
 

 
 

 

Content, granularity, and  

type 2 sensitivity of subjective 

measures of visual consciousness 
 

Manuel Rausch 

 
 

 

Dissertation 

at the Graduate School of Systemic Neurosciences 

Ludwig-Maximilians-Universität München 

 

 

 

submitted by  

Manuel Rausch 

from Munich 

 

Munich, 1 October, 2015



 

Day of disputation: 18 April 2016 

Thesis advisory committee:  

Prof. Michael Zehetleitner  

Prof. Hermann J. Müller 

Prof. Stephan Sellmaier 

Examination committee: 

Prof. Michael Zehetleitner  

Prof. Stephan Glasauer 

Prof. Hermann J. Müller 

Prof. Marco Steinhauser 

Keeper of the minutes 

Prof. Marco Steinhauser 

 



 

ACKNOWLEDGEMENTS 

Mein erster Dank gilt Saskia, und zwar dafür, dass sie einerseits tolerierte, wenn meine 

Gedanken auch nach Feierabend um Forschung kreisten, und andererseits sichergestellt hat, 

dass ich mich nicht ausschließlich mit Forschung beschäftigte.  

Desweiteren danke ich Michael Zehetleitner dafür, dass er mir diese Dissertation 

abseits der Standardthemen der Psychologie ermöglichte, und für das große Vertrauen, das er 

mir und meiner Arbeit stets entgegen brachte.  

Außerdem danke ich Hermann Müller für seine Untersützung immer dann, wenn sie 

vonnöten war.  

Bernhard Schlagbauer danke ich für hilfreiche Kommentare und für die Gesellschafft 

bei Kaffee, Mensa, und Whisky.  

Emil Ratko-Dehnert danke ich dafür, dass er mir Progammieren beigebracht hat, und 

für die Erweiterung meines gustatorischen Horizontes.  

Finally, I would like to express my gratitude towards the whole Graduate School of 

Systemic Neurosciences for providing such a stimulating multidisciplinary environment.  

  



iv 

ABSTRACT 

According to several major theories in the field of consciousness research, the valid 

assessment of conscious awareness requires subjective measures, i.e. participants’ reports 

about their conscious experience. However, there is a considerable amount of uncertainty in 

the field if and how scientifically valuable data can be obtained from subjective measures.  

The present work empirically examines how subjective measures of conscious 

awareness need to be designed and applied to provide maximally useful data for empirical 

studies of visual consciousness. Specifically, it is investigated what contents subjective 

measures should require participants to report, at which granularity subjective measures ought 

to be recorded, and what statistical procedures should be used to quantify the relation between 

subjective measures and discrimination task performance.  

Concerning content, subjective measures that referred to the accuracy of a preceding 

discrimination response and subjective measures referring to participants’ visual experience 

of the task-relevant stimulus feature were compared during a series of visual psychophysical 

experiments. Subjective measures about the accuracy of the responses were associated with 

more liberal psychophysical thresholds: At lower stimulus quality, participants reported that 

they feel confident that their discrimination response was correct without reporting a visual 

experience of the stimulus feature. Only at greater stimulus quality, they reported that they 

had a visual experience of the stimulus feature in addition to being confident. Moreover, 

subjective measures about confidence in discrimination responses predicted task accuracy 

more efficiently than measures about visual experience. Finally, subjective measures of 

experience and task accuracy as content were compared while event-related potentials (ERP) 

were recorded. The earliest electrophysiological correlates of subjective measures where 

predictive of the fact if participants reported that they selected the response to the 

discrimination task based on knowledge instead of guessing, but were not yet predictive 

whether participants reported a clear experience over and above making the task response 

based on knowledge. The strongest ERP correlate of visual experience occurred a short period 

in time before participants responded to the discrimination task. As a consequence, it is 

argued that conceptual considerations are required which conscious contents are relevant for a 

specific research question, and subjective measures should be about the relevant contents 

accordingly.  
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Concerning the granularity of subjective measures, a continuous scale and a scale with 

four discrete labelled categories were compared as subjective measure of conscious 

experience of motion. The subjective measures contained more information when participants 

used the continuous scale instead of the discrete scales. The greater amount of information 

provided by continuous scales rendered subjective measures more predictive of task accuracy 

and enhanced internal consistency. 

Regarding the statistical procedure to quantify the relation between subjective 

measures and task performance, it was found that logistic regression is a suboptimal method 

because the relationship between subjective measures and the transformed accuracy was 

frequently not linear. In contrast, meta-da, a measure of the relationship between subjective 

reports and task accuracy derived from signal detection theory (SDT), provided the most 

consistent results across all studies.  

Overall, it is concluded that subjective measures are suited to provide highly useful 

data to address non-trivial research questions for the scientific study of consciousness: As 

prerequisite, the content of a subjective measures should be tailored to the current research 

question. In addition, the problem of a lacking objective standard can be addressed by using 

the relation between subjective measures and task performance as a reference frame. 
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1. INTRODUCTION 

The neural correlates of consciousness (NCC) is probably the most prominent yet 

unresolved problem in modern neuroscience (Crick & Koch, 1990, 2003; Rees, Kreiman, & 

Koch, 2002). According to a standard definition, the NCC is the minimum set of neural events 

jointly sufficient to give rise to a specific conscious experience (Mormann & Koch, 2007). 

Empirical studies of the NCC are usually based on the same principle, a comparison of two 

different kinds of measurements: (i) a measurement of on-going neural events, and (ii) a 

measurement of the conscious experiences of the subject given a specific stimulus or 

situation. A major obstacle to the prosperity of the field of consciousness research is that there 

is great disagreement on how to measure the latter, i.e. conscious experience (Chalmers, 

1998).  

What is the appropriate measurement for consciousness research? First and foremost, 

choosing a measurement of consciousness poses a conceptual question: Several different 

concepts of consciousness exist, each providing a different definition of what it means to be 

conscious (for overviews see e.g. Block, 2002; Rosenthal, 2009; van Gulick, 2014). Some of 

these concepts imply specific measurement procedures by implying that specific behaviours 

are indicative of consciousness (Seth, Dienes, Cleeremans, Overgaard, & Pessoa, 2008). 

Conceptual clarity is not only important for identifying appropriate behavioural measures; in 

fact, different concepts of consciousness may be realized by separate NCCs (Block, 2005; 

Rees et al., 2002). As a consequence, empirical studies on consciousness need to clarify first 

which concept of consciousness is addressed by their research.  

However, while the key features of a measure of consciousness can be determined by 

conceptual considerations, many specific features cannot be deduced from the concepts. For 

example, higher order theories of consciousness typically imply that visual consciousness 

needs to be assessed by some kind of subjective measure (Dienes, 2004, 2008; Lau & 

Rosenthal, 2011; Lau, 2008b; c.f. section 1.2.3.), but they do not specify whether visual 

consciousness should be measured by a visibility rating, a confidence rating, whether reports 

should be made at a continuous or a multi-category scale, or whether joystick or keyboards 

should be used as measurement device. Whenever several measures are conceptually equally 

valid, empirical studies are required to investigate how a measurement needs to be designed 
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to provide the most useful data (Dienes & Seth, 2010; Sandberg, Timmermans, Overgaard, & 

Cleeremans, 2010).  

This work addresses the basic research question how subjective measures need to be 

designed to provide useful measures of visual consciousness. It begins with a discussion of 

the distinctive features of subjective measures in comparison to so-called objective measures, 

which concepts of consciousness can be assessed by subjective measures, and what is the 

rationale to prefer subjective measures over objective ones. Subsequently, three key 

characteristics of subjective measures are empirically investigated:  

(i) the content of subjective measures 

(ii) the granularity of subjective measures 

(iii) the method to quantify the relation between subjective measures and objective task 

performance 

Regarding content, it is investigated whether subjective measures that refer to the 

visual experience of the stimulus are interchangeable with subjective measures that refer to 

participants’ confidence in having made a correct response at the discrimination task. The 

effect of content of subjective measures is examined in terms of behaviour in psychophysical 

experiments (cf. Chapter 2; Zehetleitner & Rausch, 2013) and event-related potential (ERP) 

correlates (Chapter 3). Regarding the granularity of subjective measures, it is investigated if 

subjective reports should preferably be recorded by scales with four discrete categories, or by 

a visual analogue scale (VAS; Chapter 4; Rausch & Zehetleitner, 2014). Finally, concerning 

the association between subjective measures and discrimination performance, it is examined if 

mixed-model logistic regression or the recently suggested meta-da is a more convenient 

method of analysis (Chapter 5; Rausch, Müller, & Zehetleitner, 2015).  

1.1. What are subjective measures of conscious awareness? 

Two general approaches to measuring conscious awareness can be distinguished: 

objective measures and subjective measures (Cheesman & Merikle, 1984; Lau, 2008; Seth et 

al., 2008). A measure is considered objective if conscious experiences are ascribed to the 

subject based on performance in a task (Eriksen, 1960). For example, assuming that 

participants are presented with one out of two possible stimuli “A” and “B”, the participants 

are said to be conscious of the stimulus if they respond correctly more often than expected 

from chance when asked to classify the stimulus. In contrast, measures are considered as 
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subjective if participants are required to make a report about their conscious experiences 

(Cheesman & Merikle, 1984). In this case, the participants might be asked if they are seeing 

the stimulus, and it is assumed that they have a visual experience if they respond “yes”. 

According to a standard view in the consciousness studies literature, the fundamental 

difference between objective and subjective measures lies in the kind of processes indicated 

by each measure (Dienes, 2008). Fig. 1-1 provides an overview of the hypothesized causal 

pathways leading to a discrimination response (i.e. an objective measure) as well as subjective 

report (i.e. a subjective measure). Discrimination performance above chance shows that the 

visual system of the observer provided at least some sensory evidence, which was available to 

the processes engaged in decision making. The decision must also have successfully triggered 

a motor response. In contrast, subjective measures require participants to report their mental 

state directly (Dienes, 2004; Seth et al., 2008), for instance their visual experience of the 

stimulus. Such a report requires the participant to make a decision between the different 

response options offered by a subjective measure (called rating decision in Fig. 1-1). This 

rating decision depends on metacognitive processes in the sense that participants need to 

know they saw the stimulus in order to report that they saw the stimulus (Dienes, 2008). Some 

of the causal pathways underlying rating decisions are yet controversial: Standard signal 

detection theory assumes that rating decision are made based on the same sensory evidence as 

the discrimination decision (Kepecs, Uchida, Zariwala, & Mainen, 2008; Ko & Lau, 2012; 

Macmillan & Creelman, 2005). Other models have suggested a parallel causal pathway for 

sensory evidence to rating decisions bypassing the discrimination decision (Cleeremans, 

Timmermans, & Pasquali, 2007; Dehaene, 2010). Some models unify both accounts in 

assuming rating decisions are influenced by both sensory evidence used in the discrimination 

task as well as parallel sensory evidence (Jang, Wallsten, & Huber, 2012; Pleskac & 

Busemeyer, 2010). Finally, recent studies proposed that rating decisions are influenced by the 

motor action of the previous discrimination response (Fleming et al., 2015). Overall, the 

mechanisms underlying subjective measures may involve metacognitive components in 

addition to those processes engaged in objective measures.  
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Figure 1-1. A schematic view of the causal pathways underlying objective and subjective 

measures of consciousness. A discrimination decision is a decision process where participants 

select one out of the possible responses to the task, based on sensory evidence provided by 

perceptual processes. A rating decision is a process where participants select one out of 

several options provided by the rating scale. The causal pathways leading to rating decisions 

are still controversial, as indicated by the question marks. 

 

Besides these differences, Fig. 1-1 also illustrates an important feature objective and 

subjective measures have in common: Both kinds of measures ultimately depend on an overt 

behavioural response by the participant. For objective and subjective measures, the most 

common response in the context of an experiment is that the participant presses one out of 

several buttons. This is important to acknowledge because subjective measures seem to 

depend on introspection, i.e. the observation of one’s own mind, which has been exiled from 

scientific psychology for decades (Boring, 1953; Danziger, 1980). However, participants’ 

subjective report recorded and interpreted by the experimenter is a physical fact about the 

world just in the same way as a discrimination judgement, public and thus readily accessible 

for scientific investigations. Consequently, subjective reports about conscious experience are 

legitimate data for science as long as the experimenter and the participant who engages in 

introspection are not the same person (Dennett, 2003, 2007). Even more, it was argued that 

subjective reports about conscious experience are exactly those events that a science of 

consciousness should collect as data and strive to explain (Dehaene & Naccache, 2001; 

Dehaene, 2010; Dennett, 2003, 2007).  
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1.2. Concepts of consciousness 

Before discussing whether subjective and objective measures are more appropriate for 

a specific research question, researchers should always clarify first which concept of 

consciousness is investigated in a specific study. Concepts of consciousness fall into the two 

superordinate categories of transitive consciousness and intransitive consciousness (Dehaene, 

Changeux, Naccache, Sackur, & Sergent, 2006). When used in the intransitive sense, 

consciousness refers to a person or to an agent as a whole: Intransitive consciousness 

differentiates awake humans from non-conscious entities (e.g. robots, philosophical zombies) 

or other humans in dreamless sleep or coma. In the transitive sense, consciousness always 

refers to events or mental states one is conscious or aware of (Rosenthal, 1986, 2009; Van 

Gulick, 2014): Transitive consciousness differentiates conscious stimuli or perception from 

unconscious stimuli or perception. Researchers often use the term awareness or conscious 

awareness to explicitly refer to the transitive meaning of consciousness of something. Both 

superordinate categories involve various different concepts (see Van Gulick, 2014, for an 

overview). As the present work is only concerned with subjective measures of conscious 

awareness of visual stimuli, only the three most influential concepts of transitive 

consciousness for contemporary research and the corresponding theories of consciousness are 

described briefly:  

(i) phenomenal consciousness (Block, 2002; Jackson, 1982; Nagel, 1974) 

(ii) conscious access (Baars, 2002, 2005; Block, 2002; Dehaene et al., 2006; Dehaene & 

Naccache, 2001) 

(iii) higher-order consciousness (Carruthers, 2011; Lau & Rosenthal, 2011; Timmermans, 

Schilbach, Pasquali, & Cleeremans, 2012) 

For each of these concepts, it is discussed whether it can be adequately assessed by 

means of subjective measures. 

1.2.1. Phenomenal Consciousness 

Conscious awareness in the sense of phenomenal consciousness is defined as what-it-

is-like to have an experience of an external stimulus or an inner event. What-it-is-likeness, the 

qualitative aspect of experience, always depends on the first person perspective of the 

observer (Nagel, 1974). If conscious awareness is understood along the lines of phenomenal 

consciousness, observers are conscious of a stimulus if they have first person experiences of 
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the stimulus (Block, 2002; Chalmers, 1994; Nagel, 1974). Concerning the NCC, proponents 

of phenomenal consciousness often defend a sensory cortex view, assuming that conscious 

experience is instantiated by brain events during sensory processing of the stimulus, for 

instance recurrent processing along the visual ventral stream (Block, 2005; Lamme, 2006).  

Is there a possibility of measuring phenomenal experience by subjective measures? 

According to one view, in order to really know what a specific experience is like, it is 

necessary to experience that particular sensation oneself (Jackson, 1982). As phenomenal 

consciousness is defined as experience from the first person perspective (Block, 2002; 

Chalmers, 1994; Nagel, 1974), but science is an endeavour that crucially relies on the third 

person perspective (Dennett, 2007), it appears unlikely that measurements from the third-

person perspective are ever able to measure phenomenal consciousness in a scientifically 

appropriate way, irrespective of the measures being subjective or objective. However, 

although phenomenal experience cannot be accessed from third person perspective, it may be 

possible that phenomenal experience can be shared (Velmans, 2000, 2007): This view 

maintains that if the perceptual and cognitive apparatus of different observers is similar, and if 

different observers give similar reports of what they experience, it is reasonable to assume 

their conscious experience of a given stimulus is also similar. This approach does not aim for 

objectivity in the sense of measuring conscious experience independently from the observer. 

Instead, it investigates agreement between different first-person perspectives, i.e. 

intersubjectivity. However, inferences about first-person experiences based on subjective 

measures relies on the assumption that similar perceptual and cognitive apparatuses give 

similar experiences; and while this intuition may appear reasonable to many, the argument is 

not compelling to those who do not share this intuition.  

1.2.2. Conscious access 

According to the second concept of consciousness, termed conscious access or access 

consciousness, a representation is conscious if it is available for reasoning and direct control 

of action (including reporting) (Baars, 2002; Block, 2002; Dehaene et al., 2006). This means 

for visual consciousness that observers perceive a stimulus consciously if the contents 

generated by the visual system can be used to guide behaviour based on reason and if the 

contents can be reported. Conscious access is the concept of consciousness underlying global 

workspace theory (Baars, 2002; Dehaene et al., 2006; Dehaene & Naccache, 2001). The 

global workspace theory assumes that representations encapsulated in brain systems operating 
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in parallel are unconscious. A global workspace is instantiated by broadcasting 

representations to multiple other brain systems. The global availability of representations 

through the workspace is subjectively experienced as a conscious state (Dehaene & Naccache, 

2001). The neural implementation of conscious access is an “ignition”-like spread of neural 

activity from sensory cortices to a fronto-parietal network resulting in a widely distributed 

NCC (Dehaene et al., 2006).  

Are subjective measures eligible to measure conscious access to visual contents? As 

reportability is among the two cognitive functions that are included in the definition of 

conscious access, subjective reports are a natural choice of measuring conscious awareness 

from the viewpoint of conscious access and global workspace theory (Dehaene & Naccache, 

2001; Dehaene, 2010). If visual contents are reportable, it means that visual contents cannot 

be encapsulated into the visual system; instead, it shows that the visual contents are available 

to decision making and language as required for rating decisions (Dienes, 2008). Overall, 

subjective measures are adequate measures of conscious access.  

1.2.3. Higher-order consciousness 

According to the third prominent concept of consciousness, an observer is conscious 

of a particular mental state if the mental state is accompanied by a higher-order mental state 

that represents the observer as being in a particular mental state (Carruthers, 2011; Lau & 

Rosenthal, 2011). According to different flavours of higher-order consciousness, this higher 

order mental state can be a thought (Rosenthal, 1986), a percept (Lycan, 2004), or a statistical 

inference (Lau, 2008a). In terms of visual consciousness, observers perceive a stimulus 

consciously only if they possess a mental state that represents them as perceiving the 

stimulus, i.e. observers need to know/sense/infer that they perceive the stimulus. As these 

higher-order mental states require metacognition, higher order theories predict a close 

connection between consciousness and metacognitive systems (Rosenthal, 2000). 

Consequently, the neural correlates of higher-order consciousness are assumed to be similar 

to those of metacognition and thus located in frontal and parietal cortex (Lau & Rosenthal, 

2011). 

Endorsing a higher-order consciousness is the most common theoretical background 

for using subjective measure of conscious awareness because subjective measures can be seen 

as a test of higher-order mental states (Dienes, 2004, 2008): In order to report that they saw 



 

8 

the stimulus, participants need to know, sense or infer that they saw the stimulus. The 

metacognitive aspect of subjective measures makes subjective measures the most valid 

measure of conscious awareness in the higher-order sense (Lau, 2008b).  

1.3. Why objective measures of conscious awareness are not sufficient 

Given the fact that objective measures have dominated cognitive psychology for the 

second half of the 20
th

 century (Boring, 1953; Danziger, 1980; Eriksen, 1960), it may appear 

surprising why more and more researchers, even from different theoretical perspectives, have 

come to argue for using subjective measures in consciousness research (Dehaene & Naccache, 

2001; Dienes, 2008; Lau, 2008b; Ramsøy & Overgaard, 2004). The main argument why 

objective measures need to be accompanied by subjective measures starts from the premise 

that conscious experiences are not necessarily in accordance with performance in 

discrimination tasks (Lau, 2008b; Seth et al., 2008). The reason is that all three major theories 

of consciousness allow for the possibility that conscious awareness is in disagreement with 

discrimination task performance (Dienes, 2008).  

First, there may be cases where discrimination performance is above chance in 

absence of conscious awareness. The standard example is blindsight, which is caused by 

lesions to primary visual cortex. These patients report to be blind in the visual hemifield 

contralateral to the damaged brain area. Despite their apparent blindness to stimuli presented 

in their visual field corresponding to the lesion, these patients are able to perform well above 

chance in forced-choice tasks on stimuli presented in regions in space where they report to be 

blind (Weiskrantz, 1986). Proponents of phenomenal consciousness believe this is possible 

because the occipital lesion destroys pathways necessary for conscious experience, while 

discrimination performance is supported by neural circuits not part of the NCC (Lamme, 

2006). Global workspace theory assumes that blindsight is mediated by a processing stream 

that does not trigger a global workspace and thus occurs in absence of conscious awareness 

(Dehaene & Naccache, 2001). Finally, higher-order theories assume that blindsight patients 

fail to have an accurate metarepresentation of their perceptual capacities (Lau, 2008a).  

Second, there may also be cases where conscious experience exceeds the manifest 

discrimination performance. For example, when participants are presented with arrays of 

several letters, observers report they can see all or almost all letters, but typically are able to 

report no more than 3 to 4 of the letters (Block, 2011; Sperling, 1960). Conscious experience 
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without discrimination performance may occur when contents in visual short-term visual 

memory associated with phenomenology are overwritten by new stimuli before they can be 

transferred to working memory (Block, 2011; Vandenbroucke, Sligte, & Lamme, 2011). 

According to higher-order theories, conscious experience without performance can be 

explained by illusory metacognition of percepts at unattended locations (Lau & Rosenthal, 

2011). Conscious experience without discrimination performance is however not consistent 

with global workspace theory (Kouider, de Gardelle, Sackur, & Dupoux, 2010). Nevertheless, 

all three major concepts of consciousness predict at least some instances where discrimination 

performance deviates from conscious awareness.  

If discrimination performance alone is not sufficient to measure conscious awareness, 

can conscious awareness be assessed without asking the participant to make a response? So-

called no-report paradigms promise to disentangle the NCC from the correlates of reports by 

instructing the participant not to make a response at all (Frässle, Sommer, Jansen, Naber, & 

Einhäuser, 2014; Pitts, Martínez, & Hillyard, 2012; Pitts, Metzler, & Hillyard, 2014). One 

flavour of these experiments relies on a modified inattentional blindness paradigm (Pitts et al., 

2012): In the first phase of the experiment, participants perform a demanding perceptual task 

while task-irrelevant line segments forming a configuration are presented. In a following 

interview, participants are interrogated about their awareness of the configurations and thus 

their attention is directed towards the configurations when the task is repeated. Finally, 

awareness of the configurations is assessed by interview a second time. The idea is that 

participants are unaware of the configuration in the first phase of the experiment, but after the 

first interview they become aware of the stimuli. However, the whole “no-report” paradigm 

does rely heavily on subjective measures, because integral parts of the experiment are the two 

interviews. The participants’ answers during the interview are subjective reports and thus 

subjective measures of consciousness. The second flavour of no-report paradigms tries to 

replace subjective reports during the experiment by physiological markers: As the alternations 

of conscious experiences during binocular rivalry are correlated with pupil size and opto-

kinetic nystagmus, Frässle et al. (2014) suggested to replace subjective measures by 

supposedly more objective eye-tracking based measures. However, eye-tracking based 

measures may not be the best choice as physiological marker of awareness because multiple 

dissociations between conscious awareness and eye movements exist (Spering & Carrasco, 

2015). In general, this method requires a validation phase for each physiological marker, 

where the close correlation between conscious experiences and the marker is established. For 
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this purpose, again subjective measures of conscious awareness are typically used. As 

discussed above, discrimination performance cannot be used to establish a physiological 

marker because discrimination performance does not necessary indicate that observers are 

also conscious of the stimulus. Overall, no-report paradigms avoid subjective measures only 

at the point in time when neural processes are measured, while subjective measures are still an 

integral part of the experiments.  

When dissociations between subjective reports and objective measures are observed, 

many empirical researchers tend to place their trust on the objective measure (e.g. Eriksen, 

1960; Hannula, Simons, & Cohen, 2005; Shanks & St. John, 1994). However, all existing 

concepts of consciousness imply that dissociations between objective measures and conscious 

awareness may exist. As a consequence, objective measures should always be accompanied 

by subjective measures (Dehaene & Naccache, 2001; Dehaene, 2010; Dienes, 2004, 2008; 

Lau, 2008b; Ramsøy & Overgaard, 2004).  

1.4. Can subjective measures provide scientifically useful data? 

The term “subjective” in subjective measures has the negative connotations of 

“biased” and “unscientific”. Unsurprisingly, subjective measures have not been considered as 

serious scientific data for most of the 20
th

 century (Boring, 1953; Danziger, 1980; Eriksen, 

1960), and many still consider subjective measures as problematic (Hannula et al., 2005; 

Irvine, 2012; Schmidt & Vorberg, 2006). Opponents of subjective measures usually defend 

their view with variants of the following arguments: 

(i) Language and words may be inadequate to reflect conscious experiences (Eriksen, 

1960). 

(ii) Subjective measures depend on applying criteria (Block, 2005; Irvine, 2012; Schmidt 

& Vorberg, 2006). 

(iii) Subjective measures do not exhaustively detect all instances where participants are 

aware of the stimulation (Hannula et al., 2005; Persaud, McLeod, & Cowey, 2007; 

Shanks & St. John, 1994). 

Critique (i) argues that words and language, and consequently subjective measures, are 

inadequate to reflect consciousness experiences. As Eriksen (1960) pointed out, words are 

highly abstract symbols with no physical resemblance to the relationships they denote. This 

argument seems to apply to a concept of consciousness as phenomenal consciousness 



 

11 

inaccessible to verbal report. After all, there is no principle reason why participants are unable 

to verbalize the characteristic relationships of conscious access and higher order 

consciousness. However, it seems questionable why inaccessible phenomenal consciousness 

is more adequately assessed by objective measures than by subjective ones. After all, the 

metrics of discrimination performance is also quite different from the metrics of phenomenal 

experience. If conscious experiences are not associated with subjective reports, there is little 

reason to believe that conscious experiences are associated with discrimination responses. If 

indeed the only way to know what a specific experience is like is to share it (Jackson, 1982), 

neither subjective nor objective measures are adequate measures of conscious experience; 

there will probably never be a satisfactory way to measure conscious experience at all. If a 

more optimistic view on the human ability to communicate their phenomenal experiences is 

adopted (Velmans, 2000, 2007), words and language appear to be a natural choice as medium 

of communication. After all, language is the primary mechanism of communication of 

humankind. Some theories even suggest that perceptual awareness evolved to enhance 

communication with other humans (Frith, 2011; Graziano & Kastner, 2011).  

A more modest interpretation of argument (i) asserts that the translation of conscious 

experiences into a subjective measure is not impossible, but prone to errors. However, this is 

not a principle argument against the use of subjective measures; instead, it suggests that 

researchers should not blindly trust in their subjective measures (Velmans, 2007). At a 

consequence, a series of studies attempted to identify the most suitable subjective measures of 

conscious awareness empirically (Dienes & Seth, 2010; Rausch & Zehetleitner, 2014; 

Sandberg, Bibby, Timmermans, Cleeremans, & Overgaard, 2011; Sandberg et al., 2010; 

Szczepanowski, Traczyk, Wierzchoń, & Cleeremans, 2013; Wierzchoń, Asanowicz, 

Paulewicz, & Cleeremans, 2012; Wierzchoń, Paulewicz, Asanowicz, Timmermans, & 

Cleeremans, 2014). How can the eligibility of a specific subjective measure be evaluated? The 

first possibility is to assess the correlation between subjective measures and objective 

discrimination performance: If there is a correlation between subjective measures and task 

performance, it means that the sensory systems were able to provide some sensory evidence, 

which directly or indirectly has propagated to the processes engaged in the rating decision. 

Consequently, the degree to which subjective measures predict trial accuracy, a.k.a. type 2 

sensitivity (Galvin, Podd, Drga, & Whitmore, 2003), can be used as a reference frame to 

interpret the credibility of subjective measures (Fleming & Lau, 2014). If participants report a 

conscious experience of a stimulus and their subjective reports are correlated with 
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discrimination performance about the stimulus, it is widely agreed that observers are 

conscious of the stimulus (e.g. Vandenbroucke et al., 2014). A second possibility is to 

evaluate the relationship to variations of stimulus quality (e.g. stimulus contrast, presentation 

time). If a subjective measure stands in no relation to the physical quality of the stimulus (e.g. 

its presentation time or its luminance), it appears unlikely that a representation of the stimulus 

was available at the rating decision. The final proposal was to consider the neural correlates of 

subjective measures: The credibility of subjective measures also increases when they are 

reliable predictors of brain activity (Charles, Van Opstal, Marti, & Dehaene, 2013). Overall, 

the difficulty of translating conscious experiences into a subjective measure does not rule out 

the usefulness of subjective measures per se; instead specific subjective measures need to be 

examined carefully if they are suitable measures of conscious awareness.  

Argument (ii) maintains that subjective measures are not immediate measures of 

conscious awareness because they always involve comparison between the internal decision 

variable and a criterion for a subjective report (Block, 2005; Irvine, 2012). This response 

criterion depends on a variety of different factors such as motivation, training, and the aims of 

the participant, all of which are no perceptual factors (Irvine, 2012). Uncontrolled changes of 

the participants’ criteria may result in different subjective reports between two conditions, 

although awareness is the same (Schmidt & Vorberg, 2006). As a consequence of the ubiquity 

of response criteria, Irvine argued objective measures should be used instead of subjective 

measures. However, the confound between internal signal and response criteria can be 

eliminated by the mathematical tools developed by type 2 signal detection theory (Galvin et 

al., 2003). Standard signal detection theory provides a rationale to distinguish between 

participants’ sensitivity to distinguish between two response options and their criteria (Green 

& Swets, 1966; Macmillan & Creelman, 2005; Wickens, 2002). Type 2 signal detection 

theory adds tools to distinguish between participants’ ability to distinguish between correct 

and incorrect trials, a measure of metacognition, and the criteria applied in rating decisions 

(Fleming & Lau, 2014; Galvin et al., 2003). As a consequence, the dependency of rating 

decisions on criteria is no longer a decisive argument against the use subjective measures.  

Critique (iii) refers the use of subjective measures in the implicit perception literature 

(Cheesman & Merikle, 1984). The argument asserts that subjective measures are limited 

because they do not exhaustively indicate all instances of conscious awareness. Critique (iii) 

comes in several variants: The first concern is that the statistical power of subjective measures 
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might be too low (Newell & Shanks, 2014; Shanks & St. John, 1994). Statistical power is an 

important issue because of the underlying logic of the majority of implicit perception 

experiments: A test of explicit (= conscious) processing is contrasted with a test of implicit (= 

unconscious) processing. If the test of unconscious processing is significant, but the test of 

conscious processing is not, it is usually concluded that perception is implicit (Schmidt & 

Vorberg, 2006). As the probability of obtaining a significant result depends on the statistical 

power of the test (Dienes, 2011), if the power of the implicit test is larger than the power of 

the explicit test, the experimental setup is prone to misclassify effects as implicit (Shanks & 

St. John, 1994). However, this reasoning rests on a misunderstanding of standard statistics: 

Non-significant p-values should never be interpreted as evidence for the absence of an effect; 

such a conclusion requires a power analysis based on a theoretically specified effect size 

(Dienes, 2011). Typically, many researchers indeed fail to conduct or report a power analysis, 

which creates the risk that the design is biased for implicit processing (Vadillo, 

Konstantinidis, & Shanks, 2015). If researchers ensure that the power of the explicit test is 

adequate, there is no reason why subjective measures cannot be used to test explicit 

processing. Alternatively, researchers can also pursue a Bayesian approach to hypothesis 

testing, which provides an even more elegant solution to the power problem in subliminal 

perception than power analysis (Dienes, 2015).  

The second flavour of critique (iii) maintains that participants may be not sufficiently 

motivated to reveal all conscious experiences they in fact have (Persaud et al., 2007). Indeed, 

subjective measures depend strongly on motivated participants; if participants carelessly or 

maliciously choose to conceal their conscious experiences, there are not many possibilities to 

control for that. A potential solution to the motivational problem may be to ask participants to 

wager money on the outcome of their own performance. In this case, participants maximize 

their earnings only if they report all conscious experience that they have (Persaud et al., 

2007). Unfortunately, post-decisional wagering is biased by participants’ risk aversion 

(Dienes & Seth, 2010) and loss aversion (Fleming & Dolan, 2010). Nevertheless, it appears 

unlikely that lack of motivation will distort the results of standard subjective measures if 

participants are naïve to the research question: When participants are unmotivated to follow 

the instructions of the experimenter, some of them will fail to report exhaustively all 

conscious experiences they have. However, it is equally probable that some of them will 

report conscious experiences they in fact do not have. In summary, the effects of unmotivated 

participants are likely to cancel out between conditions.  
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The final variant of critique (iii) argues that subjective measures do not exhaustively 

test all conscious contents relevant for the task (Shanks & St. John, 1994). For example, in 

visual perception, there may be so-called fringe experiences, experiences where the subject is 

aware that an event occurred, but does not experience any characteristics of the stimulus 

(Mangan, 2001; Ramsøy & Overgaard, 2004). If a subjective measure only requires 

participants to report whether they had an experience of the stimulus, fringe experiences 

remain undetected. However, the content-specificity of subjective measures can also be 

interpreted as an advantage of subjective measures, because it is possible to tailor the content 

of a subjective measure to the conscious content of interest to a specific research question. If 

both brief glimpse experiences as well as content-specific experiences are of interest to a 

specific research question, a scale can be designed that offers response options for both of 

them. If all knowledge the participant may have is of relevance to the research question, one 

might just ask participants to rate their confidence in being correct at the discrimination task 

(Dienes, 2004, 2008). Overall, varying the contents of subjective measures allows for more 

flexibility in inquiring different conscious contents than discrimination tasks.  

1.5. Milestones for creating subjective measures of consciousness 

1.5.1. The content of subjective measures 

The first characteristic of subjective measures investigated in the present work is the 

content of subjective measures of visual consciousness. For the purpose of the present 

discussion, the content of subjective measures can be defined as what participants are asked to 

make a report about. Subjective measures always have some content by virtue of the fact it is 

necessary to instruct participants what they should report. Notably, subjective measures exist 

where the first experience on the unaware-aware-spectrum is explained to the participants as 

experiences without content (Ramsøy & Overgaard, 2004) . However, even these first vague 

experiences do have content; possibly the experience is more of an intuition or a feeling that 

some stimulus is or had been present, without a visual experience of the separate features of 

the stimulus (Mangan, 2001). 

As highlighted by Fig. 1-2, there are always at least two potential contents of 

subjective measures in a standard experimental situation: the stimulus and the discrimination 

response (cf. Chapter 2 and 3, Zehetleitner & Rausch, 2013). This raises the question which 

of the two should be the content of subjective measures of conscious awareness. Empirical 
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studies are excellently suited to investigate whether these two semantic contents are 

associated with different behaviours and neural correlations. Many theorists have considered 

reports of visual experience and decisional confidence to be interchangeable (Ko & Lau, 

2012; Lau & Rosenthal, 2011; Seth et al., 2008), although others have argued for the opposite 

(Charles et al., 2013; Sahraie, Weiskrantz, & Barbur, 1998; Schlagbauer, Müller, Zehetleitner, 

& Geyer, 2012).  

 

Figure 1-2. The content of subjective measures. Subjective measures may stand in a semantic 

relation to the discrimination response, for example at confidence ratings or post-decisional 

wagering. However, they may also refer semantically to the stimulus, for example at visibility 

or visual experience ratings. 

 

While empirical investigations are able to show whether there are differences between 

subjective measures of visual experience and decisional confidence, it remains a conceptual 

issue what conclusions are to be drawn from the results. Many previous studies rested on the 

assumption that visual experience and decisional confidence are equally valid as measures of 

conscious awareness (Sandberg et al., 2011, 2010; Wierzchoń et al., 2012, 2014). Their 

rationale is that one measure should be preferred as subjective measure of conscious 

awareness that outperforms all the other measures in predicting trial accuracy. In contrast to 

this assumption, others have proposed that participants can be consciously aware of being 
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correct or wrong without being consciously aware of the stimulus (Carota & Calabrese, 2013; 

Charles et al., 2013; Sahraie et al., 1998). As a consequence, the question whether subjective 

measures should be about visual experience of the stimulus or about confidence in having 

made a correct discrimination response is again conceptual: Specific research questions may 

imply that either visual experience or decisional confidence is the relevant conscious content. 

To differentiate between these two interpretations, the present studies evaluate subjective 

measures not only by the correlation with discrimination performance, but also the correlation 

with stimulus quality as well as neural correlates. If either subjective measures that relate to 

the experience of the stimulus or to decisional confidence was corrupted from a great amount 

of unsystematic noise, it would be expected that the correlation with accuracy, stimulus 

quality, and brain activity should all be diminished. If the pattern of correlation varies across 

criteria, it would mean that subjective measures of visual experience and decisional 

confidence are different independently from the quality of measurement. 

1.5.2. The granularity of subjective measures 

The second characteristic of subjective measures investigated in the present work is 

the degree of granularity of subjective measures of visual consciousness: How many different 

scale steps should such a measure provide? The question of the preferred degree of 

granularity has both a theoretical as well as a methodological dimension. The reason for the 

theoretical importance is a prediction by global workspace theory, which asserts conscious 

awareness does not vary gradually, but in an all-to-none fashion (Dehaene et al., 2006; 

Dehaene & Naccache, 2001; Sergent, Baillet, & Dehaene, 2005). Other theories, for instance 

the radical plasticity thesis, assume that there are multiple degrees of conscious awareness 

(Cleeremans, 2008, 2011). If participants either were unconscious of the stimulus or fully 

conscious of the stimulus, i.e. if there were only two distinct states of conscious awareness, 

there would be no benefit of using scales with multiple response options. In contrast, if 

participants were able to consistently differentiate between more than two rating categories, it 

would follow that the number of degrees of conscious awareness is greater than two. The 

methodological aspect of investigating the granularity of subjective measures attempts to 

maximize the amount of information provided by subjective measures. If participants were 

able to differentiate between more conscious states than the number of scale steps provided by 

subjective measures, the consequence would be an unnecessary loss of information. However, 

if the number of scale steps is larger than the number of conscious states participants can 
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discriminate, there will be no benefit of adding more scale steps; participants might even get 

confused by the superfluous number of response options, resulting again in a loss of 

information (Overgaard, Rote, Mouridsen, & Ramsøy, 2006).  

1.5.3. Quantifying type 2 sensitivity 

The third and final research question addressed by the present work is to identify the 

preferred method to quantify the relationship between subjective measures and performance 

in visual discrimination tasks. Quantifying the relationship between subjective reports and 

discrimination performance is a very useful tool for consciousness research: First, it can be 

used as a reference frame to interpret subjective reports (Fleming & Lau, 2014). When a 

correction between subjective reports and discrimination performance is empirically 

observed, it shows that at least some conscious contents relevant for performance in the task 

are available for the rating decision. In contrast, when subjective measures and discrimination 

performance are unrelated, it can be concluded that the rating decision was not influenced by 

processes engaged in the discrimination task. Consequently, no correlation between 

discrimination performance and confidence was proposed as a criterion for implicit 

performance (Dienes, Altmann, Kwan, & Goode, 1995). Second, the association between 

discrimination performance and subjective reports can be used as a tool to validate subjective 

measures (Dienes & Seth, 2010; Sandberg et al., 2010; Wierzchoń et al., 2012, 2014): If the 

conscious experiences underlying participants’ subjective reports are the same between two 

subjective measures, but the correlation with task performance is different between two 

subjective measures, it can be inferred that one measure is corrupted by a greater amount of 

noise or does not record the same amount of information than the other one (see Chapters 4 

and 5; Rausch et al., 2015; Rausch & Zehetleitner, 2014). Finally, when the association 

between subjective measures and task accuracy is quantified by a measure of type 2 

sensitivity, it can be used to counter arguments that subjective measures are inadequate to 

assess conscious awareness because they depend on a criterion (Irvine, 2012; see section 1.4). 

Type 2 sensitivity is defined as degree to which subjective reports differentiate between 

correct and incorrect trials irrespective of the criteria participants apply (Fleming & Lau, 

2014; Galvin et al., 2003). Different measures of the association between subjective measures 

and task accuracy may vary in their eligibility as measure of type 2 sensitivity. Nevertheless, 

to fulfil this last purpose, it must be ensured that the control over criteria provided by the 

method to quantify the relation between subjective measures and task accuracy is effective. 
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Despite the theoretical importance and practical usefulness of the association between 

subjective reports and discrimination performance, there is no universally accepted method to 

quantify the relation between the two. Three competing approaches were proposed:  

(i) logistic regression analysis, with subjective measure as predictor and trial correctness 

as dependent variable (Sandberg, Bibby, & Overgaard, 2013; Sandberg et al., 2010) 

(ii) type 2 receiver operating characteristics (Fleming, Weil, Nagy, Dolan, & Rees, 2010) 

(iii) meta-da (Maniscalco & Lau, 2012) 

While (ii) and (iii) are measures derived from type 2 signal detection theory and thus 

were developed to account for criteria, logistic regression analysis is a method for binary 

dependent variables without special intent to control for criteria. However, up to now, it has 

never been investigated whether logistic regression is a suitable measure of the relation 

between subjective measures and discrimination performance. If the results obtained by 

logistic regression and signal detection theory based measures do not converge, the question 

arises what is the relationship between the results obtained by the two. 

  



 

19 

2. STIMULUS-RELATED VS. RESPONSE-RELATED 

SUBJECTIVE MEASURES
1
 

by Michael Zehetleitner and Manuel Rausch
2
 

 

2.1. Abstract 

Can observers be confident about the accuracy of a discrimination response without a 

visual experience of the stimulus? In a series of five experiments, observers performed a 

masked orientation discrimination task, a masked shape discrimination task, or a random-dot 

motion discrimination task, followed by two subjective ratings after each trial, in which 

participants either reported their visual experience of the stimulus, or their confidence in 

being correct. We observed that the threshold for ratings of the perception of the stimulus was 

above the threshold for ratings about the accuracy of the discrimination response, that 

response-related ratings outperformed stimulus-related ratings in predicting trial accuracy, 

and different response-related scales were more strongly associated with other response-

related scales than with stimulus-related ratings. We propose a taxonomy of subjective 

measures of consciousness that differentiates between subjective measures relating to the 

percept of the stimulus and measures relating to the accuracy of discrimination response and 

discuss the relation to type 2 blindsight. 

2.2. Introduction 

The quest for neural correlates of consciousness relies typically on a comparison 

between two different types of measurements: those of neuronal processes on and those of 

consciousness (Crick & Koch, 1990; Rees et al., 2002). This approach critically relies on 

                                                 
1
 A version of this Chapter has been published as Zehetleitner, M., & Rausch, M. (2013). 

Being confident without seeing: What subjective measures of visual consciousness are about. 

Attention, Perception, & Psychophysics, 75, 1406–1426. doi: 10.3758/s13414-013-0505-2. 

Reproduced with permission by Springer.  

2
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defining measures of consciousness, which presents a huge obstacle in empirical science 

(Chalmers, 1998). With respect to measures of consciousness, currently several 

operationalizations are proposed in the literature. 

2.2.1. Objective vs. subjective measures 

One prominent view distinguishes between objective measures and subjective 

measures (Seth et al., 2008). Measures of consciousness are considered objective if the 

participant’s state of awareness is determined based on their performance on a task. For 

example, it is often assumed that if observers are able to discriminate a stimulus or respond 

differentially to it, they are conscious of that stimulus (Eriksen, 1960; Schmidt & Vorberg, 

2006). When a subject performs at chance level on a discrimination task, this is typically 

considered a reliable indicator of the absence of conscious awareness of the presented stimuli 

(Hannula et al., 2005). Proponents of this view often make use of signal detection theory 

(Green & Swets, 1966; Macmillan & Creelman, 2005; Wickens, 2002), assuming that 

observers are conscious if their sensitivity to discriminate between signal and noise is above a 

pre-defined level (e.g., above zero). 

A second approach to operationalizing consciousness is based on subjective measures. 

It has been questioned whether subjective measures are an acceptable method for empirical 

science at all (Hannula et al., 2005), for example because they might be corrupted by 

uncontrolled changes of the response criterion (Schmidt & Vorberg, 2006). By contrast, 

according to Daniel Dennett’s heterophenomenology (Dennett, 2003, 2007) the participant’s 

utterances about his or her experience should be considered as empirical raw data, which 

requires a scientific explanation. This means that the modulation of verbal reports in an 

experiment can be an object of scientific study in the same way as other kinds of behaviour, 

such as button presses. 

Several types of subjective measures are currently proposed in the literature. The most 

frequent measurements are confidence ratings: The participants indicate how confident they 

feel about the correctness of their response (Peirce & Jastrow, 1885). Another possibility is to 

ask participants about the reason why they chose a particular response alternative; for 

example, after a response is given, participants might attribute their response to guessing, 

intuition, memory, or knowledge (Dienes & Scott, 2005; Scott & Dienes, 2008). Also, 

recently, observers have been asked to place a wager on the accuracy of their response, either 
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with the possibility that the reward is lost if the wager is incorrect (Persaud et al., 2007) or 

without the risk of losing the wager (Dienes & Seth, 2010). As wagering is independent of 

speech, it has successfully been used to explore awareness in animals, specifically in monkeys 

(Kornell, Son, & Terrace, 2007) and pigeons (Nakamura, Watanabe, Betsuyaku, & Fujita, 

2011). A third approach asks the observers directly to make judgements about their visual 

experiences. For example, observers can be asked to rate the degree of visual experience 

evoked by a stimulus on a visual analogue rating scale (Del Cul, Baillet, & Dehaene, 2007; 

Sergent & Dehaene, 2004). Assessing the degree of visual experience as well, but avoiding 

the use of continuous scales, the Perceptual Awareness Scale (PAS) provides the participants 

with a discrete scale with verbal labels for each scale point to rate their visual experiences 

(Ramsøy & Overgaard, 2004).  

2.2.2. Blindsight type 2 phenomena 

A classical example held to support a dissociation between objective and subjective 

measures of consciousness is blindsight: After a unilateral lesion to V1, patients suffer from 

apparent blindness in the visual field contralateral to the lesion. Blindsight is defined as the 

ability of patients to discriminate visual stimuli presented in their seemingly blind visual field 

in forced-choice tasks with remarkable accuracy, despite the fact that they report no visual 

experiences of these stimuli (Weiskrantz, 1986). The subjective reports of blindsight patients 

fall into two categories (Sahraie, Weiskrantz, Trevethan, Cruce, & Murray, 2002), blindsight 

type 1 and type 2. In blindsight type 1, patients report no awareness of the stimulus and very 

low confidence in discrimination choice, even though their choice is reliably above chance. 

However, the subjective reports of patients are apparently inconsistent in blindsight type 2: 

These patients occasionally report a feeling or knowing that something happened in their 

blind visual field, although they insist their experience was qualitatively different from 

normal seeing (Riddoch, 1917; Weiskrantz, Barbur, & Sahraie, 1995; Zeki & Ffytche, 1998). 

Critically, these patients may report a considerable amount of confidence in two-alternative 

forced choice (2AFC) judgments (Sahraie et al., 1998), and even be willing to wager the same 

amount of money in the blind and in the intact hemifield when discrimination difficulty is 

matched (Persaud et al., 2011), although in these studies, no visual experience of the stimulus 

was reported at all. 

A similar dissociation between subjective reports of confidence and visual experience 

has been reported when brain activity in posterior cortex was only transiently disrupted via 
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transcranial magnetic stimulation: Occipital TMS between 86 -114 ms after the presentation 

of the stimulus suppressed reports of visual experience of the stimulus, although 

discrimination performance was still quite good (Boyer, Harrison, & Ro, 2005). Interestingly, 

confidence ratings were strongly correlated with the accuracy of the discrimination 

judgement, indicating that TMS affected the reports of subjective experience more than the 

reports of subjective confidence. 

2.2.3. Stimulus-related vs. response-related ratings
3
 

The discrepancy between subjective measures in type 2 blindsight and posterior TMS 

raises questions as to whether subjective measures of consciousness form one single category. 

In the present study, we propose a taxonomy of subjective measures of consciousness that 

differentiate between subjective measures relating to the percept of stimulus (stimulus-related 

rating), and measures relating to the accuracy of the discrimination response (response-related 

rating). In detail, we discuss whether stimulus-related and response-related ratings:  

(i) might relate to different events in terms of signal detection theory  

(ii) can be interpreted as measures of different processes within the cognitive architecture  

(iii) might be associated with different experiences from the first-person perspective 

First, it can be argued that the stimulus-related and response-related ratings mirror a 

distinction in SDT between type 1 tasks and type 2 tasks (Galvin et al., 2003). In SDT, the 

distinction between type 1 and type 2 tasks is based on the events about which an observer 

makes a discrimination decision: In type 1 tasks, the observer discriminates whether an event 

(a stimulus) is either signal or noise. The discrimination response of the observer can be 

considered as a new event, which can be either correct or incorrect. In SDT, type 2 tasks 

require the participant to make a judgement whether the previous type 1 response was correct 

or incorrect. Subjective ratings can refer to the events of the type 1 task, e. g. when 

participants are asked to rate the clarity of their percept, but they can also refer to the events 

of the type 2 task, e. g. when participants give confidence ratings. The mere wording of 
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throughout the thesis. 
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existing subjective measures suggests such a correspondence, as they semantically reference 

either to the stimulus or to the response: “How clearly did you experience the stimulus?”, 

“how confident are you that your response was correct?” Thus, it seems reasonable to assume 

that the events in the world the two kinds of ratings refer to are different. 

Concerning the second point, it is possible to connect stimulus- and response-related 

ratings to different functions within the cognitive architecture. Nelson and Narens’ model of 

metacognition distinguishes between two different levels of cognitive processing: On the one 

hand, there are processes concerned with performing the task, which they call the object-level, 

and on the other hand, there are processes forming a dynamic model of the object-level, and 

giving rise to verbal reports, which they call the meta-level (Nelson & Narens, 1990). 

According to standard assumptions about processes on the object-level, when an observer 

performs a visual discrimination task and a stimulus is presented, this stimulus first creates 

sensory data within the brain, which is integrated over time into a decision variable. A 

decision is selected by applying a decision rule to the decision variable, and the respective 

response is triggered (Gold & Shadlen, 2007; Ratcliff, 1978). When processes on the meta-

level give rise to verbal reports about the stimulus or the response, it is possible that both 

kinds of subjective reports are created by sub-sampling out of the same underlying dimension 

of sensory data. Another hypothesis might be that, when participants rate the clarity of their 

visual experience, they might estimate the strength or the quality of the internal signals that 

form part of the sensory data. In contrast, in confidence ratings or wagering, participants 

might evaluate those internal signals that are involved in the decision for a response. 

Third, stimulus- and response-related ratings are qualitatively different from the first-

person perspective. When observers rate how clearly they perceived the stimulus, it seems to 

them that they judge their visual experience elicited by the presentation of the stimulus. This 

is different from the experience observers refer to when they give a response-related rating: In 

this case, the first-person experience in question is above all a feeling of confidence in being 

correct or incorrect or alternatively, a rational belief concerning the likelihood of being 

correct. For individuals, visual experience is not the primary referent of response-related 

ratings, and likewise, a feeling of confidence is not the primary referent of stimulus-related 

ratings. 

It should be noted that the distinction between stimulus- and response-related ratings 

proposed here overlaps with but is not identical to the distinction between introspective 



 

24 

reports and metacognitive reports proposed by Overgaard and Sandberg (Overgaard & 

Sandberg, 2012). They argued that introspective reports and metacognitive reports reveal 

different kinds of metacognitive access: Whereas introspective reports require participants to 

report their conscious experience directly, metacognitive reports are based on metacognitive 

judgements about a mental process (such as the selection of the task response), which is 

assumed to be dependent on introspection of one’s conscious experience. In the view outlined 

in the present study, the relationship between stimulus- and response-related ratings is 

symmetrical in the sense that they are both based on a metacognitive judgement: When 

participants rate their percept of the stimulus, they evaluate cognitive processes involved in 

the representation of the stimulus. When participants rate their confidence in the 

discrimination judgement, they assess those processes involved in selecting one out of several 

task alternatives. However, both stimulus- and response-related ratings are associated with a 

certain subjective experience that is qualitatively different in both cases: In the first case, a 

visual experience of the stimulus, in the second case, a subjective feeling of being correct or 

incorrect. 

In any case, as the cognitive functions of stimulus perception and decision making are 

closely connected, it is to be expected that the behavioural patterns of rating the stimulus and 

the decision are quite similar. The three lines of argumentation outlined above thus do not 

imply the prediction that both kinds of subjective reports contradict each other in a 

fundamental way, but indicate the possibility of subtle differences. 

To summarize, it is conceptually possible that ratings of visual experience can be 

sorted into one class of subjective measures, while confidence ratings as well as wagering 

belong to another class of subjective measures of consciousness. The two classes are probably 

not associated with fundamentally different behavioural patterns. At least in the case of 

disturbance of the occipital cortex though, it has been demonstrated that the results obtained 

by the two classes are not identical. The present study aims to investigate whether there is 

empirical support for any dissociation between the two classes of stimulus- and response-

related subjective reports in healthy human participants. 

2.2.4. Evaluation criteria for subjective measures of consciousness 

The selection of criteria to evaluate measurements of consciousness is non-trivial 

given the fact we cannot observe another person’s consciousness from the third person 
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perspective (Jackson, 1982; Nagel, 1974). As the extent to which a measurement “really” 

captures consciousness is impossible to determine, we will only consider three objective 

characteristics. Assuming that stimulus- and response-related ratings refer to different 

external events, the first relevant relationship is between the measures and properties of the 

stimulation. Specifically, measures might differ with respect to the relative sensitivity to 

changes of stimulus quality as well as the thresholds they impose upon observers (analogous 

to SDT type 1 sensitivity and criterion). The second relevant characteristic is their relation to 

the accuracy of the discrimination response. Again, measures might vary in their 

predictability for trial accuracy as well as the response criterion (analogous to SDT type 2 

sensitivity and criterion). According to the zero correlation criterion, an observer is assumed 

to be conscious if there is a positive correlation between his or her confidence ratings and task 

performance (Dienes et al., 1995). This correlation can be assessed separately for each level 

of stimulation to determine the weakest level of stimulation with a positive correlation 

between the measure and trial. The third relevant property of subjective measures is their 

relation to other rating scales. Measures can vary in the degree their variance is specific to 

them, or is shared by the other measures. 

2.2.5. Empirical differences between subjective measures 

Different subjective measures of consciousness have been previously compared to 

each other in two experiments with artificial grammar tasks and only one experiment with a 

visual discrimination task. Concerning artificial grammar tasks, one study compared 

confidence ratings and wagering, reporting that wagering is confounded by risk aversion, but 

no substantial differences between confidence and wagering occurred after the possibility of 

loss had been eliminated from wagering (Dienes & Seth, 2010). The second study reported 

that confidence ratings outperformed wagering and ratings of rule awareness in predicting 

trial accuracy and confidence ratings imposed a more liberal criterion for ratings in terms of 

accuracy than the other scales (Wierzchoń et al., 2012). Concerning the experiment with a 

visual paradigm, a masked object identification task, the PAS outperformed confidence 

ratings and wagering in predicting trial accuracy (Sandberg et al., 2010). By means of fitting 

psychometric functions to the data, the authors observed that the threshold in terms of 

stimulus duration for confidence ratings was below the threshold for the PAS. Furthermore, 

both the threshold for confidence and the PAS were below the threshold for wagering 

(Sandberg et al., 2011).  
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2.2.6. Rationale of the present study 

To summarize, the present study addressed two main research questions: First, we 

investigated whether the pattern of decisional confidence in absence of visual experience as 

occasionally reported in blindsight patients can also be found in healthy human observers. 

Second, we explored the hypothesis that subjective measures of consciousness fall into two 

categories, depending on whether these measures refer to the experience of the stimulus or to 

the correctness of a discrimination response. 

To address these issues, we conducted a series of five experiments. In each 

experiment, observers performed a 2AFC discrimination task with varying levels of difficulty. 

Within each trial, participants were asked to give two out of four possible subjective ratings 

after their discrimination response. When rating the stimulus, participants reported their 

clarity of experience of explicitly stated features of the stimulus. When rating the accuracy of 

the response, participants were instructed to either wager imaginary money on their response, 

to express their confidence in being correct, or to give an attribution of choice rating whether 

their orientation discrimination judgement was based on a guess or on knowledge. In Exp. 2-1 

and 2-2, participants performed a masked orientation discrimination task, followed by one 

stimulus-related rating and one response-related rating (in Exp. 2-1) and two response-related 

ratings (in Exp. 2-2). In Exp. 2-3 and 2-4, observers performed a masked shape discrimination 

task with a stimulus- and a response-related rating (in Exp. 2-3) and three different response-

related scales (in Exp. 2-4). Exp. 2-5 was conducted to compare stimulus- and response-

related ratings in a motion discrimination task with random dot kinematograms (RDK). We 

collected ratings with visual analogue rating scales (VARS), because continuous scales might 

encourage participants to rely more on their intuition and less on verbal categorization, as 

discrete scales with verbal labels do. In addition, it has been suggested that VARS are 

sensitive to gradual manipulations of target durations in masked discrimination tasks (Sergent 

& Dehaene, 2004). We manipulated the quality of stimulation by varying the stimulus onset 

asynchrony (SOA) between stimulus and mask in Exp. 2-1, 2-2, 2-3, and 2-4 and the 

proportion of dots moving coherently in one direction in Exp. 2-5, which allowed us to 

estimate psychometric functions relating the quality of stimulation with mean ratings. The 

slope of the psychometric functions quantifies the relative sensitivity of the scale to changes 

of stimulus quality and the centre of the function determines its threshold (Gescheider, 1997). 

In addition, we could test whether the zero correlation criterion was violated at each level of 
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task difficulty by testing whether ratings in correct trials were higher than ratings in incorrect 

trials. Two ratings after each single trial of the experiment were presented; this procedure 

enabled us to assess the association of two different scale types on a single trial basis. By 

using a hierarchical regression with random intercepts we could, in addition, account for the 

clustered nature of the data across participants. In order to quantify the SDT type 2 

characteristics of the different scales we estimated receiver operating characteristics (ROC) 

and determined sensitivity and response criterion based on the area under the curve. 

If subjective measures showed a similar pattern to type 2 blindsight, we hypothesized 

that stimulus-related and response-related ratings would exhibit different psychometric 

thresholds and different levels of difficulty where the zero correlation criterion is met: 

Response-related ratings should have lower thresholds and should predict trial accuracy at a 

weaker level of stimulation. Second, concerning the classification of subjective measures into 

stimulus- and response-related ratings, we predicted that the association of stimulus- and 

response-related ratings is not as close as the association of two different response-related 

ratings. Third, as response-related ratings unlike stimulus-related ratings refer primarily to 

trial accuracy, we predict that response-related ratings exhibit a more pronounced SDT type 2 

sensitivity than stimulus-related rating do. Response-related ratings should only be more 

efficient in predicting trial accuracy, not stimulus quality; consequently, we expect that the 

psychometric slope of stimulus-related ratings would be at least the same as the psychometric 

slopes of response-related ratings.  

2.3. Experiment 2-1 

Exp. 2-1 addressed the issue of comparing stimulus-related ratings against the three 

different response-related scales. Observers performed a masked orientation discrimination 

task with varying SOAs between 10 and 140 ms. After each trial, observers submitted three 

responses: A 2AFC judgment about the orientation of the stimulus, a stimulus-related rating, 

and a response-related rating. There were three different response-related scales: Observers 

were either asked to wager imaginary money on the correctness of their discrimination 

response, to attribute whether the discrimination decision was rather based on a guess or on 

knowledge, or to give a confidence rating. 
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2.3.1. Methods 

2.3.1.1. Participants 

20 participants (2 male, 2 left-handed) participated in the experiment. The age of the 

participants ranged between 19 and 29, with a median of 23. All reported to have normal or 

corrected-to-normal vision, confirmed that that they did not suffer from epilepsy or seizures, 

and gave written-informed consent. The experiment has been conducted according to the 

principles expressed in the Declaration of Helsinki, 6th revision (World Medical Association, 

2008) and the experimental procedure was approved by the ethics committee of the 

Department of Psychology of the Ludwig-Maximilians-Universität München. Participants 

received either €8 per hour or course credits in return for participation. 

2.3.1.2. Apparatus and stimuli 

The experiment was performed in a sound-attenuated cabin with dim illumination to 

prevent reflections on the monitor. The stimuli were presented on a Diamond Pro 2070 SB 

(Mitsubishi) monitor with 24 inch screen size and at a refresh rate of 100 Hz, driven by a PC 

with Windows XP as operating system. The viewing distance was approximately 80 cm. The 

experiment was programmed using MATLAB (MathWorks, USA) and Psychophysics 

Toolbox extensions (Brainard, 1997; Pelli, 1997). The target stimulus was a square filled with 

either a horizontal or a vertical oriented sinusoidal grating (frequency: 1 cycle per degree of 

visual angle, maximal luminance: 85.0 cd/m², minimal luminance: 9.5 cd/m
2
), presented in 

front of a grey (12.5 cd/m²) background. Squares subtended 3° x 3° degrees of visual angle. 

The mask consisted of a rectangular box (4° side length) with a black (1.3 cd/m²) and white 

(85.0 cd/m²) chequered pattern consisting 6 x 6 equally sized squares. Both stimulus and 

mask were always presented at fixation. Concerning responses, participants performed the 

orientation discrimination judgment task by pressing “A” or “S” on the keyboard. When 

participants were presented with a rating, the corresponding question was displayed on the 

screen, with a continuous scale and labelled boundaries underneath, all coloured black (1.3 

cd/m
2
). An index box was always initially located at the scale centre. Participants used a 

Cyborg V1 joystick (Cyborg Gaming, UK) to move the index along the scale and to select a 

location on the scale. The question of the stimulus-related rating was always “how clearly did 

you see the grating?” with the anchors “unclear” and “clear”. The three different response-

related scales were “how confident are you that your response was correct?” with the anchors 

“unsure” and “sure”, “did you guess or did you know the response” with the anchors “guess” 
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and “know”, and finally “how much money would you place as wager that you answer was 

correct?” with the anchors “€0” and “€20”. 

2.3.1.3. Trial structure 

Each trial began with the presentation of a fixation cross at screen centre for 1,000 ms. 

Then, the target stimulus was presented for a brief period of time, until it was replaced by the 

mask. There were 10 possible stimulus-onset-asynchronies between target and mask: 10, 20, 

30, 40, 50, 60, 70, 90, 110, and 140 ms. In order to prevent participants from giving 

premature responses, there was a period of 600 ms after the onset of the mask when 

participants could not yet respond to the stimulus. After this delay period, participants gave a 

2AFC judgment about the orientation of the sinusoidal grating of the target, while the mask 

remained on the screen. Immediately afterwards, the first question appeared on the screen. 

Participants were always asked to deliver both a stimulus-related rating and a response-related 

rating after each single trial. The scale type of the response-related ratings changed after three 

blocks in both sessions, with every scale being presented in each session and the sequence of 

scales being random. The sequence of whether the stimulus-related rating or a response-

related rating was asked first changed between sessions. When participants had given the first 

rating, they had to move the index back to the scale centre, before the second rating was 

displayed on the screen. If the 2AFC orientation judgment had been erroneous, the trial ended 

with the display of “error for 1,000 ms then, before the next trial started (see Fig. 2-1). 

 

Figure 2-1. The trial sequence in Exp. 2-1, 2-2, 2-3, and 2-4.  
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2.3.1.4. Design and procedure 

The experiment comprised of two sessions performed on two consecutive days at the 

same time of the day. For the orientation discrimination task, participants were instructed to 

perform the task as accurately as possible, to follow their intuition about the orientation if 

they had not seen the orientation, and to guess if they had no idea about the orientation. For 

the stimulus-related ratings, participants were told that the question “how clearly did you see 

the grating?” referred to the clarity of experience of the grating on the stimulus. For response-

related ratings, participants were told that the ratings referred to their previous orientation 

discrimination response. Furthermore, participants were instructed to give the two ratings as 

independently from each other as possible and to give their ratings as carefully and as 

accurately as possible. At the beginning of session one, participants performed 20 training 

trials to familiarize the participant with the task. Each session of the main experiment 

involved 9 blocks with 40 trials each and took on average 45 minutes. 

2.3.1.5. Analysis 

All analysis were performed using R 2.12.2 (R Core Team, 2012). In order to assess 

the effect of asking a rating immediately after the trial or as a second rating after the trial, we 

did two separate ANOVAs with rating as dependent variable: one ANOVA with the factors 

sequence (whether the rating was first or second within the trial), scale type (stimulus-related 

rating vs. confidence vs. wagering vs. attribution of choice), and SOA (10-140), the other 

ANOVA with the factors timing, scale type, and trial accuracy (correct vs. false). 

2.3.1.5.1. Psychometric functions 

To assess the relationship between stimulus- and response-related ratings and SOA, 

psychometric functions were fit on the data of each individual. Logistic functions were used 

because they produced slightly better fits than Weibull or Error functions. Steepness, 

threshold, upper and lower asymptotes were allowed to vary as free parameters, leading to the 

following formula 

𝑓(𝑥) =  δ + (1 − δ − γ)
1

1 + 𝑒−𝛽(𝑥−𝜃)
 

where β denotes the steepness of the function, γ indicates its upper asymptote, δ 

denotes its lower asymptote, x the logarithm of the SOA, and θ the threshold. The parameters 

sets of stimulus- and response-related ratings were compared by two-tailed paired t-tests. 
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2.3.1.5.2. SDT type 2 analysis 

ROCs were constructed separately for each individual and for stimulus- and response-

related ratings: For this reason, the rating data of each individual was divided into nine bins. 

ROC-curves were obtained by plotting the cumulative frequencies for ratings in each interval 

for incorrect trials on the x-axis and for correct trials on the y-axis. Measures of SDT type 2 

sensitivity (Aroc) and response bias (Broc) were computed based on formulae provided by 

(Fleming et al., 2010) and (Kornbrot, 2006). One individual was excluded from SDT-type 2 

analysis because he or she was extremely reluctant in wagering, rating on average 2 standard 

deviations below the mean the mean rating over all observers. 

In addition, to evaluate the zero correlation criterion, a series of one-tailed paired t-

tests were computed separately for stimulus- and response-related ratings and each stimulus-

onset asynchrony, assessing whether ratings for correct trials were higher than for incorrect 

trials. To avoid alpha error inflation, p-values were adjusted according the Holm correction. 

The relationship between stimulus-related ratings and ratings of each different type of 

response-related scale was assessed by fitting a hierarchical linear model for each response-

related scale using R package nlme (Pinheiro, Bates, DebRoy, Sarkar, & R Development Core 

Team, 2012) with the response-related ratings as dependent variable, SOA and stimulus-

related rating as fixed factors, and a random intercept for each participant. 

2.3.2. Results 

2.3.2.1. Timing effects 

The mixed ANOVA revealed significant effects of SOA, F(9,171) = 220.1, p < .001, 

ηG
2  = .81, and scale type, F (3,57) = 6.8, p < .001, ηG

2  = .09, as well as an interaction between 

these two, F(27,513) = 2.8, p < .05, ηG
2  = .02. There was no effect of sequence, and no 

interaction of sequence with SOA or scale type, all F’s < 1. The second ANOVA yielded 

significant effects of trial accuracy, F(1,19) = 180.4, p < .001, ηG
2  = .78, scale type, F(3,57) = 

5.4, p < .01, ηG
2  = .09, as well as an interaction, F(3,57) = 7.0, p < .001, ηG

2  = .02. Critically, 

there was again no effect of sequence, and no interaction of sequence with any of the other 

factors, all F’s < 1. Given these results, all subsequent analyses were performed without 

distinguishing between first and the second ratings. 
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2.3.2.2. Descriptive statistics 

The mean error frequency in the discrimination task was .17 (SD = .08), and ranged 

between .41 for the shortest SOA and .01 for the longest SOA. Across the complete 

experiment, stimulus-related ratings averaged 46.8% of the scale range (SD = 10.0). For the 

response-related ratings, the mean rating was 55.0% (SD = 12.2) for confidence, 50.4% (SD = 

16.8) for wagering, and 57.9% (SD = 10.1) for attribution of choice ratings. 

2.3.2.3. Psychometric functions 

Within-subject ANOVAs revealed that there were no significant differences between 

the three response-related scales in terms of threshold, F(2,38) = 1.2, n. s., and slope, F < 1. 

Therefore, the rating data was pooled across different response-related scales. An estimation 

of psychometric functions on stimulus-related ratings aggregated across participants revealed 

a threshold of 4.05 (SE = .09), a slope of 2.81 (SE = .64), a lower asymptote of .10 (SE = .3), 

and an upper asymptote of .10 (SE = .07). For response-related ratings, the threshold was 3.93 

(SE = .06), the slope 2.84 (SE = .54), the lower asymptote .10 (SE = .03), and the upper 

asymptote .03 (SE = .05, see Fig. 2-2).  

 

Figure 2-2. . Estimated logistic functions for stimulus-related ratings and response-related 

ratings. Points indicate the averaged ratings for each SOA, the solid line indicates the 

estimated psychometric function for stimulus-related ratings, and the dashed line the 

estimated psychometric function for response-related ratings. 

 

Paired t-tests on coefficients estimated on the level of each individual revealed that the 

threshold for response-related ratings was lower than the threshold for stimulus-related 

ratings, t(19) = 2.2, p < .05, d = .45, and the upper asymptote was higher for response-related 
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ratings than for stimulus-related ratings, t(19) = 2.6, p < .05, d = .61. However, there were no 

significant differences in terms of slope, t(19) = 1.6, n. s., as well as lower asymptote t(19) = 

.8, n. s. 

2.3.2.4. SDT type 2 analysis 

The data was again pooled across different response-related scales as a within-subject 

ANOVA suggested there was no significant difference between the three response-related 

ratings in terms of Aroc, F(2,38) < 1, and Broc, F(2,38) = 3.1, n. s. Fig. 2-3 displays the ROC-

curves for stimulus- and response-related ratings for the whole sample.  

 

Figure 2-3. Receiver-operating-characteristics. On the x-Axis, there is the cumulative 

probability of each rating bin given that the trial was incorrect; on the y-axis, there is the 

cumulative probability for each rating given that the rating was correct. The area under the 

curve is used to determine the SDT type 2 sensitivity. White circles indicate binned stimulus-

related ratings, black squares binned response-related ratings 

 

The mean type-2- sensitivity as quantified by Aroc was .79 for response-related ratings 

(SD = .07) and .78 for stimulus-related ratings (SD = .07). Paired t-tests revealed that the 

difference Aroc between stimulus-related ratings and response-related ratings was significant, 

t(18) = 2.4, p < .05, d = .20. The mean type-2 criterion (Broc) was -.15 (SD = .73) for 

response-related ratings and -.74 (SD = .82) for stimulus-related ratings. The difference 

between stimulus- and response-related ratings in terms of Broc was significant as well, t(18) = 

4.2, p < .001, d = 1.03. 
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2.3.2.5. Zero correlation criterion analysis 

Multiple paired t-tests suggested that response-related ratings in correct trials were 

always greater than response-related ratings in incorrect trials at each single SOA, all pcor’s < 

.05. By contrast, stimulus-related ratings were not significantly greater in correct trials than in 

incorrect trials at the shortest SOA, t(19) = .89, n. s. Significant results were obtained only for 

SOAs of 20 ms, pcor < .05, and 40 -90 ms, pcor’s < .05. In addition, for 9 out of 10 SOAs, the 

effect sizes as indexed by Cohen’s d were greater for response-related ratings than for 

stimulus-related ratings (see Table 2-1). 

Table 2-1 

T-tests comparing ratings in correct vs. incorrect trials, separately for stimulus-related and 

response-related ratings and each SOA. 

  Stimulus-related ratings Response-related ratings 

SOA df t pcor d t pcor d 

10 19 0.9 n. s. 0.1 2.0 < .05 0.2 

20 19 2.8 < .05 0.3 3.2 < .05 0.4 

30 19 1.6 n. s. 0.3 2.4 < .05 0.4 

40 19 2.7 < .05 0.5 3.2 < .05 0.8 

50 17 4.3 < .01 1.2 4.3 < .01 1.4 

60 18 3.9 < .01 1.1 4.8 < .001 1.3 

70 14 4.4 < .01 1.4 4.2 < .01 1.3 

90 13 4.4 < .01 1.5 7.0 < .001 3.4 

110 9 2.4 n. s. 0.9 3.2 < .05 1.3 

140 6 2.1 n. s. 1.1 3.1 < .05 1.6 

 

2.3.2.6. Within-trial regression 

The hierarchical linear regressions revealed that for each scale type, response-related 

ratings predicted stimulus-related ratings. The regression coefficients were .61, SE = .01, 

t(4770) = 51.8, p < .001, when stimulus-related ratings predicted confidence ratings, .64, SE = 

.01, t(4770) = 58.6, p < .001, when stimulus-related ratings predicted attribution of choice 

ratings, and .67, SE = .01, t(4770) = 59.7, p < .001, when stimulus-related ratings predicted 

wagering. 

2.3.3. Discussion 

Exp. 2-1 addressed the issue of whether subjective measures of consciousness show 

different properties depending on whether they refer to the stimulus or whether they refer to 
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the discrimination response. In addition, it was investigated whether the pattern of high 

confidence in absence of visual experiences known from blindsight patients can also be 

observed in normal participants. 

We compared stimulus-related and response-related ratings with respect to their 

psychometric functions, the zero correlation criterion at different SOAs, and SDT-type 2 

characteristics. It was observed that response-related ratings were associated with a lower 

psychometric threshold than stimulus-related ratings. We did not observe a substantial 

difference in the psychometric slope of stimulus and response-related ratings, indicating that 

both types of ratings had comparable relative sensitivities to changes of the quality of 

stimulation. Concerning the analysis of zero correlation criterion, response-related ratings 

were greater in correct trials than in incorrect trials for each SOA; while for stimulus-related 

ratings, the difference was not significant at SOAs of 10 and 30 ms. In addition, the effect 

sizes of the zero correlation criterion analysis were greater for response-related ratings than 

for stimulus-related ratings at 9 out of 10 SOAs. Regarding SDT type 2 measures, response-

related ratings significantly outperformed stimulus-related ratings in predicting trial accuracy 

and imposed a considerably less conservative response criterion. 

These results resemble to some degree the data pattern of subjective measures 

obtained in type 2 blindsight. Under certain stimulus conditions these patients express a high 

degree of confidence in their responses, although they report no visual experience (Persaud et 

al., 2011; Sahraie et al., 1998). In line with this, observers in the current experiment also 

exhibit higher thresholds towards reporting visual experience than reporting confidence. 

These data seem to suggest that a weaker level of stimulation is needed to elicit confidence in 

the response than to elicit a visual experience of the stimulus in both blindsight patients and 

healthy participants. 

A potential concern with the data presented here is the fact that our procedure of 

presenting two ratings after each trial might have biased the ratings. In particular, models that 

assume that ratings are formed by a stochastic diffusion process might predict the second 

rating to be higher or more accurate because there is more time for the sensory evidence to 

accumulate (Pleskac & Busemeyer, 2010). In the present study, we found no evidence that the 

sequence or ratings influenced the ratings directly or interacted with scale type, SOA, or trial 

accuracy. We cannot rule out the possibility that the procedure of asking two ratings after 

each trial might have influenced both of the two ratings, for example, if two contradicting 
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ratings caused cognitive dissonance, or if participants understood the instruction to give two 

ratings after each trial in a way they felt the two ratings had to be different. However, if this 

was the case, the bias would affect both stimulus-related and response-related ratings to the 

same extent and cannot account for the threshold offset between stimulus-related and 

response-related ratings or for the difference in SDT type 2 sensitivity. 

2.4. Experiment 2-2 

Exp. 2-2 was designed to investigate the relationship between different subjective 

measures referring to the discrimination judgement. Observers performed the same 

discrimination task as in Exp. 2-1, except that each trial was followed by two out of three 

possible response-related scales. Observers were either asked how much money they would 

place was wager that there orientation discrimination was correct, report whether their 

orientation choice was rather based on a guess or on knowledge, or a confidence rating. 

2.4.1. Methods 

2.4.1.1. Participants 

20 participants (6 male, 1 left-handed) participated in the Exp. 2-2. The age of the 

participants ranged between 20 and 40, with a median age of 27. All participants reported to 

have normal or corrected-to-normal vision, confirmed that that they did not suffer from 

epilepsy or seizures and gave written-informed consent. Participants received either €8 per 

hour or course credits in return for participation. 

2.4.1.2. Apparatus, stimuli, design, and procedure 

Apparatus, stimuli, design and procedure were identical to Exp. 2-1. 

2.4.1.3. Trial sequence 

The trials were identical to Exp. 2-1, except that instead of asking one stimulus-related 

rating and one response-related rating after each trial, there were always two out of the three 

possible response-related ratings. Each combination of ratings was presented for three blocks. 

The sequence of ratings was randomized and was opposite for the consecutive session. 

2.4.1.4. Analysis 

To ensure comparability between Exp. 2-1 and 2-2, the same analysis was performed 

for Exp. 2-2 than for Exp. 2-1, except that instead of comparing stimulus-related ratings 
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against response-related ratings, the three different response-related scales as confidence, 

attribution-of-choice, and wagering were compared against each other by an analysis of 

variance with scale type (confidence vs. wagering vs. attribution) as within-subject factor. 

Significant main effects of scale type were further examined by two-sided t-tests with p-

values adjusted according to the Holm correction. One participant was removed from the 

analysis of psychometric functions, because his/her ratings were insensitive to varying SOA 

and the corresponding psychometric functions would have been parallel to the horizontal. 

Another participant was removed from the SDT type 2 analysis because his/her response 

criterion for all three scales was extremely conservative, so the Broc-value could not be 

computed. 

2.4.2. Results 

2.4.2.1. Descriptive statistics 

On average, the proportion of erroneous trials in Exp. 2-2 was .16 (SD = .08). On 

average, observers gave confidence ratings of 63.1% of the scale range (SD = 11.2), 

attribution of choice ratings of 65.1% (SD = 10.6), and mean wagers of 59.1% (SD = 12.9). 

2.4.2.2. Psychometric functions 

Fig. 2-4 displays observed data and estimated psychometric functions for each scale 

type for the aggregated data. Comparing the parameters derived from the different scales, a 

within-subject ANOVAs revealed that there was a main effect of scale type on thresholds, 

F(2,36) = 5.6, p < .01, ηG
2  = .02, and lower asymptote, F(2,36) = 6.8, p < .01, ηG

2  = .03, but 

there were no effects on slope, F(2,36) = 1.1, n. s. and upper asymptote, F < 1. Post-hoc t-tests 

revealed that the threshold for wagering was above the threshold for attribution of choice, 

t(18) = 2.7, p < .05, d = .35, and for confidence, t(18) = 3.6 < .01, d = .22, but there was no 

difference between thresholds for confidence and attribution of choice, t(18) = 1.1, n. s. For 

the lower asymptotes, post-hoc comparisons suggested a significant difference between 

attribution of choice ratings and wagering, t(18) = 3.0, p < .05, d = .41, but there were no 

significant differences between attribution of choice and confidence, t(18) = 1.5, n. s. and 

between and between wagering and confidence, t(18) = 2.5, n. s. 
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Figure 2-4. Estimated functions for confidence ratings, attribution of choice ratings, and 

wagering. Squares indicate mean confidence ratings for each SOA, diamonds indicate 

attribution of choice ratings, and triangles indicate wagering. Separate lines indicate the 

estimated psychometric curves. 

 

2.4.2.3. SDT type 2 analysis 

Fig. 2-5 displays the ROC-curves for the three different scales averaged across 

participants.  

 

Figure 2-5. Receiver-operating characteristics in Exp. 2-2. The area under each curve 

indicates SDT type 2 sensitivity. Squares indicate confidence ratings, diamonds indicate 

attribution of choice ratings, and triangles indicate wagering. 
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The mean type-2- sensitivity as quantified by Aroc  was .79 for confidence (SD = .07) 

and .80 for the wagering (SD = .06) and attribution of choice (SD: = .05). The main effect of 

scale type on Aroc was not significant, F < 1. The mean type-2 criterion (Broc) was -0.94 (SD = 

.62) for confidence ratings, -1.05 (SD = .39) for attribution of choice ratings, and -.92 (SD = 

.55) for wagering. There was no significant effect of scale type on Broc, F(2,34) = 1.3, n. s. 

2.4.2.4. Zero correlation criterion analysis 

As Table 2-2 shows, trial correctness predicted ratings in all three scale types starting 

with a SOA of 20 ms, all p’s < .05. At the shortest SOA of 10 ms, only wagering 

differentiated between correct and incorrect trials, t(19) = 2.6, p < .05, but attribution of 

choice ratings did not, t(19) = .6, n. s., as well as confidence ratings, t(19) = .7, n. s. Effect 

sizes varied inconsistently between the different scales at different SOAs (see Table 2-2). 

Table 2-2 

Results of multiple t-tests comparing ratings in correct and incorrect trials in Exp. 2-2, 

separately for each different scale.  

  Attribution of choice Wagering Confidence 

SOA df t pcor d t pcor d t pcor d 

10 19 0.6 n. s. 0.0 2.6 < .05 0.2 0.7 n. s. 0.1 

20 19 4.1 < .01 0.6 2.7 < .05 0.4 3.0 < .05 0.3 

30 19 5.3 <. 001 0.7 4.8 <. 001 0.7 5.8 <. 001 1.0 

40 19 3.6 < .01 0.9 5.3 <. 001 1.3 4.5 <. 001 1.3 

50 15 3.6 < .01 1.1 3.5 <.01 1.0 2.7 <.01 0.8 

60 17 5.1 <. 001 1.4 4.3 <.01 1.4 4.6 <. 001 1.4 

70 13 6.5 <. 001 2.7 4.1 <.01 1.4 5.5 <. 001 1.9 

90 11 5.8 <. 001 2.2 4.0 <.01 1.5 4.7 <. 001 1.9 

110 9 4.0 <.01 1.8 4.7 <.01 2.7 6.0 <. 001 3.0 

140 7 3.6 <.01 1.7 4.2 <.01 1.7 3.5 <.01 1.8 

 

2.4.2.5. Within-trial regression 

The hierarchical linear regressions revealed that ratings of each scale type could be 

predicted by ratings of each other scale type. The regression coefficients for wagering 

predicting attribution of choice ratings were .76, SE = .01, t(4770) = 82.3, p < .001, for 

wagering predicting confidence ratings .85, SE = .01, t(4770) = 97.6, p < .001, and for 

attribution of choice predicting confidence ratings .79, SE = .01, t(4770) = 89.4, p < .001. 
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2.4.3. Discussion 

Exp. 2-2 was conducted in order to investigate the relationship between three 

response-related subjective measures: confidence ratings, attribution of choice ratings, and 

wagering in terms of psychometric functions, SDT type 2 properties, zero correlation 

criterion, and within-trial regressions. Regarding psychometric functions, we observed no 

difference between the three scales in terms of slope, but the threshold for wagering was 

significantly above the threshold for confidence ratings and attribution of choice ratings. With 

respect to the ROC-analysis, we neither found any significant differences regarding SDT type 

2 sensitivity, nor response criterion. Concerning the zero correlation criterion, the effects 

seemed to vary unsystematically between scales, with each scale being predicted by trial 

accuracy more efficiently at several SOAs. Concerning the association between the different 

types of ratings, we observed that all three scales were effective in predicting the other scale. 

Critically, the association of two different response-related ratings in Exp. 2-2 seemed to be 

stronger than the association of response-related ratings with stimulus-related ratings as 

observed in Exp. 2-1. 

To summarize, Exp. 2-2 revealed a considerable amount of similar empirical 

properties of confidence ratings, attribution of choice ratings, and wagering, which is 

consistent with the view that all three scales belong to the same class of subjective measures 

of consciousness. Contradicting this view, the threshold for wagering was more conservative 

than for the other two ratings. A potential explanation for this finding is that wagering is not 

only a measure of the cognitive processes involved in the discrimination task, but might also 

be biased by loss aversion (Fleming & Dolan, 2010) or risk aversion (Dienes & Seth, 2010). 

Presumably, risk aversion might influence wagering with imaginary money although there 

was no objective risk of losing reward in the present experiment. We will resume the 

discussion of a distinct group of response-related ratings after Exp. 2-4. 

2.5. Experiment 2-3 

Exp. 2-3 investigated whether the differences between stimulus-related and response-

related ratings as observed in Exp. 2-1 generalize to a masked object discrimination task. 

After each trial, observers indicated how clearly they experienced the shape of the stimulus 

(instead of the orientation of its grating as in Exp. 2-1) and how confident they felt about the 

accuracy of their discrimination choice. 
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2.5.1. Methods 

2.5.1.1. Participants 

16 participants (2 male, 1 left-handed) participated in the Exp. 2-3. The age of the 

participants ranged between 19 and 26, with a median of 22. All participants reported to have 

normal or corrected-to-normal vision, confirmed that that they did not suffer from epilepsy or 

seizures and gave written informed consent. Participants received either €8 per hour or course 

credits in return for participation. 

2.5.1.2. Apparatus and stimuli 

The apparatus was the same as in Exp. 2-1 and 2-2, expect that the refresh rate was 

increased to 120 Hz. The target stimulus was either a square or a circle filled with either a 

horizontal or a vertical oriented sinusoidal grating (frequency: 1 cycle per degree of visual 

angle, maximal luminance: 85.0 cd/m², minimal luminance: 9.5 cd/m
2
), presented in front of a 

grey (12.5 cd/m²) background. Squares and circles subtended 3° x 3° degrees of visual angle. 

Mask and rating scales were identical to Exp. 2-1. 

2.5.1.3. Trial structure 

The trial structure was the same as in the previous experiments, except that SOAs of 

8.3, 16.7, 25.0, 33.3, 50.0, 66.7, 83.3, and 116.7 ms were used. After onset of the mask and an 

additional delay period of 600 ms, participants gave a two-alternative forced-choice 

judgement about the global shape of the stimulus by pressing “A” or “S” on the keyboard. 

After the discrimination response was given, two subjective ratings were presented on the 

screen, which were “How clearly did you perceive the shape?” with the anchors “unclear” and 

“clear”, and “how confident are you that your response was correct?”, the anchors being 

“unsure” and “sure”. Answers were collected via VARS. If the shape judgement had been 

wrong, the trial ended with “error” displayed on the screen for 1,000 ms. 

2.5.1.4. Design and procedure 

Exp. 2-3 involved one session of approximately 1 hour. Participants were instructed to 

prioritize accuracy over speed during the shape discrimination task. For verbal reports, it was 

ensured that participants understood that the stimulus-related rating referred to their 

experience of the shape, and the response-related rating referred to their confidence in having 

discriminated the stimulus shape correctly. Again, participants were instructed to give the two 

ratings as independently from each other as possible and to give their ratings as carefully and 



 

42 

as accurately as possible. At the beginning of the experiment, participants performed a 

training of 16 trials. Overall, the experiment comprised 12 blocks with 40 trials each. 

2.5.1.5. Analysis 

The analysis was the same as in Exp. 2-1 and 2-2. One participant was excluded from 

the analysis of psychometric functions because he/she gave the same subjective reports across 

all levels of difficulty, so no function fits could be obtained. 

2.5.2. Results 

2.5.2.1. Descriptive statistics 

The mean error frequency in Exp. 2-3 was .23 (SD = .05). On average, observers gave 

a stimulus-related rating of 41.1% (SD = 12.9) and a response-related rating of 52.2% (SD = 

14.0). 

2.5.2.2. Psychometric functions 

Paired t-tests performed on individual parameters suggested that the response-related 

ratings were associated with lower thresholds than stimulus-related ratings, t(14) = 2.0, p(one-

tailed) < .05, d = .42 (see Fig. 2-6a). In addition, we observed a marginal difference of lower 

asymptotes, t(14) = 2.1, p = .06, d = .52, but no difference between slopes, t(14) = 1.5, n. s., or 

upper asymptotes, t(14) = 0.8, n. s. 

 

Figure 2-6. Results of Exp. 2-3. Panel A: Mean thresholds derived from stimulus-related 

ratings and response-related ratings. Panel B: Type 2 sensitivity of stimulus-related ratings 

and response-related ratings  
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2.5.2.3. SDT type 2 analysis 

Analysis of the SDT type 2 sensitivity resulted in mean Aroc  of .77 (SD = .08) for 

stimulus-related ratings and mean Aroc of .78 (SD = .08) for response-related ratings. For the 

response criterion, Broc was -.93 (SD = 1.19) for stimulus-related ratings and -.39 (SD = .78) 

for response-related ratings. Paired t-tests suggested that there was no significant difference 

between Aroc, t(15) = .9, n. s. (see Fig. 2-6b), but the response criterion of response-related 

ratings was more liberal, t(15) = 2.6, p < .05, d = .61. 

2.5.2.4. Zero correlation criterion analysis 

Multiple t-tests suggested that both stimulus-related and response-related ratings were 

greater in correct trials than in incorrect trials at SOAs of 25.0 ms or greater. At shorter SOAs, 

no significant effects were observed (see Table 2-3). 

Table 2-3 

Multiple t-tests comparing ratings in correct and incorrect trials in Exp. 2-3, separately for 

each different scale 

SOA 
Stimulus-related ratings Response-related ratings 

t df pcor d t df pcor d 

8.3 0.4 15 n. s. 0.0 -0.4 15 n. s. 0.0 

16.7 1.8 15 n. s. 0.1 1.2 15 n. s. 0.1 

25.0 3.2 15 < .05 0.3 3.4 15 < .01 0.4 

33.3 6.1 15 < .001 0.9 6.4 15 < .001 1.1 

50.0 7.8 15 < .001 1.1 6.9 15 < .001 1.9 

66.7 4.5 11 < .01 0.7 4.9 11 < .001 1.5 

83.3 3.8 13 < .01 1.2 5.7 13 < .001 2.1 

116.7 3.1 6 <.05 1.4 5.5 6 < .001 2.3 

 

2.5.2.5. Within-trial regression 

The hierarchical linear regressions revealed that response-related ratings could be 

efficiently predicted by stimulus-related ratings. The regression coefficients was .79, SE = 

.01, t(7400) = 104.7, p < .001. 

2.5.3. Discussion 

Exp. 2-3 investigated whether a pattern of subjective reports similar to type II 

blindsight, i.e. high ratings of confidence in combination with low ratings of visual 

experience, can be observed in a masked shape discrimination task. In addition, we predicted 
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that stimulus-related ratings and response-related ratings showed different characteristics in 

terms of psychometric functions, SDT type 2 measures, and shared variance within trials. 

Regarding psychometric functions, we observed that the threshold of response-related 

ratings was significantly higher than the threshold of stimulus-related ratings, albeit the 

relative sensitivity to changes of the stimulation was comparable. With respect to the SDT 

type 2 analysis, we observed that the response criterion induced by response-related ratings 

was more liberal, but there was no reliable difference in sensitivity. In contrast to our 

prediction, while response-related ratings were associated with higher effect sizes than 

stimulus–related ratings at longer SOAs, the patterns of the zero correlation criteria at short 

SOAs were the same. 

In support of a type 2 blindsight-similar behaviour of normal participants, observers in 

Exp. 2-3 had a higher threshold for response-related ratings than for stimulus-related ratings, 

meaning they would report confidence in being correct about the discrimination task already 

at a level of stimulation where their reports of visual experience was still low. The magnitude 

of this effect was nearly the same as in the orientation discrimination task, implying that the 

offset of psychometric curves derived by reports about the stimulus and reports about the 

response is consistent across tasks. 

Concerning the classification of subjective measures of consciousness into two 

classes, the results of Exp. 2-3 are more divergent than those of Exp. 2-1. We observed 

differences between stimulus-related and response-related ratings in terms of thresholds and 

SDT type 2 criteria, indicating that observers are more conservative in reporting an 

experience of the stimulus than reporting confidence about a judgment. However, the 

difference between SDT sensitivity was not significant and the patterns of the zero correlation 

criteria were the same. Consequently, at least for shape discrimination tasks, it seems to 

depend on the research question whether the distinction between stimulus-related and 

response-related ratings is relevant: If the focus is on the correlation between subjective 

reports and objective performance (e.g. on zero correlation criteria), stimulus- and response-

related ratings converge to the same results. In cases where criteria are more important (e.g. if 

it is determined whether a stimulus is above or below a subjective threshold), stimulus- and 

response-related ratings might lead to opposite conclusions. 
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2.6. Experiment 2-4 

Exp. 2-4 was conducted to explore whether the lag of psychometric curves between 

wagering and the other response-related scales generalizes to shape discrimination. Observers 

reported whether a masked target stimulus was either a square or a circle, followed by 

subjective reports about how confident they felt about their discrimination response, whether 

they guessed or knew their discrimination response, or how much money they would place as 

wager that their response was correct. 

2.6.1. Methods 

2.6.1.1. Participants  

16 participants (6 male, 1 left-handed) participated in the Exp. 2-4. The age of the 

participants ranged between 20 and 40, with a median age of 25. All participants reported to 

have normal or corrected-to-normal vision, confirmed that that they did not suffer from 

epilepsy or seizures and gave written-informed consent. Participants received either €8 per 

hour or course credits in return for participation. 

2.6.1.2. Apparatus and stimuli 

The apparatus and stimuli were the same as in Exp. 2-3, expect that the refresh rate 

was set to 160 Hz. 

2.6.1.3. Trial structure 

The trial structure was the same as in the previous experiments, except that SOAs of 

6.25, 12.5, 18.75, 25.0, 31.25, 37.5, 50.0, 62.5, 75.0, 87.5, and 120.0 were used. After onset of 

the mask and a delay period of 600 ms, participants gave a two-alternative forced-choice 

judgement whether the global shape of the stimulus was a square or a circle. After the 

discrimination response was given, two out of the three possible response-related scales were 

presented on the screen. 

2.6.1.4. Design, procedure, and analysis 

Design, procedure, and analysis were the same as in Exp. 2-2. 
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2.6.2. Results 

2.6.2.1. Descriptive statistics 

The mean error frequency in Exp. 2-4 was .26 (SD = .08). On average, observers gave 

a confidence rating of 51.1% of the scale range (SD = 12.3), an attribution of choice rating of 

51.9% (SD = 10.6), and a wager of 49.1% (SD = 15.7). 

2.6.2.2. Psychometric functions 

Fig. 2-7a displays mean psychometric thresholds of each scale in Exp. 2-4. A 

comparison of the estimated parameters via a within-subject ANOVAs revealed no effects of 

scale type on thresholds, slopes, upper asymptotes, or lower asymptotes, all F’s < 1. 

 

Figure 2-7. . Results of Exp. 2-4. Panel A: Thresholds for confidence ratings, attribution of 

choice ratings, and wagering. Panel B: SDT type 2 sensitivities. 

 

2.6.2.3. SDT type 2 analysis 

The mean type 2 sensitivity as quantified by Aroc  was .72 for confidence (SD = .09) 

and attribution of choice (SD: = .08), and .71 for wagering (SD = .10). The main effect of 

scale type on Aroc was not significant, F < 1. The mean type 2 criterion (Broc) was .22 (SD = 

2.46) for confidence ratings, -.17 (SD = 1.81) for attribution of choice ratings, and .05 (SD = 

1.54) for wagering. There was no significant effect of scale type on Broc, F < 1, see Fig. 2-7b. 
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2.6.2.4. Zero correlation criterion analysis 

As shown by Table 2-4, ratings in correct trials were significantly larger than in 

incorrect trials for all three scales at the SOA of 31.25 ms, all pcor’s < .05. At shorter SOAs, 

all t-tests were not significant. 

2.6.2.5. Within-trial regression 

The hierarchical linear regressions suggested that ratings of each scale type could be 

predicted by ratings of the other scale types. The regression coefficients were for wagering 

predicting attribution of choice ratings .91, SE = .01, t(3813) = 119.6, p < .001, for wagering 

predicting confidence ratings .92, SE = .01, t(3813) = 131.5, p < .001, and for attribution of 

choice predicting confidence .91, SE = .01, t(3813) = 129.7, p < .001. 

Table 2-4 

Multiple t-tests comparing ratings in correct and incorrect trials in Exp. 2-4, separately for 

each different scale 

 Attribution of choice Wagering Confidence 

SOA df t pcor d df t pcor d df t pcor d 

6.3 15 1.1 n. s. 0.0 15 0.7 n. s. 0.1 15 -0.7 n. s. 0.0 

12.5 15 0.0 n. s. 0.1 15 -0.2 n. s. 0.0 15 0.2 n. s. 0.0 

18.8 15 0.7 n. s. 0.0 15 0.6 n. s. 0.1 15 0.6 n. s. 0.1 

25.0 15 2.2 n. s. 0.4 15 2.0 n. s. 0.5 15 1.9 n. s. 0.4 

31.3 14 6.6 < .001 1.7 14 4.4 <.01 1.3 14 5.9 < .001 1.3 

37.5 14 5.9 < .001 1.3 15 3.5 < .05 1.0 15 5.5 < .001 1.4 

50.0 14 7.2 < .001 2.1 15 5.5 < .001 1.6 14 5.8 < .001 1.6 

62.5 14 3.9 <.01 1.3 12 6.4 < .001 2.3 12 5.2 < .001 1.7 

75.0 10 3.6 <. 05 1.6 11 2.8 n. s. 1.3 10 2.1 n. s. 1.0 

87.5 4 2.2 n. s. 1.7 4 1.4 <.01 0.9 4 3.5 n. s. 1.9 

120.0 4 3.8 n. s.  1.7 4 10.5 n. s. 3.3 2 5.1 n. s. 2.8 

 

2.6.3. Discussion 

Exp. 2-4 investigated whether confidence ratings, attribution of choice ratings, and 

wagering form one coherent class of subjective measures of consciousness with respect to 

their psychometric functions, SDT type 2 characteristics, zero correlation criteria, and within-

trial regressions. Specifically, it was examined whether a lag in thresholds between wagering 

and the other two scales as observed in Exp. 2-2 also emerged at the masked shape 

discrimination task. 
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An analysis of psychometric functions showed no difference between curves fitted on 

wagering, attribution of choice, and confidence data in terms of slopes and thresholds, just as 

there were no differences in terms of type 2 sensitivities and type 2 criteria. The zero 

correlation criterion was rejected starting at the same SOA at all scales, and within-trial 

regressions showed that the three scales shared their variance almost completely. In 

accordance with the classification of subjective measures as either response-related ratings or 

stimulus-related ratings, the association between two different response-related ratings in Exp. 

2-4 seemed to be stronger than the association between a stimulus-related rating and a 

response-related rating in Exp. 2-3. 

Overall, the Exp. 2-1, 2-2, and 2-4 concurrently indicate that verbal reports that refer 

to the discrimination response are very similar in their patterns in terms of within-trial 

regressions, psychometric slopes, and SDT type 2 characteristics. The only indication of a 

difference between measures, a lag of the psychometric threshold of wagering with respect to 

the other two scales, was observed only in Exp. 2-2, but did not replicate in Exp. 2-4. Thus, 

our experiments provide converging evidence that attribution of choice ratings, confidence 

ratings, and wagering form one coherent category of subjective measures of consciousness. 

2.7. Experiment 2-5 

In Exp. 2-1, 2-2, 2-3, and 2-4, sensory evidence was always manipulated by short 

presentation of the stimulus in conjunction with backwards masking. In Exp. 2-5, we 

investigated whether the discrepancy between subjective reports about the stimulus and 

subjective reports about the discrimination response can be replicated when sensory evidence 

is varied by another manipulation, i.e. the proportion of coherently moving dots of RDKs. 

After indicating the direction of motion of the coherently moving dots, observers delivered 

both a rating of the subjective clarity of motion and of confidence in the motion 

discrimination response.  

2.7.1. Methods 

2.7.1.1. Participants 

21 participants (4 male, 2 left-handed) participated in the experiment. The age of the 

participants ranged between 19 and 40, with a median age of 22. All participants reported to 

have normal or corrected-to-normal vision, confirmed that that they did not suffer from 

epilepsy or seizures and gave written-informed consent. 
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2.7.1.2. Apparatus and stimuli 

The experiment was conducted in a sound-attenuated cabin, controlled by MATLAB 

and Psychophysics Toolbox extensions (Brainard, 1997; Pelli, 1997). Stimuli were presented 

on a Diamond Pro 2070SB at refresh rate of 120 Hz driven by a Mac with OS X 10.7 as 

operating system at a viewing distance of approximately 60 cm. The stimulus was a random 

dot kinematogram, consisting of small white squares (16.7 dots per square degree of visual 

angle, sized 2 x 2 pixels, luminance 78.5 cd/m
2
) in from of a black background (0.0 cd/m

2
), 

which appeared in a circular aperture (diameter: 5) centred at the fixation. A set of dots was 

shown for one video frame and then replotted three video frames later. When replotted, a 

subset of dots was offset from their original location to create apparent motion while the 

remaining dots were relocated randomly. The proportion of coherently moving dots was 

randomly chosen among 0.7, 1.3, 2.7, 5.3, 10.7, 21.3, or 42.7%. Dots moved horizontally to 

the left or to the right at a velocity of 4° per second. Participants responded to leftwards and 

rightwards motion by pressing the left and right arrow button on the keyboard. Subjective 

reports were collected in the same way as in the previous experiments. The stimulus-related 

rating was “How clearly did you see the coherent motion?” with the anchors “unclear” and 

“clear”; the response-related rating was “how confident are you that your response was 

correct?” with the anchors “unsure” and “sure”. 

2.7.1.3. Trial structure 

Each trial began with the presentation of a fixation cross at screen centre for 1,000 ms. 

Then a RDK was presented until participants gave a two-alternative forced-choice judgment 

about the direction of the random dot motion. Immediately afterwards, the first question 

appeared on the screen. Participants were always asked to deliver both a stimulus-related 

rating and a response-related rating after each single trial, with the sequence of the two ratings 

counterbalanced across participants. If the 2AFC orientation judgement had been erroneous, 

the trial ended with the display of “error” for 1,000 ms. 

2.7.1.4. Design and procedure  

Exp. 2-5 involved one session of 45 min on average. For the motion discrimination 

task, participants were instructed to prioritize accuracy over speed and to guess if they did not 

know the direction of motion. For subjective reports, it was ensured that participants 

understood that the stimulus-related rating referred to motion experience created by the 

coherently moving dots, and the response-related rating referred to their confidence in having 
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discriminated the motion direction correctly. Again, participants were instructed to give the 

two ratings as independently from each other as possible and to give their ratings as carefully 

and as accurately as possible. At the beginning of the experiment, participants performed a 

training block with 49 trials. The main experiment involved 7 blocks with 49 trials each. 

2.7.1.5. Analysis 

The analysis was the same as in previous experiments, except that it was performed 

with respect to levels of coherence rather than SOAs. 

2.7.2. Results 

2.7.2.1. Descriptive statistics 

The mean error rate in Exp. 2-5 was .22 (SD = .53). On average, observers gave a 

confidence rating of 59.7% of the scale range (SD = 11.0), and a stimulus-related rating of 

52.0% (SD = 12.6). 

2.7.2.2. Psychometric functions 

Two-tailed paired t-tests of the estimated parameters revealed that the offset of 

thresholds between stimulus-related ratings and response-related ratings was significant t(20) 

= 4.0, p < .001, d = .73 (see Fig. 2-8a); however, there was no difference between slopes, 

t(20) = 1.3, n. s., lower asymptotes, t(20) = 2.0, n. s., and upper asymptotes t(20) = 0.8, n. s. 

 

Figure 2-8. Results of Exp. 2-5. Left panel: Thresholds derived from response-related ratings 

and stimulus-related ratings. Right panel: Type 2 sensitivities of response-related ratings and 

stimulus-related ratings. Error bars indicate 1 SEM. 
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2.7.2.3. SDT type 2 analysis 

For SDT type 2 sensitivity, the mean Aroc  was .73 (SD = .05) for stimulus-related 

ratings, compared to .74 (SD = .03) for response-related ratings. Two-tailed paired t-tests 

suggested that the difference was significant, t(20) = 2.2, p < .05, d = .41 (see Fig. 2-8b). For 

the response criterion, Broc was -.63 (SD= .74) for stimulus-related ratings and 0.10 (SD = 

1.0) for ratings of the response. T-tests suggested that Broc was different between stimulus-

related and response-related ratings as well, t(20) = 5.0, p < .001, d = .82. 

2.7.2.4. Zero correlation criterion analysis 

Table 2-5 shows overviews t-tests performed between correct and erroneous trials at 

each level of coherence. Both stimulus- and response-related ratings were significantly 

different between correct and incorrect trials at the coherence of 2.7%. At a coherence of 1.3 

%, the effect of trial correctness on response-related ratings was marginally significant, t(20) 

= 1.3, p = .06, d = .2, but could not be observed for stimulus-related ratings, t(20) = 0.4, n. s. 

Table 2-5 

Multiple t-tests comparing ratings in correct and incorrect trials in Exp. 2-5, separately for 

each different scale 

Coherence 
Stimulus-related ratings Response-related ratings 

t df pcor d t df pcor d 

0.7 0.5 20 n. s. 0.0 1.7 20 n. s. 0.1 

1.3 0.4 20 n. s. 0.0 2.2 20 n. s. 0.2 

2.7 3.8 20 < .01 0.2 5.5 20 < .001 0.5 

5.3 4.1 20 <. 01 0.4 5.1 20 < .001 0.7 

10.7 3.3 17 < .05 1.2 4.7 17 < .01 1.4 

21.3 3.1 10 < .05 1.5 5.6 10 < .01 1.9 

42.7 0.9 4 n. s.  0.0 -0.4 4 n. s.  -0.2 

 

2.7.2.5. Within-trial regression 

The hierarchical linear regressions suggested that response-related ratings predicted 

stimulus-related ratings on a single-trial basis. The regression coefficient was .59, SE = .01, 

t(7175) = 71.2, p < .001. 
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2.7.3. Discussion 

Exp. 2-5 was conducted to test whether the observed discrepancy between stimulus-

related and response-related ratings is specific to masking experiments, or whether it 

generalizes to motion discrimination with random dot motion kinematograms as well. We 

observed that the threshold for stimulus-related ratings required a higher proportion of 

coherently moving dots than response-related ratings, although the relative sensitivities of 

both kinds of ratings were not substantially different. In addition, we found that response-

related ratings outperformed stimulus-related ratings in predicting trial accuracy, and was 

associated with a more liberal type 2 response criterion. Concerning the zero correlation 

criterion, response-related ratings were marginally greater in correct trials than in incorrect 

trials at a coherence level of 1.3%, while stimulus-related ratings were associated with trial 

accuracy at a coherence of at least 2.7%. The magnitude of this effect was greater for 

response-related ratings than for stimulus-related ratings for 6 out of 7 levels of coherence. 

The association between stimulus-related and response-related ratings was comparable to 

Exp. 2-1 and was considerably smaller than the association between confidence, wagering, 

and attribution of choice ratings in Exp. 2-2 and 2-4. Overall, the results of Exp. 2-5 support 

nicely the distinction between stimulus- and response-related ratings, which has thus been 

shown for masked orientation discrimination, shape discrimination, and random dot motion 

discrimination. 

2.8. General discussion 

The five experiments presented here addressed two research questions: First, we 

investigated whether reports of high confidence and low visual experience, as it is reported 

for type 2 blindsight, can be observed when healthy observers perform a masked orientation 

discrimination task. Second, we explored the hypothesis that subjective measures of 

consciousness can be sorted into two categories, depending on whether they refer to the 

stimulus or to the participant’s discrimination response.  

We compared ratings of the stimulus with ratings of the response in a masked 

orientation discrimination task (Exp. 2-1), a masked shape discrimination task (Exp. 2-3) and 

a motion discrimination task (Exp. 2-5). Concerning psychometric functions, the thresholds of 

response-related ratings were substantially lower than the thresholds of stimulus-related 

ratings in all three experiments, although the relative sensitivity to the quality of stimulation 
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as indexed by psychometric slopes was comparable. With respect to SDT type 2 

characteristics, response-related ratings were associated with a more liberal response criterion 

in all experiments and a greater sensitivity in two out of three experiments. Concerning the 

analysis of the zero correlation criterion, the results were more diverse: In Exp. 2-1 and 2-5, 

response-related ratings were associated with correct trials at a lower level of stimulation 

despite the fact that the psychometric functions of both types of ratings had the same lower 

asymptote in both experiments. By contrast, in Exp. 2-3, we observed no differences in the 

zero correlation criterion analysis at short SOAs. 

Confidence ratings, attribution of choice ratings, and wagering were compared during 

a masked discrimination task with respect to orientation (Exp. 2-2) and shape (Exp. 2-4). 

Regarding psychometric functions, wagering was associated with a lower threshold than the 

other two scales in Exp. 2-2, but no differences appeared in Exp. 2-4. All three scales had the 

same psychometric slopes, the same SDT type 2 sensitivity, and response criterion. In 

addition, the zero correlation criterion analysis revealed no systematic differences between the 

three scale types across different levels of stimulation. 

In all five experiments there was a considerable association between the two ratings 

that were required after each trial, indicating the patterns of the ratings are quite similar. 

However, beyond that similarity, response-related ratings were more efficient in predicting 

one of the other response-related ratings in Exp. 2-2 and 2-4 than predicting the stimulus-

related ratings in Exp. 2-1, 2-3, and 2-5, suggesting there is a proportion of variance not 

shared between the two types of measures. 

2.8.1. Type 2 blindsight in normal observers? 

The current experiments might contribute to the theoretical interpretation of type 2 

blindsight. In type 2 blindsight, patients report a feeling or some knowledge that something 

has happened in the visual field corresponding to the damaged V1 region (Sahraie et al., 

2002). It has been reported that these patients can be very confident about discrimination 

responses on stimuli presented in their blind visual field (Persaud et al., 2011; Sahraie et al., 

1998). It has been proposed that blindsight in these patients is best understood as degraded 

conscious vision rather than preserved unconscious vision (Overgaard, Fehl, Mouridsen, 

Bergholt, & Cleeremans, 2008; Zeki & Ffytche, 1998). In our data, the threshold for 

response-related ratings was lower than for stimulus-related ratings, meaning that participants 
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reported confidence in the accuracy of their discrimination judgements at a lower level of 

stimulus quality than they reported experience of the stimulus. In addition, in Exp. 2-1 and 2-

5, but not Exp. 2-3, response-related ratings predicted trial accuracy at a weaker level of 

stimulation than stimulus-related ratings did. Although the discrepancy between reported 

confidence and experience seems to be considerably stronger for blindsight patients, it seems 

as if our data shows at least qualitatively the same pattern, indicating that confidence at a low 

degree of visual experience is not special to blindsight type 2, but can occur in healthy 

observers as well. 

2.8.2. Stimulus vs. response-related ratings 

The traditional view of subjective measures of consciousness assumes that all 

subjective measures of consciousness form one coherent category (Seth et al., 2008). In the 

present study we observed a series of systematic differences between ratings of the stimulus 

and ratings of the response: The psychometric threshold for response-related ratings was 

lower than for stimulus-related ratings in all three experiments. With regards to SDT type 2 

characteristics, response-related ratings always imposed a more liberal response criterion and 

were associated with a higher sensitivity in two out of three experiments. We expected an 

advantage of response-related ratings in type 2 sensitivity over stimulus-related ratings 

because response-related ratings refer semantically to the accuracy of the trial. Moreover, 

wagering, confidence, and attribution of choice ratings were more strongly associated with 

other response-related scales within single trials than with stimulus-related ratings for both 

orientation discrimination in Exp. 2-1 and 2-2 and for shape discrimination in Exp. 2-3 and 2-

4. Thus, consistent with our classification of subjective measures as stimulus-related ratings 

or response-related ratings, both kinds of measures differed according to a variety of 

characteristics; these differences were replicable and generalized across several tasks. It is 

tempting to interpret stimulus ratings-related and response-related ratings as measurements of 

the strength of overlapping but not identical neural signals, although our data only supports a 

distinction at the level of measurements, not at the level of mechanisms. We have speculated 

that stimulus-related ratings might constitute a measurement of neural signals during sensory 

processing; while response-related ratings might be a measurement of neural signals during 

decision making. An alternative interpretation might explain the present findings by referring 

to only one kind of neural signal. According to this view, when participants rate the stimulus 

or the response, they are in fact rating the strength of the same underlying signals in both 
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cases. Subjective measures are different in how accurately participants are able to translate 

these neural signals into a point on the scale. If the translation of neural signals into stimulus-

related ratings was more prone to noise than the translation into response-related ratings, it 

could be explained why response-related ratings are associated with a higher SDT type 2 

sensitivity, and why trial accuracy could be predicted at lower levels of stimulus quality than 

stimulus-related ratings. However, as noise is unsystematic, this account would predict that 

the correlation of stimulus-related ratings with all other events would be corrupted by noise, 

not only the correlation with trial accuracy. Contrary to this prediction, we observed no 

substantial differences between stimulus- and response-related ratings with respect to the 

steepness of psychometric functions, which indexes the relative sensitivity of the subjective 

measures to changes of stimulus quality. This means that response-related ratings are only 

more closely related to the accuracy of discrimination responses than stimulus-related ratings, 

but there is no difference between stimulus- and response-related ratings in their relation to 

stimulus quality. Overall, this pattern of results is not consistent with the view that subjective 

measures are different only in their susceptibility to noise. It supports the view that the 

characteristics of subjective measures influence the events subjective measures refer to. 

2.8.3. A continuum of multiple thresholds? 

The discrepancy between stimulus- and response-related ratings reported in the present 

study implies that the ascription of how conscious a stimulus is depends on the type of 

subjective measure researchers adopt. In this respect, the present study relates to the classical 

distinction between subjective and objective thresholds of awareness (Cheesman & Merikle, 

1984; Merikle, Smilek, & Eastwood, 2001). They assumed that while a stimulus of a certain 

strength is sufficient to reach the objective threshold and elicit a correct response, the strength 

of stimulation needs to be even stronger to reach the subjective threshold and elicit a verbal 

report, i. e. the objective threshold is lower than the subjective one. Our study suggests that 

there might be more than one subjective threshold; specifically, the threshold for confidence 

and attribution of choice ratings is below the threshold for reports of visual experience. Weak 

stimuli might result in a weak form of representation enabling participants to perform above 

chance, although at the same time they deny any experience of the stimulus and claim that 

their performance was due to guessing (low response- and low stimulus-related ratings). If the 

stimulation is stronger, a more stable or a different kind of representation emerges and 

participants report some confidence in being correct (response-related ratings increase), but 
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they still claim to have little experience of the stimulus (stimulus–related ratings lower than 

response-related ratings). Only with even greater stimulation performance, response-related 

ratings, and stimulus-related ratings indicate concurrently that the participant is conscious of 

the stimulus. In other words, our data suggest that the set of events when observers perform 

above chance is larger than the set of events when they report to be confident, which in turn is 

larger than the set of events when observers report to have visual experiences. Consequently, 

if a participant reports a visual experience it is very likely that s/he will also be able to 

discriminate the stimulus and report confidence in the discrimination response. The reverse is 

not the case: If a participant reports confidence in the discrimination response, there is still 

uncertainty whether s/he reports a clear visual experience as well. However, this hierarchical 

relationship between experience and confidence does not necessarily hold for other 

paradigms. For example, in iconic memory tasks, participants typically report to have seen all 

the items on display, although memory performance is restricted three to five items (Sperling, 

1960). To investigate the relationship between thresholds derived from stimulus-related 

ratings and response-related ratings, more studies employing different paradigms and 

different stimulus modalities are required. Therefore, we recommend always considering 

stimulus-related and response-related ratings in consciousness research. 

2.8.4. Relation to previous studies 

The results reported here are in line with a previous artificial grammar study which 

reported SDT type 2 sensitivity of confidence ratings to be greater than the sensitivity of 

awareness ratings (Wierzchoń et al., 2012). However, our results only partially replicate the 

results of prior visual studies (Sandberg et al., 2011, 2010). In a masked object discrimination 

task, Sandberg and colleagues reported, in line with our results, that the psychometric 

threshold for a stimulus-based rating scale, the PAS, was more conservative than for 

confidence. However, unlike in our results, PAS outperformed both confidence ratings and 

wagering in predicting discrimination performance. One methodological difference between 

their study and our studies is the employed stimulus-related rating. In the study by Sandberg 

and colleagues, participants rated their experience on the PAS, a four-point scale that 

distinguished between “no experience”, “brief glimpse”, “almost clear experiences”, and 

“clear experiences”. Critically, the choice “brief glimpses” is defined as “a feeling that 

something has been shown, but is not characterised by any content, and cannot be specified 

any further” (Ramsøy & Overgaard, 2004). In the present study, participants rated their clarity 
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of visual experience of the task-relevant stimulus feature, e. g. the coherent motion. 

Supposing that an observer had an experience that matches the definition of a brief glimpse in 

the PAS- an experience without any content- in the present study, the observer would 

nevertheless veridically indicate a maximally unclear experience, because he or she would not 

have any experience of the task relevant stimulus feature. However, using the PAS, the 

participant would veridically report a brief glimpse. In other words, the PAS might measure a 

larger set of experiences than our stimulus-related ratings because it requires participants to 

report experiences without content as well, which could also be non-visual intuitions. 

However, this reasoning is entirely post-hoc; a valid comparison between the PAS and our 

scales would require a comparison of all scales based on the same paradigm and balanced 

briefing of participants. 

2.9. Conclusion 

In summary, the present experiments indicate that participants’ subjective reports 

when being asked to rate their perception of the stimulus vs. their discrimination response – 

although being similar in many ways – show reliable and important differences. Similar to 

type 2 blindsight patients, subjective ratings that referred to a discrimination response had 

lower thresholds than subjective measures which referred to the percept of the stimulus, i.e., 

observers reported confidence or knowledge about the correctness of their responses at a 

greater level of stimulus ambiguity than when they reported experience of the stimulus. 

Moreover, response-related ratings exhibited different SDT type 2 characteristics and 

different response-related scales were more strongly correlated with other response-related 

scales than with reports of experience. We suggest that consciousness research has to consider 

the use of a subjective measure that refers to the experience of the stimulus in addition to a 

measurement that assesses confidence in the discrimination response. 
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3. ELECTROPHYSIOLOGICAL CORRELATES OF 

CONFIDENCE AND EXPERIENCE
4
 

by Manuel Rausch, Agnieszka Wykowska, and Michael Zehetleitner
5
 

 

3.1. Abstract 

The quest for the neural correlate of consciousness (NCC) is one of the biggest 

challenges to contemporary cognitive neuroscience. This quest is complicated by the fact that 

consciousness is a multidimensional construct where different dimensions imply different 

behavioural measurements. Our study is the first to examine the time courses of the neural 

correlates of two different types of subjective reports of key relevance to consciousness: 

reports of confidence in perceptual decisions and reports of visual experience of the stimulus. 

Our EEG results show that the early ERPs predicted if participants were going to report being 

confident in discrimination decisions, but were not yet predictive whether participants 

reported a clear experience over and above being confident. The strongest correlate of clear 

visual experiences was relatively late and only in close temporal proximity to the perceptual 

discrimination response. We conclude that subjective reports of visual experience and 

decisional confidence are associated with partially separate processes; and that research on 

NCC should differentiate between the different types of subjective reports. 

3.2. Introduction 

The quest for the neural correlates of human consciousness (NCC) is one of the most 

prominent and debated problems in cognitive neuroscience (Crick & Koch, 1990; Rees et al., 

2002). One reason why a solution to this problem is still pending is that competing concepts 
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of consciousness imply different behavioural markers according to which researchers should 

ascribe conscious awareness to a participant: Some theorists have defended a concept of 

consciousness where conscious experience may inform decision making but is still 

inaccessible to verbal report (Block, 2005; Lamme, 2006); consequently, decisions in 

objective tasks should be used to decide whether an observer was conscious of a stimulus or 

not (Hannula et al., 2005; Irvine, 2012; Schmidt & Vorberg, 2006). According to a different 

view, participants’ reports about their experience are the key phenomena for an empirical 

science of consciousness (Dennett, 2003, 2007), hence they are the primary raw data that 

needs to be recorded (Dehaene & Naccache, 2001; Dehaene, 2010). Finally, some theories 

proposed consciousness is associated with metacognitive processes (Carruthers, 2011; Lau & 

Rosenthal, 2011; Timmermans et al., 2012): according to these theories, confidence 

judgments are the most valid measure of conscious awareness (Dienes, 2004, 2008; Lau & 

Rosenthal, 2011). Given all these diverse concepts of consciousness, it seems necessary that 

an empirical science of consciousness assesses more than just one behavioural measure. Our 

study is to our knowledge the first study to compare the timing of the neural correlates of 

subjective reports visual experience in comparison to the neural correlates of confidence 

about the accuracy of task decisions. 

Using more than just one single behavioural marker of conscious awareness is 

informative only if different markers fail to converge to the same results. Indeed, there is 

empirical evidence that a distinction should be made between subjective reports about visual 

experience and decisional confidence: In a series of psychophysical experiments, the majority 

of observers reported feelings of confidence in perceptual discrimination judgments at a level 

of stimulation where they not yet report a visual experience of the task-relevant feature of the 

stimulus; only when the stimulation is stronger, they would report a visual experience in 

addition to feeling confident in being correct (see Chapter 2, Zehetleitner & Rausch, 2013). 

Similarily, participants were shown to be able to detect their own errors even in absence of 

consicous visual experiences (Charles et al., 2013). Extreme dissociations between visual 

experience and decisional confidence have been reported with neuropsychological patients: 

After lesions to primary visual cortex, so-called blindsight patients report to be blind in the 

visual field contralateral to the impaired brain area, although they are able to discriminate 

visual stimuli presented in their seemingly blind visual field in forced-choice tasks with 

remarkable accuracy (Weiskrantz, 1986). Some blindsight patients report a considerable 

degree of confidence that judgments about a stimulus presented in their blind hemifield were 
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correct (Sahraie et al., 1998), and wager the same amount of money on judgments on stimuli 

in the blind as in the intact hemifield when performance is balanced (Persaud et al., 2011). 

Similarly, there is a case of an achromatic patient, who feels being colour-blind after occipital 

brain damage but performs well in colour discrimination tasks, and his confidence in being 

correct in the task strongly correlates with task performance (Carota & Calabrese, 2013). In 

spite of accurate discrimination performance and high levels of confidence, these patients 

report no experience of the task-relevant stimulus characteristics. In several of these 

experiments, decisional confidence was also more closely associated with task performance 

than visual experience (Rausch et al., 2015; Zehetleitner & Rausch, 2013), although others 

have reported the reverse relationship (Sandberg et al., 2010; Wierzchoń et al., 2014). 

These dissociations between subjective reports of experience and confidence raise the 

question what is the mechanism underlying these effects. Three non-exclusive hypotheses 

were proposed: independent access to different sets of stimulus features (Rausch et al., 2015), 

distinct metacognitive processes involved in decisional confidence (Charles, King, & 

Dehaene, 2014; Charles et al., 2013; Overgaard & Sandberg, 2012), and placement of 

different sets of criteria (Wierzchoń et al., 2012). Concerning the feature hypothesis, stimuli 

may be represented by a hierarchy of features, of which conscious reportability varies 

independently (Kouider et al., 2010). While confidence may be primarily based on the 

stimulus feature relevant for selecting a response to the objective task (Dienes, 2008), reports 

of visual experience may require participants to consider other stimulus features in addition to 

the task-relevant one, which is why the condition to report a visual experience is less 

frequently fulfilled that the condition to report decisional confidence (Rausch et al., 2015). 

Concerning the metacognitive hypothesis, two distinct metacognitive processes involved 

exclusively in decisional confidence have been suggested: First, both reports of experience 

and confidence may depend on participants’ conscious visual experiences, but decisional 

confidence requires an additional metacognitive process that relates performance in the 

current task (Overgaard & Sandberg, 2012). Second, a separate metacognitive system, which 

operates in parallel to conscious processing, may be involved in decisional confidence 

judgements (Charles et al., 2014, 2013). The final hypothesis asserts that the difference 

between experience and confidence can entirely be explained by participants applying 

different criteria to the same dimension of evidence, only reporting one’s experience imposes 

a more conservative reporting strategy than reporting one’s decisional confidence (Wierzchoń 

et al., 2012). 
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Importantly, the feature hypothesis and the metacognitive hypothesis can be 

disentangled by the time courses of the neural correlates of subjective reports regarding 

visual experience and decisional confidence: If experience and confidence depend on different 

sets of stimulus features, subjective reports of experience and confidence might be associated 

with different time courses of sensory neural activity. For example, the visual system is 

organized as a hierarchy, where neurons tuned to basic features provide input to neurons 

tuned to more complex features (Hochstein & Ahissar, 2002; Riesenhuber & Poggio, 1999). 

Consequently, if participants consider features of different complexity for experience and 

confidence, the neural correlates of a subjective report requiring more complex features 

should be later in time. In contrast, if the effect of experience vs. confidence is due to 

additional metacognitive processes involved in decisional confidence only, the sensory 

correlates of experience and confidence should be same, and specific correlates of decisional 

confidence should occur only after the features of the stimulus have been extracted.  

The most convenient method to assess the time courses of neural correlates of 

experience and confidence is EEG – and specifically ERPs – due to their excellent temporal 

resolution (Luck, 2005). Importantly, the ERP correlates of visual awareness reported in 

previous studies can be classified depending on whether they presumably  relate to sensory or 

post-perceptual functions: The cognitive processes associated with earlier ERP correlates are 

widely assumed to be sensory in nature, e.g. amplification of the signal by attentional 

mechanisms for an early occipital positivity around 100 ms after presentation of a stimulus 

(Koivisto & Revonsuo, 2010; Railo, Koivisto, & Revonsuo, 2011; Verleger, 2010), and 

construction of visual content (Railo et al., 2011), feature-based attention (Pitts et al., 2014), 

or object-based attention (Verleger, 2010) for a mid-range negative deflection recorded at 

posterior and temporal electrodes around 200 ms. In contrast, the hypotheses concerning a 

later ERP correlate, a positive deflection on centroparietal electrodes around 400 ms, all 

imply that visual content already exists at that point in time, e.g. broadcast of visual content 

within a global workspace (Del Cul et al., 2007; Lamy, Salti, & Bar-Haim, 2009; Sergent et 

al., 2005), update of working memory (Koivisto & Revonsuo, 2010), decision between task 

alternatives (Verleger, 2010), or confidence (Eimer & Mazza, 2005).  

As Table 3-1 shows, only few previous studies detected a correlate of subjective 

reports in the time range of the early positivity, while many studies found such a correlate at a 

medium latency, and all studies observed an effect at the late positivity. However, as none of 
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these studies assessed decisional confidence in addition to visual experience, it is unclear if 

these ERPs are associated with both visual experience and decisional confidence, or 

specifically with one of them.  

Table 3-1.  

Previous studies reporting ERP correlates of subjective reports of visual experience and 

decisional confidence using identical stimuli. 

Study Paradigm 

Content of 

subjective 

reports
6
 

Timing of detected ERP effect 

Early 

positivity 

Mid-range 

negativity 

Late 

positivity 

Pins and Ffytche (2003) 
low 

contrast 
Experience sig. sig. sig. 

Koivisto and Revonsuo 

(2003) 

change 

detection 
Experience n.s. sig. sig. 

Sergent et al. (2005) 
attentional 

blink 
Experience n.s. sig. sig. 

Eimer and Mazza (2005) 
change 

blindness 
Confidence n.s. n.s. sig. 

Pourtois, De Pretto, Hauert, 

and Vuilleumier (2006) 

change 

blindness 
Experience n.s. sig. sig. 

Del Cul et al. (2007) masking Experience n.s. n.s. sig. 

Schankin and Wascher 

(2007) 

change 

blindness 
Experience n.s. sig. sig. 

Koivisto et al. (2008) 
masking/ 

contrast 
Experience n.s. sig. sig. 

Lamy et al. (2009) masking Mixture n.s. n.s. sig. 

Genetti, Britz, Michel, and 

Pegna (2010) 

degraded 

stimuli 
Mixture sig. sig. sig. 

Salti, Bar-Haim, and Lamy, 

(2012) 
masking Mixture n.s. n.s. sig. 

 

In addition, the interpretation of the absence of significant effects in early time 

windows in these studies is limited by the nature of significance testing: When P-values are 

not significant, it is not legitimate to infer the effect does not exist without appropriate power 
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they had seen the stimulus, and as “confidence” if participants reported their subjective confidence in the 
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“significant” and means an effect in this time range was detected; “n.s.” stands for “not significant” and means 

that it is unknown whether there is an effect or not. 
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analysis (Dienes, 2011). Bayesian hypothesis testing exceeds P-values in so far as it allows to 

quantify the evidence for both presence and absence of an effect (Dienes, 2011; Rouder, 

Speckman, Sun, Morey, & Iverson, 2009). The present study is to our knowledge the first 

study that assesses both the presence and the absence of early ERP correlates.  

To summarise, our study aimed at dissociating ERP correlates of experience of visual 

stimulus vs. ERP correlates of confidence about the discrimination decision and at 

investigating their time courses, in order to determine what is the plausible underlying 

mechanism of situations in which human observers report to be confident in their 

discrimination decision, but do not yet report an experience of the stimulus. We hypothesized 

that if visual experience depends on the extraction of additional stimulus features on top of 

those features relevant for decisional confidence, early and mid-range ERPs associated with 

decisional confidence and visual experience might follow different time courses. On the 

contrary, if the behavioural effects of experience and confidence as content of subjective 

reports were due to metacognitive processes alone, we expect identical ERP correlates of 

experience and confidence in the early and mid-latency time range, while decisional 

confidence should be more strongly associated with the late ERP positivity. 

To meet the aims of our study, we recorded EEG while observers performed a 2AFC 

masked orientation discrimination task. Participants delivered two subjective reports after 

each (objective) discrimination response, one of which was about their experience of the 

stimulus, and the other about their confidence in their orientation discrimination response (see 

Fig. 3-1). To increase the number of trials available for ERP averaging, participants’ 

subjective thresholds were determined in a screening session, and a stimulus at threshold was 

used for each individual participant throughout the whole EEG recording session. This 

procedure resulted in three different combinations of subjective reports while stimuli were 

physically identical: (i) participants reporting that they had a clear experience of the stimulus 

and simultaneously were confident about their discrimination decision, (ii) participants 

reporting unclear experience and nevertheless confidence about the discrimination response, 

and (iii) participants reporting unclear experience as well as admitting to have chosen the 

orientation response based on guessing. As participants reported to be confident regarding 

their discrimination response in (i) and (ii), but the level of reported experience was different 

between these trial categories, the comparison between (i) and (ii) can be used to investigate 

the correlates of participants reporting a clear visual experience over and above reporting to 
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be confident in a discrimination decision. Consequently, we refer to this comparison as 

experience contrast. Correspondingly, the comparison between (ii) and (iii) is informative of 

the correlates of participants reporting to be confident, and is thus referred to as confidence 

contrast. A sample to analyse combination (iv) - participants reporting a clear experience and 

low confidence - was not collected, because only few participants would report this 

combination (see Fig. 3-2 for results of the screening session).  

 

Figure 3-1. Trial structure. The order of the visual experience and confidence judgments was 

counterbalanced across participants.  

 

3.3. Experiment 

3.3.1. Material and Methods 

3.3.1.1. Participants 

20 participants took part in the EEG experiment. Mean age was 23.9 (SEM = .6) and 

all were right-handed. All participants reported normal or corrected-to-normal vision, no 

history of neuropsychological or psychiatric disorders and no psychoactive medication. 

Participants gave written informed consent and received either course credits or €8 per hour 

for participation. The experiment was conducted according to the principles expressed in the 

Declaration of Helsinki, and the study protocol was approved by the ethics committee of the 

Deutsche Gesellschaft für Psychologie.  
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3.3.1.2. Apparatus and stimuli 

The stimuli were presented on and CRT-monitor with 17 inch screen size and a 100 

Hz refresh rate, placed in a distance of approximately 75 cm in front of a participant, located 

in a sound-attenuated and electrically shielded cabin. The experiment was conducted using a 

PC with Windows XP, MATLAB and Psychtoolbox (Brainard, 1997; Pelli, 1997). The target 

stimulus was a square, which subtended 3° x 3° degrees of visual angle textured with either a 

horizontal or a vertical oriented sinusoidal grating (frequency: 1 cycle/deg, maximal 

luminance: 16.7 cd/m²; minimal luminance: 4.6 cd/m²), presented over a grey (16.7 cd/m²) 

background. The mask consisted of a rectangular box (4° side length) with a black (4.6 cd/m²) 

and white (85.8 cd/m²) chessboard pattern consisting 6 x 6 equal squares. One half of the 

participants responded to the orientation task by pressing “A” or “S” on the keyboard with 

their left hands and pressed either “K” or “L” for the first and “N” or “M” for the second 

subjective report with their right hands. The other half responded to the orientation task with 

their rights hands by pressing “K” and L” and pressed “A”, “S”, and “Y” and “X” to deliver 

their subjective reports. 

3.3.1.3. Trial structure 

As Fig. 3-1 shows, each trial began with the presentation of a fixation cross at the 

screen centre for 1000 ms. Subsequently, the target stimulus was presented for a period of 

time until it was replaced by the mask. The mask onset was timed individually for each 

participant based on a threshold estimated during a separate screening session (see below). 

Both stimulus and mask were located at fixation. The mask remained on the screen until 

participants indicated by button press whether the orientation of the grating had been 

horizontal or vertical. To prevent premature responses, participants could not respond until 

600 ms after mask onset. Immediately afterwards, the first of the two questions was 

presented. The questions were “how clearly did you see the grating?” with the possible 

answers “unclear” vs. “clear”, and “did you guess or know your answer?” with the possible 

answers “guess” and “know”. Our previous study suggested that asking observers whether 

they attribute their own choice to guessing or to knowledge is equivalent to a confidence 

rating (see Chapter 2; Zehetleitner & Rausch, 2013). Subjects always responded to both 

questions after each trial, and which of the two questions was first was counterbalanced 

across subjects. If the response to the task had been erroneous, “error” was displayed on the 

screen for 1,000 ms after the last subjective report, before the next trial started.  
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3.3.1.4. Design and procedure 

The experiment involved a behavioural screening session as well as an EEG recording 

session. For both sessions, participants were instructed to report the orientation of the grating 

of the target stimulus as accurately as possible and to deliver the subsequent reports as 

carefully as possible. Prior to the main experiment, participants were instructed to fixate at the 

cross at the screen centre and to avoid blinking. First, participants performed 20 trials of 

training, and then 12 blocks of 72 trials each. After each block, the percentage of errors was 

displayed to provide participants with feedback about their accuracy. 

3.3.1.5. Screening session 

The screening session consisted of 9 blocks with 40 trials each, with the same task as 

in the maim experiment, except there were six different SOAs between target stimulus and 

mask of 20, 30, 50, 60, 80 and 100 ms. The screening session data was analysed by estimating 

psychophysical functions on subjective reports separately for each participant. For this 

purpose, we fitted psychometric functions quantifying the relationship between SOA and the 

probability of reporting a clear experience and to be confident about their response 

respectively using the R package gnlm (Lindsey, 2010). The psychometric function was 

defined by the formula 

𝑓(𝑥) =
1

1 +  𝑒
−(𝑥− 𝛼)

𝛽

 

where x is the logarithm of the SOA, β denotes the slope of the psychometric function, 

and α is its centre. The threshold was defined as the SOA where the probability of reporting a 

clear experience or being confident was 50%. Error trials were omitted from analysis. The 

results of the psychophysical function analysis are found in Fig. 3-2. As the present study was 

designed to investigate the ERP correlates of situations where participants report to be 

confident about the response but not yet report to have a clear experience of the stimulus, the 

EEG recording session was performed only with participants who had a higher threshold to 

report a clear experience of the stimulus than to be confident about the response (21 out of 

29). In addition, participants were excluded if their performance did not exceed change level 

(1 participant) and if their reports were too conservative so thresholds could not be 

determined with precision because one of the thresholds fell far outside the range of SOAs 

presented in the experiment (2 participants). Overall, 20 out of 29 participants of the 

screening session met the inclusion criteria. For those participants, one psychometric function 



 

67 

was fitted on the combined rating data of both verbal reports, of which the threshold was used 

as SOA in the EEG recording session. 

 

Figure 3-2. Relative frequency of participants with a higher threshold to report a clear 

experience than to report to be confident about the discrimination response (blue), of 

participants who apply lower thresholds for reports of experience than for confidence 

(orange), and of participants with the same thresholds for experience and for confidence 

(black). A Bayes factor confirmed that more participants apply more conservative thresholds 

for visual experience than for confidence than vice versa, BF10 = 8.28, posterior distribution 

of the probability of a lower threshold for confidence than for experience: mean = .70, 95% 

credible interval = [.54 .84]. 

 

3.3.1.6. EEG recordings 

The EEG was recorded at a digitization rate of 500 Hz from 64 Ag/AgCl active 

electrodes (ActiCAP, Brain Products, GmbH, Munich, Germany), positioned according to the 

International 10-10-system. Horizontal eye movement were monitored by means of electrodes 

placed 1 cm lateral to the outer canthi of the eyes, and vertical eye movements by electrodes 

placed below and above the left eye. The EEG signals were amplified by BrainAmp 

amplifiers (BrainProducts, Munich) with a high cut-off filter at 250 Hz and low cut-off filter 

at 0.1 Hz. All electrodes were referenced to Cz and re-referenced offline to the averaged 

activity across all electrodes. Electrode impedances were kept below 5 kΩ. 

3.3.1.7. Analysis 

All data sets, analysis scripts, and supplementary results are available for download at 

the Open Science Framework to facilitate reproduction of the present study and replication of 
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its results (Ince, Hatton, & Graham-Cumming, 2012; Morin et al., 2012; Simonsohn, 2013)
7
. 

EEG filtering, epoching, artefact rejection, and ERP averaging were performed using Brain 

Vision Analyzer software 1.05 (Brain Products GmBH, Munich); all other analyses were 

performed in R (R Core Team, 2014).  

3.3.1.7.1. EEG analysis 

First, the data was filtered off-line with a 40-Hz high cut-off filter (24 dB/Oct). 

Second, the EEG was epoched into segments either locked to the onset of the stimulus or to 

the discrimination response. The stimulus-locked segments lasted from 200 ms before 

stimulus onset until 600 ms poststimulus, with the interval between 200 ms pre-stimulus 

interval used for baseline correction. The response-locked segments were from 1300 ms prior 

to response until 50 ms after response, with the first 200 ms again used as baseline. Eye 

movement and blink detection was performed on F9, F10, and vEOG electrodes: Segments 

with an absolute voltage difference exceeding 80 μV or a voltage step between two sampling 

points exceeding 50 μV at one of these electrodes were excluded. In addition, we excluded 

channels with amplitudes exceeding ±80 μV, or an activity lower than 0.1 μV within intervals 

of 100 ms. Trials with incorrect responses were excluded. A separate ERP waveform was 

constructed for each of the three possible combinations of subjective reports, i.e. we 

compared (i) trials, in which subjects reported to have clearly seen the stimulus and were 

confident about discrimination response, (ii) trials, in which subjects reported their experience 

of the stimulus was rather unclear, but they were confident about discrimination response, and 

(iii) trials in which subjects reported their experience was unclear, and they performed the 

orientation response based on guessing. In four participants, the number of trials after artefact 

rejection was too low (< 5 trials) to compute stable ERPs, so these four participants were 

excluded from EEG analysis. To stay uncommitted about the timing of ERP correlates of 

subjective reports, the data was divided into a series of time windows of equal duration. For 

stimulus-locked ERPs, each window had a duration of 50 ms, and the first and last window 

began 100 ms and 300 ms after stimulus onset, respectively. For response-locked ERPs, each 

window had a duration of 100 ms, and the first and last window started 400 and 100 ms 

before the response. ERPs were quantified by the mean amplitude of each time window to 

avoid bias from varying signal-to-noise ratios at unequal numbers of trials between conditions 

(Luck, 2010). As the existing literature suggests an occipital topography of early effects, a 

                                                 
7
 Link to the full material: 

https://osf.io/ghfwj/?view_only=19c269713cfc425da5772850bca36f91 
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posterior-temporal topography of mid-range effects, and a central-parietal topography of late 

effects (Koivisto & Revonsuo, 2010; Railo et al., 2011), the analysis was performed on mean 

amplitudes from electrodes PO7, PO8, O1, O2, and Oz for the time windows between 100 

and 150 ms after stimulus onset, PO7, PO8, O1, O2, P7 and P8 for the time windows between 

150 ms and 350 ms, and P1, P2, Pz, CP1, CP2, CPz, C1, C2, and Cz for the response-locked 

time windows (cf. maps in Fig. 3-4 and Fig. 3-5). To determine the timing of the mid-range 

negative and late positive effect, we constructed differences waves for both the experience 

and confidence contrast. Onset and peak latency were determined using the Jackknife-based 

scoring method with the 25% and 50% area criterion in the time windows 150-350 ms 

poststimulus and 300-0 ms before response (Kiesel, Miller, Jolicoeur, & Brisson, 2008; Ulrich 

& Miller, 2001).  

3.3.1.7.2. Statistical analysis 

As both the presence as well as the absence of effects are relevant to the current study, 

we base our interpretation on Bayes factors, which provide a continuous measure of how the 

evidence supports the alternative hypothesis over the null hypothesis and vice versa (Dienes, 

2011; Rouder et al., 2009). Bayes factors were computed using the R library BayesFactor, 

where default priors are placed on standardized effect sizes (Morey & Rouder, 2014). 95% 

credible intervals, the intervals that include the true parameter with a probability of .95, were 

computed based on 10
6
 samples from posterior distributions. Despite the merits of Bayesian 

statistics over P-values, analogous conventional statistics are available at open science 

framework to improve comparability with previous studies. 

Type 2 sensitivity, the association between subjective reports and discrimination 

performance (Fleming & Lau, 2014; Galvin et al., 2003), was quantified by meta-da 

(Maniscalco & Lau, 2012) using a maximum likelihood procedure implemented in R (Rausch 

et al., 2015) and compared between experience and confidence by the Bayesian equivalent of 

a t-test (Rouder et al., 2009). Trials were participants made subjective reports more quickly 

than 200 ms after presentation of the scale were considered as premature response and were 

excluded from analysis. 

To examine effects on ERP amplitudes by Bayes factors, we fitted Bayesian linear 

regression models (Rouder & Morey, 2012) for each time window with mean amplitude as 

dependent variable. Each model involved the experience contrast, the confidence contrast, 

hemisphere, site (electrodes O1, O2, Oz: occipital, PO7; PO8: parieto-occipital, P1, P2, P3, 
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P4, P7, P8, Pz: parietal, CP1, CP2, CPz: central) and a random effect of participant as 

predictors. Experience and confidence contrasts were tested by dropping each of them out of 

the model and comparing model without experience or confidence against the full model. 

Consequently, each Bayes factor reflects the evidence that a specific contrast explains 

variance in ERP amplitudes over and above the other contrast, hemisphere, and site. The 

experience contrast was coded in a way that the estimated effect can be directly interpreted as 

the difference between trials when observers reported to be confident and to have a clear 

experience, and trials when observers reported they were confident but their experience was 

unclear. Likewise, the confidence contrast reflects the difference between trials when 

observers reported they had no clear experience and they guessed the response, and trials 

when observers reported they had no clear experience but they felt confident about the 

accuracy of the discrimination decision. 

For latencies of the experience and confidence contrasts, we computed Bayes factors 

by transforming t-values from standard statistics into Bayes factors. Analogous to the analysis 

of amplitudes, t-values were obtained by a linear regression model with the experience 

contrast, confidence contrast, hemisphere, site, and a random intercept effect of participant 

using the R libraries lme4 (Bates, Maechler, Bolker, & Walker, 2014) and lmerTest 

(Kuznetsova, Brockhoff, & Christensen, 2014). The t-values were corrected as ERP latencies 

were determined by the jackknife-based scoring method (Kiesel et al., 2008; Ulrich & Miller, 

2001).  

3.3.2. Results 

3.3.2.1. Behavioural results 

During the experiment, participants made on average 17.4 % errors (SEM = 3.2 %). 

Moreover, they reported to be confident about the discrimination response and to have a clear 

experience in 29.3 % of the trials (SEM = 5.1), to be confident without a clear experience in 

36.2 % of trials (SEM = 4.2), and to have guessed the orientation in combination with an 

unclear experience in 34.2 % of all trials (SEM = 5.1). The association between subjective 

reports and performance quantified by meta-da was greater for reports of decisional 

confidence (M = 1.5, SEM = .2) than reports of visual experience (M = 1.1, SEM = .2, see 

Fig. 3-3). The Bayesian analysis indicated strong evidence for different meta-d’s of 

experience and confidence, BF10 = 60.38, posterior distribution of the difference between 

confidence and experience: M = .39, 95% credible interval = [.18 .61].  
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Figure 3-3. Type 2 sensitivity measured by meta-da depending on if subjective reports were 

about decisional confidence or visual experience. The greater meta-da, the more efficiently 

subjective reports differentiate between correct and incorrect task responses. (a) Mean and 

standard errors of meta-da of decisional confidence (blue) and visual experience (orange) of 

participants of the screening experiment, as a function of stimulus-onset asynchrony. Bayes 

factors revealed effects of SOA, BF10 = 4.82 ∙ 10
52

, and experience vs. confidence, BF10 = 

24.81, but no interaction, BF10 = 0.02. (b) Posterior distribution of the effect of confidence vs. 

experience during the screening experiment assuming a default JZS prior (Morey & Rouder, 

2014). Mean of the posterior distribution: 0.27, 95% credible interval: [0.10 0.43]. Positive 

values indicate that Type 2 sensitivity of confidence is greater than of experience, and vice 

versa. (c) Meta-da  of confidence and experience in the main experiment. (d) Posterior 

distribution of the effect of confidence vs. experience during the main experiment.  
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3.3.2.2. ERP results 

3.3.2.2.1. Stimulus-locked ERPs 

As Fig. 3-4 shows, both contrasts were associated with a mid-latency negative shift 

over posterior electrodes, although a correlate of the contrast of confidence (light grey boxes, 

blue vs. black line) emerged somewhat earlier than of the contrast of experience (dark boxes, 

orange vs. blue line). In detail, for the earliest time windows between 100 and 150 ms after 

the stimulus onset, the Bayes factors indicated there was evidence for the null hypothesis (i.e. 

there is no difference in mean amplitudes) for both the experience contrast, BF10 = 0.24, as 

well as the confidence contrast, BF10 = 0.23. For the time windows between 150 and 200 and 

between 200 and 250 ms, the Bayes factor indicated positive support for an effect of 

confidence, BF10’s = 4.76 and 8.32, while the support for an effect of visual experience was 

only anecdotal and thus not conclusive, BF10’s = 0.68 and 2.11. Only at the following time 

windows between 250 and 300 ms as well as 300 – 350 ms, we observed evidence for an 

effect associated with the experience contrast, BF10’s = 15.04 and 4.54, and with the 

confidence contrast, BF10’s 28.02 and 17.28. Posterior means and 95% credible intervals for 

all experience and confidence contrasts can be found in Table 3-2.  

Table 3-2  

Means and credible intervals of the posterior distributions of the experience and confidence 

contrasts in μV for each time window.  

Time Window 

Experience contrast Confidence contrast 

M 

Credible 

interval M 

Credible 

interval 

2.5 97.5 2.5 97.5 

Stimulus-locked 

time windows 

100 - 150 0.13 -0.37 0.63 -0.11 -0.61 0.39 

150 - 200 -0.55 -1.23 0.13 -0.87 -1.56 -0.19 

200 - 250 -0.74 -1.41 -0.08 -0.93 -1.60 -0.26 

250 - 300 -1.08 -1.81 -0.36 -1.16 -1.88 -0.44 

300 - 350 -0.81 -1.45 -0.18 -0.97 -1.60 -0.34 

Response-locked 

time windows 

-400 - -300 0.35 -0.06 0.78 0.14 -0.27 0.55 

-300 - -200 1.06 0.62 1.50 0.83 0.39 1.27 

-200 - -100 1.06 0.62 1.50 0.79 0.35 1.23 

-100 - 0 0.87 0.44 1.30 0.63 0.20 1.06 
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Figure 3-4. Time course of stimulus-evoked electrophysiological activity. (a) Grand average 

ERPs plotted as a function of time and subjective reports. Left panel: occipital electrodes O1 

and O2. Right panel: temporal electrodes P7 and P8. Orange line: ERP average when 

participants reported clear experience and being confident. Blue line: ERP average when 

participants reported unclear experience despite being confident. Black line: ERP average 

when participants reported an unclear experience and were unconfident about the 

discrimination response. (b) Bayes factors of the experience contrast (orange) and confidence 

contrast (blue) in time windows of 50 ms each. (c) Posterior distribution of the difference in 

25% area latency between the experience contrast and confidence contrast. (d) Scalp 

distribution of a difference wave of the confidence contrast for the time windows 150-200, 

200-250, and 250-300 ms after stimulus onset. (e) corresponding voltage maps for the 

experience contrast. 
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The latency analysis revealed that the mean onset of the effect related to the 

confidence contrast averaged across electrodes was at 198.3 ms and the average peak was at 

251.8 ms, while the mean onset at the experience contrast was not until 237.5 ms with the 

peak at 265.9 ms. A Bayes factor analysis confirmed that the effects related to the experience 

and confidence contrast differed in onset, BF10 = 8.37 (see posterior distribution of the effect 

in Fig. 3-4c), but not in peak, BF10 = 0.33. 

3.3.2.2.2. Response-locked ERP 

As Fig. 3-5 shows, response-locked central and parietal ERPs were associated with 

subjective reports in the time between 250 ms and 100 ms before the response, although the 

experience effect (medium and dark grey boxes, orange vs. blue line) seemed to be greater in 

magnitude and more broadly distributed than of the confidence effect (black vs. blue line). In 

addition, Fig. 3-5a shows an early posterior effect of confidence maximal around 850 ms 

before the response, which may reflect the same effect as observed at stimulus-locked ERPs 

(light grey box, black vs. blue line, and Fig. 3-4d). The Bayesian analysis indicated support 

for the null hypothesis in the time windows 400-300 before the response for the confidence 

contrast, BF10 = 0.24, while the evidence for the experience contrast was not more than 

anecdotal in favour of the null hypothesis, BF10 = 0.83. In all three following time windows 

from 300 to 200 ms, from 200 to 100 ms, and from 100 ms until the response, the Bayes 

factors indicated there were effects related to both contrasts. For the confidence contrasts, the 

evidence in favour of an effect was very strong at 300-200 ms, strong at 200-100, and positive 

at 100-0, BF10’s = 177.46, 94.89, and 11.53. For the experience contrasts, the evidence was 

always very strong, BF10’s = 1.23 ∙ 10
4
, 1.07 ∙ 10

4
, and 484.70. 
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Figure 3-5. Time course of electrophysiological activity locked to the response. (a) Grand 

average ERPs of electrodes Pz and CPz plotted as a function of time and subjective reports. 

Orange line: ERP average when participants reported clear experience and being confident. 

Blue line: ERP average when participants reported unclear experience despite being 

confident. Black line: ERP average when participants reported an unclear experience and 

were unconfident about the discrimination response. (b) Bayes factors of the experience and 

confidence contrast in time windows of 100 ms each. (c) Scalp distribution of a difference 

wave of the confidence contrast for the time windows 900-800, 300-200, and 200-100 ms 

prior to the response. (d) corresponding voltage maps for the experience contrast. 

 

The latency analysis of the parietal effects of experience and confidence revealed that 

the onsets and peaks of both effects were almost simultaneous with respect to the response. 

25% area latency of the effect related to the experience contrast was 218 .3 ms prior to 

response, compared to 220.6 ms for the confidence contrast. 50% of the area was reached at 

155.0 ms before the response for the experience contrast and 154.1 ms before the response for 

the experience contrast. The Bayes factor confirmed there were no differences between 

experience and confidence contrasts in onset, BF10 = 0.26, and peak, BF10 = 0.33.  
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3.4. Discussion 

The present experiment was conducted to identify the mechanisms underlying 

subjective reports in situations when participants report being confident in discrimination 

decisions, but not yet report a clear experience of the stimulus. We predicted that if decisional 

confidence depends only on the stimulus feature relevant for the task response but visual 

experience requires additional stimulus features, ERPs associated with specifically experience 

and confidence might follow distinct time courses already at sensory time ranges. In contrast, 

if the behavioural differences between visual experience and decisional confidence were due 

to additional metacognitive processes specific to decisional confidence, sensory ERP 

correlates of experience and confidence should be the same, but decisional confidence should 

be more strongly associated with later ERPs. We observed that decisional confidence was 

more predictive for the accuracy of the task response than visual experience. ERPs suggested 

that both subjective reports of experience and decisional confidence were associated with a 

mid-latency negative shift over posterior electrodes; but the correlates of decisional 

confidence emerged about 40 ms earlier than those of visual experience. The strongest 

correlate of clear visual experience was not observed until about 200-150 ms before the 

objective discrimination response at centroparietal electrodes.  

3.4.1. Why is confidence earlier than experience? 

As perceptual decisions seem to logically depend on the outcome of stimulus 

perception, the neural correlates of subjective reports of experience are intuitively expected 

earlier in time than the neural correlates of decisional confidence. In contrast to this intuition, 

our study suggests the inverse temporal relation: ERPs associated with confidence occur 

earlier in time than those associated with a clear visual experience. 

The most plausible explanation for the temporal delay between the correlates of 

experience relative to confidence lies in the nature of sensory evidence participants take into 

account when they make a subjective report about a discrimination decision, in contrast to 

subjective reports about their visual experience (Rausch et al., 2015): When participants 

report their confidence in an orientation discrimination judgment, they have to evaluate only 

those stimulus characteristics relevant for task (Dienes, 2008), which is the orientation in the 

present study. However, when participants report their experience of the grating, they may 

take more stimulus characteristics into account in addition to its orientation, although these 
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features were not relevant for the response to the task, for example the luminance of the 

stimulus, or the strength of figure-ground separation. According to the partial awareness 

hypothesis, conscious access to different stimulus features may vary independently (Kouider 

et al., 2010). If conscious access to features varies independently, and the set of features 

required for visual experience is larger than the set of features for confidence, it can also be 

understood why the conditions to report a visual experience is less frequently fulfilled 

(Sahraie et al., 1998; Schlagbauer et al., 2012; Zehetleitner & Rausch, 2013): In some 

situations, participants may have conscious access to the task-relevant stimulus feature(s), and 

thus report confidence about the task, while the additional features required for reporting 

visual experience are not accessible, and thus they report to have no visual experience. In the 

very same situations, confidence would also predict trial accuracy even in absence of visual 

experience (Charles et al., 2013; Rausch et al., 2015). In addition, as the task-relevant feature 

in the current task was orientation, a fairly basic feature, the extraction of additional features 

may require a longer period of time after the visual system has already determined the 

orientation, which is why confidence about the accuracy of the orientation response can be 

predicted from sensory ERPs earlier in time than reports of visual experience.  

An explanation of the temporal delay between the correlates of experience and 

confidence based exclusively on metacognitive processes appears unlikely because this delay 

emerged already during a mid-latency negative shift. Although the cognitive functions 

associated with this ERP activity have not yet been fully identified, there is a consensus that it 

fulfils some sensory role (Koivisto & Revonsuo, 2010; Pitts et al., 2014; Verleger, 2010). 

However, distinct metacognitive processes are possibly engaged later on in evaluating the 

different sets of features relevant to experience and confidence (Charles et al., 2014, 2013; 

Overgaard & Sandberg, 2012).  

Concerning the hypothesis that participants only place more conservative criteria for 

experience than for confidence on the same dimension of sensory evidence (Wierzchoń et al., 

2012), the temporal delay between the correlates of experience and confidence could be 

explained if coarse evidence created in an early time range is sufficient for decisional 

confidence, and more refined evidence created later is required for visual experience. 

However, if identical evidence underlay subjective reports of experience and confidence, both 

should be equally efficient in predicting trial accuracy when criteria are controlled, which is 

not the case (Rausch et al., 2015; Sandberg et al., 2010; Zehetleitner & Rausch, 2013). 
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Overall, the differences between experience and confidence appear to be more fundamental 

than just placement of criteria. 

3.4.2. The timing of neural markers of consciousness 

The timing of neural markers of conscious awareness was proposed as a test of 

theories of the NCC (Lau, 2011), in particular if these neural markers occur rather early 

(during sensory processing) or late in time (i.e. after sensory processing). We observed that 

both subjective reports of experience and confidence can be predicted already from mid-range 

negative shift over posterior and temporal electrodes, suggesting that a substantial part of the 

neural processes that determine the contents of participants’ reports coincide already with 

sensory processes. This timing of ERP correlates is consistent with theories predicting that 

conscious experience is associated with activity in sensory cortex (Block, 2005; Lamme, 

2006; Zeki, 2003). This mid-range effect might reflect recurrent feedback along the visual 

ventral stream (Railo et al., 2011), which plays a key role as the substrate of consciousness in 

several theories (Block, 2005; Lamme, 2006). Other theories hold that consciousness depends 

on post-perceptual activity in parietal and frontal cortices (Baars, 2005; Dehaene & 

Changeux, 2011; Lau & Rosenthal, 2011). In the context of ERPs, advocates of global 

workspace theory argued that conscious awareness is associated with distributed activity 

starting 300 ms after stimulus onset, while earlier ERP correlates reflect only task 

performance. Consequently, the absence of an association between subjective reports and 

earlier ERPs has been interpreted as evidence for global workspace theory (Del Cul et al., 

2007; Lamy et al., 2009). However, the sensory ERPs in the present study predicted verbal 

reports although stimulation was physically identical and only correct trials were taken into 

account. Nevertheless, the association between subjective reports and sensory ERPs can be 

accounted for by late theories of the NCC if it is assumed that the mid-range negativity 

reflects only the potential of the stimulus to become conscious, while conscious experience is 

instantiated only at later links of the causal chain that leads to a subjective report. As it is 

impossible to observe first-person experiences from a third-person-perspective (Jackson, 

1982; Nagel, 1974), it is unlikely that these views can ever be tested empirically. What the 

present data does demonstrate though is that a substantial proportion of the variability of 

reports is determined already at the time of sensory processing, highlighting the importance of 

mid-range sensory processes for creating the content of subjective reports.  
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3.4.3. Confidence and experience are not interchangeable 

In contrast to a prominent view in consciousness research (Lau & Rosenthal, 2011; 

Seth et al., 2008), subjective reports do not form one coherent category of measurements of 

consciousness. The qualitatively different time course of the correlates of subjective reports of 

experience and confidence suggests in line with previous experiments that these two are not 

interchangeable (Charles et al., 2013; Sahraie et al., 1998; Schlagbauer et al., 2012; 

Zehetleitner & Rausch, 2013): If participants were asked to report their visual experiences 

only, ERP correlates would be delayed compared to if participants were asked to report their 

confidence in their task responses. The temporal offset between the correlates of experience 

and confidence cannot be explained by the quality of the measurement: It might be argued 

that subjective reports of experience may be compromised with noise, thus explaining why 

reports of confidence detect effects in time ranges missed by reports of experience. However, 

as the degree of association always depends on the amount of noise in the measurement, it 

would follow that all associations of the noisy measurement with other variables were 

smaller. Consequently, if confidence reports were more reliable than reports of visual 

experience, the ERP effects of confidence would be greater than the ERP effect of visual 

experience in all time windows. On the contrary, reports of experience were at least as 

efficient as reports of confidence in predicting later ERPs. Overall, for a comprehensive 

theory of the NCC, we suggest consciousness research needs to investigate the neural 

correlates of confidence in relation to the neural correlates of experience.  
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4. VISUAL ANALOGUE AND DISCRETE SCALES AS 

MEASURES OF VISUAL EXPERIENCE
8
 

by Manuel Rausch and Michael Zehetleitner
9
 

4.1. Abstract 

Can participants make use of the large number of response alternatives of visual 

analogue scales (VAS) when reporting their subjective experience of motion? In a new 

paradigm, participants adjusted a comparison according to random dot kinematograms with 

the direction of motion varying between 0 and 360°. After each discrimination response, they 

reported how clearly they experienced the global motion either using a VAS or a discrete 

scale with four scale steps. We observed that both scales were internally consistent and were 

used gradually. The visual analogue scale was more efficient in predicting discrimination 

error but this effect was mediated by longer report times and was no longer observed when 

the VAS was discretized into four bins. These observations are consistent with the 

interpretation that VAS and discrete scales are associated with a comparable degree of type 2 

sensitivity, although the VAS provides a greater amount of information. 

4.2. Introduction 

The lack of an established measurement for conscious experience is a key challenge to 

the prosperity of an empirical science of consciousness (Chalmers, 1998). The choice of an 

adequate measure is delicate because different theoretical perspectives on consciousness can 

imply different measurements. Some theorists are critical about the use of subjective reports 

because they assume participants might have conscious experiences they are unable to report 

(Block, 2005; Eriksen, 1960; Lamme, 2006) or they do not report because their criterion is too 

conservative (Hannula et al., 2005). In contrast, proponents of higher-order thought theories 
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often argue that subjective reports are more valid than objective measures because 

unconscious processes might drive objective performance as well (Dienes, 2004, 2008; Lau, 

2008b). However, as subjective experiences cannot be observed from the third-person point of 

view (Jackson, 1982; Nagel, 1974), it is impossible to test empirically whether subjective 

measures of consciousness leave out conscious experiences that observers are unable to 

report, or whether objective measures suggest falsely that performance in a task is conscious. 

However, some researchers decide a priori to adopt a perspective that requires the use of 

subjective reports, either because they endorse a higher-order perspective on consciousness 

(Carruthers, 2011; Lau & Rosenthal, 2011; Timmermans et al., 2012), or because they 

consider subjective reports themselves as the subject of their scientific investigations 

(Dennett, 2003, 2007); if they do so, the empirical question arises how a scale needs to be 

designed given the metacognitive abilities of humans to obtain as much information from 

participants as possible. 

4.2.1. The content of subjective scales 

Subjective scales designed to measure conscious experience are constituted out of at 

least two components: (i) the question participants are instructed to answer and (ii) the way 

participants deliver their subjective report. Concerning the question, we proposed a 

classification of subjective scales on the event in the world subjective reports refer to, 

specifically whether subjective reports refer to the stimulus or to the discrimination response 

(cf. Chapter 2 and 3, Zehetleitner & Rausch, 2013). Examples for stimulus-related scales 

would be to ask participants how visible the stimulus was (Sergent & Dehaene, 2004), to rate 

clarity of the response defining feature (Zehetleitner & Rausch, 2013), or to report both the 

experience of specific features as well as feelings of something being shown (Ramsøy & 

Overgaard, 2004). Response-related scales may ask participants to report how confident they 

are about the preceding objective task response (Peirce & Jastrow, 1885), whether they 

attribute their objective task response to guessing, intuition, memory, or knowledge (Dienes 

& Scott, 2005), how much money they would wager on the accuracy of the objective task 

response (Persaud et al., 2007), or whether they experienced a “feeling-of-warmth” with 

respect to the previous task response (Wierzchoń et al., 2012).  

Several studies compared subjective scales with different questions participants were 

asked to respond to: Dienes and Seth (2010) reported that wagering was biased by the 

participants’ risk-aversion, but there were no differences between confidence and wagering 
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after the possibility of loss had been eliminated from wagering. Sandberg, Timmermans, 

Overgaard, and Cleeremans (2010) observed in a masked object identification task that the 

perceptual awareness scale (PAS) predicted task performance more efficiently than 

confidence and wagering did. In an artificial grammar task, it was reported that confidence 

ratings predicted objective performance more efficiently than ratings of awareness of the 

artificial grammar rule (Wierzchoń et al., 2012). Szczepanowski, Traczyk, Wierzchoń, and 

Cleeremans (2013) reported that confidence ratings were more closely correlated with 

performance than ratings of subjective awareness and wagering, although a recent reanalysis 

of the data found no significant differences between subjective awareness and confidence 

(Sandberg et al., 2013). Finally, subjective reports of visual experience were less strongly 

correlated with objective performance in masked orientation discrimination tasks or random 

motion discrimination tasks, but no substantial differences were observed in a masked form 

discrimination task. In addition, confidence ratings were associated with more liberal 

thresholds than reports of visual experience across all three visual tasks, and confidence and 

wagering were more strongly correlated with each other than with reports of visual experience 

(Zehetleitner & Rausch, 2013).  

Four different lines of interpretation for empirical differences between subjective 

scales with different questions have been suggested: First, it has been assumed (at least for the 

purpose of a comparison between measurements) that different kinds of subjective reports are 

equal except the sensitivity (Dienes & Seth, 2010) and the exhaustiveness of the scale 

(Sandberg et al., 2010). The second suggestion was that different scales might encourage 

participants to access their conscious contents in different ways: In introspective judgments, 

participants just directly report their conscious experiences a s they have them; in 

metacognitive judgments however, participant use their conscious experiences to make more 

complex cognitive judgments about processes engaged in the objective task (Overgaard & 

Sandberg, 2012). Third, it has been proposed that different subjective scales might alter the 

quality of conscious experience itself: Some scales such as wagering might be more 

motivating for the participants, making them more attentive, and thus cause participants to 

experience the stimulus more distinctively (Szczepanowski et al., 2013). Finally, it was 

suggested that different questions may relate to different processes during the task: Stimulus-

related reports may be informed by processes involved in stimulus representation, and 

response-related reports by processes involved in decision making (Chapter 2, Zehetleitner & 

Rausch, 2013).  
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4.2.2. Visual analogue vs. discrete scales 

The present study investigated the response format as the second component of 

subjective scales, specifically whether responses to the same question are more conveniently 

recorded by a discrete scale or a visual analogue scale (VAS). From the viewpoint of 

information theory (Shannon, 1948), subjective reports should be collected with a maximum 

number of scale steps because the maximal amount of information recorded by one report is 

bounded by number of options provided to the participant. Specifically, as the maximum 

information is computed as the binary logarithm of the number of options, a binary scale 

records the information of 1 bit in one trial, 4 scale points 2 bits, 8 scale points 3 bits, etc. The 

information conveyed by a VAS, where the response is selected along a continuum, would 

theoretically depend on the number of scale positions differentiated by the equipment 

(between 2
8
 and 2

16
 with custom joysticks), but is in practice limited by the number of 

positions that participants can differentiate on the continuum, which classical studies 

estimated to be at least 10 positions (Hake & Garner, 1951).  

From the viewpoint of signal detection theory (SDT) (Green & Swets, 1966; 

Macmillan & Creelman, 2005; Wickens, 2002), however, the use of a high number of scale 

steps is only feasible if two requirements are met:  

(i) Participants need to be able to maintain a sufficient number of criteria. 

(ii) Participants’ type 2 sensitivity (Galvin et al., 2003), i.e. their degree of access to their 

own task performance, should not be impaired by a great number of options.  

The recent literature has raised doubts about both requirements for high-precision 

usage of VASs: Overgaard, Rote, Mouridsen, and Ramsøy (2006) proposed that VASs tend to 

be used like binary judgments: As only the extreme ends of the scale are labelled, reports may 

be dragged towards the extremes, reducing the number of criteria participants effectively use 

to two. In addition, they argued as there are no definitions for each experience along the 

continuum of the VAS, VAS could confuse participants and result in less accurate reports.  

Only one study so far has empirically compared a VAS and discrete scale: Wierzchoń 

et al. (2012) compared subjective reports of rule awareness with four scale steps against a 

VAS of rule awareness in a 2AFC artificial grammar classification task and observed a 

tendency that the four-point scale predicted performance more efficiently than the VAS 

(irrespective of whether the VAS was binned into four scale steps or not), although the 
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statistics were not significant. Wierzchoń et al. (2012) also found that rule awareness 

measured by a VAS was worse than wagering and feeling-of-warmth both measured by a 

discrete scale, although there was no significant difference between discrete rule awareness 

and these two scales; however, these findings are hard to interpret because the content of the 

scales and the response format are confounded in these comparisons. In domains other than 

awareness, VASs have been demonstrated to be adequate measurements for state anxiety 

(Davey, Barratt, Butow, & Deeks, 2007), vertigo (Dannenbaum, Chilingaryan, & Fung, 

2011), quality of live (de Boer et al., 2004), group cohesiveness (Hornsey, Olsen, Barlow, & 

Oei, 2012), mood (Kontou, Thomas, & Lincoln, 2012), thermal perception (Leon, Koscheyev, 

& Stone, 2008), and depression (Rampling et al., 2012), indicated by a strong correlation with 

an established multi-item questionnaire or by a high reliability of VASs, suggesting that 

participants are in principle able to make meaningful reports using VASs (although it should 

be noted that these studies did not compare VASs and discrete scales directly). As VASs were 

shown to be adequate measurements for a considerable number of different psychological 

constructs, it is reasonable to hypothesize that a VAS might be a convenient measurement of 

visual experience as well. Apart from that, it was argued that a VAS may induce more careful 

responses because it signals to the participant that an exact response is important, while a 

discrete scale might convey the message that a rough answer is sufficient (Funke & Reips, 

2012).  

In summary, although VASs are in principle suited to record a large amount of 

information, it is an open empirical question whether participants are able to use a VAS with 

a sufficient number of criteria and without loss of type 2 sensitivity, so employing a VAS is 

feasible.  

4.2.3. Continuous vs. binary discrimination task 

While the study by Wierzchoń et al. (2012) contrasted subjective reports and objective 

performance in a 2AFC discrimination task, the recent development of continuous 

discrimination tasks (Bays & Husain, 2008; Zhang & Luck, 2008; Zokaei, Gorgoraptis, 

Bahrami, Bays, & Husain, 2011) offers the opportunity to conduct a more powerful test of the 

amount of information recorded by a VAS. For example, in a typical 2AFC task, participants 

might be instructed to report whether a previously presented bar is tilted towards left or right. 

The set of possible stimulus features is two (left or right) and so is the set of possible 

responses. This paradigm can be changed into a continuous discrimination task by allowing 
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the bar to have any of all possible orientation and asking the participant to indicate the 

orientation of the bar via a response set of the same cardinality. Errors, defined as the 

deviation of stimulus and response, are binary in a 2AFC paradigm: either the response 

corresponds to the stimulus (i.e., is “correct”), or it does not (i.e., is “incorrect”). For 

continuous tasks however, the deviance between stimulus and response is a continuous 

variable: When for instance the stimulus consists of a vertical bar, the response may deviate 

from the true orientation by any angle between 0° and 90°.  

The number of task response alternatives is relevant for comparing different scales 

because the information recorded by a scale depends on the entropy of metacognition, which 

in turn depends on the entropy of discrimination performance: When there are only two levels 

of accuracy, i.e. “correct” and “incorrect”, there will be a comparably small number of 

metacognitive states, and consequently, a smaller number of scale steps might perform well to 

categorize these states. In contrast, when participants are required to adjust a comparison 

continuously according to a specific stimulus feature, there is a large number of different 

possibilities how accurate discrimination performance can be, and thus a large number of 

possible metacognitive states. Consequently, a scale with a larger number of response 

alternatives might perform better than a discrete scale when the number of response 

alternatives is large.  

In general, performance in a continuous adjustment task can be described 

mathematically by a combination of a von Mises and a uniform distribution (Bays, Catalao, & 

Husain, 2009; Zokaei et al., 2011): If participants had to rely completely on guessing, their 

responses should be evenly distributed across the whole range of possible responses. 

However, if performance is better than chance, their responses would form a bell-shaped 

distribution centred at the correct response, with the spread of the distribution indicating the 

precision of the response. A continuous task for the purpose of the current study would be 

characterized by a continuous relationship between task difficulty and the precision parameter 

as well as the guessing parameter. Previous studies suggested that subjective reports are 

associated with both the precision parameter as well as the probability of guessing in working 

memory tasks (Rademaker, Tredway, & Tong, 2012), but to our knowledge, no study has so 

far introduced continuous tasks in the study of visual consciousness. 
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4.2.4. Criteria to evaluate subjective scales 

As the current experiments entails a comparison between scales with a different 

number of scale steps, special attention should be paid to the choice of operationally defined 

criteria to evaluate the scales. We propose to employ three criteria of comparison:  

(i) the correlation with discrimination performance  

(ii) the internal consistency 

(iii) the distribution of ratings.  

The correlation with discrimination performance as well as internal consistency come 

with two very different interpretations depending on whether the amount of information 

collected with one report is controlled or not. When VAS judgements are binned into the 

same number of scale steps as the discrete scale and thus the amount of information recorded 

by the two scales is balanced, the correlation of subjective reports with discrimination 

performance is indicative of type 2 sensitivity (Galvin et al., 2003), the ability to discriminate 

between correct and incorrect trials. This is the rationale of numerous previous studies 

(Dienes & Seth, 2010; Sandberg et al., 2010; Szczepanowski et al., 2013; Wierzchoń et al., 

2012) and is analogous to the term resolution in the confidence literature (Baranski & 

Petrusic, 1994). In contrast, under the assumption that the type 2 sensitivity of participants is 

comparable, a comparison between the association of the full VAS and objective performance 

on the one hand and the association between the discrete scale and performance shows 

whether the VAS is able differentiate between levels of performance that fall equally on the 

same scale step with the discrete scale and is thus indicative of the amount of information 

recorded by the scale.  

The second criterion we took into account was the internal consistency of subjective 

reports within experimental conditions: A scale should provide maximally stable estimates of 

averages of the subjective reports across a number of data points. Again, the comparison 

between the discretized VAS and a discrete scale shows whether one scale is corrupted from 

noise unrelated to the number of scale steps; while a comparison between the internal 

consistency of full VAS and discrete scales shows whether participants can make use of the 

additional resolution provided by the VAS, i.e. it examines whether VAS reports differentiate 

between trials that fall on the same scale step at the discrete scale.  
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Third, another characteristic of subjective scales that has been extensively discussed is 

the distribution of subjective reports when collected with different scales: Are subjective 

scales of consciousness used gradually or are they used in a binary fashion? While some 

scales might be designed in a way that all scale steps are used with relatively equal 

probability, other scales might induce binary responses (Overgaard et al., 2006). This 

empirical question is related to the theoretical proposals that consciousness is either 

dichotomous (Dehaene & Changeux, 2011; Dehaene, Sergent, & Changeux, 2003) or a 

gradual phenomenon (Cleeremans, 2008, 2011). If stimulus consciousness varies binarily (i.e. 

stimuli are always either fully conscious or completely unconscious), an observers would only 

use the ends of the scale, resulting in a U-shaped distribution of ratings. If stimuli however 

can be more or less conscious, all points of the scale are potentially used, when stimulus 

strength increases, resulting in a uniform distribution when averaged across stimulus strength. 

However, in order to investigate the issue whether consciousness varies gradually or binarily, 

a scale is required where participants in principle use the intermediate scale steps as well; 

otherwise a U-shaped distribution would be observed no matter whether consciousness in a 

specific task in fact gradual or dichotomous (Sergent & Dehaene, 2004).  

4.2.5. Rationale of the present study 

The aim of the present study was to investigate whether participants can make use of 

the high resolution offered by VASs when measuring visual experience of motion. To address 

this issue, we compared a VAS and a discrete scale with respect to the criteria discussed in 

4.2.4. As stimuli, we presented random dot kinematograms (RDKs), because RDKs allow for 

a fine-grained manipulation of task difficulty on a metric scale (by manipulating the 

percentage of coherently moving dots). For the objective task, we assessed objective 

performance as a continuous variable rather than just correct or false, a procedure that ensured 

a binary use of subjective reports was not due to binary task performance. To obtain a 

continuous measurement of task performance, we asked participants to report the orientation 

of motion by adjusting a clock-hand to point into the direction of the perceived motion, and 

measured the discrimination error as the angle between clock-handle and direction of motion. 

For the subjective scales, we asked participants always to report their degree of experience of 

the coherent motion, which was the same instruction as we used in the previous experiments 

(Zehetleitner & Rausch, 2013), and different from the established Perceptual Awareness Scale 

(PAS, Ramsøy & Overgaard, 2004) in that no instruction to report feelings of something 
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being shown was given. The experiment was designed to investigate the following three 

hypotheses: 

(i) If the participants are able to make use of the additional resolution provided by VASs, 

the full VAS should predict the discrimination error more efficiently than the discrete 

scale. In addition, the internal consistency of the full VAS should be better, because 

the larger amount of data transmitted by each single subjective report would allow for 

more reproducible statistics based on the same number of trials.  

(ii) If VAS reduced the type 2 sensitivity of subjective reports, we would expect that the 

discrete scale would be more efficient in predicting discrimination error and would 

produce more consistent estimates than the discretized VAS.  

(iii) If participants are biased by the anchors of the VAS in a way that reports are given 

binarily, the ratings on the VAS but not on the discrete scale should form a U-shaped 

distribution. In addition, the discrete scale should outperform both the full and the 

discretized VAS in predicting discrimination error. 

4.3. Experiment 

4.3.1. Material and Methods 

4.3.1.1. Participants 

20 participants (5 male, 1 left-handed) took part in the experiment. The age of the 

participants ranged between 19 and 32 years, with a median age of 24. All participants 

reported to have normal or corrected-to-normal vision, confirmed that that they did not suffer 

from epilepsy or seizures and gave written-informed consent 

4.3.1.2. Apparatus and stimuli 

The experiment was performed with a Mac with OS X 10.7 as operating system and a 

Diamond Pro 2070 SB (Mitsubishi) monitor with 24 inch screen size. Stimuli were presented 

at a refresh rate of 120 Hz controlled by MATLAB and Psychtoolbox 3.0.10 (Brainard, 1997; 

Pelli, 1997); code adapted from http://www.shadlenlab.columbia.edu/Code/VCRDM). The 

stimuli were random dot kinematograms, consisting of on average 150 small white squares 

(sized 2 x 2 pixels, luminance 85.0 cd/m
2
) in from of a black background (1.3 cd/m

2
), which 

appeared in a circular aperture (diameter: 5°) centred at the fixation. A set of dots was shown 

for one video frame and then replotted three video frames later. When replotted, a subset of 

dots was offset from their original location to create apparent motion while the remaining dots 
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were relocated randomly. The proportion of coherently moving dots was randomly chosen 

among 1.6, 3.1, 6.2, 12.5, 25, and 50%. The direction of movement was randomly chosen out 

of each possible direction. To record the orientation judgment, 12 circles (diameter: 0.2°, 2.2 

cd/m
2
) were displayed on the screen, forming one large circle centred at the screen with a 

diameter of 10°. Participants indicated the direction of motion and their rating on the VAS by 

a Cyborg V1 joystick (Cyborg Gaming, UK). The clock-hand consisted of a bar (length: 5°, 

width: 0.1°, 2.2 cd/m
2
) and a circular head (diameter: 0.2°, 2.2 cd/m

2
).  

4.3.1.3. Trial structure 

The trial structure is shown in Fig. 4-1. Each trial began with the presentation of a 

fixation cross at screen centre for 1,000 ms. Then a RDK was presented for 2,000 ms. Next, 

the circle around the screen centre appeared. As the participants started to move the joystick, 

the clock-hand appeared, pointing to the direction the joystick was moved to. The circle 

continued to be displayed on the screen until participants had pulled and released the trigger 

of joystick. Next, the subjective scale appeared, with either the four response categories from 

the discrete scale or the VAS. If the error of the orientation judgment had been larger than 

45°, the trial ended with the display of “please indicate the direction more carefully” for 1,000 

ms.  

 
Figure ´4-1. Experimental procedure.  
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4.3.1.4. Procedure 

The experiment lasted 1 hour on average. Participants were instructed perform the 

motion discrimination task as carefully as possible, with accuracy being more important than 

speed. For the subjective reports, participants were told that the subjective scale referred to 

the global motion experience created by the coherently moving dots. Again, participants were 

instructed to their ratings as carefully and as accurately as possible.  

Participants indicated the direction of motion by using the joystick to move a bar that 

looked like a clock-hand. When the participants had moved the clock-hand in the direction 

they saw the dots moving, they confirmed their response by pulling the trigger of the joystick. 

The clock-hand consisted of a bar (length: 5°, width: 0.1°) and a circular head (diameter: 

0.2°). To collect the subjective report, the question “how clearly did you see the coherent 

motion?” was displayed on the screen. In case of VAS, a continuous scale was shown 

underneath the question, with the ends labelled as “not at all”, and “clear”. Participants moved 

an index on the continuous scale by moving the joystick horizontally, and confirmed a 

position on the scale by pulling the trigger. In case of four point scales, the same question was 

displayed on the screen, but underneath the question, four response categories were shown, 

which were “not at all”, “weak”, “almost clear”, and “clear”. Participants responded to the 

discrete scales by pressing the keys 1, 2, 3, and 4 on the keyboard. At the beginning of the 

experiment, participants performed a training block with 24 trials. The main experiment 

involved 10 blocks with 45 trials each. During training, VAS and discrete scale trials were 

randomly intermixed each of the six possible coherences was presented six times in a from-

easy-to-difficult order. During the main experiment, the two subjective scales alternated after 

each block and the levels of coherence varied randomly between trials.  

4.3.1.5. Analysis 

All analysis were performed in R 2.15.2 (R Core Team, 2012). For both the 

distribution analysis as well as the regression analysis, fast responses (defined as faster than 

200 ms) and slow responses (defined as 2.5 standard deviations slower than the individual 

average) to the discrimination task or to the scale were omitted. Other exclusion criteria such 

as 2 or 3 standard deviations gave essentially the same results.  

4.3.1.5.1. Distribution analysis of the discrimination responses 

Discrimination responses were analysed by fitting a combination of a von Mises 

distribution and a uniform distribution to the data (Bays et al., 2009; Zokaei et al., 2011). The 
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uniform distribution models the distribution of responses in trials when participants relied on 

guessing, because when participants guessed, each orientation between 0 and 360 ° was 

equally probable. The von Mises (circular Gaussian) distribution centred at the true motion 

direction represents the distribution of responses in trials where participants were not 

guessing. The better participants performed the orientation judgment, the less responses 

jittered around the true motion direction; therefore, the concentration parameter of the von 

Mises distribution can be interpreted as the precision of orientation judgments. The model is 

described by the following equation: 

𝜃 = (1 − 𝛾)𝜙𝐾(𝜃 − 𝜃) + 𝛾
1

2𝜋
 

where  is the stimulus motion direction, 𝜃 is the motion direction indicated by the 

participant,  is the proportion of trials when participants were guessing,  denotes the von 

Mises distribution with mean of zero and the concentration parameter K. Fitting was 

performed on the aggregated data across all participants and scales but separately for each 

level of coherence using maximum likelihood estimation and confidence intervals around 

each parameter were estimated using 10,000 bootstrap samples. Pooling over participants and 

scales was necessary to obtain a sufficient number of trials for the fitting algorithms to reach 

convergence. The purpose of this analysis was a manipulation check if performance in the 

current task was continuous or binary. As the hypotheses tested in the current study equally 

apply to metacognition of the precision as well as the guessing aspect of performance, it was 

legitimate to analyse the relationship between subjective reports and performance without 

differentiating between guessing and precision (see section 4.3.1.5.2.)  

4.3.1.5.2. Relationship between scales and discrimination error 

The relationship between the two scales and discrimination error was analysed by 

means of mixed model regression analysis based on the cumulative proportional odds model 

as implemented in the R library ordinal (Christensen, 2013), the ordinal equivalent to the 

analysis in previous studies (Sandberg et al., 2013, 2010; Wierzchoń et al., 2012). The 

dependent variable, the discrimination error, was determined by the absolute difference 

between the true motion direction and the reported motion and binned into 12 equal bins 

between 0 and 90° and a thirteenth bins for errors larger than 90° to allow computation of a 

proportional odds model. Non-parametric statistics were used to account for the fact that the 

discrimination error was bounded and strongly skewed. Inter-subject variance was modelled 
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by a random effect on the intercept. Scale (VAS vs. discrete scale), coherence (1.6 vs. 3.1 vs. 

6.2 vs. 12.5 vs. 25.0 vs. 50.0) and subjective report and all interactions were treated as fixed 

effects. Significance of each fixed term was assessed by likelihood ratio tests between the full 

model and a model where the term was dropped. Confidence intervals were obtained from the 

likelihood root statistic. Subjective reports given by VAS and discrete scales were 

standardized separately. To investigate the effects of number of scale steps, two separate 

models were computed, one with the full VAS included as predictor, and one model where 

the VAS was binned into four equal partitions. We interpret a comparison between the 

discretized VAS and the discrete scale as indicative of type 2 sensitivity (i. e. the degree to 

which participants can access to their own performance) because when the VAS reports are 

binned to four, the amount of information in discretized VAS and discrete scale are the same, 

although we acknowledge that ordinal statistics do not provide any means of control over the 

influence of discrimination bias (Masson & Rotello, 2009). Given that type 2 sensitivity of 

VAS and discrete scale are the same, a comparison between the full VAS and the discrete 

scale is indicative of whether participants apply more criteria in the VAS than in the discrete 

scale and thus the full VAS discriminates between levels of performance that fall on the same 

scale step with the discrete scale. In addition, we analysed the effects of feedback and 

reporting time by computing two additional models comparing full VAS and the discretized 

scale with feedback and report time as additional fixed effect, respectively.  

4.3.1.5.3. Internal consistency 

Internal consistency was assessed by computing Cronbach’s alpha (Cronbach, 1951) 

separately for each level of coherence using the R library ltm (Rizopoulos, 2006). Confidence 

intervals were estimated around Cronbach’s alpha values based on 10,000 Bootstrap samples. 

4.3.1.5.4. Distribution of subjective reports 

To analyse the distribution of subjective reports, the ratings of VAS was again binned 

into four categories each covering a fourth of the scale range. The frequency of each bin was 

then compared against frequency of the corresponding response alternative of the discrete 

scales using an ANOVA with the factors rating category, coherence, and scale type (VAS vs. 

discrete scale). When sphericity did not hold, we adjusted the degrees of freedom according to 

the Greenhouse-Geisser correction. To resolve interactions, post-hoc t-tests were conducted 

comparing the frequency of each VAS bin with the corresponding response category of the 



 

93 

discrete scale separately for each level of coherence. P-values were adjusted by the Holm-

correction to account for multiple comparisons.  

4.3.2. Results 

4.3.2.1. Discrimination performance 

The mean discrimination error was 55.6° (SEM = 2.2) when participants were using 

the VAS and 56.3° (SEM = 2.2) when the discrete scale was used and ranged from 87.7° 

(SEM = 1.7) for the lowest to 13.7° (SEM = 1.6) for the highest level of coherence. The 

relative frequencies of orientation responses and the estimated distributions are shown in Fig. 

4-2. The estimated parameters as well as bootstrapped confidence intervals are shown in Fig. 

4-3. 

 
Figure 4-2. Distribution analysis of discrimination responses. Dots indicate the relative 

frequency of orientation responses with 0 as the true motion direction with different levels of 

coherence in each panel. Lines indicate the distribution of responses estimated from the fitted 

guessing and precision parameters. The grey highlighted area indicates the degree of accuracy 

between -45° and 45° where no error feedback was given.  
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Figure 4-3. Estimated parameters from the distribution analysis plotted as a function of 

Coherence. Left Panel: Guessing probability. Right Panel: Precision. The grey areas indicate 

95% bootstrapped confidence intervals. 

 

The probability of guessing trials ranged between .94 at the lowest and .05 at the 

highest level of coherence. Confidence intervals indicated the guessing probability 

continuously decreased across all levels of coherence. The precision ranged between 5.2 at a 

Coherence of 3.1% and 28.5 at the maximum level of coherence. Confidence intervals 

suggested that there was a continuous increase of precision starting at a coherence of 6.2%, 

while the estimation of the precision parameter was not reliable for coherence levels of 1.3% 

and 2.6% (due to the low number of non-guessing trials).  

4.3.2.2. Relationship between discrimination error and subjective reports 

The regression weights and confidence intervals of the ordinal mixed model regression 

comparing the full VAS against the discrete scale as predictors of discrimination error can be 

found in Table 4-1. Likelihood ratio tests suggested significant main effects of subjective 

report [χ
2
(1) = 195.0, p < .001] and coherence [χ

2
(5) = 1522.0, p < .001], no effect of scale 

[χ
2
(1) = 2.1, n. s.], significant interactions between subjective reports and scale [χ

2
(1) = 4.3, p 

< .05] and between subjective reports and coherence [χ
2
(5) = 50.2, p < .001], and no three-

way interaction [χ
2
(5) = 6.8, n. s.]. A regression model fitted on VAS ratings only revealed a 

regression coefficient for subjective reports of -.44 with a 95 % confidence interval of [-.52 -

.36]. For the discrete scale, the same analysis revealed a coefficient of -.32 within a 

confidence interval of [-.40 -.24].  
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Table 4-1 

Results of the mixed-effects ordinal regression model with discrimination error as dependent 

variable 

Predictor β 

95 % CI Likeli-

hood 

ratio 

df p 
lower upper 

Subjective report -0.38 -0.43 -0.32 195.0 1 < .001 

Coherence level 

   

1522.0 1 < .001 

- 1.6% vs. 50% 1.28 1.17 1.40 

 
  

- 3.1% vs. 50% 1.06 0.95 1.18 

 
  

- 6.2% vs. 50% 0.68 0.58 0.79 

 
  

- 12.5% vs. 50% -0.39 -0.48 -0.29 

 
  

- 25% vs. 50% -1.16 -1.27 -1.05 
   

Scale type -0.01 -0.06 0.04 2.1 1 n. s. 

Subjective report * coherence level 

   

50.2 5 < .001 

- Subjective report * 1.6% vs. 50% 0.26 0.14 0.38 
   

- Subjective report * 3.1% vs. 50% 0.21 0.09 0.33 
   

- Subjective report * 6.2% vs. 50% 0.01 -0.10 0.13 
   

- Subjective report * 12.5% vs. 50% -0.26 -0.37 -0.16 
   

- Subjective report * 25% vs. 50% -0.15 -0.26 -0.04 
   

Subjective report * scale type 0.06 0.01 0.11 4.3 1 < .05 

Coherence level * scale type 

   

10.3 5 n. s. 

- 1.6% vs. 50% * scale type 0.10 -0.02 0.21 
   

- 3.1% vs. 50% * scale type 0.06 -0.06 0.17 
   

- 6.2% vs. 50% * scale type 0.10 -0.01 0.20 
   

- 12.5% vs. 50% * scale type -0.05 -0.15 0.04 
   

- 25% vs. 50% * scale type -0.03 -0.14 0.07 
   

Subjective report * Coherence level *  

scale type -0.06 

  

6.8 5 n. s. 

- Subjective report * 1.6% vs. 50% * 

scale type -0.02 -0.14 0.10    

- Subjective report * 3.1% vs. 50% * 

scale type 0.01 -0.11 0.12    

- Subjective report * 6.2% vs. 50% * 

scale type -0.09 -0.21 0.02    

- Subjective report * 12.5% vs. 50% * 

scale type -0.06 -0.17 0.04    

- Subjective report * 25% vs. 50% * 

scale type 0.08 -0.03 0.19    
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Discrimination error as a function of coherence, scale, and subjective report (with 

discretized VAS ratings) are depicted in Fig. 4-4. The ordinal regression model comparing the 

discretized VAS and the discrete scale revealed significant main effects subjective report 

[χ
2
(1) = 178.6, p < .001] and coherence [χ

2
(5) = 1586.2, p < .001], no effect of scale [χ

2
(1) = 

2.4, n. s.], a significant interaction between subjective reports and coherence [χ
2
(5) = 47.4, p < 

.05], but no interaction between subjective report and scale [χ
2
(1) = 1.5, n. s.], and no three-

way interaction [χ
2
(5) = 6.8, n. s.].  

 

Figure 4-4. Discrimination error as a function of subjective reports, scale, and levels of 

coherence. The ratings on the visual analogue scale were discretized into four bins based on 

individual quartiles. A discrimination error of 90° indicates chance performance.  

 

The frequency of feedback, which was provided after discrimination responses with an 

error greater than 45°, did not substantially differ between VAS trials (M = 40.3, SEM = 1.7) 

and discrete scale trials (M = 41.0, SEM = 2.1) [t(19) = .7, n. s.]. Including feedback on the 

previous trial into the ordinal regression analysis as an additional predictor revealed no effect 

of feedback [χ
2
(1) = 0.1, n. s.], no interaction between subjective reports and feedback, [χ

2
(5) 

= 0.8, n. s.], between scale and feedback [χ
2
(1) = 2.1, n. s.], or between scale, subjective 

reports, and feedback [χ
2
(1) = 2.1, n. s.]. Importantly, the interaction between scale and 
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subjective report was still significant when feedback was included into the analysis [χ
2
(1) = 

3.9, p < .05].  

For the VAS, the mean report time, i.e. the time between the orientation judgment and 

the subjective report, was 1329 ms (SEM = 95.6), compared to 944 ms (SEM = 73.3) with the 

discrete scale. As can be seen from Figure 4-5, ordinal regression slopes increased with report 

time for the VAS, while no such a relation was apparent for the discrete scale. The regression 

model with report time as additional predictor revealed a significant main effect of report time 

[χ
2
(1) = 4.0, p < .05], no interaction between report time and scale [χ

2
(1) = 0.1, n. s.], and 

between subjective report and time [χ
2
(1) = 1.1, n. s]. There was however a three-way 

interaction between subjective reports, scale, and report time [χ
2
(1) = 5.5, p < .05]. When 

response times were included into the model, the interaction between subjective reports and 

scale was no longer significant, [χ
2
 (1) = 2.7, n. s]. Separate analyses of the impact of the 

report time on discrete scales and VAS revealed that the predictive efficiency of subjective 

reports made with the VAS interacted with rating time [χ
2
(1) = 6.1, p < .05], while subjective 

reports on the discrete scale were not influenced by rating time [χ
2
(1) = 0.4, n. s]. Overall, this 

pattern indicates that the differences in predictive power for discrimination error between the 

VAS and the discrete scale are mediated by longer report times.  

 
Figure 4-5. Ordered logistic regression slope of discrimination error predicted by subjective 

report depending on report time, i. e. time between objective task response and subjective 

report, and scale. To allow fitting separate regression models, report time is discretized into 

four bins based on the .25, .5, and .75 quantile.  
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4.3.2.3. Internal Consistency of subjective reports 

Cronbach’s alphas ranged between .83 and .93 for the discrete scale, between .84 and 

.93 for the discretized VAS, and .85 and .93 for full VAS (see Table 4-3). There was a 

numeric trend that alphas were larger for both the full and the discretized VAS than for the 

discrete scale at four out of six levels of coherence, but confidence intervals indicated the only 

substantial difference between the two scales was at a coherence of 6.2%, where the internal 

consistency of the VAS was greater. The internal consistency of the discretized VAS was 

always within the confidence intervals around the full VAS.  

Table 4-3 

Cronbach’s alpha of VAS and discrete scales separately each level of coherence.  

 Full VAS Discretized VAS discrete scale 

Coheren

ce 
alpha CI 2.5 CI 97.5 alpha CI 2.5 CI 97.5 alpha CI 2.5 CI 97.5 

1.6 .91 .82 .95 .87 .77 .92 .85 .68 .91 

3.1 .91 .81 .95 .89 .78 .93 .86 .73 .91 

6.2 .92 .87 .95 .91 .85 .94 .83 .63 .88 

12.5 .85 .67 .91 .84 .67 .90 .85 .69 .90 

25.0 .93 .80 .96 .92 .79 .96 .90 .76 .95 

50.0 .93 .83 .96 .92 .83 .96 .93 .83 .96 

 

4.3.2.4. Distribution of subjective reports  

The mean subjective experience reported on the VAS was 49.2% of the scale range 

(SEM = 2.2) and 2.3 (SEM = 0.1) on the discrete scale ranging between 1 and 4 (which 

corresponds to a mean of 41.3% of the scale range and a standard error of 2.2 %). As can be 

seen from Fig. 4-6, the second scale step of the discrete scale was the dominant response even 

at a coherence of 1.3% when performance was effectively at chance. The ANOVA on 

response frequencies revealed a significant main effect of rating category [F(2.0,38.8) = 5.3, p 

< .001], significant interactions between scale and rating category [F(3,57) = 17.4, p < .001], 

and between rating category and coherence [F(3.6,68.0) = 53.4, p < .001], as well as a three-

way interaction between coherence, scale type, and rating category [F(5.3,99.9) = 7.2, p < 

.001]. Post-hoc tests assessing whether the frequency of responses was different between the 

discrete scale and the VAS separately for each level of coherence and each response category 

are shown in Table 4-2. While there was no significant difference between reports of no 

experience on the discrete scale and the corresponding scale part of the VAS at each 
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coherence, reports of weak experiences occurred more often with the discrete scale than with 

the VAS at 5 out of 6 coherences, reports of almost clear experiences were more frequently 

reported with the VAS at lower coherences, and reports of clear experiences were more often 

with the VAS at a coherence of 25%. 

 

Figure 4-6. Frequency of each scale step of the discrete scales and the frequency of the 

corresponding scale parts of the VAS. Black bars indicate the VAS and grey bars the discrete 

scale. Error bars indicate 1 standard error of the mean. 

 

4.4. Discussion 

The present experiment investigated whether participants are able to use the high 

number of response alternatives provided by visual analogue scales appropriately when 

reporting visual experience of motion. We hypothesized that if a VAS allowed to retrieve a 

larger amount of information from participants’ reports than discrete scales, the full VAS 

should be more efficient in predicting the discrimination error, and should be more internally 

consistent. Second, if a VAS reduced the type 2 sensitivity of subjective reports, we would 

expect that the discretized VAS should be less efficient in predicting the discrimination error 

than the discrete scale. Finally, if participants tended to use VASs in a binary way, ratings on 
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the VAS should form a U-shaped distribution, and the discrete scale should correlate more 

closely with discrimination error no matter whether the VAS is discretized or not.  

Concerning the relationship between subjective reports and discrimination error, the 

full VAS predicted discrimination error more efficiently than the discrete scale, while there 

were no substantial differences between the discretized VAS and the discrete scale. The 

difference between the full VAS and the discrete scale was mediated by the response time to 

the scale. The analysis of internal consistency revealed no substantial differences for five out 

of six coherences, while both the full and the discretized VAS were more consistent at a 

coherence of 6.2%. Concerning the distribution of subjective reports, we observed that the 

VAS and the four-point scale were both not used in an all-or-nothing fashion, although 

participants had a tendency to report weak experiences in the discrete scale while they would 

report almost clear and clear experiences in the VAS. 

4.4.1. The amount of information in VAS and discrete scales 

According to a standard interpretation of differences between scales measuring 

subjective awareness, subjective reports are created by the same mechanisms, and differences 

between scales occur due to different qualities of the scale. A key aspect of the quality of the 

scale is the amount of information transmitted by each rating. According to information 

theory (Shannon, 1948), subjective reports collected by VAS should provide a larger amount 

of information that discrete scales, because 4 scale steps allow to record 2 bits of information, 

while the number of bits collected by a continuous scale is limited only by the number of 

positions participants are able to differentiate, and was estimated to be at least 10 positions 

(Hake & Garner, 1951), i.e. at least 3.32 bits. Consistent with the predictions from 

information theory, the full VAS was more closely correlated to the discrimination error than 

the discrete scale. We did not detect any substantial differences between the discrete scale and 

the discretized VAS in terms of type 2 sensitivity, suggesting that the additional alternatives 

participants have to consider when using a VAS did not add substantial amounts of noise to 

the subjective reports. Concerning internal consistency, there were no substantial differences 

between the two scales in five out of six coherences, although the VAS was more reliable at a 

coherence of 6.2%. Overall, it seems that a VAS indeed provides a larger amount of 

information than discrete scales, although the amount of information recorded by discrete 

scales is sufficient to provide reliable estimates as well.  
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4.4.2. The impact of report time 

The difference between reports on the full VAS and on discrete scale in predicting 

discrimination error was mediated by the time of rating: While VAS ratings became more and 

more efficient in predicting trial accuracy with time, we observed no such a relation for the 

discrete scale. The first interpretation to these results is that a VAS provides a larger number 

of response alternatives, and selecting one out of this multitude of options could be more 

difficult and thus require a longer period of time. Second, it should be noted that also the 

motor response required by a VAS is more time-consuming than a simple button press: The 

association of the rating-accuracy relationship and report time at the VAS could also reflect 

the additional time demand of using a joystick and a decrease of rating precision when 

participants did not invest enough time to operate the joystick carefully. Third, an alternative 

explanation to these findings may be based on the dynamics of decision making: While 

standard SDT models of subjective reports assume that the evidence used for subjective 

reports is fixed at the time when observers respond to the task (Kepecs et al., 2008; Ko & 

Lau, 2012; Vickers, 1979), others have proposed that subjective reports are based on evidence 

participants continue accumulating after the objective decision is made (Pleskac & 

Busemeyer, 2010). Given that VAS judgements were associated with prolonged time 

participants needed to give a subjective report, post-decisional accumulation of evidence 

might be an alternative explanation why ordinal regression slopes are higher with VAS than 

with a discrete scale, because the additional 400 ms that it takes to make a judgement on the 

VAS might give participants more time to accumulate evidence. However, we observed a 

large overlap in the report times between the two scales in the current experiment where VAS 

regression slopes were larger although the time of the report was the same. In addition, while 

ordinal regression slopes seemed to increase almost linearly for the VAS, we found no 

indication of post-decisional accumulation for the discrete scale at all. What is possible is that 

participants keep accumulating sensory evidence after the decision when using the VAS only, 

either because they need the additional evidence to make fine-grained VAS ratings, or 

because they might be more motivated when using a VAS (Funke & Reips, 2012). The 

(cognitive and motor) cost of precise reporting and on-going accumulation accounts cannot be 

distinguished on grounds of the current data set. Given that a previous study failed to find any 

association with report time for both the VAS and discrete scales (Wierzchoń et al., 2012), 

future studies may be necessary to investigate the dynamics of metacognition.  
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4.4.3. Are visual analogue scales used binarily? 

VAS received criticism because the continuum in combination with the labelled scale 

ends might result in a bimodal distribution of subjective reports, with scale extremes being 

chosen more frequently than the centre of the scale (Overgaard et al., 2006). First, we 

observed that intermediate scale steps were chosen frequently for both scales. Second, there 

was no difference between the frequency of the smallest scale step of the discrete scale and 

the lowest quarter of the VAS, indicating that VAS and discrete scales both applied the same 

minimal criteria for subjective reports. However, the second smallest scale step of the discrete 

scale (labelled as “weak”) was more often chosen than the corresponding part of the VAS, 

while stronger experiences were more frequently reported with the VAS than with the discrete 

scales. There might be several explanations why more distinct experiences are more 

frequently reported with the VAS: First, participants could be biased by the labelled extremes 

of the scale (Ramsøy & Overgaard, 2004). Second, participants might suffer more strongly 

from an error of central tendency when they respond to discrete scales, and therefore the 

second scale step was the dominant response in the discrete scale. Finally, it is also possible 

participants are more motivated when using the VAS, being more attentive, and therefore 

have in fact clearer experiences (Szczepanowski et al., 2013). Concerning the impact of 

motivation, the two scales were associated with a comparable discrimination error, suggesting 

that the scale did not alter the way participants performed the task in general. Concerning a 

potential bias towards extremes, it should be noted that intermediate positions on the VAS 

were the most frequent responses for medium levels of coherence, suggesting that participants 

do use the centre of the scale when they consider it to be appropriate. In contrast, the second 

scale step of the discrete scale was the dominant response even at the lowest level of 

coherence when discrimination accuracy was effectively at chance, suggesting that the error 

of central tendency might be a factor in the distribution of discrete scales. The distribution of 

VAS is more plausible in a way that low ratings are dominant at low levels of coherence, 

intermediate ratings at medium coherences, and high ratings at high levels of coherences.  

4.4.4. Discussion of methodology 

It should be noted that the current experiment differs from previous studies addressing 

the topic of subjective reports in several ways. As this task is new to the field of 

metacognition, future studies are desirable to explore whether the findings obtained with this 

method are corroborated in more standard experiments. Most importantly, we quantified 
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discrimination error as a continuous variable rather than binary in the current study. In 

general, such an approach seems promising for the field of consciousness research because 

some theories of consciousness make specific predictions whether consciousness is gradual 

(Cleeremans, 2008, 2011) or dichotomous (Dehaene & Changeux, 2011; Dehaene et al., 

2003), and recording performance in a non-binary way ensures that binary task performance 

does not artificially cause binary metacognition. Unfortunately, up to know, there is no 

proposal for a SDT-grounded measure of type 2 sensitivity equivalent to the measures 

applicable for binary tasks, so our analysis of type 2 sensitivity by ordinal regression does not 

provide the same control of response bias and confidence thresholds than it is possible for 

binary tasks. For the purpose of the current study, these potential confounds do not change the 

interpretation of the data because they would either affect the discrete scale, the full VAS, and 

the discretized VAS in the same way (response bias), or would affect the full VAS and the 

discretized VAS to the same degree (confidence thresholds), so it cannot be explained why 

only the full but not the discretized VAS provides more predictive power. Future studies 

however need to carefully consider the conceptual advantages of continuous tasks against the 

methodological disadvantages of the analysis methods available.  

It may also be objected that the current task was not as continuous as it could have 

been, since all responses at above chance performance were concentrated between 45 and -45 

degrees (where no error feedback was given), and thus the feedback might have motivated 

participants to perform at least as accurate as +/- 45 degrees. However, the precision of 

orientation judgements increased almost linearly although participants no longer received 

feedback, indicating participants did not perform the task in a binary fashion. As feedback 

might also have altered performance and type 2 sensitivity in the current task, parameters and 

coefficients estimated from the current experiment should not be naïvely expected to be the 

same in standard subliminal perception tasks where error feedback is suspended after a 

training period or is completely missing. Nevertheless, we did not observe any evidence that 

feedback on the previous trial influenced any contrast of interest for purpose of the current 

experiment, suggesting that feedback did not have a major impact on performance in the 

current study.  

4.4.5. Equivalent conscious access? 

Another interpretation of differences between various subjective scales is that different 

scales might encourage participants to use different mechanisms of conscious access to report 
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their conscious experiences (Overgaard & Sandberg, 2012). Indeed, it is plausible to assume 

that subjective reports in VASs and discrete scales are accomplished in parts by different 

processes. Discrete scales rely strongly on verbal categorization, because observers need to 

have a concept of each of the scale steps, while VAS need only an abstract understanding of 

the dimension as a whole. In contrast, VAS may depend on visuo-motor coordination, 

because participants need to translate their experience into spatial coordinates and have to 

move the joystick accordingly. This might be an explanation for the effects in the current 

study, although a previous study reported that five scale points cannot convey more 

information about subjective experiences than four scale points (Ramsøy & Overgaard, 2004). 

The number of scale steps participants can make use of in labelled scales depends on the 

participants’ ability to categorize their percepts verbally, which might be limited to four. 

VASs do not depend to the same degree on verbal categorization; therefore, the amount of 

information transmitted by a VAS can be greater.  

4.4.6. Conceptual reasons to prefer VASs or discrete scales 

Finally, deciding between VASs and discrete scales is not a question that can be 

addressed entirely by empirical methods, but needs to be informed conceptually as well. First, 

a VAS is only feasible if the subjective reports can be given along one dimension. However, 

the study of visual awareness may require the assessment of several qualitative different 

patterns of subjective experience: For instance, it has been suggested that observers report 

“feelings that something has been shown” or “experiences without any content” (Ramsøy & 

Overgaard, 2004) or even to be confident about the discrimination judgement (Zehetleitner & 

Rausch, 2013) at low levels of stimulation, and report that they had an experience of a 

specific stimulus quality only at higher levels of stimulation. These discontinuities in the 

pattern of subjective reports along the unaware/aware continuum cannot be measured by one 

single VAS, so other measures are required if the full set of experiences during visual 

perception is of theoretical interest to a specific study. For example, an established measure 

that captures qualitatively different experiences is the Perceptual Awareness Scale (Ramsøy & 

Overgaard, 2004), where participants are asked to differentiate between the absence of an 

experience, experiences without any content, almost clear experiences of a specific stimulus 

feature, and full clarity of the specific stimulus feature. Alternatively, different dimensions 

can be assessed by combining two VASs with different content in one trial (Zehetleitner & 

Rausch, 2013).  
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Second, some theorists strongly focus the connection between consciousness and 

language (Vygotsky, 1962), and such a view might imply verbally categorized scale steps to 

be more valid than a continuous scale. However, other concepts of consciousness endorse a 

view where perceptual consciousness is not easily verbalized, and such a view may prefer 

VASs as they rely less heavily on verbal categorization. 

4.5. Conclusion 

We present data that both visual analogue scales as well as discrete scales are reliable 

measures of subjective reports of global motion experience. We found no evidence that the 

type 2 sensitivity is decreased or the pattern of reports is binary when participants are 

provided with a large number of scale steps. The data is consistent with the interpretation that 

participants are able to maintain a sufficient large number of meaningful criteria so that a 

VAS retrieves a larger amount of information than a discrete scale with four scale steps, 

provided that participants take their time to make the more subtle judgements. At least when 

the number of response alternatives of the objective discrimination task is large, subjective 

reports of motion experience may be recorded more conveniently by a VAS than by a discrete 

scale with the same content.  
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5. TYPE 2 SENSITVITY OF DECISIONAL CONFIDENCE 

AND VISUAL EXPERIENCE
10

 

by Manuel Rausch, Hermann J. Müller, and Michael Zehetleitner
11

 

5.1. Abstract 

Previous studies provided contradicting results regarding type 2 sensitivity
12

 estimated 

from subjective reports of confidence in comparison to subjective reports of visual 

experience. We investigated whether this effect of content of subjective reports is influenced 

by the statistical method to quantify type 2 sensitivity. Comparing logistic regression and 

meta-d in a masked orientation task, a masked shape task, and a random-dot motion task, we 

observed type 2 sensitivity of reports regarding decisional confidence was greater than of 

reports about visual experience irrespective of mathematical procedures. However, the 

relationship between subjective reports and the logistic transform of accuracy was often not 

linear, implying that logistic regression is not a consistent measure of type 2 sensitivity. We 

argue that a science of consciousness would benefit from the assessment of both visual 

experience and decisional confidence, and recommend meta-da as measure of type 2 

sensitivity for future studies.  

5.2. Introduction 

Empirical approaches to human consciousness crucially rely on measures to determine 

whether or not an observer is conscious of a stimulus (Chalmers, 1998). Many researchers 

prefer objective measures, where conscious awareness is ascribed based on performance in a 

discrimination task (Eriksen, 1960; Hannula et al., 2005; Schmidt & Vorberg, 2006). 

                                                 
10

 A version of this chapter has been published as Rausch, M., Müller, H. J., & Zehetleitner, 

M. (2015). Metacognitive sensitivity of subjective reports of decisional confidence and visual 

experience. Consciousness and Cognition, 35, 192-205. doi:10.1016/j.concog.2015.02.011 

11
 Manuel Rausch conceived the research questions and conducted the analysis; Manuel 

Rausch, Hermann J. Müller, and Michael Zehetleitner co-wrote the manuscript.  

12
 In the version published in Consciousness and Cognition, the terms metacognitive 

sensitivity and metacognitive bias, synonyms of type 2 sensitivity and type 2 bias, were used 

throughout the whole text. However, this was changed to maintain consistency of terms 

throughout the different Chapters of this Thesis.  
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However, at least two popular theoretical perspectives imply that conscious awareness ought 

to be measured by subjective reports: First, according to higher-order theories, perception of a 

stimulus is conscious only if it is associated with a higher-order representation, i.e. a 

representation of oneself as perceiving the stimulus (Carruthers, 2011; Lau & Rosenthal, 

2011; Timmermans et al., 2012). While discrimination performance is not necessarily 

accompanied by a corresponding higher-order representation, a subjective report does require 

some higher-order knowledge (participants need to know that they are aware of the stimulus 

in order to report that they are aware) and are thus considered more valid measures of 

conscious awareness than discrimination performance (Dienes, 2004, 2008). Second, 

according to the perspective of heterophenomenology, participants’ verbal reports about their 

subjective experience are themselves objects of study in consciousness research (Dennett, 

2003, 2007) and are thus the appropriate raw data that needs to be recorded and explained 

(Dehaene & Naccache, 2001; Dehaene, 2010). 

5.2.1. Visual experience and confidence as content of subjective reports 

A consequence of these theoretical reasons for using subjective measures of conscious 

awareness is the need of appropriate scales to record subjective reports. One characteristic of 

subjective reports that requires special consideration is the content of subjective report, i.e. 

what the subjective report is about. The contents queried in visual awareness experiments fall 

into two categories depending on whether participants are asked to make a report about their 

experience of the stimulus, or about the accuracy of a discrimination task response 

(Zehetleitner & Rausch, 2013). We will refer to the first kind of content as “visual 

experience”, and the second kind as “confidence”. Examples for scales with visual experience 

as content of subjective reports are ratings how visible the stimulus was (Sergent & Dehaene, 

2004) or how clear a specific stimulus feature was experienced (Rausch & Zehetleitner, 

2014). Examples for the discrimination response as content are reports of how confident 

participants were about the preceding task response (Peirce & Jastrow, 1885), or whether the 

last task response was made by guessing or based on knowledge (Zehetleitner & Rausch, 

2013).  

Aiming to identify the best scale to measure conscious awareness empirically, a series 

of previous studies has compared subjective reports collected with different scales (Dienes & 

Seth, 2010; Rausch & Zehetleitner, 2014; Sandberg et al., 2011, 2010; Szczepanowski et al., 

2013; Wierzchoń et al., 2012, 2014). As subjective scales are often used to determine whether 
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performance in a specific task is conscious or unconscious, the scales were compared by 

examining the correlation between subjective reports and task accuracy: On the assumption 

that the correlation between reports and accuracy is mediated by conscious processes, if one 

scale was found to predict accuracy better than the other scales, it was concluded that this 

scale is more sensitive in detecting conscious processes (that the other scales miss) and is thus 

closer to being an exhaustive measure of conscious awareness (Overgaard & Sandberg, 2012). 

This reasoning rests on the assumption that the scales under comparison are equally valid 

from a conceptual point of view, but some are more suitable research instruments than others. 

In contrast to the assumption that all scales are a priori valid measurements of 

conscious experience, we have proposed that which content of subjective reports is 

appropriate depends on the set of conscious experiences relevant to a specific research 

question (Rausch & Zehetleitner, 2014). The reason is that participants might already 

experience some conscious intuition about being correct in a discrimination task while not yet 

consciously seeing the stimulus feature relevant for the task judgment (see Chapter 2; 

Zehetleitner & Rausch, 2013). A similar dissociation between knowledge about the accuracy 

of task decisions and the knowledge underlying those task decisions was shown for artificial 

grammar tasks (Dienes & Scott, 2005). These observations suggest that studies investigating 

the neural correlates of a specific visual content (such as the redness of an apple) may 

encounter false positives if they rely on confidence judgments because confidence may not 

necessarily require a conscious visual experience of the relevant stimulus feature. On the 

other hand, if the full set of experiences during visual perception is of theoretical interest to a 

specific study, the use of a scale that measures only visual experience of one specific feature 

leaves out subjective feelings of confidence (Zehetleitner & Rausch, 2013), and possibly other 

qualitatively different experiences along the unawareness/awareness continuum, such as 

awareness of an event without a phenomenology of seeing, as reported by some blindsight 

patients (Sahraie et al., 2002), or experiences without any content (Ramsøy & Overgaard, 

2004). Finally, if a study investigates whether performance in a specific task is conscious, 

confidence ratings are a convenient choice since participants should consider all their 

conscious experiences relevant for their performance in this case (Dienes, 2008). Overall, 

should reliable differences between subjective scales with different contents exist, then 

researchers would have to decide which set of conscious experiences is relevant to their 

particular research questions, and choose a measure accordingly. 
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5.2.2. Type 2 signal detection theory 

As subjective reports entail making a decision for one out of the several response 

alternatives offered by the scale, it is legitimate to apply theories of decision making to 

subjective reports. One of the most prominent theories of decision making under uncertainty 

is signal detection theory (SDT) (Green & Swets, 1966; Macmillan & Creelman, 2005; 

Wickens, 2002). According to SDT, when observers decide which out of two possible event 

types occurred, their perceptual systems create sensory evidence delineating the two response 

options. As there is noise in the system, the sensory evidence is not constant, but a random 

sample out of a distribution for each of the two event types. Participants select a response by 

comparing the sensory evidence with a response criterion, choosing one option if the sensory 

evidence is greater than the criterion and the other option otherwise. SDT allows 

distinguishing between two aspects of decision making: sensitivity and bias. The more 

sensitive an observers is, the smaller is the overlap between the two distributions of evidence 

created by the two events. Bias towards one response options however depends on the 

position of the response criterion (see Fig. 5-1a). 

SDT tasks can be classified based on the events participants have to discriminate: In 

type 1 tasks, the standard application of SDT, participants differentiate between two different 

kinds of stimulation (e.g. two distinct stimuli, or the presence or absence of the stimulus). 

However, SDT can also be applied to type 2 tasks, where the task is to differentiate correct 

and incorrect responses to a type 1 task (Galvin et al., 2003). Type 2 tasks allow the 

assessment of sensitivity and bias just as in type 1 tasks (see Fig. 5-1b): Type 2 sensitivity, the 

sensitivity in type 2 tasks, is defined as the extent to which the observers’ type 2 responses 

differentiate between correct and incorrect type 1 responses (also called metacognitive 

sensitivity). Type 2 bias indicates how liberal or conservative participants’ type 2 responses 

are with respect to their task performance (Fleming & Lau, 2014; Galvin et al., 2003). 

Quantifying type 2 sensitivity is challenging because type 2 sensitivity depends on type 1 

sensitivity and bias and standard models predict heavily skewed distributions of evidence for 

type 2 decisions (Barrett, Dienes, & Seth, 2013; Galvin et al., 2003). Nevertheless, type 2 

SDT analysis is both conceptually and practically useful for the study of subjective reports 

because it allows a separation of observers’ degree of insight into their own performance in 

the task from observers’ response strategies. 
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Figure 5-1. Signal detection theory. (a) Distributions of evidence created by the two stimuli A 

and B in a type 1 task, i.e. the observers’ task is to decide which one of the two stimuli has 

been presented. When the type 1 evidence is greater than the response criterion, observers 

respond “B”, and “A” otherwise. (b) Distributions of evidence created by correct and 

incorrect trials in a type 2 task, i.e. the observers’ task is to decide if the preceding judgment 

was correct. Note that the decision process is analogous to a type 1 task except the 

distributions of evidence created by correct and incorrect trials are expected to deviate 

strongly from the normal distribution. 

 

5.2.3. Empirical studies on confidence and visual experience 

Is there an effect of experience and confidence as content of subjective reports on type 

2 sensitivity and bias? Concerning type 2 bias, there is a considerable amount of evidence that 

participants apply different criteria when they make a report concerning their subjective 

confidence in being correct in a discrimination judgment, compared to when they report their 

visual experience of the task-relevant stimulus feature. Extreme examples for dissociations 

between visual experience and confidence stem from neuropsychological patients. For 

instance, Carota and Calabrese (2013) described a patient with achromatopsia after bilateral 

occipital damage, who claims to be entirely colour-blind, but is still able to make accurate 

colour discriminations and reports being confident about these colour judgments. A similar 

pattern has been documented in blindsight type 2, which, unlike classical blindsight, is 

characterized by awareness of some event, but without the phenomenology of normal seeing 

(Sahraie et al., 2002). Patient G.Y. reported being confident in discrimination judgments 

without experiencing the stimuli visually (Sahraie et al., 1998) and even wagered the same 

amount of money for the blind as for the intact hemifield when discrimination difficulty was 

matched (Persaud et al., 2011). In normal observers, decisional confidence is associated with 

more liberal criteria across a wide range of visual tasks, such as a stimulus localization task 

(Schlagbauer et al., 2012), a masked orientation discrimination task, a masked shape 
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discrimination task, and a random-dot motion discrimination task (see Chapter 2 and 3; 

Zehetleitner & Rausch, 2013). 

For type 2 sensitivity, the evidence for a distinction between experience and 

confidence is less consistent. The only neuropsychological study informative of type 2 

sensitivity reported that blindsight patient G.Y.’s area under the receiver operating 

characteristic (ROC) is larger when it is estimated from confidence judgments as compared to 

visual awareness at low stimulus intensities (Sahraie et al., 1998). In normal observers, 

subjective reports of perceptual experience outperformed confidence ratings in predicting trial 

accuracy in a masked object discrimination task (Sandberg et al., 2010) as well as a masked 

face discrimination task (Wierzchoń et al., 2014); however, subjective reports of decisional 

confidence were more efficient in predicting trial accuracy in a masked orientation 

discrimination task and a random-dot motion discrimination task (see sections 2.3 and 2.7; 

Zehetleitner & Rausch, 2013); and no substantial differences were found in a masked 

discrimination task of affective face expressions (Sandberg et al., 2013; Szczepanowski et al., 

2013) and a masked shape discrimination task (section 2.3; Zehetleitner & Rausch, 2013).  

These discrepant results of previous studies raise the question what are the factors that 

determine when visual experience and when confidence is associated with greater type 2 

sensitivity. One candidate factor may be the method used to quantify type 2 sensitivity: Those 

two studies that found type 2 sensitivity of visual experience to be higher than that of 

decisional confidence were both based on logistic regression analysis (Sandberg et al., 2010; 

Wierzchoń et al., 2014). By contrast, Szczepanowski et al. (2013) and Zehetleitner and 

Rausch (2013), who used type 2 ROC analysis to quantify type 2 sensitivity (Fleming et al., 

2010), observed that type 2 sensitivity of confidence was substantially greater than type 2 

sensitivity of experience or at least confidence tended to be associated with a greater type 2 

sensitivity. Since the measure of type 2 sensitivity is closely associated with the effects of the 

scale across previous studies, the question arises if the effect of confidence versus experience 

is entirely dependent on which measure is applied. 

5.2.4. Meta-da as measure of type 2 sensitivity 

The development of meta-da, a relatively new approach to quantifying type 2 

sensitivity (Maniscalco & Lau, 2012), offers the possibility assess meta-da with improved 

control (Fleming & Lau, 2014). The conceptual idea of meta-da is to express type 2 sensitivity 
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in terms of sensitivity of a type 1 SDT model (see Fig. 5-2). In such a model, participants are 

assumed to make objective discrimination responses and subjective reports based on identical 

sensory evidence. Subjective reports and task decisions are considered to form one continuum 

of responses such as “I’m sure it’s A”, “I guess A”, “I guess B”, “I’m sure it’s B”. 

Participants select one response out of the continuum based on comparisons of one value of 

sensory evidence, which is a random sample out of different distributions generated by A and 

B, with criteria that delineate the different response options. If participants had the same 

amount of evidence for subjective reports as they have for the task response, the distance 

between the two distributions should be same no matter whether it is estimated from A versus 

B decisions alone, or from A versus B decisions plus subjective reports. Thus, meta-da 

indicates the distance between the two distributions of evidence available for subjective 

responses. If meta-da is smaller than da, the distance between distributions of evidence 

estimated from “objective“ decisions alone, this would means that there is less sensory 

evidence for subjective reports than for task responses and that, accordingly, type 2 sensitivity 

is suboptimal. An introduction into the mathematics of meta-da is provided by (Barrett et al., 

2013).  

 

Figure 5-2. Signal detection model underlying meta-da. Meta-da is computed assuming 

metacognition is ideal, i.e. the same evidence is available for subjective reports than for 

discrimination judgments. The model is the same as a standard SDT model for a type 1 task, 

except that discrimination decisions and subjective reports are assumed to form one 

dimension of response options, i.e. “It is A for sure”, “I’m guessing A”, I’m guessing B”, “It 

is B for sure”, delineated by several response criteria. 

 

Meta-da and type 2 ROC analysis have both advantages and disadvantages: On the one 

hand, type 2 ROC analysis has the advantage of being free of assumptions about the 

underlying distributions of evidence, while meta-da requires making assumptions about the 
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shape of these distributions, which may be incorrect (Fleming & Lau, 2014). On the other 

hand, meta- da provides two advantages over type 2 ROC analysis: First, meta-da accounts for 

bias regarding the two task alternatives. Second, meta-da can be used to easily compare type 2 

sensitivity to objective task performance because meta-da is expressed in the same signal-to-

noise units as the standard da from signal detection theory (Fleming & Lau, 2014; Maniscalco 

& Lau, 2012). However, no study to date has compared different subjective reports of visual 

experience and decisional confidence in terms of meta-da. 

5.2.5. Logistic regression as measure of type 2 sensitivity 

Despite the merits of type 2 SDT analysis, the majority of previous studies comparing 

subjective reports have quantified the relation between trial accuracy and subjective reports 

by logistic regression (Sandberg et al., 2013, 2010; Wierzchoń et al., 2012, 2014). Logistic 

regression, a special case of generalized linear regression models, is a method to quantify the 

relationship between a binary outcome variable and one or several predictors. Linear 

regression methods assume a linear relationship between outcome and predictor: To obtain 

such a linear relationship, the outcome variable is transformed into the logarithm of the odds 

of the two possible outcome events. In case of type 2 sensitivity, the correctness of the trial 

serves as binary outcome variable, and subjective report as linear predictor. Thus, the 

subjective report is used to predict the logarithm of the odds of the trial being correct to being 

incorrect (see Fig. 5-3). The more efficient subjective reports differentiate between different 

levels of accuracy, the steeper the slope of the resulting regression line is. Thus, the slopes of 

logistic regression are interpreted as measure of type 2 sensitivity.  

On the one hand, logistic regression provides several advantages over other methods 

to analyse non-linear data: First, it is possible to include random effects to account for 

hierarchical clusters in the data, such as blocks nested within participants nested within 

experiments (Bolker et al., 2009; Pinheiro & Bates, 2000). Second, logistic mixed-model 

regression can be applied when the data is unbalanced (Bolker et al., 2009), that is, when the 

number of observations varies between conditions or even if there are empty cells in the 

design matrix. This is particularly useful for studies of metacognition because the number of 

errors may vary greatly among participants and conditions in the same experiment.  
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Figure 5-3. Quantifying the relationship between trial accuracy and subjective reports by 

logistic regression. (a) Data of a hypothetical experiment. Task accuracy in % correct is 

plotted as a function of subjective report. Lines indicate two separate conditions. (b) Same 

data with accuracy transformed into the odds of being correct to incorrect and plotted on log-

scale. Logistic regression is based on fitting a linear function on such transformed data. The 

more subjective reports differentiate between different levels of accuracy, the steeper the 

slopes of the regression line will be. Note that such a linear relationship is unlikely to occur in 

real data. 

 

On the other hand, the assumption of a linear relationship between subjective reports 

and transformed accuracy logistic regression relies upon is unlikely to hold. First, the data 

provided by rating scales is inherently categorical, not continuous, and linear models are 

inappropriate in particular for rating scales with small numbers of categories (Christensen & 

Brockhoff, 2013). In contrast, ratings on a visual analogue scale (VAS) may be at least 

approximately equidistant (Reips & Funke, 2008). Second, even if scale steps were 

equidistant, a non-linear relationship between the transformed accuracy and subjective reports 

might be expected in all tasks where participants have to select one out of a finite number of 

options: If there is a chance p of guessing correctly, the transformed odds of being correct 

cannot vary between -∞ and ∞; instead, it will asymptotically approach a lower bound at the 

logarithm of 𝑝 (1 − 𝑝)⁄ . A non-linear relationship between subjective reports and transformed 

accuracy would have two implications:  

(i) The interpretation of logistic regression slopes as indices of type 2 sensitivity would 

be ambiguous because the slope of the regression would vary across different parts of 

the scale, being close to zero for the lower part of the scale, and increasing only at the 

upper part.  
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(ii) Logistic regression might underestimate the type 2 sensitivity of scales imposing 

liberal criteria for lower scale steps, because the more liberal criteria are, the larger 

will be the part of the scale where the transformed accuracy cannot decrease any 

further due to the lower bound imposed by the guessing probability. 

5.2.6. Rationale of the present study 

In present paper, we investigate two issues: First, we examined whether an analysis of 

meta-da and logistic regression would reveal the same effect of visual experience versus 

decisional confidence (as contents of subjective reports) on type 2 sensitivity as suggested by 

previous type 2 ROC analyses. Second, we investigated whether the assumption of a linear 

relationship between subjective reports and transformed accuracy, which is required if logistic 

regression is used as an index of type 2 sensitivity, is justified.  

Specifically, we predicted that if the method of assessing type 2 sensitivity is indeed 

the reason for the discrepancy of results observed in previous studies, logistic regression 

coefficients of reports of visual experience should be greater than those of decisional 

confidence. If the effect of confidence associated with a larger area under the type 2 ROC 

curve than visual experience as observed previously reflected a stable pattern of the data, then 

type 2 sensitivity of confidence should be greater no matter if quantified by meta-da or logistic 

regression. In addition, if the assumption of a linear relationship between subjective reports 

and transformed accuracy is well-founded, then no non-linear trends should be observed. In 

contrast, if there was a bias to logistic regression due to a lower bound to the transformed 

accuracy, we would expect positive quadratic trends between subjective reports and 

transformed accuracy, and the quadratic trends should be more pronounced for decisional 

confidence as confidence is associated with more liberal criteria. 

To address these issues, we performed a reanalysis of three previously published 

experiments, a masked orientation discrimination task, a masked shape discrimination task, 

and a random-dot motion discrimination task (three experiments of Chapter 2; Zehetleitner & 

Rausch, 2013). In each of these experiments, participants submitted three responses on each 

trial: A 2-AFC discrimination judgment was followed by a report of the visual experience of 

the task-relevant stimulus feature along with a report of subjective confidence in being correct 

on the just performed discrimination judgment. For each of experiment, we analysed type 2 

sensitivity based on logistic regression analysis as well as meta-da. 
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5.3. Reanalysis 

5.3.1. Material and Methods 

In the present paper, we reanalysed Experiment 2-1, Experiment 2-3, and Experiment 

2-5 of Chapter 2 (Zehetleitner & Rausch, 2013). A detailed description of the methodology 

can be found there. Experiments 2-2 and 2-4 were not considered for reanalysis because these 

experiments did not require participants to report their visual experience.  

5.3.1.1. Experimental tasks 

The experiments involved a masked orientation discrimination task (N = 20), a masked 

shape discrimination task (N = 16), and a motion discrimination task (N = 21). All three 

experiments had an identical trial structure (see Fig. 5-4). First, participants were presented 

with a stimulus always at fixation. For the masked orientation task, the stimulus was a 

sinusoidal grating oriented either horizontally or vertically, followed by a checkerboard mask 

after a stimulus onset asynchrony (SOA) of 10, 20, 30, 40, 50, 70, 90, or 140 ms. For the 

masked shape task, the stimulus was either a circle or a square filled with the same sinusoidal 

grating as in the orientation task, succeeded by the checkerboard mask after SOAs of 8.3, 

16.7, 25.0, 33.3, 50.0, 66.7, 83.3, or 116.7 ms. For the motion discrimination task, the 

stimulus was a random dot kinematogram, with 0.7, 1.3, 2.7, 5.3, 10.7, 21.3, or 42.7 % of the 

dots coherently moving to either the left or the right, and the remaining dots relocated 

randomly. Participants had to make a non-speeded two-alternative forced-choice by key press 

about the stimulus they just had been presented with: For the masked orientation task, they 

indicated whether the sinusoidal grating had been horizontal or vertical; for the masked shape 

task, they reported whether the stimulus had been a square or a circle; and for the motion 

discrimination task, they indicated whether the dots had moved towards the left or the right. 

After each discrimination response, participants made two subjective reports, one regarding 

their visual experience of the stimulus, and one regarding their confidence in being correct in 

the discrimination task. For that, each question was displayed on the screen, which was: 

“How clearly did you see the grating/shape/coherent motion?” or “How confident are you that 

your response was correct?” In the orientation task, participants were asked not only to report 

their confidence, but additionally, in one third of the blocks , to wager money on the outcome 

of the judgment, and, in another third, to indicate whether their response was more due to 

guessing or to knowledge. The sequence of questions was balanced within participants in the 

orientation task, and across participants in the other two tasks. Participants delivered 
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subjective reports using a joystick and a VAS, which means that participants selected a 

position along a continuous line between two end points by moving a cursor. The end points 

were labelled as “unclear” and “clear” for the experience scale and “unconfident” and 

“confident” for the confidence scale, i.e. observers indicated their experience or confidence by 

the selected cursor position on the continuous scale (see Fig. 5-4). If the discrimination 

judgment was erroneous, the trial ended by displaying the word “error” for 1,000 ms on the 

monitor. There was no feedback with respect to the subjective report. 

 

Figure 5-4. Trial sequence for (a) the masked orientation task, (b) the masked shape 

discrimination task, and (c) the random-dot motion discrimination task. 
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5.3.1.2. Analysis 

All analysis were conducted in the free software R 3.0.2 (R Core Team, 2014). Trials 

of the masked orientation task on which participants did not report their subjective confidence 

in being correct were excluded from the analysis.  

5.3.1.2.1. Logistic regression 

Logistic mixed regression analysis was performed using the R library lme4 (Bates, 

Mächler, Bolker, & Walker, 2014; Bates, Maechler, et al., 2014), with error as dependent 

variable and stimulus quality (logarithm of SOA for the orientation and the shape 

discrimination task, logarithm of coherence for the motion task), first report, second report, 

scale (confidence first vs. experience first), as well as all possible two-way and three-way 

interactions as fixed effects, and a random effect on the intercept. All numerical predictors 

were centred and scaled. Statistical significance was assessed via likelihood ratio tests 

conducted by dropping the effect to be tested out of a model containing all effects of the same 

order. Contrasts were coded in a way that the regression coefficients of scale can be directly 

interpreted as difference between experience and confidence. Confidence intervals were 

estimated around fixed effects from the local curvature of the likelihood surface. To resolve 

the interaction between scale, stimulus quality, and subjective reports, we performed 

likelihood ratio tests comparing models that only included main effects of report and scale 

against models with an interaction between report and scale, separately for each level of 

stimulus quality, with p-values adjusted according to the Bonferroni method to account for 

multiple comparisons. 

5.3.1.2.2. Meta-da 

Meta-da was computed using an implementation of the maximum likelihood procedure 

described by Maniscalco and Lau (2012) in the free software R (code is found in section 5.7.), 

assuming normal distributions of evidence with non-equal variances. First, the continuous 

VAS rating data was divided into 13 equal bins. Then, meta-da was computed separately for 

each participant and each condition and then subjected to a mixed linear regression model 

with the fixed factors scale (experience vs. confidence), time (first vs. second report), and 

stimulus quality and a random effect on the intercept (again based on the R library lme4). We 

used mixed linear regression models instead of ANOVAs because the factors time and scale 

varied within participants, but were not crossed in the shape discrimination and the motion 

discrimination experiments. Contrasts were coded in a way that the regression coefficients of 
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scale and time can directly be interpreted as difference in meta-d between conditions. 

Confidence intervals around fixed effects were estimated from 10,000 parametric bootstrap 

samples. Significance was assessed by Wald t-tests using degrees of freedom estimated by 

Satterthwaite’s approximation implemented in the R library lmerTest (Kuznetsova et al., 

2014). To resolve interactions between stimulus quality and scale, separate t-tests were 

computed for each level of stimulus quality, with p-values corrected using the Bonferroni 

method. We repeated this analysis assuming two other distributions of evidence, the logistic 

distribution and the distribution of the smallest extremes, which gave essentially the same 

pattern of results as we obtained with the normal distribution.  

5.3.1.2.3. Association between reports and stimulus quality 

To assess the relationship between reports and stimulus quality, we computed non-

parametric Goodman and Kruskal’s gamma correlation coefficients separately for each 

participant and for visual experience and confidence. Paired t-tests were conducted to test for 

a difference between scales.  

5.3.2. Results 

5.3.2.1. Logistic regression 

The complete results of the mixed logistic regression models can be seen in Table 5-1. 

We found significant interactions between the first report and scale in the masked shape task 

and the motion task, as well as between the second report and scale in all three experiments. 

Only for the first report in the masked orientation task, no significant interaction was detected. 

The sign of the coefficients of each interaction term between scale and report indicated 

concurrently that subjective reports of decisional confidence were more efficient in predicting 

trial accuracy than the reports of visual experience. While there were no three-way 

interactions of ratings, scale, and stimulus quality in the masked orientation task and in the 

motion task, we observed significant interactions between rating, stimulus quality and scale in 

the masked shape task. To resolve these three-way interactions, we tested the interaction 

between scale and rating with separate logistic regression models for each level of stimulus 

quality of the masked shape task, observing significant interactions at the SOAs of 50, 66, and 

116.7 ms, χ²(2) = 22.7, pcor < .001, χ²(2) = 13.1, pcor < .05, and χ²(2) = 12.1, pcor < .05, 

respectively. 
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Table 5-1 

Results of a logistic mixed model regression for accuracy across experiments 

Experiment Effect B 
95% CI 

χ² p 
Lower Upper 

Masked 

orientation 

task 

First report 0.71 0.52 0.90 60.1 <.001 

Second report 0.37 0.17 0.57 20.4 <.001 

SOA 0.71 0.54 0.89 60.3 <.001 

Scale -0.42 -0.70 -0.14 7.1 <.01 

First report * second report 0.23 0.04 0.41 2.1 n.s. 

First report * SOA 0.38 0.17 0.58 3.6 n.s. 

First report * scale
13

 0.21 -0.20 0.62 3.4 n.s. 

Second report * SOA 0.35 0.15 0.55 6.7 <.01 

Second report * scale -0.93 -1.35 -0.51 13.3 <.001 

SOA * scale -0.19 -0.53 0.15 0.1 n.s. 

First report * second report * 

SOA 
0.33 0.16 0.51 13.3 <.001 

First report * second report * 

scale 
-0.41 -0.77 -0.04 3.9 <.05 

First report * SOA * scale 0.06 -0.35 0.47 0.8 n.s. 

Second report * SOA * scale -0.42 -0.83 -0.01 2.9 n.s. 

Masked shape 

task 

First report 0.71 0.50 0.92 44.3 <.001 

Second report 0.36 0.15 0.57 31.4 <.001 

SOA 0.85 0.72 0.98 310.5 <.001 

Scale 0.54 0.16 0.93 2.4 n.s. 

First report * second report 0.22 0.06 0.37 3.5 n.s. 

First report * SOA 0.42 0.21 0.63 5.9 < .05 

First report * scale 1.05 0.63 1.46 12.8 <.001 

Second report * SOA 0.26 0.07 0.45 23.0 <.001 

Second report * scale -0.72 -1.14 -0.31 6.4 < .05 

First report * second report * 

SOA 
0.21 0.06 0.36 8.7 <.01 

First report * second report * 

scale 
0.14 -0.18 0.45 0.6 n.s. 

First report * SOA * scale 1.02 0.60 1.44 27.5 <.001 

Second report * SOA * scale -0.63 -1.00 -0.25 10.8 <.001 

                                                 
13

 Note that the effect of scale codes if the report of confidence was collected before the report 

of experience or vice versa. Consequently, a positive coefficient of the first report * scale 

interaction effect indicates that confidence predicted accuracy more efficiently than 

experience, whereas a positive coefficient of the second report * scale indicates just the 

reverse pattern.  
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Motion 

discrimination 

task  

First report 0.44 0.25 0.63 20.3 <.001 

Second report 0.38 0.21 0.56 28.3 <.001 

Coherence 1.15 1.02 1.27 518.4 <.001 

Scale -0.08 -0.49 0.34 1.0 n.s. 

First report * second report 0.03 -0.09 0.15 0.0 n.s. 

First report * coherence 0.17 -0.01 0.35 3.0 n.s. 

First report * scale 0.29 -0.08 0.66 7.2 <.01 

Second report * coherence 0.38 0.21 0.56 23.9 <.001 

Second report * scale -0.59 -0.95 -0.24 12.6 <.001 

First report * second report * 

coherence 
0.04 -0.08 0.15 0.3 n.s. 

First report * second report * 

scale 
0.03 -0.21 0.27 0.1 n.s. 

First report * coherence * scale -0.15 -0.50 0.20 1.0 n.s. 

Second report * coherence * 

scale 
-0.19 -0.53 0.16 1.1 n.s. 

 

 

Figure 5-5. Relationship between subjective report and the odds of being correct, separately 

for scale, experiment, and time of the report. Upper row: First subjective report within one 

trial, Lower row: Second subjective report within one trial. Lines indicate the prediction from 

logistic regression models including quadratic effects. 
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The relationships between subjective report and transformed accuracy are depicted 

separately for scale, experiment, and time of the report in Fig. 5-5. For the masked orientation 

task, we detected no substantial quadratic trend at the first report, χ²(1) = 0.6, n.s., but we did 

at the second, χ²(1) = 22.5, p < .001. For the masked shape task, there was a significant 

quadratic trend at the first report, χ²(1) = 18.0, p < .001, but not at the second, χ²(1) = 1.1, n.s. 

For the motion discrimination task, we again detected no significant quadratic trend at the 

first report, χ²(1) = 0.1, n.s., while there was one at the second report, χ²(1) = 18.2, p < .001.  

Significant interactions between quadratic trends and scale were only detected for the 

masked shape task, first report: χ²(1) = 11.1, p < .001, second report: χ²(1) = 6.2, p < .05. 

Separate models for only experience and confidence revealed a significant quadratic trend for 

confidence only, χ²(1) = 45.5, p < .001, but not for experience, χ²(1) = 2.0, n.s. 

5.3.2.2. Meta-da 

 

Figure 5-6. Meta-da as a function of stimulus quality, separately for each task in separate 

panels and scales as separate lines. 

 

As can be seen from Fig. 5-6, meta-da scores estimated from confidence ratings were 

greater than meta-da scores for experience in all three experiments. In the masked orientation 

experiment and the motion experiment, this effect emerged already at very low stimulus 

quality (i.e., short SOAs), where meta-da of experience was still at chance level; in the 

masked shape task, by contrast, the effect became evident only at longer SOAs.  
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The results of the mixed linear regression models can be seen in Table 5-2. We found 

substantial negative effects of scale in all three experiments, indicating that meta-da scores 

computed from visual experience were indeed always smaller than meta-da scores of 

decisional confidence. Substantial effects of time or an interaction between time and any of 

the other variables were not detected. However, we observed significant interactions between 

stimulus quality and scale in the masked orientation and the masked shape experiment, but 

not in the motion experiment.  

Table 5-2 

Results of a linear mixed regression model for meta-da across experiments 

Experiment Effect B 
95% CI 

|t| df p 
Lower Upper 

Masked 

orientation 

task 

Scale -0.62 -0.75 -0.49 9.3 772.9 <.001 

SOA 0.82 0.75 0.88 24.7 772.9 <.001 

Time 0.01 -0.12 0.14 0.2 772.9 n.s. 

Scale * SOA -0.30 -0.43 -0.17 4.5 772.9 <.001 

Scale * Time 0.24 -0.02 0.50 1.8 772.9 n.s. 

SOA * Time -0.10 -0.23 0.03 1.6 772.9 n.s. 

Scale * SOA * Time 0.20 -0.06 0.46 1.5 772.9 n.s. 

Masked shape 

task 

Scale -0.42 -0.60 -0.23 4.4 234.0 <.001 

SOA 0.99 0.90 1.08 20.7 234.0 <.001 

Time 0.00 -0.19 0.19 0.0 234.0 n.s. 

Scale * SOA -0.47 -0.66 -0.28 4.9 234.0 <.001 

Scale * Time 0.16 -0.77 1.10 0.3 14.0 n.s. 

SOA * Time -0.01 -0.20 0.18 0.1 234.0 n.s. 

Scale * SOA * Time -0.26 -0.63 0.12 1.4 234.0 n.s. 

Motion 

discrimination 

task 

Scale -0.28 -0.46 -0.11 3.1 267.0 <.01 

Coherence 1.13 1.04 1.21 25.1 267.0 <.001 

Time -0.03 -0.20 0.15 0.3 267.0 n.s. 

Scale * Coherence -0.10 -0.27 0.08 1.1 267.0 n.s. 

Scale * Time 0.21 -0.46 0.86 0.6 19.0 n.s. 

Coherence * Time -0.05 -0.23 0.12 0.6 267.0 n.s. 

Scale * Coherence * 

Time 
0.16 -0.20 0.51 0.9 267.0 n.s. 

 

Post-hoc tests comparing meta-da between experience and confidence separately at 

each SOA revealed that for the orientation task, meta-da of confidence was greater than that of 

experience for each SOA longer than 50 ms, all t(19)’s > 2.2, all pcor‘s < .05. For the masked 
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shape experiments, we found meta-da of confidence to be above meta-da of experience at the 

SOA of 50 ms, t(15) = 3.7, pcor < .05, as well as the SOA of 116.7 ms, t(15) = 5.0, pcor < .01.  

5.3.2.3. Correlation between reports and stimulus quality 

The mean gamma correlation coefficient between reports and stimulation strength 

were .68 for experience and .69 for confidence in the masked orientation task, both .62 in the 

masked form task, and .59 and .60, respectively, in the motion task. None of these differences 

were significant, all t’s > .7, n. s. 

5.4. Discussion 

The analysis presented here was conducted to examine two issues:  

(i) Does the effect of visual experience versus decisional confidence (as contents of 

subjective reports) on type 2 sensitivity depend on the method used to quantify type 2 

sensitivity?  

(ii) Is logistic regression biased owing to a non-linear relationship between transformed 

accuracy and subjective reports? 

Concerning the effect of content, meta-da indicated that type 2 sensitivity of decisional 

confidence was greater than of visual experience in all three tasks. Consistent with the 

hypothesis that the effect of experience versus confidence is largely independent of the 

method to quantify type 2 sensitivity, we detected the same effect in five out of six tests using 

logistic regression analysis. The correlation between subjective reports of visual experience 

and quality of stimulation was the same as the correlation between confidence and the quality 

of stimulation, indicating that none of the two scales was compromised by a large amount of 

noise.  

Concerning the relationship between transformed accuracy and subjective reports, 

logistic regression revealed at least one quadratic trend out of the two subjective reports in 

each experiment, indicating that the interpretation of logistic regression slopes as type 2 

sensitivity is often ambiguous and may be confounded by response criteria settings. While the 

quadratic trend in the masked shape task was primarily driven by decisional confidence, we 

observed no differences between experience and confidence in terms of non-linear trends in 

the other two experiments.  
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5.4.1. Why confidence outperforms experience in predicting accuracy 

There are three potential explanations why subjective reports of confidence are 

different from subjective reports of visual experience:  

(i) independent conscious access of different stimulus features
14

 

(ii) distinct metacognitive mechanisms (Overgaard & Sandberg, 2012),  

(iii) placement of different criteria (Wierzchoń et al., 2012, 2014)  

The first account is closely linked to the theoretical proposal that a stimulus is 

represented by a hierarchy of features, and conscious access to the different features of a 

stimulus can vary independently (Kouider et al., 2010). According to this theory, partial 

awareness is a state where some features are consciously accessible while other features 

cannot be accessed. Decisional confidence may depend to a large degree on conscious access 

of the relevant feature to the discrimination decision (Dienes, 2008). If additional task-

irrelevant features of the stimulus contribute to the quality of visual experience to a greater 

extent than they do to confidence judgments, this would explain why confidence judgments 

are more strongly associated with task accuracy. At the same time, conscious access of both 

task-relevant and task-irrelevant features varies as a function of physical stimulus quality; 

consequently, a state of partial awareness would also explain why the correlations of 

confidence and visual experience with task difficulty are the same. Finally, if decisional 

confidence requires conscious access to only that feature which is task-relevant, but visual 

experience requires conscious access to other features in addition to the task-relevant one, the 

condition for reporting confidence may be met more frequently than the condition for 

reporting a visual experience, thus explaining why reports of visual experience are associated 

with more restrictive criteria (Carota & Calabrese, 2013; Sahraie et al., 1998; Schlagbauer et 

al., 2012; Zehetleitner & Rausch, 2013).  

The second explanation for varying type 2 sensitivity between different scales posits 

different metacognitive mechanisms underlying the making of subjective reports: Overgaard 

and Sandberg (2012) suggested that subjective reports of experience rely on introspection, an 

online inspection of ongoing mental states, whereas confidence judgments are mediated by 

                                                 
14

 This argument can not only be framed in terms of conscious access, but also in terms of higher order thought 

theory, see section 6.1.3. 
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additional more complex metacognitive processes requiring insight into the decision 

processes during the objective task. Based on the second assumption that insight into one’s 

decision making is more error-prone than pure introspection, Overgaard and Sandberg (2012) 

predicted that type 2 sensitivity of visual experience is greater than that of decisional 

confidence. However, the pattern we observed was just reversed, indicating that reporting 

one’s confidence is not more difficult than reporting one’s visual experience. If reporting 

one’s visual experience was then a more difficult task than reporting one’s confidence, it 

would be expected that experience is compromised by a higher level of unsystematic noise in 

general. However, unsystematic noise would also decrease the correlation with the quality of 

stimulation, but we observed no indication of such an effect. Overall, we did not find any 

evidence that either subjective reports of experience or confidence are more difficult to make. 

Nevertheless, our data do not rule out the possibility that subjective reports of experience and 

confidence are mediated by independent but similarly effective metacognitive processes.  

According to the third account for differences between scales, each scale is composed 

of different criteria along the awareness spectrum; thus, each step of each scale estimates a 

slightly different level of awareness (Wierzchoń et al., 2012, 2014). If the differences between 

scales were only due to type 2 bias, rather than type 2 sensitivity, there should be no effect of 

different scales if subjective criteria are controlled for. However, we find meta-da of 

confidence to be greater than meta-da of experience across all three experiments, indicating 

that the difference between experience and confidence is not due to type 2 bias alone.  

5.4.2. What factors contribute to the variability across studies? 

The starting point for our reanalysis was the observation that the patterns of results in 

previous studies were closely associated with the method employed to quantify type 2 

sensitivity: While type 2 sensitivities of decisional confidence were greater than those of 

visual experience in several studies (Sahraie et al., 1998; Szczepanowski et al., 2013; 

Zehetleitner & Rausch, 2013), two other studies both using logistic regression analysis found 

the opposite pattern (Sandberg et al., 2010; Wierzchoń et al., 2014). Our comparison between 

logistic regression and meta-da as measures of type 2 sensitivity revealed that the overall 

pattern of type 2 sensitivity of confidence compared to experience was largely independent of 

the method used to assess type 2 sensitivity. Consequently, the question what factors 

determine whether subjective reports of experience or confidence are associated with greater 

type 2 sensitivity is still open: The first and most obvious possibility is that the variability 
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across studies is due to the different stimuli. While those studies that reported greater type 2 

of confidence employed tasks with fairly simple stimulus features such as motion and 

orientation, studies reporting the reversed pattern used either an object identification task or a 

masked face discrimination task. It is possible that confidence is associated with greater type 

2 sensitivity than visual experience for very basic stimulus features only, while the effect is 

reversed with more complex stimuli. A second possibility relates to the different techniques of 

how subjective reports were recorded: While Sandberg et al. (2010) and Wierzchoń et al. 

(2014) provided participants with four labelled scale steps, participants in our own 

experiments operated a joystick to select a position on a VAS. It is possible that recording 

techniques interfere with the content of the subjective scales, for example, if participants are 

unable to report their visual experience in the same fine-grained manner as their decisional 

confidence. A previous study did not detect any effect of recoding technique on type 2 

sensitivity of motion experience (Chapter 4, Rausch & Zehetleitner, 2014), but to our 

knowledge, no study so far has addressed this issue with respect to decisional confidence. A 

third possibility lies in the precise content of the scale assessing visual experience: While the 

scale in our study measured visual experience of the task-relevant feature, previous studies 

frequently used the perceptual awareness scale, which  measures visual experiences of the 

task-relevant feature in conjunction with “brief glimpses”, defined as “experiences without 

any content that cannot be defined any further” (Ramsøy & Overgaard, 2004). Thus, the 

surplus of type 2 sensitivity of visual experience could be driven entirely by experiences 

without content (see Chapter 2 and 4 for more detailed discussions; Rausch & Zehetleitner, 

2014; Zehetleitner & Rausch, 2013). Finally, although logistic regression and meta-da 

converged in our data, it is still possible that these methods would create conflicting results if 

applied to other data sets. Overall, further experiments would appear necessary to explore 

which of these options can explain the variability of previous studies concerning type 2 

sensitivity of experience and confidence. 

5.4.3. How should we quantify type 2 sensitivity? 

Comparisons between previous studies on type 2 sensitivity are limited due to the fact 

that there are several competing measures such as logistic regression, type 2 ROC analysis 

(Fleming et al., 2010), and meta-da (Maniscalco & Lau, 2012). Our reanalysis based on 

logistic regression and meta-da revealed a consistent effect of confidence versus experience as 

content of subjective reports across all three tasks, although a previous analysis based on type 

2 ROC curves failed to detect an effect in the masked shape task (Zehetleitner & Rausch, 
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2013). Since the results of the present reanalysis are consistent across all three tasks and both 

methods, the most likely reason why we failed to find an effect in the previous 2 ROC 

analysis is lack of statistical power. Meta-da may be more powerful than type 2 ROC analysis 

due to the control of discrimination response biases or because it is possible to apply 

adjustments for extreme proportions (Hautus, 1995). Logistic regression analysis may benefit 

from the analysis being conducted on a single trial basis.  

However, we observed two downsides to the use of logistic regression, owing to the 

fact that the relationship between subjective reports and the transformed accuracy was not 

linear, but often approached a lower bound instead. First, the slope of the regression curve 

changed over the range of the scale, tending towards zero at lower parts of the scale and 

increasing only at higher parts of the scale. As a consequence, there is no single logistic 

regression slope in each condition, and thus the interpretation of logistic regression slopes in 

terms of type 2 sensitivity is ambiguous. Second, logistic regression may have a bias towards 

greater slopes with more conservative reports because the more liberal a scale is, the larger 

will be the part of the scale where the transformed accuracy is within the asymptotic range of 

performance; the more conservative a scale is, the larger will be the part of the scale where 

transformed accuracy increases. Indeed, in the masked shape task, we observed that the non-

linear trend was confined to decisional confidence, the more liberal scale, and was absent in 

subjective reports of visual experience, which are known to be more conservative.  

As control of subjective criteria is a critical feature of measures of type 2 sensitivity 

(Barrett et al., 2013), and given that meta-da also controls discrimination bias and may 

provide increased statistical power, we recommend meta-da for all future studies where it can 

be applied.  

5.5. Conclusion 

We report that logistic regression and meta-da consistently indicated that subjective 

reports of confidence are more efficient in predicting trial accuracy than subjective reports of 

visual experience. Our data is consistent with the interpretation that participants consider 

stimulus features irrelevant to the current discrimination decision in addition to task-relevant 

ones for making subjective reports about their visual experience. We suggest that the choice 

of a scale to measure visual awareness should be based on theoretical considerations of 

exactly what are the conscious contents relevant for a particular research question. As we 
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observed multiple non-linear relationships between subjective reports and the logit transform 

of accuracy, logistic regression is not a consistent and possibly biased measure of type 2 

sensitivity, which is why we recommend meta-da for future studies.  
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5.7. Appendix: Code to compute meta-da in R 

### Code to compute meta-d' in R #### 
################################ 
 
# computeMetaD computes meta-d' based method described by Maniscalco, B., & Lau, H. (2012).  
# A signal detection theoretic approach for estimating metacognitive sensitivity from confidence 
ratings.  
# Consciousness and Cognition, 21, 420-430. doi: 10.1016/j.concog.2011.09.021 
  
# Arguments: 
#   ratings: a factor with levels corresponding to the rating categories,  
#            ordered from low to high 
#   stimulus: a factor, levels corresponding to stimulus identities 
#   correct: a vector with 1 indicating correct responses and 0 incorrect responses 
#   distr: What distributions of the evidence should be assumed. Default "norm",  
#          uses the normal distribution, 
#          "logis" assumes the logistic distribution, and "gumbel" the distribution of smallest extremes  
#   contraintsMetaD: a two-element vector with minimal and maximal value allowed for meta-d' 
#   varEqual: a logical value indicating if equal variances should be assumed 
#   addConstant:  a logical value indicating if a constant of .5 devided by the number of rating 
#                 categories should be added to each cell 
#   nInnerIterations, nOuterIterations: number of inner and outer iterations  
#                                       passed to contrOptim 
# 
# Returns: a list with the elements 
#   metaDPrime: estimated sensitivity from rating data 
#   dPrime: estimated sensitivity from objective discrimination responses 
#   logLikelihood: log of the likelihood of the best fit 
 
computeMetaD <- function(ratings, stimulus, correct,  
                         distr = "norm",  
                         constrainMetaD = c(-20,20), 
                         varEqual = FALSE, addConstant = TRUE, 
                         nInnerIterations = 1000, nOuterIterations = 1000){ 
   
  if(!is.factor(ratings)) stop ("ratings should be a factor!") 
  if(!is.factor(stimulus )|| length(levels(stimulus)) != 2) { 
    stop("stimulus should be a factor with 2 levels") 
  } 
  if(!all(correct %in% c(0,1))) stop("correct should be 1 or 0") 
   
  pfun <- switch(distr, norm = pnorm, logis = plogis,  
                 gumbel = function(x, location, scale) exp(-exp((location-x)/scale))) 
  qfun <- switch(distr, norm = qnorm, logis = qlogis,  
                 gumbel = function(x) -log(-log(x)))  
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nRatings <-  length(levels(ratings)) 
  nCriteria <- nRatings * 2 - 1 
  abs_corrects <-  table(ratings[correct == 1], stimulus[correct == 1])  
  abs_errors   <-  table(ratings[correct == 0], stimulus[correct == 0]) 
 
  if (addConstant){ 
    abs_corrects <- abs_corrects + .5/nRatings 
    abs_errors   <- abs_errors + .5/nRatings 
  }   
 
  nC_rS1 <- rev(as.vector(abs_corrects[, 1])) 
  nI_rS1 <- rev(as.vector(abs_errors[, 2])) 
  nC_rS2 <- as.vector(abs_corrects[, 2]) 
  nI_rS2 <- as.vector(abs_errors[, 1]) 
   
  abs_S1 <- c(rev(abs_errors[,2]),abs_corrects[,2]) 
  ratingHrs <- qfun(1 - cumsum(abs_S1)/sum(abs_S1)) 
  abs_S2 <-  c(rev(abs_corrects[,1]), abs_errors[,1] ) 
  ratingFrs <-  qfun(1 - cumsum(abs_S2)/sum(abs_S2)) 
  finits <- is.finite(ratingHrs) & is.finite(ratingFrs) 
  ratingHrs <- as.vector(ratingHrs[finits]) 
  ratingFrs <- as.vector(ratingFrs[finits]) 
 
  if (varEqual) { s <- 1 
  } else s <- as.vector(lm(ratingHrs ~ ratingFrs)$coefficients[2]) 
 
  meta_d1 <- (1/s) * ratingHrs[nRatings] - ratingFrs[nRatings] 
  cs_1 <- (-1/(1+s)) * (ratingHrs + ratingFrs) 
  initials <- c(meta_d1, cs_1) 
 
  A <- matrix(0, nrow=nCriteria+1, ncol = nCriteria+1) 
  A[1, 1] <- 1 
  A[2, 1] <- -1 
  diag(A[3:(nCriteria+1),2:nCriteria]) <- -1 
  diag(A[3:(nCriteria+1),3:(nCriteria+1)]) <- 1 
  b <- c(min(constrainMetaD),-1* max( constrainMetaD),rep(0, nCriteria-1)) 
 
  fit <- constrOptim(theta = initials, f = negLogLik, grad = NULL, ui = A, ci = b, 
                     outer.iterations = nOuterIterations,  
                     control = list(maxit = nInnerIterations), 
                     nC_rS1 = nC_rS1, nI_rS1 = nI_rS1, nC_rS2 = nC_rS2, nI_rS2 = nI_rS2, 
                     nRatings = nRatings, s = s, pfun = pfun) 
                      
  result <- list(dPrime = meta_d1 * s * sqrt(2/(1 + s^2)),  
                 metaDPrime = fit$par[1] * s * sqrt(2/(1 + s^2)), 
                 logLikelihood = -fit$value)  
 
  return(result) 
} 
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negLogLik <- function(parameters, nC_rS1, nI_rS1, nC_rS2, nI_rS2, nRatings, s, pfun) { 
  t1c <- parameters[nRatings+1] 
  S1mu <- -parameters[1]/2 
  S1sd <- 1 
  S2mu <- parameters[1]/2 
  S2sd <- 1/s 
  t2c1x <-  c(-Inf, parameters[2:length(parameters)],Inf) 
  prC_rS1 <- (pfun(t2c1x[2:(nRatings+1)],S1mu,S1sd) -  
              pfun(t2c1x[1:nRatings],S1mu,S1sd)) / pfun(t1c,S1mu,S1sd) 
  prI_rS1 <- (pfun(t2c1x[2:(nRatings+1)],S2mu,S2sd) -  
              pfun(t2c1x[1:nRatings],S2mu,S2sd)) / pfun(t1c,S2mu,S2sd) 
  prC_rS2 <- ((1- pfun(t2c1x[(nRatings+1):(nRatings*2)],S2mu,S2sd)) -  
             (1- pfun(t2c1x[(nRatings+2):(nRatings*2+1)],S2mu,S2sd))) / 
             (1 - pfun(t1c,S2mu,S2sd)) 
  prI_rS2 <- ((1- pfun(t2c1x[(nRatings+1):(nRatings*2)],S1mu,S1sd)) -  
             (1- pfun(t2c1x[(nRatings+2):(nRatings*2+1)],S1mu,S1sd))) / 
             (1 - pfun(t1c,S1mu,S1sd)) 
   
  logL <-  -sum(nC_rS1*log(prC_rS1),nI_rS1*log(prI_rS1),nC_rS2*log(prC_rS2),nI_rS2*log(prI_rS2)) 
 
  return(logL) 
} 
 
 
### Examples 
 
stimulus <- factor(rep(c("A", "B"), 10)) 
ratings <- factor(c(rep(1:3,4), rep(3,times=8))) 
correct <- c(rep(0,4), rep(1,6), rep(0,2), rep(1,8)) 
 
computeMetaD(stimulus = stimulus, ratings = ratings, correct = correct) 
computeMetaD(stimulus = stimulus, ratings = ratings, correct = correct, distr = "logis") 
computeMetaD(stimulus = stimulus, ratings = ratings, correct = correct, distr = "gumbel") 
 
 
computeMetaD(stimulus = stimulus, ratings = ratings, correct = correct,  
             constrainMetaD = c(0,5)) 
computeMetaD(stimulus = stimulus, ratings = ratings, correct = correct,  
             varEqual = TRUE) 
computeMetaD(stimulus = stimulus, ratings = ratings, correct = correct,  
             addConstant = FALSE)  
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6. FINAL DISCUSSION 

The present series of experiments addressed the research question how subjective 

measures of conscious awareness need to be designed to provide valid and reliable data for 

consciousness research. 

Regarding the content of subjective measures, a series of psychophysical experiments 

suggested that subjective measures about the accuracy of a discrimination response are 

different from measures about visual experience: First, measures related to the discrimination 

response were found to impose more liberal criteria. Second, they were associated with 

greater type 2 sensitivity. Third, different subjective measures about the accuracy of a 

discrimination response correlated more strongly with each other than each of them correlated 

with a subjective measure of visual experience (Chapter 2 and 5; Zehetleitner & Rausch, 

2013; Rausch, Müller, & Zehetleitner, 2015). Finally, the earliest sensory ERP correlates of 

verbal reports were predictive of the fact whether participants reported that they made a 

discrimination response based on knowledge rather than guessing, but were not yet predictive 

whether participants reported a clear experience over and above that knowledge. The 

strongest correlate of visual experience closely preceded participants’ response to the 

discrimination task (Chapter 3).  

With respect to granularity, subjective measures of the experience of motion contained 

more information when participants selected a position on a visual analogue scale compared 

to a scale with four discrete labelled categories. The greater amount of information rendered 

subjective measures more predictive of task accuracy and improved coefficients of internal 

consistency. In addition, there was no evidence that participants’ type 2 sensitivity was 

impaired by the greater number of response options offered by a visual analogue scale 

(Chapter 4, Rausch & Zehetleitner, 2014)  

Finally, regarding the statistical procedure to quantify the relation between subjective 

measures and task accuracy, logistic regression was found to be a suboptimal method due to 

non-linear relationships between subjective reports and the transformed task accuracy. 

However, meta-da, a measure derived from signal detection theory, provided the most 

consistent results across studies (Chapter 5, Rausch, Müller, & Zehetleitner, 2015).  
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6.1. The content of subjective measures 

It is widely assumed in the field of consciousness research subjective reports of visual 

experience and decisional confidence are equally valid, and thus typically used and/or 

interpreted as interchangeable (Ko & Lau, 2012; Lau & Rosenthal, 2011; Seth et al., 2008). 

The present data challenges this wide-spread assumption: Participants first report confidence 

about being correct in a discrimination task; only at greater strength of stimulation, they 

would report to experience the stimulus visually.  

Is a dissociation between stimulus-related and response-related subjective measures 

consistent with the existing theories of consciousness? Although the advocates of phenomenal 

consciousness, global workspace theory, and higher-order theories have not discussed 

potential disagreements between subjective measures, it should be considered if such a 

distinction can be easily integrated in each of these frameworks, and if not, which 

assumptions need to be adjusted.  

6.1.1. Theoretical implications for phenomenal consciousness 

In the framework of phenomenal consciousness, the distinction between stimulus-

related and response-related measures may be explained as participants experiencing an 

intuition of being correct in the task without experiencing the stimulus visually. Phenomenal 

consciousness involves the experiential properties of sensations, feelings, perceptions, 

thoughts, wants, and emotions (Block, 2002). These experiences can be assorted into two 

categories (Bischof, 1965): One set of phenomenology appears to arise from the observer’s 

own mind, e.g. thoughts and emotions, and may be called ostensibly mental experiences. 

Ostensibly physical experiences in contrast appear to stem from the physical world, for 

instance from an external stimulus, or the observer’s body. One possibility is that the 

phenomenology of participants that report confidence in the task but no experience of the 

stimulus is the ostensibly mental feeling-of-knowing. Participants have the experience that 

they know what the stimulus feature is, but the stimulus does not create visual 

phenomenology. Feeling-of-knowing has been originally described in the context of meta-

memory (Koriat, 2007; Nelson & Narens, 1990), but visual perception may be able to 

generate feelings-of-knowing as well (Mangan, 2001). A second possibility is that the 

experience is ostensibly physical. So-called blindsight patients sometimes report residual 

phenomenology characterized by the awareness of the event, but without the phenomenology 
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of normal seeing (Sahraie et al., 2002; Zeki & Ffytche, 1998). Normal observers may have a 

similar experience if the stimuli are just at the threshold of conscious perception (Ramsøy & 

Overgaard, 2004).  

While on a principal level, the concept of phenomenal consciousness has sufficient 

degrees of freedom to describe the distinction between stimulus-related and response-related 

subjective measures, there is one specific hypothesis about phenomenal consciousness that 

appears at first glance to be at odds with the current data. According to the overflow 

hypothesis, the contents of short-term sensory buffers are associated with phenomenal 

experience (Block, 2011). This short-term sensory buffer stores all visual objects for a short 

period of time, until it is overridden by the next stimulation. However, participants are only 

able to make correct discrimination judgments about 4 ± 1 objects, as cognitive access to the 

contents of sensory buffers is limited by the capacity of working memory (Sligte, Scholte, & 

Lamme, 2008; Vandenbroucke et al., 2011). As the capacity of the conscious sensory buffer is 

much larger than the capacity of working memory, the overflow hypothesis explains why 

participants are only able to make correct task responses about a small number of display 

items, although they report an experience of a rich phenomenal world (Block, 2011). 

The standard and widely debated case is that phenomenal consciousness exceeds 

cognitive access. However, in present data, the relation between visual consciousness and 

access appears to be the other way round. Participants report to be confident more often than 

they report visual experience. Conscious access is a requirement for all subjective measures, 

as they require that neural systems engaged in decision making and language need to receive 

inputs from perceptual processes. However, although participants had conscious access when 

they reported they felt confident about task response, they reported no conscious visual 

experience. A similar pattern was reported by a patient suffering from achromatopsia (Carota 

& Calabrese, 2013): After bilateral temporal-occipital lesions, that patient reports to be 

colour-blind although he performs accurately in a colour recognition task. A potential 

explanation why the relation between phenomenal consciousness and conscious access varies 

is the number of items in the display: Visual short-term memory always used arrays of 

multiple stimuli. In contrast, the present studies always presented one stimulus at the screen at 

fixation. Consequently, phenomenal conscious may overflow cognitive access only for stimuli 

outside of the focus of attention, while at the focus of attention, conscious access occurs more 

frequently than phenomenal experience.  
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6.1.2. Theoretical implications for global workspace theory 

Can the global workspace theory account for the distinction between stimulus and 

response-related subjective measures? An important flavour of global workspace theory 

conceives consciousness as an all-or-nothing phenomenon (Dehaene et al., 2003): Conscious 

access depends on a cerebral “ignition” where neural activity spreads from sensory cortical 

areas to frontal and parietal areas, making perceptual contents available to multiple cognitive 

functions. If global ignition does not occur, perceptual contents are not available for report 

(Dehaene et al., 2006). As this most radical form of global workspace theory permits only two 

states - either the observer is fully conscious of the stimulus or the observer is unconscious - 

global workspace theory predicts that all measures depending on behaviour that requires 

global access are generally in good agreement (Dehaene & Changeux, 2011). A dichotomous 

model of conscious awareness appears unable to explain the intermediate state where 

participants report some confidence in being correct in the discrimination task about the 

stimulus, but they report no experience of the stimulus (Carota & Calabrese, 2013; Charles et 

al., 2013; Sahraie et al., 1998; Schlagbauer et al., 2012; Zehetleitner & Rausch, 2013).  

However, more complex flavours of global workspace theory are better able to 

accommodate the experience/confidence distinction. According to the partial awareness 

hypothesis (Kouider et al., 2010), a stimulus is represented by a hierarchy of features, with 

low-level features at the bottom and increasingly complex features at the top. Separate 

features can be consciously accessed independently from the other features. Partial awareness 

is a state where some of the features of a stimulus are consciously accessible but others 

features are missing. If participants are in a state of partial awareness, conscious access to the 

task-relevant stimulus feature may be sufficient for reporting confidence about the 

discrimination response (Dienes, 2004, 2008). In contrast, a report about visual experience 

may require conscious access to a greater number of stimulus features. After all, a striking 

feature of consciousness is the so-called unity of experiences. Humans do not experience 

colour, shape, location, etc. of a stimulus as separate. Instead, the conscious experience of the 

separate features of a stimulus seems to be integrated to one visual object (Bayne & 

Chalmers, 2003). The partial awareness hypothesis elegantly explains further details of the 

present results: If task-irrelevant stimulus features contribute exclusively or to a greater 

degree to subjective measures about the stimulus, they would not as efficient in predicting 

trial accuracy as subjective measures about task accuracy. However, as task-relevant and task-
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irrelevant features depend on stimulus quality, the correlation between stimulus quality and 

subjective measures of both contents would be the same. Finally, involvement of different 

sets of features is consistent with different neural correlates during sensory processing.  

A second possibility to incorporate the dissociation between stimulus and response-

related subjective measures in the global workspace framework is in terms of unconscious 

evidence accumulation. According to this model, subliminal stimuli possess sufficient energy 

to evoke a feed-forward wave of activation in specialized processors, but insufficient energy 

to trigger global neural activity necessary for conscious access (Dehaene et al., 2006; 

Dehaene, 2010). This unconscious feedforward sweep may even reach higher areas, thereby 

leading to above chance performance as well as error detection in the absence of 

consciousness (Charles et al., 2014, 2013). If response-related subjective measures are in parts 

generated by unconscious evidence accumulation, it may account for dissociations between 

subjective measures as well. However, two aspects of the data fit better to the partial 

awareness hypothesis: First, the number of different judgments participants performed in 

absence of reported visual experience makes it plausible that certain stimulus characteristics 

were globally available and consciously accessed. Participants were able to discriminate the 

stimulus above chance, to estimate their confidence in having made a correct discrimination 

response, to wager imaginary money on the correctness of the discrimination response, and to 

attribute the reason for their choice on guessing or on knowledge. Moreover, subjective 

measures always imply some involvement of language areas, since participants need to align 

the labels of the scale steps with their degree of confidence in being correct. This variety of 

different judgments in absence of reported visual experience implies that the neural activation 

is not encapsulated in a single specialized processing module. Nevertheless, it cannot be ruled 

out that the unconscious evidence is encapsulated in multiple specialized modules without 

triggering a global workspace. However, this model implies that a great number of judgments 

can be performed without involvement of the global workspace, raising the question if there 

are any judgments at all for which the global workspace is necessary. Second, the timing of 

the ERP correlates of subjective and response-related subjective measures are not consistent 

with the hypothesis that confidence without reported experience is driven by feedforward 

processing with lower energy: Lower stimulus energy typically delays the most prominent 

ERP correlate, i.e. the mid-range negativity (Railo et al., 2011). However, the experiment of 

Chapter 3 suggested that the correlates specific to decisional confidence preceded the 

correlates of visual experience in the present study. Moreover, an ERP index of global 
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availability, the late positivity, was associated with both visual experience and confidence 

(although the correlation of visual experience and the late positivity was admittedly 

particularly strong).  

6.1.3. Theoretical implications for higher-order theories of consciousness 

In the framework of higher-order theories of consciousness (Carruthers, 2011; Lau & 

Rosenthal, 2011; Timmermans, Schilbach, Pasquali, & Cleeremans, 2012), stimulus-related 

subjective measures indicate whether participants possess a higher order mental state about 

the stimulus, while response-related subjective measures demonstrate higher order mental 

states about task accuracy. Consequently, the dissociation between stimulus-related and 

response-related subjective measures indicates that there can be higher-order states about the 

response without higher-order states about perception. Participants know that they respond 

correctly, but they do not know that they have seen the stimulus.  

Are higher-order states about task responses without higher-order states about the 

stimulus consistent with higher order theories of consciousness? At first glance, it may seem 

they are not: Higher order theories strongly emphasize the link between consciousness and 

metacognition (Rosenthal, 2000). Under the assumption that stimulus-related measures do not 

depend on metacognition, confidence in decision making without experience of the stimulus 

undermine the strong link between consciousness and metacognition and thus one of the core 

tenets of higher-order theories (Charles et al., 2014, 2013). However, the assumption that 

stimulus-related measures do not depend on metacognition is controversial. First, it can be 

argued that both stimulus- and response-related measures both require metacognitive 

processes with the only difference that subjective measures about the stimulus require 

metacognition of stimulus perception, not task performance (see 2.2.3; Zehetleitner & 

Rausch, 2013). Consistent with this, stimulus-related measures are associated with neural 

activity in dorsolateral prefrontal cortex (dlPFC) – a brain region closely related to 

metacognition (Fleming & Dolan, 2012; Fleming et al., 2010) – as suggested by functional 

magnetic resonance imaging (Lau & Passingham, 2006) and theta-burst transcranial magnetic 

stimulation (Rounis, Maniscalco, Rothwell, Passingham, & Lau, 2010). Second, there is 

evidence that the decision processes that selects the response to the discrimination task is 

involved making a report on a stimulus-related measure, too: Both stimulus-related and 

response-related subjective measures can be modulated by the discrimination decision 

irrespective of the time the judgment is made (Wierzchoń et al., 2014). In addition, the 
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present EEG study suggested that ERP correlates of stimulus-related measures are most 

pronounced around the time the decision is made. Overall, the position that confidence in 

absence of experience indicates consciousness without metacognition seems hard to defend.  

What mechanism can account for the occurrence of higher-order states about the 

accuracy of task responses without higher-order states about perception? The first two 

proposals both assume that response-related subjective measures require additional 

metacognitive processes. First, the metacognitive process specific to response-related 

subjective measures may be an unconscious error monitoring system (Charles et al., 2014, 

2013). This error monitoring process could be informed by perceptual processes too weak to 

trigger higher-order thoughts about the stimulus, thus explaining why participants report 

confidence in being correct but do not report a visual experience of the stimulus. The present 

data is fully compatible with error monitoring exclusively involved in response-related 

measures. However, the timing of the neural correlates of stimulus- and response-related 

measures begin to diverge already during sensory processing, suggesting that at least some 

differential features of stimulus- and response-related measures arise earlier than 

metacognitive processes occur.  

The second proposal suggests that stimulus-related measures are generated by a simple 

metacognitive process of monitoring one’s experience. Response-related subjective measures 

are thought to stem from a more complex metacognitive process that relates the output of the 

first metacognitive process to one’s accuracy in the task (Overgaard & Sandberg, 2012). This 

theory predicts that higher order thoughts about the task response are conditioned on higher-

order thoughts about the stimulus. While this view was developed to explain the data of a 

previous study (Sandberg et al., 2010), the present data is not consistent with this view. In the 

present data, response-related measures are not conditioned on stimulus-related subjective 

measures; in all four experiments, response-related measures were associated with more 

liberal thresholds for report than stimulus-related measures. In addition, the predictive power 

of response-related subjective measures was more efficient in terms of discrimination task 

correctness as well as early ERP correlates, suggesting that response-related measures do not 

require a more complex judgment than stimulus-related measures do.  

The final possibility is a variant of the partial awareness hypothesis framed within a 

higher order framework (see above): Partial awareness is a state where some features of the 

stimulus are globally accessible while others remain inaccessible (Kouider et al., 2010). 
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Global access allows a great variety of cognitive systems to make use of the perceptual 

information (Baars, 2002; Dehaene & Naccache, 2001). Metacognition could be one of the 

cognitive functions that depend on global access. Consequently, in a state of partial awareness 

where the task-relevant feature is accessible, participants may be able to form a higher order 

thought about task accuracy and thus report being confident. However, other features of the 

stimulus may be inaccessible and so participants lack a higher order thought about the 

stimulus and report no experience accordingly. Such a higher-order framing of the partial 

awareness hypothesis has the same explanatory power as the original partial awareness 

hypothesis with respect to psychophysical thresholds, type 2 sensitivity, correlations between 

subjective measures and stimulus quality, and timing of ERP correlates (see 6.1.2).  

Overall, higher-order theories can be reconciled with dissociations between stimulus- 

and response-related measures if one accepts (i) that stimulus-related measures are dependent 

on metacognition, and (ii) that higher-order mental states about the task response are not 

conditioned on higher-order mental states about the stimulus.  

6.1.4. Methodological implications 

The methodological implications of the distinction between stimulus-related and 

response-related subjective measures are straight-forward: As stimulus-related and response-

related measures are associated with different behaviours in visual psychophysics and distinct 

ERP correlates, both categories of subjective measures should no longer be treated as 

interchangeable (as previously argued by Charles et al., 2013; Rausch, Müller, & Zehetleitner, 

2015; Sahraie et al., 1998; Schlagbauer et al., 2012; Zehetleitner & Rausch, 2013). First, as a 

consequence for future studies, researchers need to consider more carefully which conscious 

contents are relevant for their specific research question, and choose the content of their 

subjective measure accordingly. Some studies investigate the visual experience of a specific 

stimulus feature, e.g. studies measuring the neural correlate of experiencing “red” when 

seeing a red apple. In this case, participants should report their conscious experience of this 

particular feature. If participants were asked about their confidence in a task instead, there 

would be a risk that participants had just an intuition of being correct without visual 

experience, resulting in false positives. In contrast, if a study is about all conscious contents 

underlying performance in a specific task, participants should make a report that refers to the 

task response as the use of stimulus-related measures may lead to misses in this case (Dienes, 

2004, 2008). If all conscious contents are relevant to a specific study, researchers may want to 
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consider if it is feasible to use both a stimulus-related and a response-related subjective 

measure. Second, for the interpretation of earlier studies of the NCC, it should be carefully 

considered if their results constitute correlates of stimulus-related measures, of response-

related measures, or shared correlates of the two. Unfortunately, studies on the NCC are often 

not explicit about the precise content of the rating scale used as measure of conscious 

awareness. Based on the results of the present work, subjective measures about accuracy of 

task responses can be expected to favour correlates in earlier time ranges, while subjective 

measures about visual experience may reinforce comparably late neural correlates.  

A series of previous research has compared different subjective measures with the 

objective of empirically identifying the “best” scale to measure conscious experience (Dienes 

& Seth, 2010; Rausch & Zehetleitner, 2014; Sandberg et al., 2010; Szczepanowski et al., 

2013; Wierzchoń et al., 2012, 2014). This research program rests on the assumption that 

subjective measures under comparison are equally valid from a conceptual point of view, but 

some scales correlate more strongly with task performance and thus should be used as 

measure of conscious awareness (see 1.5.1.; Rausch, Müller, & Zehetleitner, 2015; Rausch & 

Zehetleitner, 2014). In the light of the present work, empirical studies identifying the best 

scale should come only after conceptual considerations what the relevant conscious contents 

are for a specific research question. When the conscious contents have been determined based 

on the research question, empirical studies are important to optimize other properties of the 

scale, e.g. the number of response options.  

6.2. The granularity of subjective measures 

6.2.1. Theoretical implications 

The granularity of conscious awareness is of great theoretical interest because some 

theories make specific predictions whether conscious awareness is gradual or dichotomous. 

On the one hand, neural global workspace theory predicts that consciousness is an all-or-

nothing phenomenon because it depends on a global ignition of spreading neural activity over 

widely distributed brain areas (Dehaene et al., 2003, 2006). Consequently, U-shaped 

distributions of subjective reports were considered as evidence for the global workspace 

theory. Such a sharp transition between unconscious and conscious perception was observed 

in word detection tasks during the attentional blink (Nieuwenhuis & de Kleijn, 2011; Sergent 

& Dehaene, 2004) as well as masked number discrimination tasks (Del Cul et al., 2007; 
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Windey, Gevers, & Cleeremans, 2013). On the other hand, according to the radical plasticity 

thesis, a variant of higher-order theories, conscious awareness depends on 

metarepresentations of gradually varying signal strength (Cleeremans, 2008, 2011). 

Consistent with this view, others have reported gradual transition between unconscious and 

conscious perception in masked shape discrimination tasks (Sandberg et al., 2011, 2010), 

masked colour discrimination task (Windey et al., 2013), or even in character identification 

during the attentional blink (Nieuwenhuis & de Kleijn, 2011). The present study adds random 

dot kinematograms to the list of stimuli where subjective reports of visual experience follow a 

more gradual trend (see Chapter 4, Rausch & Zehetleitner, 2014).  

How can global workspace theory account for reports of gradually varying conscious 

experience? An explanation is again provided by the partial awareness hypothesis (Kouider et 

al., 2010): A stimulus is represented by an assemblage of different features, which can be 

consciously accessed independently of each other. As proposed by the global workspace 

model, conscious access to each single feature is all-or-none. The representation of the whole 

stimulus can be more or less complete, thus creating stronger and weaker experiences of the 

stimulus. However, the present data is not consistent with the all-or-none predictions of this 

model. First, the distribution analysis of discrimination responses suggested that among the 

trials where performance was not at chance, the precision of discrimination judgments still 

varied as a function of stimulus quality, suggesting that performance in the discrimination 

task was not binary. Second, subjective reports of motion experience recorded on a visual 

analogue scale were more predictive of the discrimination error than those reports of motion 

experience recorded on a four discrete category scale. If conscious awareness of the task-

relevant stimulus feature varied in a dichotomous manner, measuring conscious experience of 

this feature with increased granularity should not increase the correlation with task 

performance since two distinct states can be represented by both scales without loss of 

information. As the correlation with the discrimination error increases with the granularity of 

the scale, it means that the scale is able to pick up more than two levels of the quality of 

experience of the task-relevant stimulus feature. Overall, the present studies are not consistent 

with all theories that predict that consciousness of all stimulus features is necessarily 

dichotomous.  

As a consequence of the evidence for gradual conscious perception, a modification of 

the partial awareness hypothesis seems appropriate. A recent suggestion was that the 
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gradualness of conscious perception depends on the level of processing of the stimulus 

(Windey et al., 2013; Windey, Vermeiren, Atas, & Cleeremans, 2014). According to standard 

assumptions about the visual system, processing of a stimulus forms a hierarchy, where 

processes engaged with more basis features of the stimulus provide input to processes 

extracting more complex features (Riesenhuber & Poggio, 1999). Low-level processing of a 

stimulus, which endows the observer with single features of the stimulus such as colour and 

orientation, may vary gradually. In contrast, high-level processing, required for instance to 

determine the meaning of words, could be competed in an all-or-none fashion (Windey & 

Cleeremans, 2015).  

6.2.2. Methodological implications for research on conscious awareness 

The present analysis suggested that it can be advantageous to record subjective 

measures of visual experience using scales with high resolution. The advantage of subjective 

measures with higher resolution is that fine-grained measurements maximize the amount of 

information obtained by a fixed number of trials. However, increasing the resolution of 

subjective measures will only be feasible if a more fine-grained scale does not distort the 

measurements. The existing literature is critical about the possibility of obtaining high 

resolution measurements by visual analogue scales (VAS). The numerous concerns raised 

against VAS can be summarized into two main issues (Overgaard et al., 2006): 

(i) Participants may be unable to distinguish between the numerous response alternatives 

offered by a VAS.  

(ii) Participants’ reports could be attracted by the scale ends, creating a more sharp 

transition between conscious and unconscious perception than there actually is.  

Concerning the first issue, the present study suggested that using more precision in the 

scale increases the correlation with discrimination task performance and improves internal 

consistency, which is only possible if participants are able to use at least more than four 

positions on the VAS. Concerning the second issue, the distribution of reports collected by the 

VAS was not U-shaped; instead, for the intermediate levels of motion coherence, the 

distribution was centred at the middle parts of the scale. As can be seen in Fig. 4-6, the major 

difference between the distributions of VAS and the discrete scale was that participants 

preferred “weak experience” on the discrete scale and “clearer than the central position” on 

the VAS. Admittedly, there was also a non-significant tendency that participants reported no 
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experience at all slightly more often on a VAS than on a discrete scale. Should this effect be 

corroborated in the future, it could reflect misses of conscious experiences by the VAS, but it 

could also indicate false positives by the discrete scale. Independently of the explanation of 

this effect, it is certainly too small to mask a gradual transition of unconscious to conscious 

perception. Consequently, the benefits of using visual analogue scales outweigh the potential 

risks of using a discrete scale for future studies.  

6.2.3. Methodological implications for research on subjective measures 

Empirical studies investigating the number of categories of subjective measures need a 

method to validate the observed gradualness of the transition from unconscious to conscious 

perception. While many existing studies considered the frequent use of central scale steps as a 

beneficial feature of subjective measures (Overgaard et al., 2006; Sandberg et al., 2010, 2011; 

Wierzchoń et al., 2012, 2014), the present study indicates that central scale steps could also be 

overused: The second scale step of the discrete scale was the dominant response at four out of 

six levels of coherence, including the most difficult stimuli where performance was at chance. 

In this case, reports of weak experiences mainly reflect noise in the system, not signal. A 

more uniform distribution of reported visual experience may well indicate a smooth transition 

from unconscious to conscious perception, but a second possibility is that the gradual 

distribution reflects a greater amount of noise. After all, unsystematic noise always increases 

the variance of the distribution: A subjective measure that differs from another subjective 

measure only in the number of unsystematic noise picked up by the measure will create a 

more uniform distribution; if the scale picks up noise with infinite variance, the result would 

be a perfectly uniform distribution. The same is true for the second method to establish the 

gradualness scale, psychometric function analysis. A less steep slope of the psychometric 

function was interpreted as a smooth transition between unconscious and conscious 

perception (Sandberg et al., 2011; Windey et al., 2013). However, a flatter curve can also 

indicate a great amount of noise. After all, the slope of a psychometric function can also be 

interpreted as the relative sensitivity of the scale to changes of the quality of stimulation, with 

greater slopes being more sensitive (Gescheider, 1997). 

In summary, research on subjective measures lacks a method to differentiate gradual 

conscious perception from noise. A potential solution to this problem is provided by type 2 

sensitivity (Fleming & Lau, 2014; Galvin et al., 2003): If a more fine-grained subjective 

measure correlates more closely with task accuracy than a subjective measure with identical 
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content but a smaller number of categories, it suggests that participants were able to make use 

of the additional categories. In contrast, if the correlation is the same, it shows that the 

additional information in the fine-grained scale does not share variance with objective task 

performance, and thus the task-relevant conscious experience cannot be measured on the more 

fine-grained level. Overall, the gradualness of subjective measures is a topic where using the 

association with task performance as a reference frame appears to be beneficial (see section 

1.5.3; Fleming & Lau, 2014).  

A potential drawback of using type 2 sensitivity as reference frame is that signal 

detection theory derived measures are not available for every paradigm. Signal detection 

theory provides mathematical tools to differentiate between the observers’ sensitivity to 

distinguish between signal and noise and participants’ response criteria (Green & Swets, 

1966; Macmillan & Creelman, 2005; Wickens, 2002). While type 2 ROC curves and meta-da 

are two convenient measures of type 2 sensitivity in all tasks where participants are required 

to select one out of two options (Fleming & Lau, 2014; Fleming et al., 2010; Maniscalco & 

Lau, 2012), there is no method to distinguish between sensitivity and criteria when the 

number of task options is greater than two. Nevertheless, continuous tasks are appealing for 

research on the gradualness of conscious awareness because they ensure that a low number of 

conscious states cannot be caused by a binary task (see 4.2.3., Rausch & Zehetleitner, 2014). 

Cumulative logistic regression was used in Chapter 4, but this approach is likely to be subject 

to the same problems as standard logistic regression (cf. 5.4.3., Rausch et al., 2015). As the 

bias can be expected to be roughly the same between the full resolution VAS and the 

discretized VAS, the effects found in the present study cannot be explained by bias alone. 

Nevertheless, future studies will need to carefully outweigh the prospects of using a 

continuous task against the drawbacks of being unable to properly control discrimination 

error.  

6.3. Quantifying the relation between subjective measures and task 

accuracy 

6.3.1. Logistic regression as measure of type 2 sensitivity 

Previous studies quantifying the relation between subjective measures and task 

performance seem to follow two different approaches: some studies explicitly applied a 

measure of SDT (Charles et al., 2013; Fleming et al., 2010; Scott, Dienes, Barrett, Bor, & 
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Seth, 2014; Szczepanowski et al., 2013; Vandenbroucke et al., 2014; Zehetleitner & Rausch, 

2013), and the others used flavours of generalized linear regression models (Rausch & 

Zehetleitner, 2014; Sandberg et al., 2013, 2010; Wierzchoń et al., 2012, 2014). However, the 

distinction between the two approaches is only superficial: It can be shown that each 

generalized linear regression model is identical to always one specific SDT model (Brockhoff 

& Christensen, 2010; DeCarlo, 1998). Consequently, the core issue about generalized linear 

regression is whether the underlying SDT model is appropriate.  

The standard regression model to quantify type 2 sensitivity involves the subjective 

measure as predictor, task accuracy as dependent variable, and the logit function f(x) =

 log (
x

1−x
) to convert the probability of being correct bounded by 0 and 1 to a variable that is 

free vary between -∞ and ∞. This model corresponds to an SDT model assuming logistic 

distributions with equal variances for correct and erroneous trials. Specifically the assumption 

of equal variances in correct and incorrect trials is not consistent with standard models of 

perceptual decision making: Assuming that participants choose a response to the task and 

make a report based on the same sensory evidence, the distributions for correct and erroneous 

trials are expected to be unequal and heavily skewed (Galvin et al., 2003). The consequence 

would be that logistic regression models confound participants’ type 2 sensitivity and 

participants’ criteria. For another measure that relies on the assumption of equal variances, 

type 2 d’, there is empirical evidence that it depends on participants’ criteria (Evans & 

Azzopardi, 2007). Under the assumption of the equal Gaussian SDT model, type 2 d’ it is 

maximized by conservative criteria (Barrett et al., 2013). The only difference between logistic 

regression and type 2 d’ is that the former assumes logistic distributions and the latter 

Gaussian distributions. Although the tails of the logistic distribution are heavier than the tails 

of the Gaussian, the two distributions typically converge to very similar results SDT 

applications (DeCarlo, 1998). Consequently, it is reasonable to expect that logistic regression 

underestimates type 2 sensitivity of liberal subjective measures, too.  

The reanalysis described in Chapter 5 revealed that logistic regression analysis and 

meta-da revealed by-and-large converging results with respect to the content of subjective 

measures and type 2 sensitivity (Rausch et al., 2015). As stimulus-related measures are 

typically associated with more conservative criteria but also smaller type 2 sensitivities when 

measured by meta-da or type 2 ROC curves, it might be expected that the use of logistic 

regression conceals the effect of contents on type 2 sensitivities. However, if there had been a 
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bias against liberal subjective measures, it would not have been sufficiently strong to mask 

the effect of content in the present experiments. Although there was no devastating bias in the 

present experiment, it would be a misinterpretation that the influence of criteria on logistic 

regression can be neglected at the interpretation of other studies: If logistic regression slopes 

are indeed maximized by a conservative reporting strategy, there are always two possibilities 

why an empirical effect on logistic regression slopes is observed: it could be a difference in 

type 2 sensitivity, but could also be a difference in criteria. Whenever greater logistic 

regression slopes are observed in a condition with more liberal criteria, it seems adequate to 

infer that the effect is due to type 2 sensitivity. As logistic regression slopes entail the risk to 

underestimate type 2 sensitivity of liberal criteria, a criterion confound cannot explain why 

there are greater slopes in the condition where the criteria are more liberal. For instance, in the 

experiment of Chapter 4, cumulative logistic regression slopes were greater for the visual 

analogue scale than for the discrete scale. This effect cannot be explained by a criterion shift, 

because the discrete scale was used in a slightly more conservative manner than the visual 

analogue scale (Rausch & Zehetleitner, 2014). In contrast, when greater logistic regression 

slopes occur in conjunction with more conservative criteria, the effect should not be 

interpreted as an effect of type 2 sensitivity: The effect of bias would go in the same direction 

and could account for the effect.  

A second downside of logistic regression is that the logit link function frequently fails 

to linearize the relationship between subjective measures and task accuracy. Whenever non-

linear trends occur, the logistic regression slope is hard to interpret as measure of type 2 

sensitivity because there is no single slope for each condition; instead, the slope varies over 

the course of the scale. In addition, non-linear trends may aggravate the confound with criteria 

in n-AFC tasks because more liberal subjective scales feature a greater number of scale steps 

where the transformed accuracy cannot decrease any further due to a lower bound of accuracy 

imposed by the guessing probability.  

Overall, those measures derived from SDT designed to control for criteria are clearly 

more promising options to quantify type 2 sensitivity than logistic regression. When 

interpreting the results of previous studies based on logistic regression, it should be critically 

considered whether an effect on logistic regression slopes can be explained by different 

criteria as well.  
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6.3.2. Alternative logistic regression models 

While the standard logistic regression model seems not optimal to quantify type 2 

sensitivity, there is still the question whether alternative regression models are more valid 

measures of type 2 sensitivity. Specifically, two potential modifications of the logistic 

regression model seem promising as solutions to some of the problems raised before: 

(i) a model with adjusted link function to account for the probability of guessing in n-

alternative forced-choice tasks (Brockhoff & Müller, 1997) 

(ii) cumulative logistic regression with subjective reports as ordinal dependent variable to 

account for criteria (Ramsøy & Skov, 2014) 

The first method addresses the bias of logistic regression by the lower bound of the 

logit transform of accuracy caused by the probability of guessing the correct response. If the 

participant has a chance of correctly guessing of p, the logit transform of the accuracy does 

not vary between -∞ and ∞; instead, the transformed accuracy is bounded at log (
p

1−p
). To 

account for the guessing probability, it was proposed to use a link function that ensures that 

the transformed accuracy is free to vary in the full range between -∞ and ∞. This can be 

achieved by the adjusted link function f(x) = log (
x−p

1−x
) (Brockhoff & Müller, 1997; 

Knoblauch, 2014; Williams, Ramaswamy, & Oulhaj, 2006). As can be seen from Fig. 6-1, the 

adjusted link function creates fairly linear relationships between subjective measures and 

accuracy in the masked orientation task and the masked shape task, but linearization appears 

to fail in the global motion task.  

The major problem is that the adjusted link function still does not provide any means 

to differentiate between sensitivity and criteria. Although the adjusted logit regression model 

does not consistently favour conservative or liberal subjective measures, it favours subjective 

measures with criteria spread over a wide range of performance levels. Consequently, 

different regression slopes between two conditions are not necessarily due to type 2 

sensitivity; greater slopes can also be caused by one condition spreading participants criteria 

over a greater range of performance levels (Wierzchoń et al., 2012). In fact, the adjusted logit 

method was at the first place introduced as a method to quantify thresholds, i.e. criteria, not 

sensitivity (Brockhoff & Müller, 1997). As the adjusted logit link model does not control for 

criteria and does not even guarantee linear trends, measures such as meta-da and type 2 ROC 
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curves seem still more favourable option to quantify the relation between subjective measures 

and task accuracy.  

 

Figure 6-1: The relationship between subjective reports and accuracy transformed according 

to the adjusted logit link, separately for decisional confidence (upper row, blue) and visual 

experience (lower row, orange) in the masked orientation task, masked shape task, and the 

random-dot-motion discrimination task. 

  

The second alternative to the standard logistic regression model is the cumulative 

logistic regression model (Ramsøy & Skov, 2014). In such a model, the cumulative 

probability of each rating category is predicted by trial accuracy (for a more thorough 

introduction into cumulative link models, see Christensen, 2015a). Again, cumulate logistic 

regression depends on a link function that relates predictors and probabilities. However, the 

model explicitly fits criteria that delineate between each two adjacent rating categories, and 

there is no assumption about a continuous linear relationship with subjective reports 

(Christensen & Brockhoff, 2013). This model is equivalent to the yes-no rating SDT model 

with logistic distributions (Christensen, Cleaver, & Brockhoff, 2011; DeCarlo, 1998). The 

model can include a scale parameter that allows distributions of different variances of 

evidence for correct and incorrect trials (Christensen, Cleaver, & Brockhoff, 2011). 

Moreover, slope and scale parameters can be converted into the area under the type 2 receiver 

operating characteristic (Christensen et al., 2011), a standard measure of type 2 sensitivity 

(Fleming et al., 2010). Overall, cumulative logistic regression has several promising features: 

explicit control over subjective criteria, unequal variances between correct and incorrect trials, 
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as well as easy conversion to the area under the ROC curve. It should be noted that many 

standard models of decision making predict quite asymmetric distributions of evidence 

(Barrett et al., 2013; Galvin et al., 2003; see also Fig. 5-1). The cumulative logistic regression 

model assumes logistic and thus symmetric distributions of evidence for both correct and 

incorrect trials, while the scale of the distributions can be different. Although cumulative 

regression can also be used with asymmetric distributions such as the log-log link 

(Christensen, 2015b), it is unlikely that these functions are able to emulate the precise 

distributions of evidence in correct and incorrect trials. However, models that describe 

subjective reports based standard models of decision making have come under pressure 

because several studies suggested that evidence for subjective reports can generated in 

parallel to discrimination performance (Fleming et al., 2015; Scott et al., 2014). The 

distributions of evidence generated by parallel or dual-route models have not been 

mathematically formulated yet; consequently, it would be premature to reject cumulative 

logistic regression based on theoretical intuitions concerning the shape of distributions while 

these intuitions have yet to be substantiated. Among the different options to quantify type 2 

sensitivity based on regression, cumulative logistic regression is clearly the most promising 

option.  

6.4. Subjective measures: useful data for consciousness research? 

Subjective measures of conscious awareness have not been considered appropriate for 

an objective science for several decades (Boring, 1953; Danziger, 1980; Eriksen, 1960; 

Hannula et al., 2005; Irvine, 2012; Schmidt & Vorberg, 2006). This widely held belief within 

the scientific community sharply contrasts the philosophical view that mature sciences of 

psychology and neuroscience should strive to explain participants’ subjective reports about 

their conscious experience just as they should explain any other behaviour of human beings 

(Dennett, 2003, 2007). The present series of studies suggests that subjective measures are 

eligible for non-trivial research about conscious awareness. 

On the one hand, subjective measures were able to contribute data of great relevance 

to widely debated topics in consciousness, specifically to the debates about the NCC, the 

partial awareness hypothesis, and the gradual transition between unconscious and conscious 

perception. In addition, subjective measures proved to be heuristically fertile: The behavioural 

difference between stimulus-related subjective measures and response-related subjective 



 

151 

measures can be seen as a new constraint to existing theories of conscious awareness, which 

could not have been identified based on objective measures alone.  

On the other hand, the present work also highlights that researchers need to invest time 

into careful considerations about their experimental designs when they use subjective 

measures: First, it is necessary to consider which conscious content are appropriate to 

measure in the context of a specific research question. Second, given the “subjective” 

reputation of subjective measures, it is always useful and for some research questions 

necessary to supplement subjective measures by a frame of reference based on more 

“objective” data: either by a measurement of neural events, or by computing the association 

between subjective measures and performance in a discrimination task. However, both 

requirements are relatively easy to implement. Consequently, consciousness research would 

benefit from the more wide-spread usage of subjective measures of conscious awareness. 
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