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1. Einleitung 

Diabetes mellitus (DM) Typ 2 ist eine sehr weit verbreitete Krankheit und die Prävalenz nimmt 

stetig zu. In Deutschland stieg der Anteil der an Diabetes erkrankten Menschen an der Ge-

samtbevölkerung zwischen 1989 und 2007 von 5,9 % auf 8,9 %, was vor allem durch eine er-

höhte Prävalenz des Typ 2 Diabetes mellitus verursacht ist (DIABETES, 2010). In den USA leiden 

sogar 18–30% der älteren Bevölkerung an der Erkrankung (GUNASEKARAN & GANNON, 2011). 

Die Betazellmasse unterliegt über das ganze Leben hinweg dynamischen Veränderungen und 

kann sich dem Insulinbedarf anpassen. Im Rahmen der Entstehung eines Typ 2 Diabetes mel-

litus kann die Betazellmasse daher initial expandieren, um eine ausreichende Insulinproduk-

tion und -ausschüttung zu gewährleisten. Im Verlauf der Erkrankung kommt es jedoch zur Er-

schöpfung der Betazellen und zu einem Verlust an funktioneller Betazellmasse. Bei Typ 2 DM 

kann das Pankreas zwar Insulin produzieren, Menge und Qualität der Insulinausschüttung sind 

jedoch nicht ausreichend, um normoglykämische Verhältnisse zu erreichen. Die genauen Ur-

sachen für die Entstehung eines Typ 2 DM sind noch nicht geklärt.  

Es werden seit langer Zeit Tiermodelle verwendet, um die Ursachen, Folgen und Behandlungs-

möglichkeiten von Typ 2 DM zu erforschen. Ein interessantes Modell ist die GIPRdn transgene 

Maus, bei welcher durch die Expression eines dominant negativen glucose-dependent insu-

linotropic polypeptide Rezeptors (GIPRdn) in den Betazellen das Substrat GIP zwar noch gebun-

den wird, allerdings keine Signaltransduktion eingeleitet werden kann. Dies führt zu einem 

Ausfallen der Funktion von GIP und zur Entwickelung eines früh einsetzenden hochgradigen 

diabetischen Phänotyps und einer gestörten postnatalen Pankreasentwicklung (HERBACH et 

al., 2011). 

Es gibt Hinweise darauf, dass der genetische Hintergrund einer Maus Einfluss auf die Ausprä-

gung eines DM und die Insel- bzw. Betazellmasse ausübt. Bei Streptozotocin diabetischen 

Mäusen wurde festgestellt, dass einige Stämme als High Responder reagierten und starken 

Diabetes bekamen, während andere Stämme nur einen schwachen Diabetes entwickelten und 

als Low Responder eingeteilt wurden (GURLEY et al., 2006). Bei der Typ 2 diabetischen db/db-

Maus konnte ebenfalls gezeigt werden, dass der genetische Hintergrund die Ausprägung des 

diabetischen Phänotyps moduliert (COLEMAN, 1992). Darüber hinaus belegt eine Studie, dass 
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der genetische Hintergrund der Maus die Inselzahl und Inselmasse signifikant beeinflusst 

(BOCK et al., 2005). 

Dies wirft die Frage auf, ob der genetische Hintergrund bei der GIPRdn transgenen Maus einen 

Einfluss auf die postnatale Expansion der Betazellmasse und den Schweregrad des Diabetes 

mellitus aufweist. GIPRdn transgene Mäuse, welche ursprünglich auf dem genetischen Hinter-

grund des Auszuchtstammes CD1 gezüchtet wurden, wurden im Vorfeld der Untersuchungen 

über zehn Generationen auf die Inzuchtstämme BALB/c, DBA/2, FVB/N und C57Bl/6J sowie 

den Auszuchtstamm NMRI zurück gekreuzt. Es erfolgten in dieser Studie vielfältige klinische 

Untersuchungen sowie qualitativ  histologische und quantitativ stereologische Auswertungen 

des endokrinen Pankreas der beiden Linien F.CD1-GIPRdn und B6.CD1-GIPRdn. Die genaue Cha-

rakterisierung der beiden Mäuselinien kann einen wichtigen Beitrag zur Klärung der Entste-

hung des Diabetes mellitus Typ 2 leisten. 
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2. Literatur 

2.1. Diabetes mellitus 

2.1.1 Definition und Beschreibung 

Diabetes mellitus umschließt eine heterogene Gruppe von chronischen Stoffwechselerkran-

kungen, bei denen es aufgrund mangelnder Insulinproduktion und gestörter Insulinsekretion 

der Betazellen des endokrinen Pankreas oder/und erniedrigter Insulinsensitivität eine Hyper-

glykämie entsteht. Infolge der andauernden Hyperglykämie steigt das Risiko an Langzeitfolge-

schäden zu erkranken, insbesondere handelt es sich dabei um Schäden am Nervensystem, 

dem kardiovaskulären System der Nieren und anderen Organsystemen (WORLD HEALTH 

ORGANIZATION, 2006; INTERNATIONAL DIABETES FEDERATION, 2013). 

Bei den Vorstufen von Diabetes mellitus spricht man von gestörter Glukosetoleranz (Impaired 

glucose tolerance – IGT) und beeinträchtigter Nüchternblutglukose (Impaired fasting glucose 

– IFG) (INTERNATIONAL DIABETES FEDERATION, 2013). 

Die Pathogenese des Diabetes mellitus umfasst mehrere Faktoren, die sich je nach Diabetes 

Typ unterscheiden und noch nicht vollständig bekannt sind. Bei Typ 1 Diabetes mellitus kommt 

es zur Zerstörung von Betazellen durch autoimmune Reaktionen (Typ1a) oder durch bisher 

unbekannte Mechanismen (Typ1b, idiopathisch). Typ 2 Diabetes mellitus ist verursacht durch 

eine Insulinresistenz in Kombination mit dem Mangel an funktioneller Betazellmassse mit da-

raus resultierender reduzierter und gestörter Sekretion von Insulin. Des Weiteren sind andere 

spezifische Formen des Diabetes bekannt, bei denen Mutationen in diabetesrelevanten Ge-

nen (z.B. dem Glukokinase- oder Insulingen, GCK bzw. INS) für die Entstehung des Diabetes 

verantwortlich sind (AMERICAN DIABETES ASSOCIATION, 2010). Zusätzlich unterscheidet man 

den Schwangerschaftsdiabetes, der vermutlich durch plazentare Hormone ausgelöst wird 

(INTERNATIONAL DIABETES FEDERATION, 2013). 

Die Symptome des Diabetes mellitus unterscheiden sich in Abhängigkeit vom Diabetestyp, 

schließen jedoch immer Hyperglykämie, Polyurie, Polydipsie und Polyphagie mit ein. Oftmals 

ist als Folge die Immunabwehr geschwächt und die Wundheilung verschlechtert. 

Spätfolgen von langanhaltender Hyperglykämie sind kardiovaskuläre Erkrankungen, z.B. An-

gina pectoris, Myocardinfarkt, Schlaganfall, periphere Gefäßerkrankungen und kongestives 
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Herzversagen. Diabetes mellitus Patienten sterben am häufigsten an kardiovaskulären Kom-

plikationen (INTERNATIONAL DIABETES FEDERATION, 2013). Nierenversagen und Erblinden 

durch Retinopathie sind ebenfalls gefürchtete Spätfolgen einer langanhaltenden Hyperglykä-

mie (INTERNATIONAL DIABETES FEDERATION, 2013). Durch exzessiv hohe Blutglukosewerte 

und hohen Blutdruck können Nerven im ganzen Körper geschädigt werden, was zu Verdau-

ungsproblemen, erektiler Dysfunktion, Problemen beim Urinieren und anderen Störungen 

führen kann. Außerdem kann ein Verlust der Hautsensibilität in den Gliedmaßen entstehen 

(periphere Neuropathie), was zu einem erhöhten Infektionsrisiko führt, da kleine Verletzun-

gen unbemerkt bleiben können. Durch eine verschlechterte Wundheilung, Infektion und ver-

spätete Therapie kann sogar die Amputation der betroffenen Gliedmaße notwendig sein 

(INTERNATIONAL DIABETES FEDERATION, 2013). Das Risiko für Schlafapnoe ist eventuell eben-

falls erhöht (MESLIER et al., 2003). 

2.1.2 Diagnose 

Für die Diagnosestellung des Diabetes mellitus gibt es drei Möglichkeiten. Bei deutlichen 

Symptomen genügt oftmals eine einfache Plasmaglukosebestimmung (nicht nüchtern). Bei 

Werten ≥ 200 mg/dl ist die Diagnose eindeutig. Die WHO empfiehlt den oralen Glukosetole-

ranztest (oGTT) (WORLD HEALTH ORGANIZATION, 2006), aber in der Praxis wird oftmals eine 

Nüchternplasmaglukosebestimmung aus Kostengründen, Einfachheit und besserer Reprodu-

zierbarkeit durchgeführt (THE EXPERT COMMITTEE ON THE DIAGNOSIS AND CLASSIFICATION 

OF DIABETES MELLITUS, 1997), wobei die Reproduzierbarkeit der Ergebnisse des oGTT durch 

genaues Einhalten der Blutentnahmezeiten und eine zuverlässig vorbereitete Diät erhöht wer-

den kann (KANEKO et al., 1998). 

Tabelle 2.1 Methoden für die Diagnosestellung für Diabetes mellitus bei Menschen nach der 
WHO 2006, Mayfield 1998 

1. Plasmaglukose ≥ 200 mg/dl und Symptome 

2. Nüchternplasmaglukose  ≥ 126 mg/dl (mindestens 8 Stunden nüchtern) 

3. oGTT ≥ 200 mg/dl (Plasmaglukose 2 Stunden nach oraler Gabe von 75 g Glukose) 

 

Es hat sich in verschiedenen Studien gezeigt, dass bei der Erstdiagnose mit ausschließlich 

Nüchternplasmaglukosebestimmung viele diabetische Patienten (30%) nicht als solche diag-

nostiziert wurden (WORLD HEALTH ORGANIZATION, 2006), weil sie ausschließlich im oGTT bei 
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der Blutentnahme nach 2 Stunden relevant erhöhte Blutglukosewerte aufwiesen. Wichtig in 

der Diagnosestellung ist eine Abgrenzung von Diabetikern und Menschen mit gestörter Glu-

kosetoleranz oder Nüchternblutglukose. 

Tabelle 2.2 Diagnostische Kriterien für Diabetes mellitus nach der American Diabetes Associa-
tion 2003 

Diabetes 

Nüchternblutglukose 

2-h-Glukose* 

 

≥7,0 mmol/l 

≥11,1 mmol/l 

IGT 

Nüchternblutglukose 

2-h-Glukose* 

 

Nicht angegeben 

≥7,8 mmol/l, < 11,1 mmol/l 

IGF 

Nüchternblutglukose 

2-h-Glukose* 

 

5,6 bis 6,9 mmol/l 

Messung nicht empfohlen 

* venöse Plasmaglukose 2 Stunden nach oraler Glukosezufuhr von 75g 

Eine weitere mögliche Methode zur Diagnosestellung ist die Messung von glykiertem Hämo-

globin (HbA1c). Glykiertes Hämoglobin kann ohne spezielle Vorbereitung wie Fasten jederzeit 

gemessen werden und spiegelt beim Menschen die durchschnittlichen Plasmaglukosewerte 

der letzten 2–3 Monate wieder. Daher stellt dieser Test den Goldstandart für die Langzeitkon-

trolle des Blutzuckerspiegels bei Diabetikern dar. Die Genauigkeit des Messergebnisses kann 

allerdings beeinträchtigt werden, z.B. durch eine vorliegende Anämie, Urämie, Schwanger-

schaft oder Abnormitäten des Hämoglobins. Daher kommt die WHO Arbeitsgruppe zum 

Schluss, dass die HbA1c-Methode für eine Diagnose im Moment nicht etabliert genug ist 

(WORLD HEALTH ORGANIZATION, 2006). 

Bei der Maus sind Nüchternglukosewerte von > 140 mg/dl bei den meisten Stämmen noch 

physiologisch. Bei männlichen Tieren sind die Nüchternglukosewerte sogar meist noch höher 

(zwischen 140 mg/dl und 220 mg/dl) (CLEE & ATTIE, 2007). Nüchtern gemessene  Werte von 

über 250 mg/dl sind bei jedem Mäusestamm und beiden Geschlechtern als erhöht zu inter-

pretieren, daher könnte man dies als Grenze festlegen, ab wann Diabetes bei der Maus diag-

nostiziert wird (CLEE & ATTIE, 2007).  
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2.1.3 Klassifikation von Diabetes mellitus 

Es gibt drei Haupttypen von Diabetes mellitus und mehrere spezielle, seltenere Formen, die 

unter zwei Subtypen zusammengefasst werden. In der Humanmedizin erfolgt die Einteilung 

hauptsächlich nach der Ätiologie.  

Tabelle 2.3 Übersicht über die verschiedenen Diabetes mellitus Formen nach der International 
Diabetes Foundation (2013), dem Expert Committee of the Diagnosis and Classification on Di-
abetes Mellitus (2010), Lehmann & Spinas (2000) und der WHO (2006) 

Typ 1 Diabetes mellitus 

Diabetes mellitus Typ 1 beruht auf einer verminderten Insulinproduktion bedingt durch die 

autoimmune Zerstörung von Betazellen des Pankreas. Die genauen Ursachen für den Un-

tergang der Betazellen sind noch unklar. Die Krankheit tritt meistens plötzlich auf und setzt 

häufig in der Jugend oder dem frühen Erwachsenenalter ein. Typ 1 Diabetiker können ohne 

tägliche Insulinsubstitutionen nicht überleben. Zusätzlich zu den bereits aufgezählten Symp-

tomen zeigen die Patienten plötzlichen Gewichtsverlust, extreme Müdigkeit und konstan-

ten Hunger. Außerdem können sie eine lebensbedrohliche diabetische Ketoazidose entwi-

ckeln. Früher nannte man Typ 1 Diabetes mellitus juvenilen oder insulin-abhängigen Diabe-

tes aufgrund des Alters beim Einsetzten bzw. der Notwendigkeit der Insulinsubstitution. Da 

es mittlerweile zunehmend ältere Menschen gibt, bei denen sich ein Typ 1 Diabetes entwi-

ckelt (Inzidenz bei Erwachsenen von 50%), ist die Bezeichnung juveniler Diabetes überholt. 

Diabetes mellitus Typ 2 

Bei Typ 2 Diabetes mellitus kann Insulin produziert werden, Menge und Qualität der Insuli-

nausschüttung sind jedoch nicht ausreichend und/oder es liegt eine Insulinresistenz  von 

Muskel, Fettgewebe und Leber vor. Diese Form ist die häufigste Diabetesform und macht 

weltweit 90% der humanen Diabetesfälle aus (WORLD HEALTH ORGANIZATION, 2008). Typ 

2 DM kommt meistens bei Erwachsenen vor. Die genauen Ursachen für Diabetes mellitus 

Typ 2 sind nicht bekannt, aber es gibt eine Reihe von Risikofaktoren wie Adipositas, unge-

sunde Ernährung, Bewegungsmangel, fortgeschrittenes Alter sowie genetische Faktoren 

(erstgradige Verwandte, welche an Typ 2 DM erkrankt sind). In der Regel lässt sich Typ 2 

Diabetes mit einer ausgewogenen Diät und Bewegung behandeln und eine Insulintherapie 

ist zumindest initial nicht nötig. 
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Die Bezeichnungen Altersdiabetes und Nicht-insulin-abhängiger Diabetes sind veraltet, weil 

in den letzten Jahren immer mehr jüngere Menschen von dieser Diabetesform betroffen 

sind und auch häufiger auf Insulinsubstitution nicht mehr verzichtet werden kann. 

Spezielle Diabetes mellitus Typen 

Subtyp A 

Der Diabetes ist verursacht durch spezielle Mutationen, die einen genetischen Defekt der 

Betazellfunktion oder der Insulinaktion auslösen. 

 Genetischer Defekt der Betazellfunktion (MODY – maturity-onset diabetes of the 

young) 

MODY 1: defekter HNF (hepatocyte nuclear factor)-4a, Chromosom 20 

MODY 2: defekte Glukokinase, Chromosom 7 

MODY 3: defektes HNF-1a, Chromosom 12 

MODY 4: Defekt des Insulin Promotor Faktor-1 (IPF-1) 

MODY 5: defekter HNF-1ß, mitochondrialer Diabetes und andere 

 Genetischer Defekt der Insulinaktion (Typ A Insulinresistenz, Lerechaunismus, Rab-

son-Mendenhall-Syndrom: defekter Insulinrezeptor, Lipoatrophischer Diabetes und 

andere) 

Subtyp B 

Der Subtyp B wird assoziiert mit Erkrankungen und pathologischen Veränderungen, die den 

Diabetes auslösen. 

 Erkrankungen des exokrinen Pankreas (Pankreatitis, Trauma/Pankreatomie, cysti-

sche Fibrose, Neoplasien, Haemochromatose und andere) 

 Endokrine Erkrankungen (Cushing Syndrom, Akromegalie, Conn’s Syndrom, Hyper-

thyreodismus, Pheochromocytom und andere) 

 Chemisch ausgelöst (Steroide, Pentamidine, Dioxide, Thiazide, Nikotin und andere) 

 Infektionen (Kongenitale Rubella, Masern, Coxsackie Viruse, Cytomegalie-Virus) 

 Seltene Formen von immunogenem Diabetes (Stiff-Man Syndrom, Anti-Insulin-Re-

zeptor Antikörper und andere) 

 Andere genetische Syndrome, die mit Diabetes einhergehen (Down Syndrom, 

Klinefelter Syndrom, Turner Syndrom, myotonische Dystrophie und andere) 
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Gestationsdiabetes 

Schwangere Frauen können ab der 24sten Woche der Schwangerschaft Diabetes und einen 

dauerhaft erhöhten Blutglukosespiegel entwickeln. Die Insulinwirkung wird vermutlich 

durch plazentare Hormone blockiert. Der Diabetes verschwindet normalerweise nach der 

Geburt und ist während der Schwangerschaft meistens durch gesunde Ernährung kontrol-

lierbar.  

2.1.4 Diabetische Tiermodelle 

Tiermodelle, insbesondere Nager und Schweine, wurden in der Diabetesforschung bereits in-

tensiv genutzt, um mehr über die Ätiologie, Pathogenese, Entwicklung und die Therapie zu 

erfahren. Im Folgenden werden einige Beispiele kurz dargestellt. 

2.1.4.1 Diabetes mellitus Typ 1 

2.1.4.1.1. NOD-Mäuse 

Die Nonobese Diabetes Mouse ist ein Mausmodell, das einen, dem humanen Typ 1 Diabetes 

mellitus sehr ähnlichen Diabetes entwickelt. Diese Inzuchtlinie entstand in Japan im Rahmen 

eines Katarakt-Forschungsprojekts (MAKINO et al., 1980). Weibliche NOD-Mäuse entwickeln 

ab der 6. Inzucht Generation eine Diabetesinzidenz von 60-80 %, während nur 10 % der männ-

lichen Tiere einen Diabetes entwickeln, was mit Sexualhormonen zusammenhängt, die ein 

wichtiger Modulator der Diabetesentstehung bei der NOD Maus darstellen (LEITER et al., 

1987). So entwickeln kastrierte männliche Tiere eine höhere Inzidenz für Diabetes und ova-

riektomierte weibliche Tiere eine niedrigere Inzidenz als die unkastrierten Wurfgeschwister 

(MAKINO et al., 1981). Beim Menschen hat das Geschlecht hingegen keinen Einfluss auf die 

Entstehung des Typ 1 DM. Wie beim humanen Typ 1 Diabetes mellitus ist das Einsetzen des 

Diabetes bei der NOD Maus plötzlich. Es findet im Alter zwischen 90 und 120 Tagen statt, was 

einem frühen Erwachsenenalter des Menschen entspricht. Symptome sind Hyperglykämie, 

Glukosurie, Hypercholesterinämie, Ketonurie, Polyurie, Polydipsie und Polyphagie (LEITER et 

al., 1987). Es kommt zu einem Verlust des Ansprechens der Betazellen auf Insulinsekretagoga 

Glukose und Arginin, zu einer Verringerung des Insulingehaltes des Pankreas und einer Zu-

nahme von histopathologischen Läsionen im Pankreas (KANO et al., 1986), vor allem Insulitis 

mit Infiltration durch Leukozyten. Die Insulitis geht einher mit dem Verlust von Betazellen und 
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einer Zunahme von Alpha- und PP-Zellen (MATSUSHIMA et al., 1982; OHNEDA et al., 1984). 

Das Einsetzen des Diabetes in NOD Mäusen kann durch verschiedene Maßnahmen verhindert 

werden (GRANT et al., 2013). Damit unterscheidet sich das Mausmodell vom humanen Typ 1 

Diabetes mellitus. Ferner unterscheidet sich die Insulitis dieses Modells von der des humanen 

Typ 1 Diabetikers. 

2.1.4.1.2. STZ-induzierter Diabetes 

Streptozotocin wurde 1956 als antibiotisch wirkende Substanz des Bakteriums Streptomyces 

achromogenes entdeckt (VAVRA et al., 1958). Die selektive toxische Wirkung gegen Betazellen 

wurde Mitte der 60er Jahre ermittelt und bereits kurz danach in der Diabetesforschung ge-

nutzt (MANSFORD & OPIE, 1968). Streptozotocin verursacht Nekrosen in den Betazellen und 

löst dadurch Diabetes zum Beispiel bei Ratten, Mäusen, Hunden, Meerschweinchen und Affen 

aus. Eine einmalige hohe Dosis (160–170 mg/kg KGW) ist im Versuch mit Mäusen ausreichend, 

um in 70–80 % der Versuchstiere einen hochgradigen Diabetes auszulösen. Allerdings ist die 

Mortalität der Tiere bei einer derartigen Dosis hoch (20 Tage nach Injektion 70 % und 45 Tage 

nach Injektion 100 %) (YIN et al., 2006). Kavernag et al. konnten 2011 demonstrieren, dass 

eine Dosis von 45 mg/kg ausreicht, um bei Affen (äthiopische Grünmeerkatze – Chlorocebus 

aethiops) Diabetes auszulösen, ohne zu starke toxische Begleiterscheinungen zu induzieren. 

Bei 30 % der Versuchstiere, die mit Streptozotocin behandelt wurden, entstehen innerhalb 

von 6–7 Monaten Nierentumoren (STEFFES & MAUER, 1984) und bei Ratten werden häufig 

zystische Veränderungen in Leber und Nieren beobachtet. 

2.1.4.2 Diabetes mellitus Typ 2 

2.1.4.2.1. Obese Mouse (ob/ob) 

Die ob/ob Maus wurde 1949 in den Jackson Laboratories in Maine entdeckt. Obese Mäusen 

fehlt funktionelles Leptin, ein Hormon, welches Sättigung induziert. Die fehlende Leptinwir-

kung am Hypothalamus (Sättigungsregion) führt zu gesteigerter Nahrungsaufnahme und Adi-

positas. Die Tiere weisen Hyperinsulinämie, Hyperglykämie und ab 6 Monaten Insulinresistenz 

auf (LINDSTROM, 2007). Die meisten Symptome wie Hyperglykämie klingen wieder ab, aber 

die Insulinresistenz bleibt zeitlebens bestehen (WESTMAN, 1968). Ab Tag 30 besteht eine ver-
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minderte Insulinsekretion auf Glukosestimulation (EDVELL & LINDSTROM, 1995). Die Ge-

samtinselvolumina sind bis zu 10fach höher als bei gesunden Kontrollmäusen und bestehen 

hauptsächlich aus Betazellen. Die Inselzellhypertrophie ist vermutlich bedingt durch eine An-

passung an den höheren Insulinbedarf (LINDSTROM, 2007). Die Obesemaus eignet sich gut für 

Studien von  Diabetes mellitus Typ 2, allerdings entwickeln ob/ob Mäuse keine Langzeitfolge-

schäden wie die diabetische Nephropathie, dafür aber andere Erkrankungen wie kongenitaler 

Hypothyreodismus (EDVELL & LINDSTROM, 1995), was ihren Nutzen in der Diabetesforschung 

einschränkt. Außerdem hängt die Ausprägung des diabetischen Phänotyps vom genetischen 

Hintergrund ab. 

2.1.4.2.2. Diabetes Mouse (db/db) 

Die Diabetes Maus ist ein Tiermodell mit einem autosomal rezessiven Leptinrezeptorgende-

fekt, entdeckt in den Jackson Laboratories 1966. Die Mäuse entwickeln Fettleibigkeit, Hyper-

insulinämie, Insulinresistenz, Hyperglykämie und Dyslipidämie. Hyperinsulinämie lässt sich be-

reits mit 10 Tagen feststellen. Ab einem Alter von einem Monat sind die Blutglukosewerte 

leicht erhöht. Die Insulinspiegel beginnen ab 5 Monate abzufallen, die Inselzellen degenerie-

ren, das Körpergewicht nimmt ab und die Hyperglykämie nimmt stark zu, da die verbleibenden 

Betazellen nicht mehr genug Insulin produzieren können, um den Glukosehaushalt stabil zu 

regulieren (DE ANGELIS et al., 2009). Allerdings ist die Ausprägung der Symptome und die 

Schädigung des endokrinen Pankreas abhängig vom genetischen Hintergrund. Die Diabetes 

Maus auf C57Bl/6K Hintergrund entwickelt einen deutlichen Diabetes, einhergehend mit Be-

tazellnekrose, Inselatrophie, relativem Insulinmangel, Gewichtsverlust und einem frühen Tod. 

In der eng verwandten C57Bl6/J Maus kommt es dagegen zu einer schwachen Ausprägung des 

Diabetes mit Betazellhyperplasie und milder Hyperglykämie (GAPP et al., 1983). Die db/db 

Maus ist das Mausmodell in der Diabetesforschung, das die beständigste und ausgeprägteste 

Albuminurie, renale und glomeruläre Hypertrophie und mesangiale Matrixexpansion zeigt  

(SHARMA et al., 2003). Daher ist die Diabetes Maus als Modell für die Erforschung der Patho-

genese der diabetische Nephropathie geeignet, der mittlerweile häufigsten Ursache für Nie-

renversagen. Allerdings fehlt bei der db/db Maus das Auftreten von spät auftretenden renalen 

Alterationen wie Glomerulosklerose, glomerulointerstitialer Fibrose und tubulärer Atrophie, 

welche bei der diabetischen Nephropathie des Menschen regelmäßig vorkommen. 
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2.1.4.2.3. New Zealand obese Mouse (NZO) 

Die NZO Maus ist ein viel genutzt und untersuchtes Mausmodell in der Diabetesforschung, 

das die meisten Symptome des Typ 2 Diabetes mellitus aufweist, wie früh einsetzende Adi-

positas, Insulinresistenz, Dyslipidämie und Hypertension. Es kommt zu vermehrter Apoptose 

in den Inseln und Betazellversagen als Folge der Gluko- und Lipotoxizität. Dies führt zu Hy-

poinsulinämie und Hyperglykämie (KLUGE et al., 2012). Als Folge der Hyperglykämie entste-

hen bei diesem Mausmodell diabetische Spätkomplikationen wie Gefäßschäden, Atheroskle-

rose und pathologischer Angiogenese (BALWIERZ et al., 2009). 

2.1.4.2.4. Kuo Kondo Mouse (KK) 

Die KK Maus bietet ein nützliches Tiermodell, um einen Adipositas-assoziierten Typ 2 Diabetes 

mellitus zu untersuchen. Die KK Maus wird erst im adulten Leben adipös und entwickelt eine 

Inselzellhyperplasie, Hyperinsulinämie sowie Insulinresistenz. Durch restriktive Fütterung lässt 

sich der diabetische Phänotyp der KK Maus gut behandeln (REES & ALCOLADO, 2005). 

2.1.4.3 Tiermodelle für Inkretinhormone 

Um Funktion und Wirkung der Inkretinhormone genauer zu untersuchen, wurden verschie-

dene genetisch modifizierte Mausmodelle mittels gene targeting generiert. Man vermutete, 

diese knockout Mäuse würden einen manifesten Diabetes mellitus entwickeln, tatsächlich 

aber zeigen alle derzeit bekannten Inkretinhormonknockout Modelle nur milde Symptome ei-

nes Diabetes mellitus. 

2.1.4.3.1. GIPR-/- Maus 

Glucose-dependent insulinotropic polypeptide (GIP) ist ein Inkretinhormon, welches nach der 

Nahrungsaufnahme in die Blutbahn frei gesetzt wird und über die Bindung an spezifische Re-

zeptoren (GIPR) der Betazellen die Insulinsekretion in Abhängigkeit von der Glukosekonzen-

tration steigert. Um seine Rolle als Botenstoff zwischen Darm und Betazellen zu untersuchen, 

wurden GIPR knockout (GIPR-/-) Mäuse kreiert (MIYAWAKI et al., 1999). Während sich die 

knouckout Tiere im intraperitonealen Glukosetoleranztest und in Nüchternglukosewerten 

nicht von den Wildtypen unterscheiden, sind die Glukosewerte im oralen Glukosetoleranzwert 

gegenüber den Kontrolltieren erhöht. Die Insulinspiegel der GIPR-/- Mäuse sind  15 Minuten 
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nach oraler Glukosegabe signifikant niedriger als bei Kontrolltieren. Die Glukosehomöostase 

verschlechtert sich bei diesen Knockoutmäusen, wenn eine fettreiche Diät verabreicht wird 

(MIYAWAKI et al., 1999). Insgesamt sind die Veränderungen in der Glukosehomöostase aber 

nur gering ausgeprägt, da das zweite physiologisch aktive Inkretinhormon glucagon like pep-

tide-1 (GLP-1) den fehlenden GIP-Effekt kompensieren kann. Die GLP-1 Spiegel  von GIPR-/- 

Mäusen sind zwar vergleichbar mit denen der gesunden Tiere, die Insulinantwort auf GLP-1 

ist jedoch bei GIPR-/- Mäusen 40-60 % höher als bei Kontrollen. Dies beruht wahrscheinlich 

auf einer gesteigerten intrazellulären cAMP-Antwort der Betazellen nach GLP-1 Stimula-

tion(PAMIR et al., 2003). Die Betazellfläche pro Gesamtpankreasfläche ist bei GIP knockout 

Tieren signifikant erhöht (PAMIR et al., 2003). Durch die milde Ausprägung der Glukoseintole-

ranz ist die GIPR-/- als Modell für Diabetes mellitus nicht geeignet.  

2.1.4.3.2. GLP-1R -/- Maus 

GLP-1 (Glucagon-like peptide 1) ist ein Inkretinhormon und Neuropeptid, das die Insulinsek-

retion und das Sättigungsgefühl nach Nahrungsaufnahme steigert. Zur Abklärung, wie wichtig 

GLP-1 im Zusammenhang mit der Insulinsekretion und der Nahrungsaufnahme ist, wurde ein 

Mausmodell geschaffen, bei dem das GLP-1 Rezeptorgen (GLP-1R) ausgeschaltet wurde 

(SCROCCHI et al., 1996). Sowohl die Nüchternblutglukosespiegel als auch die Glukosekonzent-

rationen im oralen und intraperitonealen Glukosetoleranztest waren bei GLP-1R Knockout-

mäusen geringgradig erhöht. Die Insulin- und Glukagonspiegel waren nicht signifikant verän-

dert gegenüber den Kontrolltieren. Körpergewicht und Nahrungsaufnahme von GLP-1R-/- 

Mäusen wichen nicht von den Werten bei Kontrollen ab. Dies wurde durch eine gesteigerte 

GIP Sekretion und ein verbessertes Agieren von GIP an den Betazellen erklärt, die das Ausfal-

len der GLP-1/GLP-1R Achse kompensiert (PEDERSON et al., 1998). Flamez et al. konnten an 

isolierten Betazellen von GLP-1-/- Mäusen ein erhaltenes Ansprechen der Betazellen auf Glu-

kose nachweisen (FLAMEZ et al., 1998). Neben der insulinotropen Wirkung ist GLP-1 auch ein 

beeinflussender Faktor in der Inselentwicklung. Bei fehlender Aktion von GLP-1 zeigt sich in 

den Inseln eine gestörte Komposition und Verteilung der hormonproduzierenden Zellen. Es 

liegen mehr Alphazellen im Zentrum der Inseln. Diese sind in den Inseln im Mäusepankreas 

normalerweise im Außenbereich angesiedelt. Auch die Inseln selbst weisen Veränderungen 

auf, es gibt deutlich mehr kleine und mittelgroße Inseln als bei Kontrolltieren (LING et al., 
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2001). Die Betazellmasse ist allerdings nicht verringert. Obwohl sich morphologische Verän-

derungen im Pankreas finden lassen und sich eine gestörte Glukosehomöostase feststellen 

lässt, sind die Veränderungen zu mild, um als Tiermodell für die Diabetesforschung geeignet 

zu sein. 

2.1.4.3.3. DIRKO Maus 

Nachdem sowohl das Ausschalten des GIP Rezeptors, als auch das des GLP-1 Rezeptors nur 

milde Veränderungen in der Glukosehomöostase zur Folge hatten, wurde ein neues Tiermo-

dell entwickelt, bei dem beide Rezeptoren ausgeschaltet wurden, die double incretin receptor 

knockout (GIPR-/-/GLP-1R-/-) Maus (PREITNER et al., 2004). Das Körpergewicht von DIRKO 

Mäusen glich dem der Kontrollen, Blutglukose bei nüchternen und frei gefütterten Tieren wa-

ren unverändert und auch die Glukagonwerte zeigten keine Abweichungen gegenüber Kon-

trollen. Die weiblichen transgenen Tiere zeigten in der Studie von Preitner et al.  nüchtern 

teilweise signifikant erniedrigte Insulinwerte. Im oralen Glukosetoleranztest wiesen Doppel-

knockoutmäuse jedoch eine signifikante Erhöhung der Glukosewerte auf, sowohl im Vergleich 

mit Kontrollen, als auch im Vergleich mit den Einfachknockoutmäusen (GLP-1-/- und GIPR-/-). 

Weibliche Tiere zeigen dabei eine deutlich stärkere Erhöhung als männliche. Die gemessenen 

Insulinspiegel wiesen auf eine erniedrigte Insulinsekretion von 60 % verglichen mit Kontrollen 

und 40 % im Vergleich zu GLP-1 -/- Mäusen auf Preitner et al. 2004). Auf exogene Insulinzufuhr 

reagierten die Doubleknockoutmäuse wie Kontrollen (HANSOTIA et al., 2004). Obwohl sowohl 

GIP als auch GLP bei DIRKO Mäusen in seiner Wirkung blockiert sind, konnten bei diesen Tieren 

nur geringe Veränderungen der Glukosehomöostase festgestellt werden, wenn auch etwas 

stärkere Abweichungen gegenüber den beiden Einfachknockoutmäusen (HANSOTIA & 

DRUCKER, 2005). Es wurde spekuliert, dass noch andere, unbekannte Kompensationsmecha-

nismen exsistieren müssen, die die fehlende GIP und GLP-1 Wirkung kompensieren und eine 

normale Entwicklung des endokrinen Pankreas ermöglichen. Anders als bei der GLP-1 -/- Maus 

ist die Morphologie der Inseln bei der DIRKO Maus nicht verändert. 
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2.2. Entwicklung des endokrinen Pankreas 

2.2.1 Embryonale Entwicklung 

Aus dem embryonalen Entoderm entsteht das Darmrohr, aus dem der Verdauungstrakt her-

vorgeht. Am 9. Tag der Embryogenese (E 9) beginnt bei der Maus die Entstehung des Pankreas. 

Aus dem Epithelium des Vorder-und Mitteldarms wachsen eine ventrale und eine dorsale Pan-

kreasanlage, die miteinander verschmelzen (BOUWENS & ROOMAN, 2005). Dabei ist die dor-

sale circa einen Tag früher sichtbar, als die ventrale Pankreasanlage. Das Verschmelzen der 

beiden Anlagen erfolgt zwischen E 16 und E 17 (SEYMOUR et al., 2004). Bereits ab E 9,5 lassen 

sich Zellen detektieren, die Glukagon und teilweise auch Insulin produzieren. Somatostatin 

und pankreatisches Polypeptid lässt sich erst ab E 15 nachweisen. Acini und Pankreasgänge 

sind ab E 14,5 als differenzierte Strukturen histologisch sichtbar (SEYMOUR et al., 2004). In-

seln, die bereits ihre charakteristische Architektur haben, formen sich erst am Ende der Ge-

station, circa an E 18,5 (HERRERA et al., 1991). Das wachsende Pankreasepithel ist umgeben 

von mesenchymalen Zellen, welche die Expansion und Differenzierung des Organs fördern, 

indem sie Wachstumsfaktoren exprimieren. Die Proliferation von Progenitorzellen wird stimu-

liert von fibroblast growth factors (FGFs) (ELGHAZI et al., 2002). Bhushan et al. konnten mittels 

einer transgenen Maus zeigen, dass das Ausschalten des mesenchymalen fibroblast growth 

factor-10 (Fgf10) eine Hypoplasie der dorsalen und ventralen Pankreasanlage zur Folge hat 

(BHUSHAN et al., 2001). Der Transkriptionsfaktor islet 1 (Isl1) wird für die Entwicklung und 

Differenzierung der dorsalen Knospe benötigt, was ebenfalls anhand einem transgenen Maus-

modell gezeigt werden konnte (AHLGREN et al., 1997). Mehrere andere Transkriptionsfakto-

ren beeinflussen die Bildung des Pankreas. Ein wichtiger ist der homeodomain transcription 

factor Pdx1 (pancreatic and duodenum homeobox 1), der vom Entoderm exprimiert wird. Alle 

pankreatischen Zelltypen leiten sich von Pdx1 exprimierenden Progenitorzellen ab. Allerdings 

spielt Pdx1 nur während der Knospung eine Rolle, danach fördern andere Faktoren die Pan-

kreasentwicklung (MURTAUGH & MELTON, 2003). Auch der basic helix-loop-helix Transkripti-

onsfaktor (bHLH) Ptf1a (pancreas transcription factor 1a) ist ein vom Entoderm exprimierter 

Transkriptionsfaktor, der für die Entwicklung der ventralen Pankreasanlage benötigt wird, des-

sen Expression sich allerdings ab E 13,5 nur noch auf die Vorläuferzellen der Azini beschränkt 

(KRAPP et al., 1998). Studien an genmanipulierten Mäusen konnten zeigen, dass an der Ent-
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wicklung der dorsalen Pankreasanlage zudem Hlxb9 (homeobox transcription factor), N-Cad-

herin und das homeodomain Gen Pbx1 beteiligt sind (HARRISON et al., 1999; LI et al., 1999; 

ESNI et al., 2001; KIM et al., 2002). Bereits am embryonalen Tag 9,5 (E 9,5) beginnt die Diffe-

renzierung von endokrinen Zellen. Zunächst formen sich hauptsächlich Alphazellen, die aller-

dings noch unreif sind und außer Glukagon auch Insulin sezernieren (TEITELMAN et al., 1993). 

Ein signifikantes Auftreten von Betazellen kann man ab E 13,5 feststellen (HERRERA et al., 

1991), man spricht von diesem Zeitpunkt als eine sekundäre Transition, also einem Wandel. 

Die adulten Betazellen stammen allerdings nicht von den co-exprimierenden frühen Alphazel-

len ab, was man zunächst vermutete. Durch sogenannte lineage studies zeigte sich, dass so-

wohl Beta- als auch Alphazellen von Progenitorzellen abstammen, die zuvor nicht Glukagon 

bzw. Insulin produziert haben (HERRERA, 2000). Für die Entwicklung der endokrinen Zellen 

spielt vor allem das bHlH Protein Neurogenin 3 (Ngn3) eine Schlüsselrolle, welches ausschließ-

lich in den endokrinen Vorläuferzellen exprimiert wird und fortlaufend mit der Differenzierung 

herrunterreguliert wird (MURTAUGH & MELTON, 2003). Für die Betazellentwicklung sind spe-

ziell die beiden NK-homeodomain Gene Nkx2.2 und NKx6.1 von besonderer Bedeutung. In 

Nkx2.2 Mutanten fehlt die Insulinexprimierung komplett und in Nkx6.1 Mutanten kommt es 

zwar während der Embryogenese noch zur Bildung von insulinproduzierenden Zellen, aber die 

sekundäre Transition an E 13,5 findet nicht statt und es kommt nicht zur normalerweise statt-

findenden enormen Zunahme von Betazellen (SCHWITZGEBEL et al., 2000). Zwei Transkripti-

onsfaktoren aus der Pax-Familie (paired box) sind besonders wichtig für die Entwicklung der 

endokrinen Zellen. So führt ein Verlust von Pax 4 und Pax 6 zu dem Fehlen jeglicher endokriner 

Zellen (GRADWOHL et al., 2000). Pax 4 unterstützt die Spezifizierung des Betazell-Phänotyps 

(BOUWENS & ROOMAN, 2005) zwischen E 14 und E 17 und ist nach der Embryogenese nicht 

mehr von Bedeutung. Pax 6 wird dagegen auch postnatal noch von allen Inselzellen expri-

miert. Sobald die Zellen anfangen Hormone zu sezernieren, hören sie auf sich zu teilen und 

sind sogenannte postmitotische Zellen (JENSEN et al., 2000). Nur 10–20 % des Wachstums der 

Betazellen in der embryonalen und fetalen Phase geht auf Replikation zurück (SWENNE & 

ERIKSSON, 1982). Für die Entstehung der restlichen 80 % sind undifferenzierte Vorläufer- oder 

Progenitorzellen verantwortlich, ihre Proliferation nennt man Neogenese. Wenngleich es 

noch Diskussionen um das Vorhandensein dieser Progenitorzellen im adulten Pankreas gibt, 

ist die Existenz von Progenitorzellen in der fetalen und neonatalen Phase mehrfach belegt 

(BOUWENS et al., 1994; KAUNG, 1994; BOUWENS & DE BLAY, 1996; BONNER-WEIR et al., 
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2000; BONNER-WEIR & SHARMA, 2006). Diese Progenitorzellen sind aber schon kurz nach der 

Geburt inaktiv und es ist fraglich, ob sie zeitlebens überhaupt noch einmal aktiviert werden 

können (siehe 2.2.4). Klar ist jedenfalls, dass in der fetalen Entwicklung ein „kritisches Fenster“ 

gibt (BOUWENS & ROOMAN, 2005), in dem die ungefähre Anzahl der Betazellen festgelegt 

wird. Liegt während dieses Fensters, in dem die Zunahme der Betazellmasse sehr hoch ist, z.B. 

eine Mangeldurchblutung des Fetus vor, kann es zu einer verminderten Betazellexpansion 

kommen und die spätere Anzahl von Betazellen ist nicht in der Lage, den Körper ausreichend 

mit Insulin zu versorgen, obgleich sich die Betazellmasse noch durch Replikation verändert.  

Abbildung 2.1: Einfaches schematisches Diagramm für die Stufen der Pankreasentwicklung in 
der Maus (DOCHERTY, 2009) Das Diagramm zeigt die involvierten Transkriptionsfaktoren in die Spezifizierung der 

Abstammungslinien. Der embryonale Tag (E) wird an der Basis der Abbildung angezeigt. 

 

2.2.2 Postnatale Entwicklung 

In der neonatalen Periode nimmt die der Betazellmasse weiterhin stark zu, jedoch nicht mehr 

so ausgeprägt wie in der späten fetalen Wachstumsphase (KAUNG, 1994). Nichtsdestotrotz 

kommt es zu einer massiven Expansion der Betazellmasse, v.a. durch Replikation (FINEGOOD 

et al., 1995; BONNER-WEIR et al., 2000). Die Betazellmasse ist definiert als die Masse aller 

Betazellen im Pankreas und ist direkt proportional zum Betazellvolumen (WEIR & BONNER‐

WEIR, 2013). In der Ratte findet in den ersten 100 Lebenstagen eine starke Zunahme der Be-

tazellmasse statt, danach nimmt sie nur noch langsam zu. Zwischen Tag 5 und Tag 20 findet 
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kaum eine Massenzunahme statt, was passend zu dem geringen Wachstum des Pankreas in 

dieser Phase ist (FINEGOOD et al., 1995). Die Betazellmasse entwickelt sich zeitlebens parallel 

zum Körpergewicht (MONTANYA et al., 2000). In C57Bl/6/129 Mäusen wurde ein 10facher 

Anstieg der Betazellmasse zwischen der vierten Lebenswoche und dem sechsten Lebensmo-

nat gemessen, der linear zur Zunahme des Körpergewichts verlief (BONNER-WEIR et al., 2000). 

Abbildung 2.2: Betazellmassenzunahme in den ersten 40 Lebenstagen bei der Ratte 
(FINEGOOD et al., 1995) 

 

In der ersten Lebenswoche lassen sich bei der Ratte noch Inselvorläuferzellen finden, die neo-

natale Inseln umranden und eine höhere Replikationsaktivität aufweisen (BOUWENS et al., 

1994) und als Anzeichen für Neogenese gewertet werden. Laut Bonner-Weir und Sharma 

(2006) lassen sich zwei Neogenesewellen finden, eine direkt nach der Geburt und eine nach 

Absetzen (Tag 24). Außerdem konnte festgestellt werden, dass sich bei Ratten die Anzahl der 

Betazellen zwischen Tag 20 und Tag 30 verdreifacht und mindestens 30 % der neuen Betazel-

len nicht durch Replikation entstanden sind (FINEGOOD et al., 1995; BONNER‐WEIR et al., 

2004). Finegood et al fanden in einer Studie zur Dynamik der Betazellmasse im wachsenden 

Rattenpankreas bis zum Absetzen signifikante Neogeneseraten. Jedoch sinkt die Neogenese-

rate am 10. Lebenstag auf ein basales Niveau. In einer Studie zur postnatalen Entwicklung des 

Pankreas beim Menschen konnte eine ähnliche Wachstumskurve wie bei der Maus aufgewie-

sen werden (MEIER et al., 2008). Die größte Zunahme an Betazellmasse fand in den ersten 

zwei Lebensjahren satt. In diesem Zeitraum findet auch die größte Körpergewichtzunahme 

statt. Es handelt sich bei der Betazellmassenzunahme überwiegend um eine Größenzunahme 

der bereits bestehenden Inseln durch Betazellreplikation. Etwa 12 % der Betazellzunahme 



18 
 

ging auf neu entstandene Inseln, meistens in Duktusnähe, zurück, was als Hinweis auf Neoge-

nese gewertet werden kann. Kassem et al. konnten zeigen, dass die Betazellreplikationsrate 

beim Menschen schon in den ersten 6 Lebensmonaten steil abfällt und danach basale Werte 

erreicht (KASSEM et al., 2000). Während bei der Ratte in verschiedenen Studien eine Apopto-

sewelle zur Zeit des Absetzens festgestellt werden konnte (FINEGOOD et al., 1995; SCAGLIA 

et al., 1997), wurden beim Menschen keine erhöhten postnatalen Apoptoseraten identifiziert 

(MEIER et al., 2008). Beim Menschen findet die gesteigerte Apoptose der Betazellen bereits 

perinatal statt, in einem zeitlichen Rahmen von 2 Monaten vor und nach der Geburt (KASSEM 

et al., 2000). Man findet bei jungen Mäusen immer wieder Inseln, deren Form an Sanduhren 

erinnert und von denen man vermutet, dass sie entweder fusionieren oder sich teilen. Mit 

Hilfe weiblicher hemizygoter H253 Mäuse konnten Hinweise darauf erbracht werden, dass 

tatsächlich eine Inselteilung im Mäusepankreas stattfindet (SEYMOUR et al., 2004). Diese 

transgenen Mäuse weisen eine Mutation (lacZ Transgen) auf einem X-Chromosom auf, welche 

die Expression von ß-Galaktosid (ß-gal) verändert. Normalerweise wird ß-Galaktosid in allen 

Geweben gleichmäßig exprimiert, doch bei hemizygoten H253 Weibchen wird nach zufälliger 

Inaktivierung eines X-Chromosoms in der frühen embryonalen Entwicklung ß-Galaktosidase in 

einer Zelle entweder exprimiert oder nicht, was zu einem Mosaik aus ß-gal-positiven und ß-

gal-negativen Zellen führt. Wenn alle neu entstehenden Zellen in einer Insel dieser transgenen 

Tiere von einer einzigen Zelle abstammen, wird die Insel eine homoge ß-Galaktosidase-Expres-

sion aufweisen, was sich im Versuch tatsächlich bestätigte. Bei sanduhrförmigen Inseln konnte 

eine homogene ß-Galaktosidase-Expression in den beiden Seiten der Sanduhr nachgewiesen 

werden. Dies wurde als Hinweis auf Inselteilung gewertet, da bei Inselfusion eine inhomogene 

Zusammensetzung der beiden Anteile auftreten könnte. Unterstützt wird diese Annahme 

dadurch, dass sich Inseln in ihrer Zusammensetzung bezüglich der ß-Gal-Expression stärker 

unterscheiden, je weiter sie voneinander entfernt liegen (SEYMOUR et al., 2004). Unabhängig 

davon ist bekannt, dass sich Inseln in der perinatalen Periode durch die Aggregation von en-

dokrinen Zellen formen (DELTOUR et al., 1991), was diesen neuen Ergebnissen jedoch nicht 

widerspricht. 

2.2.3 Regulation der Replikation und Apoptose 

Betazellen bei erwachsenen Mäusen besitzen nur eine begrenzte Kapazität sich zu teilen und 

zu erneuern sowie eine geringe Apoptoserate (TETA et al., 2005). Bei der Ratte beträgt die 
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durchschnittliche Lebensdauer einer Betazelle ein bis drei Monate (FINEGOOD et al., 1995). 

Wenngleich die Replikationsrate in adulten Nagern nur 3 % beträgt, würde dies, bei abwesen-

der Betazellapoptose, innerhalb eines Monats, zu einer Verdopplung der Betazellmasse füh-

ren (HELLERSTRÖM et al., 1988). Ausgereifte Betazellen scheinen nicht sehr gut auf mitotische 

Stimulation anzusprechen (BOUWENS & ROOMAN, 2005). Wachstumshormone, Prolaktin, 

GLP-1 und Exendin fördern das Inselwachstum im Pankreas (LEE & NIELSEN, 2009), aber auch 

eine Vielzahl anderer Regulatoren spielt in die Betazellmassendynamik mit hinein. Die Regu-

lation der Betazellreplikation ist weiterhin Gegenstand vieler Studien. 

Generell wird die Zellteilung und das Zellwachstum im Körper initiiert durch Cycline (D-type 

cyclins) und der Eintritt in den Zellzyklus wird durch Cdk4 und Cdk6 (cyclin-dependent kinases) 

reguliert (positive Regulatoren). Dem gegenüber stehen die negativen Regulatoren, die Cdk-

Inhibitoren. Die D-Cycline bilden Komplexe mit den Kinasen, was zur Phosphorylierung und 

Deaktivierung des Retinoblastoma Proteins (pRb) führt, was wiederum der Zelle den Eintritt 

in den Zellzyklus erlaubt (LEE & NIELSEN, 2009). Anhand verschiedener Mausmodelle, zum 

Beispiel den Cdk4-/- Mäusen (MARTÍN et al., 2003), konnte gezeigt werden, dass Cyclin D1 

und die Cdk4 speziell für die Replikation von Betazellen benötigt wird. Dementsprechend wei-

sen Cdk4-/- Mäuse eine Reduktion der Betazellzahl auf und zeigen insulinabhängigen Diabe-

tes. Die Wirkung von Cyclin D wurde ebenfalls anhand eines transgenen Mausmodells nach-

gewiesen. Bei Überexpression von Cyclin D1 kam es zu einem mehr als dreifachen Anstieg der 

Betazellmasse. Mittels Immunhistochemie konnte gezeigt werden, dass die Apoptoseraten 

normal waren, die Replikation im Vergleich zu den Wildtypen aber signifikant zugenommen 

hatte (ZHANG et al., 2005). Das Cyclin D2-/- Mausmodell wurde generiert, um den Einfluss von 

Cyclin D2 auf die Pankreasentwicklung zu untersuchen (GEORGIA & BHUSHAN, 2004). Trans-

genen Mäuse weisen im Alter von 14 Tagen eine vierfache Reduktion der Betazellmasse und 

deutlich kleinere Inseln auf und zeigen klinisch eine Glukoseintoleranz. Mittels Immunhisto-

chemie konnte bewiesen werden, dass dies auf eine nicht mehr stattfindende Replikation zu-

rückgeht. Mittels RT-PCR und immunhistochemischer Untersuchungen zu mehreren Zeitpunk-

ten der Embyogenese konnte gezeigt werden, dass Cyclin D2 und D3  zu jedem Zeitpunkt in 

kleineren Mengen im Pankreas exprimiert wird. Cyclin D1 wurde in dieser Studie erst am Ende 

der postnatalen Phase gefunden, allerdings nur in den transgenen Tieren. Dies könnte bedeu-

ten, dass eine Hochregulierung von Cyclin D1 stattfand, um den Verlust von Cyclin D2 bei Cyc-

lin D2-/- Mäusen zu kompensieren. Da dies erst spät in der postnatalen Phase möglich war, ist 
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davon auszugehen, dass die Regulation der Replikation von Betazellen spezifisch auf Cyclin D2 

angewiesen ist (GEORGIA & BHUSHAN, 2004). Die Cyclin D2 Expression wird durch mehrere 

Faktoren gesteuert, zum Beispiel über Wachstumshormone und Prolaktin, durch Zwischen-

schaltung der Janus Kinase 2 und der STAT5 (Signal Transducer and Activator of Transcription 

5) (FRIEDRICHSEN et al., 2003). Die Inkretinhormone GLP-1 und GIP induzieren die Expression 

von Cyclin D1, indem sie die Promoter Aktivität des Cyclins aktivieren (FRIEDRICHSEN et al., 

2006). Des Weiteren übt die Glykogen Synthase Kinase 3ß (GSK3ß) Einfluss auf die Expression 

von Cyclin D1 und D2 aus. In einer Studie mit einem transgenen Mausmodell konnte gezeigt 

werden, dass die Inaktivierung von GSK3ß Betazellen vor stressbedinger Apoptose schützt und 

mit der Induktion von Cyclin D1 und D2 einhergeht (SRINIVASAN et al., 2005). Die negative 

Regulierung der Cdk/Cyclin-Komplexe wird von zwei Gruppen von Cdk-Inhibitoren gesteuert: 

Die INK4 Familie (p16INK4a, p15INK4b, p18INK4c, p19INK4d) und die Cip/Kip-Familie (p21Cip1, 

Waf1/Sdil, p27Kip1, p57Kip2). Die INK4 Familie bindet spezifisch an Cdk4 und Cdk6 und verhin-

dert D-Cyclin-Aktivität und die Cip/Kip Familie bildet Cdk1- und Cdk2-Komplexe (SALAS et al., 

2014). 

Durch das Kreieren von Knockout-Mäusen (p27-/- Mäuse) konnte bewiesen werden, dass die 

Proliferation von Betazellen ohne den Einfluss von p27 aus der Cip/Kip Familie deutlich erhöht 

ist (GEORGIA & BHUSHAN, 2006), wohingegen p21 k.o. Mäuse keinerlei Abweichungen in der 

Inselarchitektur und Betazellmasse aufweisen, obwohl p21 ebenfalls ein Zellzyklusinhibitor ist, 

das bei Stimulation der Proliferation durch Cyclin D1 und Cdk4 hochreguliert wird, um den 

Zellzyklus der Betazellen zu arretieren (COZAR-CASTELLANO et al., 2006)(a und b). Die nega-

tive Regulierung der Replikation ist in Betazellen stärker ausgeprägt als die positive. Im Ge-

gensatz zu anderen Zellen exprimieren Betazellen von Nagern keine Cdk6. Die bekannten Zell-

zyklusinhibitoren werden aber alle exprimiert (SALAS et al., 2014).  

Der Einfluss von p16/INK4A auf die Replikation wurde bei 1 und 8 Monate alten C57Bl/6 

Mäuse untersucht, die per Parabiose (operative Verbindung zweier Organismen) miteinander 

verbunden wurden. Nach 3 Wochen wurden die Pankreata untersucht. Die Betazellreplikation 

bei 8 Monate alten Mäusen, die ihren Kreislauf mit 1 Monate alten Mäusen geteilt hatten, 

stieg signifikant an im Vergleich zu Kontrolltieren, die nicht der Parabiose unterzogen wurden, 

und solchen, die mit gleich alten Tieren verbunden waren. In einem parallelen Versuch wur-

den vier Gruppen von Mäusen einer Inseltransplantation unterzogen. Dabei zeigte sich, dass 



21 
 

die Transplantation von Inseln von jungen Tieren in alte Tiere keine Steigerung der Replikation 

bringt, die Replikationsrate betrug nur 0,5 %. Dagegen replizierten Inselzellen alter Mäuse in 

jungen Mäusen mit 2 %, was fast der Proliferationsrate der vierten Gruppe entspricht, bei der 

Inseln junger Mäuse in junge Mäuse implantiert wurden. Sowohl die Ergebnisse aus dem 

Transplantationsversuch, als auch die aus dem Parabiose-Versuch sprechen dafür, dass syste-

mische Faktoren die Betazellreplikation zumindest teilweise regulieren. Allerdings wurden die 

Expression von p16/INK4A, p18, p21 und p27 gemessen und es gab keine Veränderung durch 

die Verknüpfung von junger und alter Zirkulation. Auch die Messung von Seruminsulin und 

IGF-1 ergab keine Unterschiede (SALPETER et al., 2013). Es muss also noch weiter nach den 

Faktoren gesucht werden, die die Veränderungen in der Betazellreplikation auslösen. 

Die Wichtigkeit von Wnt (Proteingruppe, die Signale von Rezeptoren an der Oberfläche einer 

Zelle weiterleitet in die Zelle) für die Regulierung der Betazellmasse wurde mit einem trans-

genen Mausmodell bestätigt. Unter Einfluss eines Wnt Antagonisten zeigten die Mäuse eine 

deutliche Reduzierung der Pankreasmasse (75 %) und der absoluten Betazellzahlen (50 %). Die 

Tiere konnten diesen massiven Verlust aber mit noch unklaren Mechanismen kompensieren 

(PAPADOPOULOU & EDLUND, 2005). In vitro konnte eine dreifach erhöhte Replikation bei 

MIN6 (murine Insulinoma) Zellen nach Behandlung mit Wnt3a festgestellt werden (RULIFSON 

et al., 2007). 

Die Betazellreplikation wird auch autokrin geregelt. Es gibt eine Vielzahl von Studien, die den 

Effekt von Glukoseinfusionen oder einmaligen Applikationen auf das Pankreas untersuchen. 

Dabei gibt es bei Maus und Ratte sehr unterschiedliche Ergebnisse. Vermutlich variieren die 

Resultate in Abhängigkeit von der Tierart, Stamm, Glukosekonzentration und der Dauer der 

Glukosegabe. Nichtsdestotrotz konnte mehrfach festgestellt werden, dass Glukose die Be-

tazellreplikation steigern kann (BONNER-WEIR et al., 1989; SWENNE, 1992; GUILLEMAIN et 

al., 2007; JETTON et al., 2008). Eventuell geschieht dies auch über eine Aktivierung von Cyclin 

D2, welche in der Studie von Alonso et al. (2007) nachgewiesen werden konnte. Auch eine 

vermehrte Expression von Pax4 wurde schon auf Glukosestimulus nachgewiesen (BRUN et al., 

2008).  

Demgegenüber steht die Glukotoxizität: Dauerhaft erhöhte Glukosespiegel führen zu einer 

Schädigung der Betazellen (LEE & NIELSEN, 2009). So kann ein lang anhaltender Überschuss 

an Glukose Diabetes mellitus Typ 2 hervorrufen. Generell sinken im Alter physiologisch aber 
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die Blutglukosewerte und es wird vermutet, dass eventuell dieser Umstand eine niedrigere 

Replikation der Betazellen auslösen kann (SALPETER et al., 2013). Um den Effekt von Insulin 

auf die Betazellen zu untersuchen, wurden Insulin-Rezeptor Knockout Mäuse erzeugt, bei de-

nen eine niedrigere Betazellmasse festgestellt werden konnte (OTANI et al., 2004). Im Gegen-

satz dazu führt eine länger anhaltende Hyperinsulinämie zu einem Wachstum der Betazell-

masse, was anhand transgener IR/IRS Mäusen (heterozygote Nullmutation für den Insulinre-

zeptor (IR) und das Insulinrezeptorsubstrat (IRS)) belegt werden konnte (BRÜNING et al., 

1997), die 5 bis 50fach erhöhte Plasmainsulinwerte hatten. Allerdings kann es infolge Hyper-

insulinämie durch ein Insulinom oder Inseltransplantation in der Ratte auch zu einer signifi-

kanten Reduktion der Betazellmasse kommen, die nicht immun-mediiert ist und auf verstärkte 

Apoptose zurückzuführen ist (BLUME et al., 1995). Daher ist zwar klar, dass Insulin einen Ein-

fluss auf die Betazellmassendynamik hat, aber der genaue Mechanismus ist noch unbekannt. 

Inkretinhormone sind Hormone, die nach Nahrungsaufnahme aus enteroendokrinen Zellen in 

die Blutbahn freigeetzt werden. Glucagon-like peptide 1 (GLP-1) und Glucose-dependent in-

sulinotropic polypeptide (GIP) fördern die Insulinsekretion. Außerdem wurde eine Wirkung 

von GLP-1 als Wachstums- und Differenzierungsfaktor auf Betazellen schon mehrmals nach-

gewiesen. Buteau et al. (1999) zeigten, dass GLP-1 die Bindung des Transkriptionsfaktors PDX-

1 in Beta(INS-1)zellen fördert. Bei alten diabetischen Ratten konnte durch GLP-1 Stimulation 

ein Massenzuwachs an endokrinen Inselzellen nachgewiesen werden (PERFETTI et al., 2000). 

Mithilfe des GLP-1 Analogon Extendin-4 gelang die Identifikation mehrerer GLP-1-Effekte: Sti-

mulation der Betazellreplikation und Neogenese (XU et al., 1999), Vergrößerung der Inseln 

und Stimulation der Pdx-1 Expression (STOFFERS et al., 2000). GLP-1 Rezeptor knockout 

Mäuse (GLP-1R-/-) entwickeln nur eine milde Hyperglykämie, vermutlich durch eine Kompen-

sation durch Hochregulation der GIP-GIPR-Achse. GLP-1R-/- weisen aber Abweichungen in der 

Inseltopografie auf – es liegen mehr Alphazellen im Zentrum der Insel und die Inselanzahl ist 

gegenüber den Kontrollen signifikant reduziert. Bei GLP-1R-/- Mäusen liegt  eine Verschiebung 

zu einem Überwiegen von mittelgroßen Inseln, während bei Kontrollen große Inseln überwie-

gen. Allerdings ist die Betazellmasse gegenüber Kontrolltieren unverändert (LING et al., 2001).  

Die Zufuhr von GIP stimuliert nachweislich die Proliferation von Betazellen (INS-1), was durch 

BrdU-Inkorporation bewiesen werden konnte. Allerdings lösen nur höhere Dosen von GIP ei-
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nen statistisch signifikanten Anstieg der Replikationsrate aus. GIP stimuliert in vitro konzent-

rationsabhängig und in Abhänigkeit von gleichzeitiger Glukosegabe die Signalwege von PKA 

(Proteinkinase A)/cAMP, MAPK (mitogen-activated protein kinase), PKA/CREB und 

PI3K(Phosphoinositide 3-kinase)/Proteinkinase B. Vermutlich arbeiten GIP und Glukose syner-

gistisch auf Replikation (TRUMPER et al., 2002) und wirken in vitro als antiapoptotischer Faktor 

auf Betazellen (INS-1) (TRUMPER et al., 2002). Die Signalwege sind dabei im Wesentlichen die 

gleichen, wie bei der mitotischen Wirkung. Die Aktivität der Caspase 3, ein Enzym der 

Apoptose, wird ebenfalls durch GIP reduziert (BAGGIO & DRUCKER, 2007). Neben der 

PI3K/PKB ist auch eine Inaktivierung des Transkriptionsfaktor Foxo 1 (Forkhead) durch GIP und 

die damit verbundene Unterdrückung der Expression des Bax-Gens verantwortlich für das Be-

tazellüberleben, da so vor Apoptose geschützt wird (KIM et al., 2005). 

2.2.4 Regeneration im endokrinen Pankreas 

Die Mechanismen, die bei der Regeneration des endokrinen Pankreas eine Rolle spielen, wer-

den intensiv erforscht, da die Regeneration des Pankreas bei der Therapie von Diabetes, Pan-

kreaskarzinomen und anderen Erkrankungen eine wichtige Rolle spielt. Dabei besteht seit 

über 100 Jahren ein Disput, ob es Stammzellen oder Vorläuferzellen gibt, aus denen neue en-

dokrine Zellen, insbesondere Betazellen entstehen können, oder ob nur Replikation für die 

Regeneration im adulten Pankreas verantwortlich ist. Als dritte Möglichkeit ist auch die Trans-

differenzierung von Azinuszellen zu Inselzellen im Gespräch (GRANGER & KUSHNER, 2009). 

Die Befürworter der Neogenese weisen in verschiedenen Studien darauf hin, dass die immun-

histochemisch nachgewiesene Replikation nach Verletzung des Pankreas nicht ausreicht, um 

das Ausmaß der Betazellzunahme zu erklären (BOUWENS & ROOMAN, 2005). Die Lokalisation 

von Stammzellen wird im Epithelium von Duktus vermutet (ZAJICEK et al., 1990; BONNER-

WEIR et al., 1993), in den Inseln (ZULEWSKI et al., 2001) oder im Knochenmark (IANUS et al., 

2003). Auch eine Neogenese von ganzen Inseln wird diskutiert. Durch die Häufung von aus 

Progenitorzellen entstandenen Betazellen könnten neue Inseln entstehen (BONNER-WEIR et 

al., 1993; FINEGOOD et al., 1995; BONNER-WEIR et al., 2000). Um die Regeneration untersu-

chen zu können, gibt es unterschiedliche Verfahrensweisen.  

Eine selektive Zerstörung von Betazellen mit daraus resultierendem Diabetes mellitus kann 

durch Streptozotocin erreicht werden, wenngleich Streptozotocin auch Leber-und Nierentox-
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isch ist (BOUWENS, 2006). Die intravenöse Applikation von Streptozotocin führt bei neonata-

len Ratten zwar zu einer vermehrten Replikation der Betazellen, eine vollständige Wiederher-

stellung der Organfunktion wird jedoch nicht erreicht (BONNER-WEIR et al., 1981). Bei tox-

ischer Destruktion der Betazellen spielt die Menge an Betazellen eine Rolle bei der Regenera-

tion des endokrinen Pankreas. In einer Studie von Rooman und Bouwens konnte 2004 de-

monstriert werden, dass bei einer Behandlung mit Gastrin und EGF die Regeneration nach 

nahezu vollständiger Zerstörung der Betazellen durch Alloxan so erfolgreich stattfindet, dass 

eine Kontrolle der Glukosehomöostase wieder möglich ist, was bei einer subtotalen Zerstö-

rung durch Streptozotocin nicht passiert. Die Betazellzunahme betrug über 30 %, allerdings 

waren Replikation, Apoptose und Zellgröße der Betazellen unverändert. Dies legt nahe, dass 

die Massenzunahme der Betazellen durch Neogenese verursacht war. Bestätigt wurde dies in 

der Immunhistochemie, die einen Zustrom von replizierenden, insulin-negativen Zellen in In-

seln aufzeigte. Diese Zellen exprimierten Cytokeratin, was auf ihre Herkunft aus exokrinen 

Duktus hinweist, und teilweise gab es Übergangszellen, die sowohl Cytokeratin, als auch Insu-

lin exprimierten. Dies ist ein deutlicher Hinweis auf Vorläuferzellen, die für Neogenese verant-

wortlich sind (ROOMAN & BOUWENS, 2004). 

Die Pankreatektomie ist eine chirurgische Methode, um die Regeneration im Pankreas zu un-

tersuchen. Dabei ist entscheidend, wieviel Pankreasgewebe entfernt wird. Bei einer subtota-

len Pankreatektomie von circa 90-95 % können bei Ratten bis zu 80 % des exokrinen Pankreas 

regeneriert werden. Dagegen können Pankreatektomien mit weniger Massenreduktion nicht 

zu einem bedeutenden Wachstumsstimulus im exokrinen Pankreas führen (PEARSON et al., 

1977). Im endokrinen Pankreas sind die Verhältnisse ähnlich. Bei einer Zwei-Drittel-Pankrea-

tektomie kommt es nur zu geringer Regeneration von 30–40 % innerhalb von 4 Wochen 

(LEAHY et al., 1988)  und es lassen sich keine Hinweise auf Stamm- oder Vorläuferzellen finden, 

die sich zu Betazellen differenzieren (DOR et al., 2004). Bei subtotaler Pankreatektomie dage-

gen konnte eine Verdopplung der verbleibenden Betazellmasse innerhalb einer Woche fest-

gestellt werden (PLACHOT et al., 2001). Außerdem wurden proliferierende Duktuszellen ge-

funden, die sich zu Betazellen differenzierten (BONNER-WEIR et al., 1993). Mittels BrdU Im-

munhistochemie konnte gezeigt werden, dass nach 90 %iger Pankreatektomie zunächst der 

Hauptduktus anfängt zu proliferieren. Anschließend folgen kleinere Pankreasgänge und es for-

men sich kleine Areale im exokrinen Pankreas mit fokalem Verteilungsmuster, die aus prolife-
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rierenden Duktuszellen bestehen. 60 Stunden nach der Operation weisen nur noch diese Are-

ale Replikation auf. 3 Tage post operationem machen proliferierende Duktuszellen 12,8 % des 

Pankreasvolumen aus, 7 Tage nach der Operation sind dagegen nur noch wenige der Areale 

auffindbar. Dafür hat das Volumen von Inseln und exokrinen Pankreas zugenommen und die 

neuen Inseln und Azinuszellen sind von alten nicht mehr unterscheidbar (BONNER-WEIR, 

2000). Ein kritischer Punkt bei der Untersuchung der Pankreasregeneration nach Pankreatek-

tomie könnte das Eintreten einer Hyperglykämie sein, die mindestens eine Reduktion der  Be-

tazellmasse um 70 % der benötigt. Eventuell wird ohne den Stimulus von Glukose nur die Rep-

likation aktiviert, die den Verlust nicht ausgleichen kann und es kommt nicht zur Neogenese 

(BOUWENS & ROOMAN, 2005). 

Eine weitere Methode, die Regeneration des Pankreas zu untersuchen, ist die chirurgische 

Duktusligatur. Dabei wird ein Teil des Hauptduktus abgebunden, was dazu führt, dass die 

exokrinen Produkte distal der Ligatur nicht ablaufen können, ins Interstitium fließen und zu 

einer Entzündung führen. Dies betrifft circa 50 % des Pankreas. In der ersten Woche post ope-

rationem kommt es bereits zur Hyperplasie, wobei die Betazellzahl innerhalb von 7 Tagen um 

80 % zunimmt. Nachdem die Replikation nur gering erhöht ist, liegt der Verdacht nahe, dass 

die Zunahme von Betazellen durch Neogenese verursacht ist. Dies wird auch bestätigt durch 

das Auffinden von Zellen, die Zwischentyp von Duktuszelle und endokriner Zelle sind (WANG 

et al., 1995). 

Eine wichtige Rolle in der Diskussion über die Existenz von Neogenese spielt lineage tracing, 

die Technik der Verfolgung der genetischen Abstammung einer Zelle oder Zelllinie. Dabei wer-

den Zellen markiert, um ihre Entwicklung verfolgen zu können. Die Technik erlaubt dem Un-

tersucher, den genauen Ursprung jeder neuen Betazelle zu bestimmen. Ein Problem, welches 

den absoluten Beweis der Existenz von Neogenese im Moment nicht erlaubt, ist, dass noch 

keine Faktoren identifiziert wurden, die exklusiv nur in den Duktuszellen exprimiert werden 

(GRANGER & KUSHNER, 2009). Unter der transkriptionellen Kontrolle des humanen carbonic 

anhydrase II (CAII) Promotors werden Gene in Duktuszellen und Ganglienzellen exprimiert, 

wodurch die genetisch gekennzeichnete Verfolgung von Duktuszellen möglich ist. Es wurden 

mittels Cre-loxP System transgene Mäuse generiert, in denen der CAII Promotor die Expres-

sion entweder von Cre Rekombinase oder von inducible Cre Rekombinase in Duktuszellen 



26 
 

steuert. Durch Duktusligatur wurde die Pankreasregeneration ausgelöst und durch Tamoxi-

fengabe im Alter von 4 Wochen wurde bei Tieren mit induzierbarer Cre Rekombinase die Mar-

kierung der neonatalen Expansion des Pankreas unterdrückt. Das Ergebnis der Studie bestä-

tigte die Annahme, dass es zu einer Transdifferenzierung von Duktuszellen zu Betazellen 

kommt, denn es wurde eine substanzielle Anzahl von genetisch markierten Zellen in Inseln 

gefunden (BONNER-WEIR et al., 2008). Dieses Ergebnis widerspricht der Studie von Dor et al. 

von 2004. Diese Arbeitsgruppe benutzte Tamoxifeninduzierbare Cre-Mäuse, die Cre-Rekom-

binase unter der transkriptionellen Kontrolle des Insulinpromotors exprimieren, um voll ent-

wickelte Betazellen, die das Insulingen exprimierten, zu markieren. Auf diese Weise wurden 

nur ältere Zellen und replizierte Zellen markiert, jedoch keine jungen, aus Stammzellen ent-

standenen Zellen, da diese noch kein Insulingen exprimieren. In dieser Studie waren 98 % der 

Betazellen im adulten Tier 9 Monate nach der Tamoxifen-Injektion markiert, auch in kleinen 

Inseln. Außerdem war die Frequenz markierter Betazellen nach 70 %iger Pankreatektomie im 

verbleibenden Pankreasgewebe der Markierungsfrequenz im regenerierten Gewebe sehr 

ähnlich, was zu dem Schluss führte, dass Neogenese nicht zur Regeneration im Pankreas bei-

trägt (DOR et al., 2004). Ähnliche Ergebnisse wurden von Teta et al. 2007 präsentiert. Die Hy-

pothese, dass Zellen mehrfach mittels lineage tracing Technik markiert werden können, ließ 

sich im Magen-Darm-Trakt und der Haut bestätigen. Dadurch wurde eine Möglichkeit gefun-

den zu testen, ob eine Zelle den Zellteilungszyklus mehrfach durchlaufen hat. Es wurden zwei 

verschiedene Thymidin-Analoga eingesetzt, die über das Trinkwasser appliziert wurden: 5-

chloro-2-desoxyuridin (CldU) und 5-iodo-2-desoxyuridin (IdU). Die Arbeitsgruppe verwendete 

zwei unterschiedliche BrdU-Antisera und folgte der Hypothese, dass diese mit unterschiedli-

cher Affinität an die beiden Thymidin-Analoga binden würden. Da jedes Analogon theoretisch 

einen unterschiedlichen Zellteilungszyklus detektieren müsste, ging man davon aus, dass man 

mit dieser Technik mehr als einen Zyklus markieren kann. In der postnatalen Phase wurden 

zunächst noch sehr viele Zellen einfach markiert, nach 6 Wochen dann nur noch wenige. Eine 

doppelte Markierung in der postnatalen Phase gab es fast nicht. Auch eine längere Applikation 

der Thymidinanaloga von 2-10 Monaten führte nicht zu doppelt markierten Zellen. Die Pan-

kreasregeneration wurde abgeklärt, indem trächtige Tiere und Mäuse, die entweder einer 

50 % Pankreatektomie oder einer Extendin-4 Behandlung unterzogen wurden, untersucht 

wurden. Dabei wurden kaum doppelt markierte Zellen gefunden. Keine einzige Insel bestand 

nur aus doppelt markierten Zellen und keine gefundene doppelt markierte Betazelle lag in der 
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Nähe eines Duktus. Damit widersprachen alle Ergebnisse der Existenz von Neogenese. Allein 

die Applikation von CldU 1 Monat lang und IdU 8 Monate lang im Anschluss führte dazu, dass 

viele Zellen mehrfach markiert waren. Dies wurde aber als Beweis dafür erachtet, dass die 

Betazellen nicht postmitotisch sind, sondern den Zellteilungszyklus mehrmals durchlaufen 

können (TETA et al., 2007). Weiterhin wurden zwei Versuche durchgeführt, in denen Sox9-

markierte Duktuszellen postnatal und nach Pankreasschädigung verfolgt wurden. Die Arbeits-

gruppe konnte dabei die Differenzierung zu Betazellen in der postnatalen Entwicklung nach-

weisen, eine spätere Entwicklung von Dukus- zu endokrinen Zellen nach Dukusligatur blieb 

aber aus (KOPP et al., 2011). Dagegen konnten Furuyama et al. eine Umwandlung von Duktus-

zellen zu endokrinen Zellen 8 Wochen nach Gabe von Tamoxifen in der postnatalen Phase 

mittels Cre-basiertem lineage tracing nachweisen. Die Arbeitsgruppe zeigte, dass sich embry-

onale pancreatische Sox9-exprimierende Progenitorzellen in alle adulten Zelltypen differen-

zieren können, dass ihre Kapazität für eine Differenzierung in endokrine Zellen sich jedoch 

schon kurz nach der Geburt verringert (Furuyama et al., 2011). Die Art der Schädigung des 

Pankreas nimmt Einfluss darauf, wie regeneriert wird, ebenso wie die Masse an geschädigtem 

Gewebe (LYSY et al., 2012). Es konnte gezeigt werden, dass Duktuszellen bei massiver Schädi-

gung des gesamten Pankreas sowohl Azinus-, als auch Betazellen nachbilden. Wenn jedoch 

selektiv nur Azinuszellen geschädigt werden, bilden sie auch nur diese nach (CRISCIMANNA et 

al., 2011). Die Abstammungslinienverfolgung wird natürlich auch in der Frage um die Trans-

differenzierung von Azinuszellen zu endokrinen Zellen benutzt. Desai et al. führten eine aus-

führliche Studie mit drei Versuchsgruppen durch. Es wurden weder in physiologischen Pan-

kreata, noch nach Pankreatektomie oder Extendin-4 Behandlung Anzeichen für Transdifferen-

zierung von Betazellen Azinuszellen gefunden (DESAI et al., 2007). Dagegen konnte Zhou et al 

2008 die Umprogrammierung von Azinuszellen in betazell-ähnliche Zellen demonstrieren, in-

dem die Azinuszellen mit Adenoviren infiziert wurden, die die Transkriptionsfaktoren Ngn3, 

Mafa und Pdx1 exprimierten. Die neu entstandenen Zellen waren in Größe, Struktur und Form 

nicht unterscheidbar von endogenen Inselbetazellen und sie exprimierten Gene, die für die 

Betazellfunktion unerlässlich sind. Außerdem sezernierten sie Insulin (ZHOU et al., 2008). 

Glukose hat einen Einfluss auf die Regulation der Replikation von Betazellen (siehe 2.2.3). In 

einer Studie von Lipsett und Finegood (2002) wurde der Einfluss von Hyperglykämie auf die 

Betazellneogenese untersucht. Dabei wurden Sprague Dawley Ratten über verschiedene Zeit-

räume von 0 bis 6 Tage mit einer 50 %igen Glukoselösung infundiert. Nach 2, 3 und 4 Tagen 
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Infusion ließen sich fokale Areale von Neogenese finden. Die Replikation der Duktuszellen war 

zu diesem Zeitpunkt nicht erhöht, während die Replikation in den Zellen in den Arealen ge-

genüber dem Hauptduktus zweifach und gegenüber kleineren Pankreasgängen 15-40 Fach er-

höht waren. Die Duktuszellreplikation war außerdem in den mit Glukose infundierten Tieren 

signifikant niedriger als in den mit Saline infundierten Kontrolltieren. Diese Fakten, zusammen 

mit dem Befund, dass die Duktus-assoziierte Betazellmasse sich in Glukose infundierten und 

Saline infundierten Ratten nicht unterscheidet, die Azinus-assoziierten einzelnen Betazellen 

nach 3 und 4 Tagen Glukoseinfusion jedoch 70 % erhöht sind, ließen den Schluss zu, dass die 

Betazellneogenese infolge Hyperglykämie durch Transdifferenzierung von Azinuszellen verur-

sacht wird (LIPSETT & FINEGOOD, 2002). 

In einer Autopsiestudie von Butler et al. wurden die Veränderungen im Pankreas in Folge von 

Schwangerschaftsdiabetes untersucht. Dabei konnten keine gesteigerten Replikationsraten o-

der erniedrigte Apoptoseraten Betazellen festgestellt werden. Trotzdem war das relative Be-

tazellvolumen im Pankreas erhöht. Die Tatsache, dass vermehrt kleine Inseln und Insulin-pro-

duzierende Zellen in den Duktus gefunden werden konnten, lässt vermuten, dass das erhöhte 

relative Betazellvolumen aus Neogenese resultiert (BUTLER et al., 2010).  

Faktoren, die die Regeneration im Pankreas regeln, sind bis heute größtenteils unbekannt 

(ZHOU et al., 2012). Man weiß aber, dass eine Behandlung mit Gastrin, Betacellulin und GLP-

1-Analoga nach Zerstörung von Betazellen und Induktion eines Diabetes mellitus  zu einer Ver-

besserung oder sogar zu einem Wiedererlangen der Glukosehomöostase führt (BOUWENS & 

ROOMAN, 2005). Die Wirkung von GLP-1 auf die Entwicklung und die Regeneration des endo-

krinen Pankreas wurde in zahlreichen Studien untersucht. Dabei beschränkt man sich nicht 

auf GLP-1 alleine, sondern untersucht auch die Wirkung von GLP-1 Rezeptoragonisten und – 

antagonisten und DPPIV (Dipeptidylpeptidase IV)-Inhibitoren, die dem Abbau von GLP-1 ent-

gegenwirken und so seine Wirkung verlängern. So zeigte sich, dass eine Behandlung mit GLP-

1, GLP-1 Rezeptoragonisten und DPPIV-Inhibitoren die Betazellmasse in Tiermodellen steigert 

und neue, insulinpositive Zellen in glukoseintoleranten Tieren schafft (PERFETTI et al., 2000). 

Bei Mäusen, mit STZ-induzierten Diabetes, führt eine Behandlung mit dem DPPIV-Inhibitor 

DA-1229 über 13 Wochen zu einer deutlichen Zunahme der Betazellmasse. Sowohl Replika-

tion, nachgewiesen durch BrdU, als auch Anzeichen auf Neogenese, nämlich einzelne, isolierte 

Betazellen mit Pdx-1 Expression, trugen zu diesem Anstieg der Betazellmasse bei (CHO et al., 



29 
 

2011). GLP-1 und Pdx-1 spielen auch eine wichtige Rolle in der Differenzierung von Duktuszel-

len zu Betazellen (HUI et al., 2001). Exendin-4 wirkt sich ebenfalls nachweislich auf die Be-

tazellproliferation aus. So zeigen neugeborene Wistar-Ratten, die sofort nach der Geburt mit 

STZ behandelt werden, infolge Exendin-4 Applikation eine signifikante Zunahme der Betazell-

masse infolge Hyperplasie (TOURREL et al., 2001). 

De Leon et al führten eine 70 %ige Panreatektomie in GLP-1R-/- Mäusen durch und untersuch-

ten gleichzeitig noch eine weitere Gruppe von Wildtypmäusen, denen nach 70 %iger Pankre-

atektomie der GLP-1 Antagonist Ex 9-39 GLP-1 verabreicht wurde. Während Ex 9-39 die Glu-

koseintoleranz nach der Operation nicht verschlimmert und auch keinen Einfluss auf die Be-

tazellregeneration hat, zeigten die GLP-1R-/- Mäuse eine signifikante Glukoseintoleranz und 

einen signifikanten Defekt der Betazellregeneration gegenüber Kontrolltieren (DE LEÓN et al., 

2003). Die Betazellproliferation wird von GLP-1 über den EGF Rezeptor induziert (BUTEAU et 

al., 2003).  

Bei der diabetischen NOD Maus konnte mit einer Kombinationsbehandlung von GLP-1 und 

Gastrin ein normoglykämischer Zustand hergestellt werden. Die beiden Wirkstoffe zusam-

men, aber nicht einer alleine, führen zu einer stark ausgeprägten Regeneration der Betazell-

masse und außerdem zu einer Herunterregulierung der Immunantwort in der NOD Maus 

(SUAREZ-PINZON et al., 2008). Bei Ratten wurde eine Duktusligatur zur Zerstörung des Pan-

kreas mit den Beatzellen durchgeführt und die Tiere wurden einer 7–10 tägigen Infusion mit 

Gastrin unterzogen. Eine morphometrische Auswertung zeigte, dass sich die Betazellmasse im 

abgebundenen Pankreasteil nach der Gastrinbehandlung verdoppelte. Die Replikation- und 

Apoptoseraten waren aber unverändert und die Massenzunahme war auch nicht durch eine 

Hypertrophie zustande gekommen. Dafür ließen sich isolierte Betazellen im exokrinen Pan-

kreas und kleine Betazellansammlungen finden, die durch die Gastrininfusion im abgebunde-

nen Teil des Pankreas entstanden waren. Man kam zu dem Schluss, dass Gastrin die Neoge-

nese stimuliert (ROOMAN et al., 2002). Dies ließ sich in einer späteren Studie bestätigen. Nach 

Durchführung einer 95 % igen Pankreatektomie und 14 tägiger Gastrin Behandlung zeigten die 

Versuchsratten eine reduzierte Hyperglykämie und eine angestiegene Betazellmasse. Gastrin 

fördert die Regeneration der Betazellmasse durch eine Steigerung von Neogenese und Repli-

kation, wobei als Anzeichen für Neogenese isolierte Betazellen im exokrinen Pankreas und 
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Duktuszellen, die Pdx1 exprimieren, gesehen wurden. Außerdem war die Apoptoserate er-

niedrigt (TÉLLEZ et al., 2011). 

In einer weiteren Studie wurden Mäuse nach einer 90 %igen Pankreatektomie zur Hälfte zu-

sätzlich mit STZ behandelt. In diesen Mäusen ging man davon aus, dass gar keine Betazell-

masse mehr intakt geblieben ist, da STZ die Apoptose der restlichen 10 % der Betazellen nach 

90% Pankreatektomie auslöst. Das heißt, alle später gefundenen Betazellen sind durch Neo-

genese entstanden. Es wurde dann sowohl bei Kontrolltieren, bei denen Saline statt STZ ver-

abreicht wurde, als auch in den STZ-behandelten Mäusen nach Anwendung von Exendin-4 die 

Betazellproliferation und Neogenese, sowie die Apoptose untersucht. Anhand der Ergebnisse 

kam man zu dem Schluss, dass Exendin-4 die Betazellproliferation und die Neogenese verbes-

sert und die Apoptose reduziert, indem es die Expression von dem endoplasmatischen Reti-

kulum stressresponsiven Gens und anderen Faktoren abschwächt (KWON et al., 2009). Die 

Überexpression des GLP-1 Gens, sowie von den Cyclin D2 und CDK4 Genen steigert in durch 

STZ zerstörten Inseln das Vorhandensein von Progenitorzellen im Pankreas und deren Diffe-

renzierung zu Inselzellen (CHEN et al., 2012).  

Der Insulin-growth-factor II (IGF-II) spielt bei der Embryogenese eine wichtige Rolle für die 

Zellteilung und Differenzierung von Betazellen. Mithilfe transgener Mausmodelle konnte ge-

zeigt werden, dass IGF-II auch im adulten Tier bei der Regeneration von Betazellen bedeutend 

ist. In Abwesenheit von IGF-II in der MIGKO (pIns-c-MycERTAM/IGF-II+/2) Maus, einer gene-

tisch veränderten Maus, die kein IGF-II exprimiert, ist die Wiederherstellung der ursprüngli-

chen Betazellzahl und der Gesamtbetazellmasse nach Schädigung des Pankreas beeinträchtigt 

und verzögert (ZHOU et al., 2012).  

Ein weiterer Faktor in der Regulation der Regeneration ist Betacellulin. Dies ist ein Mitglied 

der Epidermal Growth Factor Familie, welches im humanen Pankreas die Differenzierung von 

Zellen der Azinuszelllinie AR42J in insulin-sezernierende Zellen induziert (MASHIMA et al., 

1996; SENO et al., 1996). Seine Wirkung wurde zum Beispiel in einem Mausmodell mit Alloxan 

induzierter Glukoseintoleranz untersucht. Die tägliche Applikation von humanem rekombi-

nantem Betacellulin führte nach 2 und 4 Wochen nach Alloxangabe noch nicht zu Verände-

rungen in der Glukosetoleranz; nach 8 Wochen hingegen war die Glukosetoleranz bei den Tie-

ren, die Betacellulin bekamen, signifikant verbessert gegenüber den Kontrollen, genauso wie 
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das Körpergewicht. Außerdem ließen sich neue, inselartige Ansammlungen von Betazellen fin-

den, oft in Duktusnähe, was als Anzeichen für Neogenese gewertet wurde (YAMAMOTO et al., 

2000). In einer weiteren Studie wurde die Wirkung von Betacellulin nach 90 % iger Pankrea-

tektomie in männlichen Wistar Ratten untersucht. In den ersten 30 Tagen post operationem 

zeigten die mit Betacellulin behandelten Tiere eine bessere Glukosetoleranz und höhere Insu-

linspiegel als die Kontrollen. Nach 30 Tagen war die Betazellmasse der mit Betacellulin behan-

delten Tiere deutlich erhöht gegenüber Kontrollen, es gab mehr Ansammlungen von inselar-

tigen Zellen, und die Replikation von Betazellen war gegenüber den Kontrollen signifikant er-

höht (LI et al., 2001). Der positive Einfluss von Betacellulin auf den Glukosehaushalt konnte 

auch in STZ-behandelten Mäusen bestätigt werden. Betacellulin steigerte die Anzahl von Be-

tazellen in den Inseln und die Anzahl von insulin-positiven Inseln. Außerdem konnten mittels 

Immunhistochemie Hinweise darauf gefunden werden, dass intrainsuläre Vorläufer zu einer 

Differenzierung zu Betazellen aktiviert wurden (LI et al., 2003). Über den Mechanismus, wie 

Betacellulin die Proliferation und Regeneration steigert, weiß man, dass Epidermal Growth 

Factor Rezeptoren involviert sind. Oh et al fanden in einer Studie Hinweise darauf, dass EGF 

Rezeptoren ErbB-1 und ErbB-2 wichtig für die Signaltransduktion sind und ihre Aktivierung 

durch Betacellulin die Insulin-Rezeptor Substrat 2 (IRS-2) Genexpression steigert, sowie die 

Pdx1 Gentranskription (OH et al., 2011). Beide Gene spielen eine wichtige Rolle in der Betazell-

proliferation (KITAMURA et al., 2002; JHALA et al., 2003). 

Ein weiterer wichtiger Faktor, der in die Regulation der Regeneration involviert ist, ist Neuro-

genin 3. Es lassen sich deutliche Hinweise darauf finden, dass Ngn3, der erste spezifische In-

selzelltranskriptionsfaktor in der Embryogenese, im adulten, verletzten Pankreas die Regene-

ration durch Aktivierung von Betazellprogenitorzellen induziert. In einer Studie von Xu et al. 

konnte gezeigt werden, dass eine partielle Duktusligatur bei 8 Wochen alten Balb/c Mäusen, 

die Ngn3 Expression aktiviert. Es kommt zu einem über 50fachen Anstieg von Ngn3 Transkip-

ten im abgebundenen Teil des Pankreas gegenüber dem unabgebundenen Teil, der mit der 

massiven Zunahme von Betazellmasse einhergeht. Ngn3+ Zellen im adulten Pankreas stam-

men aus Hormonprogenitorzellen aus der Nähe von Pankreasgängen und differenzieren sich 

in vitro zu Inselzellen (XU et al., 2008). 

Abbildung 2.3 Duktusligatur aktiviert die Ngn3 Expression und lässt die Betazellmasse im adul-
ten Pankreas ansteigen (XU et al., 2008) schwarze Balken: durch Duktusligatur abgebundener Schwanz des 
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Pankreas, graue Balken: unabgebundener Kopf desselben Pankreas, weiße Balken: scheinoperierter Schwanz des Pankreas; 
*: p < 0,001 abgebundener gegenüber unabgebundener Teil 

 

 

Ob diese Differenzierung tatsächlich auch in vivo stattfindet, wurde mit der gleichen Operati-

onstechnik (partielle Duktusligatur), ebenfalls bei 8 Wochen alten Balb/c Mäusen, überprüft. 

Auch hier kam es zu einer Verdopplung des Gesamtbetazellvolumens im abgebundenen Teil 

des Pankreas und auch die absolute Anzahl an Inseln nahm auf mehr als das Doppelte zu. 86 % 

der neu entstandenen Betazellen resultierten aus Replikation. 14 % aller Betazellen aus Inseln 

und 40 % der Betazellen aus kleinen Inseln exprimierten Ngn3. Durch selektive Ausschaltung 

von Ngn3-positiven Zellen konnte gezeigt werden, dass sowohl die Replikation, als auch die 

Umprogrammierung von Vorläuferzellen zu Betazellen durch Ngn3 gefördert wird. Die Auto-

ren kamen zu dem Schluss, dass die Betazellexpansion im verletzten Pankreas durch Replika-

tion und Neogenese erfolgt, und beides abhängig vom Vorhandensein von Ngn3-positiven Zel-

len ist (VAN DE CASTEELE et al., 2013). 

2.2.5 Entwicklung des endokrinen Pankreas bei Diabetes-Patienten 

Während bei Typ 1 Diabetes mellitus eine autoimmune Zerstörung von Betazellen für das Ent-

stehen der Krankheit verantwortlich ist (TRUDEAU et al., 2000), kommt es bei Diabetes melli-

tus Typ 2 zu einer Insulinresistenz und/oder zum Insulinmangel. Allerdings reicht eine Insulin-

resistenz alleine nicht, um Typ 2 Diabetes auszulösen. Erst eine inadäquate funktionelle Masse 

von Betazellen, die eine Insulinresistenz nicht mehr kompensieren kann, resultiert in Diabetes 

mellitus Typ 2 (WEIR et al., 2013). Die Betazellmasse reagiert dynamisch auf die Verhältnisse 



33 
 

im Pankreas und kann sich erfolgreich einem erhöhten Bedarf anpassen. Bei Einsetzen des 

Diabetes kommt es zu einem Verlust an funktioneller Betazellmasse. Der Betazellmassenver-

lust wird vermutlich durch eine Dedifferenzierung der Betazellen verursacht, ausgelöst durch 

das diabetische Milieu. Die Effekte von Glukotoxizität, Lipotoxizität und Glukolipotoxizität auf 

die Betazellmasse wird ebenfalls diskutiert (siehe unten). Die Zellen verlieren dadurch die Fä-

higkeit, auf einen Glukosestimulus hin Insulin zu produzieren. Eine inadäquate Betazellmasse 

wird heute als essentiell bei allen Formen von Diabetes mellitus betrachtet (WEIR et al., 2001). 

In einer Autopsiestudie wurden keine Hinweise auf eine reduzierte Betazellmasse bei Men-

schen mit Typ 2 Diabetes gefunden. Dies legte den Schluss nahe, dass der Diabetes durch eine 

unzureichende Insulinantwort nach Glukosestimulation verursacht ist (GUIOT et al., 2001). Al-

lerdings widersprachen die Ergebnisse einer weiteren Autopsiestudie beim Menschen diesen 

Befunden. So war das relative Betazellvolumen in übergewichtigen Menschen ohne Diabetes 

gegenüber schlanken Nichtdiabetikern erhöht. Das relative Betazellvolumen von sowohl über-

gewichtigen, wie auch schlanken Typ 2 Diabetikern war gegenüber gesunden übergewichtigen 

und schlanken Menschen um 63 %, beziehungsweise 41 % vermindert. Die Replikationsrate 

war bei allen Gruppen gleich niedrig und die Neogeneserate nur abhängig vom Gewicht, nicht 

vom Vorhandensein einer Diabeteserkrankung. Die Apoptoserate war bei dünnen Diabetikern 

gegenüber gesunden dünnen Menschen 10fach und bei übergewichtigen Diabetikern 3fach 

gegenüber der übergewichtigen Kontrollgruppe erhöht. Daher wurde erhöhte Apoptose für 

den Verlust der Betazellmasse verantwortlich gemacht (BUTLER et al., 2003; WEIR et al., 

2013). 

Es ist allgemein anerkannt, dass es zu einem Verlust von funktioneller Betazellmasse bei Typ 

2 Diabetikern kommt und dieser durch das diabetische Milieu ausgelöst wird. Hierbei könnten 

Glukotoxizität, Lipotoxizität und Glukolipotoxizität eine Rolle spielen (WEIR et al., 2013). Glu-

kotoxizität lässt sich im Tiermodell mit chronischer Hyperglykämie reproduzieren (JONAS et 

al., 1999). Da es außerdem eine hohe Korrelation zwischen Glukotoxizität und dem Verlust der 

Glukose-induzierten Insulinsekretion gibt, kann dieser Faktor als wichtigster angesehen wer-

den. Erhöhte Blutglukosewerte wirken sich auch direkt auf den Insulinspiegel im Blut aus. Die 

Insulinsynthese wird ausbalanciert durch die Sekretion von Insulin einerseits und die autopha-

gische Zerstörung von Insulinsekretgranula. Dabei ist die Zerstörung von Insulingranula höher 

bei hohen Blutglukosewerten. Das Proinsulin/Insulin – Verhältnis bei Typ 2 Diabetikern ist er-

höht, was davon kommt, dass vor allem ausgereifte Insulingranula abgebaut werden, aber 
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auch die verminderte Sekretion spielt eine wichtige Rolle. (WEIR et al., 2013). Das Vorhanden-

sein von Lipotoxizität auf Betazellen zu untersuchen, erweist sich als relativ schwierig. In vitro 

Studien lassen sich nicht einfach auf einen Organismus übertragen, weil dafür das Wissen für 

die Verarbeitung von Fetten im Körper auf Zellebene nicht ausreicht. Infusionen von Lipiden 

sind nur in derart hohen Konzentrationen wirksam auf die Betazellen, dass keine klinische Re-

levanz besteht. Ergebnisse aus Studien mit verschiedenen Tiermodellen weisen nicht auf eine 

alleinige Lipotoxizität hin (WEIR et al., 2013). 

Ein weiterer Faktor, der wichtig für den Verlust von Betazellmasse ist, ist die mit dem Alter 

zunehmende Reduzierung der Proliferation. Es werden weniger Zellzyklusaktivatoren und 

Pdx1 und mehr Zellzyklusinhibitoren exprimiert und es kommt zur Aggregation von Amyloid. 

Diese Änderungen sind im Alter physiologisch und können nicht alleine für die Entstehung von 

Diabetes verantwortlich sein, aber sie könnten verantwortlich sein für das im Alter steigende 

Risiko für Typ 2 Diabetes (GUNASEKARAN & GANNON, 2011). 

Darüber hinaus spielen verschiedene weitere Faktoren eine Rolle beim Verlust der Betazell-

masse. Erhöhte Glukosespiegel führen zu einem Anstieg von ROS (reactive oxygen species) 

und oxidativem Stress, aber ob dies in erhöhte Apoptoseraten und Betazelldysfunktion resul-

tiert, ist noch unklar. Dagegen weiß man, dass Amyloid im Pankreas von Menschen mit Diabe-

tes im Gegensatz zum Nager vorkommt und die betroffenen Patienten weniger Betazellen ha-

ben. Die Toxizität von Amyloid kommt aber nicht von den extrazellulären Ablagerungen, son-

dern von kleinen Fibrillen oder Oligomeren, welche die Zellmembranen schädigen können. 

Auch Endoplasmatischer Retikulum Stress könnte die Apoptoserate steigern, ein Mechanis-

mus, der in den letzten Jahren gründlich untersucht wurde. Wenn eine Zelle Probleme damit 

hat, neu synthetisierte Proteine zu falten, wird die unfolded protein response (UPR) aktiviert. 

Dies schützt die Zelle normalerweise, weil es die Synthese neuer Proteine stoppt, den Zerfall 

ungefalteter Proteine beschleunigt und Begleitproteine aktiviert, die bei der Proteinfaltung 

helfen. Allerdings könnten bei alten, fragilen Zellen eher apoptotische Signalwege des ER 

Stress dominant sein. (WEIR et al., 2013). Es lassen sich infolge Hyperglykämie eine reduzierte 

Expression von wichtigen Betazell-Transkriptionsfaktoren nachweisen, eine Hochregulierung 

von Stress-assoziierten Genen und Änderungen im Glukosemetabolismus. Außerdem ließ sich 

in einer Studie mit FoxO1-defizienten Mäusen eine Dedifferenzierung von Betazellen in Nicht-

Insulin-produzierende Zellen nachweisen und sogar eine Umwandlung in Alphazellen 
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(TALCHAI et al., 2012). Fraglich ist nur, ob sich die Mechanismen auf den Menschen übertra-

gen lassen. Es muss auch abgeklärt werden, ob sich dedifferenzierte Betazellen in multipo-

tente Vorläuferzellen zurückverwandeln oder einen anderen Weg der Dedifferenzierung ge-

hen (WEIR & BONNER‐WEIR, 2013). 

Diabetes mellitus Typ 2 ist meist durch ein Zusammenspiel mehrerer Faktoren verursacht und 

entwickelt sich auch nicht plötzlich, sondern setzt langsam ein. Nach einem Modell von Weir 

und Bonner-Weir von 2004 kann man die Entwicklung in fünf Stadien einteilen, die aus einer 

Kombination von morphologischen Veränderungen und klinischen Symptomen bestehen. 

Tabelle 2.4 Fünf Stufen der Entwicklung von Betazelldysfunktion zu Diabetes Typ 1 und Typ 2 
(WEIR & BONNER-WEIR, 2004) 

Stufe 1: Normale Blutglukosewerte durch Kompensation der Insulinresistenz mittels erhöhter 

Insulinsekretion und Betazellmasse 

Stufe 2: Stabile Anpassung: inadäquate Betazellmasse führt zu leicht erhöhten Glukosewer-

ten; Glukotoxizität führt zu verminderter Glukose-induzierter Insulinsekretion 

Stufe 3: Unstabile Dekompensation: verschlimmerte Glukotoxizität in den Betazellen und dem 

Zielgewebe des Insulins verursacht einen rapiden Anstieg der Blutglukose 

Stufe 4: Stabile Dekompensation: erhöhte Blutglukosespiegel, produziertes Insulin reicht aber 

aus, um Ketose zu verhindern 

Stufe 5: nicht in DM Typ 2, nur in Typ 1, starke Reduktion der Betazellmasse, klassische Diabe-

tessymptome und Ketose 

2.2.6 Einfluss des genetischen Hintergrundes auf die Pankreasentwicklung 

Eine wichtige Frage für das Verständnis der Entstehung des Diabetes ist, was die Anzahl und 

Masse von Inseln im Pankreas determiniert. Mögliche Faktoren, die Einfluss nehmen könnten, 

sind Körpergewicht, Pankreasgewicht und der genetische Hintergrund. Bock et al. untersuch-

ten den Einfluss dieser Parameter auf die Größe und Struktur des endokrinen Pankreas in sie-

ben verschiedenen Mäusestämmen. Dabei zeigte sich, dass nur der Mäusestamm einen sta-

tistisch signifikanten Einfluss auf die Inselzahl aufwies. Für die Inselmasse dagegen waren alle 
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drei Parameter signifikant, wobei der genetische Hintergrund den stärksten Einfluss hatte. In-

teressanterweise gab es keine Korrelation zwischen der Inselanzahl und der Inselmasse. 

C57Bl/6J Mäuse zeigten zwar die geringste Insel- und Betazellmasse pro Körpergewicht, trotz-

dem aber die größte Anzahl von Inseln (BOCK et al., 2005). Dazu passend zeigte sich in einer 

anderen Studie, in der die Glukosehomöostase bei vier verschiedenen Mäusestämmen unter-

sucht wurde, dass C57Bl/6J Mäuse signifikant erhöhte gefütterte und Nüchternblutglukose-

werte gegenüber DBA/2 Mäusen hatten und nach intraperitoneale Glukoseinjektion ebenfalls 

höhere Glukosewerte aufwiesen (GOREN et al., 2004). Aufschlussreich dabei ist, dass der 

Stamm DBA/2 die höchste Insel-und Betazellmasse pro Körpergewicht von den sieben von 

Bock et al. untersuchten Mäusestämmen zeigte. 

Auch die Proliferationsrate könnte durch den genetischen Hintergrund beeinflusst sein. Da-

rauf weist eine Untersuchung in den zwei Stämmen C57Bl/6J und C57Bl/KsJ hin, in der die 

Proliferation von Betazellen durch Glukose in vitro und in vivo stimuliert wurde. Die Prolifera-

tionsrate bei C57Bl/6J Mäusen war doppelt so hoch als bei den C57Bl/KsJ Mäusen, unabhängig 

von der Glukosekonzentration und dem Alter der untersuchten Mäuse (SWENNE & 

ANDERSSON, 1984). Dies ist besonders erstaunlich, da die beiden Stämme sehr eng miteinan-

der verwandt sind. Nun ist für die Diabetesforschung nicht nur der Einfluss des genetischen 

Hintergrundes auf das endokrine Pankreas in gesunden Mäusen wichtig, sondern könnte auch 

bei diabetischen Tieren von Relevanz sein. Eine frühe Arbeit zu diesem Thema von Coleman 

untersuchte den Einfluss des genetischen Hintergrundes auf die Expression der Mutationen 

im Diabetes Lokus (db) (COLEMAN, 1992). Durch Rückkreuzung von db/db Mäusen auf 

C57Bl/KsJ, DBA/2J und C57Bl/6J Hintergrund konnten die unterschiedlichen Auswirkungen der 

Mutation bei verschiedenen Linien untersucht werden. Dabei zeigte sich, dass die Mäuse auf 

C57Bl/6J Hintergrund nur milden, gut kompensierten Diabetes entwickeln, während die an-

deren beiden Linien einen deutlichen diabetischen Phänotyp entwickelten. Des Weiteren 

wurde in der Studie die Regulation des Malic-Enzyms untersucht. Dieses Enzym generiert 

NADPH für die Fettsäuresynthese. Man fand heraus, dass die beiden Diabetes-empfänglichen 

Stämme das Allel b am Malic-Enzym Regulator Lokus (Modlr) tragen und niedrige Enzymakti-

vität aufweisen, während die C57Bl/6J Maus die Allele a trägt und eine hohe Enzymaktivität 

aufweist. Um beurteilen zu können, ob die Enzymaktivität für die Entwicklung des Diabetes 

eine Rolle spielt, wurde eine F2 Generation aus C57Bl/6J db+ und C57Bl/KsJ db+ Mäusen pro-

duziert. Diese wurde in drei Gruppen eingeteilt nach Schweregrad ihres Diabetes. Es zeigte 
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sich eine Übereinstimmung zwischen diabetischen Phänotyp und Enzymaktivität, die darauf 

schließen lässt, dass das Gen, welches die Malic-Enzym Aktivität reguliert, verantwortlich ist 

für zumindest einen Teil des Einflusses des genetischen Hintergrundes auf den diabetischen 

Status (COLEMAN, 1992). 

In einer vorhergehenden Studie wurden acht Mäuselinien mit db/db Mutation und verschie-

denen Haplotypen auf ihren diabetischen Status untersucht. Dabei zeigten die Mäuselinien 

mit H-2b Haplotyp, nämlich die Linien C57Bl/6J und 129/J, weitgehende Resistenz gegenüber 

dem Diabetes. Dagegen wiesen die Linien mit H-2d Haplotyp (C57Bl/6K, DBA/2J) einen deutli-

chen Diabetes mit Betazellnekrosen auf. Beide Haplotypen zeigten keine Unterschiede zwi-

schen den Geschlechtern. Bei den Haplotypen H-2k und H-2q dagegen hatten die weiblichen 

Mäuse kontrollierte Blutzuckerspiegel, während die Männchen teils starken (H-2k, Linien CBA-

Lt, C3HB/FeJ), teils mittelstarken (H-2q, Linie SWR/J) und teils gar keinen (H-2k, Linie MA/J) 

Diabetes entwickelten. Es scheint bei den Haplotypen H-2k und H-2q die Stärke des Diabetes 

also nicht vom Haplotyp abzuhängen, sondern vom genetischen Hintergrund und vom Ge-

schlecht (Leitner, Coleman & Hummel, 1981). Eine hohe Abhängigkeit der Ausprägung des Di-

abetes von Geschlechtshormonen konnte von der Arbeitsgruppe später bestätigt werden (Lei-

ter, Chapman & Coleman, 1989). 

Eine weitere wichtige Studie wurde mit doppelt heterozygoten (DH) Knockoutmäusen durch-

geführt, bei denen der Insulin Rezeptor und Insulin Rezeptor Substrat-1 ausgeschaltet ist. Bei 

der Züchtung auf drei verschiedene genetische Hintergründe stellte man fest, dass der diabe-

tische Phänotyp bei den drei verschiedenen Mäuselinien sehr unterschiedlich war. Während 

C57Bl/6 DH Mäuse eine deutliche Hyperinsulinämie und Inselhyperplasie und bereits frühzei-

tig eine Hyperglykämie entwickelten, zeigten 129Sv DH nur eine milde Hyperinsulinämie und 

wenig Inselhyperplasie. DH Mäuse auf DBA Hintergrund zeigten mittlere Insulinwerte und ent-

wickelten nur langsam eine Hyperglykämie, zeigten aber Anzeichen von Inseldegeneration. 

Während von ihnen 64 % Diabetes entwickelten, waren es bei den 129Sv DH nur unter 2 %, 

bei den C57Bl/6 aber 85 % (KULKARNI et al., 2003). 

Die Rückkreuzung von ob/ob Mäusen auf den genetischen Hintergrund C57Bl/6 und FVB/N 

konnte zeigen, dass Fettleibigkeit und Hyperinsulinämie beider untersuchten Linien vergleich-

bar waren, die Hyperglykämie war jedoch bei Tieren mit dem C57Bl/6 Hintergrund weitaus 
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geringer. So hatten FVB/N ob/ob Mäuse einen 4fachen Anstieg der Blutglukosewerte gegen-

über ihren Wildtypen und 2fach höhere Werte als transgene C57Bl/6 Mäuse. Dies könnte sich 

erklären durch das Hormon Adiponektin, dass eine Insulinresistenz in der Maus umkehren 

kann und somit zur Stabilisierung der Glukosehomöostase beiträgt. Adiponektin, ein Protein-

hormon, das den Glukosemetabolismus beeinflusst und von Fettgewebe exprimiert wird, 

wurde in C57Bl/6 Mäusen im zirkulierenden Blut in normalen Mengen gefunden, trotz einer 

eindeutigen Insulinresistenz (YAMAUCHI et al., 2001). Bei FVB/N ob/ob Mäusen war die Adi-

ponektinexpression 2,5fach erniedrigt gegenüber Wildtypen. Die periphere Insulinresistenz in 

C57Bl/6 Mäusen war nur in der Leber stärker ausgeprägt als bei FVB/N Mäusen, in den Mus-

keln und dem restlichen Körper war sie schwach ausgebildet. Die Elimination von Triglyceriden 

aus dem Blut war bei ob/ob Mäusen auf C57Bl/6 Hintergrund nicht beeinträchtigt. Die C57Bl/6 

Wildtypen zeigten im Vergleich mit FVB/N Wildtypen eine deutlich schnellere Triglycerid-

Clearance. Die ob/ob Mutation führt bei FVB/N ob/ob Mäusen zu einer Beeinträchtigung der 

Triglyzerid Clearance, im Gegensatz zu den Wildtypen war diese deutlich verlangsamt, anders 

als bei der C57Bl/6. Der Einfluss des genetischen Hintergrundes auf die Schnelligkeit der Trig-

lycerid-Clearance wurde als wichtiger Faktor für die Ausprägung des diabetischen Phänotyps 

erkannt (HALUZIK et al., 2004).  

Der Mäusestamm beeinflusst die meisten Aspekte des Diabetes wie die Insulinsekretion, In-

sulinresistenz, die Inselanzahl und die Überlebenszeit von einzelnen Betazellen. Der Stamm 

C57Bl/6 ist in ihrer Empfänglichkeit für Diabetes im mittleren Raum einzuordnen. Die Glukose- 

und Insulinspiegel liegen zwischen den Werten anderer Mäusestämme. Die C57Bl/6 Maus ist 

anfällig für fütterungsbedingte Fettleibigkeit und Hyperglykämie (CLEE & ATTIE, 2007). Im In-

sulintoleranztest zeigt dieser Stamm eine gute Insulinsensitivität, was den Verdacht nahe legt, 

dass ihre Glukoseintoleranz von einem Defekt in der Insulinsekretion kommt, was sich in meh-

reren Untersuchungen bestätigen ließ (KAKU et al., 1988; AHREN & PACINI, 2002; KOOPTIWUT 

et al., 2002; TOYE et al., 2005). Dass die Regeneration auch vom genetischen Hintergrund ab-

hängt, ist wahrscheinlich, da ihr Ausmaß bei verschiedenen Stämmen variiert. In einer Pan-

kreatektomiestudie von De Leon et al. stellte man fest, dass die Stämme BALB/c und CD1 sich 

stark unterschieden in der Regeneration der Betazellmasse. Die Exposition von Inseln des 

Stammes DBA, der genetisch prädisponiert ist, Inselversagen zu bekommen, mit hohen Dosen 

von Glukose führte in vitro zu einer beeinträchtigten glukose-stimulierten Insulinsekretion, 
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einhergehend mit erniedrigten ATP-Spiegeln und einem niedrigeren Insulininhalt in den Be-

tazellen. Die gleiche Behandlung von Inseln des Stammes C57Bl/6 führte nicht zu derartigen 

Veränderungen (ZRAIKA et al., 2006). Der Stamm FVB zeigt generell hohe Blutglukosewerte, 

begleitet von relativ niedrigen Insulinspiegeln (CLEE & ATTIE, 2007). Züchtet man die db/db 

Maus auf FVB und C57Bl/6 Hintergrund, zeigen die Tiere auf FVB Hintergrund eine größere 

Insulinresistenz und stärker ausgeprägte Hyperinsulinämie und Hyperglykämie als die Mäuse 

auf C57Bl/6 Hintergrund. Die Inseln der FVB Mäuse sind vergrößert, aber intakt (CHUA et al., 

2002; LUO et al., 2006). Dies legt die Schlussfolgerung nahe, dass sich die beiden Mäuse-

stämme in Allelen unterscheiden, die die Insulinresistenz fördern. Durch Kreuzung der db/db 

C57Bl/6 Maus auf FVB Hintergrund konnte ein Lokus auf dem Chromosom 5 ausfindig gemacht 

werden, auf dem die FVB Allelen mit erhöhten Insulinwerten assoziiert waren. Mäuse, die in 

dieser Region C57Bl/6 Allele trugen, waren unfähig, die Insulinproduktion aufrecht zu erhal-

ten, was vermuten lässt, dass durch diese Kreuzung ein Allel in der C57Bl/6 Maus entdeckt 

wurde, das Betazellversagen fördert (LUO et al., 2006). C57Bl/6 Mäuse besitzen viele, aber 

kleine Inseln, was eine schnelle Expansion der Betazellmasse durch Replikation ermöglicht 

(Bock et al. 2005). Die relativ geringe Inselmasse ist aber vermutlich verantwortlich für die 

hohe Empfindlichkeit von dem Mäusestamm gegenüber Streptozotocin (KAKU et al., 1988; 

CARDINAL et al., 1998). 

Die Wirkung von STZ auf verschiedene Mäuse variiert in Abhängigkeit des Stamms. In einer 

Studie von Gurley et al. wurde die Blutglukose ab 2 Wochen nach Injektion des STZ regelmäßig 

in 5 verschiedenen Mäusestämmen untersucht. Schon bei der ersten Untersuchung zeigten 

die verschiedenen Stämme Abweichungen in den Blutglukosewerten. Die Gruppe mit den 

niedrigsten Werten war der Stamm BALB/c, der Werte im Normalbereich hatte. Am stärksten 

sensibel gegenüber STZ war der Stamm DBA/2, der bereits nach 2 Wochen Blutglukosewerte 

über 200 mg/dl hatte. In den folgenden 14 Wochen fächerte sich das Verteilungsmuster auf, 

wobei die BALB/c und 129SvEv nur leicht erhöhte Glukosewerte hatten, während die DBA ei-

nen starken diabetischen Phänotyp mit Blutglukosewerten über 450 mg/dl aufwiesen. Bei den 

C57Bl/6 Mäusen nahmen die Blutglukosewerte stetig zu und erreichten 16 Wochen nach STZ-

Injektion Werte im Bereich von 350 mg/dl. Bei dem Stamm MRL/Mp senkten sich die Blutglu-

kosewerte sogar gegen Ende der untersuchten Zeitspanne wieder auf fast normale Bereiche 

(GURLEY et al., 2006). Man konnte die fünf verschiedenen Mäusestämme in low responders 
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und high responders einteilen und diese unterschiedlichen Reaktionsstärken auf das Strepto-

zotocin wurden auf den genetischen Hintergrund zurückgeführt. 

Abbildung 2.4 Blutglukosewerte nach STZ Injektion bei 5 verschiedenen Mäusestämmen 
(GURLEY et al., 2006) 

 

Weiterhin wurde der Glukosemetabolismus bei vier verschiedenen Inzucht-Mäusestämmen 

untersucht. Die Blutglukosewerte nach 5 Stunden Fasten waren bei C57Bl/6 am höchsten, ge-

folgt von FVB/N, DBA/2 und 129X1Sv Mäusen, welche die niedrigsten Werte aufwiesen. Es 

gab stammabhängige Unterschiede in der Ganzblutglukose–Plasmablutglukose–Relation, die 

darauf hindeuten, dass es Verschiedenheiten im Glukose-Transport durch die Erythrozyten 

gibt. Bei der DBA/2 ließ sich eine leichte Insulinresistenz mittels Insulininfusion feststellen. Als 

Antwort auf Hypoglykämie stieg Glukagon bei FVB/N Mäusen stark an (9,9fach), bei C57Bl/6J 

Mäusen auch deutlich (4,0fach), aber bei DBA/N und 129X1/Sv Mäusen nur leicht (2,6 und 

2,3fach). Auf Hyperglykämie durch Glukoseinfusion reagierten C57Bl/6 und 129X1/Sv Mäuse 

mit stetig steigender Insulinproduktion bis auf über 500 pmol • L-1, während der FBV/N Stamm 

nur eine sehr schwache Erhöhung der Insulinwerte auf nicht einmal 150 pmol • L-1 zeigte und 

Werte in dieser Region konstant beibehielt. DBA/2 Mäuse liegen mit ihren Insulinwerten da-

zwischen. Es konnte demonstriert werden, dass der genetische Hintergrund die Insulinaktion, 

-sekretion und die Regulation von Hypoglykämie beeinflusst (BERGLUND et al., 2008). 

Der genetische Hintergrund beeinflusst Vorgänge im ganzen Körper. Der Einfluss des geneti-

schen Hintergrundes auf diabetische Nephropathie wurde und wird in verschiedenen Model-

len erforscht, um ein gutes Modell zu finden, das auf den Menschen übertragbare Verände-

rungen zeigt. In einer Studie über STZ-induzierten Diabetes wurden deutliche Unterschiede 
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bei fünf Mäusestämmen in der mesangialen Expansion gefunden, allerdings korrelierten diese 

mit den Ausprägungsgraden der Hyperglykämie und könnten durch diese bedingt sein 

(GURLEY et al., 2006). In einer anderen STZ-Studie wurde statt zweimal einmal am Tag für 5 

Tage Streptozotocin in der gleichen Dosierung zum Induzieren des Diabetes gegeben. In die-

sem Modell entwickelten die fünf untersuchten Mäusestämme eine ähnlich stark ausgeprägte 

Hyperglykämie. Die histopathologischen Veränderungen in der Niere waren aber trotzdem 

sehr unterschiedlich bei den verschiedenen Stämmen. Während sich der Stamm C57Bl/6J re-

lativ resistent gegenüber diabetischer Nephropahie zeigte, wiesen vor allem die Stämme 

DBA/2J und KK/HU deutliche Veränderungen auf (QI et al., 2005). Auch auf eine Überlastung 

der Niere mit Albumin reagieren unterschiedliche Mäusestämme verschieden. Der Mäuse-

stamm C57Bl/6J weist nur milde Albuminurie infolge einer Überladung der Niere mit Albumin 

auf, während der Stamm 129S2/Sv eine wesentlich stärkere Albuminurie zeigt (ISHOLA et al., 

2006). 

2.3. Enteroinsuläre Achse 

Die enteroinsuläre Achse ist eine Regulationseinheit, die alle Stimuli des Darms umfasst, die 

die Freisetzung der verschiedenen Hormone der Inseln beeinflussen, einschließlich hormo-

nale, neuronale und direkte Substrat-Stimulation (CREUTZFELDT, 1979). Eingeführt wurde der 

Begriff enteroinsuläre Achse von Unger und Eisentraut 1969 in einer gleichnamigen Studie. 

Komponenten der enteroinsulären Achse, die das endokrine Pankreas beeinflussen, wurden 

von schon 1930 von LaBarre Inkretine benannt, während Komponenten, die das exokrine Pan-

kreas regeln, Exkretine genannt wurden. Der Inkretineffekt bezeichnet die Tatsache, dass die 

orale Zufuhr von Glukose oder Aminosäuren eine schnellere und höhere Ausschüttung von 

Inselzellhormonen zur Folge hat als eine intravenöse Zufuhr. Circa die Hälfte des sezernierten 

Insulins nach oraler Glukosezufuhr wird von gastrointestinalen Faktoren freigesetzt (PERLEY 

& KIPNIS, 1967; NAUCK et al., 1986; NAUCK et al., 1989). 

2.3.1 Neuronale Komponenten 

Es ist bekannt, dass die vagale Stimulation die Insulinsekretion verbessert, während eine Ak-

tivierung des Sympthatikus sie abschwächt. Man ging davon aus, dass entweder cephalische, 

gastropankreatische oder enteropankreatische vasovagale Reflexe den Nervus vagus nach 
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Nahrungsaufnahme aktivieren könnten (CREUTZFELDT, 1979). Außerdem konnte in pankrea-

tischen Nerven das Vorhandensein von mehreren gastrointestinalen Neuropeptiden mit insu-

linotroper Hemmung oder Stimulation demonstriert werden. Andererseits ist der Inkretinef-

fekt bei Menschen mit Whipple–OP oder Pankreastransplantation vollständig erhalten, daher 

kann eine nervale Komponente der enteroinsulären Achse zumindest beim Menschen nicht 

von großem Anteil sein (CREUTZFELDT, 1979). Wird allerdings der Nervus vagus selbst in seiner 

Überleitung unterbrochen, wird die Glukosetoleranz beeinträchtigt. In einer Studie mit Ratten 

konnte demonstriert werden, dass bei einer bilateralen subdiaphragmatischen Vagotomie die 

fettinduzierte GLP-1 Ausschüttung komplett blockiert ist. Bei einer direkten elektrischen Sti-

mulation der Vagusäste, die Jejunum, Ileum und Colon innervieren, kommt es dagegen zu ei-

ner gesteigerten GLP-1 Sekretion (ROCCA & BRUBAKER, 1999). Bei Gabe des muscarinergen 

Rezeptorantagonisten Atropin wird bei Ratten eine durch Fettzufuhr ausgelöste GLP-1 Sekre-

tion inhibiert (ANINI et al., 2002). In manchen Tierspezies kann die Insulinsekretion in Experi-

menten mit oraler Glukosezufuhr gesteigert werden noch vor Absorption der Glukose. Dies 

wird durch die oropharyngealen Geschmacksrezeptoren erreicht (PROIETTO et al., 1987). 

2.3.2 Hormonelle Komponenten 

Der Inkretineffekt beschreibt das Phänomen, dass bei oraler Glukosezufuhr eine höhere Insu-

linausschüttung stattfindet als bei intravenöser Glukoseapplikation. Dieser Effekt wird den 

gastrointestinalen Peptiden GLP-1  und GIP zugesprochen, die nach Nahrungsaufnahme sezer-

niert werden und wurde bereits 1964 von Elrick et al eingeführt (KAZAKOS, 2011). Die beiden 

Peptide zeigen ähnliche Wirkungen auf Betazellen durch ihre strukturell deutlich verwandten 

Rezeptoren (BAGGIO & DRUCKER, 2007). 

2.3.2.1 Glucagon-like-peptide 1 

GLP-1 (glucagon-like-peptide 1) wurde erst 1987 identifiziert, deutlich später als glucose-de-

pendent insulinotropic polypeptide (GIP). Als man das Proglukagongen klonte und charakteri-

sierte, entdeckte man das Peptid GLP-1, von dem sich zeigte, dass es die glukoseabhängige 

Insulinsekretion stimuliert. Da es zu 50 % homolog zu Glukagon ist, nannte man es Glucagon-

like peptide-1 (BAGGIO & DRUCKER, 2007). Es wird in den L-Zellen des distalen Ileums und 

Colons produziert und leitet sich von Proglukagon ab (KAZAKOS, 2011). Das Proglukagon-Gen 

wird in den Alphazellen des endokrinen Pankreas, in den L-Zellen des Darms und in Neuronen 
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des Hirnstamms und Hypothalamus exprimiert, dabei transkribieren die Proglukagon-Gene in 

allen drei Zelltypen strukturell identische mRNA. Im Darm, ähnlich wie im Pankreas, ist eine 

Aktivierung des cAMP/PKA Systems (cyclisches Adenosinmonophosphat/Proteinkinase A) es-

sentiell für die Genexpression. Ein wichtiger Regulator der Proglukagon-Genexpression ist 

Nahrungsaufnahme (BAGGIO & DRUCKER, 2007). Dass bereits vor direktem Kontakt von auf-

genommener Nahrung und den enteroendokrinen L-Zellen die GLP-1 Ausschüttung stark an-

steigt, liegt an neuronalen und endokrinen Faktoren, die die Sekretion von GLP-1 fördern. Die 

L-Zellen haben eine apikale Oberfläche, mit denen sie mit Nahrung in Kontakt treten und eine 

basolaterale Oberfläche, mit denen sie mit neuralen und vaskuläre Geweben kommunizieren. 

Die Freisetzung von GLP-1 erfolgt biphasisch, zuerst gibt es eine frühe Phase innerhalb 10 – 15 

min und anschließend eine längere Phase von 30 – 60 min. Die frühe Phase wird wohl von den 

Neurotransmittern GRP (gastrin-releasing peptide) und Acetylcholin und dem Peptidhormon 

GIP initiiert, wobei GIP beim Menschen keine Funktion auf die GLP-1 Sekretion ausübt. Die 

spätere, lange Phase wird von der aufgenommenen Nahrung initiiert (BAGGIO & DRUCKER, 

2007). GLP-1 bindet an G-Protein gekoppelte Rezeptoren, die weit verbreitet sind. GLP-1 Re-

zeptoren gibt es außer in den Langerhans-Inseln auch in den Nieren, der Lunge, dem Herzen 

und in vielen Regionen des peripheren und zentralen Nervensystems (DRUCKER, 2006). Dem-

entsprechend hat GLP-1 eine Vielzahl von Funktionen. In den Betazellen im Pankreas stimu-

liert es Insulinsekretion und die Insulinbiosynthese. Außerdem wirkt es schützend auf Betazel-

len gegenüber Apoptose und aktiviert die Proliferation. Unter dem Einfluss von GLP-1 konnte 

eine Expansion der Betazellmasse durch Hemmung der Apoptose sowohl bei Nagern, als auch 

beim Menschen nachgewiesen werden (FARILLA et al., 2003; LI et al., 2003). GLP-1 verbessert 

die Glukosesensitivität von Glukose-resistenten Betazellen und damit deren Antwort auf Glu-

kosestimulus, außerdem steigert es die Expression von Glukosetransportern und Glukokina-

sen (BAGGIO & DRUCKER, 2007). In Abhängigkeit von Glukose unterdrückt GLP-1 die Freiset-

zung von Glukagon aus Alphazellen, womit es wiederum die Freisetzung von Glukose aus der 

Leber hemmt. Zusammenfassend lässt sich über die pankreatischen Funktionen von GLP-1 sa-

gen, es verbessert die Glukosetoleranz, erhöht die Betazellproliferation und –neogenese und 

hemmt die Betazellapoptose. Extrapankreatische Funktionen von GLP-1 sind die Verlangsa-

mung der Entleerung des Verdauungstrakts, die Erzeugung eines Sättigungsgefühls und eine 

antiapoptotische Wirkung im Gehirn (KAZAKOS, 2011). GLP-1 steigert in vitro den Umbau von 
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Glukose zu Glykogen in Hepatozyten und Skelettmuskeln und verbessert den insulin-stimu-

lierten Glukosemetabolismus in Adipozyten. Eine anhaltende Aktivierung des GLP-1 Rezeptors 

führt in Studien zu einem Gewichtsverlust (BAGGIO & DRUCKER, 2007). Zur genaueren Erfor-

schung von GLP-1 hat man eine Rezeptorknockoutmaus kreiert. Es zeigte sich, dass die trans-

genen Mäuse nur milde Veränderungen in der Glukosehomöostase aufweisen. Im oralen und 

intraperitonealen Glukosetoleranztest sind die Glukosewerte im Blut zwar erhöht, aber es 

handelt sich nur um geringe und teilweise nicht signifikante Abweichungen (SCROCCHI et al., 

1996). Allerdings weisen die transgenen Mäuse eine gestörte Inselkomposition auf, was einen 

Einfluss von GLP-1 auf die Entwicklung der Inseln aufzeigt. Es gibt auch mehr kleine und mit-

telgroße Inseln, allerdings ist die Betazellmasse gegenüber Wildtypen nicht verändert (LING 

et al., 2001)(a). Eine gesteigerte GIP Sekretion ist verantwortlich für die milden klinischen 

Symptome der GLP-1 Rezeptor knockout Maus (PEDERSON et al., 1998). Die Halbwertszeit von 

GLP-1 im Kreislauf ist weniger als 2 Minuten und die Metaboliten werden innerhalb von 5 

Minuten durch die Niere ausgeschieden. Nüchternwerte von 5 – 10 pmol/L sind im Menschen 

normal und nach Nahrungszufuhr steigen die Werte 2–3fach an (BAGGIO & DRUCKER, 2007). 

2.3.2.2 Glucose-dependent insulinotropic polypeptide 

GIP wurde als erstes Inkretinhormon in den 1970er Jahren identifiziert und charakterisiert. Es 

wurde zunächst gastric inhibitory polypeptide genannt, nach seiner Fähigkeit, die Magensäu-

resekretion bei Hunden zu hemmen. Nachdem sich herausgestellt hatte, dass es außerdem 

auch die Insulinsekretion bei Tieren und Menschen stimuliert und die Magensäuresekretion 

nur in pharmakologischen Dosen hemmt, wurde es in glucose-dependent insulinotropic po-

lypeptide umbenannt (BAGGIO & DRUCKER, 2007). In einer Studie von Ebert et al. wurde aber 

klar, dass es nicht das einzige Inkretin sein kann, da die Entfernung von GIP aus einem Darmex-

trakt mittels Immunoabsorption nicht zu einer Minderung des Inkretineffekts führte 

(DRUCKER, 2006). Es handelt sich bei GIP um ein 42 Aminosäuren langes Polypeptid, welches 

in den K-Zellen des Duodenums produziert wird und durch Nahrungsaufnahme sezerniert 

wird. Während beim Menschen Fett der potenteste Stimulator für GIP ist, sind es bei Nagern 

und im Schwein Kohlenhydrate. Das humane GIP Gen liegt im langen Arm des Chromosom 17 

und umschließt 6 Exons, wobei die Mehrheit der GIP-kodierenden Sequenzen im Exon 3 loka-

lisiert ist. Wie die Genexpression genau reguliert wird, ist noch unbekannt. Studien weisen 

aber darauf hin, dass die Promotoraktivität von zwei cAMP-responsiven Elementen reguliert 
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wird. Außerdem konnten Bindungsstellen für verschiedene Transkriptionsfaktoren identifi-

ziert werden, wie für Sp1 (specificity protein 1), Ap1 (activator protein) und Ap2 und Pdx1. Im 

Nager finden sich noch Bindungsstellen für Isl-1 (Insulin gene enhancer protein). Die Amino-

säurensequenz der cDNA von GIP lässt darauf schließen, dass GIP aus einem Vorläuferhormon, 

dem ProGIP entsteht. Dieses Prohormon, bestehend aus 153 Aminosäuen, kodiert nicht nur 

GIP, sondern auch ein Signalpeptid, ein N-terminales Peptid und ein C-terminales Peptid 

(BAGGIO & DRUCKER, 2007). In vitro konnte man mehreren Faktoren einen fördernden Effekt 

auf die GIP-Sekretion nachweisen, nämlich eine Aktivierung der Adenylatcyclase, erhöhte int-

razelluläre Ca2+ Konzentration, K+-mediierte Depolarisation, Glukose, GRP und ß-adrenerge 

Stimulation. GIP fördert die Insulinsekretion durch die Aktivierung von cAMP/Proteinkinase A 

und cAMP/Epac2 (exchange protein directly activated by cAMP 2) und nutzt zusätzlich noch 

den Phospholipase 2 und Spezifische Proteinkinase Weg. Außerdem stimuliert es die Insulin-

Gentranskription und -biosynthese in den Betazellen sowie die Expression von Glukosesenso-

ren auf der Betazelle. GIP hat auch einen protektiven Effekt auf Betazellen. So verbessert es 

das Überleben der Betazellen unter Einfluss von Streptozotocin, Glukolipotoxizität oder Glu-

koseentzug und fördert die Proliferation. Bei GIPR knockout Mäusen ist dieser protektive Ef-

fekt beeinträchtigt und die Betazellproliferation ist erniedrigt (BAGGIO & DRUCKER, 2007). GIP 

stimuliert verschiedene Wachstumsfaktor-Wege wie MAPK, PI3K und Proteinkinase B, welche 

in der Regulation der Betazellmasse eine wichtige Rolle spielen (siehe 2.2.3). Außerdem hat 

es anabole Effekte im Fettgewebe, wie die Förderung von Fettsäuresynthese, Verbesserung 

des Insulin-stimulierten Einbaus von Fettsäuren in Triglyceride, Hochregulierung der Lipopro-

tein Lipase Synthese und Reduktion der durch Glukagon verursachten Lipolyse. GIP verbessert 

auch die Knochenformation über eine Stimulation von Osteoblastenprolieration und Apopto-

sehemmung (BAGGIO & DRUCKER, 2007). Im zentralen Nervensystem verbessert es das Zell-

überleben (NYBERG et al., 2005). Eine Zufuhr von GIP erhöht die Proliferation von hippocam-

palen Vorläuferzellen in vivo bei Ratten (BAGGIO & DRUCKER, 2007) 
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Abbildung 2.5 Funktionen von GIP in peripheren Geweben (BAGGIO & DRUCKER, 2007) 

 

Zur genaueren Abklärung der Funktionen von GIP hat man ein transgenes Mausmodell ge-

schaffen, bei dem der GIP Rezeptor ausgeknockt ist (MIYAWAKI et al., 1999). Ähnlich wie in 

der GLP-1 knockout Maus entwickelt auch die GIP knockout Maus keine starken Veränderun-

gen in der Glukosehomöostase. Lediglich im oralen Glukosetoleranztest zeigten die Knockout-

Tiere deutlich erhöhte Glukosekonzentrationen und nach 15 Minuten niedrige Insulinwerte. 

Auch hier findet eine Kompensation durch das andere Inkretinhormon, in diesem Fall GLP-1 

statt. GLP-1 wird zwar nicht vermehrt ausgeschüttet, aber die Insulinantwort auf GLP-1 ist um 

40–60 % erhöht und die cAMP Aktivierung doppelt so hoch wie bei Wildtypen (PAMIR et al., 

2003). Da jeweils ein Inkretinhormon einspringt, sobald das andere ausfällt, war die logische 

Konsequenz, ein Mausmodell zu generieren, in dem beide Rezeptoren ausgeschaltet sind. Er-

staunlicherweise haben auch diese Doppelknockoutmäuse normale Nüchternblutglukose-

werte und die frei gefütterten Blutglukosewerte sind ebenfalls im gleichen Bereich wie bei 

Wildtypen. Nur im oralen Glukosetoleranztest zeigten die transgenen Versuchstiere signifi-

kant erhöhte Glukosewerte und um 60 % erniedrigte Insulinwerte gegenüber den Wildtypen 

(PREITNER et al., 2004). 

Basalwerte von GIP im Blut liegen bei 0,06 und 0,1 nmol/l und steigen nach Nahrungszufuhr 

auf 0,2 bis 0,5 nmol/l. Es wird in weniger als zwei Minuten bei Nagern und innerhalb von 5 bis 

7 Minuten beim Menschen von der Dipeptidypeptidase (DPPIV) abgebaut, wobei es etwas 

weniger empfänglich für die DPPIV ist als GLP-1, wie sich in Studien zeigte, in denen das Enzym 
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Menschen intravenös zugeführt wurde (KIEFFER et al., 1995). GIP Metaboliten werden haupt-

sächlich durch die Niere aus dem Körper geschleust, aber auch die Leber und die Extremitäten 

steuern auch einen Teil bei (BAGGIO & DRUCKER, 2007). 

2.3.2.3 Dipeptidyl-Peptidase IV (DPPIV) 

Sowohl GIP als auch GLP-1 besitzen die Aminosäure Alanin an ihrer zweiten Position der Ami-

nosäuresequenz und sind damit exzellente Substrate für die Dipeptidyl-Peptidase IV 

(DRUCKER, 2006). Dies ist eine Serinproteinase, die spezifisch Proteine mit Alanin oder Prolin 

an der 2. Position spaltet und damit ihre Aktivität hemmt oder aufhebt. Außer den Inkretin-

hormonen bindet die DPPIV auch Kollagen und die Adenosin Deaminase und spielt eine Rolle 

für die T-Zell Proliferation und Costimulation. Das Enzym wird weitverbreitet exprimiert, man 

findet es in Nieren, Lunge, Leber, Darm, Milz, Hoden, Pankreas, zentralem Nervensystem, Ne-

benniere und auf Zellen wie den Lymphozyten und Makrophagen. Da sie auch auf Endothel-

zellen in Blutgefäßen der Darmmukosa, benachbart zu L-Zellen, liegen, ist mehr als die Hälfte 

des GLP-1s, das den Blutkreislauf erreicht, bereits inaktiviert. Außerdem liegt DPPIV auch lös-

lich im zirkulierenden Blut vor (BAGGIO & DRUCKER, 2007). 

2.3.2.4 GIP-Rezeptor 

Der humane GIP-Rezeptor ist ein G-Protein-gekoppelter Rezeptor. Sein Gen liegt auf dem 

Chromosom 19 in der Bande q13.3 und beinhaltet 14 Exons. Er existiert in zwei Isoformen mit 

466 und 493 Aminosäuren und wird in Pankreas, Magen, Darm, Fettgewebe, Nebennieren-

rinde, Milz, Hoden, Endothelzellen, Herz, Hypophyse, Trachea, Knochen, Thymus, Lunge, Nie-

ren, Schilddrüse und in verschiedenen Regionen im zentralen Nervensystem exprimiert. Wel-

che Faktoren seine Expression regulieren, ist noch nicht ganz klar. Es gibt Bindungsstellen am 

Gen für cAMP-responsive Elemente und Transkriptionsfaktoren wie Oct-1, Sp1 und Sp3 

(BAGGIO & DRUCKER, 2007). Seine Aktivierung ist an die Aktivierung der Adenylatcyclase ge-

koppelt, an einen intrazellulären Ca2+ Anstieg und einen Arachidonsäure Ausstrom. Es kommt 

durch die Bindung von GIP an den GIPR zu einem Anstieg von cAMP und die Proteinkinase A 

wird aktiviert (DRUCKER, 2006). In vitro Studien weisen darauf hin, dass die N-terminale Do-

mäne und der erste extrazelluläre Loop des Rezeptors essentiell für die hohe Bindungsaffinität 

von GIP sind, während ein anderer Teil der N-terminalen Domäne und die erste transmemb-

rane Domäne wichtig für die Bindung von cAMP und die Aktivierung des Rezeptors sind. Der 
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GIP Rezeptor unterliegt sehr schnellen und reversiblen homologen Desensibilisierungen und 

zielgerichteter Mutagenese im Bereich des C-terminalen Endes. Zusätzlich tragen noch die G-

Protein-Rezeptor Kinase 2 und ß-Arrestin 1 zur Desensibilisierung des Rezeptors bei (BAGGIO 

& DRUCKER, 2007). Mehr über die Struktur und das Bindungsverhalten von dem GIP Rezeptor 

konnte in einer Studie von Parthier et al. herausgefunden werden. Die Feinstrukturanalyse der 

extrazellulären Domäne des GIP Rezeptors im Komplex mit dem Liganden GIP zeigt eine N-

terminale α-Helix auf, die umschlossen von zwei antiparallelen ß-Faltblättern ist, von denen 

jedes zwei kurze ß-Fäden umfasst, sowie zwei kurze helikale C-terminale Segmente. Stabili-

siert wird der Komplex von drei Disulfidbrücken, von denen eine von der N-terminalen α-Helix 

zu einem ß-Faltblatt geht, eine zwischen den zwei ß-Faltblättern besteht und die letzte das C-

terminale Ende eng an das zentrale ß-Faltblatt bindet. Das N-terminale Ende von GIP hat aber 

keinen direkten Kontakt zur extrazellulären Domäne des Rezeptors. Die Bindung von GIP an 

den Rezeptor erfolgt hauptsächlich durch hydrophobe Bindungen an der α-Helix der C-termi-

nalen Region. Trotzdem spielt das N-terminale Ende eine wichtige Rolle, da die Bindung von 

GIP 10fach erniedrigt ist in modifiziertem GIP ohne N-terminales Ende. Vermutlich ist das N-

terminale Ende in eine strukturelle Reorganisation des Hormons eingebunden, die Bindungs-

wärme freisetzt und zur Rezeptor-Ligand-Erkennung beiträgt (PARTHIER et al., 2007). Um die 

Involvierung der N-terminalen Hälfte von GIP und ihrer Aminosäurenreste nach Rezeptorin-

teraktion besser zu verstehen, wurden diese Reste auf menschlichen, embryonalen Nierenzel-

len exprimiert und ihre Wirkung untersucht. Die vermuteten Aminosäurenreste von Bindungs-

stellen wurden zuvor in einem computergestützen Modell des Komplexes von GIP und der N-

terminalen extrazellulären Domäne von dem GIP Rezeptor identifiziert. Die Ergebnisse unter-

stützten die Theorie einer Bindungsform von GIP und dem Rezeptor, in der sich die N-termi-

nale Hälfte von GIP in den transmembranen Helixen 2, 3, 5 und 6 befindet und der Rest Tyr1 

mit Gln224 der transmembranen Helix 3, mit Arg300 der transmembranen Helix 5 und mit 

Phe357 der transmembranen Helix 6 interagiert, was für die gesamte Ligand-Rezeptor-Bin-

dung unabdingbar ist (YAQUB et al., 2010). Die Domänen des Rezeptors werden durch intra-

zelluläre Proteinschleifen voneinander getrennt. Dabei ist die dritte intrazelluläre Schleife be-

sonders wichtig, da diese G-Proteine binden kann, wodurch unter anderem die Adenylatcylase 

aktiviert wird (VOLZ-PETERS et al., 2000). 
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2.3.2.5 Inkretineffekt bei Diabetes mellitus Typ 2, Behandlung mit Inkretinmimetika und 

DPPIV-Hemmern  

Nauck et al konnten demonstrieren, dass der Inkretineffekt bei Typ 2 Diabetikern beeinträch-

tigt ist (NAUCK et al., 1986). Sieben Jahre später konnte dies in einer weiteren Studie auf eine 

defekte Wirkung von GIP zurückgeführt werden, während die GLP-1 Wirkung erhalten war. Da 

in der Studie synthetisches GIP zugeführt wurde, ist vermutlich eine mangelnde Effektivität 

oder eine nicht ausreichende Expression des GIP-Rezeptors in den Inseln verantwortlich für 

die eingeschränkte Wirkung des synthetischen GIPs. Eine mögliche Erklärung für eine Desen-

sibilisierung des GIP-Rezeptors wären dauerhaft erhöhte GIP-Werte im Blut. Es liegen aller-

dings verschieden Studien vor, bei denen GIP-Werte von Typ 2 Diabetikern erhöht, normal 

oder erniedrigt sind. Eine andere Möglichkeit der Herunterregulierung von GIP-Rezeptoren ist 

die Ubiquitinierung infolge von hohen Glukosewerten, was dann eine ligandenunabhänige 

Verminderung von GIP-Rezeptoren bedeuten würde (KAZAKOS, 2011). Eine Vererbung der ab-

geschwächten GIP-Antwort ist auch nicht auszuschließen, wie sich in einer Studie mit ver-

wandten Typ 2 Diabetikern zeigte (MEIER et al., 2001). Es lässt sich beweisen, dass die man-

gelnde Wirkung von GIP bei Typ 2 Diabetikern reversibel ist. Bei intensiver Behandlung mit 

Insulin verbessert sich der Inkretineffekt 3–4fach, was für eine wichtige Rolle der Hyperglykä-

mie im Zusammenhang mit der defekten GIP-Wirkung spricht (HØJBERG et al., 2009). Obwohl 

der GLP-1 Effekt bei Typ 2 Diabetikern erhalten ist, führt die kontinuierliche subkutane Gabe 

von GLP-1 zu niedrigeren Nüchtern- und postprandialen Blutglukosewerten, zu niedrigeren 

HbA1C Werten und zu einem Gewichtsverlust (NAUCK et al., 1993). Grundsätzlich ist die Insu-

linantwort auf die Inkretine bei älteren Menschen abgeschwächt. Daher ist zur Kompensation 

die Ausschüttung von GLP-1 und GIP im Vergleich zu jüngeren Menschen erhöht. Trotzdem ist 

es wahrscheinlich, dass die niedrigere postprandiale Insulinsekretion zu einer schlechteren 

Glukosetoleranz bei älteren Menschen führt (RANGANATH et al., 1998). Für die Therapie von 

Diabetes mellitus Typ 2 nützliche Inkretin-basierte Medikamente sind GLP-1 Rezeptoragonis-

ten, die weniger schnell abgebaut werden als GLP-1 selbst und DPPIV Hemmer. Der bekann-

teste GLP-1 Rezeptoragonist ist Exendin-4. Dies ist ein Peptid, das in der Speicheldrüse des 

Gilamonsters vorkommt und 52 % Übereinstimmung der Aminosäuren mit GLP-1 hat. An der 

Position 2 besitzt es aber ein Glycin und ist damit kein Substrat für die DPPIV, was bedeutet, 

dass es eine höhere Lebenszeit als GLP-1 hat. Exenatide ist das erste synthetische Exendin-4, 
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das in den USA von der FDA (Food and Drug Administration) im April 2005 zugelassen wurde 

für die Behandlung von Diabetes mellitus Typ 2. Mehrere Studien konnten zeigen, dass Exe-

natide gerade für das Anfangsstadium der Krankheit als effektive Behandlung funktioniert und 

eine Insulinbehandlung gleichwertig ersetzen kann. In einem späteren Stadium, in dem nicht 

mehr ausreichend Betazellmasse vorhanden ist, um auf GLP-1 zu reagieren, reicht eine Be-

handlung mit Exenatide allerdings oft nicht mehr aus (KAZAKOS, 2011). Liraglutide ist ein GLP-

1 Rezeptoragonist, der besonders langanhaltende Wirkung hat, weil er nicht nur DPPIV–

resistent ist, sondern auch an Serumalbumin bindet, was seine in vivo Halbwertszeit auf 11 – 

13 Stunden erhöht (KNUDSEN et al., 2000). Das Medikament kam 2009 in Europa auf den 

Markt und kontrolliert nach einmaliger subkutaner Injektion für 24 Stunden die Blutglukose, 

wobei es selten zur Hypoglykämie führt. Es ist effektiver als Glimepirid, ein Sulfonylharnstoff, 

der ebenfalls als orales Antidiabetikum verwendet wird, effektiver als Insulin und auch als E-

xenatide. Verglichen mit Exenatide hat es bezüglich Verlust von Körpergewicht und Reduktion 

des Blutdrucks ähnliche Wirkung. Die häufigste Nebenwirkung von einer Behandlung mit GLP-

1 Rezeptoragonisten ist Übelkeit, die jedoch in der Regel abklingt. Außerdem kommt es bei 

50 % der Patienten, die mit Exenatide behandelt werden, zur Bildung von Antikörpern, die 

jedoch unproblematisch ist. Übergewichtige Typ 2 Diabetiker haben ein erhöhtes Risiko, bei 

einer Exenatide-Behandlung eine Pankreatitis zu bekommen (KAZAKOS, 2011). Auch die 

DPPIV-Hemmer wurden auf ihre Tauglichkeit für die Therapie des Diabetes mellitus Typ 2 un-

tersucht, da die DPPIV einen schnellen Abbau der Inkretine bewirkt und ihre Hemmung zu 

erhöhten Konzentrationen der insulinfördernden Hormone im Blut führt. Sitagliptin wurde 

2006 in den USA zugelassen, sowohl als Monotherapie als auch in Kombination mit Sulfonyl-

harnstoffen und anderen oralen Antidiabetika. Alle DPPIV-Inhibitoren sind selektiv für die 

DPPIV, aber ihre Affinität zu dem Enzym ist unterschiedlich. Sie zeigen aber alle anhaltende 

Effektivität in der Diabetestherapie und können zumindest in Kombination mit anderen oralen 

Antidiabetika den HbA1C senken (KAZAKOS, 2011). 

2.4. GIPRdn transgene Mäuse 

Nachdem man zu einer genaueren Abklärung der Wirkung der Inkretinhormone knockout 

Mäuse kreiert hatte, bei denen entweder der GIP Rezeptor, der GLP-1 Rezeptor oder die Re-

zeptoren beider Inkretinhormone (DIRKO) ausgeknockt waren, stellte man fest, dass die Kon-
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sequenzen dieser Mutationen nur relativ schwach waren. Als Erklärung für den milden diabe-

tischen Phänotyp aller drei Mausmodelle vermutete man Kompensation durch andere Me-

chanismen, die die Glukosehomöostase aufrechterhalten (siehe 2.3). Daher wurde eine neue 

Strategie versucht, um die Rolle des GIP Rezeptors zu erforschen. Man generierte ein Maus-

modell, bei dem ein mutierter, dominant negativer GIP Rezeptor exprimiert wird (VOLZ-

PETERS et al., 2000; HERBACH et al., 2005). 

2.4.1 Mutation des humanen GIP Rezeptors 

Zunächst wurde die humane cDNA des intakten GIPR via Transfektion in CHL-Zellen (chinese 

hamster lung Zellen) exprimiert. Anschließend stimulierte man die Zellen mit GIP und konnte 

zeigen, dass die Kopplung der Adenylatcyclase funktionierte, was eine Erhöhung des cAMP 

Spiegels auslöste (VOLZ et al., 1995). Nachdem die Klonierung und Exprimierung unveränder-

ter cDNA funktionierte, wurde eine rekombinante DNA kreiert, die einen GIP Rezeptor kodiert, 

bei dem an der dritten intrazellulären Schleife des Rezeptors die Aminosäurepositionen 321-

328 deletiert wurde. Zusätzlich wurde an Position 342 die Aminosäure Alanin gegen Glutamin 

ausgetauscht. In vitro Studien an CHL-Zellen konnten belegen, dass es sich um eine dominant 

negative mutation handelt, weil der mutierte Rezeptor fähig ist, GIP zu binden, ohne dabei 

eine Signaltransduktion auszulösen (GIPRdn) (VOLZ-PETERS et al., 2000). 
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Abbildung 2.5 Darstellung des humanen GIP Rezeptors (A: Aminosäuresequenz des humanen 
dominant negativen GIP Rezeptors und dessen Anordnung in der Plasmamembran mit Muta-
tion in der dritten intrazellulären Schleife. B: Vergrößerte Darstellung der 3. intrazellulären 
Schleife) (VOLZ-PETERS et al., 2000)  

 

2.4.2 Transgenes Mausmodell 

In einem zweiten Schritt wurde der mutierte Rezeptor in vivo bei Mäusen in Betazellen über-

exprimiert, wodurch erreicht werden sollte, dass der endogene GIP Rezeptor inaktiviert wird, 

da alles vorhandene GIP bereits vom mutierten Rezeptor gebunden wurde. Die betazellspezi-

fische Expression wurde realisiert, indem die cDNA des GIPRdn hinter den Insulinpromoter des 

RIP1-Vektors kloniert wurde, so wie es auch schon für die Expression von anderen Genen in 

Betazellen funktioniert hatte (HANAHAN, 1985). Die cDNA wurde per Mikroinjektion in be-

fruchtete Eizellen verbracht und per Embryotransfer in scheinträchtige Mäuse eingepflanzt. 

In nachfolgenden klinischen Versuchen zeigte sich, dass die transgenen Tiere einen Diabetes 

mellitus entwickeln. Außerdem stellte man anhand histopathologischer Untersuchungen fest, 
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dass das Inselvolumen und die Inselanzahl im Vergleich zu den Wildtypen deutlich verringert 

waren. Außerdem ließen sich starke Anreicherungen von Glykogen in Leber und Nieren nach-

weisen (HERBACH et al., 2005)  

2.4.3 Charakterisierung GIPRdn transgener Mäuse 

Die Untersuchung des diabetischen Phänotyps GIPRdn transgener Mäuse auf CD1 Hintergrund 

zeigte eine etwa 4fach erhöhte Serumglukose gegenüber Kontrolltieren bei weiblichen trans-

genen Mäusen mit einem Alter von 30 Tagen und eine 3,9fach erhöhte Serumglukose männ-

licher transgener Mäuse im selben Alter gegenüber männlichen Kontrolltieren. Mit zuneh-

mendem Alter stiegen die Blutglukosewerte der transgenen Mäuse weiter an, während die 

der Kontrollen stabil blieben. So wiesen die weiblichen transgenen Tiere mit 90 Tagen eine 

4,4fach höhere postprandiale Serumglukose auf als ihre weiblichen Kontrollmäuse und die 

männlichen transgenen Tiere sogar eine 7fach höhere Serumglukose als die gleichalten männ-

lichen Kontrollen (HERBACH et al., 2005). Auch die Seruminsulinspiegel der transgenen Mäuse 

wiesen eine starke Abweichung von den Werten der Kontrolltiere auf. Postprandial war der 

Seruminsulinspiegel bei 90 Tage alten männlichen transgenen Mäusen 6,9fach niedriger als 

bei den nicht-transgenen Wurfgeschwistern. Bei den transgenen Weibchen waren die Werte 

4,3fach erniedrigt gegenüber gleichalten Kontrollen.  Eine subkutaner Glukosetoleranztest be-

stätigte den starken Diabetes sowohl bei männlichen als auch weiblichen transgenen Tieren. 

Im subkutanen Glukosetoleranztest fiel auf, dass die weiblichen Kontrolltiere mit einer we-

sentlich höheren Insulinproduktion auf Glukosezufuhr reagieren als die männlichen Kontroll-

tiere, außerdem war die AUC-Glukose (area under glucose curve) bei den transgenen Mäusen 

signifikant erhöht gegenüber den Kontrollen. Der subkutane Glukosetoleranztest wurde unter 

Applikation von GLP-1 und GIP wiederholt. Dabei zeigte sich, dass die AUC 46-56 % reduziert 

wurde durch GLP-1 Gabe, sowohl bei den Kontrollen, als auch bei den transgenen Mäusen. 

Dagegen bewirkte die GIP Applikation bei den GIPRdn transgenen Mäusen keine Veränderung 

der AUC, während die Kontrolltiere eine Reduktion der AUC um 42% aufwiesen. Dies demons-

trierte den Effekt von GLP-1 und GIP auf die Glukosehomöostase und zeigte gleichzeitig die 

Effektivität der Rezeptormutation. Das Körpergewicht der männlichen transgenen Mäuse war 

mit 90 Tagen signifikant erniedrigt gegenüber dem der männlichen Kontrolltiere, während es 

bei den Weibchen nur einen geringen, nicht signifikanten Unterschied im Körpergewicht gab. 

Das Gesamtinselvolumen der transgenen Mäuse war gegenüber den Kontrolltieren bereits mit 
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10 Tagen signifikant erniedrigt und blieb auch mit 30 und 90 Tagen signifikant niedriger, wobei 

der Unterschied noch größer wurde. Das Gesamtbetazellvolumen der transgenen Mäuse war 

ebenfalls schon mit 10 Tagen signifikant erniedrigt und blieb zwischen Tag 30 und Tag 90 an-

nähernd konstant, während das Gesamtbetazellvolumen der Kontrolltiere zwischen Tag 30 

und Tag 90 noch einmal signifikant zunahm und gegenüber den transgenen Mäusen immer 

deutlich höher war. Auch das Gesamtvolumen der isolierten Betazellen im Pankreas war bei 

den transgenen männlichen und weiblichen Mäusen viel geringer als bei Kontrolltieren, unab-

hängig vom Zeitpunkt der Untersuchung (HERBACH et al., 2005). 

Die GIPRdn transgenen Mäuse zeigen gegenüber Kontrolltieren auch eine deutliche Polydipsie, 

Polyurie und Polyphagie. Durch Fütterung einer  ballaststoffreichen Diät wurde überprüft, ob 

die Symptome des Diabetes mellitus verringert werden können durch eine veränderte Ernäh-

rung. Dabei wurde den transgenen Mäusen und den Kontrolltieren einer Gruppe längerfristig 

eine konventionelle Diät gefüttert und den Tieren der zweiten Gruppe eine ballaststoffreiche 

Diät. Die trangenen Mäuse beider Gruppen wiesen gegenüber den Kontrolltieren eine deutlich 

erhöhte Blutglukose, Polyurie, Polydipsie und Polyphagie auf, jedoch waren diese bei den 

transgenen Tieren, die die faserreiche Diät bekommen hatten, signifikant niedriger als bei den 

transgenen Mäusen mit konventioneller Fütterung (HERBACH et al., 2008). 

Auch die postnatale Entwicklung des Pankreas der transgenen Mäuse auf CD1 Hintergrund 

wurde im Hinblick auf die Insel- und Betazellzahlen und -größen untersucht. Dabei zeigte sich, 

dass es mit zunehmendem Alter zu einer wachsenden Diskrepanz zwischen Wildtypen und 

GIPRdn transgenen Mäusen in Gesamtinselvolumen und Gesamtbetazellvolumen kam. Wäh-

rend das Gesamtinsel- und Gesamtbetazellvolumen bei den Wildtypen stetig zunahm, wenn 

auch zwischen Tag 90 und Tag 180 nicht mehr signifikant, kam es bei den GIPRdn transgenen 

Mäusen zu einem Abfall des Gesamtinsel- und Gesamtbetazellvolumens ab Tag 45 und signi-

fikant niedrigeren Werten als bei den Wildtypen. Auch die Inselanzahl der transgenen Tiere 

war signifikant niedriger als die der Kontrolltiere zu jedem der untersuchten Zeitpunkte. Bei 

der Replikation hingegen war nur mit 90 Tagen ein signifikanter Unterschied zwischen Wild-

typen und transgenen Tieren vorhanden, wobei die transgenen Tieren weniger replizierende 

Zellen in den Inseln aufwiesen. Als Hauptgrund für die gestörte postnatale Expansion des Pan-

kreas bei GIPRdn transgenen Mäusen auf CD1 Hintergrund wurde aber die beeinträchtigte Ne-

ogenese angeführt (HERBACH et al., 2011). 
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Diabetische Nephropathie ist eine Spätfolge des Diabetes mellitus und eine der Hauptursa-

chen für Nierenversagen beim Menschen. Es zeigte sich, dass die GIPRdn transgenen Mäuse 

Nierenveränderungen entwickeln, die frühen, Diabetes-Assoziierten renalen Alterationen des 

Menschen entsprechen. Bei der Charakterisierung der Mäuse wiesen die transgenen Tiere zu 

verschiedenen Zeitpunkten eine signifikant höhere Blutglukose, Polyurie, Polydipsie und ein 

reduziertes Körpergewicht auf. Sie zeigten im Vergleich zu den Kontrolltieren erhöhte Serum-

Harnstoff und Kreatinin Werte und eine Albuminurie. Bei einer qualitativen und quantitativen 

morphometrischen Untersuchung der Nieren im Alter von 3, 8, 20 und 28 Wochen wiesen 

GIPRdn transgene Mäuse bereits frühzeitig glomeruläre Veränderungen auf wie eine Podozy-

tenhypertrohie, eine reduzierte Volumendichte der Podozyten im Glomerulum und eine Ver-

dickung der glomerulären Basalmembran. Renale und glomeruläre Hypertrophie, mesangiale 

Expansion und Matrixakkumulation wurden mit 20 Wochen immer deutlicher und der Glome-

ruloskleroseindex begann zu steigen. Mit 28 Wochen konnten größere tubulointerstitiale Lä-

sionen und eine fortgeschrittenen Glomerulosklerose nachgewiesen werden (HERBACH et al., 

2009).  

In einer weiteren Studie wurde der Einfluss des genetischen Hintergrundes auf die Entwick-

lung diabetes-assoziierter Nierenläsionen bei GIPRdn transgenen Mäusen untersucht. Dafür 

wurden transgene Böcke mit CD1 und BALB/c Weibchen verpaart. Es zeigte sich, dass bei bei-

den Linien transgene Tiere ein signifikant niedrigeres Körpergewicht aufwiesen und dass CD1 

Mäuse gegenüber BALB/c Mäusen durchschnittlich ein signifikant höheres Körpergewicht 

zeigten. Im Alter von 6 Monaten zeigten transgene Tieren beider Linien eine starke und signi-

fikante Erhöhung der Blutglukose gegenüber den Wildtypen. Während die CD1 Wildtypen sig-

nifikant höhere Werte hatten als die BALB/c Wildtypen, wiesen die transgenen Tiere beider 

Linien keinen signifikanten Unterschied zwischen ihren Blutglukosewerten auf. Sowohl die 

transgenen als auch die CD1 Wildtypen zeigten signifikant niedrigere Blutdruckwerte als 

BALB/c. Die transgenen Mäuse beider Linien wiesen dabei gering höhere Werte auf als die 

dazugehörigen Kontrolltiere, jedoch waren die Unterschiede nicht signifikant. Die transgenen 

Mäuse beider Linien wiesen deutliche Polyphagie und Polydipsie auf, unterschieden sich von-

einander aber dabei nicht signifikant. Jedoch war die Polyurie bei den transgenen Mäusen auf 

CD1 Hintergrund gegenüber denen auf BALB/c Hintergrund signifikant stärker ausgeprägt. Die 

klinische und quantitativ stereologische Untersuchungen zeigten teils signifikante Abweichun-
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gen bei den transgenen Mäusen gegenüber nicht-transgenen Wurfgeschwistern, wie Albumi-

nurie und glomerusklerotische Schädigungen, und auch teils signifikante Abweichungen zwi-

schen den Wildtypen und zwischen den transgenen Tieren beider Linien. So wiesen CD1 Wild-

typen erhöhte absolute Nephronenzahlen gegenüber BALB/c Wildtypen auf und GIPRdn trans-

gene CD1 Mäuse zeigten signifikant höhere mittlere Glomerulumvolumen gegenüber GIPRdn 

transgenen BALB/c (POPPER, 2013). 

Da die Studie von Popper jedoch hauptsächlich den Einfluss des genetischen Hintergrundes 

auf diabetes-assoziierte Nierenerkrankungen bei GIPRdn transgenen Mäusen untersucht, ist 

eine genaue Abklärung des Einflusses verschiedener genetischer Hintergründe auf den diabe-

tischen Status und das endokrine Pankreas noch nötig. Dieser Einfluss ist bei den generell 

schon gut charakterisierten GIPRdn transgenen Mäusen noch nicht ausreichend dokumentiert. 
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3. Material und Methoden 

3.1. Tierkollektiv 

In der Studie wurden männliche GIPRdn transgene Mäuse auf dem genetischen Hintergrund 

FVB/N (F.CD1-GIPRdn) und C57Bl/6 (B6.CD1-GIPRdn) jeweils untereinander und mit Wildtypen 

(WT) desselben genetischen Hintergrunds verglichen. Zur Generierung der beiden kongenen 

transgenen Linien wurden hemizygote transgene männliche GIPRdn transgene Mäuse der Ur-

sprungslinie (CD1) mit weiblichen C57Bl/6J und FVB/N Wildtypen verpaart. Männliche trans-

gene Nachkommen wurden bis zur zehnten Generation mit C57Bl/6J (B6) oder FVB/N (F) 

Weibchen angepaart (Abbildung 3.1), danach erfolgte Bruder x Schwester Paarung. B6.CD1-

GIPRdn waren zum Zeitpunkt der Versuche in der 18. Generation und F.CD1-GIPRdn in der 40. 

Generation. Daher war bei beiden untersuchten Linien der Anteil des CD1 Hintergrundes zu 

vernachlässigen. 

Ein Tierkollektiv wurde im Alter von 10 Tagen zur Pankreasentnahme getötet (n=6 pro Geno-

typ und genetischem Hintergrund). Bei einem zweiten Kollektiv erfolgten zunächst zu ver-

schiedenen Zeitpunkten klinische Tests (n=8 pro Genotyp und genetischem Hintergrund), be-

vor die Tiere im Alter von 90 Tagen zur Untersuchung des Pankreas getötet wurden (n=6 pro 

Genotyp und genetischem Hintergrund). Tiere des zweiten Kollektivs wurden mit 21 Tagen 

von weiblichen Wurfgeschwistern und der Mutter getrennt, an den Ohren markiert und es 

wurden Biopsien für eine spätere Genotypisierung gewonnen. Die Mäuse wurden in Standard-

käfigen (Makrolon, Ehret, Deutschland) bei 12 Stunden Licht – Dunkelheit Zyklus gehalten, und 

erhielten  Leitungswasser und Futter ad libitum (Altromin Spezialfutter GmbH & Co KG, 

Deutschland). Alle Experimente wurden in Übereinstimmung mit institutsinternen Standards 

und gemäß der Vorgaben des Tierschutzgesetzes durchgeführt (GZ 55.2-1-54-2531.3-49-10, 

55.2.1.54-2532-82-13). 
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Abbildung 3.1 Verpaarungsschema für die Rückkreuzung der GIPRdn transgenen Mäuse auf 
den genetischen Hintergrund FVB/N 

 

3.2. Genotypisierung 

Die Genotypisierung erfolgte mittels PCR (polymerase chain reaction) von Schwanzspitzenbi-

opsien nach etablierten Protokollen (HERBACH, 2002; POPPER, 2013). 

3.2.1 Primer 

Primer mit folgenden Sequenzen wurden für die Genotypisierung GIPRdn transgener Mäuse 

benutzt:  

-5‘-ACA GNN TCT NAG GGG CAG ACG NCG GG-3‘ Oligonukleotid-Sense (Tra1) 

-5‘-CCA GCA GNC NTA CAT ATC GAA GG-3‘ Oligonukleotid-Antisense (Tra3) 

(Genzentrum, München, Deutschland) 

Diese Primer binden sowohl an den mutierten GIP-Rezeptor der transgenen Mäuse, als auch 

an den endogenen GIP-Rezeptor der Wildtypen. Die beiden Rezeptoren können anhand der 

Anzahl ihrer Basenpaare voneinander unterschieden werden. Das PCR-Produkt des murinen 
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GIP-Rezeptors beträgt circa 500 Basenpaare, während das PCR-Produkt des mutierten huma-

nen GIP-Rezeptors nur 140 Basenpaare enthält. 

3.2.2 DNA-Extraktion 

Schwanzspitzenbiopsien wurden mit je 400 µl Mastermix über Nacht in einem Heizblock bei 

55 °C verdaut (Biometra TB1 Thermoblock, Whatman, Deutschland), unverdaute Komponen-

ten durch Zentrifugation für zwei Minuten bei 15000 Umdrehungen entfernt (Sigma 1K15, 

Sigma, Deutschland) und der Überstand abpipettiert. Um die DNA auszufällen, wurden 400 µl 

Isopropanol (Roth, Deutschland) zugefügt. Nach Abkippen des Isopropanols wurden die ent-

standenen Pellets zweimal mit 900 µl 70 %igem Ethanol (Roth, Deutschland) gewaschen. Nach 

Abkippen des Überstandes und Abpipettieren der restlichen Flüssigkeit trockneten die Pellets 

20 Minuten bei Raumtemperatur. Anschließend wurde die DNA in TE-Puffer resuspendiert. 

Die Menge des TE-Puffers hing dabei von der Menge des Pellets ab. Es wurden zwischen 50 

und 200 µl Puffer verwendet. Damit sich die DNA vollständig löst, kamen die Proben entweder 

eine Stunde in den Heizblock oder 24 Stunden in den Kühlschrank bei 4 °C.  

Mastermix 

Cutting Puffer 375µl 

SDS 20 % (Roth, Deutschland) 20µl 

Proteinkinase K (20mg/gl) (Boehringer Ingelheim, Deutschland) 5µl 

Cutting Puffer 

1 M Tris-HCL (pH 7,5, Roth, Deutschland) 2,5ml 

0,5 M EDTA (pH 8,0, Sigma, Deutschland) 5,0ml 

5 M NaCl (Roth, Deutschland) 1,0ml 

1 M DTT (Roth, Deutschland) 259µl 

Spermidine (500mg/ml, Sigma, Deutschland) 127µl 

Aqua dest. ad 50ml 

TE-Puffer 

10mM Tris-HCL (pH 8,0, Roth, Deutschland) 

1mM EDTA 
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3.2.3 PCR 

Für das Ansetzen der PCR wurde je Probe 1µl entnommen und mit 19µl Mastermix in PCR Cups 

(Kisker, Deutschland) gemischt. Alle beteiligten Komponenten wurden während des Misch-

vorgangs auf Eis gelagert, mit Ausnahme der Taq DNA Polymerase, die bei -20 °C tiefgefroren 

blieb, bis sie dem Mastermix zugefügt wurde. Bis zum Ende der Genotypisierung wurden die 

Reste der DNA-Proben bei 4 °C gelagert. DNA einer bereits typisierten transgenen GIPRdn 

Maus wurde als Positivkontrolle und DNA eines bereits genotypisierten Wildtyps als Negativ-

kontrolle benutzt. PCR-Wasser wurde als Qualitätskontrolle eingesetzt. Die PCR wurde in ei-

nem Biometra® Uno II Theromcycler (Biometra, Deutschland) durchgeführt. 

Mastermix 1 x Ansatz (µl) 

PCR-Wasser 6,65 

Q-Solution (Taq PCR Master Mix Kit, Quiagen, Niederlande) 4 

10 x Puffer (Taq PCR Master Mix Kit, Quiagen, Niederlande) 2 

MgCl2 (50mM) (Taq PCR Master Mix Kit, Quiagen, Niederlande) 1,25 

dNTPs (1mM) (Eppendorf, Deutschland) 1 

Primer 1 (2µM) 2 

Primer 2 (2µM) 2 

Taq Polymerase (Taq PCR Master Mix Kit, Quiagen, Niederlande) 0,1 

Mastermix 19 

Template (DNA) 1 

3.2.4 Gelelektrophorese 

Die DNA-Fragmente wurden mittels Gelelekrophorese aufgetrennt. Das Gel bestand aus TAE 

Agarosegel (1,5g Agarose (Gibco BRL, Deutschland) / 100ml 1xTAE Puffer), welches mit 9µl/l 

Ethidiumbromid (0,1 %, Merk, Deutschland) versetzt wurde und in eine Easy Cast® Kammer 

ausgegossen wurde (PeqLab, Deutschland). Nach Aushärtung des Gels wurde die Kammer mit 

1x TAE Puffer aufgefüllt, der wiederum 9µl/l 0,1 %iges Ethidiumbromid enthielt, um die elekt-

rische Leitung zu verbessern. Das Ethidiumbromid bindet an doppelsträngige DNA und verur-

sacht eine Fluoreszenz bei Bestrahlung mit UV-Licht. Vor der Einbringung der DNA-Proben in 

die Geltaschen wurden diese mit 4µl von 6x loading dye blau gefärbt (MBI Fermentas, 

Deutschland). Am Beginn jeder Reihe im Gel wurden 12µl PUC Mix Marker (MBI Fermentas, 
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Deutschland) in die Geltasche gegeben, um bei der Auswertung der Elektrophorese Ver-

gleichsbanden für die Bestimmung der amplifizierten DNA Fragmentgröße zu haben. Anschlie-

ßend wurden je Probe 24µl des DNA-loading dye Gemischs in eine Geltasche pipettiert. Die 

Gelelektophorese lief 45 Minuten bei 90V und 200mA (Biorad Power PAC 300, Biorad, USA). 

Die Auswertung der Banden erfolgte unter UV Licht (306nm) (Eagle Eye II, Stratagene, 

Deutschland). 

1x TAE Puffer 

10ml 50x TAE Stammlösung auf 500 ml mit Aqua dest. aufgefüllt 

50x TAE Stammlösung 

Tris base (Roth, Deutschland) 121g 

Eisessig (Sigma, Deutschland) 28,55ml 

EDTA, 0,5M, pH 8,0 (Sigma, Deutschland) 50ml 

Aqua dest. ad 500ml 

3.3. Untersuchung von 10 Tage alten Mäusen 

Es wurden jeweils sechs F.CD1-GIPRdn und B6.CD1-GIPRdn und sechs männliche FVB/N und 

C57Bl/6J Wildtypen in den Versuch genommen. Nach grammgenauer Bestimmung des Kör-

pergewichts (Waage KERN 440-43) wurden die Tiere mit einer intraperitonealen Injektion von 

einer Mischung aus Azepromazin und Ketamin in Narkose gelegt, wobei die Dosierung 2,5 mg 

Azepromazin und 160 mg Ketamin pro kg Körpergewicht betrug. Es wurde 1 %iges Vetranquil 

(Ceva, Deutschland) und Ketamin 10mg/ml (Ratiopharm, Deutschland) verwendet. Da zehn 

Tage alte Mäuse noch geschlossene Augenlider haben, wurden nach Erreichen eines operati-

ven Stadiums der Narkose die Augen mittels Scherenschlag geöffnet, um eine Blutentnahme 

aus dem retrobulbären Plexus zu ermöglichen. Aus diesem wurden anschließend 10 µl Blut für 

eine Blutglukoseuntersuchung entnommen und dann bis zum Stillstand des Blutkreislaufs das 

weitere Blut für die Analyse der Serumparameter Insulin, Glukagon, GLP-1 und GIP mit Hilfe 

von Kapillaren gewonnen. Die 10µl Kapillare für die Untersuchung von Blutglukose wurde in 

Cups gegeben und im Gerät Super GL R3.44d (Dr. Müller Gerätebau GmbH, Deutschland) ge-

messen. Das Blut für die Serumuntersuchung wurde 10 Minuten bei 10000 Umdrehungen 

zentrifugiert (Sigma 1K15, Sigma, Deutschland) und das gewonnene Serum mit 2µl DPPIV-

Inhibitor (LINCO RESEARCH, USA) pro 100 µl Serum versetzt. Anschließend wurde das Serum 
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bei -80 °C asserviert. Zur Entnahme des Pankreas wurde das Rectum durchtrennt und dann 

der Darm langsam und vorsichtig aus dem Abdomen gezogen, wodurch sich das Gekröse des 

Darms auffädelte. Milz, Duodenum und Pankreas wurden 10 Stunden in 4 %igem Paraformal-

dehyd (Merck KGaA, Deutschland) fixiert und anschließend voneinander getrennt. Das Pan-

kreas wurde kurz abgetrocknet, milligrammgenau gewogen (Waage METTLER AE 200), abge-

messen und dann in Agar (BD BactoTM Agar, USA) eingebettet. Mithilfe des Lamellators 

(Abbildung 3.2) wurde das Pankreas in 1 Millimeter dünne Scheiben geschnitten.  

 

 

Abbildung 3.2 Lamellator (entwickelt, gebaut und zur Verfügung gestellt von Dr. Andreas 
Blutke) 

Die lamellierten Pankreasscheiben wurden nach Wässerung in Gewebekapseln in Paraffin ein-

gebettet. Die Pankreasscheiben wurden anschließend parallel zueinander liegend ausgegos-

sen, sodass nach Schneiden und Färben eine Übersicht durch das gesamte Pankreas in 1 – 

Millimeter – dünnen Abschnitten auf einem oder mehreren Objektträgern angefertigt wurde 

(siehe 3.5). Die morphometrische Auswertung der 10 Tage alten Versuchstiere erfolgte an drei 

Färbungen. Die Pankreasfläche wurde an HE-Schnitten bestimmt. Für die Messung der Insel- 

und Betazellfläche wurde eine Immunhistochemie durchgeführt, bei der in einer Doppelfär-

bung Insulin und die Cleaved-Caspase 3 angefärbt wurden. Letzteres ist ein Indikator für 

Apoptose. In einer weiteren Immunhistochemie wurden replizierende Zellen mittels PCNA An-

tikörper markiert. Damit konnten am Morphomaten Pankreasfläche, Inselfläche, Betazellflä-

che, die Fläche isolierter Betazellen und die Anzahl von Kernanschnittsprofilen replizierender 

und apoptotischer Zellen in Inseln bestimmt werden. 
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3.4. Klinische Verlaufsuntersuchungen 

Das zweite Tierkollektiv, welches über 90 Tage untersucht wurde, bestand aus 8 GIPRdn trans-

genen männlichen Mäusen und 8 Wildtypen je Linie. 

3.4.1 Körpergewicht 

Das frei gefütterte Körpergewicht wurde mit zehn, 21, 45, und 80 Tagen grammgenau (Waage 

KERN 440-43, Deutschland) bestimmt. Für die Bestimmung des Nüchternkörpergewichts wur-

den die Mäuse im Alter von 90 Tagen 15 Stunden vor Wägung nüchtern gesetzt (Über Nacht 

von 19 Uhr bis 10 Uhr). 

3.4.2 Blutglukose frei gefüttert 

Alle Proben wurden um zehn Uhr morgens entnommen, um eine hohe Vergleichbarkeit der 

Werte zu erreichen. Zum Zeitpunkt des Absetzens von der Mutter mit Tag 21 und am 45ten 

Lebenstag wurden 10 µl Blut aus der Schwanzspitze mit einer Kapillare entnommen und diese 

in Glukocapil Cups (Dr. Müller Gerätebau GmbH, Deutschland) gegeben. Die Blutglukose 

wurde mit dem Messgerät Super GL R3.44d analysiert (Dr. Müller Gerätebau GmbH, Deutsch-

land). Vor der Blutentnahme wurde sowohl am Tag 21, als auch am Tag 45 das Körpergewicht 

bestimmt (s.o.). 

3.4.3 Insulintoleranztest 

Am 80. Lebenstag wurde ein Insulintoleranztest durchgeführt. Blutentnahme und -glukosebe-

stimmung erfolgte analog zur oben beschriebenen Methode (3.4.2). Die Tiere wurden um 

zehn Uhr morgens nüchtern gesetzt. Es erfolgte sogleich die erste Blutprobenentnahme von 

10 µl aus der Schwanzvene, um den Basalwert der Blutglukose zu bestimmen (t=0). Danach 

wurden 5 µl Insulin (Insuman Rapid, 40 I.E. / ml, Aventis, Deutschland) pro Gramm Körperge-

wicht intraperitoneal gespritzt. Weitere Probenentnahmen für Glukosebestimmung erfolgten 

nach 10, 20, 30 und 60 Minuten nach Insulininjektion (T=10, 20, 30, 60). 

3.4.4 Untersuchung mittels Stoffwechselkäfigen 

Um die Menge der Urinproduktion, der Futteraufnahme und der Wasseraufnahme innerhalb 

von 24 Stunden beurteilen zu können, wurden die Versuchstiere im Alter von 85 Tagen in 
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Stoffwechselkäfigen (Techniplast, Deutschland) untersucht. Diese Käfige haben ein Auffang-

rohr für den produzierten Urin, der in einem Styroporbehältnis, das mit Eis aufgefüllt ist, plat-

ziert wird. Ein großer Trichter leitet den Urin in das Auffangröhrchen. Über dem Trichter sitzt 

ein Gitter, welches Kot und Futterkrümel abtrennen soll. Darüber befindet sich ein Rost, auf 

dem die Maus während der 24 Stunden sitzt. Dabei ist sie von einer Plexiglaskuppel umschlos-

sen, an der eine Wasserflasche und ein Futterbehältnis hängen. Sowohl die Maus, als auch 

Futter und Wasser wurden vor Beginn des Versuchs und nach Beendigung grammgenau ge-

wogen, um anschließend das verbrauchte Futter und Wasser und das Körpergewicht bestim-

men zu können. Der produzierte Urin wurde in Milliliter gemessen.  

3.4.5 Oraler Glukosetoleranztest 

Der orale Glukosetoleranztest wurde im Alter von 90 Tagen durchgeführt. Zur Vorbereitung 

auf den oralen Glukosetoleranztest wurden die Versuchstiere 15 Stunden vorher nüchtern ge-

setzt. Dann wurden 10µl Blut wie oben beschrieben entnommen (t=0, 3.4.2) und das Körper-

gewicht grammgenau gewogen. Mittels einer Magensonde wurde den Mäusen 11,1 µl 1 mo-

lare Glukoselösung pro Gramm Körpergewicht (Glukose: ALPHA-D-(+)-GLUCOSE, A.C.S. 

REAGENT, ALDRICH, Deutschland) verabreicht. . Zehn 20, 30, 60, 90 und 120 Minuten (t=10, 

20, 30, 60, 90, 120) Minuten nach Glukosegabe wurden 10 µl Blut für die Bestimmung der 

Blutglukose entnommen. 

3.5. Pankreaspräparation und Weiterverarbeitung 

Nach Durchführung des oralen Glukosetoleranztests wurden die Tiere mit Azepromazin und 

Ketamin in Narkose gelegt und über den retrobulbären Plexus entblutet. Die Dosierung der 

Narkose betrug 2,5 mg Acepromazin und 160 mg Ketamin pro kg Körpergewicht (Vetranquil 

1 %, Ceva, Deutschland, Ketamin 10mg/ml, Ratiopharm, Deutschland). Nach Entblutung er-

folgte die Entnahme des Pankreas, wobei die Abtrennung des Pankreas von den benachbarten 

Organen schon bei Entnahme stattfand, da das Gewebe wesentlich stabiler ist als bei zehn 

Tage alten Mäusen. Das Pankreas wurde vor der 24 stündigen Fixierung in 4 %iger Paraformal-

dehydlösung milligrammgenau gewogen. Da die histologische Auswertung hauptsächlich an-

hand immunhistologisch gefärbter Schnitte erfolgte, war eine auf 24 Stunden begrenzte Fixie-

rung wichtig. Anschließend wurde das Gewebe kurz abgetrocknet und millimetergenau abge-
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messen. Zur Lamellierung wurde es in Agar (BD BaktoTM Agar, USA) eingebettet. Die Einbet-

tung in Agar erfolgte in einer Schiene, welche den Agarblock auf die richtige Größe formt, um 

in den Lamellator zu passen. Der Lamellator ist eine Konstruktion, in der der Agarblock in einer 

Schiene Millimeter für Millimeter vorgeschoben wird und dabei in einem dafür vorgesehenen 

Spalt mit einer Mikrotomklinge in Scheiben geschnitten wird. Dadurch erreicht man absolut 

gleichmäßige, plane Pankreasscheiben. Diese wurden in Gewebekapseln zunächst gewässert 

und dann in Paraffin eingebettet. Das Einbetten in Paraffin erfolgte mit dem Histomaster 

2062-DI 2L (Bavimed, Deutschland). Wie bei den 10 Tage alten Tieren wurden auch hier die 

Pankreasscheiben parallel zueinander liegend in Blöcke ausgegossen. Aus diesen Blöcken wur-

den am Mikrotom (MICROM HM 315) 0,5 µm dicke Schnitte angefertigt, die in ein 40 ° warmes 

Wasserbad überführt wurden und anschließend auf verschiedene Objektträger (Immunhisto-

chemie: STAR FROST adhesive Objektträger, Deutschland, HE Färbung: Objektträger der Firma 

Engelbrecht Medizin und Labortechnik GmbH, Deutschland) aufgezogen wurden. Die Trock-

nung der Schnitte erfolgte mindestens 24 Stunden im Trockenschrank (Wagner & Münz Labo-

ratoriumsbedarf, Deutschland) bei 35°C. 

3.6. Färbung des Pankreasgewebe 

Für die histologische und quantitativ stereologische Auswertung sind verschiedene Färbungen 

des Pankreasgewebes notwendig: Anhand einer HE-Färbung wurde die Fläche des Pankreas-

gewebe gemessen. Mittels immunhistochemischer Färbung von Insulin wurde die morpho-

metrische Flächenmessung von Inseln und Betazellen ermöglicht. Diese Färbung wurde ver-

knüpft mit einer Markierung der apoptotischen Zellen mittels Cleaved Caspase-3 Antikörper. 

Zusätzlich wurden die sich replizierenden Zellen mit einer Immunhistochemie nachgewiesen, 

bei der PCNA (Proliferating Cell Nuclear Antigen) markiert wurde.  
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Abbildung 3.3 HE-gefärbte Schnitte des Pankreas 

 

3.6.1 Hämalaun-Eosin-Färbung 

Xylol zum Lösen des Paraffins 10 min 

in Xylol tauchen 3 x 10 x 1 sek 

Dehydration mit absteigender Alkoholreihe 

100%iger Alkohol 10 x 1 sek 

96%iger Alkohol 10 x 1 sek 

96%iger Alkohol 10 x 1 sek 

70%iger Alkohol 10 x 1 sek 

70%iger Alkohol 10 x 1 sek 

Hämalaun 5 min 

Wässern in fließendem Leitungswasser 5 min 

in 0,5 %igem HCL-Alkohol zum Differenzieren tauchen 3-5 x 1 sek 

Wässern in fließendem warmen Leitungswasser 5 min 

in Eosin tauchen 2 min 

in Aqua dest spülen 

Rehydration mit aufsteigende Alkoholreihe 
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70 %iger Alkohol 10 x 1 sek 

96 %iger Alkohol 10 x 1 sek 

96 %iger Alkohol 10 x 1 sek 

100 %iger Alkohol 10 x 1 sek 

100 %iger Alkohol 10 x 1 sek 

in Xylol tauchen 3 x 10 x 1 sek 

Eindecken mit Histokitt (Histokitt No. 1025/500, Glaswarenfabrik Karl Hecht GmbH & Ko KG, 

Deutschland) 

3.6.2 Immunhistochemie Insulin und Cleaved Caspase-3 

Mittels Antikörpern wurden Insulin und die Cleaved Caspase-3 angefärbt, um apoptotische 

Betazellen eindeutig identifizieren zu können. Die Vorbereitung des Gewebes für die Immun-

histochemie entsprach den Vorbereitungen für die HE Färbung. Die Zeit im Xylol zum Entfer-

nen des Paraffins betrug allerdings 20 Minuten. Nach dem Entparaffinieren wurden die 

Schnitte in weitere Xylolbehälter getaucht und dann mit einer absteigenden Alkohlreihe und 

Aqua dest. dehydriert. Anschließend erfolgte die Demaskierung der Proteine in den Gewebe-

schnitten mit 10mM Citratpuffer (pH 6,0) im Mikrowellendampfkochtopf (Microwave Tender 

Cooker®, Nordic Ware, USA) 30 Minuten bei 800 Watt. Der Citratpuffer wurde aus 27ml 

Stammlösung A (19,2g Citronensäure (Citronensäure Monohydrat, neo Lab Migge Laborbe-

darf-Vertriebs GmbH, Deutschland) in 1000ml Aqua dest.), 123ml Stammlösung B (29,4g Nat-

riumcitrat-Dihydrat (tri-Sodium citrate dihydrate, VWR Chemicals, Belgien) in 1000ml Aqua 

dest.) und 1,5ml Tween 20 (Merck Schuchardt OHG, Deutschland) hergestellt. Nach der Mik-

rowellenbehandlung wurden die Schnitte 20 Minuten im Kochtopf belassen, um abzukühlen. 

Anschließend wurde die endogene Peroxidase in 178,8 ml Aqua dest. mit 1,8 ml 30 %igem 

H2O2 (Perhydrol® Hydrogen peroxide 30 %, Merck KGaA, Deutschland) 15 Minuten blockiert 

und daraufhin wurden die Schnitte 10 Minuten in TBS gewaschen. Der TBS-Puffer mit einem 

pH-Wert von 7,6 wurde aus einer 1:10 Verdünnung der Stammlösung hergestellt. Die Stamm-

lösung setzte sich zusammen aus 60,5 g TRIS (Tris Molecular biology grade, AppliChem Panrac, 

Deutschland), 90,0 g NaCl (neolab, Deutschland) gelöst in 1000 ml Aqua dest. Der pH Wert 

wurde mit 2N HCL (neolab, Deutschland) auf 7,4 eingestellt. Die Absättigung von elektrostati-

schen Ladungen der Proteine/unspezifischer Bindungsstellen erfolgte mit Normalserum der 
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Ziege (GOAT SERUM, MP Biomedicals, Deutschland) in einer Verdünnung von 1:10 für 30 Mi-

nuten. Anschließend wurde das Serum abgegossen und dann sofort der Primärantikörper Gui-

nea Pig anti Insulin (Polyclonal Guinea Pig Anti-Insulin, Dako, USA) in einer Verdünnung von 

1:500 aufgetragen. Nach einer Stunde Inkubation wurden die Schnitte wieder in TBS 10 Minu-

ten lang gewaschen und danach der Sekundärantikörper Goat anti Guinea Pig AP (Goat anti 

Guinea Pig IgG (H+L), Southern Biotech, USA) in einer Verdünnung von 1:100 aufgetragen und 

eine Stunde inkubiert. Überschüssiger, nicht gebundener Antikörper wurde durch Waschen in 

TBS entfernt und zur Sichtbarmachung der Antigene AP Substrat KIT I (Alkaline Phosphatase 

Substrate Kit I SK-5100, Vector Laboratories, USA) mit 100nM Tris-HCL aufgetragen. Die Inku-

bation fand unter Sichtkontrolle statt, dauerte maximal aber 5 Minuten.  

Ansatz der Alkalischen Phosphatase zum Färben von 10 Objektträgern 

2,5ml 100nM Tris-HCL pH 8,2-8,5 

1 Tropfen Reagent 1 

1 Tropfen Reagent 2 

1 Tropfen Reagent 3 

Nach 10 minütigem Waschen in TBS wurde endogenes Biotin zunächst mit Avidin (3 bis 4 Trop-

fen pro Objektträger) 15 Minuten blockiert. Anschließend wurden die Schnitte kurz durch TBS 

gezogen, abgeputzt und mit Biotin betropft, welches ebenfalls 15 Minuten inkubierte (Avi-

din/Biotin Blocking Kit SP-2001, Vector Laboratories, USA). Nach einem weiteren kurzen Ab-

waschen in TBS wurden unspezifische Proteinbindungsstellen mit 5 % Ziegenserum 30 Minu-

ten blockiert. Der Primärantikörper wurde nach Abkippen des Normalserums in einer Verdün-

nung von 1:200 aufgebracht und inkubierte über Nacht bei Raumtemperatur in der feuchten 

Kammer. Der Primärantikörper Rabbit anti Cleaved Caspase 3 (Cleaved Caspase-3 (Asp175) 

(5A1E) Rabbit mAb, Cell Signaling Technology, USA) wurde bei -20 ° tiefgefroren und erst kurz 

vor Gebrauch aufgetaut und verdünnt. Nach Inkubation des Primärantikörpers wurden die 

Objektträger 10 Minuten lang in TBS gewaschen und dann der Sekundärantikörper Goat anti 

Rabbit biotinylayd (Biotinylated Anti-Rabbit IgG (H+L) Affinity made in goat, Vector Laborato-

ries, USA) in einer Verdünnung von 1:400 mit 5 % Ziegenserum aufgetragen. Die Inkubation 

dauerte eine Stunde. Anschließend wurden die Schnitte ein weiteres Mal 10 Minuten in TBS 

gewaschen. Als nächstes wurde ein ABC Komplex (VECTASTAIN ABC Kit, Vector Laboratories, 

USA) aufgetragen. Für 1ml Lösung wurden zu 1ml TBS 10µl Lösung A und 10µl Lösung B des 
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ABC Kits dazu gegeben. Die Inkubation dauerte 30 Minuten, anschließend wurde für 10 Minu-

ten in TBS gewaschen. Die markierten Zellen wurden durch DAB (DAB BB pH 7,0 Fizzing Buffer 

Containing pH 7,0, Kem-En-Tech Diagnostics A/S, Dänemark) sichtbar gemacht, welches pro 

1ml mit 1µl H2O2 aktiviert wurde. Die Inkubation erfolgte unter Sichtkontrolle bis zu 5 Minu-

ten. Nach Wässern in fließendem Leitungswasser, Gegenfärbung mit Hämalaun und nochma-

ligem Wässern wurden die Schnitte über eine absteigende Alkoholreihe dehydriert und in Xy-

lol überführt. Das Eindecken erfolgte mit Histokitt (Histokitt No. 1025/500, Glaswarenfabrik 

Karl Hecht GmbH & Ko KG, Deutschland). 

3.6.3 Immunhistochemie Proliferating Cell Nuclear Antigen 

Mit einem Antikörper gegen das Proliferating Cell Nuclear Antigen (PCNA) wurden replizie-

rende Zellen markiert. Die Vorbehandlung erfolgte analog zur Insulinimmunhistochemie. Nach 

Waschen der Objektträger für 10 Minuten in TBS (siehe 3.6.2) wurde Kaninchenserum (RABBIT 

SERUM, CELLect® MP Biomedicals, Deutschland) in einer Verdünnung von 5 % aufgetragen 

und 30 Minuten auf den Schnitten belassen, um unspezifische Proteinbindungen zu blockie-

ren. Anschließend wurde das Serum abgegossen und ohne vorheriges Waschen sofort der An-

tikörper aufgetragen. Der Primärantikörper mouse anti PCNA (ms mAb to PCNA [PC 10], 

abcam, England) wurde in verschiedenen Verdünnungen eingesetzt. Dieser Antikörper rea-

giert sehr empfindlich auf den Auftauvorgang und verliert einen Teil seiner Wirksamkeit. Da-

her muss pro Auftauvorgang die Konzentration des Antikörpers erhöht werden. Mit einem 

neuen Antikörper starteten wir in einer Verdünnung von 1:6400. Die Inkubation des Primäran-

tikörpers erfolgte über Nacht bei Raumtemperatur. Anschließend wurden die Objektträger 10 

Minuten in TBS gewaschen und der Sekundärantikörper Rabbit anti Mouse IgPO (Polyclonal 

Rabbit Anti-Mouse Immunglobulins/HRP, Dako, Dänemark) in einer Verdünnung von 1:100 

eine Stunde bei Raumtemperatur inkubiert. Nach Waschen in TBS für 10 Minuten erfolgte die 

Färbung mit DAB (DAB BB pH 7,0 Fizzing Buffer Containing, pH 7,0, Kem-En-Tec Diagnostics 

A/S, Dänemark) unter Sichtkontrolle, maximal aber für 5 Minuten. Gegenfärbung und Einde-

cken erfolgte wie unter 3.6.2 beschrieben. 
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3.7. Quantitativ stereologische Analyse des Pankreas 

Die quantitativ stereologischen Untersuchungen wurden unter Verwendung etablierter, ver-

zerrungsfreier modell-unabhängiger stereologischer Methoden durchgeführt (HERBACH et al., 

2005; HERBACH et al., 2011). 

Die Zielparameter, die mithilfe der quantitativ stereologischen Methoden bestimmt werden 

sollten, waren die Volumenanteile und das Gesamtvolumen der Inseln, der Betazellen und der 

isolierten Betazellen. Darüber hinaus erfolgte die Ermittlung der Anzahl der apoptotischen 

bzw. replizierenden Kernanschnittprofile in den Inseln.  

Das Pankreasvolumen errechnet sich aus dem Quotienten von Pankreasgewicht und dem spe-

zifischen Gewicht von Mauspankreas (1,08). Zur Errechnung des korrigierten Pankreasge-

wichts wurde zunächst an HE gefärbten Schnitten die Summe der Anschnittflächen des Pan-

kreas- und Nichtpankreasgewebes (Lymphknoten, Darm etc.) ermittelt, der prozentuale Anteil 

von Nichtpankreas errechnet und vom gewogenen Organgewicht abgezogen. Die Messung 

erfolgte mit dem Stereologiesystem Videoplan® image analysis system (Zeiss-Kontron, Ger-

many), das über eine Farbvideokamera (CCTV WVCD132E; Matsushita, Japan) an ein Lichtmik-

roskop gekoppelt war (Orthoplan; Leitz, Germany). Die Bilder wurden auf einen Farbmonitor 

übertragen und Pankreas- sowie Nichtpankreasgewebe konnte planimetrisch durch Umfahren 

der Konturen gemessen werden. 

Mit folgender Formel wurde das Pankreasvolumen errechnet: 

VPankreas = korrigiertes Pankreasgewicht/spezifisches Gewicht des Mäusepankreas (1,08 

mg/mm3) 

Die Bestimmung der Insel-, Betazell- und isolierten-Betazellflächen erfolgte an immunhisto-

chemisch gegen Insulin gefärbten Schnitten. Für die Messung wurde ein Bildanalysesystem 

verwendet, bestehend aus einem Mikroskop (BX41, Olympus, Deutschland) mit einer Farbvi-

deokamera (DP72, Olympus, Deutschland) und der Stereologiesoftware NewCast (Visi-

opharm, Dänemark). Bei den Schnitten der 10 Tage alten Tiere und den 90 Tage alten trans-

genen Mäusen wurde dabei jede Insel umfahren und so die gesamte Inselfläche pro Pankreas-

fläche gemessen. Die Navigation durch das Gewebe erfolgte mäanderförmig, wobei immer 

rechts unten am Präparat gestartet wurde. Bei der Auswertung der Schnitte der 90 Tage alten 
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Wildtypen wurde aufgrund der hohen Zahl der Anschnittprofile von Inseln im Gewebe nur 

jede zweite Bahn ausgewertet. Dafür wurde ein virtueller Rahmen über den gezeigten Gewe-

beausschnitt gelegt (Abbildung 3.4). Alle Inseln, die innerhalb des Rahmens lagen oder die 

rechte, grüne Rahmenlinie trafen, wurden umfahren und somit ihre Fläche gemessen. Alle 

Inseln, die die linke rote Linie trafen wurden nicht mitgemessen. Nach Ende der Auswertung 

wurde die gesamte Inselfläche des Schnittes mit zwei multipliziert. Folgende Formel wurde für 

das Bestimmen des Inselvolumens benutzt (A steht in der Formel für Fläche): 

V(Inseln,Pankreas) = ∑AInseln/∑APankreas x VPankreas 

 

 

Abbildung 3.4 Messung der Inselfläche mit Hilfe eines virtuellen Rahmens 

Analog wurde die Gesamtbetazellfläche gemessen und mit folgender Formel konnte das Ge-

samtbetazellvolumen bestimmt werden (A steht für Fläche): 

V(Betazellen,Inseln) = ∑ABetazellen/∑AInseln x V(Inseln,Pankreas) 

Betazellansammlungen mit drei oder weniger Zellkernen wurden als isolierte Betazellen zuge-

ordnet. Für die Errechnung des Gesamtvolumens der isolierten Betazellen im Pankreas wurde 

folgende Formel benutzt (A steht für Fläche): 

Vi(isolierte Betazellen,Pankreas) = ∑Aisolierten Betazellen/∑APankreas x VPankreas 
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Für die Errechnung der Anzahl apoptotischer Kernanschnittprofile in Inseln wurde jede Insel 

in jedem mittels Insulin/Cleaved Caspase-3 gefärbten Schnitt sorgfältig angeschaut. Um keine 

Insel auszulassen, wurde in üblicher Weise durch das Gewebe navigiert. Jede apoptotische 

Inselzelle (Kernanschnittprofile immunhistochemisch cleaved Caspase-3 positive Inselzellen) 

wurde gezählt. Folgende Formel wurde für die Berechnung der Flächendichte benutzt: 

D(Kernanschnittsprofile apoptotischer Zellen, Inseln) = NKernanschnittsprofile apoptotischer Zellen/µm2 

Um die Anzahl der Kernanschnittsprofile von sich replizierender Zellen zu bestimmen, wurde 

die PCNA Immunhistochemie benutzt, um die entsprechenden Zellkerne zu markieren. Dann 

wurden in jedem Inselprofil sämtliche PCNA positiven Zellkernanschnitte gezählt und damit 

die Flächendichte bestimmt:  

D(Kernanschnittsprofile replizierender Zellen,Inseln) = NKernanschnittsprofile replizierender Zellen/µm2
 

Außerdem wurde die Volumendichte von Inseln im Pankreas (VV(Inseln, Pankreas)), die Volumen-

dichte von Betazellen in den Inseln (VV(Betazellen, Inseln)) und die Volumendichte von isolierten 

Betazellen im Pankreas (VV(isolierte Betazellen, Pankreas)) errechnet. Dafür wurden die entsprechenden 

Gesamtvolumina jeweils durch VPankreas geteilt. 

3.8. Datenpräsentation und statistische Analyse 

Die statistische Auswertung erfolgte mit SPSS (IBM SPSS© Statistics, USA).  

Die Normalverteilung aller Daten wurde mittels Shapiro-Wilks Test mit SPSS beurteilt. War 

diese vorhanden, wurde mit dem Levené-Test auf Varianzengleichheit geprüft. Bei gegeben-

der Normalverteilung und Varianzengleichheit erfolgte die Analyse der Daten mit einer ein-

faktorieller ANOVA. Zum anschließenden Vergleich der Gruppen wurde der LSD Post HOC Test 

durchgeführt. Signifikant waren Werte, bei denen p < 0,05 war. Bei Daten, die normalverteilt 

waren, aber keine Varianzengleichheit aufwiesen, wurde der Welch Test mit Dunnett’s T3 Post 

Hoc Test durchgeführt. Waren Daten nicht normalverteilt, wurden sie anhand des Kruskal-

Wallis-Tests beurteilt mit nachgeschaltetem Dunn's multiple comparisons Test. Dies galt für 

alle Daten, die unabhängige Stichproben waren. 



73 
 

Um den Vergleich zwischen 10 Tage alten und 90 Tage alten Mäusen durchzuführen, wurde 

der Mann-Whitney-U-Test gewählt. Hier wurden nur gleiche Genotypen untereinander vergli-

chen. 

Die Grafiken wurden alle mit GraphRad Prism 5.0 (GraphRad Software, USA) erstellt. 
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4. Ergebnisse 

4.1. Körpergewichte 

Wie aus Abbildung 4.1 ersichtlich, wiesen die vier untersuchten Gruppen am 10., 45. Und 80. 

Lebenstag keine signifikanten Unterschiede im Körpergewicht auf. Dagegen zeigten FVB/N 

Wildtypen und F.CD1-GIPRdn mit 21 Tagen deutlich höhere Körpergewichte als B6 Wildtypen 

und B6.CD1-GIPRdn. 
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Abbildung 4.1: Körpergewichte (frei gefüttert) von F.CD1-GIPRdn und B6.CD1-GIPRdn (GIPRdn) 
im Vergleich zu FVB/N und C57Bl/6J Wildtyp-Wurfgeschwistern (WT)  

A: 10 Tage B: 21 Tage C: 45 Tage und D: 80 Tage; Daten zeigen Mittelwerte mit SEM; Statistik: 
One Way ANOVA Post-HOC LSD Test; Signifikanzen: n.s.: p > 0,05, *** p ≤ 0,001 
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Abbildung 4.2 stellt den zeitlichen Verlauf des Körpergewichts zwischen Tag 10 und Tag 80 

dar, bei dem sich besonders zwischen Tag 21 und Tag 45 ein steiler Anstieg des Körpergewichts 

aller vier Gruppen verzeichnen lässt. 
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Abbildung 4.2 Körpergewichte (frei gefüttert) von F.CD1-GIPRdn und B6.CD1-GIPRdn (GIPRdn) 
Vergleich zu FVB/N und C57Bl/6J Wildtyp-Wurfgeschwistern (WT) zwischen Tag 10 und 80 

Daten zeigen Mittelwerte mit SEM, der Statistische Vergleich benachbarter Untersuchungs-
zeitpunkt ist in Tabelle 4.1 dargestellt. 

 Tag 21 zu Tag 10 Tag 45 zu Tag 21 Tag 80 zu Tag 45 

WT FVB/N ** ** ** 

F.CD1-GIPRdn ** ** n.s. 

WT C57Bl/6J * ** * 

B6.CD1-GIPRdn * ** n.s. 

Tabelle 4.1 Körpergewichte: Vergleich benachbarter Untersuchungszeitpunkte: Mann-Whit-
ney-U Test; Signifikanzen: n.s.: p > 0,05, *p ≤ 0,05, **p ≤ 0,01 
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Mit 90 Tagen wiesen F.CD1-GIPRdn gegenüber Wildtypen der Linie signifikant niedrigere Nüch-

ternkörpergewichte (p<0,05) auf. B6.CD1-GIPRdn zeigten keine signifikanten Unterschiede ge-

genüber nicht-transgenen Wurfgeschwistern (Abbildung 4.3). 
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Abbildung 4.3: Körpergewichte (nüchtern) von F.CD1-GIPRdn und B6.CD1-GIPRdn (GIPRdn) im 
Vergleich zu FVB/N und C57Bl/6J Wildtyp-Wurfgeschwistern (WT) am 90. Lebenstag. Daten 
zeigen Mittelwerte mit SEM; Statistik: One Way ANOVA Post-HOC LSD Test; Signifikanzen: n.s.: 
p > 0,05, * p ≤ 0,05 
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4.2. Blutglukose  

Abbildung 4.4 zeigt die Blutglukosewerte, die bei den vier untersuchten Tiergruppen mit 10, 

21, 45 und 80 Tagen gemessen wurden. Mit 10 Tagen waren keine Unterschiede in der Blut-

glukose zwischen den untersuchten Gruppen feststellbar. Ab dem 21ten Lebenstag wiesen 

transgene FVB/N Mäuse signifikant höhere Blutglukosespiegel auf als FVB/N Wildtypen und 

die Glukosehomöostase verschlechterte sich massiv mit zunehmendem Alter. Ab dem 45ten 

Lebenstag zeigten auch B6.CD1-GIPRdn signifikant erhöhte Blutglukosespiegel gegenüber B6 

Wildtypen, die Werte blieben jedoch im weiteren Verlauf stabil. Ab dem 21ten Lebenstag wie-

sen F.CD1-GIPRdn signifikant höhere Blutglukosespiegel gegenüber B6.CD1-GIPRdn auf. Die 

Blutglukosespiegel der Wildtypen unterschieden sich zu keinem der untersuchten Zeitpunkte. 

A 

G
lu

k
o

s
e

 (
m

g
/d

l)

0

5 0

1 0 0

1 5 0

2 0 0

W T

G IP R
d n

F V B /N C 5 7 B l/6 J

n .s .

n .s .

n .s .

n .s .

 

B 
G

lu
k

o
s

e
 (

m
g

/d
l)

0

1 0 0

2 0 0

3 0 0

4 0 0

F V B /N C 5 7 B l/6 J

W T

G IP R
d n

* * n .s .

n .s .

*

 

C 

G
lu

k
o

s
e

 (
m

g
/d

l)

0

2 0 0

4 0 0

6 0 0

F V B /N C 5 7 B l/6 J

W T

G IP R
d n

* * * * *

n .s .
* * *

 

D 

G
lu

k
o

s
e

 (
m

g
/d

l)

0

2 0 0

4 0 0

6 0 0

8 0 0

W T

G IP R
d n

F V B /N C 5 7 B l/6 J

* * *

* * *
n .s .

 

Abbildung 4.4 Blutglukosespiegel (frei gefüttert) von F.CD1-GIPRdn und B6.CD1-GIPRdn 
(GIPRdn) im Vergleich zu FVB/N und C57Bl/6J Wildtyp-Wurfgeschwistern (WT) A: 10 Tage; 
One Way ANOVA Post-HOC LSD Test, B: 21 Tage; Welch, Post-HOC Dunnett T3 Test, C: 45 Tage; 
Welch, Post-HOC Dunnett T3 Test, D: 80 Tage; Kruskall-Wallis Test; Daten zeigen Mittelwerte 
mit SEM; Signifikanzen: n.s.: p > 0,05, *p ≤ 0,05, **p ≤ 0,01, ***p ≤ 0,001 



78 
 

Im zeitlichen Verlauf der Messungen, dargestellt in Abbildung 4.5, zeigten die Wildtypen bei-

der Linien nahezu konstante Blutglukosespiegel. Die transgenen C57Bl/6J Mäuse wiesen zwi-

schen Tag 10 und Tag 21 auch nur eine leichtere Zunahme der Glukosespiegel auf, zwischen 

Tag 21 und Tag 45 verdoppelten sich die durchschnittlichen Blutglukosewerte bei B6.CD1-

GIPRdn. Bei den transgenen FVB/N Tieren kam es bereits zwischen Tag 10 und Tag 21 und zwi-

schen Tag 21 und 45 zu einer annähernden Verdopplung der Blutglukosespiegel. 
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Abbildung 4.5 Blutglukosespiegel (frei gefüttert) von F.CD1-GIPRdn und B6.CD1-GIPRdn 
(GIPRdn) im Vergleich zu FVB/N und C57Bl/6J Wildtyp-Wurfgeschwistern (WT) zwischen Tag 
10 und Tag 80; Daten zeigen Mittelwerte mit SEM; 

Der Statistische Vergleich benachbarter Untersuchungszeitpunkte ist in Tabelle 4.2 darge-
stellt. 

 Tag 21 zu Tag 10 Tag 45 zu Tag 21 Tag 80 zu Tag 45 

WT FVB/N * n.s. n.s. 

F.CD1-GIPRdn ** *** ** 

WT C57Bl/6J n.s. n.s. n.s. 

B6.CD1-GIPRdn n.s. ** n.s. 

Tabelle 4.2 Blutglukosespiegel: Vergleich benachbarter Untersuchungszeitpunkte. Mann-
Whitney-U Test; Signifikanzen: n.s.: p > 0,05, *p ≤ 0,05, **p ≤ 0,01, ***p ≤ 0,001  
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4.3. Insulintoleranztest 

Im Alter von 80 Tagen wurden Insulintoleranztests durchgeführt. Zehn Minuten nach der In-

sulingabe sanken die Glukosewerte aller vier untersuchten Gruppen bereits ab, wie man in 

Abbildung 4.6 erkennen kann. GIPRdn transgene FVB/N Mäuse zeigten zu allen untersuchten 

Zeitpunkten signifikant höhere Blutglukosewerte als die nicht-transgenen Wurfgeschwister 

(p<0,001). B6.CD1-GIPRdn wiesen ebenfalls signifikant höhere Blutglukosewerte als die Kon-

trolltiere auf, der Unterschied wurde mit zunehmender Zeitdauer des Versuchs aber geringer. 

GIPRdn transgene FVB/N Mäuse zeigten zu jedem Zeitpunkt signifikant höhere Blutglukose-

werte als B6.CD1-GIPRdn. Die Blutglukosespiegel der Wildtypen beider Linien unterschieden 

sich nur 10 Minuten nach der Insulininjektion signifikant voneinander, danach nicht mehr.  
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Abbildung 4.6 Insulintoleranztest von F.CD1-GIPRdn und B6.CD1-GIPRdn im Vergleich zu 
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FVB/N und C57Bl/6J Wildtyp-Wurfgeschwistern (WT): Daten zeigen Mittelwerte mit SEM; 

Signifikanzen sind in Tabelle 4.3 gezeigt 

 0 min 10 min 20 min 30 min 60 min 

F.CD1-GIPRdn zu WT FVB/N n.s. ** ** ** n.s. 

B6.CD1-GIPRdn zu WT C57Bl/6J n.s. n.s. n.s. * n.s. 

F.CD1-GIPRdn zu B6.CD1-GIPRdn n.s. *** *** *** n.s. 

WT FVB/N zu WT C57Bl/6J n.s. ** n.s. n.s. n.s. 

Tabelle 4.3 Insulintolerantest: Kruskal-Wallis Test für 0 min, Post-HOC Dunn’s multiple com‐
parison test, 10 min, 20 min, 30 min; Welch Test, Post-HOC Dunnett T3 Test für 60 min; Signi-
fikanzen: n.s.: p > 0,05, *p ≤ 0,05, **p ≤ 0,01, ***p ≤ 0,001 
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4.4. Area under curve Glukose Insulintoleranztest 

Im Insulintoleranztest wiesen die F.CD1- GIPRdn signifikant höhere Fläche unter der Glukose-

kurve (AUC Glukose) auf als nicht-transgene Wurfgeschwister und als B6.CD1- GIPRdn Mäuse 

(Abbildung 4.7). Die AUC Glukose der B6.CD1-GIPRdn unterschied sich nicht signifikant von B6 

Wildtypen und auch die Wildtypen beider Linien zeigten keine signifikanten Unterschiede. 
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Abbildung 4.7 Area under glucose curve Insulintoleranztest von F.CD1- GIPRdn und B6.CD1-
GIPRdn (GIPRdn) im Vergleich zu FVB/N und C57Bl/6J Wildtyp-Wurfgeschwistern (WT): Daten 
zeigen Mittelwerte mit SEM; n.s.: p > 0,05, *p ≤ 0,05, ***p ≤ 0,001 
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4.5. Oraler Glukosetoleranztest 

Im oralen Glukosetoleranztest, der im Alter von 90 Tagen durchgeführt wurde, zeigten die 

transgenen Tiere beider Linien signifikant erhöhte Nüchternglukosespiegel. F.CD1-GIPRdn wie-

sen zudem signifikant höhere Nüchternglukosespiegel auf als transgene Mäuse auf B6 Hinter-

grund. Die Nüchternblutglukose der beiden Wildtyp-Linien unterschied sich nicht. Beide trans-

genen Linien wiesen einen steilen Anstieg der Blutglukose nach Glukosegabe auf, während die 

Wildtypen einen geringeren Anstieg zeigten. Nach 20-30 Minuten nach der Glukosezufuhr fiel 

der Blutzuckerspiegel aller Mäuse wieder ab. Beide transgenen Linien zeigten zu den meisten 

Zeitpunkten signifikant höhere Werte verglichen mit den entsprechenden Wildtyp-Wurfge-

schwistern. Transgene Mäuse der beiden Linien unterschieden sich kaum untereinander im 

Kurvenverlauf, genauso wenig wie Wildtypen (Abbildung 4.8). 
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Abbildung 4.8 oraler Glukosetoleranztest von F.CD1-GIPRdn und B6.CD1-GIPRdn im Vergleich 
zu FVB/N und C57Bl/6J Wildtyp-Wurfgeschwistern (WT): Daten zeigen Mittelwerte mit SEM; 
Signifikanzen sind in Tabelle 4.4 gezeigt 
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 0 

min 

10 

min 

20 

min 

30 

min 

60 

min 

90 

min 

120 

min 

F.CD1-GIPRdn zu WT FVB/N * n.s. * *** * n.s. n.s. 

B6.CD1-GIPRdn zu WT C57Bl/6J ** * *** *** *** *** ** 

F.CD1-GIPRdn zu B6.CD1-GIPRdn * n.s. n.s. n.s. n.s. n.s. n.s. 

FVB/N WT zu C57Bl/6J WT n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

Tabelle 4.4 oraler Glukosetoleranztest: Kruskall-Wallis Test für 0 min, Post-Hoc Dunn’s mul‐
tiple comparison test; 120 min; Welch Test für 10 min, 20 min, 60 min, 90 min, Post-HOC Dun-
nett T3 Test; One Way ANOVA für 30 min, Post-HOC LSD Test; Signifikanzen: n.s.: p > 0,05, *p 
≤ 0,05, **p ≤ 0,01, ***p ≤ 0,001 
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4.6. Area under curve Glukose oraler Glukosetoleranztest 

Die Fläche unter der Glukosekurve (AUC Glukose) des Glukosetoleranztests der GIPRdn trans-

genen Mäuse war signifikant höher als bei den entsprechenden nicht-transgenen Wurfge-

schwistern (Abbildung 4.9). Zwischen den Linien gab es keine signifikanten Unterschiede. 
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Abbildung 4.9 Area under glucose curve (AUC Glukose) im oralen Glukosetoleranztest von 
F.CD1-GIPRdn und B6.CD1-GIPRdn im Vergleich zu FVB/N und C57Bl/6J Wildtyp-Wurfge-
schwistern (WT): Daten zeigen Mittelwerte mit SEM; n.s.: p > 0,05, ***p ≤ 0,001 
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4.7. Harnvolumen in 24 Stunden 

Die Messung des 24 Stunden Harnvolumens erfolgte im Alter von circa 85 Tagen. Wie in Ab-

bildung 4.10 gezeigt, wiesen die F.CD1-GIPRdn gegenüber den FVB/N Wildtypen, aber auch 

gegenüber B6.CD1-GIPRdn sehr stark erhöhte 24h-Harnvolumina auf (p<0,001). Im Vergleich 

zu den nicht-transgenen Wurfgeschwistern betrug das Volumen des Urins der transgenen 

FVB/N circa das 20fache. Das Harnvolumen der transgenen C57Bl/6J Mäuse war gegenüber 

den B6 Wildtypen auch signifikant erhöht, es betrug etwa das Doppelte. Die Harnvolumina der 

Wildtypen beider Linien unterschieden sich nicht signifikant (Abbildung 4.10). 

 

Abbildung 4.10: 24h-Harnvolumen von GIPRdn transgenen und Wildtypmäusen (WT) am 85. 
Lebenstag, Daten zeigen Mittelwerte mit SEM; Kruskall-Wallis Test, Post-HOC Dunn’s multiple 
comparison Test; Signifikanzen: n.s.: p > 0,05, *p ≤ 0,05, ***p ≤ 0,001 
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4.8. Wasserverbrauch in 24 Stunden 

Der tägliche Wasserverbrauch von F.CD1-GIPRdn war gegenüber den nicht-transgenen Wurf-

geschwistern und B6.CD1-GIPRdn signifikant erhöht. Währenddessen unterschied sich der 

Wasserverbrauch zwischen B6.CD1-GIPRdn und B6 Wildtypen und auch zwischen den Wildty-

pen beider Linien nicht (Abbildung 4.11). 

 

Abbildung 4.11: 24h-Wasserverbrauch von GIPRdn transgenen und Wildtypmäusen (WT) am 
85. Lebenstag: Daten zeigen Mittelwerte mit SEM; Kruskall-Wallis Test, Post-HOC Dunn’s mul‐
tiple comparison Test; Signifikanzen: n.s.: p > 0,05, **p ≤ 0,01 

Die Werte der Blutglukose (siehe Kapitel 4.2) wurden mit denen des Wasserverbrauchs (Kapi-

tel 4.8) und des Harnvolumens (Kapitel 4.7) in Bezug gesetzt, um jeweils dem empirischen 

Korrelationskoeffizienten zu bestimmen. Für die Korrelation zwischen Blutglukose und Was-

serverbrauch ergab sich ein Wert von 0.93, für die Korrelation zwischen Blutglukose und Han-

volumen ein Wert von 0,95.  
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4.9. Futterverbrauch in 24 Stunden 

Wie in Abbildung 4.12 ersichtlich, war der tägliche Futterverbrauch der F.CD1-GIPRdn Mäuse 

gegenüber Wildtypen und dem von B6.CD1-GIPRdn signifikant erhöht. Zwischen den B6.CD1-

GIPRdn und den nicht-transgenen Wurfgeschwistern und zwischen den Wildtypen beider Li-

nien gab es keinen signifikanten Unterschied im Futterverbrauch (Abbildung 4.12).  

 

Abbildung 4.12 24h Futterverbrauch von GIPRdn transgenen und Wildtypmäusen (WT) am 
85. Lebenstag: Daten zeigen Mittelwerte mit SEM; Kruskall-Wallis Test, Post-HOC Dunn’s mul‐
tiple comparison Test; Signifikanzen: n.s.: p > 0,05, *p ≤ 0,05, **p ≤ 0,01 
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4.10. Pankreasgewichte 

Im Alter von 10 Tagen unterschieden sich die Pankreasgewichte der vier Gruppen nicht signi-

fikant voneinander (Abbildung 4.13). 

 

Abbildung 4.13 Pankreasgewicht von GIPRdn transgenen und Wildtypmäusen (WT) am 10. 
Lebenstag: Daten zeigen Mittelwerte mit SEM; Welch Test, Post-HOC Dunnett‘s T3 Test; Sig-
nifikanzen: n.s.: p > 0,05 
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Im Alter von 90 Tagen war das Pankreasgewicht der FVB/N Wildtypmäusen deutlich höher als 

das der anderen drei Gruppen. Das Pankreasgewicht der GIPRdn transgenen C57Bl/6 Mäuse 

unterschied sich nicht signifikant von dem der nicht-transgenen Wurfgeschwister (Abbildung 

4.14).  

 

Abbildung 4.14 Pankreasgewicht von GIPRdn transgenen und Wildtypmäusen (WT) am 90. 
Lebenstag: Daten zeigen Mittelwerte mit SEM; One Way ANOVA, Post-HOC LSD Test; Signifi-
kanzen: n.s.: p > 0,05, ***p ≤ 0,001 
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Bei allen untersuchten Gruppen war das Pankreasgewicht mit 90 Tagen deutlich höher als mit 

10 Tagen (Abbildung 4.15).  
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Abbildung 4.15 Vergleich der Pankreasgewichte von GIPRdn transgenen und Wildtypmäusen 

(WT) 10. und 90. Lebenstag: Daten zeigen Mittelwerte mit SEM; Signifikanzen sind in Tabelle 

4.5 dargestellt 

F.CD1-GIPRdn d10 zu F.CD1-GIPRdn d90 ** 

B6.CD1-GIPRdn d10 zu B6.CD1-GIPRdn d90 ** 

FVB/N WT d10 zu FVB/N WT d90 ** 

C57Bl/6J WT d10 zu C57Bl/6J WT d90 ** 

Tabelle 4.5 Pankreasgewichte: Vergleich zwischen 10 und 90 Tage alten Tieren. Mann-Whit-
ney-U Test; Signifikanzen: **p ≤ 0,01 
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Die Pankreasgewichte bezogen auf das Körpergewicht unterschieden sich am zehnten Lebens-

tag nicht signifikant voneinander. Am 90. Lebenstag wiesen die Wildtypen der Linie FVB/N 

signifikant höhere relative Pankreasgewichte auf als die F.CD1-GIPRdn. Die Wildtypen der Linie 

C57Bl/6J zeigten niedrigere relative Pankreasgewichte als die der Linie FVB/N, jedoch war die-

ser Unterschied nicht signifikant (Abbildung 4.16). 
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Abbildung 4.16: A: Relatives Pankreasgewicht von F.CD1-GIPRdn und B6.CD1-GIPRdn (GIPRdn) 
im Vergleich zu FVB/N und C57Bl/6J Wildtyp-Wurfgeschwistern (WT) A: 10 Tage; B: 90 Tage: 
Daten zeigen Mittelwerte mit SEM; Kruskal-Wallis-Test, Post-HOC Dunn’s multiple comparison 
Test; Signifikanzen: n.s.: p > 0,05, *p ≤ 0,05 
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4.11. Volumendichte der Inseln im Pankreas 

Mit zehn Tagen gab es keine signifikanten Unterschiede in der Volumendichte der Inseln im 

Pankreas, jedoch wiesen die transgene Mäuse tendenziell niedrigere Werte als Wildtypwurf-

geschwister auf. Mit 90 Tagen zeigten die F.CD1-GIPRdn eine signifikant niedrigere Volumen-

dichte der Inseln im Pankreas verglichen mit FVB/N Wildtypen, während die B6.CD1-GIPRdn 

zwar etwas niedriger Werte aufwiesen als B6 Wildtypen, jedoch war dieser Unterschied nicht 

signifikant. FVB/N Wildtypen zeigten signifikant höhere Volumendichten der Inseln im Pan-

kreas als B6 Wildtypen (Abbildung 4.17). 

A 

V
V

(I
n

s
e

l,
 P

a
n

k
r
e

a
s

)

0

51 0 -3

11 0 -2

21 0 -2

21 0 -2

31 0 -2

W T

G IP R
d n

F V B /N C 5 7 B l/6 J

n .s .
n .s .

n .s .

n .s .

 

B 

V
V

(I
n

s
e

l,
 P

a
n

k
r
e

a
s

)

0

2 .01 0 -3

4 .01 0 -3

6 .01 0 -3

8 .01 0 -3

1 .01 0 -2

W T

G IP R
d n

F V B /N C 5 7 B l/6 J

* *

*

n .s .

n .s .

 

Abbildung 4.17 Volumendichte der Inseln im Pankreas bei GIPRdn transgenen Mäusen und 
Wildtypen (WT), A: 10 Tage, B: 90 Tage,: Daten zeigen Mittelwerte mit SEM; Kruskal-Wallis-
Test, Post-HOC Dunn’s multiple comparison Test; Signifikanzen: n.s.: p > 0,05, *p ≤ 0,05, ** ≤ 
0,005 

  



93 
 

4.12. Volumendichte der Betazellen in den Inseln 

Am zehnten Lebenstag gab es keine signifikanten Unterschiede der Volumendichte der Be-

tazellen in den Inseln. Mit 90 Tagen wiesen die F.CD1-GIPRdn eine signifikant niedrigere Volu-

mendichte der Betazellen in den Inseln auf, verglichen mit den FVB/N Wildtypen und den 

B6.DC1-GIPRdn (Abbildung 4.18). 
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Abbildung 4.18 Volumendichte der Betazellen in den Inseln bei GIPRdn transgenen Mäusen 
und Wildtypen (WT), A: 10 Tage, B: 90 Tage: Daten zeigen Mittelwerte mit SEM; Kruskal-Wal-
lis-Test, Post-HOC Dunn’s multiple comparison Test; Signifikanzen: n.s.: p > 0,05, *p ≤ 0,05, ** 
≤ 0,005 
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4.13. Volumendichte der isolierten Betazellen im Pankreas 

Bereits mit 10 Tagen wiesen B6.CD1-GIPRdn signifikant niedrigere Volumendichte der isolier-

ten Betazellen im Pankreas auf als B6 und FVB/N Wildtypen. Am 90. Lebenstag zeigten trans-

gene Mäuse beider Linien deutlich niedrigere Volumendichten der isolierten Betazellen im 

Pankreas als Wildtypen der entsprechenden Linie (Abbildung 4.19). 
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Abbildung 4.19 Volumendichte der isolierten Betazellen im Pankreas bei GIPRdn transgenen 
Mäusen und Wildtypen (WT), A: 10 Tage, B: 90 Tage: Daten zeigen Mittelwerte mit SEM; 
Kruskal-Wallis-Test, Post-HOC Dunn’s multiple comparison Test; Signifikanzen: n.s.: p > 0,05, 
*p ≤ 0,05, ** ≤ 0,005 
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4.14. Gesamtinselvolumen 

Am 10. Lebenstag ließen sich noch keine signifikanten Unterschiede im Gesamtinselvolumen 

der vier untersuchten Gruppen feststellen. Transgene Mäuse beider Linien zeigten gegenüber 

den Wildtypen ein leicht, wenn auch nicht signifikant niedrigeres Gesamtinselvolumen. Tiere 

auf dem genetischen Hintergrund FVB/N zeigten tendenziell höhere Gesamtinselvolumina als 

der gleiche Genotyp auf C57Bl/6J Hintergrund (Abbildung 4.20). 

 

 

Abbildung 4.20 Gesamtinselvolumen von GIPRdn transgenen und Wildtypmäusen (WT) am 
10. Lebenstag: Daten zeigen Mittelwerte mit SEM; Kruskal-Wallis Test, Post-HOC Dunn’s mul‐
tiple comparison Test; Signifikanzen: n.s.: p > 0,05 
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Das Gesamtinselvolumen von 90 Tage alten GIPRdn transgenen FVB/N Mäuse war gegenüber 

den nicht-transgenen Wurfgeschwistern signifikant erniedrigt (p<0,01). Das Gesamtinselvolu-

men der transgenen C57Bl/6J Mäuse war ebenfalls signifikant niedriger als das der Wildtyp-

Wurfgeschwister, jedoch war der Unterschied nicht so stark ausgeprägt wie zwischen trans-

genen FVB/N und Wildtyp Mäusen. Das Gesamtinselvolumen der FVB/N Wildtypen war signi-

fikant höher als das der C57Bl/6J Wildtypen. (Abbildung 4.21).  

 

Abbildung 4.21 Gesamtinselvolumen von GIPRdn transgenen und Wildtypmäusen (WT) am 
90. Lebenstag: Daten zeigen Mittelwerte mit SEM; Kruskall-Wallis Test, Post-HOC Dunn’s mul‐
tiple comparison Test; Signifikanzen: n.s.: p > 0,05, **p ≤ 0,01  
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Während das Gesamtinselvolumen der FVB/N Wildtypen mit 90 Tagen 6fach höher war, war 

es bei transgenen Mäusen nur um circa ein Drittel höher als bei den entsprechenden 10 Tage 

alten Tieren. Sowohl bei transgenen B6 als auch bei B6 Kontrollmäusen verdoppelte sich das 

Gesamtinselvolumen zwischen dem 90ten und 10ten Lebenstag (Abbildung 4.22).  
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Abbildung 4.22 Gesamtinselvolumen von GIPRdn transgenen und Wildtypmäusen (WT) am 

10. und 90. Lebenstag: Daten zeigen Mittelwerte mit SEM; Signifikanzen sind in Tabelle 4.6 

dargestellt. 

F.CD1-GIPRdn d10 zu F.CD1-GIPRdn d90 ** 

B6.CD1-GIPRdn d10 zu B6.CD1-GIPRdn d90 ** 

FVB/N WT d10 zu FVB/N WT d90 ** 

C57Bl/6J WT d10 zu C57Bl/6J WT d90 ** 

Tabelle 4.6 Gesamtinselvolumen: Vergleich 10 und 90 Tage. Mann-Whitney-U-Test; Signifi-
kanz: **p ≤ 0,01  
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4.15. Gesamtbetazellvolumen 

Mit 10 Tagen ließen sich noch keinerlei signifikante Unterschiede im Gesamtbetazellvolumen 

der vier untersuchten Gruppen feststellen. Es fällt jedoch auf, dass die transgenen Tiere beider 

Linien gegenüber Wildtypen tendenziell niedrigere Gesamtbetazellvolumina aufweisen. Die 

Gesamtbetazellvolumina der Wildtypen beider Linien unterscheiden sich untereinander 

kaum, ebenso wenig wie die der transgenen Tiere beider Linien (Abbildung 4.23). 

 

Abbildung 4.23 Gesamtbetazellvolumen von GIPRdn transgenen und Wildtypmäusen (WT) 
am 10. Lebenstag: Daten zeigen Mittelwerte mit SEM; One Way ANOVA Post-HOC LSD Test; 
Signifikanzen: n.s.: p > 0,05 
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Mit 90 Tagen war das Gesamtbetazellvolumen der transgenen FVB/N gegenüber den Wildtyp-

Tieren auf ein Sechstel reduziert. Bei den transgenen C57Bl/6J Mäusen war das Gesamtbe-

tazellvolumen gegenüber den Wildtypen nicht ganz halbiert (p<0,01). Die transgene FVB/N 

zeigten ein signifikant niedrigeres Gesamtbetazellvolumen als die transgenen C57Bl/6J 

Mäuse. Bei den Wildtypen waren die Verhältnisse genau umgekehrt: FVB/N Wildtypen zeigten 

ein mehr als doppelt so hohes Gesamtbetazellvolumen als B6 Wildtypen. (Abbildung 4.24) 

 

Abbildung 4.24 Gesamtbetazellvolumen von GIPRdn transgenen und Wildtypmäusen (WT) 
am 90. Lebenstag: Daten zeigen Mittelwerte mit SEM; Kruskal-Wallis Test, Post-HOC Dunn’s 
multiple comparison Test; Signifikanzen: **p ≤ 0,01 
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Bei 90 Tage alten transgenen Tieren war das Gesamtbetazellvolumen signifikant höher als bei 

10 Tage alten Tieren. F.CD1-GIPRdn zeigten aber eine deutlichere Zunahme des Gesamtbe-

tazellvolumens (3,5fach) als B6.CD1-GIPRdn (2fach). Vergleicht man 10 und 90 Tage alte Tiere, 

verdreifachte sich das Gesamtbetazellvolumen bei den B6 Wildtypen, bei den FVB/N Wildty-

pen stieg es in etwa um das sechsfache an (Abbildung 4.25). 
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Abbildung 4.25 Gesamtbetazellvolumen von GIPRdn transgenen und Wildtypmäusen (WT) 

10. und 90. Lebenstag: Daten zeigen Mittelwerte mit SEM; Signifikanzen sind in Tabelle 4.7 

dargestellt 

F.CD1-GIPRdn d10 zu F.CD1-GIPRdn d90 * 

B6.CD1-GIPRdn d10 zu B6.CD1-GIPRdn d90 ** 

FVB/N WT d10 zu FVB/N WT d90 ** 

C57Bl/6J WT d10 zu C57Bl/6J WT d90 ** 

Tabelle 4.7 Gesamtbetazellvolumen: Vergleich 10 und 90 Tage. Mann-Whitney-U-Test; Signi-
fikanzen: *p ≤ 0,05, **p ≤ 0,01 
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4.16. Gesamtvolumen der isolierten Betazellen 

Das Gesamtvolumen der isolierten Betazellen war bei beiden transgenen Gruppen tendenziell 

niedriger als bei den entsprechenden Wildtyp-Wurfgeschwistern. Das Gesamtvolumen der 

isolierten Betazellen bei C57Bl/6J Wildtypen war signifikant höher als bei FVB/N Wildtypen,  

B6.CD1-GIPRdn zeigten ein etwas höheres Gesamtvolumen isolierter Betazellen als F.CD1-

GIPRdn (n.s.) (Abbildung 4.26).  

 

Abbildung 4.26 Gesamtvolumen isolierter Betazellen von GIPRdn transgenen und Wild-
typmäusen (WT) am 10. Lebenstag: Daten zeigen Mittelwerte mit SEM; Welch Test, Post-HOC 
Dunnett T3 Test; Signifikanzen: n.s.: p > 0,05, **p ≤ 0,01 
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Bei den 90 Tage alten Mäusen zeigten GIPRdn transgene Tiere gegenüber Wildtypen ein sig-

nifikant niedrigeres Gesamtvolumen von isolierten Betazellen im Pankreas (p<0,01). Während 

sich die Werte unter den Wildtypen nicht signifikant unterschieden, war bei den transgenen 

Tieren das Gesamtvolumen der isolierten Betazellen im Pankreas der C57Bl/6J Mäuse circa 

dreimal so hoch wie bei den transgenen FVB/N Mäusen (Abbildung 4.27). 

 

Abbildung 4.27 Gesamtvolumen der isolierten Betazellen von GIPRdn transgenen und Wild-
typmäusen (WT) am 90. Lebenstag: Daten zeigen Mittelwerte mit SEM; Kruskal-Wallis Test, 
Post-HOC Dunn’s multiple comparison Test; Signifikanzen: n.s.: p > 0,05, **p ≤ 0,01 
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Das Gesamtvolumen der isolieren Betazellen war bei allen vier Gruppen im Alter von 90 Tagen 

signifikant niedriger als mit 10 Tagen (Abbildung 4.28). 
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Abbildung 4.28 Gesamtvolumen der isolierten Betazellen von GIPRdn transgenen und Wild-
typmäusen (WT) am 10. und 90. Lebenstag: Daten zeigen Mittelwerte mit SEM; Mann-Whit-
ney-U-Test; Signifikanzen sind in Tabelle 4.8 dargestellt 

F.CD1-GIPRdn d10 zu F.CD1-GIPRdn d90 * 

B6.CD1-GIPRdn d10 zu B6.CD1-GIPRdn d90 * 

FVB/N WT d10 zu FVB/N WT d90 ** 

C57Bl/6J WT d10 zu C57Bl/6J WT d90 ** 

Tabelle 4.8 Gesamtvolumen der isolierten Betazellen: Vergleich 10 und 90 Tage. Mann-Whit-
ney-U-Test, Signifikanzen: * ≤ 0,05, ** ≤ 0,01 
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4.17. PCNA-positive Kernanschnittprofile in den Inseln  

Bei den 10 Tage alten Versuchstieren zeigten sich quantitativ keine signifikanten Unterschiede 

bei der Replikationsrate in den Inseln (Abbildung 4.29).  
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Abbildung 4.29 Anzahl der PCNA positiven Kernanschnittprofile in den Inseln von GIPRdn 

transgenen und Wildtypmäusen (WT) am 10. Lebenstag: Daten zeigen Mittelwerte mit SEM; 

Kruskal-Wallis Test, Post-HOC Dunn’s multiple comparison Test; Signifikanzen: n.s.: p > 0,05 
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Im Alter von 90 Tagen zeigten die GIPRdn transgenen Mäuse beider Linien eine signifikant hö-

here Anzahl von PCNA positiven Zellkernanschnittprofilen in den Inseln (Abbildung 4.30).  
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Abbildung 4.30 Anzahl der PCNA positiven Kernanschnittprofile in den Inseln von GIPRdn 
transgenen und Wildtypmäusen (WT) am 90. Lebenstag: Daten zeigen Mittelwerte mit SEM; 
Kruskal-Wallis Test, Post-HOC Dunn’s multiple comparison Test; Signifikanzen: n.s.: p > 0,05, 
*p ≤ 0,05 
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Am Tag 90 betrug die Replikationsrate bei den GIPRdn transgenen Mäusen beider genetischer 

Hintergründe, wie in Abbildung 4.31 ersichtlich, nur circa ein Siebtel der Replikationsrate am 

Tag 10. Bei den Wildtypen beider Linien betrug die Replikationsrate mit 90 Tagen in etwa ein 

Dreizehntel der Replikationsrate an Tag 10. 
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Abbildung 4.31 Anzahl der PCNA positiven Kernanschnittprofile in den Inseln von GIPRdn 
transgenen und Wildtypmäusen (WT) am 10. und 90. Lebenstag: Daten zeigen Mittelwerte 
mit SEM; Signifikanzen sind in Tabelle 4.9 dargestellt  

F.CD1-GIPRdn d10 zu F.CD1-GIPRdn d90 ** 

B6.CD1-GIPRdn d10 zu B6.CD1-GIPRdn d90 ** 

FVB/N WT d10 zu FVB/N WT d90 ** 

C57Bl/6J WT d10 zu C57Bl/6J WT d90 ** 

Tabelle 4.9 Replizierende Kernanschnittprofile: Tag 10 und Tag 90. Mann-Whitney-U-Test; Sig-
nifikanzen: ** ≤ 0,01 

  



107 
 

4.18. Cleaved-Caspase 3-positive Kernanschnittprofile in den Inseln 

Mit 10 Tagen ließen sich keine signifikanten Unterschiede zwischen den vier untersuchten 

Gruppen feststellen. B6.CD1-GIPRdn zeigten deutlich mehr apoptotische Kernanschnittsprofi-

len in den Inseln als F.CD1-GIPRdn, allerdings war dieser Unterschied nicht signifikant 

(Abbildung 4.32). 
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Abbildung 4.32 Anzahl apoptotischer Kernanschnittprofile in den Inseln von GIPRdn transge-
nen und Wildtypmäusen (WT) am 10. Lebenstag: Daten zeigen Mittelwerte mit SEM; One 
Way ANOVA, Post-HOC LSD Test; Signifikanzen: n.s.: p > 0,05 
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Auch mit 90 Tagen gab es innerhalb der vier Gruppen keine signifikanten Unterschiede 

(Abbildung 4.33). Die transgenen Tiere beider Linien wiesen höhere Apoptoseraten auf, vor 

allem B6.CD1-GIPRdn, allerdings war dieser Unterschied nicht signifikant. 
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Abbildung 4.33 Anzahl apoptotischer Kernanschnittprofilen in den Inseln von GIPRdn trans-
genen und Wildtypmäusen (WT) am 90. Lebenstag: Daten zeigen Mittelwerte mit SEM; 
Kruskal-Wallis Test, Post-HOC Dunn’s multiple comparison Test; Signifikanzen: n.s.: p > 0,05 
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Im Vergleich zwischen Tag 10 und Tag 90 (Abbildung 4.34) wiesen die GIPRdn transgenen 

Mäuse und Wildtypen beider genetischer Hintergründe mit 10 Tagen eine größere Anzahl an 

apoptotischen Kernanschnittprofilen in den Inseln auf als 90 Tage alte Tiere, dieser Unter-

schied war jedoch nicht signifikant. 
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Abbildung 4.34 Anzahl apoptotischer Kernanschnittprofile in den Inseln von GIPRdn transge-

nen und Wildtypmäusen (WT) am 10. und 90. Lebenstag: Daten zeigen Mittelwerte mit SEM; 

Signifikanzen sind in Tabelle 4.10 eingetragen  

F.CD1-GIPRdn d10 zu F.CD1-GIPRdn d90 n.s. 

B6.CD1-GIPRdn d10 zu B6.CD1-GIPRdn d90 n.s. 

FVB/N WT d10 zu FVB/N WT d90 n.s. 

C57Bl/6J WT d10 zu C57Bl/6J WT d90 n.s. 

Tabelle 4.10 Apoptotische Kernanschnittprofile: Tag 10 und Tag 90. Mann-Whitney-U-Test; 
Signifikanzen: n.s.: > 0,05 
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4.19. Qualitativ histologische Befunde am endokrinen Pankreas 

4.19.1 Inselmorphologie 

Am 10. Lebenstag ließen sich mikroskopisch nur wenig auffällige Unterschiede am Pankreas 

feststellen (Abbildung 4.35). So konnte man erkennen, dass die Inselprofile von GIPRdn trans-

genen Tieren weniger stark gefärbte Betazellen aufweisen als Wildtypen. Allerdings war dieser 

Unterschied nur andeutungsweise zu erkennen. 
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Abbildung 4.35 Inselprofile von GIPRdn transgenen (B, D) und Wildtypmäusen (WT, A, C) der 
Linie FVB/N (A, C) und C57Bl/6 (B, D) am 10. Lebenstag, Insulin-Immunhistochemie 
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Mit 90 Tagen ließ sich sofort erkennen, welche Insel von einem GIPRdn transgenen Tier stammt 

und welche von einem Wildtypen. Die Insulinfärbung bei transgenen Tieren war wesentlich 

schwächer und es waren weniger Zellen, die Insulin positiv markieren, erkennbar. Insulinne-

gative Zellen waren bei transgenen Tieren beider Linien über das gesamte Inselprofil verteilt 

zu finden, bei Wildtypen lagen diese Nicht-Betazellen maustypisch in der Peripherie der Insel 

(Abbildung 4.36). 
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Abbildung 4.36 Inselprofil von GIPRdn transgenen (B, D) und Wildtypmäusen (WT, A, C) der 
Linie FVB/N (A, C) und C57Bl/6 (B, D) am 90. Lebenstag, Insulin-Immunhistochemie  
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4.19.2 PCNA Immunhistochemie 

Bei den 10 Tage alten Mäusen ließen sich zahlreiche replizierende Zellen finden. Die Anzahl 

der gezählten immunhistochemisch gefärbten Zellkernanschnittsprofile variierte in den unter-

schiedlichen Inseln stark, jedoch unabhängig davon, von welcher untersuchten Tiergruppe die 

Insel stammte (Abbildung 4.37, Abbildung 4.38).  
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Abbildung 4.37 Inselprofil von GIPRdn transgenen (B, D) und Wildtypmäusen (WT, A, C) der 
Linie FVB/N (A, C) und C57Bl/6 (B, D) am 10. Lebenstag, PCNA Immunhistochemie 
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Auch bei den 90 Tage alten Mäusen war die Replikationsrate nicht verschieden. Es fiel jedoch 

sofort auf, dass nur noch vereinzelt Zellkerne immunhistochemisch markiert waren, was einen 

sehr großen Unterschied zu den Inseln der 10 Tage alten Mäuse darstellte. 
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Abbildung 4.38 Inselprofil von GIPRdn transgenen (B, D) und Wildtypmäusen (WT, A, C) der 
Linie FVB/N (A, C) und C57Bl/6 (B, D) am 90. Lebenstag, PCNA Immunhistochemie 
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5. Diskussion 

5.1. Diskussion genereller Aspekte der Studie 

Weltweit waren im Jahr 2013 382 Millionen Menschen an DM erkrankt. Das sind 8,3 % der 

Gesamtbevölkerung. Schätzungen zufolge solle sich die Zahl der Diabetiker bis zum Jahr 2035 

nahezu verdoppeln. Der Hauptteil der Erkrankten sind dabei Typ 2 Diabetiker. 

(INTERNATIONAL DIABETES FEDERATION, 2013). In Deutschland werden im Moment durch-

schnittlich 20 % der Jahresausgaben der gesetzlichen Krankenkassen auf die Behandlung von 

DM und seinen Folgeerkrankungen verwendet (DEUTSCHE DIABETES UNION, 2007). Diese 

Zahlen unterstreichen die momentane Bedeutung von DM. Die Lebensqualität eines Typ 2 Di-

abetikers kann durch die Krankheit massiv eingeschränkt sein und oftmals kommt es durch 

kardiovaskuläre Komplikationen oder Nierenversagen als Spätfolge des Diabetes zu einem 

verfrühten Tod. Wenngleich viele Risikofaktoren identifiziert wurden, sind die genauen Ursa-

chen für Typ 2 Diabetes noch immer nicht bekannt. 

Sowohl für die Erforschung von Pathomechanismen des Typ 2 DM und seinen Spätkomplika-

tionen als auch für die Entwicklung von Therapieansätzen stellen Mausmodelle eine gute Basis 

dar. Die GIPRdn transgene Maus, die zunächst auf CD1 Hintergrund gezüchtet und charakteri-

siert wurde, hat sich als sehr gut geeignetes Diabetes-Modell herauskristallisiert. Da diese 

Mäuse einen schweren Diabetes mit Hyperglykämie, Hypoinsulinämie, Polydipsie, Polyurie, 

Glukosurie und Gewichtsabnahme (HERBACH et al., 2005) entwickeln, weisen sie vom klini-

schen Status her Symptome eines Menschen mit Diabetes mellitus Typ 2 auf. Außerdem zei-

gen GIPRdn transgene Mäuse fortgeschrittene diabetesassoziierte Alterationen an der Niere, 

weswegen sie sich als Forschungsmodell für die Diabetische Nephropathie eignen (HERBACH 

et al., 2009). Es konnte auch nachgewiesen werden, dass sich der diabetische Phänotyp der 

GIPRdn transgenen Mäuse durch eine ballaststoffreiche Diät deutlich abmildert (HERBACH et 

al., 2008). Ernährung ist für die Behandlung von Diabetes Typ 2 beim Menschen höchst rele-

vant, daher ist das Mausmodell auch in dieser Hinsicht sehr wertvoll. Außerdem weist das in 

der Vergangenheit häufig benutzte Streptozotocin (STZ) diabetische Mausmodell Schwächen 

auf. Es konnte gezeigt werden, dass der High-Responder-Stamm C57Bl/6J nach STZ Applika-

tion nur einen milden Diabetes entwickelt im Vergleich zu C57Bl/6J Mäusen, welche einen 
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genetisch bedingten (Akita-Mutation) Diabetes zeigen (GURLEY et al., 2006). Damit ist ein ge-

netisch bedingter Diabetes dem chemisch induzierten Diabetes im Mausmodell vorzuziehen, 

besonders, da STZ auch Tumore auslösen kann, die die Versuchsergebnisse unter anderem 

durch Einschränkung des allgemeinen Gesundheitsstatus beeinträchtigen könnten. Dass au-

ßerdem der genetische Hintergrund, auf den eine Mutation verbracht wird, den diabetischen 

Phänotyp beeinflusst, wurde in der Vergangenheit mehrfach gezeigt (COLEMAN, 1992; 

BROSIUS et al., 2009; GURLEY et al., 2010) Die Rückkreuzung der GIPRdn transgenen Maus auf 

verschiedene genetische Hintergründe ist daher sinnvoll, da verschiedene Mäusstämme eine 

unterschiedliche Suszeptibilität hinsichtlich der Ausprägung des diabetischen Phänotyps, der 

Schwere der morphologischen Veränderungen am Pankreas und des Ausmaßes der Spätkom-

plikationen aufweisen. Dass dies zumindest bei der Diabetischen Nephropathie der Fall ist, 

zeigte die Studie von Popper 2013, in der GIPRdn transgene Mäuse auf BALB/c Hintergrund 

rückgekreuzt wurden (C.CD1-GIPRdn). Die diabetischen Tiere auf CD1 Hintergrund entwickel-

ten signifikant höhere Albuminurie, signifikante podozytäre Hypertrophie und stärkere glo-

merulosklerotische Veränderungen als C.CD1-GIPRdn. Letzteres ist vermutlich durch das grö-

ßere Glomerulumvolumen bei transgenen CD1 Mäusen im Vergleich zu C.CD1-GIPRdn verur-

sacht, weshalb ein hohes Podozytenvolumen als angeborene Prädisposition für Glomeru-

loskleroe vermutet wird (POPPER, 2013). Daher zeigte die Studie, dass der genetische Hinter-

grund CD1 besser geeignet ist, um mit GIPRdn transgenen Mäusen die späteren Stadien der 

diabetischen Nephropathie zu untersuchen als der genetische Hintergrund BALB/c. Ein Ein-

fluss des genetischen Hintergrunds auf die Ausprägung einer diabetischen Nephropathie 

wurde auch bei Streptozotocin-induziertem Diabetes gezeigt. In einer Studie zeigt sich der 

häufig für die Forschung genutzte Stamm C57Bl/6J weitgehend resistent gegenüber diabeti-

scher Nephropathie, während die Stämme DBA/2J und KK/HIJ signifikant höhere Albuminurie 

und stärkere glomeruläre Alterationen aufweisen. Der ebenfalls untersuchte Stamm FVB/N 

zeigt in der Studie Polyurie, erhöhte Harnkreatininwerte und ordnet sich mit der Empfänglich-

keit intermediär ein (QI et al., 2005). In einer weiteren Studie mit dem Stamm C57Bl/6J kann 

dessen Unempfänglichkeit für diabetische Nephropathie infolge STZ-Injektionen bestätigt 

werden, während Mäuse des Stamms CD1 infolge der einmaligen STZ-Injektion nach circa drei 

Monaten fortgeschrittene renale Alterationen entwickeln und sechs bis sieben Monate nach 

Diabetesbeginn versterben (SUGIMOTO et al., 2007). 
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Es ist durchaus möglich, dass andere genetische Hintergründe als CD1 noch besser geeignet 

sind, den Diabetes mellitus und dessen Spätfolgen am GIPRdn transgenen Mausmodell zu un-

tersuchen. In der Diabetesforschung wird sehr häufig der Stamm C57Bl/6J verwendet, obwohl 

es sich um einen relativ diabetesresistenten oder intermediär empfänglichen Stamm handelt 

(QI et al., 2005; CLEE & ATTIE., 2007, BERGLUND et al., 2008). Daher ist die Charakterisierung 

des diabetischen Phänotyps und der morphologischen Veränderungen des Pankreas im GIPRdn 

transgenen Mausmodell auf diesem Hintergrund von großer Relevanz. In der vorliegenden 

Studie wurden der diabetische Status und die Pankreasveränderungen GIPRdn transgener 

Mäuse auf C57Bl/6J Hintergrund mit transgenen Mäusen auf dem genetischen Hintergrund 

FVB/N verglichen. Die Befunde, die bei den zwei neuen Linien erhoben wurden, werden im 

Folgenden mit den Untersuchungsergebnissen einer ähnlichen Studie, in der GIPRdn transge-

nen Mäuse auf CD1 Hintergrund untersucht wurden, diskutiert, um beurteilen zu können, wel-

cher genetische Hintergrund sich am besten für welche Fragestellung eignet.  

In der vorliegenden Studie wurden kongene Inzuchtstämme generiert, indem GIPRdn trans-

gene Mäuse auf CD1 Hintergrund über mindestens 10 Generationen hinweg auf C57Bl/6J und 

auf FVB/N Hintergrund zurück gekreuzt wurden (B6.CD1-GIPRdn, F.CD1-GIPRdn). Anschließend 

wurde anhand von mehreren Blutglukosemessungen, eines Insulintoleranztests, dem Messen 

von Stoffwechselfunktionen innerhalb von 24 Stunden und einem oralen Glukosetoleranztest 

eine genaue klinische Charakterisierung des diabetischen Status der beiden GIPRdn transgenen 

Linien im Vergleich zu nicht-transgenen Wurfgeschwistern durchgeführt. Dafür wurden je-

weils acht transgene Mäuse und acht Wildtypen jeder Linie untersucht. Für die morphometri-

sche Analyse des Pankreasgewebes und insbesondere auch der postnatalen Entwicklung des 

Pankreas wurden verschiedene Parameter wie Pankreasvolumen, Gesamtinsel- und -betazell-

volumen bei jeweils sechs transgenen Mäusen und sechs Wildtypen im Alter von 10 und 90 

Tagen bei beiden Linien bestimmt. Dies ermöglicht einen umfassenden Vergleich der unter-

schiedlichen klinischen Ausprägung des Diabetes mellitus und eventueller Unterschiede in der 

postnatalen Entwicklung des Pankreas zwischen den beiden untersuchten Mäuselinien. 

5.2. Klinische Untersuchungen 

Wenn man die frei gefütterten Körpergewichte der Wildtypen beider Linien und der transge-

nen Wurfgeschwister zu mehreren Zeitpunkten vergleicht, fällt auf, dass die transgenen 

Mäuse zwar immer ein tendenziell niedrigeres Gewicht haben, als die Wildtypen, aber dieser 
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Unterschied ist nicht signifikant. Bei GIPRdn transgenen Mäusen auf CD1 Hintergrund ist das 

Körpergewicht an Tag 30 und Tag 90 signifikant niedriger als bei gleichalten Wildtypen, wobei 

zu bedenken ist, dass es sich bei diesen Werten um korrigierte Werte handelt, bei denen der 

Inhalt von Magen und Darm abgezogen wurde, da transgene Tiere einen signifikant stärker 

gefüllten Darm in Folge der Hyperphagie aufweisen (HERBACH et al., 2005). Möglicherweise 

ist die starke Füllung des Darmtrakts aufgrund der Hyperphagie (s.u.) dafür verantwortlich, 

dass eine eventuelle Abnahme von tatsächlicher Körpermasse verschleiert wird und deswegen 

bei frei gefütterten Mäusen keine Unterschiede im Körpergewicht bestehen. Mit 90 Tagen 

weisen die F.CD1-GIPRdn das niedrigste Körpergewicht auf, welches zu diesem Zeitpunkt nach 

15 Stunden Fasten gewogen wurde. Auch die B6.CD1-GIPRdn weisen nüchtern ein niedrigeres 

Körpergewicht auf als die Wildtypen der Linie, was die These einer Verschleierung der Ab-

nahme des Körpergewichts durch Hyperphagie, und damit mehr Darminhalt, stärkt. Jedoch ist 

dieser Unterschied bei B6.CD1-GIPRdn nicht signifikant. Weitere Untersuchungen belegen, 

dass bei GIPRdn transgenen Mäusen auf CD1 und BALB/c (C) Hintergrund das Körpergewicht 

mit 6 Monaten signifikant niedriger ist als bei gleichalten Wildtypen, wobei in dieser Studie 

das Körpergewicht nicht um den gastrointestinalen Inhalt korrigiert ist (POPPER, 2013). Die 

Reduktion von Muskel- und Fettgewebe als Folge der Hypoinsulinämie/Hyperglykämie wurde 

in früheren Untersuchungen für die Reduktion des Körpergewichts verantwortlich gemacht 

(HERBACH et al., 2008). Bei B6.CD1-GIPRdn könnte demnach die weniger ausgeprägte Störung 

der Glukosehomöostase (s.u.) zum Erhalt des Körpergewichts beitragen. Bei F.CD1-GIPRdn sind 

die Blutglukosespiegel jedoch ähnlich hoch wie bei GIPRdn x CD1 (s.u.), womit eine ähnliche 

Körpergewichtsreduktion bei beiden Stämmen zu erwarten wäre.  

Bei F.CD1-GIPRdn lässt sich bereits mit 21 Tagen mit Hilfe eines Teststreifens eine schwere 

Glukosurie feststellen, bei B6.CD1-GIPRdnentwickelt sich erst zwischen 35 und 40 Tagen eine 

Glukosurie, die meist nicht so ausgeprägt ist wie bei F.CD1-GIPRdn, was auf ein späteres Ein-

setzten des Diabetes hinweist. Der Diabetes bei GIPRdn transgenen Mäusen auf CD1 Hinter-

grund setzt circa zwischen 14 und 21 Tagen ein, was wahrscheinlich durch eine Umstellung 

von Milch auf feste Nahrung bedingt ist, wodurch die GIP/GIPR-Achse zunehmend an Bedeu-

tung gewinnt (HERBACH et al., 2005). Bei der Untersuchung der Blutglukose zeigen die GIPRdn 

transgenen Mäuse beider Linien schon am 10. Lebenstag leicht erhöhte Werte gegenüber ih-

ren nicht-transgenen Wurfgeschwistern. Dieser Unterschied wird bei F.CD1-GIPRdnam 21. Le-

benstag signifikant und bei B6.CD1-GIPRdn erst am 45. Lebenstag. Dementsprechend ist die 
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Blutglukose der B6.CD1-GIPRdn auch schon am 21. Lebenstag signifikant niedriger als die der 

F.CD1 -GIPRdn. Dieser Unterschied vergrößert sich mit fortschreitendem Alter weiter, sodass 

die F.CD1-GIPRdn mit 80 Tagen doppelt so hohe Glukosewerte zeigen als die B6.CD1-GIPRdn. 

Die Blutglukosespiegel der Wildtypen beider Linien unterscheiden sich nicht signifikant vonei-

nander. Verantwortlich für die Hyperglykämie ist auf zellulärer Ebene wahrscheinlich eine ver-

minderte Exozytose von Insulin, die durch einen Defekt von Ca2+ Einstrom ausgelöst ist, der 

durch ein stark eingeschränktes Wirken von GIP bedingt ist. Zusätzlich wurden bei GIPRdn 

transgenen Mäusen auf CD1 Hintergrund postprandial erhöhte Glukagonwerte festgestellt 

(HERBACH et al., 2005). Glukagon führt über Miniglukagon zu einer Schließung von spannungs-

abhängigen Ca2+ Kanälen und somit wird zusätzlich die insulinotrope Wirkung von Glukose und 

GLP-1 verhindert (DALLE et al., 2004). Dass die Blutglukosewerte der B6.CD1-GIPRdn signifikant 

niedriger sind als die Werte der F.CD1-GIPRdn ist vermutlich durch die größere funktionelle 

Betazellmasse von B6.CD1-GIPRdn erklärt, womit mehr Betazellen zur Verfügung stehen, die 

Insulin sezernieren (siehe 5.3). Es wäre auch denkbar, dass die Betazellfunktion bei F.CD1-

GIPRdn durch die Expression des mutierten Rezeptors stärker gestört ist als bei B6.CD1-GIPRdn. 

Auch die Nüchternblutglukosewerte der B6.CD1-GIPRdn sind gegenüber den F.CD1-GIPRdn sig-

nifikant niedriger, während sich die Wildtypen beider Linien nicht signifikant unterscheiden. 

B6.CD1-GIPRdn zeigen nach 15 Stunden Fasten zwar noch signifikant höhere Werte als die 

nicht-transgenen Wurfgeschwister, viele der transgenen Mäuse weisen jedoch Blutglukose-

werte unter 150 mg/dl auf. Bei der Maus sind Nüchternglukosespiegel von 220 mg/dl häufig 

noch kein Indiz für einen Diabetes mellitus (CLEE & ATTIE, 2007). F.CD1-GIPRdn weisen dagegen 

stark erhöhte Nüchternglukosespiegel gegenüber ihren nicht transgenen Wurfgeschwistern 

auf. Vergleicht man die Nüchternblutglukosewerte GIPRdn transgener Mäuse auf CD1 Hinter-

grund am Tag 90 mit B6.CD1-GIPRdn  weisen B6.CD1-GIPRdn transgene Mäuse nur halb so hohe 

Werte auf wie die GIPRdn x CD1, während F.CD1-GIPRdn fast identisch hohe Blutglukosewerte 

erreichen (HERBACH et al., 2011). Ausgehend von den Blutglukosewerten können F.CD1-

GIPRdn Mäuse als diabetesempfänglich im GIPRdn Mausmodell eingeordnet werden, während 

B6.CD1-GIPRdn Mäuse eher diabetesresistent sind. Eine Seruminsulinmessung könnte zeigen, 

ob die beiden Linien unterschiedliche Insulinspiegel aufweisen. Bei der Ursprungslinie GIPRdn 

zeigen die GIPRdn transgenen Mäuse ab dem 30. Lebenstag signifikant niedrigere Seruminsu-

linwerte als nicht-transgene Wurfgeschwister. Frei gefüttert weisen männliche GIPRdn trans-
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gene Mäuse mit 30 Tagen 18,8fach reduzierte Seruminsulinwerte auf (p<0,05) und postpran-

dial zeigen sie mit 90 Tagen 6,9 fach reduzierte Seruminsulinwerte (p<0,05, HERBACH et al., 

2005). Der pankreatische Insulingehalt ist bei GIPRdn transgenen Mäusen signifikant niedriger 

(~ 70 %) als bei nicht-transgenen Wurfgeschwistern (HERBACH et al., 2011). Bei einem Ver-

gleich der Insulinaktion der beiden Stämme FVB/N und C57Bl/6 zeigten die Tiere des Stammes 

FVB/N auf Hyperglykämie keine erhöhte Insulinausschüttung, während die Mäuse des Stam-

mes C57Bl/6 in vivo intermediär auf Glukosezufuhr reagieren. An isolierten Inseln wies der 

Stamm C57Bl/6 eine schwächere glukosestimulierte Insulinsekretion auf als in vivo 

(BERGLUND et al., 2008). Der Mäusestamm C57Bl/6J hat sich in der Vergangenheit oft relativ 

resistent gegenüber Diabetesentwicklung gezeigt. So weisen db/db Mutanten auf C57Bl/6J 

Hintergrund nur milden Diabetes auf (COLEMAN, 1992) und auch ob/ob Mutanten auf B6 Hin-

tergrund zeigen nur eine schwache Hyperglykämie und keine verlangsamte Triglycerid-

Clearance (YAMAUCHI et al., 2001). Der genetische Hintergrund hat einen starken Einfluss auf 

die Schnelligkeit der Triglycerid-Clearance, welche wiederum wichtig für die Ausprägung des 

diabetischen Phänotyps ist (HALUZIK et al., 2004). Auch ohne genetische Mutation zeigen ver-

schiedene Mäusestämme unterschiedliche Glukosemetabolismusregulierungen. So weisen 

Mäuse des Stamms FVB/N nur eine schwache Reaktion auf Hyperglykämie mit keiner signifi-

kant erhöhten Insulinausschüttung und einer relativen Insulinresistenz in der Leber auf, aber 

sie zeigen die höchste Gegenregulierung der in einer Studie untersuchten Mäusestämme bei 

Hypoglykämie. Der Stamm C57Bl/6J ordnet sich mit seinen Reaktionen auf Hyper- und Hy-

poglykämie eher intermediär zwischen den in der Studie untersuchten Mäusestämmen ein, 

weist aber ohne Stimulation die höchsten Glukose- und Glukagonwerte auf, während die 

Mäuse des Stamms FVB/N die niedrigsten Basisglukagonwerte zeigen (BERGLUND et al., 

2008). 

Im Insulintoleranztest sprechen die GIPRdn transgenen Mäuse beider Linien auf Insulin an, wo-

bei B6.CD1-GIPRdn normoglykämische Bereiche erreichen, während die F.CD1-GIPRdn noch 

circa 100 mg/dl über den Ausgangswerten liegt. Die Fläche unter der Glukosekurve während 

des Insulintoleranztests von F.CD1-GIPRdn ist signifikant höher als bei Wildtypen und bei 

B6.CD1-GIPRdn. Bei B6.CD1-GIPRdn ist kein Unterschied zu B6 Wildtypen zu finden und auch 

die Wildtypen untereinander unterscheiden sich nicht. Die Ergebnisse unterstreichen die Re-

sultate von früheren Studien (HERBACH, 2002; HERBACH et al., 2011), dass GIPRdn transgene 

Mäuse mit einem ausgeprägten Diabetes mellitus eine milde Insulinresistenz entwickeln, die 
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von der chronischen Hyperglykämie herrührt (DEL PRATO, 2009). Darüber hinaus wurde ge-

zeigt, dass gesunde FVB/N Mäuse eine hepatische Insulinresistenz gegenüber anderen In-

zuchtstämmen wie z.B. B6 entwickeln (BERGLUND et al., 2008). In der vorliegenden Untersu-

chung zeigten FVB/N Wildtypen jedoch lediglich 10 Minuten nach Insulingabe höhere Gluko-

sespiegel als C57Bl/6J Wildtypen. 

Beim oralen Glukosetoleranztest erreichen die B6.CD1-GIPRdn Mäuse 10 Minuten nach Gluko-

severabreichung ähnlich hohe Werte wie F.CD1-GIPRdn und beide Linien zeigen die gesamte 

Testdauer einen ähnlichen Kurvenverlauf. Die Wildtypen zeigen im gesamten Verlauf des ora-

len Glukosetoleranztest ebenfalls einen ähnlichen Verlauf der Glukosekurve und unterschei-

den sich nie signifikant voneinander. Generell lässt sich bei den transgenen Mäusen beider 

Linien eine stark beeinträchtigte Glukosetoleranz feststellen. Anders als bei den Inkretinre-

zeptor-Knockout Mausmodellen (GLP-1-/-, GIPR-/-, DIRKO) ist bei der GIPRdn transgenen Maus 

keine Kompensation des Ausfalls von GIP zu erwarten, da der GIP Rezeptor nicht ausgeschaltet 

ist, sondern nur ein mutierter GIP Rezeptor exprimiert wird, bei dem keine Signaltransduktion 

in Anschluss an die Kopplung von GIP eingeleitet wird. Es werden auch endogene GIP Rezep-

toren exprimiert und diese konkurrieren mit den dominant negativen GIP Rezeptoren um den 

Liganden. Es kommt nicht zu einer kompensatorischen Erhöhung von GLP-1, wie es in GIPR-/- 

Mäusen der Fall ist (PAMIR et al., 2003). Jedoch weisen GIPRdn transgenen Mäuse eine signifi-

kant erniedrigte Sekretion von Insulin gegenüber Wildtypen infolge GLP-1 Stimulation auf und 

die Glukagonsekretion wird durch Glukosegabe nicht gehemmt (HERBACH et al., 2011). Inte-

ressanterweise zeigen die B6.CD1-GIPRdn eine ähnlich starke Glukoseintoleranz wie die F.CD1-

GIPRdn, obwohl das Gesamtbetazellvolumen bei B6.CD1-GIPRdn etwa doppelt so hoch ist als 

bei F.CD1-GIPRdn und zudem B6.CD1-GIPRdn keine Insulinresistenz aufweisen. Dies legt den 

Schluss nahe, dass die Betazellfunktion bei B6.CD1-GIPRdn durch die Expression des mutierten 

Rezeptors stärker beeinflusst ist als bei F.CD1-GIPRdn. Da die starke Störung der Glukosetole-

ranz den gering veränderten frei gefütterten Glukosespiegeln widerspricht, könnte es auch 

sein, dass bei B6.CD1-GIPRdn Mäusen Glukose alleine keine so gute Betazellantwort im Sinne 

einer Insulinsekretion hervorruft als handelsübliches Futter. 

Beim Vergleich der Stoffwechselfunktionen zeigen die GIPRdn transgenen Mäuse auf FVB/N 

Hintergrund sowohl im Vergleich zu den FVB/N Wildtypen, als auch im Vergleich zu den 

B6.CD1-GIPRdn einen vielfach höheren Wasserverbrauch in 24 Stunden und entsprechend 
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auch eine viel höhere Harnproduktion. B6.CD1-GIPRdn weisen ebenfalls eine deutliche Polyu-

rie auf, die jedoch signifikant niedriger ist als bei den F.CD1-GIPRdn. In einer anderen Studie, 

bei der streptozotozindiabetische Mäuse verglichen wurden, zeigen FVB/N Mäuse ebenfalls 

eine ausgeprägtere Polyurie als C57Bl/6J Mäuse (QI et al., 2005). Mit 6 Monaten zeigen die 

GIPRdn transgenen Mäuse auf CD1 Hintergrund einen vierfach erhöhten Wasserkonsum und 

ein fünffach erhöhtes 24 Stunden Urinvolumen , während die C.CD1-GIPRdn nur einen dreifach 

erhöhten Wasserkonsum aufweisen und ein zwar signifikant erhöhtes Urinvolumen im Ver-

gleich zu den Wildtypen, jedoch gegenüber den GIPRdn x CD1 ein signifikant niedrigeres Harn-

volumen (POPPER, 2013). Die Linie B6.CD1-GIPRdn zeigt von den fünf untersuchten Stämmen 

die geringste Polyurie, GIPRdn transgene Mäuse auf CD1 Hintergrund und F.CD1-GIPRdn zeigen 

die höchsten Urinvolumina. Die Ausprägung von Polyurie und Polydipsie sind am ehesten 

durch das Ausmaß der gestörten Glukosehomöostase bedingt und es gibt eine starke Korrela-

tion zwischen der Hyperglykämie am 80sten Lebenstag und der Polyurie und Polydipsie. Die 

transgene Mäuse auf F, C und CD1 Hintergrund weisen neben stark erhöhtem Wasserver-

brauch und Urinproduktion einen erhöhten Futterverbrauch gegenüber den zugehörigen 

Wildtypen auf, während B6.CD1-GIPRdn nur geringe Abweichungen von den Kontrolltieren zei-

gen. Erhöhte Nahrungszufuhr kann bei GIPRdn x CD1 und C.CD1-GIPRdn eine Gewichtsabnahme 

durch einen Insulinmangel jedoch nicht kompensieren (POPPER, 2013).  

5.3. Quantitativ-stereologische Untersuchungen 

Das Pankreasgewicht von F.CD1-GIPRdn und B6.CD1-GIPRdn unterscheidet sich am zehnten Le-

benstag nicht signifikant von nicht-transgenen Wurfgeschwistern. Auch GIPRdn x CD1 Mäuse 

weisen mit 10 Tagen keinen signifikanten Unterschied im Pankreasgewicht gegenüber Wild-

typen auf, genauso wenig wie im Alter von 30 und 90 Tagen (HERBACH et al., 2005). Mit 90 

Tagen jedoch zeigen F.CD1-GIPRdn signifikant niedrigere Pankreasgewichte als FVB/N Wildty-

pen. Da das endokrine Pankreas nur 1 - 2 % des Gewichts der gesamten Bauchspeicheldrüse 

ausmacht, ist durch eine Inselatrophie kein Unterschied im Gewicht oder Volumen des Pan-

kreas zu erwarten. Das deutlich niedrigere Pankreasgewicht und -volumen der F.CD1-GIPRdn 

im Alter von 90 Tagen könnte von einem verminderten Wachstum durch Insulinmangel her-

rühren, jedoch wird von keinem stärkeren Einfluss von Insulin als Wachstumsfaktor auf das 

exokrine Pankreas berichtet (ZHANG & LIU, 2014). Auch GIP, dessen Signaltransduktion in den 
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GIPRdn transgenen Mäusen unterbunden ist, ist ein Wachstumsfaktor für das endokrine Pan-

kreas, aber es ist keine Wirkung auf das exokrine Pankreas bekannt (BUTEAU et al., 1999). 

Interessant ist, dass das Pankreasgewicht der Wildtypen beider Linien mit 90 Tagen so stark 

voneinander abweicht. Obwohl sich das Körpergewicht der untersuchten Mäuse zu diesem 

Zeitpunkt nicht signifikant voneinander unterscheidet, weisen FVB/N Wildtypen doch ein um 

circa 20 % höheres Pankreasgewicht auf als B6 Wildtypen. Als Ursache dafür muss auch ein 

physiologisch niedrigeres Pankreasgewicht des Stamms C57Bl/6J in Betracht gezogen werden. 

Genauso, wie die Inselmasse durch den genetischen Hintergrund beeinflusst wird, kann das 

Pankreasgewicht dadurch beeinflusst sein. So weist der Stamm C57Bl/6J auch ein signifikant 

niedrigeres relatives Pankreasgewicht auf als die Stämme BALB/c und DBA/2 (BOCK et al., 

2005). Das relative Pankreas der FVB/N Wildtypen der vorliegenden Studie ist mit 1,7% deut-

lich höher als bei anderen Wildtypstämmen und auch als bei FVB/N Mäuse aus anderen Un-

tersuchungen (BÖTTINGER et al., 1997; SHAMSI et al., 2014). Der Grund hierfür ist unklar. Das 

Pankreasgewicht der beiden transgenen Linien unterscheidet sich zu keinem der untersuchten 

Zeitpunkte und war auch in früheren Studien nie verschieden (HERBACH et al., 2005; HERBACH 

et al., 2011).  

Das Gesamtinselvolumen GIPRdn transgener Mäuse beider Linien ist am Tag 10 nur tendenziell 

niedriger als bei den entsprechenden Wildtypen. Neunzig Tage alte F.CD1-GIPRdn dagegen zei-

gen ein mehr als vierfach niedrigeres Gesamtinselvolumen als FVB/N Wildtypen (p<0,01) und 

ein etwas niedrigeres Gesamtinselvolumen als gleichalte B6.CD1-GIPRdn (n.s.). Das Gesamtin-

selvolumen bei B6.CD1-GIPRdn ist im Vergleich zu Kontrollen nahezu auf 50% reduziert 

(p<0,01). Dagegen weisen FVB/N Wildtypen ein mehr als doppelt so hohes Gesamtinselvolu-

men wie C57Bl/6J Wildtypen auf (p<0,01). Die FVB/N Wildtypen weisen auch eine doppelt so 

hohe Volumendichte der Inseln im Pankreas auf wie die C57Bl/6J Wildtypen, was dagegen 

spricht, dass das hohe Gesamtinselvolumen alleinig durch das hohe Pankreasgewicht bedingt 

ist. Die Volumendichte der Inseln im Pankreas bei F.CD1-GIPRdn ist nur halb so groß wie bei 

nicht-transgenen Wurfgeschwistern am 90. Lebenstag. Bei B6.CD1-GIPRdn dagegen ist die Vo-

lumendichte der Inseln im Pankreas am 90. Lebenstag nur um circa 30% reduziert gegenüber 

den Wildtypen. Bei F.CD1-GIPRdn ist die Volumendichte der Betazellen in den Inseln signifikant 

reduziert gegenüber den nicht-transgenen Wurfgeschwistern und gegenüber B6.CD1-GIPRdn. 

Letztere dagegen weisen keine geringere Volumendichte der Betazellen in den Inseln auf als 

ihre nicht-transgenen Wurfgeschwister. Die Reduktion des Gesamtbetazellvolumens von 
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B6.CD1-GIPRdn lässt sich damit alleinig auf das reduzierte Gesamtinselvolumen zurückführen, 

während es bei den F.CD1-GIPRdn auf eine Reduktion des Gesamtinselvolumens zurückzufüh-

ren ist und die Inseln überdies mit weniger Betazellen ausgestattet sind. Die Komposition der 

Inseln hat sich als essentiell für die Betazellfunktion erwiesen (HERBACH et al., 2007) 

(HERBACH et al., 2005). Demnach kann die stärker gestörte Glukosehomöostase von F.CD1-

GIPRdn durch additive Effekte einer gestörten GIPR-Funktion, einer reduzierten Betazellmasse 

und einer gestörten Betazellfunktion durch veränderte Komposition der Inseln ausgelöst sein. 

Die Veränderungen im endokrinen Pankreas bedeuten, dass transgene Mäuse beider Linien 

infolge der Expression des mutierten GIPR im Vergleich zu den entsprechenden Wildtypen 

weniger Inselmasse gebildet haben und/oder mehr Betazellen zugrunde gehen. Im zeitlichen 

Verlauf weisen sowohl die Wildtypen als auch die GIPRdn transgenen Mäuse beider Linien eine 

signifikante Zunahme des Gesamtinselvolumens auf. Diese ist allerdings bei den Wildtypen 

wesentlich stärker ausgeprägt. Die Zunahme des Gesamtinselvolumens ist hauptsächlich ver-

ursacht durch Inselzellreplikation bei einer geringen Apoptoserate, aber auch durch Inselneo-

genese und Inselteilung (HERBACH et al., 2005; HERBACH et al., 2011). Die unterschiedliche 

Volumenzunahme des endokrinen Pankreas bei Wildtypen und GIPRdn transgenen Mäusen er-

klärt sich unter anderem durch die vielfältigen Funktionen von GIP. GIP erhöht nach Bindung 

an den G-Protein gekoppelten GIPR den intrazellulären cAMP (cyclisches Adenosinmonophos-

phat) Gehalt und initiiert die Aktivierung der Proteinkinase A (PKA) mit nachfolgendem Schluss 

ATP-sensitiver K-Kanäle. Die daraus resultierende Membrandepolarisation führt zur Öffnung 

von spannungsabhängigen Calciumkanälen und zum Calciumeinstrom in die Betazelle und da-

mit zur Insulinexozytose (HOLST, 1994). GIP steigert die Signaltransduktion von Proteinkina-

sen wie MAPK (mitogen-activated protein Kinase) oder CREB (cAMP regulatory element bin-

der) (TRÜMPER et al., 2001). Über eine Modulation der p38 MAPK Aktivität kann GIP das Zell-

überleben verbessern, da über eine Hemmung der Phophorylierung von p38 MAPK deren an-

tiapoptotische Wirkung durch Hemmung der Caspase-3 aufrechterhalten wird (EHSES et al., 

2003). Außerdem hat GIP einen mitogenen Einfluss auf Betazellen über MAPK und ist syner-

gistisch mit Glukose ein Wachstumsfaktor für differenzierte Betazellen über PKA/CREB, MAPK 

und PI3K/PKB (Phosphoinositid-3-Kinasen/Proteinkinase B) (TRÜMPER et al., 2001; TRUMPER 

et al., 2002). Ein defekter Einstrom von Ca2+ und eine gestörte cAMP Produktion, infolge einer 

gestörten GIP-Signaltransduktion, führen zu einer mangelnden Aktivierung von p38 MAPK und 

CREB (ARNETTE et al., 2003) und damit zu einer beeinträchtigten Entwicklung des endokrinen 
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Pankreas. Ein dritter denkbarer Mechanismus, der zu einer Malformation des endokrinen Pan-

kreas führen könnte, wäre eine gestörte Expression von Transkriptionsfaktoren wie Pdx-1 

(homeobox Protein). Dieser Transkriptionsfaktor wird in der embryonalen Entwicklung vom 

Entoderm exprimiert und alle pankreatischen Zelltypen leiten sich von Pdx1 exprimierenden 

Progenitorzellen ab (MURTAUGH & MELTON, 2003). Wenn man GIP oder den GIPR inhibiert, 

führt das zu einer verminderten Anzahl von Pdx-1 positiven Zellen im embyonalen Pankreas 

(PRASADAN et al., 2011). Alle drei Mechanismen sind abhängig von einer Signaltransduktion 

G-Protein gekoppelter Rezeptoren und zeigen deren Wichtigkeit für die Inselentwicklung und 

–neogenese. Bei GIPRdn transgenen Mäusen auf CD1 Hintergrund sind bereits mit 10 Tagen 

das Gesamtinsel- und –betazellvolumen signifikant reduziert, also bereits vor Einsetzten des 

Diabetes. Daher können die Veränderungen noch nicht Folge des diabetischen Status, der Hy-

perglykämie und der Hypoinsulinämie, sein (HERBACH et al., 2005). Es gibt die Hypothese, 

dass der Wettbewerb um die Bindung von GIP zwischen endogenen GIP Rezeptoren und do-

minant negativen GIP Rezeptoren eine frühe Störung der GIP Rezeptor Signalübertragung aus-

löst, die eine beeinträchtigte Expansion des endokrinen Pankreas zur Folge hat (HERBACH et 

al., 2011), weil die mitotische und zellschützende Wirkung von GIP in Kombination mit Glukose 

stark beeinträchtigt wird (BAGGIO & DRUCKER, 2007). 

GIPRdn transgene Mäuse beider in dieser Studie untersuchten Linien zeigen mit 90 Lebensta-

gen ein signifikant niedrigeres Gesamtbetazellvolumen als ihre nicht-transgenen Wurfge-

schwister. Der Unterschied zwischen Wildtyp und B6.CD1-GIPRdn ist jedoch wesentlich gerin-

ger als bei F.CD1-GIPRdn. Das Gesamtbetazellvolumen von F.CD1-GIPRdn ist halb so hoch als 

bei B6.CD1-GIPRdn. FVB/N Wildtypen zeigen dagegen ein mehr als doppelt so hohes Gesamt-

betazellvolumen als B6 Wildtypen. F.CD1-GIPRdn zeigen somit eine stärkere Störung des post-

natalen Insel- und Betazellwachstums als B6.CD1-GIPRdn. Eine mögliche Erklärung könnte die 

Zunahme des Gesamtinsel- und Betazellvolumens der Wildtypen zwischen Tag 10 und Tag 90 

sein, welche überwiegend durch die Vermehrung von Inseln und Betazellproliferation zu-

stande kommt (FINEGOOD et al., 1995; GEORGIA & BHUSHAN, 2004; HERBACH et al., 2011). 

Außerdem unterscheidet sich der Aufbau des endokrinen Pankreas zwischen den beiden 

Stämmen. Die F.CD1-GIPRdn zeigen subjektiv betrachtet eine deutlich erniedrigte Zahl an In-

selprofilen im histologischen Schnitt und bei den verbliebenen Inseln färbt sich nur ein kleiner 

Teil der Zellen positiv für Insulin. Die FVB/N Wildtypen weisen dagegen sehr große Inselprofile 
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auf, bei denen der überwiegende Teil, circa 80 – 90 %, insulinpositiv gefärbt ist. Eine Unter-

scheidung zwischen Gewebe von transgenen Mäusen und Wildtypen ist auf den ersten Blick 

möglich. Bei den B6.CD1-GIPRdn und den C57Bl/6J Wildtypen dagegen fällt diese subjektive 

Unterscheidung deutlich schwerer. Auch bei der Ursprungslinie GIPRdn x CD1 ist die Architek-

tur des endokrinen Pankreas verändert, die Insel- und Betazellzahlen sind bereits ab dem 

10ten Lebenstag signifikant niedriger und die Größe der Inseln ist ab dem 90sten Lebenstag 

reduziert (HERBACH et al., 2011). 

Die Empfänglichkeit für Diabetes kann bei den db/db BKS Mäusen (db/db auf C57BlKS/J Hin-

tergrund) auf eine reduzierte Proliferation und hohe Apoptoseraten zurückgeführt werden. 

Die Hypothese, dass genetisch bedingte Unterschiede bei verschiedenen genetischen Hinter-

gründen in der Proliferationskapazität und der Apoptosefrequenz zu einer Phänotyp-Varianz 

beitragen, wurde in einer Studie von Puff et al. (2011) bestätigt (PUFF et al., 2011). Schon vor 

Einsetzten des Diabetes weisen db/db Mäuse auf BKS Hintergrund höhere Apoptoseraten auf 

als db/db Mäuse auf C57Bl/6J (B6) Hintergrund. Die Replikation nimmt bei db/db BKS Mäusen 

mit zunehmendem Alter schnell ab, während die Replikationsrate bei db/db B6 Mäusen nur 

langsamen abfällt und mit 12 Wochen noch doppelt so viele replizierende Zellen aufweisen 

wie die db/db BKS Mäuse. Die verminderte Replikation der db/db BKS Mäuse ist vermutlich 

nicht auf den Diabetes zurückzuführen, da Hyperglykämie replikationsfördernd ist (BONNER-

WEIR et al., 1989; SWENNE, 1992; GUILLEMAIN et al., 2007; JETTON et al., 2008). Auch die 

fünffach höhere Apoptoserate bei den db/db BKS ist unabhängig vom Diabetes, da die Abwei-

chungen zwischen den Linien schon vor Einsetzten des Diabetes bestanden. Dementspre-

chend zeigen die db/db BKS einem Abfall der Betazellmasse ab der zehnten Lebenswoche auf 

circa 3 mg, während die db/db B6 einen konstanten Anstieg der Betazellmasse bis auf 8 mg 

verzeichnen, was einen sehr unterschiedlichen diabetischen Phänotyp der beiden Linien aus-

löst (PUFF et al., 2011). Die Replikationsraten der C57Bl/6J Maus sind zum Beispiel doppelt so 

hoch wie die der eng verwandten C57Bl/6K Maus, die wesentlich empfänglicher für Diabetes 

ist (SWENNE & ANDERSSON, 1984). Dies legt den Schluss für die vorliegende Studie nahe, dass 

durch eine stärkere Proliferation der Betazellen bei B6.CD1-GIPRdn mehr Insel-/Betazellmasse 

erhalten bleibt. Wenn man die Replikationsraten der vier untersuchten Gruppen dieser Studie 

vergleicht, lassen sich am Tag 10 keinerlei signifikante Unterschiede feststellen. Am Tag 90 

jedoch weisen die GIPRdn transgenen Tiere beider Linien eine signifikant höhere Replikation 

auf als die nicht-transgenen Wurfgeschwister, was als ein Regenerationsversuch gedeutet 
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werden kann. Allerdings zeigen die B6.CD1-GIPRdn keine höhere Replikation als F.CD1-GIPRdn. 

Da jedoch Replikationsraten im histologischen Schnitt nicht sehr genau zu bestimmen sind 

und es sich um eine Momentaufnahme handelt, zu einem Zeitpunkt (10 Tage) vor und nach-

dem die Reduktion der Inseln und Betazellen bereits vorlag, schließt die unveränderte Prolife-

rationrate nicht aus, dass zu einem anderen Zeitpunkt unterschiedliche Replikationsraten vor-

lagen. Bei gesunden Mäusen und Ratten ist die Betazellreplikation hauptverantwortlich für die 

postnatale Expansion des endokrinen Pankreas (FINEGOOD et al., 1995; GEORGIA & 

BHUSHAN, 2004). Bis zu vier Monaten kommt es zu einer massiven Zunahme von Betazell- 

und Inselmasse; es kommt zur Verdopplung der Masse zwischen ein und zwei Monaten und 

zwischen drei und vier Monaten. Mit vier Monaten entspricht die Replikationsrate bei der 

Ratte etwa der Apoptoserate, wodurch die Betazellmasse ab diesem Zeitpunkt ungefähr gleich 

bleibt (FINEGOOD et al., 1995). Es konnte auch gezeigt werden, dass die Massenzunahme des 

endokrinen Pankreas durch einen Anstieg von Insel- und Betazellzahl verursacht ist, also mit 

einer Hyperplasie und nicht mit einer Hypertrophie einhergeht. Das heißt, dass die durch-

schnittliche Inselgröße gleich bleibt und die durchschnittliche Betazellgröße sogar zwischen 

Tag 10 und Tag 45 sinkt (HERBACH et al., 2011). Bei GIPRdn x CD1 transgenen Mäusen ist die 

Replikation, wie auch die Inselzellneogenese, signifikant reduziert gegenüber Wildtypen 

(HERBACH et al., 2005; HERBACH et al., 2011). Allerdings wurden replizierende Zellen in den 

Studien mit GIPRdn x CD1 Mäusen durch BrdU markiert, während in dieser Studie eine Färbung 

durch PCNA gewählt wurde, wodurch die Ergebnisse nicht vergleichbar sind. Die durchschnitt-

liche Inselgröße nimmt initial in den GIPRdn transgenen Mäusen auf CD1 Hintergrund zu, was 

durch eine akute Hyperglykämie verursacht ist, die die Betazellreplikation fördert. Diese 

proliferativen Effekte von Glukose konnte schon durch Versuche mit Glukoseinfusionen in der 

Ratte gezeigt werden (BERNARD et al., 1998). Durch chronische Hyperglykämie und Glukoto-

xizität kommt es dann jedoch zu vermehrter Apoptose, dem Fehlen von Replikation und einem 

signifikantem Abfall des Gesamtbetazellvolumens und der durchschnittlichen Inselgröße. Die 

Glukotoxizität führt zu oxidativem Stress, der sich mittels einem Marker – Serummalondialde-

hyd – nachweisen lässt. Dieser Marker war bei 90 Tage alten GIPRdn transgenen Mäusen auf 

CD1 Hintergrund signifikant erhöht (HERBACH et al., 2011). Außer der Glukotoxizität hat auch 

noch die mangelnde Wirkung von GIP Einfluss auf erhöhte Apoptoseraten und erniedrigte 

Replikation. GIP hat eine antiapoptotische Wirkung, diese ist abhängig von einer pleiotropen 

Aktivierung von PKA/CREB, MAPK und P13K und wird synergistisch durch Glukose unterstützt 
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(TRUMPER et al., 2002). GIP ist des Weiteren ein mitogener Faktor für Betazellen und führt 

zur vermehrten Zelldifferenzierung und Gentranskription über Aktivierung der PKA/CREB, 

MAPK und P13K/PKB (EHSES et al., 2003). In der vorliegenden Studie unterscheiden sich die 

Apoptoseraten weder an Tag 10 noch an Tag 90 signifikant voneinander, weder zwischen 

Wildtyp und GIPRdn transgenem Tier noch im zeitlichen Verlauf. Allerdings sind morphologi-

sche Anzeichen für Apoptosen kurzlebig und apoptotische Zellen werden schnell von Makro-

phagen entfernt, daher ist es schwierig, eine exakte Bestimmung der Apoptoserate durchzu-

führen (SCAGLIA et al., 1995; BONNER-WEIR et al., 2000). Beim Menschen wird von einer pe-

rinatalen Betazellapoptosewelle berichtet (KASSEM et al., 2000) und auch bei der Ratte gibt 

es eine neonatale Apoptosewelle, die der Remodellierung des Pankreas dient (SCAGLIA et al., 

1997). 

Das Gesamtvolumen isolierter Betazellen, als Indikator für Inselneogenese, ist bei 10 Tage al-

ten transgenen Tieren tendenziell und bei 90 Tage alten transgenen Tieren signifikant gegen-

über den entsprechenden Wildtypwurfgeschwistern reduziert. Diese Befunde decken sich mit 

den Ergebnissen früherer Studien mit GIPRdn x CD1 transgenen Mäusen (HERBACH et al., 2005; 

HERBACH et al., 2011). Mit 10 Tagen weisen B6.CD1-GIPRdn nur tendenziell höhere Neogenese 

auf als F.CD1-GIPRdn. Dagegen zeigen B6 Wildtypen mit 10 Tagen ein signifikant höheres Ge-

samtvolumen an isolierten Betazellen als FVB/N Wildtypen. Mit 90 Tagen weisen B6.CD1-

GIPRdneine circa dreifach höhere Neogenese auf als F.CD1-GIPRdn. Diese Neogenese könnte 

das signifikant höhere Gesamtbetazellvolumen bei transgenen Mäusen auf B6 vs. FVB/N Hin-

tergrund verursachen. Zwischen den beiden Wildtypstämmen sind mit 90 Tagen keine Unter-

schiede mehr feststellbar. Zwischen Tag 10 und Tag 90 kommt es sowohl bei GIPRdn transge-

nen Mäusen als auch bei den Wildtypen beider Linien zu einem signifikantem Abfall der Neo-

genese. Dies konnte auch bei früheren Studien mit Tieren auf CD1 Hintergrund belegt werden 

(HERBACH et al., 2005; HERBACH et al., 2011). 

Das Gesamtbetazellvolumen reicht erst bei einer Reduktion um 60-70% nicht mehr aus, um 

den Glukosemetabolismus zu regulieren (RAHIER et al., 1989). Das Gesamtbetazellvolumen 

der F.CD1-GIPRdn ist um 85 % verringert und weist damit nur noch 15 % des Gesamtbetazell-

volumens der nicht-transgenen Wurfgeschwister auf. Folglich entwickelt sich ein schwerer di-

abetischer Phänotyp. Die B6.CD1-GIPRdn dagegen weisen nur ein 45,5 % niedrigeres Gesamt-

betazellvolumen auf als ihre nicht-transgenen Wurfgeschwister. Mit den damit verbleibenden 
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54,5 % des Gesamtbetazellvolumens ist die Aufrechterhaltung der Glukosehomöostase besser 

möglich, wenn sie auch durch die gestörte GIP-Funktion eingeschränkt ist. Mit durchschnittli-

chen Nüchternblutglukosewerten von unter 120mg/dl am 90sten Lebenstag weisen die 

B6.CD1-GIPRdn zwar signifikant erhöhte Werte gegenüber B6 Wildtypen auf, jedoch sind ihre 

Blutglukosewerte nur circa halb so hoch wie die der F-CD1-GIPRdn. Allerdings zeigen die 

B6.DC1-GIPRdn im oralen Glukosetoleranztest eine ebenso starke Störung der Glukosetoleranz 

wie die F.CD1-GIPRdn, was anhand ihres gut erhaltenen Gesamtbetazellvolumens überra-

schend ist. Zu erwarten wäre aufgrund der größeren Masse an Betazellen, die Insulin sezer-

nieren können, eine deutlich bessere Glukosetoleranz als bei den F.CD1-GIPRdn. Allerdings ist 

bei einem oralen Glukosetoleranztest auch die Signalübermittlung durch GIP wichtig, das 

durch orale Aufnahme von Glukose ausgeschüttet wird. Die Signaltransduktion von GIP ist so-

wohl in F-CD1-GIPRdn als auch in B6.CD1-GIPRdn blockiert und somit kann nur deulich weniger 

als die Hälfte an Insulin nach Glukosegabe freigesetzt werden (HERBACH et al., 2011). 

5.4. Einfluss des genetischen Hintergrundes auf den Diabetes und das endokrine Pankreas 

B6.CD1-GIPRdn weisen ein gering vermindertes Gesamtinsel- und Gesamtbetazellvolumen im 

Vergleich zu den B6 Wildtypen auf, während F.CD1-GIPRdn ein stark erniedrigtes Gesamtinsel- 

und Gesamtbetazellvolumen im Vergleich zu nicht-transgenen Wurfgeschwistern zeigen. 

B6.CD1-GIPRdn weisen zudem ein signifikant höheres Gesamtbetazellvolumen als F.CD1-

GIPRdn auf, wohingegen B6 Wildtypen niedrigere Gesamtinsel- und –betazellvolumina zeigen 

als FVB/N Wildtypen (p<0,01). Diese Unterschiede in der Betazellmasse können zumindest 

zum Teil den milderen diabetischen Phänotyp der B6.CD1- GIPRdn erklären.  

Es wäre ebenso denkbar, dass bei B6.CD1-GIPRdn der mutierte Rezeptor in den Inseln nicht so 

stark exprimiert wird wie bei F.CD1-GIPRdn. Das „dominant“ in GIPRdn steht dafür, dass das der 

mutierte Rezeptor in diesem Mausmodell einen dominanten Effekt über den endogenen GIP-

Rezeptor ausübt, so dass dieser keine ausreichende Funktion mehr ausüben kann (VOLZ-

PETERS et al., 2000). Es wäre möglich, dass die Expression bei B6.CD1-GIPRdn niedriger ist als 

bei F.CD1-GIPRdn Mäusen und so noch eine größere Menge an Substrat an die endogenen GIP-

Rezeptoren bindet und damit der endogene Rezeptor die Funktion der GIP/GIPR Achse auf-

rechterhalten kann. Die Expressionsstärke eines ins Genom integrierten DNA-Abschnitts ist 

abhängig vom Integrationsort und der Anzahl der integrierten DNA-Kopien (VOLZ-PETERS et 
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al., 2000). Da beide transgenen Linien auf das gleiche Foundertier zurückgehen ist es unwahr-

scheinlich, dass der Integrationsort oder die Anzahl der integrierten Kopien bei beiden Linien 

unterschiedlich ist. Zudem sind eindeutig große Unterschiede zwischen den Wildtypen beider 

Linien zu erkennen. Die Grundausstattung der Wildtypen bezüglich Pankreasgewicht, Pan-

kreasvolumen, Gesamtinselvolumen und Gesamtbetazellvolumen variiert mit 90 Tagen stark. 

Am 90sten Lebenstag weisen die Wildtypen der Linie FVB/N circa eine doppelt so hohe Volu-

mendichte an Inseln im Pankreas auf und das Gesamtvolumen an Inseln und Betazellen ist 

ebenfalls signifikant erhöht im Vergleich zu Wildtypen der Linie C57Bl/6J. In einer Studie über 

den Einfluss des genetischen Hintergrundes auf die Größe und Struktur des endokrinen Pan-

kreas weist der Stamm C57Bl/6J die geringste Insel- und Betazellmasse auf (BOCK et al., 2005), 

reagiert als High Responder auf Streptozotocin-Injektionen und entwickelt deutlichen Diabe-

tes, was mit dem ohnehin schon geringen Gesamtinselvolumen erklärt wird. Der Stamm DBA 

mit der größten Insel- und Betazellmasse entwickelt jedoch einen noch stärkeren diabetischen 

Phänotyp (KAKU et al., 1988; CARDINAL et al., 1998). Nachdem FVB/N Wildtypen ebenfalls die 

höchsten Gesamtbetazellvolumina aufweisen decken sich die Ergebnisse mit den Befunden 

bei DBA-Mäusen. Der Stamm FVB/N zeigt in mehreren Studien eine hohe Empfänglichkeit für 

Diabetes. Auf db/db Hintergrund zeigen die FVB/N Mäuse eine größere Insulinresistenz, Hy-

perglykämie und Hyperinsulinämie als die Mäuse des Stamms C57Bl/6J. (CLEE & ATTIE, 2007). 

Bei einer genauen Untersuchung des Glukosemetabolismus der Stämme FVB/N und C57Bl/6J 

zeigt sich, dass die Tiere des Stamms C57Bl/6J auf Hyperglykämie sehr stark mit einem Insu-

linanstieg auf über 500 pmol/l reagieren, während die Tiere des Stamms FVB/N nur einen In-

sulinanstieg von unter 150 pmol/l aufweisen. Bei Hypoglykämie dagegen können die Mäuse 

des Stamms C57Bl/6J die Glukagonsekretion nur vervierfachen, während das Hormon bei den 

Mäusen des Stamms FVB/N 9,9fach ansteigt (BERGLUND et al., 2008). Dadurch erklärt sich, 

warum die Tiere des Stamms FVB/N generell höhere Blutglukosespiegel aufweisen.  

Um abzuklären, ob die Ursache für den geringeren diabetischen Phänotyp der GIPRdn transge-

nen Maus auf dem genetischen Hintergrund C57Bl/6J an einer weniger starken Expression des 

mutierten Rezeptors liegt, müsste nun die Expression an isolierten Inseln von GIPRdn transge-

nen Mäusen auf C57Bl/6J und FVB/N Hintergrund untersucht werden. Da die Inseln von GIPRdn 

transgenen Mäusen sehr fragil sind, ist eine Inselisolierung bei Ihnen sehr schwierig (HERBACH 

et al., 2011). Falls aber die Transgenexpression gleich stark ist, wäre ein denkbarer Ansatz, 

durch eine Kreuzung der beiden Stämme ein Suspectibility Gen ausfindig zu machen, das den 
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Stamm FVB/N anfälliger für Diabetes macht oder ein Resistenzgen zu finden, das den Stamm 

C57Bl/6J weniger anfällig für Diabetes macht. Auf diese Weise wurde auch die db/db Mutation 

untersucht. Beim Verbringen dieser Mutation auf FVB/N und C57Bl/6J Hintergründe fallen 

ebenfalls deutliche Unterschiede auf. Die db/db Mäuse auf FVB/N Hintergrund entwickeln die 

stärkere Hyperglykämie, Hyperinsulinämie, Inselhypertrophie und die stärkere Insulinresis-

tenz im Vergleich zu der db/db Maus auf C57Bl/6J Hintergrund (CHUA et al., 2002; LUO et al., 

2006). Es wurden db/db Mäuse mit C57Bl/6J Hintergrund auf FVB/N Hintergrund rückgekreuzt 

und es konnte ein Allel auf Chromosom 5 gefunden werden, bei dessen Vorkommen der 

Stamm FVB/N vermehrt Insulin produziert und der Stamm C57Bl/6J keine Insulinproduktion 

aufweist (LUO et al., 2006). Auch bei dieser Studie entwickeln die db/db Mäuse auf dem ge-

netischen Hintergrund FVB/N den stärkeren Diabetes, obwohl das Mausmodell ein ganz an-

ders funktionierendes System ist als die transgene GIPRdn Maus. Diese und ähnliche For-

schungsergebnisse kann man als Hinweis auf eine prinzipiell höhere Empfänglichkeit des 

Stamms FVB/N für Diabetes sehen, was die These bestätigen könnte, dass der genetische Hin-

tergrund die Ausprägung des diabetischen Phänotyps und die postnatale Entwicklung des Pan-

kreas maßgeblich beeinflusst. Im Falle des GIPRdn transgenen Mausmodells gibt es an dieser 

These nach der ausführlichen Charakterisierung des diabetischen Phänotyps und der postna-

talen Entwicklung des Pankreas nun kaum noch Zweifel. Es zeigte sich im Rahmen der vorlie-

genden Studie, dass GIPRdn transgene Mäuse auf dem genetischen Hintergrund FVB/N besser 

für die Diabetesforschung geeignet sind als GIPRdn transgene Mäuse auf C57Bl/6J Hintergrund, 

da sie einen wesentlich stärker ausgeprägten diabetischen Status und eine stärkere Malfor-

mation des Pankreas entwickeln. Im Idealfall können diese Forschungsergebnisse genutzt wer-

den, um ein Suspectibility Gen oder ein Resistenzgen für Diabetes zu entdecken, was helfen 

könnte, die Pathogenese des Diabetes mellitus besser zu verstehen. 
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6. Ausblick 

Die Daten dieser Studie zeigen deutlich, wie unterschiedlich die Ausprägung des diabetischen 

Phänotyps bei zwei verschiedenen Mauslinien sein kann, welche das selbe Transgen exprimie-

ren, in diesem Falle F.CD1-GIPRdn und B6.CD1-GIPRdn. Auch die postnatale Entwicklung des 

endokrinen Pankreas und die quantitativ stereologischen Daten wie das Gesamtinsel- und das 

Gesamtbetazellvolumen variieren stark in Abhängigkeit von der untersuchten Linie. Daher ist 

es für die weitere Suche nach gut geeigneten Modellen für die Diabetesforschung unerlässlich, 

den Einfluss weiterer stammspezifischer Faktoren auf den Diabetes und das endokrine Pan-

kreas GIPRdn transgener Mäuse zu charakterisieren, wie zum Beispiel die Stämmen BALB/c, 

DBA/2 oder NMRI. 

Des Weiteren müsste zu einer lückenlosen Abklärung der Ursache der unterschiedlichen Un-

tersuchungsergebnisse bei den Linien F.CD1-GIPRdn und B6.CD1-GIPRdn die Expression des do-

minant negativen GIP Rezeptors überprüft werden, was an isolierten Inseln von GIPRdn trans-

genen Mäusen beider genetischer Hintergründe durchgeführt werden müsste. Nur so kann 

sicher ausgeschlossen werden, dass statt des Einflusses des genetischen Hintergrundes eine 

unterschiedliche Expressionsstärke des Transgens für die verschieden starke Ausprägung des 

Diabetes verantwortlich ist. Wie bereits erwähnt könnte bei einer gleichstarken Expression 

des dominant negativen GIP Rezeptors durch eine Kreuzung der beiden Stämme nach einem 

Diabetes Suspectibility Gen oder einem Resistenzgen gesucht werden. 

Wenn die GIPRdn transgenen Mäuse auf CD1 Hintergrund auf verschiedene genetische Hinter-

gründe zurück gekreuzt und die so entstandenen Linien charakterisiert wurden, werden sich 

vermutlich mehrere exzellent geeignete Mausmodelle etablieren, mit denen die Diabetesfor-

schung weiter voran gebracht werden kann. Auch die Spätfolgen des DM können anhand die-

ser Tiermodelle bestens charakterisiert werden.  
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7. Zusammenfassung 

Diabetes mellitus Typ 2 (DM) ist eine der wichtigsten Krankheiten unserer Zeit. Mit steigender 

Prävalenz rückt die Erforschung der Ursachen und Therapiemöglichkeiten der Erkrankung im-

mer mehr in den Vordergrund, denn die genaue Pathogenese des DM ist noch nicht geklärt. 

Bekannt ist, dass es im Verlauf der Erkrankung zu einem Verlust von funktioneller Betazell-

masse kommt. Das endokrine Pankreas kann zwar Insulin produzieren, allerdings ist die 

Menge nicht ausreichend, um die Glukosehomöostase aufrecht zu halten. 

GIPRdn transgene Mäuse exprimieren einen mutierten GIPR unter der transkriptionellen Kon-

trolle des Ratteninsulingenpromotors in den Betazellen des Pankreas. Der mutierte Rezeptor 

kann das Inkretinhormon GIP zwar noch binden, aber keine Signaltransduktion einleiten. Es 

kommt zu einer verminderten Freisetzung von Insulin, Hyperglykämie und zu einem vermin-

derten Gesamtinsel- und Gesamtbetazellvolumen. Dieser Verlust von funktioneller Betazell-

masse in Kombination mit einem ausgeprägten diabetischen Phänotyp macht dieses murine 

DM Modell sehr attraktiv für die Diabetesforschung, da es große Parallelen zum humanen DM 

aufweist. 

In der vorliegenden Studie wurde der Einfluss der genetischen Hintergründe FVB/N und 

C57Bl/6J auf den diabetischen Phänotyp und die postnatale Entwicklung des endokrinen Pan-

kreas von GIPRdn transgenen Mäusen untersucht. Hierzu wurden GIPRdn transgene Mäuse auf 

CD1 Hintergrund über zehn Generationen auf die genetischen Hintergründe FVB/N und 

C57Bl/6J zurück gekreuzt (F.CD1-GIPRdn, B6.CD1-GIPRdn). Es folgten zahlreiche klinische Unter-

suchungen der männlichen GIPRdn transgenen Mäuse und ihrer nicht-transgenen Wurfge-

schwister zur Charakterisierung des diabetischen Status. Außerdem erfolgten quantitativ ste-

reologische Untersuchungen des Pankreas mit 10 und 90 Tagen.  

Dabei zeigte sich, dass die GIPRdn transgenen Mäuse auf FVB/N Hintergrund deutliche klini-

sche Symptome wie Hyperglykämie, Glukosurie, Polyurie, Polydipsie und Polyphagie entwi-

ckelten, im Gegensatz zu den GIPRdn transgenen Mäuse auf C57Bl/6J Hintergrund. B6.CD1-

GIPRdn Mäuse wiesen keine signifikanten klinischen Abnormitäten im Vergleich zu nicht-trans-

genen Wurfgeschwistern auf in der Insulinresistenz, Wasser- oder Futteraufnahme und deut-

lich geringere Veränderungen der Blutglukose. Daher kann man festhalten, dass der diabeti-
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sche Phänotyp der GIPRdn transgenen Mäuse auf dem genetischen Hintergrund FVB/N deutli-

cher ausgeprägt ist als bei den GIPRdn transgenen Mäusen auf dem genetischen Hintergrund 

C57Bl/6J. Im direkten Vergleich der GIPRdn transgenen Mäuse beider Stämme wiesen die 

GIPRdn transgenen Mäuse auf dem genetischen Hintergrund FVB/N signifikant höhere Blutglu-

kosewerte ab Tag 21 auf, signifikant schlechtere Insulinsensitivität, deutlich höhere Nüchtern-

blutglukosewerte (p<0,05) und eine ungleich stärkere Polyurie, Polydipsie und Polyphagie 

(p<0,01). Bei einem Vergleich der Wildtypen gab es keine signifikanten Unterschiede bei den 

untersuchten klinischen Parametern zwischen den beiden untersuchten Linien.  

Bei der quantitativ stereologischen Beurteilung des Pankreas zeigten die GIPRdn transgenen 

Mäuse auf dem genetischen Hintergrund FVB/N gegenüber den nicht-transgenen Wurfge-

schwistern ein signifikant niedrigeres Gesamtinsel-, Gesamtbetazellvolumen und Gesamtvo-

lumen der isolierten Betazellen im Alter von 90 Tagen. Die Replikationsrate war dagegen mit 

90 Tagen bei den F.CD1-GIPRdn Mäusen signifikant höher als bei den Wildtypen. Das Gesamtin-

sel-, Gesamtbetazellvolumen und Gesamtvolumen an isolierten Betazellen bei B6.CD1-GIPRdn 

war gegenüber nicht-transgenen Wurfgeschwistern mit 90 Tagen ebenfalls signifikant niedri-

ger. Die Replikation bei B6.CD1-GIPRdn betrug mit 90 Tagen in etwas das Doppelte der Repli-

kation der Wildtypen. Im direkten Vergleich der GIPRdn transgenen Mäuse miteinander zeig-

ten F.CD1-GIPRdn am Tag 90 ein halb so hohes Gesamtbetazellvolumen und ein Drittel des 

Gesamtvolumens der isolierten Betazellen im Pankreas im Vergleich zu B6.CD1-GIPRdn. Die 

FVB/N Wildtypen hingegen zeigten am Tag 90 ein mehr als doppelt so hohes Gesamtinsel- und 

Gesamtbetazellvolumen gegenüber den C57Bl/6 Wildtypen. 

Ein niedrigeres Gesamtvolumen der isolierten Betazellen könnte verantwortlich sein für das 

niedrigere Gesamtbetazellvolumen bei F.CD1-GIPRdn gegenüber B6.CD1-GIPRdn. Das niedri-

gere Gesamtbetazellvolumen der GIPRdn transgenen Mäuse auf dem genetischen Hintergrund 

FVB/N wiederum ist wohl verantwortlich für den wesentlich stärker ausgeprägten diabeti-

schen Phänotyp gegenüber den GIPRdn transgenen Mäusen auf C57Bl/6J Hintergrund. Auf-

grund dieses stärker ausgeprägten diabetischen Status eignen sich F.CD1-GIPRdn Mäuse exzel-

lent als Forschungsmodell für schweren DM. B6.CD1-GIPRdn eignen sich besser zur Untersu-

chung eines milderen diabetischen Phänotyps. Verglichen mit GIPRdn x CD1 weisen die GIPRdn 
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transgenen Mäuse auf FVB/N Hintergrund bezüglich des diabetischen Phänotyps und des en-

dokrinen Pankreas keine großen Unterschiede auf. Der bisher viel in der Diabetesforschung 

genutzte Stamm C57Bl/6J wurde in dieser Arbeit als wenig diabetes-empfänglich eingestuft. 

In der vorliegenden Arbeit wurde deutlich, wie unterschiedlich sich die Expression des GIPRdn 

bei Mäusen verschiedener genetischer Hintergründe auswirkt, sowohl in der postnatalen Ent-

wicklung des endokrinen Pankreas als auch in der Ausprägung des diabetischen Phänotyps. 

Außerdem konnte mit den Ergebnissen dieser Studie ein wertvoller Beitrag zum optimalen 

Einsatz des GIPRdn transgenen Mausmodells für verschiedene Fragestellungen der Diabetes-

forschung geleistet werden. 
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8. Summary 

Diabetes mellitus is one of the most important diseases of our time. With growing prevalence, 

the investigation of the cause and therapy of this disease grows more and more important, as 

the pathogenesis of type 2 diabetes has not been completely elucidated. It is known that there 

appears a decrease of functional beta cell mass during the course of the disease. Though the 

endocrine pancreas is able to produce insulin, the amount is not sufficient to maintain glucose 

homeostasis. 

GIPRdn transgenic mice express a mutated GIP receptor under the control of the rat insulin 

gene promotor in the beta cells of the pancreas. The mutated receptor is able to bind the 

incretin hormone GIP, but signal transduction is inhibited. This leads to a diminished secretion 

of insulin, to hyperglycemia and to a decreased total volume of islets and beta cells. The loss 

of functional beta cell mass in combination with a strong diabetic phenotype makes this 

mouse model attractive for diabetes research because of the similarity to human diabetes 

mellitus. 

In this study, the influence of the genetic background FVB/N and C57Bl/6J on the diabetic 

phenotype and the postnatal development of the endocrine pancreas was investigated. For 

this, GIPRdn transgenic mice on CD1 background were back crossed to the genetic backgrounds 

FVB/N and C57Bl/6J (F.CD1-GIPRdn, B6.CD1-GIPRdn). Thereupon, several clinical investigations 

of male GIPRdn transgenic mice and their non-transgenic littermates were performed to char-

acterize the diabetic status. Furthermore, quantitative stereological investigations of the pan-

creas at the age of 10 and 90 days have been carried out. 

It could be shown that GIPRdn transgenic mice on the background FVB/N develop severe clin-

ical symptoms of diabetes like hyperglycemia, glycosuria, polydipsia, polyuria and polyphagia, 

in contrast to GIPRdn transgenic mice on C57Bl/6J background. B6.CD1-GIPRdn-mice did not 

show significant abnormalities compared to non-transgenic littermates like insulin resistance, 

water or food intake and they only showed minor differences in the blood glucose levels. 

Therefore, the diabetic phenotype of F.CD1-GIPRdn is much more distinct than the diabetic 

phenotype of B6.CD1-GIPRdn. In the direct comparison of the GIPRdn transgenic mice, the 

F.CD1-GIPRdn showed significant higher blood glucose levels (p<0,05) from day 21 on and a 
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much stronger polyuria, polydipsia and polyphagia (p<0,01). The comparison of the wildtypes 

did not show any significant differences in the investigated clinical parameters. 

The quantitative stereological investigation of the endocrine pancreas showed that F.CD1-

GIPRdn mice have significant lower total islet volumes, total beta cell volumes and total iso-

lated beta cell volumes compared to non-transgenic littermates at the age of 90 days. How-

ever, the F.CD1-GIPRdn mice showed significantly higher replication rates than the wild types 

90-day-old wildtype mice. The total islet volume, the total beta cell volume and the total vol-

ume of isolated beta cells of the B6.CD1-GIPRdn mice were significantly lower than in non-

transgenic littermates as well. Replication in the B6.CD1-GIPRdn mice was twice that of 90-day-

old wildtype mice. At 90 days of age, F.CD1-GIPRdn showed half of the total beta cell volume 

and one third of the total volume of isolated beta cells compared to B6.CD1-GIPRdn mice. In 

contrast, FVN/N wildtype mice showed more than twice of the total beta cell volume and the 

total islet volume than the C57Bl/6 wildtype mice at 90 days of age. 

An increased total volume of isolated beta cells could be responsible for the higher total beta 

cell volume in B6.CD1-GIPRdn compared to F.CD1-GIPRdn. The decreased total beta cell volume 

in F.CD1-GIPRdn is probably responsible for the greater diabetic phenotype of the F.CD1-

GIPRdn. Due to the stronger diabetic phenotype, the F.CD1-GIPRdn is a more appropriate mouse 

model for severe diabetes, whereas GIPRdn transgenic mice on the background C57Bl/6 are 

more appropriate mouse models for investigating consequences of mild diabetes. Compared 

to GIPRdn x CD1, F.CD1-GIPRdn show no greater divergences. The commonly used mouse strain 

C57Bl/6J was classified as less susceptible for diabetes in this study. 

This study showed how the expression of the GIPRdn influences the postnatal development of 

the endocrine pancreas and the diabetic phenotype in mice of different genetic backgrounds. 

We could contribute to the optimal use of the GIPRdn transgenic mouse model for different 

questions in diabetes research. 
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