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1 Introduction 

The confirmed inheritance of Chorea-acanthocytosis (ChAc) is autosomal recessive 

(Danek et al. 2012; Walker et al. 2012), and the most common phenotype of 

neuroacanthocytosis (NA) syndromes. The mean onset of ChAc patients is in the third 

decade. It runs a progressive course leading to major disability in the next few years 

with reduction of life expectancy. The movement disorders are characterized by 

chorea, bizarre gait, orofacial dyskinesias and parkinsonism. In addition, 

neuropsychiatric syndromes, dementia and eplilepsy are the common symptoms 

even at the onset (Jung et al. 2011; Walker et al. 2011). 

1.1 Epidemiology 

There are only hundreds of ChAc patients confirmed worldwide so far. It is likely to be 

substantially underestimated, because ChAc is very rare and might be not fully 

recognized in developing countries. For instance, the absence of reports from Africa 

and the former Soviet Union might be due to inaccessibility or insufficient diagnostic 

resources. However, as far as the experience with internationally open free diagnostic 

service (chorein Western blot) is concerned, the prevalence of ChAc was estimated at 

1 in 10 million.  

In China, the earliest report of NA can be traced back to 1980s, when the concepts of 

ChAc and NA have not been clearly differentiated. During the next 30 years, only 

sparse case reports are reported. The number of Chinese NA cases is 

underestimated according to the prevalence in other countries. On the other hand, NA 

is found to be more prevalent in Japanese. Therefore, the diagnosis and prevalence 

of NA syndromes in China should be carefully evaluated. 

1.2 Genetics 

With an autosomal recessive manner, ChAc is a VPS13A (formerly known as CHAC) 

gene related disease. Nowadays, more than 90 mutations of VPS13A gene have 
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been found (Dobson-Stone et al. 2002). Affected by mutations, 43 of the 73 exons 

and several introns lead to the absent or markedly reduced expression of chorein 

protein. The most common mutations are small deletions or insertions in exons, which 

cause frameshift of open reading frame of VPS13A and lead to premature termination 

codons. There are also frequent nonsense mutations and gross deletions followed by 

missense mutations and mutations affecting splice sites of exons.  

1.3 Pathology 

Chorein is found to be absent in brain tissue of ChAc patients. There are two 

alternative splicing variants of VPS13A: variant 1A (exons 1-68 and 70-73; 317kDa) 

and 1B (exons 1-69; 309kDa) (Velayos-Baeza et al. 2004). In Western blot of human 

brain tissue, two fragments of 160kDa and 94kDa probably reflect additional 

alternative splicing variants or posttranslational modifications (Bader et al. 2008). In 

mice, chorein is highly expressed in brain, testis, kidney, spleen and muscle (Kurano 

et al. 2007). In humans, chorein is found in erythrocyte membrane and unknown in the 

brain and peripheral tissues.  

Previous post mortem findings in ChAc reveal atrophy of the caudate nucleus, 

putamen, and to a lesser extent the globus pallidus. In the striatum nonspecific but 

pronounced neuronal cell loss, general gliosis and microglial activation can be seen. 

In the striatum, spiny projection neurons are predominantly lost in ChAc. Spiny 

neurons mainly use gamma-aminobutyric acid (GABA) as neurotransmitter and form 

two populations according to neuropeptide content and projection to the globus 

pallidus. Those cells containing enkephalin (ENK) project primarily to the external 

segment of the globus pallidus (GPe), while the spiny neurons which contain 

substance P (SP) project mostly to the internal segment of the globus pallidus (GPi) 

(Haber and Elde 1981). Moreover, neuromodulators such as glutamic acid 

decarboxylase (GAD) and Calbindin D-28k (CALB) are important for projection 
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neurons in the striatum. GAD is the enzyme catalyzing formation of GABA and CALB 

is a calcium-binding protein and mainly present in the projection neurons 

(Seto-Ohshima et al. 1988). 

In addition, changes in ChAc have also been described in the substantia nigra and the 

thalamus (Vital et al. 2002; Hardie et al. 1991), with moderate atrophy of the anterior 

and centromedian nuclei (Alonso et al. 1989). In contrast to Huntington’s disease 

(HD), the corpus callosum is relatively spared in ChAc. Brain areas with no gross 

pathology included the subthalamic nucleus, cerebellum, pons, and medulla 

oblongata (Rinne et al. 1994). Muscle and nerve pathology in single case reports of 

ChAc suggests that muscle weakness and atrophy are mostly neurogenic alterations, 

rather than a pure myopathy (Limos et al. 1982; Alonso et al. 1989). Because of the 

low prevalence of ChAc, no study systematically evaluated the pathological changes 

based on a specimen series from biopsy or autopsy. 

1.4 Clinical Features 

The classic symptoms of ChAc can be generalized as movement disorders, seizures, 

and neuropsychiatric and neuromuscular symptoms. Mostly chorea is in early stage, 

and dystonia is common and affects the oral region and the tongue in particular. The 

orofacial dyskinesias include characteristic tongue protrusion, feeding dystonia, lip 

biting, dysarthria and dysphagia with resultant weight loss (Bader et al. 2010). The 

movement disorder is progressive. Parkinsonism may also occur, even as the initial 

presentation. The pyramidal tracts seem to be rarely involved in ChAc. Abnormalities 

of eye movements include impaired saccades, smooth pursuit and square-wave jerks 

(Gradstein et al. 2005). Seizures are observed in almost half of affected individuals 

and can be the initial manifestation. Seizures usually originate from temporal lobes; 

thus, affected individuals can present with familial temporal lobe epilepsy (Scheid et al. 

2009). In cognitive deterioration, memory and executive functions, e.g. ability to 
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sustain concentration over time, to plan, and to change behaviour to reach a particular 

goal are affected, which resemble the frontal lobe syndrome. Additionally, deficits of 

learning and memory point to hippocampal structures as additional targets of 

dysfunction (Danek et al. 2005). Personality and behaviour changes emerge in about 

2/3 of ChAc patients; they mainly include being apathetic, depressed, bradyphrenia, 

hyperactive, irritable and distractable. Moreover, obsessive-compulsive behaviors are 

frequent, and sometimes the onset syndrome. Common psychiatric symptoms like 

anxiety, aggression, autoaggression, suicide can also be seen (Walterfang et al. 

2011). The myopathy is progressive and characterized by distal muscle wasting and 

weakness, but may remain subclinical (Saiki et al. 2007). Depression of deep tendon 

reflexes and vibration sense are common, resulting from an axonal neuropathy that 

contributes to the observed amyotrophy (Rampoldi et al. 2002). 

1.5 Diagnosis 

Clinical probable diagnosis mainly depends on age at disease onset, chorea, gait, 

orofacial and tongue protrusion dystonia, cognitive and psychiatric symptoms. 

Acanthocytes can be found in ChAc patient’s blood with higher proportions and 

elevation of creatine kinase (CK) level are seen in 2/3 of ChAc patients (Danek and 

Walker 2005). At the same time, neuroimaging discloses atrophy of caudate nuclei 

with dilatation of the anterior horns, which is not specific to ChAc. Differential 

diagnosis includes McLeod syndrome (MLS), Huntington’s disease–like 2 (HDL-2), 

Pantothenate kinase-associated neurodegeneration (PKAN) (also known as 

neurodegeneration with brain iron accumulation 1 (NBIA1)), abetalipoproteinemia, 

Tourette syndrome, Wilson disease, etc. Genetic analysis of VPS13A is the 

diagnostic gold standard for ChAc and the detection of chorein protein is a convenient 

and economic method for diagnosis. Absent or markedly reduced expression of 

chorein in erythrocyte membrane is highly suggestive of ChAc (Dobson-Stone et al. 
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2004). 

1.6 Treatments 

The strategy of ChAc therapy generally includes physical, pharmatheutical, and 

neurosurgical treatment. In drug treatment, dopamine antagonist can be used for 

chorea or tics and Botulinum toxin injection may be helpful to all kinds of dystonia. 

Antiepileptic and antipsychotic drugs are also needed according to the clinical 

situation. Deep brain stimulation has also been used for the therapy of ChAc 

(Kefalopoulou et al. 2013). 
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2 Aims of Study 

The aims of this doctoral dissertation include the following items: 1) to know the 

distribution of chorein in human tissues and find out the potential role of chorein 

absence in the pathophysiology of ChAc 2) to explore the pathological changes in 

muscle and nerve tissues of ChAc and compare them with clinical clues 3) to 

determine the neurochemical changes in the striatum and hippocampus of ChAc, 

which are crucial to the pathophysiology of movement disorders and neuropsychiatric 

symptoms 4) to count the total number of neurons and glial cells and measure the 

total volume of the striatum, centromedian-parafascicular complex (CPC) and 

cerebral cortex by unbiased stereological procedures 5) to understand the prevalence 

and recognition of neuroacanthocytosis syndromes in China.



 7 
 

3 Materials and Methods 

3.1 Patients 

We collected the solid tissue samples from 10 non-ChAc controls at autopsy. 

Samples used for the investigation of chorein levels in non-brain tissues (cardiac 

muscle, bone marrow, muscle, pancreas, stomach, intestine, colon, spleen, liver, lung, 

kidney, ovary, testis and peripheral nerve) were derived from probands admitted to 

the Institute of Legal Medicine, Ludwig-Maximilians-Universität, Munich, Germany 

who died of reasons other than neurological or malignant disorders. A cerebrospinal 

fluid (CSF) sample was collected at the outpatient clinic of a 28 year old man with 

normal results in routine CSF analysis (albumin 21.7mg/dl; protein 41mg/dl). 

Samples of muscle were collected from 10 confirmed ChAc cases, in 2 of which 

peripheral nerves were available (case 8 and 9). The baseline information is listed in 

Table 1. The tissues were derived from biceps brachii, deltoideus, gastrocnemius, 

psoas and quadriceps muscles by either open muscle biopsy or autopsy. 

Formalin-fixed and paraffin-embedded tissue was available from all cases.
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Samples of brain were collected at the Center for Neuropathology and Prion 

Research, Ludwig-Maximilians-Universität Munich (Brain-Net Germany) including 9 

ChAc brains (5 males, 4 females), 2 HD brains (2 males) and 5 control brains (4 

males, 1 female). The baseline information is provided in Table 2. The hemispheres 

were coronally sectioned at 0.5-1cm intervals for the regions of interest, including 

caudate nucleus, putamen, nucleus accumbens, globus pallidus and hippocampus. 

All paraffin sections were cut at a nominal thickness of 4 µm.
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3.2 Immunoblot 

Native tissue was homogenized in homogenization buffer (100mM Tris, 100mM NaCl, 

10mM EDTA, 0.5% nonidet P40, 0.5% deoxycholic acid, 1 tablet protease-Inhibitor 

per 10ml, pH 6.9). Homogenates were cleared by centrifugation at 500 x g for 2 

minutes and the supernatant containing the soluble protein fraction was used. All 

protein concentrations were analyzed using bicinchoninic acid protein assay. Blots 

were carried out using a NuPAGE pre-cast gel system. Primary antibodies anti-chor1 

(polyclonal, 1:5000, gift by Antonio Velayos-Baeza, Wellcome Trust of Human 

Genetics, University of Oxford, UK). As secondary antibody, alkaline 

phosphatase-conjugated goat anti-rabbit (1:5000, Millipore, Germany) was used 

following standard Western blot procedures. The exact protocol of Western blot is 

listed in the Appendix. 

3.3 Stains of slices 

For peripheral organs and brains of non-ChAc cases, paraffin sections were stained 

with anti-VPS13A (HPA021662, polyclonal, 1:1000, Atlas Antibodies, Sweden) 

targeting chorein protein. 

For ChAc brain sections, routine stains of hematoxylin and eosin (H&E), 

Klüver-Barrera (KB) and Perl's Prussian blue and immunohistochemistry of glial 

fibrillary acidic protein (GFAP), Cr3/43, p62, fused in sarcoma (FUS), amyloid-beta 

(Aß), α-synuclein, AT8, and neurotransmitters such as ENK, SP, GAD and CALB 

were undertaken. Most immunohistochemistry stains were performed in the ‘Ventana 

Benchmark’ (Roche) autostainer. The slides were pretreated in the buffer ‘cell 

conditioning 1’ and blocked in 1% serum in PBS for 30 min. Then they were incubated 

in antibody directed against GFAP diluted to 1:2000 (DAKO, Z0334), Cr3/43 diluted to 

1:100 (DAKO, M0775), p62 diluted to 1:100 (BD Biosciences, 610832), FUS diluted to 

1:500 (Bethyl Laboratories, Inc, A300-302A-1), ß-amyloid 4G8 diluted to 1:10000 
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(Covance, SIG-39220), α-synuclein diluted to 1:500 (BD Biosciences, 610786), AT8 

diluted to 1:200 (Thermo, MN1020), ENK diluted to 1:1000 (Biotrend, ABIN98777), 

SP diluted to 1:50 (Biotrend, ABIN107144) or GAD diluted to 1:200 (MBL, 

ABIN131839). The sections were then treated with super enhancer for 20 min and 

polymer HRP for 30 min. Washes (2 x 5 min) in PBS followed each of the above steps. 

The sections were detected by ‘SuperVision 2’ polymer system (DCS, PD000kit) and 

then dehydrated and coverslipped for further evaluation. Stains of CALB were 

performed manually. The slides were first pretreated with citric buffer (PH 6) for 25 

min, microwaved and then brought into I-block 2% with 0.2% Tween20 for 30 min. 

The sections were incubated in primary antibody against CALB to 1:100 (Millipore, 

AB1778) overnight at 4°C and in secondary antibody rabbit anti-goat IG diluted 1:400 

(DAKO, Z0228) for 1 h at room temperature. Detection system is also the HRP 

conjugated polymer system ‘SuperVision 2’. 

For muscle pathology, paraffin sections were stained with H&E, Gömöri trichrome (GT) 

and periodic acid Schiff (PAS). Fibre typing was identified by immunohistochemistry of 

myosin heavy chain (MHC) slow (M8421, monoclonal, 1:1000, Sigma, Germany) and 

fast (M4276, monoclonal, 1:2000, Sigma, Germany) isotypes, corresponding to type 1 

and type 2 fibres, respectively. Moreover, immunohistochemistry with anti-VPS13A 

(HPA021662, polycloncal, 1:75, Atlas Antibodies, Sweden) was also performed. For 

nerve pathology, paraffin sural nerve sections were stained with H&E, GT, PAS, 

Elastica-van Gieson (EvG). Immunohistochemistry was done for neurofilament 

(M0762, monoclonal, 1:500, DakoCytomation, Denmark) and myelin basic protein 

(MBP) (760-2658, polyclonal, purified, Ventana, USA). 

3.4 Image analyses 

For Western blot analyses, we calculated the integrated optical density (IOD) of the 

chorein band and normalized the values of IOD according to a protein concentration 
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of 1mg/ml. The quantitative analysis of Western blot was carried out by the software 

Gel-Pro Analyzer 4.0 (MediaCybernetics, USA). 

For muscle pathology, fibre parameters were measured by the software Image-Pro 

Plus (version 6.0, MediaCybernetics, USA). In representative muscle regions, the 

diameter of type 1 and type 2 fibres was measured respectively. For longitudinal 

fibres, the diameter was defined as the maximum distance at a right angle to the 

fibre’s longitudinal axis. The frequency of internalized nuclei was counted as the 

number of internalized nuclei per 100 fibres. Mean fibre diameter as well as variability, 

hypertrophy and atrophy coefficients were calculated for type 1 and type 2 fibres 

according to commonly used definitions. At least 100 fibres were measured in each 

sample. The cut-off values for abnormality were considered as variability coefficients 

above 250, and atrophy and hypertrophy coefficients above 350. 

For brain pathology, the anterior striatum including caudate nucleus, putamen and 

nucleus accumbens was divided into dorsal striatum and ventral striatum. Differences 

in specific immunoreactivity for all the antibodies were compared and described. For 

quantitative evaluation, an Olympus microscope was used with objective x20, and 6 

randomized fields were respectively selected from dorsal caudate nucleus and dorsal 

putamen for GFAP, ENK, SP, GAD and CALB-stains. For globus pallidus, the 

sections were evaluated with objective x20 for axon terminals immunoreactions of 

ENK in GPe, SP in Gpi, as well as GAD in both of the GPi and GPe. Each pallidal 

segment was divided into 6 portions, including dorsolateral, dorsomedial, midlateral, 

midmedial, ventrolateral and ventromedial portions. In each portion, a field (2 mm2) 

with the maximal density of labeled boutons was selected and the image was 

captured, and then measured by the software ImageJ 1.45s (NIH, USA). For 

hippocampus, 3 randomly selected fields were captured by an Olympus microscope 

with objective x20 in cornu ammonis (CA) and hilus of dentate gyrus (DG). For each 
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case, the number of total neurons and immunoreactive neurons were counted and the 

percent of positively stained neurons was calculated. 

3.5 Stereological analyses 

For stereology, 3 ChAc hemispheres (case 1, 8 and 9) were available. The brainstem 

with the cerebellum was separated from the forebrain at the level of the rostral pons, 

and the hemispheres were divided mediosagittally. Briefly, the hemispheres were 

embedded in celloidin as previously described (Heinsen et al. 2000) and cut into serial 

420 µm-thick coronal sections using a sliding microtome (Polycut, Cambridge 

Instruments, UK). From each hemisphere, every second section was stained with 

gallocyanin (a Nissl stain) as previously described (Heinsen and Heinsen 1991). 

Stereological analyses were performed with a stereology workstation based on a 

Zeiss Axioplan II microscope (Carl Zeiss MicroImaging, Thornwood, NY, USA) 

equipped with Plan-Neofluar objectives 2.5x (N.A. = 0.075) and 40x (N.A. = 1.30), 

Fluar objectives 10x (N.A. = 0.5) and 20x (N.A. = 0.75), a Microfire CCD camera 

(Optronics, Goleta, CA, USA), a motorized stage (Ludl Electronics, Hawthorne, NY, 

USA), and stereology software (StereoInvestigator, Version 10, MBF Bioscience, 

Williston, VT, USA). 

The regions of interest included the striatum, CPC and cerebral cortex. Delineation of 

striatum was performed according to established criteria (Holt et al. 1999; Lauer and 

Heinsen 1996). The outlines of the CPC and cerebral cortex could be clearly 

distinguished in the gallocyanin-stained serial sections. The volumes were calculated 

with Cavalieri’s principle, by measuring the projection area of striatal regions on all 

sections and multiplying its value with the interval of the selected sections, as well as 

the actual thickness of sections (Kreczmanski et al. 2007). The projection area was 

determined by tracing the boundary of each section on video images displayed by the 

stereology workstation. Total cell number was evaluated with the optical fractionator 
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(West et al. 1991). Within the manually traced boundaries, the MBF software can 

generate grids and counting frames. Grids are characterized by crossing points, set 

aparat from each other by either 1000x1000 µm (counting neurons) or 2500x2500 µm 

(counting of glial cells). The crossing points of the grid can be used in an identical 

manner like crossing points printed on transparent grids used previously for classical 

area or volume estimations on histological profiles (Weibel 1979). The center of a grid 

can be further defined as a counting frame. The counting frame for neurons was 

70x70µm, that for glial cells 15x15 µm. All cells whose nuclear boundaries or, if 

present, the nuclei which came into focus during constant focusing within a virtual 

depth of 25 µm from every counting were counted. A superficial guard zone 

encompassing 10 µm of the outer surface of the sections was refrained from counting. 

The MBF system generates counting grids and counting frames in a 

systematic-random fashion throughout the delineated regions. Finally, density of cells 

was calculated as the ratio of total cell number and the volume of this region. 

3.6 Statistical analysis 

Statistical analyses were performed using the statistical package for the social 

sciences (SPSS) for Windows, version 16.0. All tests were two-sided with P < 0.05 

considered significant. Non-parametric test was used to identify the significance of 

differences in the outcomes. We assessed the bivariate correlations by Pearson 

correlation coefficient. For stereology, the data of HD and normal control were cited 

from the previous publication, in which the tissues were treated with the same way 

(Heinsen et al. 1994; Heinsen et al. 1996). 

3.7 Literature reviews 

We searched Medline (from 1949 to December 31st, 2012), China National 

Knowledge Infrastructure (http://www.cnki.net, from 1979 to December 31st, 2012) 

and Wanfang Data (http://www.wanfangdata.com.cn, from 1984 to December 31st, 
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2012). The search terms in English and Chinese equivalents included 

“neuroacanthocytosis”, “chorea-acanthocytosis”, “McLeod syndrome”, 

“choreoacanthocytosis”, “hereditary acanthocytosis syndrome” and “Levine-Critchley 

syndrome”. We also identified cases from cross-references between papers. We only 

included the original case reports with explicit diagnosis of NA by the original authors. 

The included patients had to be Chinese and diagnosed in China. We extracted and 

compared the information of each case with geographical origin, gender, age of onset, 

clinical features and laboratory findings. 
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4 Results 

4.1 ChAc pathology in striatum 

The comparison of ENK, SP, GAD and CALB immunostained images (Figure 1) in 

ChAc, HD and control illustrates the changes of striatal neurochemical architecture. 

Distinguishable decreased immunoreactivity of ENK, SP and GAD was found in ChAc 

and HD compared to the control, especially in dorsal caudate nucleus and dorsal 

putamen. They were relatively retained in the ventral part, e.g. accumbens nucleus, 

which was generally acknowledged as weakly immunoreactive in the normal case. In 

contrast, there was increased immunoreactivity of CALB in the dorsal striatum of 

ChAc compared to HD and control, but without obvious changes in the ventral 

striatum. 

   ChAc          HD              Control            ChAc          HD              Control 

 

Figure 1 Images of immunostained striatum of GAD (A), SP (B), ENK (C) and CALB (D) illustrated the striatal 

neurochemical architecture in ChAc, HD and control. There was an obvious atrophy of the caudate nucleus (Cd) and 

putamen (Pt) in ChAc and HD, compared to the normal control. Distinguishable decreased immunoreactivity of ENK, 

SP and GAD was found in ChAc and HD compared to the control, especially in dorsal caudate nucleus and dorsal 

putamen. In contrast, there was an increased immunoreactivity of CALB in the dorsal striatum of ChAc compared to 

HD and the control. Scale bars: 10mm. 

 

The mean number of neurons, astrocytes, and immunostains was respectively 
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acquired and non-parametric test was used to analyse. By Mann-Whitney U test, 

there was a significant difference in the number of neuron between normal control and 

ChAc groups in dorsal caudate nucleus (P = 0.017) and dorsal putamen (P = 0.024). 

Concerning the number of astrocyte in normal control and ChAc groups, a significant 

increase was found in the dorsal caudate nucleus (P = 0.017) but not in the dorsal 

putamen (P = 0.095). The number of ENK immunostained neurons was decreased in 

dorsal caudate nucleus (Mann-Whitney U test, P = 0.017) and dorsal putamen 

(Mann-Whitney U test, P = 0.024) in ChAc group, compared to the control. The 

number of SP immunostained neurons was decreased in dorsal caudate nucleus 

(Mann-Whitney U test, P = 0.017) and dorsal putamen (Mann-Whitney U test, P = 

0.024), compared to the control. However, the difference in the number of GAD 

immunostained neurons was not significant in dorsal caudate nucleus (Mann-Whitney 

U test, P = 0.267) and dorsal putamen (Mann-Whitney U test, P = 0.095) between 

ChAc and control groups, as well as the number of CALB immunostained neurons in 

dorsal caudate nucleus (Mann-Whitney U test, P = 0.095) and dorsal putamen 

(Mann-Whitney U test, P = 0.167) (Figure 2). 

 (A) Dorsal caudate nucleus 

0

30

60

90

Neuron GFAP ENK SP GAD CALB

control (N=3)

HD (N=2)

ChAc (N=7)

  

(B) Dorsal putamen 
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Figure 2 Qualitative neurotransmitters in dorsal striatum. By Mann-Whitney U test, significant differences of number of 

neuron between normal control and ChAc groups were found in dorsal caudate nucleus and dorsal putamen, while the 

number of astrocyte was significantly increased in ChAc group in comparison to normal control group in dorsal 

caudate. The number of ENK and SP immunostained neurons was respectively decreased in dorsal caudate nucleus 

and dorsal putamen of ChAc group compared to the control.  

 

The mean proportion of area (in pixel units) occupied by immunuoreactive ENK, GAD 

terminals in GPe, and SP, GAD terminals in GPi for control, HD and ChAc groups was 

examined and calculated. The statistical analysis showed that the reduced mean 

proportion of SP-positive area for ChAc group was significant (Mann-Whitney U test, 

P = 0.029) compared to the control group in GPi, while the mean proportion of 

ENK-positive area for ChAc group was significantly reduced (Mann-Whitney U test, P 

= 0.029) compared to the control group in GPe. Statistical differences of the 

proportion of GAD area were also found in GPi between ChAc and control groups 

(Mann-Whitney U test, P = 0.029), but not in GPe (Mann-Whitney U test, P = 0.057). 

In the meantime, no significant differences were found in all these proportions 

between ChAc and HD groups (Figure 3). 
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Figure 3 Qualitative neurotransmitters in globus pallidus The mean proportion of immunuoreactive ENK, GAD 

terminals in the GPe, and SP, GAD terminals in GPi for control, HD and ChAc groups was examined and calculated 

(A). The statistical analysis of Mann-Whitney U test showed that the mean proportion of SP-positive area for ChAc 

group was significantly reduced compared to the control and HD group in the GPi, while the mean proportion of 

ENK-positive area for HD group was significantly reduced compared to the control group in the GPe. Statistical 

differences of the proportion of GAD area were also found in GPe and GPi between ChAc and control groups. In the 

meantime, no significant differences were found in all these proportions between ChAc and HD groups. (B-D, GPi for 

SP stain; E-G, GPe for ENK stain; B,E: normal control; C,F: HD; and D, G: ChAc case 5). Scale bars: 100µm. 
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There were positive correlations between each pair variables: the number of neurons 

in dorsal caudate nucleus and putamen (r = 0.863, P = 0.001); the number of 

astrocytes in dorsal caudate nucleus and putamen (r = 0.858, P = 0.001); the number 

of ENK neurons in dorsal caudate nucleus and putamen (r = 0.835, P = 0.001); the 

number of SP neurons in dorsal caudate nucleus and putamen (r = 0.896, P < 0.001); 

the number of GAD neurons in dorsal caudate nucleus and putamen (r = 0.712, P = 

0.014); the number of CALB neurons in dorsal caudate nucleus and putamen (r = 

0.747, P = 0.008); the number of total neurons and SP neurons in dorsal putamen (r = 

0.682, P = 0.021); the number of total neurons and SP neurons in dorsal caudate 

nucleus (r = 0.790, P = 0.002); the number of total neuron and ENK neurons in dorsal 

caudate nucleus (r = 0.672, P = 0.017); the number of SP neurons and ENK neurons 

in dorsal caudate nucleus (r = 0.749, P = 0.005); the number of SP neurons and ENK 

neurons in dorsal putamen (r = 0.676, P = 0.022); the number of CALB neurons and 

ENK neurons in dorsal putamen (r = 0.717, P = 0.013). 

4.2 ChAc pathology in hippocampus 

Compared to normal controls, there was no obvious neuronal loss and gliosis in CA1 

of ChAc cases based on HE and KB stains. The proportions of glial cells were 

gradually elevated from CA1 to CA4 in ChAc cases, which were not consistent with 

selective CA1 changes in HS. In addition, we did not find any abnormality in the 

morphology of CA neurons, glial cells and axons in HE stains. And there were normal 

myelinations of hippocampus in KB stains. For DG, no obvious loss or gliosis of 

granule cells was detected, but with dispersion of granule cells in certain ChAc cases. 

Immunohistochemistry illustrated the neurochemical architecture of hippocampus in 

normal control and ChAc (Table 3). 
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For ENK, there was increased expression in the neurons of the hilus of DG and CA3, 

but reduced in the axons of CA3 and CA1. Meanwhile, the decrease of SP 

immunoreactivity was found in the neurons and axons in all the hippocampus 

subfields. On the other hand, the density of GAD immunoreactive fibers were not 

obviously changed in the cornu ammonis of ChAc, as well as the CALB stained 

neurons and fibers. Most granule cells in the DG were CALB-positive, but the CALB 

stained granule cells in DG were reduced in ChAc. Moreover, granule cell loss and 

dispersion obviously appeared in ChAc cases with seizure. The GFAP stains in the 

hippocampus of ChAc suggested the astrogliosis was less affected in CA1, but more 

severe in the hilus of DG. In CA3, neurons were rarely stained while the surrounding 

fibers were markedly labeled by GFAP (Figure 4). 
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Figure 4 Neurotransmitters in hippocampus. Immunohistochemistry illustrated the comparisons of CA3 region 

between ChAc (case 2, A-D) and normal control (E-H). Elevated ENK was found in the neurons of ChAc (A) 

comparing with control (E). Decreased SP expression was distributed in the neurons and fiber throughout all the layers 

in ChAc (B), comparing with control (F). The density of GAD immunoreactive fibers was not changed in the stratum 

radiatum of ChAc (C) in comparison with the control (G), with several GAD-stained interneurons. Strong CALB stained 

neurons and fibers were observed in ChAc (D) and control (H) without obvious differences. Most of granule cells in DG 

were CALB-positive (I-L). Compared to control (I), granule cell loss and dispersion obviously appeared in ChAc case 2 

(J) and case 5 (K), but did not in case 3 (L). The GFAP stains in the hippocampus of case 5 (M-O) suggested the 
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astrogliosis was less affected in CA1 (M), but more severe in the hilus of DG (O). In CA3, neurons were rarely stained 

while the surrounding fibers were markedly labeled by GFAP (N). Scale bars: 100µm in A-H, and M-O; 50µm in I-L. 

 

We counted the number of neurons and ENK stained neurons in CA3, and calculated 

the proportion. There were no significant differences in the number of CA3 neurons 

between ChAc and control groups (Mann-Whitney U test, P = 0.909). Meanwhile, the 

significant increased percent of ENK stained neurons appeared in the ChAc group, 

comparing with the control group (Mann-Whitney U test, P = 0.016). And the same 

way was applied in the hilus of DG for GFAP stain. No significant differences were 

found in the number of neurons and the ratio of astrocytes/neurons between ChAc 

and control groups (Mann-Whitney U test, P = 0.137 and P = 0.087). Through the 

subgroup analysis, there were significant differences in the number of neurons and 

the ratio of astrocytes/neurons in the hilus of DG between ChAc with cognitive decline 

and control groups (Mann-Whitney U test, P = 0.051 and P = 0.053). The information 

of cognitive decline is provided in Table 2. 

4.3 Specific accumulations in ChAc brain 

Iron was found to deposit in the caudate nucleus, putamen and globus pallidus of 

ChAc cases (Figure 5, A-C). The patterns of deposition included the perivascular and 

parenchymal space. The affected parenchyma involved glia and axon sections. 

Meanwhile, nucleus accumbens and hippocampus were almost spared by iron 

deposition. Immunoreactivity of Cr3/43 was found in the caudate nucleus, putamen, 

and cornu ammonis of ChAc patients, but was relatively spared in the nucleus 

accumbens. For normal controls, no immunoreactivity was found in the striatum. 

However, there was mild immunoreactivity in the cornu ammonis (Figure 5, D-I). 

Concerning the α-synuclein stain, no positively-stained neurons were found in normal 

controls. In contrast, immunoreactivity was found in the neurons of caudate nucleus 

and cornu ammonis in ChAc (Figure 5, J-L). For ß-amyloid 4G8, there was no classic 
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extracellular accumulation. But intracellular accumulations were found both in normal 

controls and ChAc patients without significant difference. No p62-positive inclusion 

was found in any case, except for sparse positive dots in the putamen of one ChAc 

patient (case 7). In addition, there was no immunoreactivity of AT8 in any case. 

 

Figure 5 Specific accumulations in striatum and hippocampus. For Perl's Prussian blue stains, iron depositions were 

not found in nucleus accumbens (A, ChAc 3), but were found in caudate nucleus (B, ChAc 3) and internal globus 
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pallidus (C, ChAc 5). For Cr3/43 stain, the caudate nucleus of NC 1 was not immunoreactive (D). Meanwhile, strong 

immunoreactivity was observed in the caudate nucleus (E) and putamen (F) of ChAc 3, and cornu ammonis 2/3 (G) 

and CA4 (H) of ChAc 7, but not in the nucleus accumbens (I, ChAc 3). For α-synuclein stain, no positive-stained 

neurons were found in the cornu ammonis 2/3 of NC 1 (J). In contrast, positive-stained neurons were found in the 

cornu ammonis 2/3 of ChAc 2 (K) and caudate nucleus of ChAc 8 (L). Scale bars: 10µm. 

 

4.4 Stereology of ChAc brain 

The results of volume, total cell number and cell density in the striatum are listed in 

Table 4 and Figure 6. The mean volume of the striatum was 2.32 ± 0.81 cm3 in the 3 

ChAc cases, which is practically identical with HD cases (Mann-Whitney U test, P = 

0.786) and 53% lower than normal controls (Mann-Whitney U test, P = 0.036). The 

mean total number of small striatal neurons in the ChAc cases was 3.36x106 ± 

2.44x106, which was reduced by 65% compared with HD cases (Mann-Whitney U test, 

P = 0.071) and reduced by 96% compared with normal controls (Mann-Whitney U test, 

P = 0.036). Concerning the density of small striatal neurons, it was the lowest in ChAc 

cases 1.29x106 ± 706x103 per cm3, with 70% decrease compared with HD cases 

(Mann-Whitney U test, P = 0.036) and 92% decrease compared with normal controls 

(Mann-Whitney U test, P = 0.036). The total number and density of glial and undefined 

cells in ChAc cases was 570x106 ± 255x106 and 244x106 ± 49x106 per cm3, which was 

respectively 1.1 times and 3.4 times higher than that of control cases (Mann-Whitney 

U test, P = 0.036 and P = 0.036). Compared with HD cases, it was higher by 1.9 times 

and by 1.8 times in ChAc (Mann-Whitney U test, P = 0.036 and P = 0.036). The glial 

index is defined as the ratio of total number of glial and undefined cells and total 

number of small neurons. The glial index of the ChAc cases was 73 times higher 

compared with controls (Mann-Whitney U test, P = 0.036) and still 10 higher 

compared with the HD cases (Mann-Whitney U test, P = 0.036). 
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Figure 6 Volume, total cell number and cell density in the striatum of ChAc, HD and NC. No significant differences 

were found in the total number of small striatal neurons and volume of the striatum between ChAc and HD groups. 

 

The results of volume, total cell number and cell density in the CPC are listed in Table 

5 and Figure 7. The mean volume of the CPC was 146.2 ±25.7 cm3 in the 3 ChAc 

cases, which is 19% more than HD cases (Mann-Whitney U test, P = 0.381) and 11% 

lower than normal controls (Mann-Whitney U test, P = 0.381). The mean total number 

of neurons in the CPC of ChAc cases was 669x103 ± 172x103, with 1.3 times more 

than that of HD cases (Mann-Whitney U test, P = 0.024) and 3% more than that of 

normal controls (Mann-Whitney U test, P = 0.905). The density of neurons was 

4.54x103 ± 589 per mm3 in ChAc cases, with 84% more than that of HD cases 

(Mann-Whitney U test, P = 0.024) and 15% more than that of normal controls 

(Mann-Whitney U test, P = 0.262). The total number of glial cells in the CPC of ChAc 

cases was 29.0x106 ± 1.27x106, with 3.2 times more than that of HD cases 



 30 
 

(Mann-Whitney U test, P = 0.024) and 2.0 times more than that of normal controls 

(Mann-Whitney U test, P = 0.024). The density of glial cells in the CPC of ChAc cases 

was 202x103 ± 28x103 per mm3, which was 2.5 times more than that of HD cases 

(Mann-Whitney U test, P = 0.024) and 2.5 times more than that of normal controls 

(Mann-Whitney U test, P = 0.024). The glial index in the CPC was defined as the ratio 

of total number of glial cells and total number of neurons. It was 2 times higher in 

ChAc cases compared with controls (Mann-Whitney U test, P = 0.024) and 86% 

higher compared with the HD cases (Mann-Whitney U test, P = 0.095).
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Figure 7 Volume, total cell number and cell density in the CPC of ChAc, HD and NC. Significant differences were 

found in the total number and density of glial cells between ChAc and NC groups, and in the total number and density 

of neurons and total number and density of glial cells between ChAc and HD groups. 

 

The results of volume, total cell number and cell density in the cerebral cortex are 

listed in Table 8 and Figure 8. The mean volume of the cerebral cortex was 126 ± 16 

cm3 in the 3 ChAc cases, which is 17% more than that of HD cases (Mann-Whitney U 

test, P = 0.143) and 9% lower than that of normal controls (Mann-Whitney U test, P = 

0.393). The mean total number of neurons in the cerebral cortex of ChAc cases was 

3.21x109 ± 1.10x109, which was reduced by 19% compared with HD cases 

(Mann-Whitney U test, P = 0.571), and reduced by 46% compared with normal 

controls (Mann-Whitney U test, P = 0.036). Concerning the density of neurons, it was 

25.2x103 ± 5.85x103 per mm3 in ChAc cases, by 32% decrease compared with HD 

cases (Mann-Whitney U test, P = 0.036) and 42% decrease compared with normal 
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controls (Mann-Whitney U test, P = 0.036). The total number of glial cells in the 

cerebral cortex of ChAc cases was 19.8x109 ± 2.16x109, and the density of glial cells 

was 175x103 ± 45.8x103 per mm3. The glial index in the cerebral cortex of ChAc cases 

was 6.79, which was defined as the ratio of total number of glial cells and total number 

of neurons.
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Figure 8 Volume, total cell number and cell density in the cerebral cortex of ChAc, HD and NC. Significant differences 

were found in the total number and density of neurons between ChAc and NC groups, and in the density of neurons 

between ChAc and HD groups. 

 

4.5 Normal distribution of Chorein in the brain and peripheral organs 

Western blot of different brain regions (Figure 9) showed that full length chorein was 

present in all examined brain regions of normal controls. No chorein expression was 

found in CSF.  

 

Figure 9 Chorein levels in different brain regions of a normal proband. Marker levels are given in kDa, the arrow marks 

full length chorein. Asterisk (*) lane was developed with antibody HPA021662 (concentration 1:1000), which was also 

used for immunohistochemistry. All other lanes were developed with antibody anti-chor1. 
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In immunohistochemistry (Figure 10) of the striatum, chorein immunoreactivity was 

found in the caudate nucleus, putamen, GPi and GPe. Medium and large striatal 

neurons were labeled diffusely in the perinuclear cytoplasm, as well as in the neuropil, 

but not in the nucleus. Immunohistochemistry of other non-brain organs showed 

chorein immunoreactivity located in the seminiferous tubule, myocardial fibres, splenic 

corpuscle and intestinal glands (Figure 10). Furthermore, only minor reactivity could 

be seen in renal cortex and proximal tubules and lung. 

 

Figure 10 Chorein immunohistochemistry with antibody HPA021662 (concentration 1:50). Chorein immunoreactivity 

was found in the caudate nucleus (A), putamen (B), GPi (C) and GPe (D). Medium and large striatal neurons were 

labeled diffusely in the perinuclear cytoplasm, as well as in the neuropil, but not in the nucleus. Immunohistochemistry 

of other non-brain organs showed chorein immunoreactivity located in the seminiferous tubule (E), myocardial fibres 

(F), splenic corpuscle (G) and intestinal glands (H). Scale bars: 50µm in A-D, 100µm in E and F, and 500µm in G and 

H. 

 

Normalized to standard protein concentration of brain tissue homogenate (1mg/ml), 

the quantitative analysis of chorein immunoblot (Figure 11) illustrated that chorein was 
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strongly present in testis (10.43x) and still at fair levels in heart (1.16x), bone marrow 

(1.03x) and muscle (0.9x). However, in pancreas (0.33x), stomach (0.32x), intestine 

(0.26x) and colon (0.34x) chorein levels were reduced compared to brain. In addition, 

chorein was also distributed in the spleen (0.68x), liver (0.58x), lung (0.57x), kidney 

(0.54x), ovary (0.53x) and peripheral nerve (0.51x). 

 

Figure 11 Qualitative chorein in different organs of normal controls. The suspected chorein band was found in all 

organs and normalized to standard brain content of chorein. We examined 6 samples of nerve tissue (§), 4 samples of 

testis tissue ($), 3 samples of ovary tissue (#) and 7 samples of all other non-brain organs.  

 

4.6 ChAc pathology in muscle 

H&E and MHC stained sections showed a moderate neurogenic process (Figure 12, 

A-E). Nevertheless, scattered neurogenic angulated atrophic fibres were seen. All 

muscle samples displayed signs of neurogenic changes with fibre group atrophies, 

fibre type grouping and predominance, and angulated fibres. In two muscles, obvious 

fibre group atrophies as well as angulated fibres were seen (cases 7 and 9). Atrophic 

fibres belonged to both fibre types in case 9, while case 7 showed predominant 

atrophy of type 2 fibres. Using immunohistochemistry, chorein was found to be 

distributed along the sarcoplasma and myofibril in normal control (Figure 12, F). 
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Figure 12 Muscle histology. (A) Autopsy muscle of case 9 demonstrates numerous atrophic and angulated fibres. (B, C) 

Autopsy muscle of case 7 shows most impressive fibre size variation, angulated fibres, and a predominance of type 1 

fibres (dark green) with obvious atrophy of type 2 fibres (bright green). (D) Case 6 biopsy shows classic fibre-type 

grouping of type 1 (dark green) and type 2 (bright green). (E) Case 4 biopsy shows a majority of type 2 fibres (bright 

green). Chorein (brown) is distributed along the sarcoplasma and myofibril in normal control (F). Stainings: A, B H&E; 

C-E myosin heavy chain fast isotype; F anti-VPS13A immunohistology (brown), restrained with PAS. Scale bars: 

200µm in A and B, 100µm in C-E, and 50 µm in F.  

 

Six muscles in our series (cases 1, 3, 5, 8, 9, 10) showed an equal representation of 

both fibre types. Three samples showed predominance of type 2 fibres (cases 2, 4 

and 6), and type 1 fibres (cases 7), respectively (Table7). Three muscles showed 

increased fibre size variation (cases 1, 7, 8), and pronounced endomysial fibrosis was 

present in one muscle (case 8). In addition to this, a slight increase in the number of 

internalized nuclei was notable (< 5% = normal; 6-14 % = increased; > 15% = clearly 
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pathological). There was no evidence for necrosis (HE), or other structural alterations, 

like nemaline rods, or accumulation of glycogen (PAS). 
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The results of the morphometric analysis demonstrated a decrease of mean fibre 

diameters in three muscles (cases 4, 7, 9), increased variability coefficients of both 

fibre types’ diameters in three muscles (cases 1, 7, 8), pathological atrophy 

coefficients in seven muscles (cases 1-5, 7, 9), and pathological hypertrophy 

coefficient of type 1 fibres in one muscle (case 8) (Table 8 and Figure 13). The mean 

values of fibre diameter, variability coefficient and hypertrophy coefficient in type 1 

and 2 fibres were in the normal range, but the mean values of atrophy coefficient were 

abnormal in type 1 and 2 fibres. By Mann-Whitney U test, there was no significant 

difference between type 1 and 2 fibres in fibre diameter, variability coefficient, atrophy 

coefficient and hypertrophy coefficient. 
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Figure 13 Morphometry. There was no significant difference between type 1 and 2 fibres in fibre diameter, variability 

coefficient, atrophy coefficient and hypertrophy coefficient. 
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Table 8 Morphometry 

  Mean fibre diameter (µm) Variability coefficient Atrophy coefficient Hypertrophy coefficient

Case no. Type 1 Type 2 Type 1 Type 2 Type 1 Type 2 Type 1 Type 2 

1 47 46 214 272 210 400 0 0 

2 41 50 211 207 560 170 0 10 

3 40 48 204 227 540 240 0 0 

4 39 37 198 221 670 780 0 0 

5 42 47 151 165 420 170 0 0 

6 53 61 197 177 110 40 20 40 

7 40 24 203 281 600 2130 0 0 

8 69 61 276 267 20 110 450 140 

9 39 37 136 143 620 750 0 0 

10 60 67 192 182 70 0 30 150 

Mean fibre diameter (norm. 40-80 µm), variability (norm. < 250), atrophy (norm. < 350) and hypertrophy (norm. < 350) 

coefficients were calculated for type 1 and type 2 fibres, respectively. Pathological values are marked in bold. 

 

4.7 ChAc pathology in nerve 

Cross sections of sural nerves of cases 8 and 9 (Figure 14) showed no overt 

abnormalities in H&E and GT staining. There was no significant loss of myelinated 

fibres in MBP staining, loss of neurofilament protein in neurofilament staining, and 

endoneural or perineural fibrosis in EvG staining.  
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Figure 14 Nerve histology. The paraffin slides of sural nerves of cases 8 and 9 demonstrate no overt abnormalities in 

MBP (A, case 9), Neurofilament (B, case 9), EvG staining (C case 9) and GT (D case 8). Scale bars: 100µm in A, 200 

in B and C, and 50 µm in D. 

 

4.8 Epidemiology of NA in China 

We found a total of 36 studies with 53 cases (27 male and 26 female) (Table 9). All 

these patients were clinically diagnosed as either NA or ChAc. No cases were 

confirmed by gene test or chorein Western blot. No report of MLS was identified. The 

cases originated from 15 Chinese provinces, with 12 cases from Beijing, 7 cases from 

Anhui and 5 cases from Heilongjiang. 
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Table 9 Baseline information of NA cases from China 

Place of 

diagnosis 

Year of 

publication 
Ref. 

Case 

number 
Gender AOO Initial symptoms 

Reported 

diagnosis

Anhui 1984 (Yang et al. 1984) 2 2M, 0F 19;27 Orof. (n=1); MD & Orof. (n=1) ChAc 

Anhui 1987 (Yang et al. 1987) 2 2M, 0F 26;32 DYA (n=1); MD & Orof. (n=1) ChAc 

Anhui 2000 (Sun 2000) 2 0M, 2F 45;46 MD (n=1); PSY (n=1) ChAc 

Anhui 2004 (Yang et al. 2004) 1 1M, 0F 39 Orof. & MD ChAc 

Beijing 2005 (Bo et al. 2005) 1 0M, 1F n.a MD ChAc 

Beijing 2005;  

2012 

(Zhou et al. 2012; Liu et al. 

2005; Wei et al. 2005) 
8 2M, 6F 10-35 

Orof. (n=4); MD (n=3); PN (n=1) NA 

Beijing 2007 (Zhou et al. 2007) 2 2M, 0F 27;37 MD (n=1); EPI (n=1) ChAc 

Beijing 2010 (Hu et al. 2010) 1 1M, 0F 11 n.a. NA 

Gansu 2009 (Tang 2012) 1 1M, 0F 20 MD NA 

Guangdong 2003 (Zhang et al. 2003) 1 1M, 0F 42 Orof. ChAc 

Heilongjiang 1989 (Zheng et al. 1989) 1 0M, 1F 36 DYA & Orof. ChAc 

Heilongjiang 1989 (Zhang et al. 1989) 2 1M, 1F 9,11 Orof. (n=2) ChAc 

Heilongjiang 1990 (Yang and Liang 1990) 1 0M,1F 38 Orof. ChAc 

Heilongjiang 2003 (Qu et al. 2003) 1 0M, 1F 35 Orof. ChAc 

He’nan 2005 (Wang and Cao 2005) 1 0M, 1F 30 Orof. & EPI NA 

He’nan 2011 (Zhang and Zhao 2011) 2 1M, 1F 30;31 MD (n=1); Orof. (n=1) ChAc 

He’nan 2012 (Ma et al. 2012) 1 1M, 0F 43 MD ChAc 

Hubei 2007 (Zhao and Mao 2007) 1 0M, 1F 28 Orof. NA 

Jiangsu 2012 (Zhao et al. 2012) 1 0M, 1F 20 MD & Orof. ChAc 

Liaoning 1989 (Dong et al. 1989) 1 1M, 0F 28 Orof. ChAc 

Neimenggu 2005 (Luo and Zhao 2005) 1 1M, 0F 32 EPI ChAc 

Neimenggu 2007 (Sa ru la et al. 2007) 1 1M, 0F 34 MD ChAc 

Neimenggu 2012 (Jia et al. 2012) 1 1M, 0F 38 Orof. ChAc 

Qinghai 2006 (Zeng 2006) 1 0M, 1F 24 MD NA 

Shandong 2001 (Liu et al. 2001) 3 0M, 3F 20-21 MD (n=3) NA 

Shanghai 2008 (Chen et al. 2008) 1 0M, 1F 33 MD & Orof. ChAc 

Shanghai 2008 (Jiang and Zhou 2008) 1 1M, 0F 5 DYT NA 

Shanghai 2010 (Jiang 2010) 1 0M, 1F 55 Walking instability NA 

Shanghai 2012 (Zhang et al. 2012) 3 2M, 1F 31-74 MD (n=1); GD (n=2) NA 

Shanxi 2004 
(Cui et al. 2004; Cui et al. 

2005) 
3 2M, 1F 26-30 EPI (n=2); Orof. (n=1) ChAc 

Sichuan 2012 (Li et al. 2012) 2 2M, 0F 17;18 Orof. (n=2) ChAc 

Sichuan 1988 (He and Zhang 1988) 1 1M, 0F 25 Orof. ChAc 

Taiwan 2006 (Lin et al. 2006) 1 0M, 1F 31 MD NA 

AOO=age of onset; ChAc=chorea-acanthocytosis; DYT=dystonia; DYA=dysarthria; EPI=epilepsy; F=female; GD=gait disturbance; 

M=male; MD= movement disorders (chorea or involuntary movements); NA= neuroacanthocytosis; n.a.=not available; No.=number; 

Orof.=orofacial dyskinesias; PN＝parkinsonism; PSY=psychiatric symptoms; Ref.=reference
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The age of onset was from 5 to 74 years, most of them (N = 46, 87%) before 40 years. 

The common initial symptoms were orofacial dyskinesias (N = 19, 36%) and 

movement disorders in limbs or trunk (N = 18, 34%). Dysarthria, epilepsy, gait 

disturbance, parkinsonism and psychiatric symptoms can be also presented as early 

symptoms. An elevated proportion of acanthocytes on blood films was regarded as 

the key indicator. Diagnosis was mainly based on hyperkinetic movement disorders 

and elevated acanthocytes in the blood with exclusion of other possible diseases. 

In Figure 15, we summarized the clinical and laboratory findings in Chinese published 

NA cases. The most frequent findings were involuntary movements (N = 48, 91%). 

Orofacial dyskinesias were found in 42 patients (79%). In addition, dystonia (N = 40, 

75%), dysarthria (N = 35, 66%), caudate atrophy or enlarged lateral ventricles on 

neuroimaging (N = 32, 60%) and elevated creatine kinase (N = 27, 51%) were also 

common in NA cases. There were 10 patients (19%) suffered from epilepsy and 14 

patients (26%) with psychiatric symptoms.  

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

MD (n=48)

EPI (n=10)

Orof. (n=42)
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IMG (n=32)

CK (n=27)

 

Figure 15 Clinical and laboratory positive findings in Chinese patients diagnosed as neuroacanthocytosis (N=53). CK= 

Creatine kinase elevated; IMG= Caudate atrophy or enlarged lateral ventricles on neuroimaging; PSY= Psychiatric 

symptoms; DYT= Dystonia; DYA= Dysarthria; DYP= Dysphagia; Orof.= Orofacial dyskinesias; EPI= Epilepsy; MD= 

hyperkinetic movement disorders (chorea or involuntary movements). 
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5 Discussion 

5.1 ChAc pathology in striatum 

Significant decreases of SP and ENK are found in ChAc, compared to the normal 

control (Figure 2 and 3), which suggests that impairments of ENK and SP projecting 

systems are involved in ChAc. There are two projection systems in the basal ganglia, 

that is, direct and indirect pathways. In indirect pathway ENK containing striatal 

neurons project to the Gpe and subthalamic nucleus, while in direct pathway SP 

containing striatal neurons project to Gpi and substantia nigra. The indirect pathway 

has the GABAergic inhibition to the direct pathway via influencing the Gpi and 

substantia nigra. Once this inhibition decreases, the hyperkinetic such as chorea 

could be seen. In ChAc, both the direct and indirect pathways are found to be affected, 

which can explain the early presentation of parkinsonism in certain ChAc patients 

(Bostantjopoulou et al. 2000; Peppard et al. 1990). 

The previous investigations reported a decreased GAD activity in HD by biochemical 

assays (Storey and Beal 1993). In immunohistochemistry, striatal projection neurons 

were usually not GAD stained, which is due to the rapid transportation of GAD from 

the soma to processes and terminal buttons (Rice et al. 2011). GAD is mainly 

distributed in the matrix of caudate nucleus and putamen. In comparison with normal 

control, decreased GAD architecture is found in dorsal striatum of ChAc (Figure 1). 

The GAD-positive cell bodies can be seen in all pallidal structures such as the globus 

pallidus and substantia nigra (Beckstead and Kersey 1985). We found reduced 

GAD-positive areas in the globus pallidus of ChAc and HD compared to normal 

control, but statistical significance was only found in GPi between ChAc and control 

groups (Figure 3). 

CALB is generally regarded as neuroprotective in central nervous disease, e.g. stroke 

and Parkinson’s disease (Yenari et al. 2001; Heizmann and Braun 1995). However, 
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the number of CALB-stained neurons was not significantly changed in the three 

groups (Figure 2). It has been confirmed that CALB is mainly present in the striatal 

projection neurons (Ferrante et al. 1991), and there were also light stains of CALB in 

the cells and neuropils of globus pallidus (Domaradzka-Pytel et al. 2007). The 

decreased CALB neurons in dorsal striatum might be the subsequent result of the 

impairments in the projection neurons, which is not so conspicuous as the decreased 

SP and ENK neurons in ChAc. Compared to normal controls, the architecture of 

CALB in dorsal striatum is stronger in ChAc, which suggested there is an increased 

CALB distribution in the matrix. The absence of chorein is the predominant change in 

ChAc, and influences the transport of proteins (Velayos-Baeza et al. 2008). Therefore, 

it is reasonable to presume that the increase of calcium-binding proteins in the matrix 

might be associated with the loss of chorein. 

5.2 ChAc pathology in hippocampus 

Based on the rich SP immunoreactivity in normal control, SP is regarded to play the 

major role in the function of hippocampus. In Alzheimer’s disease, reduction of SP in 

hippocampus has been confirmed (Jimenez-Corral et al. 2006). The decreased SP 

expression is distributed in the neurons and axons throughout all the subfields of 

hippocampus, which might contribute to the cognitive decline. Our findings suggest 

the impairments of SP in ChAc are not limited to the striatum, but also include the 

hippocampus. 

ENK belongs to the endogenous opioid system and modulates learning and memory, 

synaptic plasticity, and emotional behaviors (Bodnar and Klein 2005; Do et al. 2002; 

Nieto et al. 2005). Meanwhile, elevated ENK expression has been found in the DG of 

hippocampus, which is considered to contribute to the cognitive impairments in 

Alzheimer’s disease (Meilandt et al. 2008). In this study, the increased ENK 

immunoreactivity was diffusely located in the hilus of DG and CA3 of ChAc, which can 
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be associated with the cognitive decline in the ChAc patients. 

GAD and CALB are believed to decrease with the aging process (Stanley and Shetty 

2004; de Jong et al. 1996). However, no overt changes were found in ChAc, apart 

from the reduced CALB stained granule cells in DG. In epilepsy patients with 

hippocampal sclerosis, CALB expression in the granule cells of DG is associated with 

granule cell dispersion and mossy fiber sprouting, but not associated with memory 

function (Martinian et al. 2012). Interestingly, the predominant changes in ChAc 

suggest that granule cell loss and dispersion might be related to epilepsy rather than 

ChAc itself. Moreover, the astrogliosis of hippocampus is obvious and involved in the 

pathophysiology, because the ratio of astrocytes/neurons is significantly increased in 

the hilus of DG of ChAc patients with cognitive decline. 

5.3 Specific accumulations in ChAc brain 

Striatal Aß plaques are found to be associated with dementia in Parkinson’s disease, 

compared to the cases without dementia (Kalaitzakis et al. 2008). In the ChAc cohort, 

6 of 8 patients were accompanied by dementia, but no classic extracellular 

accumulation was found in any case. However, intracellular accumulations were 

widely distributed in the striatum and hippocampus of normal controls and ChAc 

patients without significant difference. Therefore, our results suggest that intracellular 

Aß deposition is not involved in the dementia process of ChAc. 

Iron deposition has been found in the striatum of patients with neurodegenerative 

disease, and is believed to be a marker of neurodegeneration. In AD, iron deposition 

is even detected in the preclinical cases, which hints the early evolvement in the 

pathophysiology. In ChAc cases, many of the iron-positive structures are associated 

with glial cells in the parenchyma, which is the pattern in AD. Moreover, there are also 

perivascular iron accumulations and around axons of white matter in ChAc. 

Interestingly, the accumbens nucleus is rarely affected by iron deposition in all the 



 49 
 

ChAc cases, compared to caudate nucleus and putamen. Therefore, we speculated 

that iron deposition might be more associated with movement disorders in patients 

with ChAc. 

Cr3/43 staining is a reliable marker of activated microglia in the parenchyma of brain. 

It has been reported that microglia were increased in the striatum, cortex and white 

matter of HD brains, and activated microglia were thought to be associated with 

neuron degeneration and ferritin accumulation in HD (Simmons et al. 2007; Sapp et al. 

2001). In our study, activated microglia were found in the striatum of certain ChAc 

cases, but not correlated with striatal Aß deposition. In other ChAc cases, no 

significantly increased microglia was found. It has been found that chorein is highly 

expressed in the organs of mesoderm-origin and absent in ChAc. Interestingly, 

microglia are derived from mesoderm. But all the other glial cells, such as astrocytes 

and oligodendrocytes, are originated from neuroectoderm. Thus, increased microglia 

in ChAc might be associated with chorein absence in the pathophysiology. The factors 

including acute psychotic episodes, post mortem interval, neuroleptic treatment and 

aging should also be considered, which can affect the number of activated microglia 

(Steiner et al. 2006). 

The negative results of p62 and AT8 stains illustrate that ChAc is distinct from other 

neurodegenerative diseases, because of the absence of common inclusions such as 

tau accumulations. Meanwhile, one ChAc case (ChAc 8) was α-synuclein positive in 

the neurons of caudate nucleus and CA, but without p62 accumulations. Therefore, 

we can not assert α-synuclein accumulations are involved in ChAc with a possibility of 

precursors to Lewy bodies, which can not be detected by p62 stain like typical Lewy 

bodies (Paine et al. 2005; Kuusisto et al. 2003). 

5.4 Stereology of ChAc brain 

By stereological analysis, there was a mean 96% small striatal neuron loss in ChAc 
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cases, and a mean 46% cortical neuron reduction, but without neuron loss in the CPC. 

The previous studies suggested a mean 88% small striatal neuron loss, 33% cortical 

neuron reduction and 55% neuron loss in the CPC of HD cases (Heinsen et al. 1994; 

Heinsen et al. 1996). Comparing the number of neurons in ChAc and HD, significant 

differences were found in the striatum and CPC, with more severe neuron loss in the 

striatum of ChAc and more neurons preserved in the CPC of ChAc. There was no 

statistical difference in the number of cortical neurons in ChAc and HD. The findings 

demonstrated a different pathological change in ChAc brain compared to HD brain. 

Compared to HD, CPC was far less affected in ChAc, in which the number of neurons 

was similar to that of normal controls. Actually, previous stereological study concluded 

that the neuron number in CPC was not significantly changed in Alzheimer’s disease 

and Parkinson’s disease (Xuereb et al. 1991), while the meaningful reduction was 

found in the CPC of HD (Heinsen et al. 1996). 

Neuronal depletion in the striatum and cerebral cortex of ChAc is highly significant 

compared to normal controls. Chorea as the predominant symptom was found in all 

the cases of ChAc cohort. Orofacial dyskinesia, dystonia, dysarthria and dysphagia 

are also commonly seen in ChAc. It is worthy of note that the striatal small neuron loss 

in ChAc is even more severe than HD, which can explain a variety of clinical 

movement disorders. In addition, the neuron loss in both striatum and cerebral cortex 

of ChAc may cause cognitive decline, seizure and psychiatric symptoms, although the 

cortical neuron loss in ChAc is not more significant compared to that of HD. 

Subcortical dementia was believed as the main reason for dementia in HD, and 

diffuse cortical neuron loss is insufficient to explain (Heinsen et al. 1994; Salmon and 

Filoteo 2007). For seizure, a concept of subcortical epilepsy has been raised (Badawy 

et al. 2013), which is different from the traditional knowledge that the site of seizure 

origin is cerebral cortex. Subcortical structures are also involved in the epileptiform 
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discharges. Moreover, stereological analysis illustrated the neuron loss in the 

subcortical regions of psychiatric disorders like schizophrenia (Kreczmanski et al. 

2007). 

In clinical neuroanatomy, the CPC can be divided into centromedian (CM) and 

parafascicular (Pf) nuclei, and links to both striatal parts by efferents. In general, the 

Pf nucleus mainly links to the caudate nucleus (associative-limbic striatum), while the 

CM nucleus mainly links to the putamen (sensorimotor striatum) (Sadikot et al. 1992; 

Sadikot and Rymar 2009). Therefore, the CM and Pf nuclei are considered to be 

involved in parallel processing of sensorimotor and associative-limbic information in 

the striatum. Although the striatum is severely affected in both ChAc and HD, the CPC 

seems to be not obviously changed in ChAc in comparison to HD. On the other hand, 

the Pf nucleus can receive afferents from the frontal eye fields and superior colliculus, 

and project to the supplementary eye field (Huerta et al. 1986; Parent and De 

Bellefeuille 1983). The neuron loss is thought to be associated with abnormal 

saccades in HD (Heinsen et al. 1996). In the ChAc cases for stereology, saccadic eye 

movement disorders were only reported in case 8. Meantime, the volume of the CPC 

in case 8 was the lowest, which is comparable to the volume of HD cases. Moreover, 

the number of neurons in this case is obviously reduced in comparison to other two 

ChAc cases. Considering the duration of disease in case 8 is the longest, the CPC 

may be affected in the late stage of ChAc. 

Although the differences of total volume and cell density were found in the different 

diseases and normal controls, they can be also influenced by the technical factors. 

Therefore, they are not further discussed in the dissertation. The most common 

feature in ChAc is dramatically increased glial cells, no matter in the striatum, cerebral 

cortex or CPC. On the contrary, the total number of glial cells is widespreadly 

decreased in HD compared with normal controls. The findings suggest that gliosis 
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may play a key role in the pathophysiological process of ChAc, which is quite different 

from HD.  

5.5 Chorein distributions in human tissues 

Chorein is expressed in the caudate and putamen (neostriatum) of normal controls, 

but absent in ChAc patients. This finding probably corresponds with the clinical picture 

of patients showing a choreatic movement disorder and to the imaging data showing 

atrophy of these areas during the course of disease. Slightly lower chorein levels are 

found in the globus pallidus (palaeostriatum). This might be due to the fact that the 

globus pallidus is traversed by numerous myelinated axons of the striato-pallidonigral 

bundle, which contains much white matter decreasing the number of neurons per area. 

This might be the reason why the globus pallidus is relatively less involved in the 

pathological process of ChAc.  

Chorein is present in the hippocampus, amygdala, frontal cortex and striatum in 

normal controls, which might explain the progressive neuropsychiatric and cognitive 

disorder of ChAc patients who are lacking chorein protein in these areas. 

Neuropsychiatric symptoms and cognitive decline occur in certain ChAc patients and 

usually consist of obsessive-compulsive disorders, depression, anxiety and 

symptoms similar to frontal lobe syndromes affecting executive functions and to a 

lesser degree memory functions (Danek et al. 2004; Walterfang et al. 2008). 

Additionally, the striatum especially with its ventral parts is also involved in the loops 

that modulate the output to the cortex, which could cause comorbid negative 

influences on motor as well as cognitive and emotional abilities (Kimura and 

Matsumoto 1997). 

On a cytological level, chorein is clearly pronounced in the perinuclear cytoplasm and 

to a lesser extent in the neuropil, while nuclei are spared. This finding corresponds to 

previous descriptions of subcellular chorein localization (Kurano et al. 2007). Chorein 
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is believed to regulate the transport of proteins between the trans-Golgi network and 

the prevacuolar compartment (Brickner and Fuller 1997; Velayos-Baeza et al. 2004; 

Velayos-Baeza et al. 2008). The involvement of chorein in cyto-skeleton architecture 

and ion channels of erythrocyte-membranes might explain the slight presence of 

chorein in the white matter dominant areas (Bosman et al. 1994; De et al. 2004). 

However, the pathophysiological process in general and the connection between 

erythrocyte pathology and brain tissue in particular is still unknown. 

In different body organs, chorein was highly present in testis, heart, bone marrow, 

brain and muscle. Besides brain this comprises many organs developing from the 

mesoderm. In contrast, lower levels of chorein are found in the digestive organs like 

pancreas, stomach, intestine and colon that are deriving from the endoderm. Also 

considering the conservation of chorein, there might be a germline specific expression 

of VPS13A associated with the function of chorein in mesoderm differentiation. 

5.6 ChAc pathology in muscle and nerve 

Muscle weakness and atrophy, hyporeflexia and the elevation of serum CK are 

frequently present in ChAc, and suggest neuromuscular impairment in ChAc. As 

noted before (Aasly et al. 1999), electrophysiology demonstrates sensory axonopathy 

in ChAc patients. Concerning muscle pathology, both neuropathic and myopathic 

alterations are found. This is supported by previous studies (Limos et al. 1982; Alonso 

et al. 1989). Compared to MLS patients, muscle atrophy in ChAc is more severe and 

is marked by decreased mean fiber diameter, increased atrophy coefficients (Table 8) 

and a higher number of internalized nuclei in ChAc (Table 7). However, neurogenic 

signs like angulated fibres and muscle fibre-type grouping in ChAc are comparable to 

MLS (Table 7) (Hewer et al. 2007). Slight loss of myelinated fibres and axonal 

damage have been reported in ChAc nerve before (Sorrentino et al. 1999), while in 

this study, as in MLS no overt abnormalities are found. 
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In erythrocytes from ChAc patients the structure of band 3 complex is altered, which 

affects the binding of spectrin cytoskeleton to erythrocyte membranes (De et al. 2004). 

Therefore, the signal transduction pathways are influenced, leading to the deficiency 

in the process. In regard to uneven and discontinuous chorein distribution along the 

sarcoplasma still found, we speculate that muscle was the least influenced tissue in 

ChAc patients. Moreover, ß-spectrin immunostaining for cytoskeletal protein is normal 

in the muscle of ChAc (Saiki et al. 2007). In conclusion, there might be a reasonable 

mechanism for this selective expression in the muscle. It is also necessary to exclude 

the mutated chorein, which can be expected in some cases, such as missense 

mutations, deletion of exons without changing the reading frame, and frameshift 

mutations leading to premature termination codons but not to nonsense-mediated 

mRNA decay. 

There is a hypothesis that the impairment of chorein leads to neuroaxonal dystrophy 

through influencing axonal transport (Dotti et al. 2004), which possibly explained the 

nerve damage. However, chorein is not present in the peripheral nerves of normal 

control, which is different from chorein expression in brain and muscle. This finding 

could interestingly explain our nerve histological results. Even in case 9 with the 

longest duration of disease (21 years), no overt abnormalities were found in the nerve 

(Figure 14). Therefore, we speculate that chorein absence might not be intensively 

involved in the physiological processes of the peripheral nerves in ChAc, or might at 

least not be necessary for these processes. 

5.7 Epidemiology of NA in China 

Involuntary movements and orofacial dyskinesias are the most common symptoms 

and found in respectively 91% and 79% of Chinese NA cases. The proportion of 

orofacial dyskinesias in HD is reported as 13.7% (Zheng et al. 2012), which was far 

less than the proportion in NA. Thus, orofacial dyskinesias might be a relatively 
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specific symptom for the diagnosis of NA (Bader et al. 2010). Ataxia was observed 

and was more commonly seen in the phenotype of PKAN (Ichiba et al. 2008). 19% 

patients suffered from epilepsy and 26% patients had psychiatric symptoms, which is 

much lower than the reported proportions (50% patients with epilepsy and 2/3 patients 

with psychiatric symptoms) in the literatures (Scheid et al. 2009; Bader et al. 2011). 

We should also carefully explain the results and pay attention to the potential bias, e.g. 

publication bias and completeness of results. The ethnic difference might be another 

possible explanation. 

The current clinical diagnosis of NA in China is mainly based on clinical 

manifestations such as hyperkinetic movement disorders and elevated proportion of 

acanthocytes in the blood, as well as the exclusion of other possible diseases. The 

diagnostic criteria for NA were widely used in the last century. There was also an early 

Chinese case was diagnosed in Singapore according to the criteria (Ong et al. 1989). 

With the development of molecular biology, the absence of acanthocytes has been 

found in certain gene-confirmed ChAc cases (Bayreuther et al. 2010). On the other 

hand, not all NA cases first present choreic movement or orofacial dyskinesias, but 

sometimes atypical symptoms such as epilepsy, psychiatric disorders, or 

parkinsonism. 

In addition to ChAc, other subtypes of NA such as MLS, HDL-2 and PKAN, have not 

been found in China. We noticed that some cases were with young age of onset or 

suffered from ataxia. It is necessary to differentiate from NBIA, which is also an 

inherited neurological movement disorder. NBIA is usually early-onset and ataxia is 

more common in NBIA. Therefore, specific molecular tests are required for the 

accurate diagnosis. For instance, chorein detection by Western blot is a reliable and 

inexpensive method for ChAc diagnosis (Dobson-Stone et al. 2004). In the future, 

Chinese NA network is required and encouraged for the improvement of diagnosis, 
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treatment, care and research.
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6 Outlook 

This doctoral dissertation adds the knowledge to the neuropathology of ChAc and the 

epidemiology of NA in China. Because of the very low prevalence in the past, there 

were only sparse clinico-pathological case reports of ChAc. Moreover, the distribution 

of chorein in the human tissues was not investigated, as well as the role of chorein 

absence in the pathogenesis of ChAc. In the study, chorein was found widely 

distributed in the brain and mesoderm organs of normal control subjects. Chorein was 

not expressed in the normal peripheral nerves, which illustrated that chorein might not 

be intensively involved in the physiological processes of the peripheral nerves, or 

might at least not be necessary for these processes. In the future, the exact 

mechanisms need to be further investigated. 

The conclusion in neuromuscular finding suggests that both neurogenic and 

myopathic alterations are involved in ChAc. It is important to the concept of diagnosis 

and treatment, which are different from the simple myopathy. The neuropathological 

changes in the striatum and hippocampus of ChAc highlight the astrogliosis and the 

decrease of SP projection system. These findings are different from HD. It has been 

reported ENK projection system in the striatum was more affected than SP in HD and 

related to choreiform movement disorders. The impairment of SP system might 

explain the early presentation of parkinsonism in certain ChAc cases. Meanwhile, 

there was also decrease of ENK in the striatum of ChAc, which is comparable to the 

striatum of HD. Elevated ENK in the hippocampus of ChAc was found, and it was 

similar to the changes of hippocampus in Alzheimer’s disease. Therefore, we believed 

neurochemical changes in ChAc hippocampus also contributed to the cognitive 

decline, not only the striatal involvement. 

The limitations of the study should be considered and need to be improved in the 

future. The tissues were collected worldwide, and the heterogeneity of specimens in 
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post mortem interval and duration of fixation was unavoidable. However, these factors 

are very important for immunohistochemistry. For each stain, only one section was 

evaluated from each block and the potential of bias might exist in the calculation of 

positive-stained neurons and the area of labeled boutons. Furthermore，  the 

neurochemistry study of brain was limited to the GABAergic system, while the 

cholinergic system was not investigated due to the unavailability of antibodies, e.g. 

choline acetyltransferase and acetylcholinesterase. Therefore, the conclusions should 

be confirmed and supplemented by future investigations with more accurate methods. 

There are still some questions, which are needed to explore. Firstly, what are the 

functions of chorein and the mechanisms of chorein absence in the pathological 

changes of ChAc? Secondly, what are the associations between chorein absence and 

the neurochemical changes in the brain, and why the astrogliosis is more predominant 

in ChAc, compared with HD? Is there any correlation between chorein absence and 

astrogliosis? Finally, the iron depositions are reported in the neurodegenerative 

diseases, such as neurodegeneration with brain iron accumulation, progressive 

supranuclear palsy and HD. However, these diseases are associated with the 

pathological accumulations, which is absent in ChAc. In the preliminary study, we 

found sparse iron depositions in the perivascilar and parenchyma of ChAc striatum 

and it is much less than the iron depositions in HD. The mechanisms of iron 

depositions in ChAc and the differences between ChAc and HD should be 

interestingly further investigated. 
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7 Summary 

Chorea-acanthocytosis (ChAc) is a VPS13A gene related, rare autosomal recessive 

neurodegenerative disease. Chorein is a 360 kDa protein encoded by VPS13A, which 

is absent in the erythrocyte membrane of ChAc. Actually, ChAc is the most common 

phenotype of neuroacanthocytosis (NA) syndromes, which are generally 

acknowledged as a group of rare diseases and characterized by misshaped 

erythrocytes (acanthocytes) and neuronal multisystem pathology. The core symptoms 

include choreiform involuntary movement, muscle weakness and atrophy, areflexia, 

elevated creatine kinase, dementia and psychiatric disorders. Because of the low 

prevalence of ChAc, no study systematically evaluated the pathological changes 

based on the autopsy cohort. 

My doctoral project consists of four studies investigating neuropathology of ChAc and 

epidemiology of NA syndromes in China. The first study explored the distribution of 

chorein in normal control with upregulated levels throughout the brain and mesoderm 

organs. In the second study, we examined muscle and nerve tissues of ChAc. Both 

neurogenic and myopathic alterations were found in the muscle histology. Cross 

sections of sural nerves showed no overt abnormalities. The third study focused on 

neuropathological changes in the ChAc brains. Astrogliosis was involved in the 

pathological process of ChAc and the predominant neurochemical impairment was 

substance P projection system, widely locating in dorsal caudate nucleus, dorsal 

putamen, internal segment of the globus pallidus and hippocampus. Meanwhile, the 

loss of enkephalin in dorsal caudate nucleus and putamen, as well as the elevation of 

enkephalin in hippocampus might contribute to clinical manifestation. The fourth study 

was an overview of NA case reports in Chinese medical database in the past 30 years. 

There were only 53 probable NA cases reported and none of them was confirmed by 

gene or protein test. In the future, the network of Chinese NA is needed for the 
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improvement of diagnosis, treatment, research and education. 
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8 Zusammenfassung 

Die Chorea-Akanthozytose (ChAc) ist eine seltene autosomal-rezessive 

neurodegenerative Erkrankung mit Mutationen im VPS13A-Gen. Das Produkt des 

VPS13A-Gens ist Chorein, ein Protein 360 kDa Massengewicht. Bei ChAc-Patienten 

fehlt Chorein u.a. in den Erythrozytenmembranen. ChAc ist die häufigste Erkrankung 

innerhalb der Gruppe von Neuroakanthozytose (NA)-Syndromen. NA ist die 

Sammelbezeichnung für eine Gruppe von seltenen Erkrankungen, die durch die 

Kombination aus deformierten Erythrozyten (Akanthozyten) und multisystemischer 

Hirnpathologie gekennzeichnet sind. Die Hauptsymptome sind unwillkürliche 

choreatische Bewegungen und Muskelschwäche, ferner Areflexie, Demenz und 

psychiatrische Störungen. Es zeigt sich eine Muskelatrophie sowie eine Erhöhung der 

Kretininkinasewerte. Wegen der geringen Prävalenz von ChAc gibt es bislang keine 

systematische Studie über pathologische Veränderungen in Autopsiegeweben. 

Mein Promotionprojekt bestant aus vier Studien, die sich v. a. auf neuropathologische 

Veränderungen bei ChAc und auf die Epidemiologie von NA-Syndromen in China 

konzentrierten. Die erste Studie untersuchte die Normalverteilung des 

Chorein-Proteins in Gehirn und mesodermalen Organen gesunder Kontrollfälle. Die 

zweite Untersuchung befasste sich mit histopathologischen Veränderungen der 

Skelettmuskulatur und peripherer Nerven bei ChAc. In den Muskelpräparaten wurden 

sowohl neurogene als auch myopathischen Veränderungen gefunden. Die 

Querschnitte vom Nervus suralis zeigten keine offensichtlichen Anomalien. Die dritte 

Untersuchung verglich die neuropathologischen Veränderungen in den Gehirnen von 

Fällen mit ChAc und Morbus Huntington gegenüber normalen Kontrollen. Eine 

Vermehrung der Astroglia (Astrogliose) war ein Bestandteil des pathologischen 

Prozesses bei ChAc. Am stärksten beeinträchtigt war das Substanz 

P-Projektionssystem im dorsalen Nucleus caudatus, dorsalen Putamen, internen 
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Segment des Globus pallidus und  Hippocampus. Der Verlust von Enkephalin im 

dorsalen Nucleus caudatus und Putamen sowie die verstärkte Enkephalinexpression 

im Hippocampus tragen möglicherweise außerdem zur klinischen Manifestation bei. 

Die vierte Untersuchung war eine Übersicht der NA-Fallberichte in den letzten 30 

Jahren in der chinesischen medizinischen Datenbank. Es gab lediglich 53 Fälle mit 

wahrscheinlicher NA, jedoch keiner dieser Fälle wurde durch Gen- oder Eiweißtests 

bestätigt. In Zukunft wird ein Netzwerk zur Erfassung chinesischer Fälle mit V.a. NA 

benötigt, um Diagnostik, Behandlung, Forschung und Ausbildung zu verbessern.
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9 Appendix 

Protocol of Western Blot for Chorein Distribution 

1.  Tissue homogenates by Lysis BufferA to 10% solution 

2.  5ul unfrozen supernatant of homogenates, mixed with 15ul LDS Sample BufferB 

10min. 70oC 

3.  Electrophoresis in Gel-Running BufferC (1 hour, 150V per gel) 

4.  Activate PVDF membrane with methanol, and equilibrate with Transfer BufferD 

5.  Tranfer PVDF membrane with Transfer Buffer and 10% methanol (50mA per 

membrane, 2 hours) 

6.  Block the membrane with 0.5% I-block, PH=7.4, 1 hour Room Temperature 

7.  Primary antibody, anti-chorein 1 Antiserum (Rabbit) 1:5000 in PBSTE, 1 hour 

Room Temperature 

8.  Wash with PBST 4x15 min., Room Temperature 

9.  Secondary antibody, 1:5000 in PBST, 1 hour Room Temperature 

10.  Wash with PBST 4x15 min., Room Temperature 

11.  Equilibrate with alkaline phosphatase (APF) Buffer 5 min., Room Temperature 

12.  Develop with CDP star solution on membrane in foil and camera, about 10 mins 

exposure 

13.  Develop with NBT-BCIPG (NBT:BCIP=35ul+45ul+10ml AP buffer) 

Buffers: 

A.  Lysis Buffer: 100nM Tris, 100mM NaCl, 10mM EDTA, 0.5% nonidet P40, 0.5% 

deoxycholic acid, 1 tablet protease-Inhibitor/10ml, PH 6.9 

B.  LDS Sample Buffer: 100ul LDS, 180ul aqua dest, 20ul mercapto 

C.  Gel-Running Buffer: 100ml Gel-Running Buffer 10x (50mM Tris-Base, PH8.3, 

60.5g/L; 50mM Tricine 89.5 g/L; 0.1% SDS 10.0 g/L), 900ml aqua dest 

D.  Transfer Buffer: 10ml Transfer Buffer 20x (Invitrogen, NU Page, Cat. no. NP 
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0006(11), 180ml aqua dest, 10ml methanol 

E.  PBST Buffer: 100ml PBS-Buffer 10x (Na2HPO4, 12.7g/L; NaH2PO4 3.9 g/L; NaCl 

85 g/L), 900ml aqua dest, 1ml Tween-20 

F.  AP Buffer: 100mM Tris-HCl (PH 9.5), 100mM NaCl and 10mM MaCl2 

G.  NBT-BCIP Substrate Solution: BCIP-T (50mg/ml in dimethylformamide) 33ul, 

NBT (75mg/ml in 70% dimethylformamide) 44ul, with 10ml of AP Buffer
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10 Abbreviations 

AP  Alkaline phosphatase 

Aß  Amyloid-beta 

CA  Cornu ammonis 

CALB  Calbindin D-28k 

Cd  Caudate nucleus 

ChAc  Chorea-acanthocytosis/Chorea-Akanthozytose 

CK  Creatine kinase 

CM  Centromedian 

CPC  Centromedian-parafascicular complex 

CSF  Cerebrospinal fluid 

DG  Dentate gyrus 

e.g.  Exempli gratia 

ENK  Enkephalin 

etc.  Et cetera 

EvG  Elastica-van Gieson 

FUS  Fused in sarcoma 

GABA  Gamma-aminobutyric acid 

GAD  Glutamic acid decarboxylase 

GFAP  Glial fibrillary acidic protein 

GPe  External segment of the globus pallidus 

GPi  Internal segment of the globus pallidus 

GT  Gömöri trichrome 

HD  Huntington’s disease 

HDL-2  Huntington’s disease-like 2 

H&E  Hematoxylin and eosin 
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IOD  Integrated optical density 

KB  Klüver-Barrera 

MBP  Myelin basic protein 

MHC  Myosin heavy chain 

MLS  McLeod syndrome 

NA  Neuroakanthozytose/Neuroacanthocytosis 

NBIA  Neurodegeneration with brain iron accumulation 

PAS  Periodic acid Schiff 

Pf  Parafascicular 

PKAN  Pantothenate kinase-associated neurodegeneration 

Pt  Putamen 

SP  Substance P 

SPSS  Statistical package for the social sciences 
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