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Summary 

Retrograde signaling encompasses the molecular mechanisms that enable 

the cell organelles to communicate with the nucleus and to adapt Nuclear 

Gene Expression (NGE) to the organelle’s needs. Regarding plastid-to-

nucleus signaling, the Organellar Gene Expression (OGE), the Thylakoid 

Redox State (TRS), Reactive Oxygen Species (ROS) production and the 

tetrapyrrole biosynthesis are considered to be the main sources of signals. 

Here, we determined the molecular aspects of retrograde signaling by 

employing a genetics-based approach. To this end, the OGE-defective 

prors1-1 mutant, knock-down of a dual-located Prolyl-tRNA Synthetase, 

was crossed with chaos, a mutant with altered light absorption properties. 

The phenotypic analysis of the double mutant allowed for the 

determination of a hierarchy among the signal sources: perturbations in 

OGE lead to an increase of the reduced fraction of the plastoquinone (PQ) 

pool, while the chaos mutation alleviates this effect. NGE analyses of the 

prors1-1 chaos double mutant indicate that the chaos mutation 

suppresses the down-regulation observed in the prors1-1 mutant, 

implying that the TRS mediates the OGE-dependent retrograde signal. 

Furthermore, the introgression of the gun1 mutation into an OGE 

defective genetic background like the prors1-1 and some prp mutants, 

lacking plastid ribosomal proteins, enabled us to investigate the functional 

interaction of GUN1 with the OGE machinery. Moreover, the physical 

interaction with the Mg-chelatase suggests a role of GUN1 in coordinating 

OGE and chlorophyll biosynthesis with NGE. To determine whether other 

plastid Transcriptionally Active Chromosomes (pTACs) subunits exert a 

similar function, the effects of a mutation in the RNA helicase RH50 gene 

were analyzed in combination with the same set of OGE mutants. RH50, 

which is co-regulated and co-localizes with GUN1, was shown to modulate 

NGE in an OGE defective mutant background similar to GUN1, suggesting 

that a specific domain of the pTAC complexes, rather than GUN1 alone, is 

capable to mediate OGE-dependent signaling.
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Zusammenfassung 

Unter „retrograde Signaling“ werden jene molekularen Mechanismen 

zusammengefasst, die der Organellen-Kern Kommunikation dienen und es 

erlauben die nukleäre Genexpression (NGE) den Bedürfnissen der Organellen 

anzupassen. Als Hauptsignalquellen der Plastiden-Kern Kommunikation gelten 

die Genexpression der Organellen (OGE), der Redoxzustand der Thylakoide 

(TRS), reaktive Sauerstoffspezies und die Tetrapyrrole-Biosynthese. In dieser 

Arbeit wurden molekulare Aspekte der retrograden Signalübertragung mithilfe 

genetischer Ansätze untersucht. Dazu wurde die prors1-1 Mutante, die einen 

Defekt in der OGE aufweist, mit chaos, einer Mutante mit veränderten 

Lichtabsorptionseigenschaften, gekreuzt. Deren Analyse erlaubte die 

Bestimmung einer Hierarchie unter den einzelnen Signalquellen: Störungen in 

der OGE erhöhen die reduzierte Fraktion des Plastoquinonpools (PQ) während 

die chaos Mutation diesen Effekt abschwächt. Die Analyse der NGE in der 

prors1-1 chaos Doppelmutante zeigt die kompensatorischen Eigenschaften 

der chaos Mutation hinsichtlich der verringerten Expression von kernkodierten 

Genen in der prors1-1 Mutante. Somit scheint dem TRS eine Signalfunktion 

im OGE-abhängigen „retrograde Signaling“ zuzukommen. Die Einführung der 

gun1 Mutation in prors1-1 und einige prp Mutanten erlaubt es, die funktionale 

Interaktion von GUN1 mit den OGE Prozessen zu untersuchen. Zudem deutet 

die physikalische Interaktion von GUN1 mit der Mg-Chelatase auf eine Rolle 

von GUN1 in der Koordination von OGE und Chlorophyll-Biosynthese mit NGE 

hin. Zur Beantwortung der Frage, ob andere Untereinheiten der Plastidiären 

Transkriptionell-aktiven Chromosomen (pTACs) eine ähnliche Funktion wie 

GUN1 ausüben, wurden die Effekte einer Mutation im Gen der RNA Helikase 

RH50 in Kombination mit dem gleichen Set an OGE Mutanten analysiert. Die 

Mutation der stark mit GUN1 koregulierten und kolokalisierten RNA Helikase 

RH50 wies dabei ähnliche Anpassungseffekte der NGE in den OGE-Mutanten 

auf. Daraus lässt sich folgern, dass nicht GUN1 allein, sondern eine spezifische 

Domäne der pTAC-Komplexe in der Lage ist, die OGE-abhängige 

Signalübertragung zu vermitteln. 
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1. Introduction 

1.1 Endosymbiotic origin of organelles, genetic rearrangement and 

intracellular communication  

Nowadays it is well accepted that organelles of eukaryotic cells originated 

from prokaryotic organisms. In particular, plant cells owe their 

photosynthetic capability to the uptake of a cyanobacterial ancestor that 

survived its endocytosis and established a symbiotic way of life inside the 

cytoplasm of the host cell (Martin and Kowallik, 1999). During the 

transition from a free living organism to an organelle, the endosymbiont 

partially retained its own genome as well as the ability to perform 

independent division cycles. However, the organellar genome size became 

strongly reduced with most of the genes being transferred from the 

endosymbiont to the nucleus of the host cell. Currently, the plastid 

genome encodes only 75 to 90 proteins, including subunits of the 

transcription and translation machinery, as well as of the photosynthetic 

complexes (Timmis et al., 2004), whereas about 95% of the plastid 

proteins, i.e. 2000 to 3000 polypeptides, are nuclear encoded (Martin et 

al., 2002; Barbrook et al., 2006). Therefore, plastid protein complexes 

and supercomplexes are chimeric structures of nucleus- and plastid-

encoded proteins (Figure 1.1). In this scenario the necessity to effectively 

coordinate the gene expression of both genomes to allow for a correct 

plastid development and functionality becomes evident (Koussevitzky et 

al., 2007; Woodson and Chory, 2008). Moreover, also mitochondria and 

chloroplasts are strongly inter-dependent, with mitochondrial respiration 

being tightly linked to photosynthesis in the chloroplast (Hoefnagel et al., 

1998). This mutual influence of the three genomes located within the 

plant cell clearly requires a concerted communication, both, for the 

coordination of functional assembly of chimeric protein complexes and for 

an efficient reorganization of protein complexes in response to 

environmental stimuli (Woodson and Chory, 2008). As extensively 
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described, the nucleus communicates with organelles via the anterograde 

signaling pathway (Figure 1.1), which comprises the synthesis of proteins 

that are targeted to organelles and involved in organelle gene expression. 

In this way the nucleus can directly influence organellar activity by acting 

on transcriptional, translational and post translational level. Plastid 

transcription is accomplished by two different polymerases, a plastid 

encoded polymerase (PEP) and a nucleus encoded polymerase (NEP). 

Interestingly, the transcription of the core of the PEP complex is 

performed by the NEP and PEP activity is modulated by nuclear encoded 

sigma factors (Hess and Borner, 1999; Shiina et al., 2005), thus showing 

the strict control that the nucleus exerts on the plastid genome. 

Conversely, any process that occurs in the organelles and influences 

nuclear gene expression can be defined as part of the retrograde signaling 

pathways. Such signals are required to communicate the organellar 

demands to the nucleus, both during development (biogenic control) and 

in fully developed plants (operational control). The developmental control 

of organelle biogenesis needs to be appropriately staged and the required 

subunits and cofactors need to be present in correct stoichiometry for 

accurate assembly. In fully developed plants the operational control is 

represented by rapid adjustments in response to environmental 

constraints with the objective to maintain optimal production and to limit  

the damages induced by oxidative stress (Leister, 2005; Pesaresi et al., 

2007; Pogson et al., 2008; Woodson and Chory, 2008; Barajas-Lopez Jde 

et al., 2013). Various plastid-to-nucleus signaling pathways have been 

identified in A. thaliana, of which some will be described in more detail 

later on. The exchange of information between plastids and mitochondria 

is also an important issue. Indeed, it was shown that mitochondrial gene 

expression is able to influence the transcription of photosynthetic genes in 

the nucleus and that both plastids and mitochondria act synergistically to 

modulate nuclear gene expression (Pesaresi et al., 2006). 
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Figure 1.1 Gene transfer during plastid evolution from cyanobacteria to the 
higher plants chloroplast and inter-organellar signaling. Blue arrows indicate the 
anterograde pathways, red arrows the retrograde pathways and the green arrow 
represents the inter-organelle signaling pathway in plant cells. 

1.2 Retrograde plastid-to-nucleus signaling: the involvement of 

metabolites 

Arabidopsis thaliana mutants defective in retrograde signaling were first 

identified in 1993 by Joanne Chory´s group (Susek et al., 1993). These 

mutants were described to be affected in plastid-to-nucleus 

communication and therefore named genome uncoupled (gun) mutants. A 

common feature of these mutants is that they still express nuclear 

encoded photosynthetic genes like RbcS and Lhcb, even though the 

chloroplast is disrupted by treatment with norfluorazon (Susek et al., 

1993), a chemical that leads to photo-bleaching of chloroplasts by 

inhibiting β-carotene biosynthesis (Oelmuller et al., 1986). During this 

norfluorazon-based screen, five gun mutants were identified, named 
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gun1-to-5. Four of the affected genes, GUN2-to-5, play a role in the 

tetrapyrrole biosynthesis pathway, both at the chlorophyll-heme 

branching-point and downstream thereof (Figure 1.2). In particular, gun2 

is altered in heme-oxygenase activity responsible of phytochrome 

synthesis, whereas gun3 carries a mutation in the phytochromobilin-

synthase that operates downstream of the heme-oxygenase. On the other 

hand, gun4 and gun5 mutant plants are affected in their chlorophyll 

biosynthesis: gun4 is hampered in the regulatory subunit of the Mg-

chelatase and gun5 carries a mutated CHLH subunit of the same 

enzymatic complex (Davis et al., 1999; Mochizuki et al., 2001; Larkin et 

al., 2003). Subsequently, it was shown that mutations in CHLD and both 

CHLI subunits of the Mg-chelatase confer a gun phenotype to the plant 

(Strand et al., 2003; Huang and Li, 2009). These observations suggested 

that the accumulation of Mg-protoporphyrinIX (Mg-ProtoIX), a precursor 

of chlorophyll, acts as a mobile signal responsible for the downregulation 

of nuclear photosynthesis gene expression (NGE) under specific stress 

conditions. However, the role of Mg-ProtoIX, as a plastid signal, has been 

widely questioned, since its accumulation following norfluorazon treatment 

could not be correlated with changes in NGE (Mochizuki et al., 2008; 

Moulin et al., 2008). Recently, a new gun mutant, named gun6, has been 

identified. The mutant is characterized by the over-expression of the 

FERROCHELATASE1 gene (Woodson et al., 2011) responsible for 

synthesizing Heme from Protoporphyrin IX (see also Figure 1.2). Because 

of these novel findings, Heme was proposed to be directly involved in 

organelle-to-nucleus communication acting as a positive stimulus for NGE 

(Woodson et al., 2011). According to this model, plants with altered 

heme-oxygenase (gun2) and phytochromobilin-synthase (gun3) show a 

gun phenotype as a consequence of the inhibition of heme conversion, 

whereas plants with altered Mg-chelatase activity (gun4 and gun5) 

promote the transformation of Protoporphyrin IX into Heme at the 

expense of Mg-Protoporphyrin. More recently, several other metabolites 
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have been proposed to act as signaling molecules, including the 

phosphonucleotide 3’-phosphoadenosine 5’-phosphate (PAP), β-cyclocitral 

or methylerythritol cyclodiphosphate (MEcPP) (Estavillo et al., 2011; 

Ramel et al., 2012; Xiao et al., 2012).  

 

Figure 1.2 Tetrapyrrole biosynthetic pathway and gun mutants identified within 
the pathway (red). The gun2 mutant is affected in the heme oxygenase enzyme (HO) 
which is responsible, together with the phytochromobilin-synthase (HY2, gun3) for the 
conversion of heme into the phytochrome chromophore, phytochromobilin. Recently, the 
gun6 mutant has been reported to overexpress the Ferrochelatase 1 (FC1) that converts 
Protoporphyrin IX into Heme (Woodson et al., 2011). The other gun mutants such as 
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gun4 and gun5 (altered CHLH subunit) are characterized by a defect in the Mg-chelatase 
enzyme that catalyzes the production of Mg-protoporphyrin. Note that alterations of 
other subunits of the Mg-chelatase, such as CHLD and CHLI, have been also reported to 
confer a gun phenotype, at least in Arabidopsis (Strand et al., 2003; Huang and Li, 
2009). 

1.3 Retrograde plastid-to-nucleus signaling in Arabidopsis thaliana: 

Organelle Gene Expression  

Besides signaling pathways which are modulated by metabolites, 

precursors and byproducts, other plastid processes such as organellar 

protein synthesis have been shown to play an important role in 

retrograde-signaling. In particular, by employing prokaryote-specific 

inhibitors of plastid protein synthesis, Organellar Gene Expression (OGE) 

was observed to influence nuclear photosynthesis gene expression, 

strengthening the existence of communication pathways that coordinate 

the different genome activities. As a matter of fact, the expression of 

nuclear photosynthetic genes is dramatically affected in leaves treated 

with translation inhibitors like lincomycin or chloramphenicol (Oelmuller et 

al., 1986; Adamska, 1995; Gray et al., 1995; Yoshida et al., 1998; 

Sullivan and Gray, 1999). Moreover, similar results have been obtained by 

analyzing the albostrians mutant of barley, which is impaired in plastid 

ribosome function and, as a consequence, shows a strong down-regulation 

of photosynthetic nuclear genes (Bradbeer et al., 1979; Hess et al., 

1994). A synergistic effect of the plastid and mitochondrial translation rate 

on nuclear gene expression has also been observed (Pesaresi et al., 

2006). It was shown that Arabidopsis mrpl11 and prpl11 mutants, 

defective in mitochondrial and plastid ribosomal protein L11 respectively, 

exhibit a slight down-regulation of nuclear photosynthesis gene expression 

(Pesaresi et al., 2001; Pesaresi et al., 2006). In the mrpl11 prpl11 double 

mutant, the down-regulation of photosynthetic nuclear genes is even 

more pronounced, similarly to the situation observed in prors1-1 and 

prors1-2, where a dual targeted prolyl-tRNA synthetase is knocked-down, 

supporting the notion that organellar translation rates act in a concerted 
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manner on the modulation of nuclear photosynthesis gene expression 

(Pesaresi et al., 2006). More recently, it has been shown that even 

mutants affected in plastid sigma factors like sig2 and sig6 and therewith 

possessing an altered plastid transcription, show a significant down-

regulation of nuclear photosynthetic gene expression (Woodson et al., 

2013). The observation is in agreement with the fact that the core of the 

PEP complex is encoded by the chloroplast genome; therefore, the 

inhibition of plastid translation causes the reduction of RNA synthesis 

(Gray et al., 2003).  

1.4 Multiple Retrograde plastid-to-nucleus signaling pathways in 

Arabidopsis thaliana: thylakoid and chloroplast redox state and the 

formation of reactive oxygen species 

Many environmental stimuli lead to changes in the Thylakoid Redox State 

(TRS) that influences nuclear and plastid gene expression to adapt the 

chloroplast in general, and more specifically its photosynthetic apparatus, 

to the altered environmental conditions. It has been shown that in the 

green alga Dunaliella tertiolecta LchB expression is influenced by the 

plastiquinone (PQ) pool redox-state (Escoubas et al., 1995). In higher 

plants nuclear expression of photosynthesis related genes was described 

to be possibly correlated with the redox-state of the thylakoid membrane 

via the phosphorylation of Lhcb proteins (Pursiheimo et al., 2001). This 

potential involvement of Lhcb phosphorylation leads to the hypothesis that 

STN7, the Lhcb kinase, could be involved in the TRS signaling pathway as 

a regulatory component. The phenotypic characterization of Arabidopsis 

stn7 mutant plants further supported the notion that STN7 might 

represent the link between short- and long-term regulatory mechanisms 

(Bonardi et al 2005; Pesaresi et al., 2009). Furthermore, Reactive Oxygen 

Species (ROS) production is strongly correlated with TRS. Changes in TRS 

are very dangerous to chloroplasts as alterations in the photosynthetic 

electron transport chain perturb the balance between Reactive Oxygen 
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Species (ROS) production and scavenging, leading to a transient ROS 

accumulation (Elstner, 1991). ROS represent byproducts of 

photosynthesis, with singlet oxygen (1O2) being produced at PSII and 

superoxide anions (O2
•-) being formed at PSI as a consequence of the 

over-reduction of electron carriers. O2
•- is further processed to H2O2 which 

is less reactive and therefore less dangerous to the chloroplast (Mullineaux 

and Karpinski, 2002; Apel and Hirt, 2004). ROS production leads to 

changes in NGE in order to improve the scavenging if needed. However, 

even though all ROS species cause similar damages, different ROS 

activate different signaling pathways (Foyer and Noctor, 2005). H2O2 is 

able to act as a signaling molecule itself with specific aquaporins allowing 

H2O2 to reach the cytosol under physiological conditions and to activate a 

broad array of stress responses (Bienert et al., 2007; Mubarakshina et al., 

2010). Moreover, TRS also acts in a complex signaling network by 

regulating proteins via post-translational modifications. Besides protein 

phosphorylation, the TRS affects the disruption and/or formation of 

disulphide bridges between cysteine residues (Buchanan, 1980). Several 

protein elements involved in protein synthesis have been found to be 

regulated by TRS via thioredoxin proteins, a family of small proteins 

sensitive to the redox state of the stroma and able to transfer the redox 

state by becoming a reducing component. Indeed, the diverse group of 

thioredoxin targets comprises several plastid ribosomal proteins (i.e. 

PRPS1, PRPS5, PRPS30, PRPL4 and PRPL21), elongation factors, RNA-

binding proteins and transcriprion factors (Balmer et al., 2003; Balmer et 

al., 2004; Stroher and Dietz, 2008; Tillich et al., 2009; Stern et al., 

2010). On the other hand, mutant plants affected in chloroplast protein 

synthesis, like plastid ribosomal mutants or leaky prors1 mutants, also 

show an altered TRS. In these mutants the electron pressure on 

thylakoids is higher than the impaired photosystems can handle, causing 

an over-reduction of the plastoquinone pool and therewith affecting the 

general thylakoid redox state, clearly indicating that any perturbation in 
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chloroplasts implies an altered over-reduction of the thylakoid electron 

transport chain itself and ROS generation (Pesaresi et al., 2006). These 

alterations lead then to retrograde signaling. 

1.5 GUN1, a possible integrator of different signaling pathways 

All retrograde signals described above, have been hypothesized to 

converge into a single retrograde signaling pathway to the nucleus, in 

which GUN1 has a major regulatory function (Koussevitzky et al., 2007). 

GUN1 has been proposed to be the integrator of several signals originating 

from inside the chloroplast (see the model in Figure 1.3), since the gun1 

mutation, identified in the same screen as the other gun mutants (Susek 

et al., 1993), is able to maintain NGE under a wide range of conditions 

and genetic backgrounds. This includes norfluorazon and lincomycin 

treatment and mutations where either protein import (ppi2 mutant) or 

plastid transcription (sig2 mutant) are affected (Koussevitzky et al., 2007; 

Kakizaki et al., 2009; Woodson et al., 2013). GUN1 is a plastid-located 

pentatricopeptide-repeat (PPR) protein that belongs to a subfamily of 

proteins with nucleic acids binding activity. Proteomic studies and 

localization assays, using GUN1-GFP protein fusions indicate that GUN1 is 

a component of the plastid Transcriptionally Active Chromosomes 

(pTACs), i.e. mega-dalton protein complexes required for gene expression 

and protein synthesis (Koussevitzky et al., 2007; Olinares et al., 2010). 

The role of GUN1 as a retrograde-signal integrator inside the chloroplast 

might be linked to a recently described protein, reported to be physically 

able to transfer signals from the chloroplast to the nucleus. This protein 

named PTM (for PHD type transcription factor with transmembrane 

domains) is a nuclear encoded protein attached to the outer plastid 

envelope and able to act as an abscisic acid (ABA) receptor (Figure 1.3). 

PTM can migrate to the nucleus and bind the promoter region of the ABA 

INSENSITIVE 4 (ABI4) transcription factor to activate its expression, 

thereby acting as an epigenetic regulator (Sun et al., 2011). ABI4 is 
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sensitive to most of the potential plastid-to-nucleus signals and was 

therefore proposed to be the main cytosolic signaling component of the 

GUN1-dependent signaling pathway. To be more precise, ABI4 acts as a 

negative regulator of Lhcb expression by binding its G-box promoter 

region (Koussevitzky et al., 2007). On the nuclear side, can be observed 

the activity of a second transcription factor, GOLDEN LIKE 1 (GLK1). GLK1 

appears to play a role in the retrograde signal deriving from an altered 

plastid import (Kakizaki et al., 2009). Unlike ABI4, GLK1 acts as a positive 

regulator of Lhcb expression, that can be regulated by plastid signals, 

both at the post-translational and transcriptional level (Waters et al., 

2008; Waters et al., 2009).  

 

Figure 1.3 Schematic overview of the different pathways involved in retrograde 
signaling. The model proposes that GUN1 may act as the major integrator of retrograde 
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signals originating from both chloroplasts and mitochondria. Subsequently, the signal is 
transduced to the nucleus via the processed form of the PTM transcription factor (pPTM), 
where it activates the transcription of the ABI4 gene and possibly modulates the activity 
of the GLK transcription factor. On the other hand, Reactive Oxygen Species (ROS) are 
supposed to be able to reach the nucleus directly, and are responsible to repress the 
expression of photosynthesis-related genes in combination with ABI4. 

1.6 GUN1 protein complex: a possible link between OGE and tetrapyrrole 

biosynthesis 

Plastid Transcriptionally Active Chromosomes (pTACs) are soluble mega-

dalton complexes containing DNA, RNA and proteins. The composition of 

the pTAC complexes was investigated by MS-analyses, resulting in the 

identification of many factors involved in OGE like ribosomal proteins 

(PRPs), the PEP-core enzyme and proteins involved in transcription, 

translation and RNA metabolism (Olinares et al., 2010). Helical repeat 

proteins, like octatricopeptide, pentatricopeptide or tricopeptide-repeat 

(OPRs, PPRs, TPRs) proteins, are particularly abundant in pTAC 

complexes, which is in agreement with their primary role in modulating 

gene transcription and RNA editing, maturation or stability. The PPR 

proteins, which GUN1 belongs to, are defined by a characteristic 35 

amino-acid sequence, repeated up to 30 times (Small and Peeters, 2000). 

Although GUN1 has been shown to be a constituent of the pTACs, nothing 

is known about its interaction partners and the molecular details of its 

function as an integrator of plastid retrograde signals. RH50 is another 

subunit of pTACs identified as well via MS analyses, RH50 encodes a 

plastid-located RNA-helicase belonging to the DEAD-helicase family 

(Olinares et al., 2010). DEAD box helicases owe their name to the 

characteristic amino-acid sequence Asp-Glu-Ala-Asp (DEAD) as a part of 

the Walker B motif (Cordin et al., 2006). RNA helicases are proteins 

involved in the synthesis, maturation, cleavage and degradation of RNAs, 

translation initiation and ribosome assembly by remodeling RNA and 

displacing RNA-protein complexes. Mutants of RNA helicases often show 

dramatic phenotypes associated with an altered RNA metabolism 
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(Banroques et al., 2011; Linder and Jankowsky, 2011). Taken together, 

these data suggest that GUN1 might act in a complex composed of nucleic 

acids, other RNA/DNA binding proteins involved in gene expression, and 

components of the transcriptional/translational machinery. 
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1.7 Aims of the work 

Beside the uncertainty on the identity of messenger molecules, little is 

known about the extent to which different signals can be integrated into 

common pathways of organellar-to-nucleus signaling. Attempts to 

distinguish between different retrograde signaling pathways have been 

hampered by difficulties in discriminating between primary and secondary 

effects caused by chemical inhibitors, and a lack of genetic mutants that 

influence organelle function in a specific, well-defined manner (Leister, 

2012; Barajas-Lopez Jde et al., 2013). Indeed, most of the gun mutants 

have a defect in chlorophyll accumulation, as shown by the pale-green-

yellow colored leaves of gun2, gun3, gun4 and gun5, leading to a 

decrease in light absorption and, as a consequence, a more oxidized 

thylakoid electron transport chain in comparison to WT plants. That may 

explain, at least in parts, the capability of these mutants to partially 

prevent the repression of nuclear photosynthesis-related genes under 

stress conditions. On the other hand, the excessively reduced state of the 

thylakoid electron transport chain observed in the prors1-1 mutant, 

supports the notion that many alterations in plant cell metabolism directly 

or indirectly impinge on the redox state of photosynthetic electron 

transport components, making the photosynthetic apparatus a major 

sensor of physiological imbalances (Pfannschmidt and Yang, 2012). 

Therefore, changes in thylakoid excitation pressure may be associated 

with major modifications in gene expression at the organellar and nuclear 

level. Certainly, the WT-like phenotype of gun1 and gun6 mutants indicate 

that other factors, beside the amount of light absorbed and the redox 

state of thylakoid membranes and chloroplast stroma, play a role in 

retrograde signaling.  

Here, we have specifically addressed the role of light and GUN1 in 

retrograde signaling by: 
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- introducing the chaos mutation into prors1-1 plants. The 

mutation in the CAO gene reduces the size of the PSII antenna, 

thus mimicking a major adaptive mechanism that plants have 

evolved to protect themselves against the damaging effects of 

excess light energy (Oelze et al., 2008). Down-regulation of the 

CAO gene, which codes for the cpSRP43 subunit involved in the 

insertion of Lhcb proteins into the thylakoids (Klimyuk et al., 

1999), has actually been implicated in the system that remodels 

the photosynthetic machinery to safeguard against photo-

oxidative stress (Klenell et al., 2005). 

- introducing the gun1 mutation into various of Arabidopsis 

mutants affected at different levels and in different steps of 

plastid gene expression, such as reduced levels of mitochondrial 

and plastidial aminoacyl-tRNA synthetase (prors1-1), lack of 

plastid ribosomal proteins (prp mutants) and of enzymes involved 

in transcript processing (RNA helicase rh50) 

The objective was to increase our knowledge on the factors that trigger 

the retrograde signal(s) and on the plastid-located molecular mechanisms 

that initiate its/their transduction to the nucleus. 
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2. Material and Methods 

2.1 Database analysis and software tools 

Gene models, mRNAs and EST sequences have been obtained from the 

NCBI and TAIR databases (www.ncbi.nlm.nih.gov, www.arabidopsis.org), 

nucleic acid sequence analysis was performed using the Gene Runner 

(www.generunner.net) and BioEdit Sequence Alignment Editor 

(www.mbio.ncsu.edu/bioedit/bioedit.html) software. Sub-cellular 

localizations and chloroplast transit peptides were predicted by consulting 

the TargetP database (www.cbs.dtu.dk/services/TargetP). ImageJ 

software (rsbweb.nih.gov) was used for growth measurements. 

2.2 Chemical material 

Standard chemicals were purchased from Roth (Karlsruhe, Germany), 

Duchefa (Haarlen, Netherlands), Applichem (Darmstadt, Germany), Serva 

(Heidelberg, German), Invitrogen (Darmstadt, Germany) and Sigma-

Aldrich (Steinheim, Germany).  

2.3 Plant material and growth conditions 

Arabidopsis thaliana T-DNA and transposon insertion mutant lines were 

isolated from different collections shown in Table 2.1. All T-DNA and 

transposon lines were identified via the SIGNAL database 

(signal.salk.edu/cgi-bin/tdnaexpress), insertion flanking regions were then 

confirmed by PCR and sequenced (primer sequences listed in table 2.2). 

Arabidopsis thaliana WT and mutant seeds (ecotype Col-0 and Ler) were 

incubated in the dark on wet Whatman paper for two days at 4 °C, then 

transferred to soil under controlled climate chamber conditions (PFD: 80 

µmol m-1s-1 16h/8h dark/light). High-light treatment was performed with a 

light intensity of 400 µmol m-1s-1. Plants under low-light conditions were 

grown with 25 µmol m-1s-1 light at a 16h/8h dark/light cycle. For 

phenotypic analyses and NF treatment, plants were grown for 14 days on 
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Murashige and Skoog (MS) medium (Duchefa) with or without 1% (w/v) 

sucrose at 80 µmol m-1s-1 at 16h/8h dark/light cycle.  

Table 2.1 List of the mutant alleles employed in this work. Additionally, the primer 
combinations used for genotyping are shown. 

Allele Type of mutant Reference Gene primers T-DNA primers 

gun1-1 Point mutation  Koussevitzky et al., 2007 Lap45 + Lap56 X 

gun1-9 Point mutation  Koussevitzky et al., 2007 Lap17 + Lap18 X 

gun1-101 T-DNA insertion Ruckle et al., 2007 Lap17 + Lap18 Lap17  + LB3 

gun1-102 T-DNA insertion Unpublished allele Lap17 + Lap18 Lap17  + LB3 

gun2 Point mutation  Susek et al., 1993 Lap11 + Lap60 X 

gun3 Point mutation line Susek et al., 1993 Gun3 S + Gun3 AS X 

gun4 Point mutation line Larkin et al., 2004 Lap14 + Lap59 X 

gun5 Point mutation line Mochizuki et al., 2001 Gun5 S + Gun5 AS X 

rh50-1 T-DNA line Unpublished allele Lap70 + Lap76 Lap76 + LBGK1 

rh50-2 T-DNA line this work Lap70 + Lap76 Lap70 + dSpm32 

prps1 T-DNA line Romani et al., 2012 Lap166 + Lap188 Lap188 + LB3 

prps17 T-DNA line Romani et al., 2012 Lap141 + Lap142 Lap142 +  Ds5.4 

prps21 T-DNA line this work Lap36 + Lap37 Lap37 + LB3 

prpl11 T-DNA line Pesaresi et al., 2001 Lap21 + Lap22 Lap21 + LBGK1 

prpl24 T-DNA line Romani et al., 2012 Lap5 + Lap6 Lap5 + LBB1.3 

prors1-1 T-DNA line Pesaresi et al., 2006 Lap25 + Lap26 Lap25 + LBGK1 

chaos Transposon  Unpublished allele Cao S + Cao AS Cao AS + EnR 
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Table 2.2 Sequences of the primers used for the genotyping analyses. 

Primer 
name 

Sequence (5´ to 3´) 
Primer 
name 

Sequence (5´ to 3´) 

Lap 45 GCTCATCTTTCACAGACTACTC Lap 22 GGGTCTTGAGAATAAACGTG 

Lap 56 GCTCAATCCTTCTATTCGTC Lap 5 GGACAGTAGTATAGCTGAAG 

Lap 17 GAGAGTAACAACCGAACGAC Lap 6  GCCACTTTACTCAATGTGAG 

Lap 18 AAAGTGCCAAAGCATGTCAG Lap 25 AACCAAGCATGAGTTTCTCG 

Lap 11 AACCATGGCGTATTTAGCTC Lap 26 ATCCGGAAAGAGGTCTGTTC 

Lap 60 GAACCTTGAACTTAGTAACAGC Gun3 S  CGTATAAGGAATTCGCAGAG 

Lap 14 CTGGCTTTGTTCATACATCC  Gun3 AS CATGCCTGATAGTACTCTAG 

Lap 59 ACAAACGCCTCCGCCACAAC Gun5 S  AAGGACAGGTGGTGGATGTG 

Lap 70 TGTTTCGTAACGGCGGAGGAG Gun5 AS  GTATCAGCAATTGGTCTCAC 

Lap 76 CAAAACGCCTATCTTCTCTAC Cao S ATGCAAAAGGTCTTCTTGGC 

Lap 166 ACCCAACGATAAAACGCAGG Cao AS CCTCTCTCGTCTTCCACTTC 

Lap 188 TCTAACGTCACGCTGTTTAG LB3 CTGAATTTCATAACCAATCTCGATACAC 

Lap 141 CATCGATTCGATTCCAAATC LBB1.3 TTTTGCCGATTTCGGAAC 

Lap 142 CCATAAATTACACTGGTTCC LBGK1 CCCATTTGGACGTGAATGTAGACAC 

Lap 36 TCAATGATAGCTTGTGATGG dSpm32 CGAATAAGAGCGTCCATTTTAG 

Lap 37 TTTCCAACTCACAATGTACC Ds5.4 TACGATAACGGTCGGTACGG 

Lap 21 CTTCTCTACATCCCAACTCC EnR GAGCGTCGGTCCCCACACTTCTATAC 

 

2.4 Chlorophyll fluorescence, pigment analysis and oxygen evolution 

measurements 

Chl a fluorescence was measured in-vivo with the non-invasive Dual-PAM 

100 (Walz, www.walz.com/) as described by Pesaresi et al. (2009). After 

20 minutes of dark adaption the minimal fluorescence (F0) was measured. 

With a pulse (0.8 sec) of saturating white light (5,000 µmol photon m-1 s-

1) the maximum fluorescence (Fm) was determined. The ratio (Fm-F0)/ Fm 

was calculated as Fv/Fm, the maximum quantum yield of PSII. After 10 

minutes of actinic red light (80 µmol photon m-1 s-1), the steady state 

fluorescence (Fs) was measured and with a second saturation pulse the 

Fm’ was determined. The PSII effective quantum yield (ΦII) was calculated 
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as the ratio (Fv-Fs)/Fm’. Leaf pigment content was analyzed by reverse-

phase HPLC according to (Farber et al., 1997). 

Oxygen evolution rates were measured on leaf discs (diameter approx.  6 

mm) isolated from 28 days old plants. The discs were dark-adapted for 30 

min in a buffer containing 1 mM NaHCO3 (pH 9) to provide a CO2-

saturated atmosphere (Chow et al., 1989). A Clark-type O2 electrode 

(Oxygraph, Hansatech, www.hansatech-instruments.com) provided with 

an electrode conditioning unit was used for measurements. At the end of 

the dark adaption period, no O2 was detectable in the chamber. Then, the 

chamber was illuminated with white light, at a flux rate of approximately 

80 μmol photon m−2 sec−1, and oxygen production was measured for 30 

minutes. 

2.5 Nucleic acids isolation 

Genomic DNA was isolated from A. thaliana leaves or cotyledons. Nucleic 

acids were extracted with a DNA extraction buffer (200 mM Tris-HCl pH 

7.5, 250 mM NaCl, 25 mM EDTA and 0.5% (w/v) SDS) and precipitated 

with 0,8 volumes of isopropanol at 16,000 g for 20 minutes. The pellet 

was then washed in 70% ethanol and resuspended in 200 µl of ddH20. No 

RNAse treatment step was needed for PCR analysis. For expression 

analyses the leaf material of 28 days old plants was harvested after 8 

hours of light-adaption and ground in liquid nitrogen. The total RNA was 

extracted from ground tissue using one volume of extraction buffer (300 

mM NaCl, 50 mM TRIS-HCl pH 7.5, 20 mM EDTA, 0.5% SDS) and one 

volume of Phenol-Chloroform-Isoamylalcohol (PCI) followed by 

solubilization at 65°C for 5 minutes. After a centrifugation step (10 

minutes at 7,000 g), the supernatant was mixed with one volume of 8 M 

LiCl, incubated for two hours at -20°C and centrifuged for 30 minutes at 

4°C at 7,000 g. The pellet was then washed with 75% ethanol and 

resuspended in 80 µl of DEPC-treated water. 
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2.6 First strand cDNA synthesis 

For cDNA synthesis the iScript reverse transcriptase kit (Bio-Rad, 

www.biorad.com) was employed. In a total volume of 5 μl, 1 μg of RNA, 

0.5 μl of 10x PCR buffer (Quiagen, www.qiagen.com) + MgCl2 and 0.5 

units DNAse were combined. This mix was incubated at room temperature 

for 30 minutes. Then 2.5 mM EDTA were added and the mix was 

incubated for 15 minutes at 65°C. To each sample 2 μl of 5x iScript 

reaction mix buffer and 0,5 μl of iScript reverse transcriptase were added. 

The samples were topped up to 10 μl with DEPC H2O. The first-strand 

cDNA synthesis was performed according to the following protocol by 

using a thermocylcler (BioRad): 5 minutes at 25 °C, 40 minutes at 42°C 

and 5 minutes at 85 °C. 

2.7 Northern blot analyses 

Northern blot analyses were performed according to Sambrook and Russel 

(2001) loading 15 µg of total RNA. To 15 μl of RNA 15 μl of formamide, 4 

μl of formaldehyde and 3 μl of 10x MEN (0.2 M MOPS, 50 mM Na acetate, 

10 mM EDTA; pH 7.0) buffer were added. The samples were incubated at 

65°C for 15 minutes and afterwards put on ice for 5 minutes. Then 8 μl of 

6x loading dye were added, the samples were loaded on an agarose gel 

(2% agarose, 6% formaldehyde, 1x MEN buffer) and then ran at 40 V for 

3 hours. The blotting sandwich was built up as follows. A glass basin was 

filled with 20x SSC (2 M NaCl, 0.2 M Na-citrate; pH 7.0) buffer and on top 

of this basin a glass plate was positioned that did not cover the whole 

basin. On top of this plate a paper bridge was assembled, consisting of 2 

pieces of 3 MM whatman paper of the same size that were wetted in 10x 

SSC buffer and reached into the 10x SSC buffer in the basin. On top of the 

bridge 2 pieces of 3 MM whatman paper were added that had the same 

size as the gel and were also wetted with 10x SSC buffer. Next, the gel 

was put upside down on the paper, followed by the positively charged 
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nylon membrane upfront pre-incubated in 2x SSC buffer. On top of the 

membrane 2 further sheets of whatman paper were added, also pre-

wetted in 2x SSC buffer and about 10 cm of paper towels and a weight to 

drive the flux of the blotting buffer via capillary force. The blotting 

assembly was allowed to run over night for approximately 16 hours and 

the membrane was afterwards UV-crosslinked. For the pre-hybridization-

step the hybridization buffer was preheated to 60°C. 20 ml of 

hybridization buffer and 160 μl of previously denaturated (100 °C, 5 

minutes) herring sperm DNA (10 ng/μl) were added. The tube was 

incubated in a rotating oven at 65 °C overnight. For probe preparation 

approximately 100 ng of PCR-product were filled up to 12 μl with ddH2O, 

denaturated at 100°C for 5 minutes and cooled down on ice for 5 minutes. 

Afterwards, 4 μl of 1x NEBuffer 2, 1 μl of Klenow DNA polymerase, 33 μM 

dNTPs (without CTP) and 3 μl of radioactive 32P-dCTP were added to the 

probe followed by incubation over night at room temperature. For probe 

purification illustra MicroSpin™ G-25 Columns were used according to the 

producer’s instructions. For the washing step the washing buffer (0.1% 

SDS, 0.2 M NaCl, 20 mM NaH2PO4, 5 mM EDTA; pH7.4) was pre-warmed 

in a water bath to 60 °C. The probe was discarded and 10 ml of washing 

buffer were added and further incubated at 65 °C. The washing buffer was 

kept at 65 °C. After 30 minutes the washing buffer was exchanged and 

the tubes were put back to 65°C for 15 minutes. The washing buffer was 

discarded and the membrane was washed again at room temperature in 6 

mM NaH2PO4, 1 mM EDTA, 0.2% SDS; pH 7.0 for one hour on a shaker. 

The membrane was then exposed to a radioactive sensitive screen 

overnight. Primers used to amplify the probes are listed in Table 2.3. The 

probe used for the 23S-4.5S intergenic region was synthesized using a 73 

bp primer complementary to the region (5´-

GAGCACAGCCGAGACAGCAACGGGTTCTCCGCCCCTGCGGGGATGGAGTGAC

AGAAGTTTTGAGAATTCAAGA -3´) labeled at the 5´ end with 32P-γATP with 

the T4 PNK (NEB, www.neb.com/). The 5´ labeling reaction of the probe 
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was carried out for 30 minutes at 37°C in a total volume of 50 µl using 50 

pmol of primer, 5 µl of 10x PNK buffer, 2 µl of PNK enzyme and 3 µl of 

332P-γATP. Signals were acquired and quantified with a phosphoimager 

and IMAGEQUANT (Typhoon, GE Healthcare, www3.gehealthcare.com). 

For quantitative real-time PCR (qRT-PCR) 4 µg of total RNA were treated 

with DNAse I (Roche Applied Science, www.roche-applied-science.com) 

before usage for the iScript first-strand cDNA synthesis according to the 

supplier´s manual (Bio-Rad, www.bio-rad.com).  
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Table 2.3 Sequences of the primers employed for northern blot radiolabeled probes. 

Genes Sense primer (5´ to 3´)  Antisense primer (5´ to 3´) 

16S rRNA AGTCATCATGCCCCTTATGC CAGTCACTAGCCCTGCCTTC 

23S rRNA GTTCGAGTACCAGGCGCTAC CGGAGACCTGTGTTTTTGGT 

2CPA ATGGCGTCTGTTGCTTCTTC TGCAAGGTGAGAGAACACAC 

4,5S rNA GAAGGTCACGGCGAGACGAGCC GTTCAAGTCTACCGGTCTGTTAGG 

5S rRNA TATTCTGGTGTCCTAGGCGTAG ATCCTGGCGTCGAGCTATTTTTCC 

AOX1 GGTTCTGAATGGAAGTGGAAC GGAGCTGGAGCTTCCTTTAGT 

CAT1 CTTCTTTGACTGTCGGAACTC CCAGTATCCTCCAGTTCTCC 

Ferritin1 ATGGCCTCAAACGCACTCTC ATGCCCTCTCTCTTCCTCAC 

Lhca1 GTCAAGCCACTTACTTGGGA GGGATAACAATATCGCCAATG 

Lhca2 GAGTTCCTAACGAAGATCGG AAGATTGTGGCGTGACCAGG 

Lhca3 AGGCTGGTCTGATTCCAGCA ACTTGAGGCTGGTCAAGACG 

Lhca4 TGAGTGGTACGATGCTGGGA GTGTTGTGCCATGGGTCAGA 

Lhcb1.2 GACTTTCAGCTGATCCCGAG CGGTCCCTTACCAGTGACAA 

Lhcb2 GAGACATTCGCTAAGAACCG CCAGTAACAATGGCTTGGAC 

Lhcb4 AGCTAGTGGATGGATCATCT CAGGAGGAAGAGAAGGTATC 

Lhcb5 CTGGTGCTTTGCTTCTTGATG TCCAGCGATGACGGTAAGCA 

Lhcb6 GCATGGTTTGAAGCTGGAGC ACAAACCAAGAGCACCGAGA 

PRPL2 GAGGAATAATTACCGCAAGG CTCTACCCAAACTTTTCTGG 

PRPS3 AGACTTGGTACAACCCAAAG TGTAAAGGAACTCTGCCTTC 

PRPS8 ATGGGGAAAGACACCATTGC TCCGCCGATTCTTTTTAGTC 

psaB GTATTGCTACCGCACATGAC CCACGAAACTCTTGGTTTCC 

PsaD1 AAGCCGCCGGGATCTTCAAC CTAAGCCTTGTCCCCAAAGC 

PsaE1 ATGGCGATGACGACAGCATC TGTTGGTCGATATGTTGGCG 

PsaF GTTCGACAACTACGGGAAGT CTTAGCAATGAGATCACCAT 

PsaK ATGGTCTTCG AGCCACCAAA CGTTCAGGTGCATGAGAATA 

PsaO ATGGCAGCAACATTTGCAAC GTAATCTTCAGTCCTGCCCT 

psbA CGGCCAAAATAACCGTGAGC TATACAACGGCGGTCCTTATG 

PsbO2 AGACGGAAGCGTGAAGTTCA CAATCTGACCGTACCAAACC 

PsbQ ACAGATAACTCAGACCAAGC GCTTGGCAAGAACATTGTTC 

PsbT2 ATGGCGTCAATGACCATGAC CAGTTACGGCATATCTTGGC 

PsbX ATGGCTTCTACCTCCGCGAT TAGGTTCTCTTGACAGGGTC 

PsbY ATGGCAGCAGCTATGGCAAC CTCCGGAGGTGGAGTCAAAA 

RbcL CGTTGGAGAGACCGTTTCTT CAAAGCCCAAAGTTGACTCC 

RbcS ATGGCTTCCTCTATGTTCTC CGGTGCATCCGAACAATGGA 
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2.8 Standard PCR and High fidelity PCR 

For genotyping of plant material 1 μl of DNA was used as a template for 

PCR analysis. For this purpose the PCR was performed in a total volume of 

20 μl containing 2 μl of 10x PCR-buffer (QIAGEN), 100 μM dNTPs, 200 μM 

primers (Table 2.2), 0.5 units of Taq polymerase. The PCR product was 

then loaded on a 1%-agarose gel. The genes of interest were amplified 

from Col-0 cDNA with the Phusion High-Fidelity DNA Polymerase 

(Finnzymes). Reactions were performed in a total volume of 20 μl each. 

The reaction contained 200 μM of each primer, 250 μM dNTPs, 4μl of 5x 

Phusion HF reaction buffer and 0.4 units Phusion HF DNA Polymerase. The 

PCR-products were loaded on a 1% agarose TAE (150 mM Tris-HCl, 1.74 

M Acetic acid, 1 mM EDTA) gel and then cut from the gel and purified via 

the QIAgen gel extraction kit following the producer’s instructions. 

Plasmids for yeast cell transformation and plant transformation were 

obtained with different methods and strategies. PCR fragments amplified 

with Phusion High-Fidelity DNA Polymerase (Finnzymes, according to the 

manual) were purified from a 1% agarose TAE gel and purified with 

QIAgen gel extraction kit following producer’s instructions. 

2.9 Fluorescent protein localization 

The cloning procedure in binary vectors for protein expression of GUN1-

GFP and RH50-YFP in plants was carried out using the GATEWAY™ 

reaction strategy. The coding sequences of GUN1 and RH50 were 

amplified using cDNA as template, primers are listed in Table 2.5. First an 

entry clone (pDonor207, Invitrogen) was produced using BP ClonaseII 

enzyme mix reaction (see the Invitrogen GATEWAY™ instruction manual). 

After purification of the donor vector from E. coli (QIAprep Spin Miniprep 

Kit, following producer’s instructions) the LR reaction (LR Clonase II 

enzyme mix, Invitrogen) was used to clone the gene of interest in the GFP 

(pB7FWG2) and YFP (pB7YWG2) destination vectors.  
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Stable plant transgenic mutant lines, expressing chimeric protein with 

GUN1-GFP and RH50-YFP fused to the C-terminal end of coding sequence 

of interest, were used for protoplast isolation.   

Four weeks old leaf material was cut with a razorblade and digested with 

2.5 mg/ml macerozyme and 2.5 mg/ml cellulase in an isoosmotic buffer 

(2-(N-morpholino)ethanesulfonic acid 10 mM, 20 mM CaCl2, 500 mM 

mannitol, 550 mOsm; pH 5.8) for four hours at room temperature. 

Afterwards the released protoplasts were centrifuged at 50 g for 10 

minutes and the pellet was resuspended in 100 μl of the isolation buffer 

described before.  Pictures were acquired with the Axiocam MRc5 (Zeiss) 

equipped with filters for chlorophyll, GFP and YFP supported by the 

Axiovision program V 4.1. 

2.10 Yeast two-hybrid assay 

For yeast two hybrid analyses, the classic restriction enzymes cloning 

strategy was chosen. The PCR products (primers listed in Table 2.4) were 

digested with one or two enzymes for 60 min at 37°C, for the cutting 

procedure EcoRI and BamHI were used in a single or double digest in NEB 

buffer 4. GUN1, PRPL11, HEMA, GSA2, HEMC and HEME1 were cloned 

using EcoRI and BamHI, PRPL24 and CHLI1 using EcoRI and RH50, GSA1, 

HEME2, HEMF1, PPOX, CHLI2 and CHLD perfoming a BamHI single digest. 

The set of vectors used for the assays was pGadt7 as AD-Vector and 

pGbkt7 as BD-Vector (Clontech), to cut them a restriction reaction was 

incubated for 2 hours at 37°C and for 15 minutes at 65°C to inactivate the 

enzyme. To avoid self-ligation of the plasmids, Calf Intestine Phosphatate 

(NEB) was added to the reaction and incubated at 37°C for 30 min. The 

sample was then purified with the QIAquick PCR Purification Kit. The 

ligation step was performed at 4°C for 24 hours using a T4 DNA ligase 

(NEB). 
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The yeast strain PJ69-4a was inoculated in YPD liquid medium (10 g/l 

yeast extract, 20 g/l peptone, 20 g/l glucose) over night at 30°C. After the 

OD600 reached approximately 0.6, the cells were spun down in the 

centrifuge for 10 minutes at 2,300 g. After centrifugation, the supernatant 

was removed and the cells were washed with 1.000 μl sterile ddH2O. The 

cells were centrifuged again for 10 minutes at 2,300 g, the supernatant 

removed and the pellet washed in 500 μl LiTe buffer. The centrifugation-

step was repeated and the pellet was resuspended in 500 μl LiTe buffer 

(10 mM Tris-HCl pH 7.5, 1 mM EDTA pH 8, 100 mM LiAc). For each 

transformation 50 μl of the washed yeast cells, 1 μg of each construct, 7 

μl Carrier-DNA (DNA from fish sperm 2 mg/ml), 7 μl dimethylsulfoxid 

(DMSO) and 300 μl LiTePEG (10 mM Tris-HCl pH 7.5, 1 mM EDTA pH 8, 

100 mM LiAc, 40% PEG) were combined. These preparations were 

incubated for 30 minutes at 28°C and for 14 minutes at 42 °C. Afterwards 

the cells were centrifuged down for 10 minutes at 2.300 g, resuspended in 

100 μl of sterile ddH2O and plated on SC-Drop-out (-W-L) plates. The 

plates were incubated at 30 °C. Of each positive plate a few colonies were 

streaked out on SC-Drop-out (-W-L-H) plates. For representative reasons, 

colonies of the SC-Drop-out (-W-L) plates were inoculated in 10 ml liquid 

SC-Drop-out (-W-L) medium overnight. The OD600 was measured and 

brought to the same value. The cells were then centrifuged down at 2,300 

g for 10 minutes and resuspended in 40 μl sterile H2O. 20 μl of the cell 

suspension was then brought as a drop onto SC-Drop-out (-W-L-H) and 

SC-Drop-out (-W-L-H + 3mM 3AT)-plates. The SC-Drop-out was prepared 

with 6.67 g/l yeast nitrogen base (w/o amino acids), 20 g/l glucose, 0.83 

g/l Synthetic Complete Drop Out Mix (-W-L/ -W-L-H/-W-L-H+3mM 3-

Amino-1,2,4-triazole; pH 5.6). 
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Table 2.4 Primer sequences employed in the Y2H assay. The restriction sites used for the 
cloning procedure are not displayed. 

Genes Sense primer (5´ to 3´) Antisense primer (5´ to 3´)  

GUN1 GCTCATCTTTCACAGACTACTC  CACAGAGCCAAACATTGTTAGG  

RH50 TGTTTCGTAACGGCGGAGGAG GGTCAAGATGAAGAGTTACTTAGGTTGTG 

PRPL11 GCCATGGCTCCACCTAAACCC ATAGAAACTACCAACCAGGC 

PRPL24 CTTGCAAAGCTCAAGCGTTG CTAAGATGCGGAGGTAACTG 

HEMA TCTGCTTCTTCTGATTCTGCG TTACTTCTGTTGTTGTTCCGCC 

GSA1 CCGTCGACGAGAAGAAGAAAAG CTAGATCCTACTCAGTACCCTC 

GSA2 GCTTCTTCGTCGTCCAACC TCCAGAGACATTTTAGAGCCGAC 

HEMC GCTCAAGCATACGAGACGC CTTCTTCGAATGGCTCAGTTG 

HEME1 GCTGCAAAAGGGCAAGCC TCAGACAACCAATTCAGGTTCAG 

HEME2 GTTCCGTCGAGGGAACTAC TTAATATCTAATTTCTTGAGCAACCTC 

HEMF1 TCTCAATTGAGAAAGAAGTTCC CAATGGGAAACACAGGCTAGATC 

PPOX CCACCATCACGACGGATTG ATTTACTTGTAAGCGTACCGTGACATG 

CHLI1 TCGGTTATGAATGTAGCCACTG TCAGCTGAAAATCTCGGCG 

CHLI2 CTGTTATGAATGTCGCTACAGAG CTAAGTGAAAACCTCATAGAACTTC 

CHLD GTGCCTCCGCGAATGCTAC GTATTGCAGACAAAATGAGGTCAAG 

2.11 Chloroplast isolation and sub-fractionation 

Four weeks old light-adapted plants were homogenized in 0.45 M Sorbitol, 

20 mM Tricine-KOH pH 8.4, 10 mM EDTA, 10 mM NaHCO3 and 0.1% BSA. 

The material was then filtered through a single-layer of Miracloth 

(Calbiochem), and the filtrate was centrifuged at 4°C and 700 g for 7 

minutes. The pellet was resuspended carefully in resuspension buffer (0.3 

M Sorbitol, 20 mM Tricine-KOH pH 8.4, 2.5 mM EDTA and 5 mM MgCl2). 

The suspension was centrifuged using a two-step Percoll gradient (40%-

80% (v/v) in resuspension buffer) at 4°C and 6,500 g for 20 minutes. 

Intact chloroplasts were collected at the interface of the percoll gradient 

and washed once with resuspension buffer. 

The isolated chloroplasts were then fractionated. To this end, intact 

chloroplasts were lysed in 30 mM HEPES-KOH pH 8.0, 60 mM KOAc and 

10 mM MgOAc by passing the suspension through a 24-gauge syringe 20 
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times. Then the solution was centrifuged at 4°C and 16,000 g for 20 

minutes. The supernatant was collected as stroma fraction. The pellet was 

washed again with 1 ml of the same buffer, centrifuged again at 4°C and 

16,000 g for 20 minutes and collected as thylakoid fraction. 

2.12 Protein preparation and immuno-blot analysis 

Frozen plant material was homogenized in 2X Laemmli buffer (200 mM 

Tris-HCl pH 6.8, 4% SDS, 20% glycerol, 5% β-mercaptoethanol), and 

solubilized for 15 minutes at 65°C. After a centrifugation step (16,000 g, 

10 min) the supernatant was boiled 5 minutes to denature the sample. 

Stroma and thylakoid samples were treated in the same way. The total 

protein extraction was then loaded on a Tris-glycine 12% SDS-PAGE 

(Schägger and von Jagow, 1987), afterwards, proteins were transferred to 

PVDF membranes (Ihnatowicz et al., 2004) and immuno-decorated with 

antibodies. 

2.13 In vivo translation assay 

The in vivo labeling assay was performed basically as described by 

Pesaresi, 2011. To this end, 6 mm leaf discs were incubated in 1 mM 

K2HPO4–KH2PO4 pH 6.3, and 0.1% (w/v) Tween-20 and 20μg/ml 

cycloheximide to block cytosolic translation. [35S] methionine was added 

to the buffer in a final concentration of 0.1 mCi/ml and vacuum-infiltrated 

into the leaf tissue. The material was then exposed to light (20 μmol 

photon m−2 s−1) and four leaf discs were collected at each time point (5, 

15 and 30 min). Total proteins were extracted as described above and 

fractionated by Tris-glycine SDS-PAGE (12% PA). 

2.14 Embryo analysis and TEM analysis 

To analyze lethal mutants at the embryo and seedling stage, heterozygous 

mutant siliques were fixed in an ethanol and acetic acid solution (9:1, v/v) 

overnight, followed by two washes in 90% and 70% ethanol and clearing 
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in a chloral hydrate:glycerol:water solution (8:1:2, w/v/v) according to 

Yadegari, 1994. Siliques were manually dissected and observed with a 

Zeiss Axiophot D1, equipped with a differential interface contrast optics, 

focusing on the embryo development. Pictures were acquired with the 

Axiocam MRc5 (Zeiss) supported by the Axiovision program V 4.1. 

Leaf tissue from light-adapted plants was fixed with 2.5% glutaraldehyde 

in fixation buffer (75 mM sodium cacodylate, pH 7. 0.2 mM MgCl2) for 1 

hour at room temperature. Afterwards leaves were rinsed several times in 

the same buffer, and post- fixed for 2 hours with 1% osmium tetroxide in 

fixation buffer at room temperature, as described previously (Aseeva et 

al., 2007). All micrographs were taken using a Zeiss EM 912 electron 

microscope. 

2.15 Bimolecular fluorescence complementation (BiFC) 

Full-length cDNA fragments of the target genes were cloned into the 

pDONR207 (Invitrogen) using gene specific primers (Table 2.5) and then 

recombined into the gateway compatible pVyNE and pVyCE plasmids (Gehl 

et al., 2009) carrying either the N-terminal part or C-terminal part of the 

Venus protein (YFP derivate), respectively. For BiFC assays (Walter et al., 

2004) the constructs were transformed into Agrobacterium tumefaciens 

GV2260. Transient co-expression of tagged putative interaction partners 

was achieved by transformation of Nicotiana tabacum leaves with the 

infiltration technique. After 2-3 days of dark incubation, leaf discs were 

analyzed by confocal laser scanning microscopy using a Leica TCS SP2 

(Leica, www.leica-microsystems.com), at λex 514 nm, λem 530-555 nm 

for YFP and 600-700 nm for Chl emission. 
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Table 2.5 Primer sequences used for BiFC assay, GUN1-GFP and RH50-YFP localization. 
Tail sequences employed for cloning are not reported. 

Genes Sense primer (5´ to 3´) Antisense primer (5´ to 3´) 

GUN1 TCCTTTCAATGGCGTCAACG ACAAAAGAAGAGGCTGTAAAGCAAACG 

RH50 AGATGTTGGCGAGAGCTCCAC TTGTGAACTCGTAAGCGTTTGG 

HEME2 ATGTCAATCCTTCAAGTCTCTAC AATATCTAATTTCTTGAGCAACC 

HEMC TCGCTCCTCCACCTGAATCCATG CGTTGCCGAAGAAGCCAGGAC 

CHLD TTGAAAATGGCGATGACTCC AAGAATTCTTCAGATCAGATAGTGC 
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3. Results and Discussions 

3.1 Thylakoid redox signals are integrated into OGE-dependent retrograde 

signaling in the prors1-1 mutant 

3.1.1 The chaos mutation is capable of restoring a WT TRS in the prors1-1 

mutant 

In order to verify the extent to which signals related to light and 

photosynthetic electron transport contribute to the OGE-dependent 

retrograde signaling pathway, the chaos mutation was introduced into the 

prors1-1 genetic background. 

The prors1-1 chaos mutant was generated by crossing the two single 

mutants and the double homozygous plants were isolated within the F2 

generation. The scheme of the genes and the insertions present in the 

mutated alleles is displayed in Figure 3.1.  

 
Figure 3.1 Schematic representation of prors1-1 and chaos mutant alleles. 
Numbered boxes indicate the exons, while black lines represent the introns. Arrowheads 
indicate the start and stop codons of translation. T-DNA (Ac106) and transposon (En) 
insertions, not drawn to scale, are also indicated together with the position of the 
insertion. LB, left border; RB, right border. 

 

Like the previously described single mutants (Klimyuk et al., 1999; 

Pesaresi et al., 2006), the prors1-1 chaos double mutant showed pale-

green cotyledons and true leaves and a diminished growth. In particular, 

28 days after germination (d.a.g.), the size of prors1-1 and chaos plants 
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was about 80% of WT, whereas prors1-1 chaos double mutants showed a 

reduction in size by about 50%. However, the number of leaves during the 

plant life cycle was comparable between mutant and WT plants (Figure 

3.2), indicating that the developmental stage among the genotypes was 

identical. Chlorophyll a fluorescence measurements were used to analyze 

the photosynthetic performance of 28 days-old WT and mutant plants.  

 

Figure 3.2 Phenotypes of prors1-1, chaos and prors1-1 chaos mutants. Pictures 
taken at 28 d.a.g. (A). Growth rate of the mutants was measured in cm2 (y-axis) at 4, 
10, 14, 19, 23 and 28 d.a.g. (x-axis) (B). Fv/Fm (C) and ΦII (D) values of PSII are 
displayed in heat map colors based on the color scale below where violet color 
corresponds to 1 and red to 0 (Tadini et al., 2012). 
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Photosynthetic parameters highlight that prors1-1 displayed a diminished 

maximum quantum yield of PSII (Fv/Fm) (Figure 3.2C), whereas chaos 

conversely showed a higher value than the WT. In the double mutant, the 

chaos mutation seemed to restore the Fv/Fm values to a WT level (Figure 

3.2C). The effective quantum yield of PSII (ΦII) measured after 10 

minutes of actinic light exposure was reduced in prors1-1 and increased in 

chaos and prors1-1 chaos if compared to the WT (Figure 3.2D). Moreover, 

the 1-qL parameter, used for an indirect estimation of the redox-state of 

the PQ pool, appeared to be decreased in chaos and prors1-1 chaos 

leaves. To further investigate the thylakoid electron transport rate, a 

Clark-type oxygen electrode was employed to measure the oxygen 

production of leaves under growth light conditions. The oxygen production 

in comparison with Col-0 was slightly reduced in prors1-1 and significantly 

reduced in chaos and prors1-1 chaos leaves (Table 3.1).  

Table 3.1 Photosynthetic performance and oxygen production of prors1-1, chaos and 
prors1-1 chaos mutants plants. The measures of photosynthetic parameters (Fv/Fm, ΦII 

and 1-qP) and 02 production were conducted at 28 d.a.g., the 02 production is expressed 
in µmol O2 m-2 h-1.  

  
Fv/Fm ΦII 1-qP NPQ O2 production 

Col-0 0.83±0.01 0.76±0.01 0.08±0.01 0.152±0.01 0.03±0.00 

prors1-1 0.74±0.02 0.63±0.02 0.10±0.02 0.116±0.01 0.02±0.00 

chaos 0.86±0.01 0.81±0.01 0.04±0.02 0.086±0.01 0.01±0.00 

prors1-1 chaos 0.84±0.01 0.78±0.01 0.05±0.02 0.077±0.01 0.01±0.00 

 

Pigment analyses performed by HPLC showed that all the mutants have a 

reduced amount of total chlorophyll (Chl a+b). In detail, prors1-1 contains 

80% of WT chlorophyll, chaos 40% and the prors1-1 chaos double mutant 

about 35%. The chlorophyll a to b ratio (Chl a/b) was also altered, lower 

in prors1-1 (2.55 ± 0.15 in comparison to 2.71 ± 0.09 in Col-0) and 

higher in chaos and prors1-1 chaos, 3.69 ± 0.08 and 3.01 ± 0.09, 

respectively. In addition, the carotenoid pool, usually associated with the 
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PSII antenna [neoxanthin (Nx), lutein (Lut), and the VAZ pool 

(violaxanthin + antheraxanthin + zeaxanthin)], was markedly reduced in 

chaos and prors1-1 chaos mutants (Table 3.2). Taken together, these 

data indicate that the reduction of the PSII antenna size in the prors1-1 

chaos mutant, as consequence of the chaos mutation, restores the altered 

TRS of prors1-1 by decreasing the total amount of the light absorbed. 

Consequently, PSII is able to better process the electronic pressure 

generated by the antenna. However, the rescue-effect, observed at the 

TRS level, does not imply a rescue of the physiological functions of prors1-

1 chaos. The double mutant was indeed smaller and produces less oxygen 

in comparison to the two single mutants. 

Table 3.2 Leaf pigment content of prors1-1, chaos and prors1-1 chaos mutants. 
Measures expressed in pmol/mg (fresh weight) of leaf material analyzed by HPLC. Nx, 
neoxanthin; Lut, lutein; B-car, B-carotene; Chl a, Chlorophyll a; Chl b, chlorophyll b; 
Vaz, violaxanthin + antheraxanthin + zeaxanthin; Chl a + b, total chlorophyll. 

 
                

Genotypes Nx Lut Chl b Chl a Β-Car Vaz Chl a+b Chl a/b 

Col-0 60±5 197±15 580±34 1574±54 211±7 66±5 2154±53 2,71±0,09 

prors1-1 45±3 154±10 480±28 1225±71 121±8 66±1 1705±68 2,55±0,15 

chaos 29±1 103±9 197±6 728±34 176±7 34±3 925±40 3,69±0,08 

prors1-1 chaos 24±3 92±9 165±12 497±39 174±10 43±4 742±61 3,01±0,09 

         

 3.1.2. Protein composition of thylakoid membranes is influenced by the 

TRS 

To define the protein composition of the photosynthetic machinery, 

immuno-blot analyses were performed on isolated thylakoids and total 

protein preparations fractionated on 1D SDS-PAGE (Figure 3.3). As 

previously described by Klimyuk et al. (1999), PSII-associated antenna 

complexes (Lhcb1, Lhcb2 and Lhcb3) were markedly reduced in the chaos 

mutant (30% of WT levels), and similar reductions could also be observed 

in prors1-1 chaos leaves. Conversely, Lhca1 seemed to be more reduced 
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in prors1-1 chaos than in the respective single mutants. Due to the 

prors1-1 mutation, plastid encoded photosystem subunits were in general 

slightly reduced in prors1-1 and prors1-1 chaos, as well as the α- and β-

subunits of the ATPase that are reduced to 50% of WT levels. Other 

subunits belonging to the PSI antenna (Lhca2), PSII antenna (Lhcb5), PSI 

core (PsaD and PsaF), PSII core (D1, CP43 and D2) and oxygen evolving 

complex (PsbQ) were increased in their amounts in thylakoids of the 

double mutant compared to prors1-1 (Figure 3.3). Immuno-blot analyses 

were also performed on dark- and light-adapted leaf material, by 

employing phosphothreonine-specific antibodies (p-Thr), to investigate the 

phosphorylation status of PSII core and LHCII proteins. In general only 

faint signals were visible in dark-adapted leaves, however in prors1-1 

LhcII phopshorylation is slightly increased. In light-adapted samples 

thylakoid proteins were strongly phosphorylated with prors1-1 showing a 

significantly higher phosphorylation of CP43 and a slightly increased 

phosphorylation of D1/D2 and LHCII proteins. Contrarily, in chaos and 

prors1-1 chaos a marked decrease in D1, D2, and CP43 phosphorylation 

could be observed. The diminished phosphorylation of CP43, D1 and D2 in 

prors1-1 chaos is most likely a consequence of the reduced injections of 

electrons into the thylakoid electron transport chain and possibly leads to 

a slower protein turn-over in the thylakoids (Figure 3.3). This in turn may 

explain the higher accumulation of some nuclear-encoded photosynthetic 

proteins observed in prors1-1 chaos leaves with respect to prors1-1.  
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Figure 3.3 Protein composition of thylakoid membranes. Thylakoids and total 
proteins were extracted from an equal amount of leaf fresh weight. Thylakoids were 
isolated, fractionated by SDS-PAGE and stained with Coomassie Brilliant Blue (A). 
Immuno-blot analysis on total protein extracts were performed using antibodies against 
LHC and PS subunits. 0.50x Col-0 and 0.25x Col-0 indicate dilutions of WT control (B). 
Dark- and light-adapted total leaf extracts were probed with a Phospho-Threonine (P-
Thr) specific antibody, D1 immuno-blotting was used as loading control (C) (Tadini et al., 
2012). 

2.1.3. TRS influences nuclear and plastid gene expression 

To analyze the functional and physiological interaction between the TRS 

and OGE at the plastid level and their contribution to NGE, in-vivo labeling 

and northern blot analyses were performed. Leaf discs were collected after 

5, 15 and 30 minutes of incubation with [35S] methionine in the presence 

of light and inhibitors of cytoplasmic protein synthesis. To assess the 

protein synthesis rate, RbcL and D1 synthesis was monitored. As 

previously described in Pesaresi et al. (2006), prors1-1 showed a slightly 
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slower protein synthesis rate (Figure 3.4), whereas no alterations could be 

detected in the chaos mutant, indicating that the reduced LhcII 

accumulation does not influence the translational machinery. The amounts 

of RbcL labeled in prors1-1 and prors1-1 chaos plants were comparable 

and equivalent to about 55% of the WT levels (Figure 3.4). 

 

Figure 3.4 Synthesis rate of plastid-encoded proteins. In-vivo labeled total proteins 
were fractionated on SDS-PAGE. The presence of cycloheximide ensures protein 
synthesis to take place only in the organelles. RbcL and D1 protein accumulation was 
monitored and quantified (Tadini et al., 2012).  

As described before (Pesaresi et al., 2006) the prors1-1 mutant showed, 

as consequence of plastid-to-nucleus retrograde signaling, a diminished 

expression of nuclear-encoded photosynthetic genes. Expression analyses 
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were performed on 28 days old leaves to define the relative contribution 

of photosynthetic electron transport and the associated changes in TRS to 

the OGE-dependent signaling pathway (Figure 3.5). In the prors1-1 chaos 

double mutant, 15 of the 17 nuclear encoded photosynthetic genes 

analyzed were up-regulated in comparison to prors1-1. In particular, the 

expression of Lhca1, Lhca2, PsaE1, PsaF, PsaK, PsaO, Lhcb1, Lhcb2, and 

PsbX in prors1-1 chaos leaves was similar to those of the WT. In addition, 

PsaD1, Lhcb3, Lhcb4, PsbO2 and RbcS transcripts accumulated in prors1-

1 chaos leaves at higher levels than in prors1-1. Exceptions were 

represented by Lhca3 and Lhca4 genes which were down-regulated in 

both, prors1-1 and prors1-1 chaos mutants. The limited capacity for light 

absorption caused by the chaos mutation also influenced plastid gene 

expression, as shown by the marked drop in psaA-B expression in chaos 

and prors1-1 chaos mutants, whereas psbA and RbcL levels were almost 

unchanged in mutant plants. Expression of genes involved in scavenging 

or preventing the formation of ROS was also investigated. The transcript 

levels of Ferritin1, mitochondrial alternative oxidase (AOX1), catalase 

(CAT1) and 2-Cys-peroxiredoxin-A (2CPA), whose expression was 

reported to be stimulated by increases in ROS production, were only 

slightly altered in the mutant genotypes (Figure 3.5), suggesting no 

significant alteration in the accumulation of ROS in those leaves. 
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Figure 3.5 Expression analysis of nuclear- and plastid-encoded genes in prors1-
1, chaos and prors1-1 chaos plants. Northern blot analysis on photosynthesis and 
antioxidant genes (A), the equal loading was verified by methylene blue staining, where 
the 25S and 18S rRNA are shown. Gene expression was then quantified and depicted in a 
heat map representation (B) (Tadini et al., 2012).  
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3.1.4. Discussion 

As mentioned before in this work, chemicals used to characterize the 

different retrograde signaling pathways have a wide range of secondary 

effects, which do not allow for a distinction between primary and 

secondary effects of the respective treatment. To avoid possible secondary 

effects and to identify the primary source of the signaling event, a genetic 

platform was employed, based on the prors1-1 being a mutant slightly 

impaired in organellar protein synthesis but otherwise comparable to Col-0 

(e.g. developmental stage). It has been described before by Pesaresi et 

al. (2006) and in this work that the translational defects observed in the 

prors1-1 mutant have a clear effect on the TRS, which is supported by 

photosynthetic measurements and the enhanced thylakoid 

phosphorylation. This observation strengthens the notion that the 

photosynthetic machinery, and in particular the PQ pool, act also as the 

major sensor for physiological imbalances in the chloroplast (Pfannschmidt 

and Yang, 2012). Nevertheless, changes of the TRS, caused by alterations 

of the pressure across the electron transport chain, lead to modifications 

of the gene expression at the nuclear side. The introduction of the chaos 

mutation into the prors1-1 genetic background intended to compensate 

the altered TRS of prors1-1, thus mimicking the physiological ability of the 

chloroplast to adapt to an excessive light exposure. The lack of cpSRP43 

in the chaos mutant, responsible for the insertion of Lhcb proteins into the 

thylakoid membrane, results in a decrease of the PSII antenna and 

consequently a decrease in the light absorption capability of the electron 

transport chain (Klimyuk et al., 1999). As shown by ΦII and NPQ 

measurements and by the phosphorylation-state of the thylakoid proteins, 

the TRS of prors1-1 is restored to a WT-like level by the chaos mutation. 

Due to the chaos mutation, the accumulation of PSII antenna proteins 

(Lhcb1, Lhcb2, Lhcb3 and Lhcb6) is indeed markedly decreased in prors1-

1 chaos. It must be noted that chloroplast-encoded psaA-B operon mRNA 

is decreased in chaos and prors1-1 chaos and more abundant in prors1-1, 
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since transcription of the chloroplast-encoded psaA-B operon is under 

control of the PQ pool redox-state (Pfannschmidt et al., 1999; Allen and 

Pfannschmidt, 2000). This observation supports the idea of a hyper-

oxidized-PQ pool in chaos and prors1-1 chaos genetic background, on the 

other hand, plastid translation rate, analyzed by in-vivo labeling, revealed 

that the mitigation of prors1-1 TRS by chaos mutation does not imply an 

OGE improvement. Protein synthesis of prors1-1 chaos is indeed 

comparable to prors1-1 single mutant. We can therefore conclude that the 

OGE has a direct impact on the over-reduction of the TRS but, however, 

an over-oxidized TRS is not positively influencing the OGE when 

compromised. Nevertheless, the increased accumulation of some plastid-

encoded subunits in prors1-1 chaos (relative to prors1-1) has to be 

attributed to post translational events which might affect protein stability 

as a consequence of a lower level of oxidative damage. The TRS 

mitigation effect, due to the introduction of the chaos mutation, does not 

improve the physiological functions as demonstrated by growth rate and 

O2 production measurements of the prors1-1 chaos plants. Interestingly, 

the prors1-1 chaos plants show a general de-repression of those genes 

which are down-regulated in prors1-1 single mutants, even though not all 

the genes show the same behavior. According to their de-repression 

pattern, four groups of genes can be defined: genes which are expressed 

at higher level than in the WT (e.g. PsbT2), genes expressed at levels 

similar to the WT (e.g. Lhca1, Lhca2, PsaE1, PsaF, PsaK, PsaO, Lhcb1, 

Lhcb2, and PsbX), genes expressed at levels higher than in prors1-1 but 

lower than in the WT (e.g. PsbO2 and RbcS) and those which are not 

influence in their expression by the chaos mutation (e.g. Lhca3, Lhca4). 

Since the TRS only partially suppresses the retrograde signaling pathway 

triggered by OGE, we could conclude that TRS and OGE act in distinct 

overlapping pathways which exert a synergistic effect on NGE. Moreover, 

these two components of the organelles-to-nucleus signaling act together 

in a gene-specific manner. Pesaresi et al. (2006) have already shown that 
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OGE-triggered retrograde signaling is widely independent of light-

correlated processes like photosynthesis and TRS. Indeed, the down-

regulation of nuclear genes in the prors1-1 genetic background persists 

even after dark-adaptation, which implies that plants retain a certain 

memory of the stress conditions induced by light exposure. Moreover, it 

can be concluded that the specific retrograde-signaling observed in 

prors1-1 is not triggered by ROS (this work and Pesaresi et al., 2006), 

since no expression changes of genes involved in ROS detoxification 

(2CPA, CAT1, Ferritin1 and AOX1) was noted in the corresponding studies 

performed on WT and mutant plants.  
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3.2 GUN1 functionally interacts with the plastid gene expression 

machinery  

The gun mutants have been reported to alter retrograde signaling, with 

GUN1 being specifically involved in the OGE-dependent signaling pathway. 

In this part of the study we investigated a possible role of GUN proteins 

and other members of the pTAC complex in transducing the OGE-signal to 

the nucleus. 

3.2.1. gun1-gun5 genetic interaction with prpl11 and prors1-1 mutants  

As mentioned before, gun mutants have been described to be impaired in 

the plastid-to-nucleus signaling, however the gun-phenotype has always 

been observed employing chemicals which heavily affect physiological 

functions (Susek et al., 1993; Koussevitzky et al., 2007). Since chemicals 

like norfluorazon (NF) or lincomycin (Lin) have a wide range of secondary 

effects on chloroplast functions, these experimental setups give only 

limited information about the signaling under physiological conditions. To 

analyze the role of gun-mediated signaling under more physiological 

conditions, a large set of double mutants was generated, by introducing 

the gun1-gun5 mutations into the prpl11 and prors1-1 genetic 

backgrounds (Figure 3.6).  
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Figure 3.6 Schematic representation of the employed mutants alleles. Point 
mutations and T-DNA insertions are displayed within the genomic sequences. Introns are 
represented as black lines, exons as numbered boxes, LB and RB stand for left and right 
border of the T-DNA. 
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As described before, gun1 mutant plants did not show any obvious 

phenotype at 28 d.a.p. and no difference in growth or leaf photosynthetic 

efficiency could be detected at this stage. However, when four 

independent gun1 alleles (Figure 3.6), generated via either T-DNA 

insertions or point mutations, were introduced into the prpl11 mutant 

background, mature-albinotic embryos and albino seedlings were 

observed in the progeny of the double heterozygous mutant plants (Figure 

3.7).  

 

Figure 3.7 Phenotypic analysis of gun1 prpl11 mutant. In most of the cases gun1 
prpl11 is an albinotic-seedling (A), rarely gun1 prpl11 overcomes the seedling-stage and 
develops variegated leaves (C). TEM analyses revealed a pro-plastid-like structure which 
fails to develop a thylakoid membrane system (C) contrarily the green sectors contain 
WT-like fully developed chloroplasts (B). 
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PCR analysis identified the albinotic-seedlings as the gun1 prpl11 double 

mutant. Segregation analyses on the gun1/GUN1 prpl11/prpl11 F1 

generation demonstrated that a part of the progeny fail to germinate. The 

four gun1 alleles analyzed showed a different ratio between albinotic-

seedlings and non-germinated seeds (Table 3.3).  

Table 3.3 Segregation analyses on the progeny of four gun1 alleles introduced into the 
prpl11 mutant background. Plants were grown for 7 days on soil as described in Material 
and Methods. 

 Segregating mutant background Albino Not-germinated Green Total 

WT 0 0 106 106 

prpl11/prpl11 GUN1/gun1-1 11 4 91 106 

prpl11/prpl11 GUN1/gun1-9 4 29 73 106 

prpl11/prpl11 GUN1/gun1-101 11 10 85 106 

prpl11/prpl11 GUN1/gun1-102 16 9 81 106 

 

However, few viable gun1 prpl11 double mutants were identified (Figure 

3.7B). These plants appeared in rare numbers (~1:500), very variable in 

size and growth and show a variegated phenotype with alternating white 

and green leaf sectors. Transmittance electron microscopy (TEM) was 

used to compare the plastid morphology between the green and white 

sectors. Even though the green sectors contained fully developed WT like 

chloroplasts, the white sectors showed proplastid-like structures that fail 

to develop into thylakoid membrane containing chloroplast (Figure 3.7B).  

To further investigate whether the variegated phenotype of viable gun1 

prpl11 double mutants is due to environmental stress conditions, as in the 

case of variegated plants lacking the plastid terminal oxidase (PTOX), 

immutans and gun1 prpl11 plants were grown both under low- and 

growth-light conditions. As shown in Figure 3.8, immutans plants were 

characterized by white leaf sectors and a marked reduction in size under 

standard light conditions, in comparison to an almost WT like appearance 
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when grown under low light conditions. On the contrary, the variegated 

phenotype of gun1 prpl11 leaves appeared similarly severe under both 

light conditions, indicating that the gun1 prpl11 leaf phenotype is not 

influenced by light intensities and thus is rather due to a developmental 

defect (Figure 3.8). 

 

Figure 3.8 Phenotypic characterization of 26 days old gun1 prpl11 and 
immutans plants. Plants were grown under low-light (LL, upper panel) and high-light 
(HL, bottom panel) conditions. 

To investigate the involvement of the other GUN proteins in the plastid-to-

nucleus communication, also the gun2, gun3, gun4 and gun5 mutations 

were introduced into the prpl11 knock-out background. In these cases the 

double mutants were viable and behaved like the respective parental lines 

(Figure 3.9)  
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Figure 3.9 Phenotypes of the gun1-gun5, prpl11 and prors1-1 single and gun 
prpl11 and gun prors1-1 double mutants. Imaging-PAM pictures represent the PSII 
yield (ΦII), values are visualized according to the color scale on the bottom, violet color 
for 1 and red color for 0.  

As described above, mutants with a reduced PSII antenna size absorb less 

light and for this reason are less photo-sensitive. This appears also to be 

the case for gun2, gun3, gun4 and gun5 that show higher Fv/Fm and ΦII 

values than the WT control. Similarly, the gun2 prpl11, gun3 prpl11, gun4 

prpl11 and gun5 prpl11 double mutants showed a total or partial rescue of 

the decreased prpl11 photosynthetic performance (Table 3.4).  
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Table 3.4 Photosynthetic performance analyses of gun1-gun5, prpl11 and prors1-1 single 
and double mutants. In the table are represented the PSII efficiency of dark-adapted 
plants (Fv/Fm) and light-adapted plants (ΦII). The 1-qP value reflects the redox-state of 
the PQ pool. 

  FV/FM ΦII 1-qP 

WT 0,81±0,02 0,75±0,01 0,06±0,02 

gun1 0,82±0,01 0,76±0,02 0,05±0,02 

gun2 0,85±0,03 0,78±0,02 0,05±0,02 

gun3 0,86±0,02 0,77±0,01 0,04±0,02 

gun4 0,85±0,03 0,79±0,01 0,04±0,01 

gun5 0,85±0,01 0,760,02 0,05±0,02 

prpl11 0,71±0,03 0,64±0,02 0,07±0,02 

gun2 prpl11 0,85±0,02 0,75±0,02 0,06±0,01 

gun3 prpl11 0,79±0,01 0,67±0,02 0,05±0,01 

gun4 prpl11 0,77±0,02 0,69±0,03 0,07±0,03 

gun5 prpl11 0,73±0,02 0,66±0,03 0,07±0,02 

prors1-1 0,78±0,02 0,68±0,02 0,06±0,02 

gun1 prors1-1 0,81±0,01 0,73±0,02 0,05±0,01 

gun2 prors1-1 0,86±0,03 0,78±0,03 0,06±0,02 

gun3 prors1-1 0,84±0,01 0,76±0,02 0,06±0,01 

gun4 prors1-1 0,84±0,03 0,76±o,02 0,05±0,02 

gun5 prors1-1 0,83±0,01 0,76±0,03 0,06±0,02 

 

Nevertheless, the improved photosynthetic efficiency observed in the 

double mutants did not correspond to a rescue of the plant’s physiological 

performance, since no improvement in the growth rate of the different 

double mutants could be observed (Figures 3.9 and 3.10).  
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Figure 3.10 Growth ratio measurements of gun mutants in prpl11 and prors1-1 
genetic background. The leaf area of at least 12 plants per genotype was measured 
from 5 to 26 d.a.g. Leaf areas are expressed cm2. 

To investigate further the role of GUN1 and to understand whether GUN1 

is specifically and functionally interacting with the prpl11 mutation, rather 

than with the translational machinery, the entire set of gun mutations was 

introduced into the prors1-1 mutant background. Not surprisingly, gun2-

gun5 prors1-1 double mutants were slightly smaller than the parental 

lines with photosynthetic parameters being close to those of the gun2-

gun5 single mutants (Table 3.4). On the contrary, gun1 prors1-1 showed 

a better photosynthetic performance in terms of maximum (Fv/Fm) and 

effective quantum yield of PSII (ΦII) and an improved growth kinetics 

compared to prors1-1 (Table 3.4, Figure 3.9 and 3.10). This implies that 

the lack of GUN1 partially restored the prors1-1 phenotype in gun1 

prors1-1 plants. To summarize, gun1 is genetically interacting with the 

prpl11 mutation. This observation suggests a functional interaction of 

GUN1 with the plastid ribosome and a possible role in plastid gene 

expression. GUN1 is indeed essential in combination with prpl11 for plastid 

development. On the other hand, GUN1 is not essential in the prors1-1 

mutant background, in fact gun1 prors1-1 showed a partially restored 

phenotype. The other gun2-gun5 mutants conversely did not show any 
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additive phenotype in combination with mutants impaired in plastid 

translation. 

3.2.2 GUN1 functionally interacts with different subunits of the plastid 

ribosomes  

To further analyze the functional interaction between GUN1 and plastid 

ribosomes, the gun1-102, gun1-1, and gun1-9 alleles were crossed with 

prps1, prps17, prps21 and prpl24 mutants, each of them lacking a specific 

subunit of either the large or small subunit of the plastid ribosomes 

(Figure 3.6 and 3.11). Albino seedlings incapable of autotrophic growth 

have been found in the gun1/GUN1 prps17/prps17 progeny (Figure 

3.11A). Similarly, no viable double mutants could be identified in the 

gun1/GUN1 prpl24/prpl24 progeny, and many seeds fail to germinate. 

Analyses on siliques revealed the presence of albino-seedlings which 

aborted before reaching the seed maturation state. On the other hand, 

gun1 prps1 and gun1 prps21 were viable, pale green double mutants 

(Figure 3.11).   
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Figure 3.11 Phenotypic characterization of gun1 and prp single and double 
mutants. Fully mature albinotic embryos isolated from gun1/GUN1 prps17/prps17 and 
gun1/GUN1 prpl24/prpl24 siliques (A). Bright field and imaging-PAM pictures of the 
effective quantum yield of PSII (ΦII) of the gun1 prp viable mutants are represented on 
the right. ΦII values are according to the color scale at the bottom, violet color for 1 and 
red color for 0 (B). Growth rate measurements for at least 12 plants are reported in the 
chart, the leaf area has been measured in different time points from 5 to d.a.p. (C).  

In particular, prps21 and gun1 prprs21 plants were phenotypically 

identical, whereas the gun1 prps1 double mutant was slightly larger 

(150%) with respect to the prps1 single mutant and showed a better 

photosynthetic performance in terms of Fv/Fm and ΦII (Table 3.6).  

Table 3.6 Photosynthetic efficiency measurements on gun1 prps1 and gun1 prps21 
plants. The Fv/Fm is representative of the yield in the dark, ΦII value indicates the PSII 
yield after light adaption and 1-qP depicts redox-state of the PQ pool. 

  FV/FM ΦII 1-qP 

WT 0,81±0,02 0,75±0,01 0,06±0,02 

gun1 0,82±0,01 0,76±0,02 0,05±0,02 

prps1 0,63±0,03 0,49±0,02 0,12±0,03 

prps1 gun1 0,77±0,02 0,66±0,02 0,08±0,02 

prps21 0,55±0,02 0,41±0,03 0,16±0,04 

prps21 gun1 0,54±0,04 0,43±0,02 0,14±0,03 

  

Taken together, these data clearly indicate that the lack of GUN1 is able to 

improve the plastid-related functional defects of the prps1 mutant, 

similarly to the situation in gun1 prors1-1. Contrarily, it exacerbates the 

prps17 and prpl24 phenotypes leading to seedling- and embryo-lethality 

phenotypes of the corresponding double mutants. Interestingly, no 

additive phenotypic effects can be observed in gun1 prps21 double mutant 

plants. 

3.2.3 Discussion   

It has been widely discussed that plastid-to-nucleus retrograde signaling 

involves GUN1-GUN6 proteins (Bienert et al., 2007; Mubarakshina et al., 
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2010). In particular, GUN1 is proposed to be the major integrator of most 

of the plastid signals like the TRS, the OGE and the one derived from 

tetrapyrrole biosynthesis (Koussevitzky et al., 2007). A genetic approach 

was applied to investigate the functional interaction between gun1-gun5 

mutants and the OGE-defect mutants such as prpl11 and prors1-1. 

Phenotypic analyses that focused on growth rate and photosynthetic 

efficiency showed no obvious functional interaction between gun2-gun5 

and the OGE mutations. The phenotypes of the double mutants only 

reflected the single mutant phenotypes without any significant over-

additive effects. As described for chaos, gun2-gun5 mutants had a 

diminished accumulation of chlorophyll and consequently a more oxidized 

TRS in comparison to WT. Therefore the TRS of gun2-gun5 prpl11 and 

gun2-gun5 prors1-1 mutants was restored to WT-levels. No particular 

signaling function could be deduced for gun2-gun5 under altered OGE 

conditions, as already shown by Koussevitzky et al. (2007): gun2-gun5 

are indeed sensitive to lincomycin treatment like WT plants. On the other 

hand GUN1 is the only plastid-located protein of the pathway which shows 

a functional interaction with the OGE machinery and an involvement in 

OGE triggered signaling. The identification of lethal albinotic seedling 

mutants (gun1 prpl11, gun1 prpl24 and gun1 prprs17) demonstrates that 

GUN1 is essential for plastid biogenesis when certain ribosomal subunits 

are absent even though embryogenesis is not affected in those double 

mutants. Indeed, TEM analyses and growth measurements of these 

double mutants under different light conditions demonstrated that the 

albinotic phenotype is rather due to the inability to perform the transition 

from pro-plastids to mature chloroplasts than a disruption of the 

chloroplasts. This kind of plastid phenotype resembles that of documented 

knock-out mutants of other pTAC components like pTAC3, pTAC6 and 

pTAC12 which are involved in plastid gene expression (Pfalz et al., 2006). 

However, only some of the prp mutants analyzed in combination with the 

gun1 mutation resulted in embryo- seedling-lethality while gun1 showed 
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no effect in the prprs21 mutant background. It is therefore reasonable to 

assume that GUN1 function is related to only one or few specific ribosomal 

subunits/functions and not protein translation per se. Special cases of 

gun1 OGE-mutant interactions are represented by gun1 prors1-1 and 

gun1 prps1. Indeed, the lack of GUN1 was improving growth and 

photosynthetic performance of the prors1-1 and prps1 mutants, as 

indicated by the partially restored phenotypes observed in the double 

mutants. In both of the two double mutants the TRS was mitigated by 

introduction of the gun1 mutation. Different from the situation of chaos 

and gun2-gun5, gun1 neither showed an increased oxidization of TRS nor 

a reduced chlorophyll accumulation. The reason for the partial rescue of 

the prors1-1 and prps1 phenotype by a lack of GUN1 must therefore 

involve some different mechanisms. To summarize, we can conclude that 

GUN1 is the only GUN protein functionally interacting with the OGE 

machinery in the chloroplast, supporting the gun1-specificity regarding the 

lincomycin treatment observed by Koussevitzky et al. (2007).  
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3.3 GUN1 and the molecular mechanism behind 

3.3.1 GUN1 is a component of the pTAC complex and interacts with the 

Mg-Chelatase  

To further define the role of GUN1 at the molecular level and to explain 

the genetic interactions described so far, we tried to elucidate the 

functional mechanism of GUN1. Since we could raise no GUN1 antibody, a 

35S:GUN1-GFP line was generated. The chimeric GUN1-GFP protein was 

able to complement the lethal gun1 prpl11 phenotype, thus showing its 

functionality. GUN1-GFP signals was observed inside the chloroplast, 

forming distinct spots as shown by Koussevitzky et al., (2007) (Figure 

3.12).  

In addition, western-blot analyses allowed to detect the GFP signal both, 

in thylakoids and even more abundant in the soluble stromal fraction. 

Moreover, immuno-decoration of GUN1-GFP resulted in two bands of 

approximately 90 and 95 kDa. Interestingly, the ratio of the two bands 

changed upon variations in light intensity, with high-light exposure 

favoring the accumulation of the higher molecular band. This observation 

suggests that GUN1 exists in two alternative forms (of possibly activity), 

most probably based on post-translation modifications (Figure 3.12). 
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Figure 3.12 GUN1-GFP localization. Fluorescence microscopy of protoplasts revealed 
GUN1-GFP to form distinct spots in the chloroplasts (A). Immuno-blot analysis localized 
GUN1-GFP both, to thylakoids and the soluble stromal fraction of chloroplasts (B). GUN1-
GFP immuno-decoration detected a double band, with the relative abundance of the 
higher molecular weight band increasing under high-light conditions (C).  

To identify putative GUN1 interaction partners, a yeast-two-hybrid assay 

was carried out. First, GUN1 interaction with PRPL11 and PRPL24 was 

tested to see whether the functional interactions with the plastid ribosome 

subunits could be explained by their physical interaction. The yeast-based 

2-hybrid assay indicated that no interaction occurs, although GUN1 

showed the ability to form homo-dimers. Interestingly GUN1 gene is co-

regulated with pentatricopeptide and tricopeptide-repeat proteins, other 
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pTAC components like RH50 and the enzymes of the tetrapyrrole-

biosynthesis pathway (Table 3.7).  

Table 3.7 Co-regulation data of GUN1 with the entire Arabidopsis thaliana transcriptome. 
The co-regulation score is between 0 (no co-regulation) and 1 (identical regulation). Here 
a short list of genes most similarly co-regulated with GUN1 is shown.  

Genes Score Description 

At2g31400 1,0000 GUN1 

At4g01690 0,7901 protoporphyrinogen oxidase (PPOX) 

At3g06980 0,7873 DEAD/DEAH box helicase (RH50) 

At4g36390 0,7870 radical SAM domain-containing protein / TRAM domain-containing 

At4g16390 0,7842 chloroplastic RNA-binding protein P67, putative 

At5g46580 0,7835 pentatricopeptide (PPR) repeat-containing protein 

At3g63190 0,7823 ribosome releasing factor, chloroplast, putative 

At3g51140 0,7820 expressed protein 

At3g02450 0,7809 cell division protein ftsH, putative 

At1g70200 0,7807 RNA recognition motif (RRM)-containing protein 

At5g08280 0,7687 hydroxymethylbilane synthase (HEMC) 

At1g74850 0,7684 pentatricopeptide (PPR) repeat-containing protein 

At1g01320 0,7655 tetratricopeptide repeat (TPR)-containing protein 

At1g06190 0,7644 expressed protein 

At4g29060 0,7610 elongation factor Ts family protein 

At1g11750 0,7604 ATP-dependent Clp protease proteolytic subunit (ClpP) 

At3g48730 0,7597 glutamate-1-semialdehyde 2,1-aminomutase 2 (GSA 2)  

At4g38160 0,7594 mitochondrial transcription termination factor (mTERF)-related 

At3g12930 0,7592 expressed protein 

At3g19810 0,7590 expressed protein 

At5g49030 0,7583 tRNA synthetase class I (I, L, M and V) family protein 

At1g03475 0,7581 coproporphyrinogen III oxidase, putative  

At1g02150 0,7577 pentatricopeptide (PPR) repeat-containing protein 

At5g58250 0,7572 expressed protein 

At5g45390 0,7566 ATP-dependent Clp protease proteolytic subunit (ClpP4) 

At5g52520 0,7548 tRNA synthetase class II (G, H, P and S) family protein 

At2g17033 0,7544 pentatricopeptide (PPR) repeat-containing protein 

At3g63500 0,7532 expressed protein 

At2g41950 0,7526 expressed protein 

Based on gene expression co-regulation data, the potential interaction of 

GUN1 with these enzymes was tested. In particular, GUN1 interaction with 
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enzymes such as HEMA, GSA1, GSA2, HEMC, HEME1, HEME2, HEMF1, 

PPOX, CHLI1, CHLI2 and CHLD has been assayed (Figure 1.2). No 

interaction was detected between GUN1 and HEMA, GSA1, GSA2, HEME1, 

HEMF1, PPOX, CHLI1 and CHLI2. However, GUN1 was able to interact 

strongly with HEMC, HEME2, and CHLD (Table 3.8). The gun1-1 allele, 

caused by a point mutation that induces the amino acid substitution 

A259V (Koussevitzky et al., 2007), was also tested in the yeast two-

hybrid assay together with HEMC, HEME2 and CHLD, to see whether the 

mutated amino-acid residue is crucial for their interaction and therefore 

responsible for the gun1-1 phenotype. GUN1-1 was shown to interact as 

strongly with HEMC, HEME2, and CHLD as the WT allele.  

Table 3.8 Data of the yeast-two-hybrid assay using GUN1 as bait. Positive interactions 
are indicated by +, negative interactions are indicated by -. Note that similar data was 
obtained by using GUN1 as a pray. 

 
  

 
            

  GUN1 PRPL11 PRPL24 HEMA GSA1 GSA2 HEMC prey 

GUN1 (bait) + - - - - - +   

                  

  HEME1 HEME2 HEMF1 PPOX CHLI1 CHLI2 CHLD prey 

GUN1 (bait) - + - - - - +   

         Further support of the above identified interactions was obtained by 

Bimolecular Fluorescence Complementation (BiFC) assays. Although no 

HEME2-GUN1 interaction could be detected, protoplasts co-transformed 

with nYFP-HEMC and cYFP-GUN1 showed a distinct spotted YFP 

fluorescence signal in the chloroplasts. This signal pattern resembling the 

fluorescence distribution observed in the GUN1-GFP line (Figure 3.12). 

However, an interaction could not be observed in the reciprocal 

combination, using the chimeric variants nYFP-GUN1 and cYFP-HEMC. On 

the contrary, the CHLD-GUN1 interaction was reproducible in both 

combinations again resembling the GUN1-GFP spotting pattern (Figure 

3.13). GUN1-GUN4 interaction, which was also tested by BiFC, resulted as 



3. Results and Discussions 

58 

 

negative (not shown). Taken together, these observations support the 

idea that GUN1 may be part of the Mg-chelatase complex similar to CHLD, 

CHLI, GUN4, and GUN5.  

 

Figure 3.13 BiFC assays to test the interaction of GUN1 with each of the 
following tetrapyrrole enzymes: HEMC, HEME, and CHLD. Results of the interaction 
with both chimeric protein combinations are shown. The Venus channel in the first 
column represents the YFP fluorescence, in the second column is shown the chlorophyll 
fluorescence to highlight the chloroplasts. 

Unfortunately immuno-precipitation on GUN1-GFP experiments never 

allowed for the detection of CHLD (not shown). However, supporting this 
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observation, preliminary immuno-blot analyses suggest that the presence 

of GUN1 influences the abundance of components of the Mg-chelatase 

enzymatic complex. The accumulation of CHLD was reduced in the gun1 

single mutant and enriched when the chimeric GUN1-GFP was highly 

abundant (35S:GUN1-GFP line). Also the GUN4 subunit accumulates to 

lower levels in the absence of GUN1, whereas CHLH appeared to 

accumulate to higher levels than in the WT both, in the presence 

(35S:GUN1-GFP line) and absence (gun1) of the GUN1 protein (Figure 

3.14). 

 

Figure 3.14 Immuno-blot analyses on the accumulation of Mg-chelatase 
subunits in leaves of WT, gun1 and 35S:GUN1-GFP transgenic lines. Immuno-
blotting on Lhcb4 was used as a loading control. 

3.3.2 Discussion 

The GUN1 protein was found to be associated with the pTAC complexes, 

immuno-localization experiments identify GUN1-GFP either in the insoluble 

fraction or in the stromal soluble matrix. Yeast two-hybrid experiments, 
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supported by BiFC assays and immuno-blot analyses suggested an 

interaction of GUN1 with the D subunit of the magnesium chelatase, 

possibly by stabilizing the CHLD subunit and modulating the activity of the 

Mg-chelatase. Nevertheless CHLD, as well as the other tetrapyrrole 

biosynthesis enzymes, have not been isolated with the pTACs yet. On the 

other hand no physical interaction between GUN1 and the PGE machinery 

(plastid ribosomal proteins) was identified. Moreover, in-vivo experiments 

such as co-immuno-precipitation did not allow for the detection of the 

CHLD subunit in the GUN1-GFP immuno-precipitated samples. One of the 

possible reasons could be that the CHLD-GUN1 interaction is only 

transient and the two proteins are too weakly associated with each other 

to be pulled down reciprocally. Another explanation might be that the 

CHLD-GUN1 complex needs activation to be assembled. As documented 

by immuno-blot analyses, GUN1-GFP appears in two forms probably due 

to post-translational modifications or degradation. The larger GUN1-GFP 

variant is induced under stress-conditions like highlight. Therefore, it 

might be possible that GUN1 interacts with CHLD to modulate enzyme 

activity in response to high-light stress. This scenario might explain why a 

lack of GUN1 leads to a gun phenotype on norflurazon (NF) similarly to 

the other Mg-chelatase subunit mutants (Davis et al., 1999; Mochizuki et 

al., 2001; Larkin et al., 2003). However, further immuno-precipitation 

experiments under stress conditions are needed to support this model. 

The recent discovery of the PhD transcription factor (PTM) being the 

physical link between the plastid and the nuclear part of the GUN1-

mediated retrograde signaling pathway speaks in favor of this hypothesis. 

Indeed, PTM needs to be stress-activated in order to migrate into the 

nucleus (Sun et al., 2011). Our model proposes GUN1 to function as a key 

regulator which coordinates tetrapyrrole biosynthesis in the chloroplast 

with the plastid translational machinery and photosynthetic nuclear gene 

expression. Another role recently proposed for GUN1 is to act upstream of 

the heme-branch in the tetrapyrrole biosynthesis pathway and not 
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downstream as signal integrator (Koussevitzky et al., 2007; Terry and 

Smith, 2013). According to this hypothesis GUN1 controls either the 

synthesis or the availability of the tRNAGLU, in this way modulating the 

positive signal transduced by the free heme (Terry and Smith, 2013). In 

this respect GUN1 might act as a negative regulator of NGE promoting 

chlorophyll biosynthesis and/or the opponent of FC1 which represents a 

positive NGE regulator by affecting heme synthesis. Therefore, the 

behavior of the double mutants described above could be explained by the 

sum of positive and negative signals being affected by their mutations. If 

the positive heme-related signal prevails the mutant phenotype is restored 

by the lack of GUN1, as described for gun1 prps1 and gun1 prors1-1. 

Contrarily, when the negative signal dominates the result is an 

exacerbated phenotype, as observed in gun1 prpl11, gun1 prpl24, and 

gun1 prps17. Thus, the behavior gun1 prps21, which shows the same 

mutant phenotype as prps21, can be explained by equal signals cancelling 

each other out. To prove this signal-related theory it will be crucial to 

analyze the behavior of triple mutants like gun1 prps1 fc1 and gun1 

prors1-1 fc1 or gun1 prpl11 gun4 and gun1 prpl24 gun4. If the hypothesis 

is correct, the introduction of the fc1 mutation might restore the prps1 

and prors1-1 phenotype, whereas the introduction of gun4 might 

complement the gun1 prpl11 and gun1 prpl24 phenotypes. 
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3.4 The RH50 component of the pTAC complex shows similar features of 

GUN1 with respect to retrograde signalling 

3.4.1 RH50 and GUN1 are subunits of the pTAC complex 

To further investigate the involvement of the pTAC complex in retrograde 

signaling, we selected two rh50 mutant alleles, silenced by a T-DNA 

insertion in the gene encoding the RH50 DEAD-box helicase (Figure 3.15).  
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Figure 3.15 RH50 genomic locus and the employed T-DNA alleles. The two mutant 
alleles rh50-1 and rh50-2 including the T-DNA and transposon insertion sites are 
displayed within the genomic sequences, 5´ and 3´ indicate the orientation of the 
transposon, RB and LB the orientation of the T-DNA. 

Besides the enzymes involved in tetrapyrrole biosynthesis also the RH50 

gene appears to be highly co-regulated with GUN1 (Table 3.7). 

Furthermore, mass spectrometry analyses identified RH50 to be a 

member of the pTAC complexes (Olinares et al., 2010). To confirm the 

localization of RH50, transgenic lines carrying the 35S:RH50-YFP construct 

were generated in the rh50 genetic background. Subsequently, the 

35S:RH50-YFP line was crossed with 35S:GUN1-GFP, a line carrying a 

fluorescence marker for pTACs, to clarify whether the two proteins co-

localize with the pTAC complexes. Protoplasts were isolated from the F1 

generation and analyzed with a fluorescence microscope employing YFP 

and GFP filters. Since the localization pattern of the two fluorescent 

proteins was widely overlapping, one can conclude that RH50 is a member 

of pTAC complexes similar GUN1 (Figure 3.16).  



3. Results and Discussions 

63 

 

 

Figure 3.16 Co-localization of 35S:RH50-YFP and 35S:GUN1-GFP in A. thaliana 
protoplasts. DIC, differential interference contrast; AF, chlorophyll auto-fluorescence; 
GUN1-GFP, green fluorescence of the chimeric GUN1-GFP; RH50-YFP, yellow fluorescence 
emitted by the chimeric RH50-YFP. 

To identify some putative components of RH50 protein complex, the same 

set of yeast-two-hybrid plasmids used for GUN1 was employed to identifiy 

RH50 interaction partners. However, with this approach no putative 

interacting-polypeptide was identified. RH50 did not show any interaction 

with GUN1, PRPL11, PRPL24, HEMA, GSA1, GSA2, HEMC, HEME1, HEMF1, 

PPOX, CHLI, CHLI2, or CHLD (not shown).  

3.4.2 RH50 is involved in plastid transcript processing 

Northern blot analyses was performed on 14 days old leaf material 

obtained from WT, gun1, rh50, and gun1 rh50 double mutants to 

investigate putative roles of GUN1 and RH50 in plastid rRNA processing.  
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Figure 3.17 Northern blot analyses on leaves from 14 days old gun1, rh50 and 
gun1 rh50 plants. Analyses were performed to monitor plastid rRNA processing (A) and 
transcripts of other plastid-encoded genes (B).  

The obtained data displayed no defects in 16S and 5S rRNA transcription 

and maturation in all the analyzed mutants. Nevertheless, the rh50 and 

gun1 rh50 mutants clearly showed a processing defect of the 23S and 

4,5S rRNA transcripts. The mature transcript of these genes was slightly 

reduced and an unprocessed transcript was enriched when compared to 

Col-0 and gun1. The 23S-4,5S intergenic region was also analyzed by 

northern blot employing a complementary probe of 80 nucleotides in 

length to localize the region where alterations in splicing occur. This 

resulted in only faint signal being detectable in WT and gun1 leaves. 

Contrarily, transcripts of this region strongly accumulated in rh50 and 

gun1 rh50 mutant plants (Figure 3.17). This observation indicates that 

RH50 is involved in the processing of the 23S-4,5S intergenic region and 
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as a consequence responsible for the efficient maturation of the 23S and 

4,5S rRNAs. Further expression analyses showed additional processing 

defects in other plastid transcripts such as PRPS3 and PRPS8 in rh50 and 

gun1 rh50 leaves. As in the case of the rRNAs, the processing defects lead 

to the accumulation of the mRNA precursors. However, levels of the 

mature mRNAs were not affected. On the other hand, no splicing defects 

were detectable in PRPL2 and PSBA transcripts from WT and mutant 

leaves (Figure 3.17).  

3.4.3 RH50 and GUN1 show similar genetic interactions 

Similarly to gun1, rh50 shows a WT-like phenotype, as indicated by a WT 

growth rate and photosynthetic efficiency (Figures 3.18 and 3.19), 

whereas the gun1 rh50 double mutant displayed a reduction in size (50% 

of the WT at 26 d.a.p.) although its photosynthetic efficiency was similar 

to WT (Figure 3.18, Figure 3.19 and Table 3.9). In the prors1-1 mutant 

background the effect of the rh50 mutation was comparable to the one of 

gun1 with the rh50 prors1-1 double mutant being slightly bigger than the 

prors1-1 single mutant (130%), but still smaller than the WT control 

(85%). Also its photosynthetic performance was restored to WT levels.  

Similarly, rh50 prps1 plants were significantly larger than the prps1 ones 

(160%) showing an improved photosynthetic performance as indicated by 

increased Fv/Fm and ΦII parameters (Table 3.9). The rh50 prps21 plants 

on the other hand showed a phenotype similar to the prps21 single 

mutant.  
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Figure 3.18 Phenotypic analyses of the rh50 mutation in prp and prors1-1 
mutant genetic backgrounds. Imaging-PAM representations of the yield of PSII (ΦII) 
are reported on the right, violet color for 0, red color for 1 (A). Optical microscopy 
observations allowed for the identification of rh50 prpl24 embryo-lethal mutant (B). 
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On the contrary, different effects could be observed for rh50 prpl11 

plants, as they were strongly reduced in size at 26 d.a.g. (30% of prpl11 

and 10% of Col-0) and exacerbated in their Fv/Fm and ΦII values (Table 

3.9).  

In addition, the two rh50 alleles (Figure 3.15) were also crossed with 

prpl24, but segregation analyses performed on the F2 generation did not 

allow for the identification of a rh50 prpl24 double mutant.  

 

Figure 3.19 Growth rate analyses of rh50 mutant in combination with gun1 and 
the OGE mutants. The charts represent the leaf area (in cm2) measured during 26 days 
of observation. 

Light microscopy of rh50/RH50 prpl24/prpl24 siliques revealed that in one 

out of four ovules the embryo development was arrested at the globular 

stage, thus RH50 and PRPL24 seem to be essential for a proper embryo 

development (Figure 3.18). Similarly, analyses on rh50-1/RH50 

prps17/prps17 and rh50-2/RH50 prps17/prps17 progeny did not allow for 

an identification of the corresponding double knock-out. Also in the case 

of a prps17 genetic background RH50 seems to be essential for embryo 

development.  
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Table 3.9 Photosynthetic parameters (Fv/Fm, ΦII and 1-qP) of rh50, gun1, prors1-1, 
prpl11, prps1 and prps21 single and double mutants. Fv/Fm and ΦII are representative of 
PSII efficiency, 1-qP is indicative for the redox-state of the PQ pool. 

    
  FV/FM ΦII 1-qP 

WT 0,81±0,02 0,75±0,01 0,06±0,02 

rh50 0,82±0,01 0,75±0,01 0,05±0,01 

gun1 0,82±0,01 0,76±0,02 0,05±0,02 

rh50 gun1 0,82±0,01 0,75±0,02 0,06±0,02 

prors1-1 0,78±0,02 0,68±0,02 0,06±0,02 

rh50 prors1-1 0,82±0,02 0,73±0,02 0,07±0,02 

prpl11 0,71±0,03 0,64±0,02 0,07±0,02 

rh50 prpl11 0,49±0,04 0,39±0,03 0,12±0,03 

prps1 0,63±0,03 0,49±0,02 0,12±0,03 

rh50 prps1 0,67±0,02 0,54±0,02 0,08±0,03 

prps21 0,55±0,02 0,41±0,03 0,16±0,04 

rh50 prps21 0,53±0,02 0,40±0,03 0,14±0,03 

        
Taken together the phenotypic observations on this set of double mutants, 

compared to the gun1 prp and gun1 prors1-1 phenotypic data, strongly 

suggest a common function of RH50 and GUN1 possibly by acting within 

the same signaling pathway. 

3.4.4 Discussion  

As previously described by Olinares et al. (2010), the RH50 DEAD–box 

helicase protein is part of the pTACs and shows a co-localization with 

GUN1 in distinct spots within the plastid. Approaches like the Y2H assay 

that aimed at identifying direct interacting components of RH50 failed. On 

the other hand, expression analyses on 14 days old leaf material revealed 

the involvement of RH50 in plastid rRNA and mRNA processing with 

plastid encoded genes like 23S rRNA, 4,5S rRNA, PRPS3 and PRPS8 

showing defects in RNA maturation in rh50 and rh50 gun1 mutant plants. 
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The incorrect processing of the 23S-4,5S intergenic region leads to the 

accumulation of 23S rRNA and 4,5S rRNA precursors and the reduction of 

both of the mature rRNAs. In contrast, GUN1 is not involved in these rRNA 

and mRNA processing steps since no additive effect can be observed in 

the gun1 rh50 double mutant. The lethal phenotype of rh50 prpl24 could 

therefore be explained by the adding up of two different defects in 23S 

rRNA accumulation since both, rh50 and prpl24 show a reduced 

abundance of the mature 23S rRNA. (this dissertation; Romani et al., 

2012). The RH50 DEAD-box helicase represents a promising candidate for 

being involved in the GUN1-mediated retrograde signaling pathway. The 

RH50 gene was considered because of its high co-regulation score with 

GUN1 and mass-spectrometry data that have identified RH50 in pTAC 

complexes together with GUN1 (Olinares et al., 2010). Even though gun1 

and rh50 show both a WT-like phenotype, the gun1 rh50 double mutant 

displays an altered growth-rate phenotype suggesting a common 

molecular function in some chloroplast located process. The genetic 

interaction profile determines for the rh50 mutant is widely congruent with 

the gun1 mutant, both showing embryo-lethality in combination with 

prpl24 and prps17. Interestingly, the rh50 prpl24 double mutant is not 

able to complete its embryogenesis similar to the gun1 prpl24 double 

mutant, which shows a less severe phenotype with an arrest only after 

reaching the torpedo stage. The rh50 prpl24 double mutant shows an 

arrest already at the globular stage of seed development similar to many 

documented prp mutants like prps20, prpl1, prpl4, prpl21, prpl27 or 

prpl35 (Romani et al., 2012; Yin et al., 2012). The transition stage 

between the globular and the torpedo stage corresponds to the phase 

where pro-plastids develop to chloroplasts and fatty acid biosynthesis 

becomes essential for the embryo (Mansfield et al., 1991; Kobayashi et 

al., 2007). An opposite scenario must be noticed for the genetic 

interaction with prpl11. Here, gun1 and rh50 show a different effect even 

though both exacerbate the prpl11 phenotype. Indeed gun1 prpl11 is 
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albinotic andseedling-lethal whereas the rh50 prpl11 double mutation 

produces small and pale plants that are still viable. If PRPL11 is lacking, 

GUN1 seems to be more crucial than RH50 for plastid functionality. 

Besides some minor differences, the rh50 and gun1 mutants behave 

similarly in combination with prps1, prps21 and prors1-1. These mutations 

lead indeed to a partial rescue of the phenotype for rh50 prps1, gun1 

prps1 (if compared with prps1), rh50 prors1-1 and gun1 prors1-1 (in 

comparison to prors1-1) and a neutral effect in prps21 mutant 

background. Similarly to gun1, rh50 displays a partial restoration of prps1 

and prors1-1 phenotypes concerning growth rate and photosynthetic 

performance (Fv/Fm and ΦII). As described for gun1, even in this case the 

mitigation effect of the TRS is not due to the chlorophyll content of the 

mutant, but to a real improvement of the plastid functions. More 

experiments are needed to test the OGE in these genetic backgrounds to 

clarify whether transcription/translation is truly restored in these lines or 

rather more stress-adaption mechanisms are involved. Our observations 

strongly suggest an involvement of RH50 in the GUN1-mediated 

retrograde signaling pathway. However, NF sensitivity tests did not reveal 

a gun phenotype for the rh50 mutant. Since GUN1 has been proposed to 

be the integrator of both, the tetrapyrrole biosynthesis and the plastid 

gene expression pathway and rh50 shows a functional interaction only 

with the OGE pathway, we hypothesize that RH50 might function 

upstream of GUN1 in a plastid gene expression specific pathway. 

Therefore, OGE inhibitor studies are needed to check whether rh50 shows 

a gun phenotype.  
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3.5 GUN1 and RH50 are involved in the regulation of NGE  

3.5.1 GUN1 and RH50 act as repressors of NGE in the prors1-1 genetic 

background 

Organelles are known to be able to modulate NGE according to their 

physiological needs alterations, chloroplasts and mitochondria activities 

lead therefore to a reorganization of nuclear gene expression as observed 

in mutant backgrounds like prors1-1 and prors1-2 plants (Pesaresi et al., 

2006; Woodson and Chory, 2008). As shown in this work, the chaos 

mutation is able to restore NGE in the prors1-1 mutant background, 

indicating the importance of light absorption and the TRS in organelle-to-

nucleus communication. To verify whether GUN1 and RH50 are part of the 

retrograde signaling pathway that is triggered by the effects of the prors1-

1 mutation, northern blot analyses were performed on the corresponding 

double mutants. In total 13 nuclear genes were analyzed and 10 of them 

were down-regulated in prors1-1, whereas LHCA4, PSAO and PSBQ were 

expressed at the same level or even higher than in the WT. As expected 

from growth-rate studies and photosynthetic efficiency analyses, the gun1 

prors1-1 double mutant shows higher expression levels of almost all the 

nuclear encoded genes except for LHCB2 when compared to prors1-1. 

Several genes like Lhca1, Lhcb1-2, Lhcb6, PsaE1, PsaK, PsaO and RbcS 

were up-regulated even in the gun1 single mutant in comparison to the 

WT. As a control for plastid encoded genes, psaB and RbcL radio-labeled 

probes were exploited and both genes resulted up-regulated in prors1-1. 

Surprisingly, RbcL and psaB were stronger up-regulated in gun1 prors1-1 

than in the prors1-1 single mutant, indicating that the two mutations have 

a synergic effect on plastid transcription (Figure 3.20).  
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Figure 3.20 Northern blot analyses on NGE in gun1, rh50 and prors1-1 single 
and double mutant backgrounds. Expression analyses on nuclear- and plastid-
encoded photosynthetic genes in the gun1, prors1-1 and gun1 prors1-1 genetic 
background. RNA stained filter shown as loading control (A). Expression of nuclear-
encoded photosynthetic genes in rh50, prors1-1 and rh50 prors1-1 mutants (B). WT, 
gun1, rh50, and gun1 rh50 mutants were grown on MS medium in the presence of 5 mM 
NF followed by the analysis of Lhcb1.2 transcript accumulation via northern blot (C). 

To check whether rh50 has a similar effect on NGE as gun1, Lhca2, Lhca4 

and Lhcb4 expression were assessed in the prors1-1 rh50 double mutant 

by norther blot analysis. As expected, all analysed Lhc genes showed a 

reduced accumulation in prors1-1 and an accumulation in rh50 prors1-1 

that is even higher than in the WT. These expression analyses strongly 

suggest that GUN1 and RH50 play a role in organelle-to-nuclear 

communication. Based on these data we propose that RH50 represents a 

new player of the GUN1-mediated retrograde signaling pathway, despite 
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the fact that the rh50 mutant did not show a gun-like phenotype when 

grown on MS supplemented with 5 µM NF (Figure 3.20).  

3.5.2 Discussion 

Expression analyses performed on gun1 prors1-1 and rh50 prors1-1 

(compared to prors1-1) reveal that the restoration of the physiological 

functions of prors1-1 implies changes in the NGE which, in fact, is restored 

to a WT-like level. In case of gun1 prors1-1, all the genes analyzed are 

higher expressed than in prors1-1, in particular Lhca4, Lhcb5, PsaE1, 

PsaO, PsbQ and RbcS are more abundant than in the WT control. Lhca3, 

Lhcb1-2, PsaK and PsbY are expressed at WT levels and Lhca1, Lhcb2 and 

Lhcb6 accumulated to levels between WT and prors1-1.  As documented 

already for gun1 sig2, GUN1 seems to act as a repressor of NGE in the 

prors1-1 genetic background (Woodson et al., 2013). The plastid-encoded 

genes psaB and RbcL used as controls, with both of them being up-

regulated in prors1-1 and even more so in gun1 prors1-1 demonstrate the 

specificity of GUN1 for nuclear photosynthetic genes. Preliminary tests on 

rh50 prors1-1 show the same NGE-rescue effect documented for gun1 

prors1-1. Lhca2, Lhca4 and Lhcb4, the nuclear genes tested so far, are 

indeed down-regulated in prors1-1 and up-regulated in rh50 prors1-1, 

even more than the WT level. RH50 and GUN1 seem to act as repressors 

of NGE. However, further tests are needed to see whether RH50 and 

GUN1 have the same target gene specificity or whether they act in a 

common pathway in regulating NGE. The common role described for GUN1 

and RH50 in regulating NGE strongly suggests the pTAC complexes as the 

main regulators in the OGE-mediated signaling to the nucleus. According 

to this hypothesis, different components of the complex, with different 

molecular functions, might interfere at various levels with the signaling 

pathway. The signals might then be integrated by GUN1 before being 

transduced from the chloroplast to the nucleus.  
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4. Conclusions 

In this work we analyzed the role of several molecular players involved in 

the retrograde plastid-to-nucleus signaling pathway. The functional 

interaction between light absorption and plastid protein synthesis were 

studied by combining the prors1-1 mutation, which is responsible for an 

altered protein synthesis in organelles, with the chaos mutation. This 

mutation leads to a hyper-oxidized TRS as a consequence of the reduced 

size of the PSII antenna (Klimyuk et al., 1999; Pesaresi et al., 2006). 

Perturbations in OGE lead to an imbalanced stoichiometry between 

nuclear- and plastid-encoded proteins of the photosystems which results 

in the reduction of the photosynthetic performance and imply changes in 

the TRS. As a consequence of an altered photosynthetic efficiency the 

nuclear-encoded photosynthetic genes are down-regulated, with the aim 

to adapt the chloroplast to the developmental and metabolic needs 

(Woodson and Chory, 2008). On the other hand the OGE machinery is 

under the control of the TRS, hence kinases and thioredoxins are indeed 

able to modify the activity and the stability of the OGE machinery (Balmer 

et al., 2003; Balmer et al., 2004; Stroher and Dietz, 2008; Tillich et al., 

2009; Stern et al., 2010). The prors1-1 chaos double mutant analyses 

allowed us to understand how OGE and the TRS interact with the aim to 

adapt plastid and nuclear gene expression to the plant’s physiological 

needs. A more oxidized TRS due to the chaos mutation is able to restore a 

WT-like TRS in the prors1-1 genetic background, which shows as a highly-

reduced TRS. The reduction of electron flow through the impaired 

photosystems can mitigate the stress produced across the electron 

transport chain itself. The restoration of a WT-like TRS does not imply any 

improvement on the translational level, since the OGE machinery in 

prors1-1 chaos is similarly reduced in its efficiency as in prors1-1 mutant 

however the attenuation of the TRS is influencing NGE which is partially 

restored to WT-levels. We can therefore conclude that in the plastid-to-
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nucleus retrograde signaling the TRS-dependent pathway acts 

downstream of the OGE-dependent signaling pathway in modulating NGE. 

A similar rescue effect in NGE in the prors1-1 genetic background can be 

observed for gun1 prors1-1. In this case, the TRS of prors1-1 is restored 

to a WT-like level by the introduction of the gun1 mutation. The GUN1 

protein has been proposed to be the integrator of all the signaling 

pathways within the chloroplast as GUN1 is the only GUN protein able to 

respond to chemicals like NF and Lin which affect tetrapyrrole biosynthesis 

and OGE, instead, GUN2-to-GUN6 are involved solely in the tetrapyrrole 

biosynthesis pathway (Davis et al., 1999; Mochizuki et al., 2001; Larkin et 

al., 2003; Koussevitzky et al., 2007; Woodson et al., 2011). In contrast to 

the chaos mutation, gun1 is able to restore the TRS of prors1-1 mutant 

without changing the pigment composition of the thylakoids. Whether this 

rescue of NGE is due to an improvement of OGE efficiency or to more 

complex compensatory effects remains unclear, certainly the signaling 

cascade modulates the TRS which is perceived to a nuclear level. A 

genetics approach has allowed us to clarify that only GUN1 of the GUN 

proteins is functionally interacting with the plastid translation machinery. 

The gun1 mutation in the background of different OGE mutants resulted in 

diverse phenotypic effects, ranging from embryo-, seedling-lethality in 

case of gun1 prpl11, gun1 prpl24 and gun1 prps17 to a partial rescue 

phenotype in gun1 prps1 and gun1 prors1-1. As demonstrated by TEM 

analyses on variegated gun1 prpl11 leaves, GUN1 is involved in 

chloroplast development which is unique in comparison to the other gun 

mutants. Furthermore, GUN1 is shown to physically interact with 

components of the tetrapyrrole biosynthesis pathway. By stabilizing the D-

subunit of the Mg-chelatase under stress conditions GUN1 might be able 

to promote either heme or chlorophyll biosynthesis. Heme biosynthesis 

has been reported to act as a positive signal source for NGE (Woodson et 

al., 2011), whereas chlorophyll precursors have been shown to constitute 

a negative signal for NGE (Figure 4.1). These observations enable us to 
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define a molecular model for GUN1 acting as a superior integrator of 

stress signals within the chloroplast. According to this working model, 

GUN1 can integrate positive signals from heme and negative signals from 

chlorophyll biosynthesis to coordinate chloroplast development 

(Figure4.1). Interestingly, the loss-of-function mutant of the RH50 DEAD-

box helicase, another chloroplast-located protein associated with the 

pTACs (Olinares et al., 2010), shows a strong phenotypic overlap with the 

gun1 mutation in its genetic profile of double mutants. The functional 

interaction of RH50 and OGE was further shown on the molecular level 

with rh50 mutants showing processing defects in plastid transcripts of 

some rRNAs and ribosomal proteins. Even though the rh50 mutant failed 

to show a gun phenotype on NF, RH50 shares a similar role with GUN1 in 

repressing NGE in the prors1-1 genetic background. According to these 

observations, RH50 could represent a new player in the GUN1-mediated 

signaling pathway, which might constitute a regulatory domain within the 

pTAC protein complex (Figure 4.1). 
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Figure 4.1 Working model of GUN1 and RH50 molecular function and heme and 
chlorophyll synthesis as signal molecules. According to this hypothesis, GUN1 (in 
red) can negatively modulate the heme synthesis, known as positive signal for the NGE 
(+), promoting the chlorophyll production, known as negative one (-). RH50 (in red) 
could be involved in the GUN1-mediated pathway influencing the PGE-machinery. 
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