possible, because R̂ and V are not independent, and so one cannot tune R̂
without at the same time ruining the value of V .

7.4 Conclusion

In this chapter, we investigated the question whether the codimension-two degravita-
tion mechanism can be successfully used to solve the CC problem in the case of compact
extra dimensions, focusing on the SLED model [ABPQ04]. A major difficulty is that
the flux quantization condition, which is necessary to stabilize the compact extra space,
reintroduces a fine-tuning of the brane tension in order to obtain degravitating, i.e. 4D
flat solutions. The idea of [BvN11, BvN13] was to circumvent this problem by intro-
ducing a BLF. If this term does not couple to the dilaton, it adds a dilaton-dependent
contribution to the total magnetic flux, so that flux quantization fixes the dilaton zero
mode (which can readjust dynamically) instead of imposing a tuning relation.

In the first part, we revealed the problem with this BLF proposal: The crucial
feature with respect to the CC problem, namely the existence of 4D flat solutions, is
only preserved if the BLF is scale invariant—and not if it is dilaton independent as
was previously claimed [BvN11, BvN13]. But in this case, the dilaton drops out of the
flux quantization condition, and the tuning problem gets restored. In other words, the
BLF does not add anything new to the story; in fact, the exact same picture would
have emerged without BLF, if SI were broken by a dilaton dependent tension.

The crucial technical ingredient in our derivation was the addition of a counter term
that is necessary (and sufficient) to dispose of divergences which are caused by the
BLF. As a consistency check, we found agreement of our result with a recent analysis
based on a specific UV model [BDW15a], as expected from an EFT point of view.

Our result can nicely be reconciled with Weinberg’s argument (cf. Sec. 1.2.1): Since
the extra space is compact,31 one can always construct a Kaluza-Klein reduced effective
4D theory. From this point of view, Weinberg tells us that scale invariance can be used

31Note that this is a crucial difference to the BIG scenario.
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to guarantee flat solutions, but only at the price of yet another fine-tuning—otherwise
there would only be runaway solutions.

The remaining hope for the SLED program then lies within brane couplings which
break SI. While these will not lead to 4D flat solutions, it is not a priori clear how large
the 4D Ricci scalar R̂ will be, and it might still turn out (due to the degravitation
mechanism) to be small enough to comply with observations for natural values of the
model parameters. We therefore investigated the model with a SI breaking brane
tension32 in the second part of this chapter; specifically, we focused on a tension of the
form ∝ eγφ, which allows to have both small R̂ and large extra dimensions at the same
time. A thorough treatment of this case required to regularize the brane by giving it
a finite thickness, which presented the second difference to part I (where only delta
branes were studied).

By performing an analytical, as well as a complementary numerical analysis, we were
able to infer the impact of the SI breaking tension on R̂, confirming the delta result
at leading order. Furthermore, we were able to pin down the amount of tuning due
to flux quantization that is required to achieve small values of R̂. While affirming the
delta prediction that a fine-tuning is required for 4D flatness, we also found that if
γ � 1, O(1) violations of this tuning can indeed still result in R̂ small enough to be
phenomenologically viable. However, all these solutions yielded an extra space volume
V way above its current upper limits, unless some model parameters were tuned again.

But an even more important result of our analysis was that the nonzero brane width
` led to an additional contribution ≈ ε/V to R̂, where ε ≡ `2/V . This contribution
cannot be seen by studying delta branes, but should be taken into account for any
realistic model, because a brane ultimately always comes with some finite microscopic
width. The trouble with this unavoidable term is that—if ` is not smaller than the
bulk Planck length, and the size of the extra dimensions is within current experimental
bounds—it gives a contribution to R̂ which is already 36 orders of magnitude above
its measured value. Thus, the model (with a super-Planckian brane width) is ruled out
phenomenologically, unless there are additional contributions to R̂ which are fine-tuned
in order to achieve the required cancellation. But the latter option would presumably
not present progress regarding the CC problem. Since this result does not depend at
all on the nature of the dilaton-brane couplings (and the corresponding breaking of SI)
it provides the most serious challenge for the SLED program. In fact, it is reasonable
to expect it also to apply to any other concrete braneworld model with two large extra
dimensions, not just to SLED.

Finally, let us note that we performed a purely classical analysis, based on the as-
sumption that all model parameters take generic values set by the fundamental bulk
Planck scale. While this makes sure that we do not introduce a priori hierarchies or
tunings into the model by hand, it is in principle still possible that some choices which
we would regard as “tuned” might in fact not be spoiled by quantum corrections, and

32We also checked that a SI breaking BLF leads to the same conclusions, in accordance with the
expectation from part I.
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thus be technically natural.33 This option can only be checked by performing loop cal-
culations in an explicit brane matter theory, which is beyond the scope of our work; but
at the moment we do not see any indications why or how it could be realized. It should
be emphasized, however, that our findings are valuable in any case, as they already tell
us which tunings have to be realized, and would need to be protected against radiative
corrections.

33For instance, we always assumed two different values of the (dilaton independent) brane tensions; if,
instead, asymptotically unwarped solutions were possible in a technically natural way, the brane
width contributions to V R̂ would only be O(ε2). However, even in this most optimistic scenario,
these brane width contribution to R̂ would still be 8 orders of magnitude too large.



Appendix to Chapter 7

Note: This appendix is to large extend a verbatim reproduction of the corre-
sponding appendix in [NS16a].

7.A Agreement with a specific UV model

A crucial step in our analysis was the introduction of the counter term in Sec. 7.2.3,
which was necessary to handle delta-like branes in the presence of BLF terms. As
argued in Sec. 7.2.3, this term is uniquely fixed in the sense that it is necessary and
sufficient to remove all divergences, and has all the required symmetries. However,
in order to gain more confidence in our approach, it is instructive to compare our
results with the ones obtained in a recently proposed UV model [BDW15a]. There, the
microscopic degrees of freedom creating the branes are resolved, and the branes have
a finite thickness, thus avoiding all divergences. The BLF is modeled by introducing
a kinetic mixing of the Maxwell field to another U(1) field. In [BDW15a], only the
non-supersymmetric case (without dilaton) was studied. This case is also covered by
our analysis, and can be recovered by setting the dilaton to zero (φ ≡ 0), discarding
its equation of motion, Sec. 7.2.4, and replacing 2e2/κ4 by a bulk CC Λ.

The main result of [BDW15a] was that the BLF “does not gravitate”. This result
is recovered in our analysis by noticing that Ab does not appear in the Einstein equa-
tions (7.2.19). Note that in the original equation (7.2.18) it does appear; it only drops
out after plugging in the solution for the Maxwell field, i.e. it is canceled by the lo-
calized contributions from FMN . This is exactly the cancellation mechanism which is
describes in the paragraph below Eq. (3.71) in [BDW15a]. In summary, there is no
contribution of the localized flux to the 4D Ricci on the brane in the non-SUSY case.

Reference [BDW15a] also discusses how the UV results can be understood in a low
energy EFT in which the branes look delta-like. It is also found that a renormalization is
necessary to avoid divergent terms in the 4D action. Remarkably, this renormalization
is exactly the same subtraction scheme we suggested here in Sec. 7.2.3.34 Indeed,
Eq. (3.50) in [BDW15a] subtracts exactly our term Sdiv defined in (7.2.11).35 All in all,

34Let us emphasize, though, that our technique and results were communicated to the authors
of [BDW15a] long before [BDW15a] appeared.

35However, this subtraction is called a renormalization of the tension in [BDW15a]. As discussed



232 7 The universe on a rugby ball

our EFT analysis is in great agreement with the thorough and detailed UV analysis
in [BDW15a], proving once again the usefulness and power of EFT reasoning.

above, we disagree with this statement, because a tension would not have the additional met-
ric dependence 1/

√
g2. Consequently, the counter term enters in the Einstein equation (7.2.18)

differently than Tb.
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[Fri24] A. Friedmann. Über die Möglichkeit einer Welt mit konstanter negativer
Krümmung des Raumes. Zeitschrift für Physik, 21(1):326–332, 1924. doi:
10.1007/BF01328280.

[FWH+08] Wenjuan Fang, Sheng Wang, Wayne Hu, Zoltan Haiman, Lam Hui, and
Morgan May. Challenges to the DGP Model from Horizon-Scale Growth
and Geometry. Phys. Rev., D78:103509, 2008. arXiv:0808.2208, doi:
10.1103/PhysRevD.78.103509.

[GGP04] G. W. Gibbons, Rahmi Gueven, and C. N. Pope. 3-branes and uniqueness
of the Salam-Sezgin vacuum. Phys. Lett., B595:498–504, 2004. arXiv:

hep-th/0307238, doi:10.1016/j.physletb.2004.06.048.

[GH77] G. W. Gibbons and S. W. Hawking. Action integrals and partition
functions in quantum gravity. Phys. Rev., D15:2752–2756, May 1977.
doi:10.1103/PhysRevD.15.2752.

[Giv91] Dan Givoli. Non-reflecting Boundary Conditions. J. Comput. Phys.,
94(1):1–29, May 1991. doi:10.1016/0021-9991(91)90135-8.

http://dx.doi.org/10.1103/PhysRevD.47.2271
http://dx.doi.org/10.1103/PhysRevD.47.2271
http://dx.doi.org/10.1002/andp.200590044
http://echo.mpiwg-berlin.mpg.de/MPIWG:90N0CB46
http://arxiv.org/abs/1506.02666
http://dx.doi.org/10.1103/PhysRevD.92.084029
http://dx.doi.org/10.1016/S0016-0032(37)90583-0
http://stacks.iop.org/0004-637X/707/i=2/a=916
http://stacks.iop.org/0004-637X/707/i=2/a=916
http://dx.doi.org/10.1016/0550-3213(82)90106-7
http://dx.doi.org/10.1007/BF01332580
http://dx.doi.org/10.1007/BF01328280
http://dx.doi.org/10.1007/BF01328280
http://arxiv.org/abs/0808.2208
http://dx.doi.org/10.1103/PhysRevD.78.103509
http://dx.doi.org/10.1103/PhysRevD.78.103509
http://arxiv.org/abs/hep-th/0307238
http://arxiv.org/abs/hep-th/0307238
http://dx.doi.org/10.1016/j.physletb.2004.06.048
http://dx.doi.org/10.1103/PhysRevD.15.2752
http://dx.doi.org/10.1016/0021-9991(91)90135-8


240 Bibliography

[GKMP07] Ruth Gregory, Nemanja Kaloper, Robert C. Myers, and Antonio Padilla.
A New perspective on DGP gravity. JHEP, 0710:069, 2007. arXiv:

0707.2666, doi:10.1088/1126-6708/2007/10/069.

[GKS06] Dmitry Gorbunov, Kazuya Koyama, and Sergei Sibiryakov. More on
ghosts in DGP model. Phys. Rev., D73:044016, 2006. arXiv:hep-th/

0512097, doi:10.1103/PhysRevD.73.044016.

[Got85] III Gott, J. Richard. Gravitational lensing effects of vacuum strings:
Exact solutions. Astrophys. J., 288:422–427, 1985. doi:10.1086/162808.

[Gow71] Robert H. Gowdy. Gravitational Waves in Closed Universes. Phys. Rev.
Lett., 27:826–829, Sep 1971. doi:10.1103/PhysRevLett.27.826.

[GP82] Alan H. Guth and So-Young Pi. Fluctuations in the New Inflationary
Universe. Phys. Rev. Lett., 49:1110–1113, Oct 1982. doi:10.1103/

PhysRevLett.49.1110.

[GP04] Jaume Garriga and Massimo Porrati. Football shaped extra dimensions
and the absence of self-tuning. JHEP, 08:028, 2004. arXiv:hep-th/

0406158, doi:10.1088/1126-6708/2004/08/028.

[Gre96] Ruth Gregory. Cosmic p-branes. Nucl. Phys., B467:159–182, 1996.
arXiv:hep-th/9510202, doi:10.1016/0550-3213(96)00089-2.

[Gre03] Ruth Gregory. Inflating p-branes. JHEP, 0306:041, 2003. arXiv:hep-

th/0304262, doi:10.1088/1126-6708/2003/06/041.

[Gru05] Andrei Gruzinov. On the graviton mass. New Astron., 10:311–314, 2005.
arXiv:astro-ph/0112246, doi:10.1016/j.newast.2004.12.001.

[Gut81] Alan H. Guth. Inflationary universe: A possible solution to the horizon
and flatness problems. Phys. Rev., D23:347–356, Jan 1981. doi:10.1103/
PhysRevD.23.347.

[Had52] Jacques Hadamard. Lectures on Cauchy’s Problem in Linear Partial Dif-
ferential Equations. Dover Publicataions, Inc., New York, 1952.

[Haw82] S. W. Hawking. The development of irregularities in a single bubble
inflationary universe. Phys. Lett., B115(4):295 – 297, 1982. doi:10.

1016/0370-2693(82)90373-2.

[HGLM03] Peter Hoflich, C. Gerardy, E. Linder, and H. Marion. Models for Type
Ia supernovae and cosmology. Lect. Notes Phys., 635:203, 2003. arXiv:

astro-ph/0301334, doi:10.1007/978-3-540-39882-0_11.

http://arxiv.org/abs/0707.2666
http://arxiv.org/abs/0707.2666
http://dx.doi.org/10.1088/1126-6708/2007/10/069
http://arxiv.org/abs/hep-th/0512097
http://arxiv.org/abs/hep-th/0512097
http://dx.doi.org/10.1103/PhysRevD.73.044016
http://dx.doi.org/10.1086/162808
http://dx.doi.org/10.1103/PhysRevLett.27.826
http://dx.doi.org/10.1103/PhysRevLett.49.1110
http://dx.doi.org/10.1103/PhysRevLett.49.1110
http://arxiv.org/abs/hep-th/0406158
http://arxiv.org/abs/hep-th/0406158
http://dx.doi.org/10.1088/1126-6708/2004/08/028
http://arxiv.org/abs/hep-th/9510202
http://dx.doi.org/10.1016/0550-3213(96)00089-2
http://arxiv.org/abs/hep-th/0304262
http://arxiv.org/abs/hep-th/0304262
http://dx.doi.org/10.1088/1126-6708/2003/06/041
http://arxiv.org/abs/astro-ph/0112246
http://dx.doi.org/10.1016/j.newast.2004.12.001
http://dx.doi.org/10.1103/PhysRevD.23.347
http://dx.doi.org/10.1103/PhysRevD.23.347
http://dx.doi.org/10.1016/0370-2693(82)90373-2
http://dx.doi.org/10.1016/0370-2693(82)90373-2
http://arxiv.org/abs/astro-ph/0301334
http://arxiv.org/abs/astro-ph/0301334
http://dx.doi.org/10.1007/978-3-540-39882-0_11


Bibliography 241

[HHvS11] S.F. Hassan, Stefan Hofmann, and Mikael von Strauss. Brane Induced
Gravity, its Ghost and the Cosmological Constant Problem. JCAP,
1101:020, 2011. arXiv:1007.1263, doi:10.1088/1475-7516/2011/01/
020.

[Hil15] David Hilbert. Grundlagen der Physik, Erste Mitteilung, vorgelegt in
der Sitzung vom 20. November 1915. Königl. Gesell. Wiss. Göttingen,
Nachr., Math.-Physik. Kl., pages 395–407, 1915. URL: http://echo.

mpiwg-berlin.mpg.de/MPIWG:234X0D0W.

[His85] W. A. Hiscock. Exact Gravitational Field of a String. Phys. Rev.,
D31:3288–3290, 1985. doi:10.1103/PhysRevD.31.3288.

[HNS13] Stefan Hofmann, Florian Niedermann, and Robert Schneider. Interpreta-
tion of the Weyl tensor. Phys. Rev., D88:064047, 2013. arXiv:1308.0010,
doi:10.1103/PhysRevD.88.064047.

[Hub29] Edwin Hubble. A relation between distance and radial velocity among
extra-galactic nebulae. Proceedings of the National Academy of Sciences,
15(3):168–173, 1929. doi:10.1073/pnas.15.3.168.

[IMM+09] Fabio Iocco, Gianpiero Mangano, Gennaro Miele, Ofelia Pisanti, and
Pasquale D. Serpico. Primordial Nucleosynthesis: from precision cos-
mology to fundamental physics. Phys. Rept., 472:1–76, 2009. arXiv:

0809.0631, doi:10.1016/j.physrep.2009.02.002.

[Isr66] W. Israel. Singular hypersurfaces and thin shells in general relativ-
ity. Il Nuovo Cimento B Series 10, 44(1):1–14, 1966. doi:10.1007/

BF02710419.

[Isr67] W. Israel. Singular hypersurfaces and thin shells in general relativity.
Il Nuovo Cimento B Series 10, 48(2):463–463, 1967. doi:10.1007/

BF02712210.

[K+10] P. Kroupa et al. Local-Group tests of dark-matter concordance cos-
mology . Towards a new paradigm for structure formation. Astron-
omy and Astrophysics, 523:A32, November 2010. arXiv:1006.1647,
doi:10.1051/0004-6361/201014892.
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